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Université Paris Est
CERMICS, Ecole des Ponts ParisTech
6 & 8, avenue Blaise Pascal
77455 Marne la Vallé cedex 2
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Preface

Discontinuous Galerkin (dG) methods can be viewed as finite element methods
allowing for discontinuities in the discrete trial and test spaces. Localizing test
functions to single mesh elements and introducing numerical fluxes at interfaces,
they can also be viewed as finite volume methods in which the approximate solu-
tion is represented on each mesh element by a polynomial function and not only
by a constant function. From a practical viewpoint, working with discontinuous
discrete spaces leads to compact discretization stencils and, at the same time,
offers a substantial amount of flexibility, making the approach appealing for
multi-domain and multi-physics simulations. Moreover, basic conservation prin-
ciples can be incorporated into the method. Applications of dG methods cover a
vast realm in engineering sciences. Examples can be found in the conference pro-
ceedings edited by Cockburn, Karniadakis, and Shu [106] and in recent special
volumes of leading journals, e.g., those edited by Cockburn and Shu [114] and by
Dawson [120]. There is also an increasing number of open source libraries imple-
menting dG methods. A non-exhaustive list includes deal.II [27], Dune [36],
FEniCS [251], freeFEM [118], libmesh [213], and Life [262].

A Brief Historical Perspective
Although dG methods have existed in various forms for more than 30 years, they
have experienced a vigorous development only over the last decade, as illustrated
in Fig. 1.

The first dG method to approximate first-order PDEs has been introduced
by Reed and Hill in 1973 [268] in the context of steady neutron transport, while
the first analysis for steady first-order PDEs was performed by Lesaint and
Raviart in 1974 [227–229]. The error estimate was improved by Johnson and
Pitkäranta in 1986 [204] who established an order of convergence in the L2-norm
of (k + 1

2 ) if polynomials of degree k are used and the exact solution is smooth
enough. Few years later, the method was further developed by Caussignac and
Touzani [84,85] to approximate the three-dimensional boundary-layer equations
for incompressible steady fluid flows. At around the same time, dG methods were
extended to time-dependent hyperbolic PDEs by Chavent and Cockburn [86]
using the forward Euler scheme for time discretization together with limiters.
The order of accuracy was improved by Cockburn and Shu [110, 111] using

V
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Fig. 1: Yearly number of entries with the keyword “discontinuous Galerkin” in
the MathSciNet database

explicit Runge–Kutta schemes for time discretization, while a convergence proof
to the entropy solution was obtained by Jaffré, Johnson, and Szepessy [200].
Extensions are discussed in a series of papers by Cockburn, Shu, and coworkers;
see, e.g., [99,108,113].

For PDEs with diffusion, dG methods originated from the work of Nitsche
on boundary-penalty methods in the early 1970s [248,249] and the use of Inte-
rior Penalty (IP) techniques to weakly enforce continuity conditions imposed on
the solution or its derivatives across interfaces, as in the work of Babuška [20],
Babuška and Zlámal [24], Douglas and Dupont [134], Baker [25], Wheeler [306],
and Arnold [14]. This latter work constitutes a milestone in the development of
IP dG methods. In the late 1990s, following an approach more closely related
to hyperbolic problems, dG methods were formulated using numerical fluxes
by considering the mixed formulation of the diffusion term. Examples include
the work of Bassi and Rebay [34] on the compressible Navier–Stokes equations
and that of Cockburn and Shu [112] on convection-diffusion systems, leading
to a new thrust in the development of dG methods. A unified analysis of dG
methods for the Poisson problem can be found in the work of Arnold, Brezzi,
Cockburn, and Marini [16], while a unified analysis encompassing both diffusive
and first-order PDEs in the framework of Friedrichs’ systems has been derived
by Ern and Guermond [142–144].

Goals
The goal of this book is to provide the reader with the basic mathematical
concepts to design and analyze dG methods for various model problems, start-
ing at an introductory level and further elaborating on more advanced topics.
Since the focus is on mathematical aspects of dG methods, linear model prob-
lems involving first-order PDEs and PDEs with diffusion play a central role.
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Nonlinear problems, e.g., the incompressible Navier–Stokes equations and non-
linear conservation laws, are also treated, but in less detail for the latter, since
very few mathematical results are yet available. This book also covers basic
facts concerning the practical aspects of dG methods related to implementation;
a more detailed treatment can be found in the recent textbook by Hesthaven
and Warburton [192].

Some of the topics covered in this book stem from (very) recent work by
the authors, e.g., on discrete functional analysis and convergence to minimal
regularity solutions for PDEs with diffusion [131], the above-mentioned work
with Guermond on Friedrichs’ systems, and joint work with Vohralík on diffusive
flux reconstruction and a posteriori error estimates for elliptic PDEs [147, 149,
151]. Another salient feature of this book is to bridge, as much as possible, the
gap between dG methods and finite volume methods, where many important
theoretical advances have been accomplished over the last decade (see, e.g., the
work of Eymard, Gallouët, and Herbin [156,157,159]). In particular, we present
so-called cell-centered Galerkin methods for elliptic PDEs with one degree of
freedom per mesh cell, following recent work by Di Pietro and coworkers [5, 6,
128]. For the approximation of unsteady problems, we focus on the method of
lines, whereby dG space semidiscretization is combined with various schemes to
march in time. One important goal is to show how the stability of dG schemes
interacts with the stability of the temporal scheme. This is reflected, for instance,
in our covering the analysis based on energy estimates for explicit Runge–Kutta
dG methods applied to first-order, linear PDEs, following the recent work of
Burman, Ern, and Fernández [66]. For a description and analysis of space-time
dG methods as an alternative to the method of lines, we refer the reader to the
textbook by Thomée [294]. Finally, we consider a rather general setting for the
underlying meshes so as to exploit, as much as possible, the flexibility offered by
the dG setting.

Outline
Chapter 1 introduces basic concepts to formulate and analyze dG methods. In
this chapter, we present:

(a) Two important results to assert the well posedness of linear model prob-
lems, namely the so-called Banach–Nečas–Babuška Theorem and the Lax–
Milgram Lemma.

(b) The basic ingredients related to meshes and polynomials to build discrete
functional spaces and, in particular, broken polynomial spaces.

(c) The three key properties for the convergence analysis of dG methods in the
context of nonconforming finite elements, namely discrete stability, consis-
tency, and boundedness.

(d) The basic analysis tools, in particular inverse and trace inequalities needed to
assert discrete stability and boundedness, together with optimal polynomial
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approximation results, thereby leading to the concept of admissible mesh
sequences.

In this book, we focus on mesh refinement as the main parameter to achieve
convergence. Convergence analysis using, e.g., high-degree polynomials is pos-
sible by further tracking the dependency of the inverse and trace inequalities
on the underlying polynomial degree and, in some cases, modifying accordingly
the penalty strategy in the dG method to achieve discrete stability. Impor-
tant tools in this direction can be found in the work of Babuška and Dorr [22],
Babuška, Szabó, and Katz [23], Szabó and Babuška [288] and Schwab [275],
and, in the context of dG methods, in the recent textbook of Hesthaven and
Warburton [192].

The remaining chapters of this book are organized into three parts, each
comprising two chapters. Part I, which comprises Chaps. 2 and 3, deals with
scalar first-order PDEs. Chapter 2 focuses on the steady advection-reaction
equation as a simple model problem. Therein, we present some mathematical
tools to achieve a well-posed formulation at the continuous level and show how
these ideas are built into the design of dG methods. Two methods are analyzed
thoroughly, which correspond in the finite volume terminology to the use of
centered and upwind fluxes.

Chapter 3 deals with unsteady first-order PDEs. Within the method of lines,
we consider a dG method for space semidiscretization combined with an explicit
scheme to march in time. We first present a detailed analysis in the linear case
whereby the upwind dG method of Chap. 2 is used for space semidiscretization.
Following the seminal work of Levy and Tadmor [231], the stability analysis
hinges on energy estimates, and not on the more classical approach based on
regions of absolute stability for explicit Runge–Kutta (RK) schemes. In partic-
ular, we show how the stability provided by the upwind dG scheme can com-
pensate the anti-dissipative nature of the explicit time-marching scheme. We
also show how this stability can be used to achieve quasi-optimal error estimates
for smooth solutions. We present results for the forward Euler method com-
bined with a finite volume scheme as an example of low-order approximation
and then move on to explicit two- and three-stage RK schemes combined with
a high-order dG approximation. The second part of Chap. 3 deals with nonlin-
ear conservation laws. Taking inspiration from the linear case, we first design
dG methods for space semidiscretization using the concept of numerical fluxes
and provide various classical examples thereof, including Godunov, Rusanov,
Lax–Friedrichs, and Roe fluxes. Then, we consider explicit RK schemes for time
discretization and discuss Strong Stability-Preserving (SSP) RK schemes follow-
ing the ideas of Gottlieb, Shu, and Tadmor [175, 176]. Finally, we discuss the
use of limiters in the framework of one-dimensional total variation analysis and
possible extensions to the multidimensional case.

Part II, which comprises Chaps. 4 and 5, addresses scalar, second-order
PDEs. Chapter 4 covers various model problems with diffusion. We first
present a heuristic derivation and a convergence analysis to smooth solutions
for a purely diffusive problem approximated by the Symmetric Interior Penalty
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(SIP) method of Arnold [14]. Then, we introduce the central concept of dis-
crete gradients and present some important applications, including the link
with the mixed dG approach and the local formulation of the discrete problem
using numerical fluxes. Hybrid mixed dG methods are also briefly discussed.
Focusing next on heterogeneous diffusion problems, we analyze a modification
of the SIP method, the Symmetric Weighted Interior Penalty (SWIP) method,
using weighted averages in the consistency term and harmonic means of the
diffusion coefficient at interfaces in the penalty term. The SWIP method is then
combined with the upwind dG method of Chap. 2 to approximate diffusion-
advection-reaction problems. We examine singularly perturbed regimes due to
dominant advection, and include in the analysis the case where the diffusion
actually vanishes in some parts of the domain. Finally, as a simple exam-
ple of time-dependent problem with diffusion, we consider the heat equation
approximated by the SIP method in space and implicit time-marching schemes
(backward Euler and BDF2).

Chapter 5 covers some additional topics related to diffusive PDEs, and, for
the sake of simplicity, the scope is limited to purely diffusive problems. First, we
present discrete functional analysis tools in broken polynomial spaces, namely
discrete Sobolev embeddings, a discrete Rellich–Kondrachov compactness result,
and a weak asymptotic consistency result for discrete gradients. As an example
of application, we prove the convergence, as the meshsize goes to zero, of the
sequence of discrete SIP solutions to minimal regularity solutions. These ideas
are instrumental in Chap. 6 when analyzing the convergence of dG approxima-
tions for the steady incompressible Navier–Stokes equations. Then, we present
some possible variations on symmetry and penalty for the SIP method. A further
topic concerns the so-called cell-centered Galerkin methods which use a single
degree of freedom per mesh cell and a suitable discrete gradient reconstruction,
thereby providing a closer connection between dG and finite volume methods for
elliptic PDEs. The last two topics covered in Chap. 5 are local postprocessing
of the dG solution and a posteriori error estimates. One salient feature of local
postprocessing is the possibility to reconstruct locally an accurate and conserva-
tive diffusive flux. An important application is contaminant transport where the
diffusive flux resulting from a Darcy flow model is used as advection velocity. In
turn, a posteriori error estimates provide fully computable error upper bounds
that can be used to certify the accuracy of the simulation and to adapt the mesh.
These last two topics can be nicely combined together since local postprocessing
provides an efficient tool for deriving constant-free a posteriori error estimates.

Part III, which comprises Chaps. 6 and 7, deals with systems of PDEs.
Chapter 6 is devoted to incompressible flows. Focusing first on the steady Stokes
equations, we examine how the divergence-free constraint on the velocity field
can be tackled using dG methods. We detail the analysis of equal-order approx-
imations using both discontinuous velocities and pressures, whereby pressure
jumps need to be penalized, and then briefly discuss alternative formulations
avoiding the need for pressure jump penalty. The next step is the discretization
of the nonlinear convection term in the momentum equation. To this purpose,
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we derive a discrete trilinear form that leads to the correct kinetic energy bal-
ance, using the so-called Temam’s device to handle the fact that discrete veloc-
ities are only weakly divergence-free. Moreover, since the model problem is
now nonlinear, the convergence analysis is performed under minimal regularity
assumptions on the exact solution and without any smallness assumption on the
data using the discrete functional analysis tools of Chap. 5. Finally, we discuss
the approximation of the unsteady Navier–Stokes equations in the context of
pressure-correction methods.

Chapter 7 presents a unified approach for the design and analysis of dG
methods based on the class of symmetric positive systems of first-order PDEs
introduced by Friedrichs [163]. Focusing first on the steady case, we review
some examples of Friedrichs’ systems and derive the main mathematical tools
for asserting well posedness at the continuous level. Using these tools, we derive
and analyze dG methods, and, in doing so, we follow a similar path of ideas
to that undertaken in Chap. 2. Then, we consider more specifically the setting
of two-field Friedrichs’ systems and highlight the common ideas with the mixed
dG approximation of elliptic PDEs. Finally, we consider unsteady Friedrichs’
systems with explicit RK schemes in time and then specialize the setting to two-
field Friedrichs’ systems related to linear wave propagation, thereby addressing
energy conservation and the possibility to accommodate local time stepping in
the context of leap-frog schemes.

Appendix A covers practical implementation aspects of dG methods, focusing
on matrix assembly and choice of local bases for which we discuss selection
criteria and present various examples including both nodal and modal basis
functions.

A bibliography comprising about 300 entries closes the manuscript. The
amount of literature on dG methods is so vast that this bibliography is by no
means exhaustive. We hope that the selected entries provide the reader with
additional reading paths to examine more deeply the topics covered herein and to
explore new ones. We mention, in particular, the recent textbooks by Hesthaven
and Warburton [192], Kanschat [205], and Rivière [269].

Audience
This book is primarily geared to graduate students and researchers in applied
mathematics and numerical analysis. It can be valuable also to graduate students
and researchers in engineering sciences who are interested in further understand-
ing the mathematical aspects that underlie the construction of dG methods,
since these aspects are often important to formulate such methods when faced
with new challenging applications. The reader is assumed to be familiar with
conforming finite elements including weak formulations of model problems and
error analysis (as presented, e.g., in the textbooks of Braess [49], Brenner and
Scott [54], Ciarlet [92], or Ern and Guermond [141]) and to have some acquain-
tance with the basic PDEs in engineering and applied sciences. Special care has
been devoted to making the material as much self-contained as possible. The
general level of the book is best suited for a graduate-level course which can
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be built by drawing on some of the present chapters. The material is actually
an elaboration on the lecture notes by the authors for a graduate course on dG
methods at University Pierre et Marie Curie.
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Chapter 1

Basic Concepts

This chapter introduces the basic concepts to build discontinuous Galerkin (dG)
approximations for the model problems examined in the subsequent chapters. In
Sect. 1.1, we present two important results to assert the well-posedness of linear
model problems, namely the so-called Banach–Nečas–Babuška (BNB) Theorem,
which provides necessary and sufficient conditions for well-posedness, and the
Lax–Milgram Lemma, which hinges on coercivity in a Hilbertian setting and pro-
vides sufficient conditions for well-posedness. We also state some basic results
on Lebesgue and Sobolev spaces. In Sect. 1.2, we describe the main ideas to
build finite-dimensional function spaces in the dG setting. The two ingredients
are discretizing the domain Ω over which the model problem is posed using a
mesh and then choosing a local functional behavior within each mesh element.
For simplicity, we focus on a polynomial behavior, thereby leading to so-called
broken polynomial spaces. We also introduce important concepts to be used
extensively in this book, including mesh faces, jump and average operators, bro-
ken Sobolev spaces, and a broken gradient operator. In Sect. 1.3, we outline
the key ingredients in the error analysis of nonconforming finite element meth-
ods. The error estimates are derived in the spirit of the Second Strang Lemma
using discrete stability, (strong) consistency, and boundedness. The advantage
of this approach is to deliver error estimates and (quasi-)optimal convergence
rates for smooth solutions. This framework for error analysis is frequently used
in what follows. Yet, it is not the only tool for analyzing the convergence of dG
approximations. In Chaps. 5 and 6, we consider an alternative approach in the
context of PDEs with diffusion based on a compactness argument and a different
notion of consistency. This approach allows us to prove convergence (without
delivering error estimates) with minimal regularity assumptions on the exact
solution. Finally, in Sect. 1.4, we present technical, yet important, tools to ana-
lyze the convergence of dG methods as the meshsize goes to zero (the so-called
h-convergence). A crucial issue is then to ensure that some key properties of the
mesh hold uniformly in this limit, thereby leading to the important concept of
admissible mesh sequences.

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_1,
c© Springer-Verlag Berlin Heidelberg 2012
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1.1 Well-Posedness for Linear Model Problems
Let X and Y be two Banach spaces equipped with their respective norms ‖·‖X

and ‖·‖Y and assume that Y is reflexive. In many applications, X and Y are
actually Hilbert spaces. We recall that L(X,Y ) is the vector space spanned by
bounded linear operators from X to Y , and that this space is equipped with the
usual norm

‖A‖L(X,Y ) := sup
v∈X\{0}

‖Av‖Y

‖v‖X
∀A ∈ L(X,Y ).

We are interested in the abstract linear model problem

Find u ∈ X s.t. a(u,w) = 〈f,w〉Y ′,Y for all w ∈ Y , (1.1)

where a ∈ L(X × Y,�) is a bounded bilinear form, f ∈ Y ′ := L(Y,�) is a
bounded linear form, and 〈·, ·〉Y ′,Y denotes the duality pairing between Y ′ and Y .
Alternatively, it is possible to introduce the bounded linear operator A ∈
L(X,Y ′) such that

〈Av,w〉Y ′,Y := a(v,w) ∀(v,w) ∈ X × Y, (1.2)

and to consider the following problem:

Find u ∈ X s.t. Au = f in Y ′. (1.3)

Problems (1.1) and (1.3) are equivalent, that is, u solves (1.1) if and only if u
solves (1.3).

Problem (1.1), or equivalently (1.3), is said to be well-posed if it admits one
and only one solution u ∈ X. The well-posedness of problem (1.3) amounts
to A being an isomorphism. In Banach spaces, if A ∈ L(X,Y ′) is an isomor-
phism, then A−1 is bounded, that is, ‖A−1‖L(Y ′,X) ≤ C (see, e.g., Ern and
Guermond [141, Remark A.37]). As a result, the unique solution u ∈ X satisfies
the a priori estimate

‖u‖X = ‖A−1f‖X ≤ C‖f‖Y ′ .

1.1.1 The Banach–Nečas–Babuška Theorem
The key result for asserting the well-posedness of (1.1), or equivalently (1.3),
is the so-called Banach–Nečas–Babuška (BNB) Theorem. We stress that this
result provides necessary and sufficient conditions for well-posedness.

Theorem 1.1 (Banach–Nečas–Babuška (BNB)). Let X be a Banach space and
let Y be a reflexive Banach space. Let a ∈ L(X × Y,�) and let f ∈ Y ′. Then,
problem (1.1) is well-posed if and only if:

(i) There is Csta > 0 such that

∀v ∈ X, Csta‖v‖X ≤ sup
w∈Y \{0}

a(v,w)
‖w‖Y

, (1.4)
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(ii) For all w ∈ Y ,
(∀v ∈ X, a(v,w) = 0) =⇒ (w = 0). (1.5)

Equivalently, the bounded linear operator A ∈ L(X,Y ′) defined by (1.2) is an
isomorphism if and only if:

(i) There is Csta > 0 such that

∀v ∈ X, Csta‖v‖X ≤ ‖Av‖Y ′ , (1.6)

(ii) For all w ∈ Y ,

(∀v ∈ X, 〈Av,w〉Y ′,Y = 0) =⇒ (w = 0). (1.7)

Moreover, the following a priori estimate holds true:

‖u‖X ≤ 1
Csta

‖f‖Y ′ .

Condition (1.4) is often called an inf-sup condition since it is equivalent to

Csta ≤ inf
v∈X\{0}

sup
w∈Y \{0}

a(v,w)
‖v‖X‖w‖Y

.

Furthermore, owing to the reflexivity of Y and introducing the adjoint operator
At ∈ L(Y,X ′) such that, for all (v,w) ∈ X × Y ,

〈Atw, v〉X′,X = 〈Av,w〉Y ′,Y ,

condition (1.7) means that, for all w ∈ Y , Atw = 0 in X ′ implies w = 0, or
equivalently that At is injective. Moreover, a classical result (see, e.g., [141,
Lemma A.39]) is that condition (1.6) means that A is injective and that the
range of A is closed.
Remark 1.2 (Name of Theorem 1.1). The terminology, proposed in [141], indi-
cates that, from a functional analysis point of view, this theorem hinges on two
key results of Banach, the Open Mapping Theorem and the Closed Range The-
orem, while the theorem in the form stated above was derived by Nečas [243]
and Babuška [21].

1.1.2 The Lax–Milgram Lemma
A simpler, yet less general, condition to assert the well-posedness of (1.1), or
equivalently (1.3), is provided by the Lax–Milgram Lemma [222]. In this setting,
X is a Hilbert space, Y = X, and the following coercivity property is invoked.

Definition 1.3 (Coercivity). Let X be a Hilbert space and let a ∈ L(X×X,�).
We say that the bilinear form a is coercive on X if there is Csta > 0 such that

∀v ∈ X, Csta‖v‖2
X ≤ a(v, v).
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Equivalently, we say that the bounded linear operator A ∈ L(X,X ′) defined
by (1.2) is coercive if there is Csta > 0 such that

∀v ∈ X, Csta‖v‖2
X ≤ 〈Av, v〉X′ ,X .

We can now state the Lax–Milgram Lemma. We stress that this result only
provides sufficient conditions for well-posedness.

Lemma 1.4 (Lax–Milgram). Let X be a Hilbert space, let a ∈ L(X×X,�), and
let f ∈ X ′. Then, problem (1.1) is well-posed if the bilinear form a is coercive on
X. Equivalently, problem (1.3) is well-posed if the linear operator A ∈ L(X,X ′)
is coercive. Moreover, the following a priori estimate holds true:

‖u‖X ≤ 1
Csta

‖f‖X′ .

Proof. Let us verify that if a is coercive, conditions (1.4) and (1.5) hold true.
To prove (1.4), we observe that, for all v ∈ X \ {0},

Csta‖v‖X ≤ a(v, v)
‖v‖X

≤ sup
w∈X\{0}

a(v,w)
‖w‖X

,

and that (1.4) trivially holds true if v = 0. To prove (1.5), let w ∈ X be such
that a(v,w) = 0, for all v ∈ X. Then, picking v = w yields by coercivity that
‖w‖X = 0, i.e., w = 0.

Remark 1.5 (Lax–Milgram Lemma and Hilbert spaces). Coercivity is essentially
a Hilbertian property. Precisely, if X is a Banach space, then X can be equipped
with a Hilbert structure with the same topology if and only if there is a coercive
operator in L(X,X ′); see, e.g., [141, Proposition A.49].

1.1.3 Lebesgue and Sobolev Spaces
In practice, the model problem (1.1) corresponds to a PDE posed over a domain
Ω ⊂ �d with space dimension d ≥ 1. The domain Ω is a bounded, connected,
open subset of �d with Lipschitz boundary ∂Ω. The spaces X and Y in (1.1)
are then function spaces spanned by functions defined over Ω. For simplicity,
we consider scalar-valued functions; the case of vector-valued functions can be
treated similarly.

In this section, we briefly present two important classes of function spaces to
be used in what follows, namely Lebesgue and Sobolev spaces. We only state the
basic properties of such spaces, and we refer the reader to Evans [153, Chap. 5]
or Brézis [55, Chaps. 8 and 9] for further background. A thorough presentation
can also be found in the textbook of Adams [4].
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1.1.3.1 Lebesgue Spaces

We consider functions v : Ω → � that are Lebesgue measurable and we denote
by

∫
Ω
v the (Lebesgue) integral of v over Ω. Let 1 ≤ p ≤ ∞ be a real number.

We set

‖v‖Lp(Ω) :=
(∫

Ω

|v|p
)1/p

1 ≤ p <∞,

and

‖v‖L∞(Ω) := sup ess{|v(x)| for a.e. x ∈ Ω}
= inf{M > 0 | |v(x)| ≤M for a.e. x ∈ Ω}.

In either case, we define the Lebesgue space

Lp(Ω) := {v Lebesgue measurable | ‖v‖Lp(Ω) <∞}.

Equipped with the norm ‖·‖Lp(Ω), Lp(Ω) is a Banach space for all 1 ≤ p ≤ ∞
(see Evans [153, p. 249] or Brézis [55, p. 150]). Moreover, for all 1 ≤ p < ∞,
the space C∞

0 (Ω) spanned by infinitely differentiable functions with compact
support in Ω is dense in Lp(Ω). In the particular case p = 2, L2(Ω) is a (real)
Hilbert space when equipped with the scalar product

(v,w)L2(Ω) :=
∫

Ω

vw.

A useful tool in Lebesgue spaces is Hölder’s inequality which states that, for
all 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1, all v ∈ Lp(Ω), and all w ∈ Lq(Ω), there
holds vw ∈ L1(Ω) and

∫

Ω

vw ≤ ‖v‖Lp(Ω)‖w‖Lq(Ω).

The particular case p = q = 2 yields the Cauchy–Schwarz inequality, namely, for
all v,w ∈ L2(Ω), vw ∈ L1(Ω) and

(v,w)L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω).

1.1.3.2 Sobolev Spaces

On the Cartesian basis of �d with coordinates (x1, . . . , xd), the symbol ∂i with
i ∈ {1, . . . , d} denotes the distributional partial derivative with respect to xi.
For a d-uple α ∈ �d, ∂αv denotes the distributional derivative ∂α1

1 . . . ∂αd

d v of v,
with the convention that ∂(0,...,0)v = v. For any real number 1 ≤ p ≤ ∞, we
define, for all ξ ∈ �d with components (ξ1, . . . , ξd) in the Cartesian basis of �d,
the norm

|ξ|�p :=

(
d∑

i=1

|ξi|p
)1/p

1 ≤ p <∞,
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and |ξ|�∞ := max1≤i≤d |ξi|. The index is dropped for the Euclidean norm
obtained with p = 2.

Let m ≥ 0 be an integer and let 1 ≤ p ≤ ∞ be a real number. We define the
Sobolev space

Wm,p(Ω) := {v ∈ Lp(Ω) | ∀α ∈ Am
d , ∂

αv ∈ Lp(Ω)} ,
where

Am
d :=

{
α ∈ �d | |α|�1 ≤ m

}
. (1.8)

Thus, Wm,p(Ω) is spanned by functions with derivatives of global order up to
m in Lp(Ω). In particular, W 0,p(Ω) = Lp(Ω). The Sobolev space Wm,p(Ω) is a
Banach space when equipped with the norm

‖v‖W m,p(Ω) :=

⎛

⎝
∑

α∈Am
d

‖∂αv‖p
Lp(Ω)

⎞

⎠

1/p

1 ≤ p <∞,

and ‖v‖W m,∞(Ω) := maxα∈Am
d
‖∂αv‖L∞(Ω). We also consider the seminorm

|·|W m,p(Ω) by restricting the above definitions to d-uples in the set A
m

d :={
α ∈ �d | |α|�1 = m

}
, that is, by keeping only the derivatives of global order

equal to m.
For p = 2, we use the notation Hm(Ω) := Wm,2(Ω), so that

Hm(Ω) =
{
v ∈ L2(Ω) | ∀α ∈ Am

d , ∂
αv ∈ L2(Ω)

}
.

Hm(Ω) is a Hilbert space when equipped with the scalar product

(v,w)Hm(Ω) :=
∑

α∈Am
d

(∂αv, ∂αw)L2(Ω),

leading to the norm and seminorm

‖v‖Hm(Ω) :=

⎛

⎝
∑

α∈Am
d

‖∂αv‖2
L2(Ω)

⎞

⎠

1/2

, |v|Hm(Ω) :=

⎛

⎝
∑

α∈A
m
d

‖∂αv‖2
L2(Ω)

⎞

⎠

1/2

.

To allow for a more compact notation in the case m = 1, we consider the
gradient ∇v = (∂1v, . . . , ∂dv)t with values in �d. The norm on W 1,p(Ω) becomes

‖v‖W 1,p(Ω) =
(
‖v‖p

Lp(Ω) + ‖∇v‖p
[Lp(Ω)]d

)1/p

1 ≤ p <∞,

with

‖∇v‖[Lp(Ω)]d :=
(∫

Ω

|∇v|p�p

)1/p

=

(∫

Ω

d∑

i=1

|∂iv|p
)1/p

.

In the case p = 2, we obtain

(v,w)H1(Ω) = (v,w)L2(Ω) + (∇v,∇w)[L2(Ω)]d .
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Boundary values of functions in the Sobolev space W 1,p(Ω) can be given a
meaning (at least) in Lp(∂Ω). More precisely (see, e.g., Brenner and Scott [54,
Chap. 1]), for all 1 ≤ p ≤ ∞, there is C such that

‖v‖Lp(∂Ω) ≤ C‖v‖1−1/p

Lp(Ω)‖v‖
1/p

W 1,p(Ω) ∀v ∈W 1,p(Ω). (1.9)

In particular, for p = 2, we obtain

‖v‖L2(∂Ω) ≤ C‖v‖1/2

L2(Ω)‖v‖
1/2

H1(Ω) ∀v ∈ H1(Ω). (1.10)

The bounds (1.9) and (1.10) are called continuous trace inequalities.
Finally, at some instances, we consider Hilbert Sobolev spaces Hs(Ω) where

the exponent s is a positive real number. We refer the reader, e.g., to Ern and
Guermond [141, p. 484] for the definition of such spaces. In what follows, we use
the fact that functions in H1/2+ε(Ω), ε > 0, admit a trace in L2(∂Ω).

1.2 The Discrete Setting
In this section, we present the main ingredients to build finite-dimensional func-
tion spaces to approximate the model problem (1.1) using dG methods. The
construction of such spaces hinges on discretizing the domain Ω (over which the
PDE is posed) using a mesh and choosing a local functional behavior (e.g., poly-
nomial) within each mesh element. This leads to broken polynomial spaces. We
also introduce broken Sobolev spaces and a broken gradient operator. Finally, we
briefly discuss the function space H(div;Ω) and its broken version; such spaces
are particularly relevant in the context of PDEs with diffusion.

1.2.1 The Domain Ω

To simplify the presentation, we focus, throughout this book, on polyhedra.

Definition 1.6 (Polyhedron in �d). We say that the set P is a polyhedron in
�d if P is an open, connected, bounded subset of �d such that its boundary
∂P is a finite union of parts of hyperplanes, say {Hi}1≤i≤nP . Moreover, for all
1 ≤ i ≤ nP , at each point in the interior of ∂P ∩Hi, the set P is assumed to lie
on only one side of its boundary.

Assumption 1.7 (Domain Ω). The domain Ω is a polyhedron in �d.

The advantage of Assumption 1.7 is that polyhedra can be exactly covered by
a mesh consisting of polyhedral elements. PDEs posed over domains with curved
boundary can also be approximated by dG methods using, e.g., isoparametric
finite elements to build the mesh near curved boundaries as described, e.g., by
Ciarlet [92, p. 224] and Brenner and Scott [54, p. 117].

Definition 1.8 (Boundary and outward normal). The boundary of Ω is denoted
by ∂Ω and its (unit) outward normal, which is defined a.e. on ∂Ω, by n.
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1.2.2 Meshes
The first step is to discretize the domain Ω using a mesh. Various types of meshes
can be considered. We examine first the most familiar case, that of simplicial
meshes. Such meshes should be familiar to the reader since they are one of the
key ingredients to build continuous finite element spaces.

Definition 1.9 (Simplex). Given a family {a0, . . . , ad} of (d + 1) points in �d

such that the vectors {a1−a0, . . . , ad−a0} are linearly independent, the interior
of the convex hull of {a0, . . . , ad} is called a non-degenerate simplex of �d, and
the points {a0, . . . , ad} are called its vertices.

By its definition, a non-degenerate simplex is an open subset of �d. In
dimension 1, a non-degenerate simplex is an interval, in dimension 2 a triangle,
and in dimension 3 a tetrahedron. The unit simplex of �d is the set (cf. Fig. 1.1)

Sd :=
{
(x1, . . . , xd) ∈ �d | xi > 0 ∀i ∈ {1, . . . , d} and x1 + . . . + xd < 1

}
.

Any non-degenerate simplex of �d is the image of the unit simplex by a bijective
affine transformation of �d.

Definition 1.10 (Simplex faces). Let S be a non-degenerate simplex with ver-
tices {a0, . . . , ad}. For each i ∈ {0, . . . , d}, the convex hull of {a0, . . . , ad} \ {ai}
is called a face of the simplex S.

Thus, a non-degenerate simplex has (d + 1) faces, and, by construction, a
simplex face is a closed subset of �d. A simplex face has zero d-dimensional Haus-
dorff measure, but positive (d − 1)-dimensional Hausdorff measure. In dimen-
sion 2, a simplex face is also called an edge, while in dimension 1, a simplex face
is a point and its 0-dimensional Hausdorff measure is conventionally set to 1.

Definition 1.11 (Simplicial mesh). A simplicial mesh T of the domain Ω is a
finite collection of disjoint non-degenerate simplices T = {T} forming a partition
of Ω,

x2

x1

x3

x2

x1

Fig. 1.1: Unit simplex in two (left) and three (right) space dimensions
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Ω =
⋃

T∈T
T . (1.11)

Each T ∈ T is called a mesh element.

While simplicial meshes are quite convenient in the context of continuous
finite elements, dG methods more easily accommodate general meshes.

Definition 1.12 (General mesh). A general mesh T of the domain Ω is a finite
collection of disjoint polyhedra T = {T} forming a partition of Ω as in (1.11).
Each T ∈ T is called a mesh element.

Obviously, a simplicial mesh is just a particular case of a general mesh.

Definition 1.13 (Element diameter, meshsize). Let T be a (general) mesh of
the domain Ω. For all T ∈ T , hT denotes the diameter of T , and the meshsize
is defined as the real number

h := max
T∈T

hT .

We use the notation Th for a mesh T with meshsize h.

Definition 1.14 (Element outward normal). Let Th be a mesh of the domain
Ω and let T ∈ Th. We define nT a.e. on ∂T as the (unit) outward normal to T .

Faces of a single polyhedral mesh element are not needed in what follows, and
we leave them undefined to avoid confusion with the important concept of mesh
faces introduced in Sect. 1.2.3. The key difference is that mesh faces depend on
the way neighboring mesh elements come into contact.

Remark 1.15 (General hexahedra). In the present setting, general hexahedra in
�3 cannot be mesh elements since their faces are not parts of (hyper)planes (since
four distinct points do not generally belong to the same plane). One possibility
is to approximate general hexahedra by subdividing nonplanar faces into two or
four triangles.

1.2.3 Mesh Faces, Averages, and Jumps
The concepts of mesh faces, averages, and jumps play a central role in the design
and analysis of dG methods.

Definition 1.16 (Mesh faces). Let Th be a mesh of the domain Ω. We say
that a (closed) subset F of Ω is a mesh face if F has positive (d−1)-dimensional
Hausdorff measure (in dimension 1, this means that F is nonempty) and if either
one of the two following conditions is satisfied:

(i) There are distinct mesh elements T1 and T2 such that F = ∂T1 ∩ ∂T2; in
such a case, F is called an interface.

(ii) There is T ∈ Th such that F = ∂T ∩ ∂Ω; in such a case, F is called a
boundary face.
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Interfaces are collected in the set F i
h, and boundary faces are collected in the

set Fb
h. Henceforth, we set

Fh := F i
h ∪ Fb

h.

Moreover, for any mesh element T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T}

collects the mesh faces composing the boundary of T . The maximum number of
mesh faces composing the boundary of mesh elements is denoted by

N∂ := max
T∈Th

card(FT ). (1.12)

Finally, for any mesh face F ∈ Fh, we define the set

TF := {T ∈ Th | F ⊂ ∂T} , (1.13)

and observe that TF consists of two mesh elements if F ∈ F i
h and of one mesh

element if F ∈ Fb
h.

Figure 1.2 depicts an interface between two mesh elements belonging to a
simplicial mesh (left) or to a general mesh (right). We observe that in the case
of simplicial meshes, interfaces are always parts of hyperplanes, but this is not
necessarily the case for general meshes containing nonconvex polyhedra. We
now define averages and jumps across interfaces of piecewise smooth functions;
cf. Fig. 1.3 for a one-dimensional illustration.

Definition 1.17 (Interface averages and jumps). Let v be a scalar-valued func-
tion defined on Ω and assume that v is smooth enough to admit on all F ∈ F i

h a
possibly two-valued trace. This means that, for all T ∈ Th, the restriction v|T of
v to the open set T can be defined up to the boundary ∂T . Then, for all F ∈ F i

h

and a.e. x ∈ F , the average of v is defined as

{{v}}F (x) :=
1
2

(
v|T1(x) + v|T2(x)

)
,

Fig. 1.2: Examples of interface for a simplicial mesh (left) and a general mesh
(right)
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Fig. 1.3: One-dimensional example of average and jump operators; the face
reduces to a point separating two adjacent intervals

T1

T2

F

nF

Fig. 1.4: Notation for an interface

and the jump of v as
�v�F (x) := v|T1(x) − v|T2(x).

When v is vector-valued, the above average and jump operators act componen-
twise on the function v. Whenever no confusion can arise, the subscript F and
the variable x are omitted, and we simply write {{v}} and �v�.

Definition 1.18 (Face normals). For all F ∈ Fh and a.e. x ∈ F , we define the
(unit) normal nF to F at x as

(i) nT1 , the unit normal to F at x pointing from T1 to T2 if F ∈ F i
h with

F = ∂T1 ∩ ∂T2; the orientation of nF is arbitrary depending on the choice
of T1 and T2, but kept fixed in what follows. See Fig. 1.4.

(ii) n, the unit outward normal to Ω at x if F ∈ Fb
h.

Remark 1.19 (Boundary averages and jumps). Averages and jumps can also be
defined for boundary faces (this is particularly useful when discretizing PDEs
with diffusion as in Chaps. 4–6). One possible definition is to set for a.e. x ∈ F
with F ∈ Fb

h, F = ∂T ∩ ∂Ω, {{v}}F (x) = �v�F (x) := v|T (x).
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Remark 1.20 (Alternative definition of jumps). An alternative definition of
jumps consists in setting for all F ∈ F i

h with F = ∂T1 ∩ ∂T2,

�v�∗ := v|T1nT1 + v|T2nT2 ,

so that �v�∗ = nF �v�. This alternative definition allows T1 and T2 to play
symmetric roles; however, the jump of a scalar-valued function is a vector-valued
function.

1.2.4 Broken Polynomial Spaces
After having built a mesh of the domain Ω, the second step in the construction
of discrete function spaces consists in choosing a certain functional behavior
within each mesh element. For the sake of simplicity, we restrict ourselves to
polynomial functions; more general cases can also be accommodated (see, e.g.,
Yuan and Shu [309]). The resulting spaces, consisting of piecewise polynomial
functions, are termed broken polynomial spaces.

1.2.4.1 The Polynomial Space �k
d

Let k ≥ 0 be an integer. Recalling the set Ak
d defined by (1.8), we define the

space of polynomials of d variables, of total degree at most k, as

�k
d :=

⎧
⎨

⎩
p : �d � x �→ p(x) ∈ � | ∃(γα)α∈Ak

d
∈ �card(Ak

d) s.t. p(x) =
∑

α∈Ak
d

γαx
α

⎫
⎬

⎭
,

with the convention that, for x = (x1, . . . , xd) ∈ �d, xα :=
∏d

i=1 x
αi
i . The

dimension of the vector space �k
d is

dim(�k
d) = card(Ak

d) =
(
k + d
k

)

=
(k + d)!
k!d!

. (1.14)

The first few values of dim(�k
d) are listed in Table 1.1.

1.2.4.2 The Broken Polynomial Space �k
d(Th)

In what follows, we often consider the broken polynomial space

�k
d(Th) :=

{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ �k

d(T )
}
, (1.15)

Table 1.1: Dimension of the polynomial space �k
d for d ∈ {1, 2, 3} and k ∈

{0, 1, 2, 3}
k d = 1 d = 2 d = 3
0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20
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where �k
d(T ) is spanned by the restriction to T of polynomials in �k

d. It is clear
that

dim(�k
d(Th)) = card(Th) × dim(�k

d),

since the restriction of a function v ∈ �k
d(Th) to each mesh element can be chosen

independently of its restriction to other elements.

1.2.4.3 Other Broken Polynomial Spaces

It is possible to consider other broken polynomial spaces. Such spaces are en-
countered, e.g., when defining local bases using a reference element, e.g., nodal-
based local bases associated with quadratures (see Gassner, Lörcher, Munz,
and Hesthaven [164]). Further motivations for considering other broken polyno-
mial spaces include, among others, bubble-stabilization techniques (see Burman
and Stamm [70]) and inf-sup stable discretizations for incompressible flows (see
Toselli [296]).

A relevant example is the space of polynomials of d variables, of degree at
most k in each variable, namely

�k
d :=

⎧
⎨

⎩
p : �d � x �→ p(x) ∈ � | ∃(γα)α∈Bk

d
∈ �card(Bk

d ) s.t. p(x) =
∑

α∈Bk
d

γαx
α

⎫
⎬

⎭
,

where Bk
d denotes the set of d-uples of ∞-norm smaller than or equal to k,

Bk
d :=

{
α ∈ �d | |α|�∞ ≤ k

}
.

The dimension of the vector space �k
d is

dim(�k
d) = card(Bk

d ) = (k + 1)d.

The first few values of dim(�k
d) are listed in Table 1.2.

1.2.5 Broken Sobolev Spaces
In this section, we introduce broken Sobolev spaces and a broken gradient oper-
ator. We also state the main properties of broken Sobolev spaces to be used in
what follows.

Table 1.2: Dimension of the polynomial space �k
d for d ∈ {1, 2, 3} and k ∈

{0, 1, 2, 3}
k d = 1 d = 2 d = 3
0 1 1 1
1 2 4 8
2 3 9 27
3 4 16 64
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Let Th be a mesh of the domain Ω. For any mesh element T ∈ Th, the
Sobolev spaces Hm(T ) and Wm,p(T ) can be defined as above by replacing Ω by
T . We then define the broken Sobolev spaces

Hm(Th) :=
{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Hm(T )

}
, (1.16)

Wm,p(Th) := {v ∈ Lp(Ω) | ∀T ∈ Th, v|T ∈Wm,p(T )} , (1.17)

where m ≥ 0 is an integer and 1 ≤ p ≤ ∞ a real number.
In the context of broken Sobolev spaces, the continuous trace inequality (1.9)

can be used to infer that, for all v ∈W 1,p(Th) and all T ∈ Th,

‖v‖Lp(∂T ) ≤ C‖v‖1−1/p

Lp(T )‖v‖
1/p

W 1,p(T ), (1.18)

while for p = 2, we obtain, for all v ∈ H1(Th) and all T ∈ Th,

‖v‖L2(∂T ) ≤ C‖v‖1/2

L2(T )‖v‖
1/2

H1(T ). (1.19)

In what follows, it is implicitly understood that expressions such as ‖v‖L2(∂T )

(or such as ‖v‖L2(F ) for a mesh face F ∈ FT of a given mesh element T ∈ Th)
should be evaluated using the restriction of v to T . A different version of the
continuous trace inequality (1.19) is presented in Lemma 1.49 below. Continuous
trace inequalities such as (1.18) or (1.19) are important in the context of dG
methods to give a meaning to the traces of the exact solution or of its (normal)
gradient on mesh faces.

It is natural to define a broken gradient operator acting on the broken Sobolev
space W 1,p(Th). In particular, this operator also acts on broken polynomial
spaces.

Definition 1.21 (Broken gradient). The broken gradient ∇h : W 1,p(Th) →
[Lp(Ω)]d is defined such that, for all v ∈W 1,p(Th),

∀T ∈ Th, (∇hv)|T := ∇(v|T ). (1.20)

In what follows, we drop the index h in the broken gradient when this operator
appears inside an integral over a fixed mesh element T ∈ Th.

It is important to observe that the usual Sobolev spaces are subspaces of
the broken Sobolev spaces, and that on the usual Sobolev spaces, the broken
gradient coincides with the distributional gradient. For completeness, we detail
the proof of this result.

Lemma 1.22 (Broken gradient on usual Sobolev spaces). Let m ≥ 0 and let
1 ≤ p ≤ ∞. There holds Wm,p(Ω) ⊂Wm,p(Th). Moreover, for all v ∈W 1,p(Ω),
∇hv = ∇v in [Lp(Ω)]d.

Proof. It is sufficient to prove the inclusion for m = 1. Let v ∈ W 1,p(Ω). We
first observe that ∇(v|T ) = (∇v)|T for all T ∈ Th. Indeed, for all Φ ∈ [C∞

0 (T )]d,
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the extension of Φ by zero to Ω, say EΦ, is in [C∞
0 (Ω)]d, so that

∫

T

∇(v|T )·Φ = −
∫

T

v(∇·Φ) = −
∫

Ω

v(∇·(EΦ))

=
∫

Ω

∇v·EΦ =
∫

T

(∇v)|T ·Φ.

Since Φ is arbitrary, this implies ∇(v|T ) = (∇v)|T and, since T ∈ Th is arbitrary,
we infer ∇hv = ∇v. This equality also shows that v ∈W 1,p(Th).

The reverse inclusion of Lemma 1.22 does not hold true in general (except
obviously for m = 0). The reason is that functions in the broken Sobolev space
W 1,p(Th) can have nonzero jumps across interfaces, while functions in the usual
Sobolev space W 1,p(Ω) have zero jumps across interfaces. We now give a precise
statement of this important result.

Lemma 1.23 (Characterization of W 1,p(Ω)). Let 1 ≤ p ≤ ∞. A function
v ∈W 1,p(Th) belongs to W 1,p(Ω) if and only if

�v� = 0 ∀F ∈ F i
h. (1.21)

Proof. The proof is again based on a distributional argument. Let v ∈W 1,p(Th).
Then, for all Φ ∈ [C∞

0 (Ω)]d, we observe integrating by parts elementwise that
∫

Ω

∇hv·Φ =
∑

T∈Th

∫

T

∇(v|T )·Φ = −
∑

T∈Th

∫

T

v(∇·Φ) +
∑

T∈Th

∫

∂T

v|T (Φ·nT )

= −
∫

Ω

v(∇·Φ) +
∑

F∈Fi
h

∫

F

(Φ·nF )�v�, (1.22)

since Φ is continuous across interfaces and vanishes on boundary faces. Assume
first that (1.21) holds true. Then, (1.22) implies

∫

Ω

∇hv·Φ = −
∫

Ω

v(∇·Φ) ∀Φ ∈ [C∞
0 (Ω)]d,

meaning that ∇v = ∇hv in [Lp(Ω)]d. Hence, v ∈ W 1,p(Ω). Conversely, if
v ∈ W 1,p(Ω), ∇v = ∇hv in [Lp(Ω)]d owing to Lemma 1.22, so that (1.22) now
implies

∑

F∈Fi
h

∫

F

(Φ·nF )�v� =
∫

Ω

∇hv·Φ +
∫

Ω

v(∇·Φ)

=
∫

Ω

∇hv·Φ −
∫

Ω

∇v·Φ = 0,

whence we infer (1.21) by choosing the support of Φ intersecting a single interface
and since Φ is arbitrary.
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1.2.6 The Function Space H(div; Ω) and Its Broken Version
In the context of PDEs with diffusion, the vector-valued field σ = −∇u can
be interpreted as the diffusive flux; here, u solves, e.g., the Poisson problem
presented in Sect. 4.1. From a physical viewpoint, it is expected that the nor-
mal component of the diffusive flux does not jump across interfaces. From a
mathematical viewpoint, the diffusive flux belongs to the function space

H(div;Ω) := {τ ∈ [L2(Ω)]d | ∇·τ ∈ L2(Ω)}. (1.23)

It is therefore important to specify the meaning of the normal component on
mesh faces of functions in H(div;Ω).

For all T ∈ Th, we define the function space H(div;T ) by replacing Ω by T
in (1.23). We then introduce the broken space

H(div;Th) := {τ ∈ [L2(Ω)]d | ∀T ∈ Th, τ |T ∈ H(div;T )},

and the broken divergence operator ∇h· : H(div;Th) → L2(Ω) such that, for all
τ ∈ H(div;Th),

∀T ∈ Th, (∇h·τ)|T := ∇·(τ |T ).

Proceeding as in the proof of Lemma 1.22, we can verify that, if τ ∈ H(div;Ω),
then τ ∈ H(div;Th) and ∇h·τ = ∇·τ .

Since the diffusive flux σ belongs to H(div;Ω), we infer that, for all T ∈ Th,
σT := σ|T belongs to H(div;T ). This property allows us to give a weak meaning
to the normal component σ∂T := σT ·nT on ∂T ; cf. Remark 1.26 below for
further insight. However, in the context of dG methods, we would like to give a
meaning to the restriction σF := σ∂T |F independently on any face F ∈ FT , and
additionally, it is convenient to assert σF ∈ L1(F ). The fact that σT ∈ H(div;T )
does not provide enough regularity to assert this, as reflected by the counter-
example in Remark 1.25 below. A suitable assumption to achieve σF ∈ L1(F ) is

σ ∈ [W 1,1(Th)]d.

Indeed, owing to the trace inequality (1.18), we infer, for all T ∈ Th, σ∂T ∈
L1(∂T ) so that, for all F ∈ FT , σF ∈ L1(F ).

We can now characterize functions in H(div;Ω)∩ [W 1,1(Th)]d using the jump
of the normal component across interfaces.

Lemma 1.24 (Characterization of H(div;Ω)). A function τ ∈ H(div;Th) ∩
[W 1,1(Th)]d belongs to H(div;Ω) if and only if

�τ�·nF = 0 ∀F ∈ F i
h. (1.24)

Proof. The proof is similar to that of Lemma 1.23. Let τ ∈ H(div;Th) ∩
[W 1,1(Th)]d and let ϕ ∈ C∞

0 (Ω). Integrating by parts on each mesh element
and accounting for the fact that ϕ is smooth inside Ω and vanishes on ∂Ω, we
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obtain
∫

Ω

τ ·∇ϕ =
∑

T∈Th

∫

T

τ ·∇ϕ = −
∑

T∈Th

∫

T

(∇·τ)ϕ+
∑

T∈Th

∫

∂T

(τ ·nT )ϕ

= −
∫

Ω

(∇h·τ)ϕ+
∑

F∈Fi
h

∫

F

�τ�·nFϕ,

where we have used the fact that τ ·nT ∈ L1(∂T ) to write a boundary integral
and break it into face integrals. Hence, if (1.24) holds true,

∫

Ω

τ ·∇ϕ = −
∫

Ω

(∇h·τ)ϕ ∀ϕ ∈ C∞
0 (Ω),

implying that ∇·τ = ∇h·τ ∈ L2(Ω), so that τ ∈ H(div;Ω). Conversely, if
τ ∈ H(div;Ω), since ∇h·τ = ∇·τ , the above identity yields

∑

F∈Fi
h

∫

F

�τ�·nFϕ = 0,

whence (1.24) is obtained by choosing the support of ϕ intersecting a single
interface and since ϕ is arbitrary.

Remark 1.25 (Counter-example for σF ∈ L1(F )). Following an idea by Cars-
tensen and Peterseim [78], we consider the triangle

T = {(x1, x2) ∈ �2 | 0 < x1 < 1, 0 < x2 < x1}.
For all ε > 0, letting r2 = x2

1 + x2
2, we define the vector field

σε = (ε+ r2)−1(x2,−x1)t.

A direct calculation shows that σε is divergence-free and, since 0 ≤ r2 ≤ 1,

‖σε‖2
[L2(T )]d =

∫ π/4

0

∫ cos(θ)−1

0

r3

(ε+ r2)2
dr dθ

≤
∫ π/4

0

∫ √
2

0

r

(ε+ r2)
dr dθ =

π

8
ln(1 + 2ε−1).

Hence, letting σ̃ε = ln(1 + 2ε−1)−1/2σε, we infer that ‖σ̃ε‖[L2(T )]d is uniformly
bounded in ε. Moreover, considering the face F = {(x1, x2) ∈ ∂T | x1 = x2}
with normal nF = (−2−1/2, 2−1/2)t, we obtain

‖σ̃ε·nF ‖L1(F ) = ln(1 + 2ε−1)−1/2

∫ √
2

0

r

ε+ r2
dr =

1
2

ln(1 + 2ε−1)1/2,

which grows unboundedly as ε→ 0+.
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Remark 1.26 (Weak meaning of σT ·nT on ∂T ). Let T ∈ Th and let σT ∈
H(div;T ). Let H1/2(∂T ) be the vector space spanned by the traces on ∂T
of functions in H1(T ). Then, the normal component σ∂T := σT ·nT can be
defined in the dual space H−1/2(∂T ) := (H1/2(∂T ))′ in such a way that, for all
g ∈ H1/2(∂T ),

〈σ∂T , g〉 =
∫

T

σT ·∇ĝ +
∫

T

(∇·σT )ĝ, (1.25)

where ĝ ∈ H1(T ) is such that its trace on ∂T is equal to g (the right-hand side
of (1.25) is independent of the choice of ĝ). Consider now a face F ∈ FT and let
H

1/2

00 (F ) be spanned by functions defined on F whose extension by zero to ∂T is
in H1/2(∂T ). Then, the restriction σF := σ∂T |F can be given a meaning in the
dual space H−1/2(F ) := (H

1/2

00 (F ))′ in such a way that, for all g ∈ H
1/2

00 (F ),

〈σF , g〉 =
∫

T

σT ·∇ĝ +
∫

T

(∇·σT )ĝ,

where ĝ ∈ H1(T ) is such that its trace on ∂T is equal to g on F and to zero
elsewhere. However, this definition is of little use in the context of dG methods
where the normal component σF has to act on polynomials on F which do not
generally belong to H

1/2

00 (F ) (unless they vanish on ∂F ).

1.3 Abstract Nonconforming Error Analysis
The goal of this section is to present the key ingredients for the error analy-
sis when approximating the linear model problem (1.1) by dG methods. We
assume that (1.1) is well-posed; cf. Sect. 1.1. The error analysis presented in
this section is derived in the spirit of Strang’s Second Lemma [285] (see also Ern
and Guermond [141, Sect. 2.3]). The three ingredients are (1) Discrete stability,
(2) (Strong) consistency, and (3) Boundedness.

1.3.1 The Discrete Problem
Let Vh ⊂ L2(Ω) denote a finite-dimensional function space; typically, Vh is
a broken polynomial space (cf. Sect. 1.2.4). We are interested in the discrete
problem

Find uh ∈ Vh s.t. ah(uh, wh) = lh(wh) for all wh ∈ Vh, (1.26)

with discrete bilinear form ah defined (so far) only on Vh × Vh and discrete lin-
ear form lh defined on Vh. We observe that we consider the so-called standard
Galerkin approximation where the discrete trial and test spaces coincide. More-
over, since functions in Vh can be discontinuous across mesh elements, Vh �⊂ X
and Vh �⊂ Y in general; cf., e.g., Lemma 1.23. In the terminology of finite
elements, we say that the approximation is nonconforming.
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Alternatively, it is possible to introduce the discrete (linear) operator Ah :
Vh → Vh such that, for all vh, wh ∈ Vh,

(Ahvh, wh)L2(Ω) := ah(vh, wh), (1.27)

and the discrete function Lh ∈ Vh such that, for all wh ∈ Vh, (Lh, wh)L2(Ω) =
lh(wh). This leads to the following problem (obviously equivalent to (1.26)):

Find uh ∈ Vh s.t. Ahuh = Lh in Vh. (1.28)

In what follows, we are often concerned with model problems where Y ↪→
L2(Ω) with dense and continuous injection. Identifying L2(Ω) with its topologi-
cal dual space L2(Ω)′ by means of the Riesz–Fréchet representation theorem, we
are thus in the situation where

Y ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ Y ′,

with dense and continuous injections. For simplicity (cf. Remark 1.27 for further
discussion), we often assume that the datum f is in L2(Ω), so that the right-
hand side of the model problem (1.1) becomes (f,w)L2(Ω), while the right-hand
sides of the discrete problems (1.26) and (1.28) become, respectively,

lh(wh) = (f,wh)L2(Ω), Lh = πhf.

Here, πh denotes the L2(Ω)-orthogonal projection onto Vh, that is, πh : L2(Ω) →
Vh is defined so that, for all v ∈ L2(Ω), πhv ∈ Vh with

(πhv, yh)L2(Ω) = (v, yh)L2(Ω) ∀yh ∈ Vh. (1.29)

We observe that the restriction of πhv to a given mesh element T ∈ Th can
be computed independently from other mesh elements. For instance, if Vh =
�k

d(Th), we obtain that, for all T ∈ Th, πhv|T ∈ �k
d(T ) is such that

(πhv|T , ξ)L2(T ) = (v, ξ)L2(T ) ∀ξ ∈ �k
d(T ).

We refer the reader to Sect.A.1.2 for further insight.

Remark 1.27 (Rough right-hand side). The assumption f ∈ L2(Ω) is convenient
so as to define the right-hand side of (1.26) using the L2(Ω)-scalar product. For
rough right-hand sides, i.e., f ∈ Y ′ but f �∈ L2(Ω), the right-hand side of (1.26)
needs to be modified since the quantity 〈f,wh〉Y ′,Y is in general not defined. One
possibility is to consider the right-hand side 〈f,Ihwh〉Y ′,Y for some smoothing
linear operator Ih : Vh → Vh ∩ Y (cf. Remark 4.9 for an example in the context
of diffusive PDEs).

1.3.2 Discrete Stability
To formulate discrete stability, we introduce a norm, say |||·|||, defined (at least)
on Vh.
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Definition 1.28 (Discrete stability). We say that the discrete bilinear form ah

enjoys discrete stability on Vh if there is Csta > 0 such that

∀vh ∈ Vh, Csta|||vh||| ≤ sup
wh∈Vh\{0}

ah(vh, wh)
|||wh||| . (1.30)

Remark 1.29 (h-dependency). In Definition 1.28, Csta can depend on the mesh-
size h. In view of convergence analysis, it is important to ensure that Csta be
independent of h.

Property (1.30) is referred to as a discrete inf-sup condition since it is equiv-
alent to

Csta ≤ inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

ah(vh, wh)
|||vh||| |||wh||| .

An important fact is that (1.30) is a necessary and sufficient condition for discrete
well-posedness.

Lemma 1.30 (Discrete well-posedness). The discrete problem (1.26), or equiv-
alently (1.28), is well-posed if and only if the discrete inf-sup condition (1.30)
holds true.

Proof. Condition (1.30) is the discrete counterpart of condition (1.4) in the BNB
Theorem. Hence, owing to this theorem, discrete well-posedness implies (1.30).
Conversely, to prove that (1.30) implies discrete well-posedness, we first observe
that (1.30) implies that the discrete operator Ah defined by (1.27) is injective.
Indeed, Ahvh = 0 yields ah(vh, wh) = 0, for all wh ∈ Vh. Hence, vh = 0 by (1.30).
In finite dimension, this implies that Ah is surjective. Hence, Ah is bijective.

We observe that discrete well-posedness is equivalent to only one condition,
namely (1.30), while two conditions appear in the continuous case. This is
because injectivity is equivalent to bijectivity when the test and trial spaces
have the same finite dimension.

A sufficient, and often easy to verify, condition for discrete stability is coer-
civity. This property can be stated as follows: There is Csta > 0 such that

∀vh ∈ Vh, Csta|||vh|||2 ≤ ah(vh, vh). (1.31)

Discrete coercivity implies the discrete inf-sup condition (1.30) since, for all
vh ∈ Vh \ {0},

Csta|||vh||| ≤ ah(vh, vh)
|||vh||| ≤ sup

wh∈Vh\{0}

ah(vh, wh)
|||wh||| .

Property (1.31) is the discrete counterpart of that invoked in the Lax–Milgram
Lemma.
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1.3.3 Consistency
For the time being, we consider a rather strong form of consistency, namely
that the exact solution u satisfies the discrete equations in (1.26). To formulate
consistency, it is thus necessary to plug the exact solution into the first argument
of the discrete bilinear form ah, and this may not be possible in general since
the discrete bilinear form ah is so far defined on Vh × Vh only. Therefore, we
assume that there is a subspace X∗ ⊂ X such that the exact solution u belongs
to X∗ and such that the discrete bilinear form ah can be extended to X∗ × Vh

(it is not possible in general to extend ah to X × Vh). Consistency can now be
formulated as follows.

Definition 1.31 (Consistency). We say that the discrete problem (1.26) is
consistent if for the exact solution u ∈ X∗,

ah(u,wh) = lh(wh) ∀wh ∈ Vh. (1.32)

Remark 1.32 (Galerkin orthogonality). Consistency is equivalent to the usual
Galerkin orthogonality property often considered in the context of finite element
methods. Indeed, (1.32) holds true if and only if

ah(u− uh, wh) = 0 ∀wh ∈ Vh.

1.3.4 Boundedness
The last ingredient in the error analysis is boundedness. We introduce the vector
space

X∗h := X∗ + Vh,

and observe that the approximation error (u − uh) belongs to this space. We
aim at measuring the approximation error using the discrete stability norm |||·|||.
Therefore, we assume in what follows that this norm can be extended to the
space X∗h. In the present setting, we want to assert boundedness in the product
space X∗h × Vh, and not just in Vh × Vh. It turns out that in most situations, it
is not possible to assert boundedness using only the discrete stability norm |||·|||.
This is the reason why we introduce a second norm, say |||·|||∗.
Definition 1.33 (Boundedness). We say that the discrete bilinear form ah is
bounded in X∗h × Vh if there is Cbnd such that

∀(v,wh) ∈ X∗h × Vh, |ah(v,wh)| ≤ Cbnd|||v|||∗|||wh|||,

for a norm |||·|||∗ defined on X∗h and such that, for all v ∈ X∗h, |||v||| ≤ |||v|||∗.
Remark 1.34 (h-dependency). In Definition 1.33, Cbnd can depend on the mesh-
size h. As mentioned above, in view of convergence analysis, it is important to
ensure that Cbnd be independent of h.
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1.3.5 Error Estimate
We can now state the main result of this section.

Theorem 1.35 (Abstract error estimate). Let u solve (1.1) with f ∈ L2(Ω).
Let uh solve (1.26). Let X∗ ⊂ X and assume that u ∈ X∗. Set X∗h = X∗ + Vh

and assume that the discrete bilinear form ah can be extended to X∗h × Vh.
Let |||·||| and |||·|||∗ be two norms defined on X∗h and such that, for all v ∈ X∗h,
|||v||| ≤ |||v|||∗. Assume discrete stability, consistency, and boundedness. Then, the
following error estimate holds true:

|||u− uh||| ≤ C inf
yh∈Vh

|||u− yh|||∗, (1.33)

with C = 1 + C−1
staCbnd.

Proof. Let yh ∈ Vh. Owing to discrete stability and consistency,

|||uh − yh||| ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)
|||wh||| = C−1

sta sup
wh∈Vh\{0}

ah(u− yh, wh)
|||wh||| .

Hence, owing to boundedness,

|||uh − yh||| ≤ C−1
staCbnd|||u− yh|||∗.

Estimate (1.33) then results from the triangle inequality, the fact that |||u−yh||| ≤
|||u − yh|||∗, and that yh is arbitrary in Vh.

1.4 Admissible Mesh Sequences
The goal of this section is to derive some technical, yet important, tools to
analyze the convergence of dG methods as the meshsize goes to zero. We consider
a mesh sequence

TH := (Th)h∈H,

where H denotes a countable subset of �>0 := {x ∈ � | x > 0} having 0 as only
accumulation point. Our analysis tools are, on the one hand, inverse and trace
inequalities that are instrumental to assert discrete stability and boundedness
uniformly in h and, on the other hand, optimal polynomial approximation prop-
erties so as to infer from error estimates of the form (1.33) h-convergence rates
for the approximation error whenever the exact solution is smooth enough.

In Sects. 1.4.1–1.4.4, we consider the case d ≥ 2. We first introduce the
concept of shape- and contact-regular mesh sequences, which is sufficient to
derive inverse and trace inequalities, and then we combine it with an additional
requirement on optimal polynomial approximation properties, leading to the
concept of admissible mesh sequences. Finally, in Sect. 1.4.5, we deal with the
case d = 1, where the requirements on admissible mesh sequences are much
simpler.
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1.4.1 Shape and Contact Regularity
A useful concept encountered in the context of conforming finite element methods
is that of matching simplicial meshes.

Definition 1.36 (Matching simplicial mesh). We say that Th is a matching
simplicial mesh if it is a simplicial mesh and if for any T ∈ Th with vertices
{a0, . . . , ad}, the set ∂T ∩ ∂T ′ for any T ′ ∈ Th, T ′ �= T , is the convex hull of a
(possibly empty) subset of {a0, . . . , ad}.

For instance, in dimension 2, the set ∂T ∩ ∂T ′ for two distinct elements of
a matching simplicial mesh is either empty, or a common vertex, or a common
edge of the two elements. We now turn to the matching simplicial submesh of a
general mesh.

Definition 1.37 (Matching simplicial submesh). Let Th be a general mesh. We
say that Sh is a matching simplicial submesh of Th if

(i) Sh is a matching simplicial mesh,

(ii) For all T ′ ∈ Sh, there is only one T ∈ Th such that T ′ ⊂ T ,

(iii) For all F ′ ∈ Fh, the set collecting the mesh faces of Sh, there is at most
one F ∈ Fh such that F ′ ⊂ F .

The simplices in Sh are called subelements, and the mesh faces in Fh are called
subfaces. We set, for all T ∈ Th,

ST := {T ′ ∈ Sh | T ′ ⊂ T},
FT := {F ′ ∈ Fh | F ′ ⊂ ∂T}.

We also set, for all F ∈ Fh,

FF := {F ′ ∈ Fh | F ′ ⊂ F}.
Figure 1.5 illustrates the matching simplicial submesh for two polygonal mesh

elements, say T1 and T2, that come into contact. The triangular subelements
composing the sets ST1 and ST2 are indicated by dashed lines. We observe that
the mesh face F = ∂T1 ∩ ∂T2 (highlighted in bold) is not a part of a hyperplane
and that the set FF contains two subfaces.

T1

T2

F

Fig. 1.5: Two polygonal mesh elements that come into contact with correspond-
ing subelements indicated by dashed lines and interface indicated in bold
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Definition 1.38 (Shape and contact regularity). We say that the mesh sequence
TH is shape- and contact-regular if for all h ∈ H, Th admits a matching simplicial
submesh Sh such that

(i) The mesh sequence SH is shape-regular in the usual sense of Ciarlet [92],
meaning that there is a parameter 1 > 0, independent of h, such that, for
all T ′ ∈ Sh,

1hT ′ ≤ rT ′ ,

where hT ′ is the diameter of T ′ and rT ′ the radius of the largest ball
inscribed in T ′,

(ii) There is a parameter 2 > 0, independent of h, such that, for all T ∈ Th

and for all T ′ ∈ ST ,
2hT ≤ hT ′ .

Henceforth, the parameters 1 and 2 are called the mesh regularity parameters
and are collectively denoted by the symbol . Finally, if Th is itself matching
and simplicial, then Sh = Th and the only requirement is shape-regularity with
parameter 1 > 0 independent of h.

As elaborated in Sect. 1.4.2, the two conditions in Definition 1.38 allow one
to control the shape of the elements in Th and the way these elements come
into contact. The idea of considering a matching simplicial submesh has been
proposed, e.g., by Brenner [51] to derive generalized Poincaré–Friedrichs inequal-
ities in broken Sobolev spaces. More recently, in the context of dG methods, a
matching simplicial submesh has been considered by Buffa and Ortner [61] for
nonlinear minimization problems and by Ern and Vohralík [151] for a posteriori
error estimates in the context of PDEs with diffusion.

Remark 1.39 (Anisotropic meshes). Definition 1.38 implies that the mesh is
isotropic in the sense that, for all T ∈ Th, the d-dimensional measure |T |d is
uniformly equivalent to hd

T . In applications featuring sharp layers, anisotropic
meshes can be advantageous. We refer the reader, e.g., to van der Vegt and
van der Ven [297], Sun and Wheeler [287], Georgoulis [166], Georgoulis, Hall,
and Houston [167], and Leicht and Hartmann [226] for various aspects of dG
methods on anisotropic meshes.

1.4.2 Geometric Properties
This section collects some useful geometric properties of shape- and contact-
regular mesh sequences. The first result is a uniform bound on card(ST ).

Lemma 1.40 (Bound on card(ST )). Let TH be a shape- and contact-regular
mesh sequence. Then, for all h ∈ H and all T ∈ Th, card(ST ) is bounded
uniformly in h.
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Proof. Let |·|d denote the d-dimensional Hausdorff measure and let Bd be the
unit ball in �d. Then,

hd
T ≥ |T |d =

∑

T ′∈ST

|T ′|d ≥
∑

T ′∈ST

|Bd|drd
T ′ ≥

∑

T ′∈ST

|Bd|dd
1h

d
T ′

≥
∑

T ′∈ST

|Bd|dd
1

d
2h

d
T ≥ |Bd|dd

1
d
2 card(ST )hd

T ,

yielding the assertion.

Our next result is a uniform bound on card(FT ), card(FT ), the parameter
N∂ defined by (1.12), and card(FF ).

Lemma 1.41 (Bound on card(FT ), card(FT ), N∂ , and card(FF )). Let TH be
a shape- and contact-regular mesh sequence with parameters . Then, for all
h ∈ H and all T ∈ Th, card(FT ), card(FT ), and N∂ are bounded uniformly in
h, while, for all F ∈ Fh, card(FF ) is bounded uniformly in h.

Proof. We observe that

card(FT ) ≤ card(FT ) ≤ (d+ 1) card(ST ),

so that the assertion on card(FT ) and card(FT ) follows from Lemma 1.40. The
bound on N∂ results from its definition (1.12) and the bound on card(FT ).
Finally, to bound card(FF ) for all F ∈ Fh, we pick T ∈ Th such that F ∈ FT

and observe that card(FF ) ≤ (d + 1) card(ST ), so that the bound on card(FF )
results from the bound on card(ST ).

Our next result is a lower bound on the diameter of mesh faces.

Lemma 1.42 (Lower bound on face diameters). Let TH be a shape- and contact-
regular mesh sequence with parameters . Then, for all h ∈ H, all T ∈ Th, and
all F ∈ FT ,

δF ≥ 12hT , (1.34)

where δF denotes the diameter of F .

Proof. Let T ∈ Th and let F ∈ FT . Then, we pick F ′ ∈ FF and denote by
T ′ ∈ ST the simplex to which the subface F ′ belongs. We obtain

δF ≥ δF ′ ≥ rT ′ ≥ 1hT ′ ≥ 12hT ,

yielding the assertion.

A direct consequence of Lemma 1.42 is a comparison result on the diameter
of neighboring elements.
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Lemma 1.43 (Diameter comparison for neighboring elements). Let TH be a
shape- and contact-regular mesh sequence with parameters . Then, for all h ∈ H
and all T, T ′ ∈ Th sharing a face F , there holds

min(hT , hT ′) ≥ 12 max(hT , hT ′). (1.35)

Proof. Since F is a common face to both T and T ′, owing to (1.34),

12 max(hT , hT ′) ≤ δF ≤ min(hT , hT ′),

yielding (1.35).

1.4.3 Inverse and Trace Inequalities
Inverse and trace inequalities are useful tools to analyze dG methods. For
simplicity, we derive these inequalities on the broken polynomial space �k

d(Th)
defined by (1.15); other broken polynomial spaces can be considered.

We begin with the following inverse inequality that delivers a local upper
bound on the gradient of discrete functions.

Lemma 1.44 (Inverse inequality). Let TH be a shape- and contact-regular mesh
sequence with parameters . Then, for all h ∈ H, all vh ∈ �k

d(Th), and all
T ∈ Th,

‖∇vh‖[L2(T )]d ≤ Cinvh
−1
T ‖vh‖L2(T ), (1.36)

where Cinv only depends on , d, and k.

Proof. Let vh ∈ �k
d(Th) and let T ∈ Th. For all T ′ ∈ ST , the restriction vh|T ′ is

in �k
d(T ′). Hence, owing to the usual inverse inequality on simplices (see Brenner

and Scott [54, Sect. 4.5] or Ern and Guermond [141, Sect. 1.7]),

‖∇vh‖[L2(T ′)]d ≤ Cinv,sh
−1
T ′ ‖vh‖L2(T ′),

where Cinv,s only depends on 1, d, and k. Using point (ii) in Definition 1.38
yields

‖∇vh‖[L2(T ′)]d ≤ −1
2 Cinv,sh

−1
T ‖vh‖L2(T ′).

Squaring this inequality and summing over T ′ ∈ ST yields (1.36).

Remark 1.45 (Nature of (1.36)). The inverse inequality (1.36) is local to mesh
elements. As such, it depends on the shape of the mesh elements but not on the
way mesh elements come into contact.

We now turn to the following discrete trace inequality that delivers an upper
bound on the face values of discrete functions.
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Lemma 1.46 (Discrete trace inequality). Let TH be a shape- and contact-regular
mesh sequence with parameters . Then, for all h ∈ H, all vh ∈ �k

d(Th), all
T ∈ Th, and all F ∈ FT ,

h
1/2

T ‖vh‖L2(F ) ≤ Ctr‖vh‖L2(T ), (1.37)

where Ctr only depends on , d, and k.

Proof. Let vh ∈ �k
d(Th), let T ∈ Th, and let F ∈ FT . We first assume that Th

is a matching simplicial mesh. Let T̂ be the unit simplex of �d and let FT be
the bijective affine map such that FT (T̂ ) = T . Let F̂ be any face of T̂ . Since
the unit sphere in �k

d(T̂ ) for the L2(T̂ )-norm is a compact set, there is Ĉd,k(F̂ ),
only depending on d, k, and F̂ , such that, for all v̂ ∈ �k

d(T̂ ),

‖v̂‖L2(F̂ ) ≤ Ĉd,k(F̂ )‖v̂‖L2(T̂ ).

Applying the above inequality to the function v̂ = vh|T ◦F−1
T which is in �k

d(T̂ ),
we infer

|F |−1/2

d−1 ‖vh‖L2(F ) ≤ Ĉd,k|T |−1/2

d ‖vh‖L2(T ),

where Ĉd,k := maxF̂∈FT̂
Ĉd,k(F̂ ). Moreover, we observe that

|T |d
|F |d−1

=
1
d
hT,F ≥ 1

d
rT ≥ 1

d
1hT , (1.38)

where hT,F denotes the distance of the vertex opposite to F to that face and rT
the radius of the largest ball inscribed in T . As a result,

h
1/2

T ‖vh‖L2(F ) ≤ Ctr,s‖vh‖L2(T ), (1.39)

where Ctr,s := d
1/2

−1/2

1 Ĉd,k only depends on 1, d, and k. We now consider the
case of general meshes. For each F ′ ∈ FF , let T ′ denote the simplex in ST of
which F ′ is a face. Since the restriction vh|T ′ is in �k

d(T ′), the discrete trace
inequality (1.39) yields

h
1/2

T ′ ‖vh‖L2(F ′) ≤ Ctr,s‖vh‖L2(T ′) ≤ Ctr,s‖vh‖L2(T ).

Squaring this inequality and summing over F ′ ∈ FF yields

(
∑

F ′∈FF

hT ′‖vh‖2
L2(F ′)

)1/2

≤ Ctr,s card(FF )1/2‖vh‖L2(T ),

whence the assertion follows, since hT ′ ≥ 2hT and card(FF ) is bounded uni-
formly owing to Lemma 1.41.
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Remark 1.47 (Variant of (1.37)). Summing over F ∈ FT , we infer from (1.37)
and the Cauchy–Schwarz inequality that

h
1/2

T ‖vh‖L2(∂T ) ≤ CtrN
1/2

∂ ‖vh‖L2(T ), (1.40)

and we recall from Lemma 1.41 that N∂ is bounded uniformly in h.
Remark 1.48 (k-dependency). When working with high-degree polynomials, it
is important to determine the dependency of Cinv and Ctr on the polynomial
degree k. This turns out to be a delicate question, and precise answers are
available only in specific cases. Concerning the discrete trace inequality (1.37),
it is proven by Warburton and Hesthaven [304] that on �k

d(Th), Ctr scales as√
k(k + d). Moreover, on �k

d(Th) with the mesh elements being affine images
of the unit hypercube in �d, one-dimensional results can be exploited using
tensor-product polynomials, yielding that Ctr scales as

√
k(k + 1); see Canuto

and Quarteroni [75], Bernardi and Maday [42], and Schwab [275]. One difficulty
concerns the behavior of polynomials near the end points of an interval, and this
can be dealt with by considering weighted norms in (1.37); see, e.g., Melenk and
Wohlmuth [235]. Concerning the inverse inequality (1.36), Cinv scales as k2 on
triangles and parallelograms; see, e.g., Schwab [275].

We also need the following continuous trace inequality, which delivers an
upper bound on the face values of functions in the broken Sobolev space H1(Th).
We present here a simple proof inspired by Monk and Süli [238] and Carstensen
and Funken [77] (see also Stephansen [283, Lemma 3.12]).

Lemma 1.49 (Continuous trace inequality). Let TH be a shape- and contact-
regular mesh sequence. Then, for all h ∈ H, all v ∈ H1(Th), all T ∈ Th, and all
F ∈ FT ,

‖v‖2
L2(F ) ≤ Ccti(2‖∇v‖[L2(T )]d + dh−1

T ‖v‖L2(T ))‖v‖L2(T ), (1.41)

with Ccti := −1
1 if Th is matching and simplicial, while Ccti := (1 + d)(12)−1

otherwise.

Proof. Let v ∈ H1(Th), let T ∈ Th, and let F ∈ FT . Assume first that T is a
simplex and consider the �d-valued function

σF =
|F |d−1

d|T |d (x − aF ),

where aF is the vertex of T opposite to F ; cf. Fig. 1.6. The normal component of
σF is constant and equal to one on F , and it vanishes on all the remaining faces
in FT . (The function σF is proportional to the lowest-order Raviart–Thomas–
Nédélec shape function in T ; see, e.g., Brezzi and Fortin [57, p. 116] or Ern and
Guermond [141, Sect. 1.2.7] and also cf. Sect. 5.5.3.) Owing to the divergence
theorem,

‖v‖2
L2(F ) =

∫

F

|v|2 =
∫

∂T

|v|2(σF ·nT ) =
∫

T

∇·(|v|2σF )

=
∫

T

2vσF ·∇v +
∫

T

|v|2(∇·σF ).
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F

aF

T

Fig. 1.6: Notation for the proof of Lemma 1.49

Since
‖σF ‖[L∞(T )]d ≤ |F |d−1hT

d|T |d , ∇·σF =
|F |d−1

|T |d ,

we infer using the Cauchy–Schwarz inequality that

‖v‖2
L2(F ) ≤

|F |d−1hT

d|T |d
(
2‖∇v‖[L2(T )]d + dh−1

T ‖v‖L2(T )

) ‖v‖L2(T ). (1.42)

Using (1.38) yields (1.41) with Ccti = −1
1 on matching simplicial meshes. Con-

sider now the case where T belongs to a general mesh. For each F ′ ∈ FF , let T ′

denote the simplex in ST of which F ′ is a face. Applying the continuous trace
inequality using F ′ and T ′ yields

‖v‖2
L2(F ′) ≤ −1

1

(
2‖∇v‖[L2(T ′)]d + dh−1

T ′ ‖v‖L2(T ′)
) ‖v‖L2(T ′).

Since hT ′ ≥ 2hT and 2 ≤ 1, we infer

‖v‖2
L2(F ′) ≤ (12)−1

(
2‖∇v‖[L2(T ′)]d + dh−1

T ‖v‖L2(T ′)
) ‖v‖L2(T ′).

Summing over F ′ ∈ FF and using the Cauchy–Schwarz inequality yields (1.41)
since each T ′ ∈ ST appears at most (d+ 1) times in the summation.

We close this section with some useful inverse and trace inequalities in a
non-Hilbertian setting. Our first result allows us to compare the ‖·‖Lp(T )- and
‖·‖Lq(T )-norms. The proof is skipped since it hinges again on the simplicial
submesh and the corresponding inverse inequality on simplices.

Lemma 1.50 (Comparison of ‖·‖Lp(T )- and ‖·‖Lq(T )-norms). Let TH be a shape-
and contact-regular mesh sequence with parameters . Let 1 ≤ p, q ≤ ∞ be two
real numbers. Then, for all h ∈ H, all vh ∈ �k

d(Th), and all T ∈ Th,

‖vh‖Lp(T ) ≤ Cinv,p,qh
d(1/p−1/q)
T ‖vh‖Lq(T ), (1.43)

where Cinv,p,q only depends on , d, k, p, and q.

Remark 1.51 (Dependency on p and q). The quantity Cinv,p,q in (1.43) can
be uniformly bounded in p and q. We first observe that owing to Hölder’s
inequality, Cinv,p,q = 1 if p < q. Additionally, it is shown by Verfürth [299] that
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on simplices, for p > 2 and q = 2, Cinv,p,2 ≤ C
1−2/p

d,k and for p = 2 and q < 2,

Cinv,2,q ≤ C
2/q−1
d,k , where Cd,k := ((2k + 2)(4k + 2)d−1)1/2. Hence, the largest

value for Cinv,p,q is obtained in the case where p > 2 > q, and observing that
|1 − 2/p| ≤ 1, |1 − 2/q| ≤ 1, and Cd,k ≥ 1, we infer that the quantity Cinv,p,q

can always be bounded by C2
d,k. A uniform upper bound in p and q can also be

derived on general meshes by summing over the simplicial subelements.

Our second and last result is a non-Hilbertian version of the discrete trace
inequality (1.37).

Lemma 1.52 (Discrete trace inequality in Lp(F )). Let TH be a shape- and
contact-regular mesh sequence with parameters . Let 1 ≤ p ≤ ∞ be a real
number. Then, for all h ∈ H, all vh ∈ �k

d(Th), all T ∈ Th, and all F ∈ FT ,

h
1/p

T ‖vh‖Lp(F ) ≤ Ctr,p‖vh‖Lp(T ), (1.44)

where Ctr,p only depends on , d, k, and p.

Proof. We combine the discrete trace inequality (1.37) with the inverse inequal-
ity (1.43) (in F ) to infer

h
1/p

T ‖vh‖Lp(F ) ≤ Cinv,p,2h
1/p

T δ
(d−1)(1/p−1/2)
F ‖vh‖L2(F )

≤ Cinv,p,2Ctrh
1/p−1/2

T δ
(d−1)(1/p−1/2)
F ‖vh‖L2(T )

≤ Cinv,p,2CtrCinv,2,ph
1/p−1/2

T δ
(d−1)(1/p−1/2)
F h

d(1/2−1/p)
T ‖vh‖Lp(T ).

The assertion follows by observing that δF in uniformly equivalent to hT .

Remark 1.53 (Dependency on p). The quantity Ctr,p in (1.44) can be uniformly
bounded in p. This is a direct consequence of the above proof and Remark 1.51.

1.4.4 Polynomial Approximation
To infer from estimate (1.33) a convergence rate in h for the approximation error
(u− uh) measured in the |||·|||-norm when the exact solution u is smooth enough,
we need to estimate the right-hand side given by

inf
yh∈Vh

|||u − yh|||∗,

when Vh is typically the broken polynomial space �k
d(Th) defined by (1.15); other

broken polynomial spaces can be considered. Since uh ∈ Vh, we infer from (1.33)
that

inf
yh∈Vh

|||u− yh||| ≤ |||u − uh||| ≤ C inf
yh∈Vh

|||u− yh|||∗. (1.45)

Definition 1.54 (Optimality, quasi-optimality, and suboptimality of the error
estimate). We say that the error estimate (1.45) is
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(i) Optimal if |||·||| = |||·|||∗,
(ii) Quasi-optimal if the two norms are different, but the lower and upper

bounds in (1.45) converge, for smooth u, at the same convergence rate as
h→ 0,

(iii) Suboptimal if the upper bound converges at a slower rate than the lower
bound.

The analysis of the upper bound infyh∈Vh
|||u− yh|||∗ depends on the polyno-

mial approximation properties that can be achieved in the broken polynomial
space Vh.

Definition 1.55 (Optimal polynomial approximation). We say that the mesh
sequence TH has optimal polynomial approximation properties if, for all h ∈ H,
all T ∈ Th, and all polynomial degree k, there is a linear interpolation operator
Ik

T : L2(T ) → �k
d(T ) such that, for all s ∈ {0, . . . , k + 1} and all v ∈ Hs(T ),

there holds

|v − Ik
T v|Hm(T ) ≤ Capph

s−m
T |v|Hs(T ) ∀m ∈ {0, . . . , s}, (1.46)

where Capp is independent of both T and h.

Remark 1.56 (Nature of (1.46)). As for the inverse inequality (1.36), the optimal
polynomial approximation property (1.46) is local to mesh elements. As such, it
depends on the shape of the mesh elements, but not on the way mesh elements
come into contact.

Definition 1.57 (Admissible mesh sequences). We say that the mesh sequence
TH is admissible if it is shape- and contact-regular and if it has optimal polyno-
mial approximation properties.

In what follows, we often consider the L2-orthogonal projection onto the
broken polynomial space �k

d(Th). One reason is that its definition (cf. (1.29)) is
very simple, even on general meshes.

Lemma 1.58 (Optimality of L2-orthogonal projection). Let TH be an admissible
mesh sequence. Let πh be the L2-orthogonal projection onto �k

d(Th). Then, for
all s ∈ {0, . . . , k + 1} and all v ∈ Hs(T ), there holds

|v − πhv|Hm(T ) ≤ C ′
apph

s−m
T |v|Hs(T ) ∀m ∈ {0, . . . , s}, (1.47)

where C ′
app is independent of both T and h.

Proof. For m = 0, we obtain by definition of the L2-orthogonal projection,

‖v − πhv‖L2(T ) ≤ ‖v − Ik
T v‖L2(T ) ≤ Capph

s
T |v|Hs(T ).
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For m ≥ 1, we use m times the inverse inequality (1.36) together with the
triangle inequality to infer

|v − πhv|Hm(T ) ≤ |v − Ik
T v|Hm(T ) + |Ik

T v − πhv|Hm(T )

≤ |v − Ik
T v|Hm(T ) + C ′h−m

T ‖Ik
T v − πhv‖L2(T )

≤ |v − Ik
T v|Hm(T ) + 2C ′h−m

T ‖v − Ik
T v‖L2(T ),

where C ′ has the same dependencies as C ′
app, whence (1.47) owing to (1.46).

In the analysis of dG methods, we often need to bound polynomial approxi-
mation errors on mesh faces. The following result is a direct consequence of (1.47)
and of the continuous trace inequality in Lemma 1.49.

Lemma 1.59 (Polynomial approximation on mesh faces). Under the hypotheses
of Lemma 1.58, assume additionally that s ≥ 1. Then, for all h ∈ H, all T ∈ Th,
and all F ∈ FT , there holds

‖v − πhv‖L2(F ) ≤ C ′′
apph

s−1/2

T |v|Hs(T ),

and if s ≥ 2,

‖∇(v − πhv)|T ·nT ‖L2(F ) ≤ C ′′′
apph

s−3/2

T |v|Hs(T ),

where C ′′
app and C ′′′

app are independent of both T and h.

Lemmata 1.58 and 1.59 are instrumental in deriving convergence rates, as
the meshsize goes to zero, for the approximation error owing to the error esti-
mate (1.33) which yields

|||u − uh||| ≤ inf
yh∈Vh

|||u− yh|||∗ ≤ |||u− πhu|||∗.

On general meshes, asserting optimal polynomial approximation is a delicate
question since this property depends on the shape of mesh elements. In prac-
tice, meshes are generated by successive refinements of an initial mesh, and the
shape of mesh elements depends on the refinement procedure. It is convenient
to identify sufficient conditions on the mesh sequence TH to assert optimal poly-
nomial approximation in broken polynomial spaces. One approach is based on
the star-shaped property with respect to a ball.

Definition 1.60 (Star-shaped property with respect to a ball). We say that a
polyhedron P is star-shaped with respect to a ball if there is a ball BP ⊂ P such
that, for all x ∈ P , the convex hull of {x} ∪ BP is included in P .

Figure 1.7 displays two polyhedra. The one on the left is star-shaped with
respect to the ball indicated in black. Instead, the one on the right is not star-
shaped with respect to any ball.
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Fig. 1.7: Example (left) and counter-example (right) of a polyhedron which is
star-shaped with respect to a ball

Lemma 1.61 (Mesh sequences with star-shaped property). Let TH be a shape-
and contact-regular mesh sequence. Assume that, for all h ∈ H and all T ∈ Th,
the mesh element T is star-shaped with respect to a ball with uniformly compa-
rable diameter with respect to hT . Then, the mesh sequence TH is admissible.

Proof. Optimal polynomial approximation is proven by Brenner and Scott [54,
Chap. 4] using averaged Taylor polynomials.

Another sufficient condition ensuring optimal polynomial approximation, but
somewhat less general than the star-shaped property, is that of finitely shaped
mesh sequences. A simple example is that of shape- and contact-regular mesh
sequences whose elements are either simplices or parallelotopes in �d.

Lemma 1.62 (Finitely shaped mesh sequences). Let TH be a shape- and contact-
regular mesh sequence. Assume that TH is finitely shaped in the sense that there
is a finite set R̂ = {T̂} whose elements are reference polyhedra in �d and such
that, for all h ∈ H, each T ∈ Th is the image of a reference polyhedron in R̂ by
an affine bijective map FT . Then, the mesh sequence TH is admissible.

Proof. The proof is sketched since it uses classical finite element techniques. Let
h ∈ H and let T ∈ Th. Let v ∈ Hs(T ). Since T is such that T = FT (T̂ ) for
some T̂ ∈ R̂, we set v̂ = v ◦ FT and observe that v̂ ∈ Hs(T̂ ). Let k ≥ 0 and let
s ∈ {0, . . . , k + 1}. Owing to the Deny–Lions Lemma (see Deny and Lions [123]
or Ern and Guermond [141, Lemma B.67]), we infer

|v̂ − πk
T̂
v̂|Hm(T̂ ) ≤ CT̂ |v̂|Hs(T̂ ) ∀m ∈ {0, . . . , s},

where πk
T̂

is the L2-orthogonal projection onto �k
d(T̂ ). Since T contains a ball

with diameter comparable to hT , transforming back to T yields

|v − Ik
T v|Hm(T ) ≤ C ′

T̂
hs−m

T |v|Hs(T ),

where Ik
T v = (πk

T̂
v̂) ◦F−1

T . The assertion follows by taking the maximal value of
C ′

T̂
for all T̂ ∈ R̂, and this yields a bounded quantity since the set R̂ is finite.
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Remark 1.63 (Role of finitely-shaped assumption). As reflected in the above
proof, the assumption that the mesh sequence is finitely shaped allows us to
derive a uniform upper bound on the quantities C ′

T̂
resulting from the application

of the Deny–Lions Lemma in each mesh element.

Remark 1.64 (Quadrangular meshes). In dimension 2, it is possible to consider
more general quadrangular meshes, where the elements are generated using bilin-
ear mappings from the reference unit square in �2. Then, under the regularity
conditions derived by Girault and Raviart [170, Sect.A.2], optimal polynomial
approximation is achieved using polynomials in �k

d.

1.4.5 The One-Dimensional Case
The situation is much simpler in dimension 1 where all the mesh elements are
intervals which can come into contact only through their endpoints. Thus, shape
and contact regularity are void concepts. Moreover, optimal polynomial approx-
imation properties can be classically asserted. However, we need the counterpart
of Lemma 1.43 to compare the diameter of neighboring mesh intervals. This is
the only requirement for admissibility of mesh sequences.

Definition 1.65 (Admissible mesh sequences, d = 1). We say that the mesh
sequence TH is admissible if there is  > 0 such that, for all h ∈ H and all
T, T ′ ∈ Th with T ∩ T ′

nonempty,

min(hT , hT ′) ≥ max(hT , hT ′).

The important properties derived in Sects. 1.4.3 and 1.4.4 are available on
admissible mesh sequences in dimension 1, namely:

(a) The inverse inequality (1.36) holds true.

(b) The discrete trace inequality (1.37) holds true (recalling that, in dimen-
sion 1, face integrals reduce to pointwise evaluation) and the continuous trace
inequality (1.41) also holds true (recalling that the 0-dimensional Hausdorff
measure of a face is conventionally set to 1).

(c) The optimal polynomial approximation property (1.46) holds true, together
with the optimal bounds on the L2-projection (cf. Lemmata 1.58 and 1.59).
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Chapter 2

Steady Advection-Reaction

The steady advection-reaction equation with homogeneous inflow boundary con-
dition

β·∇u+ μu = f in Ω, (2.1a)

u = 0 on ∂Ω−, (2.1b)

is one of the simplest model problems based on a linear, scalar, steady first-order
PDE. Here, the unknown function u is scalar-valued and represents, e.g., a solute
concentration; β is the �d-valued advective velocity, μ the reaction coefficient, f
the source term, and ∂Ω− denotes the inflow part of the boundary of Ω, namely

∂Ω− := {x ∈ ∂Ω | β(x)·n(x) < 0} . (2.2)

The main goal of this chapter is to design and analyze dG methods to approx-
imate the model problem (2.1). The mathematical analysis of this problem
entails some subtleties. Since dG methods are essentially tailored to approx-
imate PDEs in an L2-setting where discrete stability is enhanced by suitable
least-squares penalties, the most natural weak formulation at the continuous
level is that based on the concept of graph space. A further question concerns
the mathematical sense of the boundary condition (2.1b) for functions belonging
to the graph space. To this purpose, we introduce reasonably mild, sufficient
conditions on the advective field β to achieve a well-posed weak formulation.
We formulate the boundary condition (2.1b) weakly in the continuous problem
since this is the way boundary conditions are enforced in dG methods. Then, we
present a step-by-step derivation of suitable dG bilinear forms that match the
discrete stability, consistency, and boundedness properties outlined in Sect. 1.3
for nonconforming finite element error analysis. We also discuss an alternative
viewpoint using local (elementwise) problems and numerical fluxes. Two dG
methods are analyzed, resulting from the use of so-called centered or upwind
fluxes.

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_2,
c© Springer-Verlag Berlin Heidelberg 2012
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We observe that it is possible to consider instead of (2.1a) the PDE

∇·(βu) + μ̃u = f in Ω, (2.3)

with the reaction coefficient μ̃ := μ−∇·β so that, at least formally, ∇·(βu)+μ̃u =
β·∇u+μu. The advection operator in (2.1a) is in nonconservative form, whereas,
in (2.3), it is in conservative form. In the present framework of graph spaces, both
forms are equivalent regarding the well-posedness of the weak formulation and
the design and analysis of the dG approximation. Therefore, we focus on (2.1a),
and occasionally indicate equivalent reformulations associated with (2.3).

2.1 The Continuous Setting
The purpose of this section is to specify the assumptions on the data for the
model problem (2.1), to formulate this problem in weak form, and to show that
it is well-posed. Most of the material is drawn from Ern and Guermond [142];
we also refer the reader to the earlier work of Bardos [28].

2.1.1 Assumptions on the Data
Concerning the data μ and β, we assume that

μ ∈ L∞(Ω), β ∈ [Lip(Ω)]d, (2.4)

where Lip(Ω) denotes the space spanned by Lipschitz continuous functions, that
is, v ∈ Lip(Ω) means that there is Lv such that, for all x, y ∈ Ω, |v(x)− v(y)| ≤
Lv |x−y| where |x−y| denotes the Euclidean norm of (x−y) in �d. The quantity
Lv is called the Lipschitz module of v. Since β ∈ [Lip(Ω)]d, there holds (see, e.g.,
Brenner and Scott [54, Chap. 1] for further insight)

β ∈ [W 1,∞(Ω)]d

with ‖∇βi‖[L∞(Ω)]d ≤ Lβi for all i ∈ {1, . . . , d}, (β1, . . . , βd) being the compo-
nents of β in the Cartesian basis of �d. In what follows, we set

Lβ := max
1≤i≤d

Lβi . (2.5)

The assumption on the regularity of β can be weakened (at least, a bound on
‖β‖[L∞(Ω)]d and on ‖∇·β‖L∞(Ω) is needed), but the fact that all the components
of β are Lipschitz continuous functions simplifies the presentation.

In addition to (2.4), we assume that there is a real number μ0 > 0 such that

Λ := μ− 1
2
∇·β ≥ μ0 a.e. in Ω. (2.6)

Concerning the source term f , we assume that

f ∈ L2(Ω).
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Finally, we recall that Ω is a polyhedron in �d (cf. Definition 1.6). This assump-
tion is solely made to facilitate the meshing of Ω and is not used in the continuous
setting.

In what follows, we consider a reference time τc and a reference velocity βc

defined as

τc := {max(‖μ‖L∞(Ω), Lβ)}−1, βc := ‖β‖[L∞(Ω)]d . (2.7)

Since μ and Lβ scale as the reciprocal of a time, τc can be interpreted as the
(fastest) time scale in the problem. Moreover, βc represents the maximum veloc-
ity. We observe that τc is finite since ‖μ‖L∞(Ω) = Lβ = 0 implies Λ = 0 which
contradicts (2.6). We keep track of the parameters τc and βc in the convergence
analysis of dG approximations. This allows us to work with norms consisting of
terms having the same physical dimension. Keeping track of these parameters is
also useful when dealing with singularly perturbed regimes. For simplicity, the
reader can assume that both parameters are of order unity and discard them in
what follows.

2.1.2 The Graph Space
Our first goal is to specify the functional space in which the solution to the model
problem (2.1) is sought. Let C∞

0 (Ω) denote the space of infinitely differentiable
functions with compact support in Ω and recall that this space is dense in L2(Ω).
For a function v ∈ L2(Ω), the statement β·∇v ∈ L2(Ω) means that the linear
form

C∞
0 (Ω) � ϕ �−→ −

∫

Ω

v∇·(βϕ) ∈ �

is bounded in L2(Ω), that is, there is Cv such that

∀ϕ ∈ C∞
0 (Ω),

∫

Ω

v∇·(βϕ) ≤ Cv‖ϕ‖L2(Ω).

The function β·∇v is then defined as the function representing this linear form
in L2(Ω) by means of the Riesz–Fréchet theorem.

Definition 2.1 (Graph space). The graph space is defined as

V :=
{
v ∈ L2(Ω) | β·∇v ∈ L2(Ω)

}
, (2.8)

and is equipped with the natural scalar product: For all v,w ∈ V ,

(v,w)V := (v,w)L2(Ω) + (β·∇v, β·∇w)L2(Ω), (2.9)

and the associated graph norm ‖v‖V = (v, v)
1/2

V .

Proposition 2.2 (Hilbertian structure of graph space). The graph space V
defined by (2.8) and equipped with the scalar product (2.9) is a Hilbert space.
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Proof. Let (vn)n∈� be a Cauchy sequence in V . Then, (vn)n∈� and (β·∇vn)n∈�
are Cauchy sequences in L2(Ω). Let v and w be their respective limits in L2(Ω).
Let ϕ ∈ C∞

0 (Ω). Then, by definition, we obtain, for all n ∈ �,
∫

Ω

vn∇·(βϕ) = −
∫

Ω

(β·∇vn)ϕ,

so that
∫

Ω

v∇·(βϕ) ←
∫

Ω

vn∇·(βϕ) = −
∫

Ω

(β·∇vn)ϕ→ −
∫

Ω

wϕ.

This means that v ∈ V with β·∇v = w.

Remark 2.3 (Conservative form (2.3)). When working with (2.3), the natural
graph space is defined as

Ṽ :=
{
v ∈ L2(Ω) | ∇·(βv) ∈ L2(Ω)

}
,

the second assertion meaning that the linear form

C∞
0 (Ω) � ϕ �−→ −

∫

Ω

v(β·∇ϕ) ∈ �

is bounded in L2(Ω). Since

−
∫

Ω

v(β·∇ϕ) = −
∫

Ω

v∇·(βϕ) +
∫

Ω

(∇·β)vϕ,

and the last term is always bounded by ‖∇·β‖L∞(Ω)‖v‖L2(Ω)‖ϕ‖L2(Ω), it is clear
that Ṽ = V . Hence, all the developments presented herein can be applied to the
conservative form (2.3).

Remark 2.4 (Gelfand triple). Since C∞
0 (Ω) ⊂ V ⊂ L2(Ω) and C∞

0 (Ω) is dense in
L2(Ω), V is dense in L2(Ω). Hence, denoting by V ′ the topological dual space of
V (spanned by the continuous linear forms on V ), we are in the situation where

V ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ V ′,

with dense and continuous injections. In the literature, the triple {V,L2(Ω), V ′}
is sometimes referred to as a Gelfand triple.

2.1.3 Traces in the Graph Space
The next step is to specify mathematically the meaning of the boundary condi-
tion (2.1b). To this purpose, we need to investigate the trace on ∂Ω of functions
in the graph space V . Our aim is to give a meaning to such traces in the space

L2(|β·n|;∂Ω) :=
{

v is measurable on ∂Ω |
∫

∂Ω

|β·n|v2 <∞
}

. (2.10)
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Recalling definition (2.2) of the inflow boundary, we also define the outflow
boundary as

∂Ω+ := {x ∈ ∂Ω | β(x)·n(x) > 0} ,
and following [142], we assume that the inflow and outflow boundaries are well-
separated, namely

dist(∂Ω−, ∂Ω+) := min
(x,y)∈∂Ω−×∂Ω+

|x− y| > 0.

The following result is very important since it allows us to define traces of func-
tions belonging to the graph space and to use an integration by parts formula.
The proof is postponed to Sect. 2.1.5.

Lemma 2.5 (Traces and integration by parts). In the above framework, the
trace operator

γ : C0(Ω) � v �−→ γ(v) := v|∂Ω ∈ L2(|β·n|;∂Ω)

extends continuously to V , meaning that there is Cγ such that, for all v ∈ V ,

‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .

Moreover, the following integration by parts formula holds true: For all v,w ∈ V ,
∫

Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =
∫

∂Ω

(β·n)γ(v)γ(w).

To alleviate the notation, we omit henceforth the trace operator γ when writ-
ing boundary integrals, so that the above integration by parts formula becomes,
for all v,w ∈ V ,

∫

Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =
∫

∂Ω

(β·n)vw. (2.11)

Remark 2.6 (Counter-example for inflow/outflow separation). The separation
assumption on inflow and outflow boundaries cannot be circumvented if we wish
to work with traces in L2(|β·n|;∂Ω). Consider for instance the triangular domain

Ω =
{
(x1, x2) ∈ �2 | 0 < x2 < 1 s.t. |x1| < x2

}
,

and the field β = (1, 0)t; cf. Fig. 2.1. Then, the function u(x1, x2) = xα
2 is in V

provided α > −1, but it has a trace in L2(|β·n|;∂Ω) only if α > −1/2. Indeed, a
direct calculation shows that

∫

Ω

u2 dx1 dx2 =
∫ 1

0

x2α
2

(∫ x2

−x2

dx1

)

dx2 =
∫ 1

0

2x2α+1
2 dx2,

which is finite if and only if 2α + 1 > −1, that is, α > −1. Hence, under
this condition, u ∈ L2(Ω), and since β·∇u = 0, we infer u ∈ V . Furthermore,
∂Ω− = {(x1, x2) ∈ �2 | x2 = −x1, x1 ∈ (−1, 0)}, and a direct calculation yields

∫

∂Ω−
|β·n|u2 =

∫ 1

0

x2α
2 dx2,

which is finite if and only if 2α > −1, that is, α > −1/2. The same condition is
obtained for the integral over ∂Ω+.
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x1

x2

β

Ω

Fig. 2.1: Counter-example for inflow/outflow separation: constant advection
field β, triangular domain Ω, and, in dashed lines, contour lines of u

2.1.4 Weak Formulation and Well-Posedness
The goal of this section is to derive a well-posed weak formulation of the model
problem (2.1).

For a real number x, we define its positive and negative parts respectively as

x⊕ :=
1
2
(|x| + x), x	 :=

1
2
(|x| − x). (2.12)

We observe that both quantities are, by definition, nonnegative. We introduce
the following bilinear form: For all v,w ∈ V ,

a(v,w) :=
∫

Ω

μvw +
∫

Ω

(β·∇v)w +
∫

∂Ω

(β·n)	vw. (2.13)

This bilinear form is bounded in V × V owing to Lemma 2.5. Precisely, for all
v,w ∈ V , the Cauchy–Schwarz inequality yields

|a(v,w)| ≤ (1 + ‖μ‖2
L∞(Ω))

1/2‖v‖V ‖w‖L2(Ω) + C2
γ‖v‖V ‖w‖V .

Using the graph space V and the bilinear form a, the model problem (2.1)
can be cast into the weak form

Find u ∈ V s.t. a(u,w) =
∫

Ω

fw for all w ∈ V . (2.14)

This problem turns out to be well-posed (cf. Theorem 2.9 and Sect. 2.1.5). Before
addressing this, we examine in which sense does a solution to (2.14) solve the
original problem (2.1). In particular, we observe that the boundary condition is
weakly enforced in (2.14).

Proposition 2.7 (Characterization of the solution to (2.14)). Assume that u ∈
V solves (2.14). Then,

β·∇u+ μu = f a.e. in Ω, (2.15)

u = 0 a.e. in ∂Ω−. (2.16)
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Proof. Taking w = ϕ ∈ C∞
0 (Ω) in (2.14) yields
∫

Ω

(μu+ β·∇u− f)ϕ = 0,

whence (2.15) follows from the density of C∞
0 (Ω) in L2(Ω). Using (2.15) in (2.14)

implies that, for all w ∈ V ,
∫

∂Ω

(β·n)	uw = 0.

Using w = u as test function yields
∫

∂Ω
(β·n)	u2 = 0, whence (2.16).

An important (yet, not sufficient) ingredient for the well-posedness of the
weak problem (2.14) is the L2-coercivity of a in the graph space V .

Lemma 2.8 (L2-coercivity of a). The bilinear form a defined by (2.13) is L2-
coercive on V , namely,

∀v ∈ V, a(v, v) ≥ μ0‖v‖2
L2(Ω) +

∫

∂Ω

1
2
|β·n|v2. (2.17)

Proof. This is a straightforward consequence of assumption (2.6) and the inte-
gration by parts formula (2.11) since, for all v ∈ V ,

a(v, v) =
∫

Ω

(

μ− 1
2
∇·β

)

v2 +
∫

∂Ω

1
2
(β·n)v2 +

∫

∂Ω

(β·n)	v2

=
∫

Ω

Λv2 +
∫

∂Ω

1
2
|β·n|v2 ≥ μ0‖v‖2

L2(Ω) +
∫

∂Ω

1
2
|β·n|v2,

completing the proof.

A consequence of Lemma 2.8 is that the weak problem (2.14) admits at most
one solution. We are now in a position to state the main result of this section.
The proof of existence is postponed to Sect. 2.1.5.

Theorem 2.9 (Well-posedness). Problem (2.14) is well-posed.

Remark 2.10 (Conservative form (2.3)). When working with (2.3), the bilinear
form a can be rewritten as

a(v,w) =
∫

Ω

μ̃vw +
∫

Ω

∇·(βv)w +
∫

∂Ω

(β·n)	vw.

2.1.5 Proof of Main Results
In this section, we prove Lemma 2.5 and Theorem 2.9.



44 Chapter 2. Steady Advection-Reaction

Proof of Lemma 2.5. Owing to the separation assumption on inflow and outflow
boundaries, there are two functions ψ− and ψ+ in C∞(Ω) such that

ψ− + ψ+ ≡ 1 in Ω, ψ−|∂Ω+ = 0, ψ+|∂Ω− = 0. (2.18)

Let v ∈ C∞(Ω). Observe that
∫

∂Ω

v2|β·n| =
∫

∂Ω

v2(ψ− + ψ+)|β·n| =
∫

∂Ω−
v2ψ−|β·n| +

∫

∂Ω+
v2ψ+|β·n|

=
∫

∂Ω

(ψ+ − ψ−)v2(β·n) =
∫

Ω

∇·(v2(ψ+ − ψ−)β)

=
∫

Ω

∇·((ψ+ − ψ−)β)v2 +
∫

Ω

2(ψ+ − ψ−)(β·∇v)v

≤ C2
γ‖v‖2

V ,

with C2
γ = ‖∇·((ψ+−ψ−)β)‖L∞(Ω)+‖ψ+−ψ−‖L∞(Ω). Hence, for all v ∈ C∞(Ω),

‖v‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .

Let now v ∈ V . Since the space C∞(Ω) is dense in V (see Jensen [201, Theorem
4, p. 21], there is a sequence (vn)n∈� in C∞(Ω) converging to v in V . The
inequality

‖γ(vn)‖L2(|β·n|;∂Ω) ≤ Cγ‖vn‖V ,

implies that (γ(vn))n∈� is a Cauchy sequence in L2(|β·n|;∂Ω). Letting γ(v) be
its limit, it is clear that this defines a continuous extension of the trace operator
γ to V . Finally, the integration by parts formula (2.11) is also proven by a
density argument since it holds true on C∞(Ω) and all the terms pass to the
limit in V . This concludes the proof.

Proof of Theorem 2.9. The proof proceeds in four steps.
(i) We first prove that a variant of (2.14), where the boundary condition is
strongly enforced, is well-posed. Specifically, letting V0 = {v ∈ V | v|∂Ω− = 0}
and using L2(Ω) as test space, we consider the problem:

Find u ∈ V0 s.t. a0(u,w) =
∫

Ω

fw for all w ∈ L2(Ω), (2.19)

with the bilinear form

a0(v,w) =
∫

Ω

μvw +
∫

Ω

(β·∇v)w. (2.20)

To prove that (2.19) is well-posed, we use the BNB Theorem (cf. Theorem 1.1)
with spaces X = V0 and Y = L2(Ω). Since V0 is, by construction, closed in V
owing to Lemma 2.5, V0 is a Hilbert space. Moreover, L2(Ω) is reflexive, and
the right-hand side in (2.19) is a bounded linear form in L2(Ω). It remains to
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verify conditions (1.4) and (1.5) of the BNB Theorem.
(ii) Proof of condition (1.4). Let v ∈ V0 and set

� = sup
w∈L2(Ω)\{0}

a0(v,w)
‖w‖L2(Ω)

.

Proceeding as in the proof of Lemma 2.8, we observe that, for all v ∈ V0,

a0(v, v) =
∫

Ω

(

μ− 1
2
∇·β

)

v2 +
∫

∂Ω

1
2
(β·n)v2

≥ μ0‖v‖2
L2(Ω) +

∫

∂Ω

1
2
(β·n)v2

= μ0‖v‖2
L2(Ω) +

∫

∂Ω+

1
2
(β·n)v2 ≥ μ0‖v‖2

L2(Ω),

since v|∂Ω− = 0. As a result, for v �= 0,

‖v‖2
L2(Ω) ≤ μ−1

0 a0(v, v) ≤ μ−1
0

a0(v, v)
‖v‖L2(Ω)

‖v‖L2(Ω) ≤ μ−1
0 �‖v‖L2(Ω),

whence ‖v‖L2(Ω) ≤ μ−1
0 � for all v ∈ V0. Moreover,

‖β·∇v‖L2(Ω) = sup
w∈L2(Ω)\{0}

∫
Ω
(β·∇v)w

‖w‖L2(Ω)

= sup
w∈L2(Ω)\{0}

a0(v,w) − ∫
Ω
μvw

‖w‖L2(Ω)

≤ �+ ‖μ‖L∞(Ω)‖v‖L2(Ω) ≤ (1 + μ−1
0 ‖μ‖L∞(Ω))�.

Collecting these bounds yields

‖v‖2
V ≤ (μ−2

0 + (1 + μ−1
0 ‖μ‖L∞(Ω))2)�2,

whence we infer condition (1.4).
(iii) Proof of condition (1.5). Let w ∈ L2(Ω) be such that a0(v,w) = 0 for all
v ∈ V0. Since C∞

0 (Ω) ⊂ V0, a distributional argument yields μw −∇·(βw) = 0
in Ω. Hence, β·∇w = (μ − ∇·β)w ∈ L2(Ω), so that w ∈ V . Combining this
expression for β·∇w with the integration by parts formula (2.11), we infer that,
for all v ∈ V0,

∫

∂Ω

(β·n)vw =
∫

Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw]

= a0(v,w) −
∫

Ω

(μ−∇·β)vw +
∫

Ω

(β·∇w)v = a0(v,w) = 0.

Taking v = ψ+w with ψ+ defined by (2.18) (so that v ∈ V0) yields
∫

∂Ω
(β·n)⊕w2

= 0 so that w|∂Ω+ = 0. Finally, since μw −∇·(βw) = 0, we observe that

0 =
∫

Ω

[μw2 −∇·(βw)w] =
∫

Ω

(
μ− 1

2
∇·β

)
w2 −

∫

∂Ω

1
2
(β·n)w2 ≥ μ0‖w‖2

L2(Ω),
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where we have used the fact that
∫

∂Ω
(β·n)w2 ≤ 0 since w|∂Ω+ = 0. The above

inequality implies that w = 0, thereby completing the proof of condition (1.5).
(iv) Let us finally prove that (2.14) is well-posed. Existence of a solution results
from the fact that u, the unique solution to (2.19), solves (2.14) since u ∈ V0

implies that, for all w ∈ V , a(u,w) = a0(u,w). Moreover, uniqueness of the
solution has already been deduced from the L2-coercivity of a on V .

2.1.6 Nonhomogeneous Boundary Condition
In this section, we consider the nonhomogeneous boundary condition

u = g on ∂Ω−.

We extend the boundary datum g to ∂Ω by setting it to zero outside ∂Ω− and
we assume that

g ∈ L2(|β·n|;∂Ω).

The model problem in weak form now becomes:

Find u ∈ V s.t. a(u,w) =
∫

Ω

fw +
∫

∂Ω

(β·n)	gw for all w ∈ V . (2.21)

The key result to investigate nonhomogeneous boundary conditions is the
surjectivity of the trace operator γ : V → L2(|β·n|;∂Ω) identified in Lemma 2.5.

Lemma 2.11 (Surjectivity of traces). For all g ∈ L2(|β·n|;∂Ω), there is ug ∈ V
such that ug = g a.e. in ∂Ω− ∪ ∂Ω+. Moreover, there is C, only depending on
Ω and β, such that ‖ug‖V ≤ C‖g‖L2(|β·n|;∂Ω).

Proof. Let g ∈ L2(|β·n|;∂Ω) and let ψg : V → � be the linear map such that,
for all w ∈ V ,

ψg(w) =
∫

∂Ω

(β·n)gw.

Using the Cauchy–Schwarz inequality and the fact that ‖w‖L2(|β·n|;∂Ω) ≤
Cγ‖w‖V owing to Lemma 2.5, we infer that

|ψg(w)| ≤ ‖g‖L2(|β·n|;∂Ω)‖w‖L2(|β·n|;∂Ω)

≤ Cγ‖g‖L2(|β·n|;∂Ω)‖w‖V .

Hence, ψg ∈ V ′ and ‖ψg‖V ′ ≤ Cγ‖g‖L2(|β·n|;∂Ω). Owing to the Riesz–Fréchet
representation theorem, there exists z ∈ V such that, for all w ∈ V ,

(z,w)V =
∫

Ω

zw +
∫

Ω

(β·∇z)(β·∇w) =
∫

∂Ω

(β·n)gw.

Set ug := β·∇z ∈ L2(Ω) and let us verify that ug ∈ V . Taking w = ϕ ∈ C∞
0 (Ω)

yields ∫

Ω

ug(β·∇ϕ) = −
∫

Ω

zϕ,
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so that ∫

Ω

ug∇·(βϕ) = −
∫

Ω

zϕ+
∫

Ω

(∇·β)ugϕ.

Since the right-hand side is a bounded linear form in L2(Ω) acting on ϕ, we infer
that β·∇ug = z − (∇·β)ug ∈ L2(Ω), so that ug ∈ V . Furthermore, it is easily
seen that

‖ug‖V ≤ C ′‖z‖V = C ′‖ψg‖V ′ ≤ C‖g‖L2(|β·n|;∂Ω),

where C ′ and C only depend on Ω and β. Moreover, for all w ∈ V , we obtain
from the integration by parts formula (2.11) that

∫

∂Ω

(β·n)ugw =
∫

Ω

(β·∇w)ug +
∫

Ω

(β·∇ug)w +
∫

Ω

(∇·β)ugw

=
∫

Ω

(β·∇w)(β·∇z) +
∫

Ω

zw =
∫

∂Ω

(β·n)gw.

The fact that
∫

∂Ω
(β·n)(ug − g)w = 0 for all w ∈ V and the density of C∞(Ω) in

V imply that ug = g a.e. in ∂Ω− ∪ ∂Ω+.

Theorem 2.12 (Well-posedness). Problem (2.21) is well-posed. Moreover, its
unique solution u ∈ V satisfies (2.15) and u = g a.e. in ∂Ω−.

Proof. Let ug be given by Lemma 2.11. We consider the problem:

Find v ∈ V s.t. a(v,w) =
∫

Ω

fw − a0(ug, w) for all w ∈ V , (2.22)

where the bilinear form a0 is defined by (2.20). The map V � w �−→ a0(ug, w) ∈
� is bounded in L2(Ω) since, for all w ∈ L2(Ω),

|a0(ug, w)| ≤ (1 + ‖μ‖2
L∞(Ω))

1/2‖ug‖V ‖w‖L2(Ω) ≤ C‖g‖L2(|β·n|;∂Ω)‖w‖L2(Ω).

Hence, by the Riesz–Fréchet representation theorem, the right-hand side of (2.22)
can be written as

∫
Ω
f̃w for some f̃ ∈ L2(Ω). Owing to Theorem 2.9, prob-

lem (2.22) is therefore well-posed. Proceeding as in the proof of Proposition 2.7,
we infer that the function u = v + ug satisfies μu + β·∇u = f in Ω, and, since
v = 0 and ug = g on ∂Ω−, we obtain u = g on ∂Ω−. This proves the existence of
a solution to (2.21), while uniqueness results, as before, from the L2-coercivity
of a in V .

2.2 Centered Fluxes
The goal of this section is to design and analyze the simplest dG method to
approximate the model problem (2.14). Referring the reader to Sect. 1.3, the
method is designed so as to be consistent, and a minimal discrete stability is
ensured by L2-coercivity. Using the terminology of Definition 1.54, the resulting
error estimate turns out to be suboptimal. Alternatively, the method can be
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viewed as based on the use of centered fluxes. As in the previous section, we
assume that the data μ and β satisfy (2.4) and (2.6).

We seek an approximate solution in the broken polynomial space �k
d(Th)

defined by (1.15); other choices are possible. We assume that k ≥ 1 and that Th

belongs to an admissible mesh sequence. We set

Vh := �k
d(Th)

and consider the discrete problem:

Find uh ∈ Vh s.t. ah(uh, vh) =
∫

Ω

fvh for all vh ∈ Vh,

for a discrete bilinear form ah yet to be designed.
To analyze the method, we make a slightly more stringent regularity assump-

tion on the exact solution u than just belonging to the graph space V . This
assumption is needed to formulate the consistency of the method by directly
plugging in the exact solution into the discrete bilinear form ah. In particular,
we need to consider the trace of the exact solution on each mesh face.

Assumption 2.13 (Regularity of exact solution and space V∗). We assume that
there is a partition PΩ = {Ωi}1≤i≤NΩ of Ω into disjoint polyhedra such that, for
the exact solution u,

u ∈ V∗ := V ∩H1(PΩ).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Owing to the trace inequality (1.18) with p = 2, Assumption 2.13 implies
that, for all T ∈ Th, the restriction u|T has traces a.e. on each face F ∈ FT ,
and these traces belong to L2(F ) (even if the mesh Th is not fitted to PΩ).
Weaker regularity assumptions on u can be made; cf. Remark 2.16 below. We
now examine the jumps of u across interfaces.

Lemma 2.14 (Jumps of u across interfaces). The exact solution u ∈ V∗ is such
that, for all F ∈ F i

h,

(β·nF )�u�(x) = 0 for a.e. x ∈ F . (2.23)

Proof. Let F ∈ F i
h with F = ∂T1 ∩∂T2. This interface can be partitioned into a

finite number of subsets {Fj}1≤j≤NF such that each Fj is shared by at most two
elements of the partition PΩ. For instance, in the situation depicted in Fig. 2.2,
the interface F is partitioned into two subsets, one of which belongs to only one
element of the partition, while the other belongs to two elements. We now prove
that, a.e. on each Fj , (2.23) holds true. We consider the case where Fj is shared
by two elements of the partition, say Ω1 and Ω2 (the case where Fj belongs to
only one element is similar). Let ϕ ∈ C∞

0 (Ω) with support intersecting only Fj

and only Ω1 and Ω2; cf. Fig. 2.2. Since ϕ ∈ C∞
0 (Ω) and u ∈ V , there holds

∫

Ω

{
(∇·β)uϕ+ (β·∇u)ϕ+ u(β·∇ϕ)

}
= 0.
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Fig. 2.2: Interface F ∈ F i
h separating two triangles; the partition PΩ in Assump-

tion 2.13 consists of three polygons, and the support of the test function ϕ in
the proof of Lemma 2.14 is represented by a grey ball

b

Fig. 2.3: Fitted (left) and unfitted (right) simplicial mesh; the partition PΩ

consists of two polygons, and the exact solution can jump across the thick line

Moreover, owing to the choice for the support of ϕ, the integral over Ω is the
sum of the integrals over T1∩Ω1 and T2∩Ω2. On both of these sets, u is smooth
enough to integrate by parts, yielding

0 =
∫

Ω

{
. . .

}
=
∫

T1∩Ω1

{
. . .

}
+
∫

T2∩Ω2

{
. . .
}

=
∫

Fj

(β·nF )�u�ϕ.

The assertion then follows from a density argument.

Remark 2.15 (Singularities of exact solution). Condition (2.23) does not say any-
thing on the jumps of the exact solution across interfaces to which the advective
velocity β is tangential. We also observe that Assumption 2.13 does not require
the mesh to be fitted to solution singularities, that is, both situations depicted
in Fig. 2.3 are admissible.

Remark 2.16 (Weaker regularity assumption). A weaker regularity assumption
on the exact solution is u ∈ V ∩H1/2+ε(PΩ), ε > 0, since this assumption suffices
to assert the existence of traces in L2(F ) for all F ∈ Fh. Another possibility is
to assume that

u ∈ V ∩W 1,1(PΩ),
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which yields the existence of traces in L1(F ) for all F ∈ Fh. This latter property
is sufficient to prove Lemma 2.14; however, the norm introduced to assert bound-
edness in the convergence analysis of Sect. 2.2.2 needs to be modified following
the ideas presented in Sect. 4.2.5.
Remark 2.17 (Nonhomogeneous boundary condition). When working with the
nonhomogeneous boundary condition u = g on ∂Ω− (cf. Sect. 2.1.6), the discrete
problem becomes

Find uh ∈ Vh s.t. ah(uh, vh) =
∫

Ω

fvh +
∫

∂Ω

(β·n)	gvh for all vh ∈ Vh.

2.2.1 Heuristic Derivation
The main idea in the design of the discrete bilinear form ah is to mimic at the
discrete level the L2-coercivity that holds at the continuous level (cf. (2.17)),
while, at the same time, ensuring consistency. Our starting point is a discrete
bilinear form a

(0)
h simply derived from the exact bilinear form a by replacing the

advective derivative β·∇ by its broken counterpart β·∇h, namely, we define on
V∗h × Vh,

a
(0)
h (v,wh) :=

∫

Ω

{
μvwh + (β·∇hv)wh

}
+
∫

∂Ω

(β·n)	vwh.

That a
(0)
h yields consistency is clear since the exact solution satisfies (2.15)

and (2.16).
Let us now focus on discrete coercivity. An important observation is that

this property is not transferred from a to a(0)
h . Indeed, integration by parts on

each mesh element yields, for all vh ∈ Vh,

a
(0)
h (vh, vh) =

∫

Ω

{
μv2

h + (β·∇hvh)vh

}
+
∫

∂Ω

(β·n)	v2
h

=
∫

Ω

μv2
h +

∑

T∈Th

∫

T

(β·∇vh)vh +
∫

∂Ω

(β·n)	v2
h

=
∫

Ω

Λv2
h +

∑

T∈Th

∫

∂T

1
2
(β·nT )v2

h +
∫

∂Ω

(β·n)	v2
h,

where we recall that Λ = μ− 1
2∇·β and that nT denotes the outward normal to

T on ∂T . The second term on the right-hand side can be reformulated as a sum
over mesh faces. Indeed, exploiting the continuity of (the normal component of)
β across interfaces leads to

∑

T∈Th

∫

∂T

1
2
(β·nT )v2

h =
∑

F∈Fi
h

∫

F

1
2
(β·nF )�v2

h� +
∑

F∈Fb
h

∫

F

1
2
(β·n)v2

h.

For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, vi = vh|Ti , i ∈ {1, 2}, there holds

1
2
�v2

h� =
1
2
(v2

1 − v2
2) =

1
2
(v1 − v2)(v1 + v2) = �vh�{{vh}}.
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As a result,

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )�vh�{{vh}}

+
∑

F∈Fb
h

∫

F

1
2
(β·n)v2

h +
∫

∂Ω

(β·n)	v2
h,

and combining the two rightmost terms, we arrive at

a
(0)
h (vh, vh) =

∫

Ω

Λv2
h +

∑

F∈Fi
h

∫

F

(β·nF )�vh�{{vh}} +
∫

∂Ω

1
2
|β·n|v2

h.

The second term on the right-hand side, involving interfaces, has no sign a priori.
Therefore, it must be removed, and this can be achieved while maintaining
consistency if we set, for all (v,wh) ∈ V∗h × Vh,

acf
h (v,wh) :=

∫

Ω

{
μvwh + (β·∇hv)wh

}
+
∫

∂Ω

(β·n)	vwh

−
∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}}, (2.24)

since (β·nF )�u� = 0 for all F ∈ F i
h owing to (2.23). The superscript indicates

the use of centered fluxes, as detailed in Sect. 2.2.3.
We can now summarize the properties of the discrete bilinear form acf

h estab-
lished so far. The coercivity of acf

h is expressed using the following norm defined
on V∗h:

|||v|||2cf := τ−1
c ‖v‖2

L2(Ω) +
∫

∂Ω

1
2
|β·n|v2, (2.25)

with the time scale τc defined by (2.7). We observe that |||·|||cf is indeed a norm
since it controls the L2-norm.

Lemma 2.18 (Consistency and discrete coercivity). The discrete bilinear form
acf

h defined by (2.24) satisfies the following properties:

(i) Consistency, namely for the exact solution u ∈ V∗,

acf
h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,

(ii) Coercivity on Vh with respect to the |||·|||cf-norm, namely

∀vh ∈ Vh, acf
h (vh, vh) ≥ Csta|||vh|||2cf ,

with Csta := min(1, τcμ0).
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Proof. Consistency has already been verified. Concerning coercivity, we observe
that the above calculation yields, for all vh ∈ Vh,

acf
h (vh, vh) =

∫

Ω

Λv2
h +

∫

∂Ω

1
2
|β·n|v2

h,

whence the assertion follows from assumption (2.6).

Remark 2.19 (Definition of |||·|||cf). Defining the |||·|||cf-norm as

|||v|||2cf := μ0‖v‖2
L2(Ω) +

∫

∂Ω

1
2
|β·n|v2

yields coercivity in the simpler form acf
h (vh, vh) ≥ |||vh|||2cf . The present defini-

tion using the time scale τc instead of μ−1
0 is more convenient to examine the

boundedness of the discrete bilinear form acf
h .

Before proceeding further, we record an equivalent expression of the discrete
bilinear form acf

h obtained after integrating by parts the advective derivative in
each mesh element. This expression is useful when introducing the notion of
fluxes in Sect. 2.2.3 and when analyzing the dG method based on upwinding in
Sect. 2.3.

Lemma 2.20 (Equivalent expression for acf
h ). For all (v,wh) ∈ V∗h × Vh, there

holds

acf
h (v,wh) =

∫

Ω

{
(μ−∇·β)vwh − v(β·∇hwh)

}
+
∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫

F

(β·nF ){{v}}�wh�. (2.26)

Proof. Integrating by parts in each mesh element the advective derivative
in (2.24) leads to

acf
h (v,wh) =

∫

Ω

{
(μ−∇·β)vwh − v(β·∇hwh)

}
+
∑

T∈Th

∫

∂T

(β·nT )vwh

+
∫

∂Ω

(β·n)	vwh −
∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}}. (2.27)

The third term on the right-hand side can be reformulated as a sum over mesh
faces, namely

∑

T∈Th

∫

∂T

(β·nT )vwh =
∑

F∈Fi
h

∫

F

(β·nF )�vwh� +
∑

F∈Fb
h

∫

F

(β·n)vwh,
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exploiting the continuity of the normal component of β across interfaces. For all
F ∈ F i

h with F = ∂T1 ∩ ∂T2, vi = v|Ti , wi = wh|Ti , i ∈ {1, 2}, we observe that

�vwh� = v1w1 − v2w2

=
1
2
(v1 − v2)(w1 + w2) +

1
2
(v1 + v2)(w1 − w2)

= �v�{{wh}} + {{v}}�wh�.

The expression (2.26) then results from the combination of the three rightmost
in (2.27).

Remark 2.21 (Conservative form (2.3)). When working with (2.3), the right-
hand side of (2.24) can be rewritten as

∫

Ω

{
μ̃vwh + ∇h·(βv)wh

}
+
∫

∂Ω

(β·n)	vwh −
∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}}.

2.2.2 Error Estimates
We consider the discrete problem:

Find uh ∈ Vh s.t. acf
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (2.28)

This problem is well-posed owing to the discrete coercivity of acf
h on Vh. Our goal

is to estimate the approximation error (u − uh) in the |||·|||cf -norm. The conver-
gence analysis is performed in the spirit of Theorem 1.35. Owing to Lemma 2.18,
it only remains to address the boundedness of the discrete bilinear form acf

h . To
this purpose, we define on V∗h the norm

|||v|||2cf,∗ = |||v|||2cf +
∑

T∈Th

τc‖β·∇v‖2
L2(T ) +

∑

T∈Th

τcβ
2
ch

−1
T ‖v‖2

L2(∂T ),

with time scale τc and reference velocity βc defined by (2.7).

Lemma 2.22 (Boundedness). There holds

∀(v,wh) ∈ V∗h × Vh, acf
h (v,wh) ≤ Cbnd|||v|||cf,∗|||wh|||cf ,

with Cbnd independent of h and of the data μ and β.

Proof. Let (v,wh) ∈ V∗h × Vh. We bound the terms on the right-hand side
of (2.24). Using the Cauchy–Schwarz inequality, it is clear that

∫

Ω

{
μvwh + (β·∇hv)wh

}
+
∫

∂Ω

(β·n)	vwh ≤ 2|||v|||cf,∗|||wh|||cf .
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To bound the last term in (2.24), we first use the Cauchy–Schwarz inequality to
infer

∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}} ≤
⎛

⎝
∑

F∈Fi
h

1
2
τcβ

2
c{{h}}−1‖�v�‖2

L2(F )

⎞

⎠

1/2

×
⎛

⎝
∑

F∈Fi
h

2τ−1
c {{h}}‖{{wh}}‖2

L2(F )

⎞

⎠

1/2

,

where for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, {{h}} = 1

2 (hT1 + hT2). We also set
vi = v|Ti and wi = wh|Ti , i ∈ {1, 2}, and observe that 1

2 �v�2 ≤ (v2
1 + v2

2) and
2{{wh}}2 ≤ (w2

1 + w2
2). Moreover, owing to Lemma 1.43,

C−1
	 max(hT1 , hT2 ) ≤ {{h}} ≤ C	 min(hT1 , hT2 ),

where C	 only depends on mesh regularity. As a result,

∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}} ≤ C	|||v|||cf,∗
(
∑

T∈Th

τ−1
c hT ‖wh‖2

L2(∂T )

)1/2

,

To conclude, we use the discrete trace inequality (1.40) to bound the last factor
on the right-hand side by τ−

1/2
c CtrN

1/2

∂ ‖wh‖L2(Ω).

A straightforward consequence of Theorem 1.35 is the following error esti-
mate.

Theorem 2.23 (Error estimate). Let u solve (2.14) and let uh solve (2.28)
where acf

h is defined by (2.24) and Vh = �k
d(Th) with k ≥ 1 and Th belonging to

an admissible mesh sequence. Then, there holds

|||u− uh|||cf ≤ C inf
yh∈Vh

|||u − yh|||cf,∗, (2.29)

with C independent of h and depending on the data only through the factor
{min(1, τcμ0)}−1.

To infer a convergence result from (2.29), we assume that the exact solution
is smooth enough, take yh = πhu, the L2-orthogonal projection of u onto Vh,
in (2.29), and use Lemmata 1.58 and 1.59.

Corollary 2.24 (Convergence rate for smooth solutions). Besides the hypothe-
ses of Theorem 2.23, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||cf ≤ Cuh
k , (2.30)

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the data only
through the factor {min(1, τcμ0)}−1.



2.2. Centered Fluxes 55

Estimate (2.30) yields the convergence of the dG approximation for k ≥ 1.
The result is not quasi-optimal, but suboptimal since the L2-norm of the error
should converge with order (k + 1) and the boundary contribution with order
(k + 1/2) if the exact solution is smooth enough. A sharper estimate is obtained
in Sect. 2.3 using upwinding.

2.2.3 Numerical Fluxes
At this stage, it is instructive to consider an alternative viewpoint based on
numerical fluxes. Because we are working with broken polynomial spaces, the
discrete problem (2.28) admits a local formulation obtained by considering an
arbitrary mesh element T ∈ Th and an arbitrary polynomial ξ ∈ �k

d(T ). For a
set S ⊂ Ω, we denote by χS its characteristic function, namely

χS(x) =

{
1 if x ∈ S,

0 otherwise.

Then, using the test function vh = ξχT in the discrete problem (2.28), observing
that

�ξχT � = εT,F ξ with εT,F := nT ·nF ,

and owing to the expression (2.26) for the discrete bilinear form acf
h , we infer

∫

T

{
(μ−∇·β)uhξ − uh(β·∇ξ)

}
+

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ, (2.31)

where the numerical fluxes φF (uh) are given by

φF (uh) :=

{
(β·nF ){{uh}} if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.

The numerical fluxes φF (uh) are called centered fluxes because the average value
of uh is used on each F ∈ F i

h. Since these fluxes are single-valued and since for
all F ∈ F i

h with F = ∂T1 ∩ ∂T2, εT1,F + εT2,F = 0, the local formulation (2.31)
is conservative in the sense that whatever “flows” out of a mesh element through
one of its faces “flows” into the neighboring element through that face. Finally,
taking ξ ≡ 1 in (2.31) leads to the usual balance formulation encountered in
finite volume methods, namely

∫

T

(μ−∇·β)uh +
∑

F∈FT

εT,F

∫

F

φF (uh) =
∫

T

f.

Remark 2.25 (Conservative form (2.3)). When working with (2.3), the local
problems (2.31) can be rewritten as

∫

T

{
μ̃uhξ − uh(β·∇ξ)

}
+

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ.

Observe that the numerical fluxes have not been modified.
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Fig. 2.4: Example of stencil of an element T ∈ Th when Th is a matching
triangular mesh; the mesh element is highlighted in dark grey, and its three
neighbors, which all belong to the stencil, are highlighted in light grey ; the other
triangles do not belong to the stencil

A useful concept in practical implementations is that of stencil (cf. Appendix
A for further insight).

Definition 2.26 (Stencil). For a given element T ∈ Th, we define the elementary
stencil S(acf

h ;T ) associated with the bilinear form acf
h as

S(acf
h ;T ) :=

{
T ′ ∈ Th | ∃q ∈ �k

d(T ),∃r ∈ �k
d(T ′), acf

h (qχT , rχT ′) �= 0
}
,

where χT and χT ′ denote characteristic functions.

Owing to the local formulation (2.31), the stencil of a given element T ∈ Th

consists of T itself and its neighbors in the sense of faces. For instance, on a
matching simplicial mesh, the stencil contains (d+2) mesh elements; cf. Fig. 2.4
for a two-dimensional illustration.

2.3 Upwinding
The goal of this section is to strengthen the stability of the dG bilinear form
so as to arrive at quasi-optimal error estimates in the sense of Definition 1.54.
This goal is achieved by penalizing in a least-squares sense the interface jumps
of the discrete solution. In terms of fluxes, this approach can be interpreted as
upwinding. We keep assumptions (2.4) and (2.6) on the data μ and β as well as
Assumption 2.13 on the regularity of the exact solution u, but the polynomial
degree k is here such that k ≥ 0. For k = 0, the dG method considered in this
section coincides with a finite volume approximation with upwinding.

The idea of presenting dG methods with upwinding through a suitable
penalty of interface jumps has been highlighted recently by Brezzi, Marini,
and Süli [60]. Therein, a quasi-optimal error estimate on the norm comprising
the L2-error and the jumps is derived. As reflected in Sect. 2.3.2, this analysis
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hinges on discrete coercivity to establish stability. To tighten the error estimate
further by including an optimal bound on the advective derivative of the error,
a discrete inf-sup condition is needed; this condition is established in Sect. 2.3.3
following the ideas of Johnson and Pitkäranta [204].

2.3.1 Tightened Stability Using Penalties
We consider the new bilinear form

aupw
h (vh, wh) := acf

h (vh, wh) + sh(vh, wh), (2.32)

with the stabilization bilinear form

sh(vh, wh) =
∑

F∈Fi
h

∫

F

η

2
|β·nF |�vh��wh�, (2.33)

where η > 0 is a user-dependent parameter. Specifically, using (2.24),

aupw
h (vh, wh) :=

∫

Ω

{
μvhwh + (β·∇hvh)wh

}
+
∫

∂Ω

(β·n)	vhwh (2.34)

−
∑

F∈Fi
h

∫

F

(β·nF )�vh�{{wh}} +
∑

F∈Fi
h

∫

F

η

2
|β·nF |�vh��wh�,

or, equivalently, using (2.26),

aupw
h (vh, wh) =

∫

Ω

{
(μ−∇·β)vhwh − vh(β·∇hwh)

}
+
∫

∂Ω

(β·n)⊕vhwh (2.35)

+
∑

F∈Fi
h

∫

F

(β·nF ){{vh}}�wh� +
∑

F∈Fi
h

∫

F

η

2
|β·nF |�vh��wh�.

We observe that the discrete bilinear forms acf
h and aupw

h lead to the same stencil
(cf. Definition 2.26). The numerical flux associated with the discrete bilinear
form aupw

h depends on the penalty parameter η (cf. Sect. 2.3.4). Choosing η = 1
is particularly interesting since it leads to the usual upwind fluxes in the context
of finite volume schemes. More generally, the discrete bilinear form aupw

h is
henceforth referred to as the upwind dG bilinear form.

We consider the discrete problem:

Find uh ∈ Vh s.t. aupw
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (2.36)

We first examine the consistency and discrete coercivity of the upwind dG bilin-
ear form. Recalling definition (2.25) of the |||·|||cf -norm considered for centered
fluxes, we now assert coercivity with respect to the following stronger norm, also
defined on V∗h:

|||v|||2uw
 := |||v|||2cf +
∑

F∈Fi
h

∫

F

η

2
|β·nF |�v�2. (2.37)
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Lemma 2.27 (Consistency and discrete coercivity). The upwind dG bilinear
form aupw

h defined by (2.32) and (2.33) satisfies the following properties:

(i) Consistency, namely for the exact solution u ∈ V∗,

aupw
h (u, vh) =

∫

Ω

fvh ∀vh ∈ Vh,

(ii) Coercivity on Vh with respect to the |||·|||uw
-norm, namely

∀vh ∈ Vh, aupw
h (vh, vh) ≥ Csta|||vh|||2uw
,

with Csta = min(1, τcμ0) as in Lemma 2.18.

Proof. The consistency of aupw
h results from the consistency of acf

h established
in Lemma 2.18 and the fact that (β·nF )�u� vanishes across interfaces owing
to (2.23). Furthermore, the coercivity of aupw

h results from that of acf
h established

in Lemma 2.18 and the fact that sh(vh, vh) =
∑

F∈Fi
h

∫
F

η
2 |β·nF |�vh�2.

The discrete coercivity of aupw
h on Vh implies the well-posedness of the dis-

crete problem (2.36). In the following two subsections, we estimate the approxi-
mation error (u− uh), first using coercivity and then a tightened stability prop-
erty hinging on a discrete inf-sup condition.

Remark 2.28 (Choice of penalty parameter). Assigning a large value to the
penalty parameter η is not appropriate since this choice significantly reduces the
accuracy of the discrete solution. This issue has been examined by Burman,
Quarteroni, and Stamm [68] where it is shown (on matching simplicial meshes)
that the dG solution solving (2.36) converges to the discrete solution produced
by the standard continuous Galerkin approach as the penalty parameter tends
to infinity. Furthermore, we refer the reader to Burman and Stamm [69] for a
study on minimal stabilization for dG approximations of the two-dimensional
advection-reaction equation. In particular, on matching triangulations with
polynomial degree k ≥ 2, a high-pass filter can be applied to the jumps before
penalizing them. One motivation for minimal stabilization is achieving numeri-
cal fluxes with a moderate dependency on the penalty parameter.

2.3.2 Error Estimates Based on Coercivity
It turns out that the discrete coercivity norm |||·|||uw
 defined by (2.37) is not
strong enough to establish a boundedness result for the upwind dG bilinear
form aupw

h leading to quasi-optimal error estimates (this is why we denote this
norm by |||·|||uw
; a stronger norm, denoted by |||·|||uw�, is introduced in Sect. 2.3.3).
To circumvent this difficulty, one idea consists in establishing boundedness by
restricting the functions in the first argument of aupw

h to those functions in V∗h

that are L2-orthogonal to the discrete space Vh, that is, to functions of the form
v−πhv for v ∈ V∗ (recall that πh denotes the L2-orthogonal projection onto Vh).
Functions of the form v − πhv are termed orthogonal subscales.
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Definition 2.29 (Boundedness on orthogonal subscales). We say that bound-
edness on orthogonal subscales holds true for aupw

h (uniformly in h, μ, and β) if
there is Cbnd, independent of h, μ, and β, such that, for all (v,wh) ∈ V∗ × Vh,

|aupw
h (v − πhv,wh)| ≤ Cbnd|||v − πhv|||uw
,∗|||wh|||uw
, (2.38)

for a norm |||·|||uw
,∗ defined on V∗h such that, for all v ∈ V∗h, |||v|||uw
 ≤ |||v|||uw
,∗.

Lemma 2.30 (Boundedness on orthogonal subscales). Boundedness on orthog-
onal subscales holds true for the upwind dG bilinear form aupw

h when defining on
V∗h the norm

|||v|||2uw
,∗ = |||v|||2uw
 +
∑

T∈Th

βc‖v‖2
L2(∂T ).

Proof. Let (v,wh) ∈ V∗ × Vh and set y = v − πhv. We consider the expres-
sion (2.26) for acf

h and bound the various terms on the right-hand side. First, it
is clear using the Cauchy–Schwarz inequality that

∫

Ω

(μ−∇·β)ywh +
∫

∂Ω

(β·n)⊕ywh ≤ C1|||y|||uw
|||wh|||uw
,

with C1 independent of h, μ, and β. Moreover, letting 〈β〉T denote the mean
value of β on each T ∈ Th, we observe, on the one hand, that ‖β−〈β〉T ‖L∞(T ) ≤
LβhT ≤ τ−1

c hT since β is Lipschitz continuous and, on the other hand, that, for
all wh ∈ Vh, 〈β〉T ·∇wh ∈ �k−1

d (T ) ⊂ �k
d(T ) so that

∀T ∈ Th,

∫

T

y〈β〉T ·∇wh = 0.

Hence, owing to the inverse inequality (1.36),
∫

Ω

yβ·∇hwh =
∑

T∈Th

∫

T

yβ·∇wh =
∑

T∈Th

∫

T

y(β − 〈β〉T )·∇wh

≤
∑

T∈Th

‖y‖L2(T )τ
−1
c hT ‖∇wh‖[L2(T )]d

≤
∑

T∈Th

‖y‖L2(T )τ
−1
c Cinv‖wh‖L2(T )

≤ Cinv|||y|||uw
|||wh|||uw
.

In addition, the Cauchy–Schwarz inequality yields

∑

F∈Fi
h

∫

F

(β·nF ){{y}}�wh� ≤
⎛

⎝
∑

F∈Fi
h

∫

F

2η−1|β·nF |{{y}}2

⎞

⎠

1/2

|||wh|||uw


≤
(

η−1
∑

T∈Th

βc‖y‖2
L2(∂T )

)1/2

|||wh|||uw
.
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Collecting the above bounds yields

acf
h (y,wh) ≤ C2|||y|||uw
,∗|||wh|||uw
,

with C2 independent of h, μ, and β. Finally, observing that

∑

F∈Fi
h

∫

F

η

2
|β·nF |�y��wh� ≤ |||y|||uw
|||wh|||uw
,

the desired bound is obtained.

We can now state the main result of this section.

Theorem 2.31 (Error estimate). Let u solve (2.14) and let uh solve (2.36)
where aupw

h is defined by (2.34) and Vh = �k
d(Th) with k ≥ 0 and Th belonging to

an admissible mesh sequence. Then, there holds

|||u− uh|||uw
 ≤ C|||u− πhu|||uw
,∗, (2.39)

with C independent of h and depending on the data only through the factor
{min(1, τcμ0)}−1.

Proof. The proof is similar to that of Theorem 1.35. Assume first that πhu �= uh.
Then, owing to discrete coercivity and consistency (cf. Lemma 2.27), we infer

|||uh−πhu|||uw
 ≤ C−1
sta

aupw
h (uh − πhu, uh − πhu)

|||uh − πhu|||uw

= C−1

sta

aupw
h (u − πhu, uh − πhu)

|||uh − πhu|||uw

,

recalling that Csta = min(1, τcμ0). Hence, using boundedness on orthogonal
subscales,

|||uh − πhu|||uw
 ≤ C−1
staCbnd|||u − πhu|||uw
,∗,

and this inequality holds true also if πhu = uh. Estimate (2.39) then results from
the triangle inequality and the fact that |||u − πhu|||uw
 ≤ |||u − πhu|||uw
,∗.

To infer a convergence result from (2.39), we assume that the exact solution
is smooth enough and use Lemmata 1.58 and 1.59.

Corollary 2.32 (Convergence rate for smooth solutions). Besides the hypothe-
ses of Theorem 2.31, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||uw
 ≤ Cuh
k+1/2, (2.40)

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the data only
through the factor {min(1, τcμ0)}−1.

Estimate (2.40) yields the convergence of the dG approximation for any poly-
nomial degree k ≥ 0. The result is quasi-optimal for the boundary and jump
terms that dominate the stability norm |||·|||uw
, but suboptimal by a factor h1/2 for
the L2-norm. The L2-norm error estimate turns out to be sharp, as confirmed by
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Peterson [258] on specific meshes. However, one drawback of the present error
estimate is that it does not convey information on the behavior of first-order
derivatives, and more specifically on the advective derivative. This shortcom-
ing is remedied in the next subsection upon strengthening the discrete stability
result.

Remark 2.33 (On the error estimate). The error estimate in Theorem 2.31 is less
sharp than that derived in Theorem 1.35 since the infimum on the right-hand
side is replaced by the projection error u−πhu. However, this bound is sufficient
to infer quasi-optimal convergence rates for smooth solutions (cf. Corollary 2.32).

2.3.3 Error Estimates Based on Inf-Sup Stability
The convergence analysis is now performed in the spirit of Theorem 1.35. Con-
sistency has already been established, and it remains to address discrete stability
and boundedness. We augment the |||·|||uw
-norm defined by (2.37) by adding a
scaled advective derivative and define the stronger norm

|||v|||2uw� := |||v|||2uw
 +
∑

T∈Th

β−1
c hT ‖β·∇v‖2

L2(T ).

We are now in a position to state the main stability result regarding dG meth-
ods with upwinding. The proof, which elaborates on the ideas of Johnson and
Pitkäranta [204] using locally the scaled advective derivative as a test function,
follows the recent presentation by Ern and Guermond [142]. To simplify the
arguments while keeping track of the dependency of the estimates on μ and β,
we assume that

h ≤ βcτc. (2.41)

Remark 2.34 (Meaning of assumption (2.41)). Recalling (2.7), (2.41) yields

max(h‖μ‖L∞(Ω)‖β‖−1
[L∞(Ω)]d

, hLβ‖β‖−1
[L∞(Ω)]d

) ≤ 1.

The quantity h‖μ‖L∞(Ω)‖β‖−1
[L∞(Ω)]d

is termed the local Damköhler number (the
term local indicates here the use of the meshsize as reference length), and assum-
ing that this quantity is bounded (e.g., by 1) means that we are not concerned
with dominant reactions, but instead with tempered or mild reactions. Further-
more, assuming that hLβ‖β‖−1

[L∞(Ω)]d
≤ 1 means that the meshsize resolves the

spatial variations of the advective velocity.

Lemma 2.35 (Discrete inf-sup condition). There is C ′
sta > 0, independent of

h, μ, and β, such that

∀vh ∈ Vh, C ′
staCsta|||vh|||uw� ≤ sup

wh∈Vh\{0}

aupw
h (vh, wh)
|||wh|||uw�

,

with Csta = min(1, τcμ0) as in Lemma 2.27.
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Proof. Let vh ∈ Vh \ {0} and set � = supwh∈Vh\{0}
aupw

h (vh,wh)

|||wh|||uw�
. Lemma 2.27

implies that

Csta|||vh|||2uw
 ≤ aupw
h (vh, vh) =

aupw
h (vh, vh)
|||vh|||uw�

|||vh|||uw� ≤ �|||vh|||uw�. (2.42)

It remains to bound the contribution of the advective derivative in the expression
for |||vh|||uw�. To this purpose, we consider the function wh ∈ Vh such that, for
all T ∈ Th, wh|T = β−1

c hT 〈β〉T ·∇vh, where we recall that 〈β〉T denotes the
mean value of β over T . To alleviate the notation, we abbreviate as a � b the
inequality a ≤ Cb with positive C independent of h, μ, and β. The dependency
on the penalty parameter η is not tracked since in practice this parameter can
be taken equal to one.
(i) Let us bound |||wh|||uw� by |||vh|||uw�. We first observe that

∑

T∈Th

βch
−1
T ‖wh‖2

L2(T ) � |||vh|||2uw�. (2.43)

Indeed, using the triangle inequality, the regularity of β, and the inverse inequal-
ity (1.36), we obtain
∑

T∈Th

βch
−1
T ‖wh‖2

L2(T ) =
∑

T∈Th

β−1
c hT ‖〈β〉T ·∇vh‖2

L2(T )

≤ 2
∑

T∈Th

β−1
c

(
hT ‖β·∇vh‖2

L2(T )+hT ‖(β−〈β〉T )·∇vh‖2
L2(T )

)

�
∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) +
∑

T∈Th

τ−2
c β−1

c hT ‖vh‖2
L2(T )

≤
∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T )+
∑

T∈Th

τ−1
c ‖vh‖2

L2(T ) ≤ |||vh|||2uw�,

where we have used (2.41) to simplify the last term. A first consequence of (2.43)
is that using the discrete trace inequality (1.37), we infer
∫

∂Ω

1
2
|β·n|w2

h +
∑

F∈Fi
h

∫

F

η

2
|β·nF |�wh�2 �

∑

T∈Th

βch
−1
T ‖wh‖2

L2(T ) � |||vh|||2uw�.

Moreover, the inverse inequality (1.36) yields ‖wh‖L2(Ω) � ‖vh‖L2(Ω) and
∑

T∈Th

β−1
c hT ‖β·∇wh‖2

L2(T ) �
∑

T∈Th

βch
−1
T ‖wh‖2

L2(T ) � |||vh|||2uw�.

Collecting these bounds, we infer

|||wh|||uw� � |||vh|||uw�. (2.44)
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(ii) Now, using the definition (2.32) and (2.33) of aupw
h and the expression (2.24)

of acf
h , we obtain

∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) = aupw
h (vh, wh) −

∫

Ω

μvhwh

+
∑

T∈Th

β−1
c hT

∫

T

(β·∇vh)(β − 〈β〉T )·∇vh

−
∫

∂Ω

(β·n)	vhwh +
∑

F∈Fi
h

∫

F

(β·nF )�vh�{{wh}}

−
∑

F∈Fi
h

∫

F

η

2
|β·nF |�vh��wh� = T1 + . . . + T6,

and we estimate the terms T1, . . . ,T6 on the right-hand side. Owing to (2.44),

|T1| = |aupw
h (vh, wh)| =

|aupw
h (vh, wh)|
|||wh|||uw�

|||wh|||uw� ≤ �|||wh|||uw� � �|||vh|||uw�.

Moreover, using the Cauchy–Schwarz inequality and the definition of the |||·|||uw
-
norm yields

|T2| + |T4| + |T6| � |||vh|||uw
|||wh|||uw
 � |||vh|||uw
|||vh|||uw�.

Using again the Cauchy–Schwarz inequality, together with the discrete trace
inequality (1.37), leads to

|T5| ≤
⎛

⎝
∑

F∈Fi
h

∫

F

η

2
|β·nF |�vh�2

⎞

⎠

1/2⎛

⎝
∑

F∈Fi
h

∫

F

2
η
|β·nF |{{wh}}2

⎞

⎠

1/2

� |||vh|||uw


(
∑

T∈Th

βch
−1
T ‖wh‖2

L2(T )

)1/2

,

so that, owing to (2.43),

|T5| � |||vh|||uw
|||vh|||uw�.

Finally, to bound T3, we use the Cauchy–Schwarz inequality, the inverse inequal-
ity (1.36), and assumption (2.41) to obtain

|T3| �
(
∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T )

)1/2(∑

T∈Th

β−1
c hT τ

−2
c ‖vh‖2

L2(T )

)1/2

�
(
∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T )

)1/2

|||vh|||uw
.
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Using Young’s inequality in the form ab ≤ γa2 + (4γ)−1b2 where γ > 0 can be
chosen as small as desired, we infer

|T3| − 1
2

∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) � |||vh|||2uw
.

Collecting the above bounds leads to
∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) � �|||vh|||uw� + |||vh|||uw
|||vh|||uw� + |||vh|||2uw
.

(iii) Combining the above result with (2.42) and since Csta ≤ 1 yields

Csta|||vh|||2uw� � �|||vh|||uw� + Csta|||vh|||uw
|||vh|||uw�.

Using Young’s inequality for the last term together with (2.42) yields

Csta|||vh|||2uw� � �|||vh|||uw� + Csta|||vh|||2uw
 � �|||vh|||uw�,

whence the assertion.

To formulate a boundedness result, we define the following norm:

|||v|||2uw�,∗ := |||v|||2uw� +
∑

T∈Th

βc

(
h−1

T ‖v‖2
L2(T ) + ‖v‖2

L2(∂T )

)
.

Lemma 2.36 (Boundedness). There holds

∀(v,wh) ∈ V∗h × Vh, |aupw
h (v,wh)| ≤ Cbnd|||v|||uw�,∗|||wh|||uw�,

with Cbnd independent of h, μ, and β.

Proof. We proceed as in the proof of Lemma 2.30. The only difference lies in
bounding the contribution of the advective derivative. Here, using the Cauchy–
Schwarz inequality, we infer

∫
Ω v(β·∇hwh) ≤ |||v|||uw�,∗|||wh|||uw�.

A straightforward consequence of Theorem 1.35 is the following error esti-
mate.

Theorem 2.37 (Error estimate). Let u solve (2.14) and let uh solve (2.36)
where aupw

h is defined by (2.34) and Vh = �k
d(Th) with k ≥ 0 and Th belonging to

an admissible mesh sequence. Then, there holds

|||u − uh|||uw� ≤ C inf
yh∈Vh

|||u − yh|||uw�,∗, (2.45)

with C independent of h and depending on the data only through the factor
{min(1, τcμ0)}−1.

To infer a convergence result from (2.45), we assume, as in Sect. 2.3.2, that
the exact solution is smooth enough and use Lemmata 1.58 and 1.59.
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Corollary 2.38 (Convergence rate for smooth solutions). Besides the hypotheses
of Theorem 2.37, assume that u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||uw� ≤ Cuh
k+1/2, (2.46)

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the data only
through the factor {min(1, τcμ0)}−1.

Estimate (2.46) improves (2.40) since it provides an optimal convergence
estimate for the scaled advective derivative.

2.3.4 Numerical Fluxes
To conclude this section, we examine how the additional penalty term on the
interface jumps modifies the numerical fluxes. Proceeding as in Sect. 2.2.3, we
obtain the following local formulation: For all T ∈ Th and all ξ ∈ �k

d(T ),
∫

T

{
(μ−∇·β)uhξ − uh(β·∇ξ)

}
+

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ, (2.47)

where the numerical fluxes now take the form

φF (uh) =

{
β·nF {{uh}} + 1

2η|β·nF |�uh� if F ∈ F i
h,

(β·n)⊕uh if F ∈ Fb
h.

The choice η = 1 leads to the so-called upwind fluxes

φF (uh) =

{
β·nFu

↑
h if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h,

where u↑h = uh|T1 if β·nF > 0 and u↑h = uh|T2 otherwise (recall that F =
∂T1 ∩ ∂T2 and that nF points from T1 toward T2). The upwind fluxes can also
be written as

φF (uh) =

{
(β·nF )⊕uh|T1 − (β·nF )	uh|T2 if F ∈ F i

h,

(β·n)⊕uh if F ∈ Fb
h.

Remark 2.39 (Nonhomogeneous boundary condition). When working with the
nonhomogeneous boundary condition u = g on ∂Ω− (cf. Sect. 2.1.6), the local
formulation can still be written in the form (2.47), and the boundary datum g
incorporated in the numerical flux. This yields

φF (uh) =

{
(β·nF )⊕uh|T1 − (β·nF )	uh|T2 if F ∈ F i

h,

(β·n)⊕uh − (β·nF )	g if F ∈ Fb
h.



Chapter 3

Unsteady First-Order PDEs

This chapter is devoted to the approximation of unsteady, scalar, first-order
PDEs. We focus on the so-called method of lines in which the evolution problem
is first semidiscretized in space yielding a system of coupled ordinary differen-
tial equations (ODEs) which is then discretized in time. Specifically, we consider
space semidiscretization by a dG method together with an explicit Runge–Kutta
(RK) scheme for time discretization. Space-time dG methods provide an alter-
native to the method of lines. Such methods are not covered herein, and we refer
the reader to the textbook by Thomée [294].

In Sect. 3.1, we consider linear PDEs and examine the unsteady version of
the advection-reaction equation studied in Chap. 2. Namely, for a given finite
time tF > 0, we consider the time evolution problem:

∂tu+ β·∇u+ μu = f in Ω × (0, tF), (3.1a)

u = 0 on ∂Ω− × (0, tF), (3.1b)
u(·, t = 0) = u0 in Ω, (3.1c)

with advective velocity β, reaction coefficient μ, source term f , and initial
datum u0. We recall that ∂Ω− := {x ∈ ∂Ω | β(x)·n(x) < 0} denotes the inflow
part of the boundary ∂Ω. Space semidiscretization is achieved using the upwind
dG method introduced in Sect. 2.3 for the steady case. Then, we analyze some
explicit RK schemes for time discretization. We consider the forward Euler
method combined with a finite volume scheme in space as an example of low-
order approximation and then explicit two- and three-stage RK schemes com-
bined with a dG scheme with polynomial degree k ≥ 1 in space as examples
of higher-order approximations. In all cases, we derive quasi-optimal error esti-
mates for smooth solutions in the natural energy norm comprising the L2-norm
and the jumps. These results are achieved under Courant–Friedrichs–Lewy
(CFL) conditions restricting the size of the time step in terms of the advec-
tive velocity and the meshsize. Two points in the analysis deserve comments.
First, as pointed out in the seminal work of Levy and Tadmor [231], the classical

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_3,
c© Springer-Verlag Berlin Heidelberg 2012
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stability analysis hinging on the eigenvalues of the space semidiscrete linear oper-
ator and absolute stability regions for the RK schemes can be misleading in the
case of nonnormal operators such as semidiscrete first-order PDEs. Following
the recent work by Burman, Ern, and Fernández [66], our stability analysis
instead hinges on energy (that is, L2-norm) estimates in physical space. The
main idea is that the energy production resulting from the explicit nature of the
RK scheme can be compensated under a CFL condition by the dissipativity of
the dG scheme. Second, as in the steady case, the boundedness of the space
semidiscrete operator is needed to derive quasi-optimal error estimates (and not
only stability estimates).

In Sect. 3.2, we consider nonlinear conservation laws of the form

∂tu+ ∇·�(u) = 0.

The unknown u is a scalar-valued function and the flux function � is �d-valued.
In the linear case where f(u) = βu for some �d-valued field β, we recover the
unsteady advection-reaction equation (3.1a) with μ = ∇·β and zero source term.
Nonlinear conservation laws, and hyperbolic systems of nonlinear conservation
laws, are of interest in many contexts, ranging from compressible fluid dynamics
to gas dynamics and trafic modeling. For the mathematical theory of nonlinear
conservation laws (and systems thereof), we refer the reader to the textbooks by
Godlewski and Raviart [172], LeFloch [225], and LeVeque [230]. The application
of dG methods to such problems has been propelled by the pioneering works of
Cockburn, Shu, and coworkers [99, 108, 110, 111, 113]. Taking inspiration from
finite volume schemes and the local formulation of dG methods using numerical
fluxes, the dG method for space semidiscretization is formulated using suitably
designed numerical fluxes. Classical examples, discussed in the textbooks by
LeVeque [230] and Toro [295], include Godunov, Rusanov, Lax–Friedrichs, and
Roe fluxes. Then, an explicit RK scheme can be used for time discretization.
In particular, we consider Strong Stability-Preserving (SSP) RK schemes fol-
lowing the ideas of Gottlieb, Shu, and Tadmor [175, 176]; see also Spiteri and
Ruuth [281]. Finally, we discuss the use of limiters, i.e., devices which help pre-
venting the appearance of spurious oscillations when approximating rough solu-
tions. Although dG discretizations of hyperbolic conservation laws have been
used for over two decades, their theoretical analysis is far from being accom-
plished. Part of the material in Sect. 3.2 is based on heuristics, and only in some
cases a rigorous mathematical justification is available (often in space dimension
d = 1 only).

3.1 Unsteady Advection-Reaction
The goal of this section is to analyze an approximation of the linear time evo-
lution problem (3.1) using the upwind dG method for space semidiscretization
together with an explicit RK scheme for time discretization. Most of the results
presented in this section are drawn from [66].
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3.1.1 The Continuous Setting
Herein, we introduce some basic notation for space-time functions, specify the
assumptions on the data and on the regularity of the exact solution, and present
an energy estimate for the latter.

3.1.1.1 Notation for Space-Time Functions

Let ψ be a function defined on the space-time cylinder Ω × (0, tF). Then, it
is convenient to consider ψ as a function of the time variable with values in a
Hilbert space, say V , spanned by functions of the space variable, in such a way
that

ψ : (0, tF) � t �−→ ψ(t) ≡ ψ(·, t) ∈ V.

In what follows, for an integer l ≥ 0, we consider the space

C l(V ) := C l([0, tF];V )

spanned by V -valued functions that are l times continuously differentiable in
the interval [0, tF]. For ψ ∈ C l(V ), we denote by dm

t ψ, m ∈ {0, . . . , l}, the
time derivative of ψ of order m with the convention that d0

tψ = ψ; clearly
dm

t ψ ∈ C l−m(V ). The space C0(V ) is a Banach space when equipped with the
norm

‖ψ‖C0(V ) := max
t∈[0,tF]

‖ψ(t)‖V ,

and the space C l(V ) is a Banach space when equipped with the norm

‖ψ‖Cl(V ) := max
0≤m≤l

‖dm
t ψ‖C0(V ).

3.1.1.2 Assumptions on the Data and the Exact Solution

We consider the time evolution problem (3.1) with source term

f ∈ C0(L2(Ω)).

We assume for simplicity that the data μ and β are time-independent and that
they satisfy the regularity assumption (2.4), namely

μ ∈ L∞(Ω), β ∈ [Lip(Ω)]d.

However, we no longer assume (2.6) so that

Λ = μ− 1
2
∇·β ∈ L∞(Ω)

does not necessarily take positive values.
As in the steady case, we consider the reference time τc and the reference

velocity βc such that (cf. (2.7))

τc = {max(‖μ‖L∞(Ω), Lβ)}−1, βc = ‖β‖[L∞(Ω)]d ,
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where Lβ is the Lipschitz module of β (cf. (2.5)). In the absence of assump-
tion (2.6) providing a uniform positive lower bound on Λ = μ− 1

2∇·β, it is possi-
ble that ‖μ‖L∞(Ω) = Lβ = 0 (this corresponds to the case of constant advective
velocity and no reaction), yielding τc = ∞. We introduce an additional time
scale

τ∗ := min(tF, τc),

which is always finite. Moreover, in what follows, we use the quantity τc with
the convention that expressions involving τ−1

c are evaluated as zero if τc = ∞.
An important point is that we focus on smooth solutions, that is, we assume

u ∈ C0(H1(Ω)) ∩ C1(L2(Ω)). (3.2)

If such a solution exists, it is unique; this is a straightforward consequence of the
energy estimate derived below in Lemma 3.2. The regularity assumption (3.2)
implies that the PDE (3.1a) and the boundary condition (3.1b) hold up to the ini-
tial time t = 0. Assumption (3.2) also implies that u0 ∈ H1(Ω) with u0|∂Ω− = 0;
the initial datum is said to be well-prepared. Introducing the bounded opera-
tor A ∈ L(H1(Ω), L2(Ω)) such that for all v ∈ H1(Ω), Av := μv + β·∇v, the
PDE (3.1a) can be rewritten as

dtu(t) +Au(t) = f(t) ∀t ∈ [0, tF]. (3.3)

More general mathematical settings for the unsteady advection equation allowing
for rough solutions have been investigated, e.g., by Ambrosio [10], Boyer [48],
and Crippa [117].

Remark 3.1 (Using H1(Ω) instead of the graph space). At the continuous level,
it is also possible to assume for the exact solution that u ∈ C0(V ) instead of
u ∈ C0(H1(Ω)), where V is the graph space introduced for the steady advection-
reaction equation and defined by (2.8).

3.1.1.3 Energy Estimate on the Exact Solution

At any time t ∈ [0, tF], we define the energy of the exact solution as the quantity
‖u(t)‖2

L2(Ω). We now establish a basic energy estimate on the exact solution
under the regularity assumption (3.2).

Lemma 3.2 (Energy estimate). Let u ∈ C0(H1(Ω)) ∩ C1(L2(Ω)) solve (3.1).
Then, introducing the time scale ς := (t−1

F + 2‖Λ‖L∞(Ω))−1, there holds

‖u(t)‖2
L2(Ω) ≤ e

t/ς(‖u0‖2
L2(Ω) + ςtF‖f‖2

C0(L2(Ω))) ∀t ∈ [0, tF]. (3.4)

Proof. For all t ∈ [0, tF], we take the L2-scalar product of (3.3) with u(t) yielding

1
2
dt‖u(t)‖2

L2(Ω) + (Au(t), u(t))L2 (Ω) = (f(t), u(t))L2 (Ω).
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Integrating by parts and accounting for the boundary condition (3.1b) yields

(Au(t), u(t))L2 (Ω) =
∫

Ω

(

μ− 1
2
∇·β

)

u(t)2 +
∫

∂Ω+

1
2
(β·n)u(t)2

=
∫

Ω

Λu(t)2 +
∫

∂Ω+

1
2
(β·n)u(t)2 ≥

∫

Ω

Λu(t)2,

where ∂Ω+ := {x ∈ ∂Ω | β(x)·n(x) > 0} denotes the outflow part of the bound-
ary. Hence,

1
2
dt‖u(t)‖2

L2(Ω) = (f(t), u(t))L2 (Ω) − (Au(t), u(t))L2 (Ω)

≤ (f(t), u(t))L2 (Ω) + ‖Λ‖L∞(Ω)‖u(t)‖2
L2(Ω). (3.5)

Using the Cauchy–Schwarz followed by Young’s inequality for the first term on
the right-hand side leads to

1
2
dt‖u(t)‖2

L2(Ω) ≤ ‖f(t)‖L2(Ω)‖u(t)‖L2(Ω) + ‖Λ‖L∞(Ω)‖u(t)‖2
L2(Ω)

≤ tF
2
‖f(t)‖2

L2(Ω) +
1

2tF
‖u(t)‖2

L2(Ω) + ‖Λ‖L∞(Ω)‖u(t)‖2
L2(Ω)

=
tF
2
‖f(t)‖2

L2(Ω) +
1
2ς

‖u(t)‖2
L2(Ω). (3.6)

Setting ϕ(t) = ‖u(t)‖2
L2(Ω) and α = tF‖f‖2

C0(L2(Ω)), we obtain

dtϕ(t) ≤ α+ ς−1ϕ(t).

Hence, dt(e−
t/ςϕ(t)) = e−t/ς(dtϕ(t) − ς−1ϕ(t)) ≤ e−t/ςα, so that integrating in

time, we arrive at

ϕ(t) ≤ e
t/ςϕ(0) + α

∫ t

0

e
(t−s)/ς ds ≤ e

t/ς(ϕ(0) + ςα),

whence the assertion follows.

Remark 3.3 (Gronwall’s Lemma and long-time behavior). The argument by
which a bound on ‖u(t)‖2

L2(Ω) is inferred from an estimate of the form (3.6)
is often referred to as Gronwall’s Lemma. This approach is not suitable for long-
time stability estimates (that is, for tF � ‖Λ‖−1

L∞(Ω)) because it leads to the
exponential factor et/ς in (3.4) which becomes extremely large in this situation.
When interested in the long-time behavior of the solution, an assumption on Λ
is needed to obtain sharper energy estimates, for instance assumption (2.6) (i.e.,
Λ ≥ μ0 > 0 a.e. in Ω) as in the steady case. Then, (3.5) can be replaced by

1
2
dt‖u(t)‖2

L2(Ω) + μ0‖u(t)‖2
L2(Ω) ≤ (f(t), u(t))L2 (Ω).
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Using the Cauchy–Schwarz inequality followed by Young’s inequality on the
right-hand side leads to

1
2
dt‖u(t)‖2

L2(Ω) ≤
1

4μ0
‖f(t)‖2

L2(Ω),

whence we infer a (much) sharper energy estimate than (3.4).

3.1.2 Space Semidiscretization
Space semidiscretization is achieved by means of the upwind dG method intro-
duced in Sect. 2.3 in the context of the steady advection-reaction equation. Thus,
the discrete space Vh is taken to be the broken polynomial space �k

d(Th) defined
by (1.15) with polynomial degree k ≥ 0 and Th belonging to an admissible mesh
sequence. We consider quasi-uniform mesh sequences, meaning that there is C
such that, for all h ∈ H,

max
T∈Th

hT ≤ C min
T∈Th

hT .

It is possible to relax this assumption; cf. Remark 3.6 below for further discus-
sion. As in the steady case (cf. Sect. 2.3.3), we also make the mild assumption
that

h ≤ βcτ∗,

recalling that the assumption h ≤ βcτc means that the local Damköhler number
is not too large (thereby avoiding strong reaction regimes) and that the meshsize
resolves the spatial variations of the advective velocity, while the assumption
h ≤ βctF means that a particle advected at speed βc crosses at least one mesh
element over the time interval (0, tF).

Instead of working with discrete bilinear forms, we consider discrete (differ-
ential) operators to allow for a more compact notation. In what follows, we
often manipulate functions of the form (u(t)− vh) where t ∈ [0, tF] and vh ∈ Vh.
Recalling that u ∈ C0(H1(Ω)) owing to assumption (3.2), the function (u(t)−vh)
belongs to the space

V∗h := H1(Ω) + Vh.

We define the discrete operator Aupw
h : V∗h → Vh such that for all (v,wh) ∈

V∗h × Vh,

(Aupw
h v,wh)L2(Ω) =

∫

Ω

μvwh +
∫

Ω

(β·∇hv)wh +
∫

∂Ω

(β·n)	vwh (3.7)

−
∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}} +
∑

F∈Fi
h

∫

F

1
2
|β·nF |�v��wh�.

In terms of the discrete bilinear forms considered in Chap. 2, this yields

(Aupw
h v,wh)L2(Ω) = aupw

h (v,wh) = acf
h (v,wh) + sh(v,wh),

where aupw
h is the upwind dG bilinear form (cf. (2.34)), acf

h the dG bilinear form
associated with centered fluxes (cf. (2.24)), and sh the stabilization bilinear form
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defined by (2.33). The penalty parameter η in the stabilization bilinear form sh

has been set to 1 for simplicity.
The discrete operator Aupw

h can be used to formulate the space semidiscrete
problem in the form (compare with (3.3))

dtuh(t) +Aupw
h uh(t) = fh(t) ∀t ∈ [0, tF], (3.8)

with initial condition uh(0) = πhu0 and source term

fh(t) = πhf(t) ∀t ∈ [0, tF],

where πh denotes the L2-orthogonal projection onto Vh. Choosing a basis for
Vh, the space semidiscrete evolution problem (3.8) can be transformed into a
system of coupled ODEs for the time-dependent components of uh(t) on the
selected basis. Written in component form, (3.8) leads to the appearance of the
block-diagonal mass matrix on its left-hand side; cf. Sect.A.1.2.

Two important properties of the discrete operator Aupw
h are consistency and

discrete dissipation. These two properties are the counterpart of the consistency
and discrete coercivity established in the steady case for the discrete bilinear
form aupw

h (cf. Lemma 2.27).

Lemma 3.4 (Consistency and discrete dissipation for Aupw
h ). The discrete oper-

ator Aupw
h satisfies the following properties:

(i) Consistency: For the exact solution u ∈ C0(H1(Ω)) ∩ C1(L2(Ω)),

πhdtu(t) + Aupw
h u(t) = fh(t) ∀t ∈ [0, tF]. (3.9)

(ii) Discrete dissipation: For all vh ∈ Vh,

(Aupw
h vh, vh)L2(Ω) = |vh|2β + (Λvh, vh)L2(Ω), (3.10)

where we have defined on V∗h the seminorm

|v|2β :=
∫

∂Ω

1
2
|β·n|v2 +

∑

F∈Fi
h

∫

F

1
2
|β·nF |�v�2. (3.11)

Proof. (i) Let wh ∈ Vh. Taking the L2-scalar product of (3.3) with wh implies
for all t ∈ [0, tF],

(dtu(t), wh)L2(Ω) + (Au(t), wh)L2(Ω) = (f(t), wh)L2(Ω).

Since u ∈ C0(H1(Ω)) and accounting for the boundary condition u(t)|∂Ω− = 0
and the fact that �u(t)� = 0 for all F ∈ F i

h, the expression (3.7) yields

(Aupw
h u(t), wh)L2(Ω) =

∫

Ω

(μu(t) + β·∇u(t), wh)L2(Ω) = (Au(t), wh)L2(Ω).
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Moreover, owing to the definition of πh, (f(t), wh)L2(Ω) = (πhf(t), wh)L2(Ω) and
similarly for dtu(t). Hence,

(πhdtu(t), wh)L2(Ω) + (Aupw
h u(t), wh)L2(Ω) = (fh(t), wh)L2(Ω),

thereby proving (3.9).
(ii) To prove (3.10), we observe that, for all vh ∈ Vh, integrating by parts on
each mesh element the advective derivative yields, similarly to the steady case,

(Aupw
h vh, vh)L2(Ω) =

∫

Ω

(

μ− 1
2
∇·β

)

v2
h +

∫

∂Ω

1
2
(β·n)v2

h +
∫

∂Ω

(β·n)	v2
h

+
∑

F∈Fi
h

∫

F

1
2
|β·nF |�vh�2

=
∫

Ω

Λv2
h +

∫

∂Ω

1
2
|β·n|v2

h +
∑

F∈Fi
h

∫

F

1
2
|β·nF |�vh�2,

and the assertion follows from the definition of the |·|β-seminorm.

Remark 3.5 (Discrete dissipation). We slightly abuse the terminology when refer-
ring to (3.10) as discrete dissipation since the term (Λvh, vh)L2(Ω) has no a priori
sign. The important point, however, is that the term |vh|2β is nonnegative. This
latter term plays a crucial role in the stability analysis of explicit RK schemes.

3.1.3 Time Discretization
Let δt be the time step, taken to be constant for simplicity and such that tF =
Nδt where N is an integer. For n ∈ {0, . . . ,N}, we define the discrete times
tn := nδt. A superscript n indicates the value of a function at the discrete time
nδt, so that, e.g., un = u(tn) and fn = f(tn). We make the mild assumption
that

δt ≤ τ∗,

and observe that the inequality δt ≤ tF is trivial, while the inequality δt ≤ τc
means that the time step resolves the reference time τc.

The simplest scheme to discretize in time is the forward (also called explicit)
Euler scheme which takes the form

un+1
h = un

h − δtAupw
h un

h + δtfn
h , (3.12)

with the initial condition u0
h = πhu0. The forward Euler scheme can be derived

by replacing the time derivative by a forward finite difference in (3.8); indeed,
(3.12) can be equivalently rewritten as

un+1
h − un

h

δt
+ Aupw

h un
h = fn

h .

To improve the accuracy of time discretization, one possibility is to consider
explicit Runge–Kutta (RK) schemes. Such schemes are one-step methods where,
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at each time step, starting from un
h, s stages, s ≥ 1, are performed to compute

un+1
h . Explicit RK schemes can be formulated in various forms. Herein, we

consider two approaches. The first one takes the form

ki = −Aupw
h

⎛

⎝un
h + δt

s∑

j=1

aijkj

⎞

⎠+ fh(tn + ciδt) ∀i ∈ {1, . . . , s},

(3.13a)

un+1
h = un

h + δt

s∑

i=1

biki. (3.13b)

Here, (aij)1≤i,j≤s are real numbers, (bi)1≤i≤s are real numbers such that∑s
i=1 bi = 1, and (ci)1≤i≤s are real numbers in [0, 1] such that ci =

∑s
j=1 aij

for all i ∈ {1, . . . , s}. These quantities are usually collected in the so-called
Butcher’s array ⎡

⎢
⎢
⎢
⎣

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

⎤

⎥
⎥
⎥
⎦
.

The scheme is explicit whenever aij = 0 for all j ≥ i. We observe that
explicit schemes still require the inversion of the mass matrix at each of the
s stages (3.13a). In the context of dG methods, mass matrices are block-
diagonal and with a suitable choice of basis functions can be made diagonal;
cf. Sects.A.1.2 and A.2.

The forward Euler scheme is actually a one-stage RK method for which

[
0 0

1

] {
k1 = −Aupw

h un
h + fn

h

un+1
h = un

h + δtk1

Two examples of two-stage RK schemes are, on the one hand, the two-stage
Runge scheme (also called the improved forward Euler scheme) for which

⎡

⎢
⎣

0 0 0
1/2 1/2 0

0 1

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

k1 = −Aupw
h un

h + fn
h

k2 = −Aupw
h (un

h + 1
2δtk1) + f

n+1/2

h

un+1
h = un

h + δtk2

(3.14)

with the notation f
n+1/2

h = fh(tn + 1
2δt) and, on the other hand, the two-stage

Heun scheme for which
⎡

⎢
⎣

0 0 0
1 1 0

1/2 1/2

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

k1 = −Aupw
h un

h + fn
h

k2 = −Aupw
h (un

h + δtk1) + fn+1
h

un+1
h = un

h + δt 12 (k1 + k2)

(3.15)
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In the absence of external forcing (f = 0) and since the discrete operator Aupw
h is

linear, the schemes (3.14) and (3.15) produce the same result for un+1
h . Indeed,

straightforward algebra shows that both (3.14) and (3.15) yield

un+1
h = un

h − δtAupw
h un

h + 1
2δt

2(Aupw
h )2un

h.

On the right-hand side, we recognize a second-order Taylor expansion in time at
tn where the time derivatives have been substituted using the space semidiscrete
scheme (3.8) without forcing (that is, dtu(tn) = −Aupw

h u(tn) and dttu(tn) =
(Aupw

h )2u(tn)). Furthermore, an example of three-stage RK scheme is the three-
stage Heun scheme for which

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
1/3 1/3 0 0

2/3 0 2/3 0

1/4 0 3/4

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1 = −Aupw
h un

h + fn
h ,

k2 = −Aupw
h (un

h + 1
3δtk1) + f

n+1/3

h

k3 = −Aupw
h (un

h + 2
3δtk2) + f

n+2/3

h

un+1
h = un

h + 1
4δt(k1 + 3k3)

(3.16)

with obvious notation for the source term. In the absence of external forcing
(f = 0), straightforward algebra shows that (3.16) yields

un+1
h = un

h − δtAupw
h un

h + 1
2δt

2(Aupw
h )2un

h − 1
6δt

3(Aupw
h )3un

h.

On the right-hand side, we recognize now a third-order Taylor expansion in time.
Finally, an example of four-stage RK scheme is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
1/2 1/2 0 0 0

1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k1 = −Aupw
h un

h + fn
h ,

k2 = −Aupw
h (un

h + 1
2δtk1) + f

n+1/2

h

k3 = −Aupw
h (un

h + 1
2δtk2) + f

n+1/2

h

k4 = −Aupw
h (un

h + δtk3) + fn+1
h

un+1
h = un

h + 1
6δt(k1 + 2k2 + 2k3 + k4)

leading to a fourth-order Taylor expansion in time in the absence of external
forcing. A consequence of these Taylor expansions is that the above s-stage RK
schemes with s ≤ 4 have formal order of accuracy equal to s. Unfortunately, it
is not possible to devise an s-stage RK scheme with formal order of accuracy s
for s ≥ 5; this is possible using more than s steps (see Butcher [74]). In practice,
values of s ≤ 4 are most often considered.

An alternative formulation of RK schemes consists in introducing interme-
diate stages for the discrete solution instead of the intermediate increments ki.
Following Shu and Osher [279], we write in the absence of external forcing the
s-stage explicit RK scheme in the form

un,0
h = un

h,

un,i
h =

i−1∑

j=0

(
αiju

n,j
h − δtβijA

upw
h un,j

h

)
∀i ∈ {1, . . . , s},

un+1
h = un,s

h .
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The scheme is specified through the lower triangular matrices (αij)1≤i≤s,0≤j≤i−1

and (βij)1≤i≤s,0≤j≤i−1. Two examples are the two-stage scheme for which

α =
[

1
1/2 1/2

]

, β =
[
1
0 1/2

]

,

yielding (eliminating un,0
h = un

h and un,2
h = un+1

h and observing that the diagonal
of α and β corresponds to the coefficients αi,i−1 and βi,i−1)

un,1
h = un

h − δtAupw
h un

h, (3.17a)

un+1
h = 1

2 (un
h + un,1

h ) − 1
2δtA

upw
h un,1

h , (3.17b)

and the three-stage scheme for which

α =

⎡

⎣
1

1/2 1/2
1/3 1/3 1/3

⎤

⎦ , β =

⎡

⎣
1
0 1/2
0 0 1/3

⎤

⎦ ,

yielding

un,1
h = un

h − δtAupw
h un

h, (3.18a)

un,2
h = 1

2(un
h + un,1

h ) − 1
2δtA

upw
h un,1

h , (3.18b)

un+1
h = 1

3(un
h + un,1

h + un,2
h ) − 1

3δtA
upw
h un,2

h . (3.18c)

Since Aupw
h is linear, (3.17) produces the same result for un+1

h as the two-stage
Runge and Heun schemes (3.14) and (3.15), while (3.18) produces the same result
for un+1

h as the three-stage Heun scheme (3.16). Moreover, the schemes (3.17)
and (3.18) produce, as intermediate stages, Taylor expansions of increasing order
in time. For instance, (3.18) can be equivalently rewritten as

un,1
h = un

h − δtAupw
h un

h,

un,2
h = un

h − δtAupw
h un

h + 1
2δt

2(Aupw
h )2un

h,

un+1
h = un

h − δtAupw
h un

h + 1
2δt

2(Aupw
h )2un

h − 1
6δt

3(Aupw
h )3un

h.

As a result, a natural way to account for external forcing (f �= 0) is to set for
the two-stage scheme (3.17),

un,1
h = un

h − δtAupw
h un

h + δtfn
h , (3.19a)

un+1
h = 1

2 (un
h + un,1

h ) − 1
2δtA

upw
h un,1

h + 1
2δtψ

n
h , (3.19b)

and to require that ψn
h provides, for smooth f , a second-order accurate approxi-

mation of fn
h + δtdtf

n
h (cf. (3.24) below for the precise statement). For instance,

the two-stage Runge scheme (3.14) corresponds to (3.19) with ψn
h = 2fn+1/2

h −fn
h ,

while the two-stage Heun scheme corresponds to (3.19) with ψn
h = fn+1

h . Simi-
larly, for the three-stage scheme (3.17), one possibility is to set

un,1
h = un

h − δtAupw
h un

h + δtfn
h , (3.20a)

un,2
h = 1

2 (un
h + un,1

h ) − 1
2δtA

upw
h un,1

h + 1
2δt(f

n
h + δtdtf

n
h ), (3.20b)

un+1
h = 1

3 (un
h + un,1

h + un,2
h ) − 1

3δtA
upw
h un,2

h + 1
3δtψ

n
h , (3.20c)
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and to require that ψn
h provides, for smooth f , a third-order accurate approx-

imation of fn
h + δtdtf

n
h + 1

2δt
2dttf

n
h (cf. (3.28) for the precise statement). The

three-stage Heun scheme (3.16) fits this form; see [66]. Henceforth, (3.17)–(3.20)
are termed explicit RK2 and explicit RK3 schemes, respectively.

When the discrete operator Aupw
h is linear, the two formulations of explicit

RK methods, using either intermediate increments or intermediate stages for
the discrete solution, are equivalent in the absence of external forcing (differ-
ences do appear in the handling of the external forcing). The situation is dif-
ferent in the nonlinear case, e.g., when the discrete operator Aupw

h results from
the space semidiscretization of a nonlinear conservation law. Then, the second
form, based on intermediate stages for the discrete solution, is more appropriate;
cf. Sect. 3.2.3 for further discussion.

3.1.4 Main Convergence Results
In this section, we present convergence results for the forward Euler and the
explicit RK2 and RK3 schemes for time discretization combined with the dis-
crete operator Aupw

h resulting from the upwind dG method for space semidis-
cretization. In particular, we derive quasi-optimal error estimates for smooth
solutions under CFL-type restrictions on the time step of the form

δt ≤ 
h

βc
, (3.21)

for some positive real number . For the forward Euler scheme, we only consider
finite volume schemes (that is, dG schemes with polynomial degree k = 0) for
space semidiscretization. The reason for this is that the restriction on the time
step to achieve stability (or, in other words, to compensate the anti-dissipative
nature of the forward Euler scheme) is too stringent whenever polynomials with
degree k ≥ 1 are employed because there is not enough dissipation produced
by the space semidiscretization; cf. Remark 3.21 below for a detailed discussion.
For explicit RK2 and RK3 schemes, we consider dG schemes with polynomial
degree k ≥ 1 for space semidiscretization. It is also possible to use finite volume
schemes, but this is seldom considered in practice because, in such an approach,
the error estimates are dominated by space approximation errors.

Herein, we only state the convergence results. Proofs for the forward Euler
scheme and the explicit RK2 scheme are presented in Sects. 3.1.5 and 3.1.6,
respectively, while the proof for the explicit RK3 scheme can be found in [66].
General convergence results for forward Euler and finite volume schemes have
been obtained recently by Després [124,125] and by Merlet and Vovelle [236]. The
convergence result for explicit RK2 and RK3 schemes was proven, using different
arguments, by Zhang and Shu [310,311] for nonlinear conservation laws.

In what follows, we abbreviate as a � b the inequality a ≤ Cb with positive
C independent of h, δt, and the data f , μ, and β; the actual value of C can
change at each occurrence.
Remark 3.6 (Mesh quasi-uniformity and CFL condition). It is possible to dis-
card the assumption on mesh quasi-uniformity and to consider admissible mesh
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sequences to build the broken polynomial spaces Vh. In this case, the local length
scale in the CFL condition is no longer the largest mesh element diameter, but
the smallest. It is also possible, with additional technicalities, to consider in the
CFL condition the lowest ratio ‖β‖−1

[L∞(T )]d
hT over T ∈ Th.

3.1.4.1 Forward Euler and Finite Volume Schemes

We are interested in the forward Euler scheme (3.12),

un+1
h = un

h − δtAupw
h un

h + δtfn
h ,

with initial condition u0
h = πhu0. We focus on finite volume schemes for space

semidiscretization so that Vh = �0
d(Th).

Theorem 3.7 (Convergence for forward Euler). Assume u ∈ C0(H1(Ω)) ∩
C2(L2(Ω)). Set Vh = �0

d(Th). Assume the CFL condition (3.21) with  ≤ Eul

for a suitable threshold Eul, independent of h, δt, and the data f , μ, and β.
Then, there holds

‖uN − uN
h ‖L2(Ω) +

(
N−1∑

m=0

δt|um − um
h |2β

)1/2

� eCstatF/τ∗(χ1δt+ χ2h
1/2), (3.22)

where χ1 = t
1/2

F τ
1/2
∗ ‖d2

tu‖C0(L2(Ω)) and χ2 = t
1/2

F β
1/2
c ‖u‖C0(H1(Ω)), the |·|β-semi-

norm is defined by (3.11), and the quantity Csta is independent of h, δt, and the
data f , μ, and β.

Remark 3.8 (Convergence rate with CFL condition). Under the CFL condi-
tion (3.21), the first term on the right-hand side of the error estimate (3.22)
converges as h, while the second one converges as h1/2 and is, therefore, domi-
nant as h→ 0.

Remark 3.9 (Long-time behavior). The exponential factor eCstatF/τ∗ in the error
estimate (3.22) means that the estimate deteriorates in long time, that is, when-
ever tF � τc (recall that τc can be interpreted as the fastest time-scale in the
time evolution problem (3.1)). In practice, it is reasonable to assume that τc is
not too small with respect to tF.

3.1.4.2 Explicit RK2 Schemes

We are interested in explicit RK2 schemes of the form (3.19) (for later use, we
introduce a specific symbol for the intermediate stage)

wn
h = un

h − δtAupw
h un

h + δtfn
h , (3.23a)

un+1
h = 1

2 (un
h + wn

h) − 1
2δtA

upw
h wn

h + 1
2δtψ

n
h , (3.23b)

with initial condition u0
h = πhu0.
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Theorem 3.10 (Convergence for RK2). Assume f ∈ C2(L2(Ω)) and that the
source term ψn

h in (3.23b) is such that

‖ψn
h − fn

h − δtdtf
n
h ‖L2(Ω) � δt2‖d2

tf(t)‖C0(L2(Ω)). (3.24)

Assume u ∈ C3(L2(Ω)) ∩ C0(H1(Ω)). Set Vh = �k
d(Th) with k ≥ 1.

(i) In the case k ≥ 2, assume the 4/3-CFL condition

δt ≤ ′τ
−1/3
∗

(
h

βc

)4/3

, (3.25)

for some positive real number ′.

(ii) In the case k = 1, assume the CFL condition (3.21), that is,

δt ≤ RK2 h

βc
,

for a threshold RK2 independent of h, δt, and the data f , μ, and β.

Finally, assume ds
tu ∈ C0(Hk+1−s(Ω)) for s ∈ {0, 1}. Then,

‖uN −uN
h ‖L2(Ω)+

(
N−1∑

m=0

δt|um − um
h |2β

)1/2

� eCstatF/τ∗(χ1δt
2+χ2h

k+1/2), (3.26)

where

χ1 = t
1/2

F τ
1/2
∗ (‖d2

t f‖C0(L2(Ω)) + ‖d3
tu‖C0(L2(Ω))),

χ2 = t
1/2

F β
1/2
c

∑

s∈{0,1}
β−s

c ‖ds
tu‖C0(Hk+1−s(Ω)),

and the quantity Csta is independent of h, δt, and the data f , μ, and β.

Remark 3.11 (Convergence rate with 4/3-CFL condition). Under the 4/3-CFL
condition, the convergence rate with respect to h of the upper bound in (3.26) is
h8/3 + hk+1/2. For k = 2, this yields h8/3 + h5/2, so that the second contribution,
related to space approximation, is slightly dominant, although in practice, the
two contributions can be considered to be equilibrated. For k ≥ 3, the first
contribution, related to the time error, is dominant, so that equilibrating both
contributions actually imposes a more stringent restriction on the time step than
the 4/3-CFL condition.

Remark 3.12 (Upper bound on ′ in the 4/3-CFL condition). Although there is
no specific upper bound on the value of parameter ′ in the 4/3-CFL condition
in the statement of Theorem 3.10, the quantity Csta in the error estimate (3.26)
depends on this parameter. Hence, in practice, a small enough value should be
considered.
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3.1.4.3 Explicit RK3 Schemes

We are interested in explicit RK3 schemes of the form (3.20) (for later use, we
introduce a specific symbol for the intermediates stages)

wn
h = un

h − δtAupw
h un

h + δtfn
h , (3.27a)

yn
h = 1

2 (un
h + wn

h) − 1
2δtA

upw
h wn

h + 1
2δt(f

n
h + δtdtf

n
h ), (3.27b)

un+1
h = 1

3 (un
h + wn

h + yn
h) − 1

3δtA
upw
h yn

h + 1
3δtψ

n
h , (3.27c)

with initial condition u0
h = πhu0.

Theorem 3.13 (Convergence for RK3). Assume f ∈ C3(L2(Ω)) and that the
source term ψn

h in (3.27c) is such that

‖ψn
h − fn

h − δtdtf
n
h − 1

2δt
2d2

tf
n
h ‖L2(Ω) � δt3‖d3

tf‖C0(L2(Ω)). (3.28)

Assume u ∈ C4(L2(Ω)) ∩ C0(H1(Ω)). Set Vh = �k
d(Th) for k ≥ 1. Assume the

usual CFL condition (3.21), that is,

δt ≤ RK3 h

βc
,

for a threshold RK3 independent of h, δt, and the data f , μ, and β. Finally,
assume ds

tu ∈ C0(Hk+1−s(Ω)) for s ∈ {0, 1, 2}. Then,

‖uN −uN
h ‖L2(Ω)+

(
N−1∑

m=0

δt|um − um
h |2β

)1/2

� eCstatF/τ∗(χ1δt
3+χ2h

k+1/2), (3.29)

where

χ1 = t
1/2

F τ
1/2
∗ (‖d3

t f‖C0(L2(Ω)) + ‖d4
tu‖C0(L2(Ω))),

χ2 = t
1/2

F β
1/2
c

∑

s∈{0,1,2}
β−s

c ‖ds
tu‖C0(Hk+1−s(Ω)),

and the quantity Csta is independent of h, δt, and the data f , μ, and β.

Remark 3.14 (Stability of explicit RK3 schemes). Explicit RK3 schemes enjoy
stronger stability properties than explicit RK2 schemes. This is for instance
reflected by the fact that explicit RK3 schemes are stable under the usual CFL
condition (3.21) even in the absence of stabilization; see, e.g., Tadmor [289,
Theorem 2]). Stability alone is, however, not sufficient to derive quasi-optimal
error estimates. Indeed, in the absence of stabilization (that is, if centered
fluxes are used), the source terms in the error equation cannot be controlled
properly, and this leads to suboptimal error estimates of the form χ1δt

3 + χ2h
k

(compare with (3.29)). The stability of explicit RK3 schemes in the presence of
stabilization has been studied recently in [66].
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Remark 3.15 (Influence of polynomial degree). The threshold RK3 depends on
the polynomial degree k, and the larger k, the lower RK3. This dependency
results from the fact that the actual value for RK3 depends on some bound-
edness properties of the discrete operator Aupw

h , and that these properties are
established using inverse and discrete trace inequalities where the factors depend
on the polynomial degree (cf. Remark 1.48).

3.1.4.4 Numerical Illustration for Rough Solutions

Numerical results illustrating the convergence rates predicted by Theorems 3.10
and 3.13 for smooth solutions are reported in [66] for polynomial degrees k ∈
{1, 2} in the dG scheme. Numerical experiments indicate that the 4/3-CFL
condition for explicit RK2 schemes and polynomial degree k = 2 appears to be
sharp. Here, we focus instead on approximating rough solutions. We consider
the unsteady advection-reaction equation (3.1) with (divergence-free) advective
velocity β = (x2,−x1)t, reaction coefficient μ = 0, source term f = 0, and
circular domain Ω = {x ∈ �2 : x2

1 + x2
2 ≤ 1} (a polygonal domain can be

considered as well). The initial datum is

u0(x) =
1
2
(tanh(103(e−φ(x) − 0.5)) + 1),

with φ(x) = 10((x1 − 0.3)2 + (x2 − 0.3)2) so that the solution exhibits a sharp
inner layer with thickness of order 0.001.

We consider a fixed uniform mesh with 256 elements along the boundary of
Ω (h ≈ 0.025). The inner layer is thus under-resolved. Approximate solutions
obtained using explicit RK2 and RK3 schemes combined with polynomial degrees
k ∈ {1, 2} for the dG scheme are reported in Fig. 3.1. The results illustrate the
fact that the present methods are able to avoid the global spreading of spurious
oscillations, so that the discrete solution after a complete rotation still exhibits
a sharp inner layer. In all cases, the largest possible time step has been used;
the corresponding value of  in the CFL condition is reported in the caption of
Fig. 3.1. This figure also shows that the present schemes do not avoid spurious
oscillations in the vicinity of the inner layer. To eliminate such oscillations,
limiters can be employed. These techniques are discussed in Sect. 3.2.4 in the
context of nonlinear conservation laws.

Fig. 3.1: Contour lines of discrete solution after a complete rotation of the initial
datum. From left to right : RK2, k = 1, δt = 0.2h; RK3, k = 1, δt = 0.26h;
RK2, k = 2, δt = 0.12h; RK3, k = 2, δt = 0.15h
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3.1.5 Analysis of Forward Euler and Finite
Volume Schemes

The goal of this section is to prove Theorem 3.7. Although this section is
restricted to finite volume schemes, we recommend reading it before tackling
the more elaborate analysis of Sect. 3.1.6.

3.1.5.1 The Error Equation

Define
ξn
h := un

h − πhu
n, ξn

π := un − πhu
n,

so that the approximation error at the discrete time tn can be decomposed as

un − un
h = ξn

π − ξn
h .

The convergence analysis proceeds as follows. Since a bound on ξn
π can be

inferred from polynomial approximation properties and the smoothness of un,
an error upper bound is derived by first obtaining a bound on ξn

h in terms of ξn
π

and then using the triangle inequality.
Our first step consists in identifying the error equation for the time evolution

of ξn
h . The form of this equation is similar to the forward Euler scheme (3.12)

with data depending on ξn
π and u.

Lemma 3.16 (Error equation). Assume u ∈ C0(H1(Ω)) ∩ C2(L2(Ω)). Then,

ξn+1
h = ξn

h − δtAupw
h ξn

h + δtαn
h, (3.30)

where
αn

h := Aupw
h ξn

π − πhθ
n, (3.31)

with θn := δt−1
∫ tn+1

tn (tn+1 − t)d2
tu(t) dt.

Proof. A second-order Taylor expansion in time with integral remainder for the
exact solution u yields

un+1 = un + δtdtu
n + δtθn.

Projecting onto Vh and using the consistency property (3.9) at the discrete time
tn leads to

πhu
n+1 = πhu

n + δtπhdtu
n + δtπhθ

n

= πhu
n + δt(−Aupw

h un + fn
h ) + δtπhθ

n.

Subtracting this equation from (3.12), we infer that

ξn+1
h = ξn

h − δtAupw
h (ξn

h − ξn
π ) − δtπhθ

n,

whence the assertion.



84 Chapter 3. Unsteady First-Order PDEs

3.1.5.2 Energy Identity

Our second step consists in deriving an energy identity for the scheme (3.30).
This identity is obtained by taking the L2-scalar product of (3.30) with ξn

h .

Lemma 3.17 (Energy identity). There holds

1
2
‖ξn+1

h ‖2
L2(Ω) −

1
2
‖ξn

h‖2
L2(Ω) + δt|ξn

h |2β =
1
2
‖ξn+1

h − ξn
h‖2

L2(Ω)

+ δt(αn
h, ξ

n
h )L2(Ω) − δt(Λξn

h , ξ
n
h )L2(Ω). (3.32)

Proof. Taking the L2-scalar product of (3.30) with ξn
h and using discrete dissi-

pation (cf. (3.10)) yields

(ξn+1
h , ξn

h )L2(Ω) = ‖ξn
h‖2

L2(Ω) − δt(Aupw
h ξn

h , ξ
n
h )L2(Ω) + δt(αn

h, ξ
n
h )L2(Ω)

= ‖ξn
h‖2

L2(Ω) − δt|ξn
h |2β − δt(Λξn

h , ξ
n
h )L2(Ω) + δt(αn

h, ξ
n
h )L2(Ω).

Using on the left-hand side the algebraic identity ab = 1
2a

2 + 1
2b

2 − 1
2 (a − b)2

valid for arbitrary real numbers a and b leads to

1
2
‖ξn+1

h ‖2
L2(Ω) +

1
2
‖ξn

h‖2
L2(Ω) −

1
2
‖ξn+1

h − ξn
h‖2

L2(Ω) = ‖ξn
h‖2

L2(Ω)

− δt|ξn
h |2β − δt(Λξn

h , ξ
n
h )L2(Ω) + δt(αn

h, ξ
n
h )L2(Ω),

whence the assertion.

3.1.5.3 Boundedness of Aupw
h

Before proceeding further, we need to obtain suitable bounds on the discrete
operator Aupw

h . To this purpose, we consider the following norms: For all v ∈ V∗h,

|||v|||2uw
 = τ−1
c ‖v‖2

L2(Ω) + |v|2β ,
|||v|||2uw
,∗ = |||v|||2uw
 +

∑

T∈Th

βc‖v‖2
L2(∂T ),

where the |·|β-seminorm is defined by (3.11). The |||·|||uw
- and |||·|||uw
,∗-norms
coincide with those considered in Sect. 2.3 in the steady case.

Lemma 3.18 (Boundedness of Aupw
h ). There holds

(i) For all (v,wh) ∈ V∗h × Vh,

(Aupw
h v,wh)L2(Ω) ≤ C∗,1|||v|||uw
,∗|||wh|||uw
, (3.33)

(ii) For all vh ∈ Vh,

‖Aupw
h vh‖L2(Ω) ≤ C∗,2β

1/2
c h−

1/2|||vh|||uw
. (3.34)

Here, C∗,1 and C∗,2 are independent of h, δt, and the data f , μ, and β.
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Proof. (i) Proof of (3.33). Let (v,wh) ∈ V∗h×Vh. Using the expression (2.26) for
acf

h (that is, integrating by parts the advective derivative in each mesh element
in the expression (3.7) defining Aupw

h ) and exploiting the fact that ∇hwh = 0
since wh is piecewise constant, we obtain

(Aupw
h v,wh)L2(Ω) =

∫

Ω

(μ−∇·β)vwh +
∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫

F

(β·nF ){{v}}�wh� +
∑

F∈Fi
h

∫

F

1
2
|β·nF |�v��wh�,

whence we infer (3.33) using the Cauchy–Schwarz inequality.
(ii) Proof of (3.34). Let vh ∈ Vh. We use the expression (3.7) defining Aupw

h

and observe that ∇hvh = 0 since vh is piecewise constant. As a result, for all
wh ∈ Vh,

(Aupw
h vh, wh)L2(Ω) =

∫

Ω

μvhwh +
∫

∂Ω

(β·n)	vhwh

−
∑

F∈Fi
h

∫

F

(β·nF )�vh�{{wh}} +
∑

F∈Fi
h

∫

F

1
2
|β·nF |�vh��wh�.

Using the Cauchy–Schwarz inequality, the discrete trace inequality (1.37) to
bound {{wh}}, and the fact that ‖Aupw

h vh‖L2(Ω) = supwh∈Vh\{0}
(Aupw

h vh,wh)L2(Ω)

‖wh‖L2(Ω)
,

we infer (3.34).

Remark 3.19 (On the bounds (3.33) and (3.34)). The bound (3.33) is similar to
that derived in Lemma 2.30 concerning boundedness on orthogonal subscales in
the steady case. The present bound is slightly more general since wh ∈ Vh =
�0

d(Th) implies ∇hwh = 0, and this circumvents the boundedness argument
on orthogonal subscales. Furthermore, the bound (3.34) is equivalent to the
coercivity condition introduced by Levy and Tadmor in [231]. This property
is specific to the finite volume setting involving piecewise constant functions
(recall that we used ∇hvh = 0 in the proof) and cannot be extended to high-
order dG methods with polynomial degree k ≥ 1. We also observe that the
bound (3.34) cannot be inferred directly from (3.33). Indeed, using the discrete
trace inequality (1.37), and since h ≤ βcτ∗, we infer, for all wh ∈ Vh,

|||wh|||uw
 � β
1/2
c h−

1/2‖wh‖L2(Ω),

so that (3.33) yields, for all vh ∈ Vh,

‖Aupw
h vh‖L2(Ω) = sup

wh∈Vh\{0}

(Aupw
h vh, wh)L2(Ω)

‖wh‖L2(Ω)

� β
1/2
c h−

1/2|||vh|||uw
,∗,

which is less sharp than (3.34) since |||·|||uw
 ≤ |||·|||uw
,∗.
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3.1.5.4 Stability

Our next step is to bound the three terms on the right-hand side of the energy
identity (3.32) using the CFL condition (3.21) together with the positive term
δt|ξn

h |2β appearing on the left-hand side and which results from the dissipative
properties of the dG discretization. The first term, namely ‖ξn+1

h − ξn
h‖2

L2(Ω),
results from the anti-dissipative nature of the forward Euler scheme. The sec-
ond term, namely δt(αn

h, ξ
n
h )L2(Ω), contains the contribution of space approxi-

mation errors through the term Aupw
h ξn

π , and bounding this contribution also
requires some care. Finally, bounding the third term, namely δt(Λξn

h , ξ
n
h )L2(Ω),

is straightforward.
We can now tackle the main stability result of this section. The bound (3.33)

on Aupw
h is crucial to estimate δt(αn

h, ξ
n
h )L2(Ω), while the bound (3.34) on Aupw

h

is crucial to control the anti-dissipative term ‖ξn+1
h − ξn

h‖2
L2(Ω).

Lemma 3.20 (Stability). Assume u ∈ C0(H1(Ω)) ∩ C2(L2(Ω)). Assume the
CFL condition (3.21) with  ≤ (2C∗,2)−2, that is,

δt ≤ (2C∗,2)−2 h

βc
. (3.35)

Then, there is Csta, independent of h, δt, and f , μ, and β, such that

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + δt|ξn
h |2β

≤ Cstaδt(|||ξn
π |||2uw
,∗ + τ−1

∗ ‖ξn
h‖2

L2(Ω) + τ∗C
2
uδt

2), (3.36)

with Cu := ‖d2
tu‖C0(L2(Ω)).

Proof. We start from the energy identity (3.32) and bound the three terms on
the right-hand side, say T1, T2, and T3.
(i) Bound on T3. Owing to the Cauchy–Schwarz inequality and since ‖Λ‖L∞(Ω) �
τ−1
c , we obtain

|T3| = δt|(Λξn
h , ξ

n
h )L2(Ω)| � δtτ−1

c ‖ξn
h‖2

L2(Ω). (3.37)

(ii) Bound on T2. Here, the bound (3.33) on Aupw
h is crucial. Using the defini-

tion (3.31) of αn
h yields

|T2| = δt|(αn
h, ξ

n
h )L2(Ω)| ≤ δt|(Aupw

h ξn
π , ξ

n
h )L2(Ω)| + δt|(πhθ

n, ξn
h )L2(Ω)|.

For the first term on the right-hand side, owing to the bound (3.33) on Aupw
h ,

Young’s inequality in the form ab ≤ γa2 + (4γ)−1b2 for arbitrary real numbers
a and b and positive γ that can be chosen as small as needed, and the definition
of the |||·|||uw
-norm, we infer

δt|(Aupw
h ξn

π , ξ
n
h )L2(Ω)| ≤ δtC∗,1|||ξn

π |||uw
,∗|||ξn
h |||uw
 ≤ 1

4
δt|||ξn

h |||2uw
 + Cδt|||ξn
π |||2uw
,∗

=
1
4
δt(|ξn

h |2β + τ−1
c ‖ξn

h‖2
L2(Ω)) + Cδt|||ξn

π |||2uw
,∗

≤ 1
4
δt|ξn

h |2β + Cδt(|||ξn
π |||2uw
,∗ + τ−1

c ‖ξn
h‖2

L2(Ω)).
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Concerning the second term on the right-hand side, we first observe that owing
to the Cauchy–Schwarz inequality,

‖θn‖2
L2(Ω) = δt−2

∫

Ω

(∫ tn+1

tn

(tn+1 − t)d2
tu(t) dt

)2

dx

≤ δt−2

∫

Ω

(∫ tn+1

tn

(tn+1 − t)2 dt

)(∫ tn+1

tn

|d2
tu(t)|2 dt

)

dx

=
1
3
δt

∫

Ω

∫ tn+1

tn

|d2
tu(t)|2 dtdx ≤ 1

3
δt2 max

t∈[tn,tn+1 ]
‖d2

tu‖2
L2(Ω),

so that
‖θn‖L2(Ω) � Cuδt. (3.38)

Hence, using again the Cauchy–Schwarz inequality followed by Young’s inequal-
ity yields

δt|(πhθ
n, ξn

h )L2(Ω)| = δt|(θn, ξn
h )L2(Ω)| ≤ δt‖θn‖L2(Ω)‖ξn

h‖L2(Ω)

≤ 2δtτ∗‖θn‖2
L2(Ω) + 2δtτ−1

∗ ‖ξn
h‖2

L2(Ω)

� δtτ∗C
2
uδt

2 + δtτ−1
∗ ‖ξn

h‖2
L2(Ω).

Collecting the two above bounds and recalling that τ∗ ≤ τc, we infer

|T2| ≤ 1
4
δt|ξn

h |2β + Cδt(|||ξn
π |||2uw
,∗ + τ−1

∗ ‖ξn
h‖2

L2(Ω) + τ∗C
2
uδt

2). (3.39)

(iii) Bound on T1. Here, the bound (3.34) on Aupw
h is crucial. We first obtain

using the error equation (3.30) that

|T1| =
1
2
‖ξn+1

h − ξn
h‖2

L2(Ω) =
1
2
δt2‖Aupw

h ξn
h − αn

h‖2
L2(Ω)

≤ δt2‖Aupw
h ξn

h‖2
L2(Ω) + δt2‖αn

h‖2
L2(Ω).

For the first term on the right-hand side, owing to (3.34) and the choice (3.35)
for the CFL condition, we infer

δt2‖Aupw
h ξn

h‖2
L2(Ω) ≤ δt2C2

∗,2βch
−1|||ξn

h |||2uw
 ≤
1
4
δt|||ξn

h |||2uw
.

Hence, using the definition of the |||·|||uw
-norm,

δt2‖Aupw
h ξn

h‖2
L2(Ω) ≤

1
4
δt|ξn

h |2β +
1
4
δtτ−1

c ‖ξn
h‖2

L2(Ω).

We now consider the second term on the right-hand side, namely δt2‖αn
h‖2

L2(Ω).
Proceeding as in Remark 3.19, we infer, for all v ∈ V∗h,

‖Aupw
h v‖L2(Ω) � β

1/2
c h−

1/2|||v|||uw
,∗.
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Therefore, we obtain using the definition (3.31) of αn
h, the triangle inequality,

the above bound on Aupw
h v with v = ξn

π , the CFL condition (3.21), and the
bound (3.38) on ‖θn‖L2(Ω),

δt2‖αn
h‖2

L2(Ω) � δt2‖Aupw
h ξn

π‖2
L2(Ω) + δt2‖πhθ

n‖2
L2(Ω)

� δt2βch
−1|||ξn

π |||2uw
,∗ + δt2‖θn‖2
L2(Ω)

� δt|||ξn
π |||2uw
,∗ + δt2C2

uδt
2.

Hence, since δt ≤ τ∗,

|T1| ≤ 1
4
δt|ξn

h |2β + Cδt(|||ξn
π |||2uw
,∗ + τ−1

c ‖ξn
h‖2

L2(Ω) + τ∗C
2
uδt

2). (3.40)

(iv) Collecting estimates (3.37), (3.39), and (3.40) yields

|T1| + |T2| + |T3| ≤ 1
2
δt|ξn

h |2β + Cδt(|||ξn
π |||2uw
,∗ + τ−1

∗ ‖ξn
h‖2

L2(Ω) + τ∗C
2
uδt

2),

since τ∗ ≤ τc, whence the assertion.

Remark 3.21 (High-order dG approximation). The above proof breaks down if
a high-order dG method is used for space semidiscretization, that is, if Vh =
�k

d(Th) with polynomial degree k ≥ 1. The difficulty lies in bounding the term
‖Aupw

h ξn
h‖L2(Ω) (cf. the above estimate on T1) resulting from the anti-dissipative

nature of the forward Euler scheme. Indeed, for k ≥ 1, the bound (3.34) is no
longer available because ∇hvh does not necessarily vanish for vh ∈ Vh. Instead,
using the inverse inequality (1.36) to control ∇hvh, it is possible to prove that,
for all vh ∈ Vh,

‖Aupw
h vh‖L2(Ω) � βch

−1‖vh‖L2(Ω).

As a result, when bounding T1, we obtain

δt2‖Aupw
h ξn

h‖2
L2(Ω) � δt2β2

ch
−2‖ξn

h‖2
L2(Ω),

and a so-called 2-CFL condition (also called parabolic CFL condition) of the
form δt � τ−1

∗ β−2
c h2 must be invoked to obtain

δt2‖Aupw
h ξn

h‖2
L2(Ω) � δtτ−1

∗ ‖ξn
h‖2

L2(Ω).

Unfortunately, the 2-CFL condition is too restrictive on the size of the time step
to be used in practice.

3.1.5.5 Proof of Theorem 3.7

Letting, for all n ∈ {0, . . . ,N}, an := ‖ξn
h‖2

L2(Ω) and bn := δt|ξn
h |2β , we deduce

from the stability estimate (3.36) that

an+1 + bn ≤ (1 + γ)an + dn, (3.41)
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with γ := Cstaδtτ
−1
∗ and dn := Cstaδt(|||ξn

π |||2uw
,∗ + τ∗C
2
uδt

2). It is easily shown
by induction that

an+1 +
n∑

m=0

(1 + γ)n−mbm ≤ (1 + γ)n+1a0 +
n∑

m=0

(1 + γ)n−mdm.

We apply this estimate at n = N − 1 and simplify it by observing that 1 ≤
(1 + γ)n−m ≤ (1 + γ)N ≤ eNγ = eCstatF/τ∗ . Moreover, because of the initial
condition u0

h = πhu0, ξ0h = 0 so that a0 = 0. This yields

aN +
N−1∑

m=0

bm ≤ eCstatF/τ∗
N−1∑

m=0

dm. (3.42)

Using the triangle inequality, recalling that ξm
π = um −πhu

m, and since |ξm
π |β ≤

|||ξm
π |||uw
,∗, we infer

‖uN−uN
h ‖L2(Ω)+

(
N−1∑

m=0

δt|um − um
h |2β

)1/2

�
(

eCstatF/τ∗
N−1∑

m=0

dm

)1/2

+‖ξN
π ‖L2(Ω).

Using the definition of the |||·|||uw
,∗-norm, the polynomial approximation prop-
erties stated in Lemmata 1.58 and 1.59, and the assumption h ≤ βcτc leads
to

|||ξm
π |||2uw
,∗ � βch‖um‖2

H1(Ω).

As a result,

N−1∑

m=0

dm �
N−1∑

m=0

δt(τ∗C2
uδt

2 + |||ξm
π |||2uw
,∗)

≤ tFτ∗C
2
uδt

2 + tFβch‖u‖2
C0(H1(Ω)) = χ2

1δt
2 + χ2

2h.

Furthermore, since h ≤ βctF,

‖ξN
π ‖L2(Ω) � h‖uN‖H1(Ω) ≤ (ht−1

F β−1
c )1/2χ2h

1/2 ≤ χ2h
1/2.

Collecting the above bounds yields (3.22), thereby completing the proof.

Remark 3.22 (Discrete Gronwall). The argument by which the bound (3.42) is
inferred from an estimate of the form (3.41) is often called a discrete Gronwall
Lemma. This is the argument leading to the exponential factor eCstatF/τ∗ in the
error estimate (3.22).

3.1.6 Analysis of Explicit RK2 Schemes
This section is devoted to the analysis of explicit RK2 schemes. The proofs follow
a similar path to that deployed in Sect. 3.1.5 for the forward Euler scheme com-
bined with a finite volume method, namely an energy identity is obtained from
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a suitable error equation, whence a stability estimate is inferred, leading finally
to the error estimate using a discrete Gronwall Lemma. However, the arguments
are more elaborate because of the higher-order nature of both temporal and spa-
tial discretizations. As for the Euler scheme, there are typically two terms to
bound in the energy identity, namely the contribution of the source terms in the
error equation and the anti-dissipative term resulting from the explicit nature
of the RK2 scheme. To bound the contribution of the source terms, the key
argument is the boundedness on orthogonal subscales of the discrete operator
Aupw

h . This property is the counterpart of that already considered in the steady
case and is crucial to achieve quasi-optimal error estimates instead of suboptimal
ones (cf. Remark 3.26 below for further discussion).

Moreover, bounding the anti-dissipative term is not straightforward since,
contrary to the finite volume case examined in Sect. 3.1.5, the broken gradient of
discrete functions does no longer vanish, so that the bound (3.34) on Aupw

h is no
longer available. Two strategies are possible depending on the polynomial degree
k used in the dG scheme. In the piecewise affine case (k = 1), it is possible to
exploit the fact that the broken gradient is piecewise constant so as to derive
an additional property for Aupw

h , a so-called adjoint boundedness on orthogonal
subscales (cf. Lemma 3.28 below), thereby leading to a stability estimate under
the usual CFL condition. In the general case k ≥ 2, one possibility is to exploit
the fact that the anti-dissipative term is one order higher in time than with the
forward Euler scheme (we need to bound a term of the form δt2‖(Aupw

h )2ξn
h‖L2(Ω)

instead of a term of the form δt‖Aupw
h ξn

h‖L2(Ω)). This fact allows us to invoke a
4/3-CFL condition (instead of the 2-CFL condition mentioned in Remark 3.21).

3.1.6.1 The Error Equation

Define

ξn
h := un

h − πhu
n, ζn

h := wn
h − πhw

n,

ξn
π := un − πhu

n, ζn
π := wn − πhw

n,

with w := u+ δtdtu. Using these quantities, the errors can be written as

un − un
h = ξn

π − ξn
h , wn − wn

h = ζn
π − ζn

h .

Our first step is to identify the error equation governing the time evolution of
ξn
h and ζn

h .

Lemma 3.23 (Error equation). There holds

ζn
h = ξn

h − δtAupw
h ξn

h + δtαn
h, (3.43a)

ξn+1
h = 1

2 (ξn
h + ζn

h ) − 1
2δtA

upw
h ζn

h + 1
2δtβ

n
h , (3.43b)

where
αn

h := Aupw
h ξn

π , βn
h := Aupw

h ζn
π − πhθ

n + δn
h , (3.44)
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with

δn
h := ψn

h − fn
h − δtdtf

n
h , θn := δt−1

∫ tn+1

tn

(tn+1 − t)2d3
tu(t) dt. (3.45)

Proof. Consistency at the discrete time tn (cf. (3.9)) yields

πhw
n = πhu

n + δtπhdtu
n = πhu

n − δtAupw
h un + δtfn

h .

Subtracting this equation from (3.23a) yields (3.43a). To derive (3.43b), we
observe that

un+1 = un + δtdtu
n + 1

2δt
2d2

tu
n + 1

2δtθ
n = wn + 1

2δt
2d2

tu
n + 1

2δtθ
n,

so that projecting onto Vh yields

πhu
n+1 = πhw

n + 1
2δt

2πhd
2
tu

n + 1
2δtπhθ

n

= 1
2 (πhu

n + πhw
n) − 1

2δtA
upw
h un + 1

2δtf
n
h + 1

2δt
2πhd

2
tu

n + 1
2δtπhθ

n.

Moreover,

δtπhd
2
tu

n = δtdt(πhdtu
n) = −δtAupw

h dtu
n +δtdtf

n
h = −Aupw

h (wn−un)+δtdtf
n
h ,

whence

πhu
n+1 = 1

2(πhu
n + πhw

n) − 1
2δtA

upw
h wn + 1

2δt(πhθ
n + fn

h + δtdtf
n
h ).

Subtracting this equation from (3.23b) yields (3.43b).

3.1.6.2 Energy Identity

Our next step is to derive an energy identity for the scheme (3.43).

Lemma 3.24 (Energy identity). There holds

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + δt|ξn
h |2β + δt|ζn

h |2β = ‖ξn+1
h − ζn

h ‖2
L2(Ω)

+ δt(αn
h, ξ

n
h )L2(Ω) + δt(βn

h , ζ
n
h )L2(Ω) − Λn

h, (3.46)

where Λn
h := δt(Λξn

h , ξ
n
h )L2(Ω) + δt(Λζn

h , ζ
n
h )L2(Ω).

Proof. We multiply (3.43a) by ξn
h and (3.43b) by 2ζn

h and sum both equations
to obtain

2(ξn+1
h , ζn

h )L2(Ω) = ‖ζn
h ‖2

L2(Ω) + ‖ξn
h‖2

L2(Ω) + δt(αn
h, ξ

n
h )L2(Ω) + δt(βn

h , ζ
n
h )L2(Ω)

− δt(Aupw
h ξn

h , ξ
n
h )L2(Ω) − δt(Aupw

h ζn
h , ζ

n
h )L2(Ω),

so that, owing to discrete dissipation (cf. (3.10)),

2(ξn+1
h , ζn

h )L2(Ω) = ‖ζn
h ‖2

L2(Ω) + ‖ξn
h‖2

L2(Ω) + δt(αn
h, ξ

n
h )L2(Ω) + δt(βn

h , ζ
n
h )L2(Ω)

− δt|ξn
h |2β − δt|ζn

h |2β − Λn
h.

Moreover,

2(ξn+1
h , ζn

h )L2(Ω) − ‖ζn
h ‖2

L2(Ω) = ‖ξn+1
h ‖2

L2(Ω) − ‖ξn+1
h − ζn

h ‖2
L2(Ω).

Rearranging terms yields the assertion.
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3.1.6.3 Preliminary Stability Bound

We first bound the three rightmost terms in the energy identity (3.46). For the
time being, we only need the usual CFL condition (3.21). We remark that the
4/3-CFL condition (3.25) implies the usual CFL condition (3.21) with  = (′)3/4

since δt ≤ τ∗.
An important ingredient to derive our preliminary stability bound is the

boundedness on orthogonal subscales for the discrete operator Aupw
h , namely, for

all (v,wh) ∈ H1(Ω) × Vh,

(Aupw
h (v − πhv), wh)L2(Ω) � |||v − πhv|||uw
,∗|||wh|||uw
. (3.47)

This property is a direct consequence of Lemma 2.30. We recall that, for all
v ∈ V∗h,

|||v|||2uw
 = τ−1
c ‖v‖2

L2(Ω) + |v|2β ,
|||v|||2uw
,∗ = |||v|||2uw
 +

∑

T∈Th

βc‖v‖2
L2(∂T ).

We also need to consider the following norm: For all v ∈ V∗h,

|||v|||2∗∗ = |||v|||2uw
,∗ + βch‖∇hv‖2
[L2(Ω)]d .

Finally, for brevity of notation, letting Cfu := ‖d2
tf‖C0(L2(Ω)) + ‖d3

tu‖C0(L2(Ω)),
we introduce the quantity

En
h := |||ξn

π |||∗∗ + |||ζn
π |||∗∗ + τ

1/2
∗ Cfuδt

2 + τ
−1/2
∗ ‖ξn

h‖L2(Ω),

which collects, in addition to τ−
1/2

∗ ‖ξn
h‖L2(Ω), the contributions of the space and

time approximation errors.

Lemma 3.25 (Preliminary stability bound). Assume f ∈ C2(L2(Ω)) and u ∈
C3(L2(Ω))∩C0(H1(Ω)). Assume the CFL condition (3.21). Then, there is Csta,
independent of h, δt, and the data f , μ, and β, such that

‖ξn+1
h ‖2

L2(Ω)−‖ξn
h‖2

L2(Ω)+
1
2δt|ξn

h |2β+ 1
2δt|ζn

h |2β ≤ ‖ξn+1
h −ζn

h ‖2
L2(Ω)+Cstaδt(En

h )2.
(3.48)

Proof. We proceed in four steps.
(i) Further bounds on Aupw

h . Let us first prove that

‖Aupw
h v‖L2(Ω) � β

1/2
c h−

1/2|||v|||∗∗ ∀v ∈ V∗h. (3.49)

Let wh ∈ Vh. We obtain using (3.7) together with the Cauchy–Schwarz inequal-
ity, the discrete trace inequality (1.37), and mesh quasi-uniformity,

(Aupw
h v,wh)L2(Ω) ≤ (τ−1

c ‖v‖L2(Ω) + βc‖∇hv‖[L2(Ω)]d)‖wh‖L2(Ω)

+ |v|β |wh|β + |v|β
⎛

⎝
∑

F∈Fi
h

∫

F

2|β·n|{{wh}}2

⎞

⎠

1/2

� (τ−1
c ‖v‖L2(Ω) + βc‖∇hv‖[L2(Ω)]d + β

1/2
c h−

1/2|v|β)‖wh‖L2(Ω).
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Owing to the definition of the |||·|||∗∗-norm, and the fact that τ−
1/2

c ≤ β
1/2
c h−1/2,

we infer
(Aupw

h v,wh)L2(Ω) � β
1/2
c h−

1/2|||v|||∗∗‖wh‖L2(Ω).

Since ‖Aupw
h v‖L2(Ω) = supwh∈Vh\{0}

(Aupw
h v,wh)L2(Ω)

‖wh‖L2(Ω)
, this yields (3.49). Moreover,

using inverse and trace inequalities and h ≤ βcτc yields

|||vh|||∗∗ � β
1/2
c h−

1/2‖vh‖L2(Ω) ∀vh ∈ Vh,

so that for discrete arguments in (3.49), we obtain

‖Aupw
h vh‖L2(Ω) � βch

−1‖vh‖L2(Ω) ∀vh ∈ Vh. (3.50)

(ii) Bound on αn
h and βn

h . Using the definition (3.44) of αn
h, the bound (3.49) on

Aupw
h , and the usual CFL condition yields

δt
1/2‖αn

h‖L2(Ω) = δt
1/2‖Aupw

h ξn
π‖L2(Ω)

� δt
1/2β

1/2
c h−

1/2|||ξn
π |||∗∗ � |||ξn

π |||∗∗ ≤ En
h . (3.51)

Using the triangle inequality yields

‖βn
h‖L2(Ω) = ‖Aupw

h ζn
π − πhθ

n + δn
h‖L2(Ω)

≤ ‖Aupw
h ζn

π ‖L2(Ω) + ‖δn
h‖L2(Ω) + ‖πhθ

n‖L2(Ω).

The definition (3.45) of δn
h together with assumption (3.24) yield

‖δn
h‖L2(Ω) � δt2‖d2

tf(t)‖C0(L2(Ω)),

while proceeding as in the proof of (3.38) to bound ‖θn‖L2(Ω) yields

‖πhθ
n‖L2(Ω) ≤ ‖θn‖L2(Ω) � δt2‖d3

tu‖C0(L2(Ω)).

Finally, proceeding as above, we obtain δt1/2‖Aupw
h ζn

π ‖L2(Ω) � |||ζn
π |||∗∗. As a

result,
δt

1/2‖βn
h‖L2(Ω) � |||ζn

π |||∗∗ + δt
1/2Cfuδt

2 ≤ En
h . (3.52)

(iii) Bound on ζn
h and Λn

h. Using the error equation (3.43a), the triangle inequal-
ity, the bound (3.50) on Aupw

h , the usual CFL condition, and the bound (3.51)
on αn

h, we infer

‖ζn
h ‖L2(Ω) ≤ ‖ξn

h‖L2(Ω) + δt‖Aupw
h ξn

h‖L2(Ω) + δt‖αn
h‖L2(Ω)

� ‖ξn
h‖L2(Ω) + δtβch

−1‖ξn
h‖L2(Ω) + δt

1/2|||ξn
π |||∗∗

� ‖ξn
h‖L2(Ω) + δt

1/2|||ξn
π |||∗∗.

Hence, since δt ≤ τ∗ ≤ τc,

δtτ−1
c ‖ζn

h ‖2
L2(Ω) � δtτ−1

c ‖ξn
h‖2

L2(Ω) + δt|||ξn
π |||2∗∗. (3.53)
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Using ‖Λ‖L∞(Ω) � τ−1
c ≤ τ−1

∗ , this yields

Λn
h ≤ δtτ−1

c ‖ξn
h‖2

L2(Ω) + δtτ−1
c ‖ζn

h ‖2
L2(Ω) � δt(En

h )2. (3.54)

(iv) Bound on δt(αn
h, ξ

n
h )L2(Ω) + δt(βn

h , ζ
n
h )L2(Ω). The bounds (3.51) and (3.52)

are not sufficiently sharp to bound these quantities by means of the Cauchy–
Schwarz inequality. Instead, we make use of boundedness on orthogonal sub-
scales (cf. (3.47)) and the fact that |||·|||uw
,∗ ≤ |||·|||∗∗ to infer

δt(αn
h, ξ

n
h )L2(Ω) = δt(Aupw

h ξn
π , ξ

n
h )L2(Ω) � δt|||ξn

π |||∗∗|||ξn
h |||uw


� δt|||ξn
π |||∗∗(|ξn

h |β + τ−
1/2

c ‖ξn
h‖L2(Ω)).

Hence, using Young’s inequality leads to

δt(αn
h, ξ

n
h )L2(Ω) − 1

2δt|ξn
h |2β � δt|||ξn

π |||2∗∗ + δtτ−1
c ‖ξn

h‖2
L2(Ω) ≤ δt(En

h )2.

Similarly, using again (3.47) together with the above bounds on δn
h and πhθ

n

and the Cauchy–Schwarz inequality yields

δt(βn
h , ζ

n
h )L2(Ω) � δt|||ζn

π |||∗∗|||ζn
h |||uw
 + δt(δn

h − πhθ
n, ζn

h )L2(Ω)

� δt|||ζn
π |||∗∗(|ζn

h |β + τ−
1/2

c ‖ζn
h ‖L2(Ω)) + Cfuδt

3‖ζn
h ‖L2(Ω),

so that

δt(βn
h , ζ

n
h )L2(Ω) − 1

2δt|ζn
h |2β � δt|||ζn

π |||2∗∗ + δtτ−1
c ‖ζn

h ‖2
L2(Ω) + Cfuδt

3‖ζn
h ‖L2(Ω).

Using the estimate (3.53) for the two rightmost terms together with Young’s
inequality leads to

δt(βn
h , ζ

n
h )L2(Ω) − 1

2δt|ζn
h |2β � δt(En

h )2.

Inserting the above bounds on δt(αn
h, ξ

n
h )L2(Ω) and δt(βn

h , ζ
n
h )L2(Ω) together with

the bound (3.54) in the energy identity (3.46) yields (3.48).

To turn (3.48) into a stability estimate, we need to bound the anti-dissipative
term ‖ξn+1

h − ζn
h ‖2

L2(Ω) appearing on the right-hand side of (3.48) and which
results from the explicit nature of the RK2 scheme. There are two ways to bound
this term depending on the polynomial degree used for the dG approximation.
For k ≥ 2, a 4/3-CFL condition is invoked. By proceeding differently for k = 1,
this term can be controlled using only the usual CFL condition.
Remark 3.26 (Importance of the boundedness on orthogonal subscales). The
boundedness on orthogonal subscales (3.47) is a stronger property than the
bound (3.49) on Aupw

h . Indeed, (3.49) combined with the Cauchy–Schwarz
inequality only yields

(Aupw
h (v − πhv), wh)L2(Ω) � β

1/2
c h−

1/2|||v − πhv|||∗∗‖wh‖L2(Ω).

The difficulty is not the presence of the |||·|||∗∗-norm instead of the |||·|||uw
,∗-norm
(cf. (3.47)) since |||ξn

π |||∗∗ and |||ξn
π |||uw
,∗ exhibit the same convergence rate as
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h → 0 for smooth enough un, but the presence of the factor h−1/2 which causes
the loss of half a power of h and thus the suboptimality of the error estimate. In
other words, the benefit of boundedness on orthogonal subscales is to remove the
factor h−1/2 by increasing the norm of wh on the right-hand side (|||wh|||uw
 instead
of ‖wh‖L2(Ω)). The additional term |wh|β is then controlled by the dissipative
properties of the dG scheme.

3.1.6.4 The Case k ≥ 2: 4/3-CFL Condition

Lemma 3.27 (Stability, k ≥ 2). Assume f ∈ C2(L2(Ω)) and u ∈ C3(L2(Ω)) ∩
C0(H1(Ω)). Assume the 4/3-CFL condition (3.25) for some positive real number
′, that is,

δt ≤ ′τ
−1/3
∗

(
h

βc

)4/3

.

Then, there is Csta, independent of h, δt, and the data f , μ, and β, such that

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + 1
2δt|ξn

h |2β + 1
2δt|ζn

h |2β ≤ Cstaδt(En
h )2. (3.55)

Proof. We first observe that the error equations (3.43) imply

ξn+1
h = ζn

h − 1
2δtA

upw
h (ζn

h − ξn
h ) + 1

2δt(β
n
h − αn

h), (3.56)

and using again (3.43a) to eliminate (ζn
h − ξn

h ) yields

ξn+1
h − ζn

h = 1
2δt

2(Aupw
h )2ξn

h + 1
2δt(β

n
h − αn

h − δtAupw
h αn

h).

Let T1 and T2 denote the L2-norm of the two terms on the right-hand side.
We first bound T2. Owing to the usual CFL condition (which is implied by the
4/3-CFL condition) and the bound (3.50),

T2 � δt‖αn
h‖L2(Ω) + δt‖βn

h‖L2(Ω),

so that owing to (3.51) and (3.52) and since δt ≤ τ∗, T2 � δt1/2En
h . Fur-

thermore, to bound T1, we apply (3.50) twice, yielding ‖(Aupw
h )2ξn

h‖L2(Ω) �
β2

ch
−2‖ξn

h‖L2(Ω), so that

T1 � δt2β2
ch

−2‖ξn
h‖L2(Ω) = (δt3/2β2

ch
−2τ

1/2
∗ )(δt1/2τ

−1/2
∗ )‖ξn

h‖L2(Ω)

� δt
1/2τ

−1/2
∗ ‖ξn

h‖L2(Ω),

owing to the 4/3-CFL condition (3.25). Hence, ‖ξn+1
h −ζn

h ‖2
L2(Ω) � |T1|2+|T2|2 �

δt(En
h )2. Substituting this estimate into (3.48) yields (3.55).

3.1.6.5 The Piecewise Affine Case (k = 1): Usual CFL Condition

To bound the anti-dissipative term ‖ξn+1
h −ζn

h ‖2
L2(Ω) in the piecewise affine case,

we need some technical results. First, a close inspection at the proof of (3.49)
shows that there holds, for all v ∈ V∗h,

‖Aupw
h v‖L2(Ω) ≤ τ−1

c ‖v‖L2(Ω) + βc‖∇hv‖[L2(Ω)]d + C∗,3β
1/2
c h−

1/2|v|β , (3.57)
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where C∗,3 is independent of h, δt, and the data f , μ, and β. The bound (3.57)
is actually valid for any polynomial degree. We also need an additional property
of the discrete operator Aupw

h , this time specific to the case k = 1.

Lemma 3.28 (Adjoint boundedness on orthogonal subscales). Let π0
h denote

the L2-orthogonal projection onto �0
d(Th) (recall that this space is spanned by

piecewise constant functions on Th). Then, there holds, for all vh, wh ∈ Vh =
�1

d(Th),

(Aupw
h vh, wh − π0

hwh)L2(Ω) ≤ C∗,4β
1/2
c h−

1/2|||vh|||uw
‖wh − π0
hwh‖L2(Ω), (3.58)

where C∗,4 is independent of h, δt, and the data f , μ, and β.

Proof. We start from the expression (3.7) observing that wh − π0
hwh ∈ Vh

and bound all the terms using the Cauchy–Schwarz inequality except the term∫
Ω
(β·∇hvh)(wh − π0

hwh) for which we exploit the fact that ∇hvh is piecewise
constant since k = 1 to obtain using an inverse inequality and the regularity of
β that

∫

Ω

(β·∇hvh)(wh − π0
hwh) =

∫

Ω

((β − π0
hβ)·∇hvh)(wh − π0

hwh)

≤ LβhCinvh
−1‖vh‖L2(Ω)‖wh − π0

hwh‖L2(Ω)

≤ Cinvτ
−1
c ‖vh‖L2(Ω)‖wh − π0

hwh‖L2(Ω),

whence we infer (3.58).

We now turn to our main stability result in the piecewise affine case. To
formulate the CFL condition, we use in particular the quantity C ′

inv such that,
for all vh ∈ �1

d(Th),

‖∇hvh‖[L2(Ω)]d = ‖∇h(vh − π0
hvh)‖[L2(Ω)]d ≤ C ′

invh
−1‖vh − π0

hvh‖L2(Ω). (3.59)

Property (3.59) results from the inverse inequality (1.36) and mesh quasi-
uniformity (this property is actually valid for any polynomial degree).

Lemma 3.29 (Stability, k = 1). Let Vh = �1
d(Th). Assume that f ∈ C2(L2(Ω))

and that u ∈ C3(L2(Ω)) ∩ C0(H1(Ω)). Assume the CFL condition (3.21) with
 ≤ min

{
1
8(C∗,3)−2, 1

2 (C ′
invC∗,4)−

2/3
}
, that is,

δt ≤ min
{

1
8 (C∗,3)−2, 1

2 (C ′
invC∗,4)−

2/3
} h

βc
. (3.60)

Then, there is Csta, independent of h, δt, and the data f , μ, and β, such that

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + 1
8δt|ξn

h |2β + 1
8δt|ζn

h |2β ≤ δt(En
h )2. (3.61)

Proof. Setting xn
h := ξn

h − ζn
h , (3.56) yields

ξn+1
h − ζn

h = 1
2δtA

upw
h xn

h + 1
2δt(β

n
h − αn

h).
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Let T1 and T2 denote the L2-norm of the two terms on the right-hand side.
Using the above bounds on αn

h and βn
h yields T2 � δt1/2En

h . To bound T1, we
start from the bound (3.57) yielding

T1 = 1
2δt‖Aupw

h xn
h‖L2(Ω)

≤ 1
2δtβc‖∇hx

n
h‖[L2(Ω)]d + 1

2C∗,3δtβ
1/2
c h−

1/2|xn
h|β + 1

2δtτ
−1
c ‖xn

h‖L2(Ω). (3.62)

The main difficulty is to bound ‖∇hx
n
h‖[L2(Ω)]d . Owing to (3.59),

‖∇hx
n
h‖[L2(Ω)]d ≤ C ′

invh
−1‖yn

h‖L2(Ω), yn
h := xn

h − π0
hx

n
h. (3.63)

To bound ‖yn
h‖L2(Ω), we exploit the fact that, up to a non-essential perturbation,

xn
h is in the range of the discrete operator Aupw

h and we use adjoint boundedness
on orthogonal subscales (cf. Lemma 3.28). Specifically, the error equation (3.43a)
yields

xn
h = δtAupw

h ξn
h − δtαn

h.

Thus,

‖yn
h‖2

L2(Ω) = (xn
h, y

n
h )L2(Ω) = δt(Aupw

h ξn
h , y

n
h )L2(Ω) − δt(αn

h, y
n
h )L2(Ω).

Owing to Lemma 3.28,

δt|(Aupw
h ξn

h , y
n
h )L2(Ω)| ≤ C∗,4δtβ

1/2
c h−

1/2(|ξn
h |β + τ−

1/2
c ‖ξn

h‖L2(Ω))‖yn
h‖L2(Ω),

while, owing to the Cauchy–Schwarz inequality and the bound (3.51) on αn
h,

δt|(αn
h , y

n
h )L2(Ω)| � δt

1/2|||ξn
π |||∗∗‖yn

h‖L2(Ω).

Hence, simplifying by ‖yn
h‖L2(Ω) leads to

‖yn
h‖L2(Ω) ≤ C∗,4δtβ

1/2
c h−

1/2(|ξn
h |β + τ−

1/2
c ‖ξn

h‖L2(Ω)) + Cδt
1/2|||ξn

π |||∗∗
≤ C∗,4β

1/2
c h−

1/2δt|ξn
h |β + Cδt

1/2En
h .

Using (3.63) yields

‖∇hx
n
h‖[L2(Ω)]d ≤ C ′

invC∗,4β
1/2
c h−

3/2δt|ξn
h |β + Ch−1δt

1/2En
h .

Plugging the above bound into (3.62), we infer

T1 ≤ 1
2C

′
invC∗,4β

3/2
c h−

3/2δt2|ξn
h |β + 1

2C∗,3δtβ
1/2
c h−

1/2|xn
h|β + Cδt

1/2En
h ,

where we have used the fact that

δtτ−1
c ‖xn

h‖L2(Ω) ≤ δt
1/2τ−

1/2
c ‖ξn

h‖L2(Ω) + δt
1/2τ−

1/2
c ‖ζn

h ‖L2(Ω)

� δt
1/2|||ξn

π |||∗∗ + δt
1/2τ−

1/2
c ‖ξn

h‖L2(Ω),
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owing to the bound (3.53) on ζn
h . Collecting the bounds on T1 and T2 yields

‖ξn+1
h − ζn

h ‖L2(Ω) ≤ 1
2C

′
invC∗,4β

3/2
c h−

3/2δt2|ξn
h |β + 1

2C∗,3δtβ
1/2
c h−

1/2|ξn
h − ζn

h |β
+ Cδt

1/2En
h .

Owing to the condition (3.60) on the parameter  in the CFL condition, we
obtain

‖ξn+1
h − ζn

h ‖L2(Ω) ≤ 2−5/2δt
1/2(|ξn

h |β + |ξn
h − ζn

h |β) + Cδt
1/2En

h

≤ 2−3/2δt
1/2(|ξn

h |β + |ζn
h |β) + Cδt

1/2En
h .

Squaring yields

‖ξn+1
h − ζn

h ‖2
L2(Ω) ≤ 3

8δt|ξn
h |2β + 3

8δt|ζn
h |2β + Cδt(En

h )2,

whence (3.61) easily follows.

3.1.6.6 Proof of Theorem 3.10

Starting from Lemmata 3.27 or 3.29 depending on the polynomial degree, we
proceed as in the proof of Theorem 3.7 using the same techniques. The only
difference lies in the use of the |||·|||∗∗-norm instead of the |||·|||uw
,∗-norm and in
the additional presence of terms involving ζn

π . Using the definition of the |||·|||∗∗-
norm, Lemmata 1.58 and 1.59, and the assumption h ≤ βcτc leads to

|||ξm
π |||2∗∗ � βch

2k+1‖um‖2
Hk+1(Ω).

Similarly, since ζm
π = wm − πhw

m with wm = um + δtdtu
m and using the usual

CFL condition leads to

|||ζm
π |||2∗∗ � βc(h2k+1‖um‖2

Hk+1(Ω) + δt2h2k−1‖dtu
m‖2

Hk(Ω))

� βch
2k+1(‖um‖2

Hk+1(Ω) + δt2h−2‖dtu
m‖2

Hk(Ω))

� βch
2k+1(‖um‖2

Hk+1(Ω) + β−2
c ‖dtu

m‖2
Hk(Ω)).

The conclusion is straightforward.

3.2 Nonlinear Conservation Laws
In this section, we investigate the approximation of scalar, nonlinear conservation
laws, whereby space semidiscretization is achieved by dG methods formulated
using numerical fluxes and time discretization by SSP-RK schemes. We also
discuss the use of limiters to achieve tighter control of spurious oscillations when
approximating rough solutions.
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3.2.1 The Continuous Setting
We consider nonlinear conservation laws of the form

∂tu+ ∇·�(u) = 0 in Ω × (0, tF). (3.64)

The unknown u is a scalar-valued function. In many models, this function
cannot take values in the whole real line, but only in a subset of admissible
states, denoted by U . For instance, when u represents a concentration, U is the
set of nonnegative real numbers. The flux function � is a �d-valued function of
class C1 defined on the set of admissible states U . In what follows, we assume,
without precluding generality, that U is an interval with 0 ∈ U . The flux function
can sometimes also depend explicitly on the space variable x. For instance, in
the linear case, we obtain �(u) = βu where β denotes the �d-valued advective
velocity.

We supplement problem (3.64) with the initial condition

u(·, t = 0) = u0 in Ω.

Enforcing a boundary condition on (3.64) is a subtle issue. We refer the reader
to the pioneering work of Bardos, Le Roux, and Nédélec [29] and to the more
recent work by Otto [254] and Vovelle [303]. Let g denote a U-valued external
state defined on ∂Ω × (0, tF). Recalling that n denotes the outward normal on
∂Ω, we define the normal flux function on the boundary as

∀v ∈ U , �n(v) := �(v)·n.

Then, on any point (x, t) ∈ ∂Ω × (0, tF), we enforce the boundary condition in
the form

�n(u) = ΦR(n, u, g) :=

⎧
⎨

⎩

min
w∈[u,g]

�n(w) if u ≤ g,

max
w∈[g,u]

�n(w) otherwise.
(3.65)

This condition means that u < g is possible only if, for all w ∈ [u, g], �n(w) ≥
�n(u), and, similarly, u > g is possible only if, for all w ∈ [g, u], �n(w) ≤
�n(u); otherwise, there holds u = g. In the linear case where �n(v) = (β·n)v,
condition (3.65) is equivalent to enforcing u = g whenever β·n < 0, that is,
on the inflow boundary. The peculiarity of the nonlinear case is that it is not
possible to assert a priori the part of the boundary where the boundary condition
u = g is enforced. This is the reason why we define the external state on the
whole boundary.

Remark 3.30 (Riemann problem at boundary). The quantity ΦR(n, u, g) defined
by (3.65) corresponds to the flux obtained from a one-dimensional Riemann prob-
lem with flux function �n, left state u, and right state g. Thus, condition (3.65)
means that a state u �= g at the boundary is possible only if the flux for the
Riemann problem does not depend on g.
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3.2.2 Numerical Fluxes for Space Semidiscretization
Let Th belong to an admissible mesh sequence. For a given integer k ≥ 0,
we consider the broken polynomial space Vh := �k

d(Th). Formally, we test the
conservation law (3.64) with a discrete function vh ∈ Vh (observe that vh is
time-independent) and integrate by parts elementwise the divergence term to
obtain

dt

∫

Ω

uvh −
∫

Ω

�(u)·∇hvh +
∑

T∈Th

∫

∂T

(�(u)·nT )vh = 0.

Using the fact that �(u)·nT takes opposite values across interfaces and expressing
the third term in the left-hand side as a sum over mesh faces yields

dt

∫

Ω

uvh −
∫

Ω

�(u)·∇hvh +
∑

F∈Fh

∫

F

�nF (u)�vh� = 0,

where we have introduced the normal flux function

�nF (v) := �(v)·nF ,

and we have set �vh� = vh on boundary faces. Accounting for the boundary
condition (3.65), we obtain

dt

∫

Ω

uvh −
∫

Ω

�(u)·∇hvh +
∑

F∈Fi
h

∫

F

�nF (u)�vh� +
∑

F∈Fb
h

∫

F

ΦR(n, u, g)vh = 0.

The space semidiscrete solution uh ∈ Vh is not single-valued at interfaces so
that the normal flux �nF (uh) is not well-defined. For all F ∈ Fh, we define the
so-called left and right states of uh as

u−F :=

{
uh|T1 if F ∈ F i

h,

uh|T if F ∈ Fb
h,

u+
F :=

{
uh|T2 if F ∈ F i

h,

g if F ∈ Fb
h,

with the usual notation F = ∂T1 ∩ ∂T2 if F ∈ F i
h and F = ∂T ∩ ∂Ω if F ∈ Fb

h.
We observe that, on boundary faces, one of the values (here, u+

F ) is replaced by
the external state g. The space semidiscrete problem then reads: For all vh ∈ Vh,

dt

∫

Ω

uhvh −
∫

Ω

�(uh)·∇hvh +
∑

F∈Fh

∫

F

Φ(nF , u
−
F , u

+
F )�vh� = 0. (3.66)

This problem is formulated in terms of a numerical flux

Φ : �d × U × U → �

which provides, with its first argument set to nF , a single-valued approximation
of the normal flux �nF at the mesh face F ∈ Fh. For simplicity, we assume that
the boundary condition (3.65) is weakly enforced in (3.66) by setting, for all
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F ∈ Fb
h, Φ(nF , u

−
F , u

+
F ) = ΦR(nF , u

−
F , g). Moreover, (3.66) is supplemented by

the initial condition
uh(·, t = 0) = πhu0,

where πh denotes the L2-orthogonal projection onto Vh.
A first requirement on the numerical flux is to match the following consistency

property.

Definition 3.31 (Consistency of numerical flux). We say that the numerical
flux Φ is consistent if it is linear in its first argument and Lipschitz continuous
with respect to its second and third argument and if it satisfies, for all n ∈ �d,

∀v ∈ U , Φ(n, v, v) = �n(v).

Remark 3.32 (Departure from admissible set). The space semidiscrete solution
uh can depart from the set of admissible states U . This is especially the case when
approximating a rough solution by high-degree polynomials, whereby spurious
oscillations often appear at the discrete level. These oscillations can be tamed,
but often not fully eliminated, using limiters; cf. Sect. 3.2.4 below. In practice, it
can be necessary to extend the domain of the flux function � and of the numerical
flux Φ beyond the set U .

Localizing the test function vh in (3.66) to a single mesh element, we obtain
a local formulation similar to that derived in Sects. 2.2.3 and 2.3.4 for the
advection-reaction equation. Specifically, let T ∈ Th and let ξ ∈ �k

d(T ). Using
vh := ξχT in (3.66) (where χT denotes the characteristic function of T ) yields

dt

∫

T

uhξ −
∫

T

�(uh)·∇ξ +
∑

F∈FT

εT,F

∫

F

Φ(nF , u
−
F , u

+
F )ξ = 0, (3.67)

where, as usual, εT,F := nT ·nF . In particular, taking vh ≡ 1 in (3.67), we infer

dt

∫

T

uh +
∑

F∈FT

εT,F

∫

F

Φ(nF , u
−
F , u

+
F ) = 0, (3.68)

so that the time variation of the mean value of uh inside each mesh element
T ∈ Th is balanced by the fluxes through the boundary ∂T . Conservativity
is important to assert that, whenever the sequence of discrete solutions con-
verges to a function u, this limit is a weak solution to (3.64) (without boundary
conditions); see Hou and LeFloch [196].

3.2.2.1 Stability

In the context of nonlinear conservation laws, bounding the entropy of the space
semidiscrete solution is crucial. For simplicity, we focus on the quadratic entropy
U(v) := 1

2v
2 for which a bound can be derived (at least formally) by testing the

nonlinear conservation law with the exact solution itself. We assume for simplic-
ity that g ≡ 0 on ∂Ω. Introducing the �d-valued primitive γ(v) :=

∫ v

0
�(w) dw
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and observing that �(v)·∇v = ∇·γ(v) for all v ∈ U , we obtain after integrating
by parts,

dt

∫

Ω

U(u) =
∫

Ω

u∂tu =
∫

Ω

�(u)·∇u−
∫

∂Ω

�n(u)u

=
∫

Ω

∇·γ(u) −
∫

∂Ω

�n(u)u

=
∫

∂Ω

{
γn(u) − �n(u)u

}
,

with γn(v) :=
∫ v

0
�n(w) dw. Let ∂Ω0 := {x ∈ ∂Ω | u = 0} be the part of the

boundary where the boundary condition is enforced. It is clear that γn(u) −
�n(u)u = 0 − 0 = 0 on ∂Ω0. On the remaining part of the boundary ∂Ω \ ∂Ω0,
we use the boundary condition (3.65) to infer γn(u) − �n(u)u ≤ 0. For instance,
if u > 0, we obtain γn(u) =

∫ u

0 �n(w) dw ≤ �n(u)u since, for all w ∈ [0, u],
�n(w) ≤ �n(u). As a result,

dt

∫

Ω

U(u) =
∫

∂Ω\∂Ω0

{
γn(u) − �n(u)u

}
≤ 0.

Recalling the expression of U , we infer, for all t ∈ (0, tF),

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω). (3.69)

Remark 3.33 (Linear case). In the linear case where �n(v) = (β·n)v, we obtain∫
∂Ω\∂Ω0

{γn(u) − �n(u)u} = − ∫{β·n≥0}
1
2 (β·n)u2 ≤ 0.

Remark 3.34 (Kruzhkov entropies). The analysis of nonlinear conservation laws
with boundary conditions considers the Kruzhkov-type entropies (u − κ)⊕ and
(u−κ)	 for any real number κ (see, e.g., Vovelle [303]). The difficulty with such
entropies at the discrete level is that the derivation of entropy bounds requires
testing the space semidiscrete problem with functions that are not in the discrete
space Vh (except for polynomial order k = 0). This difficulty is avoided with the
quadratic entropy where the discrete solution can be used as test function.

Our aim is now to reproduce the L2-stability property (3.69) for the space
semidiscrete solution. Achieving this result depends on the properties of the
selected numerical flux Φ. Following Osher [253], we introduce the concept of
E-flux.

Definition 3.35 (E-flux). We say that the numerical flux Φ : �d × U × U → �

is an E-flux if for all n ∈ �d, all u−, u+ ∈ U , and all v ∈ �u−, u+� with

�u−, u+� := {θu− + (1 − θ)u+}θ∈[0,1],

there holds (
Φ(n, u−, u+) − �n(v)

) (
u− − u+

) ≥ 0. (3.70)
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Assuming that the numerical flux Φ is Lipschitz continuous with respect to
its second and third arguments, the E-flux property implies consistency. More-
over, the E-flux property is instrumental in deriving L2-stability for the space
semidiscrete solution uh, as shown by Jiang and Shu [202] for dG methods. We
now state and prove this result.

Lemma 3.36 (Energy estimate). Assume that g ≡ 0 ∈ U and that Φ is an
E-flux. Then, for all t ∈ (0, tF),

‖uh(t)‖L2(Ω) ≤ ‖πhu0‖L2(Ω).

Proof. Using uh as test function in (3.66), we infer

1
2
dt‖uh‖2

L2(Ω) =
∑

T∈Th

∫

T

�(uh)·∇uh −
∑

F∈Fh

∫

F

Φ(nF , u
−
F , u

+
F )�uh�.

The first term on the right-hand side can be reformulated as a boundary term
using the �d-valued primitive γ(v) defined above. This yields

∑

T∈Th

∫

T

�(uh)·∇uh =
∑

T∈Th

∫

∂T

γ(uh|T )·nT =
∑

F∈Fh

∫

F

�γ(uh)�·nF .

As a result,

1
2
dt‖uh‖2

L2(Ω) =
∑

F∈Fh

∫

F

{
�γ(uh)�·nF − Φ(nF , u

−
F , u

+
F )�uh�

}
.

Since γ′ = �, the mean-value theorem implies that, for all F ∈ Fh and a.e. x ∈ F ,
there exists vF ∈ �u−F , u+

F � such that

�γ(uh)�F ·nF = �(vF )·nF �uh�F . (3.71)

Using the fact that Φ is an E-flux, cf. (3.70), we then infer

1
2
dt‖uh‖2

L2(Ω) =
∑

F∈Fh

∫

F

{
�nF (vF ) − Φ(nF , u

−
F , u

+
F )
}

�uh� ≤ 0.

Integrating in time concludes the proof.

A more stringent requirement on the numerical flux than being an E-flux is
monotonicity (see, e.g., LeVeque [230, p. 169]). This concept is motivated by the
requirement that the dG scheme yield a monotone finite volume scheme when
Vh = �0

d(Th) is spanned by piecewise constant functions.

Definition 3.37 (Monotone numerical flux). We say that the numerical flux
Φ : �d × U × U → � is monotone if it is nondecreasing in its second argument
and nonincreasing in its third argument, that is, for all n ∈ �d,

∂u−Φ(n, u−, u+) ≥ 0, ∂u+Φ(n, u−, u+) ≤ 0.
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It is easily verified that a (consistent) monotone numerical flux is an E-flux.
For instance, in the case u− ≤ u+, using consistency yields, for all v ∈ [u−, u+],

Φ(n, u−, u+) − �n(v) =
{

Φ(n, u−, u+) − Φ(n, v, u+)
}

+
{
Φ(n, v, u+) − Φ(n, v, v)

}
,

and the two addends on the right-hand side are ≤ 0 owing to monotonicity.
Since u− − u+ ≤ 0, this yields (3.70). The case u− ≥ u+ is treated similarly.

3.2.2.2 Examples

We now present various classical examples of numerical fluxes. We focus on the
design of such fluxes at interfaces.

Centered and Upwind Fluxes for Linear Problems In the linear case,
there holds �(u) = βu for some �d-valued advective field β. As in Sects. 2.2.3
and 2.3.4, a possible choice for the numerical flux in the linear case is, for all
F ∈ Fh,

Φ(nF , u
−, u+) = (β·nF )

u− + u+

2
+ η

|β·nF |
2

(u− − u+), (3.72)

where η ≥ 0 is a user-defined parameter (for the states, the face index is omitted
to alleviate the notation). The choice η = 0 corresponds to the centered flux
discussed in Sect. 2.2.3, whereas taking η = 1 yields the upwind flux of Sect. 2.3.4.
While the centered flux is not an E-flux, the upwind flux is a monotone flux since

Φ(nF , u
−, u+) = (β·nF )⊕u− − (β·nF )	u+,

where (β·nF )⊕ and (β·nF )⊕ denote the positive and negative parts of β·nF ;
cf. (2.12). However, an energy estimate can also be derived for the centered
flux. Indeed, following the proof of Lemma 3.36 for the numerical flux Φ defined
by (3.72) with η ≥ 0, we deduce γ(v) = 1

2βv
2, so that the mean-value theorem

yields, for all F ∈ Fh, vF = 1
2 (u−F + u+

F ) in (3.71).

Proposition 3.38. For the numerical flux (3.72) with η ≥ 0, there holds, for
all t ∈ (0, tF),

‖uh(t)‖2
L2(Ω) = ‖πhu0‖2

L2(Ω) −
η

2

∑

F∈Fh

∫ t

0

∫

F

|β·nF | |�uh(s)�|2 ds, (3.73)

yielding, for centered fluxes (η = 0), exact energy conservation in the form

‖uh(t)‖L2(Ω) = ‖πhu0‖L2(Ω).

Equation (3.73) shows that the rate of energy decrease is proportional to the
parameter η in the numerical flux. Thus, this parameter controls the amount of
numerical dissipation; the larger η, the more dissipative the scheme.
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Godunov Numerical Flux for Nonlinear Problems In the nonlinear case,
a monotone flux can be designed by considering the Godunov numerical flux such
that, for all F ∈ Fh,

Φ(nF , u
−, u+) :=

⎧
⎨

⎩

min
w∈[u−,u+]

�nF (w) if u− ≤ u+,

max
w∈[u+,u−]

�nF (w) otherwise.
(3.74)

Monotonicity results from the dependency of the minimizing and maximizing
intervals on u− and u+. In the linear case, the Godunov numerical flux (3.74)
coincides with the upwind flux.

The Godunov numerical flux can be associated with the solution of a one-
dimensional Riemann problem in the direction normal to the face F . Such a
problem amounts to finding the weak entropy solution for the one-dimensional
evolution problem ∂tr + ∂x�nF (r) = 0 with initial data consisting of the two
constant states u− and u+. Such a solution is selfsimilar and, assuming there is
no stationary shock at the interface, takes a constant value at the interface for
any positive time, which we denote by R(u−, u+). Then, a classical result [230,
p. 145] states that

Φ(nF , u
−, u+) = �nF (R(u−, u+)). (3.75)

Rusanov, Lax–Friedrichs, and Roe Numerical Fluxes In practice, the
numerical flux must be evaluated at quadrature nodes of each mesh face to com-
pute integrals of the form

∫
F

Φ(nF , u
−
F , u

+
F )�vh�; cf. (3.66). Using the Godunov

numerical flux then requires solving a scalar nonlinear optimization problem
at each quadrature node of each mesh face, and this can be computationally
demanding. Alternative approaches have been devised based on approximate
Riemann solvers (see, among others, the textbooks by LeVeque [230, p. 146]
and Toro [295, p. 293]). A possible work-around to having to solve a Riemann
problem that, in some situations, produces satisfactory results consists in using
the Rusanov (or generalized Lax–Friedrichs) numerical flux

Φ(nF , u
−, u+) :=

�nF (u−) + �nF (u+)
2

+
η�
2

(u− − u+), (3.76)

with stabilization parameter η� > 0 large enough. In the linear case, the Rusanov
numerical flux (3.76) coincides with the upwind flux (3.72) for the choice η� =
η|β·nF |. In the nonlinear case, setting η� to

η� = sup
v∈U

|�′nF
(v)| (3.77)

yields a monotone numerical flux. Indeed, for all u−, u+ ∈ U ,

∂u−Φ(nF , u
−, u+) =

1
2

(

�′nF
(u−) + sup

v∈U
|�′nF

(v)|
)

≥ 0,

∂u+Φ(nF , u
−, u+) =

1
2

(

�′nF
(u+) − sup

v∈U
|�′nF

(v)|
)

≤ 0.
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However, choosing the stabilization parameter as in (3.77) generally introduces
a large amount of numerical diffusion, which in turn spoils the quality of the
approximate solution. Indeed, while stability pleads for large values of η�, this
parameter can have a sizable impact on the dissipative properties of the scheme,
and excessive dissipation ruins accuracy. Therefore, tuning the parameter η� in
the Rusanov numerical flux is often a relevant issue.

A popular choice to reduce numerical dissipation is provided by the local
Lax–Friedrichs numerical flux for which

η� = sup
v∈�u−,u+�

|�′nF
(v)|. (3.78)

The supremum is taken here over a smaller interval, which suffices to ensure
monotonicity. In practice, the supremum in (3.78) is often replaced by

η� =

⎧
⎨

⎩

∣
∣
∣
∣
�nF (u−) − �nF (u+)

u− − u+

∣
∣
∣
∣ if u− �= u+,

�′nF
(u+) otherwise,

(3.79)

yielding the so-called Roe numerical flux.
Remark 3.39 (Roe numerical flux as approximate Riemann solver). The Roe
numerical flux can be derived from the solution of a Riemann problem associated
with the linearized equation

∂tw + V (nF , u
−, u+)∂xw = 0, V (nF , u

−, u+) :=
�nF (u−) − �nF (u+)

u− − u+
,

with initial data u− �= u+. The unique entropy solution of the above linearized
problem features a shock of speed V (nF , u

−, u+). Plugging this solution into
the expression of �nF as in (3.74) yields the Rusanov numerical flux (3.76) with
stabilization parameter η� given by (3.79). In the case of concave (resp., convex)
flux functions, the solution of the linearized problem is exact provided u− < u+

(resp. u− > u+).

3.2.3 Time Discretization
As in the linear case, we formulate the space semidiscrete problem (3.66) in
operator form. Specifically, we define the (nonlinear) operator Ah such that, for
all vh, wh ∈ Vh,

(Ah(vh), wh)L2(Ω) = −
∫

Ω

�(vh)·∇hwh +
∑

F∈Fh

∫

F

Φ(nF , v
−
F , v

+
F )�wh�.

Problem (3.66) is then equivalent to

dtuh +Ah(uh) = 0. (3.80)

In component form, (3.80) amounts to a system of coupled nonlinear ODEs
with the mass matrix in front of the time derivative. As the mass matrix for dG
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methods is easily invertible (cf. Sect.A.1.2), problem (3.80) can be effectively
solved by explicit time integration methods as the ones discussed in Sect. 3.1.3.

Let δt be the time step, taken to be constant for simplicity, and such that
tF = Nδt where N is an integer. For n ∈ {0, . . . ,N}, we define the discrete
times tn = nδt. Following Shu and Osher [279] and Gottlieb, Shu, and Tadmor
[175,176], we consider s-stage explicit RK schemes in the form

un,0
h = un

h,

un,i
h =

i−1∑

j=0

(
αiju

n,j
h − δtβijAh(un,j

h )
)

∀i ∈ {1, . . . , s},

un+1
h = un,s

h ,

and we recall that the scheme is specified through the lower triangular matrices
α := (αij)1≤i≤s,0≤j≤i−1 and β := (βij)1≤i≤s,0≤j≤i−1. We are interested in RK
schemes where the real numbers αij and βij are nonnegative, and such that αij

is nonzero whenever βij is nonzero. A basic consistency requirement is

i−1∑

j=0

αij = 1 ∀i ∈ {1, . . . , s}.

A consequence of these properties is that the intermediate stages un,i
h amount

to convex combinations of forward Euler substeps with time step δt replaced
by βij

αij
δt. This leads to Strong Stability-Preserving (SSP) RK schemes. In

particular, if the forward Euler scheme is L2-stable under a CFL condition of
the form

δt ≤ σ−1h

with reference velocity σ, that is, if ‖un
h−δtAh(un

h)‖L2(Ω) ≤ ‖un
h‖L2(Ω) under the

above CFL condition, then the s-stage RK scheme is such that ‖un+1
h ‖L2(Ω) ≤

‖un
h‖L2(Ω) under the CFL condition

δt ≤ min
i,j

(
αij

βij

)

σ−1h.

Optimal (in the sense of CFL condition and computational costs) SSP-RK
schemes are investigated by Gottlieb and Shu [175]. An optimal two-stage SSP-
RK scheme is the scheme (3.17), that is,

α =
[

1
1/2 1/2

]

, β =
[
1
0 1/2

]

,

which, applied to (3.80), yields

un,1
h = un

h − δtAh(un
h),

un+1
h = 1

2 (un
h + un,1

h ) − 1
2δtAh(un,1

h ).
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An optimal three-stage SSP-RK scheme results from the choice

α =

⎡

⎣
1

3/4 1/4
1/3 0 2/3

⎤

⎦ , β =

⎡

⎣
1
0 1/4
0 0 2/3

⎤

⎦ ,

which, applied to (3.80), yields

un,1
h = un

h − δtAh(un
h),

un,2
h = 1

4 (3un
h + un,1

h ) − 1
4δtAh(un,1

h ),

un+1
h = 1

3 (un
h + 2un,2

h ) − 2
3δtAh(un,2

h ).

The convergence analysis of dG space semidiscretization combined with SSP-
RK time schemes is far from being complete, especially for rough exact solutions.
For smooth exact solutions, convergence rates for the L2-error (identical to those
achieved in the linear case) are derived by Zhang and Shu for the SSP-RK2 and
RK3 schemes [310, 311]. For the SSP-RK2 scheme (cf. Theorem 3.10), a 4/3-
CFL condition is invoked for piecewise polynomials with degree k ≥ 2, while the
usual CFL condition is sufficient for k = 1. Instead, for the SSP-RK3 scheme
(cf. Theorem 3.13), the usual CFL condition is sufficient for all k ≥ 1.

3.2.4 Limiters
Using high-order discretizations to approximate rough solutions triggers the
Gibbs phenomenon (see, e.g., Gottlieb and Shu [174]), whereby the numerical
solution is polluted by spurious oscillations. Oscillations can cause the depar-
ture from the set of admissible values U , thereby violating the physical principle
of the conservation law (requiring, for instance, nonnegative densities). More-
over, they can lead, e.g., to convergence towards non-physical shocks. We first
address the one-dimensional case and focus for simplicity on a periodic setting.
We examine the stability of fully discrete schemes in terms of the total variation
in space of the discrete solution. This concept can be used as a measure of
the spurious oscillations in the discrete solution, the exact solution being total
variation-diminishing in time. Unfortunately, this property does not transfer to
the discrete level, so that we content ourselves with the more moderate require-
ment that the total-variation of the elementwise averaged discrete solution be
diminishing in time, leading to so-called TVDM schemes. A sufficient means to
achieve the TVDM property is the use of minmod limiters. Finally, we briefly
address a heuristic extension to the multi-dimensional case (the extension of the
one-dimensional analysis to multiple space dimensions is still an open problem).

3.2.4.1 TVDM Methods

We consider the one-dimensional case. Let Ω = (a, b) denote the space domain.
In what follows, we replace for simplicity the boundary condition (3.65) with
the periodic boundary condition

u(a, t) = u(b, t) for all t ∈ (0, tF).
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x
a = x1/2 xN+1/2 = bxj−1/2 xj+1/2

Tj

h

Fig. 3.2: Notation for the one-dimensional case

The mesh Th of Ω is composed of elements {Tj}1≤j≤N of the form (cf. Fig. 3.2)

Tj = (xj−1/2, xj+1/2) ∀j ∈ {1, . . . ,N},

resulting from a set of equally spaced points {xj+1/2}0≤j≤N such that

a = x1/2 < x3/2 < . . . < xN−1/2 < xN+1/2 = b.

Thus, the meshsize is h = |b − a|/N . At each point xj+1/2, j ∈ {0, . . . ,N}, we
define the left and right values as

u−j+1/2
:=

{
uh|Tj (xj+1/2) if j > 0,
uh|TN (xN+1/2) if j = 0,

u+
j+1/2

:=

{
uh|Tj+1 (xj+1/2) if j < N,

uh|T1(x1/2) if j = N,

where the extensions at the endpoints of Ω reflect the periodic setting. For
j ∈ {0, . . . ,N}, the jump across xj+1/2 is defined as

�uh�j+1/2 := u−j+1/2
− u+

j+1/2
,

which corresponds to taking the positive normal nj+1/2 = 1 at each point xj+1/2.
We introduce the concept of total variation for the elementwise averaged solution.
The discrete solution uh can be decomposed, inside each mesh element Tj , as
the sum of its average value uj and an oscillatory component ũj(x) with zero
mean-value on Tj , so that

uh|Tj (x) = uj + ũj(x) ∀j ∈ {1, . . . ,N}, ∀x ∈ Tj . (3.81)

Recalling that periodic boundary conditions are enforced, we also define

u0 := uN , uN+1 := u1.

Definition 3.40 (TVDM scheme). We say that a numerical scheme is total
variation diminishing in the means (in short, TVDM) if there holds

TVM(un+1
h ) :=

∑

1≤j≤N

|un+1
j+1 − un+1

j | ≤ TVM(un
h).

We discretize in time problem (3.66) using the forward Euler method, which
constitutes the basic building block for the explicit Runge–Kutta methods
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(cf. Sect. 3.2.3). For brevity of notation, the index n for the solution at time tn
is omitted. The solution un+1

h ∈ Vh at time tn+1 is computed by solving, for all
vh ∈ Vh,
∫

Ω

{(
un+1

h − uh

)
vh − λ�(uh)dxvh

}
+ λ

∑

0≤j≤N

Φ(u−j+1/2
, u+

j+1/2
)�vh�j+1/2 = 0,

(3.82)
where

λ :=
δt

h
.

When dealing with the one-dimensional case, the dependence of the numerical
flux Φ on the normal is irrelevant since the flux function � is scalar-valued.
Taking vh = χTj for j ∈ {1, . . . ,N}, we infer

un+1
j − uj + λ

[
Φ(u−j+1/2

, u+
j+1/2

) − Φ(u−j−1/2
, u+

j−1/2
)
]

= 0, (3.83)

which is the forward Euler time discretization of (3.68) in the present one-
dimensional setting.

In what follows, we investigate a sufficient condition for the TVDM prop-
erty, and we propose a modification of the scheme (3.82) to achieve it. Using the
TVDM property, minimal convergence results can be proven [94, Theorem 2.13],
e.g., the convergence in L∞(0, tF;L1(Ω)) as the meshsize h ∈ H goes to zero with
fixed parameter λ, up to a subsequence, of the sequence (uh)h∈H to a weak solu-
tion u of the continuous problem (which, however, may not be the weak entropy
solution). From a practical viewpoint, the TVDM property enhances the possi-
bility that oscillations are sufficiently well controlled to retain the convergence
of the scheme towards the entropy solution.

The following result is the basic tool to identify a set of sufficient conditions
for the TVDM property to hold (see Abgrall [1, Chap. 5] or Godlewski and
Raviart [173, Chap. 3]). Given N real numbers {vj}1≤j≤N with vN+1 := v1 by
periodicity, we set TV(v) :=

∑
1≤j≤N |vj+1 − vj |.

Lemma 3.41 (Harten’s Lemma). Let {vj}1≤j≤N with v0 := vN and vN+1 := v1
by periodicity, and let λ > 0. Let {wj}1≤j≤N be defined by

wj = vj + λ
{
Cj+1/2 (vj+1 − vj) −Dj−1/2 (vj − vj−1)

}
, (3.84)

with given real numbers {Cj+1/2}1≤j≤N and {Dj−1/2}1≤j≤N . Assume that, for
all j ∈ {1, . . . ,N},

Cj+1/2 ≥ 0, Dj−1/2 ≥ 0, λ
(
Cj+1/2 +Dj+1/2

) ≤ 1, (3.85)

with DN+1/2 := D1/2 by periodicity. Then,

TV(w) ≤ TV(v).
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Proof. Using (3.84), we infer, for all j ∈ {1, . . . ,N},

wj+1 − wj =
{

1 − λ(Cj+1/2 +Dj+1/2)
}

(vj+1 − vj)

+ λCj+3/2(vj+2 − vj+1) + λDj−1/2(vj − vj−1),

with wN+1 := w1, vN+2 := v2, and CN+3/2 := C3/2 by periodicity. Taking the
absolute value, using assumption (3.85) so that Cj+3/2 ≥ 0, Dj−1/2 ≥ 0, and
λ(Cj+1/2 +Dj+1/2) ≤ 1, and summing over j yields

TV(w) ≤
∑

1≤j≤N

{
1 − λ(Cj+1/2 +Dj+1/2)

}
|vj+1 − vj |

+ λ
∑

1≤j≤N

{
Cj+3/2 |vj+2 − vj+1| +Dj−1/2 |vj − vj−1|

}

= TV(v),

where we have used periodicity to shift indices in the last two summations.

Theorem 3.42 (TVDM scheme). Let Φ be a monotone, Lipschitz continuous,
numerical flux. Assume that there is θ > 0 such that, for all j ∈ {1, . . . ,N},

− 1 ≤
ũ+

j+1/2
− ũ+

j−1/2

uj+1 − uj
≤ θ, −1 ≤

ũ−j+1/2
− ũ−j−1/2

uj − uj−1
≤ θ. (3.86)

Assume the CFL condition

δt ≤ 1
1 + θ

1
L1 + L2

h, (3.87)

where L1 and L2 denote the Lipschitz modules of Φ with respect to its first and
second argument, respectively. Then, the scheme (3.83) is TVDM.

Proof. We check the assumptions of Harten’s Lemma. Provided the denomina-
tors in (3.86) are nonzero (which yields a trivial case), (3.83) can be rewritten
as follows: For all j ∈ {1, . . . ,N},

un+1
j = uj − λ

{
Φ(u−j+1/2

, u+
j+1/2

) − Φ(u−j+1/2
, u+

j−1/2
)
}

− λ
{

Φ(u−j+1/2
, u+

j−1/2
) − Φ(u−j−1/2

, u+
j−1/2

)
}

= uj + λ
{
Cj+1/2 (uj+1 − uj) −Dj−1/2 (uj − uj−1)

}
,

with

Cj+1/2 =
Φ(u−j+1/2

, u+
j+1/2

) − Φ(u−j+1/2
, u+

j−1/2
)

u+
j−1/2

− u+
j+1/2

(

1 +
ũ+

j+1/2
− ũ+

j−1/2

uj+1 − uj

)

,

Dj−1/2 =
Φ(u−j+1/2

, u+
j−1/2

) − Φ(u−j−1/2
, u+

j−1/2
)

u−j+1/2
− u−j−1/2

(

1 +
ũ−j+1/2

− ũ−j−1/2

uj − uj−1

)

,
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since uj + ũ+
j−1/2

= u+
j−1/2

, and so on. Both Cj+1/2 and Dj−1/2 are nonegative
owing to the monotonicity of Φ together with (3.86). To check the remaining
condition of Harten’s Lemma, we observe that, for all j ∈ {1, . . . ,N},

Cj+1/2 ≤ L2(1 + θ), Dj+1/2 ≤ L1(1 + θ).

Therefore,

λ
(
Cj+1/2 +Dj+1/2

) ≤ δth−1(L1 + L2) (1 + θ) ≤ 1,

where we have used the CFL condition (3.87).

3.2.4.2 Enforcing the TVDM Property

Condition (3.86) has to be enforced since the scheme (3.82) does not provide it,
and this is where limiters come into play. We follow here the presentation of
Cockburn [94, Sect. 2.4]. For real numbers v1, . . . , vk , we define the generalized
minmod function

minmod(v1, . . . , vk) =

{
αmin(|v1|, . . . , |vk |) if α = sgn(v1) = . . . = sgn(vk),
0 otherwise.

We consider first the forward Euler scheme. Fix a time step n ∈ {0, . . . ,N}
and let uh denote the discrete solution at time tn. We replace uh by a limited
function vh := Λuh (for n = 0, this means that the initial condition becomes
Λπhu0). The goal is to ensure that the limited function vh is such that, for all
j ∈ {1, . . . ,N},

v−j+1/2
= vj + minmod(v−j+1/2

− vj , vj+1 − vj , vj − vj−1), (3.88a)

v+
j−1/2

= vj − minmod(vj − v+
j−1/2

, vj+1 − vj , vj − vj−1). (3.88b)

For instance, owing to the minmod function in (3.88a), the higher-order contri-
bution at the interface, (v−j+1/2

− vj), is only taken into account when (1) It has
the same sign as the variations of the mean values in adjoining cells, vj+1 − vj

and vj − vj−1, and (2) It is smaller in magnitude. Conditions (3.88) imply

−1 ≤
ṽ+

j+1/2
− ṽ+

j−1/2

vj+1 − vj
≤ 1, −1 ≤

ṽ−j+1/2
− ṽ−j−1/2

vj − vj−1
≤ 1,

so that the condition (3.86) in Harten’s Lemma holds true with θ = 1. Within
higher-order RK methods, the limiter is applied at each forward Euler substep.
The general TVDM-RK method (cf. Sect. 3.2.3) then reads

un,0
h = un

h,

un,i
h = Λ

⎛

⎝
i−1∑

j=0

(
αiju

n,j
h − δtβijAh(un,j

h )
)
⎞

⎠ ∀i ∈ {1, . . . , s},

un+1
h = un,s

h .
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We now discuss how to construct the limited function vh = Λuh. In the
piecewise affine case, one possibility consists in setting, for all j ∈ {1, . . . ,N},
vh|Tj (x) = uj + (x− xj)minmod(dxũj , 2h−1(uj+1 − uj), 2h−1(uj − uj−1)).

Besides ensuring (3.88) (as can be checked directly), this limiter preserves the
mean value element by element, that is, for all j ∈ {1, . . . ,N},

vj = uj .

This is a sensible property in the context of conservation laws. Moreover, if uh

is globally linear on the macro-element (xj−3/2, xj+3/2), then uh is not modified
in Tj . This property can be interpreted as a minimal accuracy requirement on
the limiter. Additionally, the slope of vh in each mesh element is smaller than
that of uh (and given by dxũj).

When working with high-degree polynomials (k ≥ 2), one heuristic approach
is to assume that spurious oscillations are present in uh only if they are present
in π1

huh, where π1
huh is the L2-orthogonal projection of uh onto piecewise affine

functions. Thus, if spurious oscillations are not present in π1
huh, i.e., if Λπ1

huh =
π1

huh, we set Λuh = uh, whereas, if Λπ1
huh and π1

huh differ, we discard the
higher-degree part of uh and limit its affine part, that is, we set Λuh = Λπ1

huh.
The main drawback of using limiters is reducing the accuracy of the approxi-

mation in smooth regions. A possible remedy consists in estimating the regular-
ity of the solution starting from the highest polynomial degree and progressively
removing oscillating components, as discussed by Biswas, Devine, and Flaherty
[43]. With this technique, the polynomial degree may be lowered to some pos-
itive integer, possibly not too low, thereby limiting the precision loss. Another
improvement, proposed by Shu [278], consists in modifying the minmod function
so as to avoid degradation at smooth local extrema. The basic idea here is to
desactivate the limiter when space derivatives are of order h2 by defining

minmodTVB(v1, . . . , vk) :=

{
v1 if |v1| ≤Mh2,

minmod(v1, . . . , vk) otherwise,
(3.89)

where M > 0 is a tunable parameter which can be evaluated from the curvature
of the initial datum at its extrema by setting

M := sup
y∈Ω, u′

0(y)=0

|u′′0(y)|.

Such limiters do not enforce the TVDM property, but they yield solutions that
are total variation bounded in the means (TVBM).

3.2.4.3 Limiters in Multiple Space Dimensions

Limiters in multiple space dimensions are mainly based on heuristics. To convey
the main ideas, we present a limiter for matching triangular meshes based on a
barycentric reconstruction (see Cockburn [94, Sect. 3.3.10]). For more elaborate
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T

T1
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xT2

xT3 xF1

Fig. 3.3: Notation for the limiter in two space dimensions

constructions of multidimensional limiters, we refer the reader, e.g., to Cockburn,
Hou, and Shu [99], Hoteit, Ackerer, Mosé, Erhel, and Philippe [195], Krivodonova
[215], Krivodonova, Xin, Remacle, Chevaugeon, and Flaherty [216], Luo, Baum,
and Löhner [234], and Kuzmin [217].

The limiting procedure is performed independently on each mesh element.
We consider the situation of Fig. 3.3: let T be a triangular mesh element with
faces F1, F2, F3. Let xL, L ∈ {T, T1, T2, T3, F1, F2, F3}, denote the center of
mass of the corresponding geometric item, defined as xL :=

∫
L
x/
∫

L
1. Let ΩT

collect the points in (the closure of) T and its three neighbors. We assume that
there are two real numbers λ1 and λ2 such that

xF1 − xT = λ1(xT1 − xT ) + λ2(xT2 − xT ).

This construction is possible if we assume that the points {xT , xT1 , xT2} are not
aligned; it is also reasonable to assume that the resulting triangle, say T12, is
not too flat, i.e., that the largest inscribed ball in T12 has diameter comparable
to the diameter of T12. In the situation depicted in Fig. 3.3, the point xF1 lies
in the interior of T12, so that the real numbers λ1 and λ2 are both nonnegative.

If we consider now a linear function in ΩT , say ξ ∈ �1
2(ΩT ), letting

δ1ξ := λ1

{
ξ(xT1) − ξ(xT )

}
+ λ2

{
ξ(xT2) − ξ(xT )

}
, (3.90)

and since ξL = ξ(xL), L ∈ {T, T1, T2}, we infer

δ1ξ = ξ(xF1) − ξT = ξ̃(xF1).

In other terms, δ1ξ represents the departure of the value of ξ at xF1 from its
average on the element T . Using a similar construction, we can compute the
values δ2ξ and δ3ξ for the other two faces of T . Let now {ϕi}1≤i≤3 denote the
Lagrangian basis in T associated with the set of nodes {xFi}1≤i≤3. The linear
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function ξ|T can be expressed in terms of the functions {ϕi}1≤i≤3 as

ξ|T (x) = ξT +
∑

1≤i≤3

δiξϕi(x) = ξT +
∑

1≤i≤3

ξ̃(xFi)ϕi(x).

Let now uh ∈ �k
2(Th). As in the one-dimensional case, the limiter acts

elementwise and only on the piecewise affine projection π1
huh, and, therefore, it

suffices to define vh = Λuh in the case where k = 1. Let T ∈ Th. As in (3.81),
we consider the decomposition

uh|T (x) = uT + ũT (x) ∀x ∈ T.

Similarly to (3.90), we set

δ1uh := λ1(uT1 − uT ) + λ2(uT2 − uT ),

along with similar definitions for δ2uh and δ3uh. Since uh is, in general, not
globally linear in ΩT , the value of δiuh, i ∈ {1, 2, 3}, differs from that of ũT (xFi).
The idea is then to capture oscillations by controlling the departure of the values
ũT (xFi) from the values δiuh. For all i ∈ {1, 2, 3}, we compute the quantities

Δi := minmodTVB (ũT (xFi), θδiuh) ,

Δ̂i := min

(

1,

∑
1≤j≤3 Δ	

j∑
1≤j≤3 Δ⊕

j

)

Δ⊕
i − min

(

1,

∑
1≤j≤3 Δ⊕

j∑
1≤j≤3 Δ	

j

)

Δ	
i ,

where θ ≥ 1 is a user-defined parameter and the TVB minmod function is used,
as in the one-dimensional case, to improve the limiter near smooth local extrema.
Moreover, the superscripts denote positive and negative parts; cf. (2.12). Finally,
the limited function vh := Λuh is defined as

vh|T =

{
uT +

∑
1≤i≤3 Δiϕi if

∑
1≤i≤3 Δi = 0,

uT +
∑

1≤i≤3 Δ̂iϕi otherwise.

By its construction, the limiter is mass-preserving since, for all T ∈ Th, vT = uT .
Indeed, if

∑
1≤i≤3 Δi = 0, we obtain

vT = uT +
1
3

∑

1≤i≤3

Δi = uT ,

while, otherwise, the same result is obtained owing to the fact that
∑

1≤i≤3 Δ̂i=0.
Moreover, the limiter preserves functions that are globally affine on ΩT . Finally,
for all i ∈ {1, 2, 3}, we observe that

|vh(xFi) − vT | ≤ max(|Δ̂i|, |Δi|)| ≤ |Δi| ≤ |ũT (xFi)|,
meaning that, in each mesh element, the gradient of the limited function vh is
not “larger” than that of the original function uh.
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Scalar Second-Order PDEs



Chapter 4

PDEs with Diffusion

The aim of this chapter is to investigate the approximation of scalar PDEs with
diffusion. As a first step, we consider the Poisson problem with homogeneous
Dirichlet boundary condition

−�u = f in Ω, (4.1a)
u = 0 on ∂Ω, (4.1b)

and source term f ∈ L2(Ω). The scalar-valued function u is termed the potential
and the vector-valued function −∇u the diffusive flux.

In Sect. 4.1, we briefly describe the continuous setting for the model prob-
lem (4.1). Then, in the following sections, we discuss three possible approaches
to design a dG approximation for this problem. In Sect. 4.2, we present a heuris-
tic derivation of a suitable discrete bilinear form loosely following the same path
of ideas as in Chap. 2 hinging on consistency and discrete coercivity. There are,
however, substantial differences: a specific term needs to be added to recover
consistency, interface jumps as well as boundary values are penalized, and the
penalty term scales as the reciprocal of the local meshsize so that discrete coerciv-
ity is expressed using a mesh-dependent norm. A further important difference
is that we require to work at least with piecewise affine polynomials, thereby
excluding, for the time being, methods of finite volume-type. This derivation
yields the so-called Symmetric Interior Penalty (SIP) method of Arnold [14].
The error analysis follows fairly standard arguments and leads to optimal error
estimates for smooth exact solutions. We also present a more recent analysis
by the authors [132] in the case of low-regularity exact solutions. Then, using
liftings of the interface jumps and boundary values, we introduce in Sect. 4.3 the
important concept of discrete gradient. Applications include (1) a reformulation
of the SIP bilinear form that plays a central role in Sect. 5.2 to analyze the conver-
gence to minimal regularity solutions (as shown recently by the authors in [131]),
and (2) an elementwise formulation of the discrete problem leading to a local
conservation property in terms of numerical fluxes. Finally, the third approach
is pursued in Sect. 4.4 where we consider mixed dG methods that approximate

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_4,
c© Springer-Verlag Berlin Heidelberg 2012
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both the potential and the diffusive flux. In such methods, local problems for
the discrete potential and diffusive flux are formulated using numerical fluxes
for both quantities, following the pioneering works of Bassi, Rebay, and cowork-
ers [34, 35] and Cockburn and Shu [112]. This viewpoint has been adopted by
Arnold, Brezzi, Cockburn, and Marini in [16] for a unified presentation of dG
methods for the Poisson problem. For simplicity, we focus here on the SIP
method and so-called Local Discontinuous Galerkin (LDG) methods [112]. In
both methods, the discrete diffusive flux can be eliminated locally. We postpone
the study of two-field dG methods to Sect. 7.3 in the more general context of
Friedrichs’ systems. Finally, we discuss hybrid mixed dG methods where addi-
tional degrees of freedom are introduced at interfaces, thereby allowing one to
eliminate locally both the discrete potential and the discrete diffusive flux. This
leads, in particular, to the so-called Hybridized Discontinuous Galerkin (HDG)
methods introduced by Cockburn, Gopalakrishnan, and Lazarov [97]; see also
Causin and Sacco [83] for a different approach based on a discontinuous Petrov–
Galerkin formulation and Droniou and Eymard [135] for similar ideas in the
context of hybrid mixed finite volume schemes.

The rest of this chapter is devoted to the study of diffusive PDEs that com-
prise additional terms with respect to the model problem (4.1). In Sect. 4.5, we
extend the SIP method analyzed in Sect. 4.2 to heterogeneous (anisotropic) diffu-
sion problems. The main ingredients are diffusion-dependent weighted averages
to formulate the consistency and symmetry terms in the discrete bilinear form
together with diffusion-dependent penalty parameters using the harmonic mean
of the diffusion coefficient at each interface. In Sect. 4.6, we analyze heteroge-
neous diffusion-advection-reaction problems. We combine the ideas of Sect. 4.5
to handle the diffusion term with those developed in Sect. 2.3 for the upwind dG
method to handle the advection-reaction term. The goal is a convergence analy-
sis that covers both diffusion-dominated and advection-dominated regimes. The
present analysis includes the case where the diffusion vanishes locally in some
parts of the domain. Finally, in Sect. 4.7, we consider the heat equation as a pro-
totype for time-dependent scalar PDEs with diffusion (that is, parabolic PDEs).
The approximation is based on the SIP method for space discretization and an
A-stable finite difference scheme in time; for simplicity, we focus on backward
(or implicit) Euler and BDF2 schemes.

4.1 Pure Diffusion: The Continuous Setting
In this section, we present some basic facts concerning the model problem (4.1).

4.1.1 Weak Formulation and Well-Posedness
The weak formulation of (4.1) is classical:

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.2)
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with energy space V = H1
0 (Ω) :=

{
v ∈ H1(Ω) | v|∂Ω = 0

}
and bilinear form

a(u, v) :=
∫

Ω

∇u·∇v. (4.3)

Recalling the Poincaré inequality (see, e.g., Evans [153, p. 265] or Brézis [55,
p. 174]) stating that there is CΩ such that, for all v ∈ H1

0 (Ω),

‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d , (4.4)

we infer that the bilinear form a is coercive on V . Therefore, owing to the
Lax–Milgram Lemma, the weak problem (4.2) is well-posed.

4.1.2 Potential and Diffusive Flux
The PDE (4.1a) can be rewritten in mixed form as a system of first-order PDEs:

σ + ∇u = 0 in Ω, (4.5a)
∇·σ = f in Ω. (4.5b)

Definition 4.1 (Potential and diffusive flux). In the context of the mixed for-
mulation (4.5), the scalar-valued function u is termed the potential and the
vector-valued function σ := −∇u is termed the diffusive flux.

The derivation of dG methods to approximate the model problems (4.1) on a
given mesh Th hinges on the fact that the jumps of the potential and of the nor-
mal component of the diffusive flux vanish across interfaces. To allow for a more
compact notation, we define boundary averages and jumps (cf. Definition 1.17
for interface averages and jumps).

Definition 4.2 (Boundary averages and jumps). For a smooth function v, for
all F ∈ Fb

h, and for a.e. x ∈ F , we define the average and jump of v as

{{v}}F (x) = �v�F (x) := v(x).

The subscript as well as the dependence on x are omitted unless necessary.

Since the potential u is in the energy space V , we infer that, for all T ∈ Th

and all F ∈ FT , letting uT := u|T , the trace uT |F is in L2(F ). Furthermore, the
diffusive flux σ is in the space H(div;Ω) defined by (1.23). Traces on mesh faces
of the normal component of functions in H(div;Ω) are discussed in Sect. 1.2.6.
In particular, under the regularity assumption u ∈ W 2,1(Ω), there holds σ ∈
[W 1,1(Ω)]d, so that, for all T ∈ Th and all F ∈ FT , letting σT := σ|T and
σ∂T := σT ·nT on ∂T , the trace σ∂T |F is in L1(F ). This trace is in L2(F ) under
the stronger regularity assumption u ∈ H2(Ω) (the assumption u ∈ H3/2+ε(Ω),
ε > 0, is actually sufficient).

We can now examine the jumps of the potential and of the normal component
of the diffusive flux.
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Lemma 4.3 (Jumps of potential and diffusive flux). Assume u ∈ V ∩W 2,1(Ω).
Then, there holds

�u� = 0 ∀F ∈ Fh, (4.6a)

�σ�·nF = 0 ∀F ∈ F i
h. (4.6b)

Proof. Assertion (4.6a) results from Lemma 1.23 for interfaces and from Defini-
tion 4.2 for boundary faces. Assertion (4.6b) results from Lemma 1.24.

4.2 Symmetric Interior Penalty
Our goal is to approximate the solution of the model problem (4.2) using dG
methods in the broken polynomial space �k

d(Th) defined by (1.15). We set

Vh := �k
d(Th),

with polynomial degree k ≥ 1 and Th belonging to an admissible mesh sequence.
The focus of this section is on a specific dG method, the Symmetric Interior
Penalty (SIP) method introduced by Arnold [14].

For simplicity, we enforce a somewhat strong regularity assumption on the
exact solution. A weaker regularity assumption is made in Sect. 4.2.5.

Assumption 4.4 (Regularity of exact solution and space V∗). We assume that
the exact solution u is such that

u ∈ V∗ := V ∩H2(Ω).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Without further knowledge on the exact solution u apart from the domain
Ω and the datum f ∈ L2(Ω), Assumption 4.4 can be asserted for instance if
the domain Ω is convex; see Grisvard [177]. Assumption 4.4 differs from the
concept of elliptic regularity (cf. Definition 4.24 below) since Assumption 4.4
only concerns the exact solution u.

4.2.1 Heuristic Derivation
To derive a suitable discrete bilinear form, we loosely follow the same path of
ideas as in Chap. 2 aiming at a discrete bilinear form that satisfies the consis-
tency requirement (1.32) and enjoys discrete coercivity. Moreover, we add a
(consistent) term to recover, at the discrete level, the symmetry of the continu-
ous problem.

4.2.1.1 Consistency

We begin localizing gradients to mesh elements in the exact bilinear form a, that
is, we set, for all (v,wh) ∈ V∗h × Vh,

a
(0)
h (v,wh) :=

∫

Ω

∇hv·∇hwh =
∑

T∈Th

∫

T

∇v·∇wh.
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To examine the consistency requirement (1.32), we integrate by parts on each
mesh element. This leads to

a
(0)
h (v,wh) = −

∑

T∈Th

∫

T

(�v)wh +
∑

T∈Th

∫

∂T

(∇v·nT )wh.

The second term on the right-hand side can be reformulated as a sum over mesh
faces in the form

∑

T∈Th

∫

∂T

(∇v·nT )wh =
∑

F∈Fi
h

∫

F

�(∇hv)wh�·nF +
∑

F∈Fb
h

∫

F

(∇v·nF )wh,

since for all F ∈ F i
h with F = ∂T1 ∩ ∂T2, nF = nT1 = −nT2 . Moreover,

�(∇hv)wh� = {{∇hv}}�wh� + �∇hv�{{wh}},
since letting ai = (∇v)|Ti , bi = wh|Ti , i ∈ {1, 2}, yields

�(∇hv)wh� = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2) 1

2 (b1 + b2)
= {{∇hv}}�wh� + �∇hv�{{wh}}.

As a result, and accounting for boundary faces using Definition 4.2, yields
∑

T∈Th

∫

∂T

(∇v·nT )wh =
∑

F∈Fh

∫

F

{{∇hv}}·nF �wh� +
∑

F∈Fi
h

∫

F

�∇hv�·nF {{wh}}.

Hence,

a
(0)
h (v,wh) = −

∑

T∈Th

∫

T

(�v)wh +
∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�

+
∑

F∈Fi
h

∫

F

�∇hv�·nF {{wh}}. (4.7)

To check consistency, we set v = u in (4.7). A consequence of (4.6b) is that, for
all wh ∈ Vh,

a
(0)
h (u,wh) =

∫

Ω

fwh +
∑

F∈Fh

∫

F

(∇u·nF )�wh�.

In order to match the consistency requirement (1.32), we are prompted to modify
a
(0)
h as follows: For all (v,wh) ∈ V∗h × Vh,

a
(1)
h (v,wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�.

It is clear that a(1)
h is consistent in the sense of (1.32), i.e., for all wh ∈ Vh,

a
(1)
h (u,wh) =

∫

Ω

fwh.
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4.2.1.2 Symmetry

A desirable property of the discrete bilinear form is to preserve the original
symmetry of the exact bilinear form. Indeed, symmetry can simplify the solution
of the resulting linear system and furthermore, it is a natural ingredient to
derive optimal L2-norm error estimates (cf. Sect. 4.2.4); nonsymmetric variants
are discussed in Sect. 5.3. In view of this remark, we set, for all (v,wh) ∈ V∗h×Vh,

acs
h (v,wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF ) ,

(4.8)
so that acs

h is symmetric on Vh × Vh The bilinear form acs
h remains consistent

owing to (4.6a). The superscript in acs
h indicates the consistency and symmetry

achieved so far. For future use, we record the following equivalent expression of
acs

h resulting from (4.7),

acs
h (v,wh) = −

∑

T∈Th

∫

T

(�v)wh +
∑

F∈Fi
h

∫

F

�∇hv�·nF {{wh}}

−
∑

F∈Fh

∫

F

�v�{{∇hwh}}·nF . (4.9)

4.2.1.3 Penalties on Interface Jumps and Boundary Values

The last requirement to match is discrete coercivity on the broken polynomial
space Vh with respect to a suitable norm. The difficulty with the discrete bilinear
form acs

h defined by (4.8) is that, for all vh ∈ Vh,

acs
h (vh, vh) = ‖∇hvh‖2

[L2(Ω)]d − 2
∑

F∈Fh

∫

F

{{∇hvh}}·nF �vh�,

and the second term on the right-hand side has no a priori sign so that, without
adding a further term, there is no hope for discrete coercivity (in some situations,
discrete inf-sup stability can be achieved without penalty; cf. Remark 4.14).
To achieve discrete coercivity, we add to acs

h a term penalizing interface and
boundary jumps, namely we set, for all (v,wh) ∈ V∗h × Vh,

asip
h (v,wh) := acs

h (v,wh) + sh(v,wh), (4.10)

with the stabilization bilinear form

sh(v,wh) :=
∑

F∈Fh

η

hF

∫

F

�v��wh�, (4.11)

where η > 0 is a user-dependent parameter and hF a local length scale associated
with the mesh face F ∈ Fh. We observe that, owing to (4.6a), adding the bilinear
form sh to acs

h does not alter the consistency and symmetry achieved so far.
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Moreover, Lemma 4.12 below shows that, provided the penalty parameter η is
large enough, the discrete bilinear form asip

h enjoys discrete coercivity on Vh.
We now present a simple choice for the local length scale hF .

Definition 4.5 (Local length scale hF ). For all F ∈ Fh, in dimension d ≥ 2, we
set hF to be equal to the diameter of the face F , while, in dimension 1, we set
hF := min(hT1 , hT2) if F ∈ F i

h with F = ∂T1∩∂T2 and hF := hT if F ∈ Fb
h with

F = ∂T ∩ ∂Ω. In all cases, for a mesh element T ∈ Th, hT denotes its diameter
(cf. Definition 1.13).

Remark 4.6 (Local length scale hF ). Other choices are possible for the local
length scale hF weighting the face penalties in the stabilization bilinear form
sh, e.g., the choice hF = {{h}} := 1

2 (hT1 + hT2) for all F ∈ F i
h, or the choice

hF = {{|T |d}}
|F |d−1

(that is, the mean value of the d-dimensional Hausdorff measures
of the neighboring elements divided by the (d−1)-dimensional Hausdorff measure
of the face, recalling that for d = 1, |F |0 = 1). Incidentally, we observe that
modifying the choice for the local length scale impacts the value of the minimal
threshold on the penalty parameter η for which discrete coercivity is achieved.

Combining (4.10) with (4.11) yields, for all (v,wh) ∈ V∗h × Vh,

asip
h (v,wh) =

∫

Ω

∇hv·∇hwh −
∑

F∈Fh

∫

F

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF )

+
∑

F∈Fh

η

hF

∫

F

�v��wh�, (4.12)

or, equivalently using (4.9),

asip
h (v,wh) = −

∑

T∈Th

∫

T

(�v)wh +
∑

F∈Fi
h

∫

F

�∇hv�·nF {{wh}}

−
∑

F∈Fh

∫

F

�v�{{∇hwh}}·nF +
∑

F∈Fh

η

hF

∫

F

�v��wh�. (4.13)

The idea of weakly enforcing boundary and jump conditions on the discrete
solution using penalties can be traced back to the seventies, in particular the
work of Nitsche [248,249], Babuška [20], Babuška and Zlámal [24], Douglas and
Dupont [134], Baker [25], and Wheeler [306]. The discrete bilinear form asip

h

defined by (4.12) corresponds to the Symmetric Interior Penalty (SIP) method
introduced by Arnold [14]; henceforth, asip

h is called the SIP bilinear form. In the
present context, interior penalty means interior as well as boundary penalties.

Definition 4.7 (Consistency, symmetry, and penalty terms). The second, third,
and fourth terms on the right-hand side of (4.12) are respectively called consis-
tency, symmetry, and penalty terms.
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4.2.1.4 The Discrete Problem

The discrete problem is

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (4.14)

Lemma 4.12 below states that provided the penalty parameter η is large enough,
the SIP bilinear form is coercive on Vh. Thus, owing to the Lax–Milgram Lemma,
the discrete problem (4.14) is well-posed. Moreover, a straightforward conse-
quence of the above derivation is consistency.

Lemma 4.8 (Consistency). Assume u ∈ V∗. Then, for all vh ∈ Vh,

asip
h (u, vh) =

∫

Ω

fvh.

Remark 4.9 (Rough right-hand side). At the continuous level, the Poisson prob-
lem can be posed for a right-hand side f ∈ V ′ = H−1(Ω), the dual space of the
energy space V = H1

0 (Ω), leading to the weak formulation

a(u, v) = 〈f, v〉V ′,V ∀v ∈ V.

Since the discrete space Vh is nonconforming in V , it is not possible, at the
discrete level, to take 〈f, vh〉V ′,V as right-hand side in (4.14). One possibility is
to use a smoothing operator Ih : Vh → Vh ∩H1

0 (Ω) and to consider the discrete
problem

Find uh ∈ Vh s.t. asip
h (uh, vh) = 〈f,Ihvh〉V ′,V for all vh ∈ Vh. (4.15)

One example of smoothing operator is the averaging operator considered in
Sect. 5.5.2. An important observation is that (4.15) is no longer consistent.
Remark 4.10 (Stencil). With an eye toward implementation, we identify the
elementary stencil (cf. Definition 2.26) associated with the SIP bilinear form.
For all T ∈ Th, the stencil of the volume contribution is just the element T ,
while the stencil associated with the consistency, symmetry, and penalty terms
consists of T and its neighbors in the sense of faces. Figure 4.1 illustrates the
stencil for a matching triangular mesh; cf. Sect.A.1.3 for further insight.

4.2.2 Other Boundary Conditions
The discrete problem (4.14), which was derived in the context of homogeneous
Dirichlet boundary conditions, needs to be slightly modified when dealing with
other boundary conditions. The modifications are designed so as to maintain
consistency when the exact solution satisfies other boundary conditions. For
instance, when (weakly) enforcing the nonhomogeneous Dirichlet boundary con-
dition u = g on ∂Ω with g ∈ H1/2(∂Ω), the discrete problem becomes

Find uh ∈ Vh s.t. asip
h (uh, vh) = lDh (g; vh) for all vh ∈ Vh,
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Fig. 4.1: Example of stencil of an element T ∈ Th when Th is a matching
triangular mesh; the mesh element T is highlighted in dark grey, and its three
neighbors, which all belong to the stencil, are highlighted in light grey ; the other
triangles do not belong to the stencil

with asip
h still defined by (4.12) and the new right-hand side

lDh (g; vh) :=
∫

Ω

fvh −
∫

∂Ω

g∇hvh·n +
∑

F∈Fb
h

η

hF

∫

F

gvh.

As a result, for the exact solution u ∈ V∗, a
sip
h (u, vh) = lDh (g; vh), for all

vh ∈Vh. Furthermore, when (weakly) enforcing the Robin boundary condition
γu+∇u·n = g on ∂Ω with g ∈ L2(∂Ω) and γ ∈ L∞(∂Ω) such that γ is nonneg-
ative a.e. on ∂Ω, the discrete problem becomes

Find uh ∈ Vh s.t. aR
h (uh, vh) = lRh (g; vh) for all vh ∈ Vh,

where, for all (v,wh) ∈ V∗h × Vh,

aR
h (v,wh) :=

∫

Ω

∇hv·∇hwh −
∑

F∈Fi
h

∫

Ω

({{∇hv}}·nF �wh� + �v�{{∇hwh}}·nF )

+
∑

F∈Fi
h

η

hF

∫

F

�v��wh� +
∑

F∈Fb
h

∫

F

γvhwh, (4.16)

and
lRh (g;wh) :=

∫

Ω

fwh +
∫

∂Ω

gwh.

As a result, for the exact solution u ∈ V∗, aR
h (u, vh) = lRh (g; vh), for all vh ∈Vh.

Moreover, we observe that, unlike in the Dirichlet case, the summations in the
consistency and symmetry terms are restricted to interfaces. Finally, the case
γ ≡ 0 corresponds to the Neumann problem. For this problem, the data must
comply with the compatibility condition

∫
Ω
f = − ∫

∂Ω
g, and the solution is
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determined up to an additive constant. One possibility is to additionally enforce∫
Ω uh = 0. In practice, the discrete problem can still be formulated using Vh as

trial and test space, and the additional constraint can be enforced by postpro-
cessing. Observing that the rank of the problem matrix is one unit less than its
size, the discrete solution can be obtained (1) using a direct solver with full piv-
oting, so that the zero pivot is encountered when processing the last line of the
matrix and a solution can be obtained by fixing an arbitrary value for the degree
of freedom left or (2) using an iterative solver which only requires matrix-vector
products. The most common linear algebra libraries (e.g., the PETSc library
[26]) offer specific functionalities to handle this case efficiently.

4.2.3 Basic Energy-Error Estimate
Let u solve the weak problem (4.2) and let uh solve the discrete problem (4.14).
The aim of this section is to estimate the approximation error (u − uh). The
convergence analysis is performed in the spirit of Theorem 1.35. We recall that
the space V∗ is specified in Assumption 4.4 and that V∗h = V∗ + Vh.

4.2.3.1 Discrete Coercivity

We aim at asserting this property using the following norm: For all v ∈ V∗h,

|||v|||sip :=
(
‖∇hv‖2

[L2(Ω)]d + |v|2J
)1/2

, (4.17)

with the jump seminorm

|v|J := (η−1sh(v, v))1/2 =

(
∑

F∈Fh

1
hF

‖�v�‖2
L2(F )

)1/2

. (4.18)

We observe that |||·|||sip is indeed a norm on V∗h, and even on the broken Sobolev
space H1(Th). The only nontrivial property to check is whether, for all v ∈
H1(Th), |||v|||sip = 0 implies v = 0. Clearly, |||v|||sip = 0 implies ‖∇hv‖[L2(Ω)]d = 0
and |v|J = 0. The first property yields ∇hv = 0 so that v is piecewise constant.
The second property implies that the interface and boundary jumps of v vanish.
Hence, v = 0.

Our first step toward establishing discrete coercivity for the SIP bilinear form
is a bound on the consistency term using the jump seminorm |·|J.
Lemma 4.11 (Bound on consistency term). For all (v,wh) ∈ V∗h × Vh,

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�

∣
∣
∣
∣
∣
≤
(
∑

T∈Th

∑

F∈FT

hF ‖∇v|T ·nF ‖2
L2(F )

)1/2

|wh|J. (4.19)



4.2. Symmetric Interior Penalty 129

Proof. For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, and ai = (∇v)|Ti ·nF , i ∈ {1, 2}, the

Cauchy–Schwarz inequality yields
∫

F

{{∇hv}}·nF �wh� =
∫

F

1
2
(a1 + a2)�wh�

≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

h
−1/2

F ‖�wh�‖L2(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,

∫

F

{{∇hv}}·nF �wh� ≤ h
1/2

F ‖∇v|T ·nF ‖L2(F ) × h
−1/2

F ‖�wh�‖L2(F ).

Summing over mesh faces, using the Cauchy–Schwarz inequality, and regrouping
the face contributions for each mesh element yields the assertion.

We can now turn to the discrete coercivity of the SIP bilinear form. We
recall that N∂ , defined by (1.12), denotes the maximum number of mesh faces
composing the boundary of a generic mesh element and that this quantity is
bounded uniformly in h; cf. Lemma 1.41.

Lemma 4.12 (Discrete coercivity). For all η > η := C2
trN∂ where Ctr results

from the discrete trace inequality (1.37) and the parameter N∂ is defined
by (1.12), the SIP bilinear form defined by (4.12) is coercive on Vh with respect
to the |||·|||sip-norm, i.e.,

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||2sip,

with Cη := (η − C2
trN∂)(1 + η)−1.

Proof. Let vh ∈ Vh. Since, for all T ∈ Th and all F ∈ FT , hF ≤ hT (cf. Defini-
tion 4.5), we obtain using the discrete trace inequality (1.40),

∑

T∈Th

∑

F∈FT

hF ‖∇vh|T ·nF ‖2
L2(F ) ≤

∑

T∈Th

hT ‖∇vh|T ·nF ‖2
L2(∂T )

≤ C2
trN∂‖∇hvh‖2

[L2(Ω)]d ,

whence we infer from (4.19) that
∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{∇hvh}}·nF �vh�

∣
∣
∣
∣
∣
≤ CtrN

1/2

∂ ‖∇hvh‖[L2(Ω)]d |vh|J.

As a result,

asip
h (vh, vh) ≥ ‖∇hvh‖2

[L2(Ω)]d − 2CtrN
1/2
∂ ‖∇hvh‖[L2(Ω)]d |vh|J + η|vh|2J.

We now use the following inequality: Let β be a positive real number, let η > β2;
then, for all x, y ∈ �,

x2 − 2βxy + ηy2 ≥ η − β2

1 + η
(x2 + y2).
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Applying this inequality with β = CtrN
1/2
∂ , x = ‖∇hvh‖[L2(Ω)]d , and y = |vh|J

yields the assertion.

Remark 4.13 (Modifying the local length scale). Recalling Remark 4.6, other
choices for the local length scale hF can be made when defining the stabi-
lization bilinear form sh. The jump seminorm |·|J is still defined by |v|J :=
(η−1sh(v, v))−1/2, and the proof of Lemma 4.12 can be deployed as above as long
as the chosen length scale is a lower bound for the diameter of both neighboring
elements; otherwise, an additional factor appears in the definition of the minimal
threshold η.
Remark 4.14 (Discrete stability without penalty). In one space dimension, the
discrete bilinear form acs

h enjoys discrete inf-sup stability without adding the
stabilization bilinear form sh for polynomial degrees k ≥ 2; see Burman, Ern,
Mozolevski, and Stamm [67]. Furthermore, in two and three space dimensions
and using piecewise affine discrete functions supplemented by suitable element
bubble functions, discrete inf-sup stability can be proven for the discrete bilinear
form acs

h again without adding the stabilization bilinear form sh; see Burman and
Stamm [70]. Finally, it is also possible to devise penalty strategies acting only
on the low-degree part of the jumps; see, e.g., Hansbo and Larson [184] and
Burman and Stamm [71].
Remark 4.15 (Poincaré inequality using the |||·|||sip-norm). It can be proven (cf.
Corollary 5.4) that there exists σ2, independent of h, such that

∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||sip. (4.20)

More generally, on the broken Sobolev space H1(Th), it is proven by Brenner [51]
(see also Arnold [14]) that, for d ∈ {2, 3}, there is σ′

2, independent of h, such
that

∀v ∈ H1(Th), ‖v‖L2(Ω) ≤ σ′
2|||v|||sip. (4.21)

4.2.3.2 Boundedness

We define on V∗h the norm

|||v|||sip,∗ :=

(

|||v|||2sip +
∑

T∈Th

hT ‖∇v|T ·nT ‖2
L2(∂T )

)1/2

. (4.22)

Lemma 4.16 (Boundedness). There is Cbnd, independent of h, such that

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (4.23)

Proof. Let (v,wh) ∈ V∗h × Vh. We observe that

asip
h (v,wh) =

∫

Ω

∇hv·∇hwh−
∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�−
∑

F∈Fh

∫

F

�v�{{∇hwh}}·nF

+
∑

F∈Fh

η

hF

∫

F

�v��wh� := T1 + T2 + T3 + T4. (4.24)
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Using the Cauchy–Schwarz inequality yields |T1| ≤ ‖∇hv‖[L2(Ω)]d‖∇hwh‖[L2(Ω)]d

and |T4| ≤ η|v|J|wh|J. Moreover, owing to the bound (4.19) and since hF ≤ hT ,

|T2| ≤
(
∑

T∈Th

hT ‖∇v|T ·nT ‖2
L2(∂T )

)1/2

|wh|J ≤ |||v|||sip,∗|wh|J ≤ |||v|||sip,∗|||wh|||sip,

by definition of the |||·|||sip,∗-norm. Finally, still owing to the bound (4.19) and
proceeding as in the proof of Lemma 4.12 leads to

|T3| ≤ CtrN
1/2

∂ |v|J‖∇hwh‖[L2(Ω)]d ≤ CtrN
1/2

∂ |||v|||sip|||wh|||sip.

Collecting the above bounds yields (4.23) with Cbnd = 2 + η + CtrN
1/2

∂ .

4.2.3.3 |||·|||sip-Norm Error Estimate and Convergence

A straightforward consequence of the above results together with Theorem 1.35
is the following error estimate.

Theorem 4.17 (|||·|||sip-norm error estimate). Let u ∈ V∗ solve (4.2). Let uh

solve (4.14) with asip
h defined by (4.12) and penalty parameter as in Lemma 4.12.

Then, there is C, independent of h, such that

|||u − uh|||sip ≤ C inf
vh∈Vh

|||u − vh|||sip,∗. (4.25)

To infer a convergence result from (4.25), we assume that the exact solution
is smooth enough and use Lemmata 1.58 and 1.59. The resulting estimate is
optimal both for the broken gradient and the jump seminorm.

Corollary 4.18 (Convergence rate in |||·|||sip-norm). Besides the hypotheses of
Theorem 4.17, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||sip ≤ Cuh
k, (4.26)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Remark 4.19 (Bound on the jumps). The contribution of the jump seminorm to
the error |||u−uh|||sip can be controlled by the contribution of the broken gradient
under some assumptions. For instance, Lemma 5.30 shows that, on matching
simplicial meshes and for a large enough penalty parameter, there holds, up to
a positive factor independent of h,

|u− uh|J = |uh|J � ‖∇h(u− uh)‖[L2(Ω)]d + Rosc,Ω,

where the data oscillation term Rosc,Ω, defined by (5.34), converges to zero at
order hk+1 if f ∈ Hk(Ω) and at order hk+2 if f ∈ Hk+1(Ω). We also refer
the reader to Bonito and Nochetto [46] for a similar bound on the jumps on
general meshes, and to Ainsworth and Rankin [7, 9] for a sharper condition on
the penalty parameter on triangular meshes with hanging nodes.
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4.2.3.4 Analysis Using Only the |||·|||sip,∗-Norm

The convergence analysis of elliptic problems is often performed using a single
norm. Such an approach is possible here by working only with the |||·|||sip-norm
which turns out to be uniformly equivalent to the |||·|||sip,∗-norm on Vh.

Lemma 4.20 (Uniform equivalence of |||·|||sip- and |||·|||sip,∗-norms on Vh). The
|||·|||sip- and |||·|||sip,∗-norms are uniformly equivalent on Vh. Specifically,

Csip|||vh|||sip,∗ ≤ |||vh|||sip ≤ |||vh|||sip,∗ ∀vh ∈ Vh,

with Csip independent of h.

Proof. The upper bound is immediate, while the lower bound results from the
discrete trace inequality (1.40) and the uniform bound on N∂ .

A consequence of Lemma 4.20 is discrete coercivity on Vh in the form

∀vh ∈ Vh, asip
h (vh, vh) ≥ C ′

η|||vh|||2sip,∗,

with C ′
η independent of h. Moreover, an inspection at the proof of Lemma 4.16

leads to boundedness on V∗h × Vh in the form

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ C ′

bnd|||v|||sip,∗|||wh|||sip,∗,

with C ′
bnd independent of h. Using the above results leads to the following

convergence results in the |||·|||sip,∗-norm.

Theorem 4.21 (|||·|||sip,∗-norm error estimate). Under the hypotheses of Theo-
rem 4.17, there is C, independent of h, such that

|||u− uh|||sip,∗ ≤ C inf
vh∈Vh

|||u − vh|||sip,∗. (4.27)

Corollary 4.22 (Convergence rate in |||·|||sip,∗-norm). Besides the hypotheses of
Theorem 4.17, assume u ∈ Hk+1(Ω). Then, there holds

|||u − uh|||sip,∗ ≤ Cuh
k, (4.28)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Remark 4.23 (Comparison with |||·|||sip-norm estimates). The discrete coercivity
of asip

h is naturally expressed using the |||·|||sip-norm, whereas using the |||·|||sip,∗-
norm leads to the inclusion in the error estimate of the additional factor Csip

related to norm equivalence (cf. Lemma 4.20). Therefore, estimates (4.25) and
(4.26) deliver a sharper bound on the broken gradient and the jump seminorm.
However, estimates (4.27) and (4.28) convey additional information regarding
the convergence of the normal gradient at mesh element boundaries.
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4.2.4 L2-Norm Error Estimate
Using the broken Poincaré inequality (4.21), the |||·|||sip-norm estimate (4.26)
yields the L2-norm estimate

‖u− uh‖L2(Ω) ≤ σ′
2Cuh

k.

This estimate is suboptimal by one power in h. To remedy this drawback and
recover optimality, it is possible to resort to a duality argument (the so-called
Aubin–Nitsche argument [17]) under the following assumption.

Definition 4.24 (Elliptic regularity). We say that elliptic regularity holds true
for the model problem (4.2) if there is Cell, only depending on Ω, such that, for
all ψ ∈ L2(Ω), the solution to the problem:

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫

Ω

ψv for all v ∈ H1
0 (Ω),

is in V∗ and satisfies
‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).

Elliptic regularity can be asserted if, for instance, the polygonal domain Ω is
convex; see Grisvard [177]. To derive an L2-norm error estimate, we extend the
SIP bilinear form to V∗h ×V∗h, so that both arguments of asip

h can belong to V∗.

Theorem 4.25 (L2-norm error estimate). Let u ∈ V∗ solve (4.2). Let uh

solve (4.14) with asip
h defined by (4.12). Assume elliptic regularity. Then, there

is C, independent of h, such that

‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||sip,∗. (4.29)

Proof. We consider the auxiliary problem

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫

Ω

(u− uh)v for all v ∈ H1
0 (Ω),

and use elliptic regularity to infer ‖ζ‖H2(Ω) ≤ Cell‖u − uh‖L2(Ω). Since ζ ∈ V∗,
�∇ζ�·nF = 0 on all F ∈ F i

h and �ζ� = 0 on all F ∈ Fh. Hence, (4.13) implies

asip
h (ζ, u − uh) =

∫

Ω

(−�ζ)(u − uh).

Exploiting the symmetry of asip
h and since −�ζ = u− uh, we obtain

asip
h (u− uh, ζ) = ‖u− uh‖2

L2(Ω).

Furthermore, since consistency implies Galerkin orthogonality (cf. Remark 1.32)
and letting π1

h be the L2-orthogonal projection onto �1
d(Th) ⊂ Vh (since k ≥ 1),

we infer
asip

h (u − uh, π
1
hζ) = 0.
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Hence, using the boundedness of asip
h on V∗h × V∗h which results from the fact

that asip
h (v,w) � |||v|||sip,∗|||w|||sip,∗ for all v,w ∈ V∗h, the approximation properties

of π1
h in the |||·|||sip,∗-norm, and the regularity of ζ, we obtain, up to multiplicative

factors independent of h,

‖u− uh‖2
L2(Ω) = asip

h (u− uh, ζ − π1
hζ)

� |||u − uh|||sip,∗|||ζ − π1
hζ|||sip,∗

� |||u − uh|||sip,∗h‖ζ‖H2(Th)

� |||u − uh|||sip,∗h‖u− uh‖L2(Ω).

Simplifying by ‖u− uh‖L2(Ω) yields (4.29).

A straightforward consequence of (4.28) and (4.29) is the following conver-
gence result for smooth solutions.

Corollary 4.26 (Convergence rate in L2-norm). Besides the hypotheses of The-
orem 4.17, assume elliptic regularity and u ∈ Hk+1(Ω). Then, there holds

‖u − uh‖L2(Ω) ≤ Cuh
k+1, (4.30)

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

Estimate (4.30) is optimal. We emphasize that the symmetry of asip
h has

been used in the proof of Theorem 4.25.

Remark 4.27 (Adjoint-consistency). Following Arnold, Brezzi, Cockburn, and
Marini [16], the property asip

h (u−uh, ζ) =
∫
Ω(−�ζ)(u−uh), which results from

symmetry and consistency, can be termed adjoint consistency.

Remark 4.28 (Error estimates in other norms). We refer the reader, e.g., to
Chen and Chen [89] and to Guzmán [181] for pointwise error estimates on the
discrete solution and its broken gradient using weighted broken Sobolev norms.

4.2.5 Analysis for Low-Regularity Solutions
This section is devoted to the analysis of the SIP method under a regularity
assumption on the exact solution that is weaker than Assumption 4.4.

Assumption 4.29 (Regularity of exact solution and space V∗). We assume that
d ≥ 2 and that there is p ∈ ( 2d

d+2 , 2] such that, for the exact solution u,

u ∈ V∗ := V ∩W 2,p(Ω).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.29 requires p > 1 for d = 2 and p > 6
5 for d = 3. In particular,

we observe that, in two space dimensions, u ∈ W 2,p(Ω) with p > 1 holds true in
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polygonal domains; see, e.g., Dauge [119]. Moreover, using Sobolev embeddings
(see Evans [153, Sect. 5.6] or Brézis [55, Sect. IX.3]), Assumption 4.29 implies

u ∈ H1+αp(Ω), αp =
d+ 2

2
− d

p
> 0. (4.31)

We still consider the discrete problem (4.14) with the discrete bilinear form
asip

h defined by (4.12). The convergence analysis under the regularity assump-
tion 4.29 has been performed recently by Wihler and Rivière [308] in two space
dimensions and, using slightly different techniques, by the authors [132] in the
context of heterogeneous diffusion in any space dimension; cf. Sect. 4.5. We follow
here the approach of [132], building up on the analysis presented in Sect. 4.2.3 for
smooth solutions. In the present context of an exact solution with low-regularity,
we assume for simplicity k = 1. We also assume p < 2 since in the case p = 2,
Assumption 4.29 amounts to Assumption 4.4.

We already know that discrete coercivity holds true provided the penalty
parameter is chosen as in Lemma 4.12. Moreover, owing to Lemma 4.3, the
discrete bilinear form asip

h can be extended to V∗h × Vh, and consistency can
be asserted as in Lemma 4.8. Thus, it only remains to prove boundedness. To
this purpose, we need to redefine the |||·|||sip,∗-norm since functions in V∗ are such
that, for all T ∈ Th, ∇v|T ·nT is in Lp(∂T ), but not necessarily in L2(∂T ). Thus,
we now define on V∗h the norm

|||v|||sip,∗ :=

(

|||v|||psip +
∑

T∈Th

h
1+γp

T ‖∇v|T ·nT ‖p
Lp(∂T )

)1/p

, (4.32)

where γp := 1
2d(p − 2). We observe that, for p = 2, we recover the previous

definition (4.22) of the |||·|||sip,∗-norm. The value for γp is motivated by the
following boundedness result.

Lemma 4.30 (Boundedness). There is Cbnd, independent of h, such that

∀(v,wh) ∈ V∗h × Vh, asip
h (v,wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip. (4.33)

Proof. Let (v,wh) ∈ V∗h × Vh. We need to bound the four terms T1, . . . ,T4

in (4.24). Proceeding as in the proof of Lemma 4.16, we obtain

|T1 + T3 + T4| ≤ C|||v|||sip|||wh|||sip,
with C independent of h, so that it only remains to bound the consistency
term T2. To this purpose, we proceed similarly to the proof of (4.19), but use
Hölder’s inequality instead of the Cauchy–Schwarz inequality. For all F ∈ F i

h

with F = ∂T1 ∩ ∂T2, and ai = (∇v)|Ti ·nF , i ∈ {1, 2}, Hölder’s inequality yields
∫

F

{{∇hv}}·nF �wh� =
∫

F

1
2
(a1 + a2)�wh�

≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

h
−βp

F ‖�wh�‖Lq(F ),
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with βp = 1+γp

p and q = p
p−1 . Moreover, for all F ∈ Fb

h with F = ∂T ∩ ∂Ω,

∫

F

{{∇hv}}·nF �wh� ≤
(
h

1+γp

F ‖∇v|T ·nF ‖p
Lp(F )

)1/p

h
−βp

F ‖�wh�‖Lq(F ).

Owing to the inverse inequality (1.43) and since βp − 1
2 = (d − 1)( 1

q − 1
2 ), we

infer
h
−βp

F ‖�wh�‖Lq(F ) ≤ Cinv,q,2h
−1/2

F ‖�wh�‖L2(F ),

where Cinv,q,2 is independent of h and can be bounded uniformly in q (cf.
Remark 1.51). Combining the above bounds, summing over mesh faces, and
using Hölder’s inequality yields

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�

∣
∣
∣
∣
∣
≤
(
∑

T∈Th

h
1+γp

T ‖∇v|T ·nT ‖p
Lp(∂T )

)1/p

× Cinv,q,2

(
∑

F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)q
)1/q

.

Since q ≥ 2, we obtain

(
∑

F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)q
)1/q

≤
(
∑

F∈Fh

(
h
−1/2

F ‖�wh�‖L2(F )

)2
)1/2

= |wh|J.

Hence,

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{∇hv}}·nF �wh�

∣
∣
∣
∣
∣
≤
(
∑

T∈Th

h
1+γp

T ‖∇v|T ·nT‖p
Lp(∂T )

)1/p

Cinv,q,2|wh|J,

whence we infer (4.33).

To state a convergence result, we need optimal polynomial approximation
for functions in V∗ = W 2,p(Ω). For simplicity, we restricted the presentation
of Sect. 1.4.4 to the Hilbertian setting. In the present non-Hilbertian setting, we
make the following assumption.

Assumption 4.31 (Optimal polynomial approximation in W 2,p(T )). The mesh
sequence (Th)h∈H is such that, for all h ∈ H, all T ∈ Th, and all v ∈ W 2,p(T ),
there holds

|v − πhv|W m,p(T ) ≤ Capph
2−m
T |v|W 2,p(T ) m ∈ {0, 1, 2}, (4.34a)

|v − πhv|Hm(T ) ≤ Capph
1+αp−m
T |v|W 2,p(T ) m ∈ {0, 1}, (4.34b)

with Capp independent of both T and h, while αp is defined by (4.31).
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Assumption 4.31 can be asserted for mesh sequences with star-shaped
property or finitely-shaped property; cf. Lemmata 1.61 and 1.62. We can
now turn to our main convergence result.

Theorem 4.32 (|||·|||sip-norm error estimate and convergence rate). Let u ∈ V∗
solve (4.2). Let uh solve (4.14) with asip

h defined by (4.12) and penalty parameter
as in Lemma 4.12. Then, there is C, independent of h, such that

|||u − uh|||sip ≤ C inf
vh∈Vh

|||u − vh|||sip,∗, (4.35)

where the |||·|||sip,∗-norm is defined by (4.32). Moreover, under Assumption 4.31,
there holds

|||u − uh|||sip ≤ Cuh
αp , (4.36)

with Cu = C|u|W 2,p(Ω) and C independent of h.

Proof. Estimate (4.35) is a direct consequence of Theorem 1.35 since we estab-
lished discrete coercivity, consistency, and boundedness. We now take vh = πhu
in (4.35). We first observe that, for all T ∈ Th, using (4.34a) together with the
continuous trace inequality (1.18) yields

‖∇(u− πhu)|T ·nT ‖Lp(∂T ) � h
1−1/p

T |u|W 2,p(T ),

where a � b means the inequality a ≤ Cb with generic positive C independent
of h and T . Since 1+γp

p + 1 − 1
p = αp, we infer

(
∑

T∈Th

h
1+γp

T ‖∇(u − πhu)|T ·nT‖p
Lp(∂T )

)1/p

� hαp |u|W 2,p(Ω).

Moreover, using (4.34b) together with the continuous trace inequality (1.19)
yields

|||u− πhu|||sip � hαp |u|W 2,p(Ω).

Combining the two above bounds leads to (4.36).

The convergence rate in the error estimate (4.36) is optimal both for the
broken gradient and the jump seminorm.

4.3 Liftings and Discrete Gradients
Liftings are operators that map scalar-valued functions defined on mesh faces
to vector-valued functions defined on mesh elements. In the context of dG
methods, liftings act on interface and boundary jumps. They were introduced
by Bassi, Rebay, and coworkers [34, 35] in the context of compressible flows
and analyzed by Brezzi, Manzini, Marini, Pietra, and Russo [58, 59] in the
context of the Poisson problem (see also Perugia and Schötzau [257] for the
hp-analysis). Liftings have many useful applications. They can be combined
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with the broken gradient to define discrete gradients. Discrete gradients play
an important role in the design and analysis of dG methods. Indeed, they can
be used to formulate the discrete problem locally on each mesh element using
numerical fluxes. Moreover, as detailed in Sect. 5.1, they are instrumental in the
derivation of discrete functional analysis results, that, in turn, play a central role
in the convergence analysis to minimal regularity solutions (cf. Sect. 5.2). Lift-
ings can also be employed to define the stabilization bilinear form [35], yielding
a more convenient lower bound for the penalty parameter η; cf. Sect. 5.3.2.

4.3.1 Liftings: Definition and Stability
As before, we assume that the mesh Th belongs to an admissible mesh sequence.
For any mesh face F ∈ Fh and for any integer l ≥ 0, we define the (local) lifting
operator

rl
F : L2(F ) −→ [�l

d(Th)]d

as follows: For all ϕ ∈ L2(F ),
∫

Ω

rl
F (ϕ)·τh =

∫

F

{{τh}}·nFϕ ∀τh ∈ [�l
d(Th)]d. (4.37)

We observe that the support of rl
F (ϕ) consists of the one or two mesh elements

of which F is part of the boundary; using the set TF defined by (1.13) yields

supp(rl
F ) =

⋃

T∈TF

T . (4.38)

Moreover, whenever the mesh face F is a portion of a hyperplane (this hap-
pens, for instance, when working with simplicial meshes or with general meshes
consisting of convex elements), rl

F (ϕ) is colinear to the normal vector nF .

Lemma 4.33 (Bound on local lifting). Let F ∈ Fh and let l ≥ 0. For all
ϕ ∈ L2(F ), there holds

‖ rl
F (ϕ)‖[L2(Ω)]d ≤ Ctrh

−1/2

F ‖ϕ‖L2(F ). (4.39)

Proof. Let ϕ ∈ L2(F ). Equation (4.37), the fact that hF ≤ hT for all T ∈ TF ,
and the discrete trace inequality (1.37) yield

‖ rl
F (ϕ)‖2

[L2(Ω)]d =
∫

Ω

rl
F (ϕ)· rl

F (ϕ) =
∫

F

{{rl
F (ϕ)}}·nFϕ

≤
(

1
hF

∫

F

|ϕ|2
)1/2

×
(

hF

∫

F

|{{rl
F (ϕ)}}|2

)1/2

≤ h
−1/2

F ‖ϕ‖L2(F ) × Ctr

(

card(TF )−1
∑

T∈TF

∫

T

| rl
F (ϕ)|2

)1/2

,

whence (4.39) follows since card(TF )−1 ≤ 1 and since
∑

T∈TF

∫
T | rl

F (ϕ)|2 =
‖ rl

F (ϕ)‖2
[L2(Ω)]d owing to (4.38).
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For any integer l ≥ 0 and for any function v ∈ H1(Th), we define the (global)
lifting of its interface and boundary jumps as

Rl
h(�v�) :=

∑

F∈Fh

rl
F (�v�) ∈ [�l

d(Th)]d, (4.40)

being implicitly understood that rl
F acts on the function �v�F (which is in L2(F )

since v ∈ H1(Th)).

Lemma 4.34 (Bound on global lifting). Let l ≥ 0. For all v ∈ H1(Th), there
holds

‖Rl
h(�v�)‖[L2(Ω)]d ≤ N

1/2

∂

(
∑

F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d

)1/2

, (4.41)

so that
‖Rl

h(�v�)‖[L2(Ω)]d ≤ CtrN
1/2

∂ |v|J. (4.42)

Proof. Let v ∈ H1(Th). Owing to (4.38), we infer (Rl
h(�v�))|T =

∑
F∈FT

(rl
F (�v�))|T , so that using the Cauchy–Schwarz inequality, we obtain

‖Rl
h(�v�)‖2

[L2(Ω)]d =
∑

T∈Th

∫

T

∣
∣
∣
∣
∣

∑

F∈FT

rl
F (�v�)

∣
∣
∣
∣
∣

2

≤
∑

T∈Th

card(FT )
∑

F∈FT

∫

T

| rl
F (�vh�)|2

≤ max
T∈Th

card(FT )
∑

T∈Th

∑

F∈FT

∫

T

| rl
F (�vh�)|2

= max
T∈Th

card(FT )
∑

F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d ,

and the bound (4.41) follows using the definition (1.12) of N∂. Finally, (4.42)
results from (4.41) and the fact that

(
∑

F∈Fh

‖ rl
F (�v�)‖2

[L2(Ω)]d

)1/2

≤ Ctr|v|J,

owing to Lemma 4.33.

To illustrate in the case l = 0 (piecewise constant liftings), we obtain, for all
v ∈ H1(Th) and all T ∈ Th,

R0
h(�v�)|T =

∑

F∈FT

|F |d−1

|T |d (vF − vT )nT,F , (4.43)

where nT,F is the outward normal to T on F , vT := v|T , and vF := 1
2(vT + v|T ′)

whenever F = ∂T ∩ ∂T ′, T �= T ′, while vF := 0 if F ∈ Fb
h. The (opposite of

the) above expression has been used as a gradient reconstruction in the context
of finite volume methods replacing vF by a consistent trace reconstruction (see
Eymard, Gallouët, and Herbin [158]); cf. also formula (5.28).
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4.3.2 Discrete Gradients: Definition and Stability
For any integer l ≥ 0, we define the discrete gradient operator

Gl
h : H1(Th) −→ [L2(Ω)]d,

as follows: For all v ∈ H1(Th),

Gl
h(v) := ∇hv − Rl

h(�v�). (4.44)

Proposition 4.35 (Bound on discrete gradient). Let l ≥ 0. For all v ∈ H1(Th),
there holds

‖Gl
h(v)‖[L2(Ω)]d ≤ (1 + C2

trN∂)1/2|||v|||sip,
where the |||·|||sip-norm is defined by (4.17).

Proof. Let v ∈ H1(Th). Using the triangle inequality together with (4.42) yields

‖Gl
h(v)‖[L2(Ω)]d ≤ ‖∇hv‖[L2(Ω)]d + ‖Rl

h(�v�)‖[L2(Ω)]d

≤ ‖∇hv‖[L2(Ω)]d + CtrN
1/2

∂ |v|J,
whence the assertion.

4.3.3 Reformulation of the SIP Bilinear Form
Let l ∈ {k − 1, k} and set, as in Sect. 4.2, Vh = �k

d(Th) with k ≥ 1 and Th

belonging to an admissible mesh sequence. Following Brezzi, Manzini, Marini,
Pietra, and Russo [58], it is interesting to observe that the bilinear form acs

h

defined by (4.8) can be equivalently written as follows: For all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫

Ω

∇hvh·∇hwh−
∫

Ω

∇hvh·Rl
h(�wh�)−

∫

Ω

∇hwh·Rl
h(�vh�). (4.45)

This results from definitions (4.37) and (4.40) and the fact that ∇hvh and ∇hwh

are in [�l
d(Th)]d since l ≥ k − 1, so that, for all F ∈ Fh,

∫

F

{{∇hvh}}·nF �wh� =
∫

Ω

∇hvh· rl
F (�wh�).

Starting from (4.45) and using the definition (4.44) of the discrete gradient, we
infer, for all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�).

As a result, recalling that the SIP bilinear form considered in Sect. 4.2 is such
that asip

h = acs
h + sh with sh defined by (4.11), we obtain, for all vh, wh ∈ Vh,

asip
h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) + ŝsiph (vh, wh), (4.46)
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with

ŝsiph (vh, wh) :=
∑

F∈Fh

η

hF

∫

F

�vh��wh� −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�). (4.47)

The most natural choice for l appears to be l = k−1 since the broken gradient is
in [�k−1

d (Th)]d. The choice l = k can facilitate the implementation of the method
in that it allows one to use the same polynomial basis for computing the liftings
and assembling the matrix.

The interest in using discrete gradients to formulate dG methods has been
recognized recently in various contexts, e.g., by Lew, Neff, Sulsky, and Ortiz
[232] and Ten Eyck and Lew [293] for linear and nonlinear elasticity, Buffa and
Ortner [61] and Burman and Ern [65] for nonlinear variational problems, and
the authors [131] for the Navier–Stokes equations; see also Agélas, Di Pietro,
Eymard, and Masson [6]. The expression (4.46) of the SIP bilinear form plays
a central role in Sect. 5.2 when analyzing the convergence to minimal regularity
solutions. This expression is also useful in Sect. 4.4 in the context of a mixed dG
approximation.

It is interesting to notice the following straightforward consequence of the
bound (4.42).

Proposition 4.36 (Discrete coercivity). For all vh ∈ Vh,

asip
h (vh, vh) ≥ ‖Gl

h(vh)‖2
[L2(Ω)]d + (η − C2

trN∂)|vh|2J.
In view of this result, the expression (4.46) for asip

h consists of two terms, both
yielding a nonnegative contribution whenever wh = vh and, as in Lemma 4.12,
η > C2

trN∂ . The first term can be seen as the discrete counterpart of the exact
bilinear form a (such that a(v,w) =

∫
Ω
∇v·∇w) and provides a control on the

discrete gradient in [L2(Ω)]d. The role of the second term is to strengthen the
discrete stability of the method.
Remark 4.37 (Extension to broken Sobolev spaces). We emphasize that the def-
inition (4.46) of asip

h is equivalent to (4.12) only at the discrete level. Differences
occur when extending the definitions (4.12) and (4.46) to larger spaces, e.g.,
broken Sobolev spaces. As discussed in Sect. 4.2.1, the SIP bilinear form defined
by (4.12) cannot be extended to the minimum regularity space H1(Ω) because
traces of gradients on mesh faces are used. Instead, the bilinear form defined
by (4.46) can be extended to the broken Sobolev space H1(Th). We denote
this extension by ãsip

h . Incidentally, ãsip
h is no longer consistent. For convergence

analysis to smooth solutions, Strang’s First Lemma (see [285] or, e.g., Braess [49,
p. 106]) dedicated to nonconsistent finite element methods can be used, whereby
the consistency error is estimated for u ∈ Hk+1(Ω) as follows: For all vh ∈ Vh,

ãsip
h (u − uh, vh) =

∑

F∈Fh

∫

F

{{∇u − πh(∇u)}}·nF �vh� ≤ Cuh
k|vh|J,

where πh denotes the L2-orthogonal projection onto Vh. As a result, the consis-
tency error tends optimally to zero as the meshsize goes to zero.
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4.3.4 Numerical Fluxes
DG methods can be viewed as high-order finite volume methods. The aim of
this section is to identify the local conservation properties associated with dG
methods. Such properties are important when the diffusive flux is to be used as
an advective velocity in a transport problem, as discussed, e.g., by Dawson, Sun,
and Wheeler [121] in the context of coupled porous media flow and contaminant
transport. While most discretization methods possess local conservation prop-
erties, the specificity of dG methods, together with finite volume and mixed
finite element methods, is to achieve local conservation at the element level as
opposed to vertex-centered or face-centered macro-elements; see, e.g., Eymard,
Hilhorst, and Vohralík [161].

Let T ∈ Th and let ξ ∈ �k
d(T ). Integration by parts shows that, for the exact

solution u,
∫

T

fξ = −
∫

T

(�u)ξ =
∫

T

∇u·∇ξ −
∫

∂T

(∇u·nT )ξ.

Therefore, defining on each mesh face F ∈ Fh the exact flux as

ΦF (u) := −∇u·nF , (4.48)

and recalling the notation εT,F = nT ·nF introduced in Sect. 2.2.3, we infer
∫

T

∇u·∇ξ +
∑

F∈FT

εT,F

∫

F

ΦF (u)ξ =
∫

T

fξ.

This is a local conservation property satisfied by the exact solution. Our goal is
to identify a similar relation satisfied by the discrete solution uh solving (4.14).
Using vh = ξχT as test function in (4.14) (where χT denotes the characteristic
function of T ), observing that ∇h(ξχT ) = (∇ξ)χT , and recalling the defini-
tion (4.12) of asip

h , we obtain
∫

T

fξ = asip
h (uh, ξχT ) =

∫

T

∇uh·∇ξ −
∑

F∈FT

∫

F

{{∇huh}}·nF �ξχT �

−
∑

F∈FT

∫

F

{{(∇ξ)χT }}·nF �uh� +
∑

F∈FT

η

hF

∫

F

�uh��ξχT �.

Let l ∈ {k − 1, k}. The first and third terms on the right-hand side sum up to∫
T
Gk−1

h (uh)·∇ξ since ∇ξ ∈ [�k−1
d (T )]d and l ≥ k − 1, while in the second and

fourth terms, we observe that �ξχT � = εT,F ξ. As a result, for all T ∈ Th and all
ξ ∈ �k

d(T ), ∫

T

Gl
h(uh)·∇ξ +

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ, (4.49)

with the numerical flux φF (uh) defined as

φF (uh) := −{{∇huh}}·nF +
η

hF
�uh�. (4.50)
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We notice that the two contributions to φF (uh) in (4.50) respectively stem from
the consistency term and the penalty term (cf. Definition 4.7). Equation (4.49)
is the local conservation property satisfied by the dG approximation. Interest-
ingly, the expression (4.50) is consistent with (4.48) since, for the exact solution
u, φF (u) = ΦF (u). We also observe that the local conservation property (4.49)
is richer than that encountered in finite volume methods, which can be recovered
by just taking ξ ≡ 1, i.e.,

∑

F∈FT

εT,F

∫

F

φF (uh) =
∫

T

f. (4.51)

4.4 Mixed dG Methods
In this section, we discuss mixed dG methods, that is, dG approximations to
the mixed formulation (4.5) with the homogeneous Dirichlet boundary condi-
tion (4.1b). Other boundary conditions can be considered. Such methods pro-
duce an approximation uh for the potential u and an approximation σh for the
diffusive flux σ.

Definition 4.38 (Discrete potential and discrete diffusive flux). Consistently
with Definition 4.1, the scalar-valued function uh is termed the discrete potential
and the vector-valued function σh the discrete diffusive flux.

First, we reformulate the SIP method of Sect. 4.2 as a mixed dG method and
show how the discrete diffusive flux can be eliminated locally. Then, we formulate
more general mixed dG methods in terms of local problems using numerical fluxes
for the discrete potential and the discrete diffusive flux following Bassi, Rebay,
and coworkers [34,35]. This leads, in particular, to the LDG methods introduced
by Cockburn and Shu [112]. In these methods, the discrete diffusive flux can
also be eliminated locally. Finally, we discuss hybrid mixed dG methods where
additional degrees of freedom are introduced at interfaces, thereby allowing one
to eliminate locally both the discrete potential and the discrete diffusive flux.

4.4.1 The SIP Method As a Mixed dG Method
One possible weak formulation of the mixed formulation (4.5) with the homo-
geneous Dirichlet boundary condition (4.1b) consists in finding (σ, u) ∈ X :=
[L2(Ω)]d ×H1

0 (Ω) such that
⎧
⎨

⎩

m(σ, τ) + b(τ, u) = 0 ∀τ ∈ [L2(Ω)]d,

−b(σ, v) =
∫

Ω

fv ∀v ∈ H1
0 (Ω),

(4.52)

where, for all σ, τ ∈ [L2(Ω)]d and all v ∈ H1
0 (Ω), we have introduced the bilinear

forms
m(σ, τ) :=

∫

Ω

σ·τ, b(τ, v) :=
∫

Ω

τ ·∇v.
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It is easily seen that (σ, u) ∈ X solves (4.52) if and only if σ = −∇u and u solves
the weak problem (4.2).

At the discrete level, a mixed dG approximation can be designed as follows.
We consider a polynomial degree k ≥ 1 for the approximation of the potential
and choose the polynomial degree l for the approximation of the diffusive flux
such that l ∈ {k − 1, k}. The relevant discrete spaces are

Σh := [�l
d(Th)]d, Uh := �k

d(Th), Xh := Σh × Uh.

The discrete problem consists in finding (σh, uh) ∈ Xh such that
⎧
⎨

⎩

m(σh, τh) + bh(τh, uh) = 0 ∀τh ∈ Σh,

−bh(σh, vh) + ŝsiph (uh, vh) =
∫

Ω

fvh ∀vh ∈ Uh,
(4.53)

with discrete bilinear form

bh(τh, vh) :=
∫

Ω

τh·Gl
h(vh),

where the discrete gradient operator Gl
h is defined by (4.44) and the stabilization

bilinear form ŝsiph by (4.47).

Proposition 4.39 (Elimination of discrete diffusive flux). The pair (σh, uh) ∈
Xh solves (4.53) if and only if

σh = −Gl
h(uh), (4.54)

and uh ∈ Uh is such that
∫

Ω

Gl
h(uh)·Gl

h(vh) + ŝsiph (uh, vh) =
∫

Ω

fvh ∀vh ∈ Uh. (4.55)

Proof. The first equation in (4.53) yields
∫

Ω

(σh +Gl
h(uh))·τh = 0 ∀τh ∈ Σh.

Recalling that Gl
h(uh) = ∇huh − Rl

h(�uh�) and since l ≥ k − 1, we infer that
Gl

h(uh) ∈ Σh; therefore, (4.54) is satisfied. Substituting this relation into the
second equation of (4.53) yields (4.55). The converse is straightforward.

Proposition 4.39 shows that the mixed dG method (4.53) is in fact equivalent
to a problem in the sole unknown uh. In particular, the above choice for bh and
ŝsiph yields the SIP method of Sect. 4.2; cf. (4.46).
Remark 4.40 (H(div;Ω)-conformity of discrete diffusive flux). One drawback
of mixed dG approximations, and in particular (4.53), is that the discrete dif-
fusive flux σh = −Gl

h(uh) is not in H(div;Ω) because its normal component
is, in general, discontinuous across interfaces. This point is further examined
in Sect. 5.5 where we discuss a cost-effective, locally conservative diffusive flux
reconstruction obtained by postprocessing the discrete potential.
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4.4.2 Numerical Fluxes
In what follows, we focus for simplicity on equal-order approximations for the
potential and the diffusive flux, that is, we set l = k so that Σh := [�k

d(Th)]d,
while, as before, Uh := �k

d(Th). Similarly to Sect. 4.3.4, we can derive a local
formulation by localizing test functions to a single mesh element. Let T ∈ Th,
let ζ ∈ [�k

d(T )]d, and let ξ ∈ �k
d(T ). Integrating by parts in T , splitting the

boundary integral on ∂T as a sum over the mesh faces F ∈ FT , and setting
εT,F = nT ·nF , we infer for the exact solution that

∫

T

σ·ζ −
∫

T

u∇·ζ +
∑

F∈FT

εT,F

∫

F

uF (ζ·nF ) = 0,

−
∫

T

σ·∇ξ +
∑

F∈FT

εT,F

∫

F

(σF ·nF )ξ =
∫

T

fξ,

since σ = −∇u and ∇·σ = f . The traces uF and σF ·nF are single-valued on
each interface; cf. Lemma 4.3.

At the discrete level, the general form of the mixed dG approximation is
derived by introducing numerical fluxes for the discrete potential and for the
discrete diffusive flux. These two numerical fluxes, which are denoted by ûF and
σ̂F for all F ∈ Fh, are single-valued on each F ∈ Fh. The numerical flux ûF

is scalar-valued and the numerical flux σ̂F is vector-valued. We obtain, for all
T ∈ Th, all ζ ∈ [�k

d(T )]d, and all ξ ∈ �k
d(T ),

∫

T

σh·ζ −
∫

T

uh∇·ζ +
∑

F∈FT

εT,F

∫

F

ûF (ζ·nF ) = 0, (4.56a)

−
∫

T

σh·∇ξ +
∑

F∈FT

εT,F

∫

F

(σ̂F ·nF )ξ =
∫

T

fξ. (4.56b)

Lemma 4.41 (Numerical fluxes for SIP). For the SIP method, the numerical
fluxes are given by

ûF =

{
{{uh}} ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(4.57a)

σ̂F = −{{∇huh}} + ηh−1
F �uh�nF ∀F ∈ Fh. (4.57b)

Proof. The assertion is obtained by testing the first equation in (4.53) with
τh = ζχT , where χT denotes the characteristic function of T , and testing the
second equation with vh = ξχT .

A first possible variant of the SIP method consists in keeping the defini-
tion (4.57a) for the numerical flux ûF and defining the numerical flux σ̂F as

σ̂F = {{σh}} + ηh−1
F �uh�nF .
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The resulting dG method belongs to the class of LDG methods. The discrete
diffusive flux σh can still be eliminated locally (since the numerical flux ûF only
depends on uh), and the discrete potential uh ∈ Uh is such that

aldg
h (uh, vh) =

∫

Ω

fvh ∀vh ∈ Uh,

with the discrete bilinear form

aldg
h (uh, vh) =

∫

Ω

∇huh·∇hvh −
∑

F∈Fh

∫

F

({{∇huh}}·nF �vh� + {{∇hvh}}·nF �uh�)

+
∫

Ω

Rk
h(�uh�)·Rk

h(�vh�) +
∑

F∈Fh

η

hF

∫

F

�uh��vh�

=
∫

Ω

Gk
h(uh)·Gk

h(vh) +
∑

F∈Fh

η

hF

∫

F

�uh��vh�.

A nice feature of the discrete bilinear form aldg
h is that discrete coercivity

holds on Uh with respect to the |||·|||sip-norm for any η > 0 (a simple choice is
η=1). The drawback is that the elementary stencil associated with the term∫
Ω

Rk
h(�uh�)·Rk

h(�vh�) consists of a given mesh element, its neighbors, and the
neighbors of its neighbors in the sense of faces; cf. Fig. 4.2. Such a stencil is
considerably larger than that associated with the SIP method; cf. Fig. 4.1.

More general forms of the LDG method can be designed with the numerical
fluxes

Fig. 4.2: Example of LDG stencil of an element T ∈ Th when Th is a matching
triangular mesh; the mesh element is highlighted in dark grey, and all the nine
other elements, highlighted in light grey, also belong to the stencil (compare with
Fig. 4.1)
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ûF =

{
{{uh}} + Υ·nF �uh� ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F =

{
{{σh}} − Υ�σh�·nF + ηh−1

F �uh�nF ∀F ∈ F i
h,

σh + ηh−1
F uhn ∀F ∈ Fb

h,

where Υ is vector-valued and η > 0 is scalar-valued (in LDG methods, ηh−1
F is

often denoted by C11 and Υ by C12). Since the numerical flux ûF only depends
on uh, the discrete diffusive flux σh can be eliminated locally. The above form
of the diffusive fluxes ensures symmetry and discrete stability for the resulting
dG method. A simple choice for the penalty parameter is again η = 1, while
the auxiliary vector-parameter Υ can be freely chosen. LDG methods for the
Poisson problem have been extensively analyzed by Castillo, Cockburn, Perugia,
and Schötzau [80] (see also Castillo, Cockburn, Schötzau, and Schwab [81] for the
hp-analysis of LDG methods applied to diffusion-advection problems). In [80],
various choices of the penalty parameter C11 are discussed; the above choice
C11 = ηh−1

F leads to the same energy-norm error estimates as for the SIP method.
A particular choice for the vector-parameter Υ leading to superconvergence on
Cartesian grids has been studied by Cockburn, Kanschat, Perugia, and Schötzau
[100]. Variants of the LDG method aiming at reducing the stencil have been
discussed by Sherwin, Kirby, Peiró, Taylor, and Zienkiewicz [277], Peraire and
Persson [256], and Castillo [79].

A further variant of the SIP and LDG methods consists in considering the
numerical fluxes

ûF =

{
{{uh}} + ησ�σh�·nF ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

σ̂F = {{σh}} + ηu�uh�nF ∀F ∈ Fh.

Here, the penalty parameters ηu and ησ are positive user-dependent real num-
bers, and a simple choice is to set ηu = ησ = 1. This method is analyzed
in Sect. 7.3 in the more general context of Friedrichs’ systems. Because the
numerical flux ûF depends on σh, (4.56a) can no longer be used to express locally
the discrete diffusive flux σh in terms of the discrete potential uh. This precludes
the local elimination of σh and, therefore, enhances the computational cost of the
approximation method. The approach presents, however, some advantages since
it can be used with polynomial degree k = 0 and there is no minimal threshold
on the penalty parameters (apart from being positive). Moreover, the approxi-
mation on the diffusive flux is more accurate yielding convergence rates in the
L2-norm of order hk+1/2 for smooth solutions, as opposed to the convergence
rates of order hk delivered by the SIP method (cf. (4.26)).

Finally, we mention that an even more general presentation can allow for two-
valued numerical fluxes at interfaces; see Arnold, Brezzi, Cockburn, and Marini
[16] for a unified analysis of dG methods. Two-valued numerical fluxes are
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obtained, for instance, when rewriting the nonsymmetric dG methods discussed
in Sect. 5.3.1 as mixed dG methods.

4.4.3 Hybrid Mixed dG Methods
The key idea in hybrid mixed dG methods is to introduce additional degrees of
freedom at interfaces, thereby allowing one to eliminate locally both the discrete
potential and the discrete diffusive flux. Herein, we focus on the HDG methods
introduced by Cockburn, Gopalakrishnan, and Lazarov [97]; see also Causin and
Sacco [83] for a different approach based on a discontinuous Petrov–Galerkin
formulation, Droniou and Eymard [135] for similar ideas in the context of hybrid
mixed finite volume schemes, and Ewing, Wang, and Yang for hybrid primal dG
methods [154].

In the HDG method, the additional degrees of freedom are used to enforce
the continuity of the normal component of the discrete diffusive flux. These
additional degrees of freedom act as Lagrange multipliers in the discrete prob-
lem and can be interpreted as single-valued traces of the discrete potential on
interfaces. We introduce the discrete space

Λh :=
⊕

F∈Fi
h

�k
d−1(F ).

A function μh ∈ Λh is such that, for all F ∈ F i
h, μh|F ∈ �k

d−1(F ). The discrete
unknowns (σh, uh, λh) ∈ Σh ×Uh ×Λh satisfy the following local problems: For
all T ∈ Th, all ζ ∈ [�k

d(T )]d, and all ξ ∈ �k
d(T ),

∫

T

σh·ζ −
∫

T

uh∇·ζ +
∑

F∈FT

εT,F

∫

F

ûF (ζ·nF ) = 0, (4.58a)

−
∫

T

σh·∇ξ +
∑

F∈FT

εT,F

∫

F

(σ̂T,F ·nF )ξ =
∫

T

fξ, (4.58b)

while normal diffusive flux continuity is enforced by setting, for all F ∈ FT ∩F i
h

and all μ ∈ �k
d−1(F ), ∫

F

�σ̂T,F �·nFμ = 0. (4.59)

Here, the numerical fluxes are such that

ûF =

{
λh ∀F ∈ F i

h,

0 ∀F ∈ Fb
h,

(4.60a)

σ̂T,F = σh|T + τT (uh|T − ûF )nT ∀F ∈ Fh, (4.60b)

with penalty parameter τT defined elementwise. We observe that (4.59) indeed
enforces �σ̂T,F �·nF = 0 for all F ∈ F i

h since �σ̂T,F �·nF ∈ �k
d−1(F ). As a result,

the quantity (σ̂T,F ·nF ) in (4.58b) is actually single-valued.
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Lemma 4.42 (HDG as mixed dG method). Let (σh, uh, λh) ∈ Σh × Uh × Λh

solve (4.58) and (4.59). Then, the pair (σh, uh) ∈ Σh × Uh solves the local
problems of the mixed dG formulation (4.56) with numerical fluxes such that,
for all F ∈ F i

h with F = ∂T1 ∩ ∂T2,

ûF = {{uh}} + C12·�uh�nF + C22�σh�·nF , (4.61a)
σ̂F = {{σh}} + C11�uh�nF − C12�σh�·nF , (4.61b)

with the parameters

C11 =
τ1τ2
τ1 + τ2

, C12 =
τ1 − τ2

2(τ1 + τ2)
nF , C22 =

1
τ1 + τ2

,

where τi := τTi , i ∈ {1, 2}. Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω, ûF = 0

and σ̂F = σh + τTuh.

Proof. Since �σ̂T,F �·nF = 0, we infer from (4.60b) that

�σh�·nF + 2{{τuh}} − 2{{τ}}ûF = 0.

Observing that {{τuh}} = {{τ}}{{uh}} + 1
4 �τ��uh�, we obtain

ûF = {{uh}} +
1
4

�τ�

{{τ}} �uh� +
1

2{{τ}} �σh�·nF ,

which yields (4.61a). Moreover, since the normal component of σ̂T,F is single-
valued, we infer

σ̂T,F ·nF = {{σh}}·nF +
1
2
�τuh� − 1

2
�τ�ûF .

Observing that �τuh� = �τ�{{uh}} + {{τ}}�uh�, we obtain

σ̂T,F ·nF = {{σh}}·nF +
1
2
�τ�({{uh}} − ûF ) +

1
2
{{τ}}�uh�.

Using (4.61a) to evaluate ûF in this expression and rearranging terms leads to

σ̂T,F ·nF = {{σh}}·nF +
τ1τ2
τ1 + τ2

�uh� − τ1 − τ2
2(τ1 + τ2)

�σh�·nF .

F

Fig. 4.3: Stencil S(F ) for HDG methods
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An inspection of (4.61b) shows that σ̂T,F ·nF = σ̂F ·nF , and this concludes the
proof.

We observe that the numerical flux ûF in (4.61a) depends on σh since C22 �= 0.
As a result, the discrete diffusive flux cannot be eliminated locally to derive a dis-
crete problem for the sole discrete potential. Instead, a computationally efficient
implementation of HDG methods consists in using (4.58) to eliminate locally
both the discrete potential and the discrete diffusive flux by static condensation
(similarly to mixed finite element methods; see, e.g., Arnold and Brezzi [15]), so
as to obtain, using (4.59), a discrete problem where the sole unknown is λh ∈ Λh.
For a given interface F ∈ F i

h with F = ∂T1 ∩ ∂T2, the stencil associated with
this interface is (cf. Fig. 4.3)

S(F ) = {F ′ ∈ F i
h | F ′ ∈ FT1 ∪ FT2}.

For matching simplicial meshes, the set S(F ) contains five interfaces for d = 2
and seven interfaces for d = 3.

HDG methods for elliptic problems have been analyzed by Cockburn, Dong,
and Guzmán [95] and Cockburn, Guzmán, and Wang [98] where error estimates
in various norms are derived for various choices of the penalty parameter τ .
In particular, L2-norm error estimates of order hk+1 can be derived both for
the potential and the diffusive flux for smooth solutions and polynomial order
k ≥ 0. Moreover, for k ≥ 1, a postprocessed potential converging at order
hk+2 can be derived, similarly to classical mixed finite element methods. The
extension of HDG methods to diffusion-advection methods is investigated by
Cockburn, Dong, Guzmán, Restelli, and Sacco [96] and Nguyen, Peraire, and
Cockburn [245].

4.5 Heterogeneous Diffusion
In this section, we consider a model problem with heterogeneous diffusion. To
approximate this problem using dG methods, we revisit the design and analysis
of the SIP method considered in Sect. 4.2 for the Poisson problem. Following
Dryja [136], we use diffusion-dependent weights to formulate the consistency
and symmetry terms in the discrete bilinear form and we penalize interface and
boundary jumps using a diffusion-dependent parameter scaling as the harmonic
mean of the diffusion coefficient. Such a penalty strategy is particularly impor-
tant in heterogeneous diffusion-advection-reaction equations (cf. Sect. 4.6) where
the diffusion coefficient takes locally small values leading to so-called advection-
dominated regimes. In this context, the exact solution exhibits sharp inner layers
which, in practice, are not resolved by the underlying meshes, so that excessive
penalty at such layers triggers spurious oscillations. Using the harmonic mean
of the diffusion coefficient to penalize jumps turns out to tune automatically
the amount of penalty and thereby avoid such oscillations. Incidentally, we also
observe that, in finite volume and mixed finite element schemes, the harmonic
mean of the diffusion coefficient is often considered at interfaces.
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4.5.1 The Continuous Setting
Let κ ∈ L∞(Ω) be the diffusion coefficient and assume that κ is uniformly
bounded from below in Ω by a positive real number. The anisotropic case,
where κ is actually �d,d-valued, is examined in Sect. 4.5.6. We are interested in
the problem

−∇·(κ∇u) = f in Ω,
u = 0 on ∂Ω,

with source term f ∈ L2(Ω). The weak form of this problem is

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.62)

with energy space V = H1
0 (Ω) and bilinear form

a(u, v) :=
∫

Ω

κ∇u·∇v.

Owing to the above assumptions on the diffusion coefficient κ, the Lax–Milgram
Lemma implies that (4.62) is well-posed. The case where κ is constant in Ω
yields, up to rescaling, the Poisson problem; the latter can thus be viewed as a
prototype for homogeneous diffusion problems.

Adopting the terminology used for the Poisson problem (cf. Definition 4.1),
the �d-valued function

σ := −κ∇u
is termed the diffusive flux. By construction, σ ∈ H(div;Ω).

In practice, the diffusion coefficient has more regularity than just belonging
to L∞(Ω). Henceforth, we make the following assumption.

Assumption 4.43 (Partition of Ω). There is a partition PΩ := {Ωi}1≤i≤NΩ of
Ω such that

(i) Each Ωi, 1 ≤ i ≤ NΩ, is a polyhedron;

(ii) The restriction of κ to each Ωi, 1 ≤ i ≤ NΩ, is constant.

Remark 4.44 (Motivation for assumption 4.43). In groundwater flow applica-
tions, the partition PΩ results for instance from the partitioning of the porous
medium into various geological layers.

From a physical viewpoint, the normal component of the diffusive flux σ is
continuous across any interface ∂Ωi∩∂Ωj with positive (d−1)-dimensional Haus-
dorff measure. Assuming κ|Ωi �= κ|Ωj , this implies that the normal component of
∇u cannot be continuous across this interface. This fact modifies the regularity
that can be expected for the exact solution in heterogeneous diffusion problems
with respect to the Poisson problem.
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Fig. 4.4: Exact solution with diffusion heterogeneity parameter α = 0.5 (left)
and α = 0.01 (right); the two panels use different vertical scales

4.5.1.1 One-Dimensional Example

Let Ω = (−1, 1) be partitioned into two subdomains Ω1 = (−1, 0) and Ω2 = (0, 1)
such that κ|Ω1 = α and κ|Ω2 = 1 with positive parameter α. The exact solution
of (4.62) with f ≡ 1 is

u(x) =

{
a1(1 + x)2 + b1(1 + x) if x ∈ Ω1,

a2(x − 1)2 + b2(x− 1) if x ∈ Ω2,

where a1 = − 1
2α , a2 = − 1

2 , b1 = 1+3α
2α(1+α) , and b2 = − α+3

2(1+α) . Figure 4.4 presents
the exact solutions obtained with α = 0.5 (mild diffusion heterogeneity) and
α = 0.01 (strong diffusion heterogeneity). As expected, the exact solution is
only continuous at x = 0, but not differentiable, and the jump in the derivative
of the exact solution is more pronounced in the case of strong diffusion hetero-
geneity. Interestingly, the maximum value attained by the exact solution in Ω
is substantially affected by the diffusion heterogeneity.

4.5.1.2 Two-Dimensional Example

In dimension d ≥ 2, discontinuities in the diffusion coefficient can cause severe
singularities in the exact solution. Exact solutions of two-dimensional heteroge-
neous diffusion problems with zero right-hand side are explicitly constructed by
Kellogg [210]. A typical situation is the case where Ω = (−1, 1)2 is divided into
four quadrants, and the diffusion coefficient takes the value κ1 in the first and
third quadrants and the value κ2 in the second and fourth quadrants. Then,
it is possible to construct an exact solution with zero source term and suitable
nonhomogeneous Dirichlet boundary conditions such that, in polar coordinates,
u(r, θ) = rγv(θ) with a smooth function v. The exponent γ > 0 can be made as
small as desired by taking large values of the ratio κ1/κ2. Figure 4.5 illustrates
the exact solution for κ1/κ2 = 5 (left) and κ1/κ2 = 100 (right). In dimension 2,
regularity results take the form u ∈ H1+ε(Ω) with ε > 0 but arbitrary small. In
dimension 3, regularity results have been obtained by Nicaise and Sändig [247]
in some particular situations.
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Fig. 4.5: Exact solution for heterogeneous diffusion problem; Ω = (−1, 1)2 is
divided into four quadrants, and the diffusion coefficient takes the value κ1 in
the first and third quadrants and the value κ2 in the second and fourth quadrants;
left : κ1/κ2 = 5; right : κ1/κ2 = 100 (courtesy M. Vohralík)

4.5.2 Discretization
We aim at approximating the exact solution u of (4.62) by a dG method using
the discrete space

Vh := �k
d(Th),

where �k
d(Th) is defined by (1.15) with polynomial degree k ≥ 1 and Th belonging

to an admissible mesh sequence. We consider the discrete problem:

Find uh ∈ Vh s.t. aswip
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh, (4.63)

with the discrete bilinear form aswip
h yet to be designed.

4.5.2.1 Mesh Compatibility

An important assumption on the mesh sequence TH := (Th)h∈H is its compati-
bility with the partition PΩ.

Assumption 4.45 (Mesh compatibility). We suppose that the admissible mesh
sequence TH is such that, for each h ∈ H, each T ∈ Th is a subset of only one set
Ωi of the partition PΩ. In this situation, the meshes are said to be compatible
with the partition PΩ.

An example of compatible mesh is presented in Fig. 4.6. The motivation for
the above assumption is to prevent jumps of the diffusion coefficient κ to occur
inside mesh elements. Indeed, owing to Assumption 4.43, the diffusion coefficient
is piecewise constant on each mesh Th. This fact is often used in what follows.
The present setting can be enlarged, at the price of additional technicalities,
by assuming that the diffusion coefficient is piecewise smooth (e.g., piecewise
Lipschitz continuous). However, it is not reasonable to envisage a high-order dG
method to approximate an heterogeneous diffusion problem if the mesh is not
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Fig. 4.6: Partition PΩ (left) and compatible mesh (right)

compatible with the singularities of the diffusion coefficient. Indeed, the exact
solution is not expected to be sufficiently smooth across these singularities to
exploit the local degrees of freedom in the polynomial space.

4.5.2.2 Weighted Averages

While we keep Definitions 1.17 and 4.2 for interface and boundary jumps respec-
tively, it is convenient to introduce weighted averages.

Definition 4.46 (Weighted averages). To any interface F ∈ F i
h with F =

∂T1 ∩ ∂T2, we assign two nonnegative real numbers ωT1,F and ωT2,F such that

ωT1,F + ωT2,F = 1.

Then, for any scalar-valued function v defined on Ω that is smooth enough to
admit a possibly two-valued trace on all F ∈ F i

h, we define its weighted average
on F such that, for a.e. x ∈ F ,

{{v}}ω,F (x) := ωT1,F v|T1(x) + ωT2,F v|T2(x).

On boundary faces F ∈ Fb
h with F = ∂T ∩ ∂Ω, we set {{v}}ω,F (x) := v|T (x).

When v is vector-valued, the weighted average operator acts componentwise
on the function v. Whenever no confusion can arise, the subscript F and the
variable x are omitted and we simply write {{v}}ω .

Clearly, the usual (arithmetic) average of Definition 1.17 at interfaces corre-
sponds to the particular choice ωT1,F = ωT2,F = 1/2. Henceforth, we consider
a specific diffusion-dependent choice for the weights, namely, for all F ∈ F i

h,
F = ∂T1 ∩ ∂T2,

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
,

where κi = κ|Ti , i ∈ {1, 2}. In particular, the case of homogeneous diffusion
yields the usual (arithmetic) averages.
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4.5.2.3 The SWIP Bilinear Form

In the context of heterogeneous diffusion problems, we modify the SIP bilinear
form defined by (4.12) as follows: For all (vh, yh) ∈ Vh × Vh,

aswip
h (vh, yh) :=

∫

Ω

κ∇hvh·∇hyh +
∑

F∈Fh

η
γκ,F

hF

∫

F

�vh��yh� (4.64)

−
∑

F∈Fh

∫

F

({{κ∇hvh}}ω·nF �yh� + �vh�{{κ∇hyh}}ω ·nF ) .

The quantity η > 0 denotes a user-dependent penalty parameter which is inde-
pendent of the diffusion coefficient, while the diffusion-dependent penalty param-
eter γκ,F is such that for all F ∈ F i

h, F = ∂T1 ∩ ∂T2,

γκ,F :=
2κ1κ2

κ1 + κ2
,

where, as above, κi = κ|Ti , i ∈ {1, 2}, while, for all F ∈ Fb
h, F = ∂T ∩ ∂Ω,

γκ,F := κ|T .

We notice that the above choice for the penalty parameter γκ,F on interfaces
corresponds to the harmonic mean of the values of the diffusion coefficient on
either side of the interface. Furthermore, we observe that, for all F ∈ F i

h,

γκ,F ≤ 2min(κ1, κ2). (4.65)

This property is used in the convergence analysis of Sect. 4.6.3 in the context of
diffusion-advection-reaction problems; cf., in particular, Remark 4.65.

The bilinear form aswip
h defined by (4.64) is termed the Symmetric Weighted

Interior Penalty (SWIP) bilinear form. It has been introduced by Dryja [136] for
heterogeneous diffusion problems and analyzed (in the more general context of
diffusion-advection-reaction problems) by Di Pietro, Ern, and Guermond [133]
and Ern, Stephansen, and Zunino [150]. The two differences with respect to
the more usual SIP bilinear form are the use of (diffusion-dependent) weighted
averages to formulate the consistency and symmetry terms and the presence
of the diffusion-dependent penalty parameter. Whenever κ is constant in Ω,
the usual (arithmetic) averages are recovered in the consistency and symmetry
terms. The possibility of using non-arithmetic averages in dG methods has been
pointed out and used in various contexts, e.g., by Stenberg [282], by Heinrich and
co-workers [188–190], and by Hansbo and Hansbo [182] in the context of unfitted
finite element methods based on Nitsche’s method. The idea of connecting the
actual value of the weights to the diffusion coefficient was also considered by
Burman and Zunino [73] in the context of mortaring techniques for a singularly
perturbed diffusion-advection equation.
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Lemma 4.47 (Reformulation of SWIP bilinear form). There holds, for all
(vh, yh) ∈ Vh × Vh,

aswip
h (vh, yh) = −

∑

T∈Th

∫

T

∇·(κ∇vh)yh +
∑

F∈Fh

η
γκ,F

hF

∫

F

�vh��yh� (4.66)

+
∑

F∈Fi
h

∫

F

�κ∇hvh�·nF {{yh}}ω −
∑

F∈Fh

∫

F

�vh�{{κ∇hyh}}ω·nF ,

where {{yh}}ω is the skew-weighted average value of yh defined as

{{yh}}ω := ωT2,F yh|T1 + ωT1,F yh|T2 .

Proof. Integrating by parts the first term in (4.64) yields
∫

Ω

κ∇hvh·∇hyh = −
∑

T∈Th

∫

T

∇·(κ∇vh)yh +
∑

T∈Th

∫

∂T

κ(∇vh·nT )yh. (4.67)

Rearranging the second term on the right-hand side as a sum over mesh faces
leads to

∑

T∈Th

∫

∂T

κ(∇vh·nT )yh =
∑

F∈Fi
h

∫

F

�(κ∇hvh)yh�·nF +
∑

F∈Fb
h

∫

F

κ(∇vh·n)yh.

We now observe that, for all F ∈ F i
h,

�(κ∇hvh)yh� = {{κ∇hvh}}ω�yh� + �κ∇hvh�{{yh}}ω.

To prove this identity, we set ai = (κ∇hvh)|Ti , bi = yh|Ti , ωi = ωTi,F , i ∈ {1, 2},
so that

�(κ∇hvh)yh� = a1b1 − a2b2

= (ω1a1 + ω2a2)(b1 − b2) + (a1 − a2)(ω2b1 + ω1b2)
= {{κ∇hvh}}ω�yh� + �κ∇hvh�{{yh}}ω,

since ω1 + ω2 = 1. As a result and accounting for boundary faces,

∑

T∈Th

∫

∂T

κ(∇vh·nT )yh =
∑

F∈Fh

∫

F

{{κ∇hvh}}ω·nF �yh�+
∑

F∈Fi
h

∫

F

�κ∇hvh�·nF {{yh}}ω.

Combining this expression with (4.64) and (4.67) yields the assertion.

4.5.3 Error Estimates for Smooth Solutions
In this section, we present the convergence analysis for the discrete prob-
lem (4.63) in the case where the exact solution is smooth enough to match the
following assumption.
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Assumption 4.48 (Regularity of exact solution and space V∗). We assume that
the exact solution u is such that

u ∈ V∗ := V ∩H2(PΩ).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.48 implies that, for all T ∈ Th, letting σT := −(κ∇u)|T and
σ∂T = σT ·nT on ∂T , the trace σ∂T |F is in L2(F ) for all F ∈ FT . Using
Lemma 1.23 for the jumps of the potential and proceeding as in the proof of
Lemma 1.24 for the jumps of the diffusive flux, we infer that the exact solution
satisfies

�u� = 0 ∀F ∈ Fh, (4.68a)

�κ∇u�·nF = 0 ∀F ∈ F i
h. (4.68b)

The convergence analysis is performed in the spirit of Theorem 1.35 by estab-
lishing discrete coercivity, consistency, and boundedness for aswip

h . The discrete
bilinear form aswip

h is extended to V∗h × Vh.

Lemma 4.49 (Consistency). Assume u ∈ V∗. Then, for all vh ∈ Vh,

aswip
h (u, vh) =

∫

Ω

fvh.

Proof. The result is a direct consequence of (4.66) and (4.68).

To formulate discrete stability in the context of heterogeneous diffusion, we
modify the |||·|||sip-norm considered for the Poisson problem (cf. (4.17)) as follows:
For all v ∈ V∗h,

|||v|||swip :=
(
‖κ1/2∇hv‖2

[L2(Ω)]d + |v|2J,κ

)1/2

, (4.69)

with the diffusion-dependent jump seminorm

|v|J,κ =

(
∑

F∈Fh

γκ,F

hF
‖�v�‖2

L2(F )

)1/2

. (4.70)

Before addressing the discrete coercivity of the SWIP bilinear form, we derive a
bound on the consistency term.

Lemma 4.50 (Bound on consistency term). For all (v, yh) ∈ V∗h × Vh,

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{κ∇hv}}ω·nF �yh�

∣
∣
∣
∣
∣
≤
(
∑

T∈Th

∑

F∈FT

hF ‖κ1/2∇v|T ·nF ‖2
L2(F )

)1/2

|yh|J,κ.

(4.71)
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Proof. For all F ∈ F i
h with F = ∂T1 ∩ ∂T2, ωi = ωTi,F , κi = κ|Ti , and ai =

κ
1/2

i (∇v)|Ti ·nF , i ∈ {1, 2}, the Cauchy–Schwarz inequality yields
∫

F

{{κ∇hv}}ω·nF �yh� =
∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)�yh�

≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

×
(

2(ω2
1κ1 + ω2

2κ2)
1
hF

‖�yh�‖2
L2(F )

)1/2

,

and since 2(ω2
1κ1 + ω2

2κ2) = γκ,F , we infer

∫

F

{{κ∇hv}}ω·nF �yh� ≤
(

1
2
hF (‖a1‖2

L2(F ) + ‖a2‖2
L2(F ))

)1/2

×
(
γκ,F

hF

)1/2

‖�yh�‖L2(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,

∫

F

{{κ∇hv}}ω·nF �yh� ≤ h
1/2

F ‖(κ1/2∇v)|T ·nF ‖L2(F ) ×
(
γκ,F

hF

)1/2

‖�yh�‖L2(F ).

Summing over mesh faces, using the Cauchy–Schwarz inequality, and regrouping
the face contributions for each mesh element yields the assertion.

We now establish the discrete coercivity of the SWIP bilinear form under the
usual assumption that the penalty parameter η is large enough. An important
point is that the minimal threshold on the penalty parameter is independent of
the diffusion coefficient (it is actually the same as for the Poisson problem).

Lemma 4.51 (Discrete coercivity). For all η > η with η defined in Lemma 4.12,
the SWIP bilinear form defined by (4.64) is coercive on Vh with respect to the
|||·|||swip-norm, i.e.,

∀vh ∈ Vh, aswip
h (vh, vh) ≥ Cη|||vh|||2swip,

with Cη defined in Lemma 4.12.

Proof. Let vh ∈ Vh. Owing to the discrete trace inequality (1.40), the fact that
hF ≤ hT for all T ∈ Th and for all F ∈ FT , and since κ is piecewise constant on
Th, we infer from the bound (4.71) that

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{{κ∇hvh}}ω ·nF �vh�

∣
∣
∣
∣
∣
≤ CtrN

1/2

∂ ‖κ1/2∇hvh‖[L2(Ω)]d |vh|J,κ.

We conclude as in the proof of Lemma 4.12.
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A straightforward consequence of the Lax–Milgram Lemma is that the dis-
crete problem (4.63) is well-posed.

Our last step in the convergence analysis is to prove the boundedness of the
SWIP bilinear form. To formulate this result, we define on V∗h the norm

|||v|||swip,∗ :=

(

|||v|||2swip +
∑

T∈Th

hT ‖κ1/2∇v|T ·nT‖2
L2(∂T )

)1/2

.

Lemma 4.52 (Boundedness). There is Cbnd, independent of h and κ, such that

∀(v, yh) ∈ V∗h × Vh, aswip
h (v, yh) ≤ Cbnd|||v|||swip,∗|||yh|||swip.

Proof. Let (v, yh) ∈ V∗h × Vh and observe that

aswip
h (v, yh) :=

∫

Ω

κ∇hv·∇hyh +
∑

F∈Fh

η
γκ,F

hF

∫

F

�v��yh�

−
∑

F∈Fh

∫

F

{{κ∇hv}}ω·nF �yh� −
∑

F∈Fh

∫

F

�v�{{κ∇hyh}}ω·nF

= T1 + T2 + T3 + T4. (4.72)

Using the Cauchy–Schwarz inequality yields

|T1 + T2| ≤ (1 + η)|||v|||swip|||yh|||swip.

Moreover, owing to the bound (4.71),

|T3| ≤ |||v|||swip,∗|yh|J,κ ≤ |||v|||swip,∗|||yh|||swip

by definition of the |||·|||swip,∗-norm. Finally, still owing to the bound (4.71) and
proceeding as in the proof of Lemma 4.51 leads to

|T4| ≤ CtrN
1/2

∂ |v|J,κ‖κ1/2∇hyh‖[L2(Ω)]d ≤ CtrN
1/2

∂ |||v|||swip|||yh|||swip.

Collecting the above bounds yields the assertion with Cbnd = 2+η+CtrN
1/2

∂ .

A straightforward consequence of Theorem 1.35, together with Lemmata 1.58
and 1.59, is the following convergence result.

Theorem 4.53 (|||·|||swip-norm error estimate and convergence rate). Let u ∈
V∗ solve (4.62). Let uh solve (4.63) with aswip

h defined by (4.64) and penalty
parameter as in Lemma 4.12. Then, there is C, independent of h and κ, such
that

|||u − uh|||swip ≤ C inf
vh∈Vh

|||u − vh|||swip,∗.

Moreover, if u ∈ Hk+1(PΩ),

|||u− uh|||swip ≤ Cu‖κ‖1/2

L∞(Ω)h
k,

with Cu = C‖u‖Hk+1(PΩ) and C independent of h and κ.
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Since the quantity C in the error estimates is independent of the diffusion
coefficient κ, the approximation method is robust with respect to diffusion het-
erogeneities (observing that the |||·|||swip-norm depends on κ). The convergence
rate in the |||·|||swip-norm is optimal, both for the broken gradient and the jump
seminorm.

4.5.4 Error Estimates for Low-Regularity Solutions
In this section, following [132], we present the convergence analysis for the dis-
crete problem (4.63) for an exact solution with low-regularity.

Assumption 4.54 (Regularity of exact solution and space V∗). We assume that
d ≥ 2 and that there is p ∈ ( 2d

d+2 , 2] such that, for the exact solution u,

u ∈ V∗ := V ∩W 2,p(PΩ).

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Assumption 4.48 implies that, for all T ∈ Th, letting σT := −(κ∇u)|T and
σ∂T = σT ·nT on ∂T , the trace σ∂T |F is in Lp(F ) for all F ∈ FT . We adapt
the analysis of Sect. 4.2.5 for the Poisson problem to the present setting with
heterogeneous diffusion.

We already know that discrete coercivity holds true provided the penalty
parameter is chosen as in Lemma 4.12. Moreover, since the jump condi-
tions (4.68) still hold true, consistency can be asserted. Thus, it only remains
to prove boundedness, which we do by redefining on V∗h the |||·|||swip,∗-norm as

|||v|||swip,∗ :=

(

|||v|||pswip +
∑

T∈Th

h
1+γp

T ‖κ1/2∇v|T ·nT‖p
Lp(∂T )

)1/p

, (4.73)

where γp := 1
2d(p − 2). We observe that, for p = 2, we recover the previous

definition of the |||·|||swip,∗-norm. The value for γp is motivated by the following
boundedness result.

Lemma 4.55 (Boundedness). There is Cbnd, independent of h and κ, such that

∀(v,wh) ∈ V∗h × Vh, aswip
h (v,wh) ≤ Cbnd|||v|||swip,∗|||wh|||swip.

Proof. Let (v,wh) ∈ V∗h × Vh. We need to bound the four terms T1, . . . ,T4

in (4.72). Proceeding as in the proof of Lemma 4.52, we obtain

|T1 + T3 + T4| ≤ C|||v|||swip|||wh|||swip,

with C independent of h and κ, so that it only remains to bound the consistency
term T2. For all F ∈ F i

h with F = ∂T1∩∂T2, and ai = (κ1/2∇v)|Ti ·nF , i ∈ {1, 2},
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Hölder’s inequality yields
∫

F

{{κ∇hv}}ω ·nF �wh� =
∫

F

(ω1κ
1/2

1 a1 + ω2κ
1/2

2 a2)�wh�

≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

× 21/p

(
(ωq

1κ
q/2

1 + ωq
2κ

q/2

2 )h−qβp

F ‖�wh�‖q
Lq(F )

)1/q

,

with βp = 1+γp

p and q = p
p−1 . Since q ≥ 2, we obtain

(ωq
1κ

q/2

1 +ωq
2κ

q/2

2 ) =
(κ1κ2)

q/2

(κ1 + κ2)q
(κ

q/2

1 +κ
q/2

2 ) ≤ (κ1κ2)
q/2

(κ1 + κ2)q
(κ1 +κ2)

q/2 = 2−q/2γ
q/2

κ,F .

Hence, since 21/p−1/2 ≤ 2,

∫

F

{{κ∇hv}}ω·nF �wh� ≤
(

1
2
h

1+γp

F (‖a1‖p
Lp(F ) + ‖a2‖p

Lp(F ))
)1/p

× 2γ
1/2

κ,Fh
−βp

F ‖�wh�‖Lq(F ).

Moreover, for all F ∈ Fb
h with F = ∂T ∩ ∂Ω,

∫

F

{{κ∇hv}}ω·nF �wh� ≤
(
h

1+γp

F ‖κ1/2∇v|T ·nF ‖p
Lp(F )

)1/p

γ
1/2

κ,Fh
−βp

F ‖�wh�‖Lq(F ).

We can now conclude as in the proof of Lemma 4.30.

A straightforward consequence of Theorem 1.35 is the following convergence
result. The achieved convergence rates are optimal, both for the broken gradient
and the jump seminorm.

Theorem 4.56 (|||·|||swip-norm error estimate and convergence rate). Let u ∈
V∗ solve (4.62). Let uh solve (4.63) with aswip

h defined by (4.64) and penalty
parameter as in Lemma 4.12. Then, there is C, independent of h and κ, such
that

|||u − uh|||swip ≤ C inf
vh∈Vh

|||u − vh|||swip,∗,

where the |||·|||swip,∗-norm is defined by (4.73). Moreover, under Assumption 4.31,
there holds

|||u − uh|||swip ≤ Cuh
αp ,

with Cu = C|u|W 2,p(PΩ), C independent of h and κ, and αp = d+2
2 − d

p > 0.
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4.5.5 Numerical Fluxes
As for the Poisson problem in Sect. 4.3.4, it is possible to derive a local formula-
tion of the discrete problem (4.63) by localizing test functions to mesh elements.
To this purpose, we first modify the definition of the lifting operators and discrete
gradients (cf. Sects. 4.3.1 and 4.3.2) to account for diffusion heterogeneities. For
any face F ∈ Fh and for any integer l ≥ 0, we define the (local) lifting operator
rl
F,κ : L2(F ) → [�l

d(Th)]d as follows: For all ϕ ∈ L2(F ),
∫

Ω

κ rl
F,κ(ϕ)·τh =

∫

F

{{κτh}}ω·nFϕ ∀τh ∈ [�l
d(Th)]d. (4.74)

Clearly, if κ does not jump across F (so that κ is constant in the support
of rl

F,κ(ϕ)), definitions (4.37) and (4.74) produce the same result, but this is
no longer the case in the presence of diffusion heterogeneities. Then, for any
function v ∈ H1(Th), we define the (global) lifting of its interface and boundary
jumps as

Rl
h,κ(�v�) :=

∑

F∈Fh

rl
F,κ(�v�) ∈ [�l

d(Th)]d, (4.75)

being implicitly understood that rl
F,κ acts on the function �v�F (which is in

L2(F ) since v ∈ H1(Th)). If κ is constant in Ω, definitions (4.40) and (4.75)
produce the same result. Finally, the definition (4.44) of the discrete gradient is
extended to the heterogeneous diffusion case by setting, for all v ∈ H1(Th),

Gl
h,κ(v) := ∇hv − Rl

h,κ(�v�) ∈ [L2(Ω)]d.

Let T ∈ Th and let ξ ∈ �k
d(T ). Then, using vh = ξχT as test function in (4.63)

where χT is the characteristic function of T , proceeding as in Sect. 4.3.4, and
using the above definitions, we infer

∫

T

κGl
h,κ(uh)·∇ξ +

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ,

with l ∈ {k − 1, k}, εT,F = nT ·nF , and the numerical flux φF (uh) defined as

φF (uh) := −{{κ∇huh}}ω ·nF + η
γκ,F

hF
�uh�.

Remark 4.57 (Harmonic means). For all F ∈ F i
h with F = ∂T1 ∩ ∂T2 and

κi = κ|Ti , i ∈ {1, 2}, we observe that

−{{κ∇huh}}ω·nF = − κ2

κ1 + κ2
κ1(∇uh)|T1 ·nF − κ1

κ1 + κ2
κ2(∇uh)|T2 ·nF

= − 2κ1κ2

κ1 + κ2
{{∇huh}}·nF .

Thus, recalling that the jump seminorm of uh tends to zero as h→ 0, the leading-
order term in the numerical flux φF (uh) uses the harmonic mean of the diffusion
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coefficient. A motivation for using harmonic means can be given in the context
of heat transfer where κ represents the thermal conductivity, u the temperature,
and −κ∇u the heat flux. Consider an interface between a poorly conductive
medium (where κ is relatively small) and a highly conductive medium (where κ
is much larger), so that, at this interface, the harmonic mean of κ is close to the
value in the poorly conductive medium. Then, the heat transfer through this
interface is essentially governed by the poorly conductive medium.

4.5.6 Anisotropy
The above developments can be extended to the anisotropic case, that is, when
for a.e. x ∈ Ω, κ(x) is a symmetric tensor in �d,d. Assuming that the lowest
eigenvalue of κ is uniformly bounded from below in Ω by a positive real number,
the model problem (4.62) is well-posed.

The SWIP bilinear form defined by (4.64) can be used to approximate hetero-
geneous anisotropic diffusion problems. Specifically, the weights {ωT1,F , ωT2,F }
and the penalty parameter γκ,F are evaluated on any interface F ∈ F i

h by using
the normal component of the diffusion tensor on both sides of that interface,
that is, for all F ∈ F i

h, F = ∂T1 ∩ ∂T2, we now let κi := nt
F (κ|Ti)nF , i ∈ {1, 2},

and we set as before

ωT1,F :=
κ2

κ1 + κ2
, ωT2,F :=

κ1

κ1 + κ2
, γκ,F :=

2κ1κ2

κ1 + κ2
.

Moreover, for all F ∈ Fb
h, F = ∂T ∩ ∂Ω, we set γκ,F := nt(κ|T )n. With these

modifications, the convergence analysis proceeds as in the isotropic case. Since
κ takes symmetric positive definite values, it is in particular possible to define
κ1/2 as the symmetric positive definite matrix such that κ1/2κ1/2 = κ. We refer
the reader to [133,150] for a detailed presentation of the convergence analysis.

4.6 Diffusion-Advection-Reaction
In this section, we consider a model diffusion-advection-reaction problem. The
design and analysis of the dG approximation combine the ideas of Sect. 4.5 to
handle the diffusion part and those of Sect. 2.3 to handle the advection-reaction
part. One issue of particular interest is the robustness of the approximation in
the singularly perturbed regime where advection-reaction effects dominate over
diffusion effects. In particular, we address at the end of this section the situation
where the diffusion coefficient can actually vanish locally, so that a first-order
PDE in some part of the domain is coupled to an elliptic PDE in the remaining
part.

4.6.1 The Continuous Setting
Let κ ∈ L∞(Ω) and assume that κ is uniformly bounded from below in Ω by a
positive real number; the singular limit where κ can actually vanish locally in
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some parts of Ω is addressed in Sect. 4.6.4. Moreover, we keep Assumption 4.43
so as to localize possible jumps in the diffusion coefficient. Let β ∈ [Lip(Ω)]d

be the advective velocity and let μ̃ ∈ L∞(Ω) be the reaction coefficient. We are
interested in the problem:

∇·(−κ∇u+ βu) + μ̃u = f in Ω,
u = 0 on ∂Ω,

with source term f ∈ L2(Ω). The weak form of this problem reads

Find u ∈ V s.t. a(u, v) =
∫

Ω

fv for all v ∈ V , (4.76)

with energy space V = H1
0 (Ω) and bilinear form

a(u, v) :=
∫

Ω

κ∇u·∇v −
∫

Ω

uβ·∇v +
∫

Ω

μ̃uv.

We observe that the advective term is written in conservative form. The �d-
valued function

Φ(u) = −κ∇u+ βu

is termed the diffusive-advective flux. By construction, Φ(u) is in H(div;Ω).
The diffusion-advection-reaction can be rewritten as

−∇·Φ(u) + μ̃u = f,

and the bilinear form a as

a(u, v) =
∫

Ω

−Φ(u)·∇v +
∫

Ω

μ̃uv. (4.77)

Since u ∈ H1(Ω) and β is smooth, it is equivalent to consider the advective
term in its non-conservative form, i.e.,

−∇·(κ∇u) + β·∇u+ μu = f,

with μ := μ̃+∇·β. However, if κ vanishes locally, the exact solution can feature
discontinuities, and the two forms are no longer equivalent. The conservative
form is more natural from a physical viewpoint since it expresses a basic conser-
vation principle. Indeed, integrating the diffusion-advection-reaction equation
over a control volume V ⊂ Ω, we obtain formally

∫

∂V

Φ(u)·nV +
∫

V

μ̃u =
∫

V

f,

where nV denotes the outward normal to ∂V . This equation expresses the fact
that the variation of u in the control volume V due to the diffusive and advective
exchanges through ∂V plus the quantity of u generated/depleted by reaction over
V is equal to the integral of the source term f over V .



4.6. Diffusion-Advection-Reaction 165

As in Sect. 2.1, we assume that there is a real number μ0 > 0 such that

Λ := μ̃+
1
2
∇·β = μ− 1

2
∇·β ≥ μ0 a.e. in Ω.

Hence, using integration by parts, the bilinear form a is coercive on V ,

∀v ∈ V, a(v, v) = ‖κ1/2∇v‖2
[L2(Ω)]d + ‖Λ1/2v‖2

L2(Ω).

Owing to the Lax–Milgram Lemma, (4.76) is therefore well-posed.

4.6.2 Discretization
We aim at approximating the exact solution u of (4.76) by a dG method using
the discrete space

Vh := �k
d(Th),

where �k
d(Th) is defined by (1.15) with polynomial degree k ≥ 1 and Th belonging

to an admissible mesh sequence. We keep Assumption 4.45 on the compatibil-
ity of the meshes with the partition PΩ associated with the diffusion coeffi-
cient κ. Moreover, concerning the regularity of the exact solution, we assume
that (cf. Assumption 4.48)

u ∈ V∗ := V ∩H2(PΩ),

and we set, as before, V∗h = V∗ + Vh. It is also possible to analyze the
dG approximation in the case of low-regularity exact solutions matching only
Assumption 4.54.

The dG method considered herein combines the SWIP bilinear form of
Sect. 4.5 to handle the diffusion term and the upwind dG method of Sect. 2.3 to
handle the advection-reaction terms. Thus, we let, for all (v,wh) ∈ V∗h × Vh,

adar
h (v,wh) = aswip

h (v,wh) + aupw
h (v,wh), (4.78)

where (cf. (4.64))

aswip
h (v,wh) :=

∫

Ω

κ∇hv·∇hwh +
∑

F∈Fh

η
γκ,F

hF

∫

F

�v��wh�

−
∑

F∈Fh

∫

F

({{κ∇hv}}ω·nF �wh� + �v�{{κ∇hwh}}ω ·nF ) ,

and (cf. (2.34))

aupw
h (v,wh) =

∫

Ω

[μ̃vwh + ∇h·(βv)wh] +
∫

∂Ω

(β·n)	vwh

−
∑

F∈Fi
h

∫

F

(β·nF )�v�{{wh}} +
∑

F∈Fi
h

∫

F

γβ,F �v��wh�,
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or equivalently, after integrating by parts the advective derivative (cf. (2.35)),

aupw
h (v,wh) =

∫

Ω

[μ̃vwh − v(β·∇hwh)] +
∫

∂Ω

(β·n)⊕vwh

+
∑

F∈Fi
h

∫

F

(β·nF ){{v}}�wh� +
∑

F∈Fi
h

∫

F

γβ,F �v��wh�.

In what follows, we set

γβ,F :=
1
2
|β·nF |.

It is also possible to multiply γβ,F by a positive user-dependent parameter as
in Sect. 2.3 (cf., e.g., (2.33)), but the present choice is needed for consistency
reasons in Sect. 4.6.4 in the singular limit of locally vanishing diffusion; cf.
Remark 4.69. We also observe that the penalty terms can be grouped to obtain

∑

F∈Fi
h

(

η
γκ,F

hF
+

1
2
|β·nF |

)∫

F

�v��wh�.

In the diffusion-dominated regime where hF |β·nF | � γκ,F , the amount of penalty
introduced by the SWIP bilinear form suffices for discrete stability, and it is
possible to drop upwinding for the advective terms (that is, to approximate
the advective term using centered fluxes). The ratio hF |β·nF |/γκ,F is termed a
local Péclet number. In practice, local Péclet numbers are often large, generally
because the diffusion coefficient is (locally) small, so that upwinding is necessary.
In this situation, the exact solution features inner and outflow layers where it
varies quite sharply, and practical meshes may not be fine enough to resolve
these layers; we refer the reader, e.g., to Roos, Stynes, and Tobiska [274] for a
general overview on singularly perturbed diffusion-advection-reaction problems
and stabilized finite element approximations.

4.6.3 Error Estimates
To approximate the model problem (4.76), we consider the discrete problem:

Find uh ∈ Vh s.t. adar
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh, (4.79)

where adar
h is the discrete bilinear form defined by (4.78). The convergence anal-

ysis is performed by establishing discrete stability, consistency, and boundedness
for adar

h . We begin with consistency.

Lemma 4.58 (Consistency). Assume u ∈ V∗. Then, for all wh ∈ Vh,

adar
h (u,wh) =

∫

Ω

fwh.
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Proof. The proof of Lemma 4.49 yields, for all wh ∈ Vh,

aswip
h (u,wh) =

∑

T∈Th

∫

T

∇·(−κ∇u)wh.

Moreover, adapting the proof of Lemma 2.27, we infer

aupw
h (u,wh) =

∑

T∈Th

∫

T

∇·(βu)wh +
∫

Ω

μ̃uwh.

Summing up and observing that ∇·(−κ∇u + βu) + μ̃u = f in all T ∈ Th yields
the assertion.

4.6.3.1 Analysis Based on Discrete Coercivity

The convergence analysis is performed in the spirit of Theorem 2.31 by com-
bining consistency (cf. Lemma 4.58) with discrete coercivity and boundedness
on orthogonal subscales for the discrete bilinear form adar

h . We recall that in
the context of the advection-reaction equation, we introduced in Sect. 2.1 the
reference time τc and the reference velocity βc such that

τc := {max(‖μ‖L∞(Ω), Lβ)}−1, βc := ‖β‖[L∞(Ω)]d ,

where Lβ is the Lipschitz module of β (cf. (2.5)). We define on V∗h the norm

|||v|||da
 :=
(
|||v|||2swip + |v|2β + τ−1

c ‖v‖2
L2(Ω)

)1/2

, (4.80)

where the |||·|||swip-norm is defined by (4.69) and (4.70) while the |·|β-seminorm
is defined as

|v|β :=

⎛

⎝
∫

∂Ω

1
2
|β·n|v2 +

∑

F∈Fi
h

∫

F

1
2
|β·nF |�v�2

⎞

⎠

1/2

.

The two rightmost terms in (4.80) form the stability norm (cf. (2.37)) considered
in Sect. 2.3.2 for the advection-reaction equation.

Lemma 4.59 (Discrete coercivity). For all η > η with η defined in Lemma 4.12,
the discrete bilinear form adar

h defined by (4.78) is coercive on Vh, i.e.,

∀vh ∈ Vh, adar
h (vh, vh) ≥ min(1, τcμ0, Cη)|||vh|||2da
,

with Cη defined in Lemma 4.12.

Proof. Let vh ∈ Vh. Lemma 4.51 yields

aswip
h (vh, vh) ≥ Cη|||vh|||2swip.

Moreover, owing to Lemma 2.27,

aupw
h (vh, vh) ≥ min(1, τcμ0)

(
|vh|2β + τ−1

c ‖vh‖2
L2(Ω)

)
.

Combining these lower bounds yields the assertion.
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A straightforward consequence of the Lax–Milgram Lemma is that the dis-
crete problem (4.79) is well-posed.

The last ingredient is boundedness on orthogonal subscales for the discrete
bilinear form adar

h . To this purpose, we define on V∗h the norm

|||v|||da
,∗ :=

(

|||v|||2da
 +
∑

T∈Th

βc‖v‖2
L2(∂T ) +

∑

T∈Th

hT ‖κ1/2∇v·nT ‖2
L2(∂T )

)1/2

.

Lemma 4.60 (Boundedness on orthogonal subscales). There is Cbnd, indepen-
dent of h and the data κ, β, and μ̃, such that

∀(v,wh) ∈ V∗ × Vh, adar
h (v − πhv,wh) ≤ Cbnd|||v − πhv|||da
,∗|||wh|||da
,

where πh denotes the L2-orthogonal projection onto Vh.

Proof. Combine Lemma 4.52 with Lemma 2.30. (The fact that the first argument
in adar

h is L2-orthogonal to Vh is only needed to apply Lemma 2.30.)

Proceeding as in the proof of Theorem 2.31 leads to the following error esti-
mate.

Theorem 4.61 (Error estimate). Let u ∈ V∗ solve (4.76). Let uh solve (4.79)
with adar

h defined by (4.78) and penalty parameter as in Lemma 4.12. Then, there
is C, independent of h and the data κ, β, and μ̃, such that

|||u − uh|||da
 ≤ Cmax(1, τ−1
c μ−1

0 , C−1
η )|||u− πhu|||da
,∗. (4.81)

A convergence rate can be inferred from (4.81) using Lemmata 1.58 and 1.59
if the exact solution is smooth enough. Namely, if u ∈ Hk+1(Ω), (4.81) yields

|||u − uh|||da
 ≤ C ′
u max(1, τ−1

c μ−1
0 , C−1

η )(κ1/2 + β
1/2
c h

1/2 + τ−
1/2

c h)hk , (4.82)

with κ := ‖κ‖L∞(Ω), C ′
u = C ′‖u‖Hk+1(Ω), and C ′ independent of h and the data

κ, β, and μ̃. The estimate can be simplified by dropping the last term under
the reasonable assumption that h ≤ βcτc; cf. (2.41). Moreover, observing that
hβc/κ represents a Péclet number and recalling the definition (4.80) of the |||·|||da
-
norm, we conclude that in the advection-dominated regime, the convergence rate
of |u − uh|β + τ

−1/2
c ‖u − uh‖L2(Ω) is of order hk+1/2 (as for the pure advection-

reaction problem; cf. Sect. 2.3.2), while in the diffusion-dominated regime, the
convergence rate of |||u−uh|||swip is of order hk (as for the purely diffusive problem;
cf. Sect. 4.5.3).

4.6.3.2 Analysis Based on Discrete Inf-Sup Condition

As shown in [133,150], the above convergence analysis can be improved by includ-
ing a bound on the advective derivative of the error. To this purpose, we need to
tighten the discrete stability norm. Indeed, using the |||·|||swip-norm contribution
to the |||·|||da
-norm to bound the advective derivative leads to an error bound
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that scales unfavorably with the Péclet number. Instead, we define on V∗h the
norm

|||v|||da� :=

(

|||v|||2da
 +
∑

T∈Th

β−1
c hT ‖β·∇v‖2

L2(T )

)1/2

.

As in Sect. 2.3.3, asserting discrete stability in the |||·|||da�-norm requires proving
a discrete inf-sup condition.

Lemma 4.62 (Discrete inf-sup stability). There is Csta, independent of h and
the data κ, β, and μ̃, such that

∀vh ∈ Vh, Csta min(1, τcμ0, Cη)|||vh|||da� ≤ sup
wh∈Vh\{0}

adar
h (vh, wh)
|||wh|||da�

.

Proof. The proof is similar to that of Lemma 2.35. Let vh ∈ Vh and set � =
supwh∈Vh\{0}

adar
h (vh,wh)
|||wh|||da�

. Lemma 4.59 implies that

min(1, τcμ0, Cη)|||vh|||2da
 ≤ adar
h (vh, vh) ≤ �|||vh|||da�.

To bound the contribution of the advective derivative in the expression for
|||vh|||da�, we consider the function wh ∈ Vh such that, for all T ∈ Th, wh|T =
β−1

c hT 〈β〉T ·∇vh where 〈β〉T denotes the mean value of β over T . To alleviate
the notation, we abbreviate as a � b the inequality a ≤ Cb with positive C
independent of h and the data κ, β, and μ̃.
(i) Let us bound |||wh|||da� by |||vh|||da�. As in the proof of Lemma 2.35, we obtain

|wh|2β + τ−1
c ‖wh‖2

L2(Ω) +
∑

T∈Th

β−1
c hT ‖β·∇wh‖2

L2(T ) � |||vh|||2da�.

Moreover, owing to the inverse inequality (1.36) and the fact that κ|T and 〈β〉T
are constant in any mesh element T ∈ Th,

‖κ1/2∇hwh‖2
[L2(Ω)]d =

∑

T∈Th

κ|Tβ−2
c h2

T ‖∇(〈β〉T ·∇vh)‖2
L2(T )

�
∑

T∈Th

κ|T ‖∇vh‖2
[L2(T )]d = ‖κ1/2∇hvh‖2

[L2(Ω)]d .

In addition, for all F ∈ F i
h with F = ∂T1 ∩ ∂T2,

γκ,F

hF
‖�wh�‖2

L2(F ) ≤ 2
γκ,F

hF
β−2

c

∑

i∈{1,2}
h2

Ti
‖〈β〉Ti ·(∇vh)|Ti‖2

L2(F )

�
∑

i∈{1,2}
κ|Ti‖∇vh‖2

[L2(Ti)]d
,

where we have used the discrete trace inequality (1.37), the mesh regularity, and
the bound (4.65) on γκ,F . Hence,

|wh|J,κ � ‖κ1/2∇hvh‖[L2(Ω)]d ,
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and collecting the above bounds yields |||wh|||da� � |||vh|||da�.
(ii) Proceeding as in step (ii) of the proof of Lemma 2.35, we observe that

∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) = adar
h (vh, wh) − aswip

h (vh, wh) −
∫

Ω

μvhwh

+
∑

T∈Th

β−1
c hT

∫

T

(β·∇vh)(β − 〈β〉T )·∇vh

−
∫

∂Ω

(β·n)	vhwh +
∑

F∈Fi
h

∫

F

(β·nF )�vh�{{wh}}

−
∑

F∈Fi
h

∫

F

1
2
|β·nF |�vh��wh� = T1 + . . . + T7.

Clearly, |T1| ≤ �|||wh|||da� � �|||vh|||da� and

|T2| = |aswip
h (vh, wh)| � |||vh|||da
|||wh|||da
 � |||vh|||da
|||vh|||da�.

Finally, the terms T3, . . . ,T7 are those already bounded in the proof of
Lemma 2.35. As a result,

∑

T∈Th

β−1
c hT ‖β·∇vh‖2

L2(T ) � �|||vh|||da� + |||vh|||da
|||vh|||da� + |||vh|||2da
.

We conclude as in the proof of Lemma 2.35.

To formulate a boundedness result, we define on V∗h the norm

|||v|||da�,∗ :=

(

|||v|||2da� +
∑

T∈Th

βc

(
h−1

T ‖v‖2
L2(T ) + ‖v‖2

L2(∂T )

)

+
∑

T∈Th

hT ‖κ1/2∇v·nT‖2
L2(∂T )

)1/2

.

Lemma 4.63 (Boundedness). There is Cbnd, independent of h and the data κ,
β, and μ̃, such that

∀(v,wh) ∈ V∗h × Vh, adar
h (v,wh) ≤ Cbnd|||v|||da�,∗|||wh|||da�.

Proof. Combine Lemma 4.52 with Lemma 2.36.

A straightforward consequence of Theorem 1.35 is the following error
estimate.

Theorem 4.64 (Error estimate). Under the hypotheses of Theorem 4.61, there
is C, independent of h and the data κ, β, and μ̃, such that

|||u − uh|||da� ≤ Cmax(1, τ−1
c μ−1

0 , C−1
η ) inf

vh∈Vh

|||u− vh|||da�,∗. (4.83)
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Finally, a convergence rate can be inferred from (4.83) using Lemmata 1.58
and 1.59 if u ∈ Hk+1(Ω) since (4.83) yields an error estimate with the same
upper bound as in (4.82), namely

|||u− uh|||da� ≤ C ′
u max(1, τ−1

c μ−1
0 , C−1

η )(κ1/2 + β
1/2
c h

1/2 + τ−
1/2

c h)hk .

Thus, in the advection-dominated regime, the convergence rate of |u − uh|β +
τ
−1/2
c ‖u − uh‖L2(Ω) + (

∑
T∈Th

β−1
c hT ‖β·∇v‖2

L2(T ))
1/2 is of order hk+1/2 (as for

the pure advection-reaction problem; cf. Sect. 2.3.3), while in the diffusion-
dominated regime, the convergence rate of |||u−uh|||swip is of order hk (as for the
purely diffusive problem; cf. Sect. 4.5.3).

Remark 4.65 (Harmonic means in the penalty term). The bound (4.65) plays
an important role in the proof of Lemma 4.62 since it allows one to bound the
jump seminorm |wh|J,κ. We observe that this bound results from the fact that
the harmonic mean of the diffusion coefficient is used to penalize jumps across
interfaces in the SWIP bilinear form.

Remark 4.66 (Numerical fluxes). A local formulation using numerical fluxes can
be derived for the discrete problem (4.79) by combining the results of Sect. 4.5.5
for the diffusion terms and those of Sect. 2.3.4 for the advection-reaction terms.
Specifically, letting T ∈ Th and ξ ∈ �k

d(T ), we infer (compare with (4.77))
∫

T

(κGl
h,κ(uh) − uhβ)·∇ξ +

∫

T

μ̃uhξ +
∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ,

with l ∈ {k − 1, k}, εT,F = nT ·nF , and the numerical flux φF (uh) defined as

φF (uh) :=

{
(−{{κ∇huh}}ω + β{{uh}})·nF + (η γκ,F

hF
+ 1

2 |β·nF |)�uh� if F ∈ F i
h,

−κ∇huh·n + (β·n)⊕uh + η
γκ,F

hF
uh if F ∈ Fb

h.

Remark 4.67 (Anisotropic diffusion). In the case of anisotropic diffusion, the
SWIP bilinear form is modified as discussed in Sect. 4.5.6. The convergence
analysis based on discrete coercivity can be extended to this case. However,
it is not clear how to extend the proof of Lemma 4.62 since the bound on
‖κ1/2∇hwh‖[L2(Ω)]d uses the assumption that κ is scalar-valued; see [150] for
further discussion.

4.6.4 Locally Vanishing Diffusion
In this section, we are interested in the case where κ only takes nonnegative
values in the domain Ω, a typical example being that κ vanishes in some parts
of Ω. In the anisotropic case, a more complex situation is that where κ only
takes symmetric semidefinite values, for instance because different eigenvalues
of κ vanish in different parts of Ω.
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4.6.4.1 The Continuous Setting

As before, we keep Assumption 4.43 so as to localize the jumps of κ, and we
consider the resulting partition PΩ. We say that I is a partition interface if:

(a) I has positive (d− 1)-dimensional Hausdorff measure.

(b) I is part of a hyperplane, say HI .

(c) There are distinct Ωi and Ωj belonging to PΩ such that I = HI ∩∂Ωi ∩∂Ωj .

Partition interfaces are collected into the set IΩ and points in Ω belonging to
partition interfaces are collected into the set IΩ. Of particular interest are
those partition interfaces for which the normal component of the diffusion tensor
becomes singular on one of its sides, say Ωj . Specifically, we set

I0,Ω := {I ∈ IΩ | nt
I(κ|Ωi )nI > nt

I(κ|Ωj )nI = 0},
where nI denotes a unit normal vector to I, and without loss of generality we
assume that nI points from Ωi toward Ωj . On a (partition) interface I ∈ I0,Ω,
we loosely say that the subdomain Ωi is the diffusive side and the subdomain
Ωj the nondiffusive side. Points in Ω belonging to (partition) interfaces in I0,Ω

are collected into the set I0,Ω. It is important to identify those points in I0,Ω

where the advective field flows from the diffusive side to the nondiffusive side
and to distinguish them from the remaining points, namely

I+
0,Ω := {x ∈ I0,Ω | (β·nI)(x) > 0},

I−
0,Ω := {x ∈ I0,Ω | (β·nI)(x) < 0},

and we assume that (β·nI)(x) �= 0 for a.e. x ∈ I0,Ω. Following Di Pietro, Ern, and
Guermond [133], we consider the following diffusion-advection-reaction problem
with locally vanishing diffusion

∇·(−κ∇u+ βu) + μ̃u = f in Ω \ I0,Ω, (4.84a)
u = 0 on ∂Ωκ,β , (4.84b)

where
∂Ωκ,β := {x ∈ ∂Ω | ntκn > 0 or β·n < 0},

and supplemented with the following conditions on I0,Ω:

�−κ∇u+ βu�·nI = 0 on I0,Ω, (4.85a)

�u� = 0 on I+
0,Ω. (4.85b)

We observe that (4.84b) enforces a homogeneous Dirichlet condition if ntκn > 0
(as for pure diffusion problems) or if β·n < 0 (as for advection-reaction prob-
lems). Moreover, (4.85a) enforces the continuity of the normal component of the
diffusive-advective flux on the whole partition interface I0,Ω, whereas (4.85b)
enforces the continuity of the exact solution only on I+

0,Ω, that is, where the
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advection field flows from the diffusive side toward the nondiffusive side, while
the exact solution can jump across I−

0,Ω. We also notice that combining (4.85a)
and (4.85b) yields �κ∇u�·nI = 0 across I+

0,Ω (recall that β is smooth so that its
normal component is continuous across partition interfaces). Since κ|Ωj ·nI =0
on the nondiffusive side, this yields the homogeneous Neumann condition
(κ∇u)|Ωi ·nI = 0 on the diffusive side.

The mathematical analysis of the model problem (4.84) with conditions (4.85)
can be found in [133]. We only give here a brief motivation for condition (4.85b).
In one space dimension, these conditions were derived by Gastaldi and Quar-
teroni [165], where it is proven that the solution uε of the following regularized
problem with suitable boundary conditions:

(−κu′ε + βuε)′ + μ̃uε − εu′′ε = f, (4.86)

converges in L2(Ω), as ε→ 0, to the so-called viscosity solution of (4.84a) which
satisfies conditions (4.85). As an example, let Ω = (0, 1) be partitioned into
Ω1 =

(
0, 1

3

)
, Ω2 =

(
1
3 ,

2
3

)
, and Ω3 =

(
2
3 , 1

)
and set f = 0, μ = 0, β = 1,

κ|Ω1∪Ω3 = 1, and κ|Ω2 = 0. Then, I0,Ω =
{

1
3 ,

2
3

}
with I+

0,Ω =
{

1
3

}
and I−

0,Ω =
{

2
3

}
. The viscosity solution to (4.86) with the boundary conditions u(0) = 1

and u(1) = 0 is (cf. Fig. 4.7)

u|Ω1 = u|Ω2 = 1, u|Ω3 = 1 − e(x−1).

This solution satisfies (4.85).

4.6.4.2 Discretization

We set Vh = �k
d(Th) with k ≥ 1 and Th belonging to an admissible mesh sequence

satisfying Assumption 4.45. In addition, we assume that each (mesh) interface

 0
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 0.6

 0.8

 1

 1.2

 1.4

0 0.2 0.4 0.6 0.8 1

Fig. 4.7: Exact solution with vanishing diffusion
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F ∈ F i
h such that F ∩I0,Ω has positive (d−1)-dimensional Hausdorff measure is

either a subset of I−
0,Ω or of I+

0,Ω. We define F i∗
h as the set of (mesh) interfaces

such that F ∩I0,Ω is a subset of I−
0,Ω. Without loss of generality, we assume that

the normal nF to each F ∈ F i∗
h points from the diffusive side, say Ω1, to the

nondiffusive side, say Ω2. As a result, the weights at F are such that ωT1,F = 0
and ωT2,F = 1. We also assume that each boundary face F ∈ Fb

h is either a
subset of ∂Ωκ,β or of ∂Ω\∂Ωκ,β , and we define Fb∗

h as the set of boundary faces
that are a subset of ∂Ω \ ∂Ωκ,β . With these definitions, we obtain

�u� = 0 ∀F ∈ Fh \ (F i∗
h ∪ Fb∗

h ). (4.87)

The key property is that the discrete bilinear form adar
h defined by (4.78)

remains consistent even in the singular limit of vanishing diffusion.

Lemma 4.68 (Consistency). For all vh ∈ Vh,

adar
h (u, vh) =

∫

Ω

fvh.

Proof. Let vh ∈ Vh. Consider first the contribution of the SWIP bilinear form.
Owing to (4.66) and (4.87),

aswip
h (u, vh) = −

∑

T∈Th

∫

T

∇·(κ∇u)vh +
∑

F∈Fh

η
γκ,F

hF

∫

F

�u��vh�

+
∑

F∈Fi
h

∫

F

�κ∇hu�·nF {{vh}}ω −
∑

F∈Fh

∫

F

�u�{{κ∇hvh}}ω·nF

= −
∑

T∈Th

∫

T

∇·(κ∇u)vh +
∑

F∈Fi∗
h ∪Fb∗

h

η
γκ,F

hF

∫

F

�u��vh�

+
∑

F∈Fi∗
h

∫

F

�κ∇hu�·nF {{vh}}ω −
∑

F∈Fi∗
h ∪Fb∗

h

∫

F

�u�{{κ∇hvh}}ω·nF ,

where we have used the fact that �κ∇u�·nF = 0 on all F ∈ F i
h \ F i∗

h owing
to (4.85). Moreover, for all F ∈ F i∗

h , γκ,F = 0 and {{κ∇hvh}}ω·nF = 0 owing to
the definition of the penalty parameter and the weights. Similarly, owing to the
boundary condition (4.84b), ntκn = 0 for all F ∈ Fb∗

h . As a result,

aswip
h (u, vh) = −

∑

T∈Th

∫

T

∇·(κ∇u)vh +
∑

F∈Fi∗
h

∫

F

�κ∇hu�·nF vh|Ω1 ,

where we have used the fact that {{vh}}ω = vh|Ω1 since ωT1,F = 0 and ωT2,F = 1.
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Consider now the contribution of the upwind bilinear form, namely

aupw
h (u, vh) =

∑

T∈Th

∫

T

[μ̃uvh + ∇·(βu)vh] +
∫

∂Ω

(β·n)	uvh

−
∑

F∈Fi
h

∫

F

(β·nF )�u�{{vh}} +
∑

F∈Fi
h

∫

F

1
2
|β·nF |�u��vh�

=
∑

T∈Th

∫

T

[μ̃uvh + ∇·(βu)vh] −
∑

F∈Fi∗
h

∫

F

(β·nF )�u�vh|Ω1 ,

where we have used (4.87), (β·n)	 = 0 on all F ∈ Fb∗
h , and that the upwind side

is the nondiffusive side on all F ∈ F i∗
h so that

−(β·nF )�u�{{vh}} +
1
2
|β·nF |�u��vh� = −(β·nF )�u�

(

{{vh}} +
1
2
�vh�

)

= −(β·nF )�u�vh|Ω1 .

Summing up yields

adar
h (u, vh) =

∑

T∈Th

∫

T

(∇·(−κ∇u+ βu) + μ̃u)vh +
∑

F∈Fi∗
h

∫

F

�κ∇u − βu�·nF vh|Ω1

=
∑

T∈Th

∫

T

(∇·(−κ∇u+ βu) + μ̃u)vh,

owing to (4.85a). The assertion follows.

Remark 4.69 (Amount of upwinding). The choice γβ,F = 1
2 |β·nF |, corresponding

to the usual amount of upwinding, is instrumental in the above proof so as to
combine the two terms multiplying vh|Ω1 and recover the jump of the total
diffusive-advective flux.

The rest of the convergence analysis proceeds as in Sect. 4.6.3 yielding the
error estimates (4.81) and (4.83). We observe that the approximate solution
exhibits, like the exact solution, a finite jump across I−

0,Ω. The approximation
error on this jump is controlled via the |·|β-seminorm present in the error esti-
mates.

To illustrate with a two-dimensional example, we consider Ω = (0, 1)2 par-
titioned into the two subdomains depicted in the left panel of Fig. 4.8. The
subdomain Ω1 is a trapezoidal inclusion. The diffusion is anisotropic and such
that

κ|Ω1 =
[

1 0
0 0.5

]

, κ|Ω2 =
[

0 0
0 1

]

.

The advection field is horizontal and uniform with β = (−5, 0), and the reaction
coefficient is uniform with μ̃ = 1. The partition interface I0,Ω consists of the two
vertical sides of Ω1, with I+

0,Ω equal to the left side and I−
0,Ω to the right side.

The approximate solution obtained with the above dG method and polynomial
degree k = 1 is shown in the right panel of Fig. 4.8, showing that the expected
behavior of the exact solution is captured accurately. In particular, the jump
across I−

0,Ω is clearly visible.
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Fig. 4.8: Two-dimensional example of heterogeneous and anisotropic diffusion-
advection-reaction problem: problem setting (left) and approximate dG solution
(right)

4.7 An Unsteady Example: The Heat Equation
To illustrate the approximation of unsteady scalar PDEs with diffusion, we con-
sider the heat equation, which we approximate in space using the SIP scheme
of Sect. 4.2 and in time using (implicit) A-stable finite difference schemes, e.g.,
the backward Euler and BDF2 schemes. Implicit time-marching is usually pre-
ferred for parabolic problems because explicit schemes lead to the stringent
parabolic CFL condition δt ≤ Ch2 where δt is the time step and h the meshsize.

4.7.1 The Continuous Setting
For given finite time tF > 0, source term f , and initial datum u0, we consider
the unsteady version of the Poisson problem (4.1), namely,

∂tu−�u = f in Ω × (0, tF), (4.88a)
u = 0 on ∂Ω × (0, tF), (4.88b)

u(·, t = 0) = u0 in Ω. (4.88c)

Problem (4.88) is termed the heat equation.
We recall (cf. Sect. 3.1.1) that, for a function ψ defined on the space-time

cylinder Ω× (0, tF), we consider ψ as a function of the time variable with values
in a Hilbert space, say V , spanned by functions of the space variable, in such a
way that

ψ : (0, tF) � t �−→ ψ(t) ≡ ψ(·, t) ∈ V.

We also recall that, for an integer l ≥ 0, C l(V ) denotes the space of V -valued
functions that are l times continuously differentiable in the interval [0, tF].
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We take the source term f in C0(L2(Ω)). Moreover, we are interested in
smooth solutions such that

u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)).

This implies, in particular, that the initial datum u0 is in the energy space
H1

0 (Ω). In addition, since u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)), dtu ∈ L2(Ω) for all

t ∈ (0, tF), so that we consider the following weak formulation of (4.88): For all
t ∈ [0, tF],

(dtu, v)L2(Ω) + a(u, v) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω), (4.89)

where, as in the steady case, a(u, v) =
∫
Ω
∇u·∇v.

We now establish the basic stability result for (4.89).

Lemma 4.70 (Stability). Let u ∈ C0(H1
0 (Ω)) ∩ C1(L2(Ω)) solve (4.89). Then,

for all t ∈ [0, tF],

‖u(t)‖2
L2(Ω) +

∫ t

0

‖∇u(s)‖2
[L2(Ω)]d ds ≤ ‖u0‖2

L2(Ω) + C2
Ω

∫ t

0

‖f(s)‖2
L2(Ω) ds,

where CΩ results from the Poincaré inequality (4.4).

Proof. For a fixed t ∈ (0, tF), selecting u(t) as a test function in (4.89) and
using the Cauchy–Schwarz inequality followed by the Poincaré inequality (4.4),
we infer

1
2
dt‖u(t)‖2

L2(Ω) + ‖∇u(t)‖2
[L2(Ω)]d = (f(t), u(t))L2 (Ω)

≤ CΩ‖f(t)‖L2(Ω)‖∇u(t)‖[L2(Ω)]d

≤ C2
Ω

2
‖f(t)‖2

L2(Ω) +
1
2
‖∇u(t)‖2

[L2(Ω)]d .

Rearranging terms and integrating in time yields the assertion.

4.7.2 Discretization
As in Chap. 3, we focus on the method of lines in which the time evolution prob-
lem (4.89) is first semidiscretized in space yielding a system of coupled ODEs
which is then discretized in time. Specifically, we consider space semidiscretiza-
tion by the SIP dG method of Sect. 4.2 together with a backward (also called
implicit) Euler scheme for time discretization. The BDF2 scheme to discretize
in time is addressed in Sect. 4.7.4.

4.7.2.1 Space Semidiscretization

Let Vh = �k
d(Th) with polynomial degree k ≥ 1 and Th belonging to an admissible

mesh sequence. The spaces V∗ and V∗h are defined in Assumption 4.4.
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The discrete problem is formulated as follows: For all t ∈ [0, tF],

(dtuh, vh)L2(Ω) + asip
h (uh, vh) = (f, vh) ∀vh ∈ Vh,

with bilinear form asip
h defined by (4.10). We introduce the discrete differential

operator Asip
h : V∗h → Vh such that, for all (v,wh) ∈ V∗h × Vh,

(Asip
h v,wh)L2(Ω) = asip

h (v,wh).

The discrete operator Asip
h can be used to formulate the space semidiscrete prob-

lem in the following form: For all t ∈ [0, tF],

dtuh(t) +Asip
h uh(t) = fh(t), (4.90)

with initial condition uh(0) = πhu0 and source term

fh(t) = πhf(t) ∀t ∈ [0, tF],

where πh denotes, as usual, the L2-orthogonal projection onto Vh. Choosing a
basis for Vh, the space semidiscrete evolution problem (4.90) can be transformed
into a system of coupled ODEs for the time-dependent components of uh(t) on
the selected basis. Written in component form, (4.90) leads to the appearance
of the mass matrix in front of the time derivative. In the context of dG methods,
the mass matrix is block-diagonal; cf. Sect.A.1.2.

We now state the important properties of the discrete operator Asip
h . These

properties result from the consistency, discrete coercivity, and boundedness of
the SIP bilinear form.

Lemma 4.71 (Properties of Asip
h ). The discrete operator Asip

h satisfies the fol-
lowing properties:

(i) Consistency: For the exact solution u, assuming u ∈ C0(V∗),

πhdtu(t) +Asip
h u(t) = fh(t) ∀t ∈ [0, tF].

(ii) Discrete coercivity: For all vh ∈ Vh,

(Asip
h vh, vh)L2(Ω) ≥ Csta|||vh|||2sip.

(iii) Boundedness: For all (v,wh) ∈ V∗h × Vh,

(Asip
h v,wh)L2(Ω) ≤ Cbnd|||v|||sip,∗|||wh|||sip.

Here, Csta and Cbnd are independent of h and δt, the |||·|||sip-norm is defined
by (4.17), and the |||·|||sip,∗-norm by (4.22).
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4.7.2.2 Time Discretization

To discretize in time the space semidiscrete problem (4.90), we introduce a
partition of (0, tF) into N intervals of length δt (the time step) so that Nδt = tF;
more generally, a variable time step can be considered. For n ∈ {0, . . . ,N}, a
superscript n indicates the value of a function at the discrete time tn := nδt.

For a function v ∈ C1(V ) with some function space V of the space variable,
we introduce the backward Euler operator δ(1)t such that, for all n ∈ {1, . . . ,N},

δ
(1)
t vn :=

vn − vn−1

δt
∈ V, (4.91)

thereby providing a first-order finite difference approximation of the time deriva-
tive dtv

n. The discrete solution is obtained from the backward Euler scheme,

δ
(1)
t un+1

h + Asip
h un+1

h = fn+1
h , (4.92)

with the initial condition u0
h = πhu0 and the source term fn+1

h = πhf
n+1 for all

n ∈ {0, . . . ,N − 1}. Problem (4.92) can be equivalently rewritten as

un+1
h + δtAsip

h un+1
h = un

h + δtfn+1
h ,

thus highlighting the fact that un+1
h is obtained from un

h by solving a linear
problem. In what follows, we abbreviate as a � b the inequality a ≤ Cb with
positive C independent of h, δt, and f .

4.7.3 Error Estimates
The analysis follows a path similar to that deployed in Sect. 3.1 for the unsteady
advection-reaction equation. We first derive the error equation, then establish
an energy estimate and finally infer the convergence result. The analysis is
much simpler than in Sect. 3.1 since we use an implicit scheme to march in time.
Indeed, contrary to explicit schemes, implicit schemes are dissipative.

Letting
ξn
h := un

h − πhu
n, ξn

π := un − πhu
n, (4.93)

the approximation error at the discrete time tn is decomposed as

un − un
h = ξn

π − ξn
h .

Lemma 4.72 (Error equation). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then,

δ
(1)
t ξn+1

h = −Asip
h ξn+1

h + αn+1
h , (4.94)

with αn+1
h := Asip

h ξn+1
π − πhθ

n+1 and θn+1 := δt−1
∫ tn+1

tn (tn − t)d2
tu(t) dt.

Proof. A Taylor expansion in time yields

un = un+1 − δtdtu
n+1 −

∫ tn+1

tn

(tn − t)d2
tu(t) dt, (4.95)
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i.e.,
δ
(1)
t un+1 = dtu

n+1 + θn+1.

Projecting this equation onto Vh and replacing πhdtu
n+1 by fn+1

h − Asip
h un+1

owing to consistency, we obtain

δ
(1)
t πhu

n+1 + Asip
h un+1 = fn+1

h + πhθ
n+1. (4.96)

Subtracting (4.96) from (4.92) yields the assertion.

We now derive an energy estimate for the discrete scheme.

Lemma 4.73 (Energy estimate). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then, for
all n ∈ {0, . . . ,N − 1}, there holds

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + δtCsta|||ξn+1

h |||2sip
� δt(|||ξn+1

π |||2sip,∗ + C2
uδt

2), (4.97)

with Cu := ‖d2
tu‖C0(L2(Ω)).

Proof. Testing (4.94) with δtξn+1
h , we obtain

‖ξn+1
h ‖2

L2(Ω) + δt(Asip
h ξn+1

h , ξn+1
h )L2(Ω)

= (ξn
h , ξ

n+1
h )L2(Ω) + δt(Asip

h ξn+1
π , ξn+1

h )L2(Ω) − δt(θn+1, ξn+1
h )L2(Ω),

since (πhθ
n+1, ξn+1

h )L2(Ω) = (θn+1, ξn+1
h )L2(Ω). Using the algebraic relation ab =

1
2a

2 + 1
2b

2 − 1
2 (a− b)2 for the first term on the right-hand side, the above energy

equality becomes

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δt(Asip

h ξn+1
h , ξn+1

h )L2(Ω)

= ‖ξn
h‖2

L2(Ω) + 2δt(Asip
h ξn+1

π , ξn+1
h )L2(Ω) − 2δt(θn+1, ξn+1

h )L2(Ω).

Using discrete coercivity and boundedness of Asip
h together with the Cauchy–

Schwarz inequality, we obtain

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + 2Cbndδt|||ξn+1

π |||sip,∗|||ξn+1
h |||sip + 2δt‖θn+1‖L2(Ω)‖ξn+1

h ‖L2(Ω).

Owing to the discrete Poincaré inequality (4.20),

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + 2δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + 2Cbndδt|||ξn+1

π |||sip,∗|||ξn+1
h |||sip + 2σ2δt‖θn+1‖L2(Ω)|||ξn+1

h |||sip.
Using Young’s inequality for the two rightmost terms yields

‖ξn+1
h ‖2

L2(Ω) + ‖ξn+1
h − ξn

h‖2
L2(Ω) + δtCsta|||ξn+1

h |||2sip
≤ ‖ξn

h‖2
L2(Ω) + Cδt(|||ξn+1

π |||2sip,∗ + ‖θn+1‖2
L2(Ω)).
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Finally, proceeding as in the proof of Lemma 3.20, we infer

‖θn+1‖L2(Ω) � Cuδt,

whence the assertion.

Remark 4.74 (Dissipation in backward Euler scheme). The dissipative nature of
the backward Euler scheme is reflected by the presence of the time increment
‖ξn+1

h −ξn
h‖2

L2(Ω) on the left-hand side of the energy estimate (4.97). We observe
that, up to a factor δt, the increment ξn+1

h −ξn
h can be interpreted as a first-order

finite difference approximation of the time derivative of the error component
in Vh.

Finally, we arrive at our main convergence result.

Theorem 4.75 (Convergence). Let u ∈ C0(V∗) ∩ C2(L2(Ω)) solve (4.89) and
let (un

h)1≤n≤N solve (4.92) with u0
h = πhu0. Assume u ∈ C0(Hk+1(Ω)). Then,

there holds

‖uN − uN
h ‖L2(Ω) +

(

Csta

N∑

n=1

δt|||un − un
h|||2sip

)1/2

� χ1δt+ χ2h
k, (4.98)

with χ1 = t
1/2

F ‖d2
tu‖C0(L2(Ω)) and χ2 = ‖u‖C0(Hk+1(Ω)).

Proof. Summing (4.97) for n ∈ {0, . . . ,N − 1}, dropping the nonnegative con-
tribution ‖ξn+1

h − ξn
h‖2

L2(Ω), and observing that ξ0h = 0, we obtain

‖ξN
h ‖2

L2(Ω) + δtCsta

N∑

n=1

|||ξn
h |||2sip � δt

N∑

n=1

|||ξn
π |||2sip,∗ + tFC

2
uδt

2.

Recalling the results of Sect. 4.2.3, we infer that, for all n ∈ {1, . . . ,N},
|||ξn

π |||sip,∗ � hk‖un‖Hk+1(Ω). Hence,

‖ξN
h ‖2

L2(Ω) + δtCsta

N∑

n=1

|||ξn
h |||2sip � (χ1δt+ χ2h

k)2.

Using the triangle inequality ‖uN −uN
h ‖L2(Ω) ≤ ‖ξN

π ‖L2(Ω) +‖ξN
h ‖L2(Ω) together

with
N∑

n=1

δt|||un − un
h|||2sip ≤ 2

N∑

n=1

δt
(|||ξn

h |||2sip + |||ξn
π |||2sip

)
,

and observing that

‖ξN
π ‖2

L2(Ω) + δtCsta

N∑

n=1

|||ξn
π |||2sip � (χ2h

k)2,

yields the assertion.
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4.7.4 BDF2 Time Discretization
To improve the convergence rate in time, we can consider higher-order backward
approximations of the time derivative dtu. In this section, we briefly examine
time discretization using the second-order backward difference formula (BDF2).
We show, in particular, that, also in this case, stability is related to the dissipa-
tive nature of the scheme. We proceed as in Sect. 4.7.3, whereby we derive the
error equation, establish an energy estimate, and finally infer the convergence
result.

For a function v ∈ C1(V ), we introduce the BDF2 operator δ(2)t such that,
for all n ∈ {2, . . . ,N},

δ
(2)
t vn :=

3vn − 4vn−1 + vn−2

2δt
∈ V,

thereby providing a second-order finite difference approximation of the time
derivative dtv

n. Then, the discrete solution is obtained from

δ
(1)
t u1

h + Asip
h

u0
h + u1

h

2
=
f0

h + f1
h

2
, (4.99a)

δ
(2)
t un+1

h + Asip
h un+1

h = fn+1
h for n ∈ {1, . . . ,N − 1}, (4.99b)

with u0
h = πhu0. The operator δ(2)t cannot be used for the first time step n = 1,

since only the initial value is available. In (4.99a), the value u1
h is computed

from u0
h using the Crank–Nicolson scheme which is also second-order accurate

in time.
We first derive the error equation, recalling that the components ξn

h and ξn
π

of the approximation errors are defined by (4.93).

Lemma 4.76 (Error equation). Assume u ∈ C0(V∗) ∩ C3(L2(Ω)). Then,

δ
(1)
t ξ1h +Asip

h

ξ0h + ξ1h
2

= α1
h, (4.100)

where α1
h := Asip

h
ξ0

π+ξ1
π

2 − πhθ
1, θ1 := − 1

2δt
−1
∫ δt

0
t(δt − t)d3

tu(t) dt, and, for all
n ∈ {1, . . . ,N − 1},

δ
(2)
t ξn+1

h + Asip
h ξn+1

h = αn+1
h , (4.101)

where αn+1
h := Asip

h ξn+1
π − πhθ

n+1 and

θn+1 := δt−1

∫ tn+1

tn

(tn − t)2d3
tu(t) dt − 1

4
δt−1

∫ tn+1

tn−1
(tn−1 − t)2d3

tu(t) dt.

Proof. We observe that

δ
(1)
t u1 = dtu

1 − δt−1

∫ δt

0

td2
tu(t) dt,

δ
(1)
t u1 = dtu

0 + δt−1

∫ δt

0

(δt− t)d2
tu(t) dt,
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so that, integrating by parts in time,

δ
(1)
t u1 = dt

u0 + u1

2
+

1
2
δt−1

∫ δt

0

(δt− 2t)d2
tu(t) dt = dt

u0 + u1

2
+ θ1.

Proceeding as in the proof of Lemma 4.72 yields (4.100). Furthermore, for all
n ∈ {2, . . . ,N}, a direct calculation shows that

δ
(2)
t un+1 = dtu

n+1 + θn+1,

and proceeding again as in the proof of Lemma 4.72 yields (4.101).

We can now derive the energy estimate.

Lemma 4.77 (Energy estimate). Assume u ∈ C0(V∗)∩C3(L2(Ω)). Then, there
holds

‖ξ1h‖2
L2(Ω) + δtCsta|||ξ1h|||2sip � δt

(|||ξ1π|||2sip,∗ + |||ξ0π|||2sip,∗ + C2
uδt

4
)
, (4.102)

and, for all n ∈ {1, . . . ,N − 1},

‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω) + ‖2ξn+1
h − ξn

h‖2
L2(Ω) − ‖2ξn

h − ξn−1
h ‖2

L2(Ω)

+ ‖δttξn+1
h ‖2

L2(Ω) + δtCsta|||ξn+1
h |||2sip � δt

(|||ξn+1
π |||2sip,∗ + C2

uδt
4
)
, (4.103)

with Cu := ‖d3
tu‖C0(L2(Ω)) and δttξn+1

h := ξn+1
h − 2ξn

h + ξn−1
h .

Proof. Testing (4.100) with δtξ1h, observing that ξ0h = 0, rearranging terms,
and using ‖θ1‖L2(Ω) � Cuδt

2 yields (4.102). Furthermore, testing (4.101) with
4δtξn+1

h , we infer

4δt(δ(2)t ξn+1
h , ξn+1

h )L2(Ω) + 4δt(Ahξ
n+1
h , ξn+1

h )L2(Ω) = 4δt(αn+1
h , ξn+1

h )L2(Ω).

We observe that

4δt(δ(2)t ξn+1
h , ξn+1

h )L2(Ω) = ‖ξn+1
h ‖2

L2(Ω) − ‖ξn
h‖2

L2(Ω)

+ ‖2ξn+1
h − ξn

h‖2
L2(Ω) − ‖2ξn

h − ξn−1
h ‖2

L2(Ω)

+ ‖δttξn+1
h ‖2

L2(Ω).

Finally, we bound (αn+1
h , ξn+1

h )L2(Ω) by proceeding as in the proof of Lemma 4.73
using ‖θn+1‖L2(Ω) � Cuδt

2 for all n ∈ {1, . . . ,N − 1}.
Remark 4.78 (Dissipation in BDF2 scheme). The dissipative nature of the BDF2
scheme is reflected by the term ‖δttξn+1

h ‖2
L2(Ω) on the left-hand side of (4.103).

We observe that, up to a factor δt2, δttξn+1
h can be interpreted as a second-order

finite difference approximation of the second-order time derivative of the error
component in Vh.
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Finally, we arrive at our main convergence result. The proof is skipped since
it is similar to that of Theorem 4.75.

Theorem 4.79 (Convergence). Let u ∈ C0(V∗) ∩ C3(L2(Ω)) solve (4.89) and
let (un

h)1≤n≤N solve (4.99) with u0
h = πhu0. Assume u ∈ C0(Hk+1(Ω)). Then,

there holds

‖uN − uN
h ‖L2(Ω) +

(

Csta

N∑

n=1

δt|||un − un
h|||2sip

)1/2

� χ1δt
2 + χ2h

k,

with χ1 = t
1/2

F ‖d3
tu‖C0(L2(Ω)) and χ2 = ‖u‖C0(Hk+1(Ω)).

4.7.5 Improved C0(L2(Ω))-Error Estimate
The error estimate (4.98) is suboptimal for the term ‖uN−uN

h ‖L2(Ω) by one power
in h. Following the ideas of Wheeler [305], a sharper result can be obtained by
replacing the L2-orthogonal projector in (4.93) by the so-called elliptic projector
πell ∈ L(V∗, Vh) such that, for all w ∈ V∗, πellw ∈ Vh solves

asip
h (πellw, vh) = asip

h (w, vh) ∀vh ∈ Vh,

or, equivalently,
Asip

h πellw = Asip
h w.

If elliptic regularity holds (cf. Definition 4.24), there is C, independent of h, such
that, for all w ∈ V∗ ∩Hk+1(Ω),

‖w − πellw‖L2(Ω) ≤ Chk+1‖w‖Hk+1(Ω). (4.104)

Redefining the components of the approximation error as

ζn
π := un − πellu

n, ζn
h := πellu

n − un
h,

the approximation error at the discrete time tn is now decomposed as

un − un
h = ζn

π + ζn
h .

We consider again the backward Euler operator δ(1)t defined by (4.91).

Lemma 4.80 (Error equation). Assume u ∈ C0(V∗) ∩ C2(L2(Ω)). Then,

δ
(1)
t ζn+1

h + Asip
h ζn+1

h = αn+1
h , (4.105)

with αn+1
h := πhδ

(1)
t ζn+1

π − πhθ
n+1 and θn+1 defined in Lemma 4.72.

Proof. Recalling that δ(1)t un+1 = dtu
n+1 + θn+1 and observing that δ(1)t un+1 =

δ
(1)
t πellu

n+1 + δ
(1)
t ζn+1

π , we obtain

δ
(1)
t πellu

n+1 = dtu
n+1 + θn+1 − δ

(1)
t ζn+1

π .
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Projecting this equation onto Vh, replacing πhdtu
n+1 by fn+1

h − Asip
h un+1, and

observing that Asip
h πellu

n+1 = Asip
h un+1, we infer

δ
(1)
t πellu

n+1 = fn+1
h − Asip

h πellu
n+1 + πhθ

n+1 − πhδ
(1)
t ζn+1

π .

Subtracting this relation from (4.92) yields the assertion.

The difference between (4.105) and (4.94) lies in the residual αn+1
h . When

using the elliptic projector, the term Asip
h ζn+1

π in αn+1
h is replaced πhδ

(1)
t ζn+1

π .
This is a key point, since the latter scales in space as hk+1 (cf. the proof of
Theorem 4.82 below), while the former only scales as hk.

The next step is to derive an energy estimate. The proof is skipped since it
is similar to that of Lemma 4.73.

Lemma 4.81 (Energy estimate). For all n ∈ {0, . . . ,N − 1}, there holds

‖ζn+1
h ‖2

L2(Ω) − ‖ζn
h ‖2

L2(Ω) + ‖ζn+1
h − ζn

h ‖2
L2(Ω) + δtCsta|||ζn+1

h |||2sip
� δt(‖δ(1)t ζn+1

π ‖2
L2(Ω) + C2

uδt
2), (4.106)

with Cu := ‖d2
tu‖C0(L2(Ω)).

Finally, we arrive at our improved convergence result.

Theorem 4.82 (Convergence). Let u ∈ C0(V∗) ∩ C2(L2(Ω)) solve (4.89) and
additionally assume that u ∈ C1(Hk+1(Ω)). Then,

‖uN − uN
h ‖L2(Ω) � χ1δt+ χ2h

k+1,

with χ1 = t
1/2

F ‖d2
tu‖C0(L2(Ω)) and χ2 = t

1/2

F ‖u‖C1(Hk+1(Ω)).

Proof. We first observe that

δ
(1)
t ζn+1

π = πellδ
(1)
t un+1 − δ

(1)
t un+1,

so that, owing to (4.104),

‖δ(1)t ζn+1
π ‖L2(Ω) � hk+1‖δ(1)t un+1‖Hk+1(Ω).

Moreover,

‖δ(1)t un+1‖2
Hk+1(Ω) =

∑

|α|≤k+1

∫

Ω

1
δt2

∣
∣
∣
∣
∣

∫ tn+1

tn

∂αdtu(s) ds

∣
∣
∣
∣
∣

2

≤
∑

|α|≤k+1

∫

Ω

1
δt

∫ tn+1

tn

|∂αdtu(s)|2 ds

=
1
δt

∫ tn+1

tn

‖dtu(s)‖2
Hk+1(Ω) ds

≤ ‖dtu‖2
C0(Hk+1(Ω)) ≤ ‖u‖2

C1(Hk+1(Ω)).
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Then, summing (4.106) for n ∈ {0, . . . ,N − 1}, dropping the nonnegative
contribution ‖ζn+1

h − ζn
h ‖2

L2(Ω), and observing that ζ0
h = 0 we obtain

‖ζN
h ‖2

L2(Ω) + δtCsta

N∑

n=1

|||ζn
h |||2sip � (χ1δt+ χ2h

k+1)2. (4.107)

Owing to the triangle inequality, ‖uN − uN
h ‖L2(Ω) ≤ ‖ζN

π ‖L2(Ω) + ‖ζN
h ‖L2(Ω) and

we conclude using (4.104).

Remark 4.83 (Superconvergence of δt
∑N

n=1 |||ζn
h |||2sip). The error decomposition

based on ζn
h and ζn

π can also be used to derive an energy-error estimate of

order hk in space. The bound (4.107) shows that
(∑N

n=1 δt|||ζn
h |||2sip

)1/2

scales as

hk+1, and, therefore, superconverges. The leading order term in the energy-error

estimate is the projection term
(∑N

n=1 δt|||ζn
π |||sip

)1/2

which scales as hk.



Chapter 5

Additional Topics on Pure
Diffusion

In this chapter, we discuss some advanced topics focusing on the Poisson problem
with homogeneous Dirichlet boundary conditions (4.1). Most of the results can
be extended to more general scalar PDEs with diffusion. In Sect. 5.1, using
basic properties of the space of functions with bounded variation (the so-called
BV space), we derive discrete Sobolev embeddings for broken polynomial spaces
equipped with the ‖·‖dG,p–norms (5.1), and a discrete Rellich–Kondrachov com-
pactness theorem for sequences bounded in the ‖·‖dG,p-norm. We also prove an
important result concerning the (weak) asymptotic consistency of the discrete
gradients introduced in Sect. 4.3.2. In Sect. 5.2, we revisit the approximation
of the Poisson problem by the SIP method (cf. Sect. 4.2) and use the results of
Sect. 5.1 to prove the convergence of the sequence of discrete solutions to minimal
regularity solutions. The results of Sects. 5.1 and 5.2 lay the basis for the conver-
gence analysis of the dG method for the Navier–Stokes equations presented in
Chap. 6. In Sect. 5.3, we briefly review some possible variations on penalty and
symmetry that can be envisaged for the SIP bilinear form. A different exten-
sion is considered in Sect. 5.4, where we introduce a consistent discretization
featuring one degree of freedom per cell in the spirit of cell-centered Galerkin
methods. Such methods bridge somewhat the gap between dG and finite vol-
ume methods, while at the same time reducing computational costs with respect
to the standard dG approach of Chap. 4 that requires at least piecewise affine
polynomials.

In Sect. 5.5, we return to the SIP method (variations on symmetry and
penalty can be easily accommodated). Referring to Definition 4.1, our goal is to
postprocess the discrete solution so as to reconstruct a discrete potential that is
H1

0 (Ω)-conforming and a diffusive flux that is H(div;Ω)-conforming. Finally, in
Sect. 5.6, we present a posteriori error estimates for the Poisson problem. Such
estimates deliver upper and lower bounds on the approximation error. The upper
bound is fully computable and, as such, can be used to certify the accuracy of

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_5,
c© Springer-Verlag Berlin Heidelberg 2012
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the discrete solution. Moreover, the estimates can be decomposed as element-
wise sums of error indicators that, in turn, can be used to adapt the mesh by
concentrating degrees of freedom where they are actually needed to reduce the
error most substantially.

5.1 Discrete Functional Analysis
This section contains important results of discrete functional analysis. These
results are used in Sect. 5.2 (and in Chap. 6) to analyze the convergence, as the
meshsize goes to zero, of dG approximations when the exact solution only sat-
isfies minimal regularity assumptions. The results presented in this section are
discrete Sobolev embeddings and a discrete Rellich–Kondrachov compactness
theorem in broken polynomial spaces, together with the (weak) asymptotic con-
sistency of discrete gradients. Such results, which hinge on BV-norm estimates,
have been derived by the authors [131] in the context of dG methods, taking
inspiration from the penetrating work of Eymard, Gallouët, and Herbin [159] in
the context of finite volume methods. These results have also been obtained in
a similar form independently by Buffa and Ortner [61].

Let Th be a mesh of Ω belonging to an admissible mesh sequence with
mesh regularity parameters denoted by . As in Chap. 4 (cf. Definition 4.5),
in dimension d ≥ 2, hF denotes the diameter of the face F (other local length
scales can be chosen as discussed in Remark 4.6), while, in dimension 1, we set
hF := min(hT1 , hT2 ) if F ∈ F i

h with F = ∂T1 ∩ ∂T2 and hF := hT if F ∈ Fb
h

with F = ∂T ∩ ∂Ω.

5.1.1 The BV Space and the ‖·‖dG,p-Norms
For v ∈ L1(�d), we introduce its ‖·‖BV-norm

‖v‖BV :=
d∑

i=1

sup
{∫

�d

v∂iϕ | ϕ ∈ C∞
0 (�d), ‖ϕ‖L∞(�d) ≤ 1

}

,

and we define the space of integrable functions with bounded variation in �d as

BV(�d) := {v ∈ L1(�d) | ‖v‖BV <∞}.

For a real number 1 ≤ p < ∞, let W 1,p(Th) be the broken Sobolev space
defined by (1.17). We introduce the following norms: For all v ∈W 1,p(Th),

‖v‖dG,p :=

(

‖∇hv‖p
[Lp(Ω)]d

+
∑

F∈Fh

1
hp−1

F

‖�v�‖p
Lp(F )

)1/p

=

(
∑

T∈Th

∫

T

|∇v|p�p +
∑

F∈Fh

1
hp−1

F

∫

F

|�v�|p
)1/p

, (5.1)
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where we recall that |∇v|�p = (
∑d

i=1 |∂iv|p)1/p. As the case p = 2 is particularly
important in the context of linear diffusive PDEs, we omit the subscript in this
case and simply write, for all v ∈ H1(Th),

‖v‖dG :=

(

‖∇hv‖2
[L2(Ω)]d +

∑

F∈Fh

1
hF

‖�v�‖2
L2(F )

)1/2

=

(
∑

T∈Th

∫

T

|∇v|2 +
∑

F∈Fh

1
hF

∫

F

|�v�|2
)1/2

, (5.2)

where |∇v| denotes the Euclidean norm of ∇v. We observe that the ‖·‖dG-norm
coincides with the |||·|||sip-norm defined by (4.17) and extensively used in Chap. 4.

Our first preliminary result concerns the comparison of ‖·‖dG,p-norms.

Lemma 5.1 (Comparison of ‖·‖dG,p-norms). Let 1 ≤ s < t <∞. Then,

∀v ∈W 1,t(Th), ‖v‖dG,s ≤ CdG‖v‖dG,t,

with CdG := max(1, d|Ω|d(1 + (1 + d)(12)−1N∂)).

Proof. Let v ∈ W 1,t(Th). Observing that, for all x ∈ �d, |x|�s ≤ d1/s−1/t|x|�t

and using Hölder’s inequality with λ = t/s > 1 and λ′ = λ/(λ − 1) so that
1/λ + 1/λ′ = 1, we infer

‖v‖s
dG,s =

∑

T∈Th

∫

T

|∇v|s�s +
∑

F∈Fh

1
hs−1

F

∫

F

|�v�|s

≤
∑

T∈Th

∫

T

d
1

λ′ |∇v|s�t +
∑

F∈Fh

∫

F

h
1

λ′
F h

1−t
λ

F |�v�|s

≤
(
∑

T∈Th

d

∫

T

1λ′
)1/λ′

×
(
∑

T∈Th

∫

T

|∇v|t�t

)1/λ

+

(
∑

F∈Fh

hF

∫

F

1λ′
)1/λ′

×
(
∑

F∈Fh

1
ht−1

F

∫

F

|�v�|t
)1/λ

≤
(

d|Ω|d +
∑

F∈Fh

hF |F |d−1

)1/λ′

‖v‖s
dG,t.

For all F ∈ Fh, we pick T ∈ Th such that F ∈ FT so that hF ≤ hT . Using the
continuous trace inequality (1.41) with v ≡ 1 on T leads to

|F |d−1 ≤ dCctih
−1
T |T |d ≤ dCctih

−1
F |T |d,

with Ccti = (1+d)(12)−1, so that
∑

F∈Fh
hF |F |d−1 ≤ dCctiN∂|Ω|d, since each

mesh element is counted at most N∂ times. Hence,

‖v‖s
dG,s ≤ (d|Ω|d(1 + CctiN∂))

1/λ′ ‖v‖s
dG,t,
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and we conclude observing that 0 ≤ 1
λ′s = 1

s − 1
t ≤ 1 so that, for any positive

real number x, x1/λ′s ≤ max(1, x).

Our second preliminary result allows us to bound the ‖·‖BV-norm by the
‖·‖dG,p-norms. The observation that, for p = 2, the ‖·‖dG-norm controls the BV
norm can also be found in the work of Lew, Neff, Sulsky, and Ortiz [232].

Lemma 5.2 (Bound on ‖·‖BV-norm). Let 1 ≤ p < ∞. Let v ∈ W 1,1(Th) and
extend v by zero outside Ω. Then, v ∈ BV(�d) and there holds

‖v‖BV ≤ CBV‖v‖dG,p, (5.3)

with CBV = d1/2 max(1, CdG) and CdG defined in Lemma 5.1.

Proof. Let v ∈ W 1,1(Th) and extend v by zero outside Ω. It is clear that v ∈
L1(�d). Let now ϕ ∈ C∞

0 (�d) with ‖ϕ‖L∞(�d) ≤ 1. Integrating by parts yields
∫

�d

v∂iϕ = −
∫

Ω

(∇hv·ei)ϕ+
∑

F∈Fh

∫

F

�v�(ei·nF )ϕ ∀i ∈ {1, . . . , d},

where (e1, . . . , ed) denotes the Cartesian basis of �d. Using ‖ϕ‖L∞(�d) ≤ 1 and
summing over i ∈ {1, . . . , d}, we obtain

‖v‖BV ≤ ‖∇hv‖[L1(Ω)]d + d
1/2

∑

F∈Fh

‖�v�‖L1(F ).

This yields the assertion for p = 1. The assertion for p > 1 then follows from
Lemma 5.1.

5.1.2 Discrete Sobolev Embeddings
The usual Sobolev embeddings allow one to control the Lq-norm of a function
in W 1,p(Ω) by the Lp-norm of its gradient (the maximum value of q for which
control is achieved depends on both p and the space dimension d); see Evans [153,
Sect. 5.6] or Brézis [55, Sect. IX.3]. The aim of this section is to establish the
counterpart of these embeddings for functions in the broken polynomial space
�k

d(Th) with polynomial degree k ≥ 0 (other broken polynomial spaces can be
considered), so as to achieve control, uniformly in h, of the Lq-norm of a function
in �k

d(Th) by its ‖·‖dG,p-norm with the same maximal value for q as in the
continuous case. Obviously, the difficulty is that the broken polynomial space
�k

d(Th) is nonconforming in W 1,p(Ω). As mentioned above, the control of the
‖·‖BV-norm by the ‖·‖dG,p-norm (cf. Lemma 5.2) plays a central role in the
proof.

Theorem 5.3 (Discrete Sobolev embeddings). Let 1 ≤ p < ∞. Let k ≥ 0.
Then, for all q satisfying

(i) 1 ≤ q ≤ p∗ := pd
d−p if 1 ≤ p < d;
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(ii) 1 ≤ q <∞ if d ≤ p <∞ (and 1 ≤ q ≤ ∞ if d = 1);

there is σp,q such that

∀vh ∈ �k
d(Th), ‖vh‖Lq(Ω) ≤ σp,q‖vh‖dG,p. (5.4)

The quantity σp,q additionally depends on |Ω|d, k, and .

Proof. For brevity of notation, we abbreviate as a � b the inequality a ≤ Cb
with positive C having the same dependencies as σp,q.
(i) The case p = 1. Set 1∗ := d

d−1 (conventionally, 1∗ = ∞ if d = 1). A
classical result (see, e.g., Eymard, Gallouët, and Herbin [159]) states that, for
all v ∈ BV(�d),

‖v‖L1∗ (�d) ≤
1
2d

‖v‖BV. (5.5)

Let now vh ∈ �k
d(Th) and extend vh by zero outside Ω. Then, owing to (5.5) and

Lemma 5.2, we infer
‖vh‖L1∗ (Ω) � ‖vh‖dG,1,

yielding (5.4) for p = 1 and q = 1∗ (and, hence, for all 1 ≤ q ≤ 1∗ since Ω is
bounded). This also proves (5.4) for d = 1.
(ii) The case 1 < p < d. It is sufficient to establish (5.4) for q = p∗ since Ω
is bounded. Set λ := p(d−1)

d−p > 1 and notice that p∗ = λ1∗. Let vh ∈ �k
d(Th).

Considering the function ξ := |vh|λ (extended by zero outside Ω) and using (5.5)
yields

(∫

Ω

|vh|p
∗
) d−1

d

= ‖ξ‖L1∗ (Ω) = ‖ξ‖L1∗ (�d) � ‖ξ‖BV � ‖ξ‖dG,1

=
∑

T∈Th

∫

T

|∇|vh|λ|�1 +
∑

F∈Fh

∫

F

|�|vh|λ�| := T1 + T2.

We observe that, a.e. in each T ∈ Th, |∂i|vh|λ| = λ|vh|λ−1|∂ivh| for all i ∈
{1, . . . , d}, so that |∇|vh|λ|�1 = λ|vh|λ−1|∇vh|�1 . Using Hölder’s inequality with
p and r = p

p−1 , the term T1 is then bounded as

|T1| ≤ λ

(
∑

T∈Th

∫

T

|vh|r(λ−1)

) 1
r
(
∑

T∈Th

∫

T

|∇vh|p�1
) 1

p

�
(∫

Ω

|vh|p
∗
) 1

r

(
∑

T∈Th

∫

T

|∇vh|p�p

) 1
p

,

since r(λ − 1) = p
p−1

d(p−1)
d−p = pd

d−p = p∗ and |∇vh|�1 ≤ d1/r|∇vh|�p . Further-
more, concerning T2, we observe that |�|vh|λ�| ≤ 2λ{{|vh|λ−1}}|�vh�|. Using again
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Hölder’s inequality, we then infer

|T2| ≤ λ
∑

T∈Th

∑

F∈FT

∫

F

h
1
r

F |vh|T |λ−1h
− 1

r

F |�vh�|

≤ λ

(
∑

T∈Th

∑

F∈FT

∫

F

hF |vh|T |p
∗
) 1

r
(
∑

T∈Th

∑

F∈FT

1
hp−1

F

∫

F

|�vh�|p
) 1

p

.

To bound the first factor on the right-hand side, we use the discrete trace inequal-
ity (1.44) in Lp∗

(F ) for all F ∈ FT and the fact that N∂ is uniformly bounded
in h. We obtain

|T2| �
(∫

Ω

|vh|p∗
) 1

r

(
∑

F∈Fh

1
hp−1

F

∫

F

|�vh�|p
) 1

p

.

Collecting the above bounds for T1 and T2, we infer

(∫

Ω

|vh|p∗
) d−1

d

�
(∫

Ω

|vh|p∗
) 1

r

‖vh‖dG,p,

whence (5.4) for q = p∗ since d−1
d − 1

r = 1
p∗ .

(iii) The case d ≤ p <∞. Let q1 > d and set p1 := dq1
d+q1

so that 1 ≤ p1 < d and
p∗1 = q1. Then, owing to point (ii) in this proof, we infer for all vh ∈ �k

d(Th),

‖vh‖Lq1 (Ω) ≤ σp1,q1‖vh‖dG,p1 ,

and the conclusion follows from Lemma 5.1 since p1 < d ≤ p and the fact that
Ω is bounded.

Because of its importance in the context of linear diffusive PDEs, we state
explicitly Theorem 5.3 in the special case q = p = 2 yielding the well-known
discrete Poincaré inequality (already stated in Chap. 4; cf. (4.20)).

Corollary 5.4 (Discrete Poincaré inequality). Let k ≥ 0. There is σ2, only
depending on |Ω|d, k, and , such that

∀vh ∈ �k
d(Th), ‖vh‖L2(Ω) ≤ σ2‖vh‖dG. (5.6)

Remark 5.5 (Embeddings in broken Sobolev spaces). We established Theo-
rem 5.3 in broken polynomial spaces since this result is sufficient for our pur-
poses, that is, to analyze the convergence of dG methods for exact solutions
with minimal regularity. Incidentally, we notice that the above proof cannot be
extended to broken Sobolev spaces since we used a discrete trace inequality. Yet,
by proceeding differently, it is sometimes possible to extend these embeddings to
broken Sobolev spaces; we refer the reader to Brenner [51] for the case p = q = 2
and to Lasis and Süli [221] for the general case in a Hilbertian setting (p = 2).
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5.1.3 Discrete Compactness
The Rellich–Kondrachov Theorem (see, e.g., Evans [153, p. 272] or Brézis [55,
p. 169]) states that bounded sequences in W 1,p(Ω) are relatively compact in
Lq(Ω) for suitable q depending on both p and the space dimension d. The aim
of this section is to establish the counterpart of this result for sequences

vH := (vh)h∈H

that are bounded in the ‖·‖dG,p-norm and such that, for all h ∈ H, vh is in the
broken polynomial space �k

d(Th) for a fixed k ≥ 0. Moreover, we identify the
regularity of the limit and prove a weak asymptotic consistency result for the dis-
crete gradients introduced in Sect. 4.3.2. In what follows, to alleviate the nota-
tion, subsequences are not renumbered.

We begin with the discrete Rellich–Kondrachov theorem. As in the previous
section, the difficulty is that the broken polynomial space �k

d(Th) is noncon-
forming in W 1,p(Ω). Also in this case, the control of the ‖·‖BV-norm by the
‖·‖dG,p-norm (cf. Lemma 5.2) plays a central role in the proof. We mention
the early work of Stummel [286] in the case of nonconforming finite element
methods, and in the context of Maxwell’s equations, the work of Kikuchi [211],
Boffi [44], and Monk and Demkowicz [237] on edge elements and that of Creusé
and Nicaise [116] on dG approximations.

Theorem 5.6 (Discrete Rellich–Kondrachov theorem). Let 1 ≤ p < ∞. Let
k ≥ 0. Let vH be a sequence in �k

d(TH) := (�k
d(Th))h∈H bounded in the ‖·‖dG,p-

norm. Then, for all q such that 1 ≤ q < p∗ if 1 ≤ p < d or 1 ≤ q < ∞ if
d ≤ p <∞, the sequence vH is relatively compact in Lq(Ω).

Proof. Let vH be a sequence in �k
d(TH) bounded in the ‖·‖dG,p-norm. As above,

functions are extended by zero outside Ω, and we use the symbol � as in the proof
of Theorem 5.3. Following Eymard, Gallouët, and Herbin [159, Lemma 5.4], we
observe that, for all ξ ∈ �d,

‖vh(· + ξ) − vh‖L1(�d) � |ξ|�1‖vh‖BV.

As a result, using Lemma 5.2,

‖vh(· + ξ) − vh‖L1(�d) � |ξ|�1‖vh‖dG,p � |ξ|�1 ,

owing to the boundedness of the sequence vH in the ‖·‖dG,p-norm. Hence, owing
to Kolmogorov’s Compactness Criterion, the sequence vH is relatively compact
in L1(�d), and thus in L1(Ω). Let now q be such that 1 < q < p∗ if 1 ≤ p < d
or 1 < q < ∞ if d ≤ p < ∞. Then, owing to Theorem 5.3, there is r > q such
that the sequence vH is bounded in Lr(Ω). We now make use of the following
interpolation inequality between L1(Ω) and Lr(Ω) (see Evans [153, p. 623] or
Brezis [55, p. 57]): For all w ∈ Lr(Ω),

‖w‖Lq(Ω) ≤ ‖w‖θ
L1(Ω)‖w‖1−θ

Lr(Ω),
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where θ = r−q
q(r−1) ∈ (0, 1). Hence, vH is a Cauchy sequence in Lq(Ω) since, for

all h, h′ ∈ H, taking w = vh − vh′ ∈ Lr(Ω) in the above inequality yields

‖vh − vh′‖Lq(Ω) ≤ ‖vh − vh′‖θ
L1(Ω)‖vh − vh′‖1−θ

Lr(Ω) � ‖vh − vh′‖θ
L1(Ω).

This completes the proof.

For simplicity, we now specialize the setting to the Hilbertian case p = 2;
cf. Remark 5.8 for the general case p �= 2. The compactness property stated
in Theorem 5.6 allows us to infer, in particular, the existence of a function
v ∈ L2(Ω) such that, up to a subsequence, vh → v in L2(Ω). However, the
regularity of the limit is still insufficient for use in second-order elliptic problems
where the natural space for the solution is H1

0 (Ω). We now prove that indeed
v ∈ H1

0 (Ω). The tool to prove this result is the weak asymptotic consistency for
the discrete gradients, and this property turns out to be of independent interest.

Theorem 5.7 (Regularity of the limit and weak asymptotic consistency of dis-
crete gradients). Let k ≥ 0. Let vH be a sequence in �k

d(TH) bounded in the
‖·‖dG-norm. Then, there is a function v ∈ H1

0 (Ω) such that as h → 0, up to a
subsequence,

vh → v strongly in L2(Ω),

and, for all l ≥ 0, the discrete gradients defined by (4.44) are such that

Gl
h(vh) ⇀ ∇v weakly in [L2(Ω)]d. (5.7)

Proof. Let vH be a sequence in �k
d(TH) bounded in the ‖·‖dG-norm. The exis-

tence of v ∈ L2(Ω) such that, up to a subsequence, vh → v strongly in L2(Ω)
is a direct consequence of Theorem 5.6. To prove that v ∈ H1

0 (Ω), we first
establish (5.7). Let l ≥ 0. We extend functions by zero outside Ω. Owing to
Proposition 4.35,

‖Gl
h(vh)‖[L2(�d)]d = ‖Gl

h(vh)‖[L2(Ω)]d � |||vh|||sip = ‖vh‖dG,

so that the sequence (Gl
h(vh))h∈H is bounded in [L2(�d)]d. Hence, up to a

subsequence, there is w ∈ [L2(�d)]d such that Gl
h(vh) ⇀ w weakly in [L2(�d)]d.

To prove that w = ∇v, let Φ ∈ [C∞
0 (�d)]d and observe that

∫

�d

Gl
h(vh)·Φ =

∫

�d

∇hvh·Φ −
∫

�d

Rl
h(�vh�)·πl

hΦ

= −
∫

�d

vh∇·Φ +
∑

F∈Fh

∫

F

{{Φ − πl
hΦ}}·nF �vh� := T1 + T2.

where πl
h denotes the L2-orthogonal projection onto �l

d(Th). Letting h→ 0, we
observe that T1 → − ∫

�d v(∇·Φ) since vh → v strongly in L2(Ω). Furthermore,
using the Cauchy–Schwarz inequality and recalling the definition (4.18) of the
|·|J-seminorm, we infer

|T2| ≤
(
∑

F∈Fh

hF ‖{{Φ − πl
hΦ}}‖2

L2(F )

)1/2

|vh|J � hl+1‖Φ‖Hl+1(Ω)|vh|J.
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Since |vh|J is uniformly bounded, we infer that T2 → 0 as h→ 0. Collecting the
above limits yields

∫

�d

w·Φ = lim
h→0

∫

�d

Gl
h(vh)·Φ = −

∫

�d

v(∇·Φ),

implying that w = ∇v. This yields (5.7) as well as v ∈ H1(�d). Moreover, since
v is zero outside Ω, we conclude that v ∈ H1

0 (Ω).

Remark 5.8 (The non-Hilbertian case). Let 1 < p < ∞. Let k ≥ 0. Let vH
be a sequence in �k

d(TH) bounded in the ‖·‖dG,p-norm. Theorem 5.6 allows
us to infer, in particular, the existence of a function v ∈ Lp(Ω) such that, up
to a subsequence, vh → v in Lp(Ω). Moreover, it can be shown (see [131])
that v ∈ W 1,p

0 (Ω). The proof follows a similar path to that deployed above by
establishing preliminarily that G0

h(vh) ⇀ ∇v weakly in [Lp(Ω)]d.

5.2 Convergence to Minimal Regularity Solutions
The aim of this section is to investigate the convergence, as the meshsize goes
to zero, of the sequence of solutions to the discrete Poisson problem

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh, (5.8)

when the exact solution u has only the minimal regularity u ∈ H1
0 (Ω). For the

Poisson problem, the regularity theory for the Laplace operator can in general
be invoked to infer stronger regularity for the exact solution. However, this is
no longer the case when working with more complex problems, such as diffusion
problems with rough coefficients or nonlinear problems. In particular, the results
presented in this section constitute the first stone upon which the convergence
analysis of dG approximations for the incompressible Navier–Stokes equations
is built in Chap. 6.

The key idea is to revisit the concept of consistency and introduce a new point
of view based on asymptotic consistency. This new form of consistency, together
with the usual stability of the discrete bilinear form, are the two main ingredients
for asserting convergence to minimal regularity solutions. In what follows, we
consider sequences in the discrete spaces VH := (Vh)h∈H where Vh := �k

d(Th)
with fixed polynomial degree k ≥ 1 and Th belonging to an admissible mesh
sequence.

5.2.1 Consistency Revisited
The convergence analysis to minimal regularity solutions does not require to plug
in the exact solution into the first argument of the discrete bilinear form. In fact,
the latter is only employed using discrete functions as arguments. This leads us
to redefine the concept of consistency. We first present a general definition and
then verify it on the SIP bilinear form.
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Definition 5.9 (Asymptotic consistency). We say that the discrete bilinear
form ah is asymptotically consistent on VH with the exact bilinear form a defined
by (4.3) if, for any sequence vH in VH bounded in the ‖·‖dG-norm and for any
smooth function ϕ ∈ C∞

0 (Ω), there is a sequence ϕH in VH converging to ϕ in
the ‖·‖dG-norm and such that, up to a subsequence,

lim
h→0

ah(vh, ϕh) = a(v, ϕ) =
∫

Ω

∇v·∇ϕ,

where v ∈ H1
0 (Ω) is the limit of the subsequence identified in Theorem 5.7.

We now focus on the SIP bilinear form asip
h defined by (4.12) or, equivalently

at the discrete level, by (4.46). Here, it is more convenient to consider the latter
expression, namely

asip
h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) + ŝsiph (vh, wh), (5.9)

with l ∈ {k − 1, k} and the stabilization bilinear form

ŝsiph (vh, wh) :=
∑

F∈Fh

η

hF

∫

F

�vh��wh� −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�).

We stress that, in this section, the SIP bilinear form is not extended to larger
(e.g., broken Sobolev) spaces and that its arguments are always discrete func-
tions.

Lemma 5.10 (Asymptotic consistency of the SIP bilinear form). Let k ≥ 1.
The SIP bilinear form is asymptotically consistent with the exact bilinear form
a on VH.

Proof. Let vH be a sequence in VH bounded in the ‖·‖dG-norm and let ϕ ∈
C∞

0 (Ω). For all h ∈ H, we set ϕh = πhϕ where πh denotes the L2-orthogonal
projection onto Vh. Since k ≥ 1, we infer ‖ϕ− πhϕ‖dG → 0 as h→ 0. Owing to
Proposition 4.35 and since Gl

h(ϕ) = ∇ϕ, we obtain, for all l ≥ 0,

Gl
h(πhϕ) → ∇ϕ strongly in [L2(Ω)]d. (5.10)

We now observe that

asip
h (vh, πhϕ) =

∫

Ω

Gl
h(vh)·Gl

h(πhϕ) + ŝsiph (vh, πhϕ) := T1 + T2.

Clearly, as h→ 0, T1 → ∫
Ω
∇v·∇ϕ owing to the weak convergence of Gl

h(vh) to
∇v (cf. (5.7)) and to the strong convergence of Gl

h(πhϕ) to ∇ϕ. Furthermore,
using the Cauchy–Schwarz inequality together with (4.42) yields

|T2| = |ŝsiph (vh, πhϕ)| ≤ (η + C2
trN∂)|vh|J|πhϕ|J.

Since |vh|J is bounded by assumption and since |πhϕ|J = |ϕ − πhϕ|J tends to
zero as h→ 0, we infer T2 → 0. The proof is complete.

Remark 5.11 (Strong asymptotic consistency). Property (5.10) can be inter-
preted as a strong asymptotic consistency of discrete gradients for approxima-
tions of smooth functions. It has to be compared with the weaker property (5.7).
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5.2.2 Convergence
This section contains our main convergence result. The ideas in the proof can
be summarized as follows:

(a) An a priori estimate on the discrete solution is proven using discrete coer-
civity in Vh with respect to the ‖·‖dG-norm.

(b) Discrete compactness (Theorem 5.7) yields the existence of a function v ∈
H1

0 (Ω) such that, up to a subsequence, the discrete solutions strongly con-
verge to v in L2(Ω), while the discrete gradients weakly converge to ∇v in
[L2(Ω)]d.

(c) Using asymptotic consistency and a density argument allows us to conclude
that the limit function v solves the exact problem.

(d) Finally, additional properties of the exact problem (uniqueness of the exact
solution and an energy estimate) are used to tighten the convergence result
by showing that the whole sequence of discrete solutions converges and that
the discrete gradients (as well as the broken gradients) strongly converge in
[L2(Ω)]d to the correct limit, while the jump seminorm converges to zero.

As in Chap. 4, we assume that the penalty parameter is such that η > C2
trN∂ so

that (cf. Lemma 4.12), for all vh ∈ Vh,

asip
h (vh, vh) ≥ Cη‖vh‖2

dG,

with Cη = (η − C2
trN∂)(1 + η)−1. We also recall the result of Proposition 4.36,

namely, for all vh ∈ Vh,

asip
h (vh, vh) ≥ ‖Gl

h(vh)‖2
[L2(Ω)]d + (η − C2

trN∂)|vh|2J. (5.11)

Theorem 5.12 (Convergence to minimal regularity solutions). Let k ≥ 1. Let
uH be the sequence of approximate solutions generated by solving the discrete
problems (5.8) with discrete bilinear form asip

h defined on Vh×Vh by (5.9). Then,
as h→ 0,

uh → u strongly in L2(Ω),

∇huh → ∇u strongly in [L2(Ω)]d,
|uh|J → 0,

where u ∈ H1
0 (Ω) is the unique solution of (4.2).

Proof. We follow the four steps outlined above.
(i) Owing to discrete coercivity and to the discrete Poincaré inequality (5.6),

Cη‖uh‖2
dG ≤ asip

h (uh, uh) =
∫

Ω

fuh

≤ ‖f‖L2(Ω)‖uh‖L2(Ω) ≤ σ2‖f‖L2(Ω)‖uh‖dG.
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Hence, the sequence of discrete solutions uH is bounded in the ‖·‖dG-norm.
(ii) Owing to Theorem 5.7, there exists v ∈ H1

0 (Ω) such that, as h→ 0, up to a
subsequence, uh → v strongly in L2(Ω) and, for all l ≥ 0, Gl

h(uh) ⇀ ∇v weakly
in [L2(Ω)]d.
(iii) Owing to asymptotic consistency (cf. Lemma 5.10), for all ϕ ∈ C∞

0 (Ω),
∫

Ω

fϕ ←
∫

Ω

fπhϕ = asip
h (uh, πhϕ) →

∫

Ω

∇v·∇ϕ,

i.e., v solves the Poisson problem by density of C∞
0 (Ω) in H1

0 (Ω).
(iv) Since the solution u to the Poisson problem is unique, the whole sequence
uH strongly converges to u in L2(Ω) and, for all l ≥ 0, the sequence (Gl

h(uh))h∈H
weakly converges to ∇u in [L2(Ω)]d. Let l ∈ {k − 1, k}. Owing to (5.11) and to
weak convergence,

lim inf
h→0

asip
h (uh, uh) ≥ lim inf

h→0
‖Gl

h(uh)‖2
[L2(Ω)]d ≥ ‖∇u‖2

[L2(Ω)]d .

Furthermore, still owing to (5.11),

‖Gl
h(uh)‖2

[L2(Ω)]d ≤ asip
h (uh, uh) =

∫

Ω

fuh,

yielding

lim sup
h→0

‖Gl
h(uh)‖2

[L2(Ω)]d ≤ lim sup
h→0

asip
h (uh, uh)

= lim sup
h→0

∫

Ω

fuh =
∫

Ω

fu = ‖∇u‖2
[L2(Ω)]d .

Thus, ‖Gl
h(uh)‖[L2(Ω)]d → ‖∇u‖[L2(Ω)]d , classically yielding the strong con-

vergence of the discrete gradient in [L2(Ω)]d. Moreover, asip
h (uh, uh) →

‖∇u‖2
[L2(Ω)]d . Owing to (5.11), we infer

(η − C2
trN∂)|uh|2J ≤ asip

h (uh, uh) − ‖Gl
h(uh)‖2

[L2(Ω)]d ,

and, since η > C2
trN∂ and the right-hand side tends to zero, |uh|J → 0. Finally,

using the triangle inequality yields

‖∇huh −∇u‖[L2(Ω)]d ≤ ‖Gl
h(uh) −∇u‖[L2(Ω)]d + ‖Rl

h(�uh�)‖[L2(Ω)]d → 0,

as h→ 0, concluding the proof.

5.3 Variations on Symmetry and Penalty
This section reviews variations on symmetry and penalty that can be envisaged
to modify the SIP method analyzed in Sects. 4.2 and 5.2.
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5.3.1 Variations on Symmetry
The interest in nonsymmetric dG approximations for the Poisson problem was
prompted by the work of Oden, Babuška, and Baumann [250] who considered
the discrete bilinear form

aobb
h (vh, wh) :=

∫

Ω

∇hvh·∇hwh−
∑

F∈Fh

∫

F

({{∇hvh}}·nF �wh� − �vh�{{∇hwh}}·nF ) .

There are two important differences with respect to the SIP bilinear form: the
contribution of mesh faces is skew-symmetric and there is no penalty term. The
skew-symmetry of the face contribution has the consequence that

∀vh ∈ Vh, aobb
h (vh, vh) = ‖∇hvh‖2

[L2(Ω)]d ≥ 0.

Various numerical results were presented in [250] indicating that despite the
absence of a penalty term, the method behaves fairly well for quadratic and
higher-order polynomial orders in one and two space dimensions. Further theo-
retical insight was gained by Larson and Niklasson [220] who showed discrete inf-
sup stability for such polynomials on unstructured triangulations in two space
dimensions. Alternatively, a penalty term of a form similar to (4.11) can be
added to the OBB bilinear form leading to the Nonsymmetric Interior Penalty
(NIP) method analyzed by Rivière, Wheeler, and Girault [271,272]. The result-
ing discrete bilinear form is

anip
h (vh, wh) = aobb

h (vh, wh) +
∑

F∈Fh

η

hβ
F

∫

F

�vh��wh�. (5.12)

Taking β = 1 and η > 0 leads to optimal ‖·‖dG-norm error estimates, as for the
SIP method. Because of the lack of symmetry, the duality argument deployed
in Sect. 4.2.4 for the SIP method cannot be used for the NIP method. Optimal
L2-norm error estimates can be derived by resorting to overpenalty, that is, by
taking the exponent β larger than one; specifically, β ≥ 3 for d = 2 and β ≥ 3/2
for d = 3. A variant called Weakly Overpenalized NIP has been analyzed recently
by Brenner and Owens [53], the idea being to overpenalize the jumps of the mean
values only.

Finally, we mention the Incomplete Interior Penalty (IIP) method introduced
by Dawson, Sun, and Wheeler [121] in the context of coupled porous media flow
and contaminant transport. The discrete bilinear form reads

aiip
h (vh, wh) :=

∫

Ω

∇hvh·∇hwh−
∑

F∈Fh

∫

F

{{∇hvh}}·nF �wh�+
∑

F∈Fh

η

hF

∫

F

�vh��wh�,

the difference with SIP being that the symmetry term has been dropped.
In all cases, letting Vh = �k

d(Th) with polynomial degree k ≥ 1 and Th

belonging to an admissible mesh sequence, the discrete problem takes the form:

Find uh ∈ Vh s.t. a∗h(uh, vh) =
∫

Ω

fvh for all vh ∈ Vh, (5.13)
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where a∗h can be the OBB, NIP, or IIP discrete bilinear form. For NIP (with
β = 1), discrete coercivity is achieved in the ‖·‖dG-norm as soon as η > 0,
while for IIP, proceeding as in the proof of Lemma 4.12 shows that discrete
coercivity is achieved in the ‖·‖dG-norm as soon as η > 1

4C
2
trN∂ . Once discrete

coercivity is asserted, the convergence analysis to smooth solutions in the ‖·‖dG-
norm proceeds similarly to Sect. 4.2.3; details are omitted for brevity.

5.3.1.1 Local Conservation

Similarly to the SIP method (cf. Sect. 4.3.4), the OBB, NIP, and IIP methods
satisfy a local conservation property. Specifically, for all T ∈ Th and for all
ξ ∈ �k

d(T ), there holds
∫

T

(∇huh − αRk−1
h (�uh�))·∇ξ +

∑

F∈FT

εT,F

∫

F

φ̃F (uh)ξ =
∫

T

fξ,

where α = −1 for OBB and NIP, while α = 0 for IIP; furthermore, φ̃F (uh) =
φF (uh) = −{{∇huh}}·nF + ηh−1

F �uh� for NIP (with β = 1) and IIP, while for
OBB, φ̃F (uh) = −{{∇huh}}·nF .

5.3.1.2 Convergence to Minimal Regularity Solutions

The NIP and IIP bilinear forms can be cast into the form (compare with (5.9))

a∗h(vh, wh) =
∫

Ω

Ĝl
h(vh)·Gl

h(wh) + ŝ∗h(vh, wh), (5.14)

with l ∈ {k − 1, k} and where for NIP (with β = 1),

Ĝl
h(vh) = ∇hvh + Rl

h(�vh�), (5.15)

ŝnip
h (vh, wh) =

∑

F∈Fh

η

hF

∫

F

�vh��wh� +
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�), (5.16)

while for IIP,

Ĝl
h(vh) = ∇hvh, (5.17)

ŝiiph (vh, wh) =
∑

F∈Fh

η

hF

∫

F

�vh��wh�. (5.18)

We assume that the penalty parameter η is chosen such that η > 0 for NIP
and η > 1

4C
2
trN∂ for IIP; this implies discrete coercivity in the ‖·‖dG-norm, and

hence well-posedness of the discrete problem (5.13). Specifically, there is Csta,
independent of h, such that

∀vh ∈ Vh, Csta‖vh‖2
dG ≤ a∗h(vh, vh). (5.19)

To analyze the convergence to minimal regularity solutions of the seq-
uence of discrete solutions uH solving (5.13), we adapt the ideas of Sect. 5.2.
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The difficulty is that the discrete bilinear form a∗h defined by (5.14) does not
match Definition 5.9 regarding asymptotic consistency. Instead, we consider
asymptotic adjoint consistency.

Definition 5.13 (Asymptotic adjoint consistency). We say that the discrete
bilinear form a∗h is asymptotically adjoint consistent with the exact bilinear form
a on VH if for any sequence vH in VH bounded in the ‖·‖dG-norm and for any
smooth function ϕ ∈ C∞

0 (Ω), there is a sequence ϕH in VH converging to ϕ in
the ‖·‖dG-norm and such that, up to a subsequence,

lim
h→0

ah(ϕh, vh) = a(ϕ, v) =
∫

Ω

∇ϕ·∇v,

where v ∈ H1
0 (Ω) is the limit of the subsequence identified in Theorem 5.7.

Lemma 5.14 (Asymptotic adjoint consistency of NIP and IIP bilinear forms).
The discrete bilinear form a∗h defined by (5.14) is asymptotically adjoint consis-
tent with the exact bilinear form a on VH.

Proof. We proceed as in the proof of Lemma 5.10 observing that, for both NIP
and IIP, Ĝl

h(πhϕ) strongly converges to ∇ϕ in [L2(Ω)]d where πh denotes the
L2-orthogonal projection onto Vh.

We can now state our convergence result to minimal regularity solutions.
The general idea of the proof is inspired from Agélas, Di Pietro, Eymard, and
Masson [6, Lemma 2.3 and Theorem 2.2].

Theorem 5.15 (Convergence to minimal regularity solutions). Let k ≥ 1. Let
uH be the sequence of approximate solutions generated by solving the discrete
problems (5.13) with a∗h defined by (5.14) and with penalty parameter ensuring
coercivity. Then, as h→ 0,

uh → u strongly in L2(Ω),

∇huh → ∇u strongly in [L2(Ω)]d,
|uh|J → 0,

where u ∈ H1
0 (Ω) is the unique solution of (4.2).

Proof. Owing to the discrete coercivity of a∗h, the sequence uH is bounded in
the ‖·‖dG-norm. Theorem 5.7 implies that there is v ∈ H1

0 (Ω) such that, up to
a subsequence, uh → v in L2(Ω) and, for all l ≥ 0, Gl

h(uh) ⇀ ∇v weakly in
[L2(Ω)]d as h → 0. Let ϕ ∈ C∞

0 (Ω). Owing to Lemma 5.14, a∗h(πhϕ, uh) →
a(ϕ, v) as h→ 0. Since uh solves the discrete problem (5.13), we infer, as h→ 0,

a∗h(uh − πhϕ, uh − πhϕ) →
∫

Ω

f(v − ϕ) −
∫

Ω

∇ϕ·∇(v − ϕ).

Hence, using (5.19)

Csta lim sup
h→0

‖uh−πhϕ‖2
dG ≤ lim sup

h→0
a∗h(uh−πhϕ, uh−πhϕ) ≤ Cf,ϕ‖v−ϕ‖H1(Ω),
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with Cf,ϕ = (‖f‖2
L2(Ω) + ‖∇ϕ‖2

[L2(Ω)]d)1/2. As a consequence,

lim sup
h→0

‖uh − πhϕ‖2
dG ≤ C−1

staCf,ϕ‖v − ϕ‖H1(Ω).

We now observe that both of the choices (5.15) and (5.17) for Ĝl
h satisfy the

stability property:

∀vh ∈ Vh, ‖Ĝl
h(vh)‖[L2(Ω)]d ≤ Ĉ‖vh‖dG,

for Ĉ independent of h (the assertion is straightforward for IIP, whereas the
bound (4.42) is used for NIP). As a result,

lim sup
h→0

‖Ĝl
h(uh) − Ĝl

h(πhϕ)‖2
[L2(Ω)]d ≤ ĈC−1

staCf,ϕ‖v − ϕ‖H1(Ω),

and since Ĝl
h(πhϕ) strongly converges to ∇ϕ in [L2(Ω)]d, this yields

lim sup
h→0

‖Ĝl
h(uh) −∇ϕ‖2

[L2(Ω)]d ≤ ĈC−1
staCf,ϕ‖v − ϕ‖H1(Ω).

Since ϕ is arbitrary in C∞
0 (Ω), and since this space is dense in H1

0 (Ω), the term
on the right-hand side can be made as small as desired. Hence, we infer

Ĝl
h(uh) → ∇v strongly in [L2(Ω)]d.

As a result, taking again ϕ arbitrary in C∞
0 (Ω) yields

∫

Ω

fϕ←
∫

Ω

fπhϕ = a∗h(uh, πhϕ) →
∫

Ω

∇v·∇ϕ.

The proof can now be concluded as in the symmetric case.

Remark 5.16 (Further variation on symmetry (with crime)). It is also possible
to consider the discrete bilinear form (compare with (5.14))

a∗∗h (vh, wh) =
∫

Ω

Gl
h(vh)·Ĝl

h(wh) + ŝ∗h(vh, wh),

with corresponding sequence of discrete solutions uH. The asymptotic consis-
tency of a∗∗h is an immediate consequence of the discrete Rellich–Kondrachov
theorem and the strong consistency of Ĝl

h for smooth functions, so that prov-
ing the strong convergence in L2 of the discrete solutions uH is straightforward.
However, the present techniques do not provide a convergence proof for the dis-
crete gradients. This difficulty is also reflected by the lack of the consistency
term (cf. Definition 4.7).
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5.3.2 Variations on Penalty
Following an idea originally proposed by Bassi, Rebay, Mariotti, Pedinotti, and
Savini [35], we analyze in this section a modification of the penalty strategy
whereby the liftings of the interface and boundary jumps are penalized instead
of the actual values of these quantities. Specifically, we define the so-called
BRMPS discrete bilinear form

abrmps
h (vh, wh) := acs

h (vh, wh) + sbrmps
h (vh, wh), (5.20)

with acs
h defined by (4.8) and with the new stabilization bilinear form

sbrmps
h (vh, wh) :=

∑

F∈Fh

η

∫

Ω

rl
F (�vh�)· rl

F (�wh�),

where η > 0 is a user-dependent parameter and l ∈ {k − 1, k}. The main
advantage of this new penalty strategy is that coercivity holds provided η >
N∂ , thereby circumventing the presence of Ctr in the minimal threshold for the
penalty parameter.

The natural norm to assert the discrete coercivity of abrmps
h is

|||vh|||brmps :=

(

‖∇hvh‖2
[L2(Ω)]d +

∑

F∈Fh

‖ rl
F (�vh�)‖2

[L2(Ω)]d

)1/2

.

We observe that |||·|||brmps is a norm on H1(Th). Indeed, if v ∈ H1(Th) is such
that |||v|||brmps = 0, then ∇hv = 0 and rl

F (�v�) = 0 for all F ∈ Fh. The first
property implies that v is piecewise constant, and the second property yields
that �v� = 0 across all F ∈ Fh; hence, v = 0.

Lemma 5.17 (Discrete coercivity). Assume η > N∂. Then, the discrete bilinear
form abrmps

h defined by (5.20) is coercive on Vh with respect to the |||·|||brmps-norm,
i.e.,

∀vh ∈ Vh, abrmps
h (vh, vh) ≥ Cη|||vh|||2brmps,

with Cη := (η −N∂)(1 + η)−1.

Proof. Let vh ∈ Vh. Observing that (cf. (4.45))

acs
h (vh, vh) =

∫

Ω

|∇hvh|2 − 2
∫

Ω

∇hvh·Rl
h(�vh�),

and using (4.41) to bound ‖Rl
h(�vh�)‖[L2(Ω)]d , we obtain

abrmps
h (vh, vh) ≥ ‖∇hvh‖2

[L2(Ω)]d + η
∑

F∈Fh

‖ rl
F (�vh�)‖2

[L2(Ω)]d

− 2N
1/2

∂ ‖∇hvh‖[L2(Ω)]d

(
∑

F∈Fh

‖ rl
F (�vh�)‖2

[L2(Ω)]d

)1/2

.
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The right-hand side takes the form x2−2βxy+ηy2 with x = ‖∇hvh‖[L2(Ω)]d and
y = (

∑
F∈Fh

‖ rl
F (�vh�)‖2

[L2(Ω)]d)1/2. Proceeding as in Lemma 4.12 then yields the
assertion.

We now establish the discrete coercivity of abrmps
h on Vh using the ‖·‖dG-

norm defined by (5.2) (or, equivalently, the |||·|||sip-norm defined by (4.17)). This
results from Lemma 5.17 and the following uniform equivalence of the |||·|||brmps-
and ‖·‖dG-norms on Vh.

Lemma 5.18 (Uniform norm equivalence). Let k ≥ 1 and let l ≥ 0. There is
Cr > 0, independent of h, such that, for all vh ∈ Vh and all F ∈ Fh,

Crh
−1/2

F ‖�vh�‖L2(F ) ≤
(
‖ rl

F (�vh�)‖2
[L2(TF )]d + ‖∇hvh‖2

[L2(TF )]d

)1/2

, (5.21)

where TF is defined by (1.13) and ‖·‖[L2(TF )]d = (
∑

T∈TF
‖·‖2

[L2(T )]d)1/2. As a
result, the ‖·‖dG- and |||·|||brmps-norms are uniformly equivalent on Vh: For all
vh ∈ Vh,

(1 + 2C−2
r )−1/2‖vh‖dG ≤ |||vh|||brmps ≤ max(1, C2

tr)
1/2‖vh‖dG. (5.22)

Proof. To alleviate the notation, we abbreviate as a � b the inequality a ≤ Cb
with positive C independent of h. Let F ∈ Fh and let vh ∈ Vh. Let yh := 〈�vh�〉F
denote the mean value of �vh� on F . The triangle inequality yields

‖�vh�‖L2(F ) ≤ ‖yh‖L2(F ) + ‖�vh� − yh‖L2(F ). (5.23)

Owing to the generalized Friedrichs inequality (see, e.g., Vohralík [300]), there
holds

‖�vh� − yh‖L2(F ) � h
1/2

F ‖∇hvh‖[L2(TF )]d . (5.24)

To bound the first term on the right-hand side of (5.23), let nF,0 denote the
mean value of nF on F (we recall that mesh faces can be composed of several
portions of hyperplanes). Then, since nF ·nF = 1 on F and since yh is constant
on F ,

‖yh‖2
L2(F ) =

∫

F

|yh|2 =
∫

F

yhnF ·nF yh =
∫

F

yhnF ·nF,0yh.

Therefore, setting Φh = yhnF,0, extending Φh by its constant value on the ele-
ments in TF so that Φ ∈ [�0

d(Th)]d and {{Φh}} = Φh on F , and using the defini-
tion (4.37) of rl

F yields, for all l ≥ 0,

‖yh‖2
L2(F ) =

∫

F

yhnF ·Φh =
∫

Ω

rl
F (yh)·Φh ≤ ‖ rl

F (yh)‖[L2(TF )]d‖Φh‖[L2(TF )]d ,

and since ‖Φh‖[L2(TF )]d � h
1/2

F ‖yh‖L2(F ), we conclude that

‖yh‖L2(F ) � h
1/2

F ‖ rl
F (yh)‖[L2(TF )]d .
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Using the linearity of rl
F , the triangle inequality, the bound (4.39) on rl

F (·),
and (5.24) leads to

‖yh‖L2(F ) � h
1/2

F ‖ rl
F (�vh�)‖[L2(Ω)]d + h

1/2

F ‖ rl
F (yh − �vh�)‖[L2(Ω)]d

� h
1/2

F ‖ rl
F (�vh�)‖[L2(Ω)]d + ‖yh − �vh�‖L2(F )

� h
1/2

F ‖ rl
F (�vh�)‖[L2(Ω)]d + h

1/2

F ‖∇hvh‖[L2(TF )]d .

This yields (5.21). Finally, the lower bound in (5.22) results from (5.21) after a
summation over F ∈ Fh, while the upper bound results from the bound (4.39)
on each rl

F (·) for all F ∈ Fh.

We can now reformulate Lemma 5.17.

Lemma 5.19 (Discrete coercivity). Assume η > N∂. Then, the discrete bilinear
form abrmps

h defined by (5.20) is coercive on Vh with respect to the ‖·‖dG-norm,
i.e.,

∀vh ∈ Vh, abrmps
h (vh, vh) ≥ Csta‖vh‖2

dG,

with Csta := Cη(1+2C−2
r )−1, Cη defined in Lemma 5.17, and Cr in Lemma 5.18.

We consider the discrete problem

Find uh ∈ Vh s.t. abrmps
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh. (5.25)

For smooth solutions, the error analysis proceeds as in Sects. 4.2.3 and 4.2.4, lead-
ing to optimal error estimates in the ‖·‖dG- and L2-norms respectively; details
are omitted for brevity.

5.3.2.1 Local Formulation and Stencil

It is easily verified that the local formulation of the discrete problem (5.25) has
the same form as (4.49) for the SIP method, except that the numerical flux
φF (uh) is now given by

φF (uh) = −{{∇huh}}·nF + η{{rl
F (�uh�)}}·nF .

Furthermore, the elementary stencil of the BRMPS bilinear form is the same as
that of the SIP bilinear form; cf. Fig. 4.1.

5.3.2.2 Convergence to Minimal Regularity Solutions

In the spirit of Sect. 4.3.3, the discrete bilinear form abrmps
h can be equivalently

reformulated on Vh × Vh as

abrmps
h (vh, wh) =

∫

Ω

Gl
h(vh)·Gl

h(wh) + ŝbrmps
h (vh, wh),

with l ∈ {k − 1, k} and the stabilization bilinear form

ŝbrmps
h (vh, wh) =

∑

F∈Fh

η

∫

Ω

rl
F (�vh�)· rl

F (�wh�) −
∫

Ω

Rl
h(�vh�)·Rl

h(�wh�).
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Theorem 5.20 (Convergence to minimal regularity solutions). Let k ≥ 1. Let
uH be the sequence of approximate solutions generated by solving the discrete
problems (5.25) with abrmps

h defined by (5.20). Then, as h→ 0,

uh → u strongly in L2(Ω),

∇huh → ∇u strongly in [L2(Ω)]d,
|uh|J → 0,

where u ∈ H1
0 (Ω) is the unique solution of (4.2).

Proof. Owing to discrete coercivity and symmetry, we can proceed as in the proof
of Theorem 5.12 to infer that uh → u in L2(Ω) and, for all l ≥ 0, Gl

h(uh) → ∇u
in [L2(Ω)]d where u ∈ H1

0 (Ω) is the unique solution of (4.2). Moreover, we obtain
abrmps

h (uh, uh) → ‖∇u‖2
[L2(Ω)]d , and since

(η −N∂)
∑

F∈Fh

‖ rl
F (�uh�)‖2

[L2(Ω)]d ≤ abrmps
h (uh, uh) − ‖Gl

h(uh)‖2
[L2(Ω)]d ,

we infer that
∑

F∈Fh
‖ rl

F (�uh�)‖2
[L2(Ω)]d → 0. It remains to prove that |uh|J → 0.

To this purpose, let ϕ ∈ C∞
0 (Ω) and set ϕh = πhϕ. Using Lemma 5.19 yields

Csta|uh − ϕh|2J ≤ Csta‖uh − ϕh‖2
dG ≤ abrmps

h (uh − ϕh, uh − ϕh).

Letting h→ 0 yields

lim sup
h→0

|uh|2J ≤ C−1
sta‖∇(u − ϕ)‖2

[L2(Ω)]d ,

and the upper bound can be made as small as desired owing to the density of
C∞

0 (Ω) in H1
0 (Ω).

5.3.3 Synopsis
All the variants considered in this section (including the SIP method of Sect. 4.2
and LDG method of Sect. 4.4.2) can be recast in the general form

ah(vh, wh) :=
∫

Ω

Ĝl
h,α(vh)·Gl

h(wh) + ŝβ,γ
h (vh, wh),

with l ∈ {k − 1, k}, the discrete gradient Gl
h(wh) defined as usual by (4.44),

Ĝl
h,α(vh) := ∇hvh − αRl

h(�vh�) α ∈ {−1, 0, 1},
and the stabilization bilinear form

ŝβ,γ
h (vh, wh) := −β

∫

Ω

Rh(�vh�)·Rh(�wh�) + γ
∑

F∈Fh

η

hF

∫

F

�vh��wh�

+ (1 − γ)
∑

F∈Fh

η

∫

Ω

rl
F (�vh�)· rl

F (�wh�),
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Table 5.1: Some common dG methods for the Poisson problem
α β ζα,β Stencil Name
1 1 1 N SIP (γ = 1)/BRMPS (γ = 0)
1 0 0 NN LDG-type
0 0 1/4 N IIP
−1 −1 0 N NIP

for parameters β ∈ {0, α} and γ ∈ {0, 1} (taking β = α yields a more compact
stencil, while the parameter γ serves to modify the penalty strategy). For given
values of α, β, and γ, discrete coercivity is achieved for η > η

α,β,γ
where

η
α,β,γ

= ζα,βN
1/2

∂ [1 + γ(Ctr − 1)],

for some positive parameter ζα,β . A synopsis is presented in Table 5.1.

5.4 Cell-Centered Galerkin
The convergence analysis of Sects. 4.2.3 and 5.2 breaks down when using the
SIP bilinear form with piecewise constant functions. In this section, we outline
a different approach to derive a cost-effective, low-order dG method for the
Poisson problem (4.2) with one degree of freedom per mesh cell. More details
can be found in Di Pietro [128–130] and Eymard, Gallouët, and Herbin [159];
see also Agélas, Di Pietro, Eymard, and Masson [6].

Let Vh := �0
d(Th) where Th belongs to an admissible mesh sequence, so that

the space Vh is spanned by piecewise constant functions. Our first ingredient is
a discrete gradient reconstruction, i.e., a linear operator

G
(0)
h : Vh � vh �−→ G

(0)
h (vh) ∈ [�0

d(Th)]d.

This operator is defined by (5.28) below. We can then consider the linear recon-
struction operator A(1)

h mapping piecewise constant functions onto piecewise
affine functions,

A(1)
h : Vh � vh �−→ A(1)

h (vh) ∈ �1
d(Th),

such that, for all vh ∈ Vh and all T ∈ Th,

A(1)
h (vh)|T := vT +G

(0)
h (vh)|T ·(x− xT ), vT := vh|T ,

where xT denotes the center of gravity of T (in short, the cell center). We set

V cc
h := A(1)

h (Vh) ⊂ �1
d(Th).

The space V cc
h has dimension equal to the number of mesh elements in Th since

the map A(1)
h is injective. The key property required for the discrete gradient

operator G(0)
h is strong consistency on smooth functions in the following sense.
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Definition 5.21 (Strong consistency on smooth functions). We say that the
discrete gradient operator G(0)

h is strongly consistent on smooth functions if, for
all ϕ ∈ C∞

0 (Ω), letting

Πhϕ :=
∑

T∈Th

ϕ(xT )χT ∈ �0
d(Th), (5.26)

where χT denotes the characteristic function of T , there holds

lim
h→0

‖ϕ−A(1)
h (Πhϕ)‖dG = 0. (5.27)

A practical means to construct a discrete gradient operator G(0)
h matching

property (5.27) has been proposed recently by Eymard, Gallouët, and Herbin
[159] in the context of finite volume methods using the so-called barycentric
trace interpolator. To use this construction, we make the following assumption
on the mesh.

Assumption 5.22 (Assumption on the mesh). We assume that, for each mesh
face F ∈ F i

h, there exists a set BF
h ⊂ Th with card(BF

h ) = (d+ 1) and such that
the cell centers {xT }T∈BF

h
form a non-degenerate simplex SF of �d. Moreover,

for all T ∈ Th and for all F ∈ FT , we also assume that dT,F := dist(xT , F ) is
uniformly comparable with the local length scale hF (cf. Definition 4.5).

The barycentric trace interpolator is conveniently defined using barycentric
coordinates.

Definition 5.23 (Barycentric coordinates). On a non-degenerate simplex S
with vertices {a0, . . . , ad}, the barycentric coordinate λi is defined, for all i ∈
{0, . . . , d}, as the unique affine function in �1

d(S) such that λi(aj) = δij for all
j ∈ {0, . . . , d}, where δij is the Kronecker symbol.

For a point x belonging to a simplex S, the barycentric coordinate λi(x),
i ∈ {0, . . . , d}, is equal to the ratio between the d-dimensional Hausdorff measure
of the simplex obtained by joining the face of S opposite to the vertex ai with
the point x and the d-dimensional Hausdorff measure of S. The discrete gradient
operator G(0)

h is then defined as follows (compare with the definition (4.43) of
R0

h(�v�)|T on broken polynomial spaces with k ≥ 1): For all vh ∈ Vh and all
T ∈ Th,

G
(0)
h (vh)|T :=

∑

F∈FT

|F |d−1

|T |d (IF (vh) − vT ) nT,F , (5.28)

where

IF (vh) :=

{∑
T∈BF

h
λT,F vT if F ∈ F i

h,

0 if F ∈ Fb
h,

while λT,F is the barycentric coordinate in the simplex SF of Assumption 5.22
such that λT,F is equal to one at the vertex xT and to zero at the other vertices,
while nT,F denotes the outward normal to T on F ; cf. Fig. 5.1.
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Fig. 5.1: Barycentric trace interpolator; here, BF
h := {T1, T2, T3}

Lemma 5.24 (Strong consistency on smooth functions). The discrete gradient
operator G(0)

h defined by (5.28) is strongly consistent on smooth functions.

Proof. Let ϕ ∈ C∞
0 (Ω). We need to prove (5.27), and, to this purpose, we treat

separately the two terms composing the ‖·‖dG-norm. To alleviate the notation,
we abbreviate as a � b the inequality a ≤ Cb with positive C that can depend on
the derivatives of ϕ and mesh regularity, but not on the meshsize h. We observe
preliminarily that it is proven in [159, Theorem 4.1] that, for all F ∈ F i

h,

|ϕ(xF ) − IF (Πhϕ)| � h2
F , (5.29)

where xF denotes the center of gravity of F .
(i) Let us prove that

‖∇hA(1)
h (Πhϕ) −∇ϕ‖[L2(Ω)]d � h. (5.30)

For all T ∈ Th, there holds, by construction, ∇hA(1)
h (Πhϕ)|T = G

(0)
h (Πhϕ).

Moreover, for all x ∈ T , we observe that

G
(0)
h (Πhϕ) −∇ϕ(x) =

∑

F∈FT

|F |d−1

|T |d (IF (Πhϕ) − ϕ(xF )) nT,F

+ (∇ϕ(xT ) −∇ϕ(x))

+

(
∑

F∈FT

|F |d−1

|T |d (ϕ(xF ) − ϕ(xT )) nT,F −∇ϕ(xT )

)

.

Let T1, T2, and T3 denote the three terms on the right-hand side. Property
(5.29), the geometric relation

∑
F∈FT

|F |d−1dT,F

|T |d = d, and Assumption 5.22 on
dT,F yield

|T1| ≤
∑

F∈FT

|F |d−1dT,F

|T |d
|IF (Πhϕ) − ϕ(xF )|

dT,F
� hF .
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As a consequence, ‖T1‖[L2(T )]d � |T |1/2

d hT . For the second term, since ϕ is
smooth, we obtain ‖T2‖[L2(T )]d � |T |1/2

d hT . Finally, owing to [159, Lemma 4.3],
‖T3‖[L2(T )]d � |T |1/2

d hT . Summing the above estimates over T ∈ Th yields (5.30).
(ii) Let us now show that T4 := |ϕ − A(1)

h (Πhϕ)|J � h. Using the continuous
trace inequality (1.41) and mesh regularity, we infer

T2
4 �

∑

F∈Fh

∑

T∈TF

(
h−2

T ‖ϕ−A(1)
h (Πhϕ)‖2

L2(T ) + ‖∇ϕ−∇hA(1)
h (Πhϕ)‖2

[L2(T )]d

)

�
∑

T∈Th

h−2
T ‖ϕ−A(1)

h (Πhϕ)‖2
L2(T ) + ‖∇ϕ−∇hA(1)

h (Πhϕ)‖2
[L2(Ω)]d .

To estimate ‖ϕ−A(1)
h (Πhϕ)‖L2(T ), we expand ϕ to second-order at xT and use

A(1)
h (Πhϕ)(xT ) = ϕ(xT ) to obtain

‖ϕ−A(1)
h (Πhϕ)‖L2(T ) � hT ‖∇ϕ−∇hA(1)

h (Πhϕ)‖[L2(T )]d + h2
T ‖ϕ‖2

H2(T ).

Combined with the above bound on T2
4, this yields

|ϕ−A(1)
h (Πhϕ)|J � ‖∇ϕ−∇hA(1)

h (Πhϕ)‖[L2(Ω)]d + h‖ϕ‖H2(Ω).

Using (5.30) to bound the first term finally leads to

|ϕ−A(1)
h (Πhϕ)|J � h,

whence the convergence result (5.27).

We consider the discrete problem

Find uh ∈ V cc
h s.t. asip

h (uh, vh) =
∫

Ω

fvh for all vh ∈ V cc
h , (5.31)

with the SIP bilinear form asip
h defined by (4.46). An important consequence of

Lemma 5.24 is the asymptotic consistency of the SIP bilinear form asip
h with the

exact bilinear form a on V cc
H .

Lemma 5.25 (Asymptotic consistency of SIP bilinear form). The SIP bilinear
form is asymptotically consistent with the exact bilinear form a on V cc

H .

Proof. We proceed as in Lemma 5.10 using the sequence (A(1)
h (Πhϕ))h∈H with

converges to ϕ in the ‖·‖dG-norm owing to Lemma 5.24.

We can now state our convergence result to minimal regularity solutions.
The proof, which proceeds exactly as that of Theorem 5.12 replacing the L2-
orthogonal projector πh by the interpolator Πh defined by (5.26), is omitted.
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Theorem 5.26 (Convergence to minimal regularity solutions). Let uH be
the sequence of approximate solutions generated by solving the discrete prob-
lems (5.31). Then, as h→ 0,

uh → u strongly in L2(Ω),

∇huh → ∇u strongly in [L2(Ω)]d,
|uh|J → 0,

where u ∈ H1
0 (Ω) is the unique solution of (4.2).

5.5 Local Postprocessing
In this section, we consider the discrete Poisson problem (5.8) (variations in sym-
metry and penalty can be easily accommodated). We recall that the solution uh

is in Vh := �k
d(Th) with polynomial degree k ≥ 1 and Th belonging to an admis-

sible mesh sequence. Recalling Definition 4.38, the scalar-valued function uh is
termed the discrete potential. The aim of this section is to postprocess locally
the discrete potential uh so as to reconstruct an H1

0 (Ω)-conforming potential
u∗h and an H(div;Ω)-conforming diffusive flux σ∗

h that accurately approximate
the exact potential u and the exact diffusive flux σ = −∇u. Incidentally, we
notice that the discrete diffusive flux σh ∈ [�l

d(Th)]d, l ∈ {k − 1, k}, delivered
by the mixed dG approximation of Sect. 4.4 is not appropriate for our purposes,
since generally �σh�·nF �= 0 across interfaces, while, owing to Lemma 1.24, we
require �σ∗

h�·nF = 0.
The reconstructed quantities u∗h ∈ H1

0 (Ω) and σ∗
h ∈ H(div;Ω) are used

in Sect. 5.6 in the context of a posteriori error estimates. The reconstructed dif-
fusive flux can be relevant in other applications; it can be used, for instance, as
advective velocity when modeling contaminant transport through porous media.
An application to two-phase porous media flows has been investigated by Ern,
Mozolevski, and Schuh [146].

In what follows, we abbreviate as a � b the inequality a ≤ Cb with positive
C that can depend on the space dimension d, the polynomial degree k, and the
mesh regularity parameters , but not on the meshsize h (and the dG penalty
parameter η). For any subset T ⊂ Th, we also use the notation ‖·‖L2(T ) :=
(∑

T∈T ‖·‖2
L2(T )

)1/2

.

5.5.1 Local Residuals
We introduce the local residuals

∀T ∈ Th, Rpde,T := hT ‖f + �uh‖L2(T ), (5.32a)

∀F ∈ F i
h, Rjdf,F := h

1/2

F ‖�∇huh�·nF ‖L2(F ), (5.32b)

∀F ∈ Fh, Rjpt,F := h
−1/2

F ‖�uh�‖L2(F ). (5.32c)
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The residual Rpde,T is associated with the elementwise PDE residual. The
residual Rjdf,F contains the jump of the normal component of the broken gradi-
ent across interfaces, and results from the nonconformity of the broken gradient
in H(div;Ω). Finally, the residual Rjpt,F , which contains the interface and
boundary jumps of the discrete potential, results from the nonconformity of the
discrete potential in H1

0 (Ω).
For all T ∈ Th, we also define the local data oscillation residual

Rosc,T := hT ‖f − πhf‖L2(T ), (5.33)

where πh is the L2-orthogonal projection onto �k
d(Th). For any subset T ⊂ Th,

we set

Rosc,T :=

(
∑

T∈T
R2

osc,T

)1/2

. (5.34)

If, locally in some T ∈ Th, f |T ∈ �k
d(T ), then Rosc,T = 0, and if, globally,

f ∈ �k
d(Th), then Rosc,Th

= 0.
The following bound on the local residuals Rpde,T and Rjdf,F in terms of the

approximation error (u − uh) and the data oscillation plays an important role
in Sects. 5.5 and 5.6. We observe that the proof of this result does not use the
fact that uh solves a specific discrete problem, but just that uh ∈ Vh and that
u ∈ H1

0 (Ω).

Lemma 5.27 (Bound on local residuals). There holds

∀T ∈ Th, Rpde,T � ‖∇(u− uh)‖[L2(T )]d + Rosc,T , (5.35a)

∀F ∈ F i
h, Rjdf,F � ‖∇h(u− uh)‖[L2(TF )]d + Rosc,TF , (5.35b)

where TF collects the two mesh elements sharing F .

Proof. The proof uses the element and face bubble functions considered by Ver-
fürth [298] in the context of a posteriori error estimates for conforming finite
element methods. We present the proof on matching simplicial meshes. The
bounds on general meshes are proven by combining the corresponding bounds
on the matching simplicial submesh and using mesh regularity.
(i) Bound on Rpde,T . Let T ∈ Th and let bT be the element bubble function in
H1

0 (T ) equal on F to the product of barycentric coordinates in T rescaled so as
to take the value 1 at the center of gravity of T . Set rT := (πhf + �huh)|T ,
where �h denotes the broken Laplacian acting elementwise, and ψT := bT rT .
Owing to the properties of bubble functions and mesh regularity,

‖rT ‖2
L2(T ) �

∫

T

rT bT rT , ‖ψT ‖L2(T ) � ‖rT ‖L2(T ).

Since the bubble function bT vanishes on ∂T , integration by parts yields

‖rT ‖2
L2(T ) �

∫

T

rT bT rT =
∫

T

rTψT =
∫

T

(πhf + �uh)ψT

=
∫

T

∇(u − uh)·∇ψT +
∫

T

(πhf − f)ψT .
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F

Fig. 5.2: Set ωF associated with an interface F ∈ F i
h

Since ψT is a polynomial, the inverse inequality (1.36) implies that

‖∇ψT ‖[L2(T )]d � h−1
T ‖ψT ‖L2(T ) � h−1

T ‖rT ‖L2(T ).

Therefore, owing to the Cauchy–Schwarz inequality and the definition of Rosc,T ,

‖rT ‖2
L2(T ) � h−1

T (‖∇(u − uh)‖[L2(T )]d + Rosc,T )‖rT ‖L2(T ).

Hence, ‖rT ‖L2(T ) � h−1
T (‖∇(u − uh)‖[L2(T )]d + Rosc,T ), and using the triangle

inequality yields (5.35a).
(ii) Bound on Rjdf,F . Let F ∈ F i

h, let (cf. Fig. 5.2)

ωF := int
(∪T∈TFT

)
,

and let bF be the face bubble function in H1
0 (ωF ) equal on F to the product of

barycentric coordinates in F rescaled so as to take the value 1 at the center of
gravity of F . Set rF := �∇huh�·nF , extend rF to ωF by constant values along
nF , and set ψF := bF rF . Owing to the properties of bubble functions and mesh
regularity,

‖rF ‖2
L2(F ) �

∫

F

rF bF rF , ‖ψF ‖L2(ωF ) � h
1/2

F ‖rF ‖L2(F ).

Since the bubble function bF vanishes on ∂ωF , integration by parts yields

‖rF ‖2
L2(F ) �

∫

F

rF bF rF =
∫

F

rFψF =
∫

F

�∇h(uh − u)�·nFψF

=
∫

ωF

(f + �huh)ψF −
∫

ωF

∇h(u− uh)·∇ψF .

Using the inverse inequality (1.36) to bound ‖∇ψF ‖[L2(ωF )]d leads to

‖rF ‖2
L2(F ) � (‖f + �huh‖L2(ωF ) + h−1

F ‖∇h(u − uh)‖[L2(TF )]d)‖ψF ‖L2(ωF )

� (h
1/2

F ‖f + �huh‖L2(ωF ) + h
−1/2

F ‖∇h(u− uh)‖[L2(TF )]d)‖rF ‖L2(F ).

Therefore,

‖rF ‖L2(F ) � h
1/2

F ‖f + �huh‖L2(ωF ) + h
−1/2

F ‖∇h(u− uh)‖[L2(TF )]d .

Using (5.35a) for the two mesh elements in TF together with mesh regularity
leads to (5.35b).
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5.5.2 Potential Reconstruction
We first assume that Th is a matching simplicial mesh. In this case, we can con-
sider the averaging operator (sometimes called Oswald interpolation operator)

ITh
av : �k

d(Th) → �k
d(Th) ∩H1

0 (Ω)

such that, for all vh ∈ �k
d(Th), the value of ITh

av (vh) is prescribed at the Lagrange
interpolation nodes of the conforming finite element space �k

d(Th) ∩H1
0 (Ω) by

setting at each interpolation node V located inside Ω,

ITh
av (vh)(V ) :=

1
card(TV )

∑

T∈TV

vh|T (V ),

where TV ⊂ Th collects the simplices to which V belongs (see Fig. 5.3), while
ITh

av (vh) is set to zero at the interpolation nodes located on ∂Ω. The averaging
operator ITh

av has been considered in the context of a posteriori error estimates
for nonconforming finite element methods by Achdou, Bernardi, and Coquel [3]
and Ern, Nicaise, and Vohralík [140] and for dG methods by Karakashian and
Pascal [207]. The following result is proven in [207] (see also Burman and Ern [64]
for further discussion on the polynomial degree): For all vh ∈ �k

d(Th) and all
T ∈ Th,

‖vh − ITh
av (vh)‖L2(T ) �

⎛

⎝
∑

F∈F̃T

hF ‖�vh�‖2
L2(F )

⎞

⎠

1/2

, (5.36)

where F̃T collects the mesh faces having a nonempty intersection with ∂T ; see
Fig. 5.4. In what follows, we define, for any subset F ⊂ Fh and for all v ∈
H1(Th),

|v|J,F :=

(
∑

F∈F

1
hF

‖�v�‖2
L2(F )

)1/2

, (5.37)

so that |v|J,Fh
coincides with the jump seminorm |v|J defined by (4.18).

V

Fig. 5.3: Set TV used for potential reconstruction
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T

Fig. 5.4: Set F̃T (thick lines)

Lemma 5.28 (Potential reconstruction, matching simplicial meshes). Assume
that Th is a matching simplicial mesh. Then, the reconstructed potential

u∗h := ITh
av (uh) ∈ H1

0 (Ω),

is such that, for all T ∈ Th,

‖∇(u− u∗h)‖[L2(T )]d � ‖∇(u− uh)‖[L2(T )]d + |u− uh|J,F̃T
, (5.38)

where F̃T collects the mesh faces having a nonempty intersection with ∂T . As a
result,

‖∇h(u− u∗h)‖[L2(Ω)]d � |||u− uh|||sip, (5.39)

where the |||·|||sip-norm is defined by (4.17).

Proof. Combining (5.36) with an inverse inequality and mesh regularity, we infer
that, for all vh ∈ �k

d(Th) and all T ∈ Th,

‖∇(vh − ITh
av (vh))‖[L2(T )]d � |vh|J,F̃T

,

so that ‖∇(uh − u∗h)‖[L2(T )]d � |uh|J,F̃T
. We then infer the bound (5.38) using

the triangle inequality and the fact that for the exact solution, �u� = 0 for all
F ∈ Fh. Finally, (5.39) is obtained by summing (5.38) over mesh elements and
using the fact that the number of faces collected in each set F̃T is uniformly
bounded owing to mesh regularity.

On general meshes, we can consider the matching simplicial submesh Sh (cf.
Definition 1.37) together with the averaging operator ISh

av mapping �k
d(Sh) onto

the conforming finite element space �k
d(Sh) ∩H1

0 (Ω). On each element T ∈ Th,
a discrete function vh ∈ �k

d(Th) can jump only across those faces of the submesh
located on the boundary ∂T , while vh is continuous at the remaining faces located
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inside T . Applying (5.36) for all T ′ ∈ ST , regrouping the contributions of the
submesh elements, and observing that card(FF ) is uniformly bounded for all
F ∈ Fh, we again obtain the following bound: For all vh ∈ �k

d(Th) and all
T ∈ Th,

‖vh − ISh
av (vh)‖L2(T ) �

⎛

⎝
∑

F∈F̃T

hF ‖�vh�‖2
L2(F )

⎞

⎠

1/2

.

Proceeding as in the proof of Lemma 5.28, we then arrive at the following result.

Lemma 5.29 (Potential reconstruction, general meshes). The reconstructed
potential u∗h := ISh

av (uh) ∈ H1
0 (Ω) satisfies the bounds (5.38) and (5.39).

An interesting application of potential reconstruction is to prove that the
jump seminorm |uh|J = |u − uh|J defined by (4.18) is controlled globally in Ω
by the approximation error plus a data oscillation term, provided the penalty
parameter in the SIP method is large enough. This result has been established
by Karakashian and Pascal [208], yet using a different proof as that presented
below. An extension to nonmatching simplicial meshes has been derived by
Bonito and Nochetto [46]. A sharper result for a first-order dG approximation
on matching triangular meshes is derived by Ainsworth [7], showing that, in this
case, the threshold on the penalty coefficient is the same as that required for
discrete coercivity; see also Ainsworth and Rankin [9] for triangular meshes with
hanging nodes.

Lemma 5.30 (Bound on the jumps). Let Th be a matching simplicial mesh.
Let uh ∈ Vh = �k

d(Th) solve the discrete Poisson problem (5.8). Then, there is
ηav > 0 such that for η > ηav,

(η − ηav)|uh|J � ‖∇h(u− uh)‖[L2(Ω)]d + Rosc,Ω. (5.40)

The threshold ηav, which is independent of h, but can depend on the space dimen-
sion d, the polynomial degree k, and the mesh regularity parameters , is such
that, for all vh ∈ �k

d(Th),
(
∑

F∈Fh

hF ‖{{∇h(vh − ITh
av (vh))}}‖2

L2(F )

)1/2

≤ ηav|vh|J, (5.41)

resulting from the bound (5.36), the inverse inequality (1.36), the discrete trace
inequality (1.37), and mesh regularity.

Proof. Since uh solves (5.8), using the expression (4.13) for the SIP bilinear form
yields, for all vh ∈ �k

d(Th),
∑

F∈Fh

η

hF

∫

F

�uh��vh� =
∑

T∈Th

∫

T

(f + �uh)vh −
∑

F∈Fi
h

∫

F

�∇huh�·nF {{vh}}

+
∑

F∈Fh

∫

F

�uh�{{∇hvh}}·nF .
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Using the definitions (5.32a) and (5.32b) of the local residuals Rpde,T and Rjdf,F ,
together with the Cauchy–Schwarz inequality, leads to

∑

F∈Fh

η

hF

∫

F

�uh��vh� ≤
∑

T∈Th

Rpde,Th
−1
T ‖vh‖L2(T )+

∑

F∈Fi
h

Rjdf,Fh
−1/2

F ‖{{vh}}‖L2(F )

+
∑

F∈Fh

∫

F

�uh�{{∇hvh}}·nF .

Taking vh = uh − u∗h with the potential reconstruction u∗h = ITh
av (uh) ∈ �k

d(Th)
yields, since �u∗h� = 0,

η|uh|2J ≤
∑

T∈Th

Rpde,Th
−1
T ‖uh − u∗h‖L2(T ) +

∑

F∈Fi
h

Rjdf,Fh
−1/2

F ‖{{uh − u∗h}}‖L2(F )

+
∑

F∈Fh

∫

F

{{∇h(uh − u∗h)}}·nF �uh�.

Denote by T1, T2, and T3 the three terms on the right-hand side. Using (5.36),
together with the discrete trace inequality (1.37) to estimate (uh − u∗h), and
Lemma 5.27 to estimate Rpde,T and Rjdf,F , we infer

|T1| + |T2| � (‖∇h(u− uh)‖[L2(Ω)]d + Rosc,Ω)|uh|J.

Moreover, the Cauchy–Schwarz inequality combined with (5.41) yields |T3| ≤
ηav|uh|2J. As a result, (η − ηav)|uh|2J � (‖∇h(u − uh)‖[L2(Ω)]d + Rosc,Ω)|uh|J,
yielding (5.40).

Remark 5.31 (General meshes). The present proof cannot be extended to general
meshes since ISh

av (uh) �∈ �k
d(Th), so that it is no longer possible to use vh =

uh − ISh
av (uh) as a test function in the discrete problem.

5.5.3 Diffusive Flux Reconstruction by Prescription
Our aim is to reconstruct a diffusive flux σ∗

h ∈ H(div;Ω) such that σ∗
h accurately

approximates the exact diffusive flux σ in H(div;Ω). In particular, we want that,
locally on each mesh element, the divergence of σ∗

h be close to that of σ. In the
spirit of FV schemes, a minimal requirement is

∫

T

∇·σ∗
h =

∫

T

∇·σ =
∫

T

f ∀T ∈ Th. (5.42)

In the context of high-order dG methods with polynomial degree k ≥ 1, we show
that a tighter relationship can be achieved between ∇·σ∗

h and f than just having
the same mean value on each mesh element.

In this section, we focus on matching simplicial meshes, where the con-
struction of σ∗

h can be achieved simply by prescribing degrees of freedom in
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Fig. 5.5: Local degrees of freedom in ���l
d(Th) for l = 0 (left) and l = 1 (right);

a single mesh element is represented

Raviart–Thomas–Nédélec finite element spaces. General meshes are considered
in Sect. 5.5.4. Let l ≥ 0 be an integer. We define

���l
d(Th) :=

{
τh ∈ H(div;Ω) | ∀T ∈ Th, τh|T ∈ ���l

d(T )
}
,

where
���l

d(T ) := [�l
d(T )]d + x�l

d(T ).

For a detailed presentation of Raviart–Thomas–Nédélec finite element spaces,
we refer the reader to Brezzi and Fortin [57, p. 116], Ern and Guermond [141,
Sect. 1.4.7] (see also Nédélec [242], Raviart and Thomas [267], and Roberts and
Thomas [273, p. 550]). In what follows, we need two important facts. Firstly, a
function τh in ���l

d(Th) satisfies:

(a) For all T ∈ Th, ∇·τh ∈ �l
d(T ).

(b) For all F ∈ Fh, τh·nF ∈ �l
d−1(F ), and τh·nF is single-valued at all F ∈ F i

h.

The last property in (b) ensures the H(div;Ω)-conformity of the discrete space
���l

d(Th); cf. Lemma 1.24. Secondly, the degrees of freedom that allow one to
uniquely define a function τh ∈ ���l

d(Th) are:

(a) For all F ∈ Fh, the moments
∫

F

(τh·nF )q of the normal component of τh

against scalar-valued polynomials q ∈ �l
d−1(F ).

(b) For all T ∈ Th, the moments
∫

T

τh·r of the function τh against vector-valued

polynomials r ∈ [�l−1
d (T )]d (by convention, nothing is prescribed if l = 0).

A symbolic representation of these degrees of freedom on a single mesh element
is presented in Fig. 5.5 for l ∈ {0, 1}.

5.5.3.1 Prescription of the Degrees of Freedom

Following Kim [212] and Ern, Nicaise, and Vohralík [147], we construct

σ∗
h ∈ ���l

d(Th), l ∈ {k − 1, k}.
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The choice l = k − 1 is somewhat more natural since uh ∈ �k
d(Th) and σ∗

h

approximates the gradient of uh. However, the choice l = k is also interesting
since the divergence of σ∗

h is more accurate; cf. Theorem 5.34. Our starting point
is the local formulation (4.49) derived in Sect. 4.3.4 for the discrete problem: For
all T ∈ Th and for all ξ ∈ �k

d(T ),
∫

T

Gl
h(uh)·∇ξ +

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ, (5.43)

with l ∈ {k − 1, k}, εT,F = nT ·nF , and the numerical flux

φF (uh) := −{{∇huh}}·nF +
η

hF
�uh�. (5.44)

Definition 5.32 (Diffusive flux reconstruction by prescription). The degrees of
freedom of σ∗

h ∈ ���l
d(Th), l ∈ {k − 1, k}, are prescribed as follows:

(i) For all F ∈ Fh and all q ∈ �l
d−1(F ),

∫

F

(σ∗
h·nF )q :=

∫

F

φF (uh)q. (5.45)

(If l = k, φF (uh) ∈ �l
d−1(F ) so that (5.45) yields σ∗

h·nF = φF (uh).)

(ii) For all T ∈ Th and all r ∈ [�l−1
d (T )]d,

∫

T

σ∗
h·r := −

∫

T

Gl
h(uh)·r. (5.46)

Remark 5.33 (Other construction). A different construction has been proposed
by Bastian and Rivière [37] using Brezzi–Douglas–Marini finite element spaces.
The advantage of the present construction is that the degrees of freedom of σ∗

h

are more directly linked to the dG scheme, thereby achieving an optimal approx-
imation result on the divergence of σ∗

h (cf. Theorem 5.34 below). In addition,
the error (σ− σ∗

h) in the L2-norm can be bounded locally by the approximation
error (u−uh) measured in a suitable norm plus a so-called data oscillation term
related to the subgrid fluctuations of the source term (cf. Theorem 5.36 below).

5.5.3.2 Evaluation of ∇·σ∗
h

The key motivation for the prescription of σ∗
h using (5.45) and (5.46) is the fol-

lowing result. Notice that ∇·σ∗
h ∈ L2(Ω) since, by construction, σ∗

h ∈ H(div;Ω).

Theorem 5.34 (Evaluation of ∇·σ∗
h). Let σ∗

h ∈ ���l
d(Th), l ∈ {k − 1, k}, be

prescribed using (5.45) and (5.46). Then,

∇·σ∗
h = πl

hf, (5.47)
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where πl
h denotes the L2-orthogonal projector onto �l

d(Th). In other words (com-
pare with (5.42)),

∫

T

(∇·σ∗
h)ξ =

∫

T

fξ ∀T ∈ Th, ∀ξ ∈ �l
d(Th).

Proof. Let T ∈ Th and let ξ ∈ �l
d(T ). Integration by parts yields

∫

T

(∇·σ∗
h)ξ = −

∫

T

σ∗
h·∇ξ +

∫

∂T

(σ∗
h·nT )ξ

= −
∫

T

σ∗
h·∇ξ +

∑

F∈FT

εT,F

∫

F

(σ∗
h·nF )ξ

=
∫

T

Gl
h(uh)·∇ξ +

∑

F∈FT

εT,F

∫

F

φF (uh)ξ =
∫

T

fξ,

where we have used the fact that ∇ξ ∈ [�l−1
d (T )]d and ξ|F ∈ �l

d−1(F ) to
exploit (5.45) and (5.46) and the local formulation (5.43).

Remark 5.35 (Optimality of Theorem 5.34). Theorem 5.34 delivers an optimal
approximation result in L2(Ω) for the divergence of the diffusive flux. Indeed,
since the exact diffusive flux satisfies ∇·σ = f , estimate (5.47) yields ∇·σ∗

h =
πl

h(∇·σ). Observing that ∇·σ∗
h ∈ �l

d(Th), this result is optimal.

5.5.3.3 L2-Norm Estimate

We now bound the error (σ∗
h − σ) in the L2-norm. To simplify the notation, we

set η1 := max(1, η).

Theorem 5.36 (L2-estimate). Let σ∗
h ∈ ���l

d(Th), l ∈ {k− 1, k}, be prescribed
using (5.45) and (5.46). Let σ = −∇u be the exact diffusive flux. Then, for all
T ∈ Th,

‖σ∗
h − σ‖[L2(T )]d � ‖∇h(u− uh)‖[L2(NT )]d + Rosc,NT + η1|uh|J,FT , (5.48)

where NT ⊂ Th collects T and its neighbors in the sense of faces, while the data
oscillation term Rosc,NT is defined by (5.34). Moreover,

‖σ∗
h − σ‖[L2(Ω)]d � η1|||u− uh|||sip + Rosc,Th

. (5.49)

Proof. Let σ∗
h be prescribed using (5.45) and (5.46) and set σ′

h := σ∗
h + ∇huh.

Let T ∈ Th. We first observe that σ′
h|T ∈ ���l

d(T ) since σ∗
h|T ∈ ���l

d(T ) by
construction and ∇uh|T ∈ ���l

d(T ) since l ≥ k− 1. Then, we use the fact that,
for all τ ∈ ���l

d(T ),

‖τ‖[L2(T )]d � h
1/2

T ‖τ ·nF ‖L2(∂T ) + sup
r∈[�l−1

d (T )]d\{0}

∫
T τ ·r

‖r‖[L2(T )]d
.
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This estimate is classically proven using the Piola transformation onto the refer-
ence simplex, norm equivalence in finite dimension, and transforming back onto
the current simplex T . For all F ∈ FT and all q ∈ �l

d−1(F ), (5.44) and (5.45)
yield

∫

F

(σ′
h·nF )q =

∫

F

(σ∗
h·nF + (∇uh)|T ·nF ) q

=
∫

F

(φF (uh) + (∇uh)|T ·nF ) q

=
∫

F

(�F �∇huh�·nT + ηh−1
F �uh�)q,

where �F := 1/2 if F ∈ F i
h and �F := 0 if F ∈ Fb

h. Since σ′
h·nF ∈ �l

d−1(F ), we
obtain σ′

h·nF |F = �F �∇huh�·nT + ηh−1
F Πl

F �uh�, where Πl
F denotes the L2(F )-

orthogonal projection onto �l
d−1(F ). Using the triangle inequality, mesh regu-

larity, and the fact that ‖Πl
F �uh�‖L2(F ) ≤ ‖�uh�‖L2(F ), we infer

h
1/2

T ‖σ′
h·nT ‖L2(∂T ) ≤

⎛

⎝
∑

F∈FT ∩Fi
h

R2
jdf,F

⎞

⎠

1/2

+ η

(
∑

F∈FT

R2
jpt,F

)1/2

,

recalling the local residuals (cf. (5.32b) and (5.32c)) Rjdf,F = h
1/2

F ‖�∇huh�·
nF ‖L2(F ) and Rjpt,F = h

−1/2

F ‖�uh�‖L2(F ). Moreover, since l ≤ k, it is easily
seen that, for all r ∈ [�l−1

d (T )]d, (5.46) yields
∫

T

σ′
h·r =

∫

T

Rk−1
h (�uh�)·r =

∑

F∈FT

∫

F

(1 −�F )(r·nF )�uh�,

so that, using the Cauchy–Schwarz inequality, the fact that hF ≤ hT for all
F ∈ FT , the discrete trace inequality (1.40), and the uniform bound on N∂, we
obtain

∫

T

σ′
h·r �

(
∑

F∈FT

R2
jpt,F

)1/2

‖r‖[L2(T )]d .

Combining the two above inequalities yields

‖σ∗
h + ∇uh‖[L2(T )]d �

⎛

⎝
∑

F∈FT ∩Fi
h

R2
jdf,F

⎞

⎠

1/2

+ η1

(
∑

F∈FT

R2
jpt,F

)1/2

.

Using the bound (5.35b) on Rjdf,F and the definition (5.37) for the jump semi-
norm, we obtain

‖σ∗
h + ∇uh‖[L2(T )]d � ‖∇h(u− uh)‖[L2(NT )]d + Rosc,NT + η1|uh|J,FT .

The local bound (5.48) then follows from the triangle inequality, while the global
bound (5.49) is obtained by summing (5.48) over mesh elements.
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Remark 5.37 (Optimality). If l = k, estimate (5.49) is suboptimal since the
upper bound converges as hk, while the Raviart–Thomas–Nédélec interpolate in
���l

d(Th) of the exact diffusive flux converges as hl+1 in the [L2(Ω)]d-norm if
the exact solution is smooth enough. Optimality is recovered if l = k − 1.

5.5.4 Diffusive Flux Reconstruction by Solving Local
Problems

A simple and cost-effective approach recently proposed by Ern and Vohralík [151]
to reconstruct the diffusive flux on general meshes consists in solving, on each
mesh element, a local Neumann problem approximated by mixed finite elements.
The present methodology can also be applied within matching simplicial meshes;
cf. Remark 5.42.

5.5.4.1 The Local Neumann Problem

Let Th be a general mesh and let T ∈ Th. We define the local PDE residual
ρpde,T ∈ L2(T ) such that, for all T ∈ Th,

ρpde,T := (f + �uh)|T .
We also define the local jump residual ρnc,T ∈ L2(∂T ) such that, for all T ∈ Th,

ρnc,T |F := �F �∇huh�·nT + ηh−1
F �uh� ∀F ∈ FT ,

where, as before, �F := 1/2 if F ∈ F i
h and �F := 0 if F ∈ Fb

h. We observe that

ρnc,T |F = φF (uh) + (∇uh)|T ·nF ∀F ∈ FT , (5.50)

where φF (uh) is the numerical flux defined by (5.44). We recall that (cf. (4.51))

∑

F∈FT

εT,F

∫

F

φF (uh) =
∫

T

f, (5.51)

with εT,F = nT ·nF .
We consider the following local Neumann problem: Find p : T → � such that

⎧
⎪⎨

⎪⎩

−�p = ρpde,T in T ,
−∇p·nT = ρnc,T on ∂T ,

〈p〉T = 0,

where 〈·〉T denotes the mean value over T . LettingH1
∗(T ) = {q ∈ H1(T ) | 〈q〉T =

0}, this problem amounts to finding p ∈ H1
∗ (T ) such that

∫

T

∇p·∇q =
∫

T

qρpde,T −
∫

∂T

qρnc,T for all q ∈ H1
∗(T ). (5.52)

Lemma 5.38 (Well-posedness). The local Neumann problem (5.52) is well-
posed.
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Proof. It is well-known that (5.52) is well-posed if and only if the data satisfy
the compatibility condition

∫

T

ρpde,T =
∫

∂T

ρnc,T .

Using (5.51) and integrating by parts �uh in T yields
∫

T

ρpde,T =
∫

T

(f + �uh) =
∑

F∈FT

εT,F

∫

F

φF (uh) +
∑

F∈FT

∫

F

(∇uh)|T ·nT .

We conclude using (5.50).

5.5.4.2 Approximation of Local Neumann Problem by Mixed
Finite Elements

Let Sh be the matching simplicial submesh of Th. For all T ∈ Th, we approxi-
mate the local Neumann problem (5.52) using mixed finite elements in Raviart–
Thomas–Nédélec finite element spaces based on the simplicial submesh ST . In
what follows, the subfaces in Fh included in T are split into the set Fi

T collecting
the subfaces located inside T and the set Fb

T collecting the subfaces located on
∂T ; cf. Fig. 5.6.

Let l ∈ {k − 1, k}. We consider the following spaces for the potential

�l
d(ST ) := {qh ∈ L2(T ) | ∀T ′ ∈ ST , qh|T ′ ∈ �l

d(T
′)},

�l
d,∗(ST ) := {qh ∈ �l

d(ST ) | 〈qh〉T = 0},

together with the following spaces for the diffusive flux

���l
d(ST ) := {τh ∈ H(div;T ) | ∀T ′ ∈ ST , τh|T ′ ∈ ���l

d(T
′)},

���l
d,ρ(ST ) := {τh ∈ ���l

d(ST ) | ∀F ′ ∈ Fb
T , ∀ξ ∈ �l

d−1(F
′),

∫

F ′
(τh·nT − ρnc,T )ξ = 0},

Fig. 5.6: Example of matching simplicial submesh ST of a mesh element T
consisting of eight subelements; there are eight faces belonging to Fi

T (dashed
lines) and eight faces belonging to Fb

T (solid lines)
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���l
d,0(ST ) := {τh ∈ ���l

d(ST ) | ∀F ′ ∈ Fb
T , ∀ξ ∈ �l

d−1(F
′),

∫

F ′
(τh·nT )ξ = 0}.

The local discrete problem (with nonhomogeneous Neumann boundary condi-
tions) consists in finding (σ′

h, ph) ∈ ���l
d,ρ(ST ) × �l

d,∗(ST ) such that
∫

T

σ′
h·τh +

∫

T

ph(∇·τh) = 0 ∀τh ∈ ���l
d,0(ST ), (5.53a)

∫

T

(∇·σ′
h)qh =

∫

T

ρpde,T qh ∀qh ∈ �l
d,∗(ST ). (5.53b)

Solving the local Neumann problem (5.53) for all T ∈ Th yields a vector-valued
field σ′

h ∈ [L2(Ω)]d defined by its restrictions to mesh elements. This field is
used as a correction to the broken gradient ∇huh.

Definition 5.39 (Diffusive flux reconstruction by solving local problems). We
set

σ∗
h := −∇huh + σ′

h. (5.54)

A crucial point to verify is that σ∗
h ∈ H(div;Ω).

Lemma 5.40 (H(div;Ω)-conformity of σ∗
h). There holds

σ∗
h ∈ ���l

d(Sh).

Proof. It is clear that, for all T ′ ∈ Sh, σ∗
h|T ′ ∈ ���l

d(T ′) since l ≥ k − 1. It
remains to verify that σ∗

h ∈ H(div;Ω). By construction, for all T ∈ Th,

σ∗
h|T ∈ H(div;T ),

and, therefore, owing to Lemma 1.24, it suffices to check that the normal com-
ponent of σ∗

h is single-valued on the boundaries of the mesh elements in Th. Let
T ∈ Th, let F ′ ∈ Fb

T , and let ξ ∈ �l
d−1(F

′). Then, using (5.50),
∫

F ′
(σ∗

h·nT )ξ =
∫

F ′
(ρnc,T − (∇uh)|T ·nT )ξ =

∫

F ′
εT,FφF (uh)ξ, (5.55)

where F is the mesh face of Fh to which the subface F ′ belongs. This shows
that the moments on F ′ of the normal component of σ∗

h against polynomials in
�l

d−1(F
′) are single-valued, and since σ∗

h·nT |F ′ ∈ �l
d−1(F

′), this concludes the
proof.

5.5.4.3 Evaluation of ∇·σ∗
h

Let �l
d(Sh) := {qh ∈ L2(Ω) | ∀T ′ ∈ Sh, qh|T ′ ∈ �l

d(T
′)}. We observe that

∇·σ∗
h ∈ �l

d(Sh).
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Theorem 5.41 (Evaluation of ∇·σ∗
h). Let σ∗

h ∈ ���l
d(Sh), l ∈ {k − 1, k}, be

defined by (5.54) where σ′
h ∈ ���l

d(Sh) is obtained on each mesh element by
solving the local problem (5.53). Then,

∇·σ∗
h = π̂l

hf,

where π̂l
h denotes the L2-orthogonal projection onto �l

d(Sh). In other words,
∫

T ′
(∇·σ∗

h)ξ =
∫

T ′
fξ, ∀T ′ ∈ Sh, ∀ξ ∈ �l

d(T
′). (5.56)

Proof. Let T ∈ Th and let T ′ ∈ ST . Let ψ ∈ �l
d(T

′) and extend ψ to T by zero
outside T ′. We first observe that

∫

T ′
fψ =

∫

T

fψ =
∫

T

f(ψ − 〈ψ〉T ) +
∫

T

f〈ψ〉T .

Since ψ − 〈ψ〉T ∈ �l
d,∗(ST ), (5.53b) implies

∫

T

(f + �uh)(ψ − 〈ψ〉T ) =
∫

T

ρpde,T (ψ − 〈ψ〉T )

=
∫

T

(∇·σ′
h)(ψ − 〈ψ〉T )

=
∫

T

(∇·σ∗
h + �uh)(ψ − 〈ψ〉T ),

so that ∫

T

f(ψ − 〈ψ〉T ) =
∫

T

(∇·σ∗
h)(ψ − 〈ψ〉T ).

Moreover, using (5.55) with ξ ≡ 1, summing over all subfaces in Fb
T , and

using (5.51) yields
∫

T

∇·σ∗
h =

∑

F ′∈Fb
T

∫

F ′
(σ∗

h·nT ) =
∑

F∈FT

εT,F

∫

F

φF (uh) =
∫

T

f.

As a result, since 〈ψ〉T is constant in T ,
∫

T
f〈ψ〉T =

∫
T
(∇·σ∗

h)〈ψ〉T . Collecting
the above identities yields, for all ψ ∈ �l

d(T
′),

∫

T ′
fψ =

∫

T ′
(∇·σ∗

h)ψ,

whence the assertion.

Remark 5.42 (Link with the reconstruction by prescription). Whenever Th is
a matching simplicial mesh, the same result is obtained for l ∈ {0, 1} when
using the reconstruction by the prescription (5.45) and (5.46) and the recon-
struction of this section based on solving the local Neumann problems (5.53).
The two reconstructions differ for l ≥ 2. Furthermore, on general meshes, the
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reconstruction by prescription can still be performed on the matching simplicial
submesh Sh, yielding, say, σ∗∗

h ∈ ���l
d(Sh). Then, proceeding as in the proof

of Theorem 5.34 leads to
∫

T

(∇·σ∗∗
h )ξ =

∫

T

fξ, ∀T ∈ Th, ∀ξ ∈ �l
d(T ).

This is a less stringent conservation property than (5.56).

5.5.4.4 L2-Norm Estimate

We now bound the error (σ∗
h − σ) in the L2-norm.

Theorem 5.43 (L2-estimate). Let σ∗
h ∈ ���l

d(Sh), l ∈ {k − 1, k}, be defined
by (5.54) where σ′

h ∈ ���l
d(Sh) is obtained on each mesh element by solving

the local problem (5.53). Let σ = −∇u be the exact diffusive flux. Then, the
estimates (5.48) and (5.49) hold true.

Proof. We focus on the local estimate, since the global estimate is a direct con-
sequence of the local one. Let σ∗

h ∈ ���l
d(Sh) be defined by (5.54). Let T ∈ Th.

Similarly to the proof of Theorem 5.36, it is sufficient to prove that

‖σ∗
h + ∇uh‖[L2(T )]d � Rpde,T +

⎛

⎝
∑

F∈FT ∩Fi
h

R2
jdf,F

⎞

⎠

1/2

+ η

(
∑

F∈FT

R2
jpt,F

)1/2

.

Recall that σ′
h = σ∗

h +∇huh. The idea is to postprocess the mixed finite element
solution (ph, σ

′
h) of (5.53) following the ideas of Arnold and Brezzi [15], Chen [88],

Arbogast and Chen [13], and, more recently, Vohralík [301, 302]. In particular,
there is a space W (ST ) of piecewise polynomials on ST supplemented with
bubble functions and a function p̃h ∈W (ST ) such that, for all T ′ ∈ ST ,

∫

T ′
(−∇p̃h)·τh =

∫

T ′
σ′

h·τh ∀τh ∈ ���l
d(T

′), (5.57a)
∫

T ′
p̃hqh =

∫

T ′
phqh ∀qh ∈ �l

d(T
′). (5.57b)

Moreover, for all F ′ ∈ Fi
T and all ξ ∈ �l

d−1(F
′),

∫

F ′
�p̃h�ξ = 0, (5.58)

where �·� denotes the jump across F ′ and p̃h satisfies the stability estimate

(
∑

T ′∈ST

‖∇p̃h‖2
[L2(T ′)]d

)1/2

� ‖σ′
h‖[L2(T )]d . (5.59)
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Equations (5.57) mean that (−∇p̃h) and p̃h are close approximations of σ′
h and

ph, while (5.58) means that p̃h is close to being conforming in H1(T ). Moreover,
since 〈ph〉T = 0, (5.57b) implies

〈p̃h〉T = 0.

Now, we observe using (5.57a) and integration by parts that

‖σ′
h‖2

[L2(T )]d =
∑

T ′∈ST

∫

T ′
(−∇p̃h)·σ′

h =
∑

T ′∈ST

∫

T ′
p̃h(∇·σ′

h)−
∑

F ′∈Fb
T

∫

F ′
p̃h(σ′

h·nT ).

The contribution of the subfaces F ′ ∈ Fi
T has been discarded in the integra-

tion by parts owing to (5.58) and the fact that the normal component of σ′
h

on each F ′ ∈ Fi
T is continuous and in �l

d−1(F
′). Let π̂l

ST
denote the L2-

orthogonal projection onto �l
d(ST ) and let π̂l

Fb
T

denote the L2-orthogonal pro-
jection onto

∏
F ′∈Fb

T
�l

d−1(F
′). Since ∇·σ′

h = π̂l
ST
ρpde,T owing to (5.53b) and

since σ′
h·nT |∂T = π̂l

Fb
T
ρnc,T because σ′

h ∈ ���l
d,ρ(ST ), this yields, using the

Cauchy–Schwarz inequality,

‖σ′
h‖2

[L2(T )]d ≤ ‖π̂l
ST
ρpde,T ‖L2(T )‖p̃h‖L2(T ) + ‖π̂l

Fb
T
ρnc,T ‖L2(∂T )‖p̃h‖L2(∂T )

≤ ‖ρpde,T ‖L2(T )‖p̃h‖L2(T ) + ‖ρnc,T ‖L2(∂T )‖p̃h‖L2(∂T ).

Owing to the discrete trace inequality (1.40) and the uniform bound on N∂ ,
h

1/2

T ‖p̃h‖L2(∂T ) � ‖p̃h‖L2(T ), so that

‖σ′
h‖2

[L2(T )]d �
(
‖ρpde,T ‖L2(T ) + h

−1/2

T ‖ρnc,T ‖L2(∂T )

)
‖p̃h‖L2(T ).

Owing to (5.58) and the fact that 〈p̃h〉T = 0, we infer

‖p̃h‖L2(T ) � hT

(
∑

T ′∈ST

‖∇p̃h‖2
[L2(T ′)]d

)1/2

.

This estimate is proven by Vohralík [300] on polyhedral domains with simplicial
meshes (here, the mesh element T plays the role of the domain and ST that of
the simplicial mesh). Combining the last two bounds with (5.59) yields

‖σ′
h‖[L2(T )]d � hT ‖ρpde,T ‖L2(T ) + h

1/2

T ‖ρnc,T ‖L2(∂T ).

Recalling that ρpde,T = (f + �uh)|T and ρnc,T |F = �F �∇huh�·nT + ηh−1
F �uh�

for all F ∈ FT , using the triangle inequality, and mesh regularity yields the
assertion.

5.6 A Posteriori Error Estimates
A posteriori error estimates constitute a useful tool in practical computations
for error control and enhanced computational efficiency. Herein, we focus on
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energy-norm upper and lower error bounds. In particular, we exploit the ideas
of Sect. 5.5 to formulate a posteriori error estimates using a potential and a
diffusive flux reconstruction.

5.6.1 Overview
Let u be the exact solution of the Poisson problem and let uh be an approximate
solution. A posteriori error estimates deliver upper and lower bounds on the
approximation error (u − uh) measured in some global norm over Ω, say ‖·‖Ω.
The upper bound takes the form

‖u− uh‖Ω ≤ E(f, uh), (5.60)

where E(f, uh) is called an estimator. We require that E(f, uh) be fully com-
putable from the source term f and the approximate solution uh without fea-
turing undetermined multiplicative factors. As such, (5.60) can be used for
guaranteed error control to determine whether a desired level of accuracy has
been reached by the approximate solution. The computational costs for evalu-
ating E(f, uh) turn out to be significantly lower than those incurred to obtain
uh, so that this error control procedure adds little effort. It is worthwhile to
mention that, in the literature, error upper bounds are often given in the form
‖u − uh‖Ω ≤ C̃E(f, uh) with the value of C̃ left undetermined; as such, these
estimates cannot be used for guaranteed error control. Furthermore, to avoid
overestimating the error, it is necessary to prove also a lower bound of the form

E(f, uh) ≤ C‖u− uh‖Ω,

with C independent of h. Thus, the so-called effectivity index E(f, uh)/‖u−uh‖Ω

takes values in the interval [1, C], and the a posteriori error estimate becomes
sharper as the effectivity index approaches one.

Another important property is that the estimator E(f, uh) can be localized
elementwise in the form

E(f, uh) =

(
∑

T∈Th

ET (f, uh)2
)1/2

.

The so-called local estimators ET (f, uh) can be used to drive adaptive mesh pro-
cedures whereby mesh elements are possibly marked for refinement (or coarsen-
ing) depending on the relative size of their associated local estimator. It is in
general possible to localize elementwise the ‖·‖Ω-norm in the form

‖·‖T =

(
∑

T∈T
‖·‖2

T

)1/2

,

for any subset T ⊂ Th, and to prove local lower bounds on the error of the form

ET (f, uh) ≤ C
(‖u− uh‖ÑT

+ Rosc,NT

) ∀T ∈ Th, (5.61)
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with C independent of h, while the sets NT and ÑT collect the mesh element T
and some of its neighbors (a more precise statement is given in Sect. 5.6.3). The
local data oscillation term Rosc,NT , defined by (5.33) and (5.34), results from
the small-scale fluctuations of the source term f that cannot be captured by the
discretization. It is usually not necessary to determine the value of C in actual
computations. The local lower bounds (5.61) explain why refining mesh ele-
ments with large estimators usually tends to equidistribute approximation errors.
A general overview of a posteriori error estimates including various discretiza-
tion methods and applications can be found in the textbooks by Verfürth [298]
and by Ainsworth and Oden [8]. We also refer the reader to Morin, Nochetto,
and Siebert [240] for a convergence proof of adaptive conforming finite element
methods and to Karakashian and Pascal [208], Hoppe, Kanschat, and Warbur-
ton [194], Nicaise and Cochez-Dhondt [246], and Bonito and Nochetto [46] for
adaptive dG methods.

5.6.2 Energy-Norm Error Upper Bounds
We recall that the exact solution u of the Poisson problem solves the weak
problem (cf. (4.2))

Find u ∈ H1
0 (Ω) s.t. a(u, v) =

∫

Ω

fv for all v ∈ H1
0 (Ω), (5.62)

where a(u, v) =
∫
Ω
∇u·∇v. At this stage, we only need the fact that the approxi-

mate solution uh belongs to some discrete space that is nonconforming in H1
0 (Ω),

say the broken polynomial space �k
d(Th) defined by (1.15) with polynomial degree

k ≥ 1 and Th belonging to an admissible mesh sequence. Henceforth, we set

Vh := �k
d(Th).

Because of nonconformity, the approximation error (u − uh) belongs to the
extended space

VE := H1
0 (Ω) + Vh,

which we equip with the so-called energy (semi)norm such that, for all v ∈ VE,

||v||2E =
∑

T∈Th

||v||2E,T , ||v||E,T := ‖∇v‖[L2(T )]d .

The bilinear form a, originally defined on H1
0 (Ω) × H1

0 (Ω), can be extended to
VE × VE by setting a(u, v) :=

∫
Ω
∇hu·∇hv. A useful fact is that

a(v, v) = ||v||2E ∀v ∈ VE. (5.63)

We notice that ||·||E is a norm on H1
0 (Ω), but not on VE where it acts as a

seminorm, since for a piecewise constant function v ∈ VE, ||v||E = 0.
In what follows, we focus on energy-norm a posteriori error estimates. We

first show that such estimates are associated with the dual norm of a residual.
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Then, we examine two ways to bound the dual norm of the residual, taking
inspiration from Ern, Stephansen, and Vohralík [148,149] (where heterogeneous
diffusion-advection-reaction problems are also treated). One approach relies on
Galerkin orthogonality and the other on the diffusive flux reconstruction intro-
duced in Sect. 5.5. Energy-norm a posteriori error estimates for dG methods
have been first obtained by Becker, Hansbo, and Larson [40] and by Karakashian
and Pascal [207] using Galerkin orthogonality and an interpolation operator to
bound the dual norm of the residual (see also Houston, Schötzau, and Wihler
for the hp-analysis [199]). Such estimates, however, are expressed in terms of
undetermined constants which can be avoided by the present analysis. We also
refer the reader to the work of Ainsworth [7] for a different approach, also avoid-
ing undetermined constants. Finally, we mention that it is possible to consider
a posteriori error estimates in other norms, e.g., the L2(Ω)-norm, as derived by
Becker, Hansbo, and Stenberg [41] and Rivière and Wheeler [270].

5.6.2.1 An Estimate with the Dual Norm of the Residual

For all vh ∈ Vh, the residual R(vh) ∈ H−1(Ω) is defined such that, for all
ϕ ∈ H1

0 (Ω),

〈R(vh), ϕ〉H−1,H1
0

:= a(u− vh, ϕ) =
∫

Ω

fϕ−
∫

Ω

∇hvh·∇ϕ.

The dual norm of the residual is measured as

‖R(vh)‖H−1(Ω) = sup
ϕ∈H1

0 (Ω),||ϕ||E=1

〈R(vh), ϕ〉H−1,H1
0
.

Lemma 5.44 (Abstract estimate). Let u ∈ H1
0 (Ω) solve (5.62). Let vh ∈ Vh be

arbitrary. Then,

||u− vh||2E ≤ inf
s∈H1

0 (Ω)
||vh − s||2E + ‖R(vh)‖2

H−1(Ω)

≤ 2||u − vh||2E. (5.64)

Proof. Proceeding as Kim in [212, Lemma 4.4], let ψ ∈ H1
0 (Ω) be such that

a(ψ, y) = a(vh, y) ∀y ∈ H1
0 (Ω),

that is, (ψ − vh) is a-orthogonal to H1
0 (Ω). Since a is H1

0 (Ω)-coercive, the Lax–
Milgram Lemma implies that this problem is well-posed, so that ψ is well-defined.
For all s ∈ H1

0 (Ω), we obtain using (5.63) together with the symmetry of a,

||s− vh||2E = a(s− vh, s− vh)
= a(s− ψ, s − ψ) + 2a(ψ − vh, s − ψ) + a(ψ − vh, ψ − vh)
= a(s− ψ, s − ψ) + a(ψ − vh, ψ − vh),

since (ψ − vh) is a-orthogonal to (s− ψ). Hence, using again (5.63) yields

||s− vh||2E = ||vh − ψ||2E + ||s− ψ||2E, (5.65)
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and this implies
||vh − ψ||2E = inf

s∈H1
0 (Ω)

||vh − s||2E.

Moreover, taking s = u in (5.65) yields ||u − vh||2E = ||vh − ψ||2E + ||u − ψ||2E and,
provided ψ �= u which yields a trivial case, elementary algebra leads to

a

(

u− vh,
u− ψ

||u− ψ||E

)

=
1

||u − ψ||E a(u− vh, u − ψ)

=
1

||u − ψ||E
{
a(u− ψ, u − ψ) + a(ψ − vh, u − ψ)

}

=
1

||u − ψ||E a(u− ψ, u − ψ) = ||u− ψ||E,

where we have used the linearity of a, the fact that (ψ − vh) is a-orthogonal to
(u − ψ), and (5.63). Hence,

||u− vh||2E = inf
s∈H1

0 (Ω)
||vh − s||2E + a

(

u− vh,
u− ψ

||u− ψ||E

)2

.

Observing that

a

(

u− vh,
u− ψ

||u− ψ||E

)

≤ sup
ϕ∈H1

0 (Ω),||ϕ||E=1

a(u− vh, ϕ) = ‖R(vh)‖H−1(Ω),

we infer the first bound in (5.64). To prove the second bound, we choose s = u
in the infimum and observe that the second term is bounded by ||u− vh||E since,
for all ϕ ∈ H1

0 (Ω) with ||ϕ||E = 1,

〈R(vh), ϕ〉H−1,H1
0
≤ ||u− vh||E||ϕ||E = ||u− vh||E,

so that ‖R(vh)‖H−1(Ω) ≤ ||u− vh||E. This concludes the proof.

The abstract estimate (5.64) is valid for any function vh ∈ Vh (the estimate
can even be extended to functions in VE). As such, it can be applied to the
discrete solution uh ∈ Vh yielding

||u− uh||2E ≤ inf
s∈H1

0 (Ω)
||uh − s||2E + ‖R(uh)‖2

H−1(Ω). (5.66)

To turn (5.66) into a computable upper bound on the error requires choosing a
specific (discrete) sh ∈ H1

0 (Ω) and bounding the dual norm of the residual R(uh).
In what follows, we consider the H1

0 (Ω)-conforming potential reconstruction u∗h
presented in Sect. 5.5.2, that is, we set

sh := u∗h ∈ H1
0 (Ω), (5.67)

so that (5.66) becomes

||u− uh||2E ≤ ||uh − u∗h||2E + ‖R(uh)‖2
H−1(Ω). (5.68)
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We now aim at bounding the dual norm ‖R(uh)‖H−1(Ω) using locally computable
quantities. To this purpose, it is necessary to use some local information on the
discrete solution uh. There are two ways to proceed. The first one uses explicitly
the discrete scheme by considering suitable test functions; this leads to residual-
based estimates. The second way consists in exploiting the local conservation
property of the scheme by introducing a reconstructed diffusive flux. Combined
with the choice (5.67), both approaches lead to guaranteed error upper bounds.
We establish in Sect. 5.6.3 the corresponding lower error bounds.

5.6.2.2 Residual-Based Estimates

For the sake of simplicity, we consider matching simplicial meshes; cf.
Remark 5.46 for the general case. Let π0

h denote the L2-orthogonal projec-
tion onto the discrete space �0

d(Th); this space is spanned by piecewise constant
functions on Th. The operator π0

h satisfies the following approximation proper-
ties: For all T ∈ Th and for all ϕ ∈ H1(T ),

‖ϕ− π0
hϕ‖L2(T ) ≤ CP,ThT ‖∇ϕ‖[L2(T )]d = CP,ThT ||ϕ||E,T , (5.69)

‖ϕ− π0
hϕ‖L2(∂T ) ≤ C

1/2

F,Th
1/2

T ‖∇ϕ‖[L2(T )]d = C
1/2

F,Th
1/2

T ||ϕ||E,T . (5.70)

The real number CP,T in the Poincaré-type inequality (5.69) can be evaluated
as CP,T = π−1 whenever T is convex (recall that T is assumed to be a simplex
here); see Bebendorf [39] and Payne and Weinberger [255]. The real number
CF,T in the Friedrichs-type inequality (5.70) can be evaluated on simplices as
CF,T = (hT |∂T |d−1|T |−1

d )(2d−1 +CP,T )CP,T ; this can be proven by applying the
bound (1.42) to the function (ϕ−π0

hϕ), using (5.69), and summing over F ∈ FT .
Let uh solve the discrete problem:

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫

Ω

fvh for all vh ∈ Vh, (5.71)

where asip
h is the SIP bilinear form defined by (4.12); variations on symmetry

and penalty can be easily accommodated. Then, for all T ∈ Th, we define the
local nonconformity estimator Enc,T , the local residual estimator Eres,T , and the
local diffusive flux estimator Edf,T as

Enc,T := ‖∇(uh − u∗h)‖[L2(T )]d , (5.72a)

Eres,T := CP,ThT ‖(f + �uh) − π0
h(f + �uh)‖L2(T ), (5.72b)

Edf,T := C
1/2

F,Th
1/2

T ‖�F �∇huh�·nT + η
hF

�uh�‖L2(∂T ), (5.72c)

where for F ∈ FT , �F = 1/2 if F ∈ F i
h and �F = 0 if F ∈ Fb

h.

Theorem 5.45 (Error upper bound). Let u ∈ H1
0 (Ω) solve (5.62). Let uh ∈ Vh

solve (5.71). Let Enc,T , Edf,T , and Eres,T be defined by (5.72). Then,

||u − uh||E ≤
(
∑

T∈Th

{
E2
nc,T + (Eres,T + Edf,T )2

}
)1/2

. (5.73)
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Proof. Let ϕ ∈ H1
0 (Ω) with ||ϕ||E = 1. Integration by parts yields

a(u− uh, ϕ) =
∑

T∈Th

∫

T

(f + �uh)ϕ−
∑

F∈Fi
h

∫

F

�∇huh�·nFϕ.

Moreover, since uh solves (5.71), considering the test function π0
hϕ ∈ �0

d(Th) ⊂
Vh, and using (4.9) to evaluate asip

h (uh, π
0
hϕ) yields

∑

T∈Th

∫

T

(f + �uh)π0
hϕ=

∑

F∈Fi
h

∫

F

�∇huh�·nF {{π0
hϕ}}−

∑

F∈Fh

∫

F

�uh�{{∇hπ
0
hϕ}}·nF

+
∑

F∈Fh

η

hF

∫

F

�uh��π0
hϕ�.

Since π0
hϕ is piecewise constant, {{∇hπ

0
hϕ}} = 0 for all F ∈ Fh, so that

∑

T∈Th

∫

T

(f + �uh)π0
hϕ =

∑

F∈Fi
h

∫

F

�∇huh�·nF {{π0
hϕ}} +

∑

F∈Fh

η

hF

∫

F

�uh��π0
hϕ�.

As a result,

a(u− uh, ϕ) =
∑

T∈Th

∫

T

(f + �uh)(ϕ− π0
hϕ)−

∑

F∈Fi
h

∫

F

�∇huh�·nF {{ϕ − π0
hϕ}}

+
∑

F∈Fh

η

hF

∫

F

�uh��π0
hϕ− ϕ�,

where, in the last term, we have exploited the fact that �π0
hϕ−ϕ� = �π0

hϕ� since
ϕ ∈ H1

0 (Ω). Expressing the last two terms as sums over mesh elements while
using the L2-orthogonality of π0

h(f+�uh) and (ϕ−π0
hϕ) in the first term yields

a(u− uh, ϕ) =
∑

T∈Th

∫

T

((f + �uh) − π0
h(f + �uh))(ϕ− π0

hϕ)

+
∑

T∈Th

∑

F∈FT

εT,F

∫

F

(

�F �∇huh�·nT +
η

hF
�uh�

)
(
ϕ− (π0

hϕ)|T
)
.

Owing to the Cauchy–Schwarz inequality,

a(u− uh, ϕ) ≤
∑

T∈Th

‖(f + �uh) − π0
h(f + �uh)‖L2(T )‖ϕ− π0

hϕ‖L2(T )

+
∑

T∈Th

‖�F �∇huh�·nT + η
hF

�uh�‖L2(∂T )‖ϕ− π0
hϕ‖L2(∂T ),

so that using the definitions (5.72b) and (5.72c) together with the bounds (5.69)
and (5.70) leads to

a(u− uh, ϕ) ≤
∑

T∈Th

(Eres,T + Edf,T )||ϕ||E,T .
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As a result,

‖R(uh)‖H−1(Ω) ≤
(
∑

T∈Th

(Eres,T + Edf,T )2
)1/2

.

Furthermore, ||uh − u∗h||2E =
∑

T∈Th
E2
nc,T . We conclude using (5.68).

Estimate (5.73) has been derived by Ern and Stephansen [148]. The idea of
subtracting a piecewise constant function in the residual estimator can be traced
back to Carstensen [76].

Remark 5.46 (General meshes). The local estimators defined by (5.72) can
be used without modification on nonmatching simplicial meshes. On general
meshes with nonconvex elements, the evaluation of CP,T in the Poincaré-type
inequality (5.69) is more complex; upper bounds have been derived, e.g., by
Vohralík [300]. Concerning (5.70), the proof on a polyhedron in �d can be found
in the work of Eymard, Gallouët, and Herbin [157].

5.6.2.3 Estimates Based on Diffusive Flux Reconstruction

An alternative way to estimate the dual norm ‖R(uh)‖H−1(Ω) is possible as
soon as there is a diffusive flux th ∈ H(div;Ω) satisfying the local conservation
property

∀T ∈ Th,

∫

T

∇·th =
∫

T

f. (5.74)

For all T ∈ Th, we (re)define the local nonconformity estimator Enc,T , the local
residual estimator Eres,T , and the local diffusive flux estimator Edf,T as

Enc,T := ‖∇(uh − u∗h)‖[L2(T )]d , (5.75a)

Eres,T := CP,ThT ‖f −∇·th‖L2(T ), (5.75b)

Edf,T := ‖∇uh + th‖[L2(T )]d . (5.75c)

Theorem 5.47 (Error upper bound). Let u ∈ H1
0 (Ω) solve (5.62). Let uh ∈ Vh

solve (5.71). Let Enc,T , Edf,T , and Eres,T be defined by (5.75). Then,

||u − uh||E ≤
(
∑

T∈Th

{
E2
nc,T + (Eres,T + Edf,T )2

}
)1/2

. (5.76)

Proof. Let ϕ ∈ H1
0 (Ω) with ||ϕ||E = 1. Owing to the Green theorem, the local

conservation property (5.74), the discrete Poincaré-type inequality (5.69), and
the Cauchy–Schwarz inequality,
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〈R(uh), ϕ〉H−1,H1
0

=
∫

Ω

fϕ−
∫

Ω

∇huh·∇ϕ

=
∫

Ω

(f −∇·th)ϕ−
∫

Ω

(∇huh + th)·∇ϕ

=
∫

Ω

(f −∇·th)(ϕ − π0
hϕ) −

∫

Ω

(∇huh + th)·∇ϕ

≤
∑

T∈Th

(Eres,T + Edf,T )||ϕ||E,T ,

so that

‖R(uh)‖H−1(Ω) ≤
(
∑

T∈Th

(Eres,T + Edf,T )2
)1/2

.

The conclusion is straightforward.

Remark 5.48 (Extension of Theorem 5.47). Theorem 5.47 can be extended to
bound the norm ||u−v||E for any v ∈ VE by just replacing uh by v in the definition
of Enc,T and Edf,T .

The diffusive flux th can be constructed using the ideas of Sect. 5.5. On
matching simplicial meshes, we set th = σ∗

h, where σ∗
h ∈ ���l

d(Th), l ∈ {k−1, k},
is prescribed locally using (5.45) and (5.46). Theorem 5.34 implies that

∇·th = πl
hf,

so that the local conservation property (5.74) is satisfied since l ≥ 0. The local
residual estimator Eres,T becomes

Eres,T = CP,ThT ‖f − πl
hf‖L2(T ),

with CP,T = π−1 since the simplex T is convex.

Remark 5.49 (Superconvergence of Eres,T ). Whenever the source term f is
smooth enough, the contribution of Eres,T is superconvergent. Indeed, the energy
error ||u − uh||E converges as hk if u is smooth enough, while {∑T∈Th

E2
res,T }1/2

converges as hl+2, that is, one order faster if l = k − 1 and two orders faster if
l = k.

On general meshes, we set th = σ∗
h = −∇huh + σ′

h, where σ′
h ∈ ���l

d(Sh),
l ∈ {k− 1, k}, is obtained by solving the local Neumann problems introduced in
Sect. 5.5.4. Theorem 5.41 yields that

∇·th = π̂l
hf,

where π̂l
h denotes the L2-orthogonal projection onto �k

d(Sh). As a result, a more
local version of the local conservation property (5.74) is obtained, namely

∀T ′ ∈ Sh,

∫

T ′
∇·th =

∫

T ′
f. (5.77)
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Then, proceeding as in the proof of Theorem 5.47, but using π̂0
hϕ instead of π0

hϕ,
leads to the error upper bound (5.76) with the local residual estimators Eres,T ,
T ∈ Th, modified as

Eres,T =

(
∑

T ′∈ST

C2
P,T ′h2

T ′‖f − π̂l
hf‖2

L2(T ′)

)1/2

,

and, as before, exploiting that the submesh is simplicial, so that T ′ is convex,
yields CP,T ′ = π−1.

Energy-norm a posteriori error estimates based on H(div;Ω)-conforming dif-
fusive flux reconstruction can be traced back to the seminal work of Prager
and Synge [261]. In the context of dG methods, such estimates have been
developed by Kim [212], Cochez-Dhondt and Nicaise [93], Ern, Stephansen, and
Vohralík [149], and Lazarov, Repin, and Tomar [224]. A closely related approach
is based on equilibrated fluxes. This approach can be traced back to the seminal
works of Ladevèze [218] and Haslinger and Hlaváček [187], and has been fur-
ther explored by Ladevèze and Leguillon [219], Hlaváček, Haslinger, Nečas, and
Lovíšek [193], Destuynder and Métivet [126], Ainsworth and Oden [8], Luce and
Wohlmuth [233], and Braess and Schöberl [50]. Energy-norm dG a posteriori
error estimates based on equilibrated fluxes have been derived by Ainsworth [7].

5.6.3 Error Lower Bounds
The goal of this section is to bound the local estimators Enc,T , Eres,T , and Edf,T

defined by (5.72) or (5.75) by the approximation error evaluated in a neighbor-
hood of T plus a data oscillation term also evaluated in a neighborhood of T .
For any subset T ⊂ Th, we define

||u − uh||E,T :=

(
∑

T∈T
||u − uh||2E,T

)1/2

.

In what follows, the notation a � b means the inequality a ≤ Cb with positive
C that can depend on the space dimension d, the polynomial degree k, and the
mesh regularity parameters , but not on the meshsize h (and the dG penalty
parameter η). To shorten the notation, we set η1 = max(1, η).

Theorem 5.50 (Local lower bound). Let Enc,T , Eres,T , and Edf,T be defined
by (5.72) or (5.75). Then, for all T ∈ Th,

Enc,T + Eres,T + Edf,T � ||u− uh||E,NT + Rosc,NT + η1|uh|J,F̃T
, (5.78)

where NT collects T and its neighbors in the sense of faces, the data oscillation
Rosc,NT is defined according to (5.34), the jump seminorm |uh|J,F̃T

according
to (5.37), and F̃T collects mesh faces having a nonempty intersection with ∂T .
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Proof. Recall the local residuals introduced in Sect. 5.5.1, namely

∀T ∈ Th, Rpde,T := hT ‖f + �uh‖L2(T ),

∀F ∈ F i
h, Rjdf,F := h

1/2

F ‖�∇huh�·nF ‖L2(F ),

∀F ∈ Fh, Rjpt,F := h
−1/2

F ‖�uh�‖L2(F ).

Let T ∈ Th. To prove (5.78), we proceed in two steps. To shorten the notation,
Hilbertian sums of the local residuals Rjdf,F or Rjpt,F over face subsets are
denoted by the corresponding subscript. We also set F i

T := FT ∩ F i
h.

(i) Let us first prove that

Enc,T + Eres,T + Edf,T � Rpde,T + Rjdf,Fi
T

+ η1Rjpt,F̃T
. (5.79)

Whenever the local estimators are defined by (5.72), we obtain, owing to
Lemma 5.28 or 5.29,

Enc,T � Rjpt,F̃T
.

Moreover, it is clear that

Eres,T � Rpde,T ,

Edf,T � Rjdf,Fi
T

+ ηRjpt,FT .

Whenever the local estimators are defined by (5.75), we obtain the same bound
on Enc,T , while the proof of Theorems 5.36 or 5.43 shows that

Edf,T � Rpde,T + Rjdf,Fi
T

+ ηRjpt,FT .

Finally, using the triangle inequality and the inverse inequality (1.36) yields

Eres,T � hT ‖f −∇·th‖L2(T )

≤ hT ‖f + �uh‖L2(T ) + hT ‖�uh + ∇·th‖L2(T )

� Rpde,T + Edf,T � Rpde,T + Rjdf,Fi
T

+ ηRjpt,FT .

This proves (5.79).
(ii) Combining (5.79) with the upper bounds (5.35) on Rpde,T and Rjdf,F and
using mesh regularity yields (5.78).

Finally, under the assumptions of Lemma 5.30, a global lower bound on the
error without the jump seminorm can be inferred.

Corollary 5.51 (Global lower bound). Let Th be a matching simplicial mesh.
Assume that η > ηav with ηav defined in Lemma 5.30. Then,

(
∑

T∈Th

{
E2
nc,T + (Eres,T + Edf,T )2

}
)1/2

� ||u − uh||E + Rosc,Ω,

where the multiplicative factor depends on η1(η − ηav)−1.
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Chapter 6

Incompressible Flows

The equations governing fluid motion are the Navier–Stokes equations, which
express the fundamental laws of mass and momentum conservation. These equa-
tions were first derived using a molecular approach by Navier [241] and Poisson
[260], while a more specific derivation was found by Saint-Venant [30] and Stokes
[284] based on the assumption that the stresses are linear functions of the strain
rates (or deformation velocities), that is, for Newtonian fluids. An exhaustive
presentation of the Navier–Stokes equations can be found in many textbooks
on fluid dynamics; see, e.g., Batchelor [38]. In this chapter, we are concerned
with the special case of incompressible (that is, constant density) Newtonian
flows, thereby leading to the so-called Incompressible Navier–Stokes (INS) equa-
tions. In these equations, the dependent variables are the velocity and the
pressure; other formulations of the INS equations are possible (see, e.g., Quar-
tapelle [263]). The mass conservation equation enforces zero divergence on the
velocity field (because of incompressibility), while the momentum conservation
equation expresses the balance between diffusion (due to viscosity), nonlinear
convection, pressure gradient, and external forcings.

Focusing first on the steady case, the main difficulties in the discretization of
the steady INS equations are (1) the zero-divergence constraint on the velocity
and (2) the contribution of the nonlinear convection term to the kinetic energy
balance. The first issue is addressed in Sect. 6.1 in the simpler context of the
steady Stokes equations. In these equations, convection is neglected, thereby
leading to a linear system of PDEs. At the discrete level, we consider discontin-
uous velocities in the usual broken polynomial spaces and use the SIP method
presented in Sect. 4.2 to approximate the diffusion term. We also introduce a
discrete divergence operator in the same spirit as the discrete gradient operator
introduced in Sect. 4.3.2. Several possibilities can be considered to discretize the
pressure. We discuss in some detail the choice of discontinuous pressures with
the same polynomial order as for velocities, as originally analyzed by Cockburn,
Kanschat, Schötzau, and Schwab [105]. Although this choice does not prop-
erly match the required polynomial approximation properties in the convergence

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_6,
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analysis, computational practice often indicates more efficiency for the equal-
order choice than the mixed-order counterpart. One important fact is that, in
the equal-order case, penalizing pressure jumps is needed to achieve discrete
stability. Moreover, we present convergence proofs to smooth solutions (using
classical arguments leading to optimal energy- and L2-norm estimates) and to
minimal regularity solutions (following the recent work by the authors [131]).
Finally, we briefly discuss other discretization approaches which, in particular,
circumvent the need to stabilize the pressure. In all cases, the discrete veloc-
ity is only weakly divergence-free. Approaches using Brezzi–Douglas–Marini or
Raviart–Thomas–Nédélec velocity spaces, so that the discrete velocity is exactly
divergence-free, have been investigated by Cockburn, Kanschat, and Schötzau
[103]. Alternative approaches are also discussed by Hansbo and Larson [185]
and by Montlaur, Fernandez-Mendez, and Huerta [239].

In Sect. 6.2, we turn to the steady INS equations. At the continuous level,
existence of a solution can always be asserted, but uniqueness requires a small-
ness assumption on the data. At the discrete level, the central issue is now
the discretization of the nonlinear convection term. An important ingredient is
to mimic the fact that, at the continuous level, this term does not contribute
to the kinetic energy balance. Since the divergence-free nature of the exact
velocity plays an instrumental role in asserting this property, and since the dis-
crete velocity is not exactly divergence-free, we consider a technique proposed
by Temam [291, 292] which consists in adding a consistent term to the discrete
momentum equation so as to recover the correct kinetic energy balance at the
discrete level. The existence of a discrete solution is then proven by means of a
topological degree argument, while uniqueness is recovered by invoking a small-
ness condition on the data, as for the exact problem. Then, without any small-
ness assumption on the data, we prove the convergence, up to a subsequence, of
the sequence of discrete solutions to a solution of the INS equations with minimal
regularity; convergence of the whole sequence can be asserted if the exact solu-
tion is unique. Finally, returning to the discretization of the nonlinear convec-
tion term, we identify the abstract design conditions required in the convergence
analysis and briefly discuss an alternative to Temam’s stabilization leading to a
locally conservative formulation, but with somewhat weaker stability properties.

The last section of this chapter deals with a pressure-correction algorithm for
the unsteady INS equations. In order to reduce the coupling between the momen-
tum and the mass conservation equations, the space discretization uses contin-
uous pressures. The interest of this formulation is that the coupling between
the two equations is less tight than in the fully discontinuous case, since the
discrete bilinear form coupling velocity and pressure is inherently inf-sup stable.
The resulting space semidiscrete problem lends itself to fractional step time-
marching methods, such as the pressure-correction scheme. The main interest
of pressure-correction methods is to circumvent the need of a monolithic solver
for the unsteady INS equations, which leads to linear systems whose condition
number behaves extremely poorly with the time-step. For simplicity, we focus on
pressure-correction schemes with the time derivative discretized using backward
Euler or BDF2 schemes.
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6.1 Steady Stokes Flows
In this section, we consider the steady Stokes equations. These equations
describe incompressible viscous flows under the assumption that the fluid motion
is sufficiently slow so that diffusion dominates over convection in the transport
of momentum. We first study the well-posedness of the steady Stokes equations
at the continuous level. At the discrete level, we focus on equal-order approx-
imations using both discontinuous velocities and pressures, whereby pressure
jumps are penalized to achieve stability. We prove the well-posedness of the
discrete problem and establish convergence to both smooth and minimal regu-
larity solutions. Finally, we briefly discuss alternative discretizations avoiding
the need to stabilize the pressure.

6.1.1 The Continuous Setting
Let Ω ⊂ �d, d ≥ 2, be a polyhedron. The steady Stokes equations can be
expressed in the form

−�u+ ∇p = f in Ω, (6.1a)
∇·u = 0 in Ω, (6.1b)
u = 0 on ∂Ω, (6.1c)

〈p〉Ω = 0, (6.1d)

where u : Ω → �d with Cartesian components (ui)1≤i≤d is the velocity field,
p : Ω → � the pressure, and f : Ω → �d with Cartesian components (fi)1≤i≤d the
forcing term. Equation (6.1a), which expresses the conservation of momentum,
can be written in component form as

−�ui + ∂ip = fi ∀i ∈ {1, . . . , d}.

Equation (6.1b), which expresses the conservation of mass, enforces the above-
mentioned divergence-free constraint on the velocity. Equation (6.1c) enforces
a homogeneous Dirichlet boundary condition on the velocity; other boundary
conditions can be considered, as discussed, e.g., by Ern and Guermond [141,
p. 179]. Finally, condition (6.1d), where 〈·〉Ω denotes the mean value over Ω, is
added to avoid leaving the pressure undetermined up to an additive constant.

Remark 6.1 (Stress and strain tensors, viscosity). A more general form of the
momentum conservation equation (6.1a) takes the form

−∇·σ + ∇p = f in Ω,

where σ : Ω → �d,d is the stress tensor. In component form, this equation can
be rewritten as

−
d∑

j=1

∂jσij + ∂ip = fi ∀i ∈ {1, . . . , d}.
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In Newtonian flows, stresses are proportional to strain rates. More specifically,
introducing for a given velocity field u the (linearized) strain tensor ε : Ω → �d,d

such that
ε =

1
2
(∇u + ∇ut),

or, in component form, εij = 1/2(∂jui + ∂iuj), there holds

σ = 2νε,

where ν > 0 is the (kinematic) viscosity. Taking the viscosity to be constant for
simplicity, we obtain

− ν∇·(∇u+ ∇ut) + ∇p = f, (6.2)

and up to rescaling of the pressure and the source term, we can assume that
ν = 1. Then, observing that ∇·(∇u) = �u and ∇·(∇u)t = ∇(∇·u) = 0
because of incompressibility, we recover (6.1a). Considering the form (6.2) of the
momentum conservation equation is useful when dealing with other boundary
conditions than (6.1c), e.g., when weakly enforcing the Navier slip boundary
condition (σ·n + λu)·t = 0 where t is a tangent vector to the boundary ∂Ω and
λ ≥ 0 a given parameter. We also observe that using the form (6.2) requires a
different form of coercivity for the diffusion term; cf. Remark 6.4 below.

Remark 6.2 (Nonzero divergence). In some situations, it is interesting to consider
a nonzero right-hand side in the mass conservation equation (6.1b). This case
can be treated with straightforward changes in the analysis presented below.

6.1.1.1 Weak Formulation

We assume that the forcing term f is in [L2(Ω)]d. Owing to (6.1c), the natural
space for the velocity is [H1

0 (Ω)]d, while owing to (6.1d), the natural space for
the pressure is L2

0(Ω) ⊂ L2(Ω) where

L2
0(Ω) :=

{
q ∈ L2(Ω) | 〈q〉Ω = 0

}
.

We set
U := [H1

0 (Ω)]d, P := L2
0(Ω), X := U × P. (6.3)

The spaces U , P , and X are Hilbert spaces when equipped with the inner prod-
ucts inducing the norms

‖v‖U := ‖v‖[H1(Ω)]d =

(
d∑

i=1

‖vi‖2
H1(Ω)

)1/2

,

‖q‖P := ‖q‖L2(Ω), ‖(v, q)‖X :=
(‖v‖2

U + ‖q‖2
P

)1/2
.
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We define, for all u, v ∈ U and for all q ∈ P , the bilinear forms

a(u, v) :=
∫

Ω

∇u:∇v =
d∑

i,j=1

∫

Ω

∂jui ∂jvi = (∇u,∇v)[L2(Ω)]d,d , (6.4a)

b(v, q) := −
∫

Ω

q∇·v = −(∇·v, q)P . (6.4b)

The weak formulation of problem (6.1) reads: Find (u, p) ∈ X such that

a(u, v) + b(v, p) =
∫

Ω

f ·v ∀v ∈ U, (6.5a)

−b(u, q) = 0 ∀q ∈ P , (6.5b)

or, equivalently,

Find (u, p) ∈ X s.t. c((u, p), (v, q)) =
∫

Ω

f ·v for all (v, q) ∈ X,

with
c((u, p), (v, q)) := a(u, v) + b(v, p) − b(u, q).

While the bilinear form c is clearly not coercive on X, we observe that the
bilinear form a is coercive on U . Indeed, applying the continuous Poincaré
inequality (4.4) to each velocity component, we infer that there exists αΩ > 0,
only depending on Ω, such that

∀v ∈ U, a(v, v) = ‖∇v‖2
[L2(Ω)]d,d ≥ αΩ‖v‖2

U . (6.6)

This yields a so-called partial coercivity for the bilinear form c in the form

∀(v, q) ∈ X, c((v, q), (v, q)) = a(v, v) ≥ αΩ‖v‖2
U . (6.7)

Remark 6.3 (Saddle-point problem). A problem of the form (6.5) is said to have
a saddle-point structure since (u, p) ∈ X solves (6.5) if and only if (u, p) is a
saddle-point of the Lagrangian L : X → � such that, for all (v, q) ∈ X,

L(v, q) =
1
2
a(v, v) + b(v, q).

In this context, the pressure plays the role of the Lagrange multiplier associated
with the incompressibility constraint.
Remark 6.4 (Coercivity with the strain formulation (6.2)). Working with the
strain formulation (6.2) (with ν = 1) leads to the bilinear form a(u, v) =
2
∫
Ω
ε(u):ε(v) where, for all v ∈ U , we have set ε(v) = 1

2 (∇v + ∇vt). The
U -coercivity of the bilinear form a then results from Korn’s First Inequality
(see, e.g., Ciarlet [92, p. 24]) stating that there exists κΩ > 0, only depending
on Ω, such that

∀v ∈ U, ‖ε(v)‖[L2(Ω)]d,d ≥ κΩ‖v‖U .

Discrete Korn inequalities in the context of piecewise smooth vector-valued fields
are derived by Brenner [52] and Duarte, do Carmo, and Rochinha [137].



246 Chapter 6. Incompressible Flows

6.1.1.2 The Divergence Operator

We introduce the divergence operator B ∈ L(U,P ) such that

B : U � v �−→ Bv := −∇·v ∈ P. (6.8)

(The fact that Bv has zero mean is a consequence of the divergence theorem
since

∫
Ω
Bv = − ∫

Ω
∇·v = − ∫

∂Ω
(v·n) = 0.) The operator B is readily linked to

the bilinear form b since there holds

(Bv, q)P = b(v, q) ∀(v, q) ∈ X.

The well-posedness of the Stokes problem (6.5) hinges on the surjectivity of the
operator B or, equivalently, on an inf-sup condition on the bilinear form b, so
that we first focus on these properties.

Theorem 6.5 (Surjectivity of divergence operator, inf-sup condition on b). Let
Ω ∈ �d, d ≥ 1, be a connected domain. Then, the operator B is surjective.
Equivalently, there exists a real number βΩ > 0, only depending on Ω, such that,
for all q ∈ P , there is vq ∈ U satisfying

q = −Bvq = ∇·vq and βΩ‖vq‖U ≤ ‖q‖P . (6.9)

Moreover, property (6.9) is equivalent to the following inf-sup condition on the
bilinear form b:

∀q ∈ P, βΩ‖q‖P ≤ sup
w∈U\{0}

b(w, q)
‖w‖U

. (6.10)

Definition 6.6 (Velocity lifting). For all q ∈ P , a field vq ∈ U satisfying (6.9)
is called a velocity lifting of q.

Proof. The proof can be found, e.g., in the textbook by Girault and Raviart [170,
Sect. 2.2]; see also Bogovskĭi [45], Solonnikov [280], and Durán and Muschi-
etti [139]. We briefly sketch the main arguments.
(i) The fact that the surjectivity of B is equivalent to (6.9) is a simple applica-
tion of the Open Mapping Theorem (see, e.g., Ern and Guermond [141, Theo-
rem A.35]).
(ii) We now verify the equivalence between (6.9) and (6.10). We introduce
the dual space U ′ := [H−1(Ω)]d and we identify P with its dual space. Let
B∗ ∈ L(P,U ′) be the adjoint operator of B and observe that B∗ coincides with
the gradient operator. Moreover, (6.10) can be reformulated as

∀q ∈ P, βΩ‖q‖P ≤ ‖B∗q‖U ′ . (6.11)

Using classical results in Hilbert spaces, we infer

(6.11) ⇐⇒ Im(B∗) is closed and Ker(B∗) = {0}
⇐⇒ Im(B) is closed and Ker(B∗) = {0}
⇐⇒ Im(B) is closed and Im(B) = P

⇐⇒ B is surjective
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where the second equivalence results from the Closed Range Theorem (see, e.g.,
[141, Theorem A.34]).
(iii) Finally, we prove inequality (6.11). We start with the following inequality
(see Nečas [244]): There exists β′

Ω > 0 such that

∀q ∈ L2(Ω), β′
Ω‖q‖L2(Ω) ≤ ‖q‖H−1(Ω) + ‖∇q‖[H−1(Ω)]d .

Then, a classical argument by contradiction using the compact injection of L2(Ω)
into H−1(Ω) and the fact that Ω is connected shows that by restricting q to have
zero mean-value, there exists βΩ > 0 such that

∀q ∈ P, βΩ‖q‖L2(Ω) ≤ ‖∇q‖[H−1(Ω)]d ,

which is exactly (6.11).

Remark 6.7 (Parameter βΩ in (6.9) and (6.11)). The fact that the same parame-
ter βΩ > 0 appears in (6.9) and (6.11) is a classical result. We briefly sketch the
argument (which provides a more constructive link between (6.9) and (6.11)).
Assume first that (6.9) is satisfied with parameter βΩ. We obtain, for all q ∈ P ,

‖q‖2
P = −(Bvq, q)P = −〈B∗q, vq〉U ′,U

≤ ‖B∗q‖U ′‖vq‖U ≤ β−1
Ω ‖B∗q‖U ′‖q‖P ,

so that ‖B∗q‖U ′ ≥ βΩ‖q‖P . Conversely, assume that (6.11) is satisfied with
parameter βΩ. Let q ∈ P . The problem of finding q∗ ∈ P such that, for all
r ∈ P , 〈B∗q∗, RB

∗r〉U ′,U = (q, r)P , where R ∈ L(U ′, U) is the Riesz isomor-
phism between U and its dual space U ′, is well-posed. Indeed, the bilinear
form on the left-hand side is P -coercive since, for all r ∈ P , owing to (6.11),
〈B∗r,RB∗r〉U ′,U = ‖B∗r‖2

U ′ ≥ β2
Ω‖r‖2

P . Moreover, the unique solution q∗ ∈ P to
the above problem satisfies the a priori estimate ‖RB∗q∗‖U ≤ β−2

Ω ‖q‖P . Then,
a velocity lifting of q satisfying (6.9) with parameter βΩ is obtained by setting
vq = −RB∗q∗ ∈ U .

6.1.1.3 Well-Posedness

We can now prove the well-posedness of the Stokes problem (6.5).

Theorem 6.8 (Well-posedness). Problem (6.5) is well-posed.

Proof. We consider the bilinear form c and check the two conditions of the BNB
Theorem.
(i) Proof of (1.4). Let (v, q) ∈ X and set � := sup(w,r)∈X\{0}

c((v,q),(w,r))
‖(w,r)‖X

. The
partial coercivity (6.7) of c yields

αΩ‖v‖2
U ≤ c((v, q), (v, q)) ≤ �‖(v, q)‖X ,
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while the inf-sup condition (6.10) leads to

βΩ‖q‖P ≤ sup
w∈U\{0}

b(w, q)
‖w‖U

≤ sup
w∈U\{0}

c((v, q), (w, 0)) − a(v,w)
‖w‖U

≤ sup
w∈U\{0}

c((v, q), (w, 0))
‖(w, 0)‖X

+ sup
w∈U\{0}

a(v,w)
‖w‖U

≤ �+ ‖v‖U ,

since ‖w‖U = ‖(w, 0)‖X and |a(v,w)| ≤ ‖v‖U‖w‖U . As a result, up to positive
factors depending on αΩ and βΩ,

‖(v, q)‖2
X = ‖v‖2

U + ‖q‖2
P � �‖(v, q)‖X + �2.

Using Young’s inequality for the first term on the right-hand side, we conclude
that there exists γΩ > 0 (depending on αΩ and βΩ) such that γΩ‖(v, q)‖X ≤ �.
(ii) Proof of (1.5). Let (w, r) ∈ X be such that c((v, q), (w, r)) = 0 for all
(v, q) ∈ X. Then, taking (v, q) = (w, r) and using the partial coercivity (6.7),
we infer

αΩ‖w‖2
U ≤ a(w,w) = c((w, r), (w, r)) = 0,

so that w = 0. To prove that r = 0, we let (v, q) = −(vr, 0), with vr the velocity
lifting of r, to infer ‖r‖2

P = −b(vr, r) = c((vr , 0), (0, r)) = 0.

Remark 6.9 (Pressure elimination). An alternative proof for the well-posedness
of (6.5) consists in first eliminating the pressure. Specifically, let

V := Ker(B) = {v ∈ U | ∇·v = 0} .
If the couple (u, p) ∈ X solves (6.5), then the velocity u solves the problem:

Find u ∈ V s.t. a(u, v) =
∫

Ω

f ·v for all v ∈ V . (6.12)

Problem (6.12) is well-posed owing to the Lax–Milgram Lemma combined with
the U -coercivity of the bilinear form a on V ; cf. (6.6). Moreover, the unique
solution u ∈ V of (6.12) is such that

f + �u ∈ V ⊥ = (Ker(B))⊥ = Im(B∗) = Im(B∗),

so that there is p ∈ P such that f + �u = B∗p = ∇p. Since p has zero
mean-value, p is unique.

6.1.2 Equal-Order Discontinuous Velocities and Pressures
In this section, we consider one possible dG discretization of the steady Stokes
equations based on equal-order discontinuous velocities and pressures. Other
approaches are discussed in Sect. 6.1.5. DG methods based on equal-order
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discontinuous velocities and pressures have been introduced by Cockburn, Kan-
schat, Schötzau, and Schwab [105] for the Stokes equations and extended to the
Oseen equations in [101] and to the INS equations in [104]; see also Ern and
Guermond [144].

Let Th be a mesh of Ω belonging to an admissible mesh sequence with mesh
regularity parameters denoted by . Recalling the broken polynomial space
�k

d(Th) defined by (1.15) with polynomial degree k ≥ 1, we define the discrete
spaces

Uh := [�k
d(Th)]d, Ph := �k

d,0(Th), Xh := Uh × Ph, (6.13)

where �k
d,0(Th) denotes the subspace of �k

d(Th) spanned by functions having zero
mean-value over Ω; cf. Remark 6.14 for discarding this constraint. The discrete
solution is sought in the space Xh.

For further use, we denote by πh the L2-projector onto the broken polynomial
space �k

d(Th) and by Πh the L2-projector onto Uh. A useful remark is that πh

preserves the mean value since

∀q ∈ L2(Ω), 〈q〉Ω =
1

|Ω|d

∫

Ω

q =
1

|Ω|d

∫

Ω

πhq = 〈πhq〉Ω. (6.14)

Hence, for all q ∈ P , πhq ∈ Ph.

6.1.2.1 Discretization of the Diffusion Term

To discretize the diffusion term, we use, for each velocity component, the SIP
bilinear form (cf. Sect. 4.2). We define on Uh × Uh the bilinear form

ah(vh, wh) :=
d∑

i=1

asip
h (vh,i, wh,i), (6.15)

where (vh,i)1≤i≤d and (wh,i)1≤i≤d denote the Cartesian components of vh and
wh, respectively, and where asip

h is defined by (4.12), so that

asip
h (vh,i, wh,i) =

∫

Ω

∇hvh,i·∇hwh,i +
∑

F∈Fh

η

hF

∫

F

�vh,i��wh,i�

−
∑

F∈Fh

∫

F

({{∇hvh,i}}·nF �wh,i� + �vh,i�{{∇hwh,i}}·nF ) .

As in Chap. 4 (cf. Definition 4.5), in dimension d ≥ 2, hF denotes the diameter
of the face F (other local length scales can be chosen, cf. Remark 4.6), while in
dimension 1, we set hF := min(hT1 , hT2) if F ∈ F i

h with F = ∂T1 ∩ ∂T2 and
hF := hT if F ∈ Fb

h with F = ∂T ∩ ∂Ω.
It is natural to equip the discrete velocity space Uh with the |||·|||sip-norm

defined by (4.17) for each Cartesian component, so that we set

|||vh|||vel :=

(
d∑

i=1

|||vh,i|||2sip
)1/2

=
(
‖∇hvh‖2

[L2(Ω)]d,d + |vh|2J
)1/2

, (6.16)
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with the |·|J-seminorm acting now on vector-valued arguments as

|vh|J =

(
∑

F∈Fh

h−1
F ‖�vh�‖2

[L2(F )]d

)1/2

.

The discrete bilinear form ah and the |||·|||vel-norm are extended to larger spaces
in Sect. 6.1.3. In what follows, referring to Lemma 4.12, we assume that the
penalty parameter η is such that η > η so that

∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||2vel, (6.17)

where α = Cη.

6.1.2.2 Discretization of the Pressure-Velocity Coupling

To discretize the pressure-velocity coupling, we need a discrete counterpart of
the bilinear form b defined on U ×P by (6.4). We define on Uh ×Ph the discrete
bilinear form

bh(vh, qh) = −
∫

Ω

qh∇h·vh +
∑

F∈Fh

∫

F

�vh�·nF {{qh}}, (6.18)

where the broken divergence operator ∇h· acts elementwise, like the broken
gradient operator ∇h defined by (1.20). We observe that elementwise integration
by parts yields

bh(vh, qh) =
∫

Ω

vh·∇hqh −
∑

F∈Fi
h

∫

F

{{vh}}·nF �qh�. (6.19)

One motivation for the above definition is that, extending the domain of bh to the
broken Sobolev spaces [H1(Th)]d×H1(Th), we obtain the consistency properties

∀(v, qh) ∈ U × Ph, bh(v, qh) = −
∫

Ω

qh∇·v,

∀(vh, q) ∈ Uh ×H1(Ω), bh(vh, q) =
∫

Ω

vh·∇q,

since, for all v ∈ U , �v� = 0 for all F ∈ Fh, while, for all q ∈ H1(Ω), �q� = 0
for all F ∈ F i

h. The discrete bilinear form bh can also be derived by defining
first a discrete divergence operator like the discrete gradient operator introduced
in Sect. 4.3.2; cf. Sect. 6.1.4 for further discussion. Finally, as detailed later in this
section, the discrete bilinear form bh can be associated with the use of centered
fluxes to discretize the gradient and divergence operators in the pressure-velocity
coupling.

Similarly to the operator B at the continuous level, we introduce the discrete
operator Bh : Uh → Ph such that, for all (vh, qh) ∈ Xh,

(Bhvh, qh)P = bh(vh, qh).
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It turns out that, contrary to the exact operator B, the discrete operator Bh is
not surjective. As a result, the L2-norm of a function in Ph cannot be controlled
uniquely in terms of bh. To recover control, it is necessary to add the following
pressure seminorm defined on H1(Th):

|q|p :=

⎛

⎝
∑

F∈Fi
h

hF ‖�q�‖2
L2(F )

⎞

⎠

1/2

.

Lemma 6.10 (Stability for bh). There exists β > 0, independent of h, such that

∀qh ∈ Ph, β‖qh‖P ≤ sup
wh∈Uh\{0}

bh(wh, qh)
|||wh|||vel + |qh|p. (6.20)

Proof. Let qh ∈ Ph. Owing to Theorem 6.5, there is vqh
∈ U such that

∇·vqh
= qh and βΩ‖vqh

‖U ≤ ‖qh‖P . Since vqh
∈ U , integration by parts yields

‖qh‖2
P =

∫

Ω

qh(∇·vqh
) = −

∫

Ω

∇hqh·vqh
+

∑

F∈Fi
h

∫

F

�qh�vqh
·nF .

Since ∇hPh ⊂ Uh, we infer from the definition of the L2-projector Πh that∫
Ω ∇hqh· (vqh

− Πhvqh
) = 0 so that

‖qh‖2
P = −

∫

Ω

∇hqh·Πhvqh
+

∑

F∈Fi
h

∫

F

�qh�vqh
·nF

= −bh(Πhvqh
, qh) +

∑

F∈Fi
h

∫

F

�qh�{{vqh
− Πhvqh

}}·nF = T1 + T2.

Owing to Lemma 6.11 (see below),

|T1| =
|bh(Πhvqh

, qh)|
|||Πhvqh

|||vel |||Πhvqh
|||vel ≤

(

sup
wh∈Uh\{0}

bh(wh, qh)
|||wh|||vel

)

CΠ‖vqh
‖U

≤ β−1
Ω CΠ

(

sup
wh∈Uh\{0}

bh(wh, qh)
|||wh|||vel

)

‖qh‖P ,

where CΠ only depends on the mesh regularity parameters  and the polynomial
degree k. To treat the second term, we use the Cauchy–Schwarz inequality
together with Lemmata 1.42 and 1.59 to infer that, up to positive factors only
depending on  and k,

|T2| ≤
⎛

⎝
∑

F∈Fi
h

hF |�qh�|2
⎞

⎠

1/2

×
⎛

⎝
∑

F∈Fi
h

1
hF

∫

F

|{{vqh
− Πhvqh

}}|2
⎞

⎠

1/2

� |qh|p
⎛

⎝
∑

T∈Th

∑

F∈FT ∩Fi
h

1
hT

‖vqh
− Πhvqh

‖2
[L2(F )]d

⎞

⎠

1/2

� |qh|p‖vqh
‖U � β−1

Ω |qh|p‖qh‖P .
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This concludes the proof.

Lemma 6.11 (Stability of Πh). There is CΠ, only depending on the mesh reg-
ularity parameters  and the polynomial degree k, such that, for all v ∈ U ,

|||Πhv|||vel ≤ CΠ‖v‖U .

Proof. Let v ∈ U . Owing to the H1-stability of the L2-projector onto the broken
polynomial space �k

d(Th), we infer, up to positive factors only depending on 
and k,

‖∇hΠhv‖[L2(Ω)]d,d � ‖v‖U .

Moreover,
∑

F∈Fh

h−1
F ‖�Πhv�‖2

[L2(F )]d =
∑

F∈Fh

h−1
F ‖�Πhv − v�‖2

[L2(F )]d � ‖v‖2
U ,

where we have used, as above, Lemmata 1.42 and 1.59.

Remark 6.12 (Ladyzhenskaya–Babuška–Brezzi (LBB) condition). In the setting
of conforming mixed finite element approximations, the stability of the discrete
bilinear form coupling velocity and pressure takes the form of an inf-sup con-
dition without stabilization term, the so-called Ladyzhenskaya–Babuška–Brezzi
(LBB) condition (see Babuška [19] and Brezzi [56]). Condition (6.20) can be
viewed as an extended LBB condition owing to the additional presence of the
pressure seminorm on the right-hand side.

6.1.2.3 Discrete Problem and Well-Posedness

We consider the following discretization of problem (6.5): Find (uh, ph) ∈ Xh

such that

ah(uh, vh) + bh(vh, ph) =
∫

Ω

f ·vh ∀vh ∈ Uh, (6.21a)

−bh(uh, qh) + sh(ph, qh) = 0 ∀qh ∈ Ph, (6.21b)

where the discrete bilinear form ah is defined by (6.15), the discrete bilinear
form bh by (6.18) (or, equivalently, by (6.19)), and where

sh(qh, rh) :=
∑

F∈Fi
h

hF

∫

F

�qh��rh�. (6.22)

The stabilization bilinear form sh is meant to control pressure jumps across inter-
faces, thereby allowing to control the L2-norm of the discrete pressure by virtue
of Lemma 6.10. The following formulation, equivalent to (6.21), is obtained by
summing equations (6.21a) and (6.21b): Find (uh, ph) ∈ Xh such that

ch((uh, ph), (vh, qh)) =
∫

Ω

f ·vh for all (vh, qh) ∈ Xh, (6.23)
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where

ch((uh, ph), (vh, qh)) := ah(uh, vh) + bh(vh, ph)− bh(uh, qh) + sh(ph, qh). (6.24)

Owing to (6.17), we infer partial coercivity for ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) = ah(vh, vh) + sh(qh, qh)

≥ α|||vh|||2vel + |qh|2p. (6.25)

Discrete well-posedness hinges on the discrete inf-sup stability of the bilinear
form ch. We equip the discrete space Xh with the norm

|||(vh, qh)|||sto :=
(|||vh|||2vel + ‖qh‖2

P + |qh|2p
)1/2

. (6.26)

Lemma 6.13 (Discrete inf-sup stability). Assume that the penalty parameter η
in the SIP method is such that η > η with η defined in Lemma 4.12. Then, there
is γ > 0, independent of h, such that, for all (vh, qh) ∈ Xh,

γ|||(vh, qh)|||sto ≤ sup
(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))
|||(wh, rh)|||sto . (6.27)

Proof. Let (vh, qh) ∈ Xh and, for brevity of notation, let � denote the supremum
on the right-hand side of (6.27). Owing to (6.25),

α|||vh|||2vel + |qh|2p ≤ �|||(vh, qh)|||sto.
It only remains to estimate ‖qh‖P . To this end, we use Lemma 6.10 and the fact
that, for all wh ∈ Uh, bh(wh, qh) = ch((vh, qh), (wh, 0)) − ah(vh, wh) to infer

βΩ‖qh‖P ≤ sup
wh∈Uh\{0}

(−ah(vh, wh)
|||wh|||vel +

ch((vh, qh), (wh, 0))
|||(wh, 0)|||sto

)

+ |qh|p

≤ sup
wh∈Uh\{0}

ah(vh, wh)
|||wh|||vel + �+ |qh|p.

Owing to the boundedness of the bilinear form asip
h (cf. Lemma 4.16) and the

discrete equivalence of the |||·|||sip and |||·|||sip,∗-norms (cf. Lemma 4.20), we infer,
up to positive factors independent of h,

sup
wh∈Uh\{0}

ah(vh, wh)
|||wh|||vel � |||vh|||vel.

Gathering the above estimates yields

|||(vh, qh)|||2sto � �|||(vh, qh)|||sto + �2,

whence the conclusion follows from Young’s inequality.

As a consequence of Lemma 1.30, the discrete problem (6.21) or, equivalently,
(6.23) is well-posed.
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Remark 6.14 (Discarding the zero mean-value constraint). In practice, the
discrete problem (6.21) can be formulated by discarding the zero mean-value
constraint on the discrete pressures, that is, using the broken polynomial space
�k

d(Th) for the discrete pressures. With this choice, the problem matrix has a
one-dimensional kernel. The discrete solution can be obtained using a direct
solver with full pivoting or an iterative solver which only requires matrix-vector
products. After a discrete solution has been obtained, the zero mean-value
constraint on the pressure is enforced by postprocessing.

Remark 6.15 (Pressure penalty). An alternative choice for the local length scale
in the pressure penalty consists in replacing hF with the ratio {{|T |d}}

|F |d−1
in (6.22)

and redefining the seminorm |·|p accordingly (cf. Remark 4.6 for the correspond-
ing choice in the penalty term for the SIP bilinear form). In the work of Bassi
and coworkers [32, 33, 127], this pressure penalty term is related to the solution
of a local Riemann problem at the interfaces.

6.1.2.4 Numerical Fluxes

To formulate the discrete problem (6.21) locally, we consider test functions hav-
ing support localized to a single mesh element. We define the numerical fluxes

φgrad
F (ph) :=

{
{{ph}}nF if F ∈ F i

h,

phn if F ∈ Fb
h,

(6.28)

φdiv
F (uh, ph) :=

{
{{uh}}·nF + hF �ph� if F ∈ F i

h,

0 if F ∈ Fb
h,

(6.29)

and observe that φgrad
F (ph) is vector-valued whereas φdiv

F (uh, ph) is scalar-valued.
Moreover, referring to Sect. 4.3.4 and, in particular, to (4.50) for the numeri-
cal fluxes associated with the SIP method, we consider here the vector-valued
numerical fluxes

φdiff
F (uh) = −{{∇huh}}·nF +

η

hF
�uh�. (6.30)

Let T ∈ Th and let ξ ∈ [�k
d(T )]d with Cartesian components (ξi)1≤i≤d. Using

vh = ξχT as a test function in the discrete momentum conservation equa-
tion (6.21a) (where χT denotes the characteristic function of T ), we obtain

∫

T

d∑

i=1

Gl
h(uh,i)·∇ξi −

∫

T

ph∇·ξ

+
∑

F∈FT

εT,F

∫

F

[
φdiff

F (uh) + φgrad
F (ph)

]
·ξ =

∫

T

f ·ξ, (6.31)

where l ∈ {k − 1, k}, Gl
h is the discrete gradient operator defined in Sect. 4.3.2,

and εT,F = nT ·nF .
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Similarly, let ζ ∈ �k
d(T ). Using qh = ζχT − 〈ζχT 〉Ω as a test function in the

discrete mass conservation equation (6.21b) and using the expression (6.19) of
the discrete bilinear form bh, we obtain

−
∫

T

uh·∇ζ +
∑

F∈FT

εT,F

∫

F

φdiv
F (uh, ph)ζ = 0. (6.32)

Equations (6.31) and (6.32) express the local conservation properties satisfied by
the dG approximation. We observe that, in the numerical fluxes φgrad

F (ph) and
φdiv

F (uh, ph), the centered part results from the discrete bilinear form bh, while
the presence of the pressure jump in the flux φdiv

F (uh, ph) stems from stabilizing
the pressure jumps across interfaces.

6.1.3 Convergence to Smooth Solutions
The goal of this section is to analyze the convergence of the solution of the
discrete Stokes problem (6.21) or, equivalently, (6.23) in the case of smooth
exact solutions. We proceed in the spirit of Theorem 1.35 and derive an error
estimate in the |||·|||sto-norm. We also derive an L2-error estimate on the velocity
under an additional regularity assumption on the Stokes problem.

6.1.3.1 Consistency

As in the previous chapters, some additional regularity of the exact solution
(u, p) ∈ X is needed to assert consistency by plugging the pair (u, p) into the
discrete bilinear form ch. Concerning the velocity, we hinge for simplicity on
Assumption 4.4 for all the velocity components. Concerning the pressure, we
need traces on all interfaces and that the resulting jumps vanish; again for sim-
plicity, this requirement is matched by assuming H1(Ω)-regularity for the pres-
sure.

Assumption 6.16 (Regularity of the exact solution and space X∗). We assume
that the exact solution (u, p) is in X∗ := U∗ × P∗ where

U∗ := U ∩ [H2(Ω)]d, P∗ := P ∩H1(Ω).

In the spirit of Sect. 1.3, we set

U∗h := U∗ + Uh, P∗h := P∗ + Ph, X∗h := X∗ +Xh.

We extend the discrete bilinear form ah defined by (6.15) to U∗h × Uh and
the |||·|||vel-norm to U∗h. We recall that the discrete bilinear form bh is already
defined on [H1(Th)]d ×H1(Th). Finally, we extend the discrete bilinear form ch
defined by (6.24) to X∗h ×Xh and we extend the |||·|||sto-norm defined by (6.26)
to X∗h.

Before asserting consistency, we study the jumps of ∇u and p across inter-
faces.
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Lemma 6.17 (Jumps of ∇u and p across interfaces). Assume (u, p) ∈ X∗.
Then,

�∇u�·nF = 0 and �p� = 0 ∀F ∈ F i
h. (6.33)

Proof. The proof of (6.34) is similar to that of Lemma 1.24. For all ϕ ∈
[C∞

0 (Ω)]d, elementwise integration by parts combined with the regularity
assumption on the exact solution yields

0 = a(u,ϕ) + b(ϕ, p) −
∫

Ω

f ·ϕ =
∑

F∈Fi
h

∫

F

(
�∇u�·nF − �p�nF

)
·ϕ.

Taking the support of ϕ intersecting a single interface and using a density argu-
ment, we infer

�∇u�·nF − �p�nF = 0 ∀F ∈ F i
h. (6.34)

Moreover, since p ∈ P∗, Lemma 1.23 implies that, for all F ∈ F i
h, �p� = 0.

Using (6.34), we finally infer �∇u�·nF = 0.

Lemma 6.18 (Consistency). Assume that (u, p) ∈ X∗. Then,

ch((u, p), (vh, qh)) =
∫

Ω

f ·vh ∀(vh, qh) ∈ Xh.

Proof. Let vh ∈ Uh. Observing that �u = ∇p − f ∈ [L2(Ω)]d since p ∈ P∗
and f ∈ [L2(Ω)]d and that �u� = 0 across all F ∈ Fh since u ∈ U , we infer
using (4.13) that

ah(u, vh) = −
∫

Ω

�u·vh +
∑

F∈Fi
h

∫

F

(�∇u�·nF )·{{vh}}.

Moreover, it follows from (6.19) that

bh(vh, p) =
∫

Ω

vh·∇p−
∑

F∈Fi
h

∫

F

�p�nF ·{{vh}}.

As a result,

ch((u, p), (vh, 0)) = ah(u, vh) + b(vh, p)

=
∫

Ω

(−�u+ ∇p)·vh +
∑

F∈Fi
h

∫

F

(�∇u�·nF − �p�nF )·{{vh}}

=
∫

Ω

f ·vh,

where we have concluded using (6.34). Let now qh ∈ Ph. Owing to (6.18),

bh(u, qh) = −
∫

Ω

(∇·u)qh = 0,

since �u� = 0 for all F ∈ Fh. Moreover, owing to (6.33), sh(p, qh) = 0. As a
result, ch((u, p), (0, qh)) = −bh(u, qh)+sh(ph, qh) = 0, completing the proof.
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Remark 6.19 (Role of assumption p ∈ P∗). Property (6.34) is sufficient to infer
ch((u, p), (vh, 0)) =

∫
Ω f ·vh for all vh ∈ Uh. The fact that �ph� = 0 across all

F ∈ F i
h only serves to assert the consistency of the pressure stabilization in the

discrete mass conservation equation.

6.1.3.2 Error Estimate in the |||·|||sto-Norm

Owing to Theorem 1.35 and recalling that discrete inf-sup stability holds true
using the |||·|||sto-norm (cf. Lemma 6.13), it remains to investigate the bounded-
ness of the discrete bilinear form ch. To this purpose, we define on X∗h the norm

|||(v, q)|||2sto,∗ := |||(v, q)|||2sto +
∑

T∈Th

hT ‖∇v|T ·nT‖2
L2(∂T ) +

∑

T∈Th

hT ‖q‖2
L2(∂T ).

Recalling the definition (4.22) of the |||·|||sip,∗-norm, we observe that

|||(v, q)|||2sto,∗ =
d∑

i=1

|||vi|||2sip,∗ + ‖q‖2
P + |q|2p +

∑

T∈Th

hT ‖q‖2
L2(∂T ).

Lemma 6.20 (Boundedness). There exists Cbnd, independent of h, such that,
for all (v, q) ∈ X∗h and all (wh, rh) ∈ Xh,

ch((v, q), (wh, rh)) ≤ Cbnd|||(v, q)|||sto,∗|||(wh, rh)|||sto.

Proof. Let (v, q) ∈ X∗h and let (wh, rh) ∈ Xh. We bound the four terms in
the definition (6.24) of ch. Working componentwise, it follows from Lemma 4.16
that, up to positive factors independent of h,

ah(v,wh) �
d∑

i=1

|||vi|||sip,∗|||wh,i|||sip ≤ |||(v, 0)|||sto,∗|||(wh, 0)|||sto.

To treat bh(v, rh), we consider the expression (6.18) for bh. Letting T1 :=
− ∫Ω rh∇h·v and T2 :=

∑
F∈Fh

∫
F �v�·nF {{rh}}, we bound each term separately.

Clearly,
|T1| ≤ ‖∇hv‖[L2(Ω)]d,d‖rh‖P ≤ |||(v, 0)|||sto|||(0, rh)|||sto.

For the second term, we use the Cauchy–Schwarz inequality followed by the
discrete trace inequality (1.37) to infer

|T2| ≤
(
∑

F∈Fh

h−1
F

∫

F

|�v�|2
)1/2

×
(
∑

F∈Fh

hF

∫

F

|{{rh}}|2
)1/2

� |||(v, 0)|||sto‖rh‖L2(Ω) ≤ |||(v, 0)|||sto|||(0, rh)|||sto.

To bound bh(wh, q), we consider again the expression (6.18) for bh, and let-
ting T3 := − ∫Ω q∇h·wh and T4 :=

∑
F∈Fh

∫
F {{q}}�wh�·nF , we obtain as before
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|T3| ≤ ‖q‖L2(Ω)‖∇hwh‖[L2(Ω)]d,d ≤ |||(0, q)|||sto|||(wh, 0)|||sto, while, owing to the
Cauchy–Schwarz inequality,

|T4| ≤
(
∑

F∈Fh

hF

∫

F

|{{q}}|2
)1/2

×
(
∑

F∈Fh

h−1
F

∫

F

|�wh�|2
)1/2

≤ |||(0, q)|||sto,∗|||(wh, 0)|||sto.
Finally, we observe that sh(q, rh) ≤ |q|p|rh|p ≤ |||(0, q)|||sto|||(0, rh)|||sto.

A straightforward consequence of the above results together with Theo-
rem 1.35 is the following error estimate.

Theorem 6.21 (|||·|||sto-norm error estimate). Let (u, p) ∈ X∗ denote the unique
solution of problem (6.5). Let (uh, ph) ∈ Xh solve (6.23) with ch defined
by (6.24). Then, there is C, independent of h, such that

|||(u − uh, p− ph)|||sto ≤ C inf
(vh,qh)∈Xh

|||(u − vh, p− qh)|||sto,∗. (6.35)

To infer a convergence result from (6.35), we take (vh, qh) = (Πhu, πhp) and
observe that πhp ∈ Ph owing to (6.14). Then, assuming that the exact solution
is smooth enough, we use Lemmata 1.58 and 1.59. The resulting estimate is
optimal both for the velocity and the pressure.

Corollary 6.22 (Convergence rate in the |||·|||sto-norm). Besides the hypotheses
of Theorem 6.21, assume (u, p) ∈ [Hk+1(Ω)]d ×Hk(Ω). Then,

|||(u− uh, p− ph)|||sto ≤ Cu,ph
k,

with Cu,p = C
(‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

)
and C independent of h.

Remark 6.23 (Regularity assumption on the pressure). The regularity assump-
tion p ∈ Hk(Ω) is just what is needed to achieve the overall convergence rate
in the |||·|||sto-norm of order hk. Since polynomials of degree ≤ k are used
for the pressure, the contribution of the pressure terms to the upper bound
|||(u − Πhu, p − πhp)|||sto,∗ would be of order hk+1 if p ∈ Hk+1(Ω). In this case,
the error would be dominated by the velocity error which is still of order hk.

6.1.3.3 L2-Norm Error Estimate on the Velocity

An L2-error estimate on the velocity can be obtained using a duality argument
in the same spirit as in Sect. 4.2.4 for the Poisson problem. To apply the Aubin–
Nitsche argument [17], we need additional regularity for the solution of the Stokes
problem (see Cattabriga [82] and Amrouche and Girault [11]).

Assumption 6.24 (Cattabriga’s regularity). We assume that there is CCat,
only depending on Ω, such that, for all f ∈ [L2(Ω)]d, the solution (u, p) of the
steady Stokes problem (6.1) satisfies

‖u‖[H2(Ω)]d + ‖p‖H1(Ω) ≤ CCat‖f‖[L2(Ω)]d .
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To proceed, we extend the discrete bilinear form ah to U∗h × U∗h and the
discrete bilinear form ch to X∗h × X∗h. We can now establish the L2-norm
velocity error estimate.

Theorem 6.25 (L2-norm velocity error estimate). Besides the hypotheses of
Theorem 6.21, assume Cattabriga’s regularity. Then, there is C, independent of
h, such that

‖u− uh‖[L2(Ω)]d ≤ Ch|||(u− uh, p− ph)|||sto,∗. (6.36)

Proof. Let (ζ, ξ) ∈ X denote the solution of the steady Stokes problem (6.1)
with forcing term (u− uh) ∈ [L2(Ω)]d. Then, owing to Cattabriga’s regularity,

‖ζ‖[H2(Ω)]d + ‖ξ‖H1(Ω) ≤ CCat‖u − uh‖[L2(Ω)]d . (6.37)

Moreover, since ζ ∈ [H2(Ω) ∩ H1
0 (Ω)]d, �∇ζ�·nF = 0 across all F ∈ F i

h and
�ζ� = 0 across all F ∈ Fh, so that using the symmetry of ah together with the
expression (4.13) of asip

h yields

ah(u− uh, ζ) = ah(ζ, u − uh) =
∫

Ω

(−�ζ)·(u− uh).

Since ξ ∈ H1(Ω), �ξ� = 0 across all F ∈ F i
h, so that using the expression (6.19)

for bh yields

bh(u − uh, ξ) =
∫

Ω

(u − uh)·∇ξ.
Hence,

‖u − uh‖2
[L2(Ω)]d =

∫

Ω

(−�ζ + ∇ξ)·(u − uh) = ah(u− uh, ζ) + bh(u− uh, ξ).

Additionally, since ∇·ζ = 0 and �ζ� = 0 across all F ∈ Fh, we obtain using the
expression (6.18) for bh that

bh(ζ, p − ph) = 0,

while it is clear that sh(p− ph, ζ) = 0 since ζ ∈ H1(Ω). As a result,

‖u− uh‖2
[L2(Ω)]d = ch((u − uh, p− ph), (ζ, ξ)).

Using consistency (cf. Lemma 6.18), the boundedness of ch on X∗h ×X∗h with
respect to the |||·|||sto,∗-norm (this result can be derived by proceeding as in the
proof of Lemma 6.20), the approximation properties of Πh and πh, and the
regularity estimate (6.37), we infer, up to positive factors independent of h,

‖u− uh‖2
[L2(Ω)]d = ch((u− uh, p− ph), (ζ − Πhζ, ξ − πhξ))

� |||(u − uh, p− ph)|||sto,∗|||(ζ − Πhζ, ξ − πhξ)|||sto,∗

� h|||(u − uh, p− ph)|||sto,∗
(‖ζ‖[H2(Ω)]d + ‖ξ‖H1(Ω)

)
,

� h|||(u − uh, p− ph)|||sto,∗‖u− uh‖[L2(Ω)]d .

Simplifying by ‖u− uh‖[L2(Ω)]d yields the assertion.
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We can now infer a convergence rate for the velocity error in the L2-norm.

Corollary 6.26 (Convergence rate for velocity in L2-norm). Besides the
hypotheses of Theorem 6.25, assume (u, p) ∈ [Hk+1(Ω)]d × Hk(Ω). Then,
there holds

‖u− uh‖[L2(Ω)]d ≤ Cu,ph
k+1,

with Cu,p = C
(‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

)
and C independent of h.

Proof. The assertion results from (6.36) and the |||·|||sto,∗-norm error estimate

|||(u− uh, p − ph)|||sto,∗ ≤ Cu,ph
k. (6.38)

To prove this fact, we proceed similarly to the Poisson problem. The |||·|||sto- and
|||·|||sto,∗-norms are uniformly equivalent on Xh (cf. Lemma 4.20). Hence, discrete
inf-sup stability holds for the bilinear form ch on Xh using the |||·|||sto,∗-norm.
Since the bilinear form ch is also bounded on X∗h × X∗h with respect to the
|||·|||sto,∗-norm, we infer the error estimate

|||(u− uh, p− ph)|||sto,∗ ≤ C inf
(vh,qh)∈Xh

|||(u − vh, p− qh)|||sto,∗,

with C independent of h, whence (6.38) follows owing to the approximation
properties of Πh and πh.

6.1.4 Convergence to Minimal Regularity Solutions
In this section, we study the convergence of the sequence

(uH, pH) := ((uh, ph))h∈H,

where, for all h ∈ H, (uh, ph) solves the discrete problem (6.23), to the unique
solution (u, p) of the steady Stokes problem (6.5) using mimimal regularity on
(u, p), that is to say, (u, p) ∈ X. This result is an important building block in
the convergence study of the dG discretization of the INS equations undertaken
in Sect. 6.2.3. For conciseness of notation, subsequences are not renumbered in
what follows.

6.1.4.1 Reformulation of Diffusion Term Using Discrete Gradients

To analyze the convergence of the diffusion term, we rely on the convergence
analysis to minimal regularity solutions for the Poisson problem; cf. Sect. 5.2. In
particular, we formulate the discrete bilinear form ah using the discrete gradients
introduced in Sect. 4.3.2, namely, for all vh, wh ∈ Uh,

ah(vh, wh) =
∫

Ω

d∑

i=1

Gl
h(vh,i)·Gl

h(wh,i) + ŝh(vh, wh), (6.39)
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with l ∈ {k − 1, k} and

ŝh(vh, wh) :=
∑

F∈Fh

η

hF

∫

F

�vh�·�wh� −
∫

Ω

d∑

i=1

Rl
h(�vh,i�)·Rl

h(�wh,i�).

The expression (6.39) is equivalent to (6.15) on Uh × Uh.
Sequences of vector-valued functions in UH := (Uh)h∈H bounded in the |||·|||vel-

norm are such that all their components are bounded in the ‖·‖dG-norm. Hence,
Theorem 5.7, and in particular the weak asymptotic consistency result (5.7), can
be applied to such sequences componentwise. Additionally, the strong asymp-
totic consistency result (5.10) can be extended to vector-valued smooth func-
tions. For convenience, we collect these results in the following proposition.

Proposition 6.27 (Asymptotic consistency of discrete gradient). Let vH be a
sequence in UH bounded in the |||·|||vel-norm. Then, there exists a function v ∈ U
such that as h → 0, up to a subsequence, vh → v strongly in [L2(Ω)]d and, for
all l ≥ 0,

Gl
h(vh,i) ⇀ ∇vi weakly in [L2(Ω)]d for all i ∈ {1, . . . , d}.

Moreover, for all Φ ∈ [C∞
0 (Ω)]d, letting Φh := ΠhΦ, there holds, for all l ≥ 0,

Gl
h(Φh,i) → ∇Φi in [L2(Ω)]d for all i ∈ {1, . . . , d}.

6.1.4.2 Reformulation of Pressure-Velocity Coupling Using Discrete
Divergence

For any integer l ≥ 0, we define the discrete divergence operator

Dl
h : [H1(Th)]d → L2(Ω)

such that, for all v ∈ [H1(Th)]d with Cartesian components (vi)1≤i≤d,

Dl
h(v) :=

d∑

i=1

Gl
h(vi)·ei,

where ei denotes the ith vector of the Cartesian basis of �d. Then, using the
expression (6.18) for bh, we observe that, for all (vh, qh) ∈ Xh,

bh(vh, qh) = −
∫

Ω

qhD
k
h(vh). (6.40)

We also introduce a new discrete gradient operator

Gl
h : H1(Th) → L2(Ω)

such that, for all q ∈ H1(Th),

Gl
h(q) := ∇hq −

∑

F∈Fi
h

rl
F (�q�). (6.41)
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The only difference with respect to the discrete gradient operator Gl
h defined by

(4.44) is that boundary faces are not included in the summation on the right-
hand side of (6.41). A motivation for this modification is that there holds

∀(vh, qh) ∈ Xh,

∫

Ω

vh·Gk
h(qh) = −

∫

Ω

qhD
k
h(vh),

so that an alternative expression for bh on Xh is

bh(vh, qh) =
∫

Ω

vh·Gk
h(qh).

The discrete divergence operator enjoys asymptotic consistency properties
similar to those satisfied by the discrete gradient operator.

Proposition 6.28 (Asymptotic consistency of discrete divergence). Let vH be
a sequence in UH bounded in the |||·|||vel-norm and let v ∈ U be given by Proposi-
tion 6.27. Then, as h→ 0, for all l ≥ 0, up to a subsequence,

Dl
h(vh) ⇀ ∇·v weakly in L2(Ω).

Moreover, for all Φ ∈ [C∞
0 (Ω)]d, letting Φh := ΠhΦ, there holds, for all l ≥ 0,

Dl
h(Φh) → ∇·Φ in L2(Ω).

Finally, the modified discrete gradient operator Gl
h enjoys the same asymp-

totic consistency properties as Gl
h. Indeed, discarding the liftings on boundary

faces does not affect weak and strong asymptotic consistency since these prop-
erties are established by considering compactly supported functions in Ω. Note,
however, that the operator Gl

h cannot be used in the proof of Theorem 5.7 where
extensions to �d are considered.

6.1.4.3 Asymptotic Consistency for ch

We now prove an asymptotic consistency result for the discrete bilinear form ch
similar to the result established in Sect. 5.2.1 for the Poisson problem. Recalling
the definition (6.26) of the |||·|||sto-norm, we preliminarily observe that if the
sequence (vH, qH) in XH is bounded in the |||·|||sto-norm, the sequence vH is
bounded in the |||·|||vel-norm, and the sequence qH is bounded in the L2-norm.
Hence, there is (v, q) ∈ X such that v is given by Proposition 6.27 while qh ⇀ q
weakly in L2(Ω).

Lemma 6.29 (Asymptotic consistency for ch). Let (vH, qH) be a sequence in XH
bounded in the |||·|||sto-norm. Then, for all Φ ∈ [C∞

0 (Ω)]d and for all ϕ ∈ C∞
0 (Ω),

there holds, up to a subsequence,

lim
h→0

ch((vh, qh), (ΠhΦ, πhϕ)) = c((v, q), (Φ, ϕ)),

where Πh denotes the L2-projector onto Uh and πh the L2-projector onto �k
d(Th).
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Proof. Let Φ ∈ [C∞
0 (Ω)]d and set Φh := ΠhΦ. In particular, we obtain

ch((vh, qh), (Φh, 0)) = ah(vh,Φh) + bh(Φh, qh).

Working componentwise for the diffusion term and using Lemma 5.10, we infer

lim
h→0

ah(vh,Φh) = a(v,Φ).

Consider now the second term and observe that, using (6.40), bh(Φh, qh) =
− ∫

Ω
qhD

k
h(Φh). Owing to the weak convergence of qH to q in L2(Ω) and to

the strong convergence of (Dk
h(Φh))h∈H to ∇·Φ in L2(Ω), bh(Φh, qh) tends to

− ∫Ω q∇·Φ = b(Φ, q) as h→ 0. As a result,

lim
h→0

ch((vh, qh), (Φh, 0)) = a(v,Φ) + b(Φ, q).

Let now ϕ ∈ C∞
0 (Ω) and set ϕh := πhϕ. We obtain

ch((vh, qh), (0, ϕh)) = −bh(vh, ϕh) + sh(qh, ϕh).

Clearly, −bh(vh, ϕh) =
∫
Ω ϕhD

k
h(vh) tends to

∫
Ω ϕ(∇·v) = −b(v, ϕ) as h → 0

since (Dk
h(vh))h∈H weakly converges to ∇·v in L2(Ω) and ϕH strongly con-

verges to ϕ in L2(Ω). Finally, concerning pressure stabilization, |sh(ph, ϕh)| ≤
|ph|p|ϕh|p = |ph|p|ϕ − ϕh|p, and this upper bound tends to zero since the first
factor is bounded by assumption and the second factor tends to zero. As a result,

lim
h→0

ch((vh, qh), (0, ϕh)) = −b(v, ϕ),

which completes the proof.

6.1.4.4 Main Result

We can now state and prove the main result of this section.

Theorem 6.30 (Convergence to minimal regularity solutions). Let k ≥ 1. Let
(uH, pH) be the sequence of approximate solutions generated by solving the dis-
crete problems (6.23) on the admissible mesh sequence TH. Then, as h→ 0,

uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh|J → 0,

ph → p in L2(Ω),
|ph|p → 0,

where (u, p) ∈ X denotes the unique solution to (6.5).
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Proof. (i) A priori estimate. Owing to the inf-sup condition (6.27), the regularity
assumptions on f , and the discrete Poincaré inequality (5.6), there holds

γ|||(uh, ph)|||sto ≤ sup
(wh,rh)∈Xh\{0}

ch((uh, ph), (wh, rh))
|||(wh, rh)|||sto

= sup
(wh,rh)∈Xh\{0}

∫
Ω
f ·wh

|||(wh, rh)|||sto

≤ ‖f‖[L2(Ω)]d sup
(wh,rh)∈Xh\{0}

‖wh‖[L2(Ω)]d

|||(wh, rh)|||sto ≤ σ2‖f‖[L2(Ω)]d ,

so that the sequence (uH, pH) is bounded in the |||·|||sto-norm. Hence, there is
(u, p) ∈ X such that, up to a subsequence, as h → 0, uh → u strongly in
[L2(Ω)]d, Gl

h(uh,i) ⇀ ∇ui weakly in [L2(Ω)]d for all l ≥ 0 and all i ∈ {1, . . . , d},
and ph ⇀ p weakly in L2(Ω).
(ii) Identification of the limit and convergence of the whole sequence. Let Φ ∈
[C∞

0 (Ω)]d and let ϕ ∈ C∞
0 (Ω). Observing that

∫

Ω

f ·ΠhΦ = ch((uh, ph), (ΠhΦ, πhϕ− 〈πhϕ〉Ω)) = ch((uh, ph), (ΠhΦ, πhϕ)),

and using asymptotic consistency (cf. Lemma 6.29), we infer by passing to the
limit h→ 0 that ∫

Ω

f ·Φ = c((u, p), (Φ, ϕ)).

By density of [C∞
0 (Ω)]d ×C∞

0 (Ω) in U ×L2(Ω), this shows that (u, p) solves the
Stokes equations (6.5). Since the solution to this problem is unique, the whole
sequence (uH, pH) converges to (u, p).
(iii) Strong convergence of the velocity gradient and convergence of velocity and
pressure jumps. Using the partial coercivity (6.25) and the stability prop-
erty (5.11) for the SIP bilinear form, we infer, for l ∈ {k − 1, k},

∫

Ω

f ·uh = ch((uh, ph), (uh, ph)) = ah(uh, uh) + sh(ph, ph)

≥ ah(uh, uh) ≥
d∑

i=1

‖Gl
h(uh,i)‖2

[L2(Ω)]d .

Thus,

lim sup
h→0

d∑

i=1

‖Gl
h(uh,i)‖2

[L2(Ω)]d,d ≤ lim sup
h→0

∫

Ω

f ·uh =
∫

Ω

f ·u = ‖∇u‖2
[L2(Ω)]d,d .

Proceeding as in point (iv) of Theorem 5.12, we inferGl
h(uh,i) → ∇ui in [L2(Ω)]d

for all i ∈ {1, . . . , d} and |uh,i|J → 0 for all i ∈ {1, . . . , d}. Finally, since

|ph|2p = bh(uh, ph) =
∫

Ω

f ·uh − ah(uh, uh),
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and the right-hand side converges to
∫
Ω
f ·u − a(u, u) = 0 since b(u, p) = 0, we

conclude that |ph|p → 0.
(iv) Strong convergence of the pressure. Using Theorem 6.5, let vph

∈ U be such
that ∇·vph

= ph with βΩ‖vph
‖U ≤ ‖ph‖P and set vh := Πhvph

. Then, proceeding
as in the proof of Lemma 6.10 yields

‖ph‖2
P = −bh(vh, ph) +

∑

F∈Fi
h

∫

F

�ph�{{vph
− vh}}·nF

≤ −bh(vh, ph) + C|ph|p‖ph‖P ,

with C independent of h. Since |ph|p tends to zero and ‖ph‖P is bounded, the
second term on the right-hand side converges to zero. Let us now prove that

lim
h→0

−bh(vh, ph) = ‖p‖2
P .

We first observe that

− bh(vh, ph) = ah(uh, vh) −
∫

Ω

f ·vh = T1 + T2. (6.42)

The sequence vH is bounded in the |||·|||vel-norm since owing to Lemma 6.11,

|||vh|||vel = |||Πhvph
|||vel ≤ CΠ‖vph

‖U ≤ β−1
Ω CΠ‖ph‖P ,

and ‖ph‖P is uniformly bounded in h. Hence, there is v ∈ U such that, up to
a subsequence, vh → v strongly in [L2(Ω)]d and, for all l ≥ 0, Gl

h(vh,i) ⇀ ∇vi

weakly in [L2(Ω)]d for all i ∈ {1, . . . , d}. Moreover, (vh − vph
) → 0 strongly in

[L2(Ω)]d. Hence, for all ϕ ∈ C∞
0 (Ω), observing that

∫

Ω

vh·∇ϕ = −
∫

Ω

phϕ+
∫

Ω

(vh − vph
)·∇ϕ,

and letting h → 0, the left-hand side converges to
∫
Ω v·∇ϕ and the right-hand

side to − ∫
Ω
pϕ. These two quantities are then equal, so that ∇·v = p. Consider

now the terms T1 and T2 in (6.42). Using expression (6.39), we obtain, for
l ∈ {k − 1, k},

T1 = ah(uh, vh) =
∫

Ω

d∑

i=1

Gl
h(uh,i)·Gl

h(vh,i) + ŝh(uh, vh) = T1,1 + T1,2.

Owing to the strong convergence of (Gl
h(uh,i))h∈H to ∇ui in [L2(Ω)]d and to the

weak convergence of (Gl
h(vh,i))h∈H to ∇vi in [L2(Ω)]d, we infer

T1,1 →
∫

Ω

d∑

i=1

∇ui·∇vi =
∫

Ω

∇u:∇v.

Moreover, up to positive factors independent of h, |T1,2| � |uh|J|vh|J, which
converges to zero since the first factor converges to zero while the second factor
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is bounded. Finally, it is clear that T2 → ∫
Ω
f ·v. Collecting the above limits

leads to

lim sup
h→0

‖ph‖2
P ≤ lim

h→0
−bh(vh, ph)

=
∫

Ω

∇u:∇v −
∫

Ω

f ·v =
∫

Ω

p∇·v = ‖p‖2
P ,

classically yielding the strong convergence of the pressure in L2(Ω).

6.1.5 Formulations Without Pressure Stabilization
Fully discontinuous formulations, such as the one presented in Sect. 6.1.2, are
appealing in problems where corner singularities are present (e.g., the well-known
lid-driven cavity problem; see Ghia, Ghia, and Shin [168]), since, in this context,
discontinuous pressures are generally less prone to spurious oscillations. Using
equal-order velocity and pressure spaces, however, requires penalizing pressure
jumps across interfaces to achieve discrete stability (cf. Lemma 6.10). Such a
term introduces a tighter coupling between the discrete momentum and mass
conservation equations, since the pressure is also explicitly present in the mass
conservation equation. In practice, this can be a drawback when using classical
solution methods (such as the Uzawa method) for saddle-point problems in the
steady case or projection methods in the unsteady case (cf. Sect. 6.3).

It turns out that the pressure penalty term can be omitted in various cases
which, however, do not accommodate the same level of mesh generality as
in Sect. 6.1.2. On matching affine quadrilateral or hexahedral meshes, formu-
lations without pressure stabilization have been analyzed by Toselli [296] for
different couples of polynomial degrees for velocity and pressure. On matching
simplicial meshes with polynomials for the pressure one degree less than for the
velocity, inf-sup stability has been proven by Hansbo and Larson [183] in the
incompressible limit of two-dimensional linear elasticity and by Girault, Riv-
ière, and Wheeler [171] for the two- and three-dimensional Stokes equations in
the context of domain decomposition methods (with polynomial degree for the
velocity between 1 and 3). Still on matching simplicial meshes for d ∈ {2, 3}, a
parameter-free dG approximation using piecewise affine discrete velocities sup-
plemented by element bubble functions coupled with continuous piecewise affine
and/or piecewise constant discrete pressures has been analyzed by Burman and
Stamm [72].

A means to achieve discrete inf-sup stability on matching simplicial meshes
is to consider a discontinuous approximation of the velocity together with a
continuous approximation of the pressure. This approach constitutes the basis
for the projection method discussed in Sect. 6.3 in the unsteady case. More
precisely, let TH be an admissible sequence of matching simplicial meshes and
define

Pk
d,0(Th) :=

{
v ∈ C0(Ω), 〈v〉Ω = 0 | ∀T ∈ Th, v|T ∈ �k

d(T )
}
. (6.43)
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We consider the approximation of the Stokes problem obtained using the discrete
space Uh = [�k

d(Th)]d for the velocity and replacing the discrete space Ph by
Ph := Pk

d,0(Th) for the pressure. In this case, all terms involving the jumps of
functions in Ph vanish, so that sh(qh, rh) = 0 for all qh, rh ∈ Ph. Moreover, for
all (vh, qh) ∈ Xh := Uh × Ph,

bh(vh, qh) =
∫

Ω

vh·∇qh = −
∫

Ω

qh∇h·vh +
∑

F∈Fh

∫

F

�vh�·nF qh.

The discrete problem then reads: Find (uh, ph) ∈ Xh such that

ch((uh, ph), (vh, qh)) =
∫

Ω

f ·vh for all (vh, qh) ∈ Xh, (6.44)

where
ch((uh, ph), (vh, qh)) = ah(uh, vh) + bh(vh, ph) − bh(uh, qh).

A straightforward consequence of Lemma 6.10 is the LBB condition

∀qh ∈ Ph, β‖qh‖P ≤ sup
wh∈Uh\{0}

bh(wh, qh)
|||wh|||vel .

Therefore, the discrete problem (6.44) is well-posed. Moreover, the error esti-
mates (6.35) and (6.36) hold true, along with the convergence rates derived in
Corollaries 6.22 and 6.26 for smooth solutions.

6.2 Steady Navier–Stokes Flows
In this section, we consider steady Navier–Stokes flows. The main difference with
respect to Sect. 6.1 is the inclusion of a nonlinear term modeling the convective
transport of momentum. The discretization with dG methods of this nonlinear
term is the main focus of this section. We also account for the viscosity ν in the
momentum conservation equation. We refer to Remark 6.1 for why the viscosity
can be omitted in the context of steady Stokes flows, up to rescaling of the
pressure and the forcing term. For steady Navier–Stokes flows, the viscosity ν is
important since it quantifies the relative importance of convective and diffusive
momentum transport.

6.2.1 The Continuous Setting
Let Ω ⊂ �d, d ∈ {2, 3, 4}, be a polyhedron, let f ∈ [L2(Ω)]d be the forcing term,
and let ν > 0 be the viscosity. The discussion of this section is confined to space
dimensions up to 4 since the nonlinear term requires embeddings of functional
spaces valid for d ≤ 4. The steady INS problem reads

−ν�u+ (u·∇)u+ ∇p = f in Ω, (6.45a)
∇·u = 0 in Ω, (6.45b)
u = 0 on ∂Ω, (6.45c)

〈p〉Ω = 0. (6.45d)
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In component form, the momentum conservation equation becomes

−ν�ui +
d∑

j=1

uj∂jui + ∂ip = fi ∀i ∈ {1, . . . , d}.

Remark 6.31 (Conservative formulation). Since (u·∇)u = ∇·(u⊗u) because
∇·u = 0, the momentum conservation equation (6.45a) can be rewritten in
the conservative form

−ν�u+ ∇·(u⊗u) + ∇p = f,

or, in component form,

−ν�ui +
d∑

j=1

∂j(uiuj) + ∂ip = fi ∀i ∈ {1, . . . , d}.

In contrast, (6.45a) is said to be in nonconservative form. The conservative
formulation is further discussed in Sect. 6.2.4 in the context of dG discretizations.

6.2.1.1 Weak Formulation and Trilinear Form

The weak formulation of system (6.45) reads: Find (u, p) ∈ X such that

c((u, p), (v, q)) + t(u, u, v) =
∫

Ω

f ·v for all (v, q) ∈ X, (6.46)

where X = U × P is defined by (6.3), the bilinear form c ∈ L(X × X,�) now
accounts for the viscosity and is given by

c((u, p), (v, q)) = νa(u, v) + b(v, p) − b(u, q),

with a and b still defined by (6.4), and the trilinear form t ∈ L(U ×U ×U,�) is
such that

t(w,u, v) :=
∫

Ω

(w·∇u)·v =
∫

Ω

d∑

i,j=1

wj(∂jui)vi. (6.47)

The trilinear form is indeed bounded on U × U × U .

Lemma 6.32 (Boundedness of trilinear form). There is τΩ, only depending on
Ω, such that, for all w,u, v ∈ U ,

t(w,u, v) ≤ τΩ‖w‖U‖u‖U‖v‖U . (6.48)

Proof. We use the Sobolev embedding of H1
0 (Ω) into L4(Ω) (valid in space

dimension up to 4) stating that there is C(2,4) such that, for all ψ ∈ H1
0 (Ω),

‖ψ‖L4(Ω) ≤ C(2,4)‖∇ψ‖[L2(Ω)]d so that, for all v ∈ U , ‖v‖[L4(Ω)]d = (
∫
Ω
|v|4�4)1/4 ≤

C(2,4)‖∇v‖[L2(Ω)]d,d . Using Hölder’s inequality, we then infer, for all w,u, v ∈ U ,

t(w,u, v) ≤ d
1/2‖w‖[L4(Ω)]d‖∇u‖[L2(Ω)]d,d‖v‖[L4(Ω)]d

≤ d
1/2C2

(2,4)‖∇w‖[L2(Ω)]d,d‖∇u‖[L2(Ω)]d,d‖∇v‖[L2(Ω)]d,d ,

whence the conclusion with τΩ := d1/2C2
(2,4).
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An important property of the trilinear form t defined by (6.47) is
skew-symmetry with respect to the last two arguments whenever the first
argument is divergence-free and has zero normal component on the boundary.
For simplicity, we consider that the three arguments of the trilinear form are
in U .

Lemma 6.33 (Skew-symmetry of trilinear form). For all w ∈ U , there holds

∀v ∈ U, t(w, v, v) = −1
2

∫

Ω

(∇·w)|v|2. (6.49)

Moreover, if w ∈ V := {v ∈ U | ∇·v = 0},
∀v ∈ U, t(w, v, v) = 0. (6.50)

Proof. Let w ∈ U . We observe that, for all v ∈ U ,

t(w, v, v) +
1
2

∫

Ω

(∇·w)|v|2 =
∫

Ω

1
2
w·∇|v|2 +

1
2

∫

Ω

(∇·w)|v|2 =
∫

Ω

1
2
∇·(w|v|2),

so that the divergence theorem yields

t(w, v, v) +
1
2

∫

Ω

(∇·w)|v|2 =
1
2

∫

∂Ω

(w·n)|v|2 = 0,

since (w·n) vanishes on ∂Ω. This proves (6.49), and (6.50) is a direct consequence
of (6.49).

A crucial consequence of Lemma 6.33 is that, using (v, q) = (u, p) as a test
function in (6.46) and since u is divergence-free, we obtain, up to the viscosity
scaling, the same energy balance as for steady Stokes flows, namely

ν‖∇u‖2
[L2(Ω)]d,d =

∫

Ω

f ·u.

In other words, convection does not influence energy balance. More gener-
ally, combining the U -coercivity (6.6) of the bilinear form a with the skew-
symmetry (6.50) of the trilinear form t leads to the following result.

Lemma 6.34 (Dissipativity). There holds, for all w ∈ V ,

∀v ∈ U, νa(v, v) + t(w, v, v) ≥ ναΩ‖v‖2
U , (6.51)

where αΩ denotes the coercivity parameter of the bilinear form a.

The last ingredient in the analysis of the continuous setting is the following
weak sequential continuity of the trilinear form t (see Girault and Raviart [170,
p. 115]).

Lemma 6.35 (Weak sequential continuity). Let (vm)m∈� be a sequence in V
bounded in the ‖·‖U -norm, so that there is v ∈ V such that, up to a subsequence,
as m → ∞, ∇vm ⇀ ∇v weakly in [L2(Ω)]d,d and vm → v in [L2(Ω)]d. Then,
for all Φ ∈ [C∞

0 (Ω)]d, there holds

lim
m→∞

t(vm, vm,Φ) = t(v, v,Φ).
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6.2.1.2 Existence and Uniqueness

We now address the existence and uniqueness of the solution to (6.46).

Theorem 6.36 (Existence and uniqueness). There exists at least one (u, p) ∈ X
solving (6.46). Moreover, under the smallness condition on the data

τΩ‖f‖U ′ < (ναΩ)2, (6.52)

the solution is unique.

Proof. For an existence proof, we refer the reader to Girault and Raviart [170,
Theorem 2.4] (cf. also Remark 6.48); the proof uses Lemmata 6.32, 6.33,
and 6.35. We sketch the uniqueness proof which is based on a fixed point argu-
ment; see [170, Theorem 2.5]. As for the linear Stokes equations (cf. Remark 6.9),
the pressure can be eliminated by incorporating the zero-divergence constraint
in an essential way, that is, using the space V = {v ∈ U | ∇·v = 0} for the
velocity. Indeed, if the couple (u, p) ∈ X solves (6.46), then the velocity u solves
the problem

Find u ∈ V s.t. νa(u, v) + t(u, u, v) =
∫

Ω

f ·v for all v ∈ V . (6.53)

For all w ∈ V , we consider the bounded linear operator A(w) ∈ L(V, V ′) such
that, for all u, v ∈ V ,

〈A(w)u, v〉V ′,V = νa(u, v) + t(w,u, v).

Owing to (6.51),

∀v ∈ V, 〈A(w)v, v〉V ′,V ≥ ναΩ‖v‖2
U .

Hence, A(w) is an isomorphism mapping V onto V ′ for all w ∈ V . Its inverse,
say S(w), belongs to L(V ′, V ) and satisfies

∀w ∈ V, ‖S(w)‖L(V ′,V ) ≤ (ναΩ)−1. (6.54)

Moreover, problem (6.53) can be reformulated as

Find u ∈ V such that u = S(u)f in V .

Let us prove that, under the smallness condition (6.52), the map V � w �→
S(w)f ∈ V is a strict contraction. Let w1, w2 ∈ V . Observing that S(w1) −
S(w2) = S(w1)[A(w2) −A(w1)]S(w2) and using the bound (6.54), we obtain

‖S(w1) − S(w2)‖L(V ′,V ) ≤ (ναΩ)−2‖A(w2) − A(w1)‖L(V,V ′)‖f‖U ′

≤ τΩ‖f‖U ′(ναΩ)−2‖w1 − w2‖U

< ‖w1 − w2‖U ,
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since owing to (6.48) and the trilinearity of t, we infer

‖A(w2) −A(w1)‖L(V,V ′) = sup
u,v∈V \{0}

〈(A(w2) − A(w1))u, v〉V ′,V

‖u‖U‖v‖U

= sup
u,v∈V \{0}

t(w2 − w1, u, v)
‖u‖U‖v‖U

≤ τΩ‖w1 − w2‖U .

This proves the strict contraction property. Hence, owing to Banach’s Fixed
Point Theorem, there is a unique u ∈ V such that u = S(u)f , and, hence, there
is a unique u ∈ V solving (6.53). Finally, the existence and uniqueness of the
pressure p ∈ P is obtained as for the linear Stokes equations.

Remark 6.37 (Interpretation of condition (6.52)). At fixed viscosity ν, condi-
tion (6.52) means that the forcing term f must be small enough. Alternatively,
at fixed f , condition (6.52) means that the viscosity ν must be large enough (so
that sufficient energy is dissipated by the flow).

6.2.2 The Discrete Setting
In this section, we derive a dG discretization of the INS equations (6.46). For
the Stokes part (resulting from the bilinear form c), we follow the approach
of Sect. 6.1.2 and consider equal-order discontinuous velocities and pressures.
Alternative dG methods to approximate the INS equations have been explored
by Karakashian and Jureidini [206], Girault, Rivière, and Wheeler [171], and
Cockburn, Kanschat, and Schötzau [102–104].

Let TH denote an admissible mesh sequence and let k ≥ 1 be an integer. We
consider the discrete spaces (cf. (6.13))

Uh := [�k
d(Th)]d, Ph := �k

d,0(Th), Xh := Uh × Ph.

Our first goal is to derive a discrete trilinear form th that satisfies suitable discrete
counterparts of Lemmata 6.32, 6.33, and 6.35. Then, we prove the existence of
a solution to the discrete INS equations, as well as uniqueness under a smallness
assumption on the data. The material in this section is restricted to d ≤ 3;
cf. Remark 6.46.

6.2.2.1 Temam’s Modification of the Trilinear Form t

When working with dG approximations, the convective velocity is generally not
divergence-free (but only weakly divergence-free), so that the important prop-
erty (6.50) is generally not satisfied. Following Temam [291,292], a possible way
to circumvent this difficulty is to modify the trilinear form t and to consider
instead, for all w,u, v ∈ U ,

t′(w,u, v) = t(w,u, v) +
1
2

∫

Ω

(∇·w)u·v =
∫

Ω

(w·∇u)·v +
1
2

∫

Ω

(∇·w)u·v. (6.55)

The following result is then a straightforward consequence of (6.49).
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Lemma 6.38 (Skew-symmetry of modified trilinear form). For all w ∈ U , there
holds

∀v ∈ U, t′(w, v, v) = 0. (6.56)

Moreover, (u, p) ∈ X solves (6.46) if and only if (u, p) ∈ X is such that

c((u, p), (v, q)) + t′(u, u, v) =
∫

Ω

f ·v for all (v, q) ∈ X.

6.2.2.2 Discrete Trilinear Form

We start with Temam’s modification of the trilinear form t. Specifically, we
consider broken differential operators in the trilinear form t′ defined by (6.55)
and set, for all wh, uh, vh ∈ Uh,

t
(0)
h (wh, uh, vh) :=

∫

Ω

(wh·∇huh)·vh +
1
2

∫

Ω

(∇h·wh)uh·vh.

Our first goal is to derive a discrete counterpart of (6.56). For all wh, vh ∈ Uh,
integrating by parts elementwise and proceeding as usual, we obtain

t
(0)
h (wh, vh, vh) =

1
2

∑

F∈Fh

∫

F

�wh�·nF {{vh·vh}} +
∑

F∈Fi
h

∫

F

{{wh}}·nF �vh�·{{vh}}.

Since the right-hand side of the above equation is nonzero, we modify t(0)h as

th(wh, uh, vh) :=
∫

Ω

(wh·∇huh)·vh −
∑

F∈Fi
h

∫

F

{{wh}}·nF �uh�·{{vh}}

+
1
2

∫

Ω

(∇h·wh)(uh·vh) − 1
2

∑

F∈Fh

∫

F

�wh�·nF {{uh·vh}}. (6.57)

This choice, which incorporates Temam’s modification at the discrete level, pos-
sesses the following important property which is the discrete counterpart of
Lemma 6.33.

Lemma 6.39 (Skew-symmetry of discrete trilinear form). For all wh ∈ Uh,
there holds

∀vh ∈ Uh, th(wh, vh, vh) = 0. (6.58)

We now address the boundedness of the discrete trilinear form th on Uh×Uh×
Uh. Recall that the discrete velocity space Uh is equipped with the |||·|||vel-norm
defined by (6.16). The following result is the discrete counterpart of Lemma 6.32.

Lemma 6.40 (Boundedness of discrete trilinear form). There is τ , independent
of h, such that, for all wh, uh, vh ∈ Uh, there holds

th(wh, uh, vh) ≤ τ |||wh|||vel|||uh|||vel|||vh|||vel.
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Proof. Let Ti, i ∈ {1, . . . , 4} denote the terms on the right-hand side of (6.57).
For the first term, Hölder’s inequality yields

|T1| ≤ d
1/2‖wh‖[L4(Ω)]d‖∇huh‖[L2(Ω)]d,d‖vh‖[L4(Ω)]d .

Moreover, applying componentwise the discrete Sobolev embedding of Theo-
rem 5.3 for p = 2 and q = 4 (valid for d ≤ 4), we infer

∀vh ∈ Uh, ‖vh‖[L4(Ω)]d ≤ σ2,4|||vh|||vel. (6.59)

As a result,
|T1| ≤ d

1/2σ2
2,4|||wh|||vel|||uh|||vel|||vh|||vel.

The third term can be bounded in a similar way. To estimate the second term,
we use again Hölder’s inequality to infer

|T2| ≤ d

⎛

⎝
∑

F∈Fi
h

hF

∫

F

|{{wh}}|4
⎞

⎠

1/4

|uh|J
⎛

⎝
∑

F∈Fi
h

hF

∫

F

|{{vh}}|4
⎞

⎠

1/4

.

Using the bound (a + b)4 ≤ 8(a4 + b4) for real numbers a and b, together with
the discrete trace inequality (1.44) with p = 4, we infer

∑

F∈Fi
h

hF

∫

F

|{{wh}}|4 ≤
∑

F∈Fi
h

1
2
hF

(
‖wh|T1‖4

[L4(F )]d + ‖wh|T2‖4
[L4(F )]d

)

≤ 1
2
N∂C

4
tr,4‖wh‖4

[L4(Ω)]d ,

where, for all F ∈ F i
h, we employed the usual notation F = ∂T1 ∩∂T2. Proceed-

ing similarly for the factor involving vh, we arrive at the bound

|T2| ≤ 2−1/2dN
1/2

∂ C2
tr,4‖wh‖[L4(Ω)]d |uh|J‖vh‖[L4(Ω)]d ,

so that, using again the discrete Sobolev embedding (6.59), we infer

|T2| ≤ 2−1/2dN
1/2

∂ C2
tr,4σ

2
2,4|||wh|||vel|||uh|||vel|||vh|||vel.

Finally, the fourth term can be bounded in a similar way.

6.2.2.3 Discrete Problem

Let ah and bh be the discrete bilinear forms considered for the linear Stokes
equations, cf. (6.15) for ah and (6.18) or, equivalently, (6.19) for bh. Let th be
the discrete trilinear form defined by (6.57). The discrete INS problem reads:
Find (uh, ph) ∈ Xh such that

νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) =
∫

Ω

f ·vh ∀vh ∈ Uh, (6.60a)

−bh(uh, qh) + ν−1sh(ph, qh) = 0 ∀qh ∈ Ph, (6.60b)
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or, equivalently, such that

ch((uh, ph), (vh, qh)) + th(uh, uh, vh) =
∫

Ω

f ·vh ∀(vh, qh) ∈ Xh, (6.61)

with

ch((uh, ph), (vh, qh)) := νah(uh, vh) + bh(vh, ph) − bh(uh, qh) + ν−1sh(ph, qh).

We observe that both the diffusion and pressure stabilization terms differ from
the case of the linear Stokes equations, cf. (6.24), since the former is scaled by
the viscosity and the latter by the reciprocal of the viscosity.

Recalling (6.17), let α > 0 denote the coercivity parameter of the discrete
bilinear form ah such that

∀vh ∈ Uh, ah(vh, vh) ≥ α|||vh|||2vel.

This leads to partial coercivity for the discrete bilinear form ch in the form

∀(vh, qh) ∈ Xh, ch((vh, qh), (vh, qh)) ≥ να|||vh|||2vel + ν−1|qh|2p. (6.62)

Moreover, we define the |||·|||ns-norm as

|||(vh, qh)|||ns :=
(
ν|||vh|||2vel + ‖qh‖2

P + ν−1|qh|2p
)1/2

.

It is straightforward to verify, as in the proof of Lemma 6.13, the following
discrete inf-sup condition: There is γ > 0, independent of h and of the viscosity
ν, such that, for all (vh, qh) ∈ Xh,

γ|||(vh, qh)|||ns ≤ sup
(wh,rh)∈Xh\{0}

ch((vh, qh), (wh, rh))
|||(wh, rh)|||ns

. (6.63)

We observe that the fact that γ is independent of ν results from the scaling
used in the pressure stabilization. Finally, owing to Lemma 6.39, the discrete
counterpart of Lemma 6.34 is the following: For all wh ∈ Uh,

∀vh ∈ Uh, νah(vh, vh) + th(wh, vh, vh) ≥ να|||vh|||2vel.

6.2.2.4 Existence and Uniqueness

Our first step is to derive an a priori estimate on the solution.

Lemma 6.41 (A priori estimate). If the couple (uh, ph) ∈ Xh solves (6.61),
then

γ|||(uh, ph)|||ns ≤ σ2‖f‖[L2(Ω)]d + τ(να)−2
(
σ2‖f‖[L2(Ω)]d

)2
, (6.64)

where σ2 results from the discrete Poincaré inequality (5.6).
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Proof. Using (uh, ph) as test function in (6.61), we infer from (6.62) and the
discrete Poincaré inequality (5.6) applied componentwise that

να|||uh|||2vel + ν−1|ph|2p ≤
∫

Ω

f ·uh ≤ ‖f‖[L2(Ω)]d‖uh‖[L2(Ω)]d

≤ σ2‖f‖[L2(Ω)]d |||uh|||vel. (6.65)

Hence, owing to (6.63) and Lemma 6.40,

γ|||(uh, ph)|||ns ≤ sup
(wh,rh)∈Xh\{0}

ch((uh, ph), (wh, rh))
|||(wh, rh)|||ns

= sup
(wh,rh)∈Xh\{0}

∫
Ω f ·wh − th(uh, uh, wh)

|||(wh, rh)|||ns

≤ σ2‖f‖[L2(Ω)]d + τ |||uh|||2vel.

The a priori estimate then results from (6.65).

To prove the existence of a solution to the discrete problem (6.61), we use the
a priori estimate of Lemma 6.41 together with a topological degree argument.
We refer the reader to Eymard, Gallouët, Ghilani, and Herbin [155] or Eymard,
Herbin, and Latché [160] for the use of this argument in the convergence analysis
of finite volume schemes and to Deimling [122] for a general presentation.

Lemma 6.42 (Topological degree argument). Let V be a finite-dimensional
space equipped with a norm ‖·‖V . Let M > 0 and let Ψ : V × [0, 1] → V satisfy
the following assumptions:

(i) Ψ is continuous.

(ii) Ψ(·, 0) is an affine function and the equation Ψ(v, 0) = 0 has a solution
v ∈ V such that ‖v‖V < M .

(iii) For any (v, ρ) ∈ V × [0, 1], Ψ(v, ρ) = 0 implies ‖v‖V < M .

Then, there exists v ∈ V such that Ψ(v, 1) = 0 and ‖v‖V < M .

Theorem 6.43 (Existence and uniqueness). There exists at least one (uh, ph) ∈
Xh solving (6.61). Moreover, under the smallness condition

τ‖f‖[L2(Ω)]d < (να)2, (6.66)

the solution is unique.

Proof. To prove existence, we verify conditions (i), (ii), and (iii) in Lemma 6.42.
Let V = Xh be equipped with the |||·|||ns-norm and define the mapping

Ψ : Xh × [0, 1] → Xh
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such that, for (uh, ph) given inXh and ρ given in [0, 1], (ξh, ζh) := Ψ((uh, ph), ρ) ∈
Xh is such that, for all (vh, qh) ∈ Xh,

(ξh, vh)[L2(Ω)]d = ch((uh, ph), (vh, 0)) + ρth(uh, uh, vh) −
∫

Ω

f ·vh,

(ζh, qh)L2(Ω) = ch((uh, ph), (0, qh)).

Observing that ch is bounded on Xh ×Xh for the |||·|||ns-norm, using the bound-
edness of th (cf. Lemma 6.40) and the equivalence of norms in finite dimension,
we infer that Ψ is continuous (condition (i)). Moreover, it is clear that Ψ(·, 0)
is an affine function since the nonlinear term disappears for ρ = 0. Moreover,
Ψ(xh, 0) = 0 means that xh = (vh, qh) ∈ Xh solves the discrete Stokes equations.
Hence, the equation Ψ(xh, 0) = 0 has a solution in Xh which satisfies the a priori
estimate

γ|||xh|||ns ≤ σ2‖f‖[L2(Ω)]d .

Thus, condition (ii) is satisfied for any real number M such that

γM > σ2‖f‖[L2(Ω)]d .

In addition, condition (iii) is satisfied, owing to Lemma 6.41, if we choose M
such that

γM > σ2‖f‖[L2(Ω)]d + τ(να)−2
(
σ2‖f‖[L2(Ω)]d

)2
.

As a result, there exists xh ∈ Xh such that Ψ(xh, 1) = 0, which means that
xh solves (6.61). Finally, the proof of uniqueness under the smallness condi-
tion (6.66) is similar to the proof of uniqueness in the continuous case (cf. The-
orem 6.36).

6.2.3 Convergence Analysis
In this section, we investigate the convergence of the sequence (uH, pH) of solu-
tions to the discrete problem (6.61) on the admissible mesh sequence TH to a
solution (u, p) of the INS equations (6.46).

6.2.3.1 Asymptotic Consistency of Discrete Trilinear Form

As for the Poisson problem (cf. Sect. 5.2) and the linear Stokes equations
(cf. Sect. 6.1.4), an instrumental ingredient in the convergence analysis is the
asymptotic consistency of the discrete trilinear form th. To this purpose, we
record the following equivalent expression of th in terms of discrete gradients
and discrete divergence. We observe that the polynomial degree used for the
discrete gradients and divergence is 2k owing to the nonlinearities.

Lemma 6.44 (Reformulation of discrete trilinear form). There holds, for all
wh, uh, vh ∈ Uh,
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th(wh, uh, vh) =
∫

Ω

d∑

i=1

wh·G2k
h (uh,i)vh,i +

1
2

∫

Ω

D2k
h (wh)uh·vh

+
1
4

∑

F∈Fi
h

∫

F

�wh�·nF �uh�·�vh�. (6.67)

Proof. We start with the expression (6.57) and observe that
∫

Ω

(∇h·wh)(uh·vh) −
∑

F∈Fh

∫

F

�wh�·nF {{uh·vh}} =
∫

Ω

D2k
h (wh)uh·vh,

and that

∫

Ω

(wh·∇huh)·vh −
∑

F∈Fi
h

∫

F

{{wh}}·nF �uh�·{{vh}} =
∫

Ω

d∑

i=1

wh·G2k
h (uh,i)vh,i

−
∑

F∈Fi
h

∫

F

d∑

i=1

�uh,i� ({{vh,i}}{{wh}}·nF − {{vh,iwh}}·nF ) .

The conclusion follows from {{vh,i}}{{wh}} − {{vh,iwh}} = − 1
4�vh,i��wh�.

We now turn to the asymptotic consistency of the discrete trilinear form th.
This property is the discrete counterpart of Lemma 6.35.

Lemma 6.45 (Asymptotic consistency for th). Let vH be a sequence in UH
bounded in the |||·|||vel-norm and let v ∈ U be given by Proposition 6.27. Then,
for all Φ ∈ [C∞

0 (Ω)]d, there holds, up to a subsequence,

lim
h→0

th(vh, vh,ΠhΦ) = t′(v, v,Φ),

where Πh denotes the L2-projector onto Uh.

Proof. Let Φ ∈ [C∞
0 (Ω)]d and set Φh = ΠhΦ. Owing to (6.67),

th(vh, vh,Φh) =
∫

Ω

d∑

i=1

vh·G2k
h (vh,i)Φh,i +

1
2

∫

Ω

D2k
h (vh)vh·Φh

+
1
4

∑

F∈Fi
h

∫

F

�vh�·nF �vh�·�Φh� := T1 + T2 + T3.

Owing to Theorem 5.6, the sequences vH and ΦH are relatively compact in
[L4(Ω)]d (since d ≤ 3), and these sequences converge (up to a subsequence) in
[L4(Ω)]d to v and Φ respectively. As a result, for all i ∈ {1, . . . , d}, the sequence
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(vhΦh,i)h∈H converges in [L2(Ω)]d to vΦi. In addition, (G2k
h (vh,i))h∈H weakly

converges to ∇vi in [L2(Ω)]d. As a result,

lim
h→0

T1 =
∫

Ω

(v·∇v)·Φ.

Similarly,

lim
h→0

T2 =
1
2

∫

Ω

(∇·v)(v·Φ).

Finally, using Hölder’s inequality, together with the inverse inequality (1.43) to
control the ‖·‖L4(F )-norm by the ‖·‖L2(F )-norm, we infer, up to a positive factor
independent of h,

|T3| � h
(4−d)/2|vh|2J|Φh|J = h

(4−d)/2|vh|2J|Φh − Φ|J,

so that T3 → 0 since |vh|J is bounded, while the first and last factors on the
right-hand side converge to zero. This concludes the proof.

Remark 6.46 (Assumption d ≤ 3). The assumption d ≤ 3 is used in the above
proof to assert the relative compactness of the sequences vH and ΦH in [L4(Ω)]d.
Since the modified discrete gradients only weakly converge, asserting the bound-
edness of these sequences is not sufficient to pass to the limit in the nonlinear
terms.

6.2.3.2 Main Result

We can now state and prove our main convergence result.

Theorem 6.47 (Convergence). Let (uH, pH) be a sequence of approximate solu-
tions generated by solving the discrete problems (6.61) on the admissible mesh
sequence TH. Then, as h→ 0, up to a subsequence,

uh → u in [L2(Ω)]d,

∇huh → ∇u in [L2(Ω)]d,d,

|uh|J → 0,

ph → p in L2(Ω),
|ph|p → 0,

where (u, p) ∈ X is a solution of (6.46). Moreover, under the smallness condi-
tion (6.66), the whole sequence converges to the unique solution of (6.46).

Remark 6.48 (Alternative existence proof). We incidentally observe that the
existence result stated in Theorem 6.36 in the continuous setting can also be
inferred from the convergence result stated in Theorem 6.47 in the context of
dG approximations (at least for d ≤ 3).
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Proof. (i) Existence of a limit. Owing to the a priori estimate (6.64), we infer
that there is (u, p) ∈ X such that, up to a subsequence, uh → u strongly in
[L2(Ω)]d, Gl

h(uh,i) ⇀ ∇ui weakly in [L2(Ω)]d for all l ≥ 0 and all i ∈ {1, . . . , d},
and ph ⇀ p weakly in L2(Ω).
(ii) Identification of the limit. Using Lemma 6.45 and treating the linear part as
for the Stokes equations, we infer that, for all Φ ∈ [C∞

0 (Ω)]d,

νa(u,Φ) + t′(u, u,Φ) − b(Φ, p) =
∫

Ω

f ·Φ,

and that, for all ϕ ∈ C∞
0 (Ω),

∫
Ω
ϕ∇·u = 0. Hence, (u, p) solves (6.46).

(iii) Strong convergence of the velocity gradient and of the velocity and pres-
sure jumps. Proceeding as for the linear Stokes equations and using the skew-
symmetry of th (cf. Lemma 6.39) yields the strong convergence of the broken
gradient of each velocity component in [L2(Ω)]d as well as the convergence to
zero of the jump seminorms |uh|J and |ph|p.
(v) Strong convergence of the pressure. To prove the strong convergence of the
pressure, we use, as for the linear Stokes equations, the velocity lifting of ph pro-
vided by Theorem 6.5, say vph

∈ U such that ∇·vph
= ph and set vh := Πhvph

.
We recall that the sequence vH is bounded in the |||·|||vel-norm so that there is
v ∈ U given by Proposition 6.27. Then, to assert the strong convergence of the
pressure, it suffices to show that limh→0 bh(vh, ph) = −‖p‖2

P . We obtain

bh(vh, ph) = νah(uh, vh) + th(uh, uh, vh) −
∫

Ω

f ·vh = T1 + T2 + T3.

Clearly,

lim
h→0

(T1 + T3) = νa(u, v) −
∫

Ω

f ·v.

Moreover, owing to Lemma 6.49 below,

lim
h→0

th(uh, uh, vh) = t′(u, u, v).

As a result,

lim
h→0

−bh(vh, ph) = νa(u, v) + t′(u, u, v) −
∫

Ω

f ·v = −b(v, p) =
∫

Ω

p∇·v = ‖p‖2
P .

(v) Finally, under the smallness condition (6.66), the exact solution is unique
owing to Theorem 6.43, so that the whole sequence (uH, pH) converges.

Lemma 6.49 (Asymptotic consistency for th). Let uH be a sequence in UH
such that, for all l ≥ 0 and all i ∈ {1, . . . , d}, Gl

h(uh,i) → ∇ui in [L2(Ω)]d and
|uh|J → 0. Let vH be another sequence in Uh, bounded in the |||·|||vel-norm. Then,
as h→ 0, up to a subsequence,

lim
h→0

th(uh, uh, vh) → t′(u, u, v),

where v ∈ U is given by Proposition 6.27.
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Proof. The proof is similar to that of Lemma 6.45. Owing to (6.67),

th(uh, uh, vh) =
∫

Ω

d∑

i=1

uh·G2k
h (uh,i) vh,i +

1
2

∫

Ω

D2k
h (uh)uh·vh

+
1
4

∑

F∈Fi
h

∫

F

�uh�·nF �uh�·�vh� := T1 + T2 + T3.

Proceeding as above yields

lim
h→0

(T1 + T2) = t′(u, u, v).

Moreover, proceeding as in the proof of Lemma 6.45, we infer

|T3| � h
(4−d)/2|uh|2J|vh|J,

so that T3 → 0 since the first two factors on the right-hand side tend to zero,
while the last factor is bounded.

To sum up, we observe that the general design conditions to be fulfilled
by the discrete trilinear form th are Lemma 6.39 (skew-symmetry), Lemma 6.40
(boundedness), and Lemmata 6.45 and 6.49 (asymptotic consistency). Moreover,
the skew-symmetry property (6.58) can be generalized to the requirement that
th be non-dissipative, namely that, for all wh ∈ Uh, there holds

∀vh ∈ Uh, th(wh, vh, vh) ≥ 0. (6.68)

Such a property is indeed sufficient to derive all the necessary a priori estimates
and prove the convergence result of Theorem 6.47. An example of modification
of the discrete trilinear form th leading to (6.68) is the use of upwinding terms
by adding to th a term of the form

∑

F∈Fi
h

1
2

∫

F

|{{wh}}·nF |�uh�·�vh�.

6.2.4 A Conservative Formulation
Recalling Remark 6.31, the momentum conservation equation (6.45a) can be
rewritten in the conservative form

−ν�u+ ∇·(u⊗u) + ∇p = f.

This section briefly discusses this approach both in the continuous and discrete
settings.
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6.2.4.1 The Continuous Setting

In conservative form, the weak formulation (6.46) can be equivalently reformu-
lated as follows: Find (u, p) ∈ X such that

c((u, p), (v, q)) + t̃(u, u, v) =
∫

Ω

f ·v for all (v, q) ∈ X,

with the trilinear form t̃ ∈ L(U × U × U,�) such that

t̃(w,u, v) := −
∫

Ω

(w⊗u):∇v = −
∫

Ω

d∑

i,j=1

wiuj∂jvi.

Indeed, testing with (0, q), both formulations yield that u is divergence-free,
while testing with (v, 0), we obtain

νa(u, v) + b(v, p) + t̃(u, u, v) = νa(u, v) + b(v, p) + t(u, u, v),

since, for divergence-free u,

t̃(u, u, v) = −
∫

Ω

(u⊗u):∇v =
∫

Ω

(∇·(u⊗u))·v =
∫

Ω

(u·∇u)·v = t(u, u, v).

For the modified trilinear form t̃, the counterpart of the skew-symmetry prop-
erty (6.50) is less general since it requires to use the three same arguments in t̃,
namely

∀v ∈ U, t̃(v, v, v) =
1
2

∫

Ω

(∇·v)|v|2,

so that
∀v ∈ V, t̃(v, v, v) = 0. (6.69)

When working with convective velocities that are not divergence-free, a possible
modification of the trilinear form t̃ is to consider, for all w,u, v ∈ U ,

t̃′(w,u, v) = t̃(w,u, v) − 1
2

∫

Ω

(w·u)∇·v

= −
∫

Ω

(w⊗u):∇v − 1
2

∫

Ω

(w·u)∇·v,

so that
∀v ∈ U, t̃′(v, v, v) = 0.

Finally, (u, p) ∈ X solves (6.46) if and only if (u, p̃ := p− 1
2 |u|2) is such that

c((u, p̃), (v, q)) + t̃′(u, u, v) =
∫

Ω

f ·v for all (v, q) ∈ X.

Note that the kinetic energy 1
2 |u|2 is subtracted from, and not added to, the pres-

sure p, so that the modified pressure p̃ differs from the Bernoulli pressure. Testing
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with (0, q), both formulations yield that u is divergence-free, while testing with
(v, 0), we obtain

νa(u, v) + b(v, p̃) + t̃′(u, u, v) = νa(u, v) + b(v, p) +
1
2

∫

Ω

|u|2∇·v + t̃′(u, u, v)

= νa(u, v) + b(v, p) + t̃(u, u, v).

This approach based on the modified trilinear form t̃′ and the corresponding
pressure modification has been hinted to by Cockburn, Kanschat, and Schötzau
[102] and has been further investigated by the authors [131].

6.2.4.2 The Discrete Setting

In the context of dG methods, the main advantage of the above approach is to
yield a locally conservative formulation, while ensuring the discrete counterpart
of property (6.69). The discrete counterpart of the modified triliner form t̃′ can
be designed by setting for all wh, uh, vh ∈ Uh (see [131]),

t̃h(wh, uh, vh) = −
∫

Ω

(wh⊗uh):∇hvh +
∑

F∈Fi
h

∫

F

{{uh}}·nF {{wh}}·�vh�

− 1
2

∫

Ω

(wh·uh)∇h·vh +
1
2

∑

F∈Fh

∫

F

{{wh·uh}}�vh�·nF ,

or, equivalently,

t̃h(wh, uh, vh) = −
∫

Ω

d∑

i=1

wh,iuh·G2k
h (vh,i) − 1

2

∫

Ω

(wh·uh)D2k
h (vh)

− 1
4

∑

F∈Fi
h

∫

F

�uh�·nF �wh�·�vh�.

It is readily seen that the discrete trilinear form satisfies Lemma 6.40 (bounded-
ness), and Lemmata 6.45 and 6.49 (asymptotic consistency). As in the continu-
ous case, skew-symmetry requires to use the three same arguments, namely,

∀vh ∈ Uh, t̃h(vh, vh, vh) = 0. (6.70)

This property is sufficient to derive all the necessary a priori estimates and
prove the convergence result of Theorem 6.47, but this property is not sufficient
to prove uniqueness for the continuous problem. Moreover, the fact that the
three same arguments must be used in (6.70) indicates (as reflected by numer-
ical experiments) weaker stability than with the use of Temam’s modification.
Another potential drawback is that, loosely speaking, the modification of the
pressure with the kinetic energy adds high frequencies to the pressure field.



6.3. The Unsteady Case 283

Yet, using t̃h offers one attractive feature, namely that the discrete problem is
locally conservative. Let T ∈ Th and let ξ ∈ [�k

d(T )]d with Cartesian components
(ξi)1≤i≤d. Then, the local formulation of the discrete momentum conservation
equation takes the form

∫

T

d∑

i=1

νGl
h(uh,i)·∇ξi −

∫

T

(uh⊗uh):∇ξ −
∫

T

(
p̃h + 1

2 |uh|2
)∇·ξ

+
∑

F∈FT

εT,F

∫

F

[
νφdiff

F (uh) + φconv
F (uh) + φgrad

F (ph)
]
·ξ =

∫

T

f ·ξ,

where the fluxes φgrad
F (ph) and φdiff

F (uh) are defined by (6.28) and (6.30), respec-
tively, εT,F = nT ·nF , and where the convective flux φconv

F (uh) is defined as

φconv
F (uh) :=

{
{{uh}}·nF {{uh}} + 1

2{{|uh|2}}nF if F ∈ F i
h,

1
2 |uh|2n if F ∈ Fb

h.

Similarly, letting ζ ∈ �k
d(T ), the local formulation of the discrete mass conser-

vation equation takes the form

−
∫

T

uh·∇ζ +
∑

F∈FT

εT,F

∫

F

φdiv
F (uh, ph)ζ = 0,

with the fluxes

φdiv
F (uh, ph) :=

{
{{uh}}·nF + ν−1hF �ph� if F ∈ F i

h,

0 if F ∈ Fb
h.

6.3 The Unsteady Case
In this section, we present a pressure-correction algorithm for the unsteady
INS equations discretized using discontinuous velocities and continuous pres-
sures. Fully implicit time discretizations of the INS equations coupling veloc-
ity and pressure yield linear systems that are often difficult to solve efficiently.
Pressure-correction methods, inspired by the pioneering works of Chorin [90,91]
and Temam [291], circumvent this problem by dealing with convective-diffusive
momentum transport and incompressibility in two separate steps. This approach
leads to solving, at each time step, first a system of convection-diffusion equations
and then a projection problem which takes the form of a Poisson problem with
homogeneous Neumann boundary conditions for the pressure time increment.
The method discussed herein has been proposed by Botti and Di Pietro [47] in
the context of dG methods, and is closely inspired by the work of Guermond
and Quartapelle [180] for conforming finite element space discretizations.
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6.3.1 The Continuous Setting
For a given finite time tF > 0 and an initial velocity field u0 ∈ U , we consider
the unsteady INS equations in the form

∂tu− ν�u+ (u·∇)u + ∇p = f in Ω × (0, tF), (6.71a)
∇·u = 0 in Ω × (0, tF), (6.71b)
u = 0 on ∂Ω × (0, tF), (6.71c)

u(·, t = 0) = u0 in Ω, (6.71d)
〈p〉Ω = 0. (6.71e)

We recall (cf. Sect. 3.1.1) that, for a function ψ defined on the space-time cylinder
Ω × (0, tF), we can consider ψ as a function of the time variable with values in
a Hilbert space V of functions of the space variable, in such a way that

ψ : (0, tF) � t �−→ ψ(t) ≡ ψ(·, t) ∈ V.

We also recall that, for an integer l ≥ 0, C l(V ) denotes the space of V -valued
functions that are l times continuously differentiable in the interval [0, tF]. We
are interested here in smooth solutions of the evolutive problem (6.71). For the
source term, we assume f ∈ C0([L2(Ω)]d), and for the exact solution,

u ∈ C0(U) ∩ C1([L2(Ω)]d), p ∈ C0(P ),

with spaces U and P defined by (6.3). Recalling the operator B ∈ L(U,P )
defined by (6.8) and its adjoint B∗ ∈ L(P,U ′), we also consider, for all w ∈ U ,
the bounded linear operator A(w) ∈ L(U,U ′) such that, for all y, z ∈ U ,

〈A(w)y, z〉U ′ ,U = νa(y, z) + t′(w, y, z)

=
∫

Ω

ν∇y:∇z +
∫

Ω

(w·∇y)·z +
1
2

∫

Ω

(∇·w)y·z,

noticing that Temam’s modification of the trilinear form has been used. Then,
problem (6.71) can be recast in the equivalent form

dtu(t) + A(u(t))u(t) + B∗p(t) = f(t), (6.72a)
Bu(t) = 0, (6.72b)
u(0) = u0. (6.72c)

6.3.2 The Projection Method
In this section, we first present the projection method using the backward Euler
scheme for time discretization and H1(Ω)-conforming discrete pressures. Then,
we discuss the reformulation of the projection step as a Poisson problem, the
modifications leading to BDF2 time discretization, and the use of discontinuous
approximations for the pressure which introduces additional difficulties related
to the stabilization of the projection step.
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6.3.2.1 Backward Euler and H1(Ω)-Conforming Discrete Pressures

Let δt be the time step, taken constant for simplicity and such that tF = Nδt
where N is an integer. For all n ∈ {0, . . . ,N}, we define the discrete times
tn := nδt. A superscript n indicates the value of a function at the discrete time
tn, so that, e.g., un = u(tn) and fn = f(tn). Let Th belong to an admissible
sequence of matching simplicial meshes and let k ≥ 1. We asume that the meshes
are kept fixed in time. We consider the discrete spaces

Uh := [�k
d(Th)]d, Ph := Pk

d,0(Th), (6.73)

with Pk
d,0(Th) defined by (6.43). For k ≥ 2, the choice Ph = Pk−1

d,0 (Th) can also be
accommodated with minor modifications. We define the operators Ah : Uh → Uh

and Bh : Uh → Ph such that, for all wh, uh, vh ∈ Uh and all qh ∈ Ph,

(Ah(wh)uh, vh)L2(Ω) = νah(uh, vh) + th(wh, uh, vh), (6.74)
(Bhwh, qh)L2(Ω) = bh(wh, qh), (6.75)

with bilinear forms ah and bh defined by (6.15) and (6.18), respectively, and
trilinear form th defined by (6.57). We observe that the transpose operator Bt

h

coincides with the usual gradient operator ∇ since Ph is conforming in H1(Ω).
Indeed, for all (wh, qh) ∈ Xh = Uh ×Ph,

(Bhwh, qh)L2(Ω) =
∫

Ω

wh·∇qh = (wh, B
t
hqh)L2(Ω).

The projection method produces, at each discrete time tn, n ∈ {1, . . . ,N}, a
triplet

(ûn
h, ũ

n
h , p

n
h) ∈ Uh × Uh × Ph

containing two approximations for the velocity, ûn
h and ũn

h, and one for the
pressure, pn

h. For all n ∈ {0, . . . ,N − 1}, two steps are performed sequentially.

(a) Convection-diffusion step. The approximate velocity ûn+1
h is computed from

the values of ũn
h and pn

h by solving the nonlinear convection-diffusion problem

ûn+1
h − ũn

h

δt
+Ah(ûn+1

h )ûn+1
h + ∇pn

h = fn+1
h , (6.76)

where fn+1
h := Πhf

n+1 and Πh denotes the L2-orthogonal projection onto
Uh. In problem (6.76), the boundary condition (6.71c) is (weakly) enforced
on ûn+1

h , but the divergence-free constraint (6.71b) is not included.

(b) Projection step. The approximate velocity ũn+1
h and the pressure pn+1

h are
then obtained by projecting ûn+1

h onto the space of discrete functions wh

that satisfy the weak divergence-free constraint Bhwh = 0. Specifically,
ũn+1

h and pn+1
h are computed from ûn+1

h and pn
h by solving

ũn+1
h − ûn+1

h

δt
+ ∇(pn+1

h − pn
h) = 0, (6.77a)

Bhũ
n+1
h = 0. (6.77b)

The condition Bhũ
n+1
h = 0 implies that ũn+1

h is weakly divergence-free.
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The algorithm is initialized by prescribing values for ũ0
h and p0

h inferred from
(a projection of) the initial condition (6.71d). Whenever an initial guess p0 for
the pressure is available, one possibility is to use the Stokes projection by solving
the problem: Find (wh, rh) ∈ Xh such that

ah(wh, vh) + bh(vh, rh) = ah(u0, vh) + bh(vh, p
0) ∀vh ∈ Uh,

bh(wh, qh) = bh(u0, qh) ∀qh ∈ Ph.

The algorithm is then initialized by setting ũ0
h = wh and p0

h = rh.

6.3.2.2 The Projection Step As a Poisson Problem

The projection step (6.77) can be recast as a Poisson problem with homogeneous
Neumann boundary conditions for the pressure increment δpn+1

h := pn+1
h − pn

h

plus an explicit formula for the velocity approximation ũn+1
h . Indeed, applying

the operator Bh to (6.77a) and using (6.77b), we obtain

Bh∇δpn+1
h = δt−1Bhû

n+1
h .

Using the expression (6.19) for the discrete bilinear form bh and observing that,
for all qh ∈ Ph, �qh� = 0 across interfaces, we obtain the following problem for
the pressure increment: Find δpn+1

h ∈ Ph such that, for all qh ∈ Ph,

(Bh∇(δpn+1
h ), qh)L2(Ω) =

∫

Ω

∇(δpn+1
h )·∇qh = δt−1(Bhû

n+1
h , qh)L2(Ω). (6.78)

The expression on the right-hand side can be computed using the value of ûn+1
h

resulting from (6.76). The velocity approximation ũn+1
h then results from

ũn+1
h = ûn+1

h − δt∇δpn+1
h . (6.79)

We observe that (6.78) is a Poisson problem with homogeneous Neumann bound-
ary conditions. This problem is well-posed owing to the zero-mean condi-
tion (6.71e).

6.3.2.3 Reformulation of the Convection-Diffusion Step

The convection-diffusion step (6.76) can be reformulated by eliminating the
velocity ũn

h and introducing an exptrapolated pressure p̂n
h. More specifically,

plugging (6.79) at step n into (6.76), we obtain

δ
(1)
t ûn+1

h +Ah(ûn+1
h )ûn+1

h = fn+1
h −∇p̂n

h,

where, for all n ∈ {1, . . . ,N}, we have set

δ
(1)
t ûn

h =
ûn

h − ûn−1
h

δt
, p̂n

h = 2pn
h − pn−1

h .

These expressions make it clear that the backward Euler method is used to
discretize the time derivative of the velocity, while a first-order extrapolation is
used to reconstruct the pressure at the discrete time tn+1.
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6.3.2.4 BDF2 Time Discretization

To enhance time accuracy, a possible choice, considered by Guermond, Minev,
and Shen [179] in the conforming case and by Botti and Di Pietro [47] in the dG
case, is to use the BDF2 method (cf. Sect. 4.7.4), which amounts to taking, for
all n ∈ {2, . . . ,N},

δ
(2)
t ûn

h = δt−1

(
3
2
ûn

h − 2ûn−1
h +

1
2
ûn−2

h

)

,

p̂n
h =

7
3
pn

h − 5
3
pn−1

h +
1
3
pn−2

h .

This choice allows one, in particular, to enhance the accuracy in time. When
using the BDF2 formula, the values at discrete times t0 and t1 are needed to
initialize the algorithm. One possibility is to initialize ũ0

h and p0
h as above, and

perform a first time step using the Crank–Nicolson method (cf. Sect. 4.7.4).

6.3.2.5 Discontinuous Pressures

We briefly pinpoint the modifications of the projection step (6.77) required to
deal with discontinuous pressures. The discrete velocity space Uh is still defined
by (6.73), and we consider the pressure discrete space

Ph := �k
d,0(Th).

Let Ah be defined as in (6.74) and let B̃h be the straightforward extension of
Bh to Uh × Ph such that, for all wh ∈ Uh and all qh ∈ Ph,

(B̃hwh, qh)L2(Ω) = bh(wh, qh).

Since Ph is notH1(Ω)-conforming, the transpose operator B̃t
h no longer coincides

with the usual gradient operator. Moreover, stabilization is required for the well-
posedness of the projection step. More specifically, for a given time step n ≥ 0,
the projection step reads: Find δpn+1

h ∈ Ph such that, for all qh ∈ Ph,

(B̃hB̃
t
hδp

n+1
h , qh)L2(Ω) + sh(δpn+1

h , qh) = δt−1(B̃hû
n+1
h , qh)L2(Ω),

where ûn+1
h has a known value resulting from the convection-diffusion step (6.76)

and the stabilization bilinear form sh has to be specified. Using the definition
of B̃h, it is readily inferred that, for all rh, qh ∈ Ph and l ∈ {k − 1, k},

(B̃hB̃
t
hrh, qh)L2(Ω) =

∫

Ω

Gl
h(rh)·Gl

h(qh),

where we recall that, for all qh ∈ Ph, the modified discrete gradient is such that

Gl
h(qh) = ∇hqh −Rl

h(qh), Rl
h(qh) :=

∑

F∈Fi
h

rl
F (�qh�).
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According to the discussion at the end of Sect. 4.2.1, the bilinear form sh can be
chosen so as to obtain the SIP method as follows:

sh(rh, qh) :=
∑

F∈Fi
h

η

hF

∫

F

�rh��qh� −
∫

Ω

Rl
h(rh)·Rl

h(qh).

Indeed, using the definition of lifting operators, we obtain, for all rh, qh ∈ Ph,
∫

Ω

Gl
h(rh)·Gl

h(qh) + sh(rh, qh) =
∫

Ω

∇hrh·∇hqh +
∑

F∈Fi
h

η

hF

∫

F

�rh��qh�

−
∑

F∈Fi
h

∫

Ω

({{∇hrh}}·nF �qh� + �rh�{{∇hqh}}·nF ),

which corresponds to the SIP bilinear form when a Neumann boundary condition
is prescribed; cf. (4.16) with γ = 0.

6.3.2.6 Numerical Examples

In practice, the use of discontinuous pressures can significantly increase the effort
required to solve the projection step. To illustrate this point, we consider the
three-dimensional solution proposed by Ethier and Steinman [152]

u1 = −a [eax1 sin(ax2 + bx3) + eax3 cos(ax1 + bx2)] e−νb2t,

u2 = −a [eax2 sin(ax3 + bx1) + eax1 cos(ax2 + bx3)] e−νb2t,

u3 = −a [eax3 sin(ax1 + bx2) + eax2 cos(ax3 + bx1)] e−νb2t,

p = −a
2

2

[
e2ax1 + e2ax2 + e2ax3

+ 2 sin(ax1 + bx2) cos(ax3 + bx1)ea(x2+x3)

+ 2 sin(ax2 + bx3) cos(ax1 + bx2)ea(x3+x1)

+ 2 sin(ax3 + bx1) cos(ax2 + bx3)ea(x1+x2)
]
e−2νb2t − p,

with a = π/4, b = π/2, and p is chosen so as to satisfy the zero-mean con-
straint (6.71e). An inspection of the fifth and seventh columns of Table 6.1 dis-
playing percentages of CPU times reveals that the computational effort required
to solve the projection step can become dominant when discontinuous pressures
are used.

We present now some numerical examples to assess convergence rates in space
and time for various choices of the discrete spaces. To evaluate the convergence
rate in time, we consider the Taylor vortex test case. The unsteady INS equations
are solved in the time-space cylinder Ω × (0.1, 6.1) with Ω = (−π/2, π/2)2. Both
the Dirichlet boundary condition and the initial condition are deduced from the
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Table 6.1: Comparison of the use of discontinuous and continuous pressures
on the Ethier–Steinman test case. Linear systems are solved using the GMRes
algorithm. Legend: ksp dim. of Krilov space, nit1 average number of GMRes
iterations per Newton iteration, nit2 average number of GMRes iterations

Convection-diffusion Projection

δt ksp Avg time/step (s) nit1 % time nit2 % time
Continuous pressures, k = 2

0.1 150 206 110+70 49 4,300 51
200 113 79 700 21

0.05 150 193 70+40 39 4,200 61
200 100 76 600 24

0.025 150 135 50+20 47 2,200 53
200 80 76 490 24

0.0125 150 111 30+10 48 1,800 52
200 77 75 490 25

Discontinuous pressures, k = 2

0.1 200 589 110+70 16 >8,000 84
400 201 48 1,000 52

0.05 200 543 70+40 13 >8,000 87
400 178 41 900 59

0.025 200 612 50+20 10 >8,000 90
400 176 37 900 63

0.0125 200 667 30+10 9 >8,000 81
400 183 30 1,100 70

exact solution
u1 = − cos(πx1) sin(πx2)e−2πνt,

u2 = sin(πx1) cos(πx2)e−2πνt,

p = − cos(2πx1) cos(2πx2)e−4πνt − p,

with constant p adjusted so as to satisfy the zero-mean constraint (6.71e). To
ensure that the time error dominates over the space error, we solve the discrete
problem on a very fine 300 × 300 quadrilateral mesh. The time steps are in
{0.2 × 2−i}0≤i≤4, while ν ∈ {10−2, 10−3, 10−4}. Figure 6.1 collects the results
for the BDF2 time discretization. We observe, in particular, that second-order
convergence in time is achieved for the velocity and the pressure, except for
dt = 0.2 × 2−4 and ν = 10−4, where the space error is no longer negligible with
respect to the time error.

Finally, the convergence in space is assessed using the steady test case pro-
posed by Kovasznay [214]. The space domain is Ω = (−0.5, 1.5) × (0, 2). The
pressure-correction method is used to integrate over a sufficiently long time to
reach a steady-state solution. The exact solution is

u1 = 1 − eλx1 cos(2πx2), u2 =
λ

2π
eλx1 sin(2πx2), p = −1

2
e2λx1 − p,
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with constant p adjusted so as to satisfy the zero-mean constraint (6.71e),
λ = 1/2ν − (

1/4ν2 + 4π2
)1/2, and ν = 0.025. Optimal convergence rates are

observed when using polynomial order k for the velocity and k or (k − 1) for
the pressure. We notice, however, that equal-order approximations are benefi-
cial in terms of accuracy for the pressure, as reflected by the dG(2)-cG(1) and
dG(2)-cG(2) errors in Fig. 6.2.



Chapter 7

Friedrichs’ Systems

Symmetric positive systems of first-order PDEs were introduced by Friedrichs in
1958 [163] as a means to handle within a single functional framework transonic
flow problems which are partly elliptic and partly hyperbolic in different parts
of the computational domain. Friedrichs introduced a very elegant technique
to characterize admissible boundary conditions for such systems based on a
(nonuniquely defined) nonnegative matrix-valued boundary field with certain
algebraic properties. The formalism introduced by Friedrichs turns out to be
sufficiently large to encompass a wide range of model problems. Those considered
herein are, in the steady case, advection-reaction equations and various elliptic
PDEs written in mixed form, e.g., the div-grad problem related to diffusion,
the linear elasticity equations in the stress-displacement formulation, and the
curl-curl problem related to Maxwell’s equations in the diffusive regime.

In the steady case, the symmetric positive systems of first-order PDEs intro-
duced by Friedrichs lend themselves quite nicely to space discretization by dG
methods. The analysis of dG methods in the context of Friedrichs’ systems was
started in the 1970s by Lesaint [227,228] and Lesaint and Raviart [229], and the
analysis was further refined a decade later by Johnson and Pitkäranta [204] for
the advection-reaction equation; see also Johnson, Nävert, and Pitkäranta [203].
A systematic treatment can be found in a recent series of papers by Ern and
Guermond [142–145], from which most of the material in this chapter is inspired.
An alternative presentation can be found in the PhD thesis of Jensen [201].

The first goal of this chapter is to derive and analyze various dG methods
to approximate in space steady Friedrichs’ systems. In doing so, our aim is
also to revisit in a unified setting various ideas presented in the previous chap-
ters. Although the presentation is to a large extent self-contained, we refer the
reader to [142–145] for various aspects that are not covered herein for the sake
of brevity. We first describe the basic ingredients to formulate Friedrichs’ sys-
tems and present various examples to illustrate the generality of the formalism.
Then, using the ideas of [145], we present a mathematical setting so as to formu-
late Friedrichs’ systems as well-posed problems with weakly enforced boundary

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0_7,
c© Springer-Verlag Berlin Heidelberg 2012
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conditions. The next step deals with the derivation and analysis of dG methods
for such problems. A dG method with minimal stability is derived following
the approach based on centered fluxes considered in Sect. 2.2 for the advection-
reaction equation. The stability of the approximation can be tightened by means
of suitable interface and boundary operators, similarly to the approach based on
upwinding considered in Sect. 2.3. Then, we examine in more detail the situa-
tion where the Friedrichs’ system possesses a two-field structure related to the
mixed formulation of an elliptic PDE. Finally, we address the approximation
of unsteady Friedrichs’ systems using explicit time-marching schemes for time
discretization and dG methods for space discretization.

7.1 Basic Ingredients and Examples
The purpose of this section is to present the basic ingredients to formulate
Friedrichs’ systems. The precise mathematical meaning of the PDE system
and its boundary conditions are specified in Sect. 7.2. We also present various
examples of Friedrichs’ systems to emphasize the generality of the formalism.

7.1.1 Basic Ingredients
Let m ≥ 1 be an integer which corresponds to the number of scalar-valued PDEs
in the system. A Friedrichs’ system is formulated using (d+1) �m,m-valued fields
defined in the domain Ω, say A0,A1, . . . ,Ad. For convenience, we set

X :=
d∑

k=1

∂kAk, (7.1)

where ∂k denotes the distributional derivative in the kth spatial direction; the
field X can be loosely interpreted as the divergence associated with the fields
A1, . . . ,Ad.

The assumptions on the fields A0,A1, . . . ,Ad are

∀k ∈ {0, . . . , d}, Ak ∈ [L∞(Ω)]m,m and X ∈ [L∞(Ω)]m,m, (7.2a)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω, (7.2b)

∃μ0 > 0, A0 + (A0)t − X ≥ 2μ0�m a.e. in Ω, (7.2c)

where �m denotes the identity matrix in �m,m and the superscript t indicates
the transpose; the same superscript is used for the scalar product of vectors
in �m. Henceforth, inequalities between (symmetric) matrices are understood
on the associated quadratic forms, i.e., for G1 and G2 in �m,m, the inequal-
ity G1 ≥ G2 means that, for all ξ ∈ �m, ξtG1ξ ≥ ξtG2ξ. Assumptions (7.2b)
and (7.2c) are, respectively, the symmetry and positivity properties mentioned
in the introduction.

The material of the previous chapters should have made it clear that dG
methods are L2-based methods. Therefore, it is natural to work in a Hilbertian
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setting. Let L := [L2(Ω)]m be equipped with its natural scalar product

(f, g)L :=
∫

Ω

f tg,

and associated norm ‖·‖L. We are interested in the differential operator

A : [C1(Ω)]m � z �−→ Az := A(0)z + A(1)z ∈ L, (7.3)

where

A(0)z := A0z, A(1)z :=
d∑

k=1

Ak∂kz. (7.4)

The domain of A is extended to more general functions z in Sect. 7.2.1. We
observe that the field A0 specifies the zero-order term in the differential operator
A, while the fields A1, . . . ,Ad specify the first-order terms. We also consider the
differential operator

Ã : [C1(Ω)]m � z �−→ Ãz := Ã(0)z − A(1)z ∈ L, (7.5)

where Ã(0)z := ((A0)t − X )z. Using integration by parts and the symmetry
property (7.2b), we infer that, for all ϕ,ψ ∈ [C∞

0 (Ω)]m,

(ϕ,Xψ)L + (A(1)ϕ,ψ)L + (ϕ,A(1)ψ)L = 0,

and since (A0ϕ,ψ)L = (ϕ, (A0)tψ)L, we obtain

(Aϕ,ψ)L = (ϕ, Ãψ)L.

This identity shows that Ã is the formal adjoint of A.
In practice, the fields A1, . . . ,Ad are smooth enough to be defined at the

boundary ∂Ω. It is then possible to introduce the boundary field D : ∂Ω → �m

such that, for a.e. x ∈ ∂Ω,

D :=
d∑

k=1

nkAk, (7.6)

where (n1, . . . ,nd) are the Cartesian components of the outward unit normal n
to Ω. We observe that, by construction, D takes symmetric values. The idea
of Friedrichs is to specify boundary conditions using a second boundary field,
namely M : ∂Ω → �m, such that, for a.e. x ∈ ∂Ω,

M is nonnegative, i.e., for all ξ ∈ �m, ξtMξ ≥ 0, (7.7a)
�m = Ker(D −M) + Ker(D + M). (7.7b)

Let f ∈ L. Friedrichs proved in [163] the uniqueness of the strong solution
z ∈ [C1(Ω)]m such that

Az = f in Ω, (7.8a)
(D −M)z = 0 on ∂Ω, (7.8b)
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and the existence of a so-called ultraweak solution z ∈ L such that (z, Ãy)L =
(f, y)L for all y ∈ [C1(Ω)]m such that (D + Mt)y = 0 on ∂Ω. In the above for-
malism, boundary conditions are expressed explicitly, and this makes it difficult
to obtain existence and uniqueness simultaneously. Furthermore, with an eye
toward the design of a dG approximation method, it is desirable to formulate the
boundary conditions weakly. These observations are further pursued in Sect. 7.2.

Remark 7.1 (Nonlocal zero-order term). The theory of Friedrichs’ systems can
also be developed for more general zero-order terms. Indeed, it is possible to con-
sider an operator A(0) ∈ L(L,L) more general than A0z in (7.4), e.g., associated
with an integral kernel. In this case, the zero-order term is said to be nonlocal.
Such terms are useful, for instance, when modeling radiative heat transfer.

7.1.2 Examples
This section collects various examples of Friedrichs’ systems to highlight the
generality of the formalism.

7.1.2.1 Advection-Reaction

The advection-reaction equation has already been studied thoroughly in Chap. 2.
Let f ∈ L2(Ω). We consider the PDE

μz + β·∇z = f,

with μ ∈ L∞(Ω) and β ∈ [L∞(Ω)]d such that ∇·β ∈ L∞(Ω). Then, the differ-
ential operator

Az = μz + β·∇z
fits the above framework by setting m = 1, A0 = μ, and, for all k ∈ {1, . . . , d},
Ak = βk, the kth component of the field β, so that X = ∇·β (cf. (7.1)). Assump-
tions (7.2a) and (7.2b) clearly hold true. To enforce (7.2c), we assume that there
is μ0 > 0 such that a.e. in Ω,

μ− 1
2
∇·β ≥ μ0 > 0,

thereby recovering assumption (2.6).
The boundary field D is given by

D = β·n.

An admissible choice for the boundary field M is

M = |β·n|.

Let us verify (7.7). First, M is obviously nonnegative, so that (7.7a) holds true.
Moreover, for all x ∈ ∂Ω,
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• If β(x)·n(x) > 0, Ker(D −M) = � and Ker(D + M) = {0}.
• If β(x)·n(x) < 0, Ker(D −M) = {0} and Ker(D + M) = �.

• Finally, if β(x)·n(x) = 0, Ker(D −M) = Ker(D + M) = �.

Hence, in all cases, (7.7b) holds true. The boundary condition (D−M)z|∂Ω = 0
amounts to the homogeneous Dirichlet boundary condition z = 0 at the inflow
boundary ∂Ω− defined by (2.2) (recall that ∂Ω− = {x ∈ ∂Ω | β(x)·n(x) < 0}).

7.1.2.2 The Div-Grad Problem and Diffusion-Advection-Reaction

Let f ∈ L2(Ω). The PDE
−�u+ u = f

can be rewritten in the mixed form (cf. Sect. 4.4)
(
σ + ∇u
∇·σ + u

)

=
(

0
f

)

. (7.9)

In the mixed formulation, we recall that u is termed the potential and σ the
diffusive flux (cf. Definition 4.1). To recover the setting of Friedrichs’ systems,
we set m = d+ 1 and

A0 =

[
�d 	d,1

	1,d 1

]

, Ak =

[
	d,d ek

(ek)t 0

]

, k ∈ {1, . . . , d},

where ek is the kth vector in the Cartesian basis of �d and 	s,t denotes the
null matrix in �s,t. This yields X = 	m,m. Clearly, assumptions (7.2) hold
true. At this stage, it is not possible to discard the zero-order term and consider
the problem −�u = f without violating assumption (7.2c). A more general
framework circumventing the need for full positivity in �m,m is presented in
Sect. 7.4.3.

The boundary field D is given by

D =

[
	d,d n

nt 0

]

.

To enforce the homogeneous Dirichlet boundary condition u = 0 on ∂Ω, we can
take

M =

[
	d,d −n

nt 0

]

. (7.10)

Clearly, (7.7a) holds true since M is skew-symmetric and, hence, nonnegative;
moreover, (7.7b) results from the fact that

Ker(D −M) =
{
(σ, 0), σ ∈ �d

}
,

Ker(D + M) = {(0, u), u ∈ �} .
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The formalism easily incorporates other types of boundary conditions. For
instance, the Robin/Neumann boundary condition σ·n = γu with γ ∈ L∞(∂Ω)
and γ ≥ 0 a.e. on ∂Ω is enforced by taking

M =

[
	d,d n

−nt 2γ

]

.

Assumption (7.7a) results from the fact that γ is nonnegative, while assump-
tion (7.7b) can be proven by observing that, for all (τ, v) ∈ �d+1, (τ, v) =
(γvn, v)+(τ−γvn, 0) with (γvn, v) ∈ Ker(D−M) and (τ−γvn, 0) ∈ Ker(D+M).

The extension to the diffusion-advection-reaction equation

−∇·(κ∇u) + β·∇u+ μu = f,

is also straightforward. Here, the diffusion tensor κ ∈ [L∞(Ω)]d,d is assumed to
be symmetric and uniformly positive definite, i.e., κ ≥ κ0�d a.e. in Ω with a
real number κ0 > 0, while the advective velocity β and the reaction coefficient
μ satisfy the assumptions stated above for the advection-reaction problem. The
framework of Friedrichs’ systems is recovered by setting

A0 =

[
κ−1 	d,1

	1,d μ

]

, Ak =

[
	d,d ek

(ek)t βk

]

,

so that the boundary field D becomes

D =

[
	d,d n

nt β·n

]

.

The homogeneous Dirichlet boundary condition u = 0 on ∂Ω can be enforced by
taking the boundary field M defined by (7.10). The Robin/Neumann boundary
condition σ·n = γu with γ ∈ L∞(∂Ω) and 2γ + β·n ≥ 0 can be enforced by
taking

M =

[
	d,d n

−nt 2γ + β·n

]

.

In practice, a natural choice is γ = (β·n)	, the negative part of β·n (cf. (2.12)) so
that 2γ+β·n = |β·n|. Then, at the inflow boundary (where β·n < 0), the Robin
boundary condition means that the normal component of the diffusive-advective
flux (σ + βu) is prescribed to zero, while a homogeneous Neumann boundary
condition is enforced in the remaining part of the boundary.

7.1.2.3 Linear Elasticity

We consider the equations of compressible linear elasticity in the stress-
displacement formulation. Let σ be the stress tensor with values in �d,d,
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let u be the displacement vector with values in �d, and let f ∈ [L2(Ω)]d be the
body force. The governing equations can be written as

σ − 1
d+λ tr(σ)�d − 1

2 (∇u+ (∇u)t) = 0, (7.11a)

− 1
2∇·(σ + σt) + αu = f, (7.11b)

where the coefficients α and λ are both in L∞(Ω) and are assumed to be uni-
formly positive in Ω. The coefficient λ is related to the compressibility of the
material; the incompressible limit λ→ 0 is further discussed in Sect. 7.4.3. The
coefficient α is added at this stage to fulfill the positivity assumption (7.2c). It
can be removed, as discussed in Sect. 7.4.3. Taking the trace of (7.11a) yields

λ
d+λ tr(σ) = ∇·u so that

σ = 1
2(∇u + (∇u)t) + λ−1(∇·u)�d,

that is, the usual relation between stress and strain tensors is recovered. More-
over, (7.11b) expresses, up to the zero-order term, the equilibrium of forces. We
also observe that the symmetry of the stress tensor is not enforced a priori, but
is a consequence of (7.11a).

To recover the framework of Friedrichs’ systems, the tensor field σ with values
in �d,d is identified with the vector field σ with values in �d2

by setting σ[ij] = σij

with 1 ≤ i, j ≤ d and [ij] := d(j − 1) + i. To alleviate the notation, we use the
same symbol for both fields. Then, problem (7.11) fits the above framework by
setting m = d2 + d and

A0 =

[
�d2 − 1

d+λZ 	d2,d

	d,d2 α�d

]

, Ak =

⎡

⎣
	d2,d2 Ek

(Ek)t 	d,d

⎤

⎦ , k ∈ {1, . . . , d},

where Z ∈ �d2,d2
is such that Z[ij][kl] = δijδkl with 1 ≤ i, j, k, l ≤ d, and, for

all k ∈ {1, . . . , d}, Ek ∈ �d2,d is such that Ek
[ij],l = − 1

2 (δikδjl + δilδjk) with
1 ≤ i, j, l ≤ d; here, the δ’s are Kronecker symbols. This yields X = 	m,m.
Clearly, hypotheses (7.2a) and (7.2b) hold true. To verify (7.2c), we denote by
(A0)σσ ∈ �d2,d2

the upper left block of the matrix A0 and observe that, for any
σ ∈ �d2

,

σt(A0)σσσ = σt(σ − 1
d+λ tr(σ)�d) = λ

d+λ |σ|2�2 + d
d+λ |σ − 1

d tr(σ)�d|2�2 , (7.12)

where for all τ ∈ �d2
, |τ |�2 := (τ tτ)1/2 = (

∑
1≤i,j≤d τ

2
[ij])

1/2 denotes its Frobenius
norm. Then, evaluating (σ, u)tA0(σ, u), we obtain positivity on the σ-component
(resp., the u-component) since λ (resp., α) is positive.

The boundary field D and a boundary field M enforcing homogeneous Dirich-
let boundary conditions on the displacement are

D =

[
	d2,d2 N
N t 	d,d

]

, M =

[
	d2,d2 −N
N t 	d,d

]

,
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where N ∈ �d2,d is such that, for all ξ ∈ �d,

N ξ := −1
2
(n⊗ξ + ξ⊗n). (7.13)

Robin/Neumann boundary conditions can also be accommodated by proceeding
as for the div-grad problem.

DG methods for linear elasticity, with a focus on the incompressible limit,
have been developed by Hansbo and Larson [183,184], Wihler [307], and Cock-
burn, Schötzau, and Wang [109].

7.1.2.4 The Curl-Curl Problem

We close this series of examples with a problem related to the (three-dimensional)
Maxwell equations in the diffusive regime, namely the curl-curl problem. Let H
be the magnetic field with values in �3, let E be the electric field with values in
�3, and let f, g ∈ [L2(Ω)]3. The governing equations are

{
μH + ∇×E = f,

σE −∇×H = g,

where the coefficients μ and σ are both in L∞(Ω) and are assumed to be uni-
formly positive in Ω. The above problem fits the framework of Friedrichs’ sys-
tems by setting m = 6 and

A0 =

[
μ�3 	3,3

	3,3 σ�3

]

, Ak =

⎡

⎣
	3,3 Rk

(Rk)t 	3,3

⎤

⎦ , k ∈ {1, . . . , d},

where the entries of the matrices Rk ∈ �3,3 are those of the Levi–Civita permu-
tation tensor, i.e., Rk

ij = εikj for 1 ≤ i, j, k ≤ 3, that is,

R1 =

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , R2 =

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , R3 =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .

This yields X = 	m,m. Clearly, assumptions (7.2) hold true.
The boundary field D and a boundary field M enforcing homogeneous Dirich-

let boundary conditions on the tangential component of the electric field are

D =

[
	3,3 T
T t 	3,3

]

, M =

[
	3,3 −T
T t 	3,3

]

,

where T ∈ �3,3 is such that, for all ξ ∈ �3,

T ξ = n×ξ. (7.14)

Homogeneous Dirichlet boundary conditions on the tangential component of the
magnetic field can be enforced by using −M.
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DG methods have been extensively developed for the Maxwell equations in
various forms, and we mention some recent work on the subject. DG meth-
ods for the mixed form of the Maxwell equations in the time domain have
been investigated by Cockburn, Li, and Shu [107] and Cohen, Ferrieres, and
Pernet [115]. DG methods for the indefinite time-harmonic Maxwell equations
in the frequency-domain have been studied by Houston, Perugia, Schneebeli,
and Schötzau in both mixed [198] and non-mixed [197] forms. The analysis of
the SIP method for the unsteady Maxwell problem in second-order form has
been performed by Grote, Schneebeli, and Schötzau [178]. Finally, dG approx-
imations of the Maxwell eigenvalue problem have been investigated by Buffa,
Perugia, and Warburton [62,63].

7.2 The Continuous Setting
In this section, we give a different mathematical meaning to the solution of
problem (7.8) so as to arrive at a problem in weak form that is well-posed. To
this purpose, we extend the domain of the differential operator A defined by (7.3)
to a larger space, the so-called graph space V with dual space V ′, and we give a
different meaning to the boundary conditions using boundary operators D and
M in L(V, V ′) instead of the pointwise representation by the boundary fields D
and M. In particular, the boundary condition (7.8b) is replaced by

z ∈ V0 := Ker(D −M) ⊂ V.

We consider the problem:

Find z ∈ V0 s.t. Az = f in L. (7.15)

To formulate this problem in weak form, we introduce the bilinear form such
that, for all z, y ∈ V ,

a(z, y) := (Az, y)L +
1
2
〈(M −D)z, y〉V ′,V . (7.16)

The weak formulation of (7.15) is

Find z ∈ V s.t. a(z, y) = (f, y)L for all y ∈ V . (7.17)

Observe that the boundary condition z ∈ V0 is weakly enforced in (7.17). The-
orem 7.14 below states that under suitable assumptions, problem (7.17) is well-
posed.

The main goal of this section is to provide some mathematical insight into
the derivation of the weak formulation (7.17) and why it leads to a well-posed
problem. The presentation hinges on the ideas of [145]. Assumptions (7.2) are
reformulated in an abstract setting leading to the notion of Friedrichs’ operators
(A, Ã), and a so-called cone formalism is introduced to identify subspaces of the
graph space where the Friedrichs’ operators are isomorphisms onto L. Then, it is
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shown that such subspaces can be constructed using a boundary operator with
suitable algebraic properties. We observe that we do not work with a single
operator A, but instead with an operator pair (A, Ã) where Ã is the formal
adjoint of A. Indeed, an important point is that the bijectivity of the operator
A goes hand in hand with that of Ã. As a matter of fact, we prove simultaneously
the well-posedness of (7.17) together with that of the adjoint problem:

Find z∗ ∈ V s.t. a∗(z∗, y) = (f, y)L for all y ∈ V , (7.18)

with the bilinear form a∗ such that, for all z, y ∈ V ,

a∗(z, y) := (Ãz, y)L +
1
2
〈(M∗ +D)z, y〉V ′,V , (7.19)

where M∗ ∈ L(V, V ′) denotes the adjoint operator of M .
The reader mainly interested in dG approximations can directly jump to

Sect. 7.3. The starting point in the design of the dG bilinear form is the expres-
sion (7.16) for the bilinear form a and the assumption that, for z and y smooth
enough,

a(z, y) = (Az, y)L +
1
2

∫

∂Ω

yt(M−D)z.

7.2.1 Friedrichs’ Operators
Let L be a Hilbert space equipped with scalar product (·, ·)L and associated
norm ‖·‖L. Let Υ be a dense subspace of L. We assume that we have at hand
two linear operators A : Υ → L and Ã : Υ → L such that

∀(ϕ,ψ) ∈ Υ × Υ, (Aϕ,ψ)L = (ϕ, Ãψ)L, (7.20a)

∃C s.t. ∀ϕ ∈ Υ, ‖(A+ Ã)ϕ‖L ≤ C‖ϕ‖L. (7.20b)

Owing to (7.20a), the operator Ã can be viewed as the formal adjoint of A.
In the context of first-order PDEs,

Υ = [C∞
0 (Ω)]m, L = [L2(Ω)]m,

and the operator A is defined by (7.3) and (7.4). Integration by parts in (7.20a)
yields, for all ψ ∈ [C∞

0 (Ω)]m,

Ãψ = ((A0)t −X )ψ −
d∑

k=1

(Ak)t∂kψ. (7.21)

For assumption (7.20b) to hold, the first-order terms in A and Ã must com-
pensate each other, and this requires the symmetry of the fields A1, . . . ,Ad,
that is, assumption (7.2b). Then, the operator Ã defined by (7.21) coincides on
[C∞

0 (Ω)]m with that defined by (7.5).
Let VΥ be the completion of Υ with respect to the scalar product (·, ·)L +

(A·, A·)L. Identifying L and its dual, we obtain

Υ ↪→ VΥ ↪→ L ≡ L′ ↪→ V ′
Υ ↪→ Υ′,
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with dense and continuous injections, where Υ′ is the algebraic dual of Υ, while
L′ and V ′

Υ are topological duals. Owing to (7.20b), the completion of Υ with
respect to the scalar product (·, ·)L + (Ã·, Ã·)L is also VΥ. By a slight abuse
of notation, the unique extensions of A and Ã to VΥ are still denoted by A
and Ã respectively, yielding A : VΥ → L and Ã : VΥ → L. Following the
terminology of Aubin [18, Sect. 5.5], we say that VΥ is the minimal domain of
A and Ã. Moreover, the adjoint operator of Ã, say (Ã)∗ : L → V ′

Υ, is the
unique extension of A : VΥ → L to L. We abuse again the notation by setting
A = (Ã)∗ ∈ L(L,V ′

Υ). Similarly, we set Ã = T ∗ ∈ L(L,V ′
Υ). Since L ⊂ V ′

Υ, it
makes sense to define the graph space as

V := {z ∈ L | Az ∈ L} , (7.22)

Clearly, VΥ ⊂ V . The graph space is the maximal domain of A. The graph space
is also the maximal domain of Ã since V = {z ∈ L | Ãz ∈ L} owing to (7.20b).

Lemma 7.2 (Hilbert space). The graph space V defined by (7.22) is a Hilbert
space when equipped with the scalar product (·, ·)V := (·, ·)L + (A·, A·)L.

Proof. Let (zn)n∈� be a Cauchy sequence in V . Then, (zn)n∈� and (Azn)n∈� are
Cauchy sequences in L. Denote by z and y their respective limits in L. Owing
to (7.20a) and to the way A and Ã were extended, (zn, Ãψ)L = (Azn, ψ)L for
all ψ ∈ VΥ. As a result,

〈Az,ψ〉V ′
Υ ,VΥ = (z, Ãψ)L ← (zn, Ãψ)L = (Azn, ψ)L → (y, ψ)L ,

proving that Az is in L with Az = y.

Lemma 7.3 (Selfadjointness of (A + Ã)). The operator (A + Ã) is in L(L,L)
and is selfadjoint.

Proof. The fact that (A+Ã) is in L(L,L) results from (7.20b) and our extending
A and Ã to L(L,V ′

Υ). To prove that (A + Ã) is selfadjoint, let z, y ∈ L. Since
Υ is dense in L, there exist sequences (zn)n∈� and (yn)n∈� in Υ converging to
z and y in L, respectively. Property (7.20a) implies that

((A+ Ã)zn, yn)L = ((A+ Ã)yn, zn)L.

Letting n→ ∞ and since (A+ Ã) is in L(L,L) yields the assertion.

We focus on the class of operator pairs (A, Ã) satisfying the following posi-
tivity property: There exists a real number μ0 > 0 such that

∀z ∈ L, ((A+ Ã)z, z)L ≥ 2μ0‖z‖2
L, (7.23)

that is, (A+ Ã) is L-coercive.

Definition 7.4 (Friedrichs’ operators). We say that A and Ã are Friedrichs’
operators if the pair (A, Ã) satisfies assumptions (7.20) and (7.23).
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We introduce the operator D ∈ L(V, V ′) such that, for all z, y ∈ V ,

〈Dz, y〉V ′,V := (Az, y)L − (z, Ãy)L. (7.24)

This definition makes sense since both A and Ã are in L(V,L).

Lemma 7.5 (Selfadjointness of D). The operator D defined by (7.24) is selfad-
joint.

Proof. For all z, y ∈ V , we observe that

〈Dz, y〉V ′,V − 〈Dy, z〉V ′,V = (Az, y)L − (z, Ãy)L − (Ay, z)L + (y, Ãz)L

= ((A+ Ã)z, y)L − ((A+ Ã)y, z)L = 0,

owing to Lemma 7.3.

In the context of symmetric first-order PDEs with Az = A(0)z + A(1)z and
Ãz = ((A0)t −X )z −A(1)z, we obtain, for all z ∈ L,

((A+ Ã)z, z)L = ((A0 + (A0)t − X )z, z)L.

Hence, assumption (7.23) amounts to assumption (7.2c). Moreover, for z, y
smooth enough, e.g., z, y ∈ C1(Ω),

〈Dz, y〉V ′,V = (A0z, y)L + (A(1)z, y)L − (z, (A0)ty)L + (z,Xy)L + (z,A(1)y)L

= (A(1)z, y)L + (z,Xy)L + (z,A(1)y)L

=
∫

Ω

(
d∑

k=1

∂k(ytAkz)

)

=
∫

∂Ω

yt

(
d∑

k=1

nkAk

)

z =
∫

∂Ω

ytDz,

where D is defined by (7.6).

Remark 7.6 (Kernel and range of D). It is proven in [145] that

Ker(D) = VΥ, Im(D) = V ⊥
Υ ,

where V ⊥
Υ = {y ∈ V ′ | ∀z ∈ VΥ, 〈y, z〉V ′,V = 0} is the so-called annihilator of

the space VΥ. The fact that Ker(D) = VΥ means that D is a boundary operator.
Since Im(D) = V ⊥

Υ , the range of D is closed. The proof in [145] uses the Riesz–
Fréchet representation theorem; cf. Lemma 2.11 for a related proof in the case
of the advection-reaction equation.

7.2.2 The Cone Formalism
The goal of this section is to identify a pair of subspaces of V , say (V0, V

∗
0 ), such

that the restricted operators A : V0 → L and Ã : V ∗
0 → L are isomorphisms. In

the context of PDEs, the spaces V0 and V ∗
0 are usually identified by enforcing

boundary conditions. However, boundary conditions can be difficult to express
since they require a notion of trace for functions in the graph space. Traces
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in the graph space of Friedrichs’ operators constitute a subtle issue; we refer
the reader to Rauch [265, 266] and Jensen [201] for results in this direction.
Here, following [145], we adopt a more intrinsic approach, the so-called cone
formalism, whereby sufficient conditions for well-posedness are identified on the
pair of spaces (V0, V

∗
0 ) without relying explicitly on boundary conditions. The

links between the cone formalism and the use of boundary operators with suitable
algebraic properties is investigated in Sect. 7.2.3 below.

For a subset Y ⊂ V ′, identifying the bidual space V ′′ with V , we let Y ⊥ ⊂ V
be the annihilator of the space Y , namely

Y ⊥ := {z ∈ V | ∀y ∈ Y, 〈y, z〉V ′,V = 0} .
We also define the cones C+ ⊂ V and C− ⊂ V such that

C± = {w ∈ V | ± 〈Dw,w〉V ′,V ≥ 0} .
The two key assumptions on which the cone formalism is based are

V0 ⊂ C+ and V ∗
0 ⊂ C−, (7.25a)

V0 = D(V ∗
0 )⊥ and V ∗

0 = D(V0)⊥. (7.25b)

It is clear that, owing to (7.25b), V0 and V ∗
0 are closed in V and that VΥ =

Ker(D) is a subspace of both V0 and V ∗
0 .

Lemma 7.7 (L-coercivity of A and Ã). Let (A, Ã) be Friedrichs’ operators. Let
(V0, V

∗
0 ) be a pair of spaces satisfying (7.25). Then, A is L-coercive on V0 and

Ã is L-coercive on V ∗
0 .

Proof. For all z ∈ V , we observe that

(Az, z)L =
1
2

(
(Az, z)L + (Ãz, z)L

)
+

1
2

(
(Az, z)L − (Ãz, z)L

)

=
1
2
((A+ Ã)z, z)L +

1
2
〈Dz, z〉V ′,V .

Let now z ∈ V0. Using (7.23) and since V0 ⊂ C+ owing to (7.25a), we infer

(Az, z)L ≥ μ0‖z‖2
L.

We proceed similarly to prove the L-coercivity of Ã on V ∗
0 .

We can now state and prove the main result of this section [145].

Theorem 7.8 (Well-posedness). Let (A, Ã) be Friedrichs’ operators. Let
(V0, V

∗
0 ) be a pair of spaces satisfying (7.25). Then, the restricted operators

A : V0 → L and Ã : V ∗
0 → L are isomorphisms.

Proof. We only prove that A : V0 → L is an isomorphism, the proof for Ã being
similar. To this purpose, we verify the conditions (1.6) and (1.7) of the BNB
Theorem (cf. Theorem 1.1) with spaces X = V0 and Y = L. Observe that in the
present setting, L ≡ L′.
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(i) Proof of (1.6). Let z ∈ V0. The L-coercivity of A on V0 proven in Lemma 7.7
implies

μ0‖z‖2
L ≤ (Az, z)L ≤ sup

y∈L\{0}

(y,Az)L

‖y‖L
.

Hence,

‖z‖V ≤ (‖z‖2
L + ‖Az‖2

L)1/2 ≤ (μ−1
0 + 1)1/2 sup

y∈L\{0}

(y,Az)L

‖y‖L
,

yielding (1.6).
(ii) Proof of (1.7). Let y ∈ L be such that, for all z ∈ V0, (Az, y)L = 0. Since
VΥ ⊂ V0, we infer, for all w ∈ VΥ,

〈w, Ãy〉VΥ,V ′
Υ

= (Aw, y)L = 0.

As a result, Ãy = 0 in V ′
Υ, and hence in L since VΥ is dense in L. This implies

that y ∈ V . Owing to the definition (7.24) of D, we infer, for all z ∈ V0,

〈Dz, y〉V ′,V = (Az, y)L − (z, Ãy)L = 0 − 0 = 0,

which means that y ∈ D(V0)⊥ and hence y ∈ V ∗
0 by (7.25b). Since Ã is

L-coercive on V ∗
0 owing to Lemma 7.7 and Ãy = 0, this yields y = 0.

Remark 7.9 (Maximality of V0 and V ∗
0 ). It is proven in [145] that if the pair

of spaces (V0, V
∗
0 ) satisfies (7.25), then V0 is maximal in the cone C+, meaning

that there is no x ∈ V such that Vx = V0 + span(x) ⊂ C+ and V0 is a proper
subspace of Vx, and, similarly, V ∗

0 is maximal in the cone C−. The converse
statement also holds true, as proven recently by Antonić and Burazin [12] using
the formalism of Krĕın spaces. The idea of maximal boundary conditions for
positive symmetric PDE systems has been introduced by Lax; we refer the reader
to Lax and Phillips [223] and Friedrichs [163] for further discussion.

7.2.3 The Boundary Operator M

We now present a practical way to construct a pair of spaces (V0, V
∗
0 ) satisfy-

ing (7.25). We assume that we have at hand an operator M ∈ L(V, V ′) such
that

M is monotone, i.e., for all z ∈ V , 〈Mz, z〉V ′,V ≥ 0, (7.26a)
V = Ker(D −M) + Ker(D +M), (7.26b)

and we denote by M∗ ∈ L(V, V ′) the adjoint operator of M .

Lemma 7.10 (Identification of V0 and V ∗
0 ). Let M ∈ L(V, V ′) satisfy (7.26).

Then, setting

V0 := Ker(D −M),
V ∗

0 := Ker(D +M∗),

the pair of spaces (V0, V
∗
0 ) satisfies (7.25).
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Proof. Let z ∈ V0; then, Dz = Mz so that

〈Dz, z〉V ′,V = 〈Mz, z〉V ′,V ≥ 0,

owing to (7.26a). Hence, V0 ⊂ C+. Similarly, we prove that V ∗
0 ⊂ C−, complet-

ing the proof of (7.25a). Let us now prove that D(V0)⊥ ⊂ V ∗
0 . Let z ∈ D(V0)⊥.

Then, for all y ∈ V , using (7.26b) to write y = y+ + y− with y± ∈ Ker(D±M),
we infer

〈(D +M∗)z, y〉V ′,V = 〈(D +M∗)z, y+〉V ′,V + 〈(D +M∗)z, y−〉V ′,V

= 〈(D +M)y−, z〉V ′,V = 2〈Dy−, z〉V ′,V = 0,

where we have used the selfadjointness of D, (D + M)y+ = 0, Dy− = My−,
y− ∈ V0, and z ∈ D(V0)⊥. This proves that z ∈ Ker(D +M∗), that is, z ∈ V ∗

0 .
Let us now prove the converse inclusion V ∗

0 ⊂ D(V0)⊥. Let z ∈ V ∗
0 . Then, for

all y ∈ V0, since Dy = My, we infer

〈Dy, z〉V ′,V =
1
2
〈(D +M)y, z〉V ′,V =

1
2
〈(D +M∗)z, y〉V ′,V = 0,

so that z ∈ D(V0)⊥. Hence, V ∗
0 = D(V0)⊥. The proof of V0 = D(V ∗

0 )⊥ is
similar.

Remark 7.11 (Kernel and range of M). It is proven in [145] that, under the
assumptions (7.26), there holds

Ker(D) = Ker(M) = Ker(M∗),
Im(D) = Im(M) = Im(M∗).

In particular, M is, as D, a boundary operator.

Remark 7.12 (Converse of Lemma 7.10). The converse statement of Lemma 7.10
has been established recently by Antonić and Burazin [12], namely if there is a
pair of spaces (V0, V

∗
0 ) satisfying (7.25), there is M ∈ L(V, V ′) satisfying (7.26).

It is convenient to reformulate Lemma 7.7 in terms of the boundary operator
M and the bilinear forms a and a∗.

Lemma 7.13 (L-coercivity of a and a∗). Let (A, Ã) be Friedrichs’ operators,
let M ∈ L(V, V ′) satisfy (7.26), and let the bilinear forms a and a∗ be defined
by (7.16) and (7.19) respectively. Then, a and a∗ are L-coercive on V . More
precisely, defining, for all y ∈ V , the seminorm |y|M := 〈My, y〉1/2

V ′,V , there holds

∀y ∈ V, a(y, y) ≥ μ0‖y‖2
L +

1
2
|y|2M ,

∀y ∈ V, a∗(y, y) ≥ μ0‖y‖2
L +

1
2
|y|2M .
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Proof. We only prove the result for a since the proof for a∗ is similar. Proceeding
as in the proof of Lemma 7.7, we observe that, for all y ∈ V ,

a(y, y) = (Ay, y)L +
1
2
〈(M −D)y, y〉V ′,V

=
1
2
((A+ Ã)y, y)L +

1
2
〈Dy, y〉V ′,V +

1
2
〈(M −D)y, y〉V ′,V

=
1
2
((A+ Ã)y, y)L +

1
2
〈My, y〉V ′,V ,

whence the assertion.

7.2.4 The Well-Posedness Result
We have now at our disposal all the necessary tools to establish the well-
posedness of problems (7.17) and (7.18).

Theorem 7.14 (Well-posedness). Let (A, Ã) be Friedrichs’ operators, let M ∈
L(V, V ′) satisfy (7.26), and let the bilinear forms a and a∗ be defined by (7.16)
and (7.19) respectively. Then, problems (7.17) and (7.18) are well-posed. More-
over, the unique solution z of (7.17) satisfies

Az = f in L, (7.27a)
(M −D)z = 0 in V ′, (7.27b)

while the unique solution z∗ of (7.18) satisfies

Ãz∗ = f in L,

(M∗ +D)z∗ = 0 in V ′.

Proof. We only consider problem (7.17) since the proof for problem (7.18) is
similar. Owing to Lemma 7.10 and Theorem 7.8, letting V0 = Ker(D −M), we
infer that the restricted operator A : V0 → L is an isomorphism. Let f ∈ L and
let z ∈ V0 be such that Az = f . Then, z solves (7.17) since, for all y ∈ V ,

a(z, y) = (Az, y)L +
1
2
〈(M −D)z, y〉V ′,V = (f, y)L + 0 = (f, y)L .

This proves the existence of the solution to (7.17). Uniqueness results from the
L-coercivity of the bilinear form a on V established in Lemma 7.13. Finally, the
exact solution z satisfies (7.27a) since, for all ϕ ∈ Υ, (Az − f, ϕ)L = 0, while,
for all y ∈ V , we obtain

1
2
〈(M −D)z, y〉V ′,V =

1
2
〈(M −D)z, y〉V ′,V + (Az, y)L − (f, y)L

= a(z, y) − (f, y)L = 0,

i.e., (7.27b) also holds true.
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7.2.5 Examples
In this section, we review the examples introduced in Sect. 7.1.2. Assump-
tions (7.2) have already been verified. Thus, setting

Az = A0z +
d∑

k=1

Ak∂kz,

Ãz = ((A0)t − X )z −
d∑

k=1

Ak∂kz,

A and Ã are Friedrichs’ operators. It remains to specify the graph space V , the
boundary operator D, and a suitable boundary operator M satisfying (7.26) to
enforce boundary conditions.

7.2.5.1 Advection-Reaction

The graph space associated with the advection-reaction problem has been iden-
tified in (2.8), namely

V =
{
z ∈ L2(Ω) | β·∇z ∈ L2(Ω)

}
.

In Sect. 2.1.3, it was shown that under the assumptions that β ∈ [Lip(Ω)]d and
that the inflow and outflow boundaries are well-separated, functions in the graph
space V admit traces in the space L2(|β·n|;∂Ω) defined by (2.10), and that the
following integration by parts formula holds true (cf. (2.11)): For all z, y ∈ V ,

∫

Ω

[(β·∇y)z + (β·∇z)y + (∇·β)yz] =
∫

∂Ω

(β·n)yz.

As a result, the boundary operator D admits the following representation: For
all z, y ∈ V ,

〈Dz, y〉V ′,V =
∫

∂Ω

(β·n)yz.

Furthermore, we can set, for all z, y ∈ V ,

〈Mz, y〉V ′,V =
∫

∂Ω

|β·n|yz.

Assumption (7.26a) is evident. To verify assumption (7.26b), we recall that there
are two functions ψ− and ψ+ in C1(Ω) such that

ψ− + ψ+ ≡ 1 in Ω, ψ−|∂Ω+ = 0, ψ+|∂Ω− = 0.

Then, for all z ∈ V , letting z± = ψ±z, we obtain z = z− + z+ and z± ∈
Ker(D ∓ M), thereby proving (7.26b). Finally, owing to the surjectivity of
traces (cf. Lemma 2.11),

V0 = Ker(D −M) = {z ∈ V | z|∂Ω− = 0} .
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7.2.5.2 The Div-Grad Problem

The graph space associated with the div-grad problem is

V = H(div;Ω) ×H1(Ω)

=
{
(zσ, zu) ∈ [L2(Ω)]d × L2(Ω) | ∇·zσ ∈ L2(Ω), ∇zu ∈ [L2(Ω)]d

}
.

The boundary operator D takes the following form: For all (σ, u), (τ, v) ∈ V ,

〈D(σ, u), (τ, v)〉V ′,V = 〈σ·n, v〉− 1
2 , 1

2
+ 〈τ ·n, u〉− 1

2 , 1
2
,

where 〈·, ·〉− 1
2 , 1

2
denotes the duality pairing between the spaces H− 1

2 (∂Ω) and
H

1
2 (∂Ω). For Dirichlet boundary conditions, the boundary operator M can be

taken such that, for all (σ, u), (τ, v) ∈ V ,

〈M(σ, u), (τ, v)〉V ′,V = 〈σ·n, v〉− 1
2 , 1

2
− 〈τ ·n, u〉− 1

2 , 1
2
.

Assumption (7.26a) clearly holds true since M is skew-symmetric. To verify
assumption (7.26b), we observe that, for all (σ, u) ∈ V , (σ, 0) ∈ Ker(D −M)
and (0, u) ∈ Ker(D + M). Furthermore, since (σ, u) ∈ Ker(D −M) amounts
to 〈τ ·n, u〉− 1

2 , 1
2

= 0 and since normal traces in H(div;Ω) are surjective onto
H− 1

2 (∂Ω), we infer

V0 = Ker(D −M) = {(σ, u) ∈ V | u|∂Ω = 0} .
Whenever σ and τ are smooth enough so that their normal components are in

L2(∂Ω), the boundary operators D and M can be represented by the boundary
fields D and M introduced in Sect. 7.1.2, namely

〈D(σ, u), (τ, v)〉V ′,V =
∫

∂Ω

(τ, v)t

[
	d,d n

nt 0

]

(σ, u),

and

〈M(σ, u), (τ, v)〉V ′,V =
∫

∂Ω

(τ, v)t

[
	d,d −n

nt 0

]

(σ, u).

For Robin/Neumann boundary conditions, we can take, for all (σ, u), (τ, v) ∈ V ,

〈M(σ, u), (τ, v)〉V ′,V = −〈σ·n, v〉− 1
2 , 1

2
+ 〈τ ·n, u〉− 1

2 , 1
2

+
∫

∂Ω

2γuv.

Finally, the diffusion-advection-reaction equation is accommodated by adding
the term

∫
∂Ω

(β·n)uv to the expression of the boundary operators D and M .

7.2.5.3 Linear Elasticity

The formalism for treating (compressible) linear elasticity problems is quite close
to that for the div-grad problem. The graph space is given by

V = Hσ × [H1(Ω)]d, Hσ =
{
σ ∈ [L2(Ω)]d,d | ∇·(σ + σt) ∈ [L2(Ω)]d

}
,
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and the boundary operator D is such that, for all (σ, u), (τ, v) ∈ V ,

〈Dz, y〉V ′,V = −〈 1
2 (τ + τ t)·n, u〉− 1

2 , 1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 , 12

,

where 〈·, ·〉− 1
2 , 12

now denotes the duality pairing between the spaces [H− 1
2 (∂Ω)]d

and [H
1
2 (∂Ω)]d. For Dirichlet boundary conditions, the boundary operator M

can be taken such that, for all (σ, u), (τ, v) ∈ V ,

〈Mz, y〉V ′,V = 〈 1
2(τ + τ t)·n, u〉− 1

2 , 1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 , 1

2
,

and the verification of assumptions (7.26) proceeds similarly to the div-grad
problem. Using the surjectivity of traces yields, as for the div-grad problem,

V0 = Ker(D −M) = {(σ, u) ∈ V | u|∂Ω = 0} .
Whenever (σ+σt) and (τ +τ t) are smooth enough so that their normal com-

ponents are in [L2(∂Ω)]d, the boundary operators D and M can be represented
by the boundary fields D and M introduced in Sect. 7.1.2, namely

〈D(σ, u), (τ, v)〉V ′,V =
∫

∂Ω

(τ, v)t

[
	d2,d2 N
N t 	d,d

]

(σ, u),

with N ∈ �d2,d defined by (7.13), and

〈M(σ, u), (τ, v)〉V ′,V =
∫

∂Ω

(τ, v)t

[
	d2,d2 −N
N t 	d,d

]

(σ, u).

Robin/Neumann boundary conditions can be treated similarly.

7.2.5.4 The Curl-Curl Problem

For the curl-curl problem, the graph space is

V = H(curl; Ω) ×H(curl; Ω),

where
H(curl; Ω) :=

{
v ∈ [L2(Ω)]3 | ∇×v ∈ [L2(Ω)]3

}
.

The boundary operator D takes the following form: For all (H,E), (h, e) ∈ V ,

〈D(H,E), (h, e)〉V ′,V = (∇×E,h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .

For Dirichlet boundary conditions on the tangential component of the electric
field, the boundary operator M can be taken such that, for all (H,E), (h, e) ∈ V ,

〈M(H,E), (h, e)〉V ′,V = − (∇×E,h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .
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Assumption (7.26a) clearly holds true since M is skew-symmetric. To verify
assumption (7.26b), we observe that, for all (H,E) ∈ V , (H, 0) ∈ Ker(D −M)
and (0, E) ∈ Ker(D+M). Assuming that Ω is smooth enough so that [H1(Ω)]3

is dense in H(curl; Ω), it can be shown (see, e.g., [145, Sect. 5.4]) that

V0 = Ker(D −M) = {(H,E) ∈ V | n ×E|∂Ω = 0} .
Whenever all the fields are smooth enough so that their tangential compo-

nents are in [L2(∂Ω)]3, the boundary operators D and M can be represented by
the boundary fields D and M introduced in Sect. 7.1.2, namely

〈D(H,E), (h, e)〉V ′,V =
∫

∂Ω

(h, e)t

[
	3,3 T
T t 	3,3

]

(H,E),

with T ∈ �3,3 defined by (7.14), and

〈M(H,E), (h, e)〉V ′,V =
∫

∂Ω

(h, e)t

[
	3,3 −T
T t 	3,3

]

(H,E).

A Dirichlet boundary condition on the tangential component of the magnetic
field can be enforced by changing the sign of M .

7.3 Discretization
The goal of this section is to approximate by a dG method the unique weak
solution z ∈ V of the model problem (7.17). We follow the same path of ideas
as that developed in Chap. 2 for the advection-reaction equation.

The approximate solution zh is sought in the discrete space

Vh := [�k
d(Th)]m,

where �k
d(Th) is the broken polynomial space defined by (1.15) with polyno-

mial degree k ≥ 0 and Th belonging to an admissible mesh sequence. We con-
sider different polynomial approximation orders for the various components of z
in Sect. 7.4.

For any subset ω ⊂ Ω, where ω is a mesh element, a face or a collection
thereof, we denote by (·, ·)L,ω the usual scalar product in [L2(ω)]m. The subscript
ω is dropped whenever ω = Ω.

7.3.1 Assumptions on the Data and the Exact Solution
We assume that the fields A1, . . . ,Ad are smooth enough so that

∀T ∈ Th, ∀k ∈ {1, . . . , d}, Ak|T ∈ [C0, 1
2 (T )]m,m, (7.28)

with norm bounded uniformly in Ω. In practice, we can proceed as for the het-
erogeneous diffusion problem discussed in Sect. 4.5. We assume that we are given
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a partition PΩ := {Ωi}1≤i≤NΩ of Ω (cf. Assumption 4.43) such that the fields
A1|Ωi , . . . ,Ad|Ωi are in [C0, 1

2 (Ωi)]m,m for all 1 ≤ i ≤ NΩ, and we require that
the mesh sequence TH is compatible with the partition PΩ (cf. Assumption 4.45).
This ensures that (7.28) holds true for all h ∈ H.

We extend the definition (7.6) of the boundary field D to all interfaces in
F i

h. Specifically, the field D is now two-valued at each interface F ∈ F i
h with

F = ∂T1 ∩ ∂T2 and is defined such that

D|Ti
:=

d∑

k=1

nTi,kAk|Ti , i ∈ {1, 2},

where (nTi,1, . . . ,nTi,d) are the Cartesian components of the outward unit
normal nTi to Ti. Owing to assumption (7.2a),

∑d
k=1 ∂kAk ∈ [L∞(Ω)]m,m.

A distributional argument (cf., e.g., the proof of Lemma 1.24) then yields, for
all F ∈ F i

h,
d∑

k=1

nF,k�Ak� = 0,

where (nF,1, . . . ,nF,d) are the Cartesian components of the fixed unit normal nF

to F . Hence,
{{D}} = 0 ∀F ∈ F i

h. (7.29)

As a result, we can consider the single-valued field DF such that, for all F ∈ Fh,

DF =
d∑

k=1

nF,kAk.

As in Sect. 2.2 (cf. Assumption 2.13), we make a slightly more stringent regu-
larity assumption on the exact solution z rather than just belonging to the graph
space V . The objective is on the one hand to formulate the boundary conditions
using the boundary fields D and M rather than the boundary operators D and
M and on the other hand to verify the consistency of the approximation by
plugging the exact solution into the dG bilinear form.

Assumption 7.15 (Regularity of exact solution and space V∗). We assume that
there is a partition PΩ = {Ωi}1≤i≤NΩ of Ω into disjoint polyhedra such that, for
the exact solution z,

z ∈ V∗ := V ∩ [H1(PΩ)]m.

In the spirit of Sect. 1.3, we set V∗h := V∗ + Vh.

Owing to the trace inequality (1.18) with p = 2, Assumption 7.15 implies
that, for all T ∈ Th, the restriction z|T has traces a.e. on each face F ∈ FT ,
and these traces belong to [L2(F )]m. Moreover, the exact solution satisfies the
boundary condition (M−D)z = 0 for all F ∈ Fb

h. Finally, proceeding as in the
proof of Lemma 2.14, it is shown that

DF �z� = 0 ∀F ∈ F i
h. (7.30)
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7.3.2 Design of the Discrete Bilinear Form
The design of the discrete bilinear form proceeds in two steps, as in Chap. 2 for
the advection-reaction equation, namely:

(a) We first formulate a consistent discrete bilinear form enjoying discrete
L-coercivity on Vh; this property is the counterpart of Lemma 7.13 for the
exact bilinear form a.

(b) Then, we tighten the stability of the discrete bilinear form by adding a
least-squares penalty on (certain) interface jumps and boundary values.

In terms of numerical fluxes, the first step can be interpreted as the use of
centered fluxes, while the second step leads to upwind-type fluxes. Numerical
fluxes are further discussed in Sect. 7.3.4.

7.3.2.1 Step 1: Discrete L-Coercivity with Consistency

Similarly to the advection-reaction equation (cf. Sect. 2.2), we consider the fol-
lowing discrete bilinear form: For all (z, yh) ∈ V∗h × Vh,

acf
h (z, yh) :=

∑

T∈Th

(Az, yh)L,T +
1
2

∑

F∈Fb
h

((M−D)z, yh)L,F

−
∑

F∈Fi
h

(DF �z�, {{yh}})L,F . (7.31)

The superscript indicates the use of centered fluxes as shown in Sect. 7.3.4. We
define on V∗h the seminorm

|y|2M :=
∫

∂Ω

ytMy.

Lemma 7.16 (Consistency and discrete L-coercivity). The bilinear form acf
h

defined by (7.31) satisfies the following two properties:

(i) Consistency: For the exact solution z ∈ V∗,

acf
h (z, yh) = a(z, yh) = (f, yh)L ∀yh ∈ Vh, (7.32)

where the exact bilinear form a is defined by (7.16).

(ii) Discrete L-coercivity (compare with the result of Lemma 7.13): For all
yh ∈ Vh,

acf
h (yh, yh) ≥ μ0‖yh‖2

L +
1
2
|yh|2M , (7.33)

where μ0 results from assumption (7.2c).
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Proof. Consistency (7.32) results from Assumption 7.15 and property (7.30). To
verify discrete L-coercivity, we use integration by parts to infer, for all yh ∈ Vh,

∑

T∈Th

(Ayh, yh)L,T =
∑

T∈Th

[(A(0)yh, yh)L,T + (A(1)yh, yh)L,T ]

=
∑

T∈Th

((A0 − 1
2X )yh, yh)L,T +

∑

T∈Th

1
2 (Dyh, yh)L,∂T

≥ μ0‖yh‖2
L +

∑

T∈Th

1
2 (Dyh, yh)L,∂T ,

To rearrange the second term, we observe that, for all F ∈ F i
h with F = ∂T1 ∩

∂T2, yi = yh|Ti , Di = D|Ti , i ∈ {1, 2}, with nF pointing from T1 to T2,

{{yt
hDyh}} =

1
2
(yt

1D1y1 + y2D2y2)

=
1
2
(yt

1D1y1 − y2D1y2)

=
1
2
(y1 + y2)tD1(y1 − y2)

= {{yh}}tDF �yh�,

where we have used (7.29) on the second line to infer D2 = −D1 and the sym-
metry of D1 on the third line. As a result,

∑

T∈Th

1
2(Dyh, yh)L,∂T =

∑

F∈Fb
h

1
2 (Dyh, yh)L,F +

∑

F∈Fi
h

(DF �yh�, {{yh}})L,F .

The proof of (7.33) is now straightforward.

The discrete bilinear form acf
h can be used to formulate the discrete problem:

Find zh ∈ Vh s.t. acf
h (zh, yh) = (f, yh)L for all yh ∈ Vh.

Since acf
h is L-coercive, this problem is well-posed. However, as for the advection-

reaction equation, the stability of the bilinear form acf
h is not sufficient to derive

quasi-optimal error estimates for smooth solutions. Indeed, for polynomial
degrees k ≥ 1, proceeding as in Sect. 2.2.2 (the arguments are not repeated
here for brevity), we infer an error bound converging at the rate hk for the error
measured in the L-norm augmented by the |·|M -seminorm. The purpose of the
next step is to inject additional stability into the discrete bilinear form using
least-squares penalties of (certain) interface jumps and boundary values.

7.3.2.2 Step 2: Tightened Discrete Stability Using Penalties

In this second step, we consider the bilinear form, for all (z, yh) ∈ V∗h × Vh,

ah(z, yh) := acf
h (z, yh) + sh(z, yh), (7.34)



316 Chapter 7. Friedrichs’ Systems

with the stabilization bilinear form

sh(z, yh) :=
∑

F∈Fb
h

(Sb
F z, yh)L,F +

∑

F∈Fi
h

(Si
F �z�, �yh�)L,F . (7.35)

The �m,m-valued fields Sb
F and Si

F involve some user-dependent parameters, and
must satisfy some basic design conditions. First of all, they must not perturb
the consistency and discrete L-coercivity satisfied by the bilinear form acf

h . To
this purpose, we assume

For all F ∈ Fb
h, Sb

F z = 0 and for all F ∈ F i
h, Si

F �z� = 0, (7.36a)

Sb
F and Si

F are symmetric and nonnegative, (7.36b)

where z is the exact solution. Since sh is nonnegative, a coercivity argument
shows that the discrete problem (7.39) is well-posed. Moreover, still owing
to (7.36b), we can define the following seminorm: For all y ∈ V∗h,

|y|2S := sh(y, y),

and by construction, the bilinear form ah satisfies the following strengthened
discrete coercivity (compare with (7.33)): For all yh ∈ Vh,

ah(yh, yh) ≥ μ0‖yh‖2
L + 1

2 |yh|2M + |yh|2S . (7.37)

The fields Sb
F and Si

F are assumed to satisfy the following additional design
conditions: For all y, z ∈ [L2(F )]m,

Sb
F ≤ α1�m, α2|DF | ≤ Si

F ≤ α3�m, (7.38a)

|((M−D)y, z)L,F | ≤ α4((Sb
F + M)y, y)

1/2

L,F ‖z‖L,F , (7.38b)

|((M + D)y, z)L,F | ≤ α5‖y‖L,F ((Sb
F + M)z, z)

1/2

L,F . (7.38c)

Here, α1, . . . , α5 are user-dependent positive parameters, and the inequalities
in (7.38a) are meant on the associated quadratic forms. We observe that the
absolute value |DF | is well-defined since DF takes, by construction, symmetric
values.

The discrete problem now becomes:

Find zh ∈ Vh s.t. ah(zh, yh) = (f, yh)L for all yh ∈ Vh. (7.39)

Owing to the discrete coercivity (7.37), this problem is well-posed. However,
the key point is that owing to the design conditions (7.38), the bilinear form ah

satisfies a discrete inf-sup stability condition in a stronger norm than the one
used in (7.37). For all y ∈ V∗h, we define

|||y|||2 := ‖y‖2
L + |y|2M + |y|2S +

∑

T∈Th

hT ‖A(1)y‖2
L,T . (7.40)

In what follows, the notation a � b means the inequality a ≤ Cb with positive C
independent of h; the real number C can depend on the mesh regularity param-
eters, the coefficients of the Friedrichs’ system, and the parameters α1, . . . , α5

introduced above. Without loss of generality, we assume h ≤ 1.
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Lemma 7.17 (Discrete inf-sup stability). There holds, for all zh ∈ Vh,

|||zh||| � sup
yh∈Vh\{0}

ah(zh, yh)
|||yh||| .

Proof. The proof is similar to that for the advection-reaction equation in the
case of upwinding; cf. Lemma 2.35. Let zh ∈ Vh and define

� = sup
yh∈Vh\{0}

ah(zh, yh)
|||yh||| .

Our goal is to prove that |||zh||| � �. A direct consequence of (7.37) is that

‖zh‖2
L + |zh|2M + |zh|2S � ah(zh, zh) ≤ �|||zh|||. (7.41)

To bound the fourth term in the definition (7.40) of |||zh|||, we consider the func-
tion yh ∈ Vh such that, for all T ∈ Th, yh|T := hT 〈A(1)〉T zh where 〈A(1)〉T :=
∑d

k=1〈Ak〉T ∂k and 〈Ak〉T denotes the mean value of Ak on the mesh element T .
First of all, we observe using the triangle inequality, an inverse inequality, the
regularity assumption (7.28) on the fields A1, . . . ,Ad, and h ≤ 1 that

hT ‖〈A(1)〉T zh‖2
L,T � hT ‖A(1)zh‖2

L,T + hT ‖(A(1) − 〈A(1)〉T )zh‖2
L,T

� hT ‖A(1)zh‖2
L,T + ‖zh‖2

L,T ,

whence ∑

T∈Th

h−1
T ‖yh‖2

L,T � |||zh|||2. (7.42)

Moreover, using the boundedness of M, the upper bounds in (7.38a), the discrete
trace inequality (1.37), and the above bound, we infer

|yh|2M + |yh|2S � |||zh|||2.
Since ‖yh‖L � ‖zh‖L and

∑

T∈Th

hT ‖A(1)yh‖2
L,T � |||zh|||2,

using the inverse inequality (1.36), the boundedness of the fields A1, . . . ,Ad,
and (7.42), we finally arrive at

|||yh||| � |||zh|||. (7.43)

Now, we observe that
∑

T∈Th

hT ‖A(1)zh‖2
L,T = ah(zh, yh) − (A(0)zh, yh)L

+
∑

T∈Th

hT (A(1)zh, (A(1) − 〈A(1)〉T )zh)L,T

−
∑

F∈Fb
h

1
2 ((M−D)zh, yh)L,F +

∑

F∈Fi
h

(DF �zh�, {{yh}})L,F

− sh(zh, yh) = T1 + . . . + T6,
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and we estimate the terms T1, . . . ,T6 on the right-hand side. Clearly, |T1| ≤
�|||yh||| � �|||zh||| owing to (7.43). Furthermore, |T2| � ‖zh‖L‖yh‖L � �

1/2|||zh|||3/2

using (7.41) and (7.43). In addition,

|T4| + |T5| + |T6| � (|zh|M + |zh|S)

(
∑

T∈Th

‖yh‖2
L,∂T

)1/2

,

where we have used (7.38b) to bound T4, the lower bound for Si
F in (7.38a) to

bound T5, and the upper bounds in (7.38a) to bound T6. Using the discrete
trace inequality (1.37) and the bounds (7.41) and (7.42), we infer

|T4| + |T5| + |T6| � �
1/2|||zh|||3/2.

Finally, to bound T3, we use the Cauchy–Schwarz inequality, Young’s inequality,
and the regularity assumption (7.28) on the fields A1, . . . ,Ad to obtain

|T3| � ‖zh‖2
L + γ

∑

T∈Th

hT ‖A(1)zh‖2
L,T ,

where γ can be chosen as small as needed. Hence,
∑

T∈Th

hT ‖A(1)zh‖2
L,T � �|||zh||| + �

1/2|||zh|||3/2,

which combined with (7.41) leads to

|||zh|||2 � �|||zh||| + �
1/2|||zh|||3/2.

Using Young’s inequality yields |||zh||| � �.

7.3.3 Convergence Analysis
To derive an error estimate on |||z − zh|||, where z is the exact solution of the
weak problem (7.17), we proceed in the spirit of Theorem 1.35. Since discrete
stability and consistency have already been proven, we only need to address the
boundedness of the discrete bilinear form ah.

Integrating by parts in the definition (7.31), that is, using the formal adjoint
Ã of A, we infer, for all z, yh ∈ V∗h × Vh,

acf
h (z, yh) =

∑

T∈Th

(z, Ãyh)L,T +
1
2

∑

F∈Fb
h

((M + D)z, yh)L,F

+
∑

F∈Fi
h

(DF {{z}}, �yh�)L,F . (7.44)

This form is more convenient to examine the boundedness of the bilinear form
ah = acf

h + sh. We define the following norm: For all y ∈ V∗h,

|||y|||2∗ = |||y|||2 +
∑

T∈Th

(
h−1

T ‖y‖2
L,T + ‖y‖2

L,∂T

)
.
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Lemma 7.18 (Boundedness). For all (w, yh) ∈ V∗h × Vh, there holds

ah(w, yh) � |||w|||∗ |||yh|||.

Proof. Let (w, yh) ∈ V∗h ×Vh. Denote by T1, T2, and T3 the three terms on the
right-hand side of (7.44). We first observe that

(w, Ãyh)L,T = (w, Ã(0)yh)L,T − (w,A(1)yh)L,T ,

and since (w,A(1)yh)L,T ≤ h
−1/2

T ‖w‖L,Th
1/2

T ‖A(1)yh‖L,T , we infer that

T1 =
∑

T∈Th

(w, Ãyh)L,T � |||w|||∗ |||yh|||.

Furthermore, using (7.38c) and the lower bound for Si
F in (7.38a) yields

|T2| + |T3| �
(
∑

F∈Fh

‖w‖2
L,F

)1/2

(|yh|M + |yh|S) ≤ |||w|||∗ |||yh|||.

Hence, acf
h (w, yh) � |||w|||∗ |||yh|||. Finally, since ah = acf

h + sh and

sh(w, yh) ≤ |w|S |yh|S ≤ |||w||| |||yh|||,

the desired bound on ah(w, yh) is obtained.

We can now state the main result of this section.

Theorem 7.19 (Error estimate and convergence rate for smooth solutions). Let
z ∈ V∗ solve (7.17). Let zh solve (7.39) with ah defined by (7.34). Then, there
holds

|||z − zh||| � inf
yh∈Vh

|||z − yh|||∗. (7.45)

Moreover, if z ∈ [Hk+1(Ω)]m, there holds

|||z − zh||| ≤ Czh
k+1/2, (7.46)

where Cz = C‖z‖[Hk+1(Ω)]m with C independent of h.

Proof. The bound (7.45) follows from Theorem 1.35, while the bound (7.46) is
obtained by taking yh = πhz, where πh denotes the L-orthogonal projection onto
Vh, and using Lemmata 1.58 and 1.59.

As for the advection-reaction problem, the above error estimate is optimal for
the broken graph norm and the seminorms |·|M and |·|S , while it is 1/2-suboptimal
for the L-norm.
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Remark 7.20 (Convergence based on discrete coercivity). Proceeding as in
Sect. 2.3.2, it is possible to derive a weaker convergence result solely based on
the discrete coercivity (7.37) without requiring the discrete inf-sup condition
established in Lemma 7.17. The analysis relies on the following boundedness on
orthogonal subscales for the discrete bilinear form ah: For all (w, yh) ∈
[H1(Th)]m × Vh, there holds

ah(w − πhw, yh) � |||w − πhw|||∗ (‖yh‖L + |yh|M + |yh|S).

This result can be proven by proceeding similarly to the proof of Lemma 2.30.

7.3.4 Numerical Fluxes
The discrete problem (7.39) can be equivalently formulated by means of local
(elementwise) problems and numerical fluxes defined on element faces. To this
purpose, we use the formal adjoint Ã after integration by parts (cf. (7.44)),
similarly to the approach pursued in finite volume methods.

By localizing the test function yh in (7.39) to mesh elements, the discrete
problem (7.39) amounts to finding zh ∈ Vh such that, for all T ∈ Th and all
y ∈ [�k

d(T )]m,

(zh, Ãy)L,T +
∑

F∈FT

εT,F (φF (zh), y)L,F = (f, y)L,T ,

where, as usual, εT,F := nT ·nF , while the numerical fluxes are given by

φF (zh) =

{
DF {{zh}} + Si

F �zh� if F ∈ F i
h,

1
2 (M + D)zh + Sb

F zh if F ∈ Fb
h.

Centered fluxes are recovered when Si
F = 0 (i.e., without interface penalties).

7.3.5 Examples
7.3.5.1 Advection-Reaction

For the advection-reaction problem, the fields Sb
F and Si

F are scalar-valued and
can be taken such that

Sb
F = 0, Si

F = η,

where η > 0 is a user-dependent parameter (this parameter can vary from face
to face). This yields the upwind dG method analyzed in Sect. 2.3. A simple
choice is η = 1.

7.3.5.2 The Div-Grad Problem

For the div-grad problem with Dirichlet boundary conditions, the fields Sb
F and

Si
F can be taken such that

Sb
F =

[
	d,d 	d,1

	1,d η1

]

, Si
F =

[
η2nF⊗nF 	d,1

	1,d η3

]

,
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where η1, η2, and η3 are positive user-dependent parameters (these parame-
ters can vary from face to face). The above choice amounts to penalizing the
boundary values of the potential together with the jumps across interfaces of the
potential and of the normal component of the diffusive flux. Furthermore, for
Robin/Neumann boundary conditions, the field Sb

F can be taken such that

Sb
F = η1

[
n⊗n −γn
−γnt γ2

]

,

with positive user-dependent parameter η1.
For z = (σ, u), the numerical flux φF (z) is on an interface F ∈ F i

h,

φF (z) =
(

nF ({{u}} + η2nF ·�σ�)
nF ·{{σ}} + η3�u�

)

,

while on a boundary face F ∈ Fb
h, the numerical flux is

φF (z) =
(

0
n·σ + η1u

)

, φF (z) =
(
un + η1n·(n·σ − γu)
γu − η1γ(n·σ − γu)

)

,

for Dirichlet and Robin/Neumann boundary conditions, respectively.
The resulting dG methods differ from those considered in Chap. 4 for the

Poisson problem (they were briefly mentioned at the end of Sect. 4.4.2). In par-
ticular, the present methods are more computationally demanding since they
require solving simultaneously for the potential and the diffusive flux, instead
of just solving for the potential and reconstructing the diffusive flux by post-
processing the potential (cf. Sect. 5.5). The payoff of the present approach is
to yield a more accurate approximation of the diffusive flux, provided the exact
solution is smooth enough. Indeed, if the potential and the diffusive flux have
Hk+1(Ω)-regularity, the error estimate (7.46) yields an hk+1/2 error estimate on
the diffusive flux in the [L2(Ω)]d-norm and an hk error estimate on the bro-
ken divergence of the diffusive flux. Another interesting aspect of the present
approach is that the choice k = 0 is possible; this choice entails the same number
of degrees of freedom as the choice k = 1 when approximating only the potential.

7.3.5.3 Linear Elasticity

For the linear elasticity problem with Dirichlet boundary conditions on the dis-
placement, the fields Sb

F and Si
F can be taken such that

Sb
F =

[
	d2,d2 	d2,d

	d,d2 η1�d

]

, Si
F =

[
η2NFN t

F 	d2,d

	d,d2 η3�d

]

,

where NF is defined as N in (7.13) by just replacing n by nF , so that, for all
τ ∈ �d2

, NF τ = −1/2(τ + τ t)·nF ∈ �d. Moreover, η1, η2, and η3 are positive
user-dependent parameters (these parameters can vary from face to face). The
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above choice amounts to penalizing the boundary values of the displacement
together with the jumps across interfaces of the displacement and of the normal
stress.

For z = (σ, u) and with the notation σS := 1
2 (σ + σt), the numerical flux

φF (z) is

φF (z) =
(NF ({{u}} + η2nF ·�σS�)

nF ·{{σS}} + η3�u�

)

, φF (z) =
(

0
n·σS + η1u

)

,

on an interface F ∈ F i
h and on a boundary face F ∈ Fb

h, respectively.

7.3.5.4 The Curl-Curl Problem

For the curl-curl problem with Dirichlet boundary condition on the tangential
component of the electric field, the fields Sb

F and Si
F can be taken such that

Sb
F =

[
	3,3 	3,3

	3,3 η1T tT

]

, Si
F =

⎡

⎣
η2T t

FTF 	3,3

	3,3 η3T t
FTF

⎤

⎦ ,

where TF is defined as T in (7.14) by just replacing n by nF , so that, for all
ξ ∈ �3, TF ξ = nF×ξ ∈ �3. Moreover, η1, η2, and η3 are positive user-dependent
parameters (these parameters can vary from face to face). The above choice
amounts to penalizing the boundary values of the tangential component of the
electric field together with the jumps across interfaces of the tangential compo-
nent of both the electric and magnetic fields.

For z = (H,E), the numerical flux φF (z) is

φF (z) =
(

nF×{{E}} + η2nF×�H�
−nF×{{H}} + η3nF×�E�

)

, φF (z) =
(

0
−n×H + η1n×E

)

,

on an interface F ∈ F i
h and on a boundary face F ∈ Fb

h, respectively.

7.4 Two-Field Systems
In this section, we particularize the continuous setting and the dG approximation
to a special class of Friedrichs’ systems featuring a two-field structure. Two-
field Friedrichs’ systems are obtained from the mixed formulation of elliptic-type
second-order PDEs, so that the Friedrichs’ system incorporates two components,
that is, the �m-valued function z is decomposed as z = (zσ, zu) where zσ is
�mσ -valued and zu is �mu-valued with m = mσ +mu. Applications include the
div-grad problem (together with diffusion-advection-reaction problems), linear
elasticity, and the curl-curl problem (cf. Table 7.1).

The main difference with the dG approximation designed in the previous sec-
tion is that we modify the penalty strategy in order to eliminate the σ-component
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Table 7.1: Examples of two-field Friedrichs’ systems
Problem zσ zu mσ mu

Div-grad −∇u u d 1
Linear elasticity 1/2(∇u + ∇ut) + λ−1(∇·u)�d u d2 d
Curl-curl H E 3 3

locally by solving elementwise problems. This entails penalizing the jumps of
the u-component with a weight that scales as the reciprocal of the local mesh-
size, while the jumps of the σ-component are not penalized. The resulting dG
method is more cost-effective than that presented in the previous section (since
it only solves for the u-component), but the counterpart is that the approxima-
tion on the σ-component is (slightly) less accurate. For the div-grad problem,
after elimination of the σ-component, we recover the SIP method or some of its
variants discussed in Sect. 4.4 in the context of mixed dG methods.

For the sake of simplicity, we focus on Dirichlet boundary conditions on the
u-component, and do not consider first-order terms in the PDEs. Robin/
Neumann boundary conditions and first-order terms can be incorporated into
the formalism as described in [143].

7.4.1 The Continuous Setting
It is convenient to define

Lσ := [L2(Ω)]mσ and Lu := [L2(Ω)]mu .

We assume that the fields A0,A1, . . . ,Ad admit the block-structure

A0 =

[
Kσσ 	mσ,mu

	mu,mσ Kuu

]

, Ak =

⎡

⎣
	mσ,mσ Bk

(Bk)t 	mu,mu

⎤

⎦ , k ∈ {1, . . . , d},

(7.47)
where Kσσ is �mσ ,mσ -valued, Kuu is �mu,mu-valued, and Bk is �mσ ,mu -valued.
We suppose that the fields Bk are constant in Ω for all k ∈ {1, . . . , d}. The
assumptions (7.2a) and (7.2b) stated in Sect. 7.1.1 hold true; indeed, (7.2a) is
trivial since X = 	m,m because the fields Bk are constant, while (7.2b) holds
true by construction. Moreover, we assume (7.2c), meaning that the fields Kσσ

and Kuu are uniformly positive definite in Ω; a more general framework circum-
venting the need for full positivity is presented in Sect. 7.4.3.

In terms of PDEs, the two-field Friedrichs’ system amounts to

Kσσzσ +Bzu = fσ,

B̂zσ + Kuuzu = fu,



324 Chapter 7. Friedrichs’ Systems

with data fσ ∈ Lσ and fu ∈ Lu, and with the differential operators

B =
d∑

k=1

Bk∂k and B̂ =
d∑

k=1

(Bk)t∂k,

so that B̂ is the opposite of the formal adjoint of B. For instance, for the div-
grad problem, B represents the gradient operator and B̂ the divergence operator.
Eliminating zσ using the first equation (this is possible since Kσσ is uniformly
positive definite) yields

zσ = −(Kσσ)−1(Bzu − fσ), (7.48)

and substituting this expression into the second equation leads to a second-order
PDE for zu in the form

−B̂(Kσσ)−1Bzu + Kuuzu = fu − B̂(Kσσ)−1fσ.

The boundary field D admits the block-structure

D =

[
	mσ,mσ Dσu

Duσ 	mu,mu

]

,

where

Dσu :=
d∑

k=1

Bknk

is �mσ,mu -valued and Duσ = (Dσu)t is �mu,mσ -valued. We assume that Dσu

is injective, so that a Dirichlet boundary condition on zu can be enforced by
setting

M =

[
	mσ,mσ −Dσu

Duσ 	mu,mu

]

.

Indeed, z ∈ Ker(M−D) means that Dσuzu = 0, and hence zu = 0 since Dσu is
injective. Moreover, assumption (7.7) on M can also be verified.

7.4.2 Discretization
The two components of z can be approximated using polynomials of different
degree, say l for the σ-component and k for the u-component. Correspondingly,
we set

Σh := [�l
d(Th)]mσ , Uh := [�k

d(Th)]mu , Vh := Σh × Uh.
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We assume that
l ∈ {k − 1, k}.

7.4.2.1 Design of the dG Bilinear Form

The dG bilinear form ah is still such that ah = acf
h +sh with acf

h defined by (7.31),
but the stabilization bilinear form sh is now taken in the form

sh(zu, yu
h) =

∑

F∈Fb
h

(Sb
F z

u, yu
h)Lu,F +

∑

F∈Fi
h

(Si
F �zu�, �yu

h�)Lu,F ,

where the fields Sb
F and Si

F are now �mu,mu-valued; in other words, the sta-
bilization only acts on the u-component (compare with (7.35)). In the present
setting, the design conditions (7.36)–(7.38) are modified as

For the exact solution z and for all F ∈ Fb
h, Sb

F z
u = 0, (7.49a)

Sb
F and Si

F are symmetric and nonnegative, (7.49b)

α1h
−1
F (Duσ

F Dσu
F )1/2 ≤ Sb

F ≤ α2�mu , (7.49c)

α3h
−1
F (Duσ

F Dσu
F )1/2 ≤ Si

F ≤ α4�mu . (7.49d)

Here, α1, . . . , α4 are user-dependent positive parameters, and the inequalities
in (7.49c) and (7.49d) are meant as usual on the associated quadratic forms. The
matrices Duσ

F and Dσu
F are defined as Duσ and Dσu, respectively, with n replaced

by nF . We observe that Duσ
F Dσu

F is by construction symmetric and nonnegative,
and it is actually positive definite since Dσu is injective; hence, (Duσ

F Dσu
F )1/2 is

well-defined. Finally, as in Chap. 4 (cf. Definition 4.5), in dimension d ≥ 2, hF

denotes the diameter of the face F (other local length scales can be chosen),
while in dimension 1, we set hF := min(hT1 , hT2) if F ∈ F i

h with F = ∂T1 ∩ ∂T2

and hF := hT if F ∈ Fb
h with F = ∂T ∩ ∂Ω.

Example 7.21 (Choices for Sb
F and Si

F ). For the div-grad problem, we can take
Sb

F = Si
F = ηh−1

F (as in the SIP method presented in Sect. 4.2), for the lin-
ear elasticity problem, we can take Sb

F = Si
F = ηh−1

F �d, and for the curl-curl
problem, we can take Sb

F = Si
F = ηh−1

F TF (TF )t. In all cases, η is a positive
user-dependent parameter.

7.4.2.2 The Discrete Problem

We consider the discrete problem:

Find zh ∈ Vh s.t. ah(zh, yh) = (f, yh)L for all yh ∈ Vh. (7.50)
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Accounting for the two-field structure yields the expression

ah(z, yh) =
∑

T∈Th

{
(Kσσzσ, yσ

h )Lσ ,T + (Kuuzu, yu
h)Lu,T

+ (Bzu, yσ
h)Lσ ,T + (B̂zσ, yu

h)Lu,T

}
−

∑

F∈Fb
h

(Dσu
F zu, yσ

h)Lσ ,F

−
∑

F∈Fi
h

{
(Dσu

F �zu�, {{yσ
h}})Lσ ,F + (Duσ

F �zσ�, {{yu
h}})Lu,F

}

+
∑

F∈Fb
h

(Sb
F z

u, yu
h)Lu,F +

∑

F∈Fi
h

(Si
F �zu�, �yu

h�)Lu,F . (7.51)

Condition (7.49a) ensures that the discrete bilinear form ah is consistent.
Condition (7.49b) combined with (7.33) (the seminorm |·|M now vanishes since
M is skew-symmetric) yields

ah(yh, yh) ≥ acf
h (yh, yh) ≥ μ0‖yh‖2

L.

Hence, owing to the Lax–Milgram Lemma, the discrete problem (7.50) is well-
posed.

7.4.2.3 Local Elimination of the σ-Component

As in the continuous setting, the σ-component can be eliminated from the dis-
crete problem (7.50). Let l ∈ {k − 1, k} be the polynomial degree used to
build the discrete space Σh and let F ∈ Fh. We define the lifting operator
rl
F : [L2(F )]mu → [�l

d(Th)]mσ such that, for all ϕ ∈ [L2(F )]mu ,

(rl
F (ϕ), qh)Lσ = (ϕ,Duσ

F {{qh}})Lu,F ∀qh ∈ [�l
d(Th)]mσ .

The support of rl
F consists of the one or two mesh elements of which F is a face.

For all zu
h ∈ Uh and for all yσ

h ∈ Σh, we obtain
∑

F∈Fb
h

(Dσu
F zu

h , y
σ
h)Lσ ,F +

∑

F∈Fi
h

(Dσu
F �zu

h�, {{yσ
h}})Lσ ,F =

∑

F∈Fh

(rl
F (�zu

h�), yσ
h )Lσ .

Assuming for simplicity fσ = 0 in the discrete problem (7.50) and letting

Rl
h(�zu

h�) :=
∑

F∈Fh

rl
F (�zu

h�),

we deduce from (7.51) the reconstruction formula (compare with (7.48))

zσ
h = −(Kσσ)−1(Bhz

u
h − Rl

h(�zu
h�)), (7.52)

where Bh denotes the broken version of the differential operator B, that is,
for all T ∈ Th, Bhz

u
h |T = B(zu

h |T ). The reconstruction formula (7.52) is an
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extension to the present setting of the discrete gradient introduced in Sect. 4.3.2
in the context of the Poisson problem. Owing to (7.52), the discrete bilinear
form (7.51) can be rewritten in the form

ah(zh, yh) = (Kσσ(Bhz
u
h − Rl

h(�zu
h�)), Bhy

u
h − Rl

h(�yu
h�))Lσ + (Kuuzu

h , y
u
h)Lu

+
∑

F∈Fb
h

(Sb
F z

u
h , y

u
h)Lu,F +

∑

F∈Fi
h

(Si
F �zu

h�, �yu
h�)Lu,F

:= au
h(zu

h , y
u
h). (7.53)

Remark 7.22 (Stencil reduction). Similarly to the discussion in Sect. 4.4.2 for
LDG methods, the stabilization bilinear form sh can be further modified so as
to reduce the stencil associated with the bilinear form au

h defined by (7.53).
This entails here subtracting the term (Kσσ Rl

h(�zu
h�),Rl

h(�yu
h�))Lσ and taking

the penalty parameters in Sb
F and Si

F large enough to control this term.

7.4.2.4 Convergence Analysis

The convergence analysis of the discrete problem (7.50) can be performed by
considering the discrete bilinear form au

h defined by (7.53) and proceeding as
in Sect. 4.2 for the Poisson problem. In what follows, we consider instead the
mixed formulation based on the discrete bilinear form ah defined by (7.51). We
keep the spaces V∗ and V∗h defined in Assumption 7.15.

The design conditions (7.49c) and (7.49d) are motivated by the following
discrete inf-sup stability result in terms of the norm defined on V∗h as

|||y|||2 := ‖y‖2
L + |yu|2S +

∑

T∈Th

‖Byu‖2
Lσ,T , (7.54)

where |yu|2S = sh(yu, yu). We observe that, for all yh ∈ Vh,

ah(yh, yh) ≥ μ0‖yh‖2
L + |yu

h |2S . (7.55)

Lemma 7.23 (Discrete inf-sup stability). Let ah be defined by (7.51). Then,
there holds, for all zh ∈ Vh,

|||zh||| � sup
yh∈Vh\{0}

ah(zh, yh)
|||yh||| .

Proof. Let zh ∈ Vh and set � = supyh∈Vh\{0}
ah(zh,yh)

|||yh||| . Owing to (7.55),

‖zh‖2
L + |zu

h |2S � �|||zh|||.

Moreover, the discrete function yh = (Bzu
h , 0) is in Vh since l ≥ k − 1, and

|||yh|||2 = ‖yh‖2
L = ‖yσ

h‖2
Lσ

=
∑

T∈Th

‖Bzu
h‖2

Lσ ,T .
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A direct calculation shows that
∑

T∈Th

‖Bzu
h‖2

Lσ ,T = ah(zh, yh) −
∑

T∈Th

(Kσσzσ
h , y

σ
h ) −

∑

F∈Fb
h

(Dσu
F zu

h , y
σ
h )Lσ ,F

−
∑

F∈Fi
h

[(Dσu
F �zu

h�, {{yσ
h}})Lσ ,F = T1 + . . . + T4,

and we bound the four terms on the right-hand side. It is clear that |T1| ≤ �|||yh|||
and |T2| � ‖zh‖L‖yh‖L. To bound T3 and T4, we observe that, for x ∈ �mu and
y ∈ �mσ , the Cauchy–Schwarz inequality yields ytDσux ≤ ‖Dσux‖�mσ ‖y‖�mσ

where ‖·‖�mσ denotes the Euclidean norm in �mσ . Moreover,

‖Dσux‖2
�mσ = (Dσux)t(Dσux) = xt(DuσDσu)x � xt(DuσDσu)1/2x.

Hence, using the lower bounds in (7.49c) and (7.49d) together with the discrete
trace inequality (1.37), we infer

|T3| + |T4| � |zu
h |S‖yσ

h‖Lσ .

Collecting the above bounds and using Young’s inequality yields (7.55).

Our goal is now to estimate using Theorem 1.35 the approximation error
(z − zh) in the |||·|||-norm defined by (7.54). Discrete stability and consistency
have already been proven; thus, it only remains to address the boundedness
of the bilinear form ah. It is convenient to integrate by parts the two terms
involving the differential operators B and B̂. This yields

ah(z, yh) =
∑

T∈Th

{
(Kσσzσ, yσ

h )Lσ ,T + (Kuuzu, yu
h)Lu,T

− (zu, B̂yσ
h)Lσ ,T − (zσ, Byu

h)Lu,T

}
+

∑

F∈Fb
h

(Duσ
F zσ, yu

h)Lσ ,F

+
∑

F∈Fi
h

{
(Dσu

F {{zu}}, �yσ
h �)Lσ ,F + (Duσ

F {{zσ}}, �yu
h�)Lu,F

}

+
∑

F∈Fb
h

(Sb
F z

u, yu
h)Lu,F +

∑

F∈Fi
h

(Si
F �zu�, �yu

h�)Lu,F . (7.56)

We introduce the following norm on V∗h:

|||y|||2∗ := |||y|||2 +
∑

T∈Th

{
h−2

T ‖yu‖2
Lu,T + h−1

T ‖yu‖2
Lu,∂T + hT ‖yσ‖2

Lσ ,∂T

}
.

Lemma 7.24 (Boundedness). For all (w, yh) ∈ V∗h × Vh, there holds

ah(w, yh) � |||w|||∗ |||yh|||. (7.57)
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Proof. Let (w, yh) ∈ V∗h × Vh. Let T1, . . . ,T9 be the terms on the right-hand
side of (7.56). We observe that

|T1| + |T2| + |T4| + |T8| + |T9| � |||w||| |||yh||| ≤ |||w|||∗ |||yh|||.

Using the inverse inequality (1.36), T3 is bounded as

|T3| �
(
∑

T∈Th

h−2
T ‖wu‖2

Lu,T

)1/2

‖yh‖L ≤ |||w|||∗ |||yh|||.

Using the lower bound in (7.49c) and (7.49d) leads to

|T5| + |T7| �
(
∑

T∈Th

hT ‖wσ‖2
Lσ ,∂T

)1/2

|yu
h |S ≤ |||w|||∗ |||yh|||.

Finally, using the discrete trace inequality (1.37) and the mesh regularity yields

|T6| �
(
∑

T∈Th

h−1
T ‖wu‖2

Lu,∂T

)1/2

‖yh‖L ≤ |||w|||∗ |||yh|||.

Collecting the above bounds, we infer (7.57).

Theorem 7.25 (Error estimate and convergence rate for smooth solutions).
Let z solve (7.17) and assume that the Friedrichs’ system features the two-field
structure described in Sect. 7.4.1. Let zh solve (7.50) with ah defined by (7.51).
Then, there holds

|||z − zh||| � inf
yh∈Vh

|||z − yh|||∗.

Moreover, if z ∈ [Hk(Ω)]mσ × [Hk+1(Ω)]mu , there holds

|||z − zh||| ≤ Czh
k, (7.58)

where Cz = C(‖zσ‖[Hk(Ω)]mσ + ‖zu‖[Hk+1(Ω)]mu ) with C independent of h.

The error estimate (7.58) is optimal for the broken graph norm of the u-
component. It is also optimal for the Lσ-norm of the σ-component if l =
k − 1. Furthermore, the estimate is suboptimal by one order for the Lu-norm.
A sharper estimate can be derived using a duality argument assuming elliptic
regularity. The duality argument presented for the Poisson problem in Sect. 4.2.4
can be extended to the setting of two-field Friedrichs’ systems [143].

7.4.3 Partial Coercivity
For the div-grad problem and the linear elasticity equations, a slightly more
general setting modifying assumption (7.2c) can be considered so as to avoid the
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need for a positive zero-order term in the u-component. Specifically, assump-
tion (7.2c) is now replaced by

∃μ0 > 0, ∀(zσ, zu) ∈ L, (A0z, z)L ≥ μ0‖zσ‖2
Lσ

a.e. in Ω. (7.59)

In view of the block-decomposition (7.47), this means that the matrix Kσσ is
uniformly positive definite and that the matrix Kuu is only nonnegative. This
situation is encountered for instance when considering the mixed formulation of
the Poisson problem (7.9) leading to Kuu = 0 or when considering the linear
elasticity equations (7.11) with the coefficient α set to zero.

At the continuous level, the well-posedness of the Friedrichs’ system in its
weak formulation (7.16) can be established as in [144] provided the following
Poincaré-like inequality holds true:

∃α0 > 0, ∀z ∈ V ∪ V ∗, α0‖zu‖Lu ≤ a(z, z)1/2 + ‖Bzu‖Lσ . (7.60)

For the Poisson problem with homogeneous Dirichlet boundary conditions, V =
V ∗ = H1

0 (Ω) and Bzu = ∇zu, so that (7.60) results from the usual Poincaré
inequality. Robin/Neumann boundary conditions can also be treated as detailed
in [144]. For the linear elasticity equations with homogeneous Dirichlet boundary
conditions, V = V ∗ = [H1

0 (Ω)]d and Bzu = 1
2 (∇zu + (∇zu)t), so that (7.60)

results from Korn’s First Inequality (see, e.g., Ciarlet [92, p. 24]).
At the discrete level, the dG bilinear form ah defined by (7.51) can be used,

provided the following discrete counterpart of (7.60) holds true:

∃α1 > 0, ∀zh ∈ Vh, α1‖zu
h‖Lu ≤ ah(zh, zh)1/2 + ‖Bhz

u
h‖Lσ , (7.61)

with α1 independent of h. For the Poisson problem, (7.61) results from the
discrete coercivity (7.55) and the discrete Poincaré inequality (4.20) stating that,
for all zu

h ∈ Uh,
α1‖zu

h‖2
L2(Ω) ≤ |zu

h |2S + ‖∇hz
u
h‖2

[L2(Ω)]d ,

since the penalty parameters in Sb
F and Si

F scale as h−1
F . For the linear elasticity

equations, (7.61) results from a discrete Korn inequality; see Duarte, do Carmo,
and Rochinha [137] and Brenner [52]. It is worthwhile to notice that the result-
ing dG method is not robust with respect to the compressibility parameter λ
in (7.11), leading to the so-called locking phenomenon. The origin of the prob-
lem stems from the elimination of the stress tensor since the matrix Kσσ is no
longer invertible if λ = 0. A robust approximation in the incompressible limit
can be designed by working on the mixed formulation, as observed by Franca
and Stenberg [162] in the context of Galerkin/Least-Squares approximations and
by Brezzi and Fortin [57, Chap.VI] and by Schwab and Suri [276] in the context
of conforming mixed finite element methods. In the context of dG methods,
one possibility analyzed by Ern and Guermond [144] consists in penalizing the
boundary values and interface jumps of the trace of the stress tensor together
with those of the displacement vector. Alternatively, an additional scalar vari-
able (the pressure) can be introduced. Indeed, a direct calculation shows that
(compare with (7.12))

σt(A0)σσσ = λ
(d+λ)2 | tr(σ)|2 + |σ − 1

d+λ tr(σ)�d|2�2 ,
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so that in the limit λ→ 0, only the control on tr(σ) is lost. This second approach
leads to the dG methods analyzed in Sect. 6.1.2 in the context of steady Stokes
flows.

7.5 The Unsteady Case
In this section, we consider unsteady Friedrichs’ systems. Space discretization is
achieved using the dG schemes analyzed in Sects. 7.3 and 7.4. Two approaches
are considered for time discretization. For general Friedrichs’ systems, we employ
explicit Runge–Kutta schemes and show how the ideas presented in Sect. 3.1 for
the unsteady advection-reaction problem (i.e., energy-based stability estimates)
extend in a straightforward manner to unsteady Friedrichs’ systems. Then,
focusing on linear wave propagation problems in mixed form, that is, on unsteady
Friedrichs’ systems with the two-field structure identified in Sect. 7.4, we study
explicit leap-frog schemes to march in time. The attractive property is that
the use of centered fluxes leads to a certain energy conservation under a CFL
condition. The approach can also accommodate local time stepping.

7.5.1 Explicit Runge–Kutta Schemes
In this section, following the ideas of Burman, Ern, and Fernández [66],
we extend to Friedrichs’ systems the explicit RK2 and RK3 schemes (3.23)
and (3.27) analyzed in Chap. 3 in the context of the unsteady advection-reaction
equation.

7.5.1.1 The Continuous Setting

We are interested in the time evolution problem

∂tz + Az = f in Ω × (0, tF), (7.62a)
(M−D)z = 0 on ∂Ω × (0, tF), (7.62b)
z(·, t = 0) = z0 in Ω, (7.62c)

with operator A defined by (7.3) and (7.4), source term f , initial datum z0,
and finite time tF > 0. The field D is defined by (7.6) and the field M satis-
fies (7.7); cf. Sect. 7.1.2 for examples in the steady case. We assume that the
fields A0,A1, . . . ,Ad defining the operator A are time-independent and that they
satisfy assumptions (7.2a) and (7.2b). However, letting X =

∑d
k=1 ∂kAk, the

field
Λ :=

1
2
(A0 + (A0)t

)− 1
2
X ∈ [L∞(Ω)]m,m,

is no longer required to satisfy the positivity assumption (7.2c).
To fix the ideas, we assume that the model problem (7.62) has been normal-

ized so that all the components of z are nondimensional. Then, the components
of the fields A1, . . . ,Ad (and also those of D and M) scale as velocities, while
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those of A0, X , and Λ scale as the reciprocal of a time. We consider the reference
velocity

βc := max(‖A1‖[L∞(Ω)]m,m , . . . , ‖Ad‖[L∞(Ω)]m,m , ‖M‖[L∞(Ω)]m,m ).

We assume for simplicity that all the components of the fields A1, . . . ,Ad are
Lipschitz continuous, and we denote by LA the maximum Lipschitz module for
all the components of all the fields. Then, similarly to the advection-reaction
problem, we define the reference time

τc := {max(‖A0‖[L∞(Ω)]m,m , LA)}−1.

We notice that it is possible that ‖A0‖[L∞(Ω)]m,m = LA = 0 (e.g., no zero-order
term and constant fields A1, . . . ,Ad), in which case τc = ∞. It is therefore
convenient to introduce an additional reference time

τ∗ := min(tF, τc),

which is always finite.
Using the notation of Sect. 3.1.1 for space-time functional spaces, we assume

that f ∈ C0(L). Moreover, we are interested in smooth solutions, specifically,

z ∈ C0([H1(Ω)]m) ∩ C1(L).

(At this stage, we can replace [H1(Ω)]m by the graph space V defined by (7.22).)
This implies that the initial datum z0 is in [H1(Ω)]m and that we can formulate
the time evolution problem (7.62) as

dtz(t) +Az(t) = f(t) ∀t ∈ [0, tF]. (7.63)

The following basic energy estimate is proven by proceeding as in the proof of
Lemma 3.2 for the unsteady advection-reaction equation.

Lemma 7.26 (Energy estimate). Let z ∈ C0([H1(Ω)]m) ∩ C1(L) solve (7.63).
Then, introducing the time scale ς := (t−1

F + 2‖Λ‖[L∞(Ω)]m,m )−1, there holds

‖z(t)‖2
L ≤ e

t/ς(‖z0‖2
L + ςtF‖f‖2

C0(L)) ∀t ∈ [0, tF].

7.5.1.2 Discretization

As in Sect. 7.3 for the steady case, the discrete space Vh is taken to be [�k
d(Th)]m

with polynomial degree k ≥ 0 and Th belonging to an admissible mesh sequence.
We set V∗h = [H1(Ω)]m + Vh. For simplicity, as for the unsteady advection-
reaction equation in Sect. 3.1.2, we consider quasi-uniform mesh sequences,
meaning that the ratio of the largest to the smallest element diameter of a given
mesh is uniformly bounded.

We define the discrete operators Acf
h : V∗h → Vh and Sh : V∗h → Vh such

that, for all (y,wh) ∈ V∗h × Vh,

(Acf
h y,wh)L := acf

h (y,wh), (Shy,wh)L := sh(y,wh),
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with the centered flux dG bilinear form acf
h defined by (7.31) and the stabilization

bilinear form sh defined by (7.35). Letting ah = acf
h + sh as in (7.34), we also

define the discrete operator Ah : V∗h → Vh such that

Ah := Acf
h + Sh.

The discrete operator Ah can be used to formulate the space semidiscrete prob-
lem (notice that the zero-order term is incorporated in the definition of Ah)

dtzh(t) + Ahzh(t) = fh(t) ∀t ∈ [0, tF],

with initial condition zh(0) = πhz0 and source term fh(t) = πhf(t) for all
t ∈ [0, tF]. Here, πh denotes the L-orthogonal projection onto Vh.

The �m,m-valued fields Sb
F and Si

F in the definition of sh are assumed to sat-
isfy the design conditions (7.36)–(7.38). Conditions (7.38) are slightly modified
to account for the scaling of Sb

F and Si
F in terms of the reference velocity βc,

yielding
Sb

F ≤ α1βc�m, α2|DF | ≤ Si
F ≤ α3βc�m,

and, for all y, z ∈ [L2(F )]m,

|((M−D)y, z)L,F | ≤ α4β
1/2
c ((Sb

F + M)y, y)
1/2

L,F ‖z‖L,F ,

|((M + D)y, z)L,F | ≤ α5β
1/2
c ‖y‖L,F ((Sb

F + M)z, z)
1/2

L,F ,

with user-dependent positive parameters α1, . . . , α5. Owing to the adopted scal-
ings, these parameters are nondimensional.

Let δt be the time step, taken to be constant for simplicity and such that
tF = Nδt where N is an integer. For 0 ≤ n ≤ N , a superscript n indicates the
value of a function at the discrete time tn := nδt. We consider the explicit RK2
scheme

wn
h = zn

h − δtAhz
n
h + δtfn

h ,

zn+1
h = 1

2(zn
h + wn

h) − 1
2δtAhw

n
h + 1

2δtf
n+1
h ,

and the explicit RK3 scheme

wn
h = zn

h − δtAhz
n
h + δtfn

h ,

yn
h = 1

2 (zn
h + wn

h) − 1
2δtAhw

n
h + 1

2δt(f
n
h + δtdtf

n
h ),

zn+1
h = 1

3 (zn
h + wn

h + yn
h) − 1

3δtAhy
n
h + 1

3δtf
n+1
h ,

both with the initial condition z0
h = πhz0. Variants in handling the source term

can be considered.

7.5.1.3 Convergence Results

We only quote the convergence results and refer the reader to [66] for the proofs.
We abbreviate as a � b the inequality a ≤ Cb with positive C independent of h,
δt, and the problem data (that is, f , A0,A1, . . . ,Ad, and M).
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Theorem 7.27 (Convergence for RK2). Assume z ∈ C3(L) ∩ C0([H1(Ω)]m)
and f ∈ C2(L).

(i) In the case k ≥ 2, assume the strengthened 4/3-CFL condition δt ≤
′τ

−1/3
∗ (h/βc)4/3 for some positive real number ′;

(ii) In the piecewise affine case (k = 1), assume the CFL condition δt ≤ β−1
c h

with  ≤ RK2 for a suitable threshold RK2 independent of the h, δt, and
the problem data.

Assume ds
tz ∈ Cs([Hk+1−s(Ω)]m) for s ∈ {0, 1}. Then,

‖zN − zN
h ‖L +

(
N−1∑

m=0

δt|zm − zm
h |2MS

)1/2

� χ
(
δt2 + hk+1/2

)
,

where χ depends on bounded norms of f and z. Here, for y ∈ V∗h,

|y|2MS :=
1
2
(My, y)L,∂Ω + sh(y, y),

Theorem 7.28 (Convergence for RK3). Assume z ∈ C4(L) ∩ C0([H1(Ω)]m)
and f ∈ C3(L). Assume the CFL condition δt ≤ β−1

c h with  ≤ RK3 for
a suitable threshold RK3 independent of h, δt, and the problem data. Assume
ds

tz ∈ Cs([Hk+1−s(Ω)]m) for s ∈ {0, 1, 2}. Then,

‖zN − zN
h ‖L +

(
N−1∑

m=0

δt|zm − zm
h |2MS

)1/2

� χ
(
δt3 + hk+1/2

)
,

where χ depends on bounded norms of f and z.

7.5.2 Explicit Leap-Frog Schemes for Two-Field Systems
In this section, we consider the unsteady version of the two-field Friedrichs’
systems examined in Sect. 7.4. Specifically, we are interested in linear wave
propagation problems without zero-order terms (A0 = 0) in the autonomous
case (f = 0). Under suitable boundary conditions (the reflecting boundary
conditions of Definition 7.29 below), these problems conserve an energy. In
many applications, e.g., for resonance computations in cavities, it is important to
conserve this energy at the discrete level as much as possible. To avoid excessive
dissipation in space, the stabilization bilinear form sh is discarded, that is, the
fields Sb

F and Si
F are set to zero. This amounts to the use of centered fluxes in the

dG scheme. We examine explicit leap-frog schemes to march in time combined
with centered dG fluxes. This approach ensures energy-stability under a CFL
condition and lends itself to the use of local time stepping.
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7.5.2.1 The Continuous Setting

The fields A1, . . . ,Ad have the block-structure identified by (7.47), namely

Ak =

⎡

⎣
	mσ,mσ Bk

(Bk)t 	mu,mu

⎤

⎦ ∀k ∈ {1, . . . , d},

and we suppose for simplicity that the �mσ ,mu-valued fields Bk are constant
in Ω. As before, we consider the differential operators B =

∑d
k=1 Bk∂k and

B̂ =
∑d

k=1(Bk)t∂k. The time evolution problem is (for simplicity, we write σ
instead of zσ and u instead of zu)

∂tσ + Bu = 0 in Ω × (0, tF), (7.64a)

∂tu+ B̂σ = 0 in Ω × (0, tF), (7.64b)

(M−D)(σ, u)t = 0 on ∂Ω × (0, tF), (7.64c)
(σ, u)(·, t = 0) = (σ0, u0) in Ω, (7.64d)

with initial data (σ0, u0) ∈ Lσ ×Lu. We observe that (7.64a) and (7.64b) imply

∂ttu = B̂Bu.

We are interested in smooth solutions such that z = (σ, u)t ∈ C0([H1(Ω)]m) ∩
C1(L). The boundary field D admits the block-structure

D =

[
	mσ,mσ Dσu

Duσ 	mu,mu

]

,

where Dσu =
∑d

k=1 Bknk is �mσ ,mu -valued and Duσ = (Dσu)t is �mu,mσ -valued.
As in Sect. 7.4, we assume that Dσu is injective.

Definition 7.29 (Reflecting boundary condition). We say that the boundary
condition (7.64c) is reflecting (or non-dissipative) if the field M takes skew-
symmetric values.

The interest in reflecting boundary conditions is motivated by the following
energy conservation property.

Lemma 7.30 (Energy conservation). Assume reflecting boundary conditions.
Let z = (σ, u)t ∈ C0([H1(Ω)]m)∩C1(L) solve the time evolution problem (7.64).
Then, defining the energy as

E(t) := ‖σ‖2
Lσ

+ ‖u‖2
Lu

∀t ∈ [0, tF],

there holds
E(t) = E(0) ∀t ∈ [0, tF].
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Proof. We multiply (7.64a) by σ, (7.64b) by u, and integrate over Ω to infer

1
2
dtE(t) + (σ,Bu)Lσ + (u, B̂σ)Lu = 0.

Moreover,

(σ,Bu)Lσ + (u, B̂σ)Lu = (σ,Dσuu)Lσ ,∂Ω = 1
2 (z,Dz)L,∂Ω = 1

2 (z,Mz)L,∂Ω = 0,

since the boundary condition is reflecting. Hence, dtE(t) = 0.

Two examples of reflecting boundary conditions are obtained by taking

M =

[
	mσ,mσ −γDσu

γDuσ 	mu,mu

]

,

with parameter γ ∈ {−1, 1}. The choice γ = 1 leads to Dσuu = 0 and hence to
u = 0 since Dσu is injective, i.e., a homogeneous Dirichlet boundary condition
is enforced. The choice γ = −1 yields Duσσ = 0, which can be interpreted as a
homogeneous Neumann boundary condition.

7.5.2.2 Examples

The two classical examples for (7.64a) and (7.64b) are the unsteady div-grad
problem associated with acoustic waves and the unsteady curl-curl problem asso-
ciated with electromagnetic waves.

For the unsteady div-grad problem, let c0 be a reference velocity, and consider
the PDE system

∂tq + ∇p = 0,

c−2
0 ∂tp+ ∇·q = 0,

where p is the pressure and q the momentum per unit volume. Setting u = c−1
0 p

and σ = q yields (7.64a) and (7.64b) with the differential operators

B = c0∇, B̂ = c0∇·.
Reflecting boundary conditions enforce p or the normal component of q to be
zero on ∂Ω.

For the unsteady curl-curl problem, let μ, ε be positive constants and let
c0 = (με)1/2 be the reference velocity. Consider the PDE system

μ∂tH + ∇×E = 0,
ε∂tE −∇×H = 0,

where H is the magnetic field and E is the electric field. Setting u = ε
1/2E and

σ = μ1/2H yields (7.64a) and (7.64b) with the differential operators

B = c0∇×, B̂ = −c0∇×.
Reflecting boundary conditions enforce the tangential component of either H or
E to be zero on ∂Ω.
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7.5.2.3 Leap-Frog Scheme in Time and Centered Fluxes in Space

To discretize in space, we consider equal-order approximation for the two com-
ponents u and σ, namely we set

Uh = [�k
d(Th)]mu , Σh = [�k

d(Th)]mσ ,

with polynomial degree k ≥ 0 (observe that k = 0 is allowed here) and Th

belonging to an admissible mesh sequence. We define the following bilinear form
on Σh × Uh:

bh(τh, vh) :=
∑

T∈Th

(Bvh, τh)Lσ ,T − γ + 1
2

∑

F∈Fb
h

(Dσu
F vh, τh)Lσ ,F

−
∑

F∈Fi
h

(Dσu
F �vh�, {{τh}})Lσ ,F .

The discrete bilinear form bh can be extended to larger functional spaces, but
this extension is not needed in what follows. To allow for a more compact
notation, we define the discrete differential operator Bh : Uh → Σh such that,
for all (τh, vh) ∈ Σh × Uh,

(Bhvh, τh)Lσ
:= bh(τh, vh).

We also define the discrete differential operator B̂h : Σh → Uh such that, for all
(τh, vh) ∈ Σh × Uh,

(B̂hτh, vh)Lu
:= −bh(τh, vh) = −(Bhvh, τh)Lσ .

Integrating by parts on each mesh element yields

(B̂hτh, vh)Lu =
∑

T∈Th

(vh, B̂τh)Lu,T +
γ − 1

2

∑

F∈Fb
h

(Duσ
F τh, vh)Lu,F

−
∑

F∈Fi
h

(Duσ
F �τh�, {{vh}})Lu ,F .

Remark 7.31 (Centered fluxes). The link between the discrete bilinear form bh
and the discrete bilinear form ah defined by (7.51) and considered in Sect. 7.4.2
for homogeneous Dirichlet boundary conditions on u is that, for γ = 1 and
K = 0, taking Sb

F = 0 and Si
F = 0 yields

ah((σh, uh), (τh, vh)) = bh(τh, uh) − bh(σh, vh).

Hence, the discrete bilinear form bh is associated with the use of centered fluxes
for both components.

For future use, we state the following boundedness result, which is a con-
sequence of the definition of Bh, the inverse inequality (1.36), and the discrete
trace inequality (1.37).
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Lemma 7.32 (Bound on Bh). There is CB, independent of h and the problem
data, such that, for all vh ∈ Uh,

‖Bhvh‖Lσ ≤ CBβch
−1‖vh‖Lu ,

with the reference velocity βc := maxk∈{1,...,d} ‖Bk‖�mσ,mu .

We consider the following leap-frog scheme: Given u
−1/2

h and σ0
h, compute,

for all n ≥ 0,

u
n+1/2

h − u
n−1/2

h + δtB̂hσ
n
h = 0, (7.65a)

σn+1
h − σn

h + δtBhu
n+1/2

h = 0. (7.65b)

This scheme is fully explicit.

Lemma 7.33 (Pseudo-energy conservation). The leap-frog scheme (7.65) con-
serves the discrete pseudo-energy defined, for all n ∈ {0, . . . ,N}, as

Ẽn
h := ‖σn

h‖2
Lσ

+ (un+1/2

h , u
n−1/2

h )Lu ,

that is, for all n ≥ 0, Ẽn
h = Ẽ0

h.

Proof. We multiply (7.65b) by σ̄n+1/2

h = 1
2(σn

h + σn+1
h ) and integrate over Ω to

infer
‖σn+1

h ‖2
Lσ

− ‖σn
h‖2

Lσ
+ 2δt(σ̄n+1/2

h , Bhu
n+1/2

h )Lσ = 0.

Furthermore, we form the average of (7.65a) at n and (n+1), multiply by un+1/2

h ,
and integrate over Ω to obtain

(un+3/2

h , u
n+1/2

h )Lu − (un+1/2

h , u
n−1/2

h )Lu + 2δt(un+1/2

h , B̂hσ̄
n+1/2

h )Lu = 0.

Summing the two above equations yields

Ẽn+1
h − Ẽn

h + 2δt
(
(σ̄n+1/2

h , Bhu
n+1/2

h )Lσ + (un+1/2

h , B̂hσ̄
n+1/2

h )Lu

)
= 0,

and hence, Ẽn+1
h − Ẽn

h = 0 owing to the definitions of Bh and B̂h.

The discrete pseudo-energy Ẽn
h is a quadratic form on the discrete unknowns

σn
h and un

h, but is not positive definite. To remedy this, a CFL condition on the
time step can be invoked.

Theorem 7.34 (Energy estimate). Under the CFL condition

δt ≤ C−1
B

h

βc
, (7.66)

there holds, for all n ∈ {1, . . . ,N},

‖σn
h‖2

Lσ
+ ‖un−1/2

h ‖2
Lu

≤ 2Ẽ0
h.
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Proof. We observe that

Ẽn
h = ‖σn

h‖2
Lσ

+ (un+1/2

h , u
n−1/2

h )Lu

= ‖σn
h‖2

Lσ
+ ‖un−1/2

h ‖2
Lu

+ (un+1/2

h − u
n−1/2

h , u
n−1/2

h )Lu

= ‖σn
h‖2

Lσ
+ ‖un−1/2

h ‖2
Lu

− δt(un−1/2

h , B̂hσ
n
h)Lu

= ‖σn
h‖2

Lσ
+ ‖un−1/2

h ‖2
Lu

+ δt(Bhu
n−1/2

h , σn
h)Lσ

≥ ‖σn
h‖2

Lσ
+ ‖un−1/2

h ‖2
Lu

− (δtCBβch
−1)‖un−1/2

h ‖Lu‖σn
h‖Lσ ,

where we have used the Cauchy–Schwarz inequality together with Lemma 7.32.
Hence, using the CFL condition (7.66) and Young’s inequality yields

Ẽn
h ≥ 1

2

(
‖σn

h‖2
Lσ

+ ‖un−1/2

h ‖2
Lu

)
,

whence the assertion owing to Lemma 7.33.

7.5.2.4 Verlet Schemes and Local Time Stepping

Owing to the CFL condition (7.66), the time step is restricted by the diameter
of the smallest mesh element. When modeling systems with small geometrical
details (e.g., devices in emerging technologies related to optical waveguides or
furtivity), this condition leads to very small time steps and, hence, to prohibitive
computational costs. A possible work-around is to use local time stepping, mean-
ing that mesh elements are advanced with different local time steps, and that
the size of the local time step is adapted locally to the meshsize. It turns out
that the particular context of linear wave propagation problems approximated
by centered dG schemes is one of the rare cases where local time stepping can be
proven rigorously to be stable, at least in the two-scale situation (corresponding
to the algorithm V 2(δt) described below). For the sake of brevity, we only state
here the main ideas. We refer the reader to Piperno [259] for further insight and
to Hardy, Okunbor, and Skeel [186] for the theory of symplectic integrators for
dynamical Hamiltonian systems.

The elementary brick to formulate the time stepping scheme is based on the
Verlet method (equivalent to the leap-frog scheme), which can be written as

u
n+1/2

h − un
h + 1

2δtB̂hσ
n
h = 0, (7.67a)

σn+1
h − σn

h + δtBhu
n+1/2

h = 0, (7.67b)

un+1
h − u

n+1/2

h + 1
2δtB̂hσ

n+1
h = 0. (7.67c)

A recursive Verlet method can be used to derive a multiscale algorithm with
local time stepping. To this purpose, we assume that:

(a) The mesh elements have been partitioned into N classes (this partition is
performed once and for all before starting the simulation and is based for
instance on geometrical or physical criteria).
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Fig. 7.1: Algorithms V 2(δt) and V 3(δt) (a) Algorithm V 2(δt) with 9 substeps
(b) Algorithm V 3(δt) with 21 substeps

(b) The global time step for the algorithm is δt.

(c) The mesh elements of class k ∈ {1, . . . ,N} are time-advanced using the
Verlet method (7.67) with local time step 2k−N δt. In particular, the larger
elements in the computational domain belong to class N and the smallest
to class 1.
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We denote by V N (δt) the algorithm for time-advancing N classes over the time
interval δt. This algorithm is defined recursively. The algorithm V 1(δt) with
only one class is the Verlet method (7.67). For N ≥ 1, V N+1(δt) is defined as
follows:

1. Advance all the elements with class k ≤ N with the algorithm V N ( 1
2δt).

2. Advance all the elements with class k = N + 1 with the Verlet method
V 1(δt).

3. Advance all the elements with class k ≤ N with the algorithm V N ( 1
2δt).

Figure 7.1 illustrates algorithms V 2(δt) and V 3(δt). It is clear that these algo-
rithms are fully explicit. For all the substeps, updated values for unknowns in
neighboring elements are used whenever available.

The main stability result for algorithm V 2(δt) is the following; we refer the
reader to Piperno [259] for the proof.

Lemma 7.35 (Stability for V 2(δt)). Algorithm V 2(δt) preserves a quadratic
form of the unknowns. For δt small enough, this quadratic form is positive
definite.

Determining an explicit bound on the time step that yields a sufficient con-
dition for stability is a difficult task. In actual computations when the time step
and the mesh size vary at the same time, it seems that the scheme becomes
unstable if the usual local CFL condition is considered. It is conjectured that
a sufficient stability condition involves an extended non-local CFL condition,
where the class and size of neighbors of an element is taken into account. In
general, the scheme behaves well if the user exerts some caution, i.e., if the local
time step is driven not only by the local size of the elements, but also by the
possible smaller time steps of the neighboring elements.



Appendix A: Implementation

In this appendix, we discuss two relevant issues in the implementation of dG
methods, namely matrix assembly and the selection of basis functions in broken
polynomial spaces. In particular, we emphasize that the choice of basis functions
can have a substantial impact on both computational accuracy and efficiency in
practical implementations of dG methods.

A.1 Matrix Assembly
Matrix assembly for dG methods differs from that for conforming FE meth-
ods because (1) the degrees of freedom associated with each mesh element are
decoupled from those associated with the remaining elements; (2) terms involv-
ing integrals on interfaces are generally present. To illustrate the first point,
we consider the mass matrix, which is particularly relevant in the context of
time-marching schemes. To illustrate the second point, we consider the stiffness
matrix resulting from the discrete bilinear form associated with a purely diffusive
model problem.

A.1.1 Basic Notation
At the discrete level, we consider an approximation space Vh. A simple example
is the broken polynomial space �k

d(Th) defined by (1.15).
We exploit the fact that the restriction of a function vh ∈ Vh to a given mesh

element T ∈ Th can be chosen independently of its restriction to other elements,
whereby we restrict the support of basis functions to a single mesh element. This
is generally a good idea, since it reduces communications between mesh elements
and, therefore, yields the minimal stencil (cf. Definition 2.26). In this situation,
it is natural to assume that the global enumeration of the degrees of freedom is
such that the local degrees of freedom are numbered contiguously for each mesh
element. This leads to a basis for Vh of the form

Φ := {{ϕT
i }i∈DT }T∈Th

,

where the set DT = {1, . . . ,NT
dof} collects the local indices of the NT

dof degrees
of freedom for the mesh element T and where

supp(ϕT
i ) = T , ∀T ∈ Th, ∀i ∈ DT .

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin
Methods, Mathématiques et Applications 69, DOI 10.1007/978-3-642-22980-0,
c© Springer-Verlag Berlin Heidelberg 2012
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The dimension of Vh is therefore equal to
∑

T∈Th
NT

dof . Several choices for the
local basis {ϕT

i }i∈DT are discussed in Sect.A.2.
The number of degrees of freedom NT

dof can vary from element to element.
In the simple case where Vh = �k

d(Th), this number is constant and equal to
dim(�k

d) = (k+d)!
k!d! (cf. (1.14)). An example where this number varies is a broken

polynomial space built on a mesh containing both triangles and quadrangles for
which a Lagrangian basis at element nodes has been selected.

A.1.2 Mass Matrix
The global mass matrix is associated with the bilinear form

m(vh, wh) =
∫

Ω

vhwh, ∀vh, wh ∈ Vh.

Exploiting the localization of basis functions to single mesh elements, the global
mass matrix can be block-partitioned in the form

M =

⎡

⎢
⎢
⎢
⎢
⎣

MT1T1 0 . . . 0

0 MT2T2

. . .
...

...
. . . . . . 0

0 . . . 0 MTNTN

⎤

⎥
⎥
⎥
⎥
⎦
,

where N := card(Th). The local mass matrix corresponding to a generic element
T ∈ Th is

MTT =
[
m(ϕT

j , ϕ
T
i )
] ∈ �NT

dof ,N
T
dof ,

and this matrix is obviously symmetric positive definite.
The matrix M is relatively easy to invert owing to its block diagonal struc-

ture. A typical situation where this inverse is needed is when computing the
L2-orthogonal projection πhv of a given function v ∈ L2(Ω) onto the approxi-
mation space Vh (cf. (1.29)). The discrete function πhv is decomposed in the
basis Φ in such a way that, for all T ∈ Th,

πhv|T =
∑

j∈DT

XT
j ϕ

T
j ,

leading to the following independent linear systems: For all T ∈ Th,

MTT XT = VT ,

where XT = [XT
j ] ∈ �NT

dof and VT = [
∫

T vϕ
T
j ] ∈ �NT

dof .

A.1.3 Stiffness Matrix
Focusing on the purely diffusive model problem (4.14) with the discrete bilinear
form asip

h defined by (4.12), the global stiffness matrix can be block-partitioned
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in the form

A =

⎡

⎢
⎢
⎢
⎣

AT1T1 AT1T2 . . . AT1TN

AT2T1 AT2T2 . . . AT2TN

...
...

. . .
...

ATN T1 ATN T2 . . . ATN TN

⎤

⎥
⎥
⎥
⎦
,

where, for all Tk, Tl ∈ Th,

ATkTl
= [asip

h (ϕTl
j , ϕ

Tk
i )] ∈ �N

Tk
dof ,N

Tl
dof .

In view of the elementary stencil associated with the SIP bilinear form (cf.
Remark 4.10), the block ATkTl

is nonzero only if Tk = Tl (diagonal block) or if
Tk and Tl share a common interface.

We split the discrete bilinear form asip
h into volume, interface, and boundary

face contributions as follows: For all vh, wh ∈ Vh,

asip
h (vh, wh) = av

h(vh, wh) + aif
h(vh, wh) + abf

h (vh, wh),

where

av
h(vh, wh) =

∑

T∈Th

∫

T

∇vh·∇wh,

aif
h(vh, wh) =

∑

F∈Fi
h

∫

F

(

{{∇hvh}}·nF �wh� + �vh�{{∇hwh}}·nF +
η

hF
�vh��wh�

)

,

abf
h (vh, wh) =

∑

F∈Fb
h

∫

F

(

∇hvh·nwh + vh∇hwh·n +
η

hF
vhwh

)

.

Each summation yields a loop over the corresponding mesh entities to assemble
local contributions into the global stiffness matrix. The local stiffness matrix
stemming from the volume contribution of a generic mesh element T ∈ Th is

AT =
[
av

h(ϕT
j , ϕ

T
i )
] ∈ �NT

dof ,N
T
dof ,

and it contributes to the diagonal block ATT of the global stiffness matrix A.
An interface F ∈ F i

h contributes to four blocks of the global stiffness matrix A,
and the local stiffness matrix stemming from the interface contribution can be
block-partitioned in the form

AF =
[
AF

T1T1
AF

T1T2

AF
T2T1

AF
T2T2

]

,

where F = ∂T1 ∩ ∂T2,

AF
TmTn

=
[
aif

h(ϕTn′
j , ϕ

Tm′
i )

]
∈ �N

T
m′

dof ,N
T

n′
dof , ∀m,n ∈ {1, 2},
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Fig. A.1: Assembly of interface contributions

and 1′, 2′ ∈ {1, . . . ,N} are the indices of T1, T2 in the global enumeration of
mesh elements. Finally, a boundary face F ∈ Fb

h contributes through the local
stiffness matrix

AF = [abf
h (ϕT

j , ϕ
T
i )] ∈ �NT

dof ,N
T
dof ,

where F = ∂T ∩ ∂Ω. The procedure for global matrix assembly is summarized
in Algorithm 1. The assembly of interface terms is depicted in Fig.A.1.

A common operation with the global stiffness matrix is to multiply it by a
given component vector U associated with a discrete function uh ∈ Vh in such
a way that, for all T ∈ Th,

uh|T =
∑

j∈DT

UT
j ϕ

T
j , UT = [UT

j ] ∈ �NT
dof .

Concerning the volume contributions, we obtain, for all T ∈ Th and all i ∈ DT ,

av
h(uh, ϕ

T
i ) = AT (i, :)UT ,
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Algorithm 1 Global matrix assembly
1: for T ∈ Th do {Loop over elements}
2: ATT ← ATT + AT

3: end for
4: for F ∈ F i

h s.t. F = ∂T1 ∩ ∂T2 do {Loop over interfaces}
5: for m = 1 to 2 do
6: for n = 1 to 2 do
7: ATm′Tn′ ← ATm′Tn′ + AF

TmTn

8: end for
9: end for

10: end for
11: for F ∈ Fb

h s.t. F = ∂T ∩ ∂Ω do {Loop over boundary faces}
12: ATT ← ATT + AF

13: end for

where AT (i, :) denotes the ith line of the local stiffness matrix AT . For the
interface contributions, we obtain, for all F = ∂T1 ∩ ∂T2 ∈ F i

h, all l ∈ {1, 2},
and all i ∈ DTl′ ,

aif
h(uh, ϕ

Tl′
i ) = AF

TlT1
(i, :)UT1′ + AF

TlT2
(i, :)UT2′ .

Finally, for the boundary face contributions, we obtain, for all F = ∂T ∩∂Ω and
all i ∈ DT ,

abf
h (uh, ϕ

T
i ) = AF (i, :)UT .

A.2 Choice of Basis Functions
The choice of basis functions can have a substantial impact on the performance
(including accuracy) of a dG code. This is, in particular, the case when using
polynomials with high degree. In this section, we discuss some criteria to select
basis functions, and we present two main families of such functions, namely nodal
and modal basis functions. A brief section recalling some basic facts concerning
Legendre and Jacobi polynomials is also included for completeness.

A.2.1 Requirements
Various criteria can be adopted to select basis functions. Orthogonality and
hierarchism are often considered in the context of modal basis functions, while
ease of integral computation is often considered in the context of nodal basis
functions.

A.2.1.1 Orthogonality and Hierarchism

A first possible criterion to select a high-degree polynomial basis is that it be
orthogonal or nearly orthogonal with respect to an appropriate inner product.
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When the inner product corresponds to local matrices contributing to the global
system, this ensures that their condition number does not increase too much as
the polynomial degree k grows. In the case of unsteady problems discretized
with an explicit time integration method, an appropriate choice may be one
yielding a (quasi-)diagonal mass matrix (and, hence, a diagonal global system).
Using well-conditioned mass matrices also mitigates time step restrictions when
explicit schemes are applied to advective problems (see, e.g., Karniadakis and
Spencer [209, p. 187]).

Improving the condition number of local mass matrices is particularly rel-
evant for high-order approximations: for instance, when using Lagrange poly-
nomials of degree k associated with equispaced nodes in d space dimensions,
the condition number of elemental mass matrices is known to grow as 4kd (see
Olsen and Douglas [252]). Also, the condition number of the global matrix has
an important role in determining the numerical error in the solution (see, e.g.,
Quarteroni, Sacco, and Saleri [264, Theorem 3.1]).

A second important criterion which is often associated with orthogonality is
that the basis be hierarchical, that is to say, the basis for a given polynomial
degree k includes the bases for polynomial degrees less than k. This point is par-
ticularly relevant when one wishes to locally adapt (in space and/or in time) the
polynomial degree according to some a posteriori regularity estimates, following
the paradigm that, when the exact solution is locally smooth enough, increasing
the polynomial degree generally pays off more in terms of error reduction than
reducing the meshsize.

A.2.1.2 Ease of Integral Computation

A different criterion for selecting basis functions is to make the computation
of volume and face integrals as efficient as possible. While for linear problems
with constant coefficients, exact volume and face integrations can be performed,
quadratures are required in general. The principle of a quadrature is to approxi-
mate the integral of a generic function f over a domain D by a linear combination
of the values of f at a set of nodes {ξn}0≤n≤N of D, i.e.,

∫

D

f(t) �
N∑

n=0

ωnf(ξn).

The points {ξn}0≤n≤N are called the quadrature nodes, and the real num-
bers {ωn}0≤n≤N the quadrature weights. Thus, another reasonable criterion
is to select basis functions whose values at a specific set of quadrature points
can be easily computed. A simple example (whenever possible) is that of
Lagrange polynomials associated with these quadrature nodes; cf. the discussion
in Sect.A.2.3.

It is also worthwhile to try to alleviate the computation of integrals over mesh
faces as much as possible. As an example, we consider the element T = (0, 1) in
one space dimension along with the basis of �k

1(T ) given by {ϕj(x) = xj}0≤j≤k .
The trace at x = 0 of a function v ∈ �k

1(T ) expressed in terms of the selected
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basis as

v(x) =
k∑

j=0

αjϕj(x)

can simply be evaluated as v|x=0 = α0, so that it solely depends on one degree
of freedom. On the other hand, the trace v|x=1 =

∑k
j=0 αj depends on all the

degrees of freedom and is thus more computationally expensive to evaluate.
On a d-simplex T , while the dimension of �k

d(T ) is

Sk
d :=

(k + d)!
k!d!

,

the dimension of the space �k
d−1(F ), spanned by the traces of functions in �k

d(T )
over a face F ∈ FT is

Sk
d−1 =

(k + d− 1)!
k!(d− 1)!

.

Thus, the dimension of �k
d−1(F ) is smaller than that of �k

d(T ) by a factor (k +
d)/d. This fact can be exploited by localizing the degrees of freedom with exactly
Sk

d−1 nonzero basis functions on each face F ∈ FT ; cf. Sect.A.2.3 for further
discussion.

Remark 7.36 (Applicability to general elements). When handling general ele-
ments, the localization of the degrees of freedom can become difficult since no
simple reference element is available. For the same reason, numerical integration
requires adapted techniques. In this situation, ease of integral computation is
often renounced in favour of orthogonality and hierarchism.

A.2.2 Jacobi and Legendre Polynomials
We briefly present here some basic facts concerning Jacobi and Legendre orthog-
onal polynomial families, which are used in the next sections to construct nodal
and modal bases on the reference element.

For real numbers α > −1 and β > −1 and an integer k ≥ 0, the Jacobi
polynomials 
k

α,β are the solutions of the singular Sturm–Liouville problem

(1 − x)(1 + x)
d2y(x)

dx2
+ [β − α− (α+ β + 2)x]

dy(x)
dy

= −λky(x),

with λk = k(k + α+ β + 1). For any k ≥ 0, the Jacobi polynomial 
k
α,β on the

reference interval [−1, 1] is of degree k and can be computed by the following
recursive relation (see Abramowitz and Stegun [2, Table 22.7]):


0
α,β(x) = 1,


1
α,β(x) =

1
2

[α− β + (α+ β + 2)x] ,

a1
k


k+1
α,β (x) = (a2

k + a3
kx)


k
α,β(x) − a4

k

k−1
α,β (x),
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with
a1

k = 2(k + 1)(k + α+ β + 1)(2k + α+ β),

a2
k = (2k + α+ β + 1)(α2 − β2),

a3
k = (2k + α+ β + 2)(2k + α+ β + 1)(2k + α+ β),

a4
k = 2(k + α)(k + β)(2k + α+ β + 2).

The Jacobi polynomials satisfy the orthogonality property
∫ 1

−1

(1 − t)α(1 + t)β
k
α,β(t)
l

α,β(t) dt = ck,α,βδlk ,

with constant

ck,α,β :=
2α+β+1

2k + α+ β + 1
Γ(k + α+ 1)Γ(k + β + 1)

k!Γ(k + α+ β + 1)
,

where the so-called Γ function is such that, for any positive integer k, Γ(k) :=
(k − 1)!. More details on Jacobi polynomials can be found in the books by
Abramowitz and Stegun [2, Chap. 22] or by Karniadakis and Spencer [209, p.
350]. Jacobi polynomials with α = β = 0 are also termed Legendre polynomials.
For convenience, we define the Legendre polynomials over the reference interval
[0, 1] by setting

�k(t) = 
k
0,0(2t− 1) ∀t ∈ [0, 1]. (A.1)

The Legendre polynomial �k is of degree k. The orthogonality relation for the
Legendre polynomials simplifies to

∫ 1

0

�k(t)�l(t) dt =
1

2k + 1
δlk . (A.2)

The first four Legendre polynomials are represented in the left panel of Fig.A.2.

A.2.3 Nodal Basis Functions
In this section, we discuss the use of Lagrange polynomials in the context of
nodal basis functions.

A.2.3.1 Lagrange Polynomials

Lagrange polynomials are the interpolating polynomials for a given set of distinct
data points {xi}0≤i≤k. In one space dimension, the Lagrange polynomial equal
to 1 at xi and to 0 at xj , j �= i, can be expressed as

�ki (x) =
∏

j∈{0,...,k}\{i}

(x− xj)
(xi − xj)

∀i ∈ {0, . . . , k}.

The set {�ki }0≤i≤k forms a basis of the polynomial space �k
1 . When d > 1, in

order for the set of Lagrange polynomials to form a basis for the polynomial



A.2. Choice of Basis Functions 351

Fig. A.2: Left : Legendre polynomials of degree ≤3; Right : Lagrange polynomials
of degree ≤3 associated with Gauß-Lobatto nodes

space �k
d , a set containing Sk

d unisolvent points must be provided. Examples on
simplices can be found in Ern and Guermond [141, p. 23], Braess [49, p. 60], and
Brenner and Scott [54, p. 69].

A.2.3.2 Simplicial Meshes

A basis of �k
d(T ) on a simplex T in �d meeting the localization requirement

can be easily built using Lagrange polynomials. Indeed, it suffices to choose
(k + d)!/(k!d!) nodes inside the simplex, with exactly (k + d − 1)!/(k!(d − 1)!)
nodes on each face of the simplex. The basis is then obtained building the
Lagrange polynomials corresponding to the selected set of points. The nodes
can be chosen to optimize the condition number of the local mass matrix.

When working on a simplex T in �d and the polynomial space �k
d with k

large, it is possible to define sets of quadrature points with nearly optimal inter-
polation properties: the so-called Fekete points; see, e.g., Chen and Babuška [87]
and Taylor, Wingate, and Vincent [290]. When using Lagrange interpolation
polynomials associated with these points as local basis functions, the condition
number of the mass matrix is also nearly optimal. Fekete points in one space
dimension coincide with the so-called Gauß-Lobatto quadrature nodes. For an
integer k ≥ 2, the Gauß-Lobatto quadrature nodes are defined as the endpoints
of the interval [0, 1] together with the (k−1) roots of the polynomial (�k)′, where
�k denotes the Legendre polynomial of degree k defined by (A.1). The resulting
quadrature is exact for polynomials up to degree (2k−1). Lagrange polynomials
associated with the Gauß-Lobatto quadrature nodes for k = 3 are plotted in the
right panel of Fig.A.2. The Fekete points on edges turn out to be Gauß-Lobatto
points on each edge of the triangle. In three space dimensions, the theory is
less complete. One possibility is to use Lagrange interpolation nodes such that,
on each face of the tetrahedron, the nodes on that face are the two-dimensional
Fekete points.
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A.2.4 Modal Basis Functions
In this section, we discuss modal basis functions, first on simplicial meshes and
then on general meshes.

A.2.4.1 Simplicial Meshes

Instead of taking Lagrange polynomials as local basis functions, it can be more
convenient to consider non-nodal polynomials for which the mass matrix is nearly
diagonal, diagonal, or simply equal to the identity matrix. In one space dimen-
sion, this can be achieved by taking the basis functions on the reference ele-
ment [0, 1] to be the Legendre polynomials defined by (A.1). Owing to (A.2),
the elemental mass matrix is diagonal, and its condition number grows moder-
ately as (2k + 1). Extensions of such polynomials to two or three space dimen-
sions are possible using nonlinear transformations that map the simplex into the
d-cube where tensor-products of one-dimensional modal basis functions can be
used; see Dubiner [138]. For example, in three space dimensions, the following
polynomials ψlmn ∈ �k

d are L2-orthogonal on a tetrahedron:

ψlmn = clmn 

l
0,0(2r−1)

(
1 − s

2

)l


m
2l+1,0(2s−1)

(
1 − t

2

)l+m


m
2l+2m+2,0(2t−1),

with integer parameters l, m, n ≥ 0 such that l +m+ n = k and

r =
λ2 − λ1

λ2 + λ1
, s =

λ3 − λ2 − λ1

λ3 + λ2 + λ1
, t = λ4 − λ3 − λ2 − λ1,

the family {λi}1≤i≤4 denoting the barycentric coordinates in the tetrahedron;
cf. Definition 5.23. Although the functions ψlmn lead to diagonal mass matrices,
using them requires accurate pre-computation and storage of other matrices (for
instance, if derivatives are needed) and pointwise values if quadratures are used.
We refer to Hesthaven and Warburton [191,192] for further insight. Finally, one
nice feature of the above bases is that they are hierarchical.

A.2.4.2 General Meshes

The above approach mapping tetrahedra onto d-cubes can be extended to ele-
ments with some other shapes (e.g., prisms, pyramids). However, when elements
featuring more general shapes are used, other ideas must be devised. Follow-
ing Bassi, Botti, Colombo, Di Pietro, and Tesini [31], a hierarchical orthogonal
basis can be constructed on the physical elements. Since the notion of reference
element may fail to exist, the procedure needs to be repeated for each mesh ele-
ment. Let T denote a general polyhedral mesh element of �d. Since quadratures
are usually not available on general elements, numerical integration on T has
to be performed by decomposing T into simpler elements (e.g., simplices) for
which quadratures are available. Let Φ̂ := {ϕ̂j}j∈{1,...,Sk

d} denote a starting set
of linearly independent basis functions for �k

d(T ). We apply the Gram–Schmidt
orthonormalization procedure,
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1: ϕ1 ← ϕ̂1/‖ϕ̂1‖L2(T ) {Initialize}
2: for i = 2 to Sk

d do
3: ϕ̃i ← ϕ̂i

4: for j = 1 to i− 1 do
5: ϕ̃i ← ϕ̃i − (ϕ̂i, ϕj)L2(T )ϕj {Remove the projection of ϕ̂i onto ϕj}
6: end for
7: ϕi ← ϕ̃i/‖ϕ̃i‖L2(T ) {Normalize}
8: end for

By construction, the basis Φ := {ϕj}j∈{1,...,Sk
d} obtained via the above Gram–

Schmidt procedure is orthonormal. Moreover, its elements satisfy

ϕi = aiiϕ̂i −
i−1∑

j=1

aijϕj ∀i ∈ {1, . . . , Sk
d }, (A.3)

with

1
aii

=

⎛

⎝‖ϕ̂i‖2
L2(T ) −

i−1∑

j=1

(ϕ̂i, ϕj)2L2(T )

⎞

⎠

1/2

∀i ∈ {1, . . . , Sk
d },

aij

aii
= (ϕ̂i, ϕj)L2(T ) ∀j ∈ {1, . . . , i − 1}.

It is clear from the above result that adding basis functions to increase the
polynomial degree leaves unaltered the equations of the form (A.3) corresponding
to lower degrees. In practice, it may be desirable to repeat the orthogonalization
process more than once as the results can be affected by round-off errors. Giraud,
Langou, and Rozloznik [169] suggest that performing orthonormalization twice
yields in most cases a set of basis functions orthogonal up to machine precision.

It only remains to select an appropriate initial basis Φ̂. This choice is relevant
since working in finite precision can affect the quality of the final orthonormal
basis Φ. Following again [31], one possibility is to introduce the frame ξ centered
at the barycenter of T whose axes are aligned with the principal axes of inertia
of T . Then, if we define the set of monomials {α

d }α∈Ak
d

with Ak
d given by (1.8)

(recall that Sk
d = card(Ak

d)) such that, for all α ∈ Ak
d,

α
d (ξ) :=

d∏

i=1

ξαi
i , ξ = (ξ1, . . . , ξd) ∈ �d,

a numerically satisfactory choice for the initial basis is to set

Φ̂ := {α
d /‖α

d ‖L2(T )}α∈Ak
d
.

Some comments are in order. The procedure outlined in this section does
not require the identification of the degrees of freedom on a reference element
to construct the basis. Furthermore, while this technique allows for elements
of general shape, its major drawback is the computational cost, since a basis
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has to be computed for each element in the discretization. Nevertheless, tessel-
lations using general polyhedral elements usually contain fewer elements than
the corresponding tetrahedral meshes, and this fact can partially compensate for
the additional cost. Numerical integration can be expensive as well, especially
if a decomposition into simpler subelements is required to perform quadratures
in each mesh element. Possible strategies to reduce the cost of integration are
presented in [31, Sect. 3.3]. Finally, we observe that the technique presented in
this section is particularly appropriate in the case of agglomeration h-multigrid
methods, where the additional cost to obtain the basis is balanced by the fact
that the agglomerate mesh contains significantly fewer elements than the fine
mesh.
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