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Preface

Random matrices are widely and successfully used in physics for almost
60-70 years, beginning with the works of Wigner and Dyson. Initially pro-
posed to describe statistics of excited levels in complex nuclei, the Random
Matrix Theory has grown far beyond nuclear physics, and also far beyond just
level statistics. It is constantly developing into new areas of physics and math-
ematics, and now constitutes a part of the general culture and curriculum of a
theoretical physicist.

Mathematical methods inspired by random matrix theory have become pow-
erful and sophisticated, and enjoy rapidly growing list of applications in seem-
ingly disconnected disciplines of physics and mathematics.

A few recent, randomly ordered, examples of emergence of the Random
Matrix Theory are:

- universal correlations in the mesoscopic systems,

- disordered and quantum chaotic systems;

- asymptotic combinatorics;

- statistical mechanics on random planar graphs;

- problems of non-equilibrium dynamics and hydrodynamics, growth mod-
els;

- dynamical phase transition in glasses;

- low energy limits of QCD;

- advances in two dimensional quantum gravity and non-critical string the-
ory, are in great part due to applications of the Random Matrix Theory;

- superstring theory and non-abelian supersymmetric gauge theories;

- zeros and value distributions of Riemann zeta-function, applications in
modular forms and elliptic curves;

- quantum and classical integrable systems and soliton theory.



x APPLICATIONS OF RANDOM MATRICES IN PHYSICS

In these fields the Random Matrix Theory sheds a new light on classical prob-
lems.

On the surface, these subjects seem to have little in common. In depth the
subjects are related by an intrinsic logic and unifying methods of theoretical
physics. One important unifying ground, and also a mathematical basis for the
Random Matrix Theory, is the concept of integrability. This is despite the fact
that the theory was invented to describe randomness.

The main goal of the school was to accentuate fascinating links between
different problems of physics and mathematics, where the methods of the Ran-
dom Matrix Theory have been successfully used.

We hope that the current volume serves this goal. Comprehensive lectures
and lecture notes of seminars presented by the leading researchers bring a
reader to frontiers of a broad range of subjects, applications, and methods of
the Random Matrix Universe.

We are gratefully indebted to Eldad Bettelheim for his help in preparing the
volume.

EDITORS



RANDOM MATRICES AND NUMBER THEORY

J. P. Keating
School of Mathematics,
University of Bristol,
Bristol, BS8 1TW
UK

1. Introduction

My purpose in these lecture notes is to review and explain some recent re-
sults concerning connections between random matrix theory and number the-
ory. Specifically, I will focus on how random matrix theory has been used to
shed new light on some classical problems relating to the value distributions
of the Riemann zeta-function and other L-functions, and on applications to
modular forms and elliptic curves.

This may all seem rather far from Physics, but, as I hope to make clear, the
questions I shall be reviewing are rather natural from the random-matrix point
of view, and attempts to answer them have stimulated significant developments
within that subject. Moreover, analogies between properties of the Riemann
zeta function, random matrix theory, and the semiclassical theory of quantum
chaotic systems have been the subject of considerable interest over the past 20
years. Indeed, the Riemann zeta function might be viewed as one of the best
testing grounds for those theories.

In this introductory chapter I shall attempt to paint the number-theoretical
background needed to follow these notes, give some history, and set some
context from the point of view of Physics. The calculations described in the
later chapters are, as far as possible, self-contained.

1.1 Number-theoretical background

The Riemann zeta function is defined by

ζ(s) =

∞∑

n=1

1

ns
=
∏

p

(
1 − 1

ps

)−1

(1)

for Res > 1, where p labels the primes, and then by analytic continuation to
the rest of the complex plane. It has a single simple pole at s = 1, zeros at
s = −2,−4,−6, etc., and infinitely many zeros, called the non-trivial zeros,

E. Brezin et al. (eds.), Applications of Random Matrices in Physics, 1–32. 
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APPLICATIONS OF RANDOM MATRICES IN PHYSICS

in the critical strip 0 < Res < 1. It satisfies the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s). (2)

The Riemann Hypothesis states that all of the non-trivial zeros lie on the
critical line Res = 1/2 (i.e. on the symmetry line of the functional equation);
that is, ζ(1/2 + it) = 0 has non-trivial solutions only when t = tn ∈ R [33].
This is known to be true for at least 40% of the non-trivial zeros [6], for the
first 100 billion of them [36], and for batches lying much higher [29].

In these notes I will, for ease of presentation, assume the Riemann Hypoth-
esis to be true. This is not strictly necessary – it simply makes some of the
formulae more transparent.

The mean density of the non-trivial zeros increases logarithmically with
height t up the critical line. Specifically, the unfolded zeros

wn = tn
1

2π
log

|tn|
2π

(3)

satisfy

lim
W→∞

1

W
# {wn ∈ [0,W ]} = 1; (4)

that is, the mean of wn+1 − wn is 1.
The zeta function is central to the theory of the distribution of the prime

numbers. This fact follows directly from the representation of the zeta function
as a product over the primes, known as the Euler product. Essentially the
nontrivial zeros and the primes may be thought of as Fourier-conjugate sets of
numbers. For example, the number of primes less than X can be expressed
as a harmonic sum over the zeros, and the number, N(T ), of non-trivial zeros
with heights 0 < tn ≤ T can be expressed as a harmonic sum over the primes.
Such connections are examples of what are generally called explicit formulae.
Ignoring niceties associated with convergence, the second takes the form

N(T ) = N(T ) − 1

π

∑

p

∞∑

r=1

1

rpr/2
sin(rT log p), (5)

where

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ O

(
1

T

)
(6)

as T → ∞. This follows from integrating the logarithmic derivative of ζ(s)
around a rectangle, positioned symmetrically with respect to the critical line
and passing through the points s = 1/2 and s = 1/2+ iT , using the functional
equation. (Formulae like this can be made to converge by integrating both sides
against a smooth function with sufficiently fast decay as |T | → ∞.)

2



It will be a crucial point for us that the Riemann zeta-function is but one
example of a much wider class of functions known as L-functions. These
L-functions all have an Euler product representation; they all satisfy a func-
tional equation like the one satisfied by the Riemann zeta-function; and in each
case their non-trivial zeros are subject to a generalized Riemann hypothesis
(i.e. they are all conjectured to lie on the symmetry axis of the corresponding
functional equation).

To give an example, let

χd(p) =

(
d

p

)
=






+1 if p � d and x2 ≡ d (mod p) solvable
0 if p|d

−1 if p � d and x2 ≡ d (mod p) not solvable
(7)

denote the Legendre symbol. Then define

LD(s, χd) =
∏

p

(
1 − χd(p)

ps

)−1

=

∞∑

n=1

χd(n)

ns
, (8)

where the product is over the prime numbers. These functions form a family of
L-functions parameterized by the integer index d. The Riemann zeta-function
is itself a member of this family.

There are many other ways to construct families of L-functions. It will be
particularly important to us that elliptic curves also provide a route to doing
this. I will give an explicit example in the last chapter of these notes.

1.2 History

The connection between random matrix theory and number theory was first
made in 1973 in the work of Montgomery [28], who conjectured that

lim
W→∞

1

W
#{wn, wm ∈ [0,W ] : α ≤ wn − wm < β} =

∫ β

α

(
δ(x) + 1 − sin2(πx)

π2x2

)
dx. (9)

This conjecture was motivated by a theorem Montgomery proved in the same
paper that may be restated as follows:

lim
N→∞

1

N

∑

n,m≤N

f(wn−wm) =

∫ ∞

−∞
f(x)

(
δ(x) + 1 − sin2(πx)

π2x2

)
dx (10)

Random Matrices and Number Theory 3



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

for all test functions f(x) whose Fourier transforms

f̂(τ) =

∫ ∞

−∞
f(x) exp(2πixτ)dx (11)

have support in the range (-1, 1) and are such that the sum and integral in (10)
converge. The generalized form of the Montgomery conjecture is that (10)
holds for all test functions such that the sum and integral converge, without
any restriction on the support of f̂(τ). The form of the conjecture (9) then
corresponds to the particular case in which f(x) is taken to be the indicator
function on the interval [α, β) (and so does not fall within the class of test
functions covered by the theorem).

The link with random matrix theory follows from the observation that the
pair correlation of the nontrivial zeros conjectured by Montgomery coincides
precisely with that which holds for the eigenvalues of random matrices taken
from either the Circular Unitary Ensemble (CUE) or the Gaussian Unitary En-
semble (GUE) of random matrices [27] (i.e. random unitary or hermitian ma-
trices) in the limit of large matrix size. For example, let A be an N × N
unitary matrix, so that A(AT )∗ = AA† = I . The eigenvalues of A lie on the
unit circle; that is, they may be expressed in the form eiθn , θn ∈ R. Scaling the
eigenphases θn so that they have unit mean spacing,

φn = θn
N

2π
, (12)

the two-point correlation function for a given matrix A may be defined as

R2(A;x) =
1

N

N∑

n=1

N∑

m=1

∞∑

k=−∞
δ(x + kN − φn + φm), (13)

so that
1

N

∑

n,m

f(φn − φm) =

∫ N

0
R2(A;x)f(x)dx. (14)

R2(A;x) is clearly periodic in x, so can be expressed as a Fourier series:

R2(A;x) =
1

N2

∞∑

k=−∞
|TrAk|2e2πikx/N . (15)

The CUE corresponds taking matrices from U(N) with a probability mea-
sure given by the normalized Haar measure on the group (i.e. the unique mea-
sure that is invariant under all unitary transformations). It follows from (15)
that the CUE average of R2(A;x) may be evaluated by computing the corre-
sponding average of the Fourier coefficients |TrAk|2. This was done by Dyson

4



[14]:

∫

U(N)
|TrAk|2dµHaar(A) =






N2 k = 0
|k| |k| ≤ N
N |k| > N.

(16)

There are several methods for proving this. One reasonably elementary
proof involves using Heine’s identity

∫

U(N)
fc(θ1, . . . , θN )dµHaar(A)

=
1

(2π)N

∫ 2π

0
· · ·
∫ 2π

0
fc(θ1, . . . , θN ) det(eiθn(n−m))dθ1 · · · dθN (17)

for class functions fc(A) = fc(θ1, θ2, . . . , θN ) (i.e. functions fc that are sym-
metric in all of their variables) to give

∫

U(N)
|TrAk|2dµHaar(A) =

1

(2π)N

∫ 2π

0
· · ·
∫ 2π

0

∑

j

∑

l

eik(θj−θl)

×

∣∣∣∣∣∣∣∣∣

1 e−iθ1 · · · e−i(N−1)θ1

eiθ2 1 · · · e−i(N−2)θ2

...
...

. . .
...

ei(N−1)θN ei(N−2)θN · · · 1

∣∣∣∣∣∣∣∣∣

dθ1 · · · dθN . (18)

The net contribution from the diagonal (j = l) terms in the double sum is N ,
because the measure is normalized and there are N diagonal terms. Using the
fact that

1

2π

∫ 2π

0
einθdθ =

{
1 n = 0
0 n �= 0

, (19)

if k ≥ N then the integral of the off-diagonal terms is zero, because, for
example, when the determinant is expanded out and multiplied by the prefactor
there is no possibility of θ1 cancelling in the exponent. If k = N − s, s =
1, . . . , N − 1, then the off-diagonal terms contribute −s; for example, when
s = 1 only one non-zero term survives when the determinant is expanded
out, multiplied by the prefactor, and integrated term-by-term – this is the term
coming from multiplying the bottom-left entry by the top-right entry and all
of the diagonal entries on the other rows. Thus the combined diagonal and
off-diagonal terms add up to give the expression in (16), bearing in mind that
when k = 0 the total is just N2, the number of terms in the sum over j and l.

Random Matrices and Number Theory 5



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

Heine’s identity itself may be proved using the Weyl Integration Formula
[35]

∫

U(N)
fc(A)dµHaar(A) =

1

(2π)N N !

∫ 2π

0
· · ·
∫ 2π

0
fc(θ1, . . . , θN )

×
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθN (20)

for class functions fc(A), the Vandermonde identity

∏

1≤j<k≤N

|eiθj − eiθk |2 = det
[
MM †

]
(21)

where

M =





1 1 · · ·
eiθ1 eiθ2 · · ·

...
. . . · · ·

ei(N−1)θ1 ei(N−1)θ2 · · ·



 , (22)

the fact that

det
[
MM †

]
= det

[
N∑

�=1

eiθ�(n−m)

]
, (23)

and then by performing elementary manipulations of the rows in this determi-
nant.

The Weyl Integration formula will play a central role in these notes. One
way to understand it is to observe that, by definition, dµHaar(A) is invariant
under A → ŨAŨ † where Ũ is any N × N unitary matrix, and that A can
always be diagonalized by a unitary transformation; that is, it can be written as

A = U




eiθ1 · · · 0

...
. . .

...
0 · · · eiθN



U †, (24)

where U is an N × N unitary matrix. Therefore the integral over A can be
written as an integral over the matrix elements of U and the eigenphases θn.
Because the measure is invariant under unitary transformations, the integral
over the matrix elements of U can be evaluated straightforwardly, leaving the
integral over the eigenphases (20).

Henceforth, to simplify the notation, I shall drop the subscript on the mea-
sure dµ(A) – in all integrals over compact groups the measure may be taken to
be the Haar measure on the group.
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It follows from Dyson’s theorem (16) that

∫

U(N)
R2(A;x)dµ(A) =

1

N2

∞∑

k=−∞
e2πikx/N






N2 k = 0
|k| |k| < N
N |k| ≥ N

(25)

=

∞∑

j=−∞
δ(x − jN) + 1 − sin2(πx)

N2 sin2(πx
N )

. (26)

Hence, for test functions f such that f(x) → 0 as |x| → ∞,

lim
N→∞

∫

U(N)

∫ ∞

−∞
f(x)R2(A;x)dxdµ(A)

=

∫ ∞

−∞
f(x)

(
δ(x) + 1 − sin2(πx)

π2x2

)
dx. (27)

For example,

lim
N→∞

∫

U(N)

1

N
#{φn, φm : α ≤ φn − φm ≤ β}dµ(A)

=

∫ β

α

(
δ(x) + 1 − sin2(πx)

π2x2

)
dx. (28)

The key point is now that the right-hand sides of (27) and (28) coincide
precisely with those of (10) and (9) respectively. That is, the pair correlation
of the Riemann zeros, in the limit as the height up the critical line tends to
infinity, is, conjecturally, the same as that of the eigenphases of random unitary
(or hermitian) matrices in the limit as the matrix size tends to infinity.

It is important to note that the proof of Montgomery’s theorem does not in-
volve any of the steps in the derivation of the CUE pair correlation function. It
is instead based entirely on the connection between the Riemann zeros and the
primes. In outline, the proof involves computing the pair correlation function
of the derivative of N(T ). Using the explicit formula (5), this pair correlation
function can be expressed as a sum over pairs of primes, p and q. The diago-
nal terms, for which p = q, obviously involve only single primes. Their sum
can then be evaluated using the Prime Number Theorem, which governs the
asymptotic density of primes. (Roughly speaking, the Prime Number Theo-
rem guarantees that prime sums

∑
p F (p) may, for appropriate functions F ,

be approximated by
∫

F (x)/ log xdx.) The off-diagonal terms (p �= q) cannot
be summed rigorously. However, it can be shown that these terms do not con-
tribute to the limiting form of the pair correlation function for test functions
f(x) in (10) whose Fourier transforms have support in (-1, 1). This follows
from the fact that the separation between the primes is bounded from below

Random Matrices and Number Theory 7



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

(by one!), which in turn means that the off-diagonal terms oscillate sufficiently
quickly that they are killed for test functions satisfying the support condition
by the averaging inherent in the definition of the correlation function.

In order to prove Montgomery’s conjecture for all test function f(x) it
would be necessary to evaluate the off-diagonal terms in the sum over prime
pairs, and this would require significantly more information about the pair cor-
relation of the primes than is currently available rigorously. Nevertheless, there
are conjectures about correlations between the primes due to Hardy and Little-
wood [17] which can be used to provide a heuristic verification [22].

Perhaps the most compelling evidence in support of Montgomery’s conjec-
ture comes, however, from Odlyzko’s numerical computations of large num-
bers of zeros very high up on the critical line [29]. The pair correlation of these
zeros is in striking agreement with (9).

Montgomery’s conjecture and theorem generalize immediately to higher or-
der correlations between the Riemann zeros. The most general theorem, which
holds for all n-point correlations and for test functions whose Fourier trans-
forms are supported on restricted sets, is due to Rudnick and Sarnak [31].
Again, the conjectures are supported by Odlyzko’s numerical computations [29]
and by heuristic calculations for all n-point correlations based on the Hardy-
Littlewood conjectures and which make no assumptions on the test functions [2,
3].

The results and conjectures described above extend straightforwardly to
other L-functions – the zeros of each individual L-function are, assuming the
generalized Riemann Hypothesis, believed to be correlated along the critical
line in the same way as the eigenvalues of random unitary matrices in the
limit of large matrix size [31]. They extend in a much more interesting way,
however, when one considers families. It was suggested by Katz and Sar-
nak [20, 21] that statistical properties of the zeros of L-functions computed by
averaging over a family, rather than along the critical line, should coincide with
those of the eigenvalues of matrices from one of the classical compact groups
(e.g. the unitary, orthogonal or symplectic groups); which group depends on
the particular symmetries of the family in question. For example, the family
defined in (7) is believed to have symplectic symmetry. I will give an example
later in these notes which has orthogonal symmetry. In both these examples,
the zeros of the L-functions come in pairs, symmetrically distributed around
the centre of the critical strip (where the critical line intersects the real axis),
just as the eigenvalues of orthogonal and symplectic matrices come in complex
conjugate pairs. In the case of the L-functions, this pairing is a consequence
of the functional equation. The differences between the various groups show
up, for example, when one looks at the zero/eigenvalue distribution close to
the respective symmetry points [30].

8



I mention in passing that one can define analogues of the L-functions over
finite fields. These are polynomials. In this case Katz and Sarnak were able
to prove the connection between the distribution of the zeros and that of the
eigenvalues of random matrices associated with the classical compact groups,
in the limit as the field size tends to infinity.

1.3 Physics

Much of the material in these lectures may seem rather far removed from
Physics, but in fact there are a number of remarkable similarities and analogies
that hint at a deep connection. Many of these similarities have been reviewed
elsewhere [22, 1], and so I shall not discuss them in detail here. However, I
shall make a few brief comments that I hope may help orient some readers in
the following sections.

Underlying the connectionbetween the theory of the zeta functionand Physics
is a suggestion, due originally to Hilbert and Polya, that one strategy to prove
the Riemann Hypothesis would be to identify the zeros tn with the eigenvalues
of a self-adjoint operator. The Riemann Hypothesis would then follow imme-
diately from the fact that these eigenvalues are real. One might thus speculate
that the numbers tn are the energy levels of some quantum mechanical system.

In quantum mechanics there is a semiclassical formula due to Gutzwiller
[15] that relates the counting function of the energy levels to a sum over the
periodic orbits of the corresponding classical system. In the case of strongly
chaotic systems that do not possess time-reversal symmetry, this formula is
very closely analogous to (5), the primes being associated with periodic orbits.

The fact that the analogy is with chaotic systems that are not time-reversal
invariant is consistent with the conjecture that the energy level statistics of such
systems should, generically, in the semiclassical limit, coincide with those of
the eigenvalues of random matrices from one of the ensembles that are invari-
ant under unitary transformations, such as the CUE or the GUE, in the limit of
large matrix size [4].

The appearance of random matrices associated with the orthogonal and sym-
plectic groups in the statistical description of the zeros statistics within families
of L-functions is analogous to the appearance of these groups in Zirnbauer’s
extension of Dyson’s three-fold way to include systems of disordered fermions
(see, for example, [37]).

2. ζ(1
2

+ it) and log ζ(1
2

+ it)

The background reviewed in the introduction relates to connections between
the statistical distributions of the zeros of the Riemann zeta function and other
L-functions and those of the eigenvalues of random matrices associated with
the classical compact groups, on the scale of the mean zero/eigenvalue spac-

Random Matrices and Number Theory 9
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ing. My goal in the remainder of these notes is to focus on more recent de-
velopments that concern the value distribution of the functions ζ(1

2 + it) and
log ζ(1

2 + it) as t varies. I will then go on to describe the value distribution
of L-functions within families, and applications of these results to some other
important questions in number theory.

The basic ideas I shall be reviewing were introduced in [24], [25], and [7].
The theory was substantially developed in [8, 9]. The applications I shall de-
scribe later were initiated in [12] and [13]. Details of all of the calculations I
shall outline can be found in these references.

I shall start by reviewing what is known about the value distribution of
log ζ(1/2 + it). The most important general result, due originally to Selberg,
is that this function satisfies a central limit theorem [33]: for any rectangle B
in the complex plane,

lim
T→∞

1

T
meas.{T ≤ t ≤ 2T :

log ζ(1
2 + it)

√
1
2 log log t

2π

∈ B}

=

∫ ∫

B
e−

1
2 (x2+y2)dxdy. (29)

Odlyzko has investigated the value distribution of log ζ(1/2 + it) numer-
ically for values of t around the height of the 1020th zero. Surprisingly, he
found a distribution that differs markedly from the limiting Gaussian. His data
are plotted in Figures 1 and 2. The CUE curves will be discussed later.

In order to quantify the discrepancy illustrated in Figures 1 and 2, I list
in Table 1 the moments of Re log ζ(1/2 + it), normalized so that the second
moment is equal to one, calculated numerically by Odlyzko in [29]. The data
in the second and third columns relate to two different ranges near the height
of the 1020th zero. The difference between them is therefore a measure of the
fluctuations associated with computing over a finite range near this height. The
data labelled U(42) will be explained later.

Next let us turn to the value distribution of ζ(1/2 + it) itself. Its moments
satisfy the long-standing and important conjecture that

lim
T→∞

1

(log T
2π )λ2

1

T

∫ T

0
|ζ(1

2 + it|2λdt

= fζ(λ)
∏

p

[
(1 − 1

p)λ
2

∞∑

m=0

(
Γ(λ + m)

m!Γ(λ)

)2

p−m

]
(30)

This can be viewed in the following way. It asserts that the moments grow
like (log T

2π )λ
2

as T → ∞. Treating the primes as being statistically indepen-
dent of each other would give the right hand side with fζ(λ) = 1. fζ(λ) thus

10
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Figure 1. Odlyzko’s data for the value distribution of Re log ζ(1/2+ it) near the 1020th zero
(taken from [29]), the value distribution of Re log Z with respect to matrices taken from U(42),
and the standard Gaussian, all scaled to have unit variance. (Taken from [24].)

Table 1. Moments of Re log ζ(1/2 + it), calculated by Odlyzko over two ranges (labelled a
and b) near the 1020th zero (t � 1.520 × 1019) (taken from [29]), compared with the moments
of Re log Z for U(42) and the Gaussian (normal) moments, all scaled to have unit variance.

Moment ζ a) ζ b) U(42) Normal
1 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1
3 -0.53625 -0.55069 -0.56544 0
4 3.9233 3.9647 3.89354 3
5 -7.6238 -7.8839 -7.76965 0
6 38.434 39.393 38.0233 15
7 -144.78 -148.77 -145.043 0
8 758.57 765.54 758.036 105
9 -4002.5 -3934.7 -4086.92 0

10 24060.5 22722.9 25347.77 945

quantifies deviations from this simple-minded ansatz. Assuming that the mo-
ments do indeed grow like (log T

2π )λ
2
, the problem is then to determine fζ(λ).

Random Matrices and Number Theory 11
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-6 -4 -2 2 4
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15
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Zeta

Gaussian

Figure 2. The logarithm of the inverse of the value distribution plotted in Figure 1. (Taken
from [24].)

The conjecture is known to be correct in only two non-trivial cases, when
λ = 1 and λ = 2. It was shown by Hardy and Littlewood in 1918 that fζ(1) =
1 [16] and by Ingham in 1926 that fζ(2) = 1

12 [18]. On number-theoretical
grounds, Conrey and Ghosh have conjectured that fζ(3) = 42

9! [10] and Conrey
and Gonek that fζ(4) = 24024

16! [11].
We shall now look to random matrix theory to see what light, if any, it can

shed on these issues.

3. Characteristic polynomials of random unitary matrices

Our goal is to understand the value distribution of ζ(1/2 + it). Recalling
that the zeros of this function are believed to be correlated like the eigenvalues
of random unitary matrices, we take as our model the functions whose zeros
are these eigenvalues, namely the characteristic polynomials of the matrices in
question.

12



Let us define the characteristic polynomial of a matrix A by

Z(A, θ) = det(I − Ae−iθ)

=
∏

n

(1 − ei(θn−θ)). (31)

Consider first the function

PN (s, t) =

∫

U(N)
|Z(A, θ)|teisIm log Z(A,θ)dµ(A). (32)

This is the moment generating function of log Z: the joint moments of Re log Z
and Im log Z are obtained from derivatives of P at s = 0 and t = 0, and

∫

U(N)
δ(x − Re log Z)δ(y − Im log Z)dµ(A) (33)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−itx−isyP (s, it)dsdt. (34)

Written in terms of the eigenvalues,

PN (s, t) =

∫

U(N)

N∏

n=1

|1 − ei(θn−θ)|te−is
P∞

m=1
sin[(θn−θ)m]

m dµ(A). (35)

Since the integrand is a class function, we can use Weyl’s integration formula
(20) to write

PN (s, t) =
1

(2π)NN !

∫ 2π

0
· · ·
∫ 2π

0

N∏

n=1

|1 − ei(θn−θ)|t

× e−is
P∞

m=1
sin[(θn−θ)m]

m

∏

1≤j<k≤N

|eiθj − eiθk |2dθ1 · · · dθN . (36)

This integral can then be evaluated using a form of Selberg’s integral described
in [27], giving [24]

PN (s, t) =

N∏

j=1

Γ(j)Γ(t + j)

Γ(j + t
2 + s

2)Γ(j + t
2 − s

2)
. (37)

Note that the result is independent of θ. This is because the average over
U(N) includes rotations of the spectrum and is itself therefore rotationally
invariant.

Random Matrices and Number Theory 13
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3.1 Value distribution of log Z

Consider first the Taylor expansion

PN (s, t) = eα00+α10t+α01s+α20t2/2+α11ts+α02s2/2+···. (38)

The αm0 are the cumulants of Re log Z and the α0n are in times the cumulants
of Im log Z . Expanding (37) gives:

α10 = α01 = α11 = 0; (39)

α20 = −α02 = 1
2 log N + 1

2 (γ + 1) + O( 1
N2 ); (40)

αmn = O(1) for m + n ≥ 3; (41)

and more specifically,

αm0 = (−1)m(1 − 1
2m−1 )Γ(m)ζ(m − 1) + O( 1

Nm−2 ), for m ≥ 3. (42)

This leads to the following theorem [24]: for any rectangle B in the complex
plane

lim
N→∞

meas.




A ∈ U(N) :
log Z(A, θ)√

1
2 log N

∈ B






=
1

2π

∫ ∫

B
e−

1
2 (x2+y2)dxdy. (43)

Comparing this result to (29), one sees that log ζ(1/2 + it) and log Z both
satisfy a central limit theorem when, respectively, t → ∞ and N → ∞. Note
that the scalings in (29) and (43), corresponding to the asymptotic variances,
are the same if we make the identification

N = log t
2π . (44)

This is the same as identifying the mean eigenvalue density with the mean zero
density; c.f. the unfolding factors in (12) and (3).

The identification (44) provides a connection betweenmatrix sizes andheights
up the critical line. The central limit theorems imply that when both of these
quantities tend to infinity log ζ(1/2 + it) and log Z have the same limit distri-
bution. This supports the choice of Z as a model for the value distribution of
ζ(1/2 + it) when t → ∞. It is natural then to ask if it also constitutes a useful
model when t is large but finite; that is, whether it can explain the deviations
from the limiting Gaussian seen in Odlyzko’s data.

The value of t corresponding to the height of the 1020th zero should be
associated, via (44), to a matrix size of about N = 42. The moments and

14



value distribution of log Z for any size of matrix can be obtained directly from
the formula for the moment generating function (37). The value distribution
when N = 42 is the CUE curve plotted in Figures 1 and 2. Values of the
moments are listed in Table 1. The obvious agreement between the results
for random 42 × 42 unitary matrices and Odlyzko’s data provides significant
further support for the model. It suggests that random matrix theory models
not just the limit distribution of log ζ(1/2 + it), but the rate of approach to the
limit as t → ∞.

3.2 Moments of |Z|

We now turn to the more important problem of the moments of |ζ(1/2+it)|.
It is natural to expect these moments to be related to those of the modulus of
the characteristic polynomial Z , which are defined as

∫

U(N)
|Z(A, θ)|2λdµ(A) = P (0, 2λ)

=

N∏

j=1

Γ(j)Γ(j + 2λ)

(Γ(j + λ))2
(45)

= e
P∞

m=0 αm0(2λ)n/n!. (46)

Therefore

lim
N→∞

1

Nλ2

∫

U(N)
|Z(A, θ)|2λdµ(A) =

eλ2(γ+1)+
P∞

m=3(−2λ)m 2m−1−1
2m−1

ζ(m−1)
m , (47)

for |λ| < 1
2 . Note that since we are identifying Z with ζ(1/2 + it) and N

with log t
2π , the expression on the left-hand side of (47) corresponds precisely

to that in (30).
We now recall some properties of the Barnes’ G-function. This is an entire

function of order 2 defined by

G(1 + z) = (2π)z/2e−[(1+γ)z2+z]/2
∞∏

n=1

[
(1 + z/n)ne−z+z2/(2n)

]
. (48)

It satisfies
G(1) = 1, (49)

G(z + 1) = Γ(z)G(z) (50)

and

log G(1 + z) = (log 2π − 1)
z

2
− (1 + γ)

z2

2
+

∞∑

n=3

(−1)n−1ζ(n− 1)
zn

n
. (51)
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Thus we have that

lim
N→∞

1

Nλ2

∫

U(N)
|Z(A, θ)|2λdµ(A) = fU(λ), (52)

with

fU (λ) =
G2(1 + λ)

G(1 + 2λ)
. (53)

Using (50) we further have that for positive integers k

fU (k) =

k−1∏

j=0

j!

(j + k)!
. (54)

In particular, fU (1) = 1, fU(2) = 1
12 , fU(3) = 42

9! and fU (4) = 24024
16! , which

match the values of fζ listed after (30). This then motivates the conjecture [24]
that

fζ(λ) = fU(λ) (55)

for all λ such that Reλ > −1
2 .

3.3 Value distribution of |Z|

Let us now define the value distribution of |Z(A, 0)| by
∫

U(N)
δ(|Z(A, 0)| − w)dµ(A) = ρU (w,N). (56)

Obviously, ∫

U(N)
|Z|tdµ(A) =

∫ ∞

0
ρU (w,N)wtdw; (57)

that is, the moments of |Z| are given by the Mellin transform of the value
distribution we seek to evaluate. Therefore, using (45),

ρU (w,N) =
1

2πi

∫ c+i∞

c−i∞

N∏

j=1

Γ(j)Γ(j + t)

(Γ(j + t
2))2

1

wt+1
dt, (58)

where c > 0. As N → ∞ this can be approximated using the method of
stationary phase. In the limit as w → 0 an expansion in increasing powers
of w can be formed by considering the residues from the poles at the negative
integers. The rightmost pole is at t = −1, and so ρU (w,N) → constant as
w → 0.

Values of ρU (w,N) when N = 12 are plotted and compared with the value
distribution of |ζ(1

2 + it)| when t = 106 in Figure 3.
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Figure 3. The CUE value distribution of |Z| corresponding to N = 12 (that is, U(12))
(dashed), with numerical data for the value distribution of |ζ(1/2 + it)| (solid) near t = 106.

4.

We have seen so far that the characteristic polynomials of random unitary
matrices may be used to model the moments and value distribution of the Rie-
mann zeta function on its critical line. As discussed in the introduction, Katz
and Sarnak [20, 21] have shown that the distribution of the zeros within fam-
ilies of L-functions is related to averages over the various classical compact
groups, the particular group in question being determined by symmetries of the
family. This suggests that the moments and value distribution of L-functions
within a family may be understood by extending the calculations for the unitary
group described above to the other classical compact groups.

Consider a matrix A ∈ USp(2N) or A ∈ O(N). In both cases there is a
symmetry in the spectrum not present for general unitary matrices: the com-
plex eigenvalues come in complex conjugate pairs, e±iθn . For example, in the
case of USp(2N) and O(2N) the characteristic polynomial is

Z(A, θ) =

N∏

n=1

(1 − ei(θn−θ))(1 − ei(−θn−θ)). (59)

Our goal now is to determine the moments and value distribution of the
characteristic polynomials with respect to averages over these groups. Like for
U(N), averages are understood to be computed with respect to the relevant
Haar measure. Unlike for U(N), in both cases the symmetry in the spectrum
means that the results depend on θ. We will focus on the symmetry point θ = 0,
as this is where the differences are greatest.

Random Matrices and Number Theory
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4.1 Moments

To calculate the moments of the characteristic polynomials with respect to
averages over O(N) or USp(2N) we need the two key ingredients used in
the calculation for U(N): the Weyl integration formula for these groups [35]
and appropriate forms of the Selberg integral (c.f. [27], chapter 17). Follow-
ing the steps detailed above (for further details, see [25]) we then find for the
symplectic group that
∫

USp(2N)
Z(A, 0)sdµ(A) = 22Ns

N∏

j=1

Γ(1 + N + j)Γ(1
2 + s + j)

Γ(1
2 + j)Γ(1 + s + N + j)

≡ MSp(s;N). (60)

It follows that log Z again satisfies a central limit theorem and that

lim
N→∞

1

N s(s+1)/2

∫

USp(2N)
Z(A, 0)sdµ(A) (61)

= 2s2/2 G(1 + s)
√

Γ(1 + s)√
G(1 + 2s)Γ(1 + 2s)

≡ fSp(s). (62)

For positive integers n

fSp(n) =
1∏n

j=1(2j − 1)!!
=

1

(2n − 1)(2n − 3)2(2n − 5)3 · · · . (63)

(This last result was obtained independently in [5].)
The distribution of values of Z(A, 0) for A ∈ USp(2N) is given by
∫

USp(2N)
δ(Z(A, 0) − w)dµ(A) =

1

2πi

∫ c+i∞

c−i∞
MSp(s)

ds

ws+1
. (64)

As w → 0 it vanishes like w1/2, because, from (60), the rightmost pole of
MSp(s;N) is at s = −3/2.

As a second example we take the orthogonal group SO(2N). In this case

∫

SO(2N)
Z(A, 0)sdµ(A) = 22Ns

N∏

j=1

Γ(N + j − 1)Γ(s + j − 1/2)

Γ(j − 1/2)Γ(s + j + N − 1)

≡ MO(s;N), (65)

log Z again satisfies a central limit theorem, and

lim
N→∞

1

N s(s−1)/2

∫

SO(2N)
Z(A, 0)sdµ(A) (66)

= 2s2/2 G(1 + s)
√

Γ(1 + 2s)√
G(1 + 2s)Γ(1 + s)

≡ fO(s). (67)
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For positive integers n we have

fO(n) = 2nfSp(n − 1). (68)

(This last result was also obtained independently in [5].)
(I note in passing the following rather interesting relationship between the

leading order moment coefficients for the three compact groups discussed:

fO(s)fSp(s) = 2s2
fU(s).) (69)

The value distribution of the characteristic polynomials is again given by

∫

SO(2N)
δ(Z(A, 0) − w)dµ(A) =

1

2πi

∫ c+i∞

c−i∞
MO(s;N)

1

ws+1
ds. (70)

In this case it diverges like w−1/2 as w → 0.

5.

I now describe how the results listed above may be applied to L-functions
within families. The main ideas will be illustrated by focusing on two repre-
sentative examples.

5.1 Example 1: Dirichlet L-functions

Let

χd(p) =

(
d

p

)
=






+1 if p � d and x2 ≡ d (mod p) solvable
0 if p|d

−1 if p � d and x2 ≡ d (mod p) not solvable
(71)

denote the Legendre symbol. That is, χd(p) is a real quadratic Dirichlet char-
acter. Then

LD(s, χd) =
∏

p

(
1 − χd(p)

ps

)−1

=

∞∑

n=1

χd(n)

ns
, (72)

where the product is over the prime numbers. These functions form a fam-
ily of L-functions parameterized by the integer index d. (This is the family
mentioned in the Introduction.)

Random Matrices and Number Theory
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5.2 Example 2: L-functions associated with elliptic curves

Consider the function

f(z) = e2πiz
∞∏

n=1

(1 − e2πinz)2(1 − e22πinz)2

=
∞∑

n=1

ane2πinz, (73)

where the integers an are the Fourier coefficients of f . This function may be
shown to satisfy

f

(
az + b

cz + d

)
= (cz + d)2f(z) (74)

for every

(
a b
c d

)
∈ SL2(Z) with 11|c. That is, f(z) is a cusp form of

weight 2 for Γ0(11). It is important to note that the weight is an integer.
Now consider the elliptic curve

E11 : y2 = 4x3 − 4x2 − 40x − 79. (75)

Let
Np = #{(x, y) ∈ F2

p : y2 = 4x3 − 4x2 − 40x − 79}. (76)

Then
ap = p − Np; (77)

that is, the Fourier coefficients of f determine the number of solutions of E11.
One can construct a zeta function

ζE11(s) =
∞∑

n=1

an

ns
(78)

and then a family of L-functions by twisting with the Dirichlet characters de-
fined in (71):

LE11,d(s) =
∞∑

n=1

anχd(n)

ns
. (79)

This family is again parameterized by the integer index d. The L-functions
satisfy the following functional equation:

ΦE11,d(s) ≡
(

2π√
11|d|

)−s

Γ(s)LE11,d(s)

= χd(−11)ΦE11,d(2 − s). (80)
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We will here focus on those L-functions associated with characters satisfying

χd(−11) = +1, (81)

i.e. those that do not vanish trivially at s = 1.
This example is fully representative in that in every aspect it generalizes to

all other elliptic curves: it follows from Wiles’ work relating to Fermat’s Last
Theorem that every elliptic curve is associated with an integer-weight modular
form whose Fourier coefficients determine the number of rational solutions, as
in (77), and may be used to form L-functions, as in (79).

In both of the above examples the L-functions satisfy a Riemann Hypothe-
sis. In the first example, this places their complex zeros on the (critical) line
Res = 1/2; in the second, it places them on the line Res = 1 (this is merely
a matter of conventional normalization rather than a significant difference). In
each case the zeros high up on the critical line are believed to be distributed
like the eigenvalues of random unitary matrices [31], and so the results ob-
tained for the Riemann zeta function extend, conjecturally, to every individual
(principal) L-function.

Rather than fixing the L-function and averaging along the critical line, we
can instead fix a height on the critical line and average through the family;
that is, average with respect to d. In this way one can therefore examine the
distribution of the zeros nearest the critical point, s = 1/2 or s = 1, within
these families.

It was conjectured by Katz and Sarnak [20, 21] that the zero statistics around
the critical point are related to the eigenvalue statistics of one of the compact
groups described above near to a spectral symmetry point (if one exists). The
particular group in question is determined by symmetries of the family. There
is now extensive numerical and theoretical evidence in support of this [30].

The first example of a family of L-functions given above (the Dirichlet L-
functions) is conjectured to have symplectic symmetry and so the zeros behave
like the eigenvalues of matrices from USp(2N). The family of elliptic curve
L-functions in the second example is conjectured to have orthogonal symme-
try. Their zeros behave like the eigenvalues of SO(2N) matrices.

Following the Katz-Sarnak philosophy, it is natural to believe that random
matrix theory can predict the moments of L-functions in families like those
described here; that is, it is natural to conjecture that the moments

1

X∗

∗∑

0<d<X

(LD(1
2 , χd))

s
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(where the sum is over fundamental discriminants d, and X∗ is the number of
terms in the sum) are modelled by

∫

USp(2N)
(Z(A, 0))sdA,

whereas the moments

1

X∗

∗∑

0<d<X
χ−d(−11)=+1

(LE11,d(1))
s

are modelled by ∫

SO(2N)
(Z(A, 0))sdA.

For example, the factors corresponding to fζ in the moments of the L-
functions are conjectured to be given by fSp(s) and fO(s). This agrees with
all previous results and conjectures for the integer moments (see, for exam-
ple, [7, 25]). (These factors must be multiplied by arithmetical contributions
to give the moments.) Furthermore, the value distributions of the L-functions
with respect to varying d are expected to be related to the value distributions
of the associated characteristic polynomials. Numerical evidence in support of
this is illustrated in Figure 4 for the family of L-functions associated with E11,
described in the second example.

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5

L_11(1/2,chi_d) values
N=20 prediction

Figure 4. The value distribution of LE11,d(1), for prime |d|, −788299808 < d < 0, even
functional equation, compared to equation (70), with N = 20. Note the square-root divergence
as w → 0. The L-function values have been normalized so that they have the same means as
the random matrix value distributions. (From [12].)

The key question is obviously: what use can be made of the random matrix
model for the value distribution of L-functions? I will now outline some ap-
plications that are currently being explored for the L-functions associated with
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elliptic curves. These exploit certain explicit formulae for the values at the
central point s = 1. The approach is general, but for simplicity I shall describe
it in the specific context of the family defined in example 2.

The formula for LE11,d(1) that we shall exploit is an example of a general
class of formulae developed by Shimura [32], Waldspurger [34] and Kohnen-
Zagier [26]. For d < 0 and χd(−11) = +1 it asserts that

LE11,d(1) =
κc2

|d|√
|d|

, (82)

where
κ = constant (= 2.91763 . . .)

and

g(z) =

∞∑

n=1

cne2πinz (83)

satisfies

g

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)3/2g(z) (84)

for every

(
a b
c d

)
∈ SL2(Z) such that 44|c; that is the numbers cn are

the Fourier coefficients of a three-halves-weight form for Γ0(44). Note that
the L-functions were originally defined using the Fourier coefficients an of an
integer-weight form (weight-two in our example), but that at the central point
their values are related to the Fourier coefficient of a half-integer weight form.
One important point to notice is that

cn ∈ Z.

I will now describe two conjectural implications that follow from combining
this formula with the random-matrix model.

5.3 Generalization of the Sato-Tate law to half-integer
weight modular forms

The Sato-Tate law describes the value distribution of the Fourier coefficients
ap defined in (72). According to the theorems of Hasse and Deligne these
satisfy |ap| ≤ 2

√
p and so may be written

ap√
p

= 2cos θp, 0 ≤ θ ≤ π.

The question then is: how are the angles θp distributed as the prime p varies?
This is the subject of the celebrated Sato-Tate law:

lim
x→∞

1

π(x)
#{p < x : α < θp ≤ β} =

2

π

∫ β

α
sin2 θdθ, (85)
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Given that the Fourier coefficients of integer-weight forms satisfy a simple
limit distribution law, it is natural to ask whether the Fourier coefficients of
half-integer-weight forms do as well.

Combining (82) with the random matrix model for the value distribution of
LE11,d(1) provides a conjectural answer to this question [13]. For example, it
follows from the central limit theorem for the logarithm of the characteristic
polynomial that one should expect that [13]

lim
D→∞

1

D∗#{2 < d ≤ D : χ−d(−11) = 1,

2 log |c|d|| − 1
2 log d + 1

2 log log d√
log log d

∈ (α, β)} =
1√
2π

∫ β

α
e−x2/2dx,

where
D∗ = #{2 < d ≤ D : χ−d(−11) = 1}. (86)

Furthermore, the value distribution of c|d| should be related to that described
in (70).

5.4 Frequency of vanishing of L-functions

I now turn to the question of the frequency of vanishing of L-functions at the
central point. In the light of the Birch & Swinnerton-Dyer conjecture, which
relates the order of vanishing at this point to the number of rational points on
the corresponding elliptic curve, this is an issue of considerable importance.

The formula (82) for LE11,d(1) implies a discretization (or quantization) of
its values. So if LE11,d(1) < κ√

|d| then in fact LE11,d(1) = 0. Pushing the

random matrix model to the very limits of the range where it can be justified
(and hopefully not beyond), the probability that LE11,d(1) < κ√

|d| may be

estimated by integrating the probability density (70) from 0 to κ√
|d| . Using the

fact that the probability density has a square-root singularity at the origin then
motivates the following two conjectures due to Conrey, Keating, Rubinstein &
Snaith [12]:

#{p ≤ D : χ−p(−11) = 1, LE11,−p(1) = 0} 	 D3/4

(log D)5/8
; (87)

and if

Rp(D) =
#{d < D : χ−d(−11) = 1, χ−d(p) = 1, LE11,d(1) = 0}

#{d < D : χ−d(−11) = 1, χ−d(p) = −1, LE11,d(1) = 0} , (88)

then

Rp = lim
D→∞

Rp(D) =

√
p + 1 − ap

p + 1 + ap
. (89)
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Preliminary data relating to the first conjecture are plotted in Figure 5. These
would appear to support the dependence on D3/4, but do not cover a large
enough range to determine the power of log D.
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"E_11, twists with d prime, d<0"

Figure 5. The l.h.s. of (87) divided by D3/4(log D)−5/8. The calculations include only
twists with d < 0, d prime, and cases with even functional equation. While the picture is
reasonably flat, log(D) is almost constant for most of the interval in question. The flatness
observed therefore reflects the main dependence on D3/4. (From [12].)

Data in support of the second conjecture are listed in Table 2 and are plotted
in Figure 6. In this case the agreement with the conjecture is striking.

6. Asymptotic expansions

The limit (30) may be thought of as representing the leading-order asymp-
totics of the moments of the zeta function, in that it implies that

1

T

∫ T

0
|ζ(1/2 + it)|2λdt ∼ f(λ)a(λ) logλ2

(
T

2π

)
(90)

as T → ∞. Very little is known about lower order terms (in powers of log T )
in the asymptotic expansion of these moments. Does random matrix theory
suggest what form these should take?

When λ is an integer, it does. Note first that it follows from (45) that
∫

U(N)
|Z(A, θ)|2kdA =

k−1∏

j=0

j!

(j + k)!

k∏

i=1

(N + i + j) = Qk(N) (91)

where Qk(N) is a polynomial in N of degree k2. This is consistent with the
natural guess that the 2kth moment of the zeta function should be a polynomial
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Figure 6. Pictures depicting Rp/Rp(D), for p < 2000, D as in Table 2. (From [12].)

of degree k2 in log(T/2π) (modulo terms that vanish faster than any inverse
power of log T/2π as T → ∞).

Unfortunately it is not easy to see directly how to combine the coefficients
in (91) with arithmetical information to guess the form of the coefficients of
the lower-order terms in the moments of the zeta function. The expression in
(91) can, however, be re-expressed in the form [8]
∫

U(N)
|Z(A, θ)|2kdA =

(−1)k

k!2(2πi)2k

∮
· · ·
∮

e
N
2

Pk
j=1 zj−zj+k

× G(z1, . . . , z2k)∆
2(z1, . . . , z2k)∏2k

i=1 z2k
i

dz1 · · · dz2k, (92)

where the contours are small circles around the origin,

∆(z1, . . . , zm) =
∏

1≤i<j≤m

(zj − zi) (93)
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Table 2. A table in support of the conjecture (89), comparing Rp v.s. Rp(D) for three elliptic
curves E11, E19, E32 (D equal to 333605031, 263273979, 930584451 respectively). More of
this data, for p < 2000, is depicted in the Figure 6. The 0 entries for p = 11 and p = 19 are
explained by the fact that we are restricting ourselves to twists with even functional equation.
Hence for E11 and E19, we are only looking at twists with χd(11) = χd(19) = −1. (From
[12].)

p conjectured data conjectured data conjectured data
Rp for E11 for E11 Rp for E19 for E19 Rp for E32 for E32

3 1.2909944 1.2774873 1.7320508 1.7018241 1 0.99925886
5 0.84515425 0.84938811 0.57735027 0.57825622 1.4142136 1.4113424
7 1.2909944 1.288618 1.1338934 1.134852 1 1.0003445

11 0 0.77459667 0.76491219 1 1.0001457
13 0.74535599 0.73266305 1.3416408 1.3632977 0.63245553 0.61626177
17 1.118034 1.1282072 1.183216 1.196637 0.89442719 0.88962298
19 1 1.000864 0 1 1.0006726
23 1.0425721 1.0470095 1 0.99857962 1 1.0000812
29 1 0.99769402 0.81649658 0.80174375 1.4142136 1.4615854
31 0.80064077 0.78332934 1.1338934 1.143379 1 1.0008405
37 0.92393644 0.91867671 0.9486833 0.94311279 1.0540926 1.0603105
41 1.2126781 1.2400086 1.1547005 1.1683113 0.78446454 0.76494748
43 1.1470787 1.1642671 1.0229915 1.0229106 1 1.0006774
47 0.84515425 0.82819492 1.0645813 1.0708874 1 0.99951502
53 1.118034 1.1332312 0.79772404 0.77715638 0.76696499 0.74137107
59 0.91986621 0.91329134 1.1055416 1.1196252 1 0.99969828
61 0.82199494 0.79865031 1.0162612 1.0199932 1.1766968 1.1996892
67 1.1088319 1.1216776 1.0606602 1.0705574 1 1.0002831
71 1.0425721 1.0497774 0.91986621 0.90939741 1 0.99992715
73 0.94733093 0.94345043 1.099525 1.1110782 1.0846523 1.0950853
79 1.1338934 1.1562237 0.90453403 0.8922209 1 0.99882039
83 1.0741723 1.0854551 0.8660254 0.84732408 1 0.99979996
89 0.84515425 0.82410673 0.87447463 0.85750248 0.89442719 0.88154899
97 1.0741723 1.0877289 0.92144268 0.90867892 0.8304548 0.80811684
101 0.98058068 0.97846254 0.94280904 0.93032086 1.0198039 1.0229108
103 1.1677484 1.1976448 0.87333376 0.855721 1 1.0004009
107 0.84515425 0.82186438 1.183216 1.2153554 1 1.0009282
109 0.91287093 0.89933354 1.1577675 1.1844329 0.94686415 0.94015124
113 0.92393644 0.9146531 0.9486833 0.93966595 1.1313708 1.1534106
127 0.93933644 0.93052596 0.98449518 0.98005032 1 0.99904006
131 1.1470787 1.171545 1.1208971 1.1413931 1 0.99916309
137 1.052079 1.0603352 1.0219806 1.0285831 1.1744404 1.2066518
139 0.93094934 0.91532106 1.0975994 1.1176423 1 1.0000469
149 1.069045 1.0833831 0.86855395 0.84844439 0.91064169 0.89706709
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and
G(z1, . . . , z2k) =

∏

1≤�≤k
k+1≤q≤2k

(1 − ezq−z�)−1 (94)

(c.f. the similar expressions found for the Gaussian ensembles by Brezin and
Hikami [5].) Note that G has simple poles when zi = zj , i �= j. An evaluation
of the contour integral in terms of residues confirms the identity by giving (91).
This formula has a natural generalization to the zeta function [9]:

1

T

∫ T

0
|ζ(1/2 + it)|2kdt =

1

T

∫ T

0
Wk(log

t
2π )(1 + O(t−

1
2+ε))dt, (95)

where

Wk(x) =
(−1)k

k!2(2πi)2k

∮
· · ·
∮

e
x
2

Pk
j=1 zj−zj+k

× G̃(z1, . . . , z2k)∆2(z1, . . . , z2k)
∏2k

i=1 z2k
i

dz1 . . . dz2k, (96)

the path of integration being the same as in (92), and

G̃(z1, . . . , z2k) = Ak(z1, . . . , z2k)

k∏

i=1

k∏

j=1

ζ(1 + zi − zj+k), (97)

with

Ak(z) =
∏

p

k∏

i=1

k∏

j=1

(
1 − 1

p1+zi−zj+k

)

×
∫ 1

0

k∏

j=1

(
1 − e(θ)

p1/2+zj

)−1(
1 − e(−θ)

p1/2−zj+k

)−1

dθ (98)

and e(θ) = exp(2πiθ). Note that G̃ has the same pole structure as G. An
evaluation of this integral in terms of residues shows that Wk is a polynomial
of degree k2 and allows the coefficients to be computed. For example,

W2(x) = 0.0506605918x4 + 0.6988698848x3 + 2.4259621988x2

+ 3.2279079649x + 1.3124243859 (99)

and

W3(x) = 0.0000057085x9 + 0.0004050213x8 + 0.0110724552x7

+ 0.1484007308x6 + 1.0459251779x5 + 3.9843850948x4

+ 8.6073191457x3 + 10.2743308307x2+

6.5939130206x + 0.9165155076 (100)
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(we quote here numerical approximations for the coefficients, rather than the
analytical expressions, which are rather cumbersome).

These polynomials describe the moments of the zeta function to a very
high degree of accuracy [9]. For example, when k = 3 and T = 2350000,
the left hand side of (95) evaluates to 1411700.43 and the right hand side to
1411675.64. Note that the coefficient of the leading order term is small. This
explains the difficulties, described at length by Odlyzko [29], associated with
numerical tests of (30).

Alternatively, one can also compare
∫ ∞

0
|ζ(1/2 + it)|2k exp(−t/T )dt (101)

with ∫ ∞

0
Wk(log(t/2π)) exp(−t/T )dt. (102)

This is done in Table 3.

Table 3.

k (101) (102) difference
1 79499.9312635 79496.7897047 3.14156
2 55088332.55512 55088336.43654 -3.8814
3 708967359.4 708965694.5 1664.9
4 143638308513.0 143628911646.6 9396866.4

Similar asymptotic expansions have been derived for the moments of fami-
lies of L-functions, using expressions analogous to (92) [9].

Random Matrices and Number Theory

6.1 Extension to other compact Lie groups

It is interesting that the ideas reviewed above concerning connections be-
tween the value distribution of L-functions and averages over the classical
compact groups extend to other Lie groups, such as the exceptional Lie groups
[23]. For example, consider G2. This is a 14-dimensional group of rank 2 (it
is the automorphism group of the octonions), with an embedding into SO(7).
In the 7-dimensional representation, the characteristic polynomial associated
with the corresponding unitary matrix U factorizes as

Z(U, θ) = det(I − Ue−iθ) = (1 − e−iθ)Z̃(U, θ). (103)
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The moments of Z̃(U, θ) with respect to an average over the group can be
calculated as for the classical compact groups using the corresponding Weyl
integration formula and one of MacDonald’s constant term identities (which
plays the role of the Selberg integral). The result is that [23]
∫

G2

|Z̃(U, 0)|sdµ(U) =
Γ(3s + 7)Γ(2s + 3)

Γ(2s + 6)Γ(s + 4)Γ(s + 3)Γ(s + 2)
. (104)

We note in this context that Katz [19] has found a one-parameter family of
L-functions over a finite field whose value distribution in the limit as the size
of the field grows is related to G2. Thus the random matrix moments (104)
determine the value distribution of these L-functions.

The random matrix calculations extend straightforwardly to all of the ex-
ceptional Lie groups. It would be very interesting indeed to know whether the
others also describe families of L-functions over finite fields.
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2D QUANTUM GRAVITY, MATRIX MODELS AND
GRAPH COMBINATORICS

P. Di Francesco
philippe@spht.saclay.cea.fr

1. Introduction

1.1 Matrix models per se

The purpose of these lectures is to present basic matrix models as practical
combinatorial tools, that turn out to be “exactly solvable . In short, a matrix
model is simply a statistical ensemble of matrices with some specific measure,
here given as an invariant weight, to be integrated over the relevant matrix
ensemble. So solving a matrix model really amounts to computing integrals
over matrix ensembles.

The lectures will be divided into two steps: first we show how to interpret
such matrix integrals in terms of discrete two-dimensional quantum gravity,
namely in terms of graphs with prescribed topology and valences, carrying also

compute these integrals explicitly. The main difficulty here is that the immense
power of matrix integrals allows to get right and simple answers, but gives no
really good reason for such simplicity, except for technical miracles that are
sometimes called “integrability . To compensate for this lack of understanding,
we will always try to develop parallelly to the matrix model techniques and
calculations some purely combinatorial reading of the various results.

The simplest combinatorial objects in many respects are trees, and we will
see, at least in the planar case, how graphs representing discrete surfaces of
genus zero are reducible to decorated trees. This eventually explains the sim-
plicity of the corresponding matrix model results. By pushing these ideas a lit-
tle further, we will be able to investigate refined properties of discrete surfaces
(graphs), involving their intrinsic geometry. For instance we will compute
correlation functions for surfaces with marked points at a prescribed geodesic
distance from one-another.

© 2006 Springer. Printed in the Netherlands. 
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Having collected many exact solutions for models of discrete geometry, it
is natural to go to the continuum limit, which displays a rich singularity struc-
ture: indeed singularities may arise from the graphs themselves, say when pa-
rameters coupled to valences reach some critical values, and the contribution
from large graphs start dominating the statistical sum. They may also arise
from criticity of the matter statistical models defined on these already criti-
cal graphs, in which case collective behaviors start dominating configurations.
The matrix models allow for taking both limits simultaneously (the so-called
double-scaling limit) while keeping track of all genera. The continuum model
is expected to be described by conformally invariant matter field theories [1]
coupled to 2D quantum gravity, i.e. defined on random surfaces [2]. Similarly
we will write continuum correlation functions of the geodesic distance on the
corresponding random surfaces.

1.2 A brief history

Planar graphs first arose in combinatorics, in the groundbreaking works of
Tutte [3] in the 60’s, who was able to compute generating functions for many
classes of such objects, usually called maps by combinatorists. Higher genus
was not considered then, and came up only later in physics works. The intru-
sion of matrix models in this subject occurred with the fundamental observa-
tion, due to t’Hooft [4] in the 70’s, that planar graphs appearing in QCD with
a large number of colors could be viewed as Feynman diagrams for matrix
models, and that moreover the size of the matrices could serve as an expansion
parameter to keep track of the topology of these diagrams. This caused the in-
terest for matrix model to immediately rise, and led to the basic work of Br«ezin,
Itzykson, Parisi and Zuber [5], who used various techniques to compute these
matrix integrals, and among other things made the contact with Tutte’s enumer-
ation results. The matrix model techniques were then perfected by a number of
people, whose list would be too long and probably not exhaustive. Then came
the invention of continuum and discrete quantum gravity [6], as the coupling of
matter theories to fluctuations of the underlying space, both in field-theoretical
and matrix languages. This second life of matrix models came to a climax in
1990 with three quasi-simultaneous papers [7] making drastic progress in two-
dimensional quantum gravity, as a toy model for low-dimensional non-critical
strings, via the double-scaling limit of matrix models. This started a new ma-
trix crazyness, and certainly helped develop matrix model theory a great deal
(see [8] for a review and references). Remarkably, new areas of mathematics
got infected by the matrix virus, thanks to Witten and Kontsevich [9], who
formulated a mathematically rigorous approach to the moduli space of punc-
tured Riemann surfaces using matrix models, and set the ground for a little
revolution in enumerative geometry.
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On the combinatorics front, it was only recently understood how to con-
tinue Tutte’s work for higher genus graphs or more complicated planar cases
[10], but a good relation to matrix model results is still to be found. For planar
graphs however, the simplicity of the matrix model solutions has finally been
explained combinatorially by Schaeffer [11], who found various bijections be-
tween planar graphs and trees, allowing for a simple enumeration, and a precise
contact with the matrix model solutions [12]. A remarkable by-product of this
approach is that one may keep track on the trees of some features of the planar
graphs, such as geodesic distances between vertices or faces [13] [14], a task
beyond the reach of matrix models so far.

2. Matrix models for 2D quantum gravity

2.1 Discrete 2D quantum gravity

The purpose of quantum gravity is to incorporate in a field-theoretical set-
ting the interactions between matter fields and the fluctuations of the under-
lying space. In Euclidian 2D quantum gravity, the latter are represented by
dynamical surfaces Σ endowed with a Riemannian metric g and scalar curva-
ture R, and for which the Einstein action of General Relativity reads

SE = Λ

∫

Σ

√
gd2ξ + N

∫

Σ

√
gRd2ξ

= ΛA(Σ) + Nχ(Σ) (1)

made of a cosmological term, in which the coslological constant Λ is coupled
to the area of the surface A(Σ) and of the Newton term, in which the Newton
constant N is coupled to the Euler characteristic χ(Σ) of the surface. The
dynamical surfaces are then discretized in the form of graphs with prescribed
topology.

We will now explain how matrix integrals can be used to generate such
graphs, while precisely keeping track of their area and their Euler characteris-
tic. For pedagogical purposes, we start with some simple remark on ordinary
Gaussian integration, before going into the diagrammatics of Gaussian matrix
integrals.

2.2 Gaussian integralís diagrammatics

Consider the following Gaussian average

〈x2n〉 =
1√
2π

∫ ∞

−∞
e−

x2

2 x2ndx = (2n − 1)!! =
(2n)!

2nn!
(2)
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12n 2
3

.

.
.
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Figure 1. A star-diagram with one vertex and 2n out-coming half-edges stands for the in-
tegrand x2n. In the second diagram, we have represented one non-zero contribution to 〈x2n〉
obtained by taking derivatives of Σ(s) by pairs represented as the corresponding pairings of
half-edges into edges.

Among the many ways to compute this integral, let us pick the so-called source
integral method, namely define the source integral

Σ(s) = 〈exs〉 =
1√
2π

∫ ∞

−∞
e−

x2

2
+sxdx = e

s2

2 (3)

Then the average (2) is obtained by taking 2n derivatives of Σ(s) = e
s2

2 w.r.t. s
and by setting s = 0 in the end. It is then immediate to see that these derivatives
must be taken by pairs, in which one derivative acts on the exponential and the
other one on the prefactor s. Parallelly, we note that (2n − 1)!! = (2n −
1)(2n − 3)...3.1 is the total number of distinct combinations of 2n objects
into n pairs. We may therefore formulate pictorially the computation of (2)
as follows. We first draw a star-graph (see Fig.2.2), with one central vertex
and 2n outcoming half-edges labelled 1 to 2n clockwise, one for each x in the
integrand (this amounts to labelling the x’s in x2n from 1 to 2n). Now the pairs
of derivatives taken on the source integral are in one-to-one correspondence
with pairs of half-edges in the pictorial representation. Moreover, to get a non-
zero contribution to 〈x2n〉, we must saturate the set of 2n legs by taking n pairs
of them. Let us represent each such saturation by drawing the corresponding
edges as in Fig.2.2. We get exactly (2n−1)!! distinct labeled closed star-graphs
with one vertex. This is summarized in the one-dimensional version of Wick’s
theorem:

〈x2n〉 =
∑

pairings

∏
〈x2〉 (4)

where the sum extends over all pairings saturating the 2n half-edges, and the
weight is simply the product over all the edges thus formed of the correspond-
ing averages 〈x2〉 = (d2/ds2)Σ(s)|s=0 = 1. Each saturation forms a Feynman
diagram of the Gaussian average. The edge pairings are propagators (with
value 1 here). This may appear like a complicated way of writing a rather
trivial result, but it suits our purposes for generalization to matrix models and
graphs.
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2.3 Gaussian matrix integral and more diagrammatics

Let us now repeat the calculations of the previous section with the following
Gaussian Hermitian matrix average of an arbitrary function f

〈f(M)〉 =
1

Z0(N)

∫
dMe−NTr M2

2 f(M) (5)

where the integral extends over Hermitian N × N matrices, with the standard
Haar measure dM =

∏
i dMii

∏
i<j dRe(Mij)dIm(Mij), and the normaliza-

tion factor Z0(N) is fixed by requiring that 〈1〉 = 1 for f = 1. Typically, we
may take for f a monomial of the form f(M) =

∏
(i,j)∈I Mij , I a finite set

of pairs of indices. Note the presence of the normalization factor N (=the size
of the matrices) in the exponential. Note that the case of the previous section
is simply the particular case of integration over 1 × 1 Hermitian matrices (i.e.
real numbers) here.

Like before, for a given Hermitian N × N matrix S, let us introduce the
source integral

Σ(S) = 〈eTr(SM)〉 = e
Tr(S2)

2N (6)

easily obtained by completing the square M2 − N(SM + MS) = (M −
NS)2 − N2S2 and performing the change of variable M ′ = M − NS. We
can use (6) to compute any average of the form

〈MijMkl...〉 =
∂

∂Sji

∂

∂Slk
... Σ(S)

∣∣
S=0

(7)

Note the interchange of the indices due to the trace Tr(MS) =
∑

MijSji. As
before, derivatives w.r.t. elements of S must go by pairs, one of which acts on
the exponential and the other one on the S element thus created. In particular,
a fact also obvious from the parity of the Gaussian, (7) vanishes unless there
are an even number of matrix elements of M in the average. In the simplest
case of two matrix elements, we have

〈MijMkl〉 =
∂

∂Slk

1

N
Sije

Tr(S2)
2N

∣∣∣∣
S=0

=
1

N
δilδjk (8)

Hence the pairs of derivatives must be taken with respect to Sij and Sji for
some pair i, j of indices to yield a non-zero result. This leads naturally to the
Matrix Wick’s theorem:

〈
∏

(i,j)∈I

Mij〉 =
∑

pairings P

∏

(ij),(kl)∈P

〈MijMkl〉 (9)

where the sum extends over all pairings saturating the (pairs of) indices of M
by pairs.
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We see that in general, due to the restrictions (8) many terms in (9) will
vanish. Let us now give a pictorial interpretation for the non-vanishing con-
tributions to (9). We represent a matrix element Mij as a half-edge (with a
marked end) made of a double-line, each of which is oriented in an opposite
direction. We decide that the line pointing from the mark carries the index i,
while the other one, pointing to the mark, carries the index j. This reads

Mij ↔
i
j (10)

The two-element result (8) becomes simply the construction of an edge (with
both ends marked) out of two half-edges Mij and Mkl, but is non-zero only if
the indices i and j are conserved along the oriented lines. This gives pictorially

〈MijMji〉 ↔
i
j

l

k
δ il δ jk (11)

Similarly, an expression of the form Tr(Mn) will be represented as a star-
diagram with one vertex connected to n double half-edges in such a way as to
respect the identification of the various running indices, namely

Tr(Mn) =
∑

i1,i2,...,in

Mi1i2Mi2i3 ...Mini1 ↔

i1 i i2 i3
i3

i1in
2

(12)

As a first application of this diagrammatic interpretation of the Wick the-
orem (9), let us compute the large N asymptotics of 〈Tr(Mn)〉. To compute
〈Tr(Mn)〉, we must first draw a star-diagram as in (12), then apply (9) to ex-
press the result as a sum over the saturations of the star with edges connecting
its outcoming half-edges by pairs. To get a non-zero result, we must clearly
have n even, say n = 2p. Again, there are (2p− 1)!! such pairings, and indeed
we recover the case of previous section by taking N = 1. But if instead we
take N to be large, we see that only a fraction of these (2p − 1)!! pairings will
contribute at leading order. Indeed, assume first we restrict the set of pairings
to planar ones (see Fig.(2.3) (a)), namely such that the saturated star diagrams
have a petal structure in which the petals are either juxtaposed or included
into one-another (with no edges-crossings). We may compute the genus of the
petal diagrams by noting that they form a tessellation of the sphere (=plane
plus point at infinity). This tessellation has V = 1 vertex (the star), E = p
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(a) (b)

Figure 2. An example of planar (petal) diagram (a) and a non-planar one (b). Both diagrams
have n = 2p = 12 half-edges, connected with p = 6 edges. The diagram (a) has p + 1 = 7
faces bordered by oriented loops, whereas (b) only has 3 of them. The Euler characteristic reads
2 − 2h = F − E + 1 (V = 1 in both cases), and gives the genus h = 0 for (a), and h = 2 for
(b).

edges, and F faces, including the “external" face containing the point at infin-
ity. The planarity of the diagram simply expresses that its genus h vanishes,
namely

2 − 2h = 2 = F − E + V = F + 1 − p ⇒ F = p + 1 (13)

Such diagrams receive a total contribution 1/Np from the propagators (weight
1/N per connecting edge), but we still have to sum over the remaining matrix
indices j1, j2, ..., jp+1 running over the p + 1 oriented loops we have created,
which form the boundaries of the F = p + 1 faces. This gives a weight N
per face of the diagram, hence a total contribution of Np+1. So all the petal
diagrams contribute the same total factor Np+1/Np = N to 〈Tr(Mn)〉. Now
any non-petal (i.e. non-planar, see Fig.(2.3) (b)) diagram must have at least two
less oriented loops. Indeed, its Euler characteristic is negative or zero, hence it
has F ≤ E − V = p − 1 and it contributes at most for NF−p ≤ 1/N . So, to
leading order in N , only the genus zero (petal) diagrams contribute. We simply
have to count them. This is a standard problem in combinatorics: one may for
instance derive a recursion relation for the number cp of petal diagrams with 2p
half-edges, by fixing the left end of an edge (say at position 1), and summing
over the positions of its right end (at positions 2j, j = 1, 2, ..., p), and noting
that the petal thus formed may contain cj−1 distinct petal diagrams and be next
to cp−j distinct ones. This gives the recursion relation

cp =

p∑

j=1

cj−1cp−j c0 = 1 (14)
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solved by the Catalan numbers

cp =
(2p)!

(p + 1)!p!
(15)

Finally, we get the one-matrix planar Gaussian average by taking the large N
limit:

lim
N→∞

1

N
〈Tr(Mn)〉 =

{
cp if n = 2p
0 otherwise

(16)

This exercise shows us what we have gained by considering N × N matrices
rather than numbers: we have now a way of discriminating between the various
genera of the graphs contributing to Gaussian averages. This fact will be fully
exploited in the next example.

2.4 Model building I: using one-matrix integrals

Let us apply the matrix Wick theorem (9) to the following generating func-
tion f(M) = exp(N

∑
i≥1 giTr(M i)/i), to be understood as a formal power

series of the gi, i = 1, 2, 3, 4, ...

ZN (g1, g2, ...) = 〈eN
P

i≥1 giTr(Mi

i
)〉

=
∑

n1,n2,...≥0

∏

i≥1

(Ngi)
ni

inini!
〈
∏

i≥1

Tr(M i)ni〉

=
∑

n1,n2,...≥0

∏

i≥1

(Ngi)
ni

inini!

∑

all labelled fatgraphs Γ
with ni i−valent vertices

N−E(Γ)NF (Γ)

(17)

by direct application (9).
In (17), we have first represented pictorially the integrand

∏
i(Tr(M i))ni as

a succession of ni i-valent star diagrams like that of (12), i = 1, 2, .... Then
we have summed over all possible saturations of all the marked half-edges of
all these stars, thus forming (non-necessarily connected) ribbon or fatgraphs Γ
with some labelling of their half-edges (see Fig.(2.4) for an example of con-
nected fatgraph). In (17), we have denoted by E(Γ) the total number of edges
of Γ, connecting half-edges by pairs, i.e. the number of propagators needed
(yielding a factor 1/N each, from (8)). The number F (Γ) is the total number
of faces of Γ. The faces of Γ are indeed well-defined because Γ is a fatgraph,
i.e. with edges made of doubly oriented parallel lines carrying the correspond-
ing matrix indices i = 1, 2, ...N : the oriented loops we have created by the
pairing process are interpreted as face boundaries, in one-to-one correspon-
dence with faces of Γ. But the traces of the various powers of M still have to
be taken, which means all the indices running from 1 to N have to be summed
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Figure 3. A typical connected fatgraph Γ, corresponding to the average
〈Tr(M)3Tr(M2)2Tr(M3)Tr(M4)2Tr(M6)Tr(M8)〉. The graph was obtained by sat-
urating the ten star-diagrams corresponding to the ten trace terms, namely with n1 = 3
univalent vertices, n2 = 2 bi-valent ones, n3 = 1 tri-valent one, n4 = 2 four-valent ones,
n6 = 1 six-valent one and n8 = 1 eight-valent one, hence a total of V = 10 vertices. This
graph corresponds to some particular Wick pairing for which we have drawn the E = 16
connecting edges, giving rise to F = 2 oriented loops bordering the faces of Γ.

over all these loops. This results in the factor N per face of Γ in (17). Finally,
the sum extends over all (possibly disconnected) fatgraphs Γ with labelled half-
edges. Each such labelled graph corresponds to exactly one Wick pairing of
(9). Summing over all the possible labellings of a given un-labelled fatgraph Γ
results in some partial cancellation of the symmetry prefactors

∏
i 1/(i

nini!),
which actually leaves us with the inverse of the order of the symmetry group of
the un-labelled fatgraph Γ, denoted by 1/|Aut(Γ)|. This gives the final form

ZN (g1, g2, ...) =
∑

fatgraphs
Γ

NV (Γ)−E(Γ)+F (Γ)

|Aut(Γ)|
∏

i≥1

g
ni(Γ)
i (18)

where ni(Γ) denotes the total number of i-valent vertices of Γ and V (Γ) =∑
i ni(Γ) is the total number of vertices of Γ. To restrict the sum in (18) to

only connected graphs, we simply have to formally expand the logarithm of
ZN , resulting in the final identity

FN (g1, g2, ...) = Log ZN (g1, g2, ...) =
∑

connected
fatgraphs Γ

N2−2h(Γ)

|Aut(Γ)|
∏

i

g
ni(Γ)
i (19)

where we have identified the Euler characteristic χ(Γ) = F − E + V =
2 − 2h(Γ), where h(Γ) is the genus of Γ (number of handles). Eqn.(19) gives
a clear geometrical meaning to the Gaussian average of our choice of f(M): it
amounts to computing the generating function for fatgraphs of given genus and
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given vertex valencies. Such a fatgraph Γ is in turn dual to a tessellation Γ∗
of a Riemann surface of same genus, by means of ni i-valent polygonal tiles,
i = 1, 2, ....

The result (19) is therefore a statistical sum over discretized random surfaces
(the tessellations), that can be interpreted in physical terms as the free energy
of a model of discrete 2D quantum gravity. It simply identifies the Gaussian
matrix integral with integrand f(M) as a discrete sum over configurations of
tessellated surfaces of arbitrary genera, weighted by some exponential factor.
More precisely, imagine only g3 = g �= 0 while all other gi’s vanish. Then
(19) becomes a sum over fatgraphs with cubic (or 3-valent) vertices, dual to
triangulations T of Riemann surfaces of arbitrary genera. Assuming these tri-
angles have all unit area, then n3(Γ) = A(T ) is simply the total area of the
triangulation T . Hence (19) becomes

FN (g) =
∑

connected triangulations T

gA(T )N2−2h(T )

|Aut(T )| (20)

and the summand gAN2−2h = e−SE is nothing but the exponential of the
discrete version of Einstein’s action for General Relativity in 2 dimensions (1),
in which we have identified the two invariants of Σ: its area A(Σ) and its Euler
characteristic χ(Σ) = 2 − 2h(Σ). The contact with (20) is made by setting
g = e−Λ and N = e−N .

If we now include all gi’s in (19) we simply get a more elaborate discretized
model, in which we can keep track of the valencies of vertices of Γ (or tiles
of the dual Γ∗). These in turn may be understood as discrete models of mat-
ter coupled to 2D quantum gravity. This is best seen in the case of the Hard-
Dimer model on random 4-valent graphs [15]. The configurations of the model
are made of arbitrary 4-valent fatgraphs of arbitrary genus (the underlying dis-
crete fluctuating space) and of choices of edges occupied by dimers, with the
hard-core condition that no two adjacent edges may be simultaneously occu-
pied (see Fig.(3) for an illustration in the case of a planar graph). These matter
configurations are given an occupation energy weight z per dimer, while the
space part receives the standard weight g per 4-valent vertex, and the overall
weight N2−2h for each graph of genus h. We then note that any occupied
dimer may be shrunk to naught, thus creating a 6-valent vertex by the fusion of
its two 4-valent adjacent vertices. Comparing the configurations of the Hard-
Dimer model on 4-valent graphs and those of graphs with only 4- and 6-valent
vertices, we see that there is a one-to-three correspondence between those, as
there are exactly three ways of decomposing a 6-valent vertex into two adja-
cent 4-valent ones connected by a dimer (see the bottom line of Fig.(3)). The
Hard-Dimer model is therefore generated by an integral of the form (18), with
only g4 and g6 non-zero, and more precisely g4 = g and g6 = 3g2z (=three
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(a) (b)

Figure 4. A 4-valent planar graph with hard dimers, represented by thickened edges. The cor-
responding graph obtained by shrinking the dimers (b) has both 4-valent and 6-valent vertices.
The correspondence is three-to-one per dimer, as shown.

decompositions into two 4-valent vertices and one dimer). This is the simplest
instance of matter coupled to 2D quantum gravity we could think of, and it
indeed corresponds to graphs with specific valence weights.

Going back to the purely mathematical interpretation of (19), we start to
feel how simple matrix integrals can be used as tools for generating all sorts
of graphs whose duals tessellate surfaces of arbitrary given topology. The size
N of the matrix relates to the genus, whereas the details of the integrand relate
to the structure of vertices. An important remark is also that the large N limit
of (19) extracts the genus zero contribution, namely that of planar graphs. So
as a by-product, it will be possible to extract results on planar graphs from
asymptotics of matrix integrals for large size N .

2.5 Model building II: using multi-matrix integrals

The results of previous section can be easily generalized to multiple Gaus-
sian integrals over several Hermitian matrices. More precisely, let M1, M2,
... Mp denote p Hermitian matrices of same size N × N , and Qa,b, a, b =
1, 2, ..., p the elements of a positive definite form Q. We consider the multiple
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Gaussian integrals of the form

〈f(M1, ...,Mp)〉 =

∫
dM1...dMpe

−N
2

Pp
a,b=1 Tr(MaQabMb)f(M1, ...,Mp)

∫
dM1...dMpe

−N
2

Pp
a,b=1 Tr(MaQabMb)

(21)
The one-Hermitian matrix case of the previous section corresponds simply
to p = 1 and Q1,1 = 1. The averages (21) are computed by extending the
source integral method of previous section: for some Hermitian source matri-
ces S1, ..., Sp of size N ×N , we define and compute the multi-source integral

Σ(S1, ..., Sp) = 〈e
Pp

a=1 Tr(SaMa)〉 = e
1

2N

Pp
a,b=1 Tr(Sa(Q−1)a,bSb) (22)

and apply multiple derivatives w.r.t. to Sa’s to compute any expression of the
form (21), before taking Sa → 0. As before, derivatives w.r.t. elements of the
S’s must go by pairs to yield a non-zero result. For instance, in the case of two
matrix elements of Ma’s we find the propagators

〈(Ma)ij(Mb)kl〉 =
1

N
δilδjk(Q

−1)a,b (23)

In general we will apply the multi-matrix Wick theorem

〈
∏

(a,i,j)∈J

(Ma)ij〉 =
∑

pairings
P

∏

pairs
(aij),(bkl)∈P

〈(Ma)ij(Mb)kl〉 (24)

expressing the multi-matrix Gaussian average of any product of matrix ele-
ments of the M ’s as a sum over all pairings saturating the matrix half-edges,
weighted by the corresponding value of the propagator (8)mu. Note that half-
edges must still be connected according to the rule (8)ag, but that in addition,
depending on the form of Q, some matrices may not be allowed to connect to
one another (e.g. if (Q−1)ab = 0 for some a and b, then 〈MaMb〉 = 0, and in
such a case, there cannot be any edge connecting a matrix with index a to one
with index b).

This gives us much freedom in cooking up multi-matrix models to evalu-
ate generating functions of graphs with specific decorations such as colorings,
spin models, etc... This is expected to describe the coupling of matter systems
(e.g. a spin model usually defined on a regular lattice) to 2D quantum gravity
(by letting the lattice fluctuate into tessellations of arbitrary genera). Famous
examples are the O(n) model [16], the q-states Potts model [17], both includ-
ing the Ising model as particular cases. Other models of interest require to use
different types of matrices, to best represent their degrees of freedom. This is
the case for the 6 vertex model expressed in terms of complex matrices, and
for the so-called IRF (interaction round a face) models, expressed in terms of
complex rectangular arrays [18] [19].
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3. The one-matrix model I: large N limit and the
enumeration of planar graphs

In this section, we will mainly cover the one-matrix integrals defined in
Sect.2.4. Multi-matrix techniques are very similar, and we will present them
in a concluding section. More precisely, we will study the one-matrix integral

ZN (V ) =

∫
dMe−NTr V (M)

∫
dMe−NTr V0(M)

(25)

with an arbitrary polynomial potential, say

V (x) =
x2

2
−

d∑

i=1

gi

i
xi, and V0(x) =

x2

2
(26)

This contains as a limiting case the partition function (17) of Sect.2.4. Note
also that we are not worrying at this point about convergence issues for these
integrals, as they must be understood as formal tools allowing for computing
well-defined coefficients in formal series expansions in the g’s.

3.1 Eigenvalue reduction

J = ∆(m)2 =
∏

1≤i<j≤N

(mi − mj)
2 (27)

A simple derivation consists in expressing the differential dM in terms of dU
and dm in the vicinity of U = I , namely dM = dUm + dm + mdU †, but
noting that UU † = I , we get dU † = −dU , and finally dM = dm + [dU,m],
or dMij = dmiδij + (mi − mj)dUij , from which we directly read the Ja-
cobian (27). Performing the change of variables in both the numerator and
denominator of (25) we obtain

ZN (V ) =

∫
IRN dm1...dmN∆(m)2e−N

PN
i=1 V (mi)

∫
IRN dm1...dmN∆(m)2e−N

PN
i=1

m2
i

2

(28)

ional integral, namely over the real eigenvalues m1, ..., mN of the Hermitian
matrix M . This is done by performing the change of variables M → (m, U),
where m =diag(m1, ..., mN ), and U is a unitary diagonalization matrix such
that M = UmU †, hence U ∈ U(N)/U(1)N as U may be multiplied by an
arbitrary matrix of phases. The Jacobian of the transformation is readily found
to be the squared Vandermonde determinant

The step zero in computing the integral (25) is the reduction to a N -dimens-
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3.2 Large size: the saddle-point technique

Starting from the N -dimensional integral (28), we rewrite

ZN (V ) =

∫
dm1...dmNe−N2S(m1,...,mN)

∫
dm1...dmNe−N2S0(m1,...,mN)

(29)

where we have introduced the actions

S(m1, ...,mN ) =
1

N

N∑

i=1

V (mi) −
1

N2

∑

1≤i�=j≤N

Log|mi − mj|

S0(m1, ...,mN ) =
1

N

N∑

i=1

V0(mi) −
1

N2

∑

1≤i�=j≤N

Log|mi − mj | (30)

For large N the numerator and denominator of (29) are dominated by the semi-
classical (or saddle-point) minima of S and S0 respectively. For S, the saddle-
point equations read

∂S

∂mj
= 0 ⇒ V ′(mj) =

2

N

∑

1≤i≤N
i�=j

1

mj − mi
(31)

for j = 1, 2, ..., N . Introducing the discrete resolvent

ωN (z) =
1

N

N∑

i=1

1

z − mi
(32)

evaluated at the solution m1, ..,mN to (31), multiplying (31) by 1/(N(z −
mj)) and summing over j, we easily get the equation

V ′(z)ωN (z) +
1

N

N∑

j=1

V ′(mj) − V ′(z)

z − mj

=
1

N2

∑

1≤i�=j≤N

1

mj − mi

(
1

z − mj
− 1

z − mi

)

=
1

N2

∑

1≤i�=j≤N

1

(z − mi)(z − mj)

= ωN (z)2 +
1

N
ω′

N (z) (33)
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Assuming ωN tends to a differentiable function ω(z) when N → ∞ we may
neglect the last derivative term, and we are left with the quadratic equation

ω(z)2 − V ′(z)ω(z) + P (z) = 0

P (z) = lim
N→∞

1

N

N∑

j=1

V ′(z) − V ′(mj)

z − mj
(34)

where P (z) is a polynomial of degree d − 2, d the degree of V . The existence
of the limiting resolvent ω(z) boils down to that of the limiting density of
distribution of eigenvalues

ρ(z) = lim
N→∞

1

N

N∑

j=1

δ(z − mj) (35)

normalized by the condition
∫

IR
ρ(z)dz = 1 (36)

as there are exactly N eigenvalues on the real axis. This density is related to
the resolvent through

ω(z) =

∫
ρ(x)

z − x
dx =

∞∑

m=1

1

zm

∫

IR
xm−1ρ(x)dx (37)

where the expansion holds in the large z limit, and the integral extends over
the support of ρ, included in the real line. Conversely, the density is obtained
from the resolvent by use of the discontinuity equation across its real support

ρ(z) =
1

2iπ
lim
ε→0

ω(z + iε) − ω(z − iε) z ∈ supp(ρ) (38)

Solving the quadratic equation (34) as

ω(z) =
V ′(z) −

√
(V ′(z))2 − 4P (z)

2
(39)

we must impose the large z behavior inherited from (36)-(37), namely that
ω(z) ∼ 1/z for large z. For d ≥ 2, the polynomial in the square root has
degree 2(d − 1): expanding the square root for large z up to order 1/z, all the
terms cancel up to order 0 with V ′(z), and moreover the coefficient in front of
1/z must be 1 (this fixes the leading coefficient of P ). The other coefficients
of P are fixed by the higher moments of the measure ρ(x)dx.
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For instance, when k = 2 and V = V0, we get P = 1 and

ω0(z) =
1

2
(z −

√
z2 − 4) (40)

It then follows from (38) that the density has the compact support [−2, 2] and
has the celebrated “Wigner’s semi-circle law" form

ρ0(z) =
1

2π

√
4 − z2 (41)

The resolvent ω0 is the generating function for the moments of the measure
whose density is ρ0 (via the expansion (37)), from which we immediately iden-
tify ∫

IR
xnρ0(x)dx =

{
cp if n = 2p
0 otherwise

(42)

with cp as in (15). Indeed, due to the quadratic recursion relation (14), the
generating function C(x) =

∑
p≥0 xpcp satisfies xC(x)2 = C(x) − 1, and

therefore we have ω0(z) = C(1/z2)/z. The coefficients (42) are nothing
but the planar limit of the Gaussian Hermitian matrix averages (with potential
V0(x) = x2/2), namely limN→∞〈 1

N TrMn〉V0 =
∫
IR xnρ0(x)dx, hence our

analytical result (42) is an alternative for that already obtained combinatorially
in (16).

In the general case, the density reads

ρ(z) =
1

2π

√
4P (z) − (V ′(z))2 (43)

and may have a disconnected support, made of a union of intervals (the so-
called multicut solutions). It is however interesting to restrict oneself to the
case when the support of ρ is made of a single real interval [a, b], as this will
always be the preferred saddle-point solution for generating the correct formal
series expansions of the all-genus free energy. For supports made of more than
one interval, resonances may occur as eigenvalues tunnel from one interval to
another, and oscillations develop in the N dependence, which cause the large
N expansion to break down, unless some strong conditions are imposed on
say complex contour integrals for the eigenvalues. The one-cut hypothesis will
be justified a posteriori in Sect.4 below, when we revisit the problem from a
purely combinatorial perspective.

In the one-cut case, the polynomial V ′(z)2 − 4P (z) has single roots at say
z = a and z = b and all other roots have even multiplicities. In other words,
we may write the limiting resolvent as

ω(z) =
1

2
(V ′(z) − Q(z)

√
(z − a)(z − b)) (44)
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where Q(z) is a polynomial of degree k − 2, entirely fixed in terms of V by
the asymptotics ω(z) ∼ 1/z for large |z|. More precisely, let us introduce
H(z) = V ′(z)/

√
(z − a)(z − b), considered as a series expansion for large z,

then Q(z) is nothing but the part of this series that is polynomial in z, denoted
as H+(z). Writing moreover H(z) = H+(z) + H−(z), we finally get

ω(z) =
1

2
H−(z)

√
(z − a)(z − b) (45)

Writing H−(z) =
∑

i≥1 H−iz
−i, we get that ω(z) ∼ 1/z iff H−1 = 0 and

H−2 = 2. These coefficients are expressed as residue integrals at infinity,
namely

H−m(z) =

∮
dz

2iπ
zm−1 V ′(z)√

(z − a)(z − b)
(46)

The square root term is uniformized by the change of variables z = w + S +

R/w, with S = a+b
2 and R =

(
b−a
4

)2
, and

H−m(z) =

∮
dw

2iπw
(w + S + R/w)m−1V ′(w + S + R/w) (47)

so that finally H−1 = V ′
0 and H−2 = V ′

−1 + SV ′
0 + RV ′

1 , where the shorthand
notation V ′

m stands for the coefficient of wm in the large w expansion of V ′(w+
S + r/w). Performing the change of variables w → R/w allows to relate
V ′−m = RmV ′

m. Finally, the asymptotic condition ω(z) = 1/z + O(1/z2) at
large z boils down to

V ′
0 = 0 = S −

∑

i≥1

gi

[(i−1)/2]∑

j=0

Si−2j−1Rj (i − 1)!

(j!)2(i − 2j − 1)!

V ′
−1 = 1 = R −

∑

i≥1

gi

[i/2]∑

j=0

Si−2jRj (i − 1)!

j!(j − 1)!(i − 2j)!
(48)

These equations simplify drastically in the case of even potentials, where gi =
0 for all odd i. The parity of V indeed induces that of ρ, and we have S =
(a + b)/2 = 0 as the support of the density is symmetric w.r.t. the origin. This
leaves us with only one equation

1 = R −
∑

i≥1

g2iR
i

(
2i − 1

i

)
(49)

for R = a2/4. In the particular case of the gaussian potential V = V0, this
reduces to R = 1 and S = 0, in agreement with b = −a = 2 (40). Expanding
the solutions of (48) as formal power series of the gi’s, the conditions R = 1+
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(a) (b)

(c) (d)

Figure 5. Samples of planar graphs with external legs (univalent vertices marked with a
cross) and arbitrary valences, with respectively (a) one leg in the external face (b) one leg (any-
where) (c) two legs in the same (external) face (d) two-legs (one in the external face, the other
anywhere).

O({gi}) and S = O({gi}) determine them uniquely. These in turn determine
a and b and therefore ρ and ω completely.

The planar free energy f = F − F0 = limN→∞ 1
N2 Log

(
ZN (V )/ZN (V0)

)

is finally obtained by substituting the limiting densities ρ, ρ0 in the saddle point
actions S and S0, with the result F −F0 = S0−S. It is however much simpler
to evaluate some derivatives of the free energy, by directly relating them to the
planar resolvent ω(z), the subject of next section.

3.3 Enumeration of planar graphs with external legs

Let us first consider the generating function Γ1 for planar graphs with weights
gi per i-valent vertex, and with one external (univalent) leg, represented in the
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external face on the plane (see Fig.(2.3)graphs (a)):

Γ1 = ∂f/∂g1 = lim
N→∞

1

N
〈Tr(M)〉V = ω−2 =

1

2
(H−3 − SH−2 − 2RH−1)

(50)
where use has been made of (37), and as before ω−m denotes the coefficient
of z−m in the large z expansion of ω(z). From the large z asymptotics of
ω(z), we know that H−1 = 0 and H−2 = 2, and we must now evaluate
H−3 = V ′−2 +2SV ′−1 +(S2 +2R)V ′

0 +2RSV ′
1 +R2V ′

2 = 2(V ′−2 +2SV ′−1)+
(S2 + 2R)V ′

0 = 2(V ′−2 + 2S), leaving us with

Γ1 = V ′
−2 + S (51)

Analogously, we may compute the connected two-leg-in-the-same-face graph
generating function Γ2 = ω−3 − Γ2

1 (see Fig.(2.3)graphs (c)), in which we
subtract the contributions from disconnected pairs of one-leg graphs. We get
ω−3 = ∂f/∂g2 = R + S2 + V ′

−3 + 2SV ′
−2 and finally

Γ2 = R + V ′
−3 − (V ′

−2)
2 (52)

Another quantity of interest is the connected two-leg graph generating func-
tion Γ1,1 = ∂2f/∂g2

1 = ∂ω−2/∂g1 (see Fig.(2.3)graphs (d)). This turns into

Γ1,1 =
∂ω−2

∂g1
=

∂S

∂g1
+

∂V ′
−2

∂g1
=

∂S

∂g1
(1 + V ′′

−2) +
∂R

∂g1
V ′′
−1 (53)

Let us first replace the term 1 in factor of ∂S/∂g1 by 1 = V ′
−1, the second

equation of (48). Note that the residue of a total differential always vanishes,
hence in particular

(
d/dw(wV ′(w + S + R/w))

)
−1

= 0 = V ′
−1 + V ′′

−2 − RV ′′
0 (54)

This allows to rewrite

Γ1,1 =
∂S

∂g1
RV ′′

0 +
∂R

∂g1
V ′′
−1 (55)

Finally, differentiating the equation V ′
0 = 0 w.r.t. g1 yields 0 = ∂S/∂g1V

′′
0 +

∂R/∂g1V
′′
1 − 1, where the last term comes from the explicit derivation w.r.t.

g1 of V ′(x) = x−g1−g2x−g3x
2/2− ... Multiplying this by R, and noting as

before that RV ′′
1 = V ′′

−1, we get R∂S/∂g1V
′′
0 + ∂R/∂g1V

′′
−1 = R and finally

Γ1,1 = R (56)

This result holds for even potentials as well, upon setting all g2i+1 = 0 in the
end. Eq.(56) gives a straightforward combinatorial interpretation of R as the
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generating function for planar graphs with two external (univalent) legs, not
necessarily in the same face.

To conclude the section, let us now give a combinatorial interpretation for
S. Let us show that S is the generating function for one-leg planar graphs. By
this we mean that the leg need not be adjacent to the external face, as was the
case for Γ1 (see Fig.(2.3)graphs (b)). Comparing with the definition of Γ1, we
must show that S is the generating function for one-leg planar graphs (with the
leg in the external face), and with a marked face (chosen to be the new external
face). This amounts to the identity

S = z∂zΓ1|z=1 (57)

where we have included a weight z per face of the graph, to be set to 1 in the
end. Due to Euler’s relation F = 2 + E − V , where E is the total number
of edges, and V that of vertices of the one-leg graphs at hand, and noting that
2E = 1 +

∑
iVi while V = 1 +

∑
Vi, where Vi is the number of internal i-

valent vertices, so that 2E−V =
∑

(i−1)Vi, we see that z∂zΓ1 = (2+t∂t)Γ1,
if we attach a weight 1/t per edge and ti−1 per i-valent vertex (with a net
resulting weight t2E−V −E = tE−V ). Modifying the propagator and vertex
weights of the matrix model accordingly, this simply amounts to replacing
V ′(x) by V ′(tx) = tx −

∑
git

i−1xi−1 in all the above formulas, and setting
t = 1 after differentiation. This yields

(2+∂t)Γ1|t=1=2S+2V ′
−2+

∂S

∂t
|t=1(1+V ′′

−2)+
∂R

∂t
|t=1V

′′
−1+V ′′

−3+SV ′′
−2+RV ′′

−1

(58)
We now use the above trick (54) that the residue of a derivative vanishes, but
this time with
(
d/dw(w2V ′(w + S + R/w))

)
−1

= 0 = 2V ′
−2 + V ′′

−3 − RV ′′
−1 (59)

and we use this to eliminate V ′′−3 from (58), as well as (54) to rewrite the factor
of ∂S/∂t as 1 + V ′′−2 = V ′−1 + V ′′−2 = RV ′′

0 , with the result

(2 + ∂t)Γ1|t=1 = 2S + SV ′′
−2 + 2RV ′′

−1 + RV ′′
0

∂S

∂t
|t=1 + V ′′

−1
∂R

∂t
|t=1 (60)

Let us now differentiate w.r.t. t the equation 0 = V ′
0 , and then set t = 1 and

multiply it by R. This gives

0 = R(V ′′
−1 + SV ′′

0 + RV ′′
1 + V ′′

0

∂S

∂t
|t=1 + V ′′

1

∂R

∂t
|t=1)

= RSV ′′
0 + 2RV ′′

−1 + RV ′′
0

∂S

∂t
|t=1 + V ′′

−1

∂R

∂t
|t=1 (61)
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and allows to rewrite (60) as

(2+∂t)Γ1|t=1 = 2S+SV ′′
−2−RSV ′′

0 = S+S(V ′
−1+V ′′

−2−RV ′′
0 ) = S (62)

by replacing 1 → V ′−1 and using again the equation (54). This completes the
identification of S as the generating function for one-leg planar graphs, with
the leg not necessarily in the external face.

That the generating functions for both one- and two-leg planar graphs should
satisfy a system of two algebraic equations (48), looks like magic at first sight.
It is the purpose of Sect.4 below to unearth the combinatorial grounds for this
apparent miracle.

3.4 The case of 4-valent planar graphs

Before going into this, let us conclude with the case of the quartic potential
say V (z) = z2

2 − g z4

4 , for which we have S = 0 and eq.(49) reduces to

1 = R − 3gR2 ⇒ R =
a2

4
=

1

6g
(1 −

√
1 − 12g) (63)

as R is the unique solution with the power series expansion R = 1 + O(g).
The corresponding resolvent and density of eigenvalues read respectively

ω(z) =
1

2
(z − gz3 − (1 − g

a2

2
− gz2)

√
z2 − a2)

ρ(z) =
1

2π
(1 − g

a2

2
− gz2)

√
a2 − z2 (64)

The two-leg-in-the-same-face graph generating function Γ2 of eq.(52) reads
here

Γ2 = R − gR3 =
R(4 − R)

3
(65)

where we have used eq.(63) to eliminate g. But any planar 4-valent graph with
two external legs in the same face is obtained by cutting an arbitrary edge in
any closed planar 4-valent graph. As the two legs are distinguished, and as
there are exactly twice as many edges than vertices in a closed 4-valent graph,
we have Γ2 = 1 + 4g∂f/∂g. The contribution 1 comes from the unique graph
made of one loop, with one edge and no vertex, not counted in f . This gives
the differential equation

4g
df

dg
=

(R − 1)(3 − R)

3
(66)

and eliminating g = (R − 1)/(3R2) from (63), we finally get df
dg = R2(3 −

R)/4. Changing variables to R, this turns into df
dR = (2 − R)(3 − R)/(12R),
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easily integrated into

f =
1

2
Log R +

1

24
(R − 1)(R − 9) (67)

where the constant of integration is fixed by requiring that f = 0 when R = 1
(Gaussian case V = V0). Substituting the expansion R = 1 + 3g + 18g2 + ...
into (67) yields the expansion

f =
g

2
+

9

8
g2 + ... (68)

1
2

1
8

1
2

g 2

1
2

+g=

where we have represented the planar 4-valent graphs with up to 2 vertices,
together with their inverse symmetry factors.

4. The trees behind the graphs

Using the above interpretation of R as the generating function for planar
graphs with two distinguished external legs not necessarily in the same face,
let us now establish a general bijection between such graphs and suitably dec-
orated trees, also called blossom-trees.

4.1 4-valent planar graphs and blossom trees

For reasons of simplicity, let us start with the case of 4-valent graphs. Given
a two-leg such graph G (see Fig.(4.1) for an illustration), we represent it in
the plane by picking the external face to be adjacent to the first (in-coming)
leg. We now visit all edges bordering this external face in counterclockwise
direction, and cut them iff the resulting graph remains connected. We then
replace the two halves of the cut edges by respectively a black and a white
leaf. This “first passage" has merged a number of faces of the initial graph
with the external one. We now repeat the algorithm with the new external face,
and so on until all faces are merged. The resulting graph is a 4-valent tree T
(by construction, it has only one face and is connected). The tree is then rooted
at its second (outcoming) leg, while its incoming one is replaced with a white
leaf. Attaching a charge +1 (resp. −1) to white (resp. black) leaves, we obtain
a tree with total charge +1. It is easy to convince oneself that the resulting
4-valent tree has exactly one black leaf at each vertex.

This is best proved by showing that its descendent subtrees not reduced to a
black leaf all have charge +1. To see why, consider any edge of the blossom
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6

3

2

1

4

5

(b)(a)

(c) (d)

Figure 6. Illustration of the bijection between two-leg planar 4-valent graphs and rooted
blossom trees. Starting from a two-leg graph (a), we apply the iterative cutting procedure,
which here requires turning twice around the graph. In (b), the indices indicate the order in
which the edges are cut during the 1st turn (1, 2, 3) and 2nd turn (4, 5, 6). Each cut edge is
replaced by a black/white leaf pair (c), while the in-coming leg is replaced by a leaf and the
out-coming one by a root, finally leading to a blossom tree (d). Conversely, the matching of
black and white leaves of the blossom tree (d) rebuilds the edges of (a).

tree, not directly attached to a black leaf. It separates the tree into two (top
and bottom) pieces as depicted in Fig.(6). As a result of the above iterative
cutting procedure, we may keep track of the m and p cut edges encompassing
this edge, respectively lying on its right and left, and connecting the top and
bottom pieces. Assuming the first leg was in the bottom part, and as the cutting
process travels in counterclockwise direction, we may only have m = p + 1 or
m = p according to whether the cutting process stopped in the top or bottom
piece. But as the top and bottom pieces are trees with only 4-valent inner
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m=p+1

mp

q=0

q=+1

m=p

mp

q=0

q=+1

Figure 7. The only two possibilities for the environment of an edge in a 4-valent blossom-
tree, obtained by cutting a two-leg planar 4-valent graph. The edge separates the tree into a top
and a bottom piece. The first leg of the graph is chosen to be in the bottom piece. The two
cases correspond to whether the cutting process stops in the top (a) or bottom (b) piece. We
have represented in both cases only the leaves unmatched within each piece. In each case, the
position of the root (second leg) is fixed by the fact that any 4-valent tree must have an even
number of leaves (including the root). We have indicated the corresponding charges q = 0 or
+1 of the top and bottom pieces.

vertices, they must have an even number of leaves, including the root, and the
cut edge. Eliminating those matched by black/white pairs within each piece,
we are respectively left with: in case (a), 2p + 2 leaves on top and 2p + 3 on
the bottom, hence the root must be in the bottom; in case (b), 2p + 1 leaves on
top and 2p + 2 on the bottom, hence the root must be on top. Adding up the
charges, we see that the descendent piece (not containing the root) always has
charge q = +1.

Let us now define rooted blossom-trees as rooted planar 4-valent trees with
black and white leaves, a total charge +1, and exactly one black leaf at each
vertex (or equivalently such that each subtree not reduced to a black leaf has
charge +1). Then the rooted blossom-trees are in bijection with the two-leg
4-valent planar graphs. The inverse mapping goes as follows. Starting from a
rooted blossom-tree T , we build a two-leg 4-valent planar graph by connecting
in counterclockwise direction around the tree all pairs of black/white leaves
immediately following one-another, and by repeating this until all black leaves
are exhausted. This leaves us with one unmatched white leaf, which we replace

56



2D Quantum Gravity, Matrix Models and Graph Combinatorics

by the first leg, while the root becomes the second leg. The order in which
leaves are connected exactly matches the inverse of that of the above cutting
procedure. This bijection now allows for a direct and simple counting of 2-leg
4-valent planar graphs, as we simply have to count rooted blossom-trees. De-
composing such trees according to the environment of the first vertex attached
to their root, we get the following equation for their generating function

R = 1 + 3gR2 (69)

R
+ g + g + g 

R R R R R R

=

where the first term corresponds to no vertex (and a white leaf directly con-
nected to the root), and the three others to a vertex with one black leaf and
two descendent blossom-trees, each receiving a weight g for the decomposed
vertex. Note that eq.(69) trivially amounts to the first equation of (63). We
have therefore found a purely combinatorial re-derivation of the one-cut large
N matrix model result for planar 4-valent graphs, which confirms its validity.

4.2 Generalizations

More generally, the above bijection may be adapted to two-leg planar graphs
with arbitrary even vertex valences. Repeating the above cutting procedure on
such a two-leg planar graph leaves us with a rooted tree with only even vertex
valences, with black and white leaves, and a total charge +1, but with now
exactly k − 1 black leaves attached to each of its 2k-valent vertices. This is
again a consequence of the equivalent property that any subtree not reduced
to a black leaf has charge +1, a fact proved exactly in the same manner as
before (actually, Fig.(6) is still valid for the case of arbitrary even valences).
This suggests a straightforward generalization of rooted blossom-trees with
arbitrary even vertex valences, with black and white leaves and such that any
subtree not reduced to a black leaf has charge +1. The latter are again in
bijection with the two-leg planar graphs with even valences, and are easily
enumerated by considering the environment of the vertex attached to the root,
with the result for the generating function R, including weights g2k per 2k-
valent vertex:

R = 1 +
∑

k≥1

g2k

(
2k − 1

k

)
Rk (70)

where the first term corresponds as in (69) to the tree with no vertex, while the
k-th term in the sum corresponds to the

(2k−1
k

)
ways of picking the k−1 black
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Finally, the bijection may be adapted so as to also include arbitrary (both
even or odd) valences, but then requires the introduction of one-leg graphs
as well. Such graphs are represented in the plane with their unique leg not
necessarily adjacent to the external face, hence are not generated by Γ1 =
S + V ′

−2, but, as we showed in the previous section, by S itself. The graphs
are again cut according to the above procedure, to produce rooted trees. The
system of equations (48) is nothing but that obeyed by the rooted blossom-trees
of two kinds corresponding to cutting one- and two-leg graphs, respectively
generated by S and R, and defined as rooted trees with black and white leaves,
and total charge 0 and +1 respectively, and whose descendent subtrees not
reduced to a black leaf all have charge 0 or +1. A simple way of recovering all
combinatorial factors in the two lines of (48) is to note that in a rooted blossom
tree of charge 0 (resp. +1), the i − 1 descendents subtrees of any i-valent
vertex attached to the root may be either black leaves (charge −1), blossom
trees of charge 0, or blossom trees of charge 1, the total charge being 0 (resp.

leaves among the 2k − 1 descendents of the 2k-valent vertex attached to the
root, the remaining descendents being themselves trees of charge +1 generated
by R. The equation (70) is nothing but (49), written in a different fashion.

+1). These subtrees are generated respectively by the functions 1, S and R.
Denoting by j in both cases the total number of descendent subtrees of charge
+1, we must have j (resp. j−1) black leaves to ensure the correct total charge,
and the remaining i − 2j − 1 (resp. i − 2j) descendents have charge 0. The
combinatorial factors of (48) account for the possible choices of these among
the i − 1 descendents.

This combinatorial interpretation sheds light on the algebraicity of the equa-
tions obtained in the large N limit for the general one-matrix model: trees are
indeed archetypical objects whose generating functions obey algebraic rela-
tions, and we have shown that the planar graphs generated by the large N
matrix model could be represented by (blossom) trees. This correspondence
will be fully exploited in Sect.6 to investigate the intrinsic geometry of planar
graphs.

5. The one-matrix model II: topological expansions and
quantum gravity

We now turn to higher genus contributions to the one-matrix model free en-
ergy. This is best done by use of the so-called orthogonal polynomial technique
[20].
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5.1 Orthogonal polynomials

The standard technique of computation of (28) uses orthogonal polynomials.
The idea is to disentangle the Vandermonde determinant squared interaction
between the eigenvalues. The solution is based on the following simple lemma:
if pm(x) = xm +

∑m−1
j=0 pm,jx

j are monic polynomials of degree m, for
m = 0, 1, ..., N − 1, then

∆(m) = det(mj−1
i )1≤i,j≤N = det(pj−1(mi))1≤i,j≤N (71)

easily derived by performing suitable linear combinations of columns. Let
us now introduce the unique set of monic polynomials pm, of degree m =
0, 1, ..., N − 1, that are orthogonal w.r.t. the real one-dimensional measure
dµ(x) = exp(−NV (x))dx, namely such that

(pm, pn) =

∫

IR
pm(x)pn(x)dµ(x) = hmδm,n (72)

These allow us to rewrite the numerator of (28), using (71), as

∑

σ,τ∈SN

ε(στ)

N∏

i=1

∫

IR
dµ(mi)pσ(i)−1(mi)pτ(i)−1(mi)e

−NV (mi) = N !

N−1∏

j=0

hj

(73)
We may apply the same recipee to compute the denominator, with the result
N !
∏N−1

j=0 h
(0)
j , where the h

(0)
j are the squared norms of the orthogonal poly-

nomials w.r.t. the Gaussian measure dµ0(x) = exp(−Nx2/2)dx. Hence the
h’s determine ZN (V ) entirely through

ZN (V ) =

N−1∏

i=0

hi

h
(0)
i

(74)

To further compute the h’s, let us introduce the two following operators Q
and P , acting on the polynomials pm:

Qpm(x) = xpm(x)

Ppm(x) =
d

dx
pm(x) (75)

with the obvious commutation relation

[P,Q] = 1 (76)

Using the self-adjointness ofQ w.r.t.the scalar product(f, g)=
∫
f(x)g(x)dµ(x),

it is easy to prove that
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Qpm(x) = xpm(x) = pm+1(x) + smpm(x) + rmpm−1(x) (77)

for some constants rm and sm, and that sm = 0 if the potential V (x) is even.
The same reasoning yields

rm =
hm

hm−1
, m = 1, 2, ... (78)

and we also set r0 = h0 for convenience.
Moreover, expressing both (Ppm, pm) and (Ppm, pm−1) in two ways, using

integration by parts, we easily get the master equations

m

N
=

(V ′(Q)pm, pm−1)

(pm−1, pm−1)

0 = (V ′(Q)pm, pm) (79)

which amount to a recursive system for sm and rm. Note that the second line
of (79) is automatically satisfied if V is even: it vanishes as the integral over IR
of an odd function. Assuming for simplicity that V is even, the first equation
of (79) gives a non-linear recursion relation for the r’s, while the second is a
tautology, due to the vanishing of all the s’s:

m

N
=

(V ′(Q)pm, pm−1)

(pm−1, pm−1)
=
∑

k≥1

g2k
(Q2k−1pm, pm−1)

(pm−1, pm−1)

=
∑

k≥1

g2k

∑

paths p|p(1)=m, p(2k−1)=m−1
p(i+1)−p(i)=±1

2k−2∏

i=1

w(p(i), p(i + 1)) (80)

where the sum extends over the paths p on the non-negative integer line, with
2k − 1 steps ±1, starting at p(1) = m and ending at p(2k − 1) = m − 1, and
the weight reads w(p, q) = 1 if q = p + 1, and w(p, q) = rp if q = p − 1. For
up to 6-valent graphs this reads
n

N
= rn(1 − g2) − g4rn(rn+1 + rn + rn−1)

− g6(rn+1rn+2 + rn+1rn−1 + rn−1rn−2 + r2
n + r2

n+1 + r2
n−1

+ 2rn(rn+1 + rn−1) (81)

In general, the degree d of V fixes the number d − 1 of terms in the recur-
sion. So, we need to feed the d − 2 initial values of r0, r1, r2, ..., rd−3 into
the recursion relation, and we obtain the exact value of ZN (V ) by substituting
hi = r0r1...ri in both the numerator and the denominator of (74). Note that
for V0(x) = x2/2 the recursion (79) reduces simply to
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m

N
=

(Qp
(0)
m , p

(0)
m−1)

(p
(0)
m−1, p

(0)
m−1)

= r(0)
m (82)

and therefore h
(0)
m = h

(0)
0 m!/Nm =

√
2πm!/Nm+1/2. The p

(0)
m are simply

the (suitably normalized) Hermite polynomials.
Finally, the full free energy of the model (25) reads

FN (V ) = Log ZN (V ) = N Log r0

√
N

2π
+

N−1∑

i=1

(N − i)Log
Nri

i
(83)

in terms of the r’s.

5.2 Large N limit revisited

In view of the expression (83), it is straightforward to get large N asymp-

totics for the free energy, by first noting that as h0 ∼
√

2π
N , the first term in

(83) doesn’t contribute to the leading order N2 and then by approximating the
sum by an integral of the form

f = lim
N→∞

1

N

N−1∑

i=1

(1 − i

N
)Log

ri

i/N
=

∫ 1

0
dz(1 − z)Log

r(z)

z
(84)

where we have assumed that the sequence ri tends to a function ri ≡ r(i/N)
of the variable z = i/N when N becomes large. This assumption, wrong in
general, basically amounts to the one-cut hypothesis encountered in Sect.3.2.
The limiting function r(z) in (84) is then determined by the equations (79), that
become polynomial in this limit. In the case V even for instance, we simply
get

z = r(z) −
∑

k≥ 1

(
2k − 1

k

)
g2kr(z)k (85)

The function r(z) is the unique root of this polynomial equation that tends
to z for small z (it can be expressed using the Lagrange inversion method
for instance, as a formal power series of the g’s), and the free energy follows
from (84). To relate this expression to our former results, let us again attach
an extra weight t per face of the graphs. As before, it amounts to replacing
V ′(x) → V ′(tx) = tx−∑k≥1 g2kt2k−1

(2k−1
k

)
x2k−1, and to rescale f → t2f .

Setting ρ(z) = t2r(z), we arrive at

tz = ρ(z) −
∑

k≥1

(
2k − 1

k

)
g2kρ(z)k ≡ ϕ(ρ(z)) (86)

and f =
∫ 1
0 dz(1−z)Log ρ(z)

tz , ρ(z) being determined by ϕ(ρ(z)) = tz. Let us
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∂t(t
2f) =

∫ r

0
dρϕ′(ρ) Log

ρ

ϕ(ρ)

∂2
t (t2f) = ∂trϕ

′(r) Log
r

ϕ(r)
= Log

r

t
(88)

Note that r may be interpreted in the light of Sect.4 as the generating function
for rooted blossom trees with a weight t per white leaf (easily read off the
relation r = t +

∑
k≥1 g2k

(2k−1
k

)
rk). Finally, setting t = 1, we may rewrite

∂2
t (t2f)|t=1 = Log R = −Log

(
1 −
∑

k≥1

g2k

(
2k − 1

k

)
Rk−1

)
(89)

and integration bounds ρ(0) = 0 and ρ(1) = r, solution of t = ϕ(r). We
obtain:

t2f =

∫ r

0
dρϕ′(ρ)(t − ϕ(ρ)) Log

ρ

ϕ(ρ)
(87)

We now take derivatives w.r.t. t: as the dependence on t is either via r or
explicit in the integrand, there are only two terms involved. But the integrand
vanishes at the upper bound, as t−ϕ(r) = 0,hence only the explicit derivative
contributes, and we have

as r reduces to R at t = 1. This expresses the generating function for pla-
nar graphs with even valences and with two distinct marked faces (as each
derivative amounts to a marking) as the logarithm of the generating function
for blossom trees. This formula will become combinatorially clear in Sect.7.2
below.

5.3 Singularity structure and critical behavior

In the even potential case, according to (88), the singularities of r govern
those of the free energy. r attains a first critical singularity at some t = tc
where r = rc with ϕ(rc) = tc and ϕ′(rc) = 0. We may then Taylor-expand

tc − t = ϕ(rc) − ϕ(r) = −1

2
(r− rc)

2ϕ′′(rc) + O((r − rc)
3) (90)

As t is an activity per face of the graphs, we may consider the number of faces
as a measure of the area of the associated discrete surface, therefore the singu-
larity rsing ∼ (tc−t)1/2 is immediately translated via (88) into a singularity of
the planar free energy fsing ∼ (tc−t)2−γ , with a string susceptibility exponent
γ = −1/2. Alternatively, upon Laplace-transforming the result, this exponent
also governs the large area behavior of fA ∼ const. t−A

c /A3−γ , the planar free
energy for fixed area (A=number of faces here). This is the generic singular-
ity expected from a model describing space without matter, such as that of the
pure 4-valent graphs studied above.
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We may reach more interesting multicritical points with different universal-
ity classes and exponents by fine-tuning the parameters g2k so as to ensure that
a higher order singularity is attained at some t = tc such that r = rc, while
ϕ′(rc) = ϕ′′(rc) = ... = ϕ(m)(rc) = 0, while ϕ(m+1)(rc) �= 0. Taylor-
expanding now yields

tc − t = ϕ(rc)−ϕ(r) = −ϕ(m+1)(rc)

(m + 1)!
(r− rc)

m+1 + O((r− rc)
m+2) (91)

This translates into a singularity of the free energy with string susceptibility
exponent γ = − 1

m+1 . This is characteristic of non-unitary matter conformal
field theory with central charge c(2, 2m+1) coupled to 2D quantum gravity [1]
[2]. The first example of this is the Hard Dimer model introduced in Sect.2.4
above, for which

ϕHD(r) = r − 3gr2 − 30zg2r3 (92)

Writing ϕ′
HD(r) = ϕ′′

HD(r) = 0 yields zc = −1/10, grc = 1/3, and
gtc = 1/3, with a critical exponent γ = −1/3, corresponding to the Lee-Yang
edge singularity (conformal field theory with central charge c(2, 5) = −22/5)
coupled to 2D quantum gravity.

The inclusion of vertices of odd valences does not give any additional mul-
ticritical singularities. This is why we choose to stick here and in the following
to the even case as much as possible.

5.4 Higher genus

To keep the full fledge of the model, we must keep track of all shifts of
indices in (80). This is easily done by still introducing r(z = m/N) ≡ rm,
but by also keeping track of finite shifts of the index m → m + a, namely,
setting ε = 1/N , via r(z + aε) ≡ rm+a. In other words, as N → ∞, we still
assume that rm becomes a smooth function of z = m/N , but keep track of
finite index shifts. Solving eq.(80) order by order in 1/N involves writing the
“genus" expansion

r(z) =
∑

k≥0

ε2kr(k)(z), (93)

implementing all finite index shifts by the corresponding ε shifts of the variable
z, and solving for the r(k)’s order by order in ε2. We finally have to substitute
the solution back into the free energy (83), with ri = r(i/N). This latter ex-
pression must then be expanded order by order in ε using the Euler-MacLaurin
formula. Setting h(x) = (1 − x)Log(r(x)/x), this gives
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FN (V )

N2
=

1

N

N∑

i=1

h

(
i

N

)
=

∫ 1

0
h(z)dz+

ε

2
(h(1)−h(0))+

ε2

12
(h′(1)−h′(0))+.. .

(94)
in which we must also expand r(x) according to (93). The result is the genus
expansion FN (V ) =

∑
N2−2hF (h)(V ), where F (h) is the generating function

for graphs of genus h. For illustration, in the 4-valent case, we have

r(z) − gr(z)(r(z + ε) + r(z) + r(z − ε)) = z (95)

Writing r(z) = r(0)(z) + ε2r(1)(z) + O(ε4), we find that

r(1)(z)(1 − 6gr(0)(z)) = gr(0)(z)r(0) ′′(z) (96)

at order 2 in ε, while r(0)(z) = (1−√
1 − 12gz)/(6g), and (1−6gr(0)(z))r(0) ′

(z) =1, so that r(1)(z) = gr(0)(z)r(0) ′(z)r(0) ′′(z). At to order 2 in ε, this gives

F (1) =
1

12
(h′

0(1) − h′
0(0)) + g

∫ 1

0
dx(1 − x)r(0)′(x)r(0)′′(x) (97)

where h0(x) = (1 − x)Log(r(0)(x)/x), namely

F (1) =
1

24

∑

n≥1

gn

n
3n(4n −

(
2n

n

)
)

=
g

4
+

15

8
g2 + ... (98)

1
4

1
8

1
2

1
4

1

+g2= g

where we have displayed the genus one 4-valent graphs with up to two vertices,
together with their inverse symmetry factors.

64



2D Quantum Gravity, Matrix Models and Graph Combinatorics

5.5 Double-scaling limit

The idea behind the double-scaling limit is to combine the large N limit and
the singularity structure of the free energy at all genera into a single scaling
function. Let us first consider the 4-valent case (95). We wish to approach
the critical value g = gc = 1/12 displayed by the planar solution R = (1 −√

1 − 12g)/(6g) at t = 1, at the same time as N → ∞. Setting ρ(z) = gr(z),
we have

gz = ρ(z)(1 − (ρ(z + ε) + ρ(z) + ρ(z − ε)))

gc = ρc(1 − 3ρc) (99)

with gc = 1/12 and ρc = 1/6. Subtracting both lines of (99) and expanding
up to order 2 in ε yields

gc − gz = ρc(1 − 3ρc) − ρ(z)(1 − 3ρ(z)) − ε2ρ(z)ρ′′(z) + O(ε4) (100)

This suggests to introduce rescaled variables and functions gc − gz = a2gcy,
while ρ(z) = ρc(1 − au(y)), and to expand up to order 2 in a as well:

a2gcy = 3ρ2
ca

2u(y)2 − ε2ρ2
ca

−3u′′(y) (101)

where we have noted that dz = −a2dy at g = gc. The large N limit of Sect.5.2
is recovered by taking ε = 0, in which case we are left with u(y) =

√
y,

another way of expressing the planar singularity of the free energy u(y) = y−γ ,
with γ = −1/2. For non-zero ε, all terms in (100)a will contribute if we take
ε2 = a5. We then have

y = u(y)2 − 1

3
u′′(y) (102)

which is nothing but the Painlev«e I equation. Moreover, the singular part of the
free energy reads

F ≡ Fsing = N2

∫ 1

0
dz(1 − z)Log(

ρ(z)

gz
)|sing = N2a5

∫ x

a−2

(y − x)u(y)dy

(103)
where gc − g = a2gcx. Differentiating twice w.r.t. x yields u(x) = −F ′′(x).
To summarize, if we take simultaneously N → ∞ and g → gc, but keep the
quantity

N
4
5

(
gc − g

gc

)
= x (104)

fixed, then the singular parts of the free energy at all genera recombine into a
single scaling function F (x), whose second derivative satisfies the Painlev«e I
differential equation. To recover the leading singularity at genus h, we simply
have to expand the solution of (102) at large x as u(x) =

∑
h≥0 uhx

1
2
(1−5h)

and solve the resulting recursion relation for uh. This is the so-called double-
scaling limit of pure 2D quantum gravity.
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We may repeat this exercise with the multicritical models of Sect.5.3, how-
ever algebra becomes cumbersome. Let us instead look at the scaling limits
of the operators P and Q acting on the orthogonal polynomials (75). Let us
rescale the orthogonal polynomials pn to make them orthonormal, namely set
p̃n = pn/

√
hn, so that (77) (with sn = 0) becomes more symmetric

(Qp̃)n = λp̃n =
√

rn+1p̃n+1 +
√

rnp̃n−1 (105)

or equivalently

Qn,m = (p̃m, Qp̃n) =
√

rn+1δm,n+1 +
√

rnδm,n−1 (106)

Let us now take the large N limit. Setting ε = 1/N as before, we note that the
shift operator δm,n+1, acting on sequences (αm) can be generated as eεd/dz ,
acting on the continuum limit of (αm), i.e. a function α(z) = αm, for z =
m/N . Indeed, one just has to write

∑

m

δm,n+1αm = αn+1 = e
d

dn αn � eε d
dz α(z) (107)

Setting again r(z) = rc(1 − au(y)), this permits to rewrite Q as

Q �
√

r(z)
(
eε d

dz + e−ε d
dz

)

=
√

rc(1 − au(y))(2 + ε2 d2

dz2
+ O(ε4))

= 2
√

rc −
√

rc(au − (ε
d

dz
)2 + O(ε4, a2)) (108)

In the general multicritical case, we must set

tc − tz = am+1tcy (109)

and y = x at z = 1, so that dz ∼ am+1dy. The two terms in the r.h.s. of (108)
are of the same order a provided (εd/dz)2 = (εa−m−1d/dy)2 is of order a,
and we obtain the double-scaling condition that ε2a−2m−2 = a, hence

N2 = a−2m−3 (110)

or equivalently

N
2m+2
2m+3

(
tc − t

tc

)
= x (111)

remains fixed while N → ∞ and t → tc. Retaining only the coefficient of a,
we find that

Q → d2

dy2
− u(y) (112)

in the double-scaling limit. This limit is a differential operator, acting on func-
tions of the rescaled variable y.
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Let us now turn to P . It will be useful to slightly change the definition of
the operator P , in the following way

Pn,m =

∫ ∞

−∞
dλp̃m(λ)e−N

V (λ)
2

d

dλ
e−N

V (λ)
2 p̃n(λ)

= − N

2
(p̃m, V ′(Q)p̃n) + (p̃m, p̃′n)

= − N

2
V ′(Q)n,m + An,m (113)

where A is a lower triangular matrix Anm = 0 if n ≤ m. Upon an integration
by parts we may as well write

Pn,m = − N

2
V ′(Q)n,m + An,m

=
N

2
V ′(Q)n,m − At

n,m (114)

where the matrix At is upper triangular. Eq.(114) permits to compute the ma-
trix elements of P in terms of those of Q only, by using the first equation when
n ≤ m (Anm = 0) and the second one when n ≥ m (At

nm = 0). This can be
summarized by the following operator relation:

P =
N

2
(V ′(Q)+ − V ′(Q)−) (115)

where the index + (resp −) indicates that we retain only the upper (resp. lower)
triangular part. In particular, as it is expressed polynomially in terms of Q, P
has a finite range, namely Pn,m = 0 if |n − m| > B, B some uniform bound,
independent of N (B depends only on the degree of V ). This bound ensures
that P goes over in the double scaling limit to a differential operator of finite
degree p, of the form

P =
1

a
√

rc
(dp + v2d

p−2 + v3d
p−3 + .... + vp) (116)

to ensure the correct normalization of [P,Q] = 1. From the precise form of P
(115), and as each derivative d w.r.t. y carries a prefactor εa−m−1 =

√
a, we

must have N × ap/2 = 1/a, which together with the double-scaling condition
(110) fixes the degree

deg(P ) = 2m + 1 (117)

We must finally write the canonical commutation relation (76) [P,Q] = 1, with
the renormalized values P = d2m−1 +v2d

2m−2 + ....+v2m and Q = (d2−u).
Let us introduce the square root L of Q, namely the unique pseudo-differential
operator
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such that L2 = Q. This equation is expressed as a triangular system for the
�’s, provided we normal-order the result by pushing all functions to the left
of powers of the differential d, by means of the Leibnitz formula d−if(y) =∑

j≥0(−1)j
(i+j−1

j

)
f (j)(y)d−i−j . Let us now express P . Solving [P̃ ,Q] = 0

rather than [P,Q] = 1 makes no difference as far as we only write the equations
for the coefficients of positive powers of d: solving these equations precisely
allows to express P as a function of Q. As the solution to [P̃ ,Q] = 0 for a
pseudo-differential operator P̃ of degree 2m + 1 is nothing but P̃ = L2m+1,
we simply have P = (L2m+1)+, where the subscript + indicates that we have
retained only the differential polynomial part. So far, we have solved all the
equations obtained by setting to 0 the coefficients of all positive powers of d
in [P,Q] = 1. We still have to write the d0 coefficient. Writing (L2m+1)− =
L2m+1− (L2m+1)+ = Rm+1[u]d−1 +O(d−2), this last equation reads simply

2Rm+1[u]′ = 1 ⇒ 2Rm+1[u] = y (119)

This is nothing but a higher order generalizations of the Painlev«e I equation, re-
lated to the so-called KdV hierarchy. From their definition, the “KdV residues"
Rm[u] satisfy the recursion relation

Rm+1[u]′ =
1

4
Rm[u]′′′ − 1

2
u′Rm[u] − uRm[u]′ (120)

L = d +
∑

i≥1

�id
−i (118)

obtained by writing (L2m+1)− = ((L2m−1)−Q)− = (Q(L2m−1)−)−, while
the initial term reads R1[u] = −u/2. Again, plugging the large y expansion

u(y) =
∑

h≥0 uhy
1

m+1
(1−(2m+3)h) into eq.(119) yields a recursion relation for

the uh and gives acces to the all genus singular part of the free energy via the
relation Fsing(x)′′ = −u(x).

The actual general solution of [P,Q] = 1 involves integration constants
which we have all set to zero for convenience, hence the most general solution
for a degree 2m + 1 differential operator P reads

2

m+1∑

j=1

µjRj[u] = y (121)

for some integration constants µj . This equation interpolates between the var-
ious matter critical points µj = δj,k+1, corresponding to the various multi-
critical points already identified as c(2, 2k + 1) CFT coupled to 2D quantum
gravity. From the point of view of the m + 1-critical model, the µ’s are just
dimensionful parameters coupled to the order parameters of the theory.
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5.6 Generalization to multi-matrix models

A large class of multi-matrix models turns out to be solvable by exactly the
same techniques as those developed in the previous sections for the one-matrix
model. It corresponds to matrices M1, ...,Mp with a chain-like interaction,
namely involving a quadratic form Qa,b as in (21), for which only the elements
Qa,a, a = 1, 2, ..., p and say Qa,a+1, a = 1, 2, ..., p − 1 are non-vanishing.
In this particular case only, the unitary group integrations may be disentan-
gled from the eigenvalue integrations for all M ’s and we may still reduce the
integral to one over eigenvalues of the different matrices. Once this step is per-
formed, the orthogonal polynomial technique is easily adapted and a complete
solution follows from considering again operators Pa and Qa of differentiation
w.r.t. or multiplication by an eigenvalue of the matrix Ma, a = 1, 2, ..., p. Note
that the saddle-point technique with several matrices is more subtle.

One is eventually left with solving an equation of the form [P1, Q1] = 1, the
scaling function u such that u′′ = −F being identified with some coefficient of
Q1. The remarkable fact is that both P1 and Q1 remain of uniformly bounded
range, the latter depending only on the degrees of the potentials for the various
matrices. This implies that in a suitable double scaling limit where the size
of the matrices is sent to infinity and the parameters of the potentials go to
some (multi-) critical values, the operators P1 and Q1 still become differential
operators of finite degree say p and q, two coprime integers. The resulting
differential system [P1, Q1] = 1 governs the all-genus singular part of the
free energy of the general c(p, q) minimal conformal field theory coupled to
2D quantum gravity. This completes the picture of critical behaviors covered
by matrix models solvable by orthogonal polynomial techniques: it exhausts
all minimal CFT’s with c < 1, according to the famous ADE classification
thereof [1]footThis statement is not completely correct: only the A-type CFT’s
are covered by the standard multi-matrix models. A proposal for D-type CFT’s
was given in [21], based on D-type generalizations of the KP hierarchy [22],
but no direct relation to solvable matrix models was found. Not to speak about
E-type solutions....

From a combinatorial point of view, the bijection presented in Sect.4.1 may
be generalized to the case of two-matrix models [23], and presumably to all
cases solvable by orthogonal polynomial techniques, which all lead to alge-
braic systems, henceforth suggest tree-like interpretations.

6. The combinatorics beyond matrix models: geodesic
distance in planar graphs

In this section, we return to the bijections between planar graphs and trees to
investigate more refined properties of the discrete random surfaces generated
by matrix models, involving their intrinsic geometry. In particular, we will
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derive in a purely combinatorial manner sets of closed equations for generating
functions of planar graphs with marked points at a given geodesic distance, a
task still eluding the matrix model description.

6.1 Keeping track of the geodesic distance: the 4-valent
case

Let us return to the bijection between two-leg 4-valent planar graphs and
rooted blossom trees shown in Sect.4. Looking at Fig.(4.1), we see that the
bijection allows to keep track of the geodesic distance between the two legs,
namely the smallest possible number of edges of the graph crossed by a curve
joining them. Indeed, this distance is nothing but the number of edges en-
compassing the root of the corresponding blossom-tree, when black and white
leaves are re-connected. Loosely speaking, the geodesic distance between the
legs corresponds in the blossom tree language to the number of black leaves “in
excess", which require encompassing the root to be connected to their white
alter ego in counterclockwise direction. Let us now derive simple relations
for the generating function Rn for two-leg diagrams with geodesic distance at
most n between the legs. To get the more interseting generating function Gn

for graphs with two legs at geodesic distance equal to n, we just have to write
Gn = Rn −Rn−1. Alternatively, Rn can be thought of as the generating func-
tion for blossom trees with at most n black leaves in excess. As such, it obeys
the following recursion relation:

Rn = 1 + gRn+1Rn + gR2
n + gRnRn−1

(122)

R n

n

R n

n

R n

n

R n

n 1R

n 1
n

R n

n

n+1R

n+1

+ g + g + g=

This is just a refinement of eq.(69) in which we have kept track of the maximal
numbers of excess black leaves. The presence of single black leaves around
the vertex connected to the root lowers by 1 the maximal number of excess
leaves of any object on its left, while as each blossom tree has one white leaf in
excess, it always absorbs one excess black leaf from objects on its left: these
two facts are responsible for the shifts of the index n.

The recursion relation (122) holds for all n ≥ 0 provided the term involv-
ing R−1 is dropped. Let us therefore supplement the recursion relation with
the initial value R−1 = 0. Moreover, the function Rn should go over to the
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function R of (69) in the limit n → ∞, which amounts to suppressing the
constraint on the distance between the two legs. Rn is the unique solution to
(122) such that R−1 = 0 and limn→∞ Rn = R. If we are only interested in
the power series expansion of Rn in g, we may solve (122) order by order in g,
starting with R−1 = 0 at all orders and Rn = 1 + O(g) for all n ≥ 0. To any
given order in g, the system for the series coefficients is indeed triangular, and
moreover R − Rn = O(gn+1), which guarantees the convergence condition.
In the next section, we actually display the exact solution Rn in a very compact
form.

An important remark is in order. The relation (122) is strikingly reminiscent
of that for the orthogonal polynomials (81) say with g2 = g6 = 0, g4 = g,
except that the l.h.s. of (81) is now replaced by 1, and rn = hn/hn−1 by Rn.
One may wonder whether eq.(122) may be derived from some matrix model
solution. The answer is not known to this day, but the boundary condition that
R−1 = 0 would mean in matrix model language that some norm of orthogonal
polynomial must vanish, hence if there is such a matrix model formulation, it
must be very singular. As to the r.h.s. of (81), its similarity with that of (122)
suggests to express the rules for the possible subtrees encountered around the
vertex attached to the root in counterclockwise order in terms of a “Q-operator"
acting on a formal orthonormal basis |n〉, 〈m|n〉 = δm,n for m,n ≥ 0 and
|n〉 = 0 for n < 0, via

Q|n〉 = |n + 1〉 + Rn|n − 1〉 (123)
The first term is interpreted as the contribution of a single black leaf, while the
second corresponds to a blossom tree with at most n excess black leaves. Then
the r.h.s. of (122) is nothing but 1 + g〈n − 1|Q3|n〉.

6.2 Exact solution

To solve (122), we use the convergence condition to write Rn = R − ρn at
large n, and expand (122) at first order in ρn. This gives the linear recursion
relation

gR(ρ
(1)
n+1 + ρ

(1)
n−1) − ρ(1)

n (1 − 4gR) = 0 (124)

This has the characteristic equation

x +
1

x
+ 4 =

1

gR
(125)

with R given by (63). Picking the solution x with modulus less than 1, we
find that Rn = R(1 − λ1x

n + O(x2n)) for some integration constant λ1. We
may next expand Rn = R(1 −∑j≥1 λjx

jn), and (122) turns into a recursion
relation for the coefficients λj :

λj+1

(
xj+1 +

1

xj+1
− x − 1

x

)
=

j∑

i=1

λiλj+1−i

(
xi +

1

xi

)
(126)
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solved recursively as

λj = λ1

(
λ1x

(1 − x)(1 − x2)

)j−1 1 − xj

1 − x
(127)

Picking λ1 = x(1 − x)(1 − x2)λ, Rn is easily resummed into

Rn = R
(1 − λxn+1)(1 − λxn+4)

(1 − λxn+2)(1 − λxn+3)
(128)

Further imposing the initial condition R−1 = 0 fixes λ = 1, hence finally

Rn = R
(1 − xn+1)(1 − xn+4)

(1 − xn+2)(1 − xn+3)
(129)

with |x| < 1 solving (125).
This gives an explicit formula for the generating function of 4-valent two-

leg graphs with geodesic distance at most n between the legs. In particular, for
n = 0, this gives the generating function for graphs with the two legs in the
same face (also called Γ2 in Sect.3.3), namely

R0 = G0 = Γ2 = R
1 + x2

1 + x + x2
= R

(1 − 4gR)

(1 − 3gR)
= R − gR3 (130)

where we have used (125) and (69) to simplify the result. This is in perfect
agreement with the matrix model result (65).

6.3 Integrability

The equation (122) is intergable in the classical sense that there exists an “in-
tegral of motion", namely a conserved quantity f(Rn, Rn+1) =const. which
implies (122). More precisely, defining

f(x, y) = xy(1 − gx − gy) − x − y (131)

we have

f(Rn, Rn+1)−f(Rn−1, Rn) = (Rn+1−Rn−1)
(
Rn−1−gRn(Rn+1+Rn+Rn−1)

)

(132)
We deduce that if f(Rn, Rn+1)is a constant independent of n, then Rn

obeys (122): f is an integral of motion of the equation (122).
Using f , we may write in a compact way the condition limn→∞ Rn = R

for solutions of (122). Indeed, we simply have to write

f(Rn, Rn+1) = f(R,R) = R2(1 − 2gR) − 2R = −(R − gR3) (133)
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6.4 Fractal dimension

The advantage of having an exact formula like (129) is that we may also
extract the “fixed area" coefficient Rn,A of gA in Rn via the contour integral

Rn,A =

∮
dg

2iπgA+1
Rn (135)

with Rn given by (129). This gives access to asymptotic properties at large
area A. In particular, the ratio

Bn ≡ lim
A→∞

Rn,A

R0,A
(136)

may be taken as a good estimate of the average number of points at a geodesic
distance less or equal to n from a given point in random 4-valent graphs of
infinite area. It is expected to behave like

Bn ∼ ndF for large n (137)

All solutions to (133) are also solutions of (122), and they moreover converge
to R as n → ∞. As an immediate application of (133), we may recover R0,
by imposing that R−1 = 0:

R0 = −f(R−1, R0) = R − gR3 (134)

in agreement with (130).

where dF is the fractal dimension of the random surfaces. Performing in (135)
the change of variables v = gR, i.e. g = v(1 − 3v), we obtain

Rn,A =

∮
dv(1 − 6v)

2iπ(v(1 − 3v))A+1

1

1 − 3v

(1 − x(v)n+1)(1 − x(v)n+4)

(1 − x(v)n+2)(1 − x(v)n+3)
(138)

where we have used R(g(v)) = 1/(1 − 3v) and the expression x = x(v) ≡
(1−4v−

√
1 − 8v + 12v2)/(2v). The large A behavior is obtained by a saddle-

point approximation, as the integral is dominated by the vicinity of v = vc =
1/6, corresponding to the critical point g = gc = 1/12, where x → 1. Making
the change of variables v = vc(1 + i ξ√

A
), expanding all terms in powers of

1/
√

A and integrating over ξ, we finally get the leading behavior
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Rn,A ∼ const.
(12)A

A
5
2

(n + 1)(n + 4)

(n + 2)(n + 3)
(140 + 270n + 179n2 + 50n3 + 5n4)

(139)
which finally gives the ratio

Bn =
3

280

(n + 1)(n + 4)

(n + 2)(n + 3)
(140+270n+179n2+50n3+5n4) ∼ 3

56
n4 (140)

hence dF = 4 is the desired fractal dimension.

6.5 Scaling limit: Painlevé again!

A continuum limit may be reached by letting g tend to its critical value
gc = 1/12. More precisely, we write

g =
1

12
(1 − ε4) ⇒ gR =

1

6
(1 − ε2) (141)

from eq.(63). In turn, the characteristic equation (125) yields

x = e−aε + O(ε3) a =
√

6 (142)

As seen from eq.(129), a sensible limit is obtained by writing

n =
r

ε
(143)

and letting ε → 0. Writing the scaling variable r as r = n/ξ, we see that ε
plays the role of the inverse of the correlation length ξ. As we approach the
critical point, we have ξ = ε−1 =

(
(gc − g)/gc

)−ν
with a critical exponent

ν = 1/4, in agreement with ν = 1/dF , as expected from general principles.
Performing this limit explicitly on the solution (129) yields an explicit formula
for the continuum partition function F(r) of surfaces with two marked points
at a geodesic distance larger or equal to r:

F(r) ≡ lim
ε→0

R − Rn

ε2R
= −2

d2

dr2
Log sinh

(q
3
2
r
)

=
3

sinh2
(q

3
2
r
) (144)

Upon differentiating w.r.t. r, we obtain the continuum partition function for
surfaces with two marked points at a geodesic distance equal to r:

G(r) = −F ′(r) = 3
√

6
cosh

(q
3
2
r
)

sinh3
(q

3
2
r
) (145)
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This reproduces a conjecture [25] obtained in a transfer matrix formalism of
2D quantum gravity.

Note that the precise form of the scaling function F(r) may alternatively be
obtained by solving the continuum counterpart of eq.(122). Indeed, writing

Rn = R(1 − ε2F(nε)) (146)

and expanding eq.(122) up to order 4 in ε, we obtain the following differential
equation

F ′′(r) − 3F2(r) − 6F(r) = 0 (147)

It is easy to check that F(r) as given by (144) is the unique solution of (147)
with boundary conditions F(r) → ∞ when r → 0 and F(r) → 0 when
r → ∞. Writing F(r) = u(r) − 1, we note that eq.(147) turns into

u2 − u′′/3 = 1 (148)

strikingly reminiscent of the Painlev«e I equation governing the model’s all-
genus double-scaling limit (102), except for the r.h.s. which is now a constant.
The function u leading to F is simply the unique solution to (148) such that
u(0+) = ∞ and u(+∞) = 1.

6.6 Generalizations

The results of Sects.6.1-6.5 generalize straightforwardly to the case of arbi-
trary even valences. Using again the bijection of Sect.4.2, we still have to keep
track of excess black leaves. Introducing similarly the generating function Rn

for planar graphs with even valences and with two legs at geodesic distance
less or equal to n, we get a recursion relation by inspecting all configurations
of the vertex attached to the root of the corresponding blossom trees. We may
use the same rules as those found in the 4-valent case (122). Going clockwise
around the vertex and starting from the root, we may encounter blossom trees
with up to p excess black leaves or single black leaves. Encountering a black
leaf decreases the index p of the objects following it clockwise, while encoun-
tering a blossom subtree increases it by 1. Using the “Q-operator" formalism
of Sect.6.1, namely that Q|n〉 = |n + 1〉 + Rn|n − 1〉, we get the general
recursion relation

Rn = 1 +
∑

k≥1

g2k〈n − 1|Q2k−1|n〉 (149)

to be supplemented with d/2−1 initial conditions R−1 = R−2 = ...Rd/2−1 =
0 (d = deg(V )), and the usual convergence condition limn→∞ Rn = R, to the
solution R of (70). The explicit solution to (149) with these boundary con-
ditions was derived in [14], and involves soliton-like expressions. It allows
for investigating the fractal dimension for multicritical planar graphs, found
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to be dF = 2(m + 1) for the case of Sect.3.6 (91), and to derive contin-
uum scaling functions for multicritical matter on surfaces with two marked
points at a fixed geodesic distance r. Writing (149) as 1 = 〈n − 1|V ′(Q)|n〉,
we use again the trick of adding a weight t per face of the graph, which
amounts to replacing V ′(Q) → V ′(tQ), and multiplying by t leaves us with
t = ϕ(t2Rn, t2Rn±1, ...). Taking the multicritical values for g2k, and writ-
ing t = tc(1 − ε2(m+1)), we look for solutions of (149) of the form Rn =
R(1− ε2F(r = nε)). This gives at order 2(m + 1) in ε a differential equation
for F . Noting that our scaling Ansatz for Rn is the same as that for the double-
scaling limit (rn = rc(1 − au(y))) except for the prefactor R = Rc(1 − ε2)
we see that u(r) = 1 +F(r) satisfies the generalized Painlev«e equation (119),
but with a constant r.h.s. In differentiated form, this corresponds to writing the
commutation relation [P,Q] = 0 between two differential operators P and Q
of the variable r, with respective orders 2m + 1 and 2, with Q = d2 − u.

Thegeneralization tographs with arbitrary (even and odd)valences is straight-
forward, as we simply have to use the “Q-operator" formalism in the combina-
torial setting. The functions Sn (resp. Rn) generate planar graphs with one leg
(resp. two legs), with the leg (resp. second leg) at distance at most n from the
external face. The operator Q now acts as Q|n〉 = |n+1〉+Sn|n〉+Rn|n−1〉,
where the new contribution corresponds to subtrees of charge 0, that do not af-
fect the numbers of allowed excess black leaves of their followers. We obtain
the system of equations

0 = 〈n|V ′(Q)|n〉 1 = 〈n − 1|V ′(Q)|n〉 (150)

This generalizes presumably to all planar graph enumeration problems for
which a matrix model treatment is available, using orthogonal polynomials
involving a natural Q operator, interpreted in the combinatorial setting as de-
scribing objects of various charges attached to the root vertex of the corre-
sponding blossom trees. We may infer that in the general multicritical case of
a CFT with central charge c(p, q) < 1, the scaling function for surfaces with
two marked points at geodesic distance at least r is governed by a differen-
tial system of the form [P,Q] = 0, P and Q two differential operators of the
variable r of respective degrees p and q.

7. Planar graphs as spatial branching processes

This last section is devoted to a dual approach to that followed so far, in
which we consider the graphs dual to those contributing to the matrix model
free energy, namely with prescribed face valences rather than vertex valences.
On such a graph, the geodesic distance between vertices is the minimal number
of edges visited in a path from one to the other. We will present bijections
between classes of such graphs with a specified origin vertex and with a marked
vertex at geodesic distance ≤ n, and labeled trees of arbitrary valences obeying
some specific labeling rules.
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This allows to make the contact with an active field of probability theory
dealing with spatially branching processes. The following is largely based on
refs. [13] [16]EWALL [27] [28].

We first concentrate on the quadrangulations, namely the duals of 4-valent
graphs.

7.1 The dual bijections: labeled trees for planar
quadrangulations

We start with a rooted planar quadrangulation, namely a graph with only
4-valent faces (squares), with a marked oriented “root" edge. Let us pick as
origin vertex the vertex at which the root edge starts. This choice induces a
natural labeling of the vertices of the graph by their geodesic distance to this
origin, itself labeled 0 (see Fig.(7.1) (a) for an example). We then note that only
two situations may occur for the labeling of vertices around a face, namely

n n+1

nn+1 n+1

n n+1

n+2

(151)

in which cases the faces are respectively called confluent and normal. The
confluent faces have been shaded in the example of Fig.(7.1) (a). We now
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Figure 8. The bijection betwen planar quadrangulations and labeled trees. A planar rooted
quadrangulation (a) and the natural labeling of its vertices by the geodesic distance to the origin
vertex of the rooted edge (arrow). The confluent faces are shaded. The tree edges are represented
in thick black lines, and connect all vertices with positive labels. Erasing all but these new
edges and the vertices they connect leaves us with a labeled tree (b), which we root at the vertex
corresponding to the end of the rooted edge of the initial quadrangulation. Finally, all labels of
the tree are shifted by −1.
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construct new edges as follows:

n n+1

nn+1 n+1

n n+1

n+2

(152)

in each face of the quadrangulation (including the external face, for which the
rules are reversed). This rule may be summarized by saying that we connect
via a new edge all the vertices immediately followed clockwise by a vertex
with a label one less. These edges are readily seen to connect all vertices of
the quadrangulation but the origin. Thus, erasing all but the new edges and the
vertices they connect leaves us with a connected labeled tree (see Fig.(7.1) (b)),
which we root at the end vertex of the original rooted edge of the quadrangu-
lation, and in which we subtract 1 from all vertices1. In particular, the vertex
attached to the root has label 0, and all labels are non-negative. Moreover, by
the construction rules (152), adjacent labels of the tree may differ only by 0
or ±1. Such trees are called well-labeled, and are in bijection with the rooted
planar quadrandulations.

The construction rules (152) allow for interpreting the features of the tree
in terms of the original quadrangulation. Any vertex labeled n − 1 in the tree
corresponds to a vertex at distance n from the origin in the quadrangulation.
From the rules of eq.(152), we see that any marked edge n → n + 1 of the
quadrangulation corresponds marking an edge of the tree adjacent to a vertex
labeled n. This in turn may be viewed as the rooting of the tree at a vertex
labeled n (the above bijection uses this fact for n = 0).

We next define rooted well-labeled trees as rooted labeled trees, with non-
negative integer vertex labels, and such that the root vertex has label n. Let
Rn be the generating function for such objects, with a weight g per edge. Ac-
cording to the above bijection, the generating function for rooted planar quad-
rangulations with a weight g per face is simply R0. If, instead of rooting the
well-labeled tree at the end vertex of the initial quadrangulation, we had cho-
sen to root it elsewhere, typically at another vertex of the tree say labeled n,
the resulting rooted well-labeled tree would satisfy the extra condition that the
label 0 occurs at least once in the tree. The generating function for such an
object is nothing but Gn = Rn − Rn−1. In terms of the original quadrangu-
lation, this is nothing but the generating function of quadrangulations with an
origin vertex and with a marked edge n → n + 1 w.r.t. this origin. So Rn is
the generating function for planar quadrangulations with an origin and with a
marked edge m → m + 1, m ≤ n, and a weight g per face.
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The definition of Rn allows to derive a recursion relation of the form

Rn =
1

1 − g(Rn+1 + Rn + Rn−1)
(153)

where we simply express the labeling rule that the root vertex labeled n may
be adjacent to any number of vertices labeled n, n + 1 or n − 1, themselves
roots of other well-labeled trees. Moreover, for (153) to also make sense at
n = 0 we must set R−1 = 0. Removing the constraint that m ≤ n by sending
n → ∞ leaves us with the generating function R for quadrangulations with
an origin and a marked edge, wich also generates the rooted quadrangulations
with a marked vertex, and should satisfy the relation

R =
1

1 − 3gR
(154)

with R = 1 + O(g). We conclude that the functions R and Rn coincide with
those introduced in Sects.4.1 and 6.1.

So we have found another (dual) combinatorial interpretation for the exact
solutions (129).

7.2 Application I: average numbers of edges and vertices
at distance n from a vertex in quadrangulations

A direct application of this new interpretation of Rn concerns properties
of large random quadrangulations viewed from their origin. For instance, the
average 〈en〉A of the number of edges n → n+1 in a quadrangulation with an
origin and with say A faces is given by

〈en〉
〈e0〉

=
Rn,A − Rn−1,A

R0,A
(155)

with Rn,A as in (135). Again, this is readily computed in the limit A → ∞,
where we first note 〈e0〉 → 4 by Euler’s relation, and then use a saddle point
method just like in (139), resulting in

〈en〉 =
6

35

(n2 + 4n + 2)(5n4 + 40n3 + 117n2 + 148n + 70)

(n + 1)(n + 2)(n + 3)
(156)

This goes as 6n3/7 for large n, which confirms the value dH = 4 for the fractal
dimension, as 〈en〉 sin d/dn ndF ∼ ndF−1.

We may also obtain the average number of vertices at geodesic distance n
from the origin, by noting that the corresponding generating function is that
of unrooted well-labeled trees with at least a label 0 and a marked vertex with
label n− 1. Abandoning the condition that a label 0 should occur, and decom-
posing the tree according to the environment of the marked vertex with label
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n − 1 results in the generating function

Kn−1=

∞∑

k=1

gk

k
(Rn+Rn−1+Rn−2)

k =−Log
(
1−g(Rn+Rn−1+Rn−2)

)
= Log(Rn−1)

(157)
where we have incorporated the symmetry factor 1/k when the vertex has va-
lence k. Finally, the generating function for quadrangulations with an origin
and a marked vertex at distance n is

Vn = Kn−1 − Kn−2 = Log

(
Rn−1

Rn−2

)
(158)

for n ≥ 2 and LogR0 for n = 1, while of course V0 = 1. Therefore the
average number of vertices at distance n from the origin in a quadrangulation
of area A is given by

〈vn〉A = Log

(
Rn−1,A

Rn−2,A

)
(159)

easily derived in the large A limit:

〈vn〉 =
3

35

(
(n + 1)(5n2 + 10n + 2) + δn,1

)
(160)

This goes as 3n3/7 for large n, also in agreement with dF = 4.
Note that eqs.(157)-(158) also allow to interpret LogRn−1 as the generat-

ing function for quadrangulations with an origin and a marked vertex at dis-
tance m ≤ n. In the limit n → ∞, the function LogR therefore generates
the quadrangulations with two marked vertices. In the dual formulation, this
corresponds to 4-valent planar graphs with two marked faces: this gives a
purely combinatorial derivation in the 4-valent case of the formula (89) ob-
tained above in the matrix model language.

7.3 Application II: local environment of a vertex in
quadrangulations

Another application of this new graph interpretation of Rn concerns the
local environment of the origin. Assume we wish to keep track of the numbers
of vertices at some finite distances p + 1 from the origin, and edges labeled
q → q + 1 for some specific p’sand q’s, both less or equal to some given k.
Then a way to do it is to add extra weights, say ρp per vertex labeled p in the
corresponding well-labeled tree and σp per edge adjacent to a vertex labeled
p of the well-labeled tree. Indeed, as explained in the previous section, this
amounts to adding a weight ρp per vertex labeled p+1 in the quadrangulation,
and a weight σp per edge p → p + 1 in the quadrangulation. This turns the
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equation (153) into a new set of equations

Rn =
ρn

1 − gσnRn(σn+1Rn+1 + σnRn + σn−1Rn−1)
, n = 0, 1, 2, ..., k+1

(161)
with ρk+1 = σk+1 = 1, while Rn satisfies (153) for all n ≥ k + 2. This is
slightly simplified by introducing Zn = σnRn (with σn = 1 for n ≥ k + 1),
as we are left with

Zn =
σnρn

1 − gσn(Zn+1 + Zn + Zn−1)
, n = 0, 1, 2, ..., k

Zn =
1

1 − g(Zn+1 + Zn + Zn−1)
, n = k + 1, k + 2, ... (162)

Solving such a system seems quite difficult in general, but we may use the
integral of motion (131) to replace the infinite set of equations on the second
line of (162) (and the convergence condition of Zn to R), by simply the con-
served quantity

f(Zk, Zk+1) = f(R,R) (163)

Together with the first line of (162), this gives a system of k + 2 algebraic
relations for the functions Z0, Z1, ..., Zk+1, which completely determines them
order by order in g. As an example, let us compute in the case k = 0 the
generating function including a weight ρ0 = ρ per vertex labeled 0 in the trees
and σ0 = σ per edge incident to a vertex labeled 0 in the trees. (This in turn
corresponds in the quadrangulations to a weight ρ per vertex labeled 1, i.e. per
nearest neighbor of the origin, and a weight σ per edge 0 → 1.) We get the
system:

Z0 =
ρσ

1 − gσ(Z0 + Z1)
, Z0Z1(1−g(Z0+Z1)−Z0−Z1 = f(R,R) = gR3−R

(164)
which upon eliminating Z1 and reinstating R0 = Z0/σ, boils down to

(R0 − ρ)(1+R0 − gσ2R2
0 − ρ)−σR0(R0 − ρ+ gR(1− gR2))+ gσ3R3

0 = 0
(165)

for the generating function R0 for rooted quadrangulations with weights ρ
per neighboring vertex of the origin and σ per edge adjacent to the origin.
R0 ≡ R0(g|ρ, σ) is the unique solution to (165) such that R0 = ρ + O(g).
Note that we recover R0 = R− gR3 of (134) when ρ = σ = 1. As the rooting
of the quadrangulation is itself a choice of an edge adjacent to the origin, we
may express the corresponding generating function for “unrooted " quadran-
gulations, namely with just an origin vertex, as

Γ0(g|ρ, σ) =

∫ σ

0

ds

s
R0(g|ρ, s) (166)
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simply expressing the rooting of the quadrangulation as σ∂σΓ0 = R0. The
statistical average over quadrangulations of area A of ρN1σN01 (N1 the number
of neighboring vertices of the origin, N01 the number edges adjacent to the
origin) finally reads

〈ρN1σN01〉A =
Γ0,A(ρ, σ)

Γ0,A(1, 1)
=

∫ σ
0

ds
s R0,A(ρ, s)

∫ 1
0

ds
s R0,A(1, s)

(167)

where as usual Γ0,A(ρ, σ) (resp. R0,A(ρ, s)) denotes the coefficient of gA in
Γ0(g|ρ, σ) (resp. R0(g|ρ, s)). The limit limA→∞〈ρN1σN01〉A = Γ may again
be extracted by a saddle-point expansion. After some algebra, we find

6Γ(Γ + 1)(Γ + 3) − σ
(
2Γ(1 + 4Γ + Γ2) + 3ρ(Γ + 1)2(Γ + 2)

)
= 0 (168)

and Γ is uniquely determined by the condition Γ = 1 for σ = ρ = 1. For
instance, when σ = 1, we get

Γ(ρ, 1) =
2√

4 − 3ρ
− 1 =

∑

n≥1

ρn

(
3

16

)n (2n

n

)
(169)

in which we read the probability P (n) = (3/16)n
(2n

n

)
for a vertex to have n

neighboring vertices in an infinite quadrangulation. Similarly, taking ρ = 1,
we get

Γ(1, σ) =
1

2

(√
6 + 3σ

6 − 5σ
− 1

)
(170)

which generates the probabilities to have n edges adjacent to a vertex in an
infinite quadrangulation. We may also derive the generating function for the
conditional probabilities of having n nearest neighboring vertices, given that
there is no multiple edge connecting them to the origin, by simply taking Γ(ρ =
t/σ, σ) and letting σ → 0, which indeed suppresses all contributions from
multiply connected vertices. This gives

Π(t) = lim
σ→0

Γ

(
t

σ
, σ

)
=

√
8 − t

2 − t
− 2 (171)

For instance, the probability that a given vertex have no multiple neighbors in
an infinite quadrangulation is

Π(1) =
√

7 − 2 (172)

7.4 Spatial branching processes

We have seen so far how the information on the geodesic distance from the
origin in a rooted planar quadrangulation may be coded by rooted well-labeled
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trees. The latter give rise to natural examples of so-called spatially branching
processes, in the context of which quantities like Rn correspond to certain
probabilities.

A spatial branching process consists of two data. First we have a mono-
parental population, whose genealogy is described by a rooted tree, the root
corresponding to the common ancestor. A standard measure on these trees at-
taches the probability (1 − p)pk for any vertex to have k descendents. The
second data is a labeling of the vertices of the tree by positions say on the
integer line n ∈ ZZ. Here, we add the rule of the “possessive ancestor" that
his children must be at close enough positions from his (namely differing by
0 or ±1). Let E(T ) denote the probability of extinction of the population at
generation T , then we have the recursion relation

En(T ) =
1 − p

1 − p
3 (En+1(T − 1) + En(T − 1) + En−1(T − 1))

(173)

Letting T → ∞, we see that the extinction probability En = limT→∞ En(T )
obeys the same equation as Rn (153) upon some rescaling, and we find that

En = (1 − p)Rn

(
g = p(1−p)

3

)
, in the case of positions restricted to lie in a

half-line (with a “wall" at the origin). Without this restriction, the problem

becomes translationally invariant and En = E = (1 − p)R
(
g = p(1−p)

3

)
.

Note that the critical point g = gc = 1/12 corresponds here to the critical
probability p = pc = 1/2.

In this new setting, we may ask different questions, such as what is the
probability for the process to escape from a given interval, say [0, L]. Once
translated back into Rn terms, this amounts to still imposing the recursion
relation (153), but changing boundary conditions into

R−1 = 0 and RL+1 = 0 (174)

The escape probability from the interval reads then

Sn = 1 − (1 − p)Rn

(
g =

p(1 − p)

3

)
= (1 − p)(R − Rn) (175)

The equation (153) with the boundary conditions (174) still admits an exact
solution expressed by means of the Jacobi θ1 function

θ1(z) = 2i sin(πz)
∏

j≥1

(1 − 2qj cos(2πz) + q2j) (176)
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The solution reads Rn = R
(L)
n , with

R(L)
n = R

unun+3

un+1un+2

un = θ1

(
n + 1

L + 5

)
(177)

guaranteeing that the boundary conditions (174) are satisfied, and where the
nome q still has to be fixed. The main recursion relation (153) reduces to a
quartic equation for the un’s:

unun+1un+2un+3 =
1

R
u2

n+1u
2
n+2+gR(un−1u

2
n+2un+3+u2

nu2
n+3+unu2

n+1un+4)

(178)
and the latter is satisfied by (177) provided we take

R = 4
θ1(α)θ1(2α)

θ′1(0)θ1(3α)

(
θ′1(α)

θ1(α)
− 1

2

θ′1(2α)

θ1(2α)

)

g =
θ′1(0)2θ1(3α)

16θ1(α)2θ1(2α)
(

θ′1(α)
θ1(α) − 1

2
θ′1(2α)
θ1(2α)

)2 (179)

for α = 1/(L + 5). The identity (178) is proved typically by showing that
both sides have the same transformations under n → n + L + 5 and n →
n + (L + 5)/(2iπ)Logq, and that moreover they have the same zeros, this
latter condition amounting to (179).

The elliptic solution Rn may be interpreted terms of bounded graphs as
follows. The quantity G

(L)
n = R

(L)
n − R

(L−1)
n−1 is the generating function for

quadrangulations with an origin and a marked edge n → n + 1, which are
moreover bounded in the sense that all vertices are distant by at most L + 1
from the origin.

Taking again the continuum scaling limit of the model leads to the prob-
abilists’ Integrated SuperBrownian Excursions (ISE), here in one dimension
[29]. The scaling function U obtained from Rn = Rc(1 − ε2U) in the limit
(141), while moreover r = nε and λ = (L + 5)ε are kept fixed, reads:

U(r) = 2℘(z|ω, ω′) (180)

where ℘ is the Weierstrass function (℘ = −∂2
rLog θ1), with half-periods ω =

λ/2 and ω′, related via the condition that the second invariant g2(ω, ω′) = 3.

7.5 Generalizations

We have so far only discussed quadrangulations and their relations to spa-
tial branching processes (see also [30] [31]). All of the above generalizes to
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rooted planar graphs with arbitrary even face valences. These are in bijection
with rooted well-labeled trees with more involved labeling rules, also called
well-labeled mobiles [28]. This allows for a generalization of spatial branch-
ing processes, possessing these labeling rules. As we already know that these
objects have an interesting variety of multicritical behaviors, this should turn
into multicritical generalizations of the ISE.

In [28], the general case covered by two-matrix models is treated as well,
and seen to generate Eulerian (i.e. vertex-bicolored) planar graphs. The latter
contain as a particular case the gravitational Ising model, and in principle allow
for reaching any c(p, q) CFT coupled to 2D quantum gravity. These will lead
presumably to interesting generalizations of the ISE.

8. Conclusion

In these lectures we have tried to cover various aspects of discrete 2D quan-
tum gravity, namely of statistical matter models defined on random graphs of
given topology.

The matrix model approach, when solvable, gives exact recursion relations
between quantities eventually leading to compact expressions for the genus
expansion of the free energy of the models. We have further investigated the so-
called double scaling limit in which both matter and space degrees of freedom
become critical, allowing for instance to define and compute a scaling function
summarizing the leading singularities of the free energy at all genera, as a
function of the renormalized cosmological constant x. The final general result
takes the form

[P,Q] = 1, P = dp + v2d
p−2 + ... + vp, Q = dq + u2d

q−2 + ... + uq

(181)
with d = d/dx, all v’s and u’s functions of x, and u2 proportional to F ′′, the
second derivative of the singular part of the all-genus free energy w.r.t x.

The combinatorial approach, when bijections with trees are available, also
gives exact recursion relations between basic generating functions which can
be interpreted in terms of planar graph counting, while keeping track of the
geodesic distance between marked points. The expressions for the solutions
are completely explicit, allowing for taking a scaling limit, describing the free
energy for random surfaces with marked points at a renormalized geodesic
distance r. We may write the general result for this scaling free energy in the
form

[P,Q] = 0, P = dp + v2d
p−2 + ... + vp, Q = dq + u2d

q−2 + ... + uq

(182)
with d = d/dr, all u’s and v’s functions of r, and u2 proportional to the scaling
two-point function for surfaces with two marked points at geodesic distance
≥ r.
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Remarkably, in all cases solved so far, the exactly solvable geodesic dis-
tance problems for planar graphs all correspond to cases where a matrix model
solvable by orthogonal polynomials is available. It seems therefore that the bi-
jections with trees exactly parallel the orthogonal polynomial solutions. More
precisely, we have observed that a similar abstract “Q-operator could be in-
troduced in both cases, one of them describing the possible subtrees one can
encounter when going counterclockwise around a vertex of a blossom tree, the
other describing the multiplication by an eigenvalue λ on the basis of orthogo-
nal polynomials.

The two apparently unrelated results (181) and (182) show that something
deeper happens here, that deserves to be better understood. One may imagine
that there must exist a more general structure which would unify and combine
the notions of genus and geodesic distance, and give for instance closed equa-
tions for scaling functions of both x and r. To reach this, one should first be
able to control geodesic distances in higher genus as well, by generalizing the
tree bijection techniques explained here only in the planar case. Another possi-
bility could be that matrix models as we know them today may still be only part
of a more general setting. Some generalizations of matrix models involving in-
tegration of eigenvalues over contours (or linear combinations thereof) in the
complex plane may be the correct answer, and relate to the intrinsic geometry
of graphs once interpreted combinatorially.

Finally, it is interesting to notice that no continuum field theoretical repre-
sentation of geodesic distance dependence of random surfaces has been found
yet, although 2D quantum gravity is now well understood in terms of the cou-
pling of CFT to the Liouville field theory [2]. The simplicity of the results
found here for the various scaling functions comes as a surprise in that respect.
Field theory probably still has some way to go before explaining the purely
combinatorial results shown here.

Notes

1. This is just a technical trick to make the precise contact with the generating function Rn of Sects.4
and 6. The reader will have to remember to add up one to each vertex label of the tree to recover its geodesic
distance from the origin in the quadrangulation.
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How do the eigenvalues of a “free” hermitian N × N matrix X(t) evolve in
time? The answer is provided by the rational Calogero-Moser systems [5, 13]
if (!) the initial conditions are chosen such that i[X(0), Ẋ(0)] has a non-zero
eigenvalue of multiplicity N−1; for generic X(0), Ẋ(0) the question remained
unanswered for 30 years.

While it is easy to see that H = 1
2 Tr P 2 (let’s restrict to the real-symmetric

case, i.e. X(t) = R(t)Q(t)R−1(t), with R real orthogonal, Q diagonal, P =

Ẋ = R
(
Q̇+[R−1Ṙ,Q]

)
R−1, F :=

[[
R−1Ṙ,Q

]
, Q
]
) yields the known Euler-

Calogero-Moser system(s),

H =
1

2

N∑

i=1

p2
i +

1

2

∑

i�=j

f2
ij

(qi − qj)2
(1)

∗Talk given by the second author.
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with equations of motion [9]

q̇i = pi, ṗi = −2
∑′ f2

ij

(qi − qj)3
, (2)

ḟij = −
∑′′

fikfkj

[
1

(qi − qk)2
− 1

(qk − qj)2

]
, (3)

(
a correct derivation of the so(N) Poissonbrackets {fij , fkl} = −1

2(δjkfil ±
3 more) being slightly less trivial: with dA := R−1dR the canonical sym-

plectic form for real symmetric matrices can be shown to be(come)
Tr
(
− dQ ∧ dP − dF ∧ dA + FdA ∧ dA

)
, i.e.

−dqi ∧ dpi + 2
∑

i<j

dfij ∧ daij

− 2
∑

i<j<k

(
fijdajk ∧ daik + fikdaij ∧ dajk + fjkdaik ∧ daij

)
;

(4)

as



0 −1

1 0
0

0
0 2 · 1

−2 · 1 A





−1

=




0 1

−1 0
0

0
1
4
A − 1

2
· 1

+ 1
2
· 1 0





(5)

where rows and columns refer to the ordering (dqi, dpi, dfi<j, dai<j), (4) im-
plies

{fi<j, fj<k} =
1

4
Ai<j,j<k = −1

2
fik (6)

as well as

{fi<j, ak<l} = −1

2
δikδjl,

resp.

“{rij , fkl} = −1

2

(
δjkril − δjlrik

)
”

)
,

the originally asked question may be rephrased as:
Is it possible to eliminate the fij in (2), i.e. express f2

ij in terms of the eigen-
values qi(t) (and, possibly, their time derivatives)? The key observation in this
respect is the existence of conserved quantities

Jαβ :=

α+β∑

k=0

(−)kLα+β−kRk

Rk−1 := Ṙk, Lk−1 := L̇k,

(7)
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involving, apart from Rα+β := Tr Qα+β = Tr Xα+β certain quantities (and
their time derivatives)

Eαβ := Tr QαFQβF =: Lα+β = −
∑

qα
i qβ

j f2
ij, (8)

which contain the f2
ij linearly and (for 0 ≤ α < β ≤ N − 2) are independent

(for non-coinciding eigenvalues) – thus allowing to express the f2
ij as functions

of sk = Tr Qk, and (many) conserved quantities.
Interestingly, this general construction [1] yields, if Ẋ(0) is chosen to be of

rank 1 (cp [6]), a first-order formulation of the rational Ruijsenaars-Schneider
system.

Follytons [12]

Through Schrodinger operators the following 4 topics are well known to be
related:

A. Spectral theory of linear differential operators

B. Darboux-transformations

C. Integrable non-linear PDE’s

D. Lieb-Thirring inequalities

What can one say about higher-order operators in this respect? While the con-
nection between A and C is fairly standard, and structurally “independent” of
the degree l (see e.g. [7] or [10]), namely (let’s choose l = 4):
to every self-adjoint (quartic) linear differential operator on the line,

L = ∂4 + ∂u∂ + v (9)

there exists (uniquely) L1/4 = ∂ +
∑∞

i=1 li(x)∂−i, such that

L̇ = [L,M ], (10)

for every M (m) :=
((

L1/4
)m)

+
(and therefore, in particular, for M := the

differential operator part of L3/4) consistently defines partial differential equa-
tions, for m = 3 reading (u = u(x, t), v = v(x, t))

u̇ = 10u′′′ + 6uu′ − 24v′

v̇ = 3
(
u′′′ + uu′′)′ − 8v′′′ − 6uv′,

(11)

very little is known about spectral properties of (9). Assuming u and v to
go to zero at ∞, solutions of Lψ = Eψ, with E = −4κ4 < 0, go like
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e±κx

{
cos κx

sin κx
, as x → ∞ (and therefore have infinitely many zeroes!), but

apparently “nothing” is known about degeneracies (not even for the ground
state). A crucial assumption later will be that eigenvalues of L should be dou-
bly degenerate; like the lowest eigenvalue (E0 = −4) of

L = ∂4 + 6∂
1

cosh2 x
∂ − 4

cosh2 x
, (12)

ψ± =
e±ix

cosh x
.

In order to employ Darboux-transformations (i.e., loosely speaking, relating
operators BA to – isospectral, apart from ker A and ker B possibly differing
– operators AB) to derive inequalities for weighted sums of eigenvalues of L
it is crucial to be able to factorize (9). The authors of [2] tried to do so by
writing L − E0 as (∂3 + · · · )(∂ + h). The problem with that factorization is
that (L − E0)ψ = 0 forces h = −ψ′

ψ to be singular (due to the zeroes of ψ).
The Ansatz

L − E0 = A†A =
(
− ∂2 − f∂ + g − f ′)(− ∂2 + f∂ + g

)
(13)

overcomes that problem (s.b.) but leads to the formidable ODE system

v − E0 = (g − f ′)g − fg′ − g′′

u = −2g − f2 − f ′ (14)

to be solved for f and g. Even for the simplest possible choice for u and v
(namely, u ≡ 0 ≡ v) this leads to a rather non-trivial ODE,

2f ′′′ + 6ff ′′ + 7f ′2 + 8f ′f2 + f4 = 1; (15)

κ is now scaled to 1/2. on top of this, in order not to run into the same factor-
ization singularities as in the 3+1 split, one has to prove that the (non-constant,
if f ′ �= 0) Wronskian formed out of 2 groundstate wavefunctions,

W (x) := ψ+ψ′
− − ψ′

+ψ− (16)

does not vanish; as
(
− ∂2 + f∂ + g

)
ψ± = 0 implies

f =
W ′

W
, g = − 1

W

(
ψ′

+ψ′′
− − ψ′′

+ψ′
−
)
. (17)

Both “problems” can be (nicely) resolved:
W is non-vanishing, and (15), resp.

2
(
W ′′′′W − W ′′′W ′)+

(
W ′′2 − W 2

)
= 0 (18)
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has an explicit 4-parameter family of exact solutions; Ŵ = a + bex + ce−x +

d cos x + e sin x solves (18), provided 4bc + d2 + e2 = 1
2a2. f = − Ŵ ′

Ŵ
and

g = −1
2

(
f2 + f ′) then leads to a 4-parameter class of potentials u and v (via

L = ∂4 + ∂u∂ + v) making u(x + 4t), v(x + 4t) exact solutions of (11),
“Follytons”.

gl(N → ∞)

For each 2-dimensional surface Σ2 there exists a basis {Yα}∞α=0 of the Poisson-

algebra of (real) functions (on Σ2), and a basis
{
T

(N)
a

}N2−1

a=0
of u(N) such that

(for all a, b, c)

lim
N→∞

Tr
([

T (N)
a , T

(N)
b

]
T (N)

c

)
=

∫

Σ2

{Ya, Yb}Yc. (19)

This correspondence was originally discovered for S2 [11], 10 years later for
T 2 [8], conjectured to hold for higher genus surfaces [3], and then proven for
(almost general, compact) K-ahler manifolds [4].

One of us (JH) would like to thank M. Bordemann, A. Laptev and J. Ostens-
son for collaboration(s) on related subjects, as well as Didina Serban and all
organizers of the Les Houches School for the kind invitation.
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RANDOM MATRICES AND SUPERSYMMETRY
IN DISORDERED SYSTEMS

K.B. Efetov

Abstract It is described how one comes to the Wigner-Dyson random matrix theory (RMT)
starting from a model of a disordered metal. The lectures start with a histori-
cal introduction where basic ideas of the RMT and theory of disordered met-
als are reviewed. This part is followed by an introduction into supermathemat-
ics (mathematics operating with both commuting and anticommuting variables).
The main ideas of the supersymmetry method are given and basic formulae are
derived. Both level-level correlations and fluctuations of amplitudes of wave
functions are discussed. It is shown how one can both obtain known formulae
of the RMT and go beyond. In the last part some recent progress in the further
development of the method and possible perspectives are discussed.

Keywords: Random matrices, disordered systems, supersymmetry, non-linear sigma-model.

Introduction

0.1 Wigner-Dyson Theory

According to basic principles of quantum mechanics the energy spectrum of
a particle in a limited volume is discrete. The precise values of the energy de-
pend on the boundary conditions and the interactions in system. In many cases
these quantities can be calculated with a certain accuracy. However, often the
interactions are so complicated that calculations for the single levels become
impossible. On the other hand, the complexity of the interactions can lead to
the idea of a statistical description in which information about separate levels
is neglected and only averaged quantities are studied. Density of states, energy
level and wave functions correlations are quantities that can be studied in the
statistical approach. Sometimes, it is sufficient to study the average of, e.g.,
the density of states or its variance. In other cases one may be interested in
a full statistical description that can be achieved calculating distribution func-
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APPLICATIONS OF RANDOM MATRICES IN PHYSICS

tions. Studying the level statistics is, to some extent, analogous to the statistical
study of the motion of atoms and molecules, which is the subject of statistical
physics.

The idea of the statistical description of the energy levels was first proposed
by Wigner [1] for study of highly excited nuclear levels in complex nuclei. In
such nuclei a large number of particles interact in an unknown way and the
main assumption was that the interactions were equally probable. Of course,
in order to specify the meaning of the words “equally probable” one had to for-
mulate a statistical hypothesis in terms of a probability distribution that would
play the role of the Gibbs distribution.

This was done in Ref. [1] in the following way. Choosing a complete set of
eigenfunctions as a basis, one represents the Hamiltonian H as a matrix with
matrix elements Hmn. The matrix elements Hmn are assumed random with
a certain probability distribution. It is clear that the distribution should not
depend of the basis chosen, which implies an invariant form of the distribu-
tion function. In the language of the random matrices Hmn the corresponding
distribution function can contain only Trf (H), where f is a function.

The first statistical theory [1] was based on a Gaussian distribution. Accord-
ing to the Gaussian statistical hypothesis a physical system having N quantum
states has the statistical weight D (H)

D (H) = A exp



−
N∑

m,n=1

|Hmn|2
2a2



 = A exp

[−TrH2

2a2

]
(1)

In Eq. (1) the parameter a is a cutoff excluding strong interaction, H is a
random N × N matrix, and A is a normalization coefficient.

It is important to emphasize that the weight D (H) is rather arbitrary and
other forms for the distribution functions can be suggested. Of course, the
dependence of the mean energy level spacing ∆ (ε)

∆−1 (ε) = 〈trδ (ε − H)〉D (2)

on the energy ε is different for different distributions D (H). (In Eq. (2) the
symbol 〈...〉D stands for the averaging with the distribution D (H)). For ex-
ample, the distribution function D (H) for the Gaussian distribution, Eq. (1),
has the form of a semicircle (Wigner semicircle law) (for a review, see, e.g.
Ref.[2]).

What is more interesting, level correlations described, for example, by the
level-level correlation function R (ω)

R (ω) = ∆2 (ε) 〈Trδ (ε − H)Trδ (ε − ω − H)〉 (3)

prove to be universal in the limit N → ∞ provided the energy ω is much
smaller than the characteristic scale of the variation of ∆ (ε). For the Wigner
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semicircle law, the latter condition means that the energy ε is not close to the
points ε0, −ε0, where the quantity ∆−1 (ε) proportional to the average density
of states turns to zero.

In the absence of magnetic interactions violating the time reversal symme-
try, the wave functions and matrix elements Hmn in Eq. (1) can be chosen
real. In this case the statistical properties of the systems are described by real
symmetric random matrices. The ensemble of real symmetric matrices with
the Gaussian distribution is often called the Gaussian orthogonal ensemble
(GOE).

If the magnetic interactions are present in the system, the time reversal and
spin-rotation symmetry is violated and the wave functions are no longer real.
This means that one should deal with general Hermitian matrices without any
additional symmetry and integrate over the matrix elements Hmn using only
the constraint Hmn = (Hnm)∗. This system is called the Gaussian unitary
ensemble (GUE).

The third possible type of the symmetry arises when the system is time-
reversal invariant but does not have central symmetry. In this case it is also
impossible to make all the matrix elements real. Nevertheless an additional
symmetry exists in this case. According to the Kramers theorem all levels of
the system remain doubly degenerate and every eigenvalue of the matrix H
must appear twice. Matrices consisting of real quaternions Hmn of the form

(
pmn qmn

−q∗mn p∗mn

)

and satisfying the condition Hmn = (Hnm)+ have this property. The corre-
sponding ensemble is called the Gaussian symplectic ensemble (GSE).

Somewhat different distribution functions were introduced later by Dyson
[3] who suggested characterizing the system not by its Hamiltonian but by an
unitary N × N matrix S whose elements give the transition probabilities be-
tween states, where, again, N is the number of the levels. This matrix is related
to the Hamiltonian H of the system in a complicated way that is not specified
in the theory. According to the Dyson hypothesis the correlation properties
of n successive energy levels of the system (n � N) are statistically equiva-
lent to those of n successive angles provided all the unitary matrices S have
equal probabilities. Again, depending on the symmetry, one can distinguish
among the three different ensembles. The corresponding ensembles are called
Circular ensembles.

As concerns the complex nuclei, the orthogonal ensembles are most relevant
for their description because in order to change the level statistics one needs,
e.g. huge magnetic fields that hardly exist. However, the other two ensembles
have been under intensive discussions for problems of mesoscopic physics (for
a review, see [4]). Moreover, it has been realized that one might formulate
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additional ensembles of e.g. chiral matrices relevant for studying properties of
models for QCD (for a review, see the lecture by Jac Verbaarschot[5]). It has
been proven later that in total 10 different symmetry classes exist [6]. Most of
the new ensembles may be relevant to different disordered mesoscopic systems
due the presence of, e.g., superconductivity or additional symmetries of the
lattice.

I do not plan to discuss in these lectures the non-standard symmetry classes
and restrict myself by the Wigner-Dyson (WD) statistics. It is relevant to say
that calculation of the level-level correlation function, Eq. (3), starting from
the Gaussian or Circular ensembles is not a simple task. The conventional
method of the evaluation is using orthogonal polynomials[2]. The procedure is
not difficult for the unitary ensembles but one has to put a considerable effort
to perform the calculations for the orthogonal and symplectic ones. As it has
been mentioned, the final results are universal in the limit N → ∞ and can be
written for the orthogonal, unitary and symplectic ensembles in the form

Rorth (ω) = 1 − sin2 x

x2
− d

dx

(
sinx

x

)∫ ∞

1

sin xt

t
dt (4)

Runit (ω) = 1 − sin2 x

x2
(5)

Rsympl (ω) = 1 − sin2 x

x2
+

d

dx

(
sin x

x

)∫ 1

0

sin xt

t
dt (6)

where x = πω/∆, and ∆ is the mean level spacing.
The functions R (ω), Eqs. (4, 5, 6), tend to 1 in the limit ω → ∞, which

means that the correlations are lost in this limit. In the opposite limit x → 0
they turn to zero as xβ, where β = 1, 2, 3 for the orthogonal, unitary and sym-
plectic ensembles, respectively. This means that the probability of finding a
level at the distance ω from another level decays at small ω. The effect is know
as “level repulsion”. It is important that Eqs. (4-6) describe the level-level
correlation function, Eq. (3), for both the Gaussian and Circular ensembles.

0.2 Small disordered particles

Nowadays the relevance of the random matrix theory (RMT) to mesoscopic
physics is almost evident and it is the starting point of many works on transport
in quantum dots, electromagnetic response of metallic grains, etc. However, it
took quite a long time before the ideas of the RMT penetrated from nuclear to
condensed matter physics.

There were several reasons for this slow development. First, until the end of
60’s of the last century most of the objects studied in condensed matter physics
were macroscopic and the discreteness of the energy levels could be neglected.
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Figure 1.

Therefore the question about the level statistics was not so interesting. Second,
from the theoretical point of view it was not clear at all how one could come
to the Wigner-Dyson level statistics starting from the Schr-odinger equation.
It was clear that making perturbation theory in interaction or disorder did not
lead to the anything that would resemble Eqs. (4-6).

As soon as experimentalists started investigation of granular materials(which
happened in 60’s), a theory that would describe small metal systems became
nevessary. Such materials consist of small metal particles (grains) with the di-
ameter down to 10 − 100A. These grains can be covered by an insulator and
therefore be well isolated from each other. A schematic view of the pattern can
be found in Fig.1

It is clear that one can speak now about discrete levels and study their statis-
tics. Of course, one needs low temperatures in order to prevent inelastic pro-
cesses smearing the levels but this is not so difficult (temperatures < 1K can
be sufficient).

In practice, the form of the grains can be not very regular, they can contain
defects and impurities and therefore the energy spectrum strongly fluctuates
from grain to grain. All this true even if one neglects the electron-electron in-
teraction. So, one naturally comes to the idea to describe the levels statistically.

The first work on the application of the RMT to small metallic grains was
done by Gorkov and Eliashberg (GE) [7]. These authors studied the electro-
magnetic response of the system of the grains and therefore they needed an
information about the level-level correlation in a single grain. As the RMT is
purely phenomenological and nothing is assumed about the origin of the ran-
domness, this theory was taken by GE to describe the correlations. Starting
from the explicit form of the level-level correlation function R (ω), Eqs. (4-6),
they calculated the desired physical quantity.

GE identified correctly physical situations when the three symmetry classes
might be used. In the absence of any magnetic and spin orbit interactions they

Structure of a granular metal.
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Figure 2.

suggested to use the orthogonal ensemble. If a magnetic field is applied or
there are magnetic impurities in the grains, the unitary ensemble should be
applicable. If there are no magnetic interactions but spin-orbital impurities are
present, the grains should be described by the symplectic ensemble.

Being the first application of the RMT in solid state physics, the paper[7]
remained the only application during the next 17 years. This is not surprising
because using calculational schemes existed in that time no indication in non-
trivial level correlations could be seen. Let us discuss this point in more details.

Studying a disordered system and neglecting electron-electron interactions
one can start with the following Hamiltonian

H = ε (p̂) + U (r) (7)

where ε (p̂) is the operator of the kinetic energy and calculate the Green func-
tion Gε = (ε − H)−1 performing an expansion in the disorder potential U (r).
Usually, it is assumed that the U (r) is random and its fluctuations are Gaussian
with

〈U (r)〉 = 0,
〈
U (r) U

(
r′
)〉

=
1

2πντ
δ
(
r− r′

)
(8)

where ν is the density of states and τ is the mean scattering time.
Making the perturbation theory in the random potential U (r) and averaging

over this potential can be done using the “cross technique” [8]. Only diagrams
without intersections of the impurity lines are important in the standard approx-
imation of the weak disorder. For the one particle Green function the typical
diagrams are represented in Fig.2.

As a result, one obtains for the averaged Green function 〈G〉 the following
expression

G =
1

ε − ε (p) ± i/2τ
(9)

Typical diagrams for the Green function in a disordered metal.
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where “+” corresponds to the retarded and “−” to the advanced Green func-
tions.

Standard calculations based on a summation of “ladder diagrams” lead in
this case to the classical Drude formula for, e.g., the conductivity σ (ω)

σ (ω) =
σ0

1 − iωτ
, σ0 = 2e2νD0 (10)

where D0 = v2
0τ/3 is the classical diffusion coefficient, ω is the frequency and

e is the electron charge.
So long as the grain size remained larger than the atomic distances, no de-

viations from this formula could be found and therefore the question about
the applicability of the RMT remained open. It is relevant to mention works
by Kubo performed in approximately the same time. In Ref. [9]he argued
that even very small irregularities (with size of the order of atomic distances)
of the shape of the metallic grains must lead to lifting of all degeneracies of
eigenstates that are present in ideally spherical particles. This lead him to the
conclusion that the mean energy level spacing ∆ is inversely proportional to
the volume V of the particle

∆ = (νV )−1 (11)

where ν is density of states at the Fermi surface of the metal. Later Kubo
suggested [10] that the spacing distribution had to follow the Poisson law. The
latter differs essentially from the Wigner-Dyson RMT by the absence of the
level repulsion. The second work by Kubo, Ref.[10], was published several
years after the work by Gorkov and Eliashberg, Ref. [7], and this shows that
the applicability of the Wigner-Dyson statistics to the small metal particles was
far from being established in that time.

The situation started to change only at the end of 70’s with the new devel-
opments in the theory of Anderson localization. In the publication[11] a new
scaling idea was put forward for description of disordered samples of an arbi-
trary dimensionality. The most unusual was a prediction that two dimensional
initially metallic samples could not remain metals in the presence of an arbi-
trary weak disorder and had to acquire insulating properties. Again, using Eq.
(10) it was not clear why something had to happen in two dimension (the lo-
calization in one-dimensional chains had been proven before and it was clear
that the ladder diagrams summation leading to Eq. (10) was not sufficient for
that case).

Trying to understand how something unusual could happen in two dimen-
sions Gorkov, Larkin and Khmelnitskii [12] investigated more complicated di-
agrams and found that a certain class of diagrams could lead to a divergence in
any dimensionality d � 2. These are “fan” diagrams with the maximal number
of crossings. They are represented in Fig. 3 and their sum is a new effective
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Figure 3.

mode that is usually called “cooperon”. This mode has a form of a diffusion
propagator and its contribution to the conductivity can be written in the form

σ (ω) = σ0

(
1 − 1

πν

∫
1

D0k2 − iω

ddk

(2π)d

)
(12)

It is clear from Eq. (12) that in the limit of low frequencies ω → 0 the second
term in the brackets in Eq. (12) diverges in any dimension d � 2. This means
that in a disordered film the quantum correction to the classical conductivity
diverges and this signals (but, of course, does not prove) the possibility of the
localization.

The scaling theory of the localization and the discovery of the new diffusion
modes was revolutionary in the theory of disordered systems but how can these
findings be related to the Wigner-Dyson theory?

Actually, Eq. (12) is the key to understanding that there can be something
beyond the classical Eq. (10) in small metal particles. One needs only realizing
that the case of small metal grains corresponds to the zero dimensionality of
the integral in Eq. (12). Due to the finite size the values of the momentum
k are quantized such that ka = 2πna/La, where na = 0, ±1, ±2, ±3...... ,
a = (x, y, z), and La is the size of the grain in the a -direction.

At low frequencies ω � D0/L
2 the most important contribution in the

integral in Eq. (12) comes from the zero harmonics with k = 0 and one
can see that this contribution strongly diverges when ω → 0. Moreover, the
quantum correction is proportional to ∆/ω, where ∆ is given by Eq. (11) and
this is what one can expect from Eqs. (4-6).

So, Eq. (12) really signals that something nontrivial can happen in metal
grains and the WD theory is not excluded. The diffusion modes play a promi-
nent role and it seems, at first glance, that one should merely write proper
diagrams and sum their contribution. However, even if this were possible this

Cooperon: a singular correction to conductivity.
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would hardly correspond to Eq. (4-6). The problem is that the expansion in
terms of ∆/ω cannot take into account the oscillating part in Eqs. (4-6) even
in principle. Summing the diagrams one can hope to reproduce only non-
oscillating asymptotics of these equations. This means that another approach
has to be developed.

The possibility to demonstrate that the energy level and wave functions
statistics can really be described by the RMT came first with the development
of the supersymmetry approach [13, 14]. This method is based on a represen-
tation of Green functions of a disordered metal in terms of an integral over
both commuting and anticommuting variables. Singling out excitations with
the lowest energy (diffusion modes) one can reduce calculations to a super-
matrix non-linear model. The supersymmetry method allowed to prove for
the first time that the level-level correlation function for disordered particles is
really described by Eqs. (4-6). Later, using the supersymmetry technique Ver-
baarschot, Weidenm-uller and Zirnbauer [15] have derived Eqs. (4-6) starting
directly from the Gaussian ensembles, Eq. (1).

When deriving the non-linear σ-model for metallic particles it was very im-
portant that they contained disorder. However, it is not the necessary condition.
Several years later Bohigas, Gianonni and Schmidt [16] conjectured that the
RMT should describe correctly spectral properties of quantum systems which
are chaotic in their classical limit. In particular, the Wigner-Dyson statistics
had to be observed in clean metal particles (quantum billiards) provided their
shape was such that classical motion would be chaotic. Their hypothesis was
made on the basis of extensive numerics. For a review of the subsequent activ-
ity in these fields the book [17] is a good reference.

Historically, the description of disordered systems with a non-linear σ-model
has been suggested by Wegner [18] using the replica method and integration
over conventional complex variables. In the first work there were problems
with convergence of functional integrals and therefore the replica approach
was further developed in the publications [19] and [20]. The σ-model of Ref.
[20] was obtained by the integration over conventional variables and, as a re-
sult, the group of the matrices Q was non-compact. In contrast, the starting
point of Ref. [19] was a representation of Green functions in terms of integrals
over anticommuting (Grassmann) variables and this lead to a compact group
of the matrices Q.

Although both the replica and supersymmetry approach are equivalent when
doing the perturbation theory in the diffusion modes, the latter method is much
more efficient for non-perturbative calculations like the study of the level-level
correlations. This had become clear shortly after the works [19, 20] were fin-
ished and this drawback of the replica approach motivated the development of
the supersymmetry one. It should be noticed that recently the oscillating be-
havior of the level-level correlation function R (ω) has been obtained [21–23]
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using the compact replica σ-model of Ref. [19]. However, the procedures used
in these references are considerably more complicated than the calculations by
the supersymmetry method and the limit of low frequencies ω � ∆ is still
hardly achievable.

It is fair to say that the replica approach allows including electron-electron
interactions in a comparatively easy way [24, 25] and this has been the main
motivation in the attempts [21–23] to obtain non-perturbative results within
the replica technique. At the same time, it was believed for a long time that an
inclusion of the electron-electron interaction into the supersymmetry scheme
was impossible. However, this is not quite so and, at least, not very strong
interaction can be incorporated in the supermatrix σ-model [26].

It follows from this discussion that the supersymmetry approach is better
suitable for making connections with the RMT and therefore the present lec-
tures contain discussions based on this method only. It is possible neither re-
view here all works made in this direction nor present all details of the cal-
culations. For a more detailed information see the book [4] and more recent
reviews [27–31]. It is relevant to mention here that the word supersymmetry
has appeared in the condensed matter physics in the publication by Parisi and
Sourlas [32], who discovered a complex symmetry in a model describing fer-
romagnets in a random magnetic field. They used a concept of superspace
including both commuting and anticommuting variables.

Two other related directions of the use of the RMT are reviewed at this
school by Boris Altshuler (Quantum Chaos) and Jac Verbaarschot (QCD).

In the next sections I want to present the main ideas of the supersymmetry
approach and show how it can be used for both the level correlations and wave
functions statistics. It will be shown how to obtain the Wigner-Dyson statistics
and how to go beyond it. A new development concerning a generalization of
the supersymmetric σ-model to more complicated situations will be outlined
in the last section.

1. Supersymmetry method

1.1 Supermathematics

The supersymmetry method is based on the use of the so called Grassmann
variables χi, i = 1, 2, ..., n (the elements of the Grassmann algebra) that are
introduced in a completely formal way. These are abstract objects but in many
cases abstract mathematical constructions drastically influence the develop-
ment of physics. For example, nobody can dispute the usefulness of complex
numbers for physics, but what is the physical meaning of

√
−1? Here I want

to remind the reader basic formulae concerning definitions and operations with
objects containing combinations of the Grassmann variables and conventional
numbers (supermathematics).
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The Grassmann variables are some mathematical objects obeying the fol-
lowing anticommutation rules [33]

{χi, χj} = χiχj + χjχi = 0 (13)

for any 1 ≤ i, j ≤ n.
The anticommutation rules, Eq. (13) hold in particular for i = j and we see

that the square of an arbitrary variable χi is zero

χ2
i = 0 (14)

For any anticommuting variable χ one can introduce its “complex conjugate)
χ∗. It is assumed by the definition that (χ∗)∗ = −χ, such that the “square of
the modulus is “real”

(χ∗
i χi)

∗ = −χiχ
∗
i = χ∗

i χi (15)

The anticommuting variables χi, Eq. (13-15), remained not very useful until
Berezin introduced integrals over these variables. The integrals are nothing
more than formal symbols introduced as follows

∫
dχi =

∫
dχ∗

i = 0,

∫
χidχi =

∫
χ∗

i dχ∗
i = 1 (16)

It is implied that the “differentials” dχi, dχ∗
i anticommute with each other and

with the variables χi, χ∗
i

{dχi, dχj} =
{
dχi, dχ∗

j

}
=
{
dχ∗

i , dχ∗
j

}
= 0 (17)

{dχi, χj} =
{
dχi, χ

∗
j

}
= {dχ∗

i , χj} =
{
dχ∗

i , χ
∗
j

}
= 0

The definition, Eq. (16), is sufficient for introducing integrals of an arbitrary
function. If such a functions depends only on one variable χi it must be linear
in χi because already χ2

i = 0. Assuming that the integral of a sum of two
functions equals the sum of the integrals we calculate the integral of the sum
with Eq. (16). The repeated integrals are implied by integrals over several
variables. This enables us to calculate the integral of a function of an arbitrary
number of variables.

The most important for the development of the supersymmetry method are
Gaussian integrals. The direct integration shows that the following relation is
fulfilled

I =

∫
exp
(
−χ+Aχ

) n∏

i=1

dχ∗
i dχi = DetA (18)
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where A is an n × n Hermitian matrix and

χ =





χ1

χ2

.

.
χn




, χ+ =

(
χ∗

1 χ∗
2 . . χ∗

n

)
(19)

Eq. (18) differs from the corresponding equation for the commuting variables
by giving detA instead (detA)−1 . This remarkable difference is the basis of
the supersymmetry method presented in these lectures. In addition to Eq. (18)
one can write one more useful integral

I2 =

∫
χiχ

∗
k exp (−χ+Aχ)

∏n
l=1 dχ∗

l dχl∫
exp (−χ+Aχ)

∏n
l=1 dχ∗

l dχl
=
(
A−1
)
ik

(20)

In contrast to the integral I, Eq. (18), the integral I2, Eq. (20), is completely
similar to the corresponding integral over conventional numbers. Eq. (20) can
be proven by the differentiation of ln I in Aki.

The next step is the introduction of supervectors and supermatrices. An
n + m component supervector is introduced as

Φ =

(
χ
S

)
(21)

where the n- component vector χ is defined in Eq. (19). The m-component
vector S has a similar form 



S1

S2

.

.
Sm




(22)

but its components are conventional complex numbers.
In analogy with conventional vectors one can introduce the Hermitian con-

jugation
Φ+ =

(
ΦT
)∗

(23)

and the scalar product

Φi+Φj =

n∑

α=1

χi∗
α χj

α +

m∑

α=1

Si∗
α Sj

α (24)

A linear transformation F in the space of the supervectors converts a supervec-
tor Φ into another supervector Φ̃

Φ̃ = FΦ (25)
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Of course, the supervector Φ̃ must have the same structure, Eq. (21), as the
supervector Φ. This imposes a restriction on the structure of the supermatrix F
corresponding to the linear transformation F : it has to be of the form

F =

(
a σ
ρ b

)
(26)

In Eq. (26) a and b are n×n and m×m matrices containing only commuting
variables, σ and ρ are n×m and m×n matrices consisting of anticommuting
ones. Matrices having the structure, Eq. (26) can be called supermatrices.

Two supermatrices F and G of the rank (m + n)× (n + m) are assumed to
multiply according to the conventional rules

(FG)ik =
m+n∑

l=1

FilGlk (27)

and one can see that FG is a supermatrix of the same form. In order to define
the supertranspose F T of the supermatrix F one should use the notion of the
scalar product of two supervectors, Eq. (24). Again, by analogy with the
conventional definition the supermatrix F T is introduced as

ΦT
1 F T Φ2 = (FΦ1)

T Φ2 (28)

The transpose of a conventional matrix is obtained by transposing its indexes.
This is not as simple for the supermatrices. Writing out the scalar product on
both sides of Eq. (28) explicitly and using the anticommutation relation, Eq.
(13), one can see that the supermatrix F T is equal to

F T =

(
aT −ρT

σT bT

)
(29)

where aT , bT , σT , and ρT stand for the conventional transposition of the ma-
trices a, b, σ, and ρ.

Using the scalar product, Eq. (28) one obtains immediately

(F1F2)
T = F T

2 F T
1 (30)

The Hermitian conjugate F+ of the matrix F can be defined in a standard way

F+ =
(
F T
)∗

(31)

Combining Eqs. (15, 30, 31) one can obtain

(F1F2)
+ = F+

2 F+
1 and

(
F+
)+

= F (32)
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The latter equality shows that the operation of the Hermitian conjugation is
inverse to itself. The same is not generally true for the transposition

(
F T
)T �= F (33)

A very important operation in the theory of conventional matrices is taking
the trace of a matrix. If one takes the trace of a product of several matrices
it is invariant under cyclic permutations of the matrices. However, due to the
presence of anticommuting elements a proper operation for the supermatrices
should be defined in a different way. The supertrace STrF of matrix of the
form, Eq.(26) is defined as

STrF = Tra − Trb (34)

where the symbol Tr stands for the conventional trace.
Although somewhat strange, the definition, Eq. (34) is very useful because

it is this operation that provides the invariance under the cyclic permutations.
We obtain for arbitrary supermatrices Fi of the form, Eq. (26)

STrF1F2 = STrF2F1 (35)

and
STr (F1F2...Fn) = STr (FnF1F2...Fn−1) (36)

In addition to the supertrace it is convenient to introduce a superdeterminant of
the supermatrix F

ln SDetF = STr ln F (37)

The superdeterminant SDetF can also be written as

SDetF = Det
(
a − σb−1ρ

)
Detb−1 (38)

The connection between the superdeterminant and supertrace enables us to
prove immediately the multipliticity of the superdeterminant

SDet (F1F2) = (SDetF1) (SDetF2) (39)

The rules of the operations with the supervectors and supermatrices are very
convenient because they are similar to those of conventional linear algebra. In
fact, one can manipulate superobjects in exactly the same way as conventional
objects. This simplifies calculations with quantities containing both types of
variables considerably.

Now we can write Gaussian integrals over supervectors that generalize the
integrals over conventional complex numbers or Grassmann variable. A direct
calculation shows that

Is =

∫
exp
(
−Φ+FΦ

)
dΦ∗dΦ = SDetF, (40)
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dΦ∗dΦ = π−m
n∏

i=1

dχ∗
i dχi

m∏

k=1

dS∗
i dSi

and

Is
2 =

∫
ΦiΦ

∗
k exp (−Φ+FΦ) dΦ∗dΦ∫

exp (−Φ+FΦ) dΦ∗dΦ
=
(
F−1
)
ik

(41)

The formulae written in this subsection give complete information about
integrals over the Grassmann variables, supervectors, and supermatrices. This
information will be directly used for constructing the supersymmetry method.

1.2 Physical quantities as integrals over supervectors.
Averaging over disorder

Eq. (41) enables us to express physical quantities in terms of functional
integrals over supervectors. The form of the integrals that will be obtained
is such that averaging over disorder can be performed the beginning of all
calculations.

I start with the Schr-odinger equation for electrons without any electron-
electron interactions but in a presence of an external potential containing both
regular and irregular parts. The regular part can describe potential walls and
other features of the system whereas the irregular part H1 of the Hamiltonian
stands for disorder. The Schr-odinger equation takes the form

Hφk = εkφk, H = H0 + H1, 〈H1〉 = 0 (42)

where φk and εk are eigenfunctions and eigenvalues, respectively. The angular
brackets 〈...〉 stand for the averaging over disorder.

The most important physical quantities can be expressed in terms of retarded
GR

ε and advanced GA
ε Green functions of the Schr-odinger equation. Using the

spectral expansion the Green functions GR,A
ε can be written in the form

GR,A
ε

(
r, r′
)

=
∑

k

φk (r)φ∗
k (r′)

ε − εk ± iδ
=
∑

k

GR,A
εk φk (r)φ∗

k

(
r′
)

(43)

These functions satisfy the equation

(ε − H) GR,A
ε

(
r, r′
)

= δ
(
r − r′

)
(44)

The average density of states ρ (ε) (this quantity is proportional to ∆−1, Eq.
(2)) can be written as

〈ρ (ε, r)〉 =

〈
∑

k

φ∗
k (r) φk (r) δ (ε − εk)

〉
(45)

=
1

π

〈
Im GA

ε (r, r)
〉

(46)

109



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

whereas the level-level correlation function R (ω) takes the form

R (ω) =

(
∆

π

)2
〈
∑

k,m

Im GA
k,ε−ω Im GA

m,ε

〉
(47)

We see from Eqs. (45, 47) that, as soon as we are able to average the
Green functions or their products over the disorder, the quantities of interest
are found. However, this cannot be done directly using Eqs. (45, 47) and we
need another representation for the Green functions. Of course, one can do per-
turbation theory in the disorder potential but, as it has been already discussed,
such an approach can hardly help in obtaining the Wigner-Dyson statistics.

What will be done now is writing the Green functions in a form that would
be suitable for averaging over the disorder in the very beginning. This can be
conveniently done with the integrals over the supervectors. I want to present
here the main scheme only. All necessary details can be found in the book [4].
As the main interest is to calculate the level-level correlation function R (ω) ,
Eq. (47), all formulae will be written for this case. Calculating the density of
states, Eq. (45), is a simpler and less interesting task.

Let us introduce 8-component supervectors ψ consisting of 4-component
supervectors ψ1 and ψ2 such that

ψm =

(
θm

vm

)
, θm =

1√
2

(
χm∗
χm

)
, vm =

1√
2

(
Sm∗
Sm

)
, (48)

m = 1, 2.
For the supervectors ψ of the form of Eq. (48) one can define, in addi-

tion to transposition and Hermitian conjugation, the operation of the “charge
conjugation”

ψ̄ = (Cψ)T , ψ̄m =
(

θ̄m, vm
)

(49)

In Eq. (49), T stands for transposition, and C is the supermatrix of the form

Cmn = Λmn

(
c1 0
0 c2

)

where Λ is the diagonal supermatrix

Λ =

(
1 0
0 −1

)
(50)

with 1 the unity 4 × 4 unity matrix.
The matrices c1 and c2 have the form

c1 =

(
0 −1
1 0

)
, c2 =

(
0 1
1 0

)
(51)
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The function R (ω) is determined by products GAGR, GRGR and GAGA.
The last two products are not interesting because the average of their products
is equal for weak disorder to the product of their average. When calculating
these quantities the diffusion modes discussed in the Introduction do not ap-
pear. Therefore let us concentrate on the calculation of the product GAGR.
Using Eqs. 40, 41) we can write this quantity as

GA
ε−ω (r, r) GR

ε

(
r′, r′
)

=

(
∆

π

)2 ∫
ψ1 (r) ψ̄1 (r) ψ2

(
r′
)
ψ̄2
(
r′
)
exp (−L)Dψ

(52)
where the Lagrangian L has the form

L = i

∫
ψ̄ (r)

(
−H̃0 − U (r) − 1

2
(ω + iδ) Λ

)
ψ (r) dr (53)

where U (r) the impurity potential. The operator H̃0 equals

H̃0 = ε (−i∇r) − ε +
ω

2
(54)

where ε (−i∇r) is the spectrum.
I would like to draw attention at this point that the weight denominator is

absent in Eq. (52), which contrasts the analogous integrals, Eqs. (20,41). Ac-
tually, this is a consequence of the fact that F in Eq. (41) is taken as unity in
the space of the 2×2 supermatrices when writing Eq. (52). In other words, the
weight denominator is absent due to the difference of the results of the Gaus-
sian integration over the anticommuting variables χ, Eq. (18), (one obtains
DetA) and the corresponding formula for the integration over conventional
numbers that gives (DetA)−1.

The possibility to write the Green function in the form of Eq. (52) without
the weight denominator is the reason why the integration over the supervectors
is used. As the weight denominator is absent one can immediately average
over impurities in Eq. (52).

Let us assume for simplicity that the distribution of the random potential
U (r) in Eq. (53) is specified by Eq. (8). Then, the averaging over the random
potential is simple and one obtains again Eq. (52) but now the Lagrangian L
should be written as

L =

∫ [
−iψ̄H̃0ψ +

1

4πντ

(
ψ̄ψ
)2 − i (ω + iδ)

2
ψ̄Λψ

]
dr (55)

Eq. (55) shows that we have reduced the initial disordered problem to a regular
model with an ψ4 interaction. Of course, it does not help to solve it exactly
but now we can use approximations well developed in theory of interacting
particles.
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The Lagrangian L in Eq. (55) is similar to those studied in field theory. Let
us remark that at ω = 0 the Lagrangian is invariant under rotations of the su-
pervectors in the superspace because it depends on the square of “length” only.
The frequency ω violates this symmetry and, if one uses an analogy with spin
models, plays the role of an “external field”. The violation of supersymme-
try by the frequency is due to the fact that Eq. (55) is written for the product
GRGA (the presence of the matrix Λ is a direct consequence of this). The
symmetry would not be violated in the corresponding integrals for

〈
GRGR

〉

and
〈
GAGA

〉
. The averaging of the simpler Lagrangian corresponding to the

density of states (one averaged Green function) results also in a model with the
interaction ψ4, but the supersymmetry in this case is not violated. The diffu-
sion modes discussed previously exist only as a result of the violation of the
supersymmetry (Goldstone modes).

1.3 Spontaneous breaking of the symmetry and

It is clearly not possible to calculate any correlation function with the La-
grangian L, Eq. (55), exactly (except for the case of the one-dimensional chain
or the Bethe lattice, where one can write recurrence equations. Further calcu-
lations will be performed in the limit of large mean free times τ, which cor-
respond to a weak interaction in the Lagrangian L. However, the use of the
standard perturbation theory as we have seen is impossible even in this limit
because of the existence of the diffusion modes and so one should try to use
non-perturbative approaches.

One of the standard approaches used for such a type of theories is the mean
field approximation. According to this scheme one simplifies the ψ4 interac-
tion replacing pairs ψψ by their averages. For the interaction ψ4 there can be
six different pairings, which can be written as follows

Lint =
1

4πντ

∫ (
ψ̄ψ
)2

dr → L1 + L2 + L3, (56)

L1 =
1

4πντ

∑

α,β

∫
2
〈
ψ̄αψα

〉
eff

ψ̄βψβdr,

L2 =
1

4πντ

∑

α,β

∫
2ψ̄α

〈
ψαψ̄β

〉
eff

ψβdr,

L3 =
1

4πντ

∑

α,β

∫ (〈
ψ̄αψ̄β

〉
eff

ψβψα + ψ̄αψ̄β 〈ψβψα〉
)

dr

Goldstone modes. Non-linear σ-model
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In Eqs.(56), the symbol

〈...〉eff =

∫
(...) exp (−Leff ) Dψ

stands for the functional averaging with the effective Lagrangian Leff = L0 +
L1 + L2 + L3, where L0 is the quadratic part of the Lagrangian L in Eq. (55),
and α and β stand for the components of the supervectors ψ̄ and ψ.

In fact the terms in L2 and L3 are equal to each other. The average
〈
ψ̄αψα

〉

renormalizes the energy ε and is not important. The averages in L2 and L3 can
be both commuting and anticommuting variables, depending on the subscripts
α and β. The final Lagrangian Leff takes the form

Leff =

∫ [
−iψ̄

(
H̃ +

1

2
(ω + iδ) Λ +

iQ

2τ

)
ψdr

]
(57)

with the 8×8 supermatrix Q satisfying the following self-consistency equation

Q =
2

πν

〈
ψψ̄
〉
eff

(58)

Calculating the Gaussian integral in Eq. (58) with the help of Eq.(41) we obtain

Q =
1

πν

∫
g0 (p)

ddp

(2π)d
(59)

g0 (p) = i

(
ε (p) +

ω + iδ

2
− ε +

1

2
(ω + iδ) Λ +

iQ

2τ

)−1

(60)

The integral over the momenta p in Eq. (60) has both a real and an imaginary
part. As concerns the imaginary part the main contribution comes from the
region |ε (p)−ε| � τ−1, ω and, therefore, is proportional to the unit matrix
1. This contribution leads to a small renormalization of the energy ε. Assum-
ing that this energy has already been renormalized we can forget about the
imaginary part of Q and concentrate on the real part. The main contribution
to the real part of Eq. (60) comes from the region |ε (p) − ε| ∼ τ−1 � ε.
Introducing the variable ξ = ε (p) − ε we can rewrite Eq. (60) in the form

Q =
i

π

∫ ∞

−∞

(
ξ +

1

2
(ω + iδ) Λ +

iQ

2τ

)−1

dξ (61)

Eq. (61) determines the contribution to the real part of Q only and has at ω �= 0
one evident solution

Q = Λ, ω �= 0 (62)

However, putting ω = 0 we see that any Q of the form

Q = V ΛV̄ (63)
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where V is an arbitrary unitary supermatrix, V V̄ = 1, satisfies Eq. (61). Here
the symbol of conjugation “− ” for an arbitrary matrix A means the following

Ā = CATCT (64)

with C from Eqs. (49, 51). The supermatrix Q is self conjugate, Q = Q̄.
The degeneracy of the ground state, Eq. (63), leads to the existence of

the low-lying Goldstone modes, and their contribution to physical quantities
should be taken into account properly. These Goldstone modes are just the
diffusion modes discussed in the Introduction. In the language of spin models
the degeneracy of the solution, Eq. (63) is equivalent to the degeneracy due to
an arbitrary spin direction.

Substituting the mean field solution, Eq. (63), into the effective Lagrangian
into Eq. (57) we obtain zero, which shows that this approximation is not suf-
ficient. In order to describe a contribution of the diffusion modes we have to
take into account slow variations of the supermatrix Q in space. This can be
done assuming that the supermatrix V is a slow function of the coordinates r
and expanding in the gradients of V (or, equivalently, Q).

As a result of the expansion in the gradients and small frequencies one can
obtain a functional F [Q] describing slow variations of the supermatrix Q in
space

F [Q] =
πν

8
STr

∫ [
D0 (∇Q)2 + 2i (ω + iδ) ΛQ

]
dr (65)

where D0 is the classical diffusion coefficient, Eq. (7), and the supermatrix Q
is described by Eq. (63). The free energy functional, Eq. (65), has the form of
a non-linear σ-model.

In order to calculate, e.g. the level-level correlation function R (ω) , Eq.
(47), one should express it in terms of a functional integral over the supermatrix
Q. As a result, this function takes the form

R (ω) =
1

2
− 1

2V 2
Re

∫
Q11

11 (r) Q22
11

(
r′
)
exp (−F [Q]) DQdrdr′ (66)

where V is the volume of the system. In Eq. (66) the superscripts of Q enumer-
ate “retarded-advanced blocks” , the subscripts relate to the matrix elements
within these blocks.

Eqs. (65, 66) show that the calculation of physical quantities for disordered
systems can be reduced to study of a supermatrix non-linear σ-model. There is
a variety of physical problems that can be solved by considering this model in
different dimensionalities. To some extent, the problem of the level statistics
in a limited volume is the simplest one because it corresponds to the zero-
dimensional σ-model (no dependence of Q on the coordinates).

Adding magnetic or spin orbit interactions results in additional “external
fields” partially breaking the symmetry. If these interactions are not very weak
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they simply cut some degrees of freedom. As a result, one comes again to Eq.
(65) but with a reduced symmetry of the supermatrix Q.

There can be three different types of the symmetries:
1. In the absence of both magnetic and spin-orbital interactions the system

is invariant under time reversal and spatial inversion. It will be called “orthogo-
nal” because, as we will see, one comes in small particles to the Wigner-Dyson
statistic for the orthogonal ensemble.

2. In the presence of magnetic interactions the time reversal symmetry is
violated and this will be called unitary ensemble.

3. In the absence of magnetic interactions but in the presence of spin-orbital
ones, one obtains the symplectic ensemble.

These three ensembles lead to quite different results in different situations
and each of them should be considered separately.

1.4

Eq. (63) specifies a general form for the 8 × 8 supermatrix Q. In other
words, it obeys the constraint

Q2 = 1 (67)

However, this constraint is not sufficient to determine unambiguously the
precise structure of Q because Eq. (67) could correspond both to rotations on a
sphere and on a hyperboloid. It turns out that the symmetry of the supermatrix
Q is more complex than those corresponding to these two possibilities. The
supermatrix Q consists of two parts: one describing rotations on the sphere
and the other on the hyperboloid, such that the group of rotations of Q is a
mixture of compact and non-compact groups of rotations [4]. These two parts
are glued by anticommuting elements. We can describe the explicit form of the
supermatrix Q writing it in the form

Q = UQ0Ū , (68)

where

U =

(
u 0
0 v

)
(69)

and ūu = 1, vv̄ = 1. All Grassmann variables are included in the 4 × 4
supermatrices u and v. These matrices contain also some phases. Their form
is simple and not very important for our discussion. More details can be found
in Ref. [4].

The form of Q0 is more interesting and can be written as

Q0 =

(
cos θ̂ i sin θ̂

−i sin θ̂ − cos θ̂

)
, θ̂ =

(
θ̂11 0

0 θ̂22

)
(70)

The 2 × 2 matrices are different for different classes of the symmetry.

Level statistics in a limited volume
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We see that the symmetry of Q0 corresponds to a group rotations on both
the sphere and the hyperboloid. The explicit form of the matrices θ̂11 and θ̂22

can be expressed as follows

θ̂11 =

(
θ 0
0 θ

)
, θ̂22 = i

(
θ1 θ2

θ2 θ1

)
(71)

with 0 < θ < π, θ1 > 0, θ2 > 0 for the orthogonal ensemble,

θ̂11 =

(
θ 0
0 θ

)
, θ̂22 = i

(
θ1 0
0 θ1

)
(72)

with 0 < θ < π, θ1 > 0 for the unitary ensemble, and

θ̂11 =

(
θ1 θ2

θ2 θ1

)
, θ̂22 = i

(
θ 0
0 θ

)
(73)

for the symplectic one.
Eqs. (65,66, 70-73) specify the non-linear supermatrix σ-model. What re-

mains to do for the level-level correlation function, Eq. (66), is to calculate
the functional integral over Q. Many of the physical quantities can also be ex-
pressed in a form of a correlation function of the supermatrices Q with the free
energy functional F [Q] , Eq. (65).

Let us consider now the level-level correlation function in a limited volume.
The functional integral, Eqs. (65, 66) can be considerably simplified in the
limit of small frequencies. In a finite volume one can expand the supermatrix
Q in Fourier series. Then, it is not difficult to understand from Eq. (65) that
for ω � D0/L

2, where L is the sample size, only the zero space harmonics is
essential. In this case one can integrate over the supermatrices Q not varying in
space and the integral for the function R (ω), Eq. (66), becomes just a definite
integral over several variables. This integral takes the following form

R (ω) =
1

2
− 1

2
Re

∫
Q11

11Q
22
11 exp (−F0 [Q]) dQ (74)

where F0 [Q] takes the form

F0 [Q] =
iπ (ω + iδ)

4∆
STr (ΛQ) (75)

One can say that Eqs. (74, 75) determine a zero dimensional non-linear σ-
model. In general, it is clear that the dimensionality of the σ-model is de-
termined at not very high temperatures by the geometry of the sample. For
example, the one dimensional σ-model describes a long wire of a finite thick-
ness.
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In order to calculate the integral over Q in Eq. (74) it is very convenient to
use Eqs. (70, 73). We see immediately that the supermatrix U, Eq. (69), drops
out from F0 [Q] entering the pre-exponential in Eq. (74) only. This allows us
to integrate first over the elements of U, and reduce the integral to the variables
θ̂11, θ̂22 only. The integration over the Grassmann variables is, according to
Eq. (16), a very simple task. Actually, one has to calculate also Jacobians
arising when changing from the integration over Q to the integration over the
“eigenvalues” λ, λ1, λ2. As a result, one comes to the following integrals for
all three ensembles

Rorth (ω) = 1 + Re

∫ ∞

1

∫ ∞

1

∫ 1

−1

(λ1λ2 − λ)2
(
1 − λ2

)
(
λ2

1 + λ2
2 + λ2 − 2λλ1λ2 − 1

)2 (76)

× exp [i (x + iδ) (λ1λ2 − λ)] dλ1dλ2dλ

Runit (ω) = 1 +
1

2
Re

∫ ∞

1

∫ 1

−1
exp [i (x + iδ) (λ1 − λ)] dλdλ1 (77)

Rsympl (ω) = 1 + Re

∫ ∞

1

∫ 1

0

∫ 1

−1

(λ − λ1λ2)
2 (λ2 − 1

)
(
λ2 + λ2

1 + λ2
2 − 2λ1λ2λ − 1

)2 (78)

× exp [i (x + iδ) (λ − λ1λ2)] dλ1dλ2dλ

We see that the integrals over the supermatrix Q can be reduced to integrals
over the “eigenvalues” λ, λ1, λ2. Depending on the ensemble one obtains
twofold or threefold integrals. Calculation of such integrals is a much simpler
task than calculation of integrals over a large number N of variables encoun-
tered in RMT[2]. Although the reduction to the integrals over the eigenvalues
has been carried out for the level-level correlation function only, the corre-
sponding manipulations for studing other physical quantities are the same. The
only thing that remains to be done when calculating different physical quan-
tities is to write a proper pre-exponential and carry out integration over the
elements of supermatrices u and v entering the pre-exponential only. Then one
obtains integrals over the variables λ, λ1, λ2 analogous to those in Eqs. (76,
77, 78).

The integration over λ and λ1 in Eq. (77) for the unitary ensemble is sim-
ple. At first glance, the integrals for the orthogonal and symplectic ensembles
look terrifying. However, they can be calculated by Fourier transforming the
integrals from the frequencies ω to the real time t. As a result, one comes to
the Wigner-Dyson formulae, Eqs. (4-6), which demonstrates that the level-
level correlation function for a small metal particle is really the same as that
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given by the RMT. This is how one proves the relevance of the RMT for dis-
ordered systems [13]. Actually, the model of the disordered metal was the first
microscopic model for which the Wigner-Dyson statistics had been proven.

Of course, this is possible for not very high frequencies ω � D0/L
2. In

the opposite limit ω � D0/L
2, the situation is no longer zero dimensional but

one can do perturbation theory in diffusion modes. This calculation was done
in Ref. [34].

One can also come to the zero dimensional σ-model starting from the Gaus-
sian distribution for the random matrices, Eq. (1), in the limit of large N . This
was done in the review, Ref. [15]. Therefore, the supersymmetry method can
be considered as an alternative to the method of the orthogonal polynomials[2]
in RMT.

Using the non-linear σ-model, Eq. (65), one can consider thick disordered
wires. This corresponds to the one dimensional σ-model. In this case one
can use a transfer matrix technique that allows to reduce calculation of a one
dimensional functional integral to solving of an effective “Schr-odinger equa-
tion”. The exact solution found for this model[35] proves localization of all
states (vanishing of the conductivity) for any arbitrarily weak disorder. In the
language of random matrices this quasi-one-dimensional model corresponds to
a model of random banded matrices[36].

The exact solution can also be found for a model with disordered grains
connected in a such a way that they constitute a Bethe lattice. For this model,
using recursion relations one can write a non-linear integral equation[37]. It
was demonstrated that within the model on the Bethe lattice one could have a
metal-insulator transition with a very unusual critical behavior. The model on
the Bethe lattice has been shown to be equivalent to models of certain sparse
random matrices [38]. Sparse matrices are relevant for description of diluted
spin models, some combinatorial optimization problems[39] and other inter-
esting systems.

Properties of two dimensional disordered metals can be studied using a
renormalization group scheme [18–20, 13, 14]

2.
Multifractality

2.1

In this Section statistics of wave functions is discussed. Investigation of
wave functions is complimentary to study of energy levels. In the language
of random matrices, energy levels correspond to eigenvalues of the matrices
whereas the wave functions relate to eigenvectors.

Study of wave functions has become popular in condensed matter physics
not long ago with the development of mesoscopic physics. One can study, e.g.,
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electron tunneling through so called quantum dots, which are actually small
quantum wells. At low temperatures one can reach a resonance tunnelling
regime when the electron tunnel via one resonance level. In this case the tun-
nelling amplitude is very sensitive to the wave function of the resonance state.

Wave functions can also be measured in optical and acoustic resonators
where they are electromagnetic or sound waves, respectively.

We start with the standard Schr-odinger equation

Hφα (r) = εαφα (r) (79)

that determines the eigenenergies εα and eigenfunctions φα (r) .
We assume that a finite volume V is considered, such that the spectrum of

the energies εα is discrete.
The full statistics of the wave functions φα (r) at a given point r can be

described by the following distribution function f

f (t) = ∆

〈
∑

α

δ
(
t − |φα (r)|2

)
δ (ε − εα)

〉
(80)

The function f (t) , Eq. (80), gives the probability that the square of the abso-
lute value of the wave function (intensity) at the point r and energy ε is equal
to t. The distribution function f (t) and the wave functions φα (r) are assumed
to be properly normalized such that

t0 = 1, t1 = V −1 (81)

where tn (V ) are coefficients of the so called inverse participation ratio

tn =

∫ ∞

0
tnf (t) dt = ∆

〈
∑

α

|φα (r)|2n δ (ε − εα)

〉
(82)

These coefficients indicate very sensitively the degree of localization of
states through their dependence tn (V ) on the volume of the system. In a
pure metal or a ballistic chaotic box where the wave functions extend over the
whole system one has

tn ∝ V −n (83)

If disorder makes the localization length Lc, at which the typical wave func-
tions decay, is much shorter than the sample size L ∼ V 1/d, the coefficients tn
are insensitive to L. However, a very interesting information about the devel-
opment of localization can be gained through an analysis of tn (V ) for small
samples with L < Lc.

As soon as the localization length Lc exceeds the sample size, any length
scale disappears and, in the language of the coefficients tn, this is described as

V tn ∝ L−τ(n), τ (n) = (n − 1) d∗ (n) (84)
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where d∗ (n) may differ from the physical dimension d of the system and be a
function of n. This function gives the values of the fractal dimensions d∗ (n)
for each n.

If the behavior of the wave function is described by Eq. (83), the fractal
dimension d∗ coincides with the physical dimension d. We will see that the
fractal dimension of a system obeying the RMT coincides with the physical di-
mension. In such a situation, although the amplitude fluctuations are possible,
they are not very strong.

Once we assume that the envelope of a typical wave function at a length
scale shorter than Lc obeys a power law φ (r) ∝ r−µ with a single fixed ex-
ponent µ < d/2, the set of the coefficients tn reveals d∗ = d − 2µ different
from d but the same for all n > d/ (2µ) . This is when one speaks of fractal
behavior with the fractal dimension d∗.

If d∗ (n) is not a constant, that signals a more sophisticated structure of
the wave functions. They can be imagined as splashes of multiply interfer-
ing waves at different scales and with various amplitudes, and possibly, self-
similarity characterized by a relation between the amplitude t of the local
splash of the wave function and the exponent µ (t) of the envelope of its ex-
tended power law tail.

We will see below that the multifractality of the wave functions of two di-
mensional weakly disordered conductors is the most general property of these
systems as soon as the sample size L does not exceed the localization length
Lc [40].

2.2 Porter-Thomas distribution

Before starting more complicated calculations I would like to present here
what is known about the distribution of wave functions from nuclear physics
(see, e.g. Refs. [41, 42]) where it was studied for description of level width
fluctuations in neutron scattering. The wave function fluctuations are obtained
there again from the RMT.

To start the calculation one should choose and arbitrary basis of eigenfunc-
tions ρm (r) and expand the function φn (r) in this basis

φn (r) = V −1/2
∞∑

m=1

anmρm (r) (85)

where V is the volume. It is convenient to truncate the basis to a finite N -
dimensional set and take the limit N → ∞, as is usually done in the RMT. The
main statistical hypothesis is that all coefficients amn are uniformly distributed.
The only restriction on the coefficients {amn} is imposed by normalization of
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the wave functions, and the probability density P ({amn}) can be written as

P̃ ({amn}) =
2

ΩN
δ

(
N∑

m=1

|amn|2 − 1

)
(86)

where Ωn is the solid angle in N dimensions. Because of the truncation of the
basis the condition of completeness of the basis {ρm} should be written in the
form ∞∑

m=1

ρ2
m (r) ≡ |�η|2 = N (87)

where �η is an N -dimensional vector with components {ρm} . The distribution
function of the intensities W (v) at the point r is introduced as

W (v) =
2

ΩN

∫
δ
(
v − |�a�η|2

)
δ
(
|�a|2 − 1

)
d�a (88)

where the vector �a is an N -dimensional vector with components {amn} . The
distribution function W (v) , Eq. (88) is defined in such a way that

∫
W (v) dv = 1 (89)

In the unitary ensemble, one should integrate over complex vectors �a. Integrat-
ing first over the component of the vector �a parallel to the vector �η and using
Eq. (87) one obtains

W (v) =
2π

NΩN

∫
δ
(
|�a⊥|2 −

(
1 − v

N

))
d�a (90)

where �a⊥ is the component perpendicular to �η. The remaining integration in
Eq. (90) can be carried out easily. Taking the limit N → ∞ one obtains for
the unitary ensemble a simple formula

W (v) = exp (−v) (91)

Computing the integral in Eq. (88) for real vectors �a and �η one can obtain the
distribution function for the orthogonal ensemble

W (v) =
1√
2πv

exp
(
−v

2

)
(92)

The functions W (v), Eqs. (91,92) satisfy the normalization conditions, Eq.
(89). The distribution functions W (v) are universal and do not depend on de-
tails of models for disorder. The amplitudes v are related to t from the previous
section as v = V t. The functions W and f are related to each other accord-
ingly. Eqs. (91, 92) are usually referred to as the Porter-Thomas distribution.

121



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

2.3 Non-linear σ-model and the statistics of wave
functions

Now we concentrate on the calculation of the distribution function f (t) ,
Eq. (80). At first glance, this task does not seem easy. In the previous section
we were able to reduce the level-level correlation function to a functional in-
tegral over 8 × 8 supermatrices Q. It became possible because the level-level
correlation function R (ω) , Eq. (3), could be expressed in terms of the product
of two Green functions, Eq. (47). Actually, the size 8× 8 of the supermatrices
is determined by the fact that only two Green functions are needed.

So, in order to calculate the distribution function f (t) , Eq. (80), we have
to make two necessary steps:

1. To express Eq. (80) in terms of the Green functions.
2. To express products of the Green functions in terms of an integral over

supervectors ψ. If we really want to make explicit calculations the supervectors
ψ should not have too many components.

It turns out that both the steps are possible and the necessary number of the
components of the supervector ψ is just 8 for the orthogonal ensemble and 4
for the unitary one.

The step 1 is done introducing Green functions GR,A
εγ for a system with

smeared levels

GR,A
ε,γ

(
r, r′
)

=
∑

α

φα (r) φ∗
α (r)

ε − εα ± iγ
2

(93)

Then, Eq. (80) can be written as

f (t) = ∆

〈
lim
γ→0

∑

α

δ

(
t − iγ

2
GR

εγ (r, r)

)
δ (ε − εα)

〉
(94)

=
∆

2π
lim
γ→0

lim
β→0

〈∫
δ

(
t − iγ

2
GR

εγ (r, r)

)(
GA

εβ

(
r′, r′
)
− GR

εβ

(
r′, r′
))〉

dr′

In Eq. (94) one should first take the limit β → 0 and then γ → 0. Since the
distribution function f (t) is represented in terms of a function of only two
Green functions at two points r and r′ one can express it in terms of an integral
over 8-component supervectors ψ using the Wick theorem. The corresponding
Lagrangian is the same as the one for the level-level correlation function, Eq.
(55), provided one replaces the frequency ω by the level width γ.
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The derivation of the corresponding σ-model is standard and one comes to
the following expression for the distribution function f (t)

f (t) = lim
γ→0

∫ ∫
STr

(
π

(1)
b Q (r)

)
δ
(
t − πνγ

4
STr

(
π

(2)
b Q (ro)

))
(95)

× (−F [Q]) DQ
dr

4V

where the free energy functional F [Q] has the form

F =
πν

8

∫
STr

[
D0 (∇Q)2 − γΛQ (r)

]
(96)

and ro is the “observation point”. When the system can be described by the
zero dimensional σ- model the distribution function f (t) does not depend on
ro. However, beyond the 0D approximation, this function can also be a func-
tion of the coordinates. The matrices π

(1,2)
b in Eq. (95) select from the super-

matrix Q its boson-boson sector and have the form

π
(1)
b =

(
πb 0
0 0

)
, π

(2)
b =

(
0 0
0 πb

)
, πb =

(
0 0
0 1

)
(97)

As we have discussed previously, the σ-model is noncompact, Eqs. (70-73).
Therefore, in order to avoid divergent integrals over the variables θ̂22, we must
calculate the integrals keeping γ finite. The limit γ → 0 can be taken only
at the end of the calculations. However, it is not very convenient to keep an
additional free parameter, and it is better to get rid of the parameter γ at an
earlier stage. This can be done by integrating over the zero space harmonics of
Q in the very beginning of the calculations.

To carry out this procedure one should represent the supermatrix Q (r) in
the form of Eq. (63) and change the variables of integration V (r) to Ṽ (r) as
V (r)=V (ro) Ṽ (r) . This leads to supermatrices Q̃ :Q(r)=V (ro) Q̃ (r) V̄ (ro).
In terms of the new variables Ṽ (r) and Q̃ (r) the gradient term in Eq. (96) pre-
serves its form, but now the condition

V (ro) = 1, Q̃ (ro) = Λ (98)

has to be fulfilled. Changing the variables of the integration for all points
r �= ro from Q (r) to Q̃ (r) one obtains a new free energy functional that does
not contain V (ro) or Q (ro) . These variables enter only the pre-exponential
and the term with γ, and, hence, the integral over V (ro) can be computed
without making approximations. The result of the integration contains only
the variables Q̃ (r) with the boundary condition, Eq. (98). This means that the
reduced σ-model obtained in this way operates only with relative variations of
the field Q with respect to its value at the observation point.
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The limit γ → 0 simplifies the computation because the main contribution
to the integral over the variable θ1o entering the parametrization, Eqs. (70-73),
is from cosh θ1o ∼ 1/γ (for simplicity we are considering the unitary ensemble
but the final results are similar for all ensembles). After standard manipulations
one can express the distribution function f (t) in the form

f (t) =
1

V

d2Φ (t)

dt2
, Φ (t) =

∫

Q̃(ro)=Λ
exp
(
−F̃
[
Q̃, t
])

DQ̃ (r) (99)

where the free energy F̃ [Q, t] has the following form

F̃ [Q, t] =
1

8

∫
STr

[
πνD0

(
∇Q̃
)2

− 2tΛΠQ̃

]
dr (100)

The matrix Π selects from Q̃ its noncompact “boson-boson” sector.
If t is not very large one can take into account the zero space harmonics of

Q only. Taking into account Eq. (98) we can just put everywhere Q = Λ,
which leads us immediately to the Porter-Thomas distribution, Eq. (91) (and
Eq. (92) for the orthogonal ensemble).

Nonetheless, this would be only an approximate procedure because the value
Q̃ (r) = Λ does not correspond to the minimum of the functional F̃ when
t �= 0. An equation for the minimum can be found by taking into account the
noncompact variable θ1 under the condition at the boundary and at the obser-
vation point

n∇θ1 = 0, θ1 (ro) = 0 (101)

where n is the unit vector at the boundary and perpendicular to it.
Using Eq. (101) one writes the equation for the extremum solution θt in the

form

∆rθt = − t

πνD0
exp (−θt (r)) (102)

where ∆r is the Laplacian. The solution θt (r) of Eq. (102) has to be substi-
tuted into the energy functional F̃ , Eq. (100), which takes the form

Ft =
1

2

∫ [
πνD0 (∇θt)

2 + 2t exp (−θt)
]
dr (103)

It is remarkable that Eq. (102) for the non-trivial vacuum of the reduced σ-
model in two dimensions is exactly the Liouville equation known in the con-
formal theory of 2D quantum gravity [43, 44]. Within this model one has
to calculate the functional integral over all θ with the free energy functional
determined by Eq. (103). Although this can lead to helpful analogies [45],
results that might be anticipated in this way can be used only as intermediate
asymptotics.
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Eq. (102) for the minimum looks very similar to a saddle point equation
derived in Ref. [46] when considering the problem of long-living current re-
laxation. However, the non-linear term is different, which leads to different
solutions.

The most interesting is the solution of Eq. (102) in two dimensions where
it can be found exactly. However, the exact solution is somewhat cumbersome
and I write here its asymptotics at distances r much smaller than the sample
size L (but exceeding the mean free path l)

exp (−θt) ≈ (l/r)2µ (104)

where µ is a parameter depending on disorder.
With the same accuracy, the free energy of the vacuum state can be approx-

imated by
Ft ≈ 4π2νD0

{
µ + µ2 ln (L/l)

}
(105)

The parameter µ can be determined from the following equation

µ ≈ z (T )

2 ln (L/l)
, where zez = T ≡ tV ln (L/l)

2π2νD0
(106)

In principle, Eqs. (104-106) determine the distribution function f (t) for
arbitrary t (µ must remain small, though). However, analytical expressions
can be written only in the limiting cases T � 1 and T � 1. In these limits,
the distribution function f (t) , Eq. (80), can be written as[40]

f (t) = AV

{
exp
(
−V t

[
1 − T

2 + ...
])

, T � 1

exp
(
− π2νD0

ln(L/l) ln2 T
)

, T � 1
(107)

where A is a normalization constant.
We see from Eq. (107) that at small values of the amplitudes, such that T �

1, the distribution function f (t) agrees with the Porter-Thomas distribution,
Eq. (91), thus proving the latter for disordered systems. In this limit one can
make expansion in T [47].

At large t (T � 1) the function f (t) has log-normal asymptotics that is
strikingly similar to the asymptotics of the distribution function of the local
density of states or conductances discovered by Altshuler, Kravtsov and Lerner
[48] who came to this result considering renormalization of terms high gradi-
ents in the σ-model. Even the numerical coefficients in the exponentials are
the same, although, of course, the logarithms contain different variables. It
appears that the log-normal form is really universal. The slower decay of the
distribution function f (t) at large t is due to localization effect. Unfortunately,
until now it is not clear how the growth of the high gradient terms is related to
the existence of the non-trivial vacuum considered in this Section.
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As concerns the coefficients of the inverse participation ratio tn, Eq. (82),
they show the multifractal behavior, Eq. (84). Using Eqs. (102,106) one comes
to the following expression for the fractal dimension d∗ (n)

d∗ (n) = 2 − n
(
4π2νD0

)−1
(108)

We see that even for a weak disorder the fractal dimension d∗ (n) strongly
deviates from 2. Of course, it cannot become negative and this determines the
region of the applicability of Eq. (108).

3. Recent and possible future developments

In the preceding sections it was demonstrated how one can come to the
random matrix theory starting from a model of a disordered metallic particle.
This became possible using the supersymmetry method. Actually, to the best
of my knowledge, the model of a disordered metal was the first microscopic
model for which the Wigner-Dyson statistics was confirmed.

Starting from the first works [7, 13] where the relevance of the Wigner-
Dyson theory to the disordered systems was suggested and proven, a huge
number of problems have been attacked using these ideas. Calculations were
performed either assuming that RMT was applicable for the description of
small particles (they are often called “quantum dots”) and using methods of
the RMT [2] or making direct computation starting from a disordered metal
and applying the non-linear supermatrix σ-model. Reviewing all these appli-
cation within several lectures is impossible even though several related topics
are considered in this volume by Boris Altshuler and Jac Verbaarschot. At
this point I can only refer again to recent reviews [4, 6, 17, 27–31, 49] and
apologize in case if some references are missing here.

The selection of topics of the present lectures was motivated mainly by the
desire to give a feeling of how to calculate within the supersymmetry method
both level and wave function correlations. We have seen that one could obtain
results that agreed in a certain region of parameters with the predictions of the
RMT and, at the same time, go beyond the RMT.

Essential conditions for the derivation of the σ-model were the absence of
the electron-electron interaction and a sufficiently high concentration of impu-
rities. For the problem of the level statistics, the latter condition corresponds
to the case when the mean free path l is much smaller than the sample size. In
other words, an electron can scatter many times on the impurities in the bulk
before it reaches a boundary of the sample.

At the same time, the RMT was initially suggested for description of com-
plex nuclei, where disorder is absent but interactions are strong. A natural
question that can be asked is: Can one prove the relevance of the RMT for
clean or/and interacting systems? Clearly, the supermatrix σ-model discussed

126



Random Matrices and Supersymmetry

in the previous sections is not applicable in these situations and one needs a
generalization of this method.

It seems that really new ideas are necessary in order to achieve this goal.
Nevertheless, first steps towards constructing more general schemes have been
done and I want to present here the main ideas of the new approaches.

3.1 Supersymmetry with interaction

From the beginning of the use of the supersymmetry method it was clear
that the method could be applicable for non-interacting particles only. The
method is based on the result of the Gaussian integration, Eq. (18), that gives
DetA instead of the usual (DetA)−1 . Introducing an interaction results in
non-quadratic terms in the Lagrangian. Therefore the trick with writing Green
functions in terms of a Gaussian integral without a weight denominator does
not work anymore. This is the reason why, in contrast to the replica approach
where a proper σ-model has been derived long ago [24, 25], introducing an
interaction into the supersymmetry scheme was believed to be impossible.

To some extent, it is true and it is not clear how to include the interaction
into the supersymmetry exactly. However, a weak interaction can really be
included without considerable difficulties [26]. The initial electron model with
the interaction is not supersymmetric and cannot be made supersymmetric by
a transformation. This is why one cannot get rid off the weight denominator.

The main idea of Ref. [26] is to replace approximately the initial electron
model by an effective supersymmetric model. This is possible for any disorder
in the limit of a weak interaction. The effective model takes into account the
most important (Hartree-Fock type) diagrams for any fixed configuration of
impurities. Then, the derivation of the proper σ-model is quite standard.

The resulting non-linear σ-model resembles very much the replica model
of Finkelstein[24, 25] but contains supermatrices and does not have replica in-
dices. The supermatrices Q contain, in addition to those for the non-interacting
systems, indices for Matsubara frequencies. One should also write properly
spin indices. As a result, the supermatrix non-linear σ-model for electron sys-
tems with interaction takes the form (unitary ensemble)

F =
πν

4

∫
dr Str

[
D(∇Q)2 − 4EQ]

+
πν

4

∫
dr
[
Γ2Qγ2Q − Γ1Qγ1Q

]
(109)

where γ1 and γ2 are certain operators acting on the supermatrices Q, and Γ1

and Γ2 are scattering amplitudes characterizing the interaction (they are dif-
ferent from those obtained for the replica σ-model [24, 25]. As usual, one
has the constraint Q2 = 1 but now the product of two supermatrices includes
summation also summation over the Matsubara frequencies.
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Using the sigma-model Eq. (109) renormalization group equations of Refs.
([24, 25]) have been reproduced in the first order in the interaction constants
and there is a hope to use this model for non-perturbative calculations.

3.2

Although the interaction is included in Eq. (109), it is written for systems
with considerably high concentration of short range impurities. Studying prob-
lems for clean systems or systems with a long range disorder one needs a dif-
ferent scheme. Statistical properties of clean chaotic systems are covered in
this school by Boris Altshuler and I do not review them here. Instead, I want
to concentrate on calculational schemes.

The saddle point equation (61) is not a good approximation for clean sys-
tems and systems with long range disorder and we cannot follow the same way
as the one used for diffusive models. The method that I want to present now is
based on using quasiclassical Green functions.

Introducing an 8 × 8 matrix function G (r, r′) as

G(r, r′) = 2〈ψ(r)ψ̄(r′)〉ψ (110)

we can write in a standard way the following equation for this function
[
H0r + U (r) + Λ

ω + iδ

2
+ iJ (r)

]
G
(
r, r′
)

= iδ
(
r− r′

)
(111)

where the subscript r of H0r means that the operator acts on r. The notations
are the same as in Eqs. (53, 54), and J (r) is a source term that allows to extract
more complicated correlation functions.

Conjugating Eq.(111)we obtain another equation for the matrix G(r, r′)
with the operator H0r′ acting on its second variable

G(r; r′)
[
H0r′ + U

(
r′
)

+ Λ
ω + iδ

2
+ iJ(r′)

]
= iδ(r − r′) (112)

Until now no approximations have been done and Eqs. (111, 112) are exact.
Now we can use the assumption that the potential U (r) changes slowly on the
wavelength λF . If the mean free path l for the scattering on the random poten-
tial exceeds λF the Green function varies as a function of r− r′ at distances
of the order of λF but, at the same time, is a slow function of (r + r′) /2. The
Fourier transform Gp ((r + r′) /2) of G (r, r′) respective to r− r′ has a sharp
maximum near the Fermi surface. In order to cancel large terms we subtract
Eq. (112) from Eq. (111). Using the assumption that the potential U (r) is
smooth and expanding it in gradients we obtain in the lowest order
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[
− ip∇R

m
+ i∇RU(R)

∂

∂p

]
Gp(R)+

ω + iδ

2
[Λ, Gp(R)]+i[J(R), Gp(R)] = 0

(113)
where R = (r + r′) /2 and [, ] stands for the commutator. When deriving Eq.
(113), not only the potential U (r) but also the function J (r) was assumed to
be smooth.

The dependence of the Green function Gp (R) on |p| is more sharp than on
other variables. In order to avoid this sharp dependence we integrate Eq. (113)
over |p|. Of course, this procedure makes a sense for very large samples when
the level discreteness can be neglected.

The most interesting contribution in the integral over |p| comes from the
vicinity of the Fermi-surface. A contribution given by momenta considerably
different from pF is proportional to the unity matrix an drops out from Eq.
(113).

Introducing the function gn (r)

gn (r) =
1

π

∫
Gpn (r) dξ, ξ =

p2 − p2
F

2m
(114)

where n is a unite vector pointing a direction on the Fermi surface, we obtain
the final quasiclassical equation

(
vFn∇− p−1

F ∇rU (r) ∂n

)
gn (r) +

i (ω + iδ)

2
[Λ, gn (r)] − [J, gn] = 0

(115)
where

∂n = ∇n − n, ∇n = −[n× [n× ∂

∂n
]]

Eq. (115) should be complemented by a boundary condition at the surface
of the sample. Considering a closed sample we assume that the current across
the border is equal to zero. This leads the boundary condition at the surface

gn⊥
(r)|surface = g−n⊥

(r)|surface (116)

where n⊥ is the component of the vector n perpendicular to the surface.
Eq. (115) is similar to an Eilenberger equation written long ago in super-

conductivity theory [50]. As in the theory of superconductivity, the solution
for the Eq.(115) satisfies the condition g2

n(r) = 1̂. Eq. (115) is written for
a non-averaged potential U (r) and it is valid also in the absence of the long
range potential.

The quasiclassical equation, Eq. (115), has beenwritten firstby Muzykantskii
and Khmelnitskii, Ref. [51] who guessed a functional for which Eq. (115) is
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just a condition for an extremum. Then, they proceeded to work with this
functional without estimating fluctuations near this minimum.

It came later as a surprise that, actually, one could write the proper solution
of Eq. (115) in terms of a functional integral over supermatrices exactly[52].
The exact solution for Eq. (115) can be written as

gn(r) = Z−1[J ]

∫

Q2
n
=1

Qn(r) exp
(
−πν

2
ΦJ [Qn(r)]

)
DQn,

Φ[Qn(r)] = Str

∫
drdn[ΛT̄n(r)(vF n∇r

− p−1
F ∇rU(r)∇n)Tn(r) +

(
i (ω + iδ)

2
Λ − J(r)

)
Qn(r)], (117)

Qn(r) = Tn(r)ΛT̄n(r), T̄n(r)Tn (r) = 1

In Eq. (117), the partition function Z[J (r)] is

Z[J ] =

∫

Q2
n=1

exp
(
−πν

2
Φ[Qn(r)]

)
DQn (118)

and the integration is performed over the self-conjugate supermatrices Qn =
Q̄n (r) satisfying the following relation

Q2
n (r) = 1 (119)

We see that the quasiclassical Green function gn (r) can be written in the form
of a functional integral over supermatrices Qn (r) depending both on the co-
ordinates r and the direction of the momentum n and satisfying the constraint,
Eq. (119). The first term in the free energy functional is written in terms of
the supermatrices Tn rather than Qn.. However, it can be written in a form of a
Wess-Zumino-Novikov-Witten term containing the supermatrices Q only[51].
Writing this term one should introduce an additional coordinate varying at the
interval [0, 1] .

The model described by the functional Φ, Eqs. (117), is usually referred to
as a “ballistic σ-model”. The partition function Z [J ] , Eq. (118), is unity at
J = 0 due to the supersymmetry and this allows us to average (if necessary)
over the smooth potential U (r).

The method of quasiclassical Green functions suggested here for a static
external potential does not seem to be restricted by the non-interacting case.
There are indications that it can be generalized to describe clean interacting
systems. Of course, in this case one should write the quasiclassical equations
in time representation because the interaction mixes states with different ener-
gies. Study of interacting systems with this method may be a very interesting
direction of research.
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As concerns attempts to prove the Wigner-Dyson statistics for clean non-
interacting systems one can try to start with the functional Φ, Eq. (117). At
first glance, we should simply restrict ourselves with the integration over Q de-
pending neither on the coordinates, nor on the momenta. Then, the functional
Φ would contain only the last term and we would have the zero dimensional
σ-model, which leads immediately to the WD statistics.

However, a very important question is whether one averages over the po-
tential U (r) or puts U (r) = 0 and averages over the spectrum. In the former
case one gets after averaging over U (r) an additional term in functional Φ
quadratic in gradients. This term leads eventually to a suppression of non-zero
harmonics and one can really obtain the zero-dimensional σ-model (see [52]
and references therein).

The situation with U (r) = 0 and averaging over the energy is more inter-
esting. Everything depends on whether the system is classically integrable or
chaotic. It is just the situation for which the authors of Ref. [16] made their
hypothesis.

It turns out that within the model with the functional Φ, Eq. (117), and
U (r) = 0 one cannot come to the zero-dimensional σ-model. There is a
common consensus that a “regularizer” (see e.g. [53]) containing something
like square of gradients in coordinates or momenta is necessary in the correct
ballistic σ-model. Aleiner and Larkin [54] argued that in order to come to
the zero dimensional σ-model one had to take into account diffraction, which
is clearly absent in the ballistic σ-model, Eq. (117). They did not manage
to include the diffraction in their calculational scheme microscopically and
mimiced it by introducing artificial quantum impurities that would correspond
to the potential U (r) in Eq. (117). This allowed them to come to the zero
dimensional σ-model, confirm the WD statistics and calculate corrections to
it. It is worth emphasizing that the effective potential U (r) was very weak
such that the computation was done in the ballistic regime.

As concerns the real physical diffraction, it cannot be directly included in the
σ-model using the quasiclassical scheme and a more sophisticated approach is
necessary.

3.3 Beyond the quasiclassics

We have seen that the solution of the equations for the Green functions, Eqs.
(111, 112), can be written in the quasiclassical approximation in terms of the
functional integral over 8× 8 supermatrices Qn (r) . For certain problems this
approximation is not sufficient and the natural question is: can we do better
than that and find a solution for the Green functions in terms of a functional
integral over supermatrices valid at all distances including those of the order
of the electron wavelength λF ?
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This attempt has been undertaken recently in Ref. [55], where an integral of
such a type was suggested for a solution of Eq. (111). The idea is rather close
to the one known in field theory where it is called bosonization[56]. The final
expressions obtained in Ref. ([56]) are rather complicated and this method, to
the best of my knowledge, has not evolved into an efficient calculational tool.

However, the supersymmetric form of the Green functions considered here
seems to promise more and the derivation is rather simple. I follow here a
simpler derivation of Ref. [57].

What I want to show now is that the Green function, Eq. (111), can be
represented exactly as an integral over supermatrices Q (r, r′) depending on
two coordinates r and r′

G(r, r′) = Z−1[J ]

∫
Q(r, r′) exp

(
−Φ[Q]

)
DQ (120)

where Z[J ] is a new partition function

Z[J ] =

∫
exp
(
−Φ[Q]

)
DQ (121)

and the functional Φ[Q] has the form

Φ[Q] =
i

2
Str

∫ (
H0r + U (r) +

ω + iδ

2
Λ

)

× δ(r − r′)Q(r, r′)drdr′ (122)

+
1

2
Str lnQ − 1

2
Str

∫
J(r, r′)Q(r′, r)drdr′

where J (r, r′) is a source term. The structure of the supermatrix Q(r, r′) in
the integral Eq.(120) should be the same as that of the Green function G(r, r′),
i.e. be the same as of the product ψ(r)ψ̄(r′). In particular, this means that
Q(r, r′) is self-conjugated

Q̄(r, r′) ≡ C QT (r′, r)CT = Q(r, r′) (123)

In order to prove Eq.(120) we write the following identity

− 2iZ−1[J ]

∫ [∫
δ exp

(
−1

2Str ln Q
)

δQ(r′′, r)
Q(r′′, r′)dr′′

]
×

exp

(
− i

2
Str

[
Ĥ0r +

ω + iδ

2
Λ + iJ

]
Q

)
DQ =

= iδ(r − r′), (124)
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and integrate over Q by parts. The derivative δ/δQ should act now on both Q
and the exponential. At this point, the supersymmetry plays a crucial role. Dif-
ferentiating first thesupermatrix Q we obtain the supermatrix product(δ/δQ)Q.
As the number of the anticommuting variables in the sum over the matrix el-
ements is equal to the number of the boson ones and the derivatives have the
opposite signs, this matrix product vanishes. Differentiating the exponential
only we come to the following equation

Z−1[J ]

∫
dr′′
(

Ĥ0r + U (r)
ω + iδ

2
Λ + iJ

)
(r, r′′)×

∫
Q(r′′, r′) exp

(
−Φ[Q]

)
DQ = iδ(r − r′) (125)

Eq. (125) proves immediately that the integral Eq.(120) does satisfy Eq.(111)
and we have really the alternative representation of the Green function in terms
of an integral over the supermatrices Q.

Making the Fourier transform Q (r′, r′′) in the difference r′−r′′ (Wigner
transformation) one can express the functional Φ [Q] in terms of the variables
Qp (r) , where p is the momentum and r is the center of mass (r′ + r′′) /2.
Then the free energy functional Φ, Eq. (122) can be written as

Φ[Q] =
i

2

∫
Str [HJ(x) ∗ Q(x) − i ln Q(x)] dx (126)

where x = (r,p) is the coordinate in the phase space,

HJ(x) = H0 (p) + U (r) +
ω + iδ

2
+ iJ (p, r) (127)

is classical Hamilton function.
The product ∗ of two matrices A (x) and B (x) is defined by Moyal formula

A(x) ∗ B(x) = A(x)e
i
2

„
←
∇r

→
∇p−

→
∇r

←
∇p

«

B(x).

The scheme of calculations using the Wigner representations and the star prod-
uct “∗” is known as Weyl symbol calculus [58]. This method is convenient for
quasiclassical expansions.

If the potential U (r) is smooth, one can simplify Eq. (126) and come again
to Eq. (117). This procedure is described in Ref. [55]. The functional Φ, Eq.
(126) has a form of the Lagrangian of a non-commutative field theory [58].
The method suggested here can naturally be called “superbosonization”.

At the end I have to warn that Eqs. (120-122, 126) are not complete yet
because nothing has been said about the contour of integration over the super-
matrices Q. This was not very important in Refs. ([55, 57]) where a saddle
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point approximation was used. However, generally, this question requires a
more careful study and this is a subject of a current work. In case if the dif-
ficulties are overcome, the superbosonization can become very useful in the
theory of random matrices for more general models than the one described by
the conventional Eq. (1).

4. Summary

In these lectures I tried to achieve two goals:
1. The random matrix theory is to a large extent a phenomenological theory.

Therefore, it is very important to have examples when it can be obtained start-
ing from a microscopic model. The model of the disordered metals considered
here is the first one for which the relevance of the RMT has been proven. The
proof became possible with the help of the supermatrix non-linear σ-model
first derived for other purposes.

2. Having presented the derivation of the σ-model I demonstrated how
one obtains the Wigner-Dyson statistics from its zero-dimensional version.
However, in many situations the supersymmetry method allows to go beyond
the Wigner-Dyson model and obtain completely different results like the log-
normal distribution of the amplitudes of the wave functions of Section 2. Of
course, as soon as one has a Hamiltonian one comes to random matrices. How-
ever, generally it is not clear how to write the distribution function for these
matrices in each particular situation and the supersymmetry method can play
an important role for investigation of microscopic models.

I wanted by no means to oppose the RMT and the supersymmetry method to
each other. They can be considered as complimentary methods, although with
a considerable overlap. We see at this school that the random matrices find
more and more applications in many fields of physics, which is an exciting
development. I believe, in many cases the supersymmetry technique can also
be useful in these new applications and one should keep in mind a possibility
of using this scheme.

This work was supported by the Transregio 12 "Symmetries and Universal-
ity in Mesoscopic Systems" of German Research Society".
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HYDRODYNAMICS OF CORRELATED SYSTEMS

Emptiness Formation Probability and Random Matrices∗

Alexander G. Abanov
Department of Physics and Astronomy, Stony Brook University,
Stony Brook, NY 11794-3800, U.S.A.
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Abstract A hydrodynamic approach is used to calculate an asymptotics of the Emptiness
Formation Probability – the probability of a formation of an empty space in
the ground state of a quantum one-dimensional many body system. Quantum
hydrodynamics of a system is represented as a Euclidian path integral over con-
figurations of hydrodynamic variables. In the limit of a large size of the empty
space, the probability is dominated by an instanton configuration, and the prob-
lem is reduced to the finding of an instanton solution of classical hydrodynamic
equations. After establishing a general formalism, we carry out this calcula-
tion for several simple systems – free fermions with an arbitrary dispersion and
Calogero-Sutherland model. For these systems we confirm the obtained results
by comparison with exact results known in Random Matrix theory. We argue
that the nonlinear hydrodynamic approach might be useful even in cases where
the linearized hydrodynamics fails.

Keywords: Quantum Hydrodynamics, Random Matrices, Instanton, Rare Fluctuation, Empti-
ness Formation Probability, Calogero-Sutherland Model.

1. Introduction

The hydrodynamic approach to correlation functions in quantum many body
systems has a long history [1, 2]. Generally, hydrodynamic equations are non-
linear and dispersive. However, usually, it is the linearized hydrodynamics
which is used to extract long distance asymptotics of correlation functions [2].
In particular, in one spatial dimension the linearized quantum hydrodynamics
(or bosonization) is especially useful [3]. It was argued that corrections to the
bosonization due to the nonlinearities of the hydrodynamics (curvature of an

∗This is an extended version of the seminar given at the School "Applications of Random Matrices in
Physics", Les Houches, June 2004
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underlying fermionic spectrum) are irrelevant in calculation of leading terms
of correlation functions [4].

Although the linearized hydrodynamics turned out to be a very powerful
tool in studies of correlation functions, there are many phenomena for which
nonlinearities are essential. The goal of this lecture is to consider a particular
example where the linear approximation fails but nonlinear hydrodynamics can
still be used to extract non-perturbative results for correlation functions.

As such an example we consider a particular quantity which plays an impor-
tant role in the theory of quantum, one-dimensional, integrable systems [5] –
the Emptiness Formation Probability (EFP). This correlation function was ar-
gued to be the simplest of correlators in some integrable models [5]. The EFP
P (R) is essentially, a probability of formation of an empty region of a size 2R
in the ground state of the many body system. In integrable models the EFP has
an exact representation in terms of determinants of Fredholm operators [5, 6]
or multiple integrals [7]. These expressions are exact but are very complex,
and extracting, e.g., long distance asymptotics R → ∞ from the exact expres-
sions is a non-trivial problem (see Appendix A and references therein for some
known results). However, the limit of large R is precisely the limit where hy-
drodynamic description is applicable, and we illustrate that it, indeed, correctly
produces the leading term of the asymptotics of the EFP. The hydrodynamic
approach can also be used to calculate more complicated quantities than EFP
(which is, essentially, not a dynamic but a ground state property). Moreover,
the applicability of hydrodynamics is not limited to integrable systems.

We start with some definitions as well as with making a connection to Ran-
dom Matrices.

Emptiness Formation Probability. Consider a one-dimensional quantum
liquid at zero temperature. The wave function of the ground state of the liquid
ΨG(x1, x2, . . . , xN ) gives the probability distribution |ΨG|2 of having all N
particles at given positions xj , where j = 1, . . . , N . We introduce the Empti-
ness Formation Probability (EFP) P (R) as a probability of having no particles
with coordinates −R < xj < R. Formally we define

P (R) =
1

〈ΨG|ΨG〉

∫

|xj |>R
dx1 . . . dxN |ΨG(x1, . . . , xN )|2, (1)

or following Ref.[5]

P (R) = lim
α→+∞ 〈ΨG| e−α

R R
−R ρ(x) dx |ΨG〉 , (2)

where ρ(x) is a particle density operator

ρ(x) ≡
N∑

j=1

δ(x − xj). (3)
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We are interested in an asymptotic behavior of P (R) as ρ0R → ∞, where
ρ0 is the average density of particles in the system. EFP P (R) gives us the
probability that the one-dimensional river parts to make a ford of a macroscopic
size 2R.

Random Matrices. The EFP (1) introduced for a general one-dimensional
quantum liquid is a well-known quantity in the context of spectra of random
matrices [8]. Namely, it is the probability of having no eigenvalues in some
range. Consider e.g., the joint eigenvalue distribution for the Circular Unitary
Ensemble (CUE). The CUE is defined as an ensemble of N × N unitary ma-
trices with the measure given by de Haar measure. Diagonalizing matrices and
integrating out unitary rotations, one obtains [9]

∫
DU →

∫ N∏

j=1

dθj

∏

1≤j<k≤N

∣∣∣eiθj − eiθk

∣∣∣
β

, (4)

where β = 2 for CUE and eiθj with j = 1, . . . , N are the eigenvalues of a
unitary matrix. One can read the joint eigenvalue distribution

PN (θ1, . . . , θN ) = const.
∏

1≤j<k≤N

∣∣∣eiθj − eiθk

∣∣∣
β

(5)

∼ exp

{
β

2
N2

∫
dθ dθ′

(2π)2
ρ(θ) ln |eiθj − eiθk |ρ(θ′)

}
.

Here we replaced the sums over particles (eigenvalues) to integrals with par-
ticle densities. We left only terms which are dominant in the limit of large
N . 1 Now we introduce the probability of having no eigenvalues on the arc
−α < θ < α as

P (α) =
1

N

∫

θj �∈ [−α,α]

N∏

j=1

dθj

∏

1≤j<k≤N

∣∣∣eiθj − eiθk

∣∣∣
β

. (6)

This quantity is known as Eβ(0, α) in notations of [9]. For orthogonal, unitary,
and symplectic circular ensembles the joint eigenvalue distribution is given by
(5) with β = 1, 2, 4 respectively.

Spin chains and lattice fermions. The EFP can also be defined for spin
chains where we are interested in the probability of having a ferromagnetic
string of the length n in the ground state of the spin chain. The Jordan-Wigner
transformation maps spin 1/2 chain to a one-dimensional lattice gas of spinless
fermions. Under this mapping the ferromagnetic string corresponds to a string
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of empty lattice sites and one can write

P (R) =

〈
R∏

j=−R

ψjψ
†
j

〉
, (7)

where ψj , ψ
†
j are annihilation and creation operators of spinless fermions on

the lattice site j. Therefore, the probability of the formation of a ferromag-
netic string in spin chains corresponds to the Emptiness Formation Probability
of Jordan-Wigner fermions. We are going to use a language of particles in
this paper but all results are also valid for corresponding one-dimensional spin
systems.

2.

In the limit of large R (ρ0R � 1) we use a collective description instead
of dealing with individual particles. We assume that u is some collective field
describing the hydrodynamic motion of a one-dimensional liquid. 2 The dy-
namics of the liquid is defined by a Euclidian partition function

Z =

∫
Du e−S[u], (8)

where S[u] is the Euclidian action

S[u] =

∫
dx

∫ 1/2T

−1/2T
dτ L(u, u̇) (9)

and the inverse temperature 1/T defines periodic boundary conditions in the
imaginary time τ .

The asymptotic behavior of P (R) in the limit of large R is defined by a rare
fluctuation when all particles move away so that at some time t = 0 we have
no particles in the spatial interval [−R,R]. Then with an exponential accuracy

P (R) ∼ e−Sopt . (10)

Here Sopt is the value of the action (9) on the trajectory u(x, t) which min-
imizes (9) and is subject to EFP boundary conditions. These are: the EFP
boundary condition

ρ(t = 0;−R < x < R) = 0, (11)

and standard boundary conditions at infinity

ρ → ρ0, x, τ → ∞,

v → 0, x, τ → ∞, (12)
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where ρ, v are the density and velocity of particles related somehow to the
collective field u.

Let us estimate the probability of such rare fluctuation3. Without the bound-
ary condition (11) the minimum of the action subject to (12) is obviously given
by the constant solution ρ(x, t) = ρ0, v(x, t) = 0. The condition (11), how-
ever, disturbs this constant solution in some area of space-time around the ori-
gin. The spatial extent of this disturbance is of the order of R. If we assume that
the quantum system we are dealing with is some compressible liquid we expect
that the typical temporal scale of the disturbance is of the order of R/vs, where
vs is a sound velocity at ρ = ρ0. We conclude that the (space-time) “area” of
the disturbance scales as R2 and the action Sopt ∼ R2. Therefore, we expect a
Gaussian decay for (10)

P (R) ∼ e−αR2
, (13)

where α is some (non-universal) constant depending on the details of (9).
This argument can be extended for the case of low but finite temperature.

Namely, while the temporal extent of the instanton R/vs is smaller than the
inverse temperature R/vs � 1/T instanton “does not know” that the temper-
ature is not zero and one obtains an intermediate Gaussian decay of EFP (13).
However, for long enough R it is the 1/T scale that defines the temporal size
of the instanton, the space-time area of the disturbance scales as R and one
obtains

P (R) ∼ e−γR. (14)

One expects a crossover between the Gaussian and the exponential behavior
taking place at R ∼ vs/T . The result (14) is very familiar from statistical
physics with γ measuring the difference (per unit length) of free energies be-
tween the true ground state of the liquid and the empty state. The Gaussian
decay (13) is a manifestation of an effective increase of the dimensionality
from one to two in quantum systems at T = 0.

In the above argument we used the assumption of compressibility of the
quantum liquid. For incompressible liquids one has a finite correlation length
of density fluctuations. The argument can be extended then to obtain an ex-
ponential form (14) with the correlation length playing the role of an inverse
temperature [11, 12].

3. Hydrodynamic approach

The collective description we are looking for is nothing else but a hydrody-
namic description in terms of density ρ and current j = ρv (or velocity v) of a
one-dimensional liquid. For simplicity, let us consider first the case of a system
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with Galilean invariance. Then we write the Euclidian action of a liquid as

S =

∫
d2x

[
j2

2ρ
+ ρε(ρ) + . . .

]
, (15)

where the first term is fixed by the Galilean invariance and is the kinetic energy
of the liquid moving as a whole. The second term is the internal energy of the
fluid which is determined by the equation of state of the liquid. ε(ρ) is the
internal energy per particle at given density ρ. The terms denoted by dots are
the terms which depend on density and its spatial derivatives. These terms
will be small in the problems, where density and velocity gradients are small
compared to ρ0. Let us now remember that due to the particle conservation the
density and current are not independent variables but are related by a constraint
– the continuity equation

∂tρ + ∂xj = 0. (16)

One can easily solve the constraint (16) introducing a particle displacement
field u such that

ρ = ρ0 + ∂xu,

j = −∂tu. (17)

Microscopic definition of the displacement field is u(x)+ρ0x =
∑

j θ(x−xj),
where θ(x) is a step function and xj-s are coordinates of particles. It is easy
to check that the configuration u(x, t) minimizing S[u] from (15) is given by
δS = 0 or after simple algebra

∂tv + v∂xv = ∂x∂ρ[ρε(ρ)], (18)

which is the Euler equation of a one-dimensional hydrodynamics. The sign of
the r.h.s. of (18) differs from the conventional minus sign because we work in
the Euclidian formulation.

The action (15) with the parameterization (17) provide us with a varia-
tional formulation of one-dimensional classical hydrodynamics. To calculate
the probability of hydrodynamic fluctuations at zero temperature we have to
quantize this hydrodynamics. To the best of my knowledge, the first “quan-
tization” of hydrodynamics was done by L. D. Landau in Ref.[1], where he
used essentially (15) as a quantum Hamiltonian of the liquid with density and
velocity fields satisfying commutation relations [ρ(x), v(y)] = −i∂xδ(x − y).
For the purpose of evaluating a rare fluctuation the path integral approach is
more useful and we use the partition function (7), where u(x, t) is the dis-
placement field and the action S[u] is given by (15) and (17). We notice here
that we did not specify the measure of integration Du in (7). Finding this mea-
sure requires a derivation of an effective hydrodynamic formulation from the
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underlying microscopic physics. However, the “non-flatness” of the measure
gives only gradient corrections similar to the already omitted terms denoted
by dots in (15). Those corrections to the measure and the action will produce
subdominant contributions to the asymptotics of EFP and will be neglected in
this work.

Let us now summarize our strategy for the calculation of the leading term
of the EFP. We solve classical equations of motion (16,18) with EFP boundary
conditions (11,12) and then find the value Sopt of (15) on the obtained solution.
Finally, (10) will give us the dominant contribution to the EFP at R → ∞.

We conclude this section with two remarks. First, it will be convenient
for us to generalize the problem and replace the EFP boundary condition (11)
by a slightly more general depletion formation probability (DFP) boundary
condition [10]

ρ(t = 0;−R < x < R) = ρ̄, (19)

where ρ̄ is some constant density. In the case ρ̄ = 0 we obtain the EFP problem
while for ρ̄ close to ρ0 one can use the bosonization technique to calculate
P (R; ρ̄).

Second remark is that one can easily obtain the functional dependence of
P (R) even without solving hydrodynamic equations (16,18) using very simple
scaling arguments. Indeed, the equations (16,18) are uniform in space and time
derivatives so that if ρ(x, t) and v(x, t) are solutions, then ρ(λx, λt), v(λx, λt)
are also solutions of hydrodynamic equations. Choosing λ = R we obtain
the boundary condition (19) as ρ(t = 0;−1 < x < 1) = ρ̄ and the only
dependence on R is left over in the integration measure of (15), which gives
Sopt ∼ R2. Thus, we obtain a Gaussian decay of DFP (or EFP in particular)
as a function of R. Corrections to this behavior come from the terms of higher
order in gradients in the hydrodynamic action (denoted by dots in (15)) as
well as from fluctuations around the saddle point (classical) trajectory in the
partition function (7).

4. Linearized hydrodynamics or bosonization

Before proceeding to the general case, let us consider the DFP for

ρ0 − ρ̄

ρ0
� 1, (20)

i.e., the probability of formation of a small constant density depletion along
the long string −R < x < R. In this case the deviation of the density from ρ0

is small almost everywhere (see below) and one can use a linearized version of
generally nonlinear hydrodynamic equations (16,18). Expanding the classical
action (15) in gradients of the displacement field u (17) we obtain in harmonic
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approximation4

Sbos =
vs0

ρ0

∫
d2x

1

2
(∂µu)2, (21)

where we scaled vs0t → t. The sound velocity vs0 at ρ = ρ0 is defined as

v2
s0 = ρ∂2

ρ(ρε(ρ))
∣∣∣
ρ=ρ0

. (22)

The corresponding equation of motion is the Laplace equation

∆u = 0 (23)

with the DFP boundary condition

u(x, t = 0) = −(ρ0 − ρ̄)x, for − R < x < R. (24)

It is easy to see that the solution of (23,24) decaying sufficiently fast at
infinity is given by

u(x, t) = −(ρ0 − ρ̄)R

(
z0 −

√
z2
0 − R2

)
, (25)

where we introduced the complex notation z0 = x+ ivs0t (where t is the orig-
inal imaginary time). Indeed, at t = 0, −R < x < R the complex coordinate
z0 is real and square root in (25) is purely imaginary so that (24) is satisfied.

At space-time infinity z0 → ∞ we have

u(x, t) ≈ − α

z0
− ᾱ

z̄0
(26)

with

α = ᾱ =
1

4
(ρ0 − ρ̄)R2. (27)

We obtain from (26) that at z0 → ∞

ρ ≈ ρ0 +
α

z2
0

+
ᾱ

z̄2
0

,

v ≈ −i
vs0

ρ0

(
α

z2
0

− ᾱ

z̄2
0

)
, (28)

which obviously satisfy the boundary conditions at infinity (12).
Now that we obtained the solution of hydrodynamic equations it is a straight-

forward problem to calculate the value of the action (21) on this solution5 and
obtain

SDFP =
1

2

vs0

πρ0
[π(ρ0 − ρ̄)R]2 . (29)
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tent near the ends of the string t= 0,x=±R where the solution (25) is singular
and gradients of u diverge. However, one can estimate the corrections coming
from those areas and find that they change the coefficient [π(ρ0 − ρ̄)] in front
of the R2 in (29) by terms of the higher order in small parameter (20) [10].

We also note here that although the value of the coefficient α given by (27) is
approximate and is valid only in the limit of a very weak depletion, the asymp-
totic forms (26,28) are very general as they depend only on the linearization of
hydrodynamic equations at x, t → ∞, where it is always possible.

5. EFP through an asymptotics of the solution

The calculation of the EFP has already been reduced to the calculation of the
value of the classical action on the solution of equations of motion satisfying
EFP boundary conditions. In this section we are going use a Maupertui prin-
ciple [13] to obtain a simple expression for Sopt in terms of the asymptotics of
the EFP solution of hydrodynamic equations.

Let us calculate the variation of the action (15) with respect to the displace-
ment field u

δS =

∫
d2x
{
− ∂t(vδu) − ∂x

[(
v2

2
− ∂ρ(ερ)

)
δu

]

+ δu [∂tv + v∂xv − ∂x∂ρ(ερ)]
}

. (30)

We kept here surface terms (full derivatives) in addition to the last term which
produces the equation of motion (18). Now we assume that the action S is
calculated on the EFP (or DFP) solution of equations of motion and consider
the derivative of this action with respect to the equilibrium background density
ρ0. We have

∂ρ0Sopt =

∫
d2x

{
−∂t(v∂ρ0u) − ∂x

[(
v2

2
− ∂ρ(ερ)

)
∂ρ0u

]}
, (31)

where we used the fact that u satisfies the Euler equation and dropped the last
term in (30). (31) has only derivative terms and can be re-written as a boundary
contribution

∂ρ0Sopt =

∮ [
v∂ρ0udx +

(
∂ρ(ερ) − v2

2

)
∂ρ0udt

]
, (32)

where the integral is taken over the infinitely large contour around xt plane.
As the integrand in (32) should be calculated at (infinitely) large x and t we
can use in (32) the general asymptotics (26,28). After simple manipulations
we obtain our main result

∂ρ0Sopt = 2π
vs0

ρ0
(α + ᾱ). (33)

Hydrodynamics of Correlated Systems

We note that the linearization of hydrodynamic action (21) is not self-consis-
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As a simple check of this result we take the value of α obtained in bosoniza-
tion approach (27) and substitute it into (33). We immediately obtain ∂ρ0Sopt =
π vs0

ρ0
(ρ0 − ρ̄)R2, which is equivalent to (29) up to the terms of higher order in

the small parameter (20).

6. Free fermions

In this section we find the EFP for a free Fermi gas in one dimension. First,
let us find the internal energy ε(ρ) of the gas. The density of fermions is given
in terms of Fermi momentum kF as

ρ =

∫ kF

−kF

dk

2π
=

kF

π
. (34)

The energy per unit length is

ρε(ρ) =

∫ kF

−kF

k2

2

dk

2π
=

k3
F

6π
=

π2

6
ρ3 (35)

where we put � = 1 and fermion mass m = 1. The energy per particle in a
free Fermi gas with density ρ is

ε(ρ) =
π2

6
ρ2. (36)

We calculate the sound velocity using

v2
s = ρ∂2

ρ(ρε) (37)

and obtain
vs = πρ = kF (38)

– the well known result that the sound velocity and Fermi velocity are the same
(remember that in our notations m = 1 and vF = kF ).

Hydrodynamic equations (16) and (18) for free fermions are

∂tρ + ∂x(ρv) = 0,

∂tv + v∂xv = π2ρ∂xρ. (39)

Introducing a complex field

w = πρ + iv, (40)

we re-write both equations (39) as a single complex Hopf equation6

∂tw − iw∂xw = 0. (41)
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The latter equation has a general solution

w = F (z), (42)

where F (z) is an arbitrary analytic function of a complex variable z defined as

z = x + iwt. (43)

The boundary conditions will determine a particular analytic function F (z) so
that the equations (42,43) will define the solution w(x, t) of (41) implicitly. It
is easy to check that the unknown function F (z) for DFP is given by

F (z) = πρ̄ + π(ρ0 − ρ̄)
z√

z2 − R2
(44)

and the one for EFP can be obtained by putting ρ̄ = 0 in (44). The space-time
configuration of the density and velocity fields minimizing the hydrodynamic
action is given by real and imaginary parts of w(x, t) (see Eq. (40)) which is
implicitly defined by

w − πρ̄ = +π(ρ0 − ρ̄)
z√

z2 − R2
(45)

with (43). This solution is relatively complicated (see Figs. 1, 2) and a direct
calculation of the value of the hydrodynamic action (15) on this solution is
cumbersome. However, one can get the result very quickly using (33). Indeed,
in the limit x, t → ∞ we have w → πρ0 and z = x + iwt → x + iπρ0t = z0.
Therefore, the asymptotics of (45) is given by

w − πρ0 ≈ π(ρ0 − ρ̄)
R2

2z2
0

(46)

and taking, e.g., its real part

ρ − ρ0 ≈ 1

4
(ρ0 − ρ̄)R2

(
1

z2
0

+
1

z̄2
0

)
. (47)

Comparing (47) with (28) we extract

α =
1

4
(ρ0 − ρ̄)R2 (48)

and substituting into (33) we derive ∂ρ0Sopt = π2(ρ0 − ρ̄)R2 and

Sopt =
1

2
[π(ρ0 − ρ̄)R]2 . (49)
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Figure 1. The density profile ρ(x, t) is shown for the EFP instanton. The density diverges at
points (x, t) = (±R, 0). The shape of the “Emptiness” is shown in Fig.2.

This gives for DFP and EFP probabilities respectively

PDFP (R) ∼ exp

{
−1

2
[π(ρ0 − ρ̄)R]2

}
, (50)

PEFP (R) ∼ exp

{
−1

2
(πρ0R)2

}
. (51)

In the case of free fermions an exact asymptotic expansion of EFP in 1/R is
known [8] with first few terms given by (B.2). The instanton contribution (51)
gives an exact first (Gaussian) term of this expansion.

7. Calogero-Sutherland model

Our next example of a one-dimensional liquid is the Calogero-Sutherland
model – a model of one-dimensional particles interacting with an inverse square
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Figure 2. The region of the x − t plane in which ρ(x, t) = 0 for the EFP instanton for free
fermions is shown. The boundary of the region is given by an astroid x2/3+(πρ0t)

2/3 = R2/3.

potential. The Hamiltonian of the model is

H = −1

2

N∑

j=1

∂2

∂x2
j

+
1

2

∑

1≤j<k≤N

λ(λ − 1)

(xj − xk)2
(52)

= −1

2

N∑

i=1



 ∂

∂xi
+

N∑

j=1,j �=i

λ

xi − xj







 ∂

∂xi
−

N∑

k=1,k �=i

λ

xi − xk



 .

Here we again use the units � = 1 and m = 1. This model is known to be
integrable [14, 15]. We are interested in the thermodynamic limit of (52). The
easiest way to go to this limit is to consider (52) in an additional harmonic
potential which does not destroy the integrability of the model and then take a
limit of number of particles N → ∞ and the strength of the potential going to
zero so that the density is kept constant and equal ρ0. We omit all these details
which can be found in the original papers [14, 15]. We mention only that the
ground state wave function of (52) is

ΨGS =
∏

j<k

(xj − xk)
λ (53)

andshowsanintermediate statistics interpolatingbetweennon-interactingbosons
(λ = 0) and non-interacting fermions (λ = 1). We also notice here that the
probability distribution of particle coordinates

|ΨGS|2 =
∏

j<k

|xj − xk|2λ (54)
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at particular values of coupling constant λ = 1/2, 1, 2 coincides with the joint
probability of eigenvalues for the orthogonal, unitary, and symplectic random
matrix ensembles respectively (see Eq. (5)).

To calculate the leading behavior of the EFP for the Calogero-Sutherland
model we need the internal energy ε(ρ) which can be easily found [15]

ε(ρ) =
π2

6
λ2ρ2. (55)

The (55) differs from the free fermion case (36) by a factor of λ2 and coincides
with the latter (as expected) at λ = 1. Introducing

w = λπρ + iv (56)

and repeating the calculations of the previous section we obtain

PDFP (R) ∼ exp

{
−1

2
λ [π(ρ0 − ρ̄)R]2

}
, (57)

PEFP (R) ∼ exp

{
−1

2
λ (πρ0R)2

}
. (58)

Comparing to the known exact result (B.4) we see that (58), indeed, gives
the exact leading asymptotics of the EFP for the Calogero-Sutherland model.
Subleading (in 1/R) corrections to (58) are due to gradient corrections to the
hydrodynamic action (55) and to quantum fluctuations around the found in-
stanton.

8. Free fermions on the lattice

The goal of this section is to illustrate that the hydrodynamic method we
used is not limited to Galilean invariant systems. We use the method to calcu-
late the EFP for a system of non-interacting lattice fermions with an arbitrary
dispersion ε(k). Semiclassically, one can describe the evolution of the degen-
erate 1D Fermi gas in terms of two smooth and slow functions kR,L(x, t) –
right and left Fermi points respectively. The equations of motion are given by

∂tkR,L + ε′(kR,L)∂xkR,L = 0, (59)

which is an obvious consequence of the absence of interactions. Indeed, the
derivative ε′(kR,L) is the right (or left) Fermi velocity of particles, and (59) is
nothing else but the statement that the momentum of a particle does not change
in time. The classical action of 1D Fermi gas should reproduce (59) as well as
give the correct energy of the system E =

∫
dx
∫ kR(x)
kL(x)

dk
2π ε(k).
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We assume here that the dispersion of fermions is parity invariant ε(k) =
ε(−k) and consider the following Euclidian action

S =

∫
d2x

{
i

4π

[
w∂−1

x ∂tw − w̄∂−1
x ∂tw̄

]
+

∫ w

−w̄

dk

2π
ε(k)

}
. (60)

Here ε(k) is the dispersion (including chemical potential) of free fermions
and w, w̄ are independent variables which are Euclidian versions of kR, −kL.
We identify the density of particles as ρ = w+w̄

2π . The equations of motion
corresponding to (60)

i∂tw + ∂xε(w) = 0,

−i∂tw̄ + ∂xε(w̄) = 0 (61)

are, indeed, the Euclidian versions of (59). Equations (61) are complex conju-
gates of each other (ε(w) = ε(w̄) as ε(k) is a real function). The difference of
these two equations give the continuity equation (16) with the current j = ε−ε̄

2πi .
The path integral with the action (60) is the integral over two fields w, w̄. We
integrate out their difference w − w̄ in a saddle point approximation. Namely,
we re-write (60) in terms of combinations w − w̄ and w + w̄. Then, we take
a variation of the action with respect to w − w̄. This produces the continuity
equation relating w and w̄. We solve the continuity equation introducing the
displacement field. Thus, we have w and w̄ in terms of u as the saddle point
trajectory. Namely,

ρ =
w + w̄

2π
= ρ0 + ∂xu,

j =
ε − ε̄

2πi
= −∂tu. (62)

We substitute these expressions back into (60) and obtain

S[u] =

∫
d2x

{
− 1

4π
(w − w̄) [ε(w) − ε(−w̄)] +

∫ w

−w̄

dk

2π
ε(k)

}
. (63)

We assume now that the integration variable of the path integral is the displace-
ment field u. The fields w, w̄ in (63) are not independent but are related to u
by (62). Deriving (63) we neglected the fluctuations around the saddle point
as well as the changes in the measure of path integration. The corrections due
to the neglected terms will be of the higher order in field gradients and are not
essential for our calculation of the leading term of the EFP.

One can now use (63) in the path integral formulation of the quantum hy-
drodynamics (7) where the integration is taken over all configurations of
the displacement field u. We note here that in the Galilean invariant systems the
“kinetic term” of the hydrodynamic action (15) is fixed. The Lagrangian of the
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action (63) is a more complicated function of ∂tu. In this case we derived it
using the fact that fermions are free. In a more general problem of interacting
particles the derivation of the hydrodynamic action requires the solution of the
dynamic many body problem.

The Lagrangian of (63) is given by

L = − 1

4π
(w − w̄) [ε(w) − ε(−w̄)] +

∫ w

−w̄

dk

2π
ε(k). (64)

Now, we calculate the EFP for lattice fermions using the the Lagrangian (64)
with the Eq. (62), and the results of Appendix A. First, we calculate

dL =
ε + ε̄

2
dρ +

w − w̄

2i
dj (65)

and

Lj = v =
w − w̄

2i
, (66)

Lρ =
ε + ε̄

2
, (67)

Ljj =
2π

ε′ + ε̄′
, (68)

Lρj = − 2π

ε′ + ε̄′
ε′ − ε̄′

2i
, (69)

Lρρ =
2π

ε′ + ε̄′
|ε′|2, (70)

where ε′ =
∣∣ ∂ε
∂k

∣∣
k=w

and ε̄′ =
∣∣ ∂ε
∂k

∣∣
k=w̄

. In terms of the density and velocity

w = πρ + iv. (71)

We emphasize that because of the absence of the Galilean invariance (the dis-
persion is not k2/2m), the current is not ρv but can be found from (62,66).

We obtain then an interesting relation

κ ≡
√

LρρLjj − L2
ρj = π. (72)

This relation can be considered as a special property of free fermions (with
arbitrary dispersion!). Namely, one can trace the origin of (72) to the fact that
each fermion occupies a fixed volume in the phase space. 7

Let us now apply Riemann’s trick to equations (61). Namely, we inter-
change independent and dependent variables so that x = x(w, w̄) and t =
t(w, w̄). Then using (72, 66-70) we re-write (61) as

∂w(x − iε̄′t) = 0 (73)
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and its complex conjugate. The most general solution of (73) is given implic-
itly by

w = F (z), (74)

where F (z) is an arbitrary analytic function and

z = x + iε′(w)t. (75)

The equations (73, 75) reduce to equations for free continuous fermions if
ε(k) = k2/2.

Similarly to free continuous fermions, the EFP boundary conditions specify
the form of the function F (z) in (74). We define

w̃ =
w − πρ̄

2(1 − ρ̄)
, (76)

θ̃ =
π(ρ0 − ρ̄)

2(1 − ρ̄)
, (77)

where we assume lattice spacing to be 1 so that the maximal density of fermions
on the lattice is 1. Then the EFP solution is given by F (w) such that

sin w̃ = sin θ̃
z√

z2 − R2
. (78)

We immediately find at large distances (z → z0 = x + iε′0t → ∞)

w − πρ0 ≈ 2(1 − ρ̄)
R2

2z2
0

tan θ̃ (79)

and using (28) and (71) we extract

α =
1

2π
(1 − ρ̄)R2 tan θ̃. (80)

We substitute this expression in (A.7) and obtain

∂ρ0S = 2π(1 − ρ̄)R2 tan
π(ρ0 − ρ̄)

2(1 − ρ̄)
, (81)

so that

SDFP = −4(1 − ρ̄)2R2 ln cos
π(ρ0 − ρ̄)

2(1 − ρ̄)
. (82)

In particular for ρ̄ = 0 we obtain for the Emptiness Formation Probability

SEFP = −4R2 ln cos
πρ0

2
= −4R2 ln cos

kF

2
. (83)

This result is the exact first term in 1/R expansion (B.10). The next term is
1
4 ln R. It is interesting to note that as it should be, in the limit ρ0 − ρ̄ �
ρ0 the result (82) reproduces the bosonization result (29). Also, in the limit
ρ0, ρ̄ � 1 the results (82,83) reproduce the corresponding results (50,51) for
free continuous fermions.
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9. Conclusion

We showed on the example of the Emptiness Formation Probability that one
can obtain some exact results for correlation functions using a collective hy-
drodynamic description. Moreover, the nonlinear hydrodynamic description
might work and produce non-perturbative results even in cases where the lin-
earized hydrodynamics fails. We obtained the leading term of the asymptotics
of the EFP using the instanton approach. Although the EFP is a property of
the ground state of a quantum many body system, the hydrodynamic approach
can also be used to study dynamics of quantum systems. It is also not limited
to integrable systems.

We considered few simple systems which are in the Luttinger liquid phase
at zero temperature. The effects of finite temperature and finite gap in the spec-
trum of excitations can also be considered using the hydrodynamic approach
in the limit when temperature is very low and the gap is very small [10, 12]. In
these limits one obtains a crossover between the Gaussian decay of the EFP at
intermediate R to the exponential decay at very large R.

There are also many questions which are left open. First, it would be nice to
obtain the results for the EFP in other integrable systems such as bosons with
delta-repulsion and XXZ spin chains. Some results for the EFP have already
been obtained using other methods (see Appendix B), while, e.g., the EFP for
a XXZ spin chain in the presence of magnetic field is still not known. The
application of the hydrodynamic approach developed here to these systems is
straightforward and reduces the problem to the problem of finding asymptotics
of the solution of a system of classical equations with proper boundary condi-
tions. However, these classical equations are complicated and we haven’t yet
obtained analytical results for their asymptotics.

The second open question involves the corrections to the leading hydrody-
namic approximation that we used in this lecture. There are two sources of
such corrections: the gradient corrections to the “classical” hydrodynamic ac-
tion and quantum fluctuations around the classical saddle point. E.g., if one is
interested in the next to leading terms of the asymptotic expansion of the EFP
in 1/R one needs to include these gradient corrections (which make hydro-
dynamics dispersive) and quantum fluctuations. Especially interesting would
be to obtain the power law pre-factor of the EFP (or ln R term in the asymp-
totic expansion). The hydrodynamic calculation might shed some light on a
possible universality of the exponent of this pre-factor.

Needless to say, that although we focused in this lecture on the particu-
lar correlation function (the EFP), the use of hydrodynamic approach is much
broader. In particular, the nonlinear hydrodynamics is important to capture a
lot of important nonlinear phenomena which disappear in the linear approxi-
mation.
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Appendix: Hydrodynamic approach to non-Galilean invariant
systems

The hydrodynamic description of Sec. 3 and the approach of Sec. 5 can be easily general-
ized to non-Galilean invariant systems. We briefly list here relevant formulas leaving the details
of (straightforward) calculations to the interested reader. We assume that a one-dimensional
compressible liquid can be described by the partition function (7) where the functional integra-
tion is taken over all configurations of the displacement field u which defines the hydrodynamic
density and current by (17) and where the Euclidian action (9) can be written as

S =

Z
d2x L(ρ, j). (A.1)

The Lagrangian density L(ρ, j) is a function of ρ and j. As in the main text we neglect the
gradient corrections to the action (A.1). In the case of non-Galilean invariant systems these
gradient corrections will depend on gradients of current in addition to gradients of density.
The case of Galilean invariant systems considered in the main text (15) can be obtained from
the general one assuming the particular Galilean invariant form of the Lagrangian L(ρ, j) =
j2/2ρ + ρε(ρ).

Variation of (A.1) with respect to u gives a generalized Euler equation which together with
the continuity equation reads

∂tρ + ∂xj = 0, (A.2)

∂tLj − ∂xLρ = 0, (A.3)

where Lj means ∂L/∂j etc.
If the deviation from the ground state is small, we can expand the action (A.1) around ρ =

ρ0, j = 0. We assume that L
(0)
ρj = 0, where superscript (0) means that the derivative is

calculated at the equilibrium values ρ = ρ0 and j = 0. We obtain for the action in harmonic
approximation

S =

Z
d2x

h
L

(0)
jj u2

t + L(0)
ρρ u2

x

i
. (A.4)

We introduce a complex space-time coordinate

z0 = x + ivs0t, (A.5)

where

vs0 =

vuutL
(0)
ρρ

L
(0)
jj

(A.6)

Hydrodynamics of Correlated Systems 157

Acknowledgements



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

is the sound velocity at equilibrium. Let us define the coefficient α through the asymptotics of
an EFP solution at z0 → ∞ by (26). The asymptotics of the current and density are given by
(28).

Our main formula (33) for the variation of the EFP instanton action with respect to the
background density becomes

∂ρ0
S = 2πκ0 (α + ᾱ), (A.7)

where κ0 is given by

κ0 =

q
L

(0)
ρρ L

(0)
jj . (A.8)

The coefficient κ0 is related to the compactification radius Rcomp of bosons in the bosonization
procedure κ0 = (2πRcomp)2. For free fermions κ0 = π which corresponds to Rcomp =
1/

√
4π.

Appendix: Exact results for EFP in some integrable models
For the sake of reader’s convenience in this appendix we list some results obtained for the

Emptiness Formation Probability P (R) in integrable one-dimensional systems. We present the
results for S ≡ − ln P (R) which should be compared with the instanton action Sopt used in
the main text.

Free continuous fermions Let us denote

s ≡ πρ0R. (B.1)

We use the fact that the ground state wave function (more precisely |Ψ|2) of free fermions
coincides with the joint eigenvalue distribution of unitary random ensemble. For the latter the
probability of having no eigenvalues in the range 2R of the spectrum was obtained in [8] (see
also [9]). First few terms of the expansion in 1/R are

S =
1

2
s2 +

1

4
ln s −

„
1

12
ln 2 + 3ζ′(−1)

«
+ O(s−2). (B.2)

Calogero-Sutherland model The Calogero-Sutherland model [14, 15] (rational ver-
sion, known also as Calogero model) with N -particles is defined as8

H =
1

2

NX
j=1

p2
j +

1

2

NX
j,k=1;j �=k

λ(λ − 1)

(xj − xk)2
, (B.3)

where pj = −i∂/∂xj is the momentum operator of j-th particle and λ is a dimensionless
coupling constant. The wave function of the ground state is proportional to

Q
j<k(xj−xk)λ. At

λ = 1 we have free fermions, while in the case of general λ the model (B.3) describes particles
with fractional statistics. Using the form of the ground state wave function and thermodynamic
arguments [9] one obtains

S =
λ

2
s2 + (1 − λ)s + O(ln s). (B.4)

or defining
s ≡

√
λπρ0R. (B.5)

and

α0 ≡ λ1/2 − λ−1/2

2
(B.6)
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we have

S =
1

2
s2 − 2α0s + O(ln s). (B.7)

The notation α0 originates from the conformal field theory with central charge c = 1 − 24α2
0

which is known to be related to the Calogero-Sutherland model [16]. As far as I know the
coefficient in front of ln s term of the expansion is not known for the general λ. However,
λ = 1/2, 1, 2 correspond to random matrix ensembles where the full asymptotic expansion is
known (see below). In those cases the coefficient of ln s is 1/8, 1/4, 1/8 respectively. The
natural guess is that

S =
1

2
s2 − 2α0s +

„
1

4
− α2

0

«
ln s + O(1). (B.8)

Random matrices For Random Matrix ensembles with β = 1, 2, 4 the joint eigenvalue
distribution is proportional to

Q
i<j |zi − zj |β . The full asymptotic expansion of the quantity

Eβ(0, 2R) corresponding to the EFP P (R) was obtained using properties of Toeplitz determi-
nants [8, 9]. The first few terms of these expansions are given by

Sλ=1/2 =
1

4
(πρ0R)2 +

1

2
(πρ0R) +

1

8
ln(πρ0R) − 7

24
ln 2 − 3

2
ζ′(−1) + O(1/s),

Sλ=1 =
1

2
(πρ0R)2 +

1

4
ln(πρ0R) − 1

12
ln 2 − 3ζ′(−1) + O(1/s2), (B.9)

Sλ=2 = (πρ0R)2 − (πρ0R) +
1

8
ln(πρ0R) +

4

3
ln 2 − 3

2
ζ′(−1) + O(1/s).

Here we used λ = β/2 = 1/2, 1, 2 instead of β. Using notations (B.5,B.6) we can summarize
the first three terms of (B.9) in a compact form (B.8).

Free fermions on the lattice For non-interacting one-dimensional fermions on the lat-
tice (and the corresponding XY spin chain) the asymptotic behavior of EFP was derived in [17]
using the Widom’s theorem on the asymptotic behavior of Toeplitz determinants. Introducing
the Fermi momentum kF = πρ0 and using units in which the lattice spacing is 1 we have

S = −4R2 ln cos
kF

2
+

1

4
ln

»
2R sin

kF

2

–
−

„
1

12
ln 2 + 3ζ′(−1)

«
+ O(R−2). (B.10)

In the continuous limit kF → 0 the (B.10) goes to its continuous version (B.2).

Bosons with delta repulsion The model of bosons with short range repulsion is de-
scribed by

H =
1

2

NX
j=1

p2
j + g

X
1≤j<k≤N

δ(xj − xk), (B.11)

where g is a coupling constant. It is integrable by Bethe Ansatz [18]. It was derived (conjec-
tured) in Ref. [19] that the leading term of the EFP is

S =
1

2
(KR)2 [1 + I(g/K)] , (B.12)

where K is the Fermi momentum in the Lieb-Liniger solution [18] and

I(x) =
1

2π2

Z 1

−1

y dyp
1 − y2

Z 1

−1

z dz√
1 − z2

log

„
x2 + (y + z)2

x2 + (y − z)2

«
. (B.13)

The limit I(x → ∞) = 0 corresponds to the free fermion result (B.2) (Tonks-Girardeau gas),
while the limit I(x → 0) = 1 is the result for the EFP of free bosons.
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XXZ model The Hamiltonian of an XXZ model is given by

H = J
X

k

ˆ
σx

kσx
k+1 + σy

kσy
k+1 + ∆σz

kσz
k+1

˜
,

where the sum is taken over the sites of a one-dimensional lattice and σx,y,z are Pauli matrices.
Let us parametrize the anisotropy as ∆ = cos πν. Then for the EFP we have [20, 21]

P (n) ∼ An−γC−n2

, (B.14)

as n = 2R → ∞, where

C =
Γ2(1/4)

π
√

2π
exp


−

Z ∞

0

dt

t

sinh2(tν)e−t

cosh(2tν) sinh(t)

ff
(B.15)

and the exponent γ was conjectured in [21] to be

γ =
1

12
+

ν2

3(1 − ν)
. (B.16)

Notes
1. In fact, one can do a better job including subdominant corrections. See Ref.[9] for details.

2. Later we will use the conventional displacement field as u. See Eq. (17).

3. In this section we follow closely the qualitative argument of Ref.[10]

4. The harmonic approximation to the nonlinear hydrodynamics of quantum liquid is equivalent to a
linear bosonization approach to interacting one-dimensional particles.

5. See the next section on how to avoid doing this calculation.

6. In real time formalism, instead of w, w̄ one introduces “right and left Fermi momenta” kR,L =
πρ ± v which satisfy the Euler-Hopf equations ∂tk + k∂xk = 0 reflecting the absence of interactions
between fermions.

7. For Calogero-Sutherland model (55) we have κ = πλ. It means that the volume of the phase space
per particle is changed by the factor of λ which reflects the fractional statistics of particles.

8. To prevent particles running to infinity we either add a harmonic potential to (B.3) or put particles
on a circle of a large radius.
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1. Summary

Random Matrix Theory has been a unifying approach in physics and math-
ematics. In these lectures we discuss applications of Random Matrix Theory
to QCD and emphasize underlying integrable structures. In the first lecture we
give an overview of QCD, its low-energy limit and the microscopic limit of the
Dirac spectrum which, as we will see in the second lecture, can be described
by chiral Random Matrix Theory. The main topic of the third lecture is the
recent developments on the relation between the QCD partition function and
integrable hierarchies (in our case the Toda lattice hierarchy). This is an effi-
cient way to obtain the QCD Dirac spectrum from the low energy limit of the
QCD partition function. Finally, we will discuss the QCD Dirac spectrum at
nonzero chemical potential. We will show that the microscopic spectral den-
sity is given by of the replica limit of the Toda lattice equation. Recent results
by Osborn on the Dirac spectrum of full QCD will be discussed.

2. Introduction

Applications of Random Matrix Theories to problems in physics have a long
history starting with the idea of Wigner [1] to describe the spacing distribution
of nuclear levels by an ensemble of real symmetric matrices. Although this is
the first application of Random Matrix Theory (RMT) to strong interactions,
applications of RMT to QCD started much later. The first paper that put QCD
into the context of RMT was the work of ’t Hooft on two-dimensional QCD
in the limit of a large number of colors [2]. It was shown [3] that the combi-
natorial factors that enter in this large Nc expansion could be obtained from
matrix integrals. Even today, as we have seen in the lectures by Di Francesco
[4], this work attracts a great deal of attention. It greatly stimulated the analy-
sis of a complicated nonlinear theory such as QCD by means of much simpler
matrix models. Because of the success of the application of RMT to the pla-
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nar expansion of QCD, the hope was that nontrivial results could be derived
this way. I will mention three well-known results that have emerged from this
line of thought: the Brezin-Gross-Witten model [5, 6], the Eguchi-Kawai [7]
reduction, and induced QCD according to Kazakov and Migdal [8].

The Wilson loop in lattice QCD without quarks in 1+1 dimensions can can
be reduced to the calculation of the unitary matrix integral

z(g2, Nc) =

∫

U∈SU(Nc)
dUeg−2Tr(U+U†). (1)

which is known as the Brezin-Gross-Witten model [9, 5, 6]. This reduction
was generalized to an arbitrary Wilson loop amplitude in the large Nc limit of
lattice QCD in four dimensions and is known as the Eguchi-Kawai reduction
[7]. It was shown that Wilson loop amplitudes do not depend on space-time
and can be obtained from a single plaquette integral. However, this reduction
is not valid in the weak coupling limit [10]. The idea of induced QCD [8] is
to induce the plaquette action by a unitary matrix integral. With a vanishing
Wilson line [11] this approach turned out not to be successful as well.

The matrix model (1) also appears in the low-energy limit of QCD with
quarks. However, in this case the integral over U(Nc) is not over the color
degrees of freedom but rather over the flavor degrees of freedom, and g−2 is
replaced by mV Σ/2 with Σ the chiral condensate, m the quark mass and V
the volume of space time. It coincides with the full QCD partition function in
a domain where the pion Compton wavelength is much larger than the size of
the box [12, 13]. In this limit we have

1

V Nf
∂m z(mΣV/2, Nf ) = 〈 1

V

∑

k

1

iλk + m

∏

k

(iλk + m)Nf 〉, (2)

where the λk are the eigenvalues of the Dirac operator. By expanding in powers
of the inverse mass, one obtains sum rules for the inverse Dirac eigenvalues
[13] which put constraints on the Dirac spectrum, but do not determine the
average spectral density on the scale of the average level spacing (which is
known as the microscopic spectral density) and other spectral correlators.

A Random Matrix Theory that describes the fluctuations of the small eigen-
values of the Dirac operator was introduced in [14, 15]. It was shown that
chiral RMT is equivalent to the flavor unitary matrix integral (1). The spectral
correlation functions were found to be in good agreement with lattice QCD
simulations (see [16, 17] for a review of lattice results). One argument to un-
derstand this is that level correlations of complex systems on the scale of the
average level spacing are universal, i.e. they do not depend on the details of the
system. This could be shown rigorously in the context of RMT [18]. However,
it was understood later that the generating function for the Dirac spectrum is
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completely determined by chiral symmetry [19, 20], and its microscopic limit
does not change if the Dirac operator replaced by a random matrix. This is one
of the main topics of these lectures.

The question has been raised if the quenched spectral density can be ob-
tained from the limit Nf → 0 of (2). This procedure is known as the replica
trick. It has been argued that this limit generally gives the wrong result [21].
However, the family of partition functions for different values of Nf are related
by the Toda lattice equation [22]. If we take the replica limit of the Toda lat-
tice equation [23] or of the corresponding Painlevé equation [24] we obtain the
correct nonperturbative result. This is a second main topic of these lectures.

A third main topic is the discussion of QCD at nonzero baryon chemical
potential. In that case the Dirac operator is non-Hermitian and its eigenvalues
are scattered in the complex plane. We will show that also in this case the
spectral density can be obtained from the Toda lattice equation [25, 26].

A fourth topic is the discussion of the spectral density for QCD with dy-
namical quarks at nonzero baryon chemical potential. We will discuss recent
analytical results by Osborn for a non-Hermitian random matrix model in the
universality class of QCD at nonzero chemical potential [27].

We start these lectures with an elementary introduction to QCD and its sym-
metries. The Dirac spectrum is discussed in section 4. The low energy limit of
QCD and partially quenched QCD (see section 5) is equivalent to a RMT with
the symmetries of QCD introduced in section 6. In section 6 we also calculate
the microscopic spectral density by means of orthogonal polynomials and the
supersymmetric method. In section 7 we show that this spectral density can
be obtained from the replica limit of the Toda lattice equation. In the same
section we connect these results with ideas from the theory of exactly solvable
systems such as Virasoro constraints, Painlevé equations, Backlund transfor-
mations and the Toda lattice. QCD at nonzero chemical potential is discussed
in sections 8 and 9. In section 8 we show that the microscopic spectral density
can be obtained from the replica limit of a Toda lattice equation. Recent re-
sults for full QCD at nonzero chemical potential are discussed in section 9 and
concluding remarks are made in section 10.

Finally, a note about books and reviews on the subject of these lectures.
The classic RMT text is the book by Mehta [1] which emphasizes the orthog-
onal polynomial method. The third edition of this book appeared recently. In
the book by Forester [29] the emphasis is on the relation between RMT and
solvable models and mathematical physics. A comprehensive review of RMT
is given in [30]. A collection of recent papers on RMT can be found in [31]
which also contains several reviews. Applications to mesoscopic physics are
discussed in [32, 33], applications to QCD in [16] and applications to Quan-
tum Gravity in [34]. Among the pedagogical reviews we mention a general re-
view of RMT [35] and an introduction to the supersymmetric method [36, 37].
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Table 1. Quark Masses

mu = 4 MeV mc = 1.3 GeV
md = 8 MeV mb = 4.4 GeV
ms = 160 MeV mt = 175 GeV

These lecture notes overlap in part with lecture notes I prepared for the Latin
American Summer School in Mexico City [37], where the main emphasis was
on the supersymmetric method rather than on applications of RMT to QCD.

3. QCD

3.1 Introduction

QCD (Quantum Chromo Dynamics) is the theory of strong interactions that
describes the world of nucleons, pions and the nuclear force. No experimental
deviations from this theory have ever been detected. QCD is a theory of quarks
which interact via gauge bosons known as gluons. In nature we have 6 different
flavors of quarks which each occur in three colors. Each quark is represented
by a 4-component Dirac spinor

qf
i, µ, f = 1, · · · , Nf = 6, i = 1, · · · , Nc = 3 (3)

with Dirac index µ. In total we have 18 quarks (plus an equal number of anti-
quarks). The gluon fields are represented by the gauge potentials

Aij
µ , i, j = 1, · · · , Nc = 3. (4)

which, as is the case in electrodynamics, are spin 1 vector fields. The gauge
fields are Hermitian and traceless; they span the algebra of SU(Nc). In total we
have 8 massless gluons. The 6 quark flavors are known as up, down, strange,
charm, bottom and and top. The quark masses are given in Table 1. Only the
two lightest quarks are important for low-energy nuclear physics.

First principle calculations of QCD can be divided into three different groups,
perturbative QCD, lattice QCD and chiral perturbation theory. The main do-
main of applicability of perturbative QCD is for momenta above several GeV.
Chiral perturbation theory is an expansion in powers of the momentum and
the pion mass and is only reliable below several hundred MeV. Although lat-
tice QCD is an exact reformulation of QCD, in practice both the domain of
low momenta and high momenta cannot be accessed, and its main domain of
applicability lies somewhere in between the two perturbative schemes.

The reason that perturbative QCD is applicable at high energies is asymp-
totic freedom: the coupling constant g → 0 for momenta p → ∞. This
property was instrumental in gaining broad acceptance for QCD as the theory
of strong interactions and its discovers were awarded this years Nobel prize.
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A second important property of QCD is confinement, meaning that only
color singlets can exist as asymptotic states. This empirically known property
has been confirmed by lattice QCD calculations. However, a first principle
proof of the existence of a mass gap in QCD is still lacking even in the absence
of quarks. Because of confinement the lightest particles of the theory are not
quarks or gluons but rather composite mesons.

This brings us to the third important property of QCD: chiral symmetry. At
low temperatures chiral symmetry is broken spontaneously which, according
to Goldstone’s theorem gives rises to massless Goldstone bosons. Because the
chiral symmetry is slightly broken by the light quark masses, the Goldstone
bosons are not exactly massless, but the mass of the pions of 135-138 MeV
is an order of magnitude less than a typical QCD scale of about 1 GeV . This
justifies a systematic expansion in the pion mass and the momenta known as
chiral perturbation theory.

A fourth important property of QCD is that a first principle nonperturba-
tive lattice formulation can be simulated numerically. This allows us to com-
pute nonperturbative observables such as for example the nucleon mass and
ρ-meson mass. Without lattice QCD we would have had only a small number
of first principle nonperturbative results and the validity of QCD in this domain
would still have been a big question mark.

3.2 The QCD partition function

The QCD partition function in a box of volume V3 = L3 can be expressed
in terms of the eigenvalues of the QCD Hamiltonian Ek as

ZQCD =
∑

k

e−βEk , (5)

where β is the inverse temperature. At low temperatures, (β → ∞), the parti-
tion function is dominated by the lightest states of the theory, namely the vac-
uum state, with an energy density of E0/V3 and massless excitations thereof.
The partition function ZQCD can be rewritten as a Euclidean functional inte-
gral over the nonabelian gauge fields Aµ,

ZQCD(M) =

∫
dAµ

Nf∏

f=1

det(D + mf )e−SYM
, (6)

where SYM is the Yang-Mills action given by

SYM =

∫
d4x[

1

4g2
F a

µν
2 − i

θ

32π2
F a

µν F̃ a
µν ]. (7)
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The field strength and its dual are given by

F a
µν = ∂µAa

ν − ∂νAa
µ + fabcA

b
µAc

ν , F̃µν =
1

2
εµναβFαβ. (8)

The fabc are the structure constants of the gauge group SU(Nc). The gauge
fields are denoted by Aµ = Aµa

T a

2 , where T a are the generators of the gauge
group. The integral ν ≡ 1

32π2

∫
d4xF a

µν F̃ a
µν is a topological invariant, i.e.

it does not change under continuous transformations of the gauge fields. An
important class of field configurations are instantons. These are topological
nontrivial field configurations that minimize the classical action. They are clas-
sified according to their topological charge ν. The parameter θ is known as the
θ-angle. Experimentally, its value is consistent with zero. In (6), the mass ma-
trix is diagonal, M = diag(m1, · · · ,mNf

), but below we will also consider a
general mass matrix. The anti-Hermitian Dirac operator in (6) is given by

D = γµ(∂µ + iAµ), (9)

where the γµ are the Euclidean Dirac matrices with anti-commutation relation
{γµ, γν} = 2δµν . In the chiral representation the γ-matrices are given by

γk =

(
0 iσk

−iσk 0

)
, γ4 =

(
0 1
1 0

)
, γ5 =

(
1 0
0 −1

)
. (10)

In this representation the Dirac operator has the structure

D =

(
0 id

id† 0

)
. (11)

The integration measure is defined by discretizing space-time

dAa
µ =
∏

x

dAa
µ(x). (12)

A particular popular discretization is the lattice discretization where the QCD
action is discretized on a hyper-cubic lattice with spacing a. The discussion of
lattice QCD would be a lecture by itself. For the interested reader we recom-
mended several excellent textbooks on the subject [38–40].

A field theory is obtained by taking the continuum limit, i.e. the limit of zero
lattice spacing a for the integration measure discussed above. This limit only
exists if we simultaneously adjust the coupling constant, i.e. g → g(a). If such
limit exists the field theory is called renormalizable. For QCD g(a) approaches
zero in the continuum limit, a property known as asymptotic freedom.

We will be mainly interested in the eigenvalues of the Dirac operator and
how they fluctuate for gauge fields Aµ distributed according to the QCD action.
We will show that below a well-defined scale the fluctuations of the Dirac
eigenvalues are given by a RMT with the global symmetries of the QCD.
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3.3

It is well-known that the QCD action is greatly constrained by gauge sym-
metry, Poincaré invariance and renormalizability. These symmetries determine
the structure of the Dirac operator and are essential for its infrared spectral
properties. In this section we will discuss the global symmetries of the Eu-
clidean Dirac operator. In particular, the chiral symmetry, the flavor symmetry
and the anti-unitary symmetry of the continuum Dirac operator are discussed.

The axial symmetry, or the UA(1) symmetry, can be ex-
pressed as the anti-commutation relation

{γ5,D} = 0. (13)

This implies that all nonzero eigenvalues occur in pairs ±iλk with eigenfunc-
tions given by φk and γ5φk. If λk = 0 the possibility exists that γ5φk ∼ φk,
so that λk = 0 is an unpaired eigenvalue. According to the Atiyah-Singer the-
orem, the total number of such zero eigenvalues is a topological invariant, i.e.,
it does not change under continuous transformations of the gauge field config-
uration. Indeed, this possibility is realized by the field of an instanton which is
a solution of the classical equations of motion. On the other hand, it cannot be
excluded that λk = 0 while φk and γ5φk are linearly independent. However,
this imposes additional constraints on the gauge fields that will be violated by
infinitesimal deformations. Generically, such situation does not occur.

In a decomposition according to the total number of topological zero modes,
the QCD partition function can be written as

ZQCD(M,θ) =
∑

ν

eiνθZQCD
ν (M), (14)

where

ZQCD
ν (M) = 〈

∏

f

mν
f

∏

k

(λ2
k + m2

f )〉ν . (15)

Here, 〈· · · 〉ν denotes the average over gauge-field configurations with topo-
logical charge ν weighted by the Yang-Mills action. If we introduce right-
handed and left-handed masses as complex conjugated masses we find that the
θ dependence of the QCD partition function is only through the combination
meiθ/Nf . This property can be used to obtain the θ-dependence of the low-
energy effective partition function.

A second important global symmetry is the flavor sym-
metry. This symmetry can be best explained by writing the fermion determi-
nant in the QCD partition function as a functional integral over Grassmann
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169



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

variables,

∏

f

det(D + mf ) =

∫
dψdψ̄e

R
d4x

PNf
f=1 ψ̄f (D+mf )ψf

. (16)

In a chiral basis with ψR = γ5ψR and ψL = −γ5ψL, the exponent can be
rewritten as

Nf∑

f=1

ψ̄f (D + mf )ψf = ψ̄f
RDψf

R + ψ̄f
LDψf

L + ψ̄f
RMRLψf

L + ψ̄f
LMLRψf

R.

(17)

To better illuminate the transformation properties of the partition function
we have replaced the diagonal mass matrix by MRL and MLR.

For mf = 0 we have the symmetry

ψL → ULψL, ψ̄L → ψ̄LU−1
L ,

ψR → URψR, ψ̄R → ψ̄RU−1
R . (18)

The only condition to be imposed on U and V is that their inverse exists. If the
number of left-handed modes is equal to the number of right-handed modes
we thus have an invariance under GlR(Nf ) × GlL(Nf ), where Gl(Nf ) is the
group of complex Nf × Nf matrices with nonzero determinant. However, if
the number of left-handed modes is not equal to the number of right-handed
modes, the axial-symmetry group is broken to an Sl(Nf ) subgroup whereas
the vector symmetry with UL = UR remains unbroken. For mf = 0 the flavor
symmetry is thus broken explicitly to GlV (Nf )×SlA(Nf ) by instantons or the
anomaly. A GlV (1) subgroup of GlV (Nf ) corresponds to baryon number con-
servation and is usually not considered when flavor symmetries are discussed.

What is much more important, though, is the spontaneous breaking of the
axial flavor symmetry. From lattice QCD simulations and phenomenological
arguments we know that the expectation value 〈ψ̄ψ〉 = 〈ψ̄RψR〉 + 〈ψ̄LψL〉 ≈
−(240MeV )3 in the vacuum state of QCD instead of the symmetric possibil-
ity 〈ψ̄ψ〉 = 0. Phenomenologically, this is known because the pions are much
lighter than the σ mesons. The spontaneous breaking of the axial symmetry
also follows from the absence of parity doublets. For example, the pion mass
and the a0 mass are very different (mπ = 135MeV and mδ = 980MeV ).

For fermionic quarks there is no need to extend the symmetry group to
GlR(Nf )×GlL(Nf ). In that case we will only consider the usual SUR(Nf )×
SUL(Nf ) flavor symmetry and it spontaneous breaking to SUV (Nf ). In the
case of bosonic quarks, we will see in the next section that it is essential to con-
sider the complex extension of SU(Nf ). Notice that the complex extension of
the symmetry group does not change the number of conserved currents.
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On easily verifies that 〈ψ̄ψ〉 is only invariant for UL = UR. The vacuum
state thus breaks the chiral symmetry down to GlV (Nf ). In agreement with
the Vafa-Witten theorem [41] only the axial symmetries can be broken spon-
taneously. We also observe that the complete axial group is broken which is
known as the maximum breaking [42] of chiral symmetry.

For bosonic quarks the Goldstone
bosons cannot be parameterized by a unitary matrix. The reason is that symme-
try transformations have to be consistent with the convergence of the bosonic
integrals. Let us consider the case of one bosonic flavor. Then

det−1

(
m id
id† m

)
=

1

π2

∫
d2φ1d

2φ2 exp

[
−
(

φ∗
1

φ∗
2

)(
m id
id† m

)(
φ1

φ2

)]
,

(19)

so that the integral is convergent for Re(m) > 0. The most general flavor
symmetry group of the action in (19) is Gl(2) that can be parameterized as

U = eHV with H† = H and V V † = 1. (20)

For U to be a symmetry transformation for m = 0 we require that

U †
(

0 id
id† 0

)
U =

(
0 id

id† 0

)
, (21)

so that H has to be a multiple of σ3, and V has to be a multiple of the identity.
The transformations V in (20) are not broken by the mass term and therefore
represent the vector symmetry. Only the symmetry transformation exp(sσ3) is
broken by the mass term so that the axial transformations are parameterized by

U =

(
es 0
0 e−s

)
with s ∈ 〈−∞,∞〉. (22)

For Nf bosonic flavors the axial transformations are parameterized by

U =

(
eH 0
0 e−H

)
with H† = H, (23)

which is the coset Gl(Nf )/U(Nf ).

3.4

The QCD partition function with three or more colors in the fundamental
representations has no anti-unitary symmetries. As will be discussed below,
for two colors with fundamental fermions and for adjoint fermions, the Dirac
operator has an anti-unitary symmetry. The classification of the QCD Dirac
operator according to anti-unitary symmetries was introduced in [15].
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The value of the Dyson
index is determined by the anti-unitary symmetries of the system. If there are
no anti-unitary symmetries the Hamiltonian is Hermitian and the value of the
Dyson index is βD = 2.

An anti-unitary symmetry operator, which can always be written as A =
UK with U unitary and K the complex conjugation operator, commutes with
the Hamiltonian of the system

[H,UK] = 0. (24)

We can distinguish two possibilities

(UK)2 = 1 or (UK)2 = −1. (25)

corresponding to βD = 1 and βD = 4, respectively. The argument goes as
follows. The symmetry operator A2 = (UK)2 = UU∗ is unitary, and in an
irreducible subspace, it is necessarily a multiple of the identity, UU∗ = λ1.
Because of this relation, U and U∗ commute so that λ is real. By unitarity we
have |λ| = 1 which yields λ = ±1.

When βD = 1 it is always possible to find a basis in which the Hamiltonian
is real. Starting with basis vector φ1 we can construct ψ1 = φ1 +UKφ1. Then
choose φ2 perpendicular to ψ1 and define ψ2 = φ2 + UKφ2 with

(φ2 + UKφ2, ψ1) = (UKφ2, ψ1) = ((UK)2φ2, UKψ1)
∗ = (φ2, ψ1)

∗ = 0.

The next basis vector is found by choosing φ3 perpendicular to ψ1 and ψ2,
etc. . In this basis the Hamiltonian is real

Hkl = (ψk,Hψl) = (UKψk, UKHψl)
∗ = (ψk,HUKψl)

∗ = (ψk,Hψl)
∗

= H∗
kl. (26)

The best known anti-unitary operator in this class is the time-reversal oper-
ator for which U is the identity matrix.

In the case (UK)2 = −1 all eigenvalues of the Hamiltonian are doubly
degenerate. This can be shown as follows. If φk is and eigenvector with eigen-
value λk, then it follows from (24) that also UKφk is an eigenvector of the
Hamiltonian with the same eigenvalue. The important thing is that this eigen-
vector is perpendicular to φk [13],

(φk, UKφk) = (UKφk, (UK)2φk)
∗ = −(φk, UKφk). (27)

In this case it is possible to construct a basis for which the Hamiltonian matrix
can be organized into real quaternions [43]. The eigenvalues of a Hermitian
quaternion real matrix are quaternion scalars, and the eigenvalues of the origi-
nal matrix are thus doubly degenerate in agreement with (27). The best known

Anti-unitary symmetries and the Dyson index.

172



example in this class is the Kramers degeneracy for time reversal invariant sys-
tems with half-integer spin but no rotational invariance. For example, for spin
1
2 the time reversal operator is given by σ2K with (Kσ2)

2 = −1.
Next we will discuss the anti-unitary symmetries of the QCD Dirac operator.

For three or more colors, QCD
in the fundamental representation does not have any anti-unitary symmetries
and βD = 2. QCD with two colors is exceptional. The reason is the pseudo-
reality of SU(2):

A∗
µ = (

∑

k

ak
τk

2
)∗ = −τ2Aµτ2, (28)

where the τk are the Pauli matrices acting in color space.
From the explicit representation for the γ-matrices it follows that

γ∗
µ = γ2γ4γµγ2γ4. (29)

For the Dirac operator iD = iγµ∂µ + γµAµ we thus have

[KCγ5τ2,D] = 0, (30)

where K is the complex conjugation operator and C = γ2γ4 is the charge
conjugation matrix. Because (KCγ5τ2)

2 = 1 we have that βD = 1. Using the
argument of Eq. (26) a basis can be constructed such that the Dirac matrix is
real for any Aµ.

For QCD with gauge fields in the
adjoint representation the Dirac operator is given by

D = γµ∂µ + fabcγµAaµ, (31)

where the fabc denote the structure constants of the gauge group. Because of
the complex conjugation property of the γ-matrices we have that

[γ2γ4γ5K,D] = 0. (32)

One easily verifies that in this case

(γ2γ4γ5K)2 = −1, (33)

so that the eigenvalues of D are doubly degenerate (see section 3.4). This
corresponds to the case βD = 4, so that it is possible to organize the matrix
elements of the Dirac operator into real quaternions.
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4. The Dirac Spectrum in QCD

In this section we show that the smallest eigenvalues of the QCD Dirac
operator are related to the chiral condensate by means of the Banks-Casher
relation. This result is used to define the microscopic spectral density.

4.1

The order parameter of the chiral phase transition, 〈ψ̄ψ〉, is nonzero only
below a critical temperature or a critical chemical potential. As was shown by
Banks and Casher [44], 〈ψ̄ψ〉 is directly related to the eigenvalue density of
the QCD Dirac operator per unit four-volume

Σ ≡ |〈ψ̄ψ〉| = lim
π〈ρ(0)〉

V
. (34)

For eigenvalues {λk} the average spectral density is given by

ρ(λ) = 〈
∑

k

δ(λ − λk)〉. (35)

z

l

x  x x x x  x   x  x x x x  x

z = 0

Figure 1.

the rectangular contour in this figure. (Figure taken from [45].)

To show the Banks-Casher relation we study the resolvent defined by

G(z) =
∑

k

1

z + iλk
. (36)

It can be interpreted as the electric field at z of charges at iλk. Using this
analogy it is clear that the resolvent changes sign if z crosses the imaginary

A typical Dirac spectrum. To derive the Banks-Casher relation we integrate the res-

olvent over
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axis. Let us look at this in more detail. A typical Dirac spectrum is shown in
Fig. 1. The average number of eigenvalues in the rectangular contour in this
figure is ρ(λ)l. If we integrate the resolvent along this contour we find

∮
G(z) = il(G(iλ + ε) − G(iλ − ε)) = 2πiρ(λ)l, (37)

where the second identity follows from Cauchy’s theorem. Using the symme-
try of the spectrum we obtain

ReG(iλ + ε) = πρ(λ). (38)

Near the center of the spectrum the imaginary part of the resolvent is negligi-
ble. Using that the chiral condensate is related to the resolvent by

〈ψ̄ψ〉 = − lim
m→0

lim
V →∞

1

V
G(m), (39)

immediately results in the Banks-Casher relation (34). The order of the limits
in (34) is important. First we take the thermodynamic limit, next the chiral
limit and, finally, the field theory limit.

The resolvent of the QCD Dirac spectrum can be obtained from

G(z;m1, · · · ,mNf
) =

∂

∂z

∣∣∣∣
z=z′

log Zpq
ν (z, z′,mf ), (40)

with the so called partially quenched QCD partition function given by

Zpq
ν (z, z′,mf ) =

∫
dA

det(D + z)

det(D + z′)

Nf∏

f=1

det(D + mf ) e−SYM
. (41)

For z = z′ this partition function coincides with the QCD partition function.
In addition to the regular quarks, the partition function (41) has additional

bosonic and fermionic ghost quarks. Our aim is to find the chiral Lagrangian
corresponding to (41). If we are successful, we have succeeded in deriving a
generating function for the infrared limit of the QCD Dirac spectrum.

4.2

An important consequence of the Bank-Casher formula (34) is that the eigen-
values near zero virtuality are spaced as

∆λ = 1/ρ(0) = π/ΣV . (42)

For the average position of the smallest nonzero eigenvalue we obtain the esti-
mate

λmin = π/ΣV . (43)
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This should be contrasted with the eigenvalue spectrum of the non-interacting
Dirac operator. Then the eigenvalues are those of a free Dirac particle in a
box with eigenvalue spacing equal to ∆λ ∼ 1/V 1/4 for the eigenvalues near
λ = 0. Clearly, the presence of gauge fields leads to a strong modification of
the spectrum near zero virtuality. Strong interactions result in the coupling of
many degrees of freedom leading to extended states and correlated eigenvalues.
Because of asymptotic freedom, the spectral density of the Dirac operator for
large λ behaves as V λ3. In Fig. 2 we show a plot of a typical average spectral
density of the QCD Dirac operator for λ ≥ 0. The spectral density for negative
λ is obtained by reflection with respect to the y-axis. More discussion of this
figure will be given in section 5.3.

Λ

  ρ(λ)

λlog

λ

QCD

λ~V

c  min m

chRMT

3

-

Figure 2. Schematic picture of the average spectral density of QCD Dirac operator. (Taken
from [46].)

Because the eigenvalues near zero are spaced as ∼ 1/ΣV it is natural to
introduce the microscopic spectral density [14]

ρs(u) = lim
V →∞

1

V Σ
ρ(

u

V Σ
) with u = λV Σ. (44)

We expect that this limit exists and converges to a universal function which is
determined by the global symmetries of the QCD Dirac operator. In section 6,
we will calculate ρs(u) both for the simplest theory in this universality class,
which is chiral Random Matrix Theory (chRMT), and for the partial quenched
chiral Lagrangian which describes the low-energy limit of the QCD partition
function. We will find that the two results coincide below the Thouless energy.

5.

In this section we derive the chiral Lagrangian that provides an exact de-
scription of QCD at low energies.

Low energy limit of QCD
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5.1

For light quarks the low energy limit of QCD is well understood. It is
given by a chiral Lagrangian that describes the interactions of the pseudo-
scalar mesons. The reason is that pions are Goldstone bosons which are the
only light degrees of freedom in a confining theory such as QCD. To lowest
order in the quark masses and the momenta, the chiral Lagrangian is com-
pletely determined by chiral symmetry and Lorentz invariance. In the case
of Nf light quarks with chiral symmetry breaking according to SUL(Nf ) ×
SUR(Nf ) → SUV (Nf ) the Goldstone fields are given by U ∈ SU(Nf ). Un-
der an SUL(Nf )× SUR(Nf ) transformation of the quark fields given in (18),
the Goldstone fields U transform in the same way as the chiral condensate

U → URUU−1
L . (45)

The symmetry (18) is broken the mass term. However, the full symmetry can
be restored if we also transform the mass term as

MRL → URMRLU−1
L , MLR → ULMLRU−1

R . (46)

The low energy effective theory should have the same invariance properties.
To second order in the momenta and first order in the quark mass matrix we
can write down the following invariant terms:

Tr(∂µU ∂µU †), Tr(MRLU †), Tr(MLRU). (47)

Since the QCD partition function is invariant under MRL ↔ MLR, the effec-
tive partition function should also have this symmetry. The action of the Gold-
stone fields is therefore given by the so called Weinberg Lagrangian [47, 48]

Leff(U) =
F 2

4
Tr(∂µU∂µU †) − Σ

2
Tr(MRLU † + MLRU), (48)

where F is the pion decay constant, and Σ is the chiral condensate. The Gold-
stone fields can be parametrized as U = exp(i

√
2Πat

a/F ), with the genera-
tors of SU(Nf ) normalized according to Tr tatb = δab. This chiral Lagrangian
has been used extensively for the analysis of pion-pion scattering amplitudes
[48].

To lowest order in the pion fields we find for equal quark masses m

Leff(U) =
1

2
∂µΠa∂µΠa + NfΣm +

Σm

F 2
ΠaΠa. (49)

This results in the pion propagator 1/(p2 + m2
π) with pion mass given by the

Gellmann-Oakes-Renner relation

m2
π =

2mΣ

F 2
. (50)

It also illustrates the identification of Σ as the chiral condensate.
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5.2 pq
ν

The low-energy limit of the partially quenched QCD partition function can
be derived along the same lines as the derivation of the chiral Lagrangian ob-
tained in previous section. In this case, ignoring convergence questions for the
moment, the global flavor symmetry of (41) is given by

GlR(Nf + 1|1) × GlL(Nf + 1|1). (51)

We already have seen that convergence requirements restrict the axial symme-
try for bosonic quarks to Gl(Nf )/U(Nf ). Although the axial flavor symmetry
group of the fermionic quarks is not a priori determined by convergence re-
quirements we will see in this section that supersymmetry necessarily imposes
that this symmetry group is compact, i.e. equal to U(Nf ).

Under transformation (51) the quarks fields with Nf + 1 fermionic compo-
nents and one bosonic component, transform as

ψR → URψR, ψL → ULψL, ψ̄R → ψ̄RU−1
R , ψ̄L → ψLU−1

L . (52)

The subscripts refer to the right-handed (R) or left-handed (L) quarks. For
M = 0 and ν = 0 this is a symmetry of the QCD action. For M �= 0 this
symmetry can be restored if we also transform the mass term according to

MRL → URMRLU−1
L , MLR → ULMLRU−1

R . (53)

In the sector of topological charge ν the partially quenched partition function
transforms as

Zpq
ν (MRL,MLR) → Sdetν [URUL]−1Zpq

ν (MRL,MLR). (54)

The Goldstone bosons corresponding to the breaking of of the axial sub-
group GlA(Nf + 1|1) transform as Q → URQU−1

L . If we factorize the Gold-
stone fields into the zero momentum modes Q0 and the nonzero momentum
modes Q(x) as

Q = Q0Q(x), (55)

one can easily show that the low energy effective partition function which the
above transformation properties is given by

Zpq
ν (M) =

∫

Q∈Gl(Nf+1|1)
dQSdetν(Q0)e

− R
d4xLpq(Q), (56)

where

Lpq(Q) =
F 2

4
Str∂µQ−1∂µQ +

Σ

2
Str(MRLQ−1) +

Σ

2
Str(MLRQ). (57)
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We already have seen that the boson-boson block of Gl(Nf +1|1) is Gl(1)/
U(1). If we parameterize the field Q as

Q = e
P

k Tkπk/F , (58)

with Tk the generators of G(Nf +1|1), to second order in the Goldstone fields
the mass term is given by Str(ΣM

∑
k T 2

k π2
k/F

2). Let us take M diagonal
positive definite. Because of the supertrace there is a relative minus sign be-
tween the boson-boson and fermion-fermion modes. The boson-boson modes
are noncompact and require that the overall minus sign of the mass term is neg-
ative. In order to avoid tachyonic fermion-fermion Goldstone modes, we have
to compensate the minus sign of the supertrace. This can be done by choos-
ing the parameters that multiply the fermion-fermion generators purely imag-
inary. This corresponds to a compact parametrization of the fermion-fermion
Goldstone manifold. This integration manifold is the maximum Riemannian
submanifold [49] of Gl(Nf + 1|1) and will be denoted by Ĝl(Nf + 1|1).

5.3

In chiral perturbation theory, the different domains of validity where ana-
lyzed by Gasser and Leutwyler [12]. A similar analysis applies to partially
quenched chiral perturbation theory [51]. The idea is as follows. The Q field
can be decomposed as [12]

Q = Q0e
iψ(x). (59)

where Q0 is a constant (zero-momentum) field. For momenta p = πk/L with
k integer , the kinetic term of the ψ fields behaves as

1

2
∂µψa(x)∂µψa(x) ∼ L−2ψ2(x). (60)

We observe that the magnitude of the fluctuations of the ψa fields are of order
1/L which justifies a perturbative expansion of exp(iψ(x)). The fluctuations
of the zero modes, on the other hand, are only limited by the mass term

1

2
V ΣStrM(Q0 + Q−1

0 ). (61)

For quark masses m � 1/V Σ, the field Q0 fluctuates close to the identity and
the Q0 field can be expanded around the identity as well. If m � ΛQCD we
are in the domain of chiral perturbation theory. For

Σm

F 2
� 1√

V
(62)

the fluctuations of the zero modes dominate the fluctuations of the nonzero
modes, and only the contribution from the zero modes has to be taken into
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account for the calculation of an observable. In this limit the so called finite
volume partition function is given by [12, 13]

Zeff
Nf

(M,θ) ∼
∫

U∈SU(Nf )
dUeV ΣReTr MUe

iθ/Nf
, (63)

where the θ-dependence follows from the dependence of the QCD partition
function on the combination meiθ/Nf only (see section 3.3). We emphasize
that any theory with the same pattern of chiral symmetry breaking as QCD can
be reduced to the same extreme infrared limit.

The effective partition function at fixed ν follows by Fourier inversion

Zeff
ν (M) =

1

2π

∫ 2π

0
dθe−iνθZeff(M,θ). (64)

Combining the integral over SU(Nf ) and the integral over U(1) we find that

Zeff
ν (M) =

∫

U(Nf )
detν(U)eV ΣReTr MU†

. (65)

The same arguments apply to the partially quenched chiral Lagrangian.
There is an important difference. The mass of the ghost-quarks is an external
parameter which can take on any value we wish. The mass of the Goldstone
modes containing these quarks is given by

Mzz =
2zΣ

F 2
. (66)

Therefore, independent of the quark masses there is always a domain where
the fluctuations of the zero momentum modes dominate the fluctuations of the
nonzero momentum modes. This domain is given by [51]

z � F 2

ΣL2
≡ mc. (67)

In this domain, the Compton wavelength of the Goldstone bosons with mass
Mzz is much larger than the size of the box. Because the time scale con-
jugate to mc is of the order of the diffusion time across the length of the
box, this domain is known as the ergodic domain. In order that the non-
Goldstone modes do not contribute to the partition function we have to require
that L � 1/ΛQCD.

In the Dirac spectrum we can thus distinguish three important scales:

λmin � mc � ΛQCD. (68)

For z � mc we are in the zero momentum sector of the theory. If z is of the
order of λmin or less we have to take into account quantum fluctuations to all
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orders. For λmin � z � mc, the integral over zero modes can be calculated
perturbatively by a loop expansion. For mc � z � ΛQCD, chiral perturbation
theory still applies, but the zero momentum modes no longer dominate the
partition function. For z � ΛQCD, chiral perturbation theory is not applicable
to the spectrum of the Dirac operator.

In the ergodic domain the QCD partition function in the sector of topological
charge ν is given by [19]

Zpq
ν (M) =

∫

Q∈Ĝl(Nf +1|1)
dQ SdetνQ eV Σ

2
Str(MQ+MQ−1). (69)

The number of QCD Dirac eigenvalues that is described by this partition func-
tion is of the order mc/∆λ = F 2L2. This number increases linearly in Nc for
Nc → ∞ which was recently found in lattice simulations [50].

In section (6.3) we will study this partition function in the quenched limit
(Nf = 0) and show it coincides with the chRMT result [19, 20].

In the book by Efetov [32] it is shown
that the diffusion of electrons in a disordered medium can be described by the
effective action

F (Q) =
πν

8
D

∫
ddx[Tr(∇Q)2 − πiνω

4
TrΛQ], (70)

where Q are the Goldstone fields, ν is the density of states, D is the diffusion
constant and ω is the energy difference between the advanced and the retarded
Green’s functions. The matrix Λ is a diagonal matrix with matrix elements ±1
corresponding to the causal character of the Green’s functions. The Goldstone
bosons arise because of the spontaneous breaking of the symmetry between
the advanced and retarded Green’s functions.

If we compare this effective action to the chiral Lagrangian (57) we can
make the identification

F 2

4
↔ πνD

8
,

πων

4
↔ MΣ

2
, ν ↔ ρ(E)

V
, (71)

which can be rewritten as

M ↔ ω

2
, Σ ↔ πν, F 2 ↔ πνD

2
. (72)

The domain where the kinetic term factorizes from the partition function is
therefore given by

L2 � F 2

MΣ
↔ D

ω
. (73)
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In the theory of disordered mesoscopic systems the corresponding energy scale
is known as the Thouless energy. It is defined by [52, 53]

Ec =
�D

L2
, (74)

where D is the diffusion constant for the diffusive motion of electrons in a
disordered sample. The time conjugate to Ec is the time scale over which an
electron diffuses across the sample. Therefore, the domain where �ω � Ec

is known as the ergodic domain. The time scale in mesoscopic physics cor-
responding to ΛQCD is the elastic scattering time τe. The domain in between
Ec and �/τe is known as the diffusive domain. This domain is characterized
by diffusive motion of electrons in the disordered sample described by the La-
grangian (70).

6.

6.1 The chiral ensembles

The chiral ensembles are defined as the ensembles of N × N Hermitian
matrices with block structure [14, 15]

D =

(
0 iC

iC† 0

)
, (75)

and probability distribution given by (for equal quark masses m)

P (C)dC = NdetNf (D + m)e−
NβD

4
TrC†CDC. (76)

The integration measure dC is the product of differentials of the independent
parts of the matrix elements of C , and Nf is a real parameter (corresponding to
the number of quark flavors in QCD). The matrix C is a rectangular n×(n+ν)
matrix. The nonzero eigenvalues of the matrix D occur in pairs ±λk. This can
be seen as follows. If

D

(
a
b

)
= λ

(
a
b

)
then D

(
a
−b

)
= −λ

(
a
−b

)
. (77)

Generically, the matrix D in (75) has exactly |ν| zero eigenvalues. For this
reason, ν is identified as the topological quantum number. The normalization
constant of the probability distribution is denoted by N . We can distinguish
ensembles with real, complex, or quaternion real matrix elements. They are de-
noted by βD = 1, βD = 2, and βD = 4, respectively. In addition to the global
symmetries of QCD, this partition function has a large unitary invariance given
by

C → UCV −1, (78)
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where U and V are orthogonal, unitary, or symplectic matrices, respectively.
Therefore, the corresponding ensembles are known as the chiral Gaussian Or-
thogonal Ensemble (chGOE), the chiral Gaussian Unitary Ensemble (chGUE),
and the chiral Gaussian Symplectic Ensemble (chGSE), in this order.

Using the invariance (78) it is always possible to decompose C as

C = UΛV −1, (79)

where Λ is a diagonal matrix with λk ≥ 0. The joint probability distribution for
the eigenvalues is obtained by transforming to Λ, U and V as new integration
variables. The Jacobian is given by

J ∼
∏

k

λνβD−1
k

∏

k<l

|(λ2
k − λ2

l )|βD (80)

resulting in the joint eigenvalue distribution

P ({λ})d{λ} = N|∆({λ2})|βD
∏

k

λα
k (λ2

k + m2)Nf e−NβDλ2
k/4dλk, (81)

where α = βD − 1 + βDν. We note that the distribution of the eigenvectors
factorizes from the distribution of the eigenvalues factorizes.

6.2

In this section we will discuss the orthogonal polynomial method, the re-
solvent expansion method, the replica trick and the supersymmetric method
which are widely used in Random Matrix Theory.

These methods are based on expanding
the resolvent in a geometric series

G(z) = 〈Tr
1

z − H
〉 = N

1

z
+ 〈Tr

1

z
H

1

z
〉 + 〈Tr

1

z
H

1

z
H

1

z
〉 + · · · . (82)

In the large N limit the averages are given by a sum of planar diagrams. Let
us illustrate this for the GUE. In this case the “propagator” is given by

〈HijHkl〉 =
1

N
δilδjk. (83)

For example, as was explained in the course of Di Francesco [4], for TrH4

term we have two planar diagrams of order N3 and one diagram of order N2.

The oldest method is the orthogonal
polynomial method [1]. In principle, one obtains expressions that are exact for
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finite size matrices. The drawback of this method is that it requires a proba-
bility distribution that is invariant under basis change of the random matrix. In
general the probability density can be written as

P (x1, · · · , xn) = ∆βD({xk})
n∏

k=1

w(xk), (84)

where w(x) is a weight function and the Vandermonde determinant is given by

∆({xk}) =
∏

k>l

(xk − xl). (85)

The method is based on the identity

∆({xk}) =

∣∣∣∣∣∣∣∣∣

1 · · · 1
x1 · · · xn
...

...
xn−1

1 · · · xn−1
n

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

P0(x1) · · · P0(xn)
P1(x1) · · · Pn(xn)

...
...

Pn−1(x1) · · · Pn−1(xn)

∣∣∣∣∣∣∣∣∣

, (86)

where the Pk are monic orthogonal polynomials defined by
∫

dxw(x)Pk(x)Pl(x) = hkδkl. (87)

Because of these relations, integrals over the eigenvalues can be performed by
means of orthogonality relations. In the next section we illustrate this method
by the calculation of the microscopic spectral density for the chGUE.

The replica trick is based on the identity

G(z) =
1

V
〈Tr

1

z + iD
〉 = lim

r→0

1

V r
∂z〈detr(iD + z)〉. (88)

The recipe is to calculation the partition function for positive or negative inte-
ger values of r and then analytically continue to r = 0. For positive (negative)
integer values of r the average determinant can be calculated by rewriting it
as a Grassmann (complex) Gaussian integral. Then D appears linear in the
exponent which allows us to perform the average for a Gaussian distribution
of D. The replica trick works without problems for perturbative calculations
but usually fails in the nonperturbative calculations. As example consider the
following expression for the the modified Bessel function Iν(z):

Iν(z) =
1

π

∫ π

0
ez cos θ cos νθdθ − sin νπ

π

∫ ∞

0
e−z cosh t−νtdt. (89)

We would have missed the second term if we calculate the Bessel function only
for integer values of ν. The replica trick can be made to work if we consider
a family of partition functions related by a Toda lattice equation. This will be
discussed in detail in the next two lectures.
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The supersymmetric method [74] is based
on the identity

G(z) =
1

V
∂z

〈
det(iD + z)

det(iD + z′)

〉∣∣∣∣
z′=z

. (90)

The determinant can be written as a Grassmann integral and inverse determi-
nant as a complex integral. For z′ = z this partition function has an exact
supersymmetry. The advantage of this method is that it is mathematically rig-
orous, but it requires a deep understanding of super mathematics. For example,
finite expressions can be obtained from singular terms that do not depend on
the Grassmann variables (and are zero upon integration). For a discussion of
these so-called Efetov-Wegner terms we refer to the original literature [54, 37].

6.3

In this subsection we calculate the microscopic spectral density by the or-
thogonal polynomials method [55] and the supersymmetric method [19, 20].

For the chGUE the joint probability distributions
only depends on the square of the eigenvalues and we use xk = λ2

k as new
variables. In terms of these variables the weight function is given by

w(x) = (xnΣ2)ae−nΣ2x, (91)

with a = Nf + |ν|. The monic orthogonal polynomials corresponding to this
weight function can be expressed in terms Laguerre polynomials

Pk(x) =
(−1)kk!

(Σ2n)k
La

k(xΣ2n) (92)

with normalization constants hk given by hk = k!(k + a)!/(nΣ2)2k+1. The
eigenvalue density is given by (with c a constant)

ρ(x1) = c

∫ n∏

k=2

[w(xk)dxk]

∣∣∣∣∣∣∣

P0(x1) · · · P0(xn)
...

...
Pn−1(x1) · · · Pn−1(xn)

∣∣∣∣∣∣∣

2

,

=
∑

σπ

sg(σπ)

n∏

k=2

[w(xk)dxk]Pσ(0)(x1) · · ·Pσ(n−1)(xn)

×Pπ(0)(x1) · · ·Pπ(n−1)(xn),

= (n − 1)!
∏

l

hl

n−1∑

k=0

1

hk
P 2

k (x1)w(x1). (93)
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The microscopic spectral density is obtained by taking the limit n → ∞ at
fixed z = 2nΣλ = 2nΣ

√
x. In this limit the weight function is given by

w(x) = (xΣ2n)a and the Laguerre polynomials behave as

La
k(xΣ2n) → ka(xΣ2nk)−a/2Ja(2Σ

√
xnk). (94)

In the limit n → ∞, the sum can be replaced by an integral resulting in the
microscopic spectral density [55]

ρ(z)dz ∼ z

n−1∑

k=0

J2
a

(
z

√
k

n

)
≈ z

∫ 1

0
tdtJ2

a (zt),

= 2z(J2
a (z) − Ja+1(z)Ja−1(z)). (95)

In this section we evaluate the resolvent of QCD
for the simplest case of Nf = 0 and ν = 0 in the domain z � F 2/ΣL2. In
this domain the partition function is given by

Z(J) =

∫

Q∈Ĝl(1|1)
dU exp

[
ΣV

2
Str

(
z + J 0

0 z

)
(Q + Q−1)

]
, (96)

where the integration is over the maximum super-Riemannian sub-manifold of
Gl(1|1). This manifold is parametrized by

Q = exp

(
0 α
β 0

)(
eiφ 0
0 es

)
. (97)

The integration measure is the Haar measure which in terms of this parameter-
ization and where δQ ≡ Q−1dQ is given by

Sdet
δQkl

δφ δs δα δβ
dαdβdφds. (98)

It is straightforward to calculate the Berezinian going from the variables
{δQ11, δQ22, δQ12, δQ21} to the variables {δφ, δs, δα, δβ}. The derivative
matrix is given by

B =
δQkl

δφ δs δα δβ
=





i 0 β
2

α
2

0 1 β
2

α
2

0 0 es−iφ 0
0 0 0 e−s+iφ



 . (99)

Using the definition of the graded determinant one simply finds that SdetB =
i. Up to a constant, the integration measure is thus given by dφdsdαdβ.
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We also need

1

2
(Q + Q−1) =

(
cos φ(1 + αβ

2 ) α(es − e−iφ)

β(eiφ − e−s) cosh s(1 − αβ
2 )

)
. (100)

After differentiating with respect to the source term (G(z) = ∂J log Z(J)|J=0)
this results in (with x = V Σz)

G(z)

V Σ
=

∫
dφdsdαdβ

2π
cos φ(1 +

αβ

2
)ex cos φ(1+ αβ

2
)−x cosh s(1−αβ

2
).

(101)

With the Grassmann integral given by the coefficient of αβ we obtain

G(z)

V Σ
=

∫
dsdφ

4π
[cos φ + x(cos φ + cosh s) cos φ]ex(cos φ−cosh s).

All integrals can be expressed in terms of modified Bessel functions. We find

G(z)

V Σ
= I1(x)K0(x) +

x

2
(I2(x)K0(x) + I0(x)K0(x) + 2I1(x)K1(x)),

(102)

which can be further simplified by the recursion relation I2(x) = I0(x) −
2I1(x)/x. As final result we obtain [51, 19, 20]

G(z)

V Σ
= x(I0(x)K0(x) + I1(x)K1(x)). (103)

This calculation can be generalized to arbitrary Nf and arbitrary ν. The
calculation for arbitrary Nf is much more complicated, but with a natural gen-
eralization of the factorized parameterization, and using some known integrals
over the unitary group, one arrives at the following expression in terms of mod-
ified Bessel functions

G(z)

V Σ
=

ν

x
+ x(Ia(x)Ka(x) + Ia+1(x)Ka−1(x)), (104)

where a = Nf + |ν|. This result is in complete agreement with the resolvent
obtained [51] from integrating microscopic spectral density (95).

For a = 0 this result is plotted in Fig. 3. We observe that, below some
scale, lattice QCD data obtained by the Columbia group [56] closely follow
this curve. The predictions of chRMT or of the partially quenched chiral La-
grangian have been studied by numerous lattice simulations [16, 17, 57, 50].
In all cases, agreement has been found in the expected domain of applicability.
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Figure 3. The resolvent of quenched QCD. The points represent lattice data obtained by the

Columbia group, and the theoretical prediction (103) is given by the solid curve. (Taken from
ref. [45].)

7.

7.1

In this section we derive the small mass expansion of the QCD partition
function by means of recursion relations for the partition function known as
Virasoro constraints. The starting point is the QCD partition function in the
ergodic regime given in (65). The quantities

Gν(tk) = det−ν(M)Zν(M) (105)

are invariant under the U(Nf ) × U(Nf ) transformations M → V1MV −1
2 .

Therefore, Gν(tk) only depends on the eigenvalues of M †M which can be
parameterized in terms of the moments

tk ≡ 1

k
Tr

(
MM †

4

)k

. (106)
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A differential equation for the G(tk) is obtained from the unitarity relation

1

Zν

Nf∑

a=1

∂2Zν

∂Mba∂M †
ac

=
1

4

Nf∑

a=1

〈U †
abUca〉 =

1

4
δbc. (107)

Notice that the factor ΣV is included in M . This relation can be rewritten as
[

∂2

∂Mba∂M †
ac

+ νM−1
ab

∂

∂M †
ac

]
Gν(tk) =

1

4
Gν(tk)δbc. (108)

Using the chain rule and the assumption that the matrix elements of (MM †)s−1

are independent for different values of s, we obtain [22]

[Ls − δs,1]Gν(tk) = 0 s ≥ 1. (109)

The Virasoro operators defined by

Ls =
s−1∑

k=1

∂

∂tk

∂

∂ts−k
+
∑

k≥1k

tk
∂

∂ts+k
+ (Nf + ν)

∂

∂ts
, s ≥ 1 (110)

satisfy the Virasoro algebra

[Lr,Ls] = (r − s)Lr+s. (111)

Therefore, if Gν satisfies

[L1 − 1]Gν = 0 and L2Gν = 0, (112)

then all Virasoro constraints are satisfied. This justifies the independence as-
sumption above (109).

We can expand Gν as

Gν = 1 + a1g1 + a2t2 + a11t
2
1 + · · · . (113)

From the first Virasoro constraint we obtain

L1Gν = a2t1 + (Nf + ν)(a1 + 2a11t1) + · · · ,

= 1 + a1t1 + a2t2 + a11t
2
1 + · · · . (114)

By equating the coefficients of the tk we find

a1 =
1

Nf + ν
, a2 + 2(Nf + ν)a11 = a1. (115)
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From the second Virasoro constraint, L2Gν = a11+(Nf +ν)a2 = 0, we obtain
a2 = −a11/(Nf + ν). Continuing this way we can obtain all coefficients in
the expansion of the G(tk). This results in the small mass expansion of the
partition function [58]

ZQCD
ν (M)

detνM
= [1 +

TrMM †

4(Nf + ν)
+

1

32

Tr(MM †)2

(Nf + ν)((Nf + ν)2 − 1)
+ · · · ]. (116)

An extension of this expansion to all three Dyson classes can be found in [59].
The small mass expansion can be used to obtain sum rules for the inverse

eigenvalues of the Dirac operator [13, 58]. The QCD partition function can be
expanded as (the prime indicates that λk �= 0)

ZQCD
ν (M) = mνNf

〈∏′
k
λ

2Nf

k (1 +
m2

λ2
k

)Nf )

〉

ν

(117)

= mνNf (〈
∏′

k
λ

2Nf

k 〉ν + m2Nf 〈
∏′

k
λ

2Nf

k

∑′
k

1

λ2
k

〉ν + · · · )

This results in the expansion

ZQCD
ν (M)

limm→0 m−νNf ZQCD
ν (M)

= 1 + m2Nf 〈
∑′

k

1

λ2
k

〉QCD
ν . (118)

By equating this expansion to the expansion (116) for equal masses given by

1 +
Nf (V Σ)2

4(Nf + ν)
m2, (119)

we obtain the Leutwyler-Smilga sum rule [13] for the inverse Dirac eigenvalues

1

V 2

∑′
k

1

λ2
k

=
Σ2

4(Nf + ν)
. (120)

If we construct an (Nf + ν) × (Nf + ν) matrix
M̄ with M̄ij = Mij for i, j ≤ Nf and M̄ij = 0 otherwise, we have that
Tr(MM †)k = Tr(M̄M̄ †)k. Since the Virasoro constraints only depend on the
combination Nf + ν we have

det−νMZν,Nf
(M) = Zν=0,Nf+ν(M̄, M̄ †). (121)

This relation is known at the flavor-topology duality [60].

7.2

The unitary integral in the QCD partition function can actually be evaluated
analytically for an arbitrary number of flavors. We will show that it can be

Flavor-topology duality.

τ -function
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rewritten as a τ -function. The unitary matrix integrals can then be evaluated
by means of a Harish-Chandra-Itzykson-Zuber type integral and the use of
flavor-topology duality.

We consider the integral

I =

∫
dUdV e

1
2
Tr(U†RV S+SV †RU), (122)

where U ∈ U(N1) and V ∈ U(N2)/U
N2(1) and the integral is over the Haar

measure of these groups. The matrices R and S are arbitrary rectangular com-
plex matrices. Without loss of generality, they can be taken diagonal with
Rkk = rk > 0 and Skk = sk > 0 and all other matrix element equal to zero.
Using the diffusion equation method one can derive the result [61]

I = c
∏

k

(rksk)
ν det Iν(rksl)

∆({s2
k})∆({r2

k})
. (123)

This result first appeared in the Russian literature [62] as a solution of the
Laplace equation. It was proved independently in [61].

In this subsection we show
that the finite volume QCD partition function is a τ -function. Using the flavor-
topology duality (121) with M̄kk = xk for k ≤ Nf we can write

Zν,Nf
(M) = detνM

∫

U∈U(Nf +ν)
dUe

1
2
(M̄U†+M̄†U). (124)

This integral is given by (122) with R equal to the Nf × (Nf + ν) matrix
with rk = xk, and the Nf diagonal matrix elements of S are expanded as
sk = 1 + δsk. For δsk → 0 the matrix elements det Iν(xksl) can be expanded
as

Iν(xksl) =

Nf∑

j=1

xj

(j − 1)!
I(j−1)
ν (xk)(δsl)

j−1 ≡
Nf∑

j=1

AkjBjl. (125)

with (the upper index between brackets such as (k) denotes the k’th derivative)

Akj = xj−1
k I(j−1)

ν (xk), Bjl =
(δsl)

j−1

(j − 1)!
. (126)

Up to a constant, the determinant of B is given by

det B ∼ ∆({(1 + δsk)
2}), (127)
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and cancels against the denominator in (123). We finally obtain the result

Zν,Nf
(M) =

det[xj−1
k I

(j−1)
ν (xk)]

∆({x2
k})

. (128)

This results was first obtained in [63] and independently for equal masses in
[9, 64]. Using the identities such as

x2∂2
x = (x∂x)2 − x∂x, x3∂3

x = (x∂x)3 − 3(∂x)2 + 2x∂x, (129)

we can rewrite this partition function in terms of derivatives δk ≡ xk∂xk
as

Zν,Nf
(M) =

det[δj−1
k Iν(xk)]

∆({x2
k})

. (130)

This form of the partition function is also known as a τ -function [22, 65].

The limit of equal masses in
the partition function (130) can be obtained by writing

xk = x(1 + δxk), (131)

and taking the limit δxk → 0. Because all columns are the same for δxk = 0
we have to expand the matrix elements to order (δxk)Nf−1. The expansion to
this order can be combined into

det[δj−1
k Iν(xk)] = det[xl−1(δj−1

x Iν(x))(l−1)] det[
(δxk)l−1

(l − 1)!
]. (132)

Using that

det[(δxk)l−1] = ∆({δxk}), ∆({x2
k}) = xNf (Nf−1)∆({δxk}), (133)

we obtain the partition function

Zν(x) = cx−Nf (Nf−1) det[xl−1((x∂x)j−1Iν(x))(l−1)]. (134)

With the help of the identities (129) the derivatives can be combined into
derivatives (x∂x)p resulting in

Zν(x) = cx−Nf (Nf−1) det[(x∂x)l+j−2Iν(x)]. (135)

7.3

In this section we show that the QCD partition function for equal masses sat-
isfies a Toda lattice equation. This result and generalizations thereof were first

QCD partition function for equal masses.

Toda lattice equation
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obtained in [66]. The Toda lattice was originally introduced as a one dimen-
sional lattice in which neighboring atoms interact via a potential that depends
exponentially on the distance. The Hamiltonian equations of motion of this
system can be written in the form of the Toda lattice equation discussed below.
Because of the existence of a Lax pair, they have infinitely many constants of
motion. For a more elaborate discussion of the Toda lattice equation and the
relation to integrable systems, we refer to [29, 67, 68]. Several subsections
below are based on the paper by Forrester and Witte [69].

We all know how to expand a the determinant ma-
trix with respect to its co-factors given by

Cij =
∂

∂Aij

detA. (136)

What is less known is that there exists a remarkable identity that relates co-
factors to the double co-factors defined by

Cij;pq =
∂2

∂Aij∂Apq

det A. (137)

This identity, which is known as the Sylvester identity [70], is given by

CijCpq − CiqCpj = detACij;pq. (138)

For example, it holds for a 2 × 2 matrix with i = j = 1 and p = q = 2.

We apply the Sylvester identity to the determinant
that appears in the partition function (135). For i = j = Nf − 1 and p = q =
Nf we obtain

CNf−1,Nf−1CNf ,Nf
− CNf−1,Nf

CNf ,Nf−1 = detACNf−1,Nf−1;Nf ,Nf
, (139)

with matrix A given by

Ajk ≡ (x∂x)l+j−2Iν(x). (140)

The derivative of a determinant is equal to the sum of determinants with one
of the rows replaced by its derivatives, or is equal to sum of the determinants
with one of the columns replaced by its derivative (in both cases we have in
total Nf terms). For the matrix A only differentiating the last row or column
gives a nonzero result. This allows us to rewrite the co-factors as derivatives
of det A. In particular, we find

CNf−1,Nf
= −x∂x detANf−1, CNf ,Nf−1 = −x∂x detANf−1,

CNf ,Nf
= detANf−1, CNf−1,Nf−1 = (x∂x)2 det ANf−1.

CNf−1,Nf−1;Nf ,Nf
= detANf−2. (141)
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To obtain the second last identity we first differentiate the columns and then
the rows. Inserting this in (139) we find

(x∂x)2 log det ANf−1 =
det ANf

detANf−2

det2ANf−1

. (142)

Next we substitute the relation between detANf
and the partition function

detANf
=

1

c
xNf (Nf−1)Z

Nf
ν (x). (143)

The prefactor contributes a factor x2 to the r.h.s. of (142) but does not con-
tribute to its l.h.s.. After raising Nf by 1 we obtain the celebrated Toda lattice
equation [22, 65]

(x∂x)2 log Z
Nf
ν (x) = cx2 Z

Nf +1
ν Z

Nf−1
ν

[Z
Nf
ν (x)]2

. (144)

By performing the U -integral in the partition function for equal masses

ZNf ,ν(x) =

∫

U∈U(Nf )
dUdetνUe

x
2
Tr(U+U−1), (145)

by a saddle point approximation including the Gaussian fluctuations we obtain
the large x limit

Z
Nf
ν (x) ∼ eNf x

xN2
f /2

. (146)

Using this result to normalize the partition function we find that c = Nf .

7.4

The partition function (145) can be obtained from the “double” scaling limit
of the random matrix partition function

ZRMT
Nf ,ν (x) =

∫ N∏

k=1

[dλkλ
2ν+1
k (λ2

k + m2)Nf ]mνNf |∆({λ2
l })|2e−

NΣ2

2

P
l λ2

l .

(147)

where x = mNΣ is kept fixed for N → ∞. Using x2
k = λ2

kΣ
2N2 + x2 as

new integration variables, we obtain in this limit

ZRMT
Nf ,ν (x) =

∏

k

[

∫ ∞

x2

dx2
k(x

2
k − x2)νx

2Nf

k ]xνNf ex2/4e−
P

k x2
k/2N

≡ xνNf ex2/4EN ([0, s = x2], Nf , ν). (148)

Painlevé system
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EN ([0, s = x2], Nf , ν) can be interpreted as the probability that there are no
eigenvalues in the interval [0, x2] for the joint probability distribution given by
the integrand of (148). For ν = 0 this is the probability of the partition function
with topological charge Nf and no flavors. If we introduce σ(t) by

EN ([0, s], Nf , ν) = e−
R s
0

dt
t

(σ(t)+ 1
2
ν(Nf +ν)), (149)

then the function σ(t) satisfies the Painlevé equation [69]

(tσ′′)2 − (N2
f − ν2)(σ′)2 + σ′(4σ′ − 1)(σ − tσ′) − ν2

16
= 0. (150)

The boundary conditions for this differential equation follow from the asymp-
totic behavior of the partition function (145). Using (146) we find for the large
x behavior of EN ([0, s = x2, Nf , ν)

EN ([0, s = x2, Nf , ν) ∼ x−N2
f /2−νNf eNf x−x2/4, (151)

so that the large-s behavior of σ(s) is given by

σ(s) ∼ Nf

2

√
s +

s

4
− ν2

2
+

N2
f

4
. (152)

This Painlevé equation can be derived from the equations of motion of the
Hamiltonian [69]

tH = q2p2 − (q2 + (Nf + ν)q − t)p + Nfq (153)

with the identification

σ(t) = − (tH)|t→ t
4
− 1

2
(Nf + ν)ν +

t

4
. (154)

For example, we have the equations of motion

(tH)′ = p, (tH)′′ = p′ = −∂H

∂q
, tq′ =

∂tH

∂p
. (155)

Such Hamiltonians play an important role in the theory of exactly solvable
models. Hamiltonians with different values of ν and Nf are connected by
a Backlund transformation. This is a canonical transformation together with
(ν,Nf ) → (ν̄, N̄f ) such that, in the new variables, the same Painlevé equation
is satisfied. In our case we have the Backlund transformation (at fixed ν)

T : Nf → Nf + 1,

HNf
→ HNf+1 = HNf

+ qNf
− qNf

pNf
,

qNf
→ qNf+1,

pNf
→ pNf +1. (156)
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Below we do not need the explicit transformation rules of qNf
and pNf

, but of
the inverse transformation of qNf

(pNf
− 1) which is given by

T−1qNf
(pNf

− 1) → −qNf
(pNf

− 1) + Nf + ν − Nf

pNf

. (157)

If we define the τ -function by

τNf
= e

R t
0 HNf

dt
, (158)

we can easily derive the equalities

t∂t log
τNf−1τNf +1

τ2
Nf

= tHNf−1 − tHNf
+ tHNf+1 − tHNf

,

= −T−1(qNf
(1 − pNf

) + (qNf
(1 − pNf

),

= t∂t log ∂t[tHNf
],

= t∂t log ∂t[t∂t log τNf
]. (159)

To derive the second last equality we have used the inverse Backlund transfor-
mation and the Hamilton equations (155). Integrating this equation once and
putting the integration constant equal to zero we find the Toda lattice equation

(t∂t)
2 log τNf

= t
τNf +1τNf−1

τ2
Nf

. (160)

Solutions of the Painlevé equation. The probability E([0, s], Nf , ν) is
related to the partition function (145) by

E([0, s], Nf , ν) = s−Nfν/2e−s/4ZNf ν(
√

s). (161)

For Nf = 0 the partition function is normalized to 1 so that

σNf =0(s) =
s

4
− ν2

2
. (162)

Indeed this is a solution of the PIII Painlevé equation (150).
For Nf = 1 we have that

E([0, s], Nf = 1, ν) = s−ν/2e−s/4Iν(
√

s) = e−
R s
0

dt
t

(σ(t)+ 1
2
ν(1+ν)), (163)

resulting in another solution of (150)

σNf=1(s) =
s

4
− ν2

2
− s

d

ds
log Iν(

√
s). (164)
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For x → 0 the modified Bessel function behaves as Iν(x) ∼ xν so that the t-
integral in (163) is well-behaved for t → 0. Only recursion relations of Bessel
functions are required to show that (163) is a solution of the Painlevé equa-
tion. Since (−1)νKν(x) satisfies the same recursion relations as Iν(x) this
provides us with another solution of the the Painlevé equation. This solution
corresponds to the partition function with Nf = −1 where

E([0, s], Nf = −1, ν) = sν/2e−s/4Kν(
√

s),= e−
R s
0

dt
t

(σ(t)+ 1
2
ν(−1+ν)), (165)

and satisfies the boundary condition with Nf = −1.

The natural interpretation of Nf = −1
is as a bosonic flavor. In this section we will derive the low energy limit of the
QCD partition function for Nf bosonic flavors with equal masses. We already
have seen in section 3.3 that the Goldstone manifold for n bosonic quarks is
given by Gl(n)/U(n). Using the same invariance arguments as before one
obtains the low-energy effective partition function

Zν
−n =

∫

Q∈Gl(n)/U(n)
detν(Q)e

1
2
V ΣTr M(Q+Q−1). (166)

In this case Q can be diagonalized as Q = Udiag(esk)U−1, so that an eigen-
value representation of this partition function is given by [71]

∫ ∏

k

dsk

∏

k

eνsk
∏

k<l

(esk − esl)(e−sk − e−sl)ex
P

k cosh sk . (167)

The Vandermonde determinant can be written as
∏

k<l

(esk − esl) = det[epsq ]0≤p≤n−1, 1≤q≤n (168)

and a similar expression for sk → −sk. By expanding the two determinants the
integrals can be written as modified Bessel functions which can be combined
into a determinant as follows [71]

Z−n(x) = c−n det[Kν+k+l(x)]0≤k,l≤n−1. (169)

From the observation that (−1)νKν(x) and Iν(x) satisfy the same recursion
relations, and that the factor (−1)ν does not affect the determinant, (169) can
be rewritten as the τ -function

Z−n(x) =
c−n

xn(n−1)
det[(x∂x)k+1Z−1(x)]0≤k,l≤n−1. (170)

with Z−1(x) = Kν(x). The bosonic partition function can also be analyzed
along the same lines as the fermionic partition function. On the other hand
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this derivation can be simply modified to obtain the partition function for Nf

fermionic flavors with equal mass.
The bosonic partition function thus satisfies the same Toda lattice equation

as the fermionic partition function. The derivative of the resolvent The semi-
infinite hierarchies are connected by

lim
n→0

1

n
(x∂x)2 log Zν

n(x). (171)

which is related to a derivative of the resolvent.

7.5

The resolvent can be obtained from the replica limit of the fermionic parti-
tion function

G(z) = lim
n→0

1

n
log Zν

n(z). (172)

If we take the replica limit of the fermionic (n < 0) or bosonic (n > 0)
partition functions directly, we will obtain a result that differs from the super-
symmetric calculation. These problems can be avoided if the take the replica
limit of the Toda lattice equation. With the normalization Z0(x) = 1 we obtain
the relation

x∂xxG(x) = 2x2Zν
1 (x)Zν

−1(x). (173)

Inserting the expressions for Z1 and Z−1 we find [23]

G(x) =
ν

x
+ x(Kν(x)Iν(x) + Kν−1(x)Iν+1(x)), (174)

which agrees with the result obtained by the supersymmetric method (104).
This result has also been derived from the solution of the Painlevé equation
(150) for n → 0 [24].

The validity of the replica limit of the Toda lattice equation can be proved
by extending to Toda lattice hierarchy to include an additional spectator boson
with mass y and using the identity [72]

lim
n→0

1

n
(x∂x)2 log Zν

n(x) = lim
y→x

x∂x(x∂x + y∂y) log Z1,−1(x, y). (175)

7.6

We have two possibilities for the generating function of the two-point func-
tion of the Gaussian Unitary Ensemble: a fermionic generating function or a
bosonic generating function. The fermionic (bosonic) generating function for

Replica limit of the Toda lattice equation

Replica limit for the GUE two-point function
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the two-point function is defined by

Zn(x, y) =

∫
dHP (H)detn(x + iε + H)detn(y − iε + H), (176)

with n > 0 (n < 0). We will consider the microscopic limit where π(x −
y)Nρ(x) ≡ r is kept fixed for N → ∞. In that case the two-point function in
the center of the spectrum only depends on r and is given by

R2(r) = − lim
n→0

1

n2
∂2

r Zn(ir), (177)

both in the fermionic and the bosonic case. In an eigenvalue representation of
the Goldstone fields the microscopic limit of the generating function Zn(ir)
can be written as [21, 37]

Zn(r) =

∫ 1

−1

∏

k

duk

∏

k<l

(uk − ul)
2eir

P
k uk . (178)

This partition (178) can be written as a τ -function. The first step is to expand
the Vandermonde determinant

Zn(r) =

∫ 1

−1

∏

k

duk

∑

σπ

sg(σπ)u
σ(1)+π(1)
1 · · · uσ(n)+π(n)

n eir
P

k uk . (179)

Next we use that
∫ 1

−1
duku

a
ke

iruk = (∂ir)
aZ1(r), (180)

which results in [73]

Zn(r) = n![det(∂ir)
i+jZ1(x)]0≤i,j≤n−1. (181)

The partition function Z1(x) is given by

Z1(r) =

∫ 1

−1
dueiru. (182)

The microscopic limit of bosonic partition function can be rewritten sim-
ilarly. The main difference is the convergence requirements of the bosonic
integrals which are essential for the structure of the Goldstone manifold. In an
eigenvalue representation of the Goldstone fields we find [21]

Z−n(r) =

∫ ∞

1

∏

k

duk

∏

k<l

(uk − ul)
2eir

P
k uk . (183)
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This partition function can also be written as a τ -function. By expanding the
Vandermonde determinant we can express this generating function as a deter-
minant of derivatives

Z−n(r) = n![det(∂ir)
i+jZ−1]0≤i,j≤n−1, (184)

with Z−1(r) given by

Z−1(r) =

∫ ∞

1
dueiru. (185)

Because of the derivative structure of the partition function, we can again
use the Sylvester identity to derive a Toda lattice equation. In this case we find

∂2
ir log Zn(x) = n2 Zn+1(r)Zn−1(r)

[Zn(r)]2
, (186)

where the factor n2 follows from the choice of the normalization constants.
We have made this choice because the left hand side is proportional to n2. The
two-point correlation is given by the replica limit of (186)

R2(r) = − lim
n→0

1

n2
∂2

r log Zn(r) = Z1(r)Z−1(r)

=

∫ 1

−1
dueiux

∫ ∞

1
eiux = 2i

sin x

x

eix

x
, (187)

which is the correct analytical result for the two-point function. This deriva-
tion explains the factorization of the two-point function into a compact and a
non-compact integral which characterizes the result obtained by a supersym-
metric calculation [74]. The fermionic partition functions, the bosonic partition
functions and the super-symmetric partition function form a single integrable
hierarchy which are related by the Toda lattice equation [23]. A closely related
way to derive the two-point function of the GUE is to take the replica limit
of the corresponding Painlevé equation. For a discussion of this approach we
refer to [24] which preceded our work [23] on the Toda lattice.

8.

In this Chapter we study the quenched microscopic spectrum of the QCD
Dirac operator at nonzero chemical potential when the Dirac operator is non-
Hermitian with eigenvalues scattered in the complex plane. Using the replica
limit of the Toda lattice equation we obtain the exact analytical result for the
microscopic spectral density [25].

QCD at finite baryon density
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8.1

The average spectral density of a non-Hermitian operator is given by

ρ(λ) = 〈
∑

k

δ2(λ − λk)〉, (188)

and the average resolvent is defined by

G(z) =

〈
∑

k

1

iλk + z

〉
. (189)

Using that ∂z∗(1/z) = πδ2(z) we easily derive

∂z∗G(z)|z=λ = πρ(λ). (190)

The resolvent can be interpreted as the electric field in the plane at point z from
charges located at the position of the eigenvalues. For example, Gauss law is
given by

∮

C
G(z)dz = 2πiQ, (191)

where Q is the number of eigenvalues enclosed by C .

8.2

The obtain a better understanding of the resolvent for a non-Hermitian ran-
dom matrix ensemble, we first consider the Ginibre ensemble [75] defined by
the probability distribution

ρ(C) = e−NTrCC†
, (192)

with C a complex N ×N matrix. The eigenvalues of C are given by the solu-
tions of the secular equation det(C − λk) = 0. If all eigenvalues are different,
the matrix C can be decomposed as

C = V ΛV −1, (193)

where V is a similarity transformation and Λ = diag(λ1, · · · , λN ). The joint
eigenvalue distribution of the Ginibre ensemble is obtained by using the de-
composition

C = UTU−1, (194)

with U a unitary matrix and T an triangular matrix with the eigenvalues of C
on the diagonal. After integrating out the upper triangular matrix elements we
obtain (see the lectures of Zabrodin [76] for a derivation),

ρ({λk} = |∆({λk})|2e−N
P

k |λk|2. (195)
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This distribution can be interpreted as repulsive charges in the plane balanced
by an external force N |z|. The resolvent is equal to the electric field of the
eigenvalues. For an equilibrium distribution we have G(z) = N |z|. Using that
the eigenvalue density is spherically symmetric, we find from Gauss law

2πr|G| = 2π

∫ r

0
ρ(r′)dr′, (196)

so that ρ(r) = N/π. Because the total number of eigenvalues is equal to N ,
they are located inside the circle |z| = 1. The resolvent is thus given by

G(z) = Nz∗θ(1 − |z|) +
N

z
θ(|z| − 1). (197)

8.3

The QCD partition function at nonzero chemical potential µ is given by

ZQCD =
∑

k

e−β(Ek−µNk), (198)

where Ek is the energy of the state, and Nk is the quark number of the state.
At zero temperature (β → ∞) the partition function does not depend on µ for
µ < mN/NN , where N is the particle with the smallest value of mN/NN .
For QCD N is the nucleon with quark number NN = 3. This implies that the
chiral condensate does not depend on µ for µ < mN/NN .

The QCD partition function can be written as a Euclidean path integral with
the fermionic part of the Lagrangian density defined by

L = ψ̄Dψ + mψ̄ψ + µψ̄γ0ψ. (199)

with D the anti-Hermitian Dirac operator. Since µγ0 is Hermitian, the Dirac
operator as a whole is non-Hermitian. As a consequence, the eigenvalues are
scattered in the complex plane [77]. The fermion determinant is in general
complex. This means that it is not possible to study the QCD partition function
by means stochastic methods which severely limits our knowledge of QCD at
nonzero chemical potential.

The question we wish to address is if there is a domain where the fluctu-
ations of the Dirac eigenvalues are universal and can be obtained from a ran-
dom matrix partition function with the global symmetries QCD, or equivalently
from a chiral Lagrangian. In this domain we will calculate the resolvent and
the spectral density from the replica limit of the Toda lattice equation [25, 26].

The quenched
spectral density is given by the replica limit [20, 79, 80]

ρquen(z, z∗) = lim
n→0

1

πn
∂z∂z∗ log Zn(z, z∗), (200)

QCD at nonzero chemical potential

Generating function for the quenched spectral density.
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with generating function given by

Zn(z, z∗) = 〈detn(D + µγ0 + z)detn(−D + µγ0 + z∗)〉. (201)

The product of the determinants in (201) can be written as the determinant of
[81, 82]




id + µ 0 z 0
0 id − µ 0 z∗

z 0 id† + µ 0
0 z∗ 0 id† − µ



 ≡
(

id + µ1 MRL

MLR id† + µ2

)

(202)

where we have used the decomposition of the Dirac operator given in (11). We
observe that the U(2n) × U(2n) flavor symmetry is broken by the chemical
potential term and the mass term. Invariance is recovered by transforming the
mass term as in the case of zero chemical potential (see (46)) and the chemical
potential term by a local gauge transformation [83]. For the chemical potential
matrices the latter transformation is simply given by

µ1 → URµ1U
−1
R , µ2 → ULµ2U

−1
L . (203)

The low-energy limit of quenched QCD should have the same transformation
properties. In the domain µ � 1/L and zΣ � F 2/L2 we only have to
consider the zero momentum modes. Using that the Goldstone fields transform
as U → URUU−1

L we can write down the following invariants to first order in
the quark mass and to second order in the chemical potential

Trµ2
k, TrUµ1U

−1µ2, TrMRLU, TrMLRU. (204)

The low energy effective partition function is therefore given by

Zn,ν(z, z∗) =

∫

U(2n)
dUdetνU e−

F2µ2V
4

Tr[U,B][U−1,B]+ΣV
2

TrM(U+U−1), (205)

where

B =

(
1n 0
0 −1n

)
, M =

(
z1n 0
0 z∗1n

)
. (206)

The partition function (205) can be obtained from
the large N limit a random matrix model with the global symmetries of the
QCD partition function. For ν = 0 he model is defined by an integral over
N/2 × N/2 complex matrices [14, 84, 80],

Z(mf , µ) =

∫
dW

Nf∏

f=1

det(D(µ) + mf )e−NΣ2TrWW †
. (207)

QCD, Chiral Random Matrix Theory and Integrability

Random matrix model.
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The Dirac matrix has the structure

D(µ) =

(
0 iW + µ

iW † + µ 0

)
. (208)

For QCD with three or more colors in the fundamental representation, the ma-
trix W is complex (βD = 2). One can also introduce random matrix ensembles
with βD = 1 or βD = 4 by choosing the matrix elements of W real or quater-
nion real, respectively [85].

An alternative random matrix model [27] is obtained by replacing the iden-
tity matrix that multiplies µ by a complex matrix with the same distribution as
W . This random matrix model is in the same universality class but turns out to
be mathematically simpler. In particular, the joint eigenvalue distribution has
been derived [27] which makes it possible to calculate correlation functions by
the orthogonal polynomial method.

The macroscopic spectral density of the partition
function (205) can be easily obtained by means of a saddle point approximation
[82]. Using an Ansatz that is diagonal in replica space,

U =

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
, (209)

the partition function is given by

Zn = enV [2µ2F 2 sin2 θ+Σ(z+z∗) cos θ]. (210)

The extrema are at

cos θ = 1, or cos θ =
Σ(z + z∗)

4F 2µ2
. (211)

The critical value of µ is at the point where the two saddle points coincide

µ2
c =

Σ|z + z∗|
4F 2

. (212)

The partition function at the saddle point is given by

µ < µc : Zn = enV Σ(z+z∗),

µ > µc : Zn = enV (2µ2F 2+Σ2(z+z∗)2/8F 2µ2). (213)

For the resolvent and the spectral density we then find

µ < µc : Gquen(z) = V Σ, ρquen(z) = 0,

µ > µc : Gquen(z) =
V Σ2(z + z∗)

4µ2F 2
, ρquen(z) =

Σ2V

4µ2F 2
. (214)

The eigenvalues are located inside a strip of width 4F 2µ2/Σ.

Mean field analysis.
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8.4

The microscopic spectral density cannot be obtained from a mean field anal-
ysis. The assumption in the derivation in the previous section was that saddle
point is proportional to the identity in replica space, so that the replica limit
can be obtained from the calculation with one replica. The generating function
for the microscopic spectral density depends in a nontrivial way on the number
of replicas which, as we have seen before, can be obtained from the replica
limit of a Toda lattice equation. In this subsection we closely follow [25]. The
starting point is a remarkable integration formula to be discussed next.

By decomposing a U(2n) matrix as

U =

(
u1

u2

)(
v1

v2

)( √
1 − b2 b

b −
√

1 − b2

)(
v†1

v†2

)
, (215)

with u1, u2, v1 ∈ U(n), v2 ∈ U(n)/Un(1) and b a diagonal matrix, the fol-
lowing integration formula can be proved [25]

∫

U(2n)
dUdetνUe

1
2
Tr[M(U+U−1]+

P
p apTr[(UBU−1B)p]

=
cn

(xy)n(n−1)
det[(x∂x)k(y∂y)

lZ1,ν(x, y)]0≤k,l≤n−1, (216)

where cn is an n-dependent constant and

Z1,ν(x, y) =

∫ 1

0
λdλIν(λx)Iν(−λy)e2

P
p ap cos(2p cos−1 λ). (217)

Using the inte-
gration formula (216) for p = 1 we find that the zero momentum partition
function Zν

n(z, z∗) (see eq. (205)) can be written as

Zn,ν(z, z∗) =
cn

(zz∗)n(n−1)
det[(z∂z)

k(z∗∂z∗)
lZ1,ν(z, z∗)]0≤k,l≤n−1, (218)

where

Z1,ν(z, z∗) =

∫ 1

0
λdλe−2V F 2µ2(λ2−1)|Iν(λzV Σ)|2. (219)

By applying the Sylvester identity to the determinant in (218) for i = j = n−1
and p = q = n and expressing the cofactors as derivatives, we find a recursion
relation that can be written in the form of the Toda lattice equation

z∂zz
∗∂z∗ log Zν

n(z, z∗) =
πn

2
(zz∗)2

Zν
n+1(z, z∗)Zν

n−1(z, z∗)
[Zν

n(z, z∗)]2
. (220)
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The microscopic spectral density

Toda lattice equation at nonzero chemical potential.

Integration formula.
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For the spectral density we find the simple expression (Z0,ν(z, z∗) = 1)

ρquen(z, z∗) = lim
n→0

1

πn
∂z∂z∗ log Zn,ν(z, z∗) =

zz∗

2
Z1,ν(z, z∗)Z−1,ν(z, z∗).

(221)

What remains to be done is to calculate the bosonic partition function for n =
−1 which will be completed in the next subsections.

In this subsection we evaluate the low-
energy limit of the QCD partition function at nonzero chemical potential for
one bosonic quark and one conjugate bosonic quark. We closely follow [25].
Because of convergence requirements, the inverse determinants of nonhermi-
tian operators have to regulated. This is achieved by expressing them as the
determinant of a larger Hermitian operator [81]

det−1

(
z id + µ

id† + µ z

)
det−1

(
z∗ −id + µ

−id† + µ z∗

)

= lim
ε→0

det−1





ε 0 z id + µ
0 ε id† + µ z
z∗ −id + µ ε 0

−id† + µ z∗ 0 ε



 (222)

=

∫
exp[i

N/2∑

j=1

φj ∗
k





ε z id + µ 0
z∗ ε 0 id − µ

−id† + µ 0 ε −z∗

0 −id† − µ −z ε





kl

φj
k].

The mass matrices are given by

ζ1 =

(
ε z
z∗ ε

)
and ζ2 =

(
ε −z∗
−z ε

)
= −Iζ1I. (223)

with I ≡ iσ2. For the random matrix model (208) we have that d = W .
The Gaussian integral over W results in the 4-boson term exp[−2TrQ1 Q2/N ]
with

Q1 ≡
(

φ∗
1 · φ1 φ∗

1 · φ2

φ∗
2 · φ1 φ∗

2 · φ2

)
, Q2 ≡

(
φ∗

3 · φ3 φ∗
3 · φ4

φ∗
4 · φ3 φ∗

4 · φ4

)
, (224)

and we have used the notation φ∗
k · φl =

∑N/2
i=1 φi ∗

k φi
l . Instead of the usual

Hubbard-Stratonovitch transformation, we linearize the 4-boson interaction
term by the Hermitian matrix δ function

δ(Qi − Qi) =
1

(2π)4

∫
dFe−iTrF (Qi−Qi), (225)

The bosonic partition function.
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where the integral is over Hermitian matrices F . We thus find the identity

exp

[
− 2

N
TrQ1 Q2

]
∼
∫

dQ1dQ2

∫
dFdGeTr[−iF (Q1−Q1)iG(Q2−Q2)− 2

N
Q1Q2].

(226)

The integral over the φk is uniformly convergent in F and G which justifies the
interchange of the order of the integrals. This results in the partition function

Z−1 =

∫
dQ1dQ2

∫
dFdGeTr[−i N

2
FQ1−i N

2
GQ2+i N

2
ζT
1 (Q1−IQ2I)−N

2
Q1Q2]

×det−
N
2

(
ε + F µσ3

µσ3 ε + G

)
, (227)

where we have used a block notation and the mass matrices (223). We have
also simplified this integral by changing integration variables according to
F → F − ζT

1 and G → G + IζT
1 I and Qi → NQi/2, i = 1, 2. For reasons of

convergence we have kept the infinitesimal increments inside the determinant.
In the weak nonhermiticity limit, where µ2N is kept fixed for N → ∞, the
determinant can be approximated by

det−
N
2

(
ε + F µσ3

µσ3 ε + G

)
= det−

N
2 (ε + F )det−

N
2 (ε + G) (228)

× exp

[
Nµ2

2

1

ε + F
σ3

1

ε + G
σ3

]
(1 + O

(
1

N

)
).

The F and G variables in the µ2N term can be replaced the saddle point values
of F and G at µ = 0 given by (ε+F )Q1 = i and (ε+G)Q2 = i. The remaining
integrals over F and G are Ingham-Siegel integrals given by [86]

∫
dFdet−n(ε + F )eiTrQF ∼ θ(Q)detn−p(Q)e−iεTrQ, (229)

where the integral is over p×p Hermitian matrices, Imε < 0, and θ(Q) denotes
that Q is positive definite. These manipulations result in

Z−1(z, z∗;µ) =

∫
dQ1dQ2θ(Q1)θ(Q2)det

N
2
−2(Q1Q2) (230)

×eTr[i N
2

ζT
1 (Q1−IQ2I)−N

2
Q1Q2−N

2
µ2Q1σ3Q2σ3].

In the limit N → ∞ the integrals over the massive modes can be performed
by a saddle point approximation. The saddle point equations are given by

Q−1
1 − Q2 = 0, Q−1

2 − Q1 = 0. (231)
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Both equations can be rewritten as

Q1 = Q−1
2 , (232)

and therefore only four of the modes, which we choose to be Q2, can be in-
tegrated out by a saddle-point approximation. The quadratic fluctuations give
rise to a factor π2/det2Q1. The integral over the remaining modes has to be
performed exactly. We thus arrive at the partition function [25]

Z−1(z, z∗;µ) =

∫
dQ1

det2Q1

θ(Q1)e
Tr[i N

2
ζT
1 (Q1−IQ−1

1 I)−N
2

µ2Q1σ3Q−1
1 σ3]. (233)

Before evaluating this integral, we rederive this partition function based on the
symmetries of the QCD partition function.

Symmetries of Z−1(µ). For µ = 0 and ζ1 = ζ2 = 0 the symmetry of the
partition function (222) are the Gl(2) × Gl(2) transformations,

(
φ1

φ2

)
→ U1

(
φ1

φ2

)
,

(
φ∗

1

φ∗
2

)
→
(

φ∗
1

φ∗
2

)
U−1

2 ,

(
φ3

φ4

)
→ U2

(
φ3

φ4

)
,

(
φ∗

3
φ∗

4

)
→
(

φ∗
3

φ∗
4

)
U−1

1 , (234)

where we have disregarded convergence. This symmetry can be extended to
nonzero mass or chemical potential if we adopt the transformation rules

ζ1 → U2ζ1U
−1
1 , ζ2 → U1ζ2U

−1
2 ,

µ1 → U2µ1U
−1
2 , µ2 → U1µ2U

−1
1 , (235)

where µ1 is the chemical potential matrix that is added id and µ2 is the chem-
ical potential matrix that is added to −id†. These matrices are introduced for
the sake of discussing the transformation properties of the partition function
(222) and will ultimately be replaced by their original values µ1 = µ2 = µσ3.
The chiral symmetry is broken spontaneously to Gl(2) by the chiral conden-
sate. Because the bosonic integral has to converge, the Goldstone manifold is
not Gl(2) but rather Gl(2)/U(2), i.e. the coset of positive definite matrices as
in the case of zero chemical potential. Under a Gl(2) × Gl(2) transformation
the Goldstone fields transform as

Q → U1QU−1
2 . (236)

The low energy effective partition function should have the same transforma-
tion properties as the microscopic partition function (222). To second order in
µ and first order in the mass matrix we can write down the following invariants

Trζ1Q
−1, Trζ2Q, TrQµ1Q

−1µ2, Trµ1µ2. (237)
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We also have the discrete symmetry that the partition function is invariant un-
der the interchange of ζ1 and ζ2. This symmetry implies that the coefficients
of the two mass terms in the effective partition function are the same. Using
that the integration measure on positive definite Hermitian matrices is given by
dQ/det2Q, we finally arrive at the effective partition function

Z−1,ν(z, z∗) =

∫

Q∈Gl(2)/U(2)

detν(Q)dQ

det2(Q)
e−

F2µ2V
4

Tr[Q,B][Q−1,B]+ iΣV
2

Tr(ζ1Q+ζ2Q−1),

(238)

The partition function (233) is recovered after making the identification V →
N , Σ → 1 and F 2 → 1 and Q → QT .

To evaluate the integral (238) we use
the parameterization

Q = et

(
er cosh s eiθ sinh s

e−iθ sinh s e−r cosh s

)
. (239)

where

r ∈ 〈−∞,∞〉, s ∈ 〈−∞,∞〉, t ∈ 〈−∞,∞〉, θ ∈ 〈0, π〉 . (240)

The Jacobian relating the measures dQ/det2Q and drdsdtdθ is given by

J = 4e4t cosh s sinh s. (241)

Wefirstperform the integral over r, which gives a factor 2K0(2Nεcosh s cosh t)
with leading singularity given by ∼ − log ε. This factor is absorbed in the nor-
malization of the partition function. Then the integral over θ gives a Bessel
function. Introducing u = sinh s as new integration variable we find [25]

Zν
−1(z, z∗) = C−1

∫ ∞

−∞
dt

∫ ∞

0
due2νtJ0(2V u(x2 cosh2 t + y2 sinh2 t)1/2)

×e−µ2F 2V (1+2u2). (242)

To do the integral over u we use the known integral
∫ ∞

0
dxxa+1e−αx2

Ja(βx) =
βa

(2α)a+1
e−β2/4α. (243)

This results in

Z−1,ν(z, z∗) =
C−1e

−V µ2F 2

4µ2F 2V

∫ ∞

−∞
dte2νte

−V (x2 cosh2 t+y2 sinh2 t)

2µ2F2 .

(244)

QCD, Chiral Random Matrix Theory and Integrability
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Using that cosh2 t = 1
2 + 1

2 cosh 2t and sinh2 t = −1
2 + 1

2 cosh 2t, the integral
over t can be rewritten as a modified Bessel function resulting in [25]

Z−1,ν(z = x + iy, z∗) = C−1 e
V Σ2(y2−x2)

4µ2F2 Kν

(
V Σ2(x2 + y2)

4µ2F 2

)
. (245)

The final result for
the quenched spectral density is obtained by substituting the partition functions
Zν

1 (z, z∗) and Z−1,ν(z = x + iy, z∗) in expression (221) obtained from the
replica limit of the Toda lattice equation. We find,

ρquen(x, y) =
V 3Σ4

2πF 2µ2
(x2 + y2)e

V Σ2(y2−x2)

4µ2F2 Kν

(
V Σ2(x2 + y2)

4µ2F 2

)

×
∫ 1

0
λdλe−2V F 2µ2λ2)|Iν(λzV Σ)|2. (246)

The normalization constant has been chosen such that the µ → 0 limit of
ρquen(x, y) for large y is given by ΣV/π (see below).

In the limit Re(z)Σ/µ2F 2 � 1 the upper limit of the integral in (246) can
be extended to infinity. Using the known integral

∫ ∞

0
λdλe−2V F 2µ2λ2 |Iν(λzV Σ)|2 =

e
(z2+z∗ 2)Σ2V

8µ2F2

4µ2F 2V
Iν

(
zz∗V Σ2

4µ2F 2

)
, (247)

the spectral density can be expressed as

ρquen(x, y) =
2

π
u2zz∗Kν(zz∗u)Iν(zz∗u) with u =

V Σ2

4µ2F 2
. (248)

Therefore, the spectral density becomes a universal function that only depends
on a single parameter u. This parameter can be rewritten in a more physical
way as u = πρasym(x, y). For the dimensionless ratio we obtain

ρquen(x, y)

ρasym(x, y)
= 2uzz∗Kν(zz∗u)Iν(zz∗u), (249)

which is universal combination that depends only on a single universal combi-
nation zz∗u. (This result was obtained in collaboration with Tilo Wettig).

In the thermodynamic limit the Bessel functions can be approximated by
their asymptotic limit. This results in

ρquen(x, y) =
V 2Σ2

2πFµ
√

2πV

∫ 1

0
dλe

−2V F 2µ2(λ− |x|Σ

2F2µ2 )2
. (250)

The dirac spectrum at nonzero chemical potential.
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For V → ∞ the integral over λ can be performed by a saddle point approxi-
mation. If the saddle point is outside the range [0, 1] the integral vanishes for
V → ∞. We thus find for the spectral density

ρquen(x, y) =
V Σ2

4πµ2F 2
for |x| <

2F 2µ2

Σ
. (251)

and ρquen(x, y) = 0 outside this strip. This result is in agreement with the
mean field analysis [82] of the effective partition function given in section 8.3.
For the integrated eigenvalue density we find

∫ ∞

−∞
dxρquen(x, y) =

ΣV

π
(252)

in agreement with the eigenvalue density at µ = 0.

9.

In quenched QCD the chiral condensate G(m) ∼ m in the region where
the eigenvalues are located. We have argued before that in full QCD the chiral
condensate does not depend on m for µ < mN/NN . We thus have

G(m) ≡ 〈
∑

k

1

m + iλk

∏

l

(iλl + m)Nf 〉 = G(m → 0) for µ < mN/NN .

(253)
The conclusion is that the presence of the fermion determinant completely al-
ters the vacuum structure of the theory. The question we wish to address is
how we can understand this based on the spectrum of the QCD Dirac operator.
For simplicity we only consider the case of Nf = 1.

The average spectral density in full QCD is defined by

ρfull(x, y, µ) = 〈
∑

k

δ2(x + iy − λk) det(D + m + µγ0)〉. (254)

The low-energy limit of the generating function for the spectral density can
again be written as a τ -function [26]. The spectral density is then obtained
from the replica limit of the corresponding Toda lattice equation. The result is

ρfull(x, y, µ) =
V 3(x2 + y2)Σ4

2πµ2F 2
e

V (y2−x2)Σ2

4µ2F2 K0(
V (x2 + y2)Σ2

4µ2F 2
(255)

×
∫ 1

0
tdte−2V µ2F 2t(I∗0 (zΣV t) − I∗0 (zΣV )I0mV Σt

I0(mV Σ)
)I0(zΣV t).

It was first obtained from the random matrix model [27] using the method
of complex orthogonal polynomials developed in [87, 88]. To appreciate this
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result, we considers its asymptotic expansion for V → ∞. For m = 0 and
x > 0 we can derive the asymptotic result for difference

ρquen(x, y, µ) − ρfull(x, y, µ) ∼
√

zΣ

2µ3F 3
e

V z∗ 2Σ2

8µ2F2 −V x2Σ2

2µ2 ez∗ΣV . (256)

The behavior near the extremum at (x, y) = (4µ2F 2/3Σ, 0) is given by

ρquen(x, y, µ) − ρfull(x, y, µ) ∼ e
2
3
µ2F 2V e

2
3
iyΣV . (257)

We have oscillations on the scale 1/ΣV with an amplitude that diverges expo-
nentially with the volume [26]. In the thermodynamic limit, these oscillations
are visible in a domain where the real part of the exponent in (256) is positive.
This region is given by intersection of the the inside of the ellipses

3(x ± 4

3
µ2F 2Σ)2 + y2 =

16

3
µ4F 2Σ2. (258)

and the strip |x| < 2F 2µ2/Σ. At the mean field level this can be reinterpreted
as a region where Kaon condensation takes place [91, 92].

10. Conclusions

The existence of two formulations of QCD at low energy, first as a mi-
croscopic theory of quarks and gluons and second as an effective theory of
weakly interacting Goldstone bosons, imposes powerful constraints on either
of the theories. The effective theory is completely determined by the symme-
tries of the microscopic theory, and the mass dependence of the effective theory
imposes sum rules on the inverse Dirac eigenvalues. In particular this means
that any theory with the same symmetry breaking pattern and a mass gap will
be subject to the same constraints. The simplest microscopic theory is chiral
Random Matrix Theory.

However, more can be done than constraining the inverse Dirac eigenvalues
by sum rules. The key observation is that the generating function for the resol-
vent amounts to a partition function with additional flavors with a mass z equal
to the value for which the resolvent is calculated. Again we have a microscopic
theory and an effective theory with the same low energy limit. Because z is
a free parameter, it can always be chosen such that the Compton wavelength
of the corresponding Goldstone boson is much larger than the size of the box.
In this region the z dependence of the partition function is determined by the
mass term of the chiral Lagrangian which is a simple matrix integral.

To obtain the Dirac spectrum we have to quench the determinant corre-
sponding to z. This can be done in two ways: by the replica trick or by the
supersymmetric method. Although, the supersymmetric method is straightfor-
ward, the naive replica trick is technically somewhat simpler. The problem is
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that the naive replica trick does not give correct nonperturbative results. One
way out is if the dependence on the number of replicas n is known as an an-
alytical function of n around n = 0. It was argued by Kanzieper that the
n-dependence can be obtained from the solution of the Painlevé equation. The
other way out, which has been advocated in these lectures, is if the partition
function for n = 0 is related by a recursion relation to partition functions
with a nonzero integer number of flavors. The replica limit of this Toda lattice
equation gives us nonperturbative correlation functions. This is very efficient
formulation of the problem. The structure of the final answer already has the
factorized structure of the Toda lattice formulation. We could also say that the
supersymmetric partition function connects two semi-infinite hierarchies.

New results with the Toda lattice method were obtained for QCD at nonzero
chemical potential. In this case the low-energy effective partition functions are
also related by the Toda lattice equation. This made it possible to express the
microscopic spectral density as the product of the partition function with one
fermionic flavor and the partition function with one bosonic flavor. This result
has later been reproduced by RMT with the method of orthogonal polynomials.

More surprisingly the Toda lattice method also gives the correct result for
QCD at nonzero chemical potential with dynamical fermions. Because of the
phase of the fermion determinant, a breakdown of this method for this case
would not have been a surprise. However, the concept of integrability that also
reigns this case, is so powerful that replica limit can be taken in exactly the
same way as in the quenched case. The result for the spectral density shows
oscillations on the scale of 1/V and an amplitude that diverges exponentially
with V . This structure is necessary to obtain a nonzero chiral condensate in
the chiral limit.

The Toda lattice method has been applied to quite a few cases in the sym-
metry class β = 2 (see [24, 23, 89, 25, 26, 90]). Our conjecture is that all
microscopic correlation functions in this class can be obtained from the replica
limit of a Toda lattice equation. A much tougher problem is analysis of the
replica limit for the other Dyson classes. We are not aware of any progress on
this problem and encourage the reader to confront this challenge.
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Abstract In this paper I will describe some results that have been recently obtained in
the study of random Euclidean matrices, i.e. matrices that are functions of ran-
dom points in Euclidean space. In the case of translation invariant matrices one
generically finds a phase transition between a phonon phase and a saddle phase.
If we apply these considerations to the study of the Hessian of the Hamiltonian
of the particles of a fluid, we find that this phonon-saddle transition corresponds
to the dynamical phase transition in glasses, that has been studied in the frame-
work of the mode coupling approximation. The Boson peak observed in glasses
at low temperature is a remanent of this transition. We finally present some re-
cent results obtained with a new approach where one deeply uses some hidden
supersymmetric properties of the problem.

1. Introduction

In the last years many people have worked on the problem of analytically
computing the properties of Euclidean random matrices [1]-[15]. The problem
can be formulated as follows.

We consider a set of N points (xi) that are randomly distributed with some
given distribution.Two extreme examples are:

The x’s are random independent points with a flat probability distribu-
tion, with density ρ.

The x’s are one of the many minima of a given Hamiltonian.

In the simplest case of the first example, given a function f(x), we consider
the N × N matrix:

Mi,k = f(xi − xk) . (1)

The problem consists in computing the properties of the eigenvalues and of the
eigenvectors of M . Of course, for finite N they will depend on the instance
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of the problem (i.e. the actually choice of the x’s), however system to system
fluctuations for intensive quantities (e.g. the spectral density g(z)) disappear
when we consider the limit N → ∞ at fixed particle density ρ.

The problem is not new; it has been carefully studied in the case where the
positions of the particles are restricted to be on a lattice [16]. The case where
the particles can stay in arbitrary positions, that is relevant in the study of fluids,
has been less studied, although in the past many papers have been written on
the argument [1]-[15]. These off-lattice models present some technical (and
also physical) differences with the more studied on-lattice models.

There are many possible physical motivations for studying these models,
that may be applied to electronic levels in amorphous systems, very diluted
impurities, spectrum of vibrations in glasses (my interest in the subject comes
from this last field).

I will concentrate in these lectures on the spectral density and on the Green
functions, trying to obtaining both the qualitative features of these quantities
and to present reasonable accurate computations (when possible). This task is
not trivial because there is no evident case that can be used as starting point for
doing a perturbation expansion. Our construction can be considered as a form
of a mean field theory (taking care of some corrections to it): more sophisti-
cated problems, like localization or corrections to the naive critical exponents
will be only marginally discussed in these notes.

A certain number of variations to equation (1) are interesting. For example
we could consider the case where we add a fluctuating term on the diagonal:

Mi,k = δi,k

∑

j

f(xi − xj) − f(xi − xk) . (2)

This fluctuating diagonal term has been constructed in such a way that

∑

k

Mi,k = 0 . (3)

Therefore the diagonal and the off-diagonal matrix elements are correlated.
In general it may be convenient to associate a quadratic form to the matrix

M : the quadratic form (H[φ]) is defined as:

H[φ] =
1

2

∑

i,k

φiφkMi,k . (4)

In the first case we considered, eq. (1), we have that:

H[φ] =
∑

i,k

f(xi − xk)φiφk . (5)
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In this second case, eq. (2), the associated quadratic form is given by

H[φ] =
∑

i,k

φiφkMi,k =
1

2

∑

i,k

f(xi − xk)(φi − φk)
2 . (6)

Here the matrix M is non-negative if the function f is non-negative. The
matrix M has always a zero eigenvalue as consequence of the invariance of the
quadratic form under the symmetry φi → φi+λ; the presence of this symmetry
has deep consequences on the properties of the spectrum of M and, as we shall
see later, phonons are present. Many of the tricky points in the analytic study
are connected to the preserving and using this symmetry in the computations.

In the same spirit we can consider a two-body potential V (x) and we can
introduce the Hamiltonian

H[x] =
1

2

∑

i,k

V (xi − xk) . (7)

We can construct the 3N × 3N Hessian matrix

Mi,k =
∂2H

∂xixk
= δi,k

∑

j

V ′′(xi − xj) − V ′′(xi − xk) , (8)

where for simplicity we have not indicated space indices. Also here we are in-
terested in the computation of the spectrum of M . The translational invariance
of the Hamiltonian implies that the associated quadratic form is invariant under
the symmetry φi → φi + λ and a phonon-like behavior may be expected.

This tensorial case, especially when the distribution of the x’s is related to
the potential V , is the most interesting from the physical point of view (es-
pecially for its mobility edge [16, 15]). Here we stick to the much simpler
question of the computation of the spectrum of M . We shall develop a field
theory for this problem, check it at high and low densities, and use a Hartree
type method.

Our aim is to get both a qualitative understanding of the main properties of
the spectrum and of the eigenvalues and a quantitate, as accurate as possible,
analytic evaluation of these properties. Quantitative accurate results are also
needed because the computation of the spectral density is a crucial step in the
microscopic computation of the thermodynamic and of the dynamic properties
of glass forming systems. In some sense this approach can be considered as an
alternative route to obtain mode-coupling like results [17], the main difference
being that in the mode coupling approach one uses a coarse grained approach
and the hydrodynamical equations, while here we take a fully microscopic
point of view.

Many variations can be done on the distribution of points, each one has its
distinctive flavor:
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The distribution of the points x is flat and the points are uncorrelated:
they are uniformly distributed in a cube of size L and their number is
N = ρL3. Here, as in the following cases, we are interested in the
thermodynamic limit where both L and N go to infinity at fixed ρ.

The points x are distributed with a distribution that is proportional to
exp(−βH[x]) where H[x] is a given function.

The points x are one of the many solutions of the equation ∂H/∂xi = 0.
This last problem may be generalized by weighting each stationary point
of H with an appropriate weight.

The last two cases are particularly interesting when

Mi,k =
∂2H

∂xixk
, (9)

and consequently

H[φ] =
1

2

∑

i,k

φiφk
∂2H

∂xixk
. (10)

If this happens the distribution of points and the matrix are related and the
theoretical challenge is to use this relation in an effective way.

In the second section of these lectures, after the introduction we will present
the basic definition of the spectrum, Green functions, structure functions and
related quantities. In the third section we will discuss the physical motivation
for this study and we will present a first introduction to the replica method. In
the fourth section we will give a few example how a field theory can be con-
structed in such way that it describes the properties of randomly distributed
points. In the fifth section we will discuss in details the simples possible
model for random Euclidean matrices, presenting both the analytic approach
and some numerical simulations. In the sixth section we shall present a similar
analysis in a more complex and more physically relevant case, where phonons
are present due to translational invariance. Finally, in the last section we
present some recent results that have been obtained in the case of correlated
points.

2.

The basic object that we will calculate are the matrix element of the resol-
vent

G[x](z)i,j =

(
1

z − M [x]

)

ij

, (11)

(we use the notation M [x] in order to stress that the matrix M depends on all
the points [x]. Sometimes we will suppress the specification “[x]”, where it is
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obvious. We can define the sample dependent Green function

G[x](y1, y2, z) =
∑

i,j

δ(y1 − xi)δ(y2 − xj)G[x](z)i,j =

∑

i,j

δ(y1 − xi)δ(y2 − xj)

(
1

z − M [x]

)

ij

. (12)

The quantity that we are interested to compute analytically are the sample av-
erages of the Green function, i.e.

G(y1, y2, z) = G[x](y1, y2, z) , (13)

where the overline denotes the average over the random position of the points.
If the problem is translational invariant, after the average on the positions of

the points [x] we have

G(y1, y2, z) = G(y1 − y2, z) , (14)

where the function G(x, z) is smooth apart from a delta function at x = 0. It
is convenient to consider the Fourier transform of G(x, z), i.e.

G(p, z) =
1

N

∑

ij

eip(xi−xj)

[
1

z − M

]

ij

=

1

N

∫
dxdyeip(x−y)G[x](x, y, z) =

∫
dxeipxG̃(x, z) , (15)

The computation of the function G(p, z) will one of the main goals of these
lectures. It is convenient to introduce the so called dynamical structure factor
(that in many case can be observed experimentally) that here is defined as 1:

Se(p,E) = − 1

π
lim

η→0+
G(p,E + iη) . (16)

One must remember that the structure function is usually defined using as vari-
able ω =

√
E:

S(p, ω) = 2ωSe(p, ω2) , (17)

The resolvent will also give us access to the density of states of the system:

ge(E) = − 1

Nπ
lim

η→0+

N∑

i=1

[
1

E + iη − M

]

ii

,

= − 1

π
lim

η→0+
lim

p→∞G(p,E + iη) . (18)
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3. Physical motivations

There are many physical motivations for studying these problems, apart
from the purely mathematical interest. Of course different applications will
lead to different forms of the problems. In this notes I will concentrate my
attention on the simplest models, skipping the complications (that are not well
understood) of more complex and interesting models.

3.1 Impurities

We can consider a model where there are some impurities in a solid that
are localized at the points x’s. There are many physical implementation of the
same model; here we only present two cases:

There may be electrons on the impurities and the amplitude for hopping
from an impurity (i) to an other impurity (k) is proportional to f(xi −
xk). The electron density is low, so that the electron-electron interaction
can be neglected.

There is a local variable φi associated to the impurity (e.g. the magne-
tization) and the effective Hamiltonian at small magnetizations is given
by eq.(5).

In both cases it is clear that the physical behavior is related to the proper-
ties of the matrix M that is of the form discussed in the introduction. If the
concentration of the impurities is small (and the impurities are embedded in
an amorphous system) the positions of the impurities may be considered ran-
domly distributed in space.

3.2 Random walks

Let us assume that there are random points in the space and that there is
a particle that hops from one point to the other with probability per unit time
given by f(xi − xk).

The evolution equation for the probabilities of finding a particle at the point
i is given by

dPi

dt
=
∑

k

f(xi − xk)Pk − Pi

∑

k

f(xi − xk) = −
∑

k

Mi,kPk , (19)

where the matrix M is given by eq. (2).
Let us call P (x, t) the probability that a particle starting from a random

point at time 0 arrives at at time t. It is evident that after averaging of the
different systems (or in a large system after averaging over the random starting
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points) we have that
∫ ∞

0
dt exp(−tz)

∫
dx exp(ipx)P (x, t) = −G(p,−z) , (20)

so that the function P (x, t) can be reconstructed from the knowledge of the
function G(p, z) defined in eq. (15).

3.3 Instantaneous modes

We suppose that the points x’s are distributed according to the probability
distribution

exp(−βH[x]) , (21)

where H[x] is for example a two body interaction given by eq.(7) and β =
1/(kT ).

The eigenvectors of the Hessian of the Hamiltonian (see eq.(8)) are called in-
stantaneous normal modes (INN). The behavior of the INN at low temperature,
especially for systems that have a glass transition [20, 19], is very interesting
[21]. In particular there have been many conjectures that relate the properties
of the spectrum of INN to the dynamic of the system when approaching the
glass transition.

However it has been realized in these years that much more interesting quan-
tities are the instantaneous saddle modes (ISN) [22, 23, 25, 24]. Given an equi-
librium configuration xe at temperature T one defined the inherent saddle xs

corresponding to that configuration xe in the following way. We consider all
the saddles of the Hamiltonian, i.e. all the solutions of the equations

∂H

∂xi
= 0 . (22)

The inherent saddle xs is the nearest saddle to the configuration xe. The Boltz-
mann distribution at temperature T induces a probability distribution on the
space of all saddles. The physical interesting quantities are the properties of
the Hessian around these saddles. It turns out that they have a very interesting
behavior near the glass transition in the case of glass forming materials.

It is clear that the computation of the spectrum in these case is much more
complex: we have both to be able to compute the correlations among the points
in this non-trivial case and to take care of the (often only partially known)
correlations.

A possible variation on the same theme consists in consider the ensemble
of all saddles of given energy E = H[x]: there are indications that also in
this case there may be a phase transition in the properties of the eigenvalues
and eigenvectors when E changes and this phase transition may be correlated
to some experimentally measured properties of glassy systems, i.e. the Boson
Peak, as we will see later.
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4. Field theory

4.1

The resolvent G(p, z) defined in eq.(15) can be written as a propagator of a
Gaussian theory:

Z[J ] ≡
∫ ∏

k

dφk exp

(
−1

2

∑

lm

φl (z − M)lm φm +
∑

l

φlJl

)
,

G(p, z) =
1

N

∑

ij

δ2

δJiδJj
exp(ip(xi − xj)) lnZ[J ]

∣∣∣
J=0

, (23)

where the overline denotes the average over the distribution P [x] of the posi-
tions of the particles. We have been sloppy in writing the Gaussian integrals
(that in general are not convergent): one should suppose that the φ integrals go
from −a∞ to +a∞ where a2 = −i and z has a positive (albeit infinitesimal)
imaginary part in order to make the integrals convergent [16, 18]. This choice
of the contour is crucial for obtaining the non compact symmetry group for
localization [18], but it is not important for the density of the states.

In other words, neglecting the imaginary factors, we can introduce a proba-
bility distribution over the field φi,

P [φ] ∝
∏

k

dφk exp

(
−1

2

∑

lm

φl (z − M)lm φm

)
. (24)

If we denote by 〈·〉 the average with respect to this probability (please notice
that here everything depends on [x] also if this dependence is not explicitly
written) we obtain the simple result:

〈φiφk〉 = Gi,k . (25)

A problem with this approach is that the normalization factor of the proba-
bility depends on [x] and it is not simple to get the x-averages of the expectation
values. Replicas are very useful in this case. They are an extremely efficient
way to put the dirty under a simple carpet (on could also use the supersymmet-
ric approach of Efetov where one puts the same dirty under a more complex
carpet [16]).

For example the logarithm in eq.(23) is best dealt with using the replica trick
[1, 2, 25]:

lnZ[J ] = lim
n→0

1

n
(Zn[J ] − 1) . (26)

The resolvent can then be computed from the n-th power of Z , that can be
written using n replicas, φ

(a)
i (a = 1, 2, . . . , n) of the Gaussian variables of

eq.(23):

Replicated field theory
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G(p, z) = lim
n→0

G(n)(p, z) ,

NG(n)(p, z) = (27)

∑

ij

exp(ip(xi − xj))

∫ ∏

k,a

dφ
(a)
k φ

(1)
i φ

(1)
j exp



−1

2

∑

l,m,c

φ
(c)
l (z − M)lm φ

(c)
m



 .

Indeed

∫ ∏

k,a

dφ
(a)
k φ

(a)
i φ

(b)
j exp



−1

2

∑

l,m,c

φ
(c)
l (z − M)lm φ(c)

m



 ∝ δa,b =

[
1

z − M

]

i,j

det(z − M)−n/2 (28)

and the physically interesting case is obtained only when n = 0.
In this way one obtains a O(n) symmetric field theory. It well known that

an O(n) symmetric theory is equivalent to an other theory invariant under the
O(n + 2|1) symmetry ([26]), where this group is defined as the one that leaves
invariant the quantity ∑

a=1,n+2

(φa)2 + ψ̄ψ , (29)

where ψ is a Fermionic field. Those who hate analytic continuations, can us
the group O(2|1) at the place of the more fancy O(0) that is defined only as
the analytic continuation to n = 0 of the more familiar O(n) groups.

Up to this point everything is quite general. We still have to do the average
over the random positions. This can be done in an explicit or compact way in
some of the previous mentioned cases and one obtains a field theory that can
be studied using the appropriate approximations. Before doing this it is may
be convenient to recall a simpler result, i.e. how to write a field theory for the
partition function of a fluid.

4.2

Let us consider a system with N (variable) particles characterized by a clas-
sical Hamiltonian HN [x] where the variable x denote the N positions. In the
simplest case the particles can move only in a finite dimensional region (a box
B of volume VB) and they have only two body interactions:

HN [x] =
1

2

∑

i,k

V (xi − xk) . (30)
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At given β the canonical partition function can be written as

QN =

∫

B
dx1 . . . dxN exp(−βHN [x]) , (31)

while the gran-canonical partition function is given by

Q(ζ) =
∑

N

ζN

N !
QN , (32)

where ζ is the fugacity.
We aim now to find out a field theoretical representation of the Q(ζ). This

can be formally done [28] (neglecting the problems related to the convergence
of Gaussian integrals) by writing

exp



−β

2

∑

i,k

V (xi − xk)



 =

N−1

∫
dσ exp

(
1

2β

∫
dxdyV −1(x − y)σ(x)σ(y) +

∑

i

σ(xi)

)
, (33)

where N is an appropriate normalization factor such that

N−1

∫
dσ exp

(
1

2β

∫
dxdyV −1(x − y)σ(x)σ(y) +

∫
J(x)σ(x)

)
=

exp

(
−
∫

dxdyβV (x − y)J(x)J(y)

)
. (34)

The reader should notice that V −1(x − y) is formally defined by the relation
∫

dzV −1(x − z)V (z − y) = δ(x − y) . (35)

The relation eq.(33) trivially follows from the previous equations if we put

J(x) =
∑

i

δ(x − xi) . (36)

It is convenient to us the notation

dµ[σ] ≡ N−1dσ exp

(
1

2β

∫
dxdyV −1(x − y)σ(x)σ(y)

)
. (37)

With this notation we find

QN =

∫
dµ[σ]

(∫
dx exp(σ(x)

)N

. (38)
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We finally get

Q(ζ) =

∫
dµ[σ] exp

(
ζ

∫
dx exp(σ(x))

)
. (39)

People addict with field theory can use this compact representation in order
to derive the virial expansion, i.e. the expansion of the partition in powers of
the fugacity at fixed β.

The same result can be obtained in a more straightforward way [29] by using
a functional integral representation for the delta function:

exp



−β

2

∑

i,k

V (xi − xk)



 =

∫
d[ρ]δF



ρ(x) −
∑

i=1,N

δ(x − xi)



exp

(
−β

2

∫
dxdyρ(x)ρ(y)V (x − y)

)
, (40)

where δF stands for a functional Dirac delta:

δF [f ] =

∫
dσ exp

(
i

∫
dxf(x)λ(x)

)
. (41)

We thus find

QN =

∫
dx1dxN

∫
d[ρ]d[λ] (42)

exp



−β

2

∫
dxdyρ(x)ρ(y)V (x − y) + iλ(x)ρ(x) − i

∑

i=1,N

λ(xi)





=

∫
d[ρ]d[λ] exp

(
−β

2

∫
dxdyρ(x)ρ(y)V (x − y) + iλ(x)ρ(x)

)

(∫
dx exp(iλ(x)

)N

.

At the end of the day we get

Q(ζ) =

∫
d[λ] exp

(
−β

2

∫
dxdyλ(x)λ(y)V −1(x − y) + ζ

∫
dx exp(iλ(x)

)
.

(43)
where, by doing the Gaussian integral over the ρ, we have recover the previous
formula eq.(33), if we set iλ(x) = σ(x).

In order to compute the density and its correlations it is convenient to intro-
duce an external field ∑

i

U(xi) . (44)
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This field is useful because its derivatives of the partition function give the
density correlations. As before the partition function is given by

Q(ζ|U) =

∫
dµ[σ] exp

(
ζ

∫
dx exp(σ(x) + βU(x))

)
. (45)

In this way one finds that the density and the two particle correlations are
given by:

ρ = 〈
∑

i

δ(x − xi)〉 = ζ〈exp(σ(0))〉

C(x) = 〈
∑

i,k

δ(xi − 0)δ(xk − x)〉 = ζ2〈exp(σ(0) + σ(x))〉 . (46)

In the low density limit (i.e. ζ near to zero) one finds

ρ = ζ exp(−βV (0)) ,

C(x) = ρ2 exp(−βV (x)) . (47)

that is the starting point of the virial expansion.

5. The simplest case

In this section we shall be concerned with simple case for random Euclidean
matrices, where the positions of the particles are completely random, chosen
with a probability P (x) = ρ/VB .

We will consider here the simplest case, where

Mi,k = f(xi − xk) (48)

and f(x) is bounded, fast decreasing function at infinity (e.g. exp(−x2/2)).
We shall study the field-theory perturbatively in the inverse density of par-

ticles, 1/ρ. The zeroth order of this expansion (to be calculated in subsec-
tion 5.1) corresponds to the limit of infinite density, where the system is equiv-
alent to an elastic medium. In this limit the resolvent (neglecting p independent
terms) is extremely simple:

G(p, z) =
1

z − ρf̃(p)
. (49)

In the above expression f̃(p) is the Fourier transform of the function f , that due
to its spherical symmetry, is a function of only (p2) . We see that the dynamical

structure function has two delta functions at frequencies ω = ±
√

ρf̃(p).
It is then clear that Eq.(49) represents the undamped propagation of plane

waves in our harmonic medium, with a dispersion relation controlled by the
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function f̃ . The high order corrections to Eq.(49) (that vanishes as 1/ρ) will be
calculated later. They take the form of a complex self-energy, Σ(p, z), yielding

G(p, z) =
1

z − ε(p) − Σ(p, z)
, (50)

SE(p,E) = − 1

π

ImΣ(p,E)

(E − ε(p) − ReΣ(p,E))2 + (ImΣ(p,E))2
. (51)

The dynamical structure factor, is no longer a delta function, but close to its
maxima it has a Lorentzian shape. From eq. (51) we see that the real part of
the self-energy renormalizes the dispersion relation. The width of the spectral
line is instead controlled by the imaginary part of the self-energy.

it can be com-
puted from the imaginary part of the trace of the resolvent:

R(z) =
1

N
Tr

1

z − M
, (52)

where the overline denotes the average over the positions xi.
It is possible to compute the resolvent from a field theory written using a

replica approach. We shall compute ΞN ≡ det(z − M)−n/2, and deduce from
it the resolvent by using the replica limit n → 0.

It is easy to show that one can write ΞN as a partition function over repli-
cated fields φa

i , where i ∈ {1...N}, a ∈ {1...n}:

ΞN =

∫ N∏

i=1

dxi

V

∫ N∏

i=1

n∏

a=1

dφa
i

exp



−z

2

∑

i,a

(φa
i )

2 +
1

2

∑

i,j,a

f(xi − xj)φ
a
i φ

a
j



 . (53)

In order to simplify the previous equations let us introduce the Bosonic 2 fields
ψa(x) =

∑N
i=1 φa

i δ(x−xi) together with their respective Lagrange multiplier
fields ψ̂a(x). More precisely we introduce a functional delta function:

δF

(
ψa(x) −

N∑

i=1

φa
i δ(x − xi)

)
=

∫
d[ψ̂a] exp

(
i

∫
dxψ̂a(x)

(
ψa(x) −

N∑

i=1

φa
i δ(x − xi)

))
. (54)

One can integrate out the φ variables, leading to the following field theory for
ΞN , where we have neglected all the z independent factors that disappear when
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n = 0:

ΞN =

∫
D[ψa, ψ̂a]A

N exp (S0) (55)

where

S0 = i
∑

a

∫
dx ψ̂a(x)ψa(x) +

1

2

∑

a

∫
dxdy ψa(x)f(x − y)ψa(y) ,

A = exp

[
− 1

2z

∑

a

ψ̂a(x)2

]
. (56)

It is convenient to go to a grand canonical formulation for the disorder: we
consider an ensemble of samples with varying number of (N ), and compute
the grand canonical partition function Z(ζ) ≡∑∞

N=0 ΞNζN/N ! that is equal
to:

Z =

∫
D[ψa, ψ̂a] exp (S0 + ζA). (57)

In the n → limit, one finds that ρ = ζ . The definition of the field ψ implies
that the correlation is given (at x �= 0) by:

G(x, z) ≡
∑

i,k

δ(x − xi)δ(xj)

(
1

z − M

)

i,k

= 〈ψa(x)ψa(0)〉 (58)

A simple computation (taking care also of the contribution in x = 0) gives

G(p, z) =
1

ρf̃(p)
− lim

n→0

1

ρf̃2(p)

∫
ddxddy exp(ip(x− y)) 〈ψ̂(1)(x)ψ̂(1)(y)〉 .

(59)
so that the average Green function can be recovered from the knowledge of the
ψ̂ propagator.

Notice that we can also integrate out the ψ field thus replacing S0 by S′
0,

where

S′
0 =

1

2

∑

a

∫
dxdy ψ̂a(x)f−1(x − y)ψ̂a(y), (60)

where f−1 is the integral operator that is the inverse of f .
The expression (57) is our basic field theory representation. We shall denote

by brackets the expectation value of any observable with the action S0 + S1.
As usual with the replica method we have traded the disorder for an interacting
replicated system.
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It may be convenient to present a different derivation of the previous result:
we write

exp



−z

2

∑

i,a

(φa
i )

2 +
1

2

∑

i,j,a

f(xi − xj)φ
a
i φ

a
j



=

∫
d[ω] exp



−1

2

∑

a

∫
dxdy ω(x)aω(y)af

−1(x − y) +
∑

i,a

(
ω(xi)aφ(xi)

a
i −

z

2
(φa

i )
2
)


.

(61)

If we collect all the terms at a given site i, we get
∫ ∏

a

dφa
i exp

(
∑

a

(
ω(xi)aφ(xi)

a
i −

z

2
(φa

i )
2
))

. (62)

The φ integrals are Gaussian and they can be done: for n = 0 one remains
with

exp

(
∑

a

ω(xi)
2
a/z

)
(63)

and one recovers easily the previous result eq.(56).
The basic properties of the field theory are related to the properties of the

original problem in a straightforward way. We have seen that the average num-
ber of particles is related to ζ through N = ζV 〈A〉, so that one gets ζ = ρ in
the n → 0 limit because 〈A〉 = 1. From the generalized partition function Z ,
one can get the resolvent R(z) through:

R(z) = − lim
n→0

2

nN

∂ logZ
∂z

. (64)

5.1 High density expansion

Let us first show how this field theory can be used to derive a high density
expansion.

At this end it is convenient to rescale z as z = ρẑ and to study the limit ρ →
∞ at fixed ẑ. Neglecting addictive constants, the action, S, can be expanded
as:

1

2

∑

a

∫
dxdy ψ̂a(x)f−1(x − y)ψ̂a(y) − 1

2ẑ

∫
dx
∑

a

ψ̂a(x)2 + O(1/(ρẑ2) ,

(65)
Gathering the various contributions and taking care of the addictive con-

stants, one gets for the resolvent:

ρR(z) =
1

z
+

1

ρ

∫
dk

(
1

(ẑ − f̃(k))
− 1

ẑ

)
. (66)
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One can study with this method the eigenvalue density for eigenvalues |λ| ∼
O(ρ), by setting ẑ = λ + iε and computing the imaginary part of the resolvent
in the small ε limit. For ρ → ∞ the leading term gives a trivial result for the
eigenvalue density g(λ) i.e.

g(λ) = δ(λ) . (67)

Including the leading large ρ correction that we have just computed, we find
that g(λ) develops, away from the peak at λ ∼ 0, a component of the form:

g(λ) ∼ 1

ρ

∫
dkδ(λ − f̃(k)) . (68)

The continuos part of the spectrum can also be derived from the following
simple argument. We suppose that the eigenvalue ωi is a smooth function of
xi. We can thus write:

∑

k

f(x − xk)ω(xk) ≈ ρ

∫
dyf (x − y)ω(y) = ρλω(x) (69)

and the eigenvalues are the same of the integral operator with kernel f .
This argument holds if the discrete sum in eq. (69) samples correctly the

continuous integral. This will be the case only when the density ρ is large
enough that the function ω(x) doesn’t oscillate too much from one point xj to
a neighboring one. This condition in momentum space imposes that the spatial
frequency |k| be small enough: |k| � ρ1/d ( ρ1/d is the inverse of the average
interparticle distance).

The same condition is present in the field theory derivation. We assume that
f̃(k) decreases at large k, and we call kM the typical range of k below which
f̃(k) can be neglected. Let us consider the corrections of order ρ−1 in eq. (66).
It is clear that, provided ẑ is away from 0, the ratio of the correction term to the
leading one is of order kd

Mρ−1, and the condition that the correction be small
is just identical to the previous one. The large density corrections near to the
peak z = 0 cannot be studied with this method.

In conclusion the large ρ expansion gives reasonable results at non-zero z
but it does not produce a well behaved spectrum around z = 0. In the next
sections we shall see how to do it.

The reader may wonder if there is a low density expansion: the answer is
positive [13], however it is more complex than the high density expansion and
it cannot be discussed in these notes for lack of space.

5.2 A direct approach

Let us compute directly what happens in the region where ρ is very large.
We first make a very general observation: if the points x are random and un-
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correlated we have that
∑

i

A(xi) = ρ

∫
dxA(x) ,

∑

i,k

B(xi, xk) =
∑

i,k;i�=k

B(xi, xk) +
∑

i

B(xi, xi) =

ρ2

∫
dxdyB(x, y) + ρ

∫
dxB(x, x) (70)

When the density is very high the second term can be neglected and we can
approximate multiple sum with multiple integrals, neglecting the contribution
coming from coinciding points [2, 3, 7].

We can apply these ideas to the high density expansion of the Green function
in momentum space. Using a simple Taylor expansion in 1/z we can write:

G(p, z) =
1

z

∑

R

(−z)−RMR(p) (71)

where for example

M3(p) = N−1
∑

k0,k1k2,k3

f(xk0−xk1)f(xk1−xk2)f(xk2−xk3) exp(ip(xk0−xk3)

(72)
The contribution of all different points gives the large ρ limit, and taking care
of the contribution of pairs of points that are not equal gives the subleading cor-
rections. In principle everything can be computed with this kind of approach
that is more explicit than the field theory, although the combinatorics may be-
come rather difficult for complex diagrams and the number of contributions
become quite large when one consider higher order corrections [6, 7].

Generally speaking the leading contribution involve only convolutions and
is trivial in momentum space, while at the order 1/rhom, there are m loops
for diagrams that have m intersections: the high ρ expansion is also a loop
expansion.

5.3 A variational approximation

In order to elaborate a general approximation for the spectrum, that should
produce sensible results for the whole spectrum, we can use a standard Gaus-
sian variational approximation in the field theory representation, that, depend-
ing on the context, appears under various names in the literature, like Hartree-
Fock approximation the Random Phase Approximation or CPA.

Here we show the implementation in this particular case. By changing ψ̂ →
iψ̂ in the representation for the partition function, we obtain:

Z =

∫
D[ψ̂a] exp(S)) , (73)
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where

S = −1

2

∫
dxdy

∑

a

ψ̂a(x)f−1(x, y)ψ̂a(y)

+ρz−n/2

∫
dx exp

(
1

2z

∑

a

ψ̂a(x)2

)
. (74)

We look for the best quadratic action

Sv = −(1/2)
∑

ab

∫
dxdyG−1

ab (x, y)ψ̂a(x)ψ̂b(y) (75)

that approximates the full interacting problem.
This procedure is well known in the literature and it gives the following

result. If we have a field theory with only one field and with action
∫

dpD(p)φ(p)2 +

∫
dxV (φ(x)), (76)

the propagator is given by

G(p) =
1

D(p) + Σ
, (77)

where
Σ = 〈V ′′(φ)〉G . (78)

In other words Σ is a momentum independent self-energy that is equal to the
expectation value of V ′′(φ) in theory where the field φ is Gaussian and has a
propagator equal to G.

In the present case, there are some extra complications due to the presence
of indices; the appropriate form of the propagator is Gab(p) = δabG(p). Af-
ter same easy computations, one finds that G̃(p) satisfies the self consistency
equation:

G̃(p) =
1

f−1(p) − Σ
, Σ = − ρ

z −
∫

dkG̃(k)
(79)

and the resolvent is given by:

R(z) =
1

z −
∫

dkG̃(k)
. (80)

Formulas (79,80) provide a closed set of equations that allow us to com-
pute the Gaussian variational approximation to the spectrum for any values of
z and the density; if the integral would be dominated by a single momentum,
we would recover the usual Dyson semi-circle distribution for fully random
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matrices . In sect. 5.4 we shall compare this approximation to some numerical
estimates of the spectrum for various functions f and densities. The variational
approximation correspond to the computation of the sum of the so called tad-
pole diagrams, that can be often done a compact way.

The main advantage of the variational approximation is that the singularity
of the spectrum at z = 0 is removed and the spectrum starts to have a more
reasonable shape.

Another partial resummation of the ρ expansion can also be done in the
following way: if one neglects the triangular-like correlations between the dis-
tances of the points (an approximation that becomes correct in large dimen-
sions, provided the function f is rescaled properly with dimension), the prob-
lem maps onto that of a diluted random matrix with independent elements.
This problem can be studied explicitly using the methods of [30, 31]. It leads
to integral equations that can be solved numerically. The equations one gets
correspond to the first order in the virial expansion, where one introduces as
variational parameter the local probability distribution of the field φ [32]. The
discussion of this point is interesting and it is connected to the low-density
expansion: however it cannot be done here.

An other very interesting point that we will ignore is the computation of the
tails in the probability distribution of the spectrum representation leading to
compact expressions for the behavior of the tail [33].

5.4 Some numerical experiments

In this section we present the result of some numerical experiments and the
comparison with the theoretical results (we also slightly change the notation,
i.e. we set z = λ + iε.

We first remark that for a function f(x) that has a positive Fourier transform
f̃(k), the spectrum is concentrated an the positive axis. Indeed, if we call ωi

a normalized eigenvector of the matrix M defined in (48), with eigenvalue λ,
one has: ∑

ij

ωif(xi − xj)ωj = λ , (81)

and the positivity of the Fourier transform of f implies that λ ≥ 0.
We have studied numerically the problem in dimension d = 3 with the

Gaussian function f(x) = (2π)−3/2 exp(−x2/2). In this Gaussian case the
high density approximation gives a spectrum

g(λ) ∼ 1

ρπ2

1

λ

(
1

2
log

ρ

λ

)1/2

θ(ρ − λ) + Cδ(λ) (82)

Notice that this spectrum is supposed to hold away from the small λ peak, and
in fact it is not normalizable at small λ.
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Figure 1. Density of eigenvalues of a Euclidean Random Matrix in three dimensions, density
ρ = 1. The function f is f(x) = (2π)−3/2 exp(−x2/2), and the matrix is defined from
eq.(48). The full line is the result of a numerical simulation with N = 800 points, averaged
over 100 samples. The dashed line is the result from the high density expansion. The dash-
dotted line is the result from the Gaussian variational approximation (RPA) to the field theory.

Figure 2. Density of the logarithm (in base 10) of the eigenvalues of a Euclidean Random
Matrix in three dimensions, density ρ = 1 (same data of the previous figure). The dashed line
is the result from the high density expansion. The dotted line is the result from the Gaussian
variational approximation (RPA) to the field theory.
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It is possible to do a variational approximation computation taking care of
all the non-linear terms in the action for the fields. This corresponds (as usu-
ally) a a resummation of a selected class of diagrams. After some compu-
tations, one finds that one needs to solve, given z = λ − iε, the following
equations for C(z) ≡ a(z) + ib(z):

λ = ρ
a

a2 + b2
+

1

2π2

∫ ∞

0
k2dk

ek2/2 − u
(
ek2/2 − a

)2
+ b2

ε = ρ
b

a2 + b2
− b

2π2

∫ ∞

0
k2dk

1
(
ek2/2 − a

)2
+ b2

. (83)

One needs to find a solution in the limit where ε → 0.
In fig. (1,2), we plot the obtained spectrum, averaged over 100 realizations,

for N = 800 points at density ρ = 1 (We checked that with a different number
of points the spectrum is similar). Also shown are the high density approxi-
mation (82), and the result from the variational approximation. We see from
fig.(1) that the part of the spectrum λ ∈ [0.2, 1.5] is rather well reproduced
from both approximations, although the variational method does a better job

Euclidean Random Matrices

at matching the upper edge. On the other hand the probability distribution of
the logarithm of the eigenvalues (fig.2) makes it clear that the high density
approximation is not valid at small eigenvalues, while the variational approxi-
mation gives a sensible result. One drawback of the variational approximation,
though, is that it always produces sharp bands with a square root singularity,
in contrast to the tails that are seen numerically.

In fig.3, we plot the obtained spectrum, averaged over 200 realizations, for
N = 800 points at density ρ = 0.1. We show also a low density approxi-
mation (that we do not describe here [2]), and the result from the variational
approximation. We see from fig.(3) that this value of ρ = 0.1 is more in the
low density regime, and in particular there exists a peak around λ = f(0) due
to the isolated clusters containing small number of points. The variational ap-
proximation gives the main orders of magnitude of the distribution, but it is
not able to reproduce the details of the spectrum, in particular the peak due to
small clusters. On the other hand the leading term of a low density approxima-
tion (introduced in [2]) gives a poor approximation the the overall form of the
spectrum. One should use an approach where the advantages of both methods
are combined together.
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6. Phonons

6.1

Inelastic X-ray scattering (IXS) experiments and inelastic neutron scatter-
ing on structural glasses and supercooled liquids provided useful information
on the dynamics of their amorphous structure, at frequencies larger than 0.1
THz (see for example [34] and references therein). Those experiments show a
regime, when the wavelength of the plane wave is comparable with the inter-
particle distance, where the vibrational spectrum can be understood in terms of
propagation of quasi-elastic sound waves, the so-called high frequency sound.
This high-frequency sound has also been observed in molecular dynamical
simulations of strong and fragile liquids, and it displays several rather universal
features. In particular, a peak is observed in the dynamical structure factor at a
frequency that depends linearly on the exchanged momentum p, in the region
0.1p0−1.0p0, p0 being the position of the first maximum in the static structure
factor. When extrapolated to zero momentum, this linear dispersion relation
yields the macroscopic speed of sound. The width of the spectral line, Γ is
well fitted by

Γ(p) = Apx , x ≈ 2 , (84)

with A displaying a very mild (if any) temperature dependence. Moreover, the
same scaling of Γ has been found in harmonic Lenhard-Jones glasses [35], and
one can safely conclude that the p2 broadening of the high-frequency sound is
due to small oscillations in the harmonic approximation. In these context other

Figure 3. Density of eigenvalues of a Euclidean Random Matrix in three dimensions, density
ρ = 0.1. The function f is f(x) = (2π)−3/2 exp(−x2/2), and the matrix is defined from
eq.(48) with u = 0. The full line is the result of a numerical simulation with N = 800
points, averaged over 200 samples. The dashed line is the result from a low density expansion
introduced in [2]. The dash-dotted line is the result from the Gaussian variational approximation
(RPA) to the field theory.

Physical motivations
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interesting problems related with the high-frequency vibrational excitations of
these topologically disordered systems [19] regard the origin of the Boson peak
or the importance of localization properties to understand the dynamics of su-
percooled liquids [37].

The variety of materials where the p2 broadening appears suggests a straight-
forward physical motivation. However, the simplest conceivable approxima-
tion, a wave propagating on an elastic medium in the presence of random scat-
terers, yields Rayleigh dispersion: Γ ∝ p4. This result is very robust: as soon
as one assumes the presence of an underlying medium where the sound waves
would propagate undisturbed, as in the disordered-solid model [36, 38, 39], the
p4 scaling appears even if one studies the interaction with the scatterers non-
perturbatively [40]. When the distinction between the propagating medium
and the scatterers is meaningless (as it happens for topologically disordered
systems), the p2 scaling is recovered.

We want to investigate the problem from the point of view of statistical
mechanics of random matrices, by assuming that vibrations are the only mo-
tions allowed in the system. The formalism we shall introduce, however, is
not limited to the investigation of the high frequency sound and it could be
straightforwardly applied in different physical contexts.

Let us look more carefully at the relation between vibrational dynamics in
glasses and random matrices. The dynamical structure factor for a system of
N identical particles is defined as:

S(p, ω) =
1

N

∑

i,j

∫
dt eiωt

〈
eip·(rj(t)−ri(0))

〉
, (85)

where 〈. . . 〉 denotes the average over the particles positions rj with the canon-
ical ensemble.

Here it is convenient to consider the normal modes of the glass or the super-
cooled liquid, usually called instantaneous normal modes (INM) because they
are supposed to describe the short time dynamics of the particles in the liquid
phase [21]. One studies the displacements u around the random positions x,
by writing the position of the i-th particle as ri(t) = xi +ui(t), and linearizing
the equations of motion. Then one is naturally lead to consider the spectrum of
the Hessian matrix of the potential, evaluated on the instantaneous position of
the particles. Calling ω2

n the eigenvalues of the Hessian matrix and en(i) the
corresponding eigenvectors, the one excitation approximation to the S(p, ω) at
non zero frequency is given in the classical limit by:

S(1)(p, ω) =
kBT

mω2

N∑

n=1

Qn(p) δ(ω − ωn) , (86)

Qn(p) = |
∑

i

p · en(i) exp(ip · xi)|2 . (87)
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However one cannot always assume that all the normal modes have positive
eigenvalues, negative eigenvalues representing the situation where some parti-
cles are moving away from the position x. Indeed, it has been suggested [37]
that diffusion properties in supercooled liquids can be studied considering the
localization properties of the normal modes of negative eigenvalues.

A related and better defined problem is the study of normal modes at zero
temperature, where the displacements u are taken around the rest positions.
By assuming that this structure corresponds to one minimum of the potential
energy, one can introduce a harmonic approximation where only the vibrations
around these minima are considered, and all the dynamical information is en-
coded in the spectral properties of the Hessian matrix on the rest positions.
The Hessian is in a first approximation a random matrix if these rest positions
correspond to a glass phase. It has been shown using molecular dynamics
simulation that below the experimental glass transition temperature the ther-
modynamical properties of typical strong glasses are in a good agreement with
such an assumption.

Therefore, the problem of the high-frequency dynamics of the system can
be reduced, in its simplest version, to the consideration of random Euclidean
matrices, where the entries are deterministic functions (the derivatives of the
potential) of the random positions of the particles. As far as the system has
momentum conservation in our case, due to translational invariance, all the
realizations of the random matrix have a three common normal mode with
zero eigenvalue: the uniform translation of the system.

An Euclidean matrix is determined by the particular deterministic function
that we are considering, and by the probabilistic distribution function of the
particles, that in the INM case is given by the Boltzmann factor. However,
for the sake of simplicity we shall concentrate here on the simplest kind of
euclidean matrices without spatial correlations and we will neglect the vec-
tor indices of the displacement. We consider N particles placed at positions
xi, i = 1, 2, ..., N inside a box, where periodic boundary conditions are ap-
plied. Then, the scalar euclidean matrices are given by eq.(2), where f(x)
is a scalar function depending on the distance between pairs of particles, and
the positions {x} of the particles are drawn with a flat probability distribution.
Notice that the matrix (2) preserves translation invariance, since the uniform
vector e0(i) = const is an eigenvector of M with zero eigenvalue. Since
there are not internal indices (the particle displacements are restricted to be all
collinear), we cannot separate longitudinal and transversal excitations.
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The dynamical structure factor for a scalar Euclidean matrix is given by

SE(p,E) =
∑

n

Qn(p)δ(E − En) , (88)

Qn(p) =
1

N

∣∣∣∣∣

N∑

i=1

en(i) exp(ip · xi)

∣∣∣∣∣

2

, (89)

S(p, ω) = 2ωSE(p, ω2) , (90)

where the overline stands for the average over the particles position and we
have given the definition either in the eigenvalue space (SE(p,E)) and in the
frequency space (S(p, ω)).

6.2 A more complex Ýeld theory representation

The basic field theory representation is similar to the one of the previous
section. The main complication is due to the presence of a diagonal term in
the matrix M . One way out is to introduce one more pair of Bosonic fields. To
perform the spatial integrations it turns out to be convenient to represent the
Bosonic fields φ using new Bosonic fields , i.e.:

χ(x) ≡
∑

i,a

(φ
(a)
i )2δ(x − xi) (91)

ψ(a)(x) ≡
∑

i

φ
(a)
i δ(x − xi) , (92)

and using the “Lagrange multipliers” ˆψ(a)(x), χ̂(x), to enforce the three con-

straints (92). At this point, the Gaussian variables φ
(a)
i are decoupled and can

be integrated out.
Skipping intermediate steps and using the fact that all the replicas are equiv-

alent one can write the Green function as a correlation function:

G(p, z) =

lim
n→0

1

N

∫
ddxddy eip(x−y)

∫
D[ψ(a), ˆψ(a), χ, χ̂] ψ(1)(x)ψ(1)(y)AN exp(S0),

(93)
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where we have introduced the following quantities:

S0 ≡ i
∑

a=1,n

∫
ddx ψ̂(a)(x)ψ(a)(x) +

∫
ddxχ(x)χ̂(x)

−1

2

∑

a=1,n

∫
ddxddyψ(a)(x)f(x − y)ψ(a)(y)

A ≡
∫

ddx exp Φ(x)

Φ(x) ≡ +i

∫
ddyf(y − x)χ(y) − 1

2

∑
a=1,n

(
ψ̂(a)(x)

)2

z + χ̂(x)
. (94)

In order to take easily the limits N,V → ∞ in (93) we shall resort to a
grand canonical formulation of the disorder, introducing the partition function
Z[ρ] ≡ ∑N ANρN/N ! exp S0. Since the average number of particles N =
V ρ〈A〉, in the n → 0 limit we have that 〈A〉 = 1 and the ’activity’ ρ is just
the density of points, as before. Furthermore, the Gaussian integration over the
fields ψ(a) is easily performed, leading to the field theory:

Z [ρ, z] =

∫
D[ ˆψ(a), χ, χ̂] exp (S′

0 + S1) , (95)

where 3

S′
0 ≡−n

2
Tr ln f +

∫
ddxχ(x)χ̂(x)−//

1

2

∑

a=1,n

∫
ddxddy ψ̂(a)(x)f (−1)(x − y)ψ̂(a)(y)

S1 ≡ ρ

∫
ddx (exp Φ(x))

The resolvent is related to the correlation function by eq.(59). Before comput-
ing (59), let us turn to the symmetry due to the translational invariance. Since
en(i) = constant is an eigenvector of zero eigenvalue of the matrix (2) for
every disorder realization, we see that Eq.(15) implies:

G(p = 0, z) =
1

z
. (96)

Interestingly enough, in the framework of the field theory introduced above,
that constraint is automatically satisfied, due to the Ward identity linked to that
symmetry. The interaction term Φ(x) is indeed invariant under the following
infinitesimal transformation of order η:

δψ̂(1)(x) = iη (z + χ̂(x)) , (97)

δχ(x) = 2iη

∫
ddyf−1(x − y)ψ̂(1)(y) (z + χ̂(x)) , (98)
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while the whole variation of the action S = S′
0 + S1 is due to the non-

interacting part S′
0:

δS = −iη
z

f̃(0)

∫
ddxψ̂(1)(x) (99)

The invariance of S1 hence leads to the following Ward identity:

〈z + χ̂(x)〉 =
z

f̃(0)
〈ψ̂(1)(x)

∫
ddy ψ̂(1)(y)〉 (100)

That is enough to prove that
∫

ddyψ̂(1)(0)ψ̂(1)(y) (101)

diverges as 1/z at small zeta. If we combine the previous result with the exact
relation 〈χ̂(x)〉 = −ρf̃(0), that can be derived with a different argument, to
obtain:

(z − ρf̃(0))
f̃ (0)

z
=

∫
ddy 〈ψ̂(1)(x)ψ̂(1) (102)

that, together with (59), implies the expected constraint G(p = 0, z) = 1/z.
The interacting term in (95) is complicated by the presence of an exponen-

tial interaction, meaning an infinite number of vertices. In order to perform
the explicit computation of the resolvent G(p, z) one has to introduce some
scheme of approximation. We have chosen to deal with the high density limit,
where many particles lie inside the range of the interaction f(r). The high
density limit (ρ � 1) of (59) is the typical situation one finds in many inter-
esting physical situations, for example the glassy phase. In order to extract the
leading term let us make the expansion exp Φ(x)− 1 ∼ Φ(x). In that case the
integration over the fields χ, χ̂ is trivial, because of:

∫
D[χ] exp

(∫
ddxχ(x)

[
ρ

∫
ddyf(x − y) + χ̂(x)

])
=

∏

x

δ(χ̂(x) + ρf̃(0)) (103)

and the fields ψ̂(a) are free. In fact, introducing the quantity a ≡ z − ρf̃(0),
one remains with the Gaussian integration:

Z ∝
∫

D[ψ̂(a)] exp−1

2

∫
ddxddy

∑

a

ψ̂(a)(x)K−1(x − y)ψ̂(a)(y) , (104)

where the free propagator K is defined by:

K−1(x − y) ≡ f−1(x − y) +
ρ

a
δ(x − y) . (105)
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It is then easy from (59) and (104) to obtain the result:

G0(p, z) =
1

z − ε(p)
, (106)

where

ε(p) =

√
ρ(f̃(p) − f̃(0) (107)

We see that at the leading order, a plane wave with momentum p is actually an
eigenstate of the matrix M with eigenvalue E, and the disorder does not play
any relevant role. In other words, inside a wavelength 2π/p there is always an
infinite number of particles, ruling out the density fluctuations of the particles:
the system reacts as an elastic medium.

Let us finally obtain the density of states at this level of accuracy, using
0

gE(E) = δ
(
E − ρf̃(0)

)
. (108)

We obtain a single delta function at ρf̃(0), that is somehow contradictory with
our result for the dynamical structure factor: from the density of states one
would say that the dispersion relation is Einstein’s like, without any momentum
dependence! The way out of this contradiction is of course that in the limit of
infinite ρ both ε(p) and ρf̃(0) diverge. The delta function in eq. (108) is the
leading term in ρ, while the states that contribute to the dynamical structure
factor appear only in the subleading terms in the density of states. The same
phenomenon is present in the simpler case discussed in the previous section.

subsectionOne loop
We have seen above that, with the expansion of exp Φ(x) up to first order

in Φ(x) the fields ψ̂ are non interacting and no self energy is present. Now
we shall see that the one-loop correction to that leading term provides the 1

ρ
contribution to the self energy. In fact by adding the quadratic term to S1 the
total action becomes (in the n → 0 limit):

S = S′
0 + S1 ∼ S′

0 + ρ

∫
ddx

(
Φ(x) +

1

2
Φ2(x)

)

= −ρ

2

∫
ddxddy χ(x)f (2)(x − y)χ(y) + i

∫
ddx b(x)χ(x)

−− 1

2

∑

a=1,n

∫
ddxddy ψ̂(a)(x)c(x − y)ψ̂(a)(y)

+
ρ

8

∫
ddx





∑
a=1,n

(
ψ̂(a)(x)

)2

z + χ̂(x)





2

, (109)
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where

b(x) ≡ χ̂(x) + ρf̃(0) − ρ

2

∫
ddy

∑
a=1,n

(
ψ̂(a)(x)

)2

z + χ̂(x)
f(y − x)

c(x − y) ≡ f (−1)(x − y) +
ρ

z + χ̂(x)
δ(x − y) (110)

After doing some computations and adding the two contributions coming two
different diagrams one gets

G(p, z) =

G0(p, z) + G2
0(p, z)

1

ρ

∫
ddq

(2π)d
G0(q, z)

([
ρf̃(p − q) − ρf̃(q)

])2
(111)

The Dyson resummation of all the higher orders terms, that is built by ’decorat-
ing’ recursively all the external legs G0 with the one loop correction in (111)
gives:

G(p, z) =
1

z − ε(p) − Σ1(p, z)
, (112)

where the self-energy Σ1(p, z) is given by

Σ1(p, z) ≡ 1

ρ

∫
ddq

(2π)d
G0(q, z)

[
ρf̃(p − q) − ρf̃(q)

]2
. (113)

Let us study in details the low exchanged momentum limit of Eq.(113). It is
clear that at p = 0 the self-energy vanishes, as required by the Ward identity
(100). We need to expand f̃(p − q) for small p, that due to the spherical
symmetry of f̃ yields

f̃(p − q) = f̃(q) − (p · q) f̃ ′(q)
q

+ O(p2) , (114)

= f̃(q) + (p · q) ε′(q)
qρ

+ O(p2) . (115)

Substituting (115) in (113), and performing explicitly the trivial angular in-
tegrations in dimensions d we obtain

Σ1(p, z) ≈ p2 21−d

ρdπd/2Γ(d/2)

∫ ∞

0
dq qd−1 [ε′(q)]2

z − ε(q)
=

p2 21−d

ρdπd/2Γ(d/2)

∫ ε(q=∞)

0
dε

[q(ε)]d−1

q′(ε)(z − ε)
. (116)
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In the last equation, we have denoted with q(ε) the inverse of the function ε(q).
Setting now z = E + i0+, and observing that ε(p) ≈ Ap2 for small p, we
readily obtain

ReΣ1(p,E + i0+) ≈ p2 21−d

ρdπd/2Γ(d/2)

∫ ε(q=∞)

0
dε

[q(ε)]d−1

q′(ε)(E − ε)
,(117)

ImΣ1(p,E + i0+) ≈ − π22−dA

ρdπd/2Γ(d/2)
p2[q(E)]d . (118)

Since the principal part is a number of order one, the real part of the self-energy
scales like p2 (possibly with logarithmic corrections), and thus the speed of
sound of the system renormalizes due to the 1/ρ corrections. As a conse-
quence, the function q(E) is proportional to E1/2 ∼ p at the maximum of the
function of p SE(p,E), and the width of the peak of the SE(p,E) will scale
like pd+2. It is then easy to check (see (90)) that in frequency space the width
of the spectral line will scale like

Γ ∝ pd+1 , (119)

as one would expect from Rayleigh scattering considerations.
The result (119) for the asymptotic regime p << 1 has been found at the

one loop level. In order to predict correctly the spectral properties at very
low external momentum p, it turns out that one must study the behavior of the
two loop contribution, that can be done in details. Nevertheless, the one loop
result is already a good starting point to perform detailed comparisons with the
numerical simulations. The disadvantage of this approach is that it works near
band edge (ω = 0 at high ρ but is not suited for producing the whole spectrum.
Due to the complication of the action it is not clear how to do a variational
computation and the best it can be done at the present moment is a CPA-like
approximation described in the next section.

6.3 A CPA like approximation

As in the previous section we consider the resolvent G(p, z) Our aim is to
compute G using the appropriate self-consistent equations. A partial resum-
mation of the expansion for the resolvent can be written as

G(p, z) =
1

z − λ(p) − Σ(p, z)
. (120)

The self-energy Σ(p, z) is then expanded in powers of 1/ρ [2, 7] in the relevant
region where ρ = O(z).

If we reformulate the 1/ρ expansion in a diagrammatic way we can iden-
tify those diagrams with the simple topology of Fig. 4. Topologically, these
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1 1
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1 12 2
+

1 12 2 3 3
+ ...

Figure 4. The diagrams of the 1/ρ expansion that are taken into account in our approach.

diagrams are exactly those considered in the usual lattice CPA and in other
self consistent approximations. The sum of this infinite subset is given by the
solution of the integral equation:

Σ(p, z) =
1

ρ

∫
d3q

(2π)3

[
ρ
(
f̂(q) − f̂(p − q)

)]2
G(p, z), (121)

where the resolvent is given by Eq. (120). The solution gives us the resol-
vent, and hence the dynamical structure function and density of states (Eq. 122
below).

We are interested to study the solution of Eq. (121) for different values of
z and ρ. To be definite, we consider an explicit case where the function f(r)
has a simple form, namely f(r) = exp[−r2/(2σ2)]. This is a reasonable
first approximation for the effective interaction [8]. We shall take σ as the
unit of length and set p0 = 1/σ, that is a reasonable choice for p0 for this
Gaussian f(r), as discussed in [8]. In this particular case we will solve numer-
ically the self-consistence equation. We will also evaluate by simulation (using
the method of moments [41]) the exact dynamical structure function and the
density of states by computing the resolvent for concrete realizations of the
dynamical matrix, considering a sufficiently high number of particles so that
finite volume effects can be neglected. These numerical results will be supple-
mented by analytic results, that are f -independent and can be obtained in the
limits p → ∞ and p → 0.

The infinite momentum limit is particularly interesting because of the re-
markable result [6, 7] that the density of states g(ω) can be written as

g(ω) = lim
p→∞

ω2S(1)(p, ω)

kBTp2
. (122)

We easily find that in this limit Eq. (121) can be written as:

1

ρG(z)
=

z

ρ
− f̂(0) −AG(z) −

∫
d3q

(2π)3
f̂2(q)G(q, z) , (123)

where
G(z) = lim

p→∞G(p, z) (124)
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Figure 5. Top: dynamic structure factor as obtained from Eq.(121) (full line) and from simu-
lations [7] (dashes). Bottom: the density of states divided by ω2 (Debye behavior) as obtained
from Eq.(123) (full line), simulations (dashes), and first order in the 1/ρ expansion (dots).

and

A = (2π)−3

∫
f̂2(q) d3q . (125)

A simple approximation consists in neglecting the last term in the r.h.s. of
(123), that is reasonable at large z. This approximation implies a the density
of states that is semicircular as a function of ω2, with width proportional to√

ρ and centered at ω2 = ρf̂(0). Translational invariance also requires low-
frequency modes. These are given by the neglected term, and in fact it is easy
to show that at high density it produces a Debye spectrum that extends between
zero frequency and the semicircular part.

In the limit p → 0, the leading contribution to Σ′′ comes from q � p in
Eq. (121), where G(q, z) ≈ G(z), so we can write for the peak width Γ(p) ≈
Γ0(p), where

Γ0(p) ≡ πρ
g(ωp)

2ω2
p

∫
d3q

(2π)3

[
f̂(q) − f̂(p − q)

]2
. (126)

The integral is of order p2, so if the spectrum is Debye-like for small frequen-
cies, we get Γ(p) ∼ p2.
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These considerations are verified by the numerical solution of the Gaussian
case, that are shown in Fig. 5 for ρ = 1.0σ−3 together with the results for the
simulations [7]. Note the good agreement, to be expected for high-densities,
and how, for large p, S(1)(p, ω) (Fig. 5, top) tends to the density of states.
The density of states from the self-consistent equation (Fig. 5,bottom) also
agrees very well with the results from simulations, and is a big improvement
over the first term of the expansion in powers of ρ−1. The two contributions
(Debye and semicircle) mentioned above can be clearly identified. As expected
our approximation fails in reproducing the exponential decay of the density of
states at high frequencies, that is non perturbative in 1/ρ [5] and corresponds
to localized states.

Next in Fig. 6 we plot the linewidth as a function of p as obtained from
Eq.(121). Notice that we recover the behavior predicted from the first two
non-trivial terms in the expansion in powers of ρ−1 [7]: the linewidth is pro-
portional to p2 at small p (also predicted by the argument above), then there
is a faster growth and finally it approaches to a constant as S(1)(q, ω) starts
to collapse onto the density of states. The inset shows that the contribution
Eq. (126) is indeed dominant at small p. However, accurate p2 scaling is found
only for very small momenta (p/p0 < 0.1), while experiments are done at
0.1 < p/p0 < 1. In this crossover region, our approach predicts the existence
of non-universal, model dependent small deviations from p2, that are probably
hard to measure experimentally. In any case, the effective exponent is certainly
less than 4, in contrast with lattice models and consistent with experimental

Figure 6. Peak width vs. p, for ρ = 0.6σ−3. The inset shows that Γ0(p) is the dominant
contribution at small p.

findings. Similar conclusions can be drawn from mode coupling theory (see
fig. 8 of [43]).
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6.4 The disappearance of phonons

New phenomena are present the function f is no more positive or in the vec-
torial case. In these case it is possible that the spectrum arrives up to negative
values and the density of states gE does not vanish at E = 0. In principle for a
given model we should not expect a sharp transition from the situation where
the Debye spectrum holds and gE(E) ∝ E1/2 because tails are always present.
However often tails are small and one can effectively observe a transition from
the two regimes.

In the framework where the density of states is computed from a simple
integral equation, the tails are neglected and we are in the best situation to
observe such a phenomenon.

Let us call τ a parameter that separate the two regimes. A detailed analysis
show that a τ = 0 the density of states behaves as

gE(E) ∝ E1/4, (127)

while at small τ and E we have

ge(E, τ) = E1/4h(τE1/2). (128)

The detailed argument is a delicate but let us consider an heuristic version of
it.

With some work it is possible to obtain from (121) an integral equation even
for the density of states. As a matter of fact, defining G(z) = G(p = ∞, z),
the density of states turns out to be

gE(E) = − 2

π
ImG(E + i0+). (129)

G being the solution of the following equation:

1

ρG(z)
=

z

ρ
− f̂(0) − AG(z) − B(z) (130)

where

A = (2π)−3

∫
f̂2(q) d3q ,

B(z) =

∫
d3q

(2π)3
f̂2(q)G(q, z) , (131)
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With this equation, one needs to know the resolvent at all q to obtain the den-
sity of states, due to the last term in the r.h.s. This can be done by solving
numerically the self-consistent equation of ref. [11], but here we perform an
approximate analysis, that is more illuminating.

The solution of the previous equation is

G(z) =
−α(z) +

√
α(z)2 − 4Aρ

2Aρ
, (132)

where
α(z) = f̂(0) − z

ρ
+ B(z) (133)

The crudest approximation is to neglect the dependence of B(z) from z (we
will also assume that B is a smooth function of the other parameters). In this
case Eq. 130 is quadratic in G, and one easily finds a semicircular density
of states. But the semicircular spectrum misses the Debye part, and a better
approximation is needed. So we substitute G in the last term of the r.h.s. by the
resolvent of the continuum elastic medium G0(z, p) = (z − E(p))−1. This is
reasonable because the f2(q) factor makes low momenta dominate the integral,
and due to translational invariance G(z, p) ≈ G0(z, p) in this region [11]. We
shall be looking at small E, so to a good approximation

B(z) = B0 + iB1z
1/2 (134)

We have two limiting cases. depending on the sign of of α(0)2− 4Aρ.

When the semicircular part of the density of states does not reach low
frequencies, the square root can be Taylor-expanded, and one gets

ge(E) ≈ E1/2, (135)

that is precisely Debye’s law.

In the opposite situation, on the other hand, the semicircle arrives also at
negative values of E and gE(E) is different from zero also if B1 where
zero.

Exactly at the critical point we get gE(E) ∝
√√

E = E1/4 that is the
announced result.

Mathematically, the instability arises when G(0) develops an imaginary part.
This can only come from the square root in previous equations. Notice that this
instability is a kind of phase transition, where the order parameter is ImG(0).
Doing a detailed computation on finds that this order parameter behaves as τβ ,
with β = 1/2.
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Since the behavior of the propagator at high momentua does not strongly
affect the dispersion relation [11], we do not expect deviations from a linear
dispersion relation. This has been checked either numerically or solving nu-
merically the self-consistency equation given a particular choice for the func-
tion f(r) (see the numerical results section below). It can be argued that this
kind of phenomenon is responsible of the Boson peak [12], however we cannot
discuss this point for lack of space.

sectionCorrelated points

6.5 Various models

When the points are correlated things become more difficult. Already it is
difficult to study the statistical properties of correlated points and it is more
difficult to study the properties of the matrices that depends on these points.
Although some approaches have been developed that allow us to deal with two
points correlations [6, 7], it is not evident how to treat the general case where
many points correlations are present.

A particular interesting case is when the matrix and the distribution of the
points are related. In the best of the possible words there should be extra sym-
metries that express this relations.

This field is at its infancy, so that I will only describe some general results,
without presenting applications, that for the moment do not still exist for the
case of Euclidean random matrices.

In the general case we consider an Hamiltonian H[x], such that the station-
ary equations

Fi[x] ≡ ∂H

∂xi
= 0 (136)

have a large number of solutions.
Let us label these solutions with a index α. The probability P [x] of a con-

figuration of the points x is assumed to be given by

P [x] ∝
∑

α

wαδ(x − xα) ,

wα ≡ D[Mα]) exp(−βH[xα]) , (137)

where the matrix M is given by

Mα
i,k =

∂2H

∂xixk
|x=xα . (138)

This problem arises for the first time in the framework of spin glasses [44], but
its relevance to glasses has been stressed for the first time in [45] The function
F may selects the different type of stationary points.

Different interesting possibilities are:
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D[M ] = 1, i.e. all stationary points have the same weight.

D[M ] = sign(det[M ]), i.e. all stationary points have a weight that can
be 1 or -1.

D[M ] = 1 only if all the eigenvalues are positive, otherwise it is zero
(i.e. minima are selected)

We are eventually interested to study the properties of the matrix

1

M [x] − z ,
(139)

when the points x are extracted with the previous probability.

6.6 A new supersymmetry

For simplicity I will only restrict myself to the case z = 0 where some
symmetry are present when D[M ] = sign(det[M ]).

Indeed it is evident that
∫

P [x]d[x]A[x] ∝
∫

d[x]D[M ] exp(−βH[x]) det M [x]|
∏

i

δ(Fi[x])A[x]

(140)
The last term simplify to

∫
d[x] exp(−βH[x]) det M [x]

∏

i

δ(Fi[x])A[x] , (141)

when D[M ] = sign(det(M)). For simplicity let us assume that this is the
case, without discussing the physical motivations of this choice.

Using usual representations we can write

M−1
i,k =

∫
dµ[x, λ, ψ, ψ] ψiψk , (142)

where dµ is a normalizes measure proportional to

d[x]d[λ]d[ψ]d[ψ] exp



−βH[x] + i
∑

k

λkFk[x] +
∑

k,j

Mj,kψjψk



 .

(143)
Here the ψ are really Fermionic variables (i.e. anticommuting Grassmann vari-
ables): they have been introduced for representing the determinant, however
they can also be used to compute the matrix elements of the inverse of the
matrix M .
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It was rather unexpected [46, 53] to discover that also for β �= 0 the mea-
sure dµ is invariant under a transformation of Fermionic character of BRST
type (a supersymmetry in short). (see for example [52, 47]). If ε is an infinites-
imal Grassmann parameter, it is straightforward to verify that (143) is invariant
under the following transformation,

δxi = ε ψi δλi = −ε β ψi δψ̄i = −ε xi δψi = 0 (144)

This symmetry is extremely important and it is crucial to use approximation
methods that do not break it [48][50]. This has been stressed in the spin glass
case [53] in the context of the Tap equations [54].

6.7 Physical meaning of the supersymmetry and of is
breaking

In this section we will follow a reasoning allowing for an intuitive expla-
nation of the physical meaning of the supersymmetry in terms of a particular
behavior of the solutions of the stationary equations [55]-[60].

It may be interesting to concentrate the attention on some of the Ward iden-
tities that are generated by the supersymmetry. The simplest one is

〈ψjψk〉 = i〈λjxk〉 . (145)

Apparently the equation is trivially satisfied. Indeed it is convenient to con-
sider a slightly modified theory where we make the substitution

Fj → Fj − h . (146)

The final effect is to add an extra term in the exponential equal to iλjh. In
other words the r.h.s of equation 145 is

∂〈xk〉h
∂h

|h=0 (147)

The l.h.s can also be computed and one finds that eq. (145) becomes

∑

α

wα
∂〈xα

k 〉h
∂h

|h=0 =
∂
∑

α′ wα′〈xα′

k 〉
∂h

|h=0 . (148)

If we consider solutions where the det(M) �= 0 we have that

∂wα

∂h
|h=0 = 0 , (149)

so that the previous equation seems to be always satisfied.
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However the we must be careful if most of solutions have a very small
det(M). In this case if we first sent N to infinity and after we do the deriva-
tive with respect to h we can find that the set of solutions in not a continuos
functions of h. Solutions may bifurcate or disappear for any arbitrary small
variation of h and the previous relations are no more valid.

This phenomenon has been studied in the framework of infinite range ran-
dom matrices, where the function that plays the role of H is the free energy
as function of the magnetizations (i.e. the TAP free energy) in spin glass type
models. One finds that depending on the parameters there are two phase, one
where the supersymmetry is exact, the other where the supersymmetry is spon-
taneously broken. This last phenomenon has been discovered last year and at
the present moment one is trying to fully understand its consequences.

In the framework of Euclidean random theory there are two questions that
are quite relevant and may be the most interesting for Euclidean Random the-
ory:

How to construct and to use in a practical way a formalism where the
supersymmetry of the problem plays a crucial role?

How to find out if there is a phase where supersymmetry is sponta-
neously broken and which are the physical effects of such a breaking.

It is quite likely the response to these questions would be very important.
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Cheremushkinskaya, 117259, Moscow, Russia

Abstract We review the recent developments in the theory of normal, normal self-dual
and general complex random matrices. The distribution and correlations of the
eigenvalues at large scales are investigated in the large N limit. The 1/N ex-
pansion of the free energy is also discussed. Our basic tool is a specific Ward
identity for correlation functions (the loop equation), which follows from invari-
ance of the partition function under reparametrizations of the complex eigenval-
ues plane. The method for handling the loop equation requires the technique
of boundary value problems in two dimensions and elements of the potential
theory. As far as the physical significance of these models is concerned, we dis-
cuss, in some detail, the recently revealed applications to diffusion-controlled
growth processes (e.g., to the Saffman-Taylor problem) and to the semiclassical
behaviour of electronic blobs in the quantum Hall regime.

1. Introduction

The subject matter of random matrix theory is a matrix whose entries are
randomly distributed with some probability density. To put it another way, the
theory deals with statistical ensembles of matrices. Given such an ensemble,
one is typically interested in the distribution of eigenvalues and correlations
between them as size of the matrices, N , tends to infinity. The distribution and
correlation laws obtained in this way turn out to be common to objects and
systems of very diverse nature.

The area of applications of the random matrix theory in physics (and math-
ematics) is enormously vast. It ranges from energy levels statistics in nuclei
to number theory, from quantum chaos to string theory. Most extensively em-
ployed and best-understood are ensembles of hermitian or unitary matrices,
with eigenvalues being confined either to the real line or to the unit circle.
Their applications to the level statistics in nuclei go back to Wigner’s works of
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early 50-s. For different aspects of random matrix theory, its applications and
related topics see e.g. [1]-[4].

In these lectures we consider more general classes of random matrices, with
no a priori restrictions to their eigenvalues being imposed. The eigenvalues can
be arbitrary complex numbers. Such models are as yet less well understood but
they are equally interesting and meaningful. As we shall see, they may exhibit
even richer mathematical structures than their Hermitian counterparts. Their
physical applications are also many and varied. (A list of the relevant physical
problems and corresponding references can be found in, e.g., [5] .) The present
lectures are based on our recent works [6]-[10] where new applications to dif-
fusion limited growth processes, complex analysis and quantum Hall effect
were found.

The progenitor of ensembles of matrices with general complex eigenvalues
is the statistical model of complex matrices with the Gaussian weight. It was
introduced by Ginibre [11] in 1965. The partition function of this model is

ZN =
∫

[DΦ] exp
(
− N

t
tr Φ†Φ

)

Here [DΦ] =
∏

ij d(ReΦij)d(Im Φij) is the standard volume element in the
space of N × N matrices with complex entries Φij and t is a (real positive)
parameter. Along with the Ginibre ensemble and its generalizations we also
consider ensembles of normal matrices, i.e., such that Φ commutes with its
hermitian conjugate Φ†, and normal self-dual matrices (the definition follows
below in Section 2).

Since one is primarily interested in statistics of eigenvalues, it is natural to
express the probability density in terms of complex eigenvalues zj = xi + iyj

of the matrix Φ. It appears that the volume element can be represented as

[DΦ] ∝
∏
i<j

|zi − zj |2β
∏

i

d2zi

where β = 1 for complex and normal matrices and β = 2 for normal self-dual
matrices. If the statistical weight depends on the eigenvalues only, as it is usu-
ally assumed, the other parameters of the matrix (often referred to as “angular
variables") are irrelevant and can be integrated out giving an overall normal-
ization factor. In this case the original matrix problem reduces to statistical
mechanics of N particles with complex coordinates zj in the plane. We thus
see that even if the matrix entries Φij are statistically independent, like in the
Ginibre ensemble, the eigenvalues are correlated in a nontrivial way. Specif-
ically, the factor

∏
i<j |zi − zj |2β , being equal to the exponentiated Coulomb

energy in two dimensions, means an effective “repelling of eigenvalues. This
remark leads to the Dyson logarithmic gas interpretation [12], which treats the
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matrix ensemble as a two-dimensional “plasma" of eigenvalues in an external
electric field.

At β = 1, there is another important interpretation. Namely, the factor∏
i<j (zi − zj) can be thought of as coming from the Slater determinant of

one-particle fermionic states. The averaging over matrices then turns into av-
eraging over the ground state of a system of N non-interacting fermions. In
the case of the Ginibre ensemble it is the system of N electrons in a uniform
magnetic field at the lowest Landau level. In the case of a spin-1

2 electron in a
non-uniform magnetic field all energy levels split, with the only exception of
the lowest one, which remains highly degenerate. We shall see that the nor-
mal and complex matrix ensembles with a non-Gaussian statistical weight are
equivalent to N polarized electrons in a non-uniform magnetic field confined
to the lowest energy level. If the degeneracy of the level equals N , i.e., if the
level is completely filled, the system of N electrons behaves as an incompress-
ible quantum Hall droplet [13].

When N becomes large some new features emerge, which require a differ-
ent language for their adequate description, in much the same way as classical
thermodynamics results from statistical mechanics. As N → ∞, the eigenval-
ues densely fill a domain in the complex plane with the mean density outside
it being exponentially small in N . Around the edge of this domain the den-
sity steeply drops down. The width of the transition region tends to zero as
N → ∞, so that the density profile in the direction normal to the edge looks
like a step function. This fact allows one to introduce the support of eigenval-
ues to be the region where the mean density of eigenvalues does not vanish as
N → ∞. Typically, it is a bounded domain (or several disconnected domains)
in the complex plane. Its shape is determined by the probability density.

For the Ginibre ensemble, the support of eigenvalues is the disk of radius√
t with uniform density. It is the counterpart of the celebrated Wigner “semi-

circular law . For matrix ensembles with non-Gaussian weights the supports
are in general not circular and not connected. Throughout these lectures our
attention is mostly restricted to the case when the support of eigenvalues is a
connected domain. Even in this relatively simpler case, the shape of this do-
main depends on parameters of the statistical weight in a rather complicated
way. As we shall see in Section 4, the problem to find the support of eigen-
values from a given statistical weight is equivalent to the inverse problem of
potential theory in two dimensions. In most cases, solutions of the latter are
not available in an explicit form.

Nevertheless, the local dynamical law that governs the evolution of the sup-
port of eigenvalues under changes of parameters of the statistical weight (like
t in the Ginibre ensemble) can be expressed in terms of the exterior Dirich-
let boundary value problem. Namely, the edge of the support moves along
gradient of a scalar harmonic field in its exterior, with the velocity being pro-
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portional to the absolute value of the gradient. Remarkably, this growth law
is known to be common to a wide class of diffusion-limited growth processes
of which the most popular example is viscous flow in the Hele-Shaw cell (see
[14] for a review). The mentioned above equivalence between the normal ma-
trix ensemble and the quantum Hall droplet suggests that the semiclassical
behaviour of electronic droplets in a non-uniform magnetic field follows the
same laws as the Hele-Shaw flows do.

This fact allows one to treat the model of normal or complex random matri-
ces as a growth problem. The advantage of this viewpoint is two-fold. First,
the hydrodynamic interpretation makes some of the large N matrix model re-
sults more illuminating and intuitively accessible. Second and most important,
the matrix model perspective may help to suggest new approaches to the long-
standing growth problems. In this respect, of special interest is the identifica-
tion of finite time singularities in some exact solutions to the Hele-Shaw flows
with critical points of the normal and complex matrix models.

At last, a few words about the organization of the lectures. The material
that follows can be divided into three parts. The first one (Section 2) can be
regarded as a continuation of the introduction. We define the main matrix en-
sembles to be considered and give their physical interpretations. The second
part (Section 3) contains exact results valid at any finite N . We outline the
integrable structure of the normal and complex models at β = 1 (the Hirota
relations for the partition function, the orthogonal polynomials technique and
the Lax representation). In addition, we derive the exact relation between cor-
relation functions of the eigenvalue densities (referred to as the loop equation)
which holds for arbitrary values of β. In the third part (Sections 4 and 5) we
examine the large N limit of the models of random matrices with complex
eigenvalues and discuss the applications to the growth processes and to the
semiclassical electronic droplets in magnetic field. The Appendices contain
technical details of some proofs and calculations.

2. Some ensembles of random matrices with complex
eigenvalues

We consider square random matrices Φ of size N with complex entries Φij

subject to certain constraints depending on the particular ensemble. Some en-
sembles of random matrices are listed in the following table:
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Ensemble Notation Condition Dimension

Hermitian H Φ† = Φ N2

Unitary U Φ†Φ = 1 N2

Normal N [Φ†, Φ] = 0 N2+N

Normal
self-dual

N 0 [Φ†, Φ] = 0
Φ self-dual

1
2
N2 + N

Complex C none 2N2

The first two matrix ensembles, H and U , are the most popular ones. They
are given here just for comparison. Eigenvalues of matrices from H and U
are confined to the real axis and to the unit circle respectively. The last three
ensembles (which are the main subject of these lectures) do not imply any a
priori restrictions on eigenvalues of the matrices. Normal matrices are defined
by the constraint that they commute with their adjoint. The ensemble N 0 is
defined for N even only. The meaning of the condition “Φ is self-dual is
explained below in this section. By dimension of the ensemble we mean the
real dimension of the matrix variety.

Throughout this paper we consider the probability densities of the form
P (Φ) ∝ etrW (Φ), where the function W (Φ) (often called the potential of the
matrix model) is a matrix-valued function of Φ and Φ† such that (W (Φ))† =
W (Φ). This form is similar to the one usually employed in Hermitian and uni-
tary ensembles. The partition function is defined as the integral over matrices
from one or another ensemble:

ZN =
∫

[DΦ]etr W (Φ) (1)

Summing over N with a suitable weight, one may also define the grand canon-
ical ensembles corresponding to (1) but we do not pursue this possibility here.

We need to specify the integration measure [DΦ] and the potential W (Φ).
Given the measure and the potential, one is usually interested in the distribution
and correlations of the eigenvalues. In general, they can be distributed on the
real line for H , on the unit circle for U and on the whole complex plane for
N , N 0 and C .
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2.1 Integration measures

The integration measure has the most simple form for the ensemble of gen-
eral complex matrices:

[DΦ] =
N∏

i,j=1

d(ReΦij) d(Im Φij)

This measure is additively invariant and multiplicatively covariant, i.e. for any
fixed (nondegenerate) matrix A ∈ C we have the properties [D(Φ + A)] =
[DΦ] and [D(ΦA)] = [D(AΦ)] = |det A|2N [DΦ]. The first one is obvious,
to prove the second one is an easy exercise. It is clear that the measure is
invariant under transformations of the form Φ → U †ΦU with a unitary matrix
U (“rotations in the matrix space).

The measure for N is induced by the standard flat metric in C ,

||δΦ||2 = tr (δΦδΦ†) =
∑
ij

|δΦij |2

via the embedding N ⊂ C . Here N is regarded as a hypersurface in C
defined by the quadratic relations ΦΦ† = Φ†Φ. The measure for the ensemble
N 0 is defined in a similar way.

As usual in matrix models, we would like to integrate out the “angular”
variables and to express the integration measure through eigenvalues of the
matrices.

The measure for N through eigenvalues [1, 15]. We derive the explicit
representation of the measure in terms of eigenvalues in three steps:

1. Introduce coordinates in N ⊂ C .

2. Compute the inherited metric on N in these coordinates: ||δΦ||2 =
gαβdξαdξβ .

3. Compute the volume element [DΦ] =
√
| det gαβ |

∏
α dξα.

Step 1: Coordinates in N . For any matrix Φ, the matrices H1 = 1
2(Φ + Φ†),

H2 = 1
2i(Φ − Φ†) are Hermitian. The condition [Φ, Φ†] = 0 is equivalent

to [H1, H2] = 0. Thus H1,2 can be simultaneously diagonalized by a unitary
matrix U :

H1 = UXU † , X = diag {x1, . . . , xN}
H2 = UY U † , Y = diag {y1, . . . , yN}

Introduce the diagonal matrices Z = X + iY , Z̄ = X − iY with diagonal
elements zj = xj + iyj and z̄j = xj − iyj respectively. Note that zj are
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eigenvalues of Φ. Therefore, any Φ ∈ N can be represented as

Φ = UZU †

where U is a unitary matrix and Z is the diagonal matrix with eigenvalues
of Φ on the diagonal. In fact normal matrices can be equivalently defined by
the property of being the most general matrices that can be diagonalized by
a unitary transformation. The matrix U is defined up to multiplication by a
diagonal unitary matrix from the right: U → U Udiag. The dimension of N is
thus

dim (N ) = dim (U )−dim (Udiag)+dim (Cdiag) = N2−N+2N = N2+N

Let us make a remark that the naive counting of the number of constraints
in the condition [Φ, Φ†] = 0 leads to a wrong result for the dimension of
N . On the first glance, this condition gives N2 − 1 independent constraints.
Indeed, set H = [Φ, Φ†]. Then the conditions Hlk = 0 for l < k give N(N−
1) real constraints and the conditions Hkk = 0 give N − 1 real constraints
(because tr H = 0 identically), in total N2 − 1 constraints. We thus observe
that dim (N ) �= dim (C ) − (N2 − 1). Therefore, there are only N2 − N
independent constraints among the N2 − 1 equations [Φ, Φ†] = 0. This fact
can be easily illustrated by the example of 2 × 2 matrices.
Step 2: The induced metric. Since Φ = UZU †, the variation is δΦ = U(δu ·
Z + δZ + Z · δu†)U †, where δu† = UδU † = −δu†. Therefore,

||δΦ||2 = tr (δΦδΦ†) = tr (δZδZ̄) + 2 tr (δuZδuZ̄−(δu)2ZZ̄)

=
N∑

j=1

|δzj |2 + 2
N∑

j<k

|zj − zk|2 |δujk|2

(Note that δujj do not enter.) This is the square of the line element ||δΦ||2 =
gαβδξαδξβ .
Step 3. The volume element. We see that the metric gαβ is diagonal in the
coordinates Re(δzj), Im(δzj), Re(δujk), Im(δujk) with 1 ≤ j < k ≤
N , so the determinant of the diagonal matrix gαβ is easily calculated to be
|det gαβ | = 2N2−N

∏N
j<k |zi − zk|4. Therefore,

[DΦ] ∝ [DU ]′ |∆N (z1, . . . , zN )|2
N∏

j=1

d2zj (2)

where d2z ≡ dxdy is the flat measure in the complex plane, [DU ]′ = [DU ]/
[DUdiag] is the invariant measure on U /Udiag, and

∆N (z1, . . . , zN ) =
N∏

j>k

(zj−zk) = det
N×N

(zk−1
j ) (3)
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is the Vandermonde determinant.
Similarly to the ensemble H of Hermitian matrices, the measure (2) con-

tains the squared modulus of the Vandermonde determinant. The difference
is that the eigenvalues are complex numbers. The statistical model of normal
random matrices was studied in [15, 16].

Normal self-dual matrices. Let Γ be the matrix

Γ =




0 1
−1 0

0 1
−1 0

. . .
. . .




, Γ2 = −1

(all other entries are zero). A complex matrix Φ is called self-dual if ΓΦTΓ =
−Φ (the superscript T means transposition). The size of a self-dual matrix is
thus an even number. It can be shown that eigenvalues of self-dual matrices
always come in pairs: the diagonal form of Φ is

Z = diag {z1, z1, z2, z2, . . . , zN , zN}

As is easy to verify, the condition that Φ is self-dual is equivalent to the condi-
tion that the matrix ΓΦ is anti-symmetric.

Normal self-dual matrices are parameterized as Φ = UZU † with Z as
above, where U is unitary and symplectic: U †U = 1, UTΓU = Γ. In
other words, U belongs to the maximal compact subgroup in the complex
group of symplectic matrices Sp(N). The latter is known to have real di-
mension 4N2 + 2N , with the dimension of the maximal compact subgroup
being twice less. Therefore, similarly to the calculation for normal matrices,
dim(N 0) = 2N2 + N − N + 2N = 2N2 + 2N (the value given in the table
above corresponds to N replaced by N/2). The integration measure appears
to be

[DΦ] ∝ [DU ]′ |∆N (z1, . . . , zN )|4
N∏

j=1

d2zj (4)

(for 2N×2N matrices). Note that the module of the Vandermonde determinant
enters in the fourth degree. The statistical model of normal self-dual matrices
was discussed in [17].

The measure for C through eigenvalues. A complex matrix Φ with eigen-
values z1, . . . , zN can be decomposed as

Φ = U(Z + R)U †
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where Z = diag {z1, . . . , zN} is diagonal, U is unitary, and R is strictly upper
triangular, i.e., Rij = 0 if i ≥ j. These matrices are defined up to a “gauge
transformation": U → U Udiag, R → U †

diag R Udiag. It is not so easy to see
that the measure factorizes. This requires some work, of which the key step is
a specific ordering of the independent variables. The final result is:

[DΦ] ∝ [DU ]′
(∏

k<l

d2Rkl

)
|∆N (zi)|2

N∏
j=1

d2zj (5)

The details can be found in the Mehta book [1].

2.2 Potentials

For the ensembles N , N 0 the “angular variables" (parameters of the uni-
tary matrix U ) always decouple after taking the trace tr W (Φ) =

∑
j W (zj),

so the potential W can be a function of Φ, Φ† of a general form W (Φ) =∑
anmΦn(Φ†)m. Two important particular cases arise if the potential is:

Axially symmetric, W (Φ) = W0(ΦΦ†). In this case the N -fold integral
essentially reduces to ordinary ones, and so some basic results become
available in a quite explicit form.

Harmonic on the background of ΦΦ†, i.e., W (Φ) = −ΦΦ† + V (Φ) +
V̄ (Φ†). In what follows, we call it quasiharmonic. Here V (z) is an
analytic function of z in some domain containing the origin and V̄ (z) =
V (z̄). In terms of the eigenvalues, the quasiharmonic potential is

W (z) = −|z|2 + V (z) + V (z) (6)

This case is particularly important for applications. The normal ma-
trix model with quasiharmonic potentials bears some formal similarities
with the model of two coupled Hermitian matrices [18] and the matrix
quantum mechanics in the singlet sector [19].

The partition function reduces to

ZN =
∫

|∆N (zi)|2β
N∏

j=1

eW (zj)d2zj (7)

where β = 1 for N and β = 2 for N 0. From now on this formula is taken
as the definition of the partition function. Comparing to (1), we redefine W →
W/β and ignore a possible N -dependent normalization factor. One may also
consider this integral for arbitrary values of β.
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The choice of the potential for the ensemble C is more restricted. For a
general potential, the matrix U in Φ = U(Z +R)U † still decouples but R does
not. The problem becomes too complicated. An important particular case,
when R nevertheless decouples is the quasiharmonic potential (6). Indeed,
tr (ΦΦ†) = tr (ZZ̄) + tr (RR†), tr (Φn) = tr (Z + R)n = tr Zn, and so

∫
C
[DΦ]etr W (Φ) = CN

∫
|∆(zi)|2

∏
k

eW (zk)d2zk (8)

where CN is an N -dependent normalization factor proportional to the gaussian
integral

∫
[DR]e−tr (RR†).

As an example, let us consider the quadratic potential:

W (z) = −σ|z|2 + 2Re (t1z + t2z
2) , σ > 0

The ensemble C (β = 1) with this potential is known as the Ginibre-Girko
ensemble [11, 20]. In this case the partition function (7) can be calculated
exactly [21]:

ZN = Z
(0)
N (σ2 − 4|t2|2)−N2/2 exp

(
N

t21t̄2 + t̄21t2 + σ|t1|2
σ2 − 4|t2|2

)

where

Z
(0)
N = σ(N2−N)/2πN

N∏
k=1

k!

To the best of our knowledge, there are no exact results for 2D integrals of this
type with |∆(zi)|2β for other values of β, even for the pure Gaussian weight.

Coming back to the general case, we note that some integrals considered
above may diverge. In the most important case of quasiharmonic potential, the
integral ∫

e−|z|2+V (z)+V (z)d2z

converges for potentials V (z) = αz2 + βz +
∑

i µi log(z − ai) with |α| < 1
2

and µj > −1 but it always diverges if V (z) is a polynomial of degree ≥ 3.
As usual in matrix models, really interesting science begins when integrals
diverge! Let us say a few words about how one should understand divergent
integrals. The conventional viewpoint is to treat all cubic and higher degree
terms in the potential as a small perturbation. The integral is then regarded as
a perturbative series for a theory which is believed to be well-defined on the
nonperturbative level. The nonperturbative definition can be achieved either by
introducing an ad hoc cutoff or via more sophisticated methods in the spirit of
the Marinari-Parisi approach [22] (the “stochastic stabilization”). As far as the
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large N limit is concerned, the integral for the partition function can be defined
through the expansion around the saddle point. This gives the 1/N -expansion

log ZN ∼
∑

h

N−hF (h) as N → ∞

Even if the integral for ZN diverges, each term of the 1/N expansion is often
well-defined.

2.3 Physical interpretations

The ensembles of random matrices appear to be mathematically equivalent
to some important model systems of statistical and quantum mechanics. They
are:

The 2D Coulomb plasma (any β)

Non-interacting fermions (β = 1)

Electrons in magnetic field (β = 1)

The equivalence holds for any finite N . The first two interpretations are stan-
dard and well known. The third one can be regarded as a specification of
the second one for models with eigenvalues distributed over the whole com-
plex plane. Remarkably, in this very case the noninteracting fermions picture
(which is rather formal for H and U ) acquires a very interesting physical
content related to the quantum Hall effect.

The Dyson gas picture. This interpretation, first suggested by Dyson [12]
for the unitary, symplectic and orthogonal matrix ensembles, relies on rewrit-

ing |∆N (zi)|2β as exp
(
β
∑

i�=j log |zi−zj |
)

. Clearly, the integral (7) looks

then exactly as the partition function of the 2D Coulomb plasma (often called
the Dyson gas) at “temperature 1/β, in the external electric field:

ZN =
∫

e−βE(z1,...,zN )
∏

d2zj (9)

The eigenvalues play the role of the 2D Coulomb charges. The energy is

E = −
∑
i<j

log |zi − zj |2 − β−1
∑

j

W (zj) (10)

The first sum is the Coulomb interaction energy, the second one is the energy
due to the external field. For the ensembles H and U the charges are confined
to dimension 1 (the real line or the unit circle) but interact as 2D Coulomb
charges. So, the Dyson gas picture for the ensembles N , N 0 and C looks
even more natural. The Dyson gas interpretation becomes especially helpful in
the large N limit, where it allows one to apply thermodynamical arguments.
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Non-interacting fermions (β = 1). Given any system of polynomials of
the form Pn(z) = zn + lower degrees, the Vandermonde determinant can be
written as ∆N (zi) = det(zk−1

j ) = det(Pk−1(zj)). Let us rewrite the statistical
weight as

|∆N (zi)|2
N∏

j=1

eW (zj) = |Ψ(z1, . . . , zN )|2

where Ψ(z1, . . . , zN ) = detN×N

(
Pk−1(zj)eW (zj)

)
is the (unnormalized)

wave function of N non-interacting fermions (the Slater determinant), with
one-particle wave functions being ψk(z) = Pk−1(z)eW (z). The partition func-
tion is the normalization integral:

ZN =
∫

|Ψ|2
∏

i

d2zi

For the ensembles N and C (with quasiharmonic potential) the wave function
Ψ has a direct physical meaning as a wave function of 2D electrons in magnetic
field.

Electrons in the plane in magnetic field. Consider a charged particle with
spin 1

2 (electron) moving in the plane in a strong (not necessarily uniform)
magnetic field B = B(x, y) orthogonal to the plane. The Pauli Hamiltonian
reads

Ĥ =
1

2m

(
(i�∇ + �A)2 − �σ3B

)

Here m is mass of the particle, σ3 = diag (1,−1) is the Pauli matrix, B =
∂xAy − ∂yAx. In 2D, the complex notation is convenient: A = Ax − iAy,
Ā = Ax + iAy, so that B = i(∂̄A − ∂Ā).

For a uniform magnetic field, B = B0, one can choose the gauge A = B0
2i z̄.

Solving the Schrodinger equation Ĥψ = Eψ, one gets Landau levels:

En =
�B0

m

(
n +

1
2
− s

)
, n = 0, 1, 2, . . . , s = ±1

2

The gap between the levels is proportional to B0/m. Each level is highly
degenerate. The wave functions at the level E = 0 are

ψn = zn exp
(
−B0

4�
|z|2

)

We note in passing that the system of fermions in the magnetic field at the
lowest energy level admits a collective field theory description which was dis-
cussed in the literature in different contexts (see e.g. [13, 23, 24]).
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Figure 1. The energy levels of a spin- 1
2

electron in a non-uniform magnetic field (schemati-
cally). The lowest level E = 0 remains highly degenerate.

Let us turn to the problem with a nonuniform magnetic field. Choose the
gauge A = i ∂W with a real-valued function W , then B = −2 ∂∂̄W and
div �A = ∂̄A + ∂Ā = 0. Therefore,

(i�∇ + �A)2 = −4�
2∂∂̄ + 2i�((∂̄W )∂ + (∂W )∂̄) + |∂W |2

= (2�∂ + ∂W )(−2�∂̄ + ∂̄W ) − 2� ∂∂̄W

The Hamiltonian can be represented as the 2×2 matrix

Ĥ =
(

H+ 0
0 H−

)

where 2mH± = (i�∇ + �A)2 ± 2� ∂∂̄W . In general, the spectral problem for
this Hamiltonian does not admit an explicit solution. However, the level E = 0
is very special. Note that H+ factorizes: H+ = (2�∂ + ∂W )(−2�∂̄ + ∂̄W ),
so exact wave functions at the level E = 0 can be found by solving the first
order equation

H+ψ = (2�∂̄ − ∂̄W )ψ = 0

The general solution is

ψ(z) = P (z) exp
(

1
2�

W (z)
)

(11)

where P (z) is an arbitrary holomorphic polynomial. The zero energy level
remains to be highly degenerate even in the nonuniform magnetic field (Fig. 1).
This fact was first observed in [25].

273

E = 0

s = 1/2 s = - 1/2



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

To find degeneracy of the level, we solve the Poisson equation ∆W = −2B,

W (z) = − 1
π

∫
log |z − ζ|B(ζ)d2ζ (12)

and observe that W (z) tends to −φ
π log |z| as |z| → ∞, where φ =

∫
B d2z

is the total magnetic flux. If P (z) is of degree n, the asymptotics of ψ for |z|
large is

ψ = P (z) e
1
2�

W (z) → zn |z|−φ/φ0

where φ0 = 2π� is the flux quantum. We require the wave functions to be
normalizable, i.e,

∫
|ψ|2d2z < ∞ that means n < φ/φ0 − 1. Therefore,

nmax = [φ/φ0] − 1

([. . .] is the integer part), and the degeneracy is equal to the number of flux
quanta in the total flux:

N = [φ/φ0]

If the Coulomb forces can be ignored, the wave function of N electrons in
the plane in the magnetic field at the lowest energy level is constructed as the
N × N Slater determinant of the functions of the type (11) with polynomials
of different degrees.

The situation when the lowest energy level E = 0 is completely filled, i.e.,
N = nmax, is the (integer) quantum Hall (QH) regime. The notion of the QH
droplet [13] implies that the electronic liquid is incompressible, i.e., all states at
the lowest energy level are occupied. We come to the following conclusion: the
QH droplet consisting of N electrons (in general, in a non-uniform magnetic
field) is equivalent to the ensemble of normal N × N matrices.

3. Exact results at finite N

3.1 Correlation functions: general relations

The main objects to be determined in random matrix models are correlation
functions. In general, they are mean values of scalar-valued functions of matri-
ces. The mean value of such a function A(Φ) of the matrix Φ is defined, with
the help of the statistical weight, in the usual way:

〈A〉 =

∫
[DΦ]A(Φ)etr W (Φ)

∫
[DΦ]etr W (Φ)

We shall consider functions that depend on eigenvalues only – for example,
traces of matrices. Correspondingly, typical correlators which we are going to
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study are mean values of products of traces: 〈tr f(Φ)〉, 〈tr f1(Φ) tr f2(Φ)〉 and
so on. Clearly, they are represented as integrals over eigenvalues. For example,

〈tr f(Φ)〉 =

N

∫
|∆N (zi)|2βf(z1)

N∏
j=1

eW (zj)d2zj

∫
|∆N (zi)|2β

N∏
j=1

eW (zj)d2zj

Here, f(Φ) = f(Φ, Φ†) is any function of Φ, Φ† which is regarded as the
function f(zi) = f(zi, z̄i) of the complex argument zi (and z̄i) in the r.h.s. A
particularly important example is the density function defined as

ρ(z) =
∑

j

δ(z − zj) = tr δ(z − Φ) (13)

where δ(z) is the two dimensional δ-function. As it immediately follows from
the definition, any correlator of traces is expressed through correlators of ρ:

〈tr f1(Φ) . . . tr fn(Φ)〉 =
∫

〈ρ(z1) . . . ρ(zn)〉 f1(z1) . . . fn(zn)
n∏

j=1

d2zj

(14)
Instead of correlations of density it is often convenient to consider correlations
of the field

ϕ(z) = −β
∑

j

log |z − zj |2 = −β log |det(z − Φ)|2 (15)

from which the correlations of density can be found by means of the relation

4πβρ(z) = −∆ϕ(z) (16)

Clearly, ϕ is the 2D Coulomb potential created by the eigenvalues (charges).
As it directly follows from the definitions,

〈ρ(z)〉N = N
ZN−1

ZN

〈
eW (z)−ϕ(z)

〉
N−1

where 〈. . .〉N means the expectation value in the ensemble of N ×N matrices.
Handling with multipoint correlation functions, it is customary to pass to

their connected parts. For example, in the case of 2-point functions, the con-
nected correlation function is defined as

〈ρ(z1)ρ(z2)〉c ≡ 〈ρ(z1)ρ(z2)〉 − 〈ρ(z1)〉 〈ρ(z2)〉
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The connected multi-trace correlators are expressed through the connected
density correlators by the same formula (14) with 〈ρ(z1) . . . ρ(zn)〉c in the r.h.s.
The connected part of the (n + 1)-point density correlation function is given
by the linear response of the n-point one to a small variation of the potential.
More precisely, the following variational formulas hold true:

〈ρ(z)〉 =
δ log ZN

δW (z)
, 〈ρ(z1)ρ(z2)〉c =

δ 〈ρ(z1)〉
δW (z2)

=
δ2 log ZN

δW (z1)δW (z2)
(17)

Connected multi-point correlators are higher variational derivatives of log ZN .
These formulas follow from the fact that variation of the partition function over
a general potential W inserts

∑
i δ(z − zi) into the integral. Let us stress that

these formulas are exact for any finite N .
For a later use, we mention the formula

〈
etr f(Φ)

〉
= exp

( ∞∑
k=1

1
k!

〈
(tr f(Φ))k

〉
c

)
(18)

which immediately follows from the expansion

log
〈
etr f

〉
= log ZN (W + f) − log ZN (W )

=
∫

δ log ZN

δW (ζ)
f(ζ)d2ζ +

1
2!

∫
δ2 log ZN

δW (ζ)δW (ζ ′)
f(ζ)f(ζ ′)d2ζd2ζ ′ + . . .

3.2 Integrable structure of the N and C ensembles
(β = 1)

The partition function (7) for β = 1,

ZN =
∫

|∆N (zi)|2
N∏

j=1

eW (zj)d2zj

regarded as a function of N and Taylor coefficients of the potential W , has
remarkable properties, which we briefly review below.

Determinant representation. The following simple but important determi-
nant representation holds true:

ZN = N ! det
N×N

(Cij) , 1 ≤ i, j ≤ N (19)

where

Cij =
∫

zi−1z̄j−1eW (z)d2z (20)
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is the “matrix of moments . The proof is almost a repetition of the correspond-
ing proof for the hermitian model. Complexity of eigenvalues does not cause
any difficulties. For completeness, the detailed proof is given in the Appendix.

Hirota relations. Let us apply the determinant formula to 〈det(λ − Φ)〉:

〈det(λ − Φ)〉 =
1

ZN

∫
|∆N |2

∏
j

(λ − zj)eW (zj)d2zj

=
1

ZN
det

[
zi−1z̄j−1(λ−z)eW d2z

]

Comparing this with the determinant representation of ZN , we see that
〈det(λ − Φ)〉 = λNZ−1

N det
[
Cij−λ−1Ci+1,j

]
. Taking appropriate linear

combinations of the lines, one can reduce this determinant to the determinant of
a matrix which differs from Cij only in the last line. Similarly, in the determi-
nant representation of 〈det(λ1 − Φ) det(λ2 − Φ)〉 only two last lines change.
Now, some standard identities for determinants lead to the following relations:

(λ1−λ2) 〈det(λ1−Φ) det(λ2−Φ)〉 〈det(λ3−Φ)〉 + cyclic perm-s of (123) = 0 (21)

〈
|det(λ−Φ)|2

〉
N

−
∣∣〈det(λ−Φ)〉N

∣∣2 =
N

N + 1

ZN+1ZN−1

Z2
N

〈
|det(λ−Φ)|2

〉
N−1

(22)

Write

〈det(λ−Φ)〉N = λN ZN (W + [λ])
ZN (W )

where
W + [λ] ≡ W (z) + log

(
1 − z

λ

)

is the potential modified by the (complex and multi-valued) term log
(
1 − z

λ

)
.

(Since this term is always under the exp-function, there is no ambiguity in the
choice of its branch.) In this notation, the above identities for determinants
acquire the form of the Hirota bilinear equations [26]:

(λ1−λ2)ZN (W +[λ1]+[λ2])ZN (W +[λ3]) + cyclic perm-s of 1, 2, 3 = 0
(23)

ZN (W )ZN (W +[λ]+[λ]) − ZN (W +[λ])ZN (W +[λ])

=
N

N+1
|λ|−2ZN+1(W )ZN−1(W +[λ]+[λ])

(24)

Let us parameterize the potential as

W (z) = W (0)(z) +
∑

k

(tkzk + t̄kz̄
k)
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then these equations state that ZN/N !, as a function of tk, t̄k, is the tau-
function of the 2D Toda lattice hierarchy. The transformation W → W + [λ]
is equivalent to the change of variables tk → tk − 1

kλ−k which is known in the
literature as the Miwa transformation.

Orthogonal polynomials and the kernel function. The orthogonal poly-
nomials technique is useful not only for hermitian and unitary matrix ensem-
bles but for the normal and complex ensembles as well. The orthogonal poly-
nomials are introduced as mean values of the characteristic polynomials of the
random matrices Φ:

Pn(λ) = 〈det(λ − Φ)〉n (25)

Clearly, Pn are polynomials in λ of the form Pn(λ) = λn + lower degrees.
The main property of the polynomials introduced is their orthogonality in

the complex plane: ∫
Pn(z)Pm(z)eW (z)d2z = hn δmn (26)

The square of the norm hn = ||Pn||2 is connected with the partition function
as

hn =
1

n+1
Zn+1

Zn
, ZN = N !

N−1∏
n=0

hn

Again, the proof is completely parallel to the corresponding proof in the her-
mitian models. See Appendix for details.

The functions

ψn(z) =
1√
hn−1

Pn−1(z)eW (z)/2

are orthonormal: ∫
ψn(z)ψm(z)d2z = δmn (27)

These ψn’s are “one-particle wave functions of electrons in the magnetic field.
The N -particle wave function is ΨN (z1, . . . , zN ) ∼ det[ψj(zk)]. The joint
probability to find “particles" at z1, . . . , zN is

|ΨN (z1, . . . , zN )|2 =
1

N !
| det[ψj(zk)]|2

Since |det M |2 = det(MM †), we can write: | det[ψj(zk)]|2 =

det
(∑N

n=1 ψn(zj)ψn(zk)
)

. The expression under the determinant is called

the kernel function:

KN (z, w̄) =
N∑

n=1

ψn(z)ψn(w) (28)
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The main properties of the kernel function are:

Hermiticity: KN (z, w̄) = KN (w, z̄);

Normalization:
∫

KN (z, z̄)d2z = N ;

Projection property:
∫

KN (z1, z̄)KN (z, z̄2)d2z = KN (z1, z̄2).

All density correlation functions can be expressed through the kernel func-
tion. For example:

〈ρ(z)〉N = KN (z, z̄)

〈ρ(z1)ρ(z2)〉N =

∣∣∣∣∣∣
KN (z1, z̄1) KN (z1, z̄2)

KN (z2, z̄1) KN (z2, z̄2)

∣∣∣∣∣∣ + KN (z1, z̄1)δ(z1−z2)

The last term is a contact term. It does not contribute if z1 �= z2. In general,
one has:

〈ρ(z1) . . . ρ(zn)〉N = det(KN (zi, z̄j))1≤i,j≤n + contact terms

where the contact terms vanish if all the points zi are different.
Note that for the ensemble N with an axially-symmetric potential W (Φ) =

W0(ΦΦ†) the orthogonal polynomials are simply Pn(z) = zn and hn is given
explicitly:

hn =
∫

|z|2neW0(|z|2)d2z = 2π
∫ ∞

0
r2n+1eW0(r2)dr

The kernel function is

KN (z, w̄) = e
1
2
(W (z)+W (w))

N−1∑
n=0

(zw̄)n

hn

For example, for the Gaussian model with W (z) = −|z|2 the squared norms
are hn = πn! and the mean value of density is given by

〈ρ(z)〉N =
1
π

e−|z|2
N−1∑
n=0

|z|2n

n!

The Lax representation. The orthogonal polynomials obey the recurrence
relation of the form zPn(z) =

∑
k≤n cnkPk(z). In terms of the ψ-function it

reads
zψn(z) = rnψn+1(z) +

∑
k≥0

uk(n)ψn−k(z)
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One can represent it as a “spectral problem" Lψ = zψ for the difference oper-
ator

L = rne∂/∂n +
∑
k≥0

uk(n)e−k∂/∂n (29)

(the Lax operator). Here e∂/∂n is the shift operator n → n + 1 with the
characteristic property e∂/∂nf(n) = f(n + 1)e∂/∂n.

Let
W (z) = W (0)(z) +

∑
k

(tkzk + t̄kz̄
k)

It can be shown that the dependence on the parameters tk, t̄k is given by the
2D Toda hierarchy

∂

∂tk
L = [Ak, L] ,

∂

∂t̄k
L = [L, Āk]

where Ak = (Lk)+ + 1
2(Lk)0, Āk = (L†k)− + 1

2(L†k)0 and L† = e−∂/∂nrn +∑
k≥0 ek∂/∂nūk(n) is the conjugate Lax operator. Given an operator of the

form Ô=
∑

k bke
k∂/∂n, we use the standard definition (Ô)+ =

∑
k>0 bke

k∂/∂n,
(Ô)− =

∑
k<0 bke

k∂/∂n and (Ô)0 = b0. The structure of the Toda hierarchy
in models of random matrices was first revealed in [27], see also review [4].

In the case of quasiharmonic potential, it is convenient to modify the ψ-
functions:

ψn → χn =
1√
hn−1

eV (z)Pn−1(z)

The functions χn obey the orthogonality condition:
∫

χn(z)χm(z)e−|z|2d2z =
δnm. Then we have two compatible linear problems:

(Lχ)n = zχn , (L†χ)n = ∂zχn

The second equation can be proven by comparing the matrix elements of the
both sides using integration by parts.

3.3 The loop equation

In matrix models, loop equations are exact relations which follow from the
fact that the matrix integral defining the model does not depend on changes of
integration variables. In our case, we may start directly from the integral over
eigenvalues (7), thereby extending the result to any value of β.

Clearly, the integral (7) remains the same if we change the integration vari-
ables zi → z̃i. In other words, it is invariant under reparametrizations of the
z-coordinate, which we write in the infinitesimal form as zi → zi + ε(zi),
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z̄i → z̄i + ε̄(zi). For the integral ZN =
∫

e−βE(z1,...,zN )
∏

j d2zj with E given
in (10), the reparametrization yields, in the first order:

∏
j

d2zj −→
[
1 +

∑
l

(∂ε(zl)+∂̄ε̄(zl))

]∏
j

d2zj

E −→ E +
∑

l

(
∂E

∂zl
ε(zi) +

∂E

∂z̄l
ε̄(zi)

)

The invariance of the integral is then expressed by the identity

∑
i

∫
∂

∂zi

(
ε(zi)e−βE

)∏
j

d2zj = 0

valid for any ε. Introducing a suitable cutoff at infinity, if necessary, one sees
that the 2D integral over zi can be transformed, by virtue of the Green theorem,
into a contour integral around infinity and so it does vanish.

Let us take ε(zi) = 1
z−zi

, where z is a complex parameter. The singularity at
the point z does not destroy the above identity since its contribution is propor-
tional to the vanishing integral

∮
dz̄i/(zi − z) over a small contour encircling

z. Therefore, we have the equality

∑
i

∫ [
− β∂ziE

z − zi
+

1
(z − zi)2

]
e−βE

∏
j

d2zj = 0

where ∂ziE = −
∑
l �=i

1
zi − zl

− β−1 ∂W (zi) (see (10)). Using the identity

∑
i,j

1
(z − zi)(z − zj)

=
∑
i�=j

2
(z − zi)(zi − zj)

+
∑

i

1
(z − zi)2

we rewrite it in the form 〈T (z1, . . . , zN )〉 = 0, where

T = 2
∑

i

∂W (zi)
z − zi

+β

(∑
i

1
z−zi

)2

+ (2−β)
∑

i

1
(z − zi)2

This identity gives an exact relation between one- and two-point correlation
functions. To see this, we rewrite it in terms of ϕ(z) = −β

∑
i log |z − zi|2

using the rule
∑

i f(zi) =
∫

f(z)ρ(z)d2z. The result is the loop equation

1
2π

∫
∂W (ζ) 〈∆ϕ(ζ)〉

z − ζ
d2ζ = 〈T (z)〉 (30)
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where

T (z) = (∂ϕ(z))2 + (2−β)∂2ϕ(z) (31)

The correlator at coinciding points is understood as
〈
(∂ϕ(z))2

〉
= lim

z′→z
〈∂ϕ(z)

∂ϕ(z′) .
We have got an exact relation between one- and two-point correlation func-

tions, valid for any finite N . For historical reasons, it is called the loop equa-
tion. One may read it as a Ward identity obeyed by correlation functions of
the model. Being written in the form (30), (31), it resembles conformal Ward
identities. Since correlation functions are variational derivatives of the free en-
ergy, the loop equation is an implicit functional relation for the free energy.
However, it is not a closed relation. It can be made closed by some additional
assumptions or approximations. A combination with 1/N expansion is partic-
ularly meaningful.

4. Large N limit

Starting from this section, we study the large N limit of the random ma-
trix models introduced in Section 2. Our main tool is the loop equation. We
shall see that in the large N limit meaningful geometric and algebro-geometric
structures emerge, as well as important applications in physics.

4.1 Preliminaries

In order to be prepared for taking the large N (“quasiclassical") limit, it
is convenient to introduce the “Planck constant" � by the rescaling W (z) →
1
�
W (z), so the integral for the partition function acquires the form

ZN =
∫

[DΦ]e
1
�
tr W (Φ) ∝

∫
|∆N |2β

∏
j

e
1
�

W (zj)d2zj (32)

which is ready for an �-expansion.
Now we can specify what we mean by the large N limit. Namely, we are

going to consider the integral (32) in the limit

N → ∞, � → 0, �N = t finite,

where t is a (positive) parameter having the dimension of area, or, equivalently,
the integral

ZN =
∫

|∆N (zi)|2β
∏
j

exp
(

N

t
W (zj)

)
d2zj

as N → ∞. With this convention, the N → ∞ and � → 0 limits mean the

same. It is natural to expect that ZN
�→0−→ e�

−2F0(t), where the rescaled free
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energy F0 is a smooth function of t (and parameters of the potential) finite as
N → ∞.

From now on we change the normalization of the functions ρ and ϕ (see
(13), (15)) multiplying them by the �:

ρ(z) = �

∑
i

δ(z − zi) , ϕ(z) = −�β
∑

i

log |z − zi|2 (33)

and use these definitions hereafter. (The idea is to make their mean values finite
as N → ∞.) The relation (16) between these functions remains unchanged.
The density is now normalized as follows:∫

ρ(z)d2z = t

Note that in our units the � has dimension of [length]2, ρ(z) is dimensionless
and the partition function defined by (32) has dimension [length]N(βN+2−β),
i.e., the combination

�
− 1

2
βN2+ 1

2
(β−2)N ZN =

∫ ∣∣∣∆N

(
zi/

√
�

)∣∣∣2β
N∏

j=1

(
e

1
�

W (zj)
d2zj

�

)
(34)

is dimensionless.
In terms of the renormalized ϕ, the loop equation (30) has the form

1
2π

∫
∂W (ζ) 〈∆ϕ(ζ)〉

ζ − z
d2ζ +

〈
(∂ϕ(z))2

〉
+ ε

〈
∂2ϕ(z)

〉
= 0 (35)

where
ε = (2 − β)� (36)

is small as � → 0. Note that ε is exactly zero for the ensemble N 0 (β =
2), and so the last term does not enter the loop equation in this case. It is
convenient to treat ε and � as independent small parameters.

4.2 Solution to the loop equation in the leading order

It is instructive to think about the large N limit under consideration in terms
of the Dyson gas picture. Then the limit we are interested in corresponds to
a very low temperature of the gas, when fluctuations around equilibrium po-
sitions of the charges are negligible. The main contribution to the partition
function then comes from a configuration, where the charges are “frozen at
their equilibrium positions. It is also important that the temperature tends to
zero simultaneously with increasing the number of charges, so the plasma
can be regarded as a continuous fluid at static equilibrium. In the nonin-
teracting fermions picture, this limit has some features of the quasiclassical
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approximation. Mathematically, all this means that the integral is evaluated
by the saddle point method, with only the leading contribution being taken
into account. As � → 0, correlation functions take their “classical" values
〈ϕ(z)〉 = ϕcl(z), and multipoint correlators factorize in the leading order:
〈∂ϕ(z) ∂ϕ(z′)〉 = ∂ϕcl(z)∂ϕcl(z′). Then the loop equation (35) becomes a
closed relation for ϕcl:

1
2π

∫
∂W (ζ)∆ϕcl(ζ)

ζ − z
d2ζ +

(
∂ϕcl(z)

)2
+ ε ∂2ϕcl(z) = 0 (37)

Note that we hold the last term which is apparently of the next order in �. The
role of this term will be discussed below.

The case β = 2 (the ensemble N 0). We begin with the case β = 2, when
the last term in the r.h.s. of (37) vanishes exactly. Let us apply ∂̄ to both sides
of the equation. This yields:

−∂W (z)∆ϕcl(z) + ∂ϕcl(z)∆ϕcl(z) = 0

Since ∆ϕcl(z) ∝ ρcl(z) (see (33)), we obtain

ρcl(z) [∂ϕcl(z) − ∂W (z)] = 0 (38)

This equation should be solved with the additional constraints
∫

ρcl(z)d2z = t
(normalization) and ρcl(z) ≥ 0 (positivity). The equation tells us that either
∂ϕcl(z) = ∂W (z) or ρcl(z) = 0. Applying ∂̄, we get ∆ϕcl(z) = ∆W (z).
Since ∆ϕ = −4πβρ, this gives the solution for ρcl:

ρcl(z) = − ∆W (z)
4πβ

“in the bulk (39)

Here, “in the bulk just means “in the region where ρcl > 0 . As we shall see
below, this result holds true, up to some details, for other values of β as well,
so β is kept in this formula and in some formulas below.

The physical meaning of the equation ∂ϕcl(z) = ∂W (z) is clear. It is just
the condition that the charges are in equilibrium (the saddle point for the inte-
gral). Indeed, the equation states that the total force experienced by a charge
at any point z, where ρcl �= 0, is zero. The interaction with the other charges,
∂ϕcl(z), is compensated by the force ∂W (z) due to the external field.

Support of eigenvalues. Let us assume that

σ(z) := − 1
4π

∆W (z) > 0 (40)

For quasiharmonic potentials, σ(z) = 1/π. If, according to (39), ρcl = σ/β
everywhere, the normalization condition for ρcl can not be satisfied! So we
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Figure 2. The support of eigenvalues.

conclude that ρcl = σ/β in a compact bounded domain (or domains) only, and
outside this domain one should switch to the other solution of (38), ρcl = 0.
The domain D where ρcl > 0 is called support of eigenvalues (Fig. 2). In
general, it may consist of several disconnected components. The complement
to the support of eigenvalues, Dc = C \ D, is an unbounded domain in the
complex plane. For quasiharmonic potentials, the result is especially simple:
ρcl is constant in D and 0 in Dc.

In terms of the mean value of the function ϕ(z) in the leading order, the
above result reads

ϕcl(z) = −
∫

D
log |z − ζ|2σ(ζ) d2ζ

As it follows from the theory of potential in two dimensions, this function is
continuous across the boundary of D together with its first derivatives. How-
ever, the second order derivatives of this function have a jump across the
boundary.

To find the shape of D is a much more challenging problem. It appears to
be equivalent to the inverse potential problem in two dimensions. The shape of
D is determined by the condition ∂ϕcl(z) = ∂W (z) (imposed for all points z

inside D) and by the normalization condition. Since ∂ϕcl(z) = −β
∫ ρcl(ζ)d2ζ

z−ζ
(see (33)), we write them in the form




1
4π

∫
D

∆W (ζ)d2ζ

z − ζ
= ∂W (z) for all z ∈ D

∫
D

σ(ζ)d2ζ = βt

The integral over D in the first equation can be transformed to a contour integral
by means of the Cauchy formula (see Appendix B). As a result, one obtains:

∮
∂D

∂W (ζ)dζ

z − ζ
= 0 for all z ∈ D. (41)
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This means that the domain D has the following property: the function ∂W (z)
on its boundary is the boundary value of an analytic function in its complement
Dc.

We continue our analysis for the quasiharmonic case, where

∂W (z) = −z̄ + V ′(z) , ∆W (z) = 4∂∂̄W (z) = −4

The normalization than means that the area of D is equal to βπt. Assume that:

- V (z) =
∑

tkz
k is regular in D (say a polynomial)

- 0 ∈ D (it is always the case if −W has a local minimum at 0)

- D is connected

Then the first equation in (41) acquires the form

1
2πi

∮
∂D

ζ̄dζ

ζ − z
= V ′(z) for z ∈ D

Expanding it near z = 0, we get:

tk =
1

2πik

∮
∂D

ζ̄ζ−kdζ = − 1
πk

∫
D

ζ−kd2ζ (42)

We see that the “coupling constants tk are harmonic moments of Dc = C \D
and the area of D is πβt.

It is the subject of the inverse potential problem to reconstruct the domain
from its area and harmonic moments. (In the case when the support of eigen-
values has several disconnected components, some additional conditions are
required.) In general, the problem has many solutions. But it is known that
locally, i.e., for a small enough change t → t+ δt, tk → tk + δtk the solution
is unique.

The support of eigenvalues: a fine structure (β �= 2). Let us take a closer
look at the support of eigenvalues, taking into account the so far ignored term in
(37). Applying ∂̄ to the both sides of (37) yields, instead of (38), the equation

∂ϕcl(z) − ∂W (z) +
ε

2
∂ log ∆ϕcl(z) = 0

with the extra term proportional to ε (36). Acting by ∂̄ once again, we obtain
the equation for ρcl

− ε

8π
∆log ρcl(z) + βρcl(z) = σ(z) (43)

which looks like the Liouville equation in the “background σ(z). The first
term seems to be negligible as � → 0. However, one should be careful since
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the small parameter stands in front of the term with the highest derivative. As
a matter of fact, this term is negligible only if ρcl is not small! Indeed, in a
region where ρcl ∼ e−N , the term ε∆log ρcl is of order 1 and thus plays the
dominant role.

In fact the equation states that ρcl never vanishes exactly but can be expo-
nentially small as N → ∞. In the bulk, where the charges are distributed with
nonzero density at N = ∞, equation (43) systematically generates corrections
to the value σ(z)/β. If σ �= const, there are power-like corrections in ε, as
well as exponentially small ones. We conclude that the effect of the extra term
is negligible everywhere except the very vicinity of the edge of the support of
eigenvalues. Therefore, the result for ρcl can still be written in the form

ρcl(z) = β−1σ(z) Θ(z; D) (44)

where Θ(z; D) is the characteristic function of the domain D (which is 1 in
D and 0 in Dc). The role of the term ε∆log ρcl is to make the edge smooth.
Around the edge, the density rapidly (but smoothly) drops down to zero over
distances of order

√
ε. So, the boundary has got a “fine structure .

All this is in agreement with the form of the first nonvanishing correction
to the mean density found from the loop equation (35). Let us write 〈ϕ(z)〉 =
ϕcl(z)+ϕ�(z), where ϕ� is of order �. The result for the ϕ� can be compactly
written in terms of the function

χ(z) = log
√

πσ(z) (45)

and its harmonic continuation χH(z) from the boundary of D to its exterior.
Specifically, χH(z) is a harmonic function in Dc (regular at ∞) such that
χH(z) = χ(z) on the boundary. In other words, it is the solution of the
(exterior) Dirichlet boundary value problem (see below). The loop equation
yields

ϕ�(z) =




−ε
[
χ(z) − χH(∞) + 1

2

]
, z ∈ D

−ε
[
χH(z) − χH(∞)

]
, z ∈ Dc

(46)

(Note the discontinuity of this function across the boundary.) The correspond-
ing correction to the mean density ρ� = 〈ρ〉 − ρcl is

ρ�(z) =
ε

4πβ

(
Θ(z; D)∆χ(z) − δ(z; ∂D)∂n

(
χ(z) − χH(z)

)
− 1

2
δ′(z; ∂D)

)

(47)
where δ(z; ∂D) is the delta function with the support on the boundary and
δ′(z; ∂D) is its normal derivative (see Appendix B). Here and below, ∂n is
the normal derivative at the boundary, with the normal vector being directed
to the exterior of the domain D. The correction is so singular because the
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Figure 3. The mean density profile for models with quasiharmonic potential in the large N
limit. The correction to the pure step function is shown by the dotted line. The effect of the
correction is to form a double layer of charges near the edge.

zeroth approximation (44) is singular by itself. The singular function ρ� is to
be understood as being integrated with any smooth test function. The first term
in (47) is a correction to the bulk density. The second one is a correction to
the shape of the support of eigenvalues (it describes a small displacement of
the edge). The third term signifies the presence of a double layer of charges
around the boundary. This just means that the boundary is smoothed out.

For the normal self-dual matrices (β = 2) the correction ρ� vanishes. Cer-
tainly, this does not mean that the boundary is sharp. It becomes smooth if
higher corrections in � (caused by fluctuations of the particles) are taken into
account.

For the normal matrix model (β = 1) with quasiharmonic potential equation
(43) reads

− �

8
∆ log ρcl(z) + πρcl(z) = 1

The obvious solution is ρcl = 1/π. But it is not normalizable! One must look
for another solution. The right solution differs from the constant by exponen-
tially small terms in the bulk but exhibits an abrupt drop across the boundary of
the domain determined by the harmonic moments (42). So, up to exponentially
small corrections, the solution is given by (44) with σ = 1/π and β = 1. It is
instructive to note that the first two terms in (47) vanish at σ = const but the
third term does not, so the leading correction in the quasiharmonic case merely
makes the edge smooth that results in a double layer of “charges" near the edge
(see Fig. 3).
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From the support of eigenvalues to an algebraic curve. There is an in-
teresting algebraic geometry behind the large N limit of matrix models. For
simplicity, here we consider models with quasiharmonic potentials.

In general, the boundary of the support of eigenvalues is a closed curve in
the plane without self-intersections. The following important fact holds true.
If V ′(z) is a rational function, then this curve is a real section of a complex
algebraic curve of finite genus. In fact, this curve encodes the 1/N expansion
of the model. In the context of Hermitian 2-matrix model such a curve was
introduced and studied in [28–30].

To explain how the curve comes into play, we start from the equation ∂ϕcl =
∂W , which can be written in the form z̄ − V ′(z) = G(z) for z ∈ D, where

G(z) =
1
π

∫
D

d2ζ

z − ζ

Clearly, this function is analytic in Dc. At the same time, V ′(z) is analytic in
D and all its singularities in Dc are poles. Set

S(z) = V ′(z) + G(z)

Then S(z) = z̄ on the boundary of the support of eigenvalues. So, S(z) is the
analytic continuation of z̄ away from the boundary. Assuming that poles of V ′

are not too close to ∂D, S(z) is well-defined at least in a piece of Dc adjacent
to the boundary. The complex conjugation yields S(z) = z, so the function
S̄(z) = S(z̄) must be inverse to the S(z):

S̄(S(z)) = z

(“unitarity condition ). The function S(z) is called the Schwarz function [31].
Under our assumptions, the S(z) is an algebraic function, i.e., it obeys a

polynomial equation R(z, S(z)) = 0 of the form

R(z, S(z)) =
d+1∑

n,l=1

anlz
n(S(z))l = 0

where aln = anl and d is the number of poles of V ′(z) (counted with their
multiplicities). Here is the sketch of proof. Consider the Riemann surface
Σ = Dc ∪ ∂D ∪ (Dc)∗ (the Schottky double of Dc). Here, (Dc)∗ is another
copy of Dc, with the local coordinate z̄, attached to it along the boundary. On
Σ, there exists an anti-holomorphic involution that interchanges the two copies
of Dc leaving the points of ∂D fixed. The functions z and S(z) are analytically
extendable to (Dc)∗ as S(z) and z̄ respectively. We have two meromorphic
functions, each with d + 1 poles, on a closed Riemann surface. Therefore,

289

’’



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

they are connected by a polynomial equation of degree d + 1 in each variable.
Hermiticity of the coefficients follows from the unitarity condition.

The polynomial equation R(z, z̃) = 0 defines a complex curve Γ with anti-
holomorphic involution (z, z̃) �→ (z̃, z̄). The real section is the set of points
such that z̃ = z̄. It is the boundary of the support of eigenvalues.

It is important to note that for models with non-Gaussian weights (in par-
ticular, with polynomial potentials of degree greater than two) the curve has
a number of singular points, although the Riemann surface Σ (the Schottky
double) is smooth. Generically, these are double points, i.e., the points where
the curve crosses itself. In our case, a double point is a point z(d) ∈ Dc such
that S(z(d)) = z(d) but z(d) does not belong to the boundary of D. Indeed,
this condition means that two different points on Σ, connected by the anti-
holomorphic involution, are stuck together on the curve Γ , which means the
self-intersection. The double points play the key role in deriving the nonper-
turbative (instanton) corrections to the large N matrix models results (see [32]
for details).

Finally, let us point out that a complex curve Γ (n) can be associated to
ensembles of finite matrices as well (at least for β = 1). For the model of two
Hermitian matrices this was done in [33]. If the linear spectral problem for
the L-operator is of finite order (see the end of Section 3.2), the curve can be
defined as the “spectral curve" of the difference spectral problems (Lχ)n =
zχn, (L†χ)n = z̃χn. Since the operators L and L† do not commute, the
curve depends on n. (See [8] for details.) In contrast to the curve Γ the curve
Γ (n) is in general a smooth curve. A properly performed n → ∞ limit of
this curve coincides with the complex curve Γ constructed from the support of
eigenvalues.

4.3 The free energy

In this subsection we assume that the support of eigenvalues is connected.
As is known, the free energy admits a 1/N expansion. We prefer to work with
the equivalent �-expansion, thus emphasizing its semiclassical nature. The
first few terms of the �-expansion for the ensembles of normal matrices with a
general potential are

log ZN = c(N) +
F0

�2
+

F1/2

�
+ F1 + O(�) (48)

The explicit form of the c(N) is given below. In fact this term can be absorbed
into a normalization. For example, one may normalize ZN dividing it by the
partition function of the Gaussian model. Although in general the �-expansion
does not look like a topological one, it appears to be topological (i.e., only
even powers of � enter) for the ensemble N 0 with arbitrary potential and for
the ensemble N with quasiharmonic potential.
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The leading order. The partition function is given by (9), ZN =
∫

e−βE
∏

d2zj , where

−βE(z1, . . . , zN ) = β
∑
i�=j

log |zi − zj | + �
−1

∑
j

W (zj) (49)

Writing the energy in terms of the density function, we have, in the leading
order:

−β�
2E[ρ] = β

∫ ∫
ρ(z)ρ(ζ) log |z − ζ|d2zd2ζ +

∫
W (z)ρ(z)d2z (50)

We need to find the minimum of E[ρ] with the constraint
∫

ρ d2z = t. This is
achieved by variation of the functional E[ρ]+λ(

∫
ρ d2z−t) with the Lagrange

multiplier λ. The resulting equation is

2β

∫
log |z − ζ|ρ(ζ)d2ζ + W (z) + λ = 0

Upon taking the z-derivative, we see that the extremal ρ(z) is equal to the
ρcl(z), as expected, and the equation coincides with the previously derived
one, ∂ϕcl(z) = ∂W (z), with

ϕcl(z) = −β

∫
log |z − ζ|2ρcl(ζ)d2ζ = −

∫
D

log |z − ζ|2σ(ζ)d2ζ

Assuming that W (0) = 0 and D is connected, the Lagrange multiplier is fixed
to be λ = ϕcl(0), and so W (z) = ϕcl(z) − ϕcl(0). Plugging this into (50),
we find the leading contribution to the free energy F0/�

2 = maxρ(−βE[ρ]) =
−βE[ρcl]:

F0 = − 1
β

∫
D

∫
D

σ(z) log
∣∣∣∣1z −

1
ζ

∣∣∣∣σ(ζ)d2zd2ζ (51)

which is basically the electrostatic energy of the domain D charged with the
density σ(z) with a point-like compensating charge at the origin.

Since the t-derivative of the extremal value of the functional is equal to the
Lagrange multiplier (with the sign minus), ∂tF0 = −λ, we incidentally obtain
the useful formula

∂tF0 = 2
∫

D
log |z|σ(z) d2z (52)

which will be rederived below by a more direct method.

Corrections to the leading term. Taking into account the discrete “atomic
structure of the Dyson gas, one is able to find the subleading corrections to the
free energy.

291

’’



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

The first correction comes from a more accurate integral representation of
the sum

∑
i�=j log |zi − zj |, when passing to the continuous theory. Namely,

one should exclude the terms with i = j, writing
∑
i�=j

log |zi − zj | =
∑
i,j

log |zi − zj | −
∑

j

log |�(zj)|

where � is a short-distance cutoff (which may depend on the point zj). It is
natural to take the cutoff to be

�(z) ∼
√

�

ρcl(z)
(53)

which is the mean distance between the charges around the point z. (In the
context of the quantum Hall effect, � ∼

√
�/B is called the magnetic length.)

This gives the improved estimate for E[ρcl]:

−β�
2E[ρcl] = F0 + β�

∫
ρcl(z)

√
ρcl(z) d2z − 1

2
βN log � + α1N (54)

where α1 is a numerical constant which can not be determined by this argu-
ment.

Another correction comes from the integration measure when one passes
from the integration over zj to the integration over macroscopic densities1. We
can write ∏

j

d2zj = N ! J [ρ] [Dρ]

where [Dρ] is an integration measure in the space of densities, J [ρ] is the Ja-
cobian of this change of variables and the factor N ! takes into account the
symmetry under permutations (all the states that differ by a permutation of the
charges are identical). To estimate the Jacobian, we divide the plane into N
microscopic “cells such that j-th particle occupies a cell of size �(zj), where
�(zj) is the mean distance (53) between the particles around the point zj . All
the microscopic states in which the particles remain in their cells are macro-
scopically indistinguishable. Given a macroscopic density ρ, J [ρ] is then ap-
proximately equal to the integral

∫
cells

∏
j d2zj , with each particle being con-

fined to its own cell. Therefore, J [ρ] ∼ ∏
j �2(zj), and thus log J [ρ] (some-

times referred to as entropy of the state with the macroscopic density ρ) is
given by

log J [ρ] = −1
�

∫
ρcl(z) log ρcl(z) d2z + N log � + α2N (55)

where α2 is a numerical constant. This result agrees with the corresponding
Jacobian obtained within the collective field theory approach [34].

292

’’



Matrix Models and Growth Processes

Combining (54), (55) with ρ = ρcl, and taking into account the factor N ! in
the measure, we obtain:

c(N) = log N ! +
N

2
(2 − β) log � + αN (56)

where α is a numerical constant, and

F1/2 = − 2 − β

2β

∫
D

σ(z) log(πσ(z)) d2z (57)

The term F1/2 is thus the sum of the contribution due to the short-distance
cutoff and the entropy contribution, which cancel each other in the ensemble
of normal self-dual matrices (at β = 2). Another remarkable case when F1/2

vanishes exactly2 is the case of quasiharmonic potentials.
The result for F1/2 can be derived in a more rigorous way from the loop

equation (see Appendix C). Here we simply note that the variation of (57) over
the potential W does yield the correction to the mean density given by (47).
One can verify this using the variational technique presented below in Section
4.4.

The result for c(N) is in agreement with the dimensionality argument. It
is easy to see that eF0/�

2
carries the dimension of [length]βN2

, and higher
terms are dimensionless. The dimension of ZN is given by (34). Therefore,
ec(N) must carry the residual dimension [length]N(2−β), which agrees with
(56). For quasiharmonic potentials, the constant α can be found explicitly:
α = log

√
2π3, as is readily seen from the Gaussian case.

To summarize, the asymptotic expansion of the partition function as � → 0
has the form

ZN = N !�
1
2
(2−β)NeαN exp


F0

�2
+

F1/2

�
+ F1 +

∑
k≥3

�
k−2Fk/2


 (58)

where F0 and F1/2 are given by (51) and (57) respectively. The higher correc-
tions are due to fluctuations of the eigenvalues around the equilibrium config-
uration. No simple method to find their explicit form is known. In principle,
these corrections can be found by expanding the loop equation in powers of
� (see Appendix C), similarly to how it goes for the model of one Hermitian
matrix [35, 36]. However, the calculations are rather tedious, even in the first
two orders. At present only fragmentary results are available. Some of them
look quite suggestive.

For example, the result for the F1-correction obtained in [37] for the case of
the normal matrix model with quasiharmonic potential and a connected support
of eigenvalues has a clean interpretation as the free energy of the theory of free
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Figure 4. The normal displacement of the boundary.

bosons in the domain Dc with the Dirichlet boundary conditions. Namely, the
calculations yield the result

F1 = − 1
24π

∮
|w|=1

(
log |z′(w)|∂n log |z′(w)| + 2 log |z′(w)|

)
|dw| (59)

where z(w) is the univalent conformal map from Dc onto the exterior of the
unit circle. Comparison with the Polyakov-Alvarez formula [38, 39] allows
one to identify this quantity with −1

2 log det(−∆Dc), where det(−∆Dc) is
the regularized determinant of the Laplace operator in Dc with the Dirichlet
boundary conditions. This suggests the interpretation through free bosons3.
Presumably, the higher corrections to the free energy are connected with spec-
tral geometry of the Laplace operator, too. Recently, some progress in compu-
tation of F1 and, more generally, in understanding the structure of the whole
series (including the case of disconnected supports) in models of Hermitian
matrices was achieved [41]. Conjecturally, the answer is to be expressed in
terms of a (conformal?) field theory on the complex curve Γ introduced at the
end of Section 4.2.

Finally, we note that the structure of the loop equation suggests to rearrange
the �-expansion of the free energy and to write it in the “topological form
F =

∑
g≥0 �

2gFg, where each term has its own expansion in ε = (2 − β)�:

Fg = F 0
g +

∑
n≥1 εnF

(n)
g .

4.4 Correlation functions in the large N limit

Variational technique and the Dirichlet boundary value problem. Cor-
relation functions in the leading order in � can be obtained from the free energy
by variation w.r.t. W (z) according to the formulas from Section 3.1. For a vari-
ation of the potential, W → W +δW with N� fixed we ask how D changes. It
is convenient to describe small deformations D → D̃, by the normal displace-
ment δn(ξ) of the boundary at a boundary point ξ (Fig. 4).
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Consider a small variation of the potential W in the condition (41), which
determines the shape of D at a fixed t. To take into account the deformation of
the domain, δD = D̃ \ D, we write, for any fixed function f ,

δ

(∮
∂D

f(ζ)dζ

)
=

∮
∂(δD)

f(ζ)dζ = 2i
∫

δD
∂̄f(ζ)d2ζ ≈ 2i

∮
∂D

∂̄f(ζ)δn(ζ)|dζ|

and thus obtain from (41):∮
∂D

∂ δW (ζ)dζ

z − ζ
+

i

2

∮
∂D

∆W (ζ)δn(ζ)
z − ζ

|dζ| = 0 (60)

Here the first term comes from the variation of W and the second one comes
from the change of D.

This is an integral equation for the δn(ζ). It can be solved in terms of the
exterior Dirichlet boundary value problem. Given any smooth function f(z),
let fH(z) be its harmonic continuation (already introduced in Section 4.2)
from the boundary of D to its exterior, i.e., the function such that it is harmonic
in Dc, ∆fH = 0, and regular at ∞, and fH(z) = f(z) for all z ∈ ∂D. The
harmonic continuation is known to be unique. Explicitly, a harmonic function
can be reconstructed from its boundary value by means of the Dirichlet formula

fH(z) = − 1
2π

∮
∂D

f(ξ)∂nG(z, ξ)|dξ| (61)

The main ingredient of this formula is G(z, ξ), which is the Green function of
the domain Dc:

∆zG(z, ζ) = 2πδ(z − ζ) in Dc , G(z, ζ) = 0 if z ∈ ∂D

As ζ → z, it has the logarithmic singularity G(z, ζ) → log |z − ζ|. The well
known properties of harmonic functions imply that ∂nG(z, ξ) ≤ 0 for all ξ ∈
∂D (the operator of the normal derivative acts here to the second argument).

Consider the integral ∮
∂D

∂(δWH)dζ

z − ζ

which is obviously equal to 0 for all z inside D, subtract it from the first term
in (60) and rewrite the latter in the form∮

∂D

∂(δW−δWH)dζ

z − ζ
=

i

2

∮
∂D

∂n(δW−δWH)
z − ζ

|dζ|

Here the integral over dζ is transformed to the integral over the line element
|dζ|. The normal derivative is taken in the exterior of the boundary. After this
simple transformation our condition acquires the form

∮
∂D

δn1(ζ) + R̂(ζ)
z − ζ

|dζ| = 0 for all z ∈ D (62)
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where δn1(z) := ∆W (z)δn(z) (just for brevity) and R̂ is the Neumann jump
operator. Acting on a smooth function f , this operator gives the difference
between the normal derivative of this function and the normal derivative of its
harmonic extension:

R̂f(z) = ∂−
n (f(z) − fH(z)) (63)

The superscript indicates that the derivative is taken in the exterior of the
boundary.

By properties of Cauchy integrals, it follows from (62) that
[
δn1(z) +

R̂δW (z)
]
|dz|
dz is the boundary value of an analytic function h(z) in Dc such

that h(∞) = 0. For z ∈ Dc, this function is given by

h(z) =
1

2πi

∮
∂D

δn1(ζ) + R̂(ζ)
z − ζ

|dζ|

If h is not identically zero, the number of zeros of h in Dc, counted with mul-
tiplicities, is given by the contour integral 1

2π

∮
∂D d(arg h). Since arg h(z) =

arg(|dz|/dz) = −θ(z), where θ is the angle between the tangent vector and
the real axis, this integral is equal to 1. We conclude that the function h has
exactly one simple zero outside the domain D. It is just the zero at ∞.

On the other hand, the variation of the normalization condition yields, in a
similar manner: ∮

∂D
(δn1 + ∂nδW )|dζ| = 0 (64)

This relation implies that the zero at ∞ is at least of the 2-nd order. Indeed,
expanding the Cauchy integral around ∞,

2πih(z) → 1
z

∮
∂D

(δn1+∂nδW−∂nδWH)|dζ| + O(z−2)

one concludes, using the Gauss law
∮
∂D ∂nδWH |dζ| = −

∫
Dc ∆δWHd2ζ = 0,

that the coefficient in front of 1/z vanishes. We have got a contradiction.
Therefore, h(z) ≡ 0, and so δn1(z) + R̂δW (z) = 0. This gives the fol-

lowing result for the normal displacement of the boundary caused by small
changes of the potential W → W + δW :

δn(z) =
∂−

n (δWH(z)−δW (z))
∆W (z)

(65)

Some results for the correlation functions. In order to find the correlation
functions of traces, we use the general variational formulas (17), where the
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exact free energy is replaced by the leading contribution (51):

lim
�→0

〈ρ(z)〉 =
δF0

δW (z)
= ρcl(z) , lim

�→0
〈ρ(z1)ρ(z2)〉c = �

2 δρcl(z1)
δW (z2)

Basically, these are linear response relations used in the Coulomb gas theory
[42]. In this approximation, the eigenvalue plasma is represented as a contin-
uous charged fluid, so the information about its discrete microscopic structure
is lost. So, these formulas give “smoothed" correlation functions in the first
non-vanishing order in �. They are correct at distances much larger than the
mean distance between the charges.

Here are the main results for the correlation functions obtained by the vari-
ational technique. For details of the derivation see [7] and Appendix C.

The leading contribution to the one-trace function was already found in Sec-
tion 4.2. Here we present the general result including the first subleading cor-
rection which can be found by variation of (57):

β 〈trf(Φ)〉 =
1
�

∫
D

σ(z)f(z) d2z

+
2−β

8π

[∫
D
(1+log σ(z))∆f(z) d2z −

∮
∂D

log σ(z) R̂f(z)|dz|
]

+ O(�)

(66)
where R̂ is the Neumann jump operator (63). Applying this formula to the
function ϕ(z), we get the familiar result 〈ϕ(z)〉 = ϕcl(z) + ϕ�(z) + O(�2),
where ϕ� is given by (46). The connected two-trace function is:

β 〈trf trg〉c =
1
4π

∫
D
∇f∇gd2z − 1

4π

∮
∂D

f∂ngH |dz| + O(�) (67)

In particular, for the connected correlation functions of the fields ϕ(z1), ϕ(z2)
(see (33)) this formula gives (if z1,2 ∈ Dc):

1
2β�2

〈ϕ(z1)ϕ(z2)〉c =G(z1, z2)−G(z1,∞)−G(∞, z2)−log
|z1 − z2|

r
+O(�)

(68)
where G is the Green function of the Dirichlet boundary value problem and

r = exp
[

lim
ξ→∞

(log |ξ| + G(ξ,∞))
]

(69)

is the (external) conformal radius of the domain D. The 2-trace functions are
universal, i.e., they depend on the shape of the support of eigenvalues only
and do not depend on the potential W explicitly. They resemble the two-point
functions of the Hermitian 2-matrix model found in [18]; they were also ob-
tained in [43] in the study of thermal fluctuations of a confined 2D Coulomb
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gas. The structure of the formulas indicates that there are local correlations in
the bulk as well as strong long range correlations at the edge of the support of
eigenvalues. (See [44] for a similar result in the context of classical Coulomb
systems).

From the mathematical point of view, the significance of formula (68) is to
provide a link between such seemingly unrelated disciplines as classical analy-
sis in two dimensions and the random matrix theory. Namely, different limits
or certain specifications of the arguments in this formula allow one to represent
some important objects of classical analysis associated with the domains D and
Dc (e.g., the conformal map onto the unit circle and its Schwarzian derivative,
the Bergman kernel) in terms of correlations between eigenvalues of random
matrices.

Further variation of the pair density correlation function suggests that, start-
ing from n = 3, the connected n-point density correlations vanish in the bulk
in all orders of � (in fact they are exponential in 1/�). The entire leading con-
tribution comes from the boundary. The result for the connected three-trace
function is:

β

〈
3∏

i=1

tr fi

〉

c

=
�

16π2

∮
∂D

|dz|
σ(z)

3∏
j=1

R̂fj(z) + O(�2) (70)

5. The matrix model as a growth problem

5.1 Growth of the support of eigenvalues

When N increases at a fixed potential W , one may say that the support of
eigenvalues grows. More precisely, we are going to find how the shape of the
support of eigenvalues changes under t → t + δt, where t = N�, if W stays
fixed.

The starting point is the same as for the variations of the potential, and the
calculations are very similar as well. Variation of the condition (41) and of the
normalization condition yields

∮
∂D

∆W (ζ)δn(ζ)
z − ζ

|dζ|=0 (for all z ∈ D),
∮

∂D
∆W (ζ)δn(ζ) |dζ| = −4πβδt

The first equation means that ∆W (z)δn(z) |dz|
dz is the boundary value of an

analytic function h(z) such that h(z) = −4πβδt/z + O(z−2) as z → ∞. The
solution for the δn(z) is:

δn(z) = − βδt

2πσ(z)
∂nG(∞, z) (71)
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Figure 5. The mutually inverse conformal maps w(z) and z(w).

where G is the Green function of the Dirichlet boundary problem in Dc. For
quasiharmonic potentials (with σ = 1/π), the formula simplifies:

δn(z) = −β

2
δt ∂nG(∞, z) (72)

Identifying t with time, one can say that the normal velocity of the bound-
ary, Vn = δn/δt, is proportional to gradient of the Green function: Vn ∝
−∂nG(∞, z). This result is quite general. It holds for any (not necessarily
connected) domains of eigenvalues with a smooth boundary.

If the domain is connected, the Green function can be expressed through the
conformal map w(z) from Dc onto the exterior of the unit circle:

G(z1, z2) = log

∣∣∣∣∣
w(z1) − w(z2)
1 − w(z1)w(z2)

∣∣∣∣∣ (73)

In particular, G(∞, z) = − log |w(z)|. As |z| → ∞, w(z) = z/r + O(1),
where r is the external conformal radius of the domain D which enters eq.
(68). It is easy to see that ∂n log |w(z)| = |w′(z)| on ∂D, so one can rewrite
the growth law (72) as follows:

δn(z) =
β

2
δt |w′(z)| (74)

It is worth noting that the inverse map, z(w), is the classical (� → 0) limit of
the Lax operator (29) of the 2D Toda hierarchy. Indeed, making the rescaling
n� = t, ∂/∂n = �∂t, we see that the shift operator e�∂t can be replaced
by a commuting variable w with the Poisson bracket {log w, t} = 1. In this
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limit, known also as the dispersionless limit of the 2D Toda hierarchy, the Lax
operator L(e�∂t) converts into the function z(w) given by the series of the form

z(w) = r(t)w +
∑
k≥0

uk(t)w−k (75)

It defines the one-to-one conformal map from the exterior of the unit circle
onto Dc, which is inverse to the map w(z) (Fig. 5). For more details see [8].

The basic formula which allows one to find the t-derivative of any quantity
of the form

∫
D(t) f(z) d2z (where the function f is assumed to be independent

of t) immediately follows from (71):

δ

(∫
D

f(z) d2z

)
=

∮
D

f(z)δn(z) |dz| = − βδt

2π

∮
∂D

f(z)
σ(z)

∂nG(∞, z) |dz|

In the r.h.s. we recognize the value at infinity of the harmonic continuation of
the function f(z)/σ(z), so the result is

∂

∂t

(∫
D

f(z) d2z

)
= β (f/σ)H (∞) (76)

Using this formula and the integral representation of F0, we find t-derivatives
of the free energy. The first derivative,

∂tF0 = 2
∫

D
σ(z) log |z| d2z (77)

was already found in Section 4.3 by other means (see (52)). The second deriv-
ative is proportional to the logarithm of the conformal radius (69):

∂2
t F0 = 2β (log |z|)H

∣∣∣
z=∞

= 2β lim
z→∞

(log |z| + G(z,∞)) = 2β log r

(78)
In this connection let us also mention the nice formula for the conformal

map w(z),

w(z) = lim
N→∞

ψN+1(z)
ψN (z)

(79)

which follows from the relation log (PN+1(z)/PN (z)) = �∂t 〈tr log(z − Φ)〉+
O(�) after calculating the t-derivative according to the above rule. This con-
nection between conformal maps and orthogonal polynomials goes back to the
classical theory of analytic functions (see e.g. [45]). It is the context of the
random matrix theory where it looks natural and easily understandable.

300



Matrix Models and Growth Processes

5.2 Laplacian growth

The growth law (72) is common to many important problems in physics.
The class of growth processes, in which dynamics of a moving front (an inter-
face) between two distinct phases is driven by a harmonic scalar field is known
under the name Laplacian growth. The most known examples are viscous
flows in the Hele-Shaw cell (the Saffman-Taylor problem), filtration processes
in porous media, electrodeposition and solidification of undercooled liquids.
A comprehensive list of relevant papers published prior to 1998 can be found
in [46]. Recently, the Laplacian growth mechanism was recognized [10] in a
purely quantum evolution of semiclassical electronic blobs in the QH regime.

The Saffman-Taylor problem. Let us describe the main features of the
Laplacian growth on the example of viscous flows. To be specific, we shall
speak about an interface between two incompressible fluids with very different
viscosities on the plane (say, oil and water). In practice, the 2D geometry is
realized in the Hele-Shaw cell – a narrow gap between two parallel glass plates.
In this version, the problem is also known as the Saffman-Taylor problem or
viscous fingering. For a review, see [14]. The velocity field in a viscous fluid in
the Hele-Shaw cell is proportional to the gradient of pressure p (Darcy’s law):

�V = −K∇p , K =
b2

12µ

Here the constant K is called the filtration coefficient, µ is viscosity and b is the
size of the gap between the two plates. Note that if µ → 0, then ∇p → 0, i.e.,
pressure in a fluid with negligibly small viscosity is uniform. Incompressibility
of the fluids (∇�V = 0) implies that the pressure field is harmonic: ∆p = 0. By
continuity, the velocity of the interface between the two fluids is proportional
to the normal derivative of the pressure field on the boundary: Vn = −K∂np.

To be definite, we assume that the Hele-Shaw cell contains a bounded droplet
of water surrounded by an infinite “sea" of oil (another possible experimental
set-up is an air bubble surrounded by water). Water is injected into the droplet
while oil is withdrawn at infinity at a constant rate, as is shown schematically
in Fig. 6. The latter means that the pressure field behaves as p ∝ − log |z| at
large distances. We also assume that the interface between oil and water is a
smooth closed curve γ which depends on time. As it was mentioned above,
if viscosity of water is negligible, then one may set p = 0 inside the water
droplet. However, pressure usually has a jump across the interface, so p in
general does not tend to zero if one approaches the boundary from outside.
This effect is due to surface tension. It is hard to give realistic estimates of
the surface tension effect from first principles, so one often employs certain
ad hoc assumptions. The most popular one is to say that the pressure jump is
proportional to the local curvature of the interface.
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Figure 6. The Hele-Shaw cell.

To summarize, the mathematical setting of the Saffman-Taylor problem is
as follows: 



Vn = −∂np on γ
∆p = 0 in oil
p → − log |z| in oil as z → ∞
p = 0 in water
p(+) − p(−) = −νκ across γ

(80)

Here ν is the surface tension coefficient and κ is the local curvature of the in-
terface. (The filtration coefficient is set to be 1.) The experimental evidence
suggests that when surface tension is small enough, the dynamics becomes un-
stable. Any initial domain develops an unstable fingering pattern. The fingers
split into new ones, and after a long lapse of time the water droplet attains a
fractal-like structure. This phenomenon is similar to the formation of fractal
patterns in the diffusion-limited aggregation.

Comparing (72) and (80), we identify the D and Dc with the domains oc-
cupied by water and oil respectively, and conclude that the growth laws are
identical, with the pressure field being given by the Green function: p(z) =
G(∞, z), and p = 0 on the interface. The latter means that supports of eigen-
values grow according to (80) with zero surface tension, i.e., with ν = 0 in
(80).

Neglecting the surface tension effects, one obtains a good approximation
unless the curvature of the interface becomes large. We see that the idealized
Laplacian growth problem, i.e., the one with zero surface tension, is mathemat-
ically equivalent to the growth of the support of eigenvalues in ensembles of
random matrices N , N 0 and C . This fact clarifies the origin of the integrable
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structure of the Laplacian growth with zero surface tension discovered in [47].
The link to the normal matrix model has been established in [6], see also [48].

The finite-time singularities. As a matter of fact, the Laplacian growth
problem with zero surface tension is ill-posed since an initially smooth inter-
face often becomes singular in the process of evolution, and the solution blows
up. The role of surface tension is to inhibit a limitless increase of the interface
curvature. In the absense of such a cutoff, the tip of the most rapidly growing
finger typically grows to a singularity (a cusp). In particular, a singularity nec-
essarily occurs for any initial interface that is the image of the unit circle under
a rational conformal map, with the only exception of an ellipse.

An important fact is that the cusp-like singularity occurs at a finite time
t = tc, i.e., at a finite area of the droplet. It can be shown that the conformal
radius of the droplet r (as well as some other geometric parameters), as t → tc,
exhibits a singular behaviour

r − rc ∝ (tc − t)−γ

characterized by a critical exponent γ. The generic singularity is the cusp
(2, 3), which in suitable local coordinates looks like y2 = x3. In this case
γ = −1

2 . The evolution can not be extended beyond tc.
A similar phenomenon was well-known in the theory of random matrices

for quite a long time, and in fact it was the key to their applications to 2D
quantum gravity and string theory. In the large N limit, the random matrix
models have critical points – the points where the free energy is not analytic
as a function of a coupling constant. As we have seen, the Laplacian growth
time t should be identified with a coupling constant of the normal or complex
matrix model. In a vicinity of a critical point,

F0 ∼ F reg
0 + α(tc − t)2−γ

where the critical index γ (often denoted by γstr in applications to string the-
ory) depends on the type of the critical point. Accordingly, the singularities
show up in correlation functions. Using the equivalence established above, we
can say that the finite-time blow-up (a cusp-like singularity) of the Laplacian
growth with zero surface tension is a critical point of the normal and complex
matrix models.

5.3 The semiclassical limit for electrons in magnetic field

As we have seen in Section 2.3, the system of N electrons in the plane
in non-uniform magnetic field, which fully occupy the lowest energy level, is
equivalent to the ensemble of normal N ×N matrices, where N is degeneracy
of the level. In this section we study the QH droplet in the semiclassical regime.
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B0 > 0

B1 < 0

R0

the droplet

B = 0

|z|R1

Figure 7. The configuration of magnetic fields.

The equivalence with the large N limit of the matrix model suggests to identify
the semiclassical QH droplet with the support of eigenvalues. Remarkably, it
is this limit where one makes contact with the purely classical Saffman-Taylor
problem.

A remark is in order. The limit � → 0 we are talking about is really a
semiclassical limit, or better to say “partially classical". Although the Planck
constant � tends to zero, all the particles remain at the lowest (most quantum)
energy level, assuming their mass is small or the magnetic field is large. The
true quasiclassical limit would imply that the particles occupy higher energy
levels.

We recall that the joint probability to find electrons at the points zi is |ΨN

(z1, . . . , zN )|2, with ΨN ∝ detN×N [ψn(zk)], where

ψn(z) =
1√
hn−1

Pn−1(z)eW (z)/(2�) (81)

are orthogonal one-particle wave functions for electrons in the magnetic field
B = −1

2∆W at the lowest level E = 0. The level is assumed to be completely
filled, i.e., n = 0, 1 . . . , N = [φ/φ0], where φ0 is the flux quantum. Then
the mean density of the electrons coincides with the expectation value of the
density of eigenvalues in the normal or complex matrix model.

The degeneracy of the level cam be controlled in different ways. One of
them is to assume the following arrangement (see Fig. 7). Let a strong uniform
magnetic field B0 > 0 be applied in a large disk of radius R0. The disk is sur-
rounded by a large annulus R0 < |z| < R1 with a magnetic field B1 < 0 such
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that the total magnetic flux through the system is Nφ0: πB0R
2
0 − πB1(R2

1 −
R2

0) = Nφ0. The magnetic field outside the largest disk |z| < R1 vanishes.
The disk is connected through a tunnel barrier to a large capacitor that main-
tains a small positive chemical potential slightly above the zero energy. If the
field B0 is strong enough, the gap between the energy levels is large, and the
higher levels can be neglected. In the case of the uniform fields B0 and B1 the
QH droplet is a disk of radius r0 =

√
N� � R0 trapped at the origin.

In this set-up, let us apply a non-uniform magnetic field, δB, somewhere
inside the disk |z| < R0 but well away from the droplet. This leads to the
following two effects.

The Aharonov-Bohm effect in the QH regime [10, 49]. Suppose that the
nonuniform magnetic field δB does not change the total flux:

∫
δBd2z = 0.

As is argued above, the shape of the droplet is the same as that of the support
of eigenvalues in the ensemble N with the potential

W (z) = −B0

2
|z|2 − 1

π

∫
log |z − ζ| δB(ζ) d2ζ

The second term is harmonic inside and around the droplet. One may have
in mind thin solenoids carrying magnetic flux (“magnetic impurities"). In the
case of point-like magnetic fluxes qi at points ai the change of the potential is
δW (z) =

∑
i qi log |z − ai|.

Let us stress that in the presence of the fluxes, the shape of the droplet is
no longer circular although the magnetic field inside the droplet and not far
from it remains uniform and is not changed at all (Fig. 8). In this respect this
phenomenon is similar to the Aharonov-Bohm effect. Due to the quantum
interference the electronic fluid is attracted to positive fluxes and is repelled
by negative ones. The response of the droplet to an infinitesimal change of the
magnetic field δB is described by eq. (65) in which

δWH(z) − δW (z) =
1
π

∫
Dc

G(z, ζ)δB(ζ)d2ζ

In fact this formula holds for arbitrary δB, not necessarily vanishing inside
the droplet. In particular, for small point-like fluxes δqi at some points ai we
have δW =

∑
i δqi log |z−ai|, δB = −π

∑
i δqiδ

(2)(z−ai), and δWH(z)−
δW (z) = −∑

i G(z, ai)δqi. If ai is inside, G(z, ai) is set to be zero. The
sum, therefore, is over outside fluxes only. The fluxes inside the droplet, if any,
appear to be completely screened and do not have any influence on its shape.

Growth of the electronic droplet. If the total magnetic flux increases, with
magnetic impurities kept fixed, the electronic droplet grows. For example, one
may adiabatically increase B1, with B0 and δB fixed. Then the droplet grows
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Figure 8. The electronic droplet in the presence of magnetic impurities.

because the degeneracy of the lowest level is enlarged and new electrons enter
the system. The growth is described by eq. (71) with ∆W (z) = −2B0 which
is equivalent to the Darcy law. This phenomenon is purely quantum. Like the
Aharonov-Bohm effect, it is caused by quantum interference. Its characteristic
scale is less than that of the Saffman-Taylor fingering by a factor of 109. The
correspondence established above suggests that the edge of the QH droplet
may develop unstable features similar to the fingers in the Hele-Shaw cell.

5.4 Semiclassical ψ-function

In this Subsection we derive the semiclassical asymptotics of the ψ-function
(81), i.e.,

ψN+1(z) �→0−→ ψ(z)

To avoid cumbersome technical details, we mainly consider models with qua-
siharmonic potential.

First of all, it is necessary to know the large N limit of the orthogonal poly-
nomials PN . Truncating the general formula (18) at the second term in the
exponent, we can write:

PN (z) = 〈det(z − Φ)〉 =
〈
etr log(z−Φ)

〉

�→0= exp
(
〈tr log(z − Φ)〉 +

1
2

〈
(tr log(z − Φ))2

〉
c
+ . . .

) (82)

The first term in the r.h.s. is O(�−1), the second one is O(�0) and the ignored
terms vanish as � → 0. However, this formula should be applied with some
care since the logarithm is not a single-valued function. This formula is correct
if one can fix a single-valued branch of the logarithm. It is possible if z is
outside D. For z inside D an analytic continuation should be used. To take
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care of the normalization, we also need

hN =
ZN+1

(N+1)ZN
= (2π3

�)1/2 exp
(

�
−1∂tF0 +

1
2
∂2

t F0 + . . .

)
(83)

which is written here with the same precision as (82). (We have used (58) with
α = log

√
2π3� and have taken into account that F1/2 = 0 for quasiharmonic

potentials.)
Let us first keep the dominant terms in the r.h.s. of (82), (83) and ignore

the O(�0) terms for a while. We have, for z ∈ Dc: |ψ(z)|2 ∼ e−
1
�

∂tF0

e
1
�
(W (z)−〈ϕ(z)〉), or, using the results of the previous section,

|ψ(z)|2 ∼ e−2A(z)/� , 2A(z) = ϕcl(z) − ϕcl(0) − W (z)

As we know, A(z) defined by this formula is zero on the boundary. The an-
alytic continuation of the A(z) inside the contour γ = ∂D can be done using
the Schwarz function. Namely, since 2∂A(z) = z̄ −S(z), the desired analytic
continuation can be defined (up to a constant) by the formula

2A(z) = |z|2 − 2Re

∫ z

S(ζ) dζ

Clearly, A(z) defined in this way is constant on the contour γ. Indeed, if
z1,2 ∈ γ, then

2(A(z2) −A(z1)) = |z2|2 − |z1|2 − 2Re

∫ z2

z1

S(z)dz

= z2z̄2 − z1z̄1 −
∫ z2

z1

z̄dz −
∫ z2

z1

zdz̄ = z2z̄2 − z1z̄1 −
∫ z2

z1

d(zz̄) = 0

Since A(z) should be zero on γ, we finally define

A(z) =
1
2
|z|2 − 1

2
|ξ0|2 −Re

∫ z

ξ0

S(ζ)dζ (84)

where ξ0 is an arbitrary point on the contour. We call the function defined
by (84) the effective action. From the above it follows that its first derivatives
vanish for all z ∈ γ: ∂A(z) = ∂̄A(z) = 0. This means that |ψ|2 ∼ e−2A/� has
a sharp maximum on the contour γ. We may say that purely quantum particles
are in general delocalized in the plane, purely classical particles are localized
at some points in the plane while partially classical particles, like our electrons,
are localized on closed curves in the plane.

Let us turn to the O(�0)-corrections, which give the subexponential factor in
the asymptotics of the ψ-function4. We assume, for simplicity, that the domain
D is connected. Extracting analytic and anti-analytic parts of eq. (68), we get〈

(tr log(z − Φ))2
〉
c
= log(rw′(z)) + O(�)
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where r is the external conformal radius of D and w′(z) is the derivative of the
conformal map from Dc onto the exterior of the unit circle. Plugging this into
(82) and taking into account eq. (78), we finally obtain:

|ψ(z)|2 =
|w′(z)|√

2π3�
e−2A(z)/� (85)

This formula does resemble the WKB asymptotics in quantum mechanics. If
a singularity of the conformal map is sufficiently close to the boundary from
inside, the asymptotics becomes invalid in this region.

The effective action can be expanded near the contour, where it takes the
minimal value:

A(z + δnz) = |δnz|2 ∓ 1
3
κ(z)|δnz|3 +

1
4
κ2(z)|δnz|4 + . . . (86)

Here κ(z) is the local curvature of the contour at the point z and δnz is a small
deviation from the point z ∈ γ in the normal direction. (The upper and lower
signs correspond to the outward and inward deviations respectively.) A similar
expansion of log |w′(z)| reads

log |w′(z + δnz)| = log |w′(z)| ± (|w′(z)| − κ(z)) |δnz| + . . . (87)

Some details of the derivation are given in Appendix E. Therefore, if κ(z) �
�
−1/2, the squared modulus of the ψ-function is well approximated by the

sharp Gaussian distribution in the normal direction with the amplitude slowly
modulated along the curve:

|ψ(z + δnz)|2 � |w′(z)|√
2π3�

e−2|δnz|2/� (88)

In the case of general potentials the calculations lead to a similar result:

|ψ(z + δnz)|2 �
√

σ(z)
2π2�

|w′(z)| e−2πσ(z)|δnz|2/� (89)

We see that the width of the Gaussian distribution depends on the point of
the curve through the function σ (which is proportional to the magnetic field
in the QH interpretation). Note that this asymptotics is consistent with the
normalization

∫
|ψ(z)|2d2z = 1. The easiest way to see this is to notice that

the Gaussian function in (88) (as well as the one in (89)) tends to the delta
function δ(z; γ) with the support on the curve (see Appendix B). Hence one
can formally write the limiting ψ-function in the form

|ψ(z)|2 =
|w′(z)|

2π
δ(z; γ) (90)
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and the right normalization is transparent.
Finally, we note that the growth law (74) (the Darcy law) can be written in

the suggestive form

Vn(z) ∝ |ψ(z)|2 (91)

The normal velocity Vn is defined by the relation

∂tΘ(z; D(t)) = Vnδ(z; ∂D(t))

where Θ(z; D) is the characteristic function of the domain D. Since the classi-
cal value of 〈ρ(z)〉 is Θ(z; D)/π, we can represent the Darcy law in yet another
form:

∂t 〈ρ(z)〉 = |ψ(z)|2

In fact it is the � → 0 limit of the exact relation

〈ρ(z)〉N − 〈ρ(z)〉N−1 = �|ψN (z)|2 (92)

which immediately follows from the fact that 〈ρ(z)〉N = �KN (z, z̄) and from
the definition of the kernel function (28). In fact it is equivalent to the Hirota
equation (24). We see that (92) can be regarded as a “quantization" of the
Darcy law.
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Appendices

Appendix A

The proof of the determinant representation (19). It is simpler to start
with det Cij , where Cij is given in (20), and to show that N ! det Cij coincides
with ZN . The proof is a chain of obvious equalities. By definition,

N ! det Cij =
∑
Q,P

(−)Q(−)P CQ(1),P (1) . . . CQ(N),P (N)
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Plugging the explicit form of the Cij , we write:

N ! det Cij =
∑
Q,P

(−)Q(−)P

∫ N∏
i=1

[
z

Q(i)−1
i z̄

P (i)−1
i eW (zi)d2zi

]

and, interchanging the order of summation and integration, obtain the result:

N ! det Cij =
∫ 

∑
Q

(−)
Q

N∏
i=1

z
Q(i)−1
i




︸ ︷︷ ︸
∆N (zi)

[∑
P

(−)
P

N∏
i=1

z̄
P (i)−1
i

]

︸ ︷︷ ︸
∆N (zi)

N∏
k=1

eW (zk)d2zk = ZN

Orthogonality of the polynomials (25). The definition (25) implies

Pn(λ) =
1

Zn

∫
|∆n(zi)|2

n∏
j=1

(λ − zj)eW (zj)d2zj

We want to show that these polynomials are orthogonal in the complex plane.
Set eW (z)d2z = dµ for brevity. It is enough to show that

∫
Pn(z)z̄mdµ = 0

for all m < n, i.e.,

∫
dµ(z)z̄m

∫
|∆n(zi)|2

n∏
j=1

(z − zj)dµ(zj) = 0

Note that ∆n(z1, . . . , zn)
∏n

j=1(z − zj) = ∆n+1(z1, . . . , zn, z). Setting z ≡
zn+1, we have:

LHS =
∫

∆n+1(zi)∆n(zi) z̄m
n+1

n+1∏
j=1

dµ(zj)

=
1

n + 1

n+1∑
l=1

(−1)l+n+1

∫
∆n+1(z1, . . . , zn+1)∆n(z1, . . . , � zl, . . . , zn+1)zm

l

n+1∏
j=1

dµ(zj)

One can notice that the summation gives the expansion of the determinant
∣∣∣∣∣∣∣∣

1 z1 . . . zn−1
1 zm

1

1 z2 . . . zn−1
2 zm

2

. . . . . . . . . . . . . . .
1 zn+1 . . . zn−1

n+1 zm
n+1

∣∣∣∣∣∣∣∣
under the bar. If m < n, it vanishes. If m = n, it equals ∆n+1(zi), and we get
LHS = 1

n+1 Zn+1.
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Appendix B

Here we list some standard formulas often used in Section 4.

The complex notation.

Complex coordinates: z = x + iy, z̄ = x − iy, ∂z = 1
2(∂x − i∂y),

∂z̄ = 1
2(∂x + i∂y).

The Laplace operator: ∆ = ∂2
x + ∂2

y = 4∂z∂z̄

Contour integrals: let f and g be any smooth functions defined in some
neighborhood of the contour γ, then∮

γ
g∂nf |dz| = −2i

∮
γ
g∂zfdz − i

∮
fdg

Singular functions.

Two-dimensional δ-function: δ(z) = 1
2π∆log |z| = 1

π ∂z̄(1/z). The
characteristic property of the delta-function is f(z)δ(z − a) d2z = f(a)
for any (smooth) function f .

The δ-function with the support on a curve (a closed contour) γ: a func-
tion δ(z; γ) such that∫

f(z)δ(z; γ)d2z =
∮

γ
f(z)|dz|

for any smooth function f .

The “normal derivative” of the δ-function of the contour γ: a function
δ′(z; γ) such that∫

f(z)δ′(z; γ)d2z = −
∮

γ
∂nf(z)|dz|

for any smooth function f , with the normal vector being directed to the
exterior of the contour.

The characteristic function of the domain D: Θ(z; D) = 1 if z ∈ D and
0 otherwise; ∇Θ(z; D) = −�n δ(z; ∂D).

Integral formulas.

Cauchy’s integral formula (f is any smooth function):

1
2πi

∮
∂D

f(ζ)dζ

z − ζ
− 1

π

∫
D

∂ζ̄f(ζ)d2ζ

z − ζ
=

{
−f(z) , z ∈ D

0 , z ∈ C \ D
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In particular,
∮
∂D f(ζ)dζ = 2i

∫
D ∂̄f(ζ) d2ζ.

The Green formula:∫
D

f∆gd2z = −
∫

D
∇f ∇g d2z +

∮
∂D

f∂ng|dz|

where the normal vector looks outward D.

The Dirichlet formula:

u(z) = − 1
2π

∮
γ
u(ζ)∂nG(z, ζ)|dζ|

for any function u harmonic in Dc = C \ D. Here G(z, ζ) is the Green
function of the Dirichlet boundary value problem in Dc.

Appendix C
Let us present some details of the �-expansion of the loop equation (35).

First of all we rewrite it in the form

1

2π

∫
L(z, ζ) 〈∆ϕ(ζ)〉 d2ζ = (∂ϕcl(z))2 −

〈
(∂(ϕ(z)−ϕcl(z))2

〉
− (2−β)�

〈
∂2ϕ(z)

〉

which is ready for the �-expansion. Here

L(z, ζ) =
∂W (ζ) − ∂ϕcl(z)

ζ − z

is the kernel of the integral operator in the l.h.s. (the “loop operator"). The
zeroth order in � gives equation (38) which implies the familiar result ϕcl(z) =
−
∫
D log |z − ζ|2σ(ζ)d2ζ for the ϕcl. To proceed, one should insert the series

〈ϕ(z)〉 = ϕcl(z) + �ϕ1/2(z) + �
2ϕ1(z) + O(�3)

(which corresponds to the �-expansion (48) of the free energy) into the loop
equation and separate terms of order �, �

2 etc. (In the notation adopted in the
main body of the paper �ϕ1/2 = ϕ� + O(�2).) The terms of order � and �

2

give:

1
2π

∫
L(z, ζ)

〈
∆ϕ1/2(ζ)

〉
d2ζ = −(2−β)∂2ϕcl(z)

1
2π

∫
L(z, ζ) 〈∆ϕ1(ζ)〉 d2ζ = −

[(
∂ϕ1/2(z)

)2 + (2−β)∂2ϕ1/2(z)
]
− ω(z)

where

ω(z) = lim
�→0

[
�
−2 lim

z′→z

〈
∂ϕ(z) ∂ϕ(z′)

〉
c

]
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is the connected part of the pair correlator at merging points. If the point z is
in Dc, then eq. (68) yields

〈
∂ϕ(z) ∂ϕ(z′)

〉
c
= 2β�

2∂z∂z′

(
G(z, z′) − log |z − z′|

)
+ O(�3))

Since the r.h.s. is regular for all z, z′ ∈ Dc, the points can be merged without
any regularization and the result does not depend on the particular limit z′ →
z. We thus obtain that the function ω(z) is proportional to the Schwarzian
derivative of the conformal map w(z):

ω(z) =
β

6

(
w′′′(z)
w′(z)

− 3
2

(
w′′(z)
w′(z)

)2
)

The expansion of the loop equation can be continued order by order. In prin-
ciple, this gives a recurrence procedure to determine the coefficients ϕk(z).
However, the equations of the chain are integral equations in the plane, and it
is not easy to solve them explicitly. Another difficulty is that in general one
can not extend these equations to the interior of the support of eigenvalues be-
cause the �-expansion may break down or change its form there. Indeed, in
the domain filled by the gas of eigenvalues the microscopic structure of the
gas becomes essential, and one needs to know correlation functions at small
scales. Nevertheless, at least in the first two orders in �

2 the equations above
can be solved assuming that z ∈ Dc. Note that in this region all the functions
ϕk(z) are harmonic. If these functions are known, the corresponding expan-
sion coefficients of the free energy in (48) can be obtained by “integration" of
the variational formulas (17).

The procedure of solving the loop equation in the first two orders in � is too
technical to be presented here. In the order � one is able to find a complete
solution which gives formulas (46) and (57) mentioned in the main text. The
solution in the next order, �

2, is much more difficult to obtain. The results for
ϕ1 and F1 are still not available in full generality (i.e., for general β and W ).
Nevertheless, for normal matrices with a general potential (β = 1) and with
a connected support of eigenvalues the F1-correction to the free energy can
be found explicitly by the method outlined above. Here we present the result
(mostly for an illustrative purpose), using the notation introduced in the main
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text (see (45), (75)):

F1 = − 1
24π

∮
|w|=1

(
log |z′(w)|∂n log |z′(w)| + 2 log |z′(w)|

)
|dw|

− 1
24π

[∫
D
|∇χ|2 d2z + 2

∮
∂D

κχ |dz|
]

+
1
8π

[∫
D
|∇χ|2 d2z −

∮
∂D

χ∂nχH |dz|
]
− 1

16π

∫
D

∆χd2z + c0

where c0 is a numerical constant and κ(z) = ∂n log
∣∣∣ w(z)
w′(z)

∣∣∣ is the local cur-

vature of the boundary. For quasiharmonic potentials only the first integral
survives.

Appendix D

Here we demonstrate how the variational technique works with the 2-trace
correlator (67). We shall use the variational formulas (17) in the following
equivalent version. Set δW (z) = εg(z), where g is an arbitrary smooth func-
tion and ε → 0. Then, in the first order in ε,

� δ 〈tr f〉 = ε 〈tr f tr g〉c
This relation allows one to find the connected part of the two-trace correlation
function by variation of the known one-trace function. Similar formulas hold
for variations of multi-trace functions.

We have, in the leading order in �:

�βδ 〈tr f〉 = δ

(∫
D

σf d2z

)
=

∫
D

δσf d2z +
∫

δD
σf d2z ≡ I1 + I2

The first integral, I1, can be transformed using the definition of σ (40) and the
Green formula:

I1 = − 1
4π

∫
D

∆(δW )f d2z =
ε

4π

∫
D
∇g∇f d2z − ε

4π

∮
∂D

f∂ng |dz|

The second integral is

I2 = − 1
4π

∫
D

∆W (z)f(z)δn(z)|dz|

where δn(z) is to be taken from eq. (65): δn(z) = ε∂n(gH(z)−g(z))/∆W (z).
Summing the two contributions, we get (67).
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Appendix E

In this Appendix we obtain the expansions of the effective action A(z)

A(z) =
1
2
|z|2 − 1

2
|ξ0|2 −Re

∫ z

ξ0

S(ζ) dζ

near the contour γ = ∂D. We know that the first variation of A(z) vanishes on
γ. To find the second variation, we write

2δA(z) = |δz|2 −Re (S′(z)(δz)2) , z ∈ γ

Let us represent δz as a sum of normal and tangential deviations w.r.t. the
curve: δz = δnz + δtz, then

2Re (S′(z)(δz)2) = Re (S′(z)(δnz)2)+Re (S′(z)(δtz)2)+Re (S′(z)δnzδtz)

Using the obvious relations

δtz

|δtz|
=

√
δtz

δtz̄
=

1√
S′(z)

, δnz = ∓i

∣∣∣∣δnz

δtz

∣∣∣∣ δtz

where the upper (lower) sign should be taken for the outward (inward) de-
viation, and the formula for the scalar product of 2-vectors �x, �y represented
as complex numbers x, y, (�x, �y) = Re (xȳ), we see that the first and sec-
ond terms in the r.h.s. are equal to −|δnz|2 and |δtz|2 respectively while
the third one vanishes since the vectors δnz and δtz are orthogonal. Since
|δz|2 = |δnz|2 + |δtz|2, we obtain the desired result δA(z) = |δnz|2.

The next terms of the expansion of the A(z) around the contour can be
found in a similar way. They are expressed through the curvature κ and its
derivatives w.r.t. the arc length s along the curve. To perform the calculations
in next two orders we need the following formulas for the κ and κ′ = dκ/ds
through the Schwarz function [31]:

κ(z) =
i

2
S′′(z)

(S′(z))3/2
, κ′(z) =

i

2
S′′′(z)S′(z) − 3

2(S′′(z))2

(S′(z))3
, z ∈ γ

For z on the contour we have

A(z + δnz) = |δnz|2 − 1
6
Re (S′′(z)(δnz)3) − 1

24
Re (S′′′(z)(δnz)4) + . . .

Now, with the help of the formulas for the curvature, it is easy to find that

Re (S′′(z)(δnz)3) = 2κ(z)Re

(
1
i

(√
S′(z)δnz

)3
)

= 2κ(z)Re

(
1
i

(
δtz

δtz

)3/2

(δnz)3
)
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whence
Re (S′′(z)(δnz)3) = ±2κ(z)|δnz|3

A similar computation gives Re (S′′′(z)(δnz)4) = −6κ2(z)|δnz|4 and we ob-
tain the expansion (86). The expansion of |w′(z)| around the contour can be
easily performed with the help of the relations

κ(z) = ∂n log
∣∣∣∣ w(z)
w′(z)

∣∣∣∣ , ∂n log |w(z)| = |w′(z)|

valid for z ∈ γ.
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MATRIX MODELS
AND TOPOLOGICAL STRINGS
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Department of Physics, CERN
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Abstract In these lecture notes for the Les Houches School on Applications of Random
Matrices in Physics we give an introduction to the connections between matrix
models and topological strings. We first review some basic results of matrix
model technology and then we focus on type B topological strings. We present
the main results of Dijkgraaf and Vafa describing the spacetime string dynamics
on certain Calabi-Yau backgrounds in terms of matrix models, and we emphasize
the connection to geometric transitions and to large N gauge/string duality. We
also use matrix model technology to analyze large N Chern-Simons theory and
the Gopakumar-Vafa transition.

1. Introduction

Topological string theory was introduced by Witten in [70, 72] as a simpli-
fied model of string theory which captures topological information of the target
space, and it has been intensively studied since then. There are three important
lessons that have been learned in the last few years about topological strings:

1) Topological string amplitudes are deeply related to physical amplitudes
of type II string theory.

2) The spacetime description of open topological strings in terms of string
field theory reduces in some cases to very simple gauge theories.

3) There is an open/closed topological string duality which relates open and
closed string backgrounds in a precise way

In these lectures we will analyze a particular class of topological string theo-
ries where the gauge theory description in (2) above reduces in fact to a matrix
model. This was found by Dijkgraaf and Vafa in a series of beautiful papers
[27–29], where they also showed that, thanks to the connection to physical
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strings mentioned in (1), the computation of nonperturbative superpotentials
in a wide class of N = 1 gauge theories reduces to perturbative computations
in a matrix model. This aspect of the work of Dijkgraaf and Vafa was very
much explored and exploited, and rederived in the context of supersymmetric
gauge theories without using the connection to topological strings. In these
lectures we will focus on the contrary on (2) and (3), emphasizing the string
field theory construction and the open/closed string duality. The applications
of the results of Dijkgraaf and Vafa to supersymmetric gauge theories have
been developed in many papers and reviewed for example in [6], and we will
not cover them here. Before presenting the relation between matrix models and
topological strings, it is worthwhile to give a detailed conceptual discussion of
the general ideas behind (2) and (3) and their connections to large N dualities.

In closed string theory we study maps from a Riemann surface Σg to a tar-
get manifold X, and the quantities we want to compute are the free energies
at genus g, denoted by Fg(ti). Here, the ti are geometric data of the target
space X, and the free energies are computed as correlation functions of a two-
dimensional conformal field theory coupled to gravity. In topological string
theory there are two different models, the A and the B model, the target space is
a Calabi-Yau manifold (although this condition can be relaxed in the A model),
and the parameters ti are K-ahler and complex parameters, respectively. The
free energies are assembled together into a generating functional

F (gs, ti) =
∞∑

g=0

g2g−2
s Fg(ti), (1.1)

where gs is the string coupling constant.
In open string theory we study maps from an open Riemann surface Σg,h to

a target X, and we have to provide boundary conditions as well. For example,
we can impose Dirichlet conditions by using a submanifold S of X where
the open strings have to end. In addition, we can use Chan-Paton factors to
introduce a U(N) gauge symmetry. The open string amplitudes are now Fg,h,
and in the cases that will be studied in these lectures the generating functional
will have the form

F (gs, N) =
∞∑

g=0

∞∑

h=1

Fg,hg2g−2
s Nh. (1.2)

Physically, the introduction of Chan-Paton factors and boundary conditions
through a submanifold S of X means that we are wrapping N (topological)
D-branes around S. A slightly more general situation arises when there are
n submanifolds S1, · · · , Sn where the strings can end. In this case, the open
string amplitude is of the form Fg,h1,··· ,hn and the total free energy is now given
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by

F (gs, Ni) =
∞∑

g=0

∞∑

h1,··· ,hn=1

Fg,h1,··· ,hng2g−2
s Nh1

1 · · ·Nhn
n . (1.3)

In the case of open strings one can in some situations use string field theory
to describe the spacetime dynamics. The open string field theory of Witten
[69], which was originally constructed for the open bosonic string theory, can
also be applied to topological string theory, and on some particular Calabi-
Yau backgrounds the full string field theory of the topological string reduces
to a simple U(N) gauge theory, where gs plays the role of the gauge coupling
constant and N is the rank of the gauge group. In particular, the string field
reduces in this case to a finite number of gauge fields. As a consequence of this,
the open string theory amplitude Fg,h can be computed from the gauge theory
by doing perturbation theory in the double line notation of ’t Hooft [66]. More
precisely, Fg,h is the contribution of the fatgraphs of genus g and h holes.
The idea that fatgraphs of a U(N) gauge theory correspond to open string
amplitudes is an old one, and it is very satisfying to find a concrete realization
of this idea in the context of a string field theory description of topological
strings, albeit for rather simple gauge theories.

The surprising fact that the full string field theory is described by a simple
gauge theory is typical of topological string theory, and does not hold for con-
ventional string models. There are two examples where this description has
been worked out:

1) The A model on a Calabi-Yau of the form X = T ∗M , where M is a
three-manifold, and there are N topological D-branes wrapping M . In this
case, the gauge theory is Chern-Simons theory on M [74].

2) The B model on a Calabi-Yau manifold X which is the small resolution
of a singularity characterized by the hyperelliptic curve y2 = (W ′(x))2. If
W ′(x) has degree n, the small resolution produces n two-spheres, and one can
wrap Ni topological D-branes around each two-sphere, with i = 1, · · · , n. In
this case Dijkgraaf and Vafa showed that the gauge theory is a multicut matrix
model with potential W (x) [27].

In both examples, the open string amplitudes Fg,h are just numbers com-
puted by the fatgraphs of the corresponding gauge theories.

The fatgraph expansion of a U(N) gauge theory can be resummed formally
by introducing the so called ’t Hooft parameter t = gsN . For example, in the
case of the free energy, we can rewrite (1.2) in the form (1.1) by defining

Fg(t) =

∞∑

h=1

Fg,hth. (1.4)

In other words, starting from an open string theory expansion we can obtain a
closed string theory expansion by resumming the hole expansion as indicated
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in (1.4). This idea was proposed by ’t Hooft [66] and gives a closed string
theory interpretation of a gauge theory.

What is the interpretation of the above resummation for the gauge theories
that describe the spacetime dynamics of topological open string theories? As
was explained in [35] (for the A model example above) and in [15] (for the B
model example), there is a geometric or large N transition that relates the open
string Calabi-Yau background X underlying the gauge theory to a closed string
Calabi-Yau background X ′. The geometric transition typically relates two dif-
ferent ways of smoothing out a singular geometry (the “resolved” geometry
and the “deformed” geometry). Moreover, the “master field” that describes the
large N limit [68] turns out to encode the target space geometry of the closed
string background, and the ’t Hooft parameter becomes a geometric parame-
ter of the resulting closed geometry. The idea that an open string background

STRING FIELD 

THEORY

‘T HOOFT 

RESUMMATION

 GEOMETRIC

TRANSITION

STRING THEORY
ON CY X’

GAUGE THEORY/

MATRIX MODEL

TOPOLOGICAL OPEN
STRING THEORY

ON CY X

TOPOLOGICAL CLOSED

Figure 1. This diagram summarizes the different relations between closed topological strings,
open topological strings, and gauge theories.

with D-branes is equivalent to a different, geometric closed string background
(therefore with no D-branes) appeared originally in the AdS/CFT correspon-
dence [3]. In this correspondence, type IIB theory in flat space in the presence
of D-branes is conjectured to be equivalent to type IIB theory in AdS5 × S5

with no D-branes, and where the radius of the S5 is related to the ’t Hooft pa-
rameter. The reason this holds is that, at large N , the presence of the D-branes
can be traded for a deformation of the background geometry. In other words,
we can make the branes disappear if we change the background geometry at
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the same time. Therefore, as emphasized by Gopakumar and Vafa in [35], large
N dualities relating open and closed strings should be associated to transitions
in the geometry. The logical structure of all the connections we have sketched
is depicted in Fig. 1.

Vafa scenario, and the geometric transition of [15]. For a detailed reviewofa
similar story for the A string, we refer the reader to [54]. The organization
of these lectures is as follows. In section 2 we review some basic ingredients
of matrix models, including saddle-point techniques and orthogonal polyno-
mials. In section 3 we explain in detail the connection between matrix models
and topological strings due to Dijkgraaf and Vafa. We first review the topo-
logical B model and its string field theory description, and we show that in the
Calabi-Yau background associated to the resolution of a polynomial singular-
ity, the string field theory reduces to a matrix model. We develop some further
matrix model technology to understand all the details of this description, and
we make the connection with geometric transitions. In section 4 we briefly
consider the geometric transition of Gopakumar and Vafa [35] from the point
of view of the matrix model description of Chern-Simons theory. This allows
us to use matrix model technology to derive some of the results of [35].

2. Matrix models

In this section we develop some aspects and techniques of matrix models
which will be needed in the following. There are excellent reviews of this
material, such as for example [21, 22].

2.1 Basics of matrix models

Matrix models are the simplest examples of quantum gauge theories, namely,
they are quantum gauge theories in zero dimensions. The basic field is a Her-
mitian N × N matrix M . We will consider an action for M of the form:

1

gs
W (M) =

1

2gs
Tr M2 +

1

gs

∑

p≥3

gp

p
TrMp. (2.1)

where gs and gp are coupling constants. This action has the obvious gauge
symmetry

M → UMU †, (2.2)

where U is a U(N) matrix. The partition function of the theory is given by

Z =
1

vol(U(N))

∫
dM e

− 1
gs

W (M) (2.3)

where the factor vol(U(N)) is the usual volume factor of the gauge group that
arises after fixing the gauge. In other words, we are considering here a gauged
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matrix model. The measure in the “path integral” is the Haar measure

dM = 2
N(N−1)

2

N∏

i=1

dMii

∏

1≤i<j≤N

dReMijdIm Mij . (2.4)

The numerical factor in (2.4) is introduced to obtain a convenient normaliza-
tion.

A particularly simple example is the Gaussian matrix model, defined by the
partition function

ZG =
1

vol(U(N))

∫
dM e−

1
2gs

Tr M2

. (2.5)

We will denote by

〈f(M)〉G =

∫
dM f (M) e−Tr M2/2gs

∫
dM e−Tr M2/2gs

(2.6)

the normalized vevs of a gauge-invariant functional f(M) in the Gaussian ma-
trix model. This model is of course exactly solvable, and the vevs (2.6) can be
computed systematically as follows. Any gauge-invariant function f(M) can
be written as a linear combination of traces of M in arbitrary representations
R of U(N). If we represent R by a Young tableau with rows of lengths λi,
with λ1 ≥ λ2 ≥ · · · , and with �(R) boxes in total, we define the set of �(R)
integers fi as follows

fi = λi + �(R) − i, i = 1, · · · , �(R). (2.7)

Following [23], we will say that the Young tableau associated to R is even if
the number of odd fi’s is the same as the number of even fi’s. Otherwise, we
will say that it is odd. If R is even, one has the following result [42, 23]:

〈TrRM〉G = c(R) dimR, (2.8)

where

c(R) = (−1)
A(A−1)

2

∏
f odd f !!

∏
f ′ even f ′!!

∏
f odd,f ′ even(f − f ′)

(2.9)

and A = �(R)/2 (notice that �(R) has to be even in order to have a non-
vanishing result). Here dimR is the dimension of the irreducible representa-
tion of SU(N) associated to R, and can be computed for example by using the
hook formula. On the other hand, if R is odd, the above vev vanishes.

The partition function Z of more general matrix models with action (2.1)
can be evaluated by doing perturbation theory around the Gaussian point: one
expands the exponential of

∑
p≥3(gp/gs)TrMp/p in (2.3), and computes the
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partition function as a power series in the coupling constants gp. The evaluation
of each term of the series involves the computation of vevs like (2.6). Of
course, this computation can be interpreted in terms of Feynman diagrams,
and as usual the perturbative expansion of the free energy

F = log Z

will only involve connected vacuum bubbles.
Since we are dealing with a quantum theory of a field in the adjoint represen-

tation we can reexpress the perturbative expansion of F in terms of fatgraphs,
by using the double line notation due to ’t Hooft [66]. The purpose of the
fatgraph expansion is the following: in U(N) gauge theories there is, in addi-
tion to the coupling constants appearing in the model (like for example gs, gp

in (2.1)), a hidden variable, namely N , the rank of the gauge group. The N
dependence in the perturbative expansion comes from the group factors asso-
ciated to Feynman diagrams, but in general a single Feynman diagram gives
rise to a polynomial in N involving different powers of N . Therefore, the stan-
dard Feynman diagrams, which are good in order to keep track of powers of
the coupling constants, are not good in order to keep track of powers of N . If
we want to keep track of the N dependence we have to “split” each diagram
into different pieces which correspond to a definite power of N . To do that,
one writes the Feynman diagrams of the theory as “fatgraphs” or double line
graphs, as first indicated by ’t Hooft [66]. Let us explain this in some detail,

i

j
ijM

Figure 2. The index structure of the field Mij in the adjoint representation of U(N) is
represented through a double line.

taking the example of the matrix model with a cubic potential (i.e. gp = 0 in
(2.1) for p > 3). The fundamental field Mij is in the adjoint representation.
Since the adjoint representation of U(N) is the tensor product of the funda-
mental N and the antifundamental N , we can look at i (resp. j) as an index
of the fundamental (resp. antifundamental) representation. We will represent
this double-index structure by a double line notation as shown in Fig. 2. The
only thing we have to do now is to rewrite the Feynman rules of the theory by
taking into account this double-line notation. For example, the kinetic term of
the theory is of the form

1

gs
Tr M2 =

1

gs

∑

i,j

MijMji. (2.10)
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This means that the propagator of the theory is

〈MijMkl〉 = gsδilδjk (2.11)

and can be represented in the double line notation as in Fig. 3. Next, we con-

i
j

l

k
δ il δ jk

Figure 3. The propagator in the double line notation.

sider the vertices of the theory. For example, the trivalent vertex given by

g3

gs
Tr M3 =

g3

gs

∑

i,j,k

Mij Mjk Mki (2.12)

can be represented in the double line notation as in Fig. 4. A vertex of order p
can be represented in a similar way by drawing p double lines joined together.
Once we have rewritten the Feynman rules in the double-line notation, we can

i

j

i k

j

k

Figure 4. The cubic vertex in the double line notation.

construct the corresponding graphs, which look like ribbons and are called rib-
bon graphs or fatgraphs. It is clear that in general a usual Feynman diagram
can give rise to many different fatgraphs. Consider for example the one-loop

vacuum diagram ��

��

, which comes from contracting two cubic ver-
tices. In the double line notation the contraction can be done in two different
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j

i

j

k

k

i

n

m

m

p

p

n

Figure 5. Contracting two cubic vertices in the double line notation: the N3 contribution.

ways. The first one is illustrated in Fig. 5 and gives a factor
∑

ijkmnp

〈MijMmn〉〈MjkMpm〉〈MkiMnp〉 = g3
sN

3. (2.13)

The second one is shown in Fig. 6 and gives a factor
∑

ijkmnp

〈MijMmn〉〈MjkMnp〉〈MkiMpm〉 = g3
sN. (2.14)

In this way we have split the original diagram into two different fatgraphs with
a well-defined power of N associated to them. The number of factors of N
is simply equal to the number of closed loops in the graph: there are three
closed lines in the fatgraph resulting from the contractions in Fig. 5 (see the
first graph in Fig. 7), while there is only one in the diagram resulting from
Fig. 6. In general, fatgraphs turn out to be characterized topologically by the

i

j

j

k

k

i

n

m

m

p

p

n

Figure 6. Contracting two cubic vertices in the double line notation: the N contribution.

number of propagators or edges E, the number of vertices with p legs Vp, and
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the number of closed loops h. The total number of vertices is V =
∑

p Vp.
Each propagator gives a power of gs, while each interaction vertex with p legs
gives a power of gp/gs. The fatgraph will then give a factor

gE−V
s Nh

∏

p

g
Vp
p . (2.15)

The key point now is to regard the fatgraph as a Riemann surface with holes,
in which each closed loop represents the boundary of a hole. The genus g of
such a surface is determined by the elementary topological relation

2g − 2 = E − V − h (2.16)

therefore we can write (2.15) as

g2g−2+h
s Nh

∏

p

g
Vp
p = g2g−2

s th
∏

p

g
Vp
p (2.17)

where we have introduced the ’t Hooft parameter

t = Ngs (2.18)

The fatgraphs with g = 0 are called planar, while the ones with g > 0 are
called nonplanar. The graph giving the N3 contribution in Fig. 5 is planar: it
has E = 3, V3 = 2 and h = 3, therefore g = 0, and it is a sphere with three
holes. The graph in Fig. 6 is nonplanar: it has E = 3, V3 = 2 and h = 1,
therefore g = 1, and represents a torus with one hole (it is easy to see this by
drawing the diagram on the surface of a torus).

We can now organize the computation of the different quantities in the ma-
trix model in terms of fatgraphs. For example, the computation of the free
energy is given in the usual perturbative expansion by connected vacuum bub-
bles. When the vacuum bubbles are written in the double line notation, we find
that the perturbative expansion of the free energy is given by

F =
∞∑

g=0

∞∑

h=1

Fg,hg2g−2
s th, (2.19)

where the coefficients Fg,h (which depend on the coupling constants of the
model gp) takes into account the symmetry factors of the different fatgraphs.
We can now formally define the free energy at genus g, Fg(t), by keeping g
fixed and summing over all closed loops h as in (1.4), so that the total free
energy can be written as

F =

∞∑

g=0

Fg(t)g
2g−2
s . (2.20)
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This is the genus expansion of the free energy of the matrix model. In (2.20)
we have written the diagrammatic series as an expansion in gs around gs = 0,
keeping the ’t Hooft parameter t = gsN fixed. Equivalently, we can regard it
as an expansion in 1/N , keeping t fixed, and then the N dependence appears as
N2−2g. Therefore, for t fixed and N large, the leading contribution comes from
planar diagrams with g = 0, which go like O(N2). The nonplanar diagrams
give subleading corrections. Notice that Fg(t), which is the contribution to
F to a given order in gs, is given by an infinite series where we sum over all
possible numbers of holes h, weighted by th.

Figure 7. Two planar diagrams in the cubic matrix model.

Example. One can show that

〈(Tr M3)2〉G = g3
s(12N

3 + 3N),

where the first term corresponds to the two planar diagrams shown in Fig. 7
(contributing 3N3 and 9N3, respectively), and the second term corresponds to
the nonplanar diagram shown in Fig. 6. Therefore, in the cubic matrix model
the expansion of the free energy reads, at leading order,

F − FG =
2

3
gsg

2
3N

3 +
1

6
gsg

2
3N + · · · (2.21)

There is an alternative way of writing the matrix model partition function
which is very useful. The original matrix model variable has N2 real param-
eters, but using the gauge symmetry we can see that, after modding out by
gauge transformations, there are only N parameters left. We can for example
take advantage of our gauge freedom to diagonalize the matrix M

M → UMU † = D, (2.22)

with D = diag(λ1, · · · , λN ), impose this as a gauge choice, and use standard
Faddeev-Popov techniques in order to compute the gauge-fixed integral (see
for example [9]). The gauge fixing (2.22) leads to the delta-function constraint

δ(UM) =
∏

i<j

δ(2)(UMij) (2.23)
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where UM = UMU †. We then introduce

∆−2(M) =

∫
dU δ(U M). (2.24)

It then follows that the integral of any gauge-invariant function f(M) can be
written as
∫

dM f (M) =

∫
dM f (M)∆2(M)

∫
dU δ(UM) = ΩN

∫ N∏

i=1

dλi∆
2(λ)f(λ),

(2.25)
where we have used the gauge invariance of ∆(M), and

ΩN =

∫
dU (2.26)

is proportional to the volume of the gauge group U(N), as we will see shortly.
We have to evaluate the the factor ∆(λ), which can be obtained from (2.24) by
choosing M to be diagonal. If

F (M) = 0

is the gauge-fixing condition, the standard Faddeev-Popov formula gives

∆2(M) = det

(
δF (UM)

δA

)

F=0

(2.27)

where we write U = eA, and A is a anti-Hermitian matrix. Since

Fij(
UD) = (UDU †)ij = Aij(λi − λj) + · · · . (2.28)

(2.27) leads immediately to

∆2(λ) =
∏

i<j

(λi − λj)
2, (2.29)

the square of the Vandermonde determinant. Finally, we fix the factor ΩN as
follows. The Gaussian matrix integral can be computed explicitly by using the
Haar measure (2.4), and is simply

∫
dM e

− 1
2gs

Tr M2

= (2πgs)
N2/2. (2.30)

On the other hand, by (2.25) this should equal

ΩN

∫ N∏

i=1

dλi∆
2(λ)e

− 1
2gs

PN
i=1 λ2

i . (2.31)
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The integral over eigenvalues can be evaluated in various ways, using for ex-
ample the Selberg function [55] or the technique of orthogonal polynomials
that we describe in the next subsection, and its value is

gN2/2
s (2π)N/2G2(N + 2) (2.32)

where G2(z) is the Barnes function, defined by

G2(z + 1) = Γ(z)G2(z), G2(1) = 1. (2.33)

Comparing these results, we find that

ΩN =
(2π)

N(N−1)
2

G2(N + 2)
. (2.34)

Using now (see for example [60]):

vol(U(N)) =
(2π)

1
2
N(N+1)

G2(N + 1)
. (2.35)

we see that

1

vol(U(N))

∫
dM f (M) =

1

N !

1

(2π)N

∫ N∏

i=1

dλi ∆2(λ)f(λ). (2.36)

The factor N ! in the r.h.s. of (2.36) has an obvious interpretation: after fixing
the gauge symmetry of the matrix integral by fixing the diagonal gauge, there
is still a residual symmetry given by the Weyl symmetry of U(N), which is the
symmetric group SN acting as permutation of the eigenvalues. The “volume”
of this discrete gauge group is just its order, |SN | = N !, and since we are
considering gauged matrix models we have to divide by it as shown in (2.36).
As a particular case of the above formula, it follows that one can write the
partition function (2.3) as

Z =
1

N !

1

(2π)N

∫ N∏

i=1

dλi ∆2(λ)e
− 1

2gs

PN
i=1 W (λi). (2.37)

The partition function of the gauged Gaussian matrix model (2.5) is given es-
sentially by the inverse of the volume factor. Its free energy to all orders can
be computed by using the asymptotic expansion of the Barnes function

log G2(N + 1) =
N2

2
log N − 1

12
log N − 3

4
N2 +

1

2
N log 2π + ζ ′(−1)

+

∞∑

g=2

B2g

2g(2g − 2)
N2−2g, (2.38)
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where B2g are the Bernoulli numbers. Therefore, we find the following ex-
pression for the total free energy:

FG =
N2

2

(
log(Ngs) −

3

2

)
− 1

12
log N + ζ ′(−1)

+
∞∑

g=2

B2g

2g(2g − 2)
N2−2g. (2.39)

If we now put N = t/gs, we obtain the following expressions for Fg(t):

F0(t) =
1

2
t2
(
log t − 3

2

)
,

F1(t) = − 1

12
log t,

Fg(t) =
B2g

2g(2g − 2)
t2−2g, g > 1.

2.2 Matrix model technology I: saddle-point analysis

The computation of the functions Fg(t) in closed form seems a difficult
task, since in perturbation theory they involve summing up an infinite num-
ber of fatgraphs (with different numbers of holes h). However, in the classic
paper [12] it was shown that, remarkably, F0(t) can be obtained by solving a
Riemann-Hilbert problem. In this section we will review this procedure.

Let us consider a general matrix model with action W (M), and let us write
the partition function after reduction to eigenvalues (2.37) as follows:

Z =
1

N !

∫ N∏

i=1

dλi

2π
eN2Seff (λ) (2.40)

where the effective action is given by

Seff(λ) = − 1

tN

N∑

i=1

W (λi) +
2

N2

∑

i<j

log |λi − λj|. (2.41)

Notice that, since a sum over N eigenvalues is roughly of order N , the effective
action is of order O(1). We can now regard N2 as a sort of �−1 in such a
way that, as N → ∞, the integral (2.40) will be dominated by a saddle-point
configuration that extremizes the effective action. Varying Seff(λ) w.r.t. the
eigenvalue λi, we obtain the equation

1

2t
W ′(λi) =

1

N

∑

j �=i

1

λi − λj
, i = 1, · · · , N. (2.42)
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The eigenvalue distribution is formally defined for finite N as

ρ(λ) =
1

N

N∑

i=1

δ(λ − λi), (2.43)

where the λi solve (2.42). In the large N limit, it is reasonable to expect that
this distribution becomes a continuous function with compact support. We will
assume that ρ(λ) vanishes outside an interval C. This is the so-called one-cut
solution.

Qualitatively, what is going on is the following. Assume for simplicity that
W (x), the potential, has only one minimum x∗. We can regard the eigenvalues
as coordinates of a system of N classical particles moving on the real line. The
equation (2.42) says that these particles are subject to an effective potential

Weff(λi) = W (λi) −
2t

N

∑

j �=i

log |λi − λj| (2.44)

which involves a logarithmic Coulomb repulsion between eigenvalues. For
small ’t Hooft parameter, the potential term dominates over the Coulomb repul-
sion, and the particles tend to be in the minimum x∗ of the potential W ′(x∗) =
0. This means that, for t = 0, the interval C collapses to the point x∗. As t
grows, the Coulomb repulsion will force the eigenvalues to be apart from each
other and to spread out over an interval C.

We can now write the saddle-point equation in terms of continuum quanti-
ties, by using the standard rule

1

N

N∑

i=1

f(λi) →
∫

C
f(λ)ρ(λ)dλ. (2.45)

Notice that the distribution of eigenvalues ρ(λ) satisfies the normalization con-
dition ∫

C
ρ(λ)dλ = 1. (2.46)

The equation (2.42) then becomes

1

2t
W ′(λ) = P

∫
ρ(λ′)dλ′

λ − λ′ (2.47)

where P denotes the principal value of the integral. The above equation is
an integral equation that allows one in principle to compute ρ(λ), given the
potential W (λ), as a function of the ’t Hooft parameter t and the coupling
constants. Once ρ(λ) is known, one can easily compute F0(t): in the saddle-
point approximation, the free energy is given by

1

N2
F = Seff(ρ) + O(N−2), (2.48)
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where the effective action in the continuum limit is a functional of ρ:

Seff(ρ) = −1

t

∫

C
dλρ(λ)W (λ) +

∫

C×C
dλdλ′ρ(λ)ρ(λ′) log |λ − λ′|. (2.49)

Therefore, the planar free energy is given by

F0(t) = t2Seff(ρ), (2.50)

Since the effective action is evaluated on the distribution of eigenvalues which
solves (2.47), one can simplify the expression to

F0(t) = − t

2

∫

C
dλρ(λ)W (λ). (2.51)

Similarly, averages in the matrix model can be computed in the planar limit as

1

N
〈Tr M �〉 =

∫

C
dλλ�ρ(λ). (2.52)

We then see that the planar limit is characterized by a classical density of states
ρ(λ), and the planar piece of quantum averages can be computed as a moment
of this density. The fact that the planar approximation to a quantum field theory
can be regarded as a classical field configuration was pointed out in [68] (see
[20] for a beautiful exposition). This classical configuration is often called the
master field. In the case of matrix models, the master field configuration is
given by the density of eigenvalues ρ(λ), and as we will see later it can be
encoded in a complex algebraic curve with a deep geometric meaning.

The density of eigenvalues is obtained as a solution to the saddle-point equa-
tion (2.47). This equation is a singular integral equation which has been studied
in detail in other contexts of physics (see, for example, [57]). The way to solve
it is to introduce an auxiliary function called the resolvent. The resolvent is
defined as a correlator in the matrix model:

ω(p) =
1

N
〈Tr

1

p − M
〉, (2.53)

which is in fact a generating functional of the correlation functions (2.52):

ω(p) =
1

N

∞∑

k=0

〈TrMk〉p−k−1 (2.54)

Being a generating functional of connected correlators, it admits an expansion
of the form [20]:

ω(p) =

∞∑

g=0

g2g
s ωg(p), (2.55)
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and the genus zero piece can be written in terms of the eigenvalue density as

ω0(p) =

∫
dλ

ρ(λ)

p − λ
(2.56)

The genus zero resolvent (2.56) has three important properties. First of all, as
a function of p it is an analytic function on the whole complex plane except
on the interval C, since if λ ∈ C one has a singularity at λ = p. Second, due
to the normalization property of the eigenvalue distribution (2.46), it has the
asymptotic behavior

ω0(p) ∼ 1

p
, p → ∞. (2.57)

Finally, one can compute the discontinuity of ω0(p) as one crosses the interval
C. This is just the residue at λ = p, and one then finds the key equation

ρ(λ) = − 1

2πi

(
ω0(λ + iε) − ω0(λ − iε)

)
. (2.58)

Therefore, if the resolvent at genus zero is known, the eigenvalue distribution
follows from (2.58), and one can compute the planar free energy. On the other
hand, by looking again at the resolvent as we approach the discontinuity, we
see that the r.h.s. of (2.47) is given by −(ω0(p + iε) + ω0(p − iε))/2, and we
then find the equation

ω0(p + iε) + ω0(p − iε) = −1

t
W ′(p), (2.59)

which determines the resolvent in terms of the potential. In this way we have
reduced the original problem of computing F0(t) to the Riemann-Hilbert prob-
lem of computing ω0(λ). There is in fact a closed expression for the resolvent
in terms of a contour integral [56] which is very useful. Let C be given by the
interval b ≤ λ ≤ a. Then, one has

ω0(p) =
1

2t

∮

C

dz

2πi

W ′(z)

p − z

(
(p − a)(p − b)

(z − a)(z − b)

) 1
2

. (2.60)

This equation is easily proved by converting (2.59) into a discontinuity equa-
tion:

ω̂0(p + iε) − ω̂0(p − iε) = −1

t

W ′(p)√
(p − a)(p − b)

, (2.61)

where ω̂0(p) = ω0(p)/
√

(p − a)(p − b). This equation determines ω0(p) to
be given by (2.60) up to regular terms, but because of the asymptotics (2.57),
these regular terms are absent. The asymptotics of ω0(p) also gives two more
conditions. By taking p → ∞, one finds that the r.h.s. of (2.60) behaves like
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c + d/p + O(1/p2). Requiring the asymptotic behavior (2.57) imposes c = 0
and d = 1, and this leads to

∮

C

dz

2πi

W ′(z)√
(z − a)(z − b)

= 0,

∮

C

dz

2πi

zW ′(z)√
(z − a)(z − b)

= 2t. (2.62)

These equations are enough to determine the endpoints of the cuts, a and b, as
functions of the ’t Hooft coupling t and the coupling constants of the model.

The above expressions are in fact valid for very general potentials (we will
apply them to logarithmic potentials in section 4), but when W (z) is a polyno-
mial, one can find a very convenient expression for the resolvent: if we deform
the contour in (2.60) we pick up a pole at z = p, and another one at infinity,
and we get

ω0(p) =
1

2t
W ′(p) − 1

2t

√
(p − a)(p − b)M(p), (2.63)

where

M(p) =

∮

0

dz

2πi

W ′(1/z)

1 − pz

1√
(1 − az)(1 − bz)

. (2.64)

Here, the contour is around z = 0. These formulae, together with the ex-
pressions (2.61) for the endpoints of the cut, completely solve the one-matrix
model with one cut in the planar limit, for polynomial potentials.

Another way to find the resolvent is to start with (2.42), multiply it by
1/(λi − p), and sum over i. One finds, in the limit of large N ,

(ω0(p))2 − 1

t
W ′(p)ω0(p) +

1

4t2
R(p) = 0, (2.65)

where

R(p) = 4t

∫
dλ ρ(λ)

W ′(p) − W ′(λ)

p − λ
. (2.66)

Notice that (2.65) is a quadratic equation for ω0(p) and has the solution

ω0(p) =
1

2t

(
W ′(p) −

√
(W ′(p))2 − R(p)

)
, (2.67)

which is of course equivalent to (2.63).
A useful way to encode the solution to the matrix model is to define

y(p) = W ′(p) − 2t ω0(p). (2.68)

Notice that the force on an eigenvalue is given by

f(p) = −W ′
eff(p) = −1

2
(y(p + iε) + y(p − iε)). (2.69)
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In terms of y(p), the quadratic equation (2.65) determining the resolvent can
be written as

y2 = W ′(p)2 − R(p). (2.70)

This is nothing but the equation of a hyperelliptic curve given by a certain
deformation (measured by R(p)) of the equation y2 = W ′(p)2 typical of sin-
gularity theory. We will see in the next section that this result has a beautiful
interpretation in terms of topological string theory on certain Calabi-Yau man-
ifolds.

Example. The Gaussian matrix model. Let us now apply this technology to
the simplest case, the Gaussian model with W (M) = M2/2. Let us first look
for the position of the endpoints from (2.61). Deforming the contour to infinity
and changing z → 1/z, we find that the first equation in (2.61) becomes

∮

0

dz

2πi

1

z2

1√
(1 − az)(1 − bz)

= 0, (2.71)

where the contour is now around z = 0. Therefore a + b = 0, in accord with
the symmetry of the potential. Taking this into account, the second equation
becomes: ∮

0

dz

2πi

1

z3

1√
1 − a2z2

= 2t, (2.72)

and gives
a = 2

√
t. (2.73)

We see that the interval C = [−a, a] = [−2
√

t, 2
√

t] opens as the ’t Hooft
parameter grows up, and as t → 0 it collapses to the minimum of the potential
at the origin, as expected. We immediately find from (2.63)

ω0(p) =
1

2t

(
p −
√

p2 − 4t
)
, (2.74)

and from the discontinuity equation we derive the density of eigenvalues

ρ(λ) =
1

2πt

√
4t − λ2. (2.75)

The graph of this function is a semicircle of radius 2
√

t, and the above eigen-
value distribution is the famous Wigner-Dyson semicircle law. Notice also that
the equation (2.70) is in this case

y2 = p2 − 4t. (2.76)

This is the equation for a curve of genus zero, which resolves the singularity
y2 = p2. We then see that the opening of the cut as we turn on the ’t Hooft
parameter can be interpreted as a deformation of a geometric singularity. This
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will be later interpreted in section 3.5 from the point of view of topological
string theory on Calabi-Yau manifolds.

Exercise. Resolvent for the cubic matrix model. Consider the cubic matrix
model with potential W (M) = M2/2+g3M

3/3. Derive an expression for the
endpoints of the one-cut solution as a function of t, g3, and find the resolvent
and the planar free energy. The solution is worked out in [12].

Although we will not need it in this review, there are well-developed tech-
niques to obtain the higher genus Fg(t) as systematic corrections to the saddle-
point result F0(t) [5, 32]. Interestingly enough, these corrections can be com-
puted in terms of integrals of differentials defined on the hyperelliptic curve
(2.70).

We have so far considered the so-called one cut solution to the one-matrix
model. This is not, however, the most general solution, and we now will con-
sider the multicut solution in the saddle-point approximation. Recall from our
previous discussion that the cut appearing in the one-matrix model was cen-
tered around a minimum of the potential. If the potential has many minima,
one can have a solution with various cuts, centered around the different min-
ima. The most general solution has then s cuts (where s is lower or equal than
the number of minima n), and the support of the eigenvalue distribution is a
disjoint union of s intervals

C = ∪s
i=1Ci, (2.77)

where
Ci = [x2i, x2i−1] (2.78)

and x2s < · · · < x1. The equation (2.67) still gives the solution for the re-
solvent, and it is easy to see that the way to have multiple cuts is to require
ω0(p) to have 2s branch points corresponding to the roots of the polynomial
W ′(z)2 − R(z). Therefore we have

ω0(p) =
1

2t
W ′(p) − 1

2t

√√√√
2s∏

k=1

(p − xk)M(p), (2.79)

which can be solved in a compact way by

ω0(p) =
1

2t

∮

C

dz

2πi

W ′(z)

p − z

( 2s∏

k=1

p − xk

z − xk

) 1
2

. (2.80)

In order to satisfy the asymptotics (2.57) the following conditions must hold:

δ�s =
1

2t

∮

C

dz

2πi

z�W ′(z)
∏2s

k=1(z − xk)
1
2

, � = 0, 1, · · · , s. (2.81)
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In contrast to the one-cut case, these are only s + 1 conditions for the 2s vari-
ables xk representing the endpoints of the cut. For s > 1, there are not enough
conditions to determine the solution of the model, and we need extra input to
determine the positions of the endpoints xk. Usually, the extra condition which
is imposed is that the different cuts are at equipotential lines (see for example
[11, 4]). It is easy to see that in general the effective potential is constant on
each cut,

Weff(p) = Γi, p ∈ Ci, (2.82)

but the values of Γi will be in general different for the different cuts. This
means that there can be eigenvalue tunneling from one cut to the other. The
way to guarantee equilibrium is to choose the endpoints of the cuts in such a
way that Γi = Γ for all i = 1, · · · , s. This gives the s − 1 conditions:

Weff(x2i+1) = Weff(x2i), i = 1, · · · , s − 1, (2.83)

which, together with the s + 1 conditions (2.81) provide 2s constraints which
allow one to find the positions of the 2s endpoints xi. We can also write the
equation (2.83) as

∫ x2i

x2i+1

dz M(z)

2s∏

k=1

(z − xk)
1
2 = 0. (2.84)

In the context of the matrix models describing topological strings, the multicut
solution is determined by a different set of conditions and will be described in
section 3.4.

2.3 Matrix model technology II: orthogonal polynomials

Another useful technique to solve matrix models involves orthogonal poly-
nomials. This technique was developed in [8, 9] (which we follow quite closely),
and provides explicit expressions for Fg(t) at least for low genus. This tech-
nique turns out to be particularly useful in the study of the so-called double-
scaling limit of matrix models [13]. We will use this technique to study Chern-
Simons matrix models, in section 4, therefore this subsection can be skipped
by the reader who is only interested in the conventional matrix models involved
in the Dijkgraaf-Vafa approach.

The starting point of the technique of orthogonal polynomials is the eigen-
value representation of the partition function

Z =
1

N !

∫ N∏

i=1

dλi

2π
∆2(λ)e

− 1
gs

PN
i=1 W (λi), (2.85)

where W (λ) is an arbitrary potential. If we regard

dµ = e−
1

gs
W (λ) dλ

2π
(2.86)
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as a measure in R, one can introduce orthogonal polynomials pn(λ) defined
by ∫

dµ pn(λ)pm(λ) = hnδnm, n ≥ 0, (2.87)

where pn(λ) are normalized by requiring the behavior pn(λ) = λn + · · · . One
can now compute Z by noting that

∆(λ) = det pj−1(λi). (2.88)

By expanding the determinant as
∑

σ∈SN

(−1)ε(σ)
∏

k

pσ(k)−1(λk) (2.89)

where the sum is over permutations σ of N indices and ε(σ) is the signature of
the permutation, we find

Z =

N−1∏

i=0

hi = hN
0

N∏

i=1

rN−i
i , (2.90)

where we have introduced the coefficients

rk =
hk

hk−1
, k ≥ 1. (2.91)

One of the most important properties of orthogonal polynomials is that they
satisfy recursion relations of the form

(λ + sn)pn(λ) = pn+1(λ) + rnpn−1(λ). (2.92)

It is easy to see that the coefficients rn involved in this relation are indeed given
by (2.91). This follows from the equality

hn+1 =

∫
dµ pn+1(λ)λpn(λ), (2.93)

together with the use of the recursion relation for λpn+1(λ). For even poten-
tials, sn = 0.

As an example of this technique, we can consider again the simple case
of the Gaussian matrix model. The orthogonal polynomials of the Gaussian
model are well-known: they are essentially the Hermite polynomials Hn(x),
which are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (2.94)
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More precisely, one has

pn(x) =
(gs

2

)n/2
Hn(x/

√
2gs), (2.95)

and one can then check that

hG
n =
( gs

2π

) 1
2
n!gn

s , rG
n = n gs. (2.96)

Using now (2.90) we can confirm the result (2.33) that we stated before.
It is clear that a detailed knowledge of the orthogonal polynomials allows

the computation of the partition function of the matrix model. It is also easy to
see that the computation of correlation functions also reduces to an evaluation
in terms of the coefficients in the recursion relation. To understand this point,
it is useful to introduce the orthonormal polynomials

Pn(λ) =
1√
hn

pn(λ), (2.97)

which satisfy the recursion relation

λPn(λ) = −snPn(λ) +
√

rn+1Pn+1(λ) +
√

rnPn−1(λ). (2.98)

Let us now consider the normalized vev 〈Tr M �〉, which in terms of eigenval-
ues is given by the integral

〈Tr M �〉 =
1

N !Z

∫ N∏

i=1

e−
1
gs

W (λi) dλi

2π
∆2(λ)

( N∑

i=1

λ�
i

)
. (2.99)

By using (2.88) it is easy to see that this equals

N−1∑

j=0

∫
dµλ�P2

j (λ). (2.100)

This integral can be computed in terms of the coefficients in (2.97). For exam-
ple, for � = 2 we find

〈Tr M2〉 =
N−1∑

j=0

(s2
j + rj+1 + rj), (2.101)

where we put r0 = 0. A convenient way to encode this result is by introducing
the Jacobi matrix

J =





0 r
1/2
1 0 0 · · ·

r
1/2
1 0 r

1/2
2 0 · · ·

0 r
1/2
2 0 r

1/2
3 · · ·

· · · · · · · · · · · · · · ·



 (2.102)
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as well as the diagonal matrix

S =





s0 0 0 0 · · ·
0 s1 0 0 · · ·
0 0 s2 0 · · ·
· · · · · · · · · · · · · · ·



 . (2.103)

It then follows that
〈Tr M �〉 = Tr (J − S)�. (2.104)

The results we have presented so far give the exact answer for the correlators
and the partition function, at all orders in 1/N . As we have seen, we are
particularly interested in computing the functions Fg(t) which are obtained by
resumming the perturbative expansion at fixed genus. As shown in [8, 9], one
can in fact use the orthogonal polynomials to provide closed expressions for
Fg(t) in the one-cut case. We will now explain how to do this in some detail.

The object we want to compute is

F = F − FG = log Z − log ZG. (2.105)

If we write the usual series F =
∑

g≥0 Fgg
2g−2
s , we have

g2
sF =

t2

N2
(log Z − log ZG) =

t2

N
log

h0

hG
0

+
t2

N

N∑

k=1

(1 − k

N
) log

rk(N)

kgs
.

(2.106)
The planar contribution to the free energy F0(t) is obtained from (2.106) by
taking N → ∞. In this limit, the variable

ξ =
k

N

becomes a continuous variable, 0 ≤ ξ ≤ 1, in such a way that

1

N

N∑

k=1

f(k/N) →
∫ 1

0
dξf(ξ)

as N goes to infinity. Let us assume as well that rk(N) has the following
asymptotic expansion as N → ∞:

rk(N) =

∞∑

s=0

N−2sR2s(ξ). (2.107)

We then find

F0(t) = −1

2
t2 log t + t2

∫ 1

0
dξ(1 − ξ) log

R0(ξ)

ξ
. (2.108)
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This provides a closed expression for the planar free energy in terms of the
large N limit of the recursion coefficients rk.

It is interesting to see how to recover the density of states ρ(λ) in the saddle-
point approximation from orthogonal polynomials. Let us first try to evaluate
(2.104) in the planar approximation, following [9]. A simple argument based
on the recursion relations indicates that, at large N ,

(J �)nn ∼ �!

(�/2)!2
r�/2
n . (2.109)

Using now the integral representation

�!

(�/2)!2
=

∫ 1

−1

dy

π

(2y)�√
1 − y2

,

we find

1

N
〈Tr M �〉 =

∫ 1

0
dξ

∫ 1

−1

dy

π

1√
1 − y2

(2yR
1/2
0 (ξ) − s(ξ))�,

where we have denoted by s(ξ) the limit as N → ∞ of the recursion coef-
ficients sk(N) which appear in (2.92). Since the above average can be also
computed by (2.52), by comparing we find

ρ(λ) =

∫ 1

0
dξ

∫ 1

−1

dy

π

1√
1 − y2

δ
(
λ − (2yR

1/2
0 (ξ) − s(ξ))

)
,

or, more explicitly,

ρ(λ) =

∫ 1

0

dξ

π

θ[4R0(ξ) − (λ + s(ξ))2]√
4R0(ξ) − (λ + s(ξ))2

. (2.110)

Here, θ is the step function. It also follows from this equation that ρ(λ) is
supported on the interval [b(t), a(t)], where

b(t) = −2
√

R0(1) − s(1), a(t) = 2
√

R0(1) − s(1). (2.111)

Example. In the Gaussian matrix model R0(ξ) = tξ, and s(ξ) = 0. We
then find that the density of eigenvalues is supported in the interval [−2

√
t, 2

√
t]

and it is given by

ρ(λ) =
1

π

∫ 1

0
dξ

θ[4ξt − λ2]√
4ξt − λ2

=
1

2πt

√
4t − λ2

which reproduces of course Wigner’s semicircle law.
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As shown in [8, 9], orthogonal polynomials can be used as well to obtain
the higher genus free energies Fg. The key ingredient to do that is simply the
Euler-MacLaurin formula, which reads

1

N

N∑

k=1

f
( k

N

)
=

∫ 1

0
f(ξ)dξ+

1

2N
[f(1)−f(0)]+

∞∑

p=1

1

N2p

B2p

(2p)!
[f (2p−1)(1)−f (2p−1)(0)],

(2.112)
and should be regarded as an asymptotic expansion for N large which gives a
way to compute systematically 1/N corrections. We can then use it to calculate
(2.106) at all orders in 1/N , where

f(k/N) =

(
1 − k

N

)
log

Nrk(N)

k
, (2.113)

and we use the fact that rk has an expansion of the form (2.107). In this way,
we find for example that

F1(t) = t2
∫ 1

0
dξ(1 − ξ)

R2(ξ)

R0(ξ)
+

t2

12

d

dξ

[
(1 − ξ) log

R0(ξ)

ξ

]1
0
,

and so on. We will use this formulation in section 4 to compute Fg(t) in the
matrix model that describes Chern-Simons theory on S3.

It is clear from the above analysis that matrix models can be solved with the
method of orthogonal polynomials, in the sense that once we know the precise
form of the coefficients in the recursion relation we can compute all quantities
in an 1/N expansion. Since the recursion relation is only known exactly in a
few cases, we need methods to determine its coefficients for general potentials
W (M). In the case of polynomial potentials, of the form

W (M) =
∑

p≥0

gp

p
TrMp,

there are well-known techniques to obtain explicit results [9], see [21, 22] for
reviews. We start by rewriting the recursion relation (2.92) as

λ pn(λ) =
n+1∑

m=0

Bnmpm,

where B is a matrix. The identities

rn

∫
dλe−

1
gs

W (λ)W ′(λ)pn(λ)pn−1(λ) = nhngs,
∫

dλ
d

dλ
(pne−

1
gs

W (λ)pn) = 0 (2.114)
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lead to the matrix equations

(W ′(B))nn−1 = ngs,

(W ′(B))nn = 0. (2.115)

These equations are enough to determine the recursion coefficients. Consider
for example a quartic potential

W (λ) =
g2

2
λ2 +

g4

4
λ4.

Since this potential is even, it is easy to see that the first equation in (2.115) is
automatically satisfied, while the second equation leads to

rn

{
g2 + g4(rn + rn−1 + rn+1)

}
= ngs

which at large N reads

R0(g2 + 3g4R0) = ξt.

In general, for an even potential of the form

W (λ) =
∑

p≥0

g2p+2

2p + 2
λ2p+2 (2.116)

one finds

ξt =
∑

p≥0

g2p+2

(
2p + 1

p

)
Rp+1

0 (ξ), (2.117)

which determines R0 as a function of ξ. The above equation is sometimes
called –especially in the context of double-scaled matrix models– the string
equation, and by setting ξ = 1 we find an explicit equation for the endpoints
of the cut in the density of eigenvalues as a function of the coupling constants
and t.

Exercise. Verify, using saddle-point techniques, that the string equation
correctly determines the endpoints of the cut. Compute R0(ξ) for the quartic
and the cubic matrix model, and use it to obtain F0(t) (for the quartic potential,
the solution is worked out in detail in [9]).

3. Type B topological strings and matrix models

3.1 The topological B model

The topological B model was introduced in [49, 73] and can be constructed
by twisting the N = 2 superconformal sigma model in two dimensions. There
are in fact two different twists, called the A and the B twist in [49, 73], and in
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these lectures we will focus on the second one. A detailed review of topological
sigma models and topological strings can be found in [39].

The topological B model is a theory of maps from a Riemann surface Σg

to a Calabi-Yau manifold X of complex dimension d. The Calabi-Yau con-
dition arises in order to cancel an anomaly that appears after twisting (see for
example Chapter 3 of [52] for a detailed analysis of this issue). Indices for the
real tangent bundle of X will be denoted by i = 1, · · · , 2d, while holomorphic
and antiholomorphic indices will be denoted respectively by I, I = 1, · · · , d.
The holomorphic tangent bundle will be simply denoted by TX , while the an-
tiholomorphic tangent bundle will be denoted by TX . One of the most impor-
tant properties of Calabi-Yau manifolds (which can actually be taken as their
defining feature) is that they have a holomorphic, nonvanishing section Ω of
the canonical bundle KX = Ω3,0(X). Since the section is nowhere vanishing,
the canonical line bundle is trivial and c1(KX) = 0. We will always consider
examples with complex dimension d = 3.

The field content of the topological B model is the following. First, since
it is a nonlinear sigma model, we have a map x : Σg → X, which is a scalar,
commuting field. Besides the field x, we have two sets of Grassmann fields
ηI , θI ∈ x∗(TX), which are scalars on Σg, and a Grassmannian one-form
on Σg, ρI

α, with values in x∗(TX). We also have commuting auxiliary fields

F I , F I (we will follow here the off-shell formulation of [49, 50]). The action
for the theory is:

L = t

∫

Σg

d2z
[
GIJ

(
∂zx

I∂z̄x
J + ∂z̄x

I∂zx
J
)
− ρI

z

(
GIJDz̄η

J + Dz̄θI

)

−ρI
z̄

(
GIJDzη

J − DzθI

)
− RI

JLKηLρJ
z ρK

z̄ θI − GIJF IF J
]
, (3.1)

In this action, we have picked local coordinates z, z̄ on Σg, and d2z is the
measure −idz ∧ dz̄. t is a parameter that plays the role of 1/�, the field θI is
given by θI = GIJθJ , and the covariant derivative Dα acts on sections ψi of
the tangent bundle as

Dαψi = ∂αψi + ∂αxjΓi
jkψ

k. (3.2)

The theory also has a BRST, or topological, charge Q which acts on the fields
according to

[Q, xI ] = 0, [Q, xI ] = ηI ,

{Q, ηI} = 0, {Q, θI} = GIJF J ,

{Q, ρI
z} = ∂zx

I , [Q, F I ] = Dzρ
I
z̄ − Dz̄ρ

I
z + RI

JLKηLρJ
z ρK

z̄ ,

{Q, ρI
z̄} = ∂z̄x

I , [Q, F I ] = −ΓI
JK

ηJFK ,
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The action of Q explicitly depends on the splitting between holomorphic and
antiholomorphic coordinates on X, in other words, it depends explicitly on the
choice of complex structure on X. It is easy to show that Q2 = 0, and that the
action of the model is Q-exact:

L = {Q, V } (3.3)

where V (sometimes called the gauge fermion) is given by

V = t

∫

Σg

d2z
[
GIJ̄

(
ρI

z∂z̄x
J̄ + ρI

z̄∂zx
J̄
)
− F IθI

]
. (3.4)

Finally, we also have a U(1) ghost number symmetry, in which x, η, θ and ρ
have ghost numbers 0, 1, 1, and −1, respectively. The Grassmannian charge
Q then has ghost number 1. Notice that, if we interpret ηI as a basis for
antiholomorphic differential forms on X, the action of Q on xI , xI may be
interpreted as the Dolbeault antiholomorphic differential ∂.

It follows from (3.3) that the energy-momentum tensor of this theory is
given by

Tαβ = {Q, bαβ}, (3.5)

where bαβ = δV/δgαβ and has ghost number −1. The fact that the energy-
momentum tensor is Q-exact means that the theory is topological, in the sense
that the partition function does not depend on the background two-dimensional
metric. This is easily proved: the partition function is given by

Z =

∫
Dφ e−L, (3.6)

where φ denotes the set of fields of the theory, and we compute it in the
background of a two-dimensional metric gαβ on the Riemann surface. Since
Tαβ = δL/δgαβ , we find that

δZ

δgαβ
= −〈{Q, bαβ}〉, (3.7)

where the bracket denotes an unnormalized vacuum expectation value. Since
Q is a symmetry of the theory, the above vacuum expectation value vanishes,
and we find that Z is metric-independent, at least formally.

The Q-exactness of the action itself also has an important consequence:
the same argument that we used above implies that the partition function of
the theory is independent of t. Now, since t plays the role of 1/�, the limit
of t large corresponds to the semiclassical approximation. Since the theory
does not depend on t, the semiclassical approximation is exact. The classical
configurations for the above action are constant maps x : Σg → X. Therefore,
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it follows that path integrals of the above theory reduce to integrals over X
[73].

What are the operators to consider in this theory? Since the most interesting
aspect of this model is the independence w.r.t. to the two-dimensional metric,
we want to look for operators whose correlation functions satisfy this condi-
tion. It is easy to see that the operators in the cohomology of Q do the job:
topological invariance requires them to be Q-closed, and on the other hand
they cannot be Q-exact, since otherwise their correlation functions would van-
ish. One can also check that the Q-cohomology is given by operators of the
form

Oφ = φ
J1···Jq

I1···Ip
ηI1 · · · ηIpθJ1 · · · θJq , (3.8)

where

φ = φ
J1···Jq

I1···Ip
dxI1 ∧ · · · ∧ dxIp

∂

∂xJ1
∧ · · · ∧ ∂

∂xJq
(3.9)

is an element of Hp

∂
(X,∧qTX). Therefore, the Q-cohomology is in one-to-

one correspondence with the twisted Dolbeault cohomology of the target man-
ifold X. We can then consider correlation functions of the form

〈
∏

a

Oφa〉. (3.10)

This correlation function vanishes unless the following selection rule is satis-
fied ∑

a

pa =
∑

a

qa = d(1 − g), (3.11)

where g is the genus of the Riemann surface. This selection rule comes from
a U(1)L × U(1)R anomalous global current. Due to the arguments presented
above, this correlation function can be computed in the semiclassical limit,
where the path integral reduces to an integration over the target X. The product
of operators in (3.10) corresponds to a form in Hd

∂
(X,∧dTX). To integrate

such a form over X we crucially need the Calabi-Yau condition. This arises as
follows. In a Calabi-Yau manifold we have an invertible map

Ω0,p(∧qTX) −→ Ωd−q,p(X)

φ
I1···Iq

J1···Jp
�→ ΩI1···IqIq+1···Id

φ
I1···Iq

J1···Jp
(3.12)

where the (d, 0)-form Ω is used to contract the indices. Since Ω is holomor-
phic, this descends to the ∂-cohomology. It then follows that an element in
Hd

∂
(X,∧dTX) maps to an element in Hd

∂
(X). After further multiplication

by Ω, one can then integrate a (d, d)-form over X. This is the prescription
to compute correlation functions like (3.10). A simple and important example
of this procedure is the case of a Calabi-Yau threefold, d = 3, and operators
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associated to forms in H1
∂
(X,TX), or by using (3.12), to forms in H2,1

∂
(X).

These operators are important since they correspond to infinitesimal deforma-
tions of the complex structure of X. The selection rule (3.11) says that we
have to integrate three of these operators, and the correlation function reads in
this case

〈Oφ1Oφ2Oφ3〉 =

∫

X
(φ1)

I1
J1

(φ2)
I2
J2

(φ3)
I3
J3

ΩI1I2I3dzJ1dzJ2dzJ3 ∧ Ω. (3.13)

It turns out that the full information of the correlators (3.13) at genus zero
can be encoded in a single function called the prepotential. We will quickly
review here some of the basic results of special geometry and the theory of the
prepotential for the topological B model, and we refer the reader to [17, 39] for
more details. The correlation functions in the B model, like for example (3.13),
depend on a choice of complex structure, as we have already emphasized. The
different complex structures form a moduli space M of dimension h2,1. A
convenient parametrization of M is the following. Choose first a symplectic
basis for H3(X), denoted by (Aa, B

a), with a = 0, 1, · · · , h2,1, and such that
Aa ∩ Bb = δb

a. We then define the periods of the Calabi-Yau manifold as

za =

∫

Aa

Ω, Fa =

∫

Ba

Ω, a = 0, · · · , h2,1. (3.14)

Of course, the symplectic group Sp(2h2,1 + 2,R) acts on the vector (za,Fa).
A basic result of the theory of deformation of complex structures says that
the za are (locally) complex projective coordinates for M. Inhomogeneous
coordinates can be introduced in a local patch where one of the projective
coordinates, say z0, is different from zero, and taking

ta =
za

z0
, a = 1, · · · , h2,1. (3.15)

The coordinates za are called special projective coordinates, and since they
parametrize M we deduce that the other set of periods must depend on them,
i.e. Fa = Fa(z). Using the periods (3.14) we can define the prepotential F(z)
by the equation

F =
1

2

h2,1∑

a=0

zaFa. (3.16)

The prepotential satisfies

Fa(z) =
∂F
∂za

(3.17)

and turns out to be a homogeneous function of degree two in the za. There-
fore, one can rescale it in order to obtain a function of the inhomogeneous
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coordinates ta:

F0(ta) =
1

z2
0

F(za). (3.18)

The fact that the coordinates za are projective is related to the freedom in nor-
malizing the three-form Ω. In order to obtain expressions in terms of the in-
homogeneous coordinates ta, we simply have to rescale Ω → 1

z0
Ω, and the

periods (za,Fa) become

(1, ta, 2F0 −
h2,1∑

a=1

ta
∂F0

∂ta
,
∂F0

∂ta
). (3.19)

One of the key results in special geometry is that the correlation functions
(3.13) can be computed in terms of the prepotential F0(t). Given a deformation
of the complex structure parametrized by ta, the corresponding tangent vector
∂/∂ta is associated to a differential form of type (2, 1). This form leads to an
operator Oa, and the three-point functions involving these operators turn out
to be given by

〈OaObOc〉 =
∂3F0

∂ta∂tb∂tc
. (3.20)

The prepotential F0(t) encodes the relevant information about the B model on
the sphere, and it has an important physical meaning, since it gives the four-
dimensional supergravity prepotential of type IIB string theory compactified
on X (and determines the leading part of the vector multiplet effective action).

In order to obtain interesting quantities at higher genus one has to couple
the topological B model to two-dimensional gravity, using the fact that the
structure of the twisted theory is very close to that of the bosonic string [30,
74, 7]. In the bosonic string, there is a nilpotent BRST operator, QBRST, and
the energy-momentum tensor turns out to be a QBRST-commutator: T (z) =
{QBRST, b(z)}. In addition, there is a ghost number with anomaly 3χ(Σg) =
6 − 6g, in such a way that QBRST and b(z) have ghost number 1 and −1,
respectively. This is precisely the same structure that we found in (3.5), and
the composite field bαβ plays the role of an antighost. Therefore, one can just
follow the prescription of coupling to gravity for the bosonic string and define
a genus g ≥ 1 free energy as follows:

Fg =

∫

Mg

〈
6g−6∏

k=1

(b, µk)〉, (3.21)

where

(b, µk) =

∫

Σg

d2z(bzz(µk)
z

z̄ + bz̄z̄(µk)
z̄

z ), (3.22)
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and µk are the usual Beltrami differentials. The vacuum expectation value in
(3.21) refers to the path integral over the fields of the topological B model, and
gives a differential form on the moduli space of Riemann surfaces of genus g,
Mg, which is then integrated over. The free energies Fg of the B model coupled
to gravity for g ≥ 1 are also related to variation of complex structures. A target
space description of this theory, called Kodaira-Spencer theory of gravity, was
found in [7], and can be used to determine recursively the Fg in terms of special
geometry data.

3.2 The open type B model and its string field theory
description

The topological B model can be formulated as well for open strings, i.e.,
when the worldsheet is an open Riemann surface with boundaries Σg,h [74,
59]. In order to construct the open string version we need boundary conditions
(b.c.) for the fields. It turns out that the appropriate b.c. for the B model are
Dirichlet along holomorphic cycles of X, S, and Neumann in the remaining
directions. Moreover, one can add Chan-Paton factors to the model, and this
is implemented by considering a U(N) holomorphic bundle over the holomor-
phic cycle S. The resulting theory can then be interpreted as a topological B
model in the presence of N topological D-branes wrapping S. Since we will be
interested in finding a spacetime description of the open topological B model,
we can consider the case in which the branes fill spacetime (the original case
considered in [74]) and deduce the spacetime action for lower dimensional
branes by dimensional reduction. In the spacetime filling case, when S = X,
the boundary conditions for the fields are θ = 0 along ∂Σg,h and that the
pullback to ∂Σg,h of ∗ρ vanishes (where ∗ is the Hodge operator).

The open topological B model can also be coupled to gravity following the
same procedure that is used in the closed case, and one obtains in this way the
open type B topological string propagating along the Calabi-Yau manifold X.
We are now interested in providing a description of this model when the N
branes are spacetime filling. As shown by Witten in [74], the most efficient
way to do that is to use the cubic string field theory introduced in [69].

In bosonic open string field theory we consider the worldsheet of the string
to be an infinite strip parameterized by a spatial coordinate 0 ≤ σ ≤ π and a
time coordinate −∞ < τ < ∞, and we pick the flat metric ds2 = dσ2 + dτ2.
We then consider maps x : I → X, with I = [0, π] and X the target of the
string. The string field is a functional of open string configurations Ψ[x(σ)],
of ghost number one (the string functional depends as well on the ghost fields,
but we do not indicate this dependence explicitly). In [69], Witten defines two
operations on the space of string functionals. The first one is the integration,
which is defined formally by folding the string around its midpoint and gluing
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the two halves:
∫

Ψ =

∫
Dx(σ)

∏

0≤σ≤π/2

δ[x(σ) − x(π − σ)]Ψ[x(σ)]. (3.23)

The integration has ghost number −3, which is the ghost number of the vac-
uum. This corresponds to the usual fact that in open string theory on the disk
one has to soak up three zero modes. One also defines an associative, noncom-
mutative star product � of string functionals through the following equation:

∫
Ψ1�· · ·�ΨN =

∫ N∏

i=1

Dxi(σ)
N∏

i=1

∏

0≤σ≤π/2

δ[xi(σ)−xi+1(π−σ)]Ψi[xi(σ)],

(3.24)
where xN+1 ≡ x1. The star product simply glues the strings together by
folding them around their midpoints, and gluing the first half of one with the
second half of the following (see for example the review [65] for more details),
and it doesn’t change the ghost number. In terms of these geometric operations,
the string field action is given by

S =
1

gs

∫ (
1

2
Ψ � QBRSTΨ +

1

3
Ψ � Ψ � Ψ

)
(3.25)

where gs is the string coupling constant. Notice that the integrand has ghost
number 3, while the integration has ghost number −3, so that the action (3.25)
has zero ghost number. If we add Chan-Paton factors, the string field is pro-
moted to a U(N) matrix of string fields, and the integration in (3.25) includes
a trace Tr. The action (3.25) has all the information about the spacetime dy-
namics of open bosonic strings, with or without D-branes. In particular, one
can derive the Born-Infeld action describing the dynamics of D-branes from
the above action [64].

We will not need all the technology of string field theory in order to under-
stand open topological strings. The only piece of relevant information is the
following: the string functional is a function of the zero mode of the string
(which corresponds to the position of the string midpoint), and of the higher
oscillators. If we decouple all the oscillators, the string functional becomes
an ordinary function of spacetime, the � product becomes the usual product of
functions, and the integral is the usual integration of functions. The decoupling
of the oscillators is in fact the point-like limit of string theory. As we will see,
this is the relevant limit for topological open type B strings on X.

We can now exploit again the analogy between open topological strings and
the open bosonic string that we used to define the coupling of the topologi-
cal B model to gravity (i.e., that both have a nilpotent BRST operator and an
energy-momentum tensor that is QBRST-exact). Since both theories have a
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similar structure, the spacetime dynamics of open topological type B strings
is governed as well by (3.25), where QBRST is given in this case by the topo-
logical charge defined in (3.3), and where the star product and the integration
operation are as in the bosonic string. The construction of the cubic string
field theory also requires the existence of a ghost number symmetry, which is
also present in the topological sigma model in the form of a U(1)R symmetry,
as we discussed in 3.1. It is convenient to consider the U(1)R charge of the
superconformal algebra in the Ramond sector, which is shifted by −d/2 with
respect to the assignment presented in 3.1 (here, d is the dimension of the tar-
get). When d = 3 this corresponds to the normalization used in [69], in which
the ghost vacuum of the bc system is assigned the ghost number −1/2.

In order to provide the string field theory description of open topological
type B strings on X, we have to determine the precise content of the string
field, the � algebra and the integration of string functionals for this particular
model. As in the conventional string field theory of the bosonic string, we have
to consider the Hamiltonian description of topological open strings. We then
take Σ to be an infinite strip and consider maps x : I → X, with I = [0, π].
The Hilbert space is made up out of functionals Ψ[x(σ), · · · ], where x is a map
from the interval as we have just described, and the · · · refer to the Grassmann
fields (which play here the rôle of ghost fields). Notice that, since ρI

z,z̄ are
canonically conjugate to η, θ, we can choose our functional to depend only on
η, θ. It is easy to see that the Hamiltonian has the form

H =

∫ π

0
dσ

(
tGij

dxi

dσ

dxj

dσ
+ · · ·

)
. (3.26)

We then see that string functionals with dxi/dσ �= 0 cannot contribute: as we
saw in the previous subsection, the physics is t-independent, therefore we can
take t → ∞. In this limit the functional gets infinitely massive and decouples
from the spectrum, unless dxi/dσ = 0. Therefore, the map x : I → X has to
be constant and in particular it must be a point in X. A similar analysis holds
for the Grassmann fields as well. Since θ = 0 at the boundary, it follows that
string functionals are functions of the commuting zero modes xi and ηI , and
can be written as

Ψ = A(0)(x) +
∑

p≥1

ηI1 · · · ηIpA
(p)

I1···Ip
(x). (3.27)

These functionals can be interpreted as a sum of (0, p)-forms on X. If we have
N D-branes wrapping X, these forms will be valued in End(E) (where E is
a holomorphic U(N) bundle). The Q symmetry acts as on these functionals
as the Dolbeault operator ∂ with values in End(E). Notice that a differential
form of degree p will have ghost number p.
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We are now ready to write the string field action for topological open type
B strings on X with N spacetime filling branes. We have seen that the relevant
string functionals are of the form (3.27). Since in string field theory the string
field has ghost number one, we must have

Ψ = ηIAI(x), (3.28)

where AI(x) is a (0, 1)-form taking values in the endomorphisms of some
holomorphic vector bundle E. In other words, the string field is just the (0, 1)
piece of a gauge connection on E. Since the string field only depends on com-
muting and anticommuting zero modes, the star product becomes the wedge
products of forms in Ω(0,p)(End(E)), and the integration of string functionals
becomes ordinary integration of forms on X wedged by Ω. We then have the
following dictionary:

Ψ → A, QBRST → ∂

� → ∧,
∫
→
∫
X Ω ∧ .

(3.29)

The string field action (3.25) is then given by

S =
1

2gs

∫

X
Ω ∧ Tr

(
A ∧ ∂A +

2

3
A ∧ A ∧ A

)
. (3.30)

This is the so-called holomorphic Chern-Simons action. It is a rather peculiar
quantum field theory in six dimensions, but as we will see, when we consider
D-branes of lower dimension, we will be able to obtain from (3.30) more con-
ventional theories by dimensional reduction.

3.3 Topological strings and matrix models

We have seen that the spacetime description of the open B model with space-
time filling branes reduces to a six-dimensional theory (3.30). We will see now
that, in some circumstances, this theory simplifies drastically and reduces to a
matrix model.

In order to simplify the spacetime description one should study simple Calabi-
Yau manifolds. The simplest example of a local Calabi-Yau threefold is a Rie-
mann surface together with an appropriate bundle over it. The motivation for
considering this kind of models is the following. Consider a Riemann surface
Σg holomorphically embedded inside a Calabi-Yau threefold X, and let us
consider the holomorphic tangent bundle of X restricted to Σg. We then have

TX|Σg = TΣg ⊕ NΣg (3.31)

where NΣg is a holomorphic rank two complex vector bundle over Σg, called
the normal bundle of Σg, and the CY condition c1(X) = 0 gives

c1(NΣg ) = 2g − 2. (3.32)
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The Calabi-Yau X “near Σg" looks precisely like the total space of the bundle

N → Σg (3.33)

where N is regarded here as a bundle over Σg satisfying (3.32). The space
(3.33) is an example of a local Calabi-Yau threefold, and it is noncompact.

When g = 0 and Σg = IP1 it is possible to be more precise about the bundle
N . A theorem due to Grothendieck says that any holomorphic bundle over
IP1 splits into a direct sum of line bundles (for a proof, see for example [36],
pp. 516-7). Line bundles over IP1 are all of the form O(n), where n ∈ Z.
The bundle O(n) can be easily described in terms of two charts on IP1: the
north pole chart, with coordinates z,Φ for the base and the fiber, respectively,
and the south pole chart, with coordinates z′,Φ′. The change of coordinates is
given by

z′ = 1/z, Φ′ = z−nΦ. (3.34)

We also have that c1(O(n)) = n. We then find that local Calabi-Yau manifolds
that are made out of a two-sphere together with a bundle over it are all of the
form

O(−a) ⊕O(a − 2) → IP1, (3.35)

since the degree of the bundles have to sum up to −2 due to (3.32).
Let us now consider the string field theory of type B open topological strings

on the Calabi-Yau manifold (3.35). We will consider a situation where we
have Dirichlet boundary conditions associated to IP1, in other words, there are
N topological D-branes wrapping IP1. Since the normal directions to the D-
brane worldvolume are noncompact, the spacetime description can be obtained
by considering the dimensional reduction of the original string field theory ac-
tion (3.30). As usual in D-brane physics, the gauge potential A splits into a
gauge potential on the worldvolume of the brane and Higgs fields describing
the motion along the noncompact, transverse directions. In a nontrivial geo-
metric situation like the one here, the Higgs fields are sections of the normal
bundle. We then get three different fields:

A, Φ0, Φ1, (3.36)

where A is a U(N) (0, 1) gauge potential on IP1, Φ0 is a section of O(−a),
and Φ1 is a section of O(a − 2). Both fields, Φ0 and Φ1, take values in the
adjoint representation of U(N). It is easy to see that the action (3.30) becomes

S =
1

gs

∫

IP1
Tr
(
Φ0DAΦ1

)
, (3.37)

where DA = ∂ + [A, ·] is the antiholomorphic covariant derivate. Notice that
this theory is essentially a gauged βγ system, since Φ0, Φ1 are quasiprimary
conformal fields of dimensions a/2, 1 − a/2, respectively.
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We will now consider a more complicated geometry. We start with the
Calabi-Yau manifold (3.35) with a = 0, i.e.

O(0) ⊕O(−2) → IP1. (3.38)

In this case, Φ0 is a scalar field on IP1, while Φ1 is a (1, 0) form (since KIP1 =
O(−2)). If we cover IP1 with two patches with local coordinates z, z′ related
by z′ = 1/z, the fields in the two different patches, Φ0,Φ1, and Φ′

0,Φ
′
1 will be

related by
Φ′

0 = Φ0, Φ′
1 = z2Φ1. (3.39)

We can regard this geometry as a family of IP1s located at Φ′
1 = 0 (the zero

section of the nontrivial line bundle O(−2)) parametrized by Φ0 = Φ′
0 =

x ∈ C. The idea is to obtain a geometry where we get n isolated IP1s at fixed
positions of x. To do that, we introduce an arbitrary polynomial of degree n+1
on Φ0, W (Φ0), and we modify the gluing rules above as follows [15]:

z′ = 1/z, Φ′
0 = Φ0, Φ′

1 = z2Φ1 + W ′(Φ0)z. (3.40)

Before, the IP1 was in a family parameterized by Φ0 ∈ C. Now, we see that
there are n isolated IP1s located at fixed positions of Φ0 given by W ′(Φ0) = 0,
since this is the only way to have Φ1 = Φ′

1 = 0.
The geometry obtained by imposing the gluing rules (3.40) can be inter-

preted in yet another way. Call Φ0 = x and define the coordinates

u = 2Φ′
1, v = 2Φ1, y = i(2z′Φ′

1 − W ′(x)). (3.41)

The last equation in (3.40) can now be written as

uv + y2 + W ′(x)2 = 0. (3.42)

This is a singular geometry, since there are singularities along the line u = v =
y = 0 for every x∗ such that W ′(x∗) = 0. For example, if W ′(x) = x, (3.42)
becomes, after writing u, v → u − iv, u + iv

u2 + v2 + x2 + y2 = 0. (3.43)

This Calabi-Yau manifold is called the conifold, and it is singular at the origin.
For arbitrary polynomials W (x), the equation (3.42) describes more general,
singular Calabi-Yau manifolds. Notice that locally, around the singular points
u = v = y = 0, x = x∗, the geometry described by (3.42) looks like a coni-
fold (whenever W ′′(x∗) = 0). The manifold described by (3.40) is obtained
after blowing up the singularities in (3.42), i.e. we modify the geometry by
“inflating" a two-sphere IP1 at each singularity. This process is called resolu-
tion of singularities in algebraic geometry, and for this reason we will call the
manifold specified by (3.40) the resolved manifold Xres.
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We can now consider the dynamics of open type B topological strings on
Xres. We will consider a situation in which we have in total N D-branes in such
a way that Ni D-branes are wrapped around the i-th IP1, with i = 1, · · · , n. As
before, we have three fields in the adjoint representation of U(N), Φ0, Φ1 and
the gauge connection A. The action describing the dynamics of the D-branes
turns out to be given by

S =
1

gs

∫

IP1
Tr

(
Φ1DAΦ0 + ωW (Φ0)

)
(3.44)

where ω is a K-ahler form on IP1 with unit volume. This action was derived
in [43, 27]. A quick way to see that the modification of the gluing rules due
to adding the polynomial W ′(Φ0) leads to the extra term in (3.44) is to use
standard techniques in CFT [27]. The fields Φ0,Φ1 are canonically conjugate
and on the conformal plane they satisfy the OPE

Φ0(z)Φ1(w) ∼ gs

z − w
. (3.45)

Let us now regard the geometry described in (3.40) as two disks (or conformal
planes) glued through a cylinder. Since we are in the cylinder, we can absorb
the factors of z in the last equation of (3.40). The operator that implements the
transformation of Φ is

U = exp
1

gs

∮
TrW (Φ0(z)) dz, (3.46)

since from (3.45) it is easy to obtain

Φ′
1 = UΦ1U

−1. (3.47)

We can also write

U = exp
1

gs

∫

IP1
Tr W (Φ0(z))ω (3.48)

where ω is localized to a band around the equator of IP1 (as we will see im-
mediately, the details of ω are unimportant, as long as it integrates to 1 on the
two-sphere).

One easy check of the above action is that the equations of motion lead to the
geometric picture of D-branes wrapping n holomorphic IP1s in the geometry.
The gauge connection is just a Lagrange multiplier enforcing the condition

[Φ0,Φ1] = 0, (3.49)

therefore we can diagonalize Φ0 and Φ1 simultaneously. The equation of mo-
tion for Φ0 is simply

∂Φ0 = 0, (3.50)
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and since we are on IP1, we have that Φ0 is a constant, diagonal matrix. Finally,
the equation of motion for Φ1 is

∂Φ1 = W ′(Φ0)ω, (3.51)

and for nonsingular Φ1 configurations both sides of the equation must vanish
simultaneously, as we can see by integrating both sides of the equation over
IP1. Therefore, Φ1 = 0 and the constant eigenvalues of Φ0 satisfy

W ′(Φ0) = 0 (3.52)

i.e. they must be located at the critical points of W (x). In general, we will
have Ni eigenvalues of Φ0 at the i-th critical point, i = 1, · · · , n, and this is
precisely the D-brane configuration we are considering.

What happens in the quantum theory? In order to analyze it, we will use
the approach developed in [10] for the analysis of two-dimensional gauge
theories1. First of all, we choose the maximally Abelian gauge for Φ0, i.e.
we write

Φ0 = Φk
0 + Φt

0, (3.53)

where Φt
0 is the projection on the Cartan subalgebra t, and Φk

0 is the projection
on the complementary part k. The maximally Abelian gauge is defined by the
condition

Φk
0 = 0 (3.54)

which means that the nondiagonal entries of Φ0 are gauge-fixed to be zero.
This is in fact the same gauge that we used before to write the matrix model
in the eigenvalue basis. After fixing the gauge the usual Faddeev-Popov tech-
niques lead to a ghost functional determinant given by

1

N !
Detk(ad(Φt

0))Ω0(IP1) (3.55)

where the subscript k means that the operator Φt
0 acts on the space k, and the

normalization factor 1/N ! is the inverse of the order of the residual symme-
try group, namely the Weyl group which permutes the N entries of Φt

0. The
integrand of (3.44) reads, after gauge fixing,

Tr

(
Φt

1∂Φt
0 + W (Φt

0)

)
+ 2
∑

α

AαΦ−α
1 α(Φt

0), (3.56)

where α are roots, Eα is a basis of k, and we have expanded Φk
1 =
∑

α Φα
1 Eα

as well as Ak. We can now integrate out the Aα to obtain

1

Detk(ad(Φt
0))Ω1,0(IP1)

∏

α>0

δ(Φα
1 ). (3.57)
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Here we have used the functional generalization of thestandard formula δ(ax) =
|a|−1δ(x). We can now trivially integrate over Φk

1 . The inverse determinant in
(3.57) combines with (3.55) to produce

Detk(ad(Φt
0))H0(IP1)

Detk(ad(Φt
0))H1,0(IP1)

(3.58)

where (as usual) nonzero modes cancel (since they are paired by ∂) and one
ends with the determinants evaluated at the cohomologies. Similarly, integrat-
ing out Φt

1 in (3.56) leads to ∂Φt
0 = 0, therefore Φt

0 must be constant. The
quotient of determinants is easy to evaluate in this case, and one finds

[∏

i<j

(λi − λj)
2

]h0(IP1)−h1,0(IP1)

, (3.59)

where λi are the constant eigenvalues of Φt
0. Since h0(IP1) = 1, h1,0(IP1) =

0, we just get the square of the Vandermonde determinant and the partition
function reads:

Z =
1

N !

∫ N∏

i=1

dλi

∏

i<j

(λi − λj)
2 e

− 1
gs

PN
i=1 W (λi). (3.60)

In principle, as explained in [10], one has to include a sum over nontrivial
topological sectors of the Abelian gauge field At in order to implement the
gauge fixing (3.54) correctly. Fortunately, in this case the gauge-fixed action
does not depend on At, and the inclusion of topological sectors is irrelevant.
The expression (3.60) is (up to a factor (2π)N ) the gauge-fixed version of the
matrix model

Z =
1

vol(U(N))

∫
DΦ e

− 1
gs

Tr W (Φ) (3.61)

We have then derived a surprising result due to Dijkgraaf and Vafa [27]: the
string field theory action for open topological B strings on the Calabi-Yau man-
ifold described by (3.40) is a matrix model with potential W (Φ).

3.4 Open string amplitudes and multicut solutions

The total free energy F (Ni, gs) of topological B strings on the Calabi-Yau
(3.40) in the background of N =

∑
i Ni branes wrapped around n IP1’s is of

the form (1.3), and as we have just seen it is given by the free energy of the
matrix model (3.61). In particular, the coefficients Fg,h1,··· ,hn can be computed
perturbatively in the matrix model. We have to be careful however to specify
the classical vacua around which we are doing perturbation theory. Remem-
ber from the analysis of the matrix model that the classical solution which
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describes the brane configuration is characterized by having Ni eigenvalues of
the matrix located at the i-th critical point of the potential W (x). In the saddle-
point approximation, this means that we have to consider a multicut solution,
with eigenvalues “condensed” around all the extrema of the potential. There-
fore, in contrast to the multicut solution discussed in 2.2, we have that (1) all
critical points of W (x) have to be considered, and not only the minima, and
(2) the number of eigenvalues in each cut is not determined dynamically as in
(2.83), but it is rather fixed to be Ni in the i-th cut. In other words, the integral
of the density of eigenvalues ρ(λ) along each cut equals a fixed filling fraction
νi = Ni/N : ∫ x2i−1

x2i

dλ ρ(λ) = νi, (3.62)

where N =
∑n

i=1 Ni is the total number of eigenvalues. Let us introduce the
partial ’t Hooft couplings

ti = gsNi = tνi. (3.63)

Taking into account (2.58) and (2.68), we can write (3.62) as

ti =
1

4πi

∮

Ai

y(λ)dλ, i = 1, · · · , n, (3.64)

where Ai is the closed cycle of the hyperelliptic curve (2.70) which surrounds
the cut Ci. Assuming for simplicity that all the ti are different from zero, and
taking into account that

∑
i ti = t, we see that (3.64) gives n − 1 independent

conditions, where n is the number of critical points of W (x). These conditions,
together with (2.81), determine the positions of the endpoints xi as functions of
the ti and the coupling constants in W (x). It is clear that the solution obtained
in this way is not an equilibrium solution of the matrix model, since cuts can be
centered around local maxima and different cuts will have different values of
the effective potential. This is not surprising, since we are not considering the
matrix model as a quantum mechanical system per se, but as an effective de-
scription of the original brane system. The different choices of filling fractions
correspond to different choices of classical vacua for the brane system.

A subtle issue concerning the above matrix model is the following. The ma-
trix field Φ in (3.61) comes from the B model field Φ0, which is a holomorphic
field. Therefore, the matrix integral (3.60) should be understood as a contour
integral, and in order to define the theory a choice of contour should be made.
This can be done in perturbation theory, by choosing for example a contour
that leads to the usual results for Gaussian integration, and therefore at this
level the matrix model is not different from the usual Hermitian matrix model
[27, 75]. In some cases, however, regarding (3.61) as a holomorphic matrix
model can be clarifying, see [51] for an exhaustive discussion.

The above description of the multicut solution refers to the saddle-point
approximation. What is the meaning of the multicut solutions from the point of
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view of perturbation theory? To address this issue, let us consider for simplicity
the case of the cubic potential:

1

gs
W (Φ) =

1

2gs
Tr Φ2 +

1

3

β

gs
Tr Φ3. (3.65)

This potential has two critical points, a1 = 0 and a2 = −1/β. The most
general multicut solution will have two cuts. There will N1 eigenvalues sitting
at Φ = 0, and N2 eigenvalues sitting at Φ = −1/β. The partition function Z
of the matrix model is:

Z =
1

N !

∫ N∏

i=1

dλi

2π
∆2(λ)e

− 1
2gs

P
i λ2

i − β
3gs

P
i λ3

i , (3.66)

where ∆(λ) =
∏

i<j(λi − λj) is the Vandermonde determinant. We can now
expand the integrand around the vacuum with λi = 0 for i = 1, . . . , N1 and
λi = − 1

β for i = N1 + 1, . . . , N . Denoting the fluctuations by µi and νj , the
Vandermonde determinant becomes

∆2(λ) =
∏

1≤i1<i2≤N1

(µi1 −µi2)
2

∏

1≤j1<j2≤N2

(νj1 −νj2)
2
∏

1≤i≤N1
1≤j≤N2

(
µi−νj +

1

β

)2
.

(3.67)
We also expand the potential around this vacuum and get

W =

N1∑

i=1

(
1

2gs
µ2

i +
β

3gs
µ3

i

)
−

N2∑

i=1

(
m

2gs
ν2

i − β

3gs
ν3

i

)
+

1

6β2gs
N2. (3.68)

Notice that the propagator of the fluctuations around −1/β has the ‘wrong’
sign, since we are expanding around a local maximum. The interaction be-
tween the two sets of eigenvalues, which is given by the last factor in (3.67),
can be exponentiated and included in the action. This generates an interaction
term between the two eigenvalue bands

Wint = 2N1N2 log β + 2

∞∑

k=1

1

k
βk
∑

i,j

k∑

p=0

(−1)p
(

k

p

)
µp

i ν
k−p
j . (3.69)

By rewriting the partition function in terms of matrices instead of their eigen-
values, we can represent this model as an effective two-matrix model, involving
an N1 × N1 matrix Φ1, and an N2 × N2 matrix Φ2:

Z =
1

Vol(U(N1)) × Vol(U(N2))

∫
DΦ1DΦ2e

−W1(Φ1)−W2(Φ2)−W (Φ1,Φ2),

(3.70)
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where

W1(Φ1) = +Tr
( 1

2gs
Φ2

1 +
β

3gs
Φ3

1

)
,

W2(Φ2) = −Tr
( 1

2gs
Φ2

2 −
β

3gs
Φ3

2

)
,

Wint(Φ1,Φ2) = 2

∞∑

k=1

βk

k

k∑

p=0

(−1)p
(

k

p

)
Tr Φp

1 Tr Φk−p
2

+ N2W (a2) + N1W (a1) − 2N1N2 ln β. (3.71)

Here, Tr Φ0
1 = N1, Tr Φ0

2 = N2, W (a1) = 0 and W (a2) = 1/(6gsβ
2). Al-

though the kinetic term for Φ2 has the ‘wrong’ sign, we can still make sense of
the model in perturbation theory by using formal Gaussian integration, and this
can in fact be justified in the framework of holomorphic matrix models [51].
Therefore, the two-cut solution of the cubic matrix model can be formally rep-
resented in terms of an effective two-matrix model. It is now straightforward to
compute the free energy Fpert = log

(
Z(β)/Z(β = 0)

)
in perturbation theory.

It can be expanded as

Fpert =−N1W (a1)−N2W (a2)−2N1N2 ln β+
∞∑

h=1

∑

g≥0

(gsβ
2)2g−2+hFg,h(N1, N2)

(3.72)
where Fg,h is a homogeneous polynomial in N1 and N2 of degree h. One finds,
up to fourth order in the coupling constant β, the following result [45]:

Fpert = −N1W (a1) − N2W (a2) − 2N1N2 ln β

+ gsβ
2

[(2

3
N3

1 − 5N2
1 N2 + 5N1N

2
2 − 2

3
N3

2

)
+

1

6
(N1 − N2)

]

+ g2
sβ

4

[(8

3
N4

1 − 91

3
N3

1 N2 + 59N2
1 N2

2 − 91

3
N1N

3
2 +

8

3
N4

2

)

+
(7

3
N2

1 − 31

3
N1N2 +

7

3
N2

2

)]
+ · · ·

(3.73)

From this explicit perturbative computation one can read off the first few co-
efficients Fg,h1,h2 . Of course, this procedure can be generalized, and the n-cut
solution can be represented by an effective n matrix model with interactions
among the different matrices that come from the expansion of the Vander-
monde determinant. These interactions can be also incorporated in terms of
ghost fields, as explained in [24]. This makes possible to compute corrections
to the saddle-point approximation in perturbation theory. One can also use
the multicut solution to the loop equations [4, 47] with minor modifications to
compute the genus one correction in closed form [45, 26, 18].
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3.5 Master field and geometric transition

We have seen that the open topological string amplitudes on the Calabi-Yau
manifold Xres are computed by a multicut matrix model whose planar solution
(or, equivalently, its master field configuration) is given by a hyperelliptic curve

y2 = W ′(x)2 − R(x). (3.74)

Moreover, we also saw in (3.64) that the partial ’t Hooft couplings can be
understood as integrals around the Ai cycles of this curve, with i = 1, · · · , n.
Let us now compute the variation of the free energy F0(ti) when we vary
ti. The variation w.r.t. ti (keeping the tj , j �= i, fixed) can be obtained by
computing the variation in the free energy as we move one eigenvalue from
the cut Ci to infinity [27]. This variation is given by (minus) the integral of the
force exerted on an eigenvalue, as we move it from the endpoint of the cut to
infinity. The path from the endpoint of Ci to infinity, which does not intersect
the other cuts Cj , will be denoted by Bi. Taking into account (2.69), and the
fact that y(p) has no discontinuities outside the cuts Cj , we find

∂F0

∂ti
=

∫

Bi

y(x)dx. (3.75)

Usually this integral is divergent, but can be easily regularized by taking Bi

to run up to a cutoff point x = Λ, and subtracting the divergent pieces as the
cutoff Λ goes to infinity. For example, for the Gaussian matrix model one has

∂F0

∂t
=

∫ Λ

2
√

t
dx
√

x2 − 4t = t(log t − 1) − 2t log Λ +
1

2
Λ2 + O(1/Λ2).

(3.76)
Therefore, the regularized integral gives t(log t− 1), which is indeed the right
result. It is now clear that (3.64) and (3.75) look very much like the relations
(3.14) that define the periods (therefore the prepotential) in special geometry.
What is the interpretation of the appearance of special geometry?

Recall that our starting point was a Calabi-Yau geometry obtained as a
blowup of the singularity given in (3.42). However, there is another way of
smoothing out singularities in algebraic geometry, which is by deforming them
rather than by resolving then. For example, the conifold singularity given in
(3.43) can be smoothed out by deforming the geometry to

x2 + y2 + u2 + v2 = µ. (3.77)

This is the so called deformed conifold. Geometrically, turning on µ corre-
sponds to inflating a three-sphere in the geometry, since the real section of the
conifold is indeed an S3. As µ → 0, the three-sphere collapses to zero size,
so we can interpret the singularity as arising from a collapsing three-cycle in
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the geometry. In the more general singularity (3.42), the generic deformation
requires turning on a generic polynomial of degree n− 1 R(x), and we get the
Calabi-Yau manifold

u2 + v2 + y2 + W ′(x)2 = R(x). (3.78)

We will call this geometry the deformed manifold Xdef . The deformation by
R(x) introduces in fact n three-spheres in the geometry, one for each singular-
ity (recall that each of the singular points in (3.42) is locally like the conifold).
The noncompact Calabi-Yau manifold (3.78) has a holomorphic three-form:

Ω =
1

2π

dxdydu

v
(3.79)

The three-spheres created by the deformation can be regarded as two-spheres
fibered over an interval in the complex x-plane. To see this, let us consider for
simplicity the case of the deformed conifold (3.77), with µ real. This geometry
contains a three-sphere which is given by the restriction of (3.77) to real values
of the variables. If we now consider a fixed, real value of x in the interval
−√

µ < x <
√

µ, we get of course a two-sphere of radius
√

µ − x2. The
sphere collapses at the endpoints of the interval, x = ±√

µ, and the total
geometry of the two-sphere together with the interval [−√

µ,
√

µ] is a three-
sphere. In the more general case, the curve W ′(x)2 − R(x) has n cuts with
endpoints x2i, x2i−1, i = 1, · · · , n, and the n three-spheres are S2 fibrations
over these cuts.

Let us now consider closed type B topological strings propagating on Xdef .
As we saw in 3.1, the genus zero theory is determined by the periods of the
three-form Ω given in (3.79). We then choose a symplectic basis of three-
cycles Âi, B̂j , with Âi ∩ B̂j = δj

i . Here, the Âi cycles are the n three-spheres,
and they project to cycles Ai surrounding the cut Ci = [x2i, x2i−1] in the x-
plane. The B̂i cycles are dual cycles which project in the x plane to the Bi

paths [15]. The periods of Ω are then given by

ti =
1

4π

∮

bAi

Ω,
∂F0

∂ti
=

∫

bBi

Ω. (3.80)

It is easy to see that these periods reduce to the periods (3.63) and (3.75) on
the hyperelliptic curve (3.74), respectively. Let us consider again the case of
the deformed conifold (3.77), which is simpler since there is only one three-
sphere. Let us compute the A-period over this three-sphere, which is an S2

fibration over the cut [−√
µ,

√
µ], by first doing the integral over S2, and then

doing the integral over the cut. Since v =
√

µ − x2 − ρ2, where ρ2 = y2+u2,
the integral of Ω over S2 is simply

1

2π

∫

S2

dydz√
µ − x2 − ρ2

=
√

µ − x2. (3.81)
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Therefore, the A-period becomes

t =
1

2π

∫ √
µ

−√
µ

y(x)dx, (3.82)

where y is now given by y2 + x2 = µ. This is nothing but the A-period (3.63)
(up to a redefinition y → −iy). The general case is very similar, and one finally
obtains that the special geometry (3.80) of the deformed Calabi-Yau geometry
(3.78) is equivalent to the planar solution of the matrix model, given by the
hyperelliptic curve (3.74) and the equations for the partial ’t Hooft couplings
(3.64) and the planar free energy (3.75).

The physical interpretation of this result is that there is an equivalence be-
tween an open topological string theory on the manifold Xres, with N D-branes
wrapping the n spheres obtained by blowup, and a closed topological string
theory on the manifold Xdef , where the N D-branes have disappeared. More-
over, the ’t Hooft couplings ti in the open string theory become geometric
periods in the closed string theory. Since the open topological strings on Xres

are described by a matrix model, the fact that the planar solution reproduces
very precisely the deformed geometry is important evidence for this interpre-
tation. This duality relating an open and a closed string theory is an example
of a geometric, or large N, transition. Notice that, as a consequence of this
duality, the ’t Hooft resummation of the matrix model corresponds to a closed
string theory propagating on Xdef . The master field controlling the planar limit
(which is encoded in the planar resolvent, or equivalently in the quantity y(λ))
leads to an algebraic equation that describes very precisely the target of the
closed string theory dual. The large N transition between these two geome-
tries was proposed in [15]. The fact that the open string side can be described
by a matrix model was discovered in [27].

3.6 Extensions and applications

The results derived above can be extended to more complicated Calabi-Yau
backgrounds with branes [28, 29]. For example, one can consider ADE type
geometries with branes wrapping two-spheres [16, 14], and the string field
theory description reduces to the ADE matrix models considered in [46]. In the
one-matrix model described before, the master field is given by a hyperelliptic
curve F (x, y) = 0 which is then regarded as the Calabi-Yau manifold

uv + F (x, y) = 0 (3.83)

in disguise. In some of the examples considered in [28, 29], however, the
master field is no longer described by a hyperelliptic curve, but involves a
more complicated geometry. This geometry is the Calabi-Yau closed string
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background that is obtained by geometric transition from the open string back-
ground with branes. A detailed study of the more complicated master field
geometries that arise in multimatrix models can be found in [33].

Another consequence of the result of Dijkgraaf and Vafa, together with the
geometric transition of [15], is that the Kodaira-Spencer theory of gravity [7]
on the noncompact Calabi-Yau manifold (3.78) is equivalent to the ’t Hooft
resummation of the matrix model with potential W (x). For the simple example
of the cubic potential, this was explicitly checked at genus one in [45]. The
formalism developed in [32] seems to be very appropriate to establish this
equivalence in detail.

As we mentioned in the introduction, the main application of the results of
Dijkgraaf and Vafa has been the computation of effective superpotentials in su-
persymmetric gauge theories by using matrix model techniques. This is based
on the fact [7, 29] that the resummation F0(t) of the open string amplitudes is
deeply related to the superpotential of the gauge theory which can be obtained
from string backgrounds with branes. We refer the reader to [6, 62] for an
exposition of these results.

4. Type A topological strings, Chern-Simons theory and
matrix models

The conceptual structure of what we have seen in the B model is the fol-
lowing: first one shows, by using string field theory, that the target space de-
scription of open topological B strings reduces to a matrix model in certain
backgrounds. Then one solves the model in the planar limit, and a geometry
emerges which is interpreted as a closed string dual to the original open string
theory. Both geometries are related by a large N transition. The first transition
of this type was discovered in the context of topological A strings by Gopaku-
mar and Vafa [35]. What we will do here is to rederive their result by using
the language and technology of matrix models. The key ingredient is the fact
pointed out in [53] that the partition function of Chern-Simons theory can be
written in terms of a somewhat exotic matrix model. We will only focus on
the matrix model aspects of this correspondence. A detailed review of Chern-
Simons theory and the geometric transition for the A model can be found in
[54].

4.1 Solving the Chern-Simons matrix model

The Chern-Simons action with gauge group G on a generic three-manifold
M is defined by

S =
k

4π

∫

M
Tr
(
A ∧ dA +

2

3
A ∧ A ∧ A

)
(4.1)
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Here, k is the coupling constant, and A is a G-gauge connection on the trivial
bundle over M . We will consider Chern-Simons theory with gauge group G =
U(N). As noticed in [71], since the action (4.1) does not involve the metric,
the resulting quantum theory is topological, at least formally. In particular, the
partition function

Z(M) =

∫
[DA]eiS (4.2)

should define a topological invariant of M . A detailed analysis shows that this
is in fact the case, with an extra subtlety related to a choice of framing of the
three-manifold.

The partition function of Chern-Simons theory can be computed in a variety
of ways. In [71] it was shown that in fact the theory is exactly solvable by
using nonperturbative methods and the relation to the Wess-Zumino-Witten
(WZW) model. In particular, the partition function of the U(N) theory on the
three-sphere S3 is given by

Z(S3) =
1

(k + N)N/2

∑

w∈W
ε(w) exp

(
− 2πi

k + N
ρ · w(ρ)

)
, (4.3)

where the sum over w is a sum over the elements of the Weyl group W of
U(N), ε(w) is the signature of w, and ρ is the Weyl vector of SU(N). By
using Weyl’s denominator formula,

∑

w∈W
ε(w)ew(ρ)·u =

∏

α>0

2 sinh
α · u

2
, (4.4)

where α are positive roots, one finds

Z(S3) =
1

(k + N)N/2

∏

α>0

2 sinh
((α · ρ)

2
gs

)
(4.5)

where

gs =
2πi

k + N
. (4.6)

It was found by Witten that open topological type A strings on T ∗S3 (which
is nothing but the deformed conifold geometry (3.77)) in the presence of N
D-branes wrapping S3 are in fact described by U(N) Chern-Simons theory on
S3 [74]. This is the type A model analog to the fact that open type B strings
on the geometry described by (3.40) are captured by a matrix model, and in
both cases this is shown by using open string field theory. The free energy
of Chern-Simons theory on S3 has an expansion of the form (1.2), with gs

given in (4.6), and the coefficients Fg,h, which can be computed by standard
perturbation theory, have the interpretation of open string amplitudes on T ∗S3.
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The analogy between the A story and the B story can be taken even further,
since it turns out that the partition function of Chern-Simons on S3, as well as
on many other three-manifolds, can be represented as a matrix integral [53]. In
the case of S3 most of the physical information in Z(S3) can be obtained by
other means, but for other three-manifolds like lens spaces and Seifert spaces,
the matrix model representation is crucial in order to extract the coefficients
Fg,h [53]. The Chern-Simons matrix model on S3 gives however a particularly
clean way to derive the resummed free energies Fg(t) and the geometry of the
master field, and we will devote the rest of these lectures to presenting this
analysis.

In the case of S3 the easiest way to derive the matrix model representation of
the Chern-Simons partition function is through direct computation. Consider
the following integral:

ZCS =
e−

gs
12

N(N2−1)

N !

∫ N∏

i=1

dβi

2π
e−

P
i β2

i /2gs
∏

i<j

(
2 sinh

βi − βj

2

)2
. (4.7)

It can easily be seen that this reproduces the partition function of U(N) Chern-
Simons theory on S3, given in (4.5), and the derivation is left as an exercise.

Exercise. Use the Weyl formula (4.4) to write (4.7) as a Gaussian integral,
and show that it reproduces (4.3).

The measure factor in (4.7)

∏

i<j

(
2 sinh

βi − βj

2

)2
(4.8)

is not the standard Vandermonde determinant, although it reduces to it for small
separations among the eigenvalues. In fact, for very small gs, the Gaussian
potential in (4.7) will be very narrow, forcing the eigenvalues to be close to
each other, and one can expand the sinh in (4.8) in power series. At leading
order we find the usual Gaussian matrix model, while the corrections to it can
be evaluated systematically by computing correlators in the Gaussian theory.
In this way one obtains the perturbative expansion of Chern-Simons theory,
see [53] for details.

Here we will take a slightly different route in order to analyze the model.
First of all, we want to write the above integral as a standard matrix inte-
gral with the usual Vandermonde discriminant. This can be achieved with the
change of variables [67]

exp(βi + t) = λi, (4.9)
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where t = Ngs, as usual. It is easy to see that the above integral becomes, up
to a factor exp(−N3gs/2),

ZSW =
1

N !

∫ N∏

i=1

dλi

2π
∆2(λ) exp

(
−

N∑

i=1

(log λi)
2/2gs

)
, (4.10)

therefore we are considering the matrix model

ZSW =
1

vol(U(N))

∫
dM e

− 1
2gs

Tr (log M)2
. (4.11)

We will call this model the Stieltjes-Wigert matrix model, hence the subscript
in (4.10) and (4.11). This is because it can be exactly solved with the so-called
Stieltjes-Wigert polynomials, as we will explain in a moment.

Matrix integrals with logarithmic potentials are somewhat exotic, but have
appeared before in connection with the Penner model [61], with the c = 1
string at the self-dual radius [25, 41], and with the IP1 model [31]. We want
to analyze now the saddle-point approximation to the matrix integral (4.7),
or equivalently to (4.10). Since the model in (4.10) has the standard Vander-
monde, we can use the techniques of section 2.2. Although the formulae there
were obtained for a polynomial potential, some of them generalize to arbitrary
polynomials. In particular, to obtain the resolvent ω0(p) we can use the for-
mula (2.60) with

W ′(z) =
log z

z
. (4.12)

Notice that this potential has a minimum at z = 1. We then expect a one-

a b

Figure 8. This shows the deformation of the contour needed to compute the planar resolvent
of the Chern-Simons matrix integral. We pick a residue at z = p, and we have to encircle the
singularity at the origin as well as the branch cut of the logarithm, which on the left hand side
is represented by the dashed lines.
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cut solution where the endpoints of the interval a(t), b(t) will satisfy a(0) =
b(0) = 1. In order to compute the integral (2.60) we deform the integration
contour. In the case of polynomial potentials, we picked a residue at z = p
and at infinity. Here, since the logarithm has a branch cut, we cannot push the
contour to infinity. Instead, we deform the contour as indicated in Fig. 8: we
pick the pole at z = p, and then we surround the cut of the logarithm along the
negative real axis and the singularity at z = 0 with a small circle Cε of radius
ε. This kind of situation is typical of the solution of matrix models with the
character expansion [44]. The resulting integrals are:

1

2t

{
−
∫ −ε

−∞

dz

z(z − p)
√

(z − a)(z − b)
+

∮

Cε

dz log z

z(z − p)
√

(z − a)(z − b)

}
.

(4.13)
Both are singular as ε → 0, but singularities cancel, and after some computa-
tions one finds for the resolvent:

ω0(p) =− 1

2tp
log

[
(
√

a
√

p − b −
√

b
√

p − a)2

(
√

p − a −
√

p − b)2p2

]
+

√
(p − a)(p − b)

2tp
√

ab
log

[
4ab

2
√

ab + a + b

]
.

(4.14)
In order to satisfy the asymptotics (2.57) the second term must vanish, and the
first one must go like 1/p. This implies

4ab = 2
√

ab + a + b,√
a +

√
b = 2et, (4.15)

and from here we obtain the positions of the endpoints of the cut a, b as a
function of the ’t Hooft parameter:

a(t) = 2e2t − et + 2e
3t
2

√
et − 1,

b(t) = 2e2t − et − 2e
3t
2

√
et − 1. (4.16)

Notice that, for t = 0, a(0) = b(0) = 1, as expected. The final expression for
the resolvent is then:

ω0(p) = − 1

tp
log

[
1 + e−tp +

√
(1 + e−tp)2 − 4p

2p

]
, (4.17)

and from here we can easily find the density of eigenvalues

ρ(λ) =
1

πtλ
tan−1

[
1 + e−tλ +

√
(1 + e−tλ)2 − 4λ

2λ

]
. (4.18)

If we now define
u(p) = t(1 − pω0(p)) + πi (4.19)
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we see that it solves the equation

eu + ev + ev−u+t + 1 = 0 (4.20)

where we put p = et−v . This was found in [2] by a similar analysis. The equa-
tion (4.20) is the analog of (3.74) in the case of polynomial matrix models,
and can be regarded as an algebraic equation describing a noncompact Rie-
mann surface. In fact, (4.20) is nothing but the mirror of the resolved conifold
geometry (see for example [40, 1]), and t is the K-ahler parameter of the ge-
ometry. This is of course in agreement with the result of [35], who argued that
the ’t Hooft resummation of Chern-Simons theory leads to a closed string the-
ory propagating on the resolved conifold. As in the B model that we analyzed
before, the master field of the matrix model encodes the information about the
target geometry of the closed string description, and provides evidence for the
geometric transition relating T ∗S3 and the resolved conifold geometry.

As we mentioned before, the matrix model (4.11) can be solved exactly
with a set of orthogonal polynomials called the Stieltjes-Wigert polynomials.
The fact that the Chern-Simons matrix model is essentially equivalent to the
Stieltjes-Wigert matrix model was pointed out by Tierz in [67]. The Stieltjes-
Wigert polynomials are defined as follows [63]:

pn(x) = (−1)nqn2+ n
2

n∑

ν=0

[
n

ν

]
q

ν(ν−n)
2

−ν2
(−q−

1
2 x)ν (4.21)

and satisfy the orthogonality condition (2.87) with

dµ(x) = e−
1

2gs
(log x)2 dx

2π
(4.22)

and

hn = q
3
4
n(n+1)+ 1

2 [n]!
( gs

2π

) 1
2
,

where
q = egs . (4.23)

In the above equations,

[n] = q
n
2 − q−

n
2 ,

[
n

m

]
=

[n]!

[m]![n − m]!
. (4.24)

The recursion coefficients appearing in (2.92) are in this case

rn = q3n(qn − 1), sn = −q
1
2
+n(qn+1 + qn − 1).

The Stieltjes-Wigert ensemble can be regarded as a q-deformation (in the sense
of quantum group theory) of the usual Gaussian ensemble. For example, as
gs → 0 one has that [n] → ngs, therefore

hn → hG
n , (4.25)
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where hG
n is given in (2.96). Also, one can easily check that the normalized

vev of TrR M in this ensemble is given by

〈TrR M〉SW = e
3t�(R)

2 q
κR
2 dimq R, (4.26)

where �(R) is the number of boxes of R, κR is a quantity defined by

κR = �(R) +
∑

i

λi(λi − 2i) (4.27)

in terms of lengths of rows λi in R, and dimq R is the quantum dimension of
the representation R

dimq R =
∏

α>0

[α · (Λ + ρ)]

[α · ρ]
(4.28)

where Λ is the highest weight associated to R. As gs → 0, the vev (4.26)
becomes just dimR, the classical dimension of R, which is essentially the vev
in the Gaussian ensemble (2.8).

Notice that, for this set of orthogonal polynomials, the expansion (2.107) is
very simple since

R0(ξ) = e4tξ(1 − e−tξ), R2s(ξ) = 0, s > 0,

s(ξ) = etξ(1 − 2etξ). (4.29)

As we pointed out in section 2.3, R0(ξ) and s(ξ) can be used to determine
the endpoints of the cut in the resolvent through (2.111). It is easy to see that
(4.29) indeed lead to (4.15), and that by using (2.110) one obtains (4.18). In
fact, it is well-known that the expression (4.18) is the density of zeroes of the
Stieltjes-Wigert polynomials [48, 19].

We can now use the technology developed in section 2.3 to compute Fg(t).
Since

FCS = FSW − 7

12
t3 +

1

12
t, (4.30)

the formula (2.108) gives

FCS
0 (t) =

t3

12
− π2t

6
− Li3(e

−t) + ζ(3), (4.31)

where the polylogarithm of index j is defined by:

Lij(x) =

∞∑

n=1

xn

nj
. (4.32)

The above result is in precise agreement with the result in [35] obtained by
resumming the perturbative series. With some extra work we can also compute

372



FCS
g (t), for all g > 0, starting from (2.112). We just have to compute f (p)(1)−

f (p)(0), for p odd, where

f(ξ) = (1 − ξ)φ(ξ, t), φ(ξ, t) = log
1 − e−tξ

ξ
+ 4tξ.

It is easy to see that

φ(p)(ξ, t) = (−1)p+1
{

Li1−p(e
−tξ)tp − (p − 1)!

ξp

}
,

and by using the expansion

1

1 − e−t
=

1

t
+

∞∑

k=0

(−1)k+1Bk+1
tk

(k + 1)!

one gets

φ(p)(0, t) =
(−1)pBp

p
tp.

Putting everything together, we find for g > 1

Fg(t) =
B2gB2g−2

2g(2g − 2)(2g − 2)!
+

B2g

2g(2g − 2)!
Li3−2g(e

−t)− B2g

2g(2g − 2)
t2−2g.

Since the last piece is the free energy at genus g of the Gaussian model, we
conclude that the Chern-Simons free energy at genus g is given by

FCS
g (t) =

B2gB2g−2

2g(2g − 2)(2g − 2)!
+

B2g

2g(2g − 2)!
Li3−2g(e

−t) (4.33)

which agrees with the resummation of [35] and also with the genus g closed
string amplitude of type A topological strings on the resolved conifold (see
[54] for more details).

4.2 Extensions

We have seen that the matrix model reformulation of Chern-Simons theory
provides an efficient way to obtain the master field geometry and to resum the
perturbative expansion. The result (4.33) can be derived as well from the per-
turbation series [35, 34], but the existence of a matrix model description of
Chern-Simons theory turns out to be useful in other situations as well. For
example, one can easily write a matrix integral for Chern-Simons theory for
other gauge groups [53], and the corresponding models have been analyzed in
[37]. Moreover, the matrix representation of Chern-Simons partition functions
can be extended to lens spaces and Seifert spaces, and provides a useful way to
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study perturbative expansions around nontrivial flat connections. The matrix
models that describe these expansions have been studied in perturbation the-
ory in [53, 2] and the saddle-point approximation to lens space matrix models
has been studied in [38]. There are as well multimatrix models describing A
topological strings on some noncompact Calabi-Yau geometries [2] that can be
studied by using saddle-point techniques [76], and it is possible as well to for-
mulate the Chern-Simons partition function on S3 in terms of a unitary model
[58]. However, all these matrix models are usually much harder to analyze
than conventional ones, and more work is needed to understand their large N
properties.

I would like to thank the organizers of the Les Houches School for invit-
ing me to present these lectures in an extraordinary environment. I want to
thank in particular Volodya Kazakov and Paul Wiegmann for the opportunity
to lecture in the evenings on Dovjenko, Godard and The Matrix besides my
regular lectures on matrix models during the day. I’m also grateful to the
participants for their enthusiasm, their questions and comments, and the fun.
Thanks too to Arthur Greenspoon and Niclas Wyllard for a detailed reading of
the manuscript. Finally, I would like to thank Mina Aganagic, Robbert Dijk-
graaf, Sergei Gukov, Volodya Kazakov, Albrecht Klemm, Ivan Kostov, Stefan
Theisen, George Thompson, Miguel Tierz and Cumrun Vafa for educating me
about matrix models over the last two years.
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MATRIX MODELS OF MODULI SPACE

Sunil Mukhi
Tata Institute of Fundamental Research,
Mumbai, India

Abstract We review matrix models corresponding to triangulations of the moduli space of
Riemann surfaces: primarily the Kontsevich model that computes intersection
numbers on moduli space, and the Penner model that computes the virtual Euler
characteristic of moduli space. Generalisations of the former model describe
noncritical strings with c < 1 matter, while the latter can be generalised to
describe amplitudes of c = 1 strings at selfdual radius.

1. Introduction

Random matrices have played an important role in string theory. The pri-
mary physical intuition underlying their role is that certain random-matrix inte-
grals correspond to summing over triangulated Riemann surfaces. In a suitable
continuum limit, these simulate the integrals over inequivalent Riemann sur-
faces that are at the heart of perturbative string theory[1].

However, if properly treated, the matrix integral can do more (as we learn
from Emil Martinec’s lectures in this volume), and actually performs a sum
over the contributions of all Riemann surfaces of arbitrary genus[2–4]. This
makes it more powerful than conventional continuum formulations of string
theory where at best one can compute amplitudes for low genus. The ultimate
hope, in the matrix approach, has always been to understand nonperturbative
string theory. Earlier attempts to do this ran into stability problems, but with
the new understanding of type 0 backgrounds of superstring theory[5, 6] hopes
have been revived of extracting genuine nonperturbative results. Eventually
one would of course hope that some insights will extend to the more physically
interesting case of critical string theory.

A rather independent line of development arose from studies by the mathe-
maticians Kontsevich[7] and Penner[8] of topological properties of the moduli
spaces of Riemann surfaces. In these studies, random matrix integrals were
constructed starting from triangulations of the moduli spaces, rather than of
the Riemann surfaces themselves. This involves beautiful mathematics and
also makes use of time-honoured techniques in random matrix theory such as

© 2006 Springer. Printed in the Netherlands. 
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orthogonal polynomials and the like. The principal idea is to build up a matrix
integral whose expansion computes topological invariants associated to mod-
uli space. The Penner and Kontsevich models will be the main focus of the
present lectures.

Soon after these matrix models of moduli space were written down, it was
found[9, 10] that they could be related to the partition functions and amplitudes
of noncritical string theory. In particular, there appeared to be such a “topolog-
ical” matrix model for every noncritical string background. Given that there
was already a “conventional” matrix model for each noncritical string, this
seemed like an unnecessary duplication. But about a year ago, a reason was
proposed for the existence of both types of matrix models of noncritical strings
[11–13], related to the existence of two types of static D-branes in noncritical
string theory[14–16]. But the entire open-string explanation of these models
is relatively recent and is perhaps of greater interest to string theorists than to
students of random matrices. So, while it will remain a motivation in what fol-
lows, the bulk of these notes will review the elegant mathematical ideas that go
into the construction of the Kontsevich and Penner models and their generali-
sations. In the last section there will be some discussion of the string-theoretic
issues involved.

2.

Westart bydiscussing some preliminaries regarding Riemann surfaces, which
play a primary role in the discussion. From a physicist’s point of view, a Rie-
mann surface is basically a 1-complex-dimensional manifold. We will deal
with surfaces that are compact and without boundary.

Topologically, these are classified by their genus or number of handles:
These manifolds admit a many-parameter family of complex structures: dif-

ferent ways to define complex coordinates that are analytically inequivalent to
each other. The moduli space of a compact Riemann surface of genus g and n

Moduli space of Riemann surfaces and its topology
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punctures, Mg,n, is the space of inequivalent complex structures that one can
put on the surface.

Mg,n is known to be a (singular) complex manifold of complex dimension
3g−3+n (whenever this number is ≥ 0). It arises as the quotient of a covering
space, the Teichm-uller space Tg,n, by a discrete group, the mapping class group
MCg,n:

Mg,n =
Tg,n

MCg,n

This action typically has fixed points, hence the moduli space Mg,n has “orb-
ifold” singularities.

Let us look at some simple examples of such moduli spaces. M0,n is the
moduli space of the sphere (g = 0) with n punctures. This has complex di-
mension n − 3. For the simplest case of n = 3 one can fix all the punctures
at arbitrary locations using the SL(2, C) invariance of the sphere, so the mod-
uli space is a single point. That point in turn is fixed under the action of the
mapping class group S3 that permutes the punctures. Locally, M0,n has the
structure of n−3 copies of the complex plane, but with a singularity whenever
a pair of punctures coalesces on the original sphere.

Another example is g = 1, n = 0, the moduli space of a torus. We have:

dim(M1,0) = 1

In this case, the Teichm-uller space T1,0 is the upper half plane. The mapping

class group is PSL(2, Z) : τ → aτ+b
cτ+d .

The quotient space M1,0 is an infinite strip bounded below by an arc of a
semicircle (see Fig.2).

The remaining Mg,n are much more complicated. In the absence of simple
pictures for those spaces, mathematicians are interested in characterising them
by their topological invariants.

What is the simplest topological invariant of Mg,n? For a smooth manifold,
we can define the the Euler characteristic χ. For this, we make a simplicial
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decomposition, or triangulation, S of the manifold, and evaluate:

χ =
∑

I∈S
(−1)dI

where dI is the dimension of the I th simplex, and the sum is over all the
simplices in the complex S . As is well known, this is a topological invariant,
independent of how we triangulate the manifold.

A triangulation of a two-dimensional sphere is illustrated in Fig.4.

For a two-dimensional surface, a triangulation is literally made of triangles,
and

χ = #(vertices) − #(edges) + #(faces) = 2 − 2g

Topological invariance is the statement that the answer is completely indepen-
dent of the triangulation.

Now, we are not interested in triangulations of the Riemann surface itself,
but of its moduli space, which is a manifold of arbitrarily high dimension.
So we need to consider higher-dimensional simplicial complexes. In general
dimensions, a simplicial complex involves “solid triangles”, or simplices, of all
dimensions upto the dimension of the manifold. Each simplex has a boundary
whose components are simplices of one lower dimension.
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Moreover, because the mapping class group can have fixed points, we need
to consider spaces with orbifold singularities. In this case, the natural topo-
logical invariant to define is the virtual Euler characteristic χV . This differs
from the usual Euler characteristic in that each term in the sum over simplices
is divided by the order of the discrete group ΓI that fixes the I th simplex.

Thus,

χV =
∑

I∈S

(−1)dI

#(ΓI)

Using combinatoric methods, it was found by Harer and Zagier[17] that the
virtual Euler characteristic of Mg,n is:

χV (Mg,n) = (−1)n
(n + 2g − 3)!(2g − 1)

n!(2g)!
B2g

where B2g are the Bernoulli numbers.

3.

The above results were obtained by triangulating the moduli space of punc-
tured Riemann surfaces using the so-called quadratic differentials. We will
now survey in some detail how the triangulation was carried out. That will
set the stage to construct a matrix integral whose expansion reproduces the
Harer-Zagier formula above, the Penner model.

Triangulation of Mg,n was carried out by Harer[18], using a theorem due to
Strebel[19], as follows1. On a Riemann surface with a finite number of marked
points, one can define a meromorphic quadratic differential

η = ηz,z(z)dz2

with poles at the marked points.
Under a change of coordinates z → z′(z), a quadratic differential trans-

forms as:

η′z′,z′(z
′) =

(
∂z

∂z′

)2

ηz,z(z)

For a fixed complex structure on the surface, such a differential (with certain
extra properties) is unique upto multiplication by a positive real number.

This differential can be used to invariantly define the length of a curve γ on
the Riemann surface:

|γ|η =

∫

γ

√
|η(z)||dz|

Indeed, defining a new coordinate via

dw =
√

η(z)dz

Quadratic differentials and fatgraphs
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we see that this length is the ordinary length of the curve in the Euclidean
sense, in the w coordinate.

Now consider a geodesic curve under the metric defined above. At any
point, such a curve will be called horizontal if η is real and positive along it,
and vertical if η is real and negative. The horizontal curves define flows along
the Riemann surface.

The flow pattern is regular except at zeroes and poles of η. Here the flows
exhibit interesting properties. At an n th-order zero of the quadratic differen-
tial, precisely n + 2 horizontal curves meet at a point. To see this, consider the
differential near this zero and along the radial direction:

η ∼ zn(dz)2 ∼ ei(n+2)θdr2

As we encircle the zero, there are precisely n+2 values of the angle θ at which
this differential is positive.

On the other hand, at a double pole of the quadratic differential, if the coef-
ficient is real and negative, the flows form concentric circles around the point.
We see that near such a pole, and along the angular direction, the differential
looks like:

η ∼ −c
dz2

z2
∼ c dθ2

Thus, in the θ direction, the differential is positive, or horizontal, at all points
surrounding the double pole.

Other behaviours are possible at poles other than double poles, or if the
coefficient of η at a double pole is complex. But we will restrict our attention
to quadratic differentials with a double pole at a point P , with the coefficient c
being real and negative.

We also require that all smooth horizontal trajectories (i.e., those that do not
pass through zeroes of η) form closed curves. Quadratic differentials satisfying
all these conditions exist, and are called horocyclic. An example of the flow
pattern of a horocyclic quadratic differential is illustrated in Fig.5. In the figure,
the vertex has five lines meeting at a point, indicating a third-order zero.

A key result about such differentials is Strebel’s theorem, which states that
on every Riemann surface of genus g with 1 puncture, for fixed complex struc-
ture, there exists a unique horocyclic quadratic differential with a double pole
at the puncture. The uniqueness is upto multiplication by a real positive num-
ber.

Thus, by studying how these quadratic differentials vary as we vary the
moduli, we get information about the moduli space Mg,1 of a once-punctured
Riemann surface. Similar considerations apply for Mg,n.

We can now see the emergence of “fatgraphs” and hence random matrices.
Most of the flows are closed and smooth, but there are singular ones that branch
into n + 2-point vertices at n th order zeroes of η. We can think of these
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Double pole with negative coefficient

Third order zero

Figure 5. Riemann surface with the flow pattern of a horocyclic quadratic differential.

singular flows as defining a Feynman diagram, whose vertices are the branch
points, and whose edges are the singular flow lines. Each double pole of η is
a point around which the flows form a loop. Hence the number of loops of
the diagram is the number of double poles, which is the number of punctures
of the original Riemann surface. Finally, because the flows that do not pass
through a zero are closed and smooth, each singular flow can be “thickened”
into a smooth ribbon in a unique way, and we arrive at a fatgraph.

The fatgraphs with a single loop triangulate the moduli space Mg,1 in the
following way. Consider the lengths of each edge of a fatgraph, as computed
in the metric defined earlier. Scaling the whole Riemann surface clearly does
not change the complex structure. So to vary the complex structure, we must
change the lengths of the different edges keeping the total length fixed. This
sweeps out a region of the moduli space of the Riemann surface. The (real)
dimensionality of this region will be E − 1 where E is the number of edges of
the graph. This region is a simplex of the moduli space.

In a simplicial decomposition, at the boundary of a simplex we find a lower-
dimensional simplex. In terms of fat graphs, a boundary occurs whenever a
length goes to zero and two vertices meet. An example is given in Fig.6.

l

l  −−>  0

Figure 6.

Now the virtual Euler characteristic of Mg,n can be defined directly in terms
of fatgraphs. We consider the set of all fatgraphs of a given genus g and a single
puncture. Call the set S , and label each distinct graph by an integer I ∈ S. Let

Collapse of a line takes us to a boundary of moduli space.
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ΓI be the automorphism group of a fatgraph. We will define it more precisely
later.

Then, defining dI = (E − 1)I , we claim that:

χV (Mg,1) =
∑

I∈S

(−1)dI

#(ΓI)

This is analogous to the original definition of χV , except that now the sum
is over fatgraphs rather than over simplices. In particular, the automorphism
group of the fatgraph is the same as the group that fixes the corresponding
simplex.

Let us check how this correspondence between fatgraphs and quadratic dif-
ferentials works out in practice. The fatgraphs we have been considering have
V vertices, E edges and 1 face. These integers satisfy:

V − E + 1 = 2 − 2g

where g is the genus of the Riemann surface on which the graph is drawn.
We also have the relations:

V =
∑

k

vk, E =
1

2

∑

k

kvk

where vk is the number of k-point vertices. From these relations, we get:
∑

k

(k − 2)vk = 4g − 2

All integer solutions of this equation, i.e. all choices of the set {vk} for fixed
g, are valid graphs that correspond to simplices in the triangulation of Mg,1.

Let us recast the above equation as
∑

k

(k − 2)vk − 2 = 4g − 4

Since k − 2 is the order of the zero for a k-point vertex, the first term on the
left is the total number of zeroes (weighted with multiplicity) of the quadratic
differential corresponding to the given fatgraph. Moreover, the differential
has precisely one double pole, so the second term is minus the (weighted)
number of poles. Thus this result agrees with the theorem that for meromorphic
quadratic differentials on a Riemann surface of genus g,

#(zeroes) − #(poles) = 4g − 4

A particular solution that is always available is

v3 = V, vk = 0, k ≥ 4

386



Matrix Models of Moduli Space

This gives the maximum possible number of vertices, and therefore also of
edges. In this case,

V = 4g − 2, E =
3

2
V = 6g − 3

Thus the dimension of the space spanned by varying the lengths of the graph
keeping the overall length fixed, is:

E − 1 = 6g − 4 = 2(3g − 3 + 1)

which is the real dimension of Mg,1. Thus, graphs with only cubic vertices
span a top-dimensional simplex in moduli space.

All other graphs arise by collapse of one or more lines, merging two or
more 3-point vertices to create higher n-point vertices. These correspond to
simplices of lower dimension in the moduli space.

To conclude this part, let us see as an example how χV (M1,1) is obtained
from fatgraphs. From the Harer-Zagier formula, we expect to find:

χV (M1,1) = −1

2
B2 = − 1

12

In genus 1, there are two possible ways to satisfy
∑

k

(k − 2)vk = 4g − 2 = 2

namely v3 = 2 or v4 = 1. In the first case we find V = 2, E = 3 and in the
second, V = 1, E = 2.

The graphs are shown in Fig.7. We see explicitly that they have genus 1. It is
left as an exercise to the reader to show that the automorphism groups of these

graphs are of order 6 and 4 respectively. Then, χV (M1,1) = (−1)2

6 + (−1)1

4 =

− 1
12 .
In the above we have restricted our attention to moduli spaces of once-

punctured Riemann surfaces, but the above considerations can be extended
to all Mg,n.
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4. The Penner model

In 1986, Penner[8] constructed a model of random matrices that provides
a generating functional for χV (Mg,s). The Penner model is defined in terms
of N × N matrices whose fatgraphs are precisely the ones described in the
previous subsection. The free energy F = logZ of this model therefore must
have the expansion:

F =
∑

g

Fg =
∑

g,n

χg,n N2−2g t2−2g−n

where t is a parameter of the model. The term n = 0 is not present in the sum.
The model is given by an integral over Hermitian random matrices:

ZPenner = NP

∫
[dQ] e−Nt tr

P∞
k=2

1
k

Qk

= NP

∫
[dQ] eNt tr (log(1−Q)+Q)

where NP is a normalisation factor given by:

N−1
P =

∫
[dQ] e−Nt tr 1

2
Q2

and the matrix measure [dQ] ≡∏i dQii
∏

i<j dQij dQ∗
ij as usual.

This action has all powers of the random matrix appearing in it! The model
is to be considered as a perturbation series around Q ∼ 0.

To show that this model is correct, we must show that its fatgraphs are
in one-to-one correspondence with those arising from quadratic differentials.
Thus the free energy must be a sum over connected fatgraphs of a fixed genus
g and number of faces n, multiplied by the weighting factor

(−1)E−n

#(ΓI)
N2−2gt2−2g−n =

1

#(ΓI)
(−Nt)V (Nt)−E(N)n

Here ΓI , the automorphism group, is the collection of maps of a given fatgraph
to itself such that:

(i) the set of vertices is mapped onto itself,
(ii) the set of edges is mapped to itself,
(iii) the cyclic ordering of each vertex is preserved.
A key result due to Penner is that the order of ΓI is given by:

1

#(ΓI)
= C ×

∏

k

(
1

k

)vk 1

vk!
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where C is the combinatoric factor labelling how many distinct contractions
lead to the same graph. Now this is exactly the factor that arises if we obtain
our fatgraphs by expanding the Penner matrix integral:

1
vk! : order of expansion of the k th term in the exponent
1
k : weight per vertex appearing in the action

C : combinatoric factor from contractions

(−Nt)V : from weight of each vertex

(Nt)−E : from each propagator

Nn : from the index sum on each face

This proves that the Penner model computes the desired quantity, χV (Mg,n).
In his paper, Penner constructed the orthogonal polynomials for this model.

They turn out to be Laguerre polynomials. Using the above facts, Penner was
able to deduce, directly from his matrix model, that

χV (Mg,n) = (−1)n
(n + 2g − 3)!(2g − 1)

n!(2g)!
B2g

where B2g are the Bernoulli numbers. This is precisely the Harer-Zagier for-
mula.

5.

Recall the definition of the Penner matrix integral:

ZPenner = NP

∫
[dQ] eNt tr (log(1−Q)+Q)

Let us make the following change of variables:

Q = 1 − t + 1

t
M, t = −1 +

ν

N

This replaces the original matrix Q and parameter t by a new matrix M and
parameter ν. The change in measure is a trivial factor since the change of
variables is linear. Hence the Penner action becomes:

Nt tr (log(1 − Q) + Q) = tr ((ν − N) log M − νM) + constant

The additive constant depends on ν,N .
Thus we can write:

ZPenner = N ′
P

∫
[dM ] e tr ((ν−N) log M−νM)

Penner model and matrix gamma function
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where the new normalisation N ′
P has absorbed the constant factors in the ex-

ponential and also the simple Jacobian.
For a 1 × 1 matrix M = m, the integral is just the Euler Γ-function:

∫
dm mν−1 e−νm = Γ(ν)

as long as we choose the correct limits m ∈ (0,∞). Hence we make the same
restriction on the matrix M in ZPenner above, namely its eigenvalues must be
positive. Then ZPenner can be called the Matrix Γ-Function.

We can remove the positivity restriction on M by defining:

M = eΦ

where Φ is a generic Hermitian matrix. In this case there is a nontrivial Jaco-
bian:

[dM ] = (det eΦ)N [dΦ]

Writing this equivalently as:

[dΦ] = [dM ](det M)−N = [dM ]e−N tr log M

we see that the Penner integral takes its simplest form:

ZPenner = N ′
P

∫
[dΦ] eν tr (Φ−eΦ)

which we call the Liouville Matrix Model[20].
This matrix model has some intriguing properties that are familiar from

string theory. The integral is like a matrix version of the Liouville path in-
tegral occurring in string theory, when restricted to the constant mode of the
Liouville field.

It converges at Φ → +∞ because of the exponential term, and at Φ → −∞
because of the linear term. It has an N -independent coefficient ν, suggestive
of D-brane actions in string theory, if ν is interpreted as the inverse string
coupling. We will see later that this interpretation of ν does hold in a string
theory setting of this model, though the D-brane interpretation has not been
developed beyond the tentative identification suggested above, and in some
more detail in Ref.[20].

6.

Another interesting topological problem associated to the moduli space Mg,n

is the following. It is known that Mg,n can be compactified, and the resulting
space is called Mg,n. Topological invariants can then be defined as integrals
of cohomology classes on Mg,n.

The Kontsevich model
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The problem of intersection theory on moduli space[21–23] is defined as
follows2. Let Li, i = 1, 2, . . . , n be line bundles on Mg,n. The fibre for
each i is the cotangent space to the Riemann surface at the puncture. Each
such bundle has its associated top Chern class c1(Li). This is a two-form
(intuitively, the field strength associated to the U(1) connection on this bundle).

Now construct the integral
∫

Mg,n

c1(L1)
d1 ∧ · · · ∧ c1(Ln)dn

where di ≥ 0 are a set of integers satisfying:

n∑

i=1

di = 3g − 3 + n

This means that the integrand is a 6g − 6 + 2n form, equal in degree to the
real dimension of Mg,n. So the integral is well-defined and is a topological
invariant of the moduli space.

Next we give this invariant a suggestive name:
∫

Mg,n

c1(L1)
d1 ∧ · · · ∧ c1(Ln)dn = 〈τd1 · · · τdn〉

as if it is a correlation function of some observables τi in a quantum field
theory. (We define the RHS to be 0 if

∑
di �= 3g − 3 + n for any integer

g.) There is actually such a quantum field theory, the so-called “topological 2d
gravity”[9], but we will not go into its definition here.

Let us now define a generating functional for these invariants by summing
them up.

F (t0, t1, · · · ) ≡
〈

exp(

∞∑

i=0

tiτi)

〉
=
∑

k0,k1,···
〈τk0

0 τk1
1 · · · 〉

∞∏

i=0

tki
i

ki!

=
∞∑

n=1

∑

{di}

1

n!
〈τd1τd2 · · · τdn〉 td1 . . . tdn

It is known that:

U(t0, t1, · · · ) ≡
∂2F

∂t20
(t0, t1, · · · )

satisfies the KdV equation:

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
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Also, the series exp(F ) in terms of the variables

T2i+1 ≡ 1

(2i + 1)!!
ti

is a τ -function of the KdV hierarchy. This constitutes the “solution” of the
problem.

Kontsevich[7] proposed a matrix model whose connected fatgraphs generate
the function F (t0, t1, · · · ). Clearly the model must depend on infinitely many
parameters ti. However, these are encoded in a nontrivial way. Introduce an
N × N positive-definite Hermitian matrix Λ and let:

ti = −(2i − 1)!! trΛ−(2i+1)

Clearly the ti obtained in this way are not all independent of each other if the
rank of Λ is finite. Only as N → ∞ can they be chosen independently. This is
a new role for the large-N limit!

The Kontsevich matrix model, depending on the fixed matrix Λ, is:

ZKontsevich(Λ) = NK(Λ)

∫
[dX] e tr (− 1

2
X2Λ+ i

6
X3)

where X is an N × N Hermitian random matrix, and:

NK(Λ) =

{∫
[dX] e tr (− 1

2
X2Λ)

}−1

By a change of variables, the above model can also be written:

ZKontsevich(Λ̃) = N ′
K(Λ̃)

∫
[dX̃ ] ei tr ( 1

3
X̃3−X̃Λ̃)

Comparing this with the Airy Function:

A(λ) =

∫ ∞

−∞
dx ei( 1

3
x3−xλ)

we see that the Kontsevich model is a Matrix Airy Function.
Without loss of generality, the fixed matrix Λ can be taken to be diagonal:

Λ = diag(Λ1,Λ2, · · · ,ΛN )

Then, using

trX2Λ =
1

2

∑

i,j

(Λi + Λj)XijXji

we see that the matrix propagator in this model is:

〈XijXkl〉 = δjkδli
2

Λi + Λj
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The vertices, unlike in the Penner model, are all cubic.
In his paper, Kontsevich showed that:

F (t0, t1, · · · ) ≡
〈

exp(
∞∑

i=0

tiτi)

〉
= logZKontsevich(Λ)

He also showed that ZKontsevich(Λ) is a τ -function of the KdV hierarchy. Let
us sketch the derivation. From the definition of F (t0, t1, · · · ) and the change
of variables

tdi
= −(2di − 1)!!

N∑

j=1

1

Λ2di+1
j

we see that:

F (t0, t1, · · · ) =

∞∑

n=1

∑

{di}

1

n!
〈τd1τd2 · · · τdn〉 td1 . . . tdn

=

∞∑

n=1

∑

{di}

(−1)n

n!
〈τd1τd2 · · · τdn〉

∑

{ji}

n∏

i=1

(2di − 1)!!

Λ2di+1
ji

Now given a 3-valent graph, we first “unravel” it into polygons: On the

polygons, we associate lengths la via the metric induced from the horocyclic
quadratic differentials. The unravelling defines a map:

Mg,n × Rn
+ → (space of polygons with marked lengths)n

Next, for each polygon we define a 2-form:

ωi ∼
∑

a<b

dla ∧ dlb
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and pull the form back to Mg,n×Rn
+. Kontsevich then proves that the resulting

2-form projects to a 2-form on Mg,n, and is in fact just equal to c1(Li).
This sets up a correspondence between the desired Chern classes and prop-

erties of fatgraphs. From this he then shows that:

∞∑

n=1

∑

{di}

(−1)n

n!
〈τd1τd2 · · · τdn〉

∑

{ji}

n∏

i=1

(2di − 1)!!

Λ2di+1
ji

=
∑

3−valent
graphs I

(
i
2

)V

#(ΓI)

∏

edges
〈i,j〉

2

Λi + Λj

The RHS is the graphical expansion of F (t0, t1, · · · ) = logZKontsevich(Λ).
Finally, Kontsevich provides an asymptotic expansion of the Matrix Airy

Function using the famous Harish-Chandra formula:
∫

[dX] tr p(X) e−i trXΛ = C
∫ ∏

i

dxi

∏

i<j

(xi − xj)

(Λi − Λj)

∑

i

p(xi) e−i
P

i xiΛi

He then identifies this with the asymptotic expansion of the τ -function of the
KdV hierarchy. This proves that ZKontsevich is a KdV τ -function.

In a subsequent paper, Witten[25] showed directly that the partition function
of the Kontsevich model solves the Virasoro identities, a sequence of linear
differential equations which imply both the KdV equation and an additional
equation called the “string equation” that is known to characterise string theory
in a class of minimal-model backgrounds.

7.

Topological gravity was introduced by Witten[9] as an alternative way to
understand the noncritical closed-string theories that were solved around 1990
using double-scaled matrix models. The string theories corresponded to c < 1
conformal field theories coupled to two-dimensional (Liouville) gravity.

“Pure” topological gravitydescribes thesimplestof these theories, the (p, q)=
(2, 1) minimal model with central charge c = −2. In matrix model language,
one gets this theory by not going to any critical point. The theory is non-trivial
(though its critical exponents are trivial), and its operators are the τi mentioned
before. By construction, the Kontsevich model gives us all its correlators in
every genus.

However, the entire chain of (2, q) minimal models coupled to gravity, for
all odd q, can be studied using the same model. As Witten argued, to go to
higher q, one only has to give an expectation value to some of the ti. Thus, the
Kontsevich model expanded around different “vacua” i.e. choices of expecta-
tion values 〈ti〉 generates all (2, q) minimal models coupled to gravity.

For (p, 1) noncritical strings with p > 2, one needs a model proposed
by Adler and van Moerbeke[26] and independently by Kharchev-Marshakov-

Applications to string theory

Kontsevich model
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Mironov-Morozov-Zabrodin[27]:

ZAvM−KMMMZ(Λ̃) = N ′
AvM−KMMMZ(Λ̃)

∫
[dX̃ ] e

i tr
“

1
p+1

X̃p+1−X̃Λ̃
”

and again one recovers the (p, q) case by going to suitable critical points.

In 1990, it was noticed by Distler and Vafa[10] that starting with the Penner
free energy:

F =
∑

g

Fg =
∑

g,n

χg,n N2−2g t2−2g−n

χg,n =
(−1)n(2g − 3 + n)!(2g − 1)

(2g)!n!
B2g

one can perform the sum over n explicitly, to get:

Fg =
B2g

2g(2g − 2)
(Nt)2−2g

(
(1 +

1

t
)2−2g − 1

)

For g > 1 , they took the limit N → ∞ and t → tc = −1, keeping fixed the
product N(1 + t) = ν. This led to the simpler result:

Fg =
B2g

2g(2g − 2)
ν2−2g

But this, for g > 1, is precisely the virtual Euler characteristic of unpunctured
Riemann surfaces!

Thus the Penner model, originally designed to study the moduli space of
punctured Riemann surfaces, describes unpunctured ones too. This happens in
the special double-scaling limit above. More remarkably, we see that its free
energy in the double scaling limit:

F =
∑

g

B2g

2g(2g − 2)
ν2−2g

is almost identical to a well-known quantity in string theory: the free energy
of the c = 1 noncritical string compactified at self-dual radius3:

F =
∑

g

|B2g|
2g(2g − 2)

µ2−2g

However, there is an issue of alternating signs. We have:

|B2g| = (−1)g−1B2g

Penner model
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Therefore if we define µ = iν, we can write:

F(ν)c=1 =
∞∑

g=0

B2g

2g(2g − 2)
ν2−2g

=

∞∑

g=0

χg ν2−2g

Thus the genus g contribution to the free energy of the c = 1, R = 1 string at
imaginary cosmological constant is the (virtual) Euler characteristic of genus-g
moduli space, which in turn is the Penner free energy after double-scaling.

The c = 1 string is a background of bosonic string theory with two space-
time dimensions, one of which (the spatial direction) is the Liouville coordi-
nate along which translation invariance is broken by a potential. The other
direction is translation-invariant and timelike. Therefore there is a conserved
energy corresponding to it. Here we are dealing with a Euclideanised time
direction that is moreover compact. So the Euclidean momentum should be
conserved and integral. Now if the Penner model is associated to the c = 1
string, it should describe correlators of its observables: the so-called “discrete
tachyons” Tk, where k labels the conserved Euclidean momentum. But as for-
mulated, it does not depend on the necessary (infinitely many) parameters.

There is a deformation of the model that does precisely this job. This was
constructed in Ref.[29] starting with the generating functional for all tachyon
correlators to all genus obtained in Ref.[30]. Such a functional F(t, t̄) depends
on couplings tk, t̄k such that:

〈Tk1 . . . Tkn T−l1 . . . T−lm〉 =
∂

∂tk1

· · · ∂

∂tkn

∂

∂t̄l1
· · · ∂

∂t̄lm
F(t, t̄)

∣∣∣∣∣
t=t̄=0

where on the LHS we have connected amplitudes.
In the same spirit as Kontsevich, start by defining a constant N × N matrix

A that satisfies:

tk =
1

νk
trA−k

This matrix can encode infinitely many parameters tk in the limit N → ∞.
However, we do not perform a similar transformation on t̄k, rather we allow
the model to depend directly on these parameters.

Using the conventional matrix description of c = 1 string theory, Matrix
Quantum Mechanics, at R = 1, it was shown by Dijkgraaf, Moore and Plesser
[30] that Z(t, t̄) = eF(t,t̄) satisfies the W∞ equation:

1

(−ν)

∂Z
∂t̄n

=
1

(−ν)n
(det A)ν tr

(
∂

∂A

)n

(det A)−ν Z(t, t̄)

396



Matrix Models of Moduli Space

where ν = −iµ and µ is the cosmological constant.
Let us postulate that Z(t, t̄) is an integral over Hermitian matrices M of the

form:

Z(t, t̄) = (det A)ν
∫

[dM ] e trV (M,A,t̄)

for some V (M,A, t̄). The function V is determined by imposing the above
differential equation:

[
1

(−ν)

∂

∂t̄n
− 1

(−ν)n
tr

(
∂

∂A

)n] ∫
[dM ] e trV (M,A,t̄) = 0

This can be solved to give:

V (M,A, t̄) = −ν
(
MA +

∞∑

k=1

t̄kM
k
)

+ f(M)

where f(M) is a function independent of A, t̄ that we determine using a bound-
ary condition.

From conservation of the tachyon momentum, we know that Z(t, 0) must
be independent of tk. Using:

Z(t, 0) = (det A)ν
∫

[dM ] e−ν trMA+ tr f(M)

and changing variables M → MA−1, we have

[dM ] → (det A)−N [dM ]

Then:

Z(t, 0) = (det A)ν−N

∫
[dM ] e−ν trM+ tr f(MA−1)

=

∫
[dM ] e−ν trM+ tr f(MA−1)+(ν−N) tr log A

This uniquely determines the remaining unknown function:

f(M) = (ν − N) log M

In summary, we have found that the generating function of all tachyon am-
plitudes in the c = 1, R = 1 string theory is:

Z(t, t̄) = (det A)ν
∫

[dM ] e tr (−νMA+(ν−N) log M−ν
P∞

k=1 t̄kMk)

=

∫
[dM ] e tr (−νM+(ν−N) log M−ν

P∞
k=1 t̄k(MA−1)k)
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We see that the first two terms of the matrix potential precisely correspond to
the Penner model! So it has reappeared from a completely independent starting
point, and now with infinitely many parameters A, t̄k. This deformed Penner
model can be called the W∞ model. As we saw before, the matrix M (more
precisely, its eigenvalues) must be positive semidefinite.

At the selfdual radius, c = 1 string theory has additional states besides the
momentum-carrying tachyons Tk. There are winding tachyons quantised in
the same way as the momentum states. and there are also the famous “discrete
states” that are like two-dimensional remnants of gravitons and other tensor
states in critical string theory. Unfortunately and extension of the W∞ model
to incorporate these states is not known at present.

There is a different (2-matrix) model that also describes the c = string at
selfdual radius (and other radii) - due to Alexandrov, Kazakov, Kostov[31].
This is the “normal matrix model”, for a complex matrix Z satisfying:

[Z,Z†] = 0

For selfdual radius, the partition function of this model is:

Z(t, t̄)NMM =∫
[dZ dZ†] e tr

(
−νZZ†+(ν−N) log ZZ†−ν

P∞
k=1(tkZk+t̄kZ†k

)
)

This is different from the W∞ model and yet describes the same correlation
functions. Also, it has no Kontsevich-type constant matrix in it. At present
its relation to the W∞ model is not known, despite obvious similarities in the
matrix action.

8. Conclusions

We conclude with a few general comments and open problems.
Universality of W∞ model. The W∞ or deformed Penner model is univer-

sal, in that it contains many other models including the Kontsevich model as
special cases. Setting A, t̄k = 0 we recover the original Penner model. Setting
ν = N, t̄3 = const, t̄i = 0 (i �= 3) we recover the matrix Airy function, or
Kontsevich model. And setting ν = N, t̄p+1 = const, t̄i = 0 (i �= p + 1) we
recover the p-th AvM-KMMMZ model. Setting ν = N,A = 0, t̄k = 0, k > m
we recover the polynomial 1-matrix model of any degree m. This might be a
pointer to a unification of all noncritical strings via this model[29]. A related
point of view has been advocated in Ref.[27]. However, it is fair to say that a
complete picture of this unification, and a good understanding of how it relates
to background-independence and string field theory, has still to emerge.

Open string origin of matrix models. In these notes we have not emphasized
the recent discovery that matrix models describing noncritical string theory
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can be understood in terms of D-branes. During the first incarnation of ma-
trix models for noncritical strings, in the early 1990’s, the notion of D-branes
did not exist, therefore nor did the subsequent understanding of holography as
open-closed string duality. But in recent times, starting with the work of Refs.
[11, 12], it was shown that the matrix of the “conventional” matrix models is
just the tachyonic mode living on N unstable D-branes in noncritical string
backgrounds. These branes are localised in the Liouville direction and can be
thought of as D0-branes[16]. The fact that this model describes closed strings
was then a consequence of open-closed duality.

The above discussion says nothing about the matrix models of moduli space
that are the subject of the present notes. One may ask if open strings are respon-
sible for these matrix models too. Progress was made in Ref.[13], where it was
argued (for the (2, p) models) that the Kontsevich model is just the open-string
field theory evaluated on the so-called FZZT[14, 15] branes. Schematically
this amounts to the statement that:

∫ (
1

2
ΨQΨ +

1

3
Ψ ∗ Ψ ∗ Ψ

)
→ tr

(
1

2
ΛX2 +

1

3
X3

)

From this point of view, the existence of two types of matrix models for non-
critical strings is related to the existence of two types of static D-branes in
noncritical string theory, a satisfying conclusion.

The considerations above were extended in Ref.[32] to c = 1 string theory.
One may expect to reproduce the W∞ model in this way, but in fact something
different seems to emerge: a matrix model where the SU(2) symmetry of the
c = 1 string at selfdual radius is manifest. This is not surprising since the
open-string field theory action evaluated on physical states will always lead
to a matrix model with all the symmetries of the continuum theory. On the
other hand, the W∞ model does not exhibit this SU(2) symmetry (that would
mix tachyons with discrete states, while the W∞ model has only tachyons and
no discrete states). It is not totally clear how to reconcile the two models at
present.

Topological D-branes. An interpretation of the matrix models of moduli
space, specifically the Kontsevich and W∞ models, has been advanced in Ref.
[34] in terms of topological D-branes. In particular, it is argued that topolog-
ical strings on Calabi-Yau geometries can unify the “ordinary” matrix models
and the Kontsevich-like (moduli space) matrix models. This approach, and
its relationship to other approaches that do not make use of topological string
theory, needs to be clarified.

Nonperturbative effects. The matrix models of moduli space have in all
cases been invented to describe the topology of moduli space genus by genus.
This is natural for mathematicians, for whom each genus Riemann surface can
be treated as a quite distinct entity. Physicists, however, like to think of sum-
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ming over Riemann surfaces and even going beyond such a sum to explore
nonperturbative phenomena. This is clearly motivated by string theory. So
one might ask if the matrix models discussed in these notes include nonper-
turbative effects, or exhibit nonperturbative ambiguities in the sense of Borel
resummation. Recently a formula has been advanced for the nonperturbative
partition function of c = 1 noncritical string theories (at self-dual radius)[35]
and it would be nice to examine in some detail how it relates to the W∞ model
of Ref.[29] as well as the SU(2)-symmetric matrix model of Ref.[32].
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Abstract String theory in two-dimensional spacetime illuminates two main threads of re-
cent development in string theory: (1)Open/closed string duality ,and (2) Tachyon
condensation. In two dimensions, many aspects of these phenomena can be ex-
plored in a setting where exact calculations can be performed. These lectures
review the basic aspects of this system.

1. Introduction

One of the most remarkable developments in string theory in recent years is
the idea that, in certain circumstances (superselection sectors), it has a presen-
tation as a large N gauge dynamics – gravitation is a collective phenomenon of
the gauge theory, and closed strings are represented by loop observables of the
gauge theory. The gauge theory in these situations provides an ansatz for the
nonperturbative definition of the theory in that superselection sector.

By superselection sector, one means a choice of asymptotic behavior for the
low-energy fields. A canonical example is string theory in AdS5×S5 (for a re-
view, see [1]), where the states of the theory all have a metric that asymptotes
to the anti-de Sitter metric times a round sphere, and the self-dual five-form
field strength of type IIB supergravity carries N units of flux through the S5.
The gauge theory equivalent is maximally supersymmetric U(N) Yang-Mills
theory in D = 4 spacetime dimensions. The correspondence equates states
of geometry and matter in this superselection sector with states of the gauge
theory. Both AdS5 × S5 and maximally supersymmetric gauge theory pos-
sess the same global superconformal symmetry (SU(2, 2|4) in the language of
supergroups), which then organizes the state space into representations of the
superconformal algebra. For instance, one can match the one-particle states,
and the operators that create them from the vacuum, by their representation
properties. The operators that create and destroy strings are represented in the

© 2006 Springer. Printed in the Netherlands. 

403 

E. Brezin et al. (eds.), Applications of Random Matrices in Physics, 403–457. 



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

gauge theory description by Wilson loops, tr[exp i
∮

A], and their supersym-
metric generalizations.

Upon the injection of a little energy, in gravity the generic state is a gas of su-
pergravitons (the graviton and particles related to it by supersymmetry); if we
put in a lot of energy, we expect a black hole to form. On the gauge theory side,
at low energies the excitations are built from collections of gauge singlet op-
erators (multiple ‘single-particle creation operators’) acting on the vacuum; at
high energies, the gauge theory undergoes a “deconfinement transition” where
energy is equipartitioned into all N2 fields of the matrix field theory. The cor-
respondence equates the transition from supergraviton gas to black hole on the
geometry side, and the deconfinement transition on the gauge theory side [2].

Indeed, this equivalence first arose via the study of black holes carrying D-
brane charge in string theory (for a review, see [3]). On the one hand, the
dynamics on the branes is described at low energies by the lightest strings
attached to the branes. The spacetime effective field theory, in which these
strings are the quanta, is a Yang-Mills gauge theory with various matter fields.
On the other hand, the branes source a geometry in which there is an increasing
redshift of physics near the branes, as seen by asymptotic observers. Thus low
energy also means gravitational physics near the branes. The gauge/gravity
equivalence is the statement that these two descriptions have an overlapping
region of validity, namely that of objects near the branes at low energies. In
particular, geometrical excitations of the brane typically lead to horizon for-
mation (‘black’ branes), whose thermodynamic properties (c.f. [3, 1]) can be
compared to those of the gauge theory in the cases where they can be com-
puted.

The loop variables describing strings in the gauge theory representation are
often cumbersome to work with, and it remains a problem to dig out quasi-
local gravitational and other closed string physics from this exact formulation.
For instance, the local physics of the horizon and singularity of black holes and
black branes are not well-understood in the gauge theory language (although
there is some recent progress [4]). It would be useful to have a well-developed
dictionary translating between gauge theory quantities and the standard pertur-
bative formulation of string theory as a sum over surfaces. Generally, we don’t
know how to read off local physics beyond qualitative statements which are
dictated by symmetries (in particular, by scaling arguments) [5–7].

Part of the reason that this dictionary is poorly developed is that the cor-
respondence is a strong/weak coupling duality. The radius of curvature R
of both AdS5 and S5, relative to the Planck scale �pl of quantum gravity, is
N = (R/�pl)

4; relative to the scale �s set by the string tension, it is g2
YMN =

(R/�s)
4. Thus for the spacetime to have a conventional interpretation as a ge-

ometry well-approximated by classical Einstein gravity, we should work in the
gauge theory at both large N and large effective (’t Hooft) coupling strength
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g2
YMN . Thus when stringy and quantum gravity fluctuations are suppressed,

the gauge theory description is strongly coupled; and when the gauge theory is
perturbative, the geometry has unsuppressed quantum and stringy effects.

Often in physics, useful information can be gathered by consideration of
low-dimensional model systems, which hopefully retain essential features of
dynamics, while simplified kinematics renders precise analysis possible. If
one or another side of the duality is exactly solvable, then we can bypass the
difficulty of strong/weak duality.

String theory in two spacetime dimensions provides just such an example
of the gauge/gravity (or rather open string/closed string) correspondence, in
which the gauge theory is an exactly solvable random matrix model, and the
worldsheet description of string theory involves a conformal field theory (CFT)
which has been solved by conformal bootstrap techniques.

The random matrix formulation of 2D string theory was discovered well
before the recent developments involving D-branes; in fact it provided some
of the motivation for the discovery of D-branes. The initial work on the ma-
trix model is reviewed extensively in [8, 9]. The exact solution of Liouville
theory was not developed at that time, and so precise comparison with world-
sheet computations was rather limited in scope. The development of the con-
formal bootstrap for Liouville [10–15], reviewed in [16, 17], took place in
the following decade, while much of string theory research was focussed on
gauge/gravity equivalence. It has only been in the last year or so that these
various threads of research have been woven together [18–22].

Our goal in these lectures will be to provide a self-contained overview this
system, giving an introduction to the matrix model of 2D string theory, as well
as the CFT techniques used to calculate the corresponding perturbative string
amplitudes. We will then illustrate the map between these two presentations of
2D string theory.

Along the way, we will encounter a second major theme in recent string
research – the subject of tachyon condensation (for reviews, see [23, 24]. A
tachyon is simply terminology for an instability, a perturbation which grows
exponentially instead of undergoing small oscillations. Loosely speaking, in
the ‘effective potential’ of string theory, one has chosen to start the world at a
local maximum of some component of the ‘string field’. By condensing this
mode, one learns about the topography and topology of this effective potential,
and thus about the vacuum structure of string theory.

Much effort has gone into understanding the tachyons associated to the de-
cay of unstable collections of D-branes in string theory. Here the unstable
mode or modes are (open) strings attached to the brane or branes. For exam-
ple, when one has a brane and an anti-brane, the initial stages of their mutual
annihilation is described by the condensation of the lightest (in this case, tachy-
onic) open string stretching between the brane and the anti-brane. Eventually
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the brane decays completely into (closed) string radiation. One might wonder
whether there is a region of overlapping validity of the two descriptions, just
as in the gauge/gravity (open string/closed string) correspondences described
above. We will see evidence that this is the case in 2D string theory. The
random matrix presentation of 2D string theory was first introduced as an al-
ternative way to describe the worldsheets of closed 2D strings, yet the evidence
suggests that it is in fact a description of the open string tachyon condensate
on unstable D-particles.

The lectures are aimed at a broad audience; along the way, many ideas fa-
miliar to the practicing string theorist are summarized in order to make the
presentation as self-contained as possible. We begin with a brief overview of
perturbative string theory as a way of introducing our primary subject, which
is string theory in two-dimensional backgrounds.

2. An overview of string theory

String theory is a generalization of particle dynamics.1 The sum over ran-
dom paths gives a representation of the particle propagator

G(x, x′) = 〈x′| i
∂2−m2 |x〉

=

∫ ∞

0
dT 〈x′|eiT (∂2−m2)|x〉

=

∫

X(0)=x

X(1)=x′

DgDX

Diff
exp
[
i

∫ 1

0
dt
√

g[gtt∂tX
2 + m2]

]
. (2.1)

In the second line, the use of the proper time (Schwinger) parametrization turns
the evaluation of the propagator into a quantum mechanics problem, which can
be recast as a path integral given by the last line. The introduction of intrinsic
worldline gravity via the worldline metric gtt, while not essential, is useful for
the generalization to string theory. The worldline metric gtt acts as a Lagrange
multiplier that enforces the constraint

Ttt = (∂tX)2 − gttm
2 = 0 ; (2.2)

apart from this constraint, the dynamics of worldline gravity is trivial. Indeed,
we can fix a gauge gtt = T ,2 and after rescaling τ = Tt, equation (2.1) boils
down to the standard path integral representation

G(x, x′) =

∫

X(0)=x

X(T )=x′

DX exp
[
i

∫ T

0
dτ [(∂τX)2 + m2]

]
. (2.3)

We can generalize this construction in several ways. For instance, we can
put the particle in a curved spacetime with metric Gµν(X), and in a back-
ground potential V (X) that generalizes the constant m2;3 also, we can couple
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a charged particle to a background electromagnetic field specified by the vector
potential Aµ(X). The effect is to replace the free particle action in (2.1) by a
generalized ‘worldline nonlinear sigma model’

Sworldline =

∫
dt
[√

ggttGµν(X)∂tX
µ∂tX

ν + Aµ(X)∂tX
µ −√

gV (X)
]

.

(2.4)
String theory introduces a second generalization, replacing the notion of dy-

namics of pointlike objects to that of extended objects such as aone-dimensional
string. Perturbative string dynamics is governed by an action which is the ana-
logue of (2.4)

SWS =
1

4πα′

∫
d2σ
[(√

ggabGµν(X)+εabBµν(X)
)
∂aX

µ∂bX
ν

+α′√gR(2) Φ(X)+
√

g V (X)
]

(2.5)

where a, b = 0, 1 and µ, ν = 0, ...,D − 1 are worldsheet and target space
indices, respectively. The quantity α′ = �2

s sets a length scale for the target
space parametrized by Xµ; it plays the role of � for the generalized nonlinear
sigma model (2.5). The antisymmetric tensor gauge field Bµν is the direct gen-
eralization of the vector potential Aµ; the former couples to the area element
dXµ ∧ dXν of the two-dimensional string worldsheet in the same way that the
latter couples to the line element dXµ of the particle worldline. In addition,
because intrinsic curvature R(2) can be non-trivial in two dimensions, one has
an additional coupling of the curvature density to a field Φ known as the string
dilaton.

The dynamical principle of the worldsheet theory is the requirement that

〈· · · Tab · · · 〉 = 0 (2.6)

in all correlation functions. The two traceless components of these equations
play the same role as the constraint (2.2) – they enforce reparametrization in-
variance on the worldsheet. The trace component is a requirement that the 2d
QFT of the worldsheet dynamics is locally scale invariant, i.e. that the beta
functions vanish. For example, setting Bµν = V = 0, the conditions through
one loop are

βGµν = α′(Rµν(G) + ∇µ∇νΦ) + O(α′2) = 0

βΦ =
D − 26

6
+ α′(1

2∇
2Φ + (∇Φ)2

)
+ O(α′2) = 0 (2.7)

where Rµν(G) is the Ricci curvature of the spacetime metric G, and ∇ is the
spacetime gradient. Thus, a reason to be interested in string theory is that, in
contrast to the point particle, the string carries with it the information about
what spacetimes it is allowed to propagate in – namely, those that satisfy the
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Einstein equations coupled to a scalar dilaton (and other fields, if we had kept
them nonzero).

Since the local invariances combine the reparametrization group Diff and
the group of local scale transformations Weyl , the appropriate replacement for
(2.1) is

Z =

∫ DgDX

Diff × Weyl
exp[iSWS] . (2.8)

We can soak up the local gauge invariance by (locally on the worldsheet)
choosing coordinates in which gab = δab. One cannot choose such flat coordi-
nates globally, however, as one sees from the Gauss-Bonnet identity

∫√
gR(2)=

4π(2−2h).4 Nevertheless, one can relate any metric via the symmetries to one
of a 6h − 6 parameter family of reference metrics ĝab(mr), r = 1, ..., 6h − 6.
The parameters mr are called the moduli of the 2d surface.5 A simple picture
of these parameters is shown in figure 1.

Thus, after fixing all of the reparametrization and local scale invariance,
the integration over metrics

∫ Dg
Diff×Weyl reduces to an integration over these

moduli. The moduli are the string version of the Schwinger parametrization of
the propagator (2.1) for a particle.

3. Strings in D-dimensional spacetime

A simple solution to the equations (2.7) uses ‘conformally improved’ free
fields:6

Gµν = ηµν , Bµν = V = 0 , Φ = nµXµ
(
n2 = 26−D

6α′

)
.

(3.9)
The geometry seen by propagating strings is flat spacetime, with a linear dila-
ton. The dilaton slope is timelike for D > 26 and spacelike for D < 26.

Just as the perturbative series for particles is a sum over Feynman graphs,
organized in order of increasing number of loops in the graph, the perturbative
expansion for strings is organized by the number of handles of the correspond-
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ing sum over worldsheets, weighted by the effective coupling geff to the power
2h−2 (where h is the number of handles, often called the genus of the surface).

Consider string worldsheets in the vicinity of the target space location X̂.
Using the Gauss-Bonnet identity, the term

1

4π

∫ √
gR(2) Φ(X) ∼ Φ(X̂)(2 − 2h) (3.10)

in the path integral over the (Euclidean) worldsheet action identifies the effec-
tive coupling as

geff = exp[Φ(X̂)] . (3.11)

Thus we have strong coupling at large Φ = n · X, and we have to say what
happens to strings that go there.

There is also a perturbative instability of the background. Perturbations
of the spacetime background are scaling operators. Maintaining conformal
invariance at the linearized level imposes marginality of the scaling operator.
These marginal scaling operators are known as vertex operators. Consider for
instance adding the potential term

V (X) =

∫
dDk

(2π)D
vke

ik·X (3.12)

to the worldsheet action. The scale dimension of an individual Fourier compo-
nent is determined by its operator product with the stress tensor7

T (z) eik·X(w) z→w∼ ∆

(z − w)2
eik·X(w) . (3.13)

Using the improved stress tensor8

T (z) = − 1
α′∂zX · ∂zX + n · ∂2

zX (3.14)

and evaluating the operator product expansion (3.13) via Wick contraction with
the free propagator

X(z)X(w) ∼ −α′

2 log |z − w|2 , (3.15)
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one finds the scale dimension

∆ = α′

4 k2 + iα′

2 n · k . (3.16)

Thus the condition of linearized scale invariance ∆ = ∆̄ = 1 is a mass-shell
condition for V (X). This result should be no surprise – local scale invariance
gives the equations of motion (2.7) of the background, so the linearized scale
invariance condition should give the wave equation satisfied by small pertur-
bations. The mass shell condition ∆ = 1 amounts to

(k + in)2 = −n2 − 4
α′ (3.17)

(recall n2 = 26−D
6α′ ). Thus for D < 2, perturbations are “massive”, and the

string background is stable. For D = 2, the perturbations are “massless”, lead-
ing to marginal stability. Finally, for D > 2 the perturbations are “tachyonic”,
and the background is unstable. The field V (X) is conventionally called the
string tachyon even though strictly speaking that characterization only applies
to D > 2.

In the stable regime D ≤ 2, a static background condensate V (X) “cures”
the strong coupling problem.9 Let n · X = QX1 (recall n2 > 0); then for
D < 2

Vbackgd = µ e2bX1 + µ̃ e2b̃X1

b

b̃

}
= Q

2 ∓
√

(Q
2 )2 − 1

α′ =
√

26−D ∓√
2−D√

24α′
. (3.18)

(note that b̃ = (bα′)−1). For D = 2 one has b = b̃ = 1/
√

α′, and so the two
exponentials are not independent; rather

V (D=2)

backgd = µ X1e
2bX1 + µ̃ e2bX1 . (3.19)

The exponential barrier self-consistently keeps perturbative string physics away
from strong coupling for sufficiently large µ.

For example, consider the scattering of a string tachyon of energy E in
D = 2. The string is a perturbation δV (X) = exp[−iEX0 + ikX1], with
ik = ±iE + Q the solution to the on-shell condition ∆ = 1. The scattering is
depicted in figure 4.

The worldsheet energy EWS = α′E2/2 of the zero mode motion in X1 of the
string is determined by the stress tensor T (z), equation (3.14); it is essentially
the X1 contribution to ∆. The turning point of the motion is determined by
this energy to be

Vbackgd(Xmax
1 ) = EWS = α′E2/2 . (3.20)
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The effective coupling is largest at this point,

geff ∼ eΦ(Xmax
1 ) ∼ E2/µ ; (3.21)

thus low energy scattering is self-consistently weakly coupled. The effective
coupling is determined by the value of the dilaton at the turning point; we
expect the scattering amplitude to be have a perturbative series in powers of
E2/µ. Note that the high energy behavior is nonperturbative, however.

At this point we choose to relabel for D = 2 the spacetime coordinates

φ ≡ X1 , X ≡ X0 (3.22)

in order to conform to standard notation in the subject, as well as to reduce the
clutter of indices. Also, we will henceforth set α′ = 1 as a choice of units (i.e.
we measure all spacetime lengths in “string units”).

3.1 A reinterpretation of the background

The 2d QFT10 of the “tachyon” background

SWS =
1

4π

∫ √
g
[
gab∂aφ∂bφ + bQ R(2)φ + µ e2bφ

]
(3.23)

has an alternative interpretation in terms of worldsheet intrinsic geometry [28],
where e2bφgab is interpreted as a dynamical metric, and the remaining D − 1
fields X are thought of as “matter” coupled to this dynamical gravity. Let
ϕ = bφ; then the action becomes

SWS =
1

4πb2

∫ √
g
[
(∇ϕ)2 + bQR(2)ϕ + µb2 e2ϕ

]
. (3.24)
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Note that b plays the role of the coupling constant; the semi-classical limit is
b → 0 (and thus Q = b−1 + b → b−1). The equation of motion for ϕ reads

∇2
g 2ϕ − bQ R(2)[g] = 2µb2 e2ϕ . (3.25)

Here ∇g is the covariant derivative with respect to the intrinsic metric gab. Due
to the properties of the curvature under local rescaling,

∇2
g 2ϕ − R(2)[g] = −e2ϕR(2)[e2ϕg] , (3.26)

the combination on the left-hand side of (3.25) is, in the semi-classical limit
b → 0, just the curvature of the dynamical metric e2ϕgab. The equation of
motion can be written as the condition for constant curvature of this dynamical
metric

R(2)[e2ϕg] = −2µb2 , (3.27)

known as the Liouville equation; the theory governed by the action (3.24) is
the Liouville field theory. The equation (3.25) is the appropriate quantum gen-
eralization of the Liouville equation. The constant on the right-hand side of
(3.27) is a cosmological constant for the 2d intrinsic fluctuating geometry.11

Note that
√

ge2ϕ is the “dynamical area element”, so that the potential term in
the action (3.24) is a chemical potential for the dynamical intrinsic area of the
worldsheet.

This interpretation of the static tachyon background in terms of fluctuating
intrinsic geometry is only available for D ≤ 2. For D > 2, the on-shell
condition ∆ = 1 (equation (3.17)) is not solved by Vbackgd = e2bX1 for real b
(rather b = 1

2Q± iλ), and so
√

gVbackgd is not the area of a dynamical surface.
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3.2 KPZ scaling

The fact that the dynamical metric is integrated over yields useful informa-
tion about the scaling of the partition and correlation functions with respect
to the cosmological constant µ, known as KPZ scaling [29–31]. Consider the
shift ϕ → ϕ + ε

2 in the Liouville action (3.24) in genus h; this leads to

Sh(µ) −→ Sh(eεµ) + (2 − 2h) Q
2b ε . (3.28)

However, this constant mode of ϕ is integrated over in the Liouville partition
function, and therefore Zh(µ) must be independent of ε. We conclude

Zh(µ) = Zh(eεµ) exp[−(2 − 2h) Q
2b ε] =⇒ Zh(µ) = ch µ(2−2h)Q/2b .

(3.29)
For instance, for D = 1 (pure Liouville gravity, with no matter) one finds
Q
2b = 5

4 , and so the genus expansion of the partition function is a series in
µ−5/2. For D = 2, we have Q

2b = 1, and so the partition function is a series in
µ−2.12,13

We could now pass to a discussion of correlation functions of this 2d Li-
ouville QFT, and their relation to the scattering of strings. Instead, we will
suspend this thread of development in favor of a random matrix formulation of
the same physics. We will return to the quantization of Liouville theory later,
when it is time to forge the link between these two approaches.

4. Discretized surfaces and 2D string theory

For spacetime dimension D ≤ 2, we have arrived at an interpretation of
the path integral describing string propagation in the presence of a background
tachyon condensate as a sum over dynamical worldsheet geometries, in the
presence of D − 1 “matter fields”.14

A discrete or lattice formulation of fluctuating worldsheet geometry can be
given in terms of matrix Feynman graphs. Any tesselation of a surface built
of regular polygons (see figure 5 for a patch of tesselated surface) has a dual15

double-line “fatgraph”, also depicted in figure 5. The double lines indicate the
flow of matrix index contractions around the graph.

The partition function

Z(gi) =

∫
DN2

M exp[−tr(1
2g2M

2 + U(M)]

U(M) = 1
3g3M

3 + 1
4g4M

4 + . . . . (4.30)

serves as a generating function for fatgraphs, and thereby defines an ensem-
ble of random surfaces. For example, consider a surface with triangles only,
gi>4 = 0. Each face of the fatgraph gives a factor N from the trace over the in-
dex loop bordering the face. Each vertex gives a factor g3, and each propagator
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f
t

1/g2. The partition function

Z(g) =
∑

V,E,F

(g3)
V (1/g2)

ENF d(V,E, F ) (4.31)

sums over the number d(V,E, F ) graphs with V vertices, E edges (propaga-
tors), and F faces. Using the fact that each propagator shares two vertices, and
each vertex ends three propagators, one has 2E = 3V . The discrete version of
the Gauss-Bonnet theorem (the Euler identity) is V − E + F = 2 − 2h. The
partition function is thus

Z(g) =

∞∑

h=0

∑

A

N2−2h
(g3N

1/2

g
3/2
2

)A
d(h,A) (4.32)

where here and hereafter we write V = A, since the number of vertices A is the
discrete area of the surface. Large N thus controls the topological expansion:
gdiscrete
s = 1/N is the string coupling of the discrete theory. The cosmological

constant of the discrete theory is the free energy cost of adding area (triangles):
µdiscrete = − log(g3N

1/2/g
3/2
2 ).

Being a lattice theory, in order to compare with the continuum formulation
of previous sections we need to take the continuum limit of the matrix integral.
That is, we want to send the discrete area A to infinity in units of the lattice
spacing (or equivalently, send the lattice spacing to zero for a “typical” surface
in the ensemble).

Taking this limit amounts to balancing the suppression of surface area by the
2d cosmological constant µdiscrete against the entropy d(h,A) of large Feyn-
man graphs (roughly, if we want to add an extra vertex to a planar graph, there
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Figure 5. (a) Regular polygons for tiling a surface, with dashed red edges; and the dual
fatgraph vertices, with solid blue dual edges. (b) A patch of discrete surface tesselated with
triangles, and the dual fatgraph.
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are of order A places to put it). In other words, one searches for a phase transi-
tion or singularity in Z(g) where for some gcrit the partition sum is dominated
by graphs with an asymptotically large number of vertices. Universality of this
kind of critical phenomenon is the statement that the critical point is largely
independent of the detailed form of the matrix potential U(M), for instance
whether the dual tesselation uses triangles or squares in the microscopic the-
ory (i.e. M3 vs. M4 interaction vertices in the graphical expansion).

Before discussing this phase transition, let us add in the matter. We wish
to put discretized scalar field theory on the random surfaces generated by the
path integral over M . The following modification does the job:

Z=

∫
DM exp

[
tr
(∫

dx

∫
dx′ 1

2M(x)G−1(x−x′)M(x′)+
∫

dxU
(
M(x)

))]
.

(4.33)
In the large N expansion, we now have a propagator G(x−x′) in the Feynman
rules (rather than g−1

2 = const .). Thus, on a given graph we have a product of
propagators along the edges

∏

edges

(propagators) =
∏

i,j
neighbors

G(xi − xj) ; (4.34)

the choice G(x − x′) = exp[−(x − x′)2/β] leads to the discretized kinetic
energy of a scalar field X

∏

i,j
neighbors

G(xi − xj) = exp
[
− 1

β

∑

i,j
nghbrs

(xi − xj)
2
]

(4.35)

which is the appropriate path integral weight for a scalar field on the lattice.
The evaluation of the graph involves an integral

∏
i

∫
dxi over the location in x-

space of all the vertices. In other words, we path integrate over the discretized
scalar field with the probability measure (4.35).

Unfortunately, the gaussian kinetic energy that leads to this form of the prop-
agator is not standard. Fortunately, for D = 2 (i.e. one scalar matter field) the
choice G(x−x′) = exp[−|x−x′|/β1/2] turns out to be in the same universality
class, and arises from a canonical kinetic energy for the matrix path integral

G−1(p) = eβp2 ←→ G(x) = (π
β )

1
2 e−x2/4β

G̃−1(p) = 1 + βp2 ←→ G̃(x) = π√
β

e−|x|/β1/2
(4.36)

The continuum limit involves scalar field configurations which are slowly vary-
ing on the scale of the lattice spacing, which is enforced by taking βp2 → 0.
But in this limit G−1 ∼ G̃−1 and so we expect the two choices to lead to the
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same continuum physics. But in D = 2 (i.e. one-dimensional x-space), G̃(p)
is the conventional Feynman propagator for M , and so we may write

Z =

∫
DM exp

{
−
∫

dx tr
[β
2

(dM

dx

)2
− U(M)

]}
, (4.37)

now with U(M) = −1
2M2 − 1

3gM3.
To analyze this path integral, it is most convenient to use the matrix analogue

of polar coordinates. That is, let

M(x) = Ω(x)Λ(x)Ω−1(x) (4.38)

where Ω ∈ U(N) and Λ = diag(λ1, λ2, ..., λN ). The integration measure
DM becomes in these variables

DM = DΩDΛ∆2(Λ) , ∆(Λ) =
∏

i<j

(λi − λj) (4.39)

where DΩ is the U(N) group (Haar) measure.
A useful intuition to keep in mind is the analogous transformation from

Cartesian to spherical coordinates for integration over the vector space Rn.
One uses the rotational invariance of the measure to write dnx=dΩn−1dr rn−1,
with Ωn−1 the space of angles which parametrize an orbit under the rotational
group O(n); r parametrizes which orbit we have, and rn−1 is the size of the
orbit. The orbits degenerate at the origin r = 0, due to its invariance under
O(n), and this degeneration is responsible for the vanishing of the Jacobian
factor rn−1 on this degenerate orbit. Similarly, in the integration over matrices
DM is the Cartesian measure on the matrix elements of M . The invariance
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of this measure under under unitary conjugation of M allows us to pass to an
integration over U(N) orbits, parametrized by the diagonal matrix of eigen-
values Λ. The (Vandermonde) Jacobian factor ∆2(Λ) characterizes the size of
an orbit; the orbits degenerate whenever a pair of eigenvalues coincide, since
the action of SU(2) ⊂ U(N) (that rotates these eigenvalues into one another)
degenerates at such points. The overall power of the Vandermonde determi-
nant is determined by scaling (just as the power rn−1 is fixed for the vector
measure).

In these variables, the Hamiltonian for the matrix quantum mechanics (4.37)
is

H =
∑

i

[
−β

2

1

∆2

∂

∂λi
∆2 ∂

∂λi
+ U(M)

]
+

1

2β

∑

i<j

Π̂ijΠ̂ji

(λi − λj)2
(4.40)

where Π̂ij is the left-invariant momentum on U(N), and the ordering has been
chosen so that the operator is Hermitian with respect to the measure (4.39). The
last term is the analogue of the angular momentum barrier in the Laplacian on
Rn in spherical coordinates. Note that the kinetic operator for the eigenvalues
can be rewritten

∑

i

1

∆2

∂

∂λi
∆2 ∂

∂λi
=
∑

i

1

∆

∂2

∂λ 2
i

∆ . (4.41)

Wavefunctions for the U(N) angular degrees of freedom will transform in
representations of U(N). The simplest possiblity is to choose the trivial rep-
resentation, ΨU(N)(Ω) = 1. In this U(N) singlet sector, we can write the
wavefunction as

Ψ(Ω,Λ) = Ψeval(Λ) = ∆−1(Λ)Ψ̃(Λ) (4.42)

and the Schr-odinger equation becomes [33]

HΨeval(Λ) = ∆−1(Λ)
∑

i

[
−β

2

∂2

∂λ 2
i

+ U(λi)
]
Ψ̃(Λ) , (4.43)

i.e. the eigenvalues are decoupled particles moving in the potential U(λ). The
wavefunction Ψeval is symmetric under permutation of the eigenvalues in the
U(N) singlet sector (these permutations are just the Weyl group action of
U(N)); consequently Ψ̃ is totally antisymmetric under eigenvalue permuta-
tions – the eigenvalues behave effectively as free fermions.

4.1 An aside on non-singlets

What about non-singlet excitations? Gross and Klebanov [34, 8, 35] esti-
mated the energy cost of non-singlet excitations and found it to be of order
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O(− log ε), where ε → 0 characterizes the continuum limit. Hence, angu-
lar excitations decouple energetically in the continuum limit. Alternatively,
one can gauge the U(N), replacing ∂xM by the covariant derivative DxM =
∂xM + [A,M ]; the Gauss law of the gauge theory then projects onto U(N)
singlets.

The physical significance of non-singlet excitations is exhibited if we con-
sider the theory in periodic Euclidean time x ∈ S1, x ∼ x + 2πR, appropriate
to the computation of the thermal partition function. In the matrix path integral,
we must allow twisted boundary conditions for M [34, 8, 35]:

M(x + 2πR) = ΩM(x)Ω−1 , Ω ∈ U(N) . (4.44)

The matrix propagator is modified to

〈M k
i (x)M l

j (x′)〉 =

∞∑

m=−∞
e−|x−x′+2πRm| (Ωm) l

i (Ω−m) k
j . (4.45)

Consider a fixed set of {mi} and a fixed fatgraph. Following the propagators
along the index line that bounds the face of a planar graph, figure 7, we see that
the coordinate of a fatgraph vertex along the boundary shifts by

x −→ x + 2π
(∑

i

mi

)
R ; (4.46)

thus the sum over {mi} is a sum over vortex insertions on the faces of the
graph (the vertices of the dual tesselation). The sum over twisted boundary
conditions introduces vortices into the partition sum for the scalar matter field
X. We can now understand the suppression of non-singlet wavefunctions as
a reflection of the suppression of vortices in the 2d QFT of a periodic scalar
below the Kosterlitz-Thouless transition.
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Figure 7. The product over twisted propagators around the face of a fatgraph allows mon-
odromy for x, corresponding to a vortex insertion.
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4.2 The continuum limit

We are finally ready to discuss the continuum limit of the sum over surfaces.
Recall that we wish to take N → ∞, with the potential tuned to the vicinity
of a phase transition – a nonanalytic point in the free energy as a function
of the couplings in the potential U(M). We now know that the dynamics is
effectively that of free fermionic matrix eigenvalues, moving in the potential
U(λ). Consider U(λ) = −1

2λ2 − gλ3, figure 8a.

There are many metastable levels in the well on the left of the local maxi-
mum of the potential. The coupling g can be tuned so that there are more than
N such metastable single-particle states. As N is sent to infinity, one can ad-
just g → 0 so that there are always N levels in the well. The metastable Fermi
energy EF will be a function of g and N . Consider an initial state where these
states are populated up to some Fermi energy EF below the top of the barrier,
and send g → 0, N → ∞, such that EF → 0−. In other words, the phase
transition we seek is the point where eigenvalues are about to spill over the
top of the potential barrier out of the well on the left. The resulting situation
is depicted in figure 8b, where we have focussed in on the quadratic maxi-
mum of the potential via the rescaling λ̂ = λ/

√
N , so that U(λ̂) ∼ −1

2 λ̂2.
We hold µ = −NEF fixed in the limit. The result is quantum mechanics
of free fermions in an inverted harmonic oscillator potential, with Fermi level
−µ < 0. To avoid notational clutter, we will drop the hat on the rescaled eigen-
value, continuing to use λ as the eigenvalue coordinate even though it has been
rescaled by a factor of

√
N from its original definition.

A useful perspective on the phase transition comes from consideration of
the classical limit of the ensemble of eigenvalue fermions. The leading semi-
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Figure 8. (a) Cubic eigenvalue potential. For small g, there are many metastable levels. (b)
The scaling limit focusses on the vicinity of the local maximum of the potential.
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classical approximation to the degenerate Fermi fluid of eigenvalues describes
it as an incompressible fluid in phase space [36, 37]. Each eigenvalue fermion
occupies a cell of volume 2π� in phase space, with one fermion per cell; the
classical limit is a continuous fluid, which is incompressible due to Pauli ex-
clusion. The metastable ground state, which becomes stable in this limit, has
the fluid filling the interior of the energy surface in phase space of energy EF ;
see figure 9.

The universal part of the free energy comes from the endpoint of the eigen-
value distribution near λ ∼ 0. The limit EF → 0− leads to a change in this uni-
versal component, due to the singular endpoint behavior ρ(λ) ∼

√
λ2 − EF

of the eigenvalue density in this limit.
One should worry that the theory we have described is not well-defined,

due to the fact that there is a finite rate of tunnelling of eigenvalues out of
the metastable well. Single-particle wavefunctions in the inverted harmonic
potential are parabolic cylinder functions

ψω(λ) = cωD− 1
2
+iω

(
(1 + i)λ

) λ→∞∼ 1√
πλ

e−iλ2/2+iω log |λ| . (4.47)

If we consider an incoming wave from the left with these asymptotics, with
energy E = −ω < 0, a WKB estimate of the tunnelling amplitude gives
T (ω) ∼ e−πω. Perturbation theory is an asymptotic expansion in 1/N ∝ 1/µ
(from KPZ scaling), and since all filled levels have ω > µ, tunnelling effects
behave as e−cN for some constant c and can be ignored if one is only inter-
ested in the genus expansion. The genus expansion is the asymptotic expansion
around µ → ∞, where tunnelling is strictly forbidden.16 The worldsheet for-
malism is defined through the genus expansion; effects such as tunnelling are
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Figure 9. Phase space portrait of the classical limit of the free fermion ground state. The
contours are orbits of fixed energy; the shaded region depicts the filled Fermi sea.
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invisible at fixed genus.17 Nonperturbatively (at finite µ), the theory does not
exist; yet we can make an asymptotic expansion around the metastable config-
uration of the matrix quantum mechanics, and compare the terms to the results
of the worldsheet path integral. We will return to this point in section 8, where
the analogous (and nonperturbatively stable) matrix model for the fermionic
string is briefly discussed.

The claim is that the continuum limit of the matrix path integral just defined
(valid at least in the asymptotic expansion in 1/µ) is in the same universality
class as the D = 2 string theory defined via the worldsheet path integral for
Liouville theory coupled to cmatter = 1 (and Faddeev-Popov ghosts).

5. An overview of observables

Now that we have defined the model of interest, in both the continuum
worldsheet and matrix formulations, the next issue concerns the observables
of the theory – what physical questions can we ask? In this section we dis-
cuss three examples of observables: (i) macroscopic loop operators, which put
holes in the string worldsheet; (ii) asymptotic scattering states, the components
of the S-matrix; and (iii) conserved charges, which are present in abundance in
any free theory (e.g. the energies of the particles are separately conserved).

5.1 Loops

Consider the matrix operator

W (z, x) = − 1

N
tr[log(z − M(x))]

= +
1

N

∞∑

l=1

1

l
tr
[(

M(x)/z
)l]− log z . (5.48)

From the matrix point of view, exp[W (z, x)] = det[z − M(x)] is the char-
acteristic polynomial of M(x), and thus a natural collective observable of the
eigenvalues. Note that z parametrizes the eigenvalue coordinate. As a collec-
tive observable of the matrix, this operator is rather natural – its exponential is
the characteristic polynomial of the matrix M(x), and hence encodes the infor-
mation contained in the distribution of matrix eigenvalues.18 On a discretized
surface, 1

l tr[M
l(x)] is the operator that punches a hole in a surface of lattice

length l; see figure 10.19 All edges bordering the hole are pierced by a prop-
agator which leads to the point in time x in target space, and the other end of
each propagator also goes to the point x in the continuum limit β → 0. Thus
the continuum theory has a Dirichlet condition for x along the boundary.
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It is useful to rewrite the loop operator W (z, x) as follows:

W (z, x) = − lim
ε→0

∫ ∞

ε

d�

�

1

N
tr exp

[
−�
(
z− M(x)

)]
+ log ε

= −
∫

d�

�

∫
dλ e−�(z−λ)ρ̂(x, λ) + log ε (5.49)

= −
∫

d�

�
e−�z W̃ (�, x) + log ε ,

where in the first line we have simply introduced an integral representation for
the logarithm, while in the second we have rewritten the trace over a function
f(M) of the matrix as an integral over the eigenvalue coordinate λ of f(λ)
times the eigenvalue density operator ρ̂(x, λ). This defines the operator in the
third line as

W̃ (�, x) =

∫
dλ e�λρ̂(x, λ) , (5.50)

the Laplace transform of the eigenvalue density operator (recall that classi-
cally, the support of ρ is along (λ ∈ (−∞,−√

2µ)). The density operator is a
bilinear of the fermion field operator

ρ̂(x, λ) = ψ̂†ψ̂(x, λ)

ψ̂(x, λ) =

∫
dν bνψν(λ)e−iνx (5.51)

and its conjugate ψ̂† containing b†ν , with the anticommutation relation of mode
operators

{b†ν , bν′} = δ(ν − ν ′) . (5.52)
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Figure 10. The operator tr[M l(x)]/l inserts a boundary of lattice length l into the fatgraph
(l = 8 is depicted).
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The mode wavefunctions are given in (4.47). The operator W̃ is often called
the macroscopic loop operator.

In the continuum formalism, we should consider the path integral on sur-
faces with boundary. The boundary condition on X will be Dirichlet, as dis-
cussed above. For the Liouville field φ, we use free (Neumann) boundary
conditions, but with a boundary interaction

SL =
1

4π

∫ √
g[(∇gφ)2 + QR(2) + µ e2bφ] +

∑

i

∮

Bi

µ
(i)
B ebφ . (5.53)

Here,
∮
Bi

ebφ = �
(i)
bdy is the proper length of the ith boundary as measured in

the dynamical metric; hence, µ
(i)
B is the boundary cosmological constant on

that boundary component. The path integral over the dynamical metric sums
over boundary lengths with the weight e−SL , and therefore produces an integral
transform with respect to the lengths of all boundaries. This transform has the
same structure as the last line of (5.49). Let us truncate to zero modes along

each boundary component, �(i)
bdy = ebφ

(i)
0 . The path integral measure includes

∫
dφ

(i)
0 =

∫
d�(i)

bdy/�
(i)
bdy, and the weight e−SL includes e−µ

(i)
B �

(i)
bdyP(�(i)

bdy), where
P(�(i)

bdy) is the probability measure for fixed boundary lengths. Comparison

with (5.49) suggests we identify � in W̃ (�, x) as �bdy; z = µB; and P(�) is the
correlator of a product of loop operators W̃ (�, x).

Note in particular that the eigenvalue space of λ, which by (5.48) is the same
as z-space, is related to �-space (the Liouville coordinate φ) by an integral
transform. They are not the same! However, it is true that asymptotic plane
waves in φ are the same as asymptotic plane waves in log λ.

5.2 The S-matrix

Another observable is the S-matrix. The standard worldsheet prescription
for string scattering amplitudes is to evaluate the integrated correlation func-
tions of on-shell vertex operators. Asymptotic tachyon perturbations are pro-
duced by the operators

V in,out

iω = α±(ω) eiω(x∓φ) eQφ (5.54)

(whose dimension ∆ = ∆̄ = 1 follows from (3.16)). The factor eQφ is just
the local effective string coupling (3.11). The vibrational modes of the string
are physical only in directions transverse to the string’s worldsheet. Since the
worldsheet occupies the only two dimensions of spacetime which are avail-
able, there are no transversely polarized string excitations and the only physi-
cal string states are the tachyon modes, which have only center-of-mass motion
of the string. Actually, this statement is only true at generic momenta. For spe-
cial momenta, there are additional states (in fact these momenta located at the
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poles in the relative normalization of V matrix
iω and V continuum

iω ). The effects of
these extra states are rather subtle; for details, the reader is referred to [9]. The
perturbative series for the tachyon S-matrix is

S
(
ωi|ω′

j

)
=

∞∑

h=0

∫ ∏

r

dmr

〈∏

i

∫
d2zi V

(in)

iωi

∏

j

∫
d2wj V (out)

iω′
j

〉
. (5.55)

Actually, the statement that the tachyon is the only physical excitation is
only true at generic momenta. For special momenta, there are additional states
(in fact these momenta located at the poles in the relative normalization of
V matrix

iω and V continuum
iω , see section 6.3). The effects of these extra states are

rather subtle; for details and further references, the reader is referred to [9].
In the matrix approach, the in and out modes are ripples (density perturba-

tions) on the surface of the Fermi sea of the asymptotic form

δρ̂(ω, λ) = ψ̂†ψ̂(ω, λ)
λ→−∞∼ 1

2λ

(
α+(ω)e+iω log |λ| + α−(ω)e−iω log |λ|

)

(5.56)
as we will verify in the next section. The α±(ω) are right- and left-moving
modes of a free field in x ± log |λ|, normalized as

[
α±

ω , α±
ω′

]
= −ωδ(ω + ω′) . (5.57)

Thus, to calculate the S-matrix we should perform a kind of LSZ reduction
of the eigenvalue density correlators [41]. Once again, as in the case of the
macroscopic loop, the primary object is the density correlator.

The phase space fluid picture of the classical theory leads to an efficient
method to compute the classical S-matrix [37, 42], and provides an appealing
picture of the classical dynamics of the tachyon field.

5.3 Conserved charges

Since the dynamics of the matrix model is that of free fermions, there will
be an infinite number of conserved quantities of the motion. For instance, the
energies of each of the fermions is separately conserved. In fact, all of the
phase space functions

qmn(λ, p) = (λ + p)r−1(λ − p)s−1 e−(r−s)x (5.58)

(p is the conjugate momentum to λ) are time independent for motion of a parti-
cle in the inverted oscillator potential, generated by H = 1

2(p2 − λ2), ignoring
operator ordering issues. These charges generate canonical transformations,
and can be regarded as generators of the algebra of area-preserving polyno-
mial vector fields on phase space (see [9] and references therein). Note that
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the time-independent operators with m = n are simply powers of the energy,
qmm = (−H)m−1. Formally, the operator

q̂mn =

∫
dλ ψ̂†(λ)qmn(λ,−i∂λ)ψ̂(λ) (5.59)

implements the corresponding transformation on the fermion field theory, ig-
noring questions of convergence. For m = n we can be more precise: Energy
should be measured relative to the Fermi energy,

q̂mm =

∫ ∞

−µ
dν (−µ − ν)m−1b†νbν −

∫ −µ

−∞
dν (−µ − ν)m−1bνb†ν ; (5.60)

this expression is finite for finite energy excitations away from the vacuum
state with Fermi energy −µ.

The operators realizing these conserved charges in the worldsheet formalism
were exhibited in [43] (for recent work, see [44, 45]). The charges q12 and
q21 generate the full algebra of conserved charges, so it is sufficient to write
expressions for them. They are realized on the worldsheet as operators O12

and O21

O12 = (cb + ∂φ − ∂x)(c̄b̄ + ∂̄φ − ∂̄x)e−x−φ

O21 = (cb + ∂φ + ∂x)(c̄b̄ + ∂̄φ + ∂̄x)e+x−φ . (5.61)

Here b(z), c(z) are the Faddeev-Popov ghosts for the local gauge choice
gab = δab, c.f. [25, 26]. These operators have scale dimension ∆ = ∆̄ = 0,
and can be placed anywhere (unintegrated) on the two-dimensional worldsheet
– moving them around changes correlators by gauge artifacts which decouple
from physical quantities. The relation between matrix and continuum expres-
sions for the conserved charges was worked out recently in [44, 45].

6. Sample calculation: the disk one-point function

An illustrative example which will allow us to compare these two rather dif-
ferent formulations of 2D string theory (and thereby check whether they are in
fact equivalent) is the mixed correlator of one in/out state and one macroscopic
loop. This correlator computes the process whereby an incoming tachyon is
absorbed by the loop operator (or an outgoing one is created by the loop).

6.1 Matrix calculation

On the matrix side, we must evaluate the density-density correlator

〈vac|ρ̂(λ1, x1) ρ̂(λ2, x2)|vac〉 (6.62)
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and Laplace transform with respect to λ1 to get the macroscopic loop, while
performing LSZ reduction in λ2. The evaluation of (6.62) proceeds via substi-
tution of (5.51) and use of (5.52) as well as the vacuum property

bν |vac〉 = 0 , ν > µ

b†ν |vac〉 = 0 , ν < µ (6.63)

(note that we have not performed the usual redefinition of creation/annihilation
operators below the Fermi surface). The result is [46]

〈ρ̂(1)ρ̂(2)〉 =

∫ ∞

µ
dν e−iν(x2−x1)ψ†

ν(λ1)ψν(λ2)

∫ µ

−∞
dν ′ eiν′(x2−x1)ψν′(λ1)ψ

†
ν′(λ2).

(6.64)
The paraboliccylinder wavefunctions have the asymptotics (for Y=

√
λ2 − 2ν�

1, ν � 1)

ψν(λ) ∼
[ 1

πY

]1/2
sin
(

1
2λY + ντ(ν, λ) − π

4

)
(6.65)

where

τ(ν, λ) = −
∫ −λ

−2
√

ν

dλ′
√

λ′ 2 − 2ν
= log

(−λ +
√

λ2 − 2ν√
2ν

)
(6.66)

is the WKB time-of-flight of the semiclassical fermion trajectory, as measured
from the turning point of its motion.

At this point, we will make some approximations. We wish to compare
the matrix and worldsheet field theory computations. However, the latter is
only well-behaved in a low-energy regime, as we saw in section 3. Therefore
we will approximate the energies in (6.64) as ν ∼ µ + δ, ν ′ ∼ µ − δ′, with
δ, δ′ � µ, so that the density perturbation is very near the Fermi surface. In
addition, substituting the parabolic cylinder wavefunction asymptotics (6.65)
in (6.64), we drop all rapidly oscillating terms going like exp[± i

2λ2]; these
terms should wash out of the calculation when we take λ2 → ∞ to perform
the LSZ reduction.

With these approximations, one finds

ψν(λ2) ψ†
ν′(λ2)

λ2→−∞∼ 1

4πλ2

[(√
2
µ |λ2|

)i(ν−ν′)
+
(√

2
µ |λ2|

)−i(ν−ν′)]
+O
(ω2

µ

)

(6.67)
(recall ω = ν − ν ′). We wish to identify this with the in/out wave (5.56).
Recall that initially the wavefunctions were multiplied by mode operators b†ν′ ,
bν ; there is also a sum over energies. Comparing, we see that

αω =

∫ ω

0
dε b†ω−εbε ×

1

2π

(µ

2

)−iω/2
(6.68)
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which is (up to an overall phase, which we can absorb in the definition of the
operators) just the standard bosonization formula for 2D fermions.20

As for the other part of the expression, the wavefunctions at λ1, we make
the same set of approximations, except that we use the full expression (6.65)
rather than its λ → ∞ limit. One finds

ψ†
ν(λ1)ψν′(λ1) ∼ 1

4π
√

λ2
1−2µ

[(−λ1+
√

λ2
1−2µ√

2µ

)i(ν−ν′)
+
(−λ1+

√
λ2
1−2µ√

2µ

)−i(ν−ν′)]
+O
(ω2

µ

)
.

(6.69)
Note that the terms of order ω2/µ that have been dropped are exactly of the

form to be contributions of higher topologies of worldsheet. As we saw in the
scattering of waves bouncing off the exponential Liouville wall in section 3,
the effective string coupling (3.21) is geff ∼ ω2/µ.

Fixing the sum of the energies ν − ν ′ = ω (e.g. by Fourier transformation
in x), the remaining energy integral is trivial and gives a factor of ω. The
macroscopic loop is finally obtained by Laplace transform with respect to λ1;
the answer is a Bessel function:21
∫ ∞

1

[(√
t2 − 1 + t

)iω
+
(√

t2 − 1 + t
)−iω]

e−ut dt√
t2 − 1

= 2Kiω(u)

(6.70)
so that

W̃iω(�) ≡ out〈vac| W̃ (�, x) |ω〉in = 2
ω

2π
Kiω(

√
2µ �) . (6.71)

The transformation (5.49) to z-space yields

Wiω(z) ≡ out〈vac|W (z, x) |ω〉in =

∫ ∞

0

d�

�
e−�

√
2µ chπs W̃iω(�)

= 2
ω

2π
Γ(iω)Γ(−iω) cos(πsω) (6.72)

where we have parametrized z =
√

2µ ch(πs).
The amplitude just calculated actually reveals quite a bit about the theory.

We have learned that the corrections to the leading-order expressions (6.71),
(6.72) are of order ω2/µ, in agreement with the estimated higher order correc-
tions in Liouville theory. It is a straightforward (if tedious) exercise to retain
higher orders in the expansion, and thereby compute the corrections to the am-
plitude coming from surfaces with handles.

Another feature of Liouville theory we see appearing is its quantum wave-
function [47, 48]. In quantum theory, an operator O creates a state O|0〉,
whose overlap with the position eigenstate |x〉 is the wavefunction ψO(x) =
〈x|O|0〉. Similarly, we wish to interpret the state created by the macroscopic
loop W̃ (�, x)|vac〉 as the position eigenstate in the space of (�, x), whose over-
lap with the state Viω|vac〉 is the wavefunction corresponding to the operator
Viω. This wavefunction is sometimes called the Wheeler-de Witt wavefunction.
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In the continuum formulation the correlation function (6.72) involves one
macroscopic loop of boundary cosmological constant µB, and one tachyon per-
turbation Viω, as depicted in figure 11.

Indeed, if we butcher the theory by truncating to the spatial zero modes
φ0(σ0) = 1

2π

∫
dσ1φ(σ0, σ1) on a worldsheet of cylindrical topology,22 we

arrive at Liouville quantum mechanics, whose Schr-odinger equation reads

[
− ∂2

∂φ 2
0

+ 2πµ e2bφ0 − ω2
]

ψω(φ0) = 0 . (6.73)

The resulting wavefunctions

ψω(φ0) =
2 (µ/2)−iω/2b

Γ(−iω/b)
Kiω/b

(√
2µ ebφ0

)
(6.74)

are, up to normalization, identical to W̃ (� = ebφ0).

6.2 Continuum calculation

There is actually more to be learned from the exact evaluation of this disk
one-point correlator in the full Liouville plus matter CFT, as opposed to its
quantum-mechanical zero mode truncation. In particular, one finds the precise
relation between equivalent observables of the two formalisms. The non-trivial
part is the calculation of the Liouville component, which rests on a conformal
bootstrap for Liouville correlators on surfaces with boundary developed in [13–
15], building on earlier work (reviewed in [16, 17]) on closed surfaces. We
will only sketch the construction; the reader interested in more details should
consult these references (and the references in these references).
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Figure 11. The disk one-point function of a tachyon perturbation is the leading-order contri-
bution to the process whereby an incoming tachyon is absorbed by a macroscopic loop operator.
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The basic observation is the identity

∂ 2
z V−b/2(z) = b2 Tzz V−b/2(z) (6.75)

(and similarly for V−1/2b, i.e. b ↔ 1/b), where Vα = e2αφ are the expo-
nential operators of Liouville field theory. This identity is consistent with the
semiclassical limit b → 0, Q = b−1 + b → b−1, since

∂ 2
z e−bφ = [b2(∂zφ)2 − b∂ 2

z φ] e−bφ = b2Tzz e−bφ . (6.76)

Correlation functions with extra insertions of Tzz are given in terms of those
without such insertions, by the Ward identities of conformal symmetry. Thus,
plugging (6.75) into a correlation function leads to second order differential
equations on correlators involving V−b/2 (and similarly V−1/2b). Conformal
invariance also dictates the structure of the correlator we wish to calculate,

〈Vα(z)〉µB
=

U(α)

|z − z̄|2∆α
(6.77)

where z is a coordinate on the upper half-plane, see figure 12. This is equiva-
lent to the correlator on the disk via the conformal transformation z = −iw+i

w−i ;
taking into account that the operator Vα transforms like a tensor of weight ∆α

in both z and z̄, one finds

〈Vα(z)〉µB , disk =
U(α)

(1 − |w|2)2∆α
. (6.78)

The nontrivial information lies in the overall coefficient U(α).

Figure 12.

In order to employ the Ward identity (6.75), we consider instead the two-
point correlator

〈Vα(z)V−b/2(w)〉 . (6.79)

The fact that V−b/2 satisfies a second order differential equation implies that
only two scaling dimensions (up to integers) appear in its operator product
expansion (OPE) with Vα, schematically

VαV−b/2 ∼ C+(α)
[
Vα−b/2

]
+ C−(α)

[
Vα+b/2

]
, (6.80)
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where the square brackets denote the operator together with all that can be
obtained from it by the action of the conformal algebra, the so-called confor-
mal block. The differential equation coming from (6.75), together with (6.80),
yields

〈Vα(z)V−b/2(w)〉 = C+(α)U(α − b/2)G+(ξ) + C−(α)U(α + b/2)G−(ξ)
(6.81)

where G± are hypergeometric functions of the cross-ratio ξ = (z−w)(z̄−w̄)
(z−w̄)(z̄−w) .

What are the coefficients C±(α)? For C+(α) the result of the OPE satisfies
conservation of the “charge” of the exponential (the Liouville zero-mode mo-
mentum pφ). Even though this momentum is not conserved due to the presence
of the tachyon wall, which violates translation invariance in φ, if we neverthe-
less use free field theory to evaluate it we find trivially C+(α) = 1. We simi-
larly use naive perturbation theory in powers of µ to evaluate C−(α), bringing
down the tachyon potential

∫
µe2bφ in a power series expansion and evaluating

the resulting integrated correlation functions using free field theory. Only the
first term in the µ expansion contributes, and we find

C−(α) =
〈
Vα(0)V−b/2(1)VQ−α−b/2(∞)

(
−µ

∫
d2z Vb(z, z̄)

)〉

FFT

= −πµ
γ(2bα − 1 − b2)

γ(−b2)γ(2bα)
(6.82)

where γ(x) ≡ Γ(x)
Γ(1−x) .23

Why are we allowed to use a perturbative expansion in µ and free field theory
forevaluating these quantities? After all, the loop amplitude µ−iω/2Kiω(

√
2µ �)

is certainly not polynomial in µ. Nevertheless, for special “resonant” ampli-
tudes this procedure is justified. Resonant amplitudes are those for which the
sum of the exponents

∑
αi of the collection of Liouville operators Vαi adds

up to a negative multiple of the exponent 2b of the Liouville potential. In such
cases, the path integral can be evaluated by perturbation theory in µ. This fea-
ture is related to the property that the integral over the constant mode of φ in
the path integral is dominated by the region φ → −∞, where the Liouville
potential is effectively vanishing. The use of free field theory methods is then
justified. The correlators that define C± satisfy this resonance condition. Note
that we are not using free field theory to evaluate the full amplitude, but rather
only to evaluate the operator product coefficients with the special degenerate
operator V−b/2 (and similarly V−1/2b).

We now have partial information on the correlation function. To get a closed
system of equations, we need a second relation on (6.79). For this purpose, we
consider the OPE of V−b/2(w) with its image across the boundary to make
the identity operator, by taking w → w̄ (in the process, we need to transform
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to another basis for the hypergeometric functions G± adapted to this particular
degeneration). In this limit, the correlator (6.79) factorizes,

〈Vα(z)V−b/2(w)〉µB

w→w̄∼ 〈Vα(z)〉µB
〈V−b/2(w)〉µB

. (6.83)

The first factor on the right-hand side is given simply in terms of U(α), and the
second factor is yet another resonant amplitude, which we can evaluate in free
field theory by bringing down the boundary cosmological constant interaction
from the action:

(Im w)2∆α

〈
V−b/2(w)BQ(∞)

(
−µB

∮
dξBb(ξ)

)〉

FFT
= −2πµB

Γ(1 − 2b2)

Γ2(−b2)
.

(6.84)
Here the integral over ξ is along the boundary, which is the real axis; Bα is
the operator e2αφ inserted on the boundary; and BQ represents the extrinsic
curvature of the boundary at infinity.

Equating the two expressions (6.81) and (6.83), and using (6.82), (6.84),
one arrives at a shift relation on U(α) [13–15],

− 2πµB

Γ(−b2)
U(α) =

Γ(−b2 + 2bα)

Γ(−1 − 2b2 + 2bα)
U(α−b/2)−πµΓ(−1 − b2 + 2bα)

γ(−b2)Γ(2bα)
U(α+b/2) .

(6.85)
There is a similar shift relation obtained by use of V−1/2b. It is convenient to
write µB in terms of a parameter s via

cosh2(πbs) =
µ 2
B

µ
sin(πb2) ; (6.86)

then the two discrete shift relations (obtained by use of both V−b/2 and V−1/2b)
are solved by

U(α) =
2

b

(
πµγ(b2)

)Q−2α
2b

Γ(2bα − b2)Γ(
2α

b
− 1

b2
− 1) cosh[(2α − Q)πs] .

(6.87)
For the vertex operators with α = 1

2Q + i
2ω appearing in the scattering ampli-

tudes, this translates into

U(α = 1
2Q + i

2ω) = 2iω
(
πµγ(b2)

)−iω/2b
Γ(ibω)Γ(iω/b) cos(πsω) .

(6.88)
The shift operator relations don’t fix the overall normalization of U(α). This
normalization is obtained by demanding that the residues of the poles at 2α =
Q−nb (i.e., iω = −nb) for n = 1, 2, 3, ..., agree with the “resonant amplitude”
integrals for these special momenta.

Note that the full set of resonant amplitude integrals involve bringing down
powers of both µe2bφ and also µ̃e(2/b)φ from the action. One needs to use
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the complete set in order to provide sufficient constraints to fully determine
the Liouville correlators. Hence both are present in the theory; moreover, one
finds for consistency that their coefficients must be related:

πµ̃ γ(1/b2) = [πµ γ(b2)]1/b2 . (6.89)

It turns out that this is more or less the relation implied by the analytic contin-
uation of the amplitude for reflection off the Liouville potential

µ̃/b = µ bR(ω = i(Q − 2b)) . (6.90)

The reflection amplitude R(ω) for Viω → V−iω may be read off the two-point
correlation function for tachyon vertex operators. A similar relation holds for
the boundary cosmological constant; the boundary interaction is actually

δSbdy =

∮ (
µBebφ + µ̃Be(1/b)φ

)
(6.91)

with

cosh2(πs/b) =
µ̃ 2
B

µ̃
sin(π/b2) . (6.92)

Thus there is a kind of strong/weak coupling duality in Liouville QFT, charac-
terized by

b ↔ 1/b , µ ↔ µ̃ , µB ↔ µ̃B (6.93)

(recall that b → 0 was the weak coupling limit of Liouville theory). The
parameter s is invariant under this transformation.

6.3 Comparing the results

Finally, we are ready to compare the two approaches. First we must assem-
ble the Liouville disk amplitude with the contributions of the free matter field
X and the Faddeev-Popov ghosts. There is a factor of 1/2π from gauge fixing
the conformal isometries of the punctured disk (rotations around the puncture).
The disk expectation value of the matter is

〈
eiωX(z)

〉

Dirichlet
=

1

|z − z̄|2∆ω
(6.94)

(equivalently, (1 − |w|2)−2∆ω if we are working on the disk rather than the
upper half-plane), which simply reflects the fact that the Dirichlet boundary
condition on X is a delta function (and hence its Fourier transform is one).
The factors of |z − z̄| cancel among Liouville, matter, and ghosts (we must
take b → 1 in the Liouville part since D = 2; this involves a multiplicative
renormalization of µ and µB in order to obtain finite results). This cancellation
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of coordinate dependence merely reflects that we have correctly calculated a
conformally invariant and therefore physical amplitude. Thus

〈Viω(z, z̄)〉disk =
1

2π
2iω µ̂−iω/2(Γ(iω))2 cos(πsω) (6.95)

where we have defined

µ̂ = πµγ(b2)
b→1∼ 2πµ(1 − b) (6.96)

as the quantity to be held fixed in the b → 1 limit.
Comparing to the matrix model result (6.72), we find the same result pro-

vided that we identify

V matrix
iω = (µ̂)iω/2 Γ(−iω)

Γ(iω)
V continuum

iω

1
2µmatrix = µ̂continuum (6.97)
1
2µmatrix

B = 1
2zmatrix = µ̂continuum

B ≡ 2πµcont
B (1 − b) .

(the last relation amounts to µ̂B =
√

µ̂ ch(πs)). Thus the exact evaluation
of the worldsheet amplitude allows a precise mapping between the continuum
and matrix approaches.

The energy-dependent phase in the relative normalizations of Viω results
in a varying time delay of reflection for particles of different energy. It was
shown in [49] that this time delay reproduces what one would expect based on
the gravitational redshift seen by one particle after another has been sent in.
Thus the so-called “leg-pole factor” Γ(−iω)

Γ(iω) in equation (6.97) is an important
physical effect, which is added by hand to the matrix model. It is not yet
understood if there is a derivation of this factor from first principles in the
matrix model.

Other amplitudes that have been computed on both sides of the correspon-
dence and shown to agree include

The tree level S-matrix [50, 51, 42],24

The torus partition function [52, 53],

The disk one-point function calculated above [46–48, 13, 14],

The annulus correlation function for two macroscopic loops [47, 19].

One can also show that the properties of the ground ring of conserved charges
defined in section 5.3 agree between the matrix and continuum formulations,
at leading order in 1/µ [22]. For instance, on the sphere one calculates using
the Liouville OPE coefficients C± that

〈O12O21〉 = 〈O22〉 = 〈−H〉 = µ . (6.98)
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This result is consistent with the fact that perturbative excitations live at the
Fermi surface, where the energy is H = 1

2 (p 2
λ − λ2) = −µ.

Thus the matrix approach is reproducing the quantum dynamics of Liouville
CFT coupled to a free field. Note that the matrix approach is much more eco-
nomical computationally, and we immediately see how to compute the higher
order corrections (just go to higher order in 1/µ in our approximations); for
Liouville, we need to work much harder – we need to go back to the confor-
mal bootstrap and compute correlation functions on the disk with handles, then
integrate over the moduli space.

7. Worldsheet description of matrix eigenvalues

Finally, what about the eigenvalues themselves? They are gauge invariant
observables which are manifest in the matrix formulation; what is their de-
scription in the continuum formalism? Note that this question bears on the
continuum description of nonperturbative phenomena such as the eigenvalue
tunnelling which leads to the nonperturbative instability of the model. Expe-
rience from string theory in higher dimensions (e.g. black hole microphysics)
has taught us that D-brane dynamics provides a description of strong coupling
physics. Therefore we should examine the D-branes of 2D string theory. The
fact that the tension of D-branes is naively O(1/gs) means that they are the
natural light degrees of freedom in the strong coupling region.

In the worldsheet description of dynamics, a D-brane is an object which
puts boundaries on the worldsheet. The boundary conditions on the worldsheet
fields Xµ tell us about the position of the brane and the boundary interactions
in the worldsheet action specify the background fields localized on the brane.
Perturbations of the boundary background fields are (marginal) scaling opera-
tors on the boundary. The theory thus has two sectors of strings – open strings
that couple to worldsheet boundaries (D-branes), and closed strings that couple
to the bulk of the worldsheet.

In a sense, the macroscopic loop is a spacelike D-brane – one with Dirich-
let boundary conditions in the timelike direction X and Neumann boundary
conditions in the spacelike direction φ. The boundary interaction µB

∮
ebφ is

a “boundary tachyon” that keeps φbdy away from the strong coupling region
φ → ∞ (at least for the appropriate sign of µB). This D-brane is however a
collective observable at fixed time x of the matrix model, and not a dynamical
object. A depiction of the D-brane interpretation of the calculation of section
6 is shown in figure 13a.

Instead, the matrix eigenvalue is localized in the spatial coordinate λ and
hence quasi-localized in φ. Here it is important to recall that φ and λ are re-
lated by the integral transform (5.49), and are thus not directly identified. Nev-
ertheless, localized disturbances in φ bouncing off the exponential Liouville
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wall are related to localized disturbances of the Fermi surface in λ bouncing
off the inverted oscillator barrier, so there is a rough equivalence.

Therefore, we consider Dirichlet boundary conditions for φ. Since φ shifts
under local scale transformations (e2bφgab is the dynamical metric), the Dirich-
let boundary condition

φ
∣∣∣
bdy

= φ0 (7.99)

is not conformally invariant unless φ = ±∞. Now φ = −∞ is the weak
coupling asymptotic boundary of φ space, and corresponds to boundaries of
zero size, which we usually think of as punctures in the worldsheet where
local vertex operators are inserted. On the other hand, φ = +∞ is what we
want, a boundary deep inside the Liouville wall at strong coupling.

In fact, we know a classical (constant negative curvature) geometry with this
property:

ds2 = e2bφdzdz̄ =
Q

πµb

dzdz̄

(1 − zz̄)2
, (7.100)

the Poincar«e disk (or Lobachevsky plane). Proper distances blow up toward
the boundary: φ → ∞, as advertised.

For this D-brane to move in time, the boundary condition in X should be
Neumann. What sort of conformally invariant boundary interaction can we
have? Since φ is fixed on the boundary, the interaction can only involve X;
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Figure 13. (a) A macroscopic loop is a spatial D-brane that absorbs and emits closed strings.
(b) The loop is also a probe of the motion of D-particles.
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conformal invariance then dictates

δSbdy = β

∮
cos(X) , (X Euclidean) (7.101)

δSbdy =

{
β
∮

cosh(X)

β
∮

sinh(X)
, (X Lorentzian)

This interaction is the boundary, open string analogue of the closed string
tachyon background V (X) in (2.5); it describes an open string ‘tachyonic
mode’ of the D-brane, since the interaction grows exponentially in Lorentz
signature spacetime.25

The open string tachyon (7.101) describes the decay of an unstable D-particle
located in the strong coupling region φ → ∞. The tachyon condensate in
Lorentz signature looks promising to be the description of an eigenvalue in the
matrix model, whose classical motion is

λ(x) = λ0 cosh(x) , E = −1
2λ2

0 < 0

λ(x) = λ0 sinh(x) , E = +1
2λ2

0 > 0 (7.102)

depending on whether the eigenvalue passes over, or is reflected by, the har-
monic barrier. Similarly, the Euclidean trajectory λ(x) = λ0 cos(x) is oscil-
latory, appropriate to the computation of the WKB tunnelling of eigenvalues
under the barrier.

How do we see that this is so? In [22] (building on earlier work [18, 20])
this result was demonstrated by computing the ground ring charges O12 and
O21 on the disk, and showing that they give the classical motions above. Here
we will employ a complementary method: We will probe the D-brane motion
with the macroscopic loop. This will exhibit the classical motion quite nicely.

7.1 Lassoing the D-particle

The matrix model calculation of a macroscopic loop probing a matrix eigen-
value is trivial. Recall that the macroscopic loop is

W (z, x0) = − 1

N
tr log(z−M(x0)) = −

∫
dλ ρ̂(λ, x0) log(z−λ) . (7.103)

An individual eigenvalue undergoing classical motion along the trajectory λ(x0)
gives a delta-function contribution to the eigenvalue density

δρ(λ, x0) = δ(λ − λ(x0)) (7.104)

whereλ(x0) =−λ0 cos(x0) for Euclidean signature, and λ(x0)=−λ0cosh(x0)
for Lorentzian signature. Plugging into (7.103), we find

Weval(z, x0) = − log[z− λ(x0)] . (7.105)
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In the worldsheet formalism, the presence of a macroscopic loop introduces
a second boundary, besides the one describing the D-particle. The leading
order connected correlator of the loop and the D-particle is thus an annulus
amplitude; the worldsheet and boundary conditions are depicted in figure 14,
while the spacetime interpretation is shown in figure 13b. The parameter τ is an
example of a modulus of the surface, the Schwinger parameter for the propaga-
tion of a closed string, which cannot be gauged away by either reparametriza-
tions or local scale transformations; in the end, we will have to integrate over
it.

There are two ways to think about this worldsheet as the propagation of a
string. If we view worldsheet time as running around the circumference of the
annulus, we think of the diagram as the one-loop vacuum amplitude of an open
string, a string having endpoints. At one endpoint of the string, we classically
have the boundary condition

∂nφ = 2πµB ebφ , X = x0 (7.106)

describing the macroscopic loop; at the other end, we have

φ = ∞ , ∂nX = 2πβ sin(X) (7.107)

describing the moving D-particle. On the other hand, we can think of the
diagram as the propagation of a closed string for a worldsheet time πτ , folded
into “boundary states” |B〉 which implement the boundary conditions on the
fields. These boundary states are completely determined by these conditions,
e.g.

(∂nφ − 2πµB ebφ)|BN (µB)〉φ = 0

(X − x0)|BD(x0)〉X = 0 (7.108)
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and so on. Because the Liouville and matter fields do not interact, the boundary
state factorizes into the tensor product of the boundary states for X and for φ.
The Liouville partition function can then be written

ZL(q) = 〈BN , µB |e−πτH |BD〉

=

∫
dν Ψ∗

FZZT(ν, µB)ΨZZ(ν)
qν2

η(q)
(7.109)

where q = exp[−2πτ ], and the Dedekind eta function η(q) = q1/24
∏∞

n=1(1−
qn) represents the contribution to the partition function of all the Liouville
oscillator modes. The quantities ΨFZZT and ΨZZ are the zero mode parts of
the Neumann and Dirichlet boundary state wavefunctions, respectively; see
[13, 14] and [15], respectively. Explicitly,

ΨFZZT(ν, µB) = cos(2πνs)
[Γ(1 + 2iνb)Γ(1 + 2iν/b)

21/4 (−2πiν)
µ̂−iν/b

]
(7.110)

ΨZZ(ν) = 2 sinh(2πν/b)sinh(2πνb)
[Γ(1 + 2iνb)Γ(1 + 2iν/b)

21/4 (−2πiν)
µ̂−iν/b

]

Here, s parametrizes µB as in equation (6.86). The “Neumann” wavefunction
ΨFZZT is the one obtained before, from the macroscopic loop calculation; ν
is the Liouville zero-mode momentum α = 1

2Q + iν in the “closed string
channel”. This is not surprising; before we used the macroscopic loop to probe
the wavefunction of a scattering state, now we are using it to probe a D-brane
state to see if it has the properties of a matrix eigenvalue.

The authors of [15] showed that ΨZZ(ν) has the property that all operators
behave like the identity operator as they approach the corresponding bound-
ary (so that one approaches the constant negative curvature “vacuum” near the
boundary of the Poincar«e disk). Ordinarily in Liouville theory, when an oper-
ator such as Vα approaches the boundary z = z̄ (e.g. with boundary condition
(7.106)), it expands as a sum of boundary operators Bβ . For the boundary
state with wavefunction ΨZZ(ν), only the identity boundary operator B0 = 1l
appears in the limit z → z̄.

Now for the matter partition function. The annulus partition function with
the requisite boundary conditions was computed in [54] for Euclidean X, with
the result

ZX =
1√

2 η(q)

∞∑

n=−∞
qn2/4 cos[nπ(1

2+γ)] , sin(πγ) ≡ cos(x0) sin(πβ) .

(7.111)
Again the Dedekind eta function represents the contribution of the X oscillator
modes, and the sum results from the zero modes. The Faddeev-Popov ghost
partition function is

Zgh = η2(q) , (7.112)
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cancelling the oscillator η functions of φ and X. This is related to the fact that
there are no transverse directions in which the string can oscillate – at generic
momenta just the tachyon, with only center of mass motion of the string, is
physical.

Combining all the contributions, we have

Z =

∫ ∞

0
dτ ZL · ZX · Zgh

=

∫ ∞

0
dτ

∫
dν cos(2πνs)

∞∑

n=−∞
cos[nπ(1

2 + γ)] qν2+n2/4 . (7.113)

Doing the τ integral, and the ν integral by residues,26 one finds

Z = 2

∞∑

n=1

1

n
exp[−nπs] cos[nπ(1

2 + γ)] . (7.114)

The sum is readily performed, and after a little algebra, one obtains

Z = − log[2(cosh(πs) + sin(πγ))] . (7.115)

Define now

λ(x0) = −
√

2µ sin(πγ) = −
√

2µ sin(πβ) cos(x0) ≡ −λ0 cos(x0)
(7.116)

and recall that µB =
√

2µ ch(πs) = z; then we have

Z = − log[z − λ(x0)] + 1
2 log(µ/2) . (7.117)

The additive constant is ambiguous, and depends on how we regularize the di-
vergent term in (7.113); nevertheless, it is independent of the boundary data for
X and φ, and so does not affect the measurement of the D-particle motion.27

Dropping this last term, we finally reproduce the result (so easily found) for
the probe of eigenvalue motion in the matrix model, equation (7.105)!

Note that, even though the Dirichlet boundary condition on φ is in the strong
coupling region φ → ∞, the wavefunctions are such that we obtain sensible
results for the amplitude. Note also that the boundary interaction for the D-
particle depends only on X, and thus the D-particle naively is not moving in
φ. This is a cautionary tale, whose moral is to compute physical observables!
Nevertheless, when the D-particle reaches the asymptotic region of weak cou-
pling, it should be moving in both φ and λ. Somehow the field space coordinate
of the open string tachyon and the φ coordinate of spacetime become related in
the course of the tachyon’s condensation, and it remains to be understood how
this occurs.
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The consideration of multiple D-particles elicits the matrix nature of their
open string dynamics. Now we must add to the description of the boundary
state a finite dimensional (Chan-Paton) Hilbert space HCP describing which
D-particle a given worldsheet boundary is attached to. Open string operators
act as operators on this finite-dimensional Hilbert space, i.e. they are matrix-
valued (equivalently, an open string is an element of HCP ⊗ H∗

CP specifying
the Chan-Paton boundary conditions at each end).

The open string tachyon is now a matrix field; the parameter β in equation
(7.101) is a matrix of couplings βij , i, j = 1, ..., n for n D-particles. There is
an additional possible boundary interaction

δSbdy =

∮
Aij ∂tX (7.118)

which is a matrix gauge field on the collection of D-particles. We ignored it in
our previous discussion because its role is to implement Gauss’ law on the col-
lection of D-particles, which is trivial in the case of a single D-particle. When
several D-particles are present, however, this Gauss law amounts to a projec-
tion onto U(n) singlet states. Thus the continuum description suggests that
the U(N) symmetry of the matrix mechanics is gauged, which as mentioned
in section 4.1 projects the theory onto U(N) singlet wavefunctions. Singlet
sector matrix mechanics looks very much like the quantum mechanics of N
D-particles in 2D string theory.

Several ingredients of the relation between the continuum and matrix formu-
lations remain to be understood. The probe calculation tells us that the open
string tachyon condensate on the D-particle describes its leading order, classi-
cal trajectory. One should understand how higher order corrections lead to the
quantum corrections for the wavefunction of a quantum D-particle, and show
that this series matches the WKB series for the wavefunctions of the eigenvalue
fermions of the matrix model. Also, the description in the continuum formu-
lation of an eigenvalue as a D-particle is quite different from the ensemble of
eigenvalues in the Fermi sea, whose collective dynamics is expressed via con-
tinuum worldsheets. Under what circumstances is eigenvalue dynamics that
of D-particles, as opposed to that of closed string worldsheets? For instance,
the U(n) symmetry of a collection of n D-particles should extend to the full
U(N) symmetry of the whole matrix. How do we see this larger symmetry in
the continuum formulation? We cannot simply turn all the fermions into D-
particles; there would then be nothing left to make the continuum worldsheets
that attach to these branes. The continuum formalism is really adapted to de-
scribing a small number of matrix eigenvalues that have been separated from
rest of the ensemble, thus leading to distinct treatment of the few separated
ones as D-particles, and the vast ensemble of remaining ones as the threads
from which continuum worldsheets are woven.
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7.2 Summary

To summarize, we have an expanding translation table between matrix and
continuum formalisms:

Continuum Matrix

Closed string vacuum Fermi sea of matrix eigenvalues
Liouville potential µ e2bφ Inverted oscillator barrier

Worldsheet cosmological constant µ Fermi energy −2µ

Strings Fermi surface density wave quanta
String S-matrix Density wave S-matrix

D-branes w/X: D, φ: N, Sbdy =µB

H
ebφ Macroscopic loops tr[log(z− M(x))]

Boundary cosm. const. µB Loop eigenvalue parameter 2z

D-branes w/φ: D, X: N, Sbdy =β
H
cos X Eigenvalues outside the Fermi sea

Open string tachyon coupling β Eigenvalue energy E = −µ sin2 πβ

Open string tachyon on n D-particles A block of the matrix M

A similar dictionary is known for the fermionic string, which will be de-
scribed briefly in the next section. Here one has the added advantage that the
model is nonperturbatively well-defined. In these models both sides of the du-
ality are again calculable. One may hope that open/closed string duality can
be worked out in complete detail in this example, and that it will lead to valu-
able insights into the general class of open/closed string dualities to which it
belongs.

8. Further results

8.1 Fermionic strings

The remarkable agreement between the continuum and matrix formulations
of 2D string theory leads us to believe that they are equivalent. However, in
the case of the bosonic string, both are asymptotic expansions. Worldsheet
perturbation theory is an asymptotic expansion, and it was our hope that, as in
higher dimensional gauge/gravity correspondences, the matrix (gauge) theory
formulation would provide a nonperturbative definition of the theory. But the
nonperturbative instability of the vacuum to eigenvalue tunnelling across to the
right-hand side of the oscillator barrier means that the theory does not really
exist after all.

An obvious fix for this difficulty would be to fill up the other side of the bar-
rier with fermions as well (see e.g. [56] for an example of this proposal). But
this leads to an equally obvious question: We found agreement with continuum
bosonic strings using just the fluctuations on one side of the oscillator barrier.
What do the fluctuations on the other side describe? Perturbatively, they are
a second, decoupled copy of the same dynamics. Nonperturbatively, the two
sides of the barrier communicate, by tunnelling and by high energy processes
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that pass over the barrier. It is now understood [21, 22] that this stable version
of the matrix model describes 2D fermionic string theory (the type 0B string,
in the arcane terminology of the subject).

The fermionic string extends the construction of section 2 by supersym-
metrizing the worldsheet theory: The spacetime coordinates Xµ(σ) of the
worldsheet path integral gain superpartners ψµ(σ) which transform worldsheet
spinors (and spacetime vectors). The local reparametrization and scale invari-
ance condition generalizes to local supersymmetry and super-scale invariance;
in other words, the stress tensor T has a superpartner G, and the dynamical
condition is that both must vanish in correlation functions.

If we perform the same exercise in the path integral formulation (2.1) of
the particle propagator in flat spacetime, the quantization of the superpartner ψ
leads to equal time anticommutation relations

{ψµ, ψν} = δµν . (8.119)

One realization of these anticommutation relations is to represent the ψ’s as
Dirac matrices. The quantum mechanical Hilbert space contains not only
the position wavefunction, but also a finite dimensional spin space in which
the ψµ act – the particle being propagated is a spinor. Thus worldsheet su-
persymmetry is a way to introduce spacetime fermions into a worldline or
worldsheet formalism.28 A second realization of the anticommutation rela-
tions (8.119), using complex fermions, treats ψ∗

µ as a creation operator, and
its conjugate ψµ as an annihilation operator. Starting from the fermion ‘vac-
uum’ |0〉, ψµ|0〉 = 0, the set of polarization states propagated along the particle
worldline, {ψ∗

µ1
· · ·ψ∗

µr
|0〉}, transform as a collection of antisymmetric tensors

Cµ1...µr in spacetime.
The same story arises in the string generalization; the worldsheet fermions

ψµ can realize a collection of antisymmetric tensors in spacetime, or under
suitable conditions the propagating strings are spinors in spacetime. The so-
called type 0 fermionic strings do not realize spacetime fermions, but do con-
tain the antisymmetric tensor fields. We can divide the set of antisymmetric
tensor fields into those with even rank and those with odd rank. The type
0A theory involves a projection onto odd rank tensors (with even rank field
strength), while the type 0B theory contains even rank tensors (with odd rank
field strength). In particular, the type 0B theory contains a 0-form or scalar
potential C in addition to the tachyon V . This scalar provides the needed extra
degrees of freedom to represent, in the worldsheet formalism, the density os-
cillations on either side of the harmonic barrier in the matrix model with both
sides filled.

To describe the vertex operator for this scalar requires a bit of technology
[57]. One can think of the left- and right-moving worldsheet fermions ψ(z),
ψ̄(z̄) in terms of the 2d Ising model. In addition to the fermion operators, the
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Ising model has order and disorder operators σ(z, z̄) and µ(z, z̄), often called
spin fields. In 2D string theory, we thus have the spacetime coordinate fields
X, φ and their superpartners ψX , ψφ, as well as the spin fields σX , σφ, µX ,
µφ, as the ingredients out of which we can build vertex operators (there may
also be contributions from Faddeev-Popov ghosts if this is required by gauge
invariance). The on-shell tachyon vertex is now

Viω = (ψX ± ψφ)(ψ̄X ± ψ̄φ) eiω(X±φ) eQφ , (8.120)

and there is also the second (so-called RR) scalar, with vertex operator

Ciω = Σgh(σXσφ ± µXµφ) eiω(X±φ) eQφ . (8.121)

Here, Σgh is a spin field for the Faddeev-Popov ghosts arising from fixing
local supersymmetry [57]. It was shown in [51] that the tree-level S-matrix
amplitudes for the linear combinations

TL,R(ω) =
Γ(−iω

√
α′/2)

Γ(iω
√

α′/2)
Viω ± Γ( 1

2
−iω

√
α′/2)

Γ( 1
2
+iω

√
α′/2)

Ciω (8.122)

decouple from one another, i.e. the connected amplitudes involving both sets
of operators TL,R vanish; and the amplitudes involving just one set are the
same as for the bosonic string, up to a rescaling α′ → 2α′. This strongly sug-
gests we identify TL,R as the asymptotic modes of density fluctuations on the
left and right sides of the harmonic barrier in the symmetrically filled matrix
model. Note that there are again energy-dependent phases involved in the rela-
tion between matrix model asymptotic states and continuum asymptotic states.
One should think of the fields V and C as corresponding to the symmetric
and antisymmetric perturbations of the Fermi sea of the matrix model, after
these phases are stripped off. This identification is consistent with the fact that
S-matrix amplitudes vanish for an odd number of parity-odd density perturba-
tions; the Z2 Ising symmetry causes the correlator of an odd number of spin
fields to vanish as well. The two-to-one map of λ-space to φ-space in the type
0B model highlights their nonlocal relation, a feature we have already seen
several times.

This proposal passes checks analogous to the bosonic string – the tree level
S-matrix, the torus partition function, and expectations of the ground ring op-
erators on the sphere and on the disk, all agree between matrix and continuum
approaches [22].

The Z2 symmetry that changes the sign of spin operators like Ciω, called
NSR parity, also characterizes the boundary states, splitting them into Z2 even
(NS) and odd (R) components. For instance, there are separate NS and R macro-
scopic loops. We may determine their functional form in the matrix model by
repeating the calculation of section 7.1. The main differences will be that the
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calculation splits into these two boundary state sectors. The boundary state
wavefunctions ΨNS and ΨR for both Dirichlet (ZZ) and Neumann (FZZT)
branes appearing in (7.109) are given in [58, 59] (see also [22], sections 6 and
7). The matter partition function on the annulus [60] is essentially the same
as equation (7.111), with the sum over n restricted to even integers in the NS
sector and odd integers in the R sector. The analysis then proceeds along the
lines of section 7.1; one finds

ZNS = −1
2 log[µ2

B − λ2(x0)] + 1
2 log(µ/2)

ZR = 1
2 log
[µB − λ(x0)

µB + λ(x0)

]
. (8.123)

These results prove a conjecture [21, 61] for the form of the macroscopic loop
operators in the matrix model for the type 0B fermionic string.

The super-Liouville boundary state wavefunctions [58, 59] are also the ma-
jor ingredients of the disk one-point functions that yield the wavefunctions cor-
responding to the operators Viω and Ciω . For the tachyon, one finds essentially
the same result (6.95), while for the RR scalar C , one finds

〈Ciω(z, z̄)〉disk =
1

2π
µ̂−iω/2(Γ(1

2 + iω))2 cos(πsω) . (8.124)

The corresponding integral transforms to loop length wavefunctions again yield
Bessel functions [21, 22, 61].

There are also a few discrete symmetries that match on both sides of the
correspondence. One example is the λ → −λ parity symmetry of the matrix
model, which appears as the Z2 NSR parity symmetry which sends C → −C
in the continuum theory. The continuum theory also has a symmetry under
µ → −µ;29 in the matrix model, this is the symmetry of the Hamiltonian
H = 1

2 (p2 − λ2) under p ↔ λ, combined with an interchange of particles and
holes. A few other checks, as well as a second 2D fermionic string model –
the type 0A string, whose matrix model formulation involves the dynamics of
open strings in a system of D-particles and their antiparticles – can be found in
[22].

8.2 Remarks on tachyon condensation

The structure of the bosonic and fermionic matrix models of 2D string the-
ory is a remarkable illustration of the effective picture of tachyon condensation
on systems of unstable D-branes [23]. In perturbative string theory, a D-brane
is a heavy, semiclassical object much like a soliton. The analogy to solitons is
in fact quite precise [62–65]. Unstable D-branes are like solitons that do not
carry a topological charge, and thus can decay to the vacuum (plus radiation).
But being heavy, the initial stages of the decay are a collective process of in-
stability of the ‘soliton’ field configuration. The quanta of this unstable mode
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are open string tachyons, and the initial stages of the decay are best described
as the condensation of this tachyonic mode. An effective potential picture of
this process is shown in figure 15a for an unstable brane in the bosonic string.

The heuristic picture of the effective potential identifies the local minimum
to the left of the unstable point with the “closed string vacuum”, and the dif-
ference in energy between local maximum and local minimum is the energy of
the initial unstable brane. An initial state of the tachyon field T localized at the
unstable maximum of the effective potential is meant to describe the presence
of the unstable brane, and condensation of T describes its decay. Condensation
to 〈T 〉 < 0 represents decay toward the closed string vacuum. The abyss to the
right of the local maximum is meant to represent the fact that condensing the
open string tachyon to 〈T 〉 > 0 leads to singularities at finite time in perturba-
tive calculations [66] with no known string interpretation; it is not understood
whether there is any stable, nonsingular state to which the system evolves when
the open string tachyon condenses in that direction.

Qualitatively, this picture is identical to that of the matrix potential of figure
8a. The only difference is that the closed string vacuum is itself described via
the open-closed string equivalence as a degenerate gas of D-particles – in a
sense a collection of unstable D-branes that have “already decayed”. The ab-
sence of eigenvalues to the right of the barrier means that there is no worldsheet
interpretation for eigenvalues in this region, just like the region to the right of
15a.

A similar story applies to the fermionic string. The open string tachyon
effective potential has two symmetric wells, as in figure 15b. On one hand,
condensation in either direction of the open string tachyon on an unstable D-
brane leads to its decay to the closed string vacuum; on the other hand, the
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matrix model for the type 0B string has just such a potential, with both wells
filled by eigenvalue fermions, and a string interpretation of the physics on ei-
ther side. The analogy also holds for the matrix model equivalent of the type
0A string.

9. Open problems

What remains to be understood? In this concluding section, let us list a few
unresolved issues and directions for future work.

9.1 The open-closed string duality map

While there is a qualitative map (5.49) between λ-space and φ-space at the
level of zero modes, a precise map between the matrix model and the full Li-
ouville field theory remains to be worked out. This would require a complete
translation between quantities in the matrix model and the Liouville (plus free
scalar) field theory. One indication of a missing ingredient is that the asymp-
totic states of the matrix model have the leg poles of the continuum formalism
stripped off, see equation (6.97). The poles incorporate the effects of discrete
physical states in the continuum formulation [51]. While, as argued above,
only center-of-mass string motion is physical at generic, continuous momenta,
there is an additional discrete spectrum of physical states at special momenta
[67–69, 43]; a simple example is the zero-momentum graviton vertex opera-
tor Vgrav = ∂X∂̄X, which is manifestly physical since it is the action density
for X. The continuum formalism knows how to incorporate gravitational ef-
fects, while these are currently put into the matrix model by hand; the matrix
prescription for the S-matrix is to compute the LSZ-reduced density wave scat-
tering amplitudes, and then multiply the result by a leg-pole factor Γ(iω)

Γ(−iω) for
each asymptotic state. It is this leg-pole factor which is responsible for pertur-
bative gravitational effects [49, 50].

9.2 Gravitational effects

Perhaps a part of the explanation for this absence of gravitational and other
discrete state effects in the matrix model is that, since the linear dilaton lifts the
string “tachyon” mode to zero mass, it also raises the graviton to positive mass;
its effects are subleading to the tachyon, and might be masked by or effectively
absorbed into tachyon dynamics [70, 71].

Initially there was hope that the matrix model would teach us about non-
perturbative gravity, and in particular lead to a solvable model of black hole
dynamics. A second background solution to the string equations of motion
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(2.6)-(2.7) appears to be a black hole [72, 73]

ds2 = dφ2 ± tanh2( 1√
2(k−2)

φ) dx2

Φ = Φ0 + log[cosh( 1√
2(k−2)

φ)] , (9.125)

depending on whether we are interested in Euclidean or Lorentzian signature.
The metric is written in Schwarzschild-like coordinates, where the horizon at
φ = 0 is infinitely redshifted relative to the asymptotic region |φ| → ∞. This
sigma model (2.5) on this background describes an exact conformal field the-
ory, the SL(2, R)/U(1) gauged WZW model (the signature is determined by
the conjugacy class of the U(1) ⊂ SL(2, R) being gauged). The level k of
the SL(2, R) current algebra symmetry of the WZW model is k = 9/4 for the
bosonic string, and k = 5/2 for the fermionic string, in order that the slope

Q =
√

2
k−2 of the asymptotically linear dilaton in (9.125) have the right value

for 2D string theory. Note that the radius of curvature of the geometry is of
order 1/

√
k in the vicinity of the horizon φ ∼ 0; therefore it is important to

have an exact conformal field theory, since the corrections to the leading order
equations of motion (2.7) are significant. Note also that the leading asymp-
totic perturbation e2Qφ∂X∂̄X of the metric away from flat spacetime, is the
reflected version (the other on-shell value of Liouville momentum) of the spe-
cial physical graviton operator ∂X∂̄X discussed above. Thus the background
can be thought of as the nonlinear completion of this linearized deformation.
A shift in φ makes e−2Φ0 the coupling in front of the asymptotic graviton in
(9.125); as in higher dimensions, the coefficient of the leading asymptotic de-
formation of the metric away from flat spacetime is the mass of the black hole
[74, 75], µbh = e−2Φ0 .

A great deal is known about this CFT. There is a conformal bootstrap, anal-
ogous to that of Liouville theory [76, 77]. The analogue of the two degenerate
operators V−b/2, V−1/2b of Liouville theory are the degenerate operators Φj of
SL(2, R) current algebra, having spin j = −3

2 and j = −k
2 .

A rather remarkable conjecture [78] claims that the Euclidean SL(2, R)/U(1)
gauged WZW model is equivalent as a quantum field theory to another model,
the so-called Sine-Liouville theory, whose action is

SSL =
1

4π

∫ √
g
[
gab∂aφ∂bφ+gab∂aX∂bX+QR(2)φ+µsl cos R[Xl−Xr] e

1
Q

φ
.

(9.126)
Here Q2 = 2

k−2 ; X is compactified on a circle of radius R = 2/Q; and Xl−Xr

is the axial component of X, so that the potential in (9.126) acts as a generating
function for vortices in the worldsheet partition function. In [77], this equiv-
alence is argued to hold at the level of the conformal bootstrap for correlation
functions. The “resonant amplitudes”, which are those correlators dominated
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in the path integral by the asymptotic region φ → −∞, involve only the op-
erators Φ− r

2
− s

2
(k−2)−1, r, s = 1, 2, .... These correlators must in general be

perturbatively dressed by both the asymptotic graviton µbh e2Qφ∂X∂̄X, which

dresses r, and by the Sine-Liouville interaction µsl e
1
Q

φ cos R(Xl−Xr), which
dresses s. Self-consistency requires the coefficients of these two interactions
to be related [77]; one finds [77]

πµbh

Γ(−Q2/2)

Γ(1 + Q2/2)
=
(
πµsl Q

2/2
)Q2

. (9.127)

Again, as in Liouville theory there is a sense in which both dressing operators
are present in the theory.

There is again a kind of strong/weak coupling duality, since the metric de-
formation is dominant at weak coupling (φ → −∞) for Q � 1, while the
Sine-Liouville coupling is dominant for Q � 1. Since Q = 2 for the 2D
string, one has the sense that the Sine-Liouville description is somewhat more
appropriate. In higher dimensions, when the curvature of a black hole reaches
string scale, it undergoes a phase transition to a gas of strings [79] (the transi-
tion point is known as the correspondence point). The apparent dominance of
the Sine-Liouville coupling may be an indication that the “black hole” of 2D
string theory is actually on this other side of the correspondence point, where
it is better thought of as a gas or condensate of strings.

The equivalence with Sine-Liouville leads to a natural candidate [80] for a
matrix model equivalent to the Euclidean “black hole” – simply turn off the
Liouville potential and turn on a condensate of vortices in the compactified
Euclidean theory, c.f. section 4.1. The matrix description of the background
thus has a closer affinity to the tachyon condensate of (9.126) than it has to the
Euclidean black hole of (9.125).30

Yet another reason to suspect the absence of objects that could truly be
characterized as black holes in 2D string theory, is the absence of nonsinglet
states in the matrix model. As mentioned in the introduction, the appearance
of black holes in the density of states in higher dimensional versions of the
gauge/gravity equivalence is associated to a deconfinement transition. The
thermodynamics one is led to [74, 75] on the basis of the classical gravity
solution (9.125) yields a density of states ρ = exp[

√
2 πE]. Such a density of

states will not come from the quantum mechanics of the degenerate Fermi gas
of the singlet secctor of the matrix model, but might concievably come from
the liberation of nonsinglet degrees of freedom of the matrix. However, this
is absent from the matrix model – the U(N) degrees of freedom are gauged
away.

Indeed, a calculation [83] of nonperturbative high energy scattering in
thematrixmodel – a process that inhigherdimensions wouldcertainlylead to the
formation of black holes as long-lived intermediate states – reveals none of the
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features that would be predicted on the basis of the appearance of black holes
being formed during the scattering process.

In short, low energy gravitational effects are put into the matrix model by
hand, via the leg-pole factors. High energy gravitational effects such as black
hole formation seem to be absent altogether. Does the matrix model incorpo-
rate any form of 2d gravity? If so, how? If not, why not?

9.3 Short-distance physics

Even though it would appear that black hole physics is absent from the ma-
trix model, intriguing remnants of Planck scale (or more precisely, ultra-short
distance) physics seem to be present. Namely, the spacing of eigenvalues in
the matrix model is of order the D-particle Compton wavelength Lc ∼ eΦ�s.

The fact that loop length scales as � ∼ ebφ, together with the integral trans-
form (5.49), suggests that the eigenvalue coordinate scales as λ ∼ −e−bφ

(in the sense of KPZ scaling). From equations (5.51) and (6.65) one deter-
mines 〈ρ̂〉 ∼ |λ| as λ → −∞. The eigenvalue spacing is δλ ∼ 1/〈ρ̂〉,
and thus δλ/λ ∼ λ−2. In terms of the Liouville coordinate, this spacing is
δφ ∼ e2φ = eΦ, which is Lc! This result generalizes to the discrete series of
c < 1 conformal field theories coupled to Liouville gravity, which are thought
of as string theory in D < 2. Here we have b =

√
q/p, with p, q ∈ Z and

q < p. The pair (p, q) characterize the matter conformal field theory, with

cmatter = 1− 6 (p−q)2

pq . These models have a realization as an integral over two

random matrices [84–86] with the eigenvalue density scaling as ρ(λ) ∼ λp/q.
Tracing through the KPZ scaling, one finds δλ/λ ∼ λ−(1+1/b2), and once
again the eigenvalue spacing is δφ ∼ eQφ = eΦ. An appealing interpreta-
tion of this result is that spacetime has a graininess or discrete structure at the
short distance scale Lc. It would be interesting to find some ‘experimental’
manifestation of this spacetime graininess.

9.4 Open string tachyons

In higher-dimensional spacetime, the canonical picture of the decay of un-
stable D-branes has the initial stages of the decay well-described by open string
tachyon condensation; at late times the brane has decayed, open strings are ab-
sent, and the energy is carried off by a pulse of closed string radiation.

The qualitative picture is rather different in 2D string theory. Here the branes
don’t really decay; the open string tachyon merely describes their motion in
spacetime, and there is an equivalence between two characterizations of the
dynamics in terms of open or of closed strings.

The worldsheet formulation has elements of both open and closed string de-
scriptions of D-brane decay. Closed string worldsheets represent the collective
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dynamics of the Fermi sea of “decayed” eigenvalues; eigenvalues extracted
from the sea are represented as D-branes with explicit open string degrees of
freedom. Thus the continuum description is naively overcomplete. For in-
stance, one can compute the “radiation” of closed strings from the “decaying”
D-brane representing an eigenvalue rolling off the potential barrier [18, 20].
One finds a closed string state

|ψ〉 ∼ exp
[
i

∫
dω vp α†

p

]
|vac〉 (9.128)

with the coefficient vp given to leading order by the disk expectation value of
the tachyon vertex operator Viω with the boundary conditions (7.107). Roughly,
the closed string tachyon bosonizes the eigenvalue fermion.

Of course, the eigenvalue doesn’t decay, but stays in its wavepacket as it
propagates to infinity. An eigenvalue fermion maintains its identity as it rolls to
infinity; we are not forced to bosonize it. There appears to be some redundancy
in the worldsheet description, unless different descriptions are valid in non-
overlapping regimes (as is the case in other open/closed string equivalences);
but then it remains to be seen what effects force us to describe the dynamics as
that of D-branes or that of closed strings, and in what regimes those effects are
important. A possible clue is the form of the D-brane boundary state, which
fixes the boundary at φ = ∞ throughout the motion, and instead describes the
dynamics as occuring in the field space of the open string tachyon. On the
other hand, we know that λ → −∞ corresponds to φ → −∞, and therefore at
late times an appropriate boundary state should have significant support in this
weak coupling region. This suggests that the perturbative boundary state de-
scription of the rolling eigenvalue breaks down at finite time.31 It was pointed
out in [87] that the boundary state represents a source for closed strings that
grows exponentially in time, so that one would expect the perturbative formal-
ism to break down at a time of order x ∼ log µ (note that this is roughly the
WKB time of flight from the top of the potential to the edge of the Fermi sea).
Once again we run into the issues surrounding the quantization of the D-brane
motion mentioned at the end of section 7.1.

A similar issue is the absence so far of a completely convincing worldsheet
description of holes in the Fermi sea of eigenvalues (for a proposal based on
analytic continuation of the boundary states, see [22, 88]). Holes lie within
the Fermi sea instead of being separated from it, and so all the questions as to
when and whether there is an open string description apply here as well. The
worldsheet description of holes is an important missing entry in our translation
table.

It is interesting that the open/closed string equivalence in this system is built
out of objects that don’t carry conserved charge, as opposed to standard ex-
amples like D3 branes providing the gauge theory dual to AdS5 × S5, which
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are charged sources for antisymmetric tensors C(r). It raises the question of
whether there are other situations in string theory where there is an open-closed
string equivalence in terms of uncharged objects. A good part of the program to
understand open string tachyon condensation is driven by this question. Is the
late-time dynamics of the open string tachyon condensate on unstable branes
(sometimes called tachyon matter) an alternate description of (at least a self-
contained subsector of) closed string dynamics? We have one system where
the answer is yes, and it would be interesting to know if there are others, and
if so whether such an equivalence holds generically (c.f. [18] for a discussion
in the present context).

9.5 Closed string tachyons

Although the linear dilaton lifts the mass shell of the “tachyon” to zero in
2D spacetime, the spacelike tachyon condensate of 2D string theory may still
contain clues to the properties of closed string tachyons in string theory. While
much of the physics of open string tachyon condensation is relatively well un-
derstood by now, closed string tachyon condensation is still rather mysterious.
The only controlled examples which have been studied involve closed string
tachyons on localized defects [89–92] (for reviews, see [24, 93]). In these
cases, the localized defect decays to flat spacetime with a pulse of radiation,
much like the decay of D-branes via open string tachyon condensation. The
condensation of delocalized tachyons is less well understood. The resulting
backgrounds will have a cosmological character since the spacetime geometry
will react to the stress-energy density of the evolving tachyon field.

Examples of this sort are just beginning to be studied in 2D string theory. In
a sense, the closed string tachyon condensate is really only a stationary rather
than a static background of the continuum theory. From the open string point
of view, the custodian of this 2D cosmos must sit with a bucket of eigenvalues
and keep throwing them in at a constant rate in order to preserve the Fermi
sea. If this entity tires of its task, the Fermi sea drains away; the corresponding
closed string background is then a time-dependent tachyon field. Properties of
such backgrounds have been investigated in [81, 82, 94–97], and might serve
as a paradigm for the general problem of closed string tachyon condensates.
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Abstract In these notes we explain how the asymptotic properties of correlation functions
of U(N) invariant matrix integrals can be derived by means of conformal field
theory. In the large N limit such CFT describe gaussian field on a Riemann
surface. Our basic example is the hermitian matrix model. We give an explicit
operator construction of the corresponding collective field theory in terms of a
bosonic field on a hyperelliptic Riemann surface, with special operators asso-
ciated with the branch points. The quasiclassical expressions for the spectral
kernel and the joint eigenvalue probabilities are then easily obtained as correla-
tion functions of current, fermionic and twist operators.

1. Introduction and historical notes

The statistical ensembles of random matrices of large size (matrix models)
have been introduced in 1951 by Wigner in order to analyze the spectral prop-
erties of complicated systems with chaotic behavior [1]. In this approach the
Hamiltonian of a chaotic system is considered as a large matrix with random
entries. Consequently, the analytical studies of random matrix ensembles car-
ried out in the next 25 years (see the Mehta’s book [2]) were oriented to the
calculation of the spectral correlation functions or joint eigenvalue probabili-
ties of the random matrix M, which can be expressed as determinants of the
spectral kernel

K(x, y) = 〈 det (x − M) det (y − M) 〉 . (1.1)

The spectral kernel can be evaluated by the method of orthogonal polynomials
[2] . Its large N asymptotics is characterized by the interposition of a smooth
behavior and fast oscillations with wavelength ∼ 1/N (in a scale where the
total range of the spectrum is kept finite). The smooth large distance behav-
ior depends on the concrete form of the matrix potential. On the contrary, the
microscopic behavior characterized by oscillations depends only on the sym-
metry group (the unitary group in the case) and fall into several universality
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classes. It is the microscopic behavior of the spectral correlations, which is
interesting from the point of view of applications to chaotic systems. For a
review see, for example, [4] .

The discovery by ‘t Hooft of the 1/N expansion [3] gave a meaning of
the smooth part of the spectral correlators and opened the possibility of using
random matrix models to solve various combinatorial problems, the simplest
of which is the enumeration of planar graphs [6, 7]. In this kind of problems
the solution is encoded in the 1/N expansion of the loop correlation functions,
which are the correlation functions of the collective field variable

W (z) = tr
( 1

z − M

)
. (1.2)

In the large N limit the correlation functions of the resolvent (1.2) are mero-
morphic functions with cuts along the intervals where the spectral density is
nonzero. The discontinuity along the cuts gives the smooth part of the joint
eigenvalue probabilities.

The first exact results in the large N limit were obtained by direct applica-
tion of the saddle point method [6] , but later it was recognized that a more
powerful method is provided by the so called loop equations [5] , whose itera-
tive solution allows one to reconstruct order by order the 1/N expansion. The
most efficient iterative procedure proved to be the "moment’s description" [8]
.

In the early 90’s, after the publication of the seminal papers [9] , the two
resolution techniques in random matrix models (orthogonal polynomials and
loop equations) developed rapidly and were recognized as particular cases of
well developed mathematical methods. The method of orthogonal polynomials
was reformulated in terms of the theory of τ functions of integrable hierarchies
(see, for example, the review article [10] ). On the other hand it was observed
that the loop equations generate a representation of (half of) the Virasoro alge-
bra and are therefore equivalent to the requirement that the theory is conformal
invariant [11, 12]. This allowed to describe a class of large N matrix models
near criticality in terms of the Hilbert space of twisted bosonic fields, and ap-
ply the well developed formalism of the conformal field theory. Then it was
observed that the two approaches are closely related since the τ functions as-
sociated with the matrix models can be formulated as fermionic theories with
conformal invariance [13] .

In the string theory applications, the description in terms of traces has been
used almost exclusively. In the last years it has been realized that the observ-
ables of the type (1.1) are interesting by themselves, because they describe the
non-perturbative effects in string theories [14–20]. In the CFT description, the
two types of variables are related by the two-dimensional bosonization, which
has its analog in the higher-dimensional string theories.
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2. Hermitian matrix integral: saddle points and
hyperelliptic curves

2.1 Definition of the hermitian matrix integral

The partition function of the unitary ensembleis defined as the integral

Z
N

=

∫
dM exp




∑

n≥0

tn TrMn



 (2.3)

where dM denotes the translational invariant measure in the space of N × N
hermitian matrices M = {Mij}N

i,j=1. The measure is normalized as

dM =
1

Vol[U(N)]

N∏

k=1

dMkk

2π

∏

k<j

2 dRe Mkj d Im Mkj (2.4)

where Vol[U(N)] =
∏N

k=1
(2π)k

k! is the volume of the unitary group. The inte-
grand depends on the matrix variable M only through its eigenvalues x1, ..., xN

and the integral (2.3) is actually reduced to

Z
N

=

∫ N∏

i=1

dxi e−V (xi)
∏

i<j

(xi − xj)
2, (2.5)

V (x) = −
∑

n≥0

tnxn
i . (2.6)

The “Dyson gas” (2.5) can be interpreted as the partition function of N two-
dimensional electric charges with repulsive logarithmic interaction, confined
by the potential V (x). The charges are restrained on the real axis due to the
hermiticity consition for the random matrix.

2.2 Collective field and saddle point equations in the large
N limit

When the number of charges is large, it makes sense to introduce the collective
field ρ(x) representing the (non-normalized) charge density

ρ(x) =
∑

i

δ(x − xi). (2.7)

In the thermodinamical limit N → ∞ the state of the Dyson gaz is described
by the classical density ρc(x), which is determined by the saddle point of the
integral (2.5).
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In order to write the saddle-point equations one should first get rid of the
constraint

∫
dxρ(x) = N , which can be done by introducing an additional

field, the lagrange multiplier α. Then the Coulomb gas integral (2.5) turns to
the functional integral1

Z
N

=

∫
Dρdα e−S(ρ,α) (2.8)

where the effective action S is given by

S[ρ, α] =

∫
dxρ(x)V (x)−

∫
dxdyρ(x)ρ(y) log |x−y|+α[

∫
dxρ(x)−N ]

(2.9)
The classical free energy is proportional to N2 and is equal to minus the saddle
point value of the effective action:

F ≡ logZ = −Sc. (2.10)

The saddle-point δS/δρ(x) = 0 give on the support of the eigenvalue den-
sity

2ϕc(x) = α if ρ(x) > 0 (2.11)

where

ϕc(x) = 1
2

∑

n≥0

tnxn +

∫ ∞

−∞
dx′ρc(x

′) log |x − x′|.

(2.12)

The function −2ϕc(z) considered in the complex plane is the effective ac-
tion for one eigenvalue in the mean field of the other eigenvalues, or the effec-
tive electric potential at the point z. The latter is a sum of the external potential
V (z) and the one produced by the charged eigenvalue liquid. The Laurent
expansion of the effective potential at infinity is

ϕc(z) = −1
2tnzn + N log z −

∑

n≥1

1
nWnz−n (2.13)

where Wn are the moments of the random matrix

Wn =

∫
dx xnρ(x) = ∂tnF . (2.14)

The electric charge N , the dipole charge W1 and the multipole charges
W2,W3, ... contain all the information about the charge distribution ρc(x).
The electric force

Hc(z) = ∂zϕc(z) = −1
2V (z) + W (z) (2.15)
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is a meromorphic function with a cut along the support of ρc.

Since the effective action (2.9) depends on N only through the term −αN ,
the the saddle point value of the lagrange multiplier gives the derivative of the
free energy with respect to the total charge:

∂NF = α. (2.16)

Thus the derivative of the free energy in N is given by the value of the effective
potential on the support of the eigenvalue density.

If the external potential V (x) has several local minima, the support of ρc

may consist of several intervals [a2k−1, a2k], k = 1, ..., p, associated with the
different potential wells and the total charge is distributed as

N =

p∑

k=1

Nk. (2.17)

In this case one should introduce a lagrange multiplier αk associated with the
number Nk of eigenvalues trapped in the k-th well and the last term in the
effective action (2.9) should be replaced by

p∑

k=1

αk

[∫ a2k

a2k−1

dxρ(x) − Nk

]
. (2.18)

The saddle-point equations then state that the effective potential (2.12) is con-
stant along each of the intervals [a2k−1, a2k] and its value there is equal to the
derivative of the the conditions

2ϕc(x) = αk, x ∈ [a2k−1, a2k] (2.19)

where
αk = ∂Nk

F . (2.20)

The free energy F
N

= logZ
N

is equal to (minus) the saddle point value of
the action. Once one knows the derivatives αk = ∂Nk

F and Wn = ∂nF (we
use the shorthand notation ∂n ≡ ∂/∂tn), the free energy is evaluated as

F
N

= −Sc = −1
2

∫
dxρc(x)V (x) + 1

2

∑

k

αkNk

= 1
2

∞∑

n=0

tnWn + 1
2

p∑

k=1

αkNk, (2.21)

The expression (2.21) for the free energy is equivalent to the differential con-
straint (

2 + N∂N −
∑

n

tn∂n

)
F = 0,
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which is a consequence of the scaling

FN (t0, t1, ...) = N2F0(
1
N t0,

1
N t1, ...) (2.22)

satisfied by the leading term in the large N expansion of the free energy.

2.3 Loop equations and Virasoro constraints

A more refined approach to solve the matrix model (2.3) is based is infinite set
of identities for the correlation functions of the collective field variable

W (z) =
N∑

i=1

1

z − xi
= tr

( 1

z − M

)
, (2.23)

known as loop equations. The loop equations hold for any value of N and allow
to calculate iteratively the coefficients of the 1/N expansion of any observable.

The loop equations are consequence of the translational invariance of the
integration measure in (2.5). By inserting the derivative ∂/∂xi into the integral
for the expectation value of the resolvent (2.23), one finds

〈 N∑

i=1

( ∂

∂xi
+ 2
∑

j(�=i)

1

xi − xj
+
∑

n≥0

ntnxn−1
i

) 1

z − xi

〉
= 0 (2.24)

where 〈 〉 means the average with respect to this partition function (2.5) .
Using the identity

∑

i

1

(z − xi)2
+ 2
∑

i�=j

1

z − xi

1

xi − xj
=
∑

i,j

1

z − xi

1

z − xj
(2.25)

(2.24) can be written as

〈
W 2(z) +

N∑

i=1

1

z − xi

∑

n≥0

ntnxn−1
i

〉
= 0. (2.26)

Expressed in terms of the collective field

ϕ(z) = −1
2V (z) +

N∑

i=1

ln(z − xi), (2.27)

the loop equations (2.26) take the elegant form
∮

∞

dz′

2πi

〈T (z) − T (z′)
z − z′

〉
= 0, T (z) = [∂ϕ(z)]2, (2.28)
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which is equivalent to the requirement that the expectation value of the observ-
able T (z) is an entire function of z.

The collective field ϕ(z) can be represented by a free chiral boson

〈 ϕ̂(z) 〉 = Z−1
N

ϕ̂(z) · Z
N

(2.29)

using the fact that the insertion of the operator trMn =
∑

i x
n
i is equivalent

to taking a partial derivative with respect to the coupling tn. The chiral boron
is a sum of a positive and negative frequency parts

ϕ̂(z) = ϕ̂+(z) + ϕ̂−(z), (2.30)

ϕ̂+(z) = ln z ∂0 −
∑

n≥1

z−n

n
∂n, ϕ̂−(z) = 1

2

∑

n≥0

tnzn (2.31)

which satisfy the the canonical commutation relation

[ϕ̂+(z), ϕ̂−(z′)] = 1
2 log

(
z − z′

)
(2.32)

and will play a key role in the following. We have replaced N by ∂0 = ∂/∂t0
in the definition (2.31), using the fact that the dependence on the coupling t0 is
trivial, ∂0ZN

= NZ
N

. Then the resolvent of the random matrix is represented
by the positive frequency part of the current ∂ϕ̃:

〈W (z)O1O2... 〉 = Z−1
N

∂zϕ̂+(z) · 〈 O1O2... 〉 ZN . (2.33)

From the point of view of the statistical mechanics of planar graphs, the field
ϕ̂+ is the loop insertion operator creating on the graph a boundary, or loop,
with boundary parameter z.

Expressed in terms of the chiral boson, the loop equation (2.26) states that
the singular at z = 0 part of the mode expansion of the energy-momentum
tensor

T̂ (z) = [∂ϕ̂(z)]2 = 1
2

∑

n∈Z

L̂n z−n−2 (2.34)

vanishes, which is equivalent to a set of linear differential constraints on the
partition function (2.3):

L̂n · Z
N

= 0 (n ≥ −1). (2.35)

Here L̂n are the Virasoro operators

L̂n =
n∑

k=0

∂

∂tk

∂

∂tn−k
+

∞∑

k=0

ktk
∂

∂tn+k
. (2.36)
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satisfying the algebra

[L̂m, L̂n] = (m − n)L̂m+n. (2.37)

The differential constraints (2.35) mean that the integral (2.3) as a function
of N and the coupling constants {t0, t1, t2, ...} realizes a highest weight repre-
sentation of the Virasoro algebra. Therefore the matrix model (2.3) is defines
a chiral CFT.

2.4 The classical solution as a hyperelliptic curve

The matrix model (2.3) can be considered as a zero-dimensional QFT with
Planck constant � = 1/N . In the classical, or dispersionless, limit � → 0 the
correlations of the collective field vanish and the collective field is a c-function

ϕc(z) = N lim
N→∞

1
N 〈ϕ(z) 〉 . (2.38)

We prefer to use the non-normalized quantities, which makes the formulas
look simpler. The Planck constant is thus encoded in the expectation value of
the collective field, which is of order N . The classical current Hc(z) = ∂ϕc

satisfies the classical loop equation

Tc ≡ ∂ϕ2
c(z) = {entire function of z} (2.39)

with general solution

Hc(z) ≡ ∂ϕc(z) = −M(z) y(z), (2.40)

where M(z) is an entire function of z and the function y(z) satisfies the
quadratic equation

y2 =

2p∏

k=1

(z − ak). (2.41)

Assuming that a1 < a2 < ... < a2p, the classical spectral density

ρc(x) = 1
2πi [Hc(x − i0) − Hc(x + io)] (2.42)

is supported by the intervals [a2k−1, a2k] where the Riemann surface of the
meromorphic function Hc(z) has cuts.

In this way each classical solution defines a hyperellyptic curve with equa-
tion (2.41), which is also known as spectral curve of the matrix model. The
hyperellyptic curve is characterized by a set of canonical A and B cycles
(Fig.1). The cycle Ak encircles the cut [a2k−1, a2k] and the cycle Bk encir-
cles the points a2k, ..., a2p−1, passing through the k-th and the p-th cuts. It
will be convenient to add also a p-th B-cycle passing through the p-th cut and
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Figure 1.

relating the points z = ∞ on the first and the second sheet of the Riemann
surface of Hc, so that for any k, j = 1, ..., p

Ak ◦ Bj = δk,j.

Another useful choice of the B-cycles is as

B̂k = Bk + Bp.

The cycle B̂k connects the infinite points on the first and the second sheets and
passes through the k-th cut.

The function M(z), which is polynomial for polynomial potential, and the
endpoints a2k−1 and a2k of the cuts are determined by the asymptotics

Hc(z) = −1
2

∑

n≥1

ntnzn−1 + Nz−1 + ... (2.44)

and the normalization conditions
∮

Ak

dz

2πi
Hc(z) = Nk, k = 1, ..., p, (2.45)

which mean that the filling numbers Nk are the electric charges associated with
the cycles Ak. The explicit expression for Hc(z) and M(z) are given by the
contour integrals

Hc(z) = −1
2

∮

∞

dz′

2πi

y(z)

y(z′)
∂V (z) − ∂V (z′)

z − z′
, (2.46)

(2.43)

The A and B cycles for a genus 2 spectral curve (p = 3).
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M(z) = −1
2

∮

∞

dz′

2πi

1

z − z′
∂V (z′)
y(z′)

. (2.47)

Expanding (2.46) in 1/z and using the asymptotics (2.44), one finds

∮

∞

dz

2πi

zk ∂V (z)

y(z)
= 0 (k = 0, ..., p − 1)

(2.48)

while the normalization conditions (2.4)C give

−
∮

Ak

dz

2πi
M(z) y(z) = Nk, k = 1, ..., p. (2.49)

We have seen that the filling numbers Nk, which give the ellectric charges
associated with the connected components of the eigenvalue distribution, are
associated with the A-cycles of the hyperellyptic curve (2.41). The variables
dual to the electric charges are given by the derivatives ∂F/∂Nk and are equal,
according to (2.19)-(2.20) , to the values of the effective potential ϕc at the cuts

ϕc(x) = 1
2

∂F
∂Nk

, x ∈ [2k − 1, 2k]. (2.50)

Integrating (2.50) to a distant cutoff point z = Λ on the upper and the lower
sheets, these conditions can be written in terms of contour integrals of the
classical current along the B̂-cycles:

∫

B̂k

Hc(z)dz = − ∂F
∂Nk

− N log Λ + 1
2∂V (Λ). (2.51)

The first term on the r.h.s. gives the quantum correction to the bare potential at
the point z = Λ. The identities (2.51) were extensively used in the application
of matrix models to N = 2 SYM developed by Dijkgraaf and Vafa.

Let us notice that the geometrical meaning of the derivatives of the observ-
abes in Nj , which describe the reaction of the system when one of the eigen-
values is sent to infinity, have more direct geometrical meaning in terms of the
hyperelliptic curve. For example, the derivatives of the current

∂NjHc(z) = ∂ωj/∂z (2.52)

form a basis of holomorphic abelian differentials dωj = dz∂zωj associated
with the cycles Ak. Indeed, (2.4)C imply

1
2πi

∮

Ak

dωj = δkj, k, j = 1, ..., p. (2.53)
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The p functions ∂ωk/∂z behave as 1/z at infinity and are completely deter-
mined by the positions a2k−1, a2k of the cuts. Their explicit form is

dωj(z) =

p∑

k=1

[A−1]jk dωk, dωk =
zk−1

y(z)
, (2.54)

where the matrix Ajk is given by

Ajk =

∮

Ak

dz

2πi

zj−1

y(z)
. (2.55)

The integrals of the holomorphic differentials dωj along the B-cycles give
the period matrix of the hyperelliptic curve

τkj =
1

2πi

∮

Bk

dωj (k, j = 1, ..., p − 1). (2.56)

The integrals along the infinite B̂ cycles can be considered as the period matrix
of the genus g = p − 1 hyperelliptic curve with two punctures at z = ∞ on
the upper and lower sheets

τ̂kj =
1

2πi

∮

B̂k

dωj (k, j = 1, ..., p). (2.57)

Then (2.51) means that the period matrix is given by the matrix of the second
derivatives of the free energy in the charges:

τ̂kj = − ∂2F
∂Nk∂Nj

. (2.58)

The one-cut solution (p = 1)
In this case the only abelian differential is (a1 = a, a2 = b)

∂NHc(z) = ∂zω =
1√

(z − a)(z − b)
, (2.59)

which is integrated to

ω(z) = 2 ln
√

z−a+
√

z−b√
b−a

. (2.60)

The effective potential is

∂Nϕ(z) = 1
2∂2

NF + ω(z) (2.61)

where we used that ω(b) = 0 and ∂Nϕ(b) = 1
2∂2

NF . Expanding at z → ∞
and comparing with (2.13) we find for the susceptibility (the second derivative
of the free energy in N )

∂2
NF = −2 log b−a

4 . (2.62)
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3. The hermitian matrix model as a chiral CFT

Instead of solving directly the Virasoro constraints (2.35), one can use appa-
ratus of the conformal field theory. The basic observation is that the matrix
model is a system of N free fermions associated with the N eigenvalues of
the random matrix. There are different fermionic representations of the ma-
trix integral depending on the choice of the fermionic wave functions. The
traditional representation is that of orthogonal polynomials [55, 22]. A more
natural one from the point of view of the conformal symmetry is based on a
two-component compex Neveu-Schwarz (i.e. periodic around the origin) chi-
ral fermion. In this way the formal solution of the loop equations will be given
in terms of a chiral fermion or, through bosonization, of a chiral bosonic field
with Liouville-like interaction, which is by its definition conformal invariant.

We will use the bosonic representation to explore the large N limit of the
operator solution of the loop equations through the conformal field theory and
reproduce the 1/N expansion for the free energy and the correlation func-
tions. The bosonic field can be considered as the collective field describing
the Dyson gas of eigenvalues. This field is defined on the complex plane cut
along the support of the spectral density. It can be considered as a theory
with boundary, which in turn can be described as a chiral CFT defined on the
corresponding hyperelliptic Riemann surface determined by the classical back-
ground (the spectral density in the thermodynamical limit). In this way the cuts
are replaced by local singularities, the branch points of the Riemann surface, to
which one associates twist operators. To satisfy the conformal invariance the
twist operators should be dressed to star operators. The spectral correlations
can be determined directly from the correlation functions of this bosonic field.

3.1 Neveu-Schwarz chiral fermions

Here we give the definition and the and basic properties of the free chiral
fermion with Neveu-Schwarz boundary condition at infinity. We will consider
a two-component fermion ψ(z) = {ψ(a)(z)}a=1,2 with energy-momentum
tensor

T (z) = −1
2

∑

a=1,2

ψ(a)∂ψ(a) . (3.63)

The chiral fermion is mode expanded in the local coordinate 1/z near z =
∞ as

ψ(a)(z) =
∑

r∈Z+ 1
2

ψ(a)
r z−r− 1

2 , ψ∗(a)(z) =
∑

r∈Z+ 1
2

ψ
∗(a)
r z−r− 1

2

(3.64)
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where the fermion modes satisfy the canonical anticommutation relations

[ψ(a)
r , ψ

∗(b)

r′ ]+ = δa,bδr+r′,0 (3.65)

with all other anticommutators equal to zero. The left and right NS vacuum
states are defined by the requirement that the fermion operators with r ≥ 1

2 an-
nihilate the right vacuum |0〉 and the fermion operators with r ≤ −1

2 annihilate
the left vacuum 〈0|. The corresponding normal ordering

ψ(a)
r ψ

∗(b)
s =: ψ(a)

r ψ
∗(b)
s : +〈0|ψ(a)

r ψ
∗(b)
s |0〉

consists in moving the fermions with positive index to the right. As a conse-
quence we have the following OPE:

ψ(a)(z)ψ∗(b) (z′) =: ψ(a)(z)ψ∗(b)(z′) : +
δa,b

z − z′
. (3.66)

The diagonal fermion currents have mode expansions

J (a)(z) =: ψ(a)(z)ψ∗(a)(z) :=
∑

n∈Z

z−n−1J (a)
n , (3.67)

where the amplitudes J (a)
n =

∑
r : ψ(a)

r ψ
∗(a)

−r+n : satisfy the commutation rela-
tions

[J (a)
m , J (b)

n ] = mδa,bδm+n,0

of the u(1) ⊗ u(1) current algebra. We will need the commutation relations
between current and fermion operators:

[J (a)
n , ψ(b)(z)] = znδa,bψ(b)(z),

[J (a)
n , ψ∗(b)(z)] = −znδa,bψ

∗(b)(z). (3.68)

Besides the Fock space vacuums of zeri charge |0〉 and 〈0| one can construct
vacuum states with u(1) × u(1) charge �N = {N (1) , N (2)}. These states are
eigenvectors of the operators H (a)

0 :

〈 �N |J (a)

0 = N (a)〈 �N |, J (a)

0 | �N〉 = N (a) | �N〉.

The four fermion bilinears ψ(a)ψ∗(b) generate a u(2) = su(2)×u(1) current
algebra. The su(2) subalgebra is generated by

H = 1
2(J (1) − J (2)), E+ = ψ(1)ψ∗(2) , E− = ψ(2)ψ∗(1) (3.69)

and the u(1) piece by
H̃ = 1

2(J (1) + J (2)). (3.70)
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We will be interested only in the case of zero u(1) charge, Ñ = 1
2(N (1) +

N (2)) = 0. Then the vacuum states are classified by the weight N = 1
2(N (1) −

N (2)) = N (1) = −N (2) of the su(2) cartan element H0:

〈N |Hn = δn,0N, Hn|N〉 = δn,0N (n ≥ 0)

while the operators E+ and E− raise and lower N by one unit. The left vacuum
state 〈N | of weight N is related to the vacuum with zero charge by

〈N | = 〈0|
N−1

2∏

r=
1
2

(ψ(2)
r ψ

∗(1)
r ) (3.71)

3.2 Fock space representation of the matrix model
partition function

It follows from the OPE (3.66) that the matrix element of a product of N
operators E+ between the left vacuum of charge N and the right vacuum of
charge 0 is equal to the square of the Vandermonde determinant:

〈
N
∣∣∣E+(z1)...E+(zn)

∣∣∣0
〉

= δn,N

∏

i<j

(zi − zj)
2. (3.72)

The r.h.s. is the probability measure in (2.5) with tn = 0.
The probability measure for arbitrary couplings tn will be constructed as a

deformation of the scalar product (3.72). First we write an intermediate for-
mula

Z
N

= 〈N |eQ
{t}
+ |0〉 (3.73)

with

Q
{t}
+ =

∫ ∞

−∞
dx e

P
n tnxn

E+(x),

(3.74)

which is an immediate consequence of (3.72). Then we represent the operator
(3.74) as a deformation of the “bare" operator

Q+ =

∫ ∞

−∞
dx E+(x) (3.75)

generated by the ‘hamiltonians’ Hn (n ≥ 1) representing the modes of the
su(2) cartan current

H(z) =
∑

n

Hn z−n−2. (3.76)
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The evolution along the ‘times’ tn(n ≥ 0) is governed by the operator

U{t} = exp




∑

n≥0

tnHn



 . (3.77)

Using the formulas for the ‘time’ evolution of the fermion operators

U{t} ψ(2)(z) U−1
{t} = e

1
2

P
n tnzn

ψ(2)(z),

U{t} ψ∗(1)(z) U−1
{t} = e

1
2

P
n tnzn

ψ∗(1)(z)

(3.78)

it is easy to show that (3.74) and (3.75) are related by the

Q
{t}
+ = U{t} Q+ U−1

{t} . (3.79)

Plugging this in (3.73) and using the fact that H (a)
n |N >= 0 for any n > 0, we

get the fermionic Fock space representation of the partition function (2.5) :

Z
N

= 〈N |U{t} eQ+ |0〉. (3.80)

3.3 CFT derivation of the Virasoro constraints

The Fock space representation of the partition function leads to a one-line proof
of the Virasoro constraints (2.35). The energy-momentum tensor (3.63) is a
sum of two commuting pieces associated with the ŝu(2) and û subalgebras,
T =: H2 : + : H̃2 :. It is sufficient to examine only the first term, since the
second one commutes automatically with E±. It is easy to see that the Virasoro
generators Ln defined by

: H2(z) := 1
2

∑

n∈Z

Lnz−n−2

commute with the operator (3.75) when n ≥ −1. Indeed, since the potential is
assumed to diverge as x → ±∞, the boundary terms of the integral

[Ln, Q+] =

∫ ∞

−∞
dx[Ln, E+(λ)] =

∫ ∞

−∞
dx

d

dx

(
xn+1E+(x)

)
(3.81)

can be neglected, and the result is zero. Therefore

〈N |U{t} : H2(z) : eQ+|0〉 = {regular function at z = 0}. (3.82)

The Virasoro constraints (2.35) are obtained by commuting Ln, n ≥ −1, with
U{t} and using the identities

[∂n, U{t}] = U{t}Hn, tnU{t} = [U{t},H−n].
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3.4 Fock space representation in terms of a free boson

The 2D bosonization formulas

ψ(a) =: eϕ(a)
:

ψ∗(a) =: e−ϕ(a)
:

(3.83)

give a representation of the partition function (2.5) in terms of a two-component
chiral boson ϕ(z) = {ϕ(a)(z)}a=1,2 with mode expansion at z = ∞

ϕ(a)(z) = q̂(a) + J (a)

0 ln z −
∑

n �=0

J (a)
n

n
z−n, (3.84)

[H (a)
m ,H (b)

n ] = nδa,bδn+m,0, [H (a)

0 , q̂(b) ] = δa,b. (3.85)

The four u(2) currents are represented in terms of the boson field as

J (a) = ∂ϕ(a) , E+ =: eϕ(1)−ϕ(2)
:, E− =: eϕ(2)−ϕ(1)

: (3.86)

where the bosonic normal ordering is defined in the usual way:

: J (a)
n J (a)

−n :=: J (a)

−nJ (a)
n := J (a)

−nJ (a)
n (n > 0)

and
: q̂(a)J (a)

0 : = : J (a)

0 q̂(a) := q̂(a)J (a)

0 .

The boson Fock space is generated by the oscillators with negative frequen-
cies applied to the vacuum vector |0〉 such that

J (a)
n |0〉 = 0 (n ≥ 0). (3.87)

The left vacuum 〈0| is similarly defined, with the normalization 〈0|0〉 = 1, and
the charged state 〈N | is constructed as

〈N | = 〈0|eN(q̂(1)−q̂(2)). (3.88)

Then the partition function is given by the same formula (3.80).

As the u(1) current H̃ decouples, the problem can be reformulated in terms
of a single bosonic field

φ = 1√
2
(ϕ(1) − ϕ(2)). (3.89)
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This field is the CFT realization of the free scalar boson (2.31) that appeared
through the loop equations. The components of the ŝu(2) current are expressed
in terms of the field φ as

H(z) = 1√
2

∂φ(z), E± =: e±
√

2φ :

(3.90)

which yields the bosonic realizations for the energy-momentum tensor

T (z) =
∑

n

Lnz−n−2 = 1
2 : ∂φ(z)∂φ(z) : (3.91)

the evolution operator (3.77)

U{t} = exp



 1√
2

∑

n≥0

tn

∮

∞

dz

2πi
zn∂zφ(z)



 (3.92)

and the “screening operator" Q+

Q+ =

∫ ∞

−∞
dx : e

√
2φ(x) : (3.93)

The current algebra is invariant under the discrete translations of of the field
ϕ(a) :

φ(a) → φ(a) + iπ or φ → φ + iπ
√

2 (3.94)

as well as the transformations

φ(1) ↔ φ(2) or φ → −φ. (3.95)

In this way the target space of the field φ is a Z2 orbifold compactified at
the self-dual radius Rs.d. = 1√

2
. The geometrical meaning of the orbifold

symmetry (3.95) will become clear when we consider the quasiclassical limit
of the bosonic field.

3.5 The observables of the matrix model in terms of CFT
fields

A complete set of observables in the matrix model is given by the joint distri-
bution probabilities for n eigenvalues (1 ≤ n ≤ N )

P (x1, ..., xn) =
(N − n)!

N !

〈 n∏

k=1

δ(xk − M
〉

(3.96)
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normalized as
∫

dx1...dxn P (x1, ..., xn) = 1. Using the fermionic represen-
tation (3.80) one can express the probabilities (3.96) as expectation values of
fermionic bilinears E+ = ψ∗(1)ψ(2) :

P (x1, ..., xn) =
(N − n)!

N !

〈
n∏

k=1

E+(xk)

〉
(3.97)

where by definition

〈O〉 =
〈N |U{t}OeQ+ |0〉
〈N |U{t}eQ+ |0〉 . (3.98)

In particular, the non-normalized spectral density is the expectation value of
the fermionic current

ρ(x) ≡ NP (x) = 〈ψ∗(1)(x)ψ(2)(x)〉 = 〈E+(x) 〉 . (3.99)

As in any free fermionic system, the expectation value in (3.97) is expressed
in terms of the two-point fermion correlator

K(x, x′) =
〈
ψ∗(1)(x)ψ(2)(x′)

〉
(3.100)

known as spectral kernel. This leads to the determinantal representation of the
joint eigenvalue probabilities:

P (x1, ..., xn) =
(N − n)!

N !
det n×nK(xi, xj). (3.101)

All the observables in the matrix models can be expressed through the fermionic
two-point function (3.100).

The second representation of P (λ1, ..., λn), which is the more convenient
one from the point of view of the perturbative 1/N expansion, is through the
correlators of the Cartan current H(z). The U(N)-invariant correlation func-
tions in the matrix model are obtained through the identification

2Tr [(z − M)−1] =
√

2 ∂φ+(z), (3.102)

where φ+(z) is the regular at z = ∞ part of the Laurent series of the operator
φ(z):

φ+(z) = −
√

2
∑ Hn

n
z−n, φ−(z) = φ(z) − φ+(z).

The consistency of the two representations is guaranteed by an infinite num-
ber of Ward identities. For example, using the operator product expansion for
the currents H and E+, one finds

H(z) eQ+ |0〉 =

∫ ∞

−∞

dx E+(x)

z − x
eQ+

∣∣∣0
〉
. (3.103)
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This equation is the operator counterpart of the representation of the expec-
tation value of the resolvent as a spectral integral

W (z) =

∫
dx

ρ(x)

z − x
.

4. Quasiclassical expansion: CFT on a hyperelliptic
Riemann surface

4.1 Quasiclassical expansion

In the limit N → ∞ the bosonic field develops a large (of order N ) vacuum
expectation value

ϕ(a)
c (z) = 〈ϕ(a)(z)〉

The classical currents
H (a)

c = ∂ϕ(a)
c (z)

solve the classical Virasoro constraints (2.39) and are given by the two branches
of the meromorphic function (2.40) . Circling around a branch point exchanges
H (1)(z) and H (2)(z). Therefore one can speak of a single field ϕ(z) defined
on the two-fold branched covering of the complex plane given by the hyper-
elliptic Riemann surface y2 =

∏2p
k=1(z − ak), the two sheets of which are

sewed along the p cuts [a2k−1, a2k]. The double-valued field ϕ(z) is holomor-
phic on the Riemann surface, ∂̄ϕ = 0.

The real part of the holomorphic function φ(z) is related to the effective
potential Γ(z, z̄) for an eigenvalue placed at the point z = x+iy in the complex
plane:

Γ(x, y) = −2Re ϕ(1)
c (x + iy). (4.104)

The effective potential Γ is a sum of the external potential V and the one cre-
ated by the classical distribution of the electric charges. It satisfies the Laplace
equation

∂∂̄Γ(x, y) = −2πρc(x) δ(y) (4.105)

with the boundary condition at infinity

Γ(x, y) = ReV (x + iy) − N ln(x2 + y2) + ...

As we have seen, the effective potential is constant along each connected com-
ponent [a2k−1, a2k] of the support of the eigenvalue density

Γ(x, 0) ≡ Γk = − ∂
∂Nk

F , x ∈ [a2k−1, a2k].

The fluctuations around the classical solution are small and the large N
expansion arises as the quasiclassical expansion in the collective QFT. The
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perturbative piece of the free energy FN = lnZN is given by

FN [V ] =
∞∑

g=0

N2−2gF (g)[V/N ]. (4.106)

As in any QFT there the 1/N expansion is asymptotic and should be corrected
by non-perturbative e−N terms. The 1/N expansion is also called genus ex-
pansion because the term F (g) represents the sum of all connected Feynman
diagrams of genus g.

The leading term is simply the action for for the classical bosonic field is,
according to (2.21),

N2F (0) =

∫
dxdx′ρ(x)ρ(x′) ln(λ − λ′) −

∫
dλρ(λ)V (λ)

= −1
2

p∑

k=1

NkΓk + 1
2

∑

n≥0

tnWn. (4.107)

The higher terms in the 1/N expansion can be determined from the confor-
mal invariance. The standard way is to write the loop equations (the Virasoro
constraints) and solve them order by order in the genus expansion. Alterna-
tively one can construct perturbatively the operator solution of the Virasoro
constraints on the background given by the classical solution.

4.2 The two-point correlator of the resolvent for the
one-cut solution

We would like to calculate the connected correlation function of the resolvent

W (z, z′) =

〈
Tr

1

z − M
Tr

1

z′ − M

〉
. (4.108)

where 〈 〉 means expectation value in the matrix model. This correlator is
given, up to a sign, by the correlation function of the two branches of the
current H(z) = ∂ϕ(z) associated with the upper and the lower sheet:

W (z, z′) = 1
2〈∂φ+(z)∂φ+(z′)〉

= 1
2

(
〈∂φ(z)∂φ(z′)〉 − 1

(z − z′)2

)
.

= −
〈

∂ϕ(1)(z)∂ϕ(2)(z′)
〉

c
. (4.109)

The correlator for the resolvent of the matrix model In order to evaluate (4.109)
, we need the expression for the two-point correlator of the gaussian field φ(z)
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defined on the Riemann surface with a cut along the interval [a, b]. We will
perform a conformal transformation to the uniformization variable ω

ω(z) = 2 ln
√

z−a+
√

z−b√
b−a

, z = 1
2 [a + b + (b − a)coshω], (4.110)

calculate the correlator (4.109) in the ω-space ans then transform the expres-
sion back to the z space.

The Riemann surface of y(z) is mapped to the cylinder ω ≡ ω + 2πi. The
first sheet is mapped to Re ω > 0 and the second one to Reω < 0. The
contour going along the two edges of the cut are mapped to the circle [−iπ, iπ].
The branched points become the fixed points ω = 0 and ω = ±iπ of the Z2

symmetry ω → −ω. Thus ϕ(2)(ω) = ϕ(1)(−ω).
The two-point function for the field ϕ(ω) on the Riemann surface of y(z)

is defined uniquely by its short-distance singularity ϕ(ω)ϕ(ω′) ≈ log(ω − ω′)
and the periodicity:

〈
ϕ(ω)ϕ(ω′)

〉
c
= ln

(
2sinh

ω − ω′

2

)
. (4.111)

The correlator of the field ϕ(z) is obtained from (4.111) by substituting ω =
ω(z) and ω′ = ω(z′). Therefore

W (z, z′) = − ∂2

∂z∂z′
ln

(
2sinh

ω + ω′

2

)
. (4.112)

Integrating in z and z′ we get

〈
Tr log(z − M)Tr log(z′ − M)

〉
c
= − ln

(
2sinh

ω + ω′

2

)
+

ω + ω′

2
= log

1

1 − e−ω−ω′

(4.113)

where the integration constants are fixed so that the correlation functions van-
ishes when one of its arguments goes to infinity. In terms of the spectral pa-
rameters z and z′

〈
tr log(z − M) tr log(z′ − M)

〉
c
= − log

(
2

√
(z − a)(z′ − b) +

√
(z − b)(z′ − a)

(
√

z − a +
√

z − b)(
√

z′ − a +
√

z′ − b)

)

(4.114)

Differentiating twice we find the correlation function of the resolvent

〈
tr

1

z − M
tr

1

z′ − M

〉

c

=

√
(z−a)(z′−b)√
(z−b)(z′−a)

+

√
(z′−a)(z−b)√
(z′−b)(z−a)

− 2

4(z − z′)2
.

(4.115)

479



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

4.3 The quasiclassical expression for the spectral kernel

The quasiclassical evaluation of the spectral kernel can be done as well, but
in this case it is not so easy to control the approximation. Again we split the
bosonic field ϕ into a classical and quantum parts and consider the quantum
part as a free field on the Riemann surface. The kernel (3.100) is expressed in
the free field approximation as a correlation function of vertex operators

K(λ, µ) = 〈: eϕ(1) (x) : : e−ϕ(2) (y) :〉. (4.116)

First we will calculate the correlation function

G(z, z′) = 〈: eϕ(z) : : e−ϕ(z′) :〉 (4.117)

for arbitrary complex arguments. Again we perform a conformal transforma-
tion to the ω variable

G(z, z′)
(

dz

dω

dz′

dω′

)1/2

=
eϕc(z)−ϕc(z′)

2sinhω−ω′

2

(4.118)

where dz
dω = b−a

2 sinhω. This correlation function is related to this of the
bosonic field (up to 1/N terms in the exponent)

G(z, z′) =
1

b − a

eϕc(z)−ϕc(z′)

sinhω−ω′

2

√
sinhωsinhω′ = e〈ϕ(z) 〉−〈ϕ(z′) 〉+1

2〈 [ϕ(z)+ϕ(z′)]2 〉

In terms of the original variables z and z′

G(z, z′) =
b − a

2

eϕc(z)−ϕc(z′)

(√
(z − a)(z′ − b) −

√
(z − b)(z′ − a)

)
[(z − b)(z′ − a)(z − a)(z′ − b)]1/4

(4.119)

The kernel K(x, x′) is defined on the cut [a, b] as the average over the four
values of this function on both sides of the cut [a, b]

K(x, x′) =
1

4πi

∑

ε,ε′=±
G(x + iε0, x′ + iε′0). (4.120)

(The average should be taken because of the ambiguity due to presence of the
cut; this ambiguity of G appears only in the large N limit.) One finds explicitly,
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for x, x′ ∈ [a, b]

K(x, x′) =
1

2π

sin Im
“

ϕc(x)−ϕc(x′)
i

”

√
(x−a)(b−x′)−

√
(b−x)(x′−a)

+
cos Im

“
ϕc(z)+ϕc(z′)

i

”

√
(x−a)(b−x′)+

√
(b−x)(x′−a)

[(x − a)(b − x)(x′ − a)(b − x′)]1/4
.

(4.121)

This expression coinsides with the one obtained in [23] and in [24, 25] by
solving the appropriate loop equations.

When x, x′ ∈ [a, b] and x−x′ ∼ 1/N , then ϕ(x)−ϕ(x′) = −iπ
∫ x
x′ ρ(ξ)dξ

and one obtains, neglecting the second term which strongly oscillates with
x + x′, the well known short distance behavior

K(x, x′) =
sin[πN(x − x′)ρ(x+x′

2 ])

π(x − x′)
. (4.122)

Here it is assumed that x is not too close to the branch point. In the case when
one of the arguments is outside the eigenvalue interval, the exponent is real and
negative and the spectral kernel decays rapidly.

4.4 Twist and star operators

The operator construction is technically equivalent to solving the loop equa-
tions in the vicinity of a branch point, which has been exploited in the early
90’s to find an operator solution for the pure 2d quantum gravity [11] . It is
analogous to the solution of the loop equations using the ‘method of moments’
[8].

Consider the bosonic current H(z) = 1√
2
∂φ(z) near a branch point at z = a

around which the current changes sign. The mode expansion near the branch
point goes in the half-integer powers of z − a:

∂φ(z) = ∂φc(z) +
∑

r∈Z+
1
2

αr(z − ai)
−r−1. (4.123)

where
[αr, αs] = rδr+s,0 (4.124)

and he right Fock vacuum |0a〉 and its conjugated 〈0a| are defined by

αr|0a〉 = 〈0a|α−r = 0 (r > 0). (4.125)

The expansion of the classical current is

∂φc(z) =
∑

r≥1
2

µr(ak) · (z − ak)
r−1. (4.126)
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This defines the coefficients µr(ak). For example, µ3/2(ak) is related to the
polynomial M(z) in (2.40) by

µ3/2(ak) = −
√

2 M(ak)
∏

j(�=k)

(ak − aj)
1/2.

The vacuum state |0a〉 can be thought of as the result of the action of a twist
operator of dimension 1

16 on the SL(2)-invariant vacuum2 :

|0a〉 = σ(a)|0a〉.

Thus instead of thinking of ϕ(x) as a field living on the hyperelliptic Riemann
surface, we can also think of it on the complex z-plane in the presence of 2p
twist operators σ(ak) associated with the branch points ak.

We have to look for an operator which creates a conformally invariant state
near the branch point. The twist operator itself does not satisfy all the Virasoro
constraints, in particular it does not satisfy L−1 and L0. Therefore we will look
for a new operator which satisfies all constraints. Such operators are called star
operators [31] , and they are constructed from the modes of the twisted bosonic
field near the branch point.

4.5 Evaluation of the term F (1) for a multicut
background

Up to 1/N2 correction one finds simply an extra multiplicative factor

S(ai) =
[
µ3/2(ai)

]−1/24
σ(ai). (4.127)

This factor compensates the anomaly of the constraint L0 associated with the
dimension 1

16 of the twist operator. Therefore with this accuracy

Z
N

= eN2F(0) 〈S(a1) . . . S(a2p)〉 = eN2F(0)

(
2p∏

k=1

µ 3
2
(ak)

)− 1
24

Ztwist

(4.128)
where Ztwist is the correlation function of 2p twist operators

Ztwist = 〈σ(a1) . . . σ(a2p)〉 = (det A)−1/2
∏

k<j

(ak − aj)
−1/8

Thus we obtain for the genus one free energy

F (1) = − 1

24

2p∑

k=1

ln µ 3
2
(ak) − 1

2 det A − 1

8

∑

k<j

(ak − aj) (4.129)
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The same expression is found by solving directly the loop equations [8, 32].
Thus we get up to 1/N2 terms

Z
N

= e
1
2

P
tnWn+iπN ·τ ·N ( det A)−

1
2

2p∏

j<k

(aj − ak)
− 1

8 . (4.130)

Using the identity

det Aij = θ2[0](0|τ)




p∏

j,l=1

(a2j−1 − a2l−1)(a2j − a2l)




−1/2

where θ[0](u|τ) =
∑

m∈Zp eiπm·τ ·m+2πim·u is the theta function on the Rie-
mann surface with zero characteristics, we write this in the form (see eq. (3.32)
of [21])

F (1) = − 1

24

2p∑

k=1

ln µ 3
2
(ak)+

1

8
log

(
det kj

[
1

a2k−1 − a2j

])
− log θ[0](0|τ).

Note that Ztwist is is equal to the chiral determinant of a c = 1 free boson
CFT on the Riemann surface. The full partition function of the free field is
given by

det−1/2∆ = det−1/2(τ − τ̄) |Ztwist|2

where ∆ id the Laplace operator on the Riemann surface. Here the period
matrix is of rang p and corresponds to a genus p curve with an extra handle
associates with a pinched cycle at z = ∞.

5. Generalization to chains of random matrices

The most natural generalization of the CFT construction is given by the
ADE matrix models [33] , which were introduced as a nonperturbative mi-
croscopic realization of the rational string theories with C < 1. Each one of
these models is associated with a rank r classical simply laced Lie algebra (that
is, of type Ar,Dr, E6,7,8) or its affine extension, and represents a system of r
coupled random matrices.

Here we will discuss only the models of the A-series, for which there exists
a simple fermionic representation. The model associated with Ar = su(r + 1)
represents a chain of r Hermitian matrices Ma of size Na × Na (a = 1, ..., r),
interacting by means of r − 1 auxiliary gauge-field-like rectangular complex
matrix variables Aã (ã = 1, ..., r − 1) of size Nã × Nã+1. In this way the
Ma and Aã are associated respectively with the nodes and the links of the
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Dynkin diagram of Ar . The partition function of the matrix chain is given by
the following integral

Z �N [�V ] =

∫ ∏ r∏

a=1

dMa e− tr V a(Ma)

∫ r−1∏

ã=1

dAãdA
†

ãe
− tr AãA

†

ãMã− tr A
†

ãAãMã+1 .

(5.131)
After integrating with respect to the A-matrices and the angular variables of
the M -matrices, the partition function reduces to an integral with respect of
the eigenvalues xai, i = 1, ..., Na, of the hermitian matrices Ma

Z �N [�V ] =

∫ r∏

a=1

∏

i

dxai e−
P

i V a(xai)
∏

i<j

(xai−xaj)
2

r−1∏

ã=1

∏

i,j

1

(xãi + xã+1,j)
.

(5.132)
Remark: the integral with respect to the A-matrices exists only if all eigenval-
ues of the matrices Ma are positive. This can be achieved by an appropriate
choice of the potential. We will thus assume that the integration is restricted to
the positive real axis xa > 03.

Let C+ be a contour representing the boundary of the half-plane Re z > 0.
Using the fact that the eigenvalue integration is restricted to the positive real
axis, we can write the following loop equations for each a

〈
Wa(z)2 +

∮

C+

dz′

2πi

1

z − z′
W (z′)

[∑

b

GabWb(−z′) − ∂zV
a(z)
]〉

N,t
= 0.

(5.133)
The representation of this integral as a Fock space expectation value is a

generalization of the su(2) construction of Sect.3. Now we consider r + 1
fermion fields ψ(a)(z), a = 1, ..., r + 1, whose modes in the expansion sat-
isfy the anticommutation relations [ψ(a)

r , ψ∗(b)

s ]+ = δrsδab, so that the bilin-
ears J (a)(z) =: ψ∗(a)(z)ψ(a)(z) :, J+

a (z) = ψ∗(a)(z)ψ(a+1)(−z) and J−
a (z) =

ψ∗(a+1)
(z)ψ(a)(−z) generate an algebra related to the u(r+1) current algebra4.

As before, the u(1) current J̃ = 1
r+1

∑
a J (a) completely decouples so that

the Cartan currents of su(r) are given by the differences Ja(z) = J (a)(z) −
J (a+1)(−z).

Let us express the potentials V a(z) as differences V a(z) = V (a)(z) −
V (a+1)(−z), and define the Hamiltonians H (a) [V (a) ] =

∮
dz
2πiV

(a)(z)J (a)(z).
It is easy to see that the partition function (5.132) can be written similarly to
(3.80) as

ZN [�V ] = 〈�l|
r+1∏

a=1

eH(a) [V (a) ]
r∏

a=1

eQ+
a |0〉, (5.134)
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where the vacuum state of charge �l = (l
(1)

, ..., l(r+1)) is defined by mnfio
with l

(a+1) − l(a) = 2Na, and the "screening operators" are given by Q+
a =∫∞

0 dx [J (a)(z) − J (a+1)(−z)].
The bosonic representation is obtained according to (3.83) in terms of the

r+1 bosonic fields ϕ(a) , a = 1, ..., r+1. They are split into r fields associated
with the with the su(r) and the u(1) parts

φa(z) = ϕ(a)(z)−ϕ
(r+1)

(−z) (a = 1, ..., r), φ̃(z) =
1

r + 1

∑

a

ϕ(a)((−)a−1z).

(5.135)
It is convenient to define another set of fields φa by

φa(z) = 2φa(z) −
∑

b

Gabφb(−z) (5.136)

where Gab = (�αa · �αb) is the adjacency matrix of the Ar Dynkin diagram. The
fields φa and φa are related as the contravariant and covariant components of a
vector field in the base of the simple roots �αa of the su(r). Note however the
reflection z → −z in the second term of (5.135)n.

If we define in a similar way the covariant components Va of the potential
by

V a(z) = 2Va(z) −
∑

b

GabVb(−z) (5.137)

then

φa(z) = −Va(z) + Wa(z), Wa(z) =

Na∑

i=1

1

z − xai
. (5.138)

The loop equations (5.133) read, in terms of the contravariant components φa

〈∫

C+

dz′

z − z′
[∂φa(z′)]2

〉
= 0 (a = 1, ..., r). (5.139)

The Riemann surface defined by the classical solution represents an (r + 1)-
fold covering of the complex plane which has in the simplest case two cuts
[a, b] and [−b,−a] on the real axis (0 < a < b). The fields ϕ(a) represent
the values on the different sheets of a single meromorphic field ϕ(z). The
quasiclassical expressions for the correlation functions and the free energy are
obtained by introducing 2r twist operators

σ+
k [(−)ka] =: e

1
2
φk[(−)ka] : , σ−

k [(−)kb] =: e−
1
2
φk[(−)kb] :

(5.140)

associated with the points ±a,±b. In the limit a → 0, b → ∞ the r twist
operators located at the points b and −b merge into a Zr twist operator at the
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origin while the rest form a Zr twisted boundary condition at infinity. In this
case the bosonic description is given by the Zn twisted field considered in refs.
[11] .

Notes

1. This representation of the functional integral is actually true only in the large N limit.

2. The notion of a twist operator and the description of the gaussian field on a Riemann surface in
terms of twist operators has been first introduced by Al. Zamolodchikov [21] and Dixon at al [26] (see also
[27–30] ).

3. Another way to achieve this is to take Ma = BaB†
a where Ba are complex Na × Na matrices.

4. The difference originates in the minus sign in the definition of the currents J±
a corresponding to the

simple roots of u(r + 1).
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1. Introduction

Random matrices play an important role in physics and mathematics [28, 19,
6, 14, 25, 34, 13]. It has been observed more and more in the recent years how
deeply random matrices are related to integrability (τ -functions), and algebraic
geometry.

Here, we consider the computation of large n asymptotics for orhogonal
polynomials as an example of a problem where the concepts of integrability,
isomonodromy and algebraic geometry appear and combine.

The method presented here below, is not, to that date, rigorous mathemat-
icaly. It is based on the asumption that an integral with a large number of
variables can be approximated by a saddle-point method. This asumption
was never proven rigorously, it is mostly based on “physical intuition”. How-
ever, the results given by that method have been rigorously proven by another
method, namely the Riemann–Hilbert method [7, 8, 11, 12]. The method pre-
sented below was presented in many works [17, 16, 2, 20, 18].

2. Definitions

Here we consider the 1-Hermitean matrix model with polynomial potential:

ZN :=
∫

HN

dM e−Ntr V (M)

=
∫

RN

dx1 . . . dxN (∆(x1, . . . , xN ))2
N∏

i=1

e−NV (xi) (2-1)
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where ∆(x1, . . . , xN ) :=
∏

i>j(xi − xj), and the xi’s are the eigenvalues of
the matrix M , and V (x) is a polynomial called the potential:

V (x) =
deg V∑
k=0

gkx
k (2-2)

Remark 2.1 All the calculations which are presented below, can be ex-
tended to a more general setting, with no big fundamental changes:

- one can consider V ′(x) any rational fraction [3] instead of polynomial, in
particular one can add logarithmic terms to the potential V (x).

- one can consider arbitrary paths (or homology class of paths) of integra-
tions ΓN insteaf of R

N , in particular finite segments [1] ...
- one can study non hermitean matrix models [20], where the Vandermonde

∆2 is replaced by ∆β where β = 1, 2, 4.
- one can consider multi-matrix models, in particular 2-matrix model [2,

17, 16].

3. Orthogonal polynomials

Consider the family of monic polynomials pn(x) = xn + O(xn−1), defined
by the orthogonality relation:∫

R

pn(x)pm(x)e−NV (x)dx = hnδnm (3-3)

It is well known that the partition function is given by [30]:

ZN = N !
N−1∏
n=0

hn (3-4)

Such an orthogonal family always exists if the integration path is R or a sub-
set of R, and if the potential is a real polynomial. In the more general setting,
the orthogonal polynomials “nearly always” exist (for arbitrary potentials, the
set of paths for which they don’t exist is enumerable).

We define the kernel:

K(x, y) :=
N−1∑
n=0

pn(x)pn(y)
hn

(3-5)

One has the following usefull theorems:

Theorem 1 Dyson’s theorem [15]: any correlation function of eigenvalues,
can be written in terms of the kernel K:

ρ(λ1, . . . , λk) = det(K(λi, λj)) (3-6)
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Thus, if one knows the orthogonal polynomials, then one knows all the corre-
lation functions.

Theorem 2 Christoffel-Darboux theorem [30, 32]: The kernel K(x, y) can
be written:

K(x, y) = γN
pN (x)pN−1(y) − pN (y)pN−1(x)

x − y
(3-7)

Thus, if one knows the polynomials pN and pN−1, then one knows all the
correlation functions.

Our goal now, is to find large N ”strong” asymptotics for pN and pN−1, in
order to have the large N behaviours of any correlation functions.

Notation: we define the wave functions:

ψn(x) :=
1√
hn

pn(x) e−
N
2

V (x) (3-8)

they are orthonormal: ∫
ψn(x)ψm(x) = δnm (3-9)

4. Differential equations and integrability

It can be proven that (ψn, ψn−1) obey a differential equation of the form
[9, 7, 30, 33, 5]:

− 1
N

∂

∂x

(
ψn(x)

ψn−1(x)

)
= Dn(x)

(
ψn(x)

ψn−1(x)

)
(4-10)

where Dn(x) is a 2 × 2 matrix, whose coefficients are polynomial in x, of
degree at most deg V ′. (In case V ′ is a rational function, then D is a rational
function with the same poles).

(ψn, ψn−1) also obeys differential equations with respect to the parameters
of the model [7, 5], i.e. the coupling constants, i.e. the gk’s defined in 2-2:

1
N

∂

∂gk

(
ψn(x)

ψn−1(x)

)
= Un,k(x)

(
ψn(x)

ψn−1(x)

)
(4-11)

where Un,k(x) is a 2 × 2 matrix, whose coefficients are polynomial in x, of
degree at most k.

It is also possible to find some discrete recursion relation in n (see [5]).

The compatibility of these differential systems, i.e. ∂
∂x

∂
∂gk

= ∂
∂gk

∂
∂x , ∂

∂gj

∂
∂gk

= ∂
∂gk

∂
∂gj

, as well as compatibility with the discrete recursion, imply
integrability, and allows to define a τ -function [27, 5].
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We define the spectral curve as the locus of eigenvalues of Dn(x):

En(x, y) := det(y1 −Dn(x)) (4-12)

Remark 4.1 In the 1-hermitean-matrix model, Dn is a 2×2 matrix, and thus degyEn(x, y)
= 2, i.e. the curve En(x, y) = 0 is an hyperelliptical curve. In other matrix models, one gets
algebraic curves which are not hyperelliptical.

Remark 4.2 What we will se below, is that the curve EN (x, y) has a large N limit
E(x, y), which is also an hyperelliptical curve. In general, the matrix DN (x) has no large
N limit.

5. Riemann-Hilbert problems and isomonodromies

The 2 × 2 system DN has 2 independent solutions:

− 1
N

∂

∂x

(
ψn(x)

ψn−1(x)

)
= Dn(x)

(
ψn(x)

ψn−1(x)

)
,

− 1
N

∂

∂x

(
φn(x)

φn−1(x)

)
= Dn(x)

(
φn(x)

φn−1(x)

)
(5-13)

where the wronskian is non-vanishing: det
(

ψn(x) φn(x)
ψn−1(x) φn−1(x)

)
�= 0.

We define the matrix of fundamental solutions:

Ψn(x) :=
(

ψn(x) φn(x)
ψn−1(x) φn−1(x)

)
(5-14)

it obeys the same differential equation:

− 1
N

∂

∂x
Ψn(x) = Dn(x) Ψn(x) (5-15)

Here, the second solution can be constructed explicitely:

φn(x) = e+N
2

V (x)

∫
dx′

x − x′ ψn(x′)e−
N
2

V (x′) (5-16)

Notice that φn(x) is discontinuous along the integration path of x′ (i.e. the real
axis in the most simple case), the discontinuity is simply 2iπψn(x). In terms
of fundamental solutions, one has the jump relation:

Ψn(x + i0) = Ψn(x − i0)
(

1 2iπ
0 1

)
(5-17)

Finding an invertible piecewise analytical matrix, with given large x behav-
iours, with given jumps on the borders between analytical domains, is called a
Riemann–Hilbert problem [7, 8, 4].
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It is known that the Riemann–Hilbert problem has a unique solution, and
that if two R-H problems differ by ε (i.e. the difference between jumps and
behaviours at ∞ is bounded by ε), then the two solutions differ by at most
ε (roughly speeking, harmonic functions have their extremum on the bound-
aries). Thus, this approach can be used [7, 11, 12] in order to find large N
asymptotics of orthogonal polynomials: The authors of [7] considered a guess
for the asymptotics, which satisfies another R-H problem, which differs from
this one by O(1/N).

Notice that the jump matrix in 5-17 is independent of x, of n and of the
potential, it is a constant. The jump matrix is also called a monodromy, and
the fact that the monodromy is a constant, is called isomonodromy property
[27].

Consider an invertible, piecewise analytical matrix Ψn(x), with appropri-
ate behaviours1 at ∞, which satisfies 5-17, then, it is clear that the matrix
− 1

N Ψ′
n(x)(Ψn(x))−1, has no discontinuity, and given its behaviour at ∞, it

must be a polynomial. Thus, we can prove that Ψn(x) must satisfy a differ-
ential system Dn(x) with polynomial coefficients. Similarly, the fact that the
monodromy is independent of gk and n implies the deformation equations, as
well as the discrete recursion relations.

Thus, the isomonodromy property, implies the existence of compatible dif-
ferential systems, and integrability [6, 24, 26, 27, 33, 5].

6. WKB–like asymptotics and spectral curve

Let us look for a formal solution of the form:

ΨN (x) = AN (x) e−NT (x)BN (6-18)

where T (x) = diag(T1(x), T2(x)) is a diagonal matrix, and BN is indepen-
dent of x. The differential system DN (x) is such that:

DN (x) = − 1
N

Ψ′
NΨ−1

N = AN (x)T ′(x)A−1
N (x) − 1

N
A′

N (x)A−1
N (x)

= AN (x)T ′(x)A−1
N (x) + O(

1
N

) (6-19)

this means, that, under the asumption that AN (x) has a large N limit A(x),
T ′

1(x) and T ′
2(x) are the large N limits of the eigenvalues of DN (x).

With such an hypothesis, one gets for the orthogonal polynomials:

ψN (x) ∼ A11e−NT1(x)B1,1 + A12e−NT2(x)B2,1 (6-20)

We are now going to show how to derive such a formula.
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7. Orthogonal polynomials as matrix integrals

7.1 Heine’s formula

Theorem 3 Heine’s theorem [32]. The orthogonal polynomials p − n(x)
are given by:

pn(ξ) =
∫

dx1 . . . dxN
∏N

i=1(ξ − xi) (∆(x1, . . . , xN ))2
∏N

i=1 e−NV (xi)∫
dx1 . . . dxN (∆(x1, . . . , xN ))2

∏N
i=1 e−NV (xi)

= 〈det(ξ1 − M)〉 (7-21)

i.e. the orthogonal polynomial is the average of the characteristic polynomial
of the random matrix.

Thus, we can define the orthogonal polynomials as matrix integrals, similar
to the partition function Z define in 2-1.

7.2 Another matrix model

Define the potential:

Vh(x) := V (x) − h ln (ξ − x) (7-22)

and the partition function:

Zn(h, T ) := e−
n2

T2 Fn(h,T ) :=
∫

dx1 . . . dxn (∆(x1, . . . , xn))2
n∏

i=1

e−
n
T

Vh(xi)

(7-23)
i.e. ZN (0, 1) = Z is our initial partition function.

Heine’s formula reads:

pn(ξ) =
Zn( 1

N , n
N )

Zn(0, n
N )

= e−N2(Fn( 1
N

, n
N

)−Fn(0, n
N

)) (7-24)

The idea, is to perform a Taylor expansion in h close to 0 and T close to 1.

Taylor expansion. We are interested in n = N and n = N − 1, thus
T = n

N = 1+ n−N
N = 1+O(1/N) and h = 0 or h = 1/N , i.e. h = O(1/N):

T = 1 + O(1/N) , h = O(1/N) (7-25)

Roughly speaking:
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where all the derivatives are computed at T = 1 and h = 0.

Topological expansion. Imagine that Fn has a 1/n2 expansion of the form:

F = F (0) +
1
n2

F (1) + O(
1
n3

) (7-27)

where all F (0) and F (1) are analytical functions of T and h, than one needs
only F (0) in order to compute the asymptotics 7-26.

Actualy, that hypothesis is not always true. It is wrong in the so called
”mutlicut” case. But it can be adapted in that case, we will come back to it in
section 11.2. For the moment, let us conduct the calculation only with F (0).

8. Computation of derivatives of F (0)

We have defined:

Zn(h, T ) = e−
n2

T2 Fn(h,T ) =
∫

dMn×ne−
n
T

tr V (M) eh n
T

ln (ξ−M) (8-28)

this implies that:

−n2

T 2

∂Fn

∂h
=

〈n

T
tr ln (ξ − M)

〉
Vh

(8-29)

i.e.

∂Fn

∂h
= −T

n
〈tr ln (ξ − M)〉Vh

(8-30)

It is a primitive of −T
n 〈tr ln (x − M)〉Vh

, which behaves as −T
n lnx+O(1/x)

at large x. Therefore, we define the resolvent W (x):

W (x) :=
T

n

〈
tr

1
x − M

〉
Vh

(8-31)

Notice that it depends on ξ through the potential Vh, i.e. through the average
< . >. And we define the effective potential:

Veff(x) = Vh(x) − 2T lnx − 2
∫ x

∞
(W (x′) − T

x′ )dx′ (8-32)

which is a primitive of V ′
h(x) − 2W (x). Thus , we have:

∂Fn

∂h
=

1
2

(Veff(ξ) − Vh(ξ)) (8-33)
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We also introduce:

Ω(x) :=
∂W (x)

∂T
, ln Λ(x) := lnx+

∫ x

∞
(Ω(x′)− 1

x′ )dx′ = −1
2

∂

∂T
Veff(x)

(8-34)

H(x, ξ) :=
∂W (x)

∂h
, lnH(ξ) :=

∫ ξ

∞
H(x′, ξ)dx′ (8-35)

i.e.
∂2Fn

∂h2
= − lnH(ξ) ,

∂2Fn

∂h∂T
= − ln Λ(ξ) (8-36)

With these notations, the asymptotics are:

ψn(ξ) ∼
√

H(ξ) (Λ(ξ))n−N e−
N
2

Veff(ξ) (1 + O(1/N)) (8-37)

Now, we are going to compute W , Λ, H , etc, in terms of geometric proper-
ties of an hyperelliptical curve.

Remark 8.1 This is so far only a sketch of the derivation, valid only in the 1-cut case. In
general, Fn has no 1/n2 expansion, and that case will be addressed in section 11.2.

Remark 8.2 These asymptoics are of the form of 6-18 in section.6, and thus, 1
2
V ′(x) −

W (x) is the limit of the eigenvalues of DN (x).

9. Saddle point method

There exists many ways of computing the resolvent and its derivatives with
respect to h, T , or other parameters. The loop equation method is a very good
method, but there is not enough time to present it here. There are several
saddle-point methods, which all coincide to leading order. We are going to
present one of them, very intuitive, but not very rigorous on a mathematical
ground, and not very appropriate for next to leading computations. However,
it gives the correct answer to leading order.

Write:

Zn(h, T ) = e−
n2

T2 Fn(h,T ) =
∫

dx1 . . . dxne
− n2

T2 S(x1,...,xn) (9-38)

where the action is:

S(x1, . . . , xn) :=
T

n

n∑
i=1

Vh(xi) − 2
T 2

n2

∑
i>j

ln (xi − xj) (9-39)

The saddle point method consists in finding configurations xi = xi where
S is extremal, i.e.

∀i = 1, . . . n,
∂S
∂xi

∣∣∣∣
xj=xj

= 0 (9-40)
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i.e., we have the saddle point equation:

∀i = 1, . . . n, V ′
h(xi) = 2

T

n

∑
j �=i

1
xi − xj

(9-41)

The saddle point approximation2 consists in writting:

Zn(h, T ) ∼ 1√
det

(
∂S

∂xi∂xj

) e−
n2

T2 S(x1,...,xn) (1 + O(1/n)) (9-42)

where (x1, . . . , xn) is the solution of the saddlepoint equation which mini-
mizes "S.

Remark 9.1 The saddle point equation may have more than one minimal solution (x).
- in particular if ξ ∈ R, there are two solutions, complex conjugate of each other.
- in the multicut case, there are many saddlepoints with near-minimal action.
In all cases, one needs to sum over all the saddle points. Let us call {x}I , the collection of

saddle points. We have:

(9-43)

Each saddle point {x}I corresponds to a particular minimal n-dimensional integration path in
C

n,noted ΓI , and the coefficients CI ∈ Z are such that:

(9-44)

10. Solution of the saddlepoint equation

We recall the saddle point equation:

∀i = 1, . . . n, V ′
h(xi) = 2

T

n

∑
j �=i

1
xi − xj

(10-45)

We introduce the function:

ω(x) :=
T

n

n∑
j=1

1
x − xj

(10-46)

in the large N limit, ω(x) is expected to tend toward the resolvent, at least in
the case there is only one minimal saddle point. Indeed, the xi’s are the position
of the eigenvalues minimizing the action, i.e. the most probable positions of
eigenvalues of M , and thus 10-46 should be close to T

n tr 1
x−M .
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10.1 Algebraic method

Compute ω2(x) + T
n ω′(x), you find:

ω2(x) +
T

n
ω′(x) =

T 2

n2

n∑
i=1

n∑
j=1

1
(x − xi)(x − xj)

− T 2

n2

n∑
i=1

1
(x − xi)2

=
T 2

n2

n∑
i�=j

1
(x − xi)(x − xj)

=
T 2

n2

n∑
i�=j

(
1

x − xi
− 1

x − xj

)
1

xi − xj

=
2T 2

n2

n∑
i=1

1
x − xi

n∑
j �=i

1
xi − xj

=
T

n

n∑
i=1

V ′
h(xi)

x − xi

=
T

n

n∑
i=1

V ′
h(x) − (V ′

h(x) − V ′
h(xi))

x − xi

= V ′
h(x)ω(x) − T

n

n∑
i=1

V ′
h(x) − V ′

h(xi)
x− xi

= (V ′(x)− h

x − ξ
)ω(x)− T

n

n∑
i=1

V ′(x) − V ′(xi)
x − xi

+h
ω( ξ)
x − ξ

(10-47)

i.e. we get the equation:

ω2(x) +
T

n
ω′(x) = V ′(x)ω(x) − P (x) − h

ω(x) − ω(ξ)
x − ξ

(10-48)

where P (x) := T
n

∑n
i=1

V ′(x)−V ′(xi)
x−xi

is a polynomial in x of degree at most
deg V − 2.

In the large N limit, if we assume3 that we can drop the 1/NW ′(x) term,
we get an algebraic equation, which is in this case an hyperelliptical curve. In
particular at h = 0 and T = 1:

ω(x) =
1
2

(
V ′(x) −

√
V ′2(x) − 4P (x)

)
(10-49)

The properties of this algebraic equation have been studied by many authors,
and the T and h derivatives, as well as other derivatives were computed in
various works. Here, we briefly sketch the method. See [29, 28, 21] for more
details.
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10.2 Linear saddle point equation

In the large N limit, both the average density of eigenvalues, and the density
of x tend towards a continuous compact support density ρ(x). In that limit, the
resolvent is given by:

ω(x) = T

∫
supp ρ

ρ(x′) dx′

x − x′ (10-50)

i.e.

∀x ∈ supp ρ, ρ(x) = − 1
2iπT

(ω(x + i0) − ω(x − i0)) (10-51)

and the saddle point equation 10-45, becomes a linear functional equation:

∀x ∈ supp ρ, V ′
h(x) = ω(x + i0) + ω(x − i0) (10-52)

The advantage of that equation, is that it is linear in ω, and thus in ρ. The
nonlinearity is hidden in supp ρ.

Example: One cut. If the support of ρ is a single interval:

supp ρ = [a, b] , a < b (10-53)

then, look for a solution of the form:

ω(x) =
1
2

(
V ′

h(x) − Mh(x)
√

(x − a)(x − b)
)

(10-54)

The saddle point equation 10-52 implies that Mh(x + i0) = Mh(x − i0), i.e.
Mh has no discontinuities, and because of its large x behaviour, as well as its
behaviours near ξ, it must be a rational function of x, with a simple pole at
x = ξ. Mh, a and b are entirely determined by their behaviours near poles,
i.e.:

ω(x) ∼
x→∞

T

x
(10-55)

ω(x) ∼
x→ξ

regular −→ Mh(x) ∼
x→ξ

− h

x − ξ
(10-56)

Thus, one may write:

ω(x)=
1
2

(
V ′(x)−M(x)

√
(x − a)(x − b)− h

x− ξ

(
1 −

√
(x − a)(x − b)√
(ξ − a)(ξ − b)

))

(10-57)
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where M(x) is now a polynomial (which still depends on h and T and the
other parameters), it is such that:

M(x) = Pol
x→∞

V ′(x)√
(x − a)(x − b)

(10-58)

The density is thus:

ρ(x) =
1

2πT
Mh(x)

√
(x − a)(b − x) , supp ρ = [a, b] (10-59)

a zero of Mzero of M b

(x)ω

x

Multi-cut solution. Let us assume that the support of ρ is made of s sepa-
rated intervals:

supp ρ = ∪s
i=1[ai, bi] (10-60)

then, for any sequence of integers n1, n2, . . . , ns such that
∑s

i1
ni = n, it is

possible to find a solution for the saddle point equation. That solution obeys
10-52, as well as the conditions:

∀i = 1, . . . , s ,

∫ bi

ai

ρ(x)dx = T
ni

N
(10-61)

The solution of the saddle point equation can be described as follows:
let the polynomial σ(x) be defined as:

σ(x) :=
s∏

i=1

(x − ai)(x − bi) (10-62)
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The solution of the saddle point equation 10-52, is of the form:

ω(x) =
1
2

(
V ′

h(x) − Mh(x)
√

σ(x)
)

(10-63)

where Mh(x) is a rational function of x, with a simple pole at x = ξ. Mh, and
σ(x) are entirely determined by their behaviours near poles, i.e.:

ω(x) ∼
x→∞

T

x
(10-64)

ω(x) ∼
x→ξ

regular −→ Mh(x) ∼
x→ξ

− h

x − ξ
(10-65)

and by the conditions that:

∀i = 1, . . . , s ,

∫ bi

ai

Mh(x)
√

σ(x)dx = 2iπT
ni

n
(10-66)

10.3 Algebraic geometry: hyperelliptical curves

Consider the curve given by:

ω(x) =
1
2

(
V ′

h(x) − Mh(x)
√

(x − a)(x − b)
)

(10-67)

It has two sheets, i.e. for each x, there are two values of ω(x), depending on
the choice of sign of the square-root.

- In the physical sheet (choice +√), it behaves near ∞ like ω(x) ∼ T/x

- In the second sheet (choice −√), it behaves near ∞ like ω(x) ∼ V ′
h(x)

Since ω(x) is a complex valued, analytical function of a cmplex variable x,
the curve can be thought of as the embedding of a Riemann surface into C×C.

I.e. we have a Riemann surface E , with two (monovalued) functions defined
on it: p ∈ E , → x(p) ∈ C, and p ∈ E , → ω(p) ∈ C. For each x, there are
two p ∈ E such that x(p) = x, and this is why there are two values of ω(x).

Each of the two sheets is homeomorphic to the complex plane, cut along
the segments [ai, bi], and the two sheets are glued together along the cuts. The
complex plane, plus its point at infinity, is the Riemann sphere. Thus, our curve
E , is obtained by taking two Riemann spheres, glued together along s circles.
It is a genus s − 1 surface.
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8

8

−

+

a ab b
2 32 3b11a

10.4 Genus zero case (one cut)

If the curve as genus zero, it is homeomorphic to the Riemann sphere E = C.
One can always choose a rational parametrization:

x(p) =
a + b

2
+ γ(p + 1/p) , γ =

b − a

4
(10-68)

√
(x − a)(x − b) = γ(p − 1/p) (10-69)

so that ω is a rational function of p.
That representation maps the physical sheet onto the exterior of the unit

circle, and the second sheet onto the interior of the unit circle. The unit circle
is the image of the two sides of the cut [a, b], and the branchpoints [a, b] are
maped to −1 and +1. Changing the sign of the square root is equivalent to
changing p → 1/p.

The branch points are of course the solutions of dx/dp = 0, i.e. dx(p) = 0:

dx(p) = γ

(
1 − 1

p2

)
dp , dx(p) = 0 ↔ p = ±1 ↔ x(p) = a, b

(10-70)
There are two points at ∞, p = ∞ in the physical sheet, and p = 0 in the

second sheet.
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8

8

a b p

pξ

ξ

ξ

8

0−1 1 pξ

p
ξ

Since the resolvent ω(p) is a rational function of p, it is then entirely deter-
ξ

and p = pξ (the two points of E such that x(p) = ξ, such that pξ is in the
physical sheet, and pξ is in the second sheet): The boundary conditions:




ω(p) ∼
p→∞

T

x(p)

ω(p) ∼
p→0

V ′(x(p)) − T

x(p)
− h

x(p)

ω(p) ∼
p→pξ

− h

x(p) − ξ
ω(p) ∼

p→pξ

regular

(10-71)

T derivative. Now, let us compute ∂ω(p)/∂T at x(p) fixed. Eq. 10-71
becomes: 



∂ω(p)
∂T

∼
p→∞

1
x(p)

∂ω(p)
∂T

∼
p→0

− 1
x(p)

∂ω(p)
∂T

∼
p→pξ

regular

∂ω(p)
∂T

∼
p→pξ

regular

(10-72)

Moreover, we know that ω(x) has a square-root behaviour near a and b, in√
(x − a)(x − b), and a and b depend on T , thus ∂ω/∂T may behave in ((x−

a)(x − b))−1/2 near a and b, i.e. ∂ω/∂T may have simple poles at p = ±1.
Finaly, ∂ω(p)/∂T , has simple poles at p = 1 and p = −1, and vanishes at

p = 0 and p = ∞, the only possibility is:

∂ω(p)
∂T

∣∣∣∣
x(p)

=
p

γ(p2 − 1)
=

1
p

dp

dx
(10-73)

mined by its behaviour near its poles. the poles are at p = ∞, p = 0, p = p
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which is better written in terms of differential forms:

∂ω(p)
∂T

∣∣∣∣
x(p)

dx(p) =
dp

p
= d ln p (10-74)

the RHS is independent of the potential, it is universal.
With the notation 8-34, we have:

Ω(p)dx(p) =
dp

p
, Λ(p) = γp (10-75)

h derivative. The h derivative is computed in a very similar way.




∂ω(p)
∂h

∼
p→∞

O(p−2)

∂ω(p)
∂h

∼
p→0

− 1
x(p)

∂ω(p)
∂h

∼
p→pξ

− 1
x(p) − ξ

∂ω(p)
∂h

∼
p→pξ

regular

(10-76)

implies that ∂ω/∂h can have poles at p = ±1 and at p = pξ, and vanishes at
p = 0. The only possibility is:

∂ω(p)
∂h

∣∣∣∣
x(p)

=
−p pξ

γ(p − pξ)(p2 − 1)
(10-77)

i.e.
∂ω(p)

∂h

∣∣∣∣
x(p)

dx(p) =
dp

p
− dp

p − pξ

= d ln
p

p − pξ

(10-78)

which again is universal.
With the notation 8-35, we have:

H(p, pξ)dx(p) =
dp

p
− dp

p − 1
pξ

, H(pξ) = ln
(

pξ

pξ − pξ

)
= − ln

(
1
γ

dx

dp
(ξ)

)

(10-79)

10.5 Higher genus

For general genus, the curve can be parametrized by θ-functions. Like ra-
tional functions for genus 0, θ-functions are the building blocks of functions
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defined on a compact Riemann surface, and any such function is entirely de-
termined by its behaviour near its poles, as well as by its integrals around
irreducible cycles. All the previous paragraph can be extended to that case.

Let ∞+ and ∞− be the points at infinity, i.e. the two poles of x(p), with
∞+ in the physical sheet and ∞− in the second sheet. Let p = pξ and p = pξ

be the two points of E such that x(p) = ξ, and with pξ in the physical sheet,
and pξ in the second sheet.

The differential form ω(p)dx(p) is entirely determined by:


ω(p)dx(p) ∼
p→∞+

T
dx(p)
x(p)

, Res
∞+

ω(p)dx(p) = −T

ω(p)dx(p) ∼
p→∞−

dV (x(p)) −T
dx(p)
x(p)

−h
dx(p)
x(p)

, Res
∞−

ω(p)dx(p)= T + h

ω(p)dx(p) ∼
p→pξ

−h
dx(p)

x(p) − ξ
, Res

pξ

ω(p)dx(p) = −h

ω(p)dx(p) ∼
p→pξ

regular , Res
pξ

ω(p)dx(p) = 0∮
Ai

ω(p)dx(p) = T
ni

n
=

ni

N
(10-80)

Since ∂ω/∂T, h can diverge at most like (x − ai)−1/2 near a branch point ai,
and dx(p) has a zero at ai, the differential form ∂ωdx/∂T, h has no pole at the
branch points.

10.6 Introduction to algebraic geometry

We introduce some basic concepts of algebraic geometry. We refer the
reader to [22, 23] for instance.

Theorem 4 Given two points q1 and q2 on the Riemann surface E , there
exists a unique differential form dSq1,q2(p), with only two simple poles, one
at p = q1 with residue +1 and one at p = q2 with residue −1, and which is
normalized on the Ai cycles, i.e.



Res
p→q1

dSq1,q2(p) = +1

Res
p→q2

dSq1,q2(p) = −1∮
Ai

dSq1,q2(p) = 0

(10-81)

dS is called an “abelian differential of the third kind”.

Starting from the behaviours near poles and irreducible cycles 10-80, we
easily find:

Ω(p)dx(p) =
∂ω(p)dx(p)

∂T

∣∣∣∣
x(p)

= −dS∞+,∞−(p) (10-82)

505



APPLICATIONS OF RANDOM MATRICES IN PHYSICS

H(p, pξ)dx(p) =
∂ω(p)dx(p)

∂h

∣∣∣∣
x(p)

= −dSpξ,∞−(p) = dSpξ,∞+(p) − d ln (x(p) − x(pξ)) (10-83)

Theorem 5 On an algebraic curve of genus g, there exist exactly g linearly
independent “holomorphic differential forms” (i.e. with no poles), dui(p),
i = 1, . . . , g. They can be chosen normalized as:∮

Ai

j ij (10-84)

For hyperelliptical surfaces, it is easy to see that if L(x) is a polynomial of
degree at most g − 1 = s − 2, the differential form

regular at ∞, at the branch points, and thus has no poles. And there are g
linearly independent polynomials of degree at most g − 1. The irreducible
cycles Ai is a contour surrounding [ai, bi] in the positive direction.

Definition 6 The matrix of periods is defined by:

τij :=
∮
Bi

duj(p) (10-85)

where the irreducible cycles Bi are chosen canonicaly conjugated to the Ai,
i.e. Ai ∩ Bj = δij . In our hyperelliptical case, we choose Bi as a contour
crossing [ai, bi] and [as, bs].

The matrix of periods is symmetric τij = τji, and its imaginary part is
positive #τij > 0. It encodes the complex structure of the curve.

The holomrphic forms naturaly define an embedding of the curve into C
g:

Definition 7 Given a base point q0 ∈ E , we define the Abel map:

E −→ C
g

p −→ �u(p) = (u1(p), . . . , ug(p)) , ui(p) :=
∫ p

q0

dui(p)(10-86)

where the integration path is chosen so that it does not cross any Ai or Bi.

Definition 8 Given a symmetric matrix τ of dimension g, such that #τij >
0, we define the θ-function, from C

g → C by:

θ(�u, τ) =
∑
�m∈Zg

eiπ �mtτ �m e2iπ �mt�u (10-87)

It is an even entire function. For any �m ∈ Z
g, it satisfies:

θ(�u + �m) = θ(�u) , θ(�u + τ �m) = e−iπ(2�mt�u+�mtτ �m) θ(�u) (10-88)

du (p) = δ

506



Large N asymptotics of orthogonal polynomials From integrability

Definition 9 The theta function vanishes on a codimension 1 submanifold
of C

g, in particular, it vanishes at the odd half periods:

�z =
�m1 + τ �m2

2
, �m1 ∈ Z

g , �m2 ∈ Z
g , (�mt

1 �m1) ∈ 2Z+1 −→ θ(�z) = 0
(10-89)

For a given such odd half-period, we define the characteristic �z θ-function:

θ�z(�u) := eiπm2�u+ θ(�u + �z) (10-90)

so that:

θ�z(�u+�m) = eiπ �mt
2 �m θ�z(�u) , θ�z(�u+τ �m) = e−iπ �mt

1 �m e−iπ(2�mt�u+�mtτ �m) θ�z(�u)
(10-91)

and
θ�z(�0) = 0 (10-92)

Definition 10 Given two points p, q in E , as well as a basepoint p0 ∈ E
and an odd half period z, we define the prime form E(p, q):

E(p, q) :=
θ�z(�u(p) − �u(q))√

dh�z(p)dh�z(q)
(10-93)

where dh�z(p) is the holomorphic form:

dh�z(p) :=
g∑

i=1

∂θ�z(�u)
∂ui

∣∣∣∣
�u=�0

dui(p) (10-94)

Theorem 11 The abelian differentials can be written:

dSq1,q2(p) = d ln
E(p, q1)
E(p, q2)

(10-95)

With these definitions, we have:

Λ(p) = γ
θ�z(�u(p) − �u(∞−))

θ�z(�u(p) − �u(∞+))
, γ := lim

p→∞+

x(p) θ�z(�u(p) − �u(∞+))

θ�z(�u(∞+) − �u(∞−))
(10-96)

H(pξ) =
θ�z(�u(pξ) − �u(∞−))θ�z(�u(∞+) − �u(pξ))

θ�z(�u(pξ) − �u(pξ))θ�z(�u(∞+) − �u(∞−))
= −γ

θ�z(�u(∞+) − �u(∞−))

θ�z(�u(pξ) − �u(∞+))2
dh�z(pξ)

dx(pξ)
(10-97)

11. Asymptotics of orthogonal polynomials

11.1 One-cut case

In the one-cut case, (i.e. genus zero algebraic curve), and if V is a real poten-
tial, there is only one dominant saddle point if ξ /∈ [a, b], and two conjugated
dominant saddle points if x ∈ [a, b]. More generaly, there is a saddle point
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corresponding to each determination of pξ such that x(pξ) = ξ. i.e. pξ and
pξ = 1/pξ. The dominant saddle point is the one such that "(Veff(pξ)−V (ξ))
is minimal. The two cols have a contribution of the same order if:

"Veff(pξ) = "Veff(pξ) (11-98)

i.e. if ξ is such that:

"
∫ pξ

pξ

W (x)dx = 0 (11-99)

If the potential is real, it is easy to see that the set of points which satisfy 11-99
is [a, b], in general, it is a curve in the complex plane, going from a to b, we
call it the cut [a, b] (similar curves were studied in [31]).

Then we have:

For x /∈ [a, b], we write ξ = a+b
2 + γ(pξ + 1/pξ), γ = b−a

4 :

pn(ξ) ∼
√

H(pξ) (Λ(pξ))
n−N e−

N
2

(Veff(pξ)−V (ξ))(1 + O(1/N))
(11-100)

i.e.

pn(ξ) ∼
√

γ

x′(pξ)
(γ pξ)

n−N e−
N
2

(Veff(pξ)−V (ξ))(1 + O(1/N))

(11-101)

For x ∈ [a, b], i.e. p is on the unit circle p = eiφ, ξ = a+b
2 + 2γ cos φ:

pn(ξ) ∼
√

H(pξ) (Λ(pξ))
n−N e−

N
2

(Veff(pξ)−V (ξ))(1 + O(1/N))

+
√

H(pξ)
(
Λ(pξ)

)n−N e−
N
2

(Veff(pξ)−V (ξ))(1 + O(1/N)) (11-102)

i.e.

pn(ξ) ∼ γn−N√
2 sin φ(ξ)

2 cos
(

Nπ

∫ ξ

a
ρ(x)dx − (n − N +

1
2
)φ(ξ) + α

)

(1 + O(1/N)) (11-103)

i.e. we have an oscillatory behaviour

508



Large N asymptotics of orthogonal polynomials From integrability

p (x)
n

a xb

11.2 Multi-cut case

In the multicut case, in addition to having saddle-points corresponding to
both determinantions of pξ, we have a saddle point for each filling fraction
configuration n1, . . . , ns with

∑s
i=1 ni = n. We write:

εi =
ni

N
(11-104)

The saddle point corresponding to filling fractions which differ by a few
units, contribute to the same order, and thus cannot be neglected. One has to
consider the sommation over filling fractions [10].

Thus, one has to consider the action of a saddle point as a function of the
filling fractions. We leave as an exercise for the reader to prove that the deriv-
atives of F are given by:

∂F

∂εi
= −

∮
Bi

W (x)dx (11-105)

and:
∂2F

∂εi∂T
= −2iπ(ui(∞+) − ui(∞−)) (11-106)

∂2F

∂εi∂h
= −2iπ(ui(pξ) − ui(∞+)) (11-107)

∂2F

∂εi∂εj
= −2iπτij (11-108)
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The last relation implies that "F is a convex function of ε, thus it has a unique
minimum:

�ε∗ , " ∂F

∂εi

∣∣∣∣
�ε=�ε∗

= 0 (11-109)

We write:

ζi := − 1
2iπ

∂F

∂εi

∣∣∣∣
�ε=�ε∗

, ζi ∈ R (11-110)

We thus have the Taylor expansion:

F (T, h,�ε)∼ F (1, 0,�ε∗) − 2iπ�ζt(�ε − �ε∗) + (T − 1)
∂F

∂T
+

h

2
(Veff(pξ) − V (ξ))

+
(T − 1)2

2
∂2F

∂T 2
− (T − 1)h ln Λ(pξ) −

h2

2
lnH(pξ)

−2iπ(�ε − �ε∗)tτ(�ε − �ε∗)− 2iπ(T − 1)(�ε − �ε∗)t(�u(∞+)− �u(∞−))
−2iπh(�ε − �ε∗)t(�u(pξ) − �u(∞+)) + . . . (11-111)

Thus:

(11-112)

In that last sum, because of convexity, only values of �n which don’t differ from
N�ε∗ form more than a few units, contribute substantialy. Therefore, up to a
non perturbative error (exponentialy small with N ), one can extend the sum
over the ni’s to the whole Z

g, and recognize a θ-function (see 10-87):
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θ(N(�ζ − τ�ε∗) + (n − N)(�u(∞+) − �u(∞−)) + (�u(p) − �u(∞+)), τ)

θ(N(�ζ − τ�ε∗) + (n − N)(�u(∞+) − �u(∞−)), τ)
(11-114)

Again, depending on ξ, we have to choose the determination of pξ which
has the minimum energy. If we are on a cut, i.e. if condition 11-99 holds,
both determinations contribute. To summarize, outside the cuts, the sum 11-
114 reduces to only one term, and along the cuts, the sum 11-114 contains two
terms.

12. Conclusion

We have shown how the asymptotics of orthogonal polynomials (a notion
related to integrability) is deeply related to algebraic geometry. This calcula-
tion can easily be extended to many generalizations, for multi-matrix models
[17, 16, 2, 18], non-hermitean matrices (β = 1, 4) [20], rational potentials [3],
...

Aknowledgements

The author wants to thank the organizer of the Les Houches summer school
Applications of Random Matrices in Physics June 6-25 2004.

511

References

[1] M. Bertola, “Bilinear semi–classical moment functionals and their integral representa-
tion”, J. App. Theory (at press), math.CA/0205160

[2] M. Bertola, B. Eynard, J. Harnad, “Heuristic asymptotics of biorthogonal polynomials”,
Presentation by B.E. at AMS Northeastern regional meeting, Montreal May 2002.

[3] M. Bertola, B. Eynard, J. Harnad, ”Semiclassical orthogonal polynomials, matrix
models and isomonodromic tau functions” SPHT T04/019. CRM-3169 (2004), xxx,
nlin.SI/0410043.

[4] Differential systems for bi-orthogonal polynomials appearing in two-matrix models and
the associated Riemann-Hilbert problem. (M. Bertola, B.E., J. Harnad) , 60 pages, SPHT
02/097, CRM-2852. Comm. Math. Phys. 243 no.2 (2003) 193-240, xxx, nlin.SI/0208002.

[5] Partition functions for Matrix Models and Isomonodromic Tau Functions. (M. Bertola,
B.E., J. Harnad) , 17 pages, SPHT 02/050, CRM 2841 , J. Phys. A Math. Gen. 36 No 12
(28 March 2003) 3067-3083. xxx, nlin.SI/0204054.

[6] P.M. Bleher and A.R. Its, eds., “Random Matrix Models and Their Applications”, MSRI
Research Publications 40, Cambridge Univ. Press, (Cambridge, 2001).



[7] P. Bleher, A. Its, “Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert
problem, and universality in the matrix model” Ann. of Math. (2) 150, no. 1, 185–266
(1999).

[8] P. Bleher, A. Its, “On asymptotic analysis of orthogonal polynomials via the Riemann-
Hilbert method”, Symmetries and integrability of difference equations (Canterbury,
1996), 165–177, London Math. Soc. Lecture Note Ser., 255, Cambridge Univ. Press, Cam-
bridge, 1999.

[9] S.S. Bonan, D.S. Clark, “Estimates of the Hermite and the Freud polynomials”, J. Approx.
Theory 63, 210-224 (1990).

[10] G. Bonnet, F. David, and B. Eynard, ”Breakdown of Universality in multi-cut matrix
models”, J. Phys A33, 6739 (2000), xxx, cond-mat/0003324.

[11] P. Deift, T. Kriecherbauer, K. T. R. McLaughlin, S. Venakides, Z. Zhou, “Uniform as-
ymptotics for polynomials orthogonal with respect to varying exponential weights and
applications to universality questions in random matrix theory”, Commun. Pure Appl.
Math. 52, 1335–1425 (1999).

[12] P. Deift, T. Kriecherbauer, K. T. R. McLaughlin, S. Venakides, Z. Zhou, “Strong asymp-
totics of orthogonal polynomials with respect to exponential weights”, Commun. Pure
Appl. Math. 52, 1491–1552, (1999).

[13] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach,
Courant (New York University Press, ., 1999).

[14] P. Di Francesco, P. Ginsparg, J. Zinn-Justin, “2D Gravity and Random Matrices”, Phys.
Rep. 254, 1 (1995).

[15] F.J. Dyson, ”Correlations between the eigenvalues of a random matrix”, Comm. Math.
Phys. 19 (1970) 235-250.

[16] Correlation functions of eigenvalues of multi-matrix models, and the limit of a time de-
pendent matrix. (B.E.) , 27 pages. SPHT 98/001 DTP 97-59 , Journal of Physics A 40
(1998) 8081, xxx, cond-mat/9801075.

[17] Eigenvalue distribution of large random matrices, from one matrix to several coupled
matrices. (B.E.) , 31 pages. SPHT 97031. Nuc. Phys. B506,3 633-664 (1997). xxx, cond-
mat/9707005.

[18] B. Eynard, “Polynômes biorthogonaux, probl„eme de Riemann–Hilbert et g«eom«etrie
alg«ebrique”, Habilitation „a diriger les recherches, universit«e Paris VII, (2005).

[19] B. Eynard “An introduction to random matrices”, lectures given at Saclay, October 2000,
notes available at http://www-spht.cea.fr/articles/t01/014/.

[20] B. Eynard, ”Asymptotics of skew orthogonal polynomials”, J. Phys A. 34 (2001) 7591,
cond-mat/0012046.

[21] B. Eynard, “Master loop equations, free energy and correlations for the chain of matri-
ces”, JHEP11(2003)018, xxx, hep-th/0309036.

[22] H.M. Farkas, I. Kra, ”Riemann surfaces” 2nd edition, Springer Verlag, 1992.

APPLICATIONS OF RANDOM MATRICES IN PHYSICS512



[24] A. Fokas, A. Its, A. Kitaev, “The isomonodromy approach to matrix models in 2D quan-
tum gravity”, Commun. Math. Phys. 147, 395–430 (1992).

[25] T. Guhr, A. Mueller-Groeling, H.A. Weidenmuller, “Random matrix theories in quantum
physics: Common concepts”, Phys. Rep. 299, 189 (1998).

[26] A.R. Its, A.V. Kitaev, and A.S. Fokas, “An isomonodromic Approach in the Theory of
Two-Dimensional Quantum Gravity”, Usp. Matem. Nauk, 45, 6 (276), 135-136 (1990),
(Russian), translation in Russian Math. Surveys, 45, no. 6, 155-157 (1990).

[27] M. Jimbo, T. Miwa and K. Ueno, “Monodromy Preserving Deformation of Linear Or-
dinary Differential Equations with Rational Coefficients I, II, III.”, Physica 2D, 306-352
(1981), Physica 2D, 407-448 (1981); ibid., 4D, 26–46 (1981).

[28] V.A. Kazakov, A. Marshakov, ”Complex Curve of the Two Matrix Model and its Tau-
function”, J.Phys. A36 (2003) 3107-3136, hep-th/0211236.

[29] I. Krichever, “The τ -Function of the Universal Whitham Hierarchy, Matrix Models and
Topological Field Theories”, Comm. Pure Appl. Math. 47 (1994), no. 4, 437–475.

[30] M.L. Mehta, Random Matrices, 2nd edition, (Academic Press, New York, 1991).

[31] G. Moore, “Geometry of the string equations”, Comm. Math. Phys. 133, no. 2, 261–304
(1990).

[32] G. Szeg-o, ”Orthogonal Polynomials”, American Mathematical Society, Providence,
1967.

[33] C.A. Tracy and H. Widom, “Fredholm determinants, differential equations and matrix
models”, Commun. Math. Phys. 161, 289-309 (1994).

[34] P. Van Moerbeke, Random Matrices and their applications, MSRI-publications 40, 4986
(2000).

[23] J. Fay, ”Theta Functions on Riemann Surfaces”, Lectures Notes in Mathematics, Springer
Verlag, 1973.

Large N asymptotics of orthogonal polynomials From integrability 513


	Untitled



