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Chapter 1
Introduction

We start with a fun puzzle in mathematics and mathematical methods. How many
corners does a four-dimensional cube have? Does such a thing exist, you ask? You
may be a geoscientist or a philosopher. If your answer is: there are surely more than
the eight corners there are for a three-dimensional cube, you are an engineer. If you
know without hesitation that there are exactly sixteen corners and you can prove
why, you are a mathematician.

To explain the goal of this book, I refer to Hersh (1997):

The United States suffers from “innumeracy” in its general population, “math avoidance”
among high-school students, and 50 percent failure among college calculus students. Causes
include starvation budgets in the school, mental attrition by television, parents who don’t
like math. There’s another, unrecognized cause of failure: misconception of the nature of
mathematics.

I think the specific reference to the United States may be omitted. It is really a
worldwide problem. Moreover, there is one more consequence of “math avoidance”
and “misconception”: good mathematical approaches are sometimes applied incor-
rectly. Particularly, the methods of statistics are often misused for different goals.
Applying mathematical methods is similar to using nuclear power: the final results
depend on the competence of the user. I try to convince my readers to apply the
“energy” of mathematics with consideration.

This book does not require special knowledge of pure mathematics. Equations
and calculations are mostly rooted in high-school algebra, and the reader needs only
a healthy human mind in order to understand them. This book is unusual in one
sense, as unlike most mathematics books, it starts with some real problems and
presentations and discussions follow.

This volume does not provide an invincible solution for the problem of “miscon-
ception” nor does it offer suggestions for classroom practice. It can assist in the ed-
ucation of engineers and geoscientists by helping them to understand the usefulness
of diverse mathematical approaches. My first priority is to present these approaches
in language that an engineer or a geoscientist can understand. I try to explain the
mathematical methods as I do in my lectures for nonmathematicians, something
akin to looking through special spectacles at so-called mathematical reality. In 1992

1



2 1 Introduction

the great British mathematician G. H. Hardy in A Mathematician’s Apology wrote
about this in an amusing way:

A chair or a star is not in the least like what it seems to be; the more we think of it, the
fuzzier its outlines become in the haze of sensation which surrounds it; but “2” or “317”
has nothing to do with sensation, and its properties stand out the more clearly the more
closely we scrutinize it. It may be that modern physics fits best into some framework of
idealistic philosophy. I do not believe it, but there are eminent physicists who say so. Pure
mathematics, on the other hand, seems to me a rock on which all idealism founders: 317
is prime, not because we think so, or because our minds are shaped in one way rather than
another, but because it is so, because mathematical reality is built that way.

We avoid the temptation to try and convince readers that mathematical reality
does exist, as any discussion on this issue is similar to discussions about God. One
either believes or does not believe. This is a special space, a cosmos where pure
mathematicians live and work. However, some methods and approaches that are
developed in this cosmos are undoubtedly useful for engineers and geoscientists.

This book is structured simply. Chapter 1 offers an introduction that is seldom
read and nearly never finished. Chapter 2 presents a rough overview of the basic
principles of mathematical modeling. This topic is not like a biscuit recipe. Really,
there are infinitely many different tasks and correspondingly different kinds of mod-
eling, so we discuss some common rules for mathematical modeling. Chapter 3, the
primary focus of the book, is substantial and deals with some real problems. Here, in
contrast to pure mathematics, an unusual method for engineers and geoscientists—
an acceptable kind of presentation of mathematical approaches is used: Proceeding
from practical problems we obtain the corresponding solutions by applying differ-
ent mathematical methods. Discussing all real problems is impossible and would
exceed the limits of a book. We present some practical problems, the kind that usu-
ally cause engineers and geoscientists to start to plow nervously through a pile of
mathematics texts.

In Chap. 3, the basic idea of each mathematical approach is explained in a com-
prehensible way. First, a simple example is calculated. Second, a common rule for
applying the approach is given and framed by a box. Note that a reader is also gently
prepared for accessing the special “hard” mathematical literature on the correspond-
ing topic. Advantages and disadvantages of certain approaches and the relationships
among them are discussed. Important equations are numbered by chapter. For exam-
ple (3-5) means equation 5 from Chap. 3. Internal equations used within examples
are numbered starting with ∗ and renumbered for each example in order to avoid un-
necessary complications and aggravation. A summary is offered at the end of each
section.

Two different mathematical viewpoints are presented: deterministic and stochas-
tic. Analogously to the fact that discussions on the existence of the mathemati-
cal reality are reminiscent of discussions about God, discussions about preferring
the deterministic or stochastic point of view are reminiscent of disputes between
Catholics and Protestants. It is exclusively a question of choice of a mathematical
model and nothing more. There are a lot of real problems that can be identically and
successfully solved by either a deterministic or a stochastic method.
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The ability of an engineer or a geoscientist to generalize or to adapt an existing
mathematical approach to a concrete practical problem is very important. Chapter 4
presents examples of mathematical modeling based on generalizing and adapting
some of the approaches discussed in Chap. 3.

Chapter 5 illustrates some numerical procedures for the examples discussed. In
the conclusion, the fun puzzle on the number of corners of a four-dimensional cube
is solved from a mathematical point of view.

Hersh (1997) noted that in a math class everybody gets the same answer, and this
indicates a special feature of mathematics: there are right answers. Not right because
someone wants it to be right, but right because they are right. I hope that after read-
ing this book the reader can generalize this claim to “in the math class everybody
gets the same answer applying the same mathematical models, the same mathemat-
ical spaces.” The question of what is “the right answer” is philosophical. There are
mathematical spaces where 2 + 2 is not equal to 4. One can say it contradicts the
reality, but this is not the case.

When a mathematician develops a model, he/she sets certain assumptions for it.
Without fulfilling these assumptions, an application of the model is not only not al-
lowed, it can be even dangerous. Mathematical methods should not be like a mask
covering the incompetence of their users. An engineer or a geoscientist should prove
the fulfillment of model assumptions before applying the model. He/she should have
the courage to reject a model if it seems to be inconsistent with his/her reality. Fi-
nally, he/she should have the courage to generalize the model or to develop a better
one. This is an idealistic point of view, but one that is true.

The main focus of this book is a demonstration of the superb elegance and great
usability of mathematical methods and the goal is to encourage readers to apply
them fairly.

Acknowledgements The author thanks her husband, Dr. Konrad Waelder, for helpful discussions
and for a critical review of the manuscript.



Chapter 2
From a Problem to Its Solution
by Mathematical Modeling

Mathematical modeling is the basis of many of the sciences. Application of
mathematical models has increased rapidly and has spread to most disciplines, and
there is reason to believe that this trend will continue to accelerate in the foresee-
able future. But, what exactly is mathematical modeling? And, more important, how
does it work?

A “real-world” problem is simplified, dissected, and phrased in a mathematical
setting. The “usual reality” is replaced by a “mathematical reality.” A mathematical
model is an object with enormous potential and plays an essential role in many ar-
eas of modern applied science. But a mathematical model is not only an object it is
also a dynamic process. Objects are independent of individual consciousness. They
have relatively permanent qualities. But mathematical models can vary. Following
Hersh’s definition (1997), “An object is a slow process. A process is a speedy ob-
ject.” Any phenomenon is seen as an object or a process, depending on the chosen
scale. Using the scale of the “mathematical reality,” we call mathematical modeling
an active dynamic process. Not at least, this dynamics also leads to a competition
between mathematicians. Gauss discovered the well-known method of least squares
before Legendre and abelian integrals before Abel.

Many developments in mathematics antedate the demand for them in the real
world and are often not understood, ignored, or rejected. Thus, it can appear that
mathematical modeling is a “frozen” object from the viewpoint of “usual reality.”
A mathematical model is something “God-given” and unassailable. Outsiders in
mathematics are taken in by this myth. Insiders are not.

2.1 What Is a Mathematical Model?

Many applications of specific mathematical models are discussed in scientific
books, but the question of the definition of a mathematical model is touched on only
by the way of exception. Fowler (1997) wrote of mathematical modeling: “There
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6 2 From a Problem to Its Solution by Mathematical Modeling

are no set rules, and an understanding of the “right” way to model can only be
reached by familiarity with a wealth of examples. [. . .] A model is a representation
of a process.” Fowkes and Mahony (1994) noted: “Mathematics in its own right has
been becoming increasingly powerful because of the beautiful abstractions which
allow one to concentrate on the essentials of what would otherwise be complex ar-
guments.” But how is a model created?

If you are asked to describe your best friend, you might start with anything, but
it is inconceivable that you would mention his blood pressure. Your description is a
model of your friend. But if your friend were to go to a physician, the doctor would
probably be interested in his blood pressure. The doctor’s examination will create
another model of your friend.

Again according to Fowler (1997):

Applied mathematicians have a procedure, almost a philosophy, that they apply when build-
ing models. First, there is a phenomenon of interest that one wants to describe or, more
importantly, explain. Observations of the phenomenon lead, sometimes after a great deal
of effort, to a hypothetical mechanism that can explain the phenomenon. The purpose
of a model is then to formulate a description of the mechanism in quantitative terms,
and the analysis of the resulting model leads to results that can be tested against the
observations.

A model is a simplification. It can be true; it can be incomplete; it can be false.
Moreover, a model is an idealization and is always limited in its applicability. One
starts with the simplest model, which can be made more complicated. If a model or
its generalization does not suit the purpose, it should be rejected and replaced by
another. Mathematical modeling is a process.

2.2 Choosing or Deriving an “Optimal” Model

A mathematical problem begins with the identification of a problem—of a phe-
nomenon. Something requires an explanation—a description. There is something
we do not understand. Or there something we are missing and want to obtain.

The word “research” has its origin in a term that means “to go around,” “to ex-
plore,” derived from the word meaning “circle.” Plutchik (1968) wrote: “The process
of searching, observing, and describing has sometimes been called ‘naturalistic ob-
servation’ and has been thought of as rather a primitive kind of research procedure.”
Owing to important improvements in modern techniques, more accurate observa-
tions can be obtained. Although this is often the case, different researchers can still
observe different effects.

In creating a mathematical model our first step is to define variables and to de-
velop constitutive relations among them. We substantiate each of them by empirical
reasoning. Be that as it may, the process requires a lot of intuition. Hersh (1997)
noted that intuition is not direct perception of something external, but rather an
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effect of the mind/brain manipulating concrete objects—at a later stage of making
marks on paper, and still later of manipulating mental images. There is no common
rule for triggering a scientist’s intuition. But there are ways to train a modeler to
recognize the most important variables and relationships.

We begin with a rough, simple model and test it. The advantages and limita-
tions of our primary model should be clear. By the second step, we add one more
variable or replace a linear relation between the variables by a nonlinear one. Such
generalizations should be substantiated. The aim is to get step by step closer to the
mechanism of the real phenomenon.

Once a problem is identified and a mechanism proposed in a “human language,”
we have to formulate it mathematically. Here, there are several possible ways:
One individual prefers a simple model; another wants a high level of complexity.
There is no unique “right answer.” Different modelers obtain different models. En-
gineers and geoscientists tend toward the view that a simple, speedily and robustly
worked model should be preferred. Geoscientists are often confronted with the fact
that many phenomena in nature, such as valleys, cannot be “exactly” defined in
a mathematical sense: where exactly does a cliff end and a valley begin? Mathe-
maticians want to establish the robustness of a model, owing to the view that such
results help to design and to validate suitable numerical solution procedures (Fowler
1997).

Some restrictions should be made in any case. Often a model is numerical, so
its solution has to be numerical as well. The computation process sets limits on the
applicability of a model. Fowler (1997) wrote that it is advisable to make a model
dimensionless, for it is then possible to determine whether different terms are large
or small in a rational way. Neglecting various small terms leads to simplification
and some insignificant variables or relations can be ignored.

Every modeler is confronted with the following dilemma: a complex model with
an expanding number of variables and relations seems to be close to the reality,
but is often not realizable from a numerical point of view. Briefly, a model can be
considered as “optimal,” if it suits its purpose and can be implemented.

The foregoing was about mathematical modeling from the point of view of a re-
searcher. But I would add some remarks from a psychological point of view. How
does one really derive a model? Some scientists only generate their own ideas,
ignore existing approaches, and finally develop a wheel after a great deal of ef-
fort. Sometimes it can even be amazing and is not absolutely false. Hersh (1997)
wrote: “One of my honored teachers (a world-class mathematician) astonished me
by saying he didn’t read mathematical papers. When something interesting happens,
somebody tells him. The same was reported of David Hilbert, in his day the world
champion of mathematics. He didn’t read.”

There are also scientists who start with an in-depth literature search long before
a phenomenon is identified. But, if you prefer to go through this thick wood, then
try to come back with a solution!

To find a happy medium is optimal.
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2.3 Is a Model Good or Bad: Some Arguments
for Discussing Results

We assume that a mathematical model is chosen and applied. An engineer or a
geoscientist has to comment on the final results. Should the chosen model be ac-
cepted or rejected? Fowler (1997) wrote about model validation:

Ideally, a mathematical model ends by returning to its origin. We look to see whether the
model and its analysis explain the phenomenon we are interested in. Does the predicted
curve fit the experimental data? Does the predicted stability curve agree with the exper-
imentally determined values? The whole art of mathematical modelling lies in its self-
consistency. Science is inaccurate if it derives its justification from the fact that apparently
arbitrary assumptions seem to work. And ultimately, the justification of a model is given by
the following: It helps us to understand an experimental observation. There is no unique or
“correct” model; but there are good models and bad models. The skill of modelling lies in
being able to judge which statement holds.

This is the point of view of a mathematician. He/she is familiar with special
methods to judge the quality of mathematical models in his/her mathematical reality.
But an engineer or a geoscientist may not be able to do so. Is there another way
for model validation beyond this “pure mathematical” one? Really, it is possible to
compare a Ford with a Mercedes without a degree in engineering. It is a matter of
sorting through arguments for such discussions.

We discuss some possible “measures of goodness” for the mathematical models
presented in this book.



Chapter 3
Some Real Problems and Their Solutions

Obviously, it is not possible to discuss all the real problems in this one book,
but we have included a range of practical problems that should be of interest
to engineers and geoscientists. When they have to deal with the kind of prob-
lem presented here, engineers and geoscientists often begin by leafing through a
pile of mathematics books. Our aim in this volume is explain the basic idea of a
mathematical approach in a comprehensible way and gently prepare our readers
so that they can access the specialized “hard” mathematics literature relevant to
their particular topic. We offer discussions concerning the advantages and disad-
vantages of certain approaches and comment on the similarities among them. At
the end of each section we present a summary of the approaches that have been
dealt with and mention the relevant “hard” literature for interested readers. We
try throughout to remain true to the central theme of this book: the presentation
of the superb elegance, the extensive usability, and the dynamic of mathematical
modeling.

3.1 Prediction of a Value: Creating, Refining, or Changing
Measurement Grids

Every analysis of spatial and temporal structures starts with data sampling and data
description, and the first errors can occur as early as during data sampling. These
errors can be roughly divided in two classes: systematic and random. The intrusion
of the systematic errors can often be avoided by using modern measurement tech-
nologies or by replacing unqualified staff. The influence of random errors can be
overcome by repeated measurements of the same type—the main argument for the
justification of the methods used in classical statistics.

But what happens if we have only a single occurrence of a spatial and tempo-
ral phenomenon? For example, we obtain temporal measurements of a process and
want to find a time-dependent structure? Or we have a table with results from some

9



10 3 Some Real Problems and Their Solutions

irregularly spaced oil-boreholes and have to produce a complete map of the oil re-
serves? The first problem leads to data fitting by a functional relation, whereas the
second results in the creation of a grid of data at nonobserved locations. Solving
these problems requires different kinds of predictions.

The first step consists of a description and a preanalysis of the data. The data
sets have to be checked for outlier values, as outliers can perceptibly distort the
structure of the characteristics that are used in mathematical modeling methods.
Detecting and filtering outliers constitutes a special field in mathematics. Mapping
the position of samples, plotting temporal data representations, and histograms can
help to obtain a first intuitive impression about the data structure. In the following,
we assume that the data sets are still free of outliers.

Now the data structure has to be interpreted. All of the causal relations among
the observed variables and all the deterministic spatial and temporal structures
have to be identified. This interpretation step has an enormous influence on model
building.

Based partly on intuition, partly on a priori information, and partly on our expe-
rience, we set a final frame, a space for our mathematical modeling. After we set the
mathematical model the real work can start.

3.1.1 Deterministic Point of View: Interpolation
and Approximation Methods

A deterministic point of view means modeling without considering randomness.
Briefly summarized, interpolation methods describe the prediction of a value within
the definition area of the sample points. Extrapolation methods deal with estimation
beyond this area. This is true for the prediction of a single value as well as for
the global prediction of values by a functional relation at any point in the given
area. Moreover, this functional relation should follow the so-called interpolation
demand, which means that the prediction method returns the true z-values (observed
measurements) at the given points (data nodes, data locations). If this assumption
is not fulfilled the functional relation leads to a smooth curve (or surface) going
through the set of observed values.

Interpolation (and extrapolation) by a functional relation is similar to approxima-
tion. Most approximation methods replace a given object (discrete sample points, a
complex function) by a more-or-less smooth and simple function. The approxima-
tion domain and the way in which the data points are distributed in this domain may
influence the choice of approximation method. For example, if the data values are
specified at the nodes of a regular mesh (grid data) in the approximation domain,
there are specific approaches that can exploit this situation.

Reasons and objectives for curve and surface fitting vary: for example, functional
representation, data prediction, data smoothing, and data reduction. If we assume
that the functional form of an approximating functional relation is more or less
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immaterial, then piecewise polynomials, as the simplest objects in mathematical
modeling, should be considered. .

In this context we roughly distinguish two classes of problems:

1. A single z-value has to be estimated (for mapping, for constructing grids, for
reconstructing a missing value).

2. A global prediction by a functional relation has to be made (for data reduction,
for generalization, for recognizing structures, for comparison of data sets, for a
detailed analysis of data structures).

For these classes, the following refining into subclasses by an initial data specifi-
cation is possible: (A) Data points are specified at the nodes of a regular mesh. (B)
Data points are irregularly, more-or-less chaotically placed.

Different roads lead not only to Rome, but also to solution of the problems that
we denote with 1.A, 1.B, 2.A, and 2.B. Here, we present the most familiar methods
for one-dimensional (1D) and two-dimensional cases (2D) separately. The presen-
tation of each approach starts with a simple example for better understanding its
basic idea. Further, we formulate the common rule. We denote the data points (data
locations, variables) by x (1D) or x,y (2D) and the data values (measurements) by z.

Problem 1.A. Prediction of the z-value at a single point for regularly spaced data
(measurements distributed over a mesh, regular time series).

Most estimation approaches are based on the same idea: a special weighting of
known z-values and their linear sum. We start with an explanation of this basic idea
by discussing the so-called generalized arithmetical mean.

3.1.1.1 Generalized Arithmetical Mean, 1D

Example 3.1.1.1 We consider the following temporal measurements:

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2

How can the value z0 = z(x0) at point P0 = x0 = 1.3 be estimated? Using basic
school knowledge we can get the mean of the z-values at its neighboring points x = 1
and x = 4. Obviously, this basic arithmetical mean leads to z0 = z(1.3) = 0.15. Here,
both measurements z = 0.1 and z = 0.2 are identically weighted. In other words, the
basic arithmetical mean of two z-values can be represented as the proportion of
the sum of measurements identically weighted with weight 1 to the sum of these
weights:

z0 = z(x0) =
(z1 ·1+ z2 ·1)

(1+1)
=

0.1+0.2
2

= 0.15 (*.1)

Thanks to the engineer’s intuition, we note that the point P0 = x0 = 1.3 is placed
nearer to x = 1 than to x = 4. Thus, it would be logical to propose that the z-value
at the point x = 1 influences the estimation of the z-value at point x = 1.3 more
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strongly than the z-value at the point x = 4. But now we need a measure to describe
this influence objectively. Without any additional information about the real nature
of this influence, we can consider the inverse distance from the point x = 1.3 to both
neighbors x = 1 and x = 4 for constructing weights. The influence of known z-values
on the z-value, which has to be predicted, becomes stronger with decreasing distance
between the data and the prediction point. Therefore, the generalized arithmetical
mean of two z-values corresponds to:

z0 = z(x0) =

(
z1 ·

1
0.3

+ z2 ·
1

2.7

)
(

1
0.3

+
1

2.7

) =
(z1 ·2.7+ z2 ·0.3)

(2.7+0.3)
=

0.1 ·2.7+0.2 ·0.3
3

= 0.11 (*.2)

This estimation method is also called one-dimensional linear interpolation—
“linear” because the spatial distribution of all predicted z-values between x = 1 and
x = 4 follows a line from point (x1, z1) = (1, 0.1) to point (x2, z2) = (4, 0.2).

But now what happens if all given z-values (not only the nearest neighbors of the
prediction point) are considered to estimate the z-value at P0? No problem: the basic
idea of inverse-distance-dependent weighting remains unchanged:

z0 = z(x0) =

(
z1 ·

1
0.3

+ z2 ·
1

2.7
+ z3 ·

1
5.7

+ z4 ·
1

8.7

)
(

1
0.3

+
1

2.7
+

1
5.7

+
1

8.7

)

=

(
0.1
0.3

+
0.2
2.7

+
−0.1
5.7

+
−0.2
8.7

)
(

1
0.3

+
1

2.7
+

1
5.7

+
1

8.7

) = 0.0919

(*.3)

Finally, we may limit the maximal distance between a data point and the point
of prediction where the influence still exists based upon an engineer’s or a geosci-
entist’s experience and practical knowledge. In this example, we assume that this
maximal distance should be equal to 6. Thus, we get an estimation based on only
three out of four given z-values as

z0 = z(x0) =

(
z1 ·

1
0.3

+ z2 ·
1

2.7
+ z3 ·

1
5.7

)
(

1
0.3

+
1

2.7
+

1
5.7

) =

(
0.1
0.3

+
0.2
2.7

+
−0.1
5.7

)
(

1
0.3

+
1

2.7
+

1
5.7

) = 0.1005

(*.4)

Moreover, we can use an influence function constructed based on experience
or practical knowledge instead of depending on inverse distances for determin-
ing weights. Furthermore, the influence of sample points may increase for certain
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distances and be constant for others. The well-known method of inverse squares
deals with an influence function in the following form:

f (d) =
1
d2 , d = |x− xo| (*.5)

where d is the distance between a data point xand the point of prediction x0. The
concrete choice of an influence function depends on the practical application.

The solutions (*.1)–(*.4) are obviously different from one another, but without
further information we do not know the best result. Applying different mathematical
models for the same problem can lead to different results.

Now we formulate the common rule for using the generalized arithmetical mean
in the 1D-case:

Let x1, x2, . . . ,xN be data points (locations) and z1, z2, . . . ,zN be z-values
(measurements) at these points. A continuous function f (d) defined for
d ∈ (o,∞) is called an influence function. The prediction of the z-value at
any point x0 yields

z(x0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z(xi) = zi, i f x0 = xi or di = |xi − x0| = 0, i = 1 . . . N

N
∑

i=1
zi · f (di)

N
∑

i=1
f (di)

, i f d1 > 0 . . . dN > 0
(3-1)

The simplest forms of the function f (d) are

f (d) =
1
d

and f (d) =
1
d2

3.1.1.2 Generalized Arithmetical Mean, 2D

The basic idea is similar to that in the 1D-case, namely the influence of the data
points is assumed to be dependent on the distance to the point of prediction. The
calculation of the distance between two points P0 = (x0,y0) and Pi = (xi,yi) in the

plane is obviously equal to di =
√

(xi − x0)
2 +(yi − y0)

2, i = 1 . . . N.

Example 3.1.1.2 We consider the following measurements:

z11 = z(P1) = z(1,0) = 0.1, z21 = z(P2) = z(4,0) = 0.2,

z12 = z(P3) = z(1,1) = −0.1, z22 = z(P4) = z(4,1) = −0.2.
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We have to estimate the z-value at the point P0 = (x0, y0) = (2, 0.5) using all four
sample points. At first, we calculate the distance from each data point to the point
of prediction: d1 = d3 = 1.1180, d2 = d4 = 2.0616.

Now we use the influence function f (d) = 1/d2 in order to predict the z-value at
point P0 = (x0, y0) = (2, 0.5):

z0 = z(P0) =

(
z1 ·

1
1.11802 + z2 ·

1
2.06162 + z3 ·

1
1.11802 + z3 ·

1
2.06162

)
(

2 · 1
1.11802 +2 · 1

2.06162

)

=

(
0.1

1.11802 +
0.2

2.06162 +
−0.1

1.11802 +
−0.2

2.06162

)
(

2 · 1
1.11802 +2 · 1

2.06162

) = 0

(*.1)

Certainly, other influence functions are possible. By the way, we can predict the
z-value at any point in the plane, not only within the given four measurements. How-
ever, is doubtful from a practical point of view if these four data points can affect the
z-value located, for example, at P0 = (x0, y0) = (200, 500), so such extrapolations
should be avoided.

We are allowed to consider additional data points—if such points are given—
beyond the grid cell including the point of estimation. The maximal distance at
which to describe the influence on the interesting point of the prediction should be
chosen intuitively or from a practical view.

There is also an analogous method often called bilinear interpolation for the
2D-case, but this method only works within a grid cell including the point of esti-
mation. The basic idea is similar to the linear interpolation for the 1D-case. Here,
however, the influence of the z-values (measurements) is determined by replac-
ing the distance between a node of a cell and the point of estimation with areas
A1, A2, A3, A4 of squares S1, S2, S3, S4, as shown in Fig. 3.1. The estimated value at
point P0 = (x0, y0) = (2, 0.5) is obtained by

z0 = z(P0) =

(
z1 ·

1
A1

+ z2 ·
1

A2
+ z3 ·

1
A3

+ z4 ·
1

A4

)
(

1
A1

+
1

A2
+

1
A3

+
1

A4

)

=

(
0.1
0.5

+
0.2
1

+
−0.1
0.5

+
−0.2

1

)
(

2 · 1
0.5

+2 · 1
1

) = 0

(*.2)
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Fig. 3.1 Bilinear interpolation over a square mesh: construction of special weights

Another way is

z0 = z(P0) =
(z1 ·A4 + z2 ·A3 + z3 ·A2 + z4 ·A1)

(A4 +A3 +A2 +A1)

=
(0.1 ·1+0.2 ·0.5+(−0.1) ·1+(−0.2) ·0.5)

(2 ·0.5+2 ·1)
= 0

Here the two methods lead to the same results because of the special data struc-
ture. The spatial distribution of the z-values predicted by bilinear interpolation at all
points within a grid cell follows a so-called hyperbolic paraboloid.

Now we formulate the common rule for using the generalized arithmetical mean
in the 2D-case:

Let (x1, y1) , (x2, y2) , . . . ,(xN , yN) be data points (locations) and
z1, z2, . . . ,zN be the z-values (measurements) at these points. A contin-
uous function f (d) defined with d ∈ (o, ∞) is called the influence function.
The prediction of the z-value at any point (x0, y0) yields

z(x0,y0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z(xi,yi) = zi, i f P0 = Pi or di =
√

(xi − x0)
2 +(yi − y0)

2 = 0,

N
∑

i=1
zi · f (di)

N
∑

i=1
f (di)

, i f d1 > 0 . . . dN > 0, i = 1 . . . N
(3-2)
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The simplest forms of the function f (d) are

f (d) =
1
d

and f (d) =
1
d2

If only the four nodes P1, P2, P3, and P4 of a cell are considered in the z-value
estimation at point P0 within this cell of the data grid, the method of bilinear inter-
polation can be used:

The common rule for using bilinear interpolation (2D-case) is as follows:

Let (x1, y1) , (x2, y2) , . . . ,(x4, y4) be nodes of a cell of a data grid (locations)
and z1, z2, . . . ,z4 be z-values (measurements) at these points. The prediction
of the z-value at any point (x0, y0) yields

z(x0, y0)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zi, i f (x0, y0) = (xi, yi) or Ai = |(xi − x0) · (yi − y0)| = 0, i = 1 . . . 4

4
∑

i=1
zi ·

1
|(xi − x0) · (yi − y0)|

4
∑

i=1

1
|(xi − x0) · (yi − y0)|

, i f A1 > 0, . . . ,A4 > 0,

(3-3)

Problem 1.B. Prediction of the z-value at a single point has to be done for irregu-
larly spaced data (chaotically distributed measurements).

The first approach is the use of the generalized arithmetical mean as given for
Problem 1.A., and this seems to be the most relevant method for the 1D-case.

For the 2D-case there is a second possibility, which starts with the so-called trian-
gulation of sample points. This means that the data points are joined by lines in such
a way that a complete covering of the defined area of measurements is achieved.
This covering consists solely of triangles; the triangulation procedure is not trivial,
and certain conditions have to be fulfilled in order to get an “optimal” triangular
network or triangular mesh. Currently, this procedure is available in most software
tools for engineers and geoscientists that deal with spatial or geographic data. After
triangulation, the predicted value can be obtained following a principle similar to
the one described for bilinear interpolation.

Example 3.1.1.3 We consider a single triangle from a triangular mesh including the
prediction point P0 = (0.5, 0.3) with following measurements:

z1 = z(P1) = z(0.0, 0.0) = 0.1, z2 = z(P2) = z(1.0, 0.0) = 0.2

and
z3 = z(P3) = z(0.6, 0.9) = −0.5.
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Analogously to the bilinear interpolation for a square mesh, the estimation of
the z-value at point P0 = (0.5, 0.3) within the triangle P1P2P3 considers the areas
A1, A2, A3 of the corresponding sets S1, S2, S3. Each set is placed opposite the point
with the same number (see Fig. 3.2), so it may be assumed that the influence of
given z-values on the estimation of the unknown z-value at point P0 increases with
expanding corresponding areas. Thus, we obtain

z0 = z(P0) =

(
z1 ·A1 + z2 ·A2 + z3 ·A3

)
(A1 +A2 +A3)

=
(0.1 ·0.165+0.2 ·0.135+(−0.5) ·0.15)

0.45
= −0.0315

(*.1)

Here we can apply the following very useful equation for calculating the triangle
area based on the so-called vector product:

A1 =
1
2
· |P2P3 ×P2P0| =

1
2
·

∣∣∣∣∣∣
i j k

x3 − x2 y3 − y2 0
x0 − x2 y0 − y2 0

∣∣∣∣∣∣
=

1
2
· |(x3 − x2)(y0 − y2)− (x0 − x2)(y3 − y2)|

=
1
2
· |(0.6−1.0)(0.3−0.0)− (0.5−1.0)(0.9−0.0)| = 0.165,

A2 =
1
2
· |P1P3 ×P1P0| = 0.135, A3 =

1
2
· |P1P2 ×P1P0| = 0.15

(*.2)

Fig. 3.2 Bilinear interpolation for a triangular mesh: construction of special weights
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Problem 2.A. Regular data (measurements on a mesh/grid) should be interpolated
(or described) applying a functional relation.

There are many solution methods available for this problem. Sets of regular
data (data grids) are more “comfortable”—especially with respect to the view-
point of a software developer—for approximation by a functional relation com-
pared with irregular data sets. Here we want to distinguish two classes of methods.
The first class includes approaches for which the interpolation demand has to be
fulfilled (Problem 2.A-D). The methods from the second class renounce this de-
mand (Problem 2A-ND).

Problem 2.A-D Regular data (measurements on a mesh, a grid) should be inter-
polated (be described) applying a functional relation with exactly reproduced mea-
surements.

Again, at first the “good old” generalized arithmetical mean described above can
be used. We replace the concrete coordinates x0 (1D-case) and (x0, y0) (2D-case)
of the single point P0, where the z-value has to be predicted, by “free” coordinates
x for the 1D-case and (x, y) for the 2D-case. With this replacement and the use of
(3-1) and (3-2), the necessary functional relation based on the generalized arithmeti-
cal mean can be easily obtained. This method is popular in geodetic applications.
Chapter 5 includes examples of code for implementation.

The alternative method goes back on the great French mathematician Lagrange
and is called Lagrange’s interpolation method.

3.1.1.3 Lagrange’s Interpolation Method

We start with the same trivial data sets as in Examples 3.1.1.1 and 3.1.1.2 and dis-
tinguish the 1D-case and 2D-case for better understanding as well as for comparing
results.

Example 3.1.1.1′ (1D-Case) Again, we consider the following temporal measure-
ments:

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2

What functional relation describes these data points so that the z-values obtained at
given points agree with the estimation? The basic idea of Lagrange’s interpolation
method is also based on the generalized arithmetical mean explained earlier. We
have to set proper variable weights for the given z-value in such a way that the
known z-values would be exactly reproduced at their location points. Thus, we are
looking for weights that
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z(x) = z1 ·w1 (x)+ . . . + z4 ·w4 (x) =
4
∑

i=1
zi ·wi (x)

= 0.1 ·w1 (x)+0.2 ·w2 (x)+(−0.1) ·w3 (x)+(−0.2) ·w4 (x) ,

wi (x) =
{

1, x = xi

0, x = x j, j �= i, i, j = 1 . . . 4

(*.1)

Which weights could fulfill this condition? Let us test the following weights
constructed according to Lagrange’s concept:

w1 (x) =
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
=

(x−4)(x−7)(x−10)
(1−4)(1−7)(1−10)

,

w2 (x) =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
=

(x−1)(x−7)(x−10)
(4−1)(4−7)(4−10)

,

(*.2)

w3 (x) =
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
=

(x−1)(x−4)(x−10)
(7−1)(7−4)(7−10)

,

w4 (x) =
(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)
=

(x−1)(x−4)(x−7)
(10−1)(10−4)(10−7)

.

(*.3)

It can be seen that we get the weight w1 (x1) = 1 in (*.2) by replacing the variable
x by x = x1 = 1. At the same time the other weights in (*.2) and (*.3) are equal to
zero. Using these weights we get

z(x1) = 0.1 ·1+0.2 ·0+(−0.1) ·0+(−0.2) ·0 = 0.1 = z1 , (*.4)

which indicates that the interpolation demand at the point x = x1 = 1 has been
fulfilled. Analogously, after replacing the variable x by x = x2 = 4, x = x3 = 7,
x = x4 = 10, we get

w2 (x2) = w2 (4) = 1, w1 (4) = w3 (4) = w4 (4) = 0 ⇒ z(x2) = z2 = 0.2 ,

w3 (x3) = w3 (7) = 1, w1 (7) = w2 (7) = w4 (7) = 0 ⇒ z(x3) = z3 = −0.1 ,

w4 (x4) = w4 (10) = 1, w1 (10) = w2 (10) = w3 (10) = 0 ⇒ z(x4) = z4 = −0.2

.

(*.5)

Summarizing, we have

z(x) = 0.1 · (x−4)(x−7)(x−10)
(1−4)(1−7)(1−10)

+0.2
(x−1)(x−7)(x−10)
(4−1)(4−7)(4−10)

+(−0.1) · (x−1)(x−4)(x−10)
(7−1)(7−4)(7−10)

+(−0.2) · (x−1)(x−4)(x−7)
(10−1)(10−4)(10−7)

(*.6)

The function (*.6) is the functional relation we are looking for. An interpo-
lation polynomial of degree three (see Fig. 3.3), it describes the structure of the
given data points so that the z-values obtained at these points are reproduced by the
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Fig. 3.3 An interpolating polynomial of degree three (bold) and a cubic spline (dashed) for the
data set from Example 3.1.1.1

estimation. By using any other x-value the corresponding z-value can be predicted.
This polynomial is only an exemplary polynomial of degree three that fits this data
set and simultaneously fulfills the interpolation demand. Of course, there are other
analytical functions that fulfill this condition.

Now, the common rule for Lagrange’s interpolation method (1D-case) can be
formulated:

Let x1, x2, . . . ,xN be data points (locations) and z1, z2, . . . ,zN be the z-values
(measurements) at these points. A polynomial fitting these data so that the
interpolation demand is fulfilled has the following form:

z(x) =
N

∑
i=1

zi ·wi (x) ,

wi (x) =
(x− x1)(x− x2) . . . (x− xi−1)(x− xi+1) . . . (x− xN)

(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xN)
, i = 1, . . . ,N

wi (x j) = δi j =
{

1, j = i
0, j �= i

(3-4)

Example 3.1.1.2′ (2D-Case) Again, we consider the following measurements:
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z11 = z(P1) = z(1,0) = 0.1, z21 = z(P2) = z(4,0) = 0.2 ,

z12 = z(P3) = z(1,1) = −0.1, z22 = z(P4) = z(4,1) = −0.2 .

Following the 1D-case, we are asking for a functional relation that fits the data
set in such a way that the interpolation demand is fulfilled. Thus, the given measured
z-values have to be reproduced exactly. For simplification of further equations, we
number the z-values and points with double indices 11, 21, 12, and 22 corresponding
to the ordered numbering of x- and y-values in the plane. The special weighting of
measured z-values is also used here:

z(x,y) = z11 ·w11 (x,y)+ z12 ·w12 (x,y)+ z21 ·w21 (x,y)+ z22 ·w22 (x,y) =
2

∑
i, j=1

zi j ·wi j (x,y)

= 0.1 ·w11 (x,y)+0.2 ·w21 (x,y)+(−0.1) ·w21 (x,y)+(−0.2) ·w22 (x,y) ,

wi j (x) =
{

1, x = xi, y = y j

0, x = xk, y = yl , k �= i, l �= j; i, j,k, l = 1,2

(*.1)

We construct the variable weights by:

w11 (x,y) =
(x− x2)(y− y2)

(x1 − x2)(y1 − y2)
=

(x−4)(y−1)
(1−4)(0−1)

,

w12 (x,y) =
(x− x2)(y− y1)

(x1 − x2)(y2 − y1)
=

(x−4)(y−0)
(1−4)(1−0)

,

(*.2)

w21 (x,y) =
(x− x1)(y− y2)

(x2 − x1)(y1 − y2)
=

(x−1)(y−1)
(4−1)(0−1)

,

w22 (x,y) =
(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
=

(x−1)(y−0)
(4−1)(1−0)

.

(*.3)

Analogously to Example 3.1.1.1′ it can be seen that the interpolation demand at
given points is fulfilled. Summarizing, we have

z(x,y) = 0.1 · (x−4)(y−1)
(1−4)(0−1)

+0.2 · (x−4)(y−0)
(1−4)(1−0)

+(−0.1) · (x−1)(y−1)
(4−1)(0−1)

+(−0.2) · (x−1)(y−0)
(4−1)(1−0)

. (*.4)

Function (*.4) is the functional relation we are looking for. Such two-dimensional
polynomials are called incomplete polynoms of degree two, because the terms cor-
responding to x2 and y2 are omitted. Further, this is a hyperbolic paraboloid. It de-
scribes the structure of the given data points so that the z-values obtained at the given
points remain unchanged. Using any other value x,y, we can predict the correspond-
ing z-value. Apart from the proposed function, there are other two-dimensional poly-
nomials suitable for fitting to this data set.
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The common rule for Lagrange’s interpolation method (2D-case) reads as
follows:

Let x1, . . . ,xN , y1, . . . ,yM be coordinates of data points (locations) and
z11 (x1, y1) = z11, . . . ,z1M (x1, yM) = z1M, . . . ,zNM (xN , yM) = zNM be the z-
values (measurements on a mesh) at these points. The two-dimensional poly-
nomial fitting this data set so that the interpolation demand is fulfilled has the
following form:

z(x, y) =
N

∑
i=1

M

∑
j=1

zi jwi j (x, y) with wi j (x, y) = ϕi (x) ·ϕ j (y) ,

ϕi (x) =
(x− x1)(x− x2) . . . (x− xi−1)(x− xi+1) . . . (x− xN)

(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xN)
, i = 1 . . . N

ϕ j (y) =
(y− y1)(y− y2) . . .

(
y− y j−1

)(
y− y j+1

)
. . . (y− yM)

(y j − y1)(y j − y2) . . .
(
y j − y j−1

)(
yi − y j+1

)
. . . (y j − yM)

, j = 1 . . . M

(3-5)

Remark: Lagrange’s interpolation method has advantages and disadvantages. The
simple calculation of weights and a proper “stability” corresponding to changing
z-values over a fixed (x, y)-grid with calculated weights remaining unchanged are
among its advantages. This method can be recommended for investigations based
such spatial data sampled on the same grid of coordinates, for example, meteorolog-
ical data sampled during a temporal interval. The main disadvantage of this method
corresponds to the necessity to recalculate the weights completely if the grid is re-
fined by considering additional measurements.

This disadvantage can be removed for the 1D-case by using another interpolation
equation, which goes back to the great British scientist Newton.

3.1.1.4 Newton’s Interpolation Equation

We go back to Example 3.1.1.1 in order to demonstrate the basic idea of this method.

Example 3.1.1.1′′ (1D-Case) We consider the following temporal measurements:

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2

What is the functional relation describing this data sampling so that the z-values
obtained at the measurement points remain unchanged? Moreover, the obtained
functional relation should be changed minimally if the original data set is refined
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by adding a new measurement z5 = z(13) = −0.3. Here we show a recursive
approach to obtain such a functional relation. We start with the first measurement
and set

z(x) = b1 = z(1) = 0.1 (*.1)

This relation still fulfills the interpolation demand at point x1, but not at the other
points. In the second step we refine this relation to

z(x) = b1 +b2 · (x− x1) = 0.1+b2 · (x−1) (*.2)

It can be seen that this relation still fulfills the interpolation demand at the point
x1 because the second summand (in parentheses) is equal to zero at this point.
We choose the parameter b2 so that z(4) = 0.1 + b2 · (4−1) = 0.2 holds, ful-
filling the interpolation demand at point x2. This leads to b2 = 1/30 and z(x) =
0.1 + (1/30)(x− 1), which fulfills the interpolation demand at both points x1 and
x2, but still not at points x3 and x4. We continue refining to get

z(x) = b1 +b2 · (x− x1)+b3 · (x− x1)(x− x2)
= 0.1+ 1

30 · (x−1)+b3 · (x−1)(x−4) (*.3)

Now we calculate b3 from

z(7) = 0.1+
1

30
· (7−1)+b3 (7−1)(7−4) = −0.1 .

After this step we have:

z(x) = 0.1+
1
30

· (x−1)+
(
− 1

45

)
· (x−1)(x−4) .

In the last step we assume

z(x) = b1 +b2 · (x− x1)+b3 · (x− x1)(x− x2)+b4 · (x− x1)(x− x2)(x− x3)

= 0.1+
1

30
· (x−1)+

(
− 1

45

)
· (x−1)(x−4)+b4 · (x−1)(x−4)(x−7)

(*.4)

and calculate b4 from

z(10) = 0.1+ 1
30 · (10−1)+

(
− 1

45

)
· (10−1)

(10−4)+b4 · (10−1)(10−4)(10−7) = −0.2 (*.5)

The following functional relation is the one that we are looking for:

z(x) = 0.1+
1
30

· (x−1)+
(
− 1

45

)
· (x−1)(x−4)+

1
270

· (x−1)(x−4)(x−7) .

(*.6)
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After we simplify, we can easily prove that polynomial (*.6) is the same as the
one obtained by Lagrange’s interpolation method in Example 3.1.1.1′, and this is
due to the fact that there is a unique polynomial of degree three that goes exactly
through the four given points in the plane.

In contrast to Lagrange’s method, Newton’s interpolation method is stable with
respect to refining a data grid. For example, if we obtain an additional measurement
z5 = z(13) = −0.3, we must continue the above procedure after evaluating (*.6) by
setting an additional parameter b5:

z(x) = 0.1+
1

30
· (x−1)+

(
− 1

45

)
· (x−1)(x−4)+

1
270

· (x−1)(x−4)(x−7)

+b5 · (x−1)(x−4)(x−7)(x−10)
(*.7)

The interested reader can easily calculate this parameter from

z(13) = 0.1+
1
30

· (13−1)+
(
− 1

45

)
· (13−1)(13−4)

+
1

270
· (13−1)(13−4)(13−7)+b5 · (13−1)(13−4)(13−7)(13−10) = −0.3

(*.8)

Remark leading to the next approach: Lagrange’s and Newton’s interpolation meth-
ods are based on polynomials. Obviously, the degree of these polynomials increases
for expanding data sets. This effect logically occurs because the interpolation de-
mand has to be fulfilled. Interpolation polynomials of high degree have the un-
desirable tendency to oscillate a great deal between the measurement points, so
the degree of an interpolation polynomial should be reduced to avoid such oscil-
lation. Using so-called splines offers possible solution for this dilemma. Splines
are piecewise continuous functions with special smoothing and oscillation-damping
properties.

We start by explaining the basic idea of so-called cubic splines in the 1D-case.

3.1.1.5 Cubic Splines (1D-Case)

The basic idea of classical splines in the 1D-case corresponds to the linear inter-
polation of its second derivatives at the measurement locations. We start with an
example and formulate the common rule for continuous 1D-splines with piecewise
cubic functions later. A cubic function is an alternative designation for a polynomial
of degree three.

Example 3.1.1.1′′′ (1D-Case) We return to our well-known temporal measurements:

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2
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We search a group of piecewise cubic functions. Each function exists only in an
interval between two adjoining locations of measurements. The passage from one
function to another should be twice differentiable.

Thus, we start with a group of functions S1 (x) , S2 (x) , S3 (x) that mathemati-
cians use to denote a “piecewise determined function” S (x), called the spline
function or the spline. We have four measurements, so there are three adjoining
intervals:

S (x) =

⎧⎨
⎩

S1 (x) , x ∈ [1,4] ,
S2 (x) , x ∈ [4,7] ,
S3 (x) , x ∈ [7,10]

(*.1)

We denote the unknown second derivatives at the location points by M1,M2,
M3,M4, assuming that these derivatives exist and these values have to be eval-
uated in order to construct the corresponding spline. As the passages are twice
differentiable,

d2

dx2 S1 (4) =
d2

dx2 S2 (4) = M2,
d2

dx2 S2 (7) =
d2

dx2 S3 (7) = M3 (*.2)

must hold.
We set the first and the last second derivative (outer second derivatives) equal to

zero: M1 = M4 = 0. This is done because the number of equations has to be equal
to the number of variables that have to be determined. If other values of the outer
second derivatives are known, for example, from a practical view, they can be used
instead of the zeros.

Further, the second derivative at point x between the measurement locations is
obtained by the following linear interpolation of appointed second derivatives (see
Example 3.1.1.1):

d2

dx2 S (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 · (x2 − x)
(x2 − x1)

+M2 ·
(x− x1)
(x2 − x1)

= M2 ·
(x−1)
(4−1)

, x ∈ [1,4] ,

M2 ·
(x3 − x)
(x3 − x2)

+M3 ·
(x− x2)
(x3 − x2)

= M2 ·
(7− x)
(7−4)

+M3 ·
(x−4)
(7−4)

, x ∈ [4,7] ,

M3 ·
(x4 − x)
(x4 − x3)

+0 · (x− x3)
(x4 − x3)

= M3 ·
(10− x)
(10−7)

, x ∈ [7,10]

(*.3)

By setting x1 = 1, x2 = 4, x3 = 7, x4 = 10, it can be easily proved that this linear
interpolation reproduces the “exact values” M1, M2, M3, M4 of the second deriva-
tives at the passage points. Owing to this interpolation, the unwanted oscillations
between measurements can be damped.

Now, we can reconstruct the first derivatives of spline S (x) from the second
derivatives by integrating (*.3):
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d
dx

S (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

M2 ·
(x−1)2

(4−1)
+A1, x ∈ [1,4] ,

−1
2

M2 ·
(7− x)2

(7−4)
+

1
2

M3 ·
(x−4)2

(7−4)
+A2, x ∈ [4,7] ,

−1
2

M3 ·
(10− x)2

(10−7)
+A3, x ∈ [7,10]

(*.4)

where A1, A2, A3 are constants. The reader may convince himself or herself that
(*.4) is true by redifferentiating it to (*.3). Further, we can reconstruct the spline
S (x) using the same principle of integration, but in this case we integrate (*.4) and
obtain

S (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
6

M2 ·
(x−1)3

(4−1)
+A1 (x−1)+B1, x ∈ [1,4] ,

1
6

M2 ·
(7− x)3

(7−4)
+

1
6

M3 ·
(x−4)3

(7−4)
+A2 (x−4)+B2, x ∈ [4,7] ,

1
6

M3 ·
(10− x)3

(10−7)
+A3 (x−7)+B3, x ∈ [7,10]

(*.5)

where B1, B2, B3 are constants that would vanish if we differentiate (*.5) in
order to get (*.4). All the constants A1, A2, A3 and B1, B2, B3 using M2, M3 can
be evaluated clearly by considering six additional conditions. The interpolation
demand for all four measurement locations offers us these conditions because
each “piece” S1 (x) , S2 (x) , S3 (x) of the spline S (x) produces exactly two
equations:

S1 (1) = z(1) = 0.1, S1 (4) = z(4) = 0.2 ,
S2 (4) = z(4) = 0.2, S2 (7) = z(7) = −0.1 ,
S3 (7) = z(7) = −0.1, S3 (10) = z(10) = −0.2

(*.6)

Now, let us consider the second row of equations (*.6) in detail:

S2 (4) = z(4) = 0.2, S2 (7) = z(7) = −0.1 ⇒⎧⎪⎪⎨
⎪⎪⎩

1
6

M2 ·
(7−4)3

(7−4)
+

1
6

M3 ·
(4−4)3

(7−4)
+A2 (4−4)+B2 = z2 = 0.2 f or x = 4

1
6

M2 ·
(7−7)3

(7−4)
+

1
6

M3 ·
(7−4)3

(7−4)
+A2 (7−4)+B2 = z3 = −0.1 f or x = 7

(*.7)

After some simplification we obtain
{

1
6 M2 ·32 +B2 = z2 = 0.2 f or x = 4
1
6 M3 ·32 +A2 (7−4)+B2 = z3 = −0.1 f or x = 7

(*.7′)
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Finally:
⎧⎪⎨
⎪⎩

B2 = z2 −
9
6

M2 = 0.2− 3
2

M2

A2 =
1
3

(
z3 − z2 −

32

6
(M3 −M2)

)
=

1
3

(z3 − z2)−
1
2

(M3 −M2) = − 3
30

− 1
2

(M3 −M2)

(*.7′′)

For the other equations in (*.6):

⎧⎪⎨
⎪⎩

B1 = z1 −
9
6

M1 = 0.1− 9
6

M1 = 0.1

A1 =
1
3

(
z2 − z1 −

9
6

(M2 −M1)
)

=
1
3

(z2 − z1)−
1
2

(M2 −M1) =
1

30
− 1

2
(M2 −M1)

(*.8)
hold and we further obtain

⎧⎪⎨
⎪⎩

B3 = z3 −
9
6

M3 = −0.1− 3
2

M3

A3 =
1
3

(
z4 − z3 −

9
6

(M4 −M3)
)

=
1
3

(z4 − z3)−
1
2

(M4 −M3) = − 1
30

+
1
2

M3

(*.8′)

Thus, if we can determine the unknown second derivatives M2,M3, we have the
complete spline. To ensure smooth passage between the functions S1 (x) ,S2 (x) ,
S3 (x) it is necessary that the first derivatives of adjoining functions at measurement
locations be equal:

d
dx

S1 (4) =
d
dx

S2 (4) ,
d
dx

S2 (7) =
d
dx

S3 (7) (*.9)

This leads to
⎧⎪⎪⎨
⎪⎪⎩

1
2

M2 ·
(4−1)2

(4−1)
+A1 = −1

2
M2 ·

(7−4)2

(7−4)
+

1
2

M3 ·
(4−4)2

(7−4)
+A2, f or x = 4 ,

−1
2

M2 ·
(7−7)2

(7−4)
+

1
2

M3 ·
(7−4)2

(7−4)
+A2 = −1

2
M3 ·

(10−7)2

(10−7)
+A3, f or x = 7

(*.9′)

After simplification and setting A1,A2,A3 as obtained above, we get
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2

M2 +A1 = −3
2

M2 +A2 ⇒
3
2

M2 +
1
3

(
0.1− 9

6
M2

)
= −3

2
M2 +

1
3

(
−0.3− 9

6
(M3 −M2)

)

3
2

M3 +A2 = −3
2

M3 +A3 ⇒
3
2

M3 +
1
3

(
−0.3− 9

6
(M3 −M2)

)
= −3

2
M3 +

1
3

(
−0.1+

9
6

M3

) .
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Now we have two linear equations [or a linear system of equations (LSE)] with
two unknown variables M2, M3. A well-known mathematical theorem from calcu-
lus ensures that a solution of this LSE exists. In our case the solution is given by
M2 = 6/75, M3 = 4/75. Thus, after using these values in (*.7′′), (*.8), and (*.8′)
for evaluating the constants A1, A2, A3 and B1, B2, B3, the cubic spline (*.10) is
calculated [see (*.1) and Fig. 3.3]:

S (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.08
6

· (x−1)3

(4−1)
+0.0733(x−1)+0.1, x ∈ [1,4] ,

−0.08
6

· (7− x)3

(7−4)
+

0.0533
6

· (x−4)3

(7−4)
−0.1667(x−4)+0.32, x ∈ [4,7] ,

0.0533
6

· (10− x)3

(10−7)
−0.0067(x−7)−0.18, x ∈ [7,10]

(*.10)

The common rule for calculating 1D-cubic splines reads as follows:

Let interval [a,b] be divided into N − 1 subintervals via Δ =
{a = x1 < x2 < .. . < xN = b}. The cubic spline is a twice-differentiable,
piecewise cubic function of following form:

S (x) =

⎧⎨
⎩

S1 (x) , x ∈ [x1,x2] ,
. . .
SN−1 (x) , x ∈ [xN−1,xN ]

(3-6)

with

S (x) = Mj

(
x j+1 − x

)3

6h j+1
+Mj+1

(x− x j)
3

6h j+1
+A j (x− x j)+B j, j = 1, . . . ,N −1

f or x ∈
[
x j,x j+1

]
with

h j+1 = x j+1 − x j ,

Mj =
d2

dx2 S (x j) , M1 = MN = 0

(3-7)
and M2, . . . ,MN−1 are solutions of the following LSE:

⎛
⎜⎜⎜⎜⎜⎜⎝

2 λ2 0 . . .
μ3 2 λ3 0 . . .
0 μ4 2 λ4 0 . . .
. . .
0 . . . 0 μN−2 2 λN−2

0 0 . . . 0 μN−1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

M2

M3

. . .

. . .

. . .
MN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

d2

d3

. . .

. . .
..

dN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(3-8)

where following abbreviations are used:
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λ j =
h j+1

h j +h j+1
, μ j = 1−λ j,

d j =
6

h j +h j+1

{
z j+1 − z j

h j+1
− z j − z j−1

h j

}
, j = 2, . . . ,N −1

A j =
z j+1 − z j

h j+1
− h j+1

6

(
Mj+1 −Mj

)
,

B j = y j −Mj
h2

j+1

6
,

j = 1, . . . ,N −1.

Remark: As noted above the solution of LSE (3-8) is ensured by theoretical
considerations. Moreover, if the data come from an unknown function f (x), the
corresponding cubic spline S (x) in a given interval [a, b] converges to the func-
tion f (x) in this interval. Owing this fact, the unwanted oscillations between data
locations can be damped. These facts substantiate the obvious advantages of this
approach. The main disadvantage of this method is the laborious numerical solu-
tion of (3-8) for large data sets. An additional measurement leads to a complete
recalculation of the cubic spline.

For the two-dimensional case there are similar methods. The interested reader
can find a detailed presentation of spline theory in Dierckx (1993). Some further
interpolation and approximation methods are discussed in Chap. 4.

Problem 2A-ND Regular data (measurements on a mesh/grid) should be interpo-
lated (be described) with a functional relation roughly describing the data structure.

Here the interpolation demand is omitted. Thus, a functional relation has to be ob-
tained that describes the structure without exact reproduction of the z-values (mea-
surements) at their locations. This approach is of use if measurements are distorted
through random mistakes. This sort of interpolation helps to filter a so-called exter-
nal drift in data. The key word for such approaches is “regression.” More on this
topic can be found in Sect. 3.2.1.

3.1.1.6 Polynomial Regression (1D-Case)

Often the simplest approach, linear regression, where a linear structure of the given
data is assumed, is applied. We discuss the basic idea of this regression approach
in detail in what follows and present the common rule for polynomial regressions
later.

Example 3.1.1.1′′′′ (1D-Case) We return to the temporal measurements:

z1 = z(1) = 0.1, z2 = z(4) = 0.2,z3 = z(7) = −0.1, z4 = z(10) = −0.2
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and look for a linear function z(x) = ax+b that can describe the data structure and
fits these data well. The parameters a and b have to be determined or estimated to
obtain this linear function.

First, we must introduce a goodness measure for our approximation. There are an
infinite number of lines going through and crossing the given points. Which of these
is the best line? The answer comes from the great German mathematician Gauss,
who proposed the following measure: the best line is the line that leads to least
squares of differences obtained at the data locations. Exactly the squares and not
any higher degrees of differences are considered because the linearity of the final
system of equations should hold.

Let us formulate this problem in mathematical language. The parameters a and b
have be determined so that the following function of two variables,

F(a,b) =
4

∑
i=1

(axi +b− zi)
2

= (a ·1+b−0.1)2 +(a ·4+b−0.2)2 +(a ·7+b− (−0.1))2

+(a ·10+b− (−0.2))2

→ min
a,b

(*.1)

is minimized with respect to a and b.
From calculus we know that the following necessary condition must be fulfilled:
⎧⎪⎪⎨
⎪⎪⎩

∂F
∂a

=
4
∑

i=1
2(axi +b− zi)xi = 0

∂F
∂b

=
4
∑

i=1
2(axi +b− zi) ·1 = 0

⇒

⎧⎪⎪⎨
⎪⎪⎩

4
∑

i=1
(axi +b− zi)xi = 0

4
∑

i=1
(axi +b− zi) ·1 = 0

⇒ (*.2)

{
(a ·1+b−0.1) ·1+(a ·4+b−0.2) ·4+(a ·7+b− (−0.1)) ·7+(a ·10+b− (−0.2)) ·10 = 0
a ·1+b−0.1+a ·4+b−0.2+a ·7+b− (−0.1)+a ·10+b− (−0.2) = 0

(*.3)

It can be seen that this system of equations is linear with respect to the unknown
parameters a and b. The following linear equation system is given:

⎧⎨
⎩

a
4
∑

i=1
x2

i +b
4
∑

i=1
xi =

4
∑

i=1
zixi

a
4
∑

i=1
xi +b ·4 =

4
∑

i=1
zi

⇒

⎛
⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
xi

4
∑

i=1
xi 4

⎞
⎟⎟⎠ ·

(
a
b

)
=

⎛
⎜⎜⎝

4
∑

i=1
zixi

4
∑

i=1
zi

⎞
⎟⎟⎠

{
a ·
(
12 +42 +72 +102

)
+b · (1+4+7+10) = 0.1+0.2 ·4+(−0.1) ·7+(−0.2) ·10

a · (1+4+7+10)+b ·4 = 0.1+0.2−0.1−0.2
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The matrix representation leads to the solution:
⎛
⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
xi

4
∑

i=1
xi 4

⎞
⎟⎟⎠ ·

(
a
b

)
=

⎛
⎜⎜⎝

4
∑

i=1
zixi

4
∑

i=1
zi

⎞
⎟⎟⎠ ⇒

(
a
b

)
=
(

166 22
22 4

)−1

·
(
−1.8
0.0

)
=
(
−0.04
0.22

)

(*.3′)

Finally, we get a = −0.04,b = 0.22. If we assume a linear structure of the data,
the following linear relation describes the relation between z and x:

z(x) = −0.04x+0.22 (*.4)

Figure 3.4 shows (*.4) approximating the given data points. This linear function
leads to the least squares of the differences between predicted and real z-values at
the data locations. The sum of least squares of these differences can be evaluated
using (*.1). With a = −0.04, b = 0.22 in (*.1), we get

SumLR = (−0.04 ·1+0.22−0.1)2 +(−0.04 ·4+0.22−0.2)2

+(−0.04 ·7+0.22− (−0.1))2 +(−0.04 ·10+0.22− (−0.2))2 = 0.028
(*.5)

The value from (*.5) can be used as the goodness measure of our linear model
for describing the data structure. Its comparison with

N · (zmax − zmin)
2 = 4 · (0.2− (−0.2))2 = 0.64 (*.6)

is especially meaningful: If these values are almost equal, that is, if they have the
same order in a mathematical sense, then our linear model is bad and should be

Fig. 3.4 Linear regression for the data set from Example 3.1.1.1
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rejected. In our case we obtained an acceptable model because the value from (*.5)
is smaller than the value from (*.6) by approximately one order of magnitude.

First, we formulate the common rule for applying linear regression (1D-case):

Given the data z1 = z(x1) , .. ,zN = z(xN), a line with the form z(x) = ax + b
has to be determined in such a way that the following necessary condition is
fulfilled:

F(a,b) =
N

∑
i=1

(axi +b− zi)
2 → min

a,b

This condition leads to⎧⎪⎪⎨
⎪⎪⎩

∂F
∂a

=
N
∑

i=1
2(axi +b− yi)xi = 0

∂F
∂b

=
N
∑

i=1
2(axi +b− yi) ·1 = 0

⇒

⎧⎪⎪⎨
⎪⎪⎩

∂F
∂a

=
N
∑

i=1
(axi +b− yi)xi = 0

∂F
∂b

=
N
∑

i=1
(axi +b− yi) ·1 = 0

and⎧⎪⎪⎨
⎪⎪⎩

a
N
∑

i=1
x2

i +b
N
∑

i=0
xi =

N
∑

i=1
yixi

a
N
∑

i=1
xi +b ·N =

N
∑

i=1
yi

⇒

⎛
⎜⎜⎝

N
∑

i=1
x2

i

N
∑

i=1
xi

N
∑

i=1
xi N

⎞
⎟⎟⎠ ·

(
a
b

)
=

⎛
⎜⎜⎝

N
∑

i=1
zixi

N
∑

i=1
zi

⎞
⎟⎟⎠

The unknown parameters a and b are obtained by

(
a
b

)
=

⎛
⎜⎜⎝

N
∑

i=1
x2

i

N
∑

i=1
xi

N
∑

i=1
xi N

⎞
⎟⎟⎠

−1

·

⎛
⎜⎜⎝

N
∑

i=1
zixi

N
∑

i=1
zi

⎞
⎟⎟⎠ (3-9)

The line z(x) = ax+b with these parameters is the one we are looking for.
Moreover, we can calculate exactly the goodness measure (the accuracy) of
our approximation by a linear relation. With a and b from (3-9) we define

AccLR =

√
1
N

N

∑
i=1

(axi +b− zi)
2 (3-9′)

If this accuracy is comparable with zmax− zmin, the assumption about a lin-
ear structure of the data should be rejected. In this case a modified assumption
should be used. For example, a more complicated polynomial structure of the
data can be assumed.

Remark It should be noted that in Example 3.1.1.1′′′′ AccLR =
√

1
N SumLR.
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The common rule for using polynomial regression (1D-case) is formulated as
follows:

Given the : z1 = z(x1) , ..,zN = z(xN), a functional relation of the form z(x) =
aM ·xM +aM−1 ·xM−1 + . . . +a1 ·x+b, M ≤ N−1 has to be found that fulfills
the following necessary condition:

F(a1, . . . ,aM, b) =
N

∑
i=1

(
aMxM

i + . . . a1 · xi +b− zi
)2 → min

a1, ... ,aM ,b

This condition leads to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F
∂aM

=
N
∑

i=1
2
(
aMxM

i + . . . +a1xi +b− zi
)

xM
i = 0

. . .
∂F
∂a1

=
N
∑

i=1
2
(
aMxM

i + . . . +a1xi +b− zi
)

xi = 0

∂F
∂b

=
N
∑

i=1
2
(
aMxM

i + . . . +a1xi +b− zi
)
·1 = 0

⇒

and, after some simplification, to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aM

N
∑

i=1
x2M

i + . . . +a1
N
∑

i=1
xM+1

i +b
N
∑

i=0
xM

i =
N
∑

i=1
zixM

i

. . .

aM

N
∑

i=1
xM+1

i + . . . +a1
N
∑

i=1
x2

i +b
N
∑

i=0
xi =

N
∑

i=1
zixi

aM

N
∑

i=1
xM

i + . . . +a1
N
∑

i=1
xi +b ·N =

N
∑

i=1
zi

⇒

and finally to the following solution of this LSE in matrix form:

⎛
⎜⎜⎝

aM

. . .
a1

b

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
∑

i=1
x2M

i . . .
N
∑

i=1
xM+1

i

N
∑

i=1
xM

i

. . . . . . . . . . . .
N
∑

i=1
xM+1

i . . .
N
∑

i=1
x2

i

N
∑

i=1
xi

N
∑

i=1
xM

i . . .
N
∑

i=1
xi N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
∑

i=1
zixM

i

. . .
N
∑

i=1
zixi

N
∑

i=1
zi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3-10)

Thus, the unknown parameters a1, . . . ,aM and b are obtained. With these pa-
rameters, the functional relation

z(x) = aM · xM +aM−1 · xM−1 + . . . +a1 · x+b, M ≤ N −1
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is identified.

The accuracy (goodness measure) of the polynomial approximation can be
obtained from

ACCPR =

√
1
N

N

∑
i=1

(
aMxM

I + . . . +a1x+b− zi
)2

(3-10′)

using the parameters a1, . . . ,aM and b from (3-10′) and a comparison with
zmax − zmin.

Remark: For the present, (3-10) seems to be very simple, but the corresponding
matrix can be irregular. Thus, some necessary conditions should be proved before
trying to evaluate the inverse matrix. Moreover, numerical trouble can result from
inverting large matrices.

For the case N = M − 1, a polynomial is obtained that fulfills the interpolation
demand. It is identical with the one obtained by the Lagrange and the Newton in-
terpolation methods. If the accuracy of (3-10′) is comparable with zmax − zmin, the
assumption about a polynomial structure of the data should be rejected. Analogously
to the 1D-case, a more complicated polynomial structure of the data should be
assumed.

3.1.1.7 Polynomial Regression (2D-Case)

Let us start with our familiar example and explain it in detail. Then we can present
the common rule.

Example 3.1.1.2′′ (2D-Case) Again, we consider the following measurements:

z1 = z(x1, y1) = z(1, 0) = 0.1, z2 = z(x2, y2) = z(4, 0) = 0.2,

z3 = z(x3, y3) = z(1, 1) = −0.1, z4 = z(x4, y4) = z(4, 1) = −0.2.

We assume that the data structure follows z(x, y) = a10 · x + a01 · y + a00. A two-
dimensional polynomial of this form has to be determined. Obviously, this poly-
nomial is two dimensional of degree one. The basic idea of this approximation
follows the approach for the 1D-case. We are looking for parameters a00, a10, a01

that lead to

F(a00,a01,a10) =
4

∑
i=1

(a10xi +a01yi +a00 − zi)
2 → min

a00,a10,a01
(*.1)

Using partial derivatives with respect to these parameters, we get:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂F
∂a10

=
4
∑

i=1
2(a10xi +a01yi +a00 − zi)xi = 0

∂F
∂a01

=
4
∑

i=1
2(a10xi +a01yi +a00 − zi)yi = 0

∂F
∂a00

=
4
∑

i=1
2(a10xi +a01yi +a00 − zi) ·1 = 0

⇒

⎛
⎝ a10

a01

a00

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
yixi

4
∑

i=1
xi

4
∑

i=1
yixi

4
∑

i=1
y2

i

4
∑

i=1
yi

4
∑

i=1
xi

4
∑

i=1
yi 4

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎝

4
∑

i=1
xizi

4
∑

i=1
yizi

4
∑

i=1
zi

⎞
⎟⎟⎟⎟⎟⎟⎠

With the given values from our data set, we obtain:

⎛
⎝a10

a01

a00

⎞
⎠=

⎛
⎝ 34 5 10

5 2 2
10 2 4

⎞
⎠

−1

·

⎛
⎝ 0

−0.3
0

⎞
⎠=

⎛
⎝ 0

−0.3
0.15

⎞
⎠ (*.2)

and the functional relation is identified as a plane or a two-dimensional polynomial
of degree one of the form z(x, y) = 0 · x−0.3 · y+0.15 (see Fig. 3.5).

The common rule for two-dimensional polynomial regression reads as follows:

Let the following data be given: z1 = z(x1, y1) , . . . ,zN = z(xN , yN). A func-
tional relation of the form

z(x, y) =
K

∑
k=0

L

∑
l=0

akl · xk · yl , (K +1)(L+1) ≤ N

is searched for in such a way that the following necessary condition is fulfilled:

F(akl : k = 0 . . . K, l = 0 . . . L)=
N

∑
i=1

(
K

∑
k=0

L

∑
l=0

akl · xk
i · yl

i − zi

)2

→ min
akl :k=0 ...K, l=0 ...L

Fig. 3.5 Two-dimensional regression by a plane for the data from Example 3.1.1.2
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This condition leads to⎧⎨
⎩

∂F
∂ak∗l∗

=
N
∑

i=1
2

(
K
∑

k=0

L
∑

l=0
aklxk

i yl
i − zi

)
xk∗

i yl∗
i = 0

k∗ = 0 . . . K, l∗ = 0 . . . L

and after some simplification of the (K +1)(L+1) equations to the following
LSE: ⎧⎨

⎩
K
∑

k=0

L
∑

l=0
akl

N
∑

i=1
xk+k∗

i yl+l∗
i =

N
∑

i=1
zixk∗

i yl∗
i

k∗ = 0 . . . K, l∗ = 0 . . . L
(3-11)

The solution of this LSE leads to parameters akl , k = 0 . . . K, l = 0 . . . L.
The accuracy of the polynomial approximation the data can be de-

scribed by

AccPR =

√√√√ 1
N

N

∑
i=1

(
K

∑
k=0

L

∑
l=0

aklxk
i yl

i − zi

)2

(3-11′)

with parameters that solve (3-11). For model validation this value should be
compared with zmax − zmin.

Remark: For the case N = (M +1)(L+1), a polynomial is obtained that fulfills
the interpolation demand. The matrix of the LSE (3-11) can be irregular. Thus,
some necessary conditions should be proved before trying to solve the LSE. Even
in the case of a regular matrix there can be numerical trouble, for example, for
a large N.

Following the 1D-case, the assumption about a polynomial structure of the data
should be rejected if the accuracy is comparable with zmax−zmin. More sophisticated
functional structures are presented in Sect. 3.2.1 and Chap. 4.

3.1.1.8 B-Splines (1D-Case)

The designation “B-Splines” goes back to the French mathematician Bezier. The ba-
sic idea of the approach comes from an algorithm of Casteljau based on repeated lin-
ear interpolations. This method is used successfully in modern CAD-tools. B-splines
are well suited for applications that should be performed without considering coor-
dinates. B-splines and B-surfaces are parametrically determined.

So-called B-curves are determined using one parameter, t. More general
B-surfaces correspond to interpolation with two parameters, u and v. Changing the
coordinate system (scaling the axes and further affine transformations) do not influ-
ence the basic algorithm.

Sometimes this approach is called the end-point-interpolation method. An ex-
planation is given below. Now, we start constructing B-curves of degree N in the
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three-dimensional space E3. For plane curves in E2 the coordinate y should be omit-
ted in the following equations.

We formulate the common rule for constructing B-curves as follows:

Let b0 = (x0, y0, z0)
T , b1 = (x1, y1, z1)

T , . . . , bN = (xN , yN , zN)T ∈ E3 be
N +1 data points and t ∈ (−∞, ∞) be a parameter. After linearly interpolating
for N-times with a fixed parameter twith

br
i (t) = (1− t)br−1

i + tbr−1
i+1 ,

r = 1, . . . ,N
i = 0, . . . ,N − r
b0

i = bi.

(3-12)

the point bN
0 (t) finally obtained is a point on the B-curve bN (t) of degree N .

Remark: Remember that point numbering begins with zero. Thus, we have N + 1
data points. Relation (3-12) refers to all coordinates of the data, namely, x, y, z (see
Example 3.1.1.4).

The B-curve bN (t) is parametric and corresponds to the point b0 for t = 0 and to
the point bN for t = 1. This curve winds through the other points (see Fig. 3.6), which
explains the fact that interpolation with B-splines is called end-point interpolation.
The polygon based on the points b0, b1, . . . , bN ∈ E3 is called the Bezier polygon or
the control polygon of the B-curve bN (t).

Fig. 3.6 B-curve for the data from example 3.1.1.4
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Example 3.1.1.4 (1D-Case) The following temporal measurements are given:

z1 (0) = 7, z2 (1) = 3, z3 (2) = 5.5, z4 (3) = −0.5.

With the terms from (3-12) this corresponds to

b0 =
(

0
7

)
, b1 =

(
1
3

)
, b2 =

(
2

5.5

)
, b3 =

(
3

−0.5

)
.

Now, how does the parametric curve describing this structure with fixed end-
points actually look? Here N = 3. Thus, we need three interpolation steps for ob-
taining the final B-curve from (3-12). The first step leads to

b1
0 = (1− t)b0 + tb1 = (1− t)

(
0
7

)
+ t

(
1
3

)
=
(

t
7−4t

)
,

b1
1 = (1− t)b1 + tb2 = (1− t)

(
1
3

)
+ t

(
2

5.5

)
=
(

1+ t
3+2.5t

)
,

b1
2 = (1− t)b2 + tb3 = (1− t)

(
2

5.5

)
+ t

(
3

−0.5

)
=
(

1+ t
5.5−6t

)
.

(*.1)

These are three complementary points, which belong to the lines [b0, b1] ,
[b1, b2] , [b2, b3] and divide them into identical proportions depending on t. In the
second step we get

b2
0 = (1− t)b1

0 + tb1
1 = (1− t)

(
t

7−4t

)
+ t

(
1+ t

3+2.5t

)
=
(

2t
6.5t2 −8t +7

)
,

b2
1 = (1− t)b1

1 + tb1
2 = (1− t)

(
1+ t

3+2.5t

)
+ t

(
1+ t

5.5−6t

)
=
(

1+ t
−8.5t2 +5t +3

)
.

(*.2)
These two points are placed at the lines

[
b1

0, b1
1

]
,
[
b1

1, b1
2

]
and divide them into equal

proportions depending on t. After the last step, the parametric B-curve is identified
as

b3
0 = (1− t)b2

0 + tb2
1 = (1− t)

(
2t

6.5t2 −8t +7

)
+ t

(
1+ t

−8.5t2 +5t +3

)
(*.3)

and is as shown in Fig. 3.6.
Simple implementation and independence of coordinate systems are advantages

of this approach. Like a designer, one can work with spatial terms “left,” “right,”
“top,” and “end” of a curve without a fixed relationship to coordinates. A rough
approach can be improved to a smoothed, snaking line by using B-splines. More-
over, some approaches—polygons with identical end-points and the same number
of points—should be compared based on their analytical parametric form given by
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(3-12). For example, a mean polygon can be constructed in this way. One minor
disadvantage might be the unconventional parametric representation of B-splines.

3.1.1.9 B-Splines (2D-Case)

Here the basic idea corresponds to an iterated bilinear interpolation. We begin
with some definitions. Let b00, b01, b10, b11 be four points in E3. A hyperbolic
paraboloid allows the following parametric representation:

z(u,v) =
1
∑

i=0

1
∑
j=0

bi jB1
i (u)B1

j (v) , mit B1
k (w) = (1−w)1−k wk,

k = 0,1; w = u,v

In matrix form this corresponds to

z(u, v) =
[

1−u u
] [ b00 b01

b10 b11

] [
1− v

v

]

Now the common rule for constructing B-curves reads as follows:

Let
{

bi j
}N

i, j=0 =
{

(xi j, yi j, zi j)
T
}N

i, j=0
be (N + 1)(N + 1) three-dimensional

data points (measurements on a square grid) and (u,v) ∈ R2 be two param-
eters. After iterating linear interpolations for N-times with fixed parameters
(u,v) ∈ R2 with

brr
i j (u, v) =

[
1−u u

] [ br−1r−1
i j br−1r−1

i j+1

br−1r−1
i+1 j br−1r−1

i+1 j+1

] [
1− v

v

]

r = 1, . . . , N; i, j = 0, . . . , N − r

(3-13)

with
b00

i j = bi j

the point bNN
00 (u,v) finally obtained is a point on the B-surface bNN (u,v).

Remark: Point numbering starts with zero, so we have (N + 1)(N + 1) data points
in all. Equation (3-13) refers to all the coordinates of the data, namely, x, y, z (see
Example 3.1.1.5).

The B-surface bNN (t) is parametric and corresponds to the point b00 for (u, v) =
(0, 0), to b10 for (u, v) = (1, 0), to point b10 for (u, v) = (0, 1), and to the point b11

for (u, v) = (1, 1). This surface also winds through the other points (see Fig. 3.7),
which, analogously to the 1D-case, indicates end-point interpolation. The polygon
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based on points
{

bi j
}N

i, j=0 is called the Bezier polygon or the control polygon of the

B-surface bNN (u, v).
There is a generalization for nonsquare grids for which further details can be

found in Farin (1993).

Example 3.1.1.5 (2D-Case) We consider the following nine spatial measurements
on a 3×3 mesh:

b00 =

⎛
⎝ 0

0
1

⎞
⎠ , b01 =

⎛
⎝ 0

1
−2

⎞
⎠ , b02 =

⎛
⎝ 0

2
5

⎞
⎠ , b10 =

⎛
⎝ 1

0
3

⎞
⎠ , b11 =

⎛
⎝ 1

1
4

⎞
⎠ , b12 =

⎛
⎜⎜⎝

1
2
1

⎞
⎟⎟⎠ ,

b20 =

⎛
⎝ 2

0
−1

⎞
⎠ , b21 =

⎛
⎝ 2

1
−2

⎞
⎠ , b22 =

⎛
⎝ 2

2
2

⎞
⎠

How can we identify a parametric B-surface that fits this data set? We use (3-13)
for the first step of a bilinear interpolation:

b11
00 (u,v) =

[
1−u u

] [ b00 b01

b10 b11

] [
1− v

v

]
,

b11
01 (u,v) =

[
1−u u

] [ b01 b02

b11 b12

] [
1− v

v

]
,

(*.1)

b11
10 (u,v) =

[
1−u u

] [ b10 b12

b20 b12

] [
1− v

v

]
,

b11
11 (u,v) =

[
1−u u

] [ b11 b12

b21 b22

] [
1− v

v

]
,

The evaluations in (*.1) should be performed separately for each coordinate
x, y, z. For example, for the first equation in (*.1) we obtain:

x11
00 (u,v) =

[
1−u u

] [ 0 0
1 1

] [
1− v

v

]
=
[

1−u u
][ 0

1

]
= u,

y11
00 (u,v) =

[
1−u u

] [ 0 1
0 1

] [
1− v

v

]
=
[

1−u u
][ v

v

]
= v,

z11
00 (u,v) =

[
1−u u

] [ 1 −2
3 4

] [
1− v

v

]
=
[

1−u u
][ 1−3v

3+ v

]
= 1−3v+2u+4uv

In the second step we interpolate the results of (*.1):

b22
00 (u,v) =

[
1−u u

]
⎡
⎣b11

00 b11
01

b11
10 b11

11

⎤
⎦
[

1− v
v

]
(*.2)
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Fig. 3.7 B-surface for the data set from Example 3.1.1.5. The end-points are marked by stars

The parametric surface in (*.2) is the B-surface we looked for, shown in
Fig. 3.7.

Problem 2.B Irregularly spaced data (chaotically distributed measurements) should
be interpolated (or described) with a functional relation.

Regression approaches as presented for Problem 2.A remain relevant for the 1D-
as well as the 2D-case. More details about regression approaches can be found in
Sect. 3.2.1 and in Chap. 4. The construction of B-curves corresponds to that for
regular data and was described earlier.

Determining B-surfaces requires an additional step. We start by triangulating the
sample points, a procedure that was explained for Problem 2.B.. After covering the
definition area of the measurements completely, B-splining can be performed. Here
special so-called triangular B-splines are used.

The reason for applying special weights—or parameters here—p = (u, v, w) , u+
v+w = 1 corresponding to an inner coordinate system over a triangle is analogous
to the approach for bilinear interpolation over a triangular mesh, as demonstrated in
3.1.1.3. For instance, this yields

u =
A1

A1 +A2 +A3 , v =
A2

A1 +A2 +A3 , w =
A3

A1 +A2 +A3

for point P0 in Fig. 3.2. On other hand, P0 takes the coordinates (u, v, w), which
relate to an inner coordinate system over triangle P1P2P3.

Now, let us formulate the common rule for constructing triangular B-surfaces:
Following Farin (1993), we use the abbreviations e1 = (1, 0, 0) , e2 = (0, 1, 0) ,
e3 = (0, 0, 1), bi jk = bi, |i| = i+ j + k, i, j, k > 0.
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Let there be a control net {bi} ∈ E3, |i| = n with 1/2(n + 1)(n + 2) nodes.
Using iterated linear interpolations

br
i (p) = ubr−1

i+e1
(p)+ vbr−1

i+e2
(p)+wbr−1

i+e3
(p) ,

p = (u, v, w) , r = 1 . . . n, |i| = n− r, b0
i (p) = bi

(3-14)

we obtain a parametric surface bn
0 (p) (triangular B-spline) of degree n.

A control net for parametric surfaces of degree four is based on the following
nodes:

b040

b031b130

b022b121b220

b013b112b211b310

b004b103b202b301b400

For more information about B-splines, see Farin (1993).

3.1.2 Stochastic Point of View: Methods of Geostatistics

Opinions about “randomness” in the world of science vary from firm belief to abso-
lute rejection. However, methods based on stochastics or statistics might be suitable
for such real problems, where a mathematical model taking randomness into ac-
count seems to be logical.

Complicated geometrical structures come from many areas of science and tech-
nology. For example, geological structures, biological tissues, sections of porous
media, and oil fields often require statistical analyses. There are different mathemat-
ical areas that provide such models and methods. One of these is called geostatistics.

In the 1950s geostatistics became a rapidly evolving branch of applied mathemat-
ics and statistics, starting in the mining industry, as its methods were originally de-
veloped to improve the calculations of ore reserves. “Kriging,” which is the generic
term for various interpolation methods in geostatistics, is named for D. G. Krige,
a mining engineer who, together with the statistician H. S. Sichel, was among the
pioneers in this research area. Both of them worked in South Africa in the early
1950s. Later in that decade the center of geostatistical research moved to France, to
the Commissariat de l’Energie Anatomique. Geostatistics earned the status of a sci-
entific discipline owing to the work of G. Matheron, who refined Krige’s methods,
introduced the so-called regionalized variable, and developed the major concepts of
the theory for estimating resources.

In the 1970s these geostatistical concepts became well known in other branches
of the earth sciences. They are popular in industry and as well as in economics
because there are problems that need evaluations of spatially and temporally—
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sometimes spatio-temporally—distributed and even correlated data. However, the
methods of linear geostatistics were actually not absolutely novel in mathematics.
The estimation theory in statistics involves familiar methods. “Collocation” from
geodesy and classical regression analysis are also popular. These methods are based
on the least-squares method developed by the great mathematician C. F. Gauss,
and they were later adapted to different research areas for a wide variety of prob-
lem formulations encountered in practice. However, the problem of choices—albeit
one that is more philosophical and less mathematical—remains: the choice of the
workspace, of the primary assumptions, and of viewpoint.

Currently, geostatistics embraces various models and methods. Moreover, owing
to recent developments from mathematical statistics and numerical analysis as well
as better and faster computers, their numbers continue to increase. In this book we
offer a short overview of the basic concepts and present typical applications of some
kriging methods. For more details concerning geostatistics we recommend the book
by H. Wackernagel (1995).

We begin with some important definitions in geostatistics. We assume that the
reader possesses some fundamental knowledge of stochastics, found, for example,
in K.L. Chung (1968).

Definition 3.1.2-1 {Z (x)} , x ∈ Rn is called a random field if Z (x) is a random vari-
able for each x ∈ Rn. If x = t ∈ R ⇒ Z (t) can be called a random process.

Definition 3.1.2-2 A single realization {z(x)} , x∈Rn of a random field, {Z (x)} , x∈
Rn, is called a regionalized variable.

The difference between the terms “random field” and “regionalized variable” can
be easily explained. Throw a coin three times. If its sides are marked with 1 and 0,
then there are the following eight possible realizations of this random process (for a
discrete time scale corresponding to each throw): [0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0],
[0, 1, 1], [1, 0, 1], [1, 1, 0], and [1, 1, 1]. But we obtain only one of these realizations.
A regionalized variable from this process is just one of these realizations.

Definition 3.1.2-3 The following equation is called the covariance function of the
random field {Z (x)} , x ∈ Rn:

C (x, h) = Cov(Z (x) , Z (h)) = E {(Z (x)−EZ (x))(Z (x+h)−EZ (x+h))} .

Remark: The covariance function is a vector function that depends on many vari-
ables. The mean of the corresponding random variable, that is, the product of ran-
dom differences, is denoted by E in Definition 3.1.2-3. For simplification the fol-
lowing two assumptions should be made:

1. First-order stationarity: EZ (x) = EZ (x+h) = μ = const. This means that the
mean of the random field is constant and that the mean value is the same at any
point in the field.
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2. Second-order stationarity: C (x, h) = C (|h|). This means that the covariance be-
tween any pair of locations depends on the length of the distance vector h that
separates them. In this case the covariance function is a function of a single vari-
able that depends only on the distance; therefore, second-order stationarity elim-
inates directional effects.

From a practical point of view the covariance function affects estimation in the
same way as the influence function discussed in Sect. 3.1.1. But there are more
complicated conditions for its construction [see Yaglom (1986) for further details].

Definition 3.1.2-4 A normalized covariance function is called a correlation func-
tion:

ρ (h) =
C (h)
C (o)

.

Definition 3.1.2-5 For random variables Z1 = Z (x1) , . . . , ZN = Z (xN) the following
matrix is called a variance-covariance matrix:⎡

⎢⎢⎣
c11 c12 . . . c1N

c21 c22 . . . c2N

. . . . . .
cN1 cN2 . . . cNN

⎤
⎥⎥⎦

with

cii = C (0) = Var (Zi) ; ci j = Cov(Zi, Z j) = EZiZ j −EZiEZ j, i, j = 1, . . . , N.

The basic concept of stochastic interpolation broadly corresponds to that of de-
terministic interpolation using an influence function. Therefore, we have to fit a
weighted average considering information from location points of the regionalized
variable to obtain an estimation of a certain value at a fixed point (x0, y0) or, in
short, x0.

This basic idea can be explained using a simple example. Let [z(x1, y1) , z(x2, y2)]
be a regionalized variable that can, for example, be the result of two drillings
from an oil field. Or think about measurements of, for instance, temperature or
soil parameters. However, we are looking for weights, wi, i = 1, 2, to predict at
the point (x0, y0). Like the idea of the generalized mean from Sect. 3.1.1, this
means that

Ẑ (x0,y0) =
w1 · z(x1,y1)+w2 · z(x2, y2)

w1 +w2
= α1z(x1, y1)+α2z(x2, y2) , αi =

wi

w1 +w2
, i = 1,2

These weights, αi, i = 1,2, should depend on the distance to the point of prediction:
closer points should have a stronger influence on the prediction value. The estimator
is marked with a hat, Ẑ (x0, y0), in order to distinguish it from the true but unknown
value of random variable Z (x0, y0). As a measure of “closeness” of this estimator
to the true value we can use
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Var
(
Z (x0, y0)− Ẑ (x0, y0)

)
→ min

α1,α2

The variance of the random vector in brackets can be understood here in some
sense as its “stochastic length.” With the assumption of first-order stationarity, we
can assume that the mean of this vector is equal to zero. But of course there are
many different random vectors that fulfill this assumption. Minimizing the variance,
we restrict the class of these vectors and hope to obtain a meaningful estimation.
The estimation procedure must be based on knowledge of the covariances among
the random variables at the different points.

3.1.2.1 Simple Kriging

We start with an approach called kriging with a known mean. Let {Z (x)} , x ∈ Rn

be a stationary (first and second order) random field. The designation x refers to all
corresponding coordinates and is used for simplification. We repeat that stationarity
means that

EZ (x+h) = EZ (x) = μ ,
Cov(Z (x+h) , Z (x)) = C (|h|) .

(3-15)

where the mean of the random field is known and constant. A covariance model
should be chosen, and this is discussed in detail in a remark below. Here we assume
that a model for the covariance function is given. We denote the regionalized vari-
able by [z(x1) , . . . , z(xN)]. For the estimator at the point x0 we choose the following
form:

Ẑ (x0) = μ +
N

∑
k=1

αk (Z (xk)−μ) (3-16)

Obviously, first-order stationarity is fulfilled for this estimator:

EẐ (x0) = μ +E

(
N

∑
k=1

αk (Z (xk)−μ)

)
= μ +

N

∑
k=1

αkE (Z (xk)−μ)

= μ +
N

∑
k=1

αk

⎛
⎜⎝EZ (xk)︸ ︷︷ ︸

μ

−μ

⎞
⎟⎠= μ

(3-17)

Now, the variance has to be minimized:

Var
(
Z (x0)− Ẑ (x0)

)
→ min (3-18)
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Var
(
Z (x0)− Ẑ (x0)

)
= E

(
Z (x0)− Ẑ (x0)

)2 −E2 (Z (x0)− Ẑ (x0)
)

︸ ︷︷ ︸
0

= E

(
Z (x0)−μ −

N

∑
k=1

αk (Z (xk)−μ)

)2

= E (Z (x0)−μ)2

+
N

∑
i=1

N

∑
j=1

αiα jE
{
(Z (xi)−μ)(Z (x j)−μ)

}

−2
N

∑
i=1

αiE {(Z (x0)−μ)(Z (xi −μ))}

Var
(
Z (x0)− Ẑ (x0)

)
= c(0)+

N

∑
i=1

αi

N

∑
j=1

α jci j −2
N

∑
i=1

αici0 (3-18′)

with parameters calculated using the covariance model

c(0) = C (|0|) , ci j = Cov
(
Z (xi) , Z

(
x j
))

, ci0 = Cov(Z (xi) , Z (x0)) , i, j = 1, . . . , N.

The variance in (3-18′) is a function of N variables, that is, the interesting
weights. After partial differentiation with respect to these weights we get

Var
(
Z (x0)− Ẑ (x0)

)
→ min

α1, ... ,αN
⇒

d
dαk

{
N
∑

i=1
αi

N
∑
j=1

α jci j −2
N
∑

i=1
αici0

}
= 0, k = 1 . . . N

and finally
N

∑
j=1

α jck j = ck0, k = 1, . . . , N (3-19)

Equations (3-19) form a LSE that in matrix form corresponds to
⎡
⎢⎢⎣

c11 c12 . . . c1N

c21 c22 . . . c2N

. . . . . .
cN1 cN2 . . . cNN

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1

α2

. . .
αN

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c10

c20

. . .
cN0

⎤
⎥⎥⎦ . (3-19′)

Obviously, solving the LSE (3-19′) leads directly to the weights that we are looking
for. If we denote these weights by

[
αL

1 , . . . αL
N

]T
, then the estimation is given by

ẑ(x0) = μ +
N

∑
k=1

αL
k (z(xk)−μ) (3-16′)
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In addition to the predicted z-value, we also obtain the so-called kriging variance,
an accuracy measure highly dependent on the chosen model. Considering (3-18′)
with the weights from (3-19′) leads to

σ2
SK = c(0)−

N

∑
k=1

αL
k ck0 (3-20)

If the measurement locations are scattered irregularly in the space it is worth-
while to produce a map of the kriging variance as a complement to the map of the
estimated or kriged estimates. This gives us an appreciation of the varying precision
of the kriged estimates that are due to the irregular locations of the values of the
regionalized variable.

Now let us test how simple kriging works by an example.

Example 3.1.2.1 We use the following values of a regionalized variable z(0, 0.2) =
1, z(1.2, −0.9) = −3 and also assume that E (Z) = μ = 2 is known. We determine
a model and then look for an estimation at the point (x0, y0) = (0, 0) in the form

Ẑ = μ +α1 (Z1 −μ)+α2 (Z2 −μ) . (*.1)

First-order stationarity is fulfilled :

E
(
Ẑ
)

= μ +α1E (Z1 −μ)+α2E (Z2 −μ) = μ ,
E (Z1) = E (Z2) = E (Z) = μ .

(*.2)

The variance should be minimized:

Var
(
Ẑ −Z

)
= Var (μ+α1 (Z1 −μ)+α2 (Z2 −μ)−Z) = Var (α1 (Z1 −μ)+α2 (Z2 −μ)− (Z −μ)) =
= E (α1 (Z1 −μ)+α2 (Z2 −μ)− (Z −μ))2 = α2

1Var (Z1)+α2
2Var (Z2)+Var (Z)+

+2α1α2Cov(Z1, Z2)−2α1Cov(Z1, Z)−2α2Cov(Z2, Z) = Fct (α1, α2) → min
α1,α2

.

We now have to minimize a function (Fct) of two variables. Other parameters are
constant! Thus, we have

⎧⎪⎨
⎪⎩

∂
∂α1

Fct (α1, α2) = 0

∂
∂α2

Fct (α1, α2) = 0
⇒

{
2α1Var (Z1)+2α2Cov(Z1, Z2)−2Cov(Z1, Z) = 0
2α2Var (Z2)+2α1Cov(Z1, Z2)−2Cov(Z2, Z) = 0

⇒

(*.3)
⎧⎨
⎩

α1Var (Z1)+α2Cov(Z1, Z2) = Cov(Z1, Z)

α2Var (Z2)+α1Cov(Z1, Z2) = Cov(Z2, Z)
⇒

or in matrix form
[

c11 c12

c12 c22

][
α1

α2

]
=
[

c10

c20

]
⇒

[
αL

1
αL

2

]
=
[

c11 c12

c12 c22

]−1 [
c10

c20

]
(*.4)

As noted above, a model for the covariance function c(h) is given. We calculate all
known matrix elements in (*.4) as follows:
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c11 = c22 = c(0) ,

c12 = c
(√

(1.22 +1.12)
)

,c01 = c
(√

(02 +0.22)
)

,c02 = c
(√

(1.22 +0.92)
)

The solution
[

αL
1 αL

2

]T
depends on the model choice. With the weights obtained

from (*.4), the estimate corresponds to

ẑ = μ +αL
1 (z1 −μ)+αL

2 (z2 −μ) = 2+αL
1 (1−2)+αL

2 (−3−2) = 2−αL
1 −5αL

2 .
(*.5)

The kriging variance is calculated by

σ2
SK = c00 −2αL

1 c01 −2αL
2 c02 . (*.6)

Remark: A model for a covariance function should be based on the empirical co-
variance function calculated with the given values of the regionalized variable.
There are some classes of covariance function models that can be considered. De-
pending on the covariance model, we can base the model parameters on nonlinear
regression methods. But often geostatisticians restrict themselves to an optical fit.
Instead of a covariance function we can use another model function—well-known
in geostatistics and even more popular—called a variogram.

Variogram

Definition 3.1.2-6 Let {Z (x)} ,x ∈ Rn be a random field. The following function is
called the variogram of the random field:

γ (x,h) =
1
2

E {Z (x+h)−Z (x)}2 .

In contrast to Definition (3.1.2-3) of the covariance function, Definition (3.1.2-6)
does not make use of any information about the mean of the corresponding ran-
dom field. Therefore, this function is interesting for a wide-ranging class of random
fields. We assume that this “invisible mean” is identical over the field domain

EZ (x+h) = EZ (x) .

Definition 3.1.2-7 If the variogram of a random field depends only on the length
of the translation vector, the field is called intrinsic stationary, which means that
γ (x,h) = γ (|h|) .

Some properties of the variogram of an intrinsic stationary field are:

1. γ (0) = 0.
2. γ (h) ≥ 0.

As we are discussing only intrinsic stationary fields in this section, we use the short
designation γ (h) for γ (|h|). Furthermore, if the mean of a random field is known,



3.1 Prediction of a Value: Creating, Refining, or Changing Measurement Grids 49

that is, EZ (x) = μ = const, the following relations between the variogram and co-
variance function hold:

γ (h) = C (o)−C (h)
C (h) = γ (∞)− γ (h)

(3-21)

Now we present some variogram models and discuss possible ways to fit them.
Obviously, many software tools developed for geostatistics include automatic model-
fitting tools. For readers who wish to do more than press a button, we explain how a
model can be determined. Fitting the correlation function after fitting the variogram
model is simple. Note that the second relation from (3-21) can be applied.

The reality sometimes requires generalizations of existing mathematical models.
One such generalization, the so-called nugget effect, weakens the variogram prop-
erty (1) to

1+) γ (0) = 0, γ (0+) �= 0 (3-22)

The behavior at a very small scale, near the origin of the variogram, is of importance,
as it indicates the type of the continuity of the regionalized variable: differentiable,
continuous but not differentiable, or discontinuous. If the variogram is not differen-
tiable at the origin, it is a symptom of the nugget effect—a designation that comes
from the gold nuggets that are contained in some samples. These nuggets have a
natural width that leads to the fact that the values of the variable change abruptly at
a very small scale.

We discuss here both kinds of models: without and with a nugget effect, which
we denote by ne. We introduce the following models: power variogram, exponential
family of variograms, Gauss variogram, spherical variogram, and variogram of
white noise. The parameter b is usually called sill. From (3-21) it can be seen that
the variance of the random field corresponds to γ (∞) because C (∞) = 0. Thus, the
variance of a random field without a nugget effect corresponds to the sill b; the vari-
ance of fields with a nugget effect is the sum of the sill and this nugget effect, that
is, b+ne.

Power Variogram

Without a nugget effect (see Fig. 3.8):

γ (h) = b |h|p with
0 < p < 2, b > 0

(3-23)

With a nugget effect:

γ (h) =
{

0, h = 0
ne+b |h|p , h > 0

with
0 < p < 2, b, ne > 0

(3-23′)
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Fig. 3.8 Power variograms without a nugget effect for parameters p = 0.5, 1.0, and 1.5; b = 1

Remark: For p = 1 a power variogram from (3-23) and (3-23′) is also called a
linear variogram. Equations (3-21) are not true for power variograms because of
they increase to infinity.

Exponential Family of Variograms

Without a nugget effect (see Fig. 3.9):

γ (h) = b−be−
|h|p

a , b, a, p > 0 (3-24)

With a nugget effect:

γ (h) =

⎧⎨
⎩

0,h = 0

ne+b
(

1− e−
|h|p

a

)
, h > 0

b, a, p > 0

(3-24′)

Remark: For p = 1 a variogram from (3-24) and (3-24′) is called an exponential
variogram. For p = 2 we get a Gauss variogram. Equations (3-21) are true and
covariance functions exist.

Spherical Variogram

This variogram model is often preferred in practical applications.
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Fig. 3.9 Variograms from the exponential family without a nugget effect for parameters p = 0.5,
1.0, and 2.5; a = 10; b = 1

Without a nugget effect (see Fig. 3.10):

γ (h) =

⎧⎪⎨
⎪⎩

b

(
3
2
|h|
a

− 1
2
|h|3

a3

)
, 0 ≤ |h| ≤ a

b, |h| > a

, a, b > 0 (3-25)

Fig. 3.10 Spherical variograms without nugget effects for parameters a = 1, 5, 10; b = 1
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With a nugget effect:

γ (h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, h = 0

ne+b

(
3
2
|h|
a

− 1
2
|h|3

a3

)
, 0 < |h| ≤ a

b+ne, |h| > a

, a, b > 0 (3-25′)

Variogram of White Noise

γ (h) =
{

0, |h| = 0
b, |h| > 0

(3-26)

This is a model of a pure nugget effect. The measurements (z-values) are not
correlated. Prediction using a stochastic influence between locations is impossible.
In this case one should use the deterministic approaches discussed in Sect. 3.1.1.

Variogram Cloud and Model Fitting

The theoretical definition of the variogram (3.1.2-6) is based on pairs of random
values. Variogram fitting starts with evaluating sampled pairs:

γ∗ (hi j) =
1
2

{
z(xi)− z(x j)

}2
, hi j =

∣∣xi − x j
∣∣ (3-27)

The measurement values are calculated and the resulting dissimilarities γ∗ (hi j) (ver-
tical axis) are plotted against the separation of sampled pairs based on the dis-
tances between locations hi j (horizontal axis) forming the variogram cloud (see
Fig. 3.11a). Further, this cloud is sliced into classes by the separations in space. The
average dissimilarities in each class form the sequence of values of the experimental
variogram shown in Fig. 3.11b. These dissimilarities often increase with distance,
as samples near to one another tend to be alike.

The variogram cloud by itself can be seen as a powerful tool for exploring
features of spatial data. The distribution of measurements, anomalies, and inho-
mogeneities can be detected by the way. Looking at the behavior of dissimilari-
ties at short distances, we can make an assumption about nugget effects. In some
cases, owing to presence of outliers, the variogram cloud consists of two distinct
clouds.

Construction of an experimental variogram is similar to that of the usual his-
togram. We present the definition and show its implementation by a simple
example.

Definition 3.1.2-8 Let the distance interval be sliced by 0 ≤ h0 < h1 = h0 + Δ <
h0 +2Δ < .. . < hmax. The following function is called an empirical variogram:
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γ ∗ (h) =

N
∑

i, j=1
γ ∗ (hi j ∈ [h0 +(k−1)Δ,h0 + kΔ])

N
∑

i, j=1
1(z(xi) , z(x j) : i > j, hi j ∈ [h0 +(k−1)Δ, h0 + kΔ])

,

hi j =
∣∣xi − x j

∣∣ ,
h ∈ [h0 +(k−1)Δ, h0 + kΔ]

(3-28)

Fig. 3.11 Variogram cloud (a) and empirical variogram (b) for the simple data set from
Example 3.1.2.1; (c) linear variogram as variogram model for Example 3.1.2.2



54 3 Some Real Problems and Their Solutions

Remark: In connection with Definition (3.1.2-8), we should explain the “hard form”
of this term. The denominator counts the number of pairs located in subintervals.
The function 1 used there is usual in spatial statistics and indicates the following:

1(x) =
{

1, i f x is true
0, i f x is f alse

(3-29)

Definition 3.1.2-9 A variogram model γ̂ (h) fulfilling the condition

|γ̂ (h)− γ ∗ (h)| → min (3-30)

can be used as an estimator of the true, but unknown variogram of the random field.

This minimizing procedure is related to all model parameters. Some of the vari-
ogram models were presented above.

Example 3.1.2.2 We consider the measurements located over a profile:

x 0.0 1.0 2.0 3.0 4.0 5.0
z 7.0 3.0 6.0 7.0 0.0 3.0

The variogram cloud is related to following six possible distances: hi j = 0, 1, 2, 3, 4,
5. We show stepwise the calculation of variogram cloud and empirical variogram
(see Figs. 3.11a, b):

Distance,
hi j

Variogram cloud by (3-27) Empirical variogram by (3-28)

0 Six pairs lead to 0 0
1 Five pairs with coordinates (0, 1),

(1, 2), . . . (4, 5) lead to:
1
2 (z(0)− z(1))2 = 1

2 (7−3)2 = 8,
1
2 (z(1)− z(2))2 = 1

2 (3−6)2 = 4.5,
1
2 (z(2)− z(3))2 = 1

2 (6−7)2 = 0.5,
1
2 (z(3)− z(4))2 = 1

2 (7−0)2 = 24.5,
1
2 (z(4)− z(5))2 = 1

2 (0−3)2 = 4.5.

The arithmetical mean of the values
in the left column leads to the value
of the empirical variogram for inter-
val (0, 1]:

γ ∗ (h) = 8+4.5+0.5+24.5+4.5
5 = 8.4,

h ∈ (0, 1]

2 Four pairs with coordinates (0, 2),
(1, 3), . . . (3, 5) lead to:

1
2 (z(0)− z(2))2 = 1

2 (7−6)2 = 0.5,
1
2 (z(1)− z(3))2 = 1

2 (3−7)2 = 8,
1
2 (z(2)− z(4))2 = 1

2 (6−0)2 = 18,
1
2 (z(3)− z(5))2 = 1

2 (7−3)2 = 8.

The arithmetical mean of values in
the left column leads to the value of
the empirical variogram for interval
(1, 2]:

γ ∗ (h) =
0.5+8+18+8

4
= 8.625,

h ∈ (1, 2]

3 Three pairs with coordinates (0, 3),
(1, 4) und (2, 5) lead to:

1
2 (z(0)− z(3))2 = 1

2 (7−7)2 = 0.0,
1
2 (z(1)− z(4))2 = 1

2 (3−0)2 = 4.5,
1
2 (z(2)− z(5))2 = 1

2 (6−3)2 = 4.5.

The arithmetical mean of values in
the left column leads to the value of
the empirical variogram for interval
(2, 3]:

γ ∗ (h) =
0.0+4.5+4.5

3
= 3.0,

h ∈ (2, 3]
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Distance,
hi j

Variogram cloud by (3-27) Empirical variogram by (3-28)

4 Two pairs with coordinates (0, 4)
and (1, 5) gives:

1
2 (z(0)− z(4))2 = 1

2 (7−0)2 = 24.5,
1
2 (z(1)− z(5))2 = 1

2 (3−3)2 = 0.0.

By evaluation as above we have:

γ ∗ (h) =
24.5+0.0

2
= 12.25,

h ∈ (3, 4]

5 The last pair (0, 5) leads to:
1
2 (z(0)− z(5))2 = 1

2 (7−3)2 = 8.0.

γ ∗ (h) =
8
1

= 8,

h ∈ (4, 5]

Now we fit the empirical variogram by a variogram model. To simplify matters
we choose a linear variogram with a nugget effect [see (3-23′)] for p = 1. Thus, we
search for parameters ne, b such that

|ne+b ·h− γ∗ (h)| → min
ne, b

holds. This is a classical problem of the kind of linear regression discussed in
Sect. 3.1.1.

Using (3-9) we get:

(
b
ne

)
=

⎛
⎜⎜⎝

6
∑

i=1
h2

i

6
∑

i=1
hi

6
∑

i=1
hi 6

⎞
⎟⎟⎠

−1

·

⎛
⎜⎜⎝

6
∑

i=1
γ∗ (hi)hi

6
∑

i=1
γ∗ (hi)

⎞
⎟⎟⎠=

(
55 15
15 6

)−1

·
(

123.65
40.275

)
=
(

1.3121
3.4321

)
(*.1)

Here we set h1 = 0, h2 = 1 . . . h6 = 5 and use the values of the empirical variogram
calculated in the table above. Thus, we fit the following linear variogram model to
the empirical variogram (see Fig. 3.11c):

γ̂ (h) =
{

0, h = 0
3.4321+1.3121h, h > 0

(*.2)

It should be noted that this model variogram does not lead to an excellent fit because
the nugget effect seems to be too big. However, this is only a teaching example to
provide for better understanding of the definitions.

3.1.2.2 Ordinary Kriging

This is the most widely used kriging method not least because of its “realis-
tic” assumptions. Let {Z (x)} , x ∈ Rn be an intrinsic stationary random field and
[z(x1) , . . . ,z(xN)] the regionalized variable. The mean of this field is unknown, but
it is identical over the domain. Thus, it is assumed that

EZ (x+h) = EZ (x) = EZ (xi) , i = 1 . . . N (3-31)

A prediction of the unknown value at location x0 should be made, and we use the
following form for this estimator:
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Ẑ (x0) =
N

∑
i=1

αiZ (xi) (3-32)

The weights from (3-32) have to be determined. An additional requirement is nec-
essary because the mean of estimator (3-32) must be equal to the constant mean
of the random field. In statistics such an estimator is called unbiased. On the other
hand, we have to constrain the weights to sum up to one because in the extreme case
when all the measurements are equal to a constant, the estimated value should also
be equal to this constant. Thus, we require that

N

∑
k=1

αk = 1 (3-33)

Using (3-31)–(3-33), we can prove that

EẐ (x0) = E

(
N

∑
i=1

αiZ (xi)

)
=

N

∑
i=1

αiE (xi) =EZ (x)
N

∑
i=1

αi

︸ ︷︷ ︸
1

= EZ (x) . (3-34)

By minimizing the estimation variance we also have to consider the constraint on
the weights (3-33):

Var
(
Z (x0)− Ẑ (x0)

)
→ min

α1 ...αN

with
N
∑

i=1
αi = 1

(3-35)

The problem (3-35) can be reformulated by using the so-called Lagrange coefficient
L as:

Var
(
Z (x0)− Ẑ (x0)

)
−2L

(
N

∑
i=1

αi −1

)
→ min

α1 ...αN ,L
(3-35′)

The solution of (3-35′) goes through N +1 partial derivations:

⎧⎪⎨
⎪⎩

∂
∂αk

σ2
OK = 0, k = 1 . . . N

∂
∂L

σ2
OK = 0

After some simplification this leads to the solution
[
αL

1 , . . . αL
N ,LL

]T
of the follow-

ing LSE in matrix form:
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⎡
⎢⎢⎣

γ11 γ12 . . . γ1N 1
· · · · · · · · · · · ·
γN1 γN2 · · · γNN 1
1 1 · · · 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

αL
1

. . .
αL

N

LL

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎣

γ10

· · ·
γN0

1

⎤
⎥⎥⎦ with γi j = γ (hi j) , i, j = 0, . . . , N .

(3-36)
The estimated value is calculated with given z-values of the regionalized

variable by

z(x0) =
N

∑
k=1

αL
k z(xk) (3-37)

The accuracy of estimation, the kriging variance, can be obtained from (3-35) by

σ2
OK = Var

(
Z (x0)− Ẑ (x0)

)
=−γ (0)−

N

∑
i=1

N

∑
j=1

αL
i αL

j γi j +2
N

∑
i=1

αL
i γi0, γi j = γ (hi j)

(3-38)

Remark: Ordinary kriging is also an exact interpolator because the estimated value
at a given sample point is identical with the z-value at this sample point. According
to Sect. 3.1.1 we could say that the interpolation demand is fulfilled.

Example 3.1.2.3 We use again the simple data set from Example 3.1.2.2 and test
how ordinary kriging works. The assumption about an exact mean of the random
field can be omitted. We only need to know that this mean is constant over the given
domain. The regionalized variable takes the following values:

x 0.0 1.0 2.0 3.0 4.0 5.0
z 7.0 3.0 6.0 7.0 0.0 3.0

We want to predict the z-value at point x0 = 0.5 using its closer neighbors x1 = 0,
x2 = 1. In other words, we choose the following predictor:

Ẑ (x0) =
2

∑
k=1

αkZ (xk) = α1Z (x1)+α2Z (x2) ,
2

∑
k=1

αk = α1 +α2 = 1 (*.1)

By minimizing the estimation variance (Fct) with the constraints on the weights, we
obtain:

Var
(
Ẑ0 −Z0

)
= Var (Z (x0)−α1Z (x1)−α2Z (x2)) = −γ(0)−

2

∑
i=1

2

∑
j=1

αiα jγi j +2
2

∑
i=1

αiγi0

= −γ(0)−α2
1γ11 −α2

2γ22 −2α1α2γ12 +2α1γ01 +2α2γ02 = Fct (α1, α2)

(*.2)

with α1 +α2 = 1 ⇒
Fct (α1, α2)−2L(α1 +α2 −1) → min

α1, α2, L
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We still fit a model variogram (*.2) for the given data from Example (3.1.2.2) and
can calculate:

γ11 = γ22 = 0,
γ12 = γ(1) = 4.7432,
γ01 = γ02 = γ(0.5) = 4.0882

Some examples of variogram models and a method for fitting them were dis-
cussed above. Equation (*.2) describes a minimizing problem of a function of two
variables with an additional constraint on the weights. Using partial derivations with
respect to α1, α2, L, we get:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂
∂α1

{Fct (α1, α2)−2L(α1 +α2 −1)} = 0

∂
∂α2

{Fct (α1, α2)−2L(α1 +α2 −1)} = 0

∂
∂L

{Fct (α1, α2)−2L(α1 +α2 −1)} = 0

⇒

⎧⎨
⎩

−2α1γ11 −2α2γ12 +2γ01 −2L = 0
−2α2γ22 −2α1γ12 +2γ02 −2L = 0
α1 +α2 −1 = 0

⇒

⎧⎨
⎩

α1γ11 +α2γ12 +L = γ01

α2γ22 +α1γ12 +L = γ02

α1 +α2 −1 = 0
⇒

⎡
⎣ 0 4.7432 1

4.7432 0 1
1 1 0

⎤
⎦
⎡
⎣αL

1
αL

2
LL

⎤
⎦=

⎡
⎣4.0882

4.0882
1

⎤
⎦

The solution
[

αL
1 αL

2 L
]T = [0.5, 0.5, 1.716] depends strongly on the fitted var-

iogram model. After setting all the parameters we get the estimated z-value at point
x0 = 0.5 from:

z(0.5) = αL
1 z1 +αL

2 z2 = 0.5 ·7+0.5 ·3 = 5

The kriging variance can be obtained from (*.2) by using the given parameters:

σ2
OK (0.5) = −γ (0)−

[
αL

1

]2 γ11 −
[
αL

2

]2 γ22 −2αL
1 αL

2 γ12 +2αL
1 γ01 +2αL

2 γ02

= −2αL
1 αL

2 γ (1)+2αL
1 γ (0.5)+2αL

2 γ (0.5)
= −2 ·0.5 ·0.5 ·4.7443+2 ·0.5 ·4.0882 ·2 = 5.8042

3.1.2.3 Universal Kriging

Universal kriging is a spatial multiple regression method implementing a model that
splits the random field into two parts. The first corresponds to a linear combination
of (M + 1) deterministic functions that are known at any point in the region. The
second part is a random component that is called the residual random function. This
generalized model needs additional specifications.

Let {Z (x)}, x ∈ Rn be a random field that can be divided into two parts: a deter-
ministic part often called the drift and a stochastic part with mean zero [ES (x) = 0]:
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Z (x) = m(x)+S (x) (3-39)

The drift or the mean of this field can be presented as the following sum:

m(x) = EZ (x) =
M
∑

l=0
al fl (x),

al �= 0, f0 = 1, l = 0, ..., M ,
(3-40)

and let [z(x1) , . . . ,z(xN)] be a regionalized variable. We estimate an unknown value
at the point x0 using the following form of the predictor:

Ẑ (x0) =
N

∑
k=1

αkZ (xk) (3-41)

We are looking for an unbiased estimate; that is, the mean of the difference between
the predictor from (3-41) and the true but unknown random variable at point x0

should be equal to zero:

E
(
Ẑ (x0)−Z (x0)

)
= 0 ⇒

N

∑
i=1

αi

M

∑
l=0

fl (xi) = EẐ (x0) = EZ (x0)

=
M

∑
l=0

fl (x0) ⇒
N

∑
i=1

αi fl (xi) = fl (x0) , l = 0, . . . , M

(3-42)

For the constant function f0 (x) this is the condition with which we are familiar
from ordinary kriging:

N

∑
k=1

αk = 1 (3-42′)

Developing the expression for the estimation variance, introducing the con-
straints into the objective function together with Lagrange’s parameters L0, . . . ,LM ,
and minimizing, we obtain

Var
(
Ẑ (x0)−Z (x0)

)
+2

M

∑
l=0

Ll

(
N

∑
i=1

αi fl (xi)− fl (x0)

)
→min(α1 . . . αN ,L0 . . . LM)

and the following LSE:

⎧⎪⎪⎨
⎪⎪⎩

N
∑
j=1

α jci j −
M
∑

l=0
Ll fl (xi) = ci0 i = 1, . . . , N

N
∑
j=1

α j fl (x j) = fl (x0) , l = 0, . . . , M
,

ci j = Cov(Z (xi) , Z (x j)) , i, j = 0, . . . , N

(3-43)

and in matrix notation:
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[
C F

FT 0

]
·
[

αL

LL

]
=
[

c0

f T

]

with
F (i, ·) = [ f0 (xi) , . . . , fM (xi)] , i = 1, . . . , N

f = [ f0 (x0) , . . . , fM (x0)]
T

(3-43′)

After solving (3-43′) by inverting the LSE matrix, we obtain weights as part of the
solution vector

[
αL,LL

]T
. Thus, the prediction at point x0 can be presented using

the given z-values of the regionalized variable:

ẑ(x0) =
N

∑
k=1

αL
k z(xk) (3-44)

The accuracy of this prediction is given by the universal kriging variance:

σ2
UK = Var

(
Z (x0)− Ẑ (x0)

)
= c00 +

N

∑
k, j=1

αL
j αL

k ck j −2
N

∑
k=1

αL
k c0k (3-45)

More about different kriging methods and their generalizations can be found in
Wackernagel (1995).

3.1.2.4 Cross Validation and Goodness Measure

Following is a brief overview of the method of cross validation and the goodness
measure for the evaluation of the choice of a variogram model.

We assume that all the modeling steps are finished: the variogram cloud and the
empirical variogram are calculated based on given measurements, a model for the
empirical variogram is fitted, a kriging approach is applied, and unknown values
with corresponding kriging variances are obtained. Is the chosen model variogram
now really good or bad for this case? Is there any way to answer this question?

Cross validation, which tests the empirical accuracy of kriging is such a way, and
it works as follows. From N known z-values of the regionalized variable, a value is
chosen and has to be kriged by the remaining values, using the chosen variogram
model. This procedure is applied stepwise for each z-value. First we prove that

G1 =
1
N

N

∑
i=1

(
z(xi)− Ẑ (xi)

)
≈ 0 (3-46)

If (3-46) is false, there are systematic over- or underestimation effects, thus indicat-
ing that the chosen model is not really perfect.

Second we calculate and prove that

G2 =
1
N

N

∑
i=1

(
z(xi)− Ẑ (xi)

)2

σ2
[i]

≈ 1 (3-47)



3.2 Describing Seeming “Chaos” in Measurements by an Analytical Function 61

The denominators σ2
[i]in (3-47) describe the obtained kriging variance. In (3-47) the

theoretical and the experimental accuracy of the estimated values can be compared.
If both (3-46) and (3-47) hold, the chosen variogram model would seem to be ac-
ceptable.

3.2 Describing Seeming “Chaos” in Measurements
by an Analytical Function

Obviously, it is very tempting to try to obtain a single “world formula,” one that
can describe all known processes and all spatial and temporal structures. By nature
human beings tend to cause their own chaos, but by nature they also try to organize
chaos caused by someone else.

There are many mathematical approaches that help us recognize data struc-
tures. We touched on the basic idea of simple regression methods and splines in
Sect. 3.1.1. Here, in Sect. 3.2.1 we discuss some common principles of differ-
ent surface approximation methods and in Sect. 3.2.2 we present some stochastic
models.

3.2.1 Different Regression Approaches: Basic Ideas and Ways for
Further Generalizations

There are many different reasons and objectives for fitting measurements by an
analytical curve or by a surface—for example, parameter estimation, data smooth-
ing, functional representation, and data reduction—and we discuss each of these
reasons separately. Parameter estimation is used if the form of an analytical func-
tion describing a process is dictated by parameters that have a specific physical
meaning. The goal is then to estimate those parameters as accurately as possible
from the given measurements. Data smoothing by an analytical function helps to
reduce measurement errors. We can hope that with the analytical function fitting a
process these errors will be more or less smoothed out. Functional representation
of a discrete set of measurements may have a number of advantages. First, values at
any point in the range of representation can be predicted (see Sect. 3.1). Second, the
functional approximation can be used for a deeper analysis of the data, for example,
for determining derivatives, definite integrals, and so on. Data reduction is neces-
sary if the given data set is too big for further analysis. In particular, this means that
numerical problems can occur. We can approximate the given data set by an analyt-
ical function that has fewer parameters than the number of measurements that are
given.

There are many approaches that lead to functional approximations owing to var-
ious smoothing criteria, which are dictated by real problems [see Dierckx (1993)].
The least-squares criterion is the one used most often. Sometimes there are
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constraints that lead to further generalizations of existing methods. We present some
of these that, on the one hand, are useful and, on the other, are simple to implement,
omitting detailed discussions about the numerical optimization of the corresponding
algorithms.

We start with the least-squares criterion of smoothing and discuss its widespread
applicability. Let [z(x1) , . . . , z(xN)] = [z1, . . . , zN ] be measurements at locations
[x1, . . . , xN ]. An analytical function f (x) must be found that fulfills the following
least-squares criterion:

N

∑
k=1

( f (xi)− zi)
2 → min (3-48)

We denote all coordinates of the locations by x. Usually, the function f is assumed

to depend on M + 1 parameters, which should be “optimally” chosen so that the
following holds:

N
∑

k=1
( f (a0, . . . aM, xi)− zi)

2 → min(a0, . . . , aM) ,

M ≤ N −1
(3-48′)

Parameter estimation means determining a0, . . . , aM . A single function class or
many different ones be considered. Data smoothing and functional representation
lead to the choice of an analytical function f describing the data structure of interest.
If the interpolation demand is fulfilled, M = N−1. In this case the z-values of given
measurements are reconstructed at their locations. For data reduction the number M
of chosen parameters has to be less than N −1 by some order.

The solution of the minimizing problem (3-48′) without any additional con-
straints goes through

∂
∂ai

[
N

∑
k=1

( f (a0, . . . , aM, xk)− zk)
2

]
= 0, i = 0 . . . M (3-49)

The resulting system of equations corresponds to

N

∑
k=1

(
f (a0, . . . , aM, xk) ·

∂
∂ai

[ f (a0, . . . , aM, xk)]
)

=
N

∑
k=1

zk ·
∂

∂ai
[ f (a0, . . . aM, xk)] , i = 0 . . . M

(3-49′)

and is not always linear! For example, it is a linear system of equations (LSE) if

∂
∂ai

[ f (a0, . . . , aM, xk)] = g(xk) , k = 1 . . . N, i = 1 . . . M

Thus, the following form of analytical functions f can be recommended:
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f (a0, . . . , aM, x) =
M

∑
i=0

aig
i (x) (3-50)

The functions gi (x) , i = 0 . . .M should be chosen carefully. First, these func-
tions should have some practical sense. For example, if the data are expected
to have a wave structure, it is better to use a trigonometric function rather than
a linear one. Second, the resulting matrix of the LSE has to be regular. Unfor-
tunately, we cannot give any general rules here, so intuition and experience are
essential.

Before solving, all possible constraints in the special form c j (a0, . . .aM) =
0, j = 1 . . .K should be cleared. There are generally certain practical reasons for
these constraints. Their number K should be restricted in relation to the number N
of measurements and to the number M +1 of unknown parameters:

K +M +1 ≤ N (3-50′)

The minimizing problem with K additional constraints corresponds to

N

∑
k=1

( f (a0, . . .aM, xi)− zi)
2 +

K

∑
j=1

L j · c j (a0, . . .aM)

→ min(a0, . . . , aM, L1, . . . , LK) , K +M +1 ≤ N

(3-51)

and results in the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂
∂ai

[
N
∑

k=1
( f (a0, . . .aM, xi)− zi)

2 +
K
∑
j=1

L j · c j (a0, . . .aM)

]
= 0

∂
∂Lm

[
K
∑
j=1

L j · c j (a0, . . .aM)

]
= 0 ⇒ cm (a0, . . .aM) = 0

i = 0 . . .M, m = 1 . . .K

(3-51′)

where the L j denote Lagrange parameters. Again, the generalized system of equa-
tions from (3-51) can be nonlinear.

Remark: If one cannot avoid using function such as f (a0, . . .aM, x) and con-
straints c j (a0, . . .aM) , j = 1 . . .K, which lead to nonlinear systems of equations,
some special techniques for searching for a minimum in (3-51) should be employed.
Generally, these methods do not provide an exact solution, but do yield a numerical
approximation. For example, the well-known down-hill-simplex algorithm can be
used for implementation.

Now, let us consider a simple example in order to demonstrate various regression
models.

Example 3.2.1.1 We consider the following temporal measurements from
Example 3.1.1.1:



64 3 Some Real Problems and Their Solutions

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2

In (*.4) of Example 3.1.1.1′′′′ a linear function fitting these measurements was cal-
culated and is given by:

z(x) = −0.04x+0.22 (*.1)

Equation (*.1) is an analytical function obtained by a linear regression ap-
proach without any constraints. It is a possible mathematical model to help de-
scribe the structure of the data that considers all the measurements in the same
way. What generalized mathematical model can fit these measurements for the
case, if the second measurement is given exactly and should be retained by the
linear regression? It means that we are searching for two parameters a and b
such that

F(a, b) =
4

∑
i=1

(axi +b− zi)
2

= (a ·1+b−0.1)2 +(a ·4+b−0.2)2 +(a ·7+b− (−0.1))2

+(a ·10+b− (−0.2))2 → min
a, b

(*.2)

with the additional constraint

a ·4+b = 0.2 (*.2′)

The generalized model, a linear regression approach with a fixed point, corresponds
to

F(a, b, L) =
4

∑
i=1

(axi +b− zi)
2 +2L · (a ·4+b−0.2) → min

a, b, L

The Lagrange parameter, which is equal to 2L, is used to further simplify the
equations. Considering the partial derivates leads to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂F
∂a

=
4
∑

i=1
2(axi +b− zi)xi +2L ·4 = 0

∂F
∂b =

4
∑

i=1
2(axi +b− zi) ·1+2 ·L = 0

∂F
∂b

= 2(a ·4+b−0.2) = 0

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
∑

i=1
(axi +b− zi)xi +4L = 0

4
∑

i=1
(axi +b− zi) ·1+L = 0

4a+b = 0.2

⇒

(*.3)
In matrix form we have
⎛
⎜⎜⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
xi 4

4
∑

i=1
xi 4 1

4 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

a

b

L

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎝

4
∑

i=1
xizi

4
∑

i=1
zi

0.2

⎞
⎟⎟⎟⎟⎠⇒

⎛
⎜⎝

aL

bL

LL

⎞
⎟⎠=

⎛
⎜⎝

166 22 4
22 4 1
4 1 0

⎞
⎟⎠

−1⎛
⎜⎝

−1.8
0.0
0.2

⎞
⎟⎠=

⎛
⎜⎝

−0.0556
0.4222

−0.4667

⎞
⎟⎠ .

(*.3′)
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Now we obtain an alternative linear function fitting the given measurements
by

z(x) = −0.0556x+0.4222 (*.4)

The changed conditions – namely using the additional constraint (*.2′) - lead to a
changed mathematical model and result in another linear structure (*.4) in compar-
ison with (*.1). It can be proved that the demand (*.2′) is fulfilled. Thus, the fitted
regression line goes through the second point x = 4 and retains the z-value 0.2 (see
Fig. 3.12).

In order to demonstrate the relative freedom of choosing functions
gi (x) , i = 0 . . .M from (3-50), we approximate the same data set again using the
following analytical function without further constraints:

f (a, b, x) = ax+b · cos(πx) (*.5)

We must determine two parameters a and b that minimize F(a, b):

F(a, b) =
4

∑
i=1

(axi +b · cos(πxi)− zi)
2 → min

a, b
(*.5′)

Considering partial derivatives, we get

Fig. 3.12 Two analytical functions that fit the data from Example 3.2.1.1. The dotted line cor-
responds to the linear regression approach without constraints (*.1). The solid line describes the
linear structure with a fixed second point (linear regression approach with constraints)
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⎧⎪⎪⎨
⎪⎪⎩

∂F
∂a

=
4
∑

i=1
2(axi +bcos(πxi)− zi)xi = 0

∂F
∂b

=
4
∑

i=1
2(axi +bcos(πxi)− zi) · cos(πx) = 0

⇒

⎛
⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
xi cos(πxi)

4
∑

i=1
xi cos(πxi)

4
∑

i=1
cos2 (πxi)

⎞
⎟⎟⎠
(

a
b

)
=

⎛
⎜⎜⎝

4
∑

i=1
xizi

4
∑

i=1
zi cos(πxi)

⎞
⎟⎟⎠

(*.6)

Using the given values and solving the equation system, we obtain

(
aL

bL

)
=
(

166 6.0
6.0 4.0

)−1(−1.8
0.0

)
=
(
−0.0115
0.0172

)
(*.6′)

This linear regression approach leads to the analytical function shown in Fig. 3.13:

f (x) = −0.0115x+0.0172 · cos(πx) (*.7)

Obviously, the model expressed in (*.5) is far from perfect. But it is meant as an
instructional tool: If someone carelessly uses function

f (a, b, x) = ax+b · sin(πx) (*.8)

instead of (*.5) he or she is unpleasantly surprised because the matrix of the
corresponding LSE is irregular. Interested readers can convince themselves.

Fortunately, there are certain conditions that to have be fulfilled to ensure a regu-
lar matrix of the LSE. We recommend using a set of so-called orthogonal functions

Fig. 3.13 Linear regression approach (*.7) fitting the data from Example 3.2.1.1
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gi (x) , i = 0 . . .M, which we discuss below. The location of the measurements is
of importance. Generally, this is a nontrivial topic, which is touched on in Dierckx
(1993).

Finally, we generalize the model (*.5) to

f (a, b, x) = ax+b · cos(πx)+ c (*.9)

Considering partial derivations with respect to a, b, and c in order to minimize the
sum of squared differences, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

4
∑

i=1
x2

i

4
∑

i=1
xi cos(πxi)

4
∑

i=1
xi

4
∑

i=1
xi cos(πxi)

4
∑

i=1
cos2 (πxi)

4
∑

i=1
cos(πxi)

4
∑

i=1
xi

4
∑

i=1
cos(πxi) 4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ a

b
c

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

4
∑

i=1
zixi

4
∑

i=1
zi cos(πxi)

4
∑

i=1
zi

⎞
⎟⎟⎟⎟⎟⎟⎠
(*.10)

Using the given values and inverting the matrix leads to

⎛
⎝ a

b
c

⎞
⎠=

⎛
⎝166 6 22

6 4 0
22 0 4

⎞
⎠

−1⎛
⎝−1.8

0.0
0.0

⎞
⎠=

⎛
⎝−0.05

0.075
0.275

⎞
⎠ (*.10′)

Figure 3.14 shows the following analytical function that fits the data:

f (x) = −0.05x+0.075 · cos(πx)+0.275 (*.11)

The question of which analytical function fits these data best is a philosophical
one. There are many functions that fit data best with respect to some optimiza-
tion criterion. Obviously, different constraints can be assumed and the real applica-
tions of the chosen mathematical model play an important role.

If we compare the four models that have been considered here, we should look
at the sums of squared differences, given as follows:

• Linear model without constraints leads to Sum=0.028.
• Linear model with fixed second point leads to Sum=0.0931.
• Linear model (*.7) leads to Sum=0.0794.
• Linear model (*.11) leads to Sum=0.01.

Therefore, the linear model (∗.11) is optimal one with respect to the sum of
squares. Perhaps one of our readers can find a better model!

3.2.1.1 Orthogonal Functions and the Gram-Schmidt Method

Orthogonal polynomials, especially so-called the Legendre polynomials are
widespread in geodesy. A special kind of orthogonal function is given by what are
known as wavelets. Using approximation with orthogonal functions leads to a sim-
pler calculation of the following integral, which is replaced by a sum:
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Fig. 3.14 Linear regression approach (*.11) fitting the data from Example 3.2.1.1

b∫
a

f (x)g(x)dx = 〈 f (x) , g(x)〉 =

〈
∞

∑
k=0

α f
k ek (x) ,

∞

∑
k=0

αg
k ek (x)

〉
=

∞

∑
k=0

α f
k αg

k ‖ek‖2,

〈
ek, e j

〉
=
{

0, k �= j
‖ek‖2 , k = j

α f
k = 〈 f (x) , ek (x)〉 , αg

k = 〈g(x) , ek (x)〉
(3-52)

Definition 3.2.1-1 Let u, v be two regular functions defined for an interval [a, b].
Further, let w be a nonnegative function defined for the same interval. The following
value is called the scalar product of the functions u, v with respect to the weight
function w:

〈u, v〉w =
b∫

a

u(x) · v(x) ·w(x) dx (3-53)

Example 3.2.1.2 Calculation of the scalar product for following functions:

w(x) = x2

v(x) = x

u(x) = 3x+5

〈u, v〉w =
b∫

a

(3x+5) · x · x2dx =
3
5

(
b5 −a5

)
+

5
4

(
b4 −a4) .



3.2 Describing Seeming “Chaos” in Measurements by an Analytical Function 69

Definition 3.2.1-2 Two regular functions u, v defined for the interval [a, b] are
called orthogonal if their scalar product is equal to zero.

The importance of orthogonal functions in functional spaces is similar to that of
orthogonal basis vectors in Euclidean space. Analogously to the representation of
any vector as the sum of basis vectors, any function f (x) defined on interval [a, b]
can be approximated by using the orthogonal functions {ei (x)}∞

i=1:

f (x) =
∞

∑
i=1

fiei (x)

fi =
〈 f (x) , ei (x)〉
〈ei (x) , ei (x)〉

, i = 1, 2, . . . .

(3-54)

Example 3.2.1.3 Are the polynomials 1, x, x2, . . . orthogonal in relation to the
interval [a, b]? We can answer this question using Definitions 3.2.1-1 and 3.2.1-2:

{
gi (x) = xi−1}∞

i=1 : ∀a < b :

〈
gi, g j

〉
=

b∫
a

xi+ j−2dx =
1

i+ j−1

(
bi+ j−1 −ai+ j−1) �= 0

Thus, these polynomials are not orthogonal, but linear independent, which means
that it is not possible to represent such a polynomial as a weighted sum or a linear
combination of the other polynomials:

gi �=
∞

∑
k=0, k �=i

αkgk (x) ∀αk, k = 0 . . .

i = 0, . . .

There is a method generating a system of orthogonal functions from a linear-
independent system of functions called Gram-Schmidt orthogonalization:

Let {g1 (x) , g2 (x) , . . . .gn (x) , . . .} be linear-independent functions on the
interval [a, b]. The functions {e1 (x) , e2 (x) , . . . , en (x) , . . .}, based on
{g1 (x) , g2 (x) , . . . .gn (x) , . . .}, build an orthogonal basis on the interval
[a, b]:

e1 (x) = g1 (x) ,

e2 (x) = g2 (x)− c1, 2
e1 (x)√

〈e1 (x) , e1 (x)〉
, . . .

en (x) = gn (x)− c1, n
e1 (x)√

〈e1 (x) , e1 (x)〉
− c2, n

e2 (x)√
〈e2 (x) , e2 (x)〉

− . . . − cn−1, n
en−1 (x)√

〈en−1 (x) , en−1 (x)〉
, . . .

The constants used here can be calculated by

c j, k =
〈e j (x) , gk (x)〉√
〈e j (x) , e j (x)〉

, j ≤ k−1 (3-55)
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Let us consider Example 3.2.1.3′ to prove the Gram-Schmidt method.

Example 3.2.1.3′ The following system
{

gi (x) = xi−1
}∞

i=1 has to be orthogonalized
on [−1, 1]. Using (3-55) we get successively:

e1 (x) = 1,

e2 (x) = x with c1, 2 ∝
1∫

−1
1 · xdx = 0

(*.1)

e3 (x) = x2 − 1
3

with c2, 3 ∝
1∫

−1

x · x2dx = 0 and c1, 3 =

1∫
−1

1 · x2dx

√
1∫

−1
1 ·1dx

=
2/3√

2
=

√
2

3

etc.

(*.2)

Figure 3.15 shows the first three functions of this orthogonal basis on the interval
[−1, 1].

Fig. 3.15 The first three functions, e1 (x) (solid), e2 (x) (dashed), and e3 (x) (dotted), of the orthog-
onal basis from Example 3.2.1.3′

Example 3.2.1.4 Let us prove that the system

1, cos(x) , sin(x) , cos(2x) , sin(2x) , . . . cos(nx) , sin(nx)

is orthogonal on [−π, π]. We can first prove the following:
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π∫
−π

cos( jx)cos(kx)dx =

⎧⎨
⎩

0, j �= k
2π, j = k = 0
π, j = k > 0

(*.1)

π∫
−π

sin( jx)sin(kx)dx =
{

0, j �= k, j, k > 0
π, j = k > 0

(*.2)

π∫
−π

cos( jx)sin(kx)dx = 0, ∀ j ≥ 0, k > 0 (*.3)

For (*.1) and (*.2) the following well-known trigonometric relations can be used:

π∫
−π

cos( jx)cos(kx)dx =
1
2

π∫
−π

[cos([ j + k]x)+ cos([ j− k]x)]dx

and
π∫

−π

sin( jx)sin(kx)dx =
1
2

π∫
−π

[cos([ j + k]x)− cos([ j− k]x)]dx

For the integral in (*.3),

0∫
−π

cos( jx)sin(kx)dx =−
π∫

0

cos( jx)sin(kx)dx ⇒
π∫

−π

cos( jx)sin(kx)dx = 0

holds. This fact taken into account in Example 3.2.1.4 is used to construct a func-
tional approximation by a Fourier transform, an approximation that is meaningful
for data characterized by a wave structure. We review this topic briefly; more details
can be found in Bracewell (1978) and Hamming (1973).

3.2.1.2 Approximation with the Fourier Transform (1D)

We restrict ourselves here to the one-dimensional case. Measurements
[z(x1) , . . . , z(xN)] = [z1, . . . , zN ] from an unknown function z(x) should be ap-
proximated in [−π, π] by the following analytic function:

fn (x) =
1
2

a0 +
n

∑
k=1

[ak cos(kx)+bk sin(kx)] (3-56)

Using (3-53) and (3-54), we can represent this function as
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z(x) =
∞

∑
i=1

ciei (x) =
1
2

a0 +
∞

∑
k=1

[ak cos(kx)+bk sin(kx)] ≈1
2

a0 +
n

∑
k=1

ak cos(kx)+
n

∑
k=1

bk sin(kx)

ci =
〈z(x) , ei (x)〉
〈ei (x) , ei (x)〉

, i = 1, 2, . . . . ⇒

(3-57)

〈z(x) , 1〉 =
π∫

−π

z(x)dx, 〈1, 1〉 = 2π ⇒ a0 =
1
π

π∫
−π

z(x)dx,

〈z(x) , cos(kx)〉 =
π∫

−π

z(x)cos(kx)dx, 〈cos(kx) , cos(kx)〉 = π ⇒ ak =
1
π

π∫
−π

z(x)cos(kx)dx,

〈z(x) , sin(kx)〉 =
π∫

−π

z(x)sin(kx)dx, 〈sin(kx) , sin(kx)〉 = π ⇒ bk =
1
π

π∫
−π

z(x)sin(kx)dx

(3-57′)

Here we use relations (*.1)–(*.3) from Example 3.2.1.4. As shown above, we ob-
tain equations for calculating coefficients where the coefficient is given as an integral
and depends on the continuous but unknown function z(x). Thus, these equations
should also be “translated” into a discrete form based on the given measurements
[z(x1) , . . . , z(xN)] = [z1, . . . , zN ]. This can be done by applying the well-known
equation (trapezium rule):

b∫
a

f (x)dx ≈b−a
2

( f (a)+ f (b)) (3-58)

If the interval [−π,π] is divided into N − 1 subintervals with knots −π = x1,
x2, . . . , xN = π equation (3-58) can be applied for each interval separately. The
final sum leads to

b∫
a

f (x)dx ≈1
2

N−1

∑
i=1

( f (xi)+ f (xi+1))(xi+1 − xi) (3-58′)

If identical lengths h = xi+1 −xi, i = 1 . . . N −1 are chosen for the subintervals, we
obtain

b∫
a

f (x)dx ≈ h ·
[

1
2

f (x1)+
N−2

∑
i=2

f (xi)+
1
2

f (xN)

]

h = xi+1 − xi, i = 1 . . . N −1

(3-58′′)
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Thus, we can formulate a common rule for the discrete calculation of the coef-
ficients of the corresponding 1D-Fourier transform that can be used for functional
approximation of measurements [z(x1) , . . . , z(xN)] = [z1, . . . , zN ] in the interval
[−π, π]. Obviously a linear combination of orthogonal trigonometric functions is
used.

Let [z(x1) , . . . , z(xN)] = [z1, . . . , zN ] be measurements in [−π, π]. These
data can be approximated using the following linear combination of orthogo-
nal trigonometric functions:

fn (x) =
1
2

a0 +
n

∑
k=1

[ak cos(kx)+bk sin(kx)]

For the corresponding coefficients and −π = x1, x2,n . . . , xN = π this yields:

a0 =
1
π

π∫
−π

z(x)dx ≈ 1
2π

N−1

∑
i=1

(z(xi)+ z(xi+1))(xi+1 − xi),

ak =
1
π

π∫
−π

z(x)cos(kx)dx ≈ 1
2π

N−1

∑
i=1

(z(xi)cos(kxi)+ z(xi+1)cos(kxi+1))(xi+1 − xi),

bk =
1
π

π∫
−π

z(x)sin(kx)dx ≈ 1
2π

N−1

∑
i=1

(z(xi)sin(kxi)+ z(xi+1)sin(kxi+1))(xi+1 − xi)

(3-59)

For a regular dissection of the interval [−π, π] such as (3-58′′) the equa-
tions (3-59) can be simplified to

a0 =
1
π

π∫
−π

z(x)dx ≈ h
2π

[
z(x1)+2

N−2

∑
i=2

z(xi)+ z(xN)

]
,

ak =
1
π

π∫
−π

z(x)cos(kx)dx ≈ h
2π

[
z(x1)cos(kx1)+2

N−2

∑
i=2

z(xi)cos(kxi)+ z(xN)cos(kxN)

]
,

bk =
1
π

π∫
−π

z(x)sin(kx)dx ≈ h
2π

[
z(x1)sin(kx1)+2

N−2

∑
i=2

z(xi)sin(kxi)+ z(xN)sin(kxN)

]

Remark: The assumption that the measurements take values from the interval
[−π, π] is not an insurmountable restriction. If measurements [z(x∗1) , . . . , z(x∗N)] =
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[z1, . . . , zN ] belong to any interval [a, b] we can apply the following prior transfor-
mation of the x-coordinates:

xi = −π +
x∗i −a
b−a

·2π, i = 1 . . . N (3-60)

With these new coordinates the Fourier transform for measurements
[z(x1) , . . . , z(xN)] = [z1, . . . , zN ] can be calculated. Finally, the back-transformation
should be made in order to approximate the original measurements by a linear com-
bination of orthogonal trigonometric functions:

x∗i = a+
xi +π

2π
· (b−a) , i = 1 . . . N (3-60′)

The number 2n + 1 of the coefficients of the Fourier transform is chosen indepen-
dently from the number N of given measurements.

Now we demonstrate the Fourier transform for the simple data set from
Example 3.2.1.1.

Example 3.2.1.5 We consider the following temporal measurements from
Example 3.2.1.1:

z1 = z(1) = 0.1, z2 = z(4) = 0.2, z3 = z(7) = −0.1, z4 = z(10) = −0.2

Obviously, these points do not belong to the interval [−π, π], so the prior coordinate
transformation (3-60) should be carried out:

xi = −π +
x∗i −1

9
·2π, i = 1 . . . 4 (*.1)

With (*.1) the interval [1, 10] is transformed into [−π, π]. First, we set n = 3 in
(3-59) and calculate seven coefficients for the analytical presentation:

f3 (x) =
1
2

a0 +
3

∑
k=1

[ak cos(kx)+bk sin(kx)]

=
1
2

a0 +a1 cos(x)+b1 sin(x)+a2 cos(2x)+b2 sin(2x)+a3 cos(3x)+b3 cos(3x)

(*.2)

Owing to equidistance of x we can use equation (3-59′) and with N = 4 and x1

= −π, x2 = −π
3

x3 =
π
3

, x4 = π, h =
2π
3

obtain:
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a0 =
1
3

[0.1+2 ·0.2+2 · (−0.1)+(−0.2)] = 0.0333

a1 =
1
3

[
0.1cos(−π)+2 ·0.2 · cos

(
−π

3

)
+2(−0.1)cos

(π
3

)
+(−0.2)cos(π)

]
= 0.0667

b1 =
1
3

[
0.1sin(−π)+2 ·0.2 · sin

(
−π

3

)
+2(−0.1)sin

(π
3

)
+(−0.2)sin(π)

]
= −0.1732

(*.3)

Analogously, we have: a2 = −0.0667, b2 = −0.1732, a3 = −0.0333, b3 = 0, and
finally

f3 (x) = 0.0167+0.0667cos(x)−0.1732sin(x)
−0.0667cos(2x)−0.1732sin(2x)−0.0333cos(3x)

(*.4)

After retransformation

x∗i = 1+9 · xi +π
2π

, i = 1 . . . 4 (*.1′)

we obtain an analytical approximation via the Fourier transform for the given mea-
surements (see Fig. 3.16):

f3 (x∗) = 0.0167+0.0667cos

(
−π +

x∗ −1
9

·2π
)
−0.1732sin

(
−π +

x∗ −1
9

·2π
)

−0.0667cos

(
2 ·
[
−π +

x∗ −1
9

·2π
])

−0.1732sin

(
2 ·
[
−π +

x∗ −1
9

·2π
])

−0.0333cos

(
3 ·
[
−π +

x∗ −1
9

·2π
])

(*.4′)

More details on the verification of the validity of the Fourier transform procedure
can be found, for example, in Bracewell (1978) and Hamming (1973).

Replacing the sinusoidal and cosinusoidal functions in the orthogonal system on
the interval [−π, π] from Example 3.2.1.4 by other meaningful functions defined for
the complete real axis that are also orthogonal and fulfill some additional important
mathematical demands leads to some useful generalizations of Fourier transforms.
Wavelets are one of these generalizations, and we now discuss the basic idea for
constructing 1D-wavelets.

3.2.1.3 Approximation by 1D-Wavelets

The simplest form of a so-called mother-wavelet is the hair-wavelet Ψ0 (see
Fig. 3.17a):

Ψ0 (x) =

⎧⎨
⎩

1, 0 ≤ x < 0.5
−1, 0.5 ≤ x < 1
0, sonst

(3-61)
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Fig. 3.16 The Fourier transform for the data from Example 3.2.1.5, n = 3

Any wavelet family is constructed using a certain mother-wavelet by the follow-
ing transformation (see Fig. 3.17):

Fig. 3.17 Three hair-wavelets: (a) is the mother hair-wavelet Ψ1, 0 from (3-61), (b) is Ψ6, 0, and
(c) is Ψ4, 1 from (3-62)
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Ψa, b (x) =
1√
a

Ψ0

(
x−b

a

)
(3-62)

Well-known wavelet families are the Gaussian, Mexican Hat, Meyer, and Morlet
families. Here we want to apply hair-wavelets to demonstrate how the wavelet ap-
proximation works. If we set

a =
1
2i , b =

k
2i , i, k ∈ Z

in (3-62) we obtain the orthonormal basis of the functions in L2 (R):

Ψi, k (x) =
√

2iΨ0
(
2ix− k

)
, (3-62′)

Figure 3.18 shows—in a schematic rather than in a mathematically exact way—
three functions from this basis. Using this basis, we can present any function f (x)
from the space of all twice-differentiable functions L2 (R) in the following form:

f (x) = ∑
i, k∈Z

ci, kΨi, k (x),

ci, k =
〈

f (x) , Ψi, k (x)
〉
, i, k ∈ Z

(3-63)

After some further steps, equation (3-63) becomes

ci, k =

k+1
2i∫

k
2i

f (x)Ψi, k (x)dx, i, k ∈ Z (3-63′)

Equation (3-63′) can be simplified for the case of hair-wavelets from (3-61) to

ci, k =
√

2i

k
2i +

1
2i+1∫

k
2i

f (x)dx−
√

2i

k+1
2i∫

k
2i +

1
2i+1

f (x)dx, i, k ∈ Z (3-63′′)

The relation from (3-63′′) can be used for an approximate calculation of the
weights ci, k, i, k ∈ Z in the case of a discrete wavelet convolution with hair-
wavelets, as demonstrated in the following example.

Example 3.2.1.6 We divide the interval [0, 1] into 23 = 8 subintervals
[

0,
1
8

]
,

[
1
8
,

2
8

]
. . .

[
7
8
, 1

]
.
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Fig. 3.18 Three hair-wavelets from the orthonormal basis (3-62′): (a) is Ψ0, 0, (b) is Ψ1, 0, and (c)
is Ψ1, 1

The measurements are taken at the nine knots of these intervals. Thus we have:

x 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

z 0.0 1.707 1.0 −0.293 0.0 0.293 −1.0 −1.707 0.0

We assume that these z-values are from an unknown analytical function f (x). We
start with the numerical calculation of the weights using (3-63′′) and the trapezium
rule for the corresponding integral approximations for the interval [0, 1]:

c0, 0 =
1.0∫
0

f (x)Ψ0, 0dx =
h
2

[
f (x1)+2

4

∑
i=2

f (xi)−2 f (x5)−2 f (x6)−2
8

∑
i=7

f (xi)−0· f (x9)

]

=
h
2

[
z1 +2

4

∑
i=2

zi −2z5 −2z6 −2
8

∑
i=7

zi

]
, h =

1
8

(*.1)

c1, 0 =
0.5∫
0

f (x)Ψ1, 0dx =
1.0∫
0

f (x)Ψ1, 0dx =
√

2h
2

[ f (x1)+2 f (x2)−2 f (x3)−2 f (x4)−2 ·0 · f (x5)] =
h√
2

[z1 +2z2 −2z3 −2z4] , h =
1
8

(*.2)
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c1, 1l =
1∫

0.5

f (x)Ψ1, 1dx =
1∫

0

f (x)Ψ1, 1dx

=
√

2h
2

[2 f (x5)+2 f (x6)−2 f (x7)−2 f (x8)−0 · f (x9)]

=
h√
2

[2z5 +2z6 −2z7 −2z8] , h =
1
8

(*.3)

c2, 0 =

1/4∫
0

f (x)Ψ2, 0dx =
1∫

0

f (x)Ψ2, 0dx

=
√

4h
2

[ f (x1)−2 f (x2)−2 ·0 · f (x3)] = h [z1 −2z2] , h =
1
8

(*.4)

c2, 1 =

4/8∫

1/4

f (x)Ψ2, 1dx =
1∫

0

f (x)Ψ2, 1dx

=
√

4h
2

[2 f (x3)−2 f (x4)−2 ·0 · f (x5)] = h [2z3 −2z4] , h =
1
8

(*.5)

Analogously, we obtain

c2, 2 =

6/8∫

1/2

f (x)Ψ2, 2dx =
√

4h
2

[2 f (x5)−2 f (x6)−2 ·0 · f (x7)] = h [2z5 −2z6] , h =
1
8

(*.6)

c2, 3 =
1∫

6/8

f (x)Ψ2, 3dx =
√

4h
2

[2 f (x7)−2 f (x8)−0 · f (x9)] = h [2z7 −2z8] , h =
1
8

(*.7)

Owing to the limited number of measurements, further calculation of coefficients
makes no sense. After setting the given z-values, we obtain

c0, 0 = 0.60,

c1, 0 = 0.18, c1, 1 = 0.53

c2, 0 = −0.43, c2, 1 = 0.32, c2, 2 = 0.07, c2, 3 = 0.18

(*.7′)

Figure 3.19 shows a discrete wavelet approximation like (3-63) for the given
measurements with the obtained weights:
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Fig. 3.19 Discrete wavelet convolution for the data from Example 3.2.1.6

f3 (x) =
ci, k

∑
i, k

Ψi, k (x) = c0, 0Ψ0, 0 (x)+ c1, 0Ψ1, 0 (x)+ c1, 1Ψ1, 1 (x)

+ c2, 0Ψ2, 0 (x)+ c2, 1Ψ2, 1 (x)+ c2, 2Ψ2, 2 (x)+ c2, 3Ψ2, 3 (x)
(*.8)

With the coefficients given in (*.7′), this leads to

f3 (x) = c0, 0 [1(0 ≤ x < 0.5)−1(0.5 ≤ x < 1)]

+ c1, 0

√
2 [1(0 ≤ x < 1/4)−1(1/4 ≤ x < 1/2)]+ c1, 1

√
2 [1(1/2 ≤ x < 3/4)−1(3/4 ≤ x < 1)]

+ c2, 02 [1(0 ≤ x < 1/8)−1(1/8 ≤ x < 2/8)]+ c2, 12 [1(2/8 ≤ x < 3/8)−1(3/8 ≤ x < 4/8)]

+ c2, 22 [1(4/8 ≤ x < 5/8)−1(5/8 ≤ x < 6/8)]+ c2, 32 [1(6/8 ≤ x < 7/8)−1(7/8 ≤ x < 1)]

Certainly, there are many numerical algorithms for “optimal” wavelet convolu-
tions: fast, quick, hard, soft, and so on. Our goal was a simple explanation of the
basic idea of wavelet approximation. Further details about wavelets can be found,
for example, in Strang and Nguyen (1997) and Wickerhauser (1994).

Remark: Least squares is not the only smoothing criterion that is useful for approx-
imation approaches. Dierckx (1993) discussed an extension of the smoothing crite-
rion for tensor product splines—the so-called variational approach—that deals with
approximations where the functional form of an analytical function is not specified
in advance but follows from the solution of the variational problem.
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3.2.2 Stochastic Point of View: Random Processes and Useful
Quantitative Characteristics

From a stochastic point of view we assume that measurements belong to a realiza-
tion of a random process, which we noted in Sect. 3.1.2. A realization of a random
process can be approximated by an analytical function, but a random process is a
more complicated model. Often one speaks about a random function in regard to
the yearly temperature observations or other temporal measurements, which are in-
terpreted as random process. The realization (or trajectory) of this process is a curve
for each particular year. A value of this random process on a certain day is a random
variable. Definition 3.1.2-1 for random fields can be adapted for random functions
follows:

Definition 3.2.2-1 A family of random variables Z (t) = {Zt , t ∈ T} is called a ran-
dom process or a random function. With T = {0, 1, 2, . . .} this random process is
called discrete. With T = [0, ∞) it is designated as continuous.

Definition 3.2.2-1 leads to random processes. As an additional characteristic the
k-dimensional distribution function can be defined for random processes:

Definition 3.2.2-2 For any choice of t1, . . . , tk ∈ T the general distribution
F (x1, . . . , xk)
= P(Z (t1) < x1, . . . , Z (tk) < xk) of a random vector is called the k-dimensional
distribution function.

Remark: Random processes with k-dimensional normal distribution are called
Gaussian processes.

Let us discuss some important models of weakly stationary (here, in short, sta-
tionary) random processes. We speak about weakly stationary random processes if
the following two demands are fulfilled:

E (Z (t)) = μ = const,
Cov(Z (ti) , Z (t j)) = E (Z (ti)−μ)(Z (t j)−μ) = c(t j − ti) = c(τ) ,
Var (Z (t)) = c(0) = σ2, ti, t j, τ ∈ T

(3-64)

These conditions lead to a process with a constant mean and covariance func-
tion that depend solely on the distance between the two random values from this
process.

The “Pure” Random Process (White-Noise-Process)

This discrete model describes the case of total stochastic independence of identically
distributed measurements. The random values εi = Z (ti) , ti ∈ {0, 1, 2 . . .} of this
process can be denoted as i.i.d. (independently identically distributed) They follow
an identical distribution function F0 (x). Thus, for this case the following holds:
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∀k : F (x1, . . . , xk) = F0 (x1) · . . . ·F0 (xk)

c(τ) =
{

σ2, τ = 0
0, τ �= 0

(3-65)

Figure 3.20a shows a realization of this process. Here we use the normal distribution
with μ = 0, σ2 = 1 for measurements at locations from T = {0, 1, 2, . . .}.

Remark: A possible simple—nonstationary—generalization of this process can be
constructed if the demand of identical distribution is omitted. For example, we have
measurements where the mean and the variance vary depending on t. Thus, we have

c(τ, t) =
{

σ2 (t) , τ = 0
0, τ �= 0

(3-65′)

Figure 3.20b shows a realization of this process. Here we use normal distribu-
tion with μ = 0, σ2 = exp(−0.05t) for measurements at locations from T =
{0, 1, 2, . . .}.

Moving-Average or MA(1) Process

In this case, the random value at location t is the following weighted sum of neigh-
boring random values of the white-noise process (3-65):

Z (t) = ε (t)+a · ε (t −1) (3-66)

Fig. 3.20 Realizations of a stationary white-noise process (a), and a nonstationary white-noise
process (b). Normal distribution is used with μ = 0, σ2 = 1 in (a) and μ = 0, σ2 = exp(−0.05t)
in (b)
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The parameter a is a deterministic constant. If we assume E (ε (t)) = 0, Var (ε (t)) =
σ2, we have

cZ (τ) =

⎧⎨
⎩
(
1+a2

)
σ2, τ = 0

aσ2, τ = ±1
0, τ = ±2, ±3, . . .

(3-67)

MA(q) Process

A logical generalization of the MA(1) process (3-66) is the MA(q) process taking
into account k neighboring values of the white-noise process. This is obviously ex-
pressed in the following way:

Z (t) = ε (t)+a1 · ε (t −1)+ . . . +aqε (t −q) (3-66′)

Autoregressive Process AR(1)

In AR(1) processes the random value at t is the weighted sum of the prior random
value of the process, that is, Z (t −1), and the value of the white-noise process ε (t).
This means that

Z (t) = aZ (t −1)+ ε (t) (3-68)

AR(1) is stationary only if the deterministic constant fulfills |a| < 1. This process is
a random model of simple linear regression. It is also true that

E (Z (t)) = 0, Var (Z (t)) =
σ2

1−a2 ,

cZ (τ) = a|τ|
σ2

1−a2

(3-69)

Figure 3.21 shows two realizations of the same random process AR(1). The initial
random variable Z (0) is normally distributed with μ = 5, σ2 = 1. For the white-
noise process μ = 0, σ2 = 0.5 are chosen. We use a = 0.8 as the constant.

ARMA(p, q) Process

An ARMA(p, q) process generalizes AR(1) as well as MA(q)-processes. When both
approaches are taken into account, this generalization is given by

Z (t) = a1Z (t −1)+ . . . +apZ (t − p)+ ε (t)+b1ε (t −1)+ . . . +bqε (t −q)
(3-70)

With constants fulfilling some demands this process is stationary.
But how can temporal measurements really be analyzed? We discuss some

approaches from a special statistical framework known as time series analysis.
The term “time series” describes a temporal ordered sequence of quantitative
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Fig. 3.21 Two realizations of the same random process AR(1). The initial random variable Z (0)
is Gaussian with μ = 5, σ2 = 1. For the applied white-noise process μ = 0, σ2 = 0.5 are chosen.
We use a = 0.8 as the constant

measurements. Practical examples for time series might include air temperatures,
rainfall volumes, wind forces, and stock prices.

First, we assume that given measurements can be described by the following
simple additive model:

Z (t) = m(t)+ ε (t) (3-71)

where m(t) denotes a deterministic and unknown trend. The random component
ε (t) describes the residuals. We can estimate this unknown trend with the simple
linear form m(t) = a0 + a1t The unknown parameters a0 and a1 can be estimated
by applying the least-squares method, which leads to m̂(t) = â0 + â1t. Estimat-
ing these parameters follows the same course as in linear regression approaches.
Therefore, for N measurements, (t1, Z (t1)) , . . . , (tN , Z (tN)) yields the following
estimates:

â1 =

N
∑

i=1
(ti − t̄)(Z (ti)− m̄)

N
∑

i=1
(Z (ti)− m̄)2

, t̄ =

N
∑

i=1
ti

N
, m̄ =

N
∑

i=1
Z (ti)

N
,

â0 = t̄ − â1m̄

(3-72)

In a more generalized approach any unknown trend can be described as a
so-called quasi-linear model m(t) = a0 + a1m1 (t) + . . . + admd (t), which can be
applied with any time-dependent function m1 (t) , . . . , md (t) with unknown param-
eters a0, a1, . . . , ad , d ≤ N −1. Obviously, these parameters have to be estimated
using the least-squares method. Remember that this is the kind of deterministic
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problem that was discussed in Sect. 3.2.1. After finishing the estimation process
leading to â0, â1, . . . , âd and the corresponding trend m̂(t) = â0 + â1m1 (t)+ . . . +
âdmd (t), we can prove the “quality” or goodness of fit of the chosen model by con-
sidering the following characteristics:

B = 1−

N
∑

i=1
(Z (ti)− m̂(ti))

2

N
∑

i=1
(Z (ti)− m̄)2

, ŝ2 =
1

N −2

N

∑
i=1

(Z (ti)− m̂(ti))
2 (3-73)

If parameter B is nearly one, the linear (quasi-linear) model can be accepted. From
a statistical point of view B is called the coefficient of determination. The second
characteristic ŝ2 is an estimator for the unknown variance of the residuals.

The residuals ε̂ (t) = Z (t)− m̂(t) = Z (t)− â0 − â1m1 (t)− . . . − âdmd (t) should
also be analyzed, and we now discuss this topic.

Example 3.2.2.1 We consider the same measurements as in Example 3.2.1.6:

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

Z(t) 0.0 1.707 1.0 −0.293 0.0 0.293 −1.0 −1.707 0.0

At first, we assume that these measurements follow the additive model (3-71)
and the unknown trend, fulfilling

m(t) = a0 +a1 sin(2πt) (*.1)

We apply the least-squares method for estimating a0, a1 as in Example 3.2.1.1:

F(a0, a1) =
9
∑

i=1
(a0 +a1 sin(2πti)−Z (ti))

2

= (a0 +a1 sin(2π ·0)−0.0)2 + · · ·
+(a0 +a1 sin(2π ·1)−0.0)2 → min(a0, a1)

(*.2)

Regarding partial derivatives with respect to a0 and a1 and setting these derivatives
equal to zero leads to a LSE where the solution of the corresponding minimizing
problem is given at â0, â1:

⎛
⎜⎜⎝

9
9
∑

i=1
sin(2πti)

9
∑

i=1
sin(2πti)

9
∑

i=1
sin2 (2πti)

⎞
⎟⎟⎠
(

â0

â1

)
=

⎛
⎜⎜⎝

9
∑

i=1
Z (ti)

9
∑

i=1
Z (ti)sin(2πti)

⎞
⎟⎟⎠ (*.3)

Using the given values and solving the LSE (*.3) leads to

(
9 0
0 4

)(
â0

â1

)
=
(

0
3.9997

)
⇒

(
â0

â1

)
=
(

9 0
0 4

)−1( 0
3.9997

)
(*.3′)
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and â0 = 0.0, â1 = 0.9999. Thus, the unknown trend can be estimated by m̂(t) =
0.9999sin(2πt).

Now, should we accept this quasi-linear model or not? In order to answer this
question we should calculate the parameter B from (3-73) and assess it compared
with one:

B = 1−

9
∑

i=1
(Z (ti)−0.9999sin(2πti))

2

9
∑

i=1
(Z (ti)− m̄)2

= 1− 4
7.9994

= 0.5, m̄ =
1
9

9

∑
i=1

Z (ti) = 0

(*.4)
Obviously, the parameter B that we obtain is not approximately equal to one. The

quasi-linear model (*.1) does not provide a perfect or even a sufficient fit, so let us
try to improve upon it by assuming the following approach:

m(t) = a0 +a1 sin(2πt)+a2 sin(4πt) (*.5)

Once again, we have to apply the least-squares method to estimate of a0, a1, a2

following the common principle from Sect. 3.2.1:

F(a0, a1, a2) =
9

∑
i=1

(a0 +a1 sin(2πti)+a2 sin(4πti)−Z (ti))
2

= (a0 +a1 sin(2π ·0)+a2 sin(4π ·0)−0.0)2 + . . .

+(a0 +a1 sin(2π ·1)+a2 sin(4π ·1)−0.0)2 → min(a0, a1, a2)
(*.6)

Partially differentiating the function in (*.6) with respect to a0, a1, a2 in order to
solve the corresponding minimization problem leads to the following LSE:
⎛
⎜⎜⎜⎜⎜⎜⎝

9
9
∑

i=1
sin(2πti)

9
∑

i=1
sin(4πti)

9
∑

i=1
sin(2πti)

9
∑

i=1
sin2 (2πti)

9
∑

i=1
sin(2πti)sin(4πti)

9
∑

i=1
sin(4πti)

9
∑

i=1
sin(2πti)sin(4πti)

9
∑

i=1
sin2 (4πti)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ â0

â1

â2

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

9
∑

i=1
Z (ti)

9
∑

i=1
Z (ti)sin(2πti)

9
∑

i=1
Z (ti)sin(4πti)

⎞
⎟⎟⎟⎟⎟⎟⎠

(*.7)

Using the given values and solving LSE (*.7) yields

⎛
⎝ 9 0 0

0 4 0
0 0 4

⎞
⎠
⎛
⎝ â0

â1
â2

⎞
⎠=

⎛
⎝ 0

3.9997
4

⎞
⎠⇒

⎛
⎝ â0

â1
â2

⎞
⎠=

⎛
⎝ 9 0 0

0 4 0
0 0 4

⎞
⎠

−1⎛
⎝ 0

3.9997
4

⎞
⎠=

⎛
⎝ 0

0.9999
1.0000

⎞
⎠

(*.7′)
and â0 = 0.0, â1 = 0.9999, â2 = 1.0.

The unknown trend can be estimated by m̂(t) = 0.9999sin(2πt)+sin(4πt). Can
this improved quasi-linear model be accepted? In order to answer this question we
should again calculate the coefficient of determination B from (3-73) and compare
it with the optimal value equal to one:
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B = 1−

9
∑

i=1
(Z (ti)−0.9999sin(2πti)− sin(4πti))

2

9
∑

i=1
(Z (ti)− m̄)2

= 1− 2.28 ·10−8

7.9994
≈ 1,

m̄ =
1
9

9

∑
i=1

Z (ti) = 0

(*.8)

Parameter B is now approximately equal to one so the quasi-linear model (*.5) is
better than (*.1). Figure 3.22 shows the estimated trend for quasi-linear models (*.1)
and (*.5).

Remark: Wavelet approaches and Fourier transforms can be also applied for trend
fitting (trend estimation); see Sect. 3.2.1 for further details. More about stochastic
processes can be found in Chiang (1980).

There are many different approaches to ensure trend fitting, trend smoothing, and
trend elimination. We discuss some of these related to their fields of application.

3.2.2.1 Moving Average

The moving average method, which is based on a locally adapted construction of
arithmetical means, is used for smoothing and filtering time series. We start with

Fig. 3.22 Estimated trend for quasi-linear models (*.1, dashed line) and (*.5, solid line) for the
data set (stars) from Example 3.2.2.1
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a time series without a so-called seasonal component, which means that a peri-
odic function or seasonal component s(t) vanishes in the generalized presentation
of (3-71):

Z (t) = m(t)+ ε (t) = g(t)+ s(t)+ ε (t) ,
∃p : s(t + pk) = s(t) , k = ±1,±2, . . .

(3-71′)

A mathematical model of time series without seasonal components corresponds to

Z (t) = g(t)+ ε (t) (3-74)

Now, we formulate the common rule of the moving average of the (2m+1) order
for time series without a seasonal component:

Let (t1, Z (t1)) , . . . , (tN , Z (tN)) be measurements belonging to a time series.
For a given parameter m: m < (N −1)/2 we call the new time series given by

Z̄ (ti) =
1

2m+1

m

∑
j=−m

Z (ti+ j), i ≥ m+1, . . . , N −m (3.75)

the moving average of the (2m+1) order.

We prove how rule (3.75) works using the data set from Example 3.2.2.1 for m = 1
and m = 2.

Example 3.2.2.2 We obtain the smoothed time series applying the moving average
method (3.75):

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
Z(t) 0.0 1.707 1.0 −0.293 0.0 0.293 −1.0 −1.707 0.0

• m = 1: Moving average of third order. Rule (3.75) corresponds for this case to

Z̄ (ti) =
1
3

[Z (ti−1)+Z (ti)+Z (ti+1)] , i ≥ 2, . . . 8 (*.1)

For example, we get

Z̄ (1/8) =
1
3

[Z (0)+Z (1/8)+Z (2/8)] =
1
3

[0.0+1.707+1.0] = 0.902,

Z̄ (4/8) =
1
3

[Z (3/8)+Z (4/8)+Z (5/8)] =
1
3

[−0.293+0.0+0.293] = 0.0
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The smoothed time series is given by

t 1/8 2/8 3/8 4/8 5/8 6/8 7/8
Z̄ (t) 0.902 0.805 0.236 0.0 −0.236 −0.805 −0.902

as shown in Fig. 3.23a.
• m = 2: Moving average of fifth order. Rule (3.75) leads to

Z̄ (ti) =
1
5

[Z (ti−1)+Z (ti)+Z (ti+1)] , i ≥ 3, . . . 7 (*.2)

For example,

Z̄ (2/8) =
1
5

[Z (0)+Z (1/8)+Z (2/8)+Z (3/8)+Z (4/8)] = 0.483,

Z̄ (4/8) =
1
3

[Z (2/8)+Z (3/8)+Z (4/8)+Z (5/8)+Z (6/8)] = 0.0

holds. Smoothed time series are shorter and less rough than the original ones.
The smoothed time series corresponds to

t 2/8 3/8 4/8 5/8 6/8
Z̄ (t) 0.483 0.541 0.0 −0.541 −0.483

and is shown in Fig. 3.23b, where it can be seen that smoothing time series applying
so-called exponential or geometrical smoothing plays an important role, especially
for predicting future values of the time series. This method is based on weighted
arithmetical means.

Fig. 3.23 Smoothed time series (solid line) by the moving average of the third order (a) and of
fifth order (b). Original time series are drawn as dashed lines
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3.2.2.2 Geometrical Smoothing of Time Series

We start with a common rule:

Let Z (t) describe a time series. For a given parameter α : 0 < α < 1 we call
the new time series generated by

Z̄ (ti) =
∞

∑
j=0

α (1−α) j Z (ti− j), j = 0, 1, . . . (3-76)

geometrical smoothing with smoothing parameter α . It is advisable to choose
α : 0.2 < α < 0.3. Based on measurements (t1, Z (t1)) , . . . , (tN , Z (tN)) the
one-step prediction can be obtained by

Ẑ (tN+1) = αZ (tN)+α (1−α)Z (tN−1)+ . . . +α (1−α)N−1 Z (t1) (3-76′)

The following example presents an application of geometrical smoothing ensur-
ing smoothing and one-step prediction.

Example 3.2.2.3 The original data remain the same:

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
Z(t) 0.0 1.707 1.0 −0.293 0.0 0.293 −1.0 −1.707 0.0

We choose the smoothing parameter α = 0.25. Recursively using (3-76) leads to

Z̄ (0) = αZ (0) = 0.25 ·Z (0) = 0

Z̄ (1/8) = αZ (1/8)+α (1−α)Z (0) = 0.25 ·Z (1/8)+0.25(1−0.25) ·Z (0) = 0.427

Z̄ (2/8) = αZ (2/8)+α (1−α)Z (1/8)+α (1−α)2 Z (0)

= 0.25 ·Z (2/8)+0.25(1−0.25) ·Z (1/8)+0.25(1−0.25)2 Z (0) = 0.5701

Z̄ (1) = αZ (1)+α (1−α)Z (7/8)+α (1−α)2 Z (6/8)+ . . . +α (1−α)8 Z (0)

= 0.25 ·Z (1)+0.25(1−0.25) ·Z (7/8)+ . . . +0.25(1−0.25)8 Z (0) = −0.346

Figure 3.24 shows this geometrical smoothing. A one-step prediction at point
t = 1+1/8 = 1.125 can be achieved using (3-76′):

Ẑ (1.125) = αZ (1)+α (1−α)Z (7/8)+ . . . +α (1−α)8 Z (0)

= 0.25 ·Z (1)+0.25(1−0.25) ·Z (7/8)+ . . . +0.25(1−0.25)8 ·Z (0)

× = Z̄ (1) = −0.346
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Fig. 3.24 Geometrical smoothing of the time series (solid line) and one-step prediction at point
t = 1.125 (marked as star). The original measurements are given by the dashed line

3.2.2.3 Consideration of a Seasonal Component

If the period p of a seasonal component in (3-71′) is known, the influence of this
component can be eliminated by using a moving average with a specially adapted
order m. For simplification, let us assume that t = 0, 1, 2, . . . . and p = 4 (or another
even p, that is, p = 2k, k = 0, 1, 2 . . . ) for a time series Z (t). After smoothing Z (t)
by the moving average method (3.75) with m = p/2 and specially weighted end-
values, we obtain:

Z̄ (ti) =
1
p

[
1
2

Z (t −m)+Z (t −m+1)+ . . . +Z (t)+ . . . +Z (t +m−1)+
1
2

Z (t +m)
]

=
1
4

[
1
2

Z (t −2)+Z (t −1)+ .Z (t)+Z (t +1)+
1
2

Z (t +2)
]

If p = 2k +1 for k = 0, 1, 2 . . . , then m = k can be used in (3.75).

Remark: There is a so-called variate difference method for polynomial trend elim-
ination, which leads to special asymmetrical filters. Some alternative methods such
as phase mean and Fourier transform can be used for elimination or estimation of
seasonal components with known period p. More details about time series analysis
can be found in Box and Jenkins (1976) and Brockwell and Davis (1991).

3.2.2.4 Time Series Modeling Using Stochastic Processes

We have already defined a stochastic process, especially a stationary stochastic pro-
cess. We now want to discuss some well-known models of stationary stochastic
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processes. Time series with a seasonal component or with different trends should be
considered as realizations of nonstationary stochastic processes. For example, there
are so-called nonstationary ARIMA(p, d, q) processes, which are generalizations of
stationary ARMA(p, q) processes. Each modeling or even describing of time series
starts with trend elimination and transfer of the nonstationary case to the station-
ary. Some smoothing approaches that help to treat the trend m(t) in a time series
Z (t) = m(t)+ ε (t) have already been explained. Now we discuss a basic idea for
analyzing residuals ε (t), which represent the random or stochastic part of the time
series. We assume that these residuals belong to a finite realization of a stationary
stochastic process Z0 (t) with discrete time t ∈ T .

In order to estimate characteristics of a stationary process based on a single re-
alization of residuals an assumption about the so-called ergodicity of the process is
necessary:

lim
N→∞

E (Z̄0 −μ)2 = 0, Z̄0 =
1
N

N

∑
i=1

Z0 (ti)

lim
N→∞

E (C∗
k − c(ti, ti+k))

2 = 0 C∗
k =

1
N

N

∑
i=1

(Z0 (ti)−μ)(Z0 (ti+k)−μ)

(3-77)

This assumption can be considered as justification for working with a single real-
ization. It is assumed that this realization is “usual” with respect to the stochastic
process and does not represent an outlier. Using this fact, we can estimate the mean
and covariance function of the stochastic process Z0 (t) by

Z̄0 =
1
N

N

∑
i=1

Z0 (ti)

ĉ(ti, ti+k) = ĉk =
1
N

N−k

∑
i=1

(Z0 (ti)− Z̄0)(Z0 (ti+k)− Z̄0) = ĉ−k

(3-78)

These characteristics are called the empirical mean and empirical covariance.
The empirical variance and empirical correlation function can be calculated by

ĉ0 =
1
N

N

∑
i=1

(Z0 (ti)− Z̄0)
2

ρ̂ (ti, ti+k) = ρ̂k =
ĉk

ĉ0
= ρ̂−k

(3-79)

It should be noted that empirical covariance and the empirical correlation function
should be determined for k<N/4 because otherwise a sufficient number of pairs
is not taken into account. A presentation of the empirical correlation function ρ̂k,
k = 1, 2, . . . is called a correlogram. Comparison with some known correlogram
models of special stationary processes allows us to make a first decision on a pos-
sible and useful model. Generally statistical software disposes of different tools for
model fitting.
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We illustrate some important steps of modeling and calculating (3-78) and (3-79)
for a simple data set with which we are already familiar.

Example 3.2.2.4 Let us consider the following short time series:

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
Z(t) 0.0 1.707 1.0 −0.293 0.0 0.293 −1.0 −1.707 0.0

We interpret this realization as one of a nonstationary process

Z (t) = m(t)+Z0 (t) (*.1)

and we want to identify the kind of stochastic process with which we are dealing.
The first step in modeling—fitting the deterministic structure or the trend m(t)—was
done in Example 3.2.2.1, and the following quasi-linear trend model was assumed,
estimated, and tested:

m̂(t) = 0.9999sin(2πt)+ sin(4πt) (*.2)

This trend approximation can be accepted because of parameter B ≈ 1. Now we
begin the second step. We consider the residuals, which we have calculated easily
using the obvious relation

ε (ti) = Z (ti)− m̂(ti) , i = 1, . . . , 9 (*.3)

and we obtain:

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
ε (t) ·103 0.0 −0.036 0.1 −0.036 0.0 0.036 −0.1 0.036 0.0

Thus, in this step we assume that these residuals are a finite realization of a station-
ary stochastic process Z0 (t) and we begin to estimate the model parameters. With
(3-78) the unknown mean of this stationary process can be estimated by

Z̄0 =
1
9

9

∑
i=1

Z0 (ti) =
1
9

9

∑
i=1

ε (ti) = 0.0 (*.4)

We use equations (3-78) and (3-79) and take the fact that k < 9/4 ⇒ k = 1, 2
into account. This leads to

ĉ0 =
1
9

9

∑
i=1

(Z0 (ti)− Z̄0)
2 =

1
9

9

∑
i=1

(ε (ti)− Z̄0)
2 =

1
9

9

∑
i=1

ε2 (ti) = 2.8 ·10−9 (*.5)

There are eight pairs that can be considered for calculating ĉ1:
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ĉ1 =
1
9

9−1

∑
i=1

(Z0 (ti)− Z̄0)(Z0 (ti+1)− Z̄0) =
1
8

8

∑
i=1

(ε (ti)−0)(ε (ti+1)−0)

=
1
9

8

∑
i=1

ε (ti)ε (ti+1) =
10−6

9
[0.0 · (−0.036)+(−0.036) ·0.1+ . . . +0.036 ·0.0] =−1.8 ·10−9

(*.6)

The estimation ĉ2 of the covariance for k = 2 is based on seven pairs:

ĉ2 =
1
9

9−2

∑
i=1

(Z0 (ti)− Z̄0)(Z0 (ti+2)− Z̄0) =
1
7

7

∑
i=1

(ε (ti)−0)(ε (ti+2)−0)

=
1
9

7

∑
i=1

ε (ti)ε (ti+2) =
10−6

9

[
0.0 ·0.1+(−0.036)2 + . . . +(−0.1) ·0.0

]
=1.9 ·10−10

(*.6′)

Thus, the empirical correlation function for k = 0, 1, 2 is

ρ̂k =
ĉk

ĉ0
, k = 0, 1, 2 ⇒

ρ̂0 = 1, ρ̂1 = −0.57, ρ̂2 = 0.05
(*.7)

Figure 3.25 shows the empirical correlation function.

Fig. 3.25 Empirical correlation function (thick solid line) calculated in Example 3.2.2.4 with a
confidence band given by a lower line g1 and an upper line g2
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In the third step, model fitting, the model should be identified by comparison
with well-known theoretical models of correlation functions. Unfortunately, in our
case the time series is too short to allow us to finish our modeling. But this example
is continued below.

Remark: Model fitting can be completed using special test approaches. For exam-
ple, one can test whether the stationary process chosen for residuals is a white-noise
process or not. For this, we make use of the fact that for a white-noise process the
values of the empirical correlation function are independently and identically dis-
tributed following the normal distribution with ρ̂k ∼ N

(
1
N , 1

N

)
The limit values for the confidence interval—or significance band—for each k =

1, 2 using a significant value α can be given (see Fig. 3.25):

g1 = − 1
N
−

u1−α/2√
N

, g2 = − 1
N

+
u1−α/2√

N

Φ
(
u1−α/2

)
= 1−α/2, Φ(x) =

1√
2π

x∫
−∞

exp

(
− t2

2

)
dt

The hypothesis about a white-noise process is not rejected if

g1 ≤ ρ̂k ≤ g2, ∀k = 1, 2, . . .

3.2.2.5 Forecasting with a Fitted Model

After model identification, estimation of model parameters, and model fitting we
can predict an unknown, future value Z (ti) , i > N of the time series Z (ti) , i =
1, 2, . . . , N. This means that we can make a forecast based on the fitted model. For
this we use the fact—confirmed by tests—that our time series follows the “rule”

Z (t) = m̂(t)+Z0 (t) (3-80)

Here the trend is estimated and a stochastic process Z0 (t) is fitted by a well-known
stationary one. Generally, statistical tools offer many such process models, and fore-
casting is done by simulating new values of Z (ti) , i > N.

3.2.2.6 Continuation of Example 3.2.2.4

We assume that the hypothesis about a white-noise process was not rejected. We
cannot prove it using such a short time series, but it is really true because this time
series from Example 3.2.2.4 is generated by the author by this way: It is a realisation
of a white-noise process. Equation (3-80) corresponds to the following [cf. (*.5)]
from Example 3.2.2.4:
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Z (t) = 0.9999sin(2πt)+ sin(4πt)+Z0 (t) ,

Z0 (t) ∼ N (0, ĉ0) = N
(
0, 2.8 ·10−9) (*.8)

The stationary stochastic process Z0 (t) is a white-noise process with indepen-
dently, identically, and normally distributed random values for each t. The forecast-
ing for “future” t from an interval [1, 2] can be obtained following (*.8). The result
is given in Fig. 3.26a.

Owing to the very small variance of the stationary stochastic process Z0 (t),
its influence on this forecasting cannot really be seen in Fig. 3.26a. Let us un-
derscore the drastically different orders of the deterministic trend values and the
values coming from the stationary stochastic process Z0 (t). We show two re-
alizations of Z0 (t) that are added to this trend by forecasting separately in
Fig. 3.26b.

It is interesting to have a look at the course of another model for the same time se-
ries. Let us consider the—not optimal but possible—model of stochastic processes
Z (t) = m̂(t)+ Z0 (t) with a deterministic trend (*.1 in Example 3.2.2.1) with esti-
mated parameters (*.3 in Example 3.2.2.1):

m̂(t) = 0.9999sin(2πt) (*.9)

Similarly to (*.3) we calculate:

t 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
ε (t) 0.0 1.0 0.0001 −1.0 0.0 1.0 −0.0001 −1.0 0.0

Fig. 3.26a Forecasting with model (*.8) from Example 3.2.2.4
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Fig. 3.26b Forecasting with model (*.8) from Example 3.2.2.4: two realizations of the stationary
stochastic process Z0 (t)

and as in (*.4)–(*.7) we obtain

Z̄0 =
1
9

9

∑
i=1

Z0 (ti) =
1
9

9

∑
i=1

ε (ti) = 0.0 (*.10)

ĉ0 = 0.44,

ρ̂0 = 1, ρ̂1 = −0.0, ρ̂2 = 0.75
(*.11)

With an analogous assumption as in (*.8) we use the following model for forecasting:

Z (t) = 0.9999sin(2πt)+Z0 (t) ,

Z0 (t) ∼ N (0, ĉ0) = N (0, 0.44)
(*.12)

Results of this forecasting can be seen in Fig. 3.27.
Overview: As one can see, there are enough different approaches to help “discover”
a hidden structure in seeming chaotic data. Depending on the final purpose of the
data analysis, we can consider deterministic or stochastic approaches. It should be
noted that the deterministic way is a “simple” one, based on fewer additional the-
oretical, model-dependent assumptions, for it is nearly impossibly for real data to
satisfy all these assumptions. The stochastic way is more complicated, but an ele-
gant and powerful approach if the fulfillment of all model assumptions is guaran-
teed. Analyzing a time series is like looking through a keyhole. We can see only
a small part of the whole thing. Figure 3.28 demonstrates the limitations of any
mathematical model: What happens if the “real structure” of our data out of the
given “keyhole” perspective changes completely? We will learn more about useful
stochastic approaches in Sect. 3.3.



98 3 Some Real Problems and Their Solutions

Fig. 3.27 Forecasting with model (*.12) from Example 3.2.2.4: three realizations of the stochastic
process

3.3 Considering the Influence of Space, Time, and Other Factors

In this section we discuss some special characteristics that can be used for analyz-
ing spatial or time-induced influences. We have already described a few of them
in Sects. 3.1 and 3.2, and for those we only deal with their empirical estimators
and give some examples. Other approaches are introduced and explained in a more
detailed way, especially by way of some examples.

Fig. 3.28 An enlargement of a keyhole: who knows exactly the real structure of data?
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3.3.1 The Classical Correlation Coefficient, the Correlation
Function, and the Influence Function

The classical correlation coefficient ρ = ρ (X , Y ) between two random values (or
vectors) X and Y is defined as follows:

ρ (X , Y ) =
Cov(X , Y )√

Var (X)Var (Y )
,

Cov(X , Y ) = E (X −EX)(Y −EX) ,
Var (X) = Cov(X , X) , Var (Y ) = Cov(Y, Y )

(3-81)

The role of the correlation coefficient ρ is similar to that of the cosine between
two—here random—vectors X and Y . This coefficient takes values between −1 and
1, and the squared variance corresponds to the length of a random vector. Thus, we
can account for the fact that the correlation coefficient helps us to understand and
to discover a linear relation between X and Y . If the correlation coefficient is equal
to 1, there is a linear relation between X and Y , that is, Y = c ·X , c > 0. There is
also a linear relation between X and Y if the correlation coefficient is equal to −1,
but with Y = c ·X , c < 0. If the correlation coefficient equals zero, we speak about
uncorrelated random values X and Y , but not necessarily stochastic independent
variables. For 0 < |ρ|< 0.4 it is usual to speak about weak linearity, for 0.4 ≤ |ρ|<
0.8 about middle linearity, and for |ρ| ≥ 0.8 about strong linearity between X and
Y . Sometimes the value 0.7 is used as a lower-limit value instead of 0.8 for strong
linearity in statistics texts; it is a matter of choice.

Remark: Mostly mistakes are made interpreting the correlation coefficient as an
absolute characteristic describing any kind of possible relations between X and Y .
Once again, let us repeat that this coefficient only measures a linear relation between
these random variables or vectors. Now think about the situation in which a nonlin-
ear relation between X and Y is given following an analytical function f : Y = f (X).
If the functional relation f between X and Y is reversible, then a new variable de-
noted as Y−1 exists with Y−1 = f−1(Y ). If a linear relation between X and the
variable Y−1 is found by considering the correlation coefficient ρ

(
X , Y−1

)
, then

there is a nonlinear relation f : Y = f (X) between X and Y .

The empirical correlation coefficient plays an important role in real applications
because in most cases the random values X and Y with their theoretical distri-
butions are not given, but finite measurements x1, . . . , xN and y1, . . . , yN of the
two variables are available. The definition of the empirical correlation coefficient is
as follows:

ρ̂ (x, y) =
sxy√

sxx · syy
,

sxy =
N

∑
i=1

(xi − x̄)(yi − ȳ), sxx =
N

∑
i=1

(xi − x̄)2, syy =
N

∑
i=1

(yi − ȳ)2, x̄ =
1
N

N

∑
i=1

xi, ȳ =
1
N

N

∑
i=1

yi

(3-82)
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Obviously, the empirical correlation coefficient tests in an analogous way whether
or not a linear relation between the variables being considered is given. We demon-
strate this in Example 3.3.1.1

Example 3.3.1.1 Let the following data be given:

x −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
y 0.183 0.165 0.102 −0.006 0.058 0.048 0.009 0.053 0.097 0.153 0.279

Simple plotting of x and y as in Fig. 3.29 shows that the relation between the
variables is probably nonlinear. Indeed, calculating the empirical coefficient ρ (x, y)
we obtain:

x̄ =
1
11

(−0.5+(−0.4)+ . . . +0.4+0.5) = 0,

ȳ =
1

11
(0.183+0.165+ . . . +0.153+0.279) = 0.104

ρ̂ (x, y) =
(−0.5−0)(0.183−0.104)+ . . . +(0.5−0)(0.279−0.104)√[

(−0.5−0)2 + . . . +(0.5−0)2
]
·
[
(0.183−0.104)2 + . . . +(0.279−0.104)2

] = 0.17

(*.1)

From a more detailed consideration it follows that the relation y = x2 can be as-
sumed, and if this assumption holds, new measurements can be constructed by

y−1
i =

{
−
√
|yi|, xi < 0√

|yi|, xi ≥ 0
, i = 1 . . . N (*.2)

Fig. 3.29 Data plot of y via x for Example 3.3.1.1 (data pairs are marked with stars)
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which corresponds in our case to

y−1 −0.43 −0.41 −0.32 −0.077 −0.24 0.22 0.09 0.23 0.31 0.39 0.53

Calculating the new measurements, we find that the inverse function of f consists
of two different functions with respect to the given intervals of x, which proves the
linearity between x and y−1.

Now we obtain the following results:

x̄ =
1

11
(−0.5+(−0.4)+ . . . +0.4+0.5) = 0,

ȳ−1 =
1

11
(−0.43+(−0.41)+ . . . +0.39+0.53) = 0.03

ρ̂
(
x,y−1)=

(−0.5−0)(−0.43−0.03)+ . . . +(0.5−0)(0.53−0.03)√[
(−0.5−0)2 + . . . +(0.5−0)2

]
·
[
(−0.43−0.03)2 + . . . +(0.53−0.03)2

] = 0.96

(*.3)

Owing to the strong linearity between X and Y−1 indicated by the empirical correla-
tion coefficient equaling 0.96, a functional relation of the kind Y = X2 between the
original data should be accepted.

One can test the degree of linearity using the following hypothesis:

H0 : ρ (X , Y ) = ρ0 (3-83)

The parameter ρ0 is a given value between −1 and 1. R. A. Fisher proposed
using the following test value:

T =
w− w̄

sW
,

w =
1
2

ln

(
1+ ρ̂ (x, y)
1− ρ̂ (x, y)

)
, w̄ =

1
2

ln

(
1+ρ0

1−ρ0

)
+

ρ0

2(n−1)
, sw =

√
1

n−3
(3-84)

Here, the estimation of the correlation coefficient from (3-82) is used. It is
recommended to take n > 24 observations of the parameters X and Y into
account. The hypothesis H0 should be rejected with an error α of type I if

|T | ≥ z1−α/2 (3-84′)

where zq is the q-quantile of a normally distributed random variable.

Remark: The strong linearity between X and Y does not explain the reasons, the
roots of this linearity. What if there is a third parameter Z directly influencing both
variables, thus causing the secondary, high dependence between X and Y ? In order to
prove this possibility, so-called partial correlation coefficients should be considered.
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Let us regard n observations (x, y, z) of the triple (X , Y , Z), which is assumed
to follow a three-dimensional normal distribution. The following characteristics are
called empirical partial correlation coefficients:

ρ̂ (x, y/z) =
ρ̂ (x, y)− ρ̂ (x, z) ·ρ (y, z)√
(1− ρ̂2 (x, z))(1− ρ̂2 (y, z))

,

ρ̂ (x, z/y) =
ρ̂ (x, z)− ρ̂ (x, y) ·ρ (y, z)√
(1− ρ̂2 (x, y))(1− ρ̂2 (y, z))

,

ρ̂ (y, z/x) =
ρ̂ (y, z)− ρ̂ (x, z) ·ρ (x, y)√
(1− ρ̂2 (x, z))(1− ρ̂2 (x, y))

(3-85)

The estimators of “usual” correlation coefficients are given in (3-82).
In order to test the hypothesis about the independence of X and Y after removing

the primary influence of Z, the following test value should be calculated:

T =
√

n−3
ρ̂ (x, y/z)√

1− ρ̂2 (x, y/z)
(3-86)

The hypothesis about independence is rejected with an error α of type I if

|T | ≥ tm;1−α/2, m = n−3 (3-86′)

Here, with tm;q the q-quantile of Student’s t-distribution with m degrees of
freedom is denoted.

Example 3.3.1.2 We consider the following 34 three-dimensional observations and
test the independence of X and Y after removing the primary influence of Z:

Num. 1 2 3 4 5 6 7 8 9 10

x 0.45 0.47 0.72 0.07 0.19 0.34 0.42 0.88 0.29 0.64
y 0.51 0.50 0.74 0.3 0.22 0.31 0.56 0.76 0.45 0.55
z 0.48 0.47 0.16 0.54 0.77 0.67 0.3 0.0 0.38 0.2

11 12 13 14 15 16 17 18 19 20

0.0 0.63 0.79 0.0 0.60 0.51 0.61 0.48 0.5 0.51
0.0 0.55 0.86 0.2 0.63 0.52 0.62 0.51 0.74 0.56
1.0 0.26 0.08 0.74 0.14 0.26 0.38 0.27 0.21 0.26

21 22 23 24 25 26 27 28 29 30

0.41 0.58 0.27 0.17 0.41 0.14 0.20 0.45 0.50 0.11
0.52 0.58 0.27 0.35 0.40 0.24 0.48 0.56 0.45 0.39
0.27 0.25 0.57 0.51 0.43 0.63 0.33 0.23 0.22 0.44
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31 32 33 34

0.11 0.26 0.37 0.19
0.41 0.43 0.49 0.41
0.42 0.37 0.30 0.43

For a primary analysis of the data, we recommend visualizing these values as shown
in Fig. 3.30. First, the “usual” empirical correlation coefficients are calculated, for
which we use equation (3-82):

ρ̂ (x, y) = 0.87,

ρ̂ (x, z) = 0.81,

ρ̂ (y, z) = −0.92

(*.1)

As one can see, there is strong linearity among all the parameters. Using (3-85), we
find that the empirical partial correlation coefficient between X and Y after removing
influence of Z corresponds to

ρ̂ (x, y/z) =
ρ̂ (x, y)− ρ̂ (x, z) ·ρ (y, z)√
(1− ρ̂2 (x, z))(1− ρ̂2 (y, z))

=
0.87−0.81 · (−0.92)√
(1−0.812)(1−0.922)

= 0.54
(*.2)

Fig. 3.30 Visualization of the data for primary analysis: data clouds (x, y), (x, z), and (y, z)
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The empirical partial correlation coefficient indicates middle linearity between X
and Y after removing the influence of Z. But these parameters are not independent
because, using (3-86) and (3-86′), the independence hypothesis should be rejected
with error α = 0.05 of type I:

T =
√

n−3
ρ̂ (x, y/z)√

1− ρ̂2 (x, y/z)

=
√

34−3
0.54√

1−0.542
= 3.59 ,

t34−3;1−0.05/2 = 2.04

(*.3)

It can be proved that
|T | ≥ t34−3;1−0.05/2 (*.4)

Thus, removing the influence of Z leads to a significant decrease in the degree of
linearity between X and Y , but not to confirmation of the hypothesis about indepen-
dence between X and Y .

We defined the correlation function and showed its estimation earlier in
Sect. 3.2.2. Not every function that looks “optically” like a correlation function ac-
tually is one. A correlation function is characterized by certain properties that have
to be fulfilled, and it is often difficult to prove all of these properties at the same
time. There are a great many models of correlation functions that can be considered
for different applications, but fitting these functions is sometimes complicated: for
example, from a statistical point of view if the number of datum is too small. More-
over, what if we do not want to assume a stochastic relation between the parame-
ters, that is, correlation? Is there another—“deterministic”—possibility to quantify
the influence? Of course there is such a possibility. We now discuss a determinis-
tic equivalent of the correlation function, known as an influence function, which an
alternative method for analyzing interaction. The method is very simple. The most
important advantage of using an influence function instead of a correlation function
is that there are no restrictive assumptions.

We explain the basic idea of the influence function method using an exam-
ple from forestry. We assume that each tree characteristic (e.g., parameter and
mark)—DBH (diameter at breast height), tree height, BAI (basal area increment),
and others—depends on other trees, namely on their locations and characteristics.
It is realistic to propose that the influence of one tree on another decreases with
increasing distance between them. We denote the final tree distance where this in-
fluence f still exists with the parameter R. Thus, it is true that f (r) = 0, r > R.
It is assumed that the function f is the same for every tree in a forest or
a stand.

The second model assumption concerns the linearity of the average of single
influences belonging to neighboring trees, which means for characteristic m of a
tree located at point x0 with N neighboring trees at distances less than R:
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m(x0) = m(x1) ·w(r10)+m(x2) ·w(r20)+ . . . +m(xN) ·w(rN0) ,

ri0 = |xi − x0| , i = 1 . . . N,

w(ri0) =
f (ri0)

N
∑

i=1
f (ri0)

,
N

∑
i=1

w(ri0) = 1
(3-87)

The sum of weights is assumed to equal one in order to avoid systematic under- or
overestimation However, our aim is to choose this influence function f “optimally.”
A polynomial function

f (r) = 1+a1t + . . . +aMtM (3-88)

can be taken into account. We could also use another functional model. The method
of least squares can be applied for parameter fitting. Thus, the following sum has to
be minimized:

∑
∀(x0, N)

⎡
⎢⎢⎣m(x1) · f (r10)+m(x2) · f (r20)+ . . . +m(xN) · f (rN0)

N
∑

i=1
f (ri0)

−m(x0)

⎤
⎥⎥⎦

2

→ min

(3-89)

The sum in (3-89) considers all the trees in the forest. It should be noted that the
number of neighbors N can vary for different trees. Further, equation (3-89) can be
transformed to

∑
∀(x0, N)

[
m(x1) · f (r10)+m(x2) · f (r20)+ . . . +m(xN) · f (rN0)−m(x0)

N
∑

i=1
f (ri0)

]2

[
N
∑

i=1
f (ri0)

]2 →min

(3-89′)

An alternative presentation of (3-87) is

m(x0) ·
N

∑
i=1

f (ri0) = m(x1) · f (r10)+m(x2) · f (r20)+ . . . +m(xN) · f (rN0) ,

ri0 = |xi − x0| , i = 1 . . . N
(3-87′)

Thus, it is sufficient to minimize

∑
∀(x0, N)

[
m(x1) · f (r10)+m(x2) · f (r20)+ . . . +m(xN) · f (rN0)−m(x0)

N

∑
i=1

f (ri0)

]2

→ min

(3-90)
Using (3-88) in (3-90) and applying least-squares techniques, we get a LSE (linear
system of equations) with respect to the unknown parameters a1, . . . , aM:
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a1 ∑
∀(x0, N)

[
N

∑
i=1

m(xi)ri0 −m(x0)
N

∑
i=1

ri0

][
N

∑
i=1

m(xi)r j
i0 −m(x0)

N

∑
i=1

r j
i0

]
+

a2 ∑
∀(x0, N)

[
N

∑
i=1

m(xi)r2
i0 −m(x0)

N

∑
i=1

r2
i0

][
N

∑
i=1

m(xi)r j
i0 −m(x0)

N

∑
i=1

r j
i0

]
+

. . .

aM ∑
∀(x0, N)

[
N

∑
i=1

m(xi)rM
i0 −m(x0)

N

∑
i=1

rM
i0

][
N

∑
i=1

m(xi)r j
i0 −m(x0)

N

∑
i=1

r j
i0

]
=

− ∑
∀(x0, N)

[
N

∑
i=1

m(xi)−m(x0) ·N
][

N

∑
i=1

m(xi)r j
i0 −m(x0)

N

∑
i=1

r j
i0

]
, j = 1 . . . M

(3-91)

It is meaningful to choose the degree of polynom M to be far smaller than the num-
ber of trees in the forest. This measure, the sum of differences from (3-90), can be
used in the second step for fitting the best value of the parameters R and M dis-
cussed above. If there are n trees, the accuracy σ of fitting the influence function
can be obtained by

σ2 =
1
n ∑
∀(x0, N)

[
m(x1) · f (r10)+m(x2) · f (r20)+ . . . +m(xN) · f (rN0)−m(x0)

N

∑
i=1

f (ri0)

]2

,

(3-90′)
An example for fitting the influence function follows.

Example 3.3.1.3 We fit an influence function for the following data set (see
Fig. 3.31):

1 2 3 4 5 6 7 8 9

x 0.67 0.81 3.90 5.02 5.10 3.87 5.66 6.35 6.98
y 1.62 2.48 3.78 4.02 3.35 2.05 3.46 4.65 3.74

m 3.23 3.31 2.00 1.06 2.90 1.30 0.93 2.74 2.50

10 11 12 13 14 15 16 17 18 19

8.17 6.74 6.72 8.12 8.66 1.42 0.89 1.40 3.93 3.24
4.37 3.04 1.77 0.65 2.66 5.46 7.48 9.55 9.06 7.77
1.94 1.17 1.66 3.27 2.05 2.62 2.50 2.30 1.95 1.40

20 21 22 23 24 25 26 27 28 29

2.59 2.92 3.72 4.59 5.46 6.77 7.46 8.92 8.54 7.80
6.58 5.10 5.47 7.07 6.58 6.56 8.50 9.44 8.54 6.16
3.16 1.74 1.83 1.33 2.00 1.45 3.75 2.91 2.46 2.34
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Here (x, y) denotes the tree location and m is a tree parameter: BHD, BAI, or another
characteristic. We first calculate the distance matrix d between the trees in order to
determine the number of neighbors of each tree. For example, for the first tree—the
first column in this matrix with column numeration denoted with “:”—we obtain the
following tree-tree distances:

1 2 3 4 5 6 7 8 9

d(1, :) 0.0 0.87 3.89 4.96 4.75 3.23 5.32 6.44 6.66

10 11 12 13 14 15 16 17 18 19

7.99 6.23 6.05 7.51 8.06 3.91 5.87 7.96 8.12 6.66

20 21 22 23 24 25 26 27 28 29

5.32 4.14 4.91 6.71 6.90 7.85 9.67 11.37 10.49 8.45

Let us set the parameter R equal to 5, so the first tree has eight neighboring trees.
The distance to the trees with numbers 2–6, 5, 21, 22 is smaller than R. We first
assume that the influence function is a polynomial of degree five, which means

f (r) = 1+a1t + . . . +a5t5 (*.1)

After solving (3-91) we get

(a1, . . . , a5) = (−2.5, 2.13, −0.8, 0.14, −0.01) (*.1′)

Figure 3.32 shows this polynomial. The fitting accuracy σ from (3-90′) corresponds
to

σ = 0.066 (*.2)

The minimum of the influence function marks the tree distance that is harmful for
increasing of the tree parameter m. It corresponds here to the distance 1.2.

Second, we test a polynom of degree eight for influence function fitting and get

f (r) = 1+a1t + . . . +a8t8 (*.3)

Solving (3-91) yields

(a1, . . . , a8) = (−4.19, 6.93, −6.12, 3.19, −1.01, 0.19, −0.02, 0.001) (*.3′)

Figure 3.33 shows this polynom. The fitting accuracy σ from (3-90′) corresponds
to

σ = 0.01 (*.4)

The minimum of influence function marks the tree distance that is harmful for in-
creasing the tree parameter m, which corresponds here to the distance 0.9.
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Fig. 3.31 Plot of tree locations (x, y)

A comparison of the accuracies in (*.2) and (*.4) indicates that the polynomial
of degree eight fits the influence function better than that of degree five. It is clear
that we can optimize this degree value numerically using loops for the procedure
(3-91) controlling the accuracy in (3-90′) in a stepwise fashion.

Remark: We have presented some methods that help us to consider different kinds
of influence: (1) the relation of one parameter to another (correlation coefficient),

Fig. 3.32 Fit of the influence function (*.1)
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Fig. 3.33 The influence function fitting (*.3)

(2) the dependence of two parameters on a third (partial correlation coefficient), and
(3) the dependence of a parameter on time or space (correlation function, influence
function). We have noted that there is not only a linear dependence of one parameter
on another and have shown a way to help us to determine another kind of depen-
dence using the correlation coefficient (see Example 3.3.1.1). Generally, we have
presented two ways or methods—the stochastic and the deterministic approach—
and have discussed the arguments for their use.

3.3.2 Points and Marks: Pair and Mark Correlation Function
and Point Process Statistics

Point process theory, theory of marked point processes, and stochastic geometry
are relatively new mathematical frameworks, which deal with stochastic models
for spatially distributed parameters or variables. In particular, such models propose
some effective approaches that can be applied in material sciences, geology, biology,
forestry, and other fields with discrete spatial structures.

A point process is a mathematical model for describing a random point pattern.
A detailed introduction to the theory of point processes can be found in Kallenberg
(1986), Karr (1986), and Stoyan and Stoyan (1994). In what follows we provide
some useful definitions and explain the corresponding applications.

The intensity measure describes the mean number of random points in a set B
in Euclidean space. For the applications discussed below we restrict ourselves to
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random point processes in a plane. For stationary and homogeneous point processes
the intensity measure corresponds to

Λ(B) = λ ·ν (B) (3-92)

where ν (B) is the area of the set B and λ is the mean number of points in a unit
square called intensity. The so-called characteristics of second order play an impor-
tant role in the theory of marked processes. Each point in a marked point process
gets a mark that characterizes it in some way. For example, let the point process be
given by locations of trees in a forest. Some useful marks describing a tree are its
height, its age, and its diameter at breast height.

We start with the following measure, which describes the mean of a function f
taking its values at pairs of random points distributed in two sets B1 and B2:

α(2)
f (B1 ×B2) = E ∑

[x1, m1]∈Ψ
∑

[x2, m2]∈Ψ
x2 �=x1

f (m1, m2)1B1 (x1)1B2 (x2) ,

1B (t) =
{

1, t ∈ B
0, otherwise

t = x1, x2

(3-93)

If a density function ρ(2)
f (x1, x2) of measure (3-93) exists, it is called f-product

density, and

α(2)
f (B1 ×B2) =

∫∫
B1B2

ρ(2)
f (x1, x2)dx1dx2 (3-94)

A more “user-friendly” description of the mean of the f -product density ρ(2)
f (x1, x2)

is the following: We consider two infinitely small discs with centers at random
points x1 and x2 and with areas dF1 and dF2. We define a random variable that
takes the value f (m1, m2) if exactly one random point is placed in each of these
discs. Otherwise this random variable gets the value zero. Then the mean of this

random variable is ρ(2)
f (x1, x2)dF1dF2.

A point process is called isotropic if the following is true:

ρ(2)
f (x1, x2) = ρ(2)

f (r) , r = ‖x2 − x1‖ (3-95)

Equation (3-95) means that the f−product density depends on the distance between
points and not on their spatial locations. The last but not the least important charac-
teristic of second order is the so-called mark correlation function k f (r), defined as

k f (r) =
ρ(2)

f (r)

ρ(2)
1 (r)

· ρ(2)
1 (∞)

ρ(2)
f (∞)

= c ·
ρ(2)

f (r)

ρ(2)
1 (r)

,

c =
ρ(2)

1 (∞)

ρ(2)
f (∞)

, ρ(2)
1 (r) �= 0,

ρ(2)
1 (r) = ρ(2)

f (r) mit f (m1, m2) = 1

(3-96)
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The function ρ(2)
1 (r) in (3-96) is called the pair correlation function. There are dif-

ferent estimators of the f -product density, and they generally have the following
form:

ρ̂ f (r) = ∑
i, j=1, ...n
i< j

f (mi, m j) ·wi j (r) ,

wi j =
Gi j (r)

∑
i, j=1, ...n

Gi j (r)
, Gi j (r) ∝

∣∣r−∥∥x j − xi
∥∥∣∣ (3-97)

where the sign ∝ stands for “proportional to.” The number of points in a realiza-
tion of a point process is denoted by n. Stoyan and Stoyan (1992) propose using the
following weights Gij(r):

Gi j (r) =
eh
(
r−

∥∥xi − x j
∥∥)

ν(Wi ∩Wj)
,

eh (t) =

⎧⎨
⎩

3
4h

(
1− t2

h2

)
, −h ≤ t ≤ h

0, otherwise

(3-98)

In (3-98) the so-called Epanechnikov function eh (t) is used. The choice of a
window W and parameter h is discussed in Stoyan and Stoyan (1994). Usually, one
tests different parameters until meaningful results are obtained. Alternative weights
are

Gi j (r) = 1
(
r−h ≤

∥∥x j − xi
∥∥≤ r +h

)
(3-99)

This representation of weights is mostly applied for calculating usual histograms,
and the estimator of the f -product density with weights from (3-99) can be consid-
ered as a special generalized histogram.

Usual forms of function f are

a) f (mi, m j) = mi ·m j,

b) f (mi, m j) =
∣∣mi −m j

∣∣ (3-100)

where mi, i = 1 . . . n represents the parameter or mark corresponding to the point
xi, i = 1 . . . n. An estimation of the mark correlation function can help us analyze
interaction among points within the point process. Once again, think about a point
process given by tree positions. If neighboring trees support one another the mark
tree height can take relatively large values at each point. In a case of suppression
one high tree interferes with the growth of surrounding trees, leading to small values
of the mark. If form (b) from (3-100) is used, then we can consider the following
estimator of the mark correlation function:
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k̂ (r) =
ρ̂ f (r)
m̂(2) ,

m̂(2) =

(
1
n

n

∑
k=1

mk

)2 (3-100′)

with ρ̂ f (r) from (3-97).

Remark: The forms (a) and (b) from (3-100) stand for different situations that have
to be analyzed. For example, (a) leads to the “general influence” of the marks de-
pending on distances between corresponding points. The distance r with a local
minimum of ρ̂ f (r) represents a so-called “negative synergy” between the marks.
Or, in other words, the mean product of both marks for this distance decreases. In
contrast to this fact, the distance r with a local maximum of ρ̂ f (r) represents “pos-
itive synergy” between the parameters. Form (b) leads to local minima of ρ̂ f (r)
at locations with approximately identical or closely similar marks. Local maxima
correspond to locations with increasing differences between marks.

Such interpretations should be handled with care because there are also numer-
ical effects generated by the estimation process. An advantage is the fact that the
estimator (3-97) can be applied with or without any assumption about the random-
ness of the point locations. In deterministic cases this estimator can be interpreted
as one for a parameter influence function.

In Example 3.3.2.1 we show in a more detailed way how an estimation of the
mark correlation function can be carried out.

Example 3.3.2.1 (continued below) We consider the following marked point pat-
tern with n = 76. Once again, think about tree locations at points (x,y) with the
corresponding mark m standing for the tree diameter at breast height (DBH) in
centimeters:

Number 1 2 3 4 5 6 7 8 9 10

x 2.68 3.22 15.62 20.06 20.39 15.49 22.64 25.41 27.93 32.69
y 6.48 9.92 15.14 16.07 13.39 8.20 13.84 18.60 14.98 17.47

m 64.5 66.2 40.0 21.2 58.0 25.9 18.5 54.8 50.0 38.7

11 12 13 14 15 16 17 18 19 20

26.94 26.87 32.46 34.65 40.95 40.76 48.77 56.63 50.41 45.62
12.18 7.08 2.58 10.64 12.13 16.06 17.91 10.56 7.31 3.20

23.3 33.1 65.4 41.0 53.7 55.1 48.20 59.9 43.8 53.0

21 22 23 24 25 26 27 28 29 30

58.11 63.63 63.98 70.58 72.51 76.3 79.17 78.31 72.5 86.7
1.14 3.41 11.05 10.58 19.04 14.37 15.36 8.62 3.21 9.85
48.3 56.2 47.8 51.5 35.8 26.0 53.1 47.5 60.8 42.2
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31 32 33 34 35 36 37 38 39 40

85.6 97.02 98.55 90.82 5.67 3.57 5.6 15.72 12.96 10.33
15.55 12.78 2.94 3.52 21.84 29.93 38.19 36.23 31.07 26.33

24.5 57.7 55.5 55.4 52.3 49.9 46.0 38.9 27.9 63.2

41 42 43 44 45 46 47 48 49 50

11.67 14.86 18.35 21.84 27.08 29.85 35.67 34.18 31.21 40.0
20.37 21.88 28.29 26.34 26.25 34.01 37.77 34.18 24.64 30.33

34.7 36.5 26.6 39.9 29.0 75.0 58.2 49.9 46.8 85.6

51 52 53 54 55 56 57 58 59 60

46.88 46.44 46.51 51.33 59.76 58.71 58.38 63.0 61.07 67.61
38.21 26.86 23.19 29.99 22.5 34.05 38.97 38.88 29.73 32.42

73.1 20.9 50.7 41.2 44.0 38.9 22.5 43.0 38.2 52.6

61 62 63 64 65 66 67 68 69 70

72.35 74.44 74.05 79.96 83.66 84.97 91.93 93.63 89.37 88.03
37.0 33.99 26.08 27.54 27.78 24.53 20.37 28.65 32.9 38.55
43.5 20.4 41.1 47.9 40.5 44.0 46.6 48.4 48.6 61.4

71 72 73 74 75 76

94.29 98.41 99.19 98.77 97.66 78.46
39.67 32.94 25.58 23.58 21.11 36.18

43.1 39.4 36.8 20.7 39.2 50.6

Figure 3.34 presents the data for an observation window. The value m̂(2) from
(3-100′) is calculated by

m̂(2) =
(

1
76

[64.5+66.2+ . . . +39.2+50.6]
)2

= 2042 (*.1)

Before the mark correlation function k f (r) with f (mi, m j) = mi ·m j, i, j = 1...76
is estimated, the distance matrix

(di j)i, j=1 ...76 , di j =
√

(xi − x j)
2 +(yi − y j)

2

should be determined. After dividing the r-axes into equidistant intervals of width
2Δ, the point pairs (xi, yi) ,(x j, y j) , i, j = 1 . . . 76 are assigned to an interval
[r0 −Δ, r0 +Δ] by testing r0−Δ≤ di j < r0 +Δ. If the weighting method with kernel
function (3-99) is used, we should summarize the products of marks for point pairs
belonging to each interval and divide the final sum by the number of such pairs.
With (3-97) and (3-100′) the estimation k̂ f (r) is completed. Figure 3.35 shows the
empirical mark correlation function for the given data. It can be seen, that there is a
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Fig. 3.34 Point pattern of Example 3.3.2.1 in an observation window 100×40 square meters

local minimum at about r = 4 meters. Probably, there is “negative synergy” among
neighboring trees at small distances. This fact could lead to smaller DBH marks of
such trees. However, there is no significant correlation for tree distances greater than
8 meters. The statistical analysis of these data is continued below.

Sometimes it is interesting to know the type of point process to which the given
point pattern belongs. We start by discussing so-called Poisson point fields.

Fig. 3.35 Empirical mark correlation function for Example 3.3.2.1. Distances between points r are
given in meters
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Poisson point fields or more briefly Poisson fields are the simplest and most often
applied forms of point fields because some useful characteristics for them can be
calculate exactly. The term “Poisson” indicates the distribution of point numbers.
In particular, the point numbers in disjoint (nonoverlapping) sets are stochastically
independent. Poisson fields are used for constructing more complicated models such
as Neyman-Scott cluster fields. In this case, the points are divided into two classes,
known as parent and daughter points. The first come from the initial Poisson process,
and in the second step the daughter points are scattered around each parent point like
seeds around an “old” tree.

3.3.2.1 Homogeneous Poisson fields

One speaks about a field being a homogeneous Poisson field if it has the following
properties:

1. The random number of points N (S1) , . . . , N (Sn) in disjoint sets S1, . . . , Sn are
stochastically independent, which means that

P(N (S1) = k1, . . . , N (Sn) = kn) = P(N (S1) = k1) · . . . ·P(N (Sn) = kn)

2. The random number of points N (S) in a set follows a Poisson distribution with
parameter λν (S). With ν (S) the volume (area) of the set is given. Thus, λ in-
dicates the mean of the random number of points in a set with volume equal to
one. The Poisson distribution of the number of points corresponds to

P(N (S) = k) =
[λν (S)]k

k!
exp(−λν (S)) .

For the simulation of homogeneous Poisson fields the following property is impor-
tant: If a set includes exactly n points, then these points are uniformly and indepen-
dently distributed in this set.

The independence properties (1) and (2) described above make it possible to cal-
culate certain conditional probabilities. One of these leads to an important function
called the D-function or, more precisely, D(r), which describes the distribution of
the mean nearest-neighbor distance r for a point of the point process. We discuss
a statistical estimator for this function in order to better explain its meaning. If n
points located at x1, . . . , xn are given in an observation window, an estimator D̂(r)
of the function D(r) can be calculated as follows:

D̂(r) =
1
n

n

∑
i=1

1(0 ≤ Di ≤ r),

Di = min(|xi − x1| , . . . , |xi − xi−1| , |xi − xi+1| , . . . , |xi − xn|) , i = 1, . . . , n
(3-101)
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In (3-101) the indication Di, i = 1, . . . , n describes the distance to the nearest neigh-
bor of the point located at xi, i = 1, . . . , n. In the sum the cases are summarized,
where these distances are less than or equal to r.

The theoretical calculation of the function D(r) for homogeneous Poisson point
fields leads to

D(r) = 1− exp
(
−λπr2) , r ≥ 0 (3-102)

The density of this function corresponds to

d (r) = 2λπ exp
(
−λπr2) , r ≥ 0 (3-103)

Further details about determining (3-102) and (3-103) can be found in Stoyan and
Stoyan (1994).

Another important characteristic is the so-called K-function. Its exact definition
and mean come from λK (r), indicating the mean number of points in a disc of
radius r centered at a point of the point field. This point in the center of this disc
is not counted. For homogeneous Poisson field the following holds [see Stoyan and
Stoyan (1994)]:

K (r) = πr2, r ≥ 0 (3-104)

For some applications it is meaningful to standardize the function K leading to
the L-function, which is defined as

L(r) =

√
K (r)

π
, r ≥ 0 (3-105)

For homogeneous Poisson fields this leads to (see Fig. 3.36):

Fig. 3.36 Empirical L-function for the data from Example 3.3.2.1 (solid) and L-function of a Pois-
son field (dashed)



3.3 Considering the Influence of Space, Time, and Other Factors 117

L(r) = r, r ≥ 0 (3-105′)

The simulation of Poisson fields is an important task because it is applied in field
statistics and provides a “starting point” for simulating more complicated structures:
for example, Neyman-Scott cluster processes. Currently, there are many software
tools that support point field simulation. Details about the algorithm of this simula-
tion can be found in Stoyan and Stoyan (1994).

Now we discuss some statistical approaches developed for homogeneous Pois-
son fields. “Statistical” here means that we have a realization—a set of scattered
points—of an unknown point process and want to estimate some of its characteris-
tics. It should be noted that here, unlike in “classical statistics” but similar to geo-
statistics, a single realization is taken for estimation. Thus, some constraints should
be imposed in order to get an estimator. If we assume a homogeneous field, we can
estimate its intensity in an observation window W by the quotient of point numbers
in the window N(W ) and the area of the window ν(W ):

λ̂ =
N (W )
ν (W )

(3-106)

For inhomogeneous fields equation (3-106) is no longer an allowed method, but
there are other ways to estimate the intensity function [see Stoyan and Stoyan
(1994)].

There are various methods that allow us to determine whether or not the point
muster belongs to a realization of a homogeneous Poisson field. We discuss two
groups of methods here. The first describes so-called square count methods and the
second is based on the L-function. We now show how these methods work.

Group 1: Dispersion Index Method

At first, the observation window is divided in k subregions of equal area. The number
of points Ni, i = 1, . . . ,k in each region should be counted. Assuming a Poisson field
(hypothesis), these Ni, i = 1, . . . ,k are independently and identically distributed with
the mean per region equal to λν(W )/k. In order to test this hypothesis, the following
characteristic (test value) is calculated:

T =
(k−1)s2

N̄
, N̄ =

1
k

k

∑
i=1

Ni, s2 =
1

k−1

k

∑
i=1

(Ni − N̄)2 (3-107)

If
T > χ2

k−1, α or T < χ2
k−1, 1−α (3-108)

then the Poisson hypothesis is rejected with probability α of error of type I.
With χ2

b, a the a-quantile of the χ2-distribution with b degrees of freedom is de-
noted. Stoyan and Stoyan (1994) recommend using k > 6 and λν(W )/k > 1. For the
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rejection case the following two causes can be proposed: Points appear in clusters
or their pattern shows more regularity than could be expected for a realization of a
homogeneous Poisson field.

Remark: The so-called Greig-Smith test is a refined version of the dispersion index
test. More details can be found in Stoyan and Stoyan (1994).

Group 2: L-Function Tests

Here the empirical L-function should be calculated. Such tests assess the deviation
from the distributional properties of a Poisson field in a more sensible way. The test
is based on property (3-105). Therefore, as the test value we consider the following:

T = max
r≤max(r)

∣∣L̂(r)− r
∣∣ (3-109)

If the point pattern has n points in the observation window and the assumption about
the Poisson character holds, then the following term can be used as an estimator of
the L-function or as an empirical L-function in (3-109):

L̂(r) =
1√
π

√√√√√1
n

n

∑
i=1

n

∑
j=1
j �=i

1(0 ≤ ri j ≤ r),

ri j =
∣∣xi − x j

∣∣ , i, j = 1, . . . , n

(3-109′)

If a Poisson character cannot be assumed, the generalized relation between the
L- and the K-function (3-105) should be used. There are further—also unbiased—
estimators for λK (r) , λ 2K (r) [see Stoyan and Stoyan (1994) for discussions about
their advantages and disadvantages]. Practically, the estimation of the L-function
can go through two steps. First, the intensity and λK (r) are estimated by (3-106)
and

λ K̂ (r) =
1
n

n

∑
i=1

n

∑
j=1
j �=i

1(0 ≤ ri j ≤ r) ,

ri j =
∣∣xi − x j

∣∣ , i, j = 1, . . . , n

(3.109′′)

Second, the estimator for the L-function is determined by (see Fig. 3.36):

L̂(r) =

√
λ K̂ (r)

λ̂π
, r ≥ 0 (3-110)

The Poisson hypothesis is rejected with the argument that it is not a realization of a
Poisson process if this test value T becomes “too large” or is greater than a “limit
value.” This limit value can vary for other estimators of L.
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If this version of the L-test is not acceptable, a Monte Carlo L-test can be used:
One simulates 999 realizations of a homogeneous Poisson field in an observation
window with exactly n points as given in the point pattern that has to be tested. For
each sample the empirical L-functions should be estimated, and the corresponding
test values are calculated following (3-109):

Ti = max
r≤max(r)

∣∣L̂i (r)− r
∣∣ , i = 1, . . . , 999 (3-111)

We order these 999 test values and the value T calculated for the given point pattern
leading to 1000 ordered values:

T (1) ≤ T (2) ≤ . . . ≤ T (1000) (3-111′)

If the index of the value T belonging to the real pattern in this series (3-111′) is
greater than 950 or 990 then the Poisson field hypothesis should be rejected with
probability α of error of type I.

Remark: Using Monte Carlo tests is popular for goodness-of-fit tasks for any point
process.

Example 3.3.2.1 (continued) First, we test the Poisson field hypothesis for the data
from Example 3.3.2.1 by the dispersion index method. The observation window in
Fig. 3.34 is divided into ten subregions of area 20×20 square meters. The number
of points Ni, i = 1, . . . , 10 in each region is counted:

9 6 8 8 11
4 10 7 8 5

In order to test this hypothesis, the following characteristic (test value) is calcu-
lated:

N̄ =
1
10

10

∑
i=1

Ni =
1
10

[9+6+ . . . +5] =
76
10

= 7.6, s2 =
1

10−1

10

∑
i=1

(Ni − N̄)2 = 4.71

T =
(10−1)s2

N̄
= 5.58.

(*.2)

The Poisson hypothesis is not rejected with probability α = 0.05 of error of type
I because

χ2
10−1, 0.05 = 3.3251, χ2

10−1, 1−0.05 = 16.919 ⇒
χ2

10−1, 0.05 ≤ T ≤ χ2
10−1, 1−0.05

(*.3)

We can conclude that the points are not scattered more regularly as expected for a
realization of a homogeneous Poisson field.
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Second, the empirical L-function is calculated. The intensity can be estimated by
(3-106):

λ̂ =
76

100 ·40
= 0.0204 (*.4)

We use the distance matrix for calculating λK (r) following (3.109′′). For this, we
calculate the number of neighbors at distances less than r meters for each point.
These numbers are cumulated over all data points and divided by the number n = 76
of these points. Using (3-110) we get the empirical L-function shown in Fig. 3.36.

The behavior of this function for large r is not really typical for the realization
of a Poisson field. Applying the Monte-Carlo L-test based on the calculation of (3-
111) and (3-111′) leads to a rejection of the Poisson field hypothesis with probability
α = 0.05 of error of type I, which confirms the fact that L-tests are more sensitive
than dispersion index tests.

Now we discuss some details concerning inhomogeneous Poisson fields: their
characteristics, statistics, and simulation.

3.3.2.2 Inhomogeneous Poisson fields

If the point density varies in the area, but the independence property holds anal-
ogously to homogeneous Poisson fields, we speak about inhomogeneous Poisson
fields. Instead of the intensity λ , an intensity function λ (x) or an intensity measure
Λ is used. Thus, the second property of inhomogeneous Poisson fields should be
modified and now corresponds to:

2′. The number of points N (S) in a set S follows the Poisson distribution with pa-
rameter Λ(S). Λ(S) describes the mean of the number of points in the set S. This
intensity measure Λ is diffuse; that is, there are no multiple points. If the density
λ (x) exists with

Λ(S) =
∫
S

λ (x)dx,

then this density is called the intensity function.

Statistics for inhomogeneous fields is more complicated than for homogeneous
fields. One problem is the determination of the corresponding intensity function.
There are parametric and nonparametric approaches. Parametric approaches are
based on the maximum likelihood method, and nonparametric methods use the fol-
lowing simple estimator of the intensity function:

λ̂h (x) =
N (b(x, h))

πh2 (3-112)

With b(x, h) in (3-112) (b comes from “ball”) a disc with the center in x and
radius h is denoted. Choosing parameter h usefully is a nontrivial problem. For large
h the local fluctuations can be damped and vanish; for small h there are too many
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local effects. Thus, this is one of those pseudomathematical problems that most
likely belong in the category of “philosophical” questions. Without any additional
assumptions about the field being considered no final answer can be given. But
we can recommend testing different values of h until some plausible results are
obtained.

A more general approach uses different kernel functions for estimation of the
density function. Finally, we speak about Matern cluster fields. Further models of
point processes and details about corresponding statistical methods can be found in
Stoyan and Stoyan (1994).

3.3.2.3 Matern Cluster Fields

Matern cluster fields are popular and used frequently. The basis of the cluster model
is a homogeneous Poisson field of intensity λ0. The random points of the Poisson
field are called parent points. In the second step, daughter points are randomly scat-
tered around each parent point. The union of only daughter points neglecting parent
points forms the Neyman-Scott field. We speak about a Matern cluster field if the
random number of daughter points in a cluster follows a Poisson distribution with
constant parameter μ . In this case the probability function describing the distance
of a daughter point scattered in a disc with radius R from the center of a cluster
corresponds to

P(dist ≤ r) =

⎧⎨
⎩

r2

R2 , x ≤ R

1, otherwise
(3-113)

The simulation of Matern cluster fields is simple and implemented in most soft-
ware tools for point processes. For these fields the important characteristics dis-
cussed above can be calculated. For example, the K-function yields

K (r) = πr2 +
1
λ0

⎧⎪⎨
⎪⎩

2+ 1
π

[(
8z2 −4

)
arccosz−2arcsinz

+4z
√

(1− z2)3 −6z
√

1− z2

]
, r ≤ 2R

1, r > 2R

z =
r

2R

(3-114)

The pair correlation function [cf. (3-96)] is

ρ(2)
1 (r) = 1+

f (r)
2πλ0r

, r ≥ 0

f (r) =

⎧⎪⎨
⎪⎩

4r
πR2

[
arccos

( r
2R

)
− r

2R

√
1− r2

4R2

]
, r ≤ 2R

0, otherwise

(3-114′)
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Remark: If someone wants to test whether a point pattern should be interpreted as
realization of a Matern cluster field or of another well-known model, the application
of Monte-Carlo L-tests can be recommended. Simulation algorithms for many pop-
ular random point fields are still implemented in conventional statistical software
tools such as “R.”



Chapter 4
Practical Examples for Mathematical Modeling

4.1 Generalization of Valley Elevation Cross-Profiles

Distinguishing among valleys, or more exactly among types of valleys, is of interest
in geomorphology. There are valleys whose primary force of formation was the mo-
tion of a glacier. Such valleys tend to follow some shape across the valley, and often
one speaks about U-shaped valleys. Other valleys, formed by rivers, for example,
tend to be V-shaped. Some of the naive curve fittings described in the literature are
generally inadequate, so improvements in the methodology for obtaining and ana-
lyzing valley elevation cross-profiles are needed. We propose one such improvement
in what follows.

We start with a brief description of meaningful mathematical methods. A prob-
lem of generalizing the form of a valley in geomorphology should be translated
into an approximation problem in the language of mathematics. Thus, a point cloud
should be fitted by piecewise continuous functions.

Hirano and Aniya (1988) led the way to a theoretical discussion concerning the
ideal shape of a glaciated valley when they wrote about the so-called catenary curve
that can be used for modeling a chain that is supported only at its ends. Power law
and parabolic regressions were suggested by Dornkamp and King (1971), James
(1996), and others. A further generalization of the power law regression model is
the generalized power law (GPL) model described in Pattyn and Van Heule (1998),
where they proposed the model y− y0 = α |x− x0|β . All parameters α,β and the
so-called datum (x0,y0) should be estimated in this model. The information about
curvature is included in parameter β . This model is invariant to changes in coordi-
nate locations, but it cannot be applied directly to asymmetric valleys. Working with
the width and depth of a valley Li et al. (2001) solved the problem in their own way.
More recent papers are still proposing various generalization methods.

Here we present a special sequential method based on the approximation of a val-
ley elevation cross-profile by using three piecewise continuous functions. The first
and the third function come from two different power law regression models. Their
parameters β and the mean inclinations of these functions help to describe forms of

123
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valley elevation cross-profiles. The second function—if it exists—describes the val-
ley region with minimal inclination, the so-called valley bed, which is modeled by a
horizontal line (see Fig. 4.1). Using the second function in this model guarantees an
improved accuracy of approximation. But how can we obtain these functions? We
apply conventional least-squares techniques for curve fitting and give further details
of our special sequential regression method based on fixed and variable point pairs.

More about regression approaches from a mathematical point of view can be
found in Draper and Smith (1998). The method of least squares developed by Gauss
is widely applied in the geosciences [see Niemeier (2002), Wolf (1979), Reissmann
(1976), and the relevant section of Chap. 3]. We do not describe the least-square
method in detail here, but rather just start with an introduction to our special tech-
nique for cross-profile approximation.

The original data consist of points with coordinates (x,y). The first coordinates x
are “relative.” They start with value zero and go at right angles to the cross-profile
axis. There are identical distances between the neighboring x-coordinates. The sec-
ond coordinates y are the corresponding valley elevations.

In the first step, the original data set should be divided into three subsets (marked
by upper indices). A fixed limit value δ > 0 reflects the allowed depth of the val-
ley bed and should be defined a priori. With the help of this value such points are

Fig. 4.1 A typical valley elevation cross-profile (stars) and its approximation with three continuous
functions (left and right borders are modeled by power law regression functions; the valley bed is
given by a linear function)
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selected, which are placed in this valley bed. The x-coordinates of separated points
remain unchanged. The y-coordinates should be replaced by their mean h.

The second subset has to be continuous, which means that there are no outlier
points within a valley bed. The last x-coordinate of the first subset is the neighbor
of the first x-coordinate of the second subset and the last x-coordinate of the second
subset is the neighbor of the first x-coordinate of the third subset. Initially, the first
point of I1 (and the last point of I3) is the point at which the local maximum of the
corresponding valley elevation nearest to the valley bed is reached. Thus, we have

[
x1 . . . xN

y1 . . . yN

]
⇒

[
x1

1 . . . x1
N1

y1
1 . . . y1

N1

]
∪
[

x2
1 . . . x2

N2

y2
1 = h . . . y2

N2
= h

]
∪
[

x3
1 . . . x3

N3

y3
1 . . . y3

N3

]
= I1 ∪ I2 ∪ I3 ,

[
x
y

]
∈ I1, i f x < x2

1,

[
x
y

]
∈ I3, i f x > x2

N2
,

[
x
y

]
∈ I2, i f |y−min(y)| ≤ δ , y2

1 = . . . = y2
N2

=

∑
i=1,...N
‖yi−min(y)‖≤δ

yi

N2
= h

(4-1)

In the second step, we rely on the following functional structure describing our
approximation approach:

f1 (x) = {yL −h} ·
(

xUL − x
xUL − xL

)nL

+h ,

f2 (x) = h,

f3 (x) = {yR −h} ·
(

x− xUR

xR − xUR

)nR

+h ,

xUL = x2
1, xUR = x2

N2

(4-2)

We explain the other parameters from (4-2) below (see also Fig. 4.1). We call
the power parameters nL and nR form coefficients, and these should be determined
using least-square techniques. We make the following model assumptions:

1. A complementary parameter ε should be determined a priori, in order to control
the regression accuracy and so dictate the number of loops in our sequential
regression approach.

2. There are two kinds of fixed points (xL,yL), (xUL,h), and (xUR,h), (xR,yR) in the
sequential regressions. The points (xUL,h) and (xUR,h) are constant in all loops;
the points (xL,yL) and (xR,yR) can vary.

3. On the “sequential character” of our approach: if the upper limit ε is exceeded, a
regression procedure should be repeated with newly calculated input data. In this
case the point subsets I1 (or I3) should be reduced by omitting the first (or the
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last) point, and a new iteration starts. If fewer than five points in a subset remain,
then this process should be stopped. The final subsets are denoted by I1 and I3.
The subset I1 starts with point (xL,yL) and the subset I3 is finished with point
(xR,yR) (see Fig. 4.1).

4. At each iteration step, we should solve the following problem in order to obtain
the form coefficients:

nL : ∑[
xi

yi

]
∈I1

(
f1
(
x1

i

)
− y1

i

)2 → min
nL

,

nR : ∑[
xi

yi

]
∈I3

(
f3
(
x3

i

)
− y3

i

)2 → min
nR

(4-3)

Problem (4-3) can be solved using least-squares techniques, and the solution cor-
responds to

nL =

∑[
xi

yi

]
∈I1

ln

(
xUL − xi

p2

)
· ln

(
yi −h

p1

)

∑[
xi

yi

]
∈I1

(
ln

(
xUL − xi

p2

))2 ,

p1 = yL −h > 0, p2 = xUL − xL > 0

(4-4)

and

nR =

∑[
xi

yi

]
∈I3

ln

(
xi − xUR

p2

)
· ln

(
yi −h

p1

)

∑[
xi

yi

]
∈I3

(
ln

(
xi − xUR

p2

))2 ,

p1 = yR −h > 0, p2 = xR − xUR > 0

(4-5)

The model or generalization accuracy σ can be calculated by

σ2 =
1
N

⎡
⎢⎢⎢⎢⎢⎣ ∑[

xi

yi

]
∈I1

(
f1
(
x1

i

)
− y1

i

)2
+ ∑[

xi

yi

]
∈I2

(
h− y2

i

)2
+ ∑[

xi

yi

]
∈I3

(
f3
(
x3

i

)
− y3

i

)2

⎤
⎥⎥⎥⎥⎥⎦

(4-6)
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Example 4.1.1 The following valley elevation cross-profile should be generalized
(see Fig. 4.1):
x [m] 0 50 100 150 200 250 300 350 400

y [m] 1660.9 1633.9 1613.7 1593.6 1583.6 1573.8 1567.6 1561.3 1553.1

450 500 550 600 650 700 750 800 850 900

1544.3 1536.6 1529.4 1522.6 1516.5 1512.1 1508.7 1504.1 1496.6 1487.9

950 1000 1050 1100 1150 1200 1250 1300 1350 1400

1474.6 1462.4 1461.4 1460.0 1461.1 1462.4 1465.4 1468.5 1469.2 1469.7

1450 1500 1550 1600 1650 1700 1750 1800 1850 1900

1470.0 1469.9 1470.1 1470.9 1472.2 1474.0 1475.2 1475.6 1476.1 1476.6

1950 2000 2050 2100 2150 2200 2250 2300 2350 2400

1477.1 1477.7 1478.5 1479.4 1480.1 1480.9 1481.8 1483.7 1485.8 1494.7

2450 2500 2550 2600 2650 2700 2750 2800 2850 2900

1507.0 1517.9 1528.0 1540.1 1553.2 1566.1 1580.6 1594.6 1610.3 1626.3

2950 3000

1641.7 1657.0

A complementary parameter ε is determined as follows:

ε = 0.1(ymax − ymin) (*.1)

It corresponds to 10% of the absolute elevation difference. In our case ε = 20.09.
This parameter helps to control the regression accuracy and thus dictates the number
of loops in our sequential regression approach. We set the valley bed height δ = ε
in (4-1) and obtain the value h.

There are two loops for the regression at the left side and a single loop for the
regression at the right side; see model assumptions (1)–(4) described above. We get
the following solution of problem (4-3):

f1 (x) = {yL −h} ·
(

xUL − x
xUL − xL

)nL

+h ,

f2 (x) = h ,

f3 (x) = {yR −h} ·
(

x− xUR

xR − xUR

)nR

+h ,

(*.2)
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with xL = 150, xR = 3000, xUL = 950, xUR = 2150, h = 1471.1,

yL = 1593.6, yR = 1657.0,

nL = 0.81, nR = 1.36

The model accuracy σ given by (4-6) in this case equals (in meters):

σ = 6.88 (*.3)

Figure 4.2 shows the residuals:

res(xi) = ∑[
xi

yi

]
∈I1

( f1 (xi)− yi)+ ∑[
xi

yi

]
∈I2

(h− yi)+ ∑[
xi

yi

]
∈I3

( f3 (xi)− yi) (*.4)

These residuals can help to analyze the possible locations of the so-called valley ter-
races, which can owe their formation to various factors such as rivers, glaciers, and
so on. Mathematically speaking, these are locations where the residuals change their
signs. The considered cross-profile is nearly V-formed at the left side and nearly
U-formed at the right side (see the form coefficients in Fig. 4.1).

The form parameters, the length of the valley bed, and other parameters can be
taken into account for a further valley cross-profile classification.

Fig. 4.2 Residuals of the generalization model for a valley elevation cross-profile
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4.2 On Fuzzy Propagation of Measurements to Derived
Differential-Geometric Characteristics

Real measurements can be considered to be fuzzy values from a mathematical point
of view. The uncertainty is the result of incomplete knowledge of “absolute truth.”
Only value ranges can be proposed in this case. Real measurements provide “raw
material” for further research, as they can be interpolated over a grid and approxi-
mated by an analytical surface. Moreover, it can be necessary to obtain some surface
characteristics of higher order based on the grid. It is clear that any characteristic that
is derived from uncertain measurements is also uncertain. In this section we discuss
the mathematical modeling of the fuzzy propagation of measurements to derived
differential-geometric characteristics.

From a mathematical point of view, most measurements can be assumed to be
fuzzy values because absolute precision of a measurement cannot be guaranteed in
the real world. There are some statistical tests that are sensitive to the appearance of
rough abnormalities in spatial time series [see Waelder (2005a,b)]. Another point of
view makes use of the fact that interpolation data are not sets of real numbers but
are ranges of values. The distribution within the range may not necessarily be prob-
abilistic. The difference between error and uncertainty is explained in Lodwick and
Santos (2003): “Error assumes that a true value exists. Uncertainty denotes incom-
plete knowledge that is characterized by whether or not one can say that a proposi-
tion is exclusively true or false. A statement is uncertain when its (exclusive) truth
or falseness can be ascertained.”

Uncertainty can be modeled using some useful approaches that have been devel-
oped in fuzzy set theory. In interval arithmetic, which is one of these approaches, a
measurement is considered to be a mathematical object, an interval with two fixed
borders: (real) lower- and upper-limit values. The assumed measurement uncertainty
can be modeled using the variable width of this interval. It should be noted that an
interval is the simplest fuzzy object. A helpful introduction to fuzzy theory can be
found in Bandemer and Gottwald (1993).

Usually, measurements should be sampled and transferred into GIS, and gen-
erally they are interpolated over a grid. Alternatively, they might be approximated
with an analytical surface or some differential-geometric characteristics might be
obtained based on sampled measurements. Partial derivatives of higher orders, cur-
vatures, surface maximal shear strain, and surface dilatation are among these char-
acteristics. In all these cases the fuzzy propagation of “original measurements” to
derived differential-geometric characteristics is of interest.

Some investigations related to fuzzy surfaces are carried out in Kaleva (1994) and
Lodwick and Santos (2003). Here, we discuss a method of the fuzzy propagation of
measurements of derived differential-geometric characteristics.

A fuzzy value describes an inaccurately determined or an imprecisely measured
value. Fuzzy values can be modeled by convex fuzzy sets. Their characterizing func-
tion should have exactly one local maximum [see Bandemer and Gottwald (1993)].
The support of fuzzy intervals corresponds to an interval with real fixed borders
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Fig. 4.3 A schematic
presentation of two fuzzy
intervals A =

[
a−,a0,a+] and

B =
[
b−,b0,b+] with their

characterizing functions

(see Fig. 4.3). Fuzzy interval calculation uses and generalizes methods of interval
arithmetic that are utilized in “classical” adjustment theory. Corresponding to the
point of view appearing in fuzzy theory, one uses intervals to deal with variable
widths that reflect a measure of the uncertainty rather than variances of random val-
ues in probabilistic approaches. Further details concerning interval arithmetic can
be found in Alefeld und Herzberger (1974). We repeat that in the approach pre-
sented in this section, the borders of fuzzy intervals are assumed to be fixed and
precise.

In order to explain the relations obtained below, we have to define some basic
operations with fuzzy intervals. According to Lodwick and Santos (2003) we ask
for only three parameters connected with a fuzzy interval and do not ask for its
characterizing function. These three parameters are the lower and upper borders of
a fuzzy interval and its so-called center: the point within the supporting real interval
where the characterizing function has its maximum (see Fig. 4.3).

We denote two fuzzy intervals with A =
[
a−, a0, a+] and B =

[
b−, b0, b+].

The following basic operations with these intervals are necessary: the fuzzy sum
A + B, the difference A−B, the fuzzy product A ·B, and the fuzzy ratio A/B. A
new fuzzy interval C =

[
c−, c0, c+] is the result of these operations. For the given

parameters, this results in:

C = A+B : c− = a− +b−, c0 = a0 +b0, c+ = a+ +b+;

C = A−B : c− = a−−b+, c0 = a0 −b0, c+ = a+ −b−;

C = A ·B : c− = min
{

a−b−, a+b−, a−b+, a+b+} ,

c0 = a0b0,

c+ = max
{

a−b−, a+b−, a−b+, a+b+} ; (4-7)

C = A/B : c− = min
{

a−/b−, a+/b−, a−/b+, a+/b+} ,

c0 = a0/b0,

c+ = max
{

a−/b−, a+/b−, a−/b+, a+/b+}
only f or b− > 0 or b+ < 0
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Furthermore, we can define the fuzzy square of a fuzzy interval by

C = A2 = A ·A :⎧⎪⎨
⎪⎩

c− = min{a−a−, a+a+} , c0 =
(
a0
)2

,c+ = max{a−a−, a+a+} ,
a− ≥ 0 or a+ ≤ 0

c− = 0, c0 =
(
a0
)2

,c+ = max{a−a−, a+a+} , a− < 0 and a+ > 0

(4-8)

and the following holds for the fuzzy root:

C =
√

A :

c− =
√

a−, c0 =
√

a0,c+ =
√

a+ , f or a− ≥ 0 only
(4-9)

We assume that fuzzy measurements z̃i =
[
z−i ,z0

i ,z
+
i

]
, i = 1, . . . ,n, are given at pre-

cise, that is, nonfuzzy points (xi,yi), i = 1 . . .n. If these measurements have to be
interpolated to a nonfuzzy grid

{
Xj,Yk

}
, j = 1 . . .N, k = 1 . . .M, then the interpo-

lated elevations Z̃ jk = [Z−
jk, Z0

jk, Z+
jk] also become fuzzy values. Their parameters

can be determined depending on the applied interpolation method.
By using distance-dependent weightings of the original data we get

Z̃ jk = α jk
1 z̃1 +α jk

2 z̃2 + . . .+α jk
n z̃n ,

n

∑
i=1

α jk
i = 1, α jk

i = Fct
(

di j
i

)
, d jk

i = (xi −Xj)
2 +(yi −Yk)

2 ,

i = 1 . . .n, j = 1 . . .N, k = 1 . . .M

(4-10)

where the abbreviation “Fct” stands for “a function of.” If the method of the squares
of inverse distances (IDW) is taken into account, (4-10) can be rewritten as

Z̃ jk = α jk
1 z̃1 +α jk

2 z̃2 + . . .+α jk
n z̃n,

α jk
i =

w jk
i

n
∑

i=1

(
w jk

i

) , w jk
i =

1

d jk
i + ε

,

ε > 0, i = 1 . . .n, j = 1 . . .N, k = 1 . . .M

(4-11)

The complementary constant value ε in (4-11) is used in order to avoid uncertainty
of weights in the case in which a prediction point coincides with a measurement
point. It is often recommended to set ε = 0.6. As the weights in (4-11) are positive,
we get the following parameters for interpolated fuzzy heights:

Z−
jk = α jk

1 z−1 +α jk
2 z−2 + . . .+α jk

n z−n =
n

∑
i=1

α jk
i z−i ,

Z0
jk = α jk

1 z0
1 +α jk

2 z0
2 + . . .+α jk

n z0
n =

n

∑
i=1

α jk
i z0

i ,

(4-12)
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Z+
jk = α jk

1 z+
1 +α jk

2 z+
2 + . . .+α jk

n z+
n =

n

∑
i=1

α jk
i z+

i

i = 1 . . .n, j = 1 . . .N, k = 1 . . .M

Remark 4.2-1 We use small letters to denote grid coordinates
{

Xj,Yk
}

, j = 1 . . .N,
k = 1 . . .M, in order to avoid unnecessary complexity in the equations that follow.

Remark 4.2-2 If the coordinates of measurements are also fuzzy, one should replace
the usual arithmetic operations in (4-11) by the rules in (4-7) and (4-8) for the cor-
responding fuzzy operations.

In the next step, we can approximate the interpolated fuzzy heights with an
analytical function and in this way construct a fuzzy surface. A two-dimensional
Lagrange polynom can be used for this approximation, which is constructed using
the following (nonfuzzy) Lagrange functions (see Sect. 3.1.1):

ϕ j (x) = Π
i=1...N

i �= j

(x−Xi)
(Xj −Xi)

, ϕk (y) = Π
i=1...M

i �=k

(y−Yi)
(Yk −Yi)

(4-13)

These functions have a well-known property at the grid nodes
{

Xj,Yk
}

, j = 1 . . .N,
k = 1 . . .M, namely,

ϕ j (xp) = δ jp =
{

1, p = j
0, p �= j

ϕk (yp) = δkp =
{

1, p = k
0, p �= k

(4-14)

Using the functions in (4-13) we can express the analytical fuzzy surface by

p̃(x,y) = ∑
j=1...N

k=1...M

Z̃ jkϕ j (x)ϕk (y) = ∑
j=1...N

k=1...M

Z̃ jkL jk (x,y) ,

L jk (x,y) = ϕ j (x)ϕk (y)

(4-15)

We rely on similar deliberations and explanations related to the sign change of
L jk (x,y), j = 1 . . .N,k = 1 . . .M, as proposed by Lodwick and Santos (2003) in order
to obtain the parameters of the fuzzy surface from (4-15) and get:

p− (x,y) = ∑
j=1...N

k=1...M

L jk(x,y)≥0

Z−
jkL jk (x,y)+ ∑

j=1...N

k=1...M

L jk(x,y)<0

Z+
jkL jk (x,y) ,
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p0 (x,y) = ∑
j=1...N

k=1...M

Z0
jkL jk (x,y) ,

p+ (x,y) = ∑
j=1...N

k=1...M

L jk(x,y)≥0

Z+
jkL jk (x,y)+ ∑

j=1...N

k=1...M

L jk(x,y)<0

Z−
jkL jk (x,y) (4-16)

These three functions from (4-16) describe the lower, middle, and upper border
surfaces of the fuzzy surface from (4-15).

This basic idea of fuzzy modeling can be used for other differential-geometric
characteristics. For example, the gradient length Q̃ of the fuzzy surface in (4-15)
can be modeled by

Q̃ =
√

Δ̃2
x + Δ̃2

y (4-17)

with

Δ̃x =
d
dx

p̃(x,y) =
d
dx ∑

j=1...N

k=1...M

Z̃ jkϕ j (x)ϕk (y) = ∑
j=1...N

k=1...M

Z̃ jkϕk (y)
d
dx

ϕ j (x) ,

Δ̃y =
d
dy

p̃(x,y) =
d
dy ∑

j=1...N

k=1...M

Z̃ jkϕ j (x)ϕk (y) = ∑
j=1...N

k=1...M

Z̃ jkϕ j (x)
d
dy

ϕk (y)
(4-18)

where it is clear that rules (4-7)–(4-9) should be used.
GIS tools often use finite elements instead of “classical” derivatives. Most filters

are constructed using this principle, and after application to a grid, a new—usually
correspondingly reduced—grid is obtained. The fuzzy propagation for these proce-
dures can be achieved as follows:

1. Calculation of the Mean

In this method one calculates the following weighted sum (not only with positive
weights!):

m̃ =
L

∑
j,k=1

β jkZ̃ jk,
L

∑
j,k=1

β jk = 1 (4-19)

For the width of the so-called mean window the values L = 3,5, . . . are generally
used. The parameters for this fuzzy mean (4-19) are
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m− =
L

∑
j,k=1

β jk≥0

β jkz−i +
L

∑
j,k=1

β jk<0

β jkz+
i ,

m0 =
L

∑
j,k=1

β jkz0
i ,

m+ =
L

∑
j,k=1

β jk≥0

β jkz+
i +

L

∑
j,k=1

β jk<0

β jkz−i

(4-19′)

2. Partial Derivatives (Using Finite Elements)

Δ̃ jk
x =

1
x j+1 − x j−1

[
Z̃( j+1)k − Z̃( j−1)k

]
, Δ̃ jk

y =
1

yk+1 − yk−1

[
Z̃ j(k+1) − Z̃ j(k−1)

]
,

j = 2 . . .N −1, k = 2 . . .M−1 (4-20)

The parameters of the fuzzy derivatives with respect to x are

Δ jk−
x =

1
x j+1 − x j−1

[
Z−

( j−1)k −Z+
( j−1)k

]
, Δ jk0

x =
1

x j+1 − x j−1

[
Z0

( j−1)k −Z0
( j−1)k

]
,

Δ jk+
x =

1
x j+1 − x j−1

[
Z+

( j−1)k −Z−
( j−1)k

]
, (4-20′)

j = 2 . . .N −1, k = 2 . . .M−1

The parameters of the partial derivatives with respect to y can be obtained in a sim-
ilar fashion.

For the calculation of derivatives of higher order p we use the following recursive
rule based on a primary grid of derivatives of order p−1:

Δ̃ jk
x(p) =

1
x j+1 − x j−1

[
Δ̃( j+1)k

x(p−1) − Δ̃( j−1)k
x(p−1)

]
, Δ̃ jk

y(p) =
1

yk+1 − yk−1

[
Δ̃( j+1)k

y(p−1) − Δ̃( j−1)k
y(p−1)

]
(4-21)

It is clear that grids that are built in this way are reduced step by step. The following
relations are true for the parameters of (4-21) (derivatives with respect to y can be
treated analogously):
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Δ jk−
x(p) =

1
x j+1 − x j−1

[
Δ( j+1)k−

x(p−1) −Δ( j−1)k+
x(p−1)

]
,

Δ jk0
x(p) =

1
x j+1 − x j−1

[
Δ( j+1)0

x(p−1) −Δ( j−1)0
x(p−1)

]
,

Δ jk+
x(p) =

1
x j+1 − x j−1

[
Δ( j+1)k+

x(p−1) −Δ( j−1)k−
x(p−1)

]
(4-21′)

If measurements of two temporally separated epochs (indicated below by [1]
and [2] ) are compared, then the approaches of the surface deformation analysis
described in Voosoghi (2000) can be used. We discuss fuzzy propagation for the fol-
lowing characteristics, which are denoted there as surface dilatation and (squared!)
surface maximal shear strains. This “square” can be negative because surface max-
imal shear strain can take complex values. The general definitions that are given in
Voosoghi (2000) can be simplified in our case to:

DIL̃ = λ̃1 + λ̃2 and Γ̃2 =
(
λ̃1 − λ̃2

)2
with

λ̃1 =0.5 ·
(

PAR̃1 +
√

PAR̃2
1 −4 ·PAR̃2

)
, λ̃2 = 0.5 ·

(
PAR̃1 −

√
PAR̃2

1 −4 ·PAR̃2

)
and

PAR̃1 = tr
(
Ẽ · Ã−1) , PAR̃2 = det

(
Ẽ · Ã−1) , where (4-22)

Ã =

⎛
⎜⎝ 1+

(
Δ̃ jk

x [1]
)2

Δ̃ jk
x [1] · Δ̃ jk

y [1]

Δ̃ jk
x [1] · Δ̃ jk

y [1] 1+
(

Δ̃ jk
y [1]

)2

⎞
⎟⎠ , C̃ =

⎛
⎜⎝ 1+

(
Δ̃ jk

x [2]
)2

Δ̃ jk
x [2] · Δ̃ jk

y [2]

Δ̃ jk
x [2] · Δ̃ jk

y [2] 1+
(

Δ̃ jk
y [2]

)2

⎞
⎟⎠ ,

Ẽ = 0.5(C̃− Ã)

It follows from (4-22) that

DIL̃ = PAR̃1, Γ̃2 = PAR̃2
1 −4 ·PAR̃2 (4-22′)

After some simplification in (4-22′), one can obtain:

DIL̃ = PAR̃1 = 0.5 · tr
(
C̃ · Ã−1 −E

)
= 0.5 · tr

(
C̃ · Ã−1)−1

=
1

2

(
1+

(
Δ̃ jk

x [1]
)2

+
(

Δ̃ jk
y [1]

)2
)

⎡
⎢⎢⎣

(
1+

(
Δ̃ jk

x [2]
)2
)
·
(

1+
(

Δ̃ jk
y [1]

)2
)
−2Δ̃ jk

x [2] Δ̃ jk
y [2] Δ̃ jk

x [1] Δ̃ jk
y [1]

+
(

1+
(

Δ̃ jk
y [2]

)2
)
·
(

1+
(

Δ̃ jk
x [1]

)2
)

⎤
⎥⎥⎦−1
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and

PAR̃2 = 0.52 ·det
(
C̃ · Ã−1 −E

)
= 0.25 ·

(
det

(
C̃ · Ã−1)− tr

(
C̃ · Ã−1)+1

)

= 0.25 ·
(

det
(
C̃
)

det
(
Ã
) − tr

(
C̃ · Ã−1)+1

)
= 0.25 ·

det
(
C̃
)

det
(
Ã
) −0.5 ·PAR̃1 −0.25

=
1+

(
Δ̃ jk

x [2]
)2

+
(

Δ̃ jk
y [2]

)2

4

(
1+

(
Δ̃ jk

x [1]
)2

+
(

Δ̃ jk
y [1]

)2
) −0.5 ·PAR̃1 −0.25 (4-23)

In (4-22′) and (4-23) we apply the rules defined in (4-7)–(4-9).
Now, let us present the fuzzy propagation of measurements of some derived

differential-geometric parameters using an example.

Example 4.2.1 We consider the following elevation measurements of a rock glacier
[from Waelder et al. (2004)]. The first digits “52” of the y-coordinates are always
omitted; all coordinates are rounded):
x [m] 53203 53195 53179 53157 53131 53101 53090 53116 53143

y [m] 12474 12485 12498 12508 12516 12514 12486 12479 12463
z0 [m] 2382 2382 2381 2383 2385 2386 2389 2390 2390

53174 53192 53177 53144 53123 53089 53061 53045 53069 53106

12455 12427 12396 12405 12424 12440 12441 12405 12403 12386
2390 2390 2400 2401 2400 2399 2398 2405 2406 2408

53136 53162 53172 53166 53130 53087 53056 53040 53055 53067

12373 12364 12344 12288 12313 12333 12349 12313 12307 12296
2406 2410 2415 2427 2424 2425 2417 2434 2437 2440

53078 53116 53051 53036 53016 53007 52995 53011 52824 53377

12259 12215 12109 12121 12135 12148 12192 12167 12046 12701
2449 2457 2511 2510 2510 2511 2501 2499 2619 2332

53241 53304 53198 53377

12439 12466 12639 12701
2385 2392 2341 2332

The elevation measurements z̃i, i = 1 . . .n = 43 should be modeled as fuzzy
values with parameters z̃i =

[
z−i = z0

i −0.5,z0
i ,z

+
i = z0

i +0.5
]
. Here we use the value

0.5 meters as an upper limit for the measurement uncertainty. This value corre-
sponds to the precision that reflects the difficulties connected with data sampling
in high mountain regions. The (x,y)-coordinates (Gauss-Krueger coordinate system)
are assumed to be fixed and nonfuzzy. Once again let us note that the first digits
“52” of the y-coordinate are omitted and all of the coordinates are rounded.
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In the first step these measurements should be interpolated with IDW over a
grid. Figure 4.4 shows the parameter of the corresponding fuzzy grid values Z̃ jk,
i, j = 1 . . .N = 20 from (4-11). This parameter is calculated using (4.2). We set
ε = 0.6 for the weight calculation. Figures 4.5 and 4.6 show the results of the fuzzy
propagation for gradient length using (4-17) and (4-20).

We assume that the (x,y)-coordinates are also fuzzy. Their uncertainty can be
described analogously to the elevation measurements, which means that the (x,y)-
coordinates can be modeled by ũi, i = 1 . . .n = 43, with ũi =

[
u−i = u0

i −0.5,u0
i ,u

+
i =

u0
i +0.5

]
, u = x,y. Figures 4.7 and 4.8 illustrate some results of the fuzzy

propagation.
Comparing Figs. 4.4 and 4.7 and 4.6 and 4.8 reflects the increasing uncer-

tainty of the derived parameters, which is caused by the increased number of fuzzy
components that are taken into account in the calculation of the corresponding
differential-geometric characteristics.

The application of fuzzy theory is an alternative, meaningful supplement to
statistical methods of quality control as well as to the law of error (or variance)
propagation from adjustment theory. Generally geoscientific applications use not
only a calculated value of a characteristic, but are also concerned with a “confi-
dence interval,” which is joined with this characteristic. In particular, the width of
this confidence interval plays an important role in further interpretations of obtained

Fig. 4.4 Parameter Z0
jk of fuzzy values Z̃ jk obtained via (4-11) and (4-12) for the given data. The

width of the corresponding fuzzy intervals (in further figures only denoted as “uncertainty width”)
is constant and equal to 1.0 meter



138 4 Practical Examples for Mathematical Modeling

Fig. 4.5 Gradient length

Fig. 4.6 Uncertainty width of the gradient length in Fig. 4.5
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Fig. 4.7 Uncertainty width of Z̃ jk (cf. Fig. 4.4)

Fig. 4.8 Uncertainty width of the gradient length in Fig. 4.5
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results because in some sense it reflects the risk of interpretation. Methods of fuzzy
theory can be taken into account for uncertainty modeling and propagation.

4.3 On Analyzing and Forecasting Dam Deformations:
Some AR-Models and Their Applications

The movement and deformation of a surface can be considered as a random and
dynamic time-varying process. Methods of multiple regression analysis can help to
recognize the linear structure of such processes and make the forecast. Qualified
monitoring and forecasting of surface movement and deformation can sometimes
prevent natural disasters.

A two-step modeling technique is proposed in relation to this problem. Here,
we want to discuss some alternative models that can be applied for analyzing the
trend of dam deformation as well as for short-term forecasting. These models are
based mainly on methods of adjustment theory [see for example Wolf (1979)]. Some
ideas come from applied regression analysis [see Draper and Smith (1998)]. The
subsection 3.2.1 of this book can be also taken into account. A case study of de-
formation analysis and short-term forecasting is related to fictive, simulated dam
measurements.

We assume two independent variables X , Y (forecasting factors), which describe
pressure and temperature and influence dam deformation Z. The restriction of using
only two variables is for practical reasons, and, obviously, our models can be simply
generalized for more independent variables. We consider here the following four
models:

Z1 (k) = C +
p

∑
i=1

αiX (k− i)+
p

∑
i=1

βiY (k− i)+ ε

Z2 (k) = C ·Z2 (k−1)+
p

∑
i=1

αiX (k− i)+
p

∑
i=1

βiY (k− i)+ ε
(4-24)

Z3 (k) = C +
p

∑
i=0

αiX (k− i)+
p

∑
i=0

βiY (k− i)+ ε

Z4 (k) = C ·Z4 (k−1)+
p

∑
i=0

αiX (k− i)+
p

∑
i=0

βiY (k− i)+ ε

The random variable ε ∼ N
(
0,σ2

)
is normally distributed with mean zero and

(unknown) variance σ2. The parameter p describes the so-called “depth” of the
recursion of AR-models, which corresponds to the number of months that should be
taken into account in our application.
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Applying methods from adjustment theory, we can estimate the unknown co-
efficients C and αi,βi, i = 0 (or 1) ..p using a sufficient number M of equations
corresponding to the given measurements x( j) ,y( j) ,z( j) , | j| = M, where M is
the number of months over which the measurements are sampled. This number M
should satisfy M ≤ 2p + 1 for models 1 and 2 and M ≤ 2p + 3 for models 3 and 4.
For example, from (4-24) we have for model 1:

z1 (p+1) = C +
p

∑
i=1

αix(p+1− i)+
p

∑
i=1

βiy(p+1− i)+ ε

z1 (p+2) = C +
p

∑
i=1

αix(p+2− i)+
p

∑
i=1

βiy(p+2− i)+ ε

. . .

z1 (p+M) = C +
p

∑
i=1

αix(p+M− i)+
p

∑
i=1

βiy(p+M− i)+ ε

(4-25)

Describing these equations in matrix form as given in (4-25′),

z̄ = A · ū+ ε̄ ,

z̄T = [z(p+1) , . . . ,z(p+M)] , ūT = [C,α1, . . . ,αp, β1, . . . ,βp] ,

A(k,1) = 1, k = 1..M

A(k, l +1) = x(p+ k− l) , k = 1..M, l = 1 . . . p

A(k, l + p+1) = y(p+ k− l) , k = 1..M, l = 1..p

(4-25′)

we get the well-known solution of (4-25′), which corresponds to

ū =
(
AT A

)−1
AT z̄ (4-26)

The accuracy of model fitting can be obtained from

σ̂ =

√
(Aū− z̄)T (Aū− z̄)

M−2p−1
(4-27)

The statistical goodness of fit can be proved by the empirical mean and correla-
tion coefficient between the real measurements and their forecasted values, which
can be calculated using the proposed mathematical models. It should be expected
that

E (ε) ∼ ε̂ = z̄−Aū ≈ 0

ρ̂ = ρ (Aū, z̄) ≈ 1
(4-28)

Models 2, 3, and 4 from (4-24) can be handled in an analogous fashion. The
value σ̂2 from (4-27) can be used as an estimator for the unknown variance σ2 of
ε ∼ N

(
0,σ2

)
and applied for the forecasting discussed below.
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Example 4.3.1 Let us consider the following simulated dam measurements over 3
years (36 months). Here, pressure and temperature are independent variables X and
Y , whereas deformation is a dependent variable Z.

Months 1–12
Def, mm 28.5 60.5 45.0 41.0 52.0 62.0 51.5 38.5 50.0 41.5 70.5 63.0
Pres, mPa 24.2 21.5 23.3 21.2 18.9 21.0 22.3 23.1 20.7 21.9 22.0 22.9
Temp, C 1.5 0.50 12.0 9.0 8.5 3.2 7.1 4.8 10.2 0.2 9.9 1.2

Months 13–24
66.0 54.5 56.5 35.0 85.0 40.0 51.5 55.0 70.5 24.0 33.0 32.5
22.0 21.9 18.8 24.3 20.2 23.0 23.4 21.0 21.9 23.0 22.9 22.9
0.3 4.9 10.1 0.2 0.3 17.9 0.2 0.1 0.3 13.9 20.0 7.8

Months 25–36
26.5 34.5 61.0 55.5 31.5 39.0 53.5 51.0 60.0 24.2 32.9 33.0
22.8 22.3 21.9 21.4 23.3 21.9 22.6 22.0 21.2 24.0 23.0 22.3
8.9 11.9 3.9 18.5 4.2 1.1 0.2 18.1 15.0 14.0 19.0 8.0

These monthly dam deformations are shown in Fig. 4.9.
First, we discuss modeling and forecasting of the deformation for the last four

months [K = 33, 34, 35, and 36 from the table above based on measurements ob-
tained during months 1–32; see Fig. 4.9 (left)].

We apply models 1–4 from (4-24) for different values of parameter p and obtain
the coefficients of the corresponding multiple linear regression given in Tables 4.2 to
4.5. Figure 4.10 shows a comparison between real measurements and their estimated
values.

The forecasting is modeled as follows. First, we use a multiple regression model
for the trend prediction. Second, we simulate a normally distributed parameter ε
with mean zero and variance σ̂2 100 times and use the obtained maximal absolute
values for calculating the limits of the forecasting interval. Of course, one can also
use the 1.5 ·σ rule for these limits.

Fig. 4.9 The monthly deformations (left) and deformations related to pressure and temperature
(right)
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Table 4.1 Real Measurements and Their Forecasting for the Last Four Months

Month number, K 33 34 35 36
Deformation,
real, mm

60.0 24.2 32.9 33.0

Table 4.2 The Coefficients of the Multiple Linear Regression and Some Goodness-of-
Fit Characteristics [Model 1 from (4-24), Based on Measurements from the First 32
Months]

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7
C = 96.87 C = 55.83 C = 57.70 C = −76.45 C = 73.60 C = 147.78
α1 = 0.63 α1 = 0.88 α1 = 1.04 α1 = 2.14 α1 = 2.35 α1 = 4.42
β1 = −0.85 β1 = −1.78 β1 = −0.87 β1 = −0.85 β1 = −0.74 β1 = −0.66

α2 = −1.17 α2 = −1.81 α2 = −1.68 α2 = −2.20 α2 = −0.91
α2 = −2.21 β2 = −1.49 β2 = −1.14 β2 = −1.44 β2 = −1.38 β2 = −1.26

β2 = −1.10 α3 = 1.46 α3 = 2.38 α3 = 1.33 α3 = 1.0
α3 = 1.28 β3 = −0.23 β3 = −0.4 β3 = −0.18 β3 = −0.32
β3 = −0.21

α4 = −0.41 α4 = 0.04 α4 = −0.78 α4 = −1.54
β4 = 0.02 β4 = −0.13 β4 = −0.06 β4 = 0.1

α5 = 3.79 α5 = 2.39 α5 = 1.35
β5 = −0.45 β5 = 0.15 β5 = −0.14

α6 = −3.55 α6 = −5.24
β6 = 0.31 β6 = 0.63

α7 = −3.28
β7 = 0.5

σ̂ = 12.24 12.83 13.71 12.85 12.56 11.63

ε̂ = 0.02mm
× 10−8

0.009 0.004 0.05 0.17 0.07

ρ̂ = 0.62 0.63 0.63 0.75 0.8 0.87

Table 4.3 The First Coefficient of the Multiple Linear Regression and Some Goodness-of-Fit
Characteristics [Model 2 from (4-24), Based on Measurements from the First 32 Months]

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7
C = 0.1 C = 0.01 C = −0.006 C = 0.01 C = 0.42 C = 0.30
σ̂ = 12.73 12.96 13.80 12.97 11.60 11.31
ε̂ = −2.99mm −1.25 −0.78 0.69 −0.27 −0.33
ρ̂ = 0.57 0.62 0.63 0.74 0.83 0.88
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Table 4.4 The First Coefficient of the Multiple Linear Regression and Some Goodness-of-Fit
Characteristics [Model 3 from (4-24), Based Only on Measurements from the First 32 Months

p = 1 p = 2 p = 3 p = 4 p = 5
C = 160.0 C = 211.6 C = 220.4 C = 216.5 C = 106.3
σ̂ = 10.9 10.9 11.4 11.9 11.6
ε̂ = 0.17mm×10−9 −0.04 0.26 −0.33 −0.74
ρ̂ = 0.71 0.74 0.75 0.77 0.83

Table 4.5 The First Coefficient of the Multiple Linear Regression and Some Goodness-of-Fit
Characteristics [Model 4 from (4-24), Based on Measurements from the First 32 Months]

p = 1 p = 2 p = 3 p = 4 p = 5
C = 0.25 C = 0.17 C = 0.20 C = 0.22 C = 0.21
σ̂ = 12.1 12.7 12.6 12.6 11.4
ε̂ = −4.8 −4.5 −2.7 −1.7 −0.4
ρ̂ = 0.62 0.63 0.69 0.74 0.83

In Table 4.6 the forecasted values and the sum of the corresponding absolute
differences between real measurements (see Table 4.1) and the forecasted values
are presented.

From Tables 4.1 and 4.6 it can be seen that long-term forecasting is mostly use-
less, a fact that is well known in approximation theory. It is more meaningful to

Fig. 4.10 The real monthly deformations (solid line) and their forecasting values (dotted line) by
model 1 from (4-24) with p = 7
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Table 4.6 Forecasted Intervals and the Sum of the Absolute Differences D between Real Measure-
ments and Centers of Forecasting Intervals Produced by Model 1 from (4-24)

K = 33 K = 34 K = 35 K = 36 d

p = 2 45.18±18.4 29.02±18.4 36.80±18.4 26.83±18.4 29.70
p = 3 46.34±19.2 29.61±19.2 33.52±19.2 23.99±19.2 28.71
p = 4 46.23±20.6 30.44±20.6 33.97±20.6 24.75±20.6 29.34
p = 5 41.92±19.3 34.19±19.3 34.54±19.3 24.92±19.3 37.79
p = 6 43.88±18.8 36.19±18.8 31.02±18.8 24.80±18.8 38.19
p = 7 45.28±17.4 38.22±17.4 36.83±17.4 23.84±17.4 41.84

forecast for only the single month 33 based on the preceding 32 months than for
four future months 32–36 at the same time.

Moreover, if additional information about pressure, temperature, and deforma-
tion in month 33 is given, one should fit a new multiple regression model based on
the months 1–33, and then forecast the value of deformation in month 34 and so on.
The choice of a multiple regression model 1–4 from (4-24) should be strongly de-
pendent on expert knowledge concerning the “true nature” of the dam deformation
process.

It is clear that other regression models are possible. For example, one can use a
generalized model such as (4-28):

Fig. 4.11 Graphical presentation of the interval-related, short-term forecasting (see the ends of
the dotted lines) by model 1 from (4-24) with p = 7 for the dam deformation in month 36 based
on measurements from months 1–35. In this case ρ̂ = 0.84, ε̂ = −0.3× 10−8 and σ̂ = 12.2 are
obtained. The real deformation in month 36 is drawn as the upper star. The center of its forecasting
interval is drawn as the lower star
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Fig. 4.12 Dependence of values d on the choice of eps for the multiple regression model in (4-29)

Z5 (k) = C +
p

∑
i=0

αi
X (k− i)

Y (k− i)+ eps
+

p

∑
i=0

βiY (k− i)+ ε (4-29)

The parameter eps helps to correct zeros of temperatures. We use eps = 21 here
because this value leads to the minimum d (see Fig. 4.12). In this case the following

Fig. 4.13 Graphical presentation of the interval-related, short-term forecasting (dotted lines) by
the model given in (4-24). The real deformation in the month 33 is drawn as the lower star. The
center of its forecasting interval is drawn as the upper star
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results are obtained (cf. Table 4.6): ρ̂ = 0.54, ε̂ =−0.07mm×10−10, and d = 31.2.
The parameter p = 2 leads to σ̂ = 12.5.

Figure 4.12 shows the values of d depending on the choice of eps in (4-29). We
can see that the optimal value corresponds to eps ≈ 21. Figure 4.13 presents the
result of forecasting for month 33 using this model (cf. Fig. 4.11).

Finally, there can never be “point-exact” forecasting because of unknown, fu-
ture process oscillations caused by the random parameter ε . Graphically, interval-
related, short-term forecasting can be done as shown in Figs. 4.11 and 4.13, and
some numerical formulas can be found in Chap. 5.



Chapter 5
Some Code Examples

Here we present some (pseudo) code examples that have developed for the methods
proposed in this volume. The numbers of the corresponding equations are given in
brackets. The various steps are numbered for simplicity. We mark comments within
the code with double “!.” These code examples can easily be adapted to any pro-
gramming language.

Some General Designations

ai or a(i) ith element of vector a
Aij or (i,j) element of matrix A corresponding to the ith line and jth

column
inverse(A) inverting procedure of a matrix A
square root(a) square root procedure should be used
Sum(a) sum of elements of a vector a
SumColumn(A) a function with an input matrix leading to line vectors

containing the sum of the elements in each column of the
input matrix A

A1=A(:,k:num col) this means a matrix that starts with the kth column of A
a1 =A(:,k) this means the kth column of A
A2=A(k:num lin,:) this means a matrix that starts with the kth line of A
a2=A(k,:) this means the kth line of A
AT= transpose(A) procedure transposing a matrix
A*b product of a matrix A with a vector b
Abs(b) procedure for calculating the absolute value of b
mean(a) mean calculation procedure for data set a
var(a) variance calculation procedure for data set a
A{i,j} i,jth element of A (A is a matrix of matrices, for example)
SearchMin(a) procedure leading to the minimal value of matrix/vector a
SearchMax(a) procedure leading to the maximal value of matrix/vector a

149



150 5 Some Code Examples

Length(a) length calculation procedure leading to the number of
elements of a vector a

SearchWhereMin(b) procedure leading to the position of minimal value of a
vector b in b

SearchWhereMax(b) procedure leading to the position of maximal value of a
vector b in b

Generalized Arithmetical Mean (3–2)

1. Read xi,yi,zi, i=1...N
2. Read point of prediction (xo,yo)
3. Distance vector Di(power of two of distance)
epsilon=0.6 (!is often recommended!)
For i=1 to N with step=1
Di=(xi−x0)2+(yi−y0)2
wDi=1/(Di+epsilon)

End (i)
4. Sum of distances
S=0
For i=1 to N with step=1
S=S+wDi

End (i)
5. Weights Wi for zi, prediction value z0
z0=0
For i=1 to N with step=1
If (Di=0)
Wi=1
z0=z

Stop
Else
Wi=wDi/S
z0=z0+zi∗Wi

End (if)
End (i)

Remark: Set yi = 0 for the one-dimensional case.

Lagrange Interpolation Method (3–5)

1. Read xi,yj,zij, i=1...N, j=1...M (measurements over
a mesh)
2. Calculation of the Lagrange function Fi xi at any
point xi
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For i=1 to N with step=1
Fi xi=1
For k=1 to N with step=1
If(k<>i)
Fi xi=Fi xi∗(x−xk)/(xi−xk)

End (if)
End (k)

End (i)
3. Calculation of the Lagrange function Fi yj at any
point yi
For j=1 to M with step=1
Fi yj=1
For k=1 to M with step=1
If(k<>j)
Fi yj=Fi yj∗(y−yk)/(yj−yk)

End (if)
End (k)

End (j)
4. Calculation of the value of the two-dimensional
Lagrange polynomial at any point (x,y)
Lij=0
For i=1 to N with step=1
For j=1 to M with step=1
Lij=Lij+zij∗Fi xi∗Fi yj

End (j)
End (i)

Remark: Set M = 1 and all Fi yj equal to 1 for the one-dimensional case.

1D-Cubic Splines (3–6)

1. Read xi,zi, i=1...N
2. Calculating distances h(j)=hj
For j to (N−1) with step=1
h(j+1)=x(j+1)−x(j)
End (j)
3. Calculating lambda(j), mu(j) and d(j)
For j=2 to (N−1) with step
lambda(j)=h(j+1)/(h(j)+h(j+1))
mu(j)=1−lambda(j)
d(j)=(6/(h(j)+h(j+1)))∗((z(j+1)−z(j))/
h(j+1)−(z(j)−z(j−1))/h(j))

End (j)
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4. Creation of MAT and of v: the matrix and the vector
from (3−8)
MAT(i,j)=0
For i to (N−2) with step=1
For j to (N−2) with step 1
If (i=j)
MAT(i,j)=2

End (if)
If (j=i−1) and (i>1)
MAT(i,j)=mu(i+1)

End (if)
If (j=i+1) and (i<N−2)
MAT(i,j)=lambda(i+1)

End (if)
End (j)
v(i)=d(i+1) (!This should be a column−vector!)

End (i)
5. Calculation of the second derivatives M(j) from (3−7)
M(1)=0
M(N)=0
IMAT=inverse(MAT)
M(2 to N−1)=IMAT∗v
6. Calculation of the parameters A(j) and B(j)
For j=1 to (N−1) with step 1
A(j)=(z(j+1)−z(j))/h(j+1)−h(j+1)∗(M(j+1)−M(j))/6
B(j)=z(j)−M(j)∗(h(j+1))2/6

End (j)
7. Spline calculation Sxx at any point xx
If (xx >= x(j)) and (xx <= x(j+1))
Sxx=M(j)∗(x(j+1)−xx )3/(6∗h(j+1))+

M(j+1)∗(xx−x(j))3/(6∗h(j+1))+
A(j)∗(xx−x(j))+B(j)

End (if)

2D-Polynomial Regression (3–11)

1. Read xi,yi,zi, i=1...N
2. Set K and L
3. Prove that (K+1)∗(L+1)<=N
4. Generation of LSE from (3−11)
For kstar=0 to K with step=1
For lstar=0 to L with step=1
num line=(lstar+1)+kstar∗(L+1)
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For k=0 to K with step=1
For l=0 to L with step=1
num column=(l+1)+k∗(L+1)
help sum1=0
help sum2=0
For i=1 to N with step=1
xx=xi
yy=yi
zz=zi
help sum1=help sum1+xx(kstar+k)∗yy(lstar+l)

help sum2=help sum2+zz∗xx(kstar)∗yy(lstar)

End (i)
MAT(num line,num column)=help sum1
v(num line)=help sum2

End (l)
End (k)

End (lstar)
End (kstar)
5. Solution of LSE from (3−11): the coefficients akl
IMAT=inverse(MAT)
a=IMAT∗v
(!v is a column−vector. The result is a column−vector
corresponding to: a00,a01,...,a0L,a10,a11,...,a1L,...,
aK0,aK1,...,aKL!)

Remark: Set all yi=1 and L=0 for the one-dimensional case. For large N, K, and
L as well as for “unfortunately chosen” locations of measurements some numerical
problems are possible.

B-Curve (3–12)

1. Read xi,yi,zi, i=0...N
2. Set a parameter t
3. Calculation of the value Bt of B-curve at t
hbx=xi (!a vector!)
hbx=yi
hbz=zi
For r=1 to N with step=1
For i=0 to (N−r) with step=1
bx(i)=(1−t)∗hbx(i)+hbx(i+1)∗t
by(i)=(1−t)∗hby(i)+hby(i+1)∗t
bz(i)=(1−t)∗hbz(i)+hbz(i+1)∗t

End (i)
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hbx=bx
hby=by
hbz=bz

End (r)
Bt=(hbx,hby,hbz)

B-Surface (3–13)

1. Read grid data xij,yij,zij, i,j=0...N
2. Set two parameters u and v
3. Calculation of the value Buv of B-surface at (u,v)
hbx=xij (!a matrix!)
hbx=yij
hbz=zij
For r=1 to N with step=1
For i=0 to (N−r)with step=1
For j=0 to (N−r)with step=1
bx(i,j)=hbx(i,j)∗(1−u)∗(1−v)+hbx(i,j+1)∗(1−u)∗v

+hbx(i+1,j)∗u∗(1−v)+hbx(i+1,j+1)∗u∗v
by(i,j)=hby(i,j)∗(1−u)∗(1−v)+hby(i,j+1)∗(1−u)∗v

+hby(i+1,j)∗u∗(1−v)+hby(i+1,j+1)∗u∗v
bz(i,j)=hbz(i,j)∗(1−u)∗(1−v)+hbz(i,j+1)∗(1−u)∗v

+hbz(i+1,j)∗u∗(1−v)+hbz(i+1,j+1)∗u∗v
End (j)

End (i)
hbx=bx
hby=by
hbz=bz
End (r)
Buv=(hbx,hby,hbz)

Hair Wavelet Family (3–62)

1. Input arguments: a,b,x
2. Output argument: yWav
3. Function ‘‘hair wavelet’’:
Function yWav=FunWaveHair(a,b,x)
yWav=0.0
yy=0
t=(x−b)/a
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If (t<0.5) and (t>=0)
yy=1.0

End
If (t>=0.5) and (t<1.0)
yy=−1.0

End
a=square root(a)
yWav=yy∗1/a
End Function

Moving Average (3–75)

1. Read ti,zi, i=1...N
2. Set m<(N−1)/2
3. Generation of new time series
For i=(m+1)to(N−m)with step=1
help sum=0
For j=−m to m with step=1
help sum=help sum+z(i+j)

End (j)
z aver(i)=help sum/(2∗m+1)
End (i)

Influence Function (3–91)

1. Read xi,yi,zi(marks), i=1...n
2. Set parameters R and M (Par M here)
3. Generation of the distance matrix D, matrices A, Sdd;
matrices of matrices AA, sd

For i=1 to n with step=1
num nb = 0;
For j = 1 to n with step=1
If (j<>=i) Then Do
D(i,j)=(x(i)−x(j))2+(y(i)−y(j))2
di=D(i,j)
If (di<=R)
num nb=num nb+1
For kk=1 to M with step=1
A(num nb,kk)=zj∗di(kk−1)

AA{i}=A
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Sdd(num nb,kk)=di(kk−1)

sd{i}=sdd
End (kk)

End (if-di)
End (if-j)

End (j)
End (i)
4. LSE and its solution: vector a=[1,akoef]
For i=1 to n with step=1
AQ=AA{i}
SQ=sd{i}
vz=SumColumn(AQ)
vz0=z(i)∗SumColumn(SQ)
koef{i}=vz-vz0; (!koef is matrix of matrices!)

End (i)

For i=1 to n with step=1
ko=koef{i}
For ij=1 to Par M with step=1
For j=1 to Par M with step=1
M(i,j)=ko(ij)∗ko(j)
End (j)

End (ij)
End (i)

M2=M(:,2:Par M) (!This means a matrix that starts with
the second column of M!)
vec2=-M(:,1) (!This means the first column of M with
changed signs!)

MM=transpose(M2)∗M2

vecM=transpose(M2)∗vec2
akoef=inverse(MM)∗vecM

5. Model accuracy (sigma)

kumul=0
For i=1 to n with step=1
s gew=0
s aver=0
num nb=0
For j=1 to n with step=1
If (j<>i)
di=d(i,j)
If (di<=R)
help=1
num nb=num nb+1
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For kk=2 to Par m with step=1
help=help+akoef(kk-1)∗di(kk−1)

End (kk)
NA(num nb)=z(j)∗help
s gew=s gew+help
s aver=s aver+NA(num nb)

End (If-di)
End (If-j)

End (j)
kumul=kumul+(z(i)∗s gew-s aver)2

End (i)

kumul=kumul/n

sigma=square root(kumul)

Epanecnikov Kernel Function from (3–98)

1. Input arguments t,h
2. Output argument yFunEpan
Function yFunEpan=FunEpan(t,h)
z=0
If (t<=h) and (t>=−h)
z=(3/4)∗(1/h)∗(1−t2/h2)
End (If)
yFunEpan=z
End Function

Calculation of the Section of Two-Dimensional Windows
from (3–98): Function FunWindowSection

1. Input parameters trans,WindowWidth,WindowHeight
2. Output parameters yFunSec
3. Function
yFunSec=FunWindowSection(trans,WindowWidth,
WindowHeight)
z=0
abst1=Abs(trans(1))
abst2=Abs(trans(2))
If (abst1<=par1) and (abst2<=par2)
diff1=par1−abst1
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diff2=par2−abst2
z=diff1∗diff2

End (If)
yFunSec=z
End Function

Estimation of the Mark Correlation Function (3–100′)

1. Read data xi,yi,mi(marks), i=1...n
2. Set parameter h, the size of the observation window:
its height is called WindowHeight, its width is denoted
with WindowWidth
3. Which procedure should be chosen for weight
calculation?
Set Kern=2 if (3−98) and Kern=1 if (3−99)
norm fact=mean(m2)
norm fact=norm fact2

num00=0

For i=1 to n with step=1
For j=1 to n with step=1
d(i,j)=(x(i)−x(j))2+(y(i)−y(j))2
d(i,j)=square root(d(i,j))
korwolke(i,j)=m(i)∗m(j) (!If the function (a) in
(3−100)is used. Else use |m(i)−m(j)| for (b) in (3−100)!)
End (j)

End (i)

dd=2∗h

xmin=SearchMin(d)
xmax=SearchMax(d)

ymin=SearchMin(korwolke)
ymax=SearchMax(korwolke)

rInt=DivideInterval([xmin,xmax]) with step=dd
(!rInt is vector [xmin, xmin+dd, xmin+2∗dd,...,xmax−dd,
xmax]!)

num=Length(rInt)

If (Kern=1)
For nn=1 to num with step=1
sum0=0
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k=0
naechstr=xmin+(nn−1)∗dd
r(nn)=naechstr
For i=1 to n with step=1
For j=1 to n with step=1
If (d(i,j)>=naechstr−dd/2) and

(d(i,j)<=naechstr+dd/2)
sum0=sum0+korwolke(i,j)
k=k+1

End (If−d)
End (j)

End (i)
If (k=0)
yy(nn)=99999 (!or another mark for indefinite
values!)

Else
yy(nn)=(1/k)∗sum0

End (If−k)
End (nn)

End (Kern)

If (Kern=2)
For nn=1 to num with step=1
sum0=0
k=0
gew=0
naechstr=xmin+(n−1)∗dd
r(nn)=naechstr
For i=1 to n with step=1
For j=1 to n with step=1
If (d(i,j)>=naechstr−h) and (d(i,j)<=naechstr+h)
trans=[x(j)−x(i),y(j)−y(i)]

help=FunWindowSection(trans,WindowWidth,WindowHeight)
(!use function from 5.11!)
gewhelp=0
Ab=square root ((x(j)−x(i))2+(y(j)−y(i))2)
(!use the corresponding square root
procedure!)
Ab=Ab−naechstr
If (help>0.00000000001)
gewhelp=FunEpan(Ab,Par Ep)/help
(!use function for (3−98)!)

End (If−help)
sum0=sum0+korwolke(i,j)∗gewhelp
gew=gew+gewhelp
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k=k+1
End (If−d)

End (j)
End (i)
If (gew=0)
yy(nn)=99999 (!or another mark for indefinite
values!)

Else
yy(nn)=sum0/gew

End (If−gew)
End (nn)

End (Kern)

Mark cor func=yy/norm fact

Estimation of the L-Function (3–109′)

1. Read data xi, yi, i=1...n
2. Calculation of the intensity and the distance matrix

xmin=SearchMin(x)
xmax=SearchMax(x)
ymin=SearchMin(y)
ymax=SearchMax(y)

intensity=n/((xmax−xmin)∗(ymax−ymin))
For i=1 to n with step=1
For j=1 to n with step=1
d(i,j)=(x(i)−x(j))2+(y(i)−y(j))2
d(i,j)=square root(d(i,j))

End (j)
End (i)

3. Calculation of the minimal and maximal values of the
distance matrix d

rmin=SearchMin(d)
rmax=SearchMax(d)

4. The choice of the parameter dd: How fine should the
L−function be drawn?

r=DivideInterval([rmin,rmax]) with step=dd
(!Here, the corresponding procedure should be used!)
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5. Calculation of the functions L and K

len=Length(r)
For k=1 to len with step=1
summe=0
For i=1 to n with step=1
For j=1 to n with step=1
If (d(i,j)<=r(k)) and (i is not equal to j)
summe=summe+1

End (j)
End (i)
K(k)=summe/n
K(k)=K(k)/intensity
L(k)=square root(K(k)/pi)
End (if−d)

End (k)

Valley Form Generalization, Equations (4–1)–(4–6)

1. Read data xi, yi, i=1...n, d=x(i+1)-x(i) should be
constant for each i=1...n−1

2. A dividing into three groups

ybigest=SearchMax(y)
y=y−ybigest
(!In the further procedure y−values are assumed to be
negative. Finally, a re−calculation yreal will be made!)
yreal=y+ybigest

3. Dividing into three subsets

Depth=10
(!This is a constant value describing the depth of the
valley bed. It can be defined as absolute value like
here or relatively to the depth of the valley, for
example 10% of the valley depth!)

ymin=SearchMin(y)
num min=SearchWhereMin(y)
xmin=x(num min)

k1=0
k2=0
k3=0
kk3=0
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For i=1 to n with step=1
diffy=Abs(y(i)−ymin)
If (diffy<=Depth)
kk3=kk3+1
xx3(kk3)=x(i)
yy3(kk3)=y(i)

End (if−diffy)
End (i)

x3min=SearchMin(xx3)
x0=x3min

For i=1 to n with step=1
diffy=Abs(y(i)−ymin)
If (diffy<=Depth) and (x(i)−x0<=d)
k3=k3+1
x3(k3)=x(i)
y3(k3)=y(i)

End (if−diffy)
If (k3>0)
x0=x(k3)

End (if−k3)
End (i)

x3left=x3(1)
x3right=x3(k3)

For i=1 to n with step=1
If (x(i)<x3left)
k1=k1+1
x1(k1)=x(i)
y1(k1)=y(i)

Else If (x(i)>x3right)
k2=k2+1
x2(k2)=x(i)
y2(k2)=y(i)

End (if)
End (i)

len3=Length(y3)
mean value=Sum(y3)/len3

For i=1 to len3 with step=1
yd3(i)=mean value

End (i)

xd3=x3

wert=SearchMax(y1)
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num=SearchWhereMax(y1)
x1=x1(num:k1)
y1=y1(num:k1) (!Overwriting these vectors: Only the
elements from ‘‘num’’ up to the end of vectors are
remained!)
k1=Length(x1)
wert=SearchMax(y2)
num=SearchWhereMax(y2)
x2=x2(1:num)
y2=y2(1:num) (!Overwriting these vectors: only the
elements up to ‘‘num’’ are remained!)
k2=Length(x2)

4. The choice of eps1 and eps2 controlling the accuracy
of the valley form generalisation at the left and right
side

eps1=50
eps2=eps1
(!Here, these constants are equal and given as absolute
values. One can also use different accuracies or
relative values depending on the depth of the valley!)

5. Call the subprocedure ProcTalKontur

Subprocedure ProcTalKontur

5.1 Setting some additional parameters

KritWertLeft=99999
KritWertRight=99999
AnzLoops=20
loops1=0
loops2=0
x1h=x1
x2h=x2
y1h=y1
y2h=y2
lenh1=Length(x1h)
lenh2=Length(x2h)
IndLoopsLeft=1
IndLoopsRight=1

5.2 Calculation the power function on the left side

If (lenh1>0)
While (IndLoopsLeft=1)
loops1=loops1+1
XLL=x1h(1)
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XUU=x3(1)
Y01=−y1h(1)
HH=−mean value

(! This value was still calculated in 3.!)
p1=HH−Y01
p2=XUU−XLL
p3=HH
sum1=0
sum2=0
help1=0
help2=0
For j=1 to lenh1 with step=1
If (p2∗p1<>0)
help1=Log((XUU−x1h(j))/p2)

(!Use the corresponding procedure for calculating the
logarithm here!)

hhh=p3+y1h(j)
If (Abs(hhh)<0.00001)
hhh=0.00001

End (if−Abs)
help2=Log(hhh/p1)

End (if−p2∗p1)
sum1=sum1+help1∗help2
sum2=sum2+help12

End (j)
NL=99999
If (sum2<>0)
NL=sum1/sum2

End (if−sum2)
xd1=DivideInterval([x1h(1),XUU]) with step=d
len1=Length(xd1)
help3=99999
For j=1 to len1 with step=1
yd1(j)=−HH
If (XLL<XUU)
help3=(XUU−xd1(j))/(XUU−XLL)
If (NL>0)
help3=help3NL

Else
help3=0

End (if−NL)
End (if−XLL)
yd1(j)=−HH+(HH−Y01)∗(help3)

End (j)
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5.3 Controlling the accuracy and setting of new fixed
points

genleft=yd1(1:Length(y1h))−y1h
(!Use the corresponding procedure for generating the
subvector yd1 (1:Length(y1h))!)

wertL=SearchMax(Abs(genleft))
numL=SearchWhereMax(Abs(genleft))

(!Finding the position of the maximal value: x1h
re−starts with this value!)

KritWertLeft=wertL
Ind1=(KritWertLeft>eps1) and (lenh1−numL+1>5)

(!This variable ‘‘Ind1’’ gets 0 if false and 1 if true!)
If (Ind1=1)
x1h=x1h(numL:lenh1)
y1h=y1h(numL:lenh1)

(!Use the corresponding procedure for the subvector
generation!)

lenh1=Length(x1h)
Else
IndLoopsLeft=0

End (if−Ind1)
IndLoopsLeft=(IndLoopsLeft=1)and(loops1<AnzLoops)

(!This variable gets 0 if false and 1 if true!)
End (While)

End (if−lenh1)

5.4 Calculation of the power function on the right side

If (lenh2>0)
While (IndLoopsRight=1)
loops2=loops2+1
XRR=x2h(lenh2)
XUU=x3(k3)
Y02=−y2h(lenh2)
HH=−mean value
p1=HH−Y02
p2=XRR−XUU
p3=HH
sum1=0
sum2=0
help1=0
help2=0
For j=1 to lenh2 with step=1
If (p2∗p1<>0)
help1=Log((x2h(j)−XUU)/p2)
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hhh=p3+y2h(j)
If (Abs(hhh<0.00001))

(!Use the corresponding procedures ‘‘Abs’’ and ‘‘Log’’
meaning ‘‘absolute value’’ and ‘‘logarithm’’ here!)

hhh=0.00001
End (Abs)
help2=Log(hhh/p1)

End (If−p2∗p1)
sum1=sum1+help1∗help2
sum2=sum2+help12

End (j)
NR=99999

If (sum2<>0)
NR=sum1/sum2

End (sum2)
xd2=DivideInterval([XUU,x2h(lenh2)]) with step=d

(!Use the corresponding procedure for interval
dividing!)

len2=Length(xd2)
help3=99999
For j=1 to len2 with step=1
yd2(j)=−HH
If (XRR>XUU)
help3=(xd2(j)−XUU)/(XRR−XUU)
If (NR>0)
help3=help3NR

Else
help3=0

End (if−NR)
End (if−XRR)
yd2(j)=−HH+(HH−Y02)∗(help3)

End (j)

5.5 Control of the accuracy and setting new fixed points

genright=yd2(2:Length(y2h)+1)−y2h
(!Use the corresponding procedure for generating the
subvector yd2(2:Length(y2h))!)

wertR=SearchMax(Abs(genright))
(!Here, the corresponding procedure should be used!)

numR=SearchWhereMax(Abs(genright))
(!Finding the position of the maximal value: x2h
re−finishes with this value!)

KritWertRight=wertR
Ind2=(KritWertRight>eps2) and (numR>5)

(!This variable gets 0 if false and 1 if true!)
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If (Ind2=1)
x2h=x2h(1:numR)
y2h=y2h(1:numR)
lenh2=Length(x2h)

Else
IndLoopsRight=0
End (Ind2)
IndLoopsRight=(IndLoopsRight=1) and

(loops2<AnzLoops)
(!This variable gets 0 if false and 1 if true!)

End (While)
End (if−lenh2)

Some Operations with Fuzzy Values: Chapter 4

Some operations with fuzzy values are described here. The following designations
are used in the corresponding functions: Input arguments: two-dimensional vectors
par1, par2, par3 (par1 describes the left limits of both fuzzy values, par3 describes
the right limits of both fuzzy values, the locations of the maxima of both charac-
terizing functions are given in par2) Output arguments: a three-dimensional vector
(interval form of a fuzzy value)

1. The fuzzy sum of two fuzzy values

Function yFunSum=FunFuzzySum(par1, par2, par3)
z=[99999,99999,99999]
(!One can also use another ‘‘marker’’!)
z(2)=par2(1)+par2(2)
z(1)=par1(1)+par1(2)
z(3)=par3(1)+par3(2)
yFunSum=z
End Function

2. The fuzzy difference of two fuzzy values

Function yFunDif=FunFuzzyDif(par1,par2,par3)
z=[99999,99999,99999]
(!One can also use another ‘‘marker’’!)
z(2)=par2(1)−par2(2)
z(1)=par1(1)−par3(2)
z(3)=par3(1)−par1(2)
yFunDif=z
End Function
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3. The fuzzy product of two fuzzy values

Function yFunProd=FunFuzzyProd(par1,par2,par3)
z=[99999,99999,99999]
(!One can also use another ‘‘marker’’!)
z(2)=par2(1)∗par2(2)
z(1)=SearchMin([par1(1)∗par1(2),par1(1)∗par3(2),
par3(1)∗par1(2),

par3(1)∗par3(2)])
z(3)=SearchMax([par1(1)∗par1(2),par1(1)∗par3(2),
par3(1)∗par1(2),

par3(1)∗par3(2)])
yFunProd=z
End Function

4. The fuzzy dividing of two fuzzy values

Function yFunSub=FunFuzzySubt(par1,par2,par3)
z=[99999,99999,99999]
(!One can also use another ‘‘marker’’!)
If (par1(2)>0)
z(2)=par2(1)/par2(2)
z(1)=SearchMin([par1(1)/par1(2),par1(1)/par3(2),

par3(1)/par1(2),par3(1)/par3(2)])
z(3)=SearchMax([par1(1)/par1(2),par1(1)/par3(2),

par3(1)/par1(2),par3(1)/par3(2)])
End (if−par1)
If (par3(2)<0)
z(2)=par2(1)/par2(2)
z(1)=SearchMin([par1(1)/par1(2),par1(1)/par3(2),

par3(1)/par1(2),par3(1)/par3(2)])
z(3)=SearchMax([par1(1)/par1(2),par1(1)/par3(2),

par3(1)/par1(2),par3(1)/par3(2)])
End (if−par3)
yFunSub=z
End Function

5. The fuzzy power of two (square) for a fuzzy value

Function yFunQuad=FunFuzzySquare(par1,par2,par3)
z=[99999,99999,99999]
(!One can also use another ‘‘marker’’!)
z(2)=par2(1)∗par2(2)
z(1)=SearchMin([par1(1)∗par1(2),par1(1)∗par3(2),
par3(1)∗par1(2),

par3(1)∗par3(2)])
z(3)=SearchMax([par1(1)∗par1(2),par1(1)∗par3(2),
par3(1)∗par1(2),
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par3(1)∗par3(2)])
If (z(1)<0)
z(1)=0;

End (if−z)
yFunQuad=z
End Function

AR-Model (1) from (4–24)

1. Read data set S

2. The numbers of lines and columns of the matrix S are
called ‘‘len’’ and ‘‘br’’. S(:,b) are all elements of
this matrix in the column b.

Z=S(:,1); (! deformation, mm!)
X=S(:,2); (! pressure, mpa !)
Y=S(:,3); (! temperature, C !)
press min=SearchMin(X)
press max=SearchMax(X)
temp min=SearchMin(Y)
temp max=SarchMax(Y)

3. Modeling

len wahr=len
len=len−4
(!The last four months should be predicted!)
ANTW=[] (!A cleared matrix!)
ANT V=[]
KOEF=[]
CORMAT=[]
KK=3
m=KK−1 (! The choice of parameter m=p from (4−24). For
this parameter m>(len−3)/3 should hold!)
A=Zeros(len−m,2∗m+1)
(! A matrix with (len−m) lines and (2∗m+1) columns
filled with zeros !)
v=Zeros(len−m,1)

For i=1 to (len−m) with step=1
counter i=i+m
A(i,1)=1
v(i)=Z(counter i)
For j=2 to (m+1)with step=1
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counter j=(j−1)
A(i,j)=X(counter i−counter j)

End (j)
For j=(m+2) to (2∗m+1) with step=1
counter j=(j−(m+3)+1)
A(i,j)=Y(counter i−counter j)

End (j)
End (i)

unbek=inv(transpose(A)∗A)∗(transpose(A)∗v)
C=unbek(1)
alpha=Zeros(1, m)
beta=Zeros(1, m)

For k=2 to Length(unbek) with step=1
If (k<=m+1)
alpha(k−1)=unbek(k)
Else
beta(k−(m+1))=unbek(k)

End (If)
End (k)

KOEF=unbek
genau=transpose(A∗unbek−v)∗(A∗unbek−v)
e dach=Sum(A∗unbek−v)
[lA,bA]=SizeOf(A)
(! Use the corresponding procedure for determining the
size of a matrix here!)
mit gen(KK)=square root(genau(KK)/(lA−bA))
3. Prediction of the deformation for the last four
months via ‘‘VZ’’ by the model (1) and its comparison
with the true values called ‘‘wahre’’

VZ=[]
If (len wahr>len)
For num=(len+1) to len wahr with step=1
ii=num−len
VZ(ii)=C
For k=1 to m with step=1
VZ(ii)=VZ(ii)+alpha(k)∗X(num−k)+beta(k)∗Y(num−k)

End (k)
End (num)

End (If)

wahre=transpose(Z(from (len+1) to (len wahr)))
ANT V=VZ−wahre
abs sum=Sum(Abs(transpose(ANT V)))



Conclusion

In closing, I want to explain the solution of the puzzle about sixteen corners of
a four-dimensional cube mentioned in Chap. 1. The solution can be found in two
different ways.

The first way is “mathematical.” The four-dimensional space has four basis
vectors. Thus, there are four coordinate axes. Let our cube be a unit cube for simpli-
fication with one corner at the origin (0,0,0,0) of the coordinate system. The other
corners of the cube are (0,0,0,1), (0,0,1,0), (0,0,1,1), . . . ,(1,1,1,1), so we have ex-
actly four places for setting 0 or 1. Thus, we have 24 = 16 possibilities. QED

The second way is the “engineer’s” solution. We imagine the four-dimensional
cube, which is possible if we can understand dimension as a time axis. A four-
dimensional unit cube is a three-dimensional cube that was moved during a time
unit. Like a photograph shot by a camera with a delayed action we see two
three-dimensional cubes at the same time. One three-dimensional cube has eight
corners and two cubes have sixteen such corners. QED

Is there a reader who still doubts that four-dimensional cubes exist? I hope not.
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