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Preface

The International Workshop on Theoretical Computer Science (WTCS 2012),
dedicated to Cristian Calude’s 60th birthday, took place during February 21–24
in 2012 in Auckland, New Zealand. This volume titled Computation, Physics and
Beyond, based on WTCS 2012, is published in the LNCS Festschrifts Series by
Springer. The volume contains contributions from invited speakers and regular
papers that present either expository/survey results or original research in the
following areas (in which Cristian Calude has either made significant contribu-
tions or has an interest):

– Algorithmic information theory
– Algorithms
– Automata and formal languages
– Computing and natural sciences
– Computability and applications
– Logic and applications
– Philosophy of computation
– Physics and computation
– Unconventional models of

computation

Prof. Cristian (Cris) S. Calude

The following eminent researchers were invited to give lectures at the confer-
ence and contribute to the Festschrift volume.

D. Bridges (Canterbury University)
C. Câmpeanu (University of Prince

Edward Island)
B. Cooper (Leeds University)
R. Freivalds (University of Latvia)
H. Jürgensen (University of Western

Ontario)
G. Longo (École Polytechnique, Paris)
S. Marcus (Romanian Academy)
H. Maurer (Graz Technical University)
J. Patarin (Université Versailles)

B. Pavlov (Massey University)
G. Rozenberg (Leiden University)
A. Shen (University of Marseille)
L. Staiger (Martin Luther University)
K. Svozil (Vienna Technical University)
K. Tadaki (Chuo University, Tokyo)
S. Yu (University of Western Ontario)
L. Vı̂ţă (NZ Customs)
H. Zenil (Wolfram Research)
M. Zimand (Towson Univ)
S. Wolfram (Wolfram Research)
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Other invited contributors agreeing to contribute to this Festschrift volume
dedicated to Cris include:

G. Chaitin (IBM Research, New York)
R. Downey (Victoria University, NZ)
M. Dumitrescu (University of Bucharest)
L. Kari (University of Western Ontario)
Y. Manin (Max Planck Institute)

Gh. Păun (Romanian Academy)
A. Salomaa (Turku University)
K. Salomaa (Kingston University)
I. Streinu (Smith College)
I. Tomescu (University of Bucharest)

The Program Committee consisted of B. Cooper, F. Costa, M. J. Dinneen,
P.Hertling,B.Khoussainov (Chair), F.Kroon,Y.Matiyasevich,A.Nies,Gh.Păun,
G. Rozenberg, K. Salomaa, L. Staiger, A. Shen, F. Stephan and M. Zimand. They
appreciate the additional work done by the following referees for the conference
volume:

Vasco Brattka
Elena Calude
Rodney Downey
Noam Greenberg

Rupert Hölzl
Yun-Bum Kim
Gaven Martin
Erik Palmgren

Ulrich Speidel
Mike Stay
Kohtaro Tadaki
Karl Svozil

The careers of the three editors of this book have been influenced by Cris’
research in algorithmic randomness, as well as his tireless administrating and
organizing work. Soon after his arrival in Auckland in the early 1990s, Cris,
jointly with Douglas Bridges, who was then at the University of Waikato, estab-
lished the Centre for Discrete Mathematics and Theoretical Computer Science
(CDMTCS). This led to the formation of the first computer science theory group
in New Zealand. With the creation of the CDMTCS and his research work, Cris
put the Computer Science Department at the University of Auckland on the
map. All three of us were recruited by the department with strong support from
Cris. In the mid-1990s, Calude, jointly with Khoussainov, Hertling and Wang,
wrote a few papers, including “Recursively enumerable reals and Chaitin Omega
numbers,” which was published in the Proceedings of STACS 1998, and later in
the journal Theoretical Computer Science. These papers, along with early work
by Chaitin, Kučera, Kurtz, Solovay and Terwijn, laid the foundation for the de-
velopment of the modern theory of algorithmic randomness as expressed in the
work of Downey, Hirschfeldt, Miller, Nies, Slaman, Stephan, and many others.

The paper by Calude, Khoussainov, Hertling and Wang for the first time
studied the concept of Solovay reducibility (from a 1975 manuscript) on the
real numbers and introduced computably enumerable presentations of reals. The
authors established some fundamental properties of Solovay reducibility, such as
the equivalence classes of computably enumerable reals form an upper semi-
lattice. The (Chaitin) Ω numbers form an equivalence class which is the largest
element in this semi-lattice. This paper proposed the problem of whether every
random computably enumerable real is a Ω number, i.e., corresponds to the
largest element in the semi-lattice. This problem attracted the attention of many
experts in the theory of randomness and computability. Kučera and Slaman
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answered the question positively in “Randomness and recursive enumerability”
(SIAM J. of Computing) in 2001.

A related 2002 paper also inspired by the work of Cris and his collaborators
is “Randomness, computability and density” by Downey, Hirschfeldt and Nies
(SIAM J. of Computing), where the density of the semilattice is established. A
further question was whether for every splitting of an Ω number as a sum of two
computably enumerable reals, one of the two has to be an Ω number as well.
They answered the question in the affirmative. (Curiously, later on it turned out
that O. Demuth, a constructivist working in isolation in Prague, already had
known this in 1975.)

Cris’ work was essential for establishing the leading role of New Zealand in
the area of algorithmic randomness, which is evidenced by the recent publication
of Nies’ book Computability and Randomness published by Oxford University
Press in 2009, and Downey and (former Wellington postdoc) Hirschfeldt’s book
Algorithmic Randomness and Complexity by Springer in 2010.

An Ω number is simultaneously computably enumerable and random; its
weak form of computable approximability (the first property) is limited by the
last property which implies bi-immunity, i.e., every algorithm can compute at
most finitely many exact bits of such a number (none in the case of a Solovay’s
number, a special type of Ω number). The work Michael Dinneen did with Cris
and, initially, with their former PhD student C.-K. Shu, combined the theoretical
analysis with an extensive computation to calculate exactly the values of finitely
many initial bits of a natural Ω number (64 in the first case). This result—
the first computation of “a glimpse of randomness”—was extensively cited and
commented on (for example, in the New Scientist); its meaning is discussed in
Chaitin’s paper included in this volume. This work paved the way for a more
practical and complexity-theoretic approach to randomness, which includes theo-
retical and experimental studies of quantum randomness (work jointly done with
Cris, M. Dumitrescu and K. Svozil). Michael appreciates his cooperation with
Cris in the emerging field of unconventional/natural computing, e.g., the bead
search/sorting was developed with their former PhD student J. Arulanandham,
and in the study of the complexity of mathematical problems (joint work with
E. Calude). They organized many CDMTCS international conferences together,
including most editions in the series of conferences “Unconventional Computa-
tion” that started in Auckland in 1998.

We all value our friendship with Cris and the mentoring advice he has pro-
vided over the past 16 years. Our close relationship with Cris goes beyond aca-
demic collaboration. For instance, Bakh wishes that he could play tennis at the
level of Cris; Michael is envious of Cris’ air gun collection; André wishes he could
also organize a workshop on a boat going down the Nile river.

The local Organizing Committee at the University of Auckland wishes to
acknowledge the contributions of Gill Dobbie and Bob Doran. We thank the De-
partment of Computer Science (University of Auckland), the Faculty of Science
(University of Auckland), and the New Zealand Marsden Fund for monetary
support. Last but not least, it is a great pleasure to thank the fine co-operation
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with the Lecture Notes in Computer Science team of Springer for producing this
volume in time for the conference.

This book is organized as follows into themes related to Cris’ research area.
The first part consists of a couple of papers discussing Cris’ life achievements.
This is then followed by papers in the three general areas of complexity, com-
putability and randomness; physics, philosophy (and logic) and computation;
and algorithms, automata and formal models (including unconventional com-
puting). Finally, we mention that the front cover art of this book highlights the
first 40 exact bits of an Ω number recently computed by Cris and the first editor.

November 2011 Michael J. Dinneen
Bakhadyr Khoussainov

André Nies
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A Computability Challenge: Asymptotic Bounds for Error-Correcting
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Yuri I. Manin



X Table of Contents

Some Transfinite Generalisations of Gödel’s Incompleteness Theorem . . . 183
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The Art of Reaching the Age of Sixty

Solomon Marcus

Stoilow Institute of Mathematics, Romanian Academy, Bucharest, Romania
solomarcus@gmail.com

Two Key Words: ‘Interaction’ and ‘Impact’

I agree with what some philosophers (such as Charles Sanders Peirce and Jacques
Derrida) believed: We are ‘defined’ by the interactions with other people. Our
identity is of a field type (like the identity of an atom given by its interactions
with the other atoms), not of an entity type. As a corollary, the best assessment
of our life achievements comes from the impact of our activity, particularly from
the reaction of other people to our accomplishments. The key words here are
interaction and impact. Through the glasses of this philosophy, I will try to
contemplate the personality of Professor Cristian S. Calude as a scholar and as
a person.

I am, in this respect, in a privileged situation. For almost forty years, I have
been in a continuous interaction with Cristian. After a period of 20 years, in
which if our interaction was not a direct, face-to-face communication, we used
almost daily the telephone or/and the traditional mail, another period of 20
years followed, during which the Internet and the email became our permanent
way of interaction, as a challenge to the enormous geographic distance between
us.

I remember my first meeting with Cristian. It happened in September 1972,
when he was a student in the second year of the Faculty of Mathematics of the
University of Bucharest. I was then his teacher of real analysis, measure theory
and general topology, typical fields of continuous mathematics. Who could have
imagined, at that time, that Cristian will be able to transfer many ideas from
these disciplines in the discrete fields represented by mathematical logic and
algorithmic information theory?

A Message from Moisil

We became rapidly aware that we are, intellectually, in “the same equivalence
class”, on “the same wave length”. It was a hard time for Cristian. In April 1973
his mother passed away at a very young age, and less than two months later, our
common mentor, Professor Grigore C. Moisil, a pioneer of mathematical logic
and computer science in Romania, passed away too. I told Cristian: I have a
message for you. It was initially a message from Moisil to me, before his trip to
Canada, in May 1973. On the eve of his trip, I accompanied Professor Moisil
to his home in 14 Armenească Street, Bucharest. At the moment when I had

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 1–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S. Marcus

to leave him, he said: “Do you know who is the author of the first example
of a recursive function which is not primitive recursive?” Ackermann, I said.
“No”, he said; “it is Gabriel Sudan.1 Now I am in a hurry, I will tell you more
when I come back from Canada”. But this never happened, he died in Ottawa.
I checked all Sudan’s papers and none of them refers, neither in its title, nor
in its introduction, to an example of Ackermann’s type. I told all these things
to Cristian and I challenged him: “Would you like to engage in the detective
enterprise of locating the example of a recursive function which is not primitive
recursive in Sudan’s texts?”.

An Event Deciding Calude’s Direction of Research

Cristian, an undergraduate student who was then at the very beginning of his
scientific career, accepted enthusiastically this challenge and the success of this
adventure (see, for more, C. Calude, S. Marcus, I. Ţevy. The first example of
a recursive function which is not primitive recursive, Historia Math. 9 (1979),
380–384) decided his direction of scientific research. It took a long time for
the community to recognise Sudan’s result, but now this is almost everywhere
accepted (Odifreddi’s classical monographs Classical Recursion Theory (North-
Holland 1989, 1999) were the first to cite Sudan).

Recursive Functions Faced with ‘P vs. NP’

This investigation lead naturally to a couple of natural interesting problems: 1)
comparing Sudan’s function to other recursive but not primitive recursive func-
tions, particularly Ackermann’s function and Knuth iterated powers, 2) studying
the reasons for non primitive recursiveness of these functions, 3) exploring the
similarities and differences between the recursive and non-primitive recursive
functions and their graphs, 4) constructing hierarchies of primitive recursive
functions using fast growing recursive and non-primitive recursive functions,
and 5) measuring the size of the set of recursive and non-primitive recursive
functions.

The “immediate” reason for the non-primitive recursiveness of Acker-
mann/Sudan/Knuth (shortly ASK) functions is their huge growth. What about
the time and space complexities of these functions? The time complexity (but
not the space complexity) is responsible for them being not primitive recursive.
This analysis suggested an iterative efficient way to compute the ASK functions
(Calude, Vieru) and a criterion for a function to have its graph in the nth Grze-
gorczyk class (Buzeţeanu, Calude). Using this criterion, they proved that every
ASK function has an elementary graph (a more elaborate argument by Calude
shows that the graph is even rudimentary). Consequently, computing the value
of an ASK function is difficult, but checking that a natural number is the value
1 A Romanian mathematician, who obtained a PhD from Göttingen University, under

D. Hilbert, in the twenties of the past century.



The Art of Reaching the Age of Sixty 3

of an ASK function in a given input is easy. This is a form of the ‘P vs. NP’
problem proved in the negative for the class of recursive functions.

Most of the results obtained by Calude and his co-authors Ş. Buzeţeanu, N.
Dima, B. Fântâneanu, S. Marcus, L. Sântean (Kari), M. Tătărâm, I. Ţevy, V.
Vieru have been presented in Calude’s monograph Theories of Computational
Complexity (North-Holland, 1988), one of the frequently cited book for primitive
recursiveness (even by researchers in other fields, e.g. M. Kojman, S. Shelah.
Regressive Ramsey numbers are Ackermannian, J. Comb. Theory A, 86, 1 (1999)
177–181).

Most Recursive Functions Are Not Primitive Recursive

How “frequent” are the recursive and non-primitive recursive functions in the
class of recursive functions? One possible way to give an answer is to use a
topological approach, tailored for countable sets. After discovering that, from
such a topological view point, most recursive functions are just in the situation
of Ackermann’s and Sudan’s examples, they are not primitive recursive, Calude
realised that this approach could lead to similar interesting and surprising results
in the field of computability, in algorithmic information theory and in the field
of incompleteness. His intuition proved to be right.

Consider a topological space in which Baire category theorem holds true. By
constructivisation of the notions of meagre and second Baire category sets one
obtains a useful tool to measure the size of countable sets. These sets are called
effectively meagre and effectively second Baire category. An effectively meagre
set is “smaller” than a meagre set and an effectively second Baire category set
is “larger” than a second Baire category set. Many topological spaces Cristian
considered are in a way or another related to Baire space.

In one of the first results in this direction, he proved that the set of recursive
functions is an effectively second Baire category set while the set of measured
sets in a Blum abstract space is effectively meagre. As a consequence, every
complexity class in a Blum abstract space, the set of rudimentary functions, the
set of Kalmár functions, each Grzergoczyk class, the set of primitive recursive
functions are all effectively meagre.

The Law of Large Numbers Is False in the Sense of Baire
Category

The celebrated theorem of Martin-Löf shows that the set of Martin-Löf random
sequences (reals) has effectively Lebesgue measure one (here the effectivization
is based on effectively null sets, that is (classical) null sets which can be cov-
ered uniformly with a computably enumerable union of intervals with rational
end-points having effectively arbitrarily small measure; in contrast with the case
of classical null sets, the union of all effectively null sets is itself an effectively
null set, the base for Martin-Löf definition of random sequences). Is this result,
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showing that the set of random reals is “large” in measure/probability, confirmed
by a Baire category theorem? The answer is negative as Calude and Chiţescu
proved: the set of random reals is effectively meagre with respect to the natural
topology on the unit interval (the paper was reviewed by J. Oxtoby in Mathe-
matical Reviews). In particular, the law of large numbers is false in the sense of
Baire category.

Small variations operated on the unit interval topology rectify this asymmetry
as Calude, Marcus and Staiger proved: in these new topological spaces the set
of random reals is effectively second Baire category.

The Set of Disjunctive Infinite Sequences Is a Constructive
Residual

A different path in restoring the symmetry between measure and Baire category
consists in weakening the definition of randomness to disjunctivity: an infinite
sequence is disjunctive (or a lexicon) if every string appears in the sequence (so
it appears infinitely many times). How large is this set? Calude and Zamfirescu
proved that the set of lexicons is a constructive residual. Such a set is “very large”
because it has both effective measure one and is effectively second Baire category.
As a consequence, the typical real number is a lexicon, i.e., constructively most
numbers do not obey any probability law. To achieve their goal the authors
proved a constructive version of (a weak form of) Lebesgue’s density theorem, a
result interesting in itself.

Other similar results for Blum abstract spaces and random objects have been
obtained by K. Ambos-Spies, E. Busse, Calude, C. Câmpeanu, G. Istrate, L.
Staiger, M. Zimand (some discussed in Zimand’s monograph Computational
Complexity: A Quantitative Perspective, Elsevier, Amsterdam, 2004).

A natural problem in mathematical logic is to determine how pervasive is
Gödel’s incompleteness theorem, i.e., how large is the set of true but unprovable
sentences in a from theory subject to Gödel’s incompleteness. A topological
answer was given by Calude, Jürgensen and Zimand: with respect to a large
class of topologies, the set of true but unprovable sentences is effectively second
Baire category.

Most Situations Are Anti-intuitive

One can observe that in most of these results the “majority” is represented
by objects which, with respect to our intuitive perception and expectations,
appear as exceptional, singular, and, as a consequence, it is very difficult to
capture them. As a matter of fact, the same phenomenon appears in the field of
mathematical and functional analysis, in general topology. The chronologically
first example of a category type theorem belongs to Mazurkiewcz and Banach
(in the thirties of the 20th century) and states (in particular) that in the space
of real continuous functions on the interval [0, 1] the functions having in at
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least one point a finite derivative form a meagre set (first Baire category set).
In the context of the whole history of continuity and differentiability, this result
came as a shock, because it shows that, against our expectations, the examples
of everywhere continuous but nowhere differentiable functions, considered from
their first appearance in the 19th century, as an exceptional, singular situation,
are, in the global perspective of the category theorems, just the typical case of
continuous functions. This phenomenon remains valid in the category theorems
in discrete mathematics: in computability theory, in algorithmic information
theory and in the field of incompleteness.

This discrepancy between the global theoretical perspective, on one hand, and
the status of individual entities, on the other hand, has its secret. The excep-
tional sets, in most theorems involving negligible sets, have a non-effective, i.e.,
non-constructive status because their existence is proved using a non-effective
axiom/procedure, for example, the axiom of choice.2 For most elements we have
no possibility to decide whether they belong or not to the exceptional set. For
instance, a monotonous real function f on the real interval [a, b] is almost ev-
erywhere differentiable in [a, b] (Lebesgue), but given a point x of continuity of
f , we cannot decide whether f is differentiable in x. Similarly, Cantor’s theorem
asserting that almost all real numbers are transcendental came as a shock, taking
in consideration the difficulty of describing individual transcendental numbers,
as Liouville did in the first part of the 19th century. A similar situation appears
in most theorems involving negligible sets in discrete mathematics.

Facing Two Major Changes

We are now, with our presentation of Cristian’s scientific achievements, approxi-
mately at the moment when his life had two major changes: the fall of Romanian
communism and, in short time after this, but as a consequence of the freedom
acquired, his move from Romania to New Zealand. This big move, suggested and
supported by his friends Douglas Bridges, Bob Doran and Hermann Maurer, was
also an enormous challenge, testing his capacity to face unexpected situations.
Now we can say that he faced brilliantly this challenge, transforming appar-
ent obstacles into advantages. This evolution can be seen as an instance of the
principle of Prigogine’s dissipative structures: a system has a better chance to
acquire a higher stage when it has to face opposite trends.

Before 1990, the main reference in Cristian’s work was P. Martin-Löf random-
ness, and the main synthesis of his work has been the monograph Theories of
Computational Complexity (1988). But the fields where his creativity has been at
the highest level appeared in his studies only after 1990. Let us first illustrate in a
quantitative way what freedom (associated with the appearance of the Internet,
shortly after the fall of Romanian communism) implied for Cristian’s scientific
productivity, capacity of interaction, impact and creativity. We will compare the
20 years before 1991 with the 20 years after 1990. Papers in refereed journals: 56
2 Can one prove that examples of such type cannot be constructed in Bishop mathe-

matics?
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before, 94 after. Papers in refereed conference proceedings: 16 before, 35 after.
Papers in refereed collective books: 4 before, 20 after. Books published at in-
ternational publishing houses: 1 before, 3 after. Editor or co-editor of collective
books, in English: 1 before, 25 after. Editor of special issues of international
journals: nothing before, 32 after. Needless to say, some of these statistics speak
about Cristian’s huge capacity to care about the global situation of the fields
of his interest, to organise meetings and to attend meetings, to initiate special
issues of journals, devoted to the hottest problems in the field. To give only one
example: he is the initiator of the annual international conferences for which he
coined the name “Unconventional Computing”, bringing together hundreds of
researchers.

At the Crossroad of the Hottest Contemporary Trends

In order to show the variety of his interests, their modernity and their position
at the interface with some of the main paradigms of today science, I will men-
tion here some journals where his articles have been published in the 21st cen-
tury: Fundamenta Informaticae, Applied Mathematics and Computation, Math-
ematical Structures in Computer Science, Journal of Foundations of Computer
Science, Theoretical Computer Science, Chaos, Journal of Computer and Sys-
tem Sciences, Physical Review, London Mathematical Society Journal of Com-
puter Mathematics, Complex Systems, Notices of the American Mathematical
Society, Information and Computation, Advanced Science Letters, Advances in
Applied Mathematics, International Journal of Quantum Information, Interna-
tional Journal of Bifurcation & Chaos, Journal of Mutiple-Valued Logic and Soft
Computing, Annals of Applied and Pure Logic, International Journal of Theo-
retical Physics, Communications in Non-Linear Science and Numerical Simu-
lation, Mathematical Logic Quarterly, Bio-Systems, The New Scientist, Journal
of Universal Computer Science, Information Processing Letters, Experimental
Mathematics, Minds and Machines, Journal of Artificial Intelligence, Philoso-
phy and Cognitive Sciences, Chaos, Solitons and Fractals, Complexity, Nature,
La Recherche. In these titles we find many of the basic key words of the con-
temporary trends: applied mathematics, computation, foundations of computer
science, chaos, complexity, system sciences, information, quantum information,
fractals, multi-valued logic, soft computing, theoretical physics, nonlinear sci-
ence, numerical simulation, bio-systems, experimental mathematics, minds and
machines, artificial intelligence, cognitive science, philosophy.

Focus on Algorithmic Information

We can now move to the presentation of Cristian’s most important directions
of research, mainly developed in the last 20 years. Algorithmic information is
his main area of research since early 80’s. It started with a ten year coopera-
tion with I. Chiţescu during which they developed many parts of algorithmic
information theory on a general, non-binary framework. This approach seemed
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at the beginning just a mathematical artificial generality, but later on it showed
its utility in various contexts, for example in the study of quantum randomness.
The series of early results includes the immunity of the set of random strings, a
representability approach for Martin-Löf randomness tests (with I. Chiţescu and
L. Staiger), the Baire category classification of random reals (with I. Chiţescu),
the first proofs of what is now called Kraft-Chaitin (with E. Kurta, C. Grozea), a
generalisation to arbitrary probabilistic algorithms of Chaitin-Schwartz theorem
(with M. Zimand), and the limits of binary coding (with C. Câmpeanu).

An important result is the Chaitin-Calude-Hertling-Khoussainov-Wang-
Kučera-Slaman theorem for left-computable random reals (they are exactly the
halting probabilities (Omega numbers) of all self-delimiting universal Turing
machines). This result has been extended by Calude, Hay and Stephan to left-
computable ε-random reals. Calude’s extension of Solovay’s theorem on Omega
numbers for which ZFC cannot compute any bit (ZFC cannot compute more
than finitely many bits of every Omega number, as Chaitin proved) was appre-
ciated as “the best possible result in this direction” by Hirschfeldt’s review in
Mathematical Reviews 1 923 902. In the same area Calude and Hay have studied
the provability of randomness and solved a problem proposed by Solovay showing
a sharp distinction between random strings and random reals: ZFC cannot prove
the randomness of more than finitely many random strings (Chaitin’s theorem),
but can prove randomness for every left-computable random real.

Studying Omega Numbers with Strong Reducibilities

There has been a recent flowering of deep results relating classical computability
and algorithmic randomness. Calude and Nies were at the forefront of this trend
in their studying Omega numbers with strong reducibilities. Other results in this
direction were obtained in cooperation with Coles, Hertling, Khoussainov and
Wang. Two recent monographs, Nies, Computability and Randomness (Claren-
don Press, 2009) and Downey and Hirschfeldt, Algorithmic Randomness and
Complexity (Springer, 2010) present a synthesis of this trend. Calude’s role in
this direction was acknowledged in Downey and Hirschfeldt’s Preface of their
book:

Though we did not know it at the time, this book genesis began with the
arrival of Cris Calude in New Zealand. Cris has always had an intense
interest in algorithmic information theory. The event that led to much
of the recent research presented here was the articulation by Cris of
a seemingly innocuous question. This question goes back to Solovay’s
legendary manuscript, and Downey learned of it during a visit made
to Victoria University in early 2000 by Richard Coles, who was then
a postdoctoral fellow with Calude at Auckland University. In effect, the
question was whether the Solovay degrees of left-computably enumerable
reals are dense.
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A Highly Appreciated Monograph

Calude’s monograph Information and Randomness: An Algorithmic Perspective,
published in two editions, 1994 and 2002, by Springer, includes, among other
topics, the first systematic study of left-computable random reals, the origin of
many recent studies. Cited by virtually every researcher in algorithmic infor-
mation theory the book was also used for courses in many universities around
the world including University of Chicago, UCLA, UWO, University of Ulm,
Siena University, Technical University of Vienna, Heidelberg University, Halle
University, etc. Here are two comments about its second edition:

This book, benefiting as it does from Cristian Calude’s own research in
AIT and from his experience teaching AIT in university courses around
the world, has helped to make the detailed mathematical techniques of
AIT accessible to a much wider audience. This vastly expanded second
edition collects in one place much exciting recent work of its author and
others. (G. J. Chaitin)

The vigorous growth in the study of algorithmic information theory has
continued during the past few years, which is clearly visible in the present
second edition. ... The author has been directly involved in these [new]
results that have appeared in the prestigious journals like Nature, New
Scientist and Pour la Science. (A. Salomaa)

A Probability Space Where the Computational Time Plays
a Crucial Role

I have already mentioned Omega numbers which offer a probabilistic response
to the famous undecidability of the halting problem. A different probabilistic
avenue in the study of the halting problem was taken by Calude and Stay who
considered a more complex probabilistic space: the Lebesgue probability used
for the Omega numbers was replaced with a probability space in which the
computational time plays a crucial role. They proved that given an integer k > 0,
we can effectively compute a time bound T such that the probability that an N -
bit program will eventually halt given that it has not halted in time T is smaller
than 2−k. As consequences one gets the following facts: a) the (computably
enumerable, but not computable) set of halting programs can be written as a
disjoint union of a computable set and a set of effectively zero probability, so
the source of undecidability is located to a small “bad” set, b) the set of times
at which an N -bit program can stop after the time 2N+constant has effectively
zero density, because they are all non random times. The role of computational
time is essential but the type of computational resource is not, as Y. Manin has
showed: the result is true for many other computational resources and can be
viewed as a cut-off type of argument developed in artificial intelligence. This
can lead to a bridge between quantum field theory and classical computing. In
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spite of undecidability, the halting problem can be solved probabilistically with
arbitrary precision (experimental evidence was recently obtained by Delahaye
and Zenil). A recent special issue of the journal Mathematical Structures in
Computer Science edited by Calude and Cooper contains several papers that
further develop these ideas.

A Decidable, Weaker Algorithmic Information Theory

A variant of algorithmic information theory in which the underlying model of
computation is not the Turing machine, but a finite transducer was recently
developed by Calude, K. Salomaa and Roblot. In contrast with the classical
algorithmic information theory, this weaker theory is decidable, so it has more
chances of practical applicability. This type of research is not atypical for Calude
who paid close attention to applications of algorithmic information theory. Here
are a few areas: mathematical logic (Jürgensen, Zimand), probability theory
(M. Dumitrescu, M. Zimand), complex analysis (P. Hertling, B. Khoussainov),
quantum physics (A. Abbott, M. Stay, L. Staiger, K. Svozil), evaluation of the
complexity of mathematical problems (E. Calude, Dinneen), cellular automata
(Hertling, H. Jürgensen, K. Weihrauch), image processing (J. P. Lewis).

Bridging Computation Theory with Theoretical Physics

Modern ways to bridge computation theory with theoretical physics is another
central direction of Cristian’s research. His first results concerned automata-
theoretic models for quantum complementarity (E. Calude, M. Lipponen, C.
Ştefănescu-Cuntze, K. Svozil, S. Yu). They have been followed by a series of theo-
retical and experimental papers trying to understand the limits of quantum com-
puting (with Abbott, M. Cavalieri, R. Mardare, Svozil). The starting point was
Calude’s surprising proof that the famous Deutsch’s problem can be solved clas-
sically with the same amount of resources as quantum mechanically (he coined
the term “de-quantisation” for the process of extracting a classical algorithm
from a quantum black-box algorithm, which solves the same problem and is as
performant as the original one). Calude’s student A. Abbott obtained further
examples of de-quantisation including one for the quantum Fourier transform,
and together with Calude, Bechmann, and Sebald proposed a nuclear magnetic
resonance implementation of the de-quantisation of an instance of Deutsch-Jozsa
algorithm.

Bridging Heisenberg and Gödel

Work with his student Stay revealed strong relations between Heisenberg un-
certainty principle and Gödel’s incompleteness phenomenon and sketched an
algorithmic version of statistical mechanics based on zeta functions associated
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with Turing machines (in passing, a new type of machine, the tuatara machine,3

and a new complexity, the natural complexity, have been introduced). The later
work was systematically developed by the japanese mathematician K. Tadaki.

The First Mathematical Approach to Quantum
Randomness

Quantum randomness is considered to have the best quality of all types of ran-
domness produced by nature. Is this assertion more than a belief or a hypothesis?
Let us consider a spin-1 particle in a 3-dimensional Hilbert space. According to
Kochen-Specker theorem, the strongest “no-go theorem” in quantum physics, it
is impossible to assign definite values to all possible observables corresponding
to the result of a measurement of that observable in a non-contextual way in
agreement with with the predictions of quantum mechanics. As a consequence,
one can either choose to accept a contextual but complete assignment of hidden
variables in an attempt to maintain realism, or to give up the assertion that all
“elements of physical reality” must exist at all times. Starting with two geomet-
rical proofs for the Kochen-Specker theorem (with Hertling), Calude and Svozil
proposed the first attempt, later developed in cooperation with Abbott, to un-
derstand quantum randomness from a mathematical point of view. Assume that
a) all observables cannot have non-contextual hidden variables, b) contextual
hidden variables are excluded, c) the prediction of the result of a measurement
with certainty implies the existence of an element of physical reality/hidden vari-
able corresponding to this prediction (EPR hypothesis). Let x = x1x2 . . . be the
sequence of bits obtained from the concatenation of repeated state preparations
and non-trivial measurements in a Hilbert space of dimension 3 or greater by
discarding all but two possible outcomes. Then, under the above assumptions, x
is bi-immune, that is, no Turing machine can compute more than finitely many
bits of the sequence, and hence it is (strongly) incomputable. Bi-immunity is a
weak form of randomness, weaker than Martin-Löf randomness; Omega numbers
are typical examples of bi-immnune reals (because they are Martin-Löf random).
With Lebesgue probability one every sequence produced as above is Martin-Löf
random, a result which cannot exclude that the sequence produced can be some-
times computable: bi-immunity excludes this possibility. For example, in accord
with the quantum mechanical prediction, such a sequence may contain a billion
of zeroes, but, in view of the result above, it cannot consist only of zeroes.

With the achievements in these two fields, algorithmic information theory
and bridging computation theory with theoretical physics, Calude is reaching
his highest potential of creativity. To the results in these two fields refer most of
the citations of his works. He is cited in more than 1500 papers (most of them
published in the same journals where Cristian published his own papers) and 100
books, by more than 500 authors.4 Among these authors, there are prestigious
3 Tuatara, “peaks on the back” in Maori, is a reptile found only in New Zealand, the

only survivor from the time of dinosaurs.
4 www.cs.auckland.ac.nz/~cristian/citations.pdf.

www.cs.auckland.ac.nz/~cristian/citations.pdf.
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names such as L. Accardi, K. Ambos-Spies, J. Baez, J. D. Barrow, J. Borwein,
P. Borwein, D. Bridges, G. J. Chaitin, S. B. Cooper, M. Davis, M. Deza, R.
Downey, R. Freivalds, E. Gelenbe, J. Gruska, Y. Gurevich, J. Hintikka, J. van
Leeuwen, G. Longo, Yu. Manin, Yu. V. Matiyasevich, A. Nerode, H. Nieder-
reiter, P. Odifreddi, G. Rozenberg, A. Salomaa, T. A. Sebeok, J. Shelah, M.
Sipser, T. A. Slaman, C. Smorynski, J. F. Traub, V. A. Uspenski, S. Wolfram,
A. Zeilinger.

Cristian’s work has attracted the attention of people outside his fields
of interests. Here are three examples. The infinite real time composition
for computer-controlled piano “Lexikon-Sonate” composed by K. Essl in
1992 http://www.essl.at/works/Lexikon-Sonate.html illustrates Calude-
Zamfirescu notion of lexicon5. R. M. Chute’s “Poem on Ω” published in Be-
loit Poetry Journal Spring Vol. 50, No. 3 (2000), 8 was inspired by Calude
and Chaitin note “Randomness everywhere” published in Nature 400, 22 July
(1999), 319–320. A character in the CBS (US drama) TV show Numb3rs (sea-
son 5; episode 5; scene 6, http://www.cbs.com/primetime/numb3rs) recites the
Omega number bits computed by Calude-Dinneen-Shu.

Experimental Mathematics and Physics

There are a few more directions of research in Cristian’s biography. One of them,
symptomatic for the new face of exact sciences as a consequence of the impact of
computer science, is “experimental mathematics and physics”. Incomputability
is an asymptotic property and tests to evidence it are difficult to find. In an at-
tempt to produce experimental evidence of the incomputability of quantum ran-
domness, very large samples of bit-strings (232) produced with Mathematica and
Maple (cyclic, so computable), π (computable but not cyclic), Quantis (quantum
random bits generated with the University of Geneva commercial device), and
quantum random bits produced in the A. Zeilinger’s lab at the University of Vi-
enna have been analysed with a large battery of randomness tests, most of which
proved powerless to produced the desired results. The best test capable of differ-
entiating between the quantum and pseudo-randomness generators was based on
the transposition of Borel normality property from infinite sequences to strings
(Calude): it showed a clear separation between the two classes of randomness
generators (Calude, M. Dinneen, M. Dumitrescu, K. Svozil).

Computing Exact Bits of a Natural Omega Number

Cristian’s first involvement in computer experiments concerned computing initial
bits of a natural Omega number6 (with M. Dinneen and C. Shu) and proving
5 A real in the unit interval is disjunctive in base b in case its b-expansion contains

all possible strings over the alphabet {0, 1, . . . , b − 1}. A lexicon is a real which is
disjunctive in any base.

6 Every Omega number is invariant under the change of finitely many bits, so adding
any prefix to the sequence of bits of an Omega number produces also an Omega
number.

http://www.essl.at/works/Lexikon-Sonate.html
http://www.cbs.com/primetime/numb3rs
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facts about automata recognising no words (with C. Câmpeanu and M. Du-
mitrescu). Recall that an Omega number is both computably enumerable (the
limit of a computable, increasing, converging sequence of rationals) and Martin-
Löf random. As a consequence, an Omega number is bi-immune, a property
shared with sequences of quantum random bits discussed above; in some cases,
more precisely, when Omega is given by a Solovay machine, no bit of its binary
expansion can be calculated and certified. With a combination of mathematical
analysis and very large scale programming, the halting problem for all programs
up to 88 bits was solved for a natural universal self-delimiting Turing machine
and the first exact 64 bits of the associated Omega number calculated (with M.
Dinneen and C. Shu); improved versions of these computer experiments were
later reported by Calude and Dinneen. These results have been extensively dis-
cussed and cited by many papers and books, including books in programming like
M. Trott, The Mathematica GuideBook for Programming (Springer, 2004) and
experimental mathematics (S. R. Finch, Mathematical Constants, Cambridge
University Press, 2003 and D. Bailey, J. Borwein, The Experimental Mathemati-
cian, A. K. Peters, 2003). The importance and significance of these results are
discussed in Chaitin’s paper included in this volume.

Formal Proofs, under the Advent of Computer Technology
and Programming

Another direction, to which he devoted a very interesting study, is related
to formal proofs, as they were conceived by Hilbert. Recall that Hilbert’s
concept of formal proof is an ideal of rigour for mathematics which has
important applications in mathematical logic, but due to Gödel’s incom-
pleteness theorem, was considered irrelevant for the practice of mathemat-
ics. This situation is no longer valid, not because of theoretical results, but
because of the advent of computer technology and programming. Indeed,
in the last twenty years, many deep mathematical theorems have been for-
mally proved using specialised programming languages—proof-assistants—like
Isabelle or Coq. With formal proof, which has become practically achiev-
able, correctness reaches a standard that no pen-and-paper proof can match,
but an essential component of mathematics, the insight and understand-
ing, is in danger to be lost. Calude and C. Müller have analysed a list
of symptoms of understanding for mathematical proofs and then proposed
an environment in which users can write and check formal proofs as well
as query them with reference to the symptoms of understanding. In a nut-
shell, the proposed environment reconciles the main features of proof, cor-
rectness and understanding. Using the proof-assistant Isabelle, Calude and
Hay developed the first formal proofs in algorithmic information theory,
in particular, a proof for the representability of left-computable ε-random
reals.
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Unconventional Computing

His work on unconventional computing was briefly mentioned before. Unconven-
tional computing roughly refers to any computational paradigm which at some
point in time is different from main stream approaches: this may be due to a
different type of hardware (quantum computing or molecular computing) or be-
cause of a completely different way to use a conventional paradigm (for example,
using finite automata to compute real functions). Calude’s own contributions to
this area include results concerning strategies to compute the incomputable.
With his co-authors he proved both negative results—like the impossibility of
breaking the Turing barrier with time-travel (with M. Dinneen, K. Svozil), ax-
iomatic versions of the incompleteness theorem (with Rudeanu), or the necessity
to use an infinite computational space when computing an incomputable function
even on an accelerated Turing machine (with Staiger), and positive ones as the
use of an infinite dimensional quantum method to compute the halting problem
(with V. Adamyan and B. Pavlov), the use of gravity to perform fast sorting and
searching (the so-called bead-sort proposed with J. Arulanandham and M. Din-
neen), and the use of accelerated membranes (with Păun) and quantum random
oracles (with Abbott and Svozil) as methods for breaking the Turing barrier.
The book Computing with Cells and Atoms, (Taylor & Francis, London, 2001)
by Calude and Păun, one of the first monographs in the area of unconventional
computing, has been frequently cited and used as textbook in many universities
around the world.

Constructivity, Mathematical Logic and Philosophy

From computability and complexity to constructive mathematics is not a long
way and Cristian crossed it several times. He proposed constructive approaches
to Hilbert’s basis theorem (with Vaida), the inverse function theorem (with D.
Bridges, B. Pavlov, D. Ştefănescu) and Poincaré-Hardy inequality on the com-
plement of a Cantor set (with Pavlov); he also obtained recursive bounds for the
exceptional values in Blum’s speed-up theorem in abstract complexity spaces
(with Bridges).

Cristian’s interests in mathematical logic problems naturally lead him to phi-
losophy of mathematics and physics. A series of papers with E. Calude, Chaitin
and Marcus reflect on the role and power of proof in mathematics. A new per-
spective on the evolution and history of the idea of mathematical proof was
proposed in a 3-dimensional analysis: syntactical, semantical and pragmatical.
Proofs by computers and proof-assistants, and proofs “allowed” in various hypo-
thetical physical universes (proofs exist because of the mathematical and logical
determination, but also because the laws of the universe allow them to be thought
and communicated). The lawlessness of the universe was argued in papers with
W. Meyerstein and A. Salomaa, a formal model of God was proposed in a joint
paper with Marcus and D. Ştefănescu, and graphical illustrations of randomness
were produced with A. Gardner and M. Dinneen.
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The Metric Method

We started this article with Moisil’s problem which lead to Cristian life’s long
interest in computability and complexity. More or less at the same time, moti-
vated by Marcus’ interests, Cristian was attracted to problems in mathematical
linguistics, like the morphology of programming languages and contextual analy-
sis. The metric method—his preferred approach in this area—was used to study
formal languages (with K. Salomaa and S. Yu), but also to obtain an algorith-
mic solution to multi-criteria aggregation problems (with E. Calude) and to the
construction of a multi-criteria metric algorithm and recommender system (with
A. Akhtarzada and J. Hosking). The discrete metrics introduced by C. Calude
and E. Calude are presented in the Encyclopedia of Distances (M. Deza and E.
Deza, Springer, 2009).

Popular Articles and Reviews

Cristian wrote articles for wider audiences which have appeared in prestigious
journals or science magazines like Nature, Notices of AMS, The New Scientist
(Calude, J. Casti and Chaitin), Singularité, Complexity, Pour La Science, La
Recherche (Calude). He also wrote prefaces to books by Chaitin and L. Vı̂ţă,
more than 550 reviews in Mathematical Reviews, Zentrablatt für Mathematik,
Computing Reviews, and 55 columns “News from New Zealand” in the Bulletin
of EATCS.

Invited Lectures and Seminars

Cristian was an invited lecturer to many prestigious international confer-
ences and workshops including International Conference on Discrete Mathe-
matics (Dortmund, Germany, 1991), The Foundational Debate. Complexity and
Constructivity in Mathematics and Physics (Vienna, Austria, 1994), Construc-
tivity and Complexity in Analysis (Dagstuhl, Germany, 1997), Conference ‘Inte-
grability and Chaos in Discrete Systems’ (Brussels, Belgium, 1997), Millennial
Symposium ‘Defining the Science of Stochastics’ (Würzburg, Germany, 2000),
Second Pacific Rim Conference on Mathematics, Institute of Mathematics
(Taipei, Taiwan, 2001), NZ Mathematical Colloquium (Auckland, NZ, 2002),
Workshop on Natural Processes and Models of Computation (Bologna, Italy,
2005), Kolmogorov Complexity and Applications (Dagstuhl, Germany, 2006),
Workshop on Information Theories (Münchenwiler, Switzerland, 2006), Signif-
icant Advances in Computer Science (Graz, Austria, 2007), Workshop on Au-
tomata, Formal Languages and Algebraic Systems (Kyoto, Japan, 2008), New
Kind of Science (Bloomington, USA, 2008), Science and Philosophy of Unconven-
tional Computing (Cambridge, UK, 2009), Conference on Logic, Computability
and Randomness (Notre Dame, USA, 2010), Workshop Developments in Com-
putational Models (Edinburgh, UK, 2010), Semantics and Syntax: A Legacy of
Alan Turing (Cambridge, UK, 2012), The Incomputable (London, UK, 2012).
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He gave 119 invited seminars in many universities and reputable IT companies
around the world, including Brussels Free University, École Normale Supérieure,
Paris, Heidelberg University, Imperial College London, Joint Institute for Nu-
clear Research (Dubna), Mathematical Institute (Belgrade), Mathematical In-
stitute (Bucharest), Martin-Luther-Universität Halle, Open University Hagen,
Oxford University, Université de Bourgogne, University of Leeds, University of
Rome “La Sapienza’, University of S. Petersburg, University Sorbonne Paris
(in Europe), Cornell University, Google (Mountainview), IBM (New York), Mi-
crosoft (Trento), National Sandia Laboratories (Albuquerque), Queens Univer-
sity, Rutgers University, Schrödinger International Institute for Mathematical
Physics (Vienna), Technical University of Vienna, Turku University, Universi-
dad de Chile, University of California at Berkeley, University of California at San
Diego, University of Chicago, University of Massachusetts at Boston, Université
Paris Sud, University of Toronto, University of Waterloo, University of Western
Ontario, Wesleyan University (in Americas), Academia Sinica, Taipei, Canter-
bury University, Hong Kong University of Science & Technology, Kyoto Sangyo
University, National University of Singapore, University of Newcastle, Victoria
University (Melbourne) (in Australasia), University of Capetown, University of
South Africa (Pretoria) (in Africa).

Attracting Students to Research

Cristian started “advising” when he was in the last undergraduate year: two
of his colleagues have worked “with him” for their Diploma Theses (officially,
the supervisor was one of their professors). He then “un-officially” co-supervised
with me a few PhD students, till he was granted himself the habilitation to
supervise PhD students.7 Overall, he has supervised 4 post-doc fellows, 15 PhD
students, 27 MSc students, and 18 research/visiting students.

There is no space to discuss in detail his students achievements, so I will make
only some global comments. Most of his students, today well-known experts in
their fields, work in prestigious academic, research institutions or major compa-
nies, scattered all around the world: University California at San Diego, Towson
University, Universität der Bundeswehr München, University of North Carolina
at Charlotte, University of Western Ontario, IBM Research, Google Mountain-
view, Wolfram Research. Cristian keeps in touch regularly with most of them: he
knows details about their careers—results, awards, promotions—, but also about
their families. They meet at conferences or universities, and he continues to col-
laborate with quite a few of them, not only with the youngest ones. Some of his
graduate students and post-docs have been cited above (in alphabetical order):
A. Abbott, A. Akhtarzada, J. Arulanandham, Ş. Buzeţeanu, C. Câmpeanu, R.
Coles, N. Dima, B. Fântâneanu, C. Grozea, N. Hay, P. Hertling, G. Istrate, E.
Kurta, C. Müller, M. Lipponen, L. Sântean (Kari), T. Roblott, C. Shu, M. Stay,
M. Tătărâm, L. Vı̂ţă, Vieru, Y. Wang, H. Zenil, M. Zimand.

7 In Romania, the habilitation is granted by the Ministry of Science and Education.
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Editorial Activity

Calude has and is serving in many editorial boards of book series (Discrete Math-
ematics and Theoretical Computer Science, Springer-Verlag, London (from 1996
to 2004) and European Association for Theoretical Computer Science, Springer-
Verlag, Heidelberg, (from 2004 on)) and international journals (founding editor–
in–chief, Journal of Universal Computer Science, Springer-Verlag (from 1994 to
2009) and member of the Editorial Board (from 2009 on), Analele Universităţii
Bucureşti, Matematică–Informatică (from 1988 to 2006), Bulletin of the European
Association of Theoretical Computer Science (from 1993 on), Grammars (from
1997 to 2003), Fundamenta Informaticae (from 1997 on), Romanian Journal of
Information Science and Technology (from 1998 on), Natural Computing Journal
and Contributions to Discrete Mathematics (from 2005 on), International Jour-
nal of Foundations of Computer Science and Mathematics Applied in Science and
Technology (from 2006 on), unoMolti, Modi della Filosofia and Revista de Filosofie
Analitica (from 2007 on), The Open Software Engineering Journal (from 2008
on), Theoretical Computer Science, International Journal of Nanotechnology and
Molecular Computation (from 2009 on), Mathematical Structures in Computer
Science, International Journal of Unconventional Computing (from 2010 on)). He
was an associate–editor of the Handbook of Formal Languages, (Springer-Verlag,
1997) and a member of the Advisory Board of the Handbook of Natural Comput-
ing: Theory, Experiments, and Applications, (Springer, 2011).

Awards and Distinctions

Calude was awarded prizes and distinctions from prestigious academic organ-
isations and learned societies: Visiting Fellow of Isaac Newton Mathematical
Institute (2012) and London Mathematical Society (2010), Hood Fellow (2008–
2009), Member of Academia Europaea (2008; member of the Informatics Section
Committee, 2010–2013), Dean’s Award for Excellence in Teaching, University
of Auckland (2007), Award for Excellence in Research, University of Bucharest
(2007), “Gheorghe Lazăr” Mathematical Prize of the Romanian Academy (1988),
Computing Reviews Award of the Association for Computing Machinery, New
York (1986), and Mathematical Student Prize, University of Bucharest (1975).

A Few Words about Cristian’s Family and Childhood

Rarely I have seen such a highly professional curriculum vitae as that posted by
Cristian Calude on his website.8 However, something is missing: details about
his family and his first years of life. A person with his remarkable achievements
in research and education deserves to be better known, in particular, his early
years of education in family and at school.

8 www.cs.auckland.ac.nz/ cristian/criscv.pdf.
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Despite the huge distance between New Zealand and his place of birth, the
city of Galaţi, Romania, he goes there almost every year. A mathematical com-
petition, started there ten years ago, bears his name.9 In the late seventies I met
his maternal grandmother Sultana Bobulescu and, when she had a car accident,
I visited her in the hospital. I met his father Constantin Calude several times.
He was a lawyer of excellent repute who was awarded the national order “Star
of Romania”—Romania’s highest civil order—for exceptional military services
during WW2. His wife Elena studied mathematics at the University of Bucharest
and she wrote her Diploma Thesis Mathematical Analysis of the Drama “Long
Days Journey Into Night” by E. O’Neill under my guidance. I followed the evo-
lution of their daughter Andreea: after having obtained a PhD in linguistics and
a BSc in mathematics from the University of Auckland, she is now a Post-Doc
Fellow at Reading University in UK.

Here are several interesting facts, explaining the roots of his scientific career;
I learned them from Cristian, but also from his recent interviews.

His grandfather (from the mother side) Marcel Bobulescu was a very success-
ful investor (before the communist regime put an end to this type of activity)
and a chess passionate; he published chess problems and solutions for a local
newspaper. His grandfather taught him chess him when he was five or six years
old; through chess Cristian first met formal rules. Playing chess with his grand-
father was not fun, so they switched to very simple chess problems. Later in life
Cristian enjoyed playing chess, first with his father in law, Petre Anghel, then
with Andreea and Elena, and (more competitively) with a colleague from the
university, Peter Shields.

His mother Jeanette was Cristian’s first teacher at home. She supervised his
readings, writings (mostly letters and short abstracts of the books he read)
and French studies (he fondly remembers his tutors, Miss Angelique and Miss
Jenny). “I learned from her to keep my ‘space’ (toys, books, pencils, notes) tidy,
to be polite and prompt. I still have piles of letters written to and received from
her during my student years in Bucharest (till her untimely death); much later,
when I left Bucharest for Auckland, I kept a regular correspondence with my
father, for about eight years”, he remembers. His father being a lawyer, Cristian
learned from him the value of a logical argument and the relativity of truth
(juridically, truth is only what you can prove in court). His father was also a
regular contributor to law journals and Cristian remembers how proud he was
when as a ten-year old kid he saw his family name printed in a journal; later,
father and son jointly wrote a paper on mathematical modelling in juridical
sciences. G. Stoenescu, a lawyer and friend of the family, was a role model and
close friend (in spite of being 50 years older) for about 35 years; he tried in vain
to teach him to play violin.

9 http://mategl.com/concurs.pp.

http://mategl.com/concurs.pp.
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His First Teachers

In the pre-high school years Cristian had two very special teachers: Irina
Botezatu10 (Romanian grammar) and Adrian Ropotă (mathematics). At the
National College Vasile Alecsandri (his grandfather Ştefan and father have been
students of the College; all three attended the centenary celebration of the Col-
lege in 1967) he had excellent teachers, especially Dana Bogatu (Romanian lit-
erature), Feya Brener (French), Victor Necula (physics), Radu Rotta (English),
and, most importantly for him, Ionel Decu (mathematics). Decu recognised Cris-
tian’s “mathematical mind” when he proposed a problem in elementary geom-
etry with no solution (this was in his first year in high-school). His colleagues
showed that various triangles do not satisfy the required condition, but he was
the one to point out that a general proof was required—no triangle can sat-
isfy the condition—and to propose an algebraic solution (not really the solution
his teacher expected). Decu helped him a lot; in particular he supported Cris-
tian’s passion for popular mathematics books, a literature which was partially
incomprehensible to him, but had a huge impact on his career. During that time
Cristian discovered the books by Moisil (mathematical logic) and Marcus (math-
ematical analysis), which attracted him in an irresistible and definitive way to
mathematics. The mathematics presented in these books was very different from
the school mathematics: there he discovered infinity.

Cristian didn’t excel in written examinations, where he had to solve problems
in a limited time. However, in the third high-school year he qualified for the
National Mathematics Olympiad in Bucharest. Not unexpectedly, he didn’t do
too well, but he solved a problem in an unconventional way. The algebraic argu-
ment attracted the attention of Gr. C. Moisil, who invited him to his house and
guided his mathematical education and research from that moment till Moisil’s
death four years later. Under Moisil’s guidance Cristian wrote his first paper
and started tutoring (for Moisil’s course of logic for students in law). Over the
years Cristian has written fondly about Moisil.

His Life as a University Student

At the University of Bucharest Cristian was impressed and influenced by the
following professors (in the order he met them): Ioan Tomescu, Dragoş Vaida,
Solomon Marcus, Ion Chiţescu, Sergiu Rudeanu, and Mircea Maliţa. He has joint
papers with each of them, and also with two others who were not his direct pro-
fessors, Virgil Căzănescu and Monica Dumitrescu. In Auckland he continued to
cooperate with his department colleagues, in both theory and applied computer
science and mathematics; it seems that he has the highest number of joint pa-
pers with colleagues in his department. He had, and continue to have, a strong
interaction with colleagues from his generation, particularly, G. Păun and S.
Istrail.
10 The mother of his life-long friend Dan Botezatu, a distinguished medical doctor.
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A Man of His Time

From New Zealand, Cristian travels often to other parts of the world, to meet
other scholars, to attend scientific meetings, to interact with people having com-
mon scientific interests. He is an example of optimal use of the Internet and
email. But to them, he adds, as one of his basic human needs, the face-to-face
interaction with his potential or already existing partners. His joint work with
134 authors from 29 countries illustrate clearly his synergetic capacity. He also
has a need to spread his ideas beyond the community of specialists in his fields,
to address a public, to argue, to face controversies. He enjoys interaction and
you can see in his eyes his pleasure in doing research; his teaching is an organic
part of his creativity process. He likes to point out hidden aspects, unexpected
things, to reveal delicate points requiring further investigation. He alternately
doubts and wonders during his oral presentations; you really feel that science is
for him a great opportunity for satisfaction and joy. Using the computer presen-
tation facilities, he does not become their victim, as it often happens: he knows
how to remain alive behind the contemporary technology.

All these things are, to a large extent, mirrored in those parts of his curriculum
vitae, usually considered, by the university bureaucracy, as secondary, if not
negligible. I refer to sections such as Varia, Popular articles, Demos, Web sites,
and to citations of similar types. You discover his capacity to reveal the meaning
of mathematical and computational facts, their philosophical and artistic face.
In order to realise his deep consciousness of belonging to a community of scholars
and his capacity to serve and organise research—please stop a moment and think
what does it mean to edit 28 collective books at international publishing houses
and 33 special issues of international academic journals; what does it mean to
be selected as a member of 84 Program Committees.

By all his accomplishments, Professor Cristian Calude is recognised today
as a remarkable scholar and professor, as an intellectual with a wide cultural
horizon, bridging mathematics, logic and computer science with physics, biol-
ogy, philosophy and art. His evolution has followed the rhythm of his time, his
interests focused at each moment on some of the hottest scientific issues. He is
reaching the age of sixty with the same freshness of mind he showed forty years
ago, at the beginning of his scientific career. Contemplating his personality at
this anniversary moment gives a real satisfaction.
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Abstract. The Journal of Universal Computer Science (“universal” to
indicate that no area is excluded) was one of the first (if not the first)
journal that published refereed papers on the Internet, yet also provided
a printed “archive” version of all papers published during a year after
the end of that year. It is also one of the few truly open access journals
in computer science: both publication and access is free for everyone. In
this paper we describe how the journal started, what problems it was
confronted with, and how they were solved.

1 Introduction

The Internet was initially seen as tool for emails and for allowing the dissemina-
tion of scientific publications rapidly, much faster than using traditional refereed
and printed journals.

Before the Web took off in a large way, three systems to handle information
on the Web had been developed: (1) The WWW by a group of four at CERN
(where only the alphabetically first, although by no means the most important
one, is still mentioned—as consequence that in scientific contributions in com-
puter science we tend to mention authors alphabetically, independent of who
was most important); (2) The Gopher System, developed by Marc McCahill at
the University of Minnesota and (3) The Hyper-G (later Hyperwave) System
developed by the author and his team in Graz. First publications on those three
systems appeared in 1990, and first prototypes where available in 1991. Go-
pher was leading for a while, until a graphic browser “Mosaic” was developed
� This paper is dedicated to Cris Calude on the occasion of his 60th birthday. I got

to know Cris in person when I took on the position of Full Professor for Computer
Science at the University of Auckland in the early nineties. At that time Cris and
his family had left their home country Romania a short while ago. It was a pleasure
to make friends with such a multi-talented scientist and generous person. We have
been good friends ever since. If I have two wishes I have one for him: to continue
to enjoy his life and to contribute to science in essential ways as he has done in the
past many times (and one facet not many will know about is what is reported in this
paper); and I have one wish for myself: that Cris and I meet more often. However,
let me also mention one historic bit I am proud of: when I came to Auckland, Cris
was still in an unacceptable junior position. I did my bit to help change this, with
Cris being offered an endowed chair soon thereafter.

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 20–30, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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for WWW at the University of Illinois. Now Gopher started to disappear, and
Hyperwave withdrew to niche applications like Intranet or scientific publishing.
During my tenure at Auckland I had many chats with Cris Calude and he under-
stood immediately that Hyperwave was a powerful tool to handle large amounts
of data. In 1992 he suddenly surprised me with the idea to use Hyperwave as
basis for an electronic journal: “You know”, he told me, “Arto Salomaa is willing
to join us as foundation editor. So why don’t you show how good Hyperwave is,
by allowing the publication of refereed material in various formats, by choosing
a new way of refereeing, by allowing the addition of comments to contributions,
by providing full text search and search by various categories (like title, author,
...), and by preparing a printed version at the end of each year. And then let
us discuss how over time we can add more and more innovative features to our
journal.” This is how J.UCS, the Journal of Universal Computer Science (mean-
ing: covering all aspects of computer science) http://www.JUCS.org was born,
given birth to by Cris who is top theorist, yet has his mind wide open for other
issues whose significance he often realizes before the people deeply involved in
technical details (as I was) do.

During my tenure as Professor at the University of Auckland my friend and
college Cris Calude saw three interesting points with surprising clarity: (1) Why
not use the Internet also for rapid dissemination of refereed material, if one can
assure to speed up the refereeing process; (2) Once “published” in electronic
form, no changes would be allowed to a paper (like in a printed version), but
authors or readers would have the possibility to add comments (to correct typos,
to add references, to clarify points in the paper, etc.); (3) To add “academic
credibility”, material would also have to be published in printed form, with
ISSN or ISBN number, and would have to enter the list of high-quality journals
by being indexed by ISI and similar institutions.

In discussion between the three of us: Cris Calude, Arto Salomaa and myself
it became clear that many additional powerful features could be integrated in
a journal as planned. It was me (who would after all be responsible for the
implementation) who had to argue to first get started on the basis of the three
points mentioned, and postpone further developments depending on the success
of J.UCS.

After all, there was more to solve than just the implementation!

2 The Start of J.UCS

To get J.UCS [J.UCS 2012] off the ground (in 1994!) each of the three issues
mentioned had to be solved, and in doing so new problems surfaced.

2.1 Issue 1 (The Refereeing Process)

It was clear that to have a high-quality journal we would need 2–3 referees for
each paper submitted. Covering all areas of computer science (using the ACM
Categories with permission of ACM) required well over 200 referees: we started

http://www.JUCS.org
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with 176 in 1994, and are now at over 335, and growing, despite the sad fact
that we have lost a few due to health problems or old age. Due to the special
involvement of referees we call them members of the editorial board: they may
delegate actual refereeing to colleagues, but are responsible for the quality of
reports obtained.

The real challenge was, however, how to speed up the refereeing process.
We decided to use an entirely new approach: rather than leaving it up to the
editors-in-chief or the managing editor to select for each paper submitted suitable
referees (members of the editorial board) we would send the abstract of each
paper to all members of the editorial board and members would choose which
one they will review. Thus, no member of the editorial board will ever receive
a paper for refereeing that is a total misfit, nor will a member receive a paper
when too busy to do the refereeing fast, with a maximum of four weeks allowed.
This does indeed shorten the refereeing process dramatically if three members
of the editorial board are willing to look at a paper. Unfortunately, there are
still papers were referees are not found “automatically” and the managing editor
together with the assistant to the managing editor has to intervene, potentially
prolonging the reviewing process quite a bit. Basically, it is by now clear that
some 300 members in the editorial board would suffice, if all were reasonably
active. Not surprisingly, only a small percentage falls in this category, however.
Thus, a further expansion of referees to catch enough active ones seems necessary.

The system of “voluntary reviewing” with a large number of members on
the editorial board does create one potential problem: an author may contact
three friends on the editorial board and ask them for a favourable review. While
a conflict of interest can never be eliminated even with traditional reviewing
systems, the “danger” in our system is clearly higher, hence we had to invent
new techniques for handling such situations. This will be described in Section 3
of this paper.

Another issue was which kinds of file formats we would allow for submission,
and which formats we would use for publishing. PDF was not as omnipresent
as it is today, so we had to be more lenient: we allowed a number of different
file formats for submission and published each paper in three formats: HTML,
Postscript and PDF. We have retained the last two, but given up on HTML
simply because formulae in HTML are a real headache (they have to be inserted
as in-line images). As far as submissions are concerned, we are still very liberal
and accept most common formats like PostScript, PDF, MS Word, RTF and
LaTeX.

2.2 Issue 2 (Freezing Contributions But Allowing Comments)

It was clearly desirable that an accepted and published paper should be “frozen”,
i.e. no later changes should be possible, much like in a printed journal. The
temptation was not to be quite strict, but to allow corrections of typos or such.
However, our decision was and remains that even such minor corrections are
not possible “after the fact” in J.UCS, providing a source of stable, high-quality
contributions.
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However, in printed journals it is sometimes possible to correct errors in a later
issue in a specific column “corrections” or such. In J.UCS we decided on a more
modern way (indeed we believe it was the first electronic journal to allow this):
anyone can add comments after a paper: the author can add corrections, readers
can ask questions or voice criticism, the author can reply by writing another
comment, etc. Thus, J.UCS allows an arbitrary intensive discussion of papers
already published. In the past this feature has not been widely used, somewhat
to our disappointment: we believe that in 1994 when the journal started the user
community was not yet used to what later would be called the “interactive Web”
or Web 2.0.

We remain proud to be one of the pioneers in this area.

2.3 Issue 3 (The Printed Version)

When starting J.UCS the idea was, see [Calude at all 1994], to first of all publish
a CD at the end of every year with all papers of the preceding year, and to have
not one server for J.UCS but a number of mirror servers, so that access would be
fast in all parts of the world. We ended up with a printed version of all papers
of one year, the “archival version”, rather than producing CDs. Further, the
mirroring concept turned out to be superfluous, with the increase of bandwidth
world-wide.

The challenge remained to have papers published electronically with exactly
the same pagination and format as they would later appear in printed version.
Indeed if you look at the PDF version of the very first paper in the very first
volume published in 1995 you find what is shown in Fig. 1.:

Fig. 1. Sample J.UCS front page
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Thus, printing this paper when it has appeared electronically looks exactly
like a reprint from the printed version of the journal which is likely to appear
only up to a year later: note that the above paper appeared January 1995, but
the volume containing all papers of 1995 only appeared in April 1996!

We believe that this idea to have a fast electronic publication which is fully
citable and indeed also appears in printed form is one reason why J.UCS became
as successful as it is (for details see Section 5). It is only fair to mention that
we had one other main advantage going for us: Springer was sponsoring J.UCS
under one condition: J.UCS would not be entirely free, but there would be an
annual subscription fee of � 100,00 per university, i.e. for just � 100,00 arbitrarily
many members of the University could read and print each paper in the jour-
nal. Although this was not quite the idea of open access, it was close enough
(it seemed to us) and did help tremendously to make J.UCS better known in
computer science circles. When we later decided to drop the subscription fee
Springer did generously permit us to do so, signed over all remaining rights to
us (at that point already Graz University of Technology) but did not support/
sponsor it any more.

The paper on electronic publishing [Odlyzko 1994] is still excellent reading: it
is fairly accurate in forecasting what would happen to scientific journals (many
would go electronic by 2010) and that the costs, even with copy editing but
cutting down on reviewing will be low. We quote:

My general conclusion is that it should be possible to publish scholarly
journals electronically for well under �1.000,00 per article, and probably
under �500,00, without losing much quality.

It is interesting to note that in J.UCS we initially published some 50–80 papers a
year, and now are up to about 150. Multiplying this by �500,00 gives �75.000,00
per year, or some �60.000,00. And this is indeed the budget that we need for
J.UCS. Of this, close to �20.000,00 is used for continued improvement and for
formatting and printing; the remainder is used for running the server, but mainly
for one editorial assistant. During the first years, the somewhat smaller costs
where covered by Graz University of Technology alone, then later the Institute
for Knowledge Management stepped in, still later UNIMAS in Kuching. And
as of 2012 it is now a consortium of 8 groups, see [J.UCS 2012] that are jointly
carrying the total cost that has gone up a bit to around �70.000. This allows the
operation of J.UCS as open access journal: no fee for submission or publication,
no fee for reading.

There are two further points to be mentioned: First, [Odlyzko 1994] was al-
ready recommending 18 years ago to do away with reviewing, replacing it by
just copy-editing and comments/dialogues that would follow after publication,
possibly leading to revisions, etc. J.UCS is more conservative and is still sticking
to the refereeing process, although a number of collaborative undertakings on
the Web based on the idea “Wisdom of Crowds” [Surowiecki et al 2005] sug-
gest that a journal on that basis might be quite feasible, and indeed require
fewer resources than a refereed journal. However, such journals would not be
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recognized by the more important citation indices at this point in time, and
this might be an obstacle to obtain some top papers. Second, there are many
“open access” journals around today. However, in most cases (J.UCS is one of
the few exceptions) reading is free, but authors have to pay for papers accepted,
usually hundreds of US dollars, or even more. We are violently opposed to this
approach: the temptation to accept a moderately good paper just because it will
help financially is likely to reduce the overall quality of such journals.

3 Problems and Partial Solutions

In this section we want to address some of the problems we have encountered in
J.UCS, and some attempts how to deal with them.

As explained in the previous section the already large number of members of
editorial board (some 340 at the time of writing) is still not enough to assure
short refereeing times, simply because only a fraction of potential candidates
have time and are willing to take on a reviewing job at any particular moment.

This has a “trivial” consequence concerning the submission system: sending
the abstract of an incoming paper to all members of the editorial board is not
realistic any more. Rather, a match between the area of the paper submitted
and the area of expertise/ knowledge of reviewers has to be established and
only “suitable” editors are notified that a new submission in their area has been
received. Although this does sound easy we will argue below that unfortunately
it is not.

Further, with the very large number of members of the editorial board a more
serious problem arises: how does one avoid a paper submitted being reviewed
only or mainly by friends of the author(s)?

Of course conflict of interest (COI) situation do arise also in other areas like
when employing or promoting a person on the basis of letters of recommenda-
tions, or such. Thus, we have tried to pose the following general problem: given
two persons A and B, can one—by using information on the Web (including so-
cial networks)—make an educated guess whether A and B are friends? We have
not finished exploring all avenues in this direction but we have tried to tackle
the problem by (a) considering closeness of location (surely if a paper comes
from a certain department and all reviewers come from the same department
one cannot really expect objective reviews) and by (b) considering closeness of
persons on the basis of citations, co-authorship, etc.

Let us discuss these two issues in turn. We have tackled (a) by implementing
mash-ups. Indeed there are three types: (i) those that show where papers (over
a certain period in a certain area) come from; (ii) those that show where editors
come from; and (iii) where editors of a certain paper come from.

Note that while (i) and (ii) are openly available, (iii) is only available to the
managing editor in chief. It is clear that (iii) allows the managing editor to check
if there is a potential COI situation due to co-location. That we implemented
also (i) and (ii) has two reasons: (ii) allows editors to check if enough editors
in some field are available. It also allows authors to check if enough editors
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are available that are considered “objective” for whatever reason. Like, would a
Pakistani feel comfortable if all referees are from India, an Arab if all are from
Israel? Mash-ups under (i) allow the managing editor in chief to find out in which
part of the world certain areas are considered particularly important, and how
the importance of areas might change over time. Or at least this was the idea
behind those mash-ups: although the implementation has worked flawlessly now
for years, the results are often less helpful than expected. Let us explain this by
means of a particular example (which is, fortunately, not typical for most areas).

Fig. 2 shows all editors that have indicated that their area is knowledge man-
agement. Note that not a single person in the USA shows up. This allows three
interpretations: (i) it is an area not of interest in the USA; (ii) J.UCS has failed
to attract editors in this field in the USA (iii) something else is amiss.

Fig. 2. A mash-up showing editors in the area “Knowledge management”

Looking at Fig. 3 the situation becomes even more puzzling: the only papers
that where written in the category knowledge management come from the USA!
This is particularly surprising since one of the major conferences in knowledge
management of which top papers always appear in J.UCS is [I-KNOW 2011].
Using the search function of J.UCS we can identify 120 papers that contain the
word “knowledge”!
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Fig. 3. A mash-up showing all papers that have been written with category knowledge
management specified

Putting this together means: Papers that should be tagged as “knowledge
management” are not tagged that way. Editors that should indicate that their
area includes knowledge management forget to do so. Thus categories/indices
/tagging have to be more carefully studied to turn mash-ups into universally
usable tools. However, the example given is a bit arbitrary: knowledge manage-
ment is not an ACM category and not used as term very widely. Areas such as
tagging, knowledge discovery, data mining, e-Learning etc. might all be consid-
ered as parts of knowledge management, but are often not considered in this
context both by editors and authors. Thus, the mash-up concept does indeed
yield valuable results in other areas, but to use it in general, good ontologies or
at least synonym dictionaries will still have to be developed.

The second approach to COI—in the sense that a referee may be a friend of
an author whose paper is under review—has been studied in depth in the thesis
of [Khan 2011a]. The most relevant work in our context is published in [Khan
2011b]. Without going into detail it is clear that persons who have co-authored a
paper are likely to know each other; if A often cites B, and B often cites A, then
even if they don’t know each other they seem to be on the same wavelength. If
A and B have never co-authored a paper but both are often cited together in
papers, again a certain relationship is likely.
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We believe that based on information on the Web the question “are A and B
likely to be friends” can still be studied from many additional other angles (that
might be valuable for journal editors, but also in case of promotions, or hiring
staff, etc.). Indeed, even the (more difficult) question “are A and B likely to be
enemies” can probably be tackled using material on the Web to some extent.
One point seems to be important: answers obtained in this fashion can never be
trusted, and hence should not be “black and white”. I.e. systems should report a
percentage of likelihood such as “A and B are friends with a likelihood of 92%”.

4 Additional Functions in J.UCS

We have noted earlier that papers once published in J.UCS cannot be changed
any more. However, notes (comments) can be added to an arbitrary extent. This
has led us early on to the idea of “Links into the future” (� H. Maurer). The
basic idea is most easily explained by means of an example. Suppose a paper
was written in the year 1998. A paper in 2006 extends some results of the earlier
one, hence will have the 1998 paper in the list of references. So why not add as
comment to the J.UCS paper of 1998 a remark that further work in this area
has been done in another J.UCS paper in 2006, with a direct link to it, i.e. a
link from 1998 to 2006, i.e. a link into the future?

The challenge of this is to also have links to papers in the future that have
appeared elsewhere, or more generally, to even link to related papers written
later, even if they do not explicitly refer to the earlier J.UCS paper (but do so
implicitly by dealing with the same algorithm; or by pointing to a paper that
itself points to the earlier J.UCS paper, etc.).

Over the years this basic idea has been expanded more and more, and there
is still much room for further improvement. The classical paper in this area is
probably [Afzal et al., 2007], although earlier and/or simpler versions exist, such
as [Maurer, 2001], [Krottmaier, 2003], or [Dreher et al., 2008].

One of the powerful functions of J.UCS is searching. It can be restricted to a
certain time-area, to the names of authors in titles or in full-text, allows logical
connectives, etc.

5 Outlook

J.UCS is more than a journal that has some 85.000 distinct readers, and over
650.000 PDF files downloaded a year, and a five-year impact factor close to 0.8.
It is one of the few journals that is truly open access: no charge for publishing,
no charge for reading. It has sophisticated functions like complex searching,
links into the future, a novel refereeing system, and is in the process of further
expansion by allowing readers to find for each paper published “similar ones”,
authors working in “a similar area”, profiles of such authors, and much more.

It also has to come to grips with an overwhelming flood of incoming papers,
simply because many young researchers cannot afford to pay for a publication,
nor can they accept long waiting times until their paper is or is not published.
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We have indicated that J.UCS needs further high quality and active editors, yet
we cannot send to all of them all abstracts of papers received, nor can we easily
decide what to send to whom since the categories used by editors and by authors
often disagree more than expected, as we showed in the discussion of Fig. 2 and
Fig. 3.

J.UCS may have to switch to a two stage submission process: If a paper comes
in from an author who is not yet an established scientist (measured by citation
count or Hirsh index?) maybe we have to put the paper into an area for public
comments, and let the community decide whether a serious reviewing should
take place or not. All readers who are fans of Wikipedia, of crowd sourcing, and
of the Wisdom of the Crowds [Surowiecki et al 2007] will be delighted to read
this and will be disappointed to learn that it does not work in general: a great
idea by a young scientist put to the public in an unintelligible way may well be
snapped up by someone, and turned into a top-notch paper, never giving credit
to the one who had the original idea.

Thus, J.UCS is by now more than a well accepted journal (the five year impact
factor is now close to 0.8, quite high for computer science); it is also a great
research and publishing project. I want to thank Cris Calude and Arto Salomaa
for their pioneering vision that has not just provided me, but many, with much
food for thought and further research. I wish all members of the J.UCS team
continuing success: I have headed that team till end of 2011, but have handed
it over to the new group of editors-in-chief, in particular the managing editor in
chief as mentioned in [J.UCS 2012].
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Abstract. The aim of this expository paper is to present a nice series of results,
obtained in the papers of Chaitin [3], Solovay [8], Calude et al. [2], Kučera and
Slaman [5]. This joint effort led to a full characterization of lower semicom-
putable random reals, both as those that can be expressed as a “Chaitin Omega”
and those that are maximal for the Solovay reducibility. The original proofs were
somewhat involved; in this paper, we present these results in an elementary way,
in particular requiring only basic knowledge of algorithmic randomness. We add
also several simple observations relating lower semicomputable random reals and
busy beaver functions.

1 Lower Semicomputable Reals and the �1-Relation

Recall that a real number α is computable if there is a computable sequence of rationals
an that converges to α computably: for a given ε > 0 one may compute N such that
|an −α| � ε for all n > N. (One can assume without loss of generality that the an are
increasing.)

A weaker property is lower semicomputability. A real number α is lower semicom-
putable if it is a limit of a computable increasing sequence of rational numbers. Such a
sequence is called approximation of α from below in the sequel.

Equivalent definition: α is lower semicomputable if the set of all rational numbers
less than α is enumerable. One more reformulation: if α = ∑i�0 di where di is com-
putable series of rational numbers, and all di with i > 0 are non-negative. (We let d0 be
negative, since lower semicomputable α can be negative.)

It is easy to see that α is computable if and only if α and −α are lower semicom-
putable. There exist lower semicomputable but non-computable reals. Corresponding
sequences of rational numbers have non-computable convergence. (Recall that conver-
gence of a sequence ai to some α means that for every rational ε > 0 there exist some
integer N such that |ai −α| < ε as soon as i > N. Noncomputable convergence means
that there is no algorithm that produces some N with this property given ε .)
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We want to classify computable sequences according to their convergence speed and
formalize the intuitive idea “one sequence converges better (i.e., not worse) than the
other one”.

Definition 1. Let ai → α and b j → β be two computable strictly increasing sequences
converging to lower semicomputable α and β (approximations of α and β from below).
We say that an → α converges “better” (not worse) than bn → β if there exists a total
computable function h such that

α −ah(i) � β −bi

for every i.

In other terms, we require that for each term of the second sequence one may algorith-
mically find a term of the first one that approaches the limit as close as the given term
of the second sequence. Note that this relation is transitive (take the composition of two
reducing functions).

In fact, the choice of specific sequences that approximate α and β is irrelevant: any
two increasing computable sequences of rational numbers that have the same limit, are
equivalent with respect to this quasi-ordering. Indeed, we can just wait to get a term
of a second sequence that exceeds a given term of the first one. We can thus set the
following definition.

Definition 2. Let α and β be two lower semicomputable reals, and let (an), (bn) be
approximations of α and β respectively. If (an) converges better than (bn), we write
α �1 β (by the above paragraph, this does not depend on the particular approximations
we chose).

This definition can be reformulated in different ways. First, we can eliminate sequences
from the defintion and say that α �1 β if there exists a partial computable function ϕ
defined on all rational numbers r < β such that

ϕ(r) < α and α −ϕ(r) � β − r

for all of them. Below, we refer to ϕ as the reduction function.
The following lemma is yet another characterization of the order (perhaps less intu-

itive but useful).

Lemma 1. α �1 β if and only if β −α is lower semicomputable (or said otherwise, if
and only if β = α + ρ for some lower semicomputable real ρ).

Proof. To show the equivalence, note first that for every two lower semicomputable
reals α and ρ we have α �1 α + ρ . Indeed, consider approximations (an) to α , (rn)
to ρ . Now, given a rational s < α + ρ , we wait for a stage n such that an + rn > s.
Setting ϕ(s) = an, it is easy to check that ϕ is a suitable reduction function witnessing
α �1 α + ρ .

It remains to prove the reverse implication: if α �1 β then ρ = β −α is lower semi-
computable. Indeed, if (bn) is a computable approximation (from below) of β and ϕ is



Random Semicomputable Reals Revisited 33

the reduction function that witnesses α �1 β , then all terms bn −ϕ(bn) are less than or
equal to β −α and converge to β −α . (The sequence bn−ϕ(bn) may not be increasing,
but still its limit is lower semicomputable, since all its terms do not exceed the limit,
and we may replace nth term by the maximum of the first n terms.) ��
A special case of this lemma: let ∑ui and ∑vi be computable series with non-negative
rational terms (for i > 0; terms u0 and v0 are starting points and may be negative) that
converge to (lower semicomputable) α and β . If ui � vi for all i > 0, then α �1 β , since
β −α = ∑i(vi −ui) is lower semicomputable.

The reverse statement is also true: if α �1 β , one can find computable series ∑ui = α
and ∑vi = β with these properties (0 � ui � vi for i > 0). Indeed, β = α + ρ for lower
semicomputable ρ ; take α = ∑ui and ρ = ∑ ri and let vi = ui + ri.

In fact, a stronger statement is also true; each of the series can be chosen in an
arbitrary way. We have already seen how to choose vi when ui are given. The other
direction: assume that α �1 β = ∑vi for some vi � 0. We need a decomposition α = ∑ui

where ui � 0 and ui � vi for i > 0. Indeed, we can construct ui sequentially using the
following invariant: the current approximation A = ∑ j<i u j to α should be below α and
at least as close (to α) as the current approximation B = ∑ j<i v j (to β ). Initially we
choose u0 applying reduction function to v0. When the current approximation becomes
B′ = B+ vi, we apply reduction function to get A′ which is at least as close to α as B′ is
to β . Then there are several cases:

(1) if A′ < A, we let ui = 0, and the next approximation is A (it is close enough by
assumption);

(2) if A � A′ � A + vi, we let ui = A′ −A; the condition guarantees that ui � vi;
(3) finally, if A′ > A+vi, we let ui = vi (the invariant remains valid since the distances

to α and β are decreased by the same amount).

2 The Solovay Reducibility and Complete Reals

Let α be a lower semicomputable but not computable real. By the results of the previous
section, one has

α �1 2α �1 3α �1 . . .

because for all k the difference (k+1)α−kα = α is lower semicomputable (so Lemma 1
applies). The reverse relations are not true, because kα − (k + 1)α = −α is not lower
semicomputable (if it were, then α would be computable).

One may argue that this relation is therefore a bit too sharp. For example, α and 2α
have essentially the same binary expansion (just shifted by one position), so one may
want α and 2α to be equivalent. In other words, one may look for a less fine-grained
relation. A natural candidate for this is Solovay reducibility.

Definition 3 (Solovay reducibility). We say that α � β if α �1 cβ for some positive
integer c > 0.

(A convenient notation: we say, for some positive rational c, that α �c β if α �1 cβ .
Then α � β if α �c β for some c.)

Like for lower semicomputable semimeasures in algorithmic information theory
(see, e.g., [7]), one can easily prove the existence of maximal elements [8].
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Theorem 1. There exists a �-biggest lower semicomputable real.

Proof. Indeed, we can enumerate all lower semicomputable reals αi in [0,1] and then
take their sum α = ∑wiαi with computable positive weights wi such that ∑wi con-
verges. This α can be represented as wiαi plus some lower semicomputable real, so
αi �1 (1/wi)α . ��
The biggest elements for the �-preorder are also called (Solovay) complete lower semi-
computable reals. They have an alternative description [8,2]:

Theorem 2. Complete semicomputable reals in [0,1] are sums of universal semimea-
sures on N and vice versa.

Recall (see [7] for details) that lower semicomputable semimeasures on N are lower
semicomputable functions m : N → R with non-negative values such that ∑i m(i) � 1.
(For a function m lower semicomputability means that m(i) is lower semicomputable
uniformly in i: there is an algorithm that gets i as input and produces an increasing
sequence of rationals that converges to m(i).) Universal semimeasures are the maximal
(up to a constant factor) lower semicomputable semimeasures.

Proof. Any lower semicomputable real α is a sum of a computable series of rationals;
this series (up to a constant factor that does not matter due to the definition of the Solo-
vay reducibility) is bounded by a universal semimeasure. The difference between the
upper bound and the series itself is a lower semicomputable semimeasure, and therefore
α is reducible to the sum of the universal semimeasure.

We have shown that sums of universal semimeasures are complete. On the other
hand, let α be a Solovay complete real in [0,1]. We need to show that α is a sum of some
universal semimeasure. Let us start with arbitrary universal semimeasure m(i). The sum
∑m(i) is lower semicomputable and therefore ∑m(i) �1 cα , so α = ∑m(i)/c + τ for
some integer c > 0 and some lower semicomputable τ . Dividing m by c and then adding
τ to one of the values, we get a universal semimeasure with sum α . ��
Chaitin denoted the sum of a universal semimeasure by Ω . Since there is no such thing
as the universal semimeasure, it is better to speak about Ω -reals defined as sums of
universal semimeasures. We have shown therefore that the class of Ω -reals coincides
with the class of Solovay complete lower semicomputable reals in [0,1].

It turns out that this class has one more characterization [3,2,5]:

Theorem 3. A lower semicomputable real is complete if and only if it is Martin-Löf
random.

(See, e.g., [7] for the definition of Martin-Löf randomness.) We provide the proof of
this result below, starting with one direction in the next section 3 and finishing the other
direction in section 5.

3 Complete Lower Semicomputable Reals Are Random

The fact that lower semicomputable reals are random, is Chaitin’s theorem (random-
ness of Ω ). It is usually proved by using complexity characterization of randomness.
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However, there is a direct argument that does not involves complexity (it is in the foot-
note in Levin’s “Forbidden information” paper [6]; this footnote compressed the most
important facts about lower semicomputable random reals into few lines!).

First, we prove that there exists a lower semicomputable random real. For that we
consider an effectively open set U of measure less than (say) 1/2 that covers all non-
random reals in [0,1]. (The definition of Martin-Löf randomness guarantees that for
every ε > 0 one can find an effectively open set that has measure less than ε and covers
all non-random reals. We need only one such set for some ε < 1, say, ε = 1/2.) Then
take the minimal element α in a closed set [0,1] \U . This number is random (by def-
inition) and lower semicomputable: compactness implies that any segment [0,r] with
rational r < α is covered by finitely many intervals of U and thus all such r’s can be
enumerated.

Second, we prove that randomness is upward-closed: if α � β and α is random, then
β is random. We may assume without loss of generality that α �1 β (randomness does
not change if we multiply a real by a rational factor).

So let bi → β be a computable increasing sequence of rational numbers that con-
verges to β . Assume that somebody gives us (in parallel with bi) a sequence of rational
intervals and guarantees that one of them covers β . How to transform it into a sequence
of intervals that covers α (i.e., one of the intervals covers α) and has the same (or
smaller) total length? If an interval appears that is entirely on the left of the current
approximation bi, it can be ignored (since it cannot cover β anyway). If the interval is
entirely on the right of bi, it can be postponed until the current approximation b j enters
it (this may happen or not, in the latter case the interval does not cover β ). If the interval
contains bi, we can convert it into the interval of the same length that starts at a j, where
a j is a rational approximation to α that has the same or better precision as bi (as an
approximation to β ): if β is in the original interval, α is in the converted interval.

So randomness is upward-closed and therefore complete lower semicomputable reals
are random.

Remark. The second part can be reformulated: if α and β are lower semicomputable
reals and at least one of them is random, then the sum α +β is random, too. The reverse
is also true: if both α and β are non-random, then α + β is not random. (We will see
later different proofs of this statement.)

4 Randomness and Prediction Game

Before proving the reverse implication, let us make a digression and look more closely
at the last argument. Consider the following game: an observer watches an increasing
sequence of rationals (given one by one) and from time to time makes predictions of
the following type: “the sequence will never increase by more than δ” (compared to its
current value). Here δ is some non-negative rational. The observer wins this game if
(1) one of the predictions remains true forever; (2) the sum of all numbers δ used in
the predictions is small (less that some rational ε > 0 which is given to the observer in
advance).

It is not required that at any moment a valid prediction exists, though one could
guarantee this by making predictions with zero or very small (and decreasing fast) δ at
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each step. Note also that every prediction can be safely postponed, so we may assume
that the next prediction is made only if the previous one becomes invalid. Then at any
moment there is only one valid prediction.

Theorem 4. Let ai be a computable increasing sequence of rational numbers that con-
verges to some (lower semicomputable) real α . The observer has a computable winning
strategy in the game if and only if α is not random.

Proof. A computable winning strategy gives us a computable sequence of prediction
intervals of small total measure and guarantees that one of these (closed) intervals con-
tains α . On the other hand, having a sequence of intervals that covers α and has small
total measure, we may use it for predictions. To make the prediction, we wait until the
current approximation ai gets into the already discovered part of the cover (this will
happen since the limit is covered). Then for our prediction we use the maximal δ such
that (ai,ai +δ ) is covered completely at the moment, and then wait until this prediction
becomes invalid. Then the same procedure is used again. At some point α is covered
by some interval in the sequence and the current approximation enters this interval;
the prediction made after this moment will remain valid forever. The total length of all
prediction interval is bounded by the measure of the cover (the prediction intervals are
disjoint and all are covered). ��
A reformulation of the same observation that does not use game terminology:

Theorem 5. Let ai be a computable increasing sequence of rational numbers that con-
verges to α . The number α is non-random if and only if for every rational ε > 0 one
can effectively find a computable sequence h0,h1, . . . of non-negative rational numbers
such that ∑i hi < ε and α � ai + hi for some i.

(Here the predictions hi are made on every step; it does not matter since we may use
zeros.)

There is a Solovay criterion of randomness (a constructive version of Borel–Cantelli
lemma): a real number α is non-random if and only if there exists a computable se-
quence of intervals that have finite total measure and cover α infinitely many times. It
can also be reformulated in the style of our previous theorem:

Theorem 6. Let ai be a computable increasing sequence of rational numbers that con-
verges to α . The number α is non-random if and only if there exists a computable se-
quence h0,h1, . . . of non-negative rational numbers such that ∑i hi < ∞ and α � ai +hi

for infinitely many i.

Proof. If α is non-random, we apply the preceding result for ε = 1,1/2,1/4,1/8, . . .
and then add the resulting sequences (with shifts 0,1,2, . . . to the right). Each of them
provides one value of i such that α � ai + hi, and these values cannot be bounded due
to shifts. On the other hand, if α � ai + hi for infinitely many i, we get a sequence of
intervals with finite sum of measures that covers α infinitely many times (technically,
we should replace closed intervals by slightly bigger open intervals). It remains to use
Solovay’s criterion (or recall its proof: the effectively open set of points that are covered
with multiplicity m has measure at most O(1/m)). ��
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The randomness criterion given in this section implies the following observation (which
may look strange at first). Consider a sum of a computable series of positive rational
numbers. The randomness of the sum cannot change if all summands are changed by
some Θ(1)-factor. Indeed, all hi can be multiplied by a constant.

Now let us prove that if α and β are non-random lower semicomputable reals, their
sum α +β is non-random, too. (See the discussion in the previous section). The natural
idea to prove this is the following: make predictions in the games for α and β , and then
take their sum as prediction for α + β . But this simple argument does not work. The
problem is that the same prediction for α can be combined with many predictions for β
and therefore will be counted many times in the sum.

The solution is to make predictions for α and β of the same size. Let ai and bi be
computable increasing sequences that converge to α and β . Since α and β are non-
random, they are covered by sequences of intervals that have small total measure. To
make a prediction for the sequence ai +bi (after the previous prediction became invalid)
we wait until the current approximations ai and bi become covered by the intervals of
those sequences. We take then the maximal h and k such that (ai,ai + h) and (bi,bi +
k) are entirely covered (by the unions of currently appeared intervals). The prediction
interval is declared to be (ai + bi,ai + bi + δ ) where δ = 2min(h,k).

Let us show that one of the predictions will remain valid forever. Indeed, the limit
values α and β are covered by some intervals. These intervals appear in the sequences
at some point and cover α and β with some neighborhoods, say, σ -neighborhoods. If
the prediction is made after ai and bi enter these neighborhoods, δ is greater than 2σ
and the prediction is final: ai + bi never increases more than by δ .

It remains to estimate the sum of all δ s used during the prediction. It can be done
using the following observation: when a prediction interval (ai+bi,ai +bi+δ ) becomes
invalid, this means that either ai or bi has increased by δ/2 or more, so the total measure
of the cover on the right of ai and bi has decreased at least by δ/2. (Here we use that
(ai,ai + δ/2) and (bi,bi + δ/2) are covered completely because δ/2 does not exceed
both h and k: it is important here that we take the minimum.)

Let us return to the criterion for randomness provided by Theorem 5. The condition
for non-randomness given there can be weakened in two aspects: first, we can replace
computable sequence by a semicomputable sequence; second, we can replace hi by the
entire tail hi + hi+1 + . . . of the corresponding series:

Theorem 7. Let ai be an increasing computable sequence of rational numbers that
converges to α . Assume that for every rational ε > 0 one can effectively find a lower
semicomputable sequence hi of non-negative reals such that ∑i hi < ε and α � ai +hi +
hi+1 + . . . for some i. Then α is not random.

Proof. Assume that for every i there is a painter who get hi units of paint and the
instruction to paint the line starting at ai, going to the right and skipping the parts already
painted by other painters (but making no other gaps). (Since hi is only semicomputable,
the paint is provided incrementally.) The painted zone is an effective union of intervals
of total measure ∑i hi. If α < ai +hi +hi+1 + . . ., then α is painted since we cannot use
hi +hi+1 + . . . paint starting between ai and α (recall that all ak are less than α) and not
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crossing α . (In the condition we have � instead of <, but this does not matter since we
can increase all hi to, say, twice their original value.) ��
This result implies one more criterion of randomness for lower semicomputable reals:

Theorem 8. Let α = ∑di be a computable series of non-negative rational numbers.
The number α is non-random if and only if for every ε > 0 one can effectively produce
an enumerable set W ⊂ N of indices such that (1) ∑i∈W di < ε and (2) W is co-finite,
i.e., contains all sufficiently large integers.

Proof. If α is not random, it can be covered by intervals with arbitrarily small total
measure. It remains to consider the set W of all i such that (d0 + . . .+ di−1,d0 + . . .+
di−1 + di) is entirely covered by one of those intervals. In the other direction the state-
ment is a direct consequence of Theorem 7, just let ai = d0 + . . .+ di−1 and hi = di for
i ∈W (and hi = 0 for i /∈W ). ��

This result shows again that the sum of two non-random lower semicomputable reals is
not random (take the intersection of two sets W1 and W2 provided by this criterion for
each of the reals).

5 Random Lower Semicomputable Reals Are Complete

To prove the completeness of random lower semicomputable reals, let us start with
the following remark. Consider two lower semicomputable reals α and β presented as
limits of increasing computable sequences ai → α and bi → β . Let hi = ai+1−ai be the
increases in the first sequence. We may use hi to construct a strategy for the prediction
game against the second sequence in the following way. We shift the interval [a1,a2]
to get the (closed) interval of the same length that starts at b1. Then we wait until bi at
the right of this interval appears; let it be bi1 . Then shift the interval [a2,a3] to get the
interval of the same length that starts at bi1 ; let bi2 be the first bi on the right of it, etc.

a1 a2 a3 a4 a5

b1 bi1 bi2 bi3

There are two possibilities: either

(1) the observer wins in the prediction game, i.e., some of the shifted intervals covers
the rest of bi and the next bik is undefined, or

(2) this process continues indefinitely.
In the second case α �1 β since the difference β −α is represented as a sum of a

computable series (“holes” between neighbor intervals; note that the endpoints of the
shifted intervals also converge to β ).

One of these two alternatives happens for arbitrary lower semicomputable reals α
and β . Now assume that β is not Solovay complete; we need to prove that β is not
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random. Since β is not complete, there exists some α such that α 	� β . In particular,
α 	�1 β . Therefore, for these α and β the second alternative is impossible, and the
observer wins. In other terms, we get a computable sequence of (closed) intervals that
covers β . Repeating the same argument for α/2, α/4,. . . (we know that α/c 	�1 β for
every c, since α 	� β ) we effectively get a cover of β with arbitrary small measure
(since the sum of all hi is bounded by a integer constant even being non-computable),
therefore β is not random.

Remark. This argument probably gives some quantitative connection between random-
ness deficiency of a random lower semicomputable real and another parameter that can
be called completeness deficiency. It can be defined as follows: fix some complete α
and for every β consider the infimum of all c such that α �1 cβ .

6 Slow Convergence: Solovay Functions

We have seen several results of the following type: the limit of an increasing computable
sequence of rationals is random if and only if the convergence is slow. In this section
we provide one more result of this type.

Consider a computable converging series ∑ ri of positive rational numbers. Note that
ri is bounded by O(mi) where m : i 
→ mi is a universal semimeasure (mi is also called a
priori probability of integer i). Therefore prefix complexity K(i) =− log2 mi is bounded
by − log2 ri + O(1) (see, e.g, [7]). We say that the series ∑ri converges slowly in the
Solovay sense (has the Solovay property) if this bound is tight infinitely often, i.e., if
ri � εmi for some ε > 0 and for infinitely many i. In other terms, the series does not
converge slowly if ri/mi → 0.

In [1,4] the name Solovay function was used for a computable bound S(i) for prefix
complexity K(i) that is tight infinitely often, i.e., K(i) � S(i)+ O(1) for every i and
K(i) � S(i)−c for some c and for infinitely many values of i. Thus, a computable series
∑ai of positive rational numbers has the Solovay property if and only if i 
→ − log2 ai is
a Solovay function [1].

Theorem 9. Let α = ∑i ri be a computable converging series of positive rational num-
bers. The number α is random if and only if this series converges slowly in the Solovay
sense.

In other terms, the sum is non-random if and only if the ratio ri/mi tends to 0.

Proof. Assume that ri/mi → 0. Then for every ε we can let hi = εmi and get a lower
semicomputable sequence that satisfies the conditions of Theorem 7. Therefore α is not
random.

We can also prove that α is not complete (thus providing an alternative proof of its
non-randomness). Recall the argument used in the proof of Theorem 2: if ri � mi, then
∑ri �1 ∑mi. And if ri � cmi, then ∑ri �c ∑mi. This remains true if the inequality
ri � cmi is true for all sufficiently large i. So for a fast (non-Solovay) converging series
and its sum α we have α �c ∑mi for arbitrarily small c. If α were complete, we would
have also ∑mi �d α for some d and therefore α �cd α for some d and all c > 0. For
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small enough c we have cd < 1/2 and therefore α �1/2 α i.e., 2α �1 α . Then, as we
saw on page 33, α should be computable.

It remains to show the reverse implication. Assuming that α = ∑ri is not random, we
need to prove that ri/mi → 0. Consider the interval [0,α] split into intervals of length
r0,r1, . . .. Given an open cover of α with small measure, we consider those intervals
(of length r0,r1, . . ., see above) that are completely covered (endpoints included). They
form an enumerable set and the sum of their lengths does not exceed the measure of the
cover. If the cover has measure 2−2n for some n, we may multiply the corresponding ri

by 2n and their sum remains at most 2−n. Note also that for large enough i the ith interval
is covered (since it is close to α and α is covered). So for each n we get a semimeasure
Mn = Mn

0 ,Mn
1 , . . . such that Mn

i /ri � 2n for sufficiently large i and ∑i Mn
i < 2−n. Taking

the sum of all Mn, we get a lower semicomputable semimeasure M such that ri/Mi → 0.
Then ri/mi → 0 also for the universal semimeasure m. ��
This result provides yet another proof that a sum of two non-random lower semicom-
putable reals is non-random (since the sum of two sequences that converge to 0 also
converges to 0).

It shows also that Solovay functions exist (which is not immediately obvious from
the definition). Moreover, it shows that there exist computable non-decreasing Solovay
functions: take a computable series of rational numbers with random sum and make
this series non-increasing not changing the sum (by splitting too big terms into small
pieces).

It also implies that slow convergence (in the Solovay sense) is not a property of a
series itself, but only of its sum. It looks strange: some property of a computable series
(of positive rational numbers), saying that infinitely many terms come close to the upper
bound provided by a priori probability, depends only on the sum of this series. At first it
seems that by splitting the terms into small parts we can destroy the property not chang-
ing the sum, but it is not so. In the next section we try to understand this phenomenon
providing a direct proof for it (and as a byproduct we get some improvements in the
result of this section).

7 The Solovay Property as a Property of the Sum

First, let us note that the Solovay property is invariant under computable permutations.
Indeed, computable permutation π changes the a priori probability only by a constant
factor: mπ(i) = Θ(mi). Then let us consider grouping. Since we want to allow infinite
groups, let us consider a computable series ∑i, j ai j of non-negative rational numbers.
Then

α = ∑
i, j

ai j = (a00 + a01 + . . .)+ (a10 + a11 + . . .)+ . . . = ∑
i

Ai,

where Ai = ∑ j ai j.
We want to show that Ai and ai j are slowly converging series (in the Solovay sense) at

the same time. Note that slow convergence is permutation-invariant, so it is well defined
for two-dimensional series.

However, some clarifications and restrictions are needed. First, ∑Ai is not in general
a computable series, it is only a lower semicomputable one. We can extend the definition
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of the Solovay property to lower semicomputable series, still requiring Ai = O(mi), and
asking this bound to be O(1)-tight infinitely often. Second, such a general statement is
not true: imagine that all non-negative terms are in the first group A0 and all A1,A2, . . .
are zeros. Then ∑Ai does not have the Solovay property while ∑ai j could have it.

The following result is essentially in [4]:

Theorem 10. Assume that each group Ai contains only finitely many non-zero terms.
Then the properties Ai/mi → 0 and ai j/mi j → 0 are equivalent.

Here mi j is the a priori probability of pair 〈i, j〉 (or its number in some computable
numbering, this does not matter up to O(1)-factor). The convergence means that for
every ε > 0 the inequality ai j/mi j > ε is true only for finitely many pairs 〈i, j〉.
Proof. Let us recall first that mi = ∑ j mi j up to a O(1)-factor. (Indeed, the sum in the
right hand side is lower semicomputable, so it is O(mi) due to the maximality. On the
other hand, already the first term mi0 is Ω(mi).) So if ai j/mi j tends to zero, the ratio
Ai/∑ j mi j does the same (only finitely many pairs have ai j > εmi j and they appear only
in finitely many groups).

It remains to show that Ai/mi → 0 implies ai j/mi j → 0. Here we need to use that
only finitely many terms in each group are non-zero. For this it is enough to construct
some lower semicomputable m̃i j such that ai j/m̃i j → 0, somehow using the fact that
Ai/mi → 0. The natural idea would be to split mi between m̃i j in the same proportion
as Ai is split between ai j. However, for this we need to know how many terms among
ai0,ai1, . . . are non-zero, and in general this is a non-computable information. (For the
special case of finite grouping this argument would indeed work.)

So we go in the other direction. For some constant c we may let m̃i j to be cai j while
this does not violate the property ∑ j m̃i j � mi. (When mi increases, we increase m̃i j

when possible.) If indeed Ai/mi → 0, for every constant c we have cAi � mi for all
sufficiently large i, so ai j/m̃i j � 1/c for all sufficiently large i (and only finitely many
pairs 〈i, j〉 violate this requirement, because each Ai has only finitely many non-zero
terms). So we are close to our goal (ai j/m̃i j → 0): it remains to perform this construction
for all c = 22n and combine the resulting m̃’s with coefficients 2−n. ��
As a corollary of Theorem 10 we see (in an alternative way) that the Solovay property
depends only on the sum of the series. Indeed, if ∑i ai = ∑ j b j, these two series could
be obtained by a different grouping of terms in some third series ∑k ck. To construct ck,
we draw intervals of lengths a1,a2, . . . starting from zero point, as well as the intervals
of lengths b1,b2 . . .; combined endpoints split the line into intervals of lengths c1,c2, . . .
(as shown):

b1 b2 b3
b4

a1 a2
a3 a4

0

In this way we get not only the alternative invariance proof, but also can strengthen
Theorem 9. It dealt with computable series of rational numbers. Now we still consider
series of rational numbers but the summands are presented as lower semicomputable
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numbers and each has only finitely many different approximations. (So ri = limn r(i,n)
where r is a computable function of i and n with rational values which is non-decreasing
as a function of n and for every i there are only finitely many different values r(i,n).)

Now the result of [4] follows easily:

Theorem 11. Let α = ∑i ri be a converging semicomputable series of rational num-
bers in the sense explained above. The number α is random if and only if this series
converges slowly in the Solovay sense (i.e., ri/mi does not converge to 0).

Proof. Indeed, each ri is a sum of a computable series of non-negative rational numbers
with only finitely many non-zero terms. So we can split ∑ri into a double series not
changing the sum (evidently) and the Solovay property (due to Theorem 10). ��
In particular, we get the following corollary: an upper semicomputable function n 
→
f (n) with integer values is an upper bound for K(n) if and only if ∑n 2− f (n) is finite;
this bound is tight infinitely often if and only if this sum is random.

Now we can show an alternative proof that all complete reals have the Solovay prop-
erty. First we observe that the Solovay property is upward closed with respect to Solo-
vay reducibility. Indeed, if ∑ai and ∑bi are computable series of non-negative rational
numbers, and ai converges slowly, then ∑(ai + bi) converges slowly, too (its terms are
bigger). So it remains to prove directly that at least one slowly converging series (or,
in other terms, computable Solovay function) exists. To construct it, we watch how
the values of a priori probability increase (it is convenient again to consider a priori
probability of pairs):

m00 m01 m02 m03 . . .
m10 m11 m12 m13 . . .
m20 m21 m22 m23 . . .
. . . . . . . . . . . . . . .

and fill a similar table with rational numbers ai j in such a way that ai j/mi j 	→ 0. How
do we fill this table? For each row we compute the sum of current values mi,∗; if it
crosses one of the thresholds 1/2,1/4,1/8 . . ., we put the crossed threshold value into
the a-table (filling it with zeros from left to right while waiting for the next threshold
crossed). In this way we guarantee that ai j is a computable function of i and j; the sum
of a-values is at most twice bigger than the sum of m-values; finally, in every row there
exists at least one a-value that is at least half of the corresponding m-value. Logarithms
of a-values form a Solovay function (and ai j itself form a slowly convergent series).

Note that this construction does not give a nondecreasing Solovay function directly
(it seems that we still need to use the arguments from the preceding section).

8 Busy Beavers and Convergence Regulators

We had several definitions that formalize the intuitive idea of a “slowly converging
series”. However, the following one (probably the most straightforward) was not con-
sidered yet. If an → α , for every ε > 0 there exists some N such that |α − an| < ε for
all n > N. The minimal N with this property (considered as a function of ε , denoted
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by ε 
→ N(ε)) is called modulus of convergence. A sequence (or a series) should be
considered “slowly converging” if this function grows fast. Indeed, slow convergence
(defined as the Solovay property) could be equivalently characterized in these terms
(see Theorem 13 below).

First we define a prefix-free version of busy beaver function:

Definition 4. Let m be a natural number. Define BP(m) as the minimal value of N such
that K(n) > m for all n > N.

In other terms, BP(m) is the maximal number n whose prefix complexity K(n) does not
exceed m. Let us recall a well-known natural interpretation of BP(m) in terms of “busy
beavers”:

Theorem 12. Fix an optimal prefix-free universal machine M. Let T (m) be the maximal
time needed for termination of (terminating) programs of length at most m. Then

BP(m− c) � T (m) � BP(m+ c)

for some c and all m.

Proof. First we prove that for all t > T (m) the compexity of t is at least m−O(1),
thus showing that T (m) � BP(m−c). Indeed, let K(t) = m−d. Appending the shortest
program for t to the prefix-free description of d, we get a prefix free description of the
pair 〈t,m〉. Indeed, we can reconstruct t and m− d from the shortest program of t (the
second is its length) and then add d and get m. Then, knowing t and m, we run t steps
of all programs of length at most m, and then choose the first string that is not among
their outputs. This string has by construction prefix complexity greater than m, and it is
(prefix-freely) described by m−d + O(logd) bits, so d = O(1).

On the other hand, T (m) can be (prefix-freely) described by most long-playing
program of size at most m (program determines its execution time), so K(T (m)) �
m+ O(1) and therefore T (m) � BP(m+ O(1)). ��
Now we can prove the equivalence of two notions of “slow convergence”:

Theorem 13. The computable series of non-negative rational numbers ∑ ri has the
Solovay property (⇔ has a random sum) if and only its modulus of convergence sat-
isfies the inequality N(2−m) > BP(m− c) for some c and for all m.

Proof. Let α = ∑ ri = limai, where ai = r0 + . . .+ ri−1. Assume that α is random. We
have to show that |α − ai| < 2−m implies K(i) > m−O(1); this shows that N(2−m) �
BP(m−O(1)). Since K(i) = K(ai)+O(1), it is enough to show that every rational 2−m-
approximation to α has complexity at least m−O(1). This is a bit stronger condition
than the condition K(α0 . . .αm−1) � m−O(1) (used in prefix complexity version of
Schnorr–Levin theorem) since now we consider all approximations, not only the prefix
of the binary expansion. However, it can be proven in a similar way.

Let c be some integer. Consider an effectively open set Uc constructed as follows. For
every rational r we consider the neighborhood around r of radius 2−K(r)−c; the set Uc

is the union of these neighborhoods. (Since K(r) is upper semicomputable, it is indeed
an effectively open set.) The total length of all intervals is 2 · 2−c ∑r 2−K(r) � 2−(c−1).
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Therefore, Uc form a Martin-Löf test, and random α does not belong to Uc for some c.
This means that complexity of 2−m-approximations of α is at least m−O(1).

In the other direction we can use Schnorr–Levin theorem without any changes: if
N(2−m) � BP(m− c), then K(i) � m−O(1) for every i such that ai is a 2−m-approxi-
mation to α . Therefore, the m-bit prefix of α has complexity at least m−O(1), since
knowing this prefix we can effectively find an ai that exceeds it (and the correspond-
ing i). ��

Question. Note that this theorem shows equivalence between two formalizations of
an intuitive idea of “slowly converging series” (or three, if we consider the Solovay
reducibility as a way to compare the rate of convergence). However, the proof goes
through Martin-Löf randomness of the sum (where the series itself disappears). Can we
have a more direct proof? Can we connect the Solovay reducibility (not only complete-
ness) to the properties of the modulus of convergence?

Reformulating the definition of BP(m) in terms of a priori probability, we say that
BP(m) is the minimal N such that all n > N have a priori probability less than 2−m.
However, in terms of a priori probability the other definition looks more natural: let
BP′(m) be the minimal N such that the total a priori probability of all n > N is less than
2−m. Generally speaking, BP′(m) can be greater that BP(m), but it turns out that it still
can be used to characterize randomness in the same way:

Theorem 14. Let ai be a computable increasing sequence of rational numbers that
converges to a random number α . Then N(2−m) � BP′(m− c).

Proof. Since all i > N(2−m) have the same a priori probability as the corresponding
ai (up to some O(1)-factor), it is enough to show that for every m the sum of a priori
probabilities of all rational numbers in the 2−m-neighborhood of a random α is O(2−m)
(recall that for all i > N(2−m) the corresponding ai belong to this neighborhood).

As usual, we go in the other direction and cover all “bad” α that do not have this
property by a set of small measure. Not having this property means that for every c
there exists m such that the sum of a priori probabilities of rational numbers in the
2−m-neighborhood of α exceeds c2−m. For a given c, we consider all intervals with
rational endpoints that have the following property: the sum of a priori probabilities of
all rational numbers in this interval is more than c/2 times bigger than the interval’s
length. Every bad α is covered by an interval with this property (the endpoints of the
interval (α −2−m,α +2−m) can be changed slightly to make them rational), and the set
of intervals having this property is enumerable. It is enough to show that the union of
all such intervals has measure O(1/c), in fact, at most 4/c.

It is also enough to consider a finite union of intervals with this property. More-
over, we may assume that this union does not contain redundant intervals (that can be
deleted without changing the union). Let us order all the intervals according to their left
endpoints:

(l0,r0),(l1,r1),(l2,r2), . . .

where l0 � l1 � l2 � . . . It is easy to see that right endpoints go in the same order
(otherwise one of the intervals would be redundant). So r0 � r1 � r2 � . . . Now note
that ri � li+2, otherwise the interval (li+1,ri+1) would be redundant. Therefore, inter-
vals with even numbers (l0,r0),(l2,r2),(l4,r4) . . . are disjoint, and for each of them the
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length is c/2 times less than the sum of a priori probabilities of rational numbers inside
it. Therefore, the total length of these intervals does not exceed 2/c, since the sum of
all priori probabilities is at most 1. The same is true for intervals with odd numbers, so
in total we get the bound 4/c. ��

Question: We see that both BP and BP′ can be used to characterize randomness, but
how much could BP and BP′ differ in general?
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5. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal on Comput-
ing 31, 199–211 (2001)

6. Levin, L.: Forbidden information. In: The 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2002), p. 761 (2002)

7. Shen, A.: Algorithmic Information theory and Kolmogorov complexity. Technical report
TR2000-034. Technical report, Uppsala University (2000)

8. Solovay, R.: Draft of a paper (or series of papers) on Chaitin’s work. Unpublished notes, 215
pages (1975)

http://drops.dagstuhl.de/opus/volltexte/2009/1810


Constructing the Infimum of Two Projections

Douglas S. Bridges and Luminita S. Vı̂ţă
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Abstract. An elementary algorithm for computing the infimum of two
projections in a Hilbert space is examined constructively. It is shown that
in order to obtain a constructive convergence proof for the algorithm, one
must add some hypotheses such as Markov’s principle or the locatedness
of a certain range; and that in the finite-dimensional case, the existence
of both the infimum and the supremum of the two projections suffices
for the convergence of the algorithm.

1 Introduction

Consider a separable complex Hilbert space H. We define the infimum of the
projections E and F of H to be the unique projection P (if it exists) that
satisfies the following two conditions:

(a) P � E and P � F .
(b) If Q is a projection with Q � E and Q � F , then Q � P ,

where � is the usual ordering of projections on H. We then denote the infimum
by E∧F. Classically, E∧F always exists, and is the projection on the intersection
of ranE (the range of E) and ranF ([11], page 111). However, within Bishop-
style constructive mathematics, BISH,1 the projection on a closed linear subset
S of a Hilbert space H exists if and only if S is located: that is,

ρ (x, S) ≡ inf {ρ(x, s) : s ∈ S}

exists for each x ∈ H (see [3] page 366, Theorem (8.7)). Since there is no guar-
antee that the intersection of two located sets is also located, the infimum of two
projections may not exist.

It can be shown classically that the decreasing sequence ((EFE)n)n�1 of
projections converges strongly to a projection P on H, in the sense that

Px = lim
n→∞ (EFE)n

x

1 BISH is, in essence, just mathematics carried out with intuitionistic logic and some
suitable set- or type-theoretic foundation such as the Aczel-Rathjen-Myhill CST
[1,2,13] or Martin-Löf’s type theory [12]. We also accept the principles of countable
and dependent choice as part of BISH. More information about analysis in BISH
can be found in [3,6].
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for each x ∈ H ; it then follows that P satisfies conditions (a) and (b), and
is therefore the infimum of the projections E and F ([9], page 257). Thus in
classical mathematics there is an analytic characterisation of the infimum of two
projections. In this paper we examine, within BISH, the connection between
the existence of P and the strong convergence of the sequence ((EFE)n)n�1.

2 The Algorithm

For future reference, we first note:

Proposition 1. The projection E ∧ F exists if and only if E(H) ∩ F (H) is
located, in which case E ∧ F is the projection on E(H) ∩ F (H).

Proof. Suppose that K ≡ E(H) ∩ F (H) is located, and let G be the projection
of H onto K. Then, by Proposition 2.5.2 of [11], G � E and G � H . Also, by the
same proposition, if P is a projection, P � E and P � F , then P (H) ⊂ E(H)
and P (H) ⊂ F (H), so P (H) ⊂ K and therefore P � G. Thus G = E ∧ F .

Now suppose that G ≡ E ∧ F exists, and let K ≡ G(H). Then G � E, so
K ⊂ E(H), and similarly K ⊂ F (H); so K ⊂ E(H) ∩ F (H). On the other
hand, if x ∈ E(H) ∩ F (H) and P is the projection of H on Cx, then, by
Proposition 2.5.2 of [11], P � E and P � F , so P � G and therefore, again by
that proposition, x ∈ P (H) ⊂ G(H) = K. Hence E(H) ∩ F (H) = K, which is
located, and G is the projection of H onto E(H) ∩ F (H).

A famous theorem of Specker shows that the monotone convergence theorem
in R is false in the recursive constructive mathematics (RUSS) of the Markov
School; see [15] or [5] (Chapter 3). It follows that the monotone convergence
theorem for projections of a Hilbert space ([11], Lemma 5.1.4) is also false in
RUSS, and therefore, since RUSS is consistent with BISH, not constructively
provable. In consequence, Halmos’s classical proof of the statement

(E ∧ F )x = lim
n→∞ (EFE)n

x (x ∈ H) (1)

fails constructively. However, we can adapt Halmos’s argument to obtain the
following constructive result.

Proposition 2. Let E, F be projections on H such that the strong limit P of
the sequence ((EFE)n)n�1 exists. Then P = E ∧ F . Moreover, the sequence
((FEF )n)n�1 converges strongly to E ∧ F .

Proof. It is easily seen that P is a linear mapping of H into itself. For each
x ∈ H and each n,

〈(EFE)n x, x〉 �
〈
(EFE)2n x, x

〉
= 〈(EFE)n x, (EFE)n x〉 � 0,

so
〈Px, x〉 = lim

n→∞ 〈(EFE)n
x, x〉 � 0.
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Hence P is a positive operator. On the other hand, if m > n, then (EFE)m �
(EFE)n, so for all x ∈ H ,

〈(EFE)mx, (EFE)nx〉 = 〈(EFE)n(EFE)mx, x〉
= 〈(EFE)mx, x〉

and therefore 〈
P 2x, x

〉
= 〈Px, Px〉
= lim

m,n→∞ 〈(EFE)mx, (EFE)nx〉

= lim
m→∞ 〈(EFE)mx, x〉 = 〈Px, x〉 .

Thus P is idempotent and therefore a projection. Since (EFE)n x ∈ E(H) for
each n, we have P � E. If x ∈ E(H) ∩ F (H), then Ex = x and Fx = x, so
(EFE)n

x = x for each n; whence Px = x. For all m, n we have

(EFE)m
F (EFE)n = (EFE)m (EFE) (EFE)n = (EFE)m (EFE)n+1

.

Letting n → ∞, we obtain (EFE)m FP = P . Now letting m → ∞, we obtain
PFP = P . Hence

0 = P − PFP = P (I − F )P

= P (I − F )(I − F )P = P (I − F ) (P (I − F ))∗ ,

so
‖P (I − F )x‖2 =

∣∣〈P (I − F ) (P (I − F ))∗ x, x
〉∣∣ = 0

for each x ∈ H , and therefore P (I−F ) = 0. Thus P = PF and therefore P � F .
We now have P � E and P � F , so for each x ∈ H , Px ∈ E(H)∩F (H). On the
other hand, if x ∈ E(H)∩F (H), then Ex = x and Fx = x, so (EFE)n

x = x for
each n; whence Px = x. It follows that x ∈ E(H)∩F (H) if and only if Px = x;
whence P is the projection E ∧ F on E(H) ∩ F (H). Finally, for n � 2 we have
(FEF )n = F (EFE)n−1

F , so the sequence ((FEF )n)n�1 converges strongly to
FPF ; but FPF = P = E ∧ F .

Can we prove, conversely, that if E∧F exists, then the sequence ((EFE)n
x)n�1

converges for each x ∈ H? To see that the answer is “no”,2 consider the case
where3 H = R2, E is the projection of H on the subspace Re, where e = (0, 1),
and F is the projection on R (cos θ, sin θ) , where ¬(θ = 0). (Note carefully the
distinction between “¬ (θ = 0)” and “θ 	= 0”: the latter means that |θ| > 0.) In
this situation we have E ∧ F = 0. Also,

(EFE)n
e =

(
cos2n θ, 0

)
2 This Brouwerian example was originally presented in [8].
3 In this example, which recurs in the paper, the Hilbert space is over R for conve-

nience. The Hilbert space H used outside this example is a complex one.
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for each n; but this converges to (0, 0) if and only if cos θ 	= 1 (that is, |1 − cos θ| >
0) and therefore θ 	= 0. Thus if the answer to our last question were “yes”, we
could prove that

∀θ∈R (¬ (θ = 0) ⇒ θ 	= 0) ,

which is easily shown to be equivalent to Markov’s Principle:

MP: For each binary sequence (an)n�1, if it is impossible that an = 0
for all n, then there exists n such that an = 1.

This principle, equivalent to an unbounded search, is not a part of BISH (though
it is consistent with BISH and is accepted RUSS).4

The estimates in the next lemma will enable us to make progress with the
question posed at the start of the preceding paragraph.

Lemma 1. Let H be a Hilbert space, and E, F projections on H such that E∧F
exists. Then for each x ∈ H, there exists a strictly increasing sequence (nk)k�1

of positive integers such that

‖(E − F ) (EFE)nk x‖ < 2−k (k � 1) . (2)

Proof. For each positive integer n,

(EFE)2n − (EFE)2n+1

= (EFE)2n − (EFE)nF (EFE)n

= (EFE)n (I − F ) (EFE)n

= (EFE)n (I − F )2 (EFE)n

= ((I − F ) (EFE)n)∗ (I − F ) (EFE)n
.

Hence

‖(I − F ) (EFE)n
x‖2 = 〈(I − F ) (EFE)nx, (I − F ) (EFE)n

x〉
=
〈
((I − F ) (EFE)n)∗ (I − F ) (EFE)n x, x

〉
=
〈(

(EFE)2n − (EFE)2n+1
)

x, x
〉

.

Given ε > 0, pick N such that Nε >
〈
(EFE)2 x, x

〉
. Suppose that〈(

(EFE)2n − (EFE)2n+1
)

x, x
〉

> ε

and therefore〈
(EFE)2n

x, x
〉

�
〈
(EFE)2n+1

x, x
〉

+ ε �
〈
(EFE)2n+2

x, x
〉

+ ε

4 It is an exercise to prove that, in the notation of our example, if θ �= 0, then
((EFE)n x)n�1 converges to 0 for each x ∈ H .
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for 1 � n � N . Then〈
(EFE)2 x, x

〉
>
〈
(EFE)4 x, x

〉
+ ε

>
〈
(EFE)6 x, x

〉
+ 2ε

> · · ·

>
〈
(EFE)2(N+1) x, x

〉
+ Nε � Nε,

a contradiction. Hence there exists n � N such that

‖(E − F ) (EFE)n
x‖ = ‖(I − F ) (EFE)n

x‖2

=
〈(

(EFE)2n − (EFE)2n+1
)

x, x
〉

< 2ε.

Since ε > 0 is arbitrary, it is now straightforward to construct, inductively, a
strictly increasing sequence (nk)k�1 of positive integers such that (2) holds.

For our first theorem we need to know that an operator T on a Hilbert space H
is weak-sequentially open if for each sequence (xn)n�1 such that Txn → 0,
there exists a sequence (yn)n�1 in kerT such that xn +yn

w→ 0, where w→ denotes
weak convergence in H . According to Corollary 6.5.8 of [6], if T is a jointed
operator—that is, one with an adjoint5—on H , then the following conditions
are equivalent:

• T has located range.
• kerT ∗ is located and T ∗ is weak-sequentially open.
• kerT is located and T is weak-sequentially open.
• T ∗ has located range.

In particular, if kerT is located, then a necessary and sufficient condition for
ran (T ) to be located is that T is weak-sequentially open.6

Theorem 1. Let H be a separable Hilbert space, and E, F projections on H
such that E ∧F exists and E−F is weak-sequentially open. Then ((EFE)n)n�1

converges strongly to E ∧ F .

Proof. Let P denote E ∧ F , the projection on E(H) ∩ F (H) (Proposition 1).
Fix x in H . Using Lemma 1, construct a strictly increasing sequence (nk)k�1 of
positive integers such that

‖(E − F ) (EFE)nk x‖ < 2−k (k � 1) .

5 In BISH the existence of the adjoint cannot be proved in general (see page 101
of [6]). Richman [14] and Ishihara [10] have provided an elegant criterion for the
existence of the adjoint; see also Section 6.3 of [6].

6 Hence, classically, every bounded operator on H is weak-sequentially open.
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Since E − F is weak-sequentially open, there exists a sequence (yk)k�1 in
ker (E − F ) such that (EFE)nk x + yk

w→ 0 as k → ∞. For each z ∈ H ,

〈(I − P )E [(EFE)nkx + yk] , z〉 = 〈(EFE)nk x + yk, E (I − P ) z〉
→ 0 as k → ∞.

However, since (E − F ) yk = 0,

Eyk = Fyk ∈ E(H) ∩ F (H) = ran (P )

and so (I − P )Eyk = 0. Hence

(I − P ) (EFE)nk x = (I − P )E [(EFE)nkx + yk] w→ 0 as k → ∞.

Now, for n � nk we have

0 � 〈(I − P ) (EFE)n
x, x〉 � 〈(I − P ) (EFE)nkx, x)〉 .

Hence 〈(I − P ) (EFE)n
x, x〉 → 0 as n → ∞. Since PE = P = EP and PF =

F = FP , we now have

‖(EFE)nx − Px‖2 = ‖(I − P ) (EFE)n
x‖2

= 〈(I − P ) (EFE)n
x, (I − P ) (EFE)n

x〉

=
〈
(EFE)n (I − P )2 (EFE)n

x, x
〉

=
〈
(I − P ) (EFE)2n

x, x
〉

→ 0 as n → ∞.

Since x ∈ H is arbitrary, we have proved the desired strong convergence of the
sequence ((EFE)n)n�1 to E ∧ F .

Corollary 1. Let H be a separable Hilbert space, and E, F projections on H
such that E∧F exists and E−F has located range. Then ((EFE)n)n�1 converges
strongly to E ∧ F .

Proof. Apply the preceding theorem, noting the comment immediately before
its statement.

Corollary 2. Let H be a separable Hilbert space, and E, F projections on H
such that E∧F exists and E−F has closed range. Then ((EFE)n)n�1 converges
strongly to E ∧ F .

Proof. By Theorem 6.5.9 of [6], the range of E − F is located; so we can imme-
diately invoke Corollary 1.

In order to analyse our earlier Markovian example further, we prove an elemen-
tary lemma in plane Euclidean geometry.
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Lemma 2. Let E, F be 1-dimensional projections in R2 such that E − F 	= 0.
Then ran (E − F ) = R2.

Proof. Without loss of generality take F as the projection on the x-axis, and
E as the projection on the line through the origin at an angle θ 	= 0 with the
positive x-axis. The outline of the proof is this. Take any point x 	= 0 in R2; for
illustration, consider the case where x lies above the range of E and in the first
quadrant. Form the parallelogram Π with one vertex at the origin, one side the
vector x, one side parallel to that vector and with one vertex on each of the ranges
of E and of F , and one side along the x-axis. Draw the perpendicular to ran (F )
through the nonzero vertex of Π on the x-axis, and the perpendicular to ran (E)
through the vertex of Π diagonally opposite to 0. These two perpendiculars meet
in a single point z, and x = (E − F )z. Thus every nonzero vector in R2 is in
the range of E − F , which is therefore dense in R2; from which it follows that
ran (E − F ) = R2.

To accomplish the foregoing without reference to the geometrical figure, take
F as the projection on Re (recall that e = (1, 0)) and

E = R (cos θ, sin θ) ,

where, for convenience, we use E to denote both the projection and its range.
Consider any x ≡ (x1, x2) in R2, and take the case where 0 < θ < π (so cot θ is
defined). Define

y ≡ (x2 cot θ, x2) ,

z ≡ (x2 cot θ − x1, x2 + x1 cot θ) .

We claim that Ez = y, that Fz = (x2 cot θ − x1, 0), and hence (clearly) that
x = (E − F )z. First we have

z − y = (−x1, x1 cot θ) ,

so
〈z − y, (cos θ, sin θ)〉 = −x1 cos θ + x1 cot θ sin θ = 0

and therefore z − y is orthogonal to E; whence Ez = y. On the other hand,

〈z − (x2 cot θ − x1, 0) , e〉 = 0,

so z− (x2 cot θ − x1, 0) is orthogonal to Re; whence Fz =(x2 cot θ − x1, 0). This
completes the proof that E − F has range R2 in the case 0 < θ < π. The case
0 > θ > −π is handled similarly. These two cases are all we need, since we could
have stipulated that |θ| < π from the outset.

We now re-examine the Markovian example (first discussed on page 48) in which
¬ (θ = 0) and therefore ker(E − F ) = {0}. We show how this example accords
with Theorem 1 and its corollaries. First, we observe from the remark imme-
diately preceding Theorem 1 that the range of E − F is located if and only if
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E − F is weak-sequentially open. Moreover, that range is located if and only if
it is finite-dimensional; in that case,

ran (E − F ) = ker(E − F ) + ran (E − F )

is dense in H ≡ R2, so ran (E − F ) is 2-dimensional and equals H .
On the other hand, if (EFE)n converges strongly to 0, then θ 	= 0, so E−F 	=

0 and therefore, by Lemma 2, E − F has closed range equal to R2. Suppose,
conversely, that E − F has closed range. Then ran (E − F ) is located, by the
closed range theorem (Theorem 6.5.9 of [6]), and so is finite-dimensional. If
θ 	= 0, then, as above, the dimension of ran (E − F ) is 2. Since ¬¬ (θ 	= 0), that
dimension must indeed be 2. In order to obtain θ 	= 0, it will suffice to prove
that cos θ < 1. We can pick x ∈ R2 such that (E − F )x = (0, 1). Then

〈Ex, Fx〉 = 〈(E − F )x, Fx〉 + ‖Fx‖2

= 〈(0, 1) , Fx〉 + ‖Fx‖2 = ‖Fx‖2 ,

so
‖Ex‖ ‖Fx‖ cos θ = ‖Fx‖2

. (3)

Hence

1 = ‖Ex− Fx‖2

= ‖Ex‖2 − 2 〈Ex, Fx〉 + ‖Fx‖2

= ‖Ex‖2 − 2 ‖Fx‖2 + ‖Fx‖2

and therefore ‖Ex‖2 = 1 + ‖Fx‖2 � 1. Now, either ‖Fx‖ < 1 or Fx 	= 0. In the
first case we have

1 > ‖Fx‖2 = ‖Ex − (0, 1)‖2 = ‖Ex‖2 − 2 〈Ex, (0, 1)〉 + 1,

so
1 − 2 〈Ex, (0, 1)〉 < 0

and therefore 〈Ex, (0, 1)〉 > 1/2. But 〈Ex, (0, 1)〉 = ‖Ex‖ sin θ, so sin θ > 0 and
therefore cos θ < 1. In the case Fx 	= 0, we see from (3) that

cos θ =
‖Fx‖
‖Ex‖ =

‖Fx‖√
1 + ‖Fx‖2

< 1.

This completes the proof that if E−F has closed range, then θ 	= 0, and therefore
(EFE)n converges strongly to 0.

This analysis of our Markovian example confirms that it exemplifies Theorem
1 and its corollaries.
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3 The Algorithm Revisited

Our aim in this section is to bring Markov’s Principle to the fore, by proving the
following result.

Theorem 2. MP � Let H be a finite-dimensional Hilbert space, and E, F
projections on H such that E∧F and E∨F exist. Then ((EFE)n)n�1 converges
strongly to E ∧ F .

This will require a number of technical preliminaries.

Lemma 3. Let E, F be projections on H such that E ∧F = 0 and E ∨F exist.
Then ker (E − F ) = ker(E ∨ F ) and is located.

Proof. For each x we have

(E ∨ F )x = 0 ⇔ x ⊥ ran (E ∨ F )

⇔ x ∈ E(H)⊥ ∩ F (H)⊥

⇔ Ex = 0 = Fx

⇔ Ex = Fx ∈ E(H) ∩ F (H) = {0}
⇔ (E − F )x = 0.

Hence ker (E − F ) = ker(E∨F ). Since ker(E∨F ) is the orthogonal complement
of ran (E ∨ F ) and the latter is located, so is the former.

Lemma 4. Let E, F be projections on a Hilbert space H such that P ≡ E ∧ F
and E ∨ F exist, let Q = I − P , and let K = Q(H). Then QE|K and QF |K
are projections on K, the projection QE|K ∧ QF |K exists and equals 0, and the
projection QE|K ∨ QF |K exists and equals Q (E ∨ F )|K .

Proof. First observe that, by Proposition 2.5.2 of [11], PE = P = EP and
PF = P = FP ; whence Q commutes with E and F . It follows that

(QE)2 = QEQE = QQEE = QE,

so QE, and likewise QF , is a projection on H . Hence QE|K and QF |K are
projections on K. Similarly, Q commutes with E ∧ F and E ∨ F , and both
Q (E ∧ F )|K and Q (E ∨ F )|K are projections on K. For each x ∈ H we have

〈QEQx, x〉 = 〈EQx, Qx〉 � 〈(E ∨ F )Qx, Qx〉 = 〈Q (E ∨ F )Qx, x〉 .

Hence QEQ � Q (E ∨ F )Q and therefore QE|K � Q (E ∨ F )|K ; similarly,
QF |K � Q (E ∨ F )|K . Now suppose that QE|K � S and QF |K � T , where
S, T are projections on K. Then QS = S, so

(SQ)2 = SQSQ = SSQ = SQ



Constructing the Infimum of Two Projections 55

and therefore SQ is a projection on H . Clearly, SQ is orthogonal to P , so SQ+P
is a projection on H . For each x ∈ H we have

〈Ex, x〉 = 〈QEQx, x〉 + 〈(I − Q)EQx, x〉 + 〈E(I − Q)x, x〉
= 〈QEQx, Qx〉 + 〈(I − Q)QEx, x〉 + 〈EPx, x〉
� 〈SQx, Qx〉 + 0 + 〈Px, x〉
= 〈QSQx, x〉 + 〈Px, x〉 = 〈(SQ + P )x, x〉 .

Hence E � SQ + P ; likewise, F � SQ + P . It follows that E ∨ F � SQ + P ;
whence for each x ∈ H ,

〈Q (E ∨ F )Qx, Qx〉 = 〈(E ∨ F )Qx, Qx〉
� 〈〈(SQ + P )Qx, Qx〉〉
=
〈
SQ2x, Qx

〉
+ 〈PQx, Qx〉 = 〈SQx, Qx〉 .

Thus Q (E ∨ F )|K � S and similarly, Q (E ∨ F )|K � T . We now see that
QE|K ∨ QF |K exists and equals Q (E ∨ F )|K , as required. A similar proof
shows that QE|K ∧ QF |K exists and equals Q (E ∧ F )|K ; in this case, since
Q = I − E ∧ F , we have QE|K ∧ QF |K = 0.

A subset S of a metric space (X, ρ) is called incomplete if there exists a Cauchy
sequence (sn)n�1 in S that is eventually bounded away from each point x of X ,
in the sense that there exist N and δ > 0 (depending on x) such that ρ (sn, x) � δ
for all n � N . On the other hand, a linear mapping T : X → Y between normed
spaces is unopen if for each r > 0, there exists y ∈ Y such that ‖y‖ < r and
y 	= Tx for each x ∈ X with ‖x‖ � 1. In the presence of countable choice (which
we are assuming), this condition is equivalent to the existence of a sequence
(xn)n�1 of unit vectors in X such that Txn → 0.

For our next result we note that every linear operator on a finite-dimensional
Hilbert space is both bounded and jointed.7

Proposition 3. MP � Let T be a bounded operator mapping H into a finite-
dimensional subspace of itself such that kerT ∗ is located. Then the range of T is
located.

Proof. Let B denote the closed unit ball of H , and let P be the projection of
H on kerT ∗. Since T is jointed, T (nB) is located for each positive integer n
(Theorem 6.3.4 of [6]). Given x ∈ H and ε > 0, construct an increasing binary
sequence λ such that

λn = 0 ⇒ ρ (x − Px, TT ∗ (nB)) >
ε

2
,

λn = 1 − λn−1 ⇒ ρ (x − Px, TT ∗ (nB)) < ε.
7 Corollary 4.1.4 of [6] shows that every linear mapping T from a finite-dimensional

Banach space into a normed space is bounded. When T is an operator on a finite-
dimensional Hilbert space, the existence of T ∗ can be proved by applying the Riesz
representation theorem in the standard way to the linear functionals of the form
x � 〈Tx, y〉, since, by Corollary 4.1.8 of [6], the finite-dimensionality of H ensures
that the norm of such a functional exists.
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For each n with λn = 0, the separation and Riesz representation theorems (Corol-
lary 5.2.10 and Theorem 4.3.6 of [6]) together provide us with a unit vector yn

such that
〈x − Px, yn〉 > 〈TT ∗z, yn〉 +

ε

2
(z ∈ nB) ;

taking z = nyn ∈ nB, we obtain

n ‖T ∗yn‖2 < 〈TT ∗ (nyn) , yn〉 +
ε

2
< 〈x − Px, yn〉 � ‖x − Px‖

and therefore ‖T ∗yn‖ < n−1 ‖x − Px‖.
Assume that λ = 0. Then we obtain a sequence (yn)n�1 of unit vectors such

that T ∗yn → 0, so T ∗ is an unopen mapping. It follows from Proposition 3.6 of
[7] that ran (T ∗) is infinite-dimensional,8 which is absurd. Thus it is impossible
that λ = 0. Now applying Markov’s Principle, we obtain N such that λN = 1
and therefore ρ (x − Px, TT ∗(NB)) < ε. Since ε > 0 is arbitrary and, by Lemma
6.5.3 of [6], ran(TT ∗) is dense in ran (T ), it follows that kerT ∗+ran (T ) is dense
in H ; whence, by Lemma 6.5.2 of [6], ran (T ) is located.

The preceding Proposition cannot be established without Markov’s Principle.
Indeed, given a ∈ R with ¬ (a = 0), we see that the linear mapping T : x � ax
on the Hilbert space C is bounded and selfadjoint, with kernel {0}. But if the
range of T is located, then its distance from 1 cannot be positive and so is < 1;
whence a 	= 0.

We now provide the proof of Theorem 2.

Proof. Under the hypotheses of Theorem 2, let P = E ∧ F , Q = I − P , and
K = Q(H). Note that K, being the range of a projection, is located in H and
hence finite-dimensional ([6], Corollary 4.1.14). By Lemma 4, QE|K and QF |K
are projections on K, the projections QE|K ∨ QF |K and QE|K ∧ QF |K exist,
and the latter equals 0. Hence, by Lemma 3,

ker (Q (E − F )|K) = ker (QE|K ∨ QF |K)

is located in K and so, again by Corollary 4.1.14 of [6], is finite-dimensional. Since
we are working in BISH + MP, it follows from Proposition 3 that the range
of Q (E − F )|K is located in K; whence it is finite-dimensional and therefore
located in H . But for x ∈ H we have

(E − F )x = P (E − F )x + Q(E − F )x

= (PE − PF )x + Q2 (E − F )x

= (P − P )x + Q(E − F )Qx

= Q(E − F )Qx = Q (E − F )|K (Qx).

8 Up to this point, the proof requires only the existence of T ∗ and the locatedness of
its kernel; it does not need H to be finite-dimensional.



Constructing the Infimum of Two Projections 57

Thus the range of E − F equals that of Q (E − F )|K and so is located in H .
Reference to Corollary 1 now completes the proof.

We have some final observations about our Markovian example. In that example,
if E ∨ F exists, then, since ¬ (θ = 0), the dimension of ran (E − F ) must be 2;
whence θ 	= 0 and therefore ((EFE)n)n�1 converges strongly to E ∧ F = 0.
Conversely, if that strong convergence obtains, then θ 	= 0, so E ∨ F exists and
equals R2. Thus we have

Proposition 4. The following are equivalent:

(i) For all 1-dimensional projections E, F in R2 such that E ∧ F = 0, the
sequence ((EFE)n)n�1 converges strongly to 0.

(ii) For all 1-dimensional projections E, F in R2 such that E ∧ F = 0, the
supremum E ∨ F exists.

(iii) MP.

In view of this proposition, it is reasonable to ask: can all reference to Markov’s
Principle be removed from Theorem 2?
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Abstract. We introduce some new variations of the notions of being
Martin-Löf random where the tests are all clopen sets. We explore how
these randomness notions relate to classical randomness notions and to
degrees of unsolvability.

1 Introduction

The underlying idea behind algorithmic randomness is that to understand ran-
domness you should tie the notion to computational considerations. Randomness
means that the object in question avoids simpler algorithmic descriptions, either
through effective betting, effective regularities or effective compression. Exactly
what we mean here by “effective” delineates notions of algorithmic randomness.
A major theme in the area of algorithmic randomness seeks to calibrate no-
tions of randomness by varying the notion of effectivity. For example, classical
Martin-Löf randomness1 uses tests, shrinking connections of c.e. open sets whose
measure is bounded by effective bounds, whereas Schnorr randomness has the
tests of some precise effective measure. We then see that Schnorr and Martin-
Löf randomness are related but can have very different properties; for example
outside the high degrees they coincide, but the lowness concepts are completely
disjoint.

Another major theme in the study of algorithmic randomness is the intimate
relationship of randomness concepts with calibrations of computational power as
given by measures of relative computability, like the Turing degrees. If something
is random, can it have high computational power, for instance? A classic result
in this area is Stephan’s theorem [14] that if a Martin-Löf real is random and has

� Supported by the Marsden Fund of New Zealand. We wish to dedicate this to Cris
Calude on the occasion of his 60th Birthday.

1 We assume that the reader is familiar with the basic notions of algorithmic random-
ness as found in the early chapters of either Downey-Hirschfeldt [6] or Nies [13].
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enough computational power to be able to compute a {0, 1}-valued fixed point
free function then it must be Turing complete.

The goal of the present paper is to introduce some new variations in these
studies, and to explore both themes. In particular, we will introduce what we
call bounded variations of the notion of Martin-Löf randomness where the tests
are all finite. These notions generalize the notion of Kurtz (or weak) randomness
but are incomparable with both Schnorr and computable randomness.

More precisely, if W is a finite set then #W denotes the cardinality of W . |σ|
denotes the length of a finite string σ. We work in the Cantor space 2ω with the
usual clopen topology. The basic open sets are of the form [σ] where σ is a finite
string, and [σ] = {X ∈ 2ω | X ⊃ σ}. We fix some effective coding of the set of
finite strings, and we freely identify finite strings with their code numbers. We
denote [W ] = ∪{[σ] : σ ∈ W} as the Σ1 open set associated with the c.e. set W .
μ([W ]) denotes Lebesgue measure, and we write μ(W ) instead of μ([W ]).

Definition 1. (a) A Martin-Löf (ML) test is a uniform c.e. sequence {Un}n∈ω

of sets Un such that μ(Un) < 2−n.
(b) A Martin-Löf test {Un}n∈ω is finitely bounded (FB) if #Un < ∞ for every

n.
(c) A Martin-Löf test {Un}n∈ω is computably bounded (CB) if there is some

total computable function f such that #Un ≤ f(n) for every n.
(d) A real X ∈ 2ω passes a CB-test (FB-test) {Un}n∈ω if X 	∈

⋂
n[Un].

A real X ∈ 2ω is computably bounded random if X passes every CB-test. X
is finitely bounded random if it passes every FB-test.

These two notions of randomness are weaker than Martin-Löf randomness, al-
though they imply Kurtz randomness. The obvious implications are:

� � �
�������� ��������

ML-random FB-random CB-random Kurtz random

Schnorr random

No implications hold other than those stated in the diagram. This can be
derived from the following facts: There is a Δ0

3 1-generic real which is FB-random
(see the remarks after Proposition 3), while no Schnorr random is weakly 1-
generic. No incomplete c.e. degree can compute a FB-random (Proposition 1(i))
while some incomplete c.e. degree bounds a CB-random (Theorem 2). Lathrop
and Lutz [12] showed that there is a computably random set X such that for
every order function g, K(X � n) ≤ K(n) + g(n) for almost every n. Hence X
cannot be CB-random, by Proposition 3.

There is a non-zero Δ0
2 degree containing no CB-random (Theorem 2) while

every hyperimmune degree contains a Kurtz random.
What is interesting is that these notions of randomness turn out to have strong

relationships with degrees classes hitherto unrelated to algorithmic randomness.
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We will show that FB-randomness and Martin-Löf -randomness coincide on the
Δ0

2 sets but are distinct on the Δ0
3 sets (Theorem 1). There is some restriction

on the degrees of these reals in that they cannot be c.e. traceable (Theorem 2).
It is not clear exactly what the degrees of such reals can be.

In the case of CB-randomness there can be incomplete c.e. degrees containing
such reals. We know that every c.e. degree contains a Kurtz random real, but
the degrees containing a CB-random form a subclass of the c.e. degrees : those
that are not totally ω-c.a.. This is a class of c.e. degress introduced by Downey,
Greenberg and Weber [5] to explain certain “multiple permitting” phenomena in
degree constructions such as “critical triples” in the c.e. degrees, and a number of
other constructions as witnessed in the subsequent papers Barmpalias, Downey
and Greenberg [1] and Downey and Greenberg [4]. This class extends the notion
of array noncomputable reals, and correlates to the fact that all CB random
reals have effective packing dimension 1 (Theorem 3). Downey and Greenberg
[3] having previously showed that the c.e. degrees containing reals of packing
dimension 1 are exactly the array noncomputable reals. We also show that if
a c.e. degree a contains a CB random then every (not necessarily c.e.) degree
above a contains a CB random as well. From all of this, we see that there remains
a lot to understand for this class.

Some other results which space restrictions preclude us from including concern
lowness for the classes we have introduced. We know that if A is K-trivial (i.e.
low for Martin-Löf randomness) then A is low for FB-randomness. Also we
know that if A is low for FB-randomness then A is Low(Ω). Finally in the case
of CB-randomness, we know that if A is low for CB-randomness then A is of
hyperimmune-free degree. However, we have a reasonably intricate construction
which constructs a Δ0

3 real which is low for CB-randomness.

2 Basic Results

We first show that the notions of FB-randomness and Martin-Löf -randomness
coincide on the Δ0

2 sets, and they differ on the Δ0
3 sets.

Proposition 1. (i) Suppose Z ≤T ∅′. Then Z is ML-random iff Z is FB-
random.

(ii) There is some Z ≤T ∅′′ such that Z is FB-random but not ML-random.

Proof. (i): Given an approximation Zs of Z, and suppose {Ux} is the universal
ML-test where Z ∈ ∩x[Ux]. Enumerate an FB-test {Vx} by the following: at
stage s, enumerate into Vx, the string Zs � n for the least n such that Zs � n ∈
Ux[s]. Then, {Vx} is uniformly c.e., where μ(Vx) ≤ μ(Ux) < 2−x for all x. Clearly
Z ∈ [Vx] for all x. We know Z � n ∈ Ux for some least n, and let s be a stage
such that Zs �n is correct and Z �n has appeared in Ux[s]. Then, Z �n will be in
Vx by stage s, and we will never enumerate again into Vx after stage s.

(ii): We build Z = ∪sσs by finite extension. Let {Ux} be the universal ML-
test, and {V e

x }x be the eth ML-test. Assume we have defined σs, where for all
e < s, we have
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– all infinite extensions of σs are in Ue,
– if #V e

x < ∞ for all x, then there exists k such that no infinite extension of
σs can be in Ue

k .

Now we define σs+1 ⊃ σs. Firstly, find some τ ⊇ σs such that all infinite exten-
sions of τ are in Us; such τ exists because {Ue} is universal. Let k = |τ |. Next,
ask if #V s

k < ∞. If not, let σs+1 = τ�0 and we are done. If yes, then figure
out exactly the strings ρi such that [V s

k ] = ∪{[ρ1], [ρ2], · · · , [ρn]}. We cannot
have [V s

k ] ⊇ [τ ] since μ(V s
k ) < 2−k, so there has to be some σs+1 ⊃ τ such that

[σs+1] ∩ [V s
k ] = ∅, by the finiteness of V s

k . We can figure σs+1 out effectively
from ρ1, ρ2, · · · , ρn. Clearly the properties above continue to hold for σs+1. All
questions asked can be answered by the oracle ∅′′.

Note that there is no way of making {Vx} computably bounded in (i), even
if Z ≤tt ∅′. It is easy to construct a low left c.e. real which is CB-random,
while from Theorem 2 below, no superlow c.e. real can be CB-random. Hence
CB-randomness and FB-randomness differ even on the c.e. reals.

CB-randomness is still sufficiently strong as a notion of randomness to exclude
being traceable:

Proposition 2. No CB-random is c.e. traceable.

Proof. Suppose that A is c.e. traceable, and that A is coinfinite (otherwise we
are done). We define the functional Φ by evaluating ΦX(n) as σ where σ ⊂ X is
the shortest string such that #{k : σ(k) = 1} = 2n, for any X and n. Since ΦA

is total, there is a c.e. trace {Tx}x∈N, such that #Tx ≤ x and ΦA(x) ∈ Tx for
every x. We define the CB-test {Ux} by the following: we enumerate σ into Ux

if |σ| ≥ 2x and σ ∈ Tx. Then #Ux ≤ x and μ(Ux) ≤ x2−2x < 2−x for every x
and A ∈ ∩x[Ux].

We next investigate the connection between CB-randomness and effective di-
mension.

Proposition 3. Every CB-random is of effective packing dimension 1.

Proof. Suppose K(α � n) ≤ cn for all n ≥ N for some N ∈ N and c < 1
is rational. Fix a computable increasing sequence of natural numbers {ni} all
larger than N , such that ni > i

1−c for all i. Now define a CB-test {Vi} by the
following: Vi := {σ ∈ 2ni | K(σ) ≤ cni}. Here we have #Vi ≤ 2cni.

In contrast, every incomplete c.e. real which is CB-random cannot be of d.n.c.
degree (and hence has effective Hausdorff dimension 0). The proof of Theorem
1(ii) constructs a FB-random real by finite extensions. It is straightforward to
modify the construction to build a Δ0

3 FB-random which is 1-generic, and hence
not of d.n.c. degree.

Next we investigate the upward closure of CB-random degrees.

Theorem 1. If A is a c.e. real and is CB-random, and A ≤T B, then degT (B)
contains a CB-random.
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Proof. Fix a left-c.e. approximation As to A. Let h : N 
→ N be a strictly
increasing function such that h(n + 1) ≥ h(n) + 2 for every n. For any real
X we let (A ⊕h X)(z) be defined by the following: if z = h(n) for some n
then (A ⊕h X)(z) = X(n), otherwise let (A ⊕h X)(z) = A(z − n − 1) where
h(n) < z < h(n + 1). This is the “sparse” join of A and X , and is obtained by
copying the first h(0) many digits of A followed by B(0), the next h(1)−h(0)−1
many digits of A followed by B(1), and so on. For numbers n, s we denote αn

s

as the finite string As �hs(n) − n. This represents the A portion of the current
approximation to A ⊕h X below hs(n).

The construction builds a function h ≤T A such that A ⊕h X is CB-random
for any path X ∈ 2ω. This is achieved by specifying an effective approximation
hs(n) which is non-decreasing in each variable n, s. We let h(n) = lims hs(n). We
also ensure that for every n, s if hs+1(n) > hs(n) then As+1 	⊃ αn

s . Intuitively
hs(n) is the stage s coding location for X(n), and we are insuring that before
moving the coding location hs(n) we need to first obtain a change in αn

s . The
theorem is then satisfied by taking A⊕h B, for given A⊕h B as oracle, to figure
out B(n), one can run the construction until a stage s is found such that αn

s

agrees with the true αn of the oracle string. Then each of the coding location
hs(0), · · · , hs(n) must already be stable at s.

Construction of h: Let {Ue
x} be the eth Martin-Löf test, and ϕe be the eth

partial computable function. We set h0(n) = 2n for every n. At stage s > 0
find the least n < s such that As 	⊃ αn

s−1, and there is some e, x ≤ n and some
σ ∈ Ue

x[s − 1] such that ϕe(x) ↓ and #Ue
x [s − 1] ≤ ϕe(x). We also require that

αn
s−1 ⊇ σ but As 	⊃ σ. If such n is found we set hs(n + i) = s + n + 2i for

every i.
We now verify the construction works. Clearly hs has the above-mentioned

properties and lims hs(n) exists. The only thing left is to check that A ⊕h X is
CB-random. Suppose this fails for some X ∈ 2ω. Let {Ux} be a CB-test such
that A ⊕h X ∈ [Ux] for every x.

For a finite string σ and stage s, we let σ∗(s) be the string obtained by
removing the (hs(0) + 1)th, (hs(1) + 1)th, · · · digits from σ. We define a new
CB-test {Vx} by the following. At a stage s if we find some σ ∈ Ux2 [s] and
σ∗(s) ⊂ As we enumerate σ∗(s) � (hs(x) − x) into Vx (unless some comparable
string is already in Vx). That is, we enumerate the A-part of A⊕h ∅ below hs(x)
into Vx, unless σ∗(s) is shorter, in which case we enumerate σ∗(s) instead.

We consider a large x. Clearly #Vx ≤ #Ux2 , since each σ ∈ Ux2 causes at
most one σ∗(s) (or part of) to be enumerated in Vx. We need to compute a
bound on the measure of [Vx]. Each string enumerated into Vx is either σ∗(s) or
part of σ∗(s) for some s and σ ∈ Ux2 [s]. Each string of the first type satisfies
|σ| − |σ∗(s)| ≤ x, while it is easy to see that strings of the second type must all
be of different length greater than x. Hence the measure of [Vx] is bounded by
2xμ(Ux2) + 2−x+1 < 2−x. Since {Vx} is a CB-test A must escape this test, a
contradiction.
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We conclude this section with several questions.

Question 1. 1. If A ≤T B and A is CB-random, must degT (B) contain a CB-
random?

2. Are there characterizations of CB-randomness and FB-randomness in terms
of prefix-free complexity and martingales?

3. Are there minimal Turing degrees which contain CB-randoms?

3 A Characterization of the Left c.e. Reals Containing a
CB-Random

The class of array computably c.e. sets was introduced by Downey, Jockusch and
Stob [8,9] to explain a number of multiple permitting arguments in computability
theory. Recall that a degree a is array non-computable2 if for every function
f ≤wtt ∅′ there is a function g ≤T a such that f(x) < g(x) infinitely often.
Downey, Greenberg and Weber [5] later introduced the totally ω-c.a.3 sets to
explain the construction needed for a weak critical triple, for which array non-
computability seems too weak.

Definition 2 ([5]). A c.e. degree a is totally ω-c.a. if every f ≤T a is ω-c.e..

Note that array computability can be viewed as a uniform version of this notion
where the computable bound (for the mind changes) can be chosen independently
of f ; hence every c.e. array computable set is totally ω-c.e.. The class of totally
ω-c.e. degrees capture a number of natural constructions. Downey, Greenberg
and Weber [5] proved that a c.e. degree is not totally ω-c.e. iff it bounds a weak
critical triple in the c.e. degrees.

In Theorem 2 we show that the non totally ω-c.e. degrees are exactly the class
of c.e. degrees which permit the construction of a CB-random real:

Theorem 2. Suppose A is a c.e. real. The following are equivalent.

(i) degT (A) is not totally ω-c.a.,
(ii) degT (A) contains a CB-random,
(iii) There is some c.e. real B ≤T A which is CB-random,
(iv) There is some B ≤T A which is CB-random.

We fix a computable enumeration{ϕn}n∈ω of all partial computable functions.We
let {Wm

n }n∈ω be the mth Martin-Löf test. We use <L to denote the left-to-right
lexicographical ordering on finite strings σ, τ , with 0 being to the left of 1 and
σ <L τ meaning that σ is to the left of τ . This ordering is extended naturally
to x <L y for infinite strings x, y. We assume for any c.e. set U , that if σ ∈ Us

then |σ| < s.
2 This was not the original definition, but a later equivalent characterization, which

is convenient for us to take as the definition.
3 The original paper [5] called these totally ω-c.e.. However this terminology is some-

what at odds with Ershov’s hierarchy of Δ0
2 sets [10,11] and causes a problem when

we work at various levels of the computable ordinals. Hence we will adopt the new
name being used in Downey and Greenberg [4].
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3.1 (i) ⇒ (iii)

Assume that f = ΔA and that f is not ω-c.e. We will build B ≤T A and ensure
that B is CB-random. We must ensure that Rm,i holds for every m, i:

Rm,i : B /∈ ∩n[Wm
n ] if ϕi is total and for all n, #Wm

n ≤ ϕi(n).

To ensure that each requirement R is satisfied, suppose that R is the kth require-
ment, where k = 〈m, i〉. Our construction will implement a sequence of modules
{Mk

j }j∈ω for R and each module is given infinitely many opportunities to act.
At any particular stage, the construction attempts to satisfy at most one re-
quirement through the implementation of at most one module. Associated with
each module Mk

j is an integer n = nk
j , and the module aims to ensure that if

{Wm
e }e∈ω is a CB-test then B 	∈ [Wm

n ] as follows. (Note that as long as some
module succeeds, the requirement succeeds.)

Suppose at the current stage s of the construction that it is module Mk
j ’s turn

to act and B is in [Wm
n ]— that is, Bs−1 ∈ [Wm

n,s]. The module’s strategy is to
redefine B to the right (outside of [Wm

n ]), but on precondition that it receives
an A-permission, due to certain conditions related to ΔA.

To be more precise: throughout the construction, the modules {Mk
j }j∈ω will

collectively be defining an approximating function fk for ΔA towards ensuring
that, for some j, module Mk

j ’s strategy succeeds (so that Rk is satisfied). We
further discuss fk and the A-permission below.

Module Mk
j is responsible for defining fk(j, s) for all s; it does so as follows.

Whenever Bs−1 ∈ [Wm
n ] as above, then— supposing this is the ts

th time it acts—
Mk

j defines fk(j, ts) := ΔA(j)[ts]. Module Mk
j waits to act at a later stage q > s

when either

• B remained in [Wm
n ] throughout all intermediate stages ≤ q and A changes

below the use δ(j) for ΔA(j), or
• B does not remain in [Wm

n ] until stage q due to an A-permission being
granted to some other module, or perhaps some other requirement.

In either of these two cases, an A-permission is granted and Mk
j moves B to the

right.
Now suppose {Wm

n } is a CB-test so that #Wm
n ≤ ϕi(n). Since B is only

ever redefined to the right, it follows that there can be at most ϕi(n) = ϕi(nk
j )

A-permissions associated with module Mk
j so that

#{s : fk(j, s) 	= fk(j, s + 1)} ≤ ϕi(n) = ϕi(nk
j ).

It follows that if B ∈ [Wm
nk

j
] for all j, then eventually no A-permission occurs

for module Mk
j to act, for all j. Consequently, fk(j, t) = ΔA(j)[t] = f(j) for

sufficiently large t and fk must be an approximating function for ΔA = f . This
means that f is ω-c.e., a contradiction, and thus requirement R = Rk must be
satisfied.

We are ready to describe the stage-by-stage construction.
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Construction. The construction will proceed in stages of the form 〈a+1, 〈j, k〉〉.
The intention is that stage 〈a + 1, 〈j, k〉〉 is the ath time in which module Mk

j is
allowed to act. Consequently, in what follows, we will use � to denote � = 〈j, k〉.
We also define the integer nk

j = 〈k, j〉+ 1 associated with module Mk
j of the kth

requirement. Since ΔA is total, we assume that ΔA(j)[s] ↓ at every stage s > j.
At stage s = 0, define B0 = 0ω and goto stage s + 1.
At stage s = 〈0, �〉 > 0 define fk(j, 0) = ΔA(j)[0] and goto stage s + 1.
At stage s = 〈a + 1, �〉, implement the jth module Mk

j of requirement Rk

defined as follows.
Module Mk

j .

1. If ϕi,s(nk
j ) ↑, or #Wm

nk
j ,s

	≤ ϕi,s(nk
j ), or Bs−1 	∈ [Wm

nk
j ,s

], then no non-trivial

action is needed for Mk
j . We simply define fk(j, a + 1) := fk(j, a), define

Bs := Bs−1 and go to stage s + 1.
2. Otherwise, define fk(j, a + 1) = ΔA(j)[a + 1], let r = 〈a, �〉, and implement

the following. If Aa+1 �δ(j) 	= Aa �δ(j), then do the following. Let σ ⊂ Bs−1

be maximal such that Nσ := ([σ] ∩ {x : Bs−1 <L x}) \ [Wm
nk

j ,s
] is nonempty.

Define Bs to be the left-most path of Nσ, and go to stage s + 1. Otherwise
define Bs := Bs−1 and go to stage s + 1.

This completes the construction.
Verification. First observe that for any module Mk

j , whenever it changes B,
it only adds an amount q ∈ Q to Bs where q can be accounted against a distinct
part of Wm

nk
j
. Therefore Mk

j contributes at most 2−nk
j to B. Consequently the

total effect of all the modules can contribute at most
∑

k,j∈ω 2−nk
j ≤ 1

2 to B,
which means that σ in the construction, at every stage, can always be found so
that Nσ is non-empty.

Lemma 1. Every requirement is satisfied.

Proof. Suppose to the contrary that for some pair m, i, B ∈ ∩n[Wm
n ], ϕi is total,

and #Wm
n ≤ ϕi(n) for all n. We first observe that lima fk(j, a) = ΔA(j) for each

j. Let W = Wm
nk

j
. Since B ∈ [W ], hence at almost every stage of the construction

when Mk
j acts, we have case 2 holds; hence we will set fk(j, a) = ΔA(j)[a]

at almost every a. Next, we want to show that the fk-changes is bounded by
O(ϕi(nk

j )). We fix a j, and argue that if 〈a0 +1, �〉 < 〈a1 +1, �〉 are two stages in
the construction such that Mk

j acts under case 2, and fk(j, a0+1) 	= fk(j, a1+1),
then Bs 	∈ [W〈a0+1,�〉] for some 〈a0 +1, �〉 < s ≤ 〈a1 +1, �〉. This is because there
must be some a0 < a ≤ a1 such that Aa+1 �δ(j) 	= Aa �δ(j). At stage 〈a+1, �〉 of
the construction we may assume case 2 holds (otherwise we are done). Hence we
will define B〈a+1,�〉 to avoid W〈a+1,�〉 ⊇ W〈a0+1,�〉. This proves the claim. Now
to see that the number of changes in fk(−, a) is bounded by O(ϕi(nk−)), observe
that if fk(j, a) 	= fk(j, a + 1), we must have case 2 applies at stage 〈a + 1, �〉 of
the construction.
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Lemma 2. B ≤T A.

Proof. Next we describe how to compute B ≤T A. To compute B(x), we would
like to say that only modules Mk

j for nk
j ≤ x can change B(x). This is unfortu-

nately not true, because of the “carry-over” in the addition. Instead we have to
compute B from A in a slightly more elaborate fashion. Define the total function
g ≤A by the following. Let g(0) = x, and given g(z) we define g(z + 1) by first
searching recursively in A for some number a such that Aa � δ(g(z)) is stable
and correct. Let g(z + 1) = max{〈a + 1, 〈j, k〉〉 | nk

j ≤ g(z)}. Hence the function
g is defined so that after stage g(z + 1) of the construction, no module Mk

j for
nk

j ≤ g(z) can change B.
Assume we have computed σ = B � x. Now search for the least z such that

either Bg(z+2)(x) = 1, or else Bg(z+2)(y) = 0 for some x < y < g(z + 1).
This search will terminate because otherwise B = σ011111 · · · which means B is
computable. Let z be the first found. If Bg(z+2)(x) = 1 then B(x) = 1. Otherwise
we claim that B(x) = 0. After stage g(z+2), only modules Mk

j for nk
j > g(z+1)

can contribute to B, and the sum of their total contribution to B is < 2−g(z+1).
On the other hand if Bt(x) = 1 at some t > g(z + 2), then the amount added to
B after g(z + 2) is at least 2−x−1 − (2−x−2 + · · · + 2−y−1) = 2−y−1 ≥ 2−g(z+1).

3.2 (iv) ⇒ (i)

Suppose B = ΔA and B is CB-random. Let ϕe be the eth partial computable
function. Fix a left c.e. approximation {As} to A. Define f(〈e, k〉) by the fol-
lowing. Search for the first stage s such that As � δ(〈e, k〉) = A � δ(〈e, k〉). If
ϕe(〈e, k〉)[s] ↑ then output A�δ(〈e, k〉); otherwise output A�δ(ϕe(〈e, k〉)+〈e, k〉).
Clearly f is total and f ≤T A. Note that the use of the computation is not (and
cannot be) computable. We claim f is not ω-c.e.; suppose the contrary we have
f(x) = lims g(x, s) where g(x,−) has at most ϕe(x) mind changes for some total
computable functions g and ϕe. We build a CB-test {Vk} capturing B, contrary
to assumption. For each k we find a stage s0 such that ϕe(〈e, k〉)[s0] ↓, and
ΔA �〈e, k〉[s0] ↓. We then enumerate ΔA �〈e, k〉[s0] into Vk, and for every s > s0

such that ΔA �〈e, k〉+ϕe(〈e, k〉)[s] ↓ with g(〈e, k〉, s) ⊇ A�δ(〈e, k〉+ϕe(〈e, k〉))[s],
we enumerate ΔA �〈e, k〉 + ϕe(〈e, k〉)[s] into Vk.

Clearly for each k we have #Vk ≤ 1 + ϕe(〈e, k〉), and that μ(Vk) is at most
2−〈e,k〉+ϕe(〈e, k〉)2−〈e,k〉−ϕe(〈e,k〉) < 2−〈e,k〉+1 ≤ 2−k. We claim that B ∈ [Vk]. At
stage s0 we threw in ΔA �〈e, k〉[s0], and if A�δ(〈e, k〉) is stable at s0 then clearly
B ∈ [Vk]. Since {As} is a monotonic approximation to A, we therefore may
assume that A was not stable at s0, hence f(〈e, k〉) = A � δ(ϕe(〈e, k〉) + 〈e, k〉).
Since g approximates f correctly, at some large enough stage we will enumerate
B �〈e, k〉 + ϕe(〈e, k〉) into Vk.

Finally the proof of Theorem 2 is complete upon observing that (iii) implies
(ii) follows from Theorem 1.
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4 Lowness

Theorem 3. There is a non-computable Δ0
3 set A which is low for CB-

randomness.

Proof (Sketch of proof). The construction involves building a Δ0
3 approximation

to A. We will specify a computable approximation αs and at the end we will
take A = lim infs αs. We need to meet the requirements

Pe : A 	= ϕe

Re,i : If {UA
e,i}i∈ω is an A-relative CB-test with bound ΨA

e , there is a

CB-test {Ve,i}i∈ω such that ∩i∈ω [UA
e,i] ⊆ ∩i∈ω [Ve,i]

Here we let {UX
e,i} be the eth oracle CB-test, and Ψe be the eth Turing func-

tional. ϕe is the eth partial computable function. The construction builds A of
hyperimmune-free degree. For more details on how to construct a non-computable
real of hyperimmune-free degree by a full Δ0

3 approximation we refer the reader
to Downey [2]. We sketch the main ideas here.

To make A of hyperimmune-free degree, for each Turing functional Ψ , we need
to find a computable function δ that dominates ΨA. We begin by letting αs be
a string of zeroes. The aim is to build a perfect computable tree T : 2<ω 
→ 2<ω

such that for every σ, ΨT (σ)(|σ|) ↓. We need to also ensure that A is in the
range of T . If this fails then we will force ΨA to be non-total. In the former
case we can read δ off T , and in the latter case we satisfy the requirement
automatically. At every stage we let αs extend T (σ) for some σ of maximal
length such that T (σ) has been defined. If we never encounter a convergent Ψα

we keep α ⊃ T (σ). If we find a convergent computation Ψαt�u(|σ| + 1) at some
stage t, we set T (σ�0) ↓= αt �u and move α to an incomparable string extending
T (σ) and search for a way to define T (σ�1). In this way we define T (σ) level by
level, starting with |σ| = 0, and then |σ| = 1, and so on. It is clear that if we get
stuck searching above some T (σ) then A = lim inf αs will extend T (σ) and hence
ΨA is not total. On the other hand if the procedure builds a total computable
perfect tree T then A = T (0ω). A lower priority requirement working for another
Ψ ′ and believing in the totality of T will take the tree T as parameter and work
to build a perfect subtree T ′ of T . A lower priority requirement working for P
will be assigned a string σP in the domain of T , which is consistent with P ’s
belief about the outcomes of higher priority requirements, and P will then later
delete either T (σP

�0) or T (σP
�1) (or neither) depending on the value of ϕe.

When more requirements are considered it will become necessary to define A
not as the direct lim inf of αs, but as the lim inf with respect to the “true stages”
of the construction, namely, the stages where the true path is visited.

How do we implement the R-requirements in this framework? Let us consider
a top requirement working for R0. It seeks to define a single CB-test {V0,i}i∈ω

covering ∩i∈ω [UA
0,i]. R0 would pursue the abovementioned strategy to obtain

a computable function dominating ΨA
0 . Additionally it has to build the test

{V0,i}i∈ω. For i = 0 we wait for T0(∅) to converge. If we ever discover some σ
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entering U τ
0,0 with oracle string τ on T0, we will delete every path on T0 not

extending τ , and enumerate σ into V0,0. Since the cardinality of U0,0 cannot
exceed Ψ

T0(∅)
0 , we will only act for U0,0 finitely often, and succeed in making

V0,0 = UA
0,0.

Of course we cannot allow U0,i to delete paths in this way for every i, because
we will end up with a computable path A. Suppose P is a requirement believing
that R0 has outcome ∞, i.e. R0 succeeds in making T0 total. The requirement P
(and all other positive requirements) of lower priority will need to be assigned a
diagonalization location σP . Suppose that P has been assigned σP for diagonal-
ization. Each time U0,0 acts as described above it will move σP . It is crucial to
ensure that σP is moved only finitely often. We arrange for U0,1 to respect σP ,
so U0,1 will be prohibited from deleting prefixes of T (σP

�0) and T (σP
�1). If we

consider infinitely many positive requirements P0 < P1 < · · · below R0, we can
arrange for a local priority ordering U0,0 < P0 < U0,1 < P1 < U0,2 < · · · , where
each U0,i has to respect σP0 , · · ·σPi−1 . This resolves the (potentially) infinitary
conflicts between R0 and lower priority P requirements. A computable bound
for V0,i can then be easily computed from upperbounds for ΨA

0 (0), · · · , ΨA
0 (i).

Now consider requirements R0, R1 and P , where R1 believes that R0 has
outcome ∞, and P believes that R1 has outcome ∞. Say we arrange for the
local priority ordering U0,0 < U1,0 < P < U0,1 < · · · . Since R0 cannot assume
knowledge about the outcomes of the nodes of lower priority, U0,1 cannot possibly
wait for the tree T1 to converge before fixing an upperbound for V0,1. Furthermore
U0,1 has to respect σP , so we might enumerate a large number of elements
into V0,1 while α was extending T (σP

�0). Suppose α is next moved to extend
T (σP

�1), and U1,0 obtains an upperbound for V1,0 after seeing T1 grow. Now
if we later discover some σ in U τ

1,0 with oracle τ ⊇ T (σP
�1) we will have to

move σP to make T (σp) ⊃ τ , since U1,0 is of higher local priority than P . This
means that all the elements enumerated into V0,1 so far are no longer possible
elements of UA

0,1, and the cardinality of V0,1 has gone up unnecessarily. This
wastage can be compounded each time U1,0 moves σP , and since the bound for
V0,1 was computed with no knowledge of ΨA

1 (0), we might run out of space and
exceed our declared cardinality bound for V0,1.

Observe that we need not have fixed the local priority ordering beforehand.
The solution is to assign the local priority of P only when P is visited. Let us
consider the situation above again. Suppose P has not yet been visited by the
construction (hence the local priority of P has not yet been decided). Suppose T0

has been growing and we are currently waiting for T1 to be defined at the root.
At this point the local priority list reads U0,0 < U1,0 < U0,1 < U0,2, · · · , < U0,i.
If now T1(∅) finds a definition, we will play outcome ∞ for R0 and outcome ∞
for R1, and visit P , who will now be queued after U0,i.

The key point is that U0,i+1, U0,i+2, · · · will only be considered after this
stage, so they can compute upperbounds for V0,i+1, V0,i+2, · · · using informa-
tion about ΨA

1 (0). They are therefore safe from the actions of U1,0 (and of
course, from U0,0, · · · , U0,i). On the other hand even though the upperbounds
for V0,0, · · · , V0,i have been declared without any knowledge of ΨA

1 (0), they too,
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are safe from the actions of U1,0 because U0,0, · · · , U0,i are all allowed to move
σP whenever we enumerate new elements into V0,0, · · · , V0,i. The only downside
is that σP gets injured a lot more times. Since the local priority of P once fixed,
is never again changed, this means that σP will be eventually stable.

The interactions between other requirements present no new difficulty, and a
formal construction proceeds in a more or less routine fashion. A complete proof
will appear in the journal version of this paper.
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Cezar Câmpeanu

Department of Computer Science and Information Technology
The University of Prince Edward Island, Canada

ccampeanu@upei.ca

Abstract. Dual complexity measures have been developed by Burgin,
under the influence of the axiomatic system proposed by Blum in [3].
The concept of dual complexity measure is a generalization of Kol-
mogorov/Chaitin complexity, also known as algorithmic or static com-
plexity. In this paper we continue this effort by extending some of the
well known results for plain and prefix-free complexities to the general
case of Blum universal static complexity. We also extend some results ob-
tained by Calude in [9] to a larger class of computable measures, proving
that transducer complexity is a dual (Blum static) complexity measure.

1 Introduction

The study of static, descriptional, or algorithmic complexity has been initiated by
Ray J. Solomonoff [27,28], Andrey N. Kolmogorov [17], and Gregory J. Chaitin
[10,11,12], and it was an algorithmic approach of information theory. For an
introduction to Shannon’s information theory [25] and its relation to algorithmic
complexity, we refer the reader to [18,19,21].

Beside the plain complexity [17] and prefix complexity [12,16,20], there are
several other forms of static or descriptional complexities considered in literature.
We mention here only few of them: process complexity [26], monotone complexity
[20], uniform complexity [22], Chaitin’s complexity [14], or Solomonoff’s univer-
sal complexity [27,28,29]. More examples of dual complexity are given in [4].
They often differ by a factor, but they have similar properties. Several variants
were introduced and used to accommodate various needs, most notably being
the effort of finding a complexity that can be used to define in an uniform way
the randomness for both strings and sequences. Chaitin [11], and to some extent,
Loveland [22], were successful in this attempt.

Manuel Blum proposed a set of simple axioms to measure the complexity of
algorithms independently of the formal system [2], and few years later, a way of
measuring the static complexity of algorithms in [3]. The first approach given in
[2] is used in dynamic complexity and represents the basis for the Computational
Complexity Theory. The latest approach was further developed by Burgin as a
generalized Kolmogorov complexity, and is called dual complexity measure in
[4]. It must be noted that the axioms proposed by Blum in 1967 in [3] “are all so
fantastically weak that any reasonable model of a computer and any reasonable
definition of size and step satisfies them” [3]. Thus, it is natural to ask what are

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 71–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the general properties of static complexities (as defined by Blum) and what kind
of results can be proved for all “reasonable” static complexity measures.

If direct complexity measures estimate algorithms or programs, dual com-
plexity measures are properties of objects that are constructed and processed by
algorithms or programs. Further results for inductive algorithms were recently
obtained in [5,6]. The axioms considered in these papers are the same as the
ones used by Blum in [3] plus few other very simple ones, and they allow us to
develop several hierarchies of complexities [24]. Using small modifications of the
original idea, we can also define generalized complexity classes as in [1].

In this paper we prove a weak form of universality theorem for dual complexity
measures in section 3, a strong version for universal encodings in section 3.2, and
reprove in the new more general framework of Blum Static Complexity measures
some well known results in section 4, thus validating the theory.

2 Notations and Definitions

We denote by IN = {0, 1, . . .} the set of natural numbers. For a set T , we denote
by #T its cardinal.

For a finite alphabet with p letters, we use the set Ap = {0, 1, . . . , p− 1}. The
free monoid generated by Ap is A∗

p.
The length of a word w = w1 . . . wn ∈ A∗

p, wi ∈ Ap, 1 ≤ i ≤ n, is |w| = n.
The set A∗

p can be ordered using the quasi-lexicographical order: ε, 0, 1, . . . , p −
1, 00, 01, 0(p−1), 10, . . .. We denote by string(n) the one to one function between
IN and A∗

p representing the n-th string of A∗
p in the quasi-lexicographical order.

Thus, string(0) = ε, string(1) = 0, . . . string(p) = p−1, string(p+1) = 00, . . ..
The set of strings w ∈ A∗

p of length equal, less than, less then or equal to,
greater than, and greater then or equal to n is denoted by: An

p , A<n
p , A≤n

p , A>n
p ,

and respectively, A≥n
p .

We consider an acceptable enumeration of the set of all partial computable
functions over IN, F = (φ(n)

i )i∈IN, i.e., an enumeration satisfying the Wagner-
Strong axioms [23]. A function < ·, · >: IN × IN −→ IN is a pairing function if it
is bijective, and its inverses (·)1, (·)2 : IN −→ IN satisfy the following properties:

1. < (z)1, (z)2 >= z;
2. (< x, y >)1 = x, (< x, y >)2 = y.

In what follows we will use only computable pairing functions. It is a common
practice to use paring functions to extend unary functions to functions having
more than one argument by defining : φ

(2)
i (x, y) = φ

(1)
i (< x, y >), and to consider

that indexes of algorithms are encodings of algorithms over a finite alphabet Ap.
In case p = 2, the encoding is over the binary alphabet.

We refer the reader to [8,15] for more on computability, computable functions,
and recursive function theory.

In [4,5], the definitions of direct and dual complexity measures are stated in
a formalism similar with what follows.
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Let G ⊆ F , G = (φ(n)
i )i∈I be a class of algorithms. A function m : I −→ IN is

called a (direct) complexity measure [3,5] if satisfies:

1. (Computational axiom) m is computable;
2. (Re-computational Axiom) the set {j | m(j) = n} is computable;
3. (Cofinitness Axiom) #{j | m(j) = n} < ∞.

In [5], additional axioms are considered for defining axiomatic complexity mea-
sures:

4. (Re-constructibility Axiom) For any number n, it is possible to build all
algorithms A from G for which m(A) = n.

5. (Compositional Axiom) If A ⊆ B, then m(A) ≤ m(B).

Since the relation “ ⊆“ between algorithms is usually defined depending on some
encoding of the algorithm, for the moment we will only consider axioms 1–4.

Definition 1. A space (G, m) satisfying axioms 1–4 is called Blum static com-
plexity space.

However, the axioms considered in [5], beside the axioms 1–5, are obviously
satisfied by most usual measures.

Definition 2. [5] Let d : IN −→ IN be a function. An algorithm U : IN×IN ◦−→IN
is called d-universal for the set G = (ψi)i∈I , if ψi(n) = U(d(i), n), for all i ∈ I
and n ∈ IN.

If U is a two argument universal algorithm for the algorithms with one argument,
i.e., U(i, x) = ψuniv1(i, x) = ψi(x), then U is 1IN-universal for G.

Given a complexity measure m : I −→ IN and ψ ∈ G, the dual to m with
respect to φ is1 m0

ψ(x) = min{m(y) | y ∈ I, ψ(y) = x}2.
In what follows we set the convention that a function f : INk −→ IN, when

applied to a string w ∈ A∗
p is in fact the function f applied to string−1(w),

and when the result is in A∗
p, we apply the function string to the result of f .

Thus, we do not distinguish between a number n ∈ IN and its representation
string(n) ∈ A∗

p.
If I is the encoding of algorithms over Ap, then m(I) is usually the length

of the encoding; in this case, m0
φ is called dual to length complexity of x, with

respect to the algorithm φ. 3

Since the measure m satisfies the Cofinitness Axiom 3, we can define the
maximum complexity of objects having a certain measure as:

ΣG
φ (n) = max{m0

φ(x) | m(x) = n}.
1 min∅ = ∞.
2 We can consider that I is embedded in IN.
3 In this case, if we would not use the convention just established above, we would

write φ(string−1(y)) = x instead of φ(y) = x.



74 C. Câmpeanu

Example 1. If m(y) = |y|, we analyze the dual to the length complexity measure
for the following classes:

1. G = {f ∈ F |, dom(f) is prefix free},
2. G = F .

In both cases, we have I = A∗
p.

m0
φ(x) = min{|y| | ψ(y) = x}, which is exactly the definition of prefix, or

plain complexity of function ψ ∈ G.
Both classes have universal d-algorithms, as follows:

– Let e : IN −→ A∗
p be an enumeration of prefix free functions ψi(y) = φe(i)(y).

Then ψi(y) = φe(i)(y) = φuniv1 (e(i), y). Here we have two options:
1. U(i, y) = φuniv1 (e(i), y) and d(i) = i (U /∈ G),
2. U(i, y) = φuniv1 (i, y) and d(i) = e(i). In this later case U ∈ G, ψi = φe(i).

– φi(y) = ψuniv1 (i, y) = U(d(i), y), U = ψ
(2)
univ1

, d(i) = i, φi = ψi.

We set

CG(x) = inf
i∈I,y∈I

{m(i) + m(y) | ψi(y) = x} (1)

and

CG
τ (x) = inf

y∈I
{m(y) | ψ(y) = x}. (2)

The superscript G, may be ignored when it is understood from the context and
we write Cψ(x) = CG

ψ(x), and C(x) = CG(x).
If there exists i0 such that for all i ∈ I, there is a c ∈ IN such that:

Cψi0
(x) ≤ Cψi(x) + c, (3)

then the algorithm ψi0 is an universal algorithm for the family G.
In case we do have an universal algorithm i0 for G, it follows that: CG(x) ≤

CG
i0

(x)+m(i0) ≤ CG
i (x)+m(i0)+ c(i0, i), for all i ∈ I. Hence, CG(x) = CG

i0
(x)+

O(1).

Lemma 1. Let ψ be an universal algorithm for G. Then

C(x) = Cψ(x) + O(1).

In [5] it is shown that all universal algorithms for a class G differ by a constant,
result that is now a consequence of Lemma 1.

For cases when the universal algorithm cannot be one of the algorithms of the
family considered, we use the complexity as it is defined by (1). For all other
cases it is more convenient to use the complexity to be equal to Cψ .

In the next section we study some conditions for the existence and computabil-
ity of universal algorithms.
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3 Universal Algorithms

In this section we study the existence of universal algorithms for a given Blum
static complexity space. In the first part we study the existence of universal
algorithms for subsets of total computable functions, while in the second part
we focus our attention on family of functions having the computational power
comparable to Turing Machines.

3.1 Families of Totally Defined Functions

We prove that for families of functions for which the growth of the complexity is
bounded by a linear function, we do not have universal algorithms. Also, these
families are considered over A∗

p, where the measure m is the usual length | · |.
Let T = (τi)i∈I be a set of computable, total functions over A∗

p, and < ·, · >:
IN2 −→ IN, be a paring function.

Theorem 1. If T is a family of total computable functions satisfying the fol-
lowing two properties:

1. for every τ ∈ T , there exists a function Bτ such that

|τ(xy)| ≤ |τ(x)| + Bτ (|y|),

2. for every M > 0, there is i ∈ I and x such that |τi(x)| > |x| · M ,

then there is no universal function for T in T .

Proof. Using the first property, we deduce that for every τ ∈ T , there is Bτ ∈ IN
such that

|τ(x)| ≤ Bτ (1) · |x| + O(1).

Assume there is an universal function τi0 for T , i.e., for every x ∈ A∗
p, there is

x′ ∈ A∗
p, such that: |x′| ≤ |x|+ c and τi0(x′) = τi(x). Thus, using the hypothesis

of the second condition of our theorem, for any M > 0, there is an i such that:
M · |x| ≤ |τi(x)| = |τi0(x′)| ≤ |x′| · Bi0 + ci0 ≤ (|x| + c) · Bi0 + ci0 , for some
constant ci0 and Bi0 = Bτi0

(1). Hence,

M · |x| ≤ |x| · Bi0 + c · Bi0 + ci0 ,

holds for all x ∈ A∗
p. But this is true for all values of M , including 2Bi0 . Hence,

Bi0 |x| ≤ c · Bi0 + ci0 , i.e., |x| ≤ c·Bi0+ci0
Bi0

, which cannot be true for all x. ��

It is relatively easy to check that functions that are realized by functional trans-
ducers satisfy the above theorem (see [9], for example). Although we may have
an universal function U for T , that function U cannot be one of the functions
in T .

Thus, Theorem 9 in [9] is a corollary of Theorem 1.
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Definition 3. We say that a family of computable functions encodes algorithm
ψi if there exists i0 ∈ I, and a computable function E : A∗

p −→ A∗
p, such that for

every x ∈ A∗
p, there exists u = E(x) ∈ A∗

p, with τi0 (u) = ψi(x).

The complexity of the family T is defined by (1), the following theorem is a
straightforward generalization of Theorem 13 of [9], and the proof is obvious.

Theorem 2. For any τi ∈ T , we have that:

C(x) ≤ Cτi(x) + m(i).

Corollary 1. If identity function can be encoded by T , then the complexity C
is computable.

Proof. It is enough to observe that C(x) is bounded by the sum m(E(x))+m(i0),
where E is the encoding for the identity function φj0 = 1A∗

p
, φj0(x) = x. We

then use the Cofinitness Axiom and Re-computational Axiom to compute C. ��

As we could see, all these results are generalization of the ones obtained by
Cristian Calude in [9], where it is implicit proved that the class of functions
computed by deterministic sequential transducers is a Blum static complexity
space.

3.2 Encodings of Computable Functions

Very often, properties of Kolmogorov complexity are proved for a specific en-
coding (usually, either plain or prefix-free version) by using a very specialized
construction that works only for that model. Furthermore, many authors claim
that the property should be valid for any other encoding, without any proof. To
close this loophole, I think is important to check what should be the properties
of the encoding that preserves most of the results, and what are the properties
of a certain encoding that allow us to differentiate it from other encodings.

In this section we start this study by proposing simple properties of encodings
as follows.

Let e and E be two computable functions satisfying the following properties:

1. E is injective and is a length increasing function in the second argument,
i.e., there exists ce, such that if |x| ≤ |y|, then |E(i, x)| ≤ |E(i, y)| + ce.

2. |E(i, x)| ≤ |E(i′, x)| + η(i, i′), for some function η : IN2 −→ IN.

Definition 4. We say that the family G = (ψj)j∈J is an (e, E)-encoding of the
family H = (μi)i∈I , if for every i ∈ I and all x ∈ IN, we have that:

1. μi(x) = ψe(i)(E(i, x)), for all i ∈ I and x ∈ IN,
2. if ψj(z) = x, then e(i) = j and E(i, y) = z, for some i ∈ I and y ∈ IN.

Theorem 3. If H has an universal algorithm in H, and G is an encoding of H,
then G has an universal algorithm in G.
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Proof. Let us assume that μi(y) = x. Then, using 2 of Definition 4, it follows
that j = e(i), y = E(i, z), and μi(z) = x. Using the universality property for H,
we get: μi0(z′) = x for some z′ such that |z′| ≤ |z|+c. Thus, ψe(i0)(E(i0, z′)) = x,
and

|E(i0, z′)| ≤ |E(i, z′)| + η(i0, i) ≤ |E(i, z)| + η(i0, i) + ce.

But ψi(z) = x, and ψe(i0)(E(i0, z′)) = x. ��

A Blum static complexity space G closed under composition, which encodes F , is
called Blum universal complexity measure. It is easy to check that any encoding
of Turing machine model is a Blum universal complexity measure. In case G
encodes F , then (G, m) is called Blum universal static complexity space (BUSC).
One can check that (Prefix-free) Turing Machines, together with their sizes, form
a Blum universal static complexity space. Thus, it is natural to check if common
properties of plain and prefix-free versions of Kolmogorov-Chaitin complexity
can be proved in the general context of Blum universal static complexity.

4 Properties of Blum Static Universal Complexity
Measures

In this section we verify if general properties of Kolmogorov-Chaitin complexity
hold for the general case of a Blum universal static complexity space. Even
though most proofs make extensive use of particular properties of the object
constructed (like in [7], for example), the expectation would be that most of the
proofs for the general case will just resemble previous proofs for Kolmogorov-
Chaitin complexity. However, there are few technicalities that must be taken
care of, which are essential in proving the new results.

Let us fix a Blum universal static complexity space (G, m) with universal
algorithm ψi0 .

Theorem 4. The set Ct = {x ∈ A∗
p | CG(x) ≥ m(x) − t} is immune.

Proof. Assume by absurd that the set is not immune, and we can enumerate an
infinite part D ⊆ Ct. We define the function:

F (0i1) = min{x ∈ D | m(x) > m(E(i, 0i1)) + 2i + 1 + t},
thus F = φj . Now φj(0i1) = ψe(i)(E(i, 0i1).
But F (0i1) ∈ D ⊆ Ct, thus
CG(F (0i1)) ≥ m(F (0i1)))− t > m(E(i, 0i1))+ 2i + 1 + t− t = m(E(i, 0i1))+

2i + 1.
Hence, for an infinity of i’s, we have
m(E(i, 0i1)) + 2i + 1 < CG(F (0i1)) ≤ CG

e(i)(F (0i1)) + c ≤ m(E(i, 0i1)) + c,
i.e., 2i + 1 < c, which is impossible. ��

Corollary 2. The function CG is not computable.

Proof. If CG is computable, so is the predicate: P (x) = 1 iff CG(x) > m(x) − t.
Then Ct is not immune. ��
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For x ∈ IN, if y is such that m(y) = CG(x) and y = min{z ∈ IN | ψi0(z) = x},
then y is called the canonical program of x and it is denoted by x∗.

The canonical program of x is x∗ = min{y ∈ A∗
p | ψi0(y) = x}.

Corollary 3. The set of canonical programs is immune and the function f(x) =
x∗ is not computable.

Theorem 5. The set of canonical programs CP is immune.

Proof. We fix the universal computer ψ ∈ G. Since (G, m) is Blum universal, we
can construct the following computer: D(u) = ψ(ψ(u)) = ψj0(u).

If z = x∗ and x = y∗, then we have:
D(z) = ψ(ψ(z)) = ψ(ψ(x∗)) = ψ(x) = ψ(y∗) = y.
Hence, CG

D(y) ≤ m(z) = m(x∗) = CG(x), and
m(x) = m(y∗) = CG(y) ≤ CG

D(y) + c ≤ CG(x) + t, for some constant t. This
means that if x ∈ CP , then CG(x) ≥ m(x)− t, i.e., CP ⊆ Ct. But Ct is immune,
thus CP must be also immune. ��

We say that a string is t-compressible if C(x) < Σ(|x|) − t, and that is t-
incompressible if CG(x) ≥ Σ(|x|) − t. A t-incompressible element is also called
random in (G, m) and the set of all these elements is denoted by RANDG

t .
Given the fact that #{x ∈ An

p | CG(x) < n− t} ≤ pn−t−1
p−1 < pn, it follows that

ΣG(n) ≥ n, regardless of the class of algorithms considered and the complexity
measure chosen.

Corollary 4. The set RANDG
t is immune.

Proof. RANDG
t ⊆ Ct. ��

5 Conclusion

In this paper we show that the original Blum axioms, with minor additions, can
be used to prove results for static complexity for both computable and uncom-
putable measures. The existence of the Universal algorithm is guaranteed in any
models encoding Turing Machines. We identify a class of families of algorithms
without universal algorithms, but having a computable complexity; this class
contains the family of algorithms computed by deterministic sequential trans-
ducers.

It is interesting to see that defining randomness in terms of minimal descrip-
tion size (MDS), most results on random strings are recovered for the case of
BUSC. We expect that Solovay’s theorems [30] relating plain to prefix-free com-
plexity, can be proved in a more general framework, thus we can unveil the way
of uniform usage of definitions for random strings and random sequences.

Acknowledgement. To Cristian Calude, for introducing me to this area of
research and encouraging this approach.
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Abstract. Cristian Calude et al. in [5] have recently introduced the idea
of measuring the degree of difficulty of a mathematical problem (even
those still given as conjectures) by the length of a program to verify or
refute the statement. The method to evaluate and compare problems, in
some objective way, will be discussed in this note. For the practitioner,
wishing to apply this method using a standard universal register machine
language, we provide (for the first time) some “small” core subroutines
or library for dealing with array data structures. These can be used to
ease the development of full programs to check mathematical problems
that require more than a predetermined finite number of variables.

1 Introduction

In mathematics, when working on (or deciding to study) a new open problem
or conjecture, one often wonders how difficult to solve the task will be. Most
times, the human intuition is not so accurate—consider the diverse difficulty
level of Hilbert’s list of open problems that were proposed at the beginning of
the twentieth century [17]. A proposal for using program-size complexity was
developed in [5] to measure the relative difficulty between both solved and con-
jectured mathematical problems. In that original paper and subsequent papers
(e.g. see [2,3,4,16]) many concrete measurements (rankings) in difficulty have
been done on a wide-range of problems: Goldbach Conjecture, Collatz 3x + 1
Conjecture, Riemann Hypothesis, Palindrome Conjecture, Fermat’s Last The-
orem, Dyson’s Conjecture and the Four Color Theorem, among others. This
method of comparison is based on using a very simple (but Turing-complete)
model of computation based on register machine language specifications. This
very low-level language allows for, in our opinion, a better comparison between
mathematical problems that arise in totally different fields of mathematics such
as statements in number theory versus graph theory.

Proof. Arrays of non-negative integers are fundamental to computer science. We
can view the integer elements as an encoding of other data types,
especially if there is a simple enumeration of the objects. Many combinatorial
objects (of a fixed size) can be ranked as an integer and thus the integer ele-
ments of the array could easily be a natural way to store sets, permutations, and
trees (see [15]). One also sees other data structures as being built upon arrays,
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c© Springer-Verlag Berlin Heidelberg 2012



82 M.J. Dinneen

such as adjacency matrices or adjacency lists for graphs [14]. Further, if the
individual elements of an integer array are restricted to values of 0 and 1 then
we essentially have a bit vector. Thus, there is a need to easily process the
array data structure in any programming language. In this paper we develop
a program-size efficient array library for register machines. This will hopefully
then lessen the development time of writing small programs for comparing the
difficulty of mathematical problems. As a further application, we note that when
register machine subroutines become more complicated (e.g. by having more
than two arguments) passing an encapsulated array of arguments as a single
register argument should reduce the complexity of both the development process
(ensuring correctness) and probably the overall size of the code. ��

The rest of this paper is organized as follows. In the next section we briefly spec-
ify our method for measuring the level of difficulty of mathematical problems
and conjectures by program-size complexity. In Section 3, we give details of a
register-machine language that is used to specify programs that can check math-
ematical problem statements for correctness (never halts) or refute them (halts
after finding a counter-example). In Section 4, we give some sample number-
theoretic examples, specified as register machine subroutines. In Section 5, we
present a new set of register machine subroutines for creating and manipulat-
ing arrays of integers stored in a single register. Finally, in the last section, we
conclude with some final remarks and open problems.

2 The Method

Consider a prefix-free (self-delimiting) Turing machine M that reads, in a single
pass, the program’s binary input data x. If M successfully halts on input x, we
write M(x) < ∞. If M goes in an infinite loop or crashes, we say M(x) = ∞.
Our method also requires that a program successfully halts only after all of the
data is read1.

We know that there exists a universal self-delimiting Turing machine U , such
that for every self-delimiting Turing machine M and any input x, there is a string
p (depending upon U and M , but not of x) such that U(px) = M(x). The halting
probability of U , denoted by ΩU (and called Chaitin’s Omega number, [13,18])
is defined by ΩU =

∑
U(w)<∞ 2−|w|, where |w| denotes the length of w = px.

With the first n digits of ΩU , we can solve the Halting Problem for all programs
w of length at most n.

The basic types of mathematical problems or conjectures that we are initially
interested in have the following form: (∀N)P (N), where P is a computable
predicate on N . Fermat’s Last Theorem is a simple example: (∀(n, a, b, c) ≥
(3, 1, 1, 1))(an + bn 	= cn). To make sure we cover all cases we would write our
Fermat checking program to enumerate all n+a+ b+ c = k, as k starts at 6 and
1 This is because we will represent a program p (for M) and its input x as a con-

catenated string px and require that no valid program can be obtained as a proper
extension of another valid program.
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increases to ∞. This approach can be extended to other finitely refutable prob-
lems with alternating quantifier symbols: Q1n1Q2n2 . . .QknkP (n1, n2, . . . , nk),
where Qi ∈ {∀, ∃}, 1 ≤ i ≤ k, and P is a predicate over variables n1, n2, . . . , nk.
For more details see Section 5 of [2].

Consider now a mathematical problem Π , for which we can construct a pro-
gram MΠ , such that Π is false if and only if U(MΠ) < ∞ (if such a program
exists). Note the input data x in these cases is empty since the program itself will
enumerate through the problem domain space to verify or refute the problem
Π . We define the “difficulty” of a problem Π by the minimal number of bits
of ΩU necessary to test whether MΠ terminates on U . Note that computing an
arbitrary prefix of ΩU is uncomputable (see [1]) so we do not expect to solve
Π with this method. But we can get a feeling (upper bound) for the difficulty
of solving Π with respect to other solved/unsolved problems Π ′ based on their
relative program sizes.

3 A Universal Self-delimiting Turing Machine

In this section, we will briefly describe the syntax and the semantics of a register
machine program which implements a (natural) universal self-delimiting Turing
machine; it is a refinement of the languages described in [13,8,7]. Instead of
using the specification of general Turing machines, we use a more practical, but
Turing-equivalent, register machine model, which is similar to assembly language
for modern digital computers.

Any register machine has a finite number of registers, each of which may
contain an arbitrarily large non-negative binary integer. The list of instructions
is given below in two forms: our compact form and its corresponding Chaitin
style version. The main difference between Chaitin’s implementation and the
one in [5,7] is in the encoding: we use 4 bits instead of 8 bits per character. We
note that a more recent variation of the machine uses variable length encodings
of both register names and integer constants (see [3,4]).

By default, all registers, labeled with a string characters (restricted to ‘a’ to
‘h’ for 4-bit model), are initialized to 0. It is a syntax error if the first occurrence
of register j appears before register i in a program, where j is lexicographic
greater than i. Also, all registers that are lexicographically less than j must
have occurred. Instructions are labeled by default with 0, 1, 2, . . . (in binary).

The register machine instructions are listed below. Note that in all cases R2
denotes either a register or a binary constant (non-negative integer) of the form
1(0 + 1)∗ + 0, while R1 and R3 must be register variables. We also note that
some models (e.g. a different universal register machine such as given in [3])
allow for the third operand R3 to also be a non-negative integer constant. This
relaxation makes the programmer’s task a little easier since registers do not need
to be allocated with target line numbers for both subroutine calls and branching
statements. For this paper, with subroutines being relatively small, we use the
originally restricted universal machine model.
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=R1,R2,R3 (EQ R1 R2 R3)

If the contents of R1 and R2 are equal, then the execution continues at the R3-th
instruction, where R3 = 0 denotes the first instruction of the program. If they
are not equal, then execution continues with the next instruction in sequence. If
the content of R3 is outside the scope of the program, then we have an illegal
branch error.

&R1,R2 (SET R1 R2)

The contents of register R1 is replaced by the contents of register R2.

+R1,R2 (ADD R1 R2)

The contents of register R1 is replaced by the sum of the contents of registers
R1 and R2.

!R1 (READ R1)

One bit is read into the register R1, so the numerical value of R1 becomes either
0 or 1. Any attempt to read past the last data-bit results in a run-time error.

% (HALT)

This is the last instruction for each register machine program before the raw
data. The program halts the execution in two possible states: either successfully
halts or it halts with an under-read error.

A register machine program consists of a finite list of labeled instructions from
the above list, with the restriction that the HALT instruction appears only once,
as the last instruction of the list. The input data (a binary string) follows im-
mediately after the HALT instruction. A program that does not read the whole
input data or attempting to read past the last data-bit results in a under-read
run-time error. Some programs (as the ones presented in this paper) have no
input data.

To aid the presentation and development of the programs we use a consistent
style for subroutines. We use the following conventions:

1. The letter ‘L’ followed by characters (usually 1, . . . , 9) and terminated by ‘:’ is
used to mark line numbers. These are local within the subroutine. References
to them are replaced with the binary constant in the final program.

2. For unary subroutines, registers a = argument, b = return line, c = answer
(a and b are unchanged on return).

3. For binary subroutines, registers a = argument1, b = argument2, c = return
line, d = answer (a, b and c are unchanged on return).

4. For subroutines, registers r0,r1,. . . are used for temporary values and prob-
ably need to be initialized (for correctness). These are replaced by non-
conflicting global registers e, f, . . . in the final programs (a 4-bit model using
‘a’ to ‘h’ characters and an 8-bit or variable compressed models allowing ‘a’
to ‘z’ in character strings).

5. For Boolean data types we use integers 0 = false and 1 = true.



A Program-Size Complexity Measure for Mathematical Problems 85

4 Sample Register Machine Subroutines

For completeness and as a starter set of examples, we now include some fun-
damental number-theoretic algorithms from [5] that will be used in the next
section. We have included a smaller-sized version of the subroutine MUL, which
yields a slightly smaller complexity for those problems that rely on it. This high-
lights the fact that we are more interested in program size and not running time
efficiency, since the new subroutine is slightly slower when register a has the
value of zero.

// Cmp(a,b) returns 0,1,2
&d,0 // 0 if a=b
=a,b,c
+d,1 // 1 if a<b
&r0,a
&r1,b
&r2,L1
&r3,L2

L1: +r0,1
+r1,1
=r0,b,c
=r1,a,r3

=a,a,r2

L2: +d,1 // 2 if a>b
=a,a,c

// Sub(a,b) returns a-b
&d,0
=a,b,c // assumes a>=b
&r0,b
&r1,L1

L1: +d,1
+r0,1
=a,r0,c
=a,a,r1

// Mul(a,b) returns a*b
[original version] [reduced version]

&d,0
=a,0,c
=b,0,c
&r0,L1
&r1,1
+d,a

L1: =r1,b,c // check if done
+r1,1
+d,a
=a,a,r0

&d,0
&r0,L1
&r1,0

L1: =r1,b,c
+r1,1
+d,a // add a=0 is okay
=a,a,r0

// Div(a,b) returns integer floor of a/b, assumes b>0
&r0,L1
&r1,L2
&r2,a // copy of a (variable not used in Cmp & Mul)
&r3,b // copy of b
&r4,c // copy of c
&r5,1 // initial answer
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&c,L0
&d,Cmp
=a,a,d // call Cmp(a,b)

L0: &c,r2

=d,0,r0

=d,2,r1

&d,0 // else a < b so return 0
=a,a,c

L1: &d,1 // a=b so return 1
=a,a,c

L2: &c,L5
&r6,Mul
&a,r5

=a,a,r6

L5: &a,d // just computed ad*b
&b,r2

&c,L6
&r6,Cmp
=a,a,r6 // call Cmp(ad*b,a)

L6: &b,r3 // reset b
&r6,L3
=d,1,r6

&r6,L4
=a,a,r6

L3: +r5,1 // still <
=a,a,r1

L4: &d,r5

&a,r2 // unpop input parameters
&b,r3

&c,r4

=a,a,c

// Mod(a,b) returns a mod b, assumes b>0
&r0,a // copy of parameters
&r1,b
&r2,c
&c,L0
&d,Div
=a,a,d // call Div(a,b)

L0: &a,d
&c,L1
&d,Mul
=a,a,d // call Mul(a/b,b)

L1: &a,r0

&b,d
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&c,L2
&d,Sub
=a,a,d // call Sub(a,[a/b]*b)

L2: &b,r1

&c,r2

=a,a,c

5 Array Data Structure Library

We now propose a standard way to represent arrays (also called lists, sequences
and vectors) inside a single register variable. Basically we use bits of value 1 of
the binary representation of an integer to denote (leading) separators or markers
of the array elements. If there are no 1’s (e.g. the register has value 0) then
this represents an array of size 0. An integer element ai within an array a is
represented as a sequence of ai bits of value 0. For example the array a =
[a0, a1, a2] = [4, 0, 1] is represented in binary as 10000110 or in decimal as 134.
The function depencancies of the new array library and those methods given in
the previous section are illustrated below in Figure 1.

Cmp(a,b) Mul(a,b) Sub(a,b)

Div(a,b) Mod(a,b)

Div2(a) Mod2(a)

Size(a)

Value(a,b)

ArrayBits(a)

Append(a,b)

SetValue(a,b,c)

ArrayInit(a,b)

arithmetic core library

array library

GCD, isPrime, ...

Fig. 1. Depanancies between earlier arithmetic library and the array library

We first start our array library with a utility subroutine that returns the
internal bit size of an array (e.g. ArrayBits([4,0,1])=8). This can be omitted
from a register machine program, if not required.
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// ArrayBits(a) returns number of bits needed to represent array a
// For 2k ≤ a < 2k+1, returns k + 1; special case ArrayBits(0)=0

&r0,b // save return line number
&c,L0
&r1,CMP
&r2,0 // current k
&b,1 // current 2k

=a,a,r1

L0: =d,1,L1 // check if found a < 2k+1

+r2,1
=d,0,L1 // check if found 2k = a
+b,b // double b gives 2k+1

=a,a,r1

L1: &c,r2

&b,r0

=a,a,b

Next we give a required core method of determining the capacity size (or length
or dimension) of an array in terms of how many elements it contains. This is
simply done by counting the number of bits of value 1 in the array register a.

// Size(a) returns number of elements of a, when viewed as an array
&r0,a
&r1,b
&r2,0 // number of 1 bits found will equal the array size
&r3,L3 // exit section
&r4,L1
&r5,Mod
&r6,Div
&b,2 // we have b=2 for both Mod and Div calls
&c,L0 // where to return after Mod
=a,a,r5

L0: =d,0,r4 // another zero so skip tally line
+r2,1 // else increment bit tally

L1: &c,L2
=a,a,r6 // shift bits left by dividing by 2

L2: &a,d
=a,0,r3 // if no more bits exit to L3
&c,L0
=a,a,r5 // else repeat by calling Mod

L3: &a,r0

&b,r1

&c,r2

=a,a,b
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Note that if the subroutine Mod is not needed for any other part of the program,
one can replace it with a smaller specialized Mod2 subroutine that just returns
the last bit of the binary representation. The idea for the following routine was
motivated by Hertel’s program-size reduction in [16] that showed that we do
not need the full Mod subroutine if one just wants to decide if an integer divides
another.

// Mod2(a) returns a mod 2, or last (low order) bit of a
&r0,0 // count up to value of a
&r1,L0
&r2,L1

L0: &c,0 // even value
=a,r0,r2

+r0,1
&c,1 // odd value
=a,r0,r2

+r0,1
=a,a,r1

L1: =a,a,b

A customized and shorter version of Div2 to “shift bits right” that replaces
the need for Div is also possible. One way is to have a counter c and have the
program stop when 2c = a or 2c + 1 = a. We leave the register machine details
of Div2 to the reader. Note to multiply a register by two or “shift bits left” one
just adds a register to itself.

It is easy to append new elements to an array making our representation a
somewhat dynamic data structure (think of ArrayList in Java or vector in
C++). Other methods for inserting and removing elements are also possible but
the code is omitted here.

// Append(a,b) appends element b to end of array a (d not changed)

&r0,0 // loop counter

&r1,L1

&r2,L0

+a,a // a=2*a+1 for another element (1 as list separator)

+a,1

L0: =r0,b,r1

+a,a // shift 0 to end until we represent b in unary

+r0,1

=a,a,r2

L1: =a,a,c // return new array

For convenience we need a way to create an array of a fixed size. The constructor
for creating an array of b elements, with all elements initialized to zero, is as
follows.
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// ArrayInit(a,b) initializes register a to an array of size b
&a,0 // clear array
&r0,0 // loop counter
&r1,L1
&r2,L0

L0: =r0,b,r1

+a,a // shift 0 to end until we represent b in unary
+a,1 // change last 0 to 1
+r0,1
=a,a,r2

L1: =a,a,c // return new array

The standard method for obtaining element ab from an array a = [a0, a1, . . . ,
an−1] is presented next. Note, to keep the program size as small as possible, we
do not check that the index b is within the array’s index range, which is at most
n − 1 = Size(a) − 1.

// Value(a,b) returns d=a[b]; assumes b<Size(a)
&r0,a // copy parameters and label registers
&r1,b
&r2,c
&r3,Size
&r4,Sub
&r5,Mod
&r6,Div
&b,L0
=a,a,r3 // compute Size(a)

L0: &a,c
&b,r1

+b,1
&c,L1
=a,a,r4 // index from left is offset = Size(a)-(b+1)

L1: &r7,d
&r8,0 // counter of number of times a bit of value 1 seen
&r3,L2 // recycle r3 since finished with Size
&r9,L5 // goto L5 when we find the element index
&a,r0

&b,2 // we now use b=2 for both Mod and Div calls
L2: =r7,r8,r9

&c,L3
=a,a,r5 // get last bit using Mod

L3: +r8,d // add remainder to our 1 bit count
&c=L4
=a,a,r6

L4: &a,d // divide a by two and repeat to L2
=a,a,r3
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L5: &r8,0 // now count the number of zeros until preceding 1
&r3,L6
&r9,L9

L6: &c,L7
=a,a,r5 // get last bit using Mod

L7: =d,1,r9 // check end of item
+r8,1 // else increment element value
&c=L8
=a,a,r6

L8: &a,d // divide a by two and repeat to L6
=a,a,r3

L9: &a,r0 // restore arguments and return answer
&b,r1

&c,r2

&d,r8

=a,a,c

Finally to change the value of elements of an array we need a method to update
the array. This is easily done by creating a new array with the prefix elements,
new element and suffix elements concatenated together (using our Append sub-
routine). The template structure for this register machine subroutine SetValue
is given next, where we use register d as the return line (no explicit value is
returned).

// SetValue(a,b,c) alters element a[b]=c; assumes b<Size(a)
&r0,a // copy parameters
&r1,b
&r2,c
&r3,0 // create new array r3

&r4,Append

Append a[0..b-1] to r3 by using Value(a,i) calls

L0: &a,r3 // now Append parameter c to r3

&b,r2

&c,L1
=a,a,r4

L1: &r3,a

Append a[b+1..Size(a)-1] to r3 by using Value(a,i) calls

L2: &a,r3 // assign new array r3 to a and return
&b,r1

&c,r2

=a,a,d
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6 Final Comments

We have promoted a complexity model, based on minimum program sizes for a
simple universal register machine, that is easily used and objectively compares
the difficulty of mathematical statements and conjectures. In this paper we have
extended our earlier register machine’s core library of concise subroutines to
make it easier to deal with problems that are best implemented (both in terms
of bit length and human understanding of correctness) using the array data
structure.

We have mentioned in this paper that there are several variations for a uni-
versal machine to be used as the base for a complexity measure for problems.
Even for our proposed self-delimiting register machines there are seemingly small
variations such as allowing the argument R3 to be a constant or having the ma-
chine representation of variable length for each programming language token.
We believe the relative complexities between mathematical problems are pre-
served by small changes to the languages. In fact, if we just count the number of
instructions used per program, the complexity rankings are most likely to be the
same. So the actual machine-level encoding lengths probably do not need to be
exactly computed for a complexity comparison. However, if we used a different
model with more powerful primitive instructions this may not be the case (e.g.
think of the situation where a built-in IsPrime function is part of the language).

We end with some open problems and ideas for future work.

� Programming using the register machine language is not the most enjoyable
way of expressing mathematical problems. It would be nice to have an opti-
mizing compiler that could produce machine-level register machines from the
higher-level human-level specifications. It should support different encodings
and allow the users to compare their programs’ complexity (bit-length sizes)
under different models.

� For the refined or compressed universal register machine U proposed in [3], can
we predict how many initial bits ofΩU (if any) that can be computed? Compare
this value with the 40 bits that were computed for the first-generation register
machine of [8,7]. These first bit counts may indicate how far away we are from
actually solving mathematical conjectures such as the Riemann’s Hypothesis.
There are some other interesting questions such as suppose we can only com-
pute 20 bits for ΩU then one should expect that the same Riemann’s Hypothe-
sis program of [5] should encode to about half the length when using U . If not,
what are the reasons? Conversely, the encoding length of this program might
indicate how many bits we can anticipate for ΩU .

� In addition to having an explicitly specified library for dealing with arrays in
register machine language, there are other flavors and simple data structures
like dictionaries and graphs that would be nice to have at our disposal.
Focusing on arrays, it would be nice to see if a more efficient representation
can be used instead of the unary representation of integers that was used
here. Note we are still interested in small program-sizes of the subroutines so
it is not obviously clear, if reducing the data representation helps. However,
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suppose we know each element needs at most k bits (e.g. think of current
computers with 32-bit integer primitive data types), can we exploit this
property for a smaller array API (application programmers interface)?

� As a possible “home work” exercise, it would be nice to know what is the
smallest register machine program (or subroutine) that can sort an array of
integers using the proposed array representation and API.
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Abstract. This essay is inspired by Cristian Calude’s view on degrees
of randomness, in relation with “algorithmic randomness”. As a “proba-
bility person”, I am interested in “probabilistic randomness”, which can
be considered, within the omnipresent uncertainty, only in relation with
a real phenomenon/source. Both approaches would produce a character-
ization of “randomness”, as well as a hierarchy of randomness sources.
The degree of adequacy for probabilistic randomness can only be evalu-
ated by statistical procedures and it will serve for reliable predictions—
which represent the goal of the science “stochastics”, as stated by Jakob
Bernoulli in the beginning of the18th century.

Quantum randomness, produced by a natural source, can only be
evaluated in a relative way, when compared with randomness produced
by non-quantum sources. Genetic randomness represents the probabilis-
tic randomness of the actual, observable source of genetic information,
DNA. A degree of adequacy should be considered in this case, as express-
ing the degree the probabilistic model observes the variability and allows
reproducibility of the real phenomenon. Such a degree of adequacy can
be evaluated by statistical procedures.

1 Introduction

Randomness exists everywhere in our real environment. It is a feature which
makes the real phenomena truly interesting, allows diversity and evolution. Ac-
cording to Calude (2000), randomness is one of the most powerful driving forces
of life.

Modelling real phenomena goes back in ancient history. For millennia, deter-
ministic models were constructed to explain and interpret the surrounding world
and its facts.

It was not until the beginning of the 18th century when people started to
notice surrounding randomness. About the year 1700, Jakob Bernoulli drew
up the plan to inaugurate a new branch of science, which he called in Latin
“Ars conjectandi”, or, in Greek, “stochastike”. According to von Collani (2000),
Bernoulli had identified omnipresent “uncertainty” as a real-world aspect, suc-
ceeded in showing that “uncertainty” could be quantified, and was convinced
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that the new “science of prediction” would change the world for the better. Un-
fortunately, Jakob Bernoulli passed away in 1705 and his incomplete masterpiece
was eventually published only in 1713, by his nephew Nikolaus Bernoulli (see
also Bernoulli (1899)).

The adjective “random” is generally used to underline the fact that the corre-
sponding phenomenon has no specific pattern, purpose, or objective. Modelling
a random circumstance or event is relating it to a probability distribution. It was
Kolmogorov’s axiomatic (1933) which allowed the flourishing of “probabilistic
randomness”.

In parallel with development of computers, a new approach was consid-
ered, the “algorithmic randomness”. The term covers Martin-Löf, Chaitin,
Schnorr, Solovay and Hertling-Weihrauch randomness, among others. Accord-
ing to Chaitin (1975), a series of numbers is “random” if the smallest algorithm
capable of specifying it to a computer has about the same number of bits of in-
formation as the series itself. This definition was independently proposed around
1965 by A. N. Kolmogorov in USSR and by G. Chaitin in USA.

At this stage, the issue of “degrees of randomness” appears natural. According
to Calude (2004), “degrees of algorithmic randomness” can be identified in the
sense of algorithmic information theory, Calude (2002). Quantum experimental
processes produce measurements which lead to randomness. The irreducible in-
determinacy of individual quantum processes postulated by Born (1926) could
be interpreted to allow for the production of “random” finite strings, hence
“quantum randomness”.

A similar issue can be explored for probabilistic randomness in relation to
a real–life phenomenon, hence the “degree of adequacy” for probabilistic ran-
domness should be considered and evaluated. One could start from a genuine,
observable source of randomness, the source of genetic information–DNA. What
would be the degree of adequacy for “genetic randomness”?

2 Algorithmic Randomness and Quantum Randomness

Questions about degrees of algorithmic randomness are studied in algorithmic in-
formation theory. Four types could be identified: (i) standard pseudo-randomness
produced by software such as MATHEMATICA or MAPLE, which are not only
Turing computable but cyclic; (ii) pseudo-randomness produced by software
which is Turing computable but not cyclic (e.g. the digits of π, the ratio be-
tween the circumference and the diameter of an ideal circle, or Champernowne’s
constant); (iii) Turing incomputable, but not algorithmically random; and (iv)
algorithmically random. It seems this is a positive answer to the question “Do
the degrees of randomness mean anything?”

Here we summarise some ideas and conclusions in Calude et al. (2010) on the
position of quantum randomness with respect to the above mentioned degrees
of algorithmic randomness. Operationally, in the extreme form, Born’s postulate
could be interpreted to allow for the production of random finite strings; hence
quantum randomness could be of type (iv).
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But quantum randomness is postulated and is not at all a mathematical con-
sequence of the standard model of quantum mechanics. The legitimacy of the
experimental approach comes from characterisations of random sequences in
terms of the degrees of incompressibility of their finite prefixes. There is no a
priori reason to interpret Born’s indeterminism by its strongest formal expres-
sion (i.e. in terms of algorithmic randomness). Several tests based on algorithmic
information theory analysing algorithmic randomness have produced evidence—
with different degrees of statistical significance—of differences between quantum
and non-quantum sources.

But one would not be able to “prove absolute randomness”! Any claim of
randomness can only be secured relative to, and with respect to, a more or less
large class of laws or behaviours, as it is impossible to inspect the hypothesis
against an infinity of—and even less so for all—conceivable laws.

3 Probabilistic Randomness and Genetic Randomness

One can discuss about probabilistic randomness only when a probability field
(Ω,K, P ) is accepted as an “environment” for every mathematical item (in this
notation, K is the σ−field of all events). Thus, one can consider sets, functions,
families of functions as follows:

– every subset of Ω is a measurable set, M ∈ K, called “random event” and it
has an associated number, P (M) , called the probability of M ;

– every function X defined on Ω is a measurable function called “random vari-
able” or “random vector” and it has an associated probability distribution
P ◦ X−1;

– every family of functions depending on a “time parameter” t, {Xt, t ∈ T }
is a family of random variables called a “stochastic process” to which
one associates a family of finite dimensional probability distributions {P ◦
(Xt1 , ..., Xtn)−1

, t1 < ... < tn, n ∈ N+}.

So, a random item would be a mathematical item defined on a probability field.
Typically, random items should be models for real facts and phenomena which
can have different outcomes each time they occur.

In this approach, one cannot expect for any degrees of probabilistic random-
ness! But one should be able to say “the model (Ω,K, P ) is more adequate than(
Ω,K, P̃

)
” and a degree of random–adequacy could be taken into consideration!

Since the probability field (Ω,K, P ) is the central core of probabilistic ran-
domness, it should be directly connected to facts of the real life. This hope is
rarely fulfilled! One good example is Survey Sampling, where n−dimensional
samples are extracted from a finite, N−dimensional population by means of
some random procedure. In the case of sampling without replacement from the
finite population Π = {ω1, ω2, ..., ωN}, the sample space is
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Ω =
{
s = (ωi1 , ..., ωin) | ωij ∈ Π ∀j, ωij 	= ωit ∀j 	= t, j, t = 1, ..., n

}
,

K = P (Ω) , P : K → [0, 1] , with P ({s}) = 1
/(

N
n

)
for all s ∈ Ω.

Probability theory aims at developing an abstract structure of definitions and
theorems based on a system of axioms (such as Kolmogorov’s axiom system).
The elements and problems dealt with should be related with something real,
but this relation is not always obvious.

By contrast, according to von Collani (2000), Bernoulli’s “stochastics” aims
at investigating and quantifying uncertainty, i.e. variability, in order to make
reliable and accurate predictions in real world situations. A model is “adequately
random” with respect to a real phenomenon if it assures the reproducibility of
that phenomenon and it respects its variability.

Genetic randomness can be a good candidate for adequate probabilistic ran-
domness when we discuss about genetic information and its correct transmission
by means of the genetic code.

Let us discuss some models which express real facts from communication, the
information sources with discrete time T = Z and finite alphabet A, denoted(
AT ,FA, μ

)
, where AT is the set of all double-infinite sequences with letters

from A, FA is the σ−field generated by finite dimensional cylinders and μ is
a probability measure on FA. By An we denote the set of all strings (words)
of length n, and the set of all strings over the alphabet A is denoted A∗. The
terms “string” or “word, and “sequence” are quite natural for communication.
The main issue is the construction of μ, which would allow us to characterize the
information source and see to what degree it fits a real communication situation.
A brief notation for

(
AT ,FA, μ

)
is (A, μ) , as the broadcast of the source is

modelled by the probability measure μ.
An information source (A, μ) is called stationary if the distribution μ is shift

invariant; that is, the distribution of (Xt1+s, ..., Xtn+s) is independent of s for
any positive integer n and t1, ..., tn ∈ T.

– A stationary information source (A, μ) is called a source with independent
signals if for every t ∈ T the following condition is satisfied

Pr (Xt = xt | Xu, u ≤ t − 1) = Pr (Xt = xt) ,

for every xt ∈ A, where Pr (Xt = xt | Y ) denotes the conditional probability
of {Xt = xt} given Y.

– A source with independent signals is called a Bernoulli source if there exists
a probability distribution on A, {p (x) ≥ 0, x ∈ A,

∑
x∈A

p (x) = 1} such that

for every n and every n−dimensional string we have

μ (x1, ..., xn) =
n∏

i=1

p (xi) .

The brief notation for a Bernoulli source is (A, p (x)) .
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In algorithmic information theory, Bernoulli sources with uniform distribution
p (x) = 1/ | A |, for all x ∈ A are of the highest interest, as they produce indepen-
dent, equally probable signals from A and, for every n and every n−dimensional
string, we have μ (x1, ..., xn) = (1/ | A |)n .

– A stationary information source (A, μ) is called a Markov source if it satisfies
the condition

Pr (Xt = xt | Xu, u ≤ t − 1) = Pr (Xt = xt | Xt−1) ,

for every xt ∈ A.

For a Markov source there exists a probability distribution on A,{
p (x) ≥ 0, x ∈ A,

∑
x∈A

p (x) = 1

}
,

and a stochastic matrix{
‖ p (x′ | x) ‖x,x′∈A, p (x′ | x) ≥ 0,

∑
x′∈A

p (x′ | x) = 1 ∀x ∈ A

}

such that, for every n > 1 and every n−dimensional string we have

μ (x1, ..., xn) = p (x1)
n∏

i=2

p (xi | xi−1) .

The brief notation for a Markov source is (A, p (x) , p (x′ | x)) .

– A stationary information source (A, μ) is called a Markov source of order r
if it satisfies the condition

Pr (Xt = xt | Xu, u ≤ t − 1) = Pr (Xt = xt | Xu, t − r ≤ u ≤ t − 1) ,

for every xt ∈ A.

For a Markov source of order r there exist a probability distribution on Ar,⎧⎨⎩p (x1, ..., xr) ≥ 0, x1, ..., xr ∈ A,
∑

x1,...,xr∈A

p (x1, ..., xr) = 1

⎫⎬⎭
and a transition probability matrix⎧⎪⎨⎪⎩

‖p (xr+1 | x1, ..., xr)‖x1,...xr,xr+1∈A , p (xr+1 | x1, ..., xr) ≥ 0,∑
xr+1∈A

p (xr+1 | x1, ..., xr) = 1 ∀x1, ..., xr ∈ A

⎫⎪⎬⎪⎭
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such that for every n > r and every n−dimensional string we have

μ (x1, ..., xn) = p (x1, ..., xr)
n∏

i=r+1

p (xi | xi−1, ..., xi−r) .

The brief notation for a Markov source of order r is

(A, p (x1, ..., xr) , p (x′ | (x1, ..., xr))) .

One can consider non-Markovian processes, that is processes whose transition
probabilities depend on the whole past history. These processes can be found
in the literature under different appellations, Maillard (2007). They were first
introduced by Onicescu and Mihoc (1935) under the name chains with complete
connections to study urn models. Chains with complete connections are induced
by conditional probabilities of the form Pr (Xt = xt | Xu, u ≤ t − 1) . These tran-
sition probabilities appear to be an extension of the notion of Markov chain of
order r with an infinite r. These objects must be taken with some precautions
because, in the non-Markovian case, the conditioning is always on an event of
probability zero.

– A stationary information source (A, μ) is called a source with complete con-
nections consistent with the system of transition probabilities {Pn}n∈T if for
all n and all B (Xu, u ≤ n)−measurable functions h,∫
AT

h (..., xn−1, xn) dμ (x) =
∫

AT

∑
yn∈A

h (..., xn−1, yn) Pn (yn | ..., xn−1) dμ (x) .

The next natural issue is be the quantification of “uncertainty” involved by
an information source

(
AT ,FA, μ

)
. There are numerous “entropy” measures in

circulation but, perhaps, the best known and most used measure of uncertainty
is Shannon’s entropy (1948).

For an n− dimensional outcome (X1, ..., Xn) , Shannon’s entropy is defined
by the relation

H (X1, ..., Xn) = −
∑

x1,...,xn∈A

μ (x1, ..., xn) log2 μ (x1, ..., xn) .

In most cases, the entropy H (X1, ..., Xn) diverges to infinity as n → ∞. In this
sense, the source has infinitely large entropy. This fact suggests that a quantity
which plays an important role is, not the limit of H (X1, ..., Xn) , but the rate
of growth of entropy. Thus, the entropy of the source is defined by

H = lim
n→∞

1
n

H (X1, ..., Xn) ,

when the limit exists.
The following result is well known: If the discrete time information source(

AT ,FA, μ
)

is stationary, then the entropy of the source exists and it is equal to
inf
n

(H (X1, ..., Xn) /n) .
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Notice that, from a physicists standpoint, entropy equals information (but
not complexity) and Shannon entropy is not a measure of information, but of
information rate.

The entropy of a Bernoulli source (A, p (x)) is

H(B) = −
∑
x∈A

p (x) log2 p (x) ,

the entropy of a Markov source (A, p (x) , p (x′ | x)) is

H(M ;1) = −
∑
x∈A

p (x)
∑
x′∈A

p (x′ | x) log2 p (x′ | x) ,

and the entropy of a Markov source of order r is

H(M ;r) = −
∑

x1,...,xr∈A

p (x1, ..., xr)
∑
x′∈A

p (x′ | x1, ..., xr) log2 p (x′ | x1, ..., xr) .

Another candidate for quantification of uncertainty is the program-size complex-
ity induced by a (Turing) machine M,

HM (x) = min {|z| | M (z) = x} ,

with the convention that the minimum of the empty set is undefined (see, for
example, Calude & Dumitrescu (2002)).

For a Bernoulli source (A, p (x)) with binary alphabet A = {0, 1}, let us
consider all strings of length n arranged in order of decreasing probability. For
r ∈ (1/2, 1) , let k (n) denote the least integer such that

k(n)∑
i=1

Pr (xi) > r.

It is well known that the most likely strings have a complexity equal to the
entropy. That is, for a universal machine U , we have

H(B) = lim
n→∞

1
n · k (n)

k(n)∑
i=1

HU (xi) .

A similar result can be obtained for Markov binary information sources. For a
universal machine U, we have

H(M ;1) = lim
n→∞

1
n

∑
|x|=n

HU (x) · Pr (x) .

Bernoulli/Markov/Markov of order r information sources are expressions of gen-
uine randomness. At the same time, they exhibit some “ordering” within se-
quences x ∈ AT , such that the characteristics of x are well preserved during
evolution.



On Degrees of Randomness and Genetic Randomness 101

A beautiful information source where genuine randomness is accompanied by
genuine ordering is DNA, the source of genetic information.

Let us denote by A = {a, u, c, g} the alphabet of DNA, consisting of the
four nucleotides {adenine ←→ thymine, cytosine ←→ guanine}. According to
Gatlin (1972), the statistical analysis made for the DNA of more than 60 organ-
isms proved that the nucleotides are not independent in any genetic message.
Therefore, the information source which models DNA in the DNA-to-protein
communication is not a Bernoulli source. The next natural supposition was that
the genetic information source is a stationary Markov source. Based on this as-
sumption, the DNA-to-protein communication channel was analysed (see, for
example, Guiasu (1977)).

But the genetic code experimentally determined since 1961 “translates” the
genetic message to aminoacids by means of codons, which are triplets of consec-
utive nucleotides. Hence, it seems that a Markov source of order r ≥ 3 could be
of interest for modelling DNA.

The genetic randomness can be the randomness corresponding to a Markov
information source of order r, where r is chosen such that the correct DNA-to-
protein communication is secured. Thus, the degree of adequacy would tell us
to what degree the probabilistic model observes the organism’s variability and
allows reproducibility of the genome.

It has been experimentally established that living organisms tend to coun-
teract the effect of mutations by increasing the redundancy R of the genetic
message,

R = 1 −
H(M ;r)

max H
= 1 −

H(M ;r)

log2 4
.

According to Gatlin (1972), one can consider the divergence from equiprobability

D1 = log2 4 − H(B),

and the divergence from independence

D2 = H(B) − H(M ;r).

Then,
R · log2 4 = D1 + D2.

Experimentally it was noticed that D2 appears as an evolutionary index which
separates the vertebrates from all other lower organisms.

If the letters of A are equiprobable then the potential message variety is max-
imal but, in compensation, the capacity to detect and correct errors is minimal.
On the other hand, if the entropy is reduced to the point where the detection
of errors is possible, then the transmission of information is reliable but the
message variety can be very low.

The degree of adequacy is expressed by just a balance between the two ten-
dencies, or by just a value of the “memory” of the genetic message.
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How could we identify the degree of adequacy? It should be expressed in terms
of a pair of values: the order r of the associated Markov information source and the
p − value given by a statistical test which decides the acceptance of the order r.

Let us consider the hypothesis

Hs : {the order of dependence of the source is s, with s < r}

against the alternative

Hr : {the order of dependence of the source is r}

If Hs is true, then

p (xr+1 | x1, ..., xr) = p (xr+1 | xr−s+1, ..., xr)

and the maximum likelihood estimates of these transition probabilities are

p̂ (xr+1 | x1, ..., xr) = p̂ (xr+1 | xr−s+1, ..., xr) =
nxr−s+1,...,xr,xr+1

nxr−s+1,...,xr◦
,

where nxr−s+1,...,xr,xr+1 represents the number of occurrences of the string
(xr−s+1, ..., xr, xr+1) in the observed genetic message and

nxr−s+1,...,xr◦ =
∑

xr+1∈A

nxr−s+1,...,xr,xr+1 .

In a similar way, if Hr is true, then the maximum likelihood estimates are

p̂ (xr+1 | x1, ..., xr) =
nx1,...,xr,xr+1

nx1,...,xr◦
.

The likelihood ratio test for the hypothesis Hs against Hr is based on the fol-
lowing statistic (see, for example, Basawa & Prakasa Rao (1980)):

S2
(s) =

∑
x1,...,xr+1

(
nx1,...,xr,xr+1 − nx1,...,xr◦ · nxr−s+1,...,xr,xr+1/nxr−s+1,...,xr◦

)2
nx1,...,xr◦ · nxr−s+1,...,xr,xr+1/nxr−s+1,...,xr◦

.

If Hs is true, then S2
(s) is approximately CHI-square distributed with

(ms (m − 1) (mr−s − 1)) degrees of freedom. Here m denotes the number of ele-
ments in the alphabet A, and m = 4 for DNA.

The decision rule for a significance level α is the following:

– if S2
(s) < h1−α ; ms(m−1)(mr−s−1), accept Hs;

– if S2
(s) ≥ h1−α ; ms(m−1)(mr−s−1), reject Hs.

where h1−α ; ms(m−1)(mr−s−1) is the (1 − α)−quantile of the corresponding CHI-
square distribution.
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Using a statistical software (for example R, or SPLUS, or STATISTICA) for
implementing a CHI-square test, the program returns a p − value,

p − value = P
(
χ2

ms(m−1)(mr−s−1) ≥ S2
(s)

)
.

Very small p− values (close to zero) lead to the rejection of the hypothesis Hs,
while larger p − values lead to the acceptance of Hs.

Here we present an algorithm for establishing the dependence order r (when
the maximum order is v), as suggested in Basawa & Prakasa Rao (1980):

– Test the hypothesis Hv−1 : {the order of dependence of the source is v − 1}
against the alternative Hv : {the order of dependence of the source is v},
using the CHI-square test based on S2

(v−1).
– If Hv−1 is rejected, decide to accept r = v as the true order of dependence

(stop).
– If Hv−1 is accepted, test the hypothesis Hv−2 : {the order of dependence of

the source is v−2} against the alternative Hv−1 : {the order of dependence of
the source is v − 1}, using the CHI-square test based on S2

(v−2).
– etc.;
– Test H1 : {the order of dependence of the source is 1} against the alternative

H2 : {the order of dependence of the source is 2}, using the CHI-square test
based on S2

(1).

– If H1 is rejected, decide to accept 2 as the true order of dependence (stop);
– If H1 is accepted, test the hypothesis H0 : {Bernoulli information source}

against the alternative H1 : {Markov information source} by means of an
appropriate CHI-square test.

Notice that, for the genetic information source, the hypothesis H0 should be
rejected. Genetic randomness should never resemble quantum randomness!

4 Conclusions

Degrees of algorithmic randomness (see Calude, Svozil (2008)) could be ex-
pressed in terms of algorithmic information theory. Quantum randomness should
have the highest degree, but this claim can only be secured relative to, and with
respect to, a more or less large class of laws or behaviours, as it is impossi-
ble to inspect the hypothesis against an infinity of laws, cf. Calude, Dinneen,
Dumitrescu, Svozil (2010).

Probabilistic randomness can be considered, within the omnipresent uncer-
tainty, only in relation with a real phenomenon. Genetic randomness should
represent the probabilistic randomness of the actual source of genetic informa-
tion, DNA. One cannot say that an information source is “more random” than
another, but a degree of adequacy could be considered, as expressing to what
degree the probabilistic model observes the variability and allows reproducibil-
ity of the real phenomenon. Such a degree of adequacy could be evaluated by
statistical procedures.
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Hartmanis-Stearns Conjecture on Real Time

and Transcendence�

Rūsiņš Freivalds
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University of Latvia, Raiņa bulvāris 29, Riga, LV-1459, Latvia

Abstract. Hartmanis-Stearns conjecture asserts that any number
whose decimal expansion can be computed by a multitape Turing ma-
chine is either rational or transcendental. After half a century of active
research by computer scientists and mathematicians the problem is still
open but much more interesting than in 1965.

1 Transcendental Numbers

The most interesting results in mathematics, computer science and elsewhere are
those which expose unexpected relations between seemingly unrelated objects.
One of the most famous examples is the Cauchy-Hadamard theorem relating the
radius of convergence of a power series to the properties of the complex variable
function defined by the power series. The radius of convergence of a power series
f centered on a point a is equal to the distance from a to the nearest point where
f cannot be defined in a way that makes it holomorphic.

The nearest point means the nearest point in the complex plane, not necessar-
ily on the real line, even if the center and all coefficients are real. For example,
the function

f(z) =
1

1 + z2

has no singularities on the real line, since 1 + z2 has no real roots. Its Taylor
series about 0 is given by

∞∑
n=0

(−1)nz2n.

The Cauchy-Hadamard theorem shows that its radius of convergence is 1. In
accordance with this, the function f(z) has singularities at i, which are at a
distance 1 from 0. This theorem is unexpected because “I have no interest in
complex numbers, my power series is in real numbers only”. However, there
exists a deep relation between convergence of real power series and complex
numbers, and Cauchy-Hadamard theorem merely invites us to investigate this
relation more closely.
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This survey is devoted to another unexpected relation in mathematics (or/and
theoretical computer science), namely to the Hartmanis-Stearns conjecture
which was posed in 1965 and whose status still is “open”. In the paper [29]
(The ACM A.M. Turing Award, 1993) Juris Hartmanis (1928–) and Richard
Edwin Stearns (1936–) asked do there exist irrational algebraic numbers which
are computable in real time.

More precisely, a real number is said to be computable in time T (n) if there
exists a multitape Turing machine which gives the first n-th terms of its bi-
nary expansion in (at most) T (n) operations. Real time means that T (n) = n.
All rational numbers clearly share this property. On the other hand, there are
some transcendental numbers that can be computed in real time. Of course,
Hartmanis-Stearns conjecture can be posed but why it is interesting? First of
all, because mathematicians have had and they still have enormous difficulties to
prove transcendence of numbers. Had Hartmanis-Stearns conjecture been proved,
this would have been a very powerful tool to obtain new transcendence proofs.

A rational number is a number of the form p
q
, where p and q are integers and

q is not zero. An irrational number is any complex number which is not rational.
A transcendental number is a number (possibly a complex number) that is not
algebraic–that is, it is not a root of a non-constant polynomial equation with
rational coefficients.

The name transcendental comes from Gottfried Wilhelm von Leibniz (1646–
1716) in his 1682 paper where he proved sinx is not an algebraic function of x.
Leonhard Euler (1707–1783) was probably the first person to define transcen-
dental numbers in the modern sense.

Joseph Liouville (1809–1882) first proved the existence of transcendental num-
bers in 1844, and in 1851 gave the first decimal examples such as the Liouville
constant ∞∑

k=1

10−k! = 0.110001000000000000000001000 . . .

We call an irrational number α well-approximable if for all positive integers N, n,
there is a rational number p

q such that∣∣∣∣α − p

q

∣∣∣∣ <
1

Nqn
.

It is easy to see that the Liouville constant is well-approximable.

Theorem 1. (Joseph Liouville [34]) No well-approximable number can be alge-
braic.

A completely different proof was given three decades later by Georg Ferdinand
Ludwig Philipp Cantor (1845–1918). He proved that there are more real numbers
than algebraic numbers. According to the intuitionist school in the philosophy
of mathematics (originated by Luitzen Egbertus Jan Brouwer, 1881–1966), such
a pure existence proof is not valid unless it explicitly provides an algorithm for
the construction of the object whose existence is asserted. However, even much
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less radical mathematicians felt that Cantor’s theorem does not eliminate the
need for explicit proofs of transcendence for specific numbers. Charles Hermite
(1822 –1901) proved the transcendence of the number e in 1873. In 1882, Fer-
dinand von Lindemann published a proof that the number π is transcendental.
He first showed that e to any nonzero algebraic power is transcendental, and
since eiπ = −1 is algebraic iπ and therefore π must be transcendental. This
approach was generalized by Karl Theodor Wilhelm Weierstrass (1815–1897) to
the Lindemann–Weierstrass theorem. The transcendence of π allowed the proof
of the impossibility of several ancient geometric constructions involving compass
and straightedge, including the most famous one, squaring the circle.

In 1900, David Hilbert (1862–1943) posed an influential question about tran-
scendental numbers, Hilbert’s seventh problem: If α is an algebraic number,
that is not zero or one, and β is an irrational algebraic number, is αβ nec-
essarily transcendental? The affirmative answer was provided in 1934 by the
Gelfond–Schneider theorem (Alexander Osipovich Gelfond, 1906–1968, Theodor
Schneider, 1911–1988).

This work was extended by Alan Baker (1939–) in 1966 by proving a result
on linear forms in any number of logarithms (of algebraic numbers).

Theorem 2. (Alan Baker [12]) Let α1, α2, · · · , αM be nonzero algebraic num-
bers such that the numbers log α1, log α2, · · · , log αM are linearly independent
over rational numbers. Then for any algebraic numbers β1, β2, · · · , βM , not all
zero, the number

β0 +
M∑

m=1

βm log αm

is transcendental.

He was awarded the Fields Medal in 1970 for this result. Baker’s theorem can
give the impression that there is no more difficulty to prove transcendence of
numbers widely used in mathematics. Unfortunately, we are still very far from
such a situation. Even for many numbers constructed from e, π and similar ones,
we do not know much. It is known that eπ is transcendental (implied by Gelfond–
Schneider theorem), but for the number πe it is not known whether it is rational.
At least one of π × e and π + e (and probably both) are transcendental, but
transcendence has not been proven for either number. It is not known if ee, ππ, πe

are transcendental.
However, not only Liouville’s result but also his method was important. It

was later generalized to a great extent. For Liouville the most important lemma
was as follows.

Lemma 1. Let α be an irrational algebraic number of degree d. Then there exists
a positive constant depending only on α, c = c(α), such that for every rational
number p

q
, the inequality

c

qd
≤
∣∣∣∣α − p

q

∣∣∣∣
is satisfied.
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This lemma produced the notion of Liouville number. We say that L is a Liouville
number if there exists an infinite sequence of rational numbers pn

qn
satisfying∣∣∣∣α − pn

qn

∣∣∣∣ <
1
qn
n

.

Liouville’s theorem asserts that all Liouville numbers are transcendental. Many
mathematicians including Axel Thue (1863–1922), Carl Ludwig Siegel (1896–
1981), Freeman Dyson (1923–) made important improvements to Liouville’s the-
orem. In 1955 Klaus Friedrich Roth (1925–) provided the best possible improve-
ment.

Theorem 3. (K.F. Roth [36]) Let α be an irrational algebraic number of degree
d ≥ 2 and let ε > 0. Then there exists a positive constant c = c(α, ε), such that
for all p

q , ∣∣∣∣α − p

q

∣∣∣∣ >
c(α, ε)
q2+ε

.

Roth’s result is the best possible, because this statement would fail on setting
ε = 0 (by Dirichlet’s theorem on diophantine approximation there are infinitely
many solutions in this case). K.F. Roth was awarded Fields Medal for this result
in 1958.

Roth’s theorem easily implies transcendence of Champernowne’s number con-
sidered in Section 2.

Roth’s theorem continued the research started by Adolf Hurwitz (1859–1919).
Hurwitz’s theorem asserted that for arbitrary irrational number α there are
infinitely many rationals m

n such that∣∣∣α − m

n

∣∣∣ <
1√
5n2

,

and
√

5 cannot be substituted by a smaller number. Hurwitz’s theorem is
often used to classify irrational numbers according to the rate of the well-
approximability. For example, for the number ξ=(1+

√
5)/2 (the golden ratio) there

exist only finitely many rational numbers m
n such that the formula above holds

true. Unfortunately, the rate of the well-approximability has no direct relation
to the number’s transcendentability.

2 Normal Numbers

Transcendental numbers initially were supposed to be more complicated rather
than algebraic numbers. At least, the choice of the term “transcendental” sug-
gests so. On the other hand, the Liouville constant has a rather simple description

0.110001000000000000000001000 . . .
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while the algebraic number
√

2 = 1.41421356237309504880168872420969807

856967187537694807317667973799...

seems to be quite “random”. Of course, all rational numbers are algebraic and
decimal expansions of them (all the other b-adic expansions as well, by the way)
are periodic and hence simple. It turns out that all irrational algebraic numbers
are rather complicated.

In 1909 Emile Borel (Félix Édouard Justin Émile Borel, 1871–1956) asked
whether it is possible to tell transcendental numbers from algebraic ones by
statistics of their digits in some b-adic expansion. He introduced the notion of a
normal number.

Let x and b ≥ 2. Consider the sequence of digits of the expansion of x in base
b. We are interested in finding out how often a given digit s shows up in the
above representation of x. If we denote by N(s, n) the number of occurrences of
s in the first n digits of x, we can calculate the ratio N(s,n)

n
. As n approaches ∞,

this ratio may converge to a limit, called the frequency of s in x. The frequency
of s in x is necessarily between 0 and 1. If all base b digits are equally frequent,
i.e. if the frequency of each digit s, 0 ≤ s < b, is 1

b
, then we say that x is simply

normal in base b. For example, in base 5, the number 01234012340123401234 · · ·
is simply normal.

If we allow s to be any finite string of digits (in base b), then we have the
notion of a normal number. However, we have to be careful as to how to count
the number of occurrences of s and what is the meaning of the frequency of s in
x. Let x be a real number as stated in the previous section. Let s be a string of
digits of length k, in base b : s = s1s2 · · · sk where 0 ≤ sj < b. Define N(s, n) to
be the number of times the string s occurs among the first n digits of x in base
b. For example, if x = 21131112 in base 4, then N(1, 8) = 5, N(11, 8) = 3, and
N(111, 8) = 1. We say that x is normal in base b if

lim
n→∞

n

N(s, n)
=

1
bk

for every finite string s of length k. We see that if k = 1, we are back to the
definition of a simply normal number, so every number normal in base b is in
particular simply normal in base b.

Intuitively, x is normal in base b if all digits and digit-blocks in the base b
digit sequence of x occur just as often as would be expected if the sequence had
been produced completely randomly. Unlike simply normal numbers, normal
numbers are necessarily irrational. Normal numbers are not as easy to find as
simply normal numbers. One example is Champernowne’s number

0.1234567891011121314 · · ·

(obtained by concatenating the decimal expansions of all natural numbers),
which is normal in base 10 [20]. It is not known whether Champernowne’s num-
ber is normal in other bases. Champernowne’s number can be written as
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C10 =
∞∑

n=1

10n−1∑
k=10n−1

k

10kn−9
∑n−1

k=0 10k(n−k)
.

There exist numbers which are normal in all bases b = 2, 3, 4, · · · . They are
called absolutely normal. The first absolutely normal number was constructed
by Wac�law Franciszek Sierpiński (1882–1969) in 1917 [39]. Verónica Becher and
Santiago Figueira [14] proved.

Theorem 4. (Becher, Figueira [14]) There exists a computable absolutely nor-
mal number.

The construction of computable absolutely normal numbers is an innovative
and complicated recursive function theoretical adaptation of Sierpiński’s con-
struction. (By the way, the authors of [14] acknowledge valuable comments from
Cristian Calude.)

Later in [16] Borel asked whether all irrational algebraic numbers are abso-
lutely normal. It is still not known. The mere existence of this open problem
shows that absolute normality of numbers is a property that can be possessed
only by numbers whose decimal (and other b-adic) expansions are very com-
plicated. Unfortunately, no one has been able to use this observation to tell
transcendental numbers from algebraic ones.

In contrast to Borel’s conjecture, it is needed to say that all algebraic numbers
about whom we know that they are absolutely normal, are highly artificial. They
are specially constructed to prove their absolute normality.

However, is the notion of absolutely normal numbers the notion we need to
prove the Hartmanis-Stearns conjecture? Existence of computable absolutely
normal numbers may be interpreted as a sign that we are to include ideas of
inductive inference (see, e.g. [28,27,11]) in the search for a notion suitable to
distinguish transcendental numbers from algebraic ones.

3 Continued Fractions

Now we are looking for another way to describe irrational numbers with a hope
that this new description could be used to distinguish transcendental numbers.
One such potentially useful description is continued fractions.

The continued fraction is a natural notion. Most people believe that there
cannot exist ways to memorize good approximations of the number

π = 3.141592653589793238462643383279502884197169399375105820974944
5923078164062862089986280348253421170679821480865132823066470
938446095505822317253594081284811174502...

However, they exist:

π = 3 + 12

6+ 32

6+ 52

6+ 72

6+ 92
6+···

= 4

1+ 12

3+ 22

5+ 32

7+ 42
9+···

= 4

1+ 12

2+ 32

2+ 52

2+ 72

2+ 92
2+···

.
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A finite continued fraction is an expression of the form

a0 +
1

a1 + 1
a2+

1
a3+ 1

···+ 1
an

where a0 is an integer, any other ai members are positive integers, and n is a
non-negative integer. An infinite continued fraction can be written as

a0 +
1

a1 + 1
a2+

1
a3+ 1

a4+ 1
···

One can abbreviate a continued fraction as x = [a0; a1, a2, a3, a4, · · · ].
The decimal representation of real numbers has some problems. One problem

is that many rational numbers lack finite representations in this system. For
example, the number 1

3 is represented by the infinite sequence (0, 3, 3, 3, 3, ).
Another problem is that the constant 10 is an essentially arbitrary choice, and
one which biases the resulting representation toward numbers that have some
relation to the integer 10. Continued fraction notation is a representation of the
real numbers that avoids both these problems.

Continued fractions provide regular patterns for many important numbers.
For example, the golden ratio

1 +
√

5
2

= ϕ = 1 +
1
ϕ

has a continued fraction representation ϕ = [1; 1, 1, 1, 1, · · · ].
Notably,

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, · · · ],
e2 = [7; 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, · · · , 3k, 12k + 6, 1, 1, · · · ],
e

1
n = [1; n − 1, 1, 1, 3n− 1, 1, 1, 5n− 1, 1, 1, 7n− 1, 1, 1, · · · ]

tan(1) = [1; 1, 1, 3, 1, 5, 1, 7, 1, 9, 11, 1, 13, 1, 15, 1, 17, 1, · · · ].
If arbitrary values and/or functions are used in place of one or more of the

numerators the resulting expression is a generalized continued fraction. The
three distinct fractions above for π were generalized continued fractions. Ev-
ery real number has exactly one standard continued fraction. The continued
fraction for π is not as regular as the generalized continued fractions shown
above: π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, · · · ]. From re-
sults of Leonhard Euler (1707–1783) and Joseph-Louis Lagrange (1736–1813)
we know that the regular continued fraction expansion of x is periodic if and
only if x is a quadratic irrational.

Continued fractions may give us many still not discovered criteria for prop-
erties of numbers. For example, if a1, a2, · · · and b1, b2, · · · are positive integers
with ak ≤ bk for all sufficiently large k, then the generalized continued fraction

b0 +
a1

b1 + a2
b2+

a3
b3+···

converges to an irrational limit.
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Aleksandr Yakovlevich Khinchin (1894–1959) [32] expressed a conjecture in
1949 which is now widely believed that the continued fraction expansion of any
irrational algebraic number α is either eventually periodic (and we know that
this is the case if and only if α is a quadratic irrational), or it contains arbitrarily
large partial quotients.

J.P. Allouche [9] conjectures that the continued fraction expansion of any
algebraic irrational number that is not a quadratic number is normal.

4 Automata in Number Theory

J. Hartmanis and R. Stearns asked do there exist irrational algebraic numbers
which are computable in real time. We wish to prove a negative result. Hence
it seems natural that we start by proving that it is not possible to compute an
irrational algebraic number by a finite automaton. Indeed, a finite automaton
with no input information can produce only a periodic sequence but every num-
ber whose b-adic expansion is periodic, is inevitably rational. Too simple for a
good result.

However, there is a possibility for nontrivial results.

Definition 1. Let b ≥ 2 be an integer. A sequence (an) is called b-automatic
if there exists a finite automaton taking the base-b expansion of n as input and
producing the term an as output.

It is not hard to prove that all periodic sequences are b-automatic for every
integer b ≥ 2. But is every 2-automatic sequence also 3-automatic? Alan Cobham
(1927-) published two influential papers [21,22] on this topic.

Theorem 5. (Cobham [21]) A sequence is b-automatic if and only if it is br-
automatic for all positive integers r.

Definition 2. Two positive integers b and d are multiplicatively independent if
the equation ba = db has no nontrivial integer solution (a, b), that is, log b

log d is
irrational.

Theorem 6. (Cobham [21]) A nonperiodic sequence cannot be both b-automatic
and d-automatic for two multiplicatively independent positive integers b and d.

The class of automatic sequences remains unchanged if we choose in the defini-
tion of automatic sequences that automata should read the input from the right
to the left, that is, when starting with the least significant digit [6].

There are several characterizations of automatic sequences. One of the is re-
lated to morphisms. Let A and B be two finite sets. A map σ from A to B∗

extends uniquely to a homomorphism between the free monoids A∗ and B∗

(that is, σ(w1w2 · · ·wr) = σ(w1)σ(w2) · · ·σ(wr)). Such a homomorphism from
A∗ to B∗ is called a morphism.
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If there is a positive integer k such that each element of A is mapped to a
word of length k, then the morphism is called k-uniform. A coding is a 1-uniform
morphism.

A k-uniform morphism σ from A∗ to itself is said to be prolongable if there
exists a letter a such that σ(a) = aw. In that case, the sequence of finite words
(σn(a))n≥0 converges in A∞ = A∗ ∪ A�N (endowed with its usual topology) to
an infinite word denoted σ∞(a). This infinite word is a fixed point for σ (ex-
tended by continuity to infinite words) and we say that σ(a) is generated by the
morphism σ.

For example, the morphism τ defined over the alphabet{0, 1} by τ(0) = 01 and
τ(1) = 10 is a 2-uniform morphism which generates the Thue–Morse sequence

t = τ∞(0) = 0; 1; 10; 1001; 10010110; 1001011

001101001; 1001011001101001011010011001010010 · · ·
(where the signs “;” are not members of this sequence, they are inserted only to
show the structure).

Theorem 7. (Cobham [22]) An infinite word is k-automatic if and only if it is
the image by a coding of a word that is generated by a k-uniform morphism.

Definition 3. The k-kernel of a sequence a = (an)n≥0 is defined as the set

Nk(a) = {(akrn+i)n≥0 | i ≥ 0, 0 ≤ i < kr}.

For example, the 2-kernel of the Thue–Morse sequence t has only two elements
(t and the sequence t obtained by exchanging the symbols 0 and 1 in t).

Theorem 8. (Eilenberg [24]) A sequence is k-automatic if and only if its k-
kernel is finite.

Hint of proof. The k-kernel of a given k-automatic sequence corresponds to
the different sequences you can obtain by changing the initial state in such an
automaton. Since there are only a finite number of state, the k-kernel has to be
finite. ��
In [35] John Loxton and Alf van der Poorten proved transcendence results on
values of Mahler functions giving strong support for the belief that the decimal
expansion (more generally the base b expansion) of an irrational algebraic num-
ber cannot be generated by a finite automaton. In consequence the matter of the
transcendence of irrational automatic numbers became known as the conjecture
of Loxton and van der Poorten.

In 2004 Boris Adamczewski, Yann Bugeaud and Florian Luca [7] applied
Schlickeweis p-adic generalization [37] of Wolfgang Schmidt’s subspace theorem
[38] (which is itself a multidimensional generalization of Roth’s theorem [36]) to
prove that for any b, the base b expansion of irrational algebraic number

lim inf
n→∞

p(n)
n

= +∞
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where p(n) is the number of distinct subwords of the length n in the b-ary
expansion of the given irrational algebraic number. Almost all numbers are such
that their p(n) is near to bn but for the sequences generated by a finite automaton
p(n) = O(n). This proves.

Theorem 9. (Adamczewski, Bugeaud, Luca [7,3]) Let b ≥ 2 be an integer. The
b-ary expansion of any irrational algebraic number cannot be generated by a finite
automaton.

In other words, irrational automatic numbers are transcendental.
For continued fractions the results are somewhat similar. In 1997, Ferenczi

and Mauduit [25] proved.

Theorem 10. (Ferenczi, Mauduit [25]) Assume that the base b representation
of α is for each n of the form 0.UnVnVnV ′

n · · · , where V ′
n is a prefix of Vn, and

the following length conditions are satisfied:

| Vn |→ ∞; lim inf
n→∞

| Un |
| Vn | < ∞.

Then the number α is transcendental.

Allouche [9] noticed that the methods of [25] give a bit more. First define the
complexity of a sequence {un} of digits as the function k 
→ p(k) that counts
the number of distinct blocks of length k appearing in the sequence. A normal
number (in base b) certainly has p(k) = bk. Thus, we might expect that any
number with p(k) < bk is transcendental. A step in this direction is provided by

Theorem 11. (Allouche [9]) Assume that p(k) is for large k large enough domi-
nated by a function of the form k+a. Then x is either rational or transcendental.

Let S0 be 0 and S1 be 01. Now Sn = Sn−1Sn−2 (the concatenation of the
previous sequence and the one before that).

We have: S0 = 0, S1 = 01, S2 = 010, S3 = 01001, S4 = 01001010,
S5 = 0100101001001. The Fibonacci sequence is

01001010010010100101001001010010010100101001001010010100

1001010010010100101001001010010010100101001 · · ·

Theorem 12. (Allouche and Zamboni [10]) If the binary expansion of a real
number is the fixed point of a morphism that is either primitive (e.g., the Fi-
bonacci sequence) or of fixed length (e.g., the Thue-Morse sequence), then this
number is either rational or transcendental.

Since in (generalized) continued fraction the partial numerators and partial de-
nominators can be large numbers, it is not easy to have a natural notion of
computation of a continued fraction by a finite automaton. It seems that for a
suitable formalization of this notion the counterpart of the Hartmanis-Stearns



Hartmanis-Stearns Conjecture on Real Time and Transcendence 115

conjecture may be true, and moreover, be a part of more more general problem
connected with the Hartmanis-Stearns conjecture.

Impressing results are obtained by B. Adamczewski and Y. Bugeaud [4]. Let A
be a given set, not necessarily finite. The length of a word W on the alphabet A,
that is, the number of letters composing W , is denoted by | W |. For any positive
integer k, we write Wk for the word W · · ·W (k times repeated concatenation of
the word W ). More generally, for any positive rational number x, we denote by
W x the word W �x�W ′, whereW ′ is the prefix of W of length '((x)) | W |*. Here
(y) and 'y* denote, respectively, the integer part and the upper integer part of
the real number y. For example, if W denotes the word 232243, then W 3/2 is
the word 232243232. Let a = (as)s≥1 be a sequence of elements from A, that we
identify with the infinite word a1a2 · · · as · · · . Let w be a rational number with
w > 1. We say that a satisfies Condition (∗)w if a is not eventually periodic and
if there exists a sequence of finite words (Vn)n≥1 such that:

(i) For any n ≥ 1, the word V w
n is a prefix of the word a;

(ii) The sequence (| Vn |)n≥1 is increasing.

Theorem 13. (Adamczewski, Bugeaud [4]) Let a = (as)s≥1 be a sequence of
positive integers. Let (ps/qs)s≥1 denote the sequence of convergents to the real
number α = [0; a1, a2, · · · , as, · · · ]. If there exists a rational number w ≥ 2 such
that a satisfies Condition (∗)w, then α is transcendental. If there exists a rational
number w > 1 such that a satisfies Condition (∗)w, and if the sequence (q1/s

s )s≥1

is bounded (which is in particular the case when the sequence a is bounded), then
α is transcendental.

Let w and w′ be nonnegative rational numbers with w > 1. We say that a
satisfies Condition (∗∗)w,w′ if a is not eventually periodic and if there exist two
sequences of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (| Un | / | Vn |)n≥1 is bounded from above by w′;
(iii) The sequence (| Vn |)n≥1 is increasing.

Theorem 14. (Adamczewski, Bugeaud [4]) Let a = (as)s≥1 be a sequence of
positive integers. Let (ps/qs)s≥1 denote the sequence of convergents to the real
number α = [0; a1, a2, · · · , as, · · · ]. Assume that the sequence (q1/s

s )s≥1 con-
verges. Let w and w′ be non-negative real numbers with w > w′ +1. If a satisfies
Condition (∗∗)w,w′, then α is transcendental.

5 How Close We Are to the Hartmanis-Stearns
Conjecture?

Two real numbers α and α′ are said to be equivalent if their b-adic expansions
have the same tail.

Adamczewski and Bugeaud [5] say that a is a stammering sequence if there
exist a real number w > 1 and two sequences of finite words (Wn)n≥1, (Xn)n≥1

such that:
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(i) For any n ≥ 1, the word WnXw
n is a prefix of the word a;

(ii) The sequence (| Wn | / | Xn |)n≥1 is bounded from above;
(iii) The sequence (| Xn |)n≥1 is increasing.

Theorem 15. (Adamczewski, Bugeaud, Luca [7]) Let a = (ak)k≥1 be a stam-
mering sequence of integers from {0, 1, · · · , b − 1}. Then, the real number

α =
+∞∑
k=1

ak

bk

is either rational or transcendental.

Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences of elements from A, that we

identify with the infinite words a1a2 · · · and a′
1a

′
2 · · · , respectively. We say that

the pair (a, a′) satisfies Condition (∗) if there exist three sequences of finite words
(Un)n≥1, (U ′

n)n≥1, and (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVn is a prefix of the word a;
(ii) For any n ≥ 1, the word U ′

nVn is a prefix of the word a′;
(iii) The sequences (| Un | / | Vn |)n≥1 and (| U ′

n | / | Vn |)n≥1 are bounded from
above;
(iv) The sequence (| Vn |)n≥1 is increasing.

If, moreover, we add the condition

(v) The sequence (| Un | − | U ′
n |)n≥1 is unbounded, then, we say that the pair

(a, a′) satisfies Condition (∗∗).

Theorem 16. (Adamczewski, Bugeaud [5]) Let a = (ak)k≥1 and a′ = (a′
k)k≥1

be sequences of integers from {0, 1, · · · , b− 1}. If the pair (a, a′) satisfies Condi-
tion (∗), then at least one of the real numbers

α =
+∞∑
k=1

ak

bk
, α′ =

+∞∑
k=1

a′
k

bk

is transcendental, or α and α′ are equivalent. Furthermore, if the pair (a, a′)
satisfies Condition (∗∗), then at least one of the real numbers α, α′ is transcen-
dental, or they are equivalent and both rational.

Theorems 15 and 16 show that the solution to Hartmanis-Stearns conjecture
may be coming soon. Indeed, consider the case when a and a′ in Theorem 16
is the same. Conditions (∗) and (∗∗) are similar (but not quite identical) to the
situation when a is generated by a Turing machine working in real time. It is
important that the machine prints a symbol of output one symbol per step of
computation. The output symbols at moments [t, t+u] depend only on the state
of the machine and of what is written on fragments (not longer than u squares)
of a constant number of work tapes. Hence if at two distinct moments t and t′

this information is the same then the output symbols at moments [t, t + u] and
[t′, t′ + u] also are the same.
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Suppose, we have denoted outputs of the machine till the moments t and
t′ by Ut and Ut′ , respectively, and the output at [t, t + u] by Vt. The “naive”
observation of Turing machines does not allow to prove the properties (i)–(v).
On the other hand, who knows whether this approach to proof of the Hartmanis-
Stearns conjecture is perspective.
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Brüche. Mathematische Annalen 39(2), 279–284 (1891)

31. Kaneps, J., Freivalds, R.: Minimal Nontrivial Space Complexity of Probabilistic
One-Way Turing Machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp.
355–361. Springer, Heidelberg (1990)

32. Khinchin, A.Y.: Continued Fractions. Dover Publications (2007) (translation from
Russian original, GITTL, 1949)

33. Kolmogorov, A.N., Uspensky, V.A.: Algorithms and randomness. Theory of Prob-
ability and Its Applications 32, 389–412 (1987)

34. Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est
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Abstract. In this paper it is studied for which oracles A and which
types of A-r.e. matroids the class of all A-r.e. closed sets in the matroid
is learnable by an unrelativised learner. The learning criteria considered
comprise in particular criteria more general than behaviourally correct
learning, namely behaviourally correct learning from recursive texts, par-
tial learning and reliably partial learning. For various natural classes
of matroids and learning criteria, characterisations of learnability are
obtained.

1 Introduction

This paper extends previous studies on the learnability of mathematically defined
objects. While Stephan and Ventsov [28] mainly investigated the learnability of
the full class of substructures (all ideals of a ring, all subspaces of a vector space,
. . .), Harizanov and Stephan [12] looked more at structures where one wants to
learn only r.e. subobjects of a certain type and ignores all other subobjects.
The subobjects considered by Harizanov and Stephan [12] were the r.e. linear
subspaces of a recursive vector space or, more generally, the r.e. closed sets in an
r.e. matroid. Indeed, matroids are a generalisation of two known concepts: classes
of sets closed under equivalence relations and classes of sets closed under linear
combinations inside vector spaces. They are described by a closure operation Φ
and in general one is interested in the class of the r.e. closed sets, that is, in the
class

CΦ = {L : ∃H [L = Φ(H)] ∧ ∃ recursive f [H = range(f)]}.
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Harizanov and Stephan [12] investigated the learnability properties of this class
in various contexts, in particular for k-thin vector spaces [16]. It turns out that
the class CΦ is behaviourally correctly learnable if and only if the matroid is
Noetherian, that is, every closed set L is generated by a finite set D, that is,
satisfies L = Φ(D) for a finite set D. Starting from this result, further investiga-
tions in the present work go into two direcions.

(a) It is shown how much the qualities of the learner in the learnable case can
be improved. Indeed, it is shown that whenever every closed set is r.e. in an r.e.
matroid, then the class of all closed sets is behaviourally correctly learnable and
this learner can be chosen to be consistent, conservative and confident; actually,
the learner is confident in the very strict way as it makes only a constant amount
of mind changes where this constant bound is the dimension of the matroid. This
carries over the results for recursive Artinian rings [28] to matroids; de Brecht,
Kobayashi, Tokunaga and Yamamoto [2] considered more general closure sys-
tems of recursive sets which then do not have the mind change bound. Kasprzik
and Kötzing [17] considered a related model of string extension learning.

(b) The second direction (which is the main novel part of the present work)
is to ask what can be said about the learnability of more general matroids. As
those which are not Noetherian are also not behaviourally correctly learnable,
one has to consider learning criteria which are more general than behaviourally
correct learning. Natural candidates are obtained by either making the notion
of text more restrictive or by relaxing the convergence requirement.

– Behaviourally correct learning from recursive texts: Here the restrictions on
the text simplify the learning task as the learner deals only with friendly
modes of data presentation.

– Partial learning: Here the learner does not converge to a hypothesis but
singles out the valid hypothesis by outputting it infinitely often while all
other hypotheses are output only finitely often.

– Reliable partial learning: This is a restriction of partial learning where the
learner either partially learns a set or outputs on every text for the set each
hypothesis only finitely often.

Osherson, Stob and Weinstein [23, Exercise 7.5A] showed that already the class
of all r.e. sets is partially learnable and therefore the same holds for the class
of the r.e. closed sets of a given r.e. matroid. Hence one would like to study
the limits of this learning notion by looking at the more general question for
which A-r.e. matroids (N, Φ) the class CA

Φ of all closed A-r.e. sets is learnable
under a suitable criterion. Here (reliably) partially learning is considered where
the learner itself can conjecture indices from a given acceptable numbering of all
A-r.e. sets, but the learner should not have access to the oracle A itself. As the
learner can put some of the computations of finding the right hypothesis into
the index of an A-recursive enumeration procedure, it follows that there is still
some indirect access to A in this way. While partial learners and reliable partial
learners cannot exploit that well, the behavioural correct learners can exploit
this indirect usage of the oracle and so the corresponding learnability results
often generalise to all A-r.e. matroids.
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A further learning criterion considered is that of confident partial learning.
On one hand, this criterion is much more restrictive than partial learning and
does not permit to learn all cofinite sets. On the other hand, certain classes
which are not behaviourally correctly learnble are learnable under this criterion
and it permits to go beyond Angluin’s tell-tale condition [1]. For matroids, it is
shown that one one hand the class of closed sets of Noetherian K-r.e. matroids
is confidently partially learnable while on the other hand there are some quite
simple r.e. matroids where the class of closed r.e. sets is not confidently partially
learnable.

Metakides and Nerode [18,19] gave the definition of an r.e. matroid using a
hull operation as follows; the reader is referred to the textbooks and papers of
Calude [4,5], Odifreddi [21,22], Rogers [26] and Soare [27] for background on
recursion theory.

Definition 1 (Metakides and Nerode [18,19]). An r.e. matroid (N, Φ) is
given by an enumeration operator Φ mapping subsets of N to subsets of N such
that the following axioms hold for all sets R, S ⊆ N and all a, b ∈ N:

– S ⊆ Φ(S);
– Φ(Φ(S)) = Φ(S);
– R ⊆ S ⇒ Φ(R) ⊆ Φ(S);
– If a ∈ Φ(Φ(S) ∪ {b})− Φ(S) then b ∈ Φ(Φ(S) ∪ {a});
– Φ(S) =

⋃
{Φ(D) : D is finite and D ⊆ S}.

Furthermore, sets of the form Φ(S) are called closed sets and CΦ = {Φ(S) : S is
an r.e. subset of N}. A natural generalisation is that of an A-r.e. matroid where
the closure operation is r.e. relative to A and also the class CA

Φ of interest is the
class of A-r.e. closed sets in the matroid.

Remark 2. If ≈ is an r.e. equivalence relation then Φ(S) = {a : ∃b ∈ S [a ≈ b]}
defines an r.e. matroid.

A matroid is called Noetherian iff for every S there is a finite subset D ⊆ S
with Φ(S) = Φ(D). Noetherian matroids have a constant c, called the dimension,
such that one can chose the D above as having at most c elements.

The linear hull in finite-dimensional vector spaces (coded into N) is an example
of a Noetherian r.e. matroid.

Let A be a coinfinite subset of N. Then by letting Φ(S) = A for S ⊆ A and
Φ(S) = N for S 	⊆ A one gets an A-r.e. matroid with exactly two closed sets: A
and N.

This example can be generalised to matroids for which there is a finite set D
such that every closed set S satisfies S = Φ(D ∩ S). For each A-r.e. matroid of
this kind it holds that the class CA

Φ can be explantorily learnt with at most |D|
mind changes, as the learner has only to track which elements of D have been
seen so far and output an A-r.e. index of the set generated by the corresponding
subset of D.

Let A be a proper subset of N. Then there is an A-r.e. matroid having the
closed sets A, A ∪ {a} for every a ∈ N −A and N. This is a Noetherian matroid
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of dimension 2: A = Φ(∅), A ∪ {a} = Φ({a}) and N = Φ({a, b}) where a, b are
distinct nonelements of A.

If (N, Φ) is a Noetherian r.e. matroid then the relation a, D 
→ Φ(D)(a) is
recursive. The reason is that one can, for a fixed set I of size c, search until one
of the following two conditions hold:

– a ∈ Φ(D), that is, Φ(D)(a) = 1;
– There is E with |E| + 1 = c, D ⊆ Φ(E) and I ⊆ Φ(E ∪ {a}), that is,

Φ(D)(a) = 0.

The function a, D 
→ Φ(D)(a) is called the dependence relation associated to Φ.
A set S is called independent iff a 	∈ Φ(S − {a}) for any a ∈ S. The emptyset

is independent and subsets of independent sets are independent. A matroid is
Noetherian iff every independent set is finite iff there is a maximum c of the
possible cardinalities of independent sets. This constant c is called the dimension
of the matroid.

Example 3. An r.e. matroid is called almost Noetherian iff there are finitely
many r.e. sets E0, E1, . . . , En such that every r.e. closed set L is of the form
Φ(D ∪ Em) for some finite D and m ∈ {0, 1, . . . , n}. Every k-thin vector space
[16] is an example of an almost Noetherian r.e. matroid which is not Noetherian.

2 Learnability

Gold [11] laid the foundations of inductive inference and defined that a class C
of r.e. sets is explanatory learnable iff there is a learner M which outputs on
every text T for a language L ∈ C an infinite sequence e0, e1, . . . of indices such
that almost all en are actually the same index e for the set L with respect to
a preassigned hypothesis space, usually just a fixed acceptable numbering of all
r.e. sets. Here a text is an infinite sequence a0 a1 . . . of elements from N plus
perhaps a pause symbol and T is a text for L if the range of T , that is, the set of
all members of N occurring in T , is equal to L. Furthermore, for a finite prefix
σ of T , that is, for a σ of the form a0 a1 . . . an, one let M(σ) denote the last
hypothesis output by M while processing this initial part of T ; without loss of
generality M starts with a hypothesis of ∅ so that M(σ) is always defined. It is
required that M is recursive and thus induces a recursive function from N∗ to
N which maps σ to M(σ). In this context it is noted that, whenever talking of
sequences of data, it is understood that pause symbols can arise as well and so
L∗ actually means (L ∪ {#})∗, but for convenience reasons the first is written
in place of the second. It is clear from the context which of the two is meant by
“L∗”.

Subsequently, the model of Gold had been expanded and thoroughly studied.
So in addition to explantory convergence, additional criteria where introduced
which were satisfied by some but not all learners.

– M is consistent iff WM(σ) contains range(σ) for all strings σ;
– M is conservative iff range(στ) 	⊆ WM(σ) whenever M(στ) 	= M(σ);
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– M makes at most c mind changes iff there are no c + 2 strings τ0, τ1, . . . , τc,
τc+1 such that M(τ0τ1 . . . τb) 	= M(τ0τ1 . . . τb+1) for b = 0, 1, . . . , c.

Note that when learning the closed sets in matroids, one can assume that the
first hypothesis is Φ(∅) and therefore the definition of learning with bounded
mind changes does not need to conjecture a special waiting symbol until the
first hypothesis is ready.

The interested reader is referred to the two editions of the text book “Systems
that learn” for more information on inductive inference [13,23]. The next result
shows that Noetherian matroids have learners which satisfy all these properties
simultaneously.

Theorem 4. The class CΦ of the closed sets in a Notherian r.e. matroid of
dimension c has a consistent and conservative learner which makes at most c
mind changes.

Proof. The learner produces from the text a0 a1 . . . all sets of the form {ad0 , ad1 ,
. . . , ade} where dk = min{b : ∀� < k [d� < b] ∧ ab /∈ Φ({a� : � < b})} for
k = 0, 1, . . . , e. Note that one can find adk

only for k < c and the initial hypoth-
esis is Φ(∅) which will be replaced by sets of the form Φ({ad0 , ad1 , . . . , ade}) for
e = 0, 1, . . . , c − 1; each mind change is caused by a non-element of the previ-
ous hypothesis and thus the learner is conservative. Furthermore, it is consistent
as an update is done whenever a datum observed is not generated by the previous
hypothesis.

A learner M is behaviourally correctly learning a set L iff M outputs on every
text T of L an infinite sequence e0 e1 . . . of hypotheses such that Wek

= L for
almost all k. Note that a behaviourally correct learner only converges seman-
tically and not syntactically, so it is okay if every hypothesis is different from
all previous ones. A class C is behaviourally correctly learnable iff there is a
learner M which behaviourally correctly learns every language in C. In the case
of learning A-r.e. languages, the learner uses A-r.e. indices from a given accept-
able numbering of all A-r.e. sets. Here acceptable is meant in the strict way
such that for every further A-r.e. numbering V0, V1, . . . of A-r.e. sets there is a
recursive function f such that WA

f(e) = Ve for all e; several learning algorithms
would fail in the case that one takes the weaker notion of acceptable numbering
where the above f is permitted to be A-recursive in place of recursive. Note
that acceptable numberings of all A-r.e. sets in the strict sense exist for every
oracle A. The following result is mainly a mirror image of the corresponding
results in the world of recursive sets [2,3], but some adjustments have to be done
so that a recursive learner can deal with A-r.e. sets.

Theorem 5. If (N, Φ) is an A-r.e. matroid then the class CA
Φ of the A-r.e. closed

sets is behaviourally correctly learnable (using A-r.e. indices and a recursive
learner) iff (N, Φ) is Noetherian.

Proof. If (N, Φ) is an A-r.e. Noetherian matroid then one can at each stage
conjecture Φ(D) where D is the data observed so far; note that there is a recursive
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function f which finds for D an A-r.e. index f(D) of Φ(D). Namely there is an
A-r.e. enumeration of sets VD = Φ(D) whose indices are finite sets (given in
some canonical form) and f is then the recursive translations from the indices
of the sets VD into indices of the form WA

f(D) with respect to suitable acceptable
numbering of all A-r.e. sets. As every closed set L is generated by a finite subset
E, that is, L = Φ(D) for all D with E ⊆ D ⊆ L, the indices f(range(σ)) are
correct for all sufficiently long prefixes σ of any fixed text for L. Hence the class
is behaviourally correctly learnable.

For the converse direction, assume that M is a behaviourally correct learner
for the matroid (N, Φ) and L an A-r.e. closed set. Then there is a locking sequence
σ for L, that is, σ ∈ L∗ and M(στ) is an index for L for all τ ∈ L∗. As the range
D of σ is finite, Φ(D) is an A-r.e. subset of L and M learns that set as well. As
M(στ) is an index for L for all τ ∈ Φ(D)∗ it follows that these two sets must
coincide and L = Φ(D)∗. Hence every closed A-r.e. set is finitely generated.

Now assume that there is a set Φ(S) such that Φ(S) 	= Φ(D) for all finite D. As
shown before, the superset N is finitely generated and N = Φ(D) for some finite
set D, let D be the minimal such set so that D is independent. As Φ(S) is not
finitely generated, there is an independent subset E of Φ(S) with |E| = |D|+ 1.
It follows that there is some a ∈ E such that D∪{a} is independent by the rules
of independent sets in matroids. This gives then that a /∈ Φ(D) and Φ(D) 	= N,
in contradiction to the assumption. Hence every closed set is finitely generated
and A-r.e.; so (N, Φ) is a Noetherian matroid.

This characterisation shows that the study of behaviourally correct learning in
the context of matroids is only interesting when the setting is a bit modified
in order to make the learner more powerful. So it might be interesting to ask
for which r.e. matroids the class of all closed r.e. sets is learnable from recur-
sive texts. This is not true for the full matroid where every set is closed: the
class of all r.e. languages is not behaviourally correctly learnable from recursive
texts. Example 6 and Theorem 7 show that there are non-Noetherian matriods
for which the class of closed r.e. sets is behaviourally correctly learnable from
recursive texts.

Example 6. Let B be a maximal set, that is, a coinfinite r.e. set satisfying that
every r.e. superset is either a finite variant of B or is cofinite. Let ≈ be defined
such that

x ≈ y ⇔ ∀z [min{x, y} ≤ z < max{x, y} ⇒ z ∈ B]

and let Φ be the corresponding closure operator. Then the class CΦ of all r.e.
closed sets consists only of finite and cofinite sets. Furthermore, N is the as-
cending union of finite members of CΦ and so CΦ is not behaviourally correctly
learnable. But, as the class of finite and cofinite sets is an indexed family which
is a superclass of CΦ, the class CΦ is behaviourally correctly learnable from
recursive texts [6, Theorem 28 and Corollary 33].

Theorem 7. Let CΦ be the class of all closed r.e. sets in an almost Noetherian
r.e. matroid (N, Φ). Then CΦ is behaviourally correctly learnable from recursive
texts.
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Proof. Let E0, E1, . . . , En be the n r.e. sets witnessing that (N, Φ) is almost
Noetherian and for each m let Em,s be the set of numbers enumerated into
Em within s steps. Let ϕ̃e be the e-th recursive text from a list of all partial-
recursive texts; note that some of the ϕ̃e are partial. Now define the following
behaviourally correct learner M for CΦ.

M(σ) outputs an r.e. index for Φ(Xσ) where Xσ is the union of range(σ)
and all Em for which there exists an e with
– σ � ϕ̃e;
– Em,e ⊆ range(σ);
– Em,|σ| ⊆ range(ϕ̃e).

The first condition on σ makes sure that ϕ̃e is a text extending σ; the second
condition wants that the index is permitted by L so that only finitely many e
get permitted when Em 	⊆ L; the third condition wants to make sure that every
index e which gets permitted infinitely often is a superset of Em.

Now it is shown that when learning L ∈ CΦ from a recursive text ϕ̃e, then
for almost all prefixes σ of this text, Xσ is the union of range(σ) and all those
Em which satisfy Em ⊆ L. Hence Xσ contains in particular the “right Em”, so
that L = Φ(D ∪ Em) for some D, as well as some Em which are “not harmful”;
furthermore, the elements of the just mentioned D are also in Xσ for sufficiently
long prefixes σ of ϕ̃e. Hence almost all conjectures of M are correct.

Now the verification of the learner is given in detail. Let σ be a prefix of ϕ̃e

which is so long that the following conditions are satisfied:

– e ≤ |σ|;
– D ⊆ range(σ);
– if Em 	⊆ L then the least c ∈ Em − L satisfies that there is no index d ≤ c

such that σ � ϕ̃d ∧ Em,|σ| ⊆ range(ϕ̃d).

It is clear that the first two conditions are true for sufficiently long prefixes σ
of ϕ̃e. The third condition is true for sufficiently long σ as either ϕd is a finite
sequence and therefore cannot extend sufficiently long σ or ϕd is a text which
is not for L and therefore does not extend sufficiently long prefixes of the text
ϕ̃e for L or ϕd is a text for L which then does not enumerate c and therefore
Em,|σ| 	⊆ range(ϕ̃d) for sufficiently long σ � ϕ̃e.

As there are only finitely many Em and as the c in the third condition bounds
the number of d over which is quantified in the third condition, it follows that
one has the conjunction of all these conditions is satisfied for sufficiently long
prefixes σ of ϕ̃e. As a consequence, Xσ is, for sufficiently long σ, just the union
of D and range(σ) and those Em which are subsets of L; hence Φ(Xσ) = L for
those σ and the learner M behaviourally correctly learns L from each recursive
text of L.

Remark 8. Every A-recursive behaviourally correct learner (from A-recursive
texts) can be turned into a recursive behaviourally correct learner (from A-
recursive texts). The reason is that the algorithm to compute the hypothesis
can be incorporated into the hypothesis where the computation then, as it is



Learning Families of Closed Sets in Matroids 127

an A-recursive enumeration, has access to the oracle A. Thus the class of the
closed sets of any A-r.e. Noetherian matroid has a recursive behaviourally cor-
rect learner using A-r.e. indices.

Furthermore, one can generalise Example 6 and Theorem 7 to show that there
are A-r.e. matroids where the class of A-r.e. closed sets has a recursive learner
which learns these sets behaviourally correctly from A-recursive text outputting
A-r.e. indices.

One can generalise behaviourally correct learning in the way that one only re-
quires that almost every hypothesis is a finite variant of the target language; here
the number of errors might be different from hypothesis to hypothesis [7,8,24].
Harrington [7] showed that the class of all recursive functions can be learnt by
an algorithm which outputs on data for a function f a sequence e0, e1, . . . of
hypotheses such that almost all ϕek

are finite variants of f and furthermore to-
tal. Hence one can also, when reading an A-recursive text, produce a sequence
e0, e1, . . . of indices such that ϕ̃A

ek
is for almost all k a text which is a finite variant

of the input text; thus, when looking at the ranges WA
ek

in place of the texts itself,
the corresponding indices are almost all finite variants of the set to be learnt. It
follows that the class of all A-r.e. sets is behaviourally correctly learnable with
at most finitely many errors at almost every hypothesis from A-recursive texts.

3 Partial Learning

Osherson, Stob and Weinstein [23, Exercise 7.5A] introduced the notion of a
partial learner and showed that a partial learner can learn the class of all r.e. sets.
Minicozzi [20] introduced the notion of reliable learning; although she introduced
it for the learning criterion of explanatory learning, it can be brought over to
other learning criteria as well. Osherson, Stob and Weinstein [23, Section 4.6.2]
also introduced the notion of confident learning where a confident learner has to
converge on every text, even a text for a non-r.e. language, to some hypothesis
according with respect to the convergence criterion which applies.

Definition 9 (Minicozzi [20], Osherson, Stob and Weinstein [23]). A
learner M partially learns a language L iff M , given any text T for L, outputs
on this text exactly one index infinitely often and that is an index for L; M
partially learns a class C iff M partially learns every L ∈ C.

A partial learner M is reliable iff M for every set L either M outputs on
each text for L exactly one index e infinitely often which satisfies L = We or M
outputs on each text for L each index only finitely often.

A partial learner M is confident iff M for every set L and every text for L
outputs on this text exactly one index infinitely often.

Remark 10. One might also ask whether there is a counterpart of partial learn-
ing when combined with semantic convergence which gives someting interesting
when learning in relativised worlds. Here one could say that a learner M be-
haviourally correctly partially learns a class C of A-r.e. languages iff M outputs
on every text for a language L ∈ C an infinite sequence e0, e1, . . . of indices such
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that WA
ek

= L for infinitely many k while for every H 	= L there are only finitely
many k with WA

ek
= H . Unfortunately this notion does not give anything inter-

esting: Relativising the result of Osherson, Stob and Weinstein [23], there is an
A-recursive partial learner which learns all A-r.e. languages; one can in addition
have that the learner uses an underlying one-one numbering so that no incorrect
language appears on a text by giving infinitely many different indices for that
language. Hence one can make a new learner N which on input σ outputs an
A-r.e. index eσ enumerating WA

M(σ). That learner has then the required learning
properties. Hence this recursive learner learns even the class of all A-r.e. sets
using A-r.e. indices.

Remark 11. If M partially learns L then there is a sequence σ ∈ L∗ and an
index e for L such that for every τ ∈ L∗ there is an η ∈ L∗ such that M(στη) = e;
such a sequence σ is called a locking sequence for L. If such σ, e would not exist
then one could find sequences τ0, τ1, . . . ∈ L∗ such that for all indices e0, e1, . . .
of L the following holds:

– The sequence τ0τ1 . . . τd contains all elements of L below d plus perhaps some
other elements of L;

– M(τ0τ1 . . . τdη) 	= ed for all η ∈ L∗.

These two conditions together would then give that τ0τ1 . . . is a text for L and
that M does not output any index ed of L on this text infinitely often.

If M is a reliable partial learner learning L, H 	= L and e an index of L then
there is a sequence σ ∈ H∗ such that M(στ) 	= e for all τ ∈ H∗. If such a σ
would not exist, one could construct a text for H on which M outputs e infinitely
often in contrast to M being a reliable partial learner.

In the case of a partial learner which is not reliable, the sequence σ ∈ H∗ is
only guaranteed to exist when H is in the class of sets to be learnt.

Theorem 12. The class of all cofinite sets is not confidently partially learnable.

Proof. Assume that M is a partial confident learner. Furthermore, choose a0, a1,
a2, . . . such that for every n, an+1 > an and an+1 > ϕK

e (a0, a1, . . . , an) for all
e ≤ n where ϕK

e (a0, a1, . . . , an) is defined. Let L = N−{a0, a1, . . .}. By confidence
and Remark 11, there is an index d and a σ ∈ L∗ such that for all τ ∈ L∗ there
is an η ∈ L∗ with M(σητ) = d. With except perhaps one exception, d is not
the index of the cofinite set N − {a0, a1, . . . , an} and not output infinitely often
on any text for this set. Hence, for all but at most one n, there is a sequence
τn ∈ (N−{a0, a1, . . . , an})∗ such that for all η ∈ (N−{a0, a1, . . . , an})∗ it holds
that M(στnη) 	= d. The τn and the maximum value occuring in τn can be found
using a partial K-recursive function, let ϕK

e (a0, a1, . . . , an) be this value and let
n be so large that n > e and ϕK

e (a0, a1, . . . , an) is defined. By the choice of
an+1 it holds that an+1 > ϕK

e (a0, a1, . . . , an) and that therefore τn ∈ L∗ which
contradicts the property according to which σ was chosen. Hence the partial
confident learner M cannot exist.

It follows immidiately that also the class of all recursive sets is not confidently
partially learnable.
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Furthermore, if A is a maximal set and Φ(S) = A ∪ S then every r.e. closed
set in (N, Φ) is either a cofinite superset of A or the union of A with a finite
set. This class is also not confidently partially learnable, as one can take the se-
quence a0, a1, . . . in above proof outside A. Hence there is a quite easy matroid
for which the closed r.e. sets are not confidently partially learnable.

The next theorem shows that there is nevertheless a large amount of confi-
dently partially learnable classes. As a corollary one obtains that the class of
closed sets of any K-r.e. Noetherian matroid is confidently partially learnable.

Theorem 13. If a class C of A-r.e. sets is confidently explanatorily learnable
relative to the oracle K from informant then C is confidently partially learnable
from text without any oracle usage.

Proof. Let M be the K-recursive learner using A-recursive indices from an
acceptable numbering of all A-r.e. sets. Without loss of generality, M codes
at every mind change into the index e the finite sets Dpos(e) and Dneg(e) of
positive and negative data, respectively, on which the new hypothesis is based.
Furthermore, let Ms be an approximation of M for s steps such that Ms has the
same behaviour with respect to the indices output as M .

The new confident partial learner N outputs an index e at least n times
iff there is a stage s > n and sets Dpos∗ , Dneg∗ such that Dpos∗ is contained
in the first s data items of the text, the first n data items of the text are
contained in Dpos∗ , no data item in Dneg∗ belongs to the first s data items
of the text, {0, 1, . . . , n} ⊆ Dpos∗ ∪ Dneg∗ , Ms with inputs Dpos∗ and Dneg∗

outputs e, Dpos(e) ⊆ Dpos∗ and Dneg(e) ⊆ Dneg∗ .
Now consider any text T and let e be the index to which M converges on

T . The index e is also output infinitely often by N . To see this one shows
that N outputs e at least n times by taking for n the parameters Dpos∗ =
({0, 1, 2, . . . , n} ∩ L) ∪ Dpos(e), Dneg∗ = ({0, 1, 2, . . . , n} − L) ∪ Dneg(e) and s so
large that all elements of Dpos∗ have appeared among the first s elements of the
text and that Ms on the given input has converged to the value of M on this
input.

If a further index d is an old hypothesis which is superseded by e then there
is an n such that Dpos(e) ∪ Dneg(e) ⊆ {0, 1, . . . , n}, all elements of Dpos(e) have
been observed within the first n elements of the text and for all s ≥ n and
all disjoint supersets Dpos∗ ⊇ Dpos(e) and Dneg∗ ⊇ Dneg(e), Ms with inputs
Dpos∗ and Dneg∗ outputs e or outputs a hypothesis d′ with Dpos(d′) ⊇ Dpos(e)

and Dneg(d′) ⊇ Dneg(e). That hypothesis d′ is different from d as Dpos(d′) 	=
Dpos(d) ∨ Dneg(d′) 	= Dneg(d). It follows that d is output by N at most n times.

If a hypothesis d is output by Ms but not by M on inputs Dpos(d) and Dneg(d)

then N outputs d at most where n is the point from which on Ms is equal to M
on the inputs Dpos(d) and Dneg(d).

If a hypothesis d is output by some Ms on some data Dpos(d) and Dneg(d)

where Dneg(d) contains some element within the first n elements of T for some
n then d is output at most n times.



130 Z. Gao et al.

From this case distinction follows that every d different from e is output only
finitely often by N and hence N is a confident partial learner which converges
(in the partial sense on the text) to the same indices as M (in the explanatory
sense on an informant for range(T )).

This result together with Theorem 4 directly gives the following corollary.

Corollary 14. Assume that A ≤T K and (N, Φ) is a Noetherian A-r.e. matroid.
Then the class CA

Φ of the closed sets in this matroid is confidently partially
learnable.

Remark 15. Gold’s class [11] consisting of all finite sets and one infinite set
can be confidently partially learned by outputting a fixed index of the infinite
set when a new element is observed and a canonical index for the current range
when no new element is observed. But this class is not confidently learnable from
informant relative to any oracle, hence Theorem 13 is not a characterisation.

The next result gives a useful criterion for classes to be reliably partially learn-
able.

Theorem 16. Every uniformly K-recursive class is reliably partially learnable
using a padded version of the given indexing as hypothesis space.

Proof. Let V0, V1, . . . be a uniformly K-recursive numbering containing the class
C to be learnt and let f be a two-place recursive function with WK

f(d,e) = Vd for
all d, e. The second parameter is just a padding parameter used to code from
which point onwards the language Vd is different from all Vd′ with d′ < d. For
the reliable partial learner, it is enough to say how often an index has to be
output at least; that information can then be used to generate the learner. So
the learner for C will output only indices of the form f(d, e) and it will output
on a text a0 a1 a2 . . . at least n times iff there is a stage s > n such that

– e is the least number such that for all d′ < d there is an x < e with Vd′,s(x) 	=
Vd,s(x) and

– for all x < n, x ∈ Vd,s iff x ∈ {a0, a1, . . . , as}.

If d is the least index of the set L to be learnt and if e is the least number such
that for every d′ < d there is an x < e with Vd′(x) 	= Vd(x) then there is for
every n an s > n where f(d, e) qualifies to be output. Hence f(d, e) is output
infinitely often.

If Vd(x) 	= L(x) for some x then for all sufficiently large n and all s > n,
Vd,s(x) 	= L(x) and x has appeared within the first n elements of the text iff x
is in L. One can then see that f(d, e) is not output n times for these large n and
hence output only finitely often.

If there is d′ < d with Vd′ = Vd then every bound e will qualify only finitely
often as for all sufficiently large s there is no x < e with Vd′,s(x) 	= Vd,s(x).
Hence each f(d, e) is output only finitely often.

If d is the minimal index of L but e is the incorrect bound then one can again
see that f(d, e) is output only finitely often.
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This case distinction shows that on an input text for a language L, the index
f(d, e) is output infinitely often iff Vd = L, d is the least index with this property
and e is the least bound witnessing that d is the least index. This shows that
the learner is correct and also that the learner is reliable.

Example 17. Not every reliably partially learnable class is uniformly K-recur-
sive. For example, let T0, T1, T2, . . . be a uniformly recursive sequence of trees
over N∗ which have at most one infinite branch and for which the tree is unique to
the branch, that is, no two trees have the same infinite branch. Furthermore, let
Ve = {(x, fe(x)) : x ∈ N} where fe is the unique infinite branch of Te. Note that
the class {V0, V1, . . .} needs not to be uniformly K-recursive as there are recursive
trees with exactly one infinite branch f such that f is not even arithmetic, that
is, much more complicated than K-recursive. Now let g be a recursive function
which translates the V -index into that of an A-r.e. set with respect to some
acceptable numbering of these sets where A is a suitably chosen oracle. The
learner outputs g(e) at least n times iff after some time for x = 0, 1, . . . , n exactly
one pair (x, yx) has been observed and y0 y1 . . . yx is a node on the tree Te. It is
clear that the learner outputs an index g(e) infinitely often iff the observed data
is the set Ve.

4 Learnability Properties of Full and Noetherian
Matroids

In this section the two extremes of A-r.e. matroids are investigated: The first
case is the full matroid where every A-r.e. set is also closed in the matroid, as
Φ is the identity operator. The second case are the Noetherian matroids; these
satisfy that the closed sets are all uniformly A-recursive.

For the convenience of the reader, the following well-known facts and proper-
ties of Turing degrees are summarised: A ≤T K means that A is Turing reducible
to the halting problem. By Shoenfield’s Limit Lemma, this is equivalent to say-
ing that A can be approximated in the limit by a sequence of uniformly recursive
sets As; that is, if x ∈ A then x ∈ As for almost all s and if x /∈ A then x /∈ As

for almost all s. Furthermore, there is a real r ≡T A such that there is some re-
cursive sequence r0, r1, . . . of rationals with r = lims rs and {m : rm < r} ≡T A.
Here the number r itself can be chosen not to be a rational, so r 	= rm for all m.
In the case that A is not recursive (what is the only interesting case), one can
in addition chose r such that {q ∈ Q : q > r} is not an r.e. set.

The set A′ denotes the Turing jump of A or the halting problem relative to
A; A′ is A-r.e. and for every A-r.e. set B there is a recursive function f with
x ∈ B ⇔ f(x) ∈ A′. A set A has low Turing degree (or just “A is low”) iff
A′ ≤T K, that is, the halting problem relative to A is not more complicated
than the unrelativised halting problem. A is low2 iff A′′ ≤T K ′. Note that ev-
ery low set is low2, A is low implies A ≤T K and A is low2 implies A ≤T K ′.
Of special interest are those sets A which are low2 and satisfy in addition that
A ≤T K. They coincide with those sets such that the class of all A-recursive sets
has a uniformly K-recursive listing.
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Note that the full matroid satisfies that every set is closed. Hence the class
of its closed A-r.e. sets is exactly the class of all A-r.e. sets. Therefore it is
interesting to ask when this class is partially learnable. The following theorem
gives an answer.

Theorem 18. Assume that A ≤T K ′. Let C be the class of all A-r.e. sets. Then
the following statements are equivalent.

1. A is low, that is, A′ ≤T K;
2. C is reliably partially learnable;
3. C is partially learnable.

Proof. The proof is done by a case distinction over several parts.
First, consider the case that A is low. In this case, the class of A-r.e. sets

is uniformly K-recursive and hence by Theorem 16 reliably partially learnable;
note there that the set {(e, x) : x ∈ WA

e } is already K-recursive, hence the
reliable partial learner from Theorem 16 can actually be made to use the A-r.e.
indices. It follows that in this case all three conditions are true.

Second consider the case where A ≤T K and C is partially learnable. Now
let a0, a1, a2, . . . be a A-recursive sequence of rationals converging to a real r
such that the set {m : am < r} is A-r.e. and has the Turing degree of A′.
Such a sequence is known to exist. As A ≤T K there is a uniformly recursive
approximation to the sequence such that am = lims am,s. Now let, for a real
number q,

Bq = {(m, s) : am,s < q ∨ ∃t > s [am,t 	= am,s]}.

Furthermore, there is a locking sequence σ ∈ B∗
r and an index e of Br such

that for every τ ∈ B∗
r there is an η ∈ B∗

r with M(στη) = e. Let b0 =
max{a0, a1, a2, . . .} and note that b0 > r. Now define the following sequence
of rationals using the oracle K: Given bk > r, search for a sequence τ ∈ B∗

bk

such that there is no η ∈ B∗
bk

with M(στη) = e; this τ must exist as M does not
output e infinitely often on an text for the r.e. set Bbk

which is a proper superset
of Br; note that Bbk

∈ C as every r.e. set is an A-r.e. set and M outputs on
each text for Bbk

some other index than e infinitely often. Having τ , τ cannot
be a member of B∗

r by the choice of σ. So there is at least one (m, s) ∈ Bbk
−Br

which occurs in τ . Now let bk+1 = max{am,s : (m, s) occurs in τ and am,t = am,s

for all t > s}. So the am,s over which the maximum is taken satisfy all am,s < bk

and furthermore one of them satisfies r < am,s as otherwise τ ∈ B∗
r . It follows

that r < bk+1 < bk. The sequence of the bk is K-recursive and a subsequence
of a0, a1, . . .; hence the sequence b0, b1, . . . converges to r from above. Further-
more, by the choice of the sequence a0, a1, . . . one can approximate r from below
with an A-recursive and thus with a K-recursive sequence. Hence r ≤T K and
{m : am < r} ≤T K. It follows that A′ ≤T K and A is low. Again all three
conditions are satisfied.

Third, consider the case where A ≤T K ′ and A 	≤T K. Furthermore, let
r =

∑
n 2−nA(n) or r =

∑
n 2−n(1 − A(n)), just take that version for which

{q ∈ Q : q > r} is not K-r.e.; note that {q ∈ Q : q < r} is an A-r.e. set; it is even
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A-recursive. There is a K-recursive sequence of rationals such that r = lim an

and {n : an < r} ≡T A ⊕ K. Furthermore, {n : an > r} is not r.e. relative
to K as otherwise {q ∈ Q : q > r} would be r.e. relative to K. Having this,
one makes a proof similar to the previous case. There is a uniformly recursive
approximation am,s to am; so for all m and almost all s it holds that am = am,s.
Now let, for each real q,

Bq = {(m, s) : am,s < q ∨ ∃t > s [am,t 	= am,s]}.

Note that for every rational q and also for q = r it holds that Bq is A-r.e. and
hence there is a learner M which partially learns all sets Bq with q ∈ Q and also
Br. Hence, there is a locking sequence σ ∈ B∗

r and an index e of Br such that for
every τ ∈ B∗

r there is an η ∈ B∗
r with M(στη) = e. Let b0 = max{a0, a1, a2, . . .}

and note that b0 > r. Now define the following sequence of rationals using the
oracle K: Given bk > r, search for a sequence τ ∈ B∗

bk
such that there is no

η ∈ B∗
bk

with M(στη) = e; this τ must exist as M does not output e infinitely
often on any text for the r.e. set Bbk

which is a proper superset of Br. Having
τ , τ cannot be a member of B∗

r by the choice of σ. Hence there is at least one
(m, s) ∈ Bbk

−Br which occurs in τ . Now let bk+1 = max{am,s : (m, s) occurs in
τ and am,t = am,s for all t > s}. So the am,s over which the maximum is taken
satisfy all am,s < bk and furthermore one of them satisfies r < am,s as otherwise
τ ∈ B∗

r . It follows that r < bk+1 < bk. The sequence of the bk is K-recursive and
a subsequence of a0, a1, . . .; hence the sequence b0, b1, . . . converges to r from
above. It follows that {m : am > r} = {m : ∃n [bn < am]} is a K-r.e. set in
contradiction to its choice. From this contradiction follows that the class of all
A-r.e. sets is neither partially learnable nor reliably partially learnable. So all
three conditions are not satisfied in this case and hence they are equivalent also
in this case.

Theorem 19. Given a set A, it holds that A ≤T K iff CA
Φ is reliably partially

learnable for every Noetherian A-r.e. matroid (N, Φ).

Proof. One distinguishes three cases:

– first A ≤T K,
– second A 	≤T K and every A-recursive function is majorised by a K-recursive

one,
– third there is some f ≤T A which is not majorised by any K-recursive

function.

For the first case, consider A ≤T K. Note that for a Noetherian matroid the
class CA

Φ is uniformly A-recursive and thus uniformly K-recursive. Then CA
Φ is

reliably partially learnable by Theorem 16, using the given A-r.e. indices for the
learning process.

For the second part of the proof, one assumes for a contradiction that every
Noetherian matroid is reliably partially learnable, that A 	≤T K and that every
A-recursive function is majorised by a K-recursive one. Now one works over bi-
nary strings instead of natural numbers and considers trees of binary strings. One
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defines a matroid with two A-recursive sets: The set BrA = {λ, A(0), A(0)A(1),
A(0)A(1)A(2), . . .} of all prefixes of A and the full binary set {0, 1}∗; Φ(S) = BrA

for all S ⊆ BrA and Φ(S) = {0, 1}∗ for all other S. Now assume that M is a
partial reliable learner of this class which outputs the index e infinitely often
on the ascending text of BrA; e is an index for BrA and therefore not output
infinitely often on the text of any other set. Let f(n) be the number of ele-
ments seen of the ascending text of BrA when M outputs e for the n-th time.
The function f is A-recursive and hence majorised by a K-recursive function g,
that is, f(n) ≤ g(n) for all n. Now define the K-recursive tree T to be the set
of all strings σ such that every n ≤ |σ| with g(n) ≤ |σ| satisfies that M out-
puts e at least n times on the input sequence σ which contains all the prefixes
λ, σ(0), σ(0)σ(1), σ(0)σ(1)σ(2), . . . , σ of σ in ascending order. Then A is an infi-
nite branch of T as M outputs e at least n times on the g(n) first elements of the
ascending text of BrA; on the other hand no set B 	= A is an infinite branch of T
as M outputs e only n times on the ascending text of BrB for some n and then
B(0)B(1) . . . B(g(n)) is not on T by the definition of T . So A is the only infinite
branch on T and as T ≤T K, it also holds that A ≤T K, in contradiction to
the assumption. Hence there is an Noetherian A-recursive matroid whose closed
sets cannot be reliably partially learnt.

Third, assume that f ≤T A is not majorised by any K-recursive function. In
other words, the range of f is a set which is hyperimmune relative to K. Now
consider the matroid (N, Φ) with Φ(B) = N − range(f) if B is disjoint to the
range of f and Φ(B) = N if B meets the range of f . Assume that there is a re-
liable partial learner M , an index e and a locking-sequence σ ∈ (N− range(f))∗

such that for all τ ∈ (N − range(f))∗ there is an η ∈ (N − range(f))∗ with
M(στη) = e. There is a K-recursive function g such that for every n and every
finite set D ⊆ {0, 1, . . . , n}−range(σ) there is a τD ∈ ({0, 1, . . . , g(n)}−D)∗ such
that M(στDη) 	= e for all η ∈ (N−D)∗. This function exists as M does not out-
put e infinitely often on any text of a confinite set (by reliability) and therefore
one can use K to find the τD for each finite set D ⊆ {0, 1, . . . , n}− range(σ) and
then take the g(n) to be the maximum of the ranges of the finitely many strings
στD for these D. Now it must be that for D = {0, 1, . . . , n}−range(f) there is an
element of range(f) between n and g(n) as otherwise τD ∈ (N − range(f))∗ and
M(στDη) 	= e for all η ∈ (N−range(f))∗ in contradiction to the choice of σ. So it
follows that for every n ∈ N the intersection {n+1, n+2, . . . , g(n)}∩range(f) is
not empty and that contradicts the fact that range(f) is hyperimmune relative
to K. Thus this case does not occur and the reliable partial learner M cannot
exist. So also in this case there exists a Noetherian A-recursive matroid whose
closed sets cannot be reliably partially learnt.

The two preceding results give together the following corollary.

Corollary 20. The class of all A-r.e. sets is reliably partially learnable iff A is
low.
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5 The Class of All A-Recursive Sets

The following results deal with the question when the class of all A-recursive
sets is partially learnable.

Theorem 21. The class C of all A-recursive sets is reliably partially learnable
iff A is low2 and A ≤T K.

Proof. If A ≤T K and A is GL2 then A is low2 then the class of all A-recursive
sets is uniformly K-recursive [14]: One could fix an uniformly A-recursive num-
bering of all partial A-recursive functions and consider a K-recursive function g
which dominates the convergence time of each total function in this list; such a
g exists as A ≤T K and A is low2. Now one defines

Vd(x) =

⎧⎨⎩ 0 if ϕA
g(d+x)(x)↓= 0 and ∀y ≤ x [ϕA

g(d+x)(x)↓∈ {0, 1}];
1 if ϕA

g(d+x)(x)↓= 1 and ∀y ≤ x [ϕA
g(d+x)(x)↓∈ {0, 1}];

2 otherwise.

Note that those indices d where Vd(x) = 2 for some x are invalid indices for which
the padded versions f(d, e) in Theorem 16 will each be output only finitely of-
ten. Hence the learner from Theorem 16 will converge to one index of the form
f(d, e) where Vd(x) ∈ {0, 1} for all x. This is then a characteristic A-recursive
index of the set to be learnt.

It follows from Theorem 19 that whenever A 	≤T K then the class of all A-
recursive sets is partially reliably learnable.

So consider the last case that A ≤T K and A is not low2. For the way of
a contradiction, assume that M is a reliable partial learner of the class of all
A-recursive sets. Let ASC be the set of all strinctly ascending sequences. One
can now show the following: (∗) For every σ ∈ ASC there is τσ with στσ ∈ ASC
such that for all η with στη ∈ ASC it holds that M(στη) > max(range(σ)).

If this would not be true, then one could find a σ ∈ ASC such that for ev-
ery τ with στ ∈ ASC there is an η such that στη ∈ ASC and M(στη) <
max(range(σ)). This would permit to build more than max(range(σ)) + 1 many
recursive ascending texts for pairwise different sets on which M outputs an in-
dex below max(range(σ)) infinitely often, in particular one such index would be
output infinitely often on at least two different ascending texts of two different
sets, thus the condition (∗) is true.

There is now a K-recursive function which finds one possible τσ for σ. Further-
more, let τσ,s be an approximation to τσ such that τσ,s ∈ ASC for all σ ∈ ASC
and all s.

Let g(n) be the first s such that for all t ≥ s and all σ ∈ ASC with
max(range(σ)) ≤ n it holds that max(range(στσ,s)) < s and τσ,t = τσ. Note
that g in monotonically increasing. As g is a K-recursive function and A is not
low2 there is an A-recursive function f such that f(n) > g(g(n)) for infinitely
many n. Let T = limσm be the ascending text which is obtained by starting
with σ0 = 0 and taking σm+1 = σmτσm,f(max(range(σm))). Now consider any n
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with f(n) > g(g(n)). There is a first m such that max(range(σm)) ≥ n. It fol-
lows from the definition of g that max(range(σm)) ≤ g(n), g(max(range(σm))) ≤
f(n) ≤ f(max(range(σm))) and σm+1 = σmτσm . So, beyond σm+1, M does not
output again any index below n while processing T . As there are infinitely such
n it follows that M outputs on T every index only finitely often. Now T is an A-
recursive ascending text, hence B = range(T ) is an A-recursive set which M does
not partially learn. It follows that there is no reliable partial learner for the class
of all A-recursive sets in this case.

Corollary 22. The class of all A-r.e. sets is reliably partially learnable from
A-recursive texts iff A ≤T K and A is low2.

Proof. The class C̃ in Theorem 21 is reliably partially learnable only if A ≤T K
and A is low2. The texts considered there were ascending and, as the sets in C̃
are A-recursive, these texts are also A-recursive. It follows that the class of all
A-r.e. sets is reliably partially learnable from A-recursive texts only if A ≤T K
and A is low2.

For the converse direction, note that the class of all A-recursive texts of some
A-r.e. sets is uniformly K-recursive and that one can therefore reliably partially
learn the underlying class of A-recursive functions. Identifying the index of the
e-th text ϕ̃A

e and its range WA
e permits then to convert the function learner into

a language learner.

One might ask whether Theorem 21 can be improved to use a characterisation
based on partial learning in place of reliable partial learning. The answer is that
one cannot do this. The next result exhibits that there are uncountably many
oracles A such that the class of all A-recursive sets is partially learnable.

Theorem 23. There are uncountably many oracles A such that the class of all
A-recursive sets is partially learnable.

Proof. For this result, one needs a co-r.e. tree T without deadends and with a
branching node above every internal node such that the following holds for each
each two different infinite branches A, B and all sets E:

– A 	≤T B;
– if A has hyperimmune-free Turing degree and E ≤T A and E is not recursive

then A ≤T E.

Groszek and Slaman [10] give a construction with the second property, but they
do not write whether the first is satisfied as well. Furthermore, the construction
of the minimal rK-degree by Raichev and Stephan [25] provides a co-r.e. tree T
with the second property where the first one could easily be added in, one just
has to add a fourth condition that whenever for d, e with d < e and σ, τ ∈ {0, 1}e

there are marker positions for the markers mσ, mτ from that construction there
is an x and there are marker positions η above the current position of mσ and
η′ above the current position of mτ inside the current version of the co-r.e. tree
considered with ϕη

e ↓ 	= η′(x) ↓ then one moves mσ to η and mτ to η′ and cuts
the laid off branches accordingly. The verification is left to the reader.
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Now, given such a co-r.e. tree T , it follows from the Hyperimmune-free Ba-
sis Theorem of Jockusch and Soare [15] that T has uncountably many infinite
branches A of hyperimmune-free Turing degree; fix such an A. Note that there
is no other infinite branch B of T such that B ≤T A. Now let f be a recursive
one-one function with three inputs such that the following holds:

– if j = 0 then WA
f(i,j,n) is the recursive set {x : ∀y < x [ϕi(y) ↓∈ {0, 1}] ∧

ϕi(x)↓= 1};
– if j > 0 then WA

f(i,j,n) is the A-recursive set {x : ∀y < x [ϕA
i (y)↓∈ {0, 1}] ∧

ϕA
i (x)↓= 1}.

The learner will on a text for an A-recursive set R output exactly one triple
f(i, j, n) infinitely often with the following properties:

– WA
f(i,j,n) = R;

– If R is recursive then j = 0;
– If R is nonrecursive then j = k + 1 and A = ϕR

k and ϕB
i , ϕB

k are total for all
oracles B;

– The number n is the number of times some triple 〈i′, j′, n′〉 with 〈i′, j′〉 <
〈i, j〉 had been output.

In order to make this algorithm work one has to specify when a pair 〈i, j〉 qualifies
such that it happens m times that, with current values of n, the index f(i, j, n)
is output; the algorithm is then to output f(i, j, n) at stage s iff 〈i, j〉 qualifies at
this step for another time and the pairs 〈i′, j′〉 < 〈i, j〉 have altogether qualfied
n times up to stage s. For this, one defines that 〈i, j〉 qualifies at least m times
iff the following conditions are true.

– j = 0 and ϕi(x) is defined for x = 0, 1, . . . , m and there is a stage s > m
such that the set D of the first s elements in the text satisfies D(x) = ϕi(x)
for all x ≤ m.

– j = k+1 and there are bounds s, t such that the set D of the first t elements
from the input text satisfies the following conditions:
• ϕE

k (x) is defined for all oracles E and all x ≤ s within t steps of compu-
tation;

• ϕE
i (x) is defined for all oracles E and all x ≤ m within s steps of com-

putation and ϕE
i (x) does not query beyond bound s;

• σ = ϕD
k (0)ϕD

k (1) . . . ϕD
k (s) is not enumerated into the complement of T

within t steps;
• D(x) = ϕσ

i (x) for all x ≤ m.

If R is recursive then the first but not the second condition can qualify infinitely
often; the second would require that R computes an infinite branch of T which is
impossible. If R is not recursive then the first condition cannot qualify infinitely
often while the second qualifies infinitely often iff j > 0, ϕi and ϕk with k = j−1
are truth-table reductions, that is, Turing reductions defined for all oracles and
A = ϕR

k and R = ϕA
i . There is a least pair 〈i, j〉 which qualifies infinitely often

and for this the parameter n converges to a value n which is the number of



138 Z. Gao et al.

times some pair 〈i′, j′〉 qualifies. Then f(i, j, n) is output infinitely often while
all f(i′, j′, n′) with 〈i′, j′〉 > 〈i, j〉 are output only finitely often as the parameter
n for those triples does not converge but goes to infinity. Hence exactly one index
f(i, j, n) is output infinitely often and that index satisfies that R = WA

f(i,j,n).

If A is one of the oracles for which the class of all A-recursive sets is partially
learnable then one has of course that this is also true for the closed sets of
every Noetherian A-r.e. matroid. Hence one gets the following corollary which
shows that reliably partially learnable cannot be replaced by partially learnable
in Theorem 19.

Corollary 24. There are uncountably many sets A such that CA
Φ is partially

learnable for every Noetherian matroid (N, Φ).
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Abstract. The definition of descriptional complexity or algorithmic in-
formation in the sense of Kolmogorov or Chaitin is based on two im-
portant properties of computable functions, the existence of universal
machines and the invariance under the choice of machine. Recently, the
notion of descriptional complexity for finite-state computable functions
has been introduced by Calude et al. For the latter theory, one cannot
rely on the existence of universal machines, but bases the conclusions on
an invariance theorem for finite transducers.

This raises the question, which assumptions in algorithmic informa-
tion theory are actually needed. We answer this question in a general
setting, called encoded function space. Without any assumptions regard-
ing encodings of functions and arguments and without any assumptions
about computability or computing models, we introduce the notion of
complexity. On this basis alone, a general invariance theorem is proved
and sufficient conditions are stated for complexity to be computable.
Next, universal functions are introduced, defined by pairing functions.
It is shown that properties of the pairing functions, that is, of the joint
encodings of functions and their inputs, determine the relation between
the complexities measured according to different universal functions. In
particular, without any other assumptions, for length-bounded or length-
preserving pairing functions one can prove that complexity is indepen-
dent of the choice of the universal function up to an additive constant.
Some of the fundamental results of algorithmic information theory are
obtained as corollaries.

1 Introduction

When discussing the complexity of some object, be it a computation or a problem
or a string of symbols or a political transaction, we need to refer to a framework
in which we express the task at hand. Thus, what we determine as being the
complexity of the object, is really just the complexity of it as expressed within
the given framework. This is a very simple idea. Rarely is it made explicit in
computability theory or in complexity theory. In fact, simple statements like the
following:

1. the function f(n, m) = n · m of integers is computable;
2. the multiplication of two binary n-bit positive integers can be performed in

time O(n2);
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3. satisfiability is NP-complete;
4. the string 00 . . . 00 consisting of 32768 consecutive symbols 0 is compressible;

obscure the fact that we do not really express what we are talking about. In (1),
we do not state what integers are and how to compute with them as integers.
In (2), we implicitly talk about integers represented in binary, but do not say
on which kind of computing device the computation is performed. In (3), we do
not state which computing device is to be used, nor how the input is presented
to the device, nor how the output is obtained from the device. In (4), we do not
even give a yard stick by which to measure success.

The point is, of course, that computations work on representations of in-
put objects, yield representations of output objects, and the computing devices
themselves are described in a language the interpretation of which is obtained
using a meta-language. With a large grain of salt, the situation is captured by
the following diagram:

γ(p)

................................................................

.......
.......
......

.......

.......
.......
......

....................................................................................
.......................

.... ϕ(f)

................................................................

.......
.......
......

.......

.......
.......
......

....................................................................................
.......................

.... γ(r)

.......

.......

.......

.......

.......

.......
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.......
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...........................
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.......
.......
........
..........
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..........

............................................................ ϕ ................................................................
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..........
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p
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....................................................................................
.......................
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................................................................
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.......
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....................................................................................
.......................

.... r

.......

.......

.......

.......

.......

.......

.......

.......

............................

...........................

....................................................................................
.......................

....
....................................................................................

.......................
....

Here p is the problem at hand, f is the function to be applied and r = f(p) is
the result. One encodes the problem using γ; the function is defined as ϕ(f) in
a formal system according to ϕ; the encoded result γ(r) is decoded by δ. While
this diagram seems to capture the intuition well, it actually hides important
facts: (1) encodings of problems, functions and results need not be unique; and
(2) to describe encodings and decodings, again formal systems are needed which,
themselves, rely on encodings and decodings.

These problems have been pointed out frequently, – the coding and decoding
issues even lead to fundamental problems in the Gödelization of Turing machines
as natural numbers – but, by their very nature, escape a formal treatment. Some
aspects of these difficulties are addressed in the context of a general analysis of
computability by Hoeberechts in her thesis [11].

In this paper, we try to clarify the rôle of various parameters which contribute
to the problem. We pick up some discussions with Calude on the interpretation
of Gödel’s independence theorems since 1990 [2,5,6], certain of the author’s crit-
icism of the usual exposition of recursion theory, some later discussions with
Calude and others regarding the foundations of computability and some ideas
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presented by Calude et al. in recent papers on complexity with respect to finite
automata [7,8,9]. Specifically we are looking at a problem which we consider
central to all of computability and complexity theories, that of the effect the
encoding has, not only on the results, but on the theories themselves. We can
only scratch the surface of the problem, but hope to establish some pointers as
to where to look for answers.

To model the general situation, we introduce the notion of an encoded function
space. This formalizes one layer of the coding problem by referring, implicitly,
to a common meta-language layer. We define the complexity of an object with
respect to such a space. Neither the object nor the space need to be effectively
given. Without any assumptions about computing models or computability, we
prove a General Invariance Theorem of which the corresponding theorems for
finite transducers and Turing machines are special cases.

The Computability of Complexity Theorem states sufficient conditions for
complexity to be computable. These conditions are satisfied by the space of
finite-state computable functions. The computability of finite-state descriptional
complexity [7,8,9] is a corollary to this theorem.

Universal functions for an encoded function space are functions which ‘simu-
late’ all functions in the space. A universal function need not be in the space.
We then define the complexity of objects with respect to universal functions,
when they simulate only functions in the given space. The simulation is based
on a pairing function, which can be defined equivalently on the functions and
their arguments or on the encodings of the functions and the encodings of the
arguments.

In general, there is no connection between the complexity c in the function
space and the complexity C with respect to a universal function. Our general
results indicate that properties of the pairing function would determine such a
connection. We focus on two related natural cases: the pairing function is length-
bounded or is length-preserving. Typical machine simulations use encodings of
the machine to be simulated and its input which consist of the encoding of the
machine, followed by a special symbol, followed by the encoded input. Such a
pairing function is length-preserving. Thus, our considerations take into account
the usual cases.

In some cases – for instance, when different alphabets are involved – the
condition of length-preservation would need to be replaced by a similar, but
much weaker condition. We do not know at present, how this would influence
the rest of the theory. In encoded function spaces, this issue is addressed by
the encodings of functions and arguments. As the complexity is a measure with
respect to the encodings, the problem has been shifted to the encoding mappings.

The importance of properties of the pairing function for universality of finite-
state functions was explored, albeit in a quite different context not related to
complexity theory, in a book by Boucher [1] and in a thesis by Ring [16].

When the pairing function is length-bounded, the universal complexity C is a
lower bound to the complexity c. When the pairing function is length-preserving,
the two complexities are essentially equal up to an additive constant. This is
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stated in the Universal Complexity Theorem. Moreover, the choice of the uni-
versal function makes no difference. Thus, when only universal functions defined
by such pairing functions are considered, there is no need at all to introduce
universal functions in the treatment of complexity.

In the case of Turing machines, the universal machines are in the class of
machines under consideration. In the case of finite-state transducers, the uni-
versal machines are outside that class. In the latter case, the universal machines
have no encodings and, within the class, a universal machine cannot simulate
another universal machine. This suggests to consider a superspace of the en-
coded function space under consideration such that the universal functions are
in the superspace. Under certain natural conditions, mainly length-boundedness
of the pairing functions, the complexities defined by such universal functions are
equal up to an additive constant. For the case of Turing-computable functions,
one of the fundamental invariance results of algorithmic information theory is a
corollary of this theorem.

We emphasize that none of the results of this paper requires computing mo-
dels, computability or specific representations. Computability and related prop-
erties are not needed at this level. The crucial parameter is the pairing function.
Its influence warrants further detailed study.

In some expositions on descriptional complexity, the formal definition is pre-
ceded by an informal very general motivation1. However, the actual formal def-
initions and results concerning invariance and universality rely on computing
models, recursive functions and computability. As we show, these assumptions
are not needed. Moreover, taking into account the ongoing philosophical discus-
sions regarding the notion of computability, it seems preferable to develop as
much of the theory as possible without such assumptions. We believe that, be-
yond the results of the present paper, many more of the fundamental properties
of complexity can be proved in our general setting.

This paper is structured as follows. We review some basic notions and no-
tation in Section 2. We assume the reader to be familiar with standard issues
of the theories of computability, algorithmic information, automata and formal
languages. As a standard references, we use [3,4,10,15,17]. In Section 3 we in-
troduce encoded function spaces and the complexity of objects with respect to
such spaces. A general invariance theorem of complexity in encoded function
spaces is proved in Section 4. Moreover, we state natural sufficient conditions
for complexity to be computable. The notion of universal function is explored in
Section 5. For this purpose, pairing functions are introduced. For pairing func-
tions satisfying a length-preservation condition, we prove a universal complexity
theorem. In Section 6 we strengthen these results by introducing encodings of
universal functions. As the properties of pairing functions turn out to be crucial,
we discuss some variants of pairing functions and the consequences on the notion
of universality in Section 7. A summary, some conclusions and some questions
are presented in Section 8.

1 See, for instance, Chapter 2.1 on the Invariance Theorem of the book [15] by Li and
Vitányi or the paper [14] by Kolmogorov.
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2 Notation

An alphabet is a finite non-empty set the elements of which are called symbols .
To a avoid trivial exceptions, in this paper every alphabet is assumed to contain
at least two symbols. Moreover, without special mention, the symbols a, b, 0 and
1 could be among these. When dealing with different alphabets we sometimes
assume that they are subsets of a common, possibly infinite, but countable, set,
of which only finite parts are used.

Let X be an alphabet. The set of words over X including the empty word ε
is denoted by X∗. Define X+ = X∗ \ {ε}. For w ∈ X∗, |w | is the length of w.

We use the common set notation. For singleton sets we often omit the paren-
theses when there is no risk of confusion. Let S and T be two sets. We write
f : S

◦→ T to indicate that f is a partial mapping of S into T . Then dom(f) is the
subset of S on which f is defined, the domain of f , and codom(f) = f(dom(f))
is the set of images of f , the co-domain of f . For t ∈ T , f−1(t) is the set of
pre-images of t. When S = dom(f), f is a total mapping written as f : S → T .

To avoid trivial case distinctions we define2 min ∅ and inf ∅ to be ∞.
For sets A, B and C, a pairing function from A × B to C is an injective

mapping, denoted by π, of A × B into C. Often it is convenient to write 〈a, b〉
instead of π(a, b) with a ∈ A and b ∈ B. Obviously, a pairing function exists if
and only if |A | · |B | ≤ |C |. Given a pairing function, one defines the projections
pA

(
〈a, b〉

)
= a and pB

(
〈a, b〉

)
= b.

By N we denote the set of positive integers. Then N0 = N∪0 is the set of non-
negative integers. The symbol R denotes the set of real numbers. For real-valued
partial functions f and g we write f � g (or f(x) � g(x)) if dom(g) ⊆ dom(f)
and there is a non-negative constant c such that f(x) ≤ g(x) + c for all x ∈
dom(g). We write f ∼ g or f(x) ∼ g(x) if f � g � f , that is, dom(f) = dom(g)
and, for a constant c ≥ 0 and all x, | f(x) − g(x) | ≤ c.

We say that a function f is Turing-computable, if there is a Turing machine,
which computes f(x) for input x. A function f is said to be finite-state com-
putable, if there is a finite transducer in the sense of [7,8,9], which outputs f(x)
for input x. Usually we do not explicitly mention the input and output alpha-
bets of such computations. When necessary, it is assumed the all functions under
consideration use the same alphabets, or the same countable sets of alphabets.

3 Function Spaces and Encodings

We introduce encoded function spaces and the complexity functions defined for
them. Natural examples of such spaces are sets of functions computable with
specific computing devices with encodings establishing the connection between
the abstract functions and the devices computing them and between the input
values and their representations. However, this intuition is a bit misleading –
2 This convention is technically not correct because min ∅ /∈ ∅. However it avoids case

distinctions in the sequel. Using the infimum instead would obscure the fact that
one deals with the minimum unless the set is empty.
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albeit helpful – as we do not make any assumptions regarding computability,
whichsoever.

Definition 1. An encoded function space is a construct

F = (F, S, T, Φ, Σ, ϕ, σ)

with the following properties.

1. S is a non-empty countable set, the source;
2. T is a non-empty set, the target;
3. F is a non-empty countable set of partial mappings of S into T ;
4. Φ and Σ are alphabets;
5. ϕ : Φ+ ◦→ F is a surjective partial mapping, the encoding of F .
6. σ : Σ+ ◦→ S is a surjective partial mapping, the encoding of S;

The encoded function space F is said to be effective if all items in the construct
are effectively given and the mappings σ and ϕ are computable.

Calling ϕ the encoding of F and σ the encoding of S suggests that ϕ would be a
mapping of F into Φ+ and that σ would be a mapping of S into Σ+. However,
functions in F and values in S could have multiple encodings. For this reason,
the mappings ϕ and σ are defined in the opposite direction, that is, by abuse of
language, in terms of decodings.

An encoded function space does not refer to any model of computation nor
to any specific syntax for the encoding of arguments or functions. Moreover, for
our purposes it is convenient not to consider encodings of results. On the other
hand, when one has a specific model of computation in mind, one may consider
dom(ϕ) as the set of syntactically correct descriptions of computers within the
model which compute the functions in F ; in this case, dom(σ) would be the set
of syntactically correct descriptions of inputs to the these computers as shown
in the following diagram:

s ∈ Σ+
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.......

.......

.......

.......

.......

.......

.......

............................

...........................

.......................................
......
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Moreover, in such a context one may write v(s) to denote the result of the
computation defined by v when applied to the input described by s, written as a
word over some alphabet Ψ . With a suitable decoding ψ : Ψ+ ◦→ T one requires
ψ(v(s)) = ϕ(v)

(
σ(s)

)
as indicated in the diagram by dotted lines.

We now define the complexity of objects in the target set with respect to a
given encoded function space F.

Definition 2. Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space and let
t ∈ T .

1. For f ∈ F , the f -complexity of t in F is defined as

cF
f (t) = inf

{
| s |

∣∣ s ∈ Σ+, f(σ(s)) = t
}

2. The complexity of t in F is defined as

cF(t) = inf
{
| v | + | s |

∣∣ v ∈ Φ+, s ∈ Σ+, ϕ(v)(σ(s)) = t
}
.

In the definition of complexity, one can replace “ inf” by “min” as only subsets of
N0 are concerned using the convention of min ∅ = ∞ introduced above.

Our model of encoded function space is defined so as not to rely on com-
putability, nor on specific representations of data or functions. As a consequence,
the definition of complexity can be applied to situations when functions are not
computable in the usual sense, to computations with real numbers, to com-
putability with oracles and to many other potentially interesting scenarios. One
needs descriptions of the functions and their arguments. These do not have to
be constructive. They are just mappings. Of course, functions and arguments
can be described in many different ways. For complexity, we look for shortest
descriptions. The description of the results of functions applied to arguments is
not important for this purpose.

To deal with specific types of functions or computability issues, constraints
would be imposed on the components of an encoded function space. We provide
a general example of such conditions, which then guarantee the computability
of the complexity, below in Theorem 2.

4 Invariance

In [7,9] the authors provide a definition of complexity with respect to finite
automata. In that case the functions are language mappings which can be de-
fined by finite transducers. The source and target are sets of words, possibly
encoded in binary. The transducers are described in some fixed way as binary
words. If v is the description of a transducer then ϕ(v) is the partial function
computed by that transducer. The complexity of an output word t is defined as
the minimum of all values | s | + | v |, such that the transducer described by v,
when given s as input, computes t as output. One can also define the complexity
of t with respect to a fixed transducer as the shortest input length for which
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the given transducer computes t. This leads to the following result, referred to
as Invariance Theorem3: For every transducer description v and every word t,
the complexity of t does not exceed the sum of | v | and the complexity of t with
respect to the transducer described by v.

It turns out that this result does not depend on any properties of the set
of functions under consideration. It is a consequence of the following general
observation.

Fact 1. Let P ⊆ R × R and let SP = {a + b | (a, b) ∈ P}. For a ∈ R, let
pa(P ) = {b | (a, b) ∈ P}. Then

inf SP ≤ a + inf pa(P )

for all a ∈ R with pa(P ) 	= ∅.

Proof. If P = ∅, nothing needs to be proved. Otherwise, consider a ∈ R with
pa(P ) 	= ∅. If a+inf pa(P ) < inf SP then there is b ∈ pa(P ) such that a+b < x+y
for all (x, y) ∈ P . As (a, b) ∈ P , this is impossible. �

Theorem 1. (General Invariance Theorem)
Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space. Then, for all f ∈ F
and v ∈ ϕ−1(f),

cF(t) ≤ cF
f (t) + | v |

for all t ∈ T .

Proof. Let t ∈ T and

P (t) =
{(

| v |, | s |
) ∣∣∣ v ∈ Φ+, s ∈ Σ+, ϕ(v)(σ(s)) = t

}
.

Then
cF(t) = inf SP (t)

and, for v with ϕ(v) = f ,

cF
f (t) = inf p| v |(P (t)).

By Fact 1 the inequality as claimed is obtained. �
Using Theorem 1, one can state very general sufficient conditions for the com-
plexity to be computable4.
3 Theorem 13 of [7], Theorem 3.2 of [9].
4 Here and in the sequel, by “effectively defined” or “effectively given” we mean that

objects are obtained in some constructive way; this excludes, for example, obtaining
such objects through non-constructive existential quantifiers. Decidability results are
often not stated carefully enough. For example, the statement that “emptiness of a
regular set is decidable” is true, if the set is effectively given as a regular set, but
may be false otherwise. We do not assume any connection between the way such
objects are effectively given and their encodings.



148 H. Jürgensen

Theorem 2. (Computability of Complexity Theorem)
Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space and let t ∈ T .

1. For f ∈ F the complexity cF
f (t) is computable, if the following conditions are

satisfied:
(a) f is effectively defined and computable.
(b) dom(f) and codom(f) are decidable.
(c) S is effectively defined and σ is computable.
(d) t is effectively defined and equality is decidable in T .

2. The complexity cF(t) is computable, if, in addition to Conditions a–d, also
the following conditions are satisfied:
(e) Emptiness of the set {f | f ∈ F, t ∈ codom(f)} is decidable.
(f) F is effectively given and enumerable, and ϕ is computable.
(g) For every c ∈ N, emptiness of the set

Fc,t = {f | f ∈ F, ∃s ∈ Σ+ : | s | < c, f(σ(s)) = t}

is decidable.

Proof. First check if t ∈ codom(f). If not, cF
f (t) = ∞. Otherwise, one computes

as follows: Enumerate Σ+ in pseudo-alphabetic order5 until the first s is found
with f(s) = t. Then cF

f = | s |. This proves the first statement.
For the second statement, first check whether t ∈ codom(f) for some f ∈ F .

If not, then cF(t) = ∞. Otherwise, let c = ∞ and enumerate Φ+ until the first
v with cF

ϕ(v)(t) < c is found. Let c = | v | + cF
ϕ(v)(t). If Fc,t = ∅, then cF(t) = c.

Otherwise, continue the enumeration as above. By Theorem 1, this procedure
computes cF(t). �
The case of infinite complexity is usually ruled out immediately by the assump-
tions. When one considers functions defined by automata or other kinds of formal
systems, also the conditions a, c, d, f are trivially satisfied. Only the conditions
b and g are crucial. Neither condition is satisfied when F is the set of all Turing
computable functions. On the other hand, both are satisfied, when F is the set
of finite-state computable functions.

Corollary 1. ([7,9]) If F is the space of finite-state computable functions with
transducers as the computer model then cF is computable.

5 Universality

The complexity of a value t with respect to an encoded function space F is not
uniformly defined as it involves not only the “program” for t but also the descrip-
tion of the function by which to compute t. This is in contrast to algorithmic
5 There are various names for this ordering of words. First enumerate words by length;

then, for any given length, enumerate them lexicographically. This avoids entering
infinite branches of a search tree, while other options still need to be explored. Any
other order with similar properties could be used as well.
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information or descriptional complexity where a specific fU can be chosen for
all computations without distorting the complexity. When F is the set of all
partial Turing-computable functions, one chooses fU as the function computed
by some universal Turing machine. By a very simple argument, present already
in Kolmogorov’s work [14], one shows that the complexity with respect to fU

is a lower bound to the complexity with respect to every Turing-computable
function f up to an additive constant depending on f . In the sequel we explore
the general structure of this argument.

Definition 3. Let S and T be non-empty sets and let F be a non-empty set of
partial mappings of S into T . Let π : F × S → S be a pairing function.

A partial function g : S
◦→ T is said to universal for F by π, if 〈f, s〉 ∈ dom(g)

and g(〈f, s〉) = f(s) for all f ∈ F and all s ∈ dom(f).
Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space. A partial function

g : S
◦→ T is said to universal for F by π, if it is universal for F by π.

The notion of a universal function as defined in [15] should not be confused with
our definition. Those definitions capture different ideas.

A function which is universal for F by π need not be an element of F . One
has the following well-known property of Turing-computable functions:

Fact 2. There are universal Turing-computable functions.

Of course, the choice of the universal function depends on the pairing function π,
that is, on the joint encoding 〈f, s〉 of the function and its argument. As shown
by Boucher [1] and Ring [16], there are some subtle problems arising from the
choice of the pairing function, by which such a seemingly convincing definition
of universality can be unacceptable in certain cases. We discuss this issue further
below in Section 7.

Fact 3. There is no finite-state computable function which is universal for all
finite-state computable functions.

In contrast to Fact 3 there are deterministic two-way pushdown automata which
are universal for the set of all finite-state computable functions [16]. We explain
some of the details of this statement in Section 7 below.

Fact 4. Let S and T be non-empty sets, let F be a non-empty set of mappings
of S into T , and let π be a pairing function of F × S into S. If g is universal
for F by π, then g is uniquely defined by

g(s) = pF (s)
(
pS(s)

)
for all s ∈ codom(π) with pS(s) ∈ dom(pF )(s). For all other values of s, g can be
left undefined or defined in an arbitrary way. In particular, a universal function
for F exists, if and only if there is a pairing function π.
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We extend the definition of complexity as follows:

Definition 4. Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space, let
π : F × S → S be a pairing function, let g : S

◦→ T be universal for F by π, and
let t ∈ T . The complexity of t in F according to g (or π) is defined as

CF
g (t) = min

{
| s |

∣∣∣∣ s ∈ Σ+, ∃f ∈ F, ∃s′ ∈ S :
σ(s) = 〈f, s′〉, s′ ∈ dom(f), f(s′) = t

}
.

In this definition of complexity the “size” of the encoding of the function f and its
arguments enters through a backdoor, which is hidden in the usual definitions.
In considering complexity with respect to a universal function g, it is crucial
that g “simulates” encoded functions on encoded inputs using fixed alphabets.
If the encoding of objects expressed over different alphabets is assumed to be
part of the simulation, certain functions may fail to be universal (see [1]) or
the complexity measure may fail to be invariant under the choice of universal
functions. We give some additional explanations in Section 7 below.

Using the framework of Definition 4, there could be s ∈ Σ+ such that
g
(
σ(s)

)
= t and | s | < CF

g (t). In this case σ(s) /∈ codom(π) or σ(s) = 〈f, s′〉 for
some f ∈ F and s′ ∈ S such that s′ /∈ dom(f). Hence, one has CF

g (t) ≤ | s | for
all s ∈ Σ+ with g

(
σ(s)

)
= t satisfying the following condition:

σ(s) ∈ codom(π) ∧ pS

(
σ(s)

)
∈ dom

(
pF (σ(s)

))
.

To compare CF
g and cF we need a connection between the lengths of encodings

of pairs 〈f, s′〉 and the sum of the lengths of encodings of f and s′. To establish
such a connection is the next goal.

Fact 5. Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space and let π̂ :
Φ+ × Σ+ ◦→ Σ+ be a pairing function. There is a unique pairing function π :
F × S → S such that the following diagram commutes:

Φ+ ×

×

Σ+ Σ+

F S S

ϕ σ σ

π̂

π

...............................................................................................................................
.......................

....

...............................................................................................................................
.......................

....

...........................................................................................................

.......
.......
......

.......

.......
.......
......

...........................................................................................................

.......
.......
......

.......

.......
.......
......

...........................................................................................................

.......
.......
......

.......

.......
.......
......

One has π(f, s) = σ(π̂(v, s′)) with f ∈ F , s ∈ S, ϕ(v) = f and σ(s′) = s. We
say that π is derived from π̂.

Combining Facts 4 and 5, one finds that pairing functions on encodings define
universal functions uniquely up to non-essential values. This proves the following
statement.
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Theorem 3. Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space, let π̂ :
Φ+ × Σ+ → Σ+ be a pairing function, and let π : F × S → S be the pairing
function derived from π̂. Let gπ be a universal function for F by π. Then

CF
gπ

(t) = min
{∣∣ π̂(v, s)

∣∣ ∣∣∣ v ∈ Φ+, s ∈ Σ+, ϕ(v)
(
σ(s)

)
= t

}
for all t ∈ T .

A connection between the lengths of encodings of pairs 〈f, s′〉 and the sum of the
lengths of encodings of f and s′ as required to compare CF

g and cF is established
in the following definition. Obviously other options are possible; this one is chosen
to arrive at analogues of the usual universality results of algorithmic information
theory.

Definition 5. An injective partial function π̂ : Φ+ × Σ+ ◦→ Σ+ is length-
bounded if

| π̂(u, v) | � |u | + | v |
for all (u, v) ∈ dom(π̂). It is said to be length-preserving if

| π̂(u, v) | ∼ |u | + | v |

for all (u, v) ∈ dom(π̂).

The typical encodings of functions and their arguments used in the literature
are length-preserving. For our present purposes this condition is sufficient. As
shown in [16], this condition is not sufficient to handle more subtle aspects of
universality. We recount some of the details further below in Section 7.

Theorem 4. (Universal Complexity Theorem)
Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space. Let π̂ : Φ+×Σ+ → Σ+

be a length-bounded pairing function and let π : F × S → S be derived from π̂.
Let gπ be a universal function for F defined by π. Then CF

gπ
� cF. Moreover,

CF
gπ

∼ cF, if π̂ is length-preserving.

Proof. By Theorem 3, CF
gπ

(t) is the minimum of∣∣ π̂(v, s)
∣∣

with v ∈ Φ+, s ∈ Σ+ and ϕ(v)
(
σ(s)

)
= t. The fact that π̂ is length-bounded

implies that there is a constant c such that∣∣ π̂(v, s)
∣∣ ≤ | v | + | s | + c.

The minimum of | v |+ | s | is cF(t). This proves the first claim. When π̂ is length-
preserving, then also

| v | + | s | − c ≤
∣∣ π̂(v, s)

∣∣ ≤ | v | + | s | + c,

which implies the second statement. �
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As a consequence of Theorem 4, when only universal functions defined by length-
preserving pairing functions are considered, complexity can be defined without
recourse to universal functions. This is important for the interpretation of the
results in [7,8,9].

The complexity with respect to different universal functions need not be re-
lated at all. In the completely general setting, even length-boundedness of the re-
spective pairing functions seems not to permit a comparison. On the other hand,
it is not unexpected, that length-preservation allows for a comparison. Note that
most encodings considered in the literature are not just length-bounded, but even
length-preserving.

Theorem 5. Let F = (F, S, T, Φ, Σ, ϕ, σ) be an encoded function space. For
i = 1, 2, let π̂i : Φ+ × Σ+ → Σ+ be length-preserving pairing functions and let
πi : F × S → S be derived from π̂i. Let gπi be a universal function for F defined
by πi. Then CF

gπ1
∼ CF

gπ2
.

Proof. There are constants ci such that

| v | + | s | − ci ≤
∣∣ π̂i(v, s)

∣∣ ≤ | v | + | s | + ci

for all v ∈ Φ+ and s ∈ Σ+. Thus | π̂1(v, s) | ∼ | π̂2(v, s) |. �
Theorem 5 can also be derived as a corollary of Theorem 4. Note that none of the
results so far require that the universal function be in the space F. The results
follow solely from properties of the pairing functions involved.

6 Universal Functions Encoded

So far, when considering universal functions for an encoded function space we
did not refer to any representation of these. We now require, as an additional
assumption, that the universal functions are, themselves, elements of an encoded
function space. This permits us to compare the complexities with respect to
different universal functions directly.

Definition 6. For i = 1, 2 let Fi = (Fi, S, T, Φ, Σ, ϕi, σi) be two encoded func-
tion spaces.

1. We say that F1 is a subspace of F2, written as F1 ⊆ F2, if F1 ⊆ F2, ϕ1 ⊆ ϕ2

and σ1 ⊆ σ2.
2. We say that F1 is a conservative subspace of F2, if F1 ⊆ F2 and additionally,

ϕ−1
1 (f) = ϕ−1

2 (f) and σ−1
1 (s) = σ−1

2 (s)

for all f ∈ F1 and all s ∈ S1.

We now consider the following situation: The function space of interest is the
space F1. The universal functions for F1 to be considered are in F2, and F1 is a
conservative subspace of F2. Thus, the universal functions have encodings in F2,
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and the functions of F1 and their arguments have exactly the same encodings in
both spaces.

Special situations include the following: (1) F1 = F2, as is the case for Turing-
computable functions; (2) for F1 being the finite-state computable functions, F2

could be the space of functions computable by deterministic two-way pushdown
automata (see [16]) or the space of functions computable by deterministic linearly
bounded Turing machines (see [1]).

Theorem 6. Let F1 and F2 be encoded function spaces such that F1 is a con-
servative subspace of F2. For i = 1, 2, let π̂i : Φ+ ×Σ+ → Σ+ be length-bounded
pairing functions, and let πi : F2×S → S be derived from π̂i. Let gπi be universal
for F2 by πi. If gπ1 , gπ2 ∈ F2, then CF1

gπ1
∼ CF1

gπ2
.

Proof. For i = 1, 2, CF1
gπi

(t) is the minimum of∣∣ π̂i(v, s)
∣∣

with v ∈ Φ+, s ∈ Σ+, ϕ2(v) (σ2(s)) = t, ϕ2(v) ∈ F1 and σ2(s) ∈ S1. As F1 is a
conservative subspace of F2, CF1

gπi
(t) is also the minimum of∣∣ π̂i(v, s)

∣∣
with v ∈ Φ+, s ∈ Σ+, ϕ2(v) (σ2(s)) = t, ϕ1(v) ∈ F1 and σ1(s) ∈ S1.

Let ui ∈ ϕ−1
2 (gπi). Then

g1

(
σ2

(
π̂1(u2, π̂2(v, s)

))
= t = g2

(
σ2

(
π̂2(u1, π̂1(v, s)

))
for v and s as above.

As π̂1 and π̂2 are length-bounded, there are constants c1 and c2 greater than 0
such that∣∣ π̂1(u2, π̂2(v, s))

∣∣ ≤ |u2 | + | π̂2(v, s) | + c1 ≤ |u2 | + | v | + | s | + c1 + c2

and ∣∣ π̂2(u1, π̂1(v, s))
∣∣ ≤ |u1 | + | π̂1(v, s) | + c2 ≤ |u1 | + | v | + | s | + c1 + c2.

Hence
CF1

gπ1
(t) ≤

∣∣ π̂1(u2, π̂2(v, s))
∣∣ ≤ |u2 | + CF1

gπ2
(t) + c1

and
CF1

gπ2
(t) ≤

∣∣ π̂2(u1, π̂1(v, s))
∣∣ ≤ |u1 | + CF1

gπ1
(t) + c2

for v and s achieving the minima. Let c ≥ max {c1, c2}+ max {|u1 |, |u2 |}. then∣∣∣CF1
gπ1

(t) − CF1
gπ2

(t)
∣∣∣ ≤ c

as was to be proved. �
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The proof of Theorem 6 uses the idea underlying Kolmogorov’s proof for Turing-
computable functions [14]. This idea is also used in most of the literature for the
universality theorem.

7 Pairing Functions

In this section we summarize some of the results and observations made by Ring
in [16] and by Boucher in [1] concerning the notion of universal function for
automata and the rôle of the pairing functions in the definition of this notion.
Related considerations can also be found in [13].

In [16], universality is defined with respect to language acceptance rather
than output computation. This can be modified easily6. To present the concepts
introduced in [1,16], we use the notation of the present paper with some liberty.
Three concepts of universal function (universal automaton) are distinguished as
follows:

1. Weak universality: g is weakly universal for F, if there is an injective function

ψ :
{
(v, s)

∣∣ v ∈ dom(ϕ), s ∈ dom(σ)
}
→ dom(g)

such that
ϕ(v)

(
σ(s)

)
= g

(
ψ(v, s)

)
for all v and s.

2. Universality: g is universal for F, if there are injective partial functions

χ : Φ+ ◦→ Σ+ and ψ : Σ+ ◦→ Σ+

such that
dom(χ) = dom(ϕ), dom(ψ) = dom(σ)

and
ϕ(v)

(
σ(s)

)
= g

(
χ(v)ψ(s)

)
for all v and s.

3. Strong Universality: g is strongly universal, if there are injective partial func-
tions

χ : Φ+ ◦→ Σ+ and ψ : Σ+ ◦→ Σ+

such that
dom(χ) = dom(ϕ), dom(ψ) = dom(σ),

ψ is a homomorphism and

ϕ(v)
(
σ(s)

)
= g

(
χ(v)ψ(s)

)
for all v and s.

6 See Section 3.5 of [16].
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Above we assume that the factorization of the concatenation χ(v)ψ(s) into χ(v)
and ψ(s) is unique.

In [1], weak universality is called universalité au sens large and universality
is called universalité au sens strict; strong universality is not considered there.

In the context of [16] and for the specific goals of that work, the items un-
der consideration have to satisfy strong computability conditions: F must be
effective; the mappings ψ and χ must be computable, etc. We summarize sev-
eral results of [16] omitting some of the more technical assumptions. For precise
statements, the reader needs to consult the original.

Theorem 7. ( [16])

1. For every effectively defined set of automata7 recognizing only decidable lan-
guages there is a weakly universal finite automaton.

2. There is no universal finite automaton for the deterministic finite automata
with a fixed non-empty alphabet.

3. For every effectively defined set of automata recognizing only decidable lan-
guages there is a universal pushdown automaton.

4. For every effectively defined set of finite automata there is a strongly univer-
sal deterministic two-way pushdown automaton.

5. There is no strongly universal one-way push-down automaton for the deter-
ministic finite automata with a fixed non-empty alphabet.

The cases of weak universality and universality correspond to using arbitrary
pairing functions π̂. With length-bounded or length-preserving pairing functions
one encounters situations allowing for strong universality.

Theorem 7 indicates that the three notions of universality are indeed differ-
ent. For weak universality and universality, the pairing functions – encodings of
functions and inputs – permit one to hide much of the computation, even the
results, in the input to the (weakly) universal function. Thus, these notions are
not satisfactory when one considers the ‘computation power’ or the ‘complexity
of computations’ (even with oracles) of the function space at hand. The problem
is especially evident in the statements (1) and (3) of Theorem 7. For descrip-
tional complexity this seems not to be such a serious issue, as explicitly encoding
the result in the input is likely only to lengthen the input.

Typical pairing functions employed to describe the input to a universal ma-
chine for the simulation of the computation of a machine v on input s have the
form vms or smv where m is a special marker symbol or marker sequence in
the sense of [12]. With π̂(v, s) = vms one has | π̂(v, s) | = | v |+ | s |+ |m | where
|m | is a constant. Thus, π̂ is length-preserving. This type of pairing function
can be used in the proof of Theorem 7(4). We state this result using the present
notation.

7 Here and in (3) below, arbitrary types of automata are considered, not just finite
automata. In our terminology this would be an effective encoded function space with
total computable functions.
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Corollary 2. Let F be an encoded function space of finite-state computable func-
tions. There is a length-preserving pairing function π̂ such that the universal
function gπ for F can be computed by a deterministic two-way pushdown au-
tomaton. Up to an additive constant, the complexity with respect to gπ is inde-
pendent of the choice of π and, hence, of the corresponding deterministic two-way
pushdown automaton.

Proof. The claim follows from Theorem 7(4) and Theorem 5. �
Theorem 6 is not directly applicable in the case of Corollary 2. The simulation
of finite automata by a deterministic two-way pushdown automaton used in [16]
works as follows: The input of the machine to be simulated is copied onto the
pushdown tape. Then the current state is written to the pushdown tape. Now
the transition is looked up on the input tape using the state information and
the next input symbol from the pushdown tape. The input symbol is erased
from the pushdown tape and the next state is written on the pushdown tape.
This simulation works when the machine to be simulated is a finite automaton,
but will not work when that machine itself is a pushdown automaton, as would
be required for Theorem 6. We do not know, whether there are deterministic
two-way pushdown automata which are universal for their class, but doubt it.

A weaker simulation result for finite automata is due to Boucher [1].

Theorem 8. ([1]) There is a deterministic linearly bounded Turing machine
which is universal for the space of finite automata.

Both in [1] and in [16], infinite classes of automata with different alphabets
are considered. Thus the encodings of automata and their inputs have to map
these to one or two common alphabets, usually binary. In our concept of encoded
function space, we have hidden this issue by relying on the two fixed alphabets Φ
and Σ. However, conflicting measurements of space or time or information may
result when more, possibly infinitely many, alphabets are involved8. Usually,
one circumvents this problem, by taking all measurements with respect to the
encoded objects.

The results of [1] include the following:

Theorem 9. ([1])

1. There is a deterministic linearly bounded Turing machine, which is weakly
universal for the class of all deterministic linearly bounded Turing machines.

2. There is no deterministic linearly bounded Turing machine, which is univer-
sal for the class of all deterministic linearly bounded Turing machines.

The second statement of Theorem 9 is a consequence of the need to simulate
deterministic linearly bounded Turing machines with arbitrarily large alphabets.
Then the linear bound on the space may be violated. The problem is no longer
8 Sometimes, but not always, the difference is just a constant factor, for instance, the

logarithm of the size of an alphabet; there are situations when even this seemingly
trivial issue is crucial.
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present when the alphabet is fixed. In that case, deterministic linearly bounded
Turing machines satisfy the assumptions of Theorem 6. Thus, any two such
machines which are universal for the space of finite-state functions give rise to
the same complexity up to an additive constant.

8 Summary, Some Conclusions, Some Questions

We have isolated the rôles of the various assumptions in the universality and
invariance results of algorithmic information theory. Computability and com-
puting models are not needed in general unless one aims for statements about
the computability of complexity-related properties. A general invariance theorem
for complexity can be proved without any specific assumptions.

Rather weak sufficient conditions are derived for complexity to be computable.
These conditions can be relativized easily to include oracles.

It turns out that the properties of pairing functions influence what can be said
about complexity with respect to universal functions. Length-boundedness or
length-preservation entail the invariance of complexity with respect to universal
functions up to additive constants. This holds true even when the universal
functions are outside the class of functions under consideration.

The fact that length-boundedness and length-preservation are important is
a direct consequence of the logarithmic nature of complexity or information
measures.

In summary: To arrive at some of the very fundamental statements about
descriptional complexity, computing models are not needed at all. Only two
general concepts are needed: encoded function spaces and pairing functions.

These results give rise to several questions, for example: (1) Which of the other
fundamental results of algorithmic information theory can be proved with such a
reduced set of assumptions? (2) Are encoded function spaces F1 and F2 satisfying
the conditions of Theorem 6 rare? (3) Which properties of pairing functions are
required to guarantee the invariance under the choice of the universal function?

We emphasize that none of the results of this paper requires computing
models, computability or specific representations. The crucial parameter is the
pairing function. In a way, it represents a specific view of the space under con-
sideration. Its influence warrants further detailed study.
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Abstract. Osvald Demuth (1936–1988) studied constructive analysis
in the Russian style. For this he introduced notions of effective null sets
which, when phrased in classical language, yield major algorithmic ran-
domness notions. He proved several results connecting constructive anal-
ysis and randomness that were rediscovered only much later.

We give an overview in mostly chronological order. We sketch a proof
that Demuth’s notion of Denjoy sets (or reals) coincides with computable
randomness. We show that he worked with a test notion that is equivalent
to Schnorr tests relative to the halting problem. We also discuss the
invention of Demuth randomness, and Demuth’s and Kučera’s work on
semigenericity.

1 Who Was Demuth?

The mathematician Osvald Demuth worked mainly on constructive analysis in
the Russian style, which was initiated by Markov, Šanin, Cĕıtin, and others.
Demuth was born 1936 in Prague. In 1959 he graduated from the Faculty of
Mathematics and Physics at Charles University, Prague with the equivalent of
a masters degree. Thereafter he studied constructive mathematics in Moscow
under the supervision of A. A. Markov jr., where he successfully defended his
doctoral thesis (equivalent to a PhD thesis) in 1964. After that he returned to
Charles University, where he worked, mostly in isolation, until the end of his life
in 1988.

2 Demuth’s World

Demuth used the Russian style terminology of constructive mathematics, adding
some of his own terms and notions. In this paper, his definitions will be phrased
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in the language of modern computable analysis, developed for instance in [34,6].
We will also use present-day terminology in algorithmic randomness as in [28].

From the beginning through the 1970s, in line with Russian style construc-
tivism, Demuth only believed in computable reals, which he called constructive
real numbers, and sometimes, simply, numbers.

Definition 1. A computable real z is given by a computable Cauchy name, i.e.,
a sequence (qn)n∈N of rationals converging to z such that |qr − qn| ≤ 2−n for
each r ≥ n.

Demuth still accepted talking about Δ0
2 reals, which he called pseudo-numbers.

They are given as limits of computable sequences of rationals, so it was not
necessary to view them as entities of their own. Later on, in the 1980s, he relaxed
his standpoint somewhat, also admitting arithmetical reals.

The following is a central notion of Russian-style constructivism. Since in
that context only computable reals actually exist, it is the most natural notion
of computability for a function.

Definition 2. A function g defined on the computable reals is called Markov
computable if from an index for a computable Cauchy name for x one can com-
pute an index for a computable Cauchy name for g(x).

Demuth called such functions constructive. By a c-function he meant a construc-
tive function that is constant on (−∞, 0] and on [1,∞). This in effect restricts the
domain to the unit interval (but a constructivist cannot write that into the defi-
nition since it is not decidable whether a given computable real is negative). By
a result of Cĕıtin, and also a similar result of Kreisel, Shoenfield and Lacombe,
each c-function is continuous on the computable reals. However, since such a
function only needs to be defined on the computable reals, it is not necessarily
uniformly continuous.

A modulus of uniform continuity for a function f is a function θ on positive
rationals such that |x−y| ≤ θ(ε) implies |f(x)−f(y)| ≤ ε for each rational ε > 0.
If a c-function is uniformly continuous (or equivalently, if it can be extended to
a continuous function on [0, 1]) then it has a modulus of uniform continuity that
is computable in ∅′. Demuth also considered ∅-uniformly continuous c-functions,
i.e. c-functions which even have a computable modulus of uniform continuity;
this is equivalent to computable functions on the unit interval in the usual sense
of computable analysis (see [34,6]).

3 The Denjoy Alternative, and Pseudo-differentiability

The Denjoy alternative motivated a lot of Demuth’s work on algorithmic ran-
domness.
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3.1 Background

For a function f , the slope at a pair a, b of distinct reals in its domain is

Sf (a, b) =
f(a) − f(b)

a− b
.

Recall that if z is in the domain of f then

Df(z) = lim sup
h→0

Sf (z, z + h)

Df(z) = lim inf
h→0

Sf (z, z + h)

Note that we allow the values ±∞. By the definition, a function f is differentiable
at z if Df(z) = Df(z) and this value is finite.

One simple version of the Denjoy alternative for a function f defined on the
unit interval says that

either f ′(z) exists, or Df(z) = ∞ and Df(z) = −∞. (1)

It is a consequence of the classical Denjoy (1907), Young (1912), and Saks (1937)
Theorem that for any function defined on the unit interval, the Denjoy alterna-
tive holds at almost every z. The full result is in terms of right and left upper
and lower Dini derivatives denoted D+f(z) (right upper) etc. Denjoy himself
obtained the Denjoy alternative for continuous functions, Young for measurable
functions, and Saks for all functions. For a proof see for instance Bogachev [5,
p. 371]. One application of this result is to show that f ′ is Borel (as a partial
function) for any function f . A paper by Alberti et al. [1] revisits the Denjoy
alternative. They provide a version that is in a sense optimal.

3.2 Pseudo-differentiability

If one wants to study the Denjoy alternative for Markov computable functions,
one runs into the problem that they are only defined on computable reals. So
one has to introduce upper and lower“pseudo-derivatives” at a real z, taking
the limit of slopes close to z where the function is defined. This is presumably
what Demuth did. Consider a function g defined on IQ, the rationals in [0, 1].
For z ∈ [0, 1] let

D̃g(z) = lim suph→0+{Sg(a, b) : a, b ∈ IQ ∧ a ≤ x ≤ b ∧ 0 < b − a ≤ h}.
D˜ g(z) = lim infh→0+{Sg(a, b) : a, b ∈ IQ ∧ a ≤ x ≤ b ∧ 0 < b − a ≤ h}.

Definition 3. We say that a function f with domain containing IQ is pseudo-
differentiable at x if −∞ < D˜f(x) = D̃f(x) < ∞.

Since Markov computable functions are continuous on the computable reals, it
does not matter which dense set of computable reals one takes in the definition
of these upper and lower pseudo-derivatives. For instance, one could take all
computable reals, or only the dyadic rationals. For a total continuous function
g, we have D˜ g(z) = Dg(z) and D̃g(z) = Dg(z). The last section of [7] contains
more detail on pseudo-derivatives.

http://dl.dropbox.com/u/370127/cited_papers/BogachevProofDenjoyAlternative.pdf
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Definition 4. Suppose the domain of a function f contains IQ. We say that the
Denjoy alternative holds for f at z if

either D̃f(z) = D˜f(z) < ∞, or D̃f(z) = ∞ and D˜f(z) = −∞. (2)

This is equivalent to (1) if the function is total and continuous.

4 Martin-Löf Randomness and Differentiability

Demuth introduced a randomness notion equivalent to Martin-Löf (ML) ran-
domness in the paper [10]. He was not aware of Martin-Löf’s earlier definition in
[27]. Among other things, Demuth gave his own proof that there is a universal
Martin-Löf test.

The notion was originally only considered for pseudo-numbers (i.e., Δ0
2 reals).

As a constructivist, Demuth found it more natural to define the non-Martin-Löf
random pseudo-numbers first. He called them Π1 numbers. Pseudonumbers that
are not Π1 numbers were called Π2 numbers. Thus, in modern language, the Π2

numbers are exactly the Martin-Löf random Δ0
2-reals.

As already noted, from around 1980 on Demuth also admitted arithmetical
reals (possibly in parallel with the decline of communism, and thereby its back-
ground of philosophical materialism). In [14] he called the arithmetical non-ML-
random reals A1 numbers, and the arithmetical ML-random reals A2 numbers.
For instance, the definition of A1 can be found in [14, page 457]. By then, De-
muth knew of Martin-Löf’s work: he defined A1 to be

⋂
k[W〈g〉(k)], where g is a

computable function determining a universal ML-test, and [X ] is the set of arith-
metical reals extending a string in X . In the English language papers such as [18],
the non-ML random reals were called AP (for approximable, or approximable in
measure), and the ML-random reals were called NAP (for non-approximable).

Demuth needed Martin-Löf randomness for his study of differentiability of
Markov computable functions (Definition 2), which he called constructive. The
abstract of the paper [11], translated literally, is as follows:

It is shown that every constructive function f which cannot fail to be a
function of weakly bounded variation is finitely pseudo-differentiable on
each Π2 number.

For almost every pseudo-number ξ there is a pseudo-number which is
a value of pseudo-derivative of function f on ξ, where the differentiation
is almost uniform.

Converted into modern language, the first paragraph says that each Markov com-
putable function of bounded variation is (pseudo-)differentiable at each Martin-
Löf random real. We do not know how Demuth proved this. However, his result
has been recently reproved in [7] in an indirect way, relying on a similar re-
sult on computable randomness in the same paper [7]: each Markov computable
nondecreasing function is differentiable at each computably random real.

The first part of the second paragraph expresses that for almost every Δ0
2

real z, the derivative f ′(z) is also Δ0
2. It is not clear what Demuth means by the



Demuth’s Path to Randomness 163

second part, that “the differentiation is almost uniform”. One might guess it is
similar to the definition of Markov computablility: from an index for z as a limit
of a computable sequence of rationals, one can compute such an index for f ′(z).

The notion that a property S holds for “almost every” pseudo-number (i.e.,
Δ0

2 real) is defined in [11, page 584]; see Figure 1.
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Fig. 1. [11, page 584]: Definition of interval sequence tests

We rephrase this definition in modern (but classical) language. Demuth intro-
duces a notion of tests; let us call them interval sequence tests. In the following
let m, r, k range over the set N+ of positive integers. An interval sequence test
uniformly in a number m ∈ N+ provides a computable sequence of rational in-
tervals (Qm

r (k))r,k∈N+ , and a uniformly c.e. sequence of finite sets (Em
r )r∈N+ ,

such that
λ(
⋃

{Qm
r (k) : k �∈ Em

r }) ≤ 2−(m+r) (3)

(where λ denotes Lebesgue measure). A real z fails the test if for each m there
is r such that for some k �∈ Em

r we have z ∈ Qm
r (k). In other words, for each m,

z ∈
⋃
r

⋃
k �∈Em

r

Qm
r (k). (4)

Note that the class in (4) has measure at most 2−m, hence the reals z failing
the test form a null set. If z does not fail the test we say that z passes the test.
Demuth says that a property S holds for almost all reals z if there is an interval
sequence test (depending on S) such that S holds for all z passing the test.

Recall that a Schnorr test is a Martin-Löf test (Gm)m∈N+ such that λGm is
a computable real uniformly in m. We say that a real z fails the Schnorr test if
z ∈

⋂
m Gm. (See [28, 3.5.8].)
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Corollary 5 (with Hirschfeldt). Interval sequence tests are uniformly equiv-
alent to Schnorr tests relative to ∅′. That is, given a test of one kind, we can
effectively determine a test of the other kind so that every real fails the first test
if and only if it fails the second test.

Proof. Firstly, suppose we are given an interval sequence test

(Qm
r (k))r,k∈N+ , (Em

r )r∈N+ (m ∈ N+).

Let Gm be the class in (4). Then Gm is Σ0
1(∅′) uniformly in m, and λGm is

computable relative to ∅′ by (3).
Secondly, suppose we are given a Schnorr test (Gm)m∈N+ relative to ∅′. Uni-

formly in m, using ∅′ as an oracle we can compute λGm for each m ∈ N+.
Hence we can for each r,m ∈ N+ determine ur ∈ N and, by possibly split-
ting into pieces some intervals from Gm, a finite sequence of rational inter-
vals Pm

r (i), ur < i ≤ ur+1, such that λ(
⋃

ur<i≤ur+1
Pm

r (i)) ≤ 2−(m+r) and
Gm =

⋃
r

⋃
ur<i≤ur+1

Pm
r (i). By the Limit Lemma we have a computable se-

quence of intervals Pm
r (i, t) and a computable sequence ur(t), t ∈ N, such that

for large enough t, ur(t) = ur and Pm
r (i, t) = Pm

r (t) for i ≤ ur. From this we
can build an interval sequence test as required: the uniformly c.e. finite sets Em

r

correspond to the intervals we want to remove because of the mind changes of
the approximations ur(t) and Pm

r (i, t) for i ≤ ur(t).

Above we quoted the abstract of the paper [11]. The first part of the second
paragraph asserts that for almost every Δ0

2 real z, the derivative f ′(z) is also
Δ0

2. Since f is Markov computable, it is easy to verify that

f ′(z) ≤T z′,

namely, the value of the pseudo-derivative of f at z is computable in the Turing
jump of z, whenever this pseudo-derivative exists. Thus f ′(z) is Δ0

2 whenever z
is low. By [18, Remark 10, part 3b], or [28, 3.6.26], there is a single Schnorr test
relative to ∅′ (in fact, a Demuth test as defined in 11 below) such that each real
z passing it is generalized low (i.e., z′ ≤ z ⊕ ∅′). Thus, we know how to obtain
the first part of that paragraph; the point is the second part, that the derivative
can be obtained uniformly.

5 Denjoy Alternative and Denjoy Sets

For any function g : [0, 1] → R, the reals z such that Dg(z) = ∞ form a null
set. This well-known fact from classical analysis is usually proved via covering
theorems, such as Vitali’s or Sierpinskis’s. Cater [8] has given an alternative
proof of a stronger fact: the reals z where the right lower derivative D+(z) is
infinite form a null set.

Demuth knew results of this kind. He studied the question which type of null
class is needed to make an analog of this classic fact hold for Markov computable
functions (see Definition 2). The following definition originates in [13]. As usual,
for functions not defined everywhere we have to work with pseudo-derivatives
defined in Subsection 3.2.
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Definition 6. A real z ∈ [0, 1] is called Denjoy random (or a Denjoy set) if for
no Markov computable function g we have D˜ g(z) = ∞.

The paper [13] is entitled “The constructive analogue of a theorem by Garg on
derived numbers”. Garg’s Theorem, a variant of the Denjoy-Young-Saks theorem
discussed in Subsection 3.1, has the somewhat obscure reference [22].

The work of Demuth on the Denjoy alternative for effective functions is de-
scribed in the preprint survey “Remarks on Denjoy sets” [17]. This is based on
a talk Demuth gave at the Logic Colloquium 1988 in Padova, Italy (close to the
end of communist era in 1989, it became easier to travel to the “West”). He
later turned the preprint survey into the paper [19] with the same title, but it
contains only part of the preprint survey.

In the preprint survey [17, page 6] it is shown that if z ∈ [0, 1] is Denjoy ran-
dom, then for every computable f : [0, 1] → R the Denjoy alternative (1) holds
at z. Combining this with the results in [7] we can now figure out what Denjoy
randomness is, and also obtain a pleasing new characterization of computable
randomness of reals through differentiability of computable functions. Joseph S.
Miller also contributed to the theorem.

Theorem 7. The following are equivalent for a real z ∈ [0, 1]

(i) z is Denjoy random.
(ii) z is computably random
(iii) for every computable f : [0, 1] → R the Denjoy alternative (1) holds at z.

Proof. (i)→(iii) is Demuth’s result. For (iii)→(ii), let f be a nondecreasing com-
putable function. Then f satisfies the Denjoy alternative at z. Since Df(z) ≥ 0,
this means that f ′(z) exists. This implies that z is computably random by [7,
Thm. 4.1].

The implication (ii)→(i) is proved by contraposition: if g is Markov com-
putable and D˜ g(z) = ∞ then one builds a computable betting strategy showing
that z is not computably random. See [4, Thm. 15] or Section 2 of the Logic Blog
[2] for proofs.

Remark 8. For the contraposition of the implication (ii)→(i), actually the weaker
hypothesis on g suffices that g(q) is a computable real uniformly in a rational
q ∈ IQ.

We do not know at present how Demuth obtained (i)→(iii) of the theorem; a
proof of this using classical language would be useful. However, a direct proof
of the contraposition of (i)→(ii) is in [7, Thm. 3.6]: if z is not computably
random then a martingale M with the so-called “savings property” succeeds on
(the binary expansion of) a real z. The authors now build in fact a computable
function g such that Dg(z) = D˜ g(z) = ∞. Together with Remark 8 we obtain:

Corollary 9. The following are equivalent for a real z:

(i) For no function g such that g(q) is uniformly computable for q ∈ IQ we
have D˜g(z) = ∞.

http://dl.dropbox.com/u/370127/DemuthPapers/Demuth80DenjoySets.pdf
http://dl.dropbox.com/u/370127/DemuthPapers/Demuth88PreprintDenjoySets.pdf
http://dl.dropbox.com/u/370127/DemuthPapers/Demuth88PaperDenjoySets.pdf
http://dl.dropbox.com/u/370127/Blog/Blog2011.pdf
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(ii) z is Denjoy random, i.e., for no Markov computable function g we have
D˜g(z) = ∞.

(iii) For no computable function g we have Dg(z) = ∞.

This implies that the particular choice of Markov computable functions in Defini-
tion 6 is irrelevant. Similar equivalences stating that the exact level of effectivity
of functions does not matter have been obtained in the article [7]. For instance, in
[7, Thm. 7.3], extending a result of Demuth [11] the authors characterize Martin-
Löf randomness via differentiability of effective functions of bounded variation.
This works with any of the three particular effectiveness properties above: com-
putable, Markov computable, and uniformly computable on the rationals. For
nondecreasing continuous functions, the three effectiveness properties coincide
as observed in [7, Prop. 2.2]

Because of Theorem 7 one could assert that Demuth studied computable ran-
domness indirectly via his Denjoy sets. Presumably he didn’t know the notion of
computable randomness, which was introduced by Schnorr in [32], a monograph
in German (see [28, Ch. 7]). Demuth also proved in [18, Thm. 2] that every Den-
joy set that is AP (i.e., non ML-random) must be high. The analogous result for
computable randomness was later obtained in [30]. There the authors also show
a kind of converse: each high degree contains a computably random set that is
not ML-random. This fact was apparently not known to Demuth.

6 Demuth Randomness and Weak Demuth Randomness

As told above, Demuth knew that Denjoy randomness of a real z implies the
Denjoy alternative at z for all computable functions. The next question for De-
muth to ask was the following:
How much randomness for a real z is needed to ensure the Denjoy alternative at
z for all Markov computable functions?
Demuth showed the following (see preprint survey, page 7, Thm 5, item 4), which
refers to [12].

Corollary 10. There is a Markov computable function f such that the Den-
joy alternative fails at some ML-random real z. Moreover, f is extendable to a
continuous function on [0, 1].

This has been reproved by Bienvenu, Hölzl, Miller and Nies [4]. In their proof, z
can be taken to be the least element of an arbitrary effectively closed set of reals
containing all the ML-random reals but no computable reals. In particular, one
can make z left-c.e.

6.1 The Definition of (Weak) Demuth Randomness

It was now clear to Demuth that a randomness notion stronger than Martin-Löf’s
was needed. Weak 2-randomness may have seemed ignoble to him because a Δ0

2

real cannot be weakly 2-random. He needed a notion compatible with being Δ0
2.
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Such a notion was introduced in the paper “Some classes of arithmetical reals”
[14, page 458]. The definition is reproduced in the preprint survey [17, page 4].

For X a set of binary strings, let [X ]≺ denote the collection of infinite binary
sequences (sets) extending a string in X . In modern (but classical) language the
definitions are as follows.

Definition 11. A Demuth test is a sequence of c.e. open sets (Sm)m∈N such
that ∀mλSm ≤ 2−m, and there is a function f : N → N with f ≤wtt ∅′ such that
Sm = [Wf(m)]≺.

A set Z passes the test if Z �∈ Sm for almost every m. We say that Z is
Demuth random if Z passes each Demuth test.

Recall that f ≤wtt ∅′ if and only if f is ω-c.e., namely, f(x) = limt g(x, t) for some
computable function g such that the number of stages t with g(x, t) �= g(x, t−1)
is bounded in x. Hence the intuition is that we can change the m-th component
Sm for a computably bounded number of times.

\{г)ф(ьо(г)ьчь(^0(^^(гМ*т~ 2�*�Ъ)э 

х(^г) ф (ж0 (%) а т а<^>ш & /ти>(^(%А))^<^>(Ю))) 

где Ж одно из выражений 6 , 5 и 5 , 

б) если верно 3 (<%) , то 
x^Ч 

% ^ О и [VI/ „ 3 „ 

У * ^ 0 Л Ш „ 3, 

\ ^ 0 12 л л , 
* * **»<•:!<&,%» с * 

в) *Л Ф Л Х ( 1 П З / % ( 5 ( А , М ) 2 < Х € Т ) ) ; 

2) А � . � * л Х ( � | � 1 3 � г . г С 5 С � г . , < д , ) 8 1 Х б ' ^ ) ) ) 

(4 оС 

Fig. 2. [14, page 458]: Aβ is the definition of Demuth randomness

Fig. 2 shows what the definition of Demuth randomness looks like in the 1982
paper [14, p. 458]. Demuth first defines tests via certain conditions γq, where q
is an index for a binary computable function φq(x, k). The condition γq holds
for a real z if

∀m∃k ≥ m z is in [Wlim(s1
1(q,k))]

http://dl.dropbox.com/u/370127/DemuthPapers/Demuth82a.pdf
http://dl.dropbox.com/u/370127/DemuthPapers/Demuth82a.pdf
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(where his notation [X ] is equivalent to our notation [X ]≺). The expression in
the subscript in the same line simply means limx φq(x, k), which is the final
version r of the test. A further condition K(p, q), involving an index p for a
computable unary function, yields the bound φp(k) on the number of changes.
The bound 2−k on measures of the k-th component can be found in the top
line. The notation Mis(s1

1(q, k)) in Fig. 2 refers to the number of “mistakes”, i.e.
changes, and Demuth requires it be bounded by 〈p〉(k), meaning φp(k).

If we apply the usual passing condition for tests, we obtain the following
notion which only occurs in [14, page 458].

Definition 12. We say that a set Z ⊆ N is weakly Demuth random if for each
Demuth test (Sm)m∈N there is an m such that Z �∈ Sm.

In [14] this is given by conditions γ∗
q , where the quantifiers are switched compared

to γq:

∃m∀k ≥ m z is in [Wlim(s1
1(q,k))].

The class of arithmetical non-Demuth randoms is called Aα, and the class of
arithmetical non-weakly Demuth randoms is called A∗

α. The complement of Aα

within the arithmetical reals is called Aβ and, similarly, the complement of
A∗

α within the arithmetical reals is called A∗
β . Later on, in the preprint survey,

Demuth used the terms WAP sets (weakly approximable) for the non-Demuth
randoms, and NWAP for the Demuth randoms and analogously, in an obviuous
sense, the terms WAP∗ sets and NWAP∗ sets.

6.2 The Denjoy Alternative for Markov Computable Functions

In the preprint survey [17, page 7, Thm 5, item 5)], Demuth states that Demuth
randomness is sufficient to get the Denjoy alternative for Markov computable
functions. This refers to the paper [15].

Corollary 13. Let z be a Demuth random real. Then the Denjoy Alternative
holds at z for every Markov computable function.

This result is actually hard to pin down in [15]. Theorem 2 on page 399
comes close, but has some extra conditions not present in the original Denjoy
alternative.

Remark 14. Franklin and Ng [21] introduced difference randomness, a concept
much weaker than even weak Demuth randomness, but still stronger than Martin-
Löf randomness. Bienvenu, Hölzl and Nies [4, Thm. 1] have shown that difference
randomness is sufficient as a hypothesis on the real z in Theorem 13. No con-
verse holds. They also show that the “randomness notion” to make the Denjoy
Alternative hold for each Markov computable function is incomparable with
ML-randomness!

http://dl.dropbox.com/u/370127/DemuthPapers/Demuth83Pseudodifferentiability.pdf
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6.3 Demuth Randomness Finds Itself

We have seen that Demuth randomness of a real is way too strong for its original
purpose, ensuring that the Denjoy alternative holds at this real for all Markov
computable functions. However, Demuth randomness has recently turned out to
be a very interesting notion on its own. Since it is stronger than ML-randomness
but still allows the real to be Δ0

2, it interacts nicely with computability theoretic
notions. For instance, Kučera and Nies [25] proved that every c.e. set Turing
below a Demuth random is strongly jump traceable (see [28, Section 8.4] for a
definition of this lowness notion). Greenberg and Turetsky have recently provided
a converse of this result of Kučera and Nies: every c.e. strongly jump traceable
set has a Demuth random set Turing above. Nies [29] showed that each base for
Demuth randomness is strongly jump traceable. Greenberg and Turetsky proved
that this inclusion is proper.

Lowness for Demuth randomness and weak Demuth randomness have been
characterized by Bienvenu et al. [3]. The former is given by a notion called BLR-
traceability, in conjunction with being computably dominated. The latter is the
same as being computable.

7 Late Work Related to Computability Theory

In the 1980s the mathematics department at Charles University had a seminar on
recursion theory, which was based on Rogers’ book [31] and some draft of Soare’s
book [33]. Because of this, Demuth became more interested in computability
theory and the computational complexity of random sets.

7.1 Randomness and Computational Complexity

Demuth proved the following.

Corollary 15. (i) Each Demuth random real z satisfies z′ ≤ z ⊕ ∅′.
(ii) Each Demuth random set is of hyperimmune T -degree.

(i). Demuth [18, Remark 10, part 3b] gives a sketch of a proof. As mentioned, a
full proof can be found in [28, 3.6.26].
(ii). Only a sketch of a proof is given in Remark 2 and Remark 11 of the preprint
survey. It seems that a single Demuth test is sufficient here. An alternative proof
can be derived from (i) and the result of Miller and Nies [28, Thm. 8.1.19] that
no GL1 set of hyperimmune-free degree is d.n.c.

It is of interest that Kučera and Demuth ([20], Theorem 18) proved a result
very similar to a later result of Miller and Yu (see, [28], 5.1.14). For a Turing
functional Φ and n > 0, consider the open set

SA
Φ,n = [{σ : A�n� Φσ}]≺.

If A is ML-random then there is a constant c such that ∀nλSA
Φ,n ≤ 2−n+c.
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7.2 Work on Semigenericity

The following direction of Demuth’s late work is only loosely connected to ran-
domness. An incomputable set Z is called semigeneric [16] if every Π0

1 class
containing Z has a computable member. Any ML-random set is contained in a
whole Π0

1 class of ML-randoms, and is therefore not semigeneric. Intuitively, to
be semigeneric means to be close to computable in the sense that the set cannot
be separated from the computable sets by a Π0

1 class.
Demuth proved in [16, Thm. 9] that if a set Z is semigeneric then any set

B such that ∅ <tt B ≤tt Z is also semigeneric. In particular, its tt-degree only
contains semigeneric sets.

Demuth and Kučera [20] studied semigenericity and its relationship with other
types of genericity. We review some of their results.

Cĕıtin’s notion of strong undecidability. Cĕıtin [9] called a set Z strongly undecid-
able if there is a computable function p such that for any computable set M and
any index v of its characteristic function, p(v) is defined and Z �p(v) �= M �p(v).

By Demuth and Kučera [20, Cor. 2], an incomputable set Z is semigeneric if
and only if Z is not strongly undecidable. Furthermore, strong undecidability can
be characterized by some kind of “uniform non-hyperimmunity”: by [20, Thm.
5], a set Z is strongly undecidable if and only if there is a computable function
f such that for each computable set M and any index v of its characteristic
function, the symmetric difference M�Z is infinite, and its listing in order of
magnitude dominated by the computable function with index f(v).

Demuth and Kučera [20, Thm. 14] characterize the sets Z such that the
Turing-degree of Z contains a strongly undecidable set: this happens precisely
when there is a Π0

2 class containing Z but no computable sets. So we have
a weaker form of separation from the computable sets than for incomputable
sets that are not semigeneric (i.e. strongly undecidable sets per se), where the
separating class is Π0

1 by definition.
The result [20, Thm. 14] was actually proved in terms of so-called V -coverings

(where V stands for Vitali). A set Z is V -covered by a c.e. set of strings A if for
all k there is a string σ ∈ A such that |σ| ≥ k and σ ≺ Z. It is easy to see that
a class of sets A is a Π0

2 class if and only if there is a c.e. set of strings B such
that A is equal to the class of sets V -covered by B (see [28, 1.8.60]).

Connection to weak 1-genericity and hyperimmunity. Recall that a set Z is
weakly 1-generic if Z is in each dense Σ0

1 class (see [28, 1.8.47]). Clearly any
weakly 1-generic set is semigeneric. The converse fails.

Demuth [16, Thm. 16] showed that a set Z is weakly 1-generic if and only
if for any computable set M the symmetric difference M�Z is hyperimmune.
Kurtz [23,24] proved that a Turing-degree contains a weakly 1-generic set if and
only if it is hyperimmune. It follows from Kurtz’s results, using a fact of Martin-
Miller [26], that the weakly 1-generic T -degrees are closed upwards. As a corollary
we have that there are weakly 1-generic Turing degrees which do contain ML-
random sets and, thus, they can compute d.n.c. functions. On the other hand,
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Fig. 3. Demuth by the blackboard

Kučera and Demuth showed that the classes of 1-generic Turing degrees and of
Turing degrees of d.n.c. functions are disjoint. In fact, they proved in [20, Cor.
2] that no d.n.c. function (and, thus, no ML-random set) is computable in a
1-generic set (also see [28, 4.1.6]).

Demuth [16, Cor. 12] proved that any hyperimmune or co-hyperimmune set is
semigeneric. Furthermore, he showed in [16, Thm. 21] that there is a semigeneric
set E (even hypersimple) such that no set A ≤tt E is weakly 1-generic.

Final remarks. The searchable database at http://www.dml.cz contains most
papers of Demuth. We plan to submit an extended journal version of this paper
to the Bull. Symb. Logic in 2012.
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Abstract. Consider the set of all error-correcting block codes over a
fixed alphabet with q letters. It determines a recursively enumerable set
of points in the unit square with coordinates (R, δ):= (relative trans-
mission rate, relative minimal distance). Limit points of this set form
a closed subset, defined by R ≤ αq(δ), where αq(δ) is a continuous de-
creasing function called asymptotic bound. Its existence was proved by
the author in 1981, but all attempts to find an explicit formula for it so
far failed.

In this note I consider the question whether this function is com-
putable in the sense of constructive mathematics, and discuss some ar-
guments suggesting that the answer might be negative.

1 Introduction

1.1. Notation. This paper is a short survey focusing on an unsolved problem
of the theory of error-correcting codes (cf. the monograph [VlaNoTsfa]).

Briefly, we choose and fix an integer q ≥ 2 and a finite set, alphabet A, of
cardinality q. An (unstructured) code C is defined as a non-empty subset C ⊂ An

of words of length n ≥ 1. Such C determines its code point PC = (R(C), δ(C))
in the (R, δ)-plane, where R(C) is called the transmission rate and δ(C) is the
relative minimal distance of the code. They are defined by the formulas

δ(C) :=
d(C)
n(C)

, d(C) := min{d(a, b) | a, b ∈ C, a �= b}, n(C) := n,

R(C) =
k(C)
n(C)

, k(C) := logq card(C), (1.1)

where d(a, b) is the Hamming distance

d((ai), (bi)) := card{i ∈ (1, . . . , n) | ai �= bi}.

In the degenerate case cardC = 1 we put d(C) = 0. We will call the numbers
k = k(C), n = n(C), d = d(C), code parameters and refer to C as an [n, k, d]q-
code.

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 174–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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A considerable bulk of research in this domain is dedicated either to the
construction of (families of) “good” codes (e.g. algebraic-geometric ones), or to
the proof that “too good” codes do not exist. A code is good if in a sense it
maximizes simultaneously the transmission rate and the minimal distance. To
be useful in applications, a good code must also come with feasible algorithms
of encoding and decoding. The latter task includes the problem of finding a
closest (in Hamming’s metric) word in C, given an arbitrary word in An that
can be an output of a noisy transmission channel (error correction). Feasible
algorithms exist for certain classes of structured codes. The simplest and most
popular example is that of linear codes: A is endowed with a structure of a finite
field Fq, An becomes a linear space over Fq, and C is required to be a linear
subspace.

1.2. Asymptotic Bounds. Since the demands of good codes are mutually
conflicting, it is natural to look for the bounds of possible.

A precise formulation of the notion of good codes can be given in terms of
two notions: asymptotic bounds and isolated codes.

Fix q and denote by Vq the set of all points PC , corresponding to all [n, k, d]q-
codes. Define the code domain Uq as the set of limit points of Vq.

It was proved in [Man1] that Uq consists of all points in [0, 1]2 lying below the
graph of a certain continuous decreasing function αq:

Uq = {(R, δ) |R ≤ αq(δ)}. (1.2)

Moreover, αq(0) = 1, αq(δ) = 0 for 1 − q−1 ≤ δ ≤ 1, and the graph of αq is
tangent to the R-axis at (1, 0) and to the δ-axis at (0, 1 − q−1). This curve is
called the asymptotic bound. (In fact, [Man1] considered only linear codes, and
the respective objects are now called V lin

q , U lin
q , αlin

q ; the unstructured case can
be treated in the same way with minimal changes: cf. [ManVla] and [ManMar]).

Now, a code can be considered a good one, if its point either lies in Uq and is
close to the asymptotic bound, or is isolated, that is, lies above the asymptotic
bound.

1.3. Computability Problems. There is an abundant literature establishing
upper and lower estimates for asymptotic bounds, and providing many isolated
codes. However, not only “exact formulas” for asymptotic bounds are unknown,
but even the question, whether αq(δ) is differentiable, remains open (of course,
since this function is monotone and continuous, it is differentiable almost every-
where.) Similarly, the structure of the set of isolated code points is a mystery: for
example, are there points on R = αq(δ), 0 < R < 1 − q−1, that are limit points
of isolated codes?

The principle goal of this report is to discuss weaker versions of these problems,
replacing “exact formulas” by “computability”. In particular, we try to elucidate
the following

QUESTION. Is the function αq(δ) computable?
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As our basic model of computability we adopt the one described in [BratWe]
and further developed in [BratPre], [Brat], [BratMiNi]. In its simplest concrete
version, it involves approximations of closed subsets of R2, such as Uq or graph
of αq, by unions of computable sets of rational coordinate squares, “pixels” of
varying size.

The following mental experiment suggests that the answer to this computabil-
ity problem may not be obvious, and that αq might even be uncomputable and
by implication not expressible by any reasonable “explicit formula”.

Imagine that a computer is drawing finite approximations V
(N)
q to the set of

code points Vq by plotting all points with n ≤ N for a large N (appropriately
matching a chosen pixel size). What will we see on the screen?

Conjecturally, we will not see a dark domain approximating Uq with a cloud of
isolated points above it, but rather an eroded version of the Varshamov–Gilbert
curve lying (at least partially) strictly below R = αq(δ):

R =
1
2
(
1 − δlogq(q − 1) − δlogqδ − (1 − δ)logq(1 − δ)

)
(1.3)

In fact, “most” code points lie “near” (1.3): cf. Exercise 1.3.23 in [VlaNoTsfa]
and some precise statements in [BaFo] (for q = 2.)

By contrast, a statistical meaning of the asymptotic bound does not seem to
be known, and this appears as the intrinsic difficulty for a complete realization
of the project started in [ManMar]: interpreting asymptotic bound as a “phase
transition” curve. Hopefully, a solution might be found if we imagine plotting
code points in the order of their growing Kolmogorov complexity, as was suggested
and used in [Man3] for renormalization of halting problem. For the context of
constructive mathematics, cf. [CaHeWa] and references therein.

In any case, it is clear that code domains represent an interesting testing
ground for various versions of computability of subsets of Rn, complementing
the more popular Julia and Mandelbrot fractal sets (cf. [BravC] and [BravYa]).

2 Code Parameters and Code Points: A Summary

2.1. Constructive Worlds of Code Parameters. Denote the set of all triples
[n, qk, d] ∈ N3 corresponding to all (resp. linear) [n, k, d]q-codes by Pq (resp.
P lin

q ). Clearly, Pq and P lin
q are infinite decidable subsets of N3. Therefore they

admit natural recursive and recursively invertible bijections with N (“admissible
numberings”), defined up to composition with any recursive permutation N →
N. Hence Pq and P lin

q are infinite constructive worlds in the sense of [Man3],
Definition 1.2.1.

If X , Y are two constructive worlds, we can unambiguously define the notions
of (partial) recursive maps X → Y , enumerable and decidable subsets of X , Y ,
X × Y etc., simply pulling them back to the numberings. For a more developed
categorical formalism, cf. [Man3].
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2.2. Constructive World S = [0, 1]2 ∩Q2. The set of all rational points of the
unit square in the (R, δ)-plane also has a canonical structure of a constructive
world.

2.3. Enumerable Sets of Code Points. Code points (1.1) of linear codes all
lie in S. To achieve this for unstructured codes, we will slightly amend (1.1) and
define the map cp : Pq → S (cp stands for “code point”) by

cp([n, qk, d]) :=
(

[k]
n

,
d

n

)
(2.1)

where [k] denotes the integer part of the (generally real) number k. On P lin
q ⊂ Pq

it coincides with (1.1).
The motivation for choosing (2.1) is this: in the eventual study of computabil-

ity properties of the graph R = αq(δ), it is more transparent to approximate it
by points with rational coordinates, rather than logarithms.

Let Vq (resp. V lin
q ) be the image cp(Pq) (resp. cp(P lin

q )) i.e. the respective set
of code points in S. Since cp is a total recursive function both on Pq and P lin

q ,
Vq and V lin

q are recursively enumerable subsets of S.

2.4. Limit Code Points. Let Uq (resp. U lin
q ) be the closed sets of limit points

of Vq (resp. V lin
q ). We will call limit code points elements of Vq ∩ Uq (resp.

V lin
q ∩U lin

q ). The remaining subset of isolated code points is defined as Vq\Vq∩Uq,
and similarly for linear codes.

Notice that we get one and the same set Uq, using transmission rates (1.1)
or (2.1). In fact, for any infinite sequence of pairwise distinct code parameters
[ni, q

ki , di], i = 1, 2, ... we have ni → ∞, hence the convergence of the sequence
of code points (1.1) is equivalent to that of (2.1), and they have a common
limit. The resulting sets of isolated code points differ depending on the adopted
definition (1.1) or (2.1), however, the set of isolated codes, those whose code
points are isolated, remains the same.

Our main result in this section is the following characterization of limit and
isolated code points in terms of the recursive map cp rather than topology of
the unit square.

We will say that a code point x ∈ Vq has infinite (resp. finite) multiplicity, if
cp−1(x) ⊂ Pq is infinite (resp. finite). The same definition applies to V lin

q and
P lin

q .

Theorem 2.5. (a) Code points of infinite multiplicity are limit points. Therefore
isolated code points have finite multiplicity.

(b) Conversely, any point (R0, δ0) with rational coordinates satisfying the in-
equality 0 < R0 < αq(δ0) (resp. 0 < R0 < αlin

q (δ0)) is a code point (resp. linear
code point) of infinite multiplicity.

This (actually, slightly weaker) result, seemingly, was first explicitly noticed in
[ManMar]. It makes me suspect that distinguishing between limit and isolated
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code points might be algorithmically undecidable, since in general it is algorith-
mically impossible to decide, whether a given recursive function takes one of its
values at a finite or infinitely many points.

Similarly, one cannot expect a priori that limit and isolated code points form
two recursively enumerable sets, but this must be true, if αq is computable: see
Theorem 3.4 below.

For completeness, I will reproduce the proof of Theorem 2.5 here. It is based
on the same “Spoiling Lemma” that underlies the only known proof of existence
of the asymptotic bounds αq and αlin

q .

Proposition 2.6. (Numerical spoiling.) If there exists a linear [n, k, d]q-code,
then there exist also linear codes with the following parameters:

(i) [n + 1, k, d]q (always).
(ii) [n− 1, k, d− 1]q (if n > 1, k > 0.)
(iii) [n − 1, k − 1, d]q (if n > 1, k > 1)

In the domain of unstructured codes statements (i) and (ii) remain true, whereas
in (iii) one should replace [n−1, k − 1, d]q by [n−1, k′, d]q for some k−1 ≤ k′ < k.

For a proof of Proposition 2.6, see e. g. [VlaNoTsfa] (linear codes) and [ManMar]
(unstructured codes).

Proof of Theorem 2.5. (a) We first check that if a code point (R0, δ0) ∈ Q2

is of infinite multiplicity, then it is a limit point. In fact, let [ni, q
ki , di] be an

infinite sequence of pairwise distinct code parameters, i ≥ 1, such that [ki]/ni =
R0, di/ni = δ0 for all i. Then codes with parameters [ni + 1, qki , di] (cf. 2.6 (i))
produce infinitely many pairwise distinct code points converging to (R0, δ0).

(b) Now consider a rational point (R0, δ0) ∈ Q2 ∩ (0, 1)2 (unstructured or
linear), lying strictly below the respective asymptotic bound. Then there exists a
code point (R1, δ1) also lying strictly below the asymptotic bound, with R1 > R0

and δ1 > δ0, because functions αq and αlin
q decrease. Hence in the part of Uq

(resp. U lin
q ) where R ≥ R1, δ ≥ δ1) there exists an infinite family of pairwise

distinct code points (Ri, δi), i ≥ 1, coming from a family of unstructured (resp.
linear) [Ni,Ki, Di]q-codes.

Let (R0, δ0) = (k/n, d/n). Divide Ni by n with a remainder term, i.e. put
Ni = (ai − 1)n + ri, ai ≥ 1, 0 ≤ ri < n. Using repeatedly 2.6 (i), spoil the
respective [Ni,Ki, Di]q-code, replacing it by some [ain,Ki, Di]q-code. Its code
point will have slightly smaller coordinates than the initial (Ri, δi), however for
Ni large enough, it will remain in the domain R > R0, δ > δ0. Hence we may
and will assume from the start that in our sequence of [Ni,Ki, Di]q-codes all
Ni’s are divisible by n:

Ni = ain . (2.2)

In order to derive by spoiling from this sequence another sequence of pairwise dis-
tinct codes, all of which have one and the same code point (R0, δ0) = (k/n, d/n),
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we will first consider the case of linear codes where the procedure is neater,
because [Ki] = Ki. Since we have Ki/Ni > k/n,Di/Ni > d/n, we get

Ki > aik, Di > aid.

To complete the proof, it remains to reduce the parameters Ki, Di to aik, aid
respectively, without reducing Ni = ain. In the linear case, this is achieved by
application of several steps 2.6 (ii), 2.6 (iii), followed by steps 2.6 (i).

In the unstructured case reducing Di can be done in the same way. It remains
to reduce [Ki] to aik. One application of the step 2.6 (iii) produces K ′

i such that
either [K ′

i] = [Ki] − 1, or [K ′
i] = [Ki]. In the latter case, after restoring Ni to

its former value, one must apply 2.6 (iii) again. After a finite number of such
substeps, we will finally get [Ki] − 1.

QUESTION. Can one find a recursive function b(n, k, d, q) such that if an
[n, k, d]q-code is isolated, and a > b(n, k, d, q), there is no code with parameters
[an, ak, ad]q?

3 Codes and Computability

In this section, I will discuss computability of two types of closed sets in [0, 1]2:
Uq and Γq:= the graph of αq, as well as their versions for linear codes. I will
start with the brief summary of basic definitions of [BratWe] in our context.

3.1. Effective Closed Sets. First, we will consider [0, 1]2, Uq and Γq as closed
subsets in a larger square, say X := [−1, 2]2, with its structure of compact metric
space given by d((ai), (bi)) := max |ai − bi|. The set of open balls B with rational
centers and radii in this space has a natural structure of a constructive world (cf.
2.1). Hence we may speak about (recursively) enumerable and decidable subsets
of B.

Following [BratWe] and [La], we will consider three types of effectivity of
closed subsets Y ⊂ X :

(i) Y is called recursively enumerable, if the subset

{I ∈ B | I ∩ Y �= ∅} ⊂ B (3.1)

is recursively enumerable in B.
(ii) Y is called co-recursively enumerable, if the subset

{I ∈ B | I ∩ Y = ∅} ⊂ B (3.2)

is recursively enumerable in B (here I is the closure of I).
(iii) Y is called recursive, if it is simultaneously recursively enumerable and

co-recursively enumerable.

As a direct application of [BratWe] we find:

Proposition 3.2. The closures V q and V
lin

q are recursively enumerable.
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Proof. In fact, range of the function cp (see 2.3) is dense in V q, resp. V
lin

q , and
we can apply [BratWe], Corollary 3.13(1)(d).

3.3. Problem of Computability of the Asymptotic Bound. Referring to
the Corollary 7.3 of [Brat], we will call αq (resp. αlin

q ) computable, if its graph
Γq (resp. Γ lin

q ) is co-recursively enumerable.

Theorem 3.4. Assume that αq is computable. Then each of the following sets
is recursively enumerable:

(a) Code points lying strictly below the asymptotic bound.

(b) Isolated code points.

The same is true for linear codes, if αlin
q is computable.

Proof. We start with the following remark. Choose any integer N ≥ 1 and
consider the set Γ

(N)
q which is the union of closed balls of the form

I =
[
p

N
,
p + 1
N

]
×
[
p

N
,
p + 1
N

]
⊂ X (3.3)

satisfying p ∈ N, I ∩ Γq �= ∅. Then we have:

(i) The boundary of Γ
(N)
q consists of two vertical (parallel to the R-axis) seg-

ments at the ends and two piecewise linear connected closed curves: Γ
(N)
q+ lying

above Γ
(N)
q− .

(ii) The distance of any point x ∈ Γ
(N)
q− to Γ

(N)
q+ does not exceed 2/N , and

similarly with + and − reversed.

Let us call an N -strip any connected closed set satisfying these conditions.
Now, assuming αq (resp. αlin

q ) computable, that is, Γq co-recursively enumer-
able, choose N and run the algorithm generating in some order all rational closed
balls I such that I∩Γq = ∅. Wait until their subset consisting of balls of the form
(3.3) covers the whole square [0, 1]2 with exception of a set whose closure is an
N -strip. This strip will then be an approximation to Γq (resp. Γ lin

q ) containing
the respective graph in the subset of its inner points.

Run parallelly an algorithm generating all code points and divide each partial
list of code points into three parts depending on N : points lying below Γ

(N)
q ,

above Γ
(N)
q , and inside Γ

(N)
q .

When N grows, the growing first and second parts respectively will recursively
enumerate code points below and above the asymptotic bound.

Remark. This reasoning also shows, in accordance with [Brat], that if we assume
Γq only co-recursively enumerable, it will be automatically recursively enumer-
able and therefore recursive.

Theorem 3.5. Assume that Uq is recursive in the sense of 3.1(iii). Then αq is
computable. The similar statement holds for linear codes.
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Proof. Consider first a closed ball I as in (3.3) that intersects Uq whereas its
inner part I does not intersect Uq. A contemplation will convince the reader that
the left lower boundary point of this “ball” (a square in the Euclidean metric)
is precisely the intersection point I ∩ Γq. Call such a ball an exceptional N -ball.
Since αq is decreasing, we have

(a) Each horizontal strip p/N ≤ R ≤ (p+1)/N and each vertical strip q/N ≤
δ ≤ (q + 1)/N can contain no more than one exceptional N -ball.

(b) If one exceptional N -ball lies to the right of another one, then it also lies
lower than that one.

Generally, call a set of N -balls N -admissible, if it satisfies (a) and (b).
Now, assuming Uq recursive and having chosen N , we can run parallelly two

algorithms: one generating closed balls (3.3) non-intersecting Uq and another,
generating open balls (3.3) intersecting Uq. Run them until all N -balls are gen-
erated, with a possible exception of an N -admissible subset X

(N)
q , then stop

generation. Let U
(N)
q+ be the union of all balls generated by the first algorithm,

and U
(N)
q− the union of all balls generated by the second algorithm.

Look through all the balls in X
(N)
q in turn. If there are elements in it whose

closure does not intersect the closure of U (N)
q− , delete them from X

(N)
q and put it

into U
(N)
q+ . Similarly, if there are elements in it whose closure does not intersect

(initial) U
(N)
q+ , delete them from X

(N)
q and put them into U

(N)
q− .

Keep the old notations U
(N)
q− , U (N)

q+ , X(N)
q for these amended sets.

Now, the union of the lower boundary of U
(N)
q+ and the upper boundary of

U
(N)
q− will approximate Γq from two sides, with error not exceeding N−1. (Here

a “boundary” means the respective set of boundary squares).
Clearly, this reasoning shows also also computability of αq in the sense of 3.3.
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Abstract. Gödel’s incompleteness theorem can be seen as a limitation
result of usual computing theory: it does not exist a (finite) software that
takes as input a first order formula on the integers and decides (after a
finite number of computations and always with a right answer) whether
this formula is true or false. There are also many other limitations of
usual computing theory that can be seen as generalisations of Gödel
incompleteness theorem: for example the halting problem, Rice theorem,
etc. In this paper, we will study what happens when we consider more
powerful computing devices: these “transfinite devices” will be able to
perform α classical computations and to use α bits of memory, where α
is a fixed infinite cardinal. For example, α = ℵ0 (the countable cardinal,
i.e. the cardinal of N), or α = C (the cardinal of R). We will see that
for these “transfinite devices” almost all Gödel’s limitations results have
relatively simple generalisations.

1 Introduction

Gödel’s famous incompleteness theorem was first presented on October 7, 1930,
at the first international conference of mathematics philosophy, at Königsberg.
This result can be seen as a limitation result of usual computing theory: it does
not exist a (finite) software that takes as input a first order formula on the
integers and decides (after a finite number of computations and always with
a right answer) whether this formula is true or false. In 1930 no real computer
existed yet, but the mathematical analysis of the functions that can be effectively
computed with (finite) software (i.e. “recursive functions”) had began. Gödel
was studying sets of axioms for which there is an—effective, finite, recursive—
computing way to know if a given formula was a member of these axioms or
not.

What will happen if we consider more powerful computing devices? For exam-
ple, if we include in the set of axioms all first order formulas that are true in N

(with the standard interpretation of addition and multiplication) we will obtain
a complete set of axioms (i.e. with no undecidable and contradictory formulas);
however, it is not possible with a classical software to know if a given formula is
one of the axioms or not.

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 183–193, 2012.
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In this paper we will study what happens when we use “transfinite software”,
i.e. software that can be run on “transfinite computers”, generalised computers
that can perform α classical computations and use α bits of memory, where α is
a fixed infinite cardinal. These transfinite computers are able to compute more
than classical computers, but, are they limited by “transfinite questions” that can
be seen as generalisations of classical computations questions? In fact, as we will
see, it is possible to generalise almost all classical results within this framework.
Such generalisation is not totally new. In [6] and in some references mentioned
in [6], problems linked to “Totality, Knowledge and Truth”, and “Incomplete-
ness” are mentioned, and it is clearly stated that some limitation results can be
generalised beyond the classical theory of computation; a relativised version of
incompleteness was proved in [3]. It seems, however, that an explicit descrip-
tion of the main limitation theorems presented in the framework of “transfinite
computers” has not been done yet.

In [4] it is proved that any Turing machine that uses only a finite computa-
tional space for every input cannot solve any undecidable problem even when
it runs in accelerated mode (unlike as in this paper where the memory will be
infinite). A natural continuation of this work, that we hope to obtain in the near
future, is the generalisation of the results of [2] for “transfinite software”.

2 A Transfinite Computing Model

2.1 General Remarks

We will use the transfinite computing model described in [14]. To make this
paper self contained we will explain in this section the model.

It is also important to notice that our limitation proofs and results below are
very stable and generally will not depend on the chosen transfinite computing
model, as long as the model is reasonably natural and uses sets (working on
classes instead of sets may involve a specific analysis which will not be presented
in this paper).

2.2 Transfinite Computations

Let α be a fixed infinite cardinal. For example α = ℵ0 (the countable cardi-
nal, i.e. the cardinal of N), or α = C (the continuum, i.e. cardinal of R). In
“α-software” we use “transfinite computers” able to perform α computations
with α bits of memory. It is possible to describe precisely this model of compu-
tations, see [15], [16], [7], [9], [10], for example. The general idea is to follow a
generalisation of the Church’s Thesis: as soon as a computation will be clearly
feasible with α bits of memory and α computations, we will include it in the
model. Moreover, the results of this paper will be very stable with respect to
small changes in the infinite computation model.

Readers familiar with Ordinal Turing Machines, (OTM), with tapes whose
cells are indexed by ordinals, as described in [9], can just go directly to sec-
tion 3. We will speak of “α-programs” or “α-softwares”. We can assume that
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the memory is separated in 4 zones of bits: the input memory, the program
memory, the variables of computation memory, and the output memory. With-
out loss of generality we can assume that the input memory is made of 1, or 2 (or
more but ≤ α) inputs of α bits. The program memory contains a well ordered
set of α elementary operations. Thanks to the fact that the program memory is
well ordered, we can know at each “time” of the computation which is the next
operation to perform. The word “time” is of course here a generalised word: it
means that when any set of operations has been performed, we know precisely
what is the next operation to be performed. More precisely than “time”, it is
the succession of some ordinals that we will use. To each operation T at a cer-
tain place in the program we will associate an ordinal β, so we can say that
T is the operation number β, or of position β. Each elementary operation can
be of two kinds: simple, or GOTO. A simple elementary operation is a classic
operation present in any computer language (such as C, on two words of 64 bits,
for example) such that these two words are chosen at the addresses a and b of
the memory and the result is stored at the address c of the memory. Here a
and b can be addresses of the input memory, or of the variables of computation
memory, c can be an address of the variables of computation memory, or of the
output memory; a, b, and c are addresses of at most α bits and are associated
with the current operation. So each instruction of the program (operation and
its position or number) can memorise a, b, c, and the operation to be performed.
Of course, it is possible to use any other classical computer language instead
of the C language, or to use words of 32 bits (or another length) instead of 64
bits. This will not change the set of functions that we can compute. A special
instruction is the “stop instruction”. When this instruction is performed, the
program stops and the output of the program is the value stored in the α bits
of the output memory. The GOTO operation is an operation of the form (if
X = k) then GOTO β, where β is an ordinal. Thus this GOTO instruction says
that the next instruction to be performed is the instruction number β (or of
position β), if a variable X of α bits is equal to the value k of α bits. (Note that
β can be any ordinal smaller than the ordinal of the current GOTO instruction
performed.) If X �= k, to determine the next instruction we will follow, as for
the simple instructions, the usual order of the ordinals of the instructions. It is
also possible to describe our model of transfinite computations with generalised
Turing machines.

2.3 Coding the Instruction Ordering

In the α bits of the program memory zone there are various simple ways to
describe the ordering (well ordering) of the instructions. Let us give here an
example for α = ℵ0. (It is easy to generalise this example for any cardinal α.)
Let P be an α program. By definition, we will call “ordinal of P” the ordinal
of the (well ordered) set of all instructions of P . For example, if α = ℵ0, this
ordinal may be ω, or ω3. A countable ordinal can be described as a good
ordering on N. So each countable ordinal can be written as a set of ℵ0 integers:
for each integer n, we will give the list of all the integers m such that m < n for
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this ordering. We need for this ≤ ℵ0 ×ℵ0 bits. The “infinite processor” can find
the first instruction (no instruction is strictly smaller), and then, at each step,
it can check all the integers in order to find the next instruction to be performed.

Remark. A classical result on ordinals says that the set of countable ordinals
has cardinal ℵ1 (i.e. the smallest non countable infinite cardinal). We know
that ℵ1 ≤ C. (However we do not know if ℵ1 = C or not, this is the famous
undecidable problem called “the continuum hypothesis”.) Moreover each real
number can be given by ℵ0 bits. Therefore, each countable ordinal can be
given by ℵ0 bits. This is what we do here for the ordinal of program P .
The method used for α = ℵ0 can also be extended to any infinite cardinal
α since, adopting the axiom of choice, for any infinite cardinal α, we have α2 = α.

Example. The function x → x2 on Q is a one way function in the model of
infinite computation of [17]. In our model of infinite computations, this function
however is not a one way function. In order to find a rational (or a real) x such
that x2 = y with ℵ0 computations and ℵ0 bits of memory, we can, for example,
find all the bits of x, one by one. If we know that x is a rational number, then
we can also try all the rational numbers one by one (card Q = ℵ0), square them,
and check whether we get y. Here again we need “only” ℵ0 computations and
ℵ0 bits of memory.

Remark. On classical computers bits can have the value 0, or the value 1. In
our model of computation, it is possible to assume that the values can be 0, 1,
or “not fixed”. The value “not fixed” will be obtained for example when the bit
has flipped from 0 to 1 and from 1 to 0 infinitely many times, without being
fixed to 0 or 1. However, it is possible to prove that if this value “not fixed” is
changed to 0 (or 1), the infinite model of computation will be the same (i.e. we
will be able to compute exactly the same functions); in this case the model may
be slightly less natural. (A variable B can be at 11 . . . 1 . . . with an infinity of 1
if and only if a bit b has changed an infinity of times its value.)

Remark. As pointed out by an anonymous referee of WTCS2012, our transfinite
computing model is in fact similar to admissible recursion on cardinals (which is
equivalent to running ordinal Turing machines). Admissible recursion has been
well-developed since the 60s in work of Platek (1966), Kripke (1964) and Sacks
(cf [12], p.443).

3 α-Recursive Sets, α-Recursively Enumerable Sets

We start with a few definitions.

Definition 1. We say that an α-software stops or gives the output after
α computations when the α-software stops after performing at most α
computations.
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Definition 2. We denote by Iα = {0, 1}α the set of all sequences of α bits.
Therefore Iℵ0 can be identified with the set R of all the real numbers, or with
[0, 1] for example.

Definition 3. Let A be a subset of Iα. We say that A is α-recursive if there
exists at least one α-software P such that when we give n ∈ Iα as input to P ,
then P will be able to answer after at most ≤ α operations if n ∈ A or n /∈ A.

Definition 4. We say that A is α-recursively enumerable if there exists at
least one α-software P such that when we give n ∈ Iα as input of P :

1. if n ∈ A, then P will be able to answer n ∈ A after at most α operations.
2. if n /∈ A, then P does not answer after α operations, or P will answer n /∈ A.

Definition 5. Let f be an application Iα → Iα. We say that f is α-recursive if
there exists at least one α-software P such that for all n ∈ Iα, when n is given as
input to P , P will give the output f(n) after performing at most α computations.

Remark. There are αα applications from Iα to Iα, and the number of
α-softwares is ≤ α. Since αα ≥ 2α > α (Cantor Theorem), it follows that some
applications are neither α-recursive nor α-recursively enumerable.

Definition 6. Let α be a cardinal. Put Ilimit α = ∪β<αIβ . We define an α
-limit-software as a α-software such that:

1. The inputs are the elements of Ilimit α.
2. The variables of computation memory are in Ilimit α.
3. The program memory is in Iβ with β < α.
4. The input is an element of Ilimit α.

Definition 7. Let A ⊂ Ilimit α. We say that A is α-limit-recursive if there
exists at least one α-limit-software P such that when we give n ∈ Ilimit α as
input of P , P will be able to answer after at most β operations, |β| < |α|, if
n ∈ A or n /∈ A.

Definition 8. Let A ⊂ Ilimit α. We will say that A is α-limit recursively-
enumerable if and only of it exists at least one α-limit-software P such that:
when we give n ∈ Ilimit α as input of P ,

• if n ∈ A then P will be able to answer after at most β operations,
|β| < |α|, that n ∈ A.
• if n /∈ A then P will not answer or P will n /∈ A.

Remark

1. The above definitions are generalisations of the classical definition of recur-
siveness, i.e. ℵ0-limit-recursive = recursive (usual meaning) and ℵ0-limit-
recursively-enumerable = recursively enumerable (usual meaning).
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2. The definitions of α-limit-recursiveness may be interesting when α is a car-
dinal with no predecessor (as ℵ0), i.e. when there is no cardinal β < α such
that α is the smallest cardinal > β, because if α has a predecessor β, then
α-limit recursiveness is simply β recursively.

4 A Generalisation of “Recursively Enumerable and Not
Recursive Sets”

To achieve the main aim of this paper, i.e. to show that that most of the classical
limitation results of logic can be generalised in the model of transfinite computa-
tions, with almost the same proofs as in the case of classical case, we will follow
here one of the classical ways to obtain such limitation results (as in [11] or [13]).
Of course, one can possibly obtain the same results following other proofs.

4.1 α-Code of a α-Software

To each α-software T we can associate in an injective and “simple” way an
element of Iα, called its α-code, and denoted �T �. By “simple” we mean that
there exists an α-software that takes �T � as input, and then produces the
sequence of α instructions of T .

Example: If α = ℵ0, the indices of the instructions of T are countable ordinals,
and the set of these indices is countable. They form a well-ordering and this
can be seen as a well-ordering on N. Such a well-ordering on N can be described
as follows: to each natural integer we associate the of integers that are smaller
than the given integer (for the well-ordering). There are ℵ0 such integers.
Then for each elementary instruction, we can associate 2 or 3 real numbers
(for example the instruction “if (X = K) then GOTO β”). Thus we can
associate to such a software T , an injective and “simple” application from N to
P(N) × R3. Let B be the set of applications from N to P(N) × R3. |B| = |R|;
there exist “simple” bijections from B to [0, 1]. So to each ℵ0-software T , we
can associate in an injective and “simple” way an element of Iℵ0 which is its code.

Remark. The above method works for any α ≥ ℵ0.

4.2 Software Simulation

If B is an α-software and x an element of Iα, we denote by B(x) the result of
software B when x is the input: i.e, the value of the output memory (it is also
an element of Iα) when the software stops after ≤ α operations.

There exists an α-software P which, when it is given x ∈ Iα as input:

1. P “finds” the α-software X such that �X� = x in case such an α-software
X exists. This comes from the fact that the coding is “simple” (cf. above).

2. P executes the same instructions on x as X would execute with x as input.
Thus, for all x ∈ Iα, P (x) = X(x) provided there exists an α-software X
such that �X� = x.
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4.3 The Basic Theorem

Theorem 1. There exists A ⊂ Iα, such that A is α-recursively enumerable, but
A is not α-recursive.

Proof : Let P be the α-software previously defined such that P (x) = X(x),
whenever there exists an α-software X with code x. Let

A = {x ∈ Iα | P (x) is computed in ≤ α computations.}
1. Since A is defined by the α-software P , A is α-recursively enumerable.
2. Assume that A is α-recursive and q is the code of an α-software Q such that:

x /∈ A ⇔ Q(x) is computed in ≤ α computations.

Then

q ∈ A ⇔ P (q) is computed in ≤ α computations (by definition of A)

i.e.

q ∈ A ⇔ Q(q) is computed in ≤ α computations (by definition of P )

i.e.
q ∈ A ⇔ q /∈ A (by definition of Q).

This is not possible. Thus A is not α-recursive. �

5 The Decision Problem, the Halting Problem and
Ordinal Length of Computations for α-Softwares

We generalise the undecidability of the above problems for α-softwares.

5.1 The Decision Problem

Theorem 2. There is no general algorithm, programmable with α-software,
which could, using always ≤ α computations, to decide whether a mathemati-
cal proposition on elements of Iα is true or not.

Proof : It is enough to consider all the propositions of the form n ∈ A, where
n ∈ Iα, and A is the set defined in Theorem 1 above. Since A is not α recursive,
there exists no α-software which, when applied to one of these propositions n ∈ A
can decide, using ≤ α computations, whether this proposition is true or false. �

Remark

1. These mathematical propositions can be written with quantifiers ∀, ∃, the
usual logic symbol and the operators +, −, ×, ÷ and with ≤ α elementary
finite formulas. We then get a generalisation of Gödel’s Incompleteness The-
orem. (We just have to write the α-software with such formulas, which are
generalisations of first order classical formulas with α characters, which is
always possible).

2. Some properties that are true on sequences of α bits are lost if we are limited
to α computations and α bits of memory, for any infinite cardinal α.
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5.2 The Halting Problem

Theorem 3. There exists no α-software which can decide with ≤ α computa-
tions whether an arbitrary α-software will stop or not in ≤ α operations.

Proof : If such α-software existed, then we could use it to write an α-software
which, when presented with an x ∈ Iα as input could decide in ≤ α operations
whether P (x) stops after ≤ α computed or not. But A is not α recursive, thus
such an α-software does not exist. �

5.3 Ordinal Length of Computations for α-Softwares

Theorem 4. There exists no general α-software taking as input the code of a
program T which stops in ≤ α computations, and gives as output an ordinal ωα

such that the cardinal of ωα is ≤ α and the ordinal of the number of computations
performed before T stops is ≤ ωα.

Proof : If such a program exists, we could know with ≤ α computations if n ∈ A
or n /∈ A. This is in contradiction with the fact that A is not α-recursive (A
comes from Theorem 1). In that case, it would be sufficient to stop after ωα

computations to conclude that the program does not answer in ≤ α computa-
tions. �

6 The Fixed Point Theorem on α-Softwares

Let z, x, y ∈ Iα, such that there exists an α-software Z with code z and two
entries: x and y. We denote z[x, y] the output of the software Z on entries x
and y when this software stops in ≤ α computations.

Remark. If Z does not stop after ≤ α computations, we can consider that
z[x, y] is the information “z does not stop” after ≤ α computations.

Theorem 5 (Iteration Theorem). There is an α-recursive application of two
variables s(x, y) such that:

∀z, x, y ∈ Iα, z[x, y] = s(z, y)[x].

Proof : We consider the α-software s that performs the following operations when
it is given z and y as inputs:

1. Finds the sequence of instructions of the α-software Z with code z. (This is
possible since the coding is “simple”).

2. Computes the code of an α-software which on input x ∈ Iα simulates Z on
the inputs x and y. (Again this is possible since the coding is “simple”).

Then this α-software computes s(z, y) such that

∀z, x, y ∈ Iα, z[x, y] = s(z, y)[x].

�
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Theorem 6 (Fixed point theorem on α-softwares). For every α-recursive
application h, there exists e ∈ Iα such that:

∀x ∈ N, e[x] = h(e)[x].

Remark. Every α-software can be written using a program with a single input
(α2 = α since α is an infinite cardinal). Thus the fixed point theorem on α-
softwares can be written in the form: If “h is an α-recursive application, there
exists always an α-software with code e and an α-software with code h(e) which
on any input x ∈ Iα gives the same output (and does not give any output).

Indeed, let f(x, y) = h(y)[x]. Since s(z, y) is α-recursive, there exists d the
code of an α-software with computes f(x, s(y, y)). For all x ∈ Iα, et ∀y ∈ Iα, we
have:

f(x, s(y, y)) =
{

d[x, y], by definition of d,
d(d, y)[x], by definition of s .

Let e = d(d, d). With y = d, we get that for all n ∈ Iα, f(x, e) = s(d, d)[x] = e[x].
Thus (by definition of f), ∀x ∈ Iα, h(e)[x] = e[x]. �

7 Rice Theorem on α-Softwares

A function f from Df to Iα, where Df ⊂ Iα, is called α-recursive semi-
function if there exists an α-software which computes f(x) when given an
input x ∈ Df in ≤ α computations, and does not answer in ≤ α computations
when it is given x /∈ Df .

Theorem 7 (Rice theorem on α-softwares). Let F be a non-empty proper
subset of all α-recur- sive semi-functions. Then the set

A = {n ∈ Iα | n is the code of an α− recursive semi-function of F}

is not α-recursive.

Proof : By definition of F , A �= ∅ and A �= Iα. Let a and ā be two elements of
Iα such that a ∈ A and ā /∈ A. We set

h :

⎧⎨⎩
Iα → Iα

x ∈ A �→ ā
x /∈ A �→ a

Suppose that A α is α-recursive. Then, h is a α-recursive application. It follows,
from the fixed point theorem, that there exists e ∈ N such that the α-programs
coded by e and h(e) compute the same semi-function. So e ∈ A ⇔ h(e) ∈ A
(by definition of A and e). But by definition of h, e ∈ A ⇔ h(e) /∈ A. Thus
h(e) ∈ A ⇔ h(e) /∈ A, a contradiction. This shows that A is not α-recursive. �

This generalised Rice theorem shows that there exists no α-software which
decides:
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1. If two α-softwares compute the same function. (Choose a singleton for F .)
2. If an α-software will always answer 0 on any input. (Choose F that contains

only the null function.)
3. If an α-software will always give an answer. (Choose for F the set of recursive

semi-functions defined on Iα.)
4. If an α-software will always return values in a given subset B. (Choose for

F the set of semi-functions whose output is in B.)

This generalised Rice Theorem shows that the problem of “debugging” an α-
software, or the understanding of what a α-software is doing, generally uses more
than α computations.

8 Conclusion

We have shown that most of the logic limitation results proved in the classical
theory of computation can be generalised to the case when the computing devices
are able to perform α computations and use α bits of memory, where α is a
given fixed cardinal. It is expected that some recent results of limitations, such
as those of [2], can also be generalised in this framework. This can be the subject
of further work.
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Abstract. The present paper generalises results by Tadaki [12] and
Calude et al. [1] on oscillation-free partially random infinite strings.
Moreover, it shows that oscillation-free partial Chaitin randomness can
be separated from oscillation-free partial strong Martin-Löf randomness
by Π0

1 -definable sets of infinite strings.

In the papers [11] and [2] several relaxations of randomness were defined. Sub-
sequently, in [8] these were shown to be essentially different. The variants of
partial randomness were characterised by different means such as Martin-Löf
tests [11,2], Solovay tests [11,8] and prefix [11] or a priori complexity [2]. Using
description complexity partial randomness of an infinite string ξ was defined by
linear lower bounds on the complexity of the n-length prefix ξ � n, that is, an
infinite string was referred to as ε-random provided the complexity of ξ � n was
lower bounded by ε ·n−O(1). In general, the mentioned papers did not require
an upper bound on the complexity, except for [11] where an asymptotic upper
bound was considered.

For the case of a priori complexity, the papers [9,7] gave a description of infinite
oscillation free ε-random strings where the upper complexity bound matches the
lower bound up to an additive constant. For the case of prefix complexity the
construction of similar infinite strings was accomplished in [12,1]. The construc-
tion in [1] uses ε-universal prefix machines. Here it was observed in Theorem 6
that there are different (inequivalent) types of ε-universal machines.

In recent publications, based on Hausdorff’s original paper [5] the concept of
partial randomness was refined to functions of the logarithmic scale [6] or to
more general gauge functions [10]. Here we showed that for a priori complexity
and computable gauge functions h : Q → IR there are oscillation-free h-random
infinite strings.

The aim of the present paper is to show that, similarly to the results of [10],
also in the case of prefix complexity one can refine ε-randomness to oscillation-
free h-randomness. Moreover, our investigations reveal the reason of the paradox
of [1, Theorem 6].

Cast into the language of gauge functions (cf. [4,10]) the papers [12,1] consid-
ered only the scale h(t) = tε, ε ∈ (0, 1) computable, which results in complexity
bounds of the form ε · n + O(1). The present paper refines this scale to a much
larger class of gauge functions including also non-computable ones.
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c© Springer-Verlag Berlin Heidelberg 2012



On Oscillation-Free Chaitin h-Random Sequences 195

The paper is organised as follows. First we introduce some notation and con-
sider the concept of gauge functions. In the second section we investigate, for
gauge functions h, h-universal machines as a generalisation of the ε-universal
machines of [1]. In this section we also explain the paradox of [1, Theorem 6].
Then, in Section 3, we continue with further generalising results of [12,1] to
oscillation-free h-randomness for prefix complexity, and in the last part we show
that oscillation-free h-random infinite sequences w.r.t. a priori complexity can be
separated by Π0

1 -definable sets from oscillation-free h-random infinite sequences
w.r.t. prefix complexity.

1 Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers and by Q the set of rational
numbers. Let X = {0, 1, . . . , r − 1} be an alphabet of cardinality |X | = r ≥ 2.
By X∗ we denote the set of finite words on X , including the empty word e, and
Xω is the set of infinite strings (ω-words) over X . Subsets of X∗ will be referred
to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω.

We denote by |w| the length of the word w ∈ X∗ and pref(B) is the set of all
finite prefixes of strings in B ⊆ X∗ ∪Xω. We shall abbreviate w ∈ pref(η) (η ∈
X∗ ∪ Xω) by w � η, and η � n is the n-length prefix of η provided |η| ≥ n.
A language W ⊆ X∗ is referred to as prefix-free if w � v and w, v ∈ W imply
w = v.

For a computable domain D, such as IN, Q or X∗, we refer to a function
f : D → IR as left computable (or approximable from below) provided the set
{(d, q) : d ∈ D ∧ q ∈ Q ∧ q < f(d)} is computably enumerable. Accordingly, a
function f : D → IR is called right computable (or approximable from above) if
the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q > f(d)} is computably enumerable, and f is
computable if f is right and left computable. Accordingly, a real number α ∈ IR as
left computable, right computable or computable provided the constant function
fα(t) = α is left computable, right computable or computable, respectively.

1.1 Gauge Functions

A function h : (0,∞) → (0,∞) is referred to as a gauge function provided h
is right continuous and non-decreasing.1 If not stated otherwise, we will always
assume that limt→0 h(t) = 0. As in [10] with a gauge function we associate a
modulus function g : IN → IN which, roughly speaking, satisfies h(r−g(n)) ≈ r−n

or, more precisely, |−logr h(r−g(n)) − n| = O(1).
We may define the modulus as follows

1 In fact, since we are only interested in the values h(r−n), n ∈ IN, the requirement
of right continuity is just to conform with the usual meaning (cf. [4]).
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Definition 1. g(n) := sup{m : m ∈ IN ∧ r−n < h(r−m)}

Here we use the convention sup ∅ = 0. Then we have

h(r−g(n)) > r−n if g(n) �= 0 . (1)

Moreover, the following holds true.

Lemma 1. If for all j ∈ IN there is an m ∈ IN satisfying r−j < h(r−m) ≤ r−j+1

then h(r−g(n)) ≤ r−n+1, for all n ∈ IN.

The assumption of Lemma 1 implies h(r−n) ≥ r−n and h(r−(n+c)) ≥ h(r−n)·r−c.
It is, in particular, satisfied if the function h is upwardly convex on (0, 1) and
h(1) ≥ 1 (see [10, Lemma 3]).

For computable gauge functions h : Q → IR, relaxing Eq. (1) we obtain a
corresponding computable modulus function.

Lemma 2 ([10, Lemma 4]). Let h : Q → IR be a computable gauge function
satisfying the conditions that 1 < h(1) < r and for every j ∈ IN there is an
m ∈ IN such that r−j < h(r−m) ≤ r−j+1. Then there is a computable strictly
increasing function g : IN → IN such that r−n−1 < h(r−g(n)) < r−n+1, for all
n ∈ IN.

2 Universal Machines

In this section we introduce and study the notion of h-universal machine.
A machine T is a partial computable function from X∗ to X∗. We use machine

and function synonymously.
A prefix-free machine is a machine whose domain is a prefix-free language.

The prefix complexity of a word w induced by a prefix-free machine T , HT (w),
is HT (w) = inf{|π| : T (π) = w}. From now on all machines will be prefix-free
and will be referred to simply as machines.

In analogy with [1] we say that a machine U is h-universal for a gauge func-
tion h if for all machines T there exists a constant cU,T such that for each
program σ ∈ X∗ there exists a program π ∈ X∗ such that U(π) = T (σ) and
−logr h(r−|π|) ≤ |σ|+cU,T . If h(t) = t we get the classical notion of universal ma-
chine. Observe that, for gauge functions h, the function �h(n) := − logr h(r−n)
is non-decreasing.

A machine U is strictly h-universal if U is h-universal but not h′-universal for
any gauge function h′ with lim

n→∞
h′(r−n)
h(r−n) = 0.

We fix a gauge function h and a universal machine T . We say that an ω-word
ξ is Chaitin h-random if HT (ξ � n) ≥ −logr h(r−n)−O(n), and we say that ξ is
strictly Chaitin h-random if ξ is Chaitin h-random and is not Chaitin h′-random
for all gauge functions h′ with lim

n→∞
h′(r−n)
h(r−n) = 0.

If T is universal and h(t) = tε, then we get Tadaki’s definition of weak Chaitin
ε-randomness (see [11,2]), if h(t) = t, then we get the classical definition of
randomness.
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Lemma 3. The machine U is h-universal if and only if there exists a universal
machine T and a constant cU,T such that − logr h(r−HU ) ≤ HT (w) + cU,T for
all w ∈ X∗.

In [1] ε-universal machines were obtained from universal machines by padding
the inputs. The next theorem shows that the same construction works also in
the case of h-universal machines.

Theorem 1. Let h : Q → IR be a computable gauge function, and let g : IN → IN
be a corresponding computable modulus function. If, for a universal machine T ,
we define Th(π · 0g(|π|)−|π|) := T (π) then |−logr h(r−HTh

(w)) − H(w)| = O(1)
and Th is a strictly h-universal machine.

Proof. Let π be a minimal description of w, that is, |π| = H(w). Then π ·
0g(|π|)−|π| is a minimal description of w w.r.t. Th. Consequently, Lemma 2 proves
|−logr h(r−HTh

(w)) − H(w)| = O(1). This also implies that Th is h-universal.
Assume now Th to be h′-universal for some h′ tending faster to 0 than

h. Then, on the one hand, − logr h
′(r−HTh

(w)) ≤ H(w) + c for some con-
stant c and, on the other hand, for every i ∈ IN there is an ni such that
− logr h

′(r−HTh
(w)) ≥ − logr h(r−HTh

(w)) + i for H(w) ≥ ni. This contradicts
the relation |−logr h(r−HTh

(w)) − H(w)| = O(1). ��

Next we give examples for Chaitin h-random ω-words. We follow the line of
Theorem 3 of [1] and define for a machine U the ω-word ΩU ∈ Xω as the
r-ary expansion of the halting probability of a machine U , that is, 0. ΩU :=∑

w∈dom(U) r
−|w|.

Theorem 2. Let h be a computable gauge function satisfying the hypothesis of
Lemma 2 and let U be an h-universal machine. Then ΩU is Chaitin h-random.

Proof. As in the proof of Theorem 3 of [1] one defines a partial computable
function T for which pref(ΩU ) ⊆ dom(T ) and HU (T (ΩU � m)) ≥ m. From
HU (v) ≥ m, we obtain − logr h(r−m) ≤ − logr h(r−HU (T (v))) ≤ H(T (v)) ≤
H(v) + c whenever v ∈ dom(T ), and the assertion follows. ��

We conclude this section by considering the paradox of Theorem 6 of [1]. Here
inequivalent ε-universal machines Vε,k, k = 0, 1, . . . were defined. The machines
Vε,k had the property that lim|w|→∞ HVε,k

(w) − HVε,k+1(w) = ∞.
Recall the definition of Vε,k. In terms of modulus function gk : IN → IN they

can be described as Vε,k(π0gk(|π|)−|π|) := T (π) where T is a universal machine
and gk(n) := max{n, � 1

ε · n − k · logr n }. In contrast to [1] where all machines
Vε,k were ε-universal our Theorem 2 states that only Vε,k is strictly hk-universal
for gauge functions satisfying hk(r−gk(n)) = r−n. Since gk(n)− gk+1(n) tends to
infinity as n grows, the function hk+1 tends faster to 0 than hk and, consequently,
Vε,k is not hk+1-universal.

The paradox of Theorem 6 of [1] occurs because the family of gauge functions(
tε
)
ε∈(0,1) admits intermediate computable functions, e.g. functions of the loga-

rithmic scale like h(t) = tε ·
(
logr

1
t

)
k (see [5]) but these functions were not taken

into consideration in the definition of ε-universality.
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3 Oscillation-Freeness

The aim of this section is to show that for a large class of gauge function there
exist oscillation-free Chaitin h-random ω-words, that is, ξ ∈ Xω such that |H(ξ �
n) + logr h(r−n)| = O(1).

We start with a generalisation of [1, Proposition 9].

Proposition 1. Let h : Q → IN be a gauge function such that for every d ∈ IN
there is an �d such that the inequality

H(n) + d − 1 ≤ −logr
h(r−(n+�))

h(r−�)
≤ n−

(
H(n) + d− 1) (2)

holds for all � ≥ �d and, depending on the value of d, for all sufficiently large
n ∈ IN.

Then there are c, �′ ∈ IN such that for all words w ∈ X∗, |w| ≥ �′, exist words
v, u ∈ Xc such that

H(wu) + logr h(r−(|w|+c)) ≤ H(w) + logr h(r−|w|) − 1, and (3)
H(wv) + logr h(r−(|w|+c)) ≥ H(w) + logr h(r−|w|) + 1 . (4)

Proof. As in the proof of Proposition 9 of [1] , given w ∈ X∗ and c ∈ IN, one
finds strings v, |v| = c and u = 0c such that

H(wv) ≥ H(w) + c − H(c) − d and |H(w0c) − H(w)| ≤ H(c) + d (5)

where the constant d is independent of w and c.
Now, depending on d, choose a sufficiently large �′ and c, and the inequalities

follow from Eqs. (5) and (2). ��

Remark 1. The assumption of Proposition 1 is a little bit involved. Due to the
fact that H(n) is a slowly growing function one easily observes that Eq. (2) is
satisfied whenever there are real numbers γ, γ, r−1 < γ ≤ γ < 1, such that
γn ≤ h(r−(n+�))

h(r−�)
≤ γn for all �, n ∈ IN. The latter is satisfied, in particular, for all

length-invariant unbounded (p, q)-premeasures in the sense of [8].

The next theorem is an existence theorem for oscillation-free Chaitin h-random
ω-words where h is a gauge functions fulfilling Eq. (2). This, in particular, guar-
antees that for arbitrary ε ∈ (0, 1) oscillation-free Chaitin ε-random ω-words
exist. The subsequent theorem will then consider the constructive case.

Theorem 3. Let h : Q → IR be a gauge function satisfying Eq. (2) and the
assumption of Lemma 1. Then there is an ω-word ξ ∈ Xω and a constant ch

such that |H(ξ � n) − (−logr h(r−n))| ≤ ch.

Proof. We proceed as in the proof of Theorem 10 of [1]. We choose sufficiently
large constants c and �′ from Proposition 1 such that H(w) − c < H(w0c),
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H(wv) ≤ H(w) + 2c for |v| = c, w ∈ X∗ and, in view of h(r−n) ≥ r−n, also
−logr h(r−	′) < H(w) for some w, |w| = �′. Then we define W ⊆ X	′ · (Xc)∗ as
follows.

W :=
{
w : w ∈ X	′ · (Xc)∗ ∧ ∀v

(
v ∈ W ∧ v � w → H(v) > −logr h(r−|v|)

)}
.

By the choice of �′ there is a w ∈ X	′ with −logr h(r−	′) < H(w), and we
have W �= ∅. Eq. (4) shows that every w ∈ W has an extension wv ∈ W
where |v| = c. Thus W contains infinite chains w0 � w1 � · · · � wi � where
|wi+1| − |wi| = c. Moreover, since h is non-decreasing and H(wv) ≤ H(w) + 2c,
H(wv) + logr h(r−|wv|) ≤ H(w) + logr h(r−|w|) + 2c for |v| = c.

Let H(w) > −logr h(r−|w|) + c + 1. The function h satisfies the assumption
of Lemma 1. Consequently, −logr h(r−|w|+c) ≤ −logr h(r−|w|) + c, and Eq. (3)
shows −logr h(r−|w|+c) + 1 < H(w0c), that is, w0c ∈ W . Finally Eq. (4) shows
that then H(w0c) + logr h(r−|w|+c) < H(w) + logr h(r−|w|).

Thus there is an infinite sequence w0 � w1 � · · · � wi � of words in W
such that |wi+1| − |wi| = c and the differences |H(wi) + logr h(r−|wi|)| remain
bounded. ��

Now consider the language W defined in the preceding proof. If h is a computable
function, W is the complement of an computably enumerable language. Hence
the infinite paths through W build a Π0

1 -definable ω-language F ⊆ Xω. Then
the leftmost w.r.t. the lexicographical ordering ω-word ξleft in F defines a left
computable real 0 .ξleft.

We show that ξleft is oscillation-free h-random. Since H(w) > −logr h(r−|w|)
for w ∈ W , it suffices to verify that H(ξleft � n) + logr h(r−n) ≤ ch for some
constant ch. We use the parameters c and �′ from the proof of Theorem 3.

Let pref(ξleft) ∩ W = {wi : i ∈ IN ∧ |wi| = �′ + i · c} where w0 is the
leftmost word in W . Choose a constant ch > max{H(w0) + logr h(r−	′ ), 4c}.
Then H(w0) + logr h(r−|w0|) ≤ ch. Assume that this relation holds for j =
0, . . . , i. If H(wi)+ logr h(r−|wi|) ≤ 2c then H(wiv)+ logr h(r−|wiv|) ≤ 4c for all
v ∈ Xc. Thus H(wi+1)+logr h(r−|wi+1|) ≤ ch. If 2c < H(wi)+logr h(r−|wi|) ≤ ch

then wi0c is the leftmost successor of wi in W and 0 < H(wi) + logr h(r−|wi|)−
2c ≤ H(wi0c) + logr h(r−|wi|+c) < H(wi) + logr h(r−|wi|) ≤ ch.

This proves the following constructive version of Theorem 3.

Theorem 4. Let h : Q → IR be a computable gauge function which satisfies
Eq. (2) and the hypothesis of Lemma 2. Then there exists an oscillation-free
Chaitin h-random ω-word ξ such that 0 .ξ is a left computable real.

4 A Separation Theorem

In the preceding section we showed the existence of oscillation-free Chaitin h-
random ω-words. For the gauge functions fulfilling the assumption of Lemma 2
we proved the existence of Π0

1 -definable ω-languages containing such ω-words as
leftmost ones.
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In a recent paper [10] we proved that, for a different kind of h-randomness
(strong Martin-Löf randomness in the sense of [2]), there are Π0

1 -definable ω-lan-
guages containing oscillation-free h-random ω-words. We obtained these ω-lan-
guages by diluting ω-words. The concept of strong Martin-Löf randomness can
be defined using the a priori complexity of words KA. For a definition of KA see
[13,9,10] or [3]2. We mention here only the following properties of KA.

Property 1. 1. An ω-word ξ is random if and only if |KA(ξ � n) − n| = O(1),
2. KA(wv) ≥ KA(w) − O(1), for w, v ∈ X∗, and
3. H(w) ≥ KA(w) − O(1) where the difference is unbounded.

For dilution we use prefix monotone mappings. Every prefix-monotone mapping
ϕ : X∗ → X∗ defines as a limit a partial mapping ϕ :⊆ Xω → Xω in the following
way: pref(ϕ(ξ)) = pref(ϕ(pref (ξ))) whenever ϕ(pref(ξ)) is an infinite set, and
ϕ(ξ) is undefined when ϕ(pref(ξ)) is finite.

If a (modulus) function g : IN → IN is strictly increasing we define a dilution
function ϕ : X∗ → X∗ as follows.

ϕ(e) := 0g(0) and
ϕ(wx) := ϕ(w) · x · 0g(n+1)−g(n)−1 for w ∈ X∗ and x ∈ X

(6)

If ϕ is a dilution function then ϕ and also ϕ are one-to-one mappings. If, more-
over, g is computable then ϕ is also computable and ϕ(Xω) is a Π0

1 -definable
ω-language.

It holds the following estimate on the a priori complexity of a diluted string
(see [9, Theorem 3.1]).

Lemma 4. Let g be a computable strictly increasing modulus function and let
ϕ be defined via Eq. (6). Then∣∣KA

(
ϕ(ξ � g(n))

)
− KA

(
ξ � n)

)∣∣ ≤ O(1) for all ξ ∈ Xω .

From Lemmata 4 and 2 and the above Property 1.2 we obtain immediately the
following (cf. also [9, Theorem 3.3]).

Proposition 2. Let h be a computable gauge function, g a corresponding com-
putable modulus function and let ϕ be defined via Eq. (6). Then |KA(ξ � (n +
1)) − KA(ξ � n)| = O(1) implies |KA(ϕ(ξ) � g(n)) + logr h(r−n)| = O(1).

Property 1.1 shows that Proposition 2 holds for random ω-words ξ. In that
case ϕ(ξ) is strongly Martin-Löf h-random. Next we consider the situation for
prefix complexity. Here we have |H(w) − H(ϕ(w))| = O(1) whenever ϕ is a
partial computable one-to-one function. Thus we obtain a theorem analogous to
Lemma 4 for prefix complexity H .

Lemma 5. Let g be a computable strictly increasing modulus function and let
ϕ be defined via Eq. (6). Then∣∣H(

ϕ(ξ � g(n))
)
− H

(
ξ � n)

)∣∣ ≤ O(1) for all ξ ∈ Xω .

This much preparation allows us to prove our separation theorem.
2 In [3] a priori complexity is denoted by KM.
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Theorem 5. Let h : Q → IR be a computable gauge function which satisfies
Eq. (2) and the hypothesis of Lemma 2. Then there exists a Π0

1 -definable ω-
language which contains an oscillation-free strongly Martin-Löf h-random ω-
word ξ but no oscillation-free Chaitin h-random ω-word.

Proof. From Lemma 2 we obtain a computable strictly increasing modulus func-
tion g such that |−logr h(r−g(n)) − n| ≤ 1. Define ϕ according to Eq.(6) and
choose an arbitrary random ω-word ζ ∈ Xω. Then Proposition 2 shows that
ϕ(ζ) is oscillation-free strongly Martin-Löf h-random.

Next we show that the Π0
1 -definable ω-language ϕ(Xω) does not contain any

oscillation-free Chaitin h-random ω-word.
Assume that, for some ξ ∈ Xω, the ω-word ϕ(ξ) is oscillation-free Chaitin

h-random. Then |H(ϕ(ξ) � g(n)) + logr h(r−g(n))| = O(1), and, consequently,
|H(ξ � n)−n| = O(1). But this is impossible as H(ξ � n) ≥ n− c, for all n ∈ IN,
implies limn→∞ H(ξ � n) − n = ∞. ��
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Abstract. The notion of weak truth-table reducibility plays an impor-
tant role in recursion theory. In this paper, we introduce an elaboration
of this notion, where a computable bound on the use function is ex-
plicitly specified. This elaboration enables us to deal with the notion of
asymptotic behavior in a manner like in computational complexity the-
ory, while staying in computability theory. We apply the elaboration to
sets which appear in the statistical mechanical interpretation of algorith-
mic information theory. We demonstrate the power of the elaboration by
revealing a critical phenomenon, i.e., a phase transition, in the statisti-
cal mechanical interpretation, which cannot be captured by the original
notion of weak truth-table reducibility.

1 Introduction

The notion of weak truth-table reducibility plays an important role in recursion
theory (see e.g. [12,9]). For any sets A,B ⊂ N, we say that A is weak truth-table
reducible to B, denoted A ≤wtt B, if there exist an oracle Turing machine M
and a total recursive function g : N → N such that A is Turing reducible to B
via M and, on every input n ∈ N, M only queries natural numbers at most
g(n). In this paper, we introduce an elaboration of this notion, where the total
recursive bound g on the use of the reduction is explicitly specified. In doing so, in
particular we try to follow the fashion in which computational complexity theory
is developed, while staying in computability theory. We apply the elaboration
to sets which appear in the theory of program-size, i.e., algorithmic information
theory (AIT, for short) [7,8,1,12,9]. The elaboration, called reducibility in query
size f , is introduced as follows.

Definition 1 (Reducibility in Query Size f). Let f : N → N, and let A,B ⊂
{0, 1}∗. We say that A is reducible to B in query size f if there exists an oracle
Turing machine M such that

(i) A is Turing reducible to B via M , and
(ii) on every input x ∈ {0, 1}∗, M only queries strings of length at most f(|x|).

��
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For any fixed sets A and B, the above definition allows us to consider the notion
of asymptotic behavior for the function f which bounds the use of the reduction,
i.e., which imposes the restriction on the use of the computational resource (i.e.,
the oracle B). Thus, by the above definition, even in the context of computability
theory, we can deal with the notion of asymptotic behavior in a manner like
in computational complexity theory. Recall here that the notion of input size
plays a crucial role in computational complexity theory since computational
complexity such as time complexity and space complexity is measured based on
it. This is also true in AIT since the program-size complexity is measured based
on input size. Thus, in Definition 1 we consider a reduction between subsets
of {0, 1}∗ and not a reduction between subsets of N as in the original weak
truth-table reducibility. Moreover, in Definition 1 we require the bound f(|x|)
to depend only on input size |x| as in computational complexity theory, and not
on input x itself as in the original weak truth-table reducibility. We pursue a
formal correspondence to computational complexity theory in this manner, while
staying in computability theory.

In this paper we demonstrate the power of the notion of reducibility in query
size f in the context of AIT. In [7] Chaitin introduced Ω number as a concrete
example of random real. His Ω is defined as the probability that an optimal
prefix-free machine U halts, and plays a central role in the development of AIT.
Here the notion of optimal prefix-free machine is used to define the notion of
program-size complexity H(s) for a finite binary string s. The first n bits of
the base-two expansion of Ω solve the halting problem of the optimal prefix-free
machine U for all binary inputs of length at most n. Using this property, Chaitin
showed Ω to be a random real. Let domU be the set of all halting inputs for U .
Calude and Nies [4], in essence, showed the following theorem on the relation
between the base-two expansion of Ω and the halting problem domU .

Theorem 1 (Calude and Nies [4]). Ω and domU are weak truth-table equiv-
alent. Namely, Ω ≤wtt domU and domU ≤wtt Ω. ��

In [15] we generalized Ω to Z(T ) in such a way that the partial randomness of
Z(T ) equals to T if T is a computable real with 0 < T ≤ 1.1 Here the notion
of partial randomness of a real is a stronger representation of the compression
rate of the real by means of program-size complexity. The real function Z(T )
of T is a function of class C∞ on (0, 1) and an increasing continuous function
on (0, 1]. In the case of T = 1, Z(T ) results in Ω, i.e., Z(1) = Ω. We can show
Theorem 2 below for Z(T ). This theorem follows immediately from stronger
results, Theorems 21 and 22, which are two of the main results of this paper.

Theorem 2. Suppose that T is a computable real with 0 < T < 1. Then Z(T )
and domU are weak truth-table equivalent. ��

When comparing Theorem 1 and Theorem 2, we see that there is no difference
between T = 1 and T < 1 with respect to the weak truth-table equivalence

1 In [15], Z(T ) is denoted by ΩT .
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between Z(T ) and domU . In this paper, however, we show that there is a critical
difference between T = 1 and T < 1 in the relation between Z(T ) and domU
from the point of view of the reducibility in query size f . Based on the notion
of reducibility in query size f , we introduce the notions of unidirectionality and
bidirectionality between two sets A and B in this paper. These notions enable
us to investigate the relative computational power between A and B.

Theorems 6 and 7 below are two of the main results of this paper. Theo-
rem 6 gives a succinct equivalent characterization of f for which Ω is reducible
to domU in query size f and reversely Theorem 7 gives a succinct equivalent
characterization of f for which domU is reducible to Ω in query size f , both in
a general setting. Based on them, we show in Theorem 8 below that the compu-
tation from Ω to domU is unidirectional and the computation from domU to
Ω is also unidirectional. On the other hand, Theorems 21 and 22 below are also
two of the main results of this paper. Theorem 21 gives a succinct equivalent
characterization of f for which Z(T ) is reducible to domU in query size f and
reversely Theorem 22 gives a succinct equivalent characterization of f for which
domU is reducible to Z(T ) in query size f , both in a general setting, in the case
where T is a computable real with 0 < T < 1. Based on them, we show in Theo-
rem 23 below that the computations between Z(T ) and domU are bidirectional
if T is a computable real with 0 < T < 1. In this way the notion of reducibility
in query size f can reveal a critical difference of the behavior of Z(T ) between
T = 1 and T < 1, which cannot be captured by the original notion of weak
truth-table reducibility.

Recall that the weak truth-table reducibility is defined for two subsets of N.
Thus, when we apply the notion of weak truth-table reducibility to a real α, we
regard α as a subset of N whose characteristic sequence equals to the base-two
expansion of α. In fact, in Theorem 1, the real Ω is regarded as a subset of N

in this manner. On the other hand, the notion of reducibility in query size f is
defined for two subsets of {0, 1}∗. Thus, when we apply this notion to a real,
we have to somehow regard it as a subset of {0, 1}∗. We do this by using the
following notion of prefixes of a real.

Definition 2 (Prefixes of Real). For each α ∈ R, the prefixes Pf(α) of α is
the subset of {0, 1}∗ defined by Pf(α) = {α�n| n ∈ N}, where α�n is the first n
bits of the base-two expansion of the fractional part α − �α of α. ��
The notion of prefixes of a real is a natural notion in AIT. For example, the
randomness of a real α can be rephrased as that there exists d ∈ N such that,
for every x ∈ Pf(α), |x| ≤ H(x) + d. The notion of prefixes of a real helps us see
the aforementioned unidirectionality and bidirectionality.

In [16] we introduced and developed a statistical mechanical interpretation of
AIT. We there introduced the notion of thermodynamic quantities at temperature
T such as partition function, free energy, energy, statistical mechanical entropy,
and specific heat into AIT. Among these thermodynamic quantities, Z(T ) is the
partition function at temperature T . The work [16] showed that the values of all
the thermodynamic quantities diverge when the temperature T exceeds 1. This
phenomenon might be regarded as some sort of phase transition in statistical
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mechanics. Thus, this paper reveals a new aspect of the phase transition by
showing the critical difference of the behavior of Z(T ) between T = 1 and T < 1
in terms of the notion of reducibility in query size f .

In our former work [17] we considered some elaboration of weak truth-table
equivalence between Ω and domU and showed the unidirectionality between
them in a certain form. Compared with this paper, however, the treatments of
[17] were insufficient in the correspondence to computational complexity theory.
In this paper, based on the notion of reducibility in query size f , we sharpen
the results of [17] with a thorough emphasis on a formal correspondence to
computational complexity theory.

The paper is organized as follows. We begin in Section 2 with some preliminar-
ies to AIT and partial randomness. In Section 3 we investigate simple properties
of the notion of reducibility in query size f and introduce the notions of uni-
directionality and bidirectionality between two sets based on it. We then show
in Section 4 the unidirectionality between Ω and domU in a general setting.
In Section 5 we present theorems which play a crucial role in establishing the
bidirectionality in Section 6. Based on them, we show in Section 6 the bidi-
rectionality between Z(T ) and domU with a computable real T ∈ (0, 1) in a
general setting. We conclude this paper with the remarks on the origin of the
phase transition of the behavior of Z(T ) between T = 1 and T < 1 in Section 7.

2 Preliminaries

We start with some notation about numbers and strings which will be used in
this paper. N = {0, 1, 2, 3, . . .} is the set of natural numbers, and N+ is the set
of positive integers. Z is the set of integers, and Q is the set of rationals. R is
the set of reals. A sequence {an}n∈N of numbers (rationals or reals) is called
increasing if an+1 > an for all n ∈ N.

Normally, o(n) denotes any function f : N+ → R such that limn→∞ f(n)/n =
0. On the other hand, O(1) denotes any function g : N+ → R such that there is
C ∈ R with the property that |g(n)| ≤ C for all n ∈ N+.

{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . .} is the set of finite binary
strings where λ denotes the empty string, and {0, 1}∗ is ordered as indicated.
We identify any string in {0, 1}∗ with a natural number in this order, i.e., we
consider ϕ : {0, 1}∗ → N such that ϕ(s) = 1s− 1 where the concatenation 1s of
strings 1 and s is regarded as a dyadic integer, and then we identify s with ϕ(s).
For any s ∈ {0, 1}∗, |s| is the length of s. For any n ∈ N, we denote by {0, 1}n

the set { s | s ∈ {0, 1}∗ & |s| = n}. A subset S of {0, 1}∗ is called prefix-free
if no string in S is a prefix of another string in S. For any subset S of {0, 1}∗
and any n ∈ N, we denote by S�n the set {s ∈ S | |s| ≤ n}. For any function
f , the domain of definition of f is denoted by dom f . We write “r.e.” instead of
“recursively enumerable.”

Let α be an arbitrary real. �α is the greatest integer less than or equal to
α, and �α� is the smallest integer greater than or equal to α. For any n ∈ N,
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we denote by α�n∈ {0, 1}∗ the first n bits of the base-two expansion of α − �α 
with infinitely many zeros. For example, in the case of α = 5/8, α�6= 101000.
On the other hand, for any non-positive integer n ∈ Z, we set α�n= λ.

A real α is called r.e. if there exists a computable, increasing sequence of
rationals which converges to α. An r.e. real is also called a left-computable real.
We say that a real α is computable if there exists a computable sequence {an}n∈N

of rationals such that |α − an| < 2−n for all n ∈ N. It is then easy to see that, for
every real α, the following four conditions are equivalent: (i) α is computable.
(ii) α is r.e. and −α is r.e. (iii) If f : N → Z with f(n) = �αn� then f is a total
recursive function. (iv) If g : N → Z with g(n) = �αn then g is a total recursive
function.

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of AIT
[7,8,1,12,9]. A prefix-free machine is a partial recursive function F : {0, 1}∗ →
{0, 1}∗ such that domF is a prefix-free set. For each prefix-free machine F and
each s ∈ {0, 1}∗, HF (s) is defined by HF (s) = min

{
|p|

∣∣ p ∈ {0, 1}∗ & F (p) = s
}

(may be ∞). A prefix-free machine U is said to be optimal if for each prefix-free
machine F there exists d ∈ N with the following property; if p ∈ domF , then there
is q ∈ domU for which U(q) = F (p) and |q| ≤ |p| + d. It is then easy to see that
there exists an optimal prefix-free machine. We choose a particular optimal prefix-
free machine U as the standard one for use, and define H(s) as HU (s), which is
referred to as the program-size complexity of s or the Kolmogorov complexity of s.
For any s, t ∈ {0, 1}∗, we define H(s, t) as H(b(s, t)), where b : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ is a particular bijective total recursive function.

Chaitin [7] introduced Ω number as follows. For each optimal prefix-free ma-
chine V , the halting probability ΩV of V is defined by

ΩV =
∑

p∈dom V

2−|p|.

For every optimal prefix-free machine V , since domV is prefix-free, ΩV converges
and 0 < ΩV ≤ 1. For any α ∈ R, we say that α is weakly Chaitin random if
there exists c ∈ N such that n − c ≤ H(α�n) for all n ∈ N+ [7,8]. Chaitin [7]
showed that ΩV is weakly Chaitin random for every optimal prefix-free machine
V . Therefore 0 < ΩV < 1 for every optimal prefix-free machine V .

Let M be a deterministic Turing machine with the input and output alphabet
{0, 1}, and let F be a prefix-free machine. We say that M computes F if the
following holds: for every p ∈ {0, 1}∗, when M starts with the input p, (i) M
halts and outputs F (p) if p ∈ domF ; (ii) M does not halt forever otherwise. We
use this convention on the computation of a prefix-free machine by a determin-
istic Turing machine throughout the rest of this paper. Thus, we exclude the
possibility that there is p ∈ {0, 1}∗ such that, when M starts with the input p,
M halts but p /∈ domF . For any p ∈ {0, 1}∗, we denote the running time of M
on the input p by TM (p) (may be ∞). Thus, TM (p) ∈ N for every p ∈ domF if
M computes F .
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We define LM = min{ |p| | p ∈ {0, 1}∗ & M halts on input p} (may be ∞).
For any n ≥ LM , we define In

M as the set of all halting inputs p for M with
|p| ≤ n which take longest to halt in the computation of M , i.e., as the set
{ p ∈ {0, 1}∗ | |p| ≤ n & TM (p) = T n

M } where T n
M is the maximum running

time of M on all halting inputs of length at most n. In the work [17], we slightly
strengthened the result presented in Chaitin [8] to obtain Theorem 3 below (see
Note in Section 8.1 of Chaitin [8]).

Theorem 3 (Chaitin [8] and Tadaki [17]). Let V be an optimal prefix-free
machine, and let M be a deterministic Turing machine which computes V . Then
n = H(n, p) + O(1) = H(p) + O(1) for all (n, p) with n ≥ LM and p ∈ In

M . ��

Note that the proof of Theorem 3 is omitted in the work [17]. See Appendix A
of Tadaki [19] for the proof.

2.2 Partial Randomness

In the work [15], we generalized the notion of the randomness of a real so that
the degree of the randomness, which is often referred to as the partial randomness
recently [5,13,6,9], can be characterized by a real T with 0 ≤ T ≤ 1 as follows.

Definition 3. Let T ∈ [0, 1] and let α ∈ R. We say that α is weakly Chaitin
T -random if there exists c ∈ N such that, for all n ∈ N+, Tn− c ≤ H(α�n). ��

In the case of T = 1, the weak Chaitin T -randomness results in the weak Chaitin
randomness.

Definition 4. Let T ∈ [0, 1] and let α ∈ R. We say that α is T -compressible if
H(α�n) ≤ Tn+o(n), i.e., if lim supn→∞ H(α�n)/n ≤ T . We say that α is strictly
T -compressible if there exists d ∈ N such that, for all n ∈ N+, H(α�n) ≤ Tn+d.

��

For every T ∈ [0, 1] and every α ∈ R, if α is weakly Chaitin T -random and
T -compressible, then limn→∞ H(α �n)/n = T , i.e., the compression rate of α
equals to T .

In the work [15], we generalized Chaitin Ω number to Z(T ) as follows. For
each optimal prefix-free machine V and each real T > 0, the partition function
ZV (T ) of V at temperature T is defined by

ZV (T ) =
∑

p∈dom V

2−
|p|
T .

Thus, ZV (1) = ΩV . If 0 < T ≤ 1, then ZV (T ) converges and 0 < ZV (T ) < 1,
since ZV (T ) ≤ ΩV < 1. The following theorem holds for ZV (T ).

Theorem 4 (Tadaki [15]). Let V be an optimal prefix-free machine.

(i) If 0 < T ≤ 1 and T is computable, then ZV (T ) is an r.e. real which is weakly
Chaitin T -random and T -compressible.

(ii) If 1 < T , then ZV (T ) diverges to ∞. ��
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An r.e. real has a special property on partial randomness, as shown in Theo-
rem 5 below. For any r.e. reals α and β, we say that α dominates β if there are
computable, increasing sequences {an} and {bn} of rationals and c ∈ N+ such
that limn→∞ an = α, limn→∞ bn = β, and c(α− an) ≥ β − bn for all n ∈ N [14].

Definition 5 (Tadaki [18]). Let T ∈ (0, 1]. An increasing sequence {an} of
reals is called T -convergent if

∑∞
n=0(an+1 − an)T < ∞. An r.e. real α is called

T -convergent if there exists a T -convergent computable, increasing sequence of
rationals which converges to α. An r.e. real α is called Ω(T )-like if it dominates
all T -convergent r.e. reals. ��

Theorem 5 (Equivalent Characterizations of Partial Randomness for
an R.E. Real, Tadaki [18]). Let T be a computable real in (0, 1], and let α be
an r.e. real. Then the following three conditions are equivalent: (i) α is weakly
Chaitin T -random. (ii) α is Ω(T )-like. (iii) For every T -convergent r.e. real β
there exists d ∈ N such that, for all n ∈ N+, H(β�n) ≤ H(α�n) + d. ��

3 Reducibility in Query Size f

In this section we investigate some properties of the notion of reducibility in
query size f and introduce the notions of unidirectionality and bidirectionality
between two sets.

First note that, for every set A ⊂ {0, 1}∗, A is reducible to A in query size
n, where “n” denotes the identity function I : N → N with I(n) = n. We fol-
low the notation in computational complexity theory. The following are simple
observations on the notion of reducibility in query size f .

Proposition 1. Let f : N → N and g : N → N, and let A,B,C ⊂ {0, 1}∗.
(i) If A is reducible to B in query size f and B is reducible to C in query size

g, then A is reducible to C in query size g ◦ f .
(ii) Suppose that f(n) ≤ g(n) for every n ∈ N. If A is reducible to B in query

size f then A is reducible to B in query size g.
(iii) Suppose that A is reducible to B in query size f . If A is not recursive then

f is unbounded. ��

The following proposition is a restatement of the well-known fact that, for every
optimal prefix-free machine V , the first n bits of the base-two expansion of ΩV

solve the halting problem of V for inputs of length at most n.

Proposition 2. Let V be an optimal prefix-free machine. Then domV is re-
ducible to Pf(ΩV ) in query size n. ��

Definition 6. An order function is a non-decreasing total recursive function
f : N → N such that limn→∞ f(n) = ∞. ��

Let f be an order function. Intuitively, the notion of the reduction of A to B in
query size f is equivalent to that, for every n ∈ N, if n and B�f(n) are given,
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then A�n can be calculated. With this view in mind, we introduce the notions
of unidirectionality and bidirectionality between two sets as follows.

Definition 7. Let A,B ⊂ {0, 1}∗. We say that the computation from A to B
is unidirectional if the following holds: For every order functions f and g, if B
is reducible to A in query size f and A is reducible to B in query size g then
the function g(f(n)) − n of n ∈ N is unbounded. We say that the computations
between A and B are bidirectional if the computation from A to B is not unidi-
rectional and the computation from B to A is not unidirectional. ��

The notion of unidirectionality of the computation from A to B in the above
definition is, in essence, interpreted as follows: No matter how a order function
f is chosen, if f satisfies that B�n can be calculated from n and A�f(n), then
A�f(n) cannot be calculated from n and B�n+O(1).

4 Unidirectionality

In this section we show the unidirectionality between ΩU and domU in a general
setting. Theorems 6 and 7 below are two of the main results of this paper.

Theorem 6 (Elaboration of ΩU ≤wtt dom U). Let V and W be optimal
prefix-free machines, and let f be an order function. Then the following two
conditions are equivalent:
(i) Pf(ΩV ) is reducible to domW in query size f(n) + O(1).
(ii)

∑∞
n=0 2n−f(n) < ∞. ��

Theorem 6 is proved in Subsection 4.1 below. Theorem 6 corresponds to Theorem
4 of Tadaki [17], and is proved by modifying the proof of Theorem 4 of [17].
Let V and W be optimal prefix-free machines. The implication (ii) ⇒ (i) of
Theorem 6 results in, for example, that Pf(ΩV ) is reducible to domW in query
size n + �(1 + ε) log2 n + O(1) for every real ε > 0. On the other hand, the
implication (i) ⇒ (ii) of Theorem 6 results in, for example, that Pf(ΩV ) is not
reducible to domW in query size n+�log2 n +O(1) and therefore, in particular,
Pf(ΩV ) is not reducible to domW in query size n + O(1).

Theorem 7 (Elaboration of dom U ≤wtt ΩU). Let V and W be optimal
prefix-free machines, and let f be an order function. Then the following two
conditions are equivalent:
(i) domW is reducible to Pf(ΩV ) in query size f(n) + O(1).
(ii) n ≤ f(n) + O(1). ��

Theorem 7 is proved in Subsection 4.2 below. Theorem 7 corresponds to Theorem
11 of Tadaki [17], and is proved by modifying the proof of Theorem 11 of [17].
The implication (ii) ⇒ (i) of Theorem 7 results in that, for every optimal prefix-
free machines V and W , domW is reducible to Pf(ΩV ) in query size n + O(1).
On the other hand, the implication (i) ⇒ (ii) of Theorem 7 says that this upper
bound “n + O(1)” of the query size is, in essence, tight.
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Theorem 8. Let V and W be optimal prefix-free machines. Then the computa-
tion from Pf(ΩV ) to domW is unidirectional and the computation from domW
to Pf(ΩV ) is also unidirectional.

Proof. Let V and W be optimal prefix-free machines. For arbitrary order func-
tions f and g, assume that domW is reducible to Pf(ΩV ) in query size f and
Pf(ΩV ) is reducible to domW in query size g. It follows from the implication (i)
⇒ (ii) of Theorem 7 that there exists c ∈ N for which n ≤ f(n)+ c for all n ∈ N.
On the other hand, it follows from the implication (i) ⇒ (ii) of Theorem 6 that∑∞

n=0 2n−g(n) < ∞ and therefore limn→∞ g(n) − n = ∞. Since g is an order
function, we have g(f(n)) − n ≥ g(n − c) − (n − c) − c for all n ≥ c. Thus, the
computation from Pf(ΩV ) to domW is unidirectional. On the other hand, we
have f(g(n)) − n ≥ g(n) − n − c for all n ∈ N. Thus, the computation from
domW to Pf(ΩV ) is unidirectional. ��

4.1 The Proof of Theorem 6

Theorem 6 follows from Theorems 12 and 14 below, and the fact that ΩV is
a weakly Chaitin random r.e. real for every optimal prefix-free machine V . We
first prove Theorem 12 using Theorems 9 and 11 below.

Theorem 9 (Kraft-Chaitin Theorem, Chaitin [7]). Let f : N → N be a
total recursive function such that

∑∞
n=0 2−f(n) ≤ 1. Then there exists a total

recursive function g : N → {0, 1}∗ such that (i) g is an injection, (ii) the set
{ g(n) | n ∈ N} is prefix-free, and (iii) |g(n)| = f(n) for all n ∈ N. ��

We refer to Theorem 10 below from Tadaki [17]. Theorem 11 is a restatement of
it using the notion of reducibility in query size f .

Theorem 10 (Tadaki [17]). Let V be an optimal prefix-free machine. Then,
for every prefix-free machine F there exists d ∈ N such that, for every p ∈ {0, 1}∗,
if p and the list of all halting inputs for V of length at most |p| + d are given,
then the halting problem of the input p for F can be solved. ��

Theorem 11. Let V be an optimal prefix-free machine. Then, for every prefix-
free machine F there exists d ∈ N such that domF is reducible to domV in
query size n + d. ��

Theorem 12. Let α be an r.e. real, and let V be an optimal prefix-free machine.
For every total recursive function f : N → N, if

∑∞
n=0 2n−f(n) < ∞, then there

exists c ∈ N such that Pf(α) is reducible to domV in query size f(n) + c.

Proof. Let α be an r.e. real, and let V be an optimal prefix-free machine. For an
arbitrary total recursive function f : N → N, assume that

∑∞
n=0 2n−f(n) < ∞. In

the case of α ∈ Q, the result is obvious. Thus, in what follows, we assume that
α /∈ Q and therefore the base-two expansion of α − �α is unique and contains
infinitely many ones.
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Since
∑∞

n=0 2n−f(n) < ∞, there exists d0 ∈ N such that
∑∞

n=0 2n−f(n)−d0 ≤
1. Hence, by the Kraft-Chaitin Theorem, i.e., Theorem 9, there exists a total
recursive function g : N → {0, 1}∗ such that (i) the function g is an injection,
(ii) the set { g(n) | n ∈ N} is prefix-free, and (iii) |g(n)| = f(n) − n + d0 for all
n ∈ N. On the other hand, since α is r.e., there exists a total recursive function
h : N → Q such that h(k) ≤ α for all k ∈ N and limk→∞ h(k) = α.

Now, let us consider a prefix-free machine F such that, for every n ∈ N and
s ∈ {0, 1}∗, g(n)s ∈ domF if and only if (i) |s| = n and (ii) 0.s < h(k)− �α for
some k ∈ N. It is easy to see that such a prefix-free machine F exists. We then
see that, for every n ∈ N and s ∈ {0, 1}n,

g(n)s ∈ domF if and only if s ≤ α�n, (1)

where s and α�n are regarded as a dyadic integer. Then, by the following proce-
dure, we see that Pf(α) is reducible to domF in query size f(n) + d0.

Given t ∈ {0, 1}∗, based on the equivalence (1), one determines α�n by putting
the queries g(n)s to the oracle domF for all s ∈ {0, 1}n, where n = |t|. Note
here that all the queries are of length f(n) + d0, since |g(n)| = f(n) − n + d0.
One then accepts if t = α�n and rejects otherwise.

On the other hand, by Theorem 11, there exists d ∈ N such that domF is
reducible to domV in query size n + d. Thus, by Proposition 1 (i), Pf(α) is
reducible to domV in query size f(n) + d0 + d, as desired. ��

We next prove Theorem 14 using Theorem 3 and the Ample Excess Lemma
below.

Theorem 13 (Ample Excess Lemma, Miller and Yu [11]). For every
α ∈ R, α is weakly Chaitin random if and only if

∑∞
n=1 2n−H(α�n) < ∞. ��

Theorem 14. Let α be a real which is weakly Chaitin random, and let V be an
optimal prefix-free machine. For every order function f , if Pf(α) is reducible to
domV in query size f then

∑∞
n=0 2n−f(n) < ∞.

Proof. Let α be a real which is weakly Chaitin random, and let V be an optimal
prefix-free machine. For an arbitrary order function f , assume that Pf(α) is
reducible to domV in query size f . Since f is an order function, Sf = {n ∈ N |
f(n) < f(n+1)} is an infinite recursive set. Therefore there exists an increasing
total recursive function h : N → N such that h(N) = Sf . It is then easy to see
that f(n) = f(h(k + 1)) for every k and n with h(k) < n ≤ h(k + 1). Thus, for
each k ≥ 1, we see that

h(k)∑
n=h(0)+1

2n−f(n) =
k−1∑
j=0

h(j+1)∑
n=h(j)+1

2n−f(n) =
k−1∑
j=0

2−f(h(j+1))

h(j+1)∑
n=h(j)+1

2n

=
k−1∑
j=0

2−f(h(j+1))
(
2h(j+1)+1 − 2h(j)+1

)
< 2

k∑
j=1

2h(j)−f(h(j)).

(2)
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On the other hand, let M be a deterministic Turing machine which computes V .
For each n ≥ LM , we choose a particular pn from In

M . Note that, given (n, pf(n))
with f(n) ≥ LM , one can calculate the finite set domV �f(n) by simulating the
computation of M with the input q until at most the time step TM (pf(n)), for
each q ∈ {0, 1}∗ with |q| ≤ f(n). This can be possible because TM (pf(n)) =
T

f(n)
M for every n ∈ N with f(n) ≥ LM . Thus, since Pf(α) is reducible to

domV in query size f by the assumption, we see that there exists a partial
recursive function Ψ : N×{0, 1}∗ → {0, 1}∗ such that, for all n ∈ N with f(n) ≥
LM , Ψ(n, pf(n)) = α �n. It follows from the optimality of U that H(α �n) ≤
H(n, pf(n)) + O(1) for all n ∈ N with f(n) ≥ LM . On the other hand, since the
mapping N # k �→ f(h(k)) is an increasing total recursive function, it follows
also from the optimality of U that H(h(k), s) ≤ H(f(h(k)), s) + O(1) for all
k ∈ N and s ∈ {0, 1}∗. Therefore, using Theorem 3 we see that

H(α�h(k)) ≤ f(h(k)) + O(1) (3)

for all k ∈ N. Since α is weakly Chaitin random, using the Ample Excess Lemma,
i.e., Theorem 13, we have

∑∞
n=1 2n−H(α�n) < ∞. Note that the function h is

injective. Thus, using (3) we have
∞∑

j=1

2h(j)−f(h(j)) ≤
∞∑

j=1

2h(j)−H(α�h(j))+O(1) ≤
∞∑

n=1

2n−H(α�n)+O(1) < ∞.

It follows from (2) that limk→∞
∑h(k)

n=h(0)+1 2n−f(n) < ∞. Thus, since 2n−f(n) > 0
for all n ∈ N and limk→∞ h(k) = ∞, we have

∑∞
n=0 2n−f(n) < ∞, as desired. ��

4.2 The Proof of Theorem 7

The implication (ii) ⇒ (i) of Theorem 7 follows immediately from Proposition 2
and Proposition 1 (ii). On the other hand, the implication (i) ⇒ (ii) of Theorem 7
is proved as follows.

Proof (of (i) ⇒ (ii) of Theorem 7). Let V and W be optimal prefix-free ma-
chines, and let f be an order function. Suppose that there exists c ∈ N such that
domW is reducible to Pf(ΩV ) in query size f(n) + c. Then, by considering the
following procedure, we first see that n < H(n,ΩV �f(n)+c) +O(1) for all n ∈ N.

Given n and ΩV �f(n)+c, one first calculates the finite set domW �n. This is
possible since domW is reducible to Pf(ΩV ) in query size f(n) + c and f(k) ≤
f(n) for all k ≤ n. Then, by calculating the set {W (p) | p ∈ domW �n} and
picking any one finite binary string s which is not in this set, one can obtain
s ∈ {0, 1}∗ such that n < HW (s).

Thus, there exists a partial recursive function Ψ : N × {0, 1}∗ → {0, 1}∗ such
that, for all n ∈ N, n < HW (Ψ(n,ΩV �f(n)+c)). It follows from the optimality of
W that

n < H(n,ΩV �f(n)+c) + O(1) (4)

for all n ∈ N.
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Now, let us assume contrarily that the function n − f(n) of n ∈ N is un-
bounded. Recall that f is an order function. Hence it is easy to show that there
exists a total recursive function g : N → N such that the function f(g(k)) of k
is increasing and the function g(k) − f(g(k)) of k is also increasing. For clarity,
we define a total recursive function m : N → N by m(k) = f(g(k)) + c. Since m
is injective, it is then easy to see that there exists a partial recursive function
Φ : N → N such that Φ(m(k)) = g(k) for all k ∈ N. Therefore, based on the
optimality of U , it is shown that H(g(k), ΩV �m(k)) ≤ H(ΩV �m(k)) + O(1) for
all k ∈ N. It follows from (4) that g(k) < H(ΩV �m(k)) + O(1) for all k ∈ N. On
the other hand, we can show that H(s) ≤ |s| + H(|s|) +O(1) for all s ∈ {0, 1}∗.
Therefore we have g(k) − f(g(k)) < H(m(k)) + O(1) for all k ∈ N. Then, since
the function g(k) − f(g(k)) of k is unbounded, it is easy to see that there exists
a total recursive function Θ : N+ → N such that, for every l ∈ N+, l ≤ H(Θ(l)).
It follows from the optimality of U that l ≤ H(l) + O(1) for all l ∈ N+. On the
other hand, we can show that H(l) ≤ 2 log2 l+O(1) for all l ∈ N+. Thus we have
l ≤ 2 log2 l + O(1) for all l ∈ N+. However, we have a contradiction on letting
l → ∞ in this inequality. This completes the proof. ��

5 T -Convergent R.E. Reals

Let T be an arbitrary computable real with 0 < T ≤ 1. The parameter T plays
a crucial role in the present paper.2 In this section, we investigate the relation
of T -convergent r.e. reals to the halting problems. In particular, Theorem 20
below is used to show Theorem 21 in the next section, and plays a major role in
establishing the bidirectionality in the next section.

Recently, Calude, Hay, and Stephan [3] showed the existence of an r.e. real
which is weakly Chaitin T -random and strictly T -compressible, in the case where
T is a computable real with 0 < T < 1, as follows.

Theorem 15 (Calude, Hay, and Stephan [3]). Suppose that T is a com-
putable real with 0 < T < 1. Then there exist an r.e. real α ∈ (0, 1) and d ∈ N

such that, for all n ∈ N+, |H(α�n) − Tn| ≤ d. ��

We first show that the same r.e. real α as in Theorem 15 has the following
property.

Theorem 16. Suppose that T is a computable real with 0 < T < 1. Let V be an
optimal prefix-free machine. Then there exists an r.e. real α ∈ (0, 1) such that
α is weakly Chaitin T -random and Pf(α) is reducible to domV in query size
�Tn + O(1). ��

Calude, et al. [3] use Lemma 1 below to show Theorem 15. We also use it to
show Theorem 16.
2 The parameter T corresponds to the notion of “temperature” in the statistical me-

chanical interpretation of AIT introduced by Tadaki [16].
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Lemma 1 (Reimann and Stephan [13] and Calude, Hay, and Stephan
[3]). Let T be a real with T > 0, and let V be an optimal prefix-free machine.

(i) Suppose that T < 1. Then there exists c ∈ N+ such that, for every s ∈ {0, 1}∗,
there exists t ∈ {0, 1}c for which HV (st) ≥ HV (s) + Tc.

(ii) There exists c ∈ N+ such that, for every s ∈ {0, 1}∗, HV (s0c) ≤ HV (s) +
Tc− 1 and HV (s1c) ≤ HV (s) + Tc− 1. ��

Proof (of Theorem 16). Suppose that T is a computable real with 0 < T < 1.
Let V be an optimal prefix-free machine. Then it follows from Lemma 1 that
there exists c ∈ N+ such that, for every s ∈ {0, 1}∗, there exists t ∈ {0, 1}c for
which

HV (st) ≥ HV (s) + Tc. (5)

For each prefix-free machine G and each s ∈ {0, 1}∗, we denote by S(G; s) the
set

{
u ∈ {0, 1}|s|+c

∣∣ s is a prefix of u & HG(u) > T |u|
}
.

Now, we define a sequence {ak}k∈N of finite binary strings recursively on k ∈ N

by ak := λ if k = 0 and ak := minS(V ; ak−1) otherwise. First note that a0 is
properly defined as λ and therefore satisfies HV (a0) > T |a0|. For each k ≥ 1,
assume that a0, a1, a2, . . . , ak−1 are properly defined. Then HV (ak−1) > T |ak−1|
holds. It follow from (5) that there exists t ∈ {0, 1}c for which HV (ak−1t) ≥
HV (ak−1)+Tc, and therefore ak−1t ∈ {0, 1}|ak−1|+c and HV (ak−1t) ≥ T |ak−1t|.
Thus S(V ; ak−1) �= ∅, and therefore ak is properly defined. Hence, ak is properly
defined for every k ∈ N. We thus see that, for every k ∈ N, ak ∈ {0, 1}ck,
HV (ak) > T |ak|, and ak is a prefix of ak+1. Therefore, it is easy to see that,
for every m ∈ N+, there exists k ∈ N such that ak contains m zeros. Thus,
we can uniquely define a real α ∈ [0, 1) by the condition that α�ck= ak for all
k ∈ N+. It follows that HV (α�ck) > T |α�ck| for all k ∈ N+. Note that there exists
d0 ∈ N such that, for every s, t ∈ {0, 1}∗, if |t| ≤ c then |HV (st) − HV (s)| ≤ d0.
Therefore, there exists d1 ∈ N such that, for every n ∈ N+, HV (α�n) > Tn− d1,
which implies that α is weakly Chaitin T -random and therefore α ∈ (0, 1).

Next, we show that Pf(α) is reducible to domV in query size �Tn� + O(1).
For each k ∈ N, we denote by Fk the set {s ∈ {0, 1}∗ | HV (s) ≤ �Tck }. It
follows that

ak = min
{
u ∈ {0, 1}ck

∣∣ ak−1 is a prefix of u & u /∈ Fk } (6)

for every k ∈ N+. By the following procedure, we see that Pf(α) is reducible to
domV in query size �Tn + O(1).

Given s ∈ {0, 1}∗ with s �= λ, one first calculates the k0 finite sets F1, F2, . . . ,
Fk0 , where k0 = �|s| /c�, by putting queries to the oracle domV . Note here
that all the queries can be of length at most �T (|s| + c) . One then calculates
a1, a2, . . . , ak0 in this order one by one from a0 = λ based on the relation (6) and
F1, F2, . . . , Fk0 . Finally, one accepts s if s is a prefix of ak0 and rejects otherwise.
This is possible since α�ck0= ak0 and |s| ≤ ck0.

Finally, we show that α is an r.e. real. Let p1, p2, p3, . . . be a particular re-
cursive enumeration of the infinite r.e. set domV . For each l ∈ N+, we de-
fine a prefix-free machine V (l) by the following two conditions (i) and (ii): (i)
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domV (l) = {p1, p2, . . . , pl}. (ii)V (l)(p) = V (p) for every p ∈ domV (l). It is easy
to see that such prefix-free machines V (1), V (2), V (3), . . . exist. For each l ∈ N+

and each s ∈ {0, 1}∗, note that HV (l)(s) ≥ HV (s) holds, where HV (l)(s) may be
∞. For each l ∈ N, we define a sequence {a(l)

k }k∈N of finite binary strings recur-
sively on k ∈ N by a

(l)
k := λ if k = 0 and a

(l)
k := min(S(V (l); a(l)

k−1) ∪ {a(l)
k−11

c})
otherwise. It follows that a

(l)
k is properly defined for every k ∈ N. Note, in par-

ticular, that a
(l)
k ∈ {0, 1}ck and a

(l)
k is a prefix of a

(l)
k+1 for every k ∈ N.

Let l ∈ N+. We show that a
(l)
k ≤ ak for every k ∈ N+. To see this, assume

that a
(l)
k−1 = ak−1. Then, since HV (l)(s) ≥ HV (s) holds for every s ∈ {0, 1}∗,

based on the constructions of a
(l)
k and ak from a

(l)
k−1 and ak−1, respectively, we

see that a
(l)
k ≤ ak. Thus, based on the constructions of {a(l)

k }k∈N and {ak}k∈N

we see that a
(l)
k ≤ ak for every k ∈ N+.

We define a sequence {rk}k∈N of rationals by rk = 0.a(k)
k . Obviously, {rk}k∈N

is a computable sequence of rationals. Based on the result in the previous para-
graph, we see that rk ≤ α for every k ∈ N+. Based on the constructions
of prefix-free machines V (1), V (2), V (3), . . . from V , it is also easy to see that
limk→∞ rk = α. Thus we see that α is an r.e. real. ��

Using Theorem 15 and Theorem 5 we can prove the following theorem.

Theorem 17. Suppose that T is a computable real with 0 < T < 1. For every
r.e. real β, if β is T -convergent then β is strictly T -compressible.

Proof. Suppose that T is a computable real with 0 < T < 1. It follows from
Theorem 15 that there exists an r.e. real α such that α is weakly Chaitin T -
random and

H(α�n) ≤ Tn + O(1) (7)

for all n ∈ N+. Since α is weakly Chaitin T -random, using the implication (i)
⇒ (iii) of Theorem 5 we see that, for every T -convergent r.e. real β, there exists
d ∈ N such that, for all n ∈ N+, H(β �n) ≤ H(α �n) + d. Thus, for each T -
convergent r.e. real β, using (7) we see that H(β�n) ≤ Tn+O(1) for all n ∈ N+,
which implies that β is strictly T -compressible. ��

Using Theorem 7 of Tadaki [18], Theorem 17, and Theorem 4 (i), we can prove
the following theorem.

Theorem 18. Suppose that T is a computable real with 0 < T < 1. Let V be an
optimal prefix-free machine. Then there exists d ∈ N such that, for all n ∈ N+,
|H(ZV (T )�n) − Tn| ≤ d.

Proof. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal
prefix-free machine. By Theorem 7 of Tadaki [18], ZV (T ) is a T -convergent
r.e. real. It follows from Theorem 17 that ZV (T ) is strictly T -compressible. On
the other hand, by Theorem 4 (i), ZV (T ) is weakly Chaitin T -random. This
completes the proof. ��
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Calude, et al. [3], in essence, showed the following result. For completeness, we
include its proof.

Theorem 19 (Calude, Hay, and Stephan [3]). If a real β is weakly Chaitin
T -random and strictly T -compressible, then there exists d ≥ 2 such that a base-
two expansion of β has neither a run of d consecutive zeros nor a run of d
consecutive ones.

Proof. Let β be a real which is weakly Chaitin T -random and strictly T -
compressible. Then there exists d0 ∈ N such that, for every n ∈ N,

|H(β�n) − Tn| ≤ d0. (8)

On the other hand, by Lemma 1 (ii) we see that there exists c ∈ N+ such that,
for every s ∈ {0, 1}∗, H(s0c) ≤ H(s) + Tc− 1 and H(s1c) ≤ H(s) + Tc− 1. We
choose a particular k0 ∈ N+ with k0 > 2d.

Assume first that a base-two expansion of β has a run of ck0 consecutive zeros.
Then β�n0 0ck0 = β�n0+ck0 for some n0 ∈ N. Thus we have H(β�n0+ck0)−T (n0+
ck0)+ k0 ≤ H(β�n0)−Tn0, and therefore − |H(β�n0+ck0) − T (n0 + ck0)|+ k0 ≤
|H(β�n0) − Tn0| where we used the triangle inequality. It follows from (8) that
−d0 + k0 ≤ d0 and therefore k0 ≤ 2d0. This contradicts the fact that k0 > 2d.
Hence, a base-two expansion of β does not have a run of ck0 consecutive zeros.
In a similar manner we can show that a base-two expansion of β does not have
a run of ck0 consecutive ones, as well. ��

Theorem 20. Suppose that T is a computable real with 0 < T < 1. Let V be an
optimal prefix-free machine. For every r.e. real β, if β is T -convergent and weakly
Chaitin T -random, then Pf(β) is reducible to domV in query size �Tn +O(1).

Proof. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal
prefix-free machine. Then, by Theorem 16, there exist an r.e. real α ∈ (0, 1) and
d0 ∈ N such that α is weakly Chaitin T -random and Pf(α) is reducible to domV
in query size �Tn +d0. Since α is an r.e. real which is weakly Chaitin T -random,
it follow from the implication (i) ⇒ (ii) of Theorem 5 that α is Ω(T )-like.

Now, for an arbitrary r.e. real β, assume that β is T -convergent and weakly
Chaitin T -random. Then, by Theorem 17, β is strictly T -compressible. It follows
from Theorem 19 that there exists c ≥ 2 such that the base-two expansion of β
has neither a run of c consecutive zeros nor a run of c consecutive ones. On the
other hand, since the r.e. real α is weakly Chaitin T -random, from the definition
of Ω(T )-likeness we see that α dominates β. Therefore, there are computable,
increasing sequences {ak}k∈N and {bk}k∈N of rationals and d1 ∈ N such that
limk→∞ ak = α and limk→∞ bk = β and, for all k ∈ N, α − ak ≥ 2−d1(β − bk)
and �β = �bk . Let d2 = d1 + c + 2. Then, by the following procedure, we see
that Pf(β) is reducible to domV in query size �T (n + d2) + d0.

Given s ∈ {0, 1}∗, one first calculates α�n+d2 by putting the queries t to the
oracle domV , where n = |s|. This is possible since Pf(α) is reducible to domV
in query size �Tn + d0. Note here that all the queries can be of length at most
�T (n + d2) + d0. One then find k0 ∈ N such that 0.(α�n+d2) < ak0 . This is
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possible since 0.(α�n+d2) < α and limk→∞ ak = α. It follows that 2−(n+d2) >
α − 0.(α�n+d2) > α − ak0 ≥ 2−d1(β − bk0). Thus, 0 < β − bk0 < 2−(n+c+2). Let
t be the first n + c + 2 bits of the base-two expansion of the rational number
bk0 − �bk0 with infinitely many zeros. Then, | bk0 − �bk0 − 0.t | ≤ 2−(n+c+2). It
follows from |β − �β − 0.(β�n+c+2) | < 2−(n+c+2) that | 0.(β�n+c+2) − 0.tn | <
3 · 2−(n+c+2) < 2−(n+c). Hence, |β�n+c+2 −t | < 22, where β �n+c+2 and t in
{0, 1}n+c+2 are regarded as a dyadic integer. Thus, t is obtained by adding to
β�n+c+2 or subtracting from β�n+c+2 a 2 bits dyadic integer. Since the base-two
expansion of β has neither a run of c consecutive zeros nor a run of c consecutive
ones, it can be checked that the first n bits of t equals to β�n. Thus, one accepts
s if s is a prefix of t and rejects otherwise. Recall here that |s| = n. ��

6 Bidirectionality

In this section we show the bidirectionality between ZU (T ) and domU with a
computable real T ∈ (0, 1) in a general setting. Theorems 21 and 22 below are
two of the main results of this paper.

Theorem 21 (Elaboration of ZU(T ) ≤wtt dom U). Suppose that T is a
computable real with 0 < T < 1. Let V and W be optimal prefix-free machines,
and let f be an order function. Then the following two conditions are equivalent:

(i) Pf(ZV (T )) is reducible to domW in query size f(n) + O(1).
(ii) Tn ≤ f(n) + O(1). ��

Theorem 22 (Elaboration of dom U ≤wtt ZU(T )). Suppose that T is a
computable real with 0 < T ≤ 1. Let V and W be optimal prefix-free machines,
and let f be an order function. Then the following two conditions are equivalent:

(i) domW is reducible to Pf(ZV (T )) in query size f(n) + O(1).
(ii) n/T ≤ f(n) + O(1). ��

Theorem 21 and Theorem 22 are proved in Subsection 6.1 and Subsection 6.2
below, respectively. Note that the function Tn in the condition (ii) of Theo-
rem 21 and the function n/T in the condition (ii) of Theorem 22 are the inverse
functions of each other. This implies that the computations between Pf(ZV (T ))
and domW are bidirectional in the case where T is a computable real with
0 < T < 1. The formal proof is as follows.

Theorem 23. Suppose that T is a computable real with 0 < T < 1. Let V and
W be optimal prefix-free machines. Then the computations between Pf(ZV (T ))
and domW are bidirectional.

Proof. Let V and W be optimal prefix-free machines. It follows from the im-
plication (ii) ⇒ (i) of Theorem 22 that there exists c ∈ N for which domW is
reducible to Pf(ZV (T )) in query size f with f(n) = �n/T  + c. On the other
hand, it follows from the implication (ii) ⇒ (i) of Theorem 21 that there ex-
ists d ∈ N for which Pf(ZV (T )) is reducible to domW in query size g with
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g(n) = �Tn + d. Since T is computable, f and g are order functions. For each
n ∈ N, we see that g(f(n)) ≤ Tf(n) + d ≤ n + Tc + d. Thus, the computation
from Pf(ΩV ) to domW is not unidirectional. In a similar manner, we see that
the computation from domW to Pf(ΩV ) is not unidirectional. This completes
the proof. ��

6.1 The Proof of Theorem 21

Let T be a computable real with 0 < T < 1, and let V be an optimal prefix-free
machine. Then, by Theorem 7 of Tadaki [18], ZV (T ) is a T -convergent r.e. real.
Moreover, by Theorem 4 (i), ZV (T ) is weakly Chaitin T -random. Thus, the
implication (ii) ⇒ (i) of Theorem 21 follows immediately from Theorem 20 and
Proposition 1 (ii).

On the other hand, the implication (i) ⇒ (ii) of Theorem 21 follows immedi-
ately from Theorem 4 (i) and Theorem 24 below. In order to prove Theorem 24,
we use Theorem 3.

Theorem 24. Suppose that T is a computable real with 0 < T ≤ 1. Let β be
a real which is weakly Chaitin T -random, and let V be an optimal prefix-free
machine. For every order function f , if Pf(β) is reducible to domV in query
size f then Tn ≤ f(n) + O(1).

Proof. Suppose that T is a computable real with 0 < T ≤ 1. Let β be a real
which is weakly Chaitin T -random, and let V be an optimal prefix-free machine.
For an arbitrary order function f , assume that Pf(β) is reducible to domV
in query size f . Let M be a deterministic Turing machine which computes V .
For each n with f(n) ≥ LM , we choose a particular pn from I

f(n)
M . Then, by

the following procedure, we see that there exists a partial recursive function
Ψ : N × {0, 1}∗ → {0, 1}∗ such that, for all n with f(n) ≥ LM ,

Ψ(n, pn) = β�n . (9)

Given (n, pn) with f(n) ≥ LM , one first calculates the finite set domV �f(n)

by simulating the computation of M with the input q until at most the time
step TM (pn), for each q ∈ {0, 1}∗ with |q| ≤ f(n). This can be possible because
TM (pn) = T

f(n)
M for every n with f(n) ≥ LM . One then calculates β �n using

domV �f(n) and outputs it. This is possible since Pf(β) is reducible to domV in
query size f .

It follows from (9) that

H(β�n) ≤ H(n, pn) + O(1) (10)

for all n with f(n) ≥ LM .
Now, let us assume contrarily that the function Tn − f(n) of n ∈ N is un-

bounded. Recall that f is an order function and T is computable. Hence it is
easy to show that there exists a total recursive function g : N → N such that the
function f(g(k)) of k is increasing and the function Tg(k) − f(g(k)) of k is also
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increasing. Since the function f(g(k)) of k is injective, it is then easy to see that
there exists a partial recursive function Φ : N → N such that Φ(f(g(k))) = g(k)
for all k ∈ N. Thus, based on the optimality of U , it is shown that H(g(k), s) ≤
H(f(g(k)), s) + O(1) for all k ∈ N and s ∈ {0, 1}∗. Hence, using (10) and
Theorem 3 we have H(β �g(k)) ≤ H(f(g(k)), pg(k)) + O(1) ≤ f(g(k)) + O(1)
for all k with f(g(k)) ≥ LM . Since β is weakly Chaitin T -random, we have
Tg(k) ≤ H(β �g(k)) + O(1) ≤ f(g(k)) + O(1) for all k with f(g(k)) ≥ LM .
However, this contradicts the fact that the function Tg(k) − f(g(k)) of k is un-
bounded, and the proof is completed. ��

6.2 The Proof of Theorem 22

The implication (i) ⇒ (ii) of Theorem 22 can be proved based on Theorem 18
as follows.

Proof (of (i) ⇒ (ii) of Theorem 22). In the case of T = 1, the implication (i)
⇒ (ii) of Theorem 22 results in the implication (i) ⇒ (ii) of Theorem 7. Thus,
we assume that T is a computable real with 0 < T < 1 in what follows. Let V
and W be optimal prefix-free machines, and let f is an order function. Suppose
that there exists c ∈ N such that domW is reducible to Pf(ZV (T )) in query
size f(n) + c. Then, by considering the following procedure, we first see that
n < H(n,ZV (T )�f(n)+c) + O(1) for all n ∈ N.

Given n and ZV (T )�f(n)+c, one first calculates the finite set domW �n. This
is possible since domW is reducible to Pf(ZV (T )) in query size f(n) + c and
f(k) ≤ f(n) for all k ≤ n. Then, by calculating the set {W (p) | p ∈ domW�n}
and picking any one finite binary string s which is not in this set, one can obtain
s ∈ {0, 1}∗ such that n < HW (s).

Thus, there exists a partial recursive function Ψ : N × {0, 1}∗ → {0, 1}∗ such
that, for all n ∈ N, n < HW (Ψ(n,ZV (T )�f(n)+c)). It follows from the optimality
of W that

n < H(n,ZV (T )�f(n)+c) + O(1) (11)

for all n ∈ N.
Now, let us assume contrarily that the function n/T − f(n) of n ∈ N is

unbounded. Recall that f is an order function and T is computable. Hence it
is easy to show that there exists a total recursive function g : N → N such that
the function f(g(k)) of k is increasing and the function g(k)/T − f(g(k)) of k
is also increasing. For clarity, we define a total recursive function m : N → N by
m(k) = f(g(k)) + c. Since m is injective, it is then easy to see that there exists
a partial recursive function Φ : N → N such that Φ(m(k)) = g(k) for all k ∈ N.
Therefore, based on the optimality of U , it is shown that H(g(k), ZV (T )�m(k)

) ≤ H(ZV (T ) �m(k)) + O(1) for all k ∈ N. It follows from (11) that g(k) <
H(ZV (T )�m(k))+O(1) for all k ∈ N. On the other hand, since T is a computable
real with 0 < T < 1, it follows from Theorem 18 that H(ZV (T )�n) ≤ Tn+O(1)
for all n ∈ N. Therefore we have g(k) < Tf(g(k))+O(1) for all k ∈ N. However,
this contradicts the fact that the function g(k)/T − f(g(k)) of k is unbounded,
and the proof is completed. ��
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On the other hand, the implication (ii) ⇒ (i) of Theorem 22 follows immediately
from Theorem 25 below and Proposition 1 (ii).

Theorem 25. Suppose that T is a computable real with 0 < T ≤ 1. Let V be
an optimal prefix-free machine, and let F be a prefix-free machine. Then domF
is reducible to Pf(ZV (T )) in query size �n/T � + O(1).

Proof. In the case where domF is a finite set, the result is obvious. Thus, in
what follows, we assume that domF is an infinite set.

Let p0, p1, p2, p3, . . . be a particular recursive enumeration of domF , and let
G be a prefix-free machine such that domG = domF and G(pi) = i for all
i ∈ N. Recall here that we identify {0, 1}∗ with N. It is also easy to see that such
a prefix-free machine G exists. Since V is an optimal prefix-free machine, from
the definition of optimality of a prefix-free machine there exists d ∈ N such that,
for every i ∈ N, there exists q ∈ {0, 1}∗ for which V (q) = i and |q| ≤ |pi| + Td.
Thus, HV (i) ≤ |pi|+Td for every i ∈ N. For each s ∈ {0, 1}∗, we define ZV (T ; s)
as

∑
V (p)=s 2−|p|/T . Then, for each i ∈ N,

ZV (T ; i) ≥ 2−HV (i)/T ≥ 2−|pi|/T−d. (12)

Then, by the following procedure, we see that domF is reducible to Pf(ZV (T ))
in query size �n/T � + d.

Given s ∈ {0, 1}∗, one first calculates ZV (T )��n/T�+d by putting the queries
t to the oracle Pf(ZV (T )) for all t ∈ {0, 1}�n/T�+d, where n = |s|. Note here
that all the queries are of length �n/T � + d. One then find ke ∈ N such that∑ke

i=0 ZV (T ; i) > 0.(ZV (T )��n/T�+d). This is possible because 0.(ZV (T )��n/T�+d

) < ZV (T ), limk→∞
∑k

i=0 ZV (T ; i) = ZV (T ), and T is a computable real. It
follows that

∞∑
i=ke+1

ZV (T ; i) = ZV (T ) −
ke∑

i=0

ZV (T ; i) < ZV (T ) − 0.(ZV (T )��n/T�+d)

< 2−�n/T�−d ≤ 2−n/T−d.

Therefore, by (12),
∑∞

i=ke+1 2−|pi|/T ≤ 2d
∑∞

i=ke+1 ZV (T ; i) < 2−n/T . It follows
that, for every i > ke, 2−|pi|/T < 2−n/T and therefore n < |pi|. Hence, domF�n=
{ pi | i ≤ ke & |pi| ≤ n }. Thus, one can calculate the finite set domF�n. Finally,
one accepts if s ∈ domF�n and rejects otherwise. ��

7 Concluding Remarks

Suppose that T is a computable real with 0 < T ≤ 1. Let V and W be optimal
prefix-free machines. It is worthwhile to clarify the origin of the difference of
the behavior of ZV (T ) between T = 1 and T < 1 with respect to the notion
of reducibility in query size f . In the case of T = 1, the Ample Excess Lemma
[11] (i.e., Theorem 13) plays a major role in establishing the unidirectionality of
the computation from ΩV to domW . However, in the case of T < 1, this is not
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true because the weak Chaitin T -randomness of a real α does not necessarily
imply that

∑∞
n=1 2Tn−H(α�n) < ∞ [13]. On the other hand, in the case of T <

1, Lemma 1 (i) plays a major role in establishing the bidirectionality of the
computations between ZV (T ) and domW . However, this does not hold for the
case of T = 1.
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Abstract. This paper is an experimental exploration of the relationship
between the runtimes of Turing machines and the length of proofs in
formal axiomatic systems. We compare the number of halting Turing
machines of a given size to the number of provable theorems of first-order
logic of a given size, and the runtime of the longest-running Turing
machine of a given size to the proof length of the most-difficult-to-prove
theorem of a given size. It is suggested that theorem provers are subject
to the same non-linear tradeoff between time and size as computer
programs are, affording the possibility of determining optimal timeouts
and waiting times in automatic theorem proving. I provide the statistics
for some small choices of parameters for both of these systems.

Keywords: halting problem, halting probability, proof length, auto-
matic theorem proving, Busy Beaver problem, program-size complexity,
small Turing machines.

1 Introduction

While profound connections between computer programs and mathematical
proofs have been studied and are known (e.g. the Curry-Howard correspon-
dence), little has been done to connect the two fields at the level of empirical
practice. We present an experimental approach to the question of optimal prov-
ing times for automatic theorem provers, which bears out Calude and Stay’s
theoretical findings that programs either stop quickly or never halt [4].

Working with self-delimiting programs, that is, programs that are not the be-
ginning of any other valid programs,Chaitin defined the complexity of the runtime
of a program which eventually halts that we cannot effectively compute [5], and
Calude and Stay have recently proven [4] that even though short programs can run
for a very long time, long programs are the scarcest because most of them will stop
rather quickly—if they ever do—depending on their length. Thus, the probability
of a machine halting decreases the longer it takes to halt, if it ever does.

Just as Calude and Stay suggest that most Turing machines are fully deter-
mined qua termination by a small number of computational steps, and that the
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error margin drops drastically, in [8] we have also shown that Turing machines
are fully determined qua extensionality by a small number of initial input values
(a theoretical value for the error margin has yet to be determined but the very
few data points that we could generate suggest to follow at least a polynomial
distribution).

We undertake an experimental approach to the runtimes of deterministic Tur-
ing machines up to three states and two symbols in connection, and empirical
evidence, to Calude and Stay’s theoretical results. Then we undertake the same
experimental approach to formulas of predicate calculus, in order to find some
(if any) evidence in favour of a possible similar non-linear phenomenon in the
distribution of proof lengths of (dis)proven theorems in random axiom systems
and Turing machines.

Traditional intuition might make one think this an ill-fated approach. On
the one hand because undecidability would interfere in any such experimental
attempt, and on the other hand, because small systems may say more about de-
sign choices than about important results. Even though possible limiting effects
may appear right away one can limitedly circumvent these limits (as the Busy
Beaver problem does) in an effort tantamount to other interesting experiments
including some of Calude’s own interest [3] or of my own [7], this latter provid-
ing useful applications for the evaluation of the algorithmic complexity of short
strings difficult to calculate with the other alternative (lossless compression al-
gorithms). With the intuition one gets from studying small systems (see [13]), it
seems worth it and insightful to undertake these kind of experiments.

1.1 The Halting Problem

The Halting Problem for Turing machines involves deciding whether an arbitrary
Turing machine M eventually halts on an arbitrary input x. One can ask whether
there is a Turing machine halt M which, given code (M) and the input x,
eventually stops and produces 1 if M(x) stops, and 0 if M(x) does not stop.
Turing’s seminal result states that this problem cannot be solved by any Turing
machine, i.e. there is no such halt M . Halting can be recognized by simply
running the machine in question; the main difficulty is to detect non-halting
machines.

Since many real-world problems arising in the fields of compiler optimiza-
tion, automatized software engineering, formal proof systems, and so forth are
deeply connected to the halting problem, there is an interest in understanding
the problem in order to translate theoretical results into practical applications.

In [4], it was observed that for any computable probability distribution, most
long times are effectively rare, so that at the limit they all had the same be-
havior regardless of the choice of distribution. They proved that the exact time
at which a program stops is not too complicated algorithmically. It is (algorith-
mically) non-random because most programs either stop ‘quickly’ or never halt.
Since non-random times are (effectively) rare, according to Calude and Stay, the
density of times at which an N -bit program can stop decreases quickly.
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2 The Busy Beaver Problem

There are (4n+2)2n possible (n, 2) deterministic Turing machines with n states
and 2 symbols. We denote by (n,m) the class (or space) of all n-state m-symbol
Turing machines having a bidirectional tape and remaining on the same cell
when entering the (additional to n) halting state. Among the machines that
halt, there are some that print more 1s on their output tapes than any other
Turing machines of the same size, and some that reach a maximum number of
steps upon halting.

If σT is the number of 1s on the tape of a Turing machine T upon halting,
then:

∑
(n) = max {σT : T ∈ (n, 2) T (n) halts} with n the number of states of

the Turing machine.
If tT is the number of steps that a machine T takes upon halting, then

S(n) = max {tT : T ∈ (n, 2) T (n) halts} with n the number of states of the
Turing machine.∑

(n) and S(n) are noncomputable functions [9] by reduction to the halting
problem. Yet values are known for (n, 2) with n ≤ 4. The solution for (n, 2) with
n < 3 is trivial; the process leading to the solution in (3, 2) is discussed by Lin
and Rado [11]; and the process leading to the solution in (4, 2) is discussed in [1].

Solving the halting problem for small machines. It is easy to see that∑
(1) = 1 and

∑
(2) = 4. Lin and Rado [9] proved

∑
(3) = 6 and Brady [1] that∑

(4) = 13. The exact known values for S are S(1) = 1, S(2) = 6, S(3) = 21,
S(4) = 107. These Busy Beaver values are for 2-symbol Turing machines.

These numerical values of the Busy Beaver functions have been calculated
by a combination of techniques, notably the exhaustive simulation of a reduced
number of non-equivalent Turing machines, as it turns out that many can be
decided (e.g. evident loops, etc) and because the number of cases is small enough
one can either analyse case by case or actually run the machines and analyse
their behaviour until deciding whether it halts or not. This is evidently possible
because of the relatively small number of Turing machines with up to the number
of states for for which the values of the Busy Beaver functions are known.

A program showing the evolution of all known Busy Beaver machines devel-
oped by this paper’s authors is available online [15]. The formalism followed in
this paper is the same as the one originally described and followed for the Busy
Beaver problem as introduced by Rado [9].

It is worth noting that the Busy Beaver problem is defined for Turing machines
with initial empty tapes, and Turing machines studied in this paper are all
provided with an initially empty tapes too. Turing universality tells us, however,
that for every Turing machine with an arbitrary input there is a Turing machine
with empty input computing the same function, hence Turing machines with
empty tapes cover all possible cases (the translation may only result in some
extra states).
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3 Halting and Runtime Distributions

Calude and Stay showed that “long-running” Turing machines can only halt at
non-random times; the density of non-random times near n is about 1/n. “Long-
running” means that if we have a universal Turing machine U and machine M is
implemented by a program m for U of length n, then U(m) runs for more than
c× 2n steps, where c is some uncomputable constant depending on U .

3.1 Halting History of (2, 2) Turing Machines

We know that a machine halts if it enters the halting state before reaching the
known Busy Beaver value S(n). If it does not, then it never halts. The halting
problem and the halting probability problem are closely related to the Busy
Beaver problem in that a solution to any one of them would yield a solution to
each of the others.

Consider the halting space of all (2, 2) Turing machines (with an extra halting
state) provided with an empty tape. The table in Fig. 1 shows the runtime
distribution at which all machines in (2, 2) halt (or do not).

t kt p(kt)

− 6544 0.65
1 2000 0.20
2 800 0.080
3 160 0.016
4 56 0.0056
5 362 0.036
6 78 0.0078

Fig. 1. Runtime distribution at which all machines halt (those that don’t are indicated
by “—”). Where t is the number of steps, kt the number of machines that halted at t
(out of a total of 3456 that halt), and p(kt) is the halting probability of a machine to
halt (or not) in time t.

There are 10 000 2-state, 2-symbol Turing machines (the 10 000 figure comes
simply from the formula giving the number of Turing machines with n = 2 states
(4n + 2)2n). No other Turing machine halts after 6 steps (see Fig. 1) in (2, 2).
Machines that never halt are 6544 in number, representing around .65 of the
total.

What we term a runtime space is the product of a class of (n,m) Turing
machines for fixed n and m, where programs are uniformly distributed, and the
time space, which is discrete, has a halting time mapped to a greyscale color (the
lighter the color, the sooner it halted; white means the program never halted and
red means it reached the Busy Beaver value S(n)).

Each point in Fig. 3 represents a Turing machine and as defined by the corre-
sponding spectrum in Fig. 2, the lighter the square the sooner it halted. White
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Fig. 2. Halting color mapping spectrum for Turing machines in (2, 2) (the last color is
red, visible in the online and printed versions only)

Fig. 3. Runtime distribution plot showing all the 10 000 Turing machines in (2, 2) com-
pressed in a Peano curve packing array (preserving the enumeration distance between
machines). Some clusters may emerge due to the enumeration (e.g. terms involving
transition rule parameters grouping Turing machines). The plot may look as if it had
less than the necessary rows and columns to represent all the 10 000 Turing machines,
but that is a consequence of the Peano packing, each apparent pixel is in fact a small
cluster of several machines.

cells represent machines that don’t halt. Red cells (only visible in the online
and color printed versions) show the Busy Beaver machines (for this space, with
runtime S(2) = 6 steps).

Among all the 3456 Turing machines in (2, 2) that halt, .65 of them do so
after the first step, .2 do so after the second, .05 after the third, and so on. In
other words, .57 out of the 3456 (2, 2) Turing machines that halted did so at the
first step, .81 halted before or by the second step at the latest, .84 before or by
the third step at the latest, and so on (see Fig. 6).
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t kt 100 × 214−t p(kt)

− 5382624 0.71
1 1075648 819200 0.14
2 614656 409600 0.082
3 263424 204800 0.035
4 97216 102400 0.013
5 53760 51200 0.0071
6 20800 25600 0.0028
7 12512 12800 0.0017
8 4264 6400 0.00057
9 2424 3200 0.00032
10 1064 1600 0.00014
11 536 800 0.000071
12 304 400 0.000040
13 176 200 0.000023
14 128 100 0.000017

Fig. 4. Where t is the number of steps, kt the number of machines that halted at t,
and p(kt) is the halting probability calculated from t and kt. 100×214−t is a good fit to
the limit behavior as a function relating runtimes and the number of Turing machines
halting at a certain runtime for the 14 runtimes at which Turing machines halt.

2 4 6 8 10 12 14
runtime

200 000

400 000

600 000

800 000

1×106

number of
machines

Fig. 5. Number of machines in (3, 2) that halt step by step versus 100 × 214−t (dark
line (blue in color version))

3.2 Halting History of (3, 2) Turing Machines

Interesting output distribution facts:

– Out of 7 529 536 machines only 2 146 912 halt.
– There are 5 382 624 machines that do not halt.
– Those machines that halt only produce 126 different output strings, with the

largest being 6 digits in length (the Busy Beavers).
– Exactly .2 of the Turing machines produce a 0 or a 1 as output.
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Fig. 6. Accumulated number of machines in (2, 2) (left) and (3, 2) (right) that halt
step by step

The fact that the figures are mostly white and lightly colored is an indicator of
the sparsity of non-halting or quickly-halting machines.

Fig. 7. Halting spectrum for (3, 2). Last color in the spectrum is red (only visible in
the online and color printed versions).

4 Gödel Meets Turing in the Computational Universe

Inspired by [13] where Wolfram undertakes an exhaustive investigation of the
space of propositional logic formulas, I extended his ideas to investigate the space
of first order logic. The extension wasn’t trivial, among other reasons because
unlike propositional calculus, predicate calculus is undecidable, meaning that
one may come across cases where formulas (or their negations) are not proven
or disproven in an axiom system of first order logic.

Proof lengths are, of course, not bounded, or one would be able to decide
whether a formula in an axiom system can be proven or not if it has reached
a limit. Frequency of proof lengths for randomly generated formulas, however,
can be studied and analyzed. Frequency distributions of (dis)proven formulas
turn out to follow a similar distribution to those of randomly generated com-
puter programs, in which most programs, just as we found for formulas, halt (or
are (dis)proven) quickly, with their number diminishing fast over time. When
I met Cris Calude and became acquainted with his fascinating work, including
a recent collaboration with Michael Stay on the distribution of halting times
of random computer programs [4], it prompted me to seek connections with
these other findings—persuaded as I was of the strong connections known to
exist between computation and proof theory—and to undertake an empirical
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Fig. 8. Runtime deep field of a segment of runtimes from the 7 529 536 Turing machines
in (3, 2). The (3, 2) Busy Beavers are barely visible as isolated red points (online and
color printed versions only).

Fig. 9. This is what a typical random part of the runtime deep field looks like after a
10× zoom from a 10th. square area of the original (Fig. 8) image.
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investigation of both the halting runtimes of Turing machines that Calude and
Stay had calculated theoretically, and the lengths of proofs found by automatic
theorem provers.

It follows from Chaitin [5] and Calude and Stay [4] that to (dis)prove a formula
in an axiom system one only needs to check up to the runtime for which the
Turing machine encoding the proof no longer halts. Busy Beavers, as used in the
previous section, are therefore relevant to automatic theorem proving because
they provide an upper bound on the length of proofs. One only needs to run the
computer to (dis)prove the formula up to the Busy Beaver value of the size of
the Turing machine, and if it cannot be proven by then then it is undecidable for
that axiom system. Moreover, Calude and Stay’s work may then suggest that
chances of proving a formula should decrease over time, or that if a formula can
be (dis)proven it will likely do so early in time rather than later meaning that
one can set an optimal time for a given provability certainty goal.

4.1 Computer Runtimes and Lengths of Proofs

Optimal proving times are relevant because, on the one hand, they may allow one
to set a maximum waiting time, given that proofs may never arrive if a theorem
is undecidable in an axiom system, but also because one would know how long
to wait before giving up with a certain degree of certainty of provability. If one
had a goal (say to prove a fraction of .90 of a set of formulas) one could calculate
an optimal timeout and a maximum waiting time, taking advantage of the fact
that in the case of theorem provers running on digital computers, there is a
correspondence between runtime and proof length. The numbers involved are
so large and grow so fast because of the combinatoric explosion (in the number
of formulas as well as the number of Turing machines). We were only able to
explore the tip of the iceberg of the space of all possible first-order formulas, but
with interesting and encouraging results nonetheless.

4.2 Enumerating and Generating Predicate Calculus Axiom
Systems with Equality

A number of sound and complete calculi have been developed enabling fully
automated theorem provers for first-order logic. Equational logic is quite simple,
and yet powerful [2]. Its atomic formulas are equations, making it very easy to
encode and deal with. In our formalism, terms are first-order formulas built from
variables and constants using function symbols. Equalities of the form lhs = rhs
are the atomic formulas in our language, where lhs and rhs are terms. One can
represent most mathematical axiom systems and theorems in equational form, so
it is expressively very rich. A logical system which possesses an explicitly stated
set of axioms from which theorems can be derived is an axiomatic system.

In predicate calculus, a formula is in prenex normal form if it can be written
as a string of quantifiers followed by a quantifier-free part. All first-order well-
formed formulas (hereafter simply ‘formulas’) are logically equivalent to some
formula in prenex normal form. Skolemization is a way of removing existential
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quantifiers from a formula. Variables bound by existential quantifiers which are
not within the scope of universal quantifiers can simply be replaced by the appro-
priate constants. Both will be used in order to enumerate all possible quantified
axioms and formulas of first order logic.

All equational formulas can be represented with two binary operators f and
p, where p is a pairing function and f is an indexing operator (any possible
binary function). The first parameter of f will be a constant determining its
index, while the second is any other term (variable, constant, f itself or p).

When the existential quantifier is inside a universal quantifier, the bound
variable must be replaced by a Skolem function of the variables bound by uni-
versal quantifiers. We can then specify any constant using a formula of the form:
∀a∀bf(a, a) = f(b, b). And the i−th constant can be defined in terms of f and p
recursively as follows:

c(0)=p(f(a, a), f(a, a))
c(n+1)=p(f(a, a), c(n))

Or in a single Mathematica expression:

Nest[p[f[a,a],#]&,p[a,a],i]

To represent all possible functions one can combine both f and p. For instance,
f(c(i), p(c(i), x)) is the expression representing the i-th function (the function
with index i) of x. This assumes that there are an infinite number of individuals
in the most general case. Notice that x may be a list built from pairs.

Formulas were enumerated and generated by the number of variables and
constants on both sides of the equality. There are no formulas of length 1, simply
because an equality requires at least 2 terms on each side. Finally, all single
axioms were arranged by length. The length of an equational formula is the sum
of the bound variables on both sides of the equality. Axiom systems are simply
all the possible subsets over the formulas of fixed length. Applying this operation
makes the number of axiom systems to grow exponentially, so we were able to
proceed exhaustively only up to 3 bound variables formulas and to generate a
sample of 1000 axiom systems only (an initial segment) for 4 bound variables
formulas. An automatic theorem prover was fed with all 4 bound variable single
formulas as its proving goal for each of the generated axiom system, producing
almost 10 × 103 proofs. Among the initial 1000 axiom systems, 607 were used
only, as they were proven to be consistent (no axiom was the negation of any
other) and independent (no axiom could be derived from the others).

An example of a formula with 3 bound variables is: ∀x1∀x2∀x3 , x1 =
f(f(x2, x3), x1) and with four: ∀x1∀x2∀x3∀x4 , x1 = p(f(x2, x3), x4). An exam-
ple of an axiom system consisting of 2 axioms each with 2 bound variables is:
∀x1∀x2 , x1 = f(x2, x1)∧∀x1∀x2 , x1 = p(x1, x2). Notice that one does not need to
further compose f with p or p with f in order to produce other possible formulas,
because f is a general function with an index as first parameter and any term
as second parameter which can be p or f itself, without the need of infinitely
nesting each into the other in order to reach other possible constructions.



234 H. Zenil

4.3 Experimental Setting

The project was undertaken using Mathematica’s built-in implementation of
the well known and award-winning theorem prover Waldmeister1. Waldmeister
returns True after evaluating an expression in Mathematica if it can prove the
conclusions from the given axioms, and False if it can prove that the conclusions
do not follow from the axioms. If it cannot prove either, it returns Unevaluated.

The axiom systems generated—as described in section 4.2—were first checked
for logical consistency and internal axiom independence, these being two of the
most important qualities of conventional mathematical axiom systems. A is said
to be consistent if no theorem and its negation can be derived from A. On the
other hand, if A is an axiom system and a ∈ A, then a is considered independent
in A, or an independent axiom of A if a cannot be derived from A − {a}. As
with any axiomatic system, we want this axiomatic system to be minimal, i.e. to
contain no superfluous axiom. From this point on, only consistent axiom systems
were taken into account.

Miscellaneous interesting first results:

– It was found that only .01 out of a total of 490 axiomatic systems with 1 or
2 axioms of length up to 3 bound variables were non-independent, i.e. one
of its members could be derived from a combination of the others.

– All the 29 axiomatic systems of length 3 with 2 or more axioms were inde-
pendent. This could be explained by the way in which the axiomatic systems
were enumerated, because axioms closer to each other in the enumeration
seem to have a better chance of being derived from each other. The condition
of being a theorem or an axiom is evidently an arbitrary convention.

– The number of consistent axiom systems of length 3 was only .0342 percent
of a total of 1024 initial axiomatic systems.

– In the case of axiom systems of length 4 (composed by formulas of that
size), .607 of them were found to be consistent. This may be interpreted
in two different ways: that even when the complexity of the axiom systems
grows, the overall inconsistency does not increase, or else that the process
only unveils the tip of the iceberg, where they are consistent chiefly due to
their simplicity (both in terms of number of axioms per axiom system and
the length of the axioms themselves, thereby reducing the possible number
of clashes).

4.4 Distribution of Proof Lengths

The relation between the length of the formulas and the optimal runtime limit
is of particular utility when no upper bound is known (or possible), when, for
example, there are non-provable formulas for which longer runtimes will not
make any difference—which, as verified herein, would cover a negligible number
of cases.
1 http://www.mpi-inf.mpg.de/~hillen/waldmeister/ (August, 2011).

http://www.mpi-inf.mpg.de/~hillen/waldmeister/


Computer Runtimes and the Length of Proofs 235

A total of 89 145 formulas out of the 97 727 with at most 4 variables were proven
to be theorems (or their negations) after a single step. One can call such a theorem
trivial simply because its proof, requiring only 1 step, can be accomplished with
an axiom, therefore itself being an axiom. The proof length (t) distribution (in
percentage) of formulas with up to 4 variables is as shown in Fig. 10.

t kt p(kt)

1 89145 91.2184
2 2311 2.36475
3 473 0.484001
4 931 0.952654
5 928 0.949584
6 426 0.435908
7 577 0.59042
8 834 0.853398
9 1344 1.37526
10 294 0.300838
11 186 0.190326
12 206 0.210791
13 44 0.0450234
14 15 0.0153489
15 7 0.00716281
16 2 0.00204652
17 4 0.00409303

Fig. 10. Proof length (t) distribution (in percentage) of formulas with up to 4 variables

Proof length distribution of (dis)proven theorems. Where t is the number of
steps the theorem prover has taken to produce the proof, kt the number of ma-
chines that halted at t, and p(kt) is the halting probability of having (dis)proven
k theorems in time t from which one can build a probability distribution p(kt).

It is worth noting that the behavior of 10 graph resembles the first case of (2, 2)
Turing machines, where the number of machines that halted was not strictly
decreasing (unlike (3, 2) that was monotonically decreasing).

Already 0.912 out of the total number of theorems are proven by the very
first step, with that number dropping as the total is approached. From the
distribution it follows that going beyond the 7th. step to the 17 steps that
require the longest proofs only adds .012 new (dis)proven formulas to the total.
Summary of proving times:

– A total of 89 145 formulas out of 97 727 were immediately proved (or dis-
proved) after the first step (i.e. 91.21%).

– 95.96 were proven after 5 steps, and 96 969 formulas were proven after 9
steps (which is almost half of the 17 maximum number of steps reached by
the formulas with 4 bound variables). That is, 99.22% of the total.

– Letting the theorem prover run up to 17 steps only generates 758 new proofs,
that is only 0.77% of the total.
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Fig. 11. Accumulated number of theorems (dis)proven step by step

Fig. 12. Truth space of 97 727 proofs from the 607 consistent and independent axiom
systems (x axis) against 161 formulas (y axis) from formulas with 4 bound variables.
Every dot is a proof, a black square indicates that a particular theorem holds in a
particular axiom system (which explains the diagonal, among other patterns) and white
means the formula was proven to be false in the corresponding axiom system (i.e. the
negation is a theorem). No undecidable candidate was found.

Fig. 13. Color mapping spectrum for proofs of length 4

As for Turing machines (see Fig. 8), the space of proof lengths (Fig. 14)
is mostly white and lightly colored as an indicator of the sparsity of long
proof lengths given that most formulas are (dis)proven very quickly, suggest-
ing that the distribution of proof lengths follows the distribution of program
runtimes.
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Fig. 14. Proof length deep field plot from the 97 727 formulas of up to 4 variables.
formula Busy Beavers are barely visible as isolated red points (online and color printed
versions only). Points are arranged as in 12.

5 Timeouts and Optimal Waiting Times

As for Busy Beaver Turing machines, the values of which depend on the size of
the Turing machines (states and symbols), proof lengths depend on the length
of the formulas. One can define Busy Beaver formulas (the values of which will
be denoted by fBB(n)) as the formulas for which an automatic theorem prover
takes more time to (dis)prove whether a theorem is decidable, or to produce the
longest proof, among all the formulas of a fixed length. Unlike Turing machines,
however, the size of a formula can take many forms, and may depend on the
number of bound variables (as was the case in the experiments undertaken here),
the number of logical operators or the number of symbols in general. It also
depends on the formalism, just as Busy Beavers depend on the formalism used
by Rado [9]. Following the analogy, the values of fBB(n) would therefore work
in a similar way and may be used just as Busy Beaver Turing machine values are
currently used—for defining maximum runtimes and maximum output lengths
for (small) Turing machines, saving time once an upper limit is known. The
exact relation would also save considerable computational resources in automatic
theorem proving.

As explained before, the theoretical algorithmic analysis in [4] indicates that
a program that has not stopped after running for a long time has smaller and
smaller chances of eventually stopping, so the longer the time t the more unlikely
the program is to halt. Calude and Stay’s results can be interpreted as follows:
most Turing machines are fully determined qua termination by a small number of
computational steps, and the error margin upon betting that a Turing machine
will halt drops exponentially. Because proofs are programs for automatic theorem
prover and one can connect this interpretation to the probability of a formula to
be (dis)proven in an axiom system with a confidence error margin to be proven
dropping fast.

Let the “optimal timeout” be the number of steps for which a fraction of for-
mulas from a set of fixed length is (dis)proven. Evidently, proving time is asymp-
totically optimal, in the sense that the closest to the maximum runtime (the Busy
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runtime (dis)proven fraction f(t) = 1/2t

t of theorems p(t) (first significant digit)

1 0.9 0.5
2 0.02 0.2
3 0.005 0.1
4 0.01 0.06
5 0.009 0.03
6 0.004 0.02
7 0.006 0.008
8 0.009 0.004
9 0.01 0.002
10 0.003 0.001
11 0.002 0.0005
12 0.002 0.0002
13 0.0005 0.0001
14 0.0002 0.00006
15 0.00007 0.00003
16 0.00002 0.00002
17 0.00001 0.00001

Fig. 15. Runtime distribution at which all machines halt (those that don’t are indicated
by “—”). Where t is the number of steps, kt the number of machines that halted at t
(out of a total of 3456 that halt), and p(kt) is the halting probability calculated from
t and kt.

Beaver formula values), the greatest the fraction of (dis)proven formulas. An op-
timal time OPT ime for a given goal γ implies that upon t one has reached a frac-
tion γ of (dis)proved formulas. Thus OPT ime(n, γ) = min{t(n) : |αt(n)| = γ},
where n is the length of the set of formulas, γ the desired fraction of (dis)proved
formulas and |α| the number of formulas proven at time t(n) ≥ 0. Obviously
0 < OPT ime(n) ≤ fBB(n) for each time t > 0, and OPT ime(n) = fBB(n) if
γ = 1, that is, if the fraction of formulas to be (dis)proved is 1 (i.e. if the goal is
to (dis)prove all the formulas of a fixed length).

Just as with Busy Beavers, the exact value of OPT ime(n) is uncomputable
and unpredictable in general, but one can approach it. For example, in our
formalism, for 4 bound variables it can be calculated from the probability distri-
bution in 15. One can ascertain, for example, that from a uniform distribution of
randomly generated formulas, nearly .90 of the formulas will be proven after the
first step. And that the number of new proofs from then on will rapidly drop as
a function of the number of steps. The value of OPT ime(n) can also determine
a timeout for single formulas, given a confidence expectation. Which is to say
that a single formula has, for example, a .90 chance of being (dis)proven in the
first step, and that it has diminishing possibilities, if any, of being (dis)proven
thereafter. We think that the results are robust enough to model specifications
of theorem provers, despite not being completely independent. We were able to
verify the results using another very different theorem prover, the Automatic
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Proof Search or AProS [10] for propositional logic and predicate calculus (the
theorem prover deals, however, with all sorts of other classical and non-classical
calculus). AProS uses the intercalation method to search for normal natural
deduction proofs not requiring a language in which the atomic formulas are
identities, unlike Waldmeister. Notice that for this new case, the definition of
the length of formulas was adjusted to the new framework, given that since the
prover calculus does not require equality, no sense can be given to left or right
hand sides. The set of randomly chosen operators used to generate formulas were
the classic and, or, implies and double implies. AProS found proofs for .12 of
the assertions (and for .353 of a set of assertions with no-double conditionals),
out of a random choice of 1000 automatically generated predicate calculus as-
sertions with up to 4 quantifiers, 3 general functions, 3 logical operators and
3 variables. The longest proof length (runtime) was 42 with an average proof
length of 13, and a distribution very close to the one described by Waldmeister
using Mathematica.

6 Concluding Remarks and Further Work

A logically significant question concerns the structure of the theorems estab-
lished. If significant structural features are uncovered, then one could generate
randomly formulas of that structure and repeat the proof length and runtime
distribution experiments. It would be quite interesting, if one could find, for
example, systematic biases for different theorem provers and theorem proving
techniques when deviating in distribution from each other.

One can continue the process of generalizing theoretical results from computer
programs to proof lengths and seek the equivalent of Busy Beavers in sets of
well defined proofs and theorem provers. Just as for larger Busy Beaver Turing
machine values, the computer time and resources to explore much larger sets of
proofs are out of reach. The experiments suggest that the statistics for theorem
proving times from randomly generated formulas may follow a similar trend
to the distribution of runtimes of random computer programs. And that when
searching for proofs, appropriate timeouts can be set and optimal waiting times
defined depending on the size of the formulas as it has been determined that
runtimes depend on the size of machines. It is too soon, however, to declare
any true resemblance and there are always dangers of extrapolating from the
behavior of small systems.
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Abstract. Symmetry of information establishes a relation between the
information that x has about y (denoted I(x : y)) and the information
that y has about x (denoted I(y : x)). In classical information theory, the
two are exactly equal, but in algorithmical information theory, there is
a small excess quantity of information that differentiates the two terms,
caused by the necessity of packaging information in a way that makes
it accessible to algorithms. It was shown in [Zim11] that in the case
of strings with simple complexity (that is the Kolmogorov complexity
of their Kolmogorov complexity is small), the relevant information can
be packed in a very economical way, which leads to a tighter relation
between I(x : y) and I(y : x) than the one provided in the classical
symmetry-of-information theorem of Kolmogorov and Levin. We give
here a simpler proof of this result.

1 Introduction

In classical information theory, the information that X has about Y is equal to
the information that Y has about X , i.e.,

I(X : Y ) = I(Y : X).1

In algorithmical information theory, there exists a similar relation, but it is less
perfect:

I(x : y) ≈ I(y : x).

In this paper we take a closer look at the level of approximation indicated by “≈.”
In the line above, x and y are binary strings of lengths nx and, respectively, ny,
and I(x : y), the information in x about y, is defined by I(x : y) = C(y | ny) −
C(y | x, ny), where C(·) is the plain Kolmogorov complexity. The precise form of
the equation is given by the classical Kolmogorov-Levin theorem [ZL70], which
states that

|I(x : y) − I(y : x)| = O(log nx + logny). (1)

This is certainly an important result, but in some situations, it is not saying
much. Suppose, for example, that x has very little information about y, say,
� The author is supported in part by NSF grant CCF 1016158.
1 X and Y are random variables and I(X : Y ) = H(Y ) − H(Y | X), where H is

Shannon entropy.
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I(x : y) is a constant (not depending on x and y). What does this tell about
I(y : x)? Just from the definition and ignoring I(x : y), I(y : x) can be as large as
nx − O(1), and, somewhat surprisingly, given that I(x : y) = O(1), I(y : x) can
still have the same order of magnitude. As an example, consider y a c-random
string (meaning C(y | ny) ≥ ny − c), whose length ny is also c-random. Let x be
the binary encoding of ny. Then I(x : y) = C(y | ny) −C(y | x, ny) = O(1), but
I(y : x) = C(x | nx) − C(x | y, nx) = nx − O(1). This example shows that even
though, for some strings, the relation (1) is trivial, it is also tight.

In many applications, the excess term O(log nx + logny) does not hurt too
much. But sometimes it does. For example, it is the reason why the Kolmogorov-
Levin Theorem does not answer the following basic “direct product” question:
If x and y are c-random n-bit strings and I(x : y) ≤ c, does it follow that xy is
O(c)-random?

The answer is positive (providing the finite analog of the van Lambalgen the-
orem). It follows from a recent result of the author [Zim11], which establishes a
more precise symmetry-of-information relation for strings with simple complex-
ity, i.e., for strings x such that C(2)(x | nx) is small, say, bounded by a constant.2

Note that all random strings have simple complexity, and that there are other
types of strings with simple complexity as well. The main result in [Zim11] im-
plies that if x and y are strings of equal length that have simple complexity
bounded by c and I(x : y) ≤ c, then I(y : x) ≤ O(c).

The proof method in [Zim11] is based on randomness extraction. Alexander
Shen (personal communication) has observed that in fact a proof of the above
result in [Zim11] can be obtained via the standard method used in the proof of
Kolmogorov-Levin Theorem (see [DH10, LV08]). We present here such a proof.

The paper [Zim10a] provides several examples of counting arguments based
on extractors.

We slightly extend the symmetry-of-information relation from [Zim11] to
strings x and y that may have different lengths. We prove the following (with
the convention that log 0 = 0):

Theorem 1 (Main Theorem). For all strings x and y satisfying the above
complexity constraint,

I(y : x) ≤ I(x : y) + O(log I(x : y)) + O(log |nx − ny|) + δ(x, y),

where δ(x, y) = O(C(2)(x | nx) + C(2)(y | ny)).

Thus, for strings x and y with simple complexity, I(y : x) ≤ I(x : y)+O(log I(x :
y)) + O(log |nx − ny|).

We next describe the main ideas in the proof.

1.1 Proof Techniques

The proofs of Symmetry of Information Theorems have a combinatorial nature.
To fix some ideas, let us first sketch the proof of the classical Kolmogorov-
Levin Theorem which establishes relation (1). The setting of the theorem, as
2 The notation C(2)(x | nx) is a shorthand for C(C(x | nx) | nx).
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well as for the rest of our discussion, is as follows: x and y are binary strings of
lengths nx and, respectively, ny. An easy observation (see Section 2.2), shows
that a relation between I(y : x) and I(x : y) can be deduced from a “chain
rule:” C(xy | nx, ny) ≥ C(x | nx) + C(y | x, ny) − (small term). In our case, to
obtain (1), it is enough to show that

C(xy | nx, ny) ≥ C(x | nx) + C(y | x, ny) − O(log nx + logny). (2)

Let us consider a 2nx ×2ny table with rows indexed by u ∈ {0, 1}nx and columns
indexed by v ∈ {0, 1}ny . Let t = C(xy | nx, ny). We assign boolean values to the
cells of the table as follows. The (u, v)-cell in the table is 1 if C(uv | nx, ny) ≤ t
and it is 0 otherwise. The number of cells equal to 1 is less than 2t+1, because
there are only 2t+1 programs of length ≤ t. Let m be such that the number of 1’s
in the x row is in the interval (2m−1, 2m]. Note that, given x, ny and t, we can
enumerate the 1-cells in the x-row and one of them is the (x, y) cell. It follows
that

C(y | x, ny) ≤ m + O(log t). (3)

Now consider the set of rows that have at least 2m−1 1s. The number of such
rows is at most 2t+1/2m−1 = 2t−m+2. We can effectively enumerate these rows
if we are given nx, ny,m and t. Since the x row is one of these rows, it follows
that

C(x | nx) ≤ t − m + O(log ny + logm + log t). (4)

Adding equations (3) and (4) and keeping into account that logm ≤ logny and
log t ≤ O(log nx + logny), the relation (2) follows.

A careful inspection of the proof reveals that the excess term O(log nx+logny)
is caused by the fact that the enumerations involved in describing y and x need
to know m (which is bounded by C(y | ny)) and t = C(xy | nx, ny). In case
x and y are c-random, it is more economical to use randomness deficiencies. In
particular instead of using t = C(xy | nx, ny), we can do a similar argument
based on the randomness deficiency of xy, i.e., w = (nx + ny) − C(xy | nx, ny).
This is an observation of Chang, Lyuu, Ti and Shen [CLTS10], who attribute it
to folklore. For strings with simple complexity, it is advantageous to express t as
t = C(x | nx)+C(y | x)−w because the first two terms have a short description.
This yields a proof of the Main Theorem which we present in Section 3.

2 Preliminaries

2.1 Notation and Background on Kolmogorov Complexity

The Kolmogorov complexity of a string x is the length of the shortest effective
description of x. There are several versions of this notion. We use here the plain
complexity, denoted C(x), and also the conditional plain complexity of a string
x given a string y, denoted C(x | y), which is the length of the shortest effective
description of x given y. The formal definitions are as follows. We work over
the binary alphabet {0, 1}. A string is an element of {0, 1}∗. If x is a string, nx
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denotes its length. Let M be a Turing machine that takes two input strings and
outputs one string. For any strings x and y, define the Kolmogorov complexity of
x conditioned by y with respect to M , as CM (x | y) = min{|p| | M(p, y) = x}.
There is a universal Turing machine U with the following property: For every
machine M there is a constant cM such that for all x, CU (x | y) ≤ CM (x | y) +
cM . We fix such a universal machine U and dropping the subscript, we write
C(x | y) instead of CU (x | y). We also write C(x) instead of C(x | λ) (where
λ is the empty string). If n is a natural number, C(n) denotes the Kolmogorov
complexity of the binary representation of n. We use C(2)(x|nx) as a shorthand
for C(C(x | nx) | nx). For two strings x and y, the information in x about y is
denoted I(x : y) and is defined as I(x : y) = C(y | ny) − C(y | x, ny).

In this paper, the constant hidden in the O(·) notation only depends on the
universal Turing machine. Also, by convention, log 0 = 0.

2.2 Symmetry of Information and the Chain Rule

All the forms of the Symmetry of Information that we are aware of have been
derived from the chain rule and this paper is no exception. The chain rule states
that C(xy | nx, ny) ≈ C(x | nx) + C(y | x, ny). For us it is of interest to
have an accurate estimation of the “≈” relation. It is immediate to see that
C(xy | nx, ny) ≤ C(y | ny) + C(x | y, nx) + 2C(2)(y | ny) + O(1). If we show a
form of the converse inequality

C(xy | nx, ny) ≥ C(x | nx) + C(y | x, ny) − (small term), (5)

then we deduce that C(x | nx) − C(x | y, nx) ≤ C(y | ny) − C(y | x, ny) +
2C(2)(y | ny) + (small term), i.e.,

I(y : x) ≤ I(x : y) + 2C(2)(y | ny) + (small term).

Thus our efforts will be directed to establishing forms of the relation (5) in which
(small term) is indeed small.

3 Proof of the Main Theorem

We demonstrate the Main Theorem, using the standard proof method of the
Kolmogorov-Levin Theorem.

Let tx = C(x | nx), ty = C(y | x, ny) and t = C(xy | nx, ny). We take
w = tx + ty − t, which is the term called (small term) in equation (5), and plays
the role of randomness deficiency. Our goal is to show that

w = O(log I(x : y)) + O(log |nx − ny|) + δ(x, y),

from which the Main Theorem follows (using the discussion in Section 2.2).
We assume that w > 0, otherwise there is nothing to prove. We will need

to handle information (|nx − ny|, tx, ty, w, b)), where b is a bit that indicates
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if nx > ny or not. Let Λ be a string encoding in a self-delimiting way this
information, and let λ be the length of Λ. Note that

λ ≤ 2 logw + O(C(2)(x | nx) + C(2)(y | ny) + log I(x : y) + log |nx − ny|).

We build a 2nx × 2ny boolean table, with rows and columns indexed by the
strings in {0, 1}nx and, respectively, {0, 1}ny , and we set the value of cell (u, v)
to be 1 if C(uv | nx, ny) ≤ t, and to be 0 otherwise. Let S be the set of 1-cells,
and Su be the set of 1-cells in row u. Note that

|S| ≤ 2t+1.

Let m be defined as 2m−1 < |Sx| ≤ 2m. We take F to be the set of “fat” rows,
i.e., the set of rows having more than 2m−1 1-cells. We have |F | < |S|/2m−1 ≤
2t−m+2. Note that x is in F , and that the elements of F can be effectively
enumerated given the information Λ and m. It follows that, given Λ and m, the
string x can be described by its index in the enumeration of F . This index can
be written on exactly t − m + 2 bits, so that knowing t which can be deduced
from Λ, we can reconstruct m. It follows that

C(x | nx, Λ) ≤ t− m + 2 + O(1). (6)

Next we note that y is in Sx and the elements of Sx can be enumerated given x
and Λ. It follows that y can be described by its index in the enumeration of Sx.
We obtain

C(y | x, Λ) ≤ m + O(1). (7)

From Equations (6) and (7), we conclude that

C(x|nx, Λ) + C(y|x, Λ) ≤ t + O(1) = tx + ty − w + O(1).

Note that tx = C(x | nx) ≤ C(x | nx, Λ)+λ and ty = C(y | x, ny) ≤ C(y | x, Λ)+
λ. We obtain tx + ty ≤ tx + ty −w+2λ. Taking into account the estimation for λ,
we have w−4 logw = O(C(2)(x | nx)+C(2)(y | ny)+log I(x : y)+log |nx −ny|),
from which, w = O(C(2)(x | nx) + C(2)(y | ny) + log I(x : y) + log |nx − ny|), as
desired.

Acknowledgements. I am grateful to Alexander Shen who has noticed that
the main theorem can be obtained with the method used in the standard proof
of the Kolmogorov-Levin Theorem.
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Abstract. This note gives some information about the magical number
Ω and why it is of interest. Our purpose is to explain the significance of
recent work by Calude and Dinneen attempting to compute Ω. Further-
more, we propose measuring human intellectual progress (not scientific
progress) via the number of bits of Ω that can be determined at any
given moment in time using the current mathematical theories.
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1 Introduction

A real number corresponds to the length of a line segment that is measured
with infinite precision. A rational number has a periodic decimal expansion. For
example,

1
3

= 0.3333333...

The decimal expansion of an irrational real number is not periodic. Here are
three well-known irrational reals that everyone encounters in high school and
college mathematics:

√
2, π, and e.

Each of these numbers would seem to contain an infinite amount of informa-
tion, because they have an infinite decimal expansion that never repeats. For
example,

π = 3.1415926...

However, π actually only contains a finite amount of information, because there
is a small computer program for computing π. Instead of sending someone the
digits of π, we can just explain to them how to compute as many digits as they
want.

Are there any real numbers that contain an infinite amount of information?
Well, clearly, if the successive decimal digits are chosen at random, the resulting
� This paper has originally appeared in International Journal of Bifurcation and Chaos
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stream of digits has no structure, each digit is a complete surprise, and there
cannot be an algorithm for computing the number digit by digit.

However, this random sequence of digits is not useful information, not at all.
It’s an infinite amount of completely useless information.

2 Borel’s Know-It-All Real Number

In 1927, the French mathematician Emile Borel pointed out that there are real
numbers which contain an infinite amount of extremely useful information. The
particular example that he gave is defined like this: Its Nth digit answers the
Nth yes/no question in an infinite list of all possible yes/no questions, questions
about the weather, the stock market, history, the future, physics, mathematics...
Here I am talking about the Nth digit after the decimal point. Borel’s number is
between zero and one; there is nothing before the decimal point, only stuff after
the decimal point. And we can assemble this list of questions because the set of
all possible questions is what mathematicians call a countable or a denumerable
set.

3 Using a Real Number as an Oracle for the Halting
Problem

Borel’s real number may seem rather unreal, rather fantastic, even though it
exists in some Platonic, ideal, conceptual sense. How about a more realistic
example, and now let’s use base two, not base ten. Well, there is a real Θ whose
Nth bit tells us whether or not the Nth computer program ever halts. This time
we imagine an infinite list of all possible self-contained computer programs—not
yes/no questions—and ask which programs will eventually finish running. This
is Alan Turing’s famous 1936 halting problem.

Θ doesn’t tell us anything about the stock market or history, but it does tell us
a great deal about mathematics. Why? Because knowing this number Θ would
automatically enable us to resolve famous mathematical problems like Fermat’s
so-called last theorem, which asserts that there are no positive integer solutions
for

xN + yN = zN

with the power N greater than two.
How can Θ enable us to decide if Fermat was right and this equation has no

solutions? There is a simple computer program for systematically searching for a
solution of Fermat’s equation. This program will fail to halt precisely if Fermat’s
conjecture that there are no solutions is correct.

However, in the case of Fermat’s conjecture there is no need to wait for the
number Θ; Andrew Wiles now has a proof that there are no solutions. But Θ
would enable us to answer an infinite number of such conjectures, more precisely,
all conjectures that can be refuted by a single counter example that we can search
for using a computer.
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4 N Cases of the Halting Problem Is Only log2 N Bits of
Information

So knowing the answers to individual cases of the halting problem can be valuable
information, and Θ enables us to answer all such problems, but unfortunately
not in an optimal way. Θ isn’t optimal, it is highly redundant, we’re wasting lots
of bits. Individual answers to the halting problem aren’t independent, they’re
highly correlated.

Why? Because if we are given N programs, we can determine which ones halt
and which ones don’t if we merely know how many of these N programs halt,
and to know that is only about log2 N bits of information. (Run all N pro-
grams in parallel until precisely the correct number have stopped; the remaining
programs will never stop.)

Furthermore, log2 N is much smaller than N for all sufficiently large values
of N .

So what is the best we can do? Is there an oracle for the halting problem that
isn’t redundant, that doesn’t waste any bits?

5 The Halting Probability Ω Is the Most Compact
Oracle for the Halting Problem

The best way to pack information about the halting problem into a real number
is to know a great many bits of the numerical value of the probability that
a program chosen at random will eventually halt. Precisely how do I define
this halting probability? Well, the exact definition is a little complicated, and
in fact the numerical value of Ω depends on the particular computer and the
programming language that you pick.

The general idea is that the computer that we are using flips a fair coin to
generate each bit of the program, a heads yields a 1, a tails yields a 0, succes-
sive coin tosses are independent, and the computer starts running the program
right away as it generates these bits. Ω is the probability that this process will
eventually halt.

More precisely, each K-bit program p that halts contributes precisely 1/2K to
the halting probability Ω:

Ω = Σp halts 2−(the size of p in bits).

Furthermore, to avoid having this sum diverge to infinity, the set of meaning-
ful programs must be a prefix-free set, in other words, no extension of a valid
program is a valid program. Then what information theorists call the Kraft
inequality applies to the set of all programs and Ω is necessarily less than one.

Ω is a very valuable oracle, because knowing the first N bits of Ω
would enable us to resolve the halting problem for all programs up to N bits
in size. No oracle for the halting problem can do better than this. Ω is so valuable
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precisely because it is the most compact way to represent this information. It’s
the best possible oracle for the halting problem. You get the biggest bang for
your buck with each bit!

And because this information is so valuable, Ω is maximally unknowable,
maximally uncomputable: An N -bit computer program can compute at most
N bits of Ω, and a mathematical theory with N bits of axioms can enable
us to determine at most N bits of Ω. In other words, the bits of Ω are incom-
pressible, irreducible information, both logically irreducible and computationally
irreducible.

Paradoxically, however, even though Ω is packed full of useful information, its
successive bits appear to be totally unstructured and random, totally chaotic,
because otherwise Ω would not be the most compact oracle for the halting
problem. If one could predict future bits from past bits, then Ω would not be
the best possible compression of all the answers to individual cases of Turing’s
halting problem.

6 Measuring Mathematical or Human Intellectual
Progress in Terms of Bits of Ω

Counting how many bits of Ω our current mathematical theories permit us to
know, gives us a way to measure the complexity of our mathematical knowledge
as a function of time. Ω is infinitely complex, and at any given moment our
theories capture at most a finite amount of this complexity. Our minds are
finite, not infinitely complex like Ω.

But what if we bravely try to compute Ω anyway?

7 Storming the Heavens: Attempting to Compute the
Uncomputable Bits of Ω

This amounts to a systematic attempt to increase the complexity of our math-
ematical knowledge, and it is precisely what Calude and Dinneen try to do in
[1]. As they show, you can start off well enough and indeed determine a few of
the initial bits of Ω. But as I have tried to explain, the further you go, the more
creativity, the more ingenuity is required. To continue making progress, you will
eventually need to come up with more and more complicated mathematical prin-
ciples, novel principles that are not consequences of our current mathematical
knowledge.

Will mathematics always be able to advance in this way, or will we eventually
hit an insurmountable obstacle? Who knows! What is clear is that Ω can never be
known in its entirety, but if the growth of our mathematical knowledge continues
unabated, each individual bit of Ω can eventually be known.
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I hope that this note gives some idea why [1] is of interest. (See also [2].1) For
more on Ω, please see my article in Scientific American [3] or my book [4]. A
more recent paper is my Enriques lecture at the University of Milan in 2006 [5].
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Abstract. It would be nice if science answered all questions about our
universe. In the past, mathematics has not just provided the language in
which to frame suitable scientific answers, but was also able to give us
clear indications of its own limitations. The former was able to deliver
results via an ad hoc interface between theory and experiment. But to
characterise the power of the scientific approach, one needs a parallel
higher-order understanding of how the working scientist uses mathemat-
ics, and the development of an informative body of theory to clarify
and expand this understanding. We argue that this depends on us se-
lecting mathematical models which take account of the ‘thingness’ of
reality, and puts the mathematics in a correspondingly rich information-
theoretic context. The task is to restore the role of embodied computation
and its hierarchically arising attributes. The reward is an extension of our
understanding of the power and limitations of mathematics, in the math-
ematical context, to that of the real world. Out of this viewpoint emerges
a widely applicable framework, with not only epistemological, but also
ontological consequences – one which uses Turing invariance and its pu-
tative breakdowns to confirm what we observe in the universe, to give
a theoretical status to the dichotomy between quantum and relativistic
domains, and which removes the need for many-worlds and related ideas.
In particular, it is a view which confirms that of many quantum theorists
– that it is the quantum world that is ‘normal’, and our classical level of
reality which is strange and harder to explain. And which complements
fascinating work of Cristian Calude and his collaborators on the mathe-
matical characteristics of quantum randomness, and the relationship of
‘strong determinism’ to computability in nature.

Academics have ever been able to build successful (and very useful) careers
within the bounds of ‘normal science’, and to revel in a near-Laputian unworld-
liness. But science would not progress half so well without a leavening of the less
conventional, and an occasional engagement with the real-world. Particularly
appropriate to the Turing Centenary, this short piece is dedicated to Cristian
Calude on his sixtieth birthday—a researcher not just of formidable expertise,
but one whose innovative work on real problems related to physics and random-
ness has much enriched our understanding of the world around us. This relevance
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is unusual. The risk-taking, and willingness to work with uncertainty, of ‘post-
normal science’ (as defined by Silvio Funtowicz and Jerome Ravetz [22]) is not
for everyone.

1 The World of Science: Two Fundamental Issues

Max Born starts his 1935 book [6] on “The Restless Universe” with the words:

It is odd to think that there is a word for something which, strictly
speaking, does not exist, namely, “rest”. . . . What seems dead, a stone
or the proverbial “door-nail”, say, is actually for ever in motion. We
have merely become accustomed to judge by outward appearances; by
the deceptive impressions we get through our senses.

Here from Nassim Taleb’s 2007 book [37] on “The Black Swan” is a more dis-
turbing take on the underlying complexity of our world:

I have spent my entire life studying randomness, practicing randomness,
hating randomness. The more that time passes, the worse things seem to
me, the more scared I get, the more disgusted I am with Mother Nature.
The more I think about my subject, the more I see evidence that the
world we have in our minds is different from the one playing outside.
Every morning the world appears to me more random than it did the
day before, and humans seem to be even more fooled by it than they
were the previous day. It is becoming unbearable. I find writing these
lines painful; I find the world revolting.

Back in 1935, Max Born ended his book:

The scientist’s urge to investigate, like the faith of the devout or the
inspiration of the artist, is an expression of mankind’s longing for some-
thing fixed, something at rest in the universal whirl: God, Beauty, Truth.
Truth is what the scientist aims at. He finds nothing at rest, nothing
enduring, in the universe. Not everything is knowable, still less is pre-
dictable. But the mind of man is capable of grasping and understanding
at least a part of Creation; amid the flight of phenomena stands the
immutable pole of law.

These at first sight rather different world-views are actually quite consistent. A
careful reading (helped by a familiarity with the books) reveals that the authors
are talking about different things. And it is not just the difference between
economics and quantum mechanics.

Nassim Nicholas Taleb was a successful Wall Street trader who went on to
prophetically warn of the uncertainties underlying unregulated markets. Taleb
is talking about computability of prediction, a problem experienced in any suf-
ficiently complex field, from quantum mechanics to financial markets to human
creativity.
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Max Born (besides being grandfather to Olivia Newton-John) was awarded
the Nobel Prize in Physics in 1954 for his earlier statistical interpretation of
the wavefunction. He once said (‘Concluding remarks’ to Natural Philosophy of
Cause and Chance [7, p.209]):

There are two objectionable types of believers: those who believe the
incredible and those who believe that ‘belief’ must be discarded and
replaced by ‘the scientific method.’

Born is concerned with descriptions of the universe. Like all scientists, he is
aiming at predictive content to his predictions. But he has a grasp of the fact
(familiar in a formal sense to the logician) that computability has an uneasy
relationship with definability, both in mathematics, and in the real world. And
that just as in the post-normal science of Funtowicz and Ravetz, there is a very
real value, even necessity, of descriptions based on incomplete information.

What is quite staggering in its enormity is the lack of explicit attention given
to definability as a physical determinant. We are all familiar with the usefulness
of a view of the universe as information, with natural laws computationally
modelled. We have no problem with extracting from computational descriptions
of real phenomena a latter-day expression of Leibniz’s Principle of Sufficient
Reason. We are used to the epistemological role of descriptions governing the
world we live in. What is not admitted is a physical existence to higher-order
descriptions – or, for that matter, of higher-order notions of computability, such
as is convincingly described in Stephen Kleene’s late sequence of papers (see
[24,25]) on Recursive Functionals and Quantifiers of Finite Types.

This discussion of prediction versus description provides the background to
two important and closely related questions:

I) How do scientists represent and establish control over information about
the Universe.

II) How does the Universe itself exercise control over its own development
. . . or, more feasibly:

IIa) How can we reflect that control via our scientific and mathematical repre-
sentations.

Of course, science very effectively comes up with specific theories for particular
aspects of the universe, theories which say “it’s like this . . . this is how we do it,
and this is how the universe does it”. But when the narrative falters, the ad hoc
approach allows—actually demands—that one resorts to guess-work. Examples
of this in physics are not rare. There is plenty of scope for some more basic
mathematical value added. As David Gross was quoted as saying (New Scientist,
Dec. 10 2005, Nobel Laureate Admits String Theory Is In Trouble):

The state of physics today is like it was when we were mystified by
radioactivity . . . They were missing something absolutely fundamental.
We are missing perhaps something as profound as they were back then.

Rising to the challenge, we start by reducing the gap between computation and
description.
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2 The Power of a Paradigm

There are conditions under which the validity of definability as a determinant
of physical reality is recognised, and is actually part of everyday mathematical
practice. If we go back to the time of Isaac Newton, we have the observed reality
of the orbits of the planets, though in need of description and of clarification,
and of prediction. The inverse square law as it applied to gravitation was already
conjectured by Robert Hooke and others by 1679; but it was the moving planets
that were the reality, the law that was the conjecture, and the connection between
the two that had as yet no description.

It was the description that Newton’s development of the calculus provided,
giving the essential link between law and observed data. And, as any student of
pure mathematics learns, the description does involve those annoying quantifiers,
hidden away in the limits underling the differential calculus, and made explicit
again by the analyst. And the magic worked by the ‘last sorcerer’ Isaac Newton
(see Michael White [42]) was accepted because it was the result which fitted with
observation, and the predictions of which the outcomes were constituted. And it
was the description of reality so attained which consolidated the inverse square
law into a generally accepted natural law—one which would eventually even lose
its suspect ‘action at a distance’ nature with the much later development of
sub-atomic particle physics.

So was founded a powerful paradigm under which the determining role of
definability would function unrecognised for hundreds of years, familiar in its
usefulness, strange in its unrealised ramifications. Differential equations became
the common currency of science, as theory ran on rails to descriptions of reality,
connecting foundational conjectures to higher-order descriptions of what we see.

Of course, differential equations do not always present us with nicely formu-
lated solutions, enabling computable predictions and unique descriptions. This
presents no foundational uneasiness for the working scientist. We know what
sort of reality we are looking for. We can extract numerical approximations to
solutions from the more complex descriptions given in terms of, say, non-linear
differential equations. And if there are multiple solutions—well, we know real-
ity is uniquely determined—we just need the right boundary conditions to get
everything in order. Normal science works, crank the handle, make definabil-
ity work for us. Restrict one’s research to problems related to the technicalities
contained within the trusted paradigm.

One could always rely on Alan Turing to stretch a paradigm—if not to break-
ing point—at least to the point where it connects up with something else, some-
thing which makes us aware of hidden potentialities underlying our everyday
assumptions. Who would have thought that differential equations would tell us
about the incidence of Fibonacci sequences in nature, in the structure of sun-
flower heads; about the shapes of patterns on a cow; or predict moving stripes
on a fish. What was special about Turing’s seminal work [40] on morphogene-
sis was its revelation of mathematical patterns where not previously suspected.
Revolutionised how we saw the well-established area of phylotaxis and played a
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seminal role in later developmental biology. It was a visionary leap in the dark, a
latter-day and unexpected application of Leibniz’s ‘principle of sufficient reason’.

From today’s vantage point, the surprise of finding cow hide markings
constrained according to a mathematically defined description is not so great.
Turning the pages of Hans Meinhardt’s beautifully illustrated book [29] The
Algorithmic Beauty of Sea Shells, based on Alan Turing’s work, the mathemat-
ical nature of the patterns seems to leap out at us. But the one-time adventure
of discovery is clear from Bernard Richards’ later account [33] of his work on
Radiolaria structure as an MSc student with Turing in the early 1950s:

When I had solved the algebraic equations, I then used the computer
to plot the shape of the resulting organisms. Turing told me that there
were real organisms corresponding to what I had produced. He said that
they were described and depicted in the records of the voyages of HMS
Challenger in the 19th Century.
I solved the equations and produced a set of solutions which corre-
sponded to the actual species of Radiolaria discovered by HMS Chal-
lenger in the 19th century. That expedition to the Pacific Ocean found
eight variations in the growth patterns. . . .
My work seemed to vindicate Turing’s Theory of Morphogenesis. These
results were obtained in late June of 1954: alas Alan Turing died on
7th June that year (still in his prime- aged 41), just a few days short
of his birthday on the 23rd. Sadly, although he knew of the Radiolaria
drawings from the Challenger voyage, he never saw the full outcome of
my work nor indeed the accurate match between the computer results
. . . and Radiolaria.

Of course, Turing’s differential equations, connecting simple reaction-diffusion
systems to morphogenesis, were not very complicated. But they pointed the way
to the application of mathematical descriptions in other more complicated con-
texts. And, to the existence of descriptions associated with natural phenomena
which might be hard to capture, but which themselves were subject to a level of
mathematical constraint only explored by the logician and the metamathemati-
cian.

Stretch the paradigm too far, though, and it loses its power. It becomes un-
recognisable, and no longer applies. In any case, we have not travelled far beyond
Question I) of Section 1. Newton told us to seek mathematical definitions of what
we observed to be real. To that extent one does not fully embrace definability
as more than an epistemological tool.

3 Definability and the Collapse of the Wave Function

Familiar to us now is the 20th century building of a remarkably successful
description of the observed ambiguities of quantum phenomena—with an
associated probabilistic analysis enabling the retention of a reassuring level
of determinism. Also familiar is the filling of deterministic shortcomings with
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a (mathematically naive) randomness underlying the predicted probabilities,
which Calude and his collaborators have examined more closely in various writ-
ings (see, e.g. [10,11]) over the years. For those working with clarified notions,
randomness loses its fundamentality and scientific dignity when calibrated, and
made to rub shoulders with mere incomputability.

From a practical point of view, quantum mechanics is an astonishing success.
The uncertain attributes of an individual particle is not important in our world.
But from an interpretive point of view, it is something of a car crash. Let us
look at some familiar aspects, and describe how the paradigm established by
Isaac Newton and stretched by Turing can be extended further to provide an
appropriate home for the apparent weirdness of the quantum world.

What is problematic is what happens in the collapse of the wave function—
concerning the reasons for which, according to Richard Feynman, “we have no
idea” (Feynman, Leighton and Sands [21]). The fact that the collapse appears to
bring with it nonlocal communication of a seemingly causal nature, indicating
a need for some conceptually new analysis of physical causality. The discovery
of the reality of the nonlocality originated with the puzzle presented by the
EPR thought experiment of Albert Einstein, Boris Podolsky and Nathan Rosen
[20]. By 1964, Bell’s [3] inequality had provided an empirically testable version,
later confirmed via real experiment by Aspect and his collaborators [1,2]. Even
though QED provides a mathematical formulation which seems to successfully
transcend some of the conceptual and descriptive difficulties inherited from the
classical context (e.g., wave/particle ambiguity), it does not remove the essential
dichotomy between theoretical descriptions at the quantum and classical levels
or explain the unpredictability and inherent inconsistencies associated with the
transition between the two.

The details of the original thought experiment, its recasting by Bell [3], and
its subsequent empirical scrutiny, can be found in various places—see, for exam-
ple, Omnès [30, chap.9]. Einstein and his two colleagues considered (in the more
famous of their examples) the behaviour of two particles whose initial interaction
means that their subsequent descriptions are derived from a single Schrödinger
wave equation, although subsequently physical communication between the two,
according to special relativity, may involve a significant delay. If one imagines
the simultaneous measurement of the momentum of particle one and of the po-
sition of particle two, one can arrive at a complete description of the system.
But according to the uncertainty principle, one cannot simultaneously quantify
the position and momentum observables of a particle. The standard Copenhagen
interpretation of quantum theory requires that the measurement relative to par-
ticle one should instantaneously make the measurement relative to particle two
ill-defined—described in terms of a collapse of the wave function.

One could try to explain this in various ways. Clearly it constituted a major
challenge to any existing causal explanation, for various reasons. Kreisel [26,
p.177], reminds us, in a mathematical context, that the appearance of a process is
not necessarily a good guide to the computability or otherwise of its results. The
immediate question was whether there existed undiscovered, but qualitatively
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familiar, causal aspects of the material universe in terms of which this apparent
inconsistency could be explained. EPR commented:

While we have thus shown that the wave function does not provide a
complete description of the physical reality, we left open the question of
whether or not such a description exists. We believe, however, that such
a theory is possible.

Despite Einstein’s later negative comments concerning the particular proposal of
Bohm [5], this has been taken (see Bell [4]) as a tacit endorsement of a ‘hidden
variables’ approach. And the experimental violation of Bell’s inequality as a
rejection of the possibility of a hidden variables solution.

But the problem goes beyond the discussion of hidden variables. There are
aspects of the nonlocal ‘causal’ connection revealed during the collapse of the
wave function that are not at all like analogous ‘nonlocality’ in the classical
context. As Maudlin [28, pp.22–23] notes, unlike in the familiar classical context,
the power of the causal connection is not attenuated by increasing separation
of the particles; whilst the connection is peculiar to the two particles involved,
drawing no others into the causal dynamics; and (most importantly) the timing
of the connection entails a connection travelling faster than light. In fact, as
Maudlin (p.141) puts it:

Reliable violations of Bell’s inequality need not allow superluminal sig-
nalling but they do require superluminal causation. One way or another
the occurrence of some events depends on the occurrence of space-like
separated events, and the dependence cannot be understood as a result
of the operation of non-superluminal common causes.

And (p.144): ‘We must begin to speculate about exactly how the superluminal
connection might be made.’ Otherwise, we are threatened with an inconsistency
between quantum theory and relativity, and a quagmire of metaphysical debate
about tensing and foliations of space-time (see The Oxford Handbook of Philos-
ophy of Time [8]). All this points to the need for a comprehensive interpretation
of the apparent ‘collapse’ of the wave function. Existing ones from within physics
tend to fall into those which deny the physical reality of the collapse in terms
of hidden variables or decoherent realities, and those which attempt a ‘realis-
tic’ collapse interpretation. The confusion of proposals emerging present all the
symptoms of a classic Kuhnian paradigm-shift in progress.

One is left with the unanswered question of what is the appropriate mathe-
matical framework, radical enough to clarify questions raised about the logical
status of contemporary physics—in particular, its completeness (in regard to
explanations of nonlocality and the measurement problem), and consistency (in
particular concerning the contrasting descriptions of the classical and quantum
worlds). Of course, a genuine Kuhnian shift of paradigm should deliver more
than solutions to puzzles. What it should deliver is a compulsively persuasive
world-view within which people may construct their own versions of the reality
in question.
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4 Definition as Embodied Computation

We have argued elsewhere (e.g., [15], [17]) that emergence in the real world
is the avatar of mathematical definability. That if one extracts mathematical
structure from the material universe, then the definable relations on that struc-
ture have a special status which is reflected in our observation of higher-order
pattern-formation in the physical or mental context. As we have seen, there is
no problem with this at the epistemological level—the language involved is a
welcome facilitator there. But what does this have to deliver in relation to the
collapse of the wave function and our question II) above? In what sense can
we regard our relativistic quasi-classical world we live in as emergent from the
quantum world underpinning it, and what does such a view deliver, in terms
of what we know from physical examples of emergence and the mathematical
characterisation in terms of definability?

There is of course a general acceptance of the practical and historical separa-
tion of different areas of scientific and social investigation. Despite the growing
awareness of the non-exclusiveness of the boundaries between, say, quantum the-
ory and biology (see, for example, Riepers, Anders and Vedral [34]), there is no
doubt that biology has largely established an autonomous domain of objects of
study, concepts, causal relationships, etc, which do not benefit in any practical
way from reduction to the underlying quantum world, with its quite different sci-
entific concerns. And this fragmentation of human epistemology is an everyday
feature of modern life.

The claim is that this is emergence on a macro-scale, characterised by a hi-
erarchical descriptive structure, which makes the reductive possibilities between
levels of science not just inconvenient, but impossible in any computationally
accessible sense. So we observe the quantum world ‘computing’ objects and rela-
tions at a higher level, but not within the standard framework of the computer
science built on Turing’s universal machines. We are now approaching the ‘strong
determinism’ of Roger Penrose whose computational aspects were discussed in
the 1995 paper of Calude et al [9]. And it is not just an epistemological divide:
the science reflects a level of physical reality.

One is not accustomed to this hierarchical division between the quantum and
the relativistic worlds—it is all physics. If one were to demand a consistent theory
of biology and quantum mechanics, one would recognise the inappropriateness. It
is not immediately obvious to the physicists that they are trying to do something
which does not make sense.

In what sense can emergence be regarded as computation? Part of the answer
depends on the way we regard information, the raw material of computational
processes. An interesting pointer to the non-uniqueness of quantum phenomena,
suggesting we treat them in a more general context, is Rijsbergen’s analysis [41]
of information retrieval in terms of quantum mechanics. Of course, the standard
computational paradigm based on the universal Turing machine simplifies the
physical context of a computation to the point where the only interest in the ac-
tual representation of the information underlying the computation is a semantic
one. In emergence, there is a context composed of basic objects obeying basic
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computational rules not obviously taking us beyond the standard computational
model. But what one observes is high level of interactivity which gives the system
a globally effective functionality whereby it ‘computes’ relations on itself. The
‘information’ becomes a possibly rich structure, presenting a computation whose
character owes much to its embodiment. At the macro-level, it is this embodied
computation one would look to to deliver the global relations on the universe
which we observe as natural laws. In fact, if one has experience of mathematical
structures and their definable relations, one might look for the definability of
everything in the universe which we observe, from the atomic particles to the
laws governing them.

As mentioned earlier, one can view this physical computability as a math-
ematically characterisable computability. One just needs to apply the familiar
(to computability theorists) notions of higher-type computability, complete with
much of the character of the type 1 theory. However, the higher type data be-
ing computed over cannot be handled in the same way as the type 0 or type
1 inputs (via approximations) can. This is where embodiment plays a key role.
In the case of the human mind, the brain is actually part of the input. So how-
ever one captures the logical aspects of the computation, this leaves a key part
of the computational apparatus necessarily embodied. In practice, this means
there is no universal computing machine at this level. The functionalist view of
computation realisable on different platforms loses its power in this context.

Before looking more closely at the mathematics, let us review The Five Great
Problems in Theoretical Physics listed by Lee Smolin in his book [36] on The
Trouble With Physics:

– Problem 1: Combine relativity and quantum theory into a single theory that
can claim to be the complete theory of nature.

– Problem 2: Resolve the problems in the foundations of quantum mechanics,
either by making sense of the theory as it stands or by inventing a new theory
that does make sense.

– Problem 3: Determine whether or not the various particles and forces can
be unified in a theory that explains them all as manifestations of a single,
fundamental entity.

– Problem 4: Explain how the values of the free constants in the standard model
of particle physics are chosen in nature.

– Problem 5: Explain dark matter and dark energy. Or, if they don’t exist,
determine how and why gravity is modified on large scales. More generally,
explain why the constants of the standard model of cosmology, including the
dark energy, have the values they do.

All of these questions, in a broad sense, can be framed as questions concern-
ing definability. Unfortunately, like computation, definability needs an input.
Leaving aside the most fundamental question of what underlies what we can
talk about, we move on to examine what underlies much of what we do talk
about. it is important to frame the mathematics in sufficiently general
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information-theoretic terms to be applicable to a wide range of scientific con-
texts. We will return to Smolin’s problems at the end.

5 Turing Invariance and the Structure of Physics

Turing’s oracle machines were first described in his 1939 paper [39] (for details,
see [14]). Intuitively, the computations performable are no different to those of a
standard Turing machine, except that auxiliary information can be asked for, the
queries modelled on those of everyday scientific practice. This is seen most clearly
in today’s digital data gathering, whereby one is limited to receiving data which
can be expressed, and transmitted to others, as information essentially finite
in form. But with the model comes the capacity to collate data in such a way
as enable us to deal with arbitrarily close approximations to infinitary inputs
and hence outputs, giving us an exact counterpart to the computing scientist
working with real-world observations. If the different number inputs to the oracle
machine result in 0-1 outputs from the corresponding Turing computations, one
can collate the outputs to get a binary real computed from the oracle real, the
latter now viewed as an input. This gives a partial computable functional Φ, say,
from reals to reals. One can obtain a standard list of all such functionals.

Put R together with this list, and we get the Turing Universe. Emil Post [32]
gathered together binary reals which are computationally indistinguishable from
each other, in the sense that they are mutually Turing computable from each
other. Mathematically, this delivered a more standard mathematical structure
to investigate—the familiar upper semi-lattice of the degrees of unsolvability, or
Turing degrees.

There are obvious parallels between the Turing universe and the material
world. Most basic, science describes the world in terms of real numbers. This
is not always immediately apparent. Nevertheless, scientific theories consist, in
their essentials, of postulated relations upon reals. These reals are abstractions,
and do not come necessarily with any recognisable metric. They are used because
they are the most advanced presentational device we can practically work with,
although there is no faith that reality itself consists of information presented in
terms of reals.

Some scientists would take us in the other direction, and claim that the uni-
verse is actually finite, or at least countably discrete. We have argued elsewhere
(see for example [18]) that to most of us a universe without algorithmic content
is inconceivable. And that once one has swallowed that bitter pill, infinitary ob-
jects are not just a mathematical convenience (or inconvenience, depending on
ones viewpoint), but become part of the mathematical mould on which the world
depends for its shape. As it is, we well know how essential algorithmic content
is to our understanding of the world. The universe comes with recipes for doing
things. It is these recipes which generate the rich information content we ob-
serve, and it is reals which are the most capacious receptacles we can humanly
carry our information in, and practically unpack.
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Globally, there are still many questions concerning the extent to which one can
extend the scientific perspective to a comprehensive presentation of the universe
in terms of reals—the latter being just what we need to do in order to model the
immanent emergence of constants and natural laws from an entire universe. Of
course, there are many examples of presentations entailed by scientific models of
particular aspects of the real world. But given the fragmentation of science, it
is fairly clear that less natural presentations may well have an explanatory role,
despite their lack of a role in practical computation.

The natural laws we observe are largely based on algorithmic relations be-
tween reals. Newtonian laws of motion will computably predict, under reason-
able assumptions, the state of two particles moving under gravity over different
moments in time. And, as previously noted, the character of the computation
involved can be represented as a Turing functional over the reals representing
different time-related two-particle states. One can point to physical transitions
which are not obviously algorithmic, but these will usually be composite pro-
cesses, in which the underlying physical principles are understood, but the math-
ematics of their workings outstrip available analytical techniques.

What is important about the Turing universe is that it has a rich structure
of an apparent complexity to parallel that of the real universe. At one time it
was conjectured that the definable relations on it had a mathematically simple
characterisation closely related to second-order arithmetic. Nowadays, it appears
much more likely that the Turing universe supports an interesting automorphism
group (see [13]), echoing the fundamental symmetries emerging from theoretical
descriptions of the physical universe. On the other hand, there are rigid sub-
structures of the Turing universe (see [35]) reminiscent of the classical reality
apparent in everyday life. And the definable relations hosted by substructures
provide the basis for a hierarchical development.

Anyway, it is time to return to Lee Smolin’s ‘Great Problems’.
The first question asked for a combining of relativity and quantum theory

into a single theory that can claim to be the complete theory of nature. Smolin
comments [36, p.5] that “This is called the problem of quantum gravity.”

Given that quantum gravity has turned out to be such a difficult problem,
with most proposals for a solution having a Frankensteinian aspect, the sus-
picion is that the quest is as hopeless as that for the Holy Grail. And that a
suitable hierarchical model of the fragmentation of the scientific enterprise may
just be what is needed to give the picture we already have some philosophical
respectability. What is encouraging about the Turing model is that it currently
supports the dichotomy between a ‘low level’ or ‘local’ structure with a much
sparser level of uniquely definable relations than one encounters at higher lev-
els of the structure. Of course, the reason for this situation is that the higher
one ascends the structure from computationally simpler to more informative
information, the more data one possesses with which to describe structure.

We are happy to accept that despite the causal connections between particle
physics and the study of living organisms, the corresponding disciplines are based
on quite different basic entities and natural laws, and there is no feasible and
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informative reduction of the higher level to the more basic one. The entities
in one field may emerge through phase transitions characterised in terms of
definable relations in the other, along with their distinct causal structures. In
this context, it may be that the answer to Smolin’s first Great Problem consists
of an explanation of why there is no single theory (of the kind that makes useful
predictions) combining general relativity and quantum theory.

It is worth noting that even the question of consistency of quantum theory
with special relativity and interaction presents serious problems. The mathemati-
cian Arthur Jaffe, with J. Glimm and other collaborators, succeeded in solving
this problem in space-time of less than four dimensions in a series of papers (see
[23]), but it is still open for higher dimensions.

The second question asks us to ‘resolve the problems in the foundations of
quantum mechanics, either by making sense of the theory as it stands or by
inventing a new theory that does make sense’.

This is all about ‘realism’, its scope, how to establish it. Of course, the absence
of a coherent explanation of what we observe makes it difficult to pin down what
are the obstacle. But it is in the nature of the establishment of a new paradigm
that it does not just tidy up some things we were worried about, but gives
us a picture that tells us more than we even knew we were lacking. A feel for
mathematical definability; a plausible fundamental structure which supports the
science, and is known to embody great complexity which tests researchers beyond
human limit; and the demystifying of observed emergence via the acceptance of
the intimate relationship between definition and ontology. That has the power
to do it in this case. And it all becomes clear. The material universe has to do
everything for itself. It has nothing it does not define. Or more to the point,
its character is established by the nature of its automorphisms. Applying the
sense underlying Leibniz’s principle of sufficient reason, objects and interactions
which exist materialise according to what the mathematics permits—that is,
what the structure itself pins down. If the whole structure can be mapped onto
itself with a particle in two different locations in space-time , then the particle
exists in two different locations. If entanglement changes the role of an aspect of
the universe in relation to the automorphisms permitted, so does the ontology
and the associated epistemological status. Observation can do this to one of
our particles. Of course, the lack of a comprehensive description of the particle
will have to be shared by whatever form the particle takes. There is nothing
odd about the two slit experiment. Or about the dual existence of a photon
as a wave or as a particle. And the interference pattern is just evidence that a
particle as two entities can define more than it can solo. And as for decoherence,
many-worlds and the multiverse? It is not just that the whole scenario becomes
redundant, it is that the acceptance of such multifarious permutations of reality
is mathematically naive. A small change in a complex structure with a high
degree of interactivity can have a massive global effect. And the mathematics
does have to encompass such modifications in reality.

So—there is a qualitatively different apparent breakdown in computability
of natural laws at the quantum level—the measurement problem challenges us
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to explain how certain quantum mechanical probabilities are converted into a
well-defined outcome following a measurement. In the absence of a plausible
explanation, one is denied a computable prediction. The physical significance of
the Turing model depends upon its capacity for explaining what is happening
here. If the phenomenon is not composite, it does need to be related in a clear
way to a Turing universe designed to model computable causal structure. We
look more closely at definability and invariance.

Let us first look at the relationship between automorphisms and many-worlds.
When one says “I tossed a coin and it came down heads, maybe that means
there is a parallel universe where I tossed the coin and it came down tails”, one
is actually predicating a large degree of correspondence between the two parallel
universes. The assumption that you exist in the two universes puts a huge degree
of constraint on the possible differences—but nevertheless, some relatively minor
aspect of our universe has been rearranged in the parallel one. There are then
different ways of relating this to the mathematical concept of an automorphism.

One could say that the two parallel worlds are actually isomorphic, but that
the structure was not able to define the outcome of the coin toss. So it and its
consequences appear differently in the two worlds. Or one could say that what
has happened is that the worlds are not isomorphic, that actually we were able
to change quite a lot, without the parallel universe looking very different, and
that it was these fundamental but hidden differences which forces the worlds to
be separate and not superimposed, quantum fashion. The second view is more
consistent with the view of quantum ambiguity displaying a failure of definabil-
ity. The suggestion here being that the observed existence of a particle (or cat!)
in two different states at the same time merely exhibits an automorphism of our
universe under which the classical level is rigid (just as the Turing universe dis-
plays rigidity above 0′′) but under which the sparseness of defining structure at
the more basic quantum level enables the automorphism to re-represent our uni-
verse, with everything at our level intact, but with the particle in simultaneously
different states down at the quantum level. And since our classical world has no
need to decohere these different possibilities into parallel universes, we live in
a world with the automorphic versions superimposed. But when we make an
observation, we establish a link between the undefined state of the particle and
the classical level of reality, which destroys the relevance of the automorphism.

To believe that we now get parallel universes in which the alternative states
are preserved, one now needs to decide how much else one is going to change
about our universe to enable the state of the particle destroyed as a possibility
to survive in the parallel universe—and what weird and wonderful things one
must accommodate in order to make that feasible. It is hard at this point to
discard the benefits brought by a little mathematical sophistication. Quantum
ambiguity as a failure of definability is a far more palatable alternative than the
invention of new worlds of which we have no evidence or scientific understanding.

Let’s take question 4 next: Explain how the values of the free constants in the
standard model of particle physics are chosen in nature.
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Things are starting to run on rails. Conceptually, the drawing together of a
global picture of our universe with a basic mathematical model is the corre-
spondence between emergent phenomena and definable relations. This gives us
a framework within which to explain the particular forms of the physical con-
stants and natural laws familiar to us from the standard model science currently
provides. It goes some way towards substantiating Penrose’s [31, pp.106-107]
‘strong determinism’, according to which “all the complication, variety and ap-
parent randomness that we see all about us, as well as the precise physical laws,
are all exact and unambiguous consequences of one single coherent mathematical
structure”. Of course, this is all schematic in the extreme and takes little account
of the hugely sophisticated and technically intriguing theory that people who ac-
tually get to grips with the physical reality have built up. These developers of
the adventurous science, building on the work of those pioneers from the early
part of the last century, are the people who will take our understanding of our
universe to new levels. The descriptions posited by the basic mathematics need
explicit expressions. While the basic theory itself is still at an exploratory stage.
The automorphism group of the Turing universe is far from being characterised.

The third question is more one for the physicists: Determine whether or not
the various particles and forces can be unified in a theory that explains them all
as manifestations of a single, fundamental entity.

The exact relationships between the particles and forces is clearly a very com-
plex problem. One does expect gravity to be describable in terms of more basic
entities. One would hope that a more refined computability theoretic modelling
of the physics might reveal some specific structure pointing to an eventual solu-
tion to this deep and intractable problem.

And as for question 5: Explain dark matter and dark energy. Or, if they don’t
exist, determine how and why gravity is modified on large scales. More generally,
explain why the constants of the standard model of cosmology, including the dark
energy, have the values they do.

Various possibilities come to mind. It may be that a more intimate relation-
ship with the definability, engaging with the organic development of everything,
may change the way the current physics fits together, removing the need for
dark matter or energy. Or it may be that the darkness of these entities is ex-
plained by the relationship between levels and their relative definability. There
are cosmological ramifications too, which might be discussed elsewhere.

For further discussion of such issues, see [12], [15], [16], [17] and [18].
A final comment: Definability/ emergence entailing globality and quantifica-

tion does involve incomputability. And this may give an impression of random-
ness, without there actuality being any mathematical randomness embodied.
This is very much in line with the research of Cris Calude and Karl Svozil on
the nature of quantum randomness [11].
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First of all: disregard all of so called “preliminary physical expectations”, because all
these expectations are just a pseudonym for prejudices elaborated by the older genera-
tion. These words belong to Dirac, not to me. The right way of creating new physics is
different: one should begin with a beautiful mathematical idea. But it should be really
beautiful! No special relations to physics is compulsory. But if it is really beautiful, it
will certainly match useful physical applications, though it is not predefined, what sort
of applications and where: it depends on physical consequences which may be extracted
from the mathematical scheme.

V. Arnold, in the TV interview with S. Kapitsa. Abridged text of the interview is
published as “Why do we study mathematics” in ” Kvant”, 1 (1993) (in Russian).

We do not have any theorems here - this research is not dead yet.

Answer given by Ildar Hamitov, a student in L. Faddeev’s group (1980), on the request
of Professor V. Buldyrev to present the main result of his master thesis in a formal way.

1 Exponential Decay: Physical Needs versus Mathematical Beauty

V. Arnold, in his prominent interview (1993) with Sergey Kapitsa, commented on the
controversial idea by Paul Adrien Moris Dirac (formulated, in particular in his lecture at
Moscow University in 1955) that Physical laws should have mathematical beauty (see
the above epigraph). Arnold’s comment is even more straightforward than the original
version by Dirac which was softer by nature. On top of Dirac’s receipt about choosing
a new step: “it’s future development should affect something, which was out of any
doubts before, something which could not be revealed by the axiomatic formulation”,
see [1], Arnold comment contains an inspiring advice on how and where to find the
new physics. Of course, both statements by Dirac and Arnold are literally wrong. Both
are about the final formulation of the theory, when “research is already dead”, but not
the first revolutionary movement in the new direction. Max Planck’s formulation of the
leading idea of quantum physics – on the discrete nature of the light radiation from
the cavity – had no connection with any beautiful mathematics at that time (in the
beginning of the 20th century). The initial mathematical formulation of the essence of
Quantum Physics appeared almost 30 years later due to John von Neumann [2]. Since
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that moment a lot of new important details were added to it, but, really, the subject
noticeably drifted towards mathematics.

In this paper, oriented to a wide audience of theoretical physicists and researchers
in natural sciences, we provide a review of a beautiful chapter of modern mathematics:
the Harmonic Analysis of Operators in Hilbert Spaces, see [13], which arose in the first
half of the previous century as a branch of Complex Analysis. However, it was never
used by physicists as it deserves, according to our vision. Following the above receipt of
Arnold, we choose the decay problem in Quantum Physics, formulated in th framework
of Harmonic Analysis. We hope that our attempt may eventually bring this beautiful
piece of mathematics into the arsenal of mathematical tools of natural sciences.

The classical question on the validity of Quantum Mechanics for the description of
the decay of the wave-packet was rarely on the front line of research in Physics. In fact,
for almost 90 years after the revolutionary paper by Gamow [3], it has been considered
more as an annoying nuisance. Nevertheless, many great minds contributed with com-
peting points of view on the subject. In 1930, Weisskopf and Wigner suggested a per-
suading concept (further referred to as the WW concept) of the exponential decay rate
for a quantum system with discrete spectrum, see [4]. Their proposal was recognized by
most experimentalists as a viable treatment of the subject. Unfortunately, 17 years later,
Fock and Krylov spoiled the happy end, see [5], by showing “from the first principles”,
that exponential decay cannot be explained based on the discrete spectrum hypothe-
sis, leaving only one way out: considering quantum systems with continuous spectrum.
This new concept (further denoted as KF concept), proposed by Fock and Krylov, also
sounds natural. Indeed, Fock was the first physicist to suggest, in his textbook on Quan-
tum Mechanics [6], an accurate treatment of the continuous spectrum. This remained
unchanged up to now in all modern texts on Mathematics and Mathematical Physics.
Yet, the KF concept did not become a gravestone for the question on decay. A paper
by L. Khalfin, [7], communicated by Fock to the Russian Academy Doklady, contained
an accurate calculation, again “from the first principles”, on the decay of wave-packets
for the simplest quantum problems, in particular for the 1D Schrödinger equation with
compactly supported real potential.

Represent the evolution of the wave-packet by the Riesz integral of the resolvent
Rλ ≡ (H − λI)−1 of the corresponding Hamiltonian H ,

eiHt = − I

2πi

∫
Γ

Rλ eiλt dλ, (1)

on the contour Γ enclosing the spectrum σ of H . Using analyticity of the integrand on
the two-sheets Riemann surface of the spectral parameter, one can deform Γ → Γ ′ to
reveal i) the unitary component of the evolution associated with eigenvalues λs of H ,
exponentially decreasing terms caused by resonances μs – the poles of the resolvent
kernel- situated on the second spectral sheet and iii) a loop around the threshold λ = 0
of the continuous spectrum, the branching point of the resolvent kernel. Unfortunately,
the corresponding contribution to evolution (1) of the latter is estimated by the power
function Const t−β of the time t, with β depending on the incident data.

This result actually revealed the error by Gamov and could possibly resolve the prob-
lem of the decay, if the non-exponential component of the decay would be observed
in an experiment. Surprisingly, that was not the case up to now. Nevertheless, in the
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modern textbook on Quantum Mechanics like [8], the result of L. Khalfin is quoted as
an ultimate truth on decay. Absence of an experimental confirmation can be blamed on
the admissible precision of the experiment, rather than on a theoretical fault.

In this paper we revisit again the quoted proposals by [4,5], attempting to find a
point of view that would permit for the ends to meet one another. Our program does not
eliminate the naive theoretical analysis presented in [7], but reduces the discussion of its
validity to the problem of the choice of measurement tools that deliver the data from the
quantum system to the observer. In this paper, we consider the case when the role of the
“delivering tool” is played by the electromagnetic field, or, generally, by another zero-
mass field. In the 1D example considered in this paper, the role of the delivering tool is
played by a massless field governed by the wave equation, a 1D analog of photons. We
will postpone for an upcoming publication a more realistic choice of the delivering tool
as a classical electro-magnetic field in R3 which also satisfies all natural assumptions
we are basing on now.

Some of the basic mathematical tools that we use to interpret the exponential decay
are already prepared by mathematicians. A similar situation was observed in Quantum
Mechanics, where an exact understanding of self-adjointness (the physicists required
for the Schrödinger theory by mid 1920s) was already prepared by Hermann Weyl in
1916, see an adapted text in [9]. In our treatment of the exponential decay, we use
the analysis of the acoustic scattering problem. Again, the mathematics was prepared
by Peter Lax and Ralph Phillips in the 1960s of the last century (see [10]). Actually,
Lax and Phillips succeeded to overcome, without even noticing it, the horror physicists
survived when they discovered that the evolution of a quantum system with positive
Hamiltonian L may be generated by another operator L, which has both negative and
positive branches of spectrum. This phenomenon, discovered by Dirac in the 1930s,
was rigorously analyzed by Hegerfeld in his prominent theorem [11] only at the end of
previous century. Hegerfeldt was able to show that the evolution of a quantum system
with positive Hamiltonian always has “infinite tails”. For instance, the component of the
1D acoustic evolution in the positive frequency sector is represented by D’Alembertian
waves that admit analytic continuation into the upper half-plane, and thus cannot vanish
on a set with positive measure on the real axis. This was an essential step to legitimiz-
ing the non-semi-bounded generators of evolution. Another example of a non-semi-
bounded generator is given by the supercharge in super-symmetric quantum mechanics.
So, by the end of previous century, the trick suggested by Lax and Phillips would not
look surprising any more. But in the mid-century, it was probably still too special and
suspicious for physicists: Lax and Phillips represented the evolution of the Cauchy data
u ≡

(
u, c−1ut

)
of the wave equation

c−2 utt − Δu = 0

as a unitary transformation in the energy-normed space of the Cauchy data

‖ u ‖2=
1
2

∫
Ωout

[
c−2|ut|2 + |∇u|2

]
dx3. (2)

It was shown in [10] that the unitary evolution group eiLt ≡ Ut : u(0) −→ u(t) is
generated by a non-semi-bounded operator L, an analog of the Dirac operator, that can
be represents as an appropriate block operator matrix
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1
i

∂u
c∂t

= i

(
0 −1

−Δ 0

)
u ≡ Lu, L2 = −Δ. (3)

It turns out that (i) the generator L is self-adjoint in the energy-normed space E of
all Cauchy data with finite energy, (ii) the spectrum of L in the energy-normed space
of Cauchy data supported by the complement Ωout of a compact domain Ω ⊂ R3 is
absolutely continuous and it fills in the whole real axis (iii) the unitary group Ut has
incoming and outgoing subspaces Din, Dout that are invariant with respect to the posi-
tive and negative semi-groups Ut and U−t, t ≥ 0, respectively. In fact, these subspaces
consist of the data vanishing on the positive and negative light-cones respectively

Ut Dout ⊂ Dout, t ≥ 0, Ut Din ⊂ Din, t ≤ 0, (4)

and Cauchy data of the incoming and outgoing waves on the complement R3\Ω ≡
Ωout are mutually orthogonal with respect to the energy dot-product.

Fortunately, by that time the question on the description of invariant subspaces of
an important isometry group in the Hilbert space was already solved by Beurling [12]
with no connection to the above acoustic problem. Beurling considered in 1947 the shift
operator T (right translation) in the Hilbert space l2 of all complex square-summable
sequences x = (x0, x1, x1, x2, x3, . . .)

(x0, x1, x1, x2, x3, . . .)
T−→ (0, x0, x1, x1, x2, x3, . . .) ≡ tx.

One of Beurling’s problems in [12] was the description of all invariant subspaces D of
T : TD ⊂ T . Obviously, the space of all sequences,

∑
s |xs|2, with (several) zeros on

the first positions, like (0, x1, x1, x2, x3, . . .), is invariant with respect to T .
What are the others invariant subspaces? It is not that easy to answer the question

using the language of the l2 space. But if we change the language by translating the
question into the one of complex analysis and substituting sequences by functions ana-
lytic in the unit disc B = {ζ : |ζ| < 1} :

X(x0, x1, x1, x2, x3, . . .)
T−→ x0 + ζx1 + ζ2x2 + ζ3 x3 + . . . ≡ x(ζ) ≡ Tx,

the problem of the description of invariant subspaces becomes almost trivial, and this
is the beauty. In this way we get a marvellous chance to view the problem from a
completely new point, substituting T by the multiplication operator: Tx −→ ζx(ζ).
Indeed, this transformation is a unitary mapping of l2 onto the class of all analytic
functions on the unit disc, with square integrable boundary data on the circle Γ =
{ζ : |ζ| = 1}. This is the celebrated Hardy class H2

+: a subspace of L2(Γ ) consisting
of all functions which admit an analytic continuation onto the unit disc equipped with
the norm

1
2π

∫
Γ

|x(eiθ)|2dθ = |x|2l2 .

The subspace of all sequences (0, x1, x1, x2, x3, . . .), with zero on the first position, is
transformed into the class ζH2

+ of all analytic functions in the unit disc vanishing at the
center of the disc. It is clear now that all subspaces of functions vanishing at an inner
point a are invariant with respect to T and are represented as a−ζ

1−āζH
2
+.
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Of course, all subspaces of the analytic functions in the unit disk generated by finite
or infinite Blaschke products Πa(ζ) ≡ Πs

as−ζ
1−āsζ

as

|as| , with convergent series
∑

s(1 −
|a2

s|) < ∞, are invariant subspaces Dout = ΠaH
2
+ of the shift operator T : TΠaH

2
+ =

ζΠaH
2
+ ⊂ ΠaH

2
+.

Some uniform limits of the Blaschke products give rise to so called singular inner
functions Θμ(ζ) on the unit disc. They are represented via positive singular measures μ
supported by the unit circle as Θμ(ζ) = exp

∫
|η|=1

ζ+η
ζ−ηdμ(η). The functions Θμ also

produce invariant subspaces ΘμH
2
+ of the shift, [14,13].

The full answer to the question about the structure of the outgoing invariant sub-
spaces of the shift, ζDout ⊂ Dout ⊂ H2

+, is given by the formula

Dout = Θμ Π H2
+.

Similarly, the problem of the description of the invariant subspaces of the left shift
Ut, t < 0, in the space of all sequences x = (. . . ,−3, −2, −1) can be considered in
the Hardy class H2

− of analytic functions on the complement to the unit disc. These
subspaces can be constructed from the singular inner factor and the Blaschke product
Θ,Π based on the symmetry principle Π̄(ζ) = Π(ζ̄−1) as:

Din = Θ̄μ Π̄ H2
−.

It is a remarkable fact, that the positive semi-group
{
ζl
}
, l = 0, 1, 2, 3, . . . , of the

unitary group ζl on L2(Γ ), restricted to the co-invariant subspace H2
+ ( Dout ≡ K =

H2
+ ( ΠH2

+ ≡ K proves to be a contracting semi-group

PKζl

∣∣∣∣
K

≡ Zl, l = 0, 1, 2, 3, . . . ,

with the generator Z . Indeed, since ζPH2
+

∈ PH2
+
⊥K , for l = 2, we have:

Z2 = PKζ2PK = PKζ[PH2
+

+ PK + PH2
−
]ζPK

= PKζ[PH2
+

+ PK ]ζPK = PKζPKζPK = Z2.

Moreover, the eigenvalues of the generator Z coincide with the zeros as of the Blaschke
product Πa and the corresponding eigenfunctions are ψs[ζ] = Πa(ζ)

as−ζ . In addition, the
bi-orthogonal system of eigenvectors of the adjoint operator Z+ is constituted by the
reproducing kernels φs(ζ) = 1

1−āsζ , so that the spectral decomposition of Z , with
simple discrete spectrum, is given by the interpolation series

f =
∑

s

Πa(ζ)
as − ζ

f(as)
dΠa

dζ (as)
, f ∈ K.

Similar explicit formulae are also true for the continuous shift of the real axis f(x) →
f(x− t) ≡ Utf . The role of the incoming and outgoing subspaces Din,out for the con-
tinuous shift group in the spectral (Fourier) representation Ut ≡ eipt is played by the
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Hardy classes of square-integrable functions H2
± ⊂ L2(R) that admit an analytical con-

tinuation to the upper and lower half-planes, respectively. In particular, the subspaces
ΠH2

+ generated by the Blaschke products in the upper half-plane are invariant with
respect to the (continuous) shift in the Fourier representation.

In general, the invariant subspaces of the positive semi-group Ut, t ≥ 0 are parame-
terized by the inner functions ΘΠ in the upper half-plane as ΘΠH2

+ ≡ Dout. For the
negative semi-group, the corresponding representation is of the form Θ̄Π̄H2

− = Din.
The restriction of the positive semi-group of the continuous shift onto the orthogonal
complement of L2(R)([Din⊕Dout] ≡ K of the “incoming” and “outgoing” subspaces
Din,out in L2(R) ≡ E , with K the corresponding co-invariant subspace, is a strongly-
continuous Lax-Phillips semi-group PKUt

∣∣
K =: eiBt, t > 0, of contractions generated

by a dissipative operator B. The spectral properties of the generator B are completely
determined by the scattering matrix S ≡ ΘΠ associated with the unitary group Ut and
the corresponding unperturbed group U0

t which is a colligation of the components of
the evolution on the reduced space E0 =: Din ⊕Dout, see [19].

Again, similarly to the above discrete case, the spectral analysis of the Lax-Phillips
semi-group can be done in an explicit form in terms of the corresponding inner function
ΘΠ , the scattering matrix.

Here is another source of beauty: the duality between the geometrical problem on
invariant subspaces and relevant spectral questions for contracting and dissipative op-
erators and classical questions on interpolation and approximation from the theory of
analytic functions. Unfortunately, the simple calculations above never appeared in ele-
mentary courses of complex analysis for physicists or engineers.

The question on exponential decay for the acoustic problem on the complement of
the scatterer Ω in a large ball BR served as a central motivation for [10]. This problem is
reduced to the study of spectral properties of the generator B of the Lax-Phillips semi-
group: if all eigenvalues of the generatorB are situated strictly in the upper spectral half-
plane *λ > β > 0, then the Lax-Phillips semi-group admits an exponential estimation

‖ eiBtu0 ‖≤ Ce−β′t ‖ u0 ‖, t ≥ 0,

for any β′ < β, with an appropriate absolute constant C, depending on β′. Highly
nontrivial analysis was developed to prove the bound *λ > β > 0, λ ∈ σB, for
compact obstacles Ω that satisfy the exterior cone condition.

Generally, the whole machinery, developed in [10] to reach the quoted exponential
estimate for acoustic scattering, is based on harmonic analysis of matrix-valued analytic
functions u ∈ L2(E). It was motivated by the problem of description of all invariant
subspaces of the standard shift groups u(p) → eiptu(p) ≡ u(p, t) in the space L2(E)
of vector-valued, square-integrable functions u(p) ∈ E on the real axis −∞ < p < ∞.

In fact, the above evolution group Ut is unitarily equivalent to the shift group, and
the incoming subspaces of the evolution group Ut are equivalent to subspaces of the
Hardy class H2

−(E) ⊂ L2(E) of all square integrable functions admitting an analytic
continuation into the lower half-plane *p < 0, see [14]. The outgoing subspaces of the
evolution group are unitarily equivalent either to the Hardy class H2

+(E) ⊂ L2(E), or
to subspaces ΘH2

+ of the Hardy class defined by the inner factors Θ, which are unitary
on the real axis and admit an analytic continuation into the upper half-plane *p > 0. In
the case when Π is a Blaschke product
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Π(p) =
∏

l

[
p− pl

p− p̄l
θlPl + P⊥

l

]
,

with appropriate phase factors θl and projections Pl, P⊥
l = I − Pl, the quantities p̄l

coincide with the eigenvalues of the adjoint generator B+, and the eigenfunctions of the
adjoint generator, in the “incoming” spectral representation of the original unitary group
Ut in the energy-normed space E , coincide with the reproducing kernels ϕl = el

p−p̄l
.

The bi-orthogonal system of eigenfunctions of the original operator B is formed as
ψl = Θ(p)

p−pl
e+

l , with e+ ∈ ker Θ(pl), see [13,15,16].
In the general case, these facts are derived from an extended theory of the “functional

model” (see, for instance, [13,15,16]), which covers the Lax-Phillips generators with
absolutely continuous spectrum. The modern theory of the functional model allows one
to reduce all the questions of the spectral theory of the Lax-Phillips semi-group to the
relevant questions of the theory of analytic functions and/or harmonic analysis.

The crucial role of the theory of analytic functions for the theory of nonselfadjoint
operator was predicted by M. G. Krein in his talk at the Moscow International Congress
of Mathematicians in 1966, (see, [17,18]). The problem on exponential decay should
be connected, from the point of view of mathematicians, with the list of problems on
spectral analysis of dissipative or contracting operators. In the simplest case of a one-
dimensional acoustic problem that we discuss in Section 3, most of the above facts
of spectral analysis of the Lax-Phillips semi-group are established via straightforward
calculations.

It must be noted that the first attempt to bridge the general theory of nonself-adjoint
(in particular, dissipative) operators with relevant physics was undertaken by Livshits
[20]. He was motivated by the observation that the problem of analysis of nonself-
adjoint details of complex physical systems appears each time we attempt to substitute
a whole complex system by a simpler surrogate system with similar properties. In [20]
Livshits suggested a simplified model of a waveguide attached to a resonator, produced
by substitution of a nonself-adjoint detail of the original system by a “triangular model”,
which, at the time, was the only available general model of a dissipative operator. Based
on Livshits’ discovery, a new, more convenient “functional model” was suggested by
B. Sz.-Nagy and C. Foiaş (see [13]). But the role of the scattering matrix as a basic
parameter of the functional model was not yet recognized at that stage. Few years later,
a seminal paper [19] provided an important connection between the Lax–Phillips scat-
tering theory and the Sz.-Nagy–Foiaş functional model, see [10,13]. One of he most
important achievements of the theory was to give the spectral meaning to resonances,
which never happened in the pure quantum mechanical treatment of the problem of the
exponential decay.

All these important events succeeded just inside mathematics. Physicists did not see,
until now, any connection between an elegant analysis used by the community of ana-
lysts in their study of the acoustic problem or the corresponding abstract shift groups.
One of the reasons for that is that the unitary group generated by the semi-bounded
Schrödinger operator does not have orthogonal incoming and outgoing subspaces, as it
follows from the Hegerfeldt Theorem [11].

Nevertheless, an elegant analysis provided by the Lax–Phillips approach served
as a motivation for the further research in a close area followed by publishing
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numerous physical papers. In particular, in [22,23], the standard Hilbert space L2 of
square-integrable functions was supplied with additional structures transforming it into
a space similar to the one used in [10]. In [24], a model Hamiltonian is constructed
and an artificial analytic scattering matrix is suggested. In the case studied by Horwitz
and Piron, the most important property of the model system in the Lax-Phillips ap-
proach, the orthogonality of the incoming and outgoing subspaces, was just formally
derived from the analyticity of the constructed model scattering matrix. In recent pa-
pers, Baumgärtel with coauthors attempted to match the quantum mechanical condi-
tion of positivity of the generator of the evolution with spectral interpretation of the
resonances to give the spectral meaning to the corresponding “Gamov vectors” (see
[25,26]). Unfortunately, in this way all essential advantages of the Nagy-Foiaş func-
tional model, such as explicit expressions for the eigenvectors of the Lax-Phillips semi-
group, the Gamov vectors, completeness of the corresponding bi-orthogonal system,
and the relevant spectral decomposition, were lost because of the absence of natural,
physically motivated, orthogonal pair of incoming and outgoing subspaces. Besides, no
physical consequences were derived in [25,26] from the proposed matching of quantum
mechanics with the corresponding analog of the Lax-Phillips theory. This most likely
suggests that the scheme proposed in the papers is sentenced, according to the Arnold
algorithm, to remain, for another period inside mathematics until all these details are
completed.

Contrary to that, in our version of bridging standard quantum mechanics with the
Lax-Phillips theory, instead of inventing an artificial construction added on top of the
standard quantum space of all square-integrable functions to imitate the Lax-Phillips
structure, we consider excitations of the zero mass field playing the role of a channel
passing information to the outside observer on the inner quantum system. Although the
evolution of the “inner” the quantum system, for a finite time, can be represented in the
Schrödinger form as eiLt with a positive Hamiltonian L, the study of its asymptotics
as t → ∞ requires a treatment based on the complete zero-mass field evolution. The
substitution of the Lorenz invariant picture by the Schrödinger picture of evolution can
only be done under the “positivity of mass” condition (see next section). It is not trivial
to match this requirement with the zero-mass condition for the Lax-Phillips scheme.

Thus, the central question in our treatment becomes the matching of the Lax-Phillips
scattering scheme with quantum mechanics with the positive Hamiltonian, that is the
question of the physical realization. And again, the answer to this question is not general
and does not look obvious.

2 Scattering of Photons by a Superconductor: An Interplay
between the Schrödinger Equation and the Klein-Gordon-Fock
Equation

Yet an interesting example of similar matching can be found in the scattering of pho-
tons by a superconductor. Indeed, due to the Meissner effect, magnetic field cannot
penetrate the super-conducting medium. The theoretical treatment of the phenomenon
by Ginzburg and Landau (see [27]) is based on acquiring a non-zero mass by photons
in the process of spontaneous symmetry breaking, the loss of abelian gauge invariance
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of the Lagrangian of the electromagnetic field in the superconductor. Hence, both con-
tradictory requirements of zero-mass in the outer space, and the non-zero mass in the
inner space are satisfied. Thus, we may hope to “put both ends together” in the problem.

Consider a compact domain in R3 filled with a superconductor. The Lagrangian of
the electro-magnetic field in the outer space is represented in terms of the field A, the
electromagnetic potential, as

1
4

∫
Ω̂s

F+F, where F = dA,

(see for instance [28]). Here dA is an exterior differential of the field A, and F+F is
a 3-form obtained as an exterior product of 2-form F and its (hermitian) complement.
In the inner space, due to the interaction of the electromagnetic field with the boson
field of Cooper pairs, the Lagrangian is modified, in the boundary area of the supercon-
ductor, by additional massive terms containing the product of the electromagnetic field
and the field of Cooper pairs see [28]. The depth of penetration of the magnetic field
into the superconductor is estimated by the size δ of the Cooper pair, which is normally
relatively large, greater than 10−7 cm. If the energy of photons does not exceed the
Bardeen-Cooper-Schrieffer gap (the BCS - gap), the field of Cooper pairs can be elimi-
nated and the scattering of photons by the superconductor can be treated in the one-body
photon’s sector, similar to the scattering problem in the classical quantum mechanics.
In the one-body photon’s sector, the scattering problem in vacuum Ω̂s can be reduced
to the wave equation (the Klein-Gordon-Fock equation with zero mass). Similarly, the
problem in Ωδ is also reduced to the Klein-Gordon-Fock equation with non-zero mass.
The corresponding scattered waves satisfy smooth matching conditions on the common
boundary of Ω̂s and Ωδ .

If the domain Ωs is filled with a superconductor, then the electromagnetic potential
should vanish on the common boundary ∂Ωs∩∂Ωδ. Thus, one can consider, as a repre-
sentative model, the Klein-Gordon-Fock equation in R3 = Ωs ∪Ωδ ∪ Ω̂s assuming that
the compact domain Ωs ∪ Ωδ is filled with the superconductor, and Ω̂s is the vacuum.
The mass is zero on Ω̂s, but is non-zero on the δ-thin shell Ωδ, separating the inner and
the outer spaces. While Ωs is filled by the superconductor, the electromagnetic field
does not penetrate Ωs, so that we can apply a zero boundary condition on ∂Ωs ∪ ∂Ωδ.

Then the spectrum of the Klein-Gordon-Fock operator in Ωδ is discrete, and the one
on the complement Ω̂s is continuous. Hence, the scattering in the small energy region,
for energy not exceeding the creation threshold of the Cooper pair, has a resonance
character. The scattering matrix of the problem is unitary and analytic with respect to
the energy on the complement of the discrete set of resonances.

For small values of the added energy E′ = E −mc2, E′ << mc2, the evolution on
Ωδ can be described in a Schrödinger form:

E = c
√

m2c2 + p2 ≈ mc2 +
p2

2m
.

Indeed, considering on Ωδ the Klein-Gordon-Fock equation with non-zero mass

h̄2

c2
∂2ψ

∂t2
=
[
h̄2Δ− m2c2

]
ψ,
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permits to split off the fast oscillations by the unitary transformation ψ = e−imc2h̄−1tφ:

∂ψ

∂t
=
[
∂φ

∂t
e−imc2h̄−1t − imc2h̄−1φ e−imc2h̄−1t

]
≈ − imc2

h̄
φ e−imc2h̄−1t,

∂2ψ

∂2t
≈ −

[
2imc2

h̄

∂φ

∂t
+

m2c4

h̄2 φ

]
e−imc2h̄−1t, (5)

which yields, for small momenta, the Schrödinger equation for φ

ih̄
∂φ

∂t
+

h̄2

2m
Δφ = 0. (6)

A nice feature of this equation is the possibility to interpret |φ|2 as the probability
density for the particle to bound at the location marked by space coordinates (x, t) of
the wave function φ(x, t), when the total probability to find the particle in the space
is conserved

∫
|φ(x, t)|2dx = const. But its formal use in the large time scale would

give a non-exponential decay of the wave packet of the magnetic field. Moreover, vice
versa, a straightforward analysis based on the Lax-Phillips scattering arguments for the
zero-mass field in Ω̂s and the non-zero mass in the Klein-Gordon-Fock equation on Ωδ

shows an exponential decay, and even reveals the spectral meaning of resonances.
Another interesting example of the exponential decay can be connected with a simi-

lar problem for a thin compact super-conducting shell Ωδ separating the inner vacuum
domain Ωs from the outer domain Ω̂s. Considering the one-particle scattering prob-
lem with smooth matching conditions on the inner and the outer components of the
boundary of the shell, we again obtain a Lax-Phillips scattering system. Taking into ac-
count the non-zero mass of the field on the shell, we see that the low-energy resonances
arise from the discrete spectrum of the Dirichlet problem for the Klein-Gordon-Fock
equation on the shell. A relevant physical phenomenon was observed on a multi-layer
shell constructed of carbon nano-structures (see, for instance, [29]). In that paper, the
resonance pumping phenomenon was discovered. Our previous analysis of the super-
conducting shells allow us to formulate a question on the super-conduction nature of
the carbon shell in the experiment, which would explain the nature of pumping based
on the classical Lax-Phillips resonance scattering (see next section).

The fields with nonzero mass play an important role in the transition from the Klein-
Gordon-Fock evolution to the Schrödinger evolution. One may guess that other possible
experiments revealing an exponential decay in quantum physics can be considered with
involvement of some scalar boson fields playing the role of the field of Cooper pairs
in above problems. This gives us a pretext to underline a unique role of measurements
based on zero-mass fields in quantum physics. In combination with the symmetry break-
ing and mass creation, these measurements may help to explain the exponential decay
and resonance pumping in these experiments.

3 An Example: Analysis of the Model of Decay Observed in a 1D
Analog of the Electro-Magnetic Experiment

Our review of the Lax-Phillips technique and the basic results presented in Section 1
shows just the tip of the iceberg. The rest of the estimations, the complex and harmonic
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analysis remained under cover. In the previous sections of this paper we provided only
a sketch of the results that could be obtained by the classical Lax-Phillips technique for
the corresponding multi-dimensional decay problem. We now aim at the simplest 1D
model, for which all analytical details of the Lax-Phillips resonance scattering theory
can be derived explicitly with the use of standard tools of spectral theory of ordinary
differential operators. Note that the 1D model of photons was legitimized by [30]. We
consider here a 1D model of scattering of 1D photons by a super-conducting shell Ωδ

in a form of a zero-mass Klein-Gordon-Fock equation with quantum well potential
supported by (−a,−δ) with zero boundary condition at the endpoint x = −a. The
potential on the interval (−δ, 0) ≡ Ωδ is determined by the mass of photons in a thin
surface layer of the super-conductor, presented by a rectangular potential barrier. The
quantum well is attached to the positive half-axis (0,∞):

c−2utt −
∂2u

∂x2
+ VH(x)u = 0, −a < x < ∞, u(−a) = 0. (7)

Instead of the super-conducting layer Ωδ supporting the non-zero mass photon’s field,
we may assume that the potential has a a repulsing singularity Hδ(x), H > 0, at the
origin, VH(x) = V (x) + Hδ(x), and a smooth real component V (x), −a < x < 0.
This δ-singularity emulates the condition of domination of the energy of photons by
the BCS gap and plays the role of a high potential barrier that separates the inner part
and the outer parts Ωs ≡ (−a, 0),, Ω̂s = (0,∞), with the zero-mass field in the outer
vacuum space x > 0 and on the inner vacuum space (−a, 0). Changing the “height”
H of the barrier, one can approach the limit H = ∞, which corresponds to the zero
boundary condition u(0) = 0 decoupling the inner and the outer subsystems. The role of
excitations in the model is played by the one-dimensional “photons” in the outer space
x > 0. The corresponding excitations inside the well [−a, 0] = Ωs are not observed
independently, but only due to their connection to the photon’s field in vacuum [0,∞)
via the excitations on the shell.

Following our proposal in previous section, we introduce the slow varying compo-
nent ψ of the wave-function u = ψ(x) e−imc2 h̄−1t on the shell and assume that the vari-
ation of the kinetic energy associated with slow variables d2

dt2 c
−2 ‖ ψt ‖2 is relatively

small and can be neglected so that we get the Schrödinger equation with ω = mc2/h̄
(see (5) in the previous section). The corresponding Schrödinger equation describes the
evolution of the slow component of the excitation’s field in the quantum well, passed
from the evolution inside the well to the evolution of the 1D photon’s field outside.
Analysis of the wave-packets based on the Schrödinger equation (7), derived by the
separation of the fast and slow variables, reveals a polynomial decay rate caused by the
branching point at the origin p = 0 in the plane of the spectral parameter (see [7]).
This theoretical proposal was never confirmed experimentally (see the corresponding
discussion in Section 2). We conjecture that the realistic decay rate can be theoretically
extracted from the original equation (7) based on the analysis of the corresponding
Lax-Phillips dynamics (see below and more technical details in [10,15]).

Notice, first of all, that the basic Hilbert space associated with the Schrödinger equa-
tion is the space of all square-integrable functions L2(−a,∞), while the Hilbert space
associated with (7) is an energy-normed space E of the Cauchy data u = (u, c−1ut) ≡
(u0, u1),
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‖ u ‖2
E=

1
2

∫ ∞

−a

[
|ux|2 + VHuū + c−2|ut|2

]
dx. (8)

The basic equation (7) can be represented as a first order equation for the vector of
Cauchy data, with a symmetric (self-adjoint) generator L:

1
i c

∂u
dt

= i

(
0 −1

− d2

dx2 + VH 0

)
u. (9)

The evolution (9) of the Cauchy data is defined by the unitary group exp iLt ≡ Ut,
which has an orthogonal pair of incoming and outgoing subspaces Din,out, consisting of
Cauchy data {(u, ux)} , {(u, −ux)} of the corresponding d’Alembertian waves u(x±
ct), and supported by the positive half-axis 0 < x < ∞, see [10]. The orthogonal
complement K ≡ E ( [Din ⊕ Dout], the corresponding co-invariant subspace, consists
of the Cauchy data supported essentially by the quantum well [−a, 0] and equal to
u = (const, 0) on the half-axis (0,∞). It is very easy to derive the semi-group property
of the evolution reduced onto the co-invariant subspace-the Lax-Phillips semi-group:

PK eiLt

∣∣∣∣
K

≡ eiBt, t > 0, (10)

and calculate the corresponding generator as

B = i

(
0 −1

− d2

dx2 + VH 0

)
with the zero boundary condition at the end x = −a and the impedance boundary

condition at the origin
[
u1 + du0

dx

] ∣∣∣∣
x=+0

= 0. Similarly, the generator −B+ of the

adjoint semi-group e−iB+t is determined by the same differential expression with the

dual impedance boundary condition at the origin
[
u1 − du0

dx

] ∣∣∣∣
x=+0

= 0. Both the

generators B,−B+ are dissipative operators (see [10]), with discrete spectrum. It is
important that the spectrum of B is defined by the zeros of the corresponding Lax-
Phillips scattering matrix, the resonances.

Indeed, the incoming and outgoing subspaces Din,out of the Cauchy data are consti-
tuted by the Cauchy data of D’Alembertian waves Φ(x ± ct) supported by the positive
half-axis. Then the spectral images of them with the use of the incoming scattered waves
Ψin define the description Jin of the problem in the “incoming ” spectral representation
of L, attributing Din to the Hardy class H2− of all square-integrable functions admitting
an analytic continuation to the lower half-plane *p < 0 of the spectral parameter p.
This spectral representation is defined by the incoming scattered waves of L

Ψin(x, p) =
( 1

ip

1

)
ψin(x, p), (11)
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where ψin(x, p) is the solution of the equation − d2ψin

dx2 +VH(x)ψin = p2 ψin, satisfying
the zero boundary condition at the end x = −a and matching the scattering Ansatz

ψin(x, p) = eipx + S(p)e−ipx, x > 0, ψout(x, p) = ψ̄in(x, p)

at the origin to an appropriate solution ϕin,out(x, p) of the original equation − d2ϕ
dx2 +

VH(x)ϕ = λϕ ≡ p2 ϕ on the well (−a, 0), and also satisfying the zero boundary
condition at the end x = −a : ϕ(−a, p) = 0. The corresponding Weyl function
mH(λ) ≡ ϕ′(0, p) ϕ−1(0, p) + H = m(λ) + H has a negative imaginary part in the
upper half-plane *λ > 0. The stationary scattering matrix is found from the matching

condition at the origin, taking into account the δ-function:[ψ′]
∣∣∣∣
0

− Hψ(0) = 0:

S(p) =
ip− mH(λ)
ip + mH(λ)

, λ = p2. (12)

This function is analytic in the lower half-plane *p < 0, and it has a sequence of zeros
ps, *ps < 0, which is symmetric with respect to reflection ps = −p̄−s. The scat-
tered waves ψ obtained by matching ψin, ψout to φin,out form a complete orthogonal

in L2(−a,∞) systems of eigenfunctions of the spectral problem − d2ψ
dx2 + V (x)ψ =

p2 ψ, ψ(−a, p) = 0 in L2(−a,∞):

δ(x − s) =
1
2π

∫ ∞

0

ψ(x, p)ψ̄(s, p)dp,

and the corresponding eigenfunctions Ψ(x, p) =
( 1

ip

1

)
ψ(x, |p|), −∞ < p < ∞, play

the role of eigenfunctions of the generator L of the evolution of the Klein-Gordon-Fock
equation, LΨin(∗, p) = pΨin(∗, p). The spectrum of L is (−∞,∞). The incoming
spectral representation

u Jin−→ 〈Ψin,u〉E

=
1
2

∫ ∞

0

[
Ψ̄ ′

0,in(x)u′
0(x) + VH(x)Ψ̄0,in(x)u′

0(x) + Ψ̄1,in(p, x)u1(x)
]
dx = Jinu

(13)
transforms the incoming subspace Din into the Hardy class H2− of square-integrable
functions on the real axis and the outgoing subspace Dout gets mapped to the invariant
subspace S̄(p)H2

+ of the positive shift semi-group f(p) → eiptf(p), t > 0. Thus, the
co-invariant subspace K is transformed into H2

+ ( S̄H2
+ ≡ K , and the Lax-Phillips

semi-group becomes PKeipt

∣∣∣∣
K

≡ eiBt. In this representation, the spectrum of the gen-

erator B = JinBJ +
in coincides with the zeros p̄s of S̄(p̄), and the eigenfunctions are

just given by
φs ≡ S̄(p̄)

√
2|*ps|(p− p̄s)−1. (14)

Together with the eigenfunctions

φ+ ≡
√

2|*ps|(p − ps)−1 (15)
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of the adjoint generator B+, they form a complete bi-orthogonal system in K . So that

B =
∑

s

φs〉
ps

〈φs, φ
+
s 〉

〈φ+
s and eiBt =

∑
s

φs〉
eip̄s t

〈φs, φ
+
s 〉

〈φ+
s . (16)

Here, 〈φs, φ
+
s 〉 =

∏
r �=s

1−p̄s/p̄r

1−ps/pr
≡ Πs. Recall that the system {φs} , {φ+

s } is similar
to an orthonormal basis if and only if the Carleson condition (see [15]) is fulfilled:

inf
r

∏
s�=r

|ps − pr|
|p̄s − pr|

> 0.

Under the Carleson condition there exists an orthogonal basis {νs} that is connected
with the normalized families {φs} , {φ+

s } by an invertible transformation:

φs = T νs, φ+
s =

[
T −1

]+
νs, with ‖T ‖ ,

∥∥∥[T −1
]+∥∥∥ < ∞.

Unfortunately, the Carleson condition is never fulfilled for potential of the type VH .
However, this condition may be fulfilled for the corresponding polar problem with the
potential substituted by a density, a coefficient in front of the spectral parameter, and
the non-stationary equation ρ/c2 utt + uxx = 0.

Notice that the eigenvalues p̄s, ps of B, B+ depend on the parameter H and ap-
proach the eigenvalues of the Schrödinger operator LH = −∂2u

∂x2 +VH(x) in L2(−a, 0)
with zero boundary conditions at the ends −a, 0. The resonances p̄s, the zeros of the
Lax-Phillips Scattering matrix SLP = [SH(p)]−1,

SLP (p) =
ip + [m(λ) + H ]
ip− [m(λ) + H ]

, with λ = p2,

can be found from the equation ip + [m(λ) + H ] = 0. For large values of H , the
resonances are situated in the upper half-plane near the poles of m(λ), the eigenvalues
λD

s of the Dirichlet spectral problem on the interval (−a, 0):

ip + H +
qs

λ − λD
s

+ bs = 0.

Denoting λD
s = [pD

s ]2, we have the approximate expression for resonances ps ap-
proaching pD

s as H → +∞,

ps ≈ pD
s +

qs(ipD
s + H)

2pD
s (|pD

s |2 + (bs + H)2)
≈ pD

s +
qs

2pD
s H

+
iqs

2H2
. (17)

The eigenfunctions φs, φ
+
s of the generators B, B+ of the Lax-Phillips semi-group are

calculated in spectral representation of the generator L of the evolution of their second
components, for large H are close to the bound states of the eigenvalues

(
pD

s

)2
.

We can develop even more constructive explicitly solvable abstract model of a
quantum dot based on a zero-range potential with an inner structure, which allows
a reasonably precise fitting to the experimental data, similarly to the one suggested
in [37], which would explain recently discovered giant “topological resonances ” oc-
curring in scattering of the electromagnetic waves by carbon nano-structures, see, for
instance, [29]. But we leave this interesting material for another publication.
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4 Physics of the Exponential Decay via the Lax-Phillips Scheme

The spectral analysis of the Lax-Phillips semi-group, described in the brief review
above, was based, on the one hand, on the presence of the continuous spectrum of
the zero-mass Klein-Gordon-Fock evolution group generator L, and, on the other hand,
on the observation that the group possesses a pair of orthogonal incoming and outgoing
subspaces.

More specifically, the continuous spectrum of L fills in the whole real axis and the
parts of the evolution in the incoming and outgoing subspaces are unitarily equivalent
to the negative and positive semi-groups generated (in the p-representation) by the shift
f → eiptf in the subspaces H2

− and SLPH2
+, respectively. As a result, the remaining

part of the corresponding positive evolution semi-group eiBt, t > 0, reduced onto the
co-invariant subspace Jin : K −→ H2

+ ( SLPH2
+ ≡ K , is unitarily equivalent to the

Lax-Phillips semi-group

PKUt

∣∣
K

J+
in−→ PKeikt

∣∣
K
, t > 0.

4.1 The Lax-Phillips Concept as a Bridge between the WW and KF Concepts of
Decay

One can see that these Lax-Phillips features were waived in the KF concept. Without
them, the concept cannot guarantee the exponential decay. Adding these details to the
KF proposal makes it sufficient not only to explain the exponential decay, but also to
construct a solid bridge between the WW and KF schemes and even give a spectral
meaning to resonances, which would be absolutely impossible in the pure Schrödinger
approach.

Indeed, firstly, the spectrum of the Lax-Phillips semi-group PKeipt
∣∣
K

= eiBt, t >
0, associated with a compact scatterer, is discrete, which meets the basic requirement of
the WW approach. Secondly, the corresponding eigenfunctions in the incoming spectral

representation Jin : Din
Jin−→ H2

− are calculated explicitly, as illustrated by (14,15)
and, moreover, the corresponding eigenvalues of the dissipative generator coincide with
the zeros p̄s of the scattering matrix SLP . In the case when the singular spectrum of
the Lax-Phillips generator is absent and the discrete spectrum is simple, one can use
a rational approximation to the scattering matrix given by a finite Blaschke product
SN

LP = Θ0

∏N
s=1

p−p̄s

p−ps
, *ps < 0, with Θ0 a unitary constant.

Based on this approximation we can obtain an approximate description of the expo-
nential decay. In particular, the Lax-Phillips evolution of an initial state that coincides
with the eigenvector φs can be described explicitly as

eiBtφs = eip̄st φs.

Here the normalized eigenvectors φs are to be found as solutions of the impedance
boundary problem for the Schrödinger equation, with a subsequent restriction on the
co-invariant subspace, and the decrements *p̄s can be obtained from the asymptotics
(17). The resulting formula can be considered to be a unification of both the Fock–
Krylov and the Weisskopf–Wigner approaches to resonances.
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In a previous example, see Section 3, we derived the formula (16) based on inter-
action of the inner quantum system (on a compact domain [−a, 0]) with the Klein-
Gordon-Fock equation on the exterior domain defined by the appropriate matching at
the common boundary x = 0. Using the Lax-Phillips approach we recovered the spec-
tral meaning of resonances interpreting them as eigenvalues of the generator of the
Lax-Phillips semi-group. In this particular case, the generator has a discrete spectrum
located in the neighborhood of the spectrum of the unperturbed conservative system, the
one which is defined by the same Schrödinger differential equation with zero boundary
conditions at the end-points of the interval [−a, 0].

This permits to observe the WW concept of the decay from the LP spectral point of
view. In particular, in [4], an averaged decay is considered. Using the spectral represen-
tation for the Lax-Phillips semi-group, one can calculate the decrement by observing
the decay on the initial stage for a relatively small t. Indeed, taking into account that
〈ψr, ψ

+
r 〉 = Πr and that 〈ψs, ψr〉 =

√
2�p̄s

√
2�p̄r

�p̄s+�p̄r
, we get:

∥∥PKUt

∣∣
K
u
∥∥2 =

N∑
s,r

ei[p̄s−ipr ]t〈φs, φr〉
〈φ+

s , u〉 〈φ+
r , u〉

〈φs, φ
+
s 〉 〈φr, φ

+
r 〉

≤
N∑
s,r

e−[�p̄s+�p̄r ]t

∣∣∣∣〈φs, φr〉
〈φ+

s , u〉 〈φ+
r , u〉

〈φs, φ
+
s 〉 〈φr , φ

+
r 〉

∣∣∣∣ (18)

=
N∑
s,r

e−[�p̄s+�p̄r ]t

√
2*p̄s

√
2*p̄r

*p̄s + *p̄r

〈φ+
s , u〉 〈φ+

r , u〉
Πr Π̄s

.

One can see from (18) that
∥∥PKUt

∣∣
K
u
∥∥2 ≤ C(u)e−γt. The integral parameter γ can

be estimated based on the asymptotics of (18) for small t. Thus, we have

C(u)γ ≈ t−1
[
‖ PKUt

∣∣
K
u ‖2 − ‖ PKu ‖2

]

≤ 2
N∑
s,r

√
*p̄s

√
*p̄r〈φ+

s , u〉 〈φ+
r , u〉

Πr Π̄s

, (19)

as t → 0. Note that the incoming spectral representation transforms K in to K =
H2

+ ( SLPH2
+. Then, for u ∈ K , we have 〈ψ+

s , u〉 = 1
2π

∫
R

u(p)dp
p−p̄s

= iu(p̄s), with u
calculated as Jinu according to (13).

The ultimate formula (19) bears some features of the exponential decay formulae de-
rived according to the WW and KF concepts. Indeed, the derivation of the exponential
decay rate in the WW manner presented in [32], see the formula (80.13, chapter IX),
gives the decay rate via the matrix elements of the perturbation in the interaction repre-
sentation. If the perturbation is small, then the decay rate of the LP resonance state φs,
see can be interpreted as the decay of the bound state state with the eigenvalue

(
pD

s

)2
close to the resonance ps, according to (17).
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4.2 The Spectral Meaning of Resonances

Nevertheless, bridging together both of the contradictory concepts of the WW and KF
is not the main achievement of the Lax-Phillips point of view. We suggest that the main
achievement is the discovery of the spectral meaning of resonances: once we reduce
the unitary evolution onto the co-invariant space K = H2

+ ( SLPH2
+, the result is

represented, via Jin, by the Lax-Phillips semi-group

eiBtu =
∑

s

e−ip̄st φs〈φ+
s , u〉

〈φs, φ
+
s 〉

. (20)

Here the “Gamov vectors” φs, φ
+
s have an unambiguous spectral meaning as the eigen-

vectors of the Lax-Phillips semigroup generator B, and p̄s are the corresponding eigen-
values. The spectrum of the generator is discrete, but the whole picture of the restricted
evolution on the co-invariant subspace arose because of the specific features of the
Lax-Phillips dynamics, first of all of those that are due to the presence of the constant
multiplicity continuous spectrum on R = (−∞, ∞) for the shift group, exactly as it
was expected in [5]. But the authors of [5] missed another essential point: the orthogo-
nality in the energy-normed space of the incoming and outgoing invariant subspaces of
the wave equation evolution.

So, one can conclude that in the special case when the condition of orthogonality
on the incoming and outgoing subspaces for the wave evolution is satisfied, the KF
scheme of the exponential decay is confirmed mathematically. In that case, both the
KF and WW schemes give expected results including that of the discreteness of the
spectrum of resonances.

4.3 Quality of an Oscillation System and Resonance Pumping

Note that the spectral decomposition for the Lax-Phillips semi-group ensures an expo-
nentially decaying evolution for any single term of the spectral expansion of the semi-
group, with the decrement *ps. It is customary to interpret the slow decay of the terms
of the spectral expansion as a “high quality” of the corresponding oscillatory system.

There is, in principle, another method for the estimation of quality of the oscillatory
system that is based on estimating the growth of the amplitudes of forced oscillations
under periodic excitation. In radio-physics, these two estimations of “quality”, based
on the decay and on the “pumping”, are considered to be alternative estimations of the
quality, but the equivalence of them needs a justification using the spectral formulation
of the decay problem.

Indeed, let us consider the periodic excitation of the oscillatory system in the form

1
i

du

dt
= Bu + eiωtν

with zero incident value. Using the spectral representation of the Lax-Phillips semi-
group, one obtains that

u(t) =
∑

s

i

∫ t

0

ei(ω−p̄s)τdτeip̄st φs〈φ+
s , ν〉

〈φs, φ
+
s 〉

= eiωt
∑

s

1 − ei(p̄s−ω)t

(ω − p̄s)
φs〈φ+

s , ν〉
〈φs, φ

+
s 〉

.
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The phenomenon of resonance pumping is then observed when the frequency ω is close
to one of the eigenvalues of the Lax–Phillips generator. For instance, if p̄s−ω = −i*ps,
recall that −*ps > 0, then the forced oscillation regime is

u(t) =
e�p1t − 1

*p1
eiωtφ1〈φ+

1 , ν〉
〈φ1, φ

+
s 〉

+
∑
s>1

1 − ei(p̄s−ω)t

i(ω − p̄s)
φs〈φ+

s , ν〉
〈φs, φ

+
s 〉

.

Therefore, the forced amplitude of the first term is linearly growing with time, until
t ≈ (*p1)−1, but eventually, at large time scale, it saturates at the value

−(*p1)−1 φ1〈φ+
1 , ν〉

〈φ1, φ
+
1 〉

.

4.4 Complementarity of the Lax-Phillips Scattering Scheme and the Quantum
Zeno Effect

The celebrated Zeno Paradox, see [31], can also be treated from the viewpoint of the
Lax–Phillips evolution. Indeed, consider the Lax-Phillips evolution defined by the uni-
tary group Ut = eiLt in an energy normed space E and suppose that the group possesses
an orthogonal pair Din,out of incoming and outgoing subspaces.

The restriction PKUtPK, t > 0, of the positive semi-group onto the co-invariant
subspace K ≡ E ( [Din ⊕ Dout] is the Lax-Phillips semi-group PKUtPK ≡ eiBt with
the simple (with no self-adjoint/symmetric parts) dissipative generator B with discrete
spectrum (parameterized by the characteristic function SLP , the Lax-Phillips scattering
matrix, defined by a Blaschke product). Introducing the amplitude 〈eiLtφ, φ〉E ≡ aφ(t)
of the returning probability pt ≡ āφ aφ, for “smooth” elements φ ∈ K ∩ DB such
that Bφ ∈ DB we represent the amplitude as a(t) = 〈eiBtφ, φ〉E = 1 + it〈Bφ, φ〉E −
t2

2 〈B2φ, φ〉E + . . . . Then, Taylor’s Theorem up to second order applied to the returning
probability yields

p(t) = āφ aφ = 1 − 2t*〈Bφ, φ〉E − t2
[
,〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+ · · · .

If *〈Bφ, φ〉E �= 0, then 1− 2t*〈Bφ, φ〉E ≈ e−2t�〈Bφ, φ〉E , and hence, despite a multi-
ple control of the evolution we have p(t) ≈ [p(t/n)]n. This is the case of an exponential
decay with the decrement Γ = 2*〈Bφ, φ〉E . The alternative condition *〈Bφ, φ〉E = 0
implies

p(t) = 1 − t2
[
,〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+ . . . ≈ 1 − At2

which would give the following asymptotics for the probability under the evolution with
the multiple control at the sequence of moments tm = m

n t, m = 1, 2, . . . ,

[p(t/n)n] ≈ [1 − A/n2]n ≈ [e−A]1/n ≈ 1 as t → ∞.

This result corresponds to the quantum Zeno effect. The condition *〈Bφ, φ〉E = 0 is
not compatible with dissipativity of the simple (with no self-adjoint parts) generator B
with Riesz-basis property of eigenfunctions. Indeed the opposite condition 〈*Bφ, φ〉 >
0 is obviously satisfied for all vectors from the domain of B in the coinvariant subspace,
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if the system of it’s eigenvectors is a Riesz basis. Thus, we conclude that the Zeno effect
is not compatible with the Lax–Phillips evolution for elements φ from the coinvariant
subspace such that *〈Bφ, φ〉E > 0.

Vice versa, the general Schrödinger type unitary evolution Utφ = eiLt φ of a smooth
state φ is compatible with the Zeno effect (whenever L is a self-adjoint generator in the
Hilbert space E).

Indeed, the corresponding infinitesimal evolution for a smooth normalized state φ
yields

p(t) = 〈eiLt φ, φ〉E 〈φ, eiLt φ〉E ≈ 1 − t2
[
〈L2φ, φ〉E − (〈Lφ, φ〉E )2

]
+ . . . .

Hence, in an experiment with the multiple control at the moments of time tm = m
n t,

m = 1, 2, . . . , we obtain:

[p(t/n)]n ≈
(

1 − t2

n2

[
〈L2φ, φ〉E − (〈Lφ, φ〉E )2

])n

≈ e−[〈L2φ,φ〉E−(〈Lφ,φ〉E)2]t2n−1
→ 1, when n → ∞.

This corresponds to the standard zeno effect in quantum mechanics, see [8]. It is worth
mentioning that quantum mechanics description of dynamics and probability is not in-
trinsically involved in that. But probability arises as a detail of the measurement process:
it is clearly seen from the preceding analysis that the interplay between the dynamics
and the measurement process is different for the Schrödinger evolution [8] and for the
Lax-Phillips one.

5 Conclusion

Our version of matching of a zero-mass field in the outer space with the Schrödinger
evolution on the inner space of the quantum system allows one to derive the exponen-
tial decay based on the classical Lax-Phillips technique. Contrary to the constructions
suggested in [22,23] and those in the recent papers [25,26], we use explicit functional
model formulae for the eigenvalues and eigenvectors of the corresponding dissipative
generator that gives rise to the reduced dynamics on the corresponding co-invariant
subspace. For low energy, the dynamics on the inner space is matched with the corre-
sponding Schrödinger dynamics that provides the standard probabilistic interpretation
of the wave-function but would formally produce non-exponential terms in the large-
time scale. But the original dynamics, before being reduced to Schrödinger’s scenario,
exhibits an exponential decay for large time, with non-exponential terms absent. Our
approach also reveals the spectral meaning of the resonances and the resonance states,
and permits to bridge, on this base, the alternative concepts of resonances and the ex-
ponential decay proposed by Weisskopf–Wigner and Krylov–Fock. In turn, this proves
that the lifetime of a resonance and the velocity of the resonance pumping are directly
connected. We also establish the duality between the exponential decay and the absence
of the quantum Zeno effect on resonance initial data for the quantum system under a
permanent control.



Exponential Decay in Quantum Mechanics 287

Acknowledgement. We are grateful to Professor L. Prokhorov for a profound discus-
sion of massive photons in superconductors and the relevant references provided, and
to K. K. Makarov who helped us a lot with the text improvement on the last stage of
our work. One of the authors (B.P.) is grateful to the Russian Academy for the support
from the grant RFBR 03-01-00090.

References

1. Dirac, P.A.M.: Development of the physicists’s conception of Nature. In: Mehra, J. (ed.) The
Physicists Conception of Nature, pp. 1–14. D. Reidel Publ. (1973)

2. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University
Press, Princeton (1996) (12th printing)

3. Gamow, G.: Zur Quantentheorie des Atomkernes. Zeitshrift für Physik 51, 204–2012 (1928)
4. Weisskopf, V.E., Wigner, E.P.: Zeitshrift für Physik 63, 54 (1930); 65, 18 (1930)
5. Fock, V.A., Krylov, V.A.: Journal of Experimental and Theoretical Physics (USSR) 17, 93

(1947)
6. Fock, V.A.: Selected Works. Quantum Mechanics and Quantum Field Theory. In: Faddeev,

L.D., Khalfin, L.A., Komarov, I.V. (eds.), Chapman & Hall/CRC (2004)
7. Khalfin, L.: On the theory of decay of a quasi-stationary state. Soviet Phys. Doklady 2, 340

(1958)
8. Sakurai, J.: Modern Quantum Mechanics. Revised Edition. Addison-Wesley (1994)
9. Titchmarsh, E.C.: Eigenfunction Expansion Associated with Second-order Differential Equa-

tions, Part 1. Clarendon Press, Oxford (1962)
10. Lax, P., Phillips, R.: Scattering Theory. Academic Press, New York (1967)
11. Hegerfeldt, G.C.: Causality, particle localization and positivity of the energy. In: Irreversibil-

ity and Causality: Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol. 504,
pp. 238–245 (1998)

12. Beurling, A.: On two problems concerning linear transformations in Hilbert Space. Acta.
Math. 81, 239–255 (1948)

13. Nagy, B.S., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. Akademiai Kiado,
Budapest (1970)

14. Koosis, P.: Introduction to Hp Spaces, 2nd edn. Cambridge University Press, Cambridge
(1998)

15. Pavlov, B.: Spectral analysis of a dissipative singular Schrödinger operator in terms of a
functional model. In: Shubin, M. (ed.) Partial Differential Equations. Encyclopedia of Math-
ematical Sciences, vol. 65, pp. 87–153. Springer, Heidelberg (1995)

16. Nikol’skii, N.K., Khruschev, S.V.: A functional model and some problems of the spectral
theory of functions. Trudy Mat. Inst. Steklov. 176, 97–210, 327 (1987)

17. Krein, M.G.: Selected Works. II: Banach Spaces and Operator Theory, Natsional’naya
Akademiya Nauk Ukrainy, Institut Matematiki, Kiev (1996) (Russian)

18. Krein, M.G.: Selected Works. III. Topics in Differential and Integral Equations and Operator
Theory. In: Gohberg, I. (ed.), Birkhauser Verlag, Basel (1983)

19. Adamjan, V.M., Arov, D.Z.: On scattering operators and contraction semigroups in Hilbert
space. Dokl. Akad. Nauk SSSR 165, 9–12 (1965) (Russian)

20. Livshits, M.S.: Method of non-selfadjoint operators in the theory of waveguides. Radio Engi-
neering and Electronic Physics, American Institute of Electrical Engineers 1, 260–275 (1962)

21. Pavlov, B.: The theory of extensions and explicitly-soluble models. Russian Math. Sur-
veys 42(6), 127–168 (1987)

22. Flesia, C., Piron, C.: Helv. Phys. Acta 57, 697 (1984)



288 V. Kruglov et al.

23. Horwitz, L.P., Piron, C.: Helv. Phys. Acta 66, 694 (1993)
24. Strauss, Y., Horwitz, L.P., Eisenberg, E.: Representation of quantum mechanical resonances

in the lax-Phillips Hilbert space. Journal of Mathematical Physics 41, 12 (2000)
25. Baumgartel, H.: Gamov vectors for resonances: a Lax-Phillips point of view. International

Journal of Theoretical Physics 46(8), 1960–1985 (2007)
26. Baumgartel, H.: Resonances of quantum-mechanical scattering systems and lax-Phillips scat-

tering theory. Journal of Mathematical Physics 51(113508), 1–20 (2010)
27. Ginzburg, V., Landau, L.: Toward the superconductivity theory. Zhurnal Eksp. Yheoret.

Physics 29, 1064 (1950) (Russian)
28. Okun, L.B.: Leptons and Quarks. North Holland, Amsterdam (1981)
29. Ponomarev, A., Yudovich, M., Gruzdev, M., Yudovich, V.: Theoretical estimations of topo-

logical factor in interaction of the nano-particles with electromagnetic waves. Scientific
Israel-Technological Advancements 11(3), 20–26 (2009)

30. Gribov, V.N.: Quantum Electrodynamics, Moscow, Igevsk (2001) (Russian)
31. Misra, B., Sudarshan, E.C.G.: The Zeno paradox in quantum theory. Journal of Mathematical

Physics 18(4), 753–756 (1977)
32. Davydov, A.S.: Quantum Mechanics, ch. IX, Section 80. Pergamon (1965),
33. Krasnosel’skij, M.A.: On self-adjoint extensions of Hermitian operators. Ukrainskij Mat.

Journal 1, 21 (1949) (Russian)
34. Shirokov, J.: Strongly singular potentials in three-dimensional quantum mechanics. Teor.

Mat. Fiz. 42(1), 45–49 (1980) (Russian)
35. Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators. London Math.

Society Lecture Note Series, vol. 271. Cambridge University Press (2000)
36. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space, vol. 1. Frederick

Ungar, Publ., New-York (1966)
37. Adamyan, V.A., Calude, C.S., Pavlov, B.S.: Transcending the limits of Turing computability.
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Abstract. In this text, we revisit part of the analysis of anti-entropy in
[4] and develop further theoretical reflections. In particular, we analyze
how randomness, an essential component of biological variability, is asso-
ciated to the growth of biological organization, both in ontogenesis and in
evolution. This approach, in particular, focuses on the role of global en-
tropy production and provides a tool for a mathematical understanding
of some fundamental observations by Gould on the increasing phenotypic
complexity along evolution. Lastly, we analyze the situation in terms of
theoretical symmetries, in order to further specify the biological meaning
of anti-entropy as well as its strong link with randomness.

Notions of entropy are present in different branches of physics, but also in in-
formation theory, biology . . . even economics. Sometimes, they are equivalent
under suitable transformations from one (more or less mathematized) domain
to another. Sometimes, the relation is very mild, or may be at most due to a
similar formal expressions. For example, one often finds formulas describing a
linear dependence of entropy from a quantity formalized as

∑
i pi log(pi), where

pi is the “probability” of the system to be in the i-th (micro-)state. Yet, different
theoretical frames may give very different meanings to these formulas: somehow
like a wave equation describing water movement has a similar mathematical for-
mulation as Schrdingers wave equation (besides some crucial coefficients), yet
water waves and quantum state functions have nothing to do with each other.
Another element seems though to be shared by the different meanings given to
entropy. The produ! ction of entropy is strictly linked to irreversible processes.

But . . . what is entropy? The notion originated in thermodynamics. The first
law of thermodynamics is a conservation principle for energy. The second law
states that the total entropy of a system will not decrease other than by in-
creasing the entropy of some other system. Hence, in a system isolated from its
environment, the entropy of that system will tend not to decrease.

More generally, increasing entropy corresponds to energy dispersion. And here
we have the other element shared by the different views on entropy: in all of its
instances, it is linked to randomness, since diffusions, in physics, are based on
random walks. Thus, energy, while being globally preserved, diffuses, randomly.
In particular, heat flows from a hotter body to a colder body, never the inverse.
Only the application of work (the imposition of order) may reverse this flow.

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 289–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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As a matter of fact, entropy may be locally reversed, by pumping energy. For
example, a centrifuge may separate two gazes, which mixed up by diffusion. This
separation reduces the ergodicity (the amount of randomness, so to say) of the
system, as well as its entropy.

Living beings construct order by absorbing energy. In Schrdingers audacious
little book, What is life? [32], it is suggested that organisms also use order to
produce order, which he calls negentropy, that is entropy with a negative sign.
And this order is produced by using the order of the chromosomes a-periodic
structure (his audacious conjecture) and by absorbing organized nutrients (dont
we, the animal, eat mostly organized fibers?). Of course, a lot can be said, now,
against these tentative theorizations by the great physicist.

But is really entropy the same as disorder? There is a long lasting and sound
critique, in physics, of the myth of entropy as disorder. F. L. Lambert (see [16])
is a firm advocate of this critical attitude. This is perfectly fair since entropy
is just energy dispersal in physics, regardless of whether the system is open
or closed1. Yet, as explained in [13], in physics, a lowered energy state is not
necessarily disorder, because it simply results in the identical molecule with a
lowered energy state. The fact that such a molecule might be biologically inactive
may not concern the physicist, but it definitely does concern the biologist . . . .
In this perspective, it is then sound to relate entropy to ! disorder in biological
dynamics: a lesser activity of a molecule may mean metabolic instability, or,
more generally, less coherent chemical activities of all sorts. As a consequence,
this may result in less bio-chemical and biological order.

In either case, though, and by definition, entropy has to be related to en-
ergy dispersal. As a matter of fact, the analysis of heat diffusion in animals
and humans has a long history that dates back to the 30s [12]. Since then, sev-
eral approaches tried to bridge the conceptual gap between the purely physical
perspective and the biologists concern with organization and with its opposite,
disorder, in particular when increasing, in aging typically [1,13,24,30].

Let’s now summarize the perspective of this paper in a very synthetic way:
Evo/devo processes (Evolution and development or ontogenesis) may be globally
understood as the “never identical iteration of a morphogenetic process”. Ran-
domness is at the core of that “ never identical iteration”. By adding selection
and following Gould’s remarkable insight, we will in particular understand below
the increasing compexity of organisms along Evolution, as the result of a purely
random diffusion in a suitable phase space (and its defintion is the crucial issue).

1 Entropy in Ontogenesis

In an organism, the internal entropy production has in primis a physical na-
ture, related to all thermodynamic processes, that is to the transformation and
exchange of matter and energy. Yet, we will add to this a properly biological
1 However, the argument that disorder is an epistemic notion, not suitable to physics,

is less convincing, since classical randomness, at the core of entropy, is also epistemic
(see above and [2]).
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production for entropy, the production due to all irreversible processes, includ-
ing biological (re-)construction, that is both embryogenesis and cell replacement
and repair (ontogenesis, globally).

Observe first that, in a monocellular organism, entropy is mostly released in
the exterior environment and there are less signs of increasing disorder within
the cell. Yet, changes in proteome and membranes are recorded and may be
assimilated to aging, see [19,28]. In a metazoan, instead, the entropy produced,
under all of its forms, is also and inevitably transferred to the environing cells,
to the tissue, to the organism, [4]. Thus, besides the internal forms of entropy (or
disorder) production, a cell in a tissue, the structure of the tissue itself . . . the
organism, is affected by this dispersal of energy, as increasing disorder, received
from the (other) cells composing the tissue (or the organism). Aging, thus, is also
or mostly a tissular and organismic process: in an organism, it is the network
of interactions that is affected and that may have a fall-out also in the cellular
activities (metabolism, oxidativ! e stress . . . , see below).

Moreover, the effect of the accumulation of entropy during life contributes,
mathematically, to its exponential increase in time. Thus, with aging, this in-
crease exceeds the reconstructive activities, which oppose global entropy growth
in earlier stages of life (this theory, articulated in four major life periods, is
proposed in [4]). Now, we insist, entropy production, in all its forms, implies
increasing disorganization of cells, tissues, and the organism. This, in turn, may
be physically and biologically implemented by increasing metabolic instability,
oxidative effects, weakening of the structure and coherence of tissues (matrix,
collagene’s links, tensegrity) . . . and many more forms of progressive disorgani-
zation [7,6,33,29]. Of course, there may be other causes of aging, but the entropic
component should not be disregarded and may also help in proposing a unified
understanding of diff! erent phenomena.

Our second observation is that entropy production is due to all irreversible
processes, both the thermodynamic ones and the permanent, irreversible, (re-
)construction of the organism itself. This generating and re-generating activity,
from embryogenesis to repair and turnover, is typically biological and it has been
mathematically defined as anti-entropy (see [4] and below2). In other words, ir-
reversibility in biology is not only due to thermodynamic effects, related to
the production of energy, typically, but also to all processes that establish and
maintain biological organization — that is, it is concomitantly due to entropy
production and its biological opposite, anti-entropy production: embryogene-
sis, for example, is an organizing and highly irreversible process per se. And it

2 The word anti-entropy has already been used, apparently only once and in physics, as
the mathematical dual of entropy: its minimum coincides with the entropy maximum
at the equilibrium, in mixture of gases at constant temperature and volume [8].
This is a specific and a very different context from ours. Our anti-entropy is a new
concept and observable with respect to both negentropy and the mathematical dual
of entropy: typically, it does not add to an equal quantity of entropy to give 0
(as negentropy), nor satisfies minimax equations! , but it refers to the quantitative
approach to biological organization, as opposing entropy by the various forms of
biological morphogenesis, replacement and repair.
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produces entropy not only by the thermodynamic effects due to energy disper-
sion, but also, in our view, by the very biological constitutive activities.

Cell mitosis is never an identical reproduction, including the non-identity of
proteomes and membranes. Thus, it induces an unequal diffusion of energy by
largely random effects (typically, the never identical bipartition of the proteome).
That is, biological reproduction, as morphogenesis, is intrinsically joint to vari-
ability and, thus, it produces entropy also by lack of (perfect) symmetries. By
this, it induces its proper irreversibility, beyond thermodynamics.

As a comparison, consider an industrial construction of computers. The aim
is to produce, in the same production chain, identical computers. Any time a
computer is doubled, an identical one (up to observability) is produced and “or-
ganization” (locally) grows, at the expenses of energy. Entropy is then produced,
in principle, only by the required use and inevitable dispersal of energy, while
the construction per se just increases organization, along the production chain.
Moreover, if, in the construction chain of computers, one destroys the second
computer, you are back with one computer and you can iterate identically the
production of the second. The process can be reverted (destroy one computer)
and iteratable (produce again an identical machine), by importing a suitable
amount of energy, of course. Imperfection should be (and are for 99% of the
machine ) below observability and functionality: they are errors and “noise”.

As we said, it is instead a fundamental feature of life that a cell is never
identical to the mother cell. This is at the core of biological variability, thus of
diversity, along Evolution as well as in embryogenesis (and ontogenesis, as per-
manent renewal of the organism, never identically). In no epistemic nor objective
way this may be considered a result of errors nor noise: variability and diversity
are the main “invariants” in biology, jointly to structural stability, which is never
identity, and, jointly, they all make life possible.

Thus, while producing new order (anti-entropy), life, as iteration of a never
identical and an always slightly disordered morphogenetic process, generates also
entropy (disorder), by the reproductive process itself. In a metazoan, each mitosis
produces two slightly different cells, both different also from the “mother” cell:
the asymmetry is a form of disorder and, thus, of entropy growth, within the
locally increasing order. And this, of course, in addition to the entropy due to
free energy consumption. It is this variability that gives this further, and even
more radical, form of irreversibility to all biological dynamics (in Evolution and
ontogenesis). There is no way to neither revert nor iterate an evolutionary or
embryognetic process: if you kill a cell after mitosis, you are not back to the
same original cell and this cell will not iterate its reproduction, identically3 .

3 The incompetent computationalist (incompetent in Theory of Computation), w! ho
would say that also computers are not identical and misses the point: the theory of
programming is based on identical iteration of software processes on reliable hard-
ware, i.e. functionally equivalent hardware (and it works, even in computer networks,
see the analysis of primitive recursion and portability of software in [20])). Any bi-
ological theory, instead, must deal with variability, by principle. As recalled above,
variability as never identical iteration, in biology, is not an error.
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It should be clear that this theoretical frame concerning the overall increase of
entropy in biology says nothing about how this disorganization takes place in the
various processes, nor anything about its timetable. The analyses of the detailed
phenomena that implement it in ontogenesis are ongoing research projects. So
far, we could apply these principles to an analysis of growing complexity in
Evolution, as summarized next.

2 Randomness and Complexification in Evolution

Available energy production and consumption are the unavoidable physical pro-
cesses underlying reproduction and variability. At the origin of life, bacterial
reproduction was (relatively) free, as other forms of life did not contrast it. Di-
versity, even in bacteria, by random differentiation, produced competition and a
slow down of the exponential growth (see diagram 3). Simultaneously, though,
this started the early variety of live, a process never to stop.

Gould, in several papers and in two books [10,11], uses this idea of random
diversification in order to understand a blatant but too often denied fact: the
increasing complexification of life. The increasing complexity of biological struc-
tures has been often denied in order to oppose finalistic and anthropocentric
perspectives, which viewed life as aiming at Homo sapiens as the highest result
of the (possibly intelligent) evolutionary path.

Yet, it is a fact that, under many reasonable measures, an eukaryotic cell is
more complex than a bacterium; a metazoan, with its differentiated tissues and
its organs, is more complex than a cell . . . and that, by counting also neurons and
connections, cell networks in mammals are more complex that in early triploblast
(which have three tissues layers) and these have more complex networks of all
sorts than diplobasts (like jellyfish, a very ancient animal). This non-linear in-
crease can be quantified by counting tissue differentiations, networks and more,
as hinted by Gould and more precisely proposed in [4], that we will extensively
summarize and comment, next. The point is: how to understand this change
towards complexity without invoking global aims? Gould provides a remarkable
answer based on the analysis of the asymmetric random diffusion of life. Asym-
metric because, by principle, life cannot be less complex than bacterial life4. So,
reproduction by variability, along evolutionary time and space, randomly pro-
duces, just as possible paths, also more complex individuals. Some happen to be
compatible with the environment, resist and proliferate (a few even very suc-
cessfully) and keep going, further and randomly producing also more complex
forms of life. Also, since the random exploration of possibilities may, of course,
decrease the complexity, no matter how this is measured. Yet, by principle: any
asymmetric random diffusion propagates, by local interactions, the original sym-
metry breaking along the diffusion. Thus there is no need for a global design or

4 Some may prefer to consider viruses as the least form of life. The issue is controversial,
but it would not change at all Goulds and ours perspective: we only need a minimum
which differs from inert matter.
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aim: the random paths that compose any diffusion, also in this case help to un-
derstand a random growth of complexity, on average. On average, as, of course,
there may be local inversion in complexity; yet, the asymmetry randomly forces
to the right. This is beautifully made visible by figure 1, after [10], page 205.
The image explains the difference between a random, but oriented development
(on the right, 1b), and the non-biased, purely random diffusive bouncing of life
expansion on the left wall, on the left 1a.

t

(a) Passive trend, there are more trajec-
tories near 0

t

(b) Driven trend, the trajectories have a
drift towards an increased mean

Fig. 1. Passive and driven trends. In one case, the boundary condition, materialized
by a left wall, is the only reason why the mean increases over time, and this increase
is therefore slow. In the case of a driven trend, or biased evolution, however, it is the
rule of the random walk that leads to an increase of the mean over time (there is an
intrinsic trend in evolution). Gould’s and our approach are based on passive trends,
which means that we do ume that there is an intrinsic bias for increasing complexity
in the process of evolution.

Of course, time runs on the vertical axis, but . . . what is in the horizontal
one? Anything or, more precisely, anywhere the random diffusion takes place
or the intended phenomenon diffuses in. In particular, the horizontal axis may
quantify biological complexity whatever this may mean. The point Gould wants
to clarify is in the difference between a fully random vs. a random and biased
evolution. The biased right image does not apply to evolution: bacteria are still
on Earth and very successfully. Any finalistic bias would instead separate the
average random complexification from the left wall.

Note that, in both cases, complexity may locally decrease: tetrapodes may
go back to the sea and lose their podia (the number of folding decreases, the
overall body structure simplifies). Some cavern fishes may loose their eyes, in
their new dark habitat; others, may lose their red blood cells [31]. Thus, the local
propagation of the original asymmetry may be biologically understood as follows:
on average, variation by simplification leads towards a biological niches that has
more chances to be already occupied. Thus, global complexity increases as a
purely random effect of variability and on the grounds of local effects : the greater
chances, for a “simpler” organism, to bump against an already occupied niche.
Thus, more complex variants have just slightly more probabilities to survive and
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reproduce — but this slight difference is enough to produce, in the long run, very
complex biological organisms. And, of c! ourse, variability and, thus, diversity
are grounded on randomness, in biology. No need for finalism nor a priori global
aim nor design at all, just a consequence of an original symmetry breaking in
a random diffusion on a very peculiar phase space: biomass times complexity
times time (see figure 3 for a complete diagram)5.

Similarly to embryogenesis, the complexification is a form of local reversal of
entropy. The global entropy of the Universe increases (or does not decrease),
but locally, by using energy of course, life inverses the entropic trend and cre-
ates organization of increasing complexity. Of course, embryogenesis is a more
canalized process, while evolution seems to explore all “possible” paths, within
the ecosystem-to-be. Most turn out to be incompatible with the environment,
thus they are eliminated by selection. In embryogenesis increasing complexity
seems to follow an expected path and it is partly so. But only in part as failures,
in mammals say, reach 50% or more: the constraints imposed, at least, by the
inherited dna and zygote, limit the random exploration due to cell mitosis. Yet,
their variability, joint to the many constraints added to development (first, a
major one: dna), is an essential component of cell differentiation. Tissue dif-
ferentiation i! s, for our point of view, a form of (strongly) regulated/canalized
variability along cell reproduction.

Thus, by different but correlated effects, complexity as organization increases,
on average, and reverts, locally, entropy. We called anti-entropy, [4], this observ-
able opposing entropy, both in evolution and embryogenesis; its peculiar nature
is based on reproduction with random variation, submitted to constraints. As
observed in the footnote above, anti-entropy differs from negentropy, which is
just entropy with a negative sign, also because, when added to entropy, it never
gives 0, but it is realized in a very different singularity (different from 0): ex-
tended criticality [5,22]. In the next section, we will use this notion to provide a
mathematical frame for a further insight by Gould.

3 (Anti-)Entropy in Evolution

In yet another apparently nave drawing, Gould proposes a further visualization
of the increasing complexity of organisms along Evolution. It is just a qualitative
image that the paleontologist draws on the grounds of his experience. It contains
though a further remarkable idea: it suggests the phase space (the space of
description) where one can analyze complexification. It is bio-mass density that
diffuses over complexity, that is, figure 2 qualitatively describes the diffusion of
the frequency of occurrences of individual organisms per unity of complexity.
5 By our approach, proposed in [4], we provide a theoretical/mathematical justification

of the ZFEL principle in [26], at the core of their very interesting biological analysis:
“ZFEL (Zero Force Evolutionary Law, general formulation): In any evolutionary
system in which there is variation and heredity, there is a tendency for diversity and
complexity to increase, one that is always present but may be opposed or augmented
by natural selection, other forces, or constraints acting on diversity or complexity.”
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Fig. 2. Evolution of complexity as understood by Gould. This illustration is borrowed
from [11], page 171. This account is provided on the basis of paleontological observa-
tions.

This is just a mathematically naive, global drawing of the paleontologist on
the basis of data. Yet, it poses major mathematical challenges. The diffusion,
here, is not along a spatial dimension. Physical observables usually diffuse over
space in time; or, within other physical matter (which also amounts to diffusing
in space). Here, diffusion takes place over an abstract dimension, complexity.
But what does biological complexity exactly mean? Hints are given in [11]: the
addition of a cellular nucleus (from bacteria to eukaryotes), the formation of
metazoa, the increase in body size, the formation of fractal structures (usually
— new — organs) and a few more. . . . In a sense, any added novelty provided by
the random bricolage of Evolution and at least for some time compatible with
the environment, contributes to complexity. Only a few organisms become more
complex over time, but, by the original symmetry breaking mentioned above, this
is! enough to increase the global complexity. Of course, the figure above is highly
unsatisfactory. It gives two slices over time where the second one is somewhat
inconsistent: where are dinosaurs at present time? It is just a sketch, but an
audacious one if analyzed closely. Mathematics may help us to consistently add
the third missing dimension: time.

A simple form of diffusion equation of q in time t over space x is:

∂q

∂t
= D

∂2q

∂x2
+ Q(t, x) (1)

where Q(t, x) is a source term describing the situation at the origin of the process.
Yet, in our case, the diffusion of this strange quantity, m, a bio-mass density,
takes place over an even more unusual space, biological complexity, whatever the
latter may mean. In [4], we dared to further specify Goulds hints for biological
complexity, as a quantity K = αKc + βKm + γKf where α, β, and γ are the re-
spective weights of the different types of complexity within the total complexity.
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The details are in [4], lets just summarize the basic ideas. So, Kc (combinatorial
complexity) corresponds to the possible cellular combinatoric; Km (morpholog-
ical complexity) is associated to the forms which arise (connexity and fractal
structures); Kf (functional complexity) is associated to the relational structures
supporting biological functions (metabolic and neuronal relations). We will dis-
cuss this approach in section 4.

K is a tentative quantification of complexity as anti-entropy, in particular
in biological evolution: the increase of each of its components (more cellular
differentiation, more or higher dimensional fractal structures, richer networks
. . . yield a more “complex” individual). Of course, many more observables and
parameters may be taken into account in order to evaluate the complexity of
an organism: [4] provides just a mathematical basis and a biological core for a
preliminary analysis (an application to ontogenesis as an analysis of C. Elegans
development is also presented). They suffice though for a qualitative (geometric)
reconstruction of Goulds curve, with a sound extension to the time dimension.

As mentioned above, anti-entropy opposes, locally, to entropy: it has the same
dimension, yet it differs from negentropy, since it does not sum up to 0, in
presence of an equal quantity of entropy. It differs also from information theoretic
frame, where negentropy has been largely used, as negentropy (= information) is
independent from coding and Cartesian dimensions. This is crucial for Shannon
as well as for Kolmogorof-Chaitin information theories. Anti-entropy, instead, as
defined above, depends on foldings, singularities, fractality . . . it is a geometric
notion, thus, by definition, it is sensitive to codings (and to dimension).

The next step is to adapt eq. 1 to these new dimensions. Just use Goulds
observables and parameters, m and K, that we specified some more, and write:

∂m

∂t
= D

∂2m

∂K2
+ Q(t,K) (2)

But what is here Q(t,K), the source term? In order to instantiate Q by a specific
function, but also in order to see the biological system from a different perspec-
tive (and get to the equation also by an “operatorial approach”), we then gave
a central role, as an observable, to the “global entropy production”.

Now, in physics, energy, E, is the main observable, since Galileo inertia, a
principle of energy conservation, to Noethers theorems and Schrdingers equation.
Equilibria, geodetic principles etc directly or indirectly refer to energy and are
understood in terms of symmetry principles (see [5]). At least since Schrdinger
and his equation, in (quantum) physics, one may view energy as an operator and
time as a parameter6.

As hinted above, in biology, also constitutive processes, such as anti-entropy
growth (the construction and reconstruction of organization), produce entropy,
since they also produce some (new) disorder (recall: at least the proteome, after
a mitosis, is non-uniformly and randomly distributed in the new cells). In these

6 In short, Schrdinger transforms an equation with the structure E = p2

2m
+ V (x),

where V (x) is a potential, by associating E and p to the differential operators ∂/∂t
and ∂/∂x, respectively, see[4].
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far form equilibrium, dissipative (possibly even non-stationary) processes, such
as Evolution and ontogenesis, energy turns out to be just one (very important)
observable, a parameter to be precise. One eats (and this is essential) and gets
fatter: production and maintenance of organization requires energy, but it yields
a different observable, one that has a different dimension, tentatively defined
by K above, as organization. Typically, in allometric equations, so relevant in
biology, energy or mass appear as a parameter. Thus, in our approach, the key
observable is organization that is formed or renewed (anti-entropy production).

Moreover, entropy, as associated to all irreversible processes, from energy
flows to anti-entropy production, is the observable which summarizes all ongoing
phenomena; by its irreversibility, it is strongly linked (conjugated) to time.

In summary, we proposed to change the conceptual frame and the conceptual
priorities: we associated the global entropy production σ to the differential op-
erator given by time, ∂/∂t (Schrdinger does this for energy, which is conjugated
to time, in quantum physics). Thus, our approach allows to consider biological
time as an “operator”, both in this technical sense and in the global perspec-
tive of attributing to time a key constitutive role in biological phenomena, from
evolution to ontogenesis. But how to express this global observable?

In a footnote to [32], Schrdinger proposes to analyze his notion of negative
entropy as a form of Gibbs free energy G. We applied this idea to our anti-
entropy S−, where S− = −kK (k is a positive dimensional constant and K is
the phenotypic complexity). Now, G = H − TS, where T is temperature, S is
entropy and H = U + PV is the systems enthalpy (U is the internal energy, P
and V are respectively pressure and volume). By definition, the metabolism R
has the physical dimension of a power and corresponds to the difference between
the fluxes of generalized free energy G through the surface Σ:

R =
∑

[JG(x) − JG(x + dx)] = −
∑

dx(Div JG) (3)

Locally the conservation (or balance) equation is expressed in the general form:

R = −Div JG =
dG

dt
+ Tσ (4)

where σ represents the speed of global production of entropy, that is σ is the
entropy produced by all irreversible processes, including the production of bio-
logical organization or anti-entropy. Thus, the global balance of metabolism for
the system of life (the biosphere) has the following form, where S− and S+ are
anti-entropy and entropy, respectively:

R =
dH

dt
− T

(
dS−

dt
+

dS+

dt

)
+ Tσ - a

dM

dt
− T

(
dS−

dt
+

dS+

dt

)
+ Tσ (5)

where H - aM , for a mass M and a coefficient a, which has the magnitude of
a speed squared.

Tσ is a crucial quantity: it contains our σ, modulo the temperature T , since
R is a power. Tσ corresponds to the product of forces by fluxes (of matter, of
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Fig. 3. Time evolution of mass repartition over anti-entropy. The initial condition is
a finite mass at almost 0 anti-entropy, thus having the shape of a pulse.

energy — chemical energy, for instance — etc.). Now, a flux is proportional to
a force, thus to a mass, and hence Tσ is proportional to a mass squared. It can
then be written, up to a coefficient ζb and a constant term Tσ0 as:

Tσ ≈ ζbM
2 + Tσ0 (6)

ζb is a constant that depends only on the global nature of the biological system
under study and it is 0 in absence of living matter.

Without entering into further details, by using as state function a bio-mass
diffusion function over complexity K, that is the bio-mass density m(t,K) in
t and K, the operatorial approach applied to equation 6 gave us the equation,
with a linear source function αbm:

∂m

∂t
= Db

∂2m

∂K2
+ αbm (7)

Its solution, bellow, yields the diagram in figure 3.

m(t,K) =
A√
t
exp(at) exp(−K2/4Dt) (8)

In summary, by skipping all the technical details in [4], we could derive, by
mathematics and starting from Goulds informal hints, a general understanding
as well as the behavior of the Evolution of complexity function w. r. to time.
And this fits data: at the beginning the linear source term gives an exponen-
tial growth of free bacteria. Then, they complexify and compete. Of course, this
diagram, similarly to Goulds, is a global one: it only gives a qualitative, geomet-
ric, understanding of the process. It is like looking at life on Earth from Sirius.
Analogously to Goulds diagram, the punctuated equilibria, say, and the major
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extinctions are not visible: the insight is from too far and too synthetic to appre-
ciate them. It only theoretically justifies Goulds proposal and soundly extends it
to time dependence, by mathematically deriving it from general principles: the
dynamics of a diffusion by random paths, with an asymmetric origin.! Its source
is given by an exponential growth. Life expansion is then bounded, canalized,
selected in the interaction with the ever changing, co-constituted ecosystem. The
core random complexification persists, while its “tail” exponentially decreases,
see equation 8 and figure 3. In that tail, some neotenic big primates, with a huge
neural network, turn out to be the random complexification of bacteria, a result
of variability and of the immense massacres imposed by selection.

Another (important) analogy can be made with Schrdingers approach (his
famous equation, not his book on life) and further justifies the reference to it for
the analysis of this (rather ordinary) diffusion equation. Schrdinger dared to de-
scribe the deterministic evolution of the wave function in Quantum Mechanics as
the dynamics of a law of probability (and this gives the intrinsic indetermination
of the quantum system). We synthetically represented Biological Evolution as
the dynamics of a potential of variability, under the left wall constraint. Again,
this idea is essentially Goulds idea in his 1996 book: he sees Evolution just as an
asymmetric diffusion of random variability. We just made this point explicit and
developed some computations as a consequences of the analogy with the deter-
mination in Quantum Mechanics and the operatorial approach of Schrdinger.

4 Anti-entropy as a Measure of Symmetry Changes

In [22], we proposed to understand biological phenomena, in comparison and
contrast with physical theories, as a situation where the theoretical symmetries
are “constantly” broken. We will now show that such considerations allows us
to interpret anti-entropy, somewhat in the spirit of Boltzmann’s approach of
physical entropy. In [4], premises of these aspects are considered from a strictly
combinatorial point of view, leading to a “constructive” definition of the three
components of anti-entropy, we recalled in section 3. To show how symmetries
come into play we will analyze now these components.

Combinatorial complexity, Kc: For a total number of cells N and for a num-
ber nj of cells of cell type j, the combinatorial complexity is defined as:

Kc = log

(
N !∏
j nj !

)
(9)

A classical combinatorial point of view consists in saying that it is the num-
ber of ways to classify N cells in j categories each of sizes nj. More precisely,
we recognize, inside the logarithm, the cardinal, N !, of the symmetry group
SN , that is the group of transformations, called permutations, that exchange
the labels of N elements. Similarly, nj ! is the number of permutations among
nj units, which has the biological meaning of permutations of cells within
a cell type: in other words, permuting cells within the same cell type is a
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combinatorial invariant of the complexity of an organism. Thus, the group
of permutations leaving the cell types invariants is the group Gtype =

∏
Snj ,

that is the group obtained as direct product of the symmetries corresponding
to permutations within each cell type. Formally, this group corresponds to
the change of labels in each cell type, which can all be performed indepen-
dently and conserve the cl! assification by cell types. The cardinal of this
group is

∏
j nj !.

Then, the number of cell type configurations is the number of orbits gen-
erated by the right action of Gtype on SN . In other words, a cell type con-
figuration is first given by a permutation of �1, N�, which gives the random
determination for N cells. Moreover, these transformations must be com-
puted modulo any transformation of Gtype that gives the same configuration
(as we said, cells within each cell type are combinatorially equivalent — we
will discuss below this hypothesis, in more biological terms). Lagrange the-
orem then gives the number of remaining transformations N !/

∏
j nj !, which

is the number of possible configurations. Clearly, an organism with just one
cell type (typically, a unicellular being) has combinatorial complexity 0. As a
result, this measure of combinatorial complexity depends on the total num-
ber N of cells, but is actually a measure of the symmetry breaking induced
by the differentiation in cell types.

Let’s compare the situation with Boltzmann approach of entropy. If one
has a number of microscopic phase space states Ω having the same en-
ergy, the corresponding entropy is defined as S = kb log(Ω). In the case of
gases, one considers that the particles are indiscernible. This means that
one does not count twice situations which differ only by permuting parti-
cles. In other words one formally understands the situation by saying that
labels attached to particles are arbitrary. Thus, more soundly, S is defined
by S = kb log(Ω) − kb log(N !) > 0. This symmetry by permutation reduces
the size of the microscopic possibility space, and, as a result, entropy.

In our approach, we have Kc = log(N !) −
∑

i log(ni!) which is greater
than 0, as soon as there is more than one cell type. Thus, the increase
of the possibility space (the diversity or the differentiations) increases the
complexity. More precisely, the complexity, as absolute value of anti-entropy,
is decreased by the remaining symmetries, quantified by the term

∑
i log(ni!).

We understand then that anti-entropy can be analyzed, at least in this case,
as an account of how much biological symmetries are broken by the cascade
of differentiations. Formally, we can sum the situation up by saying that
the combinatorial complexity and its contribution to anti-entropy are based
on a group of transformations, SN , and a subgroup, Gtype. The biologically
relevant quantity is then the ratio of sizes of the groups SN and Gtype.

Morphological complexity, Km: This complexity is associated to the
geometrical description of biologically relevant shapes. It is computed in
particular by counting the number of connex areas. Note that this number
corresponds to space symmetry breakings for motions covering this space
— or ergodic motions. Then, one has to consider the number of shape
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singularities, in the mathematical sense, where singularities are invariants
by action of diffeomorphisms. The fractal-like structures are particularly rel-
evant since they correspond to an exponential increase of the number of
geometrical singularities with the range of scales involved. Thus, fractal-like
structures lead to a linear growth of anti-entropy with the order of magni-
tudes where fractality is observed.

Functional complexity, Kf (the last quantity proposed in [4]): This quantity
is given by the number of possible graphs of interaction. As a result, the
corresponding component of anti-entropy is given by the choice of one graph
structure (with distinguished nodes) among the possible graphs. This in-
volves the selection of the structure of possible graphs and, correspondingly,
which resulting graphs are considered equivalent. In terms of symmetries,
we first have a symmetry among the possible graphs which is reduced to a
smaller symmetry, by the equivalence relation. For example, in [4], the case
is considered where the number of edges is fixed, so the considered symmetry
group is engendered by the transformations which combine the deletion of an
edge and the creation of another one. The orbits preserve the total number
of edges, so that the orbit of a graph with 〈k〉N edges are the graphs with
this number of edg! es.

We understand then that anti-entropy, or at least its proposed decomposition
in [4], is strictly correlated to the amount of symmetry changes. We will now
look more closely at the case of combinatorial complexity since it involves only
the groups of permutations and their subgroups, but at the same time will also
allow us to express a crucial conceptual and mathematical point.

We indeed encounter a paradox in the case of combinatorial complexity. On
one side, we have an assumption that cells of the same cell type are symmetric
(interchangeable). On the other, in section 1, we stressed that each cell division
consists in a symmetry change. This apparent paradox depends on the scale we
use to analyze the problem, as well as on the “plasticity” of the cells in a tissue
or organ, as the possibility to be interchanged and/or to modify their individual
organization. Typically, one can assume that liver cells function statistically
(what matters is their average contribution to the function of the organ), while
neurons may have strong specific activities, yet they may also deeply modify their
structure (change number, forms and functionality of synaptic connections, for
example). Thus, we will next consider the individual contribution of cells to the
combinatorial complexity of an organism at different scales.

If we consider an organism with a large number of cells, N , and the pro-
portion qj for cell type j we get two different quantities for the combinatorial
complexities, Kc1 and Kc2:

Kc1

N
=

log(N !)
N

- log(N)
Kc2

N
=

log
(

N !∏
j(qjN)!

)
N

-
∑

j

qj log(1/qj) (10)

We propose to understand the situation as follows. Basically, both levels of cel-
lular individuation are valid; but they have to be arranged in the right order.
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Cellular differentiation is the first and main aspect of the ability of cells to
individuate in a metazoan, so we can assume that the main determinant of com-
binatorial complexity is Kc2. It is only after this contribution that the further
process of cellular individuation occurs. The latter leads to a mean contribution
which is

∑
j aj (qj log(qjN) − 1) per cell, where aj quantifies the ability of each

cell type to change their organization. It seems reasonable to expect that the aj

are high in the cases, for example, of neurons or of cells of the immune system.
On the contrary, the aj should be especially low for red blood cells. The reason
for this is not only their lack of dna, but also their relatively simple and homo-
geneous cytoplasmic organization. Similarly, l! iver cells may have statistically
irrelevant changes in their individual structure.

Thus, the contribution of cell types to anti-entropy derives first from the for-
mation of new cell types, while considering the ability of cells to reproduce, with
changes, within a cell type as a further important (numerically dominant) aspect
of their individuation process. Note that this analysis does not suppose that a
cell type for a cell is irreversibly determined, but it means that the contribution
of cell type changes to anti-entropy are understood as changes of Kc2.

We can then provide a refined version of S−
c , where act is the “weight” ac-

corded to the formation of different cell types:

S−
c

−Nkb
= act

∑
j

qj log(1/qj) +
∑

j

aj (qj log(qjN) − 1) (11)

= (act − 〈aj〉) 〈log(1/qj)〉 + 〈(〈aj〉 − aj) log(1/qj)〉 + 〈aj〉 log(N) (12)

where 〈x〉 is the mean of x among all cells (so that the contribution of each
cell type is proportional to its proportion in the organism). Both equations 11
and 12 are biologically meaningful. The terms in equation 11 correspond, by
order of appearance, to the contribution of the categorization by cell types and
to the contribution of individuation among a cell type. In equation 12, we have
obtained terms that can be assimilated to Kc1 (last term) and to Kc2 (first term),
the latter being positive only if act − 〈aj〉 > 0, meaning that the contribution
associated to cell types is positive only if it is greater than the mean cellular
individuation. This is logical since cell types make a positive contribution to the
complexity only if the amount of cellular diversity they introduce is greater than
the one that cellular individuation alone would introduce.

Last but not least, the second term has the sign of an anti-correlation between
aj and log(1/qj), meaning that this term is positive when there are many low
complexity cell types7 and few high complexity cell types. More precisely, using
the Cauchy-Schwartz equality case, we get that maximizing (and minimizing)
7 In theory of information, log(1/qj) is the information associated to j: it quantifies

its scarcity. If one assume that aj = 〈aj〉± a and that we keep the mean complexity
of cells, the anti-correlation is typically obtained when we have more low complexity
cell types, with fewer cells, than high complexity cell types (which have therefore
more cells). If one consider again the aj as a degree of freedom, the same result can
be achieved high complexity cell types with very high complexity and therefore a
high number of bellow average complexity cell types.
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this term (everything else being kept constant), leads to 〈a!j〉−aj ∝ log(1/qj)−
〈log(1/qj)〉. Then this optimization a priori leads to maximizing the variance of
information (in informational terms), at constant entropy (=mean information).

Here, the issue derived from looking with an increasing finer resolution at the
individuation potential. However, the reciprocal situation can also occur. Let’s
consider the functional complexity, understood as the possibility of interactions
between cells (the paradigmatic example is neurons). Then, by assuming that
there are N neurons with 〈k〉 average number of synapses for each neuron (where
〈k〉 is between 103 and 104 for humans), as presented in [4], we get:

NG =
( (

N
2

)
〈k〉N

)
Kf1

N
- 〈k〉 log(N) (13)

However, if we postulate that any graph of interaction is possible, then we get
a total number of possible interactions which corresponds to a choice between
interaction or no interaction for each entry of the interaction matrix (N2 cells).
However, the latter is symmetric; and we do not count the self-interactions (be-
cause they correspond to the complexity of the cell) so we obtain N(N − 1)/2
binary choices, so 2n(n−1)/2 possibilities: Kf2/N - N/2.

There is two main lines of reasoning we can follow to understand the situation.
The first is to look at the time structure of symmetry changes. Indeed, the sym-
metry changes occur as a temporal cascade. As a result, the temporal hierarchy
of individuation is crucial. Here, we can refer to some phenomena concerning
the graph of interaction of neurons. A crude description of the formation of neu-
ral networks is the following. First, a large number of “disordered” connections
take place. Only after, the functional organization really increases by the decay
of unused synapses (see for example [23]. Then, the “bigger” symmetry group
involved in the description is of the form Kf1, with 〈k〉 mean number of connec-
tions; but then this symmetry group is reduced to obtain a smaller symmetry
group with 〈l〉 mean number of connections. This operation can be seen as a
change of symmetry groups, from the transformations preserving the number of
connections with 〈k〉N connections to those preserving 〈l〉N connections.

Of course there are many other possible components for a measure of bio-
logical complexity. This proposal, defined as anti-entropy, provides just a tenta-
tive backbone for transforming the informal notion of “biological organizational
complexity” into a mathematical observable, that is into a real valued function
defined over a biological phenomenon. It should be clear that, once enriched well
beyond the definition and the further details given in [4], this is a proper (and
fundamental) biological observable. It radically differs from the rarely quanti-
fied, largely informal, always discrete (informally understood as a map from
topologically trivial structures to integer numbers) notion of “information”, still
dominating in molecular circles, see [21] for a critique of this latter notion.

5 Theoretical Consequences of This Interpretation

In the section above, we have been focused on technical aspects of the “mi-
croscopic” definition of anti-entropy. Using this method, we have seen that



Randomness Increases Order in Biological Evolution 305

anti-entropy can mainly be understood in terms of symmetry changes. We will
now consider the theoretical meaning of this situation in a more general way. As
we exposed in [22], we propose to understand biological systems as characterized
by a cascade of symmetry changes. Now, our understanding of a “biological tra-
jectory”, a philogenetic and ontogenetic path, as a cascade of symmetry changes
yields a proper form of randomness to be associated to the construction and
maintenance of biological organization. This perspective is particularly relevant
for us, since it links the two theoretical approaches of the living state of matter
that our team has introduced: anti-entropy [4] and extended criticality [3,22].

More precisely, in phylogenesis, the randomness is associated to the “choice”
of different organizational forms, which occurs even when the biological objects
are confronted with remarkably similar physical environment and physiological
constraints. For example, the lungs of birds and mammals have the same function
in similar conditions; but they have phylogenetic histories which diverged long
ago and, extremely different structures.

This example is particularly prone to lead to approximate common symme-
tries, since it relates to a vital function (respiration and therefore gas exchanges)
shared by a wide class of organisms. It is noteworthy that numerous theoreti-
cal studies have analyzed lungs by optimality principles [14,34,9]. However, the
optimality principles differ in these studies (minimum entropy production, max-
imum energetic efficiency, maximum surface/volume ratio, . . . ). Accordingly,
even among mammals, structural variability remains high. For example, [27] de-
scribe the differences in the geometrical scaling properties of human lungs on
one side, and of rats, dogs and hamsters lungs on the other side. Moreover, [25]
show that the criteria of energetic optimality and of robustness for the gas ex-
changes, with respect to geometric variations, are incompatible. More generally,
optimization criteria are not particularly th! eoretically stable. In particular ro-
bustness is a relative notion: it depends on the property considered as well as
on the transformations with respect to which we expect it to be robust [17].

Similarly, the theoretical symmetries constituted in ontogenesis are the result
of the interactions with the environment and of the developmental trajectory
already followed at a given time. In our perspective, this trajectory must then
be understood as a history of symmetry changes. And, of course, the situation
at a given moment does not “determine” the symmetry changes that the object
will undergo. This is a crucial component of the randomness of the biological dy-
namics, as we consider that random events are associated to symmetry changes.
These events are given by the interplay of the organism with its own physiol-
ogy (and internal milieu) and with its environment, the latter being partially
co-constituted by the theoretical symmetries of the organism, since the relevant
aspects of the environment depend also on the organism.

In other terms, the conservation, in biology, is not associated to the biolog-
ical proper observables, the phenotype, and the same (physical) interface (e.g.
energy exchange) with the environment may yield very different phenotypes;
thus, there is no need to preserve a specific phenotype. In short, the symmetry
changes occurring in an organism can only be analyzed in terms of the previous
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theoretical symmetries (biology is, first, an historical science) and the differences
of the possible changes can be associated to different forms of randomness.

In the cases of symmetry breakings, the symmetry change corresponds to
the passage to a subgroup of the original symmetry group. As a result, the
theoretical possibilities are predefinable (as the set of subgroups of the original
group). This typically occurs in the case of physical phase transitions, and the
result is then a randomness associated to the choice of how the symmetry gets
broken. For example, if an organism has an approximate rotational symmetry,
this symmetry can be broken in a subgroup, for example by providing a particular
oriented direction. We then have a rotational symmetry along an axis. This can
again be broken, for example into a discrete subgroup of order 5 (starfish).

Another situation corresponds to the case where the symmetry changes are
constituted on the basis of already determined theoretical symmetries (which
can be altered in the process). This can be analyzed as the formation of addi-
tional observables which are attached to or the result of already existing ones.
Then these symmetry changes are associated with already determined proper-
ties, but their specific form is nevertheless not predetermined. A typical example
is the case of physically non-generic behaviours that can be found in the phys-
ical analysis of some biological situations, see [18]. From the point of view of
the theoretical structure of determination, it is then a situation where there are
predetermined attachment points, prone to lead the biological system to develop
its further organization on them. The form of the biological response to these
organizational opportunities of complexification is not, however, predetermined
and then generates an ! original form of randomness. This theoretical account
is close to the notion of next adjacent niche, proposed in [15]; however, we em-
phasize, here, that the theoretical determination of these next organizational
possibilities is only partially predetermined. For example imagine that a biologi-
cal dynamic has approximately certain symmetries, which leads to a non-generic
singular point; then it is possible (and maybe probable) that this point will be
stabilized in evolution, in an unknown way.

The former case is constituted, in a sense, by a specific organizational op-
portunity. We can, however, consider cases where such opportunities are not
theoretical predetermined. Now, the constitution of symmetry changes should
be understood as even more random, and the associated predictability is ex-
tremely low. Gould’s most quoted example of “exaptation’, the formation of the
bones of the internal hear from the double jaw of some tetrapods, some two
hundred million years ago can fit in this category.

We have seen that the symmetry changes lead to a strong form of randomness.
This randomness and its iterative accumulation are, however, the very fabric of
biological organization. Therefore, we have a theoretical situation where order
(biological organization) is a direct consequence of randomness. Its global anal-
ysis allowed us to give mathematical sense to Gould’s evolutionary complexifi-
cation along evolution, as a consequence of the random paths of a asymmetric
diffusion (sections 2 and 3). A finer (or local) analysis suggested a way to un-
derstand also ontogenetic changes in these terms, that is as a random dynamics
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of symmetry changes. This situation should be not confused with the cases of
order by fluctuations or statistical stabilization (for example, by the central limit
theorem). In our case, indeed, the order is not the result of a statistical regu-
larization of random dynamics into a stable form, which would transform them
into a deterministic frame. On the contrary, the random path of a cascade of
symmetry changes yields the theoretical symmetries of the object (its specific
phenotypes), which also determine its behaviour.

In this context, the irreversibility of these random processes is taken into ac-
count by entropy production. The latter, or more precisely a part of the latter,
is then associated to the ability of biological objects to generate variability, thus
adaptability. In ontogenesis, this point confirms our analysis of the contribution
of anti-entropy regeneration to entropy production, in association with variabil-
ity, including cellular differentiation. This situation is also consistent with our
analysis of anti-entropy as a measure of symmetry changes. Notice that the sym-
metry changes, considered as relevant with respect to anti-entropy, may be taken
into account, for example, in the coefficients corresponding to the individuation
capacity of different cell types in our discussion above (see section 4).
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13. Hayflick, L.: Entropy explains aging, genetic determinism explains longevity, and
undefined terminology explains misunderstanding both. PLoS Genet. 3(12), e220
(2007)

14. Horsfield, K.: Morphology of branching trees related to entropy. Respiration Phys-
iology 29(2), 179 (1977)

15. Kauffman, S.A.: Investigations. Oxford University Press, USA (2002)
16. Lambert, F.L.: Entropy and the second law of thermodynamics (2007),

http://www.entropysite.com

17. Lesne, A.: Robustness: Confronting lessons from physics and biology. Biol. Rev.
Camb. Philos. Soc. 83(4), 509–532 (2008)

18. Lesne, A., Victor, J.-M.: Chromatin fiber functional organization: Some plausible
models. Eur. Phys. J. E. Soft. Matter 19(3), 279–290 (2006)

19. Lindner, A.B., Madden, R., Demarez, A., Stewart, E.J., Taddei, F.: Asymmetric
segregation of protein aggregates is associated with cellular aging and rejuvenation.
Proceedings of the National Academy of Sciences 105(8), 3076–3081 (2008)

20. Longo, G.: Critique of Computational Reason in the Natural Sciences. Imperial
College Press/World Scientific (2009)

21. Longo, G., Miquel, P.-A., Sonnenschein, C., Soto, A.M.: From information to or-
ganization in biology (to appear, 2012)

22. Longo, G., Montvil, M.: From physics to biology by extending criticality and sym-
metry breakings. Progress in Biophysics and Molecular Biology 106(2), 340–347
(2011); Systems Biology and Cancer

23. Luo, L., O’Leary, D.M.: Axon retraction and degeneration in development and
disease. Annual Review of Neuroscience 28, 127–156 (2005)

24. Marineo, G., Marotta, F.: Biophysics of aging and therapeutic interventions by
entropy-variation systems. Biogerontology 6, 77–79 (2005)

25. Mauroy, B., Filoche, M., Weibel, E.R., Sapoval, B.: An optimal bronchial tree be
dangerous. Nature 427, 633–636 (2004)

26. McShea, D.W., Brandon, R.N.: Biology’s first law: the tendency for diversity and
complexity to increase in evolutionary systems. University of Chicago Press (2010)

27. Nelson, T.R., West, B.J., Goldberger, A.L.: The fractal lung: Universal and species-
related scaling patterns. Cellular and Molecular Life Sciences 46, 251–254 (1990)

28. Nystrm, T.: A bacterial kind of aging. PLoS Genet. 3(12), e224 (2007)
29. Olshansky, S., Rattan, S.: At the heart of aging: Is it metabolic rate or stability?

Biogerontology 6, 291–295 (2005)
30. Pezard, J., Martinerie, L., Varela, F.J., Bouchet, F., Guez, D., Derouesn, C., Re-

nault, B.: Entropy maps characterize drug effects on brain dynamics in alzheimer’s
disease. Neuroscience Letters 253(1), 5–8 (1998)

31. Ruud, J.T.: Vertebrates without erythrocytes and blood pigment. Na-
ture 173(4410), 848 (1954)

32. Schrdinger, E.: What Is Life? Cambridge U.P. (1944)
33. Sohal, R.S., Weindruch, R.: Oxidative stress, caloric restriction, and aging. Sci-

ence 273(5271), 59–63 (1996)
34. West, G.B., Brown, J.H., Enquist, B.J.: The fourth dimension of life: Fractal ge-

ometry and allometric scaling of organisms. Science 284(5420), 1677–1679 (1999)

http://www.entropysite.com


Haunted Quantum Contextuality versus Value

Indefiniteness

Karl Svozil

Institute of Theoretical Physics, Vienna University of Technology, Wiedner
Hauptstraße 8-10/136, A-1040 Vienna, Austria

svozil@tuwien.ac.at

Abstract. Physical entities are ultimately (re)constructed from elemen-
tary yes/no events, in particular clicks in detectors or measurement de-
vices recording quanta. Recently, the interpretation of certain such clicks
has given rise to unfounded claims which are neither necessary nor suffi-
cient, although they are presented in that way. In particular, clicks can
neither inductively support nor “(dis)prove” the Kochen-Specker theo-
rem, which is a formal result that has a deductive proof by contradiction.
More importantly, the alleged empirical evidence of quantum contextual-
ity, which is “inferred” from violations of bounds of classical probabilities
by quantum correlations, is based on highly nontrivial assumptions, in
particular on physical omniscience.

Discussion

Time and again, in coffee houses and elsewhere, members of the Viennese ex-
perimental physics community reminded me always to keep in mind that all our
physical “facts” are ultimately derived and constructed from detector clicks. It
is this basic wisdom that, when consequentially applied to recent experiments,
suggests to rethink certain claims of empirical proof.

Let us, for the sake of properly assessing the situation, review some historical
cornerstones. Motivated by certain, as it turned out inapplicable, no-go theo-
rems by von Neumann regarding hidden parameters, Bell came forward with
criteria for classical probabilities and expectations, resembling the conditions of
possible experience that had been contemplated by Boole a century earlier [18].
Essentially, these criteria state that, if one forces the (counterfactual) physical
co-existence upon certain finite sets of complementary, incompatible, potential
observables—meaning that every single one could be measured, although due
to complementarity it is impossible to simultaneously measure all of them—
the associated potential measurement outcomes are subject to certain algebraic
bounds.

As these probabilistic bounds are not satisfied by quantum observables, the
respective measurements outcomes cannot consistently co-exist [16]; at least
not under the classical presumptions entering the calculations leading to these
bounds. These arguments have subsequently been strengthened by the Kochen-
Specker and the Greenberger-Horne-Zeilinger theorems, as for the latter ones
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any violations of the conditions of possible experience must occur on every sin-
gle quantum and at least for a single observable [24] rather than occasionally.

Those results relate to situations in which omniscience is assumed; that is,
all observables which could potentially be observed can indeed be associated
with actual elements of physical reality of a single quantum. For a realist this
might appear self-evident [20]. Also for experimentalists this seems to be obvious;
after all, any particular observation renders outcomes, regardless of the mutual
complementarity of some of the observables involved; in this view, “potentially
operational” means “existence.” By this inkling, the situation suggests that the
measurement “reveals” a pre-existing element of physical reality of the quantum
observed. Stated pointedly, registration of some detector clicks is interpreted as
a revelation about what is taken as the quantized object.

If these pre-existing elements of physical reality are taken for granted, it is
not unreasonable to “solve” or “explain” the conundrum imposed by the various
aforementioned theorems by assuming that any potential measurement outcome
may depend on whatever other maximal co-measurable collection of observables
(the context, interpretable as maximal operator [11, sect. 84]) are co-measured
alongside. This dependence of the outcome of a single quantum measurement on
its context—that is, the influence of what is (sometimes implicitly) co-measured
alongside this single quantum measurement—is termed quantum contextuality.

Note that the Born rule, and also Gleason’s theorem, requires the quantum
probabilities and expectations, and thus all quantum statistical properties, to be
noncontextual. Notice also that contextuality attempts to maintain a realistic,
omniscient, quasi-classical framework by abandoning context independence for
single quantum observables.

Now, if one maintains realistic omniscience—that is, the pre-existence of all
outcomes of complementary potential observables (as is implicitly assumed in
Bell- and Kochen-Specker-type arguments)—then it is indeed true that, as stated
by Cabello [5], “the immense majority of the experimental violations of Bell
inequalities [[proves]] quantum contextuality.” Actually, the only difference be-
tween older evidence of violations of Bell-type inequalities and more recent ones
( [12], [2], [13], [1] and [14] ) seems to be based on the fact that the prior ones
rely on spatially separated quanta in Einstein-Podolsky-Rosen “explosion” type
schemes, whereas more recent ones are based on single quanta—a concept which
appears to be more in the spirit of Kochen-Specker type theorems which apply to
the structure of observables of single quanta [7]. But even these sorts of empirical
findings referring to single quanta rely on the non-instantaneous measurement
of all but a few (mostly two or three in cases involving two- or three-particle
Einstein-Podolsky-Rosen and Greenberger-Horne-Zeilinger type) configurations,
and therefore cannot even counterfactually assure the operational existence of
all elements of physical reality at once [22].

Alas, these assumptions are neither necessary (and sufficient), as other, rather
exotic options [15, 17] demonstrate, nor is there any more direct empirical evi-
dence in their support. Indeed, quantum predictions of Einstein-Podolsky-Rosen
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type setups involving singlet states of qutrits suggest that contextuality cannot
be observed [23], although a direct experimental test is still lacking.

Thus with regards to quantum contextuality, that is, the “explanation” of
Bell- and Kochen-Specker-type arguments, the situation is rather discomforting:
insofar as contextuality seems to “explain” various findings related to quantum
predictions and correlations, it can only be indirectly inferred by assuming some
extra assumptions, including classical omniscience; otherwise it is not necessary.
And insofar it could be directly testable it is very unlikely to show up. Because
of this dilemma, it is suggested to re-evaluate recent empirical findings in terms
of a much broader picture of value indefiniteness; including also the possibility
that there needs not exist a pre-existing element of physical reality associated
with certain observables.

Stated pointedly, value indefiniteness is the assumption that, with regards
to certain potential observables, a quantum system cannot prepared to be in
a specific, definite state, because the quantum system has been prepared in a
definite state of a different, complementary observable. Hence there does not
exist any entity or property of a physical system under observation which deter-
mines a measurement outcome of such a value indefinite observable completely.
If some observer chooses to measure any such value indefinite observable—thus
“forcing” an observation upon the combined system of measurement apparatus
and quantum—the actual measurement outcome or event is also (if not entirely)
determined by the disposition of the measurement apparatus [3]. This should
be contrasted to the definition of an element of physical reality in the sense of
Einstein, Podolsky, and Rosen [10]: in the latter case the measurement outcome
is defined or linked to a physical property of the quantum measured, rather than
to the combination of both measurement apparatus and the quantum measured.

Thus in situations involving counterfactual potential observables, such as in
Bell- and Kochen-Specker-type arguments, the experimental outcomes actually
measured might not originate from such pre-existence, but might depend on the
interaction between the quantum measured and the measurement apparatus.
Pointedly stated, the outcome might not reflect an intrinsic objective physical
property of the quantized object, but rather originate in the way a measure-
ment apparatus generates the outcome by interacting with the quantum. Al-
ready Bell [3] suggested that (cf. also Refs. [6, 8] for related experiments) “the
result of an observation may reasonably depend . . . on the complete disposition
of the apparatus.” Perhaps this was also what Bohr had in mind by mention-
ing [4] “the impossibility of any sharp separation between the behavior of atomic
objects and the interaction with the measuring instruments which serve to define
the conditions under which the phenomena appear.”

So far no experiments have been performed to quantify the different empirical
consequences of the assumption of quantum contextuality versus the assumption
of quantum value indefiniteness. One possibility would be to measure the vary-
ing capacities of the measurement apparatus to translate between the context
observed and a different context in which a quantum was prepared [21].
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These considerations are highly relevant for the computational capacities of
quantized system exhibiting incomputability [9], because, as it is commonly as-
sumed [25], quantum systems are irreducibly indeterministic. How can we con-
ceptualize and justify such computational capacities, in particular in view of the
uniform one-to-oneness of the quantum evolution at certain devices such as fifty-
fifty beam splitters generating a coherent superposition of classical states [19]?
One possibility would take into account the combined action of a single quantum
system, registered by a macroscopic measurement device with many degrees of
freedom.
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Is the Universe Like π or Ω?

Stephen Wolfram

Wolfram Research, Inc., USA

Can everything about the universe and its history be computed like the digits
of π? Or is it instead uncomputable, like the digits of Chaitin’s Ω?

We do not yet know the answer. But the question has great significance not
only for science but also for our whole understanding of the nature of existence.

The notion that there might be an ultimate—in effect computable—model for
the universe has a long history. Indeed, from the earliest days of Greek science
until well into the 1900s, it seems to often have been believed that an ultimate
model of the universe was not far away.

In antiquity, it was thought that perhaps everything was made of “elements”
like fire and water. In the 1700s, after Newton and friends, the focus changed to
“corpuscles,” bound by gravity-like forces. In the 1800s, it was fields, with atoms
perhaps being “knots in the ether.” Then with the discovery of the electron, it
was briefly thought that it might be what everything is made of. That then in
turn gave way to electromagnetic fields, then gravitational fields, then some kind
of extended “unified fields.”

In the early 1900s, it was thought that all the “elementary particles” of the
universe were known. But that turned out not to be true, and by the 1950s, new
supposedly elementary particles were being discovered at a rapid rate.

In the 1960s, the quark model had explained most of these new particles, and
by the 1970s work on quantum fields and gauge theories had led to what is now
called the Standard Model of particle physics—which appeared to explain all
forces except gravity.

Three more shocks occurred in quite rapid succession in the mid-1970s, how-
ever, with the discoveries of the c quark, τ lepton and b quark. But by the late
1970s, there was again widespread enthusiasm for an ultimate “grand unified”
theory. But when the predicted phenomenon of proton decay was not discovered,
enthusiasm again waned.

The Standard Model nevertheless seemed to be an adequate, if not particularly
elegant, theory for what was known, except for gravity. It still did not explain
the particular observed collection of fundamental particles. And there remained
the nagging problem that gravity did not really fit into its formalism at all.

And for essentially 30 years, this is what the situation has been.
All sorts of elaborate—and elegant—mathematical structures have been con-

structed, notably in string theory. But despite various encouraging signs, none of
them have convincingly been shown to reproduce the actual features of observed
physical reality.

Looking at all this history, from the “elements” of antiquity to modern string
theory, one might reasonably be pessimistic that an ultimate theory of physics
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would ever be found. For it seems that every level of description, upon more
careful scrutiny, is found to have deficiencies, which eventually require a whole
new level of description, with progressively more complex formalism.

And indeed, 30 years ago, I myself would have been skeptical that this process
would ever end, and that any ultimate theory of the universe could ever finally
be found.

But then something happened that forever changed my intuition. I started
studying the computational universe of simple programs—and I found, to my
great surprise, that even some of the very simplest possible programs can produce
immense complexity.

The notion that more complex rules and more complex formalism are in-
evitably needed to explain apparently more complex phenomena is just not cor-
rect.

And by the 1990s I had formulated my Principle of Computational Equiva-
lence: that the behavior of essentially any program that is not obviously simple
corresponds to a computation of equivalent sophistication.

So that immediately makes one ask whether in fact all the complexity and
richness of our universe can be captured by even a quite simple program.

In effect: can our physical universe be found out among the programs in the
computational universe? And perhaps even among the simple such programs.

If the universe corresponds to a simple program, then there are some imme-
diate conclusions that can be drawn. For a start, in a simple program there is
no “room” to fit all the details of the observed universe—the dimensionality
of space, the masses of particles, and so on. Rather, all of those details have
to emerge from something much lower level—indeed lower level even than for
example space and time.

One might think that there could be many programs that would almost agree
in their predictions for the universe, and it would require elaborate new exper-
iments to tell them apart. But among simple programs, it is almost inevitable
that there have to be major changes from one program to the next, leading to
dramatic differences in the universes they imply.

Of course, having a simple underlying program does not make it easy to deduce
its consequences, or to compare them with known features of the universe. In
fact, any program whose behavior is rich enough to be plausible as a model for
our universe inevitably shows the phenomenon of computational irreducibility—
which implies that to work out its consequences can in effect take explicitly
following each step in its evolution.

As a practical matter, I have studied in some detail a particular class of
models—equivalent to many others—in which the lowest level representation
is a network of connected nodes. And rather remarkably, I have found that it
is quite straightforward in such a model to derive an appropriate approxima-
tion of Special Relativity and standard Einsteinian gravitation—and there are
indications that quantum mechanics will also emerge.
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Will a model like this actually reproduce our whole universe? I do not know.
But the indications so far are good enough that it would seem foolish not to find
out for sure.

But even if such a model based on a simple program will work, how should
one find the appropriate program? The tremendous tendency based on tradi-
tional physics thinking is to work backwards from known physical laws, to try
to “reverse engineer” a program for the universe.

But if the program is simple, it seems inconceivable that this could work. It
is just too far from the underlying rules to the observable physical phenomena.

However, if the program is simple, there is another—at first outlandish—
approach to use: one can just start enumerating programs, and searching for the
correct one.

In effect, one is searching the computational universe for our actual physical
universe.

Traditional intuition might make one think this an absurd approach. But with
the intuition one gets from studying the computational universe, it seems a lot
less absurd.

And indeed I have continually been surprised just what can be found by
searching the computational universe. The simplest universal Turing machine.
The simplest axiom system for logic. And countless algorithms of great practical
importance, notably in Mathematica and Wolfram|Alpha.

Now, of course, even if our universe can be represented by a program, why
should it be a simple one?

It is a very basic observation about the universe that there is at least some
order in it: every particle in the universe does not get to “do its own thing.” But
if the universe is a program, just how complicated a one might it be?

Perhaps a few lines of code. Perhaps a hundred. Or a million. Or still bigger.
I had thought that in searching for our universe the main issue would be

scanning a large enough number of candidates. But in my practical efforts in
this direction, this is not the problem.

Certainly there are lots of candidate universes that are plainly not our uni-
verse. They have no notion of time, no communication in space, or some other
pathology. But even among the first thousand or so possibilities, one is already
beginning to find programs whose behavior is complex enough that one cannot
readily tell that they are not our universe.

Of course, there is still a great distance to go in determining whether any of
them actually does correspond to our universe. And there are many difficulties—
perhaps very great—associated with computational irreducibility.

But it is encouraging—and suggestive—that even among fairly simple pro-
grams, there are potentially good candidates.

I often wonder what it will be like if we actually do find that one of these
simple programs can reproduce our universe. In a sense it will be a very anti-
Copernican moment.
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For ever since Copernicus, we have repeatedly been confronted with ways in
which we are not special. Our planet is not at the center of the universe. Our
chemistry is just like other chemistry. And so on.

But if our universe is a simple one in the space of all possible universes, then
it would seem that in that way we are in fact special.

Perhaps that will be true. But I have a sneaking suspicion that something still
more bizarre will be true. And that somehow almost any candidate universe—
when viewed by observers inside that universe—will turn out somehow to be
precisely equivalent, and equivalent to our universe.

So that in a sense the rules for our universe could be taken to be either simple
or immensely complex—but for us inside the universe it will make no difference;
there will be a precise equivalence.

If we are lucky, it could be only a fairly small number of years before we can
tell if our universe can be reproduced by a simple program. But if in fact the
universe cannot be represented in this way, my guess is that it will be a long
time before this can reliably be known.

Over and over again I or others have thought that some phenomenon or
another just could not realistically be produced by a simple program. And over
and over this intuition has been wrong. And searching in the computational
universe has discovered a program that perhaps works in some quite unexpected
way, but that nevertheless produces the phenomenon one is looking for.

In the models I have studied in the greatest detail, one might for exam-
ple imagine that quantum processes could never arise. For in some sense the
models are deterministic, just successively replacing small parts of giant net-
works. But between the intrinsic randomness generated by the actual dynamics
of the system, and the fact that one is dealing with networks, rather than ex-
plicit fixed-dimensional spaces, the standard signatures of underlying determin-
ism disappear—clearly the way for quantum-like phenomena.

Usually in physics one imagines that one is just trying to make a model that
somehow approximates a system. But if one is to find an ultimate model of
physics, no approximation can be involved. The model, if run long enough, must
reproduce in precise detail every aspect of the evolution of the physical universe,
with no freedom whatsoever.

In effect, to find such a model would be to reduce physics to mathematics.
To find a way to compute, from a known rule and known initial conditions,
everything about how the universe evolves, just like one can compute the digits
of π.

Just as in the digits of π, there would be lots of apparent randomness. But
there would be no outside source of unknown, probabilistic, randomness. All
randomness would arise intrinsically from the actual rules for the system.

So how might this be wrong?
In effect, a key assumption is that the underlying rules for the universe must

be just like those in a standard computer, or Turing machine, or a cellular
automaton. The details of the most obvious representation would surely be dif-
ferent (in my detailed models, everything is for example based on networks).
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But the point is that there would be a precise correspondence to a standard
computational universe.

When one looks at the current mathematical formalism of physics, one might
be led to think that this could not possibly be correct. For physics is full of
continuous numbers—for positions in space, sizes of quantum amplitudes, and
so on.

And at least in the most obvious ways, no standard computational system
can ever precisely represent such numbers.

My guess, though, is that the presence of such continuous quantities is an
approximation, just as it is in standard large-scale physics. On a small scale
there are discrete atoms, but on a large scale it is a good approximation, under
many circumstances, to treat materials as continuous.

Likewise, there could be “true randomness,” like in the non-computable con-
stant Ω.

And until we can reproduce the universe from an explicit simple rule, we
cannot exclude this possibility.

To me, it has the feel of something unnecessary. But ultimately we cannot
be sure nothing like this is going on until we have successfully reproduced the
universe without it.

I suppose in a sense it would be an anticlimax after all the development of
science and physics to somehow come to the end: to finally be able to hold in
our hands a complete representation of our whole universe.

And we might think that in doing this we would have exhausted the need for
science.

But this would not be true. For the phenomenon of computational irreducibil-
ity in a sense guarantees an endless frontier: in this case, it guarantees that there
are questions about our universe that are always arbitrarily hard to answer, and
require arbitrarily long computations.

To find out that there is a simple computational rule for the universe—as
there is for π—would however be a remarkable achievement for human intellect.
For it would show us that our brains can successfully capture the underlying
rules for our whole universe.

It might not be true. It might be that there is no final theory of our universe,
and that, like Ω, there is a bottomless pit of surprises not just in the overall
behavior of the universe, but within the theory of the universe itself.

But I think it is almost a responsibility for our times to find out if the universe
is instead like π—and able to be captured in a finite way that our brains can
comprehend. And I myself hope very much to be able to pursue this goal, and
to see whether in fact all the remarkable richness and complexity of our universe
can be reduced to something as simple as π.
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Abstract. Dillencourt [1] showed that all maximal outerplanar graphs
can be realized as Delaunay triangulations of points in convex position.
In this note, we give two new, alternate proofs.

1 Introduction

The Delaunay triangulation of a planar point set in convex position is, combi-
natorially, a maximal outerplanar graph. Dillencourt [1] showed that the other
direction is also true: any graph which arises from a triangulation of the interior
of a simple polygon can be realized as a Delaunay triangulation. Dillencourt’s
proof uses a simple and natural criterion on the angles of triangles in a Delaunay
triangulation, and results in an O(n2) time incremental algorithm to calculate
these angles and infer a realization. Lambert [5] adapted this method to a linear
time algorithm.

The general question, of characterizing and reconstructing arbitrary Delaunay
triangulations (in two- or higher dimensions), is substantially more difficult. A
closely related problem, going back to Steiner (see Grünbaum [3], page 284), asks
for a characterization of the graphs of inscribable or circumscribable polyhedra:
those whose vertices lie on a sphere, resp. whose faces are tangent to a sphere.
Such graphs are said to be of inscribable, resp. circumscribable type. The best
result to date is due to Rivin [6], who proved necessary and sufficient conditions
for a polyhedral graph to be of inscribable or circumscribable type, but these
conditions have not led to intrinsic structural characterizations of the graphs.
Dillencourt and Smith [2] linked inscribability of a graph to its realizability
as a Delaunay triangulations, and gave a criterion relating Hamiltonicity to
inscribability.

Our contribution. In this paper, we present two new simple and elementary
proofs of Dillencourt’s theorem:
� Research supported by NSF CCF-1016988 grant of Streinu.
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Theorem 1. Any maximal outerplanar graph can be realized as a Delaunay
triangulation.

We are not aware of these proofs previously appearing in the literature. The first
one is an easy consequence of the criterion of Dillencourt and Smith [2] relating
Hamiltonianicity to inscribability. The second one, which occupies most of this
note, uses Rivin’s [6] inscribability criterion and constructs an explicit “witness”
of this inscribability, in the form of weights assigned to the edges.

Preliminaries. We work with graphs G = (V,E) with vertices V = {1, . . . , n},
n > 3, and edges E, denoted as pairs of vertices e = ij, i, j ∈ V . Two paths
between two vertices are independent if they do not share other vertices besides
the end-points. A graph is connected if there is a path between any two vertices
and it is k-connected if there are k independent paths between any two vertices.
All graphs in this paper are 2-connected.

A graph is planar if it can be drawn in the plane (or, equivalently, on the
sphere) with no crossings of endpoint-disjoint edges. A drawing of a planar graph
on the sphere, called a spherical graph, subdivides the sphere into regions called
faces. For 2-connected spherical graph drawings, the faces are topological disks.
In the plane, exactly one face, called the outer face, is unbounded. A spherical
graph is specified by its sets of vertices, edges and faces: G = (V,E, F ). A plane
graph is obtained from a spherical graph by specifying a face f as the outer face:
G = (V,E, F, f).

The stellation Gs of a plane graph G = (V,E, F, f) is the graph obtained
by adding one new vertex (the stellating vertex s) and connecting it to all the
vertices of f through edges called stellating edges. Stellation does not violate
the planarity property: a stellated planar graph remains planar, and a plane
realization of it is obtained by placing the stellating vertex inside the face f .

The dual G∗ = (V ∗, E∗, F ∗) of a spherical graph G = (V,E, F ) is obtained
by switching the roles of vertices and faces: V ∗ = F , E∗ = E, F ∗ = V .

A plane graph where all vertices lie on the outer face is called an outerplanar
graph. In a maximal outerplanar graph all faces are triangular except the outer
face. A wheel graph is obtained by stellating a cycle. We will consider later
stellated outerplanar graphs.

A cutset of a graph is the minimal set of edges whose removal disconnects the
graph. A cutset is coterminous if all the edges emanate from a single vertex and
noncoterminous if its edges do not have a common endpoint. In the dual graph
G∗ of a spherical graph G, a coterminous cut set of G becomes the set of edges
of a face in G∗; a noncoterminous cut set of G becomes a non-facial cycle of G∗

(a cycle which is not a face).
A graph is polyhedral if it is planar and 3-connected. In this case, the faces

of a spherical realization are uniquely determined. Any polyhedral graph can be
realized as the 1-skeleton of a convex polyhedron in dimension 3 (Steinitz theo-
rem, see Grünbaum [3]). A polyhedral graph is inscribable if it can be realized
as the 1-skeleton of an convex polyhedron inscribed in a sphere.

Given a set P of points in the Euclidean plane, a triangulation of P is a plane
graph where all faces, with the possible exception of the outer face, are triangles.
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The Delaunay triangulation of a point set P is a triangulation of P with the
property that the circumcircle of any face contains no other point of P inside.
Not all planar triangulated graphs arise as graphs of Delaunay triangulations.
We focus now on maximal outerplanar graphs.

2 The First Proof

Our first proof that an outerplanar graph can be realized as a Delaunay trian-
gulation relies on two elegant results due to Dillencourt and Smith [2] and to
Rivin [6,7]. They relate inscribability, realization as Delauney triangulation and
Hamiltonicity.

A Hamiltonian cycle in a graph is a simple spanning cycle. Any graph that has
a Hamiltonian cycle is called Hamiltonian. A graph is 1-Hamiltonian if removing
any vertex from the graph makes it Hamiltonian.

Dillencourt and Smith [2] proved that:

Theorem 2. [2] A 1-Hamiltonian planar graph is of inscribable type.

They also observed (see [2], page 66 and [6], page 575) that:

Lemma 1. A plane graph G = (V,E, F, f) is realizable as a Delaunay tessella-
tion if and only if its stellation Gs is of inscribable type.

The first proof of Theorem 1 follows from these two results and the following
lemma:

Lemma 2. A stellated outerplanar graph Gs is 1-Hamiltonian.

Proof. Let us label the vertices of the underlying outerplanar graph G of Gs as
{1, 2, . . . , n} in counterclockwise order along its outer face (Hamilton cycle). If
we remove vertex s from Gs, we get the original, Hamiltonian graph G. If we
remove a vertex i, 1 ≤ i ≤ n, then we find the Hamiltonian cycle i + 1, i +
2, . . . , i− 1, s, i+ 1, with mod N index arithmetic (in the set {1, · · · , n}). Hence
Gs is 1-Hamiltonian. ��

This completes the first proof of Theorem 1.

3 The Main Proof

We turn now to the main result. We give a more technical proof of Theorem 1,
based on the following general characterization of inscribable graphs.

Theorem 3. [Rivin] A planar graph G = (V,E) is of inscribable type if and
only if:

1. G is 3-connected, and
2. There exists an assignment w : E → R of weights w(e) to the edges e ∈ E

such that:
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(a) (Edge condition) For each edge e, 0 < w(e) ≤ 1/2.
(b) (Vertex condition) For each vertex v, the sum of the weights of edges

incident to v is 1.
(c) (Cutset condition) For each non-coterminous cutset C ⊆ E, the sum

of the weights of its edges is at least 1.

Theorem 3 can be found in [2] (page 65), as a reformulation in the Euclidean
space of the general, hyperbolic space result of Rivin et al.[4] (page 247).

Combining this with Lemma 1, we have to prove that the stellation Gs of any
outerplanar graph G is 3-connected and has the weight assignment properties
from Theorem 3. We prove 3-connectivity first.

Lemma 3. Any outerplanar graph is 2-connected.

Proof. In an outerplanar graph, all the vertices lie on the unbounded face f . If
we label the vertices as 1, 2, . . . , n in the order in which they appear on the outer
face, there are two independent paths between any pair of vertices i and j: one
from i, i + 1, . . . , j and another is i, i− 1, . . . , j. ��
Lemma 4. The stellation Gs of an outerplanar graph G = (V,E, F, f) is 3-
connected.

Proof. By definition, the stellation of a planar graph is also a planar graph. We
must show that there exist three independent paths between any pair of vertices
i and j of Gs. If i, j ∈ E, the previous Lemma 3 gives two independent paths
between i and j. A third independent path is (i, s, j). If i �= s and j = s, we
obtain three independent paths (s, i), (s, i−1, i) and (s, i+1, i) (index arithmetic
is done modulo n in the range 1, . . . , n). ��
For convenience, we restate the weight assignment conditions in terms of the
dual graph G∗ = (V ∗, E∗, F ∗).

Theorem 4. [Dual formulation] A 3-connected planar graph G = (V,E) is
of inscribable type if and only if its dual G∗ has an assignment w : E → R of
weights on its edges e ∈ E∗ = E such that:

1. (Edge condition) For each edge e ∈ E∗, 0 < w(e) ≤ 1/2.
2. (Face condition) For each face f ∈ F ∗, the sum of its edge weights is 1.
3. (Cycle condition) For each non-facial cycle C ⊆ E∗, the sum of its edge

weights is at least 1.

With this formulation, and using Lemma 1, the proof of Theorem 1 is reduced
to proving:

Theorem 5. Let Gs be the stellation of an outerplanar graph. Then there exists
a weight assignment on the edges of its dual graph G∗

s such that the three edge,
face and cycle conditions of Theorem 4 are satisfied.

In the next section, we show the existence of a weight assignment satisfying the
face condition (Lemma 6). The proof of Theorem 5 is completed in Section 3.2,
where we verify that the weight assignment satisfies the edge and cycle conditions
(Lemmas 8 and 9).
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3.1 Weight Assignment

We start by having a closer look at the structure of the dual of a stellated
outerplanar graph G∗

s. If we remove the cycle C made of the duals of the stellating
edges of Gs, what remains is a tree, whose leaves lie on the cycle C. Removing
the leaf edges of the tree, what remains is a smaller tree called the backbone; this
is actually the dual of the outerplanar graph without the outer face. We thus
partition the edges of G∗

s into three classes: cycle, backbone and leaf edges. See
Fig 1 for an example.

(a) (b) (c)

Fig. 1. (a) A maximal outerplanar graph, with the outer face cycle (solid edges) and
interior edges (dashed). (b) Its stellation. Dotted edges are the stellating edges. (c) The
dual graph of the stellated outerplanar graph. The dual edges are thicker. Bold dotted,
dashed and normal edges are cycle, backbone and leaf edges, respectively.

The graph obtained by contraction of an edge ij has the two vertices i and
j merged into one new vertex v and the edges incident to either i or j become
incident to v. The opposite operation is called edge expansion.

A graph G has an edge-expansion inductive construction, starting from a base
graph G0 if there exists a sequence of graphs G0, G1, . . . , Gk such that Gi+i is
obtained from Gi by an edge expansion and Gk = G.

Lemma 5. The dual of a stellated maximal outerplanar graph G∗
s has an edge-

expansion inductive construction starting from a wheel graph.

Proof. We perform contraction and expansion operations on G∗
s . A contraction

is applied on a backbone edge, one at a time, in an arbitrary order. When all
backbone edges are contracted, we obtain a wheel graph where boundary edges
are cycle edges and remaining edges are leaf edges of G∗

s (see Fig 2(b)). This
sequence of contractions, taken in reverse, gives an edge-expansion inductive
construction for G∗

s. ��

Next we show that we can assign weights on the edges of G∗
s to meet condition

2 (the face condition) of Theorem 4.
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(a)
(b) (c)

Fig. 2. (a) The dual of a stellated outerplanar graph. Thick edges are backbone edges.
(b) Dual graph after contraction of all backbone edges. (c) Expansion of a single back-
bone edge.

Lemma 6. There exists a weight assignment on the dual of a stellated outer-
planar graph G∗

s such that the sum of the edge weights of each face is 1.

Proof. We assign weights on G∗
s in an inductive fashion, based on an edge ex-

pansion sequence G0, G1, . . . , Gn−3 for G∗
s .

Base case: G0 is a wheel graph on n vertices (see Fig 2(b)). We assign weight
1/n to each cycle edge and n−1

2n to each leaf edge.

Inductive step: Let f1, . . . , fn be the faces dual to the n vertices of G, labeled in
counter clockwise order. Assuming that we have completed a weight assignment
for Gk, let Gk+1 be obtained from Gk by the expansion of edge ij between faces
fi and fj . We assign a weight of ε, (for a value of 0 < ε ≤ 1/2 that will be
determined later) on the edge ij. As a result the sum of the weights on faces fi

or fj is imbalanced. We remove the imbalance by subtracting ε
2 from the cycle

edges of fi and fj , and subtracting ε
4 from each of the two leaf edges of fi and

fj, respectively. Although this restores the balance of weights for faces fi and
fj, it creates an imbalance for faces fi−1, fi+1, fj−1, fj+1 and cycle edges of G∗

s .
To fully balance the weights, we add ε

4 to the cycle edges of these four faces. See
Figure 3. Now the sum of the weights of the edges of each face is 1. This weight
assignment obviously satisfies the face condition. ��

The maximum and minimum possible weights on the edges of G∗
s will be useful

in completing the proof.

Lemma 7. Over all the stellated outerplanar graphs, the maximum possible
weight is 1

n + (n−2)ε
4 , and the minimum is 1

n − (n−3)ε
2 .
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Fig. 3. Three possible cases when a backbone edge is expanded, leading to the expan-
sion of two faces, which have, as neighbors, (a) four distinct faces, (b) two distinct faces
and one common face and (c) two common faces. When a backbone edge is expanded,
only the weights of these neighbor faces have to be adjusted; all the others remain
unchanged.

Proof. As described in the inductive step of the proof for Lemma 6, when a
backbone edge e incident to faces fi and fj is expanded, the weights of the two
cycle edges of these faces are decremented by ε/2. Also, the weight of each of
the cycle edges of four adjacent faces of fi and fj faces, fi−1, fi+1, fj−1 and fj+1

is increased by ε/4. However, if the expanded backbone edge e is a leaf of the
backbone tree, then fi−1 = fj+1 (and/or fi+1 = fj−1), as illustrated in Fig 3(b)
and 3(c). In this case, the weight of the cycle edge of the face fi−1 is increased
twice, each time by ε/4.

The minimum, resp. maximum weight of an edge is attained when its weight
is reduced by ε

2 , resp. increased by ε
4 , at each backbone expansion step. This

happens when the original outerplanar graph G has all diagonals emanating from
a single vertex, or, equivalently, when the dual graph G∗ has one face incident
to all the backbone edges. See Fig 4. Consider a face f in G∗

s corresponding to
such a vertex in G.

Each time a non-leaf edge of the backbone tree is expanded, the weight of
each of the two cycle edges on the two faces adjacent to f is increased by ε

4 .
However, if the expanded edge is a leaf edge of the backbone tree, then one
of the cycle edges’ weight is increased twice, each time by ε/4. See Fig 4(b).
Thus the weight of each such edge is increased by at most ε(k+1)

4 , where k is
the number of backbone edges in G∗

s or, equivalently, diagonals in G. Since k is
n− 3, we obtain the maximum weight on any edge of G∗

s as being 1
n + ε(n−2)

4 .
Similarly, each time a backbone edge is expanded, the weight of the cycle

edge of f is reduced by ε
2 (e.g. edge c1 in Fig 4(b)). When all backbone edges are

expanded, the weight of this edge is at least 1
n − (n−3)ε

2 . This gives the minimum
possible weight on any edge of G∗

s. ��
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c

c

c

1

3

2

(a) (b)

e

e1

2

Fig. 4. (a) A stellated outerplanar graph where all diagonals emanate from a single
vertex. (b) Its dual. Backbone edges are thickened. The cycle edge whose weight is
decremented by ε/2 at each backbone edge expansion step is labeled by c1. The cycle
edges whose weights are increased by ε/4 for each expansion of the backbone edge are
c2 and c3. A special case occurs when e1 and e2 are expanded: the weights of c2 and
c3 are then increased by ε

2
.

3.2 The Edge and Cycle Conditions

To conclude the main proof, we show now how to choose ε such that conditions
1 (edge) and 3 (cycle) of Theorem 4 are also satisfied. Obviously, ε has to be
strictly greater than 0 to be a valid weight on backbone edges. Now we establish
an upper bound of ε.

Lemma 8. [Edge condition] If 0 < ε < 2
n(n−3)

, then 0 < w(e) ≤ 1/2 for any
edge e of G∗

s .

Proof. We find an upper bound on ε from the constraint that the weight on any
edge should be between 0 and 1

2 . Bounding from below the minimum possible
weight on an edge of G∗

s (Lemma 7) and solving 1
n − (n−3)ε

2 > 0, we obtain
ε < 2

n(n−3) . Similarly for the maximum, bounded from above by 1/2: solving
1
n + (n−2)ε

4 ≤ 1/2 results in ε ≤ 2
n . The final resulting bounds are 0 < ε <

min{ 2
n(n−3) ,

2
n} or 0 < ε < 2

n(n−3)
. ��

Lemma 9. [Cycle condition] If 0 < ε < 4(n2−4n+9)
3n(n−2)(n−3)

, then the sum of the
weights on the edges of a non-facial cycle of G∗

s is strictly greater than 1.

Proof. Any non-facial cycle C of G∗
s divides the plane into two regions, each one

containing exactly one of the n + 1 faces of G∗
s. Let Ri be the region containing
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Fig. 5. (a) A dual G∗
s of a stellated outerplanar graph. (b) A non-facial cycle C of G∗

s ,
shown in thick lines, divides the plane into two regions. The shaded region, containing
e as an internal edge, has the smaller number of faces.

the smallest number k ≤ n+1
2 of faces. An edge is called internal to a region if

it lies inside it, i.e. not in the complementary region and not on the boundary
cycle. Since the sum of weights on each face is 1, then the sum of the weights
on the cycle C is the sum k of the weights on the internal k faces, minus twice
the sum of the weights on the internal edges of Ri. Since k faces are dual of k
vertices in the stellated outerplanar graph Gs and the subgraph induced by k
vertices is planar, there are at most 3k − 6 internal edges in Ri. Since k ≤ n+1

2 ,
there are at most 3(n+1)

2 − 6 or 3n−9
2 internal edges of Ri. This bounds the sum

of the weights on C by at most n+1
2 minus twice the sum of the weights on

3n−9
2 internal edges. Let wmax be the maximum possible weight on any of these

internal edges. Then it suffices to show that n+1
2 − 2wmax(3n−9)

2 > 1. Rearranging
the terms, we get wmax < n−1

6(n−3)
.

The maximum possible weight on any edge of G∗
s is 1

n + (n−2)ε
4 (Lemma 7).

Thus 1
n + (n−2)ε

4 < n−1
6(n−3) . Solving this equation, we get ε < 2(n2−7n+18)

3n(n−2)(n−3)
.

Therefore, the cycle condition is satisfied if ε < 2(n2−7n+18)
3n(n−2)(n−3) . ��

To satisfy both the edge and cycle conditions, we will choose an ε such that
0 < ε < min{ 2

n(n−3) ,
2(n2−7n+18)
3n(n−2)(n−3)}.

This concludes our main proof.
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Abstract. Reaction systems formally model the functioning of the liv-
ing cell. By representing sets of reactions by trees, we obtain a useful
tool to investigate the state spaces of reaction systems. In particular, we
give an upper bound on the fraction of inactive states within a subspace
of the state space. This subspace represents partial knowledge of the
(unknown) state under consideration.

1 Introduction

Reaction systems (see, e.g., [6] and [1]) are a formal model of the functioning
of the living cell based on the idea/intuition that this functioning is determined
by interactions of biochemical reactions (taking place in the cell) and these
interactions are driven by two mechanisms: facilitation and inhibition.

Following the basic biochemical intuition, a reaction is formalized as a triplet
a = (R, I, P ), where R, I, P are finite sets with R and I being disjoint. The sets
R, I, P are called the set of reactants, the set of inhibitors, and the set of products,
respectively. Then a reaction system is defined as an ordered pair A = (S,A),
where A is a finite set of reactions, and S is a finite set such that, for each reaction
in A, all three component sets are included in S. Hence a reaction system (A) is
basically a finite set of reactions (A) — we also specify the background set (S)
which consists of entities needed to define the reactions and for reasoning about
the system.

The behaviour of a reaction system A = (S,A) is formalized as follows. A state
T of A is simply a set of entities, i.e., T ⊆ S. Then a reaction a = (R, I, P ) ∈ A
is enabled by T , if all reactants of a are present in T (hence R ⊆ T ) and none
of the inhibitors of a is present in T (hence I ∩ T = ∅). If a is enabled by T ,
then it produces its products (hence P will be included in the successor state of
T ). The effect of the whole set of reactions A on T (hence the effect of A on T )
is cumulative: it is the union of the product sets of all reactions in A that are
enabled by T .

Thus the behaviour of A is defined by its state space (the set of all sub-
sets of S) together with all trajectories, i.e., all sequences of states such that

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 330–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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each next (successor) state is produced from a current state T by all reactions
of A enabled by T .

Research topics concerning reaction systems are motivated either by biolog-
ical considerations or by the need to understand the underlying computations.
As a matter of fact, although originally motivated/inspired by the functioning
of the living cell, by now reaction systems became a novel, elegant and chal-
lenging model of computation. Examples of research topics include: the studies
of result functions that determine the trajectories/processes (see, e.g., [3] and
[4]), causalities between entities ([2]), formation of (biological and biochemical)
modules ([5]), and the issue of time in reaction systems ([7]).

In this paper we consider a representation of (the sets of reactions of) reaction
systems. The representation we provide allows one to reason about the state
spaces of reaction systems. The underlying intuition of this connection is the
fact that the current state of a biochemical system (the cell) is often unknown,
and one may only determine the existence and absence of some entities. Given
sets U and V for which U ⊆ W and V ∩W = ∅ for some unknown state W , we
deduce an upper bound on the fraction of the states X , satisfying U ⊆ X and
V ∩X = ∅, for which no reaction is enabled. We efficiently obtain this result by
representing sets of reactions as trees.

This paper is organized as follows. In Section 2 we settle/recall the basic nota-
tion and terminology concerning set families, and (labelled) graphs and trees. In
Section 3 we discuss a representation of families of (pairwise incomparable) sets
by trees, and then show that each such tree may be “optimally selected”. The
setup is generic, and does not depend on the notion of reaction system. Next,
in Section 4, we consider (generic) states and substates in relation to trees. In
Section 5 we formally recall the notion of reaction system and related notions,
and in Section 6 we apply the results of Sections 3 and 4 to reaction systems.

2 Preliminaries

In this section we recall some basic notions concerning sets, graphs and trees in
order to fix notation and terminology for this paper.

Two sets X and Y are called incomparable if both X �⊆ Y and Y �⊆ X . Let
F be a family of subsets of a finite set F . A selector (or choice function) of F
is a function c : F → F , where c(X) ∈ X for all X ∈ F . We say that c(F) is
a selection in F . Note that if S is a selection, then S ∩ X �= ∅ for all X ∈ F .
The term “smallest” means minimal w.r.t. cardinality. For example, a smallest
selection S in F is a selection S in F which is minimal w.r.t. cardinality among
all selections in F . Since F is finite, a smallest selection exists.

A directed graph (digraph) is an ordered pair G = (V,E), where V is a finite
set of vertices, and E ⊆ V × V is the set of (directed) edges. A labelled digraph
G is a 4-tuple (V,E,Σ, l), where (V,E) is a digraph, Σ is a finite alphabet (of
labels), and l : E → Σ an edge labelling. A path in G is a sequence π = e1e2 · · · en

of edges of G such that there is a (unique) sequence of vertices v1v2 · · · vn+1 with
ei = (vi, vi+1) for all i ∈ {1, . . . , n}. The label set of path π, denoted by ls(π), is
the set {l(e) | e is an edge of π}. The out-degree of a vertex v is denoted by deg(v).
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A tree T = (V,E) is a digraph, where |E| = |V | − 1, with a unique vertex
r ∈ V , called the root of T , such that there is a (unique) path from r to any
vertex of T . In this paper we consider mostly labelled trees. For v ∈ V , the
subtree of T rooted in v is denoted by T [v], and we let hgt(v) be the height (i.e.,
the maximal length among the paths from the root to a leaf) of T [v]. Finally,
the set of leaves of T is denoted by leav(T ).

3 Representing Families of Sets as Trees

In this section we discuss how to represent families of sets by (unambiguously
labelled) trees.

For a vertex v of a labelled tree T , we define the support of v (in T ), denoted
by supT (v), as the set of labels that appear in the (unique) path from the root
to v. This is more formally defined as follows.

Definition 1. Let T = (V,E,Σ, l) be a labelled tree. The support function,
supT , is defined by: supT : V → 2Σ, with supT (v) = ls(πv), for all v ∈ V ,
where πv is the (unique) path in T from the root r to v.

We write sup rather than supT whenever T is clear from the context. We say that
T is unambiguously labelled if sup is injective, and we say that T is ambiguously
labelled otherwise. Also, we set suplT = {supT (v) | v ∈ leav(T )}.

r

v1 v2 v3

v4 v5 v6 v7

v8

a
b

c

b c e d

e

Fig. 1. An unambiguously labelled tree

Example 2. Consider the tree T of Figure 1. We have, e.g., supT (v2) = {b},
supT (v8) = {c, d, e}, and supT (r) = ∅. It is easy to verify that T is unambigu-
ously labelled.
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The following result states two basic properties of unambiguously labelled trees.

Lemma 3. Let T = (V,E, l) be a unambiguously labelled tree. The following
conditions hold.

1. If π is a path in T , then the labels of any two distinct edges of π are distinct.
2. If e1 and e2 are two outgoing edges of any v ∈ V , then the labels of e1 and

e2 are distinct.

Proof. Assume to the contrary that a path π = e1 . . . en is such that l(ei) = l(ej)
for some 1 ≤ i < j ≤ n. If ej = (v1, v2), then sup(v2) = sup(v1) ∪ {l(ej)} =
sup(v1)∪{l(ei)} = sup(v1) (as l(ei) ∈ sup(v1)). Hence T is ambiguously labelled
— a contradiction.

Let e1 = (v, v1) and e2 = (v, v2) be outgoing edges of some v ∈ V . If l(e1) =
l(e2), then sup(v1) = sup(v)∪{l(e1)} = sup(v)∪{l(e2)} = sup(v2) and therefore
T is ambiguously labelled. A contradiction. ��

From now on we consider only unambiguously labelled tree and use the simple
term “tree” rather than “unambiguously labelled tree”. Also, we often simply
write V to denote the vertex set of the tree under consideration.

For a vertex v, we let O(v) to denote the set of labels of edges outgoing from
v. Note that as T is unambiguously labelled, Condition 2 of Lemma 3 implies
that |O(v)| = deg(v) for all v ∈ V .

For v ∈ V , we let FT [v] = suplT [v], i.e., FT [v] is the family of label sets of all
paths from v to leaves of T . For the root r, FT [r] = suplT , and FT [v] = {∅} iff
v is a leaf. Note that O(v) is a selection in FT [v]. Alternatively, FT [v] can be
defined recursively. Indeed, if v is a leaf, then FT [v] = {∅}, and if v is not a leaf,
then FT [v] = {Z ∪ {l(e)} | Z ∈ FT [v′] and e = (v, v′) ∈ E}.

Example 4. Consider again Example 2. We have, e.g., O(r) = {a, b, c}. Also,
e.g., FT [v1] = {{b}, {c}} and FT [r] = suplT = {{a, b}, {a, c}, {b, e}, {c, d, e}}.

Thus, trees can be used to define families of sets: we say that a tree T represents
a family F of sets if F = FT [r].

Definition 5. Let F be a finite family of sets. A tree T is called optimally
selected for F if T represents F and, for each v ∈ V , O(v) is a smallest selection
in FT [v].

Note that the out-degree of the root of an optimally selected tree T for F is
minimal among all trees representing F . Hence, from this point of view, a tree
is optimally selected if the out-degree of each vertex is minimized using a greedy
minimization approach starting from the root vertex. This is more precisely
demonstrated in the proof of Theorem 7.

Example 6. Consider again the tree T of Figure 1. Note that T is not optimally
selected as O(r) = {a, b, c}, while {a, e} and {b, c} are (the smallest) selections
in FT [r]. Let G = FT [r]. An optimally selected tree for G is given in Figure 2.
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r

w1 w2

w3 w4 w5 w6

w7

a e

b c b c

d

Fig. 2. An optimally selected tree, cf. Example 6

Let F be a family of pairwise incomparable sets (hence for any distinct X,Y ∈ F
we have X �⊆ Y and Y �⊆ X). Theorem 7 shows that one can iteratively construct
an optimally selected tree for F . This is done by starting from the root and in
each step introducing all outgoing edges and vertices from a vertex v according
to a smallest selection in FT [v].

Theorem 7. Let F be a finite family of pairwise incomparable sets. There exists
an optimally selected tree for F .

Proof. Assume that F ⊆ 2Q, i.e., the sets in F are subsets of a ground set Q.
We recursively construct an optimally selected tree k(F) for F .

If F = {∅}, then we define k(F) to be a tree having only a single vertex —
clearly k(F) is an optimally selected tree for F .

Assume now F �= {∅}. Let {l1, . . . , ln} be a smallest selection in F and let
Fi = {Z\{li} | Z ∈ F and li ∈ Z}. Then each Fi is a family of pairwise incompa-
rable sets. Now, define k(F) to be a tree obtained from the trees k(F1), . . . , k(Fn)
by introducing a new (root) vertex r and adding for each i ∈ {1, . . . , n} an edge
labelled by li from r to the root of k(Fi).

Recall that by definition FT [v] = {∅} if v is a leaf, and FT [v] = {Z ∪ {l(e)} |
Z ∈ FT [v′] and e = (v, v′) ∈ E} if v is not a leaf. Hence, T = k(F) satisfies
F = FT [r], and therefore T represents F . By construction, for each v ∈ V ,
O(v) is a smallest selection in FT [v], and hence T is an optimally selected tree
for F . ��

The following example shows that the condition requiring that the sets in F are
pairwise incomparable is needed for Theorem 7 to hold.
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r

w1 w2

w3

a b

b

Fig. 3. An unambiguously labelled tree, cf. Example 8

Example 8. Let F = {{a, b}, {b}}. Figure 3 depicts an unambiguously labelled
tree that represents F . However, there is no optimally selected tree for F , because
the unique smallest selection for F is {b}.

It is important to note that for a given family F of pairwise incomparable sets, an
optimally selected tree for F may be not unique. For example, for F = {{a, b}}
there are two trees (up to isomorphism) representing F , and both are optimally
selected. Indeed, both of these trees “are” a path π of length 2 from the root to
the unique leaf, where the labels a and b appear in π either in the order a, b or
in the order b, a.

Let F be a family of sets. Then G ⊆ F is maximally disjoint w.r.t. F if the
sets of G are pairwise disjoint and G is maximal with this property (i.e., each
Y ∈ F \ G properly intersects with some set in G).

Lemma 9. Let F be a finite nonempty family of sets such that l = max{|X | |
X ∈ F} and d is the cardinality of a smallest selection in F . If G ⊆ F is
maximally disjoint w.r.t. F , then |G| ≥ d

l .

Proof. Let G ⊆ F be maximally disjoint w.r.t. F . Hence for each Y ∈ F \ G,
(∪X∈GX) ∩ Y �= ∅. Also, for each Y ∈ G, (∪X∈GX) ∩ Y �= ∅. Therefore there
is a selection S in F with S ⊆ ∪X∈GX . Hence d ≤ |S| ≤ | ∪X∈G X | ≤ l|G|.
Consequently, |G| ≥ d

l . ��

We now apply Lemma 9 to families of pairwise incomparable sets.

Corollary 10. Let F be a finite nonempty family of pairwise incomparable sets,
and let T represent F . Let v ∈ V be such that O(v) is a smallest selection in
FT [v]. Then there exists a subfamily G of FT [v] consisting of disjoint sets such
that |G| ≥ deg(v)

hgt(v) .

Proof. Since |O(v)| = deg(u) is the cardinality of a smallest selection in FT [v],
and |X | ≤ hgt(v) for all X ∈ FT [v], by Lemma 9 we obtain |G| ≥ deg(v)

hgt(v) . ��
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4 State Spaces in Trees

We now consider results concerning state spaces of reaction systems in relation to
trees. As these results are quite generic and possibly applicable to other domains,
we choose to first focus on the essential properties needed to obtain our results
(without yet defining reaction systems), and then, in Section 6, relate the results
in a precise way to the domain of reaction systems.

Let S be a finite set. We let S̄ = {x̄ | x ∈ S} be a disjoint copy of S, i.e.,
S ∩ S̄ = ∅. Moreover, we let ¯̄x = x for x ∈ S. For any subset X ⊆ (S ∪ S̄), we
write X̄ = {x̄ | x ∈ X}.

Intuitively (this is made precise in Section 6), we consider S to be the set of all
entities of a reaction system. A state W can be considered as a set Q∪ (S \ Q),
where the entities of Q are present and the entities of S \ Q are absent (in this
state). A substate U is a subset of a state; for the entities in S that do not
appear (with or without bar) in a substate it is not known whether or not they
are present — hence we deal with incomplete knowledge here. We say that a
state W is compatible with a substate U if U ⊆ W .

Define the state space (of S) as sspaceS = {Q∪(S \ Q) | Q ⊆ S}. The elements
of sspaceS are called states (of S). We define the function st : 2S → sspaceS as
follows: for Q ⊆ S, st(Q) = Q ∪ (S \ Q). Note that st is a bijection.

A family of substates F (of S) is a subset of {Z | Z ⊆ W and W ∈ sspaceS}
such that the sets in F are pairwise incomparable. By Theorem 7 it is possible
to represent F by an optimally selected tree T .

Example 11. Let S = {a, b, c}. Then sspaceS = {{a, b, c}, {a, b, c̄}, {a, b̄, c}, {ā, b,
c}, {a, b̄, c̄}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}}, and F = {{a, b̄}, {b̄, c}, {a, b, c}} is a fam-
ily of substates (of S). On the other hand, e.g., F = {{a, b̄}, {a, b̄, c}} is not a
family of substates (as {a, b̄} ⊂ {a, b̄, c}).

Let F be a family of substates and let T represent F . For each vertex v ∈ V ,
sup(v) is a substate of S. The set of states compatible with sup(v) is denoted
by Lv, i.e., Lv = {Q ∈ sspaceS | sup(v) ⊆ Q}. The set Lv can be partitioned
into the sets L+

v and L−
v , where L+

v consists of those states that are compatible
with sup(u) where u is a leaf of T [v]. Formally, L+

v = {Q ∈ Lv | sup(u) ⊆
Q for some u ∈ leav(T [v])}, and L−

v = Lv \ L+
v .

We will need the following technical lemma.

Lemma 12. Let F be a family of substates, let T represent F , and let v ∈ V .
Let moreover G ⊆ FT [v] be such that the elements of G are pairwise disjoint, and
let L−

G = {Q ∈ Lv | Z �⊆ Q for all Z ∈ G}. Then

|L−
G |

|Lv|
=

∏
Z∈G

(
1 − 1

2|Z|

)
.

Proof. For any Z ∈ G, the ratio of all Q ∈ Lv such that Z ⊆ Q to all Q ∈ Lv is
1

2|Z| . Hence the ratio of all Q ∈ Lv such that Z �⊆ Q to all Q ∈ Lv is 1 − 1
2|Z| .



Representing Reaction Systems by Trees 337

Now, |L−
G |

|Lv| is the ratio of all Q ∈ Lv such that Z �⊆ Q for all Z ∈ G to all Q ∈ Lv.

Consequently, |L−
G |

|Lv| =
∏

Z∈G
(
1 − 1

2|Z|
)
. ��

We now consider the ratio of |L−
v | to |Lv|, i.e., the fraction of states that are

not compatible with sup(u) for any leaf u of T [v] among all states that are
compatible with sup(v).

Theorem 13. Let F be a family of substates, let T represent F , and let v ∈ V
be such that O(v) is a smallest selection in FT [v]. Then

|L−
v |

|Lv |
≤
(

1 − 1
2hgt(v)

) deg(v)
hgt(v)

.

Proof. By Corollary 10 there is a subfamily G of FT [v] consisting of disjoint sets
such that |G| ≥ deg(v)

hgt(v) . Let again L−
G = {Q ∈ Lv | Z �⊆ Q for all Z ∈ G}. Then

L−
v ⊆ L−

G . We have now by Lemma 12

|L−
v |

|Lv|
≤

|L−
G |

|Lv|
=

∏
Z∈G

(
1 − 1

2|Z|

)
.

Since |Z| ≤ hgt(v) for all Z ∈ G, we obtain

|L−
v |

|Lv|
≤

∏
Z∈G

(
1 − 1

2hgt(v)

)
.

Finally, |G| ≥ deg(v)
hgt(v) and thus we obtain

|L−
v |

|Lv |
≤
(

1 − 1
2hgt(v)

) deg(v)
hgt(v)

.

Consequently, the theorem holds. ��

5 Reaction Systems

In this section we recall some basic notions related to reaction systems, see, e.g.,
[6] and [1].

Reaction systems is a formal model of the functioning of the living cell. The
underlying idea is that this functioning is determined by the interactions between
biochemical reactions and these interactions are driven by two mechanisms: fa-
cilitation and inhibition.

The formalization of a biochemical reaction follows the basic intuition that
a biochemical reaction will take place if all of its reactants are present (in the
current state of a biochemical system) and none of its inhibitors is present.
When a reaction takes place, it creates its products. This leads to the following
definition.
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Definition 14. A reaction is a triplet a = (R, I, P ), where R, I, P are finite
sets such that R ∩ I = ∅.

The sets R, I, P are also denoted by Ra, Ia, Pa, and called the reactant set of a,
the inhibitor set of a, and the product set of a, respectively. If S is a set such
that R, I, P ⊆ S, then a is a reaction in S, and rac(S) denotes the set of all
reactions in S.

Usually (see, e.g., [1]) one requires that, for each reaction (R, I, P ), both R
and I are nonempty. However, in this paper we use a tree representation of a
set of reactions, and moving from the root to the leaf representing a reaction
a = (Ra, Ia, Pa) corresponds to gaining knowledge of a (from zero knowledge
in the root to the full knowledge in the leaf). On the way along this path we
represent the current knowledge by the currently known part of Ra and the
currently known part of Ia, and either of these parts may be empty before we
arrive at the leaf representing a. Thus, for the sake of simplicity, rather than to
introduce the notion of a “pseudo reaction”, in this paper we do allow the empty
reactant set and the empty inhibitor set.

Example 15. Let S = {s1, s2, s3, s4}, a1 = ({s2, s3}, {s4}, {s1}), and a2 = ({s2},
{s1}, {s1, s4}). Then a1, a2 ∈ rac(S) and, e.g., Pa2 = {s1, s4}.

A reaction system is a basic construct of the whole framework of reaction systems
(see, e.g., [1]). It is essentially a finite set of reactions, however one also specifies
the (background) set of all entities which are needed for specifying the reactions
and for reasoning about the system.

Definition 16. A reaction system is an ordered pair A = (S,A) such that S is
a finite set, and A ⊆ rac(S).

The set S is called the background set of A, its elements are called entities, and
A is called the set of reactions of A — note that since S is finite, so is A.

Definition 17. Let W be a finite set, and let a be a reaction. Then a is enabled
by W , denoted by a en W , if Ra ⊆ W and Ia ∩ W = ∅. The result of a on W ,
denoted by resa(W ), is defined by: resa(W ) = Pa if a en W , and resa(W ) = ∅

otherwise.

A state of a reaction system is a subset W ⊆ S of the background set. A reaction
a is enabled in state W if all of its reactants are present in W while none of
its inhibitors are in W . This is the reason that we assume in Definition 14 that,
for each reaction a, Ra ∩ Ia = ∅, as otherwise a is never enabled. When a takes
place it produces entities from Pa.

The effect of a set of reactions A is cumulative: the result of A on W , denoted
by resA(W ), is defined by: resA(W ) =

⋃
a∈A resa(W ). For a reaction system

A = (S,A), we write resA(W ) = resA(W ).

Example 18. Consider the reaction system A = (S,A) with S from Example 15
and A = {a1, a2} with a1 and a2 from Example 15. Then for state W = {s2, s3},
we have resA(W ) = {s1} ∪ {s1, s4} = {s1, s4}, and for this successor state
W ′ = {s1, s4} we have resA(W ′) = ∅.
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In this paper we assume that the processes of reaction systems are so-called
context-independent (see, e.g., [1]), i.e., we assume the behaviour of the reaction
systems as a closed system (when there is no interference by the environment).
Therefore the state transitions are determined only by the reactions of a reaction
system (hence by the result function resA).

The definition of the result function implies that the successor state consists
of only the entities produced by the reactions in the current state. Thus there
is no permanency of entities : an entity from a current state vanishes (in the
transition to the successor state) unless it is produced/sustained by a reaction.
This reflects the basic bioenergetics of the living cell, and forms a major difference
with models of computation in computer science.

We also notice that the result of the set of reactions is cumulative and so we
do not have the notion of conflict between reactions (if they share reactants).
Thus we assume the threshold nature of resources: either an entity is available
and then there is “enough of it” or it is not available. This reflects the level of
abstraction adopted in the reaction systems model.

In this paper we consider the notion of enabling. In particular, we are inter-
ested, given a reaction system A and some partial knowledge of a state W , in
the ratio of the states of K for which some reaction of A is enabled to all states
of K, where K is the set of states “compatible” with the partial knowledge of
W .

Two reaction systems are called equivalent if they have the same behavior
w.r.t. the resA function. This is formalized as follows.

Definition 19. Reaction systems A and A′ with common background set S are
called equivalent if for all W ⊆ S, resA(W ) = resA′(W ).

Let a be a reaction, {P1, P2} be a partition of Pa, a1 = (Ra, Ia, P1), and a2 =
(Ra, Ia, P2). Then, as the result of a set A of reactions is cumulative, we have for
all W ⊆ S, resa(W ) = res{a1,a2}(W ). Hence, the reaction systems (S, {a}) and
(S, {a1, a2}) are equivalent. Consequently, we say that A is in singleton product
normal form if |Pa| = 1 for all a ∈ A.

Moreover, if a, a′ ∈ A with Pa = Pa′ , Ra ⊆ Ra′ and Ia ⊆ Ia′ , then for
all W ⊆ S res{a,a′}(W ) = res{a}(W ). Therefore, reaction systems (S, {a}) and
(S, {a, a′}) are equivalent. Hence, we may delete superfluous reactions: we say
that A (or A) is reduced if for all different a, a′ ∈ A with Pa = Pa′ we cannot
have both Ra ⊆ Ra′ and Ia ⊆ Ia′ .

Example 20. Reaction system A = (S,A) with A = {a1, a2, a3}, a1 = ({s2, s3},
{s4}, {s1}), a2 = ({s2}, {s1}, {s1})}, and a3 = ({s2}, {s1}, {s4})} is both in
singleton product normal form and reduced. As a matter of fact, A is equivalent
to the reaction system from Example 18.

We assume from now on that each reaction system is both reduced and in sin-
gleton product normal form.
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6 State Space of Reaction Systems

In this section we describe how reactions and states of reaction systems may be
translated to states and pairwise incomparable sets as discussed in Sections 3
and 4. In this way, we can apply results of these sections to reaction systems —
see Theorem 25.

Let A = (S,A) be a reaction system. As A is in singleton product normal form,
the reactions of A can be partitioned according to the (unique) product p of each
reaction. We fix now a p ∈ S, and consider the reaction system Ap = (S,Ap)
with Ap = {a ∈ A | Pa = {p}}.

Note that Ap can be uniquely represented as the family of substates FAp =
{Ra ∪ Īa | a ∈ Ap} of S. Indeed, as A is reduced, Ap is reduced as well, and so
the sets in FAp are pairwise incomparable.

Example 21. Consider the reaction system A = (S,A) from Example 20. Then
As1 = (S,As1 ) and As1 = {a1, a2} with a1 = ({s2, s3}, {s4}, {s1}) and a2 =
({s2}, {s1}, {s1})}. We may represent As1 by the family FAs1

= {{s2, s3, s̄4},
{s2, s̄1}} of substates. Note that the sets in FAs1

are indeed pairwise incompa-
rable.

We may also move the other way around. Let F be a family of substates of S
and fix a p ∈ S. For Y ∈ F , we define RY = Y ∩ S, IY = Ȳ ∩ S, and aY =
(RY , IY , {p}). Hence AF = {aY | Y ∈ F} is a set of reactions corresponding to
F . We say that Ap,F = (S,AF ) is the reaction system of F w.r.t. p ∈ S.

Example 22. Consider again the family F = {{a, b̄}, {b̄, c}, {a, b, c}} of substates
of S = {a, b, c} from Example 11. The reaction system Ap,F of F w.r.t. b is de-
fined by: Ap,F = (S, {a1, a2, a3}) with a1 = ({a}, {b}, {b}), a2 = ({c}, {b}, {b}),
and a3 = ({a, b, c},∅, {b}).

If a tree T represents FAp , then we will also simply say that T represents Ap. For
a tree T representing Ap and vertex v of T , we define Rv = Rsup(v), Iv = Isup(v),
av = asup(v), and Av = {aw | w ∈ leav(T [v])}. Note that sup(v) = Rv ∪ Iv.
We define Kv = {W ⊆ S | av en W}, and then we let K+

v = {W ∈ Kv |
a en W, for some a ∈ Av} and K−

v = Kv \ K+
v .

The following result holds (recall the function st from Section 4).

Lemma 23. Let a be a reaction in S and W ⊆ S. Then a en W iff Ra ∪ Īa ⊆
st(W ).

Proof. We have a en W iff both Ra ⊆ W and Ia ∩W = ∅ iff both Ra ⊆ W and
Īa ⊆ (S \ W ) iff Ra ∪ Īa ⊆ W ∪ (S \ W ) = st(W ). ��

The following lemma will be used to transfer the results of Section 4 to reaction
systems.
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Lemma 24. Let A = (S,A) be a reaction system, and p ∈ S. Let T be a tree
representing Ap, and let v ∈ V . Then st(Kv) = Lv, st(K+

v ) = L+
v , and st(K−

v ) =
L−

v .

Proof. We have Kv = {W ⊆ S | av en W}. Hence by Lemma 23, Kv = {W ⊆
S | Rv ∪ Īv ⊆ st(W )} = {W ⊆ S | sup(v) ⊆ st(W )}. Thus, st(Kv) = {Q ∈
sspaceS | sup(v) ⊆ Q} = Lv.

Next, we have K+
v = {W ∈ Kv | a en W, for some a ∈ Av}. We obtain

similarly, K+
v = {W ∈ Kv | sup(w) ⊆ st(W ) for some w ∈ leav(T [v])}, and so

st(K+
v ) = {Q ∈ Lv | sup(w) ⊆ Q for some w ∈ leav(T [v])} = L+

v .
Finally, st(K−

v ) = st(Kv \ K+
v ). As st is a bijection, st(Kv \ K+

v ) = st(Kv) \
st(K+

v ) = Lv \ L+
v = L−

v . ��

Given a set of reactions Ap and a vertex v of tree T representing Ap (such that
T is optimally selected at v), the following result gives an upper bound on the
fraction of states W ⊆ S for which no reaction of Ap is enabled among the states
that are “compatible” with v (i.e., the states in Kv). In other words, this result
gives an upper bound on the fraction of dead states (i.e., the states for which
there is no reaction enabled) within the subspace of the state space determined
by v.

As a consequence of Lemma 24 we obtain that |Kv| = |Lv|, |K+
v | = |L+

v |, and
|K−

v | = |L−
v |. The following result follows then from Theorem 13.

Theorem 25. Let A = (S,A) be a reaction system, and p ∈ S. Let T be a tree
representing Ap, and let v ∈ V such that O(v) is a smallest selection in FT [v].
Then

|K−
v |

|Kv|
≤
(

1 − 1
2hgt(v)

) deg(v)
hgt(v)

.

Note that the upper bound in Theorem 25 is determined only by the length
hgt(v) and the out-degree deg(v) of v.

Theorem 25 yields the following corollary.

Corollary 26. Let A = (S,A) be a reaction system, and p ∈ S. Let T be a tree
representing Ap, and let v ∈ V such that O(v) is a smallest selection in FT [v].
Then

|K−
v |

|Kv|
≤ e

− deg(v)

hgt(v)·2hgt(v) .

Proof. Recall that
(
1 − 1

m

)m ≤ e−1 for all positive integers m. By Theorem 25,

|K−
v |

|Kv| ≤
(
1 − 1

2hgt(v)

) deg(v)
hgt(v) =

((
1 − 1

2hgt(v)

)2hgt(v)
) deg(v)

hgt(v)·2hgt(v)

≤ e
− deg(v)

hgt(v)·2hgt(v) .

��
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Abstract. In this paper, we propose a characterization of the structure
of derivatives and prove several new properties of derivatives for regular
expressions. The above work can be used to solve an issue in using Berry
and Sethi’s result, i.e., finding the unique representatives of derivatives.
As an application, an improvement of Ilie and Yu’s proof of the relation
between the partial derivative and Glushkov automata is presented.

1 Introduction

The construction of finite automata from regular expressions is an important is-
sue and has been studied for a long time. Note that finite automata have always
been one of Calude’s research interests [5]. An elegant construction of deter-
ministic finite automata, based on the derivatives of regular expressions, was
proposed by Brzozowski [4]. Among the well-known constructions of ε-free non-
deterministic finite automata (NFA), the Glushkov automaton was proposed sep-
arately by Glushkov [8] and McNaughton and Yamada [10]. Berry and Sethi [2]
showed that the Glushkov automaton has a natural connection with the notion
of derivative [4], and related the above two different approaches.

The notion of derivative was generalized to partial derivatives by Antimirov [1],
which yields the partial derivative automaton, introduced in [1]. Champarnaud
and Ziadi [6] proved that the partial derivative automaton is a quotient of the
Glushkov automaton. Therefore the partial derivative automaton is smaller than
or equal to the Glushkov automaton. The latter has size at most quadratic and
can be computed in quadratic time [3,7,11]. They also proposed a quadratic al-
gorithm [6] for computing the partial derivative automata which improved very
much the original Antimirov’s algorithm. It appears that the partial derivative
automaton is among the very small automata converted from a regular expres-
sion. Follow automata were introduced in [9]. For a given regular expression E,
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the size of the follow automaton constructed from E is at most 3
2 |E|+ 5

2
, which

is very close to a lower bound, where |E| is the size of E.
The paper continues the investigation of derivatives along the line of Berry and

Sethi. It gives a characterization of the structure of derivatives of an expression E
with distinct symbols, showing that each non-null derivative of E is composed of
one or more identical expressions (called repeating terms), which implies Berry
and Sethi’s result [2]. The paper proves several facts, including computation
of repeating terms, and several properties of repeating terms. The above work
provides new and deeper insight into the nature of derivatives.

Berry and Sethi showed that the derivatives in a certain class of derivatives
of an expression E with distinct symbols correspond to the same state of the
Glushkov automaton of E. This means that the derivatives that correspond to a
state are not unique. In many cases, however, one needs a unique representative
for that class of derivatives to correspond to a state. This, however, turns out to
be non-trivial as discussed in Section 4. By the work on derivatives in the paper,
the representatives can be obtained immediately.

As an application, an improved Ilie and Yu’s proof of the relation between
the partial derivative and Glushkov automata [9] is presented in this paper.

Section 2 introduces notations and notions required in the paper. Section 3
proposes a characterization of derivatives and several properties of derivatives.
Section 4 presents a proof of the relation between the partial derivative and
Glushkov automata. Section 5 concludes the paper.

2 Preliminaries

We assume that the reader is familiar with basic regular language and automata
theory, e.g., from [12], so that we introduce here only some notations and notions
used in the paper.

2.1 Regular Expressions and Finite Automata

Let Σ be an alphabet of symbols. The set of all words over Σ is denoted by
Σ∗. The empty word is denoted by ε. A regular expression over Σ is ∅, ε or a
for any a ∈ Σ, or is the union E1 + E2, the concatenation E1E2, or the star
E∗

1 for regular expressions E1 and E2. For a regular expression E, the language
specified by E is denoted by L(E). The size of E is denoted by |E| and is the
length of E when written in postfix (parentheses are not counted). The number
of symbol occurrences in E, or the alphabetic width of E, is denoted by ‖E‖.
The symbols that occur in E, which is the smallest alphabet of E, is denoted by
ΣE .

Two regular expressions E1 and E2 which reduce to the same expression
using associativity, commutativity, and idempotence of + are called ACI-similar
or similar [4], which is denoted by E1 ∼aci E2.

We assume that the rules E+∅ = ∅+E = E,E∅ = ∅E = ∅, and Eε = εE = E
(∅ε-rules) hold in the paper.
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For a regular expression E over Σ, we define the following sets:

first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗},
last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈ Σ},
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}, for a ∈ Σ.

One can easily write equivalent inductive definitions of the above sets on E,
which is omitted here.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b1)∗a2b2(a3 + b3) is a marking of the expression (a + b)∗ab(a + b). A marking of
an expression E is denoted by E. If E is a marked expression, then E means
dropping of subscripts from E. It will be clear from the context whether · adds or
drops subscripts. We extend the notation for words and automata in the obvious
way.

In this way the subscripted symbols are called positions of the expression. In
the literature, positions are sometimes defined as the subscripts. This definition
of positions, however, has drawbacks because it separates subscripts from sym-
bols. When both subscripts and related symbols are required, this presentation
is rather awkward. Here we use symbols in ΣE as the positions, which makes
related definitions concise and more flexible (subscripts can be the same, as in
the above example).

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is the finite
set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the transition mapping, q0 is
the start state, and F ⊆ Q is the set of accepting states. Denote the language
accepted by the automaton M by L(M).

Let ≡⊆ Q × Q be an equivalence relation. We say that ≡ is right invariant
w.r.t. M iff (1) ≡⊆ (Q−F )2 ∪F 2 and (2) for any p, q ∈ Q, a ∈ Σ, if p ≡ q, then
p1 ≡ q1 for p1 ∈ δ(p, a), q1 ∈ δ(q, a). If ≡ is right invariant, then we can define a
quotient automaton M/≡ in the usual way. One can prove that L(M/≡) = L(M).

2.2 Derivatives

Given a language L and a finite word w, the derivative (or left quotient set) of
L w.r.t. w is w−1(L) = {u |wu ∈ L}.

Derivatives of regular expressions were introduced by Brzozowski [4].

Definition 1. (Brzozowski [4]) Given a regular expression E and a symbol a,
the derivative of E with respect to a, a−1(E), is defined inductively as follows:

a−1(∅) = a−1(ε) = ∅

a−1(b) =
{

ε, if b = a
∅, otherwise

a−1(F + G) = a−1(F ) + a−1(G)

a−1(FG) =
{

a−1(F )G + a−1(G), if ε ∈ L(F )
a−1(F )G, otherwise

a−1(F ∗) = a−1(F )F ∗
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Derivative with respective to a word is computed by ε−1(E) = E, (wa)−1(E) =
a−1(w−1(E)).

It is known that L(w−1(E)) = w−1(L(E)). Brzozowski showed that an expres-
sion E has a finite number of dissimilar derivatives [4], which were used as states
to construct a deterministic finite automaton of E.

Partial derivatives were introduced by Antimirov [1].

Definition 2. (Antimirov [1]) Given a regular expression E and a symbol a, the
set of partial derivatives of E with respect to a, ∂a(E), is defined as follows1:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =
{

{ε}, if b = a
∅, otherwise

∂a(F + G) = ∂a(F ) ∪ ∂a(G)

∂a(FG) =
{

∂a(F )G ∪ ∂a(G), if ε ∈ L(F )
∂a(F )G, otherwise

∂a(F ∗) = ∂a(F )F ∗

Partial derivative with respect to a word is computed by ∂ε(E) = {E}, ∂wa(E) =⋃
p∈∂w(E) ∂a(p). The language denoted by ∂w(E) is

L(∂w(E)) =
⋃

p∈∂w(E)

L(p).

It is proved in [1] that the cardinality of the set PD(E) = ∪w∈Σ∗∂w(E) of all
partial derivatives of a regular expression E is less than or equal to ‖E‖ + 1.

2.3 Glushkov and Partial Derivative Automata

The Glushkov or position automaton was introduced independently by Glushkov
[8] and McNaughton and Yamada [10].

Definition 3. The Glushkov automaton of E is

Mg(E) = (Qg, Σ, δg, qE , Fg),

where
1. Qg = ΣE ∪ {qE}, qE is a new state not in ΣE

2. δg(qE , a) = {x | x ∈ first(E), x = a} for a ∈ Σ
3. δg(x, a) = {y | y ∈ follow(E, x), y = a} for x ∈ ΣE and a ∈ Σ

4. Fg =
{

last(E) ∪ {qE}, if ε ∈ L(E),
last(E), otherwise

1 In the definition RF = {EF |E ∈ R} for a set R of regular expressions and a regular
expression F .
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As shown by Glushkov [8] and McNaughton and Yamada [10], L(Mg(E)) =
L(E). Mg(E) can be computed in quadratic time [3,7,11].

The partial derivative or equation automaton [1] is constructed by partial
derivatives.

Definition 4. The partial derivative automaton of a regular expression E is

Mpd(E) = (PD(E), Σ, δpd, E, {q ∈ PD(E) | ε ∈ L(q)}),

where δpd(q, a) = ∂a(q), for any q ∈ PD(E), a ∈ Σ.

Note that PD(E) has been defined in the previous subsection. It is proved [6]
that Mpd(E) is a quotient of Mg(E).

3 Regular Expressions with Distinct Symbols

From Brzozowski [4] and Berry and Sethi [2] the following two facts are easily
derived.

Proposition 1. Let all symbols in E be distinct. Given a ∈ ΣE, for all words
w,

1. If E = E1 + E2, then

(wa)−1(E1 + E2) =

⎧⎨⎩
(wa)−1(E1) if a ∈ ΣE1 , w ∈ Σ∗

E1

(wx)−1(E2) if a ∈ ΣE2 , w ∈ Σ∗
E2

∅ otherwise
(1)

2. If E = E1E2, then

(wa)−1(E1E2) =

⎧⎪⎪⎨⎪⎪⎩
(wa)−1(E1)E2 if a ∈ ΣE1 , w ∈ Σ∗

E1

(va)−1(E2) if w = uv, ε ∈ L(u−1(E1)), a ∈ ΣE2 ,
u ∈ Σ∗

E1
, v ∈ Σ∗

E2

∅ otherwise

(2)

Proof. 1. It is directly from Berry and Sethi [2].
2. From Berry and Sethi [2] it is already known

(wa)−1(E1E2) =
{

(wa)−1(E1)E2 if a ∈ ΣE1 , w ∈ Σ∗
E1

(a)
Σw=uv,ε∈L(u−1(E1))(va)−1(E2) otherwise (b)

Let us consider (b) and set wa = a1a2 . . . at. For a concrete sequence of a1 . . . at,
a subterm (ar+1 . . . at)−1(E2) in (b) can exist only if a1, . . . , ar in E1 and
ar+1, . . . , at in E2. Since an, 1 ≤ n ≤ t is either in E1 or in E2, there is at most one
such subterm in (b). If such condition is not satisfied, then (wa)−1(E1E2) = ∅.

Proposition 2. Given a ∈ ΣE, for all words w, (wa)−1(E∗) is equivalent to a
sum of subterms chosen from the set {(va)−1(E)E∗ |wa = uva}.

Proof. It is directly from Brzozowski [4] or Berry and Sethi [2].
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Berry and Sethi [2] proved that

Proposition 3. (Berry and Sethi [2]) Let all symbols in E be distinct. Given a
fixed a ∈ ΣE, (wa)−1(E) is either ∅ or unique modulo ∼aci for all words w.

This is a very important property which was used to connect the class of non-null
(wa)−1(E) to the state a of Mg(E) for an expression E.

We further investigate the structure of non-null (wa)−1(E) here.

Theorem 1. Let all symbols in E be distinct. Given a fixed a ∈ ΣE, for all
words w, each non-null (wa)−1(E) must be of one of the following forms: F or
F + . . . + F , where F is a non-null regular expression, called the repeating term
of (wa)−1(E), which does not contain + at the top level.

Proof. We prove it by induction on the structure of E. If E = ∅ or ε, then no
symbol is in E, and no non-null derivative exists. Thus no repeating term exists.
If E = b, b ∈ ΣE, then a−1(b) = ε for a = b, (wa)−1(E) = ∅ for w �= ε or a �= b.
Thus ε is the repeating term of a−1(a), in which no + appears.

1. E = E1 + E2. By equation (1), a non-null (wa)−1(E) is either (wa)−1(E1)
or (wa)−1(E2). Suppose the first, then (wa)−1(E1) is non-null, and the induc-
tive hypothesis applies to it. The repeating term of (wa)−1(E) is the same as
(wa)−1(E1), and no top-level + will be added. The same is for the second.

2. E = E1E2. By equation (2), a non-null (wa)−1(E) is either (wa)−1(E1)E2

or (va)−1(E2) for some v such that w = uv. If (wa)−1(E) = (wa)−1(E1)E2, by
the inductive hypothesis, (wa)−1(E1) is F or F + . . . F where F does not contain
+ at the top level. Then FE2 is the repeating term of (wa)−1(E), which does
not contain top-level +. If (wa)−1(E) = (wa)−1(E2), the proof is the same as in
the above case 1.

3. E = E∗
1 . From Proposition 2 it is known that (wa)−1(E) is the sum of

subterms of the form (va)−1(E1)E∗
1 where wa = uva. From the inductive hy-

pothesis, each non-null (va)−1(E1) is F or F + . . .+F where F does not contain
+ at the top level, so (va)−1(E1)E∗

1 is FE∗
1 or FE∗

1 + . . . + FE∗
1 . If (wa)−1(E)

is non-null, it is a sum of one or more FE∗
1 , which does not contain + at the top

level.

Therefore each (wa)−1(E) is either ∅ or a sum of one or more repeating terms
of (wa)−1(E).

In the following examples the expression is taken from [9].

Example 1. Let E = (a + b)(a∗ + ba∗ + b∗)∗, then
E = (a1 + b2)(a∗3 + b4a

∗
5 + b∗6)∗,

a−1
1 (E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
(a1a3)−1(E) = a−1

3 (τ1) = a∗3τ1 = τ2,
(a1a3a3)−1(E) = a−1

3 (τ2) = τ2 + τ2,
. . .

The repeating term for (wa1)−1(E) is τ1, the repeating term for (wa3)−1(E) is
τ2.
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Denote by rta(E) the repeating term of (wa)−1(E). From Theorem 1 we have

Corollary 1. Let all symbols in E be distinct. If (wa)−1(E) is non-null, then
(wa)−1(E) ∼aci rta(E).

Corollary 1 is a more precise version of Berry and Sethi’s result (i. e., Proposi-
tion 3), that is, Theorem 1 implies Berry and Sethi’s result, but not vice versa.

Below we consider the question: For each a ∈ ΣE, whether there is a non-null
(wa)−1(E) containing one and only one rta(E), that is, rta(E) is a derivative
of E. The answer is positive. We show it by a construction, the first appearance.

Let all symbols in E be distinct. We associate symbols in ΣE with an order.
This is achieved by setting up a one-to-one function ind : ΣE → {1, . . . , ‖E‖}:
ind(a) = d if a is the dth occurrence of symbols from left to right in E (Note
that each symbol in E occurs only once). For a, b ∈ ΣE , define a < b iff ind(a) <
ind(b). For any words w1, w2 ∈ Σ∗

E , define the graded lexicographical order by
w1 ≺ w2 if either |w1| < |w2|, or |w1| = |w2| and the condition is satisfied: let
w1 = a1 . . . an, w2 = a′1 . . . a′n, there exists an integer k, 1 ≤ k ≤ n, such that
at = a′t for t = 1, . . . , k−1, and ak < a′k. A non-null (wa)−1(E) is called the first
appearance of derivative of E w.r.t. a, denoted by Fa(E), if for any other non-
null (w1a)−1(E) it has w ≺ w1. From Berry and Sethi [2] a non-null (wa)−1(E)
exists for all a ∈ ΣE , which ensures the existence of Fa(E).

Example 2. For E = (a + b)(a∗ + ba∗ + b∗)∗, E = (a1 + b2)(a∗3 + b4a
∗
5 + b∗6)∗.

The first appearances of derivatives w.r.t. symbols in E, in which the symbols
are underlined, are computed as follows.

a1
−1(E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1, b2
−1(E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
(a1a3)−1(E) = a−1

3 (τ1) = a∗3τ1 = τ2, (a1b4)−1(E) = b−1
4 (τ1) = a∗5τ1 = τ3,

(a1b6)−1(E) = b−1
6 (τ1) = b∗6τ1 = τ4, (b2a3)−1(E) = a−1

3 (τ1) = τ2,
(b2b4)−1(E) = b−1

4 (τ1) = τ3, (b2b6)−1(E) = b−1
6 (τ1) = τ4,

(a1a3a3)−1(E) = a−1
3 (τ2) = τ2 + τ2, (a1a3b4)−1(E) = b−1

4 (τ2) = τ3,
(a1a3b6)−1(E) = b−1

6 (τ2) = τ4, (a1b4a3)−1(E) = a−1
3 (τ3) = τ2,

(a1b4b4)−1(E) = b−1
4 (τ3) = τ3, (a1b4a5)−1(E) = a−1

5 (τ3) = τ3.

From Example 2 we can see that no first appearance has duplicated repeating
terms while other derivatives may have. Generally we have

Proposition 4. Let all symbols in E be distinct. Given a fixed a ∈ ΣE, the first
appearance Fa(E) consists of only one repeating term.

Proof. We prove it by induction on the structure of E. The cases for E = ε, ∅, b,
b ∈ ΣE are obvious. Suppose wa is chosen such that Fa(E) is (wa)−1(E).

1. E = E1 +E2. Consider equation (1). If (wa)−1(E) = (wa)−1(E1), we show
that Fa(E1) is (wa)−1(E1). If this is not true, there is a word w1 ≺ w such
that (w1a)−1(E1) �= ∅. So (w1a)−1(E) �= ∅, which is a contradiction. Therefore
(wa)−1(E1) is the first appearance and the inductive hypothesis applies to it.
The same is for (wa)−1(E) = (wa)−1(E2).
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2. E = E1E2. Consider equation (2). If (wa)−1(E) = (wa)−1(E1)E2, similarly
as above we can prove that (wa)−1(E1) is the first appearance, and the inductive
hypothesis applies to it. If (wa)−1(E) = (v1a)−1(E2) for some v1 such that
wa = uv1a, we show that this subterm is Fa(E2). Suppose the converse. Then
there is a word v ≺ v1 such that (va)−1(E2) �= ∅. So it is easy to see that
(uva)−1(E) �= ∅. But uva ≺ wa, which is a contradiction. Therefore (v1a)−1(E2)
is the first appearance and the inductive hypothesis applies to it.

3. E = E∗
1 . From Proposition 2 (wa)−1(E) is the sum of subterms of the

form (va)−1(E1)E∗
1 where wa = uva. We show that when (wa)−1(E) is Fa(E)

the above becomes (wa)−1(E) = (wa)−1(E1)E∗
1 . Suppose (wa)−1(E) contains

another non-null subterm (va)−1(E1)E∗
1 , w = uv, w �= v. Then (va)−1(E) is

not ∅ since it contains (va)−1(E1)E∗
1 as a summand. However v ≺ w, which

is a contradiction. Similarly we can prove that (wa)−1(E1) is Fa(E1), so the
inductive hypothesis applies to it.

The choice of the order is not significant. Actually for different ind the resulting
Fa(E) is the same.

Proposition 5. Let all symbols in E be distinct. Given any words w1, w2 ∈ Σ∗
E

and a ∈ ΣE, if |w1| = |w2| and (w1a)−1(E), (w2a)−1(E) �= ∅, and there is no w ∈
Σ∗

E, such that |w| < |w1| and (wa)−1(E) �= ∅, then (w1a)−1(E) = (w2a)−1(E).

Proof. We prove it by induction on the structure of E. If E = ∅ or ε, no non-null
derivative exists. If E = b for a symbol b, the only non-null derivative is ε, in
which case w1 = w2 = ε and a = b. So (w1a)−1(E) = (w2a)−1(E).

1. E = E1 + E2. If a ∈ ΣE1 , from equation (1), we have (w1a)−1(E) =
(w1a)−1(E1) and (w2a)−1(E) = (w2a)−1(E1). We can see that there is no w, such
that |w| < |w1| and (wa)−1(E1) �= ∅. Otherwise (wa)−1(E) = (wa)−1(E1) �= ∅
which is a contradiction. So the inductive hypothesis applies to E1. The proof
is the same for a ∈ ΣE2 .

2. E = E1E2. If a ∈ ΣE1 , from equation (2), we have (w1a)−1(E) =
(w1a)−1(E1)E2 and (w2a)−1(E) = (w2a)−1(E1)E2. Similar as in case 1 we can
prove (w1a)−1(E1) = (w2a)−1(E1). Thus (w1a)−1(E) = (w2a)−1(E).

If a ∈ ΣE2 , from equation (2), we have (w1a)−1(E) = (v1a)−1(E2) and
(w2a)−1(E) = (v2a)−1(E2) for some v1, v2 such that w1 = u1v1, w2 = u2v2, ε ∈
L(u−1

1 (E1)), ε ∈ L(u−1
2 (E1)), u1, u2 ∈ Σ∗

E1
, v1, v2 ∈ Σ∗

E2
. We show |v1| = |v2|.

Suppose the converse. Without losing generality suppose |v1| < |v2|. Notice
|w1| = |w2|, then |u1| > |u2|. Since ε ∈ L(u−1

2 (E1)), u2 ∈ Σ∗
E1

, and v1 ∈ Σ∗
E2

,
by equation (2) (u2v1a)−1(E) = (v1a)−1(E2) �= ∅. But |u2v1| < |w1| which is a
contradiction. So |v1| = |v2|. Similarly we can prove there is no v ∈ Σ∗

E2
, such

that |v| < |v1| and (va)−1(E2) �= ∅. So the inductive hypothesis applies to E2.
3. E = E∗

1 . Similar as the proof of case 3 in the proof of Proposition 4, we
can prove (w1a)−1(E) = (w1a)−1(E1)E∗

1 and (w2a)−1(E) = (w2a)−1(E1)E∗
1

and there is no w ∈ Σ∗
E1

such that |w| < |w1| and (wa)−1(E1) �= ∅. Then
by the inductive hypothesis (w1a)−1(E1) = (w2a)−1(E1), thus (w1a)−1(E) =
(w2a)−1(E).
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In the above proposition we easily see that (w1a)−1(E) = (w2a)−1(E) = Fa(E).
Therefore Fa(E) is the same for varying ind.

Then

Proposition 6. Let all symbols in E be distinct. There exists a word w ∈ Σ∗
E

for each a ∈ ΣE, such that (wa)−1(E) = rta(E).

Proof. The first appearance Fa(E) is one such (wa)−1(E) satisfying Fa(E) =
rta(E).

Thus repeating terms are derivatives of E, and any non-null derivative of E is
built from one of them. Next we present other properties for rta(E).

Proposition 7. Let all symbols in E be distinct. For each a ∈ ΣE,
(1) rta(E) exists,
(2) rta(E) is unique.

Proof. (1) From Berry and Sethi [2] it is known that a non-null (wa)−1(E) exists
for each a ∈ ΣE . Then from Theorem 1 rta(E) exists and rta(E) �= ∅.

(2) Suppose rta(E) is not unique. That is, for some a ∈ ΣE, there are two
repeating terms F and F1, such that F �= F1. From Theorem 1 and Proposition 6
it implies F = F1 + . . . + F1 and F1 = F + . . . + F , which is a contradiction.
Therefore rta(E) is unique.

If E = ∅ or ε, no symbol is in E, so rta(E) is undefined. We let rta(∅) = rta(ε) =
∅ for any a ∈ Σ for the sake of completeness.

The following lemma will be used in the proof of Proposition 8.

Lemma 1. Let all symbols in E be distinct. If (wa)−1(E) ∼aci E for some
w ∈ Σ∗

E, then rta(E) = E.

Proof. We prove by induction on the structure of E. If E = ∅, then (wa)−1(E) =
∅. By assumption, rta(E) = ∅. So rta(E) = E. If E = ε, then (wa)−1(E) = ∅,
(wa)−1(E) �∼aci E. If E = a, then a−1(E) = ε, (wb)−1(E) = ∅ for w �= ε or
b �= a. So (wa)−1(E) �∼aci E.

By induction: 1. E = F + G. By the rules (∅ε-rules), F,G �= ∅, then
(wa)−1(E) ∼aci E �= ∅. By equation (1), (wa)−1(E) is either (wa)−1(F ) or
(wa)−1(G). If (wa)−1(E) = (wa)−1(F ), then (wa)−1(F ) ∼aci F + G. Since
(wa)−1(F ) does not contain symbols in G, we have G = ∅, which is a contradic-
tion. Similarly, if (wa)−1(E) = (wa)−1(G), we also have a contradiction.

2. E = FG. By the rules (∅ε-rules), F,G �= ∅ or ε, then since (wa)−1(E) ∼aci

E �= ∅, by equation (2) wa−1(E) is either (wa)−1(F )G or (va)−1(G) for some
v such that w = uv. If wa−1(E) = (wa)−1(F )G, then (wa)−1(F )G ∼aci FG.
So (wa)−1(F ) ∼aci F . By the inductive hypothesis, we have rta(F ) = F . By
equation (2) wa−1(E) = (wa)−1(F )G implies a ∈ ΣF . Hence, from the proof of
Theorem 1 we know rta(E) = rta(F )G = FG. If wa−1(E) = (va)−1(G), then
(va)−1(G) ∼aci FG. Since (va)−1(G) does not contain symbols in F , we have
F = ε, which is a contradiction.



352 H. Chen and S. Yu

3. E = F ∗. If E = ∅, then rta(E) = E. Otherwise E �= ∅, then (wa)−1(E) �= ∅.
From the proof of Theorem 1 we have rta(E) = rta(F )F ∗. Thus (wa)−1(E) is
a sum of one or more rta(F )F ∗. Since (wa)−1(E) ∼aci F

∗, we have rta(F ) = ε.
Hence rta(E) = rta(F )F ∗ = F ∗ = E.

This means if w−1(E) ∼aci E then E does not contain any top-level +, or,
equivalently, if E contains any top-level +, then w−1(E) �∼aci E for any w ∈ Σ∗

E .
Remark. If the rules (∅ε-rules) do not hold, the above lemma can also be

proved without difficulty.

Proposition 8. Let all symbols in E be distinct. If there are non-null (w1a1)−1

(E) and (w2a2)−1(E), such that (w1a1)−1(E) ∼aci (w2a2)−1(E), then rta1(E) =
rta2(E), and vice versa.

Proof. (⇒) We prove it by induction on the structure of E. The cases for E =
ε, ∅, a, a ∈ ΣE are obvious.

1. E = F +G. From equation (1), the non-null (w1a1)−1(E) is either (w1a1)−1

(F ) or (w1a1)−1(G). Likewise, the non-null (w2a2)−1(E) is either (w2a2)−1(F )
or (w2a2)−1(G).

If

(w1a1)−1(E) = (w1a1)−1(F ), (w2a2)−1(E) = (w2a2)−1(F ) (a),

then (w1a1)−1(F ) ∼aci (w2a2)−1(F ). By the inductive hypothesis, we have
rta1(F ) = rta2(F ). In addition, (a) implies a1, a2 ∈ ΣF . Then from the proof
of Theorem 1 we know rta1(E) = rta1(F ), and rta2(E) = rta2(F ). Hence
rta1(E) = rta2(E).

If

(w1a1)−1(E) = (w1a1)−1(F ), (w2a2)−1(E) = (w2a2)−1(G) (b),

then (w1a1)−1(F ) ∼aci (w2a2)−1(G). Since symbols in F and G are distinct, we
have (w1a1)−1(F ) = (w2a2)−1(G) = ε. Then from Theorem 1 we have rta1 (F ) =
rta2(G) = ε. In addition, (b) implies a1 ∈ ΣF and a2 ∈ ΣG. Hence similarly from
the proof of Theorem 1 we know rta1(E) = rta1 (F ) and rta2(E) = rta2 (G), So
rta1(E) = rta2(E).

Proofs for the remaining two cases are similar to the above cases.
2. E = FG. From equation (2), the non-null (w1a1)−1(E) is either (w1a1)−1

(F )G or (v1a1)−1(G) for some v1 such that w1 = u1v1. Likewise, the non-null
(w2a2)−1(E) is either (w2a2)−1(F )G or (v2a2)−1(G).

If

(w1a1)−1(E) = (w1a1)−1(F )G, (w2a2)−1(E) = (w2a2)−1(F )G (a),

then (w1a1)−1(F )G ∼aci (w2a2)−1(F )G, which then implies (w1a1)−1(F ) ∼aci

(w2a2)−1(F ). By the inductive hypothesis, we have rta1(F ) = rta2 (F ). In ad-
dition, (a) implies a1, a2 ∈ ΣF . Then from the proof of Theorem 1 we know
rta1(E) = rta1(F )G, and rta2(E) = rta2 (F )G. Hence rta1(E) = rta2(E).
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If

(w1a1)−1(E) = (w1a1)−1(F )G, (w2a2)−1(E) = (v2a2)−1(G) (b),

then (w1a1)−1(F )G ∼aci (v2a2)−1(G). Since (v2a2)−1(G) does not contain sym-
bols in F , we have (w1a1)−1(F ) = ε, and G ∼aci (v2a2)−1(G). Since (w1a1)−1(F )
= ε, from Theorem 1 we have rta1(F ) = ε. By Lemma 1 G ∼aci (v2a2)−1(G)
implies rta2(G) = G. In addition, (b) implies a1 ∈ ΣF and a2 ∈ ΣG. Hence
rta1(E) = rta1(F )G = G = rta2 (G) = rta2(E).

Proofs for the remaining two cases are similar to the above cases.
3. E = F ∗. Since (w1a1)−1(E) ∼aci (w2a2)−1(E), by Corollary 1 we have

rta1(E) ∼aci rta2(E). From the proof of Theorem 1 we know

rta1(E) = rta1 (F )F ∗, rta2 (E) = rta2(F )F ∗ .

So rta1(F ) ∼aci rta2(F ), which implies there are (u1a1)−1(F ), (u2a2)−1(F ) �= ∅,
such that (u1a1)−1(F ) ∼aci (u2a2)−1(F ). Then from the inductive hypothesis,
we have rta1(F ) = rta2(F ). Hence rta1 (E) = rta1(F )F ∗ = rta2(E).

(⇐) This is obvious from Corollary 1.

Corollary 2. Let all symbols in E be distinct. If rta1(E) ∼aci rta2 (E), then
rta1(E) = rta2(E).

Remark 1. From the previous discussions, it is clear that rta(E)’s are ‘atomic’
building blocks, in the following meanings. (1) Each non-null (wa)−1(E) is
uniquely decomposed into a sum of rta(E), that is, (wa)−1(E) = Σ rta(E).
(2) rta(E) and rtb(E) are either identical, or not equivalent modulo ∼aci, if
a �= b.

4 An Application

The above results solve an issue in using Berry and Sethi’s result. Berry and
Sethi showed that an arbitrary derivative in the class {(wx)−1(E) | w ∈ Σ∗

E
}

corresponds to the state x of the Glushkov automaton of E. This means that the
derivatives that correspond to a state are not unique. In many cases, however,
one needs a unique representative for that class of derivatives to correspond to a
state. This, however, turns out to be non-trivial as is discussed later in this sec-
tion. By the theoretical work on derivatives in the paper, the representatives can
be obtained immediately. As an application this section gives an improvement
of Ilie and Yu’s proof [9].

4.1 Background

Champarnaud and Ziadi’s proof of the fact that the partial derivative automaton
is a quotient of the Glushkov automaton resorts to their newly defined notion of
c-derivative [6]. It is thus an interesting and attractive issue whether a proof can



354 H. Chen and S. Yu

directly use only the notions of derivative and partial derivative. Ilie and Yu [9]
presented such a proof, which is much simplified compared with Champarnaud
and Ziadi’s proof. The central issue to use Ilie and Yu’s approach is to find a
unique representative for a class of derivatives mentioned above. As we show
shortly, the proof in [9] actually fails to find the correct representatives. See next
subsection for details. The difficulty of finding the representatives may also be
partly reflected by the fact that the first proof (Champarnaud and Ziadi [6]) has
to use an indirect approach.

Since a correct proof directly using only derivatives and partial derivatives
may provide insight and helpful techniques for related researches, for example
research of algorithms for partial derivative automata, it is valuable to give such
a proof.

In the following, based on our work on derivatives, and in the spirit of Ilie
and Yu, an improved proof which directly uses only the notions of derivative and
partial derivative is presented.

4.2 Ilie and Yu’s Proof

It is claimed in the proof [9] that, by using the rules (∅ε-rules), for a fixed
x ∈ ΣE and for all words w, (wx)−1(E) is either ∅ or unique. However this
result is incorrect, which can be seen from the following example.

Example 3. In Example 1, (a1a3)−1(E) and (a1a3a3)−1(E) are distinct.

The whole proof is based on this uniqueness assumption.

4.3 An Improved Proof

From Theorem 1 and the definitions of derivatives and partial derivatives it is
easy to see that for an expression E if ∂wx(E) �= ∅ then ∂wx(E) = {rtx(E)}.

For a letter x ∈ ΣE , recall that Berry and Sethi’s continuation, denoted
Cx(E), is any expression (wx)−1(E) �= ∅. We use rtx(E) instead of arbitrary
(wx)−1(E) �= ∅ to represent Cx(E), i. e., Cx(E) = rtx(E). Now the continuation
Cx(E) is unique. Denote also CqE (E) = E (qE is the start state of the Glushkov
automaton of E). Berry and Sethi’s continuation automaton of E is

Mcont(E) = (Q,Σ, δ, q, F ),

where Q = {(x,Cx(E)) |x ∈ ΣE ∪ {qE}}, δ((x,Cx(E)), a) = {(y, Cy(E)) | y =
a and y ∈ first(Cx(E))} for x ∈ ΣE ∪ {qE} and a ∈ Σ, q = (qE , E), F =
{(x,Cx(E)) | ε ∈ L(Cx(E))}.

Define M1 - M2 if two automata M1 and M2 are isomorphic. It is proved [2]
that Mcont(E) - Mg(E).

By definition, Mpd(E) takes elements in ∂wx(E) and {E} as states for x ∈ ΣE ,
with transitions labeled by letters in ΣE . Then Mpd(E) is the automaton ob-
tained from Mpd(E) by unmarking labels of transitions. From the correspon-
dence between ∂wx(E) and Cx(E) it is easy to see that the difference between
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Mpd(E) and Mcont(E), hence between Mpd(E) and Mg(E), is whenever Cx(E)
and Cy(E) are identical, they correspond to the same state in Mpd(E) and cor-
respond to different states in Mcont(E). This leads to the following proposition.

Define the equivalence =c′ ⊆ Q2 by (x1, Cx1(E)) =c′ (x2, Cx2(E)) iff Cx1(E) =
Cx2(E). The equivalence is right invariant w.r.t. Mcont(E). Define the equiva-
lence =c ⊆ (ΣE ∪ {qE})2 by x1 =c x2 iff Cx1(E) = Cx2(E). The equivalence is
right invariant w.r.t. Mg(E).

Proposition 9. Mpd(E) - Mcont(E)/=c′ - Mg(E)/=c .

Define ≡c ⊆ (ΣE ∪ {qE})2 by x1 ≡c x2 iff Cx1(E) = Cx2(E). The equiv-
alence is right invariant w.r.t. Mg(E). It is easy to see that =c ⊆≡c. That
is, Mg(E)/≡c is a quotient of Mg(E)/=c . Let us compute the quotient. Sup-
pose Mg(E) = (Q,Σ, δ, q, F ), then Mg(E)/=c = (Q/=c , Σ, δ=c , [q]=c , F/=c),
Mg(E)/≡c = (Q/≡c , Σ, δ≡c , [q]≡c , F/≡c). Define the equivalence ≡⊆ (Q/=c)2

by [x1]=c ≡ [x2]=c iff Cx1(E) = Cx2(E). The equivalence is right invariant w.r.t.
Mg(E)/=c . Then Mg(E)/≡c - Mg(E)/=c/≡. From Proposition 9, Mg(E)/=c

and Mpd(E) are isomorphic. The difference between Mpd(E) and Mpd(E) is
that, for Cx(E) and Cy(E), Cx(E) �= Cy(E), whenever Cx1(E) = Cx2(E), they
correspond to different states in Mpd(E) and correspond to the same state in
Mpd(E). Therefore it is easy to further see that Mg(E)/=c/≡ and Mpd(E) are
isomorphic. Therefore we have

Theorem 2. Mpd(E) - Mg(E)/≡c .

Remark 2. The above proof is possible mainly due to (1) Cx(E) is unique,
which is enabled by selecting a representative, rtx(E), for it, and (2) Cx(E) is
still a derivative of E.
Remark 3. After setting Cx(E) = rtx(E), the remaining part of the proof for
Theorem 2 is in the spirit of Ilie and Yu [9], but reformulated in a more rigorous
form and corrects several flaws contained in the original proof.

5 Conclusion

The paper proposed a characterization of the structure of derivatives and proved
several properties of derivatives for an expression with distinct symbols. Base on
this, it gave a representative of derivatives and presented an improved proof of
Ilie and Yu [9] of the fact that the partial derivative automaton is a quotient of
the Glushkov automaton.

We believe that the characterization of derivatives given in the paper is a
useful technique for relevant researches.
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Abstract. We discuss theoretical aspects of the self-assembly of trian-
gular tiles, in particular, right triangular tiles and equilateral triangular
tiles, and the self-assembly of hexagonal tiles. We show that triangular
tile assembly systems and square tile assembly systems cannot be sim-
ulated by each other in a non-trivial way. More precisely, there exists
a deterministic square (hexagonal) tile assembly system S such that no
deterministic triangular tile assembly system that is a division of S pro-
duces an equivalent supertile (of the same shape and same border glues).
There also exists a deterministic triangular tile assembly system T such
that no deterministic square (hexagonal) tile assembly system produces
the same final supertile while preserving border glues.

1 Introduction

A basic model of DNA computation by self-assembly was proposed by Adle-
man [1] and Winfree [2], based on the theory of Wang tiles [3]. In this model,
the basic components are square tiles with sides painted with “glues”, that can
stick together to form supertiles if the glues at abutting edges match, and attach
with sufficient strength.

A regular tiling of the plane is a highly symmetric tiling made up of con-
gruent regular polygons. Only three such regular tilings exist: those made up
of equilateral triangles, squares, or hexagons. This paper departs from the ex-
isting model of self-assembly by investigating, instead of square tiles, the case
of triangular tiles and hexagonal tiles. We namely discuss the self-assembly by
equilateral-triangular, right-triangular, and hexagonal tile systems.

Our line of investigation follows that started by Winfree [4], who showed how
the formation of large structures made out of the aggregation of rectangular
DNA complexes can simulate Blocked Cellular Automata (BCA), which have
the computational power of Turing machines. Winfree, Liu, Wenzler, and See-
man [2] designed and experimentally produced two-dimensional DNA crystals
by self-assembly. A systematic study of self-assembly as a computational process
was initiated by Adleman [1], who studied the time complexity of a particular
case of linear self-assembly via “step counting” and raised the question of the
construction of large squares via self-assembly. Rothemund and Winfree [5] stud-
ied the self-assembly of squares at fixed temperature (the threshold that the sum
of the strengths of glues of a tile have to surpass, in order for it to “stick” to

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 357–375, 2012.
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Fig. 1. Four kinds of isosceles right triangular tiles (γ1, γ2, γ3, se), (γ1, γ2, γ3, ne),
(γ1, γ2, γ3, nw), and (γ1, γ2, γ3, sw)

an existing assembled shape), and showed that in order to deterministically self-
assemble an N × N full square (the square, N tiles on a side), N2 different tile
types are required at temperature τ = 1 and O(logN) different tiles suffice at
fixed temperature τ ≥ 2. Adleman, Cheng, Goel, and Huang [6] improved the
latter result to Θ(logN/ log logN) different tiles. Kao and Schweller [7] showed
that if the temperature τ is allowed to change systematically, then a constant
number of tiles is enough for the self-assembly of an arbitrary N ×N full square,
with a temperature sequence of length O(logN).

In this paper, we follow a similar line of inquiry for triangular tiles and hexag-
onal tiles. Besides a natural theoretical interest, this study is motivated by the
fact that triangular DNA tiles have been experimentally produced. For example,
Liu, Wang, Deng, Walulu and Mao [8] reported the construction of a DNA tri-
angle tile composed of three four-arm junctions, while Ding, Sha and Seeman [9]
reported obtaining a triangular DNA tile formed from DX DNA molecules, and
He, Chen, Liu, Ribbe and Mao [10] built a 3-point DNA star tile.

In this paper, in Sect. 2 we introduce the definition of triangular, respectively
hexagonal, tile assembly systems. In Sect. 3 we compare the square tile assembly
systems and triangular tile assembly systems from the point of view of shapes
of the final supertiles they generate and show that the two types of systems
cannot be simulated by each other in a straightforward way; we also compare
the triangular tile assembly systems and hexagonal tile assembly systems.

2 Preliminaries

Our discussion of the triangular, respectively hexagonal, tile assembly systems
will make use of the following definitions.

A triangular tile is a tile with three edges, each of which is “colored” with
elements from a finite set Γ , called a glue set, whose elements dictate the inter-
actions between the tiles. For all tiles discussed in this paper, we assume that
the shortest side of the tile is of unit length, and that tiles cannot be rotated or
flipped over.

An isosceles right triangular tile is a triangular tile in the shape of an isosceles
right triangle, with each of its three edges colored by a glue from the glue set,
and with the right angle pointing to the four possible directions: South-East,
North-East, North-West, South-West as illustrated in Fig. 1. More formally, an
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Fig. 2. Two equilateral triangular tiles (γ1, γ2, γ3, u), (γ1, γ2, γ3, d) and a hexagonal
tile (γ1, γ2, γ3, γ4, γ5, γ6)
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Fig. 3. Three diamond tiles (γ1, γ2, γ3, γ4, II), (γ1, γ2, γ3, γ4, IV), and (γ1, γ2, γ3, γ4, VI)

isosceles right triangular tile t is represented as a quadruple (γ1, γ2, γ3, k), where
γ1, γ2, γ3 ∈ Γ are the glues on the sides of the tile in the counter-clockwise order
starting from the longest side, and k ∈ {se, ne, nw, sw} presents the direction
pointed to by the right angle. In the rest of this paper, we denote the glues
γ1, γ2, γ3 of the 3 edges of a tile t by γ1(t), γ2(t), and γ3(t). Throughout this
paper we will call isosceles right triangular tiles simply right triangular tiles.

An equilateral triangular tile is a triangular tile in the shape of an equilateral
triangle, with its edges colored by glues from the glue set, and that is either
in an upward position or in a downward position as illustrated in Fig. 2. An
equilateral triangular tile is formally represented as a quadruple (γ1, γ2, γ3, k),
where γ1, γ2, γ3 ∈ Γ are the glues on the sides of the tile in the counter-clockwise
order starting from the horizontal side and k ∈ {u, d} presents the upward,
respectively downward, orientation of the “arrow” represented by the triangle.
The notations γ1(t), γ2(t), and γ3(t) are defined in the same way as for right
triangular tiles.

A regular hexagonal tile is a tile in the shape of a regular hexagon, with
each of the six edges being colored with glues from the set Γ . Unlike triangular
tiles, two geometrically adjacent regular hexagonal tiles must be of the same
orientation. Without loss of generality, we assume that all regular hexagonal
tiles are positioned as illustrated in Fig. 2. More formally, a regular hexagonal
tile t is represented as a tuple (γ1, γ2, γ3, γ4, γ5, γ6), where γi ∈ Γ are the glues
on the sides of the tile in the counter-clockwise order starting from the top-most
side. The notations γi(t) for i = 1, . . . , 6 are defined in the same way as for
triangular tiles. In this paper we will only investigate regular hexagonal tiles,
and simply call them hexagonal tiles.
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Fig. 4. A hexagonal grid graph

A diamond tile is a tile in the shape of a diamond (rhombus), one angle of
which is π/3, with each of the four edges being colored with glues from the
set Γ . We assume each diamond tile is in one of the three possible positions
illustrated in Fig. 3. More formally, a diamond tile t is represented as a tuple
(γ1, γ2, γ3, γ4, k), where γi ∈ Γ are the glues on the sides of the tile and k ∈
{II, IV, VI} as specified by the three typical examples in Fig. 3. The notations
γi(t) for i = 1, . . . , 4 are defined in the same way as for triangular tiles.

Let us define Tsq = Γ 4, TR = Γ 3 × {se, ne, nw, sw}, T� = Γ 3 × {u, d}, TH =
Γ 6, and TD = Γ 4 × {II, IV, V I} as the sets of all possible square tiles, right
triangular tiles, equilateral triangular tiles, hexagonal tiles, and diamond tiles
respectively, given the glue set Γ . We can further split TR into four disjoint
subsets TR,se, TR,ne, TR,nw, TR,sw depending on the fourth element of tiles, defined
as: TR,x = {(γ1, γ2, γ3, x) ∈ TR} for x ∈ {se, ne, nw, sw}. In a similar manner,
T� can be split into the two disjoint subsets T�,u, T�,d and TD can be split into
three disjoint subsets TD,II, TD,IV, TD,VI.

Let us proceed now to augment the notion of glue by associating to every
glue a numerical “glue strength” as follows. Let R be the set of non-negative
real numbers. Let Γ = {(�1, n1), (�2, n2), . . . , (�k, nk) | n1, . . . , nk ∈ R, where
�1, . . . , �k are unique labels, i.e., �i = �j iff i = j} for some k ≥ 1. The set Γ
dictates interactions between tiles, where for each 1 ≤ i ≤ k, �i is the label of
the i-th glue and ni is the glue strength associated with it. (In the figures of this
paper, the strength associated with the glue on a side will be represented by the
number of parallel edges along that side.) A particular glue φ ∈ Γ , defined as
φ = (φ, 0), denotes the non-interactive glue. Tiles can stick to each other by the
glues on their adjacent edges to form supertiles.

Let T be a set of tiles of the same kind (square, equilateral triangle, right
triangle, hexagon, or diamond). Conventionally, tiling the plane by tiles in T is
modeled as a partial function from either the set of coordinates on the plane,
or from the corresponding undirected lattice graph, to the set of tiles T . This
partial function is called a supertile of T . Tiles assigned to adjacent vertices of
the lattice graph are considered to be adjacent in the supertile.

For square supertiles, the coordinate system should be orthogonal, and hence,
the corresponding graph is the grid graph (the two-dimensional integer lattice).
In contrast, the lattice graph for a supertile made of triangular tiles should
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Fig. 5. A triangular grid graph

be 3-regular (each vertex of the underlying graph has 3 neighbours) because a
triangular tile can abut to at most 3 other tiles. Thus, the most appropriate
lattice graph for tiling by equilateral triangular tiles is a hexagonal grid graph
H = (V,E) (see Fig. 4). In order to enforce the condition that two upward
equilateral triangular tiles are never adjacent to each other, and neither are two
downward ones, H has to be bipartite as: V = Vu ∪ Vd and E ⊆ Vu × Vd. For
T ⊆ T�, a supertile C of T is defined as a partial function from V to T such
that

1. for any tu ∈ T�,u, if C(v) = tu, then v ∈ Vu, and
2. for any td ∈ T�,d, if C(v′) = td, then v′ ∈ Vd.

For defining a supertile of a set of right triangular tiles, the underlying 3-regular
lattice graph G = (V ′, E′) should be a 4-partite graph because there are the
four kinds of right triangular tiles. Hence, let V ′ = Vse ∪ Vne ∪ Vnw ∪ Vsw and E′

satisfy

1. for vse ∈ Vse, {(vse, v1), (vse, v2), (vse, v3)} ⊆ E′ such that v1 ∈ Vnw, v2 ∈
Vne ∪ Vnw, and v3 ∈ Vnw ∪ Vsw;

2. for vne ∈ Vne, {(vne, v′1), (vne, v′2), (vne, v′3)} ⊆ E′ such that v′1 ∈ Vsw, v′2 ∈
Vnw ∪ Vsw, and v′3 ∈ Vse ∪ Vsw;

3. for vnw ∈ Vnw, {(vnw, v′′1 ), (vnw, v′′2 ), (vnw, v′′3 )} ⊆ E′ such that v′′1 ∈ Vse, v′′2 ∈
Vse ∪ Vsw, and v′′3 ∈ Vse ∪ Vne;

4. for vsw ∈ Vsw, {(vsw, v′′′1 ), (vsw, v′′′2 ), (vsw, v′′′3 )} ⊆ E′ such that v′′′1 ∈ Vne, v′′′2 ∈
Vse ∪ Vne, and v′′′3 ∈ Vne ∪ Vnw.

For T ′ ⊆ TR, a supertile C′ of T ′ is defined as a partial function from V ′

of G to T ′ such that for any tx ∈ TR,x, if C′(v) = tx, then v ∈ Vx, where
x ∈ {se, ne, nw, sw}. For defining the supertile of a set of hexagonal tiles, a
6-regular lattice graph, triangular grid graph Tr = (V ′′, E′′), is adopted (see
Fig. 5). For T ′′ ⊆ TH, a supertile C′′ of T ′′ is defined as a partial function from
V ′′ of Tr to T ′′. For defining the supertile of a set of diamond tiles, a 4-regular
lattice graph G′ = (V ′′′, E′′′) is needed and the lattice graph is a 3-partite graph.
Let V ′′′ = VII ∪ VIV ∪ VVI and E′′′ satisfy:
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1. for vII ∈ VII, {(vII, v1), (vII, v2), (vII, v3), (vII, v4)} ⊆ E′′′ such that v1, v3 ∈
VII ∪ VIV and v2, v4 ∈ VII ∪ VVI;

2. for vIV ∈ VIV, {(vIV, v1), (vIV, v2), (vIV, v3), (vIV, v4)} ⊆ E′′′ such that v2, v4 ∈
VII ∪ VIV and v1, v3 ∈ VIV ∪ VVI;

3. for vVI ∈ VVI, {(vVI, v1), (vVI, v2), (vVI, v3), (vVI, v4)} ⊆ E′′′ such that v1, v3 ∈
VII ∪ VII ∪ VVI and v2, v4 ∈ VIV ∪ VVI.

For T ′′′ ⊆ TD, a supertile C′′′ of right triangular tiles from T ′′′ is defined as a
partial function from V ′′′ of G′ to T ′′′. In the definition of a supertile, both the
hexagonal grid graph H and the triangular grid graph Tr are unique, but there
are more than one valid lattice graphs to present supertiles for right triangular
tiles and for diamond tiles.

Let us now formally define the interaction between tiles which depends on
the match between the glues on the tiles’ adjacent edges and also on a thresh-
old parameter called temperature τ ∈ R that determines whether or not the
“sticking” is strong enough for the new tile to attach to an existing super-
tile. In general, the strength function g : Γ × Γ → R is defined such that
g(γ, γ′) = g(γ′, γ) and g(φ, γ) = 0 for all γ, γ′ ∈ Γ . In particular, we are in-
terested in the discrete case where τ is an integer and g((�, n), (�′, n′)) = n if
� = �′ and n = n′; g((�, n), (�′, n′)) = 0 otherwise. We call a supertile D full if
the strength g(γi(D(v)), γi(D(vi))) of common edges of every two adjacent tiles
D(v) and D(vi) in the supertile is strictly positive.

In order to model the growth of tile assemblies, we need to define the notion of
attachability. Let T ⊆ T� be a set of equilateral triangular tiles and C,D be two
supertiles of T . We say that t attaches to C at vertex v, to derive D, and we write
C →T,g,τ D, if the following conditions hold. Firstly, C(u) = D(u) for all u ∈
dom(C). Secondly, there exist some t ∈ T and v ∈ V such that C(v) is undefined,
dom(C) =dom(D) \ {v}, D(v) = t, and for every {(v, v1), (v, v2), (v, v3)} ⊆ E
we have, ∑

i∈{1,2,3}
g(γi(t), γi(D(vi))) ≥ τ.

Informally, the supertile D is derived from the supertile C by the attachment
of t to C iff the sum of the glue strengths on those edges of t that are adjacent
to C is greater than or equal to the threshold τ . Note that in the definition of
attachability, we do not require either C or D be full.

We can define the notions of attachability and transition for right triangular
tiles, hexagonal tiles and diamond tiles in a similar manner, and those notions
for square tiles can be found in the literature [6]. The reflexive and transitive
closure of →T,g,τ is denoted by →∗

T,g,τ .
A tile assembly system (TAS) is a tuple S = (T, s, g, τ). T is a finite set of

tiles of the same kind ; so T ⊆ Tsq (T ⊆ TR, T ⊆ T�, T ⊆ TH, T ⊆ TD) implies
that all tiles of S are square (respectively, right triangular, equilateral triangular,
hexagonal, diamond). The other parameters of S mean that s ∈ T is a special
supertile called the seed, g is a strength function, and τ is the temperature.

We now define the notion of derived supertile of a given TAS S as follows.
The seed tile s, when placed in an a priori chosen “reference position” on the
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Fig. 6. A set of 12 tiles from which the Sierpinski triangle self-assembles deterministi-
cally. S, L, R, p, p′, y, and y′ are the glue labels and the number of parallel lines along
each edge denotes the glue strength. The labels 1 and 0 specify the digits used in the
XOR operation.

plane or on the grid graph, is a partial function called the seed derived supertile
or simply seed supertile. For example, in the case of square TASs, we may choose
to always place the seed supertile on the plane as the square with corners at
coordinates (0, 0), (0, 1), (1, 0), (1, 1). A derived supertile of S is a supertile C
such that s →∗

T,g,τ C. A final supertile of S is a derived supertile C such that
C →∗

T,g,τ D implies C = D for any supertile D, that is, no tile is attachable
at any vertex in C. The number of tile types of S is called the program size
complexity of S, and is denoted by |S| [5].

A TAS is said to be deterministic if its final supertile is unique regardless of
how the self-assembly proceeds starting from the seed. Otherwise, the TAS is
said to be non-deterministic. A non-deterministic TAS can have many different
final supertiles possibly with different shapes. In this paper, unless explicitely
stated otherwise, all tile systems are assumed to be deterministic. When T ⊆ TR

(respectively, T ⊆ T�, T ⊆ TH, T ⊆ TD), S is explicitly called a right triangular
TAS (respectively, an equilateral triangular TAS, a hexagonal TAS, a diamond
TAS).

Before we discuss shapes generated by non-square self-assembly systems, let
us first see an example of how a Sierpinski triangle can self-assemble using tiles
from an equilateral triangular TAS.

Proposition 1. There exists an equilateral triangular tile system which deter-
ministically self-assembles the Sierpinski triangle at temperature τ = 2.

Proof. Let us recall the square tile system which deterministically self-assembles
the Sierpinski triangle [11], whose tile set contains seven tile types in two colour
categories, dark and light. Using the technique of “division”, formally defined in
Section 3, we transform each of the square tiles by flattening it into a parallelo-
gram, and dividing this parallelogram to obtain one upward and one downward
equilateral triangular tile, see Fig. 9. Furthermore, by reusing some of the trian-
gular tiles, the number of triangular tiles needed to assemble an arbitrarily large
Sierpinski triangle is reduced to twelve. The tile set of an equilateral triangular
tile system thus designed is illustrated in Fig. 6.
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The seed tile is (φ, S, φ, u) and together with the other five tiles on the top
row in Fig. 6 can form the L-shaped supertile, which composes the outmost
left and bottom boundary of the Sierpinski triangle (See Fig. 7). Then each
parallelogram-shaped space is filled by a pair of triangular tiles that together
simulate a flattened square tile that implements an XOR-like rule. This XOR
rule takes as input the left and bottom glues of the first triangular tile of the
pair (corresponding to the left and bottom neighbours of that tile), and outputs
the result as the right and top glues of the second triangular tile of the pair.
The tiles of the pair are held together by a glue of strength 2. Four tile types
are enough to implement the XOR operation. Two more tile types deliver the
information and fill the triangle, as illustrated on the bottom row in Fig. 6. The
result is a Sierpinski triangle as illustrated in Fig. 7.
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Fig. 7. The Sierpinski-triangle which consists of 64 equilateral triangular tiles with 12
different tile types

3 Comparing Supertiles

We now proceed to compare the final supertiles produced by various tile assembly
systems in terms of their shape and boundary glues.

The tiles we considered are well defined geometrically by their shape and the
fact that their shortest edge is of unit length. Thus, given a TAS with tiles
of shape α, where α ∈ {square, triangle, right triangle, hexagon}, we can now
associate to every supertile a corresponding region in R2 as follows.
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We associate to a supertile of size 1, i.e., consisting of one tile only, the region
in R2 enclosed by the edges of that tile, assuming the tile is placed on the two-
dimensional plane at an a priori chosen reference position. For example if α =
square, then the corresponding region is the square (including its interior) with
corners (0, 0), (0, 1), (1, 0), (1, 1). Let us assume we have associated to the seed
tile a region in R2 in this fashion. We can now associate to a supertile of size
2, obtained by attaching a single tile to the seed tile, a region in R2. This is
obtained by taking the union between the region in R2 coresponding to the seed
tile, and the region in R2 resulting by translating the region in R2 corresponding
to the second tile to the position where it attaches to the seed. By iterating the
process, we can thus associate to each supertile that is derived from the seed a
corresponding region in R2.

Two supertiles are said to have the same shape if their corresponding regions of
R2 are identical. If, in addition, the glues on the boundaries of the two supertiles
(but not necessarily the internal glues) are the same, the two supertiles are
said to be equivalent. The fact that, in order to be considered equivalent, final
supertiles have the same boundary glues in addition to covering the same region
in R2, reflects the fact that supertiles are often used as components for further
assemblies, and thus have to have the same “sticking properties” if they are to
be used interchangeably.

A region Y ⊆ R2 is called α-compatible, where α is an element of {square,
right triangle, equilateral triangle, hexagon, diamond}, if Y can be geometrically
“covered” by tiles from an α-TAS, i.e., if Y can be written as the set union of
regions, overlapping at most on their edges, that are obtained by translating
the regions corresponding to single tiles from an α-TAS. We call a supertile
α-compatible if its corresponding region in R2 is α-compatible.

For example, the region corresponding to the final supertile of any hexagonal
TAS is equilateral-triangle-compatible, and none of the triangular regions of R2

is square-compatible. For a given α-TAS, only the assembly of final supertiles of
α-compatible shapes is meaningful. Hence, in the remaining discussion, we only
consider the assembly of final supertiles of α-compatible shapes.

First, note that for any α-compatible supertile, there is a trivial α-TAS (deter-
ministic or non-deterministic) that produces a final supertile of the same shape.

Proposition 2. Let α ∈ {square, right triangle, equilateral triangle, hexagon,
diamond} and let Y be an α-compatible supertile. There exists a non-
deterministic α-TAS of a constant number of tile types whose final supertile
has the same shape as Y . If Y is finite, then there exists a deterministic α-TAS
with n tile types whose final supertile has the same shape as Y , where n is the
total number of tiles needed to mosaic Y geometrically.

Proof. Let us consider α being equilateral triangle. The other cases are similar.
Consider first the non-deterministic case. Let T be the set of tiles T =

{(a, b, c, k) | a, b, c ∈ {φ, g}, k ∈ {u, d}}. All glues of g are of strength 1 and
temperature is τ = 1. The seed and assembly process are as follows: The super-
tile Y is assembled according to the geometrical division of the region enclosed
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Fig. 9. Even with the help of affine transformations, squares can be divided into two
equilateral triangles in only one way

by Y into triangular tiles of T . This can be done since Y is equilateral-triangle-
compatible. At each step, a tile sticks to the supertile in such a way that if
the tile is surrounded by other tiles in the completed region, then every edge of
that tile is of glue g; otherwise, the edges that compose the boundary of that
region are of empty glue φ. Then a final supertile of the same shape as Y can
be produced by the given TAS with at most 16 tile types.

For the deterministic case, we mosaic T geometrically with equilateral trian-
gular tiles. If n tiles are needed, we define a TAS consisting of n tiles, where the
glues between each two tiles that stick to each other in the final supertile are
unique.

Proposition 2 shows that, if we are interested only in shape, and we either a)
do not care that a unique supertile is assembled, or b) we care about uniqueness
of the final supertile but we do not care about the program complexity of the
tile system (how many tile types are needed), then α-compatible tile systems
can essentially produce final supertiles of the same shape. This is because every
α-compatible supertile can be produced by a trivial but huge deterministic α-
TAS of type α, where α ∈ {square, right triangle, equilateral triangle, hexagon,
diamond}, or by a non-deterministic one. In what follows, we will discuss natural
restrictions on the comparison of TASs, that avoid these trivial cases.

We first compare the triangular TASs and square TASs from the point of
view of the shapes of the final supertiles they generate. A right triangular TAS
SR = (TR, sR, g, τ) is called a triangular division of a square TAS S = (T, s, g, τ),
if:

1. For any square tile t ∈ T of S, there is a pair of triangular tiles t′, t′′ ∈ TR

of SR whose hypotenuses are colored with the same glue (lt, nt) with nt ≥ τ
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Fig. 11. A hexagonal tile is divided into three diamond tiles in two different ways

so that at temperature τ ≥ 1, these tiles can stick to each other via their
hypotenuses and result in a two-tile supertile equivalent to the square tile t;

2. For any triangular tile t ∈ TR, there exists another triangular tile t′ ∈ TR of
SR such that these two tiles can stick to each other via their hypotenuses and
produce a supertile that is equivalent to a square tile in T at temperature
τ ≥ 1.

Note that the “hypothenuse glues” may or may not be distinct for different
triangular tile pairs. Note also that the numbers of tiles in the two systems, the
square tile system S and its division SR, above satisfy the inequality

√
|T | ≤

|TR|. By definition, the division of a square TAS may not be unique. This is
mainly because a square tile can be divided into two right triangular tiles in two
different ways (see Fig. 8). In addition, two different square TASs can have the
same right triangular TAS as a division. Finally, note that even if a square TAS
is deterministic, its triangular division may not be so. A triangular division of
a square TAS S is called a deterministic triangular division if it is a triangular
division of S and, in addition, it is deterministic.

Let us define the flattening function f : T� → TR as f((γ1, γ2, γ3, u)) =
(γ2, γ3, γ1, sw) and f((γ1, γ2, γ3, d)) = (γ2, γ3, γ1, ne). This function has the ef-
fect of “flattening” an equilateral triangular TAS S = (T, s, g, τ) into a right
triangular TAS F(S) = (U, f(s), g, τ), where U = {f(t) | t ∈ T }. Informally,
a flattened right-triangular TAS is obtained from an equilateral triangular one
by morphing each of the equilateral triangular tiles into either a South-West
pointing, or respectively North-East pointing right triangular one.

An equilateral triangular TAS T is called a division of a square TAS S, Fig.
9, if the flattened TAS F(T ) obtained from it is a division of S. T is called a
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deterministic division of S if it is a division of S which is deterministic. The
numbers of tiles in the two systems, the square tile system S with a tile set TS

and its equilateral triangle division T with the tile set TT , satisfy the inequality√
|TS | ≤ |TT |.
We now ask the question of whether or not any square TAS can be converted,

by division, into a triangular TAS that produces an equivalent final supertile. In
general, the answer is “no”, as shown by the following lemma.

Lemma 1. There exists a deterministic square TAS, none of whose determin-
istic triangular divisions produces an equivalent final supertile.

Two examples proving this lemma are illustrated in Fig. 13, one for τ = 2, (left),
and one for τ = 3, (center). In the figure, each tile is numbered in the order of
a possible assembly process.

For the example in Fig. 13 (left), each of the square tiles s, 1, . . . , 6 can be
simulated by a pair of right triangular tiles. There are two sticky edges for tile 7,
which are on parallel sides of the square tile, each of which is of strength 1.
So under τ = 2 the attachment of tile 7 cannot be simulated by successive
attachments of two right triangular tiles to assemble the same final supertile.
This is because the edges necessary for tile 7 to attach are its North and South
edges, both of them of strength one. No matter how we divide this square tile
into two triangles, the North and South edges will belong to different triangular
tiles and, because they have only strength 1 ≤ τ = 2, neither of them can attach
to the existing supertile.

The next example is the 4×4 square in Fig. 13 (center). By a similar reasoning,
the attachment of tile 11 cannot be simulated by successive attachments of two
right triangular tiles, and thus, the assembly stops and fails to grow into the
4 × 4 square.

The supertile in Fig. 13 (left) has a missing tile in the middle, and we say
that it has a “hole”. In general, a derived supertile S is hole-free if it is full and
for any closed tile-path, all the positions of the grid subgraph corresponding to
S that are inside the closed path are filled with tiles.

Lemma 2. For any deterministic square TAS S at τ = 1, and any square TAS
at τ = 2 whose final supertile is hole-free, there is a triangular division of S that
can produce an equivalent final supertile.

Proof. For τ = 1, the proof is straightforward. Any square tile si with glues
γ1, γ2, γ3, γ4 (on East, North, West, South sides, respectively) in S is replaced
with a pair of right triangular tiles (i, γ1, γ2, ne) and (i, γ3, γ4, sw), where i is a
new glue added, and when si is the seed, we let (i, γ1, γ2, ne) be the new seed.
Then the new right triangular TAS is a division of S and produces an equivalent
final supertile.

Now we assume τ = 2 and assume that there is no hole in the final supertile
of S.

First we prove that for any hole-free derived supertile st, there is an assem-
bly process such that every derived supertile in the process is hole-free. For an
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Fig. 12. Proof of Lemma 2: Tiles lt and rb in a hole area

assembly process p : st0 → st1 → st2 → . . . → stn = st, let f(p) be the number
such that sti is hole-free for i < f(p) but stf(p) has a hole. For the case that
none of sii has a hole, we write f(p) = +∞. Now choose a p such that f(p)
is the largest among all assembly process of st. We prove by contradiction and
assume f(p) �= +∞. Let t be the new attached tile in the step stf(p)−1 → stf(p).
Since stn is full, every sti is also full. So stf(p) has a hole for the reason that
there are missing tiles in a hole region. Those missing tiles will eventually be
filled up in stn since stn is hole-free. Now we consider the following two tiles, not
necessarily distinct, among all missing tiles in the hole of stf(p): the left-most
tiles lt among the top-most tiles, and the right-most tiles rb among the bottom-
most tiles. Then the closest positions to the North of lt, to the West of lt and
to the North-West of lt have tiles on them, called group one, and similarly the
closest positions to the South of rb, to the East of rb and to the South-East of
rb have tiles on them, called group two. (See Fig. 12) Tile t cannot be in both
group one and group two. Without loss of generality, we assume t is not in group
one. So both West and North of lt are tiles in stf(p)−1, and thus there are two
adjacent edges in the hole area that can stick to lt due to the fullness. Then
there is a valid assembly process p′ such that the first few steps up to sti−1 are
the same and then tile lt instead of t sticks to the supertile sti−1. The process
p′ will finally assemble st since the TAS S is deterministic. In this case, we have
f(p′) ≥ f(p) + 1, which contradicts the property that f(p) is the largest among
all assembly of st. Therefore f(p) = +∞.

Now we prove, for the TAS S, that for the assembly process wherein all the
intermediate supertiles are hole-free, a new tile can stick to the supertile at each
step either by two adjacent edges or by an edge of strength at least 2. If the new
tile sticks by more than two edges, then we can pick two adjacent edges. The
only remaining case is when the new tile sticks by exactly two parallel edges.
We show it is impossible. Without loss of generality, suppose sti−1 becomes sti
by sticking t to sti−1 by North and South sides. There is no tile on the East and
on the West sides, or t can stick by two adjacent edges due to the fullness of sti.
But in this case, since sti−1 is a derived supertile, there is a tile-path between
the two tiles to the North and to the South of t in sti−1. So there is a closed
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tile-path in sti which encloses either the position to the East or the position to
the West of t. In other words, sti contains a hole, which contradicts the fact that
sti is hole-free.

We construct the following right triangular TAS: any square tile si with
glues γ1, γ2, γ3, γ4 (on East, North, West, South sides, respectively) in S is re-
placed with four right triangular tiles (i, γ2, γ3, nw), (i, γ4, γ1, se), (i, γ1, γ2, ne)
and (i, γ3, γ4, sw), where i is a new glue added with strength ≥ τ = 2, and when
si is the seed, we let (i, γ1, γ2, ne) be the new seed. Then the new right triangular
TAS is a division of S. Since new tiles can stick to the supertile at each step by
either two adjacent edges or by an edge of strength at least 2, the assembly of
the square TAS can be simulated by the constructed right triangular TAS. So
the constructed right triangular TAS produces a final supertile equivalent to the
final supertile of the square TAS.

By Lemmas 1 and 2, we see that square TASs can be simulated by their right
triangular divisions only under certain conditions. Now we discuss the other
direction: whether every right triangular TAS can be simulated by a square TAS,
assuming that the final supertile is square-compatible. For τ = 1, the answer is
a qualified “yes”, as shown by the following lemma.

Lemma 3. For any deterministic right triangular TAS SR, at τ = 1, if its final
supertile is square-compatible and the strength of the glue of the hypothenuse of
any of its tiles is 1, then there exists a deterministic square TAS S such that SR

is a division of S.

Proof. Let t be a tile of SR. Without loss of generality, assume that this tile is
used at least once in the (unique) final supertile of SR. Since the final supertile
is square-compatible, there must be a (unique) tile that abuts t in the final
supertile, by its hypothenuse. In addition, these two tiles attach to each other
via a glue of strength 1. For each tile t in SR, we add to S the square tile
obtained by thus binding these two triangular tiles. Being thus contructed, S is
deterministic, and SR is its division.

For τ = 2, the situation is different, as shown by the following lemma. Note that,
in the following lemmas, when comparing two TASs, we ask the final supertiles
generated by them to be equivalent, that is, to have the same shape and the
same border glues.

Lemma 4. There exists a deterministic right triangular TAS at τ = 2, whose
final supertile is square-compatible, but no deterministic square TAS produces an
equivalent final supertile.

An example of a right triangular TAS at τ = 2 as postulated in Lemma 4
is illustrated in Fig. 13 (right), where each tile is numbered in the order of a
possible assembly process. Note that any square TAS that produces a supertile
of the same shape as the rightmost supertile depicted in Fig. 13 must include a
square tile with West side glue a, and South glue b. However, if a tile system
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Fig. 13. Examples that show that square TASs and triangular TASs are, in some
sense, not comparable from the point of view of the shapes of final supertiles they
generate. The left and center figures depict two final supertiles of square systems at
τ = 2, and τ = 3, respectively, that illustrate Lemma 1. The right figure (τ = 2),
illustrates Lemma 4. Each glue, unless mentioned, is unique, and thus, the label is
omitted.

contained such a tile, its assembly would grow at its North-East corner and
produce the 3 × 2 rectangle instead.

Lemmas 1 and 4 indicate that square TASs and triangular TASs are, in some
sense, not comparable from the point of view of the shapes of final supertiles
they generate.

The following lemma compares square TASs with hexagonal TASs from the
point of view of the shapes of the final supertiles they generate.

Lemma 5. No supertile is both hexagon-compatible and square-compatible, even
under possible affine transformation on R2.

Proof. Suppose there is a supertile st assembled by hexagonal tiles that is of the
same shape as a supertile st′ assembled by square tiles under affine transforma-
tion F . Let t be the left-most tile on the top-most row of tiles in st. Assume the
vertices of t are v1, . . . , v6, starting from the top-right vertex in the counterclock-
wise order. Then v1, v2, v3, v6 are also vertices of the supertile st by the position
of t. Assume v′1, v

′
2, v

′
3, v

′
6 be the corresponding vertices in st′. Since an affine

transformation transforms lines to lines, the angles v′1, v′2, v′3 and v′2, v′1, v′6 are of
degree π/4 or 3π/4. In other words, the two lines v′2v

′
3 and v′1v

′
6 are parallel. Then

v2v3 and v1v6 should also be parallel, since an affine transformation preserves
parallel relationship of lines. But v2v3 and v1v6 are not parallel, a contradiction.
So no hexagon-compatible shape is square-compatible even under possible affine
transformations on R2.

We now compare triangular TASs with hexagonal TASs from the point of view
of the shapes of the final supertiles they generate.

An equilateral triangular TAS T is called a triangular division of a hexagonal
TAS H , if (i) for any hexagonal tile h in H , there are six triangular tiles in T that
can attach to each other to produce a supertile equivalent to h at temperature
τ ≥ 1, and (ii) for any triangular tile t in T , there are five other triangular
tiles in T , that can attach to each other to produce a supertile equivalent to
a hexagonal tile in H (see Fig. 10). An equilateral triangular TAS T is called
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a deterministic triangular division of a hexagonal TAS H if it is a triangular
division of H that is a deterministic TAS. A right triangular TAS T is called
a division of a hexagonal TAS H , if T is the flattening F(T ′) of an equilateral
triangle TAS T ′ that is a division of H . A right triangular TAS T is called a
deterministic division of a hexagonal TAS H if it is a division of H that is a
deterministic TAS.

It is obvious that for any hexagonal TAS H at τ = 1, there is a triangular
division of H that produces a final supertile of the same shape. For τ = 2 the
situation is different, as shown by the following lemma.

Lemma 6. There exists a deterministic hexagonal TAS H at τ = 2, such that
no deterministic triangular division of H produces an equivalent final supertile.

An example is illustrated in Fig. 14 (left), for τ = 2, where S is the seed and
tile 1 is attached to the supertile before tile 2 is. Tiles s and 1 can be simulated
by their triangular divisions, but tile 2 cannot, since the cooperation between
edges, even for the case when the cooperative edges abut in the hexagonal tile,
cannot be preserved when replacing a hexagonal tile by equilateral triangular
tiles. Indeed, no triangular tile from the division of the hexagonal tile can attach
to the supertile formed by the seed and tile 1, since the edges that would be
needed for any of them to attach all have strength 1. This simple example shows
that most hexagonal TASs cannot be simulated by their triangular divisions.

It is obvious that for any equilateral triangular TAS T at τ = 1 whose final
supertile is hexagon-compatible, there is a hexagonal TAS H that produces an
equivalent final supertile. For τ = 2, the situation is different, as shown by the
following lemma.

Lemma 7. There exists a deterministic equilateral triangular TAS T at τ = 2
whose final supertile is hexagon-compatible, but no deterministic hexagonal TAS
produces an equivalent final supertile.

An example is illustrated in Fig. 14 (right), where tiles are numbered in a possible
order of assembly. Note that any hexagonal TAS that produces an equivalent
final supertile as that of Fig. 14 (right), has to contain a hexagonal tile t such
that γ1(t) = b and γ2(t) = a. Then the process of assembly of such a hexagonal
TAS can grow further in the right-bottom direction, and thus cannot produce
the unique required final supertile.

By replacing pairs of tiles (s, 1), (2, 3), . . . , (10, 11) by diamond tiles in the ex-
ample in Fig. 14, one can also show that there exists a diamond TAS whose final
supertile is hexagon-compatible but no hexagonal TAS produces an equivalent
final supertile.

Lemmas 6 and 7 together indicate that hexagonal TASs and triangular TASs
are, in some sense, not comparable from the point of view of the shapes of the
final supertiles they generate.

Let us now compare square with diamond tile assembly systems. For every
square TAS S, there is a diamond TAS D such that the final supertiles pro-
duced by the systems are equivalent up to an affine transformation on the two
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Fig. 14. Examples that show that hexagonal TASs and triangular TASs are, in some
sense, not comparable from the point of view of the final supertiles they can generate.
The left figure is a hexagonal system at τ = 2 that illustrates Lemma 6. The right
figure (τ = 2) illustrates Lemma 7. Each glue, unless mentioned, is unique, and thus,
the label is omitted.
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Fig. 15. Examples that show that hexagonal TASs and diamond TASs are, in some
sense, not comparable from the point of view of the final supertiles they can generate.
The left and center figures depict two hexagonal systems, at τ = 2 and τ = 4 respec-
tively, that illustrate Lemma 8. The right figure (τ = 2) illustrates Lemma 9. Each
glue, unless mentioned, is unique, and thus, the label is omitted.

dimensional plane R2. To see this, we use a single type, either II, IV, or VI,
of diamond tile to simulate each square tile. On the other hand, by Lemma 5,
every diamond TAS that produces a hexagon-compatible final supertile cannot
be simulated by a square TAS.

The comparison of diamond TAS and equilateral TAS is similar to the com-
parison of square TAS and right triangular TAS: the examples given in Fig. 13,
under affine transformations, indicate that diamond TASs and triangular TASs
are, in some sense, not comparable from the point of view of the shapes of the
final supertiles they generate.

Now we compare diamond TASs with hexagonal TASs. A diamond TAS D
is called a diamond division of a hexagonal TAS H if (i) for any hexagonal tile
h in H , there are three diamond tiles in D that can can assemble to produce a
supertile equivalent to h at temperature τ ≥ 1, and (ii) for any diamond tile d
in D, there are other two diamond tiles in D that can assemble to produce a
supertile tile equivalent to a hexagonal in H (see Fig. 11). A diamond TAS D is
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called a deterministic diamond division of a hexagonal TAS H if it is a diamond
division of H that is a deterministic TAS.

Lemma 8. There exists a deterministic hexagonal TAS H such that no deter-
minisic diamond division of H produces an equivalent final supertile.

Two examples that prove the statement of Lemma 8, are illustrated in Fig. 15,
one for τ = 2 (left), and one for τ = 4 (centre), none of which can be simulated
by their diamond division. Each tile is numbered in the order in which it would
appear in a possible assembly process. The two examples are of the same flavor
as those in Fig. 13: tile 5, respectively tile 11, cannot be simulated by succes-
sive attachments of diamond tiles, since the two cooperative sticky edges that
attached the original hexagonal tile to the supertile are not adjacent, hence they
will belong to different diamond tiles in the division.

Lemma 9. There exists a deterministic diamond TAS T whose final supertile is
hexagon-compatible, but no deterministic hexagonal TAS produces an equivalent
final supertile.

An example is given in Fig. 15 (right). The proof is similar to that of Lemma 7.
Lemmas 8 and 9 indicate that hexagonal TASs and diamond TASs are, in

some sense, not comparable from the point of view of the shapes of the final
supertiles they generate. In spite of this, under certain conditions, hexagonal
TASs can be simulated by diamond TASs. It is, for example, obvious that for
any hexagonal TAS H at τ = 1, there is a diamond division of H that produces
a final supertile of the same shape. Furthermore, we have the following result.

Proposition 3. For any hexagonal TAS H at τ = 1, and any hexagonal TAS
at τ = 2, whose final supertile has no hole, there is a diamond division of H that
produces a final supertile of the same shape.

The proof is similar to that of Lemma 2.

4 Conclusion

Square tile assembly systems have been widely studied in the literature as a
model, in particular for DNA self-assembly. In this paper, we focus instead on
triangular and hexagonal TASs and some of their properties. We show that, in
some restricted sense, triangular TASs and square TASs, respectively triangu-
lar TASs and hexagonal TASs, are not comparable from the point of view of
the shape of the final supertiles they generate. More precisely, there exists a
deterministic square (respectively hexagonal) TAS S such that no deterministic
triangular division of S produces an equivalent final supertile (of the same shape
and same boundary glues). Also, there exists a deterministic triangular TAS T
such that the final supertile is square (respectively hexagon) -compatible, but no
deterministic square (respectively hexagonal) TAS produces an equivalent final
supertile.



Triangular and Hexagonal Tile Self-assembly Systems 375

Acknowledgements. We thank Dr. David Doty for his valuable comments on
the earlier versions of the paper. This research was supported by The Natural
Sciences and Engineering Council of Canada Discovery Grant R2824A01 and
Canada Research Chair Award to Lila Kari.

References

1. Adleman, L.: Toward a mathematical theory of self-assembly (manuscript, 2000),
https://eprints.kfupm.edu.sa/72519/1/72519.pdf

2. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

3. Wang, H.: Proving theorems by pattern recognition II. Bell System Technical Jour-
nal 40, 1–42 (1961)

4. Winfree, E.: On the computational power of DNA annealing and ligation. In: DNA
Based Computers: DIMACS Workshop, vol. 27, pp. 199–221 (1996)

5. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proc. 32nd Ann. ACM Symp. Theor. of Comp. (STOC 2000), pp.
459–468 (2000)

6. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled. In: Proc. 33rd Ann. ACM Symp. Theor. of Comp. (STOC 2001),
pp. 740–748 (2001)

7. Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proc. 7th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA), pp. 571–580 (2006)

8. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of
rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126,
2324–2325 (2004)

9. Ding, B., Sha, R., Seeman, N.C.: Pseudohexagonal 2D DNA crystals from double
crossover cohesion. J. Am. Chem. Soc. 126, 10230–10231 (2004)

10. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA
two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005)

11. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004),
http://dx.doi.org/10.1371/journal.pbio.0020424

https://eprints.kfupm.edu.sa/72519/1/72519.pdf
http://dx.doi.org/10.1371/journal.pbio.0020424


dP Automata versus Right-Linear Simple

Matrix Grammars
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Abstract. We consider dP automata with the input string distributed
in an arbitrary (hence not necessary balanced) way, and we investigate
their language accepting power, both in the case when a bound there is on
the number of objects present inside the system and in the general case.
The relation with right-linear simple matrix grammars is useful in this
respect. Some research topics and open problems are also formulated.

1 Introduction

dP automata are a class of computing devices considered in membrane comput-
ing area in order to have a distributed language accepting machinery, with the
strings to recognize being split among the components of the system and with
these components working in parallel on the input strings. In the general case,
dP systems consist of a given number of components in the form of a usual sym-
port/antiport P system, which can have their separate inputs and communicate
from skin to skin membranes by means of antiport rules like in tissue-like P sys-
tems. Such devices were introduced in [7] and further investigated in [3], [8], [9],
mainly comparing their power with that of usual P automata and with families
of languages in the Chomsky hierarchy. In the basic definition and in all these
papers, following the style of the communication complexity area (see, [4]), the
so-called balanced mode of introducing the input string is considered: the string
is split in equal parts, modulo one symbol, and distributed among components.

Here we consider the general case, with no restriction on the input string
distribution; each component just takes symbols from the environment when it
can do it, without any restriction on their number. This is a very natural and
general set-up, which, however, was only incidentally investigated so far. Two
cases are distinguished: with a bound on the size of the system (on the total
number of objects present inside) and without such a bound. Both cases are
naturally related to a classic family of regulated grammars, the simple matrix
grammars of [5] (see also [2]). Actually, as expected, right-linear simple matrix
grammars are closely related to dP automata, and we will examine below this
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connection (looking for mutual simulations among the two types of language
identifying machineries). This connection was already pointed out in [8], where
the conjecture was formulated that, in the same way as a usual finite automaton
can be simulated by a P automaton, a right-linear simple matrix grammar can be
simulated by a dP automaton. We confirm here this conjecture (in the general,
not the balanced case).

2 Formal Language Theory Prerequisites

The reader is assumed to have some familiarity with basics of membrane com-
puting, e.g., from [6], [10], and of formal language theory, e.g., from [2], [11], but
we recall below all notions necessary in the subsequent sections.

In what follows, V ∗ is the free monoid generated by the alphabet V , λ is
the empty word, V + = V ∗ − {λ}, and |x| denotes the length of the string
x ∈ V ∗. REG,LIN,CF,CS,RE denote the families of regular, linear, context-
free, context-sensitive, and recursively enumerable languages, respectively.

In the proof of the main result of the paper we will make an essential use
of the right-linear simple matrix grammars introduced in [5]. Such a grammar
of degree n ≥ 1 is a construct of the form G = (N1, . . . , Nn, T, S,M), where
N1, N2, . . . , Nn, T are pairwise disjoint alphabets (we denote by N the union of
N1, . . . , Nn), S /∈ T ∪ N , and M contains matrices of the following forms:

(i) (S → x), x ∈ T ∗,
(ii) (S → A1A2 . . . An), Ai ∈ Ni, 1 ≤ i ≤ n,
(iii) (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n,
(iv) (A1 → x1, . . . , An → xn), Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.

A derivation starting with a matrix of type (ii) continues with an arbitrary
numbers of steps which use matrices of type (iii) and ends by applying a matrix
of type (iv).

We denote by L(G) the language generated in this way by G and by RSMn the
family of languages L(G) for right-linear simple matrix grammars G of degree
at most n, for n ≥ 1. The union of all these families is denoted by RSM∗.
The strict inclusions RSMn ⊂ RSMn+1, n ≥ 1, are known. Moreover, REG =
RSM1, RSM∗ ⊂ CS, RSM∗ is incomparable with LIN and CF , all languages
in RSM∗ are semilinear, and this family is closed under union, intersection with
regular languages, direct and inverse morphisms (but not under intersection,
complement and Kleene +).

Clearly, a normal form can be easily found for these grammars: in matrices
of type (iii) we can ask to have xi ∈ T ∪ {λ}, 1 ≤ i ≤ n, and in matrices of type
(iv) we can have xi = λ for all 1 ≤ i ≤ n.

3 dP Automata

We introduce now the computing devices we investigate in this paper, also giving
a relevant example.
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As usual in membrane computing, the multisets over an alphabet V are repre-
sented by strings in V ∗; a string and all its permutations correspond to the same
multiset, with the number of occurrences of a symbol in a string representing the
multiplicity of that object in the multiset. (We work here only with multisets of
finite multiplicity.) The terms “symbol” and “object” are used interchangeably,
all objects are here represented by symbols.

A dP automaton (of degree n ≥ 1) is a construct

Δ = (O,E,Π1, . . . , Πn, R),

where:

(1) O is an alphabet (of objects);
(2) E ⊆ O (the objects available in arbitrarily many copies in the environment);
(3) Πi = (O,μi, wi,1, . . . , wi,ki , E,Ri,1, . . . , Ri,ki) is a symport/antiport P sys-

tem of degree ki (O is the alphabet of objects, μi is a membrane structure
of degree ki, wi,1, . . . , wi,ki are the multisets of objects present in the mem-
branes of μi in the beginning of the computation, E is the alphabet of objects
present – in arbitrarily many copies – in the environment, and Ri,1, . . . , Ri,ki

are finite sets of symport/antiport rules associated with the membranes of
μi; the symport rules are of the form (u, in), (u, out), where u ∈ O∗, and the
antiport rules are of the form (u, out; v, in), where u, v ∈ O∗; note that we
do not have an output membrane), with the skin membrane labeled with
(i, 1) = si, for all i = 1, 2, . . . , n;

(4) R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i �= j,
and u, v ∈ O∗, uv �= λ.

The systems Π1, . . . , Πn are called components of Δ and the rules in R are called
communication rules. For a rule (si, u/v, sj), |uv| is the weight of this rule.

Using a rule (u, in), (u, out) associated with a membrane i means to bring
in the membrane, respectively to send out of it the multiset u; using a rule
(u, out; v, in) associated with a membrane i means to send out of the membrane
the objects of multiset u and, simultaneously, to bring in the membrane, from
the region surrounding membrane i, the objects of multiset v. A communica-
tion rule (si, u/v, sj) moves the objects of u from component Πi to component
Πj , simultaneously with moving the objects in the multiset v in the opposite
direction.

Each component Πi can take symbols from the environment, work on them by
using the rules in sets Ri,1, . . . , Ri,ki , and communicate with other components
by means of rules in R.

A halting computation with respect to Δ accepts the string x = x1x2 . . . xn

over O if the components Π1, . . . , Πn, starting from their initial configurations,
using the symport/antiport rules as well as the inter-components communication
rules, in the non-deterministic maximally parallel way, bring from the environ-
ment the substrings x1, . . . , xn, respectively, and eventually halts. A problem
appears in the case when several objects are read at the same time from the
environment, by several rules or by a single rule of the form (u, out; v, in), with
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|v| ≥ 2; in this case any permutation of the symbols brought in the system in the
same step are considered as a valid substring of the input string (thus, a com-
putation can recognize several strings, differing to each other by permutations
of certain substrings). Note that we impose here no condition on the relative
lengths of strings x1, x2, . . . , xn (as it is done in previous papers dealing with dP
automata, under the influence of communication complexity area). We denote
by L(Δ) the language of all strings recognized by Δ in this way, and by LdPn

the family of languages L(Δ), for Δ of degree at most n ≥ 1. The union of all
these families is denoted by LdP∗.

The dP automata are synchronized devices, a universal clock exists for all
components, marking the time in the same way for the whole dP automaton.
When the system has only one component, then we obtain the usual notion of a P
automaton, as investigated in a series of papers (mainly in the extended version,
with a terminal alphabet of objects – see the respective chapter in [10] and the
references therein). We denote by LP the family of languages recognized by P
automata. Hence, LP = LdP1 and, from [3], it is known that REG ⊂ LP ⊂ CS
and LP is incomparable with CF .

We consider now a somewhat surprising example, of a dP automaton of degree
2, generating a complex language, L1 = {ww | w ∈ {a, b}∗}. The automaton is
given in Figure 1, in the standard way of representing a dP automaton. We have
O = {a, b, c1, c2, d,#} and E = {a, b}.

All antiport rules which bring objects from the environment are of weight
one, hence the number of objects present in the system is constant, four in
each component. In the first step, objects d release c2a in the skin region of
the first component and c1a in the second. Each symbol a can bring either
an a or a b from the environment and, at the same time, the objects c1, c2
are interchanged between the two components (otherwise, they release the trap
object #, which will oscillate forever across membranes (1, 1), respectively, (2, 1),
and the computation never stops). With c1α, α ∈ {a, b}, in the first component
and c2β, β ∈ {a, b}, in the second one, the only continuation which does not
release the trap object is possible when α = β, by using the communication
rule (s1, c1α/c2α, s2) (if one of the symbols α, β brings new symbols from the
environment, the corresponding c1, c2 should enter the membrane (1, 2) or (2, 2),
bringing out the object #). We obtain a configuration similar to the one we
started with, hence the process can be iterated. If, at any moment when c2
is in Π1 and c1 is in Π2, one of the rules (c2α, in), α ∈ {a, b}, is used in the
first component, or (c1β, in), β ∈ {a, b}, is used in the second component, then
this should be done simultaneously in both components, otherwise again one of
c1, c2 has to release the trap object. In conclusion, the strings read from the
environment by the two components are identical, hence L(Δ) = L1.

Note the important facts that the system reads the input in a balanced way and
that it is bounded, the total number of objects present inside is always bounded by
a constant (8 in our case) given in advance. This last characteristic is important,
so that we denote by LdP b

n, n ≥ 1, the family of languages recognized by bounded
dP automata of degree at most n; when n is not specified, we replace it by ∗.
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(1,2)

a

c2

(c2a, out; d, in)

(c2a, in)

(c2b, in)

(#, in)

(#, out)

#
(#, out; c1, in)

(#, out; c2, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

(s1, c1a/c2a, s2)

(s1, c1b/c2b, s2)

(s1, c2/c1, s2)

s2

d

(2,2)

c1

a

(c1a, out; d, in)

(c1a, in)

(c1b, in)

(#, in)

(#, out)

(2,3)(1,3)

#
(#, out; c2, in)

(#, out; c1, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

Fig. 1. A dP automaton recognizing the language L1

4 The Power of dP Automata

We start by reformulating in a more general way a result already suggested by
a proof in [9].

Theorem 1. LdP b
n ⊆ RSMn, for all n ≥ 1.

Proof. Let Δ be a dP automaton of degree n (with the set of objects O) which is
bounded. Then, the set of all its configurations is finite. Let {σ0, σ1, . . . , σp}, p ≥
0, be this set, with σ0 being the initial configuration. We construct the following
right-linear simple matrix grammar:

G = (N1, . . . , Nn, O, S,M), with
Ni = {(σj)i | 0 ≤ j ≤ p}, i = 1, 2, . . . , n,
M = {(S → (σ0)1(σ0)2 . . . (σ0)n)}

∪ {(σi)1 → α1(σj)1, . . . , (σi)n → αn(σj)n) |
from configuration σi the dP automaton Δ can pass to
the configuration σj by a correct transition, taking from the
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environment the objects α1, . . . , αn by its components, where
αs ∈ O ∪ {λ}, 1 ≤ s ≤ n}

∪ {(σh)1 → λ, . . . , (σh)n → λ) | σh is a halting configuration}.

Note that all nonterminals in the rules of a matrix contain the same “core in-
formation”, namely the current configuration of the system, hence the complete
control of the system working is obtained in this way. The equality L(Δ) = L(G)
is obvious. �

This result cannot be extended to arbitrary dP automata. Actually, we have:

Theorem 2. LdP2 − RSM∗ �= ∅.

Proof. Let us consider the following dP automaton:

Δ = (O,E,Π1, Π2, R), with
O = {a, c, d, e, f,#},
E = {a, c, d, e},

Π1 = (O, [ ]s1
, f, E, {(f, out; a, in), (a, out; aa, in)}),

Π2 = (O, [ [ ] (2,2) ]s2
, E, {(f, out; d, in), (a, out; c, in), (d, out; e, in)},

{(f, out; f, in)}),
R = {(s1, a/λ, s2)}.

For an easier examination of the work of the system, we also represent it graph-
ically, in Figure 2.
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�

s1

f

(f, out; a, in)

(a, out; aa, in)

(s1, a/λ, s2)

s2

f

f

(2,2)

(f, out; f, in)

(f, out; d, in)

(d, out; e, in)

(a, out; c, in)

Fig. 2. A dP system recognizing a language not in RSM∗

Let us look for strings accepted by this dP automaton which are of the form
aidcje, for some i, j ≥ 1.
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After introducing the symbol a in the first component, let us assume that
for n ≥ 0 steps we use here the rule (a, out; aa, in), hence we produce 2n copies
of a in Π1, while the second component uses the rule (f, out; f, in) ∈ R(2,1).
Suppose now that p ≥ 0 copies of a remains in the first component and the
remaining r = 2n − p copies of a are moved to the second component. Here, all
r copies of a must go out, in exchange of objects c, hence the string read by the
second component starts with cr. At the same time or one step before, the second
component must introduce the symbol d. This object becomes immediately e,
hence the exchange of a for c should be done either in the same step with reading
d or at the same time with reading e in the second component (because any
permutation of the objects is allowed in the string, either variant is possible).
However, after e, we do not want to have any symbol, hence all copies of a
were already moved to the second component, and thus the work of the first
component stops. When introducing the symbol d in the second component, the
p copies of a from the first component cannot use the rule (a, out; aa, in), but
they must come immediately in the second component, to introduce c here at
the same time with introducing e. Therefore, if the string has the form aidcje,
then i = j = 2n for some n ≥ 0 (n = 0 is obtained if the unique a introduced in
the first step in Π1 is immediately sent to component Π2).

Consequently, L(Δ) ∩ a∗dc∗e = {a2ndc2ne | n ≥ 0}, which is not in RSM∗,
hence also L(Δ) is not in RSM∗: this family is closed under intersection with
regular languages and contains only semilinear languages. �

Note that the previous construction takes the input string in an almost balanced
way, and, if in the first step, the first component uses a rule (f, out; dea, in)
instead of (f, out; a, in), then we have a balanced input, hence the result in the
previous theorem holds true also for the balanced way of defining the recognized
string.

We pass now to the counterpart of Theorem 1 announced above.

Theorem 3. RSMn ⊆ LdP b
n+1, for all n ≥ 1.

Proof. Let us consider a right-linear simple matrix grammar G =
(N1, . . . , Nn, T, S,M) as introduced in Section 2, with the alphabets
N1, N2, . . . , Nn (their union is denoted by N) and T . Matrices of the form
(i), (S → x), x ∈ T ∗, can be replaced by matrices of forms (ii), (iii) and
(iv), in an obvious way, hence we assume that we do not have such matrices.
We assume all matrices are labeled in a one-to-one manner; let mj : (A1 →
x1B1, . . . , An → xnBn), with 1 ≤ j ≤ k, be all matrices of type (iii), with
Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n. Similarly, let mj : (A1 → x1, . . . , An → xn),
with k+1 ≤ j ≤ p, be all matrices of type (iv), with Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.
Without any loss of the generality we can assume that all strings xi in these ma-
trices are from T ∪ {λ}.

For each matrix, of any form, mj : (A1 → u1, . . . , Ai → ui, . . . , An → un), let
us consider the symbol [mj , Ai → ui] (thus identifying the matrix and its ith
rule), and let Xj(i) be a shorthand for it. Consider the alphabets

Mi = {Xj(i) | 1 ≤ j ≤ p}, for all 1 ≤ i ≤ n.
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We also denote by M ′
i the alphabet of primed symbols in Mi.

For a matrix mj : (A1 → x1B1, . . . , An → xnBn) of type (iii), let us denote
lhsj = A1A2 . . . An and rhsj = B1B2 . . . Bn. Similarly, for a matrix mj : (A1 →
x1, . . . , An → xn) of type (iv), we denote lhsj = A1A2 . . . An.

If rhsj = lhsk, then we write mj � mk. Similarly, we write S � mj if
(S → A1A2 . . . An) ∈ M and A1A2 . . . An = lhsj.

Any set Q can be also considered a multiset (denoted again by Q) consisting
of the elements of Q with the multiplicity one for each of them.

We are now ready to construct the dP system we look for (a0 is an arbitrary
symbol of T fixed in advance):

Δ = (O,E,Π1, . . . , Πn+1, R), with :

O =
n⋃

i=1

(Mi ∪ M ′
i) ∪ T ∪ {ci | 1 ≤ i ≤ n} ∪ {d, f,#},

E = T,

Πi = (O, [ [ ] (i,2)[ ] (i,3) ]si
, λ,M ′

iTci,#, Rsi , R(i,1), R(i,2)),

Rsi = {(a, out; b, in) | a, b ∈ T },
R(i,2) = {(X ′

j(i), out;Xj(i), in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p,

if Xj(i) = [mj , Ai → aBi], a ∈ T }
∪ {(X ′

j(i)a, out;Xj(i)a, in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p, a ∈ T,

if Xj(i) = [mj , Ai → Bi]}
∪ {(#, in), (#, out)},

R(i,3) = {(#, out; ci, in)}
∪ {(#, out;Xj(i), in) | 1 ≤ j ≤ p, if Xj(i) = [mj , Ai → Bj]},

for all 1 ≤ i ≤ n,

Πn+1 = (O, [ [ ] (n+1,2) ]sn+1
, c1 . . . cnf,M

2
1 . . .M2

nT
nan

0 , ∅, R(n+1,1)),

R(n+1,2) = {(Xj(1) . . .Xj(n)an
0 , out; f, in) | 1 ≤ j ≤ p if S � mj}

∪ {(Xk(1)a1 . . . Xk(n)an, out;Xj(1)a1 . . . Xj(n)an, in)
| 1 ≤ j, k ≤ p, ai ∈ T, 1 ≤ i ≤ n, if mj � mk}

∪ {(Xj(1)c1a1 . . . Xj(n)cnan, in)
| ai ∈ T, 1 ≤ i ≤ n, if mj is a terminal matrix},

R = {(si, λ/ci, sn+1),
(si, ci/Xj(i)a, sn+1,

(si, Xj(i)cia/λ, sn+1) | 1 ≤ j ≤ p, 1 ≤ i ≤ n, a ∈ T }.

This dP system, with one component Πi and with Πn+1 given in full details, is
represented in Figure 3.
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(1,2)

(1,3)

. . .

si

(i, 2)

(i, 3)

. . .

sn

(n,2)

(n,3)

sn+1

(n+1,2)

(a, out; b, in), a, b ∈ T

(X ′
j(i), out; Xj(i), in),

(Xj(i)cia, out; X ′
j(i)cia, in),

if Xj(i) = [mj , Ai → aBi], a ∈ T, 1 ≤ j ≤ p

(X ′
j(i)a, out; Xj(i)a, in),

(Xj(i)cia, out; X ′
j(i)cia, in),

if Xj(i) = [mj , Ai → Bi], 1 ≤ j ≤ p, a ∈ T

(#, in)

(#, out)

(#, out, ci, in)

(#, out; Xj(i), in),

if rule i in mj is Ai → Bi, 1 ≤ j ≤ p

(si, λ/ci, sn+1)

(si, ci/Xj(i)a, sn+1), a ∈ T, 1 ≤ j ≤ p

(si, Xj(i)cia/λ, sn+1), a ∈ T, 1 ≤ j ≤ p

c1c2 . . . cnf

⋃n

i=1
M2

i

T n

an
0

(Xj(1) . . . Xj(n)an
0 , out; f, in) if S � mj

(Xk(1)a1 . . . Xk(n)an, out; Xj(1)a1 . . . Xj(n)an, in), if mj � mk

(Xj(1)c1a1 . . . Xj(n)cnan, in) if mj is terminal

Fig. 3. The dP system in the proof of Theorem 3

The components Πi, 1 ≤ i ≤ n, simulate the corresponding “component”
of the grammar G, while Πn+1 is a “synchronizer” of the other components,
it takes no objects from the environment. All rules which bring objects from
the environment are uniport rules, hence the system is bounded, the number of
objects inside it remains constant during the computation.

We start by sending objects ci from Πn+1 to components Πi, simultaneously
releasing from membrane (n + 1, 2) some objects Xj(i), 1 ≤ i ≤ n, for a matrix
mj which can follow immediately after an initial matrix of G; each symbol Xj(i)
is accompanied by a copy of the symbol a0, arbitrarily chosen from T .

In the next step, we have to exchange the symbol ci from Πi with Xj(i)a0

from Πn+1 (if ci remains unused in Πi, then it will release the trap object #
from membrane (i, 2), and the computation will never halt).
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In the next step, ci comes back to Πi, and in this component we have two
possibilities:

(1) The rule i from mj is of the form Ai → aBi, and then we use a rule
(a0, out; b, in), for some b ∈ T , and (X ′

j(i), out;Xj(i), in).
Now, we check whether the simulation of the rule in G is correct (hence b was

the correct symbol to take from the environment, i.e., a = b): ci cannot return
to Πn+1 alone and cannot stay unused in Πi. The only continuation which does
not lead to an infinite computation is to use the rule (Xj(i)cia, out;X ′

j(i)cia, in).
These three objects, Xj(i)cia, can now move together to Πn+1. The only con-
tinuation is to move again ci in Πi, for all i, and to exchange Xj(1) . . . Xj(n) for
some Xk(1) . . .Xk(n) in Πn+1, for mj � mk.

We return in this way to a situation similar to that we have started with:
object ci in Πi and Xk(i) in Πn+1.

(2) If the rule i from mj is of the form Ai → Bi, and we use a rule
(a0, out; b, in), for some b ∈ T , then the computation will never stop: we do not
have a rule for introducing Xj(i) alone in membrane (i, 2), hence Xj(i) must
release the trap object from membrane (i, 3). Therefore, we have to use the rule
(X ′

j(i)a, out;Xj(i)a, in) from R(i,2) (at the same time, the object ci comes to
Πi). As above, the three objects Xj(i)cia can move together to Πn+1, where,
while ci moves to Πi, we exchange Xj(1) . . . Xj(n) for some Xk(1) . . . Xk(n) in
Πn+1, for mj � mk.

Also in this case we return to a situation similar to that we have started with:
object ci in Πi and Xk(i) in Πn+1.

The process can be continued. Checking the correctness of the simulation
of the rules in G is done in components Πi, the fact that the rules which are
simultaneously checked form a matrix of G is ensured by the component Πn+1.

When a terminal matrix is simulated, component Πn+1 halts the computation
by using the rule (Xj(1)c1a1 . . .Xj(n)cnan, in) (if we do not “hide” also the
objects ci in membrane (n + 1, 2), then these objects have to go to components
Πi, where no rule can use them other than the trap-releasing ones).

We conclude that L(G) = L(Δ). �

5 Final Remarks

Let us first synthesize all previous results and remarks in a diagram – see Figure
4. The arrows indicate inclusions; if the arrow is marked with a dot, then that
inclusion is known to be proper. The inclusions RSMn ⊂ RSMn+1, n ≥ 1,
are known to be proper, hence also the hierarchy LdP b

n, n ≥ 1, is infinite,
but we do not know languages proving the strictness of inclusions LdP b

n ⊆
RSMn ⊆ LdP b

n+1, n ≥ 1, with the exception of the inclusion RSM1 ⊂ LdP b
2 ,

because RSM1 = REG and LdP b
2 contains non-regular languages (see, e.g.,

the example in Section 3). Similarly, we do not know whether the inclusions
LdPn ⊆ LdPn+1, n ≥ 2, are proper – but we conjecture that this is the case.

Further open problems and research topics about dP systems can be found in
[1], [3], [7], [8], [9] – the study of dP automata is one of the recently introduced
and most active branches of membrane computing.
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LdP b
1 = LP b = REG = RSM1

�

�

� �

LdP1 = LP

LdP b
2

�
������

�

LdP2

�

RSM2

�

LdP b
3

������ �

LdP3

�

�

RSM3

�

. . . . . .

�

RSM∗ = LdP b
∗

������ �

LdP∗

�

�

�

Fig. 4. The hierarchy of the families RSMn, LdP b
n, and LdPn
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6. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
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Abstract. The concatenation of trees can be defined either as a sequen-
tial or a parallel operation, and the corresponding iterated operation
gives an extension of Kleene-star to tree languages. Since the sequential
tree concatenation is not associative, we get two essentially different iter-
ated sequential concatenation operations that we call the bottom-up star
and top-down star operation, respectively. We establish that the worst-
case state complexity of bottom-up star is (n + 3

2
) · 2n−1. The bound

differs by an order of magnitude from the corresponding result for string
languages. The state complexity of top-down star is similar as in the
string case. The iteration of the parallel concatenation has to be defined
slightly differently in order to yield a regularity preserving operation.

Keywords: tree automata, state complexity, iterated concatenation.

1 Introduction

The state complexity of regular languages has been studied for over half a cen-
tury, and especially the last two decades have seen much fruitful work on de-
scriptional complexity of finite automata and related computational models. For
example, the state complexity of combined operations has been investigated by
Domaratzki and Okhotin [5], Gao and Yu [8], and A. Salomaa et al. [21,22]. De-
scriptional complexity of regular expressions was studied by Ellul et al. [6] and
Gruber and Holzer [10]. Calude et al. [1,2] have considered the state complexity
of finite transducers from an algorithmic information theory perspective, while
Jirásková and Okhotin [13] and Kapoutsis [14] have studied the state complexity
of two-way finite automata. Good general references on descriptional complex-
ity of finite automata include the recent survey by Holzer and Kutrib [11], the
textbook by Shallit [24] and the handbook article by Yu [25].

The state complexity of tree automata has been considered by Marten and
Niehren [15] and by the current authors [17,19] and, in particular, we gave tight
state complexity bounds for the concatenation of regular tree languages in [16].

Concatenation of tree languages can be defined either as a sequential or a
parallel operation. Here we consider iterated concatenation of trees, that is, an
extension of the Kleene-star operation for tree languages. If defined in the usual
� In Honor of Cristian Calude’s 60th Birthday.
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way, iterated parallel concatenation is not a regularity preserving operation and
the Kleene-star of tree languages is defined slightly differently in [9]. Since se-
quential concatenation of tree languages is non-associative, there are two essen-
tially different ways to define the corresponding iterated operation. We name
these variants as the bottom-up star and the top-down star operations. It is easy
to see that the top-down (sequential) star operation coincides with the iterated
product (Kleene-star) based on parallel concatenation considered in [9].

We give tight state complexity bounds for both bottom-up and top-down
Kleene-star operations. We show that the bottom-up star of a tree language rec-
ognized by a deterministic bottom-up automaton with n states can be recognized
by an automaton with (n + 3

2 ) · 2n−1 states and, furthermore, there exist worst-
case examples where this number of states is needed. This bound is, roughly, n
times the corresponding bound for regular string languages. On the other hand,
the state complexity of the top-down star operation is shown to coincide with
the state complexity of Kleene-star on string languages.

Much of the recent work on tree automata uses automata operating on
unranked trees that are used in modern applications such as XML document
processing [3,4,16,17,23]. The transitions of an unranked tree automaton A are
defined in terms of regular languages, called horizontal languages. Each horizon-
tal language is specified by a deterministic finite automaton (DFA) that processes
strings of states of the bottom-up computation, or vertical states. The size of
A is defined to be the sum of the number of vertical states and the numbers
of states of the DFAs used to define the horizontal languages. Interestingly, the
minimization of deterministic unranked tree automata is intractable [15], and
the minimal automaton for a tree language is not necessarily the automaton
with the smallest possible number of bottom-up (or, vertical) states [19]. An
alternative syntactic definition of determinism for unranked tree automata that
guarantees that the minimal automaton is unique was considered in [4].

In the case of the Kleene-star operations, the worst-case state complexity
bounds for the numbers of vertical states can be reached using just binary trees,
and for the sake of readability we restrict here consideration to automata oper-
ating on ranked trees. An early version of this paper contains the corresponding
constructions for unranked tree automata [18]. The upper bound construction in
the case of unranked trees relies on the same ideas as Lemma 4.1 below, however,
the notations are considerably more involved in the case of unranked trees.

To conclude this section, we include some comments on our choice to use
incomplete deterministic automata. In the case of DFAs operating on strings,
it is common to give state complexity bounds in terms of complete DFAs, that
is, all transitions of a DFA are required to be defined, see e.g. [11,25]. In order
to keep our state complexity bounds consistent with corresponding results for
tree automata operating on unranked trees [3,16,17], our definition allows a
deterministic tree automaton to have undefined transitions.

Note that requiring a ranked tree automaton (or an ordinary DFA) to be
complete, changes the number of states by at most one. On the other hand, for
deterministic tree automata operating on unranked trees where the horizontal
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languages are defined by DFAs [3,16,17], the sizes of an incomplete deterministic
automaton and the corresponding completed version may be significantly differ-
ent. In an unranked tree automaton, adding a dead state qsink for the bottom-
up computation, requires the addition, corresponding to an input symbol σ, a
horizontal language Lσ,qsink that is the complement of a finite disjoint union
Lσ,q1 ∪ . . . ∪Lσ,qn , where q1, . . . , qn are the vertical states of the incomplete au-
tomaton. The size of the minimal DFA for Lσ,qsink may be considerably larger
than the sum of the sizes of the DFAs for Lσ,qi , i = 1, . . . , n, [12].

2 Basic Definitions on Tree Automata

We assume that the reader is familiar with the basics of automata and formal
languages, a good general reference is the handbook by Rozenberg and A. Salo-
maa [20]. Here we recall and introduce some definitions related to tree automata,
for more information see the electronic book by Comon et al. [3] or the handbook
article by Gécseg and Steinby [9].

The cardinality of a finite set S is |S| and the power set of S is 2S . The set of
positive integers is IN. A ranked alphabet is a finite set Σ where each element
is associated a nonnegative integer as its rank. The set of elements of rank m
is Σm, m ≥ 0. The set of trees over ranked alphbet Σ, or Σ-trees, FΣ , is the
smallest set S satisfying the condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S
then σ(t1, . . . , tm) ∈ S.

A tree domain is a prefix-closed subset D of IN∗ such that if ui ∈ D, u ∈ IN∗,
i ∈ IN then uj ∈ D for all 1 ≤ j < i. The set of nodes of a tree t ∈ FΣ can
be represented in the well-known way as a tree domain dom(t) ⊆ {1, . . . ,M}∗
where M is the largest rank of any element of the ranked alphabet Σ. The tree
t is then viewed as a mapping t : dom(t) → Σ.

We assume that notions such as the root, a leaf, a subtree and the height of
a tree are known. We use the convention that the height of a single node tree is
zero. For σ ∈ Σ and t ∈ FΣ , leaf(t, σ) ⊆ dom(t) denotes the set of leaves of t
with label σ. Let t be a tree and u some node of t. The tree obtained from t by
replacing the subtree at node u with a tree s is denoted t(u ← s). The notation
is extended in the natural way for a set of pairwise independent nodes U of t
and S ⊆ FΣ : t(U ← S) is the set of trees obtained from t by replacing each node
of U by some tree in S.

The set of Σ-trees where exactly one leaf is labelled by a special symbol x
(x �∈ Σ) is FΣ [x]. For t ∈ FΣ [x] and t′ ∈ FΣ , t(x ← t′) denotes the tree obtained
from t by replacing the unique occurrence of variable x by t′.

A deterministic bottom-up tree automaton (DTA) is a tuple A = (Σ,Q,QF , g),
where Σ is a ranked alphabet, Q is a finite set of states, QF ⊆ Q is a set of
accepting states and g associates to each σ ∈ Σm a partial function σg : Qm −→
Q, m ≥ 0. In the usual way, we define the state tg ∈ Q reached by A at the
root of a tree t = σ(t1, . . . , tm), σ ∈ Σm, m ≥ 0, ti ∈ FΣ , i = 1, . . . ,m,
inductively by setting tg = σg((t1)g, . . . , (tm)g) if the right side is defined, and
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tg is undefined otherwise. The tree language recognized by A is L(A) = {t ∈
FΣ | tg ∈ QF }. Deterministic bottom-up tree automata recognize the family of
regular tree languages.

The intermediate stages of a computation of A, called configurations of A, are
Σ-trees where some leaves may be labeled by states of A. The set of configurations
of A consists of ΣA-trees where ΣA

0 = Σ0 ∪ {Q} and ΣA
m = Σm when m ≥ 1.

A bottom-up automaton begins processing the tree from the leaves because,
following a common custom, we view trees to be drawn with the root at the
top. As discussed in the previous section, our definition allows a DTA to have
undefined transitions, that is, σg, σ ∈ Σm, is a partial function.

3 Concatenation and Iterated Concatenation of Trees

We extend the string concatenation operation to an operation where a leaf of a
tree is replaced by another tree. Concatenation of trees can be defined also as
a parallel operation, however, as will be observed below the iteration of parallel
concatenation does not preserve recognizability.

For σ ∈ Σ0 and t1, t2 ∈ FΣ , we define the sequential σ-concatenation of t1
and t2 as

t1 ·sσ t2 = { t2(u ← t1) | u ∈ leaf(t2, σ) }. (1)

That is, t1 ·sσ t2 is the set of trees obtained from t2 by replacing one occurrence
of a leaf labeled by σ with t1. The definition is extended in the natural way for
tree languages T1, T2 ⊆ FΣ by setting

T1 ·sσ T2 =
⋃

ti∈Ti,i=1,2

t1 ·sσ t2.

Alternatively, we can consider a parallel σ-concatenation of tree languages T1, T2

⊆ FΣ by setting

T1 ·pσ T2 = { t2(leaf(t2, σ) ← T1) | t2 ∈ T2 }.

The operation T1 ·pσ T2 is called the σ-product of T1 and T2 in [9]. Note that the
parallel concatenation of tree languages could not be defined by defining first
the concatenation of individual trees (as was done for sequential concatenation
in (1)) and then taking union over sets of trees. For trees t1, t2 ∈ FΣ , t1 ·pσ t2 is
an individual tree while t1 ·sσ t2 is a set of trees. In the case where no leaf of t2
is labeled by σ, t1 ·sσ t2 = ∅ and t1 ·pσ t2 = t2.

When considering bottom-up tree automata operating on unary trees, both
of the above definitions reduce to the usual concatenation of string languages:
when processing T1 ◦T2, ◦ ∈ {·sσ, ·pσ}, the automaton reads first an element of T1

and then an element of T2.
The parallel concatenation operation is associative, however, sequential con-

catenation is nonassociative, as observed below in Example 3.1. The nonasso-
ciativity of sequential concatenation means, in particular, that there are two
variants of the iteration of the operation.
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For σ ∈ Σ and T ⊆ FΣ , we define the kth sequential top-down σ-power of
T , k ≥ 0, by setting T s,t,0

σ = {σ}, and T s,t,k
σ = T ·sσ T s,t,k−1

σ , when k ≥ 1. The
sequential top-down σ-star of T is then

T s,t,∗
σ =

⋃
k≥0

T s,t,k
σ .

Similarly, the kth sequential bottom-up σ-power of T , is defined by setting T s,b,0
σ =

{σ}, T s,b,1
σ = T and T s,b,k

σ = T s,b,k−1
σ ·sσ T , when k ≥ 2. The sequential bottom-up

σ-star of T is
T s,b,∗

σ =
⋃
k≥0

T s,b,k
σ .

Note that the definition of bottom-up σ-powers explicitly sets T s,b,1
σ to be equal

to T . This is done because T s,b,0
σ ·sσ T can be a strict subset of T if some trees of

T contain no occurrences of σ. Figure 1 illustrates the definitions of top-down
star and bottom-up star.

Fig. 1. A tree in T s,t,∗
σ (a) and in T s,b,∗

σ (b). Here t0, t1, . . . ti+1 are trees in T .

Example 3.1. It is easy to see that sequential concatenation is non-associative.
Consider a ranked alphabet Σ determined by Σ2 = {ω}, Σ0 = {σ} and let t =
ω(σ, σ). Now t ·sσ t = {ω(ω(σ, σ), σ), ω(σ, ω(σ, σ))} and t1 = ω(ω(σ, σ), ω(σ, σ)) ∈
t ·sσ (t ·sσ t) but, on the other hand, t1 �∈ (t ·sσ t) ·sσ t.

To illustrate the difference of top-down and bottom-up star, respectively, con-
sider T = {ω(σ, σ)}. We note that T s,t,∗

σ = FΣ and

T s,b,∗
σ = {r ∈ FΣ | each non-leaf node of r has at least one leaf as a child }.

Note that with T = {ω(σ, σ)}, T s,b,k
σ , k ≥ 0, consists of trees of height (exactly)

k. The trees of T s,b,∗
σ all consist of a path labeled by binary symbols ω and all

children of nodes of the path that “diverge” from the path are labeled by the
leaf symbol σ.

The following characterization of bottom-up σ-star as the smallest set closed
under concatenation with T from the right follows directly from the definition
of bottom-up star. The characterization will be used in the next section.
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Lemma 3.1. For σ ∈ Σ0 and T ⊆ FΣ, define clσ(T ) as the smallest set S ⊆ FΣ

such that (i) T ∪ {σ} ⊆ S, and (ii) t1 ·sσ t2 ∈ S for every t2 ∈ T and t1 ∈ S.
Then clσ(T ) = T s,b,∗.

Completely analogously we can define, for T ⊆ FΣ , the parallel σ-star of T ,
denoted T p,∗

σ . Since parallel concatenation is associative, we do not need to
distinguish the bottom-up and top-down variants. However, we note that with
T = {ω(σ, σ)}, T p,∗

σ consists of all balanced trees over the ranked alphabet Σ,
where Σ2 = {ω}, Σ0 = {σ}. Since the “straightforward” definition of Kleene-star
based on parallel concatenation does not preserve regularity, in fact, [9] defines a
regularity preserving σ-iteration operation by defining the kth (k ≥ 1) power of
T by parallel-concatenating the union of all the ith powers of T , 0 ≤ i ≤ k − 1,
with the tree language T .

It is easy to verify that the definition of the σ-iteration operation (based on
parallel concatenation) given in section 7 of [9] coincides with the sequential top-
down star defined above, and in the following we will focus only on the sequential
variants of iterated concatenation. The top-down (respectively, bottom-up) σ-
powers and σ-star of a tree language T are in the following denoted T t,k

σ , (k ≥ 0),
and T t,∗

σ (respectively, T b,k
σ and T b,∗

σ ), that is, we drop the superscript “s” in the
notation.

4 State Complexity of Bottom-Up Star

We establish for the bottom-up star operation a tight state complexity bound
that is of a different order of magnitude than the state complexity of Kleene-star
for string languages. First we give an upper bound for the state complexity of
bottom-up star.

Lemma 4.1. Suppose that tree language L is recognized by a DTA with n states.
For σ ∈ Σ0, the tree language Lb,∗

σ can be recognized by a DTA with (n+ 3
2 )2n−1

states.

Proof. Let A = (Σ,Q,QF , gA) be a DTA with n states recognizing the tree
language L. Without loss of generality we assume that σgA is defined, because
otherwise

L(A)b,∗
σ = L(A)b,0

σ ∪ L(A)b,1
σ = {σ} ∪ L(A),

and it is easy to construct a DTA with n + 1 states that recognizes L(A)∪ {σ}.
Choose three disjoint subsets of 2Q × (Q ∪ {dead}) by setting

(i) P1 = {(S, q) | S ∈ 2Q, {q, σgA} ⊆ S, q ∈ QF },
(ii) P2 = {(S, q) | S ∈ 2Q, q ∈ S ∩ (Q − QF )},
(iii) P3 = {(S, dead) | S ∈ 2Q, S �= ∅}.

Here dead is a new element not in Q. Now define a DTA B = (Σ,P, PF , gB)
where

P = P1 ∪ P2 ∪ P3 ∪ {pnew}, PF = {(S, q) ∈ P | S ∩ QF �= ∅} ∪ {pnew}.
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We define the transitions of B by setting, σgB = pnew, and for τ ∈ Σ0 − {σ},

τgB =

⎧⎨⎩
({τgA , σgA}, τgA) if τgA ∈ QF ,
({τgA}, τgA) if τgA ∈ Q − QF ,
undefined, if τgA is undefined.

(2)

To define transitions on Σm, m ≥ 1, we view pnew as the state ({σgA}, σgA), and
hence every state of B is represented in the form (S, q), S ⊆ Q, q ∈ Q. (Note that
pnew is not the same as ({σgA}, σgA), because the former is an accepting state and
the latter need not be accepting.) For τ ∈ Σm and (S1, q1), . . . , (Sm, qm) ∈ P ,
we first denote

X =
m⋃

i=1

{τgA(q1, . . . , qi−1, z, qi+1, . . . , qm) | z ∈ Si}

Now we define
τgB ((S1, q1), . . . , (Sm, qm)) (3)

to be equal to

(i) (X ∪ {σgA}, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ QF ,
(ii) (X, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ Q − QF ,
(iii) (X, dead) if X �= ∅ and τgA(q1, . . . , qm) is undefined.

In the remaining case, where X = ∅ and τgA(q1, . . . , qm) is undefined, also (3) is
undefined. Note that if for some 1 ≤ i ≤ m, qi = dead, this implies automatically
that τgA(q1, . . . , qm) is undefined.

Recall that if (S, q), S ⊆ Q, q ∈ Q is a state of B then q ∈ S and, furthermore,
if q ∈ QF then σgA ∈ S. The transitions of gB preserve this property and the
state in (i) (in (ii), (iii), respectively) is an element of P1 (an element of P2, P3,
respectively).

The second component of the state of B simply simulates the computation of
A on the current subtree, and goes to the state dead if the next state of A is
undefined. Intuitively, the first component of the state of B consists of all states
that A could reach at the current subtree t′ assuming that

in t′ at most one subtree of L(A)b,k, k ≥ 0, has been replaced by a leaf σ. (4)

Inductively, assume that B assigns to the root of tree ti a state (Si, (ti)gA) where
Si ⊆ Q satisfies the property (4) for ti, i = 1, . . . ,m. Now the rule (3) assigns to
the root of tree t = τ(t1, . . . , tm) a state (S, q) where q = τgA((t1)gA , . . . , (tm)gA)
and S consists of all states that A could reach at the root of t assuming the
computation uses as arguments q1, . . . , qm where at most one of the qi’s can be
replaced by an arbitrary state from Si, 1 ≤ i ≤ m. This means that the state
(S, q) again satisfies the property (4) for the tree t.

The choice of the set of final states PF and Lemma 3.1 now imply that L(B) =
L(A)b,∗

σ .
It remains to estimate the worst-case size of B. We note that if QF = {σgA},

in B only states of the form ({q}, q), q ∈ Q, can be reachable, and pnew can be
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identified with ({σgA}, σgA). In this case L(A)b,∗
σ has a DTA with n states. Thus,

without loss of generality we assume that QF contains a final state distinct from
σgA .

We note that |P1| = |QF | · 2n−2, |P2| = |Q − QF | · 2n−1 and |P3| = 2n − 1.
Here the estimation of the size of P1 relies on the above observation that we can
exclude the possibility QF = {σgA}. Thus, the cardinality of P1∪P2∪P3∪{pnew}
is maximized as (n+ 3

2 )2n−1 when |QF | = 1.

The upper bound of Lemma 4.1 is of a different order of magnitude than the
known state complexity of Kleene-star for string languages [25]. It remains to
verify that the bound of Lemma 4.1 can be reached in the worst case.

Fig. 2. The DFA A from [25] with added c-transitions

Figure 2 represents a DFA A used in [25,26] for the lower bound construction
for Kleene-star where we have added transitions on the symbol c. Note that A
is an incomplete DFA since the c transition on 0 is undefined. Based on A we
define in the following a tree automaton MA.

Choose Σ = Σ0 ∪Σ1 ∪Σ2 where Σ0 = {e}, Σ1 = {a, b, c} and Σ2 = {a2, d2}.
We define a DTA MA = (Σ,QA, QA,F , gA), where QA = {0, 1, . . . , n−1}, QA,F =
{n− 1} and the transition function gA is defined by setting:

(i) egA = 0, cgA(i) = i, 1 ≤ i ≤ n− 1,
(ii) agA(i) = (a2)gA(i, i) = i + 1, 0 ≤ i ≤ n− 2,

agA(n− 1) = (a2)gA(n − 1, n− 1) = 0,
(iii) bgA(i) = i + 1, 1 ≤ i ≤ n− 2, bgA(j) = 0, j ∈ {0, n− 1},
(iv) (d2)gA(0, i) = i, i = 0, 2, 3, . . . , n− 1, (d2)gA(1, 1) = 1.

All transitions of gA not listed above are undefined. Intuitively, the construction
of MA can be, roughly speaking, explained as follows. Denote by Td the subset of
FΣ consisting of trees without any occurrences of the binary symbol d2, thus the
only binary symbol in trees of Td is a2. On a tree t ∈ Td, the DTA MA simulates
the computation of A on each string of symbols starting from a node of height
one, where occurrences of a2 are “interpreted” simply as a. The computations
on different paths verify that for any u ∈ dom(t) labeled by a2 and any nodes v1

and v2 of height one below u, the simulated computations started from v1 and
v2 agree at u. Furthermore, if u = ε, the simulated computation has to accept.

Note that the original DFA has no transitions on d, and the transitions on
d2 have been added for a technical reason that will be used in the proof of
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Lemma 4.3. Also, the above intuitive description is not completely precise on how
MA operates on binary symbols a2 where one child is a leaf (that gets assigned
the state 0) and the other child is not a leaf. The following Lemmas 4.2 and 4.3
rely only on the formal definition of the transition function gA of MA. The above
intuitive description of the operation of MA is intended only as a guide that may
be useful in understanding the operation of the DTA constructed to recognize
the bottom-up e-star of L(MA). Finally, note that the d2-transitions will be
needed only to establish the reachability of one particular state, and in most of
the technical constructions the above intuitive description of the operation of
MA (based on the DFA A of Figure 2) can be sufficient.

Using the construction of the proof of Lemma 4.1, based on MA we construct
a DTA MB = (Σ,QB, QB,F , gB) that recognizes the tree language L(MA)b,∗

e .
We make the convention that the sink-state “dead” used in the proof is denoted
by n. Thus the set of states QB consists of the special state pnew assigned to e
and all pairs

(P, q), P ⊆ {0, . . . , n− 1}, 0 ≤ q ≤ n, (5)

where 0 ≤ q ≤ n − 1 implies q ∈ P , q = n − 1 implies 0 ∈ P and q = n implies
P �= ∅. The number of pairs as in (5) is (n + 3

2 )2n−1 − 1.
In the following two lemmas we establish that MB is a minimal DTA. That

is, first we show that all states of QB are pairwise inequivalent with respect to
the Myhill-Nerode equivalence relation extended to trees. Second we show that
all states of QB are reachable, that is, for each q ∈ QB there exists t ∈ FΣ such
that tgB = q. The proof of our first lemma assumes that all states are reachable
which will be established next in Lemma 4.31.

Lemma 4.2. All states of MB are pairwise inequivalent.

Proof. For the sake of convenience, we assume that we have already proven
that all states of MB are reachable (Lemma 4.3). Thus, in order to distinguish
two states with respect to the Myhill-Nerode relation, we can use an arbitrary
configuration of MB where one leaf is replaced by the given states. More formally,
in order to show that two distinct states of QB, p1 and p2, are inequivalent, it
is sufficient to find t ∈ FΣMB [x] such that the computation of MB started from
the configuration t(x ← p1) accepts if and only if the computation started from
the configuration t(x ← p2) does not accept.

We first show that any two distinct states (S1, q1) and (S2, q2) as in (5) are not
equivalent. After that we consider the special state pnew. We begin by considering
the case where neither of q1 or q2 is equal to n (which was used to denote the
dead state of MA).

Case 0 ≤ q1, q2 ≤ n− 1: (a) Assume S1 �= S2 and s ∈ S1 − S2 (The other pos-
sibility is completely symmetric.) After reading n − s − 1 unary symbols a,
a final state is reached from state (S1, q1). On the other hand, since (S2, q2)
is as in (5), q2 �= s. This means that the computation C that begins with

1 The proof of Lemma 4.3 does not rely on Lemma 4.2.
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(S2, q2) and reads n − s − 1 unary symbols a ends with a non-final state.
Note that at some point during the computation C, the second component
may become n−1 which adds an element 0 to the first component. However,
at the end of the computation C the first component cannot contain n− 1.
(b)(i) Next we consider the case S1 = S2 = S, {0, 1, . . . , n − 2} �⊆ S and
q1 �= q2. According to the definition of the states (5), q1, q2 ∈ S. Choose
p ∈ {0, 1, . . . , n−2}−S and consider a tree t1 = a2n−2−q1a2(({q1, p}, p), x) ∈
FΣMB [x]. Since p ∈ {0, 1, . . . , n−2}, ({q1, p}, p) is a legal state (5). Consider
the computation of MB on tree t1(x ← (S, q1)). Since p �∈ S the state
({q1 + 1}, n) is assigned to the root of the subtree a2(({q1, p}, q1), (S, q1)).
(Here addition is modulo n.) After this the computation reads the 2n−2−q1
unary symbols a in t1 and ends in an accepting state. On the other hand,
consider the computation of MB on t1(x ← (S, q2)). Since p �∈ S and q2 �∈
{q1, p}, the transition (a2)gB on arguments ({q1, p}, p), (S, q2)) is undefined
and the computation does not accept.
(b)(ii) Consider S = {0, 1, . . . , n−2}, and hence we know that q1, q2 �= n−1.
From state (S, qi) by reading a unary symbol b we get (S′, q′i), where S′ =
{0, 2, . . . , n − 2, n − 1}. Since q1, q2 �= n − 1, q′1 �= q′2 and the states (S′, q′1)
and (S′, q′2) are distinguished as in b(i) above.
(b)(iii) Consider then the possibility S = {0, 1, . . . , n − 1} and q1 �= q2. If
{q1, q2} �= {0, n−1}, by reading a unary symbol b from (S, q1) and (S, q2), re-
spectively, we get two states (S′, q′1), (S′, q′2), q′1 �= q′2, that are distinguished
as in the previous case2. Next consider the case {q1, q2} = {0, n−1}, and first
assume that n ≥ 3. By reading a unary symbol a we obtain states (S, q1 +1),
(S, q2 + 1) where q1 + 1 �= q2 + 1 and qi + 1 �= n − 1, i = 1, 2 (addition is
modulo n). The states (S, q1 + 1) and (S, q2 + 1) can be distinguished as in
the previous cases.
Finally consider the possibility n = 2 and {q1, q2} = {0, 1}. From state
({0, 1}, 1) by reading unary symbols ca, we reach the accepting state ({0, 1}, 0).
On the other hand, a computation starting from ({0, 1}, 0) by reading the
unary symbols ca reaches the nonaccepting state ({0}, 2).

Case where q2 = n: First assume q1 �= n. Choose t2 ∈ FΣMB [x] by setting t2 =
an−2a2(({0, 1}, 1), bn−1(x)). Since n − 1 consecutive b-transitions take any
state of A to state 0, the computation of MB on t2(x ← (S1, q1)) assigns state
({0}, 0) to the root of the subtree bn−1((S1, q1)). Then the state ({1}, n) is
reached at the root of the subtree a2(({0, 1}, 1), bn−1((S1, q1))). A final state
({n− 1}, n) is reached after reading further n− 2 unary symbols a. On the
other hand, in the computation of MB on t2(x ← (S2, n)) the state ({0}, n)
is assigned to the root of the subtree bn−1((S2, n)). When reading the binary
symbol a2 with arguments ({0, 1}, 1) and ({0}, n) the computation step of
MB is undefined, and hence MB does not accept t2(x ← (S2, n)).
Finally consider the case where also q1 = n. Thus S1 �= S2 and choose
s ∈ S1 −S2. After reading n− s− 1 unary symbols a, a final state is reached

2 The b-transitions of A violate injectivity only on states 0 and n − 1.
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from state (S1, n), and the same computation does not reach a final state
from (S2, n).

It remains to show that pnew is not equivalent with any state (S, q) as in (5).
Since pnew is final, it is sufficient to consider states where n − 1 ∈ S. Thus,
by reading a unary symbol c from state (S, q) we get a state (S′, q′), where
n− 1 ∈ S′ and 0 ≤ q′ ≤ n. On the other hand, computations starting from pnew

are identical to computations starting from ({0}, 0) and hence a computation
step with unary symbol c is undefined.

Before the next lemma we introduce the following notation. For a unary tree
representing a configuration of MB, t = z1(z2(. . . zm(z0) . . .)) ∈ FΣMB , we define
word(t) = zmzm−1 . . . z1. Note that word(t) consists of the sequence of symbols
labeling the nodes of t bottom-up, and the label of the leaf is not included. In
the following when we refer to word(t) of a tree t, without further mention, this
implies that t is a unary tree.

Lemma 4.3. All states of MB are reachable.

Proof. The transition function of MB assigns the special state pnew to leaf sym-
bol e. Recall that from pnew the computation of MB continues as from ({0}, 0).
Thus, after reading n− 1 unary symbols a we reach the state ({0, n− 1}, n− 1).

Inductively, we assume that a state ({0, 1, 2, . . . , k, n−1}, n−1), 0 ≤ k < n−2,
is reachable. We show that ({0, 1, 2, . . . , k+1, n−1}, n−1) is also reachable. From
state ({0, 1, 2, . . . , k, n−1}, n−1), we reach the state Z1 = ({1, 2, . . . , k+1, 0}, 0)
by reading a unary symbol a. By our assumption on k, k+1 < n−1. Thus from
Z1 we reach the state Z2 = ({2, 3, . . . , k+ 2, 0}, 0) by reading b. Since k < n− 2,
all elements of {2, 3, . . . , k + 2, 0} are distinct (that is, the b-transition does not
take k + 1 to 0). After reading n − 1 symbols a, the state ({1, 2, . . . , k + 1, n −
1, 0}, n − 1) is reached. The element 0 is added to the first component as the
second component becomes n − 1.

By the above inductive claim we now know that the state ({0, 1, . . . , n−2, n−
1}, n− 1) is reachable. After reading i + 1 a′s, state ({0, 1, . . . , n − 2, n − 1}, i)
is reached, 0 ≤ i ≤ n − 1.

Inductively, assume that all states (S, j), where |S| ≥ k + 1, 1 ≤ k < n and
0 ≤ j ≤ n − 1 as in (5) are reachable. We show that then also states where
|S| = k are reachable. Let (S, si) where S = {s1, s2, . . . , sk}, 1 ≤ i ≤ k and
0 ≤ s1 < s2 < . . . < sk ≤ n− 1 be an arbitrary state where |S| = k. Recall that
in states of MB, when the second component is not n, it must belong to the first
component.

In the below cases (a) and (b), numbers z ≥ n are interpreted as the unique
element of {0, 1, . . . , n− 1} congruent to z modulo n.

(a-i) First consider the case where si < n− 1. The following discussion assumes
n ≥ 3, and the case n = 2 is handled in case (a-ii). Since |S| = k < n, in the
“cyclical sequence” of s1, . . . , sk, there exist two consecutive numbers with
difference at least two, where the difference between the numbers sk and
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s1 is counted modulo n. More formally, either there exists 1 ≤ j ≤ k − 1
such that sj+1 − sj ≥ 2 or n + s1 − sk ≥ 2. In the latter case we choose
j = k. In the following we assume that i ≤ j. The case where i > j is
similar and only some notations are changed. According to the inductive
assumption, the state Z3 = ({0, n − 1} ∪ S1, n + si − sj − 1) where S1 =
{sj+1−sj−1, sj+2−sj−1, . . . , sk−sj−1, n+s1−sj−1, n+s2−sj−1, . . . , n+
sj−1 − sj − 1} is reachable. Note that since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1
and sj+1 − sj ≥ 2, |S1 ∪ {0, n − 1}| = k + 1. After reading from state
Z3 a unary symbol b, we get the state Z4 = ({0} ∪ S2, n + si − sj) where
S2 = {sj+1−sj , sj+2−sj , . . . , sk−sj , n+s1−sj , n+s2−sj, . . . , n+sj−1−sj}.
Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1, 0 /∈ S2. From state Z4 we reach the
state ({sj , sj+1, sj+2, . . . , sk, n+ s1, n + s2, . . . , n+ sj−1}, n+ si) by reading
sj symbols a. The latter state is the state (S, si) that we wanted.

(a-ii) Assume that si < n − 1 and n = 2. Now k = 1, and the only legal state
(S, si), |S| = k = 1, 0 ≤ si < 1, is ({0}, 0) (because we know that si ∈ S).
The state ({0}, 0) is reached from state pnew by reading unary symbols ab.

(b) Now consider the case where si = n − 1, and thus i = k. This implies that
0 ∈ S, and we have si(= sk) = n − 1 and s1 = 0. Since k < n, there
exists 1 ≤ j ≤ k − 1 such that sj+1 − sj ≥ 2. According to the inductive
assumption, the state Z5 = ({0, n− 1} ∪ S3, n − 2 − sj) is reachable, where
S3 = {sj+1−sj−1, sj+2−sj−1, . . . , sk−1−sj−1, n−1−sj−1, n+0−sj−1, n+
s2 − sj − 1, . . . , n+ sj−1 − sj − 1}. Similarly as in (a) above we observe that
|S3∪{0, n−1}| = k+1. From state Z5 we get the state Z6 = ({sj+1−sj , sj+2−
sj , . . . , sk−1−sj , n−1−sj, n+0−sj, n+s2−sj, . . . , n+sj−1−sj, 0}, n−1−sj)
by reading a symbol b. After reading sj symbols a, from state Z6 we reach
the state ({sj+1, sj+2, . . . , sk−1, n− 1, n+ 0, n+ s2, . . . , n+ sj−1, sj}, n− 1).
This means that we have reached the desired state (S, n − 1) with S =
{0, s2, . . . , sk−1, n − 1}.

Up to now, we have shown that all that states (S, j), S ⊆ {0, . . . , n − 1}, 0 ≤
j ≤ n − 1 as in (5) are reachable. Next we will show that the states (S, n),
S ⊂ {0, 1, . . . , n− 1} are reachable.

We know that ({0, 1, . . . , n−1}, 0) is reachable and from this state we get Z7 =
({1, . . . , n−1}, n) by reading a unary symbol c. From Z7 we get all states (S, n),
|S| = n − 1 by cycling the elements of S using a-transitions. Now inductively,
assume that all states (S, n), n > |S| ≥ k + 1, k < n− 1 are reachable. Consider
an arbitrary state (S, n) where |S| = k. Choose 0 ≤ j ≤ n − 1 such that j �∈ S.
By our inductive assumption the state (S ∪ {j}, n) is reachable. From this state
we reach (S, n) by reading the sequence of unary symbols an−jcaj . Note that
transitions on a always add one modulo n to states of S and the c-transition
deletes the element 0 and is the identity on all other elements.

It remains to consider the state ({0, 1, . . . , n − 1}, n). We know that states
({0, 1}, 0) and ({0, 1, . . . , n − 1}, 1) are reachable. According to the definition
of d2-transitions of MA, the d2-transition of MB with arguments ({0, 1}, 0) and
({0, 1, . . . , n−1}, 1) gives the state ({0, 1, . . . , n−1}, n).
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Note that above the transitions on d2 were needed only to establish that the
state ({0, 1, . . . , n − 1}, n) is reachable in MB. The transitions of d2 in MA did
not have a similar intuitive interpretation as the other transitions based on the
DFA A, and they were introduced only for the technical purpose needed at the
end of the proof of Lemma 4.3.

By Lemmas 4.1, 4.2 and 4.3 we have a tight bound for the state complexity
of bottom-up star that differs by an order of magnitude from the known bound
for Kleene-star of string languages [25].

Theorem 4.1. If A is a DTA with n states, the bottom-up star of L(A) can be
recognized by a DTA with (n + 3

2 ) · 2n−1 states. For every n ≥ 2, there exists
an n-state DTA A and σ ∈ Σ0 such that the minimal DTA for L(A)b,∗

σ has
(n + 3

2 ) · 2n−1 states.

5 State Complexity of Top-Down Star

Here we give a tight state complexity bound for top-down star of regular tree
languages. The top-down iteration of the concatenation operation allows the
replacement of subtrees at arbitrary locations and, as can perhaps be expected,
the state complexity is similar as for the Kleene-star of string languages. For
completeness, we give a brief construction for the upper bound, because we
are considering incomplete automata and the known state complexity bounds
for ordinary DFAs are stated in terms of complete DFAs [25,26]. The state
complexity results for complete and incomplete DFAs, respectively, differ slightly
for operations such as union [25,7] or concatenation [25,16].

Theorem 5.1. Let A be a DTA with n states and σ ∈ Σ0. The top-down σ-star
of the tree language recognized by A, L(A)t,∗

σ , can be recognized by a DTA with
3
4 · 2n states and this bound can be reached in the worst case.

Proof. Denote A = (Σ,QA, QA,F , gA) and let qnew be a new element not in
QA. We can assume that σgA is defined because otherwise L(A)t,∗

σ = L(A)∪{σ}.
We define B = (Σ,QB, QB,F , gB), where

QB = {qnew} ∪ {∅ �= P ⊆ QA | P ∩ QA,F �= ∅ implies σgA ∈ P},

QB,F = {qnew} ∪ {P ∈ QB | P ∩ QA,F �= ∅}.
The transitions of B are defined for τ ∈ Σ0 − {σ} by setting

τgB =

⎧⎨⎩
{τgA , σgA} if τgA ∈ QA,F ,
{τgA} if τgA ∈ QA − QA,F ,
undefined if τgA is undefined.

For the leaf symbol σ used to define the star-operation, we set σgB = qnew. For
m ≥ 1, τ ∈ Σm and X1, . . . , Xm ∈ QB we define τgB (X1, . . . , Xm) = Y ∪ Z,
where

Y = {τgA(x1, . . . , xm) | xi ∈ Xi if Xi ∈ 2QA , xi = σgA if Xi = qnew, 1 ≤ i ≤ m},

and Z = {σgA} if Y ∩QA,F �= ∅, Z = ∅ otherwise.
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The construction of B is similar as the construction used to recognize the
Kleene-star of a string language. Note that the state qnew is used as a copy of
σgA because the latter state is not, in general, accepting. We leave to the reader
the details of verifying that B recognizes L(A)t,∗

σ .
To get the upper bound on the number of states, we note that if QA,F = {σgA},

then we can identify qnew and σgA and in the resulting DTA the number of
reachable states is (at most) n. Thus we can assume that QA,F − {σgA} �= ∅.
In the case where σgA �∈ QA,F , we observe that (2|QA,F | − 1) · 2n−|QA,F |−1 of
the elements P ∈ 2QA − {∅} contain an element of QA,F and, at the same time,
do not contain σgA . Thus, by choosing |QA,F | = 1, the cardinality of QB is
maximized as |QB| = 2n − 1− (2− 1) · 2n−2 + 1 = 3

4 · 2n. It is easy to verify that
this bound cannot be exceeded with σgA ∈ QA,F , |QA,F | ≥ 2.

When restricted to unary trees, the top-down (or bottom) star operation coin-
cides with Kleene-star on string languages. Theorem 5.5 of [25] gives a complete
DFA C with n states such that the state complexity of the Kleene-star of L(C)
is 3

4 ·2n. Furthermore, C does not have a dead state, which means that the same
lower bound construction works for incomplete DFAs.

6 Conclusion

The lower bound construction for Kleene-star in [25] uses a two-letter alphabet,
and hence the worst-case state complexity of top-down star can be achieved over
a ranked alphabet with two unary and one nullary symbol. It is clear that one
unary and one nullary symbol is not sufficient, because it is known that the
state complexity of Kleene-star for string languages over a one-letter alphabet
is (n − 1)2 + 1 [25]. With one binary symbol ω and one nullary symbol σ, we
can encode strings over a two letter alphabet as trees “built up” from elements
ω(σ, x) and ω(x, σ). In this way one clearly gets an exponential lower bound
construction, however, we do not know whether one binary and one nullary
symbol is sufficient to reach the precise bound of Theorem 5.1.

Our lower bound construction for Theorem 4.1 uses a ranked alphabet of
six symbols. The state complexity for bottom-up star is of different order of
magnitude than the corresponding bound for string languages. This means that
the worst-case constructions essentially need to rely on “tree properties” and
finding the minimal alphabet size remains an open question.
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Abstract. This paper investigates functional completeness and syn-
chronization of finite automata, within the framework of composition
of functions over a finite domain. Results about decidability and com-
plexity are obtained, as well as partial criteria for synchronizability and
simplified proofs of earlier results.

1 Introduction and Basic Notions

Consider functions g(x) whose domain is a fixed finite set N with n elements,
n ≥ 2, and whose range is included in N . We will mostly deal with the case
where this abstract setup is applied to finite deterministic automata. We make
the following convention, valid throughout this paper: n always stands for the
number of elements in the basic set N . We can visualize N simply as the set
consisting of the first n natural numbers: N = {1, 2, . . . , n}. Clearly, there are
altogether nn functions in the set NN we are considering. For convenience, we
will refer to the cardinality of the range of a function g as the genus of g. Thus,
permutations are of genus n, and constants are of genus 1.

The two interpretations mostly considered in this set-up are many-valued logic
and finite automata. In the former, the set N consists of n truth values and the
functions are truth functions. We will not consider many-valued logic in this
paper. The reader is referred to [11] or, for more details, to [13], where questions
of composition theory related to the ones studied in this paper are discussed.

In the interpretation dealing with finite automata, the set N consists of the
states the automaton, whereas each letter of the input alphabet induces a specific
function: the next state when reading that letter. The automata considered will
be deterministic and complete: for each state q and input letter a, the transition
function δ defines a unique next state δ(q, a). Our automata do not have specified
initial or final states. Thus, our automata will be triples A = (Q,Σ, δ), where
Q is the set of states (consisting of n elements), Σ is the input alphabet, and δ
maps the product Q×Σ into Q. The domain of the mapping is extended in the
usual way to Q× Σ∗, and specific automata will be depicted as labeled graphs.
In the early days of automata theory, such automata were often referred to as
Medvedev automata, after Ju.T. Medvedev. He translated the seminal Princeton
book Automata Studies from 1956 (see [7]) into Russian, and included his own
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article in the translation. The latter remained largely unknown in the West.
When we speak of automata or finite automata in the sequel, we always mean
Medvedev automata.

Coming back to our basic setup of functions, each letter a of the input alphabet
defines a function ga(x) = δ(x, a). We will often identify ga with a. In this
association, catenation of letters corresponds to composition of functions. We
read compositions from left to right: first a, then b. This is in accordance of
reading the input words of a finite automaton from left to right. Because of
this convention, it is natural to write the argument x of a function to the left:
(x)ab = ((x)a)b.

Consider a nonempty set F of functions, for instance, the set defined by all
functions ga, where a runs through the input letters of a specific automaton.
We will consider the set G(F) of all functions generated by F , that is, obtained
as compositions (with arbitrarily many composition factors) of functions from
F . Assume that a particular function g can be expressed as a composition of
functions ai, i = 1, 2, . . . , k, belonging to F : g = a1a2 . . . ak, where some of
the functions ai may coincide. Then the word a1a2 . . . ak is referred to as a
composition sequence for g. The number k is referred to as the length of the
composition sequence. The function g is often referred to as the target function.
Our composition sequences have to be nonempty, implying that the identity
function is not necessarily in G(F). Clearly, G(F) can be viewed as the semigroup
generated by F . The set F is termed complete if G(F) contains all nn functions.

Since n is finite, a specific function f can always be defined by a table. Omit-
ting the argument values, this amounts to giving the value sequence of f , that
is, the sequence f(1), f(2), . . . , f(n) of its values for the increasing values of
the argument. This will often be done in the sequel. We use the notation FA to
indicate that F equals the set of transition functions ga of a finite automaton
A.

In this paper we will study the semigroup G(FA)), in particular composition
sequences and their length. The fundamental notions are defined as follows.

Definition 1. A finite automaton A is functionally complete if FA is complete.
It is synchronizing or synchronizable if G(FA) contains a constant function. If
A is synchronizing, then any composition sequence for a constant function is
referred to as a synchronizing word.

Observe that if y is a synchronizing word, so is xyz, for any words x and z.

2 Functional Completeness of Finite Automata

The reader is referred to [12] for a proof of the following result. We exclude the
case n = 2, for which the two functions with the value sequences 21 and 11 form
a complete set.

Theorem 1. Assume that n ≥ 3. Then three functions generate all functions if
and only if two of them generate the symmetric group Sn and the third one is of
genus n− 1. No less than three functions generate all functions.
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According to [8], given any nonidentical permutation, another permutation can
be effectively constructed such that the two permutations form a basis of the
whole symmetric group. The case n = 4 is exceptional because a permutation
in the Klein Four-Group cannot be extended in this way to a basis. Thus, we
obtain the following corollary of Theorem 1.

Theorem 2. Assume that n �= 4. Given a nonidentical permutation a and a
function c of genus n − 1, a function b can be effectively constructed such that
the set {a, b, c} is complete.

By Theorem 1, the automaton defined by Figure 1 is functionally complete. The
circular permutation a and the transposition b generate the symmetric group,
whereas c defines a function of genus n−1. Apart from the trivial case of two-state
automata, at least three input letters are needed for functional completeness.

1 2

n 3

c

b, c b, c

a

a...

a, b

b, c

a

Fig. 1. A functionally complete automaton

As another example, assume that n = 6 and that three functions a, b, c are
defined by the value sequences 213456, 234561 and 112345, respectively. Thus,
a is the transposition (12), b is the circular permutation (123456), whereas c
is of genus 5 and maps 1 to itself and all the other numbers to the preceding
number. The target function f is defined by the value sequence 311344. Then
the composition sequence (perhaps not the shortest possible one)

b4d2cdb4db2d3bc2db4d2b3d2b2d4ac2db4d2b3d2

defines f , where we have abbreviated d = ab.
To get an overall picture of composition sequences, we still present an ex-

haustive classification in the case n = 3. This is a good illustration of many of
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the basic phenomena. We define the functions in a complete set {a, b, c} by the
value sequences 231, 132 and 223, respectively. Thus, a is the circular permuta-
tion (123), b is the transposition (23), whereas g is of genus 2 and maps 1 to 2
but keeps 2 and 3 fixed.

The following array lists all of the 27 functions, giving in each case the value
sequence and a shortest possible composition sequence.

value sequence composition value sequence composition
111 ca2ca2 !" 112 ca2

113 cba !" 121 aca2

122 a2cab !" 123 b2

131 acba !" 132 b
133 a2ca !" 211 a2ca2

212 acab !" 213 ba
221 cab !" 222 ca2c
223 c !" 231 a
232 ac !" 233 a2cb
311 abcba !" 312 a2

313 aca !" 321 ab
322 a2c !" 323 acb
331 ca !" 332 cb
333 ca2ca !"

Thus, altogether 10 different functions have composition sequences of length
≤ 2. Additionally, 6 functions have sequences of length 3, and 6 further functions
of length 4. The remaining exceptional functions require a longer composition
sequence.

One of the constants is represented by a sequence of length 4 but no constant
by a shorter sequence. The composition sequence ca2ca2 for the constant 1 is of
special interest. Reading the sequence from left to right, consider the range of
the function obtained so far. When c is applied to the whole set N = {1, 2, 3},
we get the range {2, 3}. When a is applied to the latter, we get the range {1, 3},
and so forth. Altogether we get the sequence of ranges

{1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, {2}, {3}, {1}.

It has no repetitions and contains all nonempty subsets of N . In the sequel we
will express these two properties by saying that the composition sequence ca2ca2

is range-reduced and range-complete. Each of the words

cabca2, cabcba, ca2cba, ca2ca2

has these two properties.
Since there are altogether 120 nonempty words of length ≤ 4, some functions

possess many representations using such words. The greatest number is possessed
by the function with the value sequence 223 which has 17 such representations.
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3 Depth of Compositions

We now discuss the length of composition sequences. The depth of a function
f with respect to the set F , in symbols D(F , f), is the shortest composition
sequence of f in terms of functions in F . If no such sequence exists, the depth
is defined to be ∞.

In general, the depth of a function f is defined by the equation

D(f) = max(D(F , f)),

where F ranges over all sets in terms of which f has a composition sequence.
The depth D(f) tells how long a composition sequence can be in the worst case.
If a composition sequence w for f can be written in the form w = w1w2w3,
where the sequences w1 and w1w2 define the same function, then also w1w3 is
a composition sequence for f and, consequently, the original sequence w is not
minimal. Since the total number of functions is nn, we get the upper bound
D(f) ≤ nn, for any f. The following result shows that no polynomial upper
bound (in terms of n) can be obtained. The proof, [12], uses an idea applied
in the discussion of the payoff for the transition from a nondeterministic to a
deterministic finite automaton. For completeness, we outline the proof also here.

Theorem 3. There is no polynomial P (n) such that D(f) ≤ P (n) holds for all
functions f .

Proof. Let pi be the ith prime, and consider numbers n of the form n = p1 +p2 +
· · · + pk. Let a be a permutation, defined as the product of k cycles of lengths
p1, p2, . . . , pk. Let the set F consist of a only. Let the target function f be the
identity function. Clearly,

D(F , f) = p1p2 · · · pk.

Now the well-known estimate pk ≤ k2, k > 1, leads easily to the desired
result. �

The proof shows also that there are specific functions having no polynomial
upper bound for their depth. The method is quite general: instead of the identity
function we can choose, for instance, the function mapping each element in a
cycle to the preceding element.

The complete depth DC(f) of a function f is defined also by the equation
DC(f) = max(D(F , f)) but now F ranges over complete sets of functions. It
follows by the definition that every function f satisfies DC(f) ≤ D(f). However,
lower bounds such as the one given for D(f) in the proof of Theorem 3 are much
harder to obtain for DC(f), for the simple reason that we have much less leeway
if we have to restrict the attention to complete sets F only. On the other hand,
we do not know examples of functions for which the above inequality is strict.
Such functions do not exist if n = 2, and also probably not for n = 3. It still
seems that the following conjecture, presented also in [12], holds.
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Conjecture 1. Assume that n ≥ 4. Then there is a function f with the property

DC(f) < D(f).

Consider, finally. again a set F of functions. By definition, a composition se-
quence w for a function f is reduced if no sequence obtained from w by removing
some letters is a composition sequence for f . Clearly, a minimal composition
sequence is always reduced. The converse does not necessarily hold, many ex-
amples can be obtained from the table in the preceding section. For instance,
consider the function with the value sequence 123. The composition sequence a3

is reduced but not minimal because also b2 is a composition sequence for this
function. A composition sequence w is not reduced if it can be written in the
form w = w1w2w3, where the sequences w1 and w1w2 define the same function.

4 A Combinatorial Lemma

No good characterizations are known for synchronizing automata. Of course
synchronizability is a decidable property but, as will be seen in the sequel, it is
often very challenging to find out of a particular automaton whether or not it is
synchronizing. There are special cases where it is easier to tell whether or not a
given automaton is synchronizing.

The following result is useful in case of circular automata, that is, automata
where one of the letters affects a circular permutation of the states.

Lemma 1. Let N = {1, 2, . . . , n} = N1 ∪ . . . ∪ Nk, k ≥ 2, be a partition of
N into nonempty pairwise disjoint subsets, not all of the same cardinality, let
xi, 1 ≤ i ≤ k, be different elements of N , and let P = (12 . . . n) be a circular
permutation. Then some power P t of P maps two of the elements xi, 1 ≤ i ≤ k,
into the same subset Nj .

Proof. Assume that Np, 1 ≤ p ≤ k, is a subset of maximal cardinality, that is,
no other subset has more elements than Np. Consider the sets

Mj = P xj(Np), 1 ≤ j ≤ k.

They are all of the same cardinality as Np. Because the sets Nj are not all of
the same cardinality, the sets Mj cannot be pairwise disjoint. Let μ �= ν be such
that Mμ and Mν intersect. Hence, also the sets

P−xν (Mν) = Np and P−xν (Mμ) = P xμ−xν (Np)

intersect. (The exponents of P denote smallest nonnegative remainders modulo
n.) Hence, there is an element α ∈ Np such that also the element P xμ−xν (α) =
β ∈ Np. Choose now t such that P t(xμ) = β. Then

P t(xν) = P t(P xν−xμ(xμ)) = P xν−xμ(P t(xμ)) = P xν−xμ(β) = α ∈ Np.

Hence, P t maps both of the elements xμ and xν into Np. �
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The cardinality assumption is necessary in Lemma 1. For instance, assume that

n = 4, N1 = {1, 2}, N2 = {3, 4}, x1 = 1, x2 = 3.

Then no power of the permutation (1234) maps both x1 and x2 into the same
set Nj .

A somewhat weaker version of Lemma 1 was established in [15], where it was
also assumed that n is prime and that xi ∈ Ni, for all i, 1 ≤ i ≤ k.

Assume that the letter b gives rise to a function of genus k < n in a circular
automaton. Then, by Lemma 1, a function of genus < k can be generated as
follows. First number the states in such a way that the letter a affects the circular
permutation (12 . . . n). Further, for i = 1, . . . , k, let Ni be the set of arguments
for which b assumes the value xi. Then batb, where t is the exponent from Lemma
1, is of genus < k.

However, Lemma 1 is not strong enough to show that the automaton is syn-
chronizing because sometimes the procedure cannot be repeated. An example
is given in Figure 2. The function b is of genus 3. Functions of genus 2 can be
generated but no function of genus 1. The automaton is not synchronizing.

5 Synchronizing Words

The phenomenon depicted in Figure 2 never occurs if n is a prime number.
In this case the subsets corresponding to the constructed function of a smaller
genus cannot be all of the same cardinality, which enables repeated applications
of Lemma 1. Hence, the following theorem holds true. (The result should be
credited to [15] because of the central lemma.)

Theorem 4. A circular automaton with n states is synchronizing if and only if
it contains a letter giving rise to a function of genus < n.

Although no good general characterizations of synchronizability are known, the
study of synchronous automata has a long history, going back to the classical
paper [7] about experimenting with finite automata. When one does not know the
state the automaton is in, one gets the situation under control if a synchronizing
word is available. The early paper [5] is related.

A technique common in many-valued logic can be used for constructing classes
of non-synchronizable automata. We say that a function g is self-conjugate under
a permutation P if it satisfies the equation g = PgP−1. It is easy to see that,
if in an automaton with the state set N every function is self-conjugate under a
permutation P mapping no element of N into itself, then the automaton is not
synchronizable. This follows because P commutes with every generated function
but clearly does not commute with any constant.
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Fig. 2. Lemma 1 is applicable only once
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Fig. 3. Difference in synchronization

As an example, let n be even, n = 2m, and let the automaton A have two
input letters a and b, where a affects the circular permutation (12 . . . n), and
b maps the states 1, . . . ,m (resp. m + 1, . . . , n) into m + 1 (resp. into 1).Then
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A is not synchronizable, although many functions of genus 2 can be expressed
as composition sequences in terms of a and b. Self-conjugacy is affected by the
product of transpositions P = (1,m + 1)(2,m + 2) · · · (m, 2m).

Often a tiny difference makes a synchronizing automaton non-synchronizing.
At a first look the left automaton in Figure 3 seems “more synchronizing” than the
right one. However, the opposite is the case. The right automaton is synchronizing
(with the synchronizing word ba2baba2b2aba2b), whereas the left one is not.

6 Decidability and Complexity

It is obvious, due to finite upper bounds, that all reasonable problems are decid-
able in our setup. For instance, given a function f and a set set F , we can decide
whether or not f is in the set generated by F . This follows because of the trivial
upper bound nn for the length of minimal composition sequences. We can also
test, by trying out all of the (finitely many) possibilities, whether or not a given
composition sequence for f is minimal or whether it is reduced.

As far as complexity issues are concerned, practically all of the basic problems
seem to be intractable. We will now present a result in this direction dealing with
synchronization.

We will refer to the following problem as the partial synchronization problem.
Given an automaton A and a subset Q1 of its state set, one has to find a word w
such that qw = q′w holds for all states q, q′ ∈ Q1. Such a word w is synchronizing
for Q1. If such a word exists, A is called synchronizable with respect to Q1.
(Observe that the synchronizing state, that is, the state where the states in Q1

are mapped by w, need not be in Q1.)

Theorem 5. The partial synchronization problem is NP-hard.

Proof. We use reduction to SAT, the satisfiability problem for propositional
formulas in conjunctive normal form. (The same argument applies also to the
problem 3-SAT, where each of the disjunctive clauses contains only three terms.)

Consider a propositional formula in conjunctive normal form, having k vari-
ables x1, . . . , xk, and consisting of a conjunction of l clauses of disjunctions
βi, i = 1, . . . , l. We now choose n = kl + 2 and arrange the first n − 2 numbers
1, . . . , kl in an array as follows.

1 2 · · · l
l + 1 l + 2 · · · 2l

...
...

...
(k − 1)l + 1 (k − 1)l + 2 · · · kl

We consider the automaton A with two input letters a and b, and having the
transitions defined as follows. The states n and n− 1 are ”sinks” for both func-
tions:

(n − 1)a = (n − 1)b = n− 1, (n)a = (n)b = n.
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For the states in the array above, that is, for the states up to n − 2, the two
functions are defined as follows. Consider the state (i − 1)l + j = u(i, j) in the
position (i, j) in the array. If the variable xi is not negated (resp. negated) in βj ,
then a (resp. b) maps u(i, j) to n. In all other cases both a and b map u(i, j) to
the next element u(i + 1, j) in the same column, with the following exception.
The states u(k, j) in the last row are mapped into n − 1 by both a and b.

We now claim that A is synchronizable with respect to the set {1, . . . , l}
exactly in case the original propositional formula is satisfiable.

Observe first that the columns in our array correspond to the clauses and the
rows to the variables of the propositional formula, and that every word of length
≥ k maps every state to either n− 1 or n.

Assume first that t1, t2, . . . , tk is a truth value assignment for the variables
x1, x2, . . . , xk satisfying the formula. Let c1c2 · · · ck = w be the word such that
ci = a (resp. ci = b) if ti is the truth value ”true” (resp. ”false”), for i =
1, 2, . . . , k. Consider any number j, 1 ≤ j ≤ l. Let xi be a variable (there may
be several of them) in the clause βj satisfying βj . (Thus, ti is ”true” or ”false”
according as xi appears in βj non-negated or negated.) By the definition of a
and b, and by the choice of w,

(j)c1 . . . ci = n = (j)w.

Because j was arbitrary, w is a synchronizing word for the set {1, . . . , l}.
Conversely, assume that the word w is synchronizing for the set {1, . . . , l}

Then also the prefix u of w of length k, u = d1d2 · · · dk is synchronizing for
{1, . . . , l}. We now define a truth value assignment t1, t2, . . . , tk such that ti is
”true” (resp. ”false”) if di = a (resp. di = b), for 1 ≤ i ≤ k. Consider an arbitrary
clause βj . We know that (j)u = n. Consequently, for some i, (j)d1 · · · di = n. We
choose the smallest such i and conclude that the assignment ti for xi satisfies
βj . Since again j was arbitrary, the truth value assignment thus defined satisfies
the propositional formula.

To conclude the proof, we still have to take care of a minor detail. A truth
value assignment satisfying none of the clauses leads also to a synchronizing word
w because xw = n − 1 for x ∈ {1, . . . , l}. The existence of such an assignment
can be excluded by having an identically true clause in the original propositional
formula. �

7 The C̆erný Automaton

The automaton defined in Figure 4 was discussed in [2], and in more detail in [3].
It is connected with the following conjecture, often referred to as the problem of
the longest open standing in finite automata theory.

Conjecture 2. (C̆erný) Every synchronizing automaton with n states has a
synchronizing word of length (n − 1)2.

The number (n − 1)2 in the conjecture is usually presented as an upper bound.
Our formulation is equivalent, since you can add arbitrary prefixes and suffixes
to a synchronizing word.
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There is an extensive literature concerning this conjecture. It has been es-
tablished in numerous special cases, for instance, for circular automata in [4].
We refer to [6] for some overall considerations, and to [1,10,14] as some recent
approaches.

However, all upper bounds so far obtained in the general case are cubic in
n. It is also very difficult to construct examples where the bound (n − 1)2 is
actually reached. In fact, the automaton of Figure 4 is the only known exam-
ple for a general n. The other few known examples, where the upper bound is
reached, are automata with a specific number, such as 4 or 6, of states. The only
known functionally complete automata reaching the upper bound have less than
4 states. All this indicates that the value (n − 1)2 is not a natural borderline,
that is, that the conjecture does not hold true.

1 2 3

n 4

a a

a

b b b

aa

a, b

. . .

b

a

a, b

Fig. 4. The C̆erný automaton

Let us go back to our original framework of compositions of functions over
a domain with n elements, and investigate the C̆erný automaton in this setup.
Thus, we have a set F consisting of two functions a and b, where a is the circular
permutation (12 . . . n), and b maps n to 1 but keeps the numbers 1, 2, . . . , n− 1
unchanged. Thus, the value sequences of a and b are 2, 3, . . . , n, 1 and 1, 2, . . . , n−
1, 1, respectively. We consider the depth of the constant 1. Clearly, (ban−1)n−2b
is a sequence yielding the constant 1. But is it the shortest? For the sake of
completeness (and since the matter is by no means clear), we outline here the
argument originally due to [9].

Before we do this, let us try some other sequences. Since the aim is to reduce
the genus from n to 1, one is tempted to apply the greedy algorithm, that is, to
reduce the genus whenever possible. This makes sense because no backtracking
is needed: if a correct sequence exists at all, any sequence can be continued to
yield a correct one. For instance, let n = 8, giving the value sequences 23456781
and 12345671 for a and b. Then the sequence (ba2)3b of length 10 reduces the
genus to 4, as opposed to the prefix (ba7)3b of length 25 of the orthodox sequence.
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However, later on one pays the price because the short sequence yields the ”bad”
range {1, 3, 5, 7} of cardinality 4. Indeed, in the continuation altogether length 20
(versus 33 in the orthodox sequence) is needed to get genus 3, length 33 (versus
41) to get genus 2, and length 61 (versus 49) to get genus 1. In the genus 2 one
starts with the range {1, 5} and has to go through all 28 pairs! Hence, often
and certainly in case of the C̆erný automaton, the greedy algorithm leads to a
synchronizing word longer than (n − 1)2.

We now show that one cannot do better than (n−1)2. Consider a circle, where
n spots at equal distances have been clockwise marked by the numbers 1, . . . , n.
At the beginning each spot carries a stone. You have two possible moves. In the
move a you transfer every stone to the spot lying clockwise next to the preceding
spot of the stone. In the move b you transfer the stone in the spot n, if any, to
the spot 1 and remove the stone, if any, from the spot 1. Other stones are left
intact in b. The purpose is to reach a situation, where only one stone remains.
What is the minimal number of moves for this? Considering how the moves were
defined, it is clear that the answer gives the length of the shortest composition
sequence for the constant 1.

A configuration in our setup is a circular word x of length n over the binary
alphabet, where 1 (resp. 0) indicates a position carrying a stone (resp. an empty
position). Thus, 1n is the initial configuration. The characteristic number of a
configuration x is the length of the longest factor of x consisting of 0’s. Thus,
the purpose is to increase the characteristic number from 0 to n−1 in the fastest
possible way.

The move a never changes the characteristic number. The move b may increase
it. When it does, it always increases it by 1. This happens exactly in case there
is a stone in the position n and the longest factor of 0’s (or one of the longest
factors if there are several of equal length) ends at the position n−1. (Under these
conditions, the move b increases the characteristic number, no matter whether
or not there is a stone in the position 1.) These observations imply that one
cannot do better than, always after applying b, move the stone in the position
1, as well as the empty spaces following it, n − 1 steps ahead by the rule a.
(Greedy actions to reduce genus do not increase the characteristic number!) But
this gives exactly the composition sequence (ban−1)n−2b.

Instead of considering shortest composition sequences for constants, as is done
in connection with the C̆erný automaton, one may try to construct longest possi-
ble composition sequences for constants. This can be viewed as a dual approach.
Of course there is no upper bound, unless we make the natural assumption that
the composition sequence must be range-reduced: no two prefixes of the composi-
tion sequence have the same range. Considering the total number of all possible
ranges, we see that 2n − 2 is an absolute upper bound for the length. How many
functions are needed to reach the upper bound? In Section 3 we gave the example
ca2ca2 for the constant 1. Thus, for n = 3, two functions suffice.

For n = 4, consider the three functions a, b, c defined by the value sequences
2341, 2134, 1231. Then ca3ca2cabca3 is a range-reduced composition sequence of
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the maximal length 14 for the constant 4. (Clearly, range-reduced composition
sequences of maximal length are always composition sequences for constants.)

How many functions must F have in order that G(F) contains a function
having a range-reduced composition sequence of maximal length. Let γ(n) be
the least number of functions needed for this purpose if the basic set has n
elements. (Observe that the upper bound 2n − 2 is not necessarily reached even
if we consider complete sets F only.)

We saw above that γ(3) = 2 and γ(4) = 3. (It is easy to see that one cannot
reduce these numbers.) Although γ(n) increases with n, it seems likely that
this does not go on indefinitely. We would like to conclude this paper with the
following conjecture.

Conjecture 3. There is a number C such that γ(n) ≤ C , for any n.

Dedication. This paper is dedicated to Cris Calude on the occasion of his 60th
birthday. Friendship with Cris and our scientific collaboration have meant a lot
to me. I knew of his work already around 1980 but after 1990 we have met on
various occasions in Romania, Finland and elsewhere in Europe, in Canada and
New Zealand. From the very beginning I was impressed by his sophistication in
algorithmic information theory and related matters. Cris was always ready to
carry the heaviest burden in our common editorial works. He is a great person
to have as scientific collaborator and friend. I wish him continuing success in
science and happiness in life in general.
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Abstract. Let G be a connected graph. For a vertex v ∈ V (G)
and an ordered k-partition Π = {S1, S2, ..., Sk} of V (G), the rep-
resentation of v with respect to Π is the k-vector r(v|Π) =
(d(v, S1), d(v, S2), ..., d(v, Sk)), where d(v, Si) denotes the distance be-
tween v and Si. The k-partition Π is said to be resolving if the k-vectors
r(v|Π), v ∈ V (G), are distinct. The minimum k for which there is a
resolving k-partition of V (G) is called the partition dimension of G, de-
noted by pd(G). If each subgraph < Si > induced by Si (1 ≤ i ≤ k) is
required to be connected in G, the corresponding notions are connected
resolving k-partition and connected partition dimension of G, denoted
by cpd(G). Let the graph J2n be obtained from the wheel with 2n rim
vertices W2n by alternately deleting n spokes. In this paper it is shown
that for every n ≥ 4 pd(J2n) ≤ 2�√2n�+ 1 and cpd(J2n) = �(2n + 3)/5�
applying Chebyshev’s theorem and an averaging technique.

Keywords: distance, resolving partition, partition dimension, con-
nected partition dimension, Bertrand’s postulate.

1 Introduction

If G is a connected graph, the distance d(u, v) between two vertices u and v
in G is the length of a shortest path between them. The diameter of G is the
largest distance between two vertices in V (G). For a vertex v of a graph G and a
subset S of V (G), the distance between v and S is d(v, S) = min{d(v, x)|x ∈ S}.
Let Π = {S1, S2, . . . , Sk} be an ordered k-partition of vertices of G and let
v be a vertex of G. The representation r(v|Π) of v with respect to Π is the
k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)). If distinct vertices of G have distinct
representations with respect to Π , then Π is called a resolving partition for
V (G). The cardinality of a minimum resolving partition is called the partition
dimension of G, denoted by pd(G) [3]. A resolving partition Π = {S1, S2, ..., Sk}
of V (G) is called connected if each subgraph < Si > induced by Si (1 ≤ i ≤ k)
is connected in G. The minimum k for which there is a connected resolving k-
partition of V (G) is called the connected partition dimension of G, denoted by
cpd(G) [10].

M.J. Dinneen et al. (Eds.): WTCS 2012 (Calude Festschrift), LNCS 7160, pp. 417–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The concepts of resolvability have previously appeared in the literature (see [4,
6–9]). These concepts have some applications in chemistry for representing chem-
ical compounds [4], to problems of pattern recognition and image processing,
some of which involve the use of hierarchical data structures [7] and physics [2].

If d(x, S) �= d(y, S) we shall say that the class S separates vertices x and y.
If a class S of Π separates vertices x and y we shall also say that Π separates
x and y. From these definitions it can be observed that the property of a given
partition Π of the vertices of a graph G to be a resolving partition of V (G) can
be verified by investigating the pairs of vertices in the same class. Indeed, every
vertex x ∈ Si (1 ≤ i ≤ k) is at distance 0 from Si, but is at a distance different
from zero from any other class Sj with j �= i. It follows that x ∈ Si and y ∈ Sj

are separated both by Si and by Sj for every i �= j.
The wheel Wn for n ≥ 3 is the graph Cn + K1 obtained by joining all ver-

tices of a cycle Cn = v0, v1, . . . , vn−1 to a further vertex c called the center.
Thus Wn contains n + 1 vertices, the center and n rim vertices and has diam-
eter 2. Let the graph denoted by J2n be the graph obtained by joining vertices
v0, v2, v4, . . . , v2n−2 of a cycle C2n = v0, v1, . . . , v2n−1, v0 to a further vertex c
called the center. This graph is also known as the gear graph [5] or Jahangir
graph [12]. Thus J2n is a bipartite graph, having 2n+ 1 vertices, the center and
2n rim vertices and has diameter 4 when n ≥ 4. Note that J4

∼= K2,3. A rim
vertex of degree 3 will be called a major vertex and a rim vertex of degree 2
a minor vertex. Thus J2n has n major and n minor vertices. In this paper we
consider the partition dimension as well as the connected partition dimension of
J2n for any integer n ≥ 2.

2 Main Results

In this section we determine first an upper bound for pd(J2n), but the question
of determining the exact value of this parameter for J2n remains unsettled.

Theorem 1. For every n ≥ 2 we have pd(J2n) ≤ p + 1, where p is the smallest
prime number such that p(p− 1) ≥ 2n.

Proof. Consider first n = 2. We have pd(J4) = 3, p = 3 and the conclusion
of the theorem is true. Let n ≥ 3 and p be the smallest prime number such
that p(p− 1) ≥ 2n. Since p is prime, the sequence 0, i, 2i, 3i, . . . , (p− 1)i, where
1 ≤ i ≤ p− 1 and all numbers are reduced modulo p, is a permutation of the set
{0, 1, . . . , p− 1}. Consider the sequence (xj)j=1,...,p(p−1) = X1, X2, . . . , X(p−1)/2,
where for each 1 ≤ i ≤ (p − 1)/2 the subsequence

Xi = 0, 0, i, i, 2i, 2i, 3i, 3i, . . . , (p− 1)i, (p− 1)i

contains 2p terms and each pair of equal elements different from 0, 0 is obtained
from the previous one by adding i modulo p to each component. The resolving
partition Π = {S1, . . . , Sp+1} of V (J2n) is defined as follows:
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a) if 2n = p(p − 1) then Sp+1 = {c} and each element vi (0 ≤ i ≤ 2n − 1) is
assigned to the class Sxi+1+1;
b) if 2n < p(p− 1) then Sp+1 = {c, v2n−1} and each element vi (0 ≤ i ≤ 2n− 2)
is assigned to the class Sxi+1+1.

From the construction it can be observed that for any two vertices vi, vi+1 in
the same class, vertices vi−1 and vi+2 belong to different classes. Also, if vi and
vj belong to the same class Sp and i < j, j �= i + 1, then at least one pair
of vertices from {vi−1, vj−1}, {vi−1, vj+1}, {vi+1, vj−1}, {vi+1, vj+1} consists of
vertices that belong to two classes Sq, Sr such that q, r �= p and q �= r. In the case
b) vertices c and v2n−1 can be separated by a class of Π . It follows that Π is a
resolving partition of V (J2n) having p+1 classes, which implies pd(J2n) ≤ p+1.

Corollary 1. For every n ≥ 2, pd(J2n) ≤ 2�
√

2n� + 1.

Proof. Since prime number p must satisfy p(p−1) ≥ 2n we can take p ≥ �
√

2n�+
1. We shall apply Bertrand’s postulate, proved for the first time by Chebyshev,
which asserts that for every n ≥ 1, there is some prime number p with n < p ≤ 2n
(see [1]). We deduce that there exists a prime number p such that �

√
2n� < p ≤

2�
√

2n�, hence pd(J2n) ≤ p + 1 ≤ 2�
√

2n� + 1.

Let Π = {S1, . . . , Sk} be a connected resolving k-partition of V (J2n) such that
the center c ∈ S1. Every class of Π different from S1 induces a path consisting of
consecutive vertices of C2n and vertices of S1 belonging to C2n induce r ≥ 0 dis-
joint paths L1, . . . , Lr (numbered in the clockwise direction of running through
C2n), consisting each of consecutive vertices of C2n. A sequence of consecutive
vertices vi, vi+1, . . . , vj on C2n (indices are considered modulo 2n) will be called
a window if these vertices do not belong to S1 but vi−1, vj+1 ∈ S1. It is clear
that each window includes some classes of Π different from S1. Each class of Π
containing vertex vi or vj will be called a boundary class and vi or vj will be
called a boundary vertex. Let Wi for 1 ≤ i ≤ r denote the window neighboring
path Li relatively to the clockwise direction. A path Ls, a window Wt or a class
Si of Π for i ≥ 2 will be called an α − β path, window or class, respectively if
it consists of consecutive vertices vp, vp+1, . . . , vq and d(vp) = α and d(vq) = β
(2 ≤ α, β ≤ 3).

The following claims express some properties of paths Li and classes S2, . . . , Sk

not containing the center in a resolving partition Π of V (J2n):

Claim 1. Every 3–3 class has at most five vertices.
Indeed, if a 3–3 class has seven consecutive vertices vl, vl+1, . . . , vl+6, then vl+2

and vl+4 cannot be separated by any other class. In a similar way we can prove:
Claim 2. Any 2–3 class has at most four vertices.
Claim 3. Any 2–2 class contains at most three vertices.
Claim 4. |Li| ≤ 5 for every 1 ≤ i ≤ r if Li is a 3–3 path.
Claim 5. |Li| ≤ 4 for every 1 ≤ i ≤ r if Li is a 2–3 or a 3–2 path.
Claim 6. |Li| ≤ 3 for every 1 ≤ i ≤ r if Li is a 2–2 path.
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Claim 7. At most one path Li (1 ≤ i ≤ r) can be: a 3–3 path with five vertices,
a 2–3 (or a 3–2) path with four vertices or a 2–2 path with three vertices and
no two such paths can coexist.

Otherwise we can find two major vertices lying on two such paths having equal
distances to all classes S2, . . . , Sk. Note that several Li can be 3–3 paths contain-
ing three vertices each and these paths will be essential in obtaining a minimum
connected resolving partition of V (J2n).

Claim 8. No boundary class Si (i ≥ 2) can be a 3–3 class with five vertices,
nor a 3–2 class with four vertices having boundary vertex a major vertex.
If this situation occurs then two major vertices of Si cannot be separated by Π .

Claim 9. Any window cannot contain a single class Si of type: 2–2 with three
vertices, unless either Li or Li+1 (paths neighbouring Si) contains only one
vertex, or 2–3 with four vertices, or 3–3 with three or five vertices, since in these
cases two vertices of Si cannot be separated by Π .

Note that in a window still can exist a unique 2–3 class with two vertices.

Theorem 2. We have cpd(J2n) = ϕ(n), where

ϕ(n) =
{

3 for n = 2 or n = 3,
� 2n+3

5 � for n ≥ 4.

Proof. We first show that cpd(J4) = cpd(J6) = cpd(J8) = 3 by considering the
following minimum connected resolving partitions:

– For n = 2, S1 = {c, v0}, S2 = {v1}, and S3 = {v2, v3}.
– For n = 3, S1 = {c, v0, v5}, S2 = {v1, v2}, and S3 = {v3, v4}.
– For n = 4, S1 = {c, v0, v1, v2, v7}, S2 = {v3, v4, v5}, and S3 = {v6}.

Let n ≥ 5 and t = �n/5 . We shall define a resolving par-
tition Π = {S1, . . . , Sϕ(n)} of V (J2n) having ϕ(n) classes as fol-
lows: S2i = {v10(i−1)+3, v10(i−1)+4, v10(i−1)+5, v10(i−1)+6} and S2i+1 =
{v10(i−1)+7, v10(i−1)+8, v10(i−1)+9} for 1 ≤ i ≤ t;

– if n = 5t, S1 = {c, v0, v1, v2, v10, v11, v12, v20, v21, v22, . . . , v10t−10, v10t−9,
v10t−8};

– if n = 5t + 1, S1 = {c, v0, v1, v2, v10, v11, v12, . . . , v10t−10, v10t−9, v10t−8,
v10t, v10t+1};

– if n = 5t + 2, S1 = {c, v0, v1, v2, v10, v11, v12, . . . , v10t, v10t+1, v10t+2} and
S2t+2 = {v10t+3};

– if n = 5t + 3, S1 = {c, v0, v1, v2, v10, v11, v12, . . . , v10t, v10t+1, v10t+2,
v10t+5} and S2t+2 = {v10t+3, v10t+4};

– if n = 5t + 4, S1 = {c, v0, v1, v2, . . . , v10t, v10t+1, v10t+2, v10t+7} and S2t+2 =
{v10t+3, v10t+4, v10t+5} and S2t+3 = {v10t+6}.

It can be easily verified that any two elements in the same class have distinct
representations and all these classes induce connected subgraphs, so cpd(J2n) ≤
ϕ(n).
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It remains to show that cpd(J2n) ≥ ϕ(n) for all n ≥ 5. Let cpd(J2n) = k and
Π = {S1, S2, . . . , Sk} be a connected resolving k-partition of V (J2n). Suppose
that S1 = {c}. By Claim 1 we obtain that the number of classes different from
S1 is k− 1 ≥ �2n/5�, hence cpd(J2n) ≥ �2n/5�+ 1 ≥ ϕ(n). Otherwise, S1 �= {c}
and the vertices of S1 belonging to C2n induce r ≥ 1 disjoint paths L1, . . . , Lr on
C2n and r windows W1, . . . ,Wr containing n1, . . . , nr classes, respectively. We
shall prove that

|Li| + |Wi| ≤ 5ni (1)

or
|Li| + |Wi| + |Li+1| + |Wi+1| ≤ 5(ni + ni+1) (2)

for almost all values 1 ≤ i ≤ r (i + 1 is considered modulo r) and for at most a
single value j, 1 ≤ j ≤ r we have

|Lj | + |Wj | = 5nj + α, (3)

or
|Lj| + |Wj | + |Lj+1| + |Wj+1| = 5(nj + nj+1) + α, (4)

where α ∈ {1, 2}.
For this we shall use the following remark: For the clockwise direction of

running through C2n let l1, l2, . . . , lni be the sizes of the classes encountered by
starting from the path Li in the window Wi. If for an index h, 1 ≤ h < ni we
have

(|Li| +
h∑

j=1

lj)/h ≤ 5, (5)

then by Claim 1 we shall still have |Li|+ |Wi| ≤ 5ni since any class has at most
five vertices. Also, if for an index h, 1 ≤ h < ni we have

|Li| +
h∑

j=1

lj ≤ 5h + α, (6)

where α ∈ {1, 2}, then either (1) or (3) will hold for the window Wi.
Consider now a generic path L and its associated window W . Since 1 ≤ |L| ≤ 5

we have five cases to analyze:
1) |L| = 1. In this case L consists of a major vertex. The boundary class

from W can have at most four vertices (when it is a 2–3 class) and in this case
|L| + l1 ≤ 5 and (5) is verified for h = 1.

2) |L| = 2. We have two subcases: 2a) L is a 3–2 class or 2b) L is a 2–3 class.
2a) In this case the boundary class Si1 can have at most 5 vertices. If |Si1 | = 5

by Claim 9 this class cannot be single in W . If the next class Si2 has at most 3
vertices, then (5) is satisfied for l1 = 5, l2 = 3 and h = 2. Since Si2 is a 2–3 or a
2–2 class it follows that |Si2 | ≤ 4. If |Si2 | = 4 then by Claim 8 it follows that Si2

cannot be the last class in W . The next class Si3 is a 2–3 or a 2–2 class, hence
|Si3 | ≤ 4 and in this case (5) is satisfied for l1 = 5, l2 = l3 = 4 and h = 3.
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If |Si1 | = 4 then by Claim 9 this class is not single in W . The next class Si2

is a 3–3 or a 3–2 class. If |Si2 | ≤ 4 then (5) is verified. Otherwise Si2 is a 3–3
class with 5 vertices and by Claim 8 Si2 cannot be the last class in W . The next
class Si3 is a 2–3 or a 2–2 class, which implies |Si3 | ≤ 4 and (5) holds for h = 3.
Finally, if |Si1 | ≤ 3 then (5) holds for h = 1.

2b) In this case the boundary class Si1 is a 2–2 or a 2–3 class, hence |Si1 | ≤ 4.
If |Si1 | ≤ 3 then (5) is verified. Otherwise, Si1 is a 2–3 class with 4 vertices
that cannot be single in W . The next class Si2 is a 2–2 or a 2–3 class; therefore
|Si2 | ≤ 4 and (5) is verified for h = 2.

3) |L| = 3. We distinguish two subcases: 3a) L is a 3–3 path and 3b) L is a
2–2 path.

3a) If the boundary class Si1 has |Si1 | ≤ 2 we are done. Otherwise |Si1 | ∈ {3, 4}
since Si1 may be a 2–2 or a 2–3 class. If Si1 is a 2–2 class with 3 vertices and
it is followed by a class Si2 with at most 4 vertices then we are done. If Si2 is
a 3–3 class with 5 vertices, then Si2 cannot be the last class in W and must be
followed by Si3 with at most 4 vertices and (5) is verified for h = 3.

If Si1 is a 2–2 class with 3 vertices, single in its window, say W = Wi having
neighboring paths L = Li and Li+1, then |Wi| = 3 and by Claim 9 at least one
path Li or Li+1 contains only one vertex, hence |Li+1| = 1. In this case L = Li

has three vertices and ni = 1. In the windows Wi+1 the boundary class Ti1 is a
2–2 or a 2–3 class. If Ti1 is a 2–2 class (case 3a.1) then |Ti1 | ≤ 3 and if Ti1 is a
2–3 class (case 3a.2) then |Ti1 | ≤ 4 and by Claim 9 it is followed by a class Ti2

which is a 2–2 or a 2–3 class, hence |Ti2 | ≤ 4.
We have |Li| + |Wi| = 6, |Li+1| = 1, ni = 1 and (2) is equivalent to

|Wi+1| ≤ 5ni+1 − 2.

In case 3a.1 we have |Wi+1| ≤ 3 + 5(ni+1 − 1) and in case 3a.2 we deduce
|Wi+1| ≤ 4+4+5(ni+1−2), since any class contains at most five vertices, which
proves (2).

If Si1 is a 2–3 class with 4 vertices and |Si2 | ≤ 3 we are done. Otherwise Si2 is
a 2–3 class with 4 vertices which is followed by at least a class Si3 with at most
4 vertices and we are done.

3b) If |Si1 | ≤ 4 then (6) holds for h = 1. The remaining case is when Si1 is a
3–3 class with 5 elements. If the next class Si2 has 3 elements, then (6) is verified
for h = 2 and α = 1. If Si2 is a 2–3 class with 4 elements, then by Claim 8 it
cannot be the last class in the window. If |Si3 | ≤ 3 then (5) is verified for h = 3.
Otherwise, Si3 is a 2–3 class with 4 elements and it cannot be the last class. The
next class Si4 has at most 4 vertices because its first vertex is minor and (5) is
true for h = 4.

4) |L| = 4. We also have two subcases depending upon whether L is a 3–2 or
a 2–3 path. Since at most one path L has 4 vertices we can change the direction
of running on C2n and the second case is reduced to the first one. Hence we
can consider that L is a 3–2 path with 4 vertices. If |Si1 | ≤ 3 then (6) holds for
h = 1. Otherwise Si1 is a 3–2 class with 4 vertices or a 3–3 class with 5 vertices.
If Si1 is a 3–2 class with 4 vertices and |Si2 | ≤ 2 then (5) is verified for h = 2. If
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|Si2 | ≤ 4 then (6) is verified for h = 2. If Si2 is a 3–3 class with 5 vertices, then
by the boundary condition it cannot be the last class, |Si3 | ≤ 4 and (6) is true
for h = 3. If Si1 is a 3–3 class with 5 vertices and |Si2 | ≤ 3, then (6) is verified
for h = 2. The remaining case is when Si2 is a 2–3 class with 4 vertices. Since
Si2 is not the last class and |Si3 | ≤ 4, (6) holds for h = 3.

5) |L| = 5 and L is a 3–3 path with 5 vertices. If |Si1 | ≤ 2 then (6) is true
for h = 1. It remains to consider the subcases when |Si1 | ∈ {3, 4}. If Si1 is a 2–2
class with 3 vertices, single in its window W = Wj , having neighboring paths
L = Lj and Lj+1, then |Wj | = |Si1 | = 3 and by Claim 9 we have |Lj+1| = 1. As
in the case 3a) we deduce that (4) holds.

If Si1 is a 2–2 class with 3 elements followed by Si2 and |Si2 | ≤ 4 then (6) is
satisfied for h = 2. Otherwise, Si2 is a 3–3 class with 5 elements. But it cannot
be the last class and the next class Si3 has at most 4 elements, hence (6) is
satisfied for h = 3 and α = 2.

If Si1 is a 2–3 class with 4 elements and |Si2 | ≤ 3 then (6) holds for h = 2.
For this subcase it remains to consider the situation when Si2 is a 2–3 class with
4 elements. Si2 cannot be the last class and the next class Si3 has at most 4
elements whence (6) holds for h = 3.

By Claim 7 it follows that (1) and (2) hold for all i = 1, . . . , r with at most
one exception j, when |Lj|+ |Wj | = 5nj +α ≤ 5nj +2, respectively |Lj |+ |Wj|+
|Lj+1| + |Wj+1| = 5(nj + nj+1) + α ≤ 5(nj + nj+1) + 2.

By summing up in an appropriate manner inequalities (1)–(4) we get

2n ≤ 5k − 3, or k ≥ (2n + 3)/5

since
∑r

i=1(|Li| + |Wi|) = 2n and
∑r

i=1 ni = k − 1.
It follows that cpd(J2n) ≥ �(2n + 3)/5�, which concludes the proof.

Note that cpd(Wn) = �(n+ 2)/3� [11] and the metric dimension (in the sense of
[6]) of J2n equals �2n/3 for every n ≥ 4 [12].
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