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Preface

For centuries, composers and musicians successfully complemented each other.
Composers provided humanity with superb compositions, and musicians have
been making attempts to vivify the mysterious staves. Great performances,
those that managed to create the expected or sometimes unexpected emotions,
always captivated the audience and broke fresh ground for new artworks.

The present work belongs to the world of “instrumentalists” and ventures
upon creating new perspectives within the field of electronic structure of solid
materials. We also have our own great “composers”, such as Walter Kohn
and Ole Krogh Andersen. Kohn established the Density Functional theory,
the most elegant and useful formulation of the many electron problem, and
for that he deservedly won the highest award within the scientific world. An-
dersen created efficient tools to solve the basic Density Functional equations
for solids. Today, his theories are widely used in computational materials
science. In January 1997, Andersen, looking for experts within the field, con-
tacted Hans Lomholt Skriver’s group in Lyngby, and asked then to vivify his
latest tool belonging to the third generation muffin-tin methods. Since then,
many new incarnations of these methods have come to light. This monograph
reveals an implementation of one of the original approaches, namely the Exact
Muffin-Tin Orbitals (EMTO) method.

Today theoretical condensed matter physics, besides its fundamental mis-
sion to facilitate the understanding of the properties of solid materials at the
atomic level, also strives to predict useful quantitative and qualitative data
for the development of high-performance materials. Computational quantum
mechanics brings an increasing demand for new techniques, which make the-
oretical investigations more handleable by today’s computers. Despite the
tremendous developments during the last few decades, an accurate ab ini-
tio description of substitutional random alloys seemed unreachable. Recently,
with the birth of the EMTO method, a distinct step was made towards the
modern computational alloy theory by merging the most efficient theories of
random alloys with advanced Density Functional techniques. This method
allows one to establish a theoretical insight to the electronic structure of com-
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plex engineering materials such as the stainless steels. The second part of this
monograph is intended to give an up to date overview of the applications
of the EMTO method in describing the basic properties of a wide range of
important materials.

The present work is addressed, first of all, to graduate students and post-
docs who wish to become more familiar with the muffin-tin methods and, in
particular, with the EMTO method, its implementation and application to
different systems. For these people, the monograph is expected to make up
for an extended manual to the EMTO computer code. Scientist moving in the
direction of theoretical modeling of material properties might also find the
information collected in this book useful. Materials engineers, keen to learn
about the latest developments within computational materials science and
about their extent and limitations, are also among the readers I have in mind.
E-mails or personal contacts from all these readers pointing out the mistakes
and shortcomings of the monograph will be received with great gratitude.

It is impossible to list all the people who contributed to the present mono-
graph in one form or another, but I cannot fail to give special thanks to
some of them. I would like to express my deepest appreciation to my col-
league, Hans Lomholt Skriver, with whom I started the implementation of
the EMTO method. A large part of the EMTO computer code is based on
his early work and I am very grateful to him for that. It is a pleasure to
recognize my profound indebtedness to Ole Krogh Andersen who introduced
me into the field of the third generation muffin-tin methods and allowed me
to use several of his unpublished notes. I express my truthful thanks to Janos
Kollár for supporting me in developing the full charge density technique and
merging it with the EMTO method. Börje Johansson is acknowledged for the
numerous nice applications we have made together during the years I spent
in his group. I wish to thank to all the people with whom I was working in
the last fifteen years for the great stimulation in the writing this book and
for the common scientific results quoted here. The aid provided by Noémi by
reading the manuscript is kindly appreciated. I also acknowledge the finan-
cial support from the Swedish Research Council, the Swedish Foundation for
Strategic Research, and the Hungarian Scientific Research Fund.

Finally, the continuous encouragement from my parents, my wife and our
daughters in the long process of preparing this work is invaluable. My sincere
thanks are due to them.

Uppsala, Levente Vitos
June 2007
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Part I

The Method



1

Basics of Electronic Structure Calculations

Describing the properties of solids from first-principles theory implies solving
the Schrödinger equations for a huge number of interacting electrons and nu-
clei. This is an impossible task even for relatively small systems. The first step
to overcome this objection is given by the Born−Oppenheimer approximation.
It is assumed that on the timescale of nuclear motion, the electronic subsys-
tem is always in its stationary state. Then the motion of the nuclei is solved
separately, and this gives rise to the concept of phonons. The remaining set of
stationary Schrödinger equations for electrons is still too large for numerical
solution. The Density Functional Theory [1, 2, 3] offers an elegant reformu-
lation of this problem. Instead of considering many electrons in the external
potential of static nuclei, non-interacting electrons in an effective potential are
considered. This effective potential is a functional of the total charge density
and it incorporates the effect of all the electrons and nuclei. The complexity
of the initial problem is hidden in the exchange-correlation part of the po-
tential. Solving the single-electron equations self-consistently, one obtains the
equilibrium electron density and the total energy of the system.

Today, the Density Functional theory gives a quantum-mechanical basis
for most of the ab initio methods used in computational materials science.
These methods have made it possible to study complex solid materials of
great industrial relevance. The main aims of these applications are the atomic
level understanding of the properties and prediction of new data for the de-
velopment of high-performance materials. In order to accomplish these goals,
the numerical methods for solving the single-electron equations should have
sufficient accuracy and efficiency. In this chapter, we shall start with a short
summary of the Density Functional theory and the Kohn−Sham scheme. We
shall briefly review the most important approximations within the Density
Functional theory, and the most widely used methods for ordered as well as
for disordered systems. Finally, we shall outline the main features of the Ex-
act Muffin-tin Orbitals method and give the organization of the rest of the
monograph.
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1.1 Density Functional Theory

We consider an interacting electron gas moving in an external potential ve(r).
The original theorem of Hohenberg and Kohn [1] states that the ground state
of this system is described by the energy functional

Ee[n] = F [n] +
∫

ve(r) n(r)dr, (1.1)

where the first term is a universal functional of the electron density n(r)
and the second term is the interaction energy with the external potential.
According to the variational principle, the minimum of Ee[n] is realized for
the equilibrium electron density and it equals the total energy of the electronic
system. The universal functional is usually represented as

F [n] = Ts[n] + EH [n] + Exc[n], (1.2)

where the two “large” contributions are the kinetic energy of non-interacting
particles Ts[n] and the Hartree energy EH [n]. The remaining “small” contri-
bution Exc[n] is the so called exchange-correlation functional .

Within the Kohn−Sham scheme [2], the variational principle leads to the
effective single-electron Schrödinger equations{

−∇2 + v([n]; r)
}

Ψj(r) = εj Ψj(r). (1.3)

Throughout the book atomic Rydberg units are used1. The non-interacting
Kohn−Sham system is subject to an effective potential

v([n]; r) = ve(r) + vH([n]; r) + μxc([n]; r). (1.4)

Here the second term is the Hartree potential,

vH([n]; r) = 2
∫

n(r′)
|r − r′| dr′, (1.5)

and the last term is the exchange-correlation potential defined as the func-
tional derivative of Exc[n], i.e.

μxc([n]; r) =
δExc[n]
δn(r)

. (1.6)

This latter includes all the electron−electron interactions beyond the Hartree
term. The electron density is calculated from the single-electron orbitals ac-
cording to

n(r) =
∑

εj≤εF

|Ψj(r)|2. (1.7)

1 In atomic Rydberg units, h̄ = 2m = e2/2 = 1.
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In this expression, the summation runs over all the Kohn−Sham states below
the Fermi level εF , which in turn is obtained from the condition

Ne =
∫

n(r) dr, (1.8)

where Ne is the number of electrons. The self-consistent solution of Equations
(1.3)−(1.8) is used to compute the ground state energy of the electronic system

Ee[n] = Ts[n] +
1
2

∫
vH([n]; r)n(r)dr + Exc[n] +

∫
ve(r) n(r)dr. (1.9)

Assuming that the self-consistency of the Kohn−Sham equations (1.3) is
achieved, the non-interacting kinetic energy functional may be expressed from
the single-electron energies εj and the self-consistent effective potential as

Ts[n] ≡
∑

εj≤εF

∫
Ψ∗

j (r)(−∇2)Ψj(r)dr

=
∑

εj≤εF

εj −
∫

n(r)v([n]; r)dr. (1.10)

For electrons moving in the external potential created by the fixed nuclei
located on lattice sites R we have

ve(r) = −
∑
R

2ZR

|r − R| , (1.11)

where ZR are the nuclear charges. Then the total energy of the system
formed by electrons and nuclei is obtained from Equation (1.9) plus the
nuclear−nuclear repulsion, viz.

Etot = Ee[n] +
∑
RR′

′ ZRZR′

|R − R′| . (1.12)

The prime indicates that the R = R′ term is excluded from the sum. Equa-
tions (1.3)−(1.8) and (1.11) represent the non-spin polarized Kohn−Sham
scheme for electrons from a solid matter. The spin-density functional formal-
ism is obtained by introducing the two spin densities n↑(r) and n↓(r). They
are solutions of the Kohn−Sham equation for the spin dependent effective po-
tential. The spin-up and spin-down channels are connected through the spin
polarized exchange-correlation potential

μσ
xc([n

↑, n↓]; r) = δExc[n↑, n↓]/δnσ(r) (1.13)

(σ =↑ or ↓) that depends on both spin densities [3].
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The accuracy of the Density Functional theory is, in principle, limited only
by the employed approximate functionals describing the exchange and correla-
tion energies. The most common approximations for the exchange-correlation
term are briefly reviewed in Appendix A. The popular Local Density Approxi-
mation (LDA) [4, 5, 6, 7] was found to reproduce the ground-state properties
of many systems with surprisingly high accuracy. In particular, the bulk prop-
erties of 4d and 5d transition metals, oxides, etc., or the surface properties
of metals [9], are very well described within the LDA. However, there are
situations where the LDA turned out to be inappropriate even for a quali-
tative description. The most spectacular failure of it happens in the case of
3d transition metals. For instance, LDA predicts incorrect lowest-energy crys-
tal and magnetic structure for pure Fe [10, 11]. During the last two decades
several more accurate exchange-correlation density functionals have become
available [9, 12, 13, 14, 15, 16, 17]. The most recent gradient level functionals,
e.g., the Generalized Gradient Approximation (GGA) [8, 9, 15, 16] or the Lo-
cal Airy Gas Approximation (LAG)[17, 18], predict ground-state properties
of solids, including that of the 3d metals, which are in closer agreement with
experiments than the corresponding LDA results.

1.2 Methods for Solving the Kohn−Sham Equations

Developing accurate and at the same time efficient numerical methods for solv-
ing the Kohn−Sham equations has been among the biggest challenges within
computational materials science. The accuracy of the methods is crucial, e.g.,
when one searches for the answers given by different approximations used for
the exchange-correlation functionals. The full-potential methods have been
designed to fulfill this requirement, and provide the exact local density or
gradient level description of solid materials [19, 20, 21, 22, 23, 24, 25, 26, 27].
These methods have been applied to calculate the physical properties of or-
dered compounds, as well as to study defects in these systems. Though, in
principle, these techniques give highly accurate results, they are generally
very cumbersome and possess several limitations due to various numerical
approximations.

The required accuracy for a Kohn−Sham method is always set by the
actual property to be computed. For instance, an approximate solution of
the Kohn−Sham equations can provide useful information about properties
calculated for a fixed crystal structure, whereas quantities involving lattice
distortions or structural energy differences require a high level of accuracy.
Because of this, often a compromise has been made between accuracy and ef-
ficiency, and methods employing certain approximations have been developed.
The very expensive computational efforts of full-potential methods are con-
siderably reduced in the pseudopotential methods [28, 29, 30, 31, 32, 33]. In
these methods, the deep-lying core states are excluded from consideration, fo-
cusing on the valence electrons only. A full-potential description is kept in the
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interstitial region, where the bonds are located, whereas the true Coulomb-
like potential is replaced with a weak pseudopotential in the region near the
nuclei. In practice, one often finds that the physical and chemical properties
calculated using pseudopotential methods are almost identical with those ob-
tained using all-electron full-potential methods [34]. The high computational
speed attainable in pseudopotential calculations makes it possible to perform
ab initio molecular dynamics [35], that is, to describe the atomic vibrations
at high temperatures.

The third important group of Kohn−Sham methods is built around the
muffin-tin approximation to the effective potential and electron density. This
approximation originates from the observation that the exact crystal potential
is atomic-like around the lattice sites (where the core states are located) and
almost flat between the atoms. Accordingly, within the muffin-tin approxi-
mation one substitutes the Kohn−Sham potential by spherically symmetric
potentials centered on atoms plus a constant potential in the interstitial re-
gion. This family includes the standard Korringa−Kohn−Rostoker (KKR)
[36, 37] and screened-KKR [38] methods as well as the methods based on the
Atomic Sphere Approximation (ASA) [39, 40, 41, 42, 43]. Due to the involved
approximations, the above muffin-tin methods have mostly been restricted to
densely packed systems. Some of the deficiencies could be retrenched by the
so called Full Charge Density technique [44, 45].

In the early 1990s, a new muffin-tin formalism was introduced by Ole
Krogh Andersen and co-workers [46]. Lifting the most significant approxima-
tions present in classical muffin-tin related techniques, this approach brings
the group of muffin-tin methods back into the heart of the modern Density
Functional methods. Keeping the original name, we will refer to the formal-
ism as the Exact Muffin-tin Orbitals (EMTO) theory. Here the term “Exact”
refers to the fact that, in contrast to former muffin-tin methods, within the
EMTO theory the single-electron equations are solved exactly for the opti-
mized overlapping muffin-tin (OOMT) potential [47].

Originally, the Full Charge Density (FCD) technique [44, 45] was imple-
mented in connection with the Linear Muffin-tin Orbitals (LMTO) method
[39, 40]. The FCD-LMTO proved highly promising in the case of close-packed
metals [48, 49], but for systems with low crystal symmetry, it had serious
shortcomings due to the inappropriate treatment of the kinetic energy term
[45]. The accuracy could be maintained only by including overlap and non-
spherical corrections to the kinetic energy [40, 45, 50], and as a consequence
the FCD-LMTO method became cumbersome. On the other hand, in the
EMTO theory the single-electron kinetic energies are calculated exactly for
the OOMT potential. Because of this, the EMTO theory is an ideal ground
for an accurate FCD total energy technique.

Most of the above full-potential and pseudopotential methods use the
Hamiltonian formalism. This means that the electronic spectrum and wave
functions are calculated as the eigenvalues and eigenvectors, respectively, of
the corresponding Hamiltonian operator. An equivalent way of solving the
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Schrödinger equation is to calculate the Green function, which contains all the
information about the electronic spectrum of the system. The Green function
formalism [51, 52, 53] is more computationally demanding than the Hamil-
tonian formalism for ordered systems. However, it is suitable for studying
disordered systems such as, for instance, impurities in crystals and random
alloys, as well as surfaces and interfaces. Many of the muffin-tin methods have
been implemented in Green function formalism.

1.3 Chemical and Magnetic Disorder

The main difficulty in the application of Density Functional Theory to real
systems is related to the presence of various kinds of disorder. The most
common form of disorder is the breakdown of the long range order of the
crystal lattice sites. Most real solid materials have a hierarchy of structures
beginning with atoms and ascending through various nano or micrometer
level crystalline grains. The misaligned single crystals are separated by grain
boundaries, stacking faults, interphase boundaries, etc. The only way to es-
tablish first-principles parameters of these polycrystalline systems is to first
derive data of microscopic nature and then transform these data to macro-
scopic quantities by suitable averaging methods based on statistical mechanics
[54, 55].

In single crystals the chemical disorder appears as a consequence of the
more or less random distribution of the atoms on the lattice sites. Differ-
ent types of atoms can substitute each other. In systems with spontaneous
magnetic ordering at low temperatures, e.g. in elemental Fe, a long range
magnetic structure is formed. Above the critical temperature the magnetic
interaction energy is overtaken by the magnetic entropy contribution, and, as
a consequence, the individual magnetic moments of alloy components become
randomly oriented, with vanishing total vector moment. This paramagnetic
phase is also a disordered phase formed by randomly distributed atomic mo-
ments. The temperature induced disorder in the atomic positions, i.e. the
lattice vibration, is not considered here.

There are various techniques used to describe the energetics of the fully or
partially disordered systems. A formally exact approach to this problem is to
perform ab initio calculations for a chunk of solid material, in which different
kinds of atoms, as well as their magnetic moments, are arranged in a config-
uration similar to the atomic and magnetic structure of the actual disordered
solid solution. If one tries to apply this straightforward approach to calculate,
for instance, the compositional dependence of some physical properties of a
disordered system, one needs to perform numerous calculations for very large
systems. Therefore, this supercell technique is very cumbersome, and mainly
semi-empirical [56, 57] or approximate order-N methods2 have adopted it
2 In an order-N method the computer time grows linearly with the number of atoms

in the system.
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[58, 59]. For a more efficient approach, the Density Functional methods should
be combined with techniques that have been developed in alloy theory over
the years, and which are especially designed to deal with disordered systems
in a much more efficient way than the brute-force approach described above.

Within the so-called virtual crystal approximation [60, 61, 62] the dis-
ordered alloy is modeled by replacing the real system with an equivalent
monoatomic system with masses and potentials defined as concentration
weighted averages. This simple model suffers from numerous weaknesses [63],
e.g., it is unable to describe correctly the bond proportion and volume effects,
and its application has been limited to alloys with nearly identical chemical
species.

In the cluster expansion formalism, the configurational dependent energy is
expanded in terms of the cluster functions [64, 65]. The expansion coefficients
are the effective cluster interaction parameters. When all possible clusters are
included in the expansion, this formalism gives the exact energy. In practice,
however, only a small set of clusters are needed for a reasonably well converged
energy. One defines the largest cluster beyond which interactions are ignored.
In the structure inversion method by Connolly and Williams [66], the cluster
interaction parameters are obtained by fitting the truncated expansion to a
set of total energies calculated for ordered structures. Typically, for a binary
alloy 20−30 cluster interactions are needed. For multicomponent systems the
number of interactions increase rapidly with the number of species, which
limits the cluster expansion approach to few-component systems.

The special quasirandom structures method combines the idea of cluster
expansion with the use of supercells [67]. Within this approach one constructs
special periodic structures that reproduce with high accuracy the most rele-
vant radial correlation functions of an infinite substitutional random alloy. It
has been shown that it is possible to construct the special quasirandom struc-
tures with as few as 8 atoms per cell. However, so far special quasirandom
structures have been designed only for a few selected concentrations on face
centered cubic or body centered cubic underlying lattices [67].

The most powerful technique which allows one to treat systems with sub-
stitutional disorder is the Coherent Potential Approximation (CPA). This ap-
proximation was introduced by Soven and Taylor [68, 69], and Györffy [70]
has formulated it in the framework of the multiple scattering theory using the
Green function formalism. In the past, the CPA was exclusively combined with
standard muffin-tin based Kohn−Sham methods [38, 71, 72, 73, 74, 75, 76, 77].
The involved shape approximation for the potential and density limited the
application of the CPA to undistorted close-packed systems, viz. solids with
face centered cubic, body centered cubic or hexagonal close packed underlying
crystal lattice. A few years ago, the CPA was restated within the framework
of the EMTO theory [78, 79, 80] and most recently, the concept of the CPA
was extended to include the short range order effects within the random alloys
[81, 82].
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1.4 Resumé of the EMTO Method

The implementation and application of the Exact Muffin-tin Orbitals theory
combined with the Coherent Potential Approximation and the Full Charge
Density technique is the focus of the present work. The Kohn−Sham method
created on this platform is referred to as the EMTO method.

The EMTO is a cellular method. The single-electron Schrödinger equations
are solved separately within the units defined around the lattice sites. The unit
cells are chosen in such a way that they should give a proper description of
the local surroundings for every lattice site. For simplicity, we assume that
these units are the so called Wigner−Seitz cells or Voronoy polyhedra3. The
polyhedron for a given center is constructed by bisecting with a plane each
line connecting the actual site with another site, and taking the closed region
around the lattice site bounded by these planes. The Kohn−Sham potential
is approximated by the optimized overlapping muffin-tin wells. In the present
implementation, these wells are obtained within the Spherical Cell Approxi-
mation. Each spherical potential is centered on a lattice site and can spread
beyond the boundary of the actual polyhedron. The local Schrödinger equa-
tions are solved for these spherical potentials. The local solutions are functions
of the energy ε. The matching condition between these individual solutions
is provided by free electron solutions. This leads to a KKR-type of equation,
which selects those energies ε = εj for which the Kohn−Sham orbitals Ψj(r)
exist. For an arbitrary energy, the local solutions join the free electron solu-
tions with a nonzero kink (discontinuity in the first order derivative). Because
of this, within the EMTO formalism the KKR equation is also named as
the kink cancelation equation. In the case of alloys, the problem of chemical
and magnetic disorder is treated via the CPA equations formulated on the
EMTO basis. From the output of the self-consistent EMTO calculation the
total charge density from Equation (1.7) is constructed. This density is used to
compute the total energy (1.12). The energy functional (1.9) is calculated us-
ing the FCD technique. The integrals of the Hartree and exchange-correlation
energy components are carried out using the shape function technique. The in-
teraction energy between remote polyhedra is taken into account through the
standard Madelung term, whereas the interaction between cells with overlap-
ping bounding spheres is calculated by the so called displaced cell technique.

The most important and prominent feature of the EMTO method is that
this approach is suitable for the determination of the energy changes due
to anisotropic lattice distortions in ordered systems, in alloys with chemi-
cal disorder as well as in alloys with both chemical and magnetic disorder.
During recent years, the EMTO has opened new possibilities in the field of
computational alloy theory. There is a long list of applications on alloys and
compounds, which were not accessible by former CPA related techniques, but

3 For strongly inhomogeneous potentials a more appropriate division can be used,
which reflects the actual atomic sizes.
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they are amenable now. This includes several crucial areas from materials en-
gineering such as the elastic, structural and mechanical properties of random
alloys of arbitrary compositions. The present monograph gives a complete
account of the EMTO formalism and demonstrates its application through
several examples.

1.4.1 The Present Monograph

In Chapter 2, we overview the basics of the Exact Muffin-tin Orbitals method.
Here we introduce the exact muffin-tin orbitals as a minimal basis set for solv-
ing the Kohn−Sham equations (1.3) for the effective potential (1.4). We define
the optimized overlapping muffin-tin wells, as the best overlapping muffin-tin
approximation to the full-potential. In the second part of Chapter 2, we dis-
cuss the Spherical Cell approximation. This is an important approximation
needed to establish a well-behaved optimized overlapping muffin-tin potential
in the case when the Wigner−Seitz polyhedra are approximated by spherical
cells. The equations presented in Chapter 2 form the basis for a self-consistent
EMTO calculation.

The slope matrix or the screened structure constant is a central quantity
in the muffin-tin formalism. The Dyson equation for the slope matrix and
its energy derivatives is delineated in Chapter 3. Here we illustrate how the
screening parameters influence the behavior of the slope matrix and establish
the range where the screening transformation leads to a slope matrix which
has short range and smooth energy dependence. Efficient parameterizations
for the energy dependence are given in the second part of Chapter 3.

Chapter 4 deals with the FCD approach. The shape function technique
is described in Section 4.1. The FCD method for computing the kinetic and
exchange-correlation energies, as well as the Coulomb interactions inside the
cell and between Wigner−Seitz cells with non-overlapping and overlapping
bounding spheres is given in Section 4.2. At the end of this chapter, the
convergence properties of different energy terms are discussed.

In Chapter 5, we briefly review the important features of the Coher-
ent Potential Approximation. The fundamentals of the Exact Muffin-tin
Orbitals−Coherent Potential Approximation approach are also presented in
Chapter 5. Since many of the equations for the EMTO-CPA formalism can
easily be derived from the equations presented Chapter 2, here we give only
those where the extension is not straightforward.

In Chapter 6, it is shown how some ground-state properties can be de-
rived from the output of a self-consistent Kohn−Sham calculation. Examples
of applications to study these properties in elementary metals, oxides, metal-
lic alloys, including simple metal alloys, Fe-based alloys, austenitic stainless
steels, etc., are presented in Chapters 7−9.

Appendix A lists the most widely used approximations for the exchange
and correlation functionals. Appendix B contains useful mathematical defini-
tions and relations. This includes the present convention for the spherical and
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real harmonics, and for the Bessel and Neumann functions. Finally, in Ap-
pendix C, we give some useful details about the EMTO self-consistent total
energy calculations.

1.4.2 Genuineness

The formalism presented in Sections 2.1 and 3.1 is to a great extent based on
the original works by Andersen et al. [46, 47, 83, 84, 85, 86]. Section 5.1 gives
a brief account of the Coherent Potential Approximation as introduced by
Soven and Györffy [68, 70]. The rest of the monograph is based on the works
and results published by the author and co-workers during the last fifteen
years.

1.4.3 The EMTO Program Package

The full EMTO program package, with Fortran 90 source files, can be obtained
upon request (email to Levente.Vitos@fysik.uu.se).
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Exact Muffin-tin Orbitals Method

In order to reduce the very expensive computational effort of full-potential
methods, often a compromise has been made between the accuracy and ef-
ficiency, and methods based on approximate single-electron potentials have
been developed. The most widely used approach is based on the physically
transparent Muffin-Tin (MT) approximation. Within this approximation, the
effective potential is represented by non-overlapping spherically symmetric
potentials around the atomic nuclei and a constant potential in the intersti-
tial region. Although the mathematical formulation of the MT approach is
very elegant, it gives a rather poor representation of the exact potential. The
so called Atomic Sphere Approximation (ASA) [39] substitutes the space by
overlapping spherical cells. The total volume of the ASA spheres is equal to
the volume of the real space, and thus the region between spheres is com-
pletely removed. Because of the large potential spheres, the ASA brings a real
improvement to the MT approximation. However, most of the conventional
methods based on the ASA potential use a similar approximation for the
Schrödinger and Poisson equations [43]. Therefore, with these methods, rea-
sonably accurate results could only be obtained for close-packed systems. In
order to increase the accuracy and extend the ASA methods to open systems,
different corrections had to be included [39, 40, 44, 45, 48, 50].

In the 1990s, a breakthrough was made by Andersen and co-workers by de-
veloping the Exact Muffin-Tin Orbitals (EMTO) theory [46, 84, 85, 86]. This
theory is an improved screened Koringa−Kohn−Rostoker method [38, 42], in
that large overlapping potential spheres can be used for an accurate represen-
tation of the exact single-electron potential [84]. The single-electron states are
calculated exactly, while the potential can include certain shape approxima-
tions, if required. By separating the approaches used for the single-electron
states and for the potential, the accuracy can be sustained at a level compa-
rable to that of the full-potential techniques without detracting significantly
from the efficiency. In this chapter, we shall review the EMTO theory and
introduce a self-consistent implementation of it within the Spherical Cell Ap-
proximation for the muffin-tin potential.



14 2 Exact Muffin-tin Orbitals Method

2.1 The Exact Muffin-tin Orbitals Formalism

The self-consistent solution of the Kohn−Sham equations (1.3), (1.4) and
(1.7) involves two main steps. First, the solution of Equation (1.3) for the
effective potential (1.4), and second, the solution of the Poisson equation1 for
the total charge density. In this section, we explicate the first problem within
the EMTO formalism.

2.1.1 Optimized Overlapping Muffin-tin Wells

Within the overlapping muffin-tin approximation, the effective single-electron
potential in Equation (1.4) is approximated by spherical potential wells
vR(rR) − v0 centered on lattice sites R plus a constant potential v0, viz.

v(r) ≈ vmt(r) ≡ v0 +
∑
R

[vR(rR) − v0] . (2.1)

By definition, vR(rR) becomes equal to v0 outside the potential sphere of
radius sR. For simplicity, here and in the following, we suppress the density
dependence of the potential. For the vector coordinate, we use the notation
rR ≡ rRr̂R = r − R, where rR is the modulus of rR, and omit the vector
notation for index R.

For fixed potential spheres, the spherical and the constant potentials from
the right hand side of Equation (2.1) are determined by optimizing the mean
of the squared deviation between vmt(r) and v(r), i.e. minimizing the

Fv[{vR}, v0] ≡
∫

Ω

{
v(r) − v0 −

∑
R

[vR(rR) − v0]

}2

dr (2.2)

functional [47]. Here Ω is a region where the potential optimization is per-
formed, e.g., the unit cell. Since Fv is a functional of the spherical potentials,
the minimum condition is expressed as∫

Ω

δvR(r)
δFv[{vR}, v0]

δvR(r)
dr = 0 for any R, (2.3)

where δ/δvR(r) stands for the functional derivative, and

∂Fv[{vR}, v0]
∂v0

= 0. (2.4)

The solution of these integro-differential equations gives the optimal vR(rR)
and v0, and leads to the so called optimized overlapping muffin-tin (OOMT)
potential. The reader is referred to Andersen et al. [47] for further details
about the potential optimization.
1 The Hartree potential [87] can be found either by direct integration or as the

solution of the Poisson equation ∇2vH(r) = −8πn(r).
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In the case of non-overlapping muffin-tins, Equations (2.3) and (2.4) reduce
to the spherical average of the full-potential within the potential sphere, i.e.

vR(rR) =
1
4π

∫
v(r)dr̂, for rR ≤ sR, (2.5)

and to the space average of the full-potential within the s-interstitial region2,
i.e.

v0 =
1

ΩIs

∫
Is

v(r)dr, (2.6)

where Is denotes the s-interstitial region and ΩIs = Ω − ∑
R

4πs3
R

3 is the
volume of the s-interstitial. Note that Equation (2.6) gives the well-known
muffin-tin zero.

The overlap between potential spheres may be described in terms of the
linear overlap. The linear overlap between two spheres is defined as the relative
difference between the sum of the sphere radii and the distance between them,
i.e.,

ωRR′ ≡ sR + sR′

|R − R′| − 1. (2.7)
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Fig. 2.1. Optimized overlapping muffin-tin potential approximation to the cosine
potential in a simple cubic lattice. The radius corresponding to inscribed sphere
(si = a/2) is marked by a vertical line.

2 The interstitial region is the space outside of the potential spheres.
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In a monoatomic system, the inscribed sphere is defined as the largest non-
overlapping sphere. The radius of this sphere is si

R = minR′ |R − R′|/2. The
linear overlap is set to zero for potential spheres with radii sR ≤ si

R. Obviously,
in polyatomic crystals, the inscribed sphere depends upon the convention used
to divide the space into units around the lattice sites.

In the following, using a simple model potential, we demonstrate how
the full-potential can be represented by overlapping muffin-tins. We model a
general three dimensional full-potential by a cosine potential in a simple cubic
lattice with lattice constant a. Choosing the reference level in the corner of
the Wigner−Seitz cell, i.e. in (a/2, a/2, a/2), the cosine potential has the form

vc(r) = − cos
(

2π

a
x

)
− cos

(
2π

a
y

)
− cos

(
2π

a
z

)
− 3, (2.8)

where x, y, z are the Cartesian coordinates for r. For this potential, we solve
Equations (2.3) and (2.4), and the v0 and vR(rR) obtained are used to con-
struct the optimized overlapping muffin-tin potential approximation for vc(r).

The integrated local deviation between vc(r) and its OOMT approximation
is plotted in Figure 2.1 as a function of the potential sphere radius s. Results
are shown from s = 0.7si to s = 1.7si, where si = a/2 is the radius of the
inscribed sphere. This interval corresponds to linear overlaps ωRR′ ranging
from −30% to +70%, as indicated at the top of the figure. We observe that
the error in the muffin-tin potential decreases continuously with increasing
potential sphere radius. Around linear overlaps corresponding to the ASA
(∼ 24%), the error falls to below half of the error observed for touching,
i.e., non-overlapping spheres. From these results one can clearly see that the
accuracy of the overlapping muffin-tin approximation to the full-potential can
be improved substantially by increasing the overlap between the potential
spheres.

2.1.2 Exact Muffin-tin Orbitals

We solve the single-electron Equation (1.3) for the muffin-tin potential defined
in Equation (2.1), by expanding the Kohn−Sham orbital Ψj(r) in terms of
exact muffin-tin orbitals ψ̄a

RL(εj , rR), viz.

Ψj(r) =
∑
RL

ψ̄a
RL(εj , rR) va

RL,j . (2.9)

The expansion coefficients, va
RL,j , are determined from the condition that the

above expansion should be a solution for Equation (1.3) in the entire space. In
the EMTO formalism, the algebraic formulation of this matching condition is
the so called kink cancelation equation [46, 79, 80]. This equation is equivalent
to the Korringa−Kohn−Rostoker tail cancelation equation [36, 37] written in
a screened representation [38].
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The exact muffin-tin orbitals form a complete basis set for the Kohn−Sham
problem. They are defined for each lattice site R and for each L ≡ (l, m),
denoting the set of the orbital (l) and magnetic (m) quantum numbers. In
practice, it is found that in Equation (2.9), the l summation can be truncated
at lmax = 3, i.e. including the s, p, d and f muffin-tin orbitals only.

Screened Spherical Waves
The exact muffin-tin orbitals are constructed using different basis functions
inside the potential spheres and in the interstitial region. In the interstitial
region, where the potential is approximated by v0, we use as basis functions
the solutions of the wave equation,{

∇2 + κ2
}

ψa
RL(κ2, rR) = 0, (2.10)

where κ2 ≡ ε − v0, and ε is the energy. Within the EMTO formalism, the
ψa

RL(κ2, rR) functions are referred to as the screened spherical waves [46].
The boundary conditions for Equation (2.10) are given in conjunction with

non-overlapping spheres centered at lattice sites R with radii aR. Although,
the screening sphere radius might also depend upon the orbital quantum num-
ber l, for simplicity, here we assume that aR depends only on the site index
R. The screened spherical waves behave like a pure real harmonic YL(r̂R)3 on
their own a-spheres, while the YL′(r̂R′) projections on all the other a-spheres,
i.e. for R′ 	= R, vanish [46]. With these energy independent boundary con-
ditions, for κ2 below the bottom of the a-spheres continuum, the screened
spherical waves have short range and weak energy dependence [46, 79]. They
form a complete basis set in the a-interstitial region and may be expanded in
real harmonics YL′(r̂R′) around any site R′ as

ψa
RL(κ2, rR) = fa

Rl(κ
2, rR) YL(r̂R)δRR′ δLL′

+
∑
L′

ga
R′l′(κ

2, rR′) YL′(r̂R′) Sa
R′L′RL(κ2). (2.11)

The expansion coefficients, Sa
R′L′RL(κ2), are the elements of the slope ma-

trix, which is related to the well-known bare KKR structure constant matrix
through an inhomogeneous Dyson equation [46]. This is introduced and dis-
cussed in Chapter 3.

In Equation (2.11), fa
RL and ga

RL are the value or head and the slope or
tail functions, respectively. The previously described boundary conditions for
the screened spherical waves for l ≤ lmax lead to the following conditions at
the a-spheres

3 For the convention used for the real harmonics and for the Bessel and Neumann
functions see Appendix B.
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fa
Rl(κ

2, r)|aR
= 1 and ga

Rl(κ
2, r)|aR

= 0. (2.12)

Here we fix the slopes of fa
RL and ga

RL as4

∂fa
R(κ2, r)
∂r

∣∣∣∣
aR

= 0 and
∂ga

Rl(κ
2, r)

∂r

∣∣∣∣
aR

=
1

aR
. (2.13)

Using the spherical Bessel and Neumann functions3, jl(κ2, rR) and nl(κ2, rR)
respectively, the value and slope functions can be expressed as

fa
Rl(κ

2, r) = t1Rl(κ
2)nl(κ2, r) + t2Rl(κ

2)jl(κ2, r) (2.14)

and

ga
Rl(κ

2, r) = −t3Rl(κ
2)nl(κ2, r) − t4Rl(κ

2)jl(κ2, r). (2.15)

The coefficients t1,...,4
Rl are the screening parameters. They are chosen according

to the imposed boundary conditions (2.12) and (2.13), namely

{
t1Rl(κ

2) t2Rl(κ
2)

t3Rl(κ
2) t4Rl(κ

2)

}
= 2

a2
R

w

⎧⎨⎩
∂jl(κ

2,aR)
∂rR

−∂nl(κ
2,aR)

∂rR

1
aR

jl(κ2, aR) − 1
aR

nl(κ2, aR)

⎫⎬⎭ . (2.16)

Here w denotes the average atomic or Wigner−Seitz radius defined from the
atomic volume V as

4πw3

3
≡ V =

unit cell volume
number of atoms in unit cell

. (2.17)

Since the Bessel and Neumann functions satisfy Equation (B.33), for the
Wronskian of the value and slope functions we get

Wr{fa
Rl, g

a
Rl} = aR, (2.18)

and thus the determinant of the screening matrix becomes

da
Rl ≡ t1Rl(κ

2)t4Rl(κ
2) − t2Rl(κ

2)t3Rl(κ
2) = −2

aR

w
. (2.19)

According to Equations (2.11), (2.14) and (2.15), the screened spherical waves
have no pure (lm) character5, and they are irregular at the origin. This prob-
lem is overcome in the next section by replacing the irregular head functions
by the partial waves.

4 Different slopes at a-spheres can be used. For example, fixing the slope of ga to
−1/a2 leads to a Hermitian slope matrix.

5 A function fL(r) has pure (lm) character if the angular part is fully described by
a real harmonic, viz., if fL(r) = fL(r) YL(r̂).
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In Equation (2.11), l ≤ lmax and the l′ summation is infinite. In practice,
the latter is truncated at lhmax ≈ 8 − 12. For l′ > lmax, the tail function
reduces to the Bessel function, i.e. ga

R′l′(κ
2, rR′) = −jl(κ2, rR′). These terms

are called the highers and unlike the low-l components, they are allowed to
penetrate into the a-spheres.

Partial Waves
Inside the potential sphere at R, the partial waves are chosen as the basis
function. These are defined as the products of the regular solutions of the
radial Schrödinger equation6 for the spherical potential vR(rR),

∂2
[
rR φRl(ε, rR)

]
∂rR

2 =
[ l(l + 1)

r2
R

+ vR(rR) − ε
]

rR φRl(ε, rR), (2.20)

and the real harmonics, viz.

φa
RL(ε, rR) = Na

Rl(ε)φRl(ε, rR) YL(r̂R). (2.21)

The normalization function Na
Rl(ε) should be determined from the matching

conditions. The partial waves are defined for any real or complex energy ε and
for rR ≤ sR.

Because a screened spherical wave behaves like YL(r̂R) only on its own
a-sphere, the matching condition between ψa

RL(κ2, rR) and φa
RL(ε, rR) should

be set up at this sphere. On the other hand, as we have seen in Section 2.1.1,
for an accurate representation of the single-electron potential the potential
spheres should overlap. Therefore, usually we have sR > aR. Because of this,
an additional free-electron solution with pure (lm) character has to be intro-
duced. This function realizes the connection between the screened spherical
wave at aR and the partial wave at sR. It joins continuously and differentiable
to the partial wave at sR and continuously to the screened spherical wave at
aR. Accordingly, the radial part of this backward extrapolated free-electron
solution can be written in the form

ϕa
Rl(ε, rR) = fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR) Da

Rl(ε), (2.22)

where Da
Rl(ε) = D{ϕa

Rl(ε, aR)} is the logarithmic derivative of ϕa
Rl(ε, rR) cal-

culated for rR = aR. By definition, the logarithmic derivative of a function
f(rR) in the radial mesh point r0

R is

6 In practice, we solve the Dirac equation within the so called scalar relativistic
approximation rather than the non-relativistic Schrödinger equation. This ap-
proximation is obtained by taking into account the mass-velocity and Darwin
corrections and neglecting the spin-orbit interaction.



20 2 Exact Muffin-tin Orbitals Method

D{f(r0
R)} ≡ r0

R

f(r0
R)

∂f(rR)
∂rR

∣∣∣∣
rR=r0

R

. (2.23)

The normalization function in Equation (2.21) and the logarithmic derivative
in Equation (2.22) are determined from the conditions

Na
Rl(ε)φRl(ε, sR) = ϕa

Rl(ε, sR), (2.24)

and

Na
Rl(ε)

∂φRl(ε, rR)
∂rR

∣∣∣∣
rR=sR

=
∂ϕa

Rl(ε, rR)
∂rR

∣∣∣∣
rR=sR

, (2.25)

After simple mathematics, we obtain

1
Na

Rl(ε)
=

φRl(ε, sR)
fa

Rl(κ2, sR)
D{φRl(ε, sR)} − D{ga

Rl(κ
2, sR)}

D{fa
Rl(κ2, sR)} − D{ga

Rl(κ2, sR)} , (2.26)

and

Da
Rl(ε) = −fa

Rl(κ
2, sR)

ga
Rl(κ2, sR)

D{φRl(ε, sR)} − D{fa
Rl(κ

2, sR)}
D{φRl(ε, sR)} − D{ga

Rl(κ2, sR)} . (2.27)

In these expressions, D{φRl(ε, sR)}, D{fa
Rl(κ

2, sR)} and D{ga
Rl(κ

2, sR)} rep-
resent the logarithmic derivatives calculated according to Equation (2.23). Fi-
nally, the exact muffin-tin orbitals are constructed as the superposition of the
screened spherical waves (2.11), the partial waves (2.21) and the free-electron
solution (2.22), viz.

ψ̄a
RL(ε, rR) = ψa

RL(κ2, rR) + Na
Rl(ε) φRl(ε, rR) YL(r̂R)

− ϕa
Rl(ε, rR) YL(r̂R), (2.28)

where the last two terms are truncated outside the s-spheres.

2.1.3 Kink Cancelation Equation

With the exact muffin-tin orbitals defined in Equation (2.28), the trial wave
function (2.9) around site R can be expressed as

Ψ(rR) =
∑
L

Na
Rl(ε) φRl(ε, rR) YL(r̂R) va

RL

+
∑
L

[
fa

Rl(κ
2, rR)va

RL + ga
Rl(κ

2, rR)
∑
R′L′

Sa
RLR′L′(κ2)va

R′L′

]
YL(r̂R)

−
∑
L

[
fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR)Da

Rl(ε)
]

YL(r̂R) va
RL. (2.29)
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Here the index j has been omitted, emphasizing that the expansion may be
written for any energy ε = κ2 + v0. We observe that the head functions of
the screened spherical wave (2.11) are canceled by the head functions of the
free-electron solution (2.22). After rearranging the terms proportional to the
tail function, we obtain

Ψ(rR) =
∑
L

Na
Rl(ε)φRl(ε, rR) YL(r̂R)va

RL +
∑
L

ga
Rl(κ

2, rR) YL(r̂R)

×
∑
R′L′

[
Sa

RLR′L′(κ2) − δR′RδL′L Da
Rl(ε)

]
va

R′L′ . (2.30)

This trial function will be a solution of Equation (1.3) for the muffin-tin
potential (2.1), if inside the s-spheres the l ≤ lmax part of the second term
from the right hand side of (2.30) vanishes for any rR. That is, if the l ≤
lmax components of the screened spherical waves, multiplied by the expansion
coefficients, are canceled exactly by ϕa

Rl(ε, rR) YL(r̂R) va
RL,j . This is realized

if the kink cancelation equation,

∑
RL

aR′
[
Sa

R′L′RL(κ2
j ) − δR′RδL′L Da

Rl(εj)
]

va
RL,j = 0, (2.31)

is satisfied for all R′ and l′ ≤ lmax. Here and in the following κ2
j ≡ εj −v0, and

εj is a Kohn−Sham single-electron energy for which Equation (2.31) has non-
trivial solution. The difference between the slope matrix and the logarithmic
derivative matrix is called the kink matrix,

Ka
R′L′RL(εj) ≡ aR′ Sa

R′L′RL(κ2
j ) − δR′RδL′L aRDa

Rl(εj). (2.32)

Using the kink-cancelation equation, the wave function inside the potential
sphere at R reduces to

Ψj(rR) =
∑
L

Na
Rl(εj) φRl(εj , rR) YL(r̂R) va

RL,j

+
l′>lmax∑

L′
ga

Rl′(κ
2
j , rR) YL′(r̂R)

∑
R′L

Sa
RL′R′L(κ2

j ) va
R′L,j . (2.33)

Note that the l′ > lmax components of ψa
RL(κ2

j , rR) are present in the potential
spheres. However, due to the l(l + 1)/r2

R centrifugal term in Equation (2.20),
the partial waves for large l converge towards the Bessel functions, i.e. towards
the second term from the right hand side of Equation (2.33).

The solutions of Equation (2.31) are the single-electron energies and wave
functions. These solutions can be obtained from the poles of the path operator
ga

R′L′RL(z) defined for a complex energy z by
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R′′L′′

Ka
R′L′R′′L′′(z) ga

R′′L′′RL(z) = δR′RδL′L. (2.34)

In the case of translation symmetry, in Equations (2.31) and (2.34) the site
indices run over the atoms in the primitive cell only, and the slope matrix,
the kink matrix, and the path operator depend on the Bloch vector k from
the first Brillouin zone. The k and energy dependent slope matrix is obtained
from the Bloch sum

Sa
Q′L′QL(κ2,k) =

∑
T

eikTSa
Q′L′(Q+T )L(κ2), (2.35)

where Q′ and Q denote two sites from the primitive cell, and T is a translation
vector.

2.1.4 Overlap Matrix

The overlap integral of the partial waves within the potential sphere of radius
sR is the norm of φRl(ε, rR), viz.

∫
φa

RL
∗(ε, rR)φa

RL(ε, rR)drR = [Na
Rl(ε)]

2
∫ sR

0

φRl(ε, rR)2r2
RdrR. (2.36)

The radial integral can be calculated using the radial Schrödinger equation
(2.20) and the Green’s second theorem [46], and it gives

∫ sR

0

φRl(ε, rR)2r2
RdrR = −sRḊ{φRl(ε, sR)}φRl(ε, sR)2, (2.37)

where the over-dot denotes the energy derivative

Ḋ{φRl(ε, sR)} ≡ ∂D{φRl(ε, sR)}
∂ε

. (2.38)

The corresponding expression for the free-electron solution (2.22) obtained
between the s-sphere and a-sphere, is

∫ sR

aR

ϕa
Rl(ε, rR)2r2

RdrR =
∫ sR

0

ϕa
Rl(ε, rR)2r2

RdrR −
∫ aR

0

ϕa
Rl(ε, rR)2r2

RdrR

= − sRḊ{ϕRl(ε, sR)}ϕa
Rl(ε, sR)2 + aRḊa

Rl(ε), (2.39)

where we have taken into account that ϕa
Rl(ε, aR) = 1. According to the

matching conditions (2.24) and (2.25) we have

D{ϕRl(ε, sR)} = D{φRl(ε, sR)} (2.40)
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for any ε, and thus

Ḋ{ϕRl(ε, sR)} = Ḋ{φRl(ε, sR)}. (2.41)

Therefore, the first term on the right hand side of Equation (2.39) is equal to
the overlap integral of the partial waves (2.37).

The energy derivative of the logarithmic derivative function Ḋa
Rl(ε) is cal-

culated from Equation (2.27). The energy derivatives of the Bessel and Neu-
mann functions, and their radial derivatives are obtained from the recurrence
relations quoted in Appendix B, whereas Ḋ{φRl(ε, sR)} is given in Equation
(2.37).

The overlap integral of the screened spherical waves over the a-interstitial
is obtained in a similar way using the wave equation (2.10) and Green’s second
theorem [46], and it has the following simple expression

∫
Ia

ψa∗
R′L′(κ2, rR′)ψa

RL(κ2, rR)dr = aRṠa
R′L′RL(κ2), (2.42)

where Ia denotes a-interstitial. Here we recall that only the low-l compo-
nents of ψa

RL(κ, rR) are truncated outside the Ia. The high-l components are
present in the whole space, and their contribution to the overlap integral is
included in Equation (2.42). The energy derivative of the slope matrix can
be calculated from finite differences around κ2. Alternatively, one may use an
analytic expression derived from the unscreened slope matrix. This will be
presented in Section 3.1.

We can now establish the overlap matrix for the exact muffin-tin orbitals
(2.28) calculated over the whole space. Let us assume, for the moment, that
the potential spheres do not overlap and are smaller than the a-spheres. In this
situation, we can split the integral

∫
ψ̄∗

R′L′(ε, r) ψ̄RL(ε, r) dr into an integral
of the partial waves over the potential sphere, an integral of the free-electron
solutions over the region between the a-sphere and the potential sphere and an
integral of the screened spherical waves over the a-interstitial. Using Equations
(2.37), (2.39) and (2.42), we obtain

∫
ψ̄∗

R′L′(ε, r) ψ̄RL(ε, r) dr

= aRṠa
R′L′RL(κ2) − aRḊa

Rl(ε) = K̇a
R′L′RL(ε). (2.43)

For overlapping potential spheres, there are other small terms coming from
the overlap region. However, these terms are small, and for reasonable small
overlaps the above expression remains valid. For more details, the reader is
referred to the work by Andersen and co-workers [46, 84].
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2.1.5 The Fermi Level

During the iterations for solving self-consistently the Kohn−Sham equations
(1.3), the Fermi energy εF is established from the condition that the total
number of states N(εF ) below the Fermi level should be equal to the number
of electrons Ne from the system, i.e.

N(εF ) = Ne. (2.44)

In practice, N(ε∗F ) is computed for a series of trial ε∗F and the proper εF is
obtained according to Equation (2.44).

Within the present method, we make use of the residue theorem (Appendix
B) to find the number of states below the Fermi energy. According to this
theorem, the contour integral of the properly normalized path operator gives
the total number of states within the contour. Using the overlap matrix of the
exact muffin-tin orbitals (2.43) to normalize the path operator, each electronic
state will be normalized correctly within the real space. This leads to the
following expression for the total number of states below the Fermi level:

N(εF ) =
1

2πi

∮
εF

G(z) dz, (2.45)

where

G(z) ≡
∑

R′L′RL

ga
R′L′RL(z) K̇a

RLR′L′(z)

−
∑
RL

⎛⎝Ḋa
Rl(z)

Da
Rl(z)

−
∑
εD

Rl

1
z − εD

Rl

⎞⎠ , (2.46)

with l, l′ ≤ lmax. The energy integral in Equation (2.45) is performed on a
complex contour that cuts the real axis below the bottom of the valence band
and at εF . It is easy to see that near each pole εj , the path operator behaves
like K̇a

RLR′L′(εj)/(z − εj), and, therefore, the first term from the right hand
side of Equation (2.46) will contribute with 1 to N(εF ).

Because of the overlap matrix, the ga(z)K̇a(z) term may also include the
poles of Ḋa(z). Here, we omit the R and l indices for simplicity. Let us de-
note by z0 a pole of Ḋa(z). This pole has no physical meaning and should
be removed from N(εF ). Near z0, both Da(z) and Ḋa(z) diverge, and thus
ga(z)K̇a(z) → Ḋa(z)/Da(z) for z → z0. Therefore, subtracting Ḋa(z)/Da(z)
removes the nonphysical pole z0 of ga(z)K̇a(z). In the second step, we have
to restore the real poles of Ḋa(z)/Da(z) due to the zeros of the logarithmic
derivative function. We denote by εD a real energy where Da(z) vanishes.
Expanding Da(z) near this energy, we have Da(z) ≈ Ḋa(εD)(z−εD)+ ..., and
thus Ḋa(z)/Da(z) ≈ 1/(z − εD). Hence, Ḋa(z)/Da(z) − 1/(z − εD) contains
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no poles due to the zeros of the logarithmic derivative function. Note that the
second term from the right hand side of Equation (2.46) gives no contribu-
tion to N(εF ) if Ḋa(z) is an analytic function of z inside the complex energy
contour.

In Equation (2.43) the negligible terms due to the overlap between poten-
tial spheres have been omitted [84]. Besides these terms, N(εF ) in Equation
(2.45) gives the exact number of states at the Fermi level for the muffin-tin
potential from Equation (2.1).

2.2 Electron Density

The electron density (1.7) is given in terms of Kohn−Sham single-electron
wave functions. From the expansion of Ψj(r) (Equation (2.9)), a multi-center
form for the charge density can be obtained. Although, this multi-center ex-
pression gives a highly accurate charge density in the entire space, its applica-
tion in the Poisson equation or the total energy functional is very cumbersome.
Therefore, we seek a more transparent expression which can easily be used to
compute the Hartree and exchange-correlation terms in Equations (1.4) and
(1.9). To this end, we turn to the one-center expression (2.33). This expression
is valid inside the potential spheres. Nevertheless, due to the kink-cancellation
equation, the one-center expression remains valid for rR > sR as well, if the
normalized partial wave Na

Rl(εj) φRl(εj , rR) is replaced by the backward ex-
trapolated free-electron solution ϕa

Rl(εj , rR). We use this expression to set up
the one-center form for the charge density.

We divide the total density n(r) into components nR(rR) defined inside
the Wigner−Seitz cells,7 viz.

n(r) =
∑
R

nR(rR). (2.47)

Around each lattice site we expand the density components in terms of the
real harmonics, viz.

nR(rR) =
∑
L

nRL(rR)YL(r̂R). (2.48)

The partial components nRL(rR) are radial functions, which are obtained us-
ing Equation (2.33), the residue theorem (Appendix B) and the orthogonality
condition for the real harmonics (B.3). The final expression can be cast into
the following form:

7 In practice, in order to be able to compute the density gradients and eventually
the higher order density derivatives, the partial densities should in fact be defined
inside a sphere which is slightly larger than the sphere circumscribed to the
Wigner−Seitz cell.
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nRL(rR) =
1

2πi

∮
εF

∑
L′′L′

CLL′L′′Za
Rl′′(z, rR)

×g̃a
RL′′L′(z) Za

Rl′(z, rR)dz, (2.49)

where CLL′L′′ are the real Gaunt numbers (Appendix B). For the radial func-
tions the following notation has been introduced:

Za
Rl(z, rR) =

⎧⎪⎨⎪⎩
Na

Rl(z)φRl(z, rR) if l ≤ lmax and rR ≤ sR

ϕa
Rl(z, rR) if l ≤ lmax and rR > sR

−jl(κ rR) if l > lmax for all rR

. (2.50)

Note that in Equation (2.49), the l′′ and l′ summations include the highers
as well, i.e. l′′, l′ ≤ lhmax. The low-l block of the generalized path operator
g̃a

RL′L(z) is given by

g̃a
RL′L(z) = ga

RL′RL(z) +
δL′L

aR Ḋa
Rl(z)

⎛⎝Ḋa
Rl(z)

Da
Rl(z)

−
∑
εD

Rl

1
z − εD

Rl

⎞⎠ , (2.51)

with l, l′ ≤ lmax. The second term from the right hand side of Equation (2.51)
is introduced to remove the nonphysical poles of the normalization function
Na

Rl(z). The off-diagonal blocks of g̃a
RL′L(z) are

g̃a
RL′L =

⎧⎨⎩
∑

R′′L′′ ga
RL′R′′L′′aR′′Sa

R′′L′′RL if l′ ≤ lmax, l > lmax∑
R′′L′′ Sa

RL′R′′L′′ga
R′′L′′RL if l′ > lmax, l ≤ lmax

. (2.52)

Finally, the high-l block is

g̃a
RL′L =

∑
R′′L′′R′′′L′′′

Sa
RL′R′′L′′ga

R′′L′′R′′′L′′′ aR′′′Sa
R′′′L′′′RL, (2.53)

with l′, l > lmax. For simplicity, in Equations (2.52) and (2.53), the energy
dependence has been suppressed. The high-low and low-high blocks of the
slope matrix are calculated by the blowing-up technique [83], which will be
introduced in Chapter 3.

The charge density computed from Equations (2.48) and (2.49) is nor-
malized within the unit cell, and for reasonably large lhmax, it is continuous
at the cell boundaries. Note that because the real Gaunt numbers vanish for
l > l′′ + l′, the partial components of the charge density are nonzero only
for l ≤ 2lhmax. For a reasonably high lhmax (10−12), however, the partial com-
ponents with l > lhmax are very small. Because of this, the l-truncation in
Equation (2.48) is usually set to lhmax.
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2.3 The Poisson Equation

Equations (2.31), (2.45) and (2.48) constitute the basis of the method used
to solve the Schrödinger equation (1.3). In order to perform a self-consistent
calculation, one constructs the electron density from the solutions of the kink
cancelation equation and calculates the new effective single-electron potential.
Within the EMTO formalism, this latter procedure involves two steps [47].
First, we calculate the full-potential from the total charge density (2.48), and
second, we construct the optimized overlapping muffin-tin wells (2.1). Due to
the l-truncation in the one-center expression from Equation (2.48), the first
step is very demanding and inaccurate in the corners of the unit cell. Fur-
thermore, the expression for the effective potential (1.4) involves an integral
over the real space. These types of integrals can be performed using, e.g.,
the shape function technique (Chapter 4). Applying this technique, however,
would unnecessarily overcomplicate the self-consistent iterations. In the next
section, we show that within the so called Spherical Cell Approximation [80],
both of the above problems can be avoided.

2.3.1 Spherical Cell Approximation

To simplify the solution of the Poisson equation, during the self-consistent
iterations, we substitute the Wigner−Seitz cell around each lattice site by a
spherical cell. The volume of the spherical cell at R, ΩwR

, may be chosen to
be equal to the volume of the Wigner−Seitz cell ΩR centered on the same
lattice site, i.e.

ΩwR
≡ 4π

3
w3

R = ΩR, (2.54)

where wR is the radius of the spherical cell.
Next, we investigate the overlapping muffin-tin approximation to the full-

potential in the case of spherical cells. The integrated local deviation between
the full-potential and the OOMT potential was introduced and discussed in
Section 2.2. It represents a basic measure to establish the accuracy of the
muffin-tin potential. But there are other important quantities which should
be considered when searching for the best muffin-tin approximation.

The muffin-tin discontinuity is defined as the jump in the muffin-tin po-
tential at the potential sphere boundary, [vR(sR)−v0]. The error in the single-
electron energies due to the overlap between the s-spheres is given as

ΔEone ≡
∑

εj≤εF

Δεj ≈ − π

24

∑
RR′

|R − R′|5ω4
RR′

× [vR(sR) − v0][vR′(sR′) − v0]n ((R − R′)/2) . (2.55)

This expression has been obtained by the first order perturbation theory
[42, 84]. Accordingly, ΔEone is proportional to the average density within
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the overlap region n ((R − R′)/2), the square of the muffin-tin discontinuity,
and the fourth order power of the linear overlap defined in Equation (2.7).
Therefore, if we can keep the muffin-tin discontinuity small, the overlap errors
will be negligible, and thus large overlapping potential spheres can be used.

Another important parameter is the constant potential from Equation
(2.1) expressed relative to the Fermi level. The screened spherical waves
have short range for energies below the bottom of the hard sphere contin-
uum (Chapter 3). Therefore, in order to have localized slope matrices with
a smooth energy dependence for energies below κ2 ≈ εF − v0, one prefers to
have v0 close to εF .

We make use again of the model potential (2.8) to illustrate how the above
parameters depend on the potential sphere radius. For the integral in Equation
(2.2) we consider two different domains: (A) the integral is carried out over
the real Wigner−Seitz cells, and (B) the Wigner−Seitz cells are substituted
by the spherical cells and the OOMT potential is derived for these cells, i.e.
the integrals are performed within ΩwR

.
In Figure 2.2, we show three sets of results for the integrated local devi-

ation, the muffin-tin discontinuity and the constant potential. The first set
(a, solid line) corresponds to the fully optimized overlapping muffin-tins cal-
culated within the Wigner−Seitz cells (domain A). The second set (b, dot-
ted line) is also obtained from the fully optimized overlapping muffin-tins,
but this time they are calculated within the spherical cells rather than the
Wigner−Seitz cell (domain B). The third case (c, dashed line) corresponds
to partially optimized muffin-tins. In this case the spherical potential is fixed
to the spherical part of the full-potential according to Equation (2.5) and for
this v(r) the constant potential v0 is optimized within the domain B.

The integrated local deviations are plotted in the upper part of Figure
2.2. In contrast to the monotonously decreasing error obtained in case a (also
shown in Figure 2.1), in the second case the error first decreases with s, at
∼ 15% overlap it starts to increase and diverges at larger overlaps. In the
third case, for overlapping s-spheres there is a moderate improvement of the
muffin-tin approach relative to the non-overlapping situation, but above 30%
overlap the integrated local deviation shows no significant dependence on the
radius of the potential spheres.

The muffin-tin discontinuity is shown in the middle panel of Figure 2.2.
With increasing overlap between the s-spheres, [v(s)−v0] converges smoothly
to zero in case a and it diverges in case b. When v0 is optimized for v(r) fixed
to the spherical part of the full-potential, [v(s)− v0] approaches zero at small
overlaps and remains close to zero up to linear overlaps of 60−70%. Conse-
quently, in the third case the single-electron energies of monoatomic systems
are expected to depend negligibly on the overlap between the potential spheres
[80].

The constant potential v0 is plotted in the lower part of Figure 2.2. In case
a, v0 increases with s and reaches the zero potential level at ∼ 60% overlap.
When the muffin-tins are fully optimized inside the spherical cell, v0 decreases
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Fig. 2.2. Overlapping muffin-tin potential approximation to the cosine potential in
a simple cubic lattice. Upper panel: integrated local deviation of the full-potential
and overlapping muffin-tins (in %). Middle panel: muffin-tin discontinuity (in ar-
bitrary units). Lower panel: muffin-tin zero (relative to the zero potential level, in
arbitrary units). Solid line: fully optimized overlapping muffin-tins calculated in the
Wigner−Seitz cells; dotted line: fully optimized overlapping muffin-tins calculated
in the spherical cells; dashed line: spherical potential fixed to the spherical part of
the full-potential and muffin-tin zero optimized for this spherical potential.

with s for overlaps larger than ∼ 15%. In the third case, v0 increases slightly
with the overlap but always remains well bellow its optimal value, i.e. the one
from the first case.

From these results one clearly sees that using a spherical cell model, due
to the improper description of the full-potential, the fully optimized overlap-
ping muffin-tins approximation breaks down for linear overlaps larger than
10−15%. One possibility to overcome this problem is given by the third case
(c), which we will refer to as the Spherical Cell Approximation (SCA).
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In summary, the SCA involves two approximations. First, in Equation
(2.2) the spherical cells rather than Wigner−Seitz cells are used, and second,
vR(rR) is fixed to the spherical average of the full-potential given in Equation
(2.5). With this particular choice, the expression for parameter v0 obtained
from Equation (2.4) becomes [47, 80]

v0 =

∑
R

∫ wR

sR
r2
R

[∫
v(r)dr̂R

]
drR∑

R [4π(w3
R − s3

R)/3]
. (2.56)

When sR → wR, the above expression reduces to

v0 →
∑

R

[∫
v(r)dr̂R

]
rR=sR

s2
R∑

R 4πs2
R

=
∑

R vR(sR)s2
R∑

R s2
R

. (2.57)

One of the most important consequences of the SCA is that both vR(rR) and
v0 from Equation (2.1) are given in terms of the spherical symmetric part of
the full-potential, which can be computed efficiently and with high accuracy.

2.3.2 The Effective Potential

In this section, we establish an expression for the spherical part of the single-
electron potential (1.4). An electron from a crystal feels the attractive poten-
tial (1.11) created by the nuclear charges located at the lattice sites R, and
the repulsive electrostatic potential created by all the other electrons, i.e. the
Hartree potential (1.5). Since both of these potentials have long range, they
should be grouped in such a way that at large distance the negative and pos-
itive terms cancel each other. Usually, this is done by dividing ve(r) + vH(r)
into components due to the charges from inside and from outside of the cell
at R. The intra-cell part of the electrostatic potential then becomes

vI
R(rR) = −2 ZR

rR
+ 2

∫
ΩR

nR(r′R)
|rR − r′R|

dr′R. (2.58)

Using the expansion [87]

1
|rR − r′R|

= 4π
∑
L

1
2l + 1

rl
R

r′R
l+1

YL(r̂R)YL(r̂′R), (2.59)

valid for r′R > rR, we can separate the r′R integration in Equation (2.58).
Calculating the spherical part of the resulting expression, we arrive at

vI
R(rR) ≡ 1

4π

∫
vI

R(rR)dr̂R = 8π
1
rR

∫ rR

0

r′R
2
nRL0(r

′
R)dr′R

+ 8π

∫ sR

rR

r′RnRL0(r
′
R)dr′R − 2ZR

rR
, (2.60)



2.3 The Poisson Equation 31

where nRL0(rR) is the L0 = (0, 0) partial component of the charge density
near site R.

The effect of charges from outside of the potential sphere give the so called
Madelung potential

vM
R (rR) = −

∑
R′ �=R

2 ZR′

|rR′ + R′|

+
∑

R′ �=R

2
∫

ΩR′

nR′(rR′)
|rR − rR′ + R − R′|drR′ . (2.61)

This is calculated by expanding 1
|r−r′| first around rR = r − R and then

around rR′ = r′ − R′, namely

1
|r − r′| = 4π

∑
L

1
2l + 1

rl
R

|r′ − R|l+1
YL(r̂R)YL( ̂r′ − R), (2.62)

and

YL( ̂r′ − R)

|r′ − R|l+1
=

4π

(2l − 1)!!

∑
L′L′′

CLL′L′′
(−1)l′(2l′′ − 1)!!

(2l′ + 1)!!
rl
R′

|R′ − R|l′′+1

× YL′(r̂R′)YL( ̂R′ − R). (2.63)

These expansions are strictly valid only for rR + rR′ < |R′ − R|, i.e. if the
spheres circumscribed on the cells at R and R′ do not overlap. The case of over-
lapping bounding spheres will be discussed in connection with the Madelung
energy in Chapter 4. Using the above expressions, for the spherically symmet-
ric part of the Madelung potential we obtain

vM
R ≡ 1

4π

∫
vM

R (rR)dr̂R =
1
w

∑
R′ �=R,L′

MRL0R′L′ QSCA
R′L′ . (2.64)

Here

MRLR′L′ = 8π(−1)l′
∑
L′′

CLL′L′′
(2l′′ − 1)!!

(2l − 1)!!(2l′ − 1)!!
δl′′,l′+l

×
(

w

|R′ − R|
)l′′+1

YL′′( ̂R′ − R) (2.65)

are the elements of the Madelung matrix, and w is the average atomic radius.
Note that because of the Kronecker delta (δl′′,l′+l), in Equation (2.65) only
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the l′′ = l′ + l term is nonzero. The multipole moments, QSCA
RL , are calculated

within the SCA,

QSCA
RL =

√
4π

2l + 1

∫ wR

0

(rR

w

)l

nRL(rR) r2
R d rR

− ZR δL,L0 + δSCA δL,L0 . (2.66)

Since the integral in Equation (2.66) is performed over the spherical cell rather
than over the unit cell, the monopole moments in Equation (2.66) have to be
renormalized within the cell [80]. This is realized by the site independent
constant δSCA, which is determined from the condition of charge neutrality,
viz.

∑
R QSCA

RL0
= 0.

Usually, the number of electrons inside the s-sphere,

Q(sR) =
√

4π

2l + 1

∫ sR

0

nRL(rR) r2
R d rR, (2.67)

is different from the number of electrons inside the cell, QSCA
RL0

+ ZR. This
difference contributes a constant shift, ΔvM

R , to the spherical potential. In
the SCA, this extra or missing charge is redistributed equally on the NNN

nearest-neighbor cells, i.e.

ΔvSCA
R =

1
w

∑
RNN

MRL0RNN L0 ΔQRNN
, (2.68)

where ΔQRNN
≡ 1

NNN

(
QSCA

RL0
+ ZR − Q(sR)

)
and RNN are the nearest-

neighbor sites.
Finally, the spherical symmetric part of the exchange-correlation potential

(1.6) is

μxcR(rR) ≡ 1
4π

∫
μxcR([nR]; rR)dr̂R. (2.69)

The total potential within the potential sphere is obtained as the sum of
contributions from Equations (2.60), (2.64), (2.68) and (2.69), namely

vR(rR) = vI
R(rR) + vM

R + ΔvSCA
R + μxcR(rR). (2.70)

Except the negligible approximations made in the Madelung terms, i.e. in
Equations (2.64) and (2.68), the above expression gives the exact spherical
part of the full potential inside the s-sphere.

In many application, the multipole moments in Equation (2.64) can be
neglected for l > 0. Moreover, the non-spherical part of μxcR([nR]; rR) from
the right hand side of Equation (2.69), giving only a small contribution to the
spherically symmetric exchange-correlation potential, can also be omitted. In
this situation, all potential components in Equation (2.70) depend only on the
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spherical symmetric density nRL0(rR). On the other hand, when the multipole
moments for l 	= 0 are large (e.g., near the free surfaces), the Madelung
potential due to the higher order moments has to be taken into account. In
this case, the l-truncation in Equation (2.64) is given by the l-truncation for
the multipole moments, which in turn is lhmax used for the charge density
(see Section 2.2). In practice, however, the l-truncation for the charge density
during the self-consistent iterations can be set to a value (usually 4−6) smaller
than the one used to calculate the final full charge density, without sacrificing
the accuracy of the method.

Before closing this section, we shall comment on the numerical calcula-
tion of the Madelung potential for a periodic bulk (infinite) system. When
collecting different contributions to vM

R , the R′ summation in Equation (2.64)
should run over all the lattice sites. The Madelung matrix (2.65) can eas-
ily be computed for any pair of lattice points R and R′. However, since
MRL0R′L′ ∼ 1/|R − R′|l′+1, for the low order multipole moments (l′ ≤ 1),
the R′ summation diverges. This is because at large distance the number of
sites included in the Madelung sum roughly increases as the surface of the
coordination shell, i.e. as 4π|R − R′|2. On the other hand, the unit cells are
neutral, and thus the contribution coming from a remote cell should vanish.
In order to overcome this problem, the lattice summation should be carried
out using the so called Ewald technique. For details about this technique, the
reader is referred to Skriver [39].

2.3.3 Potential Sphere Radius sR

The potential sphere radius influences the accuracy of the muffin-tin approx-
imation. In Section 2.3.1, we saw that in the case of monoatomic systems
the integrated local deviation between full-potential and OOMT potential de-
creases and the constant potential is pushed towards the Fermi level with
increasing potential sphere radius. But what is even more important, large
potential spheres also lead to decreased muffin-tin discontinuity and thus to
decreased error coming from the s-sphere overlap. On the other hand, this
error is proportional to the fourth order power of the linear overlap between
spheres [42, 84], which sets an upper limit for sR.

In Figure 2.3, the overlap error and the muffin-tin discontinuity (inset) are
plotted as a function of the potential sphere radius in the case of face centered
cubic (fcc) Cu. These calculations were done at the experimental volume
using the SCA. We find that for linear overlaps between ∼ 4% and ∼ 20% the
muffin-tin discontinuity is below 10 mRy. This results in a negligible error in
the single-electron energies. On the other hand, at larger overlaps the error
diverges rapidly with increasing sR. Taking into account that the integrated
local deviation shows a weak sR dependence for overlaps above ∼ 10% (see
Figure 2.2), we conclude that in close-packed monoatomic systems the best
representation of the full-potential within SCA can be achieved by choosing
potential spheres with a linear overlap between 10% and ∼ 25%.
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Fig. 2.3. The overlap error for face centered cubic Cu (w = 2.669 Bohr) as a
function of the potential sphere radius. In the inset the muffin-tin discontinuity is
plotted.

In a polyatomic system, small muffin-tin discontinuity can be obtained
if the individual spherical potentials at the potential sphere boundary have
similar values, i.e.

vR(sR) ≈ vconst. for each R. (2.71)

Then the constant potential, obtained as the average of the spherical po-
tentials calculated in the vicinity of sR, will be v0 ≈ vconst. and therefore
vR(sR) − v0 ≈ 0. For well localized slope matrices, vconst. from Equation
(2.71) should have the maximum possible value.

The effect of sR on the muffin-tin discontinuity in polyatomic crystals
is illustrated in the case of magnesium diboride. The crystal structure of
MgB2 has the hexagonal symmetry (space group P6/mmm) with a = 5.833
Bohr and c/a = 1.14 [88, 89, 90]. Layers of Mg and B atoms are located
at z = 0 and z = 0.5c/a, respectively. Using sR = wR corresponding to
sMg/sB ≈ 1.12, the linear overlap between nearest-neighbor B atoms is 42%.
In this situation, the actual value of the muffin-tin discontinuity is crucial
for an accurate self-consistent calculation. In Figure 2.4, we plotted the two
muffin-tin discontinuities [vMg(sMg)− v0] and [vB(sB)− v0] calculated around
Mg and B sites, respectively. Different symbols correspond to different pairs of
sMg and sB. For example, triangles represent muffin-tin discontinuities +0.288
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Fig. 2.4. The two muffin-tin discontinuities in MgB2 compound as functions of the
Mg and B potential sphere radii.

Ry and −0.335 Ry obtained using sMg = 3.37 Bohr and sB = 1.62 Bohr. We
can see that there is a particular ratio, namely sMg/sB ≈ 1.26, when the
muffin-tin discontinuity vanishes on both sites. Although the linear overlap
between boron sites is still around 30%, with this choice for sMg and sB the
error in the single-electron energies is found to be negligible.
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Slope Matrix

The elements of the slope matrix Sa are the expansion coefficients of the
screened spherical waves centered at lattice site R around site R′. They are
related to the well-known expansion coefficients of a Neumann function in
terms of the Bessel functions. Due to the localization, the slope matrix may
be computed on a real space cluster of finite size. Usually, the cluster around R
contains the nearest 40−80 lattice sites, depending on the required numerical
accuracy. Because of this, the present method, like any screened or tight-
binding method, can be applied in real space to treat, e.g., impurities, defects,
surfaces, etc.

In a self-consistent calculation, we need to know the slope matrix and its
energy derivative for a set of complex energies on the energy contour enclosing
those states which are considered to be the valence states. During the iter-
ations, the Fermi level is successively updated according to Equation (2.44),
and thus the energy points from the complex contour are changed. Because
of this, the slope matrix has to be recalculated after each iteration. This is
a very cumbersome procedure, especially if the size of the cluster used to
compute Sa exceeds 50−70 sites. On the other hand, using a small cluster
leads to inaccurate energy derivative of Sa, and thus to large errors in the
density of states (2.45) and charge density (2.49). Within the Full Charge
Density scheme, which will be introduced in Chapter 4, these errors show up
as a loosely normalized charge density and create uncontrollable errors in the
total energy. Because of this, one should search for efficient but at the same
time highly accurate algorithms to calculate Sa. One possibility is offered by
the particularly smooth energy dependence exhibited by the slope matrix,
which suggests that accurate parameterized expressions for Sa exist. We shall
explore this question within the present chapter.

In Section 3.1, we shall derive the Dyson equation for the slope matrix,
and using the low-l (l′, l ≤ lmax) block of Sa

R′L′RL, we shall determine the
high-l′ and low-l off-diagonal blocks. Furthermore, in this section an analytic
expression for the energy derivatives of the slope matrix will be given. We
shall investigate the effect of the screening sphere radius (Section 3.2) and real
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space cluster (Section 3.3) on the localization and energy dependence of Sa. In
Section 3.4, we shall discuss the problems related to the numerical calculation
of the slope matrix, and present useful representations for an efficient self-
consistent implementation.

3.1 Inhomogeneous Dyson Equation

The coefficients Sa
R′L′RL(κ2) from expansion (2.11) can be derived from the

elements of the bare Korringa−Kohn−Rostoker (KKR) [36, 37] structure con-
stant matrix S0

R′L′RL(κ2). These are defined as the expansion coefficients of
the bare spherical wave1

nL(κ2, rR) ≡ nl(κ2, rR) YL(r̂R) (3.1)

centered on site R, in terms of

jL(κ2, rR′) ≡ jl(κ2, rR′) YL(r̂R′) (3.2)

centered on site R′, viz.

nL(κ2, rR) = −
∑
L′

jL′(κ2, rR′) S0
R′L′RL(κ2). (3.3)

In these expressions, nl(κ2, rR) and jl(κ2, rR) are the spherical Bessel and
Neumann functions, with the conventions given in Appendix B. In Equation
(3.3), the expansion coefficients are the KKR structure constants,

S0
R′L′RL(κ2) = −8π

∑
L′′

CLL′L′′ [−(κw)2]
l′+l−l′′

2 (−1)l

× (2l′′ − 1)!!
(2l′ − 1)!!(2l − 1)!!

nL′′(κ2,R − R′), (3.4)

where CLL′L′′ are the real Gaunt numbers (Appendix B). Since the Gaunt
numbers vanish unless l + l + l′′ is even, all the elements of S0 are real for a
real κ2. This is a consequence of the particular normalization of the Bessel and
Neumann functions. We mention that for κ2 = 0, the KKR structure constant
reduces to S0

R′L′RL(0) = −MR′L′RL, where M is the Madelung matrix defined
in Equation (2.65).

To find the connection between the slope matrix and the KKR struc-
ture constant we start from Equation (2.11), which is the definition of Sa. A
screened spherical wave defined in the whole space can be represented by the
multi-center expansion
1 The bare or unscreened representation goes back to the traditional KKR or MTO

formalism, where the Neumann (or Hankel) function was chosen as the envelope
function in the interstitial region [20, 39, 40].
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ψa
RL(κ2, r) =

∑
R′L′

[
fa

Rl(κ
2, rR) YL(r̂R)δRR′ δLL′

+ ga
R′l′(κ

2, rR′) YL′(r̂R′) Sa
R′L′RL(κ2)

]
. (3.5)

Using the value and slope functions from Equations (2.14) and (2.15), for the
above expansion we obtain

ψa
RL(κ2, r) =

∑
R′L′

nl′(rR′) YL′(r̂R′)
[
t1RlδRR′ δLL′ − t3R′l′S

a
R′L′RL

]
−

∑
R′L′

jl′(rR′) YL′(r̂R′)
[−t2RlδRR′ δLL′ + t4R′l′S

a
R′L′RL

]
, (3.6)

where, for simplicity, the common energy argument κ2 has been dropped.
Now, since the Bessel and Neumann functions form a complete basis in the
entire space, we should be able to generate the screened spherical wave (3.6)
also from the bare spherical waves (3.3). The superposition of the nL(κ2, rR′)
functions leads to

ψa
RL(κ2, r) =

∑
R′L′

nl′(rR′) YL′(r̂R′)Ma
R′L′RL

−
∑

R′′L′′R′L′
jl′′(rR′′) YL′′(r̂R′′)S0

R′′L′′R′L′Ma
R′L′RL, (3.7)

where Ma is an unknown transformation matrix to be determined. Comparing
the coefficients of the Bessel and Neumann functions in Equations (3.6) and
(3.7), we find

Ma
R′L′RL = t1RlδRR′ δLL′ − t3R′l′S

a
R′L′RL, (3.8)

and

∑
R′′L′′

S0
R′L′R′′L′′Ma

R′′L′′RL = −t2RlδRR′ δLL′ + t4R′l′S
a
R′L′RL. (3.9)

After eliminating Ma from Equations (3.8) and (3.9), we obtain

− t2RlδRR′ δLL′ + t4R′l′S
a
R′L′RL

=
∑

R′′L′′
S0

R′L′R′′L′′
[
t1RlδR′′R′ δL′′L′ − t3R′′l′′S

a
R′′L′′RL

]
. (3.10)

Rearranging for Sa, we arrive at the inhomogeneous Dyson equation
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Sa
R′L′RL =

t1Rl

t3Rl

δR′RδL′L +
1

t3R′l′

[
−S0 − t4Rl

t3Rl

]−1

R′L′RL

da
Rl

t3Rl

, (3.11)

where da
Rl is given in Equation (2.19). Equation (3.11), together with (3.4), is

used to compute the slope matrix for an arbitrary complex energy z = κ2−v0.
When the hard sphere radii, aR, are properly chosen and κ2 lies below the
bottom of the hard sphere continuum, the screened spherical waves have short
range, and the slope matrix can be calculated in real space. The optimal choice
for the hard sphere radii will be presented in Section 3.2, and the real space
cluster used to invert the matrix from the right hand side of Equation (3.11)
will be investigated in Section 3.3.

3.1.1 The High−Low Off-diagonal Slope Matrix

In the expressions for the total charge density, Equation (2.49) with (2.52) and
(2.53), the elements of the off-diagonal slope matrix with lhmax ≥ l′ > lmax

and l ≤ lmax appear. Computing the full slope matrix up to lhmax would
be a time consuming task, not to mention the immense computer capacity
needed to store this for a large number of energy points. On the other hand,
using the so called blowing-up technique [83], one can generate the high−low
off-diagonal blocks of the screened structure constant by using the high−low
block of the bare structure constant. We rearrange Equation (3.10) as

t4R′l′S
a
R′L′RL = t2RlδR′RδL′L + S0

R′L′RLt1Rl

−
∑

R′′L′′
S0

R′L′R′′L′′t3R′′l′′S
a
R′′L′′RL, (3.12)

and apply it for l′ > lmax and l ≤ lmax. According to Equation (2.15), for high-
l orbitals, we have t3Rl = 0 and t4Rl = 1. Therefore, the internal summation
in Equation (3.12) can be truncated at lmax, and the high−low block of the
screened slope matrix is obtained from the low−low block as

Sa
R′HRL = S0

R′HRLt1Rl −
∑

R′′L′′
S0

R′HR′′L′′t3R′′l′′S
a
R′′L′′RL, (3.13)

where H = (l′m′) with l′ > lmax. The HL block of the KKR structure
constant is obtained from Equation (3.4). The LH block of Sa is found from
the HL block (3.13) according to

Sa
R′HRL = aRSa

RLR′H . (3.14)

Here we have used the fact that daSa is a Hermitian matrix, as can be seen
from Equation (3.11).
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3.1.2 Energy Derivatives of Sa

In the present formalism, the energy derivatives of the slope matrix appear in
two different places. First, the overlap matrix (2.43) is expressed in terms of
the first order energy derivative of Sa. Second, in Section 3.4, we shall demon-
strate that the energy dependence of the slope matrix can be represented as
an expansion involving the higher order energy derivatives of Sa calculated
for a fixed energy. Therefore, we need to develop a systematic algorithm to
compute these derivatives. The energy dependence of the slope matrix is usu-
ally given in terms of the dimensionless energy parameter ω ≡ (κw)2, where
w is the average atomic radius. After rearranging Equation (3.10), we get∑

R′′L′′
BR′L′R′′L′′(ω)AR′′L′′RL(ω) = −2

aR

w
δR′RδL′L, (3.15)

where

AR′L′RL(ω) ≡ t1Rl(ω)
t3Rl(ω)

δR′RδL′L − Sa
R′L′RL(ω), (3.16)

and

BR′L′RL(ω) ≡ t3R′l′(ω)
[
t4Rl(ω)δR′RδL′L + S0

R′L′RL(ω)t3Rl(ω)
]
. (3.17)

Note that the screening parameters, likewise the slope matrix, depend on the
energy through ω. Now, applying the product rule,2 from Equations (3.15)
and (3.16) we obtain the nth energy derivative of the slope matrix as

dnSa(ω)
dωn

= B(ω)−1

[
n−1∑
i=0

n!
(n − i)!i!

dn−iB(ω)
dωn−i

diA(ω)
dωi

+ 2
a

w
δn,0

]

+
dn

dωn

t1(ω)
t3(ω)

, (3.18)

where the RL subscripts have been dropped and the matrix multiplication
is implied. The energy derivatives of the bare structure constant S0(ω) are
calculated directly from Equation (3.4). The derivatives of the screening pa-
rameters are obtained from the energy derivatives of the Bessel and Neumann
functions presented in Appendix B.

2 The product rule for the nth order derivative of a matrix product NM gives
(NM)(n) =

∑n

i=0
n!

(n−i)!i!
N (n−i)M (i), where the superscripts in parenthesis rep-

resent the order of the derivative.
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3.2 Hard Sphere Radius aR

The boundary conditions (2.12) and (2.13) lead to specific behavior of the
screened spherical waves and slope matrix. First, because on the hard spheres
the value and slope functions are energy independent, it is expected that the
slope matrix exhibits a smooth and weak energy dependence. Second, since
the slope function vanishes on the hard spheres, Sa should decay rapidly with
distance.

The degree of localization of the slope matrix may be characterized by the
coordination shell radius dR′R ≡ |R − R′| dependence of Sa

R′L′RL(κ2). Note
that for ω = 0, the unscreened structure constants behave as S0

R′L′RL(0) ∼
1/dl′+l+1

R′R . Any well localized slope matrix should exhibit a significantly faster
decay than S0.

In order to illustrate how Sa and Ṡa depend on the hard sphere radius, we
consider the slope matrix of the body centered cubic (bcc) lattice. These cal-
culations were carried out for ω = 0, i.e., for a band energy ε = −v0. We used
s, p and d orbitals (lmax = 2), and the real space cluster contained the first
137 nearest-neighbor lattice sites. This includes the site at the origin plus 9
coordination shells with dR′R ≈ 0.87, 1.00, 1.41, 1.66, 1.73, 2.00, 2.18, 2.24 and
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Fig. 3.1. The ss element of the bcc slope matrix for ω = 0 plotted as a function of
the hard sphere radius aR and the radius of the coordination shell dR′R (shown by
numbers in units of lattice constant). Note that in panel (a), the scale for dR′R =
0.00a has been divided by 10.
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2.45a, where a is the cubic lattice constant. In the subsequent section, it will
be shown that 9 coordination shells in the bcc structure are sufficient for a
well converged slope matrix in the cluster size.

The L-diagonal elements of Sa
R′L′RL(0) are plotted as functions of aR and

dR′R in Figure 3.1. Since the ss elements (L′ = L = L0 ≡ (0, 0)) have the
longest range, only these matrix elements are included in the figure. The
hard sphere radius is expressed in units of the bcc Wigner−Seitz radius w ≈
0.49a ≈ 1.14si, where si is the inscribed sphere radius. Results are plotted
for 0.1w ≤ aR ≤ 0.8w. Note the scale difference between the four panels
corresponding to different groups of dR′R.

The worst screening is obtained for aR = 0.1w, where the absolute value
of the slope matrix decreases from 1.04 at dR′R = 0 (panel (a)) to 2.3× 10−3

at dR′R = 2.0a (panel (c)) and 3.4 × 10−4 at dR′R = 2.45a (panel (d)).
The convergence is somewhat faster for aR = 0.7w, where the on-site term
of 2.14 decreases to 5.5 × 10−4 and 1.4 × 10−5 at dR′R = 2.0a and 2.45a,
respectively. With further increase of aR, the matrix elements for dR′R ≥ 1.41
start to increase, and the slope matrix becomes less localized. The positive
effect of increasing aR on the localization is even more pronounced in the case
of the first order energy derivative Ṡa

R′L0RL0
(ω)/dω|ω=0 shown in Figure 3.2.
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Fig. 3.2. The first order energy derivative of the ss element of the bcc slope matrix
for ω = 0 plotted as a function of the hard sphere radius aR and the radius of the
coordination shell dR′R (shown by numbers in units of lattice constant).
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Fig. 3.3. The second order energy derivative of the ss element of the bcc slope
matrix for ω = 0 plotted as a function of the hard sphere radius aR and the radius
of the coordination shell dR′R (shown by numbers in units of lattice constant).

For aR = 0.1w, the absolute value of Ṡa changes from 0.10 at dR′R = 0
to 6.3 × 10−3 at dR′R = 2.0a and 9.7 × 10−4 at dR′R = 2.45a, whereas
for aR = 0.7w, the energy derivative decreases from 0.15 at dR′R = 0 to
1.0 × 10−4 at dR′R = 2.0a and 0.2 × 10−5 at dR′R = 2.45a. According to
Figures 3.1 and 3.2, a good localization of Sa and Ṡa can be achieved with
0.40w ≤ aR ≤ 0.75w.

To investigate the energy dependence, in Figures 3.3 and 3.4, we show
the second and fourth order energy derivatives of Sa

R′L0RL0
(ω) calculated at

ω = 0. In these two figures, the scales are identical. A smooth energy depen-
dence requires that the high order derivatives should gradually vanish. It can
immediately be seen from the figures that for aR less than ≈ 0.4w, the higher
order energy derivatives diverge. For these hard sphere radii, the slope matrix
has a strong energy dependence. On the other hand, for aR > 0.5w, both the
second and fourth order derivatives approach zero for shells with dR′R ≥ 2.00.
For instance, for aR = 0.6, the fourth energy derivative |d4Sa

R′L0RL0
/dω4| is

1.6×10−3 at dR′R = 0 and it drops to 4×10−6 at dR′R = 2.00. The best con-
vergence of the energy derivatives is obtained for aR = 0.8, where the on-site
term of the fourth order derivative is 3.8 × 10−5 and less than 1 × 10−6 for
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Fig. 3.4. The fourth order energy derivative of the ss element of the bcc slope
matrix for ω = 0 plotted as a function of the hard sphere radius aR and the radius
of the coordination shell dR′R (shown by numbers in units of lattice constant).

R′ 	= R. Therefore, the bcc slope matrix has short range and smooth energy
dependence for 0.50w ≤ aR ≤ 0.75w, corresponding approximately to

0.57si ≤ aR ≤ 0.85si, (3.19)

and the best behavior is achieved around aR = 0.65w ≈ 0.74si. It was found
[46], that condition (3.19) approximately holds for any crystal structure.

3.3 Real Space Cluster

For the partial waves explicitly included in the formalism, i.e. the low partial
waves with l ≤ lmax, the hard sphere phase shifts αRl(κ2) are given by

cot αRl(κ2) = −nl(κ2, aRl)/jl(κ2, aRl). (3.20)

For the remaining Rl-channels, αRl(κ2) are the proper phase shifts. For high
ls the latter vanish, and at that point the matrix to be inverted in Equation
(3.11) can be truncated. In practice, the l-block of the matrix is truncated at
lmax.
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Table 3.1. The ss elements of the bcc slope matrix calculated at ω = 0 for different
cluster sizes. dR′R is the radius of the cluster, and Ns is the number of sites in the
cluster. Sa

0i is the slope matrix for the ith coordination shell (1.42 is the 3rd shell,
1.66 is the 4th shell and so on).

dR′R 1.42 1.66 1.73 2.00 2.18 2.24 2.45
Ns 27 51 59 65 89 113 137

Sa
00 -2.146048 -2.146081 -2.146182 -2.146185 -2.146185 -2.146185 -2.146185

Sa
01 0.205731 0.205399 0.206237 0.206240 0.206240 0.206240 0.206240

Sa
02 0.074536 0.073510 0.073561 0.073622 0.073622 0.073621 0.073621

Sa
03 0.004867 0.004228 0.004583 0.004585 0.004594 0.004590 0.004590

Sa
04 - 0.000705 0.000999 0.001072 0.001075 0.001066 0.001071

Sa
05 - - -0.002855 -0.002835 -0.002801 -0.002801 -0.002799

Sa
06 - - - -0.000560 -0.000550 -0.000554 -0.000552

Sa
07 - - - - -0.000033 -0.000035 -0.000031

Sa
08 - - - - - 0.000019 0.000018

Sa
09 - - - - - - -0.000014

The screened spherical waves have short range, which means that the
slope matrix can be calculated in real space. For each site R, we set up a
finite cluster formed by the first few nearest-neighbor lattice sites, and invert
the matrix from the right hand side of Equation (3.11) on that cluster. For
positive energies the screened spherical waves for a finite cluster exhibit surface
resonances. To cure this problem a concave hard sphere, so called Watson
sphere, should be included, which encloses the cluster of hard spheres. The
radius of this sphere is chosen to be somewhat larger than the radius of the
cluster plus the largest aR. The maximum orbital quantum number on the
Watson sphere is lwmax. Usually, lwmax =6−8 is sufficient for positive energies
ω ≤ 5.

We investigate the convergence of the slope matrix in terms of the
cluster size by calculating the bcc slope matrix for clusters consisting of
Ns = 27, 51, 59, 65, 89, 113 and 137 nearest-neighbor sites. These calcula-
tions were performed for lmax = 2, lwmax = 8, using a hard sphere radius
of aR = 0.70w ≈ 0.80si. In the previous section, we have seen that this choice
leads to well localized screened spherical waves. The energy was fixed at ω = 0.

The ss elements of the bcc slope matrix are listed in Table 3.1. First of
all, we can see that clusters containing more than 65 sites lead to almost
vanishing slope matrix elements at the clusters boundaries. For clusters of
27, 51 and 59 sites, there is still a sizable contribution coming from the farthest
coordination shell. Because of this, small clusters are not suitable to produce
a well converged slope matrix. It is only for clusters larger than 65 atoms,
where the matrix elements remain almost unchanged with increasing Ns. A
similar conclusion can be drawn from the cluster size dependence of the first
energy derivative of the slope matrix, listed in Table 3.2.
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Table 3.2. The first order energy derivative of the ss elements of the bcc slope
matrix calculated at ω = 0 for different cluster sizes. For notation see caption for
Table 3.1.

dR′R 1.42 1.66 1.73 2.00 2.18 2.24 2.45
Ns 27 51 59 65 89 113 137

Ṡa
00 0.147962 0.147951 0.147925 0.147923 0.147923 0.147923 0.147923

Ṡa
01 0.013977 0.013861 0.014056 0.014057 0.014057 0.014057 0.014057

Ṡa
02 0.007630 0.007332 0.007347 0.007368 0.007368 0.007368 0.007368

Ṡa
03 0.000679 0.000479 0.000586 0.000587 0.000590 0.000588 0.000588

Ṡa
04 - 0.000052 0.000137 0.000163 0.000164 0.000161 0.000162

Ṡa
05 - - -0.000256 -0.000259 -0.000250 -0.000250 -0.000249

Ṡa
06 - - - -0.000105 -0.000103 -0.000105 -0.000104

Ṡa
07 - - - - -0.000003 -0.000004 -0.000002

Ṡa
08 - - - - - 0.000003 0.000003

Ṡa
09 - - - - - - -0.000002

It has been found that for most of the crystal structures, clusters of 60−90
sites are sufficient to obtain slope matrices with high accuracy. Of course, the
actual size depends on the screening sphere radii. For an optimal set of aR

and a large lwmax the cluster size may be decreased further without loosing
significantly from the accuracy.

3.4 Numerical Determination of the Slope Matrix

In the previous section, we have seen that with properly chosen hard sphere
radii, the high order energy derivatives of the EMTO slope matrix are negligi-
ble. This suggests that a polynomial expansion of Sa(ω) around ω0 might be
used to calculate the slope matrix for an arbitrary real or complex energy. In
the following, we discuss separately systems which have a small characteristic
valence bandwidth (≤ 1.0 Ry) and systems with a large bandwidth.

3.4.1 Systems with Narrow Bandwidth

For a self-consistent calculation, the slope matrix is required within an energy
window that includes the valence band plus ∼ 0.2 Ry above the Fermi level,
i.e., for energies εb ≤ ε ≤ εF +0.2 Ry, where εb is an energy slightly below the
bottom of the valence band. Energies above the Fermi level are needed when
searching for the Fermi level for the next iteration. In systems with deep-lying
core states and a narrow valence band structure, we can take εF − εb ≈ 1.4
Ry. This is the case for most of the middle and late transition metals, simple
metals, etc., and their alloys at ambient conditions. Since εF − v0 is typically
around 0.6 ± 0.2 Ry, for such systems the slope matrix should be calculated
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for −0.8 Ry ≤ ω/w2 ≤ 0.8 Ry. Using an average w2 = 10 Bohr2, the energy
interval of interest turns out to be ±8 around ω = 0. For these energies, we
expand the slope matrix in Taylor series around ω0, viz.

Sa(ω) = Sa(ω0) +
1
1!

dSa(ω)
dω

(ω − ω0) +
1
2!

d2Sa(ω)
dω2

(ω − ω0)2 + .... (3.21)

where, for simplicity, we have dropped the RL subscripts. The first and higher
order energy derivatives are computed using the analytic expression (3.18). In
practice, the expansion center ω0 is chosen somewhere close to 0.

Fig. 3.5. Real part of the ss element of the slope matrix Sa(ω) calculated for the
fcc structure.

To test the accuracy of the above Taylor expansion we consider the slope
matrix in the complex energy plane, where Sa(ω) will have both real and
imaginary components. In Figures 3.5 and 3.6, we plotted the real and
imaginary parts of the ss element of the fcc slope matrix (i.e. elements
with L = L′ = (0, 0)) as a function of ω for an interval corresponding to
−10 ≤ Re(ω) ≤ 10 and 0 ≤ Im(ω) ≤ 10. Since

Re[Sa(x + iy)] = Re[Sa(x − iy)], (3.22)

and



3.4 Numerical Determination of the Slope Matrix 49

Fig. 3.6. Imaginary part of the ss element of the slope matrix Sa(ω) calculated for
the fcc structure.

Im[Sa(x + iy)] = −Im[Sa(x − iy)], (3.23)

where x = Re(ω) and y = Im(ω), in figures results are shown only for positive
Im(ω). The reason for showing only the ss sub-block is that this is the largest
and the most delocalized one within the real space. The fcc slope matrix
was calculated on a cluster containing the 79 nearest-neighbor lattice sites
using s, p and d orbitals and aR ≈ 0.77si. The real space slope matrix was
transformed to the reciprocal space by means of Equation (2.35). In figures,
the slope matrix is shown for the k = (0, 0, 0) point from the Brillouin zone.
These figures confirm the smooth energy dependence of the slope matrix in
the complex energy plane. Note that the imaginary part of Sa(ω) vanishes for
Im(ω) = 0.

The accuracy of the Taylor expansion (3.21) for the slope matrix can
be established by computing the relative deviation between the exact value
(Sexact) from Figures 3.5 and 3.6 and those calculated using the expansion
(Sexpan). The relative error, defined as [91]

{[Re(Sexact − Sexpan)]2 + [Im(Sexact − Sexpan)]2}1/2

{[Re(Sexact)]2 + [Im(Sexact)]2}1/2
, (3.24)
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Fig. 3.7. The relative error of expansion (3.21) for the ss element of the fcc slope
matrix using six derivatives. The expansion center is ω0 = (0, 0).

is plotted in Figure 3.7 as a function of ω for ω0 = (0, 0). We observe a
gradually increasing error with increasing |ω|. The expansion reproduces the
calculated slope matrix with an accuracy better than ∼ 1% within a radius
of ∼ 5 around the expansion center. For a radius of ∼ 10 the accuracy of the
expansion is still below 5%. Therefore, for narrow bands (i.e. for |ω| ≤ 8) a
6th order Taylor expansion around ω0 = (0, 0) is suitable to reproduce with
high accuracy the slope matrix. Note that around ω = (−10, 10) the relative
error in Figure 3.7 reaches one third of the exact value.

3.4.2 Systems with Wide Bandwidth

In systems with a large characteristic bandwidth, relative to v0 and the Fermi
level, problems may occur in the numerical determination of the slope matrix
by the Taylor expansion (3.21). First, for v0 lying far below the Fermi energy,
i.e. for εF − v0 ∼ 1.0 Ry or larger, the Taylor expansion (3.21) diverges
for energies near and above εF . The second problem arises for bands, where
εb 
 v0. Then the Taylor expansion breaks down for energies near the bottom
of the valence band. Such a situation occurs, e.g., in the case of early transition
metals, some of the p metals, light actinides, oxides and nitrides, etc., where
the high-lying core states, the so called semi-core states are treated like the



3.4 Numerical Determination of the Slope Matrix 51

−2.0 −1.5 −1.0 −0.5 0.0
energy (Ry)

−30

−20

−10

0

10

20

30

Sa 00
,0

0 
(k

=
0)

S
S

1

S
2

S
3

S
4

−0.6 −0.4 −0.2 0.0
0

0.25

0.5

fcc 1 atom/cell
w=3.76 Bohr
v0=−0.50 Ry

Fig. 3.8. The ss element of the fcc slope matrix and its first four energy derivatives
calculated in the k = (0, 0, 0) point from the Brillouin zone. The matrix elements
are plotted as functions of energy. The insert shows the behavior near the Fermi
level at 0 Ry. S is the slope matrix calculated from the Taylor expansion (3.21), and
Si is the ith term from the Taylor expansion (see text). The Wigner−Seitz radius
corresponds to Y, and v0 is the constant potential.

valence states3. In these systems, the semi-core states are located with a few
Rydbergs below the Fermi level. A typical energy window for these elements is
approximately −2.5 Ry below v0 and 1 Ry above v0. Both the above problems
become more pronounced in solids with a large w (w2 > 10 Bohr2).

As an example, we consider Y with atomic number Z = 39. Near the
equilibrium volume, corresponding to Wigner−Seitz radius of 3.76 Bohr, the
4p6 semi-core states are located with ∼ 1.8 Ry below the Fermi level. On
the energy scale with origin pinned to the Fermi level, the energy window
of interest is between εb ≈ −2.0 Ry and 0.2 Ry. To understand how the
slope matrix behaves within this energy interval, we make use of the fcc
slope matrix calculated at the Γ point from the reciprocal space and set up a
fourth order expansion around ω0 = 0. The slope matrix in ω0 and its first four
derivatives were calculated in a similar way to that in the preceding section.
The constant potential was fixed at −0.5 Ry, which is a typical v0 for early
transition metals (relative to the Fermi level). In the following, like in Sections
3.2 and 3.3, we concentrate only on the diagonal L′ = L = L0 element of the

3 The energy levels of the core states lying close to the valence states might be
altered significantly by the crystal potential. These states are usually refereed to
as the semi-core states.
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slope matrix. We use the notation S for the ss element calculated from the
Taylor expansion, and Si for the energy dependent terms from the Taylor
series, i.e.

S = Sa
RL0RL0

(ω0,k0) + S1 + S2 + S3 + S4,

Si =
1
i!

diSa
RL0RL0

(ω0,k0)
dωi

(ω − ω0)i, (3.25)

where Sa
RL0RL0

(ω0,k0) ≈ 0.0003 (see Figure 3.5). Obviously, for a convergent
series, Si should decrease with the order of derivative. For the present case,
S and Si for i =1−4 are shown in Figure 3.8 as a function of energy. We
observe that near v0 the expansion converges rapidly. However, for energies
well below v0, the Sis increase when going from the first order to the fourth
order derivative. This leads to the incorrect upturn of S with decreasing energy.
Note also the slow convergence of the Taylor expansion near the Fermi level
(insert), which is a consequence of to the relatively large volume.

The most straightforward way to improve the convergence of the expan-
sion for a large energy window is to include a second Taylor expansion around
a large negative ω. However, joining the two Taylor expansions usually cre-
ates problems in alloys, where the band gap between the valence and semi-
core states contains other states. Alternatively, we may introduce additional
screening spheres in the system. By this, we (a) improve on the localization of
the screened spherical waves, and (b) reduce the interstitial region, and thus
the characteristic length scale of the system.

Extra Screening Sites
In close-packed systems, the potential spheres can usually be chosen in such
a way that the error coming from the potential sphere overlaps is small. In
a simple fcc lattice, for instance, there is one hard sphere and one potential
sphere per primitive cell. The optimal overlapping muffin-tin potential is cen-
tered on the lattice site and it has a radius close to the average atomic radius.
This choice gives the minimal muffin-tin discontinuity vR(sR)−v0. We denote
by A the lattice sites belonging to such a parent lattice. The kink cancelation
Equation (2.34) for this system has the following matrix form

Ka
AAga

AA ≡ aA[Sa
AA − Da

A]ga
AA = IAA, (3.26)

where IAA is the NA(lmax + 1)2 × NA(lmax + 1)2 unitary matrix, NA is the
number of atomic sites per primitive cell (i.e. NA = 1 for the original fcc
lattice). For the sake of simplicity, in this section the L subscripts are omitted
and the matrix multiplication is implied.

Next, we introduce NE additional hard spheres in the system centered
on the E interstitial positions. Then the average Wigner−Seitz radius be-
comes w′ = (1 + NE)−1/3w. For instance, in the case of fcc Y, we put three
hard spheres in the interstitial positions (1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and
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Fig. 3.9. The ss element of the slope matrix and its first four energy derivatives
calculated at the k = (0, 0, 0) point from the Brillouin zone for an fcc lattice with
basis. The four sites are located in the (0, 0, 0), (1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and
(3/4, 3/4, 3/4) positions from the unit cell. For notation see caption for Figure 3.8.

(3/4, 3/4, 3/4) from the fcc lattice, so we arrive to the bcc packing with
w′ = 2.37 Bohr. For this system, we calculated the slope matrix and its
derivatives at ω0 = 0 using real space clusters of 89 sites centered on the A
and E sites. We used lmax = 2, lwmax = 8 and the new hard sphere radii were
bR = 0.70w′. After the Bloch sum, for the on-site part of the slope matrix
in the Γ point, we set up a fourth order Taylor expansion. The new S and
Si parameters, obtained according to Equation (3.25), are shown in Figure
3.9. A direct comparison between this figure and Figure 3.8 is not possible,
because the hard sphere radii used to generate the two sets of data are differ-
ent. Nevertheless, from Figure 3.9 we can see that the Taylor expansion for
the new slope matrix converges well for any energy. The fourth order term is
already negligible, even for energies near εb and for energies close to the Fermi
level. This is a clear improvement compared to Figure 3.8.

When introducing the new screening spheres, we would like to keep the
optimized overlapping potential in the original form. This can be done if we
let the radius of the spherical potentials on the E sites vanish. For sE → 0,
the logarithmic derivative on the E potential sphere and its energy derivative
become

D{φEl(ε, sE)} = D{jl(κsE)} → l, (3.27)
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and

Ḋ{φEl(ε, sE)} = Ḋ{jl(κsE)} → 0. (3.28)

The logarithmic derivative at the hard sphere radius bE is calculated from
Equation (2.27) as

Db
El(ε) = −f b

El(κ
2, sE)

gb
Rl(κ2, sE)

l −D{f b
El(κ

2, sE)}
l −D{gb

El(κ2, sE)} =
t1El(κ

2)
t3El(κ2)

, (3.29)

where we have used the properties of the Bessel and Neumann functions
(Equations (B.22) and (B.23)) near the origin. The kink cancelation equa-
tion for the new system has the form(

Kb
AA Kb

AE

Kb
EA Kb

EE

)(
gb

AA gb
AE

gb
EA gb

EE

)
=
(

IAA 0
0 IEE

)
(3.30)

with Kb = b(Sb−Db). Here Sb is the slope matrix for the A+E lattice and Db

is the proper logarithmic derivative for the A sites and reduces to (3.29) for
the E sites. IEE is the NE(lmax + 1)2 ×NE(lmax + 1)2 unitary matrix. When
sufficient numbers of E sites are introduced, the new slope matrix converges
well even for a very large bandwidth. The solution of Equation (3.30) gives the
charge density around the A sites. Note that the radial Schrödinger equation
(2.20) and the single-electron potential (2.70) have to be solved only for the
A sites, but the kink cancelation equation contains both the A and E sites.
In practice, this limits NE to a relatively small number.

Before closing this section, we show that Equation (3.30) is equivalent to
the original problem (3.26). For this, we explicitly write the elements of the
new kink matrix

Kb
AA = bA[Sb

AA − Db
A] , Kb

AE = bASb
AE

Kb
EA = bESb

EA , Kb
EE = bE [Sb

EE − Db
E ]. (3.31)

Since Db
E does not depend on the potential, the kink cancelation may be

solved for gb
AA using the equation

Kb
AAgb

AA + Kb
AEgb

EA = IAA (3.32)

obtained from Equation (3.30). In addition to the AA block, this expression
contains gb

EA that couples the original atomic sites A with the additional
screening sites E. From Equation (3.30) we have

Kb
EAgb

AA + Kb
EEgb

EA = 0, (3.33)
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so

gb
EA = −(Kb

EE)−1Kb
EAgb

AA = −[Sb
EE − Db

E ]−1Sb
EAgb

AA. (3.34)

After eliminating gb
EA from Equations (3.32) and (3.34), we obtain

[Kb
AA − Kb

AE(Kb
EE)−1Kb

EA]gb
AA = IAA. (3.35)

Using Equation (3.31), the final KKR problem becomes

bA[S̃b
AA − Db

A]gb
AA = IAA, (3.36)

where

S̃b
AA = Sb

AA − Sb
AE [Sb

EE − Db
E ]−1Sb

EA. (3.37)

Equation (3.36) is formally equivalent to the original KKR problem (3.26)
written for the lattice without extra hard spheres. The slope matrix for the
reduced system is obtained from the slope matrix of the A+E system by the
potential independent transformation (3.37), where Db

E is given in Equation
(3.29). Note that Equations (3.26) and (3.36) are given in different represen-
tations. Writing the Dyson equation (3.11) for the combined A + E system
and for hard sphere radii bR, we find

−
(

S0
AA + t1A/t3A S0

AE

S0
EA S0

EE + t1E/t3E

)(
t3ASb

AA − t1At3A t3ASb
AE

t3ESb
EA t3ESb

EE − t1Et3E

)
=
(

IAA 0
0 IEE

)
. (3.38)

Eliminating the off-diagonal blocks from the first matrix, and using the fact
that for the original lattice with hard spheres bR we have

− (
S0

AA + t1A/t3A
) (

t3AS̃b
AA − t1At3A

)
= IAA, (3.39)

we arrive at Equation (3.37). By this, we have demonstrated that Equation
(3.30) written for the system formed by the A + E sites is equivalent to the
original Equation (3.26). However, in order to avoid the convergence problems
near the energies far from v0, one should always use (3.30) rather than (3.26).
This is because, the screening is improved due to the extra hard spheres
and as a consequence the energy derivatives of Sb are computed with higher
numerical accuracy than those for the parent lattice.
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3.4.3 Two-center Expansion

In the previous section, we have shown that accurate energy derivatives can
improve the Taylor expansion. Therefore, we could remove the bad behavior at
energies around the bottom of the band by setting up the higher order energy
derivatives in a more accurate way. Increasing the size of the real space cluster
is not a feasible solution, because the number of surface resonances increase
with the surface area. Another solution would be to generate the higher order
derivatives using data calculated for a different energy. This can be formulated,
e.g., as a two-center expansion. We consider two distinct energy points ω0 and
ω1 where the value and derivatives of Sa are known. We expand Sa(ω) in such
a way that the expansion should reproduce exactly the first n derivatives of
Sa in ω0 and the first m derivatives of Sa in ω1. Mathematically, this can be
formulated as

Sa(ω) ≈ Sn,m(ω; ω0, ω1)

= a0 +
1
1!

a1(ω − ω0) +
1
2!

a2(ω − ω0)2 + ... +
1
n!

an(ω − ω0)n

+
1

(n + 1)!
an+1(ω − ω0)n+1 +

1
(n + 2)!

an+2(ω − ω0)n+2 + ...

+
1

(n + m)!
an+m+1(ω − ω0)n+m+1, (3.40)

where, for simplicity, we have dropped the RL subscripts. Obviously, for the
first (n + 1) coefficients we have

ai =
diSa(ω0)

dωi
for i = 0, 1, 2, ..., n. (3.41)

The last (m + 1) coefficients are obtained from the conditions

Sn,m(ω1; ω0, ω1) = Sa(ω1),
dSn,m(ω;ω0, ω1)

dω
|ω=ω1 =

dSa(ω)
dω

|ω=ω1 , (3.42)
...

dmSn,m(ω;ω0, ω1)
dωm

|ω=ω1 =
dmSa(ω)

dωm
|ω=ω1 .

These conditions lead to a system of linear equations for an+1, an+2, .... Solving
these equations, we obtain the (n + m + 1)th order expansion for Sa.

The two-center expansion we demonstrate in the case of Y in fcc lattice.
The two slope matrices and the first four energy derivatives were calculated
for ω0 = 0 and ω1 = −30 using lmax = 2, lwmax = 8, a real space cluster of 79
sites and aR = 0.70w. The Wigner−Seitz radius and constant potential were
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Fig. 3.10. The ss element of the fcc slope matrix and its four energy derivatives
calculated in the k = (0, 0, 0) point from the Brillouin zone. For notation see caption
for Figure 3.8.

set to 3.76 Bohr and εF −v0 = 0.5, respectively. In Figure 3.10, we show S, S4,
S6, S8 and S9, calculated from a4, a6, a8 and a9 according to Equation (3.25).
For comparison, we also included in the figure the slope matrix obtained from
the fourth order Taylor expansion (Figure 3.8). We can immediately see that
the 9th order expansion is highly accurate for any energy. The 8th and 9th
order terms are already negligible over the entire energy region. The large
diverging derivative terms obtained from a fourth order Taylor expansion (see
also Figure 3.8) are canceled by the 5th, 6th and 7th order terms. In fact, it
has turned out that using a two-center expansion with n ≈ m ≈ 6, for an
average w2 ≈ 10 Bohr2 one can accurately map an energy window as large as
4-6 Ry below and ∼ 0.5 Ry above the Fermi level.
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Full Charge Density Technique

According to the Hohenberg−Kohn variational principle [1], the total energy
functional is stationary for small density variations around the equilibrium
density. Therefore, a reasonably accurate trial density is suitable to determine
the total energy of the system within an error which is second order in the
difference between the trial and equilibrium charge densities. This recognition
has led to the elaboration of the Full Charge Density (FCD) technique [44, 45,
48, 49] as an alternative to the full-potential methods. The FCD technique is
designed to maintain high efficiency but at the same time to give total energies
with an accuracy similar to that of the full-potential methods. It assumes the
knowledge of just the spherically symmetric part of the potential but at the
same time makes use of the full non-spherically symmetric charge density.
In recent years it turned out that results obtained from such a technique
compare very well to those of full potential methods. Today many research
groups adopt this technique in combination with a muffin-tin type of method
rather than the formally exact but very demanding full-potential approach
[42, 43, 44, 45, 77, 92, 93].

The principal idea behind the FCD technique is to use the total charge
density to compute the total energy functional given by Equations (1.9) and
(1.12). The total density can be taken from a self-consistent calculation em-
ploying certain approximations. In the present case we use the EMTO total
charge density (2.47) written in the one-center form (2.48). In order to be able
to compute the energy components from Equation (1.9) we need to establish a
technique to calculate the space integrals over the Wigner−Seitz cells. For this
we adopt the shape function technique [44]. The interaction energy between
remote Wigner−Seitz cells is taken into account through the Madelung term.
A particularly delicate contribution to this energy arises from Wigner−Seitz
cells with overlapping bounding spheres. This energy is calculated by the so
called displaced cell technique [94, 95].

The shape function technique will be introduced in Section 4.1. Here we
shall present an algorithm which is suitable for determining the shape function
for an arbitrary crystal structure. Using the shape function formalism, in Sec-
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tion 4.2 we shall give the expression for the FCD total energy. The displaced
cell technique will be presented in Section 4.2.5. At the end of this chapter,
the convergence properties of the energy components will be discussed.

4.1 Shape Function Technique

There is a large number of numerical techniques used to carry out the 3-
dimensional (3D) integrations over the Wigner−Seitz cells [27, 48, 96, 97, 98].
Here we employ the shape function or truncation function technique originally
introduced by Andersen and Woolley [96]. This approach has also been im-
plemented in different full-potential Korringa−Kohn−Rostoker multiple scat-
tering methods [22, 93].

By means of the shape function any integral over the cell can be trans-
formed into an integral over the sphere which circumscribes the cell. The
shape function is a 3D step function defined as 1 inside the Wigner−Seitz cell
(ΩR) and zero otherwise, i.e.

σR(rR) ≡
{

1 for rR ∈ ΩR

0 otherwise . (4.1)

At each point on the radial mesh rR the shape function is expanded in terms
of real harmonics

σR(rR) =
∑
L

σRL(rR)YL(r̂R). (4.2)

The functions

σRL(rR) ≡
∫

σR(rR)YL(r̂R)dr̂R (4.3)

are the partial components of the shape function. They constitute the needed
description of the Wigner−Seitz cell and contain all dependence of the shape
function on the cell shape.

Once the partial components have been evaluated for a given cell, any in-
tegral over the cell can be transformed into an integral over the sphere which
circumscribes the cell. We denote by sc

R the radius of the smallest circum-
scribed or bounding sphere centered on lattice site R. Then the integral over
the Wigner−Seitz cell ΩR of an arbitrary functional of the electron density
K([n]; rR) can be expressed as

∫
ΩR

nR(rR) K([n]; rR) drR =
∫

sc
R

σR(rR) nR(rR) K([n]; rR) drR. (4.4)

We expand the functions σR(rR) nR(rR) in terms of real harmonics, viz.



4.1 Shape Function Technique 61

σR(rR) nR(rR) =
∑
L

ñRL(rR)YL(r̂R). (4.5)

The radial function ñRL(rR) represents the YL(r̂R) projection of the charge
density on a spherical surface that lies inside the Wigner−Seitz cell. In terms
of the partial components of the shape function and charge density, the latter
can be expressed as

ñRL(rR) =
∑

L′,L′′
CLL′L′′nRL′(rR)σRL′′(rR), (4.6)

where CLL′L′′ are the real Gaunt coefficients. Now, if K([n]; rR) is also ex-
panded in terms of the real harmonics, the integral over the Wigner−Seitz
cell has a particularly simple expression

∫
ΩR

nR(rR) K([n]; rR) drR =
∑
L

∫ sc
R

0

ñRL(rR)KL(rR)r2
RdrR, (4.7)

where

KL(rR) ≡
∫

K([n]; rR)YL(r̂R)dr̂R (4.8)

is the YL(r̂R) projection of K([n]; rR) on the spherical surface with radius rR.

4.1.1 Numerical Calculation of the Shape Function

The partial components of the shape function are calculated from Equation
(4.3), or equivalently from

σRL(rR) =
∫
SR(rR)

YL(r̂R)dr̂R (4.9)

where SR(rR) represents that part of the spherical surface of radius rR which
lies inside the Wigner−Seitz cell.

In Table 4.1, we list the inscribed, circumscribed and atomic sphere radii
for the body centered cubic (bcc), face centered cubic (fcc) and simple cubic
(sc) lattices. Obviously, inside the inscribed sphere the surface integration
in (4.9) is performed on the complete solid angle and thus for the partial
components we get

σRL(rR) =
√

4π δl0 for rR ≤ si
R. (4.10)

For radii larger than the circumscribed sphere SR(rR) disappears and we have

σRL(rR) = 0 for rR ≥ sc
R. (4.11)
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Table 4.1. The inscribed (si), circumscribed (sc) and atomic radii (w) for bcc, fcc
and sc primitive unit cells. The radii are expressed in units of lattice constant a.

bcc fcc sc

si 0.433013 0.353553 0.5
sc 0.559017 0.5 0.866025
w 0.492373 0.390796 0.620350

To calculate the partial shape functions for intermediate radii, we divide the
Wigner−Seitz cell into tetrahedra. This is described in more detail below.
Then the surface integral from Equation (4.9) may also be divided into solid
angles corresponding to different tetrahedra and the total shape function is
obtained by summing up the individual contributions. Since many of these
tetrahedra will be equivalent the surface integral has to be carried out only
for a few non-equivalent tetrahedra.

The Wigner−Seitz cell is a convex polyhedron bounded by Nf planes
drawn perpendicularly at the midpoints of the vectors connecting neighboring
lattice sites. This polyhedron can be divided into Nf pyramids, each of them
having as base one of the Nf facets and apex set on the actual lattice site. The
base of the pyramid p (p runs from 1 to Nf ) is a polygon with Ne(p) sides. In
the case of fcc lattice, we have Nf = 12 and all the polygons are quadrilaterals
(i.e., Ne(p) = 4). For bcc lattice, eight out of the Nf = 14 polygons are
hexagons and six are quadrilaterals. For sc lattice, we have Nf = 6 and all
the polygons are squares.

The line going through the apex and perpendicular to the base of the
pyramid together with the 2 × Ne(p) edges divide the pyramid into Ne(p)
tetrahedra. Each of these tetrahedra has the height of the pyramid and two
of the three lateral facets are perpendicular to the base. Totally there are
Nt =

∑Nf

p=1 Ne(p) such tetrahedra, but usually only a few of them are non-
equivalent. We denote by Nn the number of non-equivalent tetrahedra and
by Ne(t) the number of tetrahedra of type t, i.e.

∑Nn

t=1 Ne(t) = Nt. For close-
packed crystals, usually we have Nn 
 Nt. For instance, for bcc, fcc and sc
lattices there are 2, 2 and 1 non-equivalent tetrahedra, respectively.

According to the above division, the total shape function is obtained as

σRL(rR) =
Nn∑
t

Ne(t)∑
i

{∑
m′

Dl
m m′(αi, βi, γi)σt

Rlm′(rR)

}
, (4.12)

where Dl
m m′ are the matrix elements of finite rotations defined in Appendix

B. For each tetrahedron i we choose a local coordinate system. The origin
of this system is set on the apex (i.e. the actual lattice site), the x axis is
oriented along the edge normal to the base and the xy plane is chosen to be
one of the facets which is perpendicular to the base. In Equation (4.12), αi, βi
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and γi are the Euler angles of this local coordinate system for tetrahedron i
relative to the original (common) coordinate system.

The partial shape functions for the tetrahedron t are calculated within the
the local coordinate system, viz.

σt
Rlm(rR) =

∫ ϕt
max

ϕt
min

{∫ θt
max(ϕ)

θt
min

(ϕ)

Ylm(θ, ϕ) sin θdθ

}
dϕ. (4.13)

The integration intervals for ϕ and θ are specified by ϕt
min and ϕt

max and by
θt

min(ϕ) and θt
max(ϕ), respectively, which can easily be determined from the

geometry of the tetrahedron. The integration over θ is performed analytically
using the procedure proposed by Stefanou et al. [98]. From expressions (B.10)
and (B.11) the θ-integration becomes

∫
Ylm(θ, ϕ) sin θdθ =

1√
4π

ym(ϕ)
l∑

k≥(l+|m|)/2

H
|m|
lk F

2k−l−|m|
|m|+1 (θ) (4.14)

where ym(ϕ) and H
|m|
lk are defined in Appendix B. The new integrals of θ,

F q
p (θ) ≡

∫
sinp θ cosq θdθ, (4.15)

can be computed from the recurrence relations

(p + q)F q
p (θ) = (p − 1)F q

p−2(θ) − sinp−1 θ cosq+1 θ

= (q − 1)F q−2
p (θ) + sinp+1 θ cosq−1 θ (4.16)

with the initial values

F 0
0 (θ) = θ, F 0

1 (θ) = − cos θ,

F 1
0 (θ) = sin θ and F 1

1 (θ) = −1
2

cos2 θ. (4.17)

From Equation (4.14) for the partial shape functions (4.13) we obtain

σt
Rlm(rR) =

1√
4π

l∑
k≥(l+|m|)/2

H
|m|
lk

∫ ϕt
max

ϕt
min

ym(ϕ)

×
{

F
2k−l−|m|
|m|+1

(
θt

max(ϕ)
)− F

2k−l−|m|
|m|+1

(
θt

min(ϕ)
)}

dϕ. (4.18)
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Fig. 4.1. The partial components of the bcc shape function for (l, m) =
(0, 0), (4, 0), (4, 4), (6, 0), (6, 4), (8, 0) and (8, 4) as functions of the radius r (in units
of lattice constant).
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Fig. 4.2. The partial components of the fcc shape function for (l, m) =
(0, 0), (4, 0), (4, 4), (6, 0), (6, 4), (8, 0) and (8, 4) as functions of the radius r (in units
of lattice constant).
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Fig. 4.3. The partial components of the sc shape function for (l, m) =
(0, 0), (4, 0), (4, 4), (6, 0), (6, 4), (8, 0) and (8, 4) as functions of the radius r (in units
of lattice constant).

The integration over ϕ is carried out using a numerical integration method.
Equations (4.16)−(4.18) together with Equation (4.12) are suitable to com-
pute the shape function of an arbitrary crystal structure with a high accuracy
and efficiency.

In Figures 4.1−4.3 we show some of the partial components of the shape
functions for the bcc, fcc and sc structures, respectively. The shape functionals
are shown as functions of the radial distance r expressed in units of the cubic
lattice constant a. Apart from the spherical component σ(0,0)(r), all the other
terms are zero inside the inscribed sphere.

The partial shape functions have kinks at the points where the sphere of
radius r passes through a new facet of the polyhedron. This can be seen, for
instance, in Figure 4.1, where for r = 0.5a the sphere touches the square facets
of the bcc polyhedron. Discontinuities in the higher order derivatives appear
at the points where the sphere passes through a new edge and vertex of the
polyhedron. This happens for r = 3

√
2/8, r =

√
6/6,

√
3/4 and r =

√
2/2 in

bcc, fcc and sc lattices, respectively. In order to ensure the required accuracy
in the numerical integration over the radial mesh, these points should be taken
as mesh points.

4.1.2 The l-convergence of the Shape Function

In Equation (4.2), the number of partial shape functions is infinite. In practice,
however, the l-summation has to be truncated at a reasonably low lsmax. Usu-
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Fig. 4.4. The relative errors between the volumes of the bcc, fcc and sc
Wigner−Seitz cells and the corresponding inscribed spheres as functions of the max-
imum l used in expansion (4.2).

ally, lsmax is chosen to be less than ∼ 30−40 but significantly larger than lhmax,
which is the l-truncation of the one-center expansion of the charge density,
i.e. the largest l in expansion (2.48). Then, the l-truncation in Equation (4.5)
will be lsmax + lhmax ≈ lsmax, which also gives the maximum number of terms
included in integrals such as the one from the right hand side of Equation
(4.7).

The shape function calculated from Equation (4.2) oscillates strongly
as a function of lsmax and its convergence towards the exact step function
(4.1) is rather slow. To illustrate this, we consider the volume between the
Wigner−Seitz cell and the inscribed sphere

ΔΩi ≡ 4πw3/3 − 4π(si)3/3. (4.19)

This quantity may also be calculated as

∫
sc

σ(r) σ(r) dr −
∫

si

σ(r) σ(r) dr =
∑
L

∫ sc

si

σ2
L(r) r2 dr ≡

lsmax∑
l

dl,(4.20)

where for σ(r) we used expansion (4.2) truncated at lsmax. Obviously, when
lsmax → ∞ we have

∑lsmax

l dl → ΔΩi. Figure 4.4 shows the relative error
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δΔΩi(lsmax) = (ΔΩi −
lsmax∑

l

dl)/ΔΩi (4.21)

as a function of lsmax. As can be seen, for all three cubic structures the relative
errors are still very large (∼ 5%) for lsmax = 30. On the other hand, the partial
components σL(r) exhibit several oscillations within the interval si ≤ r ≤ sc

and the number of oscillations increases with the orbital quantum number (see
Figures 4.1−4.3). Therefore, the quantities derived from the shape function by
integrations like in Equation (4.4) or (4.7) are expected to show a faster lsmax

convergence compared to δΔΩi(lsmax). This will be demonstrated in Section
4.2.6.

4.2 The FCD Total Energy

Our aim is to evaluate the total energy functional from Equations (1.9) and
(1.12) using the total charge density obtained from a self-consistent EMTO
calculation. We assume that the total density is decomposed into cell con-
tributions according to Equation (2.47) and within each unit cell it has the
one-center form (2.48). First, in Etot we separate the kinetic energy, Ts, the
exchange-correlation energy, Exc, and the electrostatic energy, Ec. The latter
is given by

Ec[n] =
∫ ∫

n(r′)n(r)
|r − r′| dr′dr

+
∫ (

−
∑
R

2ZR

|r − R|

)
n(r)dr +

∑
RR′

′ ZRZR′

|R − R′| , (4.22)

where the prime indicates that only terms with R 	= R′ are included in the
sum. Next, Ec is split into the intra-cell Fintra and inter-cell Finter contri-
butions. The prior is due to the charges inside a Wigner−Seitz cell and the
latter is the interaction between different cells, which is commonly referred to
as the Madelung energy. According to this division, the total energy becomes

Etot = Ts[n] +
∑
R

(FintraR[nR] + ExcR[nR]) + Finter[n], (4.23)

where we point out that the intra-cell and exchange-correlation energies de-
pend only on the charge density within the actual cell1, whereas Finter depends
on the charge distributions around different cells and Ts is a nonlocal func-
tional of the density. In the following, we describe how the different energy
contribution to Etot are calculated within the FCD scheme.
1 In fact, within a gradient level approximation, the exchange-correlation energy

also depends on the electron density slightly beyond the cell boundary needed to
compute the density gradient.
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4.2.1 Kinetic Energy

Since the kinetic energy is an unknown functional of the density, its direct eval-
uation from n(r) is not feasible. On the other hand, using the single-electron
Kohn−Sham equations (1.3), Ts[n] can be derived from the self-consistent
single-electron energies and Kohn−Sham potential. Within the EMTO for-
malism from Equation (1.10) we obtain

Ts[n] =
1

2πi

∮
εF

z G(z) dz −
∑
R

∫
ΩR

vmt(rR)nR(rR)drR. (4.24)

The first term from the right hand side is the sum of the single-electron
energies and G(z) is given in Equation (2.46). In the second term, vmt(rR)
is the optimized overlapping muffin-tin potential. Using Equation (2.1), this
term can be recast into the following simple form

−
∑
R

√
4π

∫ sR

0

[vR(rR) − v0]nRL0(rR)r2
RdrR − v0Ne, (4.25)

where Ne is the total number of electrons from the unit cell and L0 = (0, 0).
This expression is not fully consistent with the EMTO overlap matrix in
Equation (2.43) and the number of states in Equation (2.45), where the terms
coming from the overlap region have been neglected. A more appropriate
kinetic energy is obtained if the second term in Equation (4.24) is calculated
directly within the unit cell. Denoting by vmt(rR) the muffin-tin potential
inside the Wigner−Seitz cell at R without taking into account the potential
wells centered on the neighboring lattice sites, i.e.

vmt(rR) =
{

vR(rR) if rR ≤ sR

v0 if rR > sR
, (4.26)

for the second term from the right hand side of Equation (4.24) we obtain

−
∑
R

√
4π

∫ sc
R

0

vmt(rR)ñRL0(rR)r2
RdrR, (4.27)

where ñRL(rR) is defined in Equation (4.6). Note that in a numerical inte-
gration, the radial integral from (4.27) should be carried out separately for
0 ≤ rR ≤ sR and sR ≤ rR ≤ sc

R.

4.2.2 Exchange-correlation Energy

The exchange-correlation energy belonging to the cell at R is written as the
integral over the Wigner−Seitz cell of the exchange-correlation energy per
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electron, εxc([n]; r) = εx([n]; r) + εc([n]; r), multiplied with the electron den-
sity, i.e.

ExcR[nR] =
∫

ΩR

nR(rR)εxc([nR]; rR)drR. (4.28)

A few commonly used approximations for the exchange and correlation en-
ergy densities are given in Appendix A. For charge densities which deviate
weakly from spherical symmetry, the exchange-correlation energy density may
be represented by Taylor series around the spherically symmetric charge den-
sity [45], and, therefore, the 3D integral may be reduced to a radial integral.
However, for strongly anisotropic electron densities, like in the case of surfaces
or open structures, the Taylor expansion is not convergent. In this case the
exchange-correlation energy is evaluated by a direct 3D integration over the
circumscribed sphere, i.e.

Exc[nR] =
∫ 2π

0

∫ π

0

∫ sc
R

0

nR(rR)εxc([nR]; rR)

×
lsmax∑

L

σRL(rR)YL(r̂R) r2
R drR sin θdθdφ. (4.29)

The convergence properties of this expression will be discussed in Section
4.2.6.

4.2.3 Intra-cell Electrostatic Energy

The intra-cell energy belonging to the cell at R,

FintraR[nR] =
∫

ΩR

∫
ΩR

nR(r′R)nR(rR)
|rR − r′R|

dr′RdrR

−
∫

ΩR

2ZR

rR
nR(rR)drR, (4.30)

may easily be evaluated by introducing the shape function and using expansion
(2.59). After simple mathematics, we arrive at

FintraR[nR] =
√

4π

w

∑
L

∫ sc
R

0

ñRL(rR)
[(rR

w

)l

PRL(rR)

+
(rR

w

)−l−1

QRL(rR) − 2ZR
w

rR
δL,L0

]
r2
RdrR, (4.31)

where ñRL(rR) is defined in Equation (4.6) and the two radial functions are
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PRL(rR) ≡
√

4π

2l + 1

∫ sc
R

rR

ñRL(r′R)
(

r′R
w

)−l−1

(r′R)2dr′R, (4.32)

and

QRL(rR) ≡
√

4π

2l + 1

∫ rR

0

ñRL(r′R)
(

r′R
w

)l

(r′R)2dr′R. (4.33)

4.2.4 Inter-cell Electrostatic Energy

The inter-cell energy includes the electrostatic interactions between different
cells, i.e.

Finter[n] =
∑
RR′

′
{∫

ΩR

∫
ΩR′

nR′(rR′)nR(rR)
|rR − rR′ + R − R′|drR′drR

−
∫

ΩR

2ZR′n(rR)
|rR + R − R′|drR +

ZRZR′

|R − R′|
}

, (4.34)

where the prime on the summation represents the restriction R 	= R′. For
cells having non-overlapping bounding spheres, Equation (4.34) is calculated
using expansions (2.62) and (2.63). The charges within the cell at R′ create a
potential

∑
L

√
4π

2l + 1

(rR

w

)l

YL(r̂R)
∑
L′

MRL,R′L′QR′L′
1

2w
, (4.35)

around site R. In this expression we have introduced the multipole moments
defined for the Wigner−Seitz cell as

QRL =
√

4π

2l + 1

∫
ΩR

(rR

w

)l

nR(r)YL(r̂R)drR − ZRδL,L0 , (4.36)

which by means of the shape function may be rewritten as

QRL =
√

4π

2l + 1

∫ sc
R

0

(rR

w

)l

ñRL(rR)r2
RdrR − ZRδL,L0 . (4.37)

Now, integrating the potential (4.35) multiplied by the density within ΩR and
taking into account the nuclear charge ZR within this cell, we arrive at the
following expression for the interaction energy between charges within ΩR′

and ΩR

1
2w

∑
LL′

QRLMRLR′L′QR′L′ , (4.38)
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where MRLR′L′ is the Madelung matrix introduced in (2.65). Summing up for
all R and R′ 	= R with non-overlapping bounding spheres, for the inter-cell
energy we obtain

Fno
inter[n] =

1
2w

∑
RR′

′∑
LL′

QRLMRLR′L′QR′L′ . (4.39)

This expression correctly describes the interaction energy between cells with
non-overlapping bounding spheres.

4.2.5 Electrostatic Interaction of Neighboring Cells

Equation (4.35) gives the electrostatic potential created by the charge distri-
bution within ΩR′ at a point r = rR + R outside of the sphere circumscribed
to the cell at R′, i.e. for any |r − R′| ≥ sc

R′ . However, in the case of neigh-
boring cells in the region between ΩR′ and its circumscribed sphere we have
|r−R′| < sc

R′ . Therefore, Equation (4.38) is no longer valid for such a pair of
cells. Mathematically this means that in expansion

1
|r′ − r| = 4π

∑
L

1
2l + 1

rl
R

|rR′ + dRR′ |l+1
YL(r̂R)YL( ̂rR′ + dRR′) (4.40)

the necessary condition for the convergence, i.e. rR < |rR′ + dRR′ |, is not
fulfilled everywhere. Here we have introduced the notation dRR′ ≡ R′ − R.

In fact, it is found that the total inter-cell energy, if calculated using Equa-
tion (4.38) for both the non-overlapping and overlapping cells, diverges with
increasing l. In order to illustrate this, in Figure 4.5 we show the total electro-
static energy of an fcc lattice with a uniform charge distribution. The energy
was computed from Equations (4.31) and (4.39) and the overlap between the
central site and its 12 nearest-neighbor sites was neglected. The electrostatic
energy is scaled so as to yield the Madelung constant of the lattice defined as

αM = −Ec/(Z2/w). (4.41)

Within the Atomic Sphere Approximation (ASA) this equals 1.8, while the
exact value for an fcc lattice obtained using the Ewald technique [39] is
1.79174723. In this test, the l-truncation was set to the same lmmax for both
the intra-cell and inter-cell energy. As we will see later, an lmmax =10−12 gives
a well converged result for the intra-cell energy. Therefore, the trend from the
figure reflects the divergence of the Madelung energy for the overlapping cells
calculated according to Equation (4.38).

Several methods have been proposed to treat this problem [95, 97, 99,
100, 101]. Here we follow the approach introduced by Gonis et al. [95] and
implemented by Vitos and Kollár [94]. This approach is based on shifting and
back-shifting the neighboring cells R′ and R with a displacement vector bRR′ .
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Fig. 4.5. Convergence test for the electrostatic energy of an fcc lattice with homo-
geneous charge distribution. The total electrostatic energy is plotted as a function
of the maximum l used in Equations (4.31) and (4.39) and it is scaled so as to yield
the Madelung constant of the lattice.

One can always find a “small” vector bRR′ such that |rR′+dRR′+bRR′−rR| >
bRR′ . In this case, we can write

1
|r′ − r| = 4π

∑
L

bl
RR′

2l + 1
YL(b̂RR′)

× 1

|r′R′ + dRR′ + bRR′ − rR|l+1
YL( ̂r′R′ + dRR′ + bRR′ − rR). (4.42)

In this expansion the l sum is always convergent. Next we ask that bRR′

should be large enough to remove the overlap between the bounding spheres.
Assuming that the direction of the displacement vector coincides with the
direction between the two cells, the above condition may be expressed as

dRR′ + bRR′ > sc
R + sc

R′ . (4.43)

In this situation, for any rR and rR′ we have rR < |rR′ + dRR′ + bRR′ |
and thus the right hand side of Equation (4.42) can be re-expanded around
rl′
RYL′(r̂R). The coefficients of this second expansion are proportional to

1/|dRR′ + bRR′ |l′′+1YL′′( ̂dRR′ + bRR′). This can be expanded again around
rl′′′
R′ YL′′′(r̂R′). After summing up for all the pairs of cells having overlapping

bounding spheres, we arrive at [44, 94]
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F ov
inter[n] =

1
2w

∑
RR′

′∑
L

1
2l + 1

(
bRR′

w

)l

YL(b̂RR′)
∑

L′,L′′
QRL′

× 4π(2l′′ − 1)!!
(2l − 1)!!(2l′ − 1)!!

CLL′L′′δl′′,l+l′
∑
L′′′

MRL′′R̃′L′′′QR′L′′′ , (4.44)

where R̃′ ≡ R′ + bRR′ denotes the position of the displaced cell. We have
shown that, as in the case of non-overlapping cells, the interaction energy
between overlapping cells can be expressed in terms of the original multi-
pole moments and the Madelung matrix. However, in the latter case, the
Madelung matrix is calculated for the displaced lattice sites. The summations
in Equation (4.44) are conditionally convergent and their range of convergence
depends sensitively on the choice of bRR′ [94, 95].

Displacement Vector bRR′

In order to find a reasonable choice for the displacement vector, we calculate
the electrostatic interaction energy of two truncated spheres of radius sc

R =
sc

R′ = sc with a uniform charge distribution n0, separated by a distance dRR′ .
This arrangement is illustrated in Figure 4.5 for neighboring spheres with
dRR′ < sc

R + sc
R′ (upper panel) and for a distance d′RR′ > sc

R + sc
R′ , when the

“bounding spheres” do not overlap (lower panel).
In the case of overlapping bounding spheres, the interaction energy for the

two truncated spheres is calculated from Equation (4.44) by shifting one of
the spheres by bRR′ . This is given by

sR

c
sR’

c

sR

c
sR’

c

R R’

R R’

Fig. 4.6. Two truncated spheres of radii sc
R and sc

R′ separated by a distance |R′−R|
for neighboring case (upper panel) and for non-overlapping “bounding spheres” case
(lower panel).
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∑
l

(
b

b + d

)l ∑
l′,l′′

Ql′
(l + l′ + l′′)!

l!l′!l′′!
1

(b + d)l′+l′′+1
Ql′′ , (4.45)

where for simplicity we have introduced the notations d = dRR′ and b =
bRR′ . For non-overlapping spheres at a minimum distance of d′ ≈ 2sc, the
interaction energy is obtained from (4.38) as∑

l,l′
Ql

(l + l′)!
l!l′!

1
(d′)l+l′+1

Ql′ . (4.46)

The multipole moments of the truncated spheres are

Ql =
2πn0

l + 3
sc

l+3

∫ d
2sc

−1

Pl(x)dx +
2πn0

l + 3

∫ 1

R
2sc

(
d

2x

)l+3

Pl(x)dx. (4.47)

Here Pl(x)s are the Legendre polynomials [102]. We mention that owing to
the axial symmetry of the system the multiple moments vanish for m 	= 0.

The necessary condition for the convergency of the outer sum in Equation
(4.45) is the convergency of the inner sums over l′ and l′′ for each value of l.
The diagonal terms of the inner sum in (4.45),

Al′l′ = Ql′
2 (l + 2l′)!

l!(l′!)2
1

(b + d)2l′+1
, (4.48)

for l, l′ � 1 have a maximum around l′ = l̃, where

l̃(l) = l

Ql̃+1
Ql̃

b + d − 2
Ql̃+1
Ql̃

. (4.49)

The upper limit for the ratio of the multipole moments Ql+1
Ql

can be estimated
from the interaction energy of non-overlapping spheres. Using the fact that
the summation in (4.46) is always convergent, since the inequality (4.43) is
already fulfilled for b = 0, for high l values we have

Ql+1

Ql
<

1
2
d′ ≈ sc. (4.50)

The same result is obtained directly from Equation (4.47). Therefore, for l̃ we
obtain

l̃(l) < αl with α ≡ 1
2

2sc

b + d − 2sc
. (4.51)

Thus, we see that the individual terms in the inner sum show a maximum,
which (strictly speaking its upper bound) is proportional to l and the coeffi-
cient α depends on the displacement vector. In order to ensure the required
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accuracy of the inner sum it is reasonable to assume that the summation
should be carried out at least up to � 2αl > 2l̃(l) for any l. It is easy to show
that in this case for the neglected terms in the inner summations Al′l′

Al̃l̃
< 1%.

This should hold for the largest value of l as well, i.e. we obtain the general
relation

linner
max � 2αlouter

max . (4.52)

In order to ensure similar accuracy for different neighbors we have to choose
α = const. which leads to the equation

b + d =
(

1 +
1
2α

)
2sc (4.53)

or more generally

bRR′ + dRR′ =
(

1 +
1
2α

)
(sc

R + sc
R′). (4.54)

This equation serves as a general recipe to choose the displacement vector bRR′

for an arbitrary pair of overlapping cells. We can see that the limit α → ∞
corresponds to the lower limit of bRR′ + dRR′ in the inequality (4.43), but
according to (4.52) in this case the inner summation should go to infinity. For
finite linner

max , bRR′ + dRR′ has to be chosen according to (4.54) above its lower
limit to assure the convergency of the inner summation for any l.

4.2.6 The l Summations

In the following, we discuss the convergence properties of different quantities
that appear in the expression of the FCD total energy (4.23). First of all, we
should point out the distinction between the maximum ls used in the EMTO
and FCD formalisms. The number of exact muffin-tin orbitals is lmax and it
is usually set to 3. The total number of tail functions or highers (see Section
2.1.2) is lhmax. Usually, this parameter represents the maximum l included
in the one-center expansion of the charge density (see Section 2.2) and its
actual value depends on how anisotropic the charge distributions within the
Wigner−Seitz cells are. Within the FCD scheme, the l-truncation used for the
shape function plays the central role. As we pointed out earlier, the partial
components with l > lsmax are usually neglected in Equation (4.5). Therefore,
it is lsmax that fixes the maximum ls used in Equations (4.29), (4.31) and
(4.39) and the maximum ls for the inner summations in Equation (4.44).

Charge Neutrality
During the self-consistent EMTO calculation, after each iteration the Fermi
level is re-adjusted through Equation (2.44) so that the condition (2.45) is
always exactly fulfilled. Here the electron count is realized via the overlap
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matrix (2.43), and thus via the energy derivative of the kink matrix. On the
other hand, in the total energy calculation based on the FCD formalism,
the total number of electrons is found directly by integrating the electron
density (2.47) within the unit cell. In an ideal situation, this integral should
give Ne =

∑
R ZR. However, due to the numerical approximation, in practice

there is always a charge misfit

Δe(lhmax) =
∑
R

∫
ΩR

n(rR)drR − Ne

=
∑
R

√
4π

∫ sc
R

0

ñRL0(rR)r2
RdrR − Ne. (4.55)

Since, according to Equation (4.6),

√
4πñRL0(rR) =

∑
L

nRL(rR)σRL(rR) (4.56)

and usually lhmax 
 lsmax, the charge misfit depends on lhmax rather than on
lsmax. The same is true for the the kinetic energy given by Equation (4.24)
together with (4.27). We mention that the requirement Δe → 0 is one of
the most severe tests not only for the one-center expansion but also for the
accuracy of the slope matrix and its energy derivative.
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Fig. 4.7. The calculated charge misfit Δe for fcc Cu plotted as a function of lhmax.
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In Figure 4.7, Δe(lhmax) is shown as a function of lhmax in the case of fcc
Cu. We can see that even in this relatively symmetric case, an lhmax ≥ 8
is needed to decrease the error in the total number of electrons within the
Wigner−Seitz below ∼ 0.001 electrons. In the following tests, we assume that
such a convergence of the one-center expansion of the charge density is assured.

Intra-cell Hartree Energy
The convergence properties of the intra-cell electrostatic energy have been
studied in detail [44, 48]. In Figure 4.8, the intra-cell Hartree energy of fcc
Cu is plotted relative to its converged value as a function of lsmax used in
(4.31). As may be seen from the figure, the energy difference of ∼ 0.3 mRy,
obtained for lsmax = 8, is reduced below 0.1 mRy for lsmax = 12 and below a
few μRy for lsmax ≥ 20. This result holds for other more open structures as
well. We have found that for a wide range of crystal structures a convergence
better than 10 μRy of the intra-cell energy can be achieved by performing the
summation over l in Equation (4.31) up to 14−20.
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Fig. 4.8. Convergence test for the intra-cell Hartree energy of fcc Cu. The results
are plotted relative to their converged value as a function of the maximal l value
used in Equation (4.31).

Madelung Energy
Actual calculations of the interaction energy in Equation (4.39) for cell with
non-overlapping bounding spheres show that ∼ 10 μRy accuracy can be
achieved by performing the summation over l and l′ up to 8−14 for a wide
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range of structures. On the other hand, as we will see later, an accurate evalu-
ation of the interaction energy for overlapping cells (Equation (4.44)) requires
multipole moments with l > 14. Because of this, the summation in Equation
(4.39) is carried out up to the same l as the one used for the inner summations
from (4.44). In practice, the Madelung matrix is generated for lmmax = 6 − 8
using the Ewald technique, and for l > 8 it is calculated on a real space cluster
consisting of the 60−80 nearest-neighbor lattice sites.

Next we turn to the inter-cell energy for cells with overlapping bounding
spheres and investigate how the inner and outer summations from Equation
(4.44) are connected. The first question that arises, is how to choose the
parameter α in Equation (4.54). For this we again make use of the model
system introduced in Section 4.2.5. In Figure 4.9, we plotted the maximal l
values of the outer (louter

max ) and the inner (linner
max ) sums, which are required to

achieve a given accuracy (∼ 0.01%) of the Coulomb energy (4.45) as functions
of α. Note that because of the multipole moments, in fact linner

max represents
lsmax. As one can see from the figure, a maximal louter

max used in the calculation
defines a lower limit, while a maximal linner

max an upper limit for the allowed
α values. With increasing α, the number of terms in the outer sum and thus
the necessary computer time decreases. On the other hand, with increasing
α, we need more and more multipole moments in the calculation of the inner
sum. Since the most time consuming part of the calculation of the multipole
moments is the determination of the partial components of the shape function,
which can be tabulated once and for all for a given structure, we prefer to
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Fig. 4.9. The louter
max and linner

max used in the outer and inner sums as functions of α.
For each α the accuracy of the Coulomb energy achieved is ∼ 0.01%.
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Table 4.2. The Madelung constant for bcc, fcc, sc hexagonal close-packed (hcp),
simple tetragonal (tet) with c/a = 1.5 and α−Pu crystal structures.

bcc fcc sc hcp tet α-Pu

αM 1.79185851 1.79174723 1.76011888 1.79167624 1.65374661 1.76614295

minimize the computer time needed for the summations and chose α near its
upper limit. In practice, we have found that α ≈ 1, linner

max = lsmax = 28−30 and
louter
max =18−22 lead to an optimal choice for both the accuracy and computer
time.

The validity of the choice given in Equation (4.54) for bRR′ should hold
for realistic calculations as well, because in Equation (4.50) for the ratio of
the multipole moments we use an estimation which is independent of the
shape of the cell and of the charge distribution. In order to test this, we apply

Fig. 4.10. The scaled average Coulomb energy per cell of a homogeneous charge
distribution (Madelung constant) of simple, face-centered and body-centered cubic
(left panel) and hexagonal close-packed, tetragonal and α-Pu (right panel) structures
as a function of louter

max . For the tetragonal lattice c/a = 1.5 was used. For α-Pu in the
schematic plot of the unit cells the atoms within the cells are not shown. The exact
values for the Madelung constants obtained by the Ewald procedure are indicated
by dashed lines.
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the method to calculate the electrostatic energy of a homogeneous charge
distribution of several lattices with different symmetry.

For a few selected structures, the average Madelung constants calculated
using the Ewald technique are listed in Table 4.2. For the same structures, the
scaled Coulomb energies calculated using the FCD formalism are plotted in
Figure 4.10 as a function of louter

max . In these tests, for the intra-cell electrostatic
energy given in (4.31) and for the inter-cell electrostatic energy for cells with
non-overlapping bounding spheres (4.39) the converged values were used for
any louter

max . We can see from the figure that the results converge to the exact
values smoothly in each case, indicating that using (4.54) the sums over l
converge simultaneously for different neighboring cells. The relative deviations
from the exact values are less than 0.03% for louter

max = 20 in each case.

Exchange-correlation Energy
Here we discuss the convergence properties of the exchange-correlation energy
term, calculated from Equation (4.29). The surface integral over θ and φ is
performed using the two-dimensional (2D) Gaussian integration method. In
Figure 4.11, we plotted the exchange-correlation energy of fcc Cu, relative to
its converged value, in terms of lsmax. Different symbols correspond to three
different sets of 2D mesh points.
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Fig. 4.11. Convergence test for the exchange-correlation energy of fcc Cu as func-
tion of the maximal l values used in Equation (4.29). The energies are plotted relative
to the converged result. The numbers in parenthesis denote the total number of θ
and φ Gaussian mesh points on the spherical surface.
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It is seen on the figure that no convergence can be achieved for a small
number of points (Nθ = 11, Nφ = 21). By doubling the number of 2D mesh
points the converged value is recovered for lsmax =8−10, but for lsmax > 16−18
the energy starts to oscillate and it diverges. Only for a very large number
of mesh points does the summation in Equation (4.29) become absolutely
convergent. This behavior is connected with the fact that for large l values,
which are important for the proper mapping of the shape of the Wigner−Seitz
cell (especially in the case of open structures), the spherical harmonics have
more and more structure, and this cannot be described correctly unless the
surface integral is carried out with very high accuracy.



5

The EMTO-CPA Method

In Chapter 1, we briefly presented the most important aspects of the com-
monly used approaches to describe the energetics of fully or partially dis-
ordered solids (Section 1.3). Among these, the most powerful technique in
the case of multicomponent alloys is the Coherent Potential Approximation
(CPA). In this chapter, first we shall outline the main features of the CPA,
and then present its implementation within the Exact Muffin-Tin Orbitals
formalism. Since the algebraic formulation of the EMTO-CPA method is very
similar to that of the EMTO method, here we shall concentrate only on those
details where the extension is not straightforward. At the end of the chap-
ter, the main difference between the EMTO-CPA method and former CPA
methods will be discussed.

5.1 Coherent Potential Approximation

The Coherent Potential Approximation was introduced by Soven [68] for the
electronic structure problem and by Taylor [69] for phonons in random alloys.
Later, Györffy [70] formulated the CPA in the framework of the multiple
scattering theory using the Green function technique. The CPA is based on the
assumption that the alloy may be replaced by an ordered effective medium, the
parameters of which are determined self-consistently. The impurity problem
is treated within the single-site approximation. This means that one single
impurity is placed in an effective medium and no information is provided about
the individual potential and charge density beyond the sphere or polyhedra
around this impurity. Below, we illustrate the principal idea of the CPA within
the conventional muffin-tin formalism.

We consider a substitutional alloy AaBbCc..., where the atoms A, B, C, ...
are randomly distributed on the underlying crystal structure. Here a, b, c, ...
stand for the atomic fractions of the A, B, C, ... atoms, respectively. This
system is characterized by the Green function g and the alloy potential Palloy.
The latter, due to the environment, shows small variations around the same
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Palloy

P
~

PA PB PC

...

CPA effective medium

Real alloy

A     B    C

Fig. 5.1. Illustration of the Coherent Potential Approximation to the alloy problem.
The real alloy, composed by atoms A, B, C, ..., within the CPA is replaced by an
effective medium. Given are the notations for the potentials: Palloy is the real alloy
potential, P̃ is the coherent potential, PA, PB, PC, ... are the potentials of the alloy
components.

type of atoms. There are two main approximations within the CPA. First, it
is assumed that the local potentials around a certain type of atom from the
alloy are the same, i.e. the effect of local environments is neglected. These local
potentials are described by the potential functions1 PA, PB, PC, .... Second, the
system is replaced by a monoatomic set-up described by the site independent

1 For the definition of the potential function within the muffin-tin formalism see
[20, 39]
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coherent potential P̃ . In terms of Green functions, one approximates the real
Green function g by a coherent Green function g̃. For each alloy component
i =A, B, C,... a single-site Green function gi is introduced. A schematic plot
of this idea is given in Figure 5.1.

The main steps to construct the CPA effective medium are as follows. First,
the coherent Green function is calculated from the coherent potential using
an electronic structure method. Within the Korringa−Kohn−Rostoker (KKR)
[36, 37, 51, 52, 103, 104] or Linear Muffin-Tin Orbital (LMTO) [20, 39, 40]
methods, we have

g̃ =
[
S − P̃

]−1

, (5.1)

where S denotes the KKR or LMTO structure constant matrix corresponding
to the underlying lattice. Next, the Green functions of the alloy components,
gi, are determined by substituting the coherent potential of the CPA medium
by the real atomic potentials Pi. Mathematically, this condition is expressed
via the real-space Dyson equation

gi = g̃ + g̃
(
Pi − P̃

)
gi , i = A, B, C... (5.2)

Finally, the average of the individual Green functions should reproduce the
single-site part of the coherent Green function, i.e.

g̃ = agA + bgB + cgC + ... (5.3)

Equations (5.1)−(5.3) are solved iteratively, and the output g̃ and gis are used
to determine the electronic structure, charge density and total energy of the
random alloy.

Nowadays, the CPA has become a state-of-the-art technique for electronic
structure calculations in random alloys. Numerous applications [77, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] have shown that
within this approximation one can calculate lattice parameter, bulk modulus,
mixing enthalpy, etc., with an accuracy similar to that obtained for ordered
solids. At the same time, the CPA, being a single-site approximation to the
impurity problem, has limited applicability. For example, one cannot take
into account directly within the CPA the effect of short-range order. Also,
systems with a large size mismatch between the alloy components are difficult
to describe because of the local lattice relaxations.

The most spectacular failure of the existing CPA methods happens in the
case of anisotropic lattice distortions in random alloys. This problem was also
attributed to the inherent single-site approximation. However, one should bear
in mind that certain limitations of the CPA are not directly related to the
approximation itself. Rather, they originate from additional approximations
introduced by particular implementations. The most common electronic struc-
ture calculations methods used for the implementations of the CPA are the
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KKR and the LMTO methods based on the Atomic Sphere Approximation
(ASA). The shape approximation for the electron density and potential, used
in these methods, is insufficient for the accurate description of the behavior
of the total energy upon anisotropic lattice distortions. Thus, one cannot cal-
culate, for example, elastic constants in random alloys or relax c/a ratio in
alloys with a tetragonal or hexagonal symmetry. In addition, the LMTO-ASA
method does not give a proper description of the open structures or struc-
tural energy differences between structures with different packing fractions,
to the extent that even the energy difference between the bcc and fcc struc-
tures of late transition metals is incorrectly described [119]. However, the most
recent reformulation of the CPA [78, 79], demonstrates that this approxima-
tion implemented within the framework of the EMTO theory, in contrast to
the traditional KKR-CPA and LMTO-CPA methods, is suitable to reproduce
the structural energy differences and energy changes related to small lattice
distortions in random alloys with high accuracy.

5.2 Fundamentals of the EMTO-CPA Method

The EMTO theory formulates an efficient and at the same time accurate
muffin-tin method for solving the Kohn−Sham equations of the Density Func-
tional Theory. By using large overlapping potential spheres, the EMTO ap-
proach describes more accurately the exact crystal potential than any con-
ventional muffin-tin method. Furthermore, in the latter methods, the shape
approximation used for the potential and density is carried on to the solution
of the one-electron equations as well. In contrast to this, in the EMTO ap-
proach, while keeping the simplicity and efficiency of the muffin-tin formalism,
the one-electron states are calculated exactly for the model potential. This is
why the EMTO theory provides an ideal ground for developing an accurate
and efficient CPA related method for random alloys.

5.2.1 Average EMTO-CPA Green Function

We consider a substitutional alloy with a fixed underlying lattice. We denote
the unit cell sites of the underlying lattice by Q, Q′, etc. On each site Q, we
have NQ alloy components. The atomic fractions of the components give the
concentrations ci

Q (i = 1, 2, ..., NQ). The individual spherical potentials are
denoted by vi

Q(rQ) and they are defined within the potential spheres of radii
si

Q. We note that these potentials are somewhat different from the spherical
potentials vi

R(rR) defined in the case of the real alloy because of different local
environments. Within the CPA, however, we make the approximation [120]

vi
Q(rQ) ≈ vi

R(rR). (5.4)

Accordingly, all the potential dependent functions, such as the partial waves,
logarithmic derivatives, normalization functions, etc., belonging to the same
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sort of atom but different Rs are also assumed to be the same. Because of this,
in the following, we use index R when we refer to the real space and index Q
when we refer to the quantities written for the underlying lattice.

For each sort of atom, the partial waves are constructed from the solu-
tions φi

Rl(ε, rR) of the radial Schrödinger equation (2.20). From the matching
conditions at si

R and the radius aR of the corresponding a-sphere2, we set
up the backwards extrapolated free-electron solutions ϕi

Rl(ε, rR), the loga-
rithmic derivative Di

Rl(ε) and the normalization N i
Rl(ε) functions. For the

sake of simplicity, in this chapter we omit the screening index a. Formally,
the above functions are obtained from Equations (2.22), (2.26) and (2.27), by
substituting Da

Rl(ε) with Di
Rl(ε) and φRl(ε, sR) with φi

Rl(ε, sR).
The CPA effective medium is described by a site (Q) dependent coherent

potential, which possesses the symmetry of the underlying crystal lattice. In
EMTO formalism, the coherent potential is introduced via the logarithmic
derivative D̃QL′QL(z) of the effective scatterers, and, therefore, the coherent
Green function or the path operator (5.1) is given by [78]

∑
Q′′L′′

aQ′
[
SQ′L′Q′′L′′(κ2,k) − δQ′Q′′D̃Q′L′Q′L′′(z)

]
× g̃Q′′L′′QL(z,k) = δQ′QδL′L, (5.5)

where l, l′, l′′ ≤ lmax, and SQ′L′Q′′L′′(κ2,k) are the elements of the EMTO
slope matrix for complex energy κ2 = z − v0 and Bloch vector k from the
Brillouin zone (BZ). For ordered systems, this equation reduces to Equation
(2.34). The logarithmic derivative of the effective scatterers is site-diagonal
with non-zero L′ 	= L off-diagonal elements.

The average of the on-site (QQ) elements of the Green function for al-
loy component i, gi

QLQL′ , is calculated as an impurity Green function of the
ith alloy component embedded in the effective medium. In the single-site ap-
proximation, this is obtained from the real space Dyson equation (5.2) as a
single-site perturbation on the coherent potential as

gi
QLQL′(z) = g̃QLQL′(z) +

∑
L′′L′′′

g̃QLQL′′(z)

×
[
Di

Ql′′(z)δL′′L′′′ − D̃QL′′QL′′′(z)
]
gi

QL′′′QL′(z), (5.6)

where Di
Ql(z) ≈ Di

Rl(z) is the logarithmic derivative function for the ith alloy
component and

g̃QLQL′(z) =
∫

BZ

g̃Q′′L′′QL(z,k)dk (5.7)

2 Note that the radii of the hard spheres are determined by the underlying lattice
and they do not depend on i.
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is the site-diagonal part of the k-integrated coherent Green function. The con-
dition of vanishing scattering, on the average, leads to relation (5.3) between
g̃QLQL′(z) and the Green functions of alloy components, namely

g̃QLQL′(z) =
∑

i

ci
Q gi

QLQL′(z), (5.8)

Equations (5.5),(5.6) and (5.8) are solved self-consistently for D̃(z), g̃(z,k)
and gi(z). The total number of states below the Fermi level,

N(εF ) =
1

2πi

∮
εF

< G(z) > dz, (5.9)

is obtained from the average Green function

< G(z) > ≡
∫

BZ

∑
Q′L′QL

g̃Q′L′QL(z,k) aQṠQLQ′L′(κ2,k)dk −

−
∑
Qi

ci
Q

∑
L

[
gi

QLQL(z) aQḊi
Ql(z) +

(
Ḋi

Ql(z)
Di

Ql(z)
− 1

z − ei
Ql

)]
, (5.10)

where the overdot stands for the energy derivative, and l, l′ ≤ lmax. The site
off-diagonal elements of the coherent Green function g̃Q′L′QL(z,k) are cal-
culated from Equation (5.5) with the self-consistent logarithmic derivative
D̃QL′QL(z) of the effective scatterers. For ordered systems, the above expres-
sions reduce to Equations (2.45) and (2.46) from Section 2.1.5.

The first term from the right hand side of Equation (5.10) assures the
proper normalization of the one-electron states for the optimized overlapping
potential. In fact, within the single-site approximation for the impurity Green
function, Equation (5.9) gives the exact number of states at the Fermi level
[78, 79].

5.2.2 Full Charge Density

The complete non-spherically symmetric charge density of alloy component i
is represented in one-center form

ni
R(rR) =

∑
L

ni
RL(rR)YL(r̂R). (5.11)

This expansion is obtained from the real-space expression < G(z, rR, rR) >=∑
i ciGi(z, rR, rR) of the average Green function (5.10). To this end, we trans-

form the first term from the right hand side of (5.10), the so called interstitial
term, to one-center form. Formally, this procedure is the same as that from
Section 2.2.

Inside the Wigner−Seitz cell at R, the partial components ni
RL(rR) of the

average density ni
R(rR) belonging to the sublattice Q are determined from
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the restricted average of the on-site element of the Green function for the ith
alloy component gi

QLQL′ and from the coherent Green function g̃QLQ′L′ . This
leads to

ni
RL(rR) =

1
2πi

∮
εF

∑
L′′L′

CLL′L′′Zi
Rl′′(z, rR)

×D̃i
RL′′L′(z) Zi

Rl′(z, rR)dz, (5.12)

where CLL′L′′ are the real Gaunt numbers (Appendix B) and Zi
Rl(z, rR) de-

note the YL(r̂R) projections of the exact muffin-tin orbitals

Zi
Rl(z, rR) =

⎧⎪⎨⎪⎩
N i

Rl(z)φi
Rl(z, rR) if l ≤ lmax and rR ≤ si

R

ϕi
Rl(z, rR) if l ≤ lmax and rR > si

R

−jl(κ rR) if l > lmax for all rR

. (5.13)

The low-l block of the density matrix Di of the alloy component i is given by

Di
RL′L(z) = gi

QL′QL(z) +
δL′L

aQ Ḋi
Ql(z)

⎛⎜⎝Ḋi
Ql(z)

Di
Ql(z)

−
∑
εi

Ql

1
z − εi

Ql

⎞⎟⎠ , (5.14)

with l, l′ ≤ lmax. Similarly to Equation (2.51), the second term from the
right hand side of (5.14) is introduced to remove the nonphysical poles of the
normalization function N i

Rl(z). The high-l–low-l blocks of Di are

Di
RL′L(z) =

∑
Q′′L′′

∫
BZ

g̃QL′Q′′L′′(z,k)aQ′′SQ′′L′′QL(κ2,k)dk (5.15)

for l′ ≤ lmax and l > lmax, and

Di
RL′L(z) =

∑
Q′′L′′

∫
BZ

SQL′Q′′L′′(κ2,k)g̃Q′′L′′QL(z,k)dk (5.16)

for l′ > lmax and l ≤ lmax. Finally, the high-l block of Di is

Di
RL′L(z) =

∑
Q′′L′′R′′′L′′′

∫
BZ

SQL′Q′′L′′(κ2,k)g̃Q′′L′′Q′′′L′′′(z,k)

× aQ′′′SQ′′′L′′′QL(κ2,k)dk, (5.17)

with l′, l > lmax. Note that the expressions for the high-l–low-l and high-l–
high-l blocks of Di do not involve the Green functions for the alloy component.
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5.2.3 The EMTO-CPA Effective Potential

In the case of alloys, we define an overlapping muffin-tin potential vi
mt(r) (see

Equation (2.1)), for each alloy component i at sublattice Q of the underlying
crystal lattice. The spherical potential vi

R(rR) is calculated from the restricted
average Green function for the ith alloy component, following the main idea
of the CPA as an impurity embedded in the effective medium. The electro-
static potential of the electronic and protonic charge densities is divided into
components due to the charges from inside and from outside of the poten-
tial sphere. The spherical potential due to the charges inside of the potential
sphere is given by (see Equation (2.60))

vI,i
R (rR) = 8π

1
rR

∫ rR

0

r′R
2
ni

RL0
(r′R)dr′R

+ 8π

∫ si
R

rR

r′Rni
RL0

(r′R)dr′R − 2Zi
R

rR
, (5.18)

where Zi are the protonic charges and L0 ≡ (0, 0). The net charges from the
outside of the potential sphere are taken into account by the average Madelung
potential from Equation (2.64), where QSCA

RL are the average multipole mo-
ments calculated within the spherical cells,

QSCA
RL =

∑
i

ci
R

[ √
4π

2l + 1

∫ wi
R

0

(rR

w

)l

ni
RL(rR) r2

R drR

− Zi
R δL,L0

]
+ δSCA δL,L0 . (5.19)

wi
R denotes the radius of the spherical cell of type i at site R. The site in-

dependent normalization constant δSCA is determined from the condition of
charge neutrality

∑
R QSCA

RL0
= 0.

Due to the SCA (see Section 2.3.1), the average number of electrons inside
the s-spheres at R,

Qs
R =

∑
i

ci
R Qi,s

R =
∑

i

ci
R

√
4π

∫ si
R

0

r2
Rni

RL0
(rR)drR, (5.20)

is different from the average number of electrons inside the cell, which con-
tributes with a constant shift to the spherical potential. Within the EMTO-
CPA method, the SCA shift is calculated from Equation (2.68) with

ΔQRNN
≡ 1

NNN

(
QSCA

RL0
+
∑

i

ci
RZi

R − Qs
R

)
, (5.21)

where NNN is the number of nearest-neighbor cells, and QSCA
RL0

and Qs
R are

given by (5.19) and (5.20), respectively.



5.2 Fundamentals of the EMTO-CPA Method 91

Since the impurity problem is treated within the single-site approximation,
the Coulomb system of a particular alloy component may contain a non-zero
net charge. The effect of the charge misfit on the spherical potential is taken
into account using the screened impurity model (SIM) by Korzhavyi et al.
[121, 122]. According to this model, an additional shift of

ΔvSIM,i
R = −2αc

w

(
Qi,s

R − Qs
R

)
, (5.22)

is added to the spherical part of the full-potential around site R. Here, Qi,s
R

and Qs
R are defined in (5.20). Note that in the case of ordered systems,

ΔvCPA,i
R = 0. In Equation (5.22), αc is a dimensionless parameter that con-

trols the effectiveness of screening around the impurity. We shall return to
this parameter at the end of Section 5.2.4.

The total potential within the potential sphere of the ith alloy component
is obtained as the sum of the intracell potential (5.18), the Madelung po-
tential (2.64), the SCA (2.68) and SIM (5.22) corrections, and the spherical
symmetric exchange-correlation potential (2.69) calculated from the density
of the ith alloy component, namely

vi
R(rR) = vI,i

R (rR) + vM
R + ΔvSCA

R + ΔvSIM,i
R + μi

xcR(rR). (5.23)

Finally, the interstitial potential within the SCA is obtained according to
(2.56) as the average interstitial potential calculated from vi

R(rR)

v0 =
∑
Ri

ci
R

∫ wi
R

si
R

r2
R vi

R(rR) drR/
∑
Ri

ci
R

[
(wi3

R − si3

R)/3
]
. (5.24)

5.2.4 The EMTO-CPA Total Energy

The total energy of the random alloy is calculated according to

Etot = Ts[n] +
∑
R

∑
i

ci
(
F i

intraR[ni
R] + Ei

xcR[ni
R]
)

+

+ Finter[Q] + ΔESIM . (5.25)

The kinetic energy is determined from the one-electron equations,

Ts[n] =
1

2πi

∮
εF

z < G(z) > dz

−
∑
R

∑
i

ci

∫
ΩR

vi
mt(rR)ni

R(rR)drR, (5.26)
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where the first term from the right hand side is the sum of the average one-
electron energies with < G(z) > from Equation (5.10) and vi

mt(rR) is the
optimized overlapping muffin-tin potential for sort i constructed from (5.23)
and (5.24).

The Coulomb energy components of the total energy functional are calcu-
lated in a similar way to the EMTO-FCD method (Sections 4.2.3, 4.2.4 and
4.2.5). In particular, the EMTO-CPA intra-cell energy is

F i
intraR[ni

R] =
√

4π

w

∑
L

∫ sc
R

0

ñi
RL(rR)

[(rR

w

)l

P i
RL(rR)

+
(rR

w

)−l−1

Qi
RL(rR) − 2Zi

R

w

rR
δL,L0

]
r2
RdrR (5.27)

where ñi
RL(rR) is calculated from (4.6) using for the density of the alloy

component i,

P i
RL(rR) ≡

√
4π

2l + 1

∫ sc
R

rR

ñi
RL(r′R)

(
r′R
w

)−l−1

(r′R)2dr′R, (5.28)

and

Qi
RL(rR) ≡

√
4π

2l + 1

∫ rR

0

ñi
RL(r′R)

(
r′R
w

)l

(r′R)2dr′R. (5.29)

The EMTO-CPA inter-cell energy is calculated from Equations (4.39) and
(4.44) using for the multipole moments the average moments

QRL =
∑

i

ci
RQi

RL, (5.30)

with

Qi
RL =

√
4π

2l + 1

∫ sc
R

0

(rR

w

)l

ñi
RL(rR)r2

RdrR − Zi
RδL,L0 . (5.31)

Finally, the EMTO-CPA exchange-correlation energy is

Exc[nR] =
∫ 2π

0

∫ π

0

∫ sc
R

0

ni
R(rR)εxc([ni

R]; rR)

×
lsmax∑

L

σRL(rR)YL(r̂R) r2
R drR sin θdθdφ. (5.32)

For notation and convergence properties, see Sections 4.1, 4.2.2 and 4.2.6.



5.3 EMTO-CPA Method versus Other CPA Methods 93

The last term from (5.25) is the screened impurity model correction [121,
122] to the electrostatic energy given by

ΔESIM = −
∑

i

ci α
′
c

w

(
Qi,s

R − Qs
R

)2

. (5.33)

The SIM parameter α′
c is determined from the condition that the total energy

(5.25) calculated within the CPA should match the total energy of the real
alloy calculated using a large unit cell [122]. For most of the alloys, this is
achieved for α′

c ≈ 0.6− 1.0. In many applications, αc from (5.22) and α′
c from

(5.33) are chosen to be the same. When the two SIM parameters are treated
as independent parameters, αc can be used, e.g., to match the charge transfer
obtained within the CPA and the real charge transfer.

5.3 EMTO-CPA Method versus Other CPA Methods

The main difference between the EMTO expression for the average Green
function and the one defined within former CPA methods, such as the KKR-
CPA or LMTO-CPA methods, is featured in Figure 5.2. Circles stand for the
muffin-tin or atomic spheres centered on lattice sites and the shaded area is
the region between the spheres.

In order to understand this difference, we decompose the EMTO-CPA
Green function (5.10) into a single-site contribution Gi

ss and multi-site con-
tribution G̃I, viz.

< G > =
∑

i

ciGi
ss + G̃I. (5.34)

Fig. 5.2. Illustration of the difference between conventional muffin-tin based CPA
Green functions (KKR-CPA, LMTO-CPA) and the EMTO-CPA Green function,
Equations (5.10) or (5.34). Shaded area is the interstitial region defined as the
domain outside of the muffin-tin spheres.
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The single-site Green function Gi
ss involves the Green functions gi and the

logarithmic derivatives Di of the alloy components [120], whereas G̃I depends
only on the coherent Green function g̃. The latter is attributed to several
lattice sites rather than to a single-site. It corresponds approximately to the
interstitial states and assures a proper normalization of the single-electron
states [46]. This term was ignored (actually suppressed into the single-site term
Gi

ss) in the former implementations of the CPA. It is important to note that
within the single-site approximation, the Green function from Equation (5.34)
leads to the exact density of states for the overlapping muffin-tin potential
vi

mt(rR).
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Applications



6

Ground-state Properties

In this chapter, we shall review some important ground-state properties that
can be derived directly from the total energy calculated for different volumes,
geometries and compositions. For a specific space group, chemical composition
and magnetic structure, the equation of state is obtained from the total energy
E(V ) calculated as a function of volume (V ). At each volume, the crystal
structure should be fully relaxed with respect to the internal coordinates and
unit cell shape. The negative volume derivative of E(V ) gives the pressure,

P (V ) = −∂E(V )
∂V

. (6.1)

From the pressure−volume relation, we get the enthalpy H(P ) = E (V (P ))+
PV (P ). The bulk modulus is defined from the volume derivative of the pres-
sure as

B(V ) = −V
∂P

∂V
= V

∂2E(V )
∂V 2

. (6.2)

The third order volume derivative of E(V ) enters the expression of the pres-
sure derivative of the bulk modulus (B′) or the Grüneisen constant1. In order
to minimize the numerical noise in P, B and B′, usually an analytic form
is used to fit the ab initio energies versus volume. In Section 6.1, we shall
describe the most commonly used equation of states: the Murnaghan, the
Birch−Murnaghan and the Morse functions.

The elastic constants may be computed from the strain derivative of the to-
tal energy. In Section 6.2, we shall briefly review the theory of elastic constants
and present the technique used to obtain the single crystal elastic constant
in cubic and hexagonal lattices. The polycrystalline elastic moduli will be in-
troduced in Section 6.3. In Section 6.4, the theoretical determination of the

1 The Grüneisen constant (γ) describes the anharmonic effects in the vibrating
lattice and it is given by γ = −f+B′/2. The best agreement with the experimental
Grüneisen constant was obtained [123] for f = 1/2.
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surface energy, surface stress and stacking fault energy will be presented. A
few ideas about the atomistic modeling of the mechanical properties of alloys
will be discussed in Section 6.6. Finally, in Section 6.7 we shall list some useful
hints for total energy calculations using the EMTO method.

6.1 Equation of State

The Murnaghan equation of state [124, 125] originates from the observation
that the pressure derivative of the bulk modulus shows negligible pressure
dependence. Therefore, we can make the approximation

∂B

∂P
≈ B′

0 =
∂B

∂P

∣∣∣∣
V =V0

, (6.3)

where V0 is the equilibrium volume. Using the definition of the bulk modulus,
from Equation (6.3) we obtain

B′
0 = −V

B

∂B

∂V
. (6.4)

After integrating between V0 and V , this leads to

B(V ) = B0

(
V0

V

)B′
0

. (6.5)

Repeated integrating gives the pressure

P (V ) =
B0

B′
0

[(
V0

V

)B′
0

− 1

]
, (6.6)

and the total energy

E(V ) = E0 +
B0V

B′
0

(
(V0/V )B′

0

B′
0 − 1

+ 1

)
− B0V0

B′
0 − 1

, (6.7)

where E0 is the energy at the equilibrium volume. A somewhat more flexible
equation of state is the third-order Birch−Murnaghan function given by [126,
127]
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E(V ) = E0 +
9
16

B0V0

×
⎧⎨⎩
[(

V0

V

) 2
3

− 1

]3

B′
0 −

[(
V0

V

) 2
3

− 1

]2 [
4
(

V0

V

) 2
3

− 6

]⎫⎬⎭ ,(6.8)

and

P (V ) =
3
2
B0

[(
V0

V

) 7
3

−
(

V0

V

) 5
3
]{

1 +
3
4
(B′

0 − 4)

[(
V0

V

) 2
3

− 1

]}
. (6.9)

The bulk modulus can be obtained from Equation (6.9) according to Equation
(6.2). Both the Murnaghan and Birch−Murnaghan functions involve four in-
dependent parameters: E0, V0, B0 and B′

0. While E0, V0, B0 vary significantly
from one material to another, the value of B′

0 is fairly constant for many
substances [128].

Sometimes it is more preferable to work with a Morse type of equation of
state. The total energy is fitted by an exponential function [123]

E(w) = a + be−λw + ce−2λw (6.10)

written in terms of the average Wigner−Seitz radius w. Here λ, a, b and c
are the four independent Morse parameters. Since (4πw2)∂/∂V = ∂/∂w, the
expression for the pressure becomes

P (w) =
xλ3

4π(ln x)2
(b + 2cx), (6.11)

where

x ≡ e−λw. (6.12)

The equilibrium Wigner−Seitz radius, defined by V0 = 4πw3
0/3, is obtained

from the condition P (w0) = 0 as

w0 = − lnx0

λ
with x0 = − b

2c
. (6.13)

From Equation (6.11), we get the bulk modulus as a function of the Wigner−Seitz
radius as

B(w) = − xλ3

12π lnx

[
(b + 4cx) − 2

lnx
(b + 2cx)

]
, (6.14)

which at w0 reduces to

B0 = − cx2
0λ

3

6π lnx0
. (6.15)
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Fig. 6.1. The difference between total energy (upper panel, in mRy), pressure
(middle panel, in GPa) and bulk modulus (lower panel, in percent) for fcc Ag
obtained from the Murnaghan and Birch−Murnaghan equations of states relative
to the Morse equation of state. The fitting parameters for Murnaghan (solid line)
and Birch−Murnaghan (dashed line) are chosen to be identical with those obtained
from the Morse fit. The dotted line is a fit to the ab initio total energies using the
Murnaghan function.

Finally, the pressure derivative of the bulk modulus at V0 becomes

B′
0 = 1 − lnx0. (6.16)

Equations (6.13), (6.15), (6.16) and the expression for the equilibrium energy
E0 = a + bx0 + cx2

0 give the connection between the Morse fitting parameters
λ, a, b and c and the parameters E0, B0, V0 and B′

0 used in the Murnaghan or
Birch−Murnaghan equation of states.

In Figure 6.1, we compare the three equations of states for fcc Ag. The
parameters E0 = −10626.843688 Ry, w0 = 3.026 Bohr, B0 = 104.4 GPa and
B′

0 = 5.81 were obtained by fitting the Morse function to 7 ab initio energies
calculated for atomic radii between 2.7 and 3.1 Bohr. In these calculations the
Local Airy Approximation [17, 18] was employed for the exchange-correlation
functional. For comparison, the experimental equilibrium atomic radius and
bulk modulus are 3.018 Bohr and 98.8 GPa [129], and from the experimen-
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tal Grüneisen constant 2.4 [123] we get B′
0 = 5.92. The above theoretical

Morse parameters were used for all three equations of states from Figure 6.1.
The agreement between the total energy, pressure and bulk modulus obtained
by the Birch−Murnaghan (dashed line) and Morse functions is satisfactory.
However, near w = 2.7 Bohr (corresponding to P ≈ 95 GPa) the pressure and
bulk modulus obtained from the Murnaghan expression (solid line) differ by
about 20% and 40%, respectively, from those obtained by the other two ex-
pressions. On the other hand, fitting the Murnaghan function to the ab initio
energies (dotted line), we obtain a much better agreement. The so obtained
parameters are E0 = −10626.843742 Ry, w0 = 3.027 Bohr, B0 = 110.2 GPa
and B′

0 = 4.79. The improved agreement between the Morse and Murnaghan
equation of states is mainly due to the ∼ 18% decrease in B′

0.

6.2 Single Crystal Elastic Constants

The adiabatic2 elastic constants are the second order derivatives of the internal
energy with respect to the strain tensor ekl (k, l = 1, 2, 3), viz.

cijkl =
1
V

∂E

∂eij∂ekl
, (6.17)

where E stands for the internal energy and the derivatives are calculated at
constant entropy and constant es other than eij and ekl. The elastic constants
form a fourth-rank tensor, which can be arranged in a 6 × 6 matrix with
maximum 21 different elements. Employing the Voigt notation3, the elastic
compliances sαβ are related to the elastic constants by∑

γ

cαγsγβ = δαβ , (6.18)

where δαβ is the Kronecker delta. The elastic constants determine, for exam-
ple, the acoustic velocities v through the Christoffel equation [54]

det(cijklnjnk − ρv2δil) = 0, (6.19)

where n is the propagation direction and ρ is the density. There are usually
two quasi-transversal and one quasi-longitudinal real roots. The ratio between
extremal propagation directions defines the acoustic anisotropy.

2 The isothermal elastic constants are obtained as the second order strain derivative
of the Helmholtz free energy calculated at constant temperature. For tempera-
tures below the Debye temperature, there is no significant difference between the
adiabatic and isothermal elastic constants [128].

3 In the Voigt notation the pair of indices ij are replaced by index α according to:
α = 1, 2, 3 for ij = 11, 22, 33, α = 4 for ij = 23 or 32, α = 5 for ij = 13 or 31 and
α = 6 for ij = 12 or 21.
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In the following, we concentrate on lattices with cubic and hexagonal sym-
metries. In a cubic lattice, there are three independent elastic constant c11, c12

and c44. Then, the anisotropic variation of the sound velocity is determined
by the parameter

AE =
c11 − c12 − 2c44

c11 − c44
(6.20)

introduced by Every [130]. An alternative measure of anisotropy is the Zener
ratio [131]

AZ =
2c44

c11 − c12
. (6.21)

For an isotropic cubic crystal c11 − c12 = 2c44, so AE = 0 and AZ = 1. In a
hexagonal lattice, there are five independent elastic constants c11, c12, c13, c33

and c44, and the anisotropy is described in terms of one compressional

ΔP =
c33

c11
, (6.22)

and two shear

ΔS1 =
c11 + c33 − 2c13

4c44
and ΔS2 =

2c44

c11 − c12
(6.23)

anisotropy ratios. Hence, the hexagonal lattice is isotropic if c11 = c33, c12 =
c13 and c11 − c12 = 2c44.

The dynamical or mechanical stability condition of a lattice implies that
the energy change ΔE ∼ V cαβeαeβ upon any small deformation is positive.
This condition can be formulated in terms of elastic constants [128]. The
stability criteria for cubic crystals requires that

c44 > 0 , c11 > |c12| , c11 + 2c12 > 0. (6.24)

For a hexagonal lattice the stability conditions are

c44 > 0 , c11 > |c12| , c11 c33 > (c13)2,
c33(c11 + c12) > 2(c13)2. (6.25)

From the single crystal elastic constants one obtains the sound velocity
vs(θ, φ) for the longitudinal (s = L) and the two transverse (s = T1,T2)
branches. They are solutions of the Christoffel Equation (6.19). Explicit ex-
pressions for vs(θ, φ) in the case of cubic and hexagonal crystals can be found
in [128]. The average of vs

−3(θ, φ) over all directions (θ, φ) gives the sound
velocity vm, viz.

v−3
m =

1
3

∑
s

1
4π

∫
vs

−3(θ, φ) sin θdθdφ. (6.26)
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This velocity is used in the conventional Debye model with the Debye tem-
perature defined as

θD =
h̄

kB

(
6π2

V

)1/3

vm. (6.27)

Here V is the atomic volume, h̄ and kB are the Planck and Boltzmann con-
stants, respectively4. This Debye temperature gives, for instance, the low-
temperature limit of the heat capacity per atom CD(T ) = (12π4/5)kB(T/θD)3,
[128]. At high-temperatures, however, the entropy depends on the logarith-
mic average of all the phonon frequencies rather than on the arithmetic aver-
age, Equation (6.26). Then, in a Debye-model description of the entropy, one
should use the logarithmic average vlog of the sound velocities vs(θ, φ) and an
entropy-related Debye temperature θD,log. We note that neither θD nor θD,log

are defined for systems where the stability requirements, expressed, e.g., via
Equations (6.24) and (6.25), are violated.

6.2.1 Numerical Calculation of the Elastic Constants

At volume V , the elastic constants are obtained by straining the lattice and
evaluating the total energy changes due to the strain as a function of its mag-
nitude. We choose the applied strains to be volume conserving (except for
the bulk modulus). This is important since the total energy depends on the
volume much more strongly than on strain. By choosing volume conserving
strains we obviate the separation of these two contributions to the total en-
ergy. Using isochoric strains we assure the identity of our calculated elastic
constants with the stress−strain coefficients, which are appropriate for the
calculation of elastic wave velocities; this identity is nontrivial for finite ap-
plied pressure. We denote by e1, e2, ..., e6 the elements of the stain matrix,
i.e.

D(e) =

⎛⎜⎝ e1
1
2e6

1
2e5

1
2e6 e2

1
2e4

1
2e5

1
2e4 e3

⎞⎟⎠ . (6.28)

The energy change upon strain (6.28) is written as

E(e1, e2, ..., e6) = E(0) +
1
2
V

∑
i,j=1,6

cijeiej + O(e3), (6.29)

where E(0) is the energy of the undistorted lattice, and O(e3) denotes the
terms proportional to ek with k ≥ 3. An arbitrary vector r = (x, y, z) under
stain (6.28) transforms to r′ = (x′, y′, z′) according to

4 In atomic Rydberg units, h̄ = 1 and kB = 6.33363 × 10−6 Ry/K.
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y′

z′

⎞⎠ = (D(e) + I)

⎛⎝x
y
z

⎞⎠ =

⎛⎜⎝ (1 + e1)x + 1
2e6y + 1

2e5z
1
2e6x + (1 + e2)y + 1

2e4z
1
2e5x + 1

2e4y + (1 + e3)z

⎞⎟⎠ , (6.30)

where I is the 3 × 3 identity matrix. Mathematically, isochoric strain corre-
sponds to a strain matrix with determinant det(D + I) = 1.

In practice, e1, e2, ..., e6 are expressed as functions of a single parameter δ
so that the energy change (6.29) becomes

E(δ) = E(0) + V Cδ2 + O(δ3), (6.31)

where C stands for a particular combination of cij . We fit E(δ) by a polynomial
of δ, E(δ) = E(0)+a2δ

2 +a3δ
3 + ..., and C is obtained from the second order

coefficient a2 as5

C =
a2

V
. (6.32)

Usually, the total energies are computed for six distortions δ = 0.00, 0.01, ..., 0.05.

Cubic Lattice
In a cubic lattice, having three independent elastic constants, the energy
change (6.29) upon stain (6.28) is

1
V

ΔE =
1
2
c11

(
e2
1 + e2

2 + e2
3

)
+ c12 (e1e2 + e2e3 + e1e3)

+
1
2
c44

(
e2
4 + e2

5 + e2
6

)
+ O(e3). (6.33)

Two of the cubic elastic constants are derived from the bulk modulus

B =
1
3
(c11 + 2c12), (6.34)

and the tetragonal shear modulus

c′ =
1
2
(c11 − c12). (6.35)

The bulk modulus corresponds to isotropic lattice expansion and may be
obtained from the equation of state (Section 6.1) fitted to the ab initio total
energies calculated for a set of volumes. The shear modulus c′ is obtained from
a tetragonal distortion

Dt + I =

⎛⎜⎝ 1 + δt 0 0

0 1 + δt 0

0 0 1
(1+δt)2

⎞⎟⎠ , (6.36)

5 The elastic constant are usually expressed in gigapascals, 1 Ry/Bohr3 ≈ 14710.5
GPa.
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resulting in energy change

ΔE(δt) = 6V c′δ2
t + O(δ3

t ). (6.37)

Since this is an asymmetric distortion (odd powers of δt appear), calculations
have to be carried out for both negative and positive δt values. Alternatively,
we can use the orthorhombic deformation

Do + I =

⎛⎜⎝ 1 + δo 0 0

0 1 − δo 0

0 0 1
1−δ2

o

⎞⎟⎠ , (6.38)

which leads to the energy change

ΔE(δo) = 2V c′δ2
o + O(δ4

o). (6.39)

The c44 shear modulus may be obtained from the monoclinic distortion

Dm + I =

⎛⎜⎝ 1 δm 0

δm 1 0

0 0 1
1−δ2

m

⎞⎟⎠ , (6.40)

and

ΔE(δm) = 2V c44δ
2
m + O(δ4

m). (6.41)

For Do and Dm, calculations needs to be performed only for positive δ.
To illustrate the above distortions, we consider a cubic lattice with NQ

atoms in the unit cell. The primitive and basis vectors expressed in units of
cubic lattice constant are

a =

⎛⎝ 1
0
0

⎞⎠ ,b =

⎛⎝ 0
1
0

⎞⎠ , c =

⎛⎝ 0
0
1

⎞⎠ (6.42)

and

Qi =

⎛⎝xi

yi

zi

⎞⎠ for i = 1, 2, ..., NQ. (6.43)

For example, let us consider the three primitive cubic lattices. For a simple
cubic (sc) lattice NQ = 1, for a body centered cubic (bcc) lattice NQ = 2,
and for a face centered cubic (fcc) lattice NQ = 4. The corresponding basis
vectors are

Qsc
1 =

⎛⎝0
0
0

⎞⎠ ,Qbcc
1,2 =

⎛⎝ 0
0
0

⎞⎠ ,

⎛⎝ 1/2
1/2
1/2

⎞⎠ , (6.44)
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and

Qfcc
1,2,3,4 =

⎛⎝ 0
0
0

⎞⎠ ,

⎛⎝ 1/2
1/2
0

⎞⎠ ,

⎛⎝ 1/2
0

1/2

⎞⎠ ,

⎛⎝ 0
1/2
1/2

⎞⎠ . (6.45)

The tetragonal distortion (6.36) applied on a,b, c and Qi given by (6.42) and
(6.43) results in

at =

⎛⎝1 + δt

0
0

⎞⎠ , bt =

⎛⎝ 0
1 + δt

0

⎞⎠ and ct =

⎛⎝ 0
0

1/(1 + δt)2

⎞⎠ , (6.46)

and

Qt,i =

⎛⎜⎝ xi + xiδt

yi + yiδt

zi/(1 + δt)2

⎞⎟⎠ . (6.47)

In the case of a sc lattice, the resulting structure may be described as a simple
tetragonal (st), whereas for the bcc and fcc lattices, the distorted lattice is
body centered tetragonal (bct). The axial ratios are given in Table 6.1.

The orthorhombic distortion (6.38) applied on a,b, c and Qi leads to

ao =

⎛⎝1 + δo

0
0

⎞⎠ , bo =

⎛⎝ 0
1 − δo

0

⎞⎠ and co =

⎛⎝ 0
0

1/(1 − δ2
o)

⎞⎠ , (6.48)

and

Qo,i =

⎛⎜⎝ xi + xiδo

yi − yiδo

zi/(1 − δ2
o)

⎞⎟⎠ . (6.49)

For the sc, bcc and fcc parent lattices, the distorted structure may be de-
scribed as a simple orthorhombic (so), a body centered orthorhombic (bco)
and a face centered orthorhombic (fco) lattice, respectively. The orthorhombic
lattice constants are listed in Table 6.1.

Finally, the monoclinic distortion (6.40) applied on a,b, c and Qi gives
the following distorted lattice

am =

⎛⎝ 1
δm

0

⎞⎠ , bm =

⎛⎝ δm

1
0

⎞⎠ and cm =

⎛⎝ 0
0

1/(1 − δ2
m)

⎞⎠ , (6.50)
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Table 6.1. The lattice parameters for the structures obtained by distorting a simple
cubic, body centered cubic and face centered cubic lattice using the tetragonal (6.36),
orthorhombic (6.38) and monoclinic (6.40) strain matrices.

sc bcc fcc
b/a c/a sym. b/a c/a sym. b/a c/a sym.

Dt 1 1
(1+δt)3

st 1 1
(1+δt)3

bct 1
√

2
(1+δt)3

bct

Do
1−δo
1+δo

1
(1+δo)(1−δ2

o)
so 1−δo

1+δo

1
(1+δo)(1−δ2

o)
bco 1−δo

1+δo

1
(1+δo)(1−δ2

o)
fco

Dm
1−δm
1+δm

1√
2(1+δm)(1−δ2

m)
baco 1−δm

1+δm

1√
2(1+δm)(1−δ2

m)
fco 1−δm

1+δm

√
2

(1+δm)(1−δ2
m)

bco

and

Qm,i =

⎛⎜⎝ xi + yiδm

xiδm + yi

zi/(1 − δ2
m)

⎞⎟⎠ . (6.51)

For sc, bcc and fcc lattices, the distorted structures are base centered or-
thorhombic (baco), face centered and body centered orthorhombic, respec-
tively. The corresponding axial ratios are given in Table 6.1. Equations
(6.46)−(6.51) can be used to establish the primitive cell of the distorted lattice
of any cubic lattice (6.42) with basis (6.43).

Hexagonal Lattice
Hexagonal crystals have five independent elastic constants c11, c12, c13, c33 and
c44, and the energy change (6.29) upon a general stain (6.28) is

1
V

ΔE =
1
2
c11

(
e2
1 + e2

2

)
+ c33e

2
3 + c12e1e2 + c13 (e2e3 + e1e3)

+
1
2
c44

(
e2
4 + e2

5

)
+

1
2
c66e

2
6 + O(e3), (6.52)

where c66 = (c11 − c12)/2. There are several possibilities to obtain the five
elastic constant by calculating ΔE from Equation (6.52) for small distortions
[132, 133]. Here we employ the one described by Steinle-Neumann et al. [132].
The bulk modulus is calculated from the equation of state as

B =
c2

cs
, (6.53)

where

c2 ≡ c33(c11 + c12) − 2c2
13, (6.54)

and
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cs ≡ c11 + c12 + 2c33 − 4c13. (6.55)

In general the hexagonal axial ratio c/a changes with the volume. Therefore,
at each volume V , we have to find the equilibrium structure. This is done by
calculating the total energy E(V, c/a) for a series of different c/a ratios and
the optimized (c/a)0 is obtained from the minimum of E(V, c/a). The volume
dependence of (c/a)0(V ) can be related to the difference in the linear com-
pressibilities along the a and c axes. The dimensionless quantity R describes
this as

R = −d ln(c/a)0(V )
d lnV

, (6.56)

which in terms of hexagonal elastic constants becomes

R =
c33 − c11 − c12 + c13

cs
. (6.57)

In some systems, the volume dependence of (c/a)0 is negligible. This is the
situation, e.g., in systems with (c/a)0 close to the ideal value

√
8/3. In this

case, from Equation (6.57) we have c13 + c33 ≈ c11 + c12 and the hexagonal
bulk modulus reduces to [133]

B ≈ 2(c11 + c12) + 4c13 + c33

9
≈ 2c13 + c33

3
. (6.58)

The elastic constant cs from Equation (6.55) gives the second order energy
variation with c/a around the equilibrium value. This is calculated from the
isochoric strain

Dh + I =

⎛⎜⎝ 1 + δh 0 0

0 1 + δh 0

0 0 1
(1+δh)2

⎞⎟⎠ . (6.59)

The corresponding energy change is obtained from Equation (6.52) as

ΔE(δh) = V csδ
2
h + O(δ3

h). (6.60)

From Equations (6.53), (6.55) and (6.57), we obtain the sum of c11 and c12.
These constants can be separated by computing their difference from the
orthorhombic strain

Do + I =

⎛⎜⎝ 1 + δo 0 0

0 1 − δo 0

0 0 1
1−δ2

o

⎞⎟⎠ , (6.61)

leading to a change in total energy

ΔE(δo) = 2V c66δ
2
o + O(δ4

o). (6.62)
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The fifth elastic constant c44 is determined from the monoclinic strain

Dm + I =

⎛⎜⎝ 1 0 δm

0 1
1−δ2

m
0

δm 0 1

⎞⎟⎠ , (6.63)

which results in an energy change

ΔE(δm) = 2V c44δ
2
m + O(δ4

m). (6.64)

We illustrate the distortions (6.59), (6.61) and (6.63) in the case of a hexagonal
close-packed lattice. The corresponding primitive and basis vectors expressed
in units of lattice constant a are

a =

⎛⎝ 1
0
0

⎞⎠ ,b =

⎛⎝−1/2√
3/2
0

⎞⎠ , c =

⎛⎝ 0
0

(c/a)0

⎞⎠ (6.65)

and

Q1 =

⎛⎝ 0
0
0

⎞⎠ , Q2 =

⎛⎝ 0√
3/3

(c/a)0/2

⎞⎠ , (6.66)

where (c/a)0 is the equilibrium axial ratio. The structure obtained from the
strain matrix (6.59) remains hexagonal with

(c/a)h = (c/a)0
1

(1 + δh)3
. (6.67)

Therefore, in Equation (6.60) we can use the same total energies as those
used for calculating B and R. First, we compute the total energy E(V, c/a)
as a function of V and c/a. Then the bulk modulus is obtained from the
second order derivative of the equation of state fitted to the energy minima
Emin(V ) = minc/a E(V, c/a) = E(V, (c/a)0), and R is obtained from the
optimized (c/a)0(V ) according to Equation (6.56). Finally, the second order
derivative of E(V, c/a) near c/a = (c/a)0 gives the cs, i.e.

cs =
9(c/a)20

V

∂2E(V, c/a)
∂(c/a)2

∣∣∣∣
c/a=(c/a)0

. (6.68)

The strained lattice obtained from the strain matrix (6.61) has the base cen-
tered orthorhombic symmetry with two atoms per primitive cell. The lattice
parameters and basis vectors in units of the lattice parameter ao are

(b/a)o =
√

3
1 − δo

1 + δo
, (c/a)o =

(c/a)0
(1 + δo)(1 − δ2

o)
(6.69)
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and

Qo,1 =

⎛⎝ 0
0
0

⎞⎠ , Qo,2 =

⎛⎝ 0
(b/a)o/3
(c/a)o/2

⎞⎠ . (6.70)

The strained lattice obtained from the strain matrix (6.63) is simple mono-
clinic with four atoms in the primitive cell. The corresponding lattice param-
eters in units of the lattice parameter am are

(b/a)m = (c/a)0, (c/a)m =
√

3√
1 + δ2

m(1 − δ2
m)

, (6.71)

and

cos(γm) =
2δm

1 + δ2
m

, (6.72)

where γm is the angle between am and bm. The atomic positions are

Qm,1 =

⎛⎝ 0
0
0

⎞⎠ ,Qm,2 =

⎛⎜⎝ (c/a)0δm/(1 + δ2
m)

(c/a)0(1 − δ2
m)/(1 + δ2

m)/2

−(c/a)m/3

⎞⎟⎠ (6.73)

and

Qm,3 =

⎛⎝ 1/2
0

−(c/a)m/2

⎞⎠ ,Qm,4 = Qm,2 + Qm,3. (6.74)

Alternatively, this structure may be described as a base centered monoclinic
lattice with two atoms per primitive cell [132]. We would like to point out
that the above atomic coordinates correspond to a rigidly distorted internal
structure. However, the atomic positions from Equations (6.70), (6.73) and
(6.74) may vary under strain. When high accuracy is required, the strain
relaxation should also be taken into account.

6.3 Polycrystalline Elastic Constants

In the previous section, we showed how the elastic constants of a monocrys-
talline material can be deduced from ab initio total energies calculated for a
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series of lattices obtained from the parent lattice by applying “small” strains.
In a polycrystalline material, the monocrystalline grains are randomly ori-
ented. On a large scale, such materials can be considered to be quasi-isotropic
or isotropic in a statistical sense. An isotropic system is completely described
by the bulk modulus B and the shear modulus G. The Young modulus E and
Poisson ratio ν are connected to B and G by the relations

E =
9BG

3B + G
and ν =

3B − 2G

2(3B + G)
. (6.75)

In these materials, the sound velocity is isotropic but different for the longi-
tudinal and two transversal branches. The longitudinal velocity is related to
the polycrystalline B and G,

ρv2
L = B +

4
3
G, (6.76)

and the transversal velocity is related to the polycrystalline G,

ρv2
T = G, (6.77)

where ρ is the density. Then the average velocity, Equation (6.26), becomes

3
v3

m

=
1
v3

L

+
2
v3

T

, (6.78)

which is used in Equation (6.27) to find the polycrystalline Debye tempera-
ture.

The only way to establish the ab initio polycrystalline elastic moduli is
to first derive the monocrystalline elastic constants cij and then to transform
these data to macroscopic quantities by suitable averaging methods based
on statistical mechanics. A large variety of methods has been proposed for
averaging cij to obtain the isotropic elastic constants. In the following, we
describe the three most widely used averaging methods for the bulk modulus
and shear modulus. The corresponding Young modulus and Poisson ratio
follow from Equations (6.75).

6.3.1 Averaging Methods

The Voigt and Reuss Bounds
In the Voigt averaging method [128] a uniform strain, and in the Reuss method
a uniform stress is assumed. The former is formulated using the elastic con-
stants cij and the latter using the elastic compliances sij . Within the Voigt
approach, the general expressions for the bulk and shear moduli are

BV =
(c11 + c22 + c33) + 2(c12 + c13 + c23)

9
, (6.79)



112 6 Ground-state Properties

and

GV =
(c11 + c22 + c33) − (c12 + c13 + c23) + 3(c44 + c55 + c66)

15
. (6.80)

The corresponding expressions within the Reuss approach are

BR =
1

(s11 + s22 + s33) + 2(s12 + s13 + s23)
, (6.81)

and

GR =
15

4(s11 + s22 + s33) − 4(s12 + s13 + s23) + 3(s44 + s55 + s66)
, (6.82)

respectively.
For cubic crystals, c11 = c22 = c33, c12 = c13 = c23, c44 = c55 = c66, and

s11 = s22 = s33, s12 = s13 = s23, s44 = s55 = s66. Using these relations, for
the Voigt and Reuss bounds we obtain

BV =
c11 + 2c12

3
,

GV =
c11 − c12 + 3c44

5
, (6.83)

and

BR =
1

3 (s11 + 2s12)
,

GR =
5

4s11 − 4s12 + 3s44
. (6.84)

Since the cubic elastic compliances may be expressed in terms of the cubic
elastic constants (Equation (6.18)) as

s11 + 2s12 =
1

c11 + 2c12
,

s11 − s12 =
1

c11 − c12
, (6.85)

s44 =
1

c44
,

the Reuss bounds reduce to BR = BV and
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GR =
5(c11 − c12)c44

4c44 + 3(c11 − c12)
. (6.86)

For hexagonal crystals, having five independent elastic constants, the Voigt
and Reuss bounds are

BV =
2(c11 + c12) + 4c13 + c33

9
, (6.87)

GV =
12c44 + 12c66 + cs

30
, (6.88)

BR =
c2

cs
, (6.89)

and

GR =
5
2

c44c66c
2

(c44 + c66)c2 + 3BV c44c66
. (6.90)

Here, c2 and cs are given by Equations (6.54) and (6.55). We point out that the
polycrystalline bulk modulus BR calculated assuming constant stress (Reuss)
agrees with Equation (6.53) obtained for a hexagonal single crystal. On the
other hand, the Voigt bulk modulus BV calculated assuming constant strain
agrees with Equation (6.58), obtained for a hexagonal single crystal with rigid
axial ratio (c/a)0. Obviously, when the hexagonal axial ratio does not depend
on volume, BV = BR = (2c13 + c33)/3.

The GV and GR bounds can also be used to characterize the polycrystalline
solids formed by randomly oriented anisotropic single crystal grains. In these
quasi-isotropic materials it is useful to define a measure of elastic anisotropy
as

AV R =
GV − GR

GV + GR
. (6.91)

This ratio has the following properties of practical importance: it is zero
for isotropic crystals, for anisotropic crystals it is a single-valued measure
of the elastic anisotropy, and it gives a relative magnitude of the actual elas-
tic anisotropy. For most of the metals, AV R ≤ 20%, but exceptionally large
values could be observed for K, Na and Li [134].

The Hashin−Shtrikman Bounds
Hashin and Shtrikman [135] derived upper and lower bounds for B and G
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using a variational method. Here we give results only for the cubic lattice.
For lattices with lower symmetry the reader is referred to Grimvall [128] and
references therein. For a cubic lattice with c′ < c44, these bounds are

Bu = Bl =
c11 + 2c12

3
,

Gl = c′ + 3
(

5
c44 − c′

+ 4β1

)−1

, (6.92)

Gu = c44 + 2
(

5
c′ − c44

+ 6β2

)−1

,

where

β1 =
3(B + 2c′)

5c′(3B + 4c′)
,

β2 =
3(B + 2c44)

5c44(3B + 4c44)
. (6.93)

For c′ > c44, the upper and lower bounds are reversed.

The Hershey Average
The Hershey’s averaging method [54] turned out to give the most accurate
relation between cubic single-crystal and polycrystalline data in the case of
FeCrNi alloys [55]. According to this approach, the average shear modulus G
is a solution of equation [54]

G3 + αG2 + βG + γ = 0, (6.94)

where

α =
1
8
(5c11 + 4c12),

β = −1
8
c44(7c11 − 4c12), (6.95)

γ = −1
8
c44(c11 − c12)(c11 + 2c12). (6.96)

The Hill Average
Hill [136, 137] has shown that the Voigt and Reuss bounds are rigorous upper
and lower bounds. The average bulk and shear moduli can be estimated from
these bounds, e.g., as
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GH =
1
2
(GV + GR)

BH =
1
2
(BV + BR). (6.97)

Alternatively, instead of the arithmetic average one might prefer to use the
geometric or harmonic means. In weakly anisotropic materials, of course, all
these averages lead to similar mean B and G.

6.4 Surface Energy and Stress

The surface energy is the surface excess free energy per unit area of a par-
ticular crystal facet and is one of the basic quantities in surface physics. It
determines the equilibrium shape of mezoscopic crystals, it plays an impor-
tant role in faceting, roughening, and crystal growth phenomena, and may
be used to estimate surface segregation in binary alloys. With very few ex-
ceptions the available experimental surface energies stem from surface tension
measurements in the liquid phase extrapolated to zero temperature [138, 139].
Because of the indirect measurement, the experimental surface energy data
include large error bars (20−50%). Furthermore, they correspond to isotropic
crystals and thus yield no information about the crystal orientation depen-
dence.

The theoretical surface free energy is calculated as half of the free en-
ergy needed to split an otherwise perfect monocrystal into two semi-infinite
crystals. The surface energy per unit area is given by

γ =
Es

A2D
, (6.98)

where Es is half of the free energy and A2D is the area of the two-dimension
(2D) unit cell. Since the surface energy is defined for a particular crystal facet,
its magnitude might strongly depend on the orientation. Usually, the surface
energy increases with the roughness of the surface. In terms of the cleavage
force F (z) acting between the two semi-infinite crystals separated by z, γ can
be written as one half of the cleavage work per unit area,

γ =
1
2

∫ ∞

0

F (z)dz. (6.99)

The surface stress is the the reversible work per area to stretch the sur-
face elastically. It has a decisive role for the understanding of a wide variety
of surface phenomena, e.g. for surface reconstruction, shape transitions in
nano-scale particles, surface alloying, surface diffusion, epitaxial growth, and
self-assembled domain patterns. Experimental techniques have been used to
establish the polar dependence of the surface stress [140], but a direct mea-
surement of its magnitude is not feasible.
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The stress tensor τij (i, j stand for the in-plane coordinates x, y) is calcu-
lated from the change per unit area of the surface energy Es upon a small
deformation εij of the surface unit cell, namely

τij =
1

A2D

∂Es

∂εij
. (6.100)

Using Equation (6.98), we can write

τij =
1

A2D

∂A2Dγ

∂εij
= γδij +

∂γ

∂εij
, (6.101)

where ∂γ/∂εij is the residual surface stress. This is the Shuttleworth equation
connecting the surface energy and the surface stress [141].

It is apparent from the definitions that the surface stress and surface energy
are of different nature. In the case of stable solids the free energy of a surface
is always positive, otherwise the solid would gain energy by fragmentation.
The surface stress, on the other hand, can either be positive or negative. We
note that for a liquid, the surface free energy and the surface stress are equal
due to the fact that in this case the surface energy does not change when
the surface is strained, i.e. ∂γ/∂εij = 0. These two quantities are frequently
referred to by the common name “surface tension”.

6.4.1 Numerical Calculation of the Surface Energy and Stress

A free surface is modeled by an atomic slab embedded in vacuum. The slab
is formed by N atomic layers with specific Miller indices. The slab plus vac-
uum configuration is periodically repeated along the direction perpendicular
to the atomic layers. The vacuum region is represented by a similar crystal-
lographic lattice occupied by empty sites. The number of empty layers is Nv.
The in-plane lattice constant is fixed to the bulk value, whereas the inter-layer
distances near the surfaces might be relaxed to their equilibrium values to ac-
count for the surface relaxation. The typical slab and vacuum thicknesses for
transition metals, needed to obtain bulk-like properties in the center of the
slab and consequently realistic surfaces, are listed in Table 6.2.

Using the slab geometry, at zero temperature, the surface energy may be
calculated as

γ =
Eslab(N) − NEbulk

2A2D
, (6.102)

where Eslab is the total energy of the slab including the empty spheres sim-
ulating the vacuum, and Ebulk is the bulk energy per atom. The factor of 2
from the denominator arises from the two surfaces of the slab.

The surface stress tensor is calculated by “stretching” the two in-plane
lattice vectors by ε, while the third lattice vector, which determines the
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Table 6.2. The required number of atomic (N) and vacuum (Nv) layers used in a
slab geometry to model the first few close-packed surfaces of transition metals. A2D

is the area of the 2D unit cell and a is the bulk lattice constant.

Structure Surface A2D N Nv

fcc (111)
√

3/4 a2 8 4
(100) 1/2 a2 8 4

(110)
√

2/2 a2 12 6

bcc (110)
√

2/2 a2 12 4
(100) a2 12 6

(211)
√

3/2 a2 16 8

(310)
√

10/2 a2 16 8

(111)
√

3 a2 16 8

hcp (0001)
√

3/2 a2 8 4

layer−layer distance, is kept fixed. For this distortion the deformation ten-
sor has the form

εij =

⎡⎣ ε 0 0
0 ε 0
0 0 0

⎤⎦ . (6.103)

Thus, the change in the surface energy δEs = δEslab(N) − NδEbulk is a
function of ε. Calculations are carried out for both surface and bulk systems
for several different ε values. Then, in order to minimize the numerical noise,
we fit a polynomial to the calculated mesh-points,

δEslab/bulk ≈ c0 + c1ε + c2ε
2 + ... (6.104)

The surface stress τ is determined from the linear coefficients of the slab and
bulk energies, viz.

τ (s) =
cslab,1 − cbulk,1

4A2D
, (6.105)

where the factor of 4 arises from the two surfaces of the slab and the two
elongated in-plane lattice vectors. Note that at the equilibrium volume, cbulk,1

vanishes and τ is determined merely by the linear coefficient of the slab energy.
In the case of low symmetry surfaces, such as the fcc or bcc (110) surfaces,
Equation (6.105) gives the average of the two main stress tensor components.

6.5 Stacking Fault Energy

A perfect fcc crystal has the ideal ABCABCAB stacking sequence, where
the letters denote adjacent (111) atomic layers. The intrinsic stacking fault is
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the most commonly found fault in experiments on fcc metals. This fault is
produced by a shearing operation described by the transformation ABC →
BCA to the right hand side of an (111) atomic layer. It corresponds to the
ABCAĊȦḂĊ stacking sequence, where the translated layers are marked by
dots.6 The formation energy of an extended stacking fault is defined as the
excess free energy per unit area. At zero temperature, the stacking fault energy
(SFE) is calculated as

γSF =
Efault − Ebulk

A2D
, (6.106)

where Efault and Ebulk are the energies of the system with and without the
stacking fault, respectively, and A2D denotes the area of the stacking fault.

6.5.1 Numerical Calculation of the Stacking Fault Energy

The intrinsic stacking fault creates a negligible stress near the fault core.
Therefore, the faulted lattice approximately preserves the close-packing of
the atoms, and can be modeled by an ideal close-packed lattice. Within the
axial interaction model [142, 143] the stacking sequence along the < 111 >
direction is represented by a set of variables, Si, where i is the layer index. The
sign of Si is determined by the translation connecting subsequent close-packed
layers. Then the excess energy of a particular stacking sequence is expanded
as −∑

i

∑
n JnSiSi+n, where the sums run on the atomic layers, and J1, J2, ...

are the nearest-neighbor, next nearest-neighbor, etc., interaction parameters.
Using this representation, the energy of an intrinsic SFE can be expressed as

Efault − Ebulk = −4J1 − 4J2 − 4J3 −O(J4), (6.107)

where O(J4) stands for the contribution coming from the higher order terms
(J4, J5, ...). On the other hand, applying the axial interaction model to peri-
odic structures, we obtain, for instance,

Efcc = J0 + J1 + J2 + J3 + O(J4)
Ehcp = J0 − J1 + J2 − J3 + O(J4) (6.108)

Edhcp = J0 − J2 −O(J4)

where Efcc, Ehcp and Edhcp are the energies of fcc, hcp and dhcp struc-
tures, respectively. By eliminating the interaction parameters from Equations
(6.107) and (6.108), we can derive a relationship between the SFE and the
energies of periodic structures. In the lowest order approximation, i.e. taking
6 The extrinsic stacking fault corresponds to ABCAĊB̈C̈Ä stacking, whereas the

twin stacking fault is a plane boundary between two fcc stacking sequences with
opposite orientation, i.e. ABCABACBA.
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into account J0 and J1, the formation energy of the intrinsic stacking fault is
twice the energy difference between the hcp and fcc phases, viz.

E2nd
fault − Ebulk ≈ 2(Ehcp − 3Efcc). (6.109)

Keeping terms up to the third order, for the stacking fault energy we find7

E3rd
fault − Ebulk ≈ Ehcp + 2Edhcp − 3Efcc. (6.110)

This expression will be used in Section 9.3 to compute the stacking fault
energy of fcc FeCrNi alloys.

6.6 Some Ideas about the Atomistic Modeling of the
Mechanical Properties of Alloys

In general, by mechanical properties we understand the behavior of materials
under external forces. These properties are of special importance in fabrication
processes and applications. At the time of writing, a direct determination of
the mechanical properties of complex alloys from first-principles theory is not
feasible. On the other hand, well established phenomenological models exist,
which are suitable for an accurate description of materials behavior under
various mechanical loads. These models involve a large set of atomic-level
physical parameters. Below, we give a very brief overview of some of these
model.

Materials behavior are usually described in terms of stress or force per
unit area and strain or displacement per unit distance. On the basis of stress
and strain relations, one can distinguish elastic and plastic regimes. In elastic
regime, at small stress, the displacement and applied force obey Hook’s law
and the specimen returns to its original shape on uploading. Beyond the elastic
limit, upon strain release the material is left with a permanent shape. Several
models of elastic and plastic phenomena in solids have been established. For
a detailed discussion of these models, we refer to [144, 145, 146, 147, 148].

Within the elastic regime, the single crystal elastic constants (Section 6.2)
and the polycrystalline elastic moduli (Section 6.3) play the principal role in
describing the stress−strain relation. Within the plastic regime, the impor-
tance of lattice defects in influencing the mechanical behavior of crystalline
solids was recognized long time ago. Plastic deformations are primarily facil-
itated by dislocation motion and can occur at stress levels far below those
required for dislocation free crystals.

7 Following the above procedure, the formation energy of the extrinsic stacking fault
becomes 4(Edhcp − Efcc) and that of the twin stacking fault 2(Edhcp − Efcc).
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The mechanical hardness represents the resistance of material to plastic
deformation. It may be related to the yield stress separating the elastic and
plastic regions, above which a substantial dislocation activity develops. In an
ideal crystal dislocations can move easily because they experience only the
weak periodic lattice potential. In real crystals, however, the motion of dislo-
cations is impeded by obstacles, leading to an elevation of the yield strength.
According to this scenario, the yield stress is decomposed into the Peierls and
the solid-solution strengthening contribution. The stress needed to move a
dislocation across the barriers of the oscillating crystal potential is the Peierls
stress. In metals, this is found to be approximately proportional to the shear
modulus G [148]. Therefore, the concentration dependence of the Peierls term
is mainly governed by that of the elastic constants.

The solid-solution strengthening contribution is due to dislocation pin-
ning by the randomly distributed solute atoms. Dislocation pinning by ran-
dom obstacles has been described by classical models of Fleisher, Labusch and
Nabarro [145, 146, 147] or more recent models by Clerc and Ledbetter [149].
According to the Labusch−Nabarro model, dislocation pinning is mostly de-
termined by the size misfit (εb) and elastic misfit (εG) parameters. They are
calculated from the concentration (x) dependent Burgers vector [144] b(x) or
lattice parameter, and shear modulus G(x) as

εb =
1

b(x)
∂b(x)
∂x

, and εG =
1

G(x)
∂G(x)

∂x
. (6.111)

After lengthy calculations, it is obtained that the solid-solution strengthening
contribution to the hardness depends on the concentration of solute atoms

as x2/3εL
4/3. Here, εL ≡

√
ε′G

2 + (αεb)2 is the Fleischer parameter, ε′G ≡
εG/(1 + 0.5|εG|) and α =9−16.

Besides the above described bulk parameters, the formation energies of
two-dimensional defects are also important in describing the mechanical char-
acteristics of solids. The surface energy (Section 6.4) is a key parameter in
brittle fracture. According to Griffith theory [148], the fracture stress is pro-
portional to the square root of the surface energy, that is, the larger the surface
energy is, the larger the load could be before the solid starts to break apart.
Another important planar defect is the stacking fault in close-packed struc-
tures, such as the fcc and hcp lattices. In these structures, the dislocations
may split into energetically more favorable partial dislocations having Burgers
vectors smaller than a unit lattice translation [144]. The partial dislocations
are bound together and move as a unit across the slip plane. In the ribbon
connecting the partials, the original ideal stacking of close-packed lattice is
faulted. The energy associated with this miss-packing is the stacking fault
energy (Section 6.5). The balance between the SFE and the energy gain by
splitting the dislocation determines the size of the stacking fault ribbon. The
width of the stacking fault ribbon is of importance in many aspects of plas-
ticity, as in the case of dislocation intersection or cross-slip. In both cases, the
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two partial dislocations have to be brought together to form an unextended
dislocation before intersection or cross-slip can occur. By changing the SFE
or the dislocation strain energy, wider or narrower dislocations can be pro-
duced and the mechanical properties can be altered accordingly. For instance,
materials with high SFE permit dislocations to cross-slip easily. In materials
with low SFE, cross-slip is difficult and dislocations are constrained to move
in a more planar fashion. In this case, the constriction process becomes more
difficult and hindered plastic deformation ensues. Designing for low SFE, in
order to restrict dislocation movement and enhance hardness was adopted,
e.g., in transition metal carbides [150].

The principal problem related to modeling the mechanical properties of
complex solid solutions is the lack of reliable experimental data of the alloy-
ing effects on the fundamental bulk and surface parameters. While the volume
misfit parameters are available for almost all the solid solutions, experimen-
tal values of the elastic misfit parameters are scarce. There are experimental
techniques to establish the polar dependence of the surface energy [140], but
a direct measurement of its magnitude is not feasible [151, 152, 153]. In con-
trast to the surface energy, the stacking fault energy can be determined from
experiments. For instance, one can find a large number of measurements on
the stacking fault energy of austenitic stainless steels [154, 155]. However, dif-
ferent sets of experimental data published on similar steel compositions differ
significantly, indicating large error bars in these measurements. On the other
hand, during the last decade, the theoretical determination of these param-
eters in the case of metals and alloys has come within the reach of modern
computational physics based on Density Functional Theory. In fact, a care-
fully performed computational modeling, based on modern first-principles al-
loy theory, can yield fundamental parameters with an accuracy comparable to
or better than the experiments. In this sense, ab intio computer simulations
may already have an important impact on the theoretical modeling of the
mechanical properties of alloys.

6.7 Recommendations for EMTO Calculations

Any well designed data production with the EMTO method should be pre-
ceded by careful tests to assess the performance of the method for the actual
problem. As a first step, one should always start by investigating the equation
of state using different approximations for the exchange-correlation functional.
The output of these studies allows one to

• establish the accuracy of the EMTO method, and
• decide which approximation is the most suitable

for the system in question. The first point is achieved by comparing the EMTO
results with other ab initio results and the second one by comparing the the-
oretical results with the available experimental data. Generally, in the case of
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metals the highest accuracy is achieved using s, p, d, f basis set in combination
with soft-core approximation8 and a gradient corrected exchange-correlation
functional. However, sometimes especially for systems with unit cells con-
taining more than 30−50 atoms, a smaller basis set (only s, p, d orditals) is
preferred in order to reduce the computation time. In such situations, one may
opt to employ less accurate approximations (e.g., LDA or frozen-core) which
could compensate for the errors in the equilibrium volume and bulk modulus.
For engineering purposes this level of “data tuning” is not only admissible but
many times also indispensable.

The slope matrix from the EMTO kink-cancelation equation (Section
2.1.3) and overlap matrix (Section 2.1.4) is obtained by solving the Dyson
equation (Section 3.1) on a real space cluster (Section 3.3). As a result, there
always will be some errors in the total energy which are connected with the
finite size of the real space cluster. Because of this, in EMTO calculations in-
volving lattice distortions, the real space cluster size used for the slope matrix
should be kept constant upon lattice distortion. This is the case, for instance,
in optimization of the shape of the unit cell, elastic constant and stacking
fault calculations, etc.

The slope matrix parametrization (Section 3.4) depends on the actual elec-
tronic structure and volume. In order to decide about the type of the energy
expansion, one should investigate the width of the valance band including
the semi-core states relative to the muffin-tin zero. In most cases, a simple
Taylor expansion around ω0 = 0 (Section 3.4.1) ensures a sufficiently high ac-
curacy at zero pressure. However, for systems with high-lying semi-core states
a second expansion around ω1 (typically between −40 and −20) should be
included (Section 3.4.3). In fact, all high-pressure studies should be carried
out with semi-core states treated as valance states and using the two-center
Taylor expansion for the slope matrix.

In the self-consistent calculations, as long as the overlap error remains suf-
ficiently small (Section 2.3.1), the radius of the potential sphere (sR) should be
fixed to the radius of the atomic sphere (wR). Within the Spherical Cell Ap-
proximation, using both larger and smaller potential spheres on different sites
(i.e., sR > wR for some sites and sR′ < wR′ for some other sites) might lead
to the divergence of the optimized overlapping muffin-tin potential (Section
2.1.1).

When choosing the energy contour in Equations (2.45) and (2.49) (Sections
2.1.5 and 2.2) one should make sure that the contour is large enough to include
the valence band below the actual Fermi level, but, at the same time, it does
not include any high-lying core states. When semi-core states are present,
they should also be included in the contour. For a stable calculation, it is
advisable to set the contour in such a way that the gap between the bottom

8 Within the soft-core approximation the core states are recalculated after each
iteration. Opposite to this, the frozen-core approximation uses fixed atomic-like
core states.
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of the contour and the valence band should be around 0.1−0.5 Ry. A similar
gap should also be seen between the bottom of the contour and the core states
with the highest energy. This is especially important if the contour integration
is performed using a numerical technique (e.g., the Gaussian quadrature) that
does not include information from the endpoints and therefore the actual
integration limit along the real energy axis depends on the imaginary part of
the last point (the complex energy with the lowest real component) from the
contour.

Calculations for random systems should start with the determination of the
screening constant from the screened impurity model (Sections 5.2 and 8.1).
Although many properties (e.g., elastic constants) show negligible dependence
on this parameter, an inappropriate value can lead to large errors in the
volume and therefore also in the computed quantities.

The Brillouin zone sampling requires special attention in dilute systems.
The k-mesh, which is “sufficient” for the end-members and for solid solutions
containing more than ∼10−15% solvent, can very well give results that scatter
at low concentrations.

The accuracy of the shape function technique for a given lattice should
be investigated (Section 4.1). Performing test calculations for model systems
with uniform charge distribution allows one to check both the convergence of
the radial mesh and the l-summations for the shape function (Section 4.2.6).

Finally, the charge neutrality requirement (Section 4.2.6) should always
be monitored. It represents the most severe test for the accuracy of the (i)
one-center expansion for the charge density (Sections 2.2 and 5.2.2), (ii) shape
function (Section 4.1) and (iii) slope matrix (Section 3.4). With large charge
misfit no accurate total energies and derived quantities will be obtained.
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Ordered Solids

This chapter is dedicated, first of all, to demonstrating the application of the
EMTO method in the case of ordered metallic and non-metallic systems. In
Section 7.1, we start by investigating the equation of state of a large set of
simple and transition metals crystallizing in body centered cubic, face centered
cubic or hexagonal close-packed crystal structure. Results for the equilibrium
atomic radius and bulk modulus will be presented for three different exchange-
correlation energy functionals. The EMTO determination of the formation
energy of mono-vacancies will be illustrated in the case of fcc Al. We shall
also discuss some surface energy and surface stress results obtained for low-
index surfaces of 4d transition metals. The ground state properties of some
common non-metallic solids and two silicate perovskites will be explored in
Section 7.2. The elastic constant calculation will be exemplified in the case
of solid helium. Some results obtained for transition-metal nitride surfaces
will be discussed in Section 7.3. The most significant numerical details of the
EMTO calculations presented in this chapter are listed in Section C.1.1

7.1 Simple and Transition Metals

7.1.1 Equilibrium Bulk Properties

Many physical properties depend sensitively on volume. Because of this, a
modern ab initio total energy method should, first of all, be able to repro-
duce the equation of state and related quantities (equilibrium volume, bulk
modulus and Grüneisen constant) with high accuracy. The performance of
the EMTO method for the equilibrium atomic volume and bulk modulus is
demonstrated in Figures 7.1 and 7.2. Here, we compare the EMTO values with
those obtained using the full-potential linear muffin-tin orbital (FP-LMTO)

1 For details about the FP calculations quoted in this chapter, the reader is referred
to the corresponding references.
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Fig. 7.1. Comparison between different theoretical equilibrium atomic volumes (in
Bohr3) for selected transition metals calculated using the EMTO method (ordinate)
and two full-potential methods (abscissa) [156, 157]. The volume for Y has been
divided by a factor of 2 in order to fit on the present scale. Circles denote the
FP-LMTO results [156], and squares the FP-LAPW results [157].

[156] and linear augmented plane wave (FP-LAPW) [157] methods. For this
test, we selected a few 3d, 4d and 5d transition metals, for which systematic
FP-LMTO and FP-LAPW studies are available. All theoretical data from Fig-
ures 7.1 and 7.2 were computed using the Local Density Approximation (LDA)
[6, 7] for the energy functional. The Perdew and Wang parametrization of the
LDA functional is given in Appendix A. All calculations were carried out for
the space groups corresponding to the low temperature experimental crystal
structures [129]. The ferromagnetic order was taken into account in the case
of bcc Fe, and all the other elements were treated as nonmagnetic solids.

The mean deviations between the EMTO and the FP atomic volumes
from Figure 7.1 are 0.33%, 0.43%, and 0.49% for the 3d, 4d, and 5d metals,
respectively. The same figures for the bulk moduli2 are 0.20%, 1.20% and
3.28%, respectively. The excellent agreement between the EMTO and FP
data shows that for equations of state the EMTO method has the accuracy
of formally exact full-potential methods.

In the above tests, for the hexagonal metals (Ti, Y, Zr, Tc, Ru, Re, Os)
we used the theoretical axial ratios (c/a) calculated within the LDA. The
equilibrium hexagonal axial ratio is determined by minimizing the total energy

2 The standard unit for the bulk modulus is GPa or MPa: 1 Ry/Bohr3 ≈ 14710.51
GPa.
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Fig. 7.2. Comparison between different theoretical equilibrium bulk moduli (in
GPa) for selected transition metals calculated using the EMTO method (ordinate)
and two full-potential methods (abscissa) [156, 157]. For notation see caption for
Figure 7.1.

with respect to the volume and c/a. This type of calculation necessitates
increased accuracy compared to that needed for the equation of state. This
is because the total energy has to be computed against anisotropic lattice
distortion, which usually results in a much smaller energy change than that
due to the isotropic distortion, i.e. volume change.

In Figure 7.3, we compare the EMTO c/a values for 13 hcp metals with
those calculated using the FP-LMTO method [156] and with the available
experimental data [158]. At temperatures below 673 K, lanthanum has a
double-hcp (dhcp) structure with c/a ratio of 3.225 [158, 159]. In Figure 7.3,
the EMTO result for La was obtained for the hcp phase, and therefore we
compare this with half of the experimental dhcp axial ratio. Both sets of the-
oretical results from Figure 7.3 were obtained using the Generalized Gradient
Approximation (GGA) for the exchange-correlation functional [8, 9, 15, 16].
Note that the FP-LMTO calculation used the functional proposed by Perdew
and Wang [8], whereas the EMTO calculations employed the functional by
Perdew, Burke, and Ernzerhof [15].3 Expressions for the latter are given in
Appendix A.

Except for Y and Ti, the agreement between the EMTO and the FP-
LMTO hexagonal axial ratios is very good. Yttrium and titanium have high-

3 In literature, these two GGA level approximations are often referred to as the
PW91 [8] and PBE [15] approximations.
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Fig. 7.3. Comparison between the theoretical and experimental equilibrium hexag-
onal lattice parameter (c/a) for hexagonal simple and transition metals. Theoreti-
cal values were calculated using the EMTO method (ordinate) and a full-potential
method [156] (abscissa). The experimental data for Sc is from [159], and the rest
from [158] (abscissa). The horizontal dashed lines mark the deviations between the
FP-LMTO and experimental values. Note that the FP-LMTO result for Y (1.529)
is not shown.

lying semi-core states, which have a significant influence on the equilibrium
properties. Furthermore, in these metals the total energy versus c/a is very
shallow near the energy minimum. Accordingly, we ascribe the discrepancies
between the theoretical data for Y and Ti to the numerical difficulties associ-
ated with such calculations. The agreement between theory and experiment is
also satisfactory. Somewhat larger deviations (0.7−1.5%) can be seen for Hf,
Ti and Sc. However, we should point out that for these elements the measured
c/a values also show some scatter. For instance, two independent experimental
measurements reported 1.58 [159] and 1.60 [160] for the equilibrium hexagonal
axial ratio of Sc.

The EMTO equilibrium atomic radii and bulk moduli for 38 metals are
listed in Table 7.1. Except for Li and La, all the calculations were carried out
for the space groups corresponding to the low temperature experimental crys-
tal structures [129]. At low temperature, Li has a close-packed samarium-type
hexagonal structure [129]. We approximated this structure by the fcc phase.
For La we used the hcp structure instead of the low-temperature dhcp struc-
ture. However, due to the similar packing fractions, the above approximations
are expected to have a minor effect on the calculated equations of state. In
Table 7.1, in addition to the LDA and GGA data, we also list results obtained
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Table 7.1. Theoretical (EMTO) and experimental [129] equilibrium atomic radii (w
in Bohr) and bulk moduli (B in GPa) for metals with close-packed crystal structures
from periods 2, 3, 4, 5 and 6. Periods are separated with horizontal lines. The
EMTO results were obtained using the LDA [7], GGA [15] and LAG [17] energy
functionals. The corresponding mean absolute values of the relative deviations from
the experimental values are listed in Table 7.2.

Z str. wLDA wGGA wLAG wexpt. BLDA BGGA BLAG Bexpt.

Li 3 fcc∗ 3.13 3.18 3.21 3.237 15.0 14.0 13.3 12.6
Be 4 hcp 2.30 2.34 2.33 2.350 132 123 123 110

Na 11 bcc 3.77 3.91 3.92 3.928 8.56 7.88 7.54 7.34
Mg 12 hcp 3.27 3.34 3.33 3.346 38.5 36.8 36.7 34.1
Al 13 fcc 2.95 2.99 2.98 2.991 85.5 76.8 78.3 72.8

K 19 bcc 4.69 4.92 4.92 4.871 4.00 4.16 3.95 3.70
Ca 20 fcc 3.95 4.10 4.06 4.109 17.6 16.5 16.3 18.4
Sc 21 hcp 3.28 3.36 3.33 3.424 66.6 69.6 67.4 54.6
Ti 22 hcp 2.96 3.04 3.01 3.053 115 110 111 106
V 23 bcc 2.72 2.79 2.76 2.813 194 177 183 155
Cr 24 sc 2.60 2.65 2.62 2.684 285 259 268 160
Fe 26 bcc 2.56 2.64 2.60 2.667 245 191 213 163
Co 27 hcp 2.53 2.60 2.56 2.613 285 197 234 186
Ni 28 fcc 2.53 2.60 2.57 2.602 244 196 214 179
Cu 29 fcc 2.60 2.69 2.65 2.669 182 142 155 133

Rb 37 bcc 5.00 5.27 5.26 5.200 3.19 3.43 3.24 2.92
Sr 38 fcc 4.30 4.45 4.41 4.470 14.0 13.1 13.1 12.4
Y 39 hcp 3.65 3.76 3.72 3.760 43.6 46.2 44.5 41.0
Zr 40 hcp 3.28 3.36 3.32 3.347 97.1 87.6 90.0 94.9
Nb 41 bcc 3.01 3.08 3.05 3.071 171 142 152 169
Mo 42 bcc 2.90 2.94 2.92 2.928 275 250 259 261
Tc 43 hcp 2.82 2.86 2.84 2.847 329 289 306 297a

Ru 44 hcp 2.77 2.82 2.80 2.796 351 300 322 303
Rh 45 fcc 2.78 2.84 2.81 2.803 304 251 272 282
Pd 46 fcc 2.85 2.92 2.89 2.840 229 166 191 189
Ag 47 fcc 2.97 3.07 3.03 3.018 137 88.7 104 98.8

Cs 55 bcc 5.36 5.73 5.72 5.622 2.08 2.32 2.16 2.10
Ba 56 bcc 4.38 4.67 4.59 4.659 8.28 7.75 7.57 9.30
La 57 hcp∗ 3.79 3.95 3.90 3.925 28.2 29.8 28.8 26.6
Hf 72 hcp 3.20 3.27 3.23 3.301 142 134 137 108
Ta 73 bcc 3.03 3.10 3.06 3.073 194 179 183 191
W 74 bcc 2.92 2.97 2.95 2.937 306 294 298 308
Re 75 hcp 2.86 2.90 2.88 2.872 389 355 368 360
Os 76 hcp 2.82 2.86 2.84 2.824 433 387 406 418a

Ir 77 fcc 2.83 2.87 2.85 2.835 392 340 362 358
Pt 78 fcc 2.89 2.95 2.92 2.897 299 245 266 277
Au 79 fcc 3.00 3.08 3.05 3.012 188 136 155 166
Pb 82 fcc 3.60 3.71 3.67 3.656 59.6 36.9 43.7 41.7
aEstimated values, [133]. ∗Not ground state structure.
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Table 7.2. The mean absolute values of the relative deviations (in percent) between
the EMTO and experimental atomic volumes and bulk moduli from Table 7.1. Errors
are given for each period i separately (Δi) and also for all 38 metals (Δtot).

wLDA wGGA wLAG BLDA BGGA BLAG

Δ2 2.72% 1.09% 0.84% 19.5% 11.5% 8.7%
Δ3 2.55% 0.22% 0.35% 15.7% 6.9% 6.0%
Δ4 3.38% 0.80% 1.71% 32.3% 16.9% 22.5%
Δ5 1.83% 0.91% 0.74% 12.0% 9.2% 5.5%
Δ6 1.84% 1.23% 0.89% 11.4% 10.8% 7.1%

Δtot 2.34% 0.94% 1.02% 17.8% 11.7% 10.7%

using the Local Airy Gas Approximation (LAG) for the exchange-correlation
functional [17, 18]. The LAG approximation is introduced in Appendix A.

The mean absolute values of the relative deviations between the EMTO
and experimental atomic volumes and bulk moduli listed in Table 7.1 are given
in Table 7.2. The LDA atomic radii deviate, on average, by 2.34% from the
experimental values, while those calculated in the GGA and the LAG model
deviate by 0.94% and 1.02%, respectively. The corresponding LDA, GGA and
LAG errors for the bulk modulus are 17.8%, 11.7% and 10.7%, respectively.
Hence, among the energy functionals considered in Table 7.1, the LDA is found
to give the largest mean deviations (Δtot), whereas the GGA and LAG lead to
similar small mean deviations for both atomic radii and bulk moduli. On the
other hand, considering the mean errors for the energy functionals separately
for periods 2, 3, 4, 5 and 6, the relative merits become quite different. It is
clear that the simple LAG model performs the best for Li, Rb and Cs periods
as it gives the smallest Δ2,Δ5 and Δ6 values for both atomic radii and bulk
moduli. For the third period, the GGA and LAG approximations have similar
accuracies. However, when only the fourth period (especially the 3d series) is
taken into account, the accuracy of the GGA is superior to that of the LAG
and LDA approximations. It is interesting to note that with increasing period
the accuracy of the LDA approximation increases and for the sixth period it
gives errors which are relatively close to those obtained within the GGA.

7.1.2 Vacancy Formation Energy

The theoretical description of vacancies has been used several times as a
benchmark of total energy calculation methods [161, 162, 163]. The formation
energies of mono vacancies in fcc Al are listed in Table 7.3. There are two
important issues that should be considered in this type of calculation. First,
the size of the supercell should be sufficiently large in order to minimize the
vacancy−vacancy interaction. Second, in alkali, alkaline earth and p metals
the valence electrons are free-electron like, and therefore the Brillouin zone
sampling should be performed with high accuracy. The latter problem is less
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Table 7.3. Theoretical (LDA) and experimental formation energies (Ev in eV) and
relaxation of the first nearest-neighbor lattice sites (δNN in %) for a vacancy in fcc
Al. The EMTO calculations have been performed on 16 (numbers in parenthesis)
and 32 atom supercells.

EMTO Full-potential Experimental

Ev, un-relaxed 0.84(0.89) 0.82a,0.73b -

Ev, relaxed 0.66(0.64) 0.66a,0.62b,0.66c 0.67±0.03d

δNN -1.41(-1.58) -1.50b -
a pseudopotential [161] c pseudopotential [162]
b KKR [163] d experimental [164]

severe for transition metals in which the d states are more localized in contrast
to the long-ranging s and p states.

The EMTO results from Table 7.3 were obtained for fcc supercells of 16
and 32 atoms using the LDA for the exchange-correlation functional.4 It has
been shown [79] that increasing the size of the supercell beyond 32 atoms,
as long as the proper convergence of the Brillouin zone sampling is ensured,
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Fig. 7.4. Formation energy as a function of the nearest-neighbor distance (NN) for
a vacancy in fcc Al. The energy minima correspond to −1.58% and −1.41% inward
relaxation of the first coordination shell around the vacancy in 16 (dashed line) and
32 (solid line) atoms supercells, respectively.

4 Usually, the vacancy formation energies are expressed in eV per vacancy: 1 Ry
≈ 13.605698 eV.
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has no significant effect on the formation energy. The un-relaxed energies from
Table 7.3 were obtained for ideal fcc based supercells, while the relaxed values
correspond to the radial relaxation of the nearest-neighbor sites (NN) of the
vacancy. The changes of the vacancy formation energies with the NN distances
are shown in Figure 7.4.

The un-relaxed and relaxed EMTO energies for 32 atoms supercell agree
very well with the pseudopotential results from [161, 162], but they are 13%
and 6%, respectively, larger than those obtained using the full-potential KKR
method [163]. This difference may be assigned to the fact that in Ref. [163] the
relaxation of the effective potential beyond the nearest-neighbor sites around
the vacancy was neglected. The EMTO method gives a small inward relaxation
for the NN lattice sites, in good accordance with the full-potential KKR results
[163].

7.1.3 Surface Energy and Stress of Transition Metals

The calculation of the surface stress for an ideal unrelaxed surface is illustrated
in Figure 7.5. Here we plotted the total energy for the (111) surface of fcc Pt
as a function of the deformation parameter ε introduced in Equation (6.103).
The energies were calculated using the EMTO method and the LDA for the
exchange-correlation term [165]. Results are shown for two atomic radii: one
corresponding to the equilibrium volume (w0) and another corresponding to
a slightly smaller volume (0.99w0).
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Fig. 7.5. Total slab and bulk energies for Pt as a function of the distortion parameter
defined in Equation (6.103) for an ideal fcc(111) surface. Energies are shown for the
equilibrium radius w0 and 0.99w0.
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Using Figure 7.5, one can determine the surface stress for fcc Pt and
trace the effect of volume change on the surface stress. We can see that at the
equilibrium volume the bulk total energy curve has a minimum at ε = 0, i.e.
cbulk,1 = 0, while the slab energy has a minimum at ε < 0, corresponding to
a slope of csurf,1 > 0 (see Section 6.4 for notations). It is interesting that for
w < w0 the bulk and slab minima are shifted, but the difference between the
slopes of the energy curves, that enters in Equation (6.105), is not significantly
altered. Since (cslab,1 − cbulk,1) > 0, the (111) surface of fcc Pt exhibits a
tensile (positive) surface stress. The positive surface stress is in line with the
simple model described by Ibach [166]. According to that, upon cleaving a
metal surface the electronic charge density of the broken bonds is redistributed
between surface atoms and their back-bonds. This leads to increased charge
density between surface atoms and leads to tensile surface stress on metal
surfaces.

In contrast to the surface energy [171], the surface stress is drastically in-
fluenced by surface geometry [168], and therefore for an accurate surface stress
calculation one should first determine the surface atomic structure. Real sur-
faces of pure metals can adopt different structures from those of ideally trun-
cated crystals. During relaxation only rigid inward or outward displacement of
the atomic layers occurs, while in the case of reconstruction, the displacement
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Fig. 7.6. Surface relaxation for the close-packed surfaces of 4d transition metals.
Solid line stands for the EMTO results [167], dashed line shows full-potential relax-
ations [168] calculated using the projected augmented wave (PAW) method [169],
and dotted line belongs to FP-LMTO results [170]. Open squares with error bars
display experimental results [167]. (To avoid overlapping, the symbols and error bars
of experimental values for Rh(111) are slightly shifted along the abscissa.)
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of atoms may alter the two-dimensional symmetry of the surface. Experimen-
tal studies have demonstrated that the surface layer of clean transition metal
surfaces relaxes inward [172], i.e. the inter-layer distance between the topmost
two atomic layers is smaller than that in the bulk. Expansion of the top layer
has been found for some surfaces of noble metals. The top layer relaxation is
often accompanied by relaxation of the subsurface atomic layers, resulting in
an oscillatory multi-layer relaxation.

Since no reliable atomic forces can be computed using the EMTO method,
the multi-layer relaxation cannot be addressed by this approach. Nevertheless,
the top layer relaxation can be determined from the EMTO total energies
calculated as a function of the distance between the first and second atomic
layers denoted by λs

12. The equilibrium top layer relaxation corresponds to the
minimum of the surface energy as a function of δ ≡ (λs

12 − λb
12)/λb

12, where
λb

12 is the bulk equilibrium inter-layer distance.
The EMTO-GGA surface relaxations obtained for the close-packed sur-

faces of the 4d transition metals are compared to the full-potential results
[168, 170] in Figure 7.6. The full-potential values were calculated using the
projected augmented wave (PAW) method [169] and the FP-LMTO method.
For comparison, some experimental values are also indicated [167]. Except for

Table 7.4. Surface energy and surface stress for the low index surfaces of 4d tran-
sition metals. The surface energy and stress are in units of J/m2.

Surface energy Surface stress

str. surf. EMTO FPa Expt.b EMTO FP Expt.

Y hcp (0001) 1.09 1.00 1.13 0.60 1.00a

Zr hcp (0001) 1.76 1.57 2.00 1.57 1.15a

Nb bcc (100) 2.58 2.32 2.70 1.79 0.89a

(110) 2.31 2.06 3.44 2.99a

Mo bcc (100) 3.93 3.15 3.00 3.27 1.98a

(110) 3.40 2.73 4.15 2.96a

Tc hcp (0001) 3.14 2.21 3.15 3.48 2.59a

Ru hcp (0001) 3.53 2.52 3.05 4.75 3.15a

Rh fcc (111) 2.71 2.01 2.70 2.11 2.73a, 2.97c

(100) 2.84 2.35 2.14 2.35a, 3.15c, 3.66d

(110) 3.20 0.93 2.54c

Pd fcc (111) 1.64 1.33 2.05 2.15 2.57a, 3.69e 6.0±0.9f

(100) 1.74 1.51 1.69 2.16a, 1.98d

(110) 2.05 0.68 2.30d

Ag fcc (111) 0.96 0.76 1.25 0.75 0.79a 1.41g

(100) 0.91 0.84 0.88 1.31a, 1.66d

(110) 1.10 0.43
a PAW, [168] d FP-LMTO, [175] g Expt., [178]
b Expt., [138] e LCAO, [176]
c Pseudopotential, [174] f Expt., [177]
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Fig. 7.7. Theoretical surface stress for the close-packed surfaces of 4d transition
metal. Solid and dashed lines represent EMTO and PAW [168] results, respectively.

Pd(111) and Ag(111) surfaces, the directions of the EMTO surface relaxations
are the same as those reported in other theoretical studies. For Pd and Ag,
EMTO gives a small positive relaxation, which is in agreement with other pre-
dictions [173]. However, in most cases, the magnitude of relaxation is smaller
in EMTO calculations than in other theoretical reports. When comparing the
EMTO results with other theoretical data, one should take into account that
in the PAW calculations [168] the subsurface layers were also relaxed, whereas
in the FP-LMTO calculations [170] the hcp(0001) surfaces were modeled by
fcc(111) surfaces. We also note that the overlapping muffin-tin approximation
and the spherical cell approximation (Section 2.3), using a single muffin-tin
zero everywhere in the supercell, may also be a possible source of inaccuracy
in EMTO calculations for surface relaxations.

Figure 7.6 also demonstrates that (i) there are considerable differences
between theoretical and experimental surface relaxations, (ii) experimental
relaxations show significant dispersion for certain elements, and (iii) there are
significant deviations between relaxations derived in different ab initio calcu-
lations. The EMTO calculations give a decreasing inward relaxation across the
series (and slight outward relaxation for Pd and Ag), the PAW data exhibit
two maxima (for Zr and Tc), and the FP-LMTO values (except for Y and Ag)
follow approximately a parabolic trend. The EMTO trend has been explained
in terms of the reduction of the number of sp electrons in the surface layer
relative to bulk [167].
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In Table 7.4, we list the theoretical surface stress5 calculated for the re-
laxed geometries of the 4d metals together with the available experimental
data. In agreement with Ibach [166], the surface stress is positive for each
metals. The surface stress decreases with increasing roughness, except for Rh
and Ag, where the (100) surfaces have slightly larger surface stress than the
(111) surfaces. In Figure 7.7, we compare the EMTO surface stress values
obtained for the most close-packed surfaces with those calculated using the
PAW method [168]. It is surprising that in spite of the large deviations in the
surface relaxation (Figure 7.6), the two methods give similar trends for the
surface stress.

7.2 Non-metallic Solids

7.2.1 Equation of State for Selected Semiconductors and Insulators

The EMTO equilibrium atomic radii and bulk moduli for four common non-
metallic systems are compared with the experimental data in Table 7.5. The
theoretical values are listed for the LDA and GGA and LAG approximations
for the exchange-correlation functional. We observe that LDA and GGA give
similar mean absolute values of the relative errors. Like for the 5d transition
metals, the LDA over-binding is overcompensated by the gradient correction
within the GGA. On the other hand, for solids from Table 7.5, the simple LAG
gradient level approximation outperforms both LDA and GGA, giving 0.8%
and 9.1% for the mean errors in atomic radius and bulk modulus, respectively.

Table 7.5. Theoretical and experimental [157] equilibrium atomic radii and bulk
moduli for some selected non-metallic solids. The theoretical results were obtained
using the EMTO method in combination with LDA [7], GGA [15] and LAG [17]
energy functionals. The mean absolute values of the relative deviations between
the EMTO values and the experimental data are given (Δtot). The equilibrium
atomic radii (w) are expressed in Bohr and the bulk moduli (B) in GPa. The crystal
structures designations are: A4 diamond, B3 zincblende, and B1 NaCl type.

str. wLDA wGGA wLAG wexpt. BLDA BGGA BLAG Bexpt.

Si A4 3.163 3.198 3.189 3.182 100 92.8 94.0 98.8
Ge A4 3.303 3.384 3.354 3.318 71.6 61.2 64.0 76.8
GaAs B3 3.296 3.375 3.346 3.312 73.0 62.0 72.1 74.8
NaCl B1 3.202 3.346 3.337 3.306 32.9 23.0 21.7 24.5

Δtot 1.2% 1.4% 0.8% 11.2% 12.4% 9.1%

5 Here, the surface energy and stress are expressed in units of J/m2: 1 Ry/Bohr2 ≈
778.446 J/m2.
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7.2.2 Elastic Properties of Solid Helium under Pressure

With the refinement of high-pressure techniques, there has been accelerated
interest in the properties of rare gas solids. An obvious question that is raised
in connection with high-pressure measurements is the hydrostatic limit of the
pressure medium [179]. Below this pressure limit, the medium acts as a quasi-
hydrostatic pressure-transmitting environment. At higher pressures nonhy-
drostaticity develops, which might affect the measured physical properties.
Solid helium is one of the most important among the rare gas solids, because
it is considered as the best quasi-hydrostatic medium [179, 180, 181, 182].

During the last few decades, numerous experimental investigations focused
on the high-pressure physical properties of solid He. Zha et al. [183] measured
the complete set of room-temperature single-crystal elastic constants between
13 and 32 GPa, whereas Nabi et al. [184] reported a density functional de-
scription of the equation of state and elastic properties up to 150 GPa.

At low temperature and pressures below ∼ 12 GPa, He crystalizes in hcp
structure [185, 186, 187]. With increasing temperature a fcc phase is stabilized
from ∼ 15 K and ∼ 0.1 GPa to ∼ 285 K and ∼ 12 GPa. Apart from this small
fcc stability field, the hcp structure remains the stable phase of solid He up
to 58 GPa, the highest pressure considered in experiments [185]. The stability
of hcp phase is fully supported by the EMTO calculations carried out using
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Fig. 7.8. Theoretical enthalpy for the bcc and fcc structures relative to the stable
hcp phase as a function of pressure. Calculations were carried out using the EMTO
method in combination with the LDA (squares), LAG approximation (diamond)
and GGA (triangle) for the exchange-correlation functional.
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the LDA, GGA and LAG energy functionals.6 In Figure 7.8, we show the
computed enthalpy (H) as a function of pressure and crystal structure. The
enthalpies for the fcc (ΔHfcc) and bcc (ΔHbcc) structures are plotted relative
to that of the hcp phase (ΔHfcc/bcc ≡ Hfcc/bcc − Hhcp). All three density
functionals predict the hcp structure as the most stable low-temperature phase
of He. At 10 GPa the calculated LDA, LAG and GGA enthalpy differences
are ΔHfcc = 0.03, 0.01 and 0.02 mRy/atom and ΔHbcc = 0.44, 0.28 and 0.29
mRy/atom. The pressure further stabilizes the hcp phase relative to the cubic
structures, with an average ∂ΔH/∂p slope of 0.15 and 0.70 mRy per 100 GPa,
for the fcc and bcc structures, respectively.

The LDA, LAG and GGA equation of states for hcp He are compared with
the available experimental data [183, 185] in Figure 7.9. As one can see, the
LDA strongly overestimates the bonding, giving ∼ 15% smaller volume near
p = 15 GPa than the experiment. This over-binding is reduced to below 5%
at pressure above 100 GPa. At the same time, both gradient level approxima-
tions give results in good agreement with experiments. The correspondence
between GGA and experiment is remarkable at pressure ≤ 30 GPa. For higher
pressure LAG outperforms the other two approximations. However, because

6 The low-pressure regime in rare gas solids is governed by van der Waals interac-
tions, which cannot be described by the traditional density functional approaches.
Therefore, the EMTO results for He are presented only for pressures above ∼ 10
GPa.
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the experimental elastic constant of hcp He are available only for p =13−33
GPa [183], and for this pressure range the GGA gives the best agreement
with the experimental pressure−volume data, the elastic constants have been
computed using this approximation.

The complete set of hexagonal elastic constants of solid He is plotted as
a function of pressure in Figure 7.10. We can see that the theoretical elastic
constants agree very well with the experimental data [183]. In fact, the small
discrepancies are below the typical errors obtained for the transition metals in
conjunction with the GGA [17, 157, 188]. We find that all five elastic constant
are positive and increase monotonously with p for the entire pressure interval
considered in this study. Since the theoretical cij values from Figure 7.10
satisfy the stability conditions from Equation (6.25), the hcp phase of He
remains mechanically stable up to at least 150 GPa.
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Within the accuracy of the EMTO method, the axial ratio of the hexag-
onal He is calculated to be ideal, i.e. (c/a)0 ≈ 1.63, and show negligible vol-
ume dependence. This is in line with experimental findings below 23.3 GPa
[187]. Due to the flat volume dependence of (c/a)0, at each pressure we have
c33−c11 ≈ c12−c13, and thus the bulk modulus of hcp He reduces to Equation
(6.58). The calculated anisotropy of the compressional wave, ΔP (see Section
6.2) is around 1.12−1.13, and shows no pressure dependence. This result is in
slight disagreement with experiment [183], where c11 ≈ c33 (i.e. ΔP ≈ 1) and
c12 ≈ c13 was found within the experimental error bars. Therefore, the theo-
retical results violate the isotropy condition for a hexagonal symmetry [128].
The pressure factors of the two shear wave anisotropies, ΔS1 =1.60−1.66, and
ΔS2 =0.87−0.83, are also calculated to be small. These anisotropy ratios are
somewhat different from the experimental ones [183]. In particular, we find
that the calculated ΔS1 for He is relatively close to that of solid H2 [183].
It is interesting to note that the theoretical anisotropy ratios for hcp He are
within the range of those obtained for hexagonal metals with (c/a)0 ≈ 1.63.
For instance, Mg has ΔP = 1.04,ΔS1 = 1.19, and ΔS2 = 0.98. These figures
for Co are 1.17, 1.52, 1.06 and for Re 1.12, 1.36, 0.95 [189]. Therefore, at 0 K
and zero pressure the monocrystalline He has similar anisotropy to the hcp
metals from the periodic table.

In Figure 7.11, the theoretical bulk modulus and shear modulus of solid He
are compared with the experimental values [183]. The polycrystalline shear
modulus was calculated from the single-crystal elastic constants using the
Voigt−Reuss−Hill averaging method (Section 6.3). The Debye temperature
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θD, and the two sound velocities VP and VS, derived from the polycrystalline
elastic moduli, are plotted on Figure 7.12. In both figures, we see a very
good agreement between the theoretical and experimental data over the whole
pressure range considered in the experiment.

The EMTO polycrystalline anisotropy ratio (Equation (6.91)) of hcp He is
∼ 0.02, and shows negligible pressure dependence. Most of the cubic and low
symmetry crystals have elastic anisotropy ratios between 0.0−0.21 [128, 134].
On this scale, the anisotropy of hcp He can be considered to be small. The
low polycrystalline anisotropy ratio and its weak pressure dependence explain
why solid He can be used as a quasi-hydrostatic medium in high-pressure
experiments up to at least 150 GPa.

7.2.3 The Magnesium-silicate and Scandium-aluminate Perovskites

Magnesium-silicate perovskite is the most abundant mineral of the Earth’s
lower mantle, and thus the knowledge of its properties is crucial in advanced
seismic research. Due to the marginal stability of MgSiO3, a high temperature
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measurement of its elastic properties requires the simultaneous application of
sufficient pressure to prevent retrogressive transformation to an amorphous or
pyroxene phase [190]. The high frequency ultrasonic measurement cannot be
reliably performed in a large volume apparatus within the silicate perovskite
stability field, therefore, it is more suitable from an experimental point of view
to measure the thermo-elastic properties of close structural analogues [191,
192, 193, 194]. Since the orthorhombic ScAlO3 has molar volume, structural
distortion relative to the cubic structure and compressional behavior [195, 196]
similar to that of magnesium-silicate, it was proposed [194] to be the closest
structural analogue of MgSiO3. Furthermore, ScAlO3 has also been considered
frequently as a prototype of ABO3 perovskite structures: its structure shows
close resemblance to that of rare earth orthoferrites, e.g., GdFeO3 and LuFeO3

[194]. Using the EMTO method, Magyari-Köpe et al. [197, 198] studied the
thermodynamic properties of MgSiO3 and ScAlO3 and confirmed the observed
similarities between these two perovskites.

The cubic perovskite structure has Pm3̄m symmetry and the Mg(Sc)
cation is situated in the center of the cube defined by eight corner sharing
SiO6(AlO6) octahedra. In the orthorhombic phase with Pbnm symmetry, the
Mg(Sc) and four oxygen atoms occupy the (4c) positions, the Si(Al) atoms
are in the (4b) positions, and the rest of the oxygen atoms are situated in the
general (8d) positions. For a fixed volume, there are totally nine independent
structural parameters in Pbnm lattice. Experimental and theoretical investi-
gations on MgSiO3 and ScAlO3 orthorhombic perovskites [190, 195, 197, 198]
confirmed that the Pbnm structural parameters remain nearly constant with
increasing pressure. Because of that, the EMTO study was carried out using
the experimental structural parameters [195, 199].

The EMTO ground state parameters of ScAlO3 are listed in Table 7.6,
along with the available experimental results for the orthorhombic phase.
The mean deviations between the theoretical average atomic radius and bulk
modulus and the experimental data [195, 193, 200, 201] are 0.4% and 6.5% for
the LDA, and 2.0% and 7.9% for the GGA functionals, respectively. We also

Table 7.6. Theoretical ground state parameters of ScAlO3 calculated using the
EMTO method in combination with the LDA and GGA energy functionals. w, B
and dB/dp denote the equilibrium average atomic radius (in Bohr), bulk modulus
(in GPa) and pressure derivative of the bulk modulus, respectively. For comparison
the available room temperature experimental data are also shown.

str. wLDA wGGA wexpt. BLDA BGGA Bexpt.

(
dB
dp

)
LDA

(
dB
dp

)
GGA

(
dB
dp

)
expt.

Pbnm 2.48 2.52 2.47a,b 245 214 218a,249c 4.2 4.3 4.0a

232d

Pm3̄m 2.49 2.53 - 228 198 - 4.2 4.3 -

a [195], b [193], c [200], d [201].



7.2 Non-metallic Solids 143

Table 7.7. Theoretical (LDA) and experimental equilibrium atomic radii (w in
Bohr), bulk moduli (B in GPa) and structural energy difference (ΔE in mRy/atom)
of MgSiO3 perovskite in orthorhombic (Pbnm) and cubic (Pm3̄m) phases.

EMTO Full-potential Experimental

str. w B ΔE w B ΔE w B

Pbnm 2.358 253 - 2.349a,2.333b 266a,259b - 2.357b 261b

Pm3̄m 2.394 258 23.3 2.381b 258b 20a,22.1b - -

a [202], b [203].

note that the theoretical pressure derivative of the bulk modulus for MgSiO3,
calculated within the LDA [202], is 4.2, which agrees very well with the LDA
value from Table 7.6. The fact that for perovskites the LDA yields somewhat
better equilibrium parameters than the GGA is consistent with our observa-
tion made in the case of semiconductors and insulators. Further support for
this is given in inset of Figure 7.13, where the LDA pressure−volume relation
for orthorhombic ScAlO3 is compared with the room temperature experimen-
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Fig. 7.13. Calculated total energies (per atom) of orthorhombic and cubic ScAlO3

as a function of the average atomic volume. The energies are plotted relative to
the orthorhombic ground state total energy. The symbols denote the EMTO total
energies (LDA) and the connecting line is a Morse-type fit. In inset, the equation of
state of orthorhombic phase is compared to the experimental results [195].
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tal data [195]. There is an excellent agreement between the two sets of data,
the average deviation between theoretical and experimental pressures being
close to the numerical error bar of the EMTO calculation. In Table 7.7, the
EMTO-LDA zero pressure volumes, bulk moduli and structural energy differ-
ence for MgSiO3 are compared to the full-potential and experimental results
[202, 203]. The agreement between the theoretical results, in view of the fact
the full-potential techniques also have their own numerical approximations,
may be considered satisfactory.

The EMTO-LDA total energies per atom for the Pbnm and Pm3̄m phases
of ScAlO3 and MgSiO3 are plotted in Figures 7.13 and 7.14, respectively, as a
function of the average atomic volume. The equations of state were obtained
by fitting the LDA energy versus volume data to a Morse form (Section 6.1). It
is seen from Figure 7.14, that for MgSiO3 the stability of orthorhombic phase
with respect to the cubic phase increases with pressure from 23.3 mRy/atom
at zero pressure to ∼ 48 mRy/atom at 150 GPa. This is in line with the
ab initio molecular dynamics results [203], where at 150 GPa an increase of
∼ 30 mRy/atom (relative to the zero pressure value) of the stability of the
Pbnm phase with respect to the Pm3̄m phase was reported. On the other
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energies (LDA) and the connecting line is a Morse-type fit. In inset, the equation of
state of orthorhombic phase is compared to the ab initio molecular dynamics results
[203].
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hand, for ScAlO3 (Figure 7.13), the total energy difference between the two
structures is ∼ 34 mRy/atom and it shows a weak volume dependence. In
the inset of Figure 7.14, we compare the EMTO pressure−volume relation
for MgSiO3 with the ab initio molecular dynamics results [203]. The two sets
of data are very close, and the slightly increasing deviation between them
at large pressures may be assigned to the lattice relaxation neglected in the
EMTO study.

7.3 Transition-metal Nitrides

Transition-metal nitride films are frequently used as hard, protective coatings
for soft materials. In Table 7.8, we give the EMTO results for the bulk equi-
librium properties of titanium-nitride and vanadium-nitride. For comparison,
a few GGA results calculated using pseudopotential [207, 208] and FP-LMTO
[209] methods are also listed (numbers in parenthesis). Except the pseudopo-
tential result for TiN, the gradient corrections seem to be insufficient to remove
the strong LDA over-binding. Note that the GGA errors for w of TiN and VN
are close to those obtained for elemental Ti and V (Table 7.1). Generally, when
an approximation underestimates the volume it overestimates the bulk modu-
lus and vice versa. Apparently, this is the case for VN, but both gradient-level
bulk moduli for TiN are found to be smaller than the reported experimental
value of 318 GPa [206]. Furthermore, in contrast to the experimental data, all
three functionals give slightly larger bulk modulus for VN than for TiN. Since
independent full-potential results [207, 208] are in line with the EMTO values,
it is tempting to believe that the experimental B values for TiN and VN from

Table 7.8. Theoretical and experimental equilibrium atomic radii and bulk moduli
of TiN and VN. The theoretical results were obtained using the EMTO method
in combination with LDA [7], GGA [15] and LAG [17] energy functionals. The
mean absolute values of the relative deviations between the EMTO values and the
experimental data are given (Δtot). The equilibrium atomic radii (w) are expressed
in Bohr and the bulk moduli (B) in GPa. Numbers in parenthesis are theoretical
results calculated using pseudopotential [207, 208] and FP-LMTO [209] methods.

str. wLDA wGGA wLAG wexpt. BLDA BGGA BLAG Bexpt.

TiN B1 2.433 2.480 2.459 2.486a 332 286 302 318c

(2.492d,2.480e) (278d,270e)

VN B1 2.346 2.398 2.373 2.427b 342 292 313 268c

(2.421f ,2.398f ) (317f ,330f )

Δtot 2.7% 0.7% 1.7% 16.0% 9.5% 11.0%

a Expt. [204], d Pseudopotential [207],
b Expt. [205], e FP-LMTO [209],
c Expt. [206], f Pseudopotential [208].
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Table 7.8, measured for transition-metal nitride films on MgO substrate, do
not reflect the correct bulk values.

For the above nitrides, the most stable surfaces are the (001) facets of
the B1 structure [210]. This means that at equilibrium, the real TiN and VN
surfaces are preferentially formed by the low-energy (001) facets. Using the
EMTO method, we investigated the (001) surfaces of TiN and VN. In Table
7.9, the EMTO top layer relaxations are compared with the pseudopotential
[207, 211, 212] and experimental [213] results. These EMTO calculations were
carried out within the GGA. In the table, λb is the bulk inter-layer distance,
and Δλs

Ti/V and Δλs
N denote displacements for the transition metals and

nitrogen atoms from the surface layer with respect to the ideal geometry.
We find a rippled relaxation on both nitride surfaces. The Ti and V atoms

move inward with 0.23 and 0.32 Bohr, respectively, which represent 5.5%
and 8.5% of the theoretical equilibrium bulk inter-layer separations. On both
nitride surfaces, the N atoms move outward with approximately 0.06 Bohr
(∼ 1%). The EMTO figures for the relaxation are in good accordance with
other theoretical [207] and experimental [213] results. It is interesting that
the crystallographic roughness7 on the VN surface is 33% larger than on the
TiN surface, i.e. the chemically flat VN surface is more corrugated in the
crystallographic sense compared to the TiN surface.

In the absence of other all-electron results, the EMTO surface energies
from Table 7.9 are compared with the available pseudopotential data [207,
211, 212]. We find that the EMTO surface energies are significantly larger than
the corresponding pseudopotential values. It would be plausible to ascribe
this discrepancy to the relaxation of the subsurface layers, which has been
neglected in the EMTO study. However, the surface energies for unrelaxed

Table 7.9. Equilibrium surface geometry (distance relative to the ideal surface,
Δλ in Bohr) and the corresponding surface free energy (γ in J/m2) for the (001)
surfaces of TiN and VN. For comparison the bulk inter-layer distances (λb in Bohr)
are also listed. The pseudopotential results [207, 211, 212] were obtained within the
self-consistent GGA scheme. In the EMTO calculations, total energy was calculated
within the GGA using the self-consistent LDA electron density.

surface λb Δλs

Ti/V
Δλs

N γ(001)

TiN (001) 3.99 -0.23 0.06 1.98
-0.231 0.111 1.361,1.283,1.364

VN (001) 3.86 -0.32 0.06 1.75
-0.302 0.022 1.114

1 pseudopotential [207], 2 experiment [213],
3 pseudopotential [211], 4 pseudopotential [212].

7 By crystallographic roughness we mean the distance between the two monoatomic
top layers: a transition metal and a N layer.
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geometries also show large discrepancies. For instance, in EMTO the top layer
relaxation reduces the surface energy of TiN by 0.32 J/m2, whereas this figure
in pseudopotential study varies between 0.28 J/m2 [207] and 0.47 J/m2 [211].
Hence, the observed deviations in the surface energies for nitrides should have
another origin.

Liu et al. [212] calculated the surface energies of several ceramics with
B1 structure using a pseudopotential approach combined with both LDA and
GGA functionals. For all ceramics considered, the surface energies turned
out to be very sensitive to the choice of exchange-correlation functional. For
instance, their GGA surface energy for TiN agrees well with the previous
pseudopotential results from Table 7.9, whereas their LDA surface energy is
2.18 J/m2, i.e. ∼ 60% larger than the GGA value. The latter is in fact close
to the EMTO value of 1.98 J/m2. We recall that the EMTO self-consistent
calculations for TiN and VN were performed within the LDA for the effective
potential and only the total energy was computed within the GGA. This may
explain why the EMTO surface energies from Table 7.9 are significantly higher
compared to the GGA pseudopotential values.

Before closing this section, we comment on the accuracy of the LDA
and GGA for metal surfaces. The performance of some common exchange-
correlation approximations was studied within the self-consistent jellium sur-
face model by Perdew et al. [9]. They found that the LDA gives surface energy
in good agrement with the experimental result, especially for slowly varying
density profiles. Its success was ascribed to a cancelation between the er-
rors in the exchange and correlation energies. The gradient correction to the
LDA [15] represents an important improvement for the correlation part, but
it underestimates the exchange energy, and as a consequence it gives surface
energies which are 7−16% lower than the LDA values for jellium and 16−29%
lower than the experimental results. Another important observation is that
the LDA yields surface energies in better agreement with the broken bond
model than the GGA [212]. The broken bond model is based on the cohe-
sive energy8, which can be calculated accurately within the GGA. Assuming
that the broken bond model is valid for nitride surfaces, one concludes that
the GGA surface energies are not reliable. On these grounds, one may there-
fore prefer the LDA approximation for the effective potential near the metal
surfaces.

8 According to the broken bond model, the surface energy per atom is(
2 − η −√

η)
)

Ec/2, where η is the ration between the coordination numbers of
surface and bulk atoms, and Ec is the cohesive energy [212].
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Binary Alloys

In this chapter the application of the EMTO method in the case of binary
substitutional random alloys will be demonstrated. First, in Section 8.1, we
shall describe how the main shortcoming of the single-site approximation is
handled within the present method. In Section 8.2, applications in the case
of Al-based alloys and (MgAl)B2 will be presented. The thermodynamic and
mechanic stability of two well-known Hume−Rothery systems will be inves-
tigated in Section 8.3. Theoretical studies of some binary transition metal
alloys will be reviewed in Section 8.4. The application of the EMTO method
to f -electron systems will be illustrated on CeTh alloy in Section 8.5. Finally,
in Section 8.6, the equilibrium concentration profile calculation will be illus-
trated in the case of the PdAg system. A few important numerical details of
the EMTO calculations presented in this chapter are listed in Section C.2.

8.1 The Single-site Approximation

Within the Coherent Potential Approximation (CPA), one single impurity is
embedded into a homogeneous effective medium described by the coherent po-
tential and coherent Green function. Accordingly, no information is provided
on how the actual potential is altered around the impurity. This single-site
approximation is the main drawback of the CPA. In the Schrödinger equa-
tion, the single-site approximation is overcome by compensating the charge
redistribution from the effective medium. However, in the Poisson equation
no such simple solution exists. Today, probably the most efficient approach to
handle this problem is the screened impurity model (SIM) introduced by Ko-
rzhavyi et al. [121, 122]. This model involves two a priori parameters, which
are determined from supercell calculations. They are obtained by matching
the CPA total energy and charge transfer to the real total energy and charge
transfer calculated using a large unit cell. In many applications, these two
parameters are related to each other and thus can be chosen to be the same.
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Fig. 8.1. Total energy for fcc Al0.9375Li0.0625 random alloy calculated using the
EMTO method in combination with the LDA (open circles) and the GGA (filled
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to the total energy of an fcc based supercell containing 15 Al and 1 Li.

The EMTO results from Chapters 8 and 9 were calculated using a single SIM
parameter α.

We illustrate the way the α is determined in the case of Al-rich AlLi,
Pu-rich PuGa and PuAl alloys. At ambient conditions, the dilute AlLi solid
solutions have the fcc crystal structure. For Pu-based alloys, we consider the
δ-Pu phase (fcc), which is stable at temperatures between 593 and 736 K.
First, we set up a 16-atom supercell (SC) containing 15 Al(Pu) atoms and
one impurity, corresponding to an average impurity concentration of 6.25%.
The total energy of the fcc supercell (E(SC)) was computed using the EMTO
method. Special care was taken on the accuracy of the SC calculations (e.g.,
using a well converged Brillouin zone sampling). In the second step, using the
CPA, we computed the total energies of Al1−xLix, Pu1−xGax and Pu1−xAlx
systems for x = 0.0625 as a function of α. In both SC and CPA calculations the
lattice constant was fixed to the bulk lattice constant calculated for elemental
Al(Pu). The CPA energies are plotted in Figures 8.1 and 8.2 relative to the
total energy per atom calculated for the corresponding SC. Results are shown
for LDA and GGA energy functionals.

In the AlLi system, the considerable CPA charge misfit leads to a CPA
total energy ECPA(α) which sensitively depends on α. The ∼ 2 mRy difference
between the CPA and SC total energies, calculated for α = 0.6 rapidly drops
to zero and becomes negative with increasing α. The optimal SIM parameter
is obtained from the condition ECPA(α) − E(SC) = 0. For the GGA energy



8.2 Light Metal Alloys 151

0.5 0.6 0.7 0.8 0.9 1.0 1.1
α

−8

−6

−4

−2

0

2

E
C

P
A
(α

)−
E

(S
C

) 
(m

R
y)

 GGA

 LDA

Ga

Al

Ga (α=0.686)

Al (α=0.643)

fcc Pu15Ga1

fcc Pu15Al1
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(dashed lines) random alloys calculated using the EMTO method in combination
with the LDA (open circles) and the GGA (filled circles) as a function of SIM
parameter α [121, 122]. The energies are plotted relative to the total energies of fcc
based supercells containing 15 Pu and 1 Ga or Al, respectively.

functional, this is realized for αAlLi = 0.987. Note that the optimal α is not
sensitive to the choice of exchange-correlation functional.

In Pu-based alloys, the optimal SIM parameters turn out to be significantly
lower compared to αAlLi. From Figure 8.2, we have αPuGa = 0.686 and αPuAl =
0.643, and, similar to AlLi, they exhibit a weak dependence on the energy
functional. Most of the binary alloys have optimal α close to those obtained
for the above Pu-based alloys, and only a few systems require SIM parameters
as large as 1.

There are situations, like in Al-rich AlMg alloys, where the CPA charge
misfit (defined in Equation (5.22)) is small and therefore the CPA total energy
shows negligible dependence on the SIM parameter. In this situation, the
above technique is inappropriate for finding a proper α value. However, for
these systems the calculated physical parameters are also less sensitive to the
choice of α.

8.2 Light Metal Alloys

8.2.1 Aluminum−Lithium Alloys

For years, Al-based alloys were in the focus of theoretical and experimental
investigation. Their complex electronic structure and the observed anomalous
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Table 8.1. Theoretical and experimental elastic constants (in GPa) and elastic
anisotropy for fcc Al. The EMTO values were obtained within LDA, GGA and
LAG approximations for the exchange-correlation functionals. References are given
for the full-potential (FP) and experimental (expt.) data. The linear augmented
plane wave (LAPW) study [224] was carried out for the experimental volume, and
the experimental values from Ref. [223] were extrapolated to 0 K.

LDA GGA LAG FP expt.

c11 110.8 98.9 101.3 121.9±1.6a, 101.5b 108e 106.9f

110.5c, 103.3d 114.3g

c12 72.8 65.7 66.9 62.7±1.3a, 70.4b 61e, 60.8f

58.0c, 53.3d 61.9g

c44 45.1 38.1 39.6 38.4±3.0a, 31.7b 29e, 28.2f

31.1c, 28.5d 31.6g

AE -0.79 -0.71 -0.73 -0.21a, -0.46b -0.13e,f,g

-0.12c, -0.09d

a LAPW, LDA, Ref. [221]. e Ref. [219].
b LMTO, LDA, Ref. [222]. f Ref. [225].
c LMTO, GGA, Ref. [223]. g Ref. [223].
d LAPW, LDA, Ref. [224].

trends of bulk properties against composition have always presented a great
scientific challenge. For instance, several theoretical investigations [121, 214,
215, 216, 217], based on the virtual crystal approximation (VCA), CPA and
cluster expansion approach, were dedicated to reveal the origin of the rather
unusual properties of AlLi. As two interesting features of this system, one
should mention the contraction of the equilibrium volume relative to a linear
interpolation between Al and Li [218], and the drastic increase of the Young’s
modulus with Li content [219]. Although most of the above studies reproduced
the characteristic features of the composition dependent equilibrium volume,
the theoretical mapping of the elastic properties against concentration has
remained a problem. Taga et al. [220], using the EMTO method, have reviewed
this question and presented a detailed theoretical description of the ground
state properties of AlLi solid solutions.

In order to evaluate the relative merits of the LDA, GGA and LAG approx-
imations in the case of Al-rich Al-Li alloys, we compare their performances
for the equilibrium volume and elastic properties of fcc Al. In Section 7.1.1
we saw that for the equilibrium volume and bulk modulus of Al the GGA
is superior to that of the LDA and LAG approximations. In Table 8.1, we
compare the EMTO single-crystal elastic constants for fcc Al with the ex-
perimental data [219, 225] and some former ab initio results calculated using
full-potential (FP) linear augmented plane wave (LAPW) [221, 224] and linear
muffin-tin orbitals (LMTO) [222, 223] methods. Again, letting the error con-
nected with these calculations be described by the difference between the FP
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dom alloys. Experimental atomic volumes are from Ref. [218] (triangles) and Ref.
[226] (squares). CWM stands for the results obtained using the Connolly−Williams
method [121]. The two sets of EMTO results correspond to two different SIM pa-
rameters from Equations (5.22) and (5.33): α = 0.9 (solid line) and α = 0.6 (dashed
line).

results from Table 8.1, we obtain that the agreement between the EMTO and
former theoretical values is very good. The calculated average deviations be-
tween the experimental [219] and EMTO data for elastic constants, obtained
within LDA, GGA and LAG, are 25%, 10%, and 13%, respectively. Therefore,
we can conclude that in general the GGA yields significantly better ground
state properties for Al compared to the LDA, and marginally better compared
to the LAG approximation. The rest of the results presented in this section
have been obtained within the GGA.

In Figure 8.3, we give the EMTO equilibrium volume and enthalpy of
formation for AlLi alloys as a function of concentration. Data are shown for
two different α values from Equations (5.22) and (5.33). We find that α ≈
0.9, which is close to the optimal value determined in the previous section,
reproduces well the observed trend in the equilibrium volume, whereas α = 0.6
gives an increase in V with Li addition, which is in between the experimental
value and the one estimated from the linear rule-of-mixture. The enthalpy of
formation of fcc Al1−xLix alloy is calculated as

ΔH(x) = E(Al1−xLix) − (1 − x)E(Al) − xE(Li), (8.1)
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nearest-neighbor (NN) Al−Li distance. The energy minimum corresponds to −0.6%
inward relaxation of the first coordination shell around the Li impurity.

where all the energies are obtained for the theoretical equilibrium volumes and
expressed per atom. E(Al) and E(Li) are the total energies of fcc Al and Li,
respectively. In Figure 8.3 the EMTO enthalpy of formation is compared with
that obtained using the Connolly−Williams method (CWM) [121]. Within
the CWM [66] the Madelung energy is treated exactly, and thus gives a good
reference to establish the accuracy of our approach for the formation energy of
completely random alloys. The perfect agreement between values calculated
using CWM and the EMTO method with α = 0.9 demonstrates that the
charge-transfer effects can be adequately taken into account in the single-site
EMTO approach. The EMTO result for ΔH(x) confirms the observations
[121, 214] that the thermodynamic stability of AlLi solid solutions is to a
large extent determined by the Madelung energy accounting for the charge-
transfer between Al and Li subsystems.

Using a supercell approach, one can study how the local lattice relaxation
(LLR) influences the heat of formation of AlLi solid solutions. The EMTO
equilibrium volume of a 16-atom supercell containing 15 Al and 1 Li is 111.59
Bohr3. This value is very close to 111.73 Bohr3 calculated for Al0.9375Li0.0625

random alloy using the CPA with α = 0.9. Figure 8.4 shows the variation of
the total energy of Al15Li1 (ΔE) as a function of the nearest-neighbor (NN)
Al−Li distance. From the energy minimum we find approximately −0.6% NN
relaxation, i.e., in Al15Li1 the Al−Li distance decreases by 0.6% compared to
the equilibrium Al−Al bond length in pure Al. The LLR decreases the total
energy relative to the unrelaxed structure by −0.242 mRy/atom. Compared
to other alloys, the LLR in AlLi can be considered very small. Ruban et al.
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[227] proposed that the LLR is mainly governed by the change of the volume
of the host material. This is in line with the small difference obtained (∼ 0.2%)
between the theoretical equilibrium volumes of Al15Li1 and fcc Al.

The enthalpy of formation for a 16-atom supercell is −1.588 mRy/atom
for an ideal fcc underlying lattice and −1.830 meV/atom for relaxed struc-
ture. These figures slightly exceed the mixing enthalpy obtained for the
Al0.9375Li0.0625 random alloy using α = 0.9 (Figure 8.3). Note that the optimal
α ≈ 0.987 would reproduce exactly the supercell result.

In Figure 8.5, we illustrate the CPA charge-transfer effects on the single-
crystal elastic moduli of AlLi alloys. The two sets of results for c′ and c44,
marked by filled symbols connected with continuous and dashed lines, were
obtained from self-consistent EMTO calculations using α = 0.9 and α = 0.6,
respectively. The variation of both sets of elastic constants with Li content
is smooth. They exhibit similar concentration dependencies, and the only
important difference between them is the position of the maxima. We find that
the maximum values in c′ and c44 are shifted towards higher concentrations
with increasing α. When the calculations are carried out at fixed volumes, e.g.
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those corresponding to α = 0.9 (shown by open symbols), the effect of α is
even less pronounced. The largest effect on the cubic shear moduli is obtained
for x = 0.2, where we get ∂ log c44/∂ log α ≈ 0.45. This variation is one order
of magnitude smaller than ∂ log ΔH(0.2)/∂ log α ≈ 4.42, calculated for the
enthalpy of formation (Figure 8.4).

In Figure 8.6, the EMTO elastic constants for AlLi random alloys, ob-
tained using α = 0.9, are compared with the experimental data by Müller et
al. [219]. We observe that the experimental value is slightly overestimated for
c12 and c44 and underestimated for c11. Such deviations are, however, typi-
cally obtained for elemental metals in conjunction with the existing density
functional approximations. On the other hand, for all three elastic constants
we find that their variation with concentration are in excellent agreement with
the experimental data. At Li contents below 5% the calculated changes with
concentration in c11, c12 and c44 are 0.86, −1.13 and 0.77 GPa per At.-% Li,
respectively. These numbers are close to the observed average variations 0.33,
−0.95, and 0.51 GPa per At.-% Li [219]. Taga et al. [220] have shown that
the nonlinear concentration dependence of the cubic elastic constants arises
from the peculiar band structure of AlLi alloys. For instance, the band en-
ergy contribution to c44 is negative in the case of Al, positive for intermediate
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Fig. 8.6. Comparison between theoretical (EMTO) and experimental [219] single-
crystal elastic constants for AlLi random alloys.
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(approx. 5−15%) Li concentrations, and zero for ∼ 20% Li, which results in
a maximum in c44 near 10 At.-% Li.

We estimate the impact of local lattice relaxations on the single-crystal
elastic constant by computing the tetragonal shear modulus c′ of Al15Li1
supercell with and without NN relaxation. The agreement between the non-
relaxed supercell value of 20.3 GPa and 21.2 GPa obtained for Al0.95Li0.05

random alloy (Figure 8.6), is satisfactory, especially if one takes into account
the numerical difficulties associated with elastic constant calculations. The
relaxed supercell tetragonal elastic constant is 20.4 GPa. Within the error
bars of the EMTO calculations, this value is identical to that obtained for
the unrelaxed geometry. The almost vanishing effect of the LLR on the elastic
constant of AlLi solid solutions can be ascribed to the small volume change
on alloying. However, in systems where the lattice relaxation is more pro-
nounced, like in CuAu alloys, a substantially larger impact of LLR on the
elastic properties can be expected.

In the variation of the elastic constants cij with the concentration x of so-
lute atoms in Figure 8.6, we may single out that part, which can be accounted
for as due to an average change in the volume, i.e. in the lattice parameter.
Data for higher-order elastic constants of Al give the pressure dependence
∂c11/∂p = 5.9, ∂c12/∂p = 3.3, ∂c44/∂p = 1.9 [128]. From experiments [226]
on the lattice parameter a of dilute AlLi alloys we get (1/a)(∂a/∂x) = −0.011.
When combined with the bulk modulus of Al, we get ∂c11/∂x = 14.4 GPa,
∂c12/∂x = 8.1 GPa, ∂c44/∂x = 4.6 GPa. Thus, the effect of alloying on the
lattice parameter would account for about half of the increase observed in c11

(∼ 33 GPa [219]), about 1/10 of the increase in c44 (∼ 51 GPa [219]), but it
has a sign opposite to that observed for c12 (cf. Figure 8.6). It follows that
the Li solute atoms have an influence on c12 that depends crucially on the
changes in the electronic structure.

The theoretical polycrystalline elastic moduli in Figure 8.7 (solid lines)
were calculated using single-crystal results from Figure 8.6 and the averaging
techniques presented in Section 6.3.1. In figure, we included the experimen-
tal data on AlLi alloys by Müller [219], and those on commercial 2024 Alu-
minum Alloy by Sankaran and Grant [228]. The observed decrease of the bulk
modulus, and the sharp increase of the Young’s and shear moduli at low Li
concentrations, are well reproduced by the theory. In order to illustrate how
sensitive the polycrystalline elastic moduli are to the value of α, in Figure 8.7
the theoretical values obtained for α = 0.6 are also shown (dashed lines). The
small effect of α on the cubic elastic constants demonstrated in Figure 8.5,
can be evidenced also in the case of B and G. A somewhat larger effect is
obtained for the Young’s modulus, where the experimental value for 11.4% Li
is poorly reproduced by the theoretical curve obtained for α = 0.6. However,
it is not clear whether the 18.3% Young’s modulus enhancement in this com-
mercial alloy, relative to that of pure Al, is due to the solid solution itself or
to the intermetallic phase, which forms within the solid solution matrix above
∼ 12% Li [228].
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The ratio between the bulk modulus and the shear modulus, shown in
Figure 8.7 as B/G, is a measure of the ductility of solids: ductile alloys are
characterized by large B/G ratios, whereas low B/G ratios are representative
of brittle solids [229]. We find that a small amount of Li makes the alloy
more brittle compared to pure Al. In dilute AlLi alloys the calculated B/G
decreases with 9.6% per At.-% Li, compared to the experimental decrease of
7.6%. We note that the opposite trend for c12 from Figure 8.6, compared to
c11, leads to a rapid increase in the cubic shear modulus c′ = (c11 − c12)/2
and thus is essential for the observed rapid decrease in B/G on alloying Al
with Li.

8.2.2 Other Aluminum-based Alloys

Following the procedure presented in the previous section, one can compute
the ground state bulk properties of any substitutional random binary system.
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triangles) [219] polycrystalline elastic moduli (B, E, and G stand for bulk, Young’s,
and shear modulus, respectively) of AlLi random alloys. Continuous and dashed
lines correspond to the two sets of self-consistent EMTO results from Figure 8.5.
For reference we also included experimental data for the Young’s and shear moduli
(open squares) obtained for the 2024 commercial aluminum alloy [228].
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Below we quote some EMTO results obtained for Al-rich AlCu, AlMg, AlMn,
AlSi and AlZn solid solutions. In Figure 8.8, the theoretical single-crystal
elastic constants for AlMg are compared to the available experimental data
[230]. We find that the variations of the theoretical values with concentration
are in perfect agreement with the experimental data. In particular, we point
out that both the experimental and theoretical c11 and c12 decrease whereas
c44 slightly increases with Mg addition. Note that, in contrast to the effect of
Li addition (Figure 8.6), alloying with Mg decreases c11 of Al. It is gratifying
that the EMTO method correctly accounts for such interesting differences
between alloying elements.

The calculated size misfit parameters εb (Equation (6.111)) for five Al-
based solid solutions are compared to the experimental values in Figure 8.9.
An excellent agreement between the computed and experimental εb values is
observed. This figure also shows the calculated elastic misfit parameter εG as
a function of theoretical εb. We observe certain correlation between εb and εG.
For example, both the volume and elastic constant changes are negligible upon
Zn addition. Elements producing large |εb| also lead to nonzero εG. According
to the theoretical data from Figure 8.9, we can see that the elastic misfit for
Mn, Cu and Mg contributes by ∼ 25% to ε

4/3
L , i.e. to solid solution hardening

(Section 6.6), whereas this effect is below 3% in the case of Si and Zn.
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at the bottom of the figure). Left axis: experimental εb versus theoretical εb (Ref.
[231]: circles, Ref. [232]: squares); right axis: theoretical εG versus theoretical εb.

8.2.3 Magnesium−Aluminum Diboride

The discovery of superconductivity in MgB2 ceramic compound placed this
material in the focus of several research activities [88, 89, 90]. The crystal
structure of MgB2 has the hexagonal symmetry (space group P6/mmm) with
c/a = 1.14. Layers of Mg and B atoms are located at z = 0 and z = 0.5c/a,
respectively. It has been shown [89] that additional electrons to MgB2, e.g.
substitution of Al for Mg, results in the loss of superconductivity. This transi-
tion is associated with structural collapse of the hexagonal lattice in c direction
[89]. The rapid decrease of c/a in Al doped magnesium diboride is, in turn, re-
lated to the smaller (∼ 7%) c-lattice spacing in AlB2 compared to that of the
MgB2. The crystal structure of Mg1−xAlxB2 random alloy can be investigated
using the EMTO method. In Figure 8.10, we show the calculated structural
parameters along with the experimental results from Ref. [89] as a function
of Al content. The overall agreement between theoretical and experimental
data is very good. Both methods predict almost constant a and decreasing c
lattice parameters with increasing Al content. The EMTO method partially
captures the small discontinuity in the observed c-lattice spacing: there is a
clear change in the slope of theoretical c at about 20% Al. However, for a more



8.3 Hume−Rothery Alloys 161

0 10 20 30 40
At.−% Al

5.5

5.7

5.9

6.1

6.3

6.5

6.7

6.9

7.1

la
tt

ic
e 

p
ar

am
et

er
 (

B
o

h
r)

a (EMTO)
c (EMTO)
a (expt.)
c (expt.)

Mg1−xAlxB2
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complete study of the structural collapse in Mg1−xAlxB2 system, the possible
formation of pure Al and Mg layers should also be taken into account.

8.3 Hume−Rothery Alloys

The Hume−Rothery binary alloys present classical systems for testing new
alloy theories [59, 78, 108, 115, 233]. Here we consider two common systems:
the CuZn and AgZn alloys. Due to their ability of cold working, outstanding
aqueous corrosion resistance, and also to the pleasant lustrous appearance, the
CuZn alloys or brasses have been used for hundreds of years. The AgZn alloys
find their application in rechargeable batteries with very high energy density.
According to the phase diagrams of Cu1−xZnx [232] and Ag1−xZnx [234], in
both systems the fcc α-phase is stable for x ≤ 0.37, and near equimolar
concentrations the bcc β-phase is stabilized. In the CuZn system the hcp
ε-phase is stable for 0.78 ≤ x ≤ 0.86, while in the AgZn system this interval
is somewhat larger, 0.68 ≤ x ≤ 0.87. Above ∼ 97% Zn in both systems the
second hexagonal structure, the η-phase, is formed.
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8.3.1 Copper−Zinc Alloys

The electronic structure and elastic properties of Hume−Rothery binary al-
loys have been investigated as a function of chemical composition using the
EMTO method [78, 115, 116, 235]. One fundamental question associated with
such calculations is the choice of the exchange-correlation functional. This is
especially important for Zn-rich alloys, where the hexagonal axial ratio shows
a strong volume dependence. Usually, it is not possible to select a functional
that has the same accuracy for the whole range of concentrations. For instance,
the LDA underestimates the equilibrium atomic radii of Cu, Ag and Zn by
2.6%, 1.6% and 2.6%, whereas the GGA overestimates them by 0.8%, 1.7%
and 0.6%, respectively. It is seen that both approximations lead to systematic
errors for CuZn, but neither of them are really adequate for AgZn. Note that
the difference between the performances of the LDA and GGA functionals for
the end members is even more pronounced in AuZn alloys (see Table 7.1).

In Figure 8.11, the theoretical equilibrium atomic radii for Cu1−xZnx al-
loys, calculated within the LDA, are compared with the available experimental
data. The agreement between the two sets of data is very good. The errors in
the α and η phases are practically constant. Somewhat larger errors are found
for the ε phase, but even here the concentration dependence is negligible. The
equilibrium atomic radii for the two hcp lattices were determined at the the-
oretical equilibrium hexagonal axial ratios. These are plotted in Figure 8.12,
where for comparison the experimental c/a values [232] are also shown. The
anomalously large axial ratio of pure Zn is slightly underestimated, which is
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Fig. 8.11. Theoretical (EMTO-LDA ) and experimental [189] equilibrium atomic
radius of Cu1−xZnx random alloy as a function of Zn content.
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due to the LDA over-binding. On the other hand, the theoretical c/a for Zn
is calculated to be reduced by 2.4% at 3 At.-% Cu, in very good agreement
with the experimental result. At low Cu concentrations the η-phase having a
large c/a ratio is found to be the ground state structure of the CuZn alloy.
However, with increasing Cu concentration a second total energy minimum
in the volume versus axial ratio plane starts to develop [78]. For x ≤ 0.9,
the second energy minimum becomes stable relative to the first one, and the
system stabilizes in the ε-phase having a hcp structure with c/a ≤ 1.6. The
axial ratio in the ε-phase initially decreases with the Cu concentration, and
above 20 At.-% Cu it shows an increase towards the ideal value of 1.63 [236].
It turned out that though the η- and ε-brasses have the same hexagonal crys-
tal structure, they represent two different phases, each having its own local
energy minimum [78].

8.3.2 Cubic Silver−Zinc Alloys

Today, very little is known about the elastic properties of binary metallic al-
loys for the entire range of concentrations in a given lattice structure. The
solubility is usually limited to from a few percent up to 30−40%, and even
in the thermodynamically stable range of concentrations the experimental in-
formation is meagre. On the other hand, results from Figures 8.11 and 8.12
clearly demonstrate that the EMTO method is suitable for an ab initio de-
scription of the equilibrium bulk properties as a function of concentration.
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Fig. 8.13. Theoretical bulk moduli (B) and lattice constants (a, inset) of Ag1−xZnx

alloys in the fcc and bcc structures, calculated using the EMTO method in com-
bination with the LDA for the energy functional. The EMTO values are compared
with the experimental data [232, 239]. The FP-LAPW results are shown for pure
Ag [237] and Zn [238].

The EMTO method allows one to study both the thermodynamically stable
and unstable phases of random alloys [115], and therefore it can be used to
achieve a deep understanding of the dynamical stability and instability at
different concentrations of alloying elements.

In Figure 8.13, we show the EMTO lattice parameters (a, inset) and bulk
moduli (B) calculated for Ag1−xZnx alloys with 0 ≤ x ≤ 1 in the fcc and
bcc phases. For comparison, former theoretical results for the end-members
[237, 238] and experimental data for the α- and β-phases [232, 239] are also
shown. The theoretical results from this section were produced using the LDA.
The agreement between the EMTO results for fcc Ag and Zn and those
calculated using the LAPW method [237, 238] is good: the relative differences
in a and B being 1.3% and −4.3% for Ag, and 0.3% and −10.9% for Zn,
respectively. We note that for pure Ag the calculated volume per atom is
0.3% larger for the bcc lattice compared with that of the fcc lattice. For pure
Zn the corresponding difference is 0.7%.

The theoretical and experimental elastic constants c′ and c44 for fcc and
bcc AgZn alloys are presented in Figures 8.14 and 8.15, respectively. The open
symbols refer to experimental data from the Landolt−Börnstein tables [240]
(α-phase) and Murakami and Kachi [239] (β-phase). For both elastic constants
the present results are in excellent agreement with the experimental values.
For pure Ag, the theoretical elastic parameters calculated using the FP-LAPW
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method [241] and FP-LMTO method [188] are c′fcc = 16 and 21 GPa, and
c44,fcc = 52 and 61 GPa, respectively. If we take, as the error connected with
such calculations, the difference between the two full-potential results, the
agreement between the EMTO and former theoretical results is very good.

We point out that the calculated variations of the elastic constants with the
concentration of Zn everywhere follow the experimental trends. In particular,
the theoretical average softening of c′ for fcc Ag1−xZnx with x ≤ 0.3 is
−0.07 GPa per At.-% Zn. The corresponding measured value lies between
−0.07 and −0.22 GPa per At.-% Zn [240]. These figures may be compared
to those obtained for the α-phase of CuZn, where theory and experiments
give average softening of −0.30 GPa [78] and −0.23 GPa per At.-% Zn [189],
respectively. Inspecting Figures 8.14 and 8.15, we find that except two narrow
concentration intervals we have c′fcc > c′bcc and c44,fcc < c44,bcc. This means
that the Zener anisotropy (Equation (6.21)) is larger for the bcc phase than
for the fcc phase, i.e. fcc AgZn is more isotropic than bcc AgZn.

In Ag1−xZnx, the variation of the bulk modulus with the Zn concentration
is smooth in both crystal structures (Figure 8.13). However, a quite different
behavior is observed in the case of c′ and c44. For instance, c′bcc is drasti-
cally reduced above x ≈ 0.78, where, in fact, this system reaches a dynamical
instability. At the same time, at large Zn content the fcc AgZn is strongly
stabilized against tetragonal shear. On the other hand, c44 has almost con-
stant value for x ≤ 0.5 and x ≤ 0.7 in the fcc and bcc structures, respectively.
Above these concentration ranges c44 shows rapid variation in both structures,
describing a trend from stable structures (Ag end) towards unstable (bcc) or
barely stable (fcc) structures (Zn end). The instability of fcc Zn against or-
thorhombic deformations has been reported in other theoretical investigations
as well [238].

The enthalpy of formation of Ag1−xZnx random alloy (ΔH(x)) is plotted
in Figure 8.16 as a function of concentration and crystal structure. The solid
solution is formed when ΔH(x) < 0. According to figure, the Ag1−xZnx alloys
form solid solutions in the fcc structure for x < 0.66, and in the bcc structure
for 0.19 < x < 0.70. Furthermore, comparing the enthalpy of formation for the
fcc and bcc lattices, we find that the fcc structure is stable below ∼ 40 At.-%
Zn and the bcc structure is stabilized around 50 At.-% Zn. In the Zn-rich
region, the hcp structures are the most stable lattices (not shown). Figure
8.16 is in qualitative agreement with the experimental phase diagram of AgZn
[234]. However, we note that short range order and entropy effects must also
be considered in a more complete account of the phase diagram.

In studies [188, 243] of elastic constants of transition metals, a correla-
tion between c′ and the energy difference between the bcc and fcc struc-
tures, ΔEbcc−fcc ≡ Ebcc − Efcc, was proposed. In the case of AgZn alloys
ΔEbcc−fcc(x) first decreases from 0.9 mRy (x = 0) to −0.4 mRy (x = 0.6),
and then increases to 3.6 mRy (x = 1). This trend correlates reasonably well
with both c′fcc and −c′bcc. However, a much better correlation exists between
ΔEbcc−fcc(x) and the difference between the two tetragonal shear moduli. At



8.3 Hume−Rothery Alloys 167

0 20 40 60 80 100
At.−% Zn

−3

0

3

6

ΔH
 (

m
R

y)
fcc
bcc

Ag1−xZnx

Fig. 8.16. Theoretical (EMTO-LDA) enthalpy of formation for Ag1−xZnx alloys in
the fcc and bcc structures [115].
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small Zn concentrations c′fcc decreases and c′bcc increases with x, suggesting
the stabilization of the bcc phase against the fcc phase. In the region between
45 and 65 At.-% Zn the c′bcc becomes slightly larger than the c′fcc, showing
the pronounced energy minimum for the bcc phase. Above 65 At.-% Zn one
has c′fcc > c′bcc, and the re-stabilization of the fcc structure, relative to the
bcc structure, occurs.

When a comparison can be made between experiments and EMTO results
for the elastic constants, the agreement is very good. We therefore have confi-
dence in our data also when they show an anomalous behavior. The abruptness
of the variations in c′ and c44 (Figures 8.14 and 8.15) is more pronounced than
has been reported in any experiments for non-magnetic solids [240]. This is
also seen in the polycrystalline shear modulus (Figure 8.17) calculated from
the single crystal elastic constants using the Hershey averaging method (Sec-
tion 6.3.1). The often-used “law-of-mixing” for the shear moduli, i.e. a linear
variation between the values at the end members in the alloy, definitely fails in
the case of AgZn alloys. Rapid, but smaller, variations of elastic constants as
a function of composition or temperature have been noted for several transi-
tion metal alloys [240], and attributed to topological Fermi-surface transitions
[242].
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Fig. 8.18. The low temperature theoretical (EMTO-LDA) and experimental
[239, 244] Debye temperatures of Ag1−xZnx random alloys in the fcc and bcc crys-
tallographic phases [115].

Figure 8.18 presents the Debye temperatures for fcc and bcc AgZn calcu-
lated from Equations (6.27) and (6.26). Since the Debye temperatures are not
defined for dynamically unstable lattices, for the bcc phase they are shown
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only for x ≤ 0.76. For reference, the available low temperature experimen-
tal values are also included for the fcc [244] and bcc [239] structures. The
agreement between experimental and theoretical Debye temperatures, includ-
ing the concentration dependence, is very good. We recall that the quantity
θD goes to zero as one approaches the critical concentration where the system
becomes mechanically unstable [128]. In bcc AgZn, this happens near x ≈ 0.78
(Figure 8.14). Note how narrow the region of rapid variation in θD is in Figure
8.18.

8.3.3 Hexagonal Silver−Zinc Alloys

The crystal structure gives the key to many properties of solid materials. Un-
usual structural properties that can be subtly tuned by chemical composition
or external conditions are of great interest [89, 245, 246]. Most elemental met-
als crystallizing in the hexagonal close-packed (hcp) lattice have an axial ratio
c/a that is close to the ideal value 1.633 obtained in a stacking of rigid spheres
[236]. Zn-rich and Cd-rich alloys are exceptions, with c/a > 1.75.

The hcp structure is the thermodynamically most stable phase of Ag1−xZnx

in two separate regions: in the ε-phase from about x = 0.68 to x = 0.87 and
in the η-phase when x > 0.95. Experiments [232, 247, 248] show that c/a
decreases very rapidly on alloying in the η-phase. In the ε-phase c/a is some-
what lower than the ideal value [247], first slowly decreasing as a function of
Zn content, followed by a sudden and pronounced upturn close to the phase
boundary. Contrasting this, the volume per atom varies slowly and mono-
tonically in the hcp AgZn lattice (inset in Figure 8.13) with values for the
intermediate ε-phase agreeing well with a simple interpolation from pure Ag
to the Zn-rich η-phase. The striking variations in c/a on alloying in the AgZn
solid solutions have been investigated using the EMTO method [235]. Since
the GGA reproduces the equilibrium volume of pure Zn with higher accuracy
compared to the LDA (see Section 8.3.1), it is also expected to lead to a more
accurate hexagonal lattice constant than the LDA (Figure 8.12). Accordingly,
all results from this section were obtained within the GGA [15].

To assess the accuracy of the EMTO method for the crystal structure and
elastic constants of hcp random alloys, in Table 8.2 we compare the EMTO
results obtained for the Ag0.3Zn0.7 random alloy with experimental data [248].

Table 8.2. Theoretical (EMTO-GGA) and experimental [248] equilibrium atomic
radius w (in Bohr), hexagonal axial ratio (c/a)0, and elastic constants (in GPa) of
the hcp Ag0.3Zn0.7 random alloy.

w (c/a)0 c11 c12 c13 c33 c44

EMTO 2.98 1.579 110 56 63 129 27

expt. 2.92 1.582 130 65 64 158 41
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Fig. 8.19. Concentration dependence of the theoretical (EMTO-GGA) equilibrium
axial ratio (c/a)0 in hcp Ag1−xZnx alloys. The inset shows the calculated equilibrium
atomic radii w as a function of Zn content. Experimental data are from Matsuo [248],
Massalski [247] and Pearson [232].

The deviation between the theoretical and experimental equilibrium atomic
radius and (c/a)0 are 2% and 0.2%, respectively. The calculated elastic con-
stants are somewhat small when compared with the measured values, but the
relative magnitudes are well reproduced by the EMTO approach. The overall
agreement between theory and experiment in Table 8.2 is very satisfactory,
especially if one notes that the total energy minimum is very shallow in AgZn
alloys, which makes the calculation of elastic properties numerically difficult.

Figure 8.19 shows the theoretical (c/a)0 ratio for hcp Ag1−xZnx alloys in
the whole range of concentrations 0 ≤ x ≤ 1. Experimental data taken in the
ε-phase [247, 248] and η-phase [232], are also included. Where a comparison
with experiments is possible there is an excellent agreement between theory
and experiment, which further testifies to the accuracy with which the EMTO
approach can describe structural properties of AgZn random alloys. In con-
trast to the rapid changes in (c/a)0, the equilibrium atomic radii w0 follow,
to a good approximation, Vegard’s rule over the entire concentration range
(insert in Figure 8.19).

In order to understand the conspicuous sharp upturn of (c/a)0 near the
upper concentration limit of the ε phase, Magyari-Köpe et al. [235] calculated
the volume dependence of c/a for different concentrations. Figure 8.20 shows
c/a as a function of the atomic radius w and chemical composition in the
concentration range of interest. An important feature in the volume depen-
dence of c/a is seen: for x ≤ 0.8 c/a slightly decreases with volume, whereas
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Fig. 8.20. Theoretical (EMTO-GGA) axial ratios (c/a) of hcp AgZn random alloys
plotted against chemical composition (At.-% Zn) and average atomic radius (w).

for x ≥ 0.8 it shows the behavior characteristic of pure Zn [249]. There is a
narrow concentration range around 82% Zn where the volume dependence of
c/a is nearly flat. The parameter R, describing the logarithmic volume deriva-
tive of c/a near the equilibrium structure (Equation (6.56)), has an almost
constant value of −0.2 in the Ag-rich part of the ε-phase. However, at about
82% Zn there is a change in the sign of R, followed by a marked increase. This
variation in R imposes a transition in the linear compressibility ratio K.1 For
x ≤ 0.82 we have K < 1, i.e. the a axis is more compressible than the c
axis. For these compositions K shows weak concentration dependence, which
correlates well with the trend of the axial ratio from Figures 8.19 and 8.20.
At concentrations above ∼82% Zn, K becomes larger than 1 and increases
rapidly with x. The hardening of a axis relative to c axis causes the upturn
in the (c/a)0 within the thermodynamic stability field of the ε phase.

The variation of the total energy E(w, c/a) with c/a at a fixed volume,
calculated around the equilibrium (c/a)0, is described by the elastic constant
cs [132]. In the lower panel of Figure 8.21 the concentration dependence of the

1 The ratio of the linear compressibilities parallel and perpendicular to the c axis
is obtained as K ≡ K‖/K⊥ = (c11 + c12 − 2c13)/(c33 − c13), where cij are the
hexagonal elastic constants.
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theoretical cs is compared with the experimental data [232, 248]. Although
there is an almost constant shift between theoretical and experimental values
[248], the observed trend in cs(x) is well captured by the EMTO method.
The pronounced minimum in cs(x) around 88% Zn appears as a result of the
noticeable variations of 2c33 and 4c13 terms from the expression of cs with
concentration (see upper panel in Figure 8.21).

The calculated trend of the elastic constant cs(x) shows that the hcp AgZn
random alloys may have a mechanical instability, or be very close to such a
behavior, at about 88% Zn. Using our calculated total energies, we estimated
the Gibbs energies of formation ΔG(x) of AgZn random alloys at T = 0 and
T = 300 K.2 This is shown in Figure 8.22. From the shape of ΔG(x) one can
determine the stability limits of the ε and η phases by drawing a common
tangent to the Gibbs energies calculated for these phases. We find that the
theoretical two-phase-field region decreases from 0.77 ≤ x ≤ 1 at T = 0 K
to 0.83 ≤ x ≤ 0.96 at T = 300 K, which is in qualitative agreement with
the phase diagram information [234]. Thus, the softening of the hexagonal
phases along the c axis, i.e. cs(x) → 0, will occur inside the two-phase-field
region in the phase diagram, where in fact a single hcp phase is metastable
and separates into ε and η phases.

Finally, we discuss the question of the rapid decrease of (c/a)0 on adding
Ag to η phase. Magyari-Köpe et al. [235] have shown that the anomalous
(c/a)0 ratio in Zn-rich η-phase has the same electronic origin as the one re-
ported in the case of pure Zn [250, 251, 252]. According to that, in Zn the
equilibrium (c/a)0 ratio minimizes the band energy contribution to the to-
tal energy. With increasing Ag content, i.e. decreasing s electron density, the
distortion-promoting band energy maintains its dominant role, and a reduced
axial ratio minimizes the total energy.

8.4 Binary Transition-metal Alloys

In this section, we quote a few applications of the EMTO method to binary
transition-metal alloys without a comprehensive description of the background
and of the numerical calculations. For these details, the reader is referred to
the corresponding references.

8.4.1 Iron−Magnesium Alloys at High Pressure

Iron and magnesium are almost immiscible at ambient pressure. The low
solubility of Mg in Fe is due to very large size mismatch between the alloy

2 Here the Gibbs energy of formation of Ag1−xZnx random alloy is approximated
by ΔH − SconfΔT , where ΔH denotes the enthalpy of formation and Sconf is
the configurational entropy estimated using the mean-field expression −kB [(1 −
x) ln(1 − x) + x ln(x)].
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components. However, the compressibility of Mg is much higher than that of
Fe, and therefore the difference in atomic sizes between elements decreases
dramatically with pressure. Dubrovinskaia et al. [253] have demonstrated in a
series of experiments that high pressure promotes solubility of magnesium in
iron. They have shown that at megabar pressure range more than 10 At.-%
of Mg can dissolve in Fe which can then be quenched to ambient conditions.

In Figure 8.23, we show some EMTO results for pure Fe0.95Mg0.05 alloys.
The calculations employed the GGA [15] for the exchange-correlation energy.
The mixing enthalpy was calculated at 0 K, and the non-magnetic hcp phase
of Fe and the bcc phase of Mg were chosen as standard states at all pres-
sures. The reliability of the theoretical treatment is illustrated in the inset
in Figure 8.23, where we compare the theoretical pressure−volume relations
for hcp Fe0.95Mg0.05 alloy with the experimental result obtained for Fe-rich
alloys containing 4.1 At.-% Mg. The excellent agreement between theory and
experiment, seen in the figure, illuminates that theory correctly describes the
FeMg solid solution.

As is seen in Figure 8.23, at low pressure the mixing enthalpy for FeMg
alloys is large and positive, in agreement with the very low solubility of Mg
in Fe. This is also in line with one of the well-known Hume−Rothery rule for
metallic alloys, which states that the formation of disordered metallic alloys
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Fig. 8.23. Theoretical (EMTO-GGA) heat of formation for hcp Fe0.95Mg0.05 solid
solution. The inset compares experimental (circles) and theoretical (solid line)
pressure−volume dependence for hcp-structured FeMg alloy. The experimental data
were obtained for Fe-rich alloys containing 4.1 At.-% Mg. ΔH < 0 indicates a ten-
dency of the system towards alloying and ΔH > 0 represents a tendency towards
phase segregation.
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is very unlikely if atomic sizes of alloy constituents differ by more than 15%
[254]. However, compressibility of Mg is much higher than that of Fe, and
therefore the difference in atomic sizes between these two elements decreases
dramatically with pressure. This raises the possibility that alloying of iron and
magnesium may be more favorable under high-pressure conditions. Indeed, the
EMTO calculations predict that the mixing enthalpy of disordered Fe-rich hcp
FeMg alloys changes sign at about 100 GPa. This means that already at zero
temperature there is a transition from the tendency towards phase separation
between Fe and Mg at low pressure to the tendency towards alloying at higher
pressure. With increasing temperature the tendency towards alloying increases
further due to the entropy contribution.

8.4.2 Elastic Constants of Vanadium−Niobium Alloys

The vanadium-group transition metals (V,Nb and Ta) exhibit interesting
and sometime anomalous properties. For example, they possess the largest
electron−phonon interaction parameters among the transition metals [128]
and Nb has the highest superconducting transition temperature among the
elemental metals. Furthermore, in contrast to the normal decreasing behavior
displayed by most metals, the elastic constants of these solids show irreg-
ular temperature dependence. Because of that, the V-group elements have
been the subject of numerous experimental and theoretical investigations
[255, 256, 257].

In Table 8.3, we compare the EMTO single-crystal shear moduli of bcc
V and Nb with the available full-potential [188, 255] and experimental [189]
data. The EMTO values were calculated using the GGA for the energy func-
tional. The agreement between different sets of theoretical values is reasonable
in the case of Nb, but large discrepancies can be seen for V. Part of these devi-
ations have been ascribed [188] to the strong LDA over-binding in V, which is
less pronounced for Nb (see Table 8.1). When compared to the experimental
data, the FP-LMTO calculation using the GGA functional [255] is found to
give slightly more accurate elastic constants than the EMTO method. In this

Table 8.3. Theoretical and experimental elastic constants of bcc V and Nb. The
EMTO calculations were based on the GGA for the energy functional. The exper-
imental values are given for room temperature and 0 K (numbers in parenthesis)
[189, 258].

Vanadium Niobium

EMTO FP-LMTO expt. EMTO FP-LMTO expt.

c′ 72.6 67.3a,37.5b 54.5(57) 68.8 63.9a,60b 56.0(60)

c44 29.7 37.4a,5b 42.6(46) 35.3 25.5a,27b 28.7(31)
a GGA [255], b LDA [188].
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Fig. 8.24. Calculated pressure dependence of the shear elastic moduli of bcc V [255].

comparison, however, one should also take into account that both c′ and c44

of V and Nb show strong anomalous temperature dependence below the room
temperature. The average differences between the EMTO and experimental
shear moduli for V and Nb are 32% and 23% at room temperature and 31%
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Fig. 8.26. Calculated (EMTO) pressure dependence of the c44 shear elastic modulus
of bcc V0.95Nb0.5 random alloy [255]. For comparison, the EMTO results for pure V
are also shown.

and 14% at 0 K, respectively. These are reasonable errors [188], especially if
one takes into account that the theoretical elastic constants depend sensitively
on the details of the calculations.

Figures 8.24 and 8.25 show the calculated pressure dependence of the
shear elastic moduli of bcc V and Nb, respectively. There is a good parallelism
between the EMTO and FP-LMTO [255] data. In particular, both methods
reveal a mechanical instability in c44 for V. The corresponding pressures are
slightly different in EMTO (180−270 GPa) and FP-LMTO (150−250 GPa)
calculations. For Nb, both methods give softening of c′ and c44 at pressures ∼
50 GPa. Except these critical pressures ranges, the tetragonal shear modulus
for V and Nb and c44 for Nb exhibit normal increasing behavior with pressure.
The theoretically predicted structural instability in bcc V is in line with the
experimentally observed structural phase transition at 69 GPa [257].

Landa et al. [255] proposed that the above pressure-induced shear insta-
bility (softening) of V (Nb) originates from the peculiar electronic structure.
They have shown that substitution of 5 At.-% of V with Nb removes the in-
stability of V with respect to trigonal distortions in the vicinity of 200 GPa
pressure, but still leaves the softening of c44 in this pressure region. The pres-
sure dependence of c44 for bcc V0.95Nb0.5 random alloy, calculated using the
EMTO method in combination with GGA, is shown in Figure 8.26. We can
see that, apart from significant softening around ∼ 200 GPa, in Nb-bearing V
the stability criteria for a cubic crystal (Section 6.2) holds within the whole
pressure range considered.
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8.4.3 Ferromagnetic Fe-based Binary Alloys

In order to demonstrate the performance of the EMTO approach for calculat-
ing the total energy of ordered and random ferromagnetic alloys, Kissavos et
al. [259] compared the mixing energies of ferromagnetic FeCo, FeNi and FeCu
systems calculated using the EMTO method and the full-potential projected
augmented wave (PAW) method [169]. The mixing energy reflects directly
the accuracy of the total energy calculations, and, therefore, it is an excellent
quantity to compare between different methods in order to test their relative
accuracies. The PAW is generally known to be among the most accurate meth-
ods for the electron structure calculations. The mixing energies of the Fe-based
systems in B2, L10, and random fcc phases are plotted in Figure 8.27. The
mixing energy is defined as the energy of the alloy minus the concentration
average energy of the standard states. For the latter, pure alloy components
in the bcc or fcc structure for B2 or L10 compounds, respectively, were used.
For the random fcc alloys (upper panel in Figure 8.27), the reference state is
again fcc.

In EMTO calculations, the CPA is used to model the chemical disorder,
whereas the PAW modeling is based on the special quasirandom structures
method [67, 259]. As can be seen in Figure 8.27, PAW and EMTO results fall
almost on top of each other, showing that the EMTO method can be used
with confidence for calculations of total energies for chemically ordered, as
well as disordered alloys.

−10

0

10

20

EMTO
PAW

−10

0

10

M
ix

in
g

 e
n

er
g

y 
(m

R
y/

at
o

m
)

−5

0

5 random

L10

B2

FeCo FeNi FeCu

Fig. 8.27. Mixing energies for the B2 (lower panel), L10 (middle panel), and random
fcc (upper panel) phases in FeCo, FeNi, and FeCu systems, calculated with both
the EMTO and the PAW method [169].
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8.4.4 Paramagnetic Fe-based Binary Alloys

Paramagnetic alloys are often treated as nonmagnetic systems in ab initio cal-
culations. Accordingly, the local magnetic moments are artificially suppressed
on alloy components. However, for a majority of the ferromagnetic alloys the
local moments survive above the Curie temperature, though the net magne-
tization indeed vanishes due to their random orientations. Iron-based alloys
are typical examples of such systems. On the other hand, the disordered lo-
cal moment (DLM) approach [260, 261] allows one to model the effect of
the totally random magnetic moments. In practice, a binary A1−xBx alloy
with a complete disorder of local magnetic moments on site A is simulated
as a three-component alloy A↑

(1−x)/2A
↓
(1−x)/2Bx, where arrows represent dif-

ferent spins. Similarly, a four-component alloy A↑
(1−x)/2A

↓
(1−x)/2B

↑
x/2B

↓
x/2 is

considered when magnetic disorder is present on both sites. Treating a three-
or four-component alloy instead of a binary alloy is an easy task within the
CPA, but it is practically impossible with any alternative approaches.

The EMTO mixing enthalpies for paramagnetic fcc FeCo, and bcc FeCr
and FeV alloys calculated using the GGA energy functional [259] are plot-
ted in Figures 8.28−8.30. For these systems experimental mixing enthalpies
of the paramagnetic phases are available in the whole concentration range
[262]. The calculated results for the fcc FeCo alloys agree very well with the
experimental values, especially considering the very small absolute values of
mixing enthalpy of random fcc FeCo alloys. For bcc FeCr and FeV alloys,
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Fig. 8.28. Mixing enthalpies for paramagnetic random fcc FeCo alloys calculated
using the EMTO method in combination with the DLM model and the GGA energy
functional (squares) and the corresponding experimental values (circles) [262].
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Fig. 8.29. Mixing enthalpies for paramagnetic (solid line) and ferromagnetic
(dashed line) random bcc FeCr alloys calculated using the EMTO method in combi-
nation with the DLM model and the GGA energy functional and the corresponding
experimental values (circles) for the paramagnetic bcc FeCr alloys [262].
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Fig. 8.30. Mixing enthalpies for paramagnetic (solid line) and ferromagnetic
(dashed line) random bcc FeV alloys calculated using the EMTO method in combi-
nation with the DLM model and the GGA energy functional and the corresponding
experimental values (squares) for the paramagnetic bcc FeV alloys [262].
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again, one can see good agreement between the corresponding data sets. For
FeCr, both the EMTO-DLM results and the experimental data measured for
the paramagnetic phase show nearly parabolic dependence on Fe concentra-
tion, following the regular solid solution model. On the other hand, for FeV
alloys there are strong deviations from the regular sold solution behavior, with
a spectacular change of sign of the mixing enthalpy around the equiatomic
composition. The EMTO method can capture this remarkable feature.

To demonstrate the importance of magnetic disorder in FeCr and FeV
systems, in Figures 8.29 and 8.30 the mixing enthalpies calculated for the
ferromagnetic phases [259, 264] are also shown (dashed lines). We observe
substantial deviations between the ferromagnetic and the DLM results. In par-
ticular, FeV alloys in the ferromagnetic phase have negative mixing enthalpy
within the entire concentration range, in contrast to the paramagnetic phase,
where the Fe-rich alloys are not stable. Different signs of the mixing enthalpies
in different magnetic phases can also be seen for the dilute Fe-rich FeCr alloys.
According to the EMTO results from Figure 8.29, at low Cr concentrations
the ferromagnetic FeCr alloys are anomalously stable. This prominent find-
ing was confirmed by full-potential calculations based on the PAW method
combined with special quasirandom structures [265] as well as with the super-
cell technique [266]. Furthermore, it has been suggested that the anomalous
mixing between Fe and Cr below ∼ 10 At.-% Cr has an electronic−magnetic
origin [265, 267].

8.5 Cerium−Thorium Alloys

The structural stability of Ce, Th, and the CeTh system as a function of com-
pression has been investigated using the EMTO method [268]. At low pres-
sure, Ce adopts the fcc crystal structure, which transforms to orthorhombic
or body centered monoclinic below 10 GPa. Above 12 GPa, Ce is stabilized in
a body-centered tetragonal (bct) structure. There are two iso-structural fcc
phases of Ce, namely γ-Ce and α-Ce. The γ → α transition occurs close to 1
GPa and is associated with a Mott transition of the f electrons from a local-
ized (γ-Ce) to a delocalized (α-Ce) state. Thorium crystalizes in fcc structure
at low pressures (α-Th), and transforms to bct at about 60 GPa. At megabar
pressures, both metals remain in a bct crystal [269, 270, 271] with a c/a axial
ratio close to 1.65. The crystal structure of the CeTh system shows a similar
behavior as a function of pressure [272, 273].

The theoretical equilibrium properties of α-Ce and α-Th are compared
with the experimental data in Table 8.4. The theoretical equations of state
were computed using the GGA for the exchange-correlation energy. We notice
that EMTO calculations give excellent equilibrium properties of both Ce and
Th. The somewhat larger deviation between EMTO and experimental bulk
properties of CeTh alloy can be understood if one takes into account that the
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Table 8.4. Theoretical and experimental equilibrium atomic volume (V0 in Bohr3)
and bulk modulus (B0 in GPa) for Ce, Th and Ce0.47Th0.53. Theoretical results
were obtained using the EMTO method and the FP-LMTO method [274]. For Ce,
equilibrium volumes are given for both α and γ (parenthesis) phases.

Ce Th Ce0.47Th0.53

EMTO FP-LMTO expt. EMTO FP-LMTO expt. EMTO expt.

V0 187.1 176.3 189.1a(232.2b) 224.9 200.0 222.2c 212.1 222.6d

B0 38 49 29a 58 63 58c 46 28d

a expt. α−Ce [275], c expt. α−Th [276],
b expt. γ−Ce [277], d expt. [272, 273].

CeTh system is composed of γ-Ce and α-Th, whereas the EMTO calculations
were performed on an alloy created by α-Ce and α-Th [268].

The calculated tetragonal c/a axial ratios for bct Ce and Th together with
experimental data are shown in Figure 8.31. The bct structure is generated
by distorting the fcc lattice along the Bain path [278], so that c/a =

√
2

corresponds to the undistorted fcc structure. Restricting the crystal structure
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Fig. 8.31. The tetragonal c/a axial ratio for the bct structure of Ce and Th as a
function of pressure. Experimental data for Ce [269] are marked with diamonds, and
for Th [270, 271] with squares. The theoretical results are connected by solid lines
for Ce and dashed lines for Th. The FP-LMTO results [274] are shown by triangles,
and the EMTO results by circles. Horizontal line marks the c/a corresponding to
the fcc lattice.
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optimization to the bct symmetry, from the EMTO calculations (shown by
circles) we find that Ce remains in high-symmetry fcc lattice up to ∼ 12
GPa, where a steep fcc → bct transition can be monitored. The bct phase of
Ce with c/a =1.65−1.68 remains stable up to at least 60 GPa. These findings
are in quantitative agreement with the experimental [269] and also with former
FP-LMTO [274] results.

A somewhat different behavior is found for Th (Figure 8.31). According
to the EMTO results, Th remains stable in its ambient pressure fcc phase up
to ∼ 60 GPa. At higher compression, it transforms continuously into the bct
phase. Note that the transition pressure is considerably higher in Th than in
Ce. As in the case of Ce, the EMTO results for Th agree well with those of
previous FP-LMTO calculations [274] and experimental data [270, 271], also
shown in Figure 8.31.

The calculated and measured c/a axial ratio as a function of pressure for
the Ce0.43Th0.57 disordered alloy is shown in Figure 8.32. The EMTO calcu-
lations confirm that the fcc → bct phase transition occurs between 10 and 20
GPa, which is close to the corresponding transition in Ce, but considerably
lower than for Th. The fact that the transition pressure is a strongly nonlinear
function of Th concentration in the CeTh system is in line with experimental
observation [272, 273].
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Fig. 8.32. The tetragonal c/a axial ratio for the bct structure of the Ce0.43Th0.57

disordered alloy as a function of pressure. Experimental data [272, 273] are marked
with squares. The EMTO results are given by filled circles, and the results of FP-
LMTO calculations for ordered CeTh compound with B2 structure [279] are given
by triangles. The horizontal line marks the c/a corresponding to the fcc lattice.
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The structural behavior of CeTh alloy was previously modeled by an or-
dered (B2) CeTh compound using the FP-LMTO method [279]. These earlier
calculations predicted that the tetragonal axial ratio first decreases with pres-
sure and then suddenly jumps to a high value closer to the measure value at
a higher compression (shown by triangles in Figure 8.32). It was suggested
that the discrepancy with experiment was due to the failure of modeling the
disordered alloy with an ordered compound. The EMTO results from Figure
8.32 validate this assumption, and demonstrate that the disorder needs to be
properly accounted for to accurately describe Ce0.43Th0.57.

8.6 Surface Concentration Profile

Surfaces form the fundamental interface for many physical and chemical in-
teractions. In alloys, the surface chemistry may show significant alloying and
temperature dependence. One important example is the threshold behavior
in stainless steels [280, 281]. It is a well known fact that 13% or more Cr
renders FeCr alloys an excellent corrosion resistance, but below this thresh-
old the system behaves much like pure iron. Several phenomenological mod-
els tried to describe this compositional threshold behavior. According to a
thermodynamic-kinetic passivation mechanism [282, 283], a stable Cr-rich ox-
ide layer is formed on the surface of FeCr alloy, which protects the system
against various attacks in different chemical environments. It is clear that
the surface oxide composition is determined by the actual metal concentra-
tion in the surface prior to oxidation. Motivated by this, the chemistry of
FeCr surfaces have been the focus of numerous experimental and theoretical
investigations [284, 285, 285, 287].

Promoting or inhibiting certain surface phenomena requires full control of
the surface properties. The simplest way to produce a surface having opti-
mal properties for a specific task is to exploit segregation at alloy surfaces.
The most widely used theoretical approach for surface segregation is based
on Monte-Carlo technique [288]. In this approach, the equilibrium segrega-
tion profile is determined by changing the surface configuration repeatedly
until energetically the most favorable solution is obtained. Because the total
energy of a particular configuration is calculated from effective interactions,
a Monte-Carlo method offers a simple and fast algorithm for multilayer sur-
face segregation studies. Unfortunately, its application is restricted to systems
with an ideal undistorted underlying lattice and where reliable effective in-
teraction parameters can be constructed. Based on the EMTO method, Ropo
et al. [289, 290, 291] introduced an alternative technique, which is suitable to
determine the surface concentration profile in multi-component random alloys
with arbitrary crystal structure. This approach treats the surface system as
a grand canonical ensemble, allowing for an unconditional particle exchange
between the surface region and a bulk reservoir.
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Fig. 8.33. Theoretical segregation profile calculated using the EMTO-LDA method
for the (111) surface of AgPd as a function of temperature and bulk Ag concentra-
tion. Symbols connected by solid lines represent the top surface layer concentration
of Ag, while symbols connected by dashed lines correspond to Ag concentration in
the subsurface layer. Solid lines are intentionally ended at the Pd-rich end, in order
not to give an incorrect impression about the segregation profile in dilute alloys.

The palladium−silver system represents a perfect case to illustrate the sur-
face concentration profile calculations, since these alloys have continuous solid
solubility in the fcc crystallographic structure. Figure 8.33 shows the top layer
and the subsurface layer concentrations for the (111) surface of Pd1−xAgx al-
loys calculated as a function of bulk concentration (x) and temperature using
the EMTO method and the LDA energy functional. The surface concentration
profile was obtained by minimizing the grand potential of the surface subsys-
tem. The condition for the minimum was expressed as the equilibrium between
the surface and bulk effective chemical potentials (ECP). Here, the ECP is
the difference between the Ag and Pd chemical potentials and is calculated
from the energy change when a Pd atom was exchanged with Ag. At T = 0
K, the minimum requirement for the grand potential leads to the condition
that the difference between the effective chemical potentials for the surface
and bulk subsystems should be equal to the equilibrium segregation energy
[290]. The latter vanishes for an equilibrium concentration profile where all
the alloy components have nonzero concentration. For calculations at T > 0
K, the entropy was approximated by the configurational entropy. For more
details about the thermodynamical model for metal surfaces, the reader is
referred to the works by Ropo et al. [289, 290, 291].

Figure 8.33 indicates that at 0 K the first surface layer is completely filled
with Ag for the whole bulk concentration interval. In the second layer, the
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Ag concentration is zero for x ≤ 0.4, and rapidly increases with increasing x
for x > 0.4. In Ag-rich alloys, the subsurface Ag layer concentration is close
to (2x− 1). The stability of the pure Ag terminated surfaces at 0 K is due to
the lower surface energy of Ag compared to that of Pd (see Section 7.1.3).

With increasing temperature, the Ag concentration decreases in the top
layer and increases in the second layer. The entropy driven changes in the
second layer are small for x < 0.2 and x > 0.6, but they are important for
intermediate x values. The top layer concentration shows the largest variations
with T in Pd-rich alloys. It is interesting that at T ≥ 600 K, the second layer
is almost bulk-like, whereas the top layer still contains a significant amount
(> 60%) of Ag.

In Table 8.5, we compare the EMTO equilibrium surface concentrations
with the available experimental data [292, 293]. Wouda et al. [292] measured
the chemical composition in the top layer of the (111) surface of Ag33Pd67

alloy using a scanning tunnelling microscopy technique. The reported surface
concentrations of Ag are somewhat higher than the EMTO values. Reniers
[293] investigated the surface composition of Ag50Pd50 alloy using Auger elec-
tron spectroscopy (AES). In these experiments the surface composition was
estimated from the Auger current. Due to the approximate relation between
current and concentration, there were significant uncertainties associated with

Table 8.5. Theoretical (EMTO-LDA) and experimental surface concentration pro-
file for AgPd alloys as a function of bulk Ag concentration and temperature (T ).
The three concentrations refer to the Ag concentration in the bulk and in the 1st
and 2nd surface layers, respectively.

method bulk 1st layer 2nd layer T (K)

EMTOa 30 88 21 600
“ 30 80 29 900

expt.b 33 95 - 820
“ <33 93 - 720
“ <33 91 - 770
“ <33 91 - 820
“ <33 90 - 920

EMTOa 50 90 34 600
“ 50 85 39 900

expt.c 50 70-99 - 673–873

expt.d 50 54-63 - 673–873

a [290], b [292],
c AES data without matrix correction [293],
d AES data with matrix correction [293].
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Fig. 8.34. Surface energy for the (111) surface of AgPd calculated using the EMTO-
LDA scheme as a function of temperature and bulk Ag concentration. For pure
metals the surface energies per unit surface area are also shown.

these measurements. Within these uncertainties the EMTO theoretical values
are in reasonable agreement with the AES measurements.

The surface energy γ(T, x) for the (111) surface of Pd1−xAgx alloys is plot-
ted in Figure 8.34 as a function of bulk composition and temperature. The
EMTO surface energies for pure Ag and Pd are 43 and 67 mRy/atom when
expressed per surface atom, and 1.35 and 2.26 J/m2 when expressed per sur-
face area. These values are significantly larger than 0.96 and 1.64 J/m2 listed
in Table 7.4. The ∼ 28% average difference is due to the gradient correction
in the GGA exchange-correlation functional compared to the LDA.

At 0 K, the surface energy is mainly determined by the pure Ag surface
layer, which is reflected by an almost flat γ(0K, x) ≈ γAg line for x ≥ 0.1.
With increasing temperature, γ(T, x) converges towards the value estimated
using a linear interpolation between end members. Note that the tempera-
ture dependence of γ is very similar to that of the surface Ag concentration
from Figure 8.33. Although, at intermediate concentrations, the concentration
from the subsurface layer shows strong temperature dependence, this effect
is imperceptible in the surface energy. Therefore, the variation of the surface
energy of an alloy with temperature and bulk composition is, to a large extent,
governed by the surface layer, and the subsurface layers play only a secondary
role.
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Iron−chromium−nickel Alloys

In Chapters 7 and 8, we demonstrated the application of the EMTO method
to ordered systems as well as to disordered binary alloys. In this chapter, we
shall illustrate this in the case of FeCrNi-based alloys, which form the basis of
austenitic stainless steels. First, the atomistic model of these important class
of materials will be defined. In Section 9.2, we shall present the theoretical
calculation of the elastic constants of FeCrNi alloys. After establishing the
accuracy of the EMTO approach for this problem, we shall display the elastic
property−chemical composition maps. The computed elastic properties will
be used to determine the misfit parameters for quaternary alloying additions
M(=Al,Si,V,Cu,Nb,Mo,Re,Os and Ir). In Section 9.3, the ab initio determina-
tion of the stacking fault energy of FeCrNi ternary alloys will be introduced.
In connection with the stacking faults, we shall discuss the role of magnetic
fluctuations on the mechanical properties of austenitic steels. A few impor-
tant numerical details of the EMTO calculations presented in this chapter are
listed in Section C.3.

9.1 Modeling the Alloy Steels

In addition to Fe and carbon, alloy steels contain several other elements in or-
der to obtain specific properties of the material. In particular, stainless steels
are alloy steels containing more than 13% Cr, which makes these alloys resis-
tant against corrosion in various chemical environments [280, 281]. Stainless
steels dominate both industrial and everyday applications of steels, where a
combination of good corrosion resistance with high strength, stiffness, and
toughness is required.

Austenitic stainless steels, the largest sub-category of stainless steels, con-
tain a significant amount of substitutional Ni. The presence of Ni changes the
crystal structure of steel at ambient temperatures from the bcc structure of α-
Fe (ferrite) to the fcc structure of γ-Fe (austenite) [294]. The FeCrNi austenite
possesses a rather unique combination of physical, mechanical, and chemical
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Table 9.1. Some typical commercial stainless steel compositions from the AISI 300
series. Concentrations are given in atomic as well as in weight (parenthesis) percent.

AISI C Mn P S Si Cr Ni Mo Fe

304 0.4 2 0.08 0.05 1.9 19−21 7−9 − balance
(0.08) (2) (0.045) (0.03) (1.0) (18−20) (8−10) − (balance)

310 1.1 2 0.08 0.05 2.9 25−27 17−20 − balance
(0.25) (2) (0.045) (0.03) (1.5) (24−26) (19−22) − (balance)

316 0.4 2 0.08 0.05 1.9 17−19 9−13 1−2 balance
(0.08) (2) (0.045) (0.03) (1.0) (16−18) (10−14) (2−3) (balance)

317 0.4 2 0.08 0.05 1.9 19−21 10−14 2 balance
(0.08) (2) (0.045) (0.03) (1.0) (18−20) (11−15) (3−4) (balance)

properties that make austenitic stainless steels suitable for many specific ap-
plications. The most common austenitic grades, belong to the AISI (American
Iron and Steel Institute) 300 series. Some typical commercial stainless steel
compositions from this series are listed in Table 9.1.

The amount of interstitial carbon in austenitic stainless steels is usually
below 0.4 At.-%, but in some cases it could be as high as ∼ 1 At.-%. If Cr-rich
carbides are formed (usually, at grain boundaries), the alloy matrix becomes
depleted of Cr and thereby its corrosion resistance is drastically reduced.
This causes various forms of localized corrosion attack, such as intergranular
corrosion, pitting corrosion, or stress-corrosion cracking. In order to prevent
the formation of Cr-rich carbides one needs to keep the C content in alloy
steels at low levels. This is achieved by additional alloying with strong carbide-
forming elements like Mo, V, Nb, etc. The amount of impurities (e.g., S or
P), which may cause similar problems with the resistance of steel to localized
forms of corrosion, is also kept at the lowest possible level [295].

The beneficial properties of austenitic stainless steels derive from the prop-
erties of the main phase in these alloys. According to Table 9.1, to a good
approximation the latter can be considered as a solid solution formed mainly
by Fe, Cr and Ni. This is a simplified atomistic model for alloy steels, where
the different species are randomly distributed on an fcc underlying lattice
and the interstitials are completely omitted.

The most common austenitic stainless steels have very low magnetic per-
meability. They show almost no response to a magnet and hence are generally
regarded as non-magnetic metals. On the other hand, the main constituent
transition metals are magnetic and have persistent disordered magnetic mo-
ments in their high temperature paramagnetic states [296, 297, 298, 299, 300,
301, 261, 302, 303, 304]. Actually, magnetic studies indicate that FeCrNi al-
loys also exhibit a rich variety of magnetic phases. At low temperatures, their
magnetic structure is antiferromagnetic, spin-glass or ferromagnetic, depend-
ing on the Ni content [294]. The susceptibility of Fe0.8−nCr0.2Nin alloys with
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0.14 < n < 0.21 was obtained to follow the Curie−Weiss law at temperatures
above 26−130 K with effective magnetic moments between 1.97 and 2.31μB

[305]. Furthermore, the magnetic transition temperature in alloys with Ni level
less than ∼ 30% was found to be below 150 K [294]. The above experimental
evidence implies that at room temperature the FeCrNi alloys are paramagnetic
with sizable persisting disordered local magnetic moments. This is in contrast
to the basic stainless steels made of Fe and Cr, which are ferromagnetic at
ambient condition with a Curie temperature of ∼900−1050 K [262].

In the theoretical description of alloy steels using the EMTO method, the
paramagnetic ternary Fe1−c−nCrcNin system is modeled by an fcc alloy with
randomly distributed chemical species and local magnetic moments, i.e. by a
quasi-ternary random

Fe↑(1−c−n)/2Fe↓(1−c−n)/2Cr↑c/2Cr↓c/2Ni↑n/2Ni↓n/2

alloy. Here the arrows represent the two magnetic moments oriented up (↑)
and down (↓). Often this approximation is referred to as the disordered local
moment (DLM) approach, which accurately describes the effect of loss of the
net magnetic moment above the transition temperature [260, 261]. In fact, at
T = 0 K, the local magnetic moments on Cr and Ni sites vanish, and therefore
the above expression reduces to

Fe↑(1−c−n)/2Fe↓(1−c−n)/2CrcNin

However, at finite temperature, the magnetic entropy induces magnetic fluc-
tuations on Cr and Ni sites, which have to be accounted for by an accurate
description of the energetics of FeCrNi random alloys [263]. When a fourth
alloying element M is introduced, the quasi-ternary alloy becomes a quasi-
quaternary random alloy, viz.

Fe↑(1−c−n−m)/2Fe↓(1−c−n−m)/2)Cr↑c/aCr↓c/aNi↑n/2Ni↓n/2M
↑
m/2M

↓
m/2

where m stands for the atomic fraction of M. Hence, for an adequate theoret-
ical simulation of alloy steels both the chemical and magnetic disorder should
be treated simultaneously. This is within the reach of the EMTO method.
The special feature of this approach to correctly account for anisotropic lat-
tice distortions in multi-component random systems offers unique possibilities
for describing the alloy steels at quantum mechanical level.

9.2 Elastic Properties of Alloy Steels

9.2.1 Elastic Constants of FeCrNi Alloys

In Table 9.2, the calculated single-crystal elastic constants, the Zener elastic
anisotropy ratio and the poly-crystalline averaged engineering elastic mod-
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Table 9.2. Theoretical (EMTO-GGA) and experimental equilibrium volume (V ),
single-crystal elastic constants (c11, c12, and c44), Zener elastic anisotropy con-
stant (A), polycrystal bulk modulus (B), shear modulus (G) and B/G ratio for
Fe0.72Cr0.20Ni0.08, corresponding approximately to alloy steel AISI 304. The volume
is in Bohr3 and the elastic moduli in GPa. The experimental data are from [306] for
the volume and [55] for the elastic constants. In the third row we give the relative
deviations (Δ in percent) between the EMTO and experimental data.

V c11 c12 c44 A B G B/G

EMTO 78.93 208.6 143.5 132.8 4.07 165.2 77.3 2.13
expt. 79.45 204.6 137.7 126.2 3.78 158.2 77.4 2.04
Δ -0.6 2.0 4.2 5.2 7.6 4.4 -0.1 4.4

uli are compared with the available experimental data for Fe0.72Cr0.20Ni0.08,
corresponding approximately to stainless steel AISI 304 (see Table 9.1). It is
found that the EMTO-GGA approach1 reproduces the experimental equilib-
rium volume [306] within less than 1%. Note that this error is close to those
obtained for elemental Fe, Cr and Ni in conjunction with the GGA func-
tional. The average deviation between the EMTO and experimental elastic
constants is about 4%, which is below the typical errors obtained for ele-

0

40

80

120

160

200

el
as

ti
c 

m
o

d
u

lu
s 

(G
P

a)

B (EMTO)

G (EMTO)

B (expt.)

G (expt.)

304 316 310

fcc FeCrNi

Fig. 9.1. Comparison between EMTO and experimental [307, 308, 309] shear and
bulk moduli of alloy steels AISI 304: Fe0.714Cr0.197Ni0.089, 316: Fe0.692Cr0.186Ni0.122

and 310: Fe0.544Cr0.262Ni0.194. The experimental values correspond to commercial
stainless steels from Table 9.1 but without Mo for steel 316.

1 Since for the 3d metals the GGA functionals outperforms the other existing den-
sity functional approximations (see Table 7.1), all the theoretical calculations for
steels were performed within the GGA.
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Fig. 9.2. The effect of Mo addition on the shear modulus of austenitic stainless
steel 316: Fe0.692−mCr0.186Ni0.122Mom. The EMTO results are compared with the
experimental data [307].

mental 3d transition metals [188]. It is also significant that the extremely
high elastic anisotropy of austenite is very well captured by the theory. The
isotropic shear modulus from Table 9.2 was derived from the single-crystal
data using the Hershey averaging method (Section 6.3.1). We find that the
theoretical results for both B and G as well as for the ratio between them
are in excellent agreement with experiment. Therefore, one concludes that the
EMTO-GGA scheme can reproduce with high accuracy the individual bulk
parameters of the FeCrNi system.

Since there is no restriction regarding the number of alloy components
and concentrations, the EMTO method allows for the determination of the
effect of alloying on the elastic properties. The theoretical polycrystalline elas-
tic moduli for some selected FeCrNi alloys, for which experimental data are
available [307, 308, 309], are shown in Figure 9.1. The average deviation be-
tween the theoretical and experimental shear and bulk moduli from figure are
1.0% and 5.1%, respectively. In Figure 9.2, the effect of alloying with Mo on
the shear modulus of grade 316 is shown. Both theory and experiment predict
a substantial decrease in G.

It is interesting to compare the effect of Mo addition on the shear modulus
with the composition dependence of the stability of the austenitic (fcc) phase
relative to the ferrite phase, which has the bcc crystallographic structure. We
recall that in the case of transition metals the cubic elastic constant associated
with the tetragonal distortion of the lattice, shows a proportionality to the
energy difference between the bcc and fcc structures [188]. In the case of alloy



194 9 Iron−chromium−nickel Alloys

316, it is found that Mo strongly stabilizes the ferrite phase (∼ 0.22 mRy per
At.-%), which correlates well with the trend of the shear modulus.

9.2.2 Elastic Property Maps

The most significant conclusion from Table 9.2 and Figures 9.1 and 9.2 is that
the EMTO method accurately reproduces the observed trends of the elastic
moduli of FeCrNi ternary alloys and also the effect of additional alloying
elements. Therefore, theoretical results calculated using this computational
tool may be used for prediction of new data on steels. With this object, a series
of composition−elastic moduli maps of austenitic stainless steels have been
created [105]. These maps were constructed from the bulk and shear modulus
of Fe1−c−nCrcNin alloys calculated as a function of chemical composition for
0.135 < c < 0.255 and 0.08 < n < 0.24. Figures 9.3 and 9.4 give the chemical
composition distribution of the bulk and shear modulus. Note the difference
between the orientations of the concentration (Cr and Ni) axis on these two
figures. The maps were generated for a concentration interval that includes
the basic compositions of the well-known commercial stainless steels (Table
9.1).

Fig. 9.3. Calculated (EMTO-GGA) bulk modulus of FeCrNi alloys as a function
of Cr and Ni contents (balance iron).
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Fig. 9.4. Calculated (EMTO-GGA) shear modulus of FeCrNi alloys as a function
of Cr and Ni contents (balance iron).

The bulk modulus of FeCrNi alloys (Figure 9.3) varies between a minimum
value of 161 GPa, corresponding to Fe0.75Cr0.13Ni0.12, and a maximum value
of 178 GPa, belonging to Fe0.51Cr0.25Ni0.24. It follows from figure that both
Cr and Ni enhance the bulk modulus of alloy steel. In terms of the shear
modulus (Figure 9.4) three families of alloys can be distinguished. Compounds
with large shear modulus correspond to low and intermediate Cr (< 20%)
and low Ni (< 15%) concentrations. Within this group of alloys G decreases
monotonically with both Cr and Ni from a pronounced maximum about 81
GPa (near Fe0.78Cr0.14Ni0.08) to approximately 77 GPa. The high Cr content
alloys define the second family of austenites possessing the lowest shear moduli
(≤ 75 GPa) with a minimum around the composition Fe0.755Cr0.25Ni0.20. The
third family of austenites, with intermediate G values, is located at moderate
Cr (< 20%) and high Ni (> 15%) concentrations, where G shows no significant
chemical composition dependence.

According to the equation of state (Section 6.1), lower atomic volume
corresponds to larger bulk modulus and vice versa. Tracing the alloying effects
on the theoretical equilibrium volume (Figure 9.5) we find that both Cr and Ni
addition increase the average lattice constant of paramagnetic FeCrNi alloys.
This trend is just the opposite of the trend obeyed by the bulk modulus



196 9 Iron−chromium−nickel Alloys

6 10 14 18 22 26
At.−% Cr or Ni

2.658

2.660

2.662

2.664

2.666

at
o

m
ic

 r
ad

iu
s 

(B
o

h
r)

 17.5 At.−% Cr
 12.0 At.−% Ni

fcc FeCrNi

Fig. 9.5. Calculated (EMTO-GGA) average equilibrium atomic radius of
Fe1−0.175−nCr0.175Nin (circles) and Fe1−c−0.12CrcNi0.12 (squares) alloys as a func-
tion of Ni and Cr content, respectively.

from Figure 9.3, which indicates that the alloying effect on the bulk modulus
of FeCrNi alloys is determined first of all by the changes in the electronic
structure.

The effect of Cr and Ni on G may be contrasted with the composition
dependence of the stability of the austenite (fcc) phase relative to the ferrite
phase. EMTO total energy calculations carried out for the fcc and bcc phases
show that Ni always stabilizes the austenitic phase (with ∼ 0.07 mRy per
At.-%). However, even so, except for large concentrations, it decreases the
cubic and thus the polycrystalline elastic moduli. On the other hand, Cr is a
strong ferrite stabilizer (∼ 1.0 mRy per At.-%), which correlates reasonably
well with the trend of the shear modulus from Figure 9.4.

9.2.3 Quaternary FeCrNi-based Alloys

The effect of quaternary alloying additions has been investigated in the case
of Fe0.58Cr0.18Ni0.24 [246, 310]. The EMTO calculations were performed for
Fe0.58−xCr0.18Ni0.24Mx alloys with x =0−0.05 At.-%. Here M denotes Al, Si,
V, Cu, Nb, Mo, Re, Os, or Ir. All of these elements are known to be useful
alloying agents in commercial steels.

In Figures 9.6 and 9.7 we show the EMTO results for the average effects
(per atomic percent) of alloying additions on the equilibrium volume, phase
stability and polycrystalline elastic moduli of Fe0.58−xCr0.18Ni0.24Mx alloys.
We find that all metallic alloying additions increase, while Si slightly decreases
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the equilibrium volume of high-Ni austenite. The effect of Nb and Mo com-
pares well with the experimental observations [311, 312]. Among the 5d metals
Os has the smallest and Re the largest effect, which correlates with the equi-
librium volumes of pure Re, Os and Ir. However, the average increase in the
lattice parameter in the case of 5d elements is ∼ 0.011 Bohr per At.-%, which
is significantly larger than the one estimated from the Vegard’s rule.
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shear moduli (in GPa) for Fe0.58−xCr0.18Ni0.24Mx random alloys.
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We assess the effect of alloying on the phase stability of Fe0.58Cr0.18Ni0.24

alloy by comparing the total energies calculated for ferrite and austenite
phases. Except Cu, Os and Ir, all the other elements from Figure 9.6 sta-
bilize the bcc structure relative to the fcc structure. The energy difference for
Cu is close to zero, while Os and Ir are austenite stabilizers like Ni.

Figure 9.7 shows that all elements considered here enhance the bulk mod-
ulus of Fe0.58Cr0.18Ni0.24. For example, Si increases B by 0.6 GPa per At.-
%. Aluminum and copper have similar effects on B. A somewhat more pro-
nounced bulk modulus enhancement is observed in the case of 4d transition
metals. The effect of 5d metals is almost twice as large compared to that of
the 4d metals. The bulk modulus enhancing effect of the bcc transition metals
(V, Nb and Mo) in the case of commercial steel grades (e.g., in AISI 316)
has been pointed out also in experiments [307]. The physical origin of the
variation of B with additional transition metals can be understood using the
Friedel model of cohesion in d metals [313] and taking into account the bond
enhancement as going from the third-row metals to 4d and 5d metals [246].

The shear modulus of Fe0.58Cr0.18Ni0.24 shows no significant variation with
Os and Ir contents, and it is slightly diminished with Si, Cu and Re additions.
At the same time, Al, V, Nb and Mo decrease G significantly. Comparing the
lower panels from Figures 9.7 and 9.6, one can see that the variation of G
correlates well with the variation of the structural energy difference between
the bcc and fcc phases. In particular, both Os and Ir stabilize the austenite
phase and also increase the shear modulus of alloy steel. The fact that the
increase of G is relatively small is due to the simultaneous increase of the
average atomic volume upon alloying. The negative volume derivative of the
shear modulus diminishes the increase in G upon alloying with Os or Ir.

The chemical composition dependence of G can be understood by inves-
tigating the nature of the crystal bonds. The shear modulus represents the
opposition of a bulk material against shear, i.e. bond rotation. Hence, strongly
anisotropic bonds correspond to larger shear modulus, while isotropic crys-
tals have lower shear modulus. The nature of bonding can be characterized,
e.g., by the anisotropy of the surface free energies [171]. In systems where the
valence electron density is distributed uniformly in the interstitial region, the
surface energy shows week orientation dependence. This kind of behavior is
typical for the Ti and V group elements [171]. Directional or covalent type of
bonding, on the other hand, gives rise to strongly anisotropic surface energy,
which is the case of middle and late transition metals [171]. In particular, Re,
Os and Ir have been found to present the largest surface energy anisotropy
amongst the d metals. The directional bonding characters in Mo and Cu are
similar to that observed in the case of Cr and Ni, respectively.

9.2.4 Misfit Parameters of FeCrNiM Alloys

The size and elastic misfit parameters for solute M in alloy with composition
Fe0.58Cr0.18Ni0.24 can be determined using the EMTO data plotted in Figures
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Fig. 9.8. Theoretical (EMTO-GGA) misfit parameters for Fe0.58Cr0.18Ni0.24 alloy
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9.6 (upper panel) and 9.7 (lower panel). Figure 9.8 gives εb and εG for Al,
Si, V, Cu, Nb, Mo, Re, Os and Ir. The two misfit parameters are calculated
according to Equation (6.111) and they are obtained by dividing the data
from Figures 9.6 and 9.7 by the equilibrium volume and shear modulus of
Fe0.58Cr0.18Ni0.24, respectively. The size misfit is negligible for Al, Si, V and
Cu, but it has a sizable value (between 0.21 and 0.33) for the 4d and 5d
dopants. It is found that Al, V, Nb and Mo give elastic misfit parameters
|εG| = 1.3, 1.9, 3.9 and 2.4, respectively, whereas |εG| < 1 for Si, Cu, Re, Os
and Ir.

The Fleischer parameter εL is 5.4 for Nb, 4.1 for Mo, and ∼ 3.5 for the
5d elements. All the other dopants give εL < 1.5. Hence, assuming that the
Labusch−Nabarro model (see Section 6.6) is valid in the case of FeCrNi alloys
encompassing a few percent of substitutional elements, Nb and Mo are pre-
dicted to yield the largest solid solution hardening. However, one should also
take into account that the 4d metals, in contrast to the 5d metals, significantly
decrease G. Since the Peierls stress is approximately proportional to the shear
modulus [148], the ∼ 2 − 3 GPa per At.-% decrease in G (Figure 9.7) in the
case of Nb and Mo is expected to diminish the corresponding Peierls stress
as well. Therefore, the overall hardening effect, obtained as a sum of the solid
solution hardening and the Peierls term, might be somewhat different from
the one expressed merely via the Fleischer parameter.
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9.3 Stacking Fault Energy of Alloy Steels

The stacking fault energy (SFE) is a key microscopic parameter of the
austenitic phase. The fact that the SFE can be subtly altered by alloying
elements indicates that the mechanical properties of stainless steels can be
controlled by the chemical composition [314]. The stacking fault energy in
austenitic steels has been determined from experiment [155, 154, 315, 316,
317, 318, 319, 320] and semi empirical simulation [318, 321, 322, 323]. Using
the so derived databases, empirical relationships between SFE and chemical
compositions have been established [154, 315, 320]. However, in most cases,
these relationships fail to reproduce the nonlinear dependence obtained, for
instance, in high-Ni alloys [315, 263], or the alloying effects in hosts with dif-
ferent compositions. The failure of such parameterizations is partially due to
the fact that the SFE is difficult to measure experimentally and usually large
inaccuracies are associated with the values quoted from the literature.

Using the EMTO method, we presented a theoretical database of the stack-
ing fault energy (γ) of FeCrNi random alloys [263, 324]. These calculations
were carried out for the Fe1−c−nCrcNin alloys, with 0.135 < c < 0.255 and
0.08 < n < 0.20. The SFE was computed according to Equation (6.110). Be-
cause of the large magnetic fluctuations in these alloys [263], the local magnetic
moments have to be taken into account for all alloy components. To this end,
for each individual atom from the unit cell we introduced a local magnetic
moment μi, where i stands for Fe, Cr and Ni. These moments were deter-
mined as a function of temperature (T ) from the minimum of the free energy
F (T, μ) = E(T, μ)−T [Smag(μ)+Sel(T )], calculated as a function of tempera-
ture and local magnetic moments. Here μ denotes the set of local atomic mo-
ments μFe, μCr, etc. In actual calculations, the electronic energy E(T, μ) and
electronic entropy Sel(T ) = −2kB

∫ {f(ε) ln f(ε)+[1−f(ε)] ln[1−f(ε)]}D(ε)dε
(where D(ε) is the density of states) were obtained from spin-constrained
EMTO calculations, using the finite-temperature Fermi distribution f(ε). In
fixed-spin calculations, we applied a constant splitting for all the atoms from
the unit cell. The theoretical equilibrium volume was calculated from the 0
K electronic energy. The magnetic entropy Smag(μ) for atom i was estimated
using the mean-field expression kBlog(μi + 1) valid for completely disordered
localized moments [297].

9.3.1 Theoretical Stacking Fault Energy versus Experimental Data

In Figures 9.9 and 9.10, we compare the room-temperature theoretical stack-
ing fault energies for Fe1−c−nCrcNin alloys with the available experimental
data [155, 154, 318, 317, 319]. In figures, the SFE is plotted as a function of n
for alloys containing 17 and 19% Cr (Figures 9.9), and as a function of c for
alloys containing 14 and 16% Ni (Figures 9.10). The experimental values were
obtained for alloys containing small amounts of interstitial (e.g., C, N) and
other substitutional (e.g., Mo, Si, Mn) elements as well. Taking into account
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the relatively large error bars reported in the measurements, the agreement
between theory and experiment can be considered good. We would like to
point out how well the observed trends for γ(n) and γ(c) are captured by the
present theory.

It is found that, in alloys encompassing 14−16% Ni, Cr always decreases
the stacking fault energy. At the same time, in alloys with c =0.17−0.19, the
stacking fault energy increases with the amount of Ni. According to Equation
(6.109), the SFE is approximately proportional with the energy difference be-
tween the hcp and fcc phases. Hence, in terms of structural energy differences,
the trends from Figures 9.9 and 9.10 mean that in FeCrNi alloys Cr stabilizes
and Ni destabilizes the hcp phase relative to the fcc phase. These trends are
partially due to an electronic mechanism, and can be explained using the vari-
ation of the effective number of d electrons (Nd) upon alloying. We recall that
Cr substitution for Fe reduces Nd, while Ni substitution for Fe increases Nd.
According to the crystal structure theory of transition metals [325], the struc-
tural energy difference approximately scales with the difference in the density
of states D(ε) near the Fermi level εF . EMTO calculations show that in fcc
alloys Dfcc(ε) is almost constant near εF (Figure 9.11), and, thus, alloying
with Cr or Ni produces no significant effect on Dfcc(εF ). At the same time, in
hcp alloys Dhcp(ε) presents a pronounced minima at energies slightly below
εF . Therefore, a small amount of Ni (Cr) addition is expected to destabilize
(stabilize) the hcp structure. This explains the trends from Figures 9.9 and
9.10.
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Fig. 9.11. Density of states for Fe0.8Cr0.18Ni0.12 random alloy calculated for fcc
(solid line) and hcp (dashed line) phases.
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The calculated temperature dependence of the SFE for two compositions,
close to those considered in the experiments [326, 327, 328], is shown in Figure
9.12. The large (about 10 mJ/m2 per 100 K) SFE versus temperature slope
obtained in the experiments is very well reproduced by the EMTO method.
For all data, ∂γ/∂T slightly decreases with T , showing a tendency to saturate
at high temperatures.

9.3.2 Magnetic Stacking Fault Energy

The electronic mechanism for the alloying effects on the SFE, described in Sec-
tion 9.3.1, is restricted to (i) compositions, where the magnetic contribution to
the SFE is small, and (ii) alloying elements, which leave unchanged the equilib-
rium volume of the host. However, in a process where the magnetic structure
and/or the volume is also modified, there are other mechanisms which play
important roles in the composition induced changes in the SFE. This is in
fact the situation in low-Cr and high-Ni alloys. In Figure 9.13, we show the
calculated room-temperature SFE of FeCrNi alloys as a function of the chem-
ical composition. The observed strongly nonlinear composition dependence is
a consequence of the persisting local magnetic moments in austenitic steels.

In order to understand this behavior we divide the stacking fault energy
into a 0 K contribution, γ0, plus the remaining part, γmag, viz. γ = γ0 +γmag.
Because at room temperature the Fermi function from the electronic energy
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Fig. 9.13. Stacking fault energy of FeCrNi random alloys calculated using the
EMTO-GGA scheme. The SFE is shown for T = 300 K as a function of Cr and Ni
content.

Fig. 9.14. Magnetic fluctuation contribution to the stacking fault energy from
Figure 9.13. γmag is plotted for T = 300 K as a function of chemical composition.
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and entropy is relatively insignificant, the dominant temperature dependence
of the free energy comes from the −TSmag term. Hence, we identify γ0 with
the chemical, and γmag with the magnetic fluctuation [263] contribution to
the SFE. The local magnetic moments in the double hexagonal structure are
calculated to be close to those in the fcc structure. Therefore, according to
Equation (6.109), the dominant part of γmag can be expressed as −T(Shcp

mag −
Sfcc

mag)/A2D. In other words, in alloys where the local magnetic moments from
the hcp (μhcp) and fcc (μfcc) phases differ significantly one can expect a large
magnetic contribution to the SFE.

Theoretical room-temperature data for γmag are shown in Figure 9.14. We
find that the magnetic SFE has the same order of magnitude as the total SFE
from Figure 9.13, confirming the importance of the disordered local moments
for the stability of steels. For the entire composition interval considered here,
the paramagnetic fcc alloys have large disordered local moments. At 0 K
these moments are located on Fe atoms, and have magnitudes per Fe atom
ranging from 1.35μB, near Fe67Cr25Ni8, to 1.75μB, near Fe67Cr13Ni20. At
theoretical volumes, the low-Ni hcp alloys are calculated to be non-magnetic
with vanishing local magnetic moments. This is illustrated in Figure 9.15.
However, the low γmag values found for the low-Cr and high-Ni corner of
Figure 9.14, indicate that the alloys from this corner of the map have similar
Smag in the hcp and fcc phases. Indeed, we find that upon Ni addition the
low-Cr alloys undergo a transition from a non-magnetic to a paramagnetic
phase (Figure 9.15) with non-vanishing local moments. At high-Ni and low-
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Cr contents the hcp alloys possess disordered magnetic moments of 0.95−1.50
μB per Fe atom. In contrast to Ni, calculations show that Cr addition always
tends to stabilize the zero local moment solution in the hexagonal phase. For
instance, in hcp alloys with n ≈0.18−0.20, the local moments disappear with
c increasing from 0.135 to 0.255. This magnetic transition explains the change
obtained in the ∂γ/∂c slope from Figure 9.13.

The presence of disordered magnetic moments in FeCrNi alloys has impor-
tant implications for the alloying effects on the SFE of quaternary alloys. It
has been shown [324] that as a result of magnetic transition in the hcp phase,
the same alloying element can cause totally opposite changes in the SFE of
alloys with different host composition. This indicates that no universal com-
position equations for the stacking fault energy can be established.
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Appendix A

Exchange-correlation Approximations

In this appendix, we shall present a few expressions for the exchange-
correlation functionals used in the Density Functional calculations from this
book. In the case of the Local Density approximation (LDA), there is a se-
ries of different parametrizations [4, 5, 7] of the Monte Carlo data on the
electron−electron interaction by Ceperley and Alder [6]. Here we shall give
the one established by Perdew and Wang [7], which is analytic as a function
of the density parameter and relative spin polarization. For the gradient level
approximations, two functionals will be considered: the Generalized Gradient
approximation (GGA) by Perdew and co-workers [9, 16, 15], and the Local
Airy Gas approximation (LAG) by Vitos and co-workers [17].

The exchange-correlation energy is written in the form

Exc[n] = Ex[n] + Ec[n] =
∫

n(r)εx([n]; r)dr +
∫

n(r)εc([n]; r)dr, (A.1)

where εx([n]; r) and εc([n]; r) represent the exchange and correlation energies
per electron, respectively. In spin polarized case, with n↓ and n↑ spin-down and
spin-up electron densities, the above functionals depend on both spin densities.
In particular, the exchange energy obeys the following scaling relation [329]

Ex[n↑, n↓] = (Ex[2n↑] + Ex[2n↓])/2. (A.2)

Self-consistent Density Functional calculations require the exchange-correlation
part of the Kohn-Sham potential (1.4). This is obtained as the functional
derivative of the exchange-correlation energy (A.1). Using the Full Charge
Density technique, described in Chapter 4, the self-consistent calculation is
always carried out within the Local Density approximation, and the output
total density is used to calculate the total energy at different gradient level ap-
proximations. Therefore, here μxc([n]; r) ≡ δExc[n]/δn(r) is given only within
the LDA. The GGA and LAG level exchange potentials can be computed us-
ing the equations from Perdew and Wang [12], while the GGA level correlation
potential can be found in, e.g., Perdew et al. [330].
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A.1 Local Density Approximation

For a uniform non-polarized electron gas, the exchange energy per electron is

εLDA
x (n) = −3

2

(
3
π

)1/3

n1/3. (A.3)

The exchange potential is the density derivative of nεLDA
x (n), i.e.

μLDA
x (n) = −2

(
3
π

)1/3

n1/3. (A.4)

The spin polarized exchange energy εLDA
x (n↑, n↓) and the corresponding po-

tentials μLDA
x,σ (n↑, n↓) = ∂εLDA

x (n↑, n↓)/∂nσ (σ =↑ or ↓) are obtained using
the scaling relation (A.2).

For a uniform polarized electron gas, the correlation energy is expressed
in terms of the density parameter rs [7],

rs =
[

3
4π(n↑ + n↓)

]1/3

, (A.5)

and the relative spin polarization η,

η =
n↑ − n↓
n↑ + n↓

, (A.6)

and it has the following form

εLDA
c (rs, η) = εc(rs, 0) + αc(rs)

f(η)
f ′′(0)

(1 − η4) +

+ [εc(rs, 1) − εc(rs, 0)] f(η)η4, (A.7)

where

f(η) =
(1 + η)4/3 + (1 − η)4/3 − 2

24/3 − 2
. (A.8)

In (A.7), the functions εc(rs, 0), εc(rs, 1) and αc(rs) are given by

G(rs, A, α1, β1, β2, β3, β4) = −4A(1 + α1rs) ×

× ln

[
1 +

1

2A(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2

s)

]
, (A.9)

with α1, A, β1,...,4 listed in Table A.1. The exchange potential for spin σ is
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Table A.1. Parameters for the correlation energy [7].

εc(rs, 0) εc(rs, 1) −αc(rs)

A 0.031091 0.015545 0.016887
α1 0.21370 0.20548 0.11125
β1 7.5957 14.1189 10.357
β2 3.5876 6.1977 3.6231
β3 1.6382 3.3662 0.88026
β4 0.49294 0.62517 0.49671

μLDA
c,σ (rs, η) =

∂εLDA
c (rs, η)

∂nσ
= εLDA

c (rs, η) −

− rs

3
∂εLDA

c (rs, η)
∂rs

− (η − sgnσ)
∂εLDA

c (rs, η)
∂η

, (A.10)

where sgnσ = ±1 for σ =↑ and σ =↓, respectively. Using (A.7), for the
derivatives we get

∂εLDA
c (rs, η)

∂rs
=

∂εc(rs, 0)
∂rs

[
1 − f(η)η4

]
+

+
∂εc(rs, 1)

∂rs
f(η)η4 +

dαc(rs)
drs

f(η)
f ′′(0)

(1 − η4), (A.11)

and

∂εLDA
c (rs, η)

∂η
= 4η3f(η)

{
εc(rs, 1) − εc(rs, 0) − αc(rs)

f ′′(0)
)
}

+

+ f ′(η)
{

η4εc(rs, 1) − η4εc(rs, 0) + (1 − η4)
αc(rs)
f ′′(0)

}
, (A.12)

where

f ′(η) =
4
[
(1 + η)1/3 − (1 − η)1/3

]
3(24/3 − 2)

. (A.13)

The rs derivatives of εc(rs, 0), εc(rs, 1) and αc(rs) are obtained from (A.9) as

∂G

∂rs
= −2Aα1 ln (1 + 1/Q1) − Q0Q

′
1

Q2
1 + Q1

, (A.14)

with
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Q0 = −2A (1 + α1rs) ,

Q1 = 2A
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r

2
s

)
, (A.15)

Q′
1 = A

(
β1r

−1/2
s + 2β2 + 3β3r

1/2
s + 4β4rs

)
. (A.16)

A.2 Generalized Gradient Approximation

Within the Generalized Gradient approximation by Perdew, Burke, and Ernz-
erhof [15], the exchange energy per electron is

εGGA
x (n, s) = εLDA

x (n)FGGA
x (s), (A.17)

where

s =
|∇n|
2kF n

(A.18)

is the dimensionless or reduced density gradient, kF = (3π2n)1/3, and

FGGA
x (s) = 1 + κ − κ

1 + μs2/κ
, (A.19)

with κ = 0.804 and μ = 0.21951. The spin polarized GGA exchange energy is
obtained from (A.17) and (A.2).

The GGA correlation energy per electron is given as [8, 9, 16]

εGGA
c (rs, η) = εLDA

c (rs, η) + H(rs, η, t), (A.20)

where

t =
|∇n|

2ksg(η)n
, (A.21)

ks = (4kF /π)1/2,

g(η) =
(1 + η)2/3 + (1 − η)2/3

2
, (A.22)

and η is defined in (A.6). The function H(rs, η, t) is given by

H(rs, η, t) = γg(η)3 ln
{

1 +
β

γ
t2
[

1 + ξt2

1 + ξt2 + ξ2t4

]}
, (A.23)

where

ξ =
β

γ

1
exp [−εLDA

c (n)/2γg(η)3] − 1
, (A.24)

γ = 0.031091 and β = 0.066725.
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A.3 Local Airy Gas Approximation

The concept of the edge electron gas was put forward by Kohn and Mattsson
[18] as an appropriate basis for the treatment of systems with edge surfaces
outside of which all Kohn−Sham orbitals decay exponentially. Its simplest
realization, the Airy gas model, is based on the linear potential approxima-
tion. Vitos and co-workers [17] used this model to construct a gradient level
exchange-energy functional. The so derived exchange functional, that we re-
fer to as the local Airy gas (LAG) functional, has a number of advantages
over previous GGA functionals: (a) it explicitly includes the properties of the
edge region where much interesting physics occurs, (b) its accuracy may be
systematically improved by including higher-order expansions of the effective
potential of the model system, and (c) it is as simple and well-defined as that
of the standard LDA, i.e., it has no adjustable parameters.

The LAG exchange energy per electron may be written in the form

εLAG
x (n, s) = εLDA

x (n)FLAG
x (s(ζ)), (A.25)

where the enhancement function is given by the following expression

FLAG
x (s(ζ)) =

2
3π

(π

3

)1/3 1
n4/3(ζ)

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

Ai(ζ + ε)Ai(ζ ′ + ε)

× Ai(ζ + ε′)Ai(ζ ′ + ε′)
g(
√

ε|ζ ′ − ζ|,√ε′|ζ ′ − ζ|)
|ζ ′ − ζ|3 dζ ′ dε dε′. (A.26)

The dimensionless parameter ζ is obtained from the scaled gradient s(ζ)

s(ζ) ≡ n′(ζ)
2(3π2)1/3n4/3(ζ)

, (A.27)

where the Airy gas density is

n(ζ) =
1
2π

∫ ∞

0

Ai2(ζ + ζ ′) ζ ′dζ ′. (A.28)

In (A.26) and (A.28), Ai denotes the Airy function [102].
The scaled gradient is conserved when going from the real electron gas to

the Airy gas model [331] and therefore the enhancement function FLAG
x (s)

can be parametrized. A modified Becke form [332],

FLAG
x (s) = 1 + β

sα

(1 + γsα)δ
, (A.29)

for α = 2.626712, β = 0.041106, γ = 0.092070, and δ = 0.657946, reproduces
the exact result (A.26) for 0 < s < 20 with an average deviation less than
0.3%. This expression is used to obtain the exchange energy density of the
real electron gas from the local, scaled gradient s.
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Fig. A.1. The exchange energy enhancement function (A.26) and the parametrized
form (A.29), the latter indicated by dots, of the local Airy gas (LAG) compared
to those of the local density approximation (LDA), the the generalized gradient
approximation (GGA) from (A.19), and the second order gradient expansion (GEA)
FGEA

x (s) = 1 + 0.1234s2 [3].

The LAG enhancement functions calculated from (A.26) and (A.29) are
compared to other gradient level enhancement functions in Figure A.1. It
follows from the figure that the LAG approximation in the low-gradient limit
correctly reduces to the LDA limit. Furthermore, at small gradients, FLAG

x (s)
rises more slowly than both the GGA function (A.19) and the second order
Gradient Expansion function [3].

Most of the currently applied approximate density functionals are based
on error cancelations between the exchange and correlation energies [157, 333].
Mathematically, this means that for physically interesting densities the total
enhancement function over the local exchange energy, viz.

Fxc(s) ≡ {εx([n], r) + εc([n], r)} /εLDA
x (n), (A.30)

has a negligible slope up to s ≈ 1. Combining the LAG exchange functional
with the LDA correlation scheme (A.7), the total LAG enhancement function
becomes

FLAG
xc (s) = FLAG

x (s) + εLDA
c (n)/εLDA

x (n). (A.31)

Thus, the FLAG
xc (s) is determined only by the LAG enhancement function

(A.29), which, for s < 1, is a slowly increasing function of s (Figure A.1).
Therefore, the LAG exchange plus LDA correlation scheme preserves the ex-
cellent cancelation properties of the LDA and GGA.
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Mathematical Relations

B.1 Real Harmonics

For the spherical harmonics we use the convention from Jackson [87]

Ȳlm(r̂) =
[
(2l + 1)(l − m)!

4π(l + m)!

]1/2

Pm
l (cos θ)eimϕ, (B.1)

where r̂ ≡ (θ, ϕ). The associated Legendre functions are defined for |m| ≤ l
as

Pm
l (x) =

(−1)m

2ll!
(1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l. (B.2)

The spherical harmonics form a complete orthogonal basis on the spherical
surface. They satisfy the normalization and orthogonality condition∫ π

0

sin θdθ

∫ 2π

0

dϕȲ ∗
l′m′(θ, ϕ)Ȳlm(θ, ϕ) = δl′lδm′m. (B.3)

The integral of three spherical harmonics are the Gaunt numbers

Glm,l′m′,l′′m′′ =
∫ π

0

sin θdθ

∫ 2π

0

dϕȲlm(θ, ϕ)Ȳl′m′(θ, ϕ)Ȳ ∗
l′′m′′(θ, ϕ), (B.4)

which are calculated from the usual Clebsch−Gordan or Wigner coefficients.
The reader is referred to general mathematical textbooks for further details.

The real harmonics are introduced from the spherical harmonics as

Ylm(r̂) = Ȳlm(r̂), (B.5)

for m = 0,
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Ylm(r̂) =
(−1)m

i
√

2

{
Ȳlm(r̂) − Ȳ ∗

lm(r̂)
}

=
(−1)m

√
2

2Im
{
Ȳlm(r̂)

}
, (B.6)

for m < 0, and

Ylm(r̂) =
(−1)m

√
2

{
Ȳlm(r̂) + Ȳ ∗

lm(r̂)
}

=
(−1)m

√
2

2Re
{
Ȳlm(r̂)

}
, (B.7)

for m > 0, respectively. These relations may be written in the following con-
densed form

Ylm(r̂) =
∑
m′

amm′ Ȳlm′(r̂), (B.8)

where the elements of the transformation matrix a are

amm′ =
1√
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i for m < 0 and m′ < 0
−i(−1)m for m < 0 and m′ > 0
1 for m > 0 and m′ < 0
(−1)m for m > 0 and m′ > 0√

2 for m = 0 and m′ = 0

(B.9)

for |m| = |m′| and zero otherwise. After differentiating (B.2), the real har-
monics can be recast into

Ylm(r̂) =
1√
4π

ym(ϕ) sin|m| ϕ
l∑

k≥(l+|m|)/2

H
|m|
lk cos2k−l−|m| ϕ, (B.10)

where ym(ϕ) = sin(|m|ϕ) for m < 0 and ym(ϕ) = cos(|m|ϕ) for m ≥ 0, and

H
|m|
lk ≡ (−1)|m|+k+l

2ll!
[(2l + 1)(2 − δm0)(l − |m|)!(l + |m|)!]1/2

× l!(2k)!
k!(l + |m|)!(k − l)!(2k − l − |m|)! . (B.11)

The real Gaunt numbers Clm,l′m′,l′′m′′ can be obtained from the spherical
harmonics Gaunt numbers using the above transformation matrix, viz.

Clm,l′m′,l′′m′′ =
∑

μ′′,μ′,μ

amμam′μ′a∗
m′′μ′′Glμ,l′μ′,l′′μ′′ . (B.12)

The real Gaunt numbers are nonzero for l′′ = |l′ − l|, |l′ − l| + 2, ..., l′ + l.
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B.2 Rotation Matrix

Upon finite rotation with Euler angles ϕ, θ, γ the original spherical coordinates
θ and φ transform into θ′ and φ′. The corresponding spherical harmonics
transform according to the scheme

Ȳlm(r̂) =
∑
m′

Ȳlm′(r̂)D̄l
m′m(α, β, γ), (B.13)

where

D̄l
m′m(α, β, γ) ≡ eim′αd̄l

m′m(β)eimγ (B.14)

are the matrix elements of finite rotation for Euler angles ϕ, θ, γ and quantum
numbers l,m, m′ [334]. The quantities d̄l

m′m(β) may be expressed in terms of
the Jacobi polynomial [102] and have the following explicit expression:

d̄l
m′m(β) =

[
(l + m′)!(l − m′)!
(l + m)!(l − m)!)

]1/2

×
∑

μ

(l + m)!
(m + m′ + μ)!(l − m′ − μ)!

(l − m)!
(l − m − μ)!μ!

(B.15)

× (−1)l−m′−μ (cos β/2)2μ+m′+m (sinβ/2)2l−2μ−m′−m
.

The matrix elements of finite rotation for real harmonics, defined by

Ylm(r̂) =
∑
m′

Ylm′(r̂)Dl
m′m(α, β, γ), (B.16)

are obtained from D̄l
m′m(α, β, γ) using Equation (B.8) and (B.13) and they

are given by

Dl
m′m(α, β, γ) =

∑
μμ′

amμD̄l
μ′μ(α, β, γ)a−1

μ′m′ , (B.17)

where a−1 is the inverse of the transformation matrix a.

B.3 Bessel and Neumann Functions

The spherical Bessel functions of the first and second kind (often referred to
as the Neumann functions) [102] can be represented by the following series
expansion

Jl(z) =
z2

(2l + 1)!!
[1 + O(z2)] (B.18)

and
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Nl(z) = − (2l − 1)!!
zl+1

[1 + O(z2)], (B.19)

where (2l + 1)!! ≡ 1 · 3 · 5...(2l + 1). These functions satisfy the following
differentiation formulas

1
z

d

dz

[
zl+1fl(z)

]
= zlfl−1(z),

1
z

d

dz

[
z−lfl(z)

]
= −z−l−1fl+1(z), (B.20)

and the recurrence relation

fl−1(z) + fl+1(z) =
2l + 1

z
fl(z). (B.21)

For the EMTO basis set in Section 2, for the Bessel and Neumann functions
we use the following convention,

jl(κ2, r) =
( r

w

)l

j̃l(κr) (B.22)

and

nl(κ2, r) =
(w

r

)l+1

ñl(κr), (B.23)

where w is the average Wigner−Seitz radius, and the (κr) dependent functions
are defined as

j̃l(κr) ≡ Jl(κr)
(2l − 1)!!
2(κr)l

=
1

2(2l + 1)
[1 + O (

(κr)2
)
] (B.24)

and

ñl(κr) ≡ −Nl(κr)
(κr)l+1

(2l − 1)!!
= 1 + O (

(κr)2
)
. (B.25)

With this convention, in the κ → 0 limit, we have

jl(κ2, r) →
( r

w

)l 1
2(2l + 1)

(B.26)

and

nl(κ2, r) →
(w

r

)l+1

, (B.27)

i.e., we recover the functions used within the traditional ASA methods [39].
The energy dependence of the EMTO basis functions is expressed in terms
of the dimensionless parameter ω ≡ (κw)2. Using the differentiation formulas
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(B.20) and the relation d
d(κr) = 2(κr)

(
w
r

)2 d
dω , for the ω derivatives of the

Bessel and Neumann functions we obtain

∂jl(κ2, r)
∂(κw)2

= − 1
2(2l + 1)

( r

w

)
jl+1(κ2, r), (B.28)

and

∂nl(κ2, r)
∂(κw)2

=
1

2(2l − 1)

( r

w

)
nl−1(κ2, r). (B.29)

These expression may be used to established the higher order ω derivatives of
jl(κ2, r) and nl(κ2, r), e.g.,

∂2nl(κ2, r)
∂(κw)2∂(κw)2

=
1

4(2l − 1)(2l − 3)

( r

w

)2

nl−2(κ2, r). (B.30)

Using again (B.20), the recurrence relation (B.21) and the relation d
d(κr) =

1
κ

d
dr , the radial derivatives become

∂jl(κ2, r)
∂r

= − l + 1
r

jl(κ2, r) +
2l − 1

w
jl−1(κ2, r), (B.31)

and

∂nl(κ2, r)
∂r

=
l

r
nl(κ2, r) − 2l + 1

w
nl+1(κ2, r). (B.32)

Finally, from the differentiation relations (B.20), it is easy to show that the
present Bessel and Neumann functions satisfy the Wronskian

Wr{nl, jl} ≡ r2
[
nl(κ2, r)

∂jl(κ2, r)
∂r

− ∂nl(κ2, r)
∂r

jl(κ2, r)
]

=
w

2
. (B.33)

B.4 Residue Theorem

Let f(z) be a complex function of z and analytic in the whole complex plane,
except z1, z2, ..., zn, where f(z) is singular. If f(z) is analytic on a closed curve
C, then ∮

C
f(z)dz = 2πi

∑
i=1,n

′
Res(f, zi), (B.34)

where the prime means that the summation only includes poles inside C.
Res(f, zi) denotes the −1th order expansion coefficient of f(z) around zi, i.e.
if for z near zi we have
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f(z) ≈ ... +
b−2

(z − zi)2
+

b−1

(z − zi)
+ b0 + b1(z − zi) + b2(z − zi)2 + ..., (B.35)

then Res(f, zi) = b−1.
As an example, we consider an analytic function of the following form

f(z) = 1/h(z). Here the analytic functional h(z) vanishes for the real energies
ε1, ε2, ..., εn and has nonzero derivatives for all εi, i.e. h(εi) = 0 and h′(εi) 	= 0
for i = 1, 2, ..., n. Expanding h(z) in the vicinity of its roots, viz.

h(z) = (z − εi)h′(εi) + ... for z ≈ εi, (B.36)

we obtain

Res(f, εi) = 1/h′(εi). (B.37)

Therefore, the integral of f(z) on a complex contour C(ε) that includes all εi

(i = 1, 2, ..., n) becomes ∮
C(ε)

f(z)dz = 2πi

n∑
i=1

1
h′(εi)

. (B.38)

We introduce a new function g(z) as

g(z) ≡ f(z)h′(z) =
h′(z)
h(z)

. (B.39)

Since the residuum of g(z) around εi is

Res(g, εi) = h′(εi)/h′(εi) = 1, (B.40)

the integral of g(z) on the complex contour C(ε) will give the total number of
poles for f(z) times 2πi, i.e.

1
2πi

∮
C(ε)

g(z)dz =
n∑

i=1

1 = n. (B.41)

This relation is used in Sections 2.1.5 and 2.2 to count the single-electron
states below the Fermi level.

In the EMTO method the complex contour C(ε) is a semi-circular or semi-
elliptic contour circumscribing the valence states below the Fermi level.
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Self-consistent Total Energy Calculations

In this section we shall list the most important numerical details of the EMTO
calculations presented in Chapters 7, 8 and 9.

C.1 Numerical Details for Chapter 7

In EMTO calculation of the equilibrium bulk properties presented in Sections
7.1.1 and 7.2.1, the basis set included s, p, d, f orbitals, i.e. lmax = 3 was used
(Section 2.1.2). For the slope matrix we used the two-center Taylor expansion
(Section 3.4.3) with n = m = 6 with ω0 = 0 and ω1 = −(20 − 40) depend-
ing on the system. The kink-cancelation equation (Section 2.1.3) was solved
for the valence electrons, and the rest of the states, including the high-lying
core states, were recalculated after each iteration. This approximation is often
named as the soft-core approximation. The Green function was calculated for
16 complex energy points distributed exponentially on a semi-circular con-
tour. The convergency criterion for the total energy and Fermi level was set
to 10−7 Ry and 10−10 Ry, respectively.

For non-metallic solids with A4, B1 and B3 structures (Section 7.2), two
empty spheres were included to reduce the overlap error (Equation (2.55)).
In MgSiO3 and ScAlO3 perovskites, the overlap between the atomic spheres
is ∼ 33%, and the muffin-tin discontinuities vary between −0.13 Ry and 0.11
Ry. In order to reduce the overlap error, the radii of the potential spheres
around the oxygen atoms were set to sO ≈ 0.8wO, where wO is the atomic
radius for oxygen. With this choice, the largest linear overlap was decreased
to ∼19−20%, and the error in the kinetic energy to ∼ 10 μRy.

The self-consistent calculations were performed using the LDA effective
potential and the total energies were computed within the LDA, GGA and
LAG approximations. The shape functions were calculated for lsmax = 30 (Sec-
tion 4.1) on a linear mesh between the inscribed and circumscribed containing
120−150 mesh points. The equilibrium volume and the bulk modulus were de-
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Table C.1. Parameters used for Brillouin-zone sampling in surface calculations for
transition metals: P stands for primitive and C for centered, Nk is the number of
k-points in the irreducible part of the Brillouin-zone.

Structure Surface 2D Brillouin-zone Nk

fcc (111) hexagonal 577
(100) square 561
(110) rectangular-P 560

bcc (100) square 378
(110) rectangular-C 352

hcp (0001) hexagonal 293

termined from the Morse function (Section 6.1) fitted to the ab initio total
energies calculated for five different atomic volumes.

In surface calculations, the surfaces were modeled by repeated slabs con-
taining Na atomic layers and separated by a vacuum layer having a width
equal to the width of Nv bulk-type atomic layers. The values for Na and Nv

used for the low index surfaces of the hcp, bcc and fcc structures (Section
7.1.3) are given in Table 6.2. In Table C.1, we list the number of inequivalent
k-points used to map 2D Brillouin-zones. For surface stress calculation, we
used five in-plane distortions ε = 0.0,±0.01 and ±0.02 (Equation (6.103)).

The equation of state and elastic properties of solid He were computed
using s, p, d orbitals. The Green function was calculated for 32 complex energy
points distributed exponentially on a semicircular contour enclosing the He
1s2 states.

C.2 Numerical Details for Chapter 8

In impurity calculations (Section 8.1), the Brillouin zone of the 16-atoms
supercell was sampled using ∼ 100 k-points in the irreducible wedge.

For elastic constant calculations for cubic Al-based alloys, we used about
15000 uniformly distributed k-points in the irreducible wedge of the or-
thorhombic and monoclinic Brillouin zones. However, for small concentrations
(below ∼ 5%) a significantly higher number of k-points (∼ 105) was needed
to obtain well converged elastic constants.

For hexagonal AgZn alloys, in the irreducible wedge of the Brillouin zones
2500−7000 k-points were used, depending on the particular crystal symmetry.

C.3 Numerical Details for Chapter 9

For FeCrNi alloys, the single-electron equations were solved within the scalar-
relativistic and frozen-core approximations, i.e. the core states were fixed to
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the initial atomic states. The Green function was calculated for 16 complex
energy points, the EMTO basis set included s, p, d, f orbitals, and in the
one-center expansion of the full charge density we used lhmax = 10 (Section
5.2.2). The conventional Madelung energy was calculated for lmmax = 8. In
the irreducible wedge of the Brillouin zones we used 1000−1400 k-points,
depending on the particular distortion.

For stacking fault energies, the Green function for the valence states was
calculated for 52 complex energy points. In the irreducible wedge of the fcc,
hcp and dhcp Brillouin zones we used 1000−1500 uniformly distributed k-
points.

The EMTO calculations for the elastic constants of FeCrNi alloys were
carried out for quaternary alloys, i.e. taking into account the disordered local
magnetic moments only on Fe sites. In the stacking fault energy calculations,
on the other hand, the local magnetic moments on Cr and Ni sites were
considered as well.
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140. Métois, J. J., Saúl, A., Müller, P.: Nature Mater. 4, 238 (2005)
141. Shuttleworth, R.: Proc. Phys. Soc. A 63, 445 (1950)
142. Denteneer, P. J. H., van Haeringen, W.: J. Phys.C: Solid State Phys. 20,

L883 (1987)
143. Cheng, C., Needs, R. J., Heine, V.: J. Phys. C: Solid State Phys. 21, 1049

(1988)
144. Argon, A. S., Backer, S., McClintock, F. A., Reichenbach, G. S., Orowan,

E., Shaw, M. C., Rabinowicz, E. In: McClintock, F. A., Argon, A. S.:
Addison-Wesley Series in Metallurgy and Materials. Addison-Wesley Pub-
lishing Company, Inc., Ontario (1966)

145. Fleischer, R. L.: Acta Met. 11, 203 (1963)
146. Labusch, R.: Acta Met. 20, 917 (1972)
147. Nabarro, F. R. N.: Philos. Mag. 35, 613 (1977)
148. Lung, C. W., March, N. H.: Mechanical Properties of Metals: Atomistic

and Fractal Continuum Approaches. World Scientific Publishing Co. Pte.
Ltd. (1999)

149. Clerc, D. G., Ledbetter, H. M.: J. Phys. Chem. Solids 59, 1071 (1998)



230 References

150. Hugosson, H., Jansson, U., Johansson, B., Eriksson, O.: Science 293, 2423
(2001)

151. Sander, D.: Curr. Opin. Solid State Mater. Sci. 7, 51 (2003)
152. Mechler, A., Kokavecz, J., Heszler, P., Lal, R.: Appl. Phys. Lett. 82, 3740

(2003)
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