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Introduction

This volume is the result of our efforts to update the eleven first chapters
of the two previously published ETH Zürich Lecture Notes by the second
author: Some Aspects of Brownian Motion, Part I (1992); Part II (1997).
The original volumes have been out of print since, roughly, the year 2000.
We have already updated the remaining chapters of Part II in:
Random Times and Enlargements of Filtrations in a Brownian Setting,
Lecture Notes in Maths, n◦1873, Springer (2006).
Coming back to the present volume, we modified quite minimally the old
eleven first chapters, essentially by completing the Bibliography. Here is a
detailed description of these eleven chapters; each of them is devoted to the
study of some particular class of Brownian functionals; these classes appear
in increasing order of complexity.

In Chapter 1, various results about certain Gaussian subspaces of the Gaus-
sian space generated by a one-dimensional Brownian motion are obtained;
the derivation of these results is elementary in that it uses essentially Hilbert
spaces isomorphisms between certain Gaussian spaces and some L2 spaces of
deterministic functions.

In Chapter 2, several results about Brownian quadratic functionals are ob-
tained, with some particular emphasis on a change of probability method,
which enables to obtain a number of variants of Lévy’s formula for the
stochastic area of Brownian motion.

In Chapter 3, Ray-Knight theorems on Brownian local times are recalled
and extended; the processes which appear there are squares of Bessel pro-
cesses, which links naturally chapter 3 with the study of Brownian quadratic
functionals made in chapter 2; in the second half of chapter 3, some relations
with Bessel meanders and bridges are discussed.
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In Chapter 4, the relation between squares of Bessel processes and Brownian
local times is further exploited, in order to explain and extend the Ciesielski-
Taylor identities.

In Chapters 5 and 7, a number of results about Brownian windings are
established; exact distributional computations are made in chapter 5, whereas
asymptotic studies are presented in chapter 7.

Chapter 6 is devoted to the study of the integral, on a time interval, of
the exponential of a Brownian motion with drift; this study is important in
mathematical finance.

In Chapters 8 and 9, some extensions of Paul Lévy’s arc sine law for
Brownian motion are discussed, with particular emphasis on the time spent
by Brownian motion below a multiple of its one-sided supremum.

Principal values of Brownian and Bessel local times - in particular their
Hilbert transforms - are discussed in Chapter 10. Such principal values
occur naturally in the Dirichlet decomposition of Bessel processes with di-
mension smaller than 1, as well as when considering certain signed measures
which are absolutely continuous with respect to the Wiener measure.

The Riemann zeta function and Jacobi theta functions are shown, in Chap-
ter 11, to be somewhat related with the Itô measure of Brownian excursions.
Some generalizations to Bessel processes are also presented.

We are well aware that this particular selection of certain aspects of Brown-
ian motion is, at the same time, quite incomplete and arbitrary, but in the
defense of our choice, let us say that:

a. We feel some confidence with these particular aspects...

b. Some other aspects are excellently treated in a number of lecture notes
and books, the references of which are gathered at the end of this volume.

c. Between 2004 and 2006, we had undertaken an ambitious updating of the
same ETH Lecture Notes , but were unable to complete this more demanding
task. The interested reader may consult online (http://roger.mansuy.free.fr/
Aspects/Aspects references.html) the extensive Bibliography we had gath-
ered for this purpose.

Many thanks to Kathleen Qechar for juggling with the different versions,
macros, and so on...

Brannay, May 4th, 2008.
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3.2 The Lévy-Khintchine representation of Qδ
x . . . . . . . . . . . . . . . . . 34

3.3 An extension of the Ray-Knight theorems . . . . . . . . . . . . . . . . . 37

3.4 The law of Brownian local times taken at an independent
exponential time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Squares of Bessel processes and squares of Bessel bridges . . . . 41

3.6 Generalized meanders and squares of Bessel processes . . . . . . . 47

3.7 Generalized meanders and Bessel bridges . . . . . . . . . . . . . . . . . . 51

4 An explanation and some extensions of the Ciesielski-
Taylor identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 A pathwise explanation of (4.1) for δ = 1 . . . . . . . . . . . . . . . . . . 58

4.2 A reduction of (4.1) to an identity in law between two
Brownian quadratic functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Some extensions of the Ciesielski-Taylor identities . . . . . . . . . . 60

4.4 On a computation of Földes-Révész . . . . . . . . . . . . . . . . . . . . . . . 64

5 On the winding number of planar BM . . . . . . . . . . . . . . . . . . . 67

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Explicit computation of the winding number of planar
Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents xi

6 On some exponential functionals of Brownian motion
and the problem of Asian options . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 The integral moments of A
(ν)
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 A study in a general Markovian set-up . . . . . . . . . . . . . . . . . . . . 84
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Chapter 1

The Gaussian space of BM

In this Chapter, a number of linear transformations of the Gaussian space
associated to a linear Brownian motion (Bt, t ≥ 0) are studied. Recall that
this Gaussian space is precisely equal to the first Wiener chaos of B, that is:

Γ (B) def=

⎧⎨⎩Bf ≡
∞∫
0

f(s)dBs , f ∈ L2(IR+, ds)

⎫⎬⎭
In fact, the properties of the transformations being studied may be deduced
from corresponding properties of associated transformations of L2(IR+, ds),
thanks to the Hilbert spaces isomorphism:

Bf ↔ f

between Γ (B) and L2(IR+, ds), which is expressed by the identity:

E
[
(Bf )2

]
=

∞∫
0

dt f2(t) (1.1)

This chapter may be considered as a warm-up, and is intended to show that
some interesting properties of Brownian motion may be deduced easily from
the covariance identity (1.1).

1



2 1 The Gaussian space of BM

1.1 A realization of Brownian bridges

Let (Bu, u ≥ 0) be a 1-dimensional BM , starting from 0. Fix t > 0 for one
moment, and remark that, for u ≤ t:

Bu =
u

t
Bt +

(
Bu − u

t
Bt

)
is the orthogonal decomposition of the gaussian variable Bu with respect
to Bt.

Hence, since (Bu, u ≥ 0) is a Gaussian process, the process
(
Bu − u

t
Bt, u ≤ t

)
is independent of the variable Bt.

Let now Ω∗
(t) ≡ C ([0, t]; IR) be the space of continuous functions ω : [0, t] →

IR; on Ω∗
(t), denote Xu(ω) = ω(u), u ≤ t, and Fu = σ{Xs, s ≤ u}. Ft is

also the Borel σ-field when Ω∗
(t) is endowed with the topology of uniform

convergence.

For any x ∈ IR, we define P
(t)
x as the distribution on (Ω∗

(t),Ft) of the process:(ux

t
+ Bu − u

t
Bt; u ≤ t

)
.

Clearly, the family (P (t)
x ; x ∈ IR) is weakly continuous, and, by construction,

it satisfies:

E [F (Bu, u ≤ t) | Bt = x] = E(t)
x [F (Xu, u ≤ t)] dx a.e. ,

for every (Ft) measurable, bounded functional F . Hence, there is no ambi-
guity in defining, for any x ∈ IR, P

(t)
x as the law of the Brownian bridge, of

duration t, starting at 0, and ending at x.

We shall call P
(t)
0 the law of the standard Brownian bridge of duration t.

Hence, a realization of this bridge is:(
Bu − u

t
Bt; u ≤ t

)
.



1.2 The filtration of Brownian bridges 3

1.2 The filtration of Brownian bridges

If G is a subset of the Gaussian space generated by (Bu, u ≥ 0), we denote
by Γ (G) the Gaussian space generated by G, and we use the script letter G
for the σ-field σ(G).

We now define Γt = Γ (Gt), where Gt =
{
Bu − u

t Bt; u ≤ t
}

and Gt = σ(Gt).
It is immediate that Γt is the orthogonal of Γ (Bt) in Γ (Bu, u ≤ t), that is,
we have:

Γ (Bu, u ≤ t) = Γt ⊕ Γ (Bt) .

Remark that {Γt, t ≥ 0} is an increasing family, since, for u ≤ t ≤ t + h:

Bu − u

t
Bt =

(
Bu − u

t + h
Bt+h

)
− u

t

(
Bt − t

t + h
Bt+h

)
,

and that, moreover: Γ∞
def= lim

t↑∞
↑ Γt ≡ Γ (Bu, u ≥ 0), since:

Bu = a.s. lim
t→∞

(
Bu − u

t
Bt

)
.

Hence, (Gt, t ≥ 0) is a subfiltration of (Bt ≡ σ(Bu, u ≤ t), t≥0), and G∞=B∞.
Here are some more precisions about (Gt, t ≥ 0).

Theorem 1.1 1) For any t > 0, we have:

Γt =

⎧⎨⎩
t∫

0

f(u)dBu; f ∈ L2 ([0, t], du) , and

t∫
0

du f(u) = 0

⎫⎬⎭
2) For any t > 0, the process:

γ(t)
u = Bu −

u∫
0

ds
Bt − Bs

t − s
, u ≤ t ,

is a Brownian motion, which is independent of the variable Bt. Moreover,
we have: Γt = Γ (γ(t)

u , u ≤ t)
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3) The process: βt = Bt −
t∫

0

ds

s
Bs, t ≥ 0, is a Brownian motion, and we

have:
Γt = Γ (βs, s ≤ t) .

Consequently, (Gt, t ≥ 0) is the natural filtration of the Brownian motion
(βt, t ≥ 0).

Proof:

1) The first assertion of the Theorem follows immediately from the Hilbert
spaces isomorphism between L2([0, t], du) and Gt, which transfers a func-

tion f into

t∫
0

f(u)dBu

2) Before we prove precisely the second and third assertions of the Theorem,
it is worth explaining how the processes (γ(t)

u , u ≤ t) and (βt, t ≥ 0) arise
naturally. It is not difficult to show that (γ(t)

u , u ≤ t) is the martingale
part in the canonical decomposition of (Bu, u ≤ t) as a semimartingale in
the filtration

{
B(t)

u ≡ Bu ∨ σ(Bt); u ≤ t
}
, whereas the idea of considering

(βu, u ≥ 0) occured by looking at the Brownian motion (γ(t)
u , u ≤ t),

reversed from time t, that is:

γ
(t)
t − γ

(t)
t−u = (Bt − Bt−u) −

u∫
0

ds
Bt − Bt−s

s
.

3) Now, let (Zu, u ≤ t) be a family of Gaussian variables which belong to Γt;
in order to show that Γt = Γ (Zu, u ≤ t), it suffices, using the first assertion
of the theorem, to prove that the only functions f ∈ L2([0, t], du) such that

E

⎡⎣Zu

⎛⎝ t∫
0

f(v)dBv

⎞⎠⎤⎦ = 0 , for every u ≤ t (1.2)

are the constants.

When we apply this remark to Zu = γ
(t)
u , u ≤ t, we find that f satis-

fies (1.2) if and only if
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u∫
0

dv f(v) −
u∫

0

ds
1

(t − s)

t∫
s

dv f(v) = 0 , for every u ≤ t,

hence:

f(v) =
1

t − v

t∫
v

du f(u) , dv a.s.,

from which we now easily conclude that f(v) = c, dv a.s., for some constant
c. A similar discussion applies with Zu = βu, u ≤ t. 
�

Exercise 1.1:

Let f : IR+ → IR be an absolutely continuous function which satisfies:

f(0) = 0, and for t > 0, f(t) �= 0, and

t∫
0

du

|f(u)|

⎛⎝ u∫
0

(f ′(s))2ds

⎞⎠1/2

< ∞

1. Show that the process:

Y
(f)
t = Bt −

t∫
0

du

f(u)

⎛⎝ u∫
0

f ′(s)dBs

⎞⎠ , t ≥ 0 ,

admits (Gt) as its natural filtration.

2. Show that the canonical decomposition of (Y (f)
t , t ≥ 0) in its natural

filtration (Gt) is:

Y
(f)
t = βt +

t∫
0

du

f(u)

⎛⎝ u∫
0

(
f(s)

s
− f ′(s)

)
dβs

⎞⎠ .

1.3 An ergodic property

We may translate the third statement of Theorem 1.1 by saying that, if
(Xt, t ≥ 0) denotes the process of coordinates on the canonical space Ω∗ ≡
Ω∗

(∞) ≡ C ([0,∞), IR), then the transformation T defined by:
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T (X)t = Xt −
t∫

0

ds

s
Xs (t ≥ 0)

leaves the Wiener measure W invariant.

Theorem 1.2 For any t > 0,
⋂
n

(T n)−1(Ft) is W -trivial. Moreover, for any

n ∈ IN, we have: (T n)−1(F∞) = F∞, W a.s. (in the language of ergodic
theory, T is a K-automorphism). Consequently, the transformation T on
(Ω∗,F∞, W ) is strongly mixing and, a fortiori, ergodic.

Proof:

a) The third statement follows classically from the two first ones.

b) We already remarked that T−1(F∞) = F∞, W a.s., since G∞ = B∞, which
proves the second statement.

c) The first statement shall be proved later on as a consequence of the next
Proposition 1.1. 
�

To state simply the next Proposition, we need to recall the definition of the
classical Laguerre polynomials:

Ln(x) =
n∑

k=0

(n

k

) 1
k!

(−x)k , n ∈ IN ,

is the sequence of orthonormal polynomials for the measure e−xdx on IR+

which is obtained from (1, x, x2, . . . , xn, . . . ) by the Gram-Schmidt procedure.

Proposition 1.1 Let (Xt)t≤1 be a real-valued BM , starting from 0. Define
γn = T n(X)1. Then, we have:

γn =

1∫
0

dXsLn

(
log

1
s

)
.

(γn, n ∈ IN) is a sequence of independent centered Gaussian variables, with
variance 1, from which (Xt, t ≤ 1) may be represented as:
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Xt =
∑
n∈IN

λn

(
log

1
t

)
γn, where λn(a) =

a∫
0

dx e−xLn(x)

Proof: The expression of γn as a Wiener integral involving Ln is obtained
by iteration of the transformation T .

The identity: E[γnγm] = δnm then appears as a consequence of the fact that
the sequence {Ln, n ∈ IN} constitutes an orthonormal basis of L2(IR+, e−xdx).

Indeed, we have:

E[γnγm] =

1∫
0

ds Ln

(
log

1
s

)
Lm

(
log

1
s

)
=

∞∫
0

dx e−xLn(x)Lm(x) = δnm .

More generally, the application:

(f(x), x > 0) −→
(

f

(
log

1
s

)
, 0 < s < 1

)
is an isomorphism of Hilbert spaces between L2(e−xdx; IR+) and L2 (ds; [0, 1]),
and the development of (Xt)t≤1 along the (γn) sequence corresponds to the

development of 1[0,t](s) along the basis
(

Ln

(
log

1
s

))
n∈IN

. 
�

1.4 A relationship with space-time harmonic functions

In this paragraph, we are interested in a question which in some sense is
dual to the study of the transformation T which we considered above. More
precisely, we wish to give a description of the set J of all probabilities P on
(Ω∗,F∞) such that:
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i)

⎛⎝X̃t ≡ Xt −
t∫

0

ds

s
Xs; t ≥ 0

⎞⎠ is a real valued BM ; here, we only assume

that the integral

t∫
0

ds

s
Xs ≡ a.s. lim

ε→0

t∫
ε

ds

s
Xs exists a.s., but we do not

assume a priori that is converges absolutely.

ii) for every t ≥ 0, the variable Xt is P independent of (X̃s, s ≤ t).

We obtain the following characterization of the elements of J .

Theorem 1.3 Let W denote the Wiener measure on (Ω∗,F∞) (W is the
law of the real valued Brownian motion B starting from 0).

Let P be a probability on (Ω∗,F∞).

The three following properties are equivalent:

1) P ∈ J .

2) P is the law of (Bt + tY, t ≥ 0), where Y is a r.v. which is independent of
(Bt, t ≥ 0);

3) there exists a function h : IR+ × IR→IR+, which is space-time harmonic,
that is: such that (h(t, Xt), t ≥ 0) is a (W,Ft) martingale, with expecta-
tion 1, and P = Wh, where Wh is the probability on (Ω∗,F∞) defined
by:

W h
∣∣
Ft

= h(t, Xt) · W
∣∣
Ft

.

We first describe all solutions of the equation

(∗) Xt = βt +

t∫
0

ds

s
Xs ,

where (βt, t ≥ 0) is a real-valued BM , starting from 0.

Lemma 1.1 (Xt) is a solution of (∗) iff there exists a r.v. Y such that:
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Xt = t

⎛⎝Y −
∞∫
t

dβu

u

⎞⎠ .

Proof: From Itô’s formula, we have, for 0 < s < t:

1
t
Xt =

1
s
Xs +

t∫
s

dβu

u
.

As t → ∞, the right-hand side converges, hence, so does the left-hand side;

we call Y the limit of
Xt

t
, as t → ∞; we have

1
s
Xs = Y −

∞∫
s

dβu

u
.


�

We may now give a proof of Theorem 1.3; the rationale of the proof shall be:
1)⇒2)⇒3)⇒1).

1)⇒2): from Lemma 1.1, we have:
Xt

t
= Y −

∞∫
t

dX̃u

u
, and we now remark

that

Bt = −t

∞∫
t

dX̃u

u
, t ≥ 0, is a BM . (1.3)

Hence, it remains to show that Y is independent from B; in fact, we have:
σ{Bu, u ≥ 0} = σ{X̃u, u ≥ 0}, up to negligible sets, since, from (1.3), it
follows that:

d

(
Bt

t

)
=

dX̃t

t
.

However, from our hypothesis, Xt is independent of X̃u, u ≤ t, so that

Y ≡ lim
t→∞

(
Xt

t

)
is independent of (X̃u, u ≥ 0).

2)⇒3): We condition with respect to Y ; indeed, let ν(dy) = P (Y ∈ dy), and
define:

h(t, x) =
∫

ν(dy) exp
(

yx − y2t

2

)
≡

∫
ν(dy)hy(t, x) .
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From Girsanov’s theorem, we know that:

P {(Bu + yu, u ≥ 0) ∈ Γ} = Why(Γ ) ,

and therefore, here, we have: P = Wh.

3)⇒1): If P = Wh, then we know that (X̃u, u ≤ t) is independent of Xt

under W , hence also under P , since the density
dP

dW

∣∣∣
Ft

= h(Xt, t) depends

only on Xt. 
�

Exercise 1.2: Let λ ∈ IR. Define β
(λ)
t = Bt − λ

t∫
0

ds

s
Bs (t ≥ 0).

Let F (λ)
t = σ{β(λ)

s ; s ≤ t}, t ≥ 0, be the natural filtration of (β(λ)
t , t ≥ 0),

and (Ft, t ≥ 0) be the natural filtration of (β(λ)
t , t ≥ 0).

1. Show that (F (λ)
t , t ≥ 0) is a strict subfiltration of (Ft, t ≥ 0) if, and only

if, λ > 1
2 .

2. We now assume: λ > 1
2 .

Prove that the canonical decomposition of (β(λ)
t , t ≥ 0) in its natural

filtration (F (λ)
t , t ≥ 0) is:

β
(λ)
t = γ

(λ)
t − (1 − λ)

t∫
0

ds

s
γ(λ)

s , t ≥ 0 ,

where (γ(λ)
t , t ≥ 0) is a (F (λ)

t , t ≥ 0) Brownian motion.

3. Prove that the processes: B, β(λ), and γ(λ) satisfy the following relations:

d

(
Bt

tλ

)
=

dβ
(λ)
t

tλ
and d

(
γ

(λ)
t

t1−λ

)
=

dβ
(λ)
t

t1−λ
.

Exercise 1.3: (We use the notation introduced in the statement or the
proof of Theorem 1.3).

Let Y be a real-valued r.v. which is independent of (Bt, t ≥ 0); let
ν(dy) = P (Y ∈ dy) and define: B

(ν)
t = Bt + Y t.
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1. Prove that if f : IR → IR+ is a Borel function, then:

E
[
f(Y ) | B(ν)

s , s ≤ t
]

=

∫
ν(dy)f(y) exp

(
yB

(ν)
t − y2t

2

)
∫

ν(dy) exp
(

yB
(ν)
t − y2t

2

)

2. With the help of the space-time harmonic function h featured in prop-
erty 3) of Theorem 1.3, write down the canonical decomposition of
(B(ν)

t , t ≥ 0) in its own filtration.

1.5 Brownian motion and Hardy’s inequality in L2

(1.5.1) The transformation T which we have been studying is closely related
to the Hardy transform:

H : L2 ([0, 1]) −→ L2 ([0, 1])

f −→ Hf : x→ 1
x

x∫
0

dy f(y)

We remark that the adjoint of H , which we denote by H̃ , satisfies:

H̃f(x) =

1∫
x

dy

y
f(y), f ∈ L2 ([0, 1]) .

The operator K = H , or H̃, satisfies Hardy’s L2 inequality:

1∫
0

dx(Kf)2(x) ≤ 4

1∫
0

dx f2(x) ,

which maybe provedby several simplemethods, amongwhich one is to consider
martingales defined on [0, 1], fitted with Lebesgue measure, and the filtration
{Ft = σ(A, Borel set; A ⊂ [0, t]; t ≤ 1} (see, for example, Dellacherie-Meyer-
Yor [29]). In this paragraph, we present another approach, which is clearly
related to the Brownian motion (βt) introduced in Theorem 1.1. We first
remark that if, to begin with, f is bounded, we may write
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(∗)
1∫

0

f(u)dBu =

1∫
0

f(u)dβu +

1∫
0

du

u
Buf(u),

and then, we remark that

1∫
0

du

u
Buf(u) =

1∫
0

dBu(H̃f)(u) ;

hence, from (∗)
1∫

0

dBu(H̃f)(u) =

1∫
0

f(u)dBu −
1∫

0

f(u)dβu ,

from which we immediately deduce Hardy’s L2 inequality.

We now go back to (∗) to remark that, for any f ∈ L2[0, 1], or, in fact more
generally, for any (Gu)u≤1 predictable process (ϕ(u, ω)) such that:

1∫
0

duϕ2(u, ω) < ∞ a.s. ,

the limit: lim
ε↓0

1∫
ε

du

u
Buϕ(u, ω) exists , since both limits, as ε → 0, of

1∫
ε

dBuϕ(u, ω) and

1∫
ε

βuϕ(u, ω) exist. This general existence result should

be contrasted with the following

Lemma 1.2 Let (ϕ(u, w); u ≤ 1) be a (Gu)u≤1 predictable process such that:
1∫

0

duϕ2(u, ω) < ∞ a.s. Then, the following properties are equivalent

(i)

1∫
0

du√
u
|ϕ(u, ω)| < ∞; (ii)

1∫
0

du

u
|Bu| |ϕ(u, ω)| < ∞;

(iii) the process

⎛⎝ t∫
0

dβuϕ(u, ω), t ≤ 1

⎞⎠ is a (Bt, t ≤ 1) semimartingale.
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For a proof of this Lemma, we refer the reader to Jeulin-Yor ([53]); the
equivalence between (i) and (ii) is a particular case of a useful lemma due to
Jeulin ([51], p. 44).

(1.5.2) We now translate the above existence result, at least for ϕ(u, ω) =
f(u), with f in L2([0, 1]) in terms of a convergence result for certain integrals
of the Ornstein-Uhlenbeck process.

Define the Ornstein-Uhlenbeck process with parameter µ ∈ IR, as the unique
solution of Langevin’s equation:

Xt = x + Bt + µ

t∫
0

ds Xs ;

the method of variation of constants yields the formula:

Xt = eµt

⎛⎝x +

t∫
0

e−µsdBs

⎞⎠ .

When µ = −λ, with λ > 0, and x is replaced by a Gaussian centered vari-
able X0, with variance β = 1

2λ , then the process:

Yt = e−λt

⎛⎝X0 +

t∫
0

eλsdBs

⎞⎠
is stationary, and may also be represented as:

Yt =
1√
2λ

e−λtB̃e2λt =
1√
2λ

eλtB̂e−2λt ,

where (B̃u)u≥0 and (B̂u)u≥0 are two Brownian motions, which are linked by:

B̃u = uB̂1/u .

We now have the following

Proposition 1.2 For any g ∈ L2([0,∞]),

⎛⎝ t∫
0

ds g(s)Ys, t → ∞
⎞⎠ converges

a.s. and in L2 (in fact, in every Lp, p < ∞).

Proof: Using the representation of (Yt, t ≥ 0) in terms of B̂, we have:
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t∫
0

ds g(s)Ys =

1∫
e−2λt

du

u
B̂u

1√
2λu

g

(
1
2λ

log
1
u

)
.

Now, the application

g −→ 1√
2λu

g

(
1
2λ

log
1
u

)
L2([0,∞]) −→ L2([0, 1])

is an isomorphism of Hilbert spaces; the result follows. 
�

1.6 Fourier transform and Brownian motion

There has been, since Lévy’s discovery of local times, a lot of interest in
the occupation measure of Brownian motion, that is, for fixed t and w, the
measure λw,t(dx) defined by:

∫
λw,t(dx)f(x) =

t∫
0

ds f (Bs(w)) .

In particular, one may show that, a.s., the Fourier transform of λw,t, that is:

λ̂w,t(µ) ≡
t∫

0

ds exp(iµBs(w)) is in L2(dµ); therefore, λw,t(dx) is absolutely

continuous and its family of densities are the local times of B up to time t.
Now, we are interested in a variant of this, namely we consider:

t∫
0

ds g(s) exp(iµBs), µ �= 0 ,

where g satisfies:

t∫
0

ds|g(s)| < ∞, for every t > 0. We note the following

Proposition 1.3 Let µ ∈ IR, µ �= 0, and define: λ = µ2

2 . Let (Yt, t ≥ 0) be
the stationary Ornstein-Uhlenbeck process, with parameter λ. Then, we have
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the following identities:

E

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

ds g(s) exp(iµBs)

∣∣∣∣∣∣
2
⎤⎥⎦ = µ2E

⎡⎢⎣
⎛⎝ t∫

0

ds g(s)Ys

⎞⎠2
⎤⎥⎦

=

t∫
0

ds

t∫
0

du g(s)g(u)e−λ|u−s| .

Corollary 1.3.1 For any µ �= 0, and for any function g ∈ L2([0,∞)],⎛⎝ t∫
0

ds g(s) exp(iµBs), t → ∞
⎞⎠ converges a.s. and in L2 (also in every

Lp, p < ∞).

Proof: The L2 convergence follows immediately from the Proposition and
from the L2 convergence of the corresponding quantity for Y . The a.s. con-
vergence is obtained from the martingale convergence theorem. Indeed, if we

define: Γ (µ) = L2- lim
t→∞

t∫
0

dsg(s)eiµBs , we have

E [Γ (µ) | Bt] =

t∫
0

ds g(s)eiµBs + eiµBt

∞∫
t

ds g(s)e−λ(s−t) .

The left-hand side converges a.s., hence, so does the right-hand side; but, the
second term on the right-hand side goes to 0, since:∣∣∣∣∣∣eiµBt

∞∫
t

ds g(s)e−λ(s−t)

∣∣∣∣∣∣ ≤
⎛⎝ ∞∫

t

ds g2(s)

⎞⎠1/2

1√
2λ t→∞

→ 0 .


�

From the above results, the r.v. Γ (µ) ≡
∞∫
0

ds g(s) exp(iµBs) is well-defined;

it admits the following representation as a stochastic integral:

Γ (µ) =

∞∫
0

ds g(s) exp(−λs) + iµ

∞∫
0

dBs exp(iµBs)Gλ(s) ,
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where:

Gλ(s) =

∞∫
s

du g(u) exp−λ(u − s) .

Hence, Γ (µ) is the terminal variable of a martingale in the Brownian filtra-
tion, the increasing process of which is uniformly bounded. Therefore, we
have:

E
[
exp

(
α|Γ (µ)|2)] < ∞, for α sufficiently small.

Many properties of the variables Γ (µ) have been obtained by C. Donati-
Martin [30].

Comments on Chapter 1

- In paragraph 1.1, some explicit and well-known realizations of the Brownian
bridges are presented, with the help of the Gaussian character of Brownian
motion.
- In paragraph 1.2, it is shown that the filtration of those Brownian bridges
is that of a Brownian motion, and in paragraph 1.3, the application which
transforms the original Brownian motion into the new one is shown to be
ergodic; these two paragraphs follow Jeulin-Yor [54] closely.
One may appreciate how much the Gaussian structure facilitates the proofs
in comparing the above development (Theorem 1.2, say) with the problem,
not yet completely solved, of proving that Lévy’s transformation:

(Bt, t ≥ 0) −→
⎛⎝ t∫

0

sgn(Bs)dBs ; t ≥ 0

⎞⎠
is ergodic. Dubins and Smorodinsky [35] have made some important progress
on this question.
- Paragraph 1.4 is taken from Jeulin-Yor [54]; it is closely connected to works
of H. Föllmer [43] and O. Brockhaus [22]. Also, the discussion and the results
found in the same paragraph 1.4 look very similar to those in Carlen [23],
but we have not been able to establish a precise connection between these
two works.
- Paragraph 1.5 is taken mostly from Donati-Martin and Yor [32], whilst the
content of paragraph 1.6 has been the starting point of Donati-Martin [30].



Chapter 2

The laws of some quadratic functionals
of BM

In Chapter 1, we studied a number of properties of the Gaussian space of
Brownian motion; this space may be seen as corresponding to the first level of
complexity of variables which are measurable with respect to F∞≡σ{Bs,s≥0},
where (Bs, s ≥ 0) denotes Brownian motion. Indeed, recall that N. Wiener
proved that every L2(F∞) variable X may be represented as:

X = E(X) +
∞∑

n=1

∞∫
0

dBt1

t1∫
0

dBt2 . . .

tn−1∫
0

dBtnϕn(t1, . . . , tn)

where ϕn is a deterministic Borel function which satisfies:

∞∫
0

dt1 . . .

tn−1∫
0

dtnϕ2
n(t1, . . . , tn) < ∞ .

In this Chapter, we shall study the laws of some of the variables X which
correspond to the second level of complexity, that is: which satisfy ϕn = 0,
for n ≥ 3. In particular, we shall obtain the Laplace transforms of certain
quadratic functionals of B, such as:

αB2
t + β

t∫
0

ds B2
s ,

t∫
0

dµ(s)B2
s , and so on...

17
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2.1 Lévy’s area formula and some variants

(2.1.1) We consider (Bt, t ≥ 0) a δ-dimensional BM starting from a ∈ IRδ.
We write x = |a|2, and we look for an explicit expression of the quantity:

Iα,b
def= E

⎡⎣exp

⎛⎝−α|Bt|2 − b2

2

t∫
0

ds|Bs|2
⎞⎠⎤⎦ .

We now show that, as a consequence of Girsanov’s transformation, we may
obtain the following formula1 for Iα,b:

Iα,b =
(
ch(bt) + 2

α

b
sh(bt)

)−δ/2

exp−xb

2

(
1 + 2α

b coth bt
)(

coth(bt) + 2α
b

) (2.1)

Proof: We may assume that b ≥ 0. We consider the new probability P (b)

defined by:

P
(b)
|Ft

= exp

⎧⎨⎩− b

2
(|Bt|2 − x − δt

)− b2

2

t∫
0

ds|Bs|2
⎫⎬⎭ · P|Ft

.

Then, under P (b), (Bu, u ≤ t) satisfies the following equation,

Bu = a + βu − b

u∫
0

ds Bs , u ≤ t ,

where (βu, u ≤ t) is a (P (b),Ft) Brownian motion.

Hence, (Bu, u ≤ t) is an Ornstein-Uhlenbeck process with parameter −b,
starting from a. Consequently, (Bu, u ≤ t) may be expressed explicitly in
terms of β, as

Bu = e−bu

⎛⎝a +

u∫
0

ebsdβs

⎞⎠ , (2.2)

a formula from which we can immediately compute the mean and the variance
of the Gaussian variable Bu (considered under P (b)). This clearly solves the
problem, since we have:

1 Throughout the volume, we use the French abbreviations ch, sh, th for, respectively,
cosh, sinh, tanh,...
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Iα,b = E(b)

[
exp

(
−α|Bt|2 +

b

2
(|Bt|2 − x − δt

))]
,

and formula (2.1) now follows from some straightforward, if tedious, compu-
tations. 
�

Exercise 2.1: Show that exp

⎧⎨⎩ b

2
(|Bt|2 − x − δt

)− b2

2

t∫
0

ds|Bs|2
⎫⎬⎭ is also

a (P, (Ft)) martingale, and that we might have considered this martingale as
a Radon-Nikodym density to arrive to the same formula (2.1).

(2.1.2) The same method allows to compute the joint Fourier-Laplace trans-

form of the pair:

⎛⎝ t∫
0

f(u)dBu,

t∫
0

du B2
u

⎞⎠ where for simplicity, we take here

the dimension δ to be 1.

Indeed, to compute:

E

⎡⎣exp

⎛⎝i

t∫
0

f(u)dBu − b2

2

t∫
0

du B2
u

⎞⎠⎤⎦ , (2.3)

all we need to know, via the above method, is the joint distribution of
t∫

0

f(u)dBu and Bt, under P (b).

This is clearly equivalent to being able to compute the mean and variance of
t∫

0

g(u)dBu, for any g ∈ L2([0, t], du).

However, thanks to the representation (2.2), we have:

t∫
0

g(u)dBu =

t∫
0

g(u)

⎧⎨⎩−be−budu ·
⎛⎝a +

u∫
0

ebsdβs

⎞⎠ + e−bu(ebudβu)

⎫⎬⎭
= −ba

t∫
0

g(u)e−budu +

t∫
0

dβu

⎛⎝g(u) − ebub

t∫
u

e−bsg(s)ds

⎞⎠ .
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Hence, the mean of

t∫
0

g(u)dBu under P (b) is: −ba

t∫
0

g(u)e−budu, and its

variance is:

t∫
0

du

⎛⎝g(u) − bebu

t∫
u

e−bsg(s)ds

⎞⎠2

.

We shall not continue the discussion at this level of generality, but instead, we
indicate one example where the computations have been completely carried
out.

The next formulae will be simpler if we work in a two-dimensional setting;
therefore, we shall consider Zu = Xu + iYu, u ≥ 0, a C-valued BM starting

from 0, and we define G =

1∫
0

ds Zs, the barycenter of Z over the time-

interval [0,1].

The above calculations lead to the following formula (taken with small enough
ρ, σ ≥ 0):

E

⎡⎣exp−λ2

2

⎛⎝ 1∫
0

ds|Zs|2 − ρ|G|2 − σ|Z1|2
⎞⎠⎤⎦

=
{

(1 − ρ)chλ + ρ
shλ

λ
+ σ [(ρ − 1)λshλ − 2ρ(chλ − 1)]

}−1

(2.4)

which had been obtained by a different method by Chan-Dean-Jansons-
Rogers [26].

(2.1.3) Before we continue with some consequences of formulae (2.1)
and (2.4), let us make some remarks about the above method:

it consists in changing probability so that the quadratic functional disappears,
and the remaining problem is to compute the mean and variance of a Gaussian
variable. Therefore, this method consists in transfering some computational
problem for a variable belonging to (the first and) the second Wiener chaos
to computations for a variable in the first chaos; in other words, it consists
in a linearization of the original problem.

In the last paragraph of this Chapter, we shall use this method again to deal

with the more general problem, when

t∫
0

ds|Bs|2 is replaced by

t∫
0

dµ(s)|Bs|2.
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(2.1.4) A number of computations found in the literature can be obtained
very easily from the formulae (2.1) and (2.4).

a) The following formula is easily deduced from formula (2.1):

Ea

⎡⎣exp−b2

2

t∫
0

ds|Bs|2 | Bt = 0

⎤⎦= E0

⎡⎣exp−b2

2

t∫
0

ds|Bs|2 | Bt = a

⎤⎦
=

(
bt

sh(bt)

)δ/2

exp−|a|2
2t

(bt coth(bt) − 1)

(2.5)

which, in the particular case a = 0, yields the formula:

E0

⎡⎣exp

⎛⎝−b2

2

t∫
0

ds|Bs|2
⎞⎠ | Bt = 0

⎤⎦ =
(

bt

sh(bt)

)δ/2

(2.6)

Lévy’s formula for the stochastic area

At
def=

t∫
0

(XsdYs − YsdXs)

of planar Brownian motion Bt = (Xt, Yt) may now be deduced from for-
mula (2.5); precisely, one has:

E0 [exp(ibAt) | Bt = a] =
(

bt

sh bt

)
exp−|a|2

2t
(bt coth bt − 1) (2.7)

To prove formula (2.7), first remark that, thanks to the rotational invari-
ance of the law of Brownian motion (starting from 0), we have:

E0 [exp(ibAt) | Bt = a] = E0 [exp(ibAt) | |Bt| = |a|] ,

and then, we can write:

At =

t∫
0

|Bs|dγs ,

where (γt, t ≥ 0) is a one dimensional Brownian motion independent from
(|Bs|, s ≥ 0). Therefore, we obtain:
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E0 [exp(ibAt) | |Bt| = |a|] = E0

⎡⎣exp

⎛⎝−b2

2

t∫
0

ds|Bs|2
⎞⎠ | Bt = a

⎤⎦
and formula (2.7) is now deduced from formula (2.5).

b) Similarly, from formula (2.4), one deduces:

E

⎡⎣exp

⎛⎝− µ2

2

1∫
0

ds|Zs − G|2
⎞⎠ | Z1 = z

⎤⎦
=

(
µ/2

shµ/2

)2

exp−|z|2
2

(µ

2
coth

µ

2
− 1

)
(2.8)

c) As yet another example of application of the method, we now derive the
following formula obtained by M. Wenocur [91] (see also, in the same vein,
[92]):
consider (W (t), t ≥ 0) a 1-dimensional BM , starting from 0, and define:
Xt = Wt +µt+x, so that (Xt, t ≥ 0) is the Brownian motion with drift µ,
starting from x.

Then, M. Wenocur [91] obtained the following formula:

E

⎡⎣exp

⎛⎝−λ2

2

1∫
0

ds X2
s

⎞⎠⎤⎦ =
1

(chλ)1/2
exp(H(x, µ, λ)) , (2.9)

where

H(x, µ, λ) = −µ2

2

(
1 − thλ

λ

)
− xµ

(
1 − 1

chλ

)
− x2

2
λthλ .

We shall now sketch a proof of this formula, by applying twice Girsanov’s
theorem. First of all, we may “get rid of the drift µ”, since:

E

⎡⎣exp

⎛⎝−λ2

2

1∫
0

ds X2
s

⎞⎠⎤⎦
= Ex

⎡⎣exp
(

µ(X1 − x) − µ2

2

)
exp−λ2

2

1∫
0

ds X2
s

⎤⎦
where Px denotes the law of Brownian motion starting from x. We apply
Girsanov’s theorem a second time, thereby replacing Px by P

(λ)
x , the law
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of the Ornstein-Uhlenbeck process, with parameter λ, starting from x. We
then obtain:

Ex

⎡⎣exp

⎛⎝µX1 − λ2

2

1∫
0

ds X2
s

⎞⎠⎤⎦
= E(λ)

x

[
exp

(
µX1 +

λ

2
X2

1

)
exp

(
−λ

2
(x2 + 1)

)]
,

and it is now easy to finish the proof of (2.9), since, as shown at the
beginning of this paragraph, the mean and variance of X1 under P

(λ)
x are

known.

Exercise 2.2: 1) Extend formula (2.9) to a δ-dimensional Brownian motion
with constant drift.

2) Derive formula (2.1) from this extended formula (2.9).

Hint: Integrate both sides of the extended formula (2.9) with respect to
dµ exp− (

c|µ|2) on IRδ.

Exercise 2.3: Let (Bt, t ≥ 0) be a 3-dimensional Brownian motion starting
from 0.

1. Prove the following formula:
for every m ∈ IR3, ξ ∈ IR3 with |ξ| = 1, and λ ∈ IR∗,

E

⎡⎣exp

⎛⎝iλξ ·
1∫

0

Bs × dBs

⎞⎠ | B1 = m

⎤⎦
=

(
λ

shλ

)
exp

( |m|2 − (ξ · m)2

2
(1 − λ coth λ)

)
,

where x · y, resp.: x × y, denotes the scalar product, resp.: the vector
product, of x and y in IR3.

Hint: Express ξ ·
1∫

0

Bs× dBs in terms of the stochastic area of the

2-dimensional Brownian motion: (η · Bs; (ξ × η) · Bs; s ≥ 0) where η is a
suitably chosen unit vector of IR3, which is orthogonal to ξ.
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2. Prove that, for any λ ∈ IR∗, z ∈ IR3, and ξ ∈ IR3, with |ξ| = 1, one has:

E

⎡⎣exp i

⎛⎝z · B1 + λξ ·
1∫

0

Bs × dBs

⎞⎠⎤⎦
=

1
(chλ)

exp−1
2

(
|z|2 thλ

λ
+ (z · ξ)2

(
1 − thλ

λ

))
.

2.2 Some identities in law and an explanation of them
via Fubini’s theorem

(2.2.1) We consider again formula (2.4), in which we take ρ = 1, and σ = 0.
We then obtain:

E

⎡⎣exp

⎛⎝−λ2

2

1∫
0

ds|Zs − G|2
⎞⎠⎤⎦ =

λ

shλ
,

but, from formula (2.6), we also know that, using the notation (Z̃s, s ≤ 1) for
the complex Brownian bridge of length 1:

E

⎡⎣exp

⎛⎝−λ2

2

1∫
0

ds|Z̃s|2
⎞⎠⎤⎦ =

λ

shλ
;

hence, the following identity in law holds:

1∫
0

ds|Zs − G|2 (law)
=

1∫
0

ds|Z̃s|2 , (2.10)

an identity which had been previously noticed by several authors (see, e.g.,
[33]).

Obviously, the fact that, in (2.10), Z, resp. Z̃, denotes a complex valued BM ,
resp. Brownian bridge,instead of a real-valued process, is of no importance,
and (2.10) is indeed equivalent to:

1∫
0

dt(Bt − G)2
(law)
=

1∫
0

dtB̃2
t , (2.11)
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where (Bt, t ≤ 1), resp. (B̃t, t ≤ 1) now denotes a 1-dimensional BM , resp.
Brownian bridge, starting from 0.

(2.2.2) Our first aim in this paragraph is to give a simple explanation of
(2.11) via Fubini’s theorem.

Indeed, if B and C denote two independent Brownian motions and
ϕ ∈ L2([0, 1], du ds), we have:

1∫
0

dBu

1∫
0

dCsϕ(u, s) a.s.=

1∫
0

dCs

1∫
0

dBuϕ(u, s) ,

which, as a corollary, yields:

1∫
0

du

⎛⎝ 1∫
0

dCsϕ(u, s)

⎞⎠2

(law)
=

1∫
0

du

⎛⎝ 1∫
0

dCsϕ(s, u)

⎞⎠2

(2.12)

(in the sequel, we shall refer to this identity as to the “Fubini-Wiener identity
in law”).

The identity (2.11) is now a particular instance of (2.12), as the following
Proposition shows.

Proposition 2.1 Let f : [0, 1]→IR be a C1-function such that f(1) = 1.
Then, we have:

1∫
0

ds

⎛⎝Bs −
1∫

0

dt f ′(t)Bt

⎞⎠2

(law)
=

1∫
0

ds(Bs − f(s)B1)2 . (2.13)

In particular, in the case f(s) = s, we obviously recover (2.11).

Proof: It follows from the identity in law (2.12), where we take:

ϕ(s, u) =
(
1(u≤s) − (f(1) − f(u))

)
1((s,u)∈[0,1]2) . 
�

Here is another variant, due to Shi Zhan, of the identity in law (2.13).

Exercise 2.4: Let µ(dt) be a probability on IR+. Then, prove that:
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∞∫
0

µ(dt)

⎛⎝Bt −
∞∫
0

µ(ds)Bs

⎞⎠2

(law)
=

∞∫
0

B̃2
µ[0,t]dt ,

where (B̃u, u ≤ 1) is a standard Brownian bridge.

As a second application of (2.12), or rather of a discrete version of (2.12),
we prove a striking identity in law (2.14), which resembles the integration by
parts formula.

Theorem 2.1 Let (Bt, t ≥ 0) be a 1-dimensional BM starting from 0. Let
0 ≤ a ≤ b < ∞, and f, g : [a, b]→IR+ be two continuous functions, with f
decreasing, and g increasing.

b∫
a

−df(x)B2
g(x) + f(b)B2

g(b)

(law)
= g(a)B2

f(a) +

b∫
a

dg(x)B2
f(x) . (2.14)

In order to prove (2.14), it suffices to show that the identity in law:

−
n∑

i=1

(f(ti+1) − f(ti))B2
g(ti)

+ f(tn)B2
g(tn)

(law)
= g(t1)B2

f(t1) +
n∑

i=2

(g(ti) − g(ti−1))B2
f(ti)

, (2.15)

where a = t1 < t2 < · · · < tn = b, holds, and then to let the mesh of the
subdivision tend to 0.

Now, (2.15) is a particular case of a discrete version of (2.12), which we now
state.

Theorem 2.2 Let Xn = (X1, . . . , Xn) be an n-dimensional Gaussian vector,
the components of which are independent, centered, with variance 1. Then,
for any n × n matrix A, we have:

|AXn| (law)
= |A∗Xn| ,

where A∗ is the transpose of A, and, if xn = (x1,−−−−−, xn) ∈ IRn, we denote:

|xn| =
(

n∑
i=1

x2
i

)1/2

.
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Corollary 2.2.1 Let (Y1, . . . , Yn) and (Z1, . . . , Zn) be two n-dimensional
Gaussian vectors such that

i) Y1, Y2 − Y1, . . . , Yn − Yn−1 are independent;

ii) Zn, Zn − Zn−1, . . . , Z2 − Z1 are independent.

Then, we have

−
n∑

i=1

Y 2
i

(
E(Z2

i+1) − E(Z2
i )
) (law)

=
n∑

i=1

Z2
i

(
E(Y 2

i ) − E(Y 2
i−1)

)
(∗)

where we have used the convention: E(Z2
n+1) = E(Y 2

0 ) = 0.

The identity in law (2.15) now follows as a particular case of (∗) .

2.3 The laws of squares of Bessel processes

Consider (Bt, t ≥ 0) a δ-dimensional (δ ∈ IN, for the moment...) Brownian
motion starting from a, and define: Xt = |Bt|2. Then, (Xt, t ≥ 0) satisfies
the following equation

Xt = x + 2

t∫
0

√
Xsdβs + δt , (2.16)

where x = |a|2, and (βt, t ≥ 0) is a 1-dimensional Brownian motion. More
generally, from the theory of 1-dimensional stochastic differential equations,
we know that for any pair x, δ ≥ 0, the equation (2.16) admits one strong
solution, hence, a fortiori, it enjoys the uniqueness in law property.

Therefore, we may define, on the canonical space Ω∗
+ ≡ C(IR+, IR+), Qδ

x as
the law of a process which satisfies (2.16).

The family (Qδ
x, x ≥ 0, δ ≥ 0) possesses the following additivity property,

which is obvious for integer dimensions.



28 2 Quadratic Functionals of Brownian motion

Theorem 2.3 (Shiga-Watanabe [83]) For any δ, δ′, x, x′ ≥ 0, the identity:

Qδ
x ∗ Qδ′

x′ = Qδ+δ′
x+x′

holds, where ∗ denotes the convolution of two probabilities on Ω∗
+.

Now, for any positive, σ-finite, measure µ on IR+, we define:

Iµ(ω) =

∞∫
0

dµ(s)Xs(ω) ,

and we deduce from the theorem that there exist two positive constants A(µ)
and B(µ) such that:

Qδ
x

(
exp−1

2
Iµ

)
= (A(µ))x(B(µ))δ .

The next theorem allows to compute A(µ) and B(µ).

Theorem 2.4 For any ≥ 0 Radon measure µ on [0,∞), one has:

Qδ
x

(
exp−1

2
Iµ

)
= (φµ(∞))δ/2 exp

(x

2
φ+

µ (0)
)

,

where φµ denotes the unique solution of:

φ′′ = µφ on (0,∞) , φµ(0) = 1, 0 ≤ φ ≤ 1 ,

and φ+
µ (0) is the right derivative of φµ at 0.

Proof: For simplicity, we assume that µ is diffuse, and that its support is
contained in (0, 1).

Define: Fµ(t) =
φ′

µ(t)
φµ(t)

, and F̂µ(t) =

t∫
0

φ′
µ(s)ds

φµ(s)
= log φµ(t).

Then, remark that:

Zµ
t

def= exp

⎧⎨⎩1
2

[
Fµ(t)Xt − Fµ(0)x − δF̂µ(t)

]
− 1

2

t∫
0

Xsdµ(s)

⎫⎬⎭
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is a Qδ
x-martingale, since it may be written as:

exp

⎧⎨⎩
t∫

0

Fµ(s)dMs − 1
2

t∫
0

F 2
µ(s)d 〈M〉s

⎫⎬⎭ ,

where: Mt = 1
2 (Xt − δt), and 〈M〉t =

t∫
0

ds Xs.

It now remains to write: Qδ
x(Zµ

1 ) = 1, and to use the fact that Fµ(1) = 0 to
obtain the result stated in the theorem. 
�

Exercise 2.5: 1) Prove that the integration by parts formula (2.14) can
be extended as follows:

(∗)
b∫

a

−df(x)Xg(x) + f(b)Xg(b)
(law)
= g(a)Xf(a) +

b∫
a

dg(x)Xf(x) ,

where X is a BESQ process, with any strictly positive dimension, starting
from 0.

2) Prove the following convergence in law result:(√
n

(
1
n

X
(n)
t − t

)
, t ≥ 0

)
(law)

n→∞
→ (cβt2 ; t ≥ 0) ,

for a certain constant c > 0, where (X(n)
t , t ≥ 0) denotes a BESQn process,

starting from 0, and (βt, t ≥ 0) denotes a real-valued BM , starting from 0.

3) Prove that the process (Xt ≡ βt2 , t ≥ 0) satisfies (∗) .

Comments on Chapter 2

For many reasons, a number of computations of the Laplace or Fourier trans-
form of the distribution of quadratic functionals of Brownian motion, or re-
lated processes, are being published almost every year; the origins of the in-
terests in such functionals range from Bismut’s proof of the Atiyah-Singer
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theorem, to polymer studies (see Chan-Dean-Jansons-Rogers [26] for the
latter).

Duplantier [36] presents a good list of references to the literature.

The methods used by the authors to obtain closed formulae for the corre-
sponding characteristic functions or Laplace transforms fall essentially into
one of the three following categories:

i) P. Lévy’s diagonalisation procedure, which has a strong functional analysis
flavor; this method may be applied very generally and is quite powerful;
however, the characteristic functions or Laplace transforms then appear as
infinite products, which have to be recognized in terms of, say, hyperbolic
functions...

ii) the change of probability method which, in effect, linearizes the problem,
i.e.: it allows to transform the study of a quadratic functional into the
computation of the mean and variance of an adequate Gaussian variable;
paragraph 2.1 above gives an important example of this method.

iii)finally, the reduction method, which simply consists in trying to reduce
the computation for a certain quadratic functional to similar computa-
tions which have already been done. Exercise 2.3, and indeed the whole
paragraph 2.2 above give some examples of application. The last formula
in Exercise 2.3 is due to Foschini and Shepp [44] and the whole exercise
is closely related to the work of Berthuet [6] on the stochastic volume of
(Bu, u ≤ 1).

Paragraph 2.3 is closely related to Pitman-Yor ([73], [74]).

Some extensions of the integration by parts formula (2.14) to stable pro-
cesses and some converse studies have been made by Donati-Martin, Song
and Yor [31].



Chapter 3

Squares of Bessel processes and
Ray-Knight theorems for Brownian
local times

Chapters 1 and 2 were devoted to the study of some properties of variables in
the first and second Wiener chaos. In the present Chapter, we are studying
variables which are definitely at a much higher level of complexity in the
Wiener chaos decomposition; in fact, they have infinitely many Wiener chaos
components.

More precisely, we shall study, in this Chapter, some properties of the Brow-
nian local times, which may be defined by the occupation times formula:

t∫
0

ds f(Bs) =

∞∫
−∞

da f(a)�a
t , f ∈ b (B(IR)) ,

and, from Trotter’s theorem, we may, and we shall, choose the family
(�a

t ; a ∈ IR, t ≥ 0) to be jointly continuous.

This occupation times formula transforms an integration in time, into an in-
tegration in space, and it may be asked: what becomes of the Markov property
through this change from time to space?

In fact, the Ray-Knight theorems presented below show precisely that there
is some Markov property in space, that is: at least for some suitably chosen
stopping times T , the process (�a

T , a ∈ IR) is a strong Markov process, the
law of which can be described precisely.

More generally, we shall try to show some evidence, throughout this Chapter,
of a general transfer principle from time to space, which, in our opinion,
permeates the various developments made around the Ray-Knight theorems
on Brownian local times.

31
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3.1 The basic Ray-Knight theorems

There are two such theorems, the first one being related to T ≡ τx

= inf{t ≥ 0 : �0
t = x}, and the second one to T ′ ≡ T1 = inf{t : Bt = 1}.

(RK1) The processes (�a
τx

; a ≥ 0) and (�−a
τx

; a ≥ 0) are two independent
squares, starting at x, of 0-dimensional Bessel processes, i.e.: their
common law is Q0

x.

(RK2) The process (�1−a
T1

; 0 ≤ a ≤ 1) is the square of a 2-dimensional Bessel
process starting from 0, i.e.: its law is Q2

0.

There are several important variants of (RK2), among which the two following
ones.

(RK2)(a) If (R3(t), t ≥ 0) denotes the 3-dimensional Bessel process starting
from 0, then the law of (�a

∞(R3), a ≥ 0) is Q2
0.

(RK2)(b) The law of
(
�a
∞(|B| + �0); a ≥ 0

)
is Q2

0.

We recall that (RK2)(a) follows from (RK2), thanks to Williams’ time rever-
sal result:

(Bt; t ≤ T1)
(law)
= (1 − R3(L1 − t); t ≤ L1) ,

where L1 = sup {t > 0 : R3(t) = 1}.

Then, (RK2)(b) follows from (RK2)(a) thanks to Pitman’s representation
of R3 (see [71]), which may be stated as

(R3(t), t ≥ 0)
(law)
= (|Bt| + �0

t ; t ≥ 0)

We now give a first example of the transfer principle from time to space
mentioned above. Consider, for µ ∈ IR, the solution of:

(∗) Xt = Bt + µ

t∫
0

ds 1(Xs>0) ,

and call P µ,+ the law of this process on the canonical space Ω∗; in the
following, we simply write P for the standard Wiener measure.

Then, from Girsanov’s theorem, we have:
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Pµ,+
|Ft

= exp

⎧⎨⎩µ

t∫
0

1(Xs>0)dXs − µ2

2

t∫
0

ds 1(Xs>0)

⎫⎬⎭ · P|Ft

= exp

⎧⎨⎩µ

(
X+

t − 1
2
�0
t

)
− µ2

2

t∫
0

ds 1(Xs>0)

⎫⎬⎭ · P|Ft
,

where (Xt)t≥0 denotes the canonical process on Ω∗, and (�0
t )t≥0 its local time

at 0 (which is well defined P a.s.).

It follows from the above Radon-Nikodym relationship that, for any ≥ 0
measurable functional F on Ω∗

+, we have:

Eµ,+
[
F (�1−a

T1
; 0 ≤ a ≤ 1)

]
= E

⎡⎣F (�1−a
T1

; 0 ≤ a ≤ 1) exp

⎧⎨⎩−µ

2
(�0

T1
− 2) − µ2

2

1∫
0

da �a
T1

⎫⎬⎭
⎤⎦

(†) = Q2
0

⎡⎣F (Za; 0 ≤ a ≤ 1) exp

⎧⎨⎩−µ

2
(Z1 − 2) − µ2

2

1∫
0

da Za

⎫⎬⎭
⎤⎦

where (Za, a ≥ 0) now denotes the canonical process on Ω∗
+ (to avoid confu-

sion with X on Ω∗). The last equality follows immediately from (RK2).

Now, the exponential which appears as a Radon-Nikodym density in (†) trans-
forms Q2

0 into (−µ)Q2
0, a probability which is defined in the statement of The-

orem 3.1 below (see paragraph 6 of Pitman-Yor [73] for details).

Hence, we have just proved the following

Theorem 3.1 If X(µ) denotes the solution of the equation (∗) above, then,
the law of

(
�1−a
T1

(X(µ)); 0 ≤ a ≤ 1
)

is (−µ)Q2
0, where βQδ

x denotes the law of
the square, starting at x, of the norm of a δ-dimensional Ornstein-Uhlenbeck
process with parameter β, i.e.: a diffusion on IR+ whose infinitesimal gener-
ator is:

2y
d2

dy2
+ (2βy + δ)

d

dy
.
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3.2 The Lévy-Khintchine representation of Qδ
x

We have seen, in the previous Chapter, that for any x, δ ≥ 0, Qδ
x is in-

finitely divisible (Theorems 2.3 and 2.4). We are now able to express its
Lévy-Khintchine representation as follows

Theorem 3.2 For any Borel function f : IR+ → IR+, and ω ∈ Ω∗
+, we set

If (ω) = 〈ω, f〉 =

∞∫
0

dt ω(t)f(t) and fu(t) = f(u + t) .

Then, we have, for every x, δ ≥ 0:

Qδ
x(exp−If )

= exp−
∫

M(dω)

⎧⎨⎩x [1 − exp(−If (ω))] + δ

∞∫
0

du(1 − exp−Ifu(ω))

⎫⎬⎭ ,

where M(dω) is the image of the Itô measure n+of positive excursions by the
application which associates to an excursion ε the process of its local times:

ε→ (�x
R(ε); x ≥ 0) .

Before we give the proof of the theorem, we make some comments about the
representations of Q0

x and Qδ
0 separately:

obviously, from the theorem, the representing measure of Q0
x is xM(dω),

whereas the representing measure of Qδ
0 is δN(dω), where N(dω) is charac-

terized by:

∫
N(dω)

(
1 − e−If (ω)

)
=

∫
M(dω)

∞∫
0

du
(
1 − e−Ifu (ω)

)
and it is not difficult to see that this formula is equivalent to:

∫
N(dω)F (ω) =

∫
M(dω)

∞∫
0

du F
(
ω((· − u)+)

)
,

for any measurable ≥ 0 functional F .
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Now, in order to prove the theorem, all we need to do is to represent Q0
x, and

Qδ
0, for some dimension δ; in fact, we shall use (RK1) to represent Q0

x, and
(RK2) (b) to represent Q2

0.

Our main tool will be (as is to be expected!) excursion theory. We first
state the following consequences of the master formulae of excursion theory
(see [81], Chapter XII, Propositions (1.10) and (1.12)).

Proposition 3.1 Let (Mt, t ≥ 0) be a bounded, continuous process with
bounded variation on compacts of IR+, such that: 1(Bt=0)dMt = 0.

Then, (i) if, moreover, (Mt, t ≥ 0) is a multiplicative functional, we have:

E[Mτx ] = exp
(
−x

∫
n(dε)(1 − MR(ε))

)
,

where n(dε) denotes the Itô characteristic measure of excursions.

(ii) More generally, if the multiplicativity property assumption is replaced by:
(Mt, t ≥ 0) is a skew multiplicative functional, in the following sense:

Mτs = Mτs−(M (s)
R ) ◦ θτs− (s ≥ 0) ,

for some measurable family of r.v.’s (M (s)
R ; s ≥ 0), then the previous formula

should be modified as

E[Mτx ] = exp

⎛⎝−
x∫

0

ds

∫
n(dε)

(
1 − M

(s)
R (ε)

)⎞⎠ .

Taking Mt ≡ exp−
t∫

0

ds f(Bs, �s), for f : IR × IR+ → IR, a Borel function,

we obtain, as an immediate consequence of the Proposition, the following
important formula:
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(∗) E

⎡⎣exp

⎛⎝−
τx∫
0

ds f(Bs, �s)

⎞⎠⎤⎦
= exp−

x∫
0

ds

∫
n(dε)

⎛⎝1 − exp−
R∫

0

du f(ε(u), s)

⎞⎠ .

As an application, if we take f(y, �) ≡ 1(y≥0)g(y), then the left-hand side of
(∗) becomes:

Q0
x(exp−Ig) , thanks to (RK1),

while the right-hand side of (∗) becomes:

exp−x

∫
n+(dε)

⎛⎝1 − exp−
R∫

0

du g(ε(u))

⎞⎠ = exp−x

∫
M(dω)

(
1 − e−Ig(ω)

)

from the definition of M.

Next, if we write formula (∗) with f(y, �) = g(|y| + �), and x = ∞, the
left-hand side becomes:

Q2
0(exp−Ig) , thanks to (RK2) (b),

while the right-hand side becomes:

exp−
∞∫
0

ds

∫
n(dε)

⎛⎝1 − exp−
R∫

0

du g(|ε(u)| + s)

⎞⎠
= exp−2

∞∫
0

ds

∫
M(dω)(1 − exp−〈ω, gs〉)

= exp−2
∫

N(dω)(1 − exp−〈ω, g〉) from the definition of N.

Thus, we have completely proved the theorem.
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3.3 An extension of the Ray-Knight theorems

(3.3.1) Now that we have obtained the Lévy-Khintchine representation of Qδ
x,

we may use the infinite divisibility property again to obtain some extensions
of the basic Ray-Knight theorems.

First of all, it may be of some interest to define squares of Bessel processes
with generalized dimensions, that is: some IR+-valued processes which satisfy:

(∗) Xt = x + 2

t∫
0

√
Xsdβs + ∆(t)

where ∆ : IR+ → IR+ is a strictly increasing, continuous C1-function, with
∆(0) = 0 and ∆(∞) = ∞.

Then, it is not difficult to show, with the help of some weak convergence
argument, that the law Q∆

x of the unique solution of (∗) satisfies:

Q∆
x (e−If )= exp−

∫
M(dω)

⎧⎨⎩x
(
1 − exp−If (ω)

)
+

∞∫
0

∆(ds)(1 − exp−Ifs
(ω))

⎫⎬⎭ .

Now, we have the following

Theorem 3.3 The family of local times of
(|Bu| + ∆−1(2�u); u ≥ 0

)
is Q∆

0 .
In particular, the family of local times of

(|Bu| + 2
δ �u; u ≥ 0

)
is Qδ

0.

Proof: We use Proposition 3.1 with

Mt = exp−
t∫

0

ds f
(|Bs| + ∆−1(2�s)

)
,

and we obtain, for any x ≥ 0:
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E[Mτx ] = exp−
x∫

0

ds

∫
n(dε)

⎧⎨⎩(1 − exp−
R∫

0

du f
(|ε(u)| + ∆−1(2s)

)⎫⎬⎭
= exp−2

x∫
0

ds

∫
n+(dε)

⎧⎨⎩(1 − exp−
R∫

0

du f
(|ε(u)| + ∆−1(2s)

)⎫⎬⎭
= exp−

2x∫
0

dt

∫
n+(dε)

⎧⎨⎩(1 − exp−
R∫

0

du f
(|ε(u)| + ∆−1(t)

)⎫⎬⎭
= exp−

∆−1(2x)∫
0

d∆(h)
∫

n+(dε)

⎛⎝1 − exp−
R∫

0

du f(ε(u) + h)

⎞⎠ ,

and the result of the theorem now follows by letting x → ∞. 
�

In fact, in the previous proof, we showed more than the final statement, since
we considered the local times of

(|Bu| + ∆−1(2�u) : u ≤ τx

)
. In particular,

the above proof shows the following

Theorem 3.4 Let x > 0, and consider τx ≡ inf{t ≥ 0 : �t > x}. Then,
the processes

(
�
a−2x/δ
τx

(|B| − 2
δ �
)
; a ≥ 0

)
and

(
�a
τx

(|B| + 2
δ �
)
; a ≥ 0

)
have

the same law, namely that of an inhomogeneous Markov process (Ya; a ≥ 0),
starting at 0, which is the square of a δ-dimensional Bessel process for a
≤ 2x

δ , and a square Bessel process of dimension 0, for a ≥ 2x
δ .

(3.3.2) These connections between Brownian occupation times and squares
of Bessel processes explain very well why, when computing quantities to do
with Brownian occupation times, we find formulae which also appeared in
relation with Lévy’s formula (see Chapter 2). Here is an important example.

We consider a one-dimensional Brownian motion (Bt, t ≥ 0), starting from 0,
and we define σ = inf{t : Bt = 1}, and St = sup

s≤t
Bs (t ≥ 0). Let a < 1; we

are interested in the joint distribution of the triple:

A−
σ (a) def=

σ∫
0

ds 1(Bs<aSs) ; �(a)
σ

def= �0
σ(B − aS) ; A+

σ (a) def=

σ∫
0

ds 1(Bs>aSs)

Using standard stochastic calculus, we obtain: for every µ, λ, ν > 0,

E

[
exp−

(
µ2

2
A−

σ (a) + λ�
(a)
σ +

ν2

2
A+

σ (a)

)]
=

(
ch(νā) + (µ + 2λ)

sh(νā)

ν

)−1/ā
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where ā = 1 − a > 0.

On the other hand, we deduce from formula (2.1) and the additivity property,
presented in Theorem 2.3, of the family (Qδ

x; δ ≥ 0, x ≥ 0) the following
formula: for every δ ≥ 0, and ν, λ, x ≥ 0,

Qδ
0

⎛⎝exp−
⎛⎝ν2

2

x∫
0

dy Xy + λ Xx

⎞⎠⎞⎠ =
(

ch(νx) +
2λ

ν
sh(νx)

)−δ/2

Comparing the two previous expectations, we obtain the following identity
in law, for b > 0:

(
A+

σ (1−b); �(1−b)
σ

)
(law)
=

⎛⎝ b∫
0

dy X(2/b)
y ; X

(2/b)
b

⎞⎠ (∗) ,

where, on the right-hand side of (∗) , we denote by (X(δ)
y , y ≥ 0) a BESQδ

process, starting from 0.

Thanks to Lévy’s representation of reflecting Brownian motion as
(St − Bt; t ≥ 0), the left-hand side in (∗) is identical in law to:⎛⎝ b∫

0

dy �y−b
τ1

(|B| − b�0
)

; �0
τ1

(|B| − b�0
)⎞⎠

Until now in this subparagraph (3.3.2), we have not used any Ray-Knight
theorem; however, we now do so, as we remark that the identity in law be-
tween the last written pair of r.v.’s and the right-hand side of (∗) follows
directly from Theorem 3.4.

3.4 The law of Brownian local times taken at an
independent exponential time

The basic Ray-Knight theorems (RK1) and (RK2) express the laws of Brow-
nian local times in the space variable up to some particular stopping times,
namely τx and T1. It is a natural question to look for an identification of
the law of Brownian local times up to a fixed time t. One of the inherent
difficulties of this question is that now, the variable Bt is not a constant; one
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way to circumvent this problem would be to condition with respect to the
variable Bt; however, even when this is done, the answer to the problem is not
particularly simple (see Perkins [68], and Jeulin [52]). In fact, if one considers
the same problem at an independent exponentially distributed time, it then
turns out that all is needed is to combine the two basic RK theorems. This
shows up clearly in the next

Proposition 3.2 Let Sθ be an independent exponential time, with parameter
θ2

2 , that is: P (Sθ ∈ ds) = θ2

2 exp
(
− θ2s

2

)
ds. Then

1) �Sθ
and BSθ

are independent, and have respective distributions:

P (�Sθ
∈ d�) = θe−θ�d� ; P (BSθ

∈ da) =
θ

2
e−θ|a|da .

2) for any IR+ valued, continuous additive functional A, the following formula
holds:

E [exp(−ASθ
) | �Sθ

= �; BSθ
= a]

= E
[
exp

(
−Aτ�

− θ2

2 τ�

)]
eθ�Ea

[
exp

(
−AT0 − θ2

2 T0

)]
eθ|a|

Then, using the same sort of transfer principle arguments as we did at the
end of paragraph (3.1), one obtains the following

Theorem 3.5 Conditionally on �0
Sθ

= �, and BSθ
= a > 0, the process

(�x
Sθ

; x ∈ IR) is an inhomogeneous Markov process which may be described as
follows:

i) (�−x
Sθ

; x ≥ 0) and (�x
Sθ

; x ≥ a) are diffusions with common infinitesimal
generator:

2y
d2

dy2
− 2θy

d

dy

ii) (�x
Sθ

; 0 ≤ x ≤ a) is a diffusion with infinitesimal generator:

2y
d2

dy2
+ (2 − 2θy)

d

dy
.
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This theorem may be extended to describe the local times of |B| + 2
δ �0,

considered up to an independent exponential time (see Biane-Yor [19]).

Exercise 3.1 Extend the second statement of Proposition 3.2 by showing
that, if A− and A+ are two IR+-valued continuous additive functionals, the
following formula holds:

E
[
exp−

(
A−

gsθ
+ A+

sθ
− A+

gsθ

)
| �sθ = �; Bsθ = a

]
= E

[
exp−

(
A−

τ�
+

θ2

2
τ�

)]
eθ�Ea

[
exp−

(
A+

T0
+

θ2

2
T0

)]
eθ|a|

3.5 Squares of Bessel processes and squares of Bessel
bridges

From the preceding discussion, the reader might draw the conclusion that
the extension of Ray-Knight theorems from Brownian (or Bessel) local times
to the local times of the processes: Σδ

t ≡ |Bt| + 2
δ �t (t ≥ 0) is plain-sailing.

It will be shown, in this paragraph, that except for the case δ = 2, the
non-Markovian character of Σδ creates some important, and thought pro-
voking, difficulties. On a more positive view point, we present an additive
decomposition of the square of a Bessel process of dimension δ as the sum of
the square of a δ-dimensional Bessel bridge, and an interesting independent
process, which we shall describe. In terms of convolution, we show:

(∗) Qδ
0 = Qδ

0→0 ∗ Rδ ,

where Rδ is a probability on Ω∗
+, which shall be identified. (We hope that the

notation Rδ for this remainder or residual probability will not create any con-
fusion with the notation for Bessel processes, often written as (Rδ(t), t ≥ 0);
the context should help...)

(3.5.1) The case δ = 2.

In this case, the decomposition (∗) is obtained by writing:

�a
∞(R3) = �a

T1
(R3) +

(
�a
∞(R3) − �a

T1
(R3)

)
.
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The process
(
�a
T1

(R3); 0 ≤ a ≤ 1
)

has the law Q2
0→0, which may be seen by a

Markovian argument:(
�a
T1

(R3); 0 ≤ a ≤ 1
) (law)

=
{
(�a

∞(R3); 0 ≤ a ≤ 1)
∣∣∣�1

∞(R3) = 0
}

but we shall also present a different argument in the subparagraph (3.5.3).

We now define R2 as the law of
(
�a
∞(R3) − �a

T1
(R3); 0 ≤ a ≤ 1

)
which is also,

thanks to the strong Markov property of R3, the law of the local times(
�a∞(R(1)

3 ); 0 ≤ a ≤ 1
)

below level 1, of a 3-dimensional Bessel process start-
ing from 1.

In the sequel, we shall use the notation P̂ to denote the probability on Ω∗
+

obtained by time reversal at time 1 of the probability P , that is:

Ê [F (Xt; t ≤ 1)] = E [F (X1−t; t ≤ 1)] .

We may now state two interesting representations of R2. First, R2 can be
represented as:

R2 = L (
r2
4

(
(a − U)+

)
; 0 ≤ a ≤ 1

)
, (3.1)

where L (γ(a); 0 ≤ a ≤ 1) denotes the law of the process γ, and (r4(a); 0 ≤
a ≤ 1) denotes a 4-dimensional Bessel process starting from 0, and U is
a uniform variable on [0, 1], independent of r4. This representation follows
from Williams’ path decomposition of Brownian motion (Bt; t ≤ σ), where
σ = inf{t : Bt = 1}, and (RK2).

The following representation of R2 is also interesting:

R2 =

∞∫
0

dx

2
e−x/2Q̂0

x→0 (3.2)

This formula may be interpreted as:

the law of
(
�a
∞(R(1)

3 ); 0 ≤ a ≤ 1
)

given �1
∞(R(1)

3 ) = x is Q̂0
x→0

or, using Williams’ time reversal result:

R̂
2

=

∞∫
0

dx

2
e−x/2Q0

x→0 is the law of
(
�a
gθ

(B); 0 ≤ a ≤ 1
)

, (3.3)

where gσ = sup{t ≤ σ : Bt = 0}.
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To prove (3.2), we condition Q2
0 with respect to X1, and we use the additivity

and time reversal properties of the squared Bessel bridges. More precisely, we
have:

Q2
0 =

∞∫
0

dx

2
e−x/2Q2

0→x =

∞∫
0

dx

2
e−x/2Q̂2

x→0 .

However, we have: Q2
x→0 = Q2

0→0 ∗ Q0
x→0, hence:

Q̂2
x→0 = Q2

0→0 ∗ Q̂0
x→0 ,

so that we now obtain:

Q2
0 = Q2

0→0 ∗
∞∫
0

dx

2
e−x/2Q̂0

x→0

Comparing this formula with the definition of R2 given in (∗) , we ob-
tain (3.2).

(3.5.2) The general case δ > 0.

Again, we decompose Qδ
0 by conditioning with respect to X1, and using the

additivity and time reversal properties of the squared Bessel bridges. Thus,
we have:

Qδ
0 =

∞∫
0

γδ(dx)Qδ
0→x , where γδ(dx) = Qδ

0(X1 ∈ dx) =
dx

2

(x

2

) δ
2−1 e−x/2

Γ
(

δ
2

) .

From the additivity property:

Qδ
x→0 = Qδ

0→0 ∗ Q0
x→0 ,

we deduce:
Qδ

0→x = Qδ
0→0 ∗ Q̂0

x→0

and it follows that:

Qδ
0 = Qδ

0→0 ∗
∞∫
0

γδ(dx)Q̂0
x→0 ,

so that:

Rδ =

∞∫
0

γδ(dx)Q̂0
x→0 ≡

∞∫
0

γ2(dx)gδ(x)Q̂0
x→0 ,
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with:
gδ(x) = cδx

δ
2−1 , where cδ =

1
Γ
(

δ
2

) 1

2
δ
2−1

.

Hence, we have obtained the following relation:

Rδ = cδ(X1)
δ
2−1R2 ,

and we may state the following

Theorem 3.6 For any δ > 0, the additive decomposition:

Qδ
0 = Qδ

0→0 ∗ Rδ

holds, where Rδ may be described as follows:
Rδ is the law of the local times, for levels a ≤ 1, of the 3-dimensional Bessel
process, starting from 1, with weight: cδ(�1∞(R3))

δ
2−1, or, equivalently:

R̂
δ

is the law of the local times process:
(
�a
gσ

(B(δ)); 0 ≤ a ≤ 1
)

where B(δ) has the law W δ defined by:

W δ
|Fσ

= cδ(�0
σ)

δ
2−1 · W|Fσ

Before going any further, we remark that the family (Rδ, δ > 0) also possesses
the additivity property:

Rδ+δ′
= Rδ ∗ Rδ′

and, with the help of the last written interpretation of Rδ, we can now present
the following interesting formula:

Theorem 3.7 Let f : IR→IR+ be any Borel function. Then we have:

W δ

⎛⎝exp−
gσ∫
0

ds f(Bs)

⎞⎠ =

⎛⎝W

⎛⎝exp−
gσ∫
0

ds f(Bs)

⎞⎠⎞⎠δ/2

(3.5.3) An interpretation of Qδ
0→0

The development presented in this subparagraph follows from the well-known
fact that, if (b(t); 0 ≤ t ≤ 1) is a standard Brownian bridge, then:

(∗) Bt = (t + 1)b
(

t

t + 1

)
, t ≥ 0 ,
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is a Brownian motion starting from 0, and, conversely, the formula (∗) allows
to define a Brownian bridge b from a Brownian motion B.

Consequently, to any Borel function f̃ : [0, 1] → IR+, there corresponds a
Borel function f : IR+ → IR+, and conversely, such that:

∞∫
0

dt f(t)B2
t =

1∫
0

duf̃(u)b2(u) .

This correspondance is expressed explicitely by the two formulae:

f(t) =
1

(1 + t)4
f̃

(
t

t + 1

)
and f̃(u) =

1
(1 + u)4

f

(
u

1 − u

)
These formulae, together with the additivity properties of Qδ

0 and Qδ
0→0 allow

us to obtain the following

Theorem 3.8 Define

⎛⎝Dδ
t , t < T̃ δ

1 ≡
∞∫
0

ds

(1 + Σδ
s)4

⎞⎠ via the following space

and time change formula:

Σδ
t

1 + Σδ
t

= Dδ

⎛⎝ t∫
0

ds

(1 + Σδ
s)4

⎞⎠
Then, Qδ

0→0 is the law of the local times of (Dδ
t , t < T̃ δ

1 ).

(Remark that (Dδ
t , t < T̃ δ

1 ) may be extended by continuity to t = T̃ δ
1 , and

then we have: T̃ δ
1 = inf

{
t : Dδ

t = 1
}
.).

Proof: For any Borel function f̃ : [0, 1] → IR+, we have, thanks to the
remarks made previously:
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Qδ
0→0

(
exp−〈ω, f̃〉

)
= Qδ

0 (exp−〈ω, f〉)

= E

⎡⎣exp

⎛⎝−
∞∫
0

du f
(
Σδ

u

)⎞⎠⎤⎦ (from Theorem (3.3))

= E

⎡⎣exp−
∞∫
0

du

(1 + Σδ
u)4

f̃

(
Σδ

u

1 + Σδ
u

)⎤⎦ (from the relation f ↔ f̃)

= E

⎡⎢⎣exp−
T̃ δ
1∫

0

dv f̃(Dδ
v)

⎤⎥⎦ (from the definition of Dδ)

The theorem is proven. 
�

It is interesting to consider again the case δ = 2 since, as argued in (3.5.1), it
is then known that Q2

0→0 is the law of the local times of (R3(t), t ≤ T1(R3)).
This is perfectly coherent with the above theorem, since we then have:

(D2
t ; t ≤ T 2

1 )
(law)
= (R3(t), t ≤ T1(R3))

Proof: If we define: Xt =
R3(t)

1 + R3(t)
(t ≥ 0), we then have:

1
Xt

= 1 +
1

R3(t)
;

therefore, (Xt, t ≥ 0), which is a diffusion (from its definition in terms of R3)
is also such that

(
1

Xt
, t ≥ 0

)
is a local martingale. Then, it follows easily that

Xt = R̃3(〈X〉t), t ≥ 0, where (R̃3(u), u ≥ 0) is a 3 dimensional Bessel process,
and, finally, since:

〈X〉t =

t∫
0

ds

(1 + R3(s))4
, we get the desired result.

Remark: We could have obtained this result more directly by applying
Itô’s formula to g(r) = r

1+r , and then time-changing. But, in our opinion, the
above proof gives a better explanation of the ubiquity of R3 in this question.

Exercise 3.2: Let a, b > 0, and δ > 2. Prove that, if (Rδ(t), t ≥ 0) is
a δ-dimensional Bessel process, then: Rδ(t)/(a + b(Rδ(t))δ−2)1/δ−2 may be
obtained by time changing a δ-dimensional Bessel process, up to its first
hitting time of c = b−(1/δ−2).

This exercise may be generalised as follows:
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Exercise 3.3: Let (Xt, t ≥ 0) be a real-valued diffusion, whose infinitesimal
generator L satisfies:

Lϕ(x) =
1
2
ϕ′′(x) + b(x)ϕ′(x) , for ϕ ∈ C2(IR) .

Let f : IR → IR+ be a C2 function, and, finally, let δ > 1.

1. Prove that, if b and f are related by:

b(x) =
δ − 1

2
f ′(x)
f(x)

− 1
2

f ′′(x)
f ′(x)

then, there exists (Rδ(u), u ≥ 0) a δ-dimensional Bessel process, possibly
defined on an enlarged probability space, such that:

f(Xt) = Rδ

⎛⎝ t∫
0

ds(f ′)2(Xs)

⎞⎠ , t ≥ 0 .

2. Compute b(x) in the following cases:

(i) f(x) = xα ; (ii) f(x) = exp(ax) .

3.6 Generalized meanders and squares of Bessel
processes

(3.6.1) The Brownian meander, which plays an important role in a number
of studies of Brownian motion, may be defined as follows:

m(u) =
1√

1 − g
|Bg+u(1−g)| , u ≤ 1 ,

where g = sup{u ≤ 1 : Bu = 0}, and (Bt, t ≥ 0) denotes a real-valued
Brownian motion starting from 0.

Imhof [49] proved the following absolute continuity relation:

M =
c

X1
· S

(
c =

√
π

2

)
(3.4)
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where M , resp.: S, denotes the law of (m(u), u ≤ 1), resp.: the law of
(R(u), u ≤ 1) a BES(3) process, starting from 0.

Other proofs of (3.4) have been given by Biane-Yor [18], using excursion
theory, and Azéma-Yor ([1], paragraph 4) using an extension of Girsanov
theorem.

It is not difficult, using the same kind of arguments, to prove the more general
absolute continuity relationship:

Mν =
cν

X2ν
1

· Sν (3.5)

where ν ∈ (0, 1) and Mν , resp.: Sν , denotes the law of

mν(u) ≡ 1√
1 − gν

R−ν (gν + u(1 − gν)) (u ≤ 1)

the Bessel meander associated to the Bessel process R−ν of dimension 2(1−ν),
starting from 0, resp.: the law of the Bessel process of dimension 2(1 + ν),
starting from 0.

Exercise 3.4: Deduce from formula (3.5) that:

Mν [F (Xu; u ≤ 1) | X1 = x] = Sν [F (Xu; u ≤ 1) | X1 = x]

and that:

Mν(X1 ∈ dx) = x exp
(
−x2

2

)
dx .

In particular, the law of mν(1), the value at time 1 of the Bessel meander
does not depend on ν, and is distributed as the 2-dimensional Bessel process
at time 1 (See Corollary 3.6.1 for an explanation).

(3.6.2) Biane-Le Gall-Yor [16] proved the following absolute continuity re-
lation, which looks similar to (3.5): for every ν > 0,

Nν =
2ν

X2
1

· Sν (3.6)

where Nν denotes the law on C([0, 1], IR+) of the process:

nν(u) =
1√Lν

Rν(Lνu) (u ≤ 1) ,

with Lν ≡ sup{t > 0 : Rν(t) = 1}.
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Exercise 3.5: Deduce from formula (3.6) that:

Nν [F (Xu; u ≤ 1) | X1 = x] = Sν [F (Xu; u ≤ 1) | X1 = x]

and that:
Nν(X1 ∈ dx) = Sν−1(X1 ∈ dx) .

(Corollary 3.9.2 gives an explanation of this fact)

(3.6.3) In this sub-paragraph, we shall consider, more generally than the
right-hand sides of (3.5) and (3.6), the law Sν modified via a Radon-Nikodym
density of the form:

cµ,ν

Xµ
1

,

and we shall represent the new probability in terms of the laws of Bessel
processes and Bessel bridges.

Precisely, consider (Rt, t ≤ 1) and (R′
t, t ≤ 1) two independent Bessel pro-

cesses, starting from 0, with respective dimensions d and d′; condition R by
R1 = 0, and define Md,d′

to be the law of the process
((

R2
t + (R′

t)
2
)1/2

, t ≤ 1
)

obtained in this way; in other terms, the law of the square of this process,
that is:

(
R2

t + (R′
t)

2, t ≤ 1
)

is Qd
0→0 ∗ Qd′

0 .

We may now state and prove the following

Theorem 3.9 Let P δ
0 be the law on C([0, 1]; IR+) of the Bessel process with

dimension δ, starting from 0. Then, we have:

Md,d′
=

cd,d′

Xd
1

· P d+d′
0 (3.7)

where cd,d′ = Md,d′
(Xd

1 ) = (2d′/2)
Γ
(

d+d′
2

)
Γ
(

d
2

) .

Proof: From the additivity property of squares of Bessel processes, which
in terms of the probabilities (Qδ

x; δ ≥ 0, x ≥ 0) is expressed by:

Qd
x ∗ Qd′

x′ = Qd+d′
x+x′

(see Theorem 2.3 above), it is easily deduced that:

Qd+d′
x+x′→0 = Qd

x→0 ∗ Qd′
x′→0 .
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Hence, by reverting time from t = 1, we obtain:

Qd+d′
0→x+x′ = Qd

0→x ∗ Qd′
0→x′ ,

and, in particular:
Qd+d′

0→x = Qd
0→0 ∗ Qd′

0→x .

From this last formula, we deduce that, conditionally on X1 = x, both sides
of (3.7) are equal, so that, to prove the identity completely, it remains to
verify that the laws of X1 relatively to each side of (3.7) are the same, which
is immediate. 
�

As a consequence of Theorem 3.9, and of the absolute continuity relations
(3.5) and (3.6), we are now able to identify the laws Mν(0 < ν < 1), and Nν

(ν > 0), as particular cases of Md,d′
.

Corollary 3.9.1 Let 0 < ν < 1. Then, we have:

Mν = M2ν,2

In other words, the square of the Bessel meander of dimension 2(1− ν) may
be represented as the sum of the squares of a Bessel bridge of dimension 2ν
and of an independent two-dimensional Bessel process.

In the particular case ν = 1/2, the square of the Brownian meander is dis-
tributed as the sum of the squares of a Brownian bridge and of an independent
two-dimensional Bessel process.

Corollary 3.9.2 Let ν > 0. Then, we have:

Nν = M2,2ν

In other words, the square of the normalized Bessel process
(

1√Lν
R(Lνu);≤ 1

)
with dimension d = 2(1 + ν) is distributed as the sum of the squares of a two
dimensional Bessel bridge and of an independent Bessel process of dimen-
sion 2ν.
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3.7 Generalized meanders and Bessel bridges

(3.7.1) As a complement to the previous paragraph 3.6, we now give a
representation of the Bessel meander mν (defined just below formula (3.5))
in terms of the Bessel bridge of dimension δ+

ν ≡ 2(1 + ν).

We recall that this Bessel bridge may be realized as:

ρν(u) =
1√

dν − gν
R−ν (gν + u(dν − gν)) , u ≤ 1,

where dν = inf {u ≥ 1 : R−ν(u) = 0}.

Comparing the formulae which define mν and ρν , we obtain

Theorem 3.10 The following equality holds:

mν(u) =
1√
Vν

ρν(uVν) (u ≤ 1) (3.8)

where Vν =
1 − gν

dν − gν
.

Furthermore, Vν and the Bessel bridge (ρν(u), u ≤ 1) are independent, and
the law of Vν is given by:

P (Vν ∈ dt) = νtν−1dt (0 < t < 1) .

Similarly, it is possible to present a realization of the process nν in terms
of ρν .

Theorem 3.11 1) Define the process:

ñν(u) =
1√

dν − 1
ρν(dν − u(dν − 1)) ≡ 1√

V̂ν

ρ̂ν(uV̂ν) (u ≤ 1)

where

ρ̂ν(u) = ρν(1 − u) (u ≤ 1) and V̂ν = 1 − Vν =
dν − 1
dν − gν

.

Then, the processes nν and ñν have the same distribution.
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2) Consequently, the identity in law

(nν(u), u ≤ 1)
(law)
=

(
1√
V̂ν

ρ̂ν(uV̂ν), u ≤ 1

)
(3.9)

holds, where, on the right-hand side, ρ̂ν is a Bessel bridge of dimension
δ+
ν ≡ 2(1 + ν), and V̂ν is independent of ρ̂ν , with:

P (V̂ν ∈ dt) = ν(1 − t)ν−1dt (0 < t < 1) .

(3.7.2) Now, the representations of the processes mν and nν given in Theo-
rems 3.10 and 3.11 may be generalized as follows to obtain a representation
of a process whose distribution is Md,d′

(see Theorem 3.9 above).

Theorem 3.12 Let d, d′ > 0, and define (ρd+d′
(u), u ≤ 1) to be the Bessel

bridge with dimension d + d′.

Consider, moreover, a beta variable Vd,d′ , with parameters
(

d
2 , d′

2

)
, i.e.:

P (Vd,d′ ∈ dt) =
t

d
2−1(1 − t)

d′
2 −1dt

B
(

d
2 , d′

2

) (0 < t < 1)

such that Vd,d′ is independent of ρd+d′
.

Then, the distribution of the process:(
md,d′

(u) def=
1√
Vd,d′

ρd+d′
(uVd,d′), u ≤ 1

)

is Md,d′
.

In order to prove Theorem 3.12, we shall use the following Proposition, which
relates the laws of the Bessel bridge and Bessel process, for any dimension.

Proposition 3.3 Let Πµ, resp.: Sµ, be the law of the standard Bessel bridge,
resp.: Bessel process, starting from 0, with dimension δ = 2(µ + 1).

Then, for any t < 1 and every Borel functional F : C([0, t], IR+) → IR+, we
have:



3.7 Generalized meanders and Bessel bridges 53

Πµ[F (Xu, u ≤ t)] = Sµ [F (Xu, u ≤ t)hµ(t, Xt)]

where:

hµ(t, x) =
1

(1 − t)µ+1
exp− x2

2(1 − t)

Proof: This is a special case of the partial absolute continuity relationship
between the laws of a nice Markov process and its bridges (see, e.g. [41]). 
�

We now prove Theorem 3.12.

In order to present the proof in a natural way, we look for V , a random
variable taking its values in (0, 1), and such that:

i) P (V ∈ dt) = θ(t)dt; ii) V is independent of ρd+d′
;

iii) the law of the process
(

1√
V

ρd+d′
(uV ); u ≤ 1

)
is Md,d′

.

We define the index µ by the formula: d + d′ = 2(µ + 1). Then, we have, for
every Borel function F : C([0, 1], IR+) → IR+:

E

[
F

(
1√
V

ρd+d′
(uV ); u ≤ 1

)]
=

1∫
0

dtθ(t)Πµ

[
F

(
1√
t
Xut; u ≤ 1

)]

(by Proposition 3.3) =

1∫
0

dtθ(t)Sµ

[
F

(
1√
t
Xut; u ≤ 1

)
hµ(t, Xt)

]

(by scaling) =

1∫
0

dtθ(t)Sµ

[
F (Xu; u ≤ 1)hµ(t,

√
tX1)

]

= Sµ

⎡⎣F (Xu, u ≤ 1)

1∫
0

dtθ(t)hµ(t,
√

tX1)

⎤⎦
Hence, by Theorem 3.9, the problem is now reduced to finding a function θ
such that:

1∫
0

dtθ(t)hµ(t,
√

tx) =
cd,d′

xd

Using the explicit formula for hµ given in Proposition 3.3, and making some
elementary changes of variables, it is easily found, by injectivity of the Laplace
transform, that:
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θ(t) =
t

d
2−1(1 − t)

d′
2 −1

B
(

d
2 , d′

2

) (0 < t < 1)

which ends the proof of Theorem 3.12.

(3.7.3) We now end up this Chapter by giving the explicit semimartingale
decomposition of the process md,d′

, for d + d′ ≥ 2, which may be helpful, at
least in particular cases, e.g.: for the processes mν and nν).

Exercise 3.6: (We retain the notation of Theorem 3.9).

1) Define the process

Du = Ed+d′
0

[
cd,d′

Xd
1

∣∣∣Fu

]
(u < 1) .

Then, prove that:

Du =
1

(1 − u)d/2
Φ

(
d

2
,
d + d′

2
;− X2

u

2(1 − u)

)
,

where Φ(a, b; z) denotes the confluent hypergeometric function with
parameters (a, b) (see Lebedev [63], p.260–268).

Hint: Use the integral representation formula (with d + d′ = 2(1 + µ))

Φ

(
d

2
,
d + d′

2
;−b

)
= cd,d′

∞∫
0

dt

(
√

2t)d/2

(
t

b

)µ
2

exp(−(b + t))Iµ(2
√

bt)

(3.10)
(see Lebedev [63], p. 278) and prove that the right-hand side of formula
(3.10) is equal to:

Ed,d′
a

(
cd,d′

Xd
1

)
, where a =

√
2b .

2) Prove that, under Md,d′
, the canonical process (Xu, u ≤ 1) admits the

semimartingale decomposition:
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Xu = βu +
(d + d′) − 1

2

u∫
0

ds

Xs
−

u∫
0

dsXs

1 − s

(
Φ′

Φ

)(
d

2
,
d + d′

2
;− X2

s

2(1 − s)

)

where (βu, u ≤ 1) denotes a Brownian motion, and, to simplify the formula,

we have written
Φ′

Φ
(a, b; z) for

d

dz
(log Φ(a, b; z)).

Comments on Chapter 3

The basic Ray-Knight theorems are recalled in paragraph 3.1, and an easy
example of the transfer principle is given there.

Paragraph 3.2 is taken from Pitman-Yor [73], and, in turn, following Le Gall-
Yor [60], some important extensions (Theorem 3.4) of the RK theorems are
given. For more extensions of the RK theorems, see Eisenbaum [39] and
Vallois [88].

An illustration of Theorem 3.4, which occurred naturally in the asymptotic
study of the windings of the 3-dimensional Brownian motion around certain
curves (Le Gall-Yor [62]) is developed in the subparagraph (3.3.2).

There is no easy formulation of a Ray-Knight theorem for Brownian local
times taken at a fixed time t (see Perkins [68] and Jeulin [52], who have
independently obtained a semimartingale decomposition of the local times
in the space variable); the situation is much easier when the fixed time is
replaced by an independent exponential time, as is explained briefly in para-
graph 3.4, following Biane-Yor [19]; the original result is due to Ray [80],
but it is presented in a very different form than Theorem 3.5 in the present
chapter.

In paragraphs 3.5, 3.6 and 3.7, some relations between Bessel processes, Bessel
bridges and Bessel meanders are presented. In the literature, one will find
this kind of study made essentially in relation with Brownian motion and the
3-dimensional Bessel process (see Biane-Yor [18] and Bertoin-Pitman [11] for
an exposition of known and new results up to 1994). The extensions which
are presented here seem very natural and in the spirit of the first half of
Chapter 3, in which the laws of squares of Bessel processes of any dimension
are obtained as the laws of certain local times processes.

The discussion in subparagraph (3.5.5), leading to Theorem 3.8, was inspired
by Knight [58].



Chapter 4

An explanation and some extensions
of the Ciesielski-Taylor identities

The Ciesielski-Taylor identities in law, which we shall study in this Chapter,
were published in 1962, that is one year before the publication of the papers
of Ray and Knight (1963; [80] and [57]) on Brownian local times; as we shall
see below, this is more than a mere coincidence!

Here are these identities: if (Rδ(t), t ≥ 0) denotes the Bessel process of di-
mension δ > 0, starting at 0, then:

∞∫
0

ds 1(Rδ+2(s)≤1)
(law)
= T1(Rδ) , (4.1)

where T1(Rδ) = inf {t : Rδ(t) = 1}.

(More generally, throughout this chapter, the notation H(Rδ) shall indicate
the quantity H taken with respect to Rδ).

Except in the case δ = 1, there exists no path decomposition explanation
of (4.1); in this Chapter, a spectral type explanation shall be provided, which
relies essentially upon the two following ingredients:

a) both sides of (4.1) may be written as integrals with respect to the Lebesgue
measure on [0, 1] of the total local times of Rδ+2 for the left-hand side, and
of Rδ, up to time T1(Rδ), for the right-hand side; moreover, the laws of the
two local times processes can be deduced from (RK2)(a) (see Chapter 3,
paragraph 1);

b) the use of the integration by parts formula obtained in Chapter 2, Theo-
rem 2.1.

57
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This method (the use of ingredient b) in particular) allows to extend the
identities (4.1) by considering the time spent in an annulus by a (δ + 2) di-
mensional Brownian motion; they may also be extended to pairs of diffusions
(X, X̂) which are much more general than the pairs (Rδ+2, Rδ); this type of
generalization was first obtained by Ph. Biane [12], who used the expression
of the Laplace transforms of the occupation times in terms of differential
equations, involving the speed measures and scale functions of the diffusions.

4.1 A pathwise explanation of (4.1) for δ = 1

Thanks to the time-reversal result of D. Williams:

(R3(t), t ≤ L1(R3))
(law)
= (1 − Bσ−t, t ≤ σ) ,

where
L1(R3) = sup{t : R3(t) = 1} ,

and
σ = inf{t : Bt = 1} ,

the left-hand side of (4.1) may be written as:

σ∫
0

ds 1(Bs>0), so that, to ex-

plain (4.1) in this case, it now remains to show:

σ∫
0

ds 1(Bs>0)
(law)
= T1(|B|) . (4.2)

To do this, we use the fact that (B+
t , t ≥ 0) may be written as:

B+
t = |β|

⎛⎝ t∫
0

ds 1(Bs>0)

⎞⎠ , t ≥ 0 ,

where (βu, u ≥ 0) is another one-dimensional Brownian motion starting
from 0, so that, from this representation of B+, we deduce:

σ∫
0

ds 1(Bs>0) = T1(|β|) ;

this implies (4.2).
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4.2 A reduction of (4.1) to an identity in law between
two Brownian quadratic functionals

To explain the result for every δ > 0, we write the two members of the
C-T identity (4.1) as local times integrals, i.e.

1∫
0

da �a
∞(Rδ+2)

(law)
=

1∫
0

da �a
T1

(Rδ) ,

with the understanding that the local times (�a
t (Rγ); a > 0, t ≥ 0) satisfy the

occupation density formula: for every positive measurable f ,

t∫
0

ds f(Rγ(s)) =

∞∫
0

da f(a)�a
t (Rγ) .

It is not difficult (e.g. see Yor [101]) to obtain the following representations
of the local times processes of Rγ taken at t = ∞, or t = T1(Rδ), with the
help of the basic Ray-Knight theorems (see Chapter 3).

Theorem 4.1 Let (Bt, t ≥ 0), resp.: (B̃t, t ≥ 0) denote a planar BM start-
ing at 0, resp. a standard complex Brownian bridge. Then, we have:

1) for γ > 0, (�a
∞(R2+γ); a > 0)

(law)
=

(
1

γaγ−1 |Baγ |2; a > 0
)

(�a
T1

(R2+γ); 0 < a ≤ 1)
(law)
=

(
1

γaγ−1 |B̃aγ |2; 0 < a ≤ 1
)

2) for γ = 0, (�a
T1

(R2); 0 < a ≤ 1)
(law)
=

(
a
∣∣∣Blog ( 1

a )

∣∣∣2 ; 0 < a ≤ 1
)

3) for 0 < γ ≤ 2, (�a
T1

(R2−γ); 0 < a ≤ 1)
(law)
=

(
1

γaγ−1 |B1−aγ |2; 0 < a ≤ 1
)

With the help of this theorem, we remark that the C-T identities (4.1) are
equivalent to

1
δ

1∫
0

da

aδ−1
|Baδ |2 (law)

=
1

δ − 2

1∫
0

da

aδ−3
|B̃aδ−2 |2 (δ > 2) (4.3)
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1
2

1∫
0

da

a
|Ba2 |2 (law)

=

1∫
0

da a
∣∣∣B(log 1

a )

∣∣∣2 (δ = 2) (4.4)

1
δ

1∫
0

da

aδ−1
|Baδ |2 (law)

=

1∫
0

da

a1−δ
|B1−a2−δ |2 (δ < 2) (4.5)

where, on both sides, B, resp. B̃, denotes a complex valued Brownian motion,
resp.: Brownian bridge.

In order to prove these identities, it obviously suffices to take real-valued
processes for B and B̃, which is what we now assume.

It then suffices to remark that the identity in law (4.4) is a particular case
of the integration by parts formula (2.14), considered with f(a) = log 1

a ,
and g(a) = a2; the same argument applies to the identity in law (4.5), with
f(a) = 1− a2−δ, and g(a) = aδ; with a little more work, one also obtains the
identity in law (4.3).

4.3 Some extensions of the Ciesielski-Taylor identities

(4.3.1) The proof of the C-T identities which was just given in paragraph 4.2
uses, apart from the Ray-Knight theorems for (Bessel) local times, the inte-
gration by parts formula (obtained in Chapter 2) applied to some functions f
and g which satisfy the boundary conditions: f(1) = 0 and g(0) = 0.

In fact, it is possible to take some more advantage of the integration by parts
formula, in which we shall now assume no boundary condition, in order to
obtain the following extensions of the C-T identities.

Theorem 4.2 Let δ > 0, and a ≤ b ≤ c. Then, if Rδ and Rδ+2 denote two
Bessel processes starting from 0, with respective dimensions δ and δ + 2, we
have:
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∞∫
0

ds 1(a≤Rδ+2(s)≤b) +

⎛⎝bδ−1

c∫
b

dx

xδ−1

⎞⎠ �b
∞(Rδ+2)

I
(δ)
a,b,c :

(law)
=

a

δ
�a
Tc

(Rδ) +

Tc∫
0

ds 1(a≤Rδ(s)≤b) .

(4.3.2) We shall now look at some particular cases of I
(δ)
a,b,c.

1) δ > 2, a = b, c = ∞.
The identity then reduces to:

1
δ − 2

�b
∞(Rδ+2)

(law)
=

1
δ
�b
∞(Rδ)

In fact, both variables are exponentially distributed, with parameters
which match the identity; moreover, this identity expresses precisely how
the total local time at b for Rδ explodes as δ ↓ 2.

2) δ > 2, a = 0, c = ∞.
The identity then becomes:

∞∫
0

ds 1(Rδ+2(s)≤b) +
b

δ − 2
�b
∞(Rδ+2)

(law)
=

∞∫
0

ds 1(Rδ(s)≤b)

Considered together with the original C-T identity (4.1), this gives a func-
tional of Rδ+2 which is distributed as Tb(Rδ−2).

3) δ = 2.
Taking a = 0, we obtain:

∞∫
0

ds 1(R4(s)≤b) + b log
(c

b

)
�b
∞(R4)

(law)
=

Tc∫
0

ds 1(R2(s)≤b) ,

whilst taking a = b > 0, we obtain:

log
(c

b

)
�b
∞(R4)

(law)
=

1
2
�b
Tc

(R2) .

In particular, we deduce from these identities in law the following limit
results:



62 4 On the Ciesielski-Taylor identities

1
log c

Tc∫
0

ds 1(R2(s)≤b)
(law)−−−−−→c→∞ b�b

∞(R4) ,

and
1

log c
�b
Tc

(R2)
(law)−−−−−→c→∞ 2�b

∞(R4) .

In fact, these limits in law may be seen as particular cases of the
Kallianpur-Robbins asymptotic result for additive functionals of planar
Brownian motion (Zt, t ≥ 0), which states that:

i) If f belongs to L1 (C, dx dy), and is locally bounded, and if

Af
t

def=

t∫
0

ds f(Zs) ,

then:
1

log t
Af

t
(law)−−−−−→t→∞

(
1
2π

f̄

)
e ,

where f̄ =
∫
C

dx dy f(x, y), and e is a standard exponential variable.

Moreover, one has:

1
log t

(
Af

t − Af
T√

t

)
(P )−−−−−→t→∞ 0

ii) (Ergodic theorem) If f and g both satisfy the conditions stated in (i),
then:

Af
t /Ag

t
a.s−−−−−→t→∞ f̄/ḡ .

4) δ < 2, a = 0.
The identity in law then becomes:

∞∫
0

ds 1(Rδ+2(s)≤b) + bδ−1

(
c2−δ − b2−δ

2 − δ

)
�b
∞(Rδ+2)

(law)
=

Tc∫
0

ds 1(Rδ(s)≤b)

which, as a consequence, implies:
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1
c2−δ

Tc∫
0

ds 1(Rδ(s)≤b)
(law)−−−−−→c→∞

bδ−1

2 − δ
�b
∞(Rδ+2) . (4.6)

In fact, this limit in law can be explained much easier than the limit in
law in the previous example. Here is such an explanation:
the local times (�a

t (Rδ); a > 0, t ≥ 0), which, until now in this Chapter,
have been associated to the Bessel process Rδ, are the semimartingale
local times, i.e.: they may be defined via the occupation density formula,
with respect to Lebesgue measure on IR+. However, at this point, it is
more convenient to define the family {λx

t (Rδ)} of diffusion local times by
the formula:

t∫
0

ds f (Rδ(s)) =

∞∫
0

dx xδ−1λx
t (Rδ)f(x) (4.7)

for every Borel function f : IR+ → IR+.
(The advantage of this definition is that the diffusion local time (λ0

t (Rδ);
t > 0) will be finite and strictly positive). Now, we consider the left-hand
side of (4.6); we have:

1
c2

Tc∫
0

ds 1(Rδ(s)≤b)
(law)
=

T1∫
0

du 1(Rδ(u)≤ b
c ) (by scaling)

(law)
=

b/c∫
0

dx xδ−1λx
T1

(Rδ) (by formula (4.7))

(law)
=

b∫
0

dy

c

(y

c

)δ−1

λ
y/c
T1

(Rδ) (by change of variables)

Hence, we have:

1
c2−δ

Tc∫
0

ds 1(Rδ(s)≤b)
(law)−−−−−→c→∞ λ0

T1
(Rδ)

bδ

δ
(4.8)

The convergence results (4.6) and (4.8) imply:

λ0
T1

(Rδ)
bδ

δ

(law)
=

bδ−1

2 − δ
�b
∞(Rδ+2) (4.9)

It is not hard to convince oneself directly that the identity in law (4.9)
holds; indeed, from the scaling property of Rδ+2, we deduce that:

�b
∞(Rδ+2)

(law)
= b�1

∞(Rδ+2) ,
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so that formula (4.9) reduces to:

λ0
T1

(Rδ)
(law)
=

δ

2 − δ
�1
∞(Rδ+2) (4.10)

Exercise 4.1 Give a proof of the identity in law (4.10) as a consequence
of the Ray-Knight theorems for

(
λx

T1
(Rδ); x ≤ 1

)
and (�x∞(Rδ+2); x ≥ 0).

Exercise 4.2 Let c > 0 be fixed. Prove that:
1

c − a
�a
Tc

(Rδ) converges in

law, as a ↑ c, and identify the limit in law.

Hint: Either use the identity in law I
(δ)
a,c,c or a Ray-Knight theorem for(

�a
Tc

(Rδ); a ≤ c
)
.

4.4 On a computation of Földes-Révész

Földes-Révész [42] have obtained, as a consequence of formulae in Borodin [21]
concerning computations of laws of Brownian local times, the following iden-
tity in law, for r > q:

∞∫
0

dy 1(0<�y
τr <q)

(law)
= T√

q(R2) (4.11)

where, on the left-hand side, �y
τr

denotes the local time of Brownian motion
taken at level y, and at time τr, the first time local time at 0 reaches r, and,
on the right-hand side, T√

q(R2) denotes the first hitting time of
√

q by R2,
a two-dimensional Bessel process starting from 0.

We now give an explanation of formula (4.11), using jointly the Ray-Knight
theorem and the Ciesielski-Taylor identity in law (4.1).

From the Ray-Knight theorem on Brownian local times up to time τr, we
know that the left-hand side of formula (4.11) is equal, in law, to:

T0∫
0

dy 1(Yy<q) ,
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where (Yy , y ≥ 0) is a BESQ process, with dimension 0, starting from r. Since
r > q, we may as well assume, using the strong Markov property that Y0 = q,
which explains why the law of the left-hand side of (4.11) does not depend
on r(≥ q).

Now, by time reversal, we have:

T0∫
0

dy 1(Yy<q)
(law)
=

Lq∫
0

dy 1(Ŷy<q) ,

where (Ŷy, y ≥ 0) is a BESQ process, with dimension 4, starting from 0, and
Lq = sup{y : Ŷy = q}. Moreover, we have, obviously:

Lq∫
0

dy 1(Ŷy<q) =

∞∫
0

dy 1(Ŷy<q) (4.12)

and we deduce from the original Ciesielski-Taylor identity in law (4.1), taken
for δ = 2, together with the scaling property of a BES process starting from 0,
that the right-hand side of (4.12) is equal in law to T√

q(R2).

Comments on Chapter 4

The proof, presented here, of the Ciesielski-Taylor identities follows Yor [101];
it combines the RK theorems with the integration by parts formula (2.14).
More generally, Biane’s extensions of the CT identities to a large class of dif-
fusions ([12]) may also be obtained in the same way. It would be interesting to
know whether another family of extensions of the CT identities, obtained by
Carmona-Petit-Yor [25] for certain càdlàg Markov processes which are related
to Bessel processes through some intertwining relationship, could also be de-
rived from some adequate version of the integration by parts formula (2.14).

In paragraph 4.3, it seemed an amusing exercise to look at some particular
cases of the identity in law I

(δ)
a,b,c, and to relate these examples to some better

known relations, possibly of an asymptotic kind.

Finally, paragraph 4.4 presents an interesting application of the CT identities.



Chapter 5

On the winding number of planar BM

The appearance in Chapter 3 of Bessel processes of various dimensions is
very remarkable, despite the several proofs of the Ray-Knight theorems on
Brownian local times which have now been published.

It is certainly less astonishing to see that the 2-dimensional Bessel process
plays an important part in the study of the windings of planar Brownian
motion (Zt, t ≥ 0); indeed, one feels that, when Z wanders far away from
0, or, on the contrary, when it gets close to 0, then it has a tendency to
wind more than when it lies in the annulus, say {z : r ≤ |z| ≤ R}, for some
given 0 < r < R < ∞. However, some other remarkable feature occurs:
the computation of the law, for a fixed time t, of the winding number θt of
(Zu, u ≤ t) around 0, is closely related to the knowledge of the semigroups of
all Bessel processes, with dimensions δ varying between 2 and ∞.

There have been, in the 1980’s, a number of studies about the asymptotics
of winding numbers of planar BM around a finite set of points (see, e.g.,
a short summary in [81], Chapter XII). It then seemed more interesting to
develop here some exact computations for the law of the winding number up
to a fixed time t, for which some open questions still remain.

5.1 Preliminaries

(5.1.1) Consider Zt = Xt + iYt, t ≥ 0, a planar BM starting from z0 �= 0.
We have

67
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Proposition 5.1 1) With probability 1, (Zt, t ≥ 0) does not visit 0.

2) A continuous determination of the logarithm along the trajectory (Zu(ω),
u ≥ 0) is given by the stochastic integral:

logω (Zt(ω)) − logω (Z0(ω)) =

t∫
0

dZu

Zu
, t ≥ 0 . (5.1)

We postpone the proof of Proposition 5.1 for a moment, in order to write
down the following pair of formulae, which are immediate consequences
of (5.1):

log |Zt(ω)| − log |Z0(ω)| = Re

t∫
0

dZu

Zu
=

t∫
0

XudXu + YudYu

|Zu|2 (5.2)

and

θt(ω) − θ0(ω) = Im

t∫
0

dZu

Zu
=

t∫
0

XudYu − YudXu

|Zu|2 , (5.3)

where (θt(ω), t ≥ 0) denotes a continuous determination of the argument of
(Zu(ω), u ≤ t) around 0.

We now note that:

βu =

u∫
0

XsdXs + YsdYs

|Zs| (u ≥ 0) and γu =

u∫
0

XsdYs − YsdXs

|Zs| (u ≥ 0)

are two orthogonal martingales with increasing processes 〈β〉u = 〈γ〉u ≡
u, hence, they are two independent Brownian motions; moreover, it is not
difficult to show that:

Rt
def= σ {|Zu|, u ≤ t} ≡ σ {βu, u ≤ t} , up to negligible sets;

hence, we have the following:

for ν ∈ IR, E [exp (iν(θt − θ0)) | R∞] = exp
(
−ν2

2
Ht

)
, where Ht

def=

t∫
0

ds

|Zs|2
(5.4)

This formula shall be of great help, in the next paragraph, to compute the
law of θt, for fixed t.
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(5.1.2) We now prove Proposition 5.1. The first statement of Proposition 5.1
follows from

Proposition 5.2 (B. Davis [28]) If f : C → C is holomorphic and not con-
stant, then there exists a planar BM (Ẑt, t ≥ 0) such that:

f(Zt) = ẐAf
t

, t ≥ 0 , and Af
∞ = ∞ a.s.

To prove Proposition 5.1, we apply Proposition 5.2 with f(z) = exp(z). Then,

exp(Zt) = ẐAt , with: At =

t∫
0

ds exp(2Xs) .

The “trick” is to consider, instead of Z, the planar BM (Ẑu, u ≥ 0), which
starts from exp(Z0) �= 0, at time t = 0, and shall never reach 0, since exp(z) �=
0, for every z ∈ C.

Next, to prove formula (5.1), it suffices to show:

exp

⎛⎝ t∫
0

dZu

Zu

⎞⎠ =
Zt

Z0
, for all t ≥ 0 . (5.5)

This follows from Itô’s formula, from which we easily deduce:

d

⎛⎝ 1
Zt

exp

⎛⎝ t∫
0

dZu

Zu

⎞⎠⎞⎠ = 0

Exercise 5.1 Give another proof of the identity (5.5), using the uniqueness
of solutions of the stochastic equation:

Ut = Z0 +

t∫
0

Us
dZs

Zs
, t ≥ 0 .

(5.1.3) In the sequel, we shall also need the two following formulae, which
involve the modified Bessel functions Iν .

a) The semi-group P
(ν)
t (r, dρ) = p

(ν)
t (r, ρ)dρ of the Bessel process of index

ν > 0 is given by the formula:
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p
(ν)
t (r, ρ) =

1
t

(ρ

r

)ν

ρ exp−
(

r2 + ρ2

2t

)
Iν

(rρ

t

)
(r, ρ, t > 0)

(see, e.g., Revuz-Yor [81], p. 411).

b) For any λ ∈ IR, and r > 0, the modified Bessel function Iλ(r) admits the
following integral representation:

Iλ(r) =
1
π

π∫
0

dθ(exp(r cos θ)) cos(λθ) − sin(λπ)
π

∞∫
0

du e−rchu−λu

(see, e.g., Watson [90], and Lebedev [63], formula (5.10.8), p. 115).

5.2 Explicit computation of the winding number
of planar Brownian motion

(5.2.1) With the help of the preliminaries, we shall now prove the following

Theorem 5.1 For any z0 �= 0, r, t > 0, and ν ∈ IR, we have:

Ez0

[
exp (iν(θt − θ0))

∣∣∣|Zt| = ρ
]

=
I|ν|
I0

( |z0|ρ
t

)
(5.6)

Before we prove formula (5.6), let us comment that this formula shows in
particular that, for every given r > 0, the function: ν→ I|ν|

I0
(r) is the Fourier

transform of a probability measure, which we shall denote by µr; this distri-
bution was discovered, by analytic means, by Hartman-Watson [48], hence
we shall call µr the Hartman-Watson distribution with parameter r. Hence,
µr is characterized by:

I|ν|
I0

(r) =

∞∫
−∞

exp(iνθ)µr(dθ) (ν ∈ IR) . (5.7)

The proof of Theorem 5.1 shall follow from
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Proposition 5.3 Let r > 0. For any ν ≥ 0, define P
(ν)
r to be the law of the

Bessel process, with index ν, starting at r, on the canonical space Ω∗
+ ≡

C(IR+, IR+).

Then, we have:

P (ν)
r

∣∣Rt
=

(
Rt

r

)ν

exp
(
−ν2

2
Ht

)
· P (0)

r
∣∣Rt

. (5.8)

Proof: This is a simple consequence of Girsanov’s theorem.
However, remark that the relation (5.8) may also be considered as a variant
of the simpler Cameron-Martin relation:

W
(ν)∣∣Ft

= exp
(

νXt − ν2t

2

)
· W∣∣Ft

(5.9)

where W (ν) denotes the law, on C(IR+, IR), of Brownian motion with drift ν.
Formula (5.9) implies (5.8) after time-changing, since, under P

(ν)
r , one has:

Rt = r exp(Bu + νu)∣∣
u=Ht

, and Ht = inf

⎧⎨⎩u :

u∫
0

ds exp 2(Bs + νs) > t

⎫⎬⎭

�

We now finish the proof of Theorem 5.1; from formulae (5.2) and (5.3), and
the independence of β and γ, we deduce, denoting r = |z0|, that:

Ez0

[
exp (iν(θt − θ0)

∣∣∣ |Zt| = ρ
]

= Ez0

[
exp

(
−ν2

2
Ht

) ∣∣∣ |Zt| = ρ

]
= E(0)

r

[
exp

(
−ν2

2
Ht

) ∣∣∣Rt = ρ

]
Now, from formula (5.8), we deduce that for every Borel function f : IR+ →
IR+, we have:

E(ν)
r [f(Rt)] = E(0)

r

[
f(Rt)

(
Rt

t

)ν

exp
(
−ν2

2
Ht

)]
,

which implies:

p
(ν)
t (r, ρ) = p

(0)
t (r, ρ)

(ρ

r

)ν

E(0)
r

[
exp

(
−ν2

2
Ht

) ∣∣∣Rt = ρ

]
,
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and formula (5.6) now follows immediately from the explicit expressions of
p
(ν)
t (r, ρ) and p

(0)
t (r, ρ) given in (5.1.3). 
�

With the help of the classical integral representation of Iλ, which was pre-
sented above in (5.1.3), we are able to give the following explicit additive
decomposition of µr.

Theorem 5.2 1) For any r > 0, we have

µr(dθ) = pr(dθ) + qr(dθ) ,

where: pr(dθ) = 1
2πI0(r) exp(r cos θ)1[−π,π[(θ)dθ is the Von Mises distribu-

tion with parameter r, and qr(dθ) is a bounded signed measure, with total
mass equal to 0.

2) qr admits the following representation:

qr(dθ) =
1

I0(r)

⎧⎨⎩−e−rm + m ∗
∞∫
0

πr(du)cu

⎫⎬⎭ ,

where:

m(dθ) =
1
2π

1[−π,π[(θ)dθ; πr(du) = e−r chur(shu)du; cu(dθ) =
udθ

π(θ2 + u2)

3) qr may also be written as follows:

qr(dθ) =
1

2πI0(r)
{Φr(θ − π) − Φr(θ + π)} dθ ,

where

Φr(x) =

∞∫
0

dt e−r cht x

π(t2 + x2)
=

∞∫
0

πr(dt)
1
π

Arc tg
(

t

x

)
. (5.10)

It is a tantalizing question to interpret precisely every ingredient in the above
decomposition of µr in terms of the winding number of planar Brownian mo-
tion. This is simply solved for pr, which is the law of the principal deter-
mination αt (e.g.: with values in [−π, π[), of the argument of the random
variable Zt, given Rt ≡ |Zt|, a question which does not involve the compli-
cated manner in which Brownian motion (Zu, u ≤ t) has wound around 0 up
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to time t, but depends only on the distribution of the 2-dimensional random
variable Zt.

On the contrary, the quantities which appear in the decomposition of qr in
the second statement of Theorem 5.2 are not so easy to interpret. However,
the Cauchy distribution c1 which appears there is closely related to Spitzer’s
asymptotic result, which we now recall.

Theorem 5.3 As t → ∞,
2θt

log t
(law)−−−−−→t→∞ C1, where C1 is a Cauchy variable

with parameter 1.

Proof: Following Itô-McKean ([50], p. 270) we remark that, from the con-

vergence in law of
Rt√

t
, as t → ∞, it is sufficient, to prove the theorem, to

show that, for every ν ∈ IR, we have:

Ez0

[
exp

(
2iνθt

log t

)
| Rt = ρ

√
t

]
−−−−−→t→∞ exp (−|ν|) ,

which, thanks to formula (5.6), amounts to showing:

Iλ

I0

( |z0|ρ√
t

)
−−−−−→t→∞ e−|ν| (5.11)

with the notation: λ =
2|ν|
log t

.

Making an integration by parts in the integral representation of Iλ(r) in
(5.1.3), b), the proof of (5.11) shall be finished once we know that:∫

πp/
√

t(du) exp
(
− |ν|u

log
√

t

)
−−−−−→t→∞ e−|ν| ,

where p = ρ|z0|. However, if we consider the linear application �t : u → u
log t

(u ∈ IR+), it is easily shown that: �t(πp/t)
(w)−−−−−→t→∞ ε1(du), i.e.: the image of

πp/t(du) by �t converges weakly, as t → ∞, to the Dirac measure at 1. 
�

The finite measure πr(du) appears also naturally in the following represen-
tation of the law of the winding number around 0 of the “Brownian lace” (=
complex Brownian bridge) with extremity z0 �= 0, and length t.
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Theorem 5.4 Let W =
θt

2π
be the winding number of the Brownian lace of

length t, starting and ending at z0. Then, with the notation: r = |z0|2
t , we

have:

W
(law)
= ε

[
CT

2π
+

1
2

]
(5.12)

where T is a random variable with values in IR+, such that:

P (T ∈ du) = erπr(du) ,

ε takes the values 0 and 1, with probabilities:

P (ε = 0) = 1 − e−2r , P (ε = 1) = e−2r ,

(Cu)u≥0 is a symmetric Cauchy process starting from 0, T, ε and (Cu)u≥0

are independent, and, finally, [x] denotes the integer part of x ∈ IR.

For the sake of clarity, we shall now assume, while proving Theorem 5.4, that
z0 = |z0|; there is no loss of generality, thanks to the conformal invariance of
Brownian motion.

In particular, we may choose θ0 = 0, and it is then easy to deduce from the
identity (5.6), and the representation of µr given in Theorem 5.2 that, for
any Borel function
f : IR → IR+, one has:

Ez0 [f(θt) | Zt = z] = f(αt) + e−r̃ cos(αt)
∑
n∈ZZ

an(t, r̃)f(αt + 2nπ) (∗)

where αt is equal, as above, to the determination of the argument of the
variable Zt in ] − π, π], r̃ = |z0| |z|

t , and

an(r̃, t) = Φr̃(αt + (2n − 1)π) − Φr̃ (αt + (2n + 1)π) .

In particular, for z = z0, one has: r = r̃, αt = 0, and the previous formula (∗)
becomes, for n �= 0:
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Pz0 (θt = 2nπ | Zt = z0)

=

∞∫
0

πr(du)e−r 1
π

{
Arc tg

(
u

(2n − 1)π

)
−Arc tg

(
u

(2n + 1)π

)}
(from (5.10))

=

∞∫
0

πr(du)e−r

(2n+1)π∫
(2n−1)π

u dx

π(u2 + x2)

=
∫

P (T ∈ du)e−2rP ((2n − 1)π ≤ Cu ≤ (2n + 1)π) (5.13)

Likewise, for n = 0, one deduces from (∗) that:

Pz0 (θt = 0 | Zt = z0)=
∫

P (T ∈ du)
{
(1 − e−2r) + e−2rP (−π ≤ Cu ≤ π)

}
(5.14)

The representation (5.12) now follows from the two formulae (5.13) and (5.14).
From Theorem 5.4, we deduce the following interesting

Corollary 5.4.1 Let θ∗t be the value at time t of a continuous determination
of the argument of the Brownian lace (Zu, u ≤ t), such that Z0 = Zt = z0.
Then, one has:

1
log t

θ∗t
(law)−−−−−→t→∞ C1 (5.15)

Remark: Note that, in contrast with the statement in Theorem 5.3, the
asymptotic winding θ∗t of the “long” Brownian lace (Zu, u ≤ t), as t → ∞,
may be thought of as the sum of the windings of two independent “free”
Brownian motions considered on the interval [0, t]; it is indeed possible to
justify directly this assertion. 
�

Proof of the Corollary: From the representation (5.12), it suffices to
show that:

1
log t

CT
(law)−−−−−→t→∞ C1 ,

where T is distributed as indicated in Theorem 5.4.

Now, this convergence in law follows from

CT
(law)
= T C1 ,

and the fact, already seen at the end of the proof of Theorem 5.3, that:
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T

log t
(P )−−−−−→t→∞ 1 .


�

(5.2.2) In order to understand better the representation of W given by
formula (5.12), we shall now replace the Brownian lace by a planar Brownian
motion with drift, thanks to the invariance of Brownian motion by time-
inversion. From this invariance property, we first deduce the following easy

Lemma 5.1 Let z1, z2 ∈ C, and let P z2
z1

be the law of (z1 + Ẑu +uz2; u ≥ 0),
where (Ẑu, u ≥ 0) is a planar BM starting from 0.

Then, the law of
(
uZ

(
1
u

)
, u > 0

)
under P z2

z1
is P z1

z2
.

As a consequence, we obtain: for every positive functional F ,

Ez0 [F (Zu, u ≤ t) | Zt = z] = Ez0
z/t

[
F

(
uZ

(
1
u
− 1

t

)
; u ≤ t

)]
.

We may now state the following

Theorem 5.5 Let Zu = Xu + iYu, u ≥ 0, be a C-valued process, and define
Tt =inf {u≤ t :Xu =0}, with Tt = t, if { } is empty, and L=sup {u :Xu =0},
with L = 0 if { } is empty.
Then, we have:

1) for any Borel function f : IR × IR+ → IR+,

Ez0

[
f

(
θt,

1
t
− 1

Tt

)
| Zt = z

]
= Ez0

z/t [f(θ∞,L)] ;

2) moreover, when we take z0 = z, we obtain, with the notation of Theo-
rem 5.4:

Ez0

[
f(θt)1(Tt<t) | Zt = z0

]
= Ez0

z0/t

[
f(θ∞)1(L>0)

]
= E

[
f

(
2πε

[
CT

2π
+

1
2

])
ε

]

The proof of Theorem 5.5 follows easily from Lemma 5.1 and Theorem 5.4.
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Comments on Chapter 5

The computations presented in paragraph 5.1 are, by now, well-known; the
development in paragraph 5.2 is taken partly from Yor [98]; some related
computations are found in Berger-Roberts [5].

It is very interesting to compare the proof of Theorem 5.3, which follows
partly Itô - Mc Kean ([50] and, in fact, the original proof of Spitzer [85]) and
makes use of some asymptotics of the modified Bessel functions, with the
“computation-free” arguments of Williams (1974; unpublished) and Durrett
[37] discussed in detail in Messulam-Yor [65] and Pitman-Yor [75].

It would be interesting to obtain a better understanding of the identity in
law (5.12), an attempt at which is presented in Theorem 5.5.



Chapter 6

On some exponential functionals
of Brownian motion and the problem
of Asian options

In the asymptotic study of the winding number of planar BM made in the
second part of Chapter 5, we saw the important role played by the represen-
tation of (Rt, t ≥ 0), the 2-dimensional Bessel process, as:

Rt = exp(BHt) , where Ht =

t∫
0

ds

R2
s

,

with (Bu, u ≥ 0) a real-valued Brownian motion.

In this chapter, we are interested in the law of the exponential functional:

t∫
0

ds exp(aBs + bs) ,

where a, b ∈ IR, and (Bs, s ≥ 0) is a 1-dimensional Brownian motion. To
compute this distribution, we can proceed in a manner which is similar to
that used in the second part of Chapter 5, in that we also rely upon the exact
knowledge of the semigroups of the Bessel processes.

The problem which motivated the development in this chapter is that of the
so-called Asian options which, on the mathematical side, consists in comput-
ing as explicitly as possible the quantity:

C(ν)(t, k) = E
[
(A(ν)

t − k)+
]

, (6.1)

where k, t ≥ 0, and:

79
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A
(ν)
t =

t∫
0

ds exp 2(Bs + νs) ,

with B a real-valued Brownian motion starting from 0.

The method alluded to above, and developed in detail in [102], yields an
explicit formula for the law of A

(ν)
t , and even for that of the pair (A(ν)

t , Bt).
However, then, the density of this law is given in an integral form, and it
seems difficult to use this result to obtain a “workable” formula for (6.1).

It is, in fact, easier to consider the Laplace transform in t of C(ν)(t, k), that
is:

λ

∞∫
0

dt e−λtE
[
(A(ν)

t − k)+
]
≡ E

[
(A(ν)

Tλ
− k)+

]
,

where Tλ denotes an exponential variable with parameter λ, which is inde-
pendent of B. It is no more difficult to obtain a closed form formula for
E

[{
(A(ν)

Tλ
− k)+

}n]
for any n ≥ 0, and, therefore, we shall present the main

result of this chapter in the following form.

Theorem 6.1 Consider n ≥ 0 (n is not necessarily an integer) and λ > 0.
Define µ =

√
2λ + ν2. We assume that: λ > 2n(n + ν), which is equivalent

to: µ > ν + 2n. Then, we have, for every x > 0:

E

[{(
A

(ν)
Tλ

− 1
2x

)+
}n]

=
E

[
(A(ν)

Tλ
)n
]

Γ
(

µ−ν
2 − n

) x∫
0

dt e−t t
µ−ν

2 −n−1

(
1 − t

x

)µ+ν
2 +n

(6.2)
Moreover, we have:

E
[
(A(ν)

Tλ
)n
]

=
Γ (n + 1)Γ

(
µ+ν

2 + 1
)
Γ
(

µ−ν
2 − n

)
2nΓ

(
µ−ν

2

)
Γ
(
n + µ+ν

2 + 1
) . (6.3)

In the particular case where n is an integer, this formula simplifies into:

E
[
(A(ν)

Tλ
)n
]

=
n!

n∏
j=1

(λ − 2(j2 + jν))
. (6.4)
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Remarks:

1) It is easily verified, using dominated convergence, that, as x → ∞, both
sides of (6.2) converge towards E

[
(A(ν)

Tλ
)n
]
.

2) It appears clearly from formula (6.2) that, in some sense, a first step in
the computation of the left-hand side of this formula is the computation
of the moments of A

(ν)
Tλ

. In fact, in paragraph (6.1), we shall first show
how to obtain formula (6.4), independently from the method used in the
sequel of the chapter.

6.1 The integral moments of A
(ν)
t

In order to simplify the presentation, and to extend easily some of the compu-
tations made in the Brownian case to some other processes with independent
increments, we shall write, for λ ∈ IR

E [exp(λBt)] = exp (tϕ(λ)) , where, here, ϕ(λ) =
λ2

2
. (6.5)

We then have the following

Theorem 6.2

1) Let µ ≥ 0, n ∈ IN, and α > ϕ(µ + n). Then, the formula:

∞∫
0

dt exp(−αt)E

⎡⎣⎛⎝ t∫
0

ds exp(Bs)

⎞⎠n

exp(µBt)

⎤⎦ =
n!

n∏
j=0

(α − ϕ(µ + j))

(6.6)
holds.

2) Let µ ≥ 0, n ∈ IN, and t ≥ 0. Then, we have:

E

⎡⎣⎛⎝ t∫
0

ds exp Bs

⎞⎠n

exp(µBt)

⎤⎦ = E
[
P (µ)

n (expBt) exp(µBt)
]

, (6.7)

where (P (µ)
n , n ∈ IN) is the following sequence of polynomials:
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P (µ)
n (z) = n!

n∑
j=0

c
(µ)
j zj , with c

(µ)
j =

∏
k �=j

0≤k≤n

(ϕ(µ + j) − ϕ(µ + k))−1
.

Remark: With the following modifications, this theorem may be applied
to a large class of processes with independent increments:

i) we assume that (Xt) is a process with independent increments which ad-
mits exponential moments of all orders;
under this only condition, formula (6.6) is valid for α large enough;

ii) Let ϕ be the Lévy exponent of X which is defined by:

E0 [exp(mXs)] = exp (sϕ(m)) .

Then, formula (6.7) also extends to (Xt), provided ϕ
∣∣
IR+

is injective, which
implies that the argument concerning the additive decomposition formula
in the proof below still holds.

Proof of Theorem 6.2

1) We define

φn,t(µ) = E

⎡⎣⎛⎝ t∫
0

ds exp(Bs)

⎞⎠n

exp(µBt)

⎤⎦
= n!E

⎡⎣ t∫
0

ds1

s1∫
0

ds2 . . .

sn−1∫
0

dsn exp(Bs1 + · · · + Bsn + µBt)

⎤⎦
We then remark that

E [exp(µBt + Bs1 + · · · + Bsn)]
= E [exp {µ(Bt − Bs1) + (µ + 1)(Bs1 − Bs2) + · · · + (µ + n)Bsn}]
= exp {ϕ(µ)(t − s1) + ϕ(µ + 1)(s1 − s2) + · · · + ϕ(µ + n)sn} .

Therefore, we have:
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∞∫
0

dt exp(−αt)φn,t(µ)

= n!

∞∫
0

dt e−αt

t∫
0

ds1

s1∫
0

ds2

sn−1∫
0

dsn exp {ϕ(µ)(t − s1) + · · · + ϕ(µ + n)sn}

= n!

∞∫
0

dsn exp(−(α − ϕ(µ + n))sn) . . .

. . .

∞∫
sn

dsn−1 exp(−(α − ϕ(µ + n − 1))(sn−1 − sn))

∞∫
s1

dt exp(−(α − ϕ(µ))(t − s1)),

so that, in the case: α > ϕ(µ + n), we obtain formula (6.6) by integrating
successively the (n + 1) exponential functions.

2) Next, we use the additive decomposition formula:

1
n∏

j=0

(α − ϕ(µ + j))
=

n∑
j=0

c
(µ)
j

1
(α − ϕ(µ + j))

where c
(µ)
j is given as stated in the Theorem, and we obtain, for

α>ϕ(µ + n):

∞∫
0

dt e−αtφn,t(µ) = n!
n∑

j=0

c
(µ)
j

∞∫
0

dt e−αteϕ(µ+j)t

a formula from which we deduce:

φn,t(µ) = n!
n∑

j=0

c
(µ)
j exp(ϕ(µ + j)t) = n!

n∑
j=0

c
(µ)
j E[exp(jBt) exp(µBt)]

= E
[
P (µ)

n (expBt) exp(µBt)
]

.

Hence, we have proved formula (6.7). 
�

As a consequence of Theorem 6.2, we have the following

Corollary 6.2.1 For any λ ∈ IR, and any n ∈ IN, we have:

λ2nE

⎡⎣⎛⎝ t∫
0

du exp(λBu)

⎞⎠n⎤⎦ = E[Pn(expλBt)] (6.8)
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where

Pn(z) = 2n(−1)n

⎧⎨⎩ 1
n!

+ 2
n∑

j=1

n!(−z)j

(n − j)!(n + j)!

⎫⎬⎭ . (6.9)

Proof: Thanks to the scaling property of Brownian motion, it suffices to
prove formula (6.8) for λ = 1, and any t ≥ 0. In this case, we remark that
formula (6.8) is then precisely formula (6.7) taken with µ = 0, once the
coefficients c

(0)
j have been identified as:

c
(0)
0 = (−1)n 2n

(n!)2
; c

(0)
j =

2n(−1)n−j2
(n − j)!(n + j)!

(1 ≤ j ≤ n) ;

therefore, it now appears that the polynomial Pn is precisely P
(0)
n , and this

ends the proof. 
�
It may also be helpful to write down explicitly the moments of A

(ν)
t .

Corollary 6.2.2 For any λ ∈ IR∗, µ ∈ IR, and n ∈ IN, we have:

λ2nE

⎡⎣⎛⎝ t∫
0

du expλ(Bu + µu)

⎞⎠n⎤⎦ = n!
n∑

j=0

c
(µ/λ)
j exp

((
λ2j2

2
+ λjµ

)
t

)
.

(6.10)
In particular, we have, for µ = 0

λ2nE

⎡⎣⎛⎝ t∫
0

du expλBu

⎞⎠n⎤⎦ = n!

⎧⎨⎩ (−1)n

(n!)2
+ 2

n∑
j=1

(−1)n−j

(n − j)!(n + j)!
exp

λ2j2t

2

⎫⎬⎭
(6.11)

6.2 A study in a general Markovian set-up

It is interesting to give a theoretical solution to the problem of Asian options
in a general Markovian set-up, for the two following reasons, at least:

- on one hand, the general presentation allows to understand simply the
nature of the quantities which appear in the computations;
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- on the other hand, this general approach may allow to choose some other
stochastic models than the geometric Brownian motion model.

Therefore, we consider {(Xt), (θt), (Px)x∈E} a strong Markov process, and
(At, t ≥ 0) a continuous additive functional, which is strictly increasing, and
such that: Px(A∞ = ∞) = 1, for every x ∈ E.

Consider, moreover, g : IR → IR+, a Borel function such that g(x) = 0 if
x ≤ 0. (In the applications, we shall take: g(x) = (x+)n).

Then, define:

Gx(t) = Ex[g(At)] , Gx(t, k) = Ex[g(At − k)]

and

G(λ)
x (k) = Ex

⎡⎣ ∞∫
0

dt e−λtg(At − k)

⎤⎦ .

We then have the important

Proposition 6.1 Define τk = inf{t : At ≥ k}. The two following formulae
hold:

G(λ)
x (k) =

∞∫
0

dv e−λvEx

[
e−λτkGXτk

(v)
]

(6.12)

and, if g is increasing, and absolutely continuous,

G(λ)
x (k) =

1
λ

∞∫
k

dv g′(v − k)Ex[e−λτv ] . (6.13)

Remark: In the application of these formulae to Brownian motion, we
shall see that the equality between the right-hand sides of formulae (6.12)
and (6.13) is the translation of a classical “intertwining” identity between
confluent hypergeometric functions. This is one of the reasons why it seems
important to insist upon this identity; in any case, this discussion shall be
taken up in paragraph 6.5.

Proof of Proposition 6.1:

1) We first remark that, on the set {t ≥ τk}, the following relation holds:

At(ω) = Aτk
(ω) + At−τk

(θτk
ω) = k + At−τk

(θτk
ω) ;
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then, using the strong Markov property, we obtain:

Gx(t, k) ≡ Ex[g(At − k)] = Ex

[
EXτk

(ω)

[
g(At−τk(ω))

]
1(τk(ω)≤t)

]
;

hence: Gx(t, k) = Ex

[
GXτk

(t − τk)1(τk≤t)

]
.

This implies, using Fubini’s theorem:

G(λ)
x (k) = Ex

⎡⎣ ∞∫
τk

dt e−λtGXτk
(t − τk)

⎤⎦ ,

and formula (6.12) follows.

2) Making the change of variables t = v−k in the integral in (6.13) and using
the strong Markov property, we may write the right-hand side of (6.13) as:

1
λ

Ex

⎡⎣ ∞∫
0

dt g′(t)e−λτkEXτk
(e−λτt)

⎤⎦
Therefore, in order to prove that the right-hand sides of (6.12) and (6.13)
are equal, it suffices to prove the identity:

∞∫
0

dv e−λvEz(g(Av)) =
1
λ

∞∫
0

dt g′(t)Ez [e−λτt ] . (6.14)

(here, z stands for Xτk
(ω) in the previous expressions).

In fact, we now show

∞∫
0

dve−λvg(Av) =
1
λ

∞∫
0

dt g′(t)e−λτt (6.15)

which, a fortiori, implies (6.14).

Indeed, if we write: g(a) =

a∫
0

dt g′(t), we obtain:

∞∫
0

dv e−λvg(Av) =

∞∫
0

dv e−λv

Av∫
0

dt g′(t)



6.3 The case of Lévy processes 87

=

∞∫
0

dt g′(t)

∞∫
τt

dv e−λv =
1
λ

∞∫
0

dt g′(t)e−λτt

which is precisely the identity (6.15). 
�

Exercise 6.1 Let (Mt, t ≥ 0) be an IR+-valued multiplicative functional
of the process X ; prove the following generalizations of formulae (6.12)
and (6.13):

∞∫
0

dt Ex [Mtg(At − k)] =

∞∫
0

dv Ex

[
Mτk

EXτk
(Mvg(Av))

]

=

∞∫
0

dt g′(t)Ex

⎡⎣Mτk
EXτk

⎛⎝ ∞∫
τt

dv Mv

⎞⎠⎤⎦

6.3 The case of Lévy processes

We now consider the particular case where (Xt) is a Lévy process, that is
a process with homogeneous, independent increments, and we take for (At)
and g the following:

At =

t∫
0

ds exp(mXs) , and g(x) = (x+)n ,

for some m ∈ IR, and n > 0.

We define Yk = exp(Xτk
), y = exp(x), and we denote by (P̃y)y∈IR+ the family

of laws of the strong Markov process (Yk; k ≥ 0).

We now compute the quantities Gx(t) and G
(λ)
x (k) in this particular case; we

find:
Gx(t) = exp(mnx)en(t) = ymnen(t) ,

where:

en(t) = G0(t) ≡ E0

⎡⎣⎛⎝ t∫
0

ds exp(mXs)

⎞⎠n⎤⎦ .
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On the other hand, we have:

τk =

k∫
0

dv

(Yv)m
, (6.16)

and formula (6.12) now becomes:

G(λ)
x (k) = Ẽy [(Yk)mn exp(−λτk)] e(λ)

n , where: e(λ)
n =

∞∫
0

dte−λten(t) .

We may now write both formulae (6.12) and (6.13) as follows.

Proposition 6.2 With the above notation, we have:

G(λ)
x (k) =

(i)
Ẽy [(Yk)mn exp(−λτk)] e(λ)

n =
(ii)

n

λ

∞∫
k

dv(v − k)n−1Ẽy[e−λτv ] (6.17)

In the particular case n = 1, this double equality takes a simpler form: indeed,
in this case, we have

e
(λ)
1 =

∞∫
0

dt e−λte1(t) =

∞∫
0

dt e−λt

t∫
0

ds exp(s ϕ(m)) ,

where ϕ is the Lévy exponent of X . It is now elementary to obtain, for

λ > ϕ(m), the formula: e
(λ)
1 =

1
λ(λ − ϕ(m))

, and, therefore, for n = 1, the

formulae (6.17) become

λG(λ)
x (k) = Ẽy [(Yk)m exp(−λτk)]

1
(λ − ϕ(m))

=

∞∫
k

dv Ẽy [exp(−λτv)] .

(6.18)

6.4 Application to Brownian motion

We now assume that: Xt = Bt + νt, t ≥ 0, with (Bt) a Brownian motion,
and ν ≥ 0, and we take m = 2, which implies:
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At =

t∫
0

ds exp(2Xs) .

In this particular situation, the process (Yk, k ≥ 0) is now the Bessel process
with index ν, or dimension δν = 2(1 + ν). We denote by P

(ν)
y the law of this

process, when starting at y, and we write simply P (ν) for P
(ν)
1 . Hence, for

example, P (0) denotes the law of the 2-dimensional Bessel process, starting
from 1. We now recall the Girsanov relation, which was already used in
Chapter 5, formula (5.8):

P (ν)
y

∣∣
Rt

=
(

Rt

y

)ν

exp
(
−ν2

2
τt

)
· P (0)

y

∣∣
Rt

, where τt =

t∫
0

ds

R2
s

. (6.19)

In Chapter 5, we used the notation Ht for τt; (Rt, t ≥ 0) denotes, as usual,
the coordinate process on Ω∗

+, and Rt = σ{Rs, s ≤ t}. The following Lemma
is now an immediate consequence of formula (6.19).

Lemma 6.1 For every α ∈ IR, for every ν ≥ 0, and λ ≥ 0, we have, if we
denote: µ =

√
2λ + ν2,

E(ν) [(Rk)α exp(−λτk)] = E(0)

[
(Rk)α+ν exp

(
−µ2

2
τk

)]
= E(µ)

[
Rα+ν−µ

k

]
(6.20)

We are now able to write the formulae (6.17) in terms of the moments of
Bessel processes.

Proposition 6.3 We now write simply G(λ)(k) for G
(λ)
0 (k), and we intro-

duce the notation:
Hµ(α; s) = E(µ)((Rs)α) . (6.21)

Then, we have:

G(λ)(k) =
(i)

Hµ(2n + ν − µ; k)e(λ)
n =

(ii)

n

λ

∞∫
k

dv(v − k)n−1Hµ(ν − µ; v) (6.22)

which, in the particular case n = 1, simplifies, with the notation: δν = 2(1 +
ν), to:

λG(λ)(k) =
(i)

Hµ(2 + ν − µ; k)
1

(λ − δν)
=
(ii)

∞∫
k

dvHµ(ν − µ; v) . (6.23)
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It is now clear, from formula (6.22) that in order to obtain a closed form
formula for G(λ)(k), it suffices to be able to compute explicitly Hµ(α, k) and
e
(λ)
n . In fact, once Hµ(α; k) is computed for all admissible values of α and k,

by taking k = 0 in formula (6.22) (ii), we obtain:

e(λ)
n =

n

λ

∞∫
0

dv vn−1Hµ(ν − µ; v) , (6.24)

from which we shall deduce formula (6.3) for λe
(λ)
n ≡ E

[
(A(ν)

Tλ
)n
]
.

We now present the quickest way, to our knowledge, to compute Hµ(α; k).
In order to compute this quantity, we find it interesting to introduce the
laws Qδ

z of the square Bessel process (Σu, u ≥ 0) of dimension δ, starting
from z, for δ > 0, and z > 0, because of the additivity property of this family
(see Chapter 2, Theorem 2.3).

We then have the following

Proposition 6.4 For z > 0, and for every γ such that: 0 < γ < µ + 1, we
have:

1
zγ

Hµ

(
−2γ;

1
2z

)
=
(i)

Qδµ
z

(
1

(Σ1/2)γ

)
=
(ii)

1
Γ (γ)

1∫
0

du e−zuuγ−1(1 − u)µ−γ

(6.25)

Proof:

a) Formula (6.25)(i) is a consequence of the invariance property of the laws
of Bessel processes by time-inversion;

b) We now show how to deduce formula (6.25)(ii) from (6.25)(i). Using the
elementary identity:

1
rγ

=
1

Γ (γ)

∞∫
0

dt e−rttγ−1 ,

we obtain:

Qδµ
z

(
1

(Σ1/2)γ

)
=

1
Γ (γ)

∞∫
0

dt tγ−1Qδµ
z (e−tΣ1/2)
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and the result now follows from the general formula:

Qδ
z (exp(−αΣs)) =

1
(1 + 2αs)δ/2

exp
(
−z

α

1 + 2αs

)
, (6.26)

which we use with α = t, and s = 1/2. 
�

Remark: Formula (6.26) is easily deduced from the additivity property of
the family (Qδ

z) (see Revuz-Yor [81], p. 411). 
�

We now show how formulae (6.2) and (6.3) are consequences of formula (6.25):

- firstly, we apply formula (6.22)(i), together with formula (6.25)(ii), with
γ = µ−ν

2 − n, and z = x. Formula (6.2) then follows after making the

change of variables: u =
t

x
in the integral in formula (6.25);

- secondly, we take formula (6.22)(ii) with k = 0, which implies:

E
[
(A(ν)

Tλ
)n
]

= n

∞∫
0

dv vn−1Hµ(ν − µ; v) ,

and we then obtain formula (6.3) by replacing in the above integral
Hµ(ν − µ; v) by its value given by (6.25)(ii), with γ = µ−ν

2 .

In fact, when we analyze the previous arguments in detail, we obtain a repre-
sentation of the r.v. A

(ν)
Tλ

as the ratio of a beta variable to a gamma variable,
both variables being independent; such analysis also provides us with some
very partial explanation of this independence property. Precisely, we have
obtained the following result.

Theorem 6.3 1. The law of the r.v. A
(ν)
Tλ

satisfies

A
(ν)
Tλ

(law)
=

Z1,a

2Zb
, where a =

µ + ν

2
and b =

µ − ν

2
(6.27)

and where Zα,β, resp. Zb, denotes a beta variable with parameters α and β,
resp. a gamma variable with parameter b, and both variables on the right hand
side of (6.27) are independent.

2. More generally, we obtain:(
A

(ν)
Tλ

;
Za

Zb
exp(2B

(ν)
Tλ

)
)

(law)
=

(
Z1

2(Z1 + Za)Zb
;
Za

Zb
exp(2B

(ν)
Tλ

)
)

(6.28)
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where Z1, Za, Zb are three independent gamma variables, with respective pa-
rameters 1, a, b, and these variables are also assumed to be independent of B
and Tλ.

Remark: Our aim in establishing formula (6.28) was to try and understand
better the factorization which occurs in formula (6.27), but, at least at first
glance, formula (6.28) does not seem to be very helpful.

Proof of the Theorem:

a) From formula (6.24), if we take n sufficiently small, we obtain:

E
[
(A(ν)

Tλ
)n
]

=

∞∫
0

dv nvn−1Hµ(ν − µ; v)

=

∞∫
0

dy

y
n

(
1
2y

)n

yb

{
1
yb

Hµ

(
−2b;

1
2y

)}
, where b =

µ − ν

2

=

∞∫
0

dy

y
n

(
1
2y

)n

ybQδµ
y

(
1

Σb
1/2

)
, from (6.25)(i)

=

∞∫
0

dy

y
n

(
1
2y

)n

E
[
exp−yZ(b,a+1)

]
cµ,ν , from (6.25)(ii).

In the sequel, the constant cµ,ν may vary, but shall never depend on n.
For simplicity, we now write Z instead of Z(b,a+1), and we obtain, after
making the change of variables: y = z/Z:

E
[
(A(ν)

Tλ
)n
]

= cµ,νE

⎡⎣ ∞∫
0

dz

z
n

(
Z

2z

)n ( z

Z

)b

exp(−z)

⎤⎦
= cµ,νE

[
nZn−1 1

Zb−1

] ∞∫
0

dz

(
1
2z

)n

zb−1e−z ,

and, after performing an integration by parts in the first expectation, we
obtain:

E
[
(A(ν)

Tλ
)n
]

= E [(Z1,a)n] E
[(

1
2Zb

)n]
(6.29)

which implies (6.27).

b) We take up the same method as above, that is: we consider
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E
[
(A(ν)

Tλ
)α exp(βB

(ν)
Tλ

)
]

, for small α and β’s.

Applying Cameron-Martin’s absolute continuity relationship between
Brownian motion and Brownian motion with drift, we find:

E
[
(A(ν)

Tλ
)α exp(βB

(ν)
Tλ

)
]

= λ

∞∫
0

dt exp
{
−

(
λ +

ν2

2

)
t

}
E

[
(A(0)

t )α exp(β + ν)Bt

]
= λ

∞∫
0

dt e−θtE
[
(A(β+ν)

t )α
]

=
λ

θ
E

[
(A(β+ν)

Tθ
)α

]
,

where θ = λ + ν2

2 − (β+ν)2

2 = λ − β2

2 − βν.

We now remark that µ′ def=
√

2θ + (β + ν)2 is in fact equal to µ =√
2λ + ν2, so that we may write, with the help of formula (6.29):

E
[
(A(ν)

Tλ
)α exp(βB

(ν)
Tλ

)
]

=
(

λ

θ

)
E

[(
Z1,a+ β

2

)α]
E

[(
1

2Zb−β
2

)α]
.

(6.30)
Now, there exist constants C1 and C2 such that:

E
[
(Z1,a+ β

2
)α

]
= E

[
(Z1,a)α(1 − Z1,a)β/2

]
C1

E

[(
2Zb−β

2

)−α
]

= E
[
(2Zb)−α(Zb)−β/2

]
C2

and it is easily found that: C1 = a+β/2
a and C2 = Γ (b)

Γ(b− β
2 ) . Furthermore,

we now remark that, by taking simply α = 0 in formula (6.30):

E
[
exp

(
βB

(ν)
Tλ

)]
=

λ

θ
.

Hence, we may write formula (6.30) as:

E
[
(A

(ν)
Tλ

)α exp(βB
(ν)
Tλ

)
] 1

C1C2
= E

[(
Z1,a

2Zb

)α (
1 − Z1,a

Zb

)β/2

exp(βB
(ν)
Tλ

)

]
.

Now, since:
1

C1C2
= E

[(
Za,1

Zb

)β/2
]
, we deduce from the above identity

that:
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A

(ν)
Tλ

;
(

Za,1

Zb

)1/2

exp(B(ν)
Tλ

)

)
(law)
=

(
Z1,a

2Zb
;
(

1 − Z1,a

Zb

)1/2

exp(B(ν)
Tλ

)

)
(law)
=

(
1 − Za,1

2Zb
;
(

Za,1

Zb

)1/2

exp
(
B

(ν)
Tλ

))

from which we easily obtain (6.28) thanks to the beta-gamma relationships.

�

As a verification, we now show that formula (6.2) may be recovered simply
from formula (6.27); it is convenient to write formula (6.2) in the equivalent
form:

1
xb−n

E

[({
Z1,a

Zb
− 1

x

}+
)n]

=
E

[(
Z1,a

Zb

)n]
Γ (b − n)

1∫
0

dt e−xttb−n−1(1 − t)n+a

(6.31)
for x > 0, n < b, and a > 0.

We now obtain the more general formula

Proposition 6.5 Let Zα,β and Zγ be two independent random variables,
which are, respectively a beta variable with parameters (α, β) and a gamma
variable with parameter γ. Then, we have, for every x > 0, and n < γ:

E

[{(
Zα,β

Zγ
− 1

x

)+
}n]

=
xγ−n

Γ (γ)B(α, β)

1∫
0

du e−xuuγ−n−1(1 − u)β+n...

...

1∫
0

dw (u + w(1 − u))α−1
wn(1 − w)β−1 .(6.32)

In the particular case α = 1, formula (6.32) simplifies to:

E

[{(
Z1,β

Zγ
− 1

x

)+
}n]

=
xγ−n

Γ (γ)

⎛⎝ 1∫
0

du e−xuuγ−n−1(1 − u)β+n

⎞⎠(βB(n + 1, β))

(6.33)

which is precisely formula (6.31), taken with a = β, and b = γ.

Proof: We remark that we need only integrate upon the subset of the prob-
ability space

{
1 ≥ Zα,β ≥ 1

xZγ

}
, and after conditioning on Zγ , we integrate

with respect to the law of Zα,β on the random interval
[

1
xZγ ; 1

]
. This gives:
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E

[{(
Zα,β

Zγ
− 1

x

)+
}n]

= E

[
1

Zn
γ

{(
Zα,β − Zγ

x

)+
}n]

= E

⎡⎢⎢⎣ 1

Zn
γ

1

B(α, β)

1∫
Zγ
x

du uα−1
(

u − Zγ

x

)n

(1 − u)β−1

⎤⎥⎥⎦
and the rest of the computation is routine. 
�

We now consider some particularly interesting subcases of formula (6.27)

Theorem 6.4 Let U be a uniform variable on [0, 1], and σ
def= inf{t : Bt = 1}.

1) For any ν ∈ [0, 1[, we have:

A
(ν)
T2(1−ν)

(law)
=

U

2Z1−ν
(6.34)

In particular, we have, taking ν = 0, and ν = 1
2 , respectively:

T1∫
0

ds exp(
√

2Bs)
(law)
=

U

2Z1
and

T1∫
0

ds exp(2Bs + s)
(law)
= Uσ (6.35)

where, as usual, the variables which appear on the right-hand sides of (6.34)
and (6.35) are assumed to be independent.

2) For any ν ≥ 0,

A
(ν)
T

ν+ 1
2

(law)
= Z1,ν+ 1

2
σ . (6.36)

Proof: The different statements follow immediately from formula (6.27),
once one has remarked that:

Z1,1
(law)
= U and

1
2Z1/2

(law)
=

1
N2

(law)
= σ ,

where N is a centered Gaussian variable with variance 1. 
�
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6.5 A discussion of some identities

(6.5.1) Formula (6.25)(ii) might also have been obtained by using the ex-
plicit expression of the semi-group of the square of a Bessel process (see, for
example, [81] p. 411, Corollary (1.4)). With this approach, one obtains the
following formula:

1
zγ

Hµ

(
−2γ;

1
2z

)
≡ Qδµ

z

(
1

(Σ1/2)γ

)
= exp(−z)

Γ (α)
Γ (β)

Φ(α, β; z) (6.37)

where α = −γ + 1 + µ, β = 1 + µ, and Φ(α, β; z) denotes the confluent
hypergeometric function with parameters α and β.

With the help of the following classical relations (see Lebedev [63], p. 266–
267):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Φ(α, β; z) = ezΦ(β − α, β;−z)

and

(ii) Φ(β − α, β; z) =
Γ (β)

Γ (α)Γ (β − α)

1∫
0

dt e−ztt(β−α)−1(1 − t)α−1 ,

(6.38)

one may obtain formula (6.25)(ii) as a consequence of (6.37).

(6.5.2) The recurrence formula (6.22)(ii) may be written, after some ele-
mentary transformations, in the form:

xαHµ

(
2α;

1
2x

)
e(λ)

n =
n

λ2n−1

1∫
0

dw w−α−1(1 − w)n−1(xw)βHµ

(
2β;

1
2wx

)
(6.39)

where, now, we take α = n + ν−µ
2 , and β = ν−µ

2 ≡ α − n.

Assuming that formula (6.25)(ii) is known, the equality (6.39) is nothing
but an analytic translation of the well-known algebraic relation between beta
variables

Za,b+c
(law)
= Za,bZa+b,c (6.40)

for the values of the parameters: a = −α, b = n, c = 1 + µ + β, and Zp,q

denotes a beta variable with parameters (p, q), and the two variables on the
right-hand side of (6.40) are assumed to be independent. In terms of confluent
hypergeometric functions, the equality (6.39) translates into the identity:
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Φ(α, γ; z) =
Γ (γ)

Γ (β)Γ (γ − β)

1∫
0

dt tβ−1(1 − t)γ−β−1Φ(α, β; zt) (6.41)

for γ > β (see Lebedev [63], p. 278).

(6.5.3) The relations (6.39) and (6.41) may also be understood in terms of
the semigroups (Qδ

t ; t ≥ 0) and (Qδ′
t ; t ≥ 0) of squares of Bessel processes

with respective dimensions δ and δ′, via the intertwining relationship:

Qδ
tMk′,k = Mk′,kQδ′

t , (6.42)

where: 0 < δ′ < δ, k′ = δ′
2 , k = δ−δ′

2 , and Ma,b is the “multiplication” Markov
kernel which is defined by:

Ma,bf(x) = E[f(xZa,b)] , where f ∈ b(B(IR+)) (6.43)

(for a discussion of such intertwining relations, which are closely linked with
beta and gamma variables, see Yor [99]).

(6.5.4) Finally, we close up this discussion with a remark which relates the
recurrence formula (6.22)(ii), in which we assume n to be an integer, to the
uniform integrability property of the martingales

M
(p)
k

def= R2+p
k − 1 − c(µ)

p

k∫
0

ds Rp
s , k ≥ 0, under P (µ), (6.44)

for: −2µ < 2 + p < 0, with c
(µ)
p = (2 + p)

(
µ + 2+p

2

)
.

Once this uniform integrability property, under the above restrictions for p,
has been obtained, one gets, using the fact that: R2+p

∞ = 0, the following
relation:

E(µ)(R2+p
k ) = −c(µ)

p E(µ)

⎛⎝ ∞∫
k

ds Rp
s

⎞⎠ ,

and, using this relation recurrently, one obtains formula (6.22)(ii) with the
following expression for the constant λe

(λ)
n ≡ E

(
(A(ν)

Tλ
)n
)
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E
[
(A(ν)

Tλ
)n
]

= (−1)n n!
n−1∏
j=0

c
(µ)
2j+ν−µ

(6.45)

and an immediate computation shows that formulae (6.45) and (6.4) are
identical.

Comments on Chapter 6

Whereas, in Chapter 5, some studies of a continuous determination of the
logarithm along the planar Brownian trajectory have been made, we are
interested here in the study of the laws of exponential functionals of Brownian
motion, or Brownian motion with drift.

The origin of the present study comes from Mathematical finance; the so-
called financial Asian options take into account the past history of the market,
hence the introduction of the arithmetic mean of the geometric Brownian
motion. A thorough discussion of the motivation from Mathematical finance
is made in Geman-Yor [47]. The results in paragraph 6.1 are taken from
Yor [102].

The developments made in paragraphs 6.2 and 6.3 show that there are poten-
tial extensions to exponential functionals of a large class of Lévy processes.
However, the limitation of the method lies in the fact that, if (Xt) is a Lévy
process, and (R(u), u ≥ 0) is defined by:

exp(Xt) = R

⎛⎝ t∫
0

ds exp(Xs)

⎞⎠ ,

then, the semi-group of R is only known explicitly in some particular cases,
but a class of examples has been studied, in joint work with Ph. Carmona
and F. Petit [24].

In paragraph 6.4, a simple description of the law of the variable A
(ν)
Tλ

is ob-
tained; it would be nice to be able to explain the origin of the beta variable,
resp.: gamma variable, in formula (6.27), from, possibly, a path decomposi-
tion. In paragraph 6.5, a discussion of the previously obtained formulae in
terms of confluent hypergeometric functions is presented.
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Had we chosen, for our computations, the differential equations approach
which is closely related to the Feynman-Kac formula, these functions would
have immediately appeared. However, throughout this chapter, and in related
publications (Geman-Yor [46], [47], and Yor [102]), we have preferred to use
some adequate change of probability, and Girsanov theorem.

The methodology used in this Chapter helped to unify certain computations
for Asian, Parisian and barrier options (see [105]).

The Springer-Finance volume [104] gathers ten papers dealing, in a broad
sense, with Asian options.



Chapter 7

Some asymptotic laws for
multidimensional BM

In this chapter, we first build upon the knowledge gained in Chapter 5 about
the asymptotic windings of planar BM around one point, together with
the Kallianpur-Robbins ergodic theorem for planar BM , to extend Spitzer’s
theorem:

2θt

log t
(law)−−−−−→t→∞ C1

into a multidimensional result for the winding numbers (θ1
t , θ2

1, . . . , θ
n
t ) of

planar BM around n points (all notations which may be alluded to, but not
defined in this chapter are found in Pitman-Yor [75]).

This study in the plane may be extended one step further by considering
BM in IR3 and seeking asymptotic laws for its winding numbers around a
finite number of oriented straight lines, or, even, certain unbounded curves
(Le Gall-Yor [62]).

There is, again, a more general set-up for which such asymptotic laws may be
obtained, and which allows to unify the previous studies: we consider a finite
number (B1, B2, . . . , Bm) of jointly Gaussian, “linearly correlated”, planar
Brownian motions, and the winding numbers of each of them around zj ,
where {zj; 1 ≤ j ≤ n} are a finite set of points.

In the last paragraph, some asymptotic results for Gauss linking numbers rel-
ative to one BM , or two independent BM ’s, with values in IR3 are presented.

101
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7.1 Asymptotic windings of planar BM around n points

In Chapter 5, we presented Spitzer’s result

2θt

log t
(law)−−−−−→t→∞ C1 . (7.1)

This may be extended as follows:

2
log t

⎛⎝θr,−
t , θr,+

t ,

t∫
0

ds f(Zs)

⎞⎠ (law)−−−−−→t→∞

⎛⎝ σ∫
0

dγs1(βs≤0),

σ∫
0

dγs1(βs≥0),

(
f̄

2π

)
�σ

⎞⎠
(7.2)

where: θr,−
t =

t∫
0

dθs1(|Zs|≤r) , θr,+
t =

t∫
0

dθs1(|Zs|≥r), f : C → IR is inte-

grable with respect to Lebesgue measure, f̄ =
∫
C

∫
dx dy f(z), β and γ are

two independent real Brownian motions, starting from 0, σ = inf{t : βt = 1},
and �σ is the local time at level 0, up to time σ of β (for a proof of (7.2), see
Messulam-Yor [65] and Pitman-Yor [75]).

The result (7.2) shows in particular that Spitzer’s law (7.1) takes place jointly
with the Kallianpur-Robbins law (which is the convergence in law of the third
component on the left-hand side of (7.2) towards an exponential variable; see,
e.g., subparagraph (4.3.2), case 3)).

A remarkable feature in (7.2) is that the right-hand side does not depend
on r. The following Proposition provides an explanation, which will be a key
for the extension of (7.1) to the asymptotic study of the winding numbers
with respect to a finite number of points.

Proposition 7.1 Let ϕ(z) = (f(z); g(z)) be a function from C to IR2 such
that: ∫∫

dx dy |ϕ(z)|2 ≡
∫∫

dx dy
{
(f(z))2 + (g(z))2

}
< ∞

Then, the following quantity:

1√
log t

t∫
0

ϕ(Zs) · dZs ≡ 1√
log t

t∫
0

(dXsf(Zs) + dYsg(Zs))

converges in law, as t → ∞, towards:
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kϕ Γ 1

2 �σ

where kϕ ≡ 1
2π

∫ ∫
dx dy|ϕ(z)|2, and (Γt, t ≥ 0) is a 1-dimensional BM .

This convergence in law takes place jointly with (7.2), and Γ, β, γ are inde-
pendent.

For this Proposition, see Messulam-Yor [65] and Kasahara-Kotani [55].
Proposition 7.1 gives an explanation for the absence of the radius r on the
right-hand side of (7.2); more precisely, the winding number in the annulus:

{z : r ≤ |z| ≤ R} , for 0 < r < R < ∞ ,

is, roughly, of the order of
√

log t, and, therefore:

1
log t

θr,R
t ≡ 1

log t

t∫
0

dθs1(r≤|Zs|≤R)
(P )−−−−−→t→∞ 0 .

We now consider θ1
t , θ

2
t , . . . , θn

t , the winding numbers of (Zu, u ≤ t) around
each of the points z1, z2, . . . , zn. Just as before, we separate θj

t into θj,−
t and

θj,+
t , where, for some rj > 0, we define:

θj,−
t =

t∫
0

dθj
s1(|Zs−zj |≤rj) and θj,+

t =

t∫
0

dθj
s1(|Zs−zj |≥rj)

Another application of Proposition 7.1 entails:

1
log t

∣∣∣θi,+
t − θj,+

t

∣∣∣ (P )−−−−−→t→∞ 0 , (7.3)

so that it is now quite plausible, and indeed it is true, that:

2
log t

(θ1
t , . . . , θ

n
t ) (law)−−−−−→t→∞

(
W−

1 + W+, W−
2 + W+, . . . , W−

n + W+
)

(7.4)

Moreover, the asymptotic random vector:
(
W−

1 , W−
2 , . . . , W−

n , W+
)

may be
represented as

(LT (U)Ck (1 ≤ k ≤ n) ; VT ) (7.5)

where (Ut, t ≥ 0) is a reflecting BM , T = inf{t : Ut = 1}, LT (U) is the local
time of U at 0, up to time T , (Vt, t ≥ 0) is a one-dimensional BM , starting
from 0, which is independent of U , and (Ck; 1 ≤ k ≤ n) are independent
Cauchy variables with parameter 1, which are also independent of U and V .
The representation (7.5) agrees with (7.2) as one may show that:
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0

dγs1(βs≤0);

σ∫
0

dγs1(βs≥0);
1
2
�σ

⎞⎠ (law)
= (LT (U)C1; VT ; LT (U))

essentially by using, as we already did in paragraph 4.1, the well-known re-
presentation:

β+
t = U t∫

0

ds1(βs≥0)

, t ≥ 0 .

From the formula for the characteristic function:

E [exp i (αVT + βLT (U)C1)] =
(

chα + |β| shα

α

)−1

,

(which may be derived directly, or considered as a particular case of the first
formula in subparagraph (3.3.2)), it is easy to obtain the multidimensional
explicit formula:

E

[
exp

(
i

n∑
k=1

αkWk

)]
=

(
ch

(
n∑

k=1

αk

)
+

∑ |αk|∑
αk

sh

(
n∑

k=1

αk

))−1

, (7.6)

where we have denoted Wk for W−
k + W+.

Formula (7.6) shows clearly, if needed, that each of the Wk’s is a Cauchy
variable with parameter 1, and that these Cauchy variables are stochastically
dependent, in an interesting manner, which is precisely described by the
representation (7.5).

The following asymptotic residue theorem may now be understood as a global
summary of the preceding results.

Theorem 7.1

1) Let f be holomorphic in C \ {z1, . . . , zn}, and let Γ be an open, relatively
compact set such that: {z1, . . . , zn} ⊂ Γ .

Then, one has:

2
log t

t∫
0

f(Zs)1Γ (Zs)dZs
(law)−−−−−→t→∞

n∑
j=1

Res(f, zj)(LT (U) + iW−
j )
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2) If, moreover, f is holomorphic at infinity, and lim
z→∞ f(z) = 0, then:

2
log t

t∫
0

f(Zs)dZs

(law)−−−−−→t→∞

n∑
j=1

Res(f, zj)(LT (U) + iW−
j ) + Res(f,∞)(LT (U) − 1 + iW+)

7.2 Windings of BM in IR3

We define the winding number θD
t of (Bu, u ≤ t), a 3-dimensional BM around

an oriented straight line D as the winding number of the projection of B on a
plane orthogonal to D. Consequently, if D1, . . . , Dn are parallel, the preceding
results apply. If D and D′ are not parallel, then:

1
log t

θD
t and

1
log t

θD′
t

are asymptotically independent, since both winding numbers are obtained,
to the order of log t, by only considering the amount of winding made by
(Bu, u ≤ t) as it wanders within cones of revolution with axes D, resp: D′,
the aperture of which we can choose as small as we wish. Therefore, these
cones may be taken to be disjoint (except possibly for a common vertex). This
assertion is an easy consequence of the more precise following statement:
consider B ≡ (X, Y, Z) a Brownian motion in IR3, such that B0 �∈ D∗ ≡
{x = y = 0}. To a given Borel function f : IR+ → IR+, we associate the
volume of revolution:

Γ f ≡
{

(x, y, z) : (x2 + y2)1/2 ≤ f(|z|)
}

,

and we define:

θf
t =

t∫
0

dθs1(Bs∈Γ f ) .
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We have the following

Theorem 7.2 If
log f(λ)

log λ
−−−−−→t→∞ a, then:

2θf
t

log t
(law)−−−−−→t→∞

σ∫
0

dγu1(βu≤aSu) where β

and γ are two independent real-valued Brownian motions, Su = sup
s≤u

βs, and

σ = inf{u : βu = 1}.

More generally, if f1, f2, . . . , fk are k functions such that:

log fj(λ)
log λ

−−−−−→t→∞ aj , 1 ≤ j ≤ k ,

then the above convergences in law for the θfj take place jointly, and the joint
limit law is that of the vector:⎛⎝ σ∫

0

dγs1(βs≤ajSs) ; 1 ≤ j ≤ k

⎞⎠

Now, the preceding assertion about cones may be understood as a particular
case of the following consequence of Theorem 7.2:
if, with the notation of Theorem 7.2 a function f satisfies: a ≥ 1, then:

1
log t

(θt − θf
t ) (P )−−−−−→t→∞ 0 .

With the help of Theorem 7.2, we are now able to present a global state-
ment for asymptotic results relative to certain functionals of Brownian motion
in IR3, in the form of the following

General principle : The limiting laws of winding numbers and, more gen-
erally, of Brownian functionals in different directions of IR3, take place jointly
and independently, and, in any direction, they are given by the study in the
plane, as described in the above paragraph 7.1.
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7.3 Windings of independent planar BM ’s around
each other

The origin of the study presented in this paragraph is a question of Mitchell
Berger concerning solar flares (for more details, see Berger-Roberts [5]).

Let Z1, Z2, . . . , Zn be n independent planar BM ’s, starting from n different
points z1, . . . , zn. Then, for each i �= j, we have:

P
(
∃t ≥ 0, Zi

t = Zj
t

)
= 0 ,

since Bi,j
t = 1√

2
(Zi

t−Zj
t ), t ≥ 0, is a planar BM starting from 1√

2
(zi−zj) �= 0,

and which, therefore, shall almost surely never visit 0.

Thus, we may define (θi,j
t , t ≥ 0) as the winding number of Bi,j around 0,

and ask for the asymptotic law of these different winding numbers, indexed
by (i, j), with 1 ≤ i < j ≤ n. This is a dual situation to the situation
considered in paragraph 7.1 in that, now, we consider n BM ’s and one point,
instead of one BM and n points.

We remark that, taken all together, the processes (Bi,j ; 1 ≤ i ≤ j ≤ n) are
not independent. Nonetheless, we may prove the following result:

2
log t

(
θi,j

t ; 1 ≤ i < j ≤ n
)

(law)−−−−−→t→∞
(
Ci,j ; 1 ≤ i < j ≤ n

)
, (7.7)

where the Ci,j ’s are independent Cauchy variables, with parameter 1.

The asymptotic result (7.7) shall appear in the next paragraph as a particular
case.

7.4 A unified picture of windings

The aim of this paragraph is to present a general set-up for which the studies
made in paragraphs 7.1, 7.2, and 7.3, may be understood as particular cases.

Such a unification is made possible by considering: B1, B2, . . . , Bm, m pla-
nar Brownian motions with respect to the same filtration, and which are,
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moreover, linearly correlated, in the following sense:
for any p, q ≤ m, there exists a correlation matrix Ap,q between Bp and Bq

such that: for every −→u ,−→v ∈ IR2,

(−→u , Bp
t ) (−→v , Bq

t ) − (−→u , Ap,q
−→v ) t

is a martingale. (Here, (−→x ,−→y ) denotes the scalar product in IR2). The asymp-
totic result (7.7) may now be generalized as follows.

Theorem 7.3 Let θp
t be the winding number of (Bp

s , s ≤ t) around z0, where
Bp

0 �= z0, for every p.

If, for all (p, q), p �= q, the matrix Ap,q is not an orthogonal matrix, then:

2
log t

(θp
t ; p ≤ m) (law)−−−−−→t→∞ (Cp; p ≤ m) ,

where the variables (Cp; p ≤ m) are independent Cauchy variables, with
parameter 1.

The asymptotic result (7.7) appears indeed as a particular case of Theo-
rem 7.3, since, if: Bp

t = 1√
2
(Zk

t − Z�
t ) and Bq

t = 1√
2
(Zk

t − Zj
t ), for k �= � �= j,

then: Ap,q = 1
2Id, which is not an orthogonal matrix! In other cases, Ap,q = 0.

It is natural to consider the more general situation, for which some of the
matrices Ap,q may be orthogonal. If a correlation matrix Ap,q is orthogonal,
then Bp is obtained from Bq by an orthogonal transformation and, possibly, a
translation. This allows to consider the asymptotic problem in the following
form: again, we may assume that none of the Ap,q’s is orthogonal, but we
now have to study the winding numbers of m linearly correlated Brownian
motions around n points (z1, . . . , zn). We write:{

θp
t = (θp,zj

t ; j ≤ n) ; p ≤ m
}

.

We may now state the following general result.

Theorem 7.4 We assume that, for all p �= q, Ap,q is not orthogonal. Then,

2
log t

(θp
t ; p ≤ m) (law)−−−−−→t→∞ (ξp; p ≤ m) ,

where the random vectors (ξp)p≤m are independent, and, for every p: ξp (law)
=

(W1, . . . , Wn), the law of which has been described precisely in paragraph 7.1.
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We now give a sketch of the main arguments in the proof of Theorem 7.4. The
elementary, but nonetheless crucial fact on which the proof relies is presented
in the following

Lemma 7.1 Let G and G′ be two jointly Gaussian, centered, variables
in IR2, such that: for every u ∈ IR2, and every v ∈ IR2,

E
[
(u, G)2

]
= |u|2 = E

[
(u, G′)2

]
, and E [(u, G)(v, G′)] = (u, Av) ,

where A is non-orthogonal.

Then, E

[
1

|G|p|G′|q
]

< ∞, as soon as: p <
3
2
, q <

3
2
.

Remark: This integrability result should be compared with the fact that

E

(
1

|G|2
)

= ∞, which has a lot to do with the normalization of

t∫
0

ds

|Zs|2 by

(log t)2 (and not (log t), as in the Kallianpur-Robbins limit law) to obtain a
limit in law.

7.5 The asymptotic distribution of the self-linking
number of BM in IR3

Gauss has defined the linking number of two closed curves in IR3, which do
not intersect each other. We should like to consider such a number for two
Brownian curves, but two independent BM ′s in IR3 almost surely intersect
each other. However, we can define some approximation to Gauss’ linking
number by excluding the pairs of instants (u, v) at which the two BM ’s are

closer than
1
n

to each other, and then let n go to infinity. It may be expected,
and we shall show that this is indeed the case, that the asymptotic study
shall involve some quantity related to the intersections of the two BM ’s.

We remark that it is also possible to define such linking number approxima-
tions for only one BM in IR3. Thus, we consider:

In(t) def=

t∫
0

⎛⎝dBu,

u∫
0

dBs,
Bu − Bs

|Bu − Bs|3

⎞⎠ 1(|Bu−Bs|≥ 1
n )
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and

Jn(s, t) def=

s∫
0

⎛⎝dBu,

t∫
0

dB′
v,

Bu − B′
v

|Bu − B′
v|3

⎞⎠ 1(|Bu−B′
v |≥ 1

n ) ,

where (a, b, c) = a · (b × c) denotes the mixed product of the three vectors
a, b, c in IR3.

We have to explain the meaning given to each of the integrals:

a) in the case of Jn, there is no difficulty, since B and B′ are independent,

b) in the case of In, we first fix u, and then:

- we either use the fact that (Bs, s ≤ u) is a semimartingale in the original
filtration of B, enlarged by the variable Bu;

- or, we define the integral with respect to dBs for every x(= Bu), and
having defined these integrals measurably in x, we replace x by Bu.
Both operations give the same quantity.

We now state the asymptotic result for In.

Theorem 7.5 We have:(
Bt,

1
n

In(t); t ≥ 0
)

(law)−−−−−→n→∞ (Bt, cβt; t ≥ 0)

where (βt) is a real-valued BM independent of B, and c is a universal con-
stant.

To state the asymptotic result for Jn, we need to present the notion of inter-
section local times:
these consist in the a.s. unique family(

α(x; s, t); x ∈ IR3, s, t ≥ 0
)

of occupation densities, which is jointly continuous in (x, s, t), such that:
for every Borel function f : IR3 → IR+,

s∫
0

du

t∫
0

dv f(Bu − B′
v) =

∫
IR3

dx f(x)α(x; s, t)
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(α(x; du dv) is a random measure supported by {u, v) : Bu − B′
v = x}).

The asymptotic result for Jn is the following

Theorem 7.6 We have:(
Bs, B

′
t;

1√
n

Jn(s, t); s, t ≥ 0
)

(law)−−−−−→n→∞ (Bs, B
′
t; cIBα(s, t); s, t ≥ 0)

where c is a universal constant, and conditionally on (B, B′), the process
(IBα(s, t); s, t ≥ 0) is a centered Gaussian process with covariance:

E [IBα(s, t)IBα(s′, t′) | B, B′] = α(0; s ∧ s′, t ∧ t′) .

We now end up this chapter by giving a sketch of the proof of Theorem 7.5:

- in a first step, we consider, for fixed u, the sequence:

θn(u) =

u∫
0

dBs × Bu − Bs

|Bu − Bs|3 1(|Bu−Bs|≥ 1
n) .

It is then easy to show that:

1
n

θn(u) (law)−−−−−→n→∞ θ∞
def=

∞∫
0

dBs × Bs

|Bs|3 1(|Bs|≥1) (7.8)

and the limit variable θ∞ has moments of all orders, as follows from Exer-
cise 7.1 below;

- in a second step, we remark that, for u < v:

1
n

(θn(u), θn(v)) (law)−−−−−→n→∞ (θ∞, θ̂∞) , (7.9)

where θ∞ and θ̂∞ are two independent copies.

To prove this result, we remark that, in the stochastic integral which de-
fines θn(u), only times s which may be chosen arbitrarily close to u, and
smaller than u, will make some contribution to the limit in law (7.8); then,
the convergence in law (7.9) follows from the independence of the increments
of B.

- in the final step, we write:
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1
n

In(t) = γ(n)

⎛⎝ 1
n2

t∫
0

ds |θn(s)|2
⎞⎠ ,

where (γ(n)
u , u ≥ 0) is a one dimensional Brownian motion, and it is then easy

to show, thanks to the results obtained in the second step that

1
n2

t∫
0

ds|θn(s)|2 L2

−−−−−→n→∞ c2t .

This convergence in L2 follows from the convergence of the first, resp.: second,
moment of the left-hand side to: c2t, resp.: (c2t)2, as a consequence of (7.9).
This allows to end up the proof of the Theorem.

Exercise 7.1 Let (Bt, t ≥ 0) be a 3-dimensional Brownian motion starting
from 0.

1. Prove that:
∞∫
0

dt

|Bt|4 1(|Bt|≥1)
(law)
= T ∗

1
def= inf {u : |βu| = 1} (7.10)

where (βu, u ≥ 0) is a one-dimensional BM starting from 0.

Hint: Show that one may assume: B0 = 1; then, prove the existence of a
real-valued Brownian motion (γ(u), u ≥ 0) starting from 1, such that:

1
|Bt| = γ

⎛⎝ t∫
0

du

|Bu|4

⎞⎠ , t ≥ 0 .

2. Conclude that θ∞ (defined in (7.8)) admits moments of all orders.

Hint: Apply the Burkholder-Gundy inequalities.

Exercise 7.2 (We use the same notation as in Exercise 7.1).
Prove the identity in law (7.10) as a consequence of the Ray-Knight theorem
(RK2), a), presented in paragraph 3.1:

(�a
∞(R3), a ≥ 0)

(law)
=

(
R2

2(a), a ≥ 0
)
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and of the invariance by time-inversion of the law of (R2(a), a ≥ 0).

Exercise 7.3 Let (B̃t, t ≥ 0) be a 2-dimensional BM starting from 0, and
(βt; t ≥ 0) be a one-dimensional BM starting from 0.

1. Prove the following identities in law:⎛⎝ 1∫
0

ds

|B̃s|

⎞⎠2

(law)
=(a) 4

⎛⎝ 1∫
0

ds|B̃s|2
⎞⎠−1

(law)
=(b)

4
T ∗

1

(law)
=(c) 4

(
sup
s≤1

|βs|
)2

In particular, one has:

1∫
0

ds

|B̃s|
(law)
= 2 sup

s≤1
|βs| (7.11)

Hints: To prove (a), represent (|B̃s|2, s ≥ 0) as another 2-dimensional
Bessel process, time-changed; to prove (b), use, e.g., the Ray-Knight the-
orem on Brownian local times; to prove (c), use the scaling property.

2. Define S = inf

⎧⎨⎩u :

u∫
0

ds

|B̃s|
> 1

⎫⎬⎭. Deduce from (7.11) that:

S
(law)
=

T ∗
1

4

and, consequently:

E

[
exp

(
−λ2

2
S

)]
=

(
ch

(
λ

2

))−1

(7.12)

Comments on Chapter 7

The proofs of the results presented in paragraph 7.1 are found in Pitman-
Yor ([75], [76]); those in paragraph 7.2 are found in Le Gall-Yor [61], and the
results in paragraphs 7.3 and 7.4 are taken from Yor [100].
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The asymptotic study of windings for random walks has been made by
Belisle [3] (see also Belisle-Faraway [4]); there are also many publications
on this topic in the physics literature (see, e.g., Rudnick-Hu [82]).

The proof of Theorem 7.5 constitutes a good example that the asymptotic
study of some double integrals with respect to BM may, in a number of cases,
be reduced to a careful study of simple integrals (see, e.g., the reference to
Stroock-Varadhan-Papanicolaou in Chapter XIII of Revuz-Yor [81]).



Chapter 8

Some extensions of Paul Lévy’s arc
sine law for BM

In his 1939 paper: “Sur certains processus stochastiques homogènes”, Paul
Lévy [64] proves that both Brownian variables:

A+ def=

1∫
0

ds 1(Bs>0) and g = sup{t < 1 : Bt = 0}

are arc-sine distributed.

Over the years, these results have been extended in many directions; for a
review of extensions developed up to 1988, see Bingham-Doney [20].

In this Chapter, we present further results, which extend Lévy’s computation
in the three following directions, in which (Bt, t ≥ 0) is replaced respectively
by:

i) a symmetrized Bessel process with dimension 0 < δ < 2,

ii) a Walsh Brownian motion, that is a process (Xt, t ≥ 0) in the plane which
takes values in a finite number of rays (≡ half-lines), all meeting at 0, and
such that (Xt, t ≥ 0) behaves, while away from 0, as a Brownian motion,
and, when it meets 0, chooses a ray with equal probability,

iii) a singularly perturbed reflecting Brownian motion, that is (|Bt|−
µ�t, t ≥ 0) where (�t, t ≥ 0) is the local time of (Bt, t ≥ 0) at 0.

A posterior justification of these extensions may be that the results which
one obtains in each of these directions are particularly simple, this being

115
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due partly to the fact that, for each of the models, the strong Markov prop-
erty and the scaling property are available; for example, in the set-up of
(iii), we rely upon the strong Markov property of the 2-dimensional process:
{|Bt|, �t; t ≥ 0}.

More importantly, these three models may be considered as testing grounds
for the use and development of the main methods which have been successful
in recent years in reproving Lévy’s arc sine law, that is, essentially: excursion
theory and stochastic calculus (more precisely, Tanaka’s formula).

Finally, one remarkable feature in this study needs to be underlined: although
the local time at 0 of, say, Brownian motion, does not appear a priori in the
problem studied here, that is: determining the law of A+, in fact, it plays an
essential role, and a main purpose of this chapter is to clarify this role.

8.1 Some notation

Throughout this chapter, we shall use the following notation:
Za, resp.: Za,b, denotes a gamma variable with parameter a, resp.: a beta
variable with parameters (a, b), so that

P (Za ∈ dt) =
dt ta−1e−t

Γ (a)
(t > 0)

and

P (Za,b ∈ dt) =
dt ta−1(1 − t)b−1

B(a, b)
(0 < t < 1)

We recall the well-known algebraic relations between the laws of the beta and
gamma variables:

Za
(law)
= Za,bZa+b and Za,b+c

(law)
= Za,bZa+b,c ,

where, in both identities in law, the right-hand sides feature independent
r.v.’s. We shall also use the notation T(α), with 0 < α < 1, to denote a
one-sided stable (α) random variable, the law of which may be characterized
by:

E
[
exp(−λT(α))

]
= exp(−λα) , λ ≥ 0 .

(It may be worth noting that 2T(1/2), and not T(1/2), is distributed as the
first hitting time of 1 by a one-dimensional BM starting from 0).
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8.2 A list of results

(8.2.1) As was already recalled, Lévy (1939) proved that A+ and g are arc

sine distributed, that is: they have the same law as
N2

N2 + N ′2 , where N

and N ′ are two centered, independent Gaussian variables with variance 1, or,

since: N2 (law)
=

1
2T(1/2)

, we see that A+ and g are distributed as:

T(1/2)

T(1/2) + T ′
(1/2)

(8.1)

where T(1/2) and T ′
(1/2) are two independent copies. In fact, in the next para-

graph, we shall present some proofs which exhibit A+ in the form (8.1).

For the moment, here is a quick proof that g is arc-sine distributed:
let u ≤ 1; then: (g < u) = (du > 1),
where: du = inf{t ≥ u; Bt = 0}

≡ u + inf{v > 0 : Bv+u − Bu = −Bu}
(law)
= u + B2

uσ
(law)
= u(1 + B2

1σ),
with: σ = inf{t : βt = 1}, and β is a BM , independent of Bu. Hence, we have
shown:

g
(law)
= 1 + B2

1σ
(law)
= 1 +

B2
1

β2
1

(law)
= 1 +

N2

N ′2 , which gives the result.

(8.2.2) If we replace Brownian motion by a symmetrized Bessel process of
dimension 0 < δ = 2(1 − α) < 2, then the quantities A+

(α) and g(α), the
meaning of which is self-evident, no longer have a common distribution if

α �= 1
2 . In fact, Dynkin [38] showed that: g(α)

(law)
= Zα,1−α, whereas Barlow-

Pitman-Yor [2] proved that:

A+
(α)

(law)
=

T(α)

T(α) + T ′
(α)

, (8.2)

where T(α) and T ′
(α) are two independent copies.

(8.2.3) In [2], it was also shown that Lévy’s result for A+ admits the fol-
lowing multivariate extension: if we consider (as described informally in the
introduction to this chapter) a Walsh Brownian motion (Zs, s ≥ 0) living on
n rays (Ii; 1 ≤ i ≤ n), and we denote:
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A(i) =

1∫
0

ds 1(Zs∈Ii) ,

then: (
A(1), . . . , A(n)

)
(law)
=

⎛⎜⎜⎝ T (i)

n∑
j=1

T (j)

; 1 ≤ i ≤ n

⎞⎟⎟⎠ (8.3)

where (T (i); i ≤ i ≤ n) are n independent one-sided stable
(

1
2

)
random

variables. Furthermore, it is possible to give a common extension of (8.2) and
(8.3), by considering a process (Zs, s ≥ 0) which, on each of the rays, behaves
like a Bessel process with dimension δ = 2(1 − α), and when arriving at 0,
chooses its ray with equal probability. Then, using a self-evident notation,
we have: (

A
(1)
(α), . . . , A

(n)
(α)

)
(law)
=

⎛⎜⎜⎝ T
(i)
(α)

n∑
j=1

T
(j)
(α)

; 1 ≤ i ≤ n

⎞⎟⎟⎠ . (8.4)

(8.2.4) However, in this chapter, we shall be more concerned with yet an-
other family of extensions of Lévy’s results, which have been obtained by F.
Petit in her thesis [70].

Theorem 8.1 For any µ > 0, we have

1∫
0

ds 1(|Bs|≤µ�s)
(law)
= Z 1

2 , 1
2µ

, (8.5)

and
g∫

0

ds 1(|Bs|≤µ�s)
(law)
= Z 1

2 , 12 + 1
2µ

. (8.6)

In the sequel, we shall refer to the identities in law (8.5) and (8.6) as to F.
Petit’s first, resp. second result.

With the help of Lévy’s identity in law:

(St − Bt, St; t ≥ 0)
(law)
= (|Bt|, �t; t ≥ 0) ,
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and Pitman’s theorem ([71]):

(2St − Bt, St; t ≥ 0)
(law)
= (Rt, Jt; t ≥ 0) ,

where (Rt, t ≥ 0) is a 3-dimensional Bessel process starting from 0, and
Jt = inf

s≥t
Rs, we may translate, for example, (8.5) in the following terms:

1∫
0

ds 1(Bs≥(1−µ)Ss)
(law)
=

1∫
0

ds 1(Rs≤(1+µ)Js)
(law)
= Z 1

2 , 1
2µ

(8.7)

which shows, in particular, that for µ = 1, the result agrees with Lévy’s arc
sine law.

Using the representation of the standard Brownian bridge (b(u), u ≤ 1) as:(
1√
g
Bgu , u ≤ 1

)
and the independence of this process from g, we may deduce from (8.6) the
following

Corollary 8.1.1 Let (b(u), u ≤ 1) be a standard Brownian bridge, and
(λu, u ≤ 1) be its local time at 0. Then, we have

1∫
0

ds 1(|b(s)|≤µλs)
(law)
= Z1, 1

2µ

(law)
= 1 − U

1
2µ , (8.8)

where U is uniformly distributed on [0, 1].

In particular, in the case µ = 1
2 , we obtain:

1∫
0

ds 1(|b(s)|≤ 1
2 λs)

(law)
=

1∫
0

ds 1(|b(s)|+ 1
2 λ(s)≤ 1

2 λ(1))
(law)
= U (8.9)

Using now the following identity in law (8.10) between the Brownian Bridge

(b(u), u ≤ 1) and the Brownian meander:
(

m(u) ≡ 1√
1 − g

|Bg+u(1−g)|, u ≤ 1

)
:
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m(s), j(s) ≡ inf

s≤u≤1
m(u); s ≤ 1

)
(law)
= (|b(s)| + λ(s), λ(s); s ≤ 1) (8.10)

which is found in Biane-Yor [18], and Bertoin-Pitman [11], we obtain the

Corollary 8.1.2 Let (m(s), s ≤ 1) denote the Brownian meander. Then we
have:

1∫
0

ds1(m(s)+(µ−1)js≤µm1)
(law)
= Z1, 1

2µ

In particular, we obtain, by taking µ = 1
2 and µ = 1:

1∫
0

ds 1(m(s)− 1
2 j(s)≤ 1

2 m(1))
(law)
= U ,

and

P

⎧⎨⎩
1∫

0

ds 1(m(s)≥m(1)) ∈ dt

⎫⎬⎭ =
dt

2
√

t
.

Proof: Together with the identity in law (8.10), we use the symmetry of the
law of the Brownian bridge by time reversal, i.e.:

(b(u), u ≤ 1)
(law)
= (b(1 − u), u ≤ 1) .

We then obtain:

1∫
0

ds 1(|b(s)|≤µλs)
(law)
=

1∫
0

ds 1(|b(s)|≤µ(λ1−λs))
(law)
=

1∫
0

ds 1(m(s)+(µ−1)js<µm1) ,

and the desired results follow from Corollary 8.1.1. 
�

8.3 A discussion of methods - Some proofs

(8.3.1) We first show how to prove
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A+
1 ≡

1∫
0

ds 1(Bs>0)
(law)
= Z 1

2 , 12

by using jointly the scaling property of Brownian motion, and excursion the-

ory. Set A+
t =

t∫
0

ds 1(Bs>0) and A−
t =

t∫
0

ds 1(Bs<0) (t ≥ 0).

We have, for every t, and u: (A+
t > u) = (t > α+

u ),
where α+

u
def= inf{s; A+

s > u}. We now deduce, by scaling, that:

A+
1

(law)
=

1
α+

1

(8.11)

From the trivial identity: t = A+
t + A−

t , it follows: α+
u = u + A−

α+
u
;

then, we write: A−
α+

u
= A−

τ(�
α
+
u

), with τ(s) = inf{v; �v > s}.

Now, it is a consequence of excursion theory that the two processes
(A+

τ(t), t ≥ 0) and (A−
τ(t), t ≥ 0) are independent; hence, the two processes

(A−
τ(t), t ≥ 0) and (�α+

u
, u ≥ 0) are independent; consequently, we now deduce

from the previous equalities that, for fixed u:

α+
u

(law)
= u + (�α+

u
)2A−

τ(1)

(law)
= u

(
1 +

A−
τ(1)

A+
τ(1)

)
, again by scaling (8.12)

Putting together (8.11) and (8.12), we obtain:

A+
1

(law)
=

A+
τ(1)

A+
τ(1) + A−

τ(1)

.

Now, from (RK1) in paragraph 3.1, we know that:(
A+

τ(1), A
−
τ(1)

)
(law)
=

1
2
(T(1/2), T

′
(1/2)) ,

from which we obtain the representation (8.1) for A+
1 , hence:

A+
1

(law)
= Z1/2,1/2

.
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(8.3.2) It may also be interesting to avoid using the scaling property, and
only depend on the excursion theory arguments, so that the method may
be used for diffusions which do not possess the scaling property; see some
extensions of the arc-sine law to real-valued diffusions by A. Truman and
D. Williams ([86], [87]).

Recall that, from the master formulae of excursion theory (see Proposi-
tion 3.2), we have, for every continuous, positive, additive functional (At,
t ≥ 0):

E0 [exp(−λASθ
)]

=
θ2

2

∞∫
0

dsE0

[
exp

(
−λAτs −

θ2

2
τs

)] ∞∫
−∞

da Ea

[
exp

(
−λAT0 −

θ2

2
T0

)]
.

Applying this formula to A = A+, we remark that:

- on one hand,

E0

[
exp

(
−λA+

τs
− θ2

2
τs

)]
= E0

[
exp−

(
λ +

θ2

2

)
A+

τs

]
E0

[
exp

(
−θ2

2
A−

τs

)]

= exp
(
− s

2

√
2λ + θ2

)
exp

(
−sθ

2

)
;

- on the other hand:

Ea

[
exp

(
−λAT0 −

θ2

2
T0

)]

=

⎧⎪⎨⎪⎩
Ea

[
exp−

(
λ + θ2

2

)
T0

]
= exp−a

√
2λ + θ2 , if a > 0;

Ea

[
exp−

(
θ2

2 T0

)]
= exp(−|a|θ) , if a < 0;

Consequently, we obtain:

E0 [exp(−λASθ
)] =

θ2(√
2λ + θ2 + θ

) (
1√

2λ + θ2
+

1
θ

)
,

from which, at least in theory, one is able to deduce, by inversion of the
Laplace transform in θ, that:

A+
t

(law)
= t Z 1

2 , 1
2

.
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Remark: This approach is the excursion theory variant of the Feynman-
Kac approach; see, for example, Itô-Mc Kean ([50], p. 57–58).

(8.3.3) It is not difficult, with the help of the master formulae of excursion
theory (see Proposition 3.2), to enlarge the scope of the above method and,
using the scaling property again, Barlow-Pitman-Yor [2] arrived to the fol-
lowing identity in law:
for every t > 0 and s > 0,

1
�2
t

(A+
t , A−

t )
(law)
=

1
s2

(A+
τs

, A−
τs

)

(by scaling, the left-hand side is equal in law to:
1

�2
Sθ

(A+
Sθ

, A−
Sθ

), for every

θ > 0, which enables to use the master formula of excursion theory).

Hence, we have:
1
�2
t

(A+
t , A−

t )
(law)
=

1
4

(
T( 1

2 ), T
′
( 1

2 )

)
,

which implies (8.1): A+
1

(law)
=

T( 1
2 )

T( 1
2 ) + T ′

( 1
2 )

, i.e.: A+
1 is arc-sine distributed.

Pitman-Yor [77] give a more complete explanation of the fact that:

1
�2
T

(A+
T , A−

T )

has a distribution which does not depend on T , for a certain class of random
variables; besides the case T = t, another interesting example is:

T ≡ α+
t ≡ inf{u : A+

u > t}.

By analogy, F. Petit’s original results (Theorem 8.1 above), together with the
arithmetic of beta-gamma laws led us to think that the four pairs of random
variables:

(8.13)
1

(�µ
t )2

(
Aµ,−

t , Aµ,+
t

)
; (8.14)

1
t2

(
Aµ,−

τµ
t

, Aµ,+
τµ

t

)
;

(8.15)
1

(�µ

αµ,−
s

)2
(
s, Aµ,+

αµ,−
s

)
; (8.16)

1
8

(
1

Z 1
2µ

,
1

Z 1
2

)
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may have the same distribution. This is indeed true, as we shall see partly
in the sequel. (Here, and in the following, (�µ

t , t ≥ 0) denotes the (semi-
martingale) local time at 0 of (|Bt| − µ�t, t ≥ 0), (τµ

t , t ≥ 0) is the inverse
of (�µ

t , t ≥ 0), and (αµ,−
t , t ≥ 0) is the inverse of (Aµ,−

t , t ≥ 0)). It may be
worth, to give a better understanding of the identity in law between (8.15)
and (8.16), to present this identity in the following equivalent way:

Theorem 8.2 1) The identity in law

1
8

(
�µ
α1

α1 − 1
, (�µ

α1
)2
)

(law)
=

(
Z 1

2
, Z 1

2µ

)
(8.17)

holds. (Here, we have written, for clarity, α1 for αµ,−
1 ).

2) Consequently, we have:

Aµ,−
1

(law)
=

1
αµ,−

1

(law)
=

1

1 + Z1/2µ

Z1/2

(law)
= Z 1

2 , 1
2µ

.

Comment: The second statement of this Theorem is deduced immediately
from the first one, using the scaling property; it gives an explanation of
F. Petit’s first result.

(8.3.4) To end up our discussion of methods, we now mention that Knight’s
theorem about continuous orthogonal martingales may replace the excur-
sion argument to prove the independence of the processes (A+

τt
, t ≥ 0) and

(A−
τt

, t ≥ 0). To see this, we remark that Tanaka’s formula and Knight’s
theorem, used jointly, imply:

B+
t = −β

(+)

A+
t

+
1
2
�t and B−

t = −β
(−)

A−
t

+
1
2
�t ,

with: β(+) and β(−) two independent BM ’s, and:

A±
τt

= inf
{

u : β(±)
u =

1
2
t

}
.

In the last paragraph 8.5 of this Chapter, we shall see how to modify this
argument when (Bt) is replaced by (|Bt| − µ�t, t ≥ 0).
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8.4 An excursion theory approach to F. Petit’s results

(8.4.1) As we remarked in paragraph 8.3, F. Petit’s first result:

Aµ,−
1

def=

1∫
0

ds1(|Bs|≤µ�s)
(law)
= Z1/2,1/2µ (8.5)

is equivalent to (see formula (8.11)):

1
αµ,−

1

(law)
= Z1/2,1/2µ (8.18)

To simplify notation, we shall simply write, in the sequel, A, Z, and α for,
respectively: Aµ,−

1 , Z1/2,1/2µ and αµ,−
1 .

To prove (8.5) or equivalently (8.18), we shall compute the following quantity:

E

[
exp

(
−λ2

2
ASθ

)
ϕ (|BSθ

|, �Sθ
)
]
≡ θ2

2

∞∫
0

dt e−
θ2t
2 E

[
e−

λ2
2 Atϕ (|Bt|, �t)

]
(8.19)

where ϕ : IR+×IR+ → IR+ is a Borel function, and Sθ denotes an independent
exponential time with parameter θ2

2 .

We are able to compute this quantity thanks to the extensions of the RK
theorems obtained in Chapter 3 (to be more precise, see Theorem 3.4, and the
computations made in subparagraph (3.3.2)), and therefore, in some sense, we
may envision F. Petit’s results as consequences of the extended RK theorems.
However, before we embark precisely in this computation, it may be of some
interest to play a little more with the scaling property; this leads us, at no
cost, to the following reinforcement of (8.5).

Theorem 8.3 Let Z
(law)
= Z1/2,1/2µ. Then, we have the following

1) P (|B1| ≤ µ�1) = E(Z) = µ
1+µ

2) Conditioned on the set Γµ ≡ (|B1| ≤ µ�1), the variable A1 is distributed
as Z3/2,1/2µ.

3) Conditioned on Γ c
µ, A1 is distributed as: Z1/2,1+1/2µ.
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4) A1 is distributed as Z.

These four statements may also be presented in the equivalent form:

A1
(law)
= Z and P (Γµ | A1 = a) = a .

Remark: In fact, using the identity in law between (8.13) and (8.15), it is
not difficult to prove the more general identity:

P (Γµ | A1 = a, �µ
1 ) = a

Proof of the Theorem:

i) These four statements may be deduced in an elementary way from the two
identities:

E [Γµ; exp(−αA1)] = E [Z exp(−αZ)] (8.20)

and
E [exp(−αA1)] = E [exp(−αZ)] (8.21)

which are valid for every α ≥ 0.

The identity (8.21) is rephrasing F. Petit’s result (8.5), so that, for the
moment, it remains to prove (8.20).

ii) For this purpose, we shall consider the quantity (8.19), in which we take:
ϕ(x, �) = 1(x≤µ�). We then obtain:
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E

[
exp

(
−λ2

2
ASθ

)
1(|BSθ

|≤µ�Sθ)

]

=
θ2

2
E

⎡⎣ ∞∫
0

dAt exp−1
2
(θ2t + λ2At)

⎤⎦

=
θ2

2
E

⎡⎣ ∞∫
0

ds exp−1
2
(θ2αs + λ2s)

⎤⎦ , by time changing

=
θ2

2
E

⎡⎣ ∞∫
0

ds exp−1
2
(θ2sα1 + λ2s)

⎤⎦ , by scaling

=
θ2

2
E

⎡⎣ ∞∫
0

ds exp−1
2

(
θ2s

A1
+ λ2s

)⎤⎦ , by scaling again

=
θ2

2
E

⎡⎣A1

∞∫
0

du exp−1
2
(θ2u + λ2uA1)

⎤⎦ , by change of variables: s = A1u.

= E

[
A1 exp

(
−λ2

2
SθA1

)]
.

Comparing now the two extreme terms of this sequence of equalities, we
obtain, by using the scaling property once again:

E

[
exp

(
−λ2

2
SθA1

)
1(|B1|≤µ�1)

]
= E

[
A1 exp

(
−λ2

2
SθA1

)]
(8.22)

Since this relation is true for every θ > 0, we have obtained, thanks to the
injectivity of the Laplace transform, that, for every α ≥ 0:

E
[
exp(−αA1)1(|B1|≤µ�1)

]
= E [A1 exp(−αA1)] , (8.23)

which proves (8.20), assuming F. Petit’s result (8.5) 
�

Remarks:

1) The first statement of the theorem, namely:
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P (|B1| ≤ µ�1) =
µ

1 + µ

is an elementary consequence of the fact that, conditionally on R
def= |B1|+

�1, |B1| is uniformly distributed on [0, R]; hence, if U denotes a uniform
r.v. on [0, 1], which is independent from R, we have:

P (|B1| ≤ µ�1) = P (RU ≤ µR(1 − U)) = P (U ≤ µ(1 − U)) =
µ

1 + µ
.

2) Perhaps we should emphasize the fact that the obtention of (8.23) in
part (ii) of the proof of the Theorem was done with the only use of the
scaling property; in particular, for this result, no knowledge of F. Petit’s
results is needed whatsoever.

(8.4.2) We now engage properly into the proof of (8.5), by computing ex-
plicitely the quantity

γθ,λ
def= E

[
exp

(
−λ2

2
ASθ

)
1(|BSθ

|≤µ�Sθ)

]
. (8.24)

We first recall that, as a consequence of the master formulae of excursion
theory, we have, if we write:

At = A′
t + A′′

t , where : A′
t = Agt and A′′

t = At − Agt ,

E

[
exp

(
−λ2

2
A′

Sθ

) ∣∣∣�Sθ
= s, BSθ

= a

]
= E0

[
exp−

(
λ2

2
Aτs +

θ2

2
τs

)]
eθs

(8.25)
and

E

[
exp

(
−λ2

2
A′′

Sθ

) ∣∣∣�Sθ
= s, BSθ

= a

]
= Ea

[
exp−

(
λ2

2
As

T0
+

θ2

2
T0

)]
eθ|a|

(8.26)
Moreover, from the extensions of the RK theorems obtained in Chapter 3
(see Theorem 3.4, and the computations made in subparagraph (3.3.2)), we
have, by denoting: b = µs, ν =

√
λ2 + θ2, and ξ = θ

ν :

E0

[
exp−

(
λ2

2
Aτs +

θ2

2
τs

)]
= (ch(νb) + ξsh(νb))−1/µ (8.27)

Ea

[
exp−

(
λ2

2
As

T0
+

θ2

2
T0

)]
=

ch(ν(b − a)) + ξsh(ν(b − a))
ch(νb) + ξsh(νb)

, for 0 ≤ a ≤ b

(8.28)
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Consequently, using moreover the fact that �Sθ
and BSθ

are independent and
distributed as:

P (�Sθ
∈ ds) = θe−θsds and P (BSθ

∈ da) =
θ

2
e−θ|a|da ,

we obtain:

γθ,λ =
θ2

µ

∞∫
0

db

b∫
0

da
ch(ν(b − a)) + ξsh(ν(b − a))

(ch(νb) + ξsh(νb))1+
1
µ

Integrating with respect to da, and making the change of variables x = νb,
we obtain:

γθ,λ =
ξ2

µ

∞∫
0

dx
shx + ξ(ch x − 1)

(ch x + ξ shx)1+
1
µ

= ξ2

⎛⎝1 − ξ

µ

∞∫
0

dx

(ch x + ξ shx)1+
1
µ

⎞⎠ .

On the other hand, we know, from (8.22), that the quantity γθ,λ is equal to:

E

[
A1 exp

(
−λ2

2
SθA1

)]
= ξ2E

[
A1

A1 + ξ2(1 − A1)

]
(the expression on the right-hand side is obtained after some elementary
change of variables). Hence, the above computations have led us to the for-
mula:

E

[
A1

A1 + ξ2(1 − A1)

]
= 1 − ξ

µ

∞∫
0

dx

(ch x + ξ shx)1+
1
µ

,

or, equivalently:

E

[
1 − A1

A1 + ξ2(1 − A1)

]
=

1
ξµ

∞∫
0

dx

(ch x + ξ shx)1+
1
µ

(8.29)

We now make the change of variables: u = (thx)2, to obtain:

h(ξ) def= E

[
ξ(1 − A1)

A1 + ξ2(1 − A1)

]
=

1
2µ

1∫
0

du(1 − u)
1
2µ− 1

2 u− 1
2 (1 + ξ

√
u)−(1+ 1

µ )

We define r = 1
2 + 1

2µ , and we use the elementary identity:

1
(1 + x)p

= E [exp(−xZp)]

to obtain:
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h(ξ) =
1
2µ

1∫
0

du u− 1
2 (1−u)r−1E

[
exp(−ξ

√
uZ2r)

]
= cµE

[
exp−ξZ2r

√
Z 1

2 ,r

]
(8.30)

where cµ is a constant depending only on µ, and Z2r and Z 1
2 ,r are inde-

pendent. The following lemma shall play a crucial role in the sequel of the
proof.

Lemma 8.1 The following identities in law hold:

Z2
2r

(law)
= 4Zr+ 1

2
Zr (8.31)

Z2r

√
Z 1

2 ,r

(law)
= 2

√
Z 1

2
Zr

(law)
= |N |

√
2Zr . (8.32)

As usual, in all these identities in law, the pairs of random variables featured
in the different products are independent.

Proof of the Lemma:

1) The duplication formula for the gamma function:

√
πΓ (2z) = 22z−1Γ

(
z +

1
2

)
Γ (z)

implies that, since for any k > 0, we have:

E[Zk
p ] =

Γ (p + k)
Γ (p)

,

then:
E[Z2k

2r ] = 4kE[Zk
r+ 1

2
]E[Zk

r ] .

2) The first identity in law in (8.32) follows from (8.31), and the fact that:

Z 1
2 ,rZ 1

2 +r

(law)
= Z1/2, and the second identity in law is immediate since:

|N | (law)
=

√
2Z 1

2


�

Apart from the identities in law (8.31) and (8.32), we shall also use the much
easier identity in law:
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C|N | (law)
= N |C| , (8.33)

where C is a standard Cauchy variable, independent of N . We take up again
the expression in (8.30), and we obtain

E
[
exp

(
−ξZ2r

√
Z 1

2 ,r

)]
= E

[
exp

(
−ξ|N |

√
2Zr

)]
, by (8.32)

= E
[
exp

(
iξC|N |

√
2Zr

)]
= E

[
exp

(
iξN |C|

√
2Zr

)]
, by (8.33)

= E
[
exp(−ξ2C2Zr)

]
= E

[
1

(1 + ξ2C2)r

]
.

Thus, we obtain, with a constant cµ which changes from line to line:

h(ξ) = cµ

∞∫
0

du

(1 + u2)(1 + ξ2u2)r
= cµ

∞∫
0

dv√
v(1 + v)(1 + vξ2)r

= cµξ

1∫
0

dz z−1/2(1 − z)r− 1/2

z + ξ2(1 − z)
,

with the change of variables: vξ2 =
z

1 − z
.

Hence, going back to the definition of h(ξ), we remark that we have obtained
the identity:

E

[
1 − A1

A1 + ξ2(1 − A1)

]
= E

[
1 − Z

Z + ξ2(1 − Z)

]
,

where Z
(law)
= Z 1

2 , 1
2µ

, which proves the desired result:

A1
(law)
= Z .

(8.4.3) We now prove the second result of F. Petit, i.e.:

A′
1 ≡ Ag1

(law)
= Z 1

2 , 1
2+ 1

2µ

Using the identities (8.25) and (8.27), we are able to compute the following
quantity:

γ′
θ,λ

def=
[
exp

(
−λ2

2
A′

Sθ

)]
.

We obtain:
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γ′
θ,λ =

θ

µ

∞∫
0

db (ch(νb) + ξsh(νb))−
1
µ =

ξ

µ

∞∫
0

dx(chx + ξshx)−
1
µ

On the other hand, from the scaling property of (A′
t, t ≥ 0), we also obtain:

γ′
θ,λ = E

[
θ2

θ2 + λ2A′
1

]
= E

[
ξ2

A′
1 + ξ2(1 − A′

1)

]
.

Hence, we have obtained the following formula:

E

[
1

A′
1 + ξ2(1 − A′

1)

]
=

1
ξµ

∞∫
0

dx

(chx + ξshx)
1
µ

(8.34)

In order to prove the desired result, we shall now use formula (8.29), which
will enable us to make almost no computation.

In the case µ < 1, we can define µ̃ > 0 by the formula: 1
µ = 1 + 1

µ̃ , and we

write Ã1, for Aµ̃,−
1 .

Hence, comparing formulae (8.29) and (8.34), we obtain:

E

[
1

A′
1 + ξ2(1 − A′

1)

]
=

µ̃

µ
E

[
1 − Ã1

Ã1 + ξ2(1 − Ã1)

]
(8.35)

Now, since Ã1
(law)
= Z 1

2 , 1
2µ̃

, it is easily deduced from (8.35) that:

A′
1

(law)
= Z 1

2 , 1
2µ̃ +1 ,

and since: 1
2µ̃ + 1 = 1

2 + 1
2µ , we have shown, at least in the case µ < 1:

A′
1

(law)
= Z 1

2 , 1
2+ 1

2µ
,

which is F. Petit’s second result.

(8.4.4) With a very small amount of extra computation, it is possible to
extend P. Lévy’s result even further, by considering, for given α, β > 0:

At ≡ Aα,β
t =

t∫
0

ds 1(−α�s≤Bs≤β�s) .
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Indeed, taking up the above computation again, F. Petit has obtained the
following extension of formula (8.29):

E

[
2ξ(1 − A1)

A1 + ξ2(1 − A1)

]
=

∞∫
0

ds
ϕα(s) + ϕβ(s)

(ϕα(s))1+
1
2α (ϕβ(s))1+

1
2β

where we denote by ϕa(s) the following quantity (which depends on ξ):

ϕa(s) ≡ ϕ(ξ)
a (s) = ch(as) + ξsh(as) .

8.5 A stochastic calculus approach to F. Petit’s results

(8.5.1) The main aim of this paragraph is to show, with the help of some
arguments taken from stochastic calculus, the independence of the process
(Aµ,−

τµ(t), t ≥ 0) and of the random variable �µ

αµ,+
1

, which, following the method

discussed in the subparagraph (8.3.1), allows to reduce the computation of
the law of Aµ,−

1 to that of the pair (Aµ,−
τµ
1

, Aµ,+
τµ
1

), already presented in (8.14).

Since µ is fixed throughout the paragraph, we shall use the following simpli-
fied notation:

Xt = |Bt| − µ�t , X+
t = sup(Xt, 0) ,

X−
t = sup(−Xt, 0) , A±

t =

t∫
0

ds 1(±Xs>0) ,

(�µ
t , t ≥ 0) denotes the local time at 0 of X , and (τµ

t , t ≥ 0) its right-
continuous inverse.

(8.5.2) We shall now adapt the stochastic calculus method developed by
Pitman-Yor [75] to prove Lévy’s arc sine law.

Tanaka’s formula implies:

X+
t = M

(+)
t +

1
2
�µ
t , where M

(+)
t =

t∫
0

1(Xs>0)sgn(Bs)dBs (8.36)
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X−
t = −M

(−)
t − (1 − µ)�t +

1
2
�µ
t , where M

(−)
t =

t∫
0

1(Xs<0)sgn(Bs)dBs

Now, Knight’s theorem about continuous orthogonal martingales allows to
write:

M
(+)
t = δ(+)(A+

t ) and M
(−)
t = δ(−)(A−

t ) , t ≥ 0 ,

where δ(+) and δ(−) denote two independent Brownian motions, and the rest
of the proof shall rely in an essential manner upon this independence result.

Using the time changes α+ and α−, the relations (8.36) become:

(i) X+

α+
t

= δ
(+)
t +

1
2
�µ

α+
t

;

(8.37)

(ii) X−
α−

t

= −δ
(−)
t − (1 − µ)�α−

t
+

1
2
�µ

α−
t

The identity (i) in (8.37) may be interpreted as Skorokhod’s reflection equa-
tion for the process (X+

α+
t

, t ≥ 0); hence, it follows that, just as in the case
µ = 1,

(X+

α+
t

, t ≥ 0) is a reflecting Brownian motion, and
1
2
�µ

α+
t

= sup
s≤t

(−δ(+)
s )

(8.38)

In particular, we have: 1
2�µ

α+
1

(law)
= |N |.

We now consider the identity (ii) in (8.37), which we write as:

X−
α−

t

= −Y µ
t +

1
2
�µ

α−
t

(8.39)

where:
Y µ

t
def= δ

(−)
t + (1 − µ)�α−

t
(8.40)

and we deduce from (8.39) that:

1
2
�µ

α−
t

= sup
s≤t

(Y µ
s ) def= Sµ

t (8.41)

Hence, we have: A−
τµ
2t

= inf
{

s : 1
2�µ

α−
s

> t
}

= inf {s : Y µ
s > t}, from (8.39),

and, in order to obtain the desired independence result, it suffices to prove
that the process (Y µ

t , t ≥ 0) is measurable with respect to (δ(−)
t , t ≥ 0).
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(8.5.3) To prove this measurability result, we shall first express the process
(�α−

t
, t ≥ 0) in terms of δ(−) and Y µ, which will enable us to transform the

identity (8.40) into an equation, where Y µ is the unknown process, and δ(−)

is the driving Brownian motion.

Indeed, if we consider again the identity (ii) in (8.37), we see that:

−
(
|Bα−

t
| − µ�α−

t

)
= −Xα−

t
= −δ

(−)
t − (1 − µ)�α−

t
+

1
2
�µ

α−
t

,

which gives:

|Bα−
t
| = δ

(−)
t − 1

2
�µ

α−
t

+ �α−
t

, t ≥ 0 .

Again, this equality may be considered as an example of Skorokhod’s reflec-
tion equation for the process (|Bα−

t
|, t ≥ 0). Therefrom, we deduce:

�α−
t

= sup
s≤t

(
−δ(−)

s +
1
2
�µ

α−
s

)
= sup

s≤t

(
−δ(−)

s + Sµ
s

)
, using (8.41).

Bringing the latter expression of �α−
t

into (8.40), we obtain:

Y µ
t = δ

(−)
t + (1 − µ) sup

s≤t
(−δ(−)

s + Sµ
s ) (8.42)

Now, in the case µ ∈]0, 2[, the fixed point theorem allows to show that this
equation admits one and only one solution (Y µ

t , t ≥ 0), and that this solution
is adapted with respect to (δ(−)

t , t ≥ 0).

Indeed, the application:

Φ : Ω∗
0,T ≡ {f ∈ C([0, T ]; IR); f(0) = 0} −→ Ω∗

0,T

g −→
(

δ
(−)
t + (1 − µ) sup

s≤t

(
−δ(−)

s + sup
u≤s

(g(u))
)

; t ≤ T

)
is Lipschitz, with coefficient K = |1 − µ|, i.e.:

sup
t≤T

|Φ(g)(t) − Φ(h)(t)| ≤ K sup
t≤T

|g(t) − h(t)| .
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Hence, if µ ∈]0, 2[, Φ is strictly contracting, and Picard’s iteration procedure
converges, therefore proving at the same time the uniqueness of the solution
of (8.42) and its measurability with respect to δ(−).

Remark: The difficulty to solve (8.42) when µ does not belong to the
interval ]0, 2[ was already noticed in Le Gall-Yor [62], and partly dealt with
there.

Comments on Chapter 8

A number of extensions of Lévy’s arc sine law for Brownian motion have been
presented in this chapter, with particular emphasis on F. Petit’s results (8.5)
and (8.6). The paragraph 8.4, and particularly the subparagraph (8.4.2), is
an attempt to explain the results (8.5) and (8.6), using the extension of the
Ray-Knight theorems proved in Chapter 3 for the process (|Bt|−µ�t; t ≤ τs).
In the next Chapter, another explanation of (8.5) is presented.



Chapter 9

Further results about reflecting
Brownian motion perturbed by its
local time at 0

In this Chapter, we study more properties of the process

(Xt ≡ |Bt| − µ�t, t ≥ 0)

which played a central role in the preceding Chapter 8. One of the main aims
of the present Chapter is to give a clear proof of the identity in law between
the pairs (8.14) and (8.16), that is:

1
t2

(
Aµ,−

τµ
t

, Aµ,+
τµ

t

)
(law)
=

1
8

(
1

Z 1
2µ

,
1

Z 1
2

)
(9.1)

(recall that (τµ
t , t ≥ 0) is the inverse of the local time (�µ

t , t ≥ 0) at 0 for the
process X .)

9.1 A Ray-Knight theorem for the local times of X,
up to τµ

s , and some consequences

The main result of this Chapter is the following

Theorem 9.1 Fix s > 0. The processes (�x
τµ

s
(X); x ≥ 0) and (�−x

τµ
s

(X); x ≥ 0)

are independent, and their respective laws are Q0
s and Q

2− 2
µ

s , where Q
2− 2

µ
s

denotes the law of the square, starting from s, of the Bessel process with
dimension 2 − 2

µ , and absorbed at 0.

137
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Corollary 9.1.1 We have the following identities in law:

a) µ�τµ
s
≡ − inf{Xu; u ≤ τµ

s }
(law)
=

s

2Z 1
µ

; b) sup{Xu; u ≤ τµ
s }

(law)
=

s

2Z1

c) Aµ,−
τµ

s

(law)
=

s2

8Z 1
2µ

; d) Aµ,+
τµ

s

(law)
=

s2

8Z 1
2

.

Moreover, the pairs (µ�τµ
s
, Aµ,−

τµ
s

) and
(
sup{Xu; u ≤ τµ

s }, Aµ,+
τµ

s

)
are indepen-

dent.

In particular, the identity in law (9.1) holds.

Proof of the Corollary:

1) The independence statement follows immediately from the independence of
the local times indexed by x ∈ IR+, and x ∈ IR−, as stated in Theorem 9.1.

2) We prove a). Remark that:

−µ�τµ
s

= inf{Xu; u ≤ τµ
s } = inf

{
x ∈ IR; �x

τµ
s
(X) > 0

}
;

hence, from Theorem 9.1, we know that the law of µ�τµ
s

is that of the

first hitting time of 0, by a BESQ
2− 2

µ
s process, which implies the result a),

using time reversal. The same arguments, used with respect to the local
times

(
�x
τµ

s
(X); x ≥ 0

)
, give a proof of b).

3) In order to prove c), we first remark that, by scaling, we can take s = 1.
Then, we have:

Aµ,−
τµ
1

=

∞∫
0

dy �−y
τµ
1

(X)
(law)
=

L1∫
0

dy Yy ,

where (Yy; y ≥ 0) is a BESQ
2+ 2

µ

0 process, using Theorem 9.1, and time-
reversal, and L1 = sup{y : Yy = 1}.

We now use the following result on powers of BES-processes (see Biane-
Yor [17]):

qR1/q
ν (t) = Rνq

⎛⎝ t∫
0

ds R−2/p
ν (s)

⎞⎠ , t ≥ 0 (9.2)
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where (Rλ) is a BES process with index λ, and 1
p + 1

q = 1. We take p = −1,
and q = 1

2 . We then deduce from (9.2) that:

L1(Rν)∫
0

ds R2
ν(s) = L1/2(Rν/2)

(law)
=

1
4
L1(Rν/2)

(law)
=

1
8

1
Zν/2

and c) follows by taking ν =
1
µ

.

d) follows similarly, by considering
(
�x
τµ

s
(X); x ≥ 0

)
and ν = 1. 
�

Using again Theorem 9.1 and the identity (9.2) in conjunction, we obtain,
at no extra cost, the following extension of Corollary 9.1.1.

Corollary 9.1.2 Let α ≥ 0. We have:⎧⎨⎩
0∫

−∞
dy

(
�y
τµ

s
(X)

)α

;

∞∫
0

dy
(
�y
τµ

s
(X)

)α

⎫⎬⎭ (law)
=

sα+1

2(1 + α)2

(
1

Z 1
µ(1+α)

;
1

Z 1
1+α

)
(9.3)

where, on the right-hand side, the two gamma variables are independent.

Remark: In order to understand better the meaning of the quantities
on the left-hand side of (9.3), it may be interesting to write down the
following equalities, which are immediate consequences of the occupation
density formula for X ;
let ϕ : IR → IR+, and h : IR+ → IR+, be two Borel functions; then, the
following equalities hold:

t∫
0

du ϕ(Xu)h(�Xu
t ) =

∞∫
−∞

dy ϕ(y)h(�y
t )�y

t

t∫
0

du ϕ(Xu)h(�Xu
u ) =

∞∫
−∞

dy ϕ(y)H(�y
t ) , where: H(x) =

x∫
0

dz h(z) .

In particular, if we take: h(x) = xα−1, for α > 0, we obtain:

∞∫
−∞

dy ϕ(y)(�y
t )α =

t∫
0

du ϕ(Xu)(�Xu
t )α−1 = α

t∫
0

du ϕ(Xu)(�Xu
u )α−1 .
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Exercise 9.1 Prove the following extension of the Földes-Révész identity
in law (4.11):

for s ≥ q,
∞∫
0

dy 1(0<�−y

τ
µ
s

(X)<q)

(law)
= T√

q

(
R 2

µ

)
. (9.4)

9.2 Proof of the Ray-Knight theorem for the local times
of X

(9.2.1) In order to prove Theorem 9.1, it is important to be able to compute
expressions such as:

E
[
exp(−Hτµ

s
)
]
, where: Ht =

t∫
0

ds h(Xs), with h : IR → IR+ a Borel func-

tion. The fact that (Ht, t ≥ 0) is an additive functional of the Markov process
{Zt = (Bt, �t); t ≥ 0} shall play an important role in the sequel.

To have access to the above quantity, we shall consider in fact:

γ = E

⎡⎣ ∞∫
0

ds exp
(
−θ2s

2

)
exp(−Hτµ

s
)

⎤⎦
and then, after some transformations, we shall invert the Laplace transform

in
θ2

2
.

(9.2.2) From now on, we shall use freely the notation and some of the results
in Biane-Yor [17] and Biane [14], concerning Brownian path decomposition;
in particular, we shall use Bismut’s identity:

∞∫
0

dt P t
0 =

∞∫
0

ds P τ(s) ◦
∞∫

−∞
da ∨(P T0

a )

which may be translated as:
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∞∫
0

dt E [F (Bu, u ≤ gt)G(Bt−v; v ≤ t − gt)]

(9.5)

=

∞∫
0

ds E [F (Bu; u ≤ τs)]

∞∫
−∞

da Ea [G(Bh, h ≤ T0)]

where F and G are two measurable, IR+-valued, Brownian functionals. Here
is an important application of formula (9.5):

if we consider Ct =

t∫
0

duϕ(Bu, �u), where ϕ is an IR+-valued continuous

function, and f : IR × IR+ → IR+ is another continuous function, then:

E

⎡⎣ ∞∫
0

du f(Bu, �u) exp(−Cu)

⎤⎦
=

∞∫
0

ds

∞∫
−∞

da f(a, s)E0 [exp(−Cτs)] Ea

[
exp−Cs

T0

]
(9.6)

where Cs
t =

t∫
0

duϕ(Bu, s).

(9.2.3) We are now ready to transform γ. First, we write:

γ = E

⎡⎣ ∞∫
0

d�µ
u exp

(
−θ2

2
�µ
u

)
exp(−Hu)

⎤⎦
= lim

ε→0

1
ε

∞∫
−∞

da

∞∫
0

ds 1(0≤|a|−µs≤ε)g(s)k(a, s) (9.7)

where:

g(s) = E

[
exp

(
−θ2

2
�µ
τs

)
exp(−Hτs)

]
k(a, s) = Ea

⎡⎣exp

⎛⎝−θ2

2
�µ
T0

−
T0∫
0

du h(|Bu| − µs)

⎞⎠⎤⎦ ,
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with �µ
T0

denoting the local time at 0 of (|Bu| − µs; u ≤ T0).

From (9.7), it easily follows that:

γ =

∞∫
−∞

db g(|b|)k(bµ, |b|) = 2

∞∫
0

db g(b)k(bµ, b) .

It is now natural to introduce ϕb(x)dx, the law of �µ
τb

, resp.: ψa(y)dy, the law
of �a

T0
under Pa, as well as the conditional expectations:

e(1)(b, x) = E
[
exp(−Hτb

) | �µ
τb

= x
]

e(2)(a, y) = Ea

⎡⎣exp

⎛⎝−
T0∫
0

du h(|Bu| − a)

⎞⎠ | �a
T0

= y

⎤⎦ .

These notations enable us to write γ as follows:

γ = 2

∞∫
0

db

∞∫
0

dxϕb(x) exp
(
−θ2x

2

)
e(1)(b, x)

∞∫
0

dyψbµ(y) exp
(
−θ2y

2

)
e(2)(bµ, y) .

It is now easy to invert the Laplace transform, and we get:

E
[
exp(−Hτµ

s
)
]

= 2

∞∫
0

db

s∫
0

dxϕb(x)e(1)(b, x)ψbµ(s−x)e(2)(bµ, s−x) . (9.8)

Plainly, one would like to be able to disintegrate the above integral with
respect to db dx, and, tracing our steps back, we arrive easily, with the help
of Bismut’s decomposition to the following reinforcement of (9.8):

E
[
exp(−Hτµ

s
) | �τµ

s
= b, �µ

g
τ

µ
s

= x
]

= e(1)(b, x)e(2)(bµ, s − x) ,

and:
P
{

�τµ
s
∈ db, �µ

gτ
µ
s

∈ dx
}

= 2db dxϕb(x)ψµb(s − x)1(x≤s) .

However, we know, from Chapter 3, the explicit expressions of ϕb(x) and
ψa(y); this implies the following

Proposition 9.1 For fixed s, the variables �τµ
s

and �µ
gτ

µ
s

are independent and
they satisfy:

µ�τµ
s

(law)
=

s

2Z 1
µ

(law)
=

s

�µ
τ1

; �µ
g

τ
µ
s

(law)
= s Z 1

µ ,1
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(9.2.4) We are now in a position to prove Theorem 9.1, as we know how to
write e(1)(b, x) and e(2)(bµ, s − x) in terms of the laws of BESQ processes of
different dimensions.

We first recall that, in Chapter 3, we proved the following RK theorem
(Theorem 3.4):{
�a−µb
τb

(X); a ≥ 0
}

is an inhomogeneous Markov process, which is BESQ2/µ
0 ,

for a ≤ µb, and BESQ0, for a ≥ µb.

Hence, we may write:

e(1)(b, x) = Q0
x

⎛⎝exp−
∞∫
0

dz h(z)Yz

⎞⎠ ...

...Q
2/µ
0

⎛⎝exp−
µb∫
0

dz h(z − µb)Yz | Yµb = x

⎞⎠
e(2)(bµ, s − x) = Q0

s−x

⎛⎝exp−
∞∫
0

dz h(z)Yz

⎞⎠ ...

...Q2
0

⎛⎝exp−
µb∫
0

dz h(z − µb)Yz | Yµb = s − x

⎞⎠
Therefore, the product of these two expressions is equal, thanks to the addi-
tivity properties of {Q0

s} and {Qδ
0}, to:

e(b, x, s)

= Q0
s

⎛⎝exp−
∞∫
0

dz h(z)Yz

⎞⎠Q
2+ 2

µ

0

⎛⎝exp−
µb∫
0

dz h(z − µb)Yz | Yµb = s

⎞⎠

and we make the important remark that this expression no longer depends
on x.

Putting together the different results we have obtained up to now, we can
state the following

Theorem 9.2 1) The process
{
�x
τµ

s
(X); x ∈ IR

}
is independent of the vari-

able �µ
gτ

µ
s

;
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2) The processes
{

�x
τµ

s
(X); x ≥ 0

}
and

{
�−x
τµ

s
(X); x ≥ 0

}
are independent;

3) The law of
{

�x
τµ

s
(X); x ≥ 0

}
is Q0

s;

4) The law of
{

�y−µb
τµ

s
(X); 0 ≤ y ≤ µb

}
is Q

2+ 2
µ

0−→
(µb)

s.

(9.2.5) We now end the proof of Theorem 9.1, by remarking that, from
Proposition 9.1, T0 ≡ inf

{
x : �−x

τµ
s

(X) = 0
}

= µ�τµ
s

is distributed as T0 under

Q
2− 2

µ
s , and that when we reverse the process:

(�−y
τµ

s
; 0 ≤ y ≤ T0) from T0 ≡ µb, that is, we consider:{

�
−(µb−x)

τµ
s

≡ �x−µb
τµ

s
; 0 ≤ x ≤ µb

}
conditioned on T0 = µb, we find that the

latter process is distributed as Q
2+ 2

µ

0−→
(µb)

s.

Putting together these two results, we find that{
�−x
τµ

s
(X); x ≥ 0

}
is distributed as BESQ

2− 2
µ

s ,

since it is well-known that:(
R

(ν)
0 (Ls − u); u ≤ Ls

)
(law)
=

(
R(−ν)

s (u); u ≤ T0

)
where (R(α)

a (t); t ≥ 0) denotes here the Bessel process with index α, starting
at a,

Ls = sup
{
t; R(ν)

0 (t) = s
}

, and T0 = inf
{
t; R(−ν)

s (t) = 0
}

9.3 Generalisation of a computation of F. Knight

(9.3.1) In his article in the Colloque Paul Lévy (1987), F. Knight [58] proved
the following formula:

E

[
exp

(
−λ2

2
A+

τs

M2
τs

)]
=

2λ

sh(2λ)
, λ ∈ IR , s > 0 , (9.9)
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where A+
t =

t∫
0

ds 1(Bs>0), Mt = sup
u≤t

Bu, and (τs, s ≥ 0) is the inverse of the

local time of B at 0.

Time changing (B+
t , t ≥ 0) into a reflecting Brownian motion with the help

of the well-known representation, already used in paragraph 4.1:

B+
t = β

⎛⎝ t∫
0

ds 1(Bs>0)

⎞⎠ ,

where (β(u), u ≥ 0) denotes a reflecting Brownian motion, formula (9.9) may
also be written in the equivalent form:

E

[
exp

(
−λ2

2
τs

(M∗
τs

)2

)]
=

2λ

sh(2λ)
, (9.10)

where: M∗
t = sup

u≤t
|Bu|.

Formulae (9.9) and (9.10) show that:

A+
τs

M2
τs

(law)
=

τs

(M∗
τs

)2
(law)
= T

(3)
2

def= inf{t : Rt = 2} , (9.11)

where (Rt, t ≥ 0) is a 3-dimensional Bessel process starting from 0.

An explanation of the identity in law (9.11) has been given by Ph. Biane [13]
and P. Vallois [88], with the help of a pathwise decomposition.

For the moment, we generalize formulae (9.9) and (9.10) to the µ-process X ,
considered up to τµ

s .

Theorem 9.3 (We use the notation in the above paragraphs)

1) Define Iµ
u = inf

v≤u
Xv. Then, we have:

E

[
exp

(
−λ2

2

Aµ,−
τµ

s

(Iµ
τµ

s
)2

)]
=

(
λ

shλ

)(
1

chλ

)1/µ

. (9.12)

2) Define: X∗
t = sups≤t |Xs|. Then, if we denote c = 1/µ, we have:
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E

[
exp

(
−λ2

2
τµ
s

(X∗
τµ

s
)2

)]
=

1
2c

(
λ

sh λ

)(
1

ch λ

)
+cλ(sh λ)c−1

2λ∫
λ

du

(sh u)c+1

(9.13)

Proof:

1) Recall that: Iµ
τµ

s
= −µ�τµ

s
.

In order to prove formula (9.12), we first deduce from Theorem (9.2) that:

E

⎡⎣exp

⎛⎝− λ2

2(µb)2

µb∫
0

dy �y−µb
τµ

s
(X)

⎞⎠ | �τµ
s

= b

⎤⎦
= Q

2+ 2
µ

0

⎛⎝exp

⎛⎝− λ2

2(µb)2

µb∫
0

dy Yy

⎞⎠ | Yµb = s

⎞⎠

Using Lévy’s generalized formula (2.5), this quantity is equal to:

(∗)
(

λ

shλ

)1+ 1
µ

exp
(
− s

2µb
(λ coth λ − 1)

)
.

Then, integrating with respect to the law of �τµ
s

in the variable b, we obtain
that the left-hand side of (9.12) is equal to:(

λ

shλ

)1+ 1
µ
(

thλ

λ

) 1
µ

=
(

λ

shλ

)(
1

chλ

) 1
µ

. (9.14)

2) Formula (9.13) has been obtained by F. Petit and Ph. Carmona using
the independence of

(
�x
τµ

s
(X); x ≥ 0

)
and

(
�−x
τµ

s
(X); x ≥ 0

)
, as asserted in

Theorem 9.1, together with the same kind of arguments as used in the
proof of formula (9.12). 
�

The following exercise may help to understand better the law of
τµ
s

(X∗
τµ

s
)2

Exercise 9.2 Let c = 1
µ > 0. Consider a pair of random variables (T, H)

which is distributed as follows:
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(i) H takes its values in the interval [1,2], with:

P (H = 1) =
1
2c

; P (H ∈ dx) = c
dx

xc+1
(1 < x < 2)

(ii)For λ > 0, we have:

E

[
exp

(
−λ2

2
T

)
| H = 1

]
=

(
λ

sh λ

)(
1

ch λ

)c

,

and, for 1 < x < 2:

E

[
exp

(
−λ2

2
T

)
| H = x

]
=
(a)

(
λx

sh λx

)2 (
x sh λ

sh λx

) 1
µ−1

≡
(b)

(
λx

sh λx

) 1
µ +1 (

λ

sh λ

)1− 1
µ

(we present both formulae (a) and (b), since, in the case µ ≤ 1, the right-
hand side of (a) clearly appears as a Laplace transform in λ2

2 , whereas in
the case µ ≥ 1, the right-hand side of (b) clearly appears as a Laplace
transform in λ2

2 ).

Now, prove that:
τµ
s

(X∗
τµ

s
)2

(law)
= T (9.15)

We now look for some probabilistic explanation of the simplification which

occurred in (9.14), or, put another way, what does the quantity
(

thλ

λ

) 1
µ

represent in the above computation?

With this in mind, let us recall that:

µ�τµ
s

(law)
=

s

�µ
τ1

, and P
(
�µ
τ1

∈ dy
)

= Q
2/µ
0 (Y1 ∈ dy) .

Thus, the integral with respect to (db) of the term featuring (λ coth λ − 1)
in (∗) , above (9.14), gives us:

Rδ

⎛⎝exp−λ2

2

1∫
0

dy Yy

⎞⎠ ,
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where δ = 2
µ , and we have used the notation in Chapter 3, concerning the

decomposition:
Qδ

0 = Qδ
0→0 ∗ Rδ .

Developing the same arguments more thoroughly, we obtain a new Ray-
Knight theorem which generalizes formula (9.12).

Theorem 9.4 For simplicity, we write I = Iµ
τµ

s
. We denote by (λx

t (X); x≥ 0)
the process of local times defined by means of the formula:

1
I2

t∫
0

du f

(
1 − Xu

I

)
=

∞∫
0

dx f(x)λx
t (X) , t ≤ τµ

s ,

for every Borel function f : [0, 1] → IR+.

Then, the law of (λx
τµ

s
; 0 ≤ x ≤ 1) is Q2

0→0 ∗ Q
2/µ
0 .

Proof: By scaling, we can take s = 1. Using again Theorem 9.2, it suffices,
in order to compute:

E

⎡⎢⎣exp− 1
I2

τµ
1∫

0

ds f

(
1 − Xu

I

)⎤⎥⎦ ,

to integrate with respect to the law of �τµ
1

the quantity:

Q
2+ 2

µ

0

⎛⎝exp− 1
(µb)2

µb∫
0

dy f

(
y

µb

)
Yy | Yµb = 1

⎞⎠
= Q

2+ 2
µ

0

⎛⎝exp−
1∫

0

dz f(z)Yz | Y1 =
1
µb

⎞⎠
= (�(f))1+

1
µ exp

(
− 1

2µb
h(f)

)
,

where �(f) and h(f) are two constants depending only on f .

When we integrate with respect to the law of µ�τµ
1
, which is that of

1
Y1

under

Q
2/µ
0 , we find:

�(f)
(

�(f)
1 + h(f)

) 1
µ

,
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which is equal to the expectation of exp

⎛⎝−
1∫

0

dy f(y)Yy

⎞⎠ under

Q2
0→0 ∗ Q

2/µ
0 . 
�

Remark: A more direct proof of Theorem 9.4 may be obtained by using
jointly Theorem 9.1 together with Corollary 3.9.2, which expresses the law of
a Bessel process transformed by Brownian scaling relative to a last passage
time.

9.4 Towards a pathwise decomposition of (Xu; u ≤ τµ
s )

In order to obtain a more complete picture of (Xu; u ≤ τµ
s ), we consider again

the arguments developed in paragraph 9.2, but we now work at the level of
Bismut’s identity (9.5) itself, instead of remaining at the level of the local
times of X , as was done from (9.7) onwards.

Hence, if we now define, with the notation introduced in (9.5):

γ = E

⎡⎣ ∞∫
0

ds exp
(
−θ2s

2

)
Φτµ

s

⎤⎦ ,

where
Φt = F (Bu, u ≤ gt)G(Bt−v : v ≤ t − gt) ,

we obtain, with the same arguments as in paragraph 9.2:

E
[
F (Bu : u ≤ gτµ

s
)G(Bτµ

s −v; v ≤ τµ
s − gτµ

s
) | �τµ

s
= b, �µ

g
τ

µ
s

= x
]

(9.16)
= E

[
F (Bu; u ≤ τb) | �µ

τb
= x

]
Ebµ

[
G(Bh; h ≤ T0) | �bµ

T0
= s − x

]
which may be translated in the form of the integral representation:

P τµ
s = 2

∞∫
0

db

s∫
0

dxϕb(x)ψbµ(s−x)P τb
(· | �µ

τb
= x

)◦∨(PT0
bµ

)(
· | �bµ

T0
= s − x

)
or, even more compactly:
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∞∫
0

ds P τµ
s = 2

∞∫
0

db P τb ◦ ∨
(
PT0

bµ

)
. (9.17)

For the moment, we simply deduce from (9.16) that, conditionally on �τµ
s

= b,
the process:

(Xv; v ≤ τµ
s − gτµ

s
) ≡ (Bτµ

s −v − µ�τµ
s
; v ≤ τµ

s − gτµ
s
)

= (Bτµ
s −v − µb; v ≤ τµ

s − gτµ
s
)

is distributed as Brownian motion starting from 0, considered up to its first
hitting time of −µb.

It would now remain to study the pre-gτµ
s

process in the manner of Biane [13]
and Vallois [88], but this is left to the diligent reader.

Comments on Chapter 9

The results presented in this Chapter were obtained by the second author
while teaching the course at ETH (Sept. 91–Feb. 92). In the end, Theorem 9.1
may be used to give, thanks to the scaling property, a quick proof of F. Petit’s
first result (8.5).

The main difference between Chapter 8 and the present Chapter is that, in
Chapter 8, the proof of F. Petit’s first result (8.5) was derived from a Ray-
Knight theorem for the local times of X , considered up to τs = inf{t : �t = s},
whereas, in the present chapter, this result (8.5) is obtained as a consequence
of Theorem 9.1, which is a RK theorem for the local times of X , up to
τµ
s ≡ inf{t : �µ

t = s}, a more intrinsic time for the study of X .

As a temporary conclusion on this topic, it may be worth to emphasize the
simplicity (in the end!) of the proof of (8.5):

- it was shown in (8.3.1) that a proof of the arc sine law for Brownian motion
may be given in a few moves, which use essentially two ingredients:

(i) the scaling property,
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(ii) the independence, and the identification of the laws, of A+
τ(1) and A−

τ(1),
the latter being, possibly, deduced from excursion theory;

- to prove F. Petit’s result, the use of the scaling property makes no prob-
lem, whilst the independence and the identification of the laws of Aµ,−

τµ(1)

and Aµ,+
τµ(1) are dealt with in Theorem 9.1.

However, the analogy with the Brownian case is not quite complete, since
we have not understood, most likely from excursion theory, the identity in
law between the quantities (8.13) and (8.14), as done in Pitman-Yor [77] and
Perman-Pitman-Yor [69] in the Brownian case.



Chapter 10

On principal values of Brownian
and Bessel local times

In real and complex analysis, the Hilbert transform H , which may be defined,
for any f ∈ L2(IR), as:

Hf(x) =
1
π

lim
ε→0

∞∫
−∞

dy f(y)
y − x

1(|y−x|≥ε) (10.1)

(this limit exists dx a.s.)

plays an important role, partly because of the fundamental identity between
Fourier transforms:

Ĥf(ξ) = i sgn(ξ)f̂(ξ)

If, in (10.1), f is assumed to be Hölder continuous, and has compact support,
then the limit in ε exists for every x ∈ IR. This remark applies to f(y) =
�y
t , y ∈ IR, the function, in the space variable y, of the local times of Brownian

motion at time t.

We shall use the notation:

H̃t(a) = lim
ε→0

t∫
0

ds

(Bs − a)
1(|Bs−a|≥ε) (10.2)

More generally, we can define, for α < 3/2:

H̃
(α)
t (a) = lim

ε→0

t∫
0

ds

(Bs − a)α̃
1(|Bs−a|≥ε) (10.3)

with xα̃ def= |x|αsgn(x).

153
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We shall simply note H̃t for H̃t(0), and H̃
(α)
t for H̃

(α)
t (0).

These processes (in the variable t) are quite natural examples of processes
with zero energy, which have been studied, in particular, by Fukushima [45].

They also inherit a scaling property from Brownian motion, which partly
explains why they possess some interesting distributional properties, when
taken at certain random times, as will be proved in this chapter.

Moreover, the one-sided version of H̃(α) plays an essential role in the re-
presentation of Bessel processes with dimension d < 1, as shown recently by
Bertoin ([7], [8]). In fact, an important part of this chapter shall be devoted
to the description of a new kind of excursion theory for Bessel processes with
dimension d < 1, developed by Bertoin, and to some of its applications.

To conclude this introduction, a few words about the origin of such studies
is certainly in order: to our knowledge, they may be traced back to Itô-Mc
Kean ([50], Problem 1, p. 72) and Yamada’s original papers ([94], [95], [96]).

10.1 Yamada’s formulae

(10.1.1) To begin with, we remark that, if (�a
t ; a ∈ IR, t ≥ 0) denotes the

family of Brownian local times, then, for a given x ∈ IR, and ε > 0, we have:

x+ε∫
x−ε

dy

|y − x|γ |�
y
t − �x

t | < ∞ , as soon as: γ < 3
2 ,

thanks to the following Hölder continuity property of Brownian local times:

for 0 < η < 1
2 , sup

s≤t
|�a

s − �b
s|(ω) ≤ Ct,η(ω)|a − b| 12−η ,

for some (random) constant Ct,η(ω).

Consequently, the quantities: (H̃(β)
t (a); a ∈ IR, t ≥ 0) are well-defined for any

β < 3
2 .

Likewise, so are the quantities:
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p.v.

t∫
0

1(Bs−a>0)ds

(Bs − a)1+α

def=

∞∫
0

db

b1+α
(�a+b

t − �a
t )

and

p.v.

t∫
0

ds

|Bs − a|1+α

def=

∞∫
−∞

db

|b|1+α
(�a+b

t − �a
t ) ,

for 0 < α < 1
2 .

(10.1.2) The quantities we have just defined appear in fact as the zero
quadratic variation parts in the canonical decompositions as Dirichlet pro-
cesses of

(Bt − a)1̃−α,
(
(Bt − a)+

)1−α and |Bt − a|1−α , for 0 < α < 1
2 .

For simplicity, we shall take a = 0; then, we have the following formulae:

(Bt)1̃−α = (1 − α)

t∫
0

(Bs)−α̃dBs +
(1 − α)(−α)

2
p.v.

t∫
0

ds

B1̃+α
s

(10.4)

(B+
t )1−α = (1 − α)

t∫
0

(Bs)−α1(Bs>0)dBs +
(1 − α)(−α)

2
p.v.

t∫
0

1(Bs>0)ds

B1+α
s

(10.5)

|Bt|1−α = (1 − α)

t∫
0

|Bs|−αsgn(Bs) dBs +
(1 − α)(−α)

2
p.v.

t∫
0

ds

|Bs|1+α

(10.6)

Exercise 10.1 In Revuz-Yor ([81], p. 230), the representation of the local
time �y

t of Brownian motion, for fixed y, and fixed t, as an Itô stochastic
integral, is given in the following explicit form:

�y
t =

t∫
0

ds gs(y) − 1√
2π

t∫
0

sgn(Bs − y)q
(

Bs − y√
t − s

)
dBs ,

where: q(x) = 2

∞∫
|x|

du exp
(
−u2

2

)
, and gs(y) =

1√
2πs

exp
(
−y2

2s

)
.
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Derive from this formula the representation as an Itô integral of the different

principal values we have just defined, in particular:

t∫
0

ds

Bs
.

(10.1.3) We shall now transform formula (10.6) into a formula which gives
the canonical decomposition, as a Dirichlet process, of a Bessel process
(R(δ)

t , t ≥ 0), with dimension δ, such that: 0 < δ < 1. We first recall that a
power of a Bessel process is another Bessel process time-changed; precisely,
we have the formula:

qR1/q
ν (t) = Rνq

⎛⎝ t∫
0

ds

R
2/p
ν (s)

⎞⎠ (10.7)

where (Rµ(t), t ≥ 0) denotes a Bessel process with index µ, and ν > − 1
q ,

1
p + 1

q = 1 (see, e.g.: Revuz-Yor ([81], Proposition (1.11), p. 416); in fact,
formula (10.7) was already presented and used in Chapter 9, as formula (9.2)).
Applying this formula with ν = − 1

2 (so that (Rν(t), t ≥ 0) is a reflecting
Brownian motion, and Rνq(t) ≡ R(δ)(t), t ≥ 0), we obtain the following
consequence of formula (10.6):

Rt ≡ R(δ)(t) = βt +
δ − 1

2
Kt (10.8)

where (βt, t ≥ 0) is a Brownian motion, and:

Kt = p.v.

t∫
0

ds

Rs

def=

∞∫
0

aδ−2da(La
t − L0

t ) ,

the family of local times (La
t , a ≥ 0) being defined with respect to the speed

measure of R(δ) as:

t∫
0

dsϕ(Rs) =

∞∫
0

daϕ(a)La
t aδ−1

for every Borel function ϕ : IR+ → IR+.
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10.2 A construction of stable processes, involving
principal values of Brownian local times

(10.2.1) Let α ∈]−∞, 3
2 [. With the help of the scaling property of the process

(H̃(α)
t , t ≥ 0), and using the inverse τt ≡ inf{u : �0

u > t} of the Brownian local
time (�0

u, u ≥ 0), it is easy to construct symmetric stable processes from a
1-dimensional BM. Precisely, we have

Theorem 10.1 Let α ∈] −∞, 3
2 [. Then, the process (H̃(α)

τt , t ≥ 0) is a sym-

metric stable process of index ν
α

=
1

2 − α
; in particular, we have:

E
[
exp(iλH̃(α)

τt
)
]

= exp(−t cα|λ|να ) (λ ∈ IR)

for some constant cα.

Remarks:

1) As α varies from −∞ to 3
2 (excluded), ν

α
varies from 0 to 2, with extreme

values excluded; hence, with this construction, we can obtain all symmetric
stable processes, except Brownian motion!

2) In the particular case α = 1, (H̃τt , t ≥ 0) is a multiple of the stan-
dard Cauchy process. In fact, as we shall see with the next theorem,(

1
π

H̃τt , t ≥ 0
)

is a standard Cauchy process.

3) P. Fitzsimmons and R. Getoor [40] have extended the result concerning(
H̃τt , t ≥ 0

)
to a large class of symmetric Lévy processes in place of the

Brownian motion. They were also intrigued by the presence of the con-
stant π. The computations of Fitzsimmons and Getoor have been simpli-
fied and generalized by Bertoin [9], using stochastic calculus and Feynman-
Kac arguments.

(10.2.2) It now seems natural to look for some relation between the results
of Theorem 10.1 and a more classical construction of the stable symmetric
processes, which may be obtained as time-changes of a Brownian motion
by an independent unilateral stable process. More precisely, Spitzer [85] re-
marked that, if (γu, u ≥ 0) is another real-valued Brownian motion, which is
independent of B, then:
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(γτt , t ≥ 0) is a standard symmetric Cauchy process (10.9)

Molchanov-Ostrovski [67] replaced (τt, t ≥ 0) by any unilateral stable process
to obtain all symmetric stable processes, except Brownian motion. J.F. Le
Gall [59] presented yet another construction in the general case, which is
closer to Spitzer’s original idea, in that it involves complex Brownian motion.

In any case, coming back precisely to Theorem 10.1 (or, rather, to the second

remark following it) and Spitzer’s result (10.9), we see that
(

1
π

H̃u, u ≥ 0
)

and (γu, u ≥ 0), when restricted to the zero set of the Brownian motion
(Bv, v ≥ 0), have the same law. Therefore, it now seems natural to consider
their joint distribution for fixed time t.

Theorem 10.2 (We keep the previous notation concerning the independent
Brownian motions B and γ).

For every λ ∈ IR, and θ �= 0, we have:

E

[
exp i

(
λ

π
H̃τt + θγτt

)]
= E

[
exp

(
i
λ

π
H̃τt −

θ2

2
τt

)]
= exp

(
−tλ coth

(
λ

θ

))
.

This formula is reminiscent of Lévy’s stochastic area formula (2.7); it seems
to call for some interpretation in terms of complex Brownian motion, which
we shall attempt, with some partial success, in the next paragraph.

10.3 Distributions of principal values of Brownian local
times, taken at an independent exponential time

We start again with the interesting case α = 1. It will be fruitful to decompose
the process (H̃t, t ≥ 0) into the sum of:

H̃−
t = H̃gt and H̃+

t = H̃t − H̃gt , where gt = sup{s ≤ t : Bs = 0}

Theorem 10.3 Let T denote a r.v. with values in IR+, which is exponentially
distributed, with parameter 1

2 ; moreover, T is assumed to be independent of B.
Then, we have the following:
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i) H̃−
T and H̃+

T are independent;

ii) for every λ ∈ IR,

E

[
exp

(
i
λ

π
H̃−

T

)]
=

th(λ)
λ

and E

[
exp

(
i
λ

π
H̃+

T

)]
=

λ

sh(λ)
.

Therefore, we have:

E

[
exp

(
i
λ

π
H̃T

)]
=

1
ch(λ)

(10.10)

iii) In fact, formula (10.10) may be completed as follows:

E

[
exp

(
i
λ

π
H̃T

)
| �0

T = t

]
=

λ

sh(λ)
exp−t(λ coth λ − 1) . (10.11)

10.4 Bertoin’s excursion theory for BES(d), 0 < d < 1

In this paragraph, (Rt, t ≥ 0) denotes a BES(d) process, with 0 < d < 1, and
(Kt, t ≥ 0) is the process with zero quadratic variation such that:

Rt = R0 + Bt + (d − 1)Kt (t ≥ 0) ,

a decomposition we already encountered in paragraph 10.1, formula (10.8),
with the factor (1

2 ) deleted.

Bertoin [8] proved that (0, 0) is regular for itself, with respect to the Markov
process (R, K); hence, it admits a local time; such a local time (δ(t), t ≥ 0)
may be constructed explicitly from K as the limit of 2n(d−1)dn(t), where
dn(t) denotes the number of downcrossings of K from 0 to −2−n during the
time-interval [0, t].

Let σ(t) = inf{s : δ(s) > t} be the right-continuous inverse of δ, and consider
the Poisson point process: e = (e1, e2) defined by:

e1(t) =
{
Rσ(t−)+h 1(h≤σ(t)−σ(t−)); h ≥ 0

}
e2(t) =

{
Kσ(t−)+h 1(h≤σ(t)−σ(t−)); h ≥ 0

}
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Call m the (Itô) characteristic measure of this Poisson point process, which
lives on Ωabs

0 , the set of continuous functions ε : IR+ → IR+ × IR, such that
ε(0) = (0, 0), and ε is absorbed at (0, 0) after its first return V (ε) to (0, 0).

For ε ∈ Ωabs
0 , we define furthermore: U(ε) = inf

{
t > 0 : ε2(t) = 0

}
. We may

now state Bertoin’s description of m.

Theorem 10.4 The σ-finite measure m is characterized by the following
distributional properties:

1) m(dε) a.s.,
(
ε2(t), t ≤ U

)
takes values in IR−, and

(
ε2(t), U ≤ t ≤ V

)
takes values in IR+;

2) m
(
ε1(U) ∈ dx

)
=

1 − d

Γ (d)
xd−2dx (x > 0)

3) Conditionally (with respect to m) on ε1(U) = x, the processes:(
ε1(U − h),−ε2(U − h); h ≤ U

)
and

(
ε1(U + h), ε2(U + h); h ≤ V − U

)
are independent, and have both the same distribution as:

(Rx(t), Kx(t); t ≤ Sx) ,

where (Rx(t), t ≥ 0) denotes a BESx(d) process, with canonical (Dirichlet)
decomposition:

Rx(t) = x + Bt + (d − 1)Kx(t) ,

and Sx = inf {t : Kx(t) = 0}.

Bertoin [8] deduced several distributional results from Theorem 10.4. In turn,
we shall use Theorem 10.4 to characterize the law of

A+
1 =

1∫
0

ds 1(Ks>0) .

Recall that, from excursion theory, we have, for any continuous, increasing
additive functional (At, t ≥ 0) of X ≡ (R, K), which does not charge {s :
Rs = Ks = 0}, the following formulae:
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E

⎡⎣ ∞∫
0

dt exp−(αt + At)

⎤⎦ =

∫
m(dε)

V∫
0

dt exp−(αt + At)∫
m(dε) (1 − exp−(αV + AV ))

(10.12)

E

⎡⎣ ∞∫
0

dt exp−(αt + Agt)

⎤⎦ =

1
α

∫
m(dε)(1 − exp(−αV ))∫

m(dε)(1 − exp−(αV + AV ))

We now apply these formulae with: At = βA+
t + γA−

t , where A−
t = t − A+

t ;
the quantities to be computed are:

h(α, β, γ) def=
∫

m(dε)
(
1 − exp−(αV + βA+

V + γA−
V )

)
=

∫
m(dε) (1 − exp−{(α + γ)U + (α + β)(V − U)})

and

k(α, β, γ)

def=
∫

m(dε)

V∫
0

dt exp−(αt + βA+
t + γA−

t )

=
∫

m(dε)

⎧⎨⎩
U∫

0

dt exp (−(α + γ)t) +

V∫
U

dt exp− (αt + β(t − U) + γU)

⎫⎬⎭ .

Hence, if we now define:

f(a, b) =
∫

m(dε) (1 − exp−(aU + b(V − U)))

we obtain, with a little algebra: h(α, β, γ) = f(α + γ, α + β) and

k(α, β, γ) =
1

α + β

[
(β − γ)f(α + γ, 0)

α + γ
+ f(α + γ, α + β)

]
(10.13)

We are now in a position to state the following

Theorem 10.5 1) For every t ≥ 0, one has:

E
[
exp−(aA−

σ(t) + bA+
σ(t))

]
= exp−tf(a, b) ,

where: f(a, b) =
(√

2a +
√

2b
)1−d

.
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2) The distributions of the variable A+
1 and of the pair (A+

g1
, A−

g1
) are char-

acterized by the formulae:

E

[
1

1 + βA+
1

]
=

β +
(
1 +

√
1 + β

)1−d

(1 + β)
(
1 +

√
1 + β

)1−d

(10.14)

E

[
1

1 + βA+
g1 + γA−

g1

]
=

(
2√

1 + β +
√

1 + γ

)1−d

In particular, g1 is distributed as:

Z 1−d
2 , 1+d

2
, a beta variable with parameters

(
1−d
2 , 1+d

2

)
.

Proof: 1) Bertoin ([8], Theorem 4.2) proved that if (λa
t ; a ∈ IR) denotes the

family of occupation densities of K, which are defined by:

t∫
0

ds f(Ks) =

∞∫
−∞

da f(a)λa
t ,

then, conditionally on λ0
σ(t) = x, the processes (λa

σ(t), a ≥ 0) and (λ−a
σ(t), a ≥ 0)

are two independent BESQx(0) processes.

Furthermore, the law of λ0
σ(t) is characterized by:

E

[
exp

(
−k

2
λ0

σ(t)

)]
= exp(−tk1−d) (k ≥ 0) .

Using this result, we obtain:

E
[
exp−

(
aA−

σ(t) + bA+
σ(t)

)]
= E

[
exp−

λ0
σ(t)

2

(√
2a +

√
2b
)]

= exp−t
(√

2a +
√

2b
)1−d

.

2) It follows from formulae (10.12) and (10.13) that:

E

⎡⎣ ∞∫
0

dt exp−(αt + βA+
t )

⎤⎦ =
k(α, β, 0)
h(α, β, 0)

=
βf(α, 0) + αf(α, α + β)

α(α + β)f(α, α + β)

and
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E

⎡⎣ ∞∫
0

dt exp−(αt + βA+
gt

+ γA−
gt

)

⎤⎦ =
h(α, 0, 0)

α h(α, β, γ)
=

f(α, α)
αf(α + γ, α + β)

.

Now, the expectations on the left-hand sides of these equalities are respec-
tively equal, using a scaling argument, to:

E

[
1

α + βA+
1

]
and E

[
1

α + βA+
g1 + γA−

g1

]
.

The proof is ended by replacing f(a, b) by
(√

2a +
√

2b
)1−d

in the above
equalities. 
�

Remark: It may be interesting to compare formula (10.14) with yet another
distributional result:

for fixed t,
A+

σ(t)

σ(t)
(law)
=

A−
σ(t)

σ(t)
(law)
= Z 1

2 , 1
2

, (10.15)

i.e.: both ratios are arc sine distributed.

This follows immediately from the description of the law of (λa
σ(t), a ∈ IR)

already used in the above proof.

Comments on Chapter 10

The contents of this chapter consist mainly of results relating principal values
for Bessel processes with small dimension, and their excursion theory, as
derived by Bertoin [8]. For a further discussion by Bertoin, see [10].

A more complete exposition of results pertaining to principal values of local
times is given in Yamada [97], and also in the second half of the Monograph
[103], which centers around Alili’s study of:

p.v.
∫ t

0

ds coth(λBs) ,

and the, up to now little understood , striking identity:

λ2

((∫ 1

0

ds coth(λrs)
)2

− 1

)
(law)
=

(∫ 1

0

ds

rs

)2

where (rs, s ≤ 1) denotes the standard 3-dimensional Bessel bridge, and
λ ∈ IR (thus, the law of the left-hand side does not depend on λ).
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More studies of functionals of (rs, s ≤ 1), including
∫ 1

0

ds exp(±λrs) are also

found in C. Donati-Martin and M. Yor [34].



Chapter 11

Probabilistic representations of the
Riemann zeta function and some
generalisations related to Bessel
processes

To begin with, it may be wise to state immediately that the aim1 of this
chapter is not to discuss Riemann’s hypothesis!, but, much more modestly,
to present some of the (well-known) relations between heat equation, zeta
function, theta functions and Brownian motion.

11.1 The Riemann zeta function and the 3-dimensional
Bessel process

(11.1.1) The Riemann zeta function is defined by:

ζ(s) =
∞∑

n=1

1
ns

, for s ∈ C , Re(s) > 1 .

It extends analytically to the entire complex plane C, as a meromorphic
function with a unique pole at s = 1.

An essential property of ζ is that it satisfies the functional equation:

ξ(s) = ξ(1 − s) (11.1)

1 Researches linking the Riemann Zeta function and random matrix theory, in particular:
“the Keating-Snaith philosophy”, which is closely related to the Lindelöf hypothesis, are
beyond the scope of this book. However see e.g. the Mezzadri-Snaith volume [66]
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where:

ξ(s) def=
s(s − 1)

2
Γ
(s

2

)
π−s/2ζ(s) . (11.2)

We recall that the classical gamma function, which is defined by:

Γ (s) =
∫ ∞

0

dt ts−1 e−t , for Re(s) > 0 ,

extends analytically to C as a meromorphic function with simple poles at
0, −1, −2, . . . , −m, . . ., thanks to the relation:

Γ (1 + s) = s Γ (s) .

(11.1.2) The functional equation (11.1) may be understood as a symmetry
property of the distribution of the r.v.:

N def=
π

2
T(2) , where: T(2)

def= T
(3)
1 + T̃

(3)
1 ,

with T
(3)
1 and T̃

(3)
1 two independent copies of the first hitting time of 1 by a

BES(3) process starting from 0.

Indeed, one has:
2 ξ(2 s) = E[N s] (11.3)

Hence, if we assume that the functional equation (11.1) holds, we deduce
from (11.3) that N satisfies:

E[N s] = E[N (1/2)−s] , for any s ∈ C ,

or, equivalently: for any Borel function f : IR+ → IR+,

E[f(N )] = E

[
f

(
1
N

) √
N

]
. (11.4)

In paragraphs 11.2 and 11.3, an explanation of this symmetry property of N
is given.

(11.1.3) For the moment, we give a proof of (11.4), hence of (11.1), as a
consequence of Jacobi’s identity for the theta function:

Θ

(
1
t

)
=

√
t Θ(t) , where Θ(t) ≡

∞∑
n=−∞

e−πn2t . (11.5)

Indeed, the density of N , which we denote by ϕ(t), satisfies:
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ϕ(t) = 2t Θ′′(t) + 3 Θ′(t) ,

and it is easily deduced from this identity that:

ϕ

(
1
t

)
= t5/2 ϕ(t) (11.6)

which is equivalent to (11.4).

The following exercise should help to understand better the deep connections
which exist between the Riemann zeta function and the distribution of T

(3)
1

(and its powers of convolution).

Exercise 11.1 Let k > 0, and let T(k) denote an IR+-valued r.v. such that

E

[
exp

(
− λ2

2
T(k)

)]
=

(
λ

shλ

)k

(such a variable exists, thanks to the infinite divisibility of T(1); from for-

mula (2.6), T(k) may be represented as:
∫ 1

0

ds ρ2
(k)(s), where (ρ(k)(s), s ≤ 1)

denotes here the (2k)-dimensional Bessel bridge).

1. Prove that, for any m > 0, one has:

Γ (m)E

[
1

(T(k))m

]
=

1
2m−k−1

∫ ∞

0

dλ λk+2m−1 e−λ k

(1 − e−2λ)k

2. Assume k is an integer, k ≥ 1. Recall that
1

1 − x
=

∞∑
n=0

xn , (x < 1) and,

for k ≥ 2:

(k − 1)!
(1 − x)k

=
∞∑

n=k−1

n(n − 1) · · · (n − (k − 2))xn−(k−1)

More generally, for any k > 0, we have

1
(1 − x)k

=
∞∑

p=0

α(k)
p xp , with α(k)

p =
Γ (k + p)

Γ (k)Γ (p + 1)
.

Deduce, from the first question, that:
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Γ (m)E

[
1

(T(k))m

]
=

Γ (k + 2m)
2m−k−1

∞∑
p=0

α
(k)
p

(k + 2p)k+2m

3. Show the following formulae for E

[
1

(T(k))m

]
, with k = 1, 2, 3, 4, in terms

of Γ and ζ.

E

[
1

(T(1))m

]
=

Γ (2m + 1)
(2m−2 Γ (m))

( ∞∑
n=0

1
(2n + 1)2m+1

)

=
Γ (2m + 1)

(2m−2 Γ (m))

(
1 − 1

22m+1

)
ζ(2m + 1) .

E

[
1

(T(2))m

]
=

Γ (2m + 2)
(23m−1Γ (m))

ζ(2m + 1) .

E

[
1

(T(3))m

]
=

Γ (2m + 3)
2m−1 Γ (m)

{(
1 − 1

22m+1

)
...

...ζ(2m + 1) −
(

1 − 1
22m+3

)
ζ(2m + 3)

}
.

E

[
1

(T(4))m

]
=

Γ (2m + 4)
3 · 23m−2 Γ (m)

{ζ(2m + 1) − ζ(2m + 3)} .

Prove that, for any integer k ≥ 1, it is possible to express E

[
1

(T(k))m

]
in

terms of the Γ and ζ functions.

4. Deduce, from the comparison of the expressions of E

[
1

(T(1))m

]
and

E

[
1

(T(2))m

]
that:

(*)
U2

T(2)

(law)
=

Y 2

T(1)

(
(law)
= Y 2 (sup

u≤1
R(3)

u )2
)

,

where U denotes a uniform r.v., independent of T(2), and Y a discrete r.v.

independent of T(1) and such that: P

(
Y =

1
2p

)
=

1
2p

, (p = 1, 2, . . .).
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11.2 The right hand side of (11.4), and the agreement
formulae between laws of Bessel processes and
Bessel bridges

(11.2.1) Using (Brownian) excursion theory, we will show below that, for
every Borel function f : IR+ → IR+, one has:

E[f(m2
e)] =

√
π

2
E

[
f

(
1

T(2)

) √
T(2)

]
(11.7)

where (e(u), u ≤ 1) denotes the normalized Brownian excursion, which is
distributed as the 3-dimensional standard Bessel bridge, and me

def= sup
u≤1

e(u).

Assuming (11.7) holds, it will remain, in order to finish the proof of (11.4)
to show:

m2
e

(law)
=

π2

4
T(2) (11.8)

which will be undertaken in paragraph 11.3.

(11.2.2) The identity (11.7) will appear below as a particular consequence of
the following agreement formulae which are now presented as relationships,
for any dimension d > 0, between the law of the standard d-dimensional
Bessel bridge on one hand, and, on the other hand, of the law of two d-
dimensional Bessel processes put back to back. Here is this relationship:

Theorem 11.1 Let d > 0, and define µ = d
2 − 1.

Consider (Ru, u ≥ 0) and (R′
u, u ≥ 0) two independent BESµ ≡ BES(d)-

processes starting from 0; denote2 by σµ and σ′
µ their respective first hitting

times of 1.

Let

ρu =
{

Ru , if u ≤ σµ

R′
σµ+σ′

µ−u , if σµ ≤ u ≤ σµ + σ′
µ,

and
ρ̃v =

1√
σµ + σ′

µ

ρv(σµ+σ′
µ) , v ≤ 1.

Then, if (rv, v ≤ 1) denotes the standard Bessel bridge with dimension d, we
have, for every measurable functional F : C([0, 1], IR+) → IR+:

2 Thus, σµ is another (sometimes more convenient) notation for T
(d)
1 .
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E[F (rv, v ≤ 1)] = 2µ Γ (µ + 1)E[F (ρ̃v, v ≤ 1)(σµ + σ′
µ)µ]. (11.9)

We now remark that the identity (11.7) follows from the identity (11.10)
below, in the case µ = 1/2.

Corollary 11.1.1 Let mµ be the supremum of the standard Bessel bridge
with dimension d = 2(1+µ), and let sµ be the unique time at which this supre-
mum is attained. Then, we have, for every Borel function f : IR2

+ → IR+,

E[f(m2
µ, sµ)] = 2µ Γ (µ + 1)E

[
f

(
1

σµ + σ′
µ

,
σµ

σµ + σ′
µ

)
(σµ + σ′

µ)µ

]
.

(11.10)

Proof: This is immediate from the identity (11.9) above, since m2
µ, resp. sµ,

considered on the left hand side of (11.9), corresponds to 1/(σµ + σ′
µ), resp.

σµ/(σµ + σ′
µ), considered on the right hand side of (11.9). 
�

It should be noted, although this is a digression from our main theme, that,
in the particular case µ = 0 (or d = 2), Theorem 11.1 yields a remarkable
identity in law.

Theorem 11.2 We use the same notation as in Theorem 11.1, but now
d = 2.

Then, we have: (rv, v ≤ 1)
(law)
= (ρ̃v, v ≤ 1).

Corollary 11.2.1 We use the same notations as in Corollary 11.1.1, but
now µ = 0 (or, d = 2). Then, we have:

(m2
0, s0)

(law)
=

(
1

σ0 + σ′
0

,
σ0

σ0 + σ′
0

)
(11.11)

and in particular:
s0

m2
0

(law)
= σ0 . (11.12)

(11.2.3) A family of excursion measures We now give a proof of The-
orem 11.1, for µ > 0, which relies upon two different descriptions, both due
to D. Williams, of a σ−finite measure nµ already considered by Pitman-Yor
([73], p.436-440) and Biane-Yor ([17], paragraph (3.2)). nµ is defined on the
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canonical space C(IR+, IR+), and is carried by the space Ωabs of the trajec-
tories ω, such that ω(0) = 0 and ω is absorbed at 0 at the first (strictly
positive) instant it reaches 0 again. nµ may be characterized by either of the
following descriptions. For these descriptions, we shall use the notation:

eu(ω) = ω(u) ; V (ω) = inf{u > 0 : eu(ω) = 0} ; M(ω) = sup
u

eu(ω) .

First description of nµ

(i) The distribution of M under nµ is given by:

nµ(M ≥ x) = x−2µ (x > 0) .

(ii)For every x > 0, conditionally on M = x, this maximum M is attained
at a unique time R (0 < R < V , a.s.), and the two processes (eu, u ≤ R)
and (eV −u, u ≤ V − R) are two independent BES µ

0 processes, stopped at
the first time they reach level x.

Second description of nµ

(i’)The distribution of V under nµ is given by:

nµ(V ∈ dv) =
αµdv

vµ+1
, where αµ =

1
2µΓ (µ)

(ii’)For every v ∈]0,∞[, conditionally on V = v, the process (eu, u ≤ v) is
a Bessel bridge of index µ, during the time interval [0, v], starting and
ending at 0.

11.3 A discussion of the identity (11.8)

(11.3.1) The identity: m2
e

(law)
=

π2

4
T(2) (11.8)

is reminiscent of the very well-known Kolmogorov-Smirnov identity:
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m2
b

def= sup
u≤1

(b(u))2
(law)
=

π2

4
T

(3)
1

(
(law)
= T

(3)
π/2

)
(11.13)

where (b(u), u ≤ 1) denotes here the standard 1-dimensional Brownian bridge.

No satisfactory explanation has, until now, been given for the factor (π/2)2

in either formula (11.8) or (11.13), but, putting them together, Chung [27]
pointed out the puzzling identity in law:

m2
e

(law)
= m2

b + m2
b̃

(11.14)

where, on the right-hand side of (11.14), b and b̃ are two independent 1-
dimensional Brownian bridges.

It follows from Vervaat’s representation of the normalized Brownian excursion
(e(t), t ≤ 1) (see Vervaat [89], and also Biane [12]), i.e.:

the process ẽ(t) def= b((ρ+ t) [mod 1])−b(ρ), t ≤ 1, where ρ is the unique time
at which b attains its minimum, is a normalized Brownian excursion, that:

me
(law)
= sup

u≤1
b(u) − inf

u≤1
b(u) ,

and, therefore, the identity (11.14) may be written as:

(sup
u≤1

b(u) − inf
u≤1

b(u))2
(law)
= m2

b + m2
b̃
. (11.15)

No pathwise explanation of the identities (11.14) or (11.15) has been found,
and the explicit computation of the joint law of (supu≤1 b(u), infu≤1 b(u))
presented below in (11.3.2) rules out the possibility that (11.15) might be
explained by the independence (which does not hold) of {(supu≤1 b(u) −
infu≤1 b(u))2−m2

b} and m2
b . To conclude with this series of identities, we use

the well-known representation of brownian motion (Bt, t ≥ 0) in terms of
the Brownian bridge (b(u), u ≤ 1):

Bt = (1 + t)b
(

t

1 + t

)
, t ≥ 0,

from which it is easily deduced (see, e.g., Revuz-Yor [81], Exercise (3.10),
p. 37) that:

sup
t≥0

(|Bt| − t)
(law)
= sup

u≤1
(b(u))2 .

Hence, we may write the identity in law (11.14) in the equivalent form:
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sup
u≥0

(R(u) − u)
(law)
= sup

u≥0
(|Bu| − u) + sup

u≥0
(|B̃u| − u)

(law)
= sup

t≥0
(B+

t −
∫ t

0

ds 1(Bs≥0)) + sup
t≥0

(B−
t −

∫ t

0

ds 1(Bs≤0))

(11.16)
where B and B̃ denote two independent Brownian motions, and (R(u), u ≥ 0)
is a 3-dimensional Bessel process. (The last identity in law in (11.16) is left
to the reader as an exercise; Hint : Use the representation of B± in terms of
reflecting BM, given in Chapter 4, Paragraph 4.1).

(11.3.2) From the theory of Brownian excursions, the joint law of (s+
b , s−b , �b),

where: s+
b = supu≤1 b(u), s−b = − infu≤1 b(u), and �b is the local time at

level 0 of the standard Brownian bridge (b(u), u ≤ 1) may be characterized
as follows:

P (|G|s+
b ≤ x; |G|s−b ≤ y; |G|�b ∈ dλ) = exp(−λ

2
(coth x+coth y)) dλ (11.17)

where G denotes a gaussian variable, centered, with variance 1, which is
independent of b; consequently, one obtains, after integrating with respect to
λ:

P (|G|s+
b ≤ x; |G|s−b ≤ y) =

2
coth x + coth y

,

and it is now easy to deduce from this identity, together with the obvious
equality:

mb = max(s+
b , s−b ), that:

E

[
exp

(
− α2

2
m2

b

)]
=

(
πα
2

)
sh

(
πα
2

)
and

E

[
exp

(
− α2

2
(s+

b + s−b )2
)]

=

( (
πα
2

)
sh

(
πα
2

))2

.

This proves both identities (11.13) and (11.15) (and as we remarked above,
(11.15) is equivalent to (11.14)).

We now remark, as an exercise, that the identity in law (11.15) may be trans-
lated into an identity in law between independent exponential and Bernoulli
variables, the understanding of which does not seem obvious.

Exercise 11.2 (We keep the notation used in formula (11.17).)
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1. Prove that:

|G| (�b, 2 s+
b , 2 s−b )

(law)
=

(
T, log(1 +

T

T ′ ), log(1 +
T

T ′′ )
)

and

|G| (�b, 2mb)
(law)
=

(
T, log(1 +

2 T

T∗
)
)

,

where (T, T ′, T ′′), resp. (T, T∗), are three, respectively two, independent
exponential variables with parameter 1.

2. Prove that the identity in law (11.15) is equivalent to:{(
1 +

T

T ′

)(
1 +

T

T ′′

)}ε
(law)
=

(
1 +

2T1

T ′

)ε′ (
1 +

2T2

T ′′

)ε′′

where, on either side, the T ’s indicate independent exponential variables,
which are also independent of the i.i.d. Bernoulli variables ε, ε′ and ε′′

(P (ε = ±1) = 1/2).

Here is now a proof of the identity (11.17).

Recall that the standard Brownian bridge (b(u), u ≤ 1) may be represented
as (

b(u) ≡ 1√
gt

Bugt ; u ≤ 1
)

,

where gt = sup{s < t; Bs = 0}.

Moreover, from excursion theory, we obtain the following equalities:

P (�T ∈ dλ) = exp(−λ) dλ,

and for any measurable functional F : C([0,∞), IR) → IR+,

E[F (Bu, u ≤ gT ) | �T = λ] = exp(λ)E[F (Bu, u ≤ τλ) exp(− τλ

2
)] (11.18)

where (τλ, λ ≥ 0) denotes the right continuous inverse of (�t, t ≥ 0) and T
denotes here an exponential time with parameter 1/2, which is assumed to
be independent of B.

Thanks to the first description of n1/2, which is given in 11.2, the following
formula is easily obtained:
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E
[
S+

τλ
≤ x; S−

τλ
≤ y; exp

(
− τλ

2

)]
= exp

(
− λ

2
(coth x + coth y)

)
(11.19)

Furthermore, we remark that, by scaling

(i)
√

gT
(law)
= |G|, and (ii) (S+

gT
, S−

gT
.�T )

(law)
= |G| (s+

b , s−b , �b) ,

where we have used the notation introduced at the beginning of this sub-
paragraph 11.3. Now, in order to obtain formula (11.17), it remains to put
together (i) and (ii) on one hand, and (11.18) and (11.19) on the other hand.

11.4 A strengthening of Knight’s identity, and its
relation to the Riemann zeta function

(11.4.1) In Chapter 9 of these Notes, we have given a proof, and some ex-
tensions of Knight’s identity:

for α ∈ IR, E

[
exp

(
− α2

2
τ

M2
τ

)]
=

2α

sh(2 α)
(11.20)

where, to simplify notations, we write τ instead of τ1.

This identity (11.20) may be presented in the equivalent form:

τ

M2
τ

(law)
= T

(3)
2 (:= inf{u; Ru = 2}). (11.21)

We now remark that the identity (11.20), or (11.21), may be strengthened as
follows.

Theorem 11.3 (Pitman-Yor [79]) Define X =
S+

τ

S+
τ + S−

τ
,

where S+
t = sup

s≤t
Bs, S−

t = − inf
s≤t

Bs.

Then, X is uniformly distributed on [0, 1], and independent of
τ

(S+
τ + S−

τ )2
,

which is distributed as T(2)
(law)
= T

(3)
1 + T̃

(3)
1 .
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Equivalently, one has:

E

[
exp

(
− α2

2
τ

(S+
τ + S−

τ )2

)]
=

( α

shα

)2

.

Theorem 11.3 constitutes indeed a strengthening of Knight’s identity (11.20),
since we can write:

τ

M2
τ

=
τ

(S+
τ + S−

τ )2
(max (X, 1 − X))−2

and it is easily shown that:

T
(3)
2

(law)
= T(2) (max (X, 1 − X))−2 ,

where, on the right-hand side, T(2) and X are assumed to be independent.

Exercise 11.3 1. Prove that, if X is uniformly distributed on [0, 1], then
V = max (X, 1 − X) is uniformly distributed on [1/2, 1].

2. Prove that the identity in law: T
(3)
2

(law)
=

T(2)

V 2
we just encountered above

agrees with the identity in law (∗) U2

T(2)

(law)
=

Y 2

T
(3)
1

derived in question 3

of Exercise 11.1.

Hint : Remark that U
(law)
= (2Y )V , where, on the right hand side Y and V

are independent.

A simple proof of Theorem 11.3 may be deduced from the identity (11.19),
once we use the scaling property of BM to write the left-hand side of (11.19)
as:

P

(
λS+

τ ≤ x; λS−
τ ≤ y; exp

(
− λ2

2
τ

))
.

However, a more complete explanation of Theorem 11.3 may be given, in
terms of a Vervaat-type theorem for the pseudo-bridge(

1√
τ

Buτ ; u ≤ 1
)

.

Theorem 11.4 ([79]; We keep the above notation)
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Let ρ be the (unique) instant in the interval [0, τ ] at which (Bu; u ≤ τ) attains
its minimum. Define the process B̃ as

(B̃(t); t ≤ τ) := (B((ρ + t)[mod τ ]) − B(ρ); t ≤ τ)

Then, denoting by (e(u); u ≤ 1) the normalized Brownian excursion, we have:

E

[
F

(
1√
τ

B̃(uτ); u ≤ 1
)]

=

√
2
π

E [meF (e(u); u ≤ 1)]

for any measurable F : C([0, 1]; IR+) → IR+.

(11.4.2) The above strengthening of Knight’s identity enables us to present
now a very concise discussion of the identity in law (11.4), which we write in
the equivalent form:

E[f(T(2))] = E

[
f

(
1

(π2/4)T(2)

) √
π

2
T(2)

]
. (11.22)

Indeed, the left-hand side of (11.22) is, from Theorem 11.3, equal to

E

[
f

(
τ

(S+
τ + S−

τ )2

)]
,

but, now from Theorem 11.4, this expression is also equal to:√
2
π

E

[
f

(
1

(s+
b + s−b )2

)
(s+

b + s−b )
]

. (11.23)

Moreover, we proved in 11.3 that:

(s+
b + s−b )2

(law)
=

π2

4
T(2) ,

so that the quantity in (11.23) is equal to:

E

[
f

(
1

(π2/4)T(2)

) √
π

2
T(2)

]
,

which is the right-hand side of (11.22).
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11.5 Another probabilistic representation of the
Riemann zeta function

Given the relations, discussed above, between the distributions of me and
T(2), the identity in law:

he
(law)
= 2 me, where he :=

∫ 1

0

ds

e(s)
(11.24)

obviously provides us with another probabilistic representation of the Rie-
mann zeta function.

It will be shown below that (11.24) is a consequence of the following

Theorem 11.5 (Jeulin [52]) Let (�a
e ; a ≥ 0) be the family of local times

of (e(s), s ≤ 1), and define:

k(t) = sup{y ≥ 0;
∫ ∞

y

dx �x
e > t} .

Then, the process ((1/2)�k(t)
e ; t ≤ 1) is a normalized Brownian excursion.

We now prove (11.24). We deduce from Theorem 11.5 that:

he
(law)
=

∫ 1

0

dt

(1/2) �
k(t)
e

,

and the right-hand side of this identity in law is equal to 2 me, which is
obtained by making the change of variables y = k(t).

11.6 Some generalizations related to Bessel processes

In this paragraph, the sequence IN∗ of positive integers will be replaced by
the sequence of the zeros of the Bessel function Jµ.

Another important change with previous paragraphs is that, instead of study-
ing m2

µ, or σµ+σ′
µ as in paragraph 11.2, in connection with the Riemann zeta

function, it will be shown in this paragraph that the “Bessel zeta function”
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ζν which will be considered now has some close relationship with the time
spent below 1 by a certain Bessel process.

(11.6.1) “Zeta functions” and probability.

It may be fruitless, for our purpose, to define which properties a “zeta func-
tion” should satisfy, e.g.: an Euler-product representation, or a functional
equation, or . . . ; instead, we simply associate to a sequence λ∗ = (λn; n ≥ 1)
of strictly positive real numbers, the “zeta function”:

ζ
λ∗ (s) =

∞∑
n=1

1
λs

n

, s > 0 .

In the sequel, we shall assume that: ζ
λ∗ (1) =

∞∑
n=1

1
λn

< ∞. We then have the

elementary

Proposition 11.1 Define the probability density:

θλ∗(t) = cλ∗

∞∑
n=1

e−λnt with cλ∗ =
1

ζλ∗(1)
. Then, if Xλ∗ is a random variable

with distribution θλ∗(t)dt, we have:

ζ
λ∗ (s)Γ (s) = ζ

λ∗ (1)E
[
(Xλ∗)

s−1
]

, s > 0 . (11.25)

Proof: This is an immediate consequence of the equality:

Γ (s) 1
as =

∞∫
0

dx xs−1e−ax , a > 0 , s > 0 . 
�

(11.6.2) Some examples related to Bessel processes.

a) In this paragraph, we associate to any ν > 0, the sequence:

ν∗ =
(
j2
ν−1,n; n ≥ 1

)
(11.26)

where (jµ,n; n ≥ 1) denotes the increasing sequence of the simple, positive,
zeros of the Bessel function Jµ (see Watson [90], p. 498).

We shall write ζν(s) for ζν∗(s), and θν(t) for θν∗(t). The aim of this paragraph
is to exhibit a random variable Xν ≡ Xν∗ which is distributed as θν(t)dt.

The following series representation shall play an essential rôle:
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1
x

Iν

Iν−1
(x) = 2

∞∑
n=1

1
x2 + j2

ν−1,n

, x > 0 (11.27)

(see Watson [90], p. 498).

Now, we may prove the following

Theorem 11.6 1) Let y > 0, and P ν
y the law of the Bessel process (Rt, t ≥ 0),

with index ν, starting from y at time 0. Then, we have:

Eν
y

⎡⎣exp−α

∞∫
0

du 1(Ru≤y)

⎤⎦ =
2ν

y
√

2α

Iν

Iν−1
(y
√

2α) (11.28)

2) Consequently, under P ν
y , the distribution of the random variable:

Xy =

∞∫
0

du 1(Ru≤y) is
1

2y2
θν

(
t

2y2

)
dt ,

where: θν(t) = (4ν)
∞∑

n=1

e−j2
ν−1,nt , t ≥ 0

(
since: ζν(1) =

1
4ν

)
(11.29)

Corollary 11.6.1 For any y > 0, a candidate for the variable Xν is

1
2y2

Xy ≡ 1
2y2

∞∫
0

du 1(Ru≤y), under P ν
y .

Consequently, the following probabilistic representation of ζν holds:

ζν(s)Γ (s) =
ζν(1)

(2y2)s−1
Eν

y

⎡⎢⎣
⎛⎝ ∞∫

0

du 1(Ru≤y)

⎞⎠s−1
⎤⎥⎦ , with ζν(1) =

1
4ν

.

(11.30)

Proof of Theorem 11.6:

1) It may now be easier to use the following notation:(
R

(ν)
y (u), u ≥ 0

)
denotes the Bessel process with index ν, starting at y at
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time 0. Then, we have seen, and proved, in Chapter 4, the Ciesielski-Taylor
identities: ∞∫

0

du 1
(R

(ν)
0 (u)≤y)

(law)
= Ty(R

(ν−1)
0 )

Hence, with the help of this remark, and of the strong Markov property,
we obtain:

Eν
y

⎡⎣exp

⎛⎝−α

∞∫
0

du 1(Ru≤y)

⎞⎠⎤⎦ =
Eν−1

0 (exp−αTy)
Eν

0 (exp−αTy)

and, to deduce formula (11.28), it suffices to use the following identity:

Eµ
0 (exp−αTy) =

(y
√

2α)µ

2µΓ (µ + 1)Iµ(y
√

2α)
, (11.31)

for µ = ν, and µ = ν − 1 (see Kent [56], for example).

2) The proof of the second statement of the proposition now follows immedi-
ately from formulae (11.28) and (11.27). 
�

We now recall (see Chapter 6, in particular) that, if (Bt, t ≥ 0) denotes Brow-
nian motion starting from 0, then (exp(Bt + νt); t ≥ 0) may be represented
as:

exp(Bt + νt) = R(ν)

⎛⎝ t∫
0

du exp 2(Bu + νu)

⎞⎠ , (11.32)

where (R(ν)(t), t ≥ 0) denotes here the Bessel process with index ν, starting
from 1 at time 0. Hence, time-changing R(ν) into (exp(Bt + νt), t ≥ 0) with
the help of formula (11.32), we obtain the following representation of ζν(s).

Corollary 11.6.2 Let (Bt, t ≥ 0) be a real valued Brownian motion starting
from 0. Then, we have, for any ν > 0:

ζν(s)Γ (s) =
ζν(1)
2s−1

E

⎡⎢⎣
⎛⎝ ∞∫

0

du exp 2(Bu + νu)1(Bu+νu≤0)

⎞⎠s−1
⎤⎥⎦ (11.33)

(11.6.3) The particular case ν = 3
2 .
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We then have: ν − 1 = 1
2 , and we are interested, from the definition of ν∗

given in (11.26), in the sequence of positive zeros of

J 1
2
(z) =

(
2
πz

)1/2

sin(z) .

Therefore, we have:
j1/2,n = nπ

Consequently, in the particular case ν = 3/2, we may now write down the
main result contained in Theorem 11.6 and its Corollaries, in the following
form

Proposition 11.2 We simply write ζR(s) =
∞∑

n=1

1
ns

. Then, we have

3 · 2s/2 Γ
(

s
2

)
πs

ζR(s) = E
3/2
1

⎛⎜⎝
⎛⎝ ∞∫

0

du 1(Ru≤1)

⎞⎠
s
2−1

⎞⎟⎠
(11.34)

= E

⎡⎢⎣
⎛⎝ ∞∫

0

dt exp(2Bt + 3t)1(2Bt+3t≤0)

⎞⎠
s
2−1

⎤⎥⎦

11.7 Some relations between Xν and
Σν−1 ≡ σν−1 + σ′

ν−1

(11.7.1) We begin with the most important case ν = 3
2 , for which we simply

write X for Xν and Σ for Σν−1. Recall that, at the beginning of this Chapter,
we used T(2) as a notation for Σ, which now becomes more convenient.

Theorem 11.7 Let X =

∞∫
0

ds 1
(R

(5)
s ≤1)

, where (R(5)
s , s ≥ 0) denotes the

Bessel process with dimension 5 (or index 3/2), starting from 1. Moreover,

define: Σ
(law)
= σ + σ′, where σ and σ′ are two independent copies of the first

hitting time of 1 by BES (3)
0 .
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Consider Σ̃, a random variable3 which satisfies:

for every Borel function f : IR+ → IR+, E
[
f(Σ̃)

]
=

3
2
E[f(Σ)Σ] (11.35)

Then, we have:

a) X
(law)
= HΣ̃ (11.36)

where H and Σ̃ are independent, and

P (H ∈ dh) =
(

1√
h
− 1

)
dh (0 < h < 1)

or, equivalently:

H
(law)
= UV 2 (law)

= (1 −
√

U)2 ,

where U and V denote two independent uniform r.v’s;

b) Σ̃
(law)
= Σ + X (11.37)

where, on the right-hand side, Σ and X are assumed to be independent.

Remark: The identity in law: 1 − √
U

(law)
= V

√
U which appears at the

end of point a) above is a particular case of the identity in law between beta
variables:

Za,b+c
(law)
= Za,b Za+b,c (see paragraph (8.1))

with, here: a = b = c = 1

Proof: a) Both identities in law (11.36) and (11.37) may be deduced from
the explicit knowledge of the Laplace transforms of X and Σ̃, which are given
by:

E [exp(−αX)] = 3
√

2α coth(
√

2α) − 1
2α

(11.38)

(this is a particular case of formula (11.28), and

E
[
exp(−αΣ̃)

]
= 3

√
2α coth(

√
2α) − 1

sh2(
√

2α)
(11.39)

The identity in law (11.37) follows immediately from (11.38) and (11.39).

b) It may be interesting to give another proof of the identity in law (11.36).
This second proof, which is in fact how the identity (11.36) was discovered,
is obtained by comparing formula (11.34) with the definition of the function

3 That is: Σ̃ is obtained by size-biased sampling of Σ.
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ξ(s), or rather with formula (11.3). By doing so, we obtain:

E[X
s
2−1] =

3
s(s − 1)

E

[(
2
π
N

)s/2
]

,

and, changing s into: 2k + 2, we get:

E[Xk] =
1

(k + 1)(2k + 1)

(
3
2

E[Σk+1]
)

(k ≥ 0).

Now, we remark that

E[Hk] = E[Uk] E[V 2k] ≡ 1
(k + 1)(2k + 1)

,

so that
E[Xk] = E[(H Σ̃)k] (k ≥ 0).

which implies (11.36). 
�

Corollary 11.7.1 (We use the same notations as in Theorem 11.7.)

a) The random variable Σ satisfies the identity in law

Σ̃
(law)
= Σ + H Σ̃1 (11.40)

where, on the right-hand side, Σ̃1 is independent of the pair (Σ, H), and
is distributed as Σ̃.

b) Equivalently, the function g(λ) := E[exp(−λΣ)] ≡
( √

2λ

sh(
√

2λ)

)2

satisfies:

−
√

λ
g′(λ)
g(λ)

=
1
2

∫ λ

0

dx

x3/2
(1 − g(x)) . (11.41)

Proof: The identity (11.40) follows immediately from (11.36) and (11.37).
We then deduce from (11.40) the identity

g′(λ) = g(λ)
∫ 1

0

dh

(
1√
h
− 1

)
g′(hλ) ,

from which (11.41) follows, using integration by parts. 
�

(11.7.2) We now present an extension for any ν of the identity in law (11.37).
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Proposition 11.3 Let Xν =

∞∫
0

ds 1(Rν
s≤1), where (Rν

s , s ≥ 0) denotes the

Bessel process with index ν, starting from 1, and define Σν−1 = σν−1 +σ′
ν−1,

where σν−1 and σ′
ν−1 are two independent copies of the first hitting time of 1

by BESν−1
0 , the Bessel process with index ν − 1 starting from 0.

Consider finally Σ̃ν−1, a random variable which satisfies:

for every Borel function f : IR+ → IR+, E
[
f(Σ̃ν−1)

]
= νE

[
f(Σν−1)Σν−1

]
Then, we have

Σ̃ν−1 (law)
= Σν−1 + Xν (11.42)

where the random variables on the right-hand side are assumed to be inde-
pendent.

Proof: From formula (11.31), we deduce:

E
[
exp

(−λΣν−1
)]

=

⎛⎝ (
√

2λ)ν−1

2ν−1Γ (ν)Iν−1

(√
2λ

)
⎞⎠2

,

so that, taking derivatives with respect to λ on both sides, we obtain:

E
[
Σν−1 exp

(−λΣν−1
)]

=
(

xν−1

2ν−1Γ (ν)Iν−1(x)

)2 ( 2
x

Iν

Iν−1
(x)

)
(11.43)

where x =
√

2λ, and we have used the recurrence formula:

(ν − 1)Iν−1(x) − xI ′ν−1(x) = −xIν(x) .

It now suffices to multiply both sides of (11.43) by ν and to use for-
mula (11.28) to conclude. 
�

Remark: The comparison of Theorem 11.7 and Proposition 11.3 suggests
several questions, two of which are:

(i) is there an extension of the identity in law (11.36) for any ν, in the form:

Xν (law)
= Hν Σ̃ν−1, for some variable Hν , which would be independent of

Σ̃ν−1?

(ii) is there any relation between the functional equation for ζ and the identity
in law (11.40), or equivalently (11.41)?
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11.8 ζν(s) as a function of ν

In this paragraph, we show that the dependency in ν of the function ζν(s) may
be understood as a consequence of the following Girsanov type relationship
between the probability measures P ν

y .

Theorem 11.8 Let y > 0. On the canonical space Ω = C(IR+, IR+), we
define Rt(ω) = ω(t) (t ≥ 0), and Ly(ω) = sup{t ≥ 0 : Rt(ω) = y}. Then,
as ν > 0 varies, the measures P ν

y

∣∣
FLy

are all mutually absolutely continuous.

More precisely, there exists a σ-finite measure My on (Ω,FLy) such that, for
every variable Z ≥ 0, which is FLy measurable, and every ν > 0, we have:

My(Z) =
1
ν

Eν
y

⎡⎣Z exp

⎛⎝ν2

2

Ly∫
0

du

R2
u

⎞⎠⎤⎦ . (11.44)

Proof: We consider the right-hand side of (11.44), and we disintegrate P ν
y

with respect to the law of Ly. We obtain:

1
ν

Eν
y

⎡⎣Z exp

⎛⎝ν2

2

Ly∫
0

du

R2
u

⎞⎠⎤⎦
=

1
ν

∫
P ν

y (Ly ∈ dt)Eν
y

⎡⎣Z exp

⎛⎝ν2

2

Ly∫
0

du

R2
u

⎞⎠ | Ly = t

⎤⎦ .

Now, it is well-known that conditioning with respect to Ly = t amounts to
condition with respect to Rt = y (see, for example, Revuz-Yor [81], Exercise
(1.16), p.378) or Fitzsimmons-Pitman-Yor [41]); therefore, we have:

Eν
y

⎡⎣Z exp

⎛⎝ν2

2

Ly∫
0

du

R2
u

⎞⎠ | Ly = t

⎤⎦ = Eν
y

⎡⎣Z exp

⎛⎝ν2

2

t∫
0

du

R2
u

⎞⎠ | Rt = y

⎤⎦
(11.45)

Next, we use the absolute continuity relationship between P ν
y and P 0

y :

P ν
y

∣∣
Ft

=
(

Rt

y

)ν

exp

⎛⎝−ν2

2

t∫
0

du

R2
u

⎞⎠ · P 0
y

∣∣
Ft

,
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so that the expression in (11.45) is in fact equal to:

p0
t (y, y)

pν
t (y, y)

E0
y [Z | Rt = y] ,

where {pν
t (x, y)} is the family of densities of the semigroup P ν

t (x; dy) ≡
pν

t (x, y)dy associated to {P ν
x }.

Hence, the first expression we considered in the proof is equal to:

1
ν

Eν
y

⎡⎣Z exp

⎛⎝ν2

2

Ly∫
0

du

R2
u

⎞⎠⎤⎦ =

∞∫
0

P ν
y (Ly ∈ dt)
νpν

t (y, y)
p0

t (y, y)E0
y [Z | Rt = y] .

(11.46)
However, it is known that:

P ν
y (Ly ∈ dt) = νpν

t (y, y)dt (see Pitman-Yor [72])

and finally, the expression in (11.46), which is equal to:

∞∫
0

dt p0
t (y, y)E0

y [Z | Rt = y]

does not depend on ν.

Corollary 11.8.1 1) Let θ̃0(t)dt be the distribution of X1 under the σ-finite

measure M1. Then, the distribution of Xy under My is θ̃0

(
t

y2

)
dt

y2
.

2) For every y > 0, and t > 0, we have:

2

θ̃0
(

t
y2

) ∞∑
n=1

e
−(j2

ν−1,n)
(

t
2y2

)
= My

⎛⎝exp−ν2

2

Ly∫
0

du

R2
u

| Xy = t

⎞⎠ . (11.47)

3) For every ν > 0, we have:

ζν(s)Γ (s) =
1
4

1
(2y2)s−1

My

⎛⎜⎝
⎛⎝ ∞∫

0

du 1(Ru≤y)

⎞⎠s−1

exp

⎛⎝−ν2

2

Ly∫
0

du

R2
u

⎞⎠
⎞⎟⎠ .

(11.48)
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Consequently, the left-hand side of (11.47), i.e.: the “theta-function of in-
dex ν” and the left-hand side of (11.48), i.e.: the “zeta function of index ν”
are Laplace transforms in

(
ν2

2

)
.

The last statement of the previous Corollary is confirmed by the explicit for-
mulae found in Watson ([90], p. 502) for ζν(n), for n a small integer (Watson
uses the notation σ

(s)
ν−1 instead of our notation ζν(s)).

In the following formulae, the function: ν → ζ
√

ν(n) appears to be a com-
pletely monotonic function of ν, as a sum (with positive coefficients) or a
product of completely monotonic functions. Here are these formulae:

ζ
√

ν(1) =
1

22
√

ν
ζ
√

ν(3) =
1

25ν3/2(
√

ν + 1)(
√

ν + 2)
(11.49)

ζ
√

ν(2) =
1

24ν(
√

ν + 1)
ζ
√

ν(4) =
5
√

ν + 6
28ν2(

√
ν + 1)2(

√
ν + 2)(

√
ν + 3)

Comments on Chapter 11

The origin of this chapter is found in Biane-Yor [17]. We also recommend the
more developed discussion in Biane [15]. D. Williams [93] presents a closely
related discussion. Smith-Diaconis [84] start from the standard random walk
before passing to the Brownian limit to obtain the functional equation (11.1).

A detailed discussion of the agreement formula (11.9) is found in Pitman-Yor
[78].
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165–193. Ed. Éc. Polytech., Palaiseau, 2003.

16. P. Biane, J.-F. Le Gall, and M. Yor. Un processus qui ressemble au pont brownien.
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200, 1991.

34. C. Donati-Martin and M. Yor. Some Brownian functionals and their laws. Ann.
Probab., 25(3):1011–1058, 1997.

35. L. E. Dubins and M. Smorodinsky. The modified, discrete, Lévy-transformation is
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339, 1939.

65. P. Messulam and M. Yor. On D. Williams’ “pinching method” and some applications.
J. London Math. Soc. (2), 26(2):348–364, 1982.

66. F. Mezzadri and N. C. Snaith, editors. Recent perspectives in random matrix theory
and number theory, volume 322 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2005.
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