


Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and academic-
level teaching on both fundamental and applied aspects of complex systems – cutting across
all traditional disciplines of the natural and life sciences, engineering, economics, medicine,
neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to gener-
ate a new quality of macroscopic collective behavior the manifestations of which are the sponta-
neous formation of distinctive temporal, spatial or functional structures. Models of such systems
can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent
emission of light from lasers, chemical reaction–diffusion systems, biological cellular networks,
the dynamics of stock markets and of the Internet, earthquake statistics and prediction, freeway
traffic, the human brain, or the formation of opinions in social systems, to name just some of the
popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the follow-
ing main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dy-
namical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks,
cellular automata, adaptive systems, genetic algorithms and computational intelligence.

The two major book publication platforms of the Springer Complexity program are the mono-
graph series “Understanding Complex Systems” focusing on the various applications of com-
plexity, and the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical
and methodological foundations. In addition to the books in these two core series, the program
also incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board
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Preface

Interest in time series analysis and image processing has been growing very
rapidly in recent years. Input from different scientific disciplines and new the-
oretical advances are matched by an increasing demand from an expanding
diversity of applications. Consequently, signal and image processing has been
established as an independent research direction in such different areas as
electrical engineering, theoretical physics, mathematics or computer science.
This has lead to some rather unstructured developments of theories, meth-
ods and algorithms. The authors of this book aim at merging some of these
diverging directions and to develop a consistent framework, which combines
these heterogeneous developments. The common core of the different chap-
ters is the endavour to develop and analyze mathematically justified methods
and algorithms. This book should serve as an overview of the state of the art
research in this field with a focus on nonlinear and nonparametric models for
time series as well as of local, adaptive methods in image processing.

The presented results are in its majority the outcome of the DFG-priority
program SPP 1114 “Mathematical methods for time series analysis and digital
image processing”. The starting point for this priority program was the consid-
eration, that the next generation of algorithmic developments requires a close
cooperation of researchers from different scientific backgrounds. Accordingly,
this program, which was running for 6 years from 2001 to 2007, encompassed
approximately 20 research teams from statistics, theoretical physics and math-
ematics. The intensive cooperation between teams from different specialized
disciplines is mirrored by the different chapters of this book, which were jointly
written by several research teams. The theoretical findings are always tested
with applications of different complexity.

We do hope and expect that this book serves as a background reference
to the present state of the art and that it sparks exciting and creative new
research in this rapidly developing field.

This book, which concentrates on methodologies related to identifica-
tion of dynamical systems, non- and semi-parametric models for time series,
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stochastic methods, wavelet or multiscale analysis, diffusion filters and math-
ematical morphology, is organized as follows.

The Chap. 1 describes recent developments on multivariate time series
analysis. The results are obtained from combinig statistical methods with
the theory of nonlinear dynamics in order to better understand time series
measured from underlying complex network structures. The authors of this
chapter emphasize the importance of analyzing the interrelations and causal
influences between different processes and their application to real-world data
such as EEG or MEG from neurological experiments. The concept of de-
termining directed influences by investigating renormalized partial directed
coherence is introduced and analyzed leading to estimators of the strength of
the effect of a source process on a target process.

The development of surrogate methods has been one of the major driv-
ing forces in statistical data analysis in recent years. The Chap. 2 discusses
the mathematical foundations of surrogate data testing and examines the
statistical performance in extensive simulation studies. It is shown that the
performance of the test heavily depends on the chosen combination of the test
statistics, the resampling methods and the null hypothesis.

The Chap. 3 concentrates on multiscale approaches to image processing.
It starts with construction principles for multivariate multiwavelets and in-
cludes some wavelet applications to inverse problems in image processing with
sparsity constraints. The chapter includes the application of these methods to
real life data from industrial partners.

The investigation of inverse problems is also at the center of Chap. 4.
Inverse problems in image processing naturally appear as parameter identi-
fication problems for certain partial differential equations. The applications
treated in this chapter include the determination of heterogeneous media in
subsurface structures, surface matching and morphological image matching
as well as a medically motivated image blending task. This chapter includes
a survey of the analytic background theory as well as illustrations of these
specific applications.

Recent results on nonlinear methods for analyzing bivariate coupled sys-
tems are summarized in Chap. 5. Instead of using classical linear methods
based on correlation functions or spectral decompositions, the present chap-
ter takes a look at nonlinear approaches based on investigating recurrence
features. The recurrence properties of the underlying dynamical system are
investigated on different time scales, which leads to a mathematically justified
theory for analyzing nonlinear recurrence plots. The investigation includes an
analysis of synchronization effects, which have been developed into one of the
most powerfull methodologies for analyzing dynamical systems.

Chapter 6 takes a new look at strucutred smoothing procedures for denois-
ing signals and images. Different techniques from stochastic kernel smoother
to anisotropic variational approaches and wavelet based techniques are ana-
lyzed and compared. The common feature of these methods is their local and
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adaptive nature. A strong emphasize is given to the comparison with standard
methods.

Chapter 7 presents a novel framework for the detection and accurate
quantification of motion, orientation, and symmetry in images and image
sequences. It focuses on those aspects of motion and orientation that can-
not be handled successfully and reliably by existing methods, for example,
motion superposition (due to transparency, reflection or occlusion), illumina-
tion changes, temporal and/or spatial motion discontinuities, and dispersive
nonrigid motion. The performance of the presented algorithms is character-
ized and their applicability is demonstrated by several key application areas
including environmental physics, botany, physiology, medical imaging, and
technical applications.

The authors of this book as well as all participants of the SPP 1114 “Math-
ematical methods for time series analysis and digital image processing” would
like to express their sincere thanks to the German Science Foundation for
the generous support over the last 6 years. This support has generated and
sparked exciting research and ongoing scientific discussions, it has lead to a
large diversity of scientific publications and – most importantly- has allowed
us to educate a generation of highly talented and ambitious young scientists,
which are now spread all over the world. Furthermore, it is our great pleasure
to acknowledge the impact of the referees, which accompangnied and shaped
the developments of this priority program during its different phases. Finally,
we want to express our gratitude to Mrs. Sabine Pfarr, who prepared this
manuscript in an seemingly endless procedure of proof reading, adjusting im-
ages, tables, indices and bibliographies while still keeping a friendly level of
communication with all authors concerning those nasty details scientist easily
forget.

Bremen, Rainer Dahlhaus, Jürgen Kurths,
November 2007 Peter Maass, Jens Timmer
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Germany
barth@inb.uni-luebeck.de

Anatoly Berdychevski
Weierstraß-Institut Berlin, Berlin,
Germany
berdichevski@wias-berlin.de

Benjamin Berkels
University of Bonn, Bonn, Germany
benjamin.berkels@ins.uni-bonn.de

Martin Böhme
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Multivariate Time Series Analysis
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In Memoriam
Bärbel Schack (1952–2003)
On July 24th, 2003, Bärbel Schack passed away. With her passing, the life
sciences have lost one of their most brilliant, original, creative, and compas-
sionate thinkers.

1.1 Motivation

Nowadays, modern measurement devices are capable to deliver signals with in-
creasing data rates and higher spatial resolutions. When analyzing these data,
particular interest is focused on disentangling the network structure underly-
ing the recorded signals. Neither univariate nor bivariate analysis techniques
are expected to describe the interactions between the processes sufficiently
well. Moreover, the direction of the direct interactions is particularly impor-
tant to understand the underlying network structure sufficiently well. Here,
we present multivariate approaches to time series analysis being able to dis-
tinguish direct and indirect, in some cases the directions of interactions in
linear as well as nonlinear systems.
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1.2 Introduction

In this chapter the spectrum of methods developed in the fields ranging from
linear stochastic systems to those in the field of nonlinear stochastic systems
is discussed. Similarities and distinct conceptual properties in both fields are
presented.

Of particular interest are examinations of interrelations and especially
causal influences between different processes and their applications to real-
world data, e.g. interdependencies between brain areas or between brain areas
and the periphery in neuroscience. There, they present a primary step toward
the overall aim: the determination of mechanisms underlying pathophysiolog-
ical diseases, primarily in order to improve diagnosis and treatment strategies
especially for severe diseases [70]. The investigations are based on considering
the brain as a dynamic system and analyzing signals reflecting neural activ-
ity, e.g. electroencephalographic (EEG) or magnetoencephalographic (MEG)
recordings. This approach has been used, for instance, in application to data
sets recorded from patients suffering from neurological or other diseases, in or-
der to increase the understanding of underlying mechanisms generating these
dysfunctions [18, 20, 21, 22, 24, 51, 52, 65, 68]. However, there is a huge vari-
ety of applications not only in neuroscience where linear as well as nonlinear
time series analysis techniques presented within this chapter can be applied
successfully.

As far as the linear theory is considered, various time series analysis tech-
niques have been proposed for the description of interdependencies between
dynamic processes and for the detection of causal influences in multivariate
systems [10, 12, 16, 24, 50, 67]. In the frequency domain the interdependen-
cies between two dynamic processes are investigated by means of the cross-
spectrum and the coherence. But an analysis based on correlation or coherence
is often not sufficient to adequately describe interdependencies within a mul-
tivariate system. As an example, assume that three signals originate from dis-
tinct processes (Fig. 1.1). If interrelations were investigated by an application
of a bivariate analysis technique to each pair of signals and if a relationship
was detected between two signals, they would not necessarily be linked di-
rectly (Fig. 1.1). The interdependence between these signals might also be
mediated by the third signal. To enable a differentiation between direct and
indirect influences in multivariate systems, graphical models applying partial
coherence have been introduced [8, 9, 10, 53, 57].

Besides detecting interdependencies between two signals in a multivariate
network of processes, an uncovering of directed interactions enables deeper
insights into the basic mechanisms underlying such networks. In the above
example, it would be possible to decide whether or not certain processes
project their information onto others or vice versa. In some cases both di-
rections might be present, possibly in distinct frequency bands. The concept
of Granger-causality [17] is usually utilized for the determination of causal
influences. This probabilistic concept of causality is based on the common
sense conception that causes precede their effects in time and is formulated
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Fig. 1.1 (a) Graph representing the true interaction structure. Direct interactions
are only present between signals X1 and X2 and X1 and X3; the direct interaction
between X2 and X3 is absent. (b) Graph resulting from bivariate analysis, like
cross-spectral analysis. From the bivariate analysis it is suggested that all nodes
are interacting with one another. The spurious edge between signals X2 and X3 is
mediated by the common influence of X1

in terms of predictability. Empirically, Granger-causality is commonly evalu-
ated by fitting vector auto-regressive models. A graphical approach for mod-
eling Granger-causal relationships in multivariate processes has been dis-
cussed [11, 14]. More generally, graphs provide a convenient framework for
causal inference and allow, for example, the discussion of so-called spurious
causalities due to confounding by unobserved processes [13].

Measures to detect directed influences in multivariate linear systems that
are addressed in this manuscript are, firstly, the Granger-causality index [24],
the directed transfer function [28], and, lastly, partial directed coherence [2].
While the Granger-causality index has been introduced for inference of lin-
ear Granger-causality in the time domain, partial directed coherence has been
suggested to reveal Granger-causality in the frequency domain based on linear
vector auto-regressive models [2, 24, 49, 56, 57, 70, 71]. Unlike coherence and
partial coherence analysis, the statistical properties of partial directed coher-
ence have only recently been addressed. In particular, significance levels for
testing nonzero partial directed coherences at fixed frequencies are now avail-
able while they were usually determined by simulations before [2, 61]. On the
one hand, without a significance level, detection of causal influences becomes
more hazardous for increasing model order as the variability of estimated par-
tial directed coherences increases leading to false positive detections. On the
other hand, a high model order is often required to describe the dependen-
cies of a multivariate process examined sufficiently well. The derivation of
the statistics of partial directed coherence suggests a modification with supe-
rior properties to some extent that led to the concept of renormalized partial
directed coherence.

A comparison of the above mentioned techniques is an indispensable pre-
requisite to reveal their specific abilities and limitations. Particular properties
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of these multivariate time series analysis techniques are thereby discussed [70].
This provides knowledge about the applicability of certain analysis techniques
helping to reliably understand the results obtained in specific situations. For
instance, the performance of the linear techniques on nonlinear data which
are often faced in applications is compared. Since linear techniques are not
developed for nonlinear analysis, this investigation separates the chaff from
the wheat at least under these circumstances.

The second part of this chapter constitutes approaches to nonlinear time
series analysis. Nonlinear systems can show particular behaviors that are im-
possible for linear systems [43]. Among others, nonlinear systems can syn-
chronize. Synchronization phenomena have first been observed by Huygens for
coupled self-sustained oscillators. The process of synchronization is an adap-
tation of certain characteristics of the two processes. Huygens has observed
an unison between two pendulum clocks that were mounted to the same wall.
The oscillations between the clocks showed a phase difference of 180◦ [4, 42].
A weaker form of synchronization has recently been observed between two
coupled chaotic oscillators. These oscillators were able to synchronize their
phases while their amplitudes stay almost uncorrelated [6, 38, 42, 43, 46].
Nowadays, several forms of synchronization have been described ranging from
phase synchronization to lag synchronization to almost complete synchroniza-
tion [7, 43, 47]. Generalized synchronization is characterized by some arbitrary
function that relates processes to one another [30, 48, 60].

The process of synchronization is necessarily based on self-sustained os-
cillators. By construction linear systems are not self-sustained oscillators and
therefore synchronization cannot be observed for those linear systems [58, 72].
However, as will be shown, techniques for the analysis of synchronization
phenomena can be motivated and derived based on the linear analysis tech-
niques [55].

As the mean phase coherence, a measure able to quantify synchronization,
is originally also a bivariate technique, a multivariate extension was highly
desired. This issue is related to the problem of disentangling direct and indirect
interactions as discussed in the vicinity of linear time series analysis. Two
synchronized oscillators are not necessarily directly coupled. One commonly
influencing oscillator is sufficient to warrant a spurious coupling between the
first two. Again similar to the linear case, interpretations of results are thus
hampered if a disentangling was not possible. But a multivariate extension of
phase synchronization analysis has been developed. A procedure based on the
partial coherence analysis was employed and carried over to the multivariate
nonlinear synchronizing systems [55]. By means of a simulation study it is
shown that the multivariate extension is a powerful technique that allows
disentangling interactions in multivariate synchronizing systems.

The chapter is structured as follows. First the linear techniques are intro-
duced. Their abilities and limitations are discussed in an application to real-
world data. The occurrence of burst suppression patterns is investigated by
means of an animal model of anesthetized pigs. In the second part, nonlinear
synchronization is discussed. First, the mean phase coherence is intuitively
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introduced and then mathematically derived from cross-spectral analysis.
A multivariate extension of phase synchronization concludes the second part
of this Chapter.

1.3 Mathematical Background

In this section, we summarize the theory of the multivariate linear time se-
ries analysis techniques under investigation, i.e. partial coherence and partial
phase spectrum (Sect. 1.3.1), the Granger-causality index, the partial directed
coherence, and the directed transfer function (Sect. 1.3.2). Finally, we briefly
introduce the concept of directed graphical models (Sect. 1.3.3).

1.3.1 Non-Parametric Approaches

Partial Coherence and Partial Phase Spectrum

In multivariate dynamic systems, more than two processes are usually ob-
served and a differentiation of direct and indirect interactions between the
processes is desired. In the following we consider a multivariate system con-
sisting of n stationary signals Xi, i = 1, . . . , n.

Ordinary spectral analysis is based on the spectrum of the process Xk

introduced as

SXkXk
(ω) =

〈
FT {Xk} (ω) FT {Xk}∗ (ω)

〉
, (1.1)

where 〈·〉 denotes the expectation value of (·), and FT {·} (ω) the Fourier
transform of (·), and (·)∗ the complex conjugate of (·). Analogously, the cross-
spectrum between two processes Xk and Xl

SXkXl
(ω) =

〈
FT {Xk} (ω) FT {Xl}∗ (ω)

〉
, (1.2)

and the normalized cross-spectrum, i.e. the coherence as a measure of inter-
action between two processes Xk and Xl

CohXkXl
(ω) =

|SXkXl
(ω)|√

SXkXk
(ω) SXlXl

(ω)
(1.3)

are defined. The coherence is normalized to [0, 1], whereby a value of one
indicates the presence of a linear filter between Xk and Xl and a value of zero
its absence.

To enable a differentiation in direct and indirect interactions bivariate co-
herence analysis is extended to partial coherence. The basic idea is to subtract
linear influences from third processes under consideration in order to detect
directly interacting processes. The partial cross-spectrum

SXkXl|Z(ω) = SXkXl
(ω)− SXkZ(ω)S−1

ZZ(ω)SZXl
(ω) (1.4)



6 B. Schelter et al.

is defined between process Xk and process Xl, given all the linear information
of the remaining possibly more-dimensional processes Z = {Xi|i �= k, l}. Using
this procedure, the linear information of the remaining processes is subtracted
optimally. Partial coherence

CohXkXl|Z(ω) =
|SXkXl|Z(ω)|√

SXkXk|Z(ω) SXlXl|Z(ω)
(1.5)

is the normalized absolute value of the partial cross-spectrum while the partial
phase spectrum

ΦXkXl|Z(ω) = arg
{
SXkXl|Z(ω)

}
(1.6)

is its argument [8, 10]. To test the significance of coherence values, critical
values

s =
√

1− α
2

ν−2L−2 (1.7)

for a significance level α depending on the dimension L of Z are calculated [66].
The equivalent number of degrees of freedom ν depends on the estimation
procedure for the auto- and cross-spectra. If for instance the spectra are es-
timated by smoothing the periodograms, the equivalent number of degrees of
freedom [5]

ν =
2∑h

i=−h u2
i

, with
h∑

i=−h

ui = 1 (1.8)

is a function of the width 2h + 1 of the normalized smoothing window ui.
Time delays and therefore the direction of influences can be inferred by

evaluating the phase spectrum. A linear phase relation ΦXkXl|Z(ω) = dω in-
dicates a time delay d between processes Xk and Xl. The asymptotic variance

var
{
ΦXkXl|Z(ω)

}
=

1
ν

[
1

Coh2
XkXl|Z(ω)

− 1

]
(1.9)

for the phase ΦXkXl|Z(ω) again depends on the equivalent number of de-
grees of freedom ν and the coherence value at frequency ω [5]. The variance
and therefore the corresponding confidence interval increases with decreasing
coherence values. Large errors for every single frequency prevent a reliable
estimation of the phase spectrum for corresponding coherence values which
are smaller than the critical value s. For signals in a narrow frequency band,
a linear phase relationship is thus difficult to detect. Moreover, if the two pro-
cesses considered were mutually influencing each other, no simple procedure
exists to detect the mutual interaction by means of one single phase spectrum
especially for influences in similar frequency bands.
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Marrying Parents of a Joint Child

When analyzing multivariate systems by partial coherence analysis, an effect
might occur, which might be astonishingly in the first place. While bivariate
coherence is non-significant the partial coherence can be significantly differ-
ent from zero. This effect is called marrying parents of a joint child and is
explained as follows (compare Fig. 1.2):

Imagine that two processes X2 and X3 influence process X1 but do not
influence each other. This is correctly indicated by a zero bivariate coherence
between oscillator X2 and oscillator X3. In contrast to bivariate coherence,
partial coherence between X2 and X3 conditions on X1. To explain the sig-
nificant partial coherence between the processes X2 and X3, the specific case
X1 = X2 + X3 is considered. The optimal linear information of X1 in X2 is
1/2X1 = 1/2 (X2+X3). Subtracting this from X2 gives 1/2 (X2−X3). Analo-
gously, a subtraction of the optimal linear information 1/2X1 = 1/2 (X2+X3)
from X3 leads to −1/2 (X2 −X3). As coherence between 1/2 (X2 −X3) and
−1/2 (X2−X3) is one, the partial coherence between X2 and X3 becomes sig-
nificant. This effect is also observed for more complex functional relationships
between stochastic processes X1, X2 and X3. The “parents” X2 and X3 are
connected and “married by the common child” X1. The interrelation between
X2 and X3 is still indirect, even if the partial coherence is significant. In con-
clusion, the marrying parents of a joint child effect should not be identified
as a direct interrelation between the corresponding processes and is detected
by simultaneous consideration of bivariate coherence and partial coherence.

Finally we mention that in practice the effect usually is much smaller than
in the above example; e.g. if X1 = X2 + X3 + ε with independent random
variables of equal variance, then it can be shown that the partial coherence
is 0.5.

Fig. 1.2 (a) Graph representing the true interaction structure. Signal X1 is the
sum of two signals X2 and X3, which are independent processes, i.e. the direct
interaction between X2 and X3 is absent. (b) Graph resulting from multivariate
analysis. From the multivariate analysis it is suggested that all nodes are interacting
with one another. The spurious edge between signal X2 and X3 is due to the so-called
marrying parents of a joint child effect
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1.3.2 Parametric Approaches

Besides the non-parametric spectral concept introduced in the previous sec-
tion, we investigate three parametric approaches to detect the direction of
interactions in multivariate systems. The general concept underlying these
parametric methods is the notion of causality introduced by Granger [17].
This causality principle is based on the common sense idea, that a cause must
precede its effect. A possible definition of Granger-causality based on the prin-
ciple of predictibilty may be given by the following supposition. For dynamic
systems a process Xl is said to Granger-cause a process Xk, if knowledge of the
past of process Xl improves the prediction of the process Xk compared to the
knowledge of the past of process Xk alone and several other variables under
discussion. In the following we will speak of multivariate Granger-causality if
additional variables are used or of bivariate Granger-causality if no additional
variables are used. The former corresponds in some sense to partial coherence
while the latter corresponds in some sense to ordinary coherence. A compar-
ison of bivariate and multivariate Granger-causality can be found in Eichler,
Sect. 9.4.4 [15].

Commonly, Granger-causality is estimated by means of vector autoregres-
sive models. Since a vector autoregressive process is linear by construction,
only linear Granger-causality can be inferred by this methodology. In the fol-
lowing, we will use the notion causality in terms of linear Granger-causality
although not explicitly mentioned.

The parametric analysis techniques introduced in the following are based
on modeling the multivariate system by stationary n-dimensional vector au-
toregressive processes of order p (VAR[p])⎛⎜⎝X1 (t)

...
Xn (t)

⎞⎟⎠ =
p∑

r=1

ar

⎛⎜⎝X1 (t− r)
...

Xn (t− r)

⎞⎟⎠ +

⎛⎜⎝ε1 (t)
...

εn (t)

⎞⎟⎠ . (1.10)

The estimated coefficient matrix elements âkl,r (k, l = 1, . . . , n; r = 1 . . . , p)
themselves or their frequency domain representatives

Âkl (ω) = δkl −
p∑

r=1

âkl,r e−iωr (1.11)

with the Kronecker symbol (δkl = 1, if k = l and δkl = 0, else) contain the
information about the causal influences in the multivariate system. The co-
efficient matrices weight the information of the past of the entire multivari-
ate system. The causal interactions between processes are modeled by the
off-diagonal elements of the matrices. The influence of the history of an in-
dividual process on the present value is modeled by the diagonal elements.
For bivariate Granger-causality n is set to 2 and X1(t) and X2(t) are the two
processes under investigation.
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The estimated covariance matrix Σ̂ of the noise ε(t) = (ε1(t), . . . , εn(t))′

contains information about linear instantaneous interactions and therefore,
strictly speaking, non-causal influences between processes. But changes in the
diagonal elements of the covariance matrix, when fitted to the entire systems
as well as the sub-systems, can be utilized to investigate Granger-causal influ-
ences, since the estimated variance of the residuals εi(t) reflects information
that cannot be revealed by the past of the processes.

Following the principle of predictability, basically all multivariate process
models, which provide a prediction error, may be used for a certain definition
of a Granger-causality index. Such models are e.g. time-variant autoregressive
models or self-exciting threshold autoregressive (SETAR) models. The first
one results in a definition of a time-variant Granger-causality index, the second
one provides the basis for a state-dependent Granger-causality index.

Time-Variant Granger-Causality Index

To introduce a Granger-causality index in the time-domain and to inves-
tigate directed influences from a component Xj to a component Xi of a
n-dimensional system, n- and (n − 1)-dimensional VAR-models for Xi are
considered. Firstly, the entire n-dimensional VAR-model is fitted to the n-
dimensional system, leading to the residual variance Σ̂i,n(t) = var (εi,n(t)).
Secondly, a (n− 1)-dimensional VAR-model is fitted to a (n− 1)-dimensional
subsystem {Xk, k = 1, . . . , n|k �= j} of the n-dimensional system, leading to
the residual variance Σ̂i,n−1(t) = var

(
εi,n−1|j(t)

)
.

A time-resolved Granger-causality index quantifying linear Granger-causa-
lity is defined by [24]

γ̂i←j(t) = ln

(
Σ̂i,n−1|j(t)

Σ̂i,n(t)

)
. (1.12)

Since the residual variance of the n-dimensional model is expected to be
smaller than the residual variance of the smaller (n − 1)-dimensional model,
γi←j(t) is larger than or equal to zero except for some biased estimation of
parameters. For a time-resolved extension of the Granger-causality index, a
time-variant VAR-parameter estimation technique is utilized by means of the
recursive least square algorithm RLS which is a special approach of adaptive
filtering [35]. Consequently, a detection of directed interactions between two
processes Xi and Xj is possible in the time domain.

Here, the time-resolved Granger-causality index is the only analysis tech-
nique under investigation reflecting information about multivariate systems
in the time-domain. The multivariate extensions of alternative time-domain
analysis techniques, such as the widely used cross-correlation function, are
usually also based on operations in the frequency-domain. Partial correla-
tion functions are commonly estimated by means of estimating partial auto-
and cross-spectra. Furthermore, complex covariance structures between time
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lags and processes prevent a decision about statistically significant time lags
obtained by cross-correlation analysis. Moreover, high values of the cross-
correlation function do not reflect any statistical significance.

State-Dependent Granger-Causality Index

Many investigations of interaction networks are based on event-related data.
Independent of the used data source – EEG, MEG or functional MRI (fMRI)
– this is combined with the processing of transient signals or signals with
nonlinear properties. Thus, a modeling of the underlying processes by means of
autoregressive processes is questionable and remains controversial. A possible
extension of the linear Granger-causality is given by SETAR models which
are suitable to model biomedical signals with transient components or with
nonlinear signal properties [32].

Let N > 1 be the dimension of a process X, and let R1, . . . , RK be a
partition of R

N . Furthermore, let

X
(k)
n,d =

{
1, if X(n− d) ∈ Rk

0, if X(n− d) /∈ Rk
(1.13)

be the indicator variable that determines the current regime of the SETAR
process. Then any solution of

X(n) +
K∑

k=1

X
(k)
n,d

[
a
(k)
0 +

pk∑
i=1

A
(k)
i X(n− i)

]
=

K∑
k=1

X
(k)
n,dω

(k)(n) (1.14)

is called (multivariate) SETAR process with delay d. The processes ω(k)

are zero mean uncorrelated noise processes. Thus, SETAR processes real-
ize a regime state-depended autoregressive modeling. Usually, the partition
R1, . . . , RK is defined by a thresholding of each underlying real axis of R

N .
Let Ψ−j = (X1, . . . , Xj−1, Xj+1, . . . , XN )T be the reduced vector of the

observed process, where the j -th component of X is excluded. Then, two
variances Σ̂i|Ψ−j

(k) and Σ̂i|X(k) of prediction errors ω
(k)
i |Ψ−j with respect

to the reduced process Ψ−j and ω
(k)
i |X with respect to the full process X

may be estimated for each regime Rk, k = 1, . . . ,K. Clearly, two different
decompositions of R

N have to be considered using a SETAR modeling of Ψ−j

and X. If X is in the regime Rk for any arbitrary k, then the reduced process
Ψ−j is located in the regime defined by the projection of Rk to the hyper plane
of R

N , where the j-th component is omitted.
Let Ik be the index set, where the full process is located in the regime Rk.

That is, it holds

Ik =
{
n : X

(k)
n,d = 1

}
. (1.15)
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Now the relation

Ik ⊆
{
n : Ψ

(k−j)
n,d = 1

}
(1.16)

is fulfilled for all j. Thus, the index set Ik may be transferred to Ψ−j , and the
variance of ω(k−j)

i |Ψ−j may be substituted by a conditional variance ω
(k)
i |Ψ−j ,

which is estimated by means of Ik. Now, the following definition of the regime
or state dependent Granger-causality index considers alterations of prediction
errors in each regime separately

γ̂
(k)
i←j = ln

(
Σ̂i|Ψ−j

(k)

Σ̂i|X(k)

)
, k = 1, . . . ,K . (1.17)

Significance Thresholds for Granger-Causality Index

Basically, Granger-causality is a binary quantity. In order to define a binary
state dependent or time-variant Ganger causality a significance threshold is
needed that indicates γ

(k)
i←j > 0 or γi←j(t) > 0, respectively. Generally, thus

far we do not have the exact distribution of the corresponding test statistics. A
possible way out is provided by shuffle procedures. To estimate the distribution
under the hypothesis γ

(k)
i←j = 0 or γi←j(t) = 0, respectively, shuffle procedures

may be applied. In this case, only the j-th component is permitted to be
shuffled; the temporal structure of all other components has to be preserved.

In the presence of multiple realizations of the process X which is often
the case dealing with stimulus induced responses in EEG, MEG or fMRI
investigations, Bootstrap methods may be applied e.g. to estimate confidence
intervals. Thereby, the single stimulus responses (trials) are considered as i.i.d.
random variables [23, 33].

Partial Directed Coherence

As a parametric approach in the frequency-domain, partial directed coherence
has been introduced to detect causal relationships between processes in multi-
variate dynamic systems [2]. In addition, partial directed coherence accounts
for the entire multivariate system and renders a differentiation between di-
rect and indirect influences possible. Based on the Fourier transform of the
coefficient matrices (cf. 1.11), partial directed coherence

πi←j (ω) =
|Aij (ω)|√∑
k |Akj (ω)|2

(1.18)

between processes Xj and Xi is defined, where | · | is the absolute value of (·).
Normalized between 0 and 1, a direct influence from process Xj to process Xi
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is inferred by a non-zero partial directed coherence πi←j(ω). To test the statis-
tical significance of non-zero partial directed coherence values in applications
to finite time series, critical values should be used that are for instance in-
troduced in [56]. Similarly to the Granger-causality index, a significant causal
influence detected by partial directed coherence analysis has to be interpreted
in terms of linear Granger-causality [17]. In the following investigations, pa-
rameter matrices have been estimated by means of multivariate Yule-Walker
equations.

Renormalized Partial Directed Coherence

Above, partial directed coherence has been discussed and a pointwise sig-
nificance level has been introduced in [56]. The pointwise significance level
allows identifying those frequencies at which the partial directed coherence
differs significantly from zero, which indicates the existence of a direct influ-
ence from the source to the target process. More generally, one is interested
in comparing the strength of directed relationships at different frequencies
or between different pairs of processes. Such a quantitative interpretation of
the partial directed coherence and its estimates, however, is hampered by a
number of problems.

(i) The partial directed coherence measures the strength of influences rela-
tive to a given signal source. This seems counter-intuitive since the true
strength of coupling is not affected by the number of other processes
that are influenced by the source process. In particular, adding further
processes that are influenced by the source process decreases the par-
tial directed coherence although the quality of the relationship between
source and target process remains unchanged. This property prevents
meaningful comparisons of influences between different source processes
or even between different frequencies as the denominator in (1.18) varies
over frequency.
In contrast it is expected that the influence of the source on the target
process is diminished by an increasing number of other processes that
affect the target process, which suggests to measure the strength relative
to the target process. This leads to the alternative normalizing term(∑

k

∣∣∣Âik(ω)
∣∣∣2)1/2

, (1.19)

which may be derived from the factorization of the partial spectral co-
herence in the same way as the original normalization by [2]. Such a
normalization with respect to the target process has been used in [28] in
their definition of the directed transfer function (DTF). Either normal-
ization may be favorable in some applications but not in others.
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(ii) The partial directed coherence is not scale-invariant, that is, it depends
on the units of measurement of the source and the target process. In par-
ticular, the partial directed coherence can take values arbitrarily close to
either one or zero if the scale of the target process is changed accordingly.
This problem becomes important especially if the involved processes are
not measured on a common scale.

(iii) When the partial directed coherence is estimated, further problems arise
from the fact that the significance level depends on the frequency unlike
the significance level for the ordinary coherence derived in Sect. 1.3.1 [5].
In particular, the critical values derived from

|πi←j(ω)| d=

⎛⎜⎝ Ĉij(ω)χ2
1

N
∑

k

∣∣∣Âkj(ω)
∣∣∣2
⎞⎟⎠

1/2

(1.20)

compensate for the effects of normalization by√∑
k

|Âkj(ω)|2 ,

that is, the significance of the partial directed coherence essentially de-
pends on the absolute rather than the relative strength of the interaction.
A näıve approach to correct for this would be to use the significance level
and reformulate it such that

|πi←j(ω)|2

Ĉij(ω)
N

∑
k

∣∣∣Âkj(ω)
∣∣∣2 d= χ2

1 (1.21)

holds. Thereby,

Cij(ω) = Σii

⎡⎣ p∑
k,l=1

Hjj(k, l) (cos(kω) cos(lω) + sin(kω) sin(lω))

⎤⎦(1.22)

with

lim
N→∞

N cov (âij(k), âij(l)) = Σii Hjj(k, l) , (1.23)

where Σii is the variance of noise process εi in the autoregressive pro-
cess. The elements Hjj(k, l) are entries of the inverse H = R−1 of the
covariance matrix R of the vector auto-regressive process X. However,
as shown below this is not the optimal result that can be obtained. More-
over, it can be shown that a χ2

2-distribution with two degrees of freedom
is obtained.
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(iv) Although the pointwise significance level adapts correctly to the varying
uncertainty in the estimates of the partial directed coherence, this behav-
ior shows clearly the need for measures of confidence in order to be able
to compare estimates at different frequencies. Without such measures, it
remains open how to interpret large peaks that exceed the significance
level only slightly and how to compare them to smaller peaks that are
clearly above the threshold.

In summary, this discussion has shown that partial directed coherence as
a measure of the relative strength of directed interactions does not allow con-
clusions on the absolute strength of coupling nor does it suit for comparing
the strength at different frequencies or between different pairs of processes.
Moreover, the frequency dependence of the significance level shows that large
values of the partial directed coherence are not necessarily more reliable than
smaller values, which weakens the interpretability of the partial directed co-
herence further. In the following, it is shown that these problems may be
overcome by a different normalization.

A New Definition of Partial Directed Coherence: Renormalized
Partial Directed Coherence

For the derivation of an alternative normalization, recall that the partial di-
rected coherence is defined in terms of the Fourier transform Aij(ω) in (1.11).
Since this quantity is complex-valued, it is convenient to consider the two-
dimensional vector

Pij(ω) =
(

ReAij(ω)
ImAij(ω)

)
(1.24)

with Pij(ω)′Pij(ω) = |Aij(ω)|2. The corresponding estimator P̂ij(ω) with
Âij(ω) substituted for Aij(ω) is asymptotically normally distributed with
mean Pij(ω) and covariance matrix Vij(ω)/N , where

Vij(ω) =
p∑

k,l=1

Hjj(k, l)Σii

(
cos(kω) cos(lω) − cos(kω) sin(lω)
− sin(kω) cos(lω) sin(kω) sin(lω)

)
. (1.25)

For p ≥ 2 and ω �= 0 mod π, the matrix Vij(ω) is positive definite [56], and
it follows that, for large N , the quantity

N λ̂◦
ij(ω) = N P̂ij(ω)′Vij(ω)−1P̂ij(ω)

has approximately a noncentral χ2-distribution with two degrees of freedom
and noncentrality parameter N λij(ω), where

λij(ω) = Pij(ω)′Vij(ω)−1Pij(ω).
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If p = 1 or ω = 0 mod π, the matrix Vij(ω) has only rank one and thus
is not invertible. However, it can be shown that in this case N λ̂◦

ij(ω) with
Vij(ω)−1 being a generalized inverse of Vij(ω) has approximately a noncen-
tral χ2-distribution with one degree of freedom and noncentrality parameter
N λij(ω) [56].

The parameter λij(ω), which is nonnegative and equals zero if and only if
Aij(ω) = 0, determines how much Pij(ω) and thus Aij(ω) differ from zero.
Consequently, it provides an alternative measure for the strength of the effect
of the source process Xj on the target process Xi.

The most important consequence of the normalization by Vij(ω) is that
the distribution of λ̂◦

ij(ω) depends only on the parameter λij(ω) and the sam-
ple size N . In particular, it follows that the α-significance level for λ̂◦

ij(ω)
is given by χ2

df ,1−α/N and thus is constant unlike in the case of the par-
tial directed coherence. Here, χ2

df ,1−α denotes the 1 − α quantile of the
χ2-distribution with the corresponding degrees of freedom (2 or 1). More
generally, confidence intervals for parameter λij(ω) can be computed; algo-
rithms for computing confidence intervals for the noncentrality parameter of a
noncentral χ2-distribution can be found, for instance, in [29]. The properties
of noncentral χ2-distributions (e.g. [26]) imply that such confidence intervals
for λij(ω) increase monotonically with λ̂◦

ij(ω), that is, large values of the esti-
mates are indeed likely to correspond to strong influences among the processes.
Finally, the parameter λij(ω) can be shown to be scale-invariant.

With these properties, λ̂◦
ij(ω) seems an “ideal” estimator for λij(ω). How-

ever, it cannot be computed from data since it depends on the unknown co-
variance matrix Vij(ω). In practice, Vij(ω) needs to be estimated by substi-
tuting estimates Ĥ and Σ̂ for H and Σ in (1.25). This leads to the alternative
estimator

λ̂ij(ω) = P̂ij(ω)′V̂ij(ω)−1P̂ij(ω) .

It can be shown by Taylor expansion that under the null hypothesis of
λij(ω) = 0 this statistic is still χ2-distributed with two respectively one de-
grees of freedom, that is, the α-significance level remains unchanged when
λ̂◦

ij(ω) is replaced by λ̂ij(ω). In contrast, the exact asymptotic distribution
of the new estimator under the alternative is not known. Nevertheless, exten-
sive simulations have revealed that approximate confidence intervals can be
obtained by applying the theoretical results yielded for the “ideal” estimator
λ̂◦

ij(ω) to the practical estimator λ̂ij(ω) [54].

Directed Transfer Function

The directed transfer function is an alternative frequency-domain analysis
technique to detect directions of interactions and is again based on the Fourier
transformation of the coefficient matrices (cf. (1.11)). The transfer function
Hij(ω) = A−1

ij (ω) leads to the definition of the directed transfer function [2, 28]
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δi←j(ω) =
|Hij(ω)|2∑
l |Hil(ω)|2 . (1.26)

The directed transfer function is again normalized to [0, 1]. An interaction
from process Xj to process Xi is detected if δi←j(ω) is unequal to zero. The
normalization in the definition of the directed transfer function and the partial
directed coherence is a major difference between both analysis techniques [31].

A similar discussion compared to the discussion of partial directed coher-
ence above is also possible for the directed transfer function [59].

We mention though that for the three parametric approaches under inves-
tigation, values quantifying the directed influences cannot be identified with
the strength of the interactions directly. Only renormalized partial directed
coherence is capable in quantifying the interaction strength.

Time-Resolved Extension of Parametric Approaches

In order to detect non-stationary effects in the interrelation structure of the
multivariate system, an extension of the parametric approaches is introduced.
To this aim a time-resolved parameter estimation technique is utilized. The
Granger-causality index has already been introduced as a time resolved pro-
cedure applying the recursive least square algorithm [35].

An alternative way to estimate time-resolved parameters in VAR-models
and to consider explicitly observation noise influence in the multivariate sys-
tem is based on time-variant state space models (SSM) [19, 62]

B (t) = B (t− 1) + η (t)
X (t) = B (t− 1)X (t− 1) + ε (t)
Y (t) = C (t)X (t) + � (t) .

(1.27)

State space models consist of hidden state equations B(t) and X(t) as well
as observation equations Y (t). The hidden state equation for B(t) includes
the parameter matrices ar(t). The observation equation Y (t) takes explicitly
account for observation noise �(t). For η(t) �= 0, the equation for B(t) enables
a detection of time-varying parameters. For a numerically efficient procedure
to estimate the parameters in the state space model, the EM-algorithm based
on the extended Kalman filter is used in the following [69].

1.3.3 Directed Graphical Models

Graphical models are a methodology to visualize and reveal relationships in
multivariate systems [11]. Such a graph is shown in Fig. 1.3. The vertices
reflect the processes and the arrows the significant results of the applied anal-
ysis technique. For example, if partial directed coherences are non-significant
between process X3 and process X4, both processes are identified as not in-
fluencing each other and arrows between the processes in the corresponding
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Fig. 1.3 Directed graph summarizing the interdependence structure for an exem-
plary multivariate system

graphical model are missing. In contrast, if partial directed coherence is only
significant for one direction, for example from process X4 to process X2 but
not in the opposite direction, an arrow is drawn from process X4 to process
X2.

1.4 Application to Neural Data

In order to examine time-variant causal influences within distinct neural net-
works during defined functional states of brain activity, data obtained from
an experimental approach of deep sedation were analyzed. Burst suppression
patterns (BSP) in the brain electric activity were used for the analysis. This
specific functional state was chosen because BSP represent a defined refer-
ence point within the stream of changes in electroencephalographic (EEG)
properties during sedation [73] leading to secured unconsciousness. An anal-
ysis of well-described alternating functional states of assumed differences of
signal transfer in a time frame of seconds is possible. It has been shown that
a hyperpolarization block of thalamo-cortical neurons evoked mainly by facil-
itated inhibitory input of reticular thalamic nucleus (RTN) activity induces
inhibition of thalamo-cortical volley activity which is reflected by cortical in-
terburst activity [27, 63, 64]. This in turn is assumed to be responsible for
disconnection of afferent sensory input leading to unconsciousness. The role
of burst activity in terms of information transfer remains elusive. Therefore,
BSP is studied in order to elaborate time and frequency dependent features
of information transfer between intrathalamic, thalamo-cortical and cortico-
thalamic networks. Patterns were induced by propofol infusion in juvenile pigs
and derived from cortical and thalamic electrodes.

The analysis was performed to clarify a suggested time-dependent directed
influence between the above mentioned brain structures known to be essen-
tially involved in regulation of the physiological variation in consciousness
during wakefulness and during sleep [25, 40] as well as responsible to induce
unconsciousness during administration of various anesthetic and sedative com-
pounds. In addition, the alternating occurrence pattern characteristic of burst
activity allowed a triggered analysis of the Granger-causality index. Multiple
trials enable to use a generalized recursive least square estimator [24, 35],
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providing a more stable vector auto-regressive parameter estimation and a
calculation of a significance level based on these repetitions.

1.4.1 Experimental Protocol and Data Acquisition

The investigation was carried out on six female, domestic juvenile pigs
(mixed breed, 7 weeks old, 15.1± 1.4 kg body weight (b.w.)) recorded at the
University Hospital of Jena by the group of Dr. Reinhard Bauer. Deep sedation
with burst suppression patterns was induced by continuous propofol infusion.
Initially, 0.9 mg/kg b.w./min of propofol for approximately 7 min were ad-
ministered until occurrence of burst suppression patterns (BSP) in occipital
leads [37], followed by a maintenance dose of 0.36 mg/kg b.w./min. Ten screw
electrodes at frontal, parietal, central, temporal, and occipital brain regions
were utilized for electrocorticogram (ECoG) recordings. For signal analysis a
recording from the left parietooccipital cortex (POC) was used. Electrodes in-
troduced stereotactically into the rostral part of the reticular thalamic nucleus
(RTN) and the dorsolateral thalamic nucleus (LD) of the left side were used
for the electrothalamogram (EThG) recordings (Fig. 1.4 (a)). Unipolar signals
were amplified and filtered (12-channel DC, 0.5–1,000 Hz bandpass filter, 50 Hz
notch filter; Fa. Schwind, Erlangen) before sampled continuously (125 Hz) with
a digital data acquisition system (GJB Datentechnik GmbH, Langewiesen).
Four linked screw electrodes inserted into the nasal bone served as reference.
ECoG and EThG recordings were checked visually to exclude artifacts.

1.4.2 Analysis of Time-Variant and Multivariate Causal Influences
Within Distinct Thalamo-Cortical Networks

In order to quantify time-variant and multivariate causal influences in a dis-
tinct functional state of general brain activity, a representative example of
deep sedation is chosen, characterized by existence of burst suppression pat-
terns. Registrations from both thalamic leads (LD, RTN) and from the pari-
etooccipital cortex (POC) have been utilized, which is known to respond early
with patterns typical for gradual sedation including BSP [37]. In the present
application, results for the Granger-causality index and the partial directed
coherence are discussed, since a time-resolved extension of partial coherence
is not considered and the directed transfer function approach leads to results
similar to partial directed coherence.

For partial directed coherence analysis continuous registrations of 384 s
duration were utilized to provide an overview of the entire recording (Fig. 1.4
(b)). For a closer investigation of the burst patterns, the analysis using the
Granger-causality index was applied to triggered registrations of 3 s duration
each, i.e. 1 s before and 2 s after burst onset (Fig. 1.4 (c)). In a total of 66
trials, trigger points were identified by visual inspection and were set at the
burst onset. The deep sedation state was characterized by a distinct BSP in
the POC lead as well as continuous high amplitude and low frequency activity
in both thalamic leads.
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Fig. 1.4 (a) Schematic representation of skull electrode localizations. Dots indi-
cate ECoG (electrocorticogram) recordings. POC indicates parietooccipital cortex
recording and is used in the present investigation. Additionally, the RTN recording
and LD recording were utilized recorded using EThG. (b) 20 s section of continuous
original trace and (c) one representative trial of triggered original traces of brain
electrical activity simultaneously recorded from cortical and thalamic structures of
a juvenile pig under propofol-induced deep sedation

For the entire time series of 384 s duration, pairwise partial directed coher-
ence analysis was performed to investigate time-varying changes in directed
influences between both thalamic structures RTN and LD and the parietooc-
cipital cortex (POC). The results are shown in Fig. 1.5 (a). The graph summa-
rizing the influences is given in Fig. 1.5 (b). A strong and continuous influence
is observed from both thalamic leads RTN and LD to POC at approximately
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Fig. 1.5 Pairwise partial directed coherence based on state-space modeling for the
signals of 384 s duration (a). On the diagonal the spectra are shown. Partial directed
coherences from the thalamic leads RTN and LD to POC indicate a pronounced in-
fluence at approximately 2Hz. The opposite direction is restricted to low frequencies
(< 1 Hz). Both thalamic leads are mutually influencing each other. The graph sum-
marizing the results is shown in (b). The dashed arrows correspond to influences for
low frequencies

2 Hz. For the opposite direction, the causal influences are restricted to the
low frequency range (<1 Hz) indicated by the dashed arrows in the graph.
Furthermore, a directed influence is strongly indicated between the thalamic
leads from LD to RTN, while the opposite direction shows a tendency to lower
frequencies. The time-dependency is more pronounced in the interaction be-
tween both thalamic leads.

A clearer depiction of the interrelation structures occurring during the sin-
gle burst patterns is presented in Fig. 1.6 by applying the Granger-causality
index to segments of 3 s duration. For pairwise analysis between the three
signals (Fig. 1.6 (a) and (b)), directed influences from both thalamic leads to
the parietooccipital cortex are observed for broad time periods. At several,
well-defined time points, causal influences are detected for the opposite di-
rection and between both thalamic leads (dashed arrows). The interrelation
between the thalamic leads remains significant for the multivariate analysis
given in Fig. 1.6 (c) and (d). The directed influence from POC to LD and RTN



1 Multivariate Time Series Analysis 21

Fig. 1.6 Investigation of directed interrelations during the occurrence of burst pat-
terns using the Granger-causality index in the time domain. Gray-colored regions
indicate significant influences (α = 5%, one-sided). When applying pairwise analy-
sis, directed influences from both thalamic leads LD and RTN to the parietooccipital
cortex POC are detected (a). The results are summarized in the graph in (b). The
dashed arrows corresponds to interactions lasting for short time intervals. The inter-
relation between the thalamic leads remains significant for the multivariate analysis
(c). The directed influence from the parietooccipital cortex POC to the investi-
gated thalamic structures is exclusively sustained at the burst onsets. The graph
summarizing the results is given in (d)

is reduced to the burst onsets. From RTN and LD to the POC, no significant
interrelation is traceable.

Results from the multivariate Granger-causality index cannot be directly
correlated to the results obtained by the bivariate analysis. In particular, the
missing interrelation from RTN and LD to POC is difficult to interpret with
the knowledge of the bivariate results. One possible explanation might be an
additional but unobserved process commonly influencing the three processes.
This assumption is suggested by the results obtained from somatosensory
evoked potential (SEP) analysis (Fig. 1.7). In contrast to previous opinions
of a proposed functional disconnection of afferent sensory inputs to thalamo-
cortical networks during interburst periods leading to a functional state of
unconsciousness [1], SEP analysis indicates that even during this particular
functional state a signal transduction appears from peripheral skin sensors via
thalamo-cortical networks up to cortical structures leading to signal process-
ing. Hence in principle, a subthalamically generated continuous input could be
responsible for the pronounced influence in the low frequency band, as shown
by partial directed coherence analysis. Such a low frequency component might
not be observable by the Granger-causality index due to the missing selectivity
for specific frequency bands.
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Fig. 1.7 Evoked activity derived from the parietooccipital cortex (POC, upper
panel), rostral part of reticular thalamic nucleus thalamus (RTN, middle panel) and
dorsolateral thalamic nucleus (LD, lower panel) owing to bipolar stimulation of the
trigeminal nerve by a pair of hypodermic needles inserted on left side of the outer
disc ridge of the porcine snout (rectangular pulses with constant current, duration
of 70 µs, 1Hz repetition frequency, 100 sweeps were averaged) in order to obtain
somatosensory evoked potentials (SEP) during burst as well as interburst periods.
Note a similar signal pattern during burst and interburst periods

Problems in the estimation procedure caused by, for instance, highly cor-
related processes or missing of important processes could also explain this
effect [53]. Furthermore, the discrepancies between the bivariate and multi-
variate analysis could be due to the nonlinear behavior of the system. However,
this possibility is not very likely, because spectral properties obtained in par-
tial directed coherence analysis do not indicate a highly nonlinear behavior.

1.5 Discussion of Applicability of Multivariate Linear
Analysis Techniques to Neural Signal Transfer

In the application of methods to neural signal transfer, for example in the
analysis of neural coordination in either the normal or pathological brain, one
should be aware not only of the potentials but also the limitations of the meth-
ods. For this purpose, the features of the different analysis techniques were
analyzed by means of synthetic data simulated by various model systems [70].

On the basis of simulations, the performance of the four investigated
analysis techniques, i.e. partial coherence with its corresponding phase spec-
trum (PC), the Granger-causality index (GCI), the directed transfer function
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Table 1.1 Summary of the results obtained by the comparison of the four multi-
variate time series analysis techniques. To evaluate the performance, five aspects are
considered. The brackets denote some specific limitations

PC GCI DTF PDC

Direct versus indirect interactions + + – +

Direction of influences (–) + + +

Specificity in absence of coupling + + (+) (+)

Nonlinearity in data + – (+) +

Influences varying with time + + +

(DTF), and the partial directed coherence (PDC) are summarized with re-
spect to five aspects (Table 1.1) [70], which are important when analyzing
data from unknown processes:

• Direct versus indirect interactions: A differentiation between direct and
indirect information transfer in multivariate systems is not possible by
means of the directed transfer function. Therefore, the directed transfer
function is not sensitive in this sense (minus sign in Table 1.1). The re-
maining multivariate analysis techniques are in general able to distinguish
between direct and indirect interactions. Thus, the GCI, PDC, and PC are
sensitive in distinguishing direct from indirect influences. Despite the high
sensitivity in general, there might be some situations in which this char-
acteristic is restricted, for instance in nonlinear, non-stationary systems.

• Direction of influences: All multivariate methods are capable of detecting
the direction of influences. Partial coherence in combination with its phase
spectrum is limited to high coherence values and to unidirectional influ-
ences between the processes. This shortcoming of partial coherence and
partial phase spectrum is indicated by the minus sign in Table 1.1.

• Specificity in absence of the influences: All four analysis techniques reject
interrelations in the absence of any influence between the processes, re-
flecting the high specificity of the methods. For the parametric approaches
directed transfer function and partial directed coherence, a renormaliza-
tion of the covariance matrix of the noise in the estimated vector auto-
regressive model is required. Otherwise spurious interactions are detected.
A significance level for both techniques should account for this. For the sig-
nificance level for partial directed coherence, this dependence on the noise
variance is explicitly considered. However, the renormalization is necessary
to achieve a balanced average height of values of PDC and DTF in the
case of an absence of an interaction at the corresponding frequency.

• Nonlinearity in the data: For the nonlinear coupled stochastic systems with
pronounced frequencies, analysis techniques in the frequency domain are
preferable. High model orders are required to describe the nonlinear sys-
tem sufficiently with a linear vector auto-regressive model. Interpretation
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of the results obtained by the directed transfer function and the Granger-
causality index is more complicated since there has been no obvious sig-
nificance level. The PC, PDC, and the DTF are sensitive in detecting in-
teractions in nonlinear multivariate systems. The Granger-causality index
does not reveal the correct interrelation structure.

• Influences varying with time: The Granger-causality index, directed trans-
fer function, and the time-varying partial directed coherence detect various
types of time-varying influences. Therefore they are sensitive for time-
resolved investigations of non-stationary data.

This summary provides an overview of which analysis techniques are ap-
propriate for specific applications or problems. However, the particular capa-
bilities and limitations of a specific analysis technique do not simply point to
drawbacks of the method in general. If for instance the major task is to detect
directions of influences, the directed transfer function is applicable even if the
differentiation, for example of direct or indirect interactions, is not possible.

Partial coherence as a non-parametric method is robust in detecting re-
lationships in multivariate systems. Direct and indirect influences can be
distinguished in linear systems and certain nonlinear stochastic system like
the Rössler system. Since partial coherence is a non-parametric approach, it
is possible to capture these influences without knowledge of the underlying
dynamics. Furthermore, the statistical properties are well-known and criti-
cal values for a given significance level can be calculated in order to decide
on significant influences. This is an important fact especially in applications
to noisy neural signal transfer as measured by e.g. electroencephalography
recordings. A drawback is that the direction of relationships can only be de-
termined by means of phase spectral analysis. If spectral coherence is weak or
restricted to a small frequency range, directions of influences are difficult to
infer by means of partial phase spectral analysis. Additionally, mutual interac-
tions between two processes are also hardly detectable utilizing partial phase
spectra.

Defined in the time-domain, the Granger-causality index is favorable in
systems where neither specific frequencies nor frequency-bands are exposed
in advance. The Granger-causality index utilizes information from the co-
variance matrix. Weak interactions or narrow-band interactions are difficult
to detect, since they can lead to only small changes in the covariance ma-
trix. The Granger-causality index, estimated by means of the recursive least
square algorithm, renders a methodology to trace interdependence structures
in non-stationary data possible. This might become important in applications
to brain neural networks, when the time course of transitions in neural coor-
dination is of particular interest.

By means of the directed transfer function, directions of influences in mul-
tivariate dynamical systems are detectable. Nevertheless, in contrast to the
remaining three analysis techniques, a differentiation between indirect and di-
rect influences is in general not possible using the directed transfer function.
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Analyzing brain networks, at least weakly nonlinear processes might be ex-
pected to generate the neural signals. In the application to the nonlinear
stochastic systems, the directions of the couplings could be observed at the
oscillation frequencies. The directed transfer function benefits from its prop-
erty as an analysis technique in the frequency domain. Increasing the order of
the fitted model system is sufficient to capture the main features of the sys-
tem and thus to detect the interdependence structure correctly. Nevertheless,
a matrix inversion is required for estimating the directed transfer function,
which might lead to computational challenges especially if high model orders
are necessary. In order to detect transitions in the coordination between neural
signals, the directed transfer function is useful when applying a time-resolved
parameter estimation procedure.

In the frequency domain, partial directed coherence is the most powerful
analysis technique. By means of partial directed coherence, direct and indi-
rect influences as well as their directions are detectable. The investigation
of the paradigmatic model system of coupled stochastic Rössler oscillators
has shown [70], that at least for nonlinearities, coupling directions can be in-
ferred by means of partial directed coherence. Increasing the order of the fitted
model is required to describe the nonlinear system by a linear vector auto-
regressive model sufficiently. However, as the statistical properties of partial
directed coherence and significance levels for the decision of significant influ-
ences are known, high model orders of the estimated vector auto-regressive
model are less problematic. Using additionally time-resolved parameter esti-
mation techniques, partial directed coherence is applicable to non-stationary
signals. Using this procedure, influences in dependence on time and frequency
are simultaneously detectable. Since in applications to neural networks it is
usually unknown whether there are changes in neural coordination or whether
such changes are of particular interest, respectively, time-resolved analysis
techniques avoid possible false interpretations.

The promising results showing that most parametric, linear analysis tech-
niques have revealed correct interaction structures in multivariate systems,
indicate beneficial applicability to empirical data. Electrophysiological signals
from thalamic and cortical brain structures representative for key interrela-
tions within a network responsible for control and modulation of consciousness
have been analyzed. Data obtained from experimental recordings of deep se-
dation with burst suppression patterns were used, which allows usage of data
from a well-defined functional state including a triggered analysis approach.
Partial directed coherence based on state space modeling allows for inference
of the time- and frequency-dependence of the interrelation structure. The
mechanisms generating burst patterns were investigated in more detail by ap-
plying the Granger-causality index. Besides a clear depiction of the system
generating such burst patterns, the application presented here suggests that
time dependence is not negligible.
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1.6 Nonlinear Dynamics

So far, the linear methodology has been addressed. However, the field of non-
linear dynamics has brought to the forefront novel concepts, ideas, and tech-
niques to analyze and characterize time series of complex dynamic systems.
Especially synchronization analysis to detect interactions between nonlinear
self-sustained oscillators has made its way into the daily routine in many
investigations [43].

Following the observations and pioneering work of Huygens, the process of
synchronization has been observed in many different systems such as systems
exhibiting a limit cycle or a chaotic attractor. Several types of synchronization
have been observed for these systems ranging from phase synchronization as
the weakest form of synchronization via lag synchronization to generalized or
complete synchrony [30, 39, 41, 46, 47].

Thereby, phase synchronization analysis has gained particular interest
since it relies only on a weak coupling between the oscillators. It has been
shown that some chaotic oscillators are able to synchronize their phases for
considerably weak coupling between them [46]. To quantify the process of
synchronization, different measures have been proposed [36, 45, 65]. Two fre-
quently used measures are a measure based on entropy and a measure based
on circular statistics, which is the so called mean phase coherence [36]. Both
measures quantify the sharpness of peaks in distributions of the phase differ-
ences. In the following the mean phase coherence is introduced.

1.6.1 Self-Sustained Oscillators

While in the framework of linear systems as vector auto-regressive or moving-
average processes are of particular interest, in nonlinear dynamics self-sus-
tained oscillators play an important role. In general these oscillators can be
formulated as

Ẋ(t) = f(X(t), α(t), U(t)) , (1.28)

whereby X(t) has to be a more dimensional variable to ensure an oscillatory
behavior. The external influence as well as the parameters can either be vector-
valued or not.

Since especially the interaction between processes is considered here, the
following description of a system of coupled oscillators

Ẋ1(t) = f1(X1(t), α1) + ε1,2h1 (X1(t),X2(t)) (1.29)

Ẋ2(t) = f2(X2(t), α2) + ε2,1h2 (X2(t),X1(t)) (1.30)

is more appropriate [43]. External driving is neglected in the following and
the parameters are assumed to be constant with time. The coupling is present
from oscillator j onto oscillator i if εi,j �= 0. The functional relationship h1(·)



1 Multivariate Time Series Analysis 27

and h2(·) of the coupling can thereby be arbitrary. In general it is even
not necessary that it is a function. It can as well be a relation. However,
here only well behaved functions are considered. Usually, diffusive coupling is
used, i.e. h1(X1(t),X2(t)) = (X2(t)−X1(t)) and h2 accordingly. For εi,j = 0
the solution of the above system is expected to be a limit cycle for each oscil-
lator in the sequel. This is to ensure a much simpler mathematical motivation
of phase synchronization.

1.7 Phase Synchronization

To describe the interaction between coupled self-sustained oscillators, the no-
tion of phase synchrony has gained particular interest. The phase Φ(t) of a
limit cycle (periodic) oscillator is a monotonically increasing function with

Φ(t)|t=pT = p2π = pωT ,

where p denotes the number of completed cycles, T is the time needed for one
complete cycle, and ω the frequency of the oscillator. To define the phase also
for values of the time t �= pT , the following expression is used

Φ̇i(t) = ωi ,

whereby ωi are the frequencies of the uncoupled oscillators with i denoting
the i-th oscillator.

Few calculations show that a differential equation for the phase evolution

˙Φj(Xj(t)) = ωj + εj,i

∑
k

∂Φj

∂Xk
j

hk
j (X1,X2) (1.31)

can be obtained in the case of coupled oscillators as introduced above [43].
The superscript k denotes the k-th component of the corresponding vector.

For small εi,j the above sum can be approximated by 2π periodic functions

Φ̇1(t) = ω1 + ε1,2H1(Φ1, Φ2) (1.32)

Φ̇2(t) = ω2 + ε2,1H2(Φ2, Φ1) (1.33)

which leads to

nΦ̇1(t)−mΦ̇2(t) = nω1 −mω2 + ε1,2H̃1(Φ1, Φ2)− ε2,1H̃2(Φ2, Φ1)

for some integers n and m [43]. The difference nΦ̇1(t) −mΦ̇2(t) can be con-
sidered as a generalized phase difference starting from the simplest expression
Φ̇1(t)− Φ̇2(t) with n,m = 1.

In the case of ε1,2 = ε2,1 and with the notion Φn,m
1,2 = nΦ1 − mΦ2 and

∆ω = nω1 −mω2 the above differential equation can be written as
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Φ̇n,m
1,2 (t) = ∆ω + ε1,2H(Φn,m

1,2 ) (1.34)

with some new 2π periodic function H(·).
This differential equation has only one fix point that is characterized by

∆ω + ε1,2H(Φn,m
1,2 ) = 0 . (1.35)

In this case the phase difference

Φn,m
1,2 = const (1.36)

is constant over time. Thus, both phases evolve in exactly the same way after
appropriate multiplication with some integers n and m. The system is then
in the regime of n : m phase synchronization.

To capture more realistic cases faced in several applications, the poten-
tial [43]

V (Φn,m
1,2 ) = ∆ωΦn,m

1,2 + ε1,2

∫ Φn,m
1,2

H(x) dx (1.37)

of

∆ω + ε1,2H(Φn,m
1,2 ) (1.38)

is utilized. Depending on the parameters this potential is a monotonically
increasing or decreasing function or it exhibits some minima caused by the
2π periodic function H(Φn,m

1,2 ). Caused by the shape of the potential, it is
referred to as washboard potential [43, 72]. An example of two potentials
with the same frequency mismatch ∆ω but different coupling strengths are
presented in Fig. 1.8. While the coupling in (a) is sufficiently high to guarantee

Fig. 1.8 Washboard potentials for the same frequency mismatch but higher coupling
between the processes in (a) than in (b)
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the existence of minima, the coupling in (b) leads to a potential that does not
show extrema. Each of the minima in example (a) refers to a setting where
phase synchronization is achieved.

If now some stochastic influence is added to the oscillators which thereby
influences the phase difference dynamics, too, certain fluctuations within the
minima are possible. These fluctuations can eventually lead to a “jump” from
one minimum to another one. Caused by the fluctuations and the jumps from
one minimum to another one ∣∣Φn,m

1,2 mod 2π
∣∣

is not constant any more but restricted by an appropriately chosen con-
stant, i.e. ∣∣Φn,m

1,2 mod 2π
∣∣ < const . (1.39)

The notion of phase synchronization is still preserved in these cases but is
regarded in a statistical sense.

In the case of chaotic oscillators, the notion of phase synchronization be-
comes even more interesting, since the above condition can be fulfilled al-
though the amplitudes of the original signal stay uncorrelated [46]. In chaotic
systems phase synchronization analysis, thus, yields novel insides in measur-
able interactions between these oscillators for very weak coupling strengths.
Since the amplitudes stay uncorrelated for true phase synchrony, several other
measures that are suggested to detect interactions fail.

The issue of estimating the amount of interaction between weakly coupled
oscillators is addressed in the following section.

1.7.1 The Mean Phase Coherence – An Intuitive Introduction

If the investigated processes are known to be weakly coupled self-sustained
oscillators, the above introduced condition for phase synchronization can be
reformulated to yield a single number that quantifies phase synchrony. To
motivate this quantity, the distribution of the phase differences Φn,m

1,2 mod 2π,
is investigated to ensure phase differences between [−π, π].

If there is a sharp peak in the phase difference distribution of Φn,m
1,2

mod 2π the two phases perform a coherent motion, while the distribution
is rather flat for independently evolving phases. Based on circular statistics
the quantity [1, 34, 36, 65]

∣∣Rn,m
1,2

∣∣ =

∣∣∣∣∣ 1
T

T∑
t=1

eiΦn,m
1,2 (t)

∣∣∣∣∣
has been suggested. This quantity is normalized to [0, 1] and becomes one
for perfectly synchronized phases. The operation “mod 2π” can be skipped
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here as the complex exponential function is 2π periodic. The above quantity
is sometimes referred to as mean phase coherence [36].

In applications, not the phases of the oscillators are observed but the time
series of the amplitudes of some quantity. A possible methodology but not the
only to derive phases from real-valued signals is the Hilbert transform leading
to

V (t) = X(t) + iXh(t) = A(t)eiΦ(t) = A(t)Q(t) (1.40)

and thereby Φ(t). Alternative approaches to obtain the phases are for instance
based on wavelet transformations [3, 44].

1.7.2 The Mean Phase Coherence – A Mathematical Derivation

For linear systems, spectral coherence was introduced [8] to infer interac-
tions between processes. Here, the concept of cross-spectral analysis is car-
ried over to nonlinear synchronizing systems. To this aim, considering a two-
dimensional dynamic process X1, X2, then the cross-spectrum SX1X2 between
X1 and X2 and the auto-spectra SX1X1 of X1 and SX2X2 of X2, respectively,
can be estimated e.g. by smoothing the corresponding periodograms

PerX1X2 (ω) ∝
∑

t

X1(t)e−iωt
∑

t

X2(t)eiωt (1.41)

and

PerXkXk
(ω) ∝

∣∣∣∣∣∑
t

Xk(t)e−iωt

∣∣∣∣∣
2

, k = 1, 2 (1.42)

after tapering the time series to avoid misalignment [5].
To carry the concept of cross-spectral analysis over to phase synchroniza-

tion analysis, phase synchronization analysis is approached on the basis of the
time series Q(t) by identification of the function A(t) as a taper window for
Q(t) (see (1.40)).

Plugging Qk(t) = exp(iΦk(t)) into (1.41) and (1.42) of the periodograms
leads to

PerQkQl
(ω) ∝

∑
t

Qk(t)e−iωt
∑

t

Ql(t)∗eiωt (1.43)

=
∑
t,t′

ei(Φk(t)−Φl(t−t′))e−iωt′ , k, l = 1, 2, k �= l (1.44)

and

PerQkQk
(ω) ∝

∑
t,t′

ei(Φk(t)−Φk(t−t′))e−iωt′ , k = 1, 2 , (1.45)

respectively. The asterisk denotes complex conjugation.
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To introduce a single number quantifying phase synchronization for cou-
pled nonlinear oscillators 1 and 2, the periodogram values of all frequencies
are summed up leading to

R1,2 = d
∑
ω

PerQ1Q2 (ω) =
1
T

T∑
t=1

ei(Φ1(t)−Φ2(t)) (1.46)

with some appropriately chosen constant d ensuring R1,1 = 1. Only the phase
differences Φ1,1

1,2 (t) = (Φ1(t)− Φ2(t)) between the oscillators are contained in
the expression for R1,2.

The expression (1.46) is identical to the bivariate phase synchronization
index

∣∣Rn,m
1,2

∣∣ =

∣∣∣∣∣ 1
T

T∑
t=1

eiΦn,m
1,2 (t)

∣∣∣∣∣ =
√〈

sinΦn,m
1,2 (t)

〉2 +
〈
cosΦn,m

1,2 (t)
〉2 (1.47)

introduced without foundation on cross-spectral analysis but on circular
statistics in the previous section for n = m = 1 [34, 36, 46].

In the more general case, where the sampling rate is unequal to one, i.e.
t = ti = i∆t, for 1:1 synchronization, i.e. m = n = 1, it follows that

∣∣∣R1,1
1,2

∣∣∣ =
√
〈sinφi〉2 + 〈cosφi〉2 =

1
N2

N∑
i,j=1

cos(φi − φj) (1.48)

with φi = Φ1,1
1,2 (ti).

Another approach to this problem is based on recurrence properties of the
underlying dynamics and is given in Chap. 5.

1.8 Partial Phase Synchronization

Here, the concept of graphical models and partialization analysis applied to
nonlinear synchronizing systems is introduced. To this aim, considering an N -
dimensional dynamic process X1, . . . , XN , the partial cross-spectral analysis
can be achieved by inversion and renormalization of the spectral matrix S(ω),
as already discussed in detail in the first part of this chapter. The information
about the linear interrelation between the processes Xk and Xl conditioned
on the remaining examined processes Y is contained in the partial coherence
(1.5)

CohXkXl|Y (ω) =

∣∣SXkXl|Y (ω)
∣∣√

SXkXk|Y (ω) SXlXl|Y (ω)
. (1.49)

Thus, for linear systems the auto- and cross-spectra enter the spectral ma-
trix to estimate the partial auto- and cross-spectra leading to partial coherence
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(1.49). For nonlinear synchronizing systems the synchronization indices are
the natural choices to quantify interdependencies between processes as shown
in Sect. 1.7.2. Caused by the similarity of the auto- and cross-spectra and
the synchronization indices substituting the first by the latter in the spectral
matrix leads to the multivariate extension of synchronization analysis.

This spectral matrix then becomes the synchronization matrix

R =

⎛⎜⎜⎜⎝
1 R1,2 . . . R1,N

R∗
1,2 1 . . . R2,N

...
...

. . .
...

R∗
1,N R∗

2,N . . . 1

⎞⎟⎟⎟⎠ (1.50)

with entries Rk,l := Rn,m
k,l (1.47), which are the pairwise synchronization in-

dices. Due to the proved analogy between spectral and synchronization theory,
the inverse PR = R−1 of the synchronization matrix R immediately leads to
the definition of the n : m partial phase synchronization index

Rk,l|Y =
|PRkl|√

PRkk PRll

(1.51)

between Xk and Xl conditioned on the remaining processes which are de-
scribed by {Y|Y = (Xy)y, y = 1, . . . , N , y �= k, l}. It replaces the partial
coherence (1.49) for synchronizing systems. As for partial coherence, where
the indirect interactions are characterized by an absent partial coherence ac-
companied by a bivariate significant coherence [10], the following holds: If
the bivariate phase synchronization index Rk,l is considerably different from
zero, while the corresponding multivariate partial phase synchronization index
Rk,l|Y ≈ 0, there is strong evidence for an indirect coupling between the pro-
cesses Xk and Xl. Graphical models applying partial phase synchronization
analysis are defined by:

An edge E between the oscillators k and l in a partial phase synchroniza-
tion graph is missing, if and only if Rk,l|Y is small compared to Rk,l.

1.9 Application of Partial Phase Synchronization
to a Model System

Three coupled stochastic Rössler oscillators

ξ̇j =

⎛⎝Ẋj

Ẏj

Żj

⎞⎠ =

⎛⎜⎝−ωj Yj − Zj +
[∑

i,i �=j εj,i (Xi −Xj)
]

+ σj ηj

ωj Xj + aYj

b + (Xj − c)Zj

⎞⎟⎠, i, j = 1, 2, 3

are a genuine example of a system consisting of weakly coupled self-sustained
stochastic oscillators. The parameters are set to a = 0.15, b = 0.2, c = 10,
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σj = 1.5, ω1 = 1.03, ω2 = 1.01, and ω3 = 0.99 yielding a chaotic behavior
in the deterministic case. For the noise term σj ηj a standard deviation of
σj = 1.5 is chosen and ηj is standard Gaussian distributed. Both the bidi-
rectional coupling ε1,3 = ε3,1 between oscillator ξ1 and oscillator ξ3 and the
bidirectional coupling ε1,2 = ε2,1 between oscillator ξ1 and oscillator ξ2 are
varied between 0 and 0.3. Both synchronization phenomena, phase and lag
synchronization, are contained in this range of coupling strengths. The oscil-
lators ξ2 and ξ3 are not directly coupled since ε2,3 = ε3,2 = 0. The coupling
scheme is summarized in Fig. 1.9 (a). However, caused by the indirect inter-
action between the oscillators ξ2 and ξ3 through the common oscillator ξ1, the
coupling scheme in Fig. 1.9 (b) is expected as a result of bivariate analysis.

In the following an example of 1 : 1 synchronization of the X-components is
investigated. The bivariate synchronization index R1,2 as well as R1,3 increases
when the corresponding coupling strength is increased, indicating phase syn-
chronization (Fig. 1.10, upper triangular). Once a sufficient amount of cou-
pling exists between oscillators ξ1 and ξ2 as well as between ξ1 and ξ3, a
non-vanishing bivariate synchronization index R2,3 between the not directly
coupled oscillators ξ2 and ξ3 is observed (Fig. 1.10, upper triangular). This
high but spurious phase synchronization is caused by the common influence
from oscillator ξ1 onto ξ2 and ξ3. The bivariate synchronization analysis sug-
gests the coupling scheme between the three Rössler oscillators summarized in
Fig. 1.10 (b), containing the additional but spurious edge between oscillator
ξ2 and ξ3 denoted by the dashed line.

In Fig. 1.10 (a) (below the diagonal) the results of partial phase synchro-
nization analysis are shown. While R1,2|3 as well as R1,3|2 are essentially un-
changed compared to the bivariate synchronization indices, R2,3|1 stays almost
always below 0.1 and is therefore considerably smaller than R2,3 in the area

Fig. 1.9 (a) Graph for the simulated coupling scheme in the Rössler system. The
direct coupling between oscillators ξ2 and ξ3 is absent. (b) Graph based on bivariate
synchronization analysis. An additional but spurious edge between oscillator ξ2 and
ξ3 is present
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Fig. 1.10 (a) Phase synchronization and partial phase synchronization index. Cou-
pling strengths between oscillators ξ1 and ξ2 and between oscillators ξ1 and ξ3 are
varied between 0 and 0.3, for an absent coupling between ξ2 and ξ3. Values of the
bivariate phase synchronization index (above the diagonal) and partial phase syn-
chronization index (below the diagonal) are shown. When comparing the bivariate
phase synchronization index R2,3 with the partial phase synchronization index R2,3|1
it becomes clear that the interaction between oscillator ξ2 and ξ3 is mediated by ξ1

since R2,3 � R2,3|1. (b) Graph for the simulated coupling scheme in the Rössler
system. The direct coupling between oscillators ξ2 and ξ3 is absent. The additional
but spurious edge between oscillator ξ2 and ξ3 correctly revealed by partial phase
synchronization analysis is denoted by the dotted line

of spurious synchronization. This strongly indicates the absence of a direct
coupling between oscillators ξ2 and ξ3. This results in the graph presented
in Fig. 1.10 (b), representing the correct coupling scheme (black continuous
edges).

1.10 Conclusion

First principle modeling has its limitation in analyzing complex systems in
the Life Sciences. When analyzing data, one has to face inverse problems,
i.e. conclusions from measured data to the systems underlying the measured
time series or conclusions to interdependence structures. To this aim several
analysis techniques have been suggested over the past decades. Ranging from
linear to nonlinear techniques, from stochastic to deterministic, from one-
dimensional to multidimensional systems, such techniques are widely applied
to real world data.

Here, particular emphasis was laid on the multivariate linear and nonlin-
ear approaches. The variety of analysis techniques that have been suggested
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to analyze multivariate linear systems leaves the practitioners alone with the
decision which technique is to be used. Thus, several linear multivariate anal-
ysis techniques have been compared to investigate their conceptual properties.
At the end a suggestion which technique should be used when was provided.
This study is accomplished by an application to cortical and thalamic signals
origination from juvenile pigs under deep sedation. Future work should be
devoted to such a comparison including a wider class of time series analysis
techniques, like for instance the multivariate phase synchronization approach.

Linear techniques seem to be not sufficient for some applications even
though they do allow inference in for instance several nonlinear systems. Es-
pecially, a phenomenon referred to as phase synchronization has been observed
for very weak coupling between self-sustained oscillators. A tailored analysis
technique has been suggested in the literature to investigate phase synchrony.
As demonstrated here the so called mean phase coherence to analyze syn-
chronization is closely related to linear techniques, i.e. cross-spectral analysis.
Thus, a motivation for the often used mean phase coherence has been pro-
vided.

Nonlinear signal analysis techniques should also work when investigating
multivariate systems. Partial phase synchronization has been suggested in this
Chapter to disentangle direct and indirect interactions in multivariate coupled
synchronizing oscillatory systems. Application to more model systems and
real-world data should be performed in the near future. Moreover, the actual
desired goal is not only to differentiate direct and indirect interactions but
also to infer the directionality of the coupling as in the linear case. To this
aim, it might be promising to apply partial directed coherence or similar ideas
to the phases of the oscillatory signals.

Multivariate analysis will become more and more prominent in future since
more and more channels can be recorded simultaneously. The curse of dimen-
sionality however limits the number of processes that can be analyzed simul-
taneously so far. The truism, the more advanced the techniques become the
higher are the requirements of the analysis techniques, has to be beard in mind
and dealt with. To this aim, complementing the existing techniques by novel
techniques or adjustments to particular problems will be among the highest
challenges in the future to analyze the vast amount of data that are recorded
in the Life Sciences. Additionally, the assumptions that systems are stationary
is not necessarily true. Thus, novel techniques or extensions are required that
allow dealing with non-stationary data but still should be able to differentiate
direct and indirect interactions and the directionality of interactions in both
the linear and the nonlinear case.
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2.1 Motivation

The surrogates approach was suggested as a means to distinguish linear from
nonlinear stochastic or deterministic processes. The numerical implementa-
tion is straightforward, but the statistical interpretation depends strongly on
the stochastic process under consideration and the used test statistic. In the
first part, we present quantitative investigations of level accuracy under the
null hypothesis, power analysis for several violations, properties of phase ran-
domization, and examine the assumption of uniformly distributed phases. In
the second part we focus on level accuracy and power characteristics of Ampli-
tude Adjusted Fourier–Transformed (AAFT) and improved AAFT (IAAFT)
algorithms. In our study AAFT outperforms IAAFT. The latter method has
a similar performance in many setups but it is not stable in general. We will
see some examples where it breaks down.

2.2 Introduction

In a statistical test, for a given data set a hypothesis is formulated, whose
validity has to be examined. This null hypothesis cannot be verified or falsified
with 100% accuracy. Instead, only an upper bound for the probability is given,
that the null hypothesis is rejected although it holds true. For this a real valued
test statistic T is derived from the data, with known distributions under the
possible specifications of the null hypothesis. If the null hypothesis contains
only one specification (simple hypothesis) and the value of T is for example
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larger than the 1−α quantile of the null distribution, the null hypothesis will
be rejected and a false rejection will occur only with probability α. Often,
the null distribution of T is not simple and the distribution of the underlying
specification has to be estimated and/or approximated. One possibility is to
use surrogate methods. They have been suggested for the null hypothesis of
a linear Gaussian process transformed by an invertible nonlinear function,
see [20].

This chapter examines the different approaches to generate surrogate data
and their properties. The basic idea of all surrogate methods is to random-
ize the Fourier phases of the underlying process. In Sect. 2.3 we illustrate
how the nature of a process changes if the phases are randomized. For this
purpose we show plots where the amount of randomization is continuously
increased. Section 2.4 summarizes all suggested surrogate approaches and il-
lustrates their qualitative behavior. Section 2.5 presents a simulation study
where the level accuracy and power performance of surrogate data tests is
compared for different processes, test statistics and surrogate methods. Sec-
tion 2.6 takes a closer look on two methods for generating surrogate data. It
compares the AAFT and the IAAFT approach. The chapter ends with short
conclusions in Sect. 2.7.

2.3 Phase Randomization – Effects and Assumptions

The key procedure of all surrogate methods is to randomize the Fourier phases.
It is argued that linear Gaussian processes do not possess asymptotically any
information in the Fourier phases, since they are comprehensively determined
by their mean and autocovariance function, which corresponds one-to-one
via the Fourier transformation to the power spectrum. Hence, realizations
of a linear Gaussian process should differ essentially only in their Fourier
phases which is utilized by the surrogates approach: New realization of a
linear Gaussian process based on one realized time series can be obtained by
drawing new values for the Fourier phases. Since no information is expected
in the Fourier phases, the underlying distribution for the new phase values is
the uniform distribution on [0, 2π].

This section investigates the assumption of uniformly distributed Fourier
phases and takes a qualitative look on the effects of phase randomization on
linear and nonlinear time series.

2.3.1 Effects of Phase Randomization

Let x = (x1, ..., xN ) be a given time series of length N with mean 0. Its Fourier
transformation is

f(ω) =
1√

2πN

N∑
t=1

e−iωtxt, −π ≤ ω ≤ π . (2.1)
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If the transformation is calculated for discrete frequencies ωj = 2π/N,
j = 1, 2, ..., N , the original time series can be regained by the back trans-
formation:

xt =

√
2π
N

N∑
j=1

eiωjtf(ωj), t = 1, 2, ..., N . (2.2)

The FT-surrogates method constructs a new time series yt with the same
periodogram and otherwise statistically independent from xt [19]. The Fourier
amplitudes |f(ωj)| are fixed and the Fourier phases ϕ(ωj) = arg(f(ωj)) are
replaced by uniform distributed random numbers ϕrand(ωj) ∈ [0, 2π]. The
new realization is given by

yt =

√
2π
N

N∑
j=1

eiωjt |f(ωj)| eiϕrand(ωj) . (2.3)

To track the effect of phase randomization, we increase randomization
strength continuously from 0% to 100%. For this random numbers

ϕrand(ωj) = ϕ(ωj) + a u(ωj)

with u(ωj) ∈ U [−π, π] are drawn. Parameter a ∈ [0, 1] changes the phase ran-
domization strength. Figure 2.1(a) shows, that three test statistics of Sect. 2.5,
time invariance, prediction error and kurtosis do not change for the autoregres-
sive process with increasing phase randomization. For the nonlinear stochastic
Van-der-Pol oscillator already small changes of the Fourier phases lead to sig-
nificant different values of the test statistics (b). Figure 2.1(c–f) exemplifies
the influence of phase randomization on time series directly. The autoregres-
sive process as a linear process does not change visually with increasing phase
randomization (c). The nonlinear Lorenz system looses already for 20% phase
randomization its characteristical oscillations (d). With 100% phase random-
ization, even the ear switch is not visible any more. The time series equals
a realization of an autoregressive process with small coherence length. The
deterministic Rössler system is shown in total length (e). It possesses a sharp
harmonic component leading to higher harmonics in the power spectrum. If
the phase relation of these harmonics is lost due to phase randomization, a
beat occurs resulting in strong correlations of the time series up to the whole
time series length. This holds even stronger for the zig-zag curve (f). The time
series of a stationary, nonlinear, deterministic process becomes a time series
which is indistinguishable from a realization of an non stationary, cyclic, linear
process.

The correlation dimension in Fig. 2.2 differs for the nonlinear processes
logistic map, Lorenz system and stochastic Van-der-Pol oscillator. Whereas
for the logistic map already a 1% phase randomization leads to an unbounded
correlation dimension on small scales, this happens for the Lorenz systems
not until a randomization of 10%. The stochastic Van-der-Pol does not show
any changes with increasing phase randomization – as a stochastic process it
has an unbounded correlation dimension even for the original process.
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Fig. 2.1 Influence of increasing phase randomization

2.3.2 Distribution of Fourier Phases

Figure 2.3 shows the cumulative Fourier phase distribution for realizations
of an AR[2] process and the Lorenz system. For the AR[2], the cumulative
distribution is very close to the straight line corresponding to perfect uni-
form distribution. For the Lorenz system, most phases are larger than 2 –
the distribution is unbalanced. The deviation from a uniform distribution can
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Fig. 2.2 Influence on the correlation dimension for increasing phase randomization
.

be quantified by the Kolmogorov-Smirnov-statistic measuring here the largest
distance between the cumulative distribution and the straight line. The AR[2]
leads to a KS-value of 0.075, whereas the Lorenz system has a nearly ten times
larger value of 0.6. To examine whether this result is representative, a simula-
tion with 1000 AR[2] of length between 1024 and 16384 has been done and the
KS-value calculated. Figure 2.3 exhibits a nearly linear relationship between
the mean KS-value and the end-to-end-distance |xN − x1|. Since a similar
simulation for the nonlinear stochastic Van-der-Pol oscillator shows the same
effect, the phase distribution of linear and nonlinear systems depends strongly



46 T. Maiwald et al.

−3.14 0 3.14
0

0.2

0.4

0.6

0.8

1

Phase / rad

C
um

ul
at

iv
e 

di
st

rib
ut

io
n KS−Value: 0.074597

Phase distribution AR[2]

−3.14 0 3.14
0

0.2

0.4

0.6

0.8

1

Phase / rad

C
um

ul
at

iv
e 

di
st

rib
ut

io
n KS−Value: 0.60137

Phase distribution Lorenz 

Fig. 2.3 Distribution of the Fourier phases. The Kolmogorov-Smirnov-statistic mea-
sures the deviation of the Fourier phase distribution from a uniform distribution.
Interestingly, a nearly linear dependency on the end-to-end-mismatch is observed

on the end-to-end-distance and deviations from a uniform distributions are
results of the finite size effect, not the nonlinearity. Only noise-free nonlinear
systems like the Lorenz one always show a strong deviation from the uniform
distribution.

2.4 Surrogates Methods

There exist two classes of surrogate data approaches. In surrogate data test-
ing one reproduces all the linear properties of the process by preserving the
second order properties of the observed data. This can be done by preserv-
ing the observed sample mean and sample auto-covariances (or by preserv-
ing the observed sample mean and periodogram values at Fourier frequencies
ωj = 2πj/n). The approach can be implemented by first Fourier transforming
the data set, then randomizing the phases and finally inverting the trans-
formed data. Then resamples will have the same linear properties as the data
set, see Sect. 2.3 II. The term “surrogate data” was first introduced by [19]
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and the method became popular after that. But the basic idea and related
approaches were discussed in a number of earlier publications, see [6, 8].

Several other ways exist to generate surrogate data with asymptotically
the same autocovariance function as a given time series. Essentially they differ
in conserving the original periodogram by construction or generating a new
one derived from the estimated power spectrum.

Fourier transformed surrogate data method generates resamples for the
null hypothesis that the process is a stationary Gaussian linear process. This
method is not suitable for the hypothesis that the data are not Gaussian. This
can be encountered in several applications. In practice, the null hypothesis of
linear Gaussian processes is rather restrictive as only very few data pass the
test that they are normally distributed. Fourier-transformed surrogates are, by
construction, asymptotically jointly normally distributed, thus surrogates will
have a different distribution than the observed data, when the data deviate
from normality. For such cases the more general null hypothesis has been
proposed that the process is a linear stationary process transformed by a static
(invertible) nonlinear function h(.). More explicitly, the observed process {xt}
is generated by a transformation:

xt = h(zt) ,

where zt is a Gaussian stationary process. For this extended null hypothesis
methods have been proposed that transform the original data to a Gaus-
sian amplitude distribution before the surrogate method is applied. A back
transformation to the original amplitudes realizes the nonlinear measurement
function.

Classical Monte-Carlo-simulation is the counterpart of the parameter-free
surrogate approach. Here, the problem arises to select the right model, e.g.,
the right order of an autoregressive process. If the right model is known, the
Monte-Carlo-approach should be the used.

The basic method to generate Fourier transformation surrogates (FT) has
been described in Sect. 2.3. For an overview on resampling methods that have
been used in the statistical literature on time series analysis see also [12].

2.4.1 Amplitude Adjusted FT-Surrogates (AAFT)

If the data derive under an extended null hypothesis from a linear, Gaussian
process measured via an invertible nonlinear function h, the Gaussian am-
plitude distribution is lost in general. Since only Gaussian distributed linear
processes are uniquely given by their autocovariance function and mean value,
the measurement function h has to be estimated in order to calculate surro-
gates for ĥ−1(x). The surrogate data will be measured with ĥ to be comparable
to the original data. In detail:

1. Ranking of the original data.
2. Generation of ranked, Gaussian distributed random numbers
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3. The k-th value of the sorted original series is replaced with the k-th
value of the sorted Gaussian data and the order of the original data is
re-established.

4. The data are now Gaussian distributed and FT-Surrogates can be calcu-
lated.

5. The k-th largest value of the FT-Surrogates is replaced with the k-th
largest value of the original time series. Note, that the original amplitude
distribution is exactly maintained.

Asymptotically for N →∞ the first three steps of the transformation are
equivalent to the application of the true inverse function h−1 itself. The proce-
dure was suggested as Amplitude Adjusted Fourier Transform–Surrogates [19]
and its effect is illustrated in Fig. 2.4. Test statistics like the skewness or kur-
tosis based on the amplitude distribution have by construction exactly the
same value for the original and the surrogate time-series. A more detailed
description of the AAFT algorithm can be found in Sect. 2.5 where also the
convergence of the fitted transformations is discussed.

For finite data sets a flattened power spectrum is observed for AAFT-
Surrogates compared to original data – the spectrum “whitens”. The reason is,
that the estimator of the inverse function ĥ−1(·) does not match exactly h−1(·)
for finite N [17]. The differences δ(xt) = ĥ−1(xt) − h−1(xt) are essentially
independent of t and possess as an uncorrelated process a white spectrum.
Therefore, application of the estimated inverse function adds uncorrelated
random numbers to the original data,

ĥ−1(xt) = h−1(xt) + δ(xt) .
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Fig. 2.4 FT- and AAFT-Surrogates. The bimodal distribution of the stochastic
Van-der-Pol oscillator is not kept by the FT-Surrogates method, but by the AAFT-
method. Both methods yield time inverse invariant time series
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2.4.2 Iterated Amplitude Adjusted FT–Surrogates (IAAFT)

To reduce the whitening effect of AAFT–surrogates, an iterative approach
has been suggested, which asymptotically yields the same periodogram and
amplitude distribution as the original data [16]. First, AAFT-Surrogates are
generated. Then, in the Fourier domain, the periodogram values are replaced
by the periodogram of the original process, the phases are kept. In time do-
main, the amplitudes are adjusted to the original process. These two steps are
iterated until periodogram and amplitude distributions of original and gener-
ated time series are equal except for a given tolerance. A description of the
IAAFT algorithm can be found in Sect. 2.5 where this approach is compared
with the AAFT algorithm.

2.4.3 Digitally Filtered Shuffled Surrogates (DFS)

Some authors criticize that the FT-, AAFT- and IAAFT-surrogates methods
conserve not only mean and autocovariance function of the underlying process,
but also properties of the given realization itself, since only Fourier phases and
not the Fourier amplitudes are changed. In this way, the new data possess
less variability than new realizations of the original process [5]. Alternatively
Digitally Filtered Shuffled Surrogates have been suggested.

The DFS–Surrogates approach is based on the following steps [5]:

1. Estimation of the power spectrum by averaging periodograms of several
data segments.

2. Estimation of the autocovariance function by an inverse Fourier transfor-
mation of the estimated spectrum. This yields the “response”-function.

3. Convolution of a random permutation of the original time series with
the response-function. This corresponds to a multiplication in the Fourier
domain, where the transformed of the randomized original time series is
multiplied to the estimated spectrum.

4. Adapting the amplitude distribution to the original one.

Similar to the AAFT-Surrogates, the amplitude distribution is adjusted in the
last step leading to a whitened spectrum. Again, an iterative procedure, the
iDFS-method, can be applied to reduce this effect.

(Fourier based) surrogate data tests, AAFT, IAAFT, DFS and iDFS be-
long to the class of constrained realization approaches. In constrained real-
ization approaches one avoids fitting of model parameters and one does not
assume any model equation. Instead of fitting a model (e.g., a finite order
AR process), one generates resamples that have a certain set of properties in
common with the observed data set. An alternative is based on fitting the
model of the data and generating data from the fitted model.

2.4.4 New Periodogram from Estimated Spectrum (NPS)

We suggest a new method to generate surrogate data, which is based on the
statistical properties of the periodogram
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I(ω) ∼ 1
2
S(ω)χ2

2 ,

i.e., the periodogram is for given frequency ω distributed like a χ2-distribution
with two degrees of freedom around the power spectrum S(ω). New realiza-
tions of the process can be obtained by

1. estimation of the power spectrum, e.g., via a smoothed periodogram,
2. generation of a periodogram realization by multiplication of χ2

2–distributed
random numbers to the spectrum,

3. drawing new phases as uniform random numbers on [0, 2π] ,
4. calculation of an inverse Fourier transformation.

This approach differs slightly from frequency domain bootstrap that does
not apply Step 3, see [4]. Again, an iterative approach is imaginable for the
extended null hypothesis of a linear, Gaussian process with an invertible,
nonlinear measurement function.

2.4.5 Fixed Fourier Phases (FPH)

In a sense orthogonal to the FT-surrogates, one could keep the Fourier phases
and draw only a new periodograms, like for the NPS–surrogates. This is actu-
ally no surrogates approach, but it illustrates the influence of Fourier phases
and amplitudes.

2.4.6 Classical Monte-Carlo-Simulation

If the model of the underling stochastic process under the null hypothesis is
known, new realizations of the process can be generated after estimating all
parameters θ by means of the given data set. The estimation minimizes the
square error

N∑
i=1

(xi − yi(θ))
2

for the given realization x = (x1, ..., xN ) and a parameterized time series
y(θ) = (y1(θ), ..., yN (θ)). The difficulty is to select the right model. Linear
processes can be formulated as: A parameter θ = (p, q, a1, ..., ap, b1, ..., bq)
exist, for which

Xt =
p∑

i=1

aiXt−i +
q∑

i=0

biεt−i , εt ∼ N (0, 1) . (2.4)

The model order p, q has to be determined. Since finite, invertible ARMA[p, q]
processes can be written as infinite ARMA[∞, 0] or ARMA[0,∞] processes,
selection of the wrong model class can lead to infinite parameters which have
to be determined. If the right model class is known, calculation of the partial
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ACF or ACF for AR or MA processes respectively, can be used to determine
the process order.

In this study we fit an AR[80] process to the original time series and
generate AR-Fit–surrogates by

yt =
p∑

i=1

aiyt−i + εt (2.5)

with random start values and after the transient behavior is over.

2.5 Statistical Properties of the Surrogate Methods –
A Comparative Simulation Study

This section contains simulation results on surrogates based hypothesis tests.
The simulations have been carried out for a representative class of processes
under the null hypothesis and under the alternative and for a variety of test
statistics.

2.5.1 Processes Under the Null Hypothesis

Linear Gaussian processes can be written as [2, 14]

Xt =
p∑

i=1

aiXt−i +
q∑

i=0

biεt−i , εt ∼ N (0, 1) . (2.6)

These processes are linear, but not cyclic, a property which is implicitly as-
sumed by the Fourier transformation on a finite data set. We suggest a cyclic
process with the periodogram of an autoregressive process:

Xt = A +

√
2π
N

M∑
j=1

√
B2

j + C2
j cos(ωtj + θj) , t = 1, ..., N

with A ∼ N (0, 1), Bj , Cj ∼ N (0, σ2
j ), θj ∼ U [0, 2π] and σ2

j = IY (ωj).
IY is the periodogram of an AR[2] process. A, Bj , Cj and θj are indepen-
dent for j = 1, ...,M . Besides, ωt = 2πt/N , M = (N − 1)/2 for odd N and
M = (N − 2)/2 for even N. Note, that

B2
j + C2

j ∼ σ2
jχ

2
2

with mean 2σ2
j . The periodogram of the process reads IX(ωk) = (B2

k +C2
k)/4

for k = 1, ...M . The same approach with an exponentially decreasing pe-
riodogram with σ2

j = exp(−j/M) leads to a cyclic Gaussian process (see
Fig. 2.5).

The extension of the null hypothesis with invertible, nonlinear measure-
ment function h is investigated in this study with h(x) = x3 and an AR[2].
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Fig. 2.5 Processes under the null hypothesis. Cyclic Gaussian process with ex-
ponentially decreasing spectrum, AR[2] process and AR[2] process measured via
h(x) = x3

2.5.2 Processes Under the Alternative:
Nonlinear Deterministic and Stochastic Systems

Deterministic systems can be written as differential systems oder difference
equations. All consequent time points derive exactly from the initial values.
If the distance between neighbored trajectories increases exponentially, the
system is chaotic. Here we use the logistic map as example for a chaotic
difference equation [7]

xi = rxi−1(1− xi−1), 3.6... < r ≤ 4 .

For r = 4 chaotic behavior occurs and the spectrum is not distinguishable
from white noise. All information about the nonlinearities is saved in the
phases, making this toy system interesting for our study (see Fig. 2.6).

The most famous differential systems with chaotic behavior are the Lorenz
and Rössler systems [11, 15]:

ẋ = σ(y − x)
ẏ = −y + x(r − z)
ż = xy − bz

here with σ = 10, b = 8/3 and r = 40, and

ẋ = −y − z
ẏ = x + ay
ż = b + (x− c)z

here with a = 0.1, b = 0.1 and c = 18.
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Fig. 2.6 Bilinear model and stochastic Van-der-Pol oscillator

A stable limit cycle is given by the Van-der-Pol oscillator [22]

ẍ = µ(1− x2)ẋ− x, µ > 0 .

Bilinear models are the extension of ARMA models. We use the bilinear model
BL(1,0,1,1) [18]

Xi = aXi−1 + bXi−1εi−1 + εi ,

with a = b = 0.4. The deterministic Lorenz, Rössler and Van-der-Pol systems
can be disturbed with additive noise leading, e.g., to

ẍ = µ(1− x2)ẋ− x + ε, µ > 0 .

2.5.3 Test Statistics

This subsection presents published and new developed test statistics, which
are used to examine the qualitative and quantitative properties of the surro-
gates methods in the next main section. Since linear and nonlinear processes
have to be distinguished from each other, emphasis is laid on test statistics
which are sensitive for this difference.

Skewness and Kurtosis

Deviations from Gaussian amplitude distributions can be measured with the
centered third and fourth moment, skewness and kurtosis:
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Skewness =
1
N

N∑
i=1

[
xi − x̄

σ

]3

,

Kurtosis =

{
1
N

N∑
i=1

[
xi − x̄

σ

]4
}
− 3 .

Error of Nonlinear Prediction

More robust than the estimation of the correlation dimension is the the es-
timation of the nonlinear Prediction error. It does not need a certain scaling
behavior and is easier to interpret. After embedding the time series to

xi = (xi, xi−τ , xi−2τ , ..., xi−(m−1)τ )T (2.7)

the nonlinear prediction can be calculated as

Fε,τ (xi) =
1

Nε(xi)

∑
j

xj+τ ∀j �= i with ||xi − xj || < ε .

For every xi, the point x̂i+s = Fε,s(xi) is predicted. Nε(xi) is the number
of all neighbors of xi with a distance less than ε. As test statistic the well
defined Prediction error is used:

γ(m, τ, ε) =
(

1
N

∑
||x(t + τ)− Fε,τ (x(t))||2

)1/2

.

Time Invariance

We suggest a very powerful test statistic to measure the time invariance:

max
{

#{|xi+1| > |xi|}
#{|xi+1| < |xi|}

,
#{|xi+1| < |xi|}
#{|xi+1| > |xi|}

}
after demeaning x. Application to the stochastic Van-der-Pol oscillator illus-
trates the power of this test statistic (Fig. 2.7). Even with µ = 0.01 time
invariance test statistic detects the nonlinearity whereas it is not visible for
µ = 0.1. Besides, this test statistic does not depend on the end-to-end-distance
|x1 − xN |.

Normalized End-to-End-Distance

The Fourier transform considers a finite time series as part of an infinite,
periodical time series. A jump between the first and last data point |xN −x1|
bigger than the mean point-to-point-distance leads to a sawtooth behavior of
the infinite long time series. This needs an exact adjustment of the Fourier
phases and also changes the Fourier amplitudes.

Normalized end-to-end-distance =
|x1 − xN |

1
N−1

∑N
i=2 |xi − xi−1|

.
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Stochastic Van−der−Pol

µ=
10

µ=
1

µ=
0,

1

Samples

µ=
0,

01

Fig. 2.7 Sensitivity of time invariance. Displayed are realizations of the stochas-
tic Van-der-Pol oscillator with different values for µ, corresponding to a different
strength of the nonlinearity. The test statistic time invariance is able to detect the
nonlinearity even for µ = 0.01

Biggest Jump

The maximum distance between two consecutive points is given by

max
j=2,...,N

|xj+1 − xj | .

Smoothness

The smoothness of a time series can be quantified by:

Smoothness =
1

N−1

∑N
i=2 |xi − xi−1|

1
N

∑N
i=1 |xi − x̄|

.

Normalized Distribution of Fourier Phases

The test statistic distribution of Fourier phases measured via the Kolmogorov-
Smirnov-statistic has already been introduced in Sect. 2.3. To reduce the linear
dependency on the end-to-end-distance, the KS-value is divided by the end-
to-end-distance for the normalized version.
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2.5.4 Qualitative Analysis Under the Null Hypothesis

The surrogates approach has been developed in order to estimate the distribu-
tion of a test statistic under the null hypothesis. In case of a false approxima-
tion the size and critical region of the corresponding test may change. Then
the behavior of the corresponding test is unknown and hence the test useless.
Furthermore, since a test is constructed for the detection of violations of the
null hypothesis, the power is of high practical interest.

This section investigates numerically, whether the surrogate methods gen-
erate the correct distribution of a test statistic under the null hypothesis. We
analyze qualitatively whether the surrogate methods are able to reproduce
the distribution of a test statistic under the null hypothesis. The following
hypotheses are investigated:

1. Linear cyclic Gaussian process with exponentially decreasing spectrum
2. Linear cyclic Gaussian process with spectrum of an AR[2] process
3. Linear Gaussian process, realized with an AR[2] process
4. Linear Gaussian process measured via a nonlinear invertible measurement

function, here realized with an AR[2] process and h(x) = x3.

For ten realizations of every process under null hypothesis 200 surrogate
time series are generated and several test statistics are calculated yielding
values t1, ..., tN . Their cumulative distribution

F (t) =
#{ti, i = 1, ..., N | ti ≤ t}

N
(2.8)

is qualitatively compared to the one of the test statistic based on 200 realiza-
tions of the underlying process itself. Figure 2.8 shows the result: For some
combinations of null hypothesis, surrogate method and test statistic, the orig-
inal distribution displayed in the bottom panel can be regained in the upper
ten panels. Here, this occurs for the combination linear Gaussian process with
FT-Surrogates and the test statistic time invariance. For the combination lin-
ear Gaussian process with AAFT-Surrogates and the test statistic prediction
error the original distribution is not maintained but, even worse, the distri-
bution depends on the value of the test statistic for the original time series
marked in each panel by the vertical line.

The qualitative characterization has been done for six surrogate methods,
eleven test statistic and four null hypothesis. The results are summarized
in Tables 2.1–2.4. The � symbols a correct reproduction of the test statics
distribution, a false reproduction is marked by ×, and ◦ has been used for
ambiguous cases.

The first null hypothesis leads to a correct distribution for most combi-
nations. Except for a few cases the phase fixing FPH-method does not yield
a correct distribution, as expected. The methods AAFT and DFS scale the
amplitude distributions to the distribution of the original time series result-
ing in always the same value for the test statistics skewness and kurtosis.
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Fig. 2.8 Cumulative distributions of test statistic values under the null hypothesis.
Surrogate methods should asymptotically be able to reproduce the complete cumu-
lative distribution of any test statistic under the null hypothesis. However it turns
out, that this depends strongly on the chosen null hypothesis, test statistic and sur-
rogate method. The new developed time invariance measure on the left is able to
reproduce the original cumulative distribution (panel 11 at the bottom) for each of
ten AR[2] realizations (panels 1–10). Using the prediction error as test statistic and
AAFT surrogates show a strong dependency of the test statistic value of the original
data realization, marked by vertical lines

Since a constant value does not reflect the statistic fluctuations, the original
distribution is not regained.

Similar results yield the simulations for the second null hypothesis, the
cyclic Gaussian process with periodogram of a linear Gaussian process.
Only the AR-Fit method has problems, which is based on the vanishing

Table 2.1 Qualitative analysis under the null hypothesis 1: Gaussian cyclic linear
process with exponentially decreasing spectrum

FT AAFT DFS NPS FPH AR-Fit

Skewness � × × � × �
Kurtosis � × × � × �
Prediction error � � � � � �
Time invariance � � � � � �
Mean distance × × × ◦ × ×
End-to-end-distance � � � � × �
Norm. end-to-end-distance � � � � × �
Biggest jump � � � � � �
Smoothness × × × ◦ × ×
Phase distribution � � � × × �
Norm. phase distribution � � ◦ ◦ × �
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Table 2.2 Qualitative analysis under the null hypothesis 2: Gaussian cyclic linear
process with spectrum of a linear Gaussian process

FT AAFT DFS NPS FPH AR-Fit

Skewness � × × � � �
Kurtosis � × × � � �
Prediction error × × × × × ×
Time invariance � � � � � �
Mean distance × × × × × ×
End-to-end-distance � � � � × ×
Norm. end-to-end-distance � � � � × ×
Biggest jump � � � � ◦ �
Smoothness × × × × × ×
Phase distribution � � � × × ×
Norm. phase distribution � ◦ � ◦ ◦ ×

end-to-end-distance for the cyclic process. This behavior is not reproduced
by the generated AR[80].

Very good results yield the AR-Fit method for the third null hypothesis,
the linear Gaussian process realized via an autoregressive process, since the
right model class was used for the Monte-Carlo-approach. The actual surro-
gates methods drop behind indicating their demand for cyclicity.

The fourth null hypothesis, the linear Gaussian process measured via an
invertible, nonlinear function is for most combinations already part of the “al-
ternative”, since a Gaussian distribution is assumed. Even the AAFT method,
which was constructed for this setting, does not succeed in combination with
most test statistics.

Table 2.3 Qualitative analysis under the null hypothesis 3: Linear Gaussian process

FT AAFT DFS NPS FPH AR-Fit

Skewness � × × � � �
Kurtosis � × × � × �
Prediction error × × × × × �
Time invariance � � � � � �
Mean distance ◦ × × × × ×
End-to-end-distance × × × × × �
Norm. end-to-end-distance × × � × × �
Biggest jump � � × � ◦ �
Smoothness × × × ◦ × ×
Phase distribution × × × × × �
Norm. phase distribution ◦ ◦ ◦ × ◦ �
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Table 2.4 Qualitative analysis under the null hypothesis 4: Linear Gaussian process
measured with nonlinear function

FT AAFT DFS NPS FPH AR-Fit

Skewness × × × × × ×
Kurtosis × × × × × ×
Prediction error × � × × × ×
Time invariance � � � � � �
Mean distance × ◦ × × × ×
End-to-end-distance × × × × × �
Norm. end-to-end-distance × ◦ × × × ◦
Biggest jump × × × × × ×
Smoothness × × × × × ×
Phase distribution × × × × × ◦
Norm. phase distribution ◦ ◦ ◦ × × ◦

The qualitative analysis can be summarized as follows: The accuracy of
the reproduction of the test statistics distribution under the null hypothesis
depends strongly on the chosen combination of null hypothesis, surrogates
method and test statistic. Only for one test statistic, the new developed time
invariance test statistic, all surrogate methods and null hypotheses lead to a
correct distribution. For the normalized end-to-end-distance no combination
was successful.

2.5.5 Quantitative Analysis of Asymptotic, Size and Power

This section investigates numerically, which power the surrogate methods have
for different alternatives. The power is analyzed depending on data length
and strength of violation, in order to examine the asymptotic behavior and to
establish a ranking of the different surrogate methods. A two-sided test with a
significance level of 6% is constructed for the following simulations. For every
original time series 99 surrogates are generated and the value of a given test
statistic calculated. Is the value for the original time series under the first
three or last three of the ranked 100 test statistic values, the null hypothesis
is rejected. This procedure is repeated for 300 original time series.

The quantitative analysis of the asymptotic determines the power depend-
ing on the length of the time series. For the time invariance test statistic and
time series of the logistic map, every surrogate method FT, AAFT, DFS,
NPS, IAAFT and iDFS show a similar behavior (Fig. 2.9). For 256 or more
data points, the null hypothesis is rejected in all cases and for all methods.
The same time series evaluated with the test statistic smoothness lead to a
ranking of the surrogate methods: The FT-surrogates reach maximum power
already for 256 data points, NPS-surrogates for 1024, AAFT-surrogates for
8192, DFS- and iDFS-surrogates need about 10000 data points to reject the
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Fig. 2.9 Quantitative analysis of asymptotic, size and power

false null hypothesis with a power of 100%. The IAAFT-surrogates have no
power at all. Unfortunately, this ranking is not reproduced in other, not shown
combinations of alternatives and test statistics, indicating the irregular behav-
ior of tests based on surrogate methods.

Necessary requirement for the usefulness of a test is on the one hand a
correct size and on the other hand a good power. This section investigates the
power of surrogates based tests for linearity with variable strength of the null
hypothesis violation. First, two stochastic processes X0 and XA are combined
to a new process

X = (1− a)X0 + aXA, a ∈ [0; 1] . (2.9)

The process XA violates the null hypothesis, which is fulfilled by X0. A repre-
sentative selection of processes XA is chosen, in order to investigate violations
of all kind. The parameter a increases from 0 to 1 and consequently the in-
fluence of the nonlinear process increases from 0% to 100%.

Figure 2.9 shows two cases to discuss the behavior of surrogates based lin-
earity tests. For the test statistic time invariance all surrogate methods lead to
a similar behavior and reject the null hypothesis for 50%–60% of the nonlinear
process. The size is a bit too high. For the test statistic smoothness, the size
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is not correct for all surrogate methods except for the NPS method, which
has on the other hand no power for the violation with the stochastic Rössler
system. The worst case of nearly 100% rejection of the true null hypothesis
based on the DFS- and iDFS-surrogates indicates again the irregular behavior
of surrogates based tests.

2.5.6 Summary of the Simulation

The nonlinearity of the stochastic Van-der-Pol oscillator can be changed via
the parameter µ. The cases of Fig. 2.10 summarize the behavior of surrogates
based linearity tests:

• For some test statistics like time invariance, every method works similarly
and in a plausible way (a).

• Some test statistics have a different behavior which can be derived from the
surrogates construction like for the kurtosis in combination with amplitude
adjusting surrogates (b).

(a) (b)

(c) (d)

Fig. 2.10 Quantitative analysis of size and power
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• For some test statistic, like for the biggest jump, a performance order of the
methods can be established (c). Unfortunately, this order is not maintained
but reversed in other combinations.

• And finally, for some test statistics like the mean point to point distance, no
regular or reasonable behavior of the surrogates methods occurs (d). This
would lead in a statistical test to spurious results and wrong consequences.

2.6 The AAFT and the IAAFT Approach –
A Detailed Comparison

In this section, we study level accuracy and power properties of tests based on
Amplitude Adjusted Fourier-Transformed (AAFT) surrogates and on Iterated
AAFT (IAAFT) surrogates. We will see that both methods work rather
reliable as long as the process do not have long coherence times. IAAFT is
outperformed by AAFT: It has a similar performance in many setups but it
is not stable in general. We will see some examples where it breaks down.

The AAFT method and the IAAFT approach are designed for the general
null hypothesis of a linear Gaussian process that is transformed by a nonlinear
invertible function. More explicitly, we will assume that the observed process
{xt} is generated by a transformation:

xt = h(zt) ,

where zt is a Gaussian stationary process (e.g., zt is an autoregressive moving
average (ARMA) process of order (p, q): zt =

∑p
j=1 aizt−i +

∑q
j=0 biεt−i,

where {εt} is a sequence of uncorrelated Gaussian random variables and
b0 = 1). It has been argued that this process is linear as non-linearity is
contained only in the invertible transformation function h(.). In this section
we will discuss AAFT and IAAFT that both have been proposed for this
model. We will give a more detailed description of both procedures below.
The AAFT method was first discussed by [19]. Its basic idea is to apply the
Fourier based surrogate data method after the data have been transformed to
Gaussianity. An alternative procedure is the IAAFT approach of [16]. In this
approach an iterative algorithm is used for the generation of the surrogate
data. The iteration procedure uses alternatively two steps. In one step the
surrogate data are transformed such that their marginal empirical distribu-
tion coincides with the marginal empirical distribution of the observed time
series. In the second step phases are randomized similarly as in the generation
of surrogate data. For a detailed description see again the next section.

Up to now there is no theory available for the performance of AAFT and
IAAFT. In this section we present a detailed discussion of level accuracy of
statistical tests based on AAFT and IAAFT. For a large class of hypothesis
models and for a set of test statistics level accuracy will be checked. We will
see that the methods can not guarantee a test that is valid for the large null
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hypothesis of transformed Gaussian stationary processes. The methods do not
perform well for time series with long coherence times. But we will also present
examples of well behaved standard Gaussian linear models where IAAFT turn
out as very unstable. We now give a detailed description of the AAFT and
IAAFT algorithms.

2.6.1 The AAFT and the IAAFT Approach – Definition

The method of Amplitude Adjusted Fourier-Transformed (AAFT) proceeds
as follows:

1. Let r = (r1, r2, . . . , rn) be the rank vector of an observational data vector
(x1, . . . , xn) and (x(1), . . . , x(n)) be its ordered sample.

2. Generate a sample w1, ..., wn of i.i.d. standard normal random vari-
ables and denote its ordered sample by (w(1), ..., w(n)). Put ẑt = w(rt),
t = 1, . . . , n. Then ẑt has the same rank in ẑ1, ..., ẑn as xt in x1, ..., xn.

3. Obtain phase-randomized surrogates of ẑt, say z∗t , t = 1, . . . , n.
4. The surrogate data sample x∗

t of xt is defined by x∗
t = x(r∗

t ). Here r∗t is
the rank of z∗t in the series z∗1 , . . . , z

∗
n.

In Steps 1 and 2, the observed data are transformed to normal variables.
This is done by using the random transformation ẑt = ĝ(xt) = Φ̂−1F̂ (xt).
Here Φ̂ is the empirical distribution function of the normal random variables
w1, ..., wn and F̂ is the empirical distribution function of x1, ..., xn. In Step 3,
the transformed data are phase randomized: Fourier-transformed surrogates
are generated. In the final step, the surrogate data are transformed back to
the original values. This is done by sorting the observed data according to
the ranks of the Fourier transformed surrogates: The phase randomized data
z∗1 , ..., z

∗
n are transformed by using the random transformation x∗

t = ĝ−(z∗t ) =
F̂−1Ĝ(z∗t ), where now Ĝ is the empirical distribution function of z∗1 , ..., z

∗
n.

The resulting data x∗
1, ..., x

∗
n are called AAFT surrogates. Note that in this

procedure the transformation ĝ− in Step 4 is typically not the inverse of the
transformation ĝ used in Step 2. They differ because F̂ differs from Ĝ. In
particular, the transformation ĝ does not depend on the surrogate sample
whereas ĝ− does.

The basic model assumptions imply that the transformed data ẑt and the
FT-based surrogates z∗t follow approximately a linear Gaussian process. Thus,
it may be reasonable directly to base the statistical inference on these time
series and to check if ẑt follows a linear Gaussian process. This would suggest
to calculate a test statistic for the transformed series ẑt and to calculate critical
levels for this test by using the surrogates z∗t . We will consider both type of
tests, tests based on the original time series xt and their AAFT surrogates x∗

t

and tests based on ẑt and z∗t .
Iterative AAFT (IAAFT) is an iterative algorithm based on AAFT. It was

proposed by [16] as an improved algorithm of AAFT. This algorithm is used to
generate resamples for the same hypothesis as AAFT, i.e., the hypothesis of a
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transformed linear Gaussian process. IAAFT is a method to produce surrogate
data which have the same power spectrum and the same empirical distribution
as the observed data. Note that this aim is not achieved by AAFT. The
IAAFT algorithm proceeds iteratively. It iteratively corrects deviations in the
spectrum and deviations in the empirical distribution (between the surrogates
and the original time series). The algorithm proceeds in the following steps:

1. Generate an ordered list of the sample (x(1) ≤ . . . ≤ x(n)) and calculate
the periodogram I2

k = |
∑n−1

t=0 xteitωk |2, ωk = 2πk/n, k = 1, . . . , n.
2. Initialization step: generate a random permutation (sample without re-

placement) {xa,(0)
t } of the data {xt}.

3. Iteration steps:
(i) At the j-th iteration, take the Fourier transform of {xa,(j)

t }, replace
the squared amplitudes by I2

k (without changing the phases) and transform
back by application of the inverse Fourier transform:

x
b,(j)
t = 1/

√
n

n−1∑
s=0

x̂
a,(j)
s

|x̂a,(j)
s |

|Is| exp (−itωs) ,

where x̂
a,(j)
t = 1/

√
n
∑n−1

s=0 x
a,(j)
s exp (−itωs) is the discrete Fourier trans-

form of {xa,(j)
s }.

(ii) The resulting series in (i) is rescaled back to the original data:

x
a,(j+1)
t = x(rj

t ),

where rj
t is the rank of x

b,(j)
t in x

b,(j)
1 , ..., x

b,(j)
n .

4. Repeat (i) and (ii) in Step 3 until the relative difference in the power
spectrum is sufficiently small. The limiting values x∗

t of x
b,(j)
t (or x

a,(j)
t )

are called IAAFT surrogates.

2.6.2 Comparison of AAFT and IAAFT – Numerical Experiments

In this section, results based on numerical experiments are presented. We have
conducted simulations for the following models.

M1 : xt is an i.i.d. sequence with distribution χ2
1.

M2 : xt is an i.i.d. sequence with distribution U [0, 1].
M3 : xt = z3

t , zt is a circular process with σ2
j = exp(−j/m).

M4 : xt = zt, zt is a circular process with σ2
j = exp(−j/8).

M5 : xt = z3
t , zt is a circular process with σ2

j = exp(−j/8).

M6 : xt = z3
t , zt = 1.4zt−1 − 0.48zt−2 + εt.

M7 : xt = z3
t , zt = 1.8zt−1 − 0.81zt−2 + εt.
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In all models the residuals εt are i.i.d. and have a standard normal distribution.
The circular processes in M4, M5 and M6 are generated as follows:

zt = A + c

m∑
j=1

√
B2

j + C2
j cos(ωjt + θj), t = 1, . . . , n .

Here A ∼ N (0, σ2), Bj , Cj ∼ N (0, σ2
j ), θj ∼ U [0, 2π] and A, Bj , Cj , and θj

are independent. Furthermore, we used the notation ωj = 2πj/n, c =
√

2π/n,
m = (n− 2)/2. Note that after application of a transformation the circular
Gaussian processes are still circular but in general not Gaussian distributed.

All models are transformed stationary Gaussian processes. Models M1 and
M2 are i.i.d. processes. Trivially, both can be written as xt = h(zt) with zt i.i.d.
standard gaussian. M3 is a transformed Gaussian circular process. For this cir-
cular process σ2

j = exp(−j/m),m = n− 1/2 and it exhibits a performance
near to an i.i.d. sequence. Models M4 and M5 are circular processes with
σ2

j = exp(−j/8). Model M4 is a Gaussian circular process and M5 is a nonlin-
ear transformation of M4. The fast decay of σ2

j leads to long coherence times.
Model M6 is a transformed AR(2) process transformed by h(x) = x3. The
underlying AR(2) process has all roots inside the unit circle (0.6 and 0.8). M7

represents a transformed Gaussian AR process of order two. The underlying
AR(2) process has roots 0.9 close to unity.

In the implementation of the AAFT algorithm the transformation function
h(.) and its inverse h−1(.) are estimated. One may expect that AAFT works
as well as a classical surrogate data test if these estimates are accurate. For
this reason, we checked the accuracy of these estimates for models M1 – M7.
We consider a single realization (x1, . . . , xn) of each model with n = 256.
In Figs. 2.11–2.14 the series are plotted against (ẑ1, . . . , ẑn) (horizontal axis)
as solid lines. In the same plots, the true function h(.) as a function of zt

is plotted as dotted line. For models M3, M5–M7, h(x) = x3 and for M4,
h(x) = x. M1 and M2 are i.i.d. processes. So for these i.i.d. processes, the
true transformation function is given as h(x) = F−1Φ(x), where Φ(.) denote
the distribution function of the standard normal distribution and F denotes
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Fig. 2.11 The estimated (solid line) and true (dotted line) transformation functions
for models M1 and M2
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Fig. 2.12 The estimated (solid line) and true (dotted line) transformation functions
for models M3 and M4

the distribution function of χ2
1 or U [0, 1], respectively. We observe that for

the two i.i.d. processes M1 and M2, the transformation function is estimated
very accurately. Approximately, this also holds for M3 and M6 (note that the
z-axes differ and always they include extreme points of a standard normal
law). For the other models the estimate behaves poorly, in particular in the
tails.

We have performed numerical experiments for the following test statistics:

T1 =
1
n

n−1∑
t=1

(XtX
2
t+1 −X2

t Xt+1),

S1 =
#{Xt > Xt+1}

n
, S2 = n− 1− S1,

T2 = S1,

T3 =
|S2 − S1|
S1 + S2

,

T4 = max
τ

Q(τ), Q(τ) =
∑n

t=τ+1(Xt−τ −Xt)3

[
∑n

t=τ+1(Xt−τ −Xt)2]3/2
,

T5 =
1
n

n−2∑
t=1

2∏
k=0

(Xt+k − X̄),

T6 =
1
n

n−4∑
t=1

4∏
k=0

(Xt+k − X̄),

T7 = max
{

#{|Xt+1 − X̄| > |Xt − X̄|}
#{|Xt+1 − X̄| < |Xt − X̄|} ,

#{|Xt+1 − X̄| < |Xt − X̄|}
#{|Xt+1 − X̄| > |Xt − X̄|}

}
T8 = Cn(r), Cn(r) =

∑n
i=2

∑i
j=1 I(||Xν

i −Xν
j || < r)

n(n− 1)/2
.

Here, I is the indicator function and ||X|| = maxk |Xk|. The vector
Xν

i = (Xi−(ν−1)d, Xi−(ν−2)d, . . . , Xi)T is an element of the phase space with
embedding dimension ν and delay time d. We have used delay time d = 2.
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Fig. 2.13 The estimated (solid line) and true (dotted line) transformation functions
for models M5 and M6.

The results are reported for embedding dimension ν = 4. We have used dif-
ferent values of r for different models. The test statistics T1, ..., T4 and T7

are statistics for checking time asymmetry. The tests T5 and T6 are based
on joint higher order central moments and they test the nonlinearity of the
dynamics. T8 is the correlation sum. It is the sample analog of the correlation
integral. Other physically meaningful measures (for example, the correlation
dimension, the maximum Lyapunov exponent, etc.) have been proposed to
check the nonlinear chaotic behavior of a data generating process. But there
is no automatic implementation of these test statistics. Thus, it is difficult
to incorporate these statistics in a simulation study. This is the reason why
we have considered correlation sums which can be computed by an automatic
scheme for different values of the threshold parameter r.

In the simulations we generated data xn = (x1 . . . , xn) from Models
M1–M7 and we calculated the test statistics Tj(xn) for j = 1, . . . , 6. We
used sample size n = 512. For each simulated xn, 1000 surrogate resamples
x∗
n were generated. For each of these resamples, we calculated test statistics

Tj(x∗
n), j = 1, . . . , 6. The surrogate data test rejects the hypothesis of a linear

stationary Gaussian process, if Tj(xn) > k∗
jα, where k∗

jα denotes the (1−α)-th
quantile of Tj(x∗

n). The first aim of our simulations is to check the level ac-
curacy of this test, i.e., to check if the rejection probability on the hypothesis
is approximately equal to the nominal level αnom: P [Tj(xn) > kjα] ≈ αnom.
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Fig. 2.14 The estimated (solid line) and true (dotted line) transformation function
for M7.
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For this check, the whole procedure was repeated 1000 times. The empirical
fraction α̂ of Tj(xn) > kjα is a Monte-Carlo-approximation of the level of
the test. The simulation results are given in Tables 2.5–2.7. We have used the
nominal value αnom = .05. The tables report how much α̂ differs from αnom.

We used different categories in Tables 2.5–2.9 for the level accuracy of
the tests, see the caption of Table 2.5. In category “– – –” the test always
rejects, in category “++++” the test always accepts. Both cases indicate a
total break down of the test. In particular, the latter case indicates a totally
erroneous performance of the test. Category “−” indicates that the test is too
conservative. In particular, the test will have poor power for neighbored al-
ternatives. We call level accuracies “−”, “ok” and “+” reasonable. Categories
“++” and “+++” again indicate a break down of the test. The test behaves
like a blind test: it has a performance comparable to a random number that
is produced without looking at the data.

Tables 2.5 and 2.6 summarize the results for the AAFT surrogate data
tests. Table 2.5 gives the results when the test statistics have been applied to
the untransformed data xt (AAFT I) and Table 2.6 shows the performance
when the test statistics have been calculated for the transformed data ẑt

(AAFT II). Both tests work quite well for Models M1–M6. There is no big
difference in the level accuracy of AAFT I and AAFT II. In Models M1–M6,
AAFT I is too liberal (“++”, “+++”) in two cases and too conservative in
one case (“−”). AAFT II has a slightly poorer performance: it is too liberal
in one case and too conservative in six cases. Both procedures outperform
IAAFT, see Table 2.7. In Models M1–M6, IAAFT is in five cases too liberal
and in 9 cases too conservative. Furthermore, in 8 of these cases it totally
breaks down: it always rejects or it always accepts. On the other hand, the
AAFT I procedure never totally breaks down and the AAFT II procedure
only in one case. This suggests that IAAFT is not stable. This may be caused
by the iterative nature of the algorithm. The algorithm sometimes runs into

Table 2.5 Level accuracy for AAFT surrogate data tests based on (xt, x
∗
t ). The level

accuracy is marked by “−” if the Monte-Carlo estimate α̂ of the level is 0.0, “−” if
0 < α̂ ≤ .015, “−” if .015 < α̂ ≤ .03, “ok” if .03 < α̂ ≤ .075, “+” if .075 < α̂ ≤ .125,
“++” if .125 < α̂ ≤ .250, “+++” if .250 < α̂ < 1, and “++++” if α̂ = 1. The
nominal level is .05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

M1 ok ok ok ok ok ok ok ok .1
M2 ok ok ok ok ok ok ok ok .2
M3 ok ok ok ok ok ok ok ok .2
M4 − ok ok + + + ok +++ .1
M5 − ok ok ok + ok ok + .1
M6 − ok ok + ok ok ok ++ 2.
M7 ok ++ ++ + ++ ++ ++ ok .5
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Table 2.6 Level accuracy for AAFT surrogate data tests based on (ẑt, z
∗
t ) with

nominal level 0.05. The level accuracy is marked as in Table 2.5

Model T1 T2 T3 T4 T5 T6 T7 T8 r

M1 ok ok ok ok ok ok ok ok .1
M2 ok ok ok ok ok ok ok ok .2
M3 ok ok ok ok ok ok ok ok .2
M4 ok ok ok ok − − ok + .1
M5 ok ok ok ok − − ok + .2
M6 ++ ok ok ok − − ok + .5
M7 +++ ++ ++ + − − ++ +++ .2

a totally misleading generation of surrogate data. Even for i.i.d. data (Models
M1 and M2) IAAFT breaks totally down, here in five out of 16 cases. This
means that here IAAFT does not capture the transformation of the data:
in case of large deviations from normality the basic idea of IAAFT to have
the same power spectrum as the observed data forces the method to biased
estimates of the transformation.

Both, AAFT I and AAFT II, work perfectly well for i.i.d. data and for
Model M3. This performance can be easily theoretically verified. If the under-
lying process x1, ..., xn is an i.i.d. sequence then their ranks (r1, ..., rn) have a
uniform distribution on the set of all permutations of (1, ..., n). Thus ẑ1, ..., ẑn

is a random permutation of an i.i.d. sample of standard normal variables.
Thus it is also an i.i.d. sample of standard normal variables, and in particular
it is a circular stationary linear Gaussian process. It has been shown in [3]
that the method of phase randomized surrogates has exact finite sample level
for circular stationary processes, see also [13]. This immediately implies that
AAFT I has exact finite sample level if the underlying process is i.i.d.. Fur-
thermore, it also implies that AAFT II has exact finite sample level. This can
be seen as follows. Consider first a deterministic sequence u1, ..., un and a test

Table 2.7 Level accuracy for IAAFT surrogate data tests with nominal level 0.05.
The level accuracy is marked as in Table 2.5

Model T1 T2 T3 T4 T5 T6 T7 T8

M1 + ok ok ok ok ok − −
M2 − − − − ok ok +++ −
M3 + ok ok ok ok ok − ok
M4 ok ok ok ok ok ok ++++ ok
M5 ok ok ok − ok ok ++++ +++
M6 ok ok ok ok − − − ++
M7 + ++ ++ ok − − − −
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statistic T . Order u1, ..., un in the same order as ẑ1, ..., ẑn and as its surro-
gates z∗1 , ..., z

∗
n. This gives two samples. Calculate now T for the two samples.

This can interpreted as AAFT I applied to a modified test statistic. Thus it
achieves exact finite sample level. The procedure would be exactly equal to
AAFT II if u1, ..., un would be chosen as x1, ..., xn. This choice is nonrandom
but the argument carries over because the order statistic x(1) ≤ ... ≤ x(n) is
independent of ẑ1, ..., ẑn.

Model M3 is a circular stationary model with short coherence time. Both
AAFT procedures work well for this model. This does not extend to circular
stationary model with long coherence times. This can be seen in the results
for Models M4 and M5. In some cases, the AAFT procedures have very poor
level accuracies for these models. In particular this shows that in this respect
AAFT behaves differently as (phase randomized) surrogate data testing that
has exact level for all circular stationary (Gaussian) processes. The additional
estimation of the transformation h that is incorporated in AAFT can lead to
level inaccuracies in case of long coherence times. The poor performance of
this estimation was illustrated in the plots for Models M4 and M5 in Figs. 2.12
and 2.13.

All procedures, AAFT and IAAFT performed poorly in Model M7. AAFT
I and IAAFT achieved reasonable results in 3 out of 8 cases, AAFT II only
in one case. M7 is a near to unit root process. Reference [13] used sim-
ulations for the same process without transformation to illustrate a poor
performance of phase randomized surrogate data tests for near to unit
root processes. They considered two modifications of surrogate data test-
ing. One was based on taking subsamples of the series with small gap
between the first and last observation. The end to end mismatch correc-
tion leads to drastic improvements. Motivated by this result, we tried the
same modification for both AAFT procedures for Model M7. The results
are reported in Tables 2.8 and 2.9. In Table 2.8 the mismatch correction
procedure is applied to the observed series xt, whereas in Table 2.9 it is
applied to the transformed series ẑt. For these experiments, we used the
sample size N = 512 and K1 = K2 = 40. (The starting point of the
subseries is chosen among the first K1 observations, the last point among
the last K2 observations, for details see [13]). There was no big difference
if the method was applied two xt or to ẑt. There was also a gain after

Table 2.8 Level accuracy for AAFT surrogate data tests with end to end correction.
The end to end correction was applied to the untransformed data xt. The nominal
level is 0.05. The level accuracy is marked as in Table 2.5

T1 T2 T3 T4 T5 T6 T7 T8 r

(xt, x
∗) −− + + ok ++ ++ + ok .5

(ẑt, z
∗) + + + + −−− −−− ok +++ .2
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Table 2.9 Level accuracy for AAFT surrogate data tests with end to end correction.
The end to end correction was applied to the transformed data ẑt. The nominal level
is 0.05. The level accuracy is marked as in Table 2.5

T1 T2 T3 T4 T5 T6 T7 T8 r

(xt, x
∗) −− ok + ok ++ ++ + ok .5

(ẑt, z
∗) + ok + + −−− −− + +++ .2

application of the end to end correction, but not quite so impressive as
for surrogate data tests. Now both AAFT methods worked for 5 out of 8
cases.

We also checked the performance of AAFT for the test statistics T1,...,T8

on the following alternatives:

• A1: Logistic map: xt+1 = 4xt(1− xt), x0 ∈ (0, 1).
• A2: Reversal logistic map: xt = 0.5[1 + εt(1− xt−1)

1
2 ] where

εt is equal to 1 or −1 with probability 1
2 and x0 ∼ Beta(.5, .5).

• A3: Tent map: xt+1 =
{

2xt if 0 ≤ xt ≤ .5
2(1− xt) if .5 ≤ xt ≤ 1 .

• A4: Reversal tent map: xt = .5(1− εt + εtxt−1) where
εt is equal to 1 or −1 with probability 1

2 and x0 ∼ U [0, 1].

Here we have considered two pairs of models (A1, A2) and (A3, A4). A1 and
A3 are two purely deterministic models and A2 and A4 are their stochastic
counterparts. After time reversion the stochastic models A2 and A4 are iden-
tical to A1 or A3, respectively. For a discussion of stochastic processes with
time reversal deterministic processes see [1, 9, 10, 21].

We performed similar simulations for Ai, i = 1, ..., 4 as for Models
M1,...,M8. The results of the simulations are summarized in Tables 2.10
and 2.11. We see that both AAFT tests, the test based on (xt, x

∗
t ) and the

test based on (ẑt, z
∗
t ) have a quite similar performance. For the test statistics

T1−T4, T7 and T8 they have nearly the same power. As above, they show a
different performance for T5 and T6. The tests show quite different behavior.
Three tests (T3, T7 and T8) always have a power near to one. The tests based

Table 2.10 Estimated power of AAFT tests based on (xt, x
∗
t ) with nominal level

0.05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

A1 1.00 .000 1.00 .999 .093 .043 .983 1.00 .1
A2 .000 1.00 1.00 .059 .082 .027 .998 1.00 .1
A3 1.00 .000 1.00 1.00 .235 .073 1.00 1.00 .1
A4 .000 1.00 1.00 .067 .145 .175 1.00 1.00 .1
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Table 2.11 Estimated power of AAFT tests based on (ẑt, z
∗
t ) with nominal level

0.05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

A1 .994 .000 1.00 .999 .321 .693 .980 1.00 .1
A2 .000 1.00 1.00 .054 .333 .718 1.00 1.00 .1
A3 1.00 .000 1.00 1.00 .479 .664 1.00 1.00 .1
A4 .000 1.00 1.00 .068 .368 .739 1.00 1.00 .1

on T1 and T4 have power near to one for the deterministic models A1 and A3

and have rejection probability less than the nominal level for the stochastic
models A2 and A4. The test statistic T2 behaves the other way around. It
rejects always for A2 and A4 and it never rejects for A1 and A3. The test
statistics T5 and T6 are not stable in their performances.

2.6.3 Comparison of AAFT and IAAFT – A Summary

In the previous subsection we investigated level accuracy and power charac-
teristics of Amplitude Adjusted Fourier–Transformed (AAFT) and improved
AAFT (IAAFT) algorithms. Both approaches are methods to get a statistical
test for the hypothesis of a transformed stationary linear Gaussian processes.
In both methods surrogate data are generated and tests are based on the
comparison of test statistics evaluated with original observations and with
surrogate data. In our study AAFT outperforms IAAFT in keeping the level
on the hypothesis. AAFT works quite well as long as the coherence time is
not too long. IAAFT is not stable in general. In many cases it totally breaks
down: it always rejects or it always accepts on the hypothesis. In case of long
coherence times the performance of AAFT can be improved by using end
to end corrections. But the improvements are not so impressive as for phase
randomized surrogate data.

2.7 Conclusions

This chapter contains a detailed description of the performance for a range
of surrogate methods in a variety of settings. In a simulation study with a
more general focus we showed that the performance strongly depends on the
chosen combination of test statistic, resampling method and null hypothesis.
For one test statistic, the new introduced time invariance test statistic, all
surrogate methods lead to accurate levels. In a more detailed comparison of
AAFT and IAAFT, both methods perform well as long as the coherence time
of the process is not too large. In this case, AAFT has a more reliable and
more accurate level.
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3.1 Introduction

During the last two decades wavelet methods have developed into power-
ful tools for a wide range of applications in signal and image processing.
The success of wavelet methods is based on their potential for resolving lo-
cal properties and to analyze non-stationary structures. This is achieved by
multiscale decompositions, e.g., a signal or image is mapped to a phase space
parametrized by a time/space- and a scale/size/resolution parameter. In this
respect, wavelet methods offer an alternative to classical Fourier- or Gabor-
transforms which create a phase space consisting of a time/space- frequency
parametrization. Hence, wavelet methods are advantageous whenever local,
non-stationary structures on different scales have to be analyzed.

The diversity of wavelet methods, however, requires a detailed mathemat-
ical analysis of the underlying physical or technical problem in order to take
full advantage of wavelet methods. This first of all requires to choose an appro-
priate wavelet. The construction of wavelets with special properties is still a
central problem in the field of wavelet and multiscale analysis. We will review
a recently developed construction principle for multivariate multiwavelets in
the next section. As a second step one needs to develop tools for analyzing
the result of the wavelet decomposition. Recently, nonlinear wavelet methods
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(shrinkage techniques) have been developed for solving ill-posed operator
equations and inverse problems in imaging. The success of wavelet methods
in this field is a consequence of the following facts:

• Weighted sequence norms of wavelet expansion coefficients are equivalent
in a certain range (depending on the regularity of the wavelets) to Sobolev
and Besov norms.

• For a wide class of operators their representation in the wavelet basis is
nearly diagonal.

• The vanishing moments of wavelets remove smooth parts of a function and
give rise to very efficient compression strategies.

This will be demonstrated in a section on applications in signal and image
processing, where we highlight the potential of wavelet methods for nonlinear
image decomposition and deconvolution tasks. The numerical results include
evaluations of real life data from MALDI/TOF mass spectroscopy from Bruker
Daltonics GmbH, Bremen, and Hoffmann-La Roche AG, Basel.

3.2 Multiwavelets

In this section we present a construction principle for multivariate multi-
wavelets, which remedies some fundamental drawbacks of classical wavelet
constructions.

The general setting can be described as follows. Let M be an integer d×d
scaling matrix which is expanding, i.e., all its eigenvalues have modulus larger
than one. If for a finite set I the system

ψi,j,β(x) := mj/2ψi(M jx− β) , i ∈ I, j ∈ Z, β ∈ Z
d , (3.1)

where m = |detM |, is a basis of L2(Rd), then {ψi,j,β}i∈I,j∈Z,β∈Zd is called a
wavelet basis. Within this classical setting there are still some serious bottle-
necks. It has turned out that some desirable properties cannot be achieved at
the same time. For instance, it would be optimal to construct an orthonormal
basis that is also interpolating, since orthonormality gives rise to very efficient
decomposition and reconstruction algorithms, and the interpolation property
yields a Shannon-like sampling theorem. However, it can be checked that for
sufficiently smooth wavelets such a construction is impossible [42].

To overcome this problem, a more general approach that provides more
flexibility is needed.

One way is to consider multiwavelets, i.e., a collection of function vectors

Ψ (n) :=
(
ψ

(n)
0 , . . . , ψ

(n)
r−1

)	
∈ L2(Rd)r, 0 < n < m, for which{

ψ
(n)
0

(
M j · −β

)
, . . . , ψ

(n)
r−1

(
M j · −β

) ∣∣∣∣ j ∈ Z, β ∈ Z
d, 0 < n < m

}
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forms a (Riesz) basis of L2(Rd). Compared to the classical scalar setting, this
notion of wavelets is much more general.

This section is organized as follows. In Subsect. 3.2.1, we briefly recall the
basic properties of scaling functions and wavelets as far as they are needed for
our purposes. Then, in Subsect. 3.2.2, we describe a new construction method
that enables us to construct orthogonal families of multiwavelets with suffi-
ciently high smoothness which are in addition also interpolating. This is a
very surprising result which clearly demonstrates the usefulness of the multi-
wavelet approach, since nothing similar can be done in the classical wavelet
setting. Finally, in Subsect. 3.2.3, our approach is further extended by pre-
senting construction principles for biorthogonal pairs of symmetric compactly
supported interpolating scaling vectors with nice approximation and smooth-
ness properties. The results in this subsection have been published in a series
of papers [27, 28, 29, 30], we refer to these papers for further details.

3.2.1 General Setting

Refinable Function Vectors

Let Φ := (φ0, . . . , φr−1)	, r > 0, be a vector of L2(Rd)-functions which satis-
fies a matrix refinement equation

Φ(x) =
∑

β∈Zd

AβΦ(Mx− β), Aβ ∈ R
r×r , (3.2)

with the mask A := (Aβ)β∈Zd , then Φ is called (A,M)-refinable.
We shall always assume that the mask has only a finite number of non-

vanishing entries, A ∈ �0(Zd)r×r, and these entries are denoted by

Aβ =

⎛⎜⎜⎝
a
(0,0)
β · · · a

(0,r−1)
β

...
. . .

...
a
(r−1,0)
β · · · a(r−1,r−1)

β

⎞⎟⎟⎠ . (3.3)

Applying the Fourier transform component-wise to (3.2) yields

Φ̂(ω) =
1
m

A(e−iM−�ω)Φ̂(M−	ω) , ω ∈ R
d , (3.4)

where e−iω is a shorthand notation for (e−iω1 , . . . , e−iωd)	. The symbol A(z)
is the matrix valued Laurent series with entries

ai,j(z) :=
∑

β∈Zd

a
(i,j)
β zβ , z ∈ d ,

and d :=
{
z ∈ C

d : |zi| = 1, i = 1, . . . , d
}

denotes the d-dimensional torus.
All elements of d have the form z = e−iω, ω ∈ R

d, thus we have zβ = e−i〈ω,β〉,
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and for ξ ∈ R
d we use the notation zξ := e−i(ω+2πξ). In addition, we define

zM := e−iM�ω such that (zM )β = zMβ and zM
ξ := e−iM�(ω+2πξ).

One central aim is the construction of families of interpolating m-scaling
vectors Φ with compact support, i.e., all components of Φ are at least contin-
uous and satisfy

φn

(
M−1β

)
= δρn,β for all β ∈ Z

d, 0 ≤ n < m , (3.5)

where R := {ρ0, . . . , ρm−1} denotes a complete set of representatives of
Z

d/MZ
d. Note that the interpolation condition (and the length of the scal-

ing vector) is determined by the determinant of the scaling matrix. One
advantage of interpolating scaling vectors is that they give rise to a Shannon-
like sampling theorem as follows. For a compactly supported function vector
Φ ∈ L2(Rd)m, let us define the shift-invariant space

S(Φ) :=
{ ∑

β∈Zd

uβΦ(· − β)
∣∣u ∈ �(Zd)1×m

}
.

A direct computation shows that, if Φ is a compactly supported interpo-
lating m-scaling vector, then for all f ∈ S(Φ) the representation

f(x) =
∑

β∈Zd

m−1∑
i=0

f
(
β + M−1ρi

)
φi(x− β) (3.6)

holds. The interpolation requirement is quite strong and implies the following
necessary condition on the mask.

Lemma 3.1 Let ρk ∈MZ
d, then the mask of an interpolating m-scaling vec-

tor has to satisfy

a
(i,k)
Mα+ρj−M−1ρk

= δ0,αδi,j for all α ∈ Z
d, 0 ≤ i, j < m .

For simplicity of notation, we shall assume ρ0 = 0 ∈ Z
d without loss of

generality. Then the above lemma implies that the symbol of an interpolating
m-scaling vector has to have the form

A(z) =

⎛⎜⎝ zρ0 a(0,1)(z) · · · a(0,m−1)(z)
...

...
. . .

...
zρm−1 a(m−1,1)(z) · · · a(m−1,m−1)(z)

⎞⎟⎠ . (3.7)

For the case m = 2 we can choose R = {0, ρ} and obtain

A(z) =
(

1 a(0)(z)
zρ a(1)(z)

)
. (3.8)
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Multiwavelets

Next we want to briefly explain how a multiwavelet basis can be constructed,
provided that a suitable (interpolating) refinable function vector is given. As
in the classical setting, a multiwavelet basis can be constructed by means of
a multiresolution analysis which is a sequence (Vj)j∈Z of closed subspaces of
L2(Rd) which satisfies:
(MRA1) Vj ⊂ Vj+1 for each j ∈ Z ,
(MRA2) g(x) ∈ Vj if and only if g(Mx) ∈ Vj+1 for each j ∈ Z ,
(MRA3)

⋂
j∈Z

Vj = {0} ,

(MRA4)
⋃

j∈Z

Vj is dense in L2(Rd) , and

(MRA5) there exists a vector Φ ∈ L2(Rd)r, called the generator, such that

V0 = span{φi(x− β) |β ∈ Zd, 0 ≤ i < r} .
Let W0 denote an algebraic complement of V0 in V1 and define

Wj := {g(M j ·) | g ∈W0}. Then, one immediately obtains that Vj+1 = Vj⊕Wj

and consequently, due to (MRA3) and (MRA4), L2(Rd) =
⊕

j∈Zd Wj . If one
finds function vectors Ψ (n) ∈ L2(Rd)r, 0 < n < m, such that the integer
translates of the components of all Ψ (n) are a basis of W0, then, by dilation,
one obtains a multiwavelet basis of L2(Rd). Since W0 ⊂ V1, each Ψ (n) can be
represented as

Ψ (n)(x) =
∑

β∈Zd

B
(n)
β Φ(Mx− β) (3.9)

for some B(n) ∈ �(Zd)r×r. By applying the Fourier transform component-wise
to (3.9), one obtains

Ψ̂ (n)(ω) =
1
m

B(n)(e−iM−�ω)Φ̂(M−	ω) , ω ∈ R
d ,

with the symbol

B(n)(z) :=
∑

β∈Zd

B
(n)
β zβ , z ∈ d .

Therefore, the task of finding a stable multiwavelet basis can be reduced to
constructing the symbols B(n)(z).

Consequently, to obtain some multiwavelets, we first have to find a way
to construct a suitable MRA. Under mild conditions, (MRA1) and (MRA2)
imply that the function vector Φ in (MRA5) satisfies a refinement equation
of the form (3.2). Therefore, refinable function vectors are the natural candi-
dates for generators. Fortunately, it can be shown that any compactly sup-
ported interpolating scaling vector indeed generates an MRA, therefore, the
whole construction problem is reduced to finding suitable interpolating scaling
vectors. For further information, the reader is referred to [14, 33, 41].
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Approximation Order

In order to obtain efficient numerical algorithms, the power of the MRA to
approximate (sufficiently smooth) functions is essential. For a compactly sup-
ported function vector Φ ∈ L2(Rd)r and h > 0, let

Sh(Φ) :=
{
f
( ·
h

)
| f ∈ S(Φ) ∩ L2(Rd)

}
denote the space of all h-dilates of S(Φ) ∩ L2(Rd). Φ (or S(Φ)) is said to
provide approximation order k > 0 if the Jackson-type inequality

inf
g∈Sh(Φ)

‖f − g‖L2 = O(hk) , as h→ 0 ,

holds for all f contained in the Sobolev space Hk(Rd). The approximation
properties of a scaling vector are closely related to its ability to reproduce
polynomials. A function vector Φ : R

d −→ C
r with compact support is said

to provide accuracy order k + 1, if πd
k ⊂ S(Φ), where πd

k denotes the space
of all polynomials of total degree less or equal than k in R

d. It was shown
by Jia, see [23], that if a compactly supported scaling vector Φ has linear
independent integer translates, then the order of accuracy is equivalent to the
approximation order provided by Φ.

A mask A ∈ �0(Zd)r×r of an r-scaling vector with respect to a scaling
matrix M satisfies the sum rules of order k if there exists a set of vectors
{yµ ∈ R

r |µ ∈ Z
d
+, |µ| < k} with y0 �= 0 such that for some uniquely deter-

mined numbers w(µ, ν)

∑
0≤ν≤µ

(−1)|ν|

⎛⎝∑
β∈Zd

(
M−1ρ + β

)ν

ν!
A	

ρ+Mβ

⎞⎠ yµ−ν =
∑

|ν|=|µ|
w(µ, ν)yν(3.10)

holds for all µ ∈ Z
d
+ with |µ| < k and all ρ ∈ R. It was proven in [8, 24] that

if the mask of a compactly supported scaling vector Φ satisfies the sum rules
of order k, then Φ provides accuracy of order k.

3.2.2 Multivariate Orthonormal Interpolating Scaling Vectors

In this subsection we want to derive a construction method to obtain a multi-
wavelet basis Ψ (n) which is orthogonal and interpolating. As already outlined
above, the whole construction can be reduced to the task of finding a suitable
refinable scaling vector. In particular, we will focus on scaling matrices with
|det(M)| = 2. Then, in the interpolating setting, we obtain r = m = 2, and
since the number of multiwavelets is determined by m, cf. Subsect. 3.2.1, this
approach enables us to construct a basis of L2(Rd) generated by one single
mother multiwavelet consisting of two functions only. Therefore, the final goal
in this section is to construct a multiwavelet basis that satisfies
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〈ψi,m
j/2ψi′(M j · −β)〉 = cδi,i′δ0,jδ0,β , i, i′ = 0, 1, j ∈ Z, β ∈ Z

d , (3.11)

with a constant c > 0, as well as Ψ
(
M−1β

)
=

(
δ0,β

δρ,β

)
for all β ∈ Z

d and

R = {0, ρ}.

Main Ingredients

As already explained, the starting point is an interpolating scaling vector
whose integer translates of all component functions are mutually orthogonal,
i.e.,

〈φi, φj(· − β)〉 = ĉδi,jδ0,β , i, j = 0, 1, β ∈ Z
d , (3.12)

with a constant ĉ > 0. By using Fourier transform, it can be checked that the
symbol A(z) of an orthonormal scaling vector has to satisfy∑

ρ̃∈R̃

A
(
zM−�ρ̃

)
A
(
zM−�ρ̃

)	
= m2 Ir , (3.13)

where R̃ denotes a complete set of representatives of Z
d/M	

Z
d. For the special

case of an interpolating 2-scaling vector with compact support we obtain the
following simplified conditions.

Theorem 3.2 Let A(z) be the symbol of an interpolating 2-scaling vector with
mask A ∈ �0(Zd)2×2. A(z) satisfies (3.13) if and only if the symbol entries
a(0)(z) and a(1)(z) in (3.8) satisfy∣∣∣a(0)(z)

∣∣∣2 +
∣∣∣a(0)

(
zM−�ρ̃

)∣∣∣2 = 2 (3.14)

and

a(1)(z) = ±zαa(0)(zM−�ρ̃) (3.15)

for some α ∈ [ρ], where [ρ] denotes the coset of ρ, and with R̃ = {0, ρ̃}.

So any construction of orthonormal and interpolating scaling functions has to
start with the necessary conditions stated in Theorem 3.2. In order to obtain a
useful result, also the approximation order, i.e., the sum rules have to be taken
into account. For an orthonormal interpolating scaling vector with m = 2 we
obtain the following simplification.

Theorem 3.3 If we choose

a(1)(z) = zρ
∑

β∈Zd

(−1) [ρ](β)aβz
−β , a(0)(z) =

∑
β∈Zd

aβz
β
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in (3.15), then for an orthonormal interpolating 2-scaling vector the sum rules
of order k are reduced to(

M−2ρ
)µ

=
∑

β∈Zd

aβ

(
−M−1β

)µ
,

(
M−2ρ

)µ
=

∑
β∈Zd

aβ

(
M−1β

)µ
(−1) [ρ](β)

for all µ ∈ Z
d
+, |µ| < k, with R = {0, ρ}.

Explicit Construction

Based on the results in the previous subsection, we suggest the following
construction principle:

1. Choose a scaling matrix M with |det (M)| = 2 and the nontrivial repre-
sentative ρ of Z

d/MZ
d such that R = {0, ρ}.

2. Start with the first symbol entry
a(0)(z) =

∑
β∈Λ aβz

β by choosing the support Λ ⊂ Z
d of (aβ)β∈Λ. Cen-

tering the coefficients around a0 provides the best results, therefore, we
suggest the choice of Λ = [−n, n]d ∩ Z

d.
3. According to Theorem 3.2 the second symbol entry a(1)(z) has to have

the form
a(1)(z) = ±zαa(0)(zM−�ρ̃) with α ∈ [ρ]. Based on our observations we
suggest to choose α = ρ and a positive sign, since this seems to provide
the highest regularity and the smallest support.

4. Apply the orthogonality condition (3.14) to the coefficient sequence (aβ)β∈Λ.
This will consume about one half of the degrees of freedom.

5. Finally, apply the sum rules of Theorem 3.3 up to the highest possible
order to the coefficient sequence (aβ)β∈Λ.

Starting with an index set Λ = {−n, . . . , n}2, we obtain a sequence of scaling
vectors denoted by Φn with increasing accuracy order and regularity. For the
special case of the quincunx matrix Mq, defined by

Mq :=
(

1 −1
1 1

)
,

let us denote the resulting scaling vector by Φq
n. In Table 3.1 the properties of

the constructed examples are shown. Note that for n ≥ 2 all our solutions have
critical Sobolev exponents strictly larger than one. Therefore, by the Sobolev
embedding theorem, see [1], all these scaling vectors are at least continuous.

For n = 5 we obtain an example that is continuously differentiable. The
corresponding functions are shown in Fig. 3.1. The reader should note that
these scaling vectors are very well localized.
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Table 3.1 Accuracy order and critical Sobolev exponent s of the Φq
n

n Accuracy order s(Φq
n)

0 1 0.238
1 1 0.743
2 2 1.355
3 3 1.699
4 3 1.819
5 4 2.002

Multiwavelets

Once a suitable scaling vector is found, the construction of an associated
multiwavelet basis is easy.

Theorem 3.4 Let A(z) be the symbol of a compactly supported orthonormal
interpolating 2-scaling vector Φ. Furthermore, let the function vector Ψ be
defined by (3.9), where B(z) is given by

B(z) =
(

1 −a(0)(z)
zρ −a(1)(z)

)
(3.16)

with a(0)(z) and a(1)(z) as in (3.8). Then,
√

2Ψ gives rise to an orthonormal
multiwavelet basis, and Ψ is also interpolating.
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Fig. 3.1 Component functions of Φq
5
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ψ0 ψ1

Fig. 3.2 Multiwavelets corresponding to Φq
5

One example of such an interpolating multiwavelet corresponding to our scal-
ing vector Φq

5 is shown in Fig. 3.2.

3.2.3 Multivariate Symmetric Interpolating Scaling Vectors

In this subsection our aim is to extend the approach obtained in the pre-
vious subsection by incorporating an additional property, namely symme-
try. Since symmetry is hard to achieve in the orthonormal setting, we fo-
cus on the construction of a pair of biorthogonal scaling vectors (Φ, Φ̃), i.e.,〈
φi, φ̃j(· − β)

〉
= c ·δi,jδ0,β , 0 ≤ i, j < r, holds for all β ∈ Z

d and a constant
c > 0, the interpolation property being solely satisfied by the primal scaling
vectors. A necessary condition for Φ and Φ̃ to be biorthogonal is that their
symbols A(z) and Ã(z) satisfy∑

ρ̃∈R̃

A(zM−�ρ̃)Ã(zM−�ρ̃)
	

= m2 Im . (3.17)

The concept of biorthogonality provides more flexibility compared to or-
thonormality, and likely scaling vectors can be obtained providing reasonable
approximation power together with much smaller supports than for the case
of orthonormal vectors.

Main Ingredients

The following notion of symmetry was introduced in [20], see also [19].
A finite set G ⊂

{
U ∈ Z

d×d
∣∣ |detU | = 1

}
is called a symmetry group with

respect to M if G forms a group under matrix multiplication and for all U ∈ G
we have MUM−1 ∈ G. Since G is finite, U ∈ G implies M−1UM ∈ G as well.
A scaling vector Φ is called G-symmetric, if for 0 ≤ i < m and ci = M−1ρi

holds

φi(U(x− ci) + ci) = φi(x) .

Since all elements of G are integer matrices, the notion of symmetry can be
used for sequences as well. In particular it holds
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Proposition 3.5 Let G be a symmetry group with respect to M and let Φ
be a G-symmetric interpolating m-scaling vector with mask A ∈ �0(Zd)r×r.
If U [ρ] = [ρ] holds for all ρ ∈ R and for all U ∈ G, then the mask entries
(a(i,j)

β )β∈Zd are G-symmetric with centers ρi−M−1ρj =: c(i, j), meaning that

a
(i,j)
β = a

(i,j)
U(β−c(i,j))+c(i,j) ,

for all β ∈ Z
d and all U ∈ G, 0 ≤ i, j < m.

Proposition 3.5 shows that a symmetric interpolating scaling vector is com-
pletely determined by a small part of its mask.

Furthermore, we are able to give the following decomposition of the sup-
ports of our masks.

Proposition 3.6 Let a(i,j) ∈ �0(Zd), 0 ≤ i, j < m, be G-symmetric with
centers c(i, j) := ρi −M−1ρj. Then there exist finite sets Ωj ⊂ Z

d such that
Ωj + M−1ρj is G-symmetric (i.e., U(Ωj + M−1ρj) ⊂ Ωj + M−1ρj for all
U ∈ G), and supp(a(i,j)) ⊂ Ωj + ρi. Furthermore, there exist sets Λj ⊂ Ωj

such that we have the disjoint decomposition

Ωj + ρi =
⋃

β∈Λj+ρi

⋃
U∈Gβ−c(i,j)

{
U(β − c(i, j)) + c(i, j)

}
. (3.18)

Similar to Theorem 3.2, using that Φ is intended to be interpolating, the
biorthogonality condition can be considerably simplified.

Proposition 3.7 Let (Φ, Φ̃) be a pair of dual m-scaling vectors with masks
(Aβ), (Ãβ) ∈ �0(Zd)m×m. If Φ is interpolating, then the biorthogonality con-
dition (3.17) holds if and only if

ã
(j,0)
ρi−Mα +

m−1∑
n=1

∑
β∈Zd

a
(i,n)
β ã

(j,n)
β−Mα = m · δ0,αδi,j , 0 ≤ i, j < m , (3.19)

holds for all α ∈ Z
d .

Thus, given the mask of a primal interpolating scaling vector, the biorthogo-
nality condition leads to simple linear conditions on the dual mask.

Similar to the orthonormal case, before we can incorporate the sum rules
(3.10) into our construction, the vectors yµ have to be determined, see [30]
for details on how this can be realized.

Explicit Construction

In this section we give an explicit construction method for the masks of sym-
metric interpolating scaling vectors on R

d with compact support, as well as for
the masks of the dual scaling vectors which are also symmetric and compactly
supported. We start with the primal side:
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1. Choose the scaling matrix M and a complete set of representatives R =
{0, ρ1, . . . , ρm−1} of Z

d/MZ
d. Choose an appropriate symmetry group G.

2. To determine the support of the mask A ∈ �0(Zd)m×m, choose the sets Ωj

in Proposition 3.6 for 1 ≤ j < m and compute some minimal generating
sets Λj ⊂ Ωj . Thus, we start with m ·

∑m−1
j=1 |Λj | degrees of freedom.

3. Apply a proper sum rule order k (i.e., as high as possible) taking into
account the symmetry conditions in Proposition 3.5.

4. Find the best solution.

If the sets Λj are not too large, we have to deal with a moderate number of
linear equations only. Hence, the system in step 3 can be solved analytically.
In general, this system is under-determined and thus, as step 4 of our scheme,
we can use these remaining degrees of freedom to maximize the regularity of
the corresponding scaling vector Φ.

Given the mask of a symmetric interpolating scaling vector, the mask of
a dual scaling vector can be obtained as follows:

1. For 0 ≤ i < m choose the symmetry center ci of φ̃i. Due to the biorthog-
onality of Φ and Φ̃, the choice ci = M−1ρi suggests itself.

2. Determine the support of Ã ∈ �0(Zd)m×m by choosing Ω̃j , 0 ≤ j < m,
and compute some minimal generating sets Λ̃j ⊂ Ω̃j corresponding to
Proposition 3.6. Thus, we have m ·

∑m−1
j=0 |Λ̃j | degrees of freedom.

3. Apply the biorthogonality condition (3.19) to the coefficient sequence
(Ãβ)β∈Zd with respect to the symmetry conditions on the dual mask.

4. Choose a proper sum rule order k̃ and compute the vectors ỹµ, |µ| < k̃.
5. Apply the sum rules of order k̃ to the coefficient sequence Ã with respect

to the symmetry conditions on the dual mask.
6. Proceed analogously to step 4 for the primal vectors.

ψ0 ψ1

Fig. 3.3 Primal multiwavelets corresponding to Mq with six vanishing moments
and critical Sobolev index s = 3.664
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In [30] it has been shown that for a pair of compactly supported biorthog-
onal r-scaling vectors biorthogonal multiwavelets Ψ (n) and Ψ̃ (n), 1 ≤ n < m,
can be obtained by solving appropriate matrix extension problems. For
instance, for the quincunx matrix Mq and the symmetry group

G :=
{
±I,±

(
0 −1
1 0

)
,±

(
1 0
0 −1

)}
,

we obtain the primal multiwavelets shown in Fig. 3.3.

3.3 Multiscale Approximation in Image Processing

In this section, we discuss some aspects of multiscale approximation in the
context of signal and image processing. Essentially, we are focusing on prob-
lems where it is reasonable to assume that the solution has a sparse expansion
with respect to a wavelet basis. The starting point is always a wavelet-based
variational formulation of the underlying signal or image restoration problem,
which incorporates a Besov-penalty for ensuring a sparse approximation. The
main ingredient to solve the regularized variational problem is therefore the
norm equivalence between Besov norms and sequence norms for the orthonor-
mal wavelet decomposition:

‖f‖Hs(R) <∞⇔
∑

k

|〈f, ϕJ,k〉|2 +
∑
j≥J

∑
k

22js |〈f, ψj,k〉|2 <∞ (3.20)

‖f‖Bs
p(Lp(R)) <∞⇔ 2J(1/2−1/p)

∑
k

|〈f, ϕJ,k〉|p

+
∑
j≥J

∑
k

2pjs2j( p
2−1) |〈f, ψjk〉|p <∞ (3.21)

see [9]. By using tensor products, an analogous result can also be derived
for the multivariate case, see the appendix in [13]. A first result of this type
was presented in [17], where the definition of an appropriate surrogate func-
tional led to an iterated soft shrinkage procedure. The shrinkage is due to the
�p-penalization term in the variational formulation and leads to sparse sig-
nal representation. The importance of sparse representations for various tasks
in image processing such as compression, denoising, deblurring and texture
analysis has been highlighted in various papers, which also led to substantial
generalizations for solving this type of variational problems in image pro-
cessing, [2, 3, 38]. In this section emphasis is placed on the special case of
simultaneously denoising, decomposing and deblurring as well as some partic-
ular deconvolution tasks for peak-like objects. We also discuss the potential
of these methods for analyzing real life data from 1 D and 2 D applications in
mass spectroscopy.
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3.3.1 Simultaneous Decomposition, Deblurring and Denoising
of Images by Means of Wavelets

We follow approaches presented by Vese–Osher and Osher–Solé–Vese,
see [35, 37] and discuss a special class of variational functionals that induce a
decomposition of images into oscillating and cartoon components and possi-
bly an appropriate “noise” component; the cartoon part is, ideally, piecewise
smooth with possibly abrupt edges and contours; the texture part on the other
hand “fills” in the smooth regions in the cartoon with, typically, oscillating
features. Osher, Solé and Vese propose to model the cartoon component by
the space BV ; this induces a penalty term that allows edges and contours in
the reconstructed cartoon images, leading however to a numerically intensive
PDE based scheme.

Our hope is to provide a computationally thriftier algorithm by using a
wavelet-based scheme that solves not the same but a very similar variational
problem, in which the BV -constraint is replaced by a B1

1(L1)-term. This relies
on the fact that elementary methods based on wavelet shrinkage solve similar
extremal problems where BV (Ω) is replaced by the Besov space B1

1(L1(Ω)).
Since BV (Ω) can not be simply described in terms of wavelet coefficients, it is
not clear that BV (Ω) minimizers can be obtained in this way. Yet, it is shown
in [10], exploiting B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω)) − weak, that methods

using Haar systems provide near BV (Ω) minimizers. So far there exists no
similar result for general (in particular smoother) wavelet systems.

We shall nevertheless use wavelets that have more smoothness/vanishing
moments than Haar wavelets, because we expect them to be better suited to
the modeling of the smooth parts in the cartoon image. Though we may not
obtain provable “near-best-BV -minimizers”, we hope to nevertheless be “not
far off”. This approach allows us, moreover, to incorporate bounded linear blur
operators into the problem so that the minimization leads to a simultaneous
decomposition, deblurring and denoising.

Wavelet-Based Variational Formulation and Iterative Strategy
for Image Decomposition

The basic idea of the variational formulation of the decomposition problem
goes back to the famous total variation framework of Rudin et al. [39] and
was improved in a series of papers, see e.g., [34, 35, 36, 37], finally amounting
to the following minimization problem

inf
u,v

G2(u, v) , where

G2(u, v) =
∫

Ω

|∇u|+ λ‖f − (u + v)‖2L2(Ω) + µ‖v‖2H−1(Ω) ,
(3.22)

where u stands for the cartoon part and v for the oscillatory part of a given
image f . In general, one drawback is that the minimization of (3.22) leads to
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numerically intensive schemes. Instead of solving problem (3.22) by means of
finite difference schemes, we propose a wavelet-based treatment by replacing
BV (Ω) by the Besov space B1

1(L1(Ω)). Incorporating, moreover, a bounded
linear operator K, we end up with the following variational problem:

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u + v)‖2L2(Ω) + γ‖v‖2H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

(3.23)

At first, we may observe the following

Lemma 3.8 If the null-space N (K) of the operator K is trivial, then the
variational problem (3.23) has a unique minimizer.

In order to solve problem (3.23) by means of wavelets we have to switch to
the sequence space formulation. When K is the identity operator the problem
simplifies to

inf
u,v

{∑
λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|2 + 2α|uλ|

)}
, (3.24)

where J = {λ = (i, j, k) : k ∈ Jj , j ∈ Z, i = 1, 2, 3} is the index set used in
our separable setting. The minimization of (3.24) is straightforward, since it
decouples into easy one-dimensional minimizations. This results in an explicit
shrinkage scheme, presented also in [15, 16]:

Proposition 3.9 Let f be a given function. The functional (3.24) is min-
imized by the parameterized class of functions ṽγ,α and ũγ,α, given by the
following nonlinear filtering of the wavelet series of f :

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
fλ − Sα(22|λ|+γ)/γ(fλ)

]
ψλ

and

ũγ,α = f〈j0〉 +
∑

λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator, Jj0 all indices λ for scales larger
than j0 and f〈j0〉 is the approximation at the coarsest scale j0.

In the case where K is not the identity operator the minimization process
results in a coupled system of nonlinear equations for the wavelet coefficients
uλ and vλ, which is not as straightforward to solve. To overcome this problem,
we proceed as follows. We first solve the quadratic problem for v, and then
construct an iteration scheme for u. To this end, we introduce the differential
operator T := (−∆)1/2. Setting v = Th, problem (3.23) reads as
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inf
(u,h)
Ff (h, u) , with

Ff (h, u) = ‖f −K(u + Th)‖2L2(Ω) + γ‖h‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

(3.25)

Minimizing (3.25) with respect to h results in

h̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently

ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for h̃γ(f, u) in (3.25) and defining

fγ := Tγf , T 2
γ := I −KT (T ∗K∗KT + γ)−1T ∗K∗ , (3.26)

we obtain

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) . (3.27)

Thus, the remaining task is to solve

inf
u
Ff (h̃γ(f, u), u) , where

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

(3.28)

Proposition 3.10 Suppose that K is a linear bounded operator modeling the
blur, with K maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is
defined as in (3.26), and the functional F sur

f (h̃, u; a) is defined by

F sur
f (h̃γ(f, u), u; a) = Ff (h̃γ(f, u), u) + ‖u− a‖2L2(Ω) − ‖TγK(u− a)‖2L2(Ω) .

Then, for arbitrarily chosen a ∈ L2(Ω), the functional F sur
f (h̃γ(f, u), u; a) has

a unique minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a + K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ .

The proof follows from [16]. One can now define an iterative algorithm by
repeated minimization of F sur

f :

u0 arbitrary ; un = arg min
u

(
F sur

f (h̃γ(f, u), u;un−1)
)

, n = 1, 2, . . . . (3.29)

The convergence results shown in [15, 17, 18] can be applied directly:
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Theorem 3.11 Suppose that K is a linear bounded operator, ‖K∗K‖ < 1,
and that Tγ is defined as in (3.26). Then the sequence of iterates

un
γ,α = Sα(un−1

γ,α + K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α

of the functional

Ff (h̃γ(f, u), u) = ‖Tγ(f −Ku)‖2L2(Ω) + 2α|u|B1
1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of
iterates converges to ũγ,α in norm.

Combining the result of Theorem 3.11 and the representation for ṽ, we sum-
marize how the image can finally be decomposed in cartoon and oscillating
components.

Corollary 3.12 Assume that K is a linear bounded operator modeling the
blur, with ‖K∗K‖ < 1. Moreover, if Tγ is defined as in (3.26) and if ũγ,α is the
minimizing element of (3.28), obtained as a limit of un

γ,α (see Theorem 3.11),
then the variational problem

inf
(u,h)
Ff (h, u) , with

Ff (h, u) = ‖f −K(u + Th)‖2L2(Ω) + γ‖h‖2L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class

(ũγ,α, (T ∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) ,

where ũγ,α is the unique limit of the sequence

un
γ,α = Sα(un−1

γ,α + K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . .

Numerical Experiments – Additional Redundancy and Adaptivity

The nonlinear filtering rule of Proposition 3.9 gives explicit descriptions of
ṽ and ũ that are computed by fast discrete wavelet schemes. However, non-
redundant filtering very often creates artifacts in terms of undesirable oscil-
lations, which manifest themselves as ringing and edge blurring, see Fig. 3.4.
Poor directional selectivity of traditional tensor product wavelet bases likewise
cause artifacts. Therefore, we apply various refinements on the basic algorithm
that address this problem. In particular, we shall use redundant translation
invariant schemes, see [12], complex wavelets, see e.g., [25, 40], and additional
edge dependent penalty weights introduced in [16]. Here we limit ourselves to
presenting the numerical results for the particular problem of simultaneously
decomposing, deblurring and denoising a given image.
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Fig. 3.4 An initial geometric image f (left), and two versions of f (the middle
decomposed with the Haar wavelet basis and the right with the Db3 basis) where
the soft-shrinkage operator with shrinkage parameter α = 0.5 was applied

We start with the case where K is the identity operator. In order to show
how the nonlinear (redundant) wavelet scheme acts on piecewise constant
functions, we decompose a geometric image (representing cartoon components
only) with sharp contours, see Fig. 3.5. We observe that ũ represents the car-
toon part very well. The texture component ṽ (plus a constant for illustration
purposes) contains only some very weak contour structures.

Next, we demonstrate the performance of the Haar shrinkage algorithm
successively incorporating redundancy (by cycle spinning) and local penalty
weights. The local penalty weights are computed the following way: First,
we apply the shrinkage operator S to f with a level dependent threshold α′.
Second, for those λ according to the non-zero values of Sα′(fλ) we put an
extra weight wλ >> 1 in the H−1 penalty. The coefficients Sξ(fλ) for the first
two scales of a segment of the image “Barbara” are visualized in Fig. 3.6. In
Fig. 3.7, we present our numerical results. The upper row shows the original
and the noisy image. The next row visualizes the results for non-redundant
Haar shrinkage (Method A). The third row shows the same but incorporating
cycle spinning (Method B), and the last row shows the incorporation of cycle
spinning and local penalty weights. Each extension of the shrinkage method

Fig. 3.5 From left to right: initial geometric image f , ũ, ṽ + 150, computed with
Db3 in the translation invariant setting, α = 0.5, γ = 0.01
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Fig. 3.6 Left: noisy segment of a woman image, middle and right: first two scales
of S(f) inducing the weight function w

improves the results. This is also being confirmed by comparing the signal-to-
noise-ratios (which is here defined as follows: SNR(f, g) = 10 log10(‖f‖2/‖f−
g‖2)), see Table 3.2.

In order to compare the performance with the Vese–Osher TV model and
with the Vese–Solé–Osher H−1 model, we apply our scheme to a woman im-
age (the same that was used in [35, 37]), see Fig. 3.8. We obtain very similar
results as obtained with the TV model proposed in [35]. Compared with the
results obtained with the H−1 model proposed in [37] we observe that our
reconstruction of the texture component contains much less cartoon informa-
tion. In terms of computational cost we have observed that even in the case of
applying cycle spinning and edge enhancement our proposed wavelet shrink-
age scheme is less time consuming than the Vese–Solé–Osher H−1 restora-
tion scheme, see Table 3.3, even when the wavelet method is implemented in
Matlab, which is slower than the compiled version for the Vese–Solé–Osher
scheme.

We end this section with an experiment where K is not the identity oper-
ator. In our particular case K is a convolution operator with Gaussian kernel.
The implementation is simply done in Fourier space. The upper row in Fig. 3.9
shows the original f and the blurred image Kf . The lower row visualizes the
results: the cartoon component ũ, the texture component ṽ, and the sum of
both ũ+ ṽ. One may clearly see that the deblurred image ũ+ ṽ contains (after
a small number of iterations) more small scale details than Kf . This definitely
shows the capabilities of the proposed iterative deblurring scheme (3.29).

3.3.2 Deconvolution of δ-Sequences

This section was inspired by discussions with signal and imaging experts in
the field of preprocessing 1 D and 2 D mass spectroscopy data in proteomics.
Both applications are mathematically modeled by a convolution operator,
hence the data are some blurred and noisy signals or images. Accordingly, the
classical approach for solving this inverse ill-posed problem would consist of
a regularized deconvolution applied to the given data.
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Fig. 3.7 Top: initial and noisy image, 2nd row: non-redundant Haar shrinkage
(Method A), 3rd row: translation invariant Haar shrinkage (Method B), bottom:
translation invariant Haar shrinkage with edge enhancement (Method C); 2nd-4th
row from left to right: ũ, ṽ + 150 and ũ + ṽ, α = 0.5, γ = 0.0001, computed with
Haar wavelets and critical scale je = −3
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Table 3.2 Signal-to-noise-ratios of the several decomposition methods (Haar shrink-
age, translation invariant Haar shrinkage, translation invariant Haar shrinkage with
edge enhancement)

Haar shrinkage SNR(f , fε) SNR(f ,u + v) SNR(f ,u)

Method A 20,7203 18,3319 16,0680

Method B 20,7203 21,6672 16,5886

Method C 20,7203 23,8334 17,5070

However, the sought-after signals or images are mathematically modeled
by finite sums of delta peaks, which are not captured by the classical theory.
Moreover, numerical experiments in both fields indicate, that a somewhat
“practical approach” yields better results. This “practical approach” proceeds
by computing a wavelet-shrinkage on an appropriate wavelet decomposition
followed by simply plotting the positions and amplitudes of the remaining
coefficients. It has been shown [26], that this approach is indeed equivalent to
a regularized deconvolution scheme in Besov scales. Besov scales are needed
in order to obtain an appropriate mathematical model for the reconstruction
of such sequences of delta peaks.

The aim of the present section is to summarize the mathematical justifi-
cation of this approach as given in [26] and to present reconstruction results

Fig. 3.8 Top from left to right: initial woman image f , ũ and ṽ+150, computed with
Db10 (Method C), α = 0.5, γ = 0.002; bottom from left to right: u and v obtained
by the Vese–Osher TV model and the v component obtained by the Vese–Solé–Osher
H−1 model
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Table 3.3 Comparison of computational cost of the PDE- and the wavelet-based
methods

Data basis “Barbara” image (512×512 pixel)

Hardware architecture PC

Operating system linux

OS distribution redhat7.3

Model PC, AMD Athlon-XP

Memory size (MB) 1024

Processor speed (MHz) 1333

Number of CPUs 1

Computational cost (Average over 10 runs)

PDE scheme in Fortran (compiler f77) 56,67 sec

Wavelet shrinkage Method A (Matlab) 4,20 sec

Wavelet shrinkage Method B (Matlab) 24,78 sec

Wavelet shrinkage Method C (Matlab) 26,56 sec

for deconvolving 1 D MALDI/TOF-data (Bruker Daltonics GmbH) and 2 D
LCMS spectra (Hoffmann-La Roche AG).

This approach will require to measure the defect ‖Af − gδ‖Bs
p(Lp) in an

appropriate Besov space. Hence the resulting regularization method extends
the recently proposed sparsity schemes for solving inverse problems [3, 17, 38],
which treated L2 defects, i.e., ‖Af−gδ‖L2 , in combination with Besov sparsity
constraints.

A Mathematical Formulation of the Practical Approach

As a first observation, let us note that in both applications the sought-after
function can be modeled by a finite set of delta peaks. Hence the sought-after
function has a sparse structure and, in addition, the mass spectroscopy data
is equispaced by multiples of the unitary atomic mass.

Therefore, let us now state the mathematical formulation which is the
basis of the above mentioned practical approach:

We consider some noisy data gδ, a function with finite support. The “prac-
tical approach” is a two-step procedure, which starts by a shrinkage operation
on an appropriate wavelet decomposition followed by plotting the amplitudes
and positions of the remaining coefficients.

Let us formalize this procedure. Applying a shrinkage operation Sλ to
gδ starts by computing a wavelet decomposition with a biorthogonal wavelet
basis ϕ,ψ, ϕ̃, ψ̃,

gδ =
∑
k∈Z

cJ
k 2J/2ϕ(2J · −k) +

∑
j≥J,k∈Z

dj
k 2j/2ψ(2j · −k) ,
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Fig. 3.9 Top from left to right: initial image f , blurred image Kf ; middle from left
to right: deblurred ũ, deblurred ṽ + 150; bottom: deblurred ũ + ṽ, computed with
Db3 using the iterative approach, α = 0.2, γ = 0.001

where the coefficients are given by ck = 〈gδ , 2J/2ϕ̃(2J · −k)〉 and
dj

k = 〈gδ , 2j/2ψ̃(2j · −k)〉, see, e.g., [32, 33]. It follows a shrinkage of the
coefficients, i.e., deleting all coefficients |dj

k| ≤ λ. This yields a function Sλg
δ

which is the finite sum of wavelet and scaling functions. We choose a “finest
scale” j0 > J (for convenience of notation we set j0 = 0) and delete all coeffi-
cients on scales finer than j0. This amounts to a projection of Sλg

δ and hence

P0Sλg
δ =

∑
k∈Z

cJ
k2J/2ϕ(2J · −k) +

∑
0≥j≥J,k∈Z

dj
k2j/2ψ(2j · −k) =

∑
k∈Z

ckϕ(· − k)
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can be represented as a finite sum of scaling functions on this scale. The recon-
struction by plotting the position of the coefficient sequence {ck} is equivalent
to a reconstruction

RαP0Sλg
δ =

∑
k∈Z

ck δ(· − k) ,

which is a deconvolution of P0Sλg
δ with the scaling function ϕ. This should

give good results, whenever ϕ is a good approximation to the kernel of the
true convolution operator.

This “practical approach” also shares some ingredients with the compres-
sive sampling techniques [6, 7], however, they proceed in a different direc-
tion by analyzing achievable levels of resolution as well as deriving sampling
theorems.

Finally, we want to mention some of the prominent papers in the vast
literature which analyze specific properties of deconvolution problems. There
are at least two fairly recent papers which start from a precise mathematical
model for specific applications. In [22] cumulative spectra in Hilbert scales are
treated, and [21] analyzes a deconvolution problem in astronomy in combina-
tion with an efficient CG solver. Both papers use models in L2 spaces with
source conditions in Hilbert scales.

The publications [4, 5] give an overview on inverse problems in astronomy,
in particular they address the relevant convolution problems in this field. We
are well aware of the fact that this is an incomplete list of even the most basic
results. However, to our best knowledge, deconvolution problems in Besov
spaces have not yet been addressed in the accessible literature.

Basic Ingredients

Despite the rather basic mathematical model (convolution operator) of the
underlying application a precise definition of all ingredients of the related
inverse problem (function spaces, convolution kernels, source conditions) re-
quires some care. The most frequently used models use L2-function spaces,
mainly for convenience and in order to apply standard regularization theory.
However, the nature of the specific convolution problems under consideration
is characterized by

• a sparse structure of the solution, and
• a model which needs to capture spectral lines or point like objects, i.e., a

chain of delta peaks.

Neither of these two requirements is captured by the standard theory.
In this section we will first introduce the convolution operators under con-

sideration. They will be rather straightforward and classical. We then intro-
duce the appropriate function spaces, which leads to Besov spaces and sparsity
constraints.
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The natural models for the applications described in the introduction is
given by an operator A : X → Y which is an integral transform with a
convolution kernel:

Af = ϕ ∗ f =
∫

ϕ(· − y)f(y) dy ,

where ϕ approximates the point spread function of the measurement device.
We will first address the case of a 1 D B-spline kernel ϕ, i.e.,

ϕk(x) = ϕ ∗ ... ∗ ϕ︸ ︷︷ ︸
k times

(x), where ϕ(x) =
1
2r

χ[−r,r](x) . (3.30)

These convolution kernels define standard operators Ak by

Akf = ϕk ∗ f . (3.31)

They are continuous smoothing operators of the same order in Sobolev as well
as in Besov scales

Ak : Hs → Hs+k

Ak : Bs
p(Lp)→ Bs+k

p (Lp) .

The extension to higher dimensions by tensor products is straightforward,
the case of general kernels k is addressed in Theorem 3.18. The appropriate
mathematical model is a sum of delta peaks

f(x) =
N∑

k=1

fkδ(x− k) . (3.32)

Suitable model spaces for point-like objects are defined via Besov norms: delta
peaks in R are elements of any Besov space Bs

p(Lp(Rd)) satisfying (s+1)p < 1.
The most important cases are p = 2, i.e., the classical Sobolev case of negative
order (s < −1/2), and p = 1 which requires s < 0:

δ ∈ B−ε
1 (L1(R)) or δ ∈ H−1/2−ε(R) for any ε > 0 .

Model Problems and Regularization Techniques

As we have described in the previous section, there are various meaningful
choices for different model spaces as well as for defining convolution oper-
ators. Discussing the most general choice would involve a jungle of indices,
which would obscure the main objective of the present section: to show the
importance of Besov regularization schemes for solving inverse convolution
problems.
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We will therefore concentrate in the following on analyzing one model
problem in detail and address the general cases in some remarks.

Following the discussion on the different modeling alternatives in the pre-
vious section we will now select some illustrative choices for the convolution
kernel, the model space for source conditions, the noise model and a partic-
ular solution f+. We will focus on the one-dimensional case (d = 1) in the
following.

As convolution kernel we always choose a B-spline of order two in this
section, the general case of an approximate kernel is discussed below.

The corresponding convolution operator A2, defined by (3.31), is smooth-
ing of order two in Sobolev- as well as in Besov scales:

A2 : Hs(R)→ Hs+2(R) or A2 : Bs
1(L1(R))→ Bs+2

1 (L1(R)) .

As usual, the unavoidable data error will require to choose some weaker norms
in the image space.

Problem 3.13 This model is the appropriate physical model for the above
mentioned real life deconvolution problems in mass spectroscopy as well as in
astronomy. It has no direct analogon in the classical regularization theory.

The problem of reconstructing sequences of Dirac peaks f+ =
∑

fkδ(·−k)
requires a model space X = B−ε

1 (L1(R)) with an arbitrary small but fixed ε.
We use a white noise model, hence gδ = g+ + δdW .

We exploit the smoothing properties of A2, i.e., Af+ ∈ B2−ε
1 (L1(R)). No

additional source condition on the smoothness of f+ is required.
In all cases, A2 is smoothing images about two orders, i.e., f ∈ Hs(R)

implies A2f ∈ H2+s(R).

Convergence Analysis

Our primary objective concerns a mathematical analysis of the “practical
approach” as explained in the introduction. To this end we will first analyze
Problem 1 and compare the convergence results with other settings.

The approximation properties of wavelet shrinkage operators are well stud-
ied by now. We will use the results of [11, Theorem 4], which state the
following.

Theorem 3.14 Let s, σ, p, q, α denote real numbers s.t. f ∈ Bs
q(Lq), 0 < α ≤

1, q = (1 − α)p, s = σp/q + (p/q − 1)/2, σ − 1/p > −α/2. Let further
fδ = f + δdW and denote with Sλ the hard shrinkage operator. Define the
threshold λ and the cut-off scale J via

λ �
√

2| log δ|δ, 2J = − 1
2δ2 log δ

(3.33)

and the projection PJ via
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PJf =
∑

j≤J,k∈Z

〈f, ψ̃j,k〉ψj,k . (3.34)

Then the estimator

fδ
λ = PJSλf

δ =
∑

j≤J,k∈Z,|〈fδ,ψ̃j,k〉|>λ

〈fδ, ψ̃j,k〉ψj,k (3.35)

fulfills

E(‖fδ
λ − f‖pBσ

p (Lp)) � (
√
| log δ|δ)αp . (3.36)

Here and in the following “ a � b ” means that both quantities can be uni-
formly bounded by constant multiples of each other. Likewise, “� ” indicates
inequalities up to constant factors. We will need this result only for measuring
the approximation error on the scale Bs

1(L1) of Besov spaces.

Analysis of the Model Problem

This is the basic deconvolution problem for sparse, peak-like structures, e.g.,
mass spectroscopy data or certain astrophysical images.

The convolution operator A2 maps a delta sequence f+ =
∑

fkδ(· − k)
to a sum of hat functions g+ = A2f

+ =
∑

fkϕ2(· − k) with ϕ2 defined by
(3.30). For the rest of this section we denote ϕ = ϕ2. Hence, the exact inverse
deconvolution operator is well defined on such finite sums g =

∑
ckϕ(· − k)

and yields a sequence of delta peaks: A−1
2 g =

∑
ckδ(· − k).

We now exploit the denoising properties of wavelet shrinkage methods on
the data side for given noisy data gδ = g+ + δ dW . The general result for the
present situation is given by the following corollary, see [26].

Corollary 3.15 Let g+ =
∑
k∈Z

fkϕ(· − k) denote a finite sum of second order

B-splines, i.e., {fk} is a finite set of non-zero indices. Then for every ε > 0

g+ ∈ B1/q+1−ε
q (Lq) . (3.37)

Assume gδ = g+ + δdW and let λ and J be chosen according to (3.33).
For 0 < ε < 3/2 and for every 3/2 > τ ≥ ε and α = 1− (3− 2τ)/(3− 2ε)

we obtain the convergence rate

E(‖PJSλg
δ − g+‖B2−τ

1 (L1)
) � (

√
| log δ|δ)α . (3.38)

This is an approximation result on the data side, which needs to be transferred
to an estimate on the reconstruction side, see again [26].

Theorem 3.16 Let f+ =
∑

fkδ(·−k), g+ = A2f
+ and gδ = g+ + δdW . The

“practical approach” as described in the introduction produces a regularized
deconvolution of gδ as
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fδ
λ = A−1

2 P0Sλg
δ . (3.39)

If λ is chosen according to (3.33), the following convergence rate holds for
every 3/2 ≥ τ > ε > 0:

E(‖fδ
λ − f+‖B−τ

1 (L1)
) � (

√
| log δ|δ)1−

3−2τ
3−2ε . (3.40)

We want to remark that this theorem justifies the “practical approach” of
just plotting the remaining wavelet decomposition as described in the re-
construction. Hence, this approach, which is a pure shrinkage technique, can
indeed be interpreted as a regularization method, which converges – arbitrar-
ily slow – to the delta sequence of the exact solution. The convergence rate
(1− (3− 2τ)/(3− 2ε)) can be made better by choosing τ larger and ε smaller,
but this weakens the norm in which we measure the convergence. Moreover,
a generalization to infinite sequences of delta peaks f+ =

∑
fkδ(· − k) is

obvious as long as
∑
k∈Z

|fk| <∞.

Remark 3.17 Implicitly, the practical approach makes use of the equivalent
description of shrinkage methods via a variational approach. Minimizing

‖Af − gδ‖L2 + α‖f‖L0

for an operator which can be diagonalized by a wavelet basis also leads to a
hard shrinkage approach. Hence, the practical approach can be regarded as
some type of Tikhonov regularization in Lp spaces. However, we use a different
noise model and measure the reconstruction error in a Besov space.

Approximate Kernels

The previous sections have analyzed regularization methods for reconstruction
sequences of delta peaks from convolution data. These results were based on
the assumption that the convolution kernel equals a B-spline. Obviously, they
immediately extend to other wavelet kernels, i.e., we obtain the same conver-
gence results for any convolution operator with kernel function ϕ whenever ϕ
can be extended to a biorthogonal wavelet bases with a norm equivalence as
stated in (3.20) and (3.21).

However, this is still very restrictive. In this section we address the case
of a general kernel k, see again [26].

Theorem 3.18 Let the assumptions of Theorem 3.16 be satisfied. Assume
that the kernel k is approximated by the scaling function ϕ: ‖k−ϕ‖Bκ

p (Lp) < ε,
and let Af = k∗f . The “practical approach” with kernel ϕ applied to the noisy
data gδ yields an approximation

E(‖f −A−1P0Sλg
δ‖B−τ

1 (L1)
) � ‖f‖B−ε

1 (L1)
+
(
δ
√
| log δ|

) 2(τ−ε)
3−2ε

.



3 Multiscale Approximation 103

Numerical Simulations

For the numerical simulations we use an artificial example as well as a real
world example from mass spectrography data. We start with an example where
the convolution kernel coincides with a B-spline scaling function. We will
discuss a kernel, which is only roughly approximated by the B-spline scaling
function in the following example.

First we are going to illustrate the practical approach as described in the
introduction for our model problem with simula data. We choose discrete data
sets of 512 data-points. The solution f+ is given by three delta-peaks of dif-
ferent height, and the convolution kernel is a hat function. In our case we
used a biorthogonal wavelet base of the class bior2.x, and hence the recon-
structing scaling function is a hat function. The noisy data gδ was generated
by adding white noise of variance δ. We chose the shrinkage parameter λ
according to (3.33).

Figure 3.10 shows the true solution, the data, the reconstruction and an
illustration of the convergence rate for δ → 0. Note that the convergence for
δ → 0 shows very different behavior in different regions: slow convergence
interrupted by jumps. The slow convergence is the behavior which is expected
asymptotically (since we used τ = 0.1, formula (3.40) predicts a convergence
rate of 1/15 which is close to the results). The jumps have a simple expla-
nation: As observable in Fig. 3.10 the reconstruction does not only show the
delta peaks but also a number of smaller peaks, which are a result of the

Fig. 3.10 Illustration of the performance of the practical approach. Upper left: The
true solution f+, upper right: the noisy data gδ with approximately 12% relative
error, lower left: the reconstruction by the practical approach, lower right: log–log
plot of the reconstruction error measured in B−τ

1 (L1) against the noise level
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data errors which escape the shrinkage step. When noise level δ and shrinkage
parameter λ tend to zero, it happens that more and more of these false peaks
are wiped out, and a jump in the reconstruction error occurs every time this
happens.

In a second experiment we compare the “practical approach” with standard
Tikhonov regularization. We used the same data as for the first experiment
and minimized the functional Jα(f) = ‖Af − gδ‖2

H−1/2 −α‖f‖2
H−1/2 . To illus-

trate the convergence rate for δ → 0, we used the optimal regularization pa-
rameter α ≈ δ1/2. The results shown in Fig. 3.11 show the expected behavior:
oversmoothing of the regularized reconstruction and a very low convergence
rate.

In the last experiment we used as convolution kernel a B-spline of order
four but the same reconstruction scaling function (hat function) as in the other
experiment: a B-spline of order two. The data consists of overlapping peaks.
According to Theorem 3.18 the reconstruction by the practical approach leads
to very good results. As Fig. 3.12 shows, the position of the major peaks is
reconstructed perfectly. The height of the major peaks is slightly wrong, and
there are some small sidepeaks in the reconstruction which are due to the fact
the kernel and reconstruction scaling function do not fit together.

We now present reconstruction results for 1 D and 2 D mass spectroscopy
data. Figure 3.13 shows the deconvolution of real world data from a

Fig. 3.11 Illustration of the performance of Tikhonov regularization for the re-
construction of delta peaks. Upper left: The true solution f+, upper right: the
noisy data gδ with approximately 12% relative error, lower left: the reconstruction
by Tikhonov regularization, lower right: log–log plot of the reconstruction error
measured in H−1/2 against the noise level
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Fig. 3.12 Illustration of the performance of the practical approach for the recon-
struction from overlapping peaks where the reconstruction scaling function does not
fit to the convolution kernel. Upper left: The true solution f+, upper right: the
noisy data gδ with approximately 12% relative error, lower left: the reconstruction
by the practical approach, lower right: log–log plot of the reconstruction error
measured in B−τ

1 (L1) against the noise level

MALDI/SELDI-TOF mass spectrometer provided by an AutoFlex II by Bro-
ker Daltonics [31]. We have chosen a section of with a large peak consisting
of different isotopes and two small peaks. We deconvolved the data by the
practical approach with the bior2.8 biorthogonal wavelet base and thresh-
old and finest scale chosen by hand. The deconvolution of 2 D LCMS mass
spectroscopy data follows the same outline. Figure 3.14 shows the practical
approach applied to some real world data provided by Roche. The used data
are from drug discovery metabolite identification and show metabolites of a
drug produced by rat liver microsomes. The used spectrometer was a Sciex

Fig. 3.13 Deconvolution of real world data. Left: A section of a spectrogram, right
its deconvolution by the practical approach
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Fig. 3.14 Deconvolution of real world data. Top: 2D spectrum from drug
metabolism, bottom left: part of the spectrum, bottom right: deconvolved spec-
trum part

API 365 Triple Quadrupole operated in positive ion electrospray mode. Ap-
plying the practical approach is to calculate the wavelet decomposition with
the bior6.8 biorthogonal wavelet, cut off 90% of the detail coefficients, choose
a finest scale and plot the positions of the major coefficients.
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pean Mathematical Society (EMS), 2006.

[7] E. J. Candès, J.K. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Commun. Pure Appl. Math.,
59:1207–1223, 2005.

[8] C. Cabrelli, C. Heil, and U. Molter. Accuracy of lattice translates of
several multidimensional refinable functions. J. Approx. Theory, 95:5–52,
1998.

[9] A. Cohen. Numerical Analysis of Wavelet Methods. Studies in Mathe-
matics and its Applications. 32. Amsterdam: North-Holland. xviii, 336
p., 2003.

[10] A. Cohen, R. DeVore, P. Petrushev, and H. Xu. Nonlinear approximation
and the space BV (R2). Am. J. Math., 121:587–628, 1999.

[11] A. Cohen, R. DeVore, G. Kerkyacharian, and D. Picard. Maximal spaces
with given rate of convergence for thresholding algorithms. Appl. Com-
put. Harmon. Anal., 11(2):167–191, 2001.

[12] R. R. Coifman and D. Donoho. Translation-invariant de-noising.
Wavelets and Statistics, A. Antoniadis and G. Oppenheim, eds., Springer-
Verlag, 21:125–150, 1995.

[13] S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic
problems by linear and nonlinear mappings II. J. Complexity, 22:549–603,
2006.

[14] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. 61. Philadelphia, PA: SIAM, Society
for Industrial and Applied Mathematics. xix, 357 p., 1992.

[15] I. Daubechies and G. Teschke. Wavelet-based image decomposition by
variational functionals. Wavelet Applications in Industrial Processing;
Frederic Truchetet; Ed., 5266:94–105, 2004.

[16] I. Daubechies and G. Teschke. Variational image restoration by means of
wavelets: simultaneous decomposition, deblurring and denoising. Appl.
Comput. Harmon. Anal., 19(1):1–16, 2005.

[17] I. Daubechies, M. Defrise, and C. DeMol. An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint. Commun.
Pure Appl. Math., 57(11):1413–1457, 2004.

[18] I. Daubechies, G. Teschke, and L. Vese. Iteratively solving linear inverse
problems with general convex constraints. Inverse Probl. Imaging, 1(1):
29–46, 2007.

[19] B. Han. Symmetry property and construction of wavelets with a general
dilation matrix. Linear Algebra Appl., 353(1–3):207–225, 2002.



108 S. Dahlke et al.

[20] B. Han. Symmetric multivariate orthogonal refinable functions. Appl.
Comput. Harmon. Anal., 17(3):277–292, 2004.

[21] M. Hanke and J. G. Nagy. Restoration of atmospherically blurred images
by symmetric indefinite conjugate gradient techniques. Inverse Probl., 12
(2):157–173, 1996.

[22] M. Hegland and R. S. Anderssen. Resolution enhancement of spectra
using differentiation. Inverse Probl., 21(3):915–934, 2005.

[23] R. Q. Jia. Shift-invariant spaces and linear operator equations. Isr. J.
Math., 103:259–288, 1998.

[24] Q. T. Jiang. Multivariate matrix refinable functions with arbitrary matrix
dilation. Trans. Am. Math. Soc., 351:2407–2438, 1999.

[25] N. Kinsbury. Image processing with complex wavelets. Philos. Trans. R.
Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 357(1760):2543–2560, 1999.

[26] E. Klann, M. Kuhn, D. A. Lorenz, P. Maass, and H. Thiele. Shrinkage
versus deconvolution. Inverse Probl., 23(5):2231–2248, 2007.

[27] K. Koch. Interpolating scaling vectors. Int. J. Wavelets Multiresolut.
Inf. Process., 3(3):389–416, 2005.

[28] K. Koch. Nonseparable orthonormal interpolating scaling vectors. Appl.
Comput. Harmon. Anal., 22(2):198–216, 2007.

[29] K. Koch. Multivariate symmetric interpolating scaling vectors with duals.
Preprint Nr. 145, SPP 1114, to appear in J. Fourier Anal. Appl., 2006.

[30] K. Koch. Interpolating Scaling Vectors and Multiwavelets in R
d. PhD

thesis, Philipps-University of Marburg, 2006.
[31] M. Lindemann, M. Diaz, P. Maass, F.-M. Schleif, J. Decker, T. Elssner,

M. Kuhn, and H. Thiele. Wavelet based feature extraction in the analysis
of clinical proteomics mass spectra. In 54th Conference of the American
Society for Mass Spectrometry, 2006.

[32] A. Louis, P. Maass, and A. Rieder. Wavelets: Theory and Applications.
Wiley, New York, 1997.

[33] S. Mallat. Multiresolution approximation and wavelet orthonormal bases
for L2(R). Trans. Am. Math. Soc., 315:69–88, 1989.

[34] Y. Meyer. Oscillating patterns in image processing and nonlinear evolu-
tion equations. University Lecture Series, 22, 2002.

[35] S. Osher and L. Vese. Modeling textures with total variation minimiza-
tion and oscillating patterns in image processing. J. Sci. Comput., 19
(1–3):553–572, 2003.

[36] S. Osher and L. Vese. Image denoising and decomposition with total
variation minimization and oscillatory functions. J. Math. Imaging Vis.,
20(1–2):7–18, 2004.

[37] S. Osher, A. Sole, and L. Vese. Image decomposition and restoration using
total variation minimization and the H−1 norm. SIAM J. Multiscale
Model. Simul., 1(3):349–370, 2003.

[38] R. Ramlau and G. Teschke. Tikhonov replacement functionals for itera-
tively solving nonlinear operator equations. Inverse Probl., 21:1571–1592,
2005.



3 Multiscale Approximation 109

[39] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variations based noise
removal algorithms. Physica D, 60:259–268, 1992.

[40] I. W. Selesnick. Hilbert transform pairs of wavelet bases. IEEE Signal
Process. Lett., 8(6):170–173, 2001.

[41] P. Wojtaszczyk. A Mathematical Introduction to Wavelets. Cambridge
University Press, Cambridge 1997.

[42] X.-G. Xia and Z. Zhang. On sampling theorem, wavelets and wavelet
transforms. IEEE Trans. Signal Process., 41:3524–3535, 1993.



4

Inverse Problems and Parameter Identification
in Image Processing

Jens F. Acker5, Benjamin Berkels2, Kristian Bredies3, Mamadou S. Diallo6,
Marc Droske2, Christoph S. Garbe4, Matthias Holschneider1,
Jaroslav Hron5, Claudia Kondermann4, Michail Kulesh1, Peter Maass3,
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4.1 Introduction

Many problems in imaging are actually inverse problems. One reason for this is
that conditions and parameters of the physical processes underlying the actual
image acquisition are usually not known. Examples for this are the inhomo-
geneities of the magnetic field in magnetic resonance imaging (MRI) leading
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to nonlinear deformations of the anatomic structures in the recorded images,
material parameters in geological structures as unknown parameters for the
simulation of seismic wave propagation with sparse measurement on the
surface, or temporal changes in movie sequences given by intensity changes
or moving image edges and resulting from deformation, growth and transport
processes with unknown fluxes. The underlying physics is mathematically de-
scribed in terms of variational problems or evolution processes. Hence, solu-
tions of the forward problem are naturally described by partial differential
equations. These forward models are reflected by the corresponding inverse
problems as well. Beyond these concrete, direct modeling links to continuum
mechanics abstract concepts from physical modeling are successfully picked
up to solve general perceptual problems in imaging. Examples are visually
intuitive methods to blend between images showing multiscale structures at
different resolution or methods for the analysis of flow fields.

This chapter is organized as follows. In Sect. 4.2 wavelet based method
for the identification of parameters describing heterogeneous media in subsur-
face structures from sparse seismic measurements on the surface are investi-
gated by Kulesh, Holschneider, Scherbaum and Diallo. It is shown how recent
wavelet methodology gives further insight and outperforms classical Fourier
techniques for these applications.
In Sect. 4.3 close links between surface matching and morphological image
matching are established. Berkels, Droske, Olischläger, Rumpf and Schaller
describe how to encode image morphology in terms of the map of regular
level set normals (the Gauss map of an image) and the singular normal field
on edges. Variational methods are presented to match these geometric quan-
tities of images in a joint Mumford Shah type approach. These techniques are
complemented by a related approach for explicit surface matching in geomet-
ric modeling.
In Sect. 4.4 anisotropic diffusion models with a control parameter on the right
hand side are investigated by Bredies, Maass and Peitgen. The aim is a visu-
ally natural blending between image representations on different scales. The
method is applied for the morphing between medical images of different de-
tail granularity. Here the transition between different scales is captured by the
diffusion, whereas the right hand side of the corresponding parabolic initial
value problem is considered as a control parameter to ensure that the coarse
scale image is actually meet at time 1 starting from the fine scale image at
time 0. Existence of solution for this type of control problem is established.
The inverse problem of optical flow is investigated in Sect. 4.5. Here, the
focus is in particular on restoration methods for dense optical flow and the
underlying image sequence. Garbe, Kondermann, Preusser and Rumpf de-
scribe confidence measure for local flow estimation and flow inpainting based
on variational techniques. Furthermore, Mumford Shah type approaches for
joint motion estimation and image segmentation as well as motion deblurring
are presented. Finally, Acker, Hron, Preusser and Rumpf consider in Sect. 4.6
multiscale visualization methods for fluid flow based on anisotropic diffusion
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methods from image processing. Here, efficient finite element methodology is
investigated to resolve temporal flow patterns in a perceptually intuitive way
based on time dependent texture mapping. In addition algebraic multigrid
methods are applied for a hierarchical clustering of flow pattern.

4.2 Inverse Problems and Parameter Identification
in Geophysical Signal Processing

Surface wave propagation in heterogeneous media can provide a valuable
source of information about the subsurface structure and its elastic prop-
erties. For example, surface waves can be used to obtain subsurface rigidity
through inversion of the shear wave velocity. The processing of experimental
seismic data sets related to the surface waves is computationally expensive
and requires sophisticated techniques in order to infer the physical properties
and structure of the subsurface from the bulk of available information.

Most of the previous studies related to these problems are based on Fourier
analysis. However, the frequency-dependent measurements, or time-frequency
analysis (TFR) offer additional insight and performance in any applications
where Fourier techniques have been used. This analysis consists of examining
the variation of the frequency content of a signal with time and is particularly
suitable in geophysical applications.

The continuous wavelet transform (CWT) of a real or complex signal
S(t) ∈ L2(R) with respect to a real or complex mother wavelet is the set of
L2–scalar products of all dilated and translated wavelets with this signal [37]:

WgS(t, a) = 〈TtDag, S〉 =

+∞∫
−∞

1
a
g∗
(τ − t

a

)
S(τ) dτ ,

S(t) =MhWgS(t, a) =
1

Cg,h

+∞∫
−∞

+∞∫
−∞

h

(
t− τ

a

)
WgS(τ, a)

dτ da
a2

,

(4.1)

where g, h are wavelets used for the direct and inverse wavelet transforms,
Da : g(τ) �→ g(τ/a)/a and Tt : g(τ) �→ g(τ − t) define the dilation a ∈ R and
translation t ∈ R operations correspondingly. If we select a wavelet with a
unit central frequency, it is possible to obtain the physical frequency directly
by taking the inverse of the scale: f = 1/a.

This approach is powerful and elegant, but is not the only one available for
practical applications. Other TFR methods such as the Gabor transform, the
S-transform [71] or bilinear transforms like the Wigner-Ville [64] or smoothed
Wigner-Ville transform can be used as well. The relative performance of time-
frequency analysis from different TFR approaches is primarily controlled by
the frequency resolution capability that motivated the use of CWT in the
present work.
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With multicomponent data, one is usually confronted with the issue of sep-
arating seismic signals of different polarization characteristics. For instance,
one would like to distinguish between the body waves (P- and S- waves) that
are linearly polarized from elliptically polarized Rayleigh waves. Polarization
analysis is also used to identify shear wave splitting. Unfortunately, there is
no mathematically exact a priori definition for the instantaneous polarization
attributes of a multicomponent signal. Therefore any attempts to produce one
are usually arbitrary.

Time-frequency representations can be incorporated in polarization anal-
ysis [67, 71, 73]. We proposed several different wavelet based methods for the
polarization analysis and filtering.

4.2.1 Polarization Properties for Two-Component Data

Given a signal from three-component record, with Sx(t), Sy(t), and Sz(t)
representing the seismic traces recorded in three orthogonal directions, any
combination of two orthogonal components can be selected for the polar-
ization analysis: Z(t) = Sk(t) + iSm(t). Let us consider the instantaneous
angular frequency defined as the derivative of the complex spectrum’s phase:
Ω±(t, f) = ±∂ argW±

g Z(t, f)/∂t. Then, near time instant t, the wavelet spec-
trum can be represented as follows:

WgZ(t + τ, f) � W+
g Z(t, f)eiΩ+(t,f)τ +W−

g Z(t, f)e−iΩ−(t,f)τ ,

which yields the time-frequency spectrum for each of the parameters (see [26,
52]):

R(t, f) = |W+
g Z(t, f)|+ |W−

g Z(t, f)|/2 ,

r(t, f) = ||W+
g Z(t, f)| − |W−

g Z(t, f)||/2 ,

θ(t, f) = arg[W+
g Z(t, f)W−

g Z(t, f)]/2 ,

∆φ(t, f) = arg
(W+

g Z(t,f)+W−
g Z(t,f)∗

W+
g Z(t,f)−W−

g Z(t,f)∗

)
modπ ,

(4.2)

where R is the semi-major axis R ≥ 0, r is the semi-minor axis R ≥ r ≥ 0, θ
is the tilt angle, which is the angle of the semi-major axis with the horizontal
axis, θ ∈ (−π/2, π/2] and ∆φ is the phase difference between Sk(t) and Sm(t)
components.

If we analyze seismic data, an advantage of the method (4.2) is the possi-
bility to perform the complete wave-mode separation/filtering process in the
wavelet domain and the ability to provide the frequency dependence of el-
lipticity, which contains important information on the subsurface structure.
With the extension of the polarization analysis to the wavelet domain, we can
construct filtering algorithms to separate different wave types based on the
instantaneous attributes by a combination of constraints posed on the range of
the reciprocal ellipticity ρ(t, f) = r(t, f)/R(t, f) and the tilt angle θ(t, f) [26].
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4.2.2 Polarization Properties for Three-Component Data

Reference [61] proposed a method based on a variational principle that al-
lows generalization to any number of components, and they briefly addressed
the possibility of using the instantaneous polarization attributes for wavefield
separation and shear-wave splitting identification. In [24], we extended the
method of [61] to the wavelet domain in order to use the instantaneous at-
tributes for filtering and wavefield separation for any number of components.
As an example, reference [63], used this method for spectral analysis and
multicomponent polarization analyses on the Gubbio Piana (central Italy)
recordings to identify the frequency content of the different phases compos-
ing the recorded wavefield and to highlight the importance of basin-induced
surface waves in modifying the main strong ground-motion parameters.

In more general terms, particle motions captured with three-component
recordings can be characterized by a polarization ellipsoid. Several methods
are proposed in the literature to introduce such an approximation. They are
based on the analysis of the covariance matrix of multicomponent recordings
and principal components analysis using singular value decomposition [43].
In [50], we extended the covariance method to the time-frequency domain.
Following the method, proposed by [25], we use an approximate analytical
formula to compute the elements of the covariance matrix M(t, f) for a time
window which is derived from an averaged instantaneous frequency of the
multicomponent record:

Mkm(t, f) = |WgSk(t, f)| |WgSm(t, f)|{ sinc (Γ−
km(t, f)) cos (A−

km(t, f))
+ sinc (Γ+

km(t, f)) cos (A+
km(t, f))} − µkmµmk ,

Γ±
km(t, f) = ∆tkm(t,f)

2 (Ωk(t, f)±Ωm(t, f)) ,

A±
km(t, f) = argWgSk(t, f)± argWgSm(t, f) ,

∆tkm(t, f) = 4πn
Ωk(t,f)+Ωm(t,f) , n ∈ N ,

µkm = � [WgSk(t, f)] sinc (∆tkm(t,f)Ωk(t,f)
2 ) , k,m = x, y, z,

(4.3)

where sinc(x) indicates the sine cardinal function.
The eigenanalysis performed on M(t, f) yields the principal component

decomposition of the energy. Such a decomposition produces three eigenval-
ues λ1(t, f) ≥ λ2(t, f) ≥ λ3(t, f) and three corresponding eigenvectors vk(t, f)
that fully characterize the magnitudes and directions of the principal compo-
nents of the ellipsoid that approximates the particle motion in the considered
time window ∆tkm(t, f):

• the major half-axis R(t, f) =
√

λ1(t, f)v1(t, f)/‖v1(t, f)‖ ;

• the minor half-axis r(t, f) =
√

λ3(t, f)v3(t, f)/‖v3(t, f)‖ ;

• the intermediate half-axis rs(t, f) =
√

λ2(t, f)v2(t, f)/‖v2(t, f)‖ ;
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• the reciprocal ellipticity ρ(t, f) = ‖rs(t, f)‖/‖R(t, f)‖ ;
• the minor reciprocal ellipticity ρ1(t, f) = ‖r(t, f)‖/‖rs(t, f)‖ ;
• the dip angle δ(t, f) = arctan(

√
v1,x(t, f)2 + v1,y(t, f)2/v1,z(t, f)) ;

• the azimuth α(t, f) = arctan(v1,y(t, f)/v1,x(t, f)) .

Note, when the instantaneous frequencies are the same for all components,
this method produces the same results as those by [61] in terms of polarization
parameters.

4.2.3 Modeling a Wave Dispersion Using a Wavelet Deformation
Operator

The second problem in the context of surface wave analysis (especially with
high frequency signals) is the robust determination of dispersion curves from
multivariate signals. Wave dispersion expresses the phenomenon by which the
phase and group velocities are functions of the frequency. The cause of dis-
persion may be either geometric or intrinsic. For seismic surface waves, the
cause of dispersion is of a geometrical nature. Geometric dispersion results
from the constructive interferences of waves in bounded or heterogeneous me-
dia. Intrinsic dispersion arises from the causality constraint imposed by the
Kramers–Krönig relation or from the microstructure properties of material. If
the dispersive and dissipative characteristics of the medium are represented by
the frequency-dependent wavenumber k(f) and attenuation coefficient α(f),
the relation between the Fourier transforms of two propagated signals reads

O[DF ] : Ŝ(f) �→ e−iK(f)D−2πinŜ(f) ,

where D is the propagation distance, n ∈ N is any integer number and K(f)
is the complex wavenumber, which can be defined by real functions k(f) and
α(f) as K(f) = 2πk(f)− iα(f) .

In order to analyze the dynamical behavior of multivariate signals using
the continuous wavelet transforms, one may be interested in investigating a
diffeomorphic deformation of the wavelet space. These deformations establish
an algebra of wavelet pseudodifferential operators acting on signals [85]. In
the most general case, a wavelet deformation operator can be defined as

O[D] : S(t) �→ MhDWgS(t, f) , D : H→ H ,
H := {(t, f) : t ∈ R, f > 0} .

We investigated some practical models that give concrete expressions of
this deformation operator related to the used dispersion parameters of the
medium. Reference [49] has shown how the wavelet transform of the source
and the propagated signals are related through a transformation operator that
explicitly incorporates the wavenumber as well as the attenuation factor of the
medium:
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DW :WgS(t, f) �→ e−α(f)De−iψ1(f)WgS (t− k′(f)D, f) , (4.4)

where ψ1(f) = 2π[k(f)− fk′(f)]D + 2πn.
In a special case, with the assumption that the analyzing wavelet has a

linear phase (with time-derivative approximately equal to 2π, as it is the case
for the Morlet wavelet, the approximation (4.4) can be written in terms of the
phase Cp(f) = f/k(f) and group Cg(f) = 1/k′(f) velocities as [52]:

DW :WgS(t, f) �→ e−α(f)D
∣∣∣WgS

(
t− D

Cg(f) , f
)∣∣∣ ·

exp
[
i argWgS

(
t− D

Cp(f) −
n
f , f

)]
.

(4.5)

The relationship (4.5) has the following interpretation. The group velocity is a
function that “deforms” the image of the absolute value of the source signal’s
wavelet spectrum, the phase velocity “deforms” the image of the wavelet spec-
trum phase, and the attenuation function determines the frequency-dependent
real coefficient by which the spectrum is multiplied.

4.2.4 How to Extract the Dispersion Properties from the Wavelet
Coeffitients?

Equation (4.5) allows us to formulate the ideas how the frequency-dependent
dispersion properties can be obtained using the wavelet spectra’ phases of
source and propagated signals. To obtain the phase velocities of multi-mode
and multivariate signals, we can perform “frequency-velocity” analysis on
the analogy of the frequency-wavenumber method [17] for a seismogram
Sk(t) , k = 1, N . The main part of this analysis consists of calculating of
correlation spectrum M(f, c) as follows (see [51]):

M(f, c) =
∫ tmax

tmin

∣∣∣∣∣∑
k,m

Ak(τ, f)A∗
m

(
τ − Dmk

c
, f

) ∣∣∣∣∣ dτ
=
∫ tmax

tmin

∣∣∣∣∣∑
k,m

eiBk(τ,f) exp
(
−iBm

(
τ − Dmk

c
, f

))∣∣∣∣∣ dτ ,

Ak(τ, f) =WgSk(τ, f)/|WgSk(τ, f)|, Bk(τ, f) = argWgSk(τ, f) ,

(4.6)

where [tmin, tmax] indicates the total time range for which the wavelet spec-
trum was calculated, c ∈ [Cmin

p , Cmax
p ] is an unbounded variable corresponding

to the phase velocity, Ak is a complex-valued wavelet phase and Bk is a real-
valued wavelet phase.

For a given parametrization of wavenumber and attenuation functions,
finding an acceptable set of parameters can be thought of as an optimization
problem that seeks to minimize a cost function χ2 and can be formulated as
follows:

χ2(α(f,p), k(f,q))→ min , p ∈ R
P , q ∈ R

Q ,
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where P is the number of parameters used to model the attenuation α(f) and
Q is the number of parameters used to model the wavenumber k(f). p and
q represent the vectors of parameters describing α(f) and k(f) respectively.
This cost function involves a propagator described above.

At this stage, we need to distinguish between the case where the analyzed
signal consists only of one coherent arrival from the case where it consists of
several coherent arrivals. In the former case, the derived functions are mean-
ingful and characterize those analyzed event. However in the latter, these
functions cannot be easily interpreted since the signals involved consist of
many overlapping arrivals.

If only one single phase is observed in all the traces Sk(t), it will be enough
to minimize a cost function that involves some selected seismic traces in order
to estimate the attenuation and phase velocity using the modulus and the
phase of the wavelet transforms correspondingly, see [38]:

χ2(p,q) =
∑
m,k

∫ ∫
||WgSk(t, f)| − |DW(p,q)WgSm(t, f)||2 dt df ,

χ2(p,q) =
∑
m,k

∫ ∫
|argWgSk(t, f)− argDW(p,q)WgSm(t, f)|2 dt df .

(4.7)
The first step will consist of seeking a good initial condition by performing
an image matching using the modulus of the wavelet transforms of a pair of
traces. The optimization is carried out over the whole frequency range of the
signal. In order to reduce the effect of uncorrelated noise in our estimates, it
is preferable to use a propagator based on the cross-correlations, see [38].

In the case where the observed signals consist of a mixture of different
wave types and modes, a cascade of optimizations in the wavelet domain
will be necessary in order to fully determine the dispersion and attenuation
characteristics specific to each coherent arrival.

Since the dependence of the cost functions (4.7) on the parameters p and q
is highly non-linear, each function may have several local minima. To obtain
the global minimum that corresponds to the true parameters, a non-linear
least-squares minimization method that proceeds iteratively from a reasonable
set of initial parameters is required. In the present contribution, we use the
Levenberg–Marquardt algorithm [69].

Finally, the obtained dispersion curves (especially phase and group veloc-
ities) for defined wave types can be used for the determination of physical
and geometrical properties of the subsurface structure. Because of the non-
uniqueness of earth models that can be fitted to a given dispersion curve,
the inversion for the average shear velocity profile is usually treated as an
optimization problem where one tries to minimize the misfit between exper-
imental and theoretical dispersion curves computed for a given earth model
that is assumed to best represent the subsurface under investigation.
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4.3 The Interplay of Image Registration and Geometry
Matching

Image registration is one of the fundamental tools in image processing. It deals
with the identification of structural correspondences in different images of the
same or of similar objects acquired at different times or with different image
devices. For instance, the revolutionary advances in the development of imag-
ing modalities has enabled clinical researchers to perform precise studies of the
immense variability of human anatomy. As described in the excellent review
by Miller et al. [60] and the overview article of Grenander and Miller [33],
this field aims at automatic detection of anatomical structures and their eval-
uation and comparison. Different images show corresponding structures at
usually nonlinearly transformed positions.

In image processing, registration is often approached as a variational prob-
lem. One asks for a deformation φ on an image domain Ω which maps struc-
tures in the reference image uR onto corresponding structures in the template
image uT . This leads ill-posed minimization problem if one considers the in-
finite dimensional space of deformations [12]. A iterative, multilevel regular-
ization of the descent direction has been investigated in [22]. Alternatively,
motivated by models from continuum mechanics, the deformation can addi-
tionally be controlled by elastic stresses on images regarded as elastic sheets.
For example see the early work of Bajcsy and Broit [5] and more recent, sig-
nificant extensions by Grenander and Miller [33]. In [29] nonlinear elasticity
based on polyconvex energy functionals is investigated to ensure a one-to-one
image matching. As the image modality differs there is usually no correla-
tion of image intensities at corresponding positions. What still remains, at
least partially, is the local geometric image structure or “morphology” of cor-
responding objects. Viola and Wells [82] and Collignon et al. [23] presented
an information theoretic approach for the registration of multi-modal images.
Here, we consider “morphology” as a geometric entity and will review regis-
tration approaches presented in [28, 29, 30].

Obviously, geometry matching is also a widespread problem in computer
graphics and geometric modeling [35]. E.g. motivated by the ability to scan
geometry with high fidelity, a number of approaches have been developed in
the graphics literature to bring such scans into correspondence [9, 56]. Given a
reference surfaceMR and a template surfaceMT a particular emphasize is on
the proper alignment of curved features and the algorithmic issues associated
with the management of irregular meshes and their effective overlay. Here, we
will describe an image processing approach to the nonlinear elastic matching
of surface patches [57]. It is based on a proper variational parametrization
method [21] and on the matching of surface characteristics encoded as images
uR and uT on flat parameter domains ωR and ωT , respectively. Here, it is
particularly important to take into account of the metric distortion, to ensure
a physically reasonable matching of the actual surfacesMR andMT .
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4.3.1 The Geometry of Images

In mathematical terms, two images u, v : Ω → R with Ω ⊂ R
d for d =

2, 3 are called morphologically equivalent, if they only differ by a change
of contrast, i.e. , if u(x) = (β◦v)(x) for all x ∈ Ω and for some monotone
function β : R → R. Obviously, such a contrast modulation does not change
the order and the shape of super level sets l+c [u] = {x : u(x) ≥ c} . Thus,
image morphology can be defined as the upper topographic map, defined as
the set of all these sets morph[u] := {l+c [u] : c ∈ R} . Unfortunately, this set
based definition is not feasible for a variational approach and it does not
distinguish between edges and level sets in smooth image regions. Hence, in
what follows, we derive an alternative notion and consider image functions
u : Ω → R in SBV [3] – by definition L1 functions, whose derivative Du is
a vector-valued Radon measure with vanishing Cantor part. We consider the
usual splitting Du = Dacu + Dju [3], where Dacu is the regular part, which
is the usual image gradient apart from edges and absolutely continuous with
respect to the Lebesgue measure L, and a singular part Dju, which represents
the jump and is defined on the jump set J , which consists of the edges of the
image. We denote by nj the vector valued measure representing the normal
field on J . Obviously, nj is a morphological invariant. For the regular part of
the derivative we adopt the classical gradient notion ∇acu for the L density
of Dacu, i.e., Dacu = ∇acuL [3]. As long as it is defined, the normalized
gradient ∇acu(x) / ‖∇acu(x)‖ is the outer normal on the upper topographic
set l+u(x)[u] and thus again a morphological quantity. It is undefined on the
flat image region F [u] := {x ∈ Ω : ∇acu(x) = 0} . We introduce nac as the
normalized regular part of the gradient nac = χ

Ω\F [u]
∇acu / ‖∇acu‖ . We

are now able to redefine the morphology morph[u] of an image u as a unit
length vector valued Radon measure on Ω with morph[u] = nacL + ns . We
call nacL the regular morphology or Gauss map (GM) and ns the singular
morphology. In the next section, we aim to measure congruence of two image
morphologies with respect to a matching deformation making explicit use of
this decomposition.

4.3.2 Matching Image Morphology

Let us suppose that an initial template image u0
T and an initial reference

image u0
R are given on an image domain Ω. Both images are assumed

to be noisy. We aim for a simultaneous robust identification of smoothed
and structural enhanced representations uT , uR ∈ SBV and a deformation
φ, which properly matches the underlying image morphologies, such that
morph[uT ◦φ] = morph[uR] . To phrase this in terms a variational approach
we treat the two different components of the morphology separately.



4 Inverse Problems and Parameter Identification in Image Processing 121

Matching the Singular Morphology

We aim for a deformation φ a proper matching of the singular morphologies
requesting that φ(JR) = JT for the edge sets JR := JuR

and JT := JuT
.

Now, we ask for a simultaneous edge segmentation, denoising and matching of
images in terms of a Mumford Shah approach jointly applied to both images
and linked via the unknown elastic deformation. I.e., we consider as set of
unknowns uT , uR, JT and φ. For the template image we take into account the
usual Mumford Shah approach and define the energy

ET

MS[uT , JT ] =
1
2

∫
Ω

(uT − u0
T )2 dL+

µ

2

∫
Ω\JT

‖∇uT‖2 dL+ ηHd−1(ST )

with µ, η > 0. For the reference image we make use of our correspondence
assumption and define

ER

MS[uR, JT , φ] =
1
2

∫
Ω

(uR − u0
R)2 dL+

µ

2

∫
Ω\φ−1(JT )

‖∇uR‖2 dL ,

where the Hd−1 -measure of JR is supposed to be implicitly controlled by
the Hd−1 -measure of JT and a smooth deformation φ. Hence, we omit the
corresponding energy term here. Finally, the energy for the joint Mumford
Shah segmentation and matching model in the reference and the template
image is given by EMS[uR, uT , ST , φ] = ET

MS[uT , JT ] + ER
MS[uR, JT , φ] . So far,

the deformation φ is needed only on the singularity set ST and thus it is highly
under determined.

Matching the Regular Morphology

The regular image morphology consists of the normal field nac. Given regu-
larized representations uT and uR of noisy initial images we observe a perfect
match of the corresponding regular morphologies, if the deformation of the ref-
erence normal field nac

R := ∇acuR / ‖∇acuR‖ coincides with the template nor-
mals field nac

T := ∇acuT / ‖∇acuT‖ at the deformed position. In fact, all level
sets of the pull back template image uT ◦φ and the reference image uR would
then be nicely aligned. In the context of a linear mapping A normals deformed
with the inverse transpose A−T , Thus, we obtain the deformed reference nor-
mal nac,φ

R = Cof Dφ∇acuR / ‖Cof Dφ∇acuR‖ , where Cof A := detAA−T and
ask for a deformation φ : Ω → R

d, such that nac
T ◦φ = nac,φ

R . This can be
phrased in terms of an energy integrand g0 : Rd ×Rd × R

d,d → R
+
0 , which is

zero-homogeneous in the first two arguments as long as they both do not van-
ish and zero elsewhere. It measures the misalignment of directions of vectors
on Rd. For instance we might define

g0(w, z,A) := γ

∥∥∥∥( − w

‖w‖ ⊗
w

‖w‖ )
Cof Az

‖Cof Az‖

∥∥∥∥m
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for w, z �= 0, with γ > 0 and m ≥ 2, a⊗ b = abT . Based on this integrand we
finally define a Gauss map registration energy

EGM [uT , uR, φ] =
∫

Ω

g0(DacuT ◦φ,DacuR,Cof Dφ) dL .

For the analytical treatment of the corresponding variational problem we refer
to [29].

In a variational setting neither the matching energy for the singular mor-
phology nor the one for the regular morphology uniquely identify the de-
formation φ. Indeed, the problem is still ill-posed. For instance, arbitrary
reparametrizations of the level sets ∂l+c or the edge set J , and an exchange
of level sets induced by the deformation do not change the energy. Thus, we
have to regularize the variational problem. On the background of elasticity
theory [20], we aim to model the image domain as an elastic body responding
to forces induced by the matching energy. Let us consider the deformation
of length, volume and for d = 3 also area under a deformation φ, which
is controlled by Dφ/ ‖Dφ‖, detDφ, and Cof Dφ/ ‖Cof Dφ‖, respectively. In
general, we consider a so called polyconvex energy functional

Ereg[φ] :=
∫

Ω

W (Dφ,Cof Dφ,det dφ) dL , (4.8)

where W : R
d,d × R

d,d × R → R is supposed to be convex. In particular, a
suitable built-in penalization of volume shrinkage, i. e., W (A,C,D) D→0−→ ∞,
enables us to ensure bijectivity of the deformation (cf. [6]) and one-to-one
image matches. For details we refer to [29]. With respect to the algorithmical
realization we take into account a phase field approximation of the Mumford
Shah energy EMS picking up the approach by Ambrosio and Tortorelli [2].
Thereby, the edge set JT in the template image will be represented by a phase
field function v, hence v◦φ can regarded as the phase field edge representation
in the reference image [30]. As an alternative a shape optimization approach
based on level sets can be used [28]. Results of the morphological matching
algorithm are depicted in Figs. 4.1–4.3.

4.3.3 Images Encoding Geometry

So far, we have extensively discussed the importance of geometry encoded in
images for the purpose of morphological image matching. Now, we will discuss
how surface geometry can be encoded in images and how to make use of this
encoding for surface matching purposes. Consider a smooth surfaceM⊂ R

3,
and suppose x : ω →M; ξ �→ x(ξ) is a parameterization ofM on a parameter
domain ω. The metric g = DxTDx is defined on ω, where Dx ∈ R

3,2 is the
Jacobian of the parameterization x. It acts on tangent vectors v, w on the pa-
rameter domain ω with (g v) ·w = Dxv ·Dxw and describes how length, area
and angles are distorted under the parameterization x. This distortion is mea-
sured by the inverse metric g−1 ∈ R

2,2. In fact,
√

tr g−1 measures the average



4 Inverse Problems and Parameter Identification in Image Processing 123

Fig. 4.1 The morphological registration is demonstrated for a test case. From left
to right the reference image uR, the contrast modulated and artificially deformed
template image uT , the jump set JT in the template image uT (represented by a
phase field function), the deformation φ−1 of the template image visualized with a
deformed underlying checkerboard, and finally the registered template image uT ◦φ
are displayed

change of length of tangent vectors under the mapping from the surface onto
the parameter plane, whereas

√
det g−1 measures the corresponding change

of area. As a surface classifier the mean curvature on M can be considered
as a function h on the parameter domain ω. Similarly a feature set FM on
the surfaceM can be represented by a set F on ω. Examples for feature sets
for instance on facial surfaces are particularly interesting sets such as the eye
holes, the center part of the mouth, or the symmetry line of a suitable width
between the left and the right part of the face. Finally, surface textures T
usually live on the parameter space. Hence, the quadruple (x, h,F , T ) can
be regarded as an encoding of surface geometry in a geometry image on the
parameter domain ω. The quality of a parameterization can be described via
a suitable distortion energy Eparam[x] =

∫
x−1(M)

W (tr (g−1),det g−1) dx . For
details on the optimization of the parametrization based on this variational
approach we refer to [21].

4.3.4 Matching Geometry Images

Let us now consider a reference surface patchMR and a template patchMT to
be matched, where geometric information is encoded via two initially fixed pa-
rameter maps xR and xT on parameter domains ωR and ωT . In what follows we

Fig. 4.2 The registration of FLAIR and T1-weighted magnetic resonance brain
images is considered. From left to right: the reference T1 weighted MR image uR,
the template FLAIR image uT , the initial mismatch (with alternating stripes from
uT and uR), and in the same fashion results for a registration only of the regular
morphology and finally for the complete energy are shown
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Fig. 4.3 On the left the 3D phasefield corresponding to the edge set in the an MR
image is shown. Furthermore, the matching of two MR brain images of different
patients is depicted. We use a volume renderer based on ray casting (VTK) for a
3 D checkerboard with alternating boxes of the reference and the pull back of the
template image to show the initial mismatch of MR brain images of two different
patients (middle) and the results of our matching algorithm (right)

always use indices R and T to distinguish quantities on the reference and the
template parameter domain. First, let us consider a one-to-one deformation
φ : ωR → ωT between the two parameter domains. This induces a deformation
between the surface patches φM :MR →MT defined by φM := xT ◦φ ◦x−1

R .
Now let us focus on the distortion from the surfaceMR onto the surfaceMT .
In elasticity, the distortion under an elastic deformation φ is measured by the
Cauchy-Green strain tensor DφT Dφ. Properly incorporating the metrics gR

and gT we can adapt this notion and obtain the Cauchy Green tangential
distortion tensor G[φ] = g−1

R DφT (gT ◦ φ)Dφ , which acts on tangent vectors
on the parameter domain ωR. As in the parameterization case, one observes
that

√
trG[φ] measures the average change of length of tangent vectors from

MR when being mapped to tangent vectors on MT and
√

detG[φ] measures
the change of area under the deformation φM. Thus, trG[φ] and detG[φ] are
natural variables for an energy density in a variational approach measuring
the tangential distortion, i.-e. we define an energy of the type

Ereg[φ] =
∫

ωR

W (trG[φ],detG[φ])
√

det gR dξ .

When we press a given surfaceMR into the thin mould of the surfaceMT , a
second major source of stress results from the bending of normals. A simple
thin shell energy reflecting this is given by

Ebend[φ] =
∫

ωR

(hT ◦ φ− hR)2
√

det gR dξ .

Frequently, surfaces are characterized by similar geometric or texture features,
which should be matched in a way which minimizes the difference of the
deformed reference set φM(FMR

) and the corresponding template set FMT
.

Hence, we consider a third energy

EF [φ] = µ

∫
ωR

χFR
χφ−1(FT )

√
det gR + µ

∫
ωT

χφ(FR)χ(FT )

√
det gT .
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MR (MR + MT ) / 2 MT ωR (ωR + Φ(ωR)) / 2 Φ(ωR)

Fig. 4.4 Large deformations are often needed to match surfaces that have very
different shapes. A checkerboard is texture mapped onto the first surface as it morphs
to the second surface (top). The matching deformation shown in the parameter
domain (bottom) is smooth and regular, even where the distortion is high (e.g.,
around the outlines of the mouth and eyes)

Fig. 4.5 Morphing through keyframe poses A, B, C is accomplished through pair-
wise matches A → B and B → C. The skin texture from A is used throughout.
Because of the close similarity in the poses, one can expect the intermediate blends
A′, B′, C′ to correspond very well with the original keyframes A, B, C, respectively

Usually, we cannot expect that φM(MR) =MT . Therefore, we must allow for
a partial matching. For details on this and on the numerical approximation
we refer to [57]. Figs. 4.4–4.5 show two different application of the variational
surface matching method.

4.4 An Optimal Control Problem in Medical Image
Processing

In this section we consider the problem of creating a “natural” movie which
interpolates two given images showing essentially the same objects. In many
situations, these objects are not at the same position or – more importantly -
may be out-of-focus and blurred in one image while being in focus and sharp
in the other. This description may be appropriate for frames in movies but
also for different versions of a mammogram emphasizing coarse and fine de-
tails, respectively. The problem is to create an interpolating movie from these
images which is perceived as “natural”. In this context, we specify “natural”
according to the following requirements. On the one hand, objects from the
initial image should move smoothly to the corresponding object in the final
image. On the other hand, the interpolation of an object which is blurred in
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the initial image and sharp in the final image (or vice versa) should be across
different stages of sharpness, i.e. , the transition is also required to interpolate
between different scales.

As a first guess to solve this problem, one can either try to use an existing
morphing algorithm or to interpolate linearly between the two images. How-
ever, morphing methods are based on detecting matching landmarks in both
images. They are not applicable here, since we are particularly interested in
images containing objects, which are not present or heavily diffused in the
initial image but appear with a detailed structure in the final image. Hence,
there are no common landmarks for those objects. Mathematically speaking,
it is difficult or impossible to match landmark points for an object which is
given on a coarse and fine scale, respectively. Also linear interpolation be-
tween initial and final image does not create a natural image sequence, since
it does not take the scale sweep into account, i.e. , all fine scale are appearing
immediately rather than developing one after another.

Hence, more advanced methods have to be employed. In this article we
show a solution of this interpolation problem based on optimal control of
partial differential equations.

To put the problem in mathematical terms, we start with a given image
y0 assumed to be a function on Ω = ]0, 1[2. Under the natural assumption
of finite-energy images, we model them as functions in L2(Ω). The goal is
to produce a movie (i.e. a time-dependent function) y : [0, 1] → L2(Ω) such
that appropriate mathematical implementations of the above conditions are
satisfied.

4.4.1 Modeling as an Optimal Control Problem

Parabolic partial differential equations are a widely used tool in image process-
ing. Diffusion equations like the heat equation [84], the Perona-Malik equation
[66] or anisotropic equations [83] are used for smoothing, denoising and edge
enhancing.

A smoothing of a given image y0 ∈ L2(Ω) can for example be done by
solving the heat equation

yt −∆y = 0 in ]0, 1[×Ω

yν = 0 on ]0, 1[× ∂Ω

y(0) = y0 ,

where yν stands for the normal derivative, i.e. we impose homogeneous Neu-
mann boundary conditions. The solution y : [0, 1] → L2(Ω) gives a movie
which starts at the image y0 and becomes smoother with time t. This evolution
is also called scale space and is analyzed by the image processing community
in detail since the 1980s. Especially the heat equation does not create new
features with increasing time, see e.g. [32] and the references therein. Thus, it
is suitable for fading from fine to coarse scales.
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The opposite direction, the sweep from coarse to fine scales, however, is
not modeled by the heat equation. Another drawback of this PDE is that
generally, all edges of the initial image will be blurred. To overcome this
problem, the equation is modified such that it accounts for the edges and
allows the formation of new structures. The isotropic diffusion is replaced
with the degenerate diffusion tensor given by

D2
p =

(
I − σ(|p|) p

|p| ⊗
p

|p|

)
, (4.9)

where the vector field p : ]0, 1[ × Ω → R
d with |p| ≤ 1 describes the edges of

the interpolating sequence and σ : [0, 1]→ [0, 1] is an edge-intensity function.
The special feature of this tensor is that it is allowed to degenerate for |p| = 1,
blocking the diffusion in the direction of p completely.

Consequently, the degenerate diffusion tensor D2
p can be used for the

preservation of edges. Additionally, in order to allow brightness changes and
to create fine-scale structures, a source term u is introduced. The model under
consideration then reads as:

yt − div
(
D2

p∇y
)

= u in ]0, 1[×Ω

ν ·D2
p∇y = 0 on ]0, 1[× ∂Ω

y(0) = y0 .

(4.10)

The above equation is well-suited to model a sweep from an image y0 to
an image y1 representing objects on different scales. Hence, we take the image
y0 as initial value. To make the movie y end at a certain coarse scale image y1

instead of the endpoint y(1) which is already determined through (y0, u, p),
we propose the following optimal control problem:

Minimize J(y, u, p) =
1
2

∫
Ω

|y(1)− y1|2 dx +

1∫
0

∫
Ω

λ1

2
|u|2 + λ2σ(|p|) dx dt

subject to

⎧⎪⎨⎪⎩
yt − div

(
D2

p∇y
)

= u in ]0, 1[×Ω

ν ·D2
p∇y = 0 on ]0, 1[× ∂Ω

y(0) = y0 .

(4.11)

In other words, the degenerate diffusion process is forced to end in y0 with
the help of a heat source u and the edge field p and such that the energy for
u and the edge-intensity σ(|p|) becomes minimal.

4.4.2 Solution of the Optimal Control Problem

The minimization of the functional (4.11) is not straightforward. An analyti-
cal treatment of the minimization problem involves a variety of mathematical
tasks. First, an appropriate weak formulation for (4.10) has to be found for
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which existence and uniqueness of solutions can be proven. Second, we have to
ensure that a minimizer of a possibly regularized version of (4.11) exists. The
main difficulty in these two points is to describe the influence of the param-
eter p in the underlying degenerate parabolic equation which control where
the position and evolution of the edges in the solution. A general approach
for minimizing Tikhonov functionals such as (4.11) by a generalized gradient
method can be found in [11].

The Solution of the PDE

The solution of diffusion equations which are uniformly elliptic is a classical
task. The situation changes when degenerate diffusion tensors like (4.9) are
considered. In the following we fix an edge field p and examine the PDE (4.10)
only with respect to (u, y0) which is now linear. Here, when considering weak
solutions, the choice of L2

(
0, 1;H1(Ω)

)
for the basis of a solution space is not

sufficient. This has its origin in one of the desired features of the equation:
In order to preserve and create edges, which correspond to discontinuities
in y with respect to the space variable, the diffusion tensor is allowed to
degenerate. Such functions cannot be an element of L2

(
0, 1;H1(Ω)

)
. Hence,

spaces adapted to the degeneracies have to be constructed by the formal
closure with respect to a special norm (also see [62] for a similar approach):

Vp = L2
(
0, 1;H1(Ω)

)∣∣∼
‖·‖Vp

, ‖y‖Vp
=
(∫ 1

0

∫
Ω

|y|2 + |Dp∇y|2 dx dt
)1/2

.

Elements y can be thought of square-integrable functions for which formally
Dp∇y ∈ L2

(
0, 1;L2(Ω)

)
. One can moreover see that functions which admit

discontinuities where |p| = 1 are indeed contained in Vp. In the same manner,
the solution space

Wp(0, 1) =
{
y ∈ AC

(
0, 1;H1(Ω)

) ∣∣ ‖y‖Wp
<∞

}∣∣∼
‖·‖Wp

,

‖y‖Wp
=
(
‖y‖2Vp

+ ‖yt‖2V∗
p

)1/2
.

A weak formulation of (4.10) then reads as: Find y ∈ Vp such that

−〈zt , y〉V∗
p×Vp

+ 〈Dp∇y, Dp∇z〉L2 = 〈y0, z(0)〉L2 + 〈u, z〉L2 (4.12)

for all z ∈Wp(0, 1) with z(T ) = 0. One can prove that a unique solution exists
in this sense.

Theorem 4.1 For p ∈ L∞(]0, 1[×Ω,Rd) with ‖p‖∞ ≤ 1, u ∈ L2
(
0, 1;L2(Ω)

)
and y0 ∈ L2(Ω), there exists a unique solution of (4.12) in Wp(0, T ) with

‖y‖2Wp
≤ C

(
‖u‖22 + ‖y0‖22

)
where C is also independent of p.
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Proof A solution can be obtained, for example with Lions’ projection theorem
or with Galerkin approximations. Both approaches yield the same solution in
Wp(0, 1), whose uniqueness can be seen by a monotonicity argument. However,
other solutions may exist in the slightly larger space

W̄p(0, 1) =
{
y ∈ Vp

∣∣ yt ∈ V∗
p

}
, ‖y‖W̄p

= ‖y‖Wp
,

see [10] for details. �

Unfortunately, for each p, the solution space may be different and, in gen-
eral, no inclusion relation holds. This complicates the analysis of the solution
operator with respect to p in a profound way.

But fortunately, the spaces Wp(0, 1) still possess the convenient property
that each Wp(0, 1) ↪→ C

(
[0, 1];L2(Ω)

)
with embedding constant independent

of p. So, the solution operator

S : L2
(
0, 1;L2(Ω)

)
× {‖p‖∞ ≤ 1} → C

(
[0, 1];L2(Ω)

)
, (u, p) �→ y

is well-defined and bounded on bounded sets.
Examining the continuity of S, a bounded sequence {ul} and arbitrary

{pl} have, up to a subsequence, weak- and weak*-limits u and p. Since
C
(
[0, 1];L2(Ω)

)
is not reflexive, we cannot assure weak convergence of the

bounded sequence {yk}, but it is possible to show that a weak limit y ex-
ists in the slightly larger space C∗

(
[0, 1];L2(Ω)

)
in which point-evaluation is

still possible, again see [10] for details. The problem now is to show that the
solution operator is closed in the sense that S(u, p) = y.

Characterization of the Solution Spaces

One difficulty in examining the varying solution spaces Vp is the definition as
a closure with respect to a norm which depends on p, resulting in equivalence
classes of Cauchy sequences. A more intuitive description of the Vp is given
in terms of special weak differentiation notions, as it is demonstrated in the
following. In particular, this allows to describe the behavior of the solution
operator S with respect to p.

For w ∈ H1,∞(Ω) and q ∈ H1,∞(Ω,Rd), the weak weighted derivative and
weak directional derivative of y are the functions, denoted by w∇y and ∂qy,
respectively, satisfying∫

Ω

(w∇y) · z dx = −
∫

Ω
y(w div z +∇w · z) dx for all z ∈ C∞0 (Ω,Rd)∫

Ω

∂qyz dx = −
∫

Ω
y(z div q +∇z · q) dx for all z ∈ C∞0 (Ω) .

With the help of these notions, a generalization of the well-known weighted
Sobolev spaces [48] can be introduced, the weighted and directional Sobolev
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spaces associated with a weight w ∈ H1,∞(Ω) and directions q1, . . . , qK ∈
H1,∞(Ω,Rd):

H2
w,∂q1,...,∂qK

(Ω) =
{
y ∈ L2(Ω)

∣∣ w∇y ∈ L2(Ω,Rd), ∂q1y, . . . , ∂qK
y ∈ L2(Ω)

}
‖y‖H2

w,∂q1,...,∂qK

=
(
‖y‖22 + ‖w∇y‖22 +

K∑
k=1

‖∂qk
y‖22

)1/2

.

These spaces generalize weighted Sobolev spaces in the sense that ∇y does
not necessarily exist for elements in H2

w(Ω) and that w = 0 is allowed on
non-null subsets of Ω.

The gain now is that the following weak closedness properties can be es-
tablished:

yl ⇀ y

wl∇yl ⇀ θ

∂qk,l
yl ⇀ vk

and

wl
∗
⇀ w

qk,l
∗
⇀ qk

div qk,l → div qk

pointwise a.e.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇒
{

w∇y = θ

∂qk
y = vk .

(4.13)

Such a result is the key to prove that the solution operator S possesses ap-
propriate closedness properties.

The construction of the weighted and directional weak derivative as well
as the associated spaces can also be carried out for the time-variant case,
resulting in spaces H2

w,∂q1,...,∂qK
. Splitting the diffusion tensor (4.9) then into

a weight and direction as follows

w =
√

1− σ(|p|) , q =
(

0 −1
1 0

) √
σ(|p|)
|p| p

yields D2
p = w2I + q ⊗ q, so ∇z · D2

p∇y = w∇y · w∇z + ∂qy∂qz. This gives
an equivalent weak formulation in terms of weak weighted and directional
derivatives.

Theorem 4.2 For ‖p(t)‖H1,∞ ≤ C a.e. and |p| ≤ C < 1 on ]0, 1[×∂Ω follows
that Vp = H2

w,q and Wp(0, 1) = W̄p(0, 1). A y ∈ Vp is the unique solution of
(4.12) if and only if

−〈zt, y〉H2∗
w,q×H2

w,q
+ 〈w∇y, w∇z〉L2 + 〈∂qy, ∂qz〉L2 = 〈y0, z(0)〉L2 + 〈u, z〉L2

(4.14)
for each z ∈Wp(0, 1), zt ∈ L2

(
0, 1;L2(Ω)

)
and z(T ) = 0 .

Proof For the proof and further details we again refer to [10]. �

Existence of Optimal Solutions

The characterization result of Theorem 4.2 as well as time-variant versions of
the closedness property (4.13) are the crucial ingredients to obtain existence
of solutions for a regularized version of (4.11).
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Theorem 4.3 Let P a weak*-compact set such that each p ∈ P satisfies the
prerequisites of Theorem 4.2. The control problem

min
u∈L2(0,1;L2(Ω))

p∈P

‖y(1)− y1‖22
2

+ λ1‖u‖22 + λ2

∫ T

0

∫
Ω

σ(|p|) dx dt

+µ1tv∗(p) + µ2 ess sup
t∈[0,1]

TV
(
∇p(t)

)
subject to

⎧⎪⎨⎪⎩
yt − div

(
D2

p∇y
)

= u in ]0, 1[×Ω

ν ·D2
p∇y = 0 on ]0, 1[× ∂Ω

y(0) = y0 .

possesses at least one solution (u∗, p∗). Here, tv∗ and TV denote the semi-
variation with respect to t and the total variation, respectively.

Proof The proof can roughly be sketched as follows, see [10] for a rigorous
version. For a minimizing sequence (yl, ul, pl), one obtains weak- and weak*-
limits (y∗, u∗, p∗) according to the compactness stated above. Theorem 4.2
gives weakly convergent sequences wl∇yl and ∂ql

yl as well as the alternative
weak formulation (4.14). The total-variation regularization terms then ensure
the applicability of closedness properties analog to (4.13), so passing to the
limit in (4.14) yields that y∗ ∈ W̄p∗(0, 1) is the unique solution associated
with (u∗, p∗). Finally, with a lower-semicontinuity argument, the optimality
is verified. �

y0 y1 y

Fig. 4.6 Illustration of an interpolating sequence generated by solving the proposed
optimal control problem. The two leftmost images depict y0 and y1, respectively (a
coarse- and fine-scale version of a mammography image), while some frames of the
optimized image sequence can be seen on the right
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Having established the existence of at least one minimizing element, one
can proceed to derive an optimality system based on first-order necessary con-
ditions (which is possible for ||p||∞ < 1). Furthermore, numerical algorithms
for the optimization of the discrete version of (4.11) can be implemented, see
Fig. 4.6 for an illustration of the proposed model.

4.5 Restoration and Post Processing of Optical Flows

The estimation of motion in image sequences has gained wide spread impor-
tance in a number of scientific applications stemming from diverse fields such
as environmental and life-sciences. Optical imaging systems acquire imaging
data non-invasively, a prerequisite for accurate measurements. For analyzing
transport processes, the estimation of motion or optical flow plays a central
role. Equally, in engineering applications the estimation of motion from im-
age sequences is not only important in fluid dynamics but can also be used
in novel products such as driver assisting systems or in robot navigation.
However, frequently the image data is corrupted by noise and artifacts. In
infrared thermography, temperature fluctuations due to reflections are often
impossible to fully eliminate. In this paper, novel techniques will be presented
which detect artifacts or problematic regions in image sequences. Optical flow
computations based on local approaches such as those presented in Chap. 7
can then be enhanced by rejecting wrong estimates and inpainting the flow
fields from neighboring areas. Furthermore, a joint Mumford Shah type ap-
proach for image restoration, image and motion edge detection and motion
estimation from noisy image sequences is presented. This approach allows to
restore missing information, which may be lost due to artifacts in the original
image sequence. Finally, we discuss a Mumford Shah type model for motion
estimation and restoration of frames from motion-blurred image sequences.

4.5.1 Modeling and Preprocessing

Standard Motion Model

The estimation of motion from image sequences represents a classical inverse
problem. As such, constraint equations that relate motion to image intensities
and changes thereof are required. In Chap. 7, a wide range of these motion
models is presented. Here we will just introduce the simplest one, keeping
in mind that the proposed algorithms based upon this model can readily be
extended to more complicated ones.

For a finite time interval [0, T ] and a spatial domain Ω ⊂ R
d with d = 1, 2, 3

the image sequence u : D → R is defined on the space time domain D =
[0, T ] × Ω. If x : [0, T ] → R

d describes the trajectory of a point of an object
such that the velocity w = (1, v) is given by ẋ = w we can model a constant
brightness intensity u as u(t, x(t)) = const. A first order approximation yields
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du
dt

= 0 ⇔ ∂u

∂t
+ v · ∇(x)u = 0 ⇔ w · ∇(t,x)u = 0 , (4.15)

where ∇ is the gradient operator with respect to parameters given as indices.
Models based on this equation are called differential models since they are
based on derivatives.

The parameters w of the motion model (4.15) can be solved by incorpo-
rating additional constraints such as local constancy of parameters or global
smoothness (a more refined approach of assuming global piecewise smoothness
will be presented in Sect. 4.5.2). Refined techniques for local estimates extend-
ing the common structure tensor approach have been outlined in Chap. 7 and
will not be repeated here.

Comparison of Confidence and Situation Measures and Their
Optimality for Optical Flows

In order to detect artifacts in image sequences, one can analyze confidence and
situation measures. Confidence measures are used to estimate the correctness
of flow fields, based on information derived from the image sequence and/or
the displacement field. Since no extensive analysis of proposed confidence mea-
sures has been carried out so far, in [45] we compare a comprehensive selection
of previously proposed confidence measures based on the theory of intrinsic di-
mensions [86], which have been applied to analyze optical flow methods in [42].
We find that there are two kinds of confidence measures, which we distinguish
into situation and confidence measures. Situation measures are used to de-
tect locations, where the optical flow cannot be estimated unambiguously.
This is contrasted by confidence measures, which are suited for evaluating
the degree of accuracy of the flow field. Situation measures can be applied,
e.g., in image reconstruction [58], to derive dense reliable flow fields [74] or to
choose the strength of the smoothness parameter in global methods (e.g., indi-
rectly mentioned in [54]). Confidence measures are important for quantifying
the accuracy of the estimated optical flow fields. A successful way to obtain
robustness to noise in situation and confidence measures is also discussed
in [45].

Previously, confidence measures employed were always chosen as innate to
the flow estimation technique. By combining flow methods with non-inherent
confidence measures we were able to show considerable improvements for con-
fidence and situation measures. Altogether the results of the known measures
are only partially satisfactory as many errors remain undetected and a large
number of false positive error detections have been observed. Based on a
derived optimal confidence map we obtain the results in Fig. 4.7 for Lynn
Quam’s Yosemite sequence [36], and the Street [59] test sequences. For situa-
tion measures we conclude by presenting the best measure for each intrinsic
dimension. Quantitative results can be found in [45].
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Fig. 4.7 Comparison of optimal confidence measure (left) to best known confidence
measure (right) for Yosemite and Street sequences

An Adaptive Confidence Measure Based on Linear Subspace
Projections

For variational methods, the inverse of the energy after optimization has been
proposed as a general confidence measure in [13]. For methods not relying on
global smoothness assumptions, e.g. local methods, we propose a new con-
fidence measure based on linear subspace projections in [46]. The idea is to
derive a spatio-temporal model of typical flow field patches using e.g. principal
component analysis (PCA). Using temporal information the resulting eigen-
flows can represent complex temporal phenomena such as a direction change, a
moving motion discontinuity or a moving divergence. Then the reconstruction
error of the flow vector is used to define a confidence measure.

Quantitative analysis shows that using the proposed measure we are able
to improve the previously best results by up to 31%. A comparison between
the optimal, the obtained confidence and the previously often applied gradient
measure [4, 13] is shown in Fig. 4.8.

Surface Situation Measures

In [47] we present a new type of situation measure for the detection of positions
in the image sequence, where the full optical flow cannot be estimated reliably
(e.g. in the case of occlusions, intensity changes, severe noise, transparent
structures, aperture problems or homogeneous regions), that is in unoccluded
situations of intrinsic dimension two. The idea is based on the concept of
surface functions. A surface function for a given flow vector v reflects the

Fig. 4.8 Comparison to optimal confidence, left: optimal confidence map, center:
pcaReconstruction confidence map, right: previously often used gradient confidence
measure
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variation of a confidence measure c over the set of variations of the current
displacement vector.

Sx,v,c : R
2 → [0, 1] , Sx,v,c(d) := c(x, v + d) . (4.16)

By analyzing the curvature of a given surface function statements on the
intrinsic dimension and possible occlusions can be made. The surface situation
measures have proven superior to all previously proposed measures and are
robust to noise as well.

4.5.2 Restoration of Optical Flows

Optical Flows via Flow Inpainting Using Surface Situation
Measures

Based on the surface situation measures introduced in Sect. 4.5.1, in [47] we
suggest a postprocessing technique for optical flow methods, a flow inpainting
algorithm, which integrates the information provided by these measures and
obtains significantly reduced angular errors. We demonstrate that 100% dense
flow fields obtained from sparse fields via flow inpainting are superior to dense
flow fields obtained by local and global methods. Table 4.1 shows the reduction
of the angular error of four flow fields computed by the local structure tensor
(ST) [8] and the global combined local global (CLG) method [14] by means
of flow inpainting.

Comparing the angular error obtained by the derived flow inpainting algo-
rithm to the angular error of the original flow fields computed with two state
of the art methods (the fast local structure tensor method and the highly
accurate combined local global method) we could achieve up to 38% lower
angular errors and an improvement of the accuracy in all cases. We conclude
that both local and global methods can be used alike to obtain dense optical
flow fields with lower angular errors than state of the art methods by means of
the proposed flow inpainting algorithm. The algorithm was also used to com-
pute accurate flow fields on real world applications. In Fig. 4.9 two examples

Table 4.1 Original and inpainting angular error for surface measures and inpainting
error based on the best previously known situation measure [45] on average for ten
frames of the test sequences for the combined local global and the structure tensor
method

Combined local global Structure tensor

Original Inpainting Original Inpainting

Marble 3.88 ± 3.39 3.87 ± 3.38 4.49 ± 6.49 3.40 ± 3.56

Yosemite 4.13 ± 3.36 3.85 ± 3.00 4.52 ± 10.10 2.76 ± 3.94

Street 8.01 ± 15.47 7.73 ± 16.23 5.97 ± 16.92 4.95 ± 13.23

Office 3.74 ± 3.93 3.59 ± 3.93 7.21 ± 11.82 4.48 ± 4.49
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Fig. 4.9 In (a) the estimated flow field based on the structure tensor is shown for
an infrared sequence of the air–water interface. Reflections lead to wrong estimates.
The post processed motion field is shown in (b). In (c) and (d) the same is shown
for a traffic scene.

for typical applications are presented. The inpainting algorithm signifiacntly
reduces errors due to reflections in thermographic image sequences of the air–
water interface and errors in different situations in traffic scenes.

Joint Estimation of Optical Flow, Segmentation and Denoising

In the previous section, separate techniques for detecting artifacts were pre-
sented, followed by an algorithm to inpaint parts of the flow field corrupted
by the artifacts. In this section we will outline a technique for jointly denois-
ing an image sequence, estimating optical flow and segmenting the objects at
the same time [75]. Our approach is based on an extension of the well known
Mumford Shah functional which originally was proposed for the joint denois-
ing and segmentation of still images. Given a noisy initial image sequence
u0 : D → R we consider the energy

EMSopt[u,w, S] =
∫

D

λu

2
(u− u0)2 dL+

∫
D\S

λw

2
(
w · ∇(t,x)u

)2 dL

+
∫

D\S

µu

2

∣∣∇(t,x)u
∣∣2 dL

+
∫

D\S

µw

2

∣∣Pδ[ζ]∇(t,x)w
∣∣2 dL+ νHd(S)

for a piecewise smooth denoised image sequence u : D → R, and a piecewise
smooth motion field w = (1, v) and a set S ⊂ D of discontinuities of u and
w. The first term models the fidelity of the denoised image-sequence u, the
second term represents the fidelity of the flow field w in terms of the optical
flow (4.15). The smoothness of u and w is required on D \ S and finally,
the last term is the Hausdorff measure of the set S. A suitable choice of the
projection Pδ[ζ] leads to an anisotropic smoothing of the flow field along the
edges indicated by ζ.

The model is implemented using a phase field approximation in the spirit
of Ambrosio and Tortorelli’s approach [2]. Thereby the edge set S is replaced

a b c d
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by a phase field function ζ : D → R such that ζ = 0 on S and ζ ≈ 1 far from
S. Taking into account the Euler-Lagrange equations of the corresponding
yields a system of three partial differential equations for the image-sequence
u, the optical flow field v and the phase field ζ:

−div(t,x)

(
µu

λu
(ζ2+kε)∇(t,x)u +

λw

λu
w(∇(t,x)u·w)

)
+u = u0

−ε∆(t,x)ζ +
(

1
4ε

+
µu

2ν

∣∣∇(t,x)u
∣∣2) ζ =

1
4ε

−µw

λw
div(t,x)

(
Pδ[ζ]∇(t,x)v

)
+ (∇(t,x)u · v)∇(x)u = 0 .

(4.17)

For details on this approximation and its discretization we refer to [31].
In Fig. 4.10 we show results from this model on a noisy test-sequence where

one frame is completely missing. But this does not hamper the restoration
of the correct optical flow field shown in the fourth column, because of the
anisotropic smoothing of information from the surrounding frames into the
destroyed frame.

Furthermore, in Fig. 4.11 we consider a complex, higher resolution video se-
quence showing a group of walking pedestrians. The human silhouettes are well
extracted and captured by the phase field. The color-coded optical flow plot
shows how the method is able to extract the moving limbs of the pedestrians.

Joint Motion Estimation and Restoration of Motion Blur

Considering video footage from a standard video camera, it is quite notice-
able that relatively fast moving objects appear blurred. This effect is called
motion blur, and it is linked to the aperture time of the camera, which roughly
speaking integrates information in time. The actual motion estimation suf-
fers from motion blur and on the other hand given the motion the blur can
be removed by “deconvolution”. Hence, these two problems are intertwined,
which motivates the development of a method that tackles both problems at
once. In [7] a corresponding joint motion estimation and deblurring model has

Fig. 4.10 Noisy test sequence: From top to bottom frames 9 and 10 are shown. (a)
original image sequence, (b) smoothed images, (c) phase field, (d) estimated motion
(color coded)

a b c d
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Fig. 4.11 Pedestrian video: frames from original sequence (left); phase field
(middle); optical flow, color coded (right)

been presented. For simplicity let us assume that an object is moving with
constant velocity v in front of a still background and we observe m frames
g1, · · ·um at times t1, · · · , tm. From the object and background intensity func-
tions fobj and fbg, respectively, one assembles the actual scene intensity func-
tion f(t, x) = fobj(x−tv)χobj(x−vt)+fbg(x)(1−χobj(x−vt)). Now, it turns out
to be crucial close to motion edges to observe that the theoretically observed
motion blur at time t is a properly chosen average of background intensity
and motion blurred object intensity. Indeed, the expected intensity is given by
Gi[Ωobj, v, fobj, fbg](x) := ((fobjχobj) ∗ hv)(x− tiv) + fbg(x)(1− (χobj ∗ hv)(x−
tiv)), where χobj is the characteristic function of the object domain Ωobj and
hv := δ0((v⊥ / |v|) · y)h((v / |v|) · y) a one dimensional filter kernel with filter
width τ |v| in the direction of the motion trajectory {y = x + sv : s ∈ R}.
Here v⊥ denotes v rotated by 90 degrees, δ0 is the usual 1D Dirac distribution
and h the 1D block filter with h(s) = 1 / (τ |v|) for s ∈ [−(τ |v|) / 2 , (τ |v|) / 2]
and h(s) = 0, else. Hence, a Mumford Shah type approach for joint motion
estimation and deblurring comes along with the energy

E[Ωobj, v, fobj] =
∑

i=1,2

∫
Ω

(Gi[Ωobj, v, fobj, fbg]− gi)
2 dL

+
∫

Ω

µ|∇fobj|dL+ ν|∂Ωobj|

depending on the unknown object domain Ωobj, unknown velocity v, object
intensity fobj to be restored. We ask for a minimizing set of the degrees of
freedom Ωobj, v, and fobj. Once a minimizer is known, we can retrieve the
deblurred images (see Fig. 4.12). For details on this approach and further
results we refer to [7].

4.6 FEM Techniques for Multiscale Visualization
of Time-Dependent Flow Fields

The analysis and post-processing of flow fields is one of the fundamental tasks
in scientific visualization. Sophisticated multiscale methods are needed to visu-
alize and analyze the structure of especially nonstationary flow fields for which
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Fig. 4.12 From two real blurred frames (left), we automatically and simultane-
ously estimate the motion region, the motion vector, and the image intensity of the
foreground (middle). Based on this and the background intensity we reconstruct
the two frames (right)

the standard tools may fail. A huge variety of techniques for the visualization
of steady as well as time-dependent flow fields in 2 D and 3 D has been pre-
sented during the last years. The methods currently available range from par-
ticle tracing approaches [79, 81] over texture based methods [16, 27, 40, 72, 80]
to feature extraction for 3 D flow fields [19, 39, 41, 76]. An overview is given
by Laramee et al. [55].

In this section we discuss the application of an anisotropic transport dif-
fusion method to complex flow fields resulting from CFD computations on
arbitrary grids. For general unstructured meshes, we apply the discretization
of the arising transport diffusion problems by the streamline-diffusion (SD)
FEM scheme, and we discuss iterative solvers of type Krylov-space or multi-
grid schemes for the arising nonsymmetric auxiliary problems. We analyze
a corresponding balancing of the involved operators and blending strategies.
The application to several test examples shows that the approaches are ex-
cellent candidates for efficient visualization methods of highly nonstationary
flow with complex multiscale behavior in space and time.

Moreover we show a technique for multiscale visualization of static flow
fields which is based on an algebraic multigrid method. Starting from a stan-
dard finite element discretization of the anisotropic diffusion operator, the
algebraic multigrid yields a hierarchy of inter-grid prolongation operators.
These prolongations can be used to define coarse grid finite element basis
functions whose support is aligned with the flow field.

4.6.1 The Anisotropic Transport Diffusion Method

In [15, 70] special methods which are based on anisotropic diffusion and
anisotropic transport diffusion for the visualization of static and
time-dependent vector fields have been presented. In this section we briefly
review these models, the according parameters and a blending strategy which
is needed to produce a visualization of time-dependent flow fields.

The Transport Diffusion Operator

We consider a time-dependent vector field v : I × Ω → R
d, (s, x) �→ v(s, x)

given on a finite time-space cylinder I × Ω where I = [0, T ] and Ω ⊂ R
d for
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d = 2, 3. Here, we restrict to d = 2. If the vector field v is constant in time,
i.e., v(s, x) = v0(x) for all s ∈ I, we can create a multiscale visualization
of the flow field in form of a family of textures {u(t)}t∈R+ by the following
anisotropic diffusion equation:
Find u : R

+ ×Ω → R such that

∂tu− div(A(v,∇u)∇u) = f(u) in R
+ ×Ω ,

A(v,∇u)∂nu = 0 on R
+ × ∂Ω ,

u(0, ·) = u0(·) in Ω .

(4.18)

We start this evolution with an initial image u0 showing random white noise.
Since we have assumed the vector field to be continuous, there exists a family
of orthogonal mappings B(v) ∈ SO(d) such that B(v)e1 = v. And denoting
the identity matrix of dimension d with Idd, the diffusion tensor reads

A(v,∇u) = B(v)
(
α(‖v‖) 0

0 G(‖∇u‖)Idd−1 ,

)
B(v)T

where α is a monotone increasing function which prescribes a linear diffusion
in direction of v for ‖v‖ > 0. We will choose α appropriately below. During the
evolution, patterns are generated which are aligned with the flow field. The
function G(s) := ε/(1 + c s2) – well known in image processing [65] – controls
the diffusion in the directions orthogonal to the flow. It is modeled such that
the evolution performs a clustering of streamlines and thus generates coarser
representations of the vector field with increasing scale t. The definition of
the diffusion tensor G depends on the gradient of a regularized image uσ =
u ∗ χσ. This regularization is theoretically important for the well-posedness
of the presented approach [18, 44]. To our experience, in the implementation
this regularization can be neglected or can be replaced by a lower bound for
the value of G(·). For ‖v‖ = 0 we use an isotropic diffusion operator. The
role of the right hand side f(u) (4.18) is to strengthen the contrast of the
image during the evolution, because for f ≡ 0 the asymptotic limit would be
an image of constant gray value. We set f(u) = ρ ×

(
(2u− 1)− (2u− 1)3

)
with ρ = 80 to increase the set of asymptotic states of the evolution. An
example1 of the multiscale evolution is shown in Fig. 4.13, where the multiscale
visualization of a flow field is displayed for the Venturi pipe problem in 2 D [1].

Let us now suppose that the vector field varies smoothly in time. If we
would consider the evolution equation separately for each fixed time s ∈ I, the
resulting textures at a fixed scale t0 ∈ R

+ would not give a smooth animation
of the flow in time. This is due to a lack of correlation between the line-
structures of the separate textures. However, if there would be a correlation
between the structure of separate textures, the resulting animation would only
give an Eulerian type representation of the flow.

1 This example was computed with a time step of ∆t = 0.005 on a mesh with 82753
nodes.
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Fig. 4.13 Multiscale visualization of the Venturi pipe example (with transport)

To obtain a Lagrangian type representation, we consider the following
anisotropic transport diffusion operator for the multiscale representation
u : R

+ × Ω → R and the corresponding inhomogeneous transport diffusion
equation

∂tu + v · ∇u− div(A(v,∇u)∇u) = f(u) in R
+ ×Ω ,

A(v) ∂nu = 0 on R
+ × ∂Ω ,

u(0, ·) = u0(·) in Ω .

(4.19)

In this equation we have identified the time s of the vector field with the scale
t of the multiscale visualization. Indeed the resulting texture shows again
structures aligned with streamlines which are now transported with the flow.
But due to the coupling of s and t the feature scale gets coarser with increasing
time, i.e., we are not able to fix a scale t0 and typically an animation is created
at this scale showing always patterns of the same size. This fact makes the
use of an appropriate blending strategy unavoidable.

Balancing the Parameters

In general the transport and the diffusion of the patterns of the texture u are
opposite processes. Denoting a time-step of the transport diffusion equation
with ∆t and introducing the balance parameter β > 0 we have [15]

α(‖v‖)(x) =
β2 max(‖v(x)‖ , ‖v‖min)2∆t

2
.

In our applications we use the setting β = 10 and ‖v‖min = 0.05.

Blending Strategies

Blending strategies have to be used to get a visual representation of a given
flow inside of a desired feature scale range. This means we have a set of
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solutions each started at a different time representing different feature scales
which will be blended together. Different blending strategies are possible,
e.g. trigonometric functions, interpolating splines, etc. We are currently using
a Bézier-spline based approach combined with a specialized startup phase.

At the startup phase we will bootstrap our blending from one solution to
the final number ntot of solutions. The solutions are handled in an array. After
time ∆tblend, the oldest solution will be overwritten with noise and a ring shift
will be carried out that brings the second oldest solution to the position of
the oldest. In the startup phase a start solution containing noise is inserted
at the start of the array and all other solutions are shifted one index position
higher.

Is is obvious that the use of more blended solutions increases the smooth-
ness of the transitions between visible feature scales. However, the computa-
tional time increases linearly with the number of used solutions which comes
down to a tradeoff between quality and time. For preview purposes, two
blended solutions are sufficient. High quality visualizations will need more.

4.6.2 Discretization

A Finite Element Discretization for Static Flow Fields

For static flow fields and the scheme (4.18) we can use a standard finite ele-
ment method on a given discretizational grid of the domain. A semi-implicit
Backward Euler scheme with time step width ∆t is applied, which results
in the evaluation of the diffusion tensor A and the right hand side f at the
previous time steps. This leads to the semi-discrete scheme

un+1 − un

∆t
− div (A(vn+1,∇un)∇un+1) = f(un) , (4.20)

where un denotes the evaluation of u at time n∆t. Denoting the finite element
basis functions with φi the spatial discretization yields the well known mass
matrix M with entries Mij =

∫
Ω
φi φj dx and the stiffness matrix Ln at time

step n with entries Ln
ij =

∫
Ω
A(vn)∇φi · ∇φj . In summary we get a system

of equations (M + (∆t)Ln−1)Un = MUn−1 + (∆t)Fn−1 for the vector Un of
nodal values of un. This system can be solved with e.g. a conjugate gradient
method.

The SD Finite Element Method for Time-Dependent Flow Fields

In [15] a characteristic-upwinding algorithm due to Pironneau [68] is used to
discretize the transport diffusion scheme (4.19) on quadtree/octtree grids for
Ω = [0, 1]d. For the diffusive parts and the right hand side again a semi-
implicit Backward Euler scheme with time step ∆t is applied (cf. (4.20)):

un+1 − un

∆t
+ vn+1 · ∇un+1 − div (A(vn+1,∇un)∇un+1) = f(un) . (4.21)
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However the application of the anisotropic diffusion visualization method on
rectangular or cubical domains is often unrealistic in complex CFD applica-
tions. Moreover, vector field data typically coming from CFD simulations is
rarely given on structured quadtree/octtree grids. Furthermore, the scheme
introduces some numerical diffusion which decreases the quality of the final
animation. In this section we discuss a higher order discretization scheme on
general meshes which leads to high quality animations, showing sharp patterns
moving with the flow field.

The variational formulation of (4.21) reads

(un+1, ψ) + ∆t(vn+1 · ∇un+1, ψ) + ∆t(A(vn+1,∇un)∇un+1,∇ψ) =
(4.22)

∆t(f(un), ψ) + (un, ψ) ∀ψ ∈ V
(4.23)

with the space of test-functions V and test functions ψ ∈ V.
The convection part of our equation demands some kind of additional

stabilization. Since the diffusion operator A is already decomposed, in a way
that allows to control the diffusion in flow direction, we replace A with a
slightly modified version Ã:

Ã(v,∇u) = B(v)
(
α(‖v‖) + sd 0

0 G(‖∇u‖)Idd−1

)
B(v)T .

This modification allows an easy implementation of the streamline-diffusion
scheme. The scalar function sd is the necessary streamline diffusion added in
flow direction and is computed by

Reloc :=
‖v‖loc hloc

α(‖v‖) , sd := sdpar hloc
Reloc

1 + Reloc
.

The parameter sdpar ∈ (0, 2) is user-specified and hloc is the local mesh width,
that means defined on each mesh cell, analogously to ‖v‖loc as local flow speed
(see [77] for more details). The advantage of this scheme is that it can be
easily applied on general unstructured meshes, giving sufficient robustness for
treating the convection dominated parts while at the same time the amount
of numerical diffusion is not too big. Moreover, since it is a linear scheme -
in contrast to TVD methods – the resulting subproblems are linear and can
be efficiently treated via standard iterative solvers. However, being a linear
scheme, the SD scheme suffers potentially from spurious numerical oscillations,
due to over and undershooting, and the choice for the user-specific parameter
sdpar can be critical. In a forthcoming paper, we plan to analyze the influence
of the parameter sdpar onto the behavior of accuracy, robustness and efficiency
of the described numerical approaches.

4.6.3 Multiscale Analysis with Algebraic Multigrid (AMG)

In [34] we use the fact that the structure of the flow is completely encoded in
the diffusion operator−div (A(v,∇u)∇u) to create a multiscale representation
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of the flow field. Let us assume that we have discretized the diffusion operator
by standard finite elements on a regular grid yielding the stiffness-matrix L
introduced in Subsect. 4.6.2. The algebraic multigrid method (AMG) finds
a hierarchy of finite element basis functions which leads to optimal conver-
gence of a multigrid solver of the linear system of equations determined by L.
Thereby it generates a set of inter-grid prolongation matrices P k which define
the coarse grid basis.

Since the structure of the flow is encoded into the discretized diffusion
operator, the AMG aligns the support of coarse grid basis functions to the
diffusion of mass along the vector field. Consequently the prolongation matri-
ces can be used for a multiscale visualization of flow fields. In Fig. 4.14 we show
the AMG multiscale representation of the vector field of a convective flow.

Fig. 4.14 Multiscale visualization of a convective flow using AMG. The left column
shows flow field clusters which are obtained from the supports of basis functions at
different grid levels. The right column shows a representation of the clusters with
arrow icons. The grid level increases from top to bottom



4 Inverse Problems and Parameter Identification in Image Processing 145

4.6.4 Conclusions and Outlook

We have discussed multiscale visualization techniques for time-dependent and
static flow fields coming from CFD simulations on general 2 D and 3 D do-
mains. The proposed models are based on PDEs with anisotropic transport
and diffusion operators which are linearized in time by a semi-implicit ap-
proach. The simple diffusion problem can be discretized by a standard FEM
scheme, for the transport diffusion scheme the resulting problem in each time
step is discretized by a sophisticated streamline-diffusion FEM scheme on un-
structured quadrilateral grids. The main features of the proposed numerical
methods together with improved blending strategies and a discussion of the
involved parameters have been tested via numerical examples.

In a next step, the use of the Crank–Nicholson or a related 2nd order
time stepping scheme, for instance fractional-step-θ-methods (see [78]), will be
analyzed which we expect to yield better accuracy results and hence enables
for the use of larger time steps. Another aspect is the improvement of the
iterative solvers, particularly of special multigrid schemes which are able to
cope with the very anisotropic differential operators and the related very ill-
conditioned linear systems. These fast solvers and improved variants of the
streamline-diffusion or monotone and oscillation-free FEM-TVD techniques
(cf. [53]) will be the key ingredients for efficient visualization tools for complex
3 D flows.
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[18] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing
and edge detection by nonlinear diffusion. SIAM Journal On Numerical
Analysis, 29(1):182–193, 1992.

[19] M. S. Chong, A. E. Perry, and B. J. Cantwell. A general classification of
three-dimensional flow fields. Physics of Fluids A, 2(5):765–777, 1990.

[20] P. G. Ciarlet. Three-Dimensional Elasticity. Elsevier, New York, 1988.
[21] U. Clarenz, N. Litke, and M. Rumpf. Axioms and variational problems

in surface parameterization. Computer Aided Geometric Design, 21(8):
727–749, 2004.

[22] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. Computa-
tional methods for nonlinear image registration. In O. Scherzer, editor,
Mathematical Models for Registration and Applications to Medical Imag-
ing, Mathematics in Industry, volume 10, Springer, 2006.

[23] A. Collignon et al. Automated multi-modality image registration based
on information theory. In Y. Bizais, C. Barillot and R. Di Paola, edi-
tors, Proceedings of the XIVth international conference on information



4 Inverse Problems and Parameter Identification in Image Processing 147

processing in medical imaging - IPMI’95, computational imaging and
vision, vol. 3, pp. 263–274, June 26–30, Ile de Berder, France, 1995.
Kluwer Academic Publishers.

[24] M. S. Diallo, M. Kulesh, M. Holschneider, and F. Scherbaum. Instanta-
neous polarization attributes in the time-frequency domain and wavefield
separation. Geophysical Prospecting, 53(5):723–731, 2005.

[25] M. S. Diallo, M. Kulesh, M. Holschneider, K. Kurennaya, and
F. Scherbaum. Instantaneous polarization attributes based on an adap-
tive approximate covariance method. Geophysics, 71(5):V99–V104, 2006.

[26] M. S. Diallo, M. Kulesh, M. Holschneider, F. Scherbaum, and F. Adler.
Characterization of polarization attributes of seismic waves using contin-
uous wavelet transforms. Geophysics, 71(3):V67–V77, 2006.

[27] U. Diewald, T. Preusser, and M. Rumpf. Anisotropic diffusion in vector
field visualization on euclidean domains and surfaces. IEEE Transactions
on Visualization and Computer Graphics, 6(2):139–149, 2000.

[28] M. Droske and W. Ring. A Mumford-Shah level-set approach for ge-
ometric image registration. SIAM Journal on Applied Mathematics,
66(6):2127–2148, 2006.

[29] M. Droske and M. Rumpf. A variational approach to non-rigid morpho-
logical registration. SIAM Applied Mathematics, 64(2):668–687, 2004.

[30] M. Droske and M. Rumpf. Multi scale joint segmentation and registration
of image morphology. IEEE Transaction on Pattern Recognition and
Machine Intelligence, 29(12):2181–2194, December 2007.

[31] M. Droske, C. Garbe, T. Preusser, M. Rumpf, and A. Telea. A phase
field method for joint denoising, edge detection and motion estimation.
SIAM Applied Mathematics, Revised Version Submitted, 2007.

[32] L. Florack and A. Kuijper. The topological structure of scale-space im-
ages. Journal of Mathematical Imaging and Vision, 12(1):65–79, 2000.
ISSN 0924-9907.

[33] U. Grenander and M. I. Miller. Computational anatomy: An emerging
discipline. Quarterly Applied Mathematics, 56(4):617–694, 1998.

[34] M. Griebel, T. Preusser, M. Rumpf, M.A. Schweitzer, and A. Telea. Flow
field clustering via algebraic multigrid. In Proceedings IEEE Visualiza-
tion, pages 35–42, 2004.

[35] X. Gu and B. C. Vemuri. Matching 3D shapes using 2D conformal rep-
resentations. In MICCAI 2004, LNCS 3216, pages 771–780, 2004.

[36] D. Heeger. Model for the extraction of image flow. Journal of the Optical
Society of America, 4(8):1455–1471, 1987.

[37] M. Holschneider. Wavelets: An Analysis Tool. Clarendon Press, Oxford,
1995.

[38] M. Holschneider, M. S. Diallo, M. Kulesh, M. Ohrnberger, E. Lück, and
F. Scherbaum. Characterization of dispersive surface waves using con-
tinuous wavelet transforms. Geophysical Journal International, 163(2):
463–478, 2005.



148 J. F. Acker et al.

[39] J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, stream and convergence
zones in turbulent flow fields. Technical Report CTR-S88, Center for
turbulence research, 1988.

[40] V. Interrante and C. Grosch. Stragegies for effectively visualizing 3D flow
with volume LIC. In Proceedings Visualization ’97, pages 285–292, 1997.

[41] J. Jeong and F. Hussain. On the identification of a vortex. Journal of
Fluid Mechanics, 285:69–94, 1995.

[42] S. Kalkan, D. Calow, M. Felsberg, F. Worgotter, M. Lappe, and
N. Kruger. Optic flow statistics and intrinsic dimensionality, 2004.

[43] E. R. Kanasewich. Time Sequence Analysis in Geophysics. University of
Alberta Press, Edmonton, Alberta, 1981.

[44] B. Kawohl and N. Kutev. Maximum and comparison principle for one-
dimensional anisotropic diffusion. Mathematische Annalen, 311(1):107–
123, 1998.

[45] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. Compari-
son of confidence and situation measures and their optimality for optical
flows. submitted to International Journal of Computer Vision, February
2007.

[46] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. An adaptive
confidence measure for optical flows based on linear subspace projec-
tions. In Proceedings of the DAGM-Symposium, pages 132–141, 2007.
http://dx.doi.org/10.1007/978-3-540-74936-3 14.

[47] C. Kondermann, D. Kondermann, B. Jähne, and C. Garbe. Optical flow
estimation via flow inpainting using surface situation measures. submit-
ted, 2007.

[48] A. Kufner. Weighted sobolev spaces, 1980. Teubner-Texte zur Mathe-
matik, volume 31.

[49] M. Kulesh, M. Holschneider, M. S. Diallo, Q. Xie, and F. Scherbaum.
Modeling of wave dispersion using continuous wavelet transforms. Pure
and Applied Geophysics, 162(5):843–855, 2005.

[50] M. Kulesh, M. S. Diallo, M. Holschneider, K. Kurennaya, F. Krüger,
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5.1 Introduction

In the analysis of coupled systems, various techniques have been developed
to model and detect dependencies from observed bivariate time series. Most
well-founded methods, like Granger-causality and partial coherence, are based
on the theory of linear systems: on correlation functions, spectra and vector
autoregressive processes. In this paper we discuss a nonlinear approach using
recurrence.

Recurrence, which intuitively means the repeated occurrence of a very sim-
ilar situation, is a basic notion in dynamical systems. The classical theorem of
Poincaré says that for every dynamical system with an invariant probability
measure P, almost every point in a set B will eventually return to B. More-
over, for ergodic systems the mean recurrence time is 1/P (B) [23]. Details of
recurrence patterns were studied when chaotic systems came into the focus
of research, and it turned out that they are linked to Lyapunov exponents,
generalized entropies, the correlation sum, and generalized dimensions [20, 38].

Our goal here is to develop methods for time series which typically con-
tain a few hundreds or thousands of values and which need not come from
a stationary source. While Poincaré’s theorem holds for stationary stochastic
processes, and linear methods require stationarity at least for sufficiently large
windows, recurrence methods need less stationarity. We outline different con-
cepts of recurrence by specifying different classes of sets B. Then we visualize
recurrence and define recurrence parameters similar to autocorrelation.

We are going to apply recurrence to the analysis of bivariate data. The
basic idea is that coupled systems show similar recurrence patterns. We can
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study joint recurrences as well as cross-recurrence. We shall see that both
approaches have their benefits and drawbacks.

Model systems of coupled oscillators form a test bed for analysis of bivari-
ate time series since the corresponding differential equations involve a param-
eter which precisely defines the degree of coupling. Changing the parameter
we can switch to phase synchronization and generalized synchronization. The
approaches of cross- and joint recurrence are compared for several models. In
view of possible experimental requirements, recurrence is studied on ordinal
scale as well as on metric scale. Several quantities for the description of syn-
chronization are derived and illustrated. Finally, two different applications to
EEG data will be presented.

5.2 Recurrence on Different Scales

5.2.1 Nominal Scale

We start with an ordinary time series of numbers x1, x2, . . . , xN . Recurrence
basically means that certain numbers will repeat: xi = xj . This is the proper
concept when the values xi form a nominal scale – they are just symbols from
a finite or countable alphabet. A typical example is the nucleotide sequence
of a DNA segment, with values A,C,G and T (which we can code 1, 2, 3, 4).
Since letters will repeat very often, we usually prescribe a length d for the
word which should repeat:

xi+n = xj+n , n = 0, ... , d− 1 .

Here d is a parameter which indicates the strength of recurrence. Finding
occurrences of words in large data is a basic algorithmic task in bioinformatics.
The statistical structure of such sequences is modeled by Hidden Markov
Models, also called probabilistic automata [7].

5.2.2 Metric Scale

If the xi are real numbers, instead of xi = xj we require that xj is in the
vicinity or neighborhood of xi :

|xi − xj | ≤ ε ,

where ε is a predefined threshold. According to the ergodic theorem mentioned
above, the mean recurrence time is of order 1/ε which gives a clue on how to
choose ε.

Due to different density of the values, different xi will have different num-
bers of neighbors. This can be mended by taking rank numbers

ri = #{k|1 ≤ k ≤ N,xk < xi}



5 Recurrence and Bivariate Coupling 155

instead of the xi, and integer ε. Then each xi (except for the ε largest and
smallest values) has 2ε recurrences. Eckmann et al. [8] used constant number
of neighbors when they introduced recurrence plots.

However, it makes little sense to require that only single values repeat.
For the function sin t, t ≥ 0 the value 0 repeats at t = π, but this is a false
neighbor, proper recurrence (in fact periodicity) appears at 2π. Thus we shall
again choose a strength parameter d and require

|xi+n − xj+n| ≤ ε , n = 0, ..., d− 1 .

5.2.3 Vector Recurrence

The last condition can also be interpreted in a different way. We take the
d-dimensional vectors xi = (xi, xi+1, ..., xi+d−1) ∈ R

d and consider their ap-
proximate equality

‖xi − xj‖ ≤ ε , (5.1)

with respect to the maximum norm in R
d. However, it is also possible to

consider any other norm on R
d, like the Euclidean norm, or similarity indices

like cosine similarity and the Mahalanobis distance. The choice of the distance
function and the threshold (e.g. fixed, time-dependent, fixed amount of nearest
neighbors) depends on the particular problem under consideration. For an
overview we refer to [20].

Vector recurrence is certainly the appropriate concept when our time series
does not consist of numbers but of vectors. This is the case for multivariate
time series treated below, in particular for d-dimensional time series obtained
numerically from a model system of d differential equations. For such systems,
studied in Sects. 5 and 6, we need a slightly different notation.

5.2.4 Differential Equations and Delay Embedding

In the formalism of differentiable dynamical systems, the state of a system at
time t is described by a vector

x(t) = [x1(t), x2(t), . . . , xd(t)] ∈ R
d , (5.2)

where xn(t) denotes the n-th component at time t. The evolution of the state
of the system in time, i.e., its trajectory, is determined by a flow F (·), such that
ẋ(t) = F (x(t)). The components xn(t) of the state vector x(t) are observable
physical variables, such as the position and velocity of a particle. However, in
an experimental setting typically not all relevant components are known or
can be measured. If certain conditions are fulfilled, it is possible to reconstruct
the trajectory of the system from a scalar measurement u(t) = f [x(t)], e.g.,
by means of its delay embedding [31, 35]
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u(t) = [u(t), u(t + ϑ), . . . , u(t + (m− 1)ϑ)] ∈ R
m , (5.3)

where ϑ denotes the time delay and m the embedding dimension. In the ideal
case there is a functional relationship (strictly speaking, a diffeomorphism)
between the original unknown components and those of the delay embedding.

Although the underlying system evolves continuously in time, we measure
the system at discrete time points i∆t, where i = 1, . . . , N and ∆t is the
sampling rate. When confusion is possible, we denote by xi = x(i∆t) and ui =
u(i∆t) the points of the original and reconstructed trajectory, respectively.
Otherwise we use xi for both, as in (5.1).

5.2.5 Remarks on Dynamical Systems

Periodicity is an extreme case of recurrence. And in deterministic systems, an
exact recurrence to a state xi at a later time point j is only possible in the
case of periodic dynamics. Otherwise, the required uniqueness of the solution
of a dynamical system is not fulfilled.

In our definition (5.1) of vector recurrence, the recurrence set B is a ball
of radius ε around xi with respect to the given norm on R

d. In case of the
maximum norm it is a cube of side length 2ε. These sets are not disjoint for
different i. It may happen that j realizes a recurrence to both i1 and i2, but
i2 does not represent a recurrence to i1. Thus sometimes one might wish the
recurrence sets to form a disjoint partition of phase space, R

d = B1 ∪ ...∪Bk.
When we decompose the phase space into regions and assign the same

symbol to all states within one region, our metric vector data become nominal
data (symbolization), and we neglect all further information about distances.
This coarse-graining leads to a lower level of resolution, but on the other
hand also to a weaker stationarity condition on the measurement. Note that
for recurrence on a metric scale, stationarity is only required up to a threshold
ε. By varying this threshold, and in case of ui also the embedding dimension,
we are able to balance between resolution and stationarity requirements.

In the sequel, we give a partial answer to the question for an appropriate
decomposition of phase space.

5.2.6 Ordinal Scale

The ordinal scale of numbers is between the metric and the nominal one:
the order structure of the states is known, but no meaningful distance of the
values is defined. The analysis on an ordinal scale, in contrast to the one on
a metric scale, is invariant with respect to a strictly monotonic transforma-
tion. The classification of levels of measurement resolution into metric, ordinal
and nominal, was originally proposed in statistics [34]. Here, we suggest this
approach for the analysis of dynamical systems.

We consider two states ui and uj in the reconstructed phase space. Order
patterns are related to the time-delayed embedding (3). They will not be
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applied to the systems (5.2). We define recurrence on the ordinal scale if both
states exhibit the same order structure

π(ui) = π(uj) , (5.4)

where π is a mapping function that encodes the order structure.
To illustrate this idea, suppose that the reconstructed trajectory has em-

bedding dimension m = 2 and time delay ϑ. In this case, two relationships
between ui and ui+ϑ are possible, apart from equality.1 We encode the order
structure as a new symbol

π(ui) =

{
0 : ui < ui+ϑ

1 : ui > ui+ϑ ,
(5.5)

where π is called order pattern of ui. Thus the phase space is divided by
the identity into two areas (Fig. 5.1). This way of generating a new symbol
sequence is common in statistics (e.g. [10, 11, 13]). Our approach was originally
motivated by Kendall’s tau-correlation [16], which was modified to an auto-
correlation function for time series [3, 9]. In classical time series analysis there
are practically no methods which use order patterns of higher dimensions.
Here we can use order patterns of length d, so that we have again a parameter
for the strength of recurrence, as well as more complicated order patterns [5].

5.2.7 Order Patterns of Length 3

Let us consider embedding dimension m = 3, which is related to the phase
of an oscillator [12], discussed in Sect. 5.5. Here the phase space is nicely

u
i

u i+
ϑ

u
i
 < u

i+ϑ

u
i
 > u

i+ϑ

Fig. 5.1 Periodic trajectory in phase space and decomposition of the phase space
(ui, ui+ϑ) by order patterns

1 In general we neglect the equality of values. This is reasonable if we consider
systems with continuous distribution of the values, where equality has measure
zero.
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Fig. 5.2 (A) Decomposition of the phase space (ui, ui+ϑ, uit+2 ϑ) by order patterns π
and possible trajectory of a sine function. (B) Same plot with viewing angle in
direction of the main diagonal

decomposed into m! = 6 regions. These regions are separated by planes of
pairwise equalities (ui = ui+ϑ, ui+ϑ = ui+2ϑ, ui = ui+2ϑ) and are arranged
around the main diagonal ui = ui+ϑ = ui+2ϑ (Fig. 5.2). All states ui within
a single region of the phase space have the same structure of order relations.
Hence, they are associated to the same symbol π(ui) (Fig. 5.3).

This scheme of mapping states ui to symbols π(ui) works for arbitrary
dimension m. The phase space decomposition into m! regions is related to
the concept of permutation entropy [4] which for various dynamical systems
agrees with the metric entropy [1, 6].

5.3 Recurrence Plots

5.3.1 Univariate Recurrence

Given a trajectory {xi}Ni=1 of a dynamical system in phase space, we can
compute its recurrence matrix, i.e., the time indices j at which the trajectory
recurs to the state xi, for i, j = 1, . . . , N . Hence, the recurrence matrix is a

π = 0

u
i

π = 1 π = 2 π = 3 π = 4 π = 5

Fig. 5.3 The vector ui = (ui, ui+ϑ, uit+2 ϑ) in reconstructed phase space can form
six different order patterns. The labeling is not important for the analysis and is
added just for illustration
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binary N ×N matrix with entry Ri,j = 1 if the trajectory at time j recurs to
the state xi and entry Ri,j = 0, otherwise.

As mentioned above, recurrence can be defined on a metric, nominal or
ordinal scale. Accordingly, the recurrence matrix on a metric scale is

Ri,j = Θ (ε− ‖xi − xj‖) , (5.6)

on a nominal scale

Ri,j = δ (xi − xj) , (5.7)

and on an ordinal scale

Ri,j = δ (π(ui)− π(uj)) , (5.8)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 else, δ(x) = 1 if x = 0 and δ(x) = 0
otherwise, and i, j = 1, . . . , N.

A recurrence plot (RP) is the graphical representation of a recurrence
matrix [8, 20]. The RP is obtained by plotting the recurrence matrix and
using different colors for its binary entries, e.g., plotting a black dot at the
coordinates (i, j), where Ri,j = 1, and a white dot, where Ri,j = 0. Both
axes of the RP are time axes. Since Ri,i ≡ 1 for i = 1 . . . N by definition, the
RP has always a black main diagonal line. Furthermore, the RP is symmetric
with respect to the main diagonal, i.e., Ri,j = Rj,i.

RPs yield important insights into the time evolution of phase space tra-
jectories, because typical patterns in RPs are linked to a specific behavior of
the system. One important structural element are diagonal lines Ri+k,j+k = 1
for k = 0 . . . l − 1, where l is the length of the diagonal line. On metric scale
a diagonal occurs when a segment of the trajectory runs almost in parallel
to another segment (i.e., through an ε-tube around the other segment) for
l time units (cf. Fig. 5.4). The length of this diagonal line is determined by
the duration of such similar local evolution of the trajectory segments. The
direction of these diagonal structures is parallel to the main diagonal. Since
the definition of the Rényi entropy of second order K2 is based on how long
trajectories evolve within an ε-tube, it is possible to estimate K2 by means of
the distribution of diagonal lines in the RP [20, 37]. On an ordinal scale we
also obtain diagonal structures when two different segments of the trajectory
have the same sequence of order patterns (cf. Fig. 5.5). In particular, we will
show how these diagonal lines are linked to the phase of an oscillator and will
derive a measure to quantify phase synchronization.

5.3.2 Bivariate Recurrence Plots

There are two approaches to extend RPs to the analysis of bivariate data
(xi,yi). In the first approach, the common auto-recurrences are registered.
This is essentially the same procedure as going from metric recurrence to
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Fig. 5.4 (A) Segment of the phase space trajectory of the Rössler system (5.14),
with a = 0.15, b = 0.20, c = 10, using the components (x, y, z). (B) The corre-
sponding recurrence plot based on metric scale. A phase space vector at j which
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is considered to be a recurrence point (black point on the trajectory in (A)). This
is marked by a black point in the RP at the position (i, j). A phase space vector
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Fig. 5.5 (A) Segment of the phase space trajectory of the Rössler system (5.14) with
a = 0.15, b = 0.20, c = 10, by using its time-delayed first component (xi, xi+ϑ, xi+2ϑ)
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the trajectory in (A)), where a phase space vector in a different region (empty circle
in (A)) is not a recurrence point
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vector recurrence in Sect. 5.2, and it can be done for two qualitatively different
systems: The vectors xi and yi can have different dimension, and represent
different physical quantities.

In the other approach, we compute the recurrence of the states of one
system to the other, i.e., the distances between the different systems in phase
space. This requires a certain degree of similarity of the systems for x and
y although the ordinal approach also allows to compare physical different
systems. However, lagged dependencies can be better visualized, and the two
time series can have different length. As we will show here, depending on the
situation, one approach might be more appropriate than the other.

5.3.3 Joint Recurrence Plots

The first possibility to compare x,y is to consider the recurrences of their
trajectories in their respective phase spaces separately and regard the times
at which both of them recur simultaneously, i.e., when a joint recurrence
occurs [20, 27]. A joint recurrence plot (JRP) is defined as pointwise product
of the two RPs of the two considered systems

JRx,y
i,j = Rx

i,j ·R
y
i,j , i, j = 1, . . . , N . (5.9)

In this approach, a recurrence takes place if the first system at time j de-
scribed by the vector xj returns to the neighborhood of a former point xi,
and simultaneously the second system yj returns at the same time j to the
neighborhood of a formerly visited point yi.

Actually, joint recurrence is just the vector recurrence of the bivariate
series (xi,yi)i=1,...,N. The dimensions of the vectors x and y can differ, and we
can consider different norms and different thresholds ε for each system, so that
the recurrence conditions can be adapted to each system separately, respecting
the corresponding natural measure. Mathematically, this just means taking
the norm ‖(x,y)‖ = max{‖x‖1/ε1, ‖y‖2/ε2} on the product space of the two
phase spaces.

We mention that a product representation similar to (5.9) holds for the
transition from ordinary recurrence to the recurrence of m successive states:
Rx

i,j =
∏m−1

k=0 Rx
i+k,j+k , which simplifies plots for recurrence of strength m.

A delayed version of the joint recurrence matrix can be introduced by

JRx,y
i,j = Rx

i,j ·R
y
i+τ,j+τ , i, j = 1, . . . , N − τ , (5.10)

which is useful for the analysis of interacting delayed systems (e.g., for lag
synchronization) [29, 33], and for systems with feedback.

5.3.4 Cross-Recurrence Plots

A cross-recurrence plot (CRP) visualizes dependencies between two different
systems by looking at recurrences from one system to the other [19, 20]. Using
a metric scale, it is defined as
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CRx,y
i,j = Θ (ε− ‖xi − yj‖) , (5.11)

for the nominal scale it is

CRx,y
i,j = δ (xi − yj) , (5.12)

and for the ordinal scale

CRu,v
i,j = δ (π(ui)− π(vj)) , (5.13)

with i = 1, . . . , N, j = 1, . . . ,M . The length of the trajectories of x and y, or
u and v, respectively, need not be identical, so that CR need not be a square
matrix. However, in the metric case both systems must be represented in the
same phase space, otherwise we cannot measure distances between states of
both systems. Therefore, the data under consideration should be from very
similar processes and, actually, should represent the same observable.

On ordinal or nominal scale, this is not necessary. Nevertheless, we have
to take the same embedding dimension for the delay vectors to define order
patterns of the same length, or meaningful related decompositions with equal
number of sets when symbolization is used to obtain a nominal series.

Since the values of the main diagonal CRi,i for i = 1 . . . N are not nec-
essarily one, there is usually no black main diagonal. The lines which are
diagonally oriented are here of major interest, too. They represent segments
on both trajectories, which run parallel for some time. The distribution and
length of these lines are obviously related to the interaction between the dy-
namics of both systems. A measure based on the lengths of such lines can be
used to find nonlinear interrelations between both systems (Sect. 5.4).

5.3.5 Comparison Between CRPs and JRPs

In order to illustrate the difference between CRPs and JRPs, we consider the
trajectory of the Rössler system [30]

ẋ = −y − z,

ẏ = x + a y, (5.14)
ż = b + z (x− c) ,

in three different situations: the original trajectory (Fig. 5.6A), the trajectory
rotated around the z-axis (Fig. 5.6B) and the trajectory under the time scale
transformation t̃ = t2, which gives the same picture as the first one.

Let us consider the RPs of these three trajectories. The RP of the original
trajectory is identical to the RP of the rotated one (Fig. 5.7A), but the RP of
the stretched/compressed trajectory is different from the RP of the original
trajectory (Fig. 5.7B): it contains bowed lines, as the recurrent structures are
shifted and stretched in time with respect to the original RP.
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Fig. 5.6 Phase space trajectories of the Rössler system (5.14) with a = 0.15, b = 0.2
and c = 10: (A) original system, (B) rotated around the z-axis by 3

5
π

A

Time

T
im

e

0 50 100
0

50

100

B

Time

T
im

e

0 50 100
0

50

100

C

Time

T
im

e

0 50 100
0

50

100

D

Time

T
im

e

0 50 100
0

50

100

Fig. 5.7 RPs of (A) the original trajectory of the Rössler system and (B) the
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Now we calculate the CRP between the original trajectory and the ro-
tated one (Fig. 5.7C) and observe that it is rather different from the RP of
the original trajectory (Fig. 5.7A). This is because in CRPs the difference
between each pair of vectors is computed, and this difference is not invari-
ant under rotation of one of the systems. Hence, CRPs do not detect that
both trajectories are identical up to a rotation. In contrast, the JRP of the
original trajectory and the rotated one is identical to the RP of the original
trajectory (Fig. 5.7A). This is because JRPs consider joint recurrences, and
the recurrences of the original and the rotated system are identical.

The CRP between the original trajectory and the stretched/compressed
one contains bowed lines, which reveals the functional shape of the parabolic
transformation of the time scale (Fig. 5.7D) [20]. Note that CRPs represent
the times at which both trajectories visit the same region of the phase space.
On the other hand, the JRP of these trajectories – the intersection of the
black sets in Fig. 5.7A and B – is almost empty, except for the main diagonal,
because the recurrence structure of both systems is so different. There are
almost no joint recurrences. Therefore, JRPs are not built to detect a time
transformation applied to the trajectory, even though the shape of the phase
space trajectories is identical.

To conclude, we can state that CRPs are more appropriate to investigate
relationships between the parts of the same system which have been subjected
to different physical or mechanical processes, e.g., two borehole cores in a lake
subjected to different compression rates. On the other hand, JRPs are more
appropriate for the investigation of two interacting systems which influence
each other, and hence, adapt to each other, e.g., in the framework of phase
and generalized synchronization.

5.4 Quantification of Recurrence

5.4.1 Auto-Recurrence

The diagonals parallel to the main diagonal represent different epochs of phase
space trajectories which evolve in a similar manner. Therefore, as a first ap-
proach we introduce some measures quantifying the density of recurrence
points and the length of diagonal lines in dependence on their distance to
the main diagonal [20].

The density of points on a certain diagonal with distance τ from the main
diagonal is the auto-recurrence rate

RRτ =
1

N − τ

N−τ∑
i=1

Ri,i+τ , (5.15)

where τ > 0 corresponds to diagonals above and τ < 0 to diagonals below the
main diagonal, which represent positive and negative time delays, respectively.
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The auto-recurrence rate can be considered as a non-linear version of the auto-
correlation function, since it also describes higher order correlations between
the points of the trajectory in dependence on τ [26]. It can be interpreted as
an estimate of the probability p(τ) that a state recurs to its ε-neighborhood
after τ time steps.

Similar to auto-correlation, auto-recurrence fulfills RR0 = 1 and is sym-
metric: RRτ = RR−τ . However, RRτ is always between 0 and 1. The reference
line, which corresponds to the zero line for correlation functions, is given by
the average recurrence rate

RR =
1
N2

N∑
i,j=1

Ri,j . (5.16)

It is clear that RR and hence RRτ heavily depend on the threshold ε which
therefore must be adapted carefully to the problem at hand.

The ordinal average recurrence rate can be exactly determined:

RR =
∑

π

p2
π , (5.17)

where pπ = nπ/N is the relative and nπ the absolute frequency of the order
patterns π in the time series. To explain this formula, we note that Ri,j = 1 if
πi = πj . For every order pattern π, the number of pairs (i, j) with πi = πj = π
equals n2

π. Thus the number of entries Ri,j = 1 in the matrix is
∑

n2
π where

the sum runs over all possible order patterns π. This fact together with (5.16)
implies (5.17).

Let us take order patterns of length three as an example, and assume they
all appear with equal probability. Then one sixth of the entries of the matrix
R are 1. In Sect. 5.6, we use (5.17) to express coupling in the multivariate
case where we cannot work with τ.

For l ≥ 1, let P (l) denote the number of (maximal) diagonal line segments
of length = l in R. Since they represent l successive recurrences, we can
introduce two measures of repeated recurrence, or strength of recurrence:

DET =

∑N−1
l=lmin

l P (l)∑
i�=j Ri,j

, L =

∑N−1
l=lmin

l P (l)∑N−1
l=lmin

P (l)
. (5.18)

DET is the fraction of recurrence points on lines of length ≥ lmin, where lmin

is a parameter ≥ 2, and is called determinism since it increases with the
predictability of the system. L is the average length of a diagonal line of
length ≥ lmin. Rules for choosing lmin can be found in [20].

If the time series is long enough, these two parameters can also be studied
as functions of τ. So let Pτ (l) denote the number of diagonal lines of exact
length l on the diagonal RRi,i+τ , and

DETτ =

∑N−τ
l=lmin

l Pτ (l)∑N−τ
l=1 l Pτ (l)

, Lτ =

∑N−τ
l=lmin

l Pτ (l)∑N−τ
l=lmin

Pτ (l)
. (5.19)
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5.4.2 Cross-Recurrence

The diagonal-wise determination of the recurrence measures is useful for the
study of interrelations and synchronization. For the study of interrelations
we can use CRPs. Long diagonal structures in CRPs reveal a similar time
evolution of the trajectories of the two processes under study. An increasing
similarity between the processes causes an increase of the recurrence point
density along the main diagonal CRi,i (i = 1 . . . N). When the processes
become identical, the main diagonal appears, and the CRP becomes an RP.
Thus, the occurrence of diagonal lines in CRPs can be used in order to bench-
mark the similarity between the considered processes. Using this approach it
is possible to assess the similarity in the dynamics of two different systems in
dependence on a certain time delay [19].

The cross-recurrence rate of a CRP

RRτ = RRx,y
τ =

1
N − τ

N−τ∑
i=1

CRi,i+τ , (5.20)

reveals the probability of the occurrence of similar states in both systems with
a certain delay τ . The average recurrence rate RR = RRx,y is determined as
in (5.16). It depends not only on ε, but also indicates whether trajectories of
the two systems often visit the same phase space regions.

Stochastic and strongly fluctuating processes generate only short diag-
onals, whereas deterministic processes often admit longer diagonals. If two
deterministic processes have the same or similar time evolution, i.e., parts
of the phase space trajectories visit the same phase space regions for certain
times, the amount of longer diagonals increases and the amount of shorter di-
agonals decreases. The measures DETτ and Lτ of a CRP describe the similar
time evolution of the systems’ states.

As cross-correlation, cross-recurrence is not symmetric in τ. It is possible
to define indices of symmetry and asymmetry (for a small range 0 ≤ τ � N),
as

Q(τ) =
RRτ + RR−τ

2
, and q(τ) =

RRτ −RR−τ

2
. (5.21)

By means of these indices it is possible to quantify interrelations between two
systems and determine which system leads the other one (this is similar to
the approach for the detection of event synchronization proposed in [25]).

Summarizing, we can state that high values of RRτ indicate a high prob-
ability of occurrence of the same state in both systems, and high values of
DETτ and Lτ indicate a long time span, in which both systems visit the same
region of phase space. The consideration of an additional CRP

CR−
i,j = Θ (ε− ‖xi + yj‖) (5.22)

with a negative signed second trajectory −yj allows distinguishing correla-
tions and anti-correlations between the considered trajectories [19].
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5.5 Synchronization

5.5.1 Phase Synchronization on Metric Scale

The concept of recurrence can be used to detect indirectly phase synchroniza-
tion (PS) in a wide class of chaotic systems and also systems corrupted by
noise, where other methods are not so appropriate [26]. The distances between
diagonal lines in an RP reflect the characteristic time scales of the system. In
contrast to periodic dynamics, for a chaotic oscillator the diagonal lines are
interrupted due to the divergence of nearby trajectories. Furthermore, the dis-
tances between the diagonal lines are not constant, i.e., we find a distribution
of distances, reflecting the different time scales present in the chaotic system.

If two oscillators are in PS, the distances between diagonal lines in their
respective RPs coincide, because their phases, and hence their time scales
adapt to each other. However, the amplitudes of oscillators, which are only
PS but not in general or complete synchronization, are in general uncorrelated.
Therefore, their RPs are not identical. However, if the probability that the
first oscillator recurs after τ time steps is high, then the probability that the
second oscillator recurs after the same time interval will be also high, and
vice versa. Therefore, looking at the probability p(τ) that the system recurs
to the ε-neighborhood of a former point xi of the trajectory after τ time
steps and comparing p(τ) for both systems allows detecting and quantifying
PS properly. As mentioned above, p(τ) can be estimated as recurrence rate
(5.15), p̂(τ) = RRτ . Studying the coincidence of the positions of the maxima
of RRτ for two coupled systems x and y, PS can be identified. More precisely,
the correlation coefficient between RRx

τ and RRy
τ

CPR = 〈R̃R
x

τ · R̃R
y

τ 〉 , (5.23)

can be used to quantify PS. Here R̃R
x

τ denotes RRx
τ normalized to zero mean

and standard deviation one. If both systems are in PS, the probability of
recurrence will be maximal at the same time and CPR ≈ 1. On the other
hand, if the systems are not in PS, the maxima of the probability of recurrence
will not occur simultaneously. Then we observe a drift and hence expect low
values of CPR.

5.5.2 General Synchronization on Metric Scale

It is also possible to detect generalized synchronization (GS) by means of
RPs [26]. Let us consider the average probability of recurrence over time for
systems x and y, i.e., the recurrence rate, RRx and RRy, determined by
(5.16). The average probability of joint recurrence over time is then given
by RRx,y, which is the recurrence rate of the JRP of the systems x and y
[27]. If both systems are independent, the average probability of the joint
recurrence will be RRx,y = RRxRRy. On the other hand, if both systems are



168 C. Bandt et al.

in GS, we expect approximately the same recurrences, and hence RRx,y ≈
RRx = RRy. For the computation of the recurrence matrices in the case of
essentially different systems that undergo GS, it is more appropriate to use
a fixed amount of nearest neighbors Nn for each column in the matrix than
using a fixed threshold, which corresponds to the original definition of RPs by
Eckmann et al. [8]. RRx and RRy are then equal and fixed by Nn, because
of RRx = RRy = Nn/N . Now we call RR = Nn/N and define the coefficient

S =
RRx,y

RR

as an index for GS that varies from RR (independent) to 1 (GS). Furthermore,
in order to be able to detect also lag synchronization (LS) [29], a time lag is
included by using the time delayed JRP (5.10),

S(τ) =
1

N2

∑N
i,j JRx,y

i,j (τ)
RR

. (5.24)

Then, we introduce an index for GS based on the average joint probability of
recurrence JPR by choosing the maximum value of S(τ) and normalizing it,

JPR = max
τ

S(τ)−RR

1−RR
. (5.25)

The index JPR ranges from 0 to 1. The parameter RR has to be fixed to
compute JPR, but it can be shown that the JPR index does not depend
crucially on the choice of RR [26].

5.5.3 Phase Synchronization on Ordinal Scale

As mentioned before, there exists a connection between the order patterns
and the phase of a signal. This connection is illustrated in Fig. 5.5, which
suggests a representation of the oscillatory behavior of the Rössler system by
order patterns. In this section we show how the order patterns of dimension
m = 3 and the common phase definitions are mathematically related.

Following [12] we introduce a new cylindrical coordinate system (r, φ, z)
in terms of the time-delayed coordinates (ui, ui+ϑ, ui+2ϑ). The z-coordinate
corresponds to the main diagonal, and r and φ span a plane perpendicular to
the main diagonal. The radius r describes the distance to the main diagonal
and φ the angle. Hence, the order pattern is completely determined by φ. On
the other hand, the order patterns can be considered as a discretization of
φ. It has been shown in [12] that φ can be written in terms of time-delayed
coordinates

tanφi =
√

3
ui+2 ϑ − ui

ui+2 ϑ − 2ui+ϑ + ui
≈ 2
√

3
u̇i+1

üi+1
. (5.26)

Several concepts have been introduced to define a phase for chaotic oscil-
lators [24, 28]. Nevertheless, these approaches are in general restricted to
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narrow-band signals. For this reason, alternative methods based on the curva-
ture of a phase-space-trajectory have been proposed [17, 22], where the phase
is defined as φ = arctan ẋ/ẏ. In a similar sense, a phase can be defined as
φ′ = arctan ẋ/ẍ, which coincides with relation (5.26), up to a constant factor.

To derive a measure for phase synchronization, we analyze the coincidence
of phases of two oscillators by means of the recurrence rate RRτ of order
patterns. This yields a distribution of phase differences as a function of the
time-lag τ . Following the idea of [36], we introduce a coupling index by means
of the Shannon entropy

ρπ = 1−
−
∑τmax

τ=τmin
rrτ log rrτ

log(τmax − τmin)
, (5.27)

where rrτ is the normalized distribution rrτ = RRτ/
∑

τ RRτ . This index
ranges from 0 to 1, where 0 indicates that both systems are independent from
each other. The actual maximum depends on [τmin, τmax] if there are several
maxima with distance of a mean recurrence time. Due to a close relationship
between the order patterns and the phase, we expect that ρπ is sensitive to
phase synchronization.

This connection to phase indicates a main difference between recurrence
plots on metric and ordinal scale. In case of a phase-coherent but chaotic
oscillator such as the Rössler system the trajectory returns irregularly to itself.
A metric recurrence plot as Fig. 5.4 has only short diagonals. But due to
a high coherence of the phase the recurrence time is narrow-banded, and
the recurrence rate shows sharp equidistant peaks (cf. Fig. 5.9). Considering
recurrence on ordinal scale, only the phase is taken into account. Hence we
observe long lines in the recurrence plot (Fig. 5.5), while the distances of peaks
in the recurrence rate coincide with that of the metric case.

5.6 Prototypical Examples

5.6.1 Finding Nonlinear Interrelations Using Cross-Recurrence

This example shows the ability of CRPs to find nonlinear interrelations be-
tween two processes, which cannot be detected by means of linear tests [19].
We consider linear correlated noise (auto-regressive process of order 1, see
for example [32]) which is nonlinearly coupled with the x-component of the
Lorenz system (for standard parameters σ = 10, r = 28, b = 8/3 and a time
resolution of ∆t = 0.01 [2, 18]):

yi = 0.86 yi−1 + 0.500 ξi + κx2
i , (5.28)

where ξ is Gaussian white noise and xi (x(t) → xi, t = i∆t) is normalized
with respect to the standard deviation. The data length is 8,000 points and
the coupling κ is realized without any lag.
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As expected, due to the nonlinear relationship, the cross-correlation anal-
ysis between x and y does not reveal any significant linear correlation be-
tween these data series (Fig. 5.8A). However, the mutual information as a
well-established measure to detect nonlinear dependencies [15] shows a strong
dependence between x and y at a delay of 0.05 (Fig. 5.8B). The CRP based
τ -recurrence rate RRτ and τ -average diagonal length Lτ exhibit maxima at
a lag of about 0.05 for RR+/L+ and RR−

τ /L−
τ and additionally at 0.45 and

−0.32 for RR−
τ /L−

τ (Fig. 5.8C, D). The maxima around 0.05 for the + and
− measures are a strong indication of a nonlinear relationship between the
data. The delay of approximately 0.05 stems from the auto-correlation of y
and approximately corresponds to its correlation time ∆t/ ln 0.86 = 0.066.
The maxima at 0.45 and −0.32 correspond to half of the mean period of the
Lorenz system. Since the result is rather independent of the sign of the second
data, the found interrelation is of the kind of an even function. Five Hundred
realizations of the AR model have been used in order to estimate the distri-
butions of the measures. The 2σ margins of these distributions can be used
to assess the significance of the results.
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Fig. 5.8 (A) Cross-correlation C(τ), (B) mutual information I(τ), (C) τ -recurrence
rate RRτ for the model given in (5.28). (D) τ -average line length Lτ for the forced
auto-regressive process and the forcing function; the curves represent the measures
for one realization as functions of the delay τ for a coupling κ = 0.2. In (C) and (D)
the solid lines show positive relation; the dashed lines show negative relation. The
gray bands mark the 2σ margin of the distributions of the measures gained from
500 realizations. The lag τ and the average line length Lτ have units of time [19]
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Due to the rapid fluctuations of y, the number of long diagonal lines in the
CRP decreases. Therefore, measures based on these diagonal structures, espe-
cially DETτ , do not perform well on such heavily fluctuating data. However,
we can infer that the measures RRτ , as well as Lτ (though less significant for
rapidly fluctuating data), are suitable for finding a nonlinear relationship be-
tween the considered data series x and y, where the linear analysis is not able
to detect such a relation. In contrast to mutual information, this technique is
applicable to rather short and non-stationary data.

5.6.2 Synchronization in Rössler Oscillators: Metric Scale

In order to exemplify this method, we consider two mutually coupled Rössler
systems

ẋ1 = −(1 + ν)x2 − x3 ,

ẋ2 = (1 + ν)x1 + a x2 + µ(y2 − x2) , (5.29)
ẋ3 = b + x3 (x1 − c) ,

ẏ1 = −(1− ν)y2 − y3 ,

ẏ2 = (1− ν)y1 + a y2 + µ(x2 − y2) , (5.30)
ẏ3 = b + y3 (y1 − c) .

in the phase coherent regime (a = 0.16, b = 0.1, c = 8.5) , similar to the
example of Fig. 5.4. According to [22], for ν = 0.02 and µ = 0.05 both
systems are in PS. We observe that the local maxima of RRx

τ and RRy
τ occur

at τ = nT , where T is the mean period of both Rössler systems and n is an
integer (Fig. 5.9A).

Note that the heights of the local maxima are in general different for both
systems if they are only in PS (and not in stronger kinds of synchronization,
such as generalized or complete synchronization [24]). But the positions of the
local maxima of RRτ coincide, and the correlation coefficient is CPR= 0.998.
For µ = 0.02 the systems are not in PS and the positions of the maxima of RRτ

do not coincide anymore (Fig. 5.9B), clearly indicating that the frequencies
are not locked. In this case, the correlation coefficient is CPR= 0.115.

It is important to emphasize that this method is highly efficient even for
non-phase coherent oscillators, such as two mutually coupled Rössler systems
in the rather complicated funnel regime (5.29) and (5.30), for a = 0.2925,
b = 0.1, c = 8.5, ν = 0.02 (Fig. 5.10). We analyze again two different coupling
strengths: µ = 0.2 and µ = 0.05. The peaks in RRτ (Fig. 5.11) are not as well-
pronounced and regular as in the coherent regime, reflecting the different time
scales that play a relevant role and the broad band power spectrum of these
systems. However, for µ = 0.2 the positions of the local maxima coincide for
both oscillators (Fig. 5.11A), indicating PS, whereas for µ = 0.05 the positions
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Fig. 5.9 Recurrence probability RRτ for two mutually coupled Rössler systems
(5.29) and (5.30), for a = 0.16, b = 0.1, c = 8.5, in (A) phase synchronized and (B)
non-phase synchronized regime. Solid line: oscillator x, dashed line: oscillator y

of the local maxima do not coincide anymore (Fig. 5.11B), indicating non-PS.
These results are in accordance with [22].

In the PS case of this latter example, the correlation coefficient is CPR =
0.988, and in the non-PS case, CPR = 0.145. Note that the positions of the
first peaks in RRτ coincide (Fig. 5.11B), although the oscillators are not in
PS. This is due to the small frequency mismatch (2ν = 0.04). However, by
means of the index CPR we can distinguish rather well between both regimes.

Furthermore, the index CPR is able to detect PS even in time series which
are strongly corrupted by noise [26]. Additionally, CPR indicates clearly the
onset of PS. In [26], the results obtained for CPR in dependence on the
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Fig. 5.10 (A) Trajectory and (B) Recurrence plot for a Rössler system in the funnel
regime (5.14) for a = 0.2925, b = 0.1, c = 8.5. Compare with Fig. 5.4
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Fig. 5.11 Recurrence probability RRτ for two mutually coupled Rössler systems in
funnel regime (5.29) and (5.30), for a = 0.2925, b = 0.1, c = 8.5. (A) µ = 0.2 (PS)
and (B) µ = 0.05 (non-PS). Solid line: oscillator x, dashed line: oscillator y

coupling strength were compared with the Lyapunov exponents, as they the-
oretically indicate the onset of PS (in the phase-coherent case). The results
obtained with CPR coincide with the ones obtained by means of the Lyapunov
exponents.

The results obtained with CPR are very robust with respect to the choice of
the threshold ε. Simulations show that the outcomes are almost independent of
the choice of ε corresponding to a percentage of black points in the RP between
1% and 90%, even for non-coherent oscillators. The patterns obtained in the
RP, of course, depend on the choice of ε. But choosing ε for both interacting
oscillators in such a way that the percentage of black points in both RPs is
the same, the relationship between their respective recurrence structures does
not change for a broad range of values of ε.

5.6.3 Synchronization in Rössler Oscillators: Ordinal Scale

The locking of phases in case of synchronized oscillators is also reflected by
order patterns, which then become synchronized, too. The order patterns
represent the phase, which allows an instantaneous study of phase interaction
during the onset of phase synchronization of oscillators. A direct comparison
of states has the main advantage to study synchronization behavior instanta-
neously. In order to study a longer range in time and to focus on a small range
of the time-lag we choose a slightly different representation of the recurrence
plot. In the following we consider the recurrence plot as a function of time i
and time-lag τ = i− j , where diagonal lines become horizontal lines.

Figure 5.12 shows cross-recurrence plots on ordinal scale of two mutu-
ally coupled Rössler systems. The parameters are the same as before. In the
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Fig. 5.12 Cross-recurrence plot on ordinal scale and corresponding recurrence rate
RRτ for two mutually coupled Rössler systems in (A) non-phase synchronized and
(B) phase synchronized regime. Embedding parameters are m = 3 and ϑ = 2

non-phase synchronized regime (Fig. 5.12A, µ = 0.02) both oscillators diverge
due to detuning and consequently we observe drifting lines. The correspond-
ing recurrence rate RRτ shows no significant values. In case of phase synchro-
nization both oscillators pass the regions of order patterns simultaneously,
which is reflected in long horizontal lines (Fig. 5.12B, µ = 0.05). The recur-
rence rate shows distinct peaks with a distance of the mean recurrence time.
With metric CRPs we do also observe the transition to PS, but the lines are
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Fig. 5.13 Cross-recurrence plot on ordinal scale and corresponding recurrence rate
RRτ for two mutually coupled Rössler systems in funnel regime in (A) non-phase
synchronized and (B) phase synchronized regime. Embedding parameters are m = 3
and ϑ = 2
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interrupted because amplitudes are not equal, as they would be in complete
synchronization.

In the non-phase-coherent funnel regime (Fig. 5.10) the distribution of
recurrence times is broad, what is already reflected in the recurrence rate on
metric scale (Fig. 5.11). In case of no phase synchronization (µ = 0.05) we
observe only very short horizontal lines in the cross-recurrence plot on ordinal
scale (Fig. 5.13A), and the recurrence rate shows no significant values. In case
of phase synchronization (Fig. 5.13B, µ = 0.2) the plot clearly shows a long
line at τ ≈ 0. But in contrast to the phase-coherent regime, there are no
other distinct lines and the recurrence rate exhibits only a single dominant
peak.

5.7 Application to EEG Data

5.7.1 Synchronization Analysis During an Epileptic Seizure

The following application to EEG data illustrates the advantages of an anal-
ysis on ordinal scale in contrast to the metric scale. Scalp EEG data are
susceptible to many artifacts which cause offset and amplitude fluctuations.
We study the phenomenon of synchronization of neuronal groups during an
epileptic seizure, where the specific type of phase synchronization has already
been discussed to detect seizure activity [21].

We consider EEG signals from a 14-year old child with epileptic disorder,
which were provided by H. Lauffer from the Department of Pediatric Medicine
of the University of Greifswald. The 19-channel EEG data (international 10-
20 system) were sampled with 256 Hz and band-pass filtered (0.3–70 Hz). On
two representative channels the seizure onset is shown in Fig. 5.14A, indicated
by a gray bar.

The data during the seizure are clearly dominated by oscillations in the
alpha range (≈8–13 Hz) which are locked, indicating synchronization. This
yields to a high coupling index ρπ of the order patterns (Fig 5.14B). Before
the seizure there are no dominant oscillations, and the coupling index ρπ

is clearly smaller. Although the EEG data are corrupted by artifacts, the
coupling index gives reliable results to reveal the seizure period. The cross-
correlation function, however, is strongly disturbed (Fig. 5.14C), and special
pre-processing of the data would be inevitable for its use.

5.7.2 Multivariate Coupling in Event-Related Potentials

Our second example will show that quantization of coupling makes sense also
for data which do not oscillate. Event-related potentials are multivariate time
series which show the reaction of the human brain on a certain stimulus [14].
They are non-stationary, but since the experiment is repeated many times,
we have a whole sample of such time series. The traditional way is to take
the average time series and look for its maxima and minima which are then
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Fig. 5.14 (A) Coupling of two EEG channels during onset of epileptic seizure (gray
bar). (B) Coupling index ρπ derived from ordinal recurrence plot with embedding
parameters m = 3 and ϑ = 27ms. (C) Maximum value of cross-correlation function.
Both coupling indices are determined in a sliding window of length 2 s. Considered
time-lag between both channels −0.2 s . . . 0.2 s

compared with peaks of typical reaction curves, called N100 or P300 since
they appear 100 or 300 ms after the stimulus and are negative or positive.

It is not clear whether these most obvious peaks represent the most in-
teresting brain activity, but there is little fine structure in an average curve
of hundreds of time series. Today’s challenge is the analysis of single trials,
and the huge problem is that beside the reaction under study, there is a lot
of other brain activity, measurement errors etc.

The question we address here is whether certain reactions can be charac-
terized not only by the size of amplitudes, but also by the coupling of differ-
ent channels, with no regard to the size of values. This is recent research of
C. Bandt and D. Samaga with A. Hamm and M. Weymar from the Depart-
ment of Psychology in Greifswald who performed a simple oddball experiment
just for single-trial analysis. Eight male students were presented, in intervals
of about two seconds, 150 equal shapes on a screen. Twenty three were red,
and 127 yellow, and the red (oddball) patterns had to be counted. Raw EEG
data with sample frequency 500 Hz were taken from 128 channels (Electrical
Geodesics, Inc.). Preprocessing involved subtraction of the average of all chan-
nels, selection of 54 important channels in the parietal and occipital region,
and a decent projection method to remove the 50 Hz mains hum.
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Theory predicts that the rare oddball patterns, on which the attention
is directed, are characterized by a clear P300 peak in parietal channels – in
the average curve. This was true and is shown for the first four subjects and
the average of nine parietal channels in Fig. 5.15A. Note that there are big
differences between individuals, which casts doubt on the common practice to
take “grand averages” over many persons. For instance, the first person has a
distinctive N100, and the last one has a clear P200.

The question was whether order patterns in the time series will also detect
the oddball effect. We took rank numbers with respect to the previous 40 val-
ues (80 ms), ri = #{k|1 ≤ k ≤ 40, xi−k < xi} [3]. The resulting average curves
were worse than amplitudes in characterizing oddball trials (Fig. 5.15B). This
is because those rank numbers represent the local structure of the curve: even
a huge P300 value in one trial, which influences the average in Fig. 5.15A,
can only have rank number 40, which means it is just larger than the last 40
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Fig. 5.15 Reaction of four persons (columns) in a visual oddball experiment. (A)
Mean amplitude of 9 parietal channels and all ordinary (thin) resp. oddball (thick)
trials clearly shows P300. (B) Corresponding means of rank numbers (40 values
backwards) show the effect less clearly. (C) The recurrence rate of rank numbers for
all nine channels measures the multivariate coupling of the channels. P300 comes
out very clearly, but a bit different from (A). Note also N100 for the first person
and P200 for the fourth
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values. Other features, however, as N100 for the first person, seem to come
out more properly with rank numbers than with amplitudes.

Now we took order patterns of length m = 4, with lag ϑ = 22 ms, for these
9 channels in the parietal region, and all red (resp. yellow) trials, and took
the recurrence rate of the resulting distribution of order patterns, as defined
in (5.17). To have a better statistics for the 23 red trials, we also took disjoint
windows of 5 successive time points (10 ms). (When we estimated 4! = 24
probabilities pπ from 9 × 23 order patterns for each time point, the curve
became rather noisy, so we took always 5 time points together.) RR is high
when many patterns coincide, so it measures the coupling of the channels. The
result in Fig. 5.15C shows that this coupling really distinguishes the oddball
trials, at least in the overall statistics. The same was found for permutation
entropy [4], and also for the rank numbers instead of order patterns.

Now let us go to single trials, taking only the first person. Figure 5.16 shows
the first 10 oddball trials. The recurrence rates were taken over the 9 parietal
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Fig. 5.16 Analysis of P300 for the first 10 oddball trials of the first person. The
two upper rows show recurrence rates of order patterns, over 9 channels and time
windows of 40 ms, measuring the coupling of the channels. The two lower rows show
average amplitude, also taken over 9 channels and 40 ms windows. Time from 40 to
500 ms, vertical lines at 300 ms. As in Fig. 5.15, P300 usually has a single peak in
amplitude and a double peak in coupling
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channels and over sliding windows of 20 points. For one time point in a single
trial, we have only 9 order patterns, one for each channel. With the sliding
window, we had 9× 20 = 180 order patterns to estimate 4! = 24 probabilities
pπ which resulted in surprisingly smooth curves. For a fair comparison, the
amplitudes in the lower part of Fig. 5.16 were also averaged over the 9 channels
and sliding windows of width 20. The P300 can be seen in most cases, with
a single peak in amplitude and a twin peak in the coupling. This connection
deserves further attention.

As was indicated in Fig. 5.15, the trials also show N100 – small amplitude
and coupling around 100 ms. This will be our main concern when we now
study the first 10 ordinary trials. There is a peak in coupling around 100 ms
in 9 of 10 trials of Fig. 5.17. In the corresponding pictures of amplitude, it
is less obvious that there is a minimum. At this point recurrence rates work
better. Comparing Figs. 5.16 and 5.17, we see that the reaction at 100 ms
comes later in oddball trials.
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Fig. 5.17 Single-trial analysis of N100 for the first 10 ordinary trials of the first
person. The two upper rows show recurrence rates of order patterns over 9 channels
and time windows of 40 ms, measuring the coupling of the channels. The two lower
rows show average amplitude for the corresponding trials. Time from 40 to 500 ms,
vertical lines at 130ms. To detect N100, coupling performed better than amplitude
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Ordinal trials also show weak P300 peaks, which is possible from a physio-
logical point of view. In fact, we had to accumulate the information from many
channels to obtain rules for every individual which correctly classify oddball
and ordinary trials in 90% of all cases. Other peaks in Fig. 5.17 which irreg-
ularly appear may have to do with further brain activity. On the whole, this
example indicates that coupling concepts can be very useful for single-trial
analysis.
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Joseph Tadjuidje2

1 Department of Mathematics, University of Kaiserslautern, Kaiserslautern,
Germany
{franke,tadjuidj}@mathematik.uni-kl.de

2 Institute for Applied Mathematics, University of Heidelberg, Heidelberg,
Germany
dahlhaus@statlab.uni-heidelberg.de

3 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
{spokoiny,berdichevski,polzehl}@wias-berlin.de

4 Faculty of Mathematics and Computer Science, University of Mannheim,
Mannheim, Germany
steidl@math.uni-mannheim.de

5 Department of Mathematics, Saarland University, Saarbrücken, Germany
{weickert,didas}@mia.uni-saarland.de

6 Industrial Engineering Department, Petra Christian University, Surabaya,
Indonesia
halim@peter.petra.ac.id

7 Upek R& D s.r.o., Prague, Czech Republic
pavel.mrazek@upek.com

8 Department of Statistics, Texas A& M University, College Station, TX, USA
suhasini@stat.tamu.edu

6.1 Local Smoothing in Signal and Image Analysis

An important problem in image and signal analysis is denoising. Given data yj

at locations xj , j = 1, . . . , N, in space or time, the goal is to recover the original
image or signal mj , j = 1, . . . , N, from the noisy observations yj , j = 1, . . . , N .
Denoising is a special case of a function estimation problem: If mj = m(xj)
for some function m(x), we may model the data yj as real-valued random
variables Yj satisfying the regression relation

Yj = m(xj) + εj , j = 1, . . . , N , (6.1)

where the additive noise εj , j = 1, . . . , N, is independent, identically dis-
tributed (i.i.d.) with mean E εj = 0. The original denoising problem is solved
by finding an estimate m̂(x) of the regression function m(x) on some subset
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containing all the xj . More generally, we may allow the function arguments to
be random variables Xj ∈ R

d themselves ending up with a regression model
with stochastic design

Yj = m(Xj) + εj , j = 1, . . . , N , (6.2)

where Xj , Yj are identically distributed, and E {εj |Xj} = 0. In this case,
the function m(x) to be estimated is the conditional expectation of Yj given
Xj = x.

In signal and image denoising, the design variables xj are typically de-
terministic and equidistant, i.e., if we standardize the observation times
and the pixels to the unit interval resp. to the unit square, we have xj =
j/n, j = 0, . . . , n, with N = n + 1, and xi,j = (i/n, j/n), i, j = 0, . . . , n, with
N = (n + 1)2 in the regression (6.1). If, e.g., the data Yj are part of a sta-
tionary time series instead (6.2), becomes a nonlinear autoregressive model of
order p if we choose Xj = (Yj−1, . . . , Yj−p). Then, m(Xj) becomes the best
predictor in the mean-square sense of the next Yj given the last p observations.

If in (6.1) or (6.2), m(x) ≡ m0 does not depend on x, we just have m0 =
EYj . It is consistently estimated by its sample mean m̂0 =

∑
j Yj/N which is

a least-squares estimate, i.e., it solves

N∑
j=1

(Yj − u)2 = min
u∈R

!

In general, m(x) will not be constant, but it frequently may be approximated
locally by a constant, i.e., m(z) ≈ m(x) in a neighborhood |z − x| ≤ h of x,
where |z| denotes the Euclidean norm of z. Then, m(x) may be estimated by
a local least-squares approach, i.e., by the solution m̂(x) of

N∑
j=1

wj(x)(Yj − u)2 = min
u∈R

! (6.3)

where the localizing weights wj(x) ≈ 0 for |Xj−x| > h. Setting the derivative
with respect to u to 0, we get

m̂(x) =

∑N
j=1 wj(x)Yj∑N

j=1 wj(x)
, (6.4)

which essentially is a local average of the data Yj from (6.2) corresponding to
Xj ≈ x. The local least-squares approach may be generalized by approximat-
ing m(x) locally not by a constant but by a polynomial of low degree resulting
in local polynomial smoothers [19]. Also, the quadratic distance in (6.3) may
be replaced by the absolute value, and the solution of the corresponding min-
imization problem is a median smoother. With more general loss functions
ρ(Yj − u), we analogously get M-smoothers [28].
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A popular choice are weights wj(x) = K

(
|x−Xj |/h

)
generated by some

kernel function K : R
d → R satisfying at least∫

K(z) dz = 1 ,

∫
zK(z)dz = 0 , VK =

∫
|z|2K(z) dz <∞ . (6.5)

With this choice of weights, the estimate (6.4) becomes the familiar Nadaraya-
Watson kernel estimate

m̂(x, h) =
1

Nhd

∑N
j=1 K( |x−Xj |

h )Yj

p̂(x, h)
, p̂(x, h) =

1
Nhd

N∑
j=1

K

(
|x−Xj |

h

)
.

(6.6)
p̂(x, h) is the Rosenblatt-Parzen estimate of the probability density of the
Xj . Frequently, K is also assumed to be nonnegative and bounded. Then
SK =

∫
K2(z) dz <∞. If, in particular, K has compact support, say K(z) = 0

for |z| > 1, then wj(x) = 0 for |x−Xj | > h.
In the case of (6.1), where the xj are deterministic and equidistant, p̂(x, h)

converges quite fast to 1, such that the estimate of m(x) may be simplified to
the Priestley-Chao kernel estimate

m̂(x, h) =
1

Nhd

N∑
j=1

K

(
|x−Xj |

h

)
Yj . (6.7)

The performance of the estimates (6.6), (6.7) crucially depends on the
choice of the bandwidth h. For model (6.1) with dimension d = 1 and the
Priestley-Chao estimate we have, e.g.,

var m̂(x, h) =
SKσ2

ε

Nh
+ o

(
1

Nh

)
(6.8)

bias m̂(x, h) = E m̂(x, h)−m(x) =
VKm′′(x)

2
h2 + o(h2) , (6.9)

where we assume σ2
ε = var εj < ∞ and m ∈ C2. Therefore, m̂(x, h) → m(x)

in mean-square if N → ∞, h → 0, Nh → ∞, but the optimal bandwidth
minimizing the mean-squared error depends not only on the sample size N
but also on the local smoothness of m(x) measured by its curvature (m′′(x))2.
In general, the optimal degree of smoothing, specified for kernel weights by the
choice of h, depends on the location x. It should be large where m is smooth,
and small where m has rapidly changing values. The common theme of this
chapter is the search for procedures adapting automatically to the structure
of the data generating process in specifying the degree of smoothing.

In Sect. 6.2, the problem of choosing an asymptotically optimal local band-
width h = h(x) is discussed for the image denoising problem where correlation
in the noise is allowed for.
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Section 6.3 considers a more general dependence between Yj and Xj . Here,
the conditional density p(y, θ) of Yj given Xj = x is specified by some unknown
parameter θ depending on x, and, correspondingly, local least-squares is re-
placed by a local maximum likelihood approach. Regression models with ad-
ditive noise like (6.2) are covered by choosing p(y, θ) = p(y−θ), i.e., θ = m(x)
is just a location parameter.

Local smoothing procedures are not the only methods for denoising sig-
nals and images. Another large class is based on the idea of regularization.
Section 6.4 presents a unified framework which combines local smoothing and
regularisation and which allows for a better understanding of the relations
between different denoising methods. In Sect. 6.5, some first steps towards
an asymptotic theory for that type of nonparametric function estimates are
discussed.

Section 6.6 considers another type of structural adaptation in the context
of time series analysis. Here, the functions to be estimated sometimes are
not constant over time, but are changing slowly compared to the observation
rate. These only locally stationary models still allow for applying familiar
smoothing methods. The generally applicable approach is illustrated with an
example from financial time series analysis where noise is no longer additive
but multiplicative, i.e., the autoregressive model which we get from (6.2) with
Xj = (Yj−1, . . . , Yj−p) is replaced by an ARCH model Yj = σ(Xj)εj .

6.2 Fully Adaptive Local Smoothing of Images
with Correlated Noise

We consider the problem of denoising an image by local smoothing where
the bandwidth parameters are chosen from the data to adapt to the spatial
structure of the original image. We assume that the noisy image is generated
by a regression model (6.1) where we do not number the data consecutively
but by the coordinates of the respective pixels spread evenly over the interior
of the unit square [0, 1]2:

Yij = m(xij) + εij with pixels xij =
1
n

(
i− 1

2
, j − 1

2

)
, i, j = 1 , . . . , n.

The noise variables εij are not necessarily i.i.d., but, more generally, are part of
a strictly stationary random field on the integer lattice with E εij = 0, var εij =
c(0, 0) < ∞. Let c(k, l) = cov (εi+k,j+l, εij),−∞ < k, l < ∞, denote the
corresponding autocovariances and

f(0, 0) =
∞∑

k,l=−∞
c(k, l) (6.10)
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the spectral density at (0,0), assuming that it exists. For our smoothing
algorithm, f(0, 0) is all we have to know about the stochastic structure of
the noise. For estimating the original image m(x), x ∈ [0, 1]2 we consider a
local average

m̂(x,H) =
n∑

i,j=1

∫
Aij

KH(x− u)du Yij (6.11)

where Aij , i, j = 1, . . . n, is a partition of the unit square into n2 subsquares
with midpoint xij and side length 1/n each, and where

KH(z) =
1

det H
K(H−1z) =

1
h1h2

K(H−1z), z ∈ R
2 .

Equation (6.11) is a Gasser–Müller type kernel estimate [25] which is closely
related to the Priestley-Chao estimate (6.7). However, we do not restrict out
considerations to an isotropic kernel K(z), z ∈ R

2, depending only on |z|, but
we allow for a full spatial adaption. K may be an arbitrary kernel function sat-
isfying certain symmetry and regularity conditions. In particular, we assume
(6.5) and that K has a compact support, is nonnegative, Lipschitz continuous
and symmetric in both directions, i.e., K(−u1, u2) = K(u1, u2) = K(u1,−u2)
for all u1, u2. K(u1, u2) = K(u2, u1) for all u1, u2. Even more important, the
one bandwidth parameter h is now replaced by a 2 × 2 bandwidth matrix
H = CTHdC with a diagonal matrix Hd and a rotation matrix C:

Hd =
(
h1 0
0 h2

)
, C =

(
cosα − sinα
sinα cosα

)
.

So we have 3 free parameters 0 < h1, h2, 0 ≤ α < 2π. If we fix α = 0, then
h1 = h1(x), h2 = h2(x) determine the degree of smoothing at location x along
the two coordinate axes. If, e.g., in a neighborhood of x, the image is roughly
constant along the first axis, but changes rapidly in the orthogonal direction,
h1 should be large and h2 small. In general, however, image features like steep
slopes, edges or ridges will not necessarily be parallel to the coordinate axes.
Therefore, it may be helpful, to rotate the direction of maximal local smooth-
ing until it is parallel to such a feature. Here, the selection of an arbitrary
α = α(x) provides the necessary flexibility.

In the following, we assume that m(x) is twice continuously differentiable
on the unit square with derivatives

m(α,β)(x) =
∂α

∂xα
1

∂β

∂xβ
2

m(x) , α, β ≥ 0 .

We need this smoothness condition only locally, such that the denoising algo-
rithm practically works also in the presence of an edge, and the asymptotic
theory applies everywhere except for a thin stripe around the edge with width
shrinking to 0 for n→∞. Analogously to (6.8) and (6.9), we have the variance
and bias expansions
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var m̂(x,H) =
f(0, 0)SK

n2h1h2
+ o

(
1

n2h1h2

)
(6.12)

bias m̂(x,H) =
1
2
VK tr

(
H ∇2m(x) H

)
+ o(|h|2) , (6.13)

where ∇2m(x) denotes the Hessian of m at x, and VK =
∫
u2

1K(u) du =∫
u2

2K(u) du, SK =
∫
K2(u) du as in Sect. 6.1.

We are interested in a bandwidth matrix which results in a small mean-
squared error E|m̂(x,H)−m(x)|2 = var m̂(x,H)+{bias m̂(x,H)}2. Equations
(6.12) and (6.13) immediately provide an asymptotically valid approximation
for that error where only f(0, 0) and ∇2m(x) are unknown. The basic idea of
the plug-in method, going back to [2], is to replace the unknown quantities
by estimates and, then, to minimize with respect to H. In the following, we
apply this approach to the problem of image denoising.

6.2.1 Estimating the Noise Variability

For correlated noise, f(0, 0) replaces var εij as a measure of the total variabil-
ity of the noise. As discussed in [31] for the one-dimensional signal denoising
problem, it suffices to consider a rather simple estimate of the spectral density
for the purpose of adaptive smoothing. First, we estimate the unobservable
noise by asymmetric differences. To simplify notation, we use the abbrevia-
tions i = (i1, i2), j = (j1, j2) for arbitrary integers i1, i2, j1, j2, 0 = (0, 0), and
for some 1�M � n we, in particular, set

m+ = (M + 1,M + 1), m− = (M + 1,M − 1)

and ∆j =
2(M + 1)

2(M + 1) + |j1|+ |j2|
.

We define

ε̃i,j = Yi −∆j Yi−j − (1−∆j) Yi+m+ , j1 ≥ 0, j2 > 0 ,

ε̃i,j = Yi −∆j Yi−j − (1−∆j) Yi+m− , j1 > 0, j2 ≤ 0 ,

ε̃i,0 = Yi −
1
2
(Yi−m+ + Yi+m+)

ε̃i,j = Yi −∆j Yi−j − (1−∆j) Yi−m+ , j1 ≤ 0, j2 < 0 ,

ε̃i,j = Yi −∆j Yi−j − (1−∆j) Yi−m− , j1 < 0, j2 ≥ 0 .

For given j, let Ij be the set of all i for which ε̃i,j can be calculated from
the available sample {Yi, 1 ≤ i1, i2 ≤ n}, e.g., for j1 ≥ 0, j2 > 0, Ij consists
of all i = (i1, i2) with 1 ≤ i1, i2, i1 + M + 1, i2 + M + 1 ≤ n. Let Nj denote
the number of elements in Ij. Then, consider the following estimates of the
autocovariances c(j), |j1|, |j2| ≤M:
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ĉ(0) =
2
3

1
N0

∑
i∈I0

ε̃ 2
i,0

ĉ(j) = − 1
2∆j

1
Nj

∑
i∈Ij

ε̃ 2
i,j + Γjĉ(0) , |j1|, |j2| ≤M, j �= 0 , (6.14)

with Γj =
1

2∆j
{1 + ∆2

j + (1−∆j)2} .

Then we get an estimate of f(0, 0) by replacing the autocovariances in (6.10)
by their estimates and truncating the sum

f̂M (0, 0) =
∑

|j1|,|j2|≤M

ĉ(j) .

Under appropriate assumptions f̂M (0, 0) is a consistent estimate of f(0, 0) for
n,M → ∞ such that M2/n → 0 (compare Proposition 2 of [22]). Moreover,
for appropriately chosen M , the effect of replacing f(0, 0) by its estimate may
be neglected asymptotically for the purpose of the algorithm discussed in the
next section.

6.2.2 Adaptive Choice of Smoothing Parameters

The main idea of adaptive smoothing by the plug-in method is minimizing
the mean-squared error mse m̂(x,H) = var m̂(x,H) + {bias m̂(x,H)}2 with
respect to H where variance and bias are given by (6.12), (6.13) and where
the unknown quantities are replaced by estimates. An estimate for f(0, 0) has
been given in the last subsection. For the second derivatives in ∇2m(x) we
use again Gasser–Müller estimates

m̂(α,β)(x,B) =
n∑

i,j=1

∫
Aij

K
(α,β)
B (x− u)du Yij

where K
(α,β)
B denotes the corresponding second derivative of the kernel KB(u).

The resulting approximation for the mean-squared error is

amse m̂(x,H) =
1

n2h1h2
f̂M (0, 0)SK +

1
4
V 2

K

{
tr
(
H ∇2m̂(x,B) H

)}2
.

(6.15)
Of course, we now have the problem of choosing the bandwidth matrix B
for the estimate of second derivatives. Based on the original approach of [2],
we apply an iterative scheme described in detail in [22]. In this algorithm,
minimizing (6.15) locally at each pixel x = xkl from the beginning would lead
to instabilities. Therefore, in the first steps of the iteration, a good global
bandwidth matrix H, which does not depend on x, is determined by min-
imizing an analogous approximation of the mean-integrated squared error
mise m̂(·,H) =

∫
E
(
m̂(x,H)−m(x)

)2dx:
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amise m̂(·,H) =
1

n2h1h2
f̂M (0, 0)SK

+
1
4
V 2

K

∫ {
tr
(
H ∇2m̂(x,B) H

)}2
dx , (6.16)

where the integrals run over the interior of the unit square excluding a stripe of
width max(h1, h2) around the boundary to avoid the common boundary effects
of local smoothers. After a good global bandwidth Hglo is determined by iter-
atively minimizing (6.16) with respect to H with B also changing in the course
of the iteration, it serves as the starting point for the second iteration mini-
mizing now (6.15) and resulting in a local bandwidth selection H loc = H loc(x)
at every pixel x which is not too close to the boundary of the unit square.

This algorithm leads to an asymptotically optimal choice of bandwidth,
i.e., H loc will minimize mse m̂(x,H) for n→∞. Moreover, H loc has asymp-
totically a Gaussian distribution (compare [22]).

6.2.3 A Practical Illustration

We illustrate the performance of the kernel smoother with adaptively chosen
local bandwidth by an example from a larger case study. For a wide spectrum
of different test images (compare www.math.uni-bremen.de/zetem/DFG-
Schwerpunkt/), the denoising methods described in this section prove to be
quite competitive to standard methods (compare Chap. 2 and the Appendix
of [29]).

Figure 6.1 shows the original image without noise. For the calculations the
gray values of this image are scaled to the interval [0,1]. The noisy images are
generated from independent Gaussian noise with standard deviation 0.25, 0.5
and 1 respectively, by the following process:

1. Scale the gray values to the interval [0.2, 0.8],
2. add the Gaussian noise,
3. truncate the resulting values back to the interval [0,1], i.e., values below 0

or above 1 are clipped to 0 resp. 1.

Fig. 6.1 Original image without noise
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The resulting noise, which is common in image processing applications, is
no longer identically distributed as, for values of the original image close
to 0 or 1, truncation is more likely to happen. Moreover, if the image is, e.g.,
close to 1 at a pixel then it frequently is close to 1 in a whole neighborhood
which introduces kind of a positive pseudo-correlation in the noise.

We compare the kernel smoother with adaptive bandwidth matrix with
four common denoising methods: a simple median filter (MedF), a simple local
average with constant weights (AveF), a Gaussian Filter (GauF) and wavelet
denoising (Wave) using the Wavelet Toolbox of MATLAB 6 (coif wavelet, soft
thresholding). As kind of a benchmark, we also look at the raw data (RawD),
i.e., the noisy image before smoothing. We apply three different versions of the
plug-in kernel smoother. The first two do not allow for rotation, i.e., α = 0
and H = Hd is diagonal, and only 2 bandwidth parameters h1, h2 have to
be chosen. (AdB2I) assumes independent noise, whereas (AdB2C) allows for
correlation. (AdB3C) takes noise correlation into account and admits fully
adaptive local smoothing with 3 bandwidth parameters h1, h2, α. Figure 6.2
displays some results.

Fig. 6.2 From top left to bottom right: the noisy image, smoother with 2 bandwidth
parameters assuming uncorrelated noise, smoother with 2 bandwidth parameters
allowing for correlated noise, smoother with 3 bandwidth parameters allowing for
correlated noise
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Table 6.1 L1 and L2-denoising errors

Methods: RawD MedF AveF GauF Wave AdB2I AdB2I AdB3C

100 × L1-norm
σ=0.25 17.53 6.85 7.08 11.55 6.22 1.90 1.78 1.85
σ=0.5 28.61 9.25 10.69 19.06 9.89 2.71 2.49 2.55
σ=1.0 38.10 13.93 14.91 19.06 14.25 4.87 3.54 3.63

100 × L2-norm
σ=0.25 4.91 0.94 0.95 2.17 0.93 0.11 0.09 0.09
σ=0.5 12.31 1.91 1.87 5.64 1.63 0.21 0.14 0.14
σ=1.0 20.22 3.60 3.41 5.64 3.17 0.72 0.26 0.27

Table 6.1 shows the L1-norm
∑

i,j

∣∣m(xij) − m̂(xij)
∣∣ and the L2-norm∑

i,j

∣∣m(xij) − m̂(xij)
∣∣2 of the denoising errors. For other measures of per-

formance, we get a similar picture (compare Appendix of [29]). Our method
performs much better than the other smoothing procedures which, however,
is not surprising as they do not include a local adaptation of the degree of
smoothing. However, bandwidth selection by the plug-in method turns out
to be competitive too, if compared with other local procedures like the AWS
denoising [49] which is based on the approach of the next section.

Finally, we remark that for low signal to noise ratio, it makes not much
difference if we allow for correlation in the noise. For σ = 1, however, where
truncation of the original Gaussian noise becomes frequent, the smoothers
taking a possible correlation into account perform better (compare the dis-
cussion of the effect of truncation above). For this particular example, the
additional third bandwidth parameter α does not lead to an improvement.
This may be due to the low resolution of the image used in the application.

6.3 Structural Adaptive Smoothing Procedures
Using the Propagation-Separation-Approach

Regression is commonly used to describe and analyze the relation between
explanatory input variables X and one or multiple responses Y . In many
applications such relations are too complicated to be modeled by a paramet-
ric regression function. Classical nonparametric regression, see Sect. 6.1 and,
e.g., [19, 35, 61, 73] and varying coefficient models, see, e.g., [5, 6, 30], allow
for a more flexible form. We focus on methods that allow to efficiently handle
discontinuities and spatial inhomogeneity of the regression function in such
models.

Let us assume that we have a random sample Z1, . . . , Zn of the form
Zi = (Xi, Yi) . Every Xi is a vector of explanatory variables which determines
the distribution of an observed response Yi . Let the Xi ’s be valued in the
finite dimensional Euclidean space X = R

d and the Yi ’s belong to Y ⊆ R
q .
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The explanatory variables Xi may, e.g., quantify some experimental condi-
tions, coordinates within an image or a time.

The response Yi in these cases identifies the observed outcome of the
experiment, the gray value or color at the given location or the value of a
time series, respectively.

We assume that the distribution of each Yi is determined by a finite
dimensional parameter θ = θ(Xi) which may depend on the value Xi of
the explanatory variable. In the following we formally introduce our approach
within different settings.

6.3.1 One Parameter Exponential Families

Let P = (Pθ, θ ∈ Θ) be a family of probability measures on Y where Θ is
a subset of the real line R

1. We assume that this family is dominated by a
measure P and denote p(y, θ) = dPθ/dP (y). We suppose that each Yi is,
conditionally on Xi = x, distributed with density p(·, θ(x)). The density is
parameterized by some unknown function θ(x) on X which we aim to esti-
mate. A global parametric structure simply means that the parameter θ does
not depend on the location, that is, the distribution of every “observation”
Yi coincides with Pθ for some θ ∈ Θ and all i . This assumption reduces the
original problem to an estimation problem in a well established parametric
model. Here, the maximum likelihood estimate θ̃ = θ̃(Y1, . . . , Yn) of θ which
is defined by maximization of the log-likelihood L(θ) =

∑n
i=1 log p(Yi, θ) is

root-n consistent and asymptotically efficient under rather general conditions.
Such a global parametric assumption is typically too restrictive. The clas-

sical nonparametric approach is based on the idea of localization: for every
point x , the parametric assumption is only fulfilled locally in a vicinity of
x . We therefore use a local model concentrated in some neighborhood of the
point x . The most general way to describe a local model is based on weights.
Let, for a fixed x, a nonnegative weight wi = wi(x) ≤ 1 be assigned to the
observations Yi at Xi , i = 1, . . . , n . When estimating the local parameter
θ(x) , every observation Yi is used with the weight wi(x) . This leads to the
local (weighted) maximum likelihood estimate

θ̃(x) = arg sup
θ∈Θ

L(W (x), θ) (6.17)

with

L(W (x), θ) =
n∑

i=1

wi(x) log p(Yi, θ). (6.18)

Note that this definition is a special case of a more general local linear (polyno-
mial) likelihood modeling when the underlying function θ is modeled linearly
(polynomially) in x , see, e.g., [18]. However, our approach focuses on the
choice of localizing weights in a data-driven way rather than on the method
of local approximation of the function θ.
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A common choice is to define weights as wi(x) = Kloc(li) with li =
|x−Xi|/h where h is a bandwidth, |x−Xi| is the Euclidean distance between
x and the design point Xi and Kloc is a location kernel. This approach is
intrinsically based on the assumption that the function θ is smooth. It leads
to a local approximation of θ(x) within a ball of some small radius h centered
in the point x , see, e.g., [4, 6, 18, 30, 69].

An alternative approach is localization by a window. This simply restricts
the model to a subset (window) U = U(x) of the design space which depends
on x , that is, wi(x) = IXi∈U(x). Observations Yi with Xi outside the region
U(x) are not used when estimating the value θ(x). This kind of localization
arises, e.g., in the regression tree approach, in change point estimation, see,
e.g., [43, 64], and in image denoising, see [51, 56] among many others.

In our procedure we allow for arbitrary configurations of weights wi(x) .
The weights are computed in an iterative way from the data. In what follows
we identify the set W (x) = {w1(x), . . . , wn(x)} and the local model in x
described by these weights. For simplicity we will assume the case where
θ(x) describes the conditional expectation m(x) = E{Y/X = x} and the
local estimate is obtained explicitly as

θ̃(x) =
∑

i

wi(x)Yi/
∑

i

wi(x) ,

compare Sect. 6.1. In particular, for kernel weights, θ̃(x) is the Nadaraya–
Watson estimate (6.6). The quality of estimation heavily depends on the local-
izing scheme we selected. We illustrate this issue by considering kernel weights
wi(x) = Kloc(|x−Xi|/h) where the kernel Kloc is supported on [0, 1] . Then
the positive weights wi(x) are concentrated within the ball of radius h at the
point x . A small bandwidth h leads to a very strong localization. In partic-
ular, if the bandwidth h is smaller than the distance from x to the nearest
neighbor, then the resulting estimate coincides with the observation at x .
The larger bandwidth we select, the more noise reduction can be achieved.
However, the choice of a large bandwidth may lead to a bias if the local para-
metric assumption of a homogeneous structure is not fulfilled in the selected
neighborhood.

The classical approach to solving this problem is selection of a local band-
width h that may vary with the point x . See Sect. 6.2 and, e.g., [18] for more
details.

We employ a related but more general approach. We consider a fam-
ily of localizing models, one per design point Xi , and denote them as
Wi = W (Xi) = {wi1, . . . , win} . Every Wi is built in an iterative data-driven
way, and its support may vary from point to point.

6.3.2 Structural Adaptation

Let us assume that for each design point Xi the regression function θ can
be well approximated by a constant within a local vicinity U(Xi) containing
Xi . This serves as our structural assumption.



6 Structural Adaptive Smoothing Procedures 195

Our estimation problem can now be viewed as consisting of two parts.
For a given weighting scheme W (Xi) = {wi1, . . . , win} we can estimate the
function θ in the design point Xi by (6.17). Initially, a trivial weighting
scheme that satisfies our structural assumption is given by U(Xi) = {Xi}
and wij = IXj∈U(Xi) .

In order to efficiently estimate the function θ in a design point Xi, we need
to describe a local model, i.e., to assign weights W (Xi) = {wi1, . . . , win} . If
we knew the neighborhood U(Xi) by an oracle, we would define local weights
as wij = wj(Xi) = IXj∈U(Xi) and use these weights to estimate θ(Xi) . Since
θ and therefore U(Xi) are unknown the assignments will have to depend on
the information on θ that we can extract from the observed data. If we have
good estimates θ̂j = θ̂(Xj) of θ(Xj) we can use this information to infer on
the set U(Xi) by testing the hypothesis

H : θ(Xj) = θ(Xi) .

A weight wij can be assigned based on the value of a test statistic Tij ,
assigning zero weights if θ̂j and θ̂i are significantly different. This provides
us with a set of weights W (Xi) = {wi1, . . . , win} that determines a local
model in Xi .

We utilize both steps in an iterative procedure. We start with a very local
model in each point Xi given by weights

w
(0)
ij = Kloc(l

(0)
ij ) with l

(0)
ij = |Xi −Xj |/h(0) .

The initial bandwidth h(0) is chosen very small. Kloc is a kernel function
supported on [−1, 1] , i.e., weights vanish outside a ball U

(0)
i of radius h(0)

centered in Xi . We then iterate two steps, estimation of θ(x) and refining
the local models. In the k-th iteration new weights are generated as

w
(k)
ij = Kloc(l

(k)
ij )Kst(s

(k)
ij ) with (6.19)

l
(k)
ij = |Xi −Xj |/h(k) and s

(k)
ij = T

(k)
ij /λ. (6.20)

The kernel function Kst is monotone nonincreasing on the interval [0,∞) .
The bandwidth h is increased by a constant factor with each iteration k .
The test statistic

T
(k)
ij = N

(k)
i K(θ̂(k−1)

i , θ̂
(k−1)
j ) (6.21)

is used to specify the penalty s
(k)
ij . This term effectively measures the statis-

tical difference of the current estimates in Xi and Xj . In (6.21) the term
K(θ, θ′) denotes the Kullback–Leibler distance of the probability measures
Pθ and Pθ′ .

Additionally we may introduce a kind of memory in the procedure, that
ensures that the quality of estimation will not be lost with iterations. This
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basically means that we compare a new estimate θ̃
(k)
i = θ̃(k)(Xi) with the

previous estimate θ̂
(k−1)
i to define a memory parameter ηi = Kme(m

(k)
i )

using a kernel function Kme and

m
(k)
i = τ−1

∑
j

Kloc(l
(k)
ij )K(θ̃(k)

i , θ̂
(k−1)
i ) .

This leads to an estimate

θ̂
(k)
i = ηiθ̃

(k)
i + (1− ηi)θ̂

(k−1)
i .

6.3.3 Adaptive Weights Smoothing

We now formally describe the resulting algorithm.

• Initialization: Set the initial bandwidth h(0), k = 0 and compute, for
every i the statistics

N
(k)
i =

∑
j

w
(k)
ij , and S

(k)
i =

∑
j

w
(k)
ij Yj

and the estimates

θ̂
(k)
i = S

(k)
i /N

(k)
i

using w
(0)
ij = Kloc(l

(0)
ij ) . Set k = 1 and h(1) = c

(0)
h .

• Adaptation: For every pair i, j , compute the penalties

l
(k)
ij = |Xi −Xj |/h(k) , (6.22)

s
(k)
ij = λ−1T

(k)
ij = λ−1N

(k−1)
i K(θ̂(k−1)

i , θ̂
(k−1)
j ) . (6.23)

Now compute the weights w
(k)
ij as

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s
(k)
ij

)
and specify the local model by W

(k)
i = {w(k)

i1 , . . . , w
(k)
in } .

• Local estimation: Now compute new local MLE estimates θ̃
(k)
i of θ(Xi)

as

θ̃
(k)
i = S

(k)
i /Ñ

(k)
i with Ñ

(k)
i =

∑
j

w
(k)
ij , S

(k)
i =

∑
j

w
(k)
ij Yj .

• Adaptive control: compute the memory parameter as ηi = Kme(m
(k)
i ) .

Define

θ̂
(k)
i = ηiθ̃

(k)
i + (1− ηi)θ̂

(k−1)
i and

N
(k)
i = ηiÑ

(k)
i + (1− ηi)N

(k−1)
i .
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• Stopping: Stop if h(k) ≥ hmax , otherwise set h(k) = chh
(k−1) , increase

k by 1 and continue with the adaptation step.

Figure 6.3 illustrates the properties of the algorithm for an image with
artificial i.i.d. Gaussian noise. Figure 6.3(d) clearly indicates the adaptivity
of the procedure.

6.3.4 Choice of Parameters – Propagation Condition

The proposed procedure involves several parameters. The most important
one is the scale parameter λ in the statistical penalty sij . The special case
λ =∞ simply leads to a kernel estimate with bandwidth hmax . We propose
to choose λ as the smallest value satisfying a propagation condition. This
condition requires that, if the local assumption is valid globally, i.e., θ(x) ≡

Fig. 6.3 (a) Original image, (b) image with additive Gaussian noise, (c) smoothing
result for bandwidth hmax = 4 and (d) image of pixelwise sum of weights Ni
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θ does not depend on x , then with high probability the final estimate for
hmax = ∞ coincides in every point with the global estimate. More formally
we request that in this case for each iteration k

E|θ̂(k)(X)− θ(X)| < (1 + α)E|θ̌(k)(X)− θ| (6.24)

for a specified constant α > 0 . Here

θ̌(k)(Xi) =
∑

j

Kloc(l
(k)
ij )Yj/

∑
j

Kloc(l
(k)
ij )

denotes the nonadaptive kernel estimate employing the bandwidth h(k) from
step k . The value λ provided by this condition does not depend on the
unknown model parameter θ and can therefore be approximately found by
simulations. This allows to select default values for λ depending on the spec-
ified family of the probability distribution P = (Pθ, θ ∈ Θ) . Default values
for λ in the examples are selected for a value of α = 0.2 .

The second parameter of interest is the maximal bandwidth hmax which
controls both numerical complexity of the algorithm and smoothness within
homogeneous regions.

The scale parameter τ in the memory penalty mi can also be chosen to
meet the propagation condition (6.24). The special case τ =∞ turns off the
adaptive control step.

Additionally we specify a number of parameters and kernel functions that
have less influence on the resulting estimates. As a default the kernel functions
are chosen as Kloc(x) = Kme(x) = (1−x2)+ and Kst(x) = Ix≤p+[(1−x)/(1−
p)]+Ix>p . If the design is on a grid, e.g., for images, the initial bandwidth
h(0) is chosen as the distance between neighboring pixel. The bandwidth is
increased after each iteration by a default factor ch = 1.251/d .

For theoretical results on properties of the algorithm see [53].

6.3.5 Local Polynomial Smoothing

In Subsect. 6.3.2 we assumed that the expected value of Y is locally constant.
This assumption is essentially used in the form of the stochastic penalty sijijij .
The effect can be viewed as a regularization in the sense that in the limit
for hmax → ∞ the reconstructed regression function is forced to a local
constant structure even if the true function is locally smooth. Such effects can
be avoided if a local polynomial structural assumption is employed. Due to
the increased flexibility of such models this comes at the price of a decreased
sensitivity to discontinuities.

The Propagation-Separation approach from [52] assumes that within a
homogeneous region containing Xi , i.e., for Xj ∈ U(Xi) , the Yj can be
modeled as

Yj = θ(Xi)	Ψ(Xj −Xi) + εj , (6.25)
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where the components of Ψ(δ) contain values of basis functions

ψm(δ1, . . . , δd) = (δ1)m1 . . . (δd)md

for integers m1, . . .md ≥ 0 ,
∑

k mk ≤ p and some polynomial order p . For
a given local model W (Xi) estimates of θ(Xi) are obtained by local Least
Squares as

θ̃(Xi) = B−1
i

∑
j

wijΨ(Xj −Xi)Yj ,

with

Bi =
∑

j

wijΨ(Xj −Xi)Ψ(Xj −Xi)	 .

The parameters θ(Xi) are defined with respect to a system of basis functions
centered in Xi . Parameter estimates θ̂(Xj,i) in the local model W (Xj) with
respect to basis functions centered at Xi can be obtained by a linear trans-
formation from θ̂(Xj) , see [52]. In iteration k a statistical penalty can now
be defined as

s
(k)
ijs
(k)
ijs
(k)
ij =

1
λ2σ2

(
θ̂(k−1)(Xi)− θ̂(k−1)(Xj,i

)	
Bi

(
θ̂(k−1)(Xi)− θ̂(k−1)(Xj,i)

)
.

In a similar way a memory penalty is introduced as

m
(k)
ijm
(k)
ijm
(k)
ij =

1
τ2σ2

(
θ̃(k)(Xi)− θ̂(k−1)(Xi)

)	
B̃

(k)
i

(
θ̃(k)(Xi)− θ̂(k−1(Xi)

)
,

where B̃i is constructed like Bi employing location weights Kloc(l
(k)
ij ) . The

main parameters λ and τ are again chosen by a propagation condition re-
quiring free propagation of weights in the specified local polynomial model. A
detailed description and discussion of the resulting algorithm and correspond-
ing theoretical results can be found in [52].

Figure 6.4 provides an illustration for local polynomial smoothing based
on a piecewise smooth image (a). The local constant reconstruction (c) suffers
from bias effects induced by the inappropriate structural assumption while
the local quadratic reconstruction (d) benefits from local smoothness while
preserving discontinuities.

6.3.6 Using Anisotropy

Applying the adaptive smoothing has a problem of local oversmoothing and
loosing some local features if the noise level becomes too large. An improve-
ment of the performance is only possible if some additional structural infor-
mation is taken into account. One possible approach is based on the notion
of the local image flow or local image direction. Namely, it is assumed that
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Fig. 6.4 Local polynomial smoothing: (a) Original image, (b) image with additive
Gaussian noise, (c) local constant reconstruction hmax = 7 and (d) local quadratic
reconstruction hmax = 15

the image is either locally constant or it changes just in one particular direc-
tion. This idea is closely related to the notion of intrinsic dimension, see also
subsection on adaptive anisotropic filtering in Chap. 7, of the image: within
large homogeneous regions this local intrinsic dimension is equal to zero, for
edges between two regions it is one, and for the majority of the points in the
image the intrinsic dimension is either zero or one.

The corresponding structural assumption can be stated as follows: The
image function θ(·) can, locally around a fixed point x, be represented as
θ(s) = g(φ	(s − x)) where g(·) is a univariate function and φ is a vector
in R

d . The vector φ may also vary with x but our structural assumption
precisely means that the variability in φ is much smaller than in the im-
age function. This assumption leads to anisotropic smoothing methods: the
function g(·) is modeled as locally constant or polynomial and the function
θ(·) is approximated as a polynomial of φ	(s − x) in the anisotropic ellip-
tic neighborhood stretched in the direction φ and expanded in orthogonal
direction(s).

The whole procedure can be decomposed in two main steps which are
iterated. One step is the estimation of the local image directions and the
second step is the adaptive anisotropic smoothing using the estimated direc-
tions. The first step is based on the simple observation that the gradient of
the image function is proportional to the image direction φ . This suggests to
estimate the image direction φ from a neighborhood V(x) of the point x as
the first principle direction of the collection of the estimated gradients ∇̂θ(t) ,
t ∈ V(x) , or equivalently, as the first eigenvector of the matrix

D(x) =
∑

t∈V(x)

∇̂θ(t)∇̂θ(t)	 .

The corresponding eigenvalue can be used to determine the local variability
(coherence) of the image function in the estimated direction.

In our implementation, the neighborhoods Vi = V(Xi) are taken in the
form of the isotropic balls of a rather large bandwidth. The gradient esti-
mates ∇̂θ(t) are computed using usual numerical differences from the 3× 3
squares around the point t from the currently estimated image values θ̂j .
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The corresponding eigenvalue measures the local coherence (variability) of
the image in the direction φ .

In the second step, the image is estimated again using the anisotropic
elliptic neighborhoods. This basically means that we differently localize in the
direction φ and in the orthogonal directions, leading to the location penalty
lij in the form

lij =

∣∣φ	(Xi −Xj)
∣∣2

h2
1

+

∣∣(I −Πφ)(Xi −Xj)
∣∣2

h2
2

,

where Πφ means the projector on the direction φ . Such penalty defines an
elliptic neighborhood around Xi of the points Xj with lij ≤ 1 . The axis
h1, h2 are taken to provide that the volume of this neighborhood is equal
to the volume of the ball with the radius h(k) at the iteration k of the
algorithm. The degree of anisotropy defined by the ratio h1/h2 is selected
due to the estimated coherence in the central point Xi . Figure 6.5 illustrates
the behavior of the algorithm.

Fig. 6.5 Anisotropic AWS: (a) Original image, (b) image with Gaussian noise,
(c) reconstruction with maximal anisotropy 25 and hmax = 12, (d) estimates
anisotropy direction, (e) coherence and (f) sum of weights Ni
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6.3.7 Digital Images

Digital images may carry much more complicated noise. In a CCD sensor a
Bayer mask is used to obtain color information. Within a square of four pixels
one is red filtered, one blue and two green. The measurement in each voxel
in principle consists of a random photon count plus thermal noise leading
in the ideal case to a linear dependence between noise variance and signal
intensity. To obtain a color image in full resolution, the missing color values
are filled in by interpolation (demosaicing). This results in spatial correlation
within the image. Other sources of spatial correlation are noise reduction filters
and preprocessing steps applied within the camera. Correlation between color
channels is induced by rotation into the RGB color space.

The algorithm described in [54] handles the effects of correlation by an
adjustment of the statistical penalty sij and incorporates a model for the
variance-intensity dependence.

6.3.8 Applications in MRI

The propagation-separation (PS) approach has been successfully applied for
the analysis of single subject fMRI experiments, see [50, 68, 72]. In this con-
text adaptive smoothing allows for an improved sensitivity of signal detection
without compromising spatial resolution.

A method for adaptive smoothing of diffusion weighted MR images using
the Propagation-Separation approach has been proposed in [67].

6.3.9 Software

A reference implementation for the adaptive weights procedure described in
Subsect. 6.3.3 is available as a package (aws) of the R-Project for Statistical
Computing [57] from http://www.r-project.org/. Software for specific applica-
tions, e.g., adaptive filtering of digital images (R-package adimpro, [54]), the
analysis of functional MR data (R-package fmri, [55]) and adaptive smoothing
of diffusion weighted MR images (R-package dti) are available from the same
site. Structural adaptive anisotropic smoothing is implemented in a standalone
demo program.

6.4 Nonlocal Data and Smoothness Terms
for Image Smoothing

Image smoothing with the goal of simplification or denoising is an important
part of many applications in image processing and computer vision. This
chapter reviews a unifying variational framework for image smoothing based
on an energy function with nonlocal data and smoothness terms (NDS). In [39]
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this function has first been presented, and it was shown that depending on its
parameters its minimization can lead to a large variety of existing algorithms
for image smoothing. Several numerical methods to minimize the NDS energy
function have been investigated in [14] with their theoretical and practical
properties. In [47] the question of how to choose sensible parameters was
discussed.

This section is organized as follows: In Subsect. 6.4.1 we explain the NDS
model and relate it to several well-known filtering techniques. To deepen the
understanding of the model and its parts, the question of how to choose the
parameters is discussed in Subsect. 6.4.3. Several numerical methods to mini-
mize the energy function are presented and compared in the following Subsect.
6.4.4. The section is concluded with Subsect. 6.4.6.

6.4.1 The Variational NDS Model

First we are going to present the NDS model and take a look at special
cases which coincide with classical filtering methods. The model shown here
is working with images on a discrete domain.

Let n ∈ N be the number of pixels in our images and Ω = {1, . . . , n} the
corresponding index set. Let y ∈ R

n be the given image. In the following,
u ∈ R

n stands for a filtered version of y. The energy function E of the NDS
filter presented in [39] can be decomposed into two parts: the data and the
smoothness term. The data term can be written as

ED(u) =
∑

i,j∈Ω

ΨD

(
|ui − yj |2

)
wD

(
|xi − xj |2

)
, (6.26)

where ΨD : [0,∞) −→ [0,∞) is an increasing function which plays the role of
a penalizer for the difference between u and the initial image y, the so-called
tonal weight function. This weight function is important for the behavior of
the filtering method with respect to image edges and the robustness against
outliers. Six possibilities for such penalizing functions are displayed in Table
6.2. The upper three functions are convex while the lower three ones are non-
convex. The convex ones have the advantage that the existence and unique-
ness of a minimizer can be proven directly with this property. On the other
hand, the nonconvex functions yield edge enhancement and high robustness
with respect to noise and outliers which can significantly improve the recon-
struction results. We notice that the data term not only compares the gray
values of u and y at the pixel xi, but it also takes a nonlocal neighborhood
into account. This neighborhood is defined with the help of the spatial weight
function wD : [0,∞) −→ [0,∞) depending on the Euclidean distance between
the pixels xi and xj . Table 6.3 shows the two most important types of spatial
windows, the so-called hard and soft window. By choosing special cases of wD,
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Table 6.2 Possible choices for tonal weights Ψ. Source: [14]

Ψ(s2) Ψ′(s2) Known in the context of

s2 1
Tikhonov regularization
[70]

2λ2

(√
1 + s2

λ2 − 1

) (
1 + s2

λ2

)− 1
2 Nonlinear regularization,

Charbonnier et al. [7]

2
(√

s2 + ε2 − ε
) (

s2 + ε2
)− 1

2
Regularized total varia-
tion [60]

λ2 log
(
1 + s2

λ2

) (
1 + s2

λ2

)−1 Nonlinear diffusion,
Perona and Malik [46]

λ2
(
1 − exp

(
− s2

λ2

))
exp

(
− s2

λ2

) Nonlinear diffusion,
Perona and Malik [46]

min(s2, λ2)

{
1 |s| < λ
0 else

Segmentation, Mumford
and Shah [44]

one can determine the amount of locality of the filter from one pixel up to the
whole image domain.

The second ingredient of the NDS function is the smoothness term

ES(u) =
∑

i,j∈Ω

ΨS

(
|ui − uj |2

)
wS

(
|xi − xj |2

)
(6.27)

which differs from the data term by the fact that not the difference between
u and y is calculated as argument of the penalizer, but the difference between
gray values of u inside a larger neighborhood. Since ES does not depend on
the initial image y, each constant image u ≡ c ∈ R would always yield a
minimum: Thus we are rather interested in intermediate solutions during the
minimization process.

The complete NDS energy function is then the convex combination of these
two parts:

Table 6.3 Possible choices for spatial weights w. Source: [14]

w(s2) Known in the context of{
1 |s| < λ
0 else

Hard window
Locally orderless images, Koen-
derink and van Doorn [32]

exp
(
− s2

λ2

)
Soft window Chu et al. [9]
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E(u) = αED(u) + (1− α)ES(u) (6.28)

= α
∑

i,j∈Ω

ΨD

(
|ui − yj |2

)
wD

(
|xi − xj |2

)
+ (1− α)

∑
i,j∈Ω

ΨS

(
|ui − uj |2

)
wS

(
|xi − xj |2

)
(6.29)

for 0 ≤ α ≤ 1. This function combines two ways of smoothing: Besides the
smoothness term, also choosing a window with larger size in the data term
introduces some averaging over this neighborhood. The presence of the initial
image y in the data term makes nonflat minima of E possible.

6.4.2 Included Classical Methods

Figure 6.6 gives a first overview over the methods which can be expressed as
minimization of the energy function (6.29).

In the following, we are going to take a closer look at the special cases
mentioned there:

• M-estimators: The estimation of an unknown value y ∈ R with the help
of n noisy measurements can be written as minimizing the energy function

L
O

C
A

L
W

IN
D

O
W

E
D

G
L
O

B
A

L

M-estimators∑
j Ψ

(|u − yj |2
)

∑
i

∑
j Ψ

(|ui − yj |2
)

local M-smoothers∑
i

∑
j Ψ

(|ui − yj |2
)

w
(|xi − xj |2

)

Bayesian / regularisation theory∑
i α ΨD

(|ui − yi|2
)

+ (1 − α)
∑

i ΨS

(∑
j∈N (i) |ui − uj |2

)
DATA TERM SMOOTHNESS TERM

ΨS

(∑
j∈N (i) |ui − uj |2

)∑
j∈N (i) ΨS

(|ui − uj |2
)

bilateral filter∑
i

∑
j ΨS

(|ui − uj |2
)

w
(|xi − xj |2

)

∑
i

∑
j Ψ

(|ui − uj |2
)

Fig. 6.6 Overview of classical methods in the NDS approach. Source: [39]
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E(u) =
n∑

j=1

Ψ(|u− yj |2) . (6.30)

This can be understood as a very reduced form of a data term where we
only have one unknown.

• Histogram Operations: Extending the function E in (6.30) from one
unknown to n unknown pixel values yields a data term (6.26) with global
spatial window

E(u) =
∑

i,j∈Ω

Ψ(|ui − yj |2) . (6.31)

Since the function treats the gray value ui independent of its position xi,
and since for each pixel all gray values yj of the initial image are considered,
the result only depends on the histogram of the image y. Note that this
is also the reason why the global minimum is a flat image in this context.
We are thus interested in intermediate states of iterative minimization
processes.

• Local M-smoothers / W-estimators: Restricting the neighborhood
size leads to the data term

ED(u) =
∑

i,j∈Ω

ΨD(|ui − yj |2)wD(|xi − xj |2)

as shown in (6.26) where nonflat minimizers are possible. To search for a
minimizer, we consider critical points with ∇E(u) = 0 which is equivalent
to ∑

j∈Ω

Ψ′
D(|ui − yj |2)wD(|xi − xj |2)(ui − yj) = 0

for all i ∈ Ω. This can be understood as a fixed point equation u = F (u) if
we bring the factor u to the other side. The corresponding iterative scheme
is

uk+1
i =

∑
j∈Ω Ψ′

D(|uk
i − yj |2)wD(|xi − xj |2)yj∑

j∈Ω Ψ′
D(|uk

i − yj |2)wD(|xi − xj |2)
,

which has been considered as W-estimator [78].
• Bilateral filter: Performing the same steps as above with a smoothness

term (6.27) as starting point, one can obtain the averaging filter

uk+1
i =

∑
j∈Ω Ψ′

S(|uk
i − uj |2)wS(|xi − xj |2)uk

j∑
j∈Ω Ψ′

S(|uk
i − uj |2)wS(|xi − xj |2)

which is known as bilateral filter [71] and closely related to the SUSAN
filter [62]. Since we start with a smoothness term, the initial image has to
be taken as starting vector for the iterative scheme, and we are interested
not in the steady state, but in intermediate solutions.
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• Bayesian / regularization approaches: Classical regularization ap-
proaches can be expressed with the NDS function by using very small
local neighborhoods. Typically, one will use only the central pixel in the
data term, and only the four direct neighbors N (i) of the pixel i in the
smoothness term. This results in the energy function

E(u) = α
∑
i∈Ω

ΨD(|ui − yi|2) + (1− α)
∑
i∈Ω

∑
j∈N (i)

ΨS(|uj − ui|2) ,

which is some kind of discrete anisotropic regularization function since the
differences to all four neighbors are penalized independently. Exchanging
the sum and the penalizer in the smoothness term would yield the isotropic
variant with an approximation of |∇u|2 inside the penalizer.

6.4.3 Choice of Parameters

As we have seen in the last section, the NDS model is a very general model
which is capable of yielding various kinds of filtering results depending on the
choice of parameters. To obtain denoising results with good visual quality,
one has to determine an appropriate set of parameters and weights depending
on the noise and the properties of the desired result. For example, nonconvex
tonal weights tend to yield images which can be seen as compositions of regions
with constant gray value, while quadratic weights usually blur the image edges.
In this context the question arises if there is some redundancy in the set of
parameters. We will display one experiment concerning this question here
– further experiments and remarks addressing the problem of choosing the
parameters can be found in [47]. In our experiment we compare the influence
of the neighborhood size in the data term with the weight α between data
and smoothness term. To this end we consider a pure data term

ED(u) =
∑

i,j∈Ω

(ui − yj)2wD(|xi − xj |2)

with a quadratic tonal penalizer and a disc-shaped hard window function wD

with radius rD. On the other hand, we have a function with a local data term
and a smoothness term that involves only the direct neighbors:

EC(u) = α
∑
i∈Ω

(ui − yi)2 + (1− α)
∑
i∈Ω

∑
j∈N (i)

(ui − uj)2 .

The only parameter α determines how smooth the result is in this case.
We are looking for a quantification of the difference between the results

obtained by minimizing these two functions. It is especially interesting how
the parameters α and rD are connected. Figure 6.7 shows that the filtering
results obtained by the two approaches are hardly distinguishable when the
parameters are suitably chosen. There is also a graph relating the size of
the window rD, and the value for α such that the difference is minimized in
Fig. 6.8.
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Fig. 6.7 Example of the trade-off between different parameters. Left: Original
image, 256 × 256 pixels, with additive Gaussian noise, standard deviation σ = 50.
Middle: Denoising with ED, radius rD = 5. Right: Denoising with EC , α = 0.424.
Source: [47]

6.4.4 Numerical Minimization Methods

This section gives a short overview over several possibilities to minimize the
NDS energy function (6.29). There are two classes of methods described here:
The first two methods are fixed point iterations, and the last two are based
on Newton’s method:

• Jacobi method: As already sketched in Sect. 6.4.1, we start with the
search for critical points with ∇E(u) = 0 here. With the abbreviations
dk

i,j := Ψ′
D(|uk

i −yj |2)wD(|xi−xj |2) and sk
i,j := Ψ′

S(|uk
i −uk

j |2)wS(|xi−xj |2)
we obtain the fixed point iteration scheme

uk+1
i =

α
∑

j∈Ω dk
i,jyj + 2(1− α)

∑
j∈Ω sk

i,ju
k
j

α
∑

j∈Ω dk
i,j + 2(1− α)

∑
j∈Ω sk

i,j

=: F (uk)
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Fig. 6.8 Trade-off between large kernels and small α. Optimal value of α depending
on the radial support rD. Source: [47]
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for all i ∈ Ω, k ∈ N starting with u0
i := yi for all i ∈ Ω. Since ΨD and ΨS

are assumed to be nonnegative, it can easily be seen in this formulation
that the scheme satisfies a maximum–minimum principle. With Brouwer’s
fixed point theorem [79, p. 51] and the continuity of the scheme function
F , this implies the existence of a fixed point.

• Gauß–Seidel method: The difference of the Gauß–Seidel method to the
Jacobi method described above is that variables of the old and the new
iteration level are used in a local fixed point scheme. We set x0 := ui and
perform m ∈ N steps of a local fixed point iteration in the i-th component

xl+1 = Fi(uk+1
1 , . . . , uk+1

i−1 , x
l, uk

i+1, . . . , u
k
n) , l = 0, . . . ,m− 1

and set uk+1
i := xm afterwards. Here Fi denotes the i-th component of the

vector-valued function F defined above.
• Newton’s method: To find a point where the gradient vanishes, one can

also use Newton’s method for ∇E:

uk+1 = uk −H(E, uk)−1∇E(uk) .

Note that this method is only applicable if the tonal weight functions ΨD

and ΨS are convex, because this implies that the Hessian H(E, uk) is pos-
itive definite and thus invertible. Practical experiments have shown that
it makes sense to combine Newton’s method with a line-search strategy to
steer the length of the steps adaptively. This results in the scheme

uk+1 = uk − σkH(E, uk)−1∇E(uk) ,

where σk := 1
2l is chosen maximal such that the energy is decreasing:

E(uk+1) < E(uk) .
• Gauß–Seidel Newton method: The Gauß–Seidel Newton method is

a Gauss–Seidel method with a local Newton’s method in each component
instead of the local fixed point scheme. Here we have also used an adaptive
step size, but we used a local energy where all pixels except the evolving
one are fixed for the step size criterion.

Experiments have shown that there is no unique method which is preferable
over all others in any case. The methods based on the fixed point scheme
have the clear advantage that a maximum–minimum principle holds even for
nonconvex tonal weights where the other two methods are not even applicable.
On the other hand, Newton’s method can be faster for special choices of the
parameters. Further details about the numerical implementation of NDS can
be found in [14]. The combination of the presented methods with a coarse-to-
fine strategy is a possible extension which could be helpful to further improve
the running time.
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6.4.5 Diffusion Filters and Wavelet Shrinkage

As discussed in Sect. 6 of [39], the NDS approach also covers nonlinear dif-
fusion filtering. The latter, on the other hand, is related to wavelet shrinkage
which is the basis for another popular class of smoothing procedures. Here,
we give a brief overview of our results concerning the relations between these
two methods.

For the case of space-discrete 1 D diffusion, we proved that Haar wavelet
shrinkage on a single scale is equivalent to a single step of TV diffusion or TV
regularization of two-pixel pairs [65]. For the general case of N -pixel signals,
this led us to a numerical scheme for TV diffusion, more precisely, transla-
tionally invariant Haar wavelet shrinkage on a single scale can be used as an
absolutely stable explicit discretization of TV diffusion. In addition, we proved
that space-discrete TV diffusion and TV regularization are identical in 1 D,
and that they are also equivalent to a dynamical system called SIDEs when
a specific force function is chosen [3, 66].

Both considerations were then extended to 2 D images, where an analy-
tical solution for 2× 2 pixel images served as a building block for a wavelet-
inspired numerical scheme for diffusion with singular diffusivities which we
called “locally analytic scheme” (LAS) [75, 76]. Replacing space-discrete dif-
fusion by a fully discrete one with an explicit time discretization, we obtained
a general relation between the shrinkage function of a shift-invariant Haar
wavelet shrinkage on a single scale and the diffusivity of a nonlinear diffu-
sion filter [40, 41]. This allowed us to study novel, diffusion-inspired shrinkage
functions with competitive performance and to suggest new shrinkage rules for
2 D images with better rotation invariance [38]. We proposed coupled shrink-
age rules for color images where a desynchronization of the color channels is
avoided [38]. Moreover, the technique was extended to anisotropic diffusion
where a “locally semi-analytic scheme” (LSAS) was developed [75].

By using wavelets with a higher number of vanishing moments, equiva-
lences to higher-order diffusion-like PDEs were discovered in [74].

A new explicit scheme for nonlinear diffusion which directly incorporates
ideas from multiscale Haar wavelet shrinkage was proposed in [48]. Numeri-
cal experiments concerning multiscale Haar wavelet shrinkage and nonlinear
explicit diffusion schemes are contained in [42]. In [15] it was shown that 1D
multiscale continuous wavelet shrinkage can be linked to novel integrodifferen-
tial equations. They differ from nonlinear diffusion filtering and corresponding
regularization methods by the fact that they involve smoothed derivative op-
erators and perform a weighted averaging over all scales.

6.4.6 Conclusions

We have given an overview about a very general optimization framework for
image denoising and simplification with nonlocal data and smoothness terms
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(NDS). It has been demonstrated that this framework allows to find a tran-
sition between several classical models in one single energy function. The
price for this generality is that the function depends on several parameters.
Nevertheless, experiments have shown that there is some redundancy in this
parameter set, and thus one can reduce the complexity of the choice of op-
timal parameters. We also took a look at numerical methods for minimizing
the NDS energy function. Some of the corresponding schemes turn out to be
maximum–minimum stable while others can reduce the running time signifi-
cantly.

6.5 Nonlocal Data and Smoothness Terms:
Some Asymptotic Theory

In this section we present some asymptotic theory for the general class of
smoothers introduced in Sect. 6.4. We consider a particularly simple situation
where the function ΨD measuring the distance between the smoothed signal
or image u and the original observations y and the function ΨS specifying the
regularity of u both are quadratic:

ΨD(s2) = s2 = ΨS(s2) . (6.32)

For this particular choice, we get an explicit formula for the minimizer û of
the NDS function E(u). We start with a simple local average µ̂ = (µ̂1, . . . , µ̂N )
of the noisy image given by (6.4) where the standardized weights are chosen
from (6.26) according to wj(x) = wD(|x− xj |2)/

∑N
i=1 wD(|x− xi|2), i.e.,

µ̂k =

∑N
j=1 wD(|xk − xj |2)yj∑N

i=1 wD(|xk − xi|2)
. (6.33)

Let WD,WS be the N ×N matrices of weights before standardization

WD,kl = wD(|xk − xl|2) , WS,kl = wS(|xk − xl|2) , k, l = 1, . . . , N ,

and let VD, VS denote the diagonal matrices with entries

VD,kk =
N∑

i=1

wD(|xk − xi|2) , VS,kk =
N∑

i=1

wS(|xk − xi|2) , k = 1, . . . , N .

In particular, we have µ̂ = V −1
D WDy. By setting the partial derivatives of E(u)

with respect to u1, . . . , uN to 0, we get, using the abbreviation λ = 2(1−α)/α
and denoting the N ×N identity matrix by I:

Proposition 6.1 If I + λV −1
D (VS −WS) is invertible,

û =
{
I + λV −1

D (VS −WS)
}−1

µ̂ =
{
VD + λ(VS −WS)

}−1
WD y .
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Therefore, the NDS estimate û is the result of applying a second smoothing
operation to the local average µ̂ where the weights now are specified mainly
by the regularization term (6.27) via WS , as VD, VS only depend on the sums
of weights and will typically be close to multiples of I.

For kernel weights wD(|x|2) = h−dK(|x|/h), µ̂ is just the familiar Nada-
raya-Watson estimate (6.6).

6.5.1 Consistency and Asymptotic Normality of NDS Smoothers

If we assume a regression model (6.1), the local averages µ̂k are decomposed
into

µ̂k =
N∑

j=1

wj(xk)m(xj) +
N∑

j=1

wj(xk)εj , k = 1, . . . , N .

The first term is a local average of function values m(xj) in a neighborhood
of xk, and, for large N , it will be close to m(xk) if m is smooth enough and if
the width of the neighborhood converges to 0 for N → ∞. The second term
is a weighted average of i.i.d. random variables εj , and, under appropriate
assumptions on the weights, it will converge to the mean Eεj = 0 for N →∞.
Moreover, by an appropriate central limit theorem, it will have an symptotic
normal distribution after rescaling.

As the NDS smoother û coincides with the local average µ̂ up to a deter-
ministic matrix factor, it is plausible that both estimates share the same type
of asymptotics. To make this heuristic argument precise with a minimum
amount of notation, we restrict our discussion here to the signal denoising
problem, where d = 1, and, additionally to assuming (6.32), we choose spatial
kernel weights

wD(x2) =
1
h
K
(x
h

)
, wS(x2) =

1
g
L
(x
g

)
for both parts of the NDS function. K(z), L(z) are kernel functions satisfy-
ing (6.5), having compact support [−1,+1] and which additionally are Lips-
chitz continuous, symmetric around 0 and nonincreasing in [0, 1].

Theorem 6.2 Let the data satisfy the regression model (6.1) with σ2
ε =

var εj < ∞. Let m(x) be twice continuously differentiable, and m′′(x) be
Hoelder continuous on [0,1]. With VK , SK as in Sect. 6.1 and known rational
functions 1 ≤ rb(λ)→ 1, 1 ≥ rv(λ)→ 1 for λ→ 0, let

ak,N =
(
rb(λ)

h2

2
m′′(xk)VK

)2

+ r2
v(λ)

σ2
εSK

Nh
.
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Then, for N →∞, h→ 0, g → 0, λ→ 0, such that

g

h
→ 0 , Nh3

(
g

h

)4

→∞ ,
λ2

(h2 g)
→ 0 ,

we have

mse ûk

ak,N
=

E
(
ûk −m(xk)

)2
ak,N

→ 1 for N →∞.

For the proof, compare Theorem 2.1 of [13]. As ak,N → 0, this result implies
consistency, i.e., ûk −m(xk)→ 0 in mean-square for N →∞, and it specifies
the rate of convergence. The following result, compare Theorem 3.1 of [13],
shows that the NDS estimate has asymptotically a Gaussian distribution.

Theorem 6.3 Under the assumptions of Theorem 6.2, we have

1
rv(λ)

√
Nh

(
ûk − E ûk

)
→ N (0, σ2

εSK)

in distribution for N →∞, and

bias ûk = E ûk −m(xk) = rb(λ)
h2

2
m′′(xk)VK + Rk,N

for N →∞, where the remainder term Rk,N is of smaller order than the first
term.

6.5.2 Outlook

The asymptotic theory of the previous subsection forms the basis for solving
a large variety of practical image processing problems. Theorem 6.2 is the
starting point for deriving plug-in methods which lead to a data-adaptive
choice of the smoothing parameters h, α and g like in Sect. 6.2.

Theorem 6.3 may be used for constructing tests which allow for checking
if two different noisy images show the same pattern or if, in particular, one of
them shows defects, similar to [23] where only local averages are considered.
If asymptotic normality does not provide a reasonable approximation, which
frequently happens for complicated test statistics and small or medium sample
sizes, then resampling methods like the bootstrap may be used instead, com-
pare [21] for kernel smoothers. For a corresponding theoretical basis, uniform
consistency is needed which also holds under appropriate regularity condi-
tions, i.e., we have sup{|ûk − m(xk)|, δ ≤ xk ≤ 1 − δ} → 0 for n → ∞ for
arbitrary δ > 0 .

Finally, the results of Subsect. 6.5.1 may be extended to other loss func-
tions. The advantage of an explicit formula for the NDS smoother which is
guaranteed by the quadratic loss (6.32) is lost, but instead standard asymp-
totic approximations may be used to get a similar theory for M-smoothers,
median smoothers, etc. with additional regularization.



214 J. Franke et al.

6.6 Statistical Inference for Time Varying ARCH-Models

6.6.1 Time Varying ARCH-Models

To model volatility in time series [17], introduced the ARCH model where the
conditional variance is stochastic and dependent on past observations. More
precisely, the process {Xt} is called an ARCH(p) process if it satisfies the
representation

Xt = Ztσt σ2 = a0 +
p∑

j=1

ajX
2
t−j

where {Zt} are independent identically distributed (i.i.d.) random variables
with E(Zt) = 0 and E(Z2

t ) = 1. We observe from the definition of the ARCH
model that {Xt} is uncorrelated, but the conditional variance of Xt is deter-
mined by the previous p observations.

The ARCH model and several of its related models have gained wide-
spread recognition because they model quite well the volatility in financial
markets over relatively short periods of time (cf. [1, 45], and for a recent re-
view [27]). However, underlying all these models is the assumption of station-
arity. Now given the changing pace of the world’s economy, modeling financial
returns over long intervals using stationary time series models may be inap-
propriate. It is quite plausible that structural changes in financial time series
may occur causing the time series over long intervals to deviate significantly
from stationarity. It is, therefore, plausible that by relaxing the assumption of
stationarity in an adequate way, we may obtain a better fit. In this direction,
[16] have proposed the simple nonlinear model Xt = µ + σ(t)Zt, where Zt

are i.i.d. random variables and σ(·) is a smooth function, which they estimate
using a nonparametric regression method. Essentially, though it is not men-
tioned, the authors are treating σ(t) as if it were of the form σ(t) = σ̃(t/N),
with N being the sample size. Through this rescaling device it is possible to
obtain a framework for a meaningful asymptotic theory. Feng [20] has also
studied time inhomogeneous stochastic volatility, by introducing a multiplica-
tive seasonal and trend component into the GARCH model.

To model the financial returns over long periods of time [11] generalized the
class of ARCH(∞) models (cf. [26] and [59] ) to models with time-varying pa-
rameters. In order to obtain a framework for a meaningful asymptotic theory,
they rescale the parameter functions as in nonparametric regression and for
(linear) locally stationary processes to the unit interval, that is they assume

Xt,N = σt,NZt

where σ2
t,N = a0

(
t

N

)
+

∞∑
j=1

aj

(
t

N

)
X2

t−j,N for t = 1 . . . , N , (6.34)

where Zt are i.i.d. random variables with EZt = 0, EZ2
t = 1. The sequence

of stochastic processes {Xt,N : t = 1, . . . , N} which satisfy (6.34) is called a
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time-varying ARCH (tvARCH) process. As shown below the tvARCH process
can locally be approximated by stationary ARCH processes, i.e., it is a locally
stationary process.

We mention that the rescaling technique is mainly introduced for obtaining
a meaningful asymptotic theory and by this device it is possible to obtain
adequate approximations for the non-rescaled case. In particular, the rescaling
does not effect the estimation procedure. Furthermore, classical ARCH-models
are included as a special case (if the parameters are constant in time). The
same rescaling device has been used for example in nonparametric time series
by [58] and by [10] in his definition of local stationarity.

Reference [11] prove under certain regularity conditions that {X2
t,N} de-

fined in (6.34) has an almost surely well-defined unique solution in the set
of all causal solutions. The solution has the form of a time-varying Volterra
series expansion.

We now consider a stationary process which locally approximates the
tvARCH-process in some neighborhood of a fixed point t0 (or in rescaled
time u0). For each given u0 ∈ (0, 1] the stochastic process {Xt(u0)} is the
stationary ARCH process associated with the tvARCH(∞) process at time
point u0 if it satisfies

Xt(u0) = σt(u0)Zt ,

where σt(u0)2 = a0(u0) +
∞∑

j=1

aj(u0)Xt−j(u0)2 . (6.35)

Comparing (6.35) with (6.34), it seems clear if t/N is close to u0, then X2
t,N

and Xt(u0)2 should be close, and the degree of the approximation should
depend both on the rescaling factor N and the deviation |t/N −u0|. To make
this precise, [11] show that there exists a stationary, ergodic, positive process
{Ut} independent of u0 with finite mean and a constant C independent of t
and N such that

|X2
t,N −Xt(u0)2| ≤ C

(
| t
N
− u0|+

1
N

)
Ut almost sure . (6.36)

As a consequence of (6.36) we have

X2
t,N = Xt(u0)2 + Op

(
| t
N
− u0|+

1
N

)
.

Therefore, we can locally approximate the tvARCH process by a station-
ary process. The above approximation can be refined by using the so called
“derivative processes”. Using the derivative process, [11] show that the fol-
lowing expansion holds:
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X2
t,N = Xt(u0)2 +

(
t

N
− u0

)
∂Xt(u)2

∂u
�u=u0

+
1
2

(
t

N
− u0

)2
∂2Xt(u)2

∂u2
�u=u0 + Op

(
(
t

N
− u0)3 +

1
N

)
. (6.37)

The nice feature of this result is that it gives a Taylor expansion of the
non-stationary process X2

t,N around Xt(u0)2 in terms of stationary processes.
This is a particularly interesting result since it allows for using well known
results for stationary processes (such as the ergodic theorem) in describing
properties of Xt,N . The result is of high importance for deriving the asymp-
totic properties of the tvARCH-process.

6.6.2 The Segment Quasi-Likelihood Estimate

In this section we consider a kernel type estimator of the parameters a(u0) of
a tvARCH(p) model given the sample {Xt,N : t = 1, . . . , N}. Let t0 ∈ N be
such that |u0 − t0/N | < 1/N . The estimator considered in this section is the
minimizer of the weighted conditional log-likelihood

Lt0,N (α) :=
N∑

k=p+1

1
bN

K

(
t0 − k

bN

)
�k,N (α) , (6.38)

where

�k,N (α) =
1
2

(
logwk,N (α) +

X2
k,N

wk,N (α)

)
(6.39)

with wk,N (α) = α0 +
p∑

j=1

αjX
2
k−j,N ,

and K : [−1/2, 1/2] → R is a kernel function of bounded variation with∫ 1/2

−1/2
K(x)dx = 1 and

∫ 1/2

−1/2
xK(x)dx = 0. That is we consider

ât0,N = arg min
α∈Ω

Lt0,N (α) . (6.40)

Obviously �t,N (α) is the conditional log-likelihood of Xt,N given Xt−1,N , . . . ,
Xt−p,N and the parameters α = (α0, . . . , αp)T provided the Zt are normally
distributed. However, all the results discussed below also hold if the Zt are
not normally distributed. For this reason and the fact that the conditional
likelihood is not the full likelihood Lt0,N (α) is called a quasi-likelihood.

In the derivation of the asymptotic properties of this estimator the lo-
cal approximation of X2

t,N by the stationary process Xt(u0)2 plays a major
role. Therefore, similar to the above, we define the stationary approximation
weighted log-likelihood
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L̃N (u0,α) :=
N∑

k=p+1

1
bN

K

(
t0 − k

bN

)
�̃k(u0,α) , (6.41)

where |u0 − t0/N | < 1/N and

�̃t(u0,α) =
1
2

(
log w̃t(u0,α) +

X̃t(u0)2

w̃t(u0,α)

)

with w̃t(u0,α) = α0 +
p∑

j=1

αjX̃t−j(u0)2 .

It can be shown that both, Lt0,N (α) and L̃N (u0,α), converge to

L(u0,α) := E(�̃0(u0,α)) (6.42)

as N → ∞, b → 0, bN → ∞ and |u0 − t0/N | < 1/N . It is easy to show that
L(u0,α) is minimized by α = (a0(u0), . . . ,ap(u0)). Furthermore, let

Bt0,N (α) := Lt0,N (α)− L̃N (u0,α) (6.43)

=
N∑

k=p+1

1
bN

K(
t0 − k

bN
)
(
�k,N (α)− �̃k(u0,α)

)
.

Since L̃N (u0,α) is the likelihood of the stationary approximation Xt(u0),
Bt0,N (α) is a bias caused by the deviation from stationarity. Let

Σ(u0) =
1
2

E

{
∇w̃0(u0,au0)∇w̃0(u0,au0)

T

w̃0(u0,au0)2

}
. (6.44)

Since Xk(u0)/w̃k(u0,a0) = Z2
k and Z2

k is independent of w̃k(u0,a0) we have

E

(
∇2�̃0(u0,au0)

)
= −Σ(u0)

and

E

(
∇�̃0(u0,au0)∇�̃0(u0,au0)

T
)

=
var(Z2

0 )
2

Σ(u0) .

The following theorem gives the asymptotic distribution of ât0,N . It may
for example be used to construct approximate confidence intervals for ât0,N .
Details on the assumptions may be found in [11].

Theorem 6.4 Let SK =
∫ 1/2

−1/2
K(x)2dx and VK =

∫ 1/2

−1/2
K(x)x2dx. Under

suitable regularity assumptions we have for |u0 − t0/N | < 1/N
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(i) if b3 � N−1 , then
√
bNBt0,N (au0)

P→ 0 and

√
bN(ât0,N − au0)

D→ N
(
0, SK

var(Z2
0 )

2
Σ(u0)−1

)
;

(ii)if b13 << N−1 ,, then
√
bNΣ(u0)−1∇Bt0,N (au0) =

√
bNb2µ(u0) + op(1)

and

√
bN(ât0,N − au0) +

√
bNb2µ(u0)

D→ N
(

0, SK
var(Z2

0 )
2

Σ(u0)−1

)
,(6.45)

where

µ(u0) =
1
2
VKΣ(u0)−1 ∂

2∇L(u,au0)
∂u2

�u=u0 . (6.46)

SK =
∫ 1/2

−1/2
K(x)2dx and VK =

∫ 1/2

−1/2
K(x)x2dx .

We mention that for Zt normally distributed var(Z2
0 ) = 2 holds.

We recall the structure of this result: The asymptotic Gaussian distribution
is the same as for the stationary approximation. In addition we have a bias
term which comes from the deviation of the true process from the stationary
approximation on the segment. In particular this bias term is zero if the true
process is stationary. A simple example is given below. By estimating and
minimizing the mean squared error (i.e., by balancing the variance and the
bias due to non-stationarity on the segment), we may find an estimator for
the optimal segment length.

Example 6.5 We consider the tvARCH(0) process

Xt,N = σt,NZt , σ2
t,N = a0

(
t

N

)
,

which [16] have also studied. In this case ∂Xt(u)2

∂u = a′0(u)Z2
t , and we have

∂2∇L(u,au0)
∂u2

�u=u0 = −1
2

a′′0(u0)
a0(u0)2

and Σ(u0) =
1

2a0(u0)2

that is

µ(u0) = −1
2
VKa′′0(u0) .

This example illustrates well how the bias is linked to the non-stationarity of
the process – if the process were stationary, the derivatives of a0(·) would be
zero causing the bias also to be zero. Conversely, sudden variations in a0(·)
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about the time point u0 would be reflected in a′′0(u0) and manifest as a large
µ(u0). Straightforward minimization of the asymptotic variance

(bN)−1SK
var(Z2

0 )
2

Σ(u0)−1

and probabilistic bias

b2
1
2
VKΣ(u0)−1 ∂

2∇L(u,au0)
∂u2

�u=u0

leads to the optimal bandwidth which in this case (and for Gaussian Zt) takes
the form

bopt =
(

2SK

V 2
K

)1/5

N−1/5

[
a0(u0)
a′′0(u0)

]2/5

,

leading to a large bandwidth if a′′0(u0) is small and vice versa. Thus the optimal
theoretical choice of the bandwidth (of the segment length) depends on the
degree of stationarity of the process.

6.6.3 Recursive Estimation

We now present an “online” method, which uses the estimate of the parame-
ters at time point (t− 1) and the observation at time point t to estimate the
parameter at time point t. There exists a huge literature on recursive algo-
rithms - mainly in the context of linear systems (cf. [34, 63] or in the context
of neural networks (cf. [8, 77]). For a general overview see also [33]. Refer-
ence [12] has considered the following online recursive algorithm for tvARCH
models:

ât,N = ât−1,N + λ{X2
t,N − âT

t−1,NXt−1,N}
Xt−1,N

|Xt−1,N |21
, (6.47)

t = p + 1, . . . , N, with X T
t−1,N = (1, X2

t−1,N , . . . , X2
t−p,N ) , |Xt−1,N |1 = 1 +∑p

j=1 X2
t−j,N and initial conditions âp,N = (0, . . . , 0). This algorithm is linear

in the estimators, despite the nonlinearity of the tvARCH process. We call
the stochastic algorithm defined in (6.47) the ARCH normalized recursive
estimation (ANRE) algorithm. Let a(u)T = (a0(u), . . . , ap(u)), then ât,N is
regarded as an estimator of a(t/N) or of a(u) if |t/N−u| < 1/N . We note that
the step size λ plays in some sense a similar role to the bandwidth b used in
the segment quasi-likelihood. In fact in the asymptotic considerations λ can
be treated as if it were of the order O((bN)−1). It is also worth noting that
if we believe the tvARCH process were highly non-stationary, then λ should
be large, in order to place greater emphasis on the current observation and
“capture” the rapidly changing behavior of a.

The ANRE algorithm resembles the NLMS-algorithm investigated in [37].
Rewriting (6.47), we have
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ât,N =

(
I − λ

Xt−1,NX T
t−1,N

|Xt−1,N |21

)
ât−1,N + λ

X2
t,NXt−1,N

|Xt−1,N |21
. (6.48)

We can see from (6.48) that the convergence of the ANRE algorithm relies
on showing some type of exponential decay of the past. This is sometimes
referred to as persistence of excitation. Persistence of excitation guarantees
convergence of the algorithm. Besides the practical relevance this is used to
prove the asymptotic properties of ât,N .

Reference [12] prove that the difference ât0,N − a(u0) is dominated by two
terms, that is

ât0,N − a(u0) = Lt0(u0) +Rt0,N (u0) + Op(δN ) , (6.49)

where

δN =

(
1

(Nλ)2β
+

√
λ

(Nλ)β
+ λ +

1
Nβ

)
, (6.50)

Lt0(u0) =
t0−p−1∑

k=0

λ{I − λF (u0)}kMt0−k(u0) (6.51)

Rt0,N (u0) =
t0−p−1∑

k=0

λ{I − λF (u0)}k
({
Mt0−k

( t0 − k

N

)
−Mt0−k(u0)

}
+F (u0)

{
a
( t0 − k

N

)
− a(u0)

})
,

with

Mt(u) = (Z2
t − 1)σt(u)2

Xt−1(u)
|Xt−1(u)|21

andF (u) = E

(
X0(u)X0(u)T

|X0(u)|21

)
. (6.52)

We note that Lt0(u0) and Rt0,N (u0) play two different roles. Lt0(u0) is the
weighted sum of the stationary random variables {Xt(u0)}t, which locally ap-
proximate the tvARCH process {Xt,N}t, whereasRt0,N (u0) is the (stochastic)
bias due to non-stationarity; if the tvARCH process were stationary this term
would be zero. It is clear from the above that the magnitude of Rt0,N (u0) de-
pends on the regularity of the time-varying parameters a(u), e.g., the Hölder
class that a(u) belongs to. Reference [12] prove the following result on the
asymptotic normality of this recursive estimator. Unlike in most other work
in the area of recursive estimation it is assumed that the true process is a
process with time-varying coefficients, i.e., a non-stationary process.

Theorem 6.6 Let a(u) ∈ Lip(β) where β ≤ 1. Under suitable regularity as-
sumptions we have for |u0 − t0/N | < 1/N
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(i) if λ N−4β/(4β+1) and λ N−2β , then

λ−1/2{ât0,N − a(u0)} − λ−1/2Rt0,N (u0)
D→ N (0,Σ(u0)) , (6.53)

(ii)if λ N− 2β
2β+1 , then

λ−1/2{ât0,N − a(u0)} D→ N (0,Σ(u0)) , (6.54)

where λ→ 0 as N →∞ and Nλ (logN)1+ε, for some ε > 0, with

Σ(u) =
µ4

2
F (u)−1

E

(σ1(u)4X0(u)X0(u)T

|X0(u)|41

)
, µ4 = E(Z4

0 )− 1 . (6.55)

We now make a stronger assumption on a(u). Let ḟ(u) denote the derivative
of the vector or matrix f(·) with respect to u. Suppose now that 0 < β′ ≤ 1
and a(u) ∈ Lip(1 + β′), i.e., ȧ(u) ∈ Lip(β′). Under this assumption it can be
shown that

E{ât0,N − a(u0)} = − 1
Nλ

F (u0)−1ȧ(u0) + O

(
1

(Nλ)1+β′

)
. (6.56)

By using this expression for the bias, [12] prove the following result.

Theorem 6.7 Under suitable regularity assumptions we have for
|u0 − t0/N | < 1/N

E|ât0,N − a(u0)|2 = λ tr{Σ(u0)}+
1

(Nλ)2
∣∣F (u0)−1ȧ(u0)|2 (6.57)

+O

(
1

(Nλ)2+β′ +
λ1/2

(Nλ)1+β′ +
1

(Nλ)2

)
,

and if λ is such that λ−1/2/(Nλ)1+β′ → 0, then

λ−1/2(ât0,N − a(u0)) + λ−1/2 1
Nλ

F (u0)−1ȧ(u0)
D→ N (0,Σ(u0)) , (6.58)

where λ→ 0 as N →∞ and λN  (logN)1+ε, for some ε > 0 .

The above result can be used to achieve a bias reduction and the the optimal
rate of convergence by running two ANRE algorithms with different stepsizes
λ1 and λ2 in parallel: Let ât,N (λ1) and ât,N (λ2) be the ANRE algorithms with
stepsize λ1 and λ2 respectively, and assume that λ1 > λ2. By using (6.56) for
i = 1, 2 , we have

E{ât0,N (λi)} = a(u0)−
1

Nλi
F (u0)−1ȧ(u0) + O

(
1

(Nλi)1+β′

)
. (6.59)

Since a(u0)− (1/Nλi)F (u0)−1ȧ(u0) ≈ a
(
u0 − (1/Nλi)F (u0)−1

)
we heuristi-

cally estimate a(u0− (1/Nλi)F (u0)−1) instead of a(u0) by the algorithm. By
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using two different λi, we can find a linear combination of the corresponding
estimates such that we “extrapolate” the two values
a(u0) − (1/Nλi)F (u0)−1 ȧ(u0) (i = 1, 2) to a(u0). Formally let 0 < w < 1,
λ2 = wλ1 and

ǎt0,N (w) =
1

1− w
ât0,N (λ1)−

w

1− w
ât0,N (λ2) .

If |t0/N − u0| < 1/N , then by using (6.59) we have

E{ǎt0,N (w)} = a(u0) + O

(
1

(Nλ)1+β′

)
.

By using Theorem 6.7, we have

E|ǎt0,N − a(u0))|2 = O

(
λ +

1
(Nλ)2(1+β′)

)
,

and choosing λ = const×N−(2+2β′)/(3+2β′) gives the optimal rate. It remains
the problem of choosing λ (and w). It is obvious that λ should be chosen
adaptively to the degree of non-stationarity. That is λ should be large if the
characteristics of the process are changing more rapidly. However, a more
specific suggestion would require more investigations – both theoretically and
by simulations.

Finally we mention that choosing λ2 < wλ1 will lead to an estimator of
a(u0 + ∆) with some ∆ > 0 (with rate as above). This could be the basis for
the prediction of volatility of time varying ARCH processes.

6.6.4 Implications for Non-Rescaled Processes

Suppose that we observe data from a (non-rescaled) time-varying ARCH pro-
cess in discrete time

Xt = Ztσt , σ2
t = a0(t) +

p∑
j=1

aj(t)X2
t−j , t ∈ Z . (6.60)

In order to estimate a(t) we may use the segment quasi-likelihood estimator as
given in (6.40) or the recursive estimator as given in (6.47). An approximation
for the distribution of the estimators is given by Theorem 6.4 and Theorem 6.6
respectively, which, however, are formulated for rescaled processes.

We now demonstrate how these results can be used for the non-rescaled
estimators. In particular we show why the results do not depend on the specific
N used in the rescaling.

We start with the second result on recursive estimation: Theorem 6.6(ii)
can be used directly since it is completely formulated without N . The matrices
F (u0) and Σ(u0) depend on the unknown stationary approximation Xt(u0)
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of the process at u0 = t0/N , i.e., at time t0 in non-rescaled time. Since this
approximation is unknown we may use instead the process itself in a small
neighborhood of t0, i.e., we may estimate for example F (u0) by

1
m

m−1∑
j=0

Xt0−jX T
t0−j

|Xt0−j |21

with m small and X T
t−1 = (1, X2

t−1, . . . , X
2
t−p). An estimator which fits better

to the recursive algorithm is

[1− (1− λ)t0−p+1]−1

t0−p∑
j=0

λ(1− λ)j
Xt0−jX T

t0−j

|Xt0−j |21
.

In the same way we can estimate Σ(u0) which altogether leads, e.g., to an
approximate confidence interval for ât. In a similar way Theorem 6.6(i) can
be used.

The situation is more difficult with Theorem 6.7, since here the results
depend (at first sight) on N . Suppose that we have parameter functions ãj(·)
and some N > t0 with ãj(t0/N) = aj(t0) (i.e., the original function has been
rescaled to the unit interval). Consider Theorem 6.7 with the functions ãj(·).
The bias in (6.56) and (6.57) contains the term

1
N

˙̃aj(u0) ≈
1
N

ãj( t0
N )− ãj( t0−1

N )
1
N

= aj(t0)− aj(t0 − 1)

which again is independent of N . To avoid confusion, we mention that
1/N ˙̃aj(u0) of course depends on N once the function ãj(·) has been fixed
(as in the asymptotic approach of this paper), but it does not depend on N
when it is used to approximate the function aj(t) since then the function ãj(·)
is a different one for each N . In the spirit of the remarks above we would,
e.g., use as an estimator of 1/N ˙̃aj(u0) in (6.56) and (6.57) the expression
[1− (1− λ)t0−p+1]−1

∑t0−p
j=0 λ(1− λ)j

[
aj(t0)− aj(t0 − j)

]
.

For the segment quasi-likelihood estimate the situation is similar: bN in
Theorem 6.4 is the sample size on the segment. Therefore, Theorem 6.4(i)
can immediately be applied to construct, e.g., an approximative confidence
interval for the (non-rescaled) estimator. In part (ii) in addition the term

√
bN b2µ(u0) =

√
bN

1
2
w(2)Σ(u0)−1

(
bN

)2 1
N2

∂2∇L̃(u, ãu0)
∂u2

�u=u0 (6.61)

occurs. As above

1
N2

∂2∇L̃(u, ãu0)
∂u2

�u=u0 ≈ ∇L(t0,at0)− 2∇L(t0 − 1,at0) +∇L(t0 − 2,at0)

which again is independent on N (here L̃ an ãu0 denote the likelihood and
the parameter with rescaled data while L an au0 are the corresponding values
with non-rescaled data).
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These considerations also demonstrate the need for the asymptotic ap-
proach of this paper: While it is not possible to set down a meaningful asymp-
totic theory for the model (6.60) and to derive, e.g., a central limit theorem
for the estimator ât, approaching the problem using the rescaling device and
the rescaled model (6.34) leads to such results. This is achieved by the “infill
asymptotics” where more and more data become available of each local struc-
ture (e.g., about time u0) as N → ∞. The results can then be used also for
approximations in the model (6.60) – e.g., for confidence intervals.

6.6.5 Concluding Remark

Results by cf. [36] and [24]) indicate that several stylized facts of financial
log returns, for example the often discussed long range dependence of the
squared log returns or the IGARCH (1,1) – effect, are in truth due to non-
stationarity of the data. Furthermore, we conjecture that for example the
empirical kurtosis of financial log returns is much smaller with a time-varying
model than with a classical ARCH model. For this reason the results in this
chapter on time varying ARCH models are of particular relevance. It is worth
mentioning that [24] fitted the tvARCH model to both exchange rate data and
also FTSE stock index data sets. Furthermore, forecasts of future volatility
was made using the tvARCH model and often the forecasts were better than
the forecasts using the benchmark stationary GARCH(1, 1) process.
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[38] P. Mrázek and J. Weickert. Rotationally invariant wavelet shrinkage. In
Pattern Recognition, volume 2781 of Lecture Notes in Computer Science,
pages 156–163. Springer, Berlin-Heidelberg, New York, 2003.
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7.1 Introduction

We consider the general task of accurately detecting and quantifying ori-
entations in n-dimensional signals s. The main emphasis will be placed on
the estimation of motion, which can be thought of as orientation in spatio-
temporal signals. Associated problems such as the optimization of matched
kernels for deriving isotropic and highly accurate gradients from the signals,
optimal integration of local models, and local model selection will also be
addressed.

Many apparently different approaches to get a quantitative hold on mo-
tion have been proposed and explored, e.g., using the brightness constancy
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constraint [47, 89], the structure tensor [43, 49], blockwise matching or
correlation [9, 10], quadrature filters [22, 45, 51], steerable filters and other
filter-based approaches [18, 110], projection on polynomial subspaces [20], au-
tocovariance based analysis [67], and many variants of these approaches. As
mentioned previously, the estimation of motion is closely related to the es-
timation of orientation or linear symmetry in 2 D images [11, 39] and the
computation of curvature [125, 132] in 2 D or higher dimensional spaces.

It is relatively well understood, how these various approaches can be em-
ployed in the case of simple motion patterns, which can – at least on a local
scale – be approximated by a single rigid translational motion. This applies
also to moderate amounts of noise, especially if the noise process is stationary,
additive, and its amplitude distribution is unimodal.

However, most of the aforementioned approaches show severe limitations in
case of complex motion patterns or strong disturbances, which are character-
istic for real-life image data. Problematic situations occur for instance in case
of motion superposition (due to transparency or specular reflection), temporal
and/or spatial motion discontinuities, and spatio-temporal flow effects (relax-
ation, diffusion, etc.). It is this area, where the current challenges in motion
analysis are found, in which significant contributions will be made throughout
this chapter. Improved algorithms will necessarily be locally adaptive, nonlin-
ear and based on modern signal processing tools, such as Total Least Squares,
anisotropic diffusion, and Markov Random fields, or extend classical signal
theory such as those presented by [22, 122].

An overview of the problem of multiple motions has been given in [12] and
robust methods for multiple motions have been proposed. The problem of two
motions has been first solved by Shizawa and Mase [108, 109]. Their approach
is based on Fourier methods and on solving a six-dimensional eigensystem
that limits the method to only two motions. Here we will show how to avoid
such an eigensystem in case of one motion resulting in a simpler and faster
solution for multiple motions. Important contributions in characterizing the
spectral properties of multiple motions have been made [133]. In dealing with
the problem of multiple motions, the useful and intuitive notions of “nulling
filters” and “layers” have been introduced [16, 126]. Their approach is more
general in that it treats the separation of motions into layers, but is also
limited to the use of a discrete set of possible motions and a probabilistic
procedure for finding the most likely motions out of the set.

The problems mentioned before are dealing with characteristics of the
signal itself; but additionally we find several kinds of disturbances in real
life image data. For instance: rain, snow or low illumination conditions cause
different types of noise. Besides that, outdoor scenes often are afflicted by
illumination changes, or specular reflections. Additionally, many scientific or
medical applications acquire images at the limit of what is physically and
technically feasible. This often introduces strong disturbances such as heavy
signal-dependent noise.
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As will be outlined, the estimation of complex orientation from image
data represents an inverse problem. Paramount to solving this problem are
adequate models. In Sect. 7.2 a number of such extended models will be
presented, ranging from those incorporating brightness changes along given
orientations over those incorporating multiple orientations to those deducing
scene depth in motion models. The models constrain orientation to image
intensities. Still, generally more unknowns are sought than can be fully re-
covered from these presented constraint equations. In Sect. 7.3 a number of
approaches will be presented that make it feasible to derive the sought pa-
rameters by introducing additional constraints. Refined estimators will be
presented that take statistics into account to perform maximum likelihood es-
timates. The presented algorithms are based on differential orientation mod-
els, relying on an accurate extraction of gradients from image intensities. In
Sect. 7.4 schemes for computing these gradients from optimized filters will be
presented. Closely related to estimating the orientation parameter of the in-
troduced models is the task of selecting the correct model, given a noise level
by which the image data is corrupted. Two such approaches are presented
in Sect. 7.5. The correct model that can be retrieved from the image data
will also depend on the signal structures. These structures can be categorized
by their intrinsic dimension, a concept which is also introduced in this sec-
tion. The inverse problem of estimating model parameters is performed by an
optimal regularization. In Sect. 7.6 different regularization schemes are pre-
sented, that preserve anisotropies in the image signal. These approaches are
also used for suppressing noise prior to performing the estimation, leading
to optimum results. The problem of orientation estimation in multiple sub-
spaces is a prominent one, that has significant impact, both on modeling and
estimation, but for applications as well. Algorithms tackling this problem are
detailed in Sect. 7.7. The developed algorithms make novel applications fea-
sible. In Sect. 7.8 some exemplary applications are presented stemming from
different fields such as environmental-, geo-, and life sciences. This chapter
closes with some concluding remarks in Sect. 7.9.

7.2 Modeling Multi-Dimensional Signals

7.2.1 Motion and Subspace Models

We regard n-dimensional signals s(x) defined over a region Ω, e.g., images
and image sequences. Motions (translations) and orientations correspond to
linear d-dimensional subspaces E of Ω with 1 ≤ d < n, such that

s(x) = s(x + ku) ∀k ∈ R and ∀x,x + ku ∈ Ω and u ∈ E. (7.1)

Often one needs to (i) detect the existence of such a subspace E and (ii) esti-
mate the parameter vector ku, which corresponds (not always, see Sect. 7.3.2)
to the direction of motion in the regarded volume. The values of s can be scalar
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as in gray-level images or vector valued (denoted s) as in color or multispec-
tral images. The estimation is often based on the fact that constancy of the
signal in a certain direction in Ω, such as it is reflected in (7.1) implies linear
differential constraints such as the classical brightness constancy constraint
equation (BCCE)

∂s

∂u
= 0 for all u ∈ E . (7.2)

This is the simplest special case of general partial differential equations which
result from applying a suitable differential operator α(u) on the signal:

α(u) ◦ s = 0 (7.3)

and we will learn about more sophisticated operators α(u) later in this contri-
bution. Assuming the constancy of a moving brightness pattern, motions can
be interpreted as local orientations in spatio-temporal signals (n = 3, d = 1).
Many motion models are based on Taylor expansions of (7.1) (see e.g. [24]).
Writing (7.1) with time t as individual parameter, we obtain

s(x(t), t) = s(x + u(x, t)∆t, t + ∆t) , (7.4)

where s is interpreted as the constant brightness signal produced by a spatial
point x(t) moving in time t. First order approximation of (7.4) yields

ds
dt

= 0 ⇔ ∇T
(x)s · u +

∂s

∂t
= 0 ⇔ ∇T

(x,t)s · (uT , 1)T = 0 , (7.5)

where ∇ is the gradient operator with respect to parameters given as indices
and the general differential operator α(u) from (7.3) takes the form α(u) :=
∇T

(x)u + ∂
∂t . Being based on derivatives, such models are called differential

models. One may further model the motion field u(x, t) locally by applying a
Taylor expansion

∇T
xs(u + A∆x) +

∂s

∂t
= 0 (7.6)

where the matrix A = ∇xuT contains the spatial derivatives of u, and ∆x =
x0−x are local coordinates. This is called an affine motion model. These and
other motion models, i.e. parametrizations of u, can be found e.g. in [24].

7.2.2 Multiple Motions and Orientations

In case of multiple motions and orientations, we are dealing with a (linear,
multiplicative, or occluding) superposition of subspaces as defined in (7.1). In
case of two subspaces, and additive superposition, one has

s(x) = s1(x + ku1) + s2(x + ku2) . (7.7)
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The model for multiplicative superposition is simply

s(x) = s1(x + ku1) · s2(x + ku2) , (7.8)

which can be transformed into (7.7) by taking the logarithm. The model for
occluded superposition is

s(x) = χs1(x + ku1) + (1− χ)s2(x + ku2) , (7.9)

where χ(x) is the characteristic function that defines the occlusion. As we
shall see in Sect. 7.7, the constraint in (7.2), and some novel mathematical
tricks, can be used to detect and estimate multiple motions and orientations.

7.2.3 Dynamic 3 D Reconstruction

Since the early work of [48] optical flow has been used for disparity and there-
fore 3 D structure estimation. For disparity estimation time t in (7.4) is re-
placed by camera displacement r. Therefore time and camera displacement
may be considered equivalent as “time-like” parameters. Combining equations
with N time-like parameters sets the dimension d of subspace E to d = N
because brightness constancy applies for each of these parameters. We there-
fore get a 3-dimensional solution space when using time t and two camera
displacement directions r1 and r2. Following (7.2), we achieve 3 D position
and 3 D motion depending on the motion field either of the object or the
camera. Using (7.4), we can determine motion of an object whereas replacing
time t in this equation with camera position r, called structure from motion,
yields disparity. Combining these estimations yields a higher dimensional so-
lution space and the problem of determining the parameters in this space
(see [97, 99]). Still assuming constant brightness now in time and in camera
displacement direction we get according to (7.5)

∂s

∂u
= 0 ⇔ ∇T su = 0 with u = (dx,dy,dr1,dr2,dt)

T
. (7.10)

Parameters like optical flow (u1, u2) or disparity ν are then obtained by com-
bination of subspace solutions, e.g.,

u1 =
dx
dt

∣∣∣∣
dr1,dr2=0

, u2 =
dy
dt

∣∣∣∣
dr1,dr2=0

, ν1 =
dx
dr1

∣∣∣∣
dt,dr2=0

, ν2 =
dy
dr2

∣∣∣∣
dt,dr1=0

(7.11)

where ν1 and ν2 are dependent estimates of ν which can be transformed into
two independent estimates of ν (see Sect. 7.3.5). Further modeling the data by
applying a surface patch model extends the above orientation model of (7.10).
In the same way, standard optical flow can be extended to affine optical flow
(see (7.5) and (7.6)).

∇T
xs(u + A∆x) +

2∑
i=1

∂s

∂ri
dri +

∂s

∂t
dt = 0 (7.12)
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where u contains parameters for motion and disparity, matrix A parameters
for depth motion and surface slopes, and ∆x = x0 − x are local coordinates.
A detailed derivation of the model is proposed in [97] for special cases and
in [99] for the general model.

Comparison of 3 D Reconstruction Models

In [97] a detailed error analysis of special cases of the model, i.e. 1 D camera
grid without normals with and without z-motion, 2 D camera grid without any
motion with and without normals, is presented. The analysis shows that with
higher z-motion the errors due to linearization increase and that estimating
the surface normals within this framework reduces systematic errors. Further
an error analysis was done for the full model in [99]. There comparisons be-
tween (i) 1 D camera grid with and without normals and (ii) 1 D camera grid
with the 2 D camera grid are shown. The full model performed well or better
for all parameters and the additional parameters do not lead to instabilities.
Also the 2 D model is more robust with respect to the aperture problem. All
these analyses are performed using the estimation framework presented below
(Secs. 7.3.1 and 7.3.5).

7.2.4 Brightness Changes

The basic approach of motion estimation requires brightness constancy along
motion trajectories, as in the model (7.5), (7.6), (7.10) and (7.12) for single
motions and in (7.7) for multiple motions. In gradient based optical flow
techniques, brightness changes can be modeled by partial differential equations
in a similar manner as in [41]

α(u) ◦ s =
d
dt

h(s0, t,β) , (7.13)

where the brightness change may depend on the initial gray value s0, the
time t and a parameter vector β. It is modeled by the function h(s0, t, β).
Physically motivated brightness changes include exponential (h(t) ∝ exp(βt))
and diffusive (h(t) ∝ β∆s with the spatial Laplacian ∆s) processes. Also, the
simple linear brightness change (h(t) ∝ βt) can be used quite advantageously
if an accurate model of the actual brightness change model is unknown. In
these standard cases, β is a term independent of time t.

In the next sections, specialized application driven brightness change
model, as well as incorporations of these brightness changes to dynamic 3 D
scene reconstruction and multiple motions will be introduced.

Brightness Changes for Fluid Flows

The measurement of fluid flows is an emerging field for optical flow compu-
tation. In a number of such applications, a tracer is visualized with modern
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digital cameras. Due to the projective nature of the imaging process, the tracer
is integrated across a velocity profile. For a number of fluid flow configuration,
the velocity profile can be approximated to leading order by

u(x3) = A · xn
3 ,

where A is a term independent of the coordinate direction of integration x3

and time t. Integration across such a profile leads to an intensity change,
modeled by the differential equation [27]

ds
dt

= u1
∂s

∂x
+ u2

∂s

∂y
+

∂s

∂t
= − 1

n · t s . (7.14)

This equation presents a generalization of the results obtained for Couette
flow (shear driven flow, n = 1) and Poiseuille flow (pressure driven flow,
n = 2). These brightness change models take into account effects such as
Taylor dispersion and have been applied successfully to microfluidics [34] or
in shear driven flows at the air–water interface [32].

Brightness Changes in Dynamic 3 D Reconstruction

Brightness changes can be incorporated into dynamic 3 D scene reconstruction
suitably applying (7.13). One obtains the following constraint equation

∂s

∂x
dx +

∂s

∂y
dy +

∂s

∂r
dr +

∂s

∂t
dt = s

∂h

∂t
dt. (7.15)

Brightness changes due to changing viewing direction and bidirectional re-
flectance distribution function (BRDF, see e.g. [40]) may be modeled only
temporally, but changes due to inhomogeneous illumination need additional
spatial modeling. A suitable brightness change function h(∆X,∆Y, t) has been
derived by Taylor expansion of changing BRDF influence and illumination in-
tensity [106].

h(∆X,∆Y, t) ≈ h(t,a) :=
2∑

i=1

(ai + ai,x∆X + ai,y∆Y ) ti (7.16)

with illumination parameter vector a.

Comparison of Physics Based Brightness Variation Models
for 3 D Reconstruction Model

A systematic error analysis using sinusoidal patterns in [106] demonstrates
that modeling spatial variations of the BRDF, as shown in (7.16), improves
estimation results. Figure 7.1 presents the improvement of the estimations on
a reconstructed cube moving with UZ=2 mm/frame while illuminated by a
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Fig. 7.1 Motion estimation of cube moving towards camera with spot light moving
around cube center. (a) and (e): first and last image taken with central camera.
(b)–(d): color coded model errors (projected on contrast reduced cube) for mod-
els without (b), constant temporal (c), and spatially varying temporal brightness
change (d). Below the model errors, scaled motion estimates for the models are
depicted, respectively (f)–(h)

rotating spot light. Figure 7.1 (a) and (b) show the first and the last image of
the cube sequence. In Fig. 7.1 (b)–(d) the numerical error, i.e. the largest of
the three eigenvalues of the structure tensor is depicted as color overlay on the
central input image. Finally Fig. 7.1 (f)–(h) highlight the estimation of the
3 D scene flow for the three different models, i.e. constant, spatially constant
but changing in time and both spatially and temporally changing BRDF.

Brightness Changes in Multiple Motions and Orientations

The multiple-motions model can be extended to account for brightness
changes [103]. As with the operator α(u) for brightness constancy, one may
define operators for additive, multiplicative or diffusive brightness changes.
E.g. for multiplicative brightness changes (7.7) becomes

s(x, t) = s1(x− u1t)k1(t) + s2(x− u2t)k2(t) , (7.17)

where k1 and k2 are scalar functions. It can be nullified via β(u1, c1) ◦
β(u2, c2) ◦ s = 0 using

β(u, c) := ux∂x + uy∂y + ∂t − c (7.18)

if k1(t) ∝ exp(c1t) and k2(t) ∝ exp(c2t). As in the constant brightness case
(see Sect. 7.2.2) the constraint equation is linear in mixed and therefore non-
linear parameters. A detailed analysis reveals that parameter estimation and
disentangling motion parameters can be done as in the constant brightness
case, but disentangling brightness parameters is done by solving a real instead
of a complex polynomial [103].

a b c d

e f g h
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7.3 Estimation of Local Orientation and Motion

7.3.1 The Structure Tensor Approach

All of the motion models presented in Sect. 7.2 linearly relate optical flow
parameters, brightness changes and image signals. These constraints can be
formulated generally as an inner product of a data vector d and a parameter
vector p, resulting in

d	p = α(u) ◦ s− d
dt

h(s0, t,β) = 0 , (7.19)

where d contains image spatio-temporal derivatives and depending on the ac-
tual constraint, the gray values s themselves. The parameter vector p consists
of the image velocities u as well as additional parameters such as those of
brightness change β or those of higher order motion [8, 23, 25].

Equation (7.19) provides one constraint for several unknowns we seek to
estimate. An additional constraint is that of local constancy of parameters.
To this end, the constraints of type (7.19) can be constructed for each pixel
in a spatio-temporal neighborhood, leading to a linear system of equations

D · p = 0 , (7.20)

where D = [d1, . . . ,d]	. Assuming identical isotropic Gaussian noise (i.i.d.)
in all measurements, the maximum likelihood estimate for the unknown pa-
rameter vector is given by the total least squares (TLS) solution [25, 90, 92,
123, 127]. The total least squares (TLS) method seeks to minimize ||D · p||2,
subject to the constraint that p	p = 1 to avoid the trivial solution. Usually
the rows of D are weighted according to their distance from the central pixel
by Gaussian weights w with standard deviation ρ. The structure tensor Jρ

then results from ||D · p||2

||D · p||2 = pT DT W ρDp =: pT Jρp , (7.21)

where W ρ is a diagonal matrix containing the Gaussian weights w. This for-
mulation yields a solution, p̂, given by the right singular direction associated
with the smallest singular value of row weighted D [86, 123] or the respective
eigenvectors of Jρ. The sought parameter vector p is found by normalizing the
last component of p̂ to unity [123]. The algorithmic aspects of TLS parameter
estimation have been explored in some detail [86, 87, 123].

7.3.2 Beyond the Differential Approach:
The Generalized Structure Tensor

The attempt to express brightness constancy along the motion trajectory by
a first-order partial differential equation, that is: by using the BCCE of (7.2),
is not the unique and not the most expressive way of specifying a relation
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between the entity that is sought (the motion vector u) and the signal that
can be observed. The BCCE describes the situation for a continuous signal,
and it does not explicitly consider the different error terms that are caused by
observation noise, spatio-temporal pixel aperture, and by the necessary dis-
cretization of the problem. Beyond that, the formulation in terms of deriva-
tives or gradients does not lend itself so much for the development of motion
estimation procedures that take into account the spectral characteristics of
the image signal and the spectral characteristics of the noise.

Assuming brightness constancy along the motion trajectory, all higher
order directional derivatives vanish in the motion direction:

∂s

∂u

!= 0
⋂ ∂2s

∂u2

!= 0
⋂

. . . (7.22)

A condition which is less stringent than (7.22), but nevertheless comprises as
much as possible from these multitude of conditions in a single linear equation
can be obtained by summing up the constraints:

α(u) ◦ s = α1
∂s

∂u
+ α2

∂2s

∂u2
+ α3

∂3s

∂u3

!= 0 (7.23)

The middle part of this equation is a generator for a very rich class of filter
operators, parameterized by direction vector u:

h(x |u) ∗ s(x) != 0 .

This means that all linear operators that do not let an ideal oriented signal
s(x) pass,1 have the structure of (7.23). Since all oriented signals have power
spectra that are concentrated on lines or planes in the Fourier domain, we can
denote these filters as oriented nulling filters.

Like in the case of the normal BCCE, this equation will be satisfied almost
never for a real image signal. Thus, we end up with optimization criteria like∫

x

w(x) · |h(x |u) ∗ s(x)|2 dx −→ min (7.24)

where h(x |u) comprises the combination of directional derivatives of different
order, and an optional pre-filter p(x). This means: the frequency-weighted and
localized directional variation of the signal is minimized in the direction of
motion.

In standard differential motion estimation schemes, so-called pre-filters are
used to compensate for the varying precision of the (discrete) derivative filters

1 Multiple motions: The constraint (7.54) generalized to

h(x |u1) ∗ h(x |u2) ∗ s(x)
!
= 0 .
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for different frequencies, and in particular to obtain isotropic performance of
gradient estimates. Standard pre-filter design assumes that the Fourier spectra
of the input signal and the noise are both white. For real signals, this is clearly
not the case, as can be seen by inspecting the spatio-temporal autocovariance
function of video signals. Furthermore, the possibly scenario-dependent dis-
tribution of motion vectors significantly controls the temporal part of the
autocovariance function of the signal (see [57, 66]). This means that such
pre-filters should be designed in consideration of the actual autocovariance
function.

We will now generalize the concept of the structure tensor in consideration
of (7.23), building upon a wider interpretation of the directional derivative
operator.

We proceed by restating the relation between directional derivatives and
steerable filters, which have been explored e.g. in [19, 26, 110]. The partial
derivative in a direction specified by a unit vector er ∈ R

3 parameterized via
spherical angles θ = (θ1, θ2) as

er = (a1(θ), a2(θ), a3(θ))

is given by

∂

∂er
s(x) = eT

r · g(x) = eT
r · ∇s(x) =

3∑
i=1

ai(θ) ·
∂s(x)
∂xi

. (7.25)

Following the reasoning on pre-filters presented in Sect. 7.3.2, we may insert
a prefilter p(x) (see e.g. [98, 110])

∂

∂er
(s(x) ∗ p(x)) =

(
3∑

i=1

ai(θ1, θ2) ·
(

∂

∂xi
p(x)

))
∗ s(x) . (7.26)

For p(x) there are, therefore, many more functions under consideration than
only a simple Gaussian kernel.2 We can design p(x) in a way that optimizes the
signal/noise ratio at the output of the prefilter; this is (again) the Wiener-type
prefilter approach [57, 68]. On the other hand, we may generalize the structure
of the analysis scheme described by (7.26) and arrive at a generalized class of
structure tensors, as will be shown in the following.

Steerable Oriented Signal Energy Determination

We abstract now from derivative filters and regard a family of steerable filter
operators which can be written in the form [26]

h(x | θ) =
N∑

i=1

ai(θ) · bi(x) .

2 In general, a binomial filter does much better than a sampled (and truncated)
Gaussian.
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Since the original signal is sheared instead of being rotated by motion, it is
appropriate to design h(x | θ) accordingly, however, we will not deal here with
details of such shearable filters. The symbol θ stands for a general parameter
(or parameter vector) that controls the direction in which the filter operator
is being steered. The bi(x) are basis functions, ai(θ) and bi(x) are subject to
certain conditions discussed in [26]. This operator will now be applied to an
input signal s(x):

h(x | θ) ∗ s(x) =
N∑

i=1

ai(θ) · (bi(x) ∗ s(x)) .

As before, the local energy of the resulting signal will be computed. The
localization of the computation is again ensured by the weight function w(x):

Q(θ) =
∫

x

w(x) · (h(x | θ) ∗ s(x))2 dx

A closer look reveals (using gi(x) ≡ s(x) ∗ bi(x)):

(h(x | θ) ∗ s(x))2 =

(
N∑

i=1

ai(θ) · (bi(x) ∗ s(x))

)2

=

(
N∑

i=1

ai(θ) · gi(x)

)2

=
N∑

i=1

N∑
k=1

ai(θ) · ak(θ) · gi(x) · gk(x) .

If now a local integration is performed across this squared signal, we obtain:

Q(θ) =
N∑

i=1

N∑
k=1

ai(θ) · ak(θ)
∫

x

w(x) · gi(x) · gk(x) dx .

With the shorthand notation

Jik
def=

∫
x

w(x) · gi(x) · gk(x) dx

we obtain Q(θ) =
N∑

i=1

N∑
k=1

ai(θ) · ak(θ) · Jik

This is a quadratic form

Q(θ) =

⎛⎜⎝ a1(θ)
...

aN (θ)

⎞⎟⎠
T ⎛⎜⎝ J11 · · · J1N

...
. . .

...
JN1 · · · JNN

⎞⎟⎠
⎛⎜⎝ a1(θ)

...
aN (θ)

⎞⎟⎠ = aT (θ) · J · a(θ)
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with a(θ) def=

⎛⎜⎝ a1(θ)
...

aN (θ)

⎞⎟⎠ and J def=

⎛⎜⎝ J11 · · · J1N

...
. . .

...
JN1 · · · JNN

⎞⎟⎠ .

In the standard structure tensor approach, N = 3, and h(x | θ) is the first
order directional derivative which can be represented by a steerable set of
N = 3 filters (each of them representing the directional derivative in one of
the principal directions of space-time). It is not very surprising that in this
case a(θ) is a unit vector in R

3, and the determination of the argument θ
which minimizes Q(θ) boils down to a simple eigensystem problem, as given
already in Sect. 7.3.1.

For synthesizing and steering a more general filter operator h(x | θ), we
know that the basis functions bi(x) should be polar-separable harmonic func-
tions. The coefficient functions ai(θ) will then be trigonometric functions of
different (harmonic) frequencies [134], and the optimization problem will not
be so simple to solve, though well-behaved. The design of the localization func-
tion w(x) and the generalization of the directional derivative can be adapted
to the signal and noise power spectra, respectively [57, 68]. Within this frame-
work, a wide class of orientation selective steerable filters can be used to find
principal orientations, if necessary they can equipped with a much more pro-
nounced selectivity, offering the potential for higher accuracy.

7.3.3 A Mixed OLS–TLS Estimator

Local estimators of motion pool a constraint equation in a local neighborhood
constructing an overdetermined system of equations. The parameters of the
motion model can then be solved by ordinary least squares (OLS) [62] or by
total least squares (TLS), resulting in the structure tensor approach. Using
(OLS) techniques, the temporal derivatives are treated as erroneous observa-
tions and the spatial gradients as error free. This approach will lead to biases
in the estimates, as all gradients are generally obscured by noise [44]. Under
these circumstances the use of a total least squares (TLS) method [124] is the
estimator of choice [85]. A number of physically induced brightness changes
as well as those caused by inhomogeneous illumination can be modeled quite
accurately by a source term in the constraint equation. Additionally does
the computation of surface motion from range data lead to the same type of
constraints [112]. The equation of motion is given by

α(u) ◦ s− 1 · c = 0 , (7.27)

where c is a constant, modeling the local brightness change linearly.
The data matrix of such a model for the TLS estimator contains a column

of exactly known elements (the elements Di,1 = −1 for i ∈ {1, . . . , n} where n
is the number of pixel in the local neighborhood) thus inducing a strong bias
in the estimation. This bias can be efficiently eliminated by mixing the OLS
and TLS estimator as presented by [28].
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The data matrix D can be split into two submatrices D = [D1,D2], where
D1 contains the p1 exactly known observations. A QR factorization of D is
performed, leading to

(D1,D2) = Q

(
R11 R12

0 R22

)
,

with Q being orthogonal and R11 upper triangular. The QR factorization is
justified because the singular vectors and singular values of a matrix are not
changed by multiplying it by an orthogonal matrix [37].

The solution for the sub system of equations R22p2 = 0 is computed in a
TLS sense, which boils down to a singular value analysis of the data matrix
R22 [124].

With the known estimate of p2 the system of equations R11p1+R12p2 = 0
is solved for p1 by back-substitution. A comparative analysis has shown that
the error in the mixed OLS–TLS estimates can be reduced by a factor of three
as compared to standard TLS [28].

7.3.4 Simultaneous Estimation of Local and Global Parameters

Local estimation schemes, like all estimation schemes presented so far, e.g.,
the structure tensor method (see Sect. 7.3.1) or mixed OLS–TLS scheme (see
Sect. 7.3.3), can be implemented efficiently in terms of storage needed and
CPU time used. This is due to local formulation of the models and their pa-
rameters, because then all estimations can be done separately for each pixel
neighborhood. In other words the model equation matrix is a block diagonal
matrix with one block per pixel and one block after the other is processed. This
is no longer true if global parameters have to be estimated as well. They intro-
duce additional full rows in the model matrix, thus coupling all blocks. Thus
the optimization problem occurring in the estimation process has to be treated
as a large scale problem and can only be solved for practical applications if the
problem structure is carefully exploited. In [17] an OLS estimation method is
presented for simultaneous estimation of local and global parameters which
full exploits the structure of the estimation matrix. It has comparable com-
plexity and memory requirements as pure local methods. The numerical so-
lution method makes use of the so called Sherman–Morrison–Formula [38],
which allows to efficiently obtain the inverse of an easily invertible matrix (the
block diagonal matrix) when it is modified by a low rank matrix (the few full
rows).

Ordinary least squares (OLS) means the minimization problem is posed as

min
x
‖Ax− b‖22 ⇒ x̄ = (ATA)−1AT b , (7.28)

where x are the sought for parameters, A and b are defined by the model. The
solution vector x̄ is given by the Moore-Penrose pseudo-inverse (ATA)−1AT

if ATA is invertible. The matrix A has the following block structure
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A =

⎡⎢⎣B1 V1

. . .
...

BN VN

⎤⎥⎦ =
[
B V

]
and thus ATA =

[
BTB BTV
V TB V TV

]

with nΩ ×Nlp-blocks Bi and nΩ ×Ngp-blocks Vi. Finally, the squared matrix
can be decomposed as

ATA = M + RSRT with M =
[
BTB 0

0 V TV

]
, R=

[
BTV 0

0 I

]
, S=

[
0 I
I 0

]
,

with matrix M block diagonal and matrix R low rank, 2Ngp, so that the
Sherman–Morrison–Woodbury formula gives an efficiently computable in-
verse:

(ATA)−1 =
(
I−M−1R(S−1+ RTM−1R)−1RT

)
M−1 .

In addition to the matrix blocks BT
i Bi and

∑N
i=1 V T

i Vi of M one, therefore,
only has to invert one further (2Ngp) × (2Ngp) matrix, (S−1 + RTM−1R),
and all remaining calculations for computation of x̄ = (ATA)−1AT b can be
performed as matrix vector products. As the inversion of the matrix blocks
BT

i Bi is by far the most time consuming step in the computations of the algo-
rithm, the computational burden is comparable to that of an OLS estimation
without global parameters.

For an illustrative example of combined estimation of local optical flow
and global camera gain as well as for further details on the numerical solution
we refer to [17].

7.3.5 Simultaneous Estimation of 3 D Position and 3 D Motion

Modeling dynamic data acquired with a 2 D camera grid, the solution space is
a three-dimensional subspace (n = 5, d = 3, see Sects. 7.2.1 and 7.2.3). Using
the weighted TLS estimation scheme presented in Sect. 7.3.1, it is spanned
by the three right singular vectors corresponding to the three smallest singu-
lar values of the data matrix D. From these singular vectors the sought for
parameters are derived by linear combination such that all but one compo-
nent of dr1, dr2, dt vanish. The parameters for disparity surface slopes and
depth motion occur twice in the model (see (7.11)). Their estimates cannot
be combined straightforward because they are not independent in the original
coordinate system. In order to decouple these measurements, we first esti-
mated their error covariance matrix as proposed in [91]. After diagonalizing
this matrix via a rotation in r1–r2-space (for disparity and surface slopes) or
x–y-space (for uz), we achieve independent measurements which can be com-
bined respecting their individual errors (see [97]). A more detailed description
of decoupling the motion estimates is presented in [99].
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7.3.6 Motion Estimation with the Energy Operator

For continuous signals s = s(x) the energy operator E is defined as in [71]

E(s) := D(s)2 − s ·D2(s) . (7.29)

Here D denotes an abstract derivative or pseudo-derivative operator.

Implementation for Optic Flow Estimation

We implemented the energy operator in three dimensions for optic flow esti-
mation based on three-dimensional derivative filters in the spatio-temporal do-
main in a straightforward manner using (7.29) by replacing D2 with the Hes-
sian of the sequence. We used the modified Sobel filters as described in [101]
and [98]. For comparison between different implementations, the Hessian of
the spatio-temporal image data was computed either by twice applying first
order derivative filters or second order derivative masks.

Numerical Experiments

In our experiments we computed the energy operator on original resolution.
We conducted measurements of the average angular error for a synthetic se-
quence without noise, for synthetic sequences with noise and a real world test
sequence acquired by a camera.

Since we estimated image sequences with ground truth, we compared the
best results of a total least squares local approach for the energy operator and
the structure tensor. For results, see Table 7.1.

Table 7.1 Results for optic flow estimation with the energy tensor and comparison
with the structure tensor

Optimal Average
Sequence Derivative filter

integration scale angular error

Sinus pattern Structure tensor 0.24 4.589143
energy operator by ...
first order derivative 3.54 10.2803
second order derivative 3.43 11.59

Marble Structure tensor 3.2 3.509298
energy operator by ...
first order derivative 2.59 3.215193
second order derivative 6.02 4.498214

Street Structure tensor 1.57 4.589143
energy operator by ...
first order derivative 6.1 10.251023
second order derivative 5.4 9.240537
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On the Effect of the Bandpass Filtering:
Filter Bandwidth Versus Wavelet Scale

We investigated the dependency of the average angular error as a function of
the bandwidth and wavelet scale simultaneously. Here we mean the bandwidth
of the bandpass filter or the spread of the wavelet, used to filter the input
image sequence. As a result it turns out that there is an optimal point in the
bandwidth-scale plane which minimizes the error measure, see also Figs. 7.2
and 7.3.

Despite the preprocessing of the image sequence, our experiments showed
that there is a need of post-integration for the energy operator to achieve
optimal average angular error of the estimated flow fields. For orientation
estimation with the energy operator, [21, page 498] reported similar results
and applied a Gaussian post-filtering with σ = 1 and a smoothing window
size of 7× 7.

The accuracy gain for the real world Marbled Block sequence due to this
post-filtering is approximately 7.7%. This improvement is achieved under op-
timal parameter setting for both operators, the structure tensor and the en-
ergy operator. For the synthetic sequence with discontinuity and the Street
sequence we measured higher accuracy with the structure tensor.

The energy operator requires additional computation steps, such as the
calculation of the Hessian of the image data. For this reason and because of
the measurements in our experiment we recommend the structure tensor for
motion estimation in the scale space.

Fig. 7.2 The optimal average angular error as a function of the bandwidth and scale
of the Mexican hat wavelet for a synthetic sinus pattern sequence with discontinuity.
In the left image the range is set between 6 and 11 degrees, in order to show the
region around the minimum
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Fig. 7.3 The optimal average angular error as a function of the bandwidth and
scale of the Mexican hat wavelet for the Marbled Block sequence. In the left image
the range is set between 3 and 4 degrees, in order to show the region around the
minimum

7.4 Filter Design

All models described above contain derivative filters of first order, e.g. (7.2),
(7.5) or (7.11), second order (7.54) or higher orders, e.g., if brightness changes
are due to diffusive processes or more than two orientations are present. They
are discretized by finite differences using convolution kernels optimized with
respect to the model assumptions, scales and/or noise present in the data.

7.4.1 Optimal Filters for Linear Models

As shown in Sect. 7.2 linear models describe linear subspaces in multidimen-
sional data in the form dT p = 0 (see (7.19)). Thus a parameter vector p is a
solution to (7.19) if it is normal to the data vector d. In all the models above,
except the ones with a data independent source-term, the data vector d can
be formulated as an operator vector O applied to the signal s. Consequently
a discrete filter family is optimal for a model if the orientation of the operator
vector calculated by the filter family is as precise as possible. This observa-
tion can be formulated in Fourier domain (see below for an example). Selecting
fixed size filter sets, their transfer functions (TFs, i.e. Fourier transforms) are
known. The coefficients of the whole filter set may then be optimized simulta-
neously by adapting a TF optimization scheme first presented in [98]. There a
weighted 2-norm of the difference of an ansatz function fa(k̃) and a reference
function fr(k̃) is minimized

c(h) =

√∫
w2(k̃)

(
fr(k̃)− fa(k̃,h)

)2

dk̃ with
∫

w2(k̃)dk̃ = 1
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with normalized wave-numbers k̃, i.e. Nyquist wave-number equal to 1. The
normalized weight function w(k̃) allows to specify statistical importance of
different wave vectors k̃ and thus allows for scale selection.

Example: Filter Families for Two Transparent Motions

The operator vector O for transparent motion can be extracted from (7.54)

O = [∂xx, ∂xy, ∂yy, ∂xt, ∂yt, ∂tt]
T (7.30)

and its TF is Ô = −π2
[
k̃2

x , k̃xk̃y , k̃2
y , k̃xk̃t , k̃yk̃t , k̃

2
t

]T

. The reference func-

tion, therefore, is Ô normalized by its length

fr(k̃) =
[k̃2

x , k̃xk̃y , k̃2
y , k̃xk̃t , k̃yk̃t , k̃

2
t ]T√

k̃4
x + k̃2

xk̃
2
y + k̃4

y + k̃2
xk̃

2
t + k̃2

yk̃
2
t + k̃4

t

.

We discretize O (from (7.30)) using fixed size separable kernels. The filter
family consists of only four 1 D filters: a first order derivative D1, a second
order derivative D2 and two smoothing kernels I1 and I2. Please note the up-
per indices. The 3 D filters are then ∂xy = D1

x ∗D1
y ∗I1

t and ∂xx = D2
x ∗I2

y ∗I2
t ,

where ∗ denotes convolution and lower indices denote the application direc-
tion. All filters not introduced above, can be derived by suitably exchanging
lower indices. All one-dimensional filters are constrained to numerical consis-
tency order 2 (see [98]). We refer to [96] for further details. Using the transfer
functions D̂xx, D̂xy, D̂yy, D̂xt, D̂yt, and D̂tt of these filter kernels, we get the
ansatz function

fa(k̃) =
[D̂xx, D̂xy, D̂yy, D̂xt, D̂yt, D̂tt]T√
D̂2

xx + D̂2
xy + D̂2

yy + D̂2
xt + D̂2

yt + D̂2
tt

.

Example for 5 × 5 × 5- filters the optimization results in the kernels (c =
1.6e− 12)

I1 = [0.01504, 0.23301, 0.50390, 0.23301, 0.01504]
I2 = [0.01554, 0.23204, 0.50484, 0.23204, 0.01554]
D1 = [0.06368, 0.37263, 0,−0.37263,−0.063681]
D2 = [0.20786, 0.16854,−0.75282, 0.16854, 0.20786]

For larger kernels we refer to [96].

7.4.2 Steerable and Quadrature Filters

Quadrature filters have become an appropriate tool for computing the local
phase and local energy of one-dimensional signals. In the following, we de-
scribe the relation between steerable filter and quadrature filter. For a detailed
description on steerable filters we refer to [55].
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The main idea of a quadrature filter is to apply two filters to a signal
such that the sum of the square filter responses reflect the local energy of the
signal. Furthermore, the local energy should be group invariant, i.e. the filter
outputs should be invariant with respect to the deformation of the signal by
the corresponding group. In order to achieve group invariance, we construct
our quadrature filter from the basis of a unitary group representation. Groups
with a unitary representation are compact groups and Abelian groups [130].
The even he and odd ho components of the quadrature filter are constructed
by a vector valued impulse response consisting of the basis functions of a
unitary representation of dimension me and mo, respectively.

he =

⎛⎜⎜⎜⎝
he1(x)
he2(x)

...
heme

(x)

⎞⎟⎟⎟⎠ , ho =

⎛⎜⎜⎜⎝
ho1(x)
ho2(x)

...
homo

(x)

⎞⎟⎟⎟⎠ .

It can be shown that all basis functions belonging to the same subspace attain
the same parity. The filter responses of he and ho are denoted as the filter
channels ce = s(x) ∗ he(x) and co = s(x) ∗ ho(x), respectively. The
square of the filter response of each channel are denoted as even and odd
energies. Due to the unitary representation, both energies are invariant under
the corresponding group action

Es = (D(g)cs)
T (D(g)cs) = cT

s cs , s ∈ {e, o} .

Note that the inner product is taken with respect to the invariant subspace,
not with respect to the function space. The local energy of the signal is given
by the sum of the even and odd energy. In the following we will examine
the properties of the filter channels required to achieve a phase invariant local
energy when applied to bandpass signals. In the ideal case, a simple3 bandpass
filtered signal consists of only one wave vector k0 and its Fourier transform4

reads with the Dirac delta distribution δ(k)

S(k) = S0δ(k − k0) + S∗
0δ(k + k0) . (7.31)

We start with examining the Fourier transform of the even and odd energies

Es = cT
s cs =

ms∑
j=1

(s(x) ∗ hsj(x))2 . (7.32)

Applying the convolution theorem to Es reads

F{Es}(k) =
ms∑
j=1

(S(k)Hsj(k)) ∗ (S(k)Hsj(k)) .

3 simple signal: signal with intrinsic dimension one.
4 Note that the Fourier transformed entities are labeled with capital letters.
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Inserting the signal (7.31) in the equation above, computing the convolution
and performing the inverse Fourier transformation results in a phase invariant
local energy

E = 2|S0|2
⎛⎝me∑

j=1

|Hej(k0)|2 +
mo∑
k=1

|Hok(k0)|2
⎞⎠ .

Thus, each steerable filter whose basis can be decomposed as described above
is a quadrature filter which is invariant with respect to the corresponding
group action.

7.4.3 Design and Application of Wiener-Optimized Filters
and Average Masks

The filter masks described in Sect. 7.4 have been optimized for ideal noiseless
signals. However, the fact that all real world images are with different extents
corrupted by noise has thus been neglected. In the following we present how
these filters have to be adapted in case of noisy signals. A detailed treatment
can be found in [54].

The Signal and Noise Adapted Filter Approach

The signal and noise adapted (SNA)-filter approach is motivated by the fact
that we can exchange the directional derivative filter dr(xn) in the BCCE by
any other steerable filter hr(xn) which only nullifies the signal when applied
in the direction of motion [69]. The shape of the frequency spectrum of any
rank 2 signal5 is a plane Kr going through the origin of the Fourier space and
its normal vector n points to the direction of motion r ([42], p. 316). Thus,
the transfer function6 Hr(f) has to be zero in that plane, but the shape of
Hr(f) outside of plane Kr can be chosen freely as long as it is not zero at all.
If the impulse response hr(xn) shall be real-valued, the corresponding transfer
function Hr(f) has to be real and symmetric or imaginary and antisymmetric
or a linear combination thereof. The additional degrees of freedom to design
the shape outside Kr make it possible to consider the spectral characteristics
of the signal and the noise which are encoded in the second order statistical
moments in the filter design. In the following section the derivation of an
optimal filter is shown which is a special case of the more general framework
presented in [84] and for the special case of motion estimation in [57].

General Model of the Observed Signal

The general idea of the SNA-filter proposed first in [70] is to combine Wiener’s
theory of optimal filtering with a desired ideal impulse response. The term
5 The rank of a signal is defined by the rank of the corresponding structure tensor.
6 The Fourier transforms of functions are denoted here by capital letters.
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ideal, in this case, means that the filter is designed for noise free signal s(x).
But signals are always corrupted by noise. Our goal is now to adapt the ideal
filter hr(x) to more realistic situations where signal is corrupted by noise.
We model the observed image signal z at position i, j, k in a spatio-temporal
block of dimension N×N×N by the sum of the ideal (noise free) signal s and
a noise term v: z(i, j, k) = s(i, j, k) + v(i, j, k). For the subsequent steps it is
convenient to arrange the s, v, and z of the block in vectors s ∈ R

M ,v ∈ R
M

and z ∈ R
M . The extraction of a single filter response value ĝ can thus be

written as the scalar product ĝ = xT z using a filter coefficient vector x ∈ R
M .

The corresponding equation for the actual filter output ĝ reads:

ĝ = xT z = xT ( s + v) = xT s + xT v . (7.33)

Our task is to choose xT in such a way that the filtered output ĝ approximates,
on an average, the desired output g = hT s for the error-free case as closely as
possible. The next step is to define the statistical properties of the signal and
the noise processes, respectively. Let the noise vector v ∈ R

N be a zero-mean
random vector with covariance matrix E

[
vvT

]
= Cv (which is in this case

equal to its correlation matrix Rv). Furthermore, we assume that the process
which has generated the signal s ∈ R

N can be described by the expectation
E [s] = ms of the signal vector, and an autocorrelation matrix E

[
ssT

]
= Rs.

Our last assumption is that noise and signal are uncorrelated E
[
svT

]
= 0.

Designing the Optimized Filter

Knowing these first and second order statistical moments for both the noise
as well as the signal allows the derivation of the optimum filter x. For this
purpose, we define the approximation error e := ĝ−g between the ideal output
g and the actual output ĝ. The expected squared error Q as a function of the
vector x can be computed from the second order statistical moments:

Q(x) = E
[
e2
]

= E
[
ĝ2
]
− 2E [gĝ] + E

[
g2
]

= hT Rsh− 2xT Rsh + xT (RT
s + Rv)x

We see that a minimum mean squared error (MMSE) estimator can now be
designed. We set the derivative ∂Q(x)/∂x to 0 and after solving for x we
obtain

x = (RT
s + Rv)−1Rs︸ ︷︷ ︸

M

h = Mh . (7.34)

Thus, the desired SNA-filter is obtained by a matrix vector multiplication. The
ideal filter designed for the ideal noise free case is multiplied with a matrix
M composed out of the correlation matrices of signal and noise. In principle,
this result is a direct consequence of the Gauss–Markov theorem.
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Fig. 7.4 Bar plots of the average angular error (AAE) vs. the signal to noise (S/N)
ratio. For every S/N ratio the AAE for three different densities is depicted: From
left to right: 86%, 64% and 43%. The gray bar denotes the AAE with the original,
the black ones the AAE with the optimized filters. Note that the experiment is
performed at rather low S/N ratio in range 10 –0 dB

Experimental Results

In this section, we present examples which show the performance of our opti-
mization method. For the test we use three image sequences, together with the
true optical flow: “Yosemite” (without clouds) “diverging tree” and “trans-
lating tree”, sequences.7 The optical flow has been estimated with the tensor
based method described in Sect. 7.3.1. For all experiments, an averaging vol-
ume of size 11×11×11 and filters of size 5×5×5 are applied. For the weighting
function w(x) we chose a sampled Gaussian function with width σ = 8 (in
pixels) in all directions. For performance evaluation, the average angular er-
ror (AAE) [4] is computed. The AAE is computed by taking the average over
1000 trials with individual noise realization. In order to achieve a fair com-
parison between the different filters but also between different signal-to-noise
ratios S/N, we compute all AAEs for three different but fixed densities8 de-
termined by applying the total coherence measure and the spatial coherence
measure [42]. We optimized the described in Sect. 7.4 denoted as Scharr
filter in the following, for every individual signal to noise ratio S/N in a range
from 10 to 0 dB (for i.i.d. noise). We then applied both the original Scharr
and its corresponding SNA-filters.

As expected and shown in Fig. 7.4, the SNA-filters yield a better perfor-
mance than the original non-adapted filters in case the image sequence being
corrupted by noise for all types of ideal filters. The performance of the Scharr
filter is increased by optimizing it to the corresponding images sequence. We
can conclude that for these cases the optimum shape of the filter is mainly
determined by the signal and noise characteristics, whereas for higher signal
to noise ratios the systematical optimization plays a greater role.
7 The diverging and translating tree sequence has been taken from Barron’s

web-site and the Yosemite sequence from http://www.cs.brown.edu/people/
black/images.html

8 The density of an optical flow field is defined as the percentage of estimated
flow vectors which have been used for computing the AAE with respect to all
estimated flow vectors.
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7.5 Model Selection and Intrinsic Dimension

7.5.1 Intrinsic Dimension of Multispectral Signals

A basic model selection is the classification of signals according to their intrin-
sic dimension. Based on (7.1), the intrinsic dimension [135] is defined by the
dimension of the subspace E to which the signal is confined. More precisely,
the intrinsic dimension of an n-dimensional signal s is n − d if s satisfies
the constraint in (7.1) [74, 81]. Therefore, when estimating subspaces, it is
essential to know the intrinsic dimension of the signal.

Furthermore, the intrinsic dimension is relevant to image and video coding
due to the predominance of regions with intrinsic dimension 0 and 1 in natural
images [136], and the fact that images and videos are fully determined by
the regions with intrinsic dimension 2, i.e., the whole image information is
contained in the 2 D regions [5, 72].

The intrinsic dimension of scalar images can be estimated with differen-
tial methods based, for example, on the structure tensor, the Hessian, and the
energy tensor. All these methods have been generalized to vector-valued (mul-
tispectral) images in [81]. A further extension is based on the concept of frac-
tional intrinsic dimension for combinations of subspaces [77], e.g., multiple-
motion layers. More general approaches for estimating the intrinsic dimension
are based on the compensation principle [135] and the Volterra–Wiener theory
of nonlinear systems [60].

7.5.2 Model Selection by Residual Analysis

In local optical flow estimation under parametric model assumptions, the pa-
rameters of optical flow models are allowed to depend on non-trivial subsets
of the spatiotemporal volume. The exploitation of the full potential of this ap-
proach involves the problem of selecting appropriate motion models for each
of these subsets. While a simple optical flow model fails to approximate data
of higher intrinsic complexity under low noise conditions, a complex model
is prone to over-fitting in the presence of noise. Various information criteria
(e.g. AIC [2], BIC [107]) have been proposed that penalize model complexity
in order to avoid over-fitting. In the context of motion estimation, the model
selection problem has been discussed by Wechsler et al. [128] as well as by
Gheissari et al. [36]. Gheissari et al. point out that “[. . . ] the available infor-
mation theoretic model selection criteria are based on the assumptions that
noise is very small and the data size is large enough” and that this assump-
tion is often violated in computer vision applications [36]. Hence, they suggest
to consider the constraint surfaces of parametric models as thin plates and
to penalize the strain energy of these plates according to a physical model.
As this penalization incorporates only second order derivatives of the model
surfaces, it cannot be used to distinguish different linear models. Moreover, if
information on the distribution of noise is available from camera calibration
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measurements or noise estimation, probabilistic model selection criteria that
incorporate this information should be employed. Residual analysis fills the
gap between information theoretic penalization and heuristic surface model-
ing. Following the general idea of Cootes et al. [15], we suggest in [3] to assess
parametric optical flow models by measuring the discrepancy between the em-
pirical distribution of regression residuals and the pdf predicted from theory.
The additive Errors-in-Variables (EIV) model claims the existence of a true
signal τ : Ω → R and, for all x ∈ Ω, a random variable ε(x) (noise) such that

∀x ∈ Ω : s(x) = τ(x) + ε(x) . (7.35)

Optical flow estimation under the assumption of the BCCE is performed on
the partial derivatives of the signal which are approximated by linear shift
invariant operators. The overlap of the finite impulse response masks of these
operators in the computation of derivatives at nearby pixels introduces cor-
relation to the entries of the data matrix Ds and data term ds used in TLS
estimation. As these entries are linear in the derivatives, they can be decom-
posed with respect to (7.35) into

Ds(x) = Dτ (x) + Dε(x) and ds(x) = dτ (x) + dε(x) . (7.36)

Equilibration as proposed by Mühlich [82] is used to derive from the covariance
matrices of the vectors vec([Ds(x),ds(x)]) (column-wise vectorization of the
matrix [Ds(x), bs(x)]) square equilibration matrices WL(x) and WR(x) to
estimate p̂(x) by TLS on the data WL(x)[Ds(x),ds(x)]WT

R (x) instead of
[Ds(x),ds(x)]. WT

R (x)p̂(x) is then taken as an estimate of the initial problem.
If the distribution of noise in the signal is known, regression residuals can be
tested to be in accordance with the theoretically expected distribution. Given
ETLS estimates p̂ : Ω → R

k (k being the number of model parameters), the
residuals are given by the mapping r̂ : Ω → R

m (m being the number of pixels
in the neighborhood for which a consistent model is assumed) such that

r̂ := WL[Ds,ds]WT
R

(
p̂
−1

)
. (7.37)

In principle, the theoretical pdf of these residuals is determined by the joint
pdf of the entries of Ds and ds. The latter is obtained from the EIV model,
the motion models, and the derivative operators. However, there is a direct
influence to the residual pdf by the factor [Ds,ds] as well as an indirect
influence by the pdf of the estimates p̂. In the following, we assume p̂ to
be deterministic. Then, the residuals (7.37), expressed as

∀x ∈ Ω : r̂ =

((
p̂
−1

)T

WR ⊗WL

)
︸ ︷︷ ︸

=: R

vec([Ds,ds]) ,

are obtained from the deterministic linear mapping defined by the matrix
R, applied to the vector vec([Ds,ds]) of which the covariance matrix C is
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known. The covariance matrices of the residual vectors are therefore given by
Cr := cov(r̂) = RCRT . From the Cholesky factorization LLT = Cr follows
that r̂′ := L−1r̂ is decorrelated, i.e.,

cov(r̂′) = 1lm , (7.38)

while E(r̂′) = L−1RE(vec([Ds,ds])). From (7.36) follows E(vec([Ds,ds])) =
vec([Dτ ,dτ ]) + E(vec([Dε,dε])). Under the assumption that the entries of
[Dε,dε] have zero mean, it follows

E(r̂′) = L−1WL[Dτ ,dτ ]WT
R

(
p̂
−1

)
. (7.39)

In practice, it depends on the appropriateness of the parametric model as well
as on the empirical distribution of noise whether or not

[Dτ ,dτ ]WT
R

(
p̂
−1

)
= 0 (7.40)

holds, in which case (7.39) implies that

E(r̂′) = 0 . (7.41)

If, in addition, noise is i.i.d. according to a normal distribution with known
variance then, it follows from (7.38) and (7.41) that the entries of the decor-
related residual vector r̂′ from ETLS estimation form a set of independent
standard normally distributed random variables. We therefore suggest to test
this set of residuals to be standard normally distributed. Deviations from
the standard normal distribution are then taken as indications of inappropri-
ateness of the motion model. Testing for this deviation is performed by the
Kolmogorov–Smirnov test, Pearson’s χ2 test, the Anderson–Darling test as
well as the absolute difference of the vectors of the first j moments of the
empirical and theoretical distribution. In order to specifically test for prop-
erties of the model selector, we generated a variety of sequences from given
two-dimensional displacement fields by warping of an initial frame. Grayvalue
structure on multiple scales was introduced to this frame in order to avoid
the aperture problem. Zero mean Gaussian noise was added to the sequences.
Results of model selection from the models LC (locally constant), LSS (local
shear/stretch), LRD (local rotation/divergence), LAF (local affine) and LPL
(local planar) are shown in Fig. 7.5 for a sequence featuring motion patterns
of different parametric form (top) as well as for a simulated continuous current
(bottom). From the different shading in Fig. 7.5b, it can be seen that model
selection is in accordance with the true displacement field. Motion patterns
are identified correctly. The incidental choice of overly complex models is ex-
plained by the fact that a higher order model with the additional parameters
correctly estimated as zero cannot be distinguished from the simpler model
by means of residual analysis. The most complex model is correctly selected
at motion discontinuities.
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Fig. 7.5 Model selection from 11 × 11 × 3 motion neighborhoods of simulated
sequences at 0.5% noise-to-signal amplitude ratio by comparison of 5 moments of
the residual distribution. (a) displacement field of the types sequence, (b) according
model selection, (c) displacement field of the current sequence, (d) according model
selection

7.5.3 Bayesian Model Selection

In the following we consider energy functionals of the form

E(u) =
∫

γ1ψ1(α1(u)s) + γ2ψ2(α2(u)s) + βψ3(|∇u|2) dΩ , (7.42)

where Ω is the image domain over which integration takes place. Here,
ψi(αi(u)s), i = 1, 2 are different data terms and we define |∇u|2 = |∇u1|2 +
|∇u2|2. The goal is to determine all hyper-parameters γ = (γ1, γ2), β directly
from the data, i.e., the relative weights of the data term as well as the regu-
larization term are to be estimated simultaneously with the optical flow. For
a detailed description of the method we refer to [53].

Thus, different data models are selected for the given data set. For esti-
mating the hyper-parameter we explore the well known relation between vari-
ational and probabilistic methods, i.e., each (discrete approximated) energy
functional can be interpreted as the energy of the posterior pdf p(u|g,γ, β)
of the optical flow. The main idea to estimate the hyper-parameters are to
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explore the evidence framework, that has been developed in [63] and firstly
been applied to motion estimation in [59]. The hyper-parameters are estimated
by a MAP estimate of the posterior pdf p(γ, β|g) ∝ p(g|γ, β)p(γ, β) of the
hyper-parameters given the observed gradient of the signal. The derivation
of the likelihood p(g|γ, β) require some approximation steps whose detailed
derivation can be found in [53, 56, 58] leading to the approximated likelihood
function

p(g|γ, β, û) =
(2π)N

ZL(γ)Zp(β) detQ
1
2

exp
(
−Ĵ

)
,

where û denotes the optical flow field that maximizes the posterior pdf
p(u|g,γ, β), Ĵ the energy of the joint pdf p(g,u|γ, β) taken at û and
ZL(γ), Zp(β) denote the partition functions of Gaussian distributions. The
matrix Q denotes the Hessian of the joint pdf energy J(u, g) taken at the
maximum of the posterior pdf p(u|g,γ, β). Since û itself depends on the
hyper-parameters γ, β we have to apply an iterative scheme for estimating
the optical flow field and the hyper-parameters simultaneously, i.e., we esti-
mate the optical flow for fixed hyper-parameters and estimate then the hyper-
parameters using the previously estimated optical flow.

uk+1 = arg min
u

{
p(u|g, γ̂k, βk)

}
γk+1 = arg max

γ

{
p(γ, βk|g)

}
βk+1 = arg max

β

{
p(γk, β|g)

}
.

This procedure is repeated until convergence (Figure 7.6 shows some experi-
mental results).

7.6 Anisotropic Regularization
for Orientation Estimation

So far, we focused on modeling, model selection and estimation of parameters
in multidimensional signals. A major source of estimation inaccuracy is due
to the data being noisy, or corrupted, and thus not fulfilling the constraint
equations selected. As long as the data belongs to the same population or dis-
tribution, one can reduce the influence of noise by smoothing, i.e., grouping
measurements belonging together. For single orientation or single motion data
this can be done by anisotropic diffusion with a diffusion tensor. A suitable dif-
fusion process is described in Sect. 7.6.1. As parameter selection is non-trivial,
a learning approach interpreting the data as a Markovian random field may be
advantageous (see Sect. 7.6.2). This approach does not end in anisotropic dif-
fusion in the same way as it is usually applied for data denoising. Anisotropic
diffusion with a diffusion tensor can be derived from a cost functional where



7 Nonlinear Analysis of Multi-Dimensional Signals 259

Fig. 7.6 Upper figures (from left to right): first frame of the “Office” sequence;
second frame of the “Office sequence” with a brightness decay; estimated flow field
using γ1 = 1 and γ2 = 0; Lower figures (from left to right): estimated flow field using
γ1 = 1 and γ2 = 0; estimated flow field using the Bayesian model selection approach
for; ratio of both estimated likelihood hyper-parameters γ2/γ1 vs. the gradient of
the brightness change

the expectation of the motion constraint (7.5). This is not only of theoretic
interest and opens a connection to stochastic partial differential equations,
but also allows to construct diffusion-like denoising schemes for other (linear)
models, e.g., two transparently overlaid motions (see Sect. 7.6.3).

7.6.1 Flow Adapted Anisotropic Diffusion

Anisotropic diffusion filtering evolves the acquired, noisy initial multi-dimen-
sional signal s(x, 0) via an evolution equation:

∂s

∂t
= ∇ · (D∇s) . (7.43)

Here D is the diffusion tensor, a positive definite symmetric matrix and s(x, t)
is the evolving signal. Here t is diffusion time not to be confused with the
time coordinate x3 if s is an image sequence. As we will see in Sect. 7.6.3 this
diffusion is appropriate for signals with up to single orientation only.

The diffusion tensor D usually applied in anisotropic diffusion uses the
same eigenvectors ei as the structure tensor Jρ (see (7.21)) constructed for
single orientation (7.2) or single motion constraint (7.5). Thus smoothing is
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applied according to the signal structures. Smoothing strengths along these
structures are given by the corresponding eigenvalues λi of D. Given a diagonal
matrix L with Lii = λi, the diffusion tensor D is given by

D = (e1,e2,e3)L (e1,e2,e3)T . (7.44)

The directional diffusivities λi, i ∈ {1, . . . , n} determine the behavior of the
diffusion.

For denoising they shall be large for small eigenvalues µi of Jρ and vice
versa. For orientation-enhancing anisotropic diffusion introduced in [100], all
λi are calculated according to the same rule. This is in contrast to the well
established edge-enhancing anisotropic diffusion, where one λ is fixed to 1,
enforcing single orientation everywhere, even if the structure tensor indicates
model violation.

One of the major problems in anisotropic diffusion application is to find an
appropriate stopping criterion. For optical flow the reliability of the estimate
can be determined by a simple normalized confidence measure. It initially
rises when the input data is smoothed and decays or reaches a plateau when
the data is over-smoothed. Consequently we stop the diffusion when this mea-
sure stops to raise significantly. Details can be found in [100, 111]. A typical
smoothing result is shown in Fig. 7.7.

a b c

d e f

Fig. 7.7 Hamburg taxi sequence: (a) one frame in the original sequence, (b) the
same frame with noise (std. dev. σ = 20) added and (c) reconstructed frame.
(d) Velocity field on the original data, (e) on the noisy data and (f) on the re-
constructed data
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7.6.2 Anisotropic Diffusion as Maximum Likelihood Estimator

A crucial ingredient to successfully use anisotropic diffusion for image de-
noising is the appropriate selection of directional diffusivities λi (see (7.44)).
In [102] it turned out that isotropic nonlinear diffusion and anisotropic dif-
fusion correspond to isotropic and directional statistical models, respectively.
Having training data at hand, as, e.g., noisy images fi and noise-free images gi

derived in different operation modes of a focused-ion-beam tool (see Fig. 7.8),
image statistics are computable as histograms (see Fig. 7.9).

The problem of recovering the image g from f can then be posed as the
maximization of

p(g|f) ∝
∏

i

⎛⎝p(fi|gi)
J∏

j=1

p(nj∇gi)

⎞⎠ (7.45)

where p(g|f) approximates the posterior probability of the image g condi-
tioned on the observed, noisy, image f . The likelihood term p(fi|gi), at every
pixel, i, is defined by noise statistics. The spatial prior term exploits a Markov
Random Field assumption [35] which defines the prior in terms of local neigh-
borhood properties. Here it is defined in terms of the spatial derivatives, ∇gi,
at a pixel i, in J different directions nj , and uses learned image statistics
to assess the prior probability. If ∇gi is computed using neighborhood dif-
ferences (as in Fig. 7.9), then (7.45) can be viewed as a standard Markov
Random Field (MRF) formulation of the regularization problem [35]. Calcu-
lating such a spatial prior as histograms of the eigenvalues µ of the structure
tensor Jρ (see (7.21)), results in anisotropic diffusion. Exploiting this relation-
ship provides a principled way of formulating anisotropic diffusion problems
and results in a fully automatic algorithm in which all parameters are learned
from training data. The resulting anisotropic diffusion algorithm has many
of the benefits of Bayesian approaches along with a well-behaved numerical
discretization. For further details on this approach and its performance we
refer to [102].

Fig. 7.8 Noise-free and noisy silicon chip images acquired by a focused-ion-beam
tool. From left to right: high quality image, lower quality image, sub-regions of high
and low quality images
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Fig. 7.9 Empirical image noise statistics for silicon chip images. (a) distribution of
image noise (fi−gi). (b) log of image noise distribution. (c) and (d) log probability
of horizontal and vertical image derivatives

7.6.3 Anisotropic Diffusion for Multiple Motions

Standard diffusion may be derived from a cost function

E(g) =
∫

Ω

(g − f)2 + α|∇g|2dx . (7.46)

The first term in (7.46) is usually called data term, corresponding to the
posterior probability term in (7.45). Modeled purely quadratic is equivalent
to p(g|f) being zero-mean Gaussian. The second term is the smoothness term,
corresponding to the prior probability, modeled by (the positive part of) a
zero-mean Gaussian of |∇g|. An extension of this constraint has been proposed
by Mumford and Shah [88]. Its connection to (not tensor driven) anisotropic
diffusion can be found in [105].

In [95] a cost function penalizing violation of a linear model was intro-
duced. Using e.g. (7.5), one gets

E(g) =
∫

Ω

(g − f)2dx + α

∫
Ω

< (∇T gu)2 > dx (7.47)

Minimizing (7.47) by iteratively fulfilling the minimality condition given by
calculous of variations yields exactly anisotropic diffusion with a diffusion ten-
sor mD =< uuT >. In [95] it is shown that this tensor can be approximated
by a diffusion tensor as constructed in (7.44). This observation allows to con-
struct diffusion-like reconstruction schemes for linear models. Plugging the
2 D equivalent of (7.54) into (7.47) and minimizing it as before yields such
a scheme, which has been implemented using optimized filters for transpar-
ent motion as derived in Sect. 7.4.1. A denoising result on synthetic data is
depicted in Fig. 7.10. One observes that standard edge-enhancing diffusion
produced artifacts by enforcing a single orientation model, while enforcing
the novel double orientation diffusion yields results visually indistinguishable
from the original noise-free image.

7.6.4 Optimal Integration of the Structure Tensor

In the following we generalized the signal and noise adapted filter approach
discussed in 7.4.3 such that it is able to preserve edges (edge preserving Wiener
(EPW) filter) and generalize it from scalar valued signals to tensor valued
signals. For a detailed description we refer to [52].
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Fig. 7.10 Denoising of transparently overlaid ring pattern. From left to right: orig-
inal image, image with noise added, reconstruction via edge-enhancing single orien-
tation anisotropic diffusion, reconstruction via double orientation diffusion

The Scalar Valued Edge Preserving Wiener Filter

The estimation of a true underlying image value sj at position j from a linear
but not shift invariant filtering of the observable image z can be written in
the form ŝj = mT

j z . Our task is to choose mj in such a way that the filtered
output ŝj approximates, on an average, the desired output sj for the error-
free case as closely as possible in the least mean squares sense. Therefore,
it is necessary to model the statistical properties of the signal and the noise
processes, respectively. Let the noise vector v ∈ R

N be a zero-mean random
vector with covariance matrix Cv ∈ R

N×N (which is in this case equal to
its correlation matrix Rv). Furthermore, we assume that the process that
generates the signal s ∈ R

N can be described by the expectation ws = E [s] of
the signal vector, and its autocorrelation matrix Rs. Furthermore, let Rssj

∈
R

1×N denote the correlation matrix between the image value sj and the whole
image s. The filter mj is then determined by minimizing the mean squared
error between the estimated signal value and the actual one

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

. (7.48)

Knowing the second order statistical moments for both the noise and signal
as well as the observation matrix, the Gauss–Markov theorem delivers the
optimal filter (for a detailed derivative of mean squared error based filters see
e.g. [50])

mj =
(
KjRsKT

j + Rv

)−1
KjRssj

. (7.49)

In following, we discuss the extension of this concept to matrix valued data.

The Edge Preserving Tensor Valued Wiener Filter

As already mentioned in the introduction, most important tensors for image
processing are square positive (semi-)definite matrices denoted by P (n) in the
following where n is the size of the matrix. This set of tensors does not form
a subspace of the tensor vector space. For example, multiplying a positive
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definite matrix by −1 yields a negative definite matrix and hence leads out
of the set P (n). Thus, applying image processing techniques to P (n) requires
additional care since even simple linear operations might destroy the basic
structure of the data. In [118] the proposed nonlinear diffusion scheme is
shown to preserve positiveness of the processed tensor field. An equivalent
proof based on discrete filtering can be found in [129] which uses the fact
that the proposed diffusion filters are convex filters. This is also the basis for
the design of our tensor valued EPW-filter, i.e., we design the tensor valued
EPW-filter as a convex filter. A map F : R

N → R
N is denoted as a convex

filter (see e.g. [131]) if for each z ∈ R
N there are weights wij(z) with

(Fz)k =
N∑

t=1

wkt(z)zt, wtk(z) ≥ 0 ∀k,
N∑

t=1

wkt(z) = 1 . (7.50)

If each component of the tensor-field is processed with the same convex filter,
it is simple to prove the positiveness of the processed tensor field. This implies
that we have to model each matrix component by the same process and thus
use the same statistical model as in the scalar case for each matrix element.
We have to design a filter mask whose sum is equal one and where each
element is non-negative. The first requirement can easily be obtained by a
proper normalization. The second requirement is not guaranteed by (7.48). In
order to keep each element non-negative, further constraints are introduced
to the optimization procedure

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

such that (mj)k ≥ 0 . (7.51)

In contrast to (7.48), a closed form solution does not exist for the non-negative
least squares problem and numerical methods (Chap. 23, p. 161 in [61]) need
to be applied. Experimental results are shown in Fig. 7.11.

7.6.5 Tensor Field Integration by Nonlinear Diffusion

Here we present a method for adaptive integration of tensor fields with re-
spect to motion estimation. The smoothing is fulfilled by a suitable nonlinear
diffusion strategy, which is then applied on the manifold of the matrices with
same eigenvalues, see [119].

As already discussed in [119, 120, 121], there is a general smoothing on
corners, when we use the nonlinear diffusion based on total variation flow. In
order to circumvent this drawback [13], defines a coherence dependent map,
which stops the diffusion near corners. We propose the formalism of curvature
preserving partial differential equations (PDE’s) to avoid oversmoothing on
corners. This is just a result of the analysis in [119, 120, 121]. It is a direct
approach following the formalism for the heat flow equation, constrained on a
curve. The adaptive, curve dependent metrics drives the diffusion according to
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Fig. 7.11 Upper left: original tensor field; upper right: left tensor field corrupted
by additive Gaussian noise (σv = 0.3 on each matrix element); lower left: processed
tensor field by our EPW-filter with β1, β2 = 0; lower right: EPW-filter with β1 = 6,
β2 = 1

the desired behavior by itself and avoids dependency of the smoothed tensor
field on the derivatives of the steering geometry.

The next theoretical part of this section is to choose a proper integration
scheme, which constraints the diffusion flow on the manifold of the matrices
with the same spectrum. We represent different flows and conduct experi-
ments with the isospectral flow. In optic flow and motion estimation not only
the computation of the flow field is important, but also the confidence of the
estimated flow. Most of the confidence measures rely on the eigenvalues of
the second order tensor in the estimated pixel. The isospectral flow leaves the
eigenvalues of second order tensors untouched. This is an intrinsic property
of the flow, at least analytically. This means, the confidence measure is pre-
served locally. That’s why we decided to employ an integration scheme, based
on the isospectral flow. Additionally it should be mentioned, that the isospec-
tral flow represents a good trade-off between performance and computational
costs [119, p. 149].
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Diffusion tensor regularization can be used to general symmetric and semi-
positive definite matrices such as structure tensors or covariance matrices.

Let Ω ∈ R
n. T : Ω → Pn×n, P: positive semi-definite matrices. The

multivalued regularization process can be expressed in variational, divergence
and trace-based formulation.∫

Ω

φ(‖∇T‖) dx→ min

∂Ti

∂t
= div

(
φ′‖∇Ti‖
‖∇Ti‖

∇Ti

)
, i = 1, ..., n ,

∂Ti

∂t
= trace(DHi) , i = 1, ..., n ,

where D is the smoothing geometry and Hi is the Hessian of Ti.
We choose the discontinuity-preserving smoothing geometry

D :=
∑

ai
1

(1 +
∑

λi)p
θiθ

T
i ,

where λi are the eigenvalues, θi are the eigenvectors of T , ai ∈ R is an
anisotropy weight and p is the discontinuity preservation amount for i=1,...,3.
ai and p are set by the user.

We constrained this diffusion process on the submanifold N of the matrices
with the given set of eigenvalues by using the isospectral flow

∂T

∂t
= [T, [T,−L+ LT ]] ,

where L is the matrix, corresponding to an unconstrained Lagrangian, de-
scribing the regularization process.
A suitable integration scheme is

Tt+dt := At(x)T Tt(x) At(x) (7.52)
At(x) := e−dt[L(x)L,T ] .

Numerical Experiments

We measured the performance of both techniques on a synthetic sequence
without noise, containing a moving sinus pattern with discontinuity.

We achieved a small accuracy gain, compared to the isotropic smoothing,
for synthetic sequences without noise by using the isospectral flow. The ac-
curacy gain vanishes after adding Gaussian noise to the synthetic sequence,
thus the method is noise sensitive. The tuning of parameters is crucial and
it’s difficult to find a trade-off between preserving of discontinuities and noise
sensitivity of the diffusion flow. There is a thin line for the proper parame-
ter setting, at least in our implementation of the isospectral flow by matrix
exponential for the integration scheme (7.52).
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7.6.6 Adaptive Anisotropic Filtering

Section 7.6 emphasized the importance of reducing the noise inherent in the
data for modeling, model selection, and estimation of parameters in multidi-
mensional signals. Standard procedures smooth the data by averaging mea-
surements s(x) over neighborhoods in the domain of s. Apparently, size and
shape of the neighborhoods are crucial to the performance of such procedures.

The method of Adaptive Anisotropic Filtering, based on Adaptive Weights
Smoothing [93], determines size and shape of such neighborhoods making two
structural assumptions on s. First, in a neighborhood of local flow homogene-
ity, s takes the form of (7.1) (with d = 1, n = 2) and can thus be approximated
by a univariate function f(u) ≈ f(∇T s ·x). A second assumption of local lin-
earity regarding f leads to an approximation of s of the form

s(x) ≈ a + cβT (x− x0), (7.53)

where β denotes a vector parallel to the gradient of s.
Noise reduction in the data with respect to the above formulation can be

achieved by estimating the parameters a for each data point. This can be ac-
complished in an iterative procedure where an initial estimate of β determines
an elliptic neighborhood which is used to estimate the parameters a and c. In
a subsequent step the parameters a and c are used to improve the estimate of
β and so on. In each iteration the elliptic neighborhoods are increased until
further extension of the neighborhoods will consider data that significantly
deviate from the estimated model with respect to a given threshold.

7.7 Estimation of Multiple Subspaces

7.7.1 Introduction to Multiple Subspaces

Multiple superimposed subspaces as defined in Sect. 7.2.2 can be estimated by
extending the constraint in (7.2) based on the observation that all directional
derivatives within the different subspaces must equal zero. Therefore, the con-
catenated, directional derivatives of s must equal zero, a condition that leads
to a nonlinear constraint on the components of the ui. This constraint can be
linearized by introducing the mixed-motion or mixed-orientation parameters
(MMPs and MOPs), which then need to be separated such as to yield the
ui´s.

For the case of scalar image sequences with two additively superimposed
motions, such a constraint was first used in [108]. After successively applying
α(u1) and α(u2) to (7.7), the resulting constraint α(u)α(v)f = 0, is linear
in the MMPs, i.e., we obtain a model that is linear in its non-linear parame-
ters. The nonlinear parameters can then be estimated using linear estimation
techniques for the MMPs, which are then separated by solving a complex
polynomial as shown below.
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Here we summarize the comprehensive results obtained for multiple
motions in videos and multiple orientations in images. The final goal, how-
ever, is the estimation of any combination of any number of subspaces with
arbitrary intrinsic dimensions and signal dimension. First steps toward a com-
prehensive classification of such combinations have been done in [75, 76, 77].
In [83, 117] the problem of estimating multiple orientations in n-dimensional
signals has been solved.

7.7.2 Multiple Motions

Analytical Solutions for Multiple Motions

First consider two additive motion layers s1, s2 as defined by (7.7). The con-
straint for the velocities becomes

α(u1) ◦ α(u2) ◦ s = cxxsxx + cxysxy + cxtsxt

+cyysyy + cytsyt + cttstt = 0 ,
(7.54)

cxx = u1,xu2,x , cxy = (u1,xu2,y + u1,yu2,x) , cxt = (u1,x + u2,x) ,
cyy = u1,yu2,y , cyt = (u1,y + u2,y) , ctt = 1 .

(7.55)

Equation (7.54) is nonlinear in the motion parameters themselves, but
linear in the MMPs, which, therefore, can be estimated by standard linear
techniques, e.g. [73, 114].

MMP Decomposition with Complex Polynomials

In [73] a general solution for decomposing an arbitrary number of super-
imposed motions has been proposed. Here we sketch the idea for the case
of two motions. The interpretation of motion vectors as complex numbers
u = ux + iuy enables us to find the motion parameters as the roots of the
complex polynomial

Q(z) = (z − u1)(z − u2) = z2 − (cxt − icyt)z + (cxx − cyy + icxy), (7.56)

whose coefficients are expressed in terms of the MMPs. The generalization of
this approach to N overlaid motion layers is straightforward.

Solutions for Multiple Motions Based on Regularization

A major benefit of the above approach to multiple motions is that it involves
a linearization of the problem such that it becomes mathematically equiv-
alent to the problem of estimating only one motion. As a consequence, the
regularization methods used for single motions can be applied. In [114, 115],
the well-known algorithm for single-motion estimation proposed by Horn and
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Schunck has been extended to the case of multiple motions by the use of the
following regularization term:

N = (∂xcxx)2 + (∂ycxx)2 + (∂xcyy)2 + (∂ycyy)2 + (∂xcxy)2 + (∂ycxy)2

+(∂xcxt)2 + (∂ycxt)2 + (∂xcyt)2 + (∂ycyt)2 .

The MMPs c are obtained as the values that minimize the above term together
with the squared optical-flow term in (7.54), i.e.∫ ∫

(α(u1) ◦ α(u2) ◦ s)2 + λ2N dΩ .

λ is the regularization parameter and Ω the image plane over which we inte-
grate. Note that working on the MMPs has the great advantage that we obtain
an Euler-Lagrange system of differential equations that is linear, which would
not be the case, when working directly on the motion vectors themselves.

Block-Matching for Multiple Motions

The framework for multiple motions has been extended such as to include
block-matching techniques for estimating an arbitrary number of overlaid mo-
tions [113]. To estimate N motions, N +1 images of the sequence are needed.
A regularized version of the algorithm has also been derived based on Markov
Random Fields [116], and the increased robustness has been demonstrated.

Separations of Motion Layers

A benefit of multiple-motion estimation is that the parameters of the multiple
motions can be used to separate the motion layers. This problem has been
solved in the Fourier domain, where the inherent singularities can be better
understood and interpolated than in the spatio-temporal domain [79, 114].

Occluded Motions

For occluded motions as defined by (7.9), one obtains the constraint

α(u1) ◦ α(u2) ◦ s = −α(u1) ◦
[
χ(x− tu1)

]
(u1 − u2) · ∇s2(x− tu2) . (7.57)

In [80], it has been shown that

α(u1) ◦ α(u2) ◦ s = q(x, t,u1,u2)δ(B(x− tu1)) , (7.58)

where

q(x, t,u1,u2) = −(u1 − u2) ·N(x− tu1) (u1 − u2) · ∇s2(x− tu2) . (7.59)
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B(x) = 0 determines the occluding boundary of N(x) = ∇B(x) is the unit
normal to the boundary. Equation (7.58) shows that the occlusion distortion is
(i) restricted to the occluding boundary, (ii) minimal when the normal to the
boundary is orthogonal to the relative motion (the difference between fore-
and background motions) and maximal when the two vectors are aligned,
(iii) proportional to the intensity gradient of the background pattern. By a
Fourier analysis of occluded motions, it has been revealed that the decay
of the distortion is hyperbolic for both straight and curved boundaries and
the exact expression for the distortion term has been derived for the case
of straight boundaries [80]. Based on these results, a hierarchical motion-
estimation algorithm has been designed that obtains very good estimates at
the occluding boundary by avoiding the there localized distortion [6, 7, 78, 80].

7.7.3 Multiple Orientations

Orientation Estimation in Tensor Form

If m orientations in n-variate signal are to be found, this problem can either
be written using the mixed orientation parameters (MOP) vector or, alterna-
tively, in tensor notation. The latter form was presented in [83], including the
generalization to p-dimensional signals, for instance color or multi-spectral
images, which will not be handled here.

In order to express orientation estimation in tensor form, we first define
the sought entity, the orientation tensor, as outer product of all individual
orientation unit vectors ui:

U = u1 ⊗ · · · ⊗ un .

With the tensor scalar product

〈O,U〉 :=
n∑

k1,...,km=1

(O)k1···km
(U)k1···km

, (7.60)

we can define the data constraint as

〈O,U〉 = 0 (7.61)

where

(O)k1···km
=

m∏
i=1

∂s

∂xki

is the data tensor generated for the occluding orientations model. In a similar
way, the additive superposition of multiple orientations leads to

〈T ,U〉 = 0 with (T )k1···km
=

∂ms

∂xk1 · · · ∂xkm

. (7.62)
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Symmetry Properties of the Data Tensors

The commutativity in the definitions of (7.61) and (7.62) is the key to the
understanding of multiple orientations. The data tensors are invariant against
any arbitrary permutation of indices and therefore have some very pronounced
symmetry properties.

For m = 2, the data tensors O and T are symmetric n×n matrices, but for
higher m, concepts from matrix algebra will not suffice and a tensor notation
becomes necessary. We therefore define the space of fully symmetric m-tensors
which are invariant to any arbitrary permutation of indices – and not just to
some special permutations only. We define

R
n×···×n
⊕ =

{
T ∈ R

n×···×n

∣∣∣∣(T )i1···im
= (T )P (i1···im)

}
with P (i1 · · · im) denoting any arbitrary permutation of the indices i1 · · · im.

For both models – occluding or additive superposition – the resulting
data tensors are fully symmetric and from this symmetry property follows
an import consequence: The sought orientation tensor cannot be estimated
uniquely, but only up any arbitrary permutation of indices. One cannot dis-
tinguish between a “first” orientation, “second” orientations and so on, all we
can compute a set of m orientations.

Fortunately, this problem can be resolved by restricting the sought orien-
tation tensor to those tensors which are invariant to index permutations, i.e.
to R

n×···×n
⊕ . Within this set, the solution becomes uniquely determined – at

least in non-degenerate cases.

Estimation of the Orientation Tensor

Stacking the independent elements of data tensor O (resp. T ) and of the
symmetrized (and therefore uniquely determined) orientation tensor U gen-
erates two vectors which can be understood as generalization of the double-
orientation constraint handled in [1]. See [83] for details.

In many applications, for instance in feature extraction for tracking, this
is already sufficient. If, on the other hand, a decomposition into the under-
lying individual orientations is necessary, then an additional problem arises:
the orientation tensor estimated so far is overparameterized because “true”
orientation tensors must belong to the set

R
n×···×n
� =

{ ∑
P (i1···im)

ui1 ⊗ · · · ⊗ uim

∣∣∣∣ui1 , . . . ,uim
∈ R

n \ {0}
}

, (7.63)

which we will denote as set of minimal fully symmetric tensors. They are
constructed by summing up all possible permutations of outer products and
obviously form a subset of R

n×···×n
⊕ .



272 C. S. Garbe et al.

A B

Fig. 7.12 Modeling blood vessels in X-ray images often requires three orientations.
(A): Input image. (B): Region of interest (light square in (A)) and detected orien-
tations

In [83], methods for estimating an arbitrary number of orientations in
images (arbitrary m for n = 2) and for double orientation estimation (m = 2)
in general n-variate signals are presented. The second problem boils down to
the approximation of a general n× n matrix by a rank-2 matrix and the first
problem, the estimation of multiple orientations in images, can be formulated
as finding the roots of a degree m real polynomial.

Especially the estimation of more than two orientations in images has
many applications in image processing and computer vision, for instance in
industrial quality control or medical image processing. Figure 7.12 shows an
X-ray image of superposed blood vessels and the estimated orientations.

7.8 Applications

7.8.1 Transport Processes

The transport of energy, mass and momentum is one ubiquitous phenomenon
in our world, spanning all branches of science. It is one condition for the
continued existence of complex dynamic systems. As such, only through this
transport living organisms can coordinate and keep upright their metabolism
and other processes of life. Plants, for example, have developed complex vascu-
lar systems (the xylem) to transport nutrients and water from the roots to the
rest of the plant. At the same time, all living tissue is continuously supplied
with energy from the leaves, in form of the organic products of photosynthesis.

In plant physiology, it is a longstanding question how water and nutrients
are transported in the xylem of the plant’s leaf and which external factors in-
fluence it. While bulk dependencies are known, a detailed analysis has eluded
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research due to inadequate measurement techniques. The transport processes
in leaves are especially important since it is known that they can be regulated
by plants according to environmental forcing. Also, due to these regulatory
mechanisms, the plant can cope with cuts in the leaf and still supply areas
affected by these cuts with xylem sap by other pathways. Still, very little is
known about these mechanisms. To shed light on the transport of the xylem
inside leafs the advanced techniques presented in this chapter have been em-
ployed on thermographic image sequences of heated water parcels in plant
leaves [33]. The experimental set-up as well as a comparative measurement to
ground truth is presented in Fig. 7.13. Through these measurements, quanti-
tative measurements could be made in different parts of the leaf in dependence
of external environmental forcings acting on the leaf [33].

On much smaller scales, a current trend in chemical and biochemical an-
alytics as well as in medical diagnostics is the move to microfluidic mixers
and “lab-on-a-chip” applications. Huge surface to volume ratios are achiev-
able by micro channels with highly controlled boundary conditions, leading to
more efficient reaction kinetics with less by-products. Even on these minute
structures, the transport of energy, mass and momentum as well as the mea-
surements thereof is vital for a better understanding of the processes involved.
In these flow regimes, molecular tagging velocimetry (MTV) is an alternative
approach to the standard technique of micro particle imaging velocimetry
(µPIV) for measuring fluid flows. In MTV, a pattern is written to the fluid
with an UV laser to uncage dyes and thus making them fluorescent. Although
this approach has been used since the late eighties of the last century, mea-
suring fluid flow with this technique has had one significant drawback: Due
to the flow profile, the uncaged dyes would appear to diffuse in a process
termed Taylor dispersion. Two frames of a typical image sequence can be
seen in Fig. 7.14. This dispersive process leads to significant uncertainties
in the measurements, as it is difficult to correct for this dispersion. Due to
Taylor dispersion, the use of MTV is very limited. Nevertheless, it represents
the only technique available for situations in which particles cannot be used
for visualizing the flow, such as packed columns. Motion models such as those

A B

Fig. 7.13 The set-up for measuring the xylem flow in plant leaves with active
thermography in (A) and the results of a ground truth measurement in (B)
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Fig. 7.14 In (A) and (B) two frames of a microfluidic image sequences are shown.
The implication of Taylor dispersion can clearly be observed. Structures seem to
diffuse in the direction of fluid flow

described in Sect. 7.2.4 were used to make feasible a highly accurate technique
for measuring microfluidic flows based on MTV [31, 34, 94]. A comparison of
MTV, µPIV and ground truth can be seen in Fig. 7.15.

In environmental sciences, it is the transport of the same quantities, energy,
momentum and mass, that is the driving force in most weather conditions on
short scales and in climatic variability on longer time periods. It plays the
dominant role on aquatic processes in the oceans such as ocean currents and
the thermohaline circulation, the meridional overturning circulation (MOC).
The two compartments of atmosphere and ocean are in contact at the ocean
surface where energy, mass and momentum is exchanged between them. Due
to experimental difficulties of measuring inside the boundary layer, extending
less than one millimeter into the water body which is undulated by waves
of several centimeters heights. Applying the advanced techniques for the es-
timation of complex motion presented in this chapter has lead to significant
advances in the field of air-sea interactions. Estimating the total derivative of
temperature T with respect to time dT/dt = α(u)◦T = c from thermographic

Fig. 7.15 The vector field computed for an inhomogeneous flow in the mixing
chamber in (A). Comparison of measured values from MTV (blue circles) and µPIV
(red crosses) compared to ground truth measurement obtained from a flow meter
(solid black line) in (B)

A B

A B
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Fig. 7.16 Growing pine needle. 1st (left) and 100th (right) image of the sequence,
the frames indicate the 256 × 128 sheath region

image sequences of the air–water interface has made it possible to accurately
estimate the net heat flux as well as the transfer velocity of heat [29, 30, 104].
The viscous shear stress could be deduced from active thermography [32]. This
will make it possible to perform process studies, relating the transport of heat
with that of momentum in the same footprint spatially and temporally highly
resolved.

7.8.2 Growing Plant Leaves and Roots

In Sect. 7.4.1 optimal filters for transparent motion estimation have been de-
rived. As demonstrated in [96] using these filters reduce systematical errors
in transparent motion estimation. Motion estimation of a growing pine needle
(see Fig. 7.16) shows the effect of using different filter families. The sheath
region consists of a transparent layer, becoming more and more opaque the
closer to the base to the needle. Motion underneath this layer shall be mea-
sured in order to quantify local growth. In the current data sets only rigid
motion is visible, indicating that the growth zone is completely hidden in the
opaque region at the base of the needle. Figure 7.17 depicts that using simple

Fig. 7.17 Growing pine needle. From left to right and top to bottom: motion
estimation results on the sheath region using 3 × 1 × 1, 5 × 5 × 5, 7 × 7 × 7, and
9 × 9 × 9-filters. Vectors longer than 4 pixels/frame are cut off. Vectors are scaled
by a factor of 4
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central distances 3× 1× 1-filters, reliable results can be achieved nowhere in
the transparent region (same holds for 3× 3× 3-filters). The larger the opti-
mized filters, the larger and visibly more accurate the motion fields become.
The 3 D model proposed in Sect. 7.2.3 has been integrated in a screening setup
established at ICG 3, Jülich. Depth and surfaces slopes of a plant (kalanchoe)
reconstructed from an input sequence of 49 images, i.e., 7 × 7 camera posi-
tions, demonstrate the accuracy of the model. Figure 7.18 shows the central
image of the input sequence and of depth estimates rendered by povray [14].
Furthermore, Fig. 7.18 shows a close-up view to compare a leaf with the esti-
mated parameters in detail. Reconstructed depth and surfaces slopes match
the original quite well.

7.8.3 Analysis of Seismic Signals

The analysis of seismic surface waves can provide valuable information about
the subsurface structure, which is of interest for engineering purposes and
seismic hazard assessment (see e.g. [46]).

A seismic signal typically contains several superposed propagation modes,
each with its own dispersion and attenuation characteristics. A typical prop-
agation model is

St(x, f) =
L∑

l=1

e−x(αl(f)+Ikl(f))Rl(f) , (7.64)

where St(x, f) is the spectrum of the signal recorded at distance x from the
source, L is the number of modes, Rl(f) is the spectrum of the source event for
each mode, and αl(f) and kl(f) are the frequency-dependent attenuation and
wavenumber, respectively. (The wavenumber is related to the phase velocity
by the expression kl(f) = 2πf

cl(f) ).
The problem is now to estimate αl(f) and kl(f) from signals s(x, t)

recorded at stations x ∈ {x1, . . . , xm}, we call this the “Multiple Modes”
problem.

Note that the Multiple Motions problem is a specialization of the Multiple
Modes problem where we have kl(f) = 2π f

cl
and αl(f) ≡ 0 for all l = 1, . . . , L,

Fig. 7.18 Reconstruction of plant using 49 camera positions. From left to right:
central image of input sequence, rendered depth estimates, close-up view on leaf
and estimated depth with surface slopes
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Fig. 7.19 Estimation results obtained on a signal containing two superposed prop-
agation modes; noise level σ = 0.001, 20 recording stations

i.e., all frequency components propagate with the same phase velocity cl and
there is no attenuation.

There are several existing approaches to solving the Multiple Modes prob-
lem, e.g., by estimating a wavelet operator [46]. We have developed a solution
that is based on the technique of harmonic inversion by filter diagonaliza-
tion [64, 65]. This technique successfully separates modes that overlap in both
time and frequency, but it is quite sensitive to noise (Fig. 7.19 shows a sam-
ple result). However, our interest in the technique stems from the fact that,
like the Multiple Motions technique, it is based on solving an eigenproblem.
Based on this observation, we conjecture that the ideas used in the solution
of the Multiple Motions problem can be generalized to yield a solution for
the Multiple Modes problem. However, we have not been able to find such a
solution so far.

7.9 Conclusions

In this chapter the results of a fruitful and highly collaborative research initia-
tive have been presented. A number of previously untackled and long-standing
problems of estimating local and complex orientations were addressed in a
multi-disciplinary effort. We have presented novel formulations for constraint
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equations, linking multi-dimensional signals to local orientations. These con-
straint equations make estimation of complex motions feasible. Also, a number
of algorithms have been presented that make use of these orientation con-
straint equations and compute the model parameters in a statistically sound
and efficient way. The novel algorithms that were presented in this chapter
result from the combination of modern statistical signal processing, differen-
tial geometric analysis, novel estimation techniques, and nonlinear adaptive
filtering and diffusion techniques. Moreover, these novel algorithms were ap-
plied to a number of applications, making digital image processing feasible to
a number of them for the first time. The advanced algorithms were used in
environmental-, earth-, bio-, and life sciences, leading to significant advances
and contributions within these fields.

Acknowledgement

The authors gratefully acknowledge financial support from the German Sci-
ence Foundation (DFG) within the priority program SPP 1114.

References

[1] T. Aach, C. Mota, I. Stuke, M. Mühlich, and E. Barth. Analysis of su-
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Cedex, France, 2005.

[121] D. Tschumperle and R. Deriche. Vector-valued image regularization
with pdes: a common framework for different applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 27(4):506–517,
2005.

[122] M. Unser. Splines: A perfect fit for signal and image processing. IEEE
Signal Processing Magazine, 16(6):22–38, November 1999.

[123] S. Van Huffel and J. Vandewalle. Analysis and properties of the gener-
alized total least squares problem Ax ≈ B when some or all columns
in A are subject to error. SIAM Journal on Matrix Analysis and Appli-
cations, 10(3):294–315, 1989.

[124] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem:
Computational Aspects and Analysis. Society for Industrial and Applied
Mathematics, Philadelphia, PA 1991.

[125] N. J. Walkington. Algorithms for computing motion by mean curvature.
SIAM Journal on Mathematical Analysis, 33(6):2215–2238, 1996. doi:
http://dx.doi.org/10.1137/S0036142994262068.



288 C. S. Garbe et al.

[126] J.Y.A. Wang and E.H. Adelson. Spatio-temporal segmentation of video
data. In Proceedings of the SPIE: Image and Video Processing II, vol.
2182, pages 120–131 San Jose, February 1994, 1994.

[127] J. Weber and J. Malik. Robust computation of optical flow in a multi-
scale differential framework. International Journal of Computer Vision,
14(1):67–81, 1995.

[128] H. Wechsler, Z. Duric, F. Y. Li, and V. Cherkassky. Motion estima-
tion using statistical learning theory. Pattern Analysis and Machine
Intelligence, 26(4):466–478, 2004.

[129] J. Weickert and T. Brox. Diffusion and regularization of vector- and
matrix-valued images. In M. Z. Nashed, O. Scherzer, editors, Inverse
Problems, Image Analysis, and Medical Imaging. Contemporary Math-
ematics, pages 251–268, Providence, 2002. AMS.

[130] E.P. Wigner. Group Theory and its Application to Quantum Mechanics
of Atomic Spectra. New York, 1959. Academic Press.

[131] G. Winkler. Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods. A Mathematical Introduction. Berlin, 2002. Springer.

[132] M. Worring and A.W.M. Smeulders. Digital curvature estimation.
CVGIP: Image Understanding, 58(3):366–382, 1993. ISSN 1049-9660.
doi: http://dx.doi.org/10.1006/ciun.1993.1048.

[133] W. Yu, K. Daniilidis, S. Beauchemin, and G. Sommer. Detection and
characterization of multiple motion points. In 18th IEEE Conference on
Computer Vision and Pattern Recognition, vol. 1, pages 171–177, IEE
Computer press Fort Collins, CO, 1999.

[134] W. Yu, K. Daniilidis, and G. Sommer. A new 3D orientation steerable
filter. In Proceedings DAGM 2000. Berlin, September 2000. Springer.

[135] C. Zetzsche and E. Barth. Fundamental limits of linear filters in
the visual processing of two-dimensional signals. Vision Research, 30:
1111–7, 1990.

[136] C. Zetzsche, E. Barth, and B. Wegmann. The importance of intrinsically
two-dimensional image features in biological vision and picture coding.
In Andrew B. Watson, editor, Digital Images and Human Vision, pages
109–38. MIT Press, October 1993.



Index

3 D reconstruction, 235

Iterated Amplitude Adjusted Fourier-
Transformed (IAAFT) surrogates,
62

accuracy order, 80
adaptive smoothing parameters, 189
adaptive weights smoothing, 196
algebraic multigrid method, 144
Amplitude Adjusted Fourier-

Transformed (AAFT) surrogates,
62

analysis
Fourier, 113
principal components, 115, 134
time-frequency, 113

anisotropic diffusion, 139
anisotropic filtering, 267

adaptive, 267
approximation

phase field, 137
approximation order, 80
ARCH model, 186, 214
ARCH process

time varying, 215
autoregression, 184

bandwidth, 185
bandwidth selection, 189, 219
bilinear models, 53
biorthogonal, 84
block-matching

multiple motions, 269

bootstrap, 213
frequency domain, 50

brightness change, 237
brightness constancy, 238
Bruker Daltonics GmbH, 76

coherence, 5
mean phase, 26
partial, 6
partial directed, 11
renormalized partial directed, 14

compensation principle, 254
confidence measure, 133
consistency

uniform, 213
control

optimal, 125
convolution kernel, 99
correlated noise, 186
correlation dimension, 43
covariance method, 115
cross-recurrence, 161
cycle spinning, 92
cyclic Gaussian process, 51

deblurring, 88
deconvolution, 93
degenerate diffusion, 127
delay embedding, 155
delta peaks, 95
denoising, 88, 183, 202, 258
derivative, 241
diffusion, 262

anisotropic, 139, 262



290 Index

degenerate, 127
streamline, 143
transport, 139

digitally filtered shuffled surrogates
(DFS), 49

dimension
correlation, 43

directed transfer function, 12
discontinuity-preserving, 266
dispersion

wave, 116
distribution function

bidirectional reflectance, 237

EEG, 175
elasticity

nonlinear, 119
end-to-end-distance, 45
energy function, 203
equations

parabolic, 126
estimated spectrum

new periodogram from, 49
estimation

motion, 246, 251
multiple orientations, 270
multiple subspace, 267

filter
bilateral, 206
diffusion, 210
edge preserving, 263
optimal, 248
optimized, 252
quadrature, 249
signal and noise adapted, 251
steerable, 249
Wiener, 263

filter diagonalization, 277
finite element method, 143
flow

Couette, 237
fluid, 236
isospectral, 265
optical, 239
Poiseuille, 237

flow homogeneity
local, 267

Fourier analysis, 113

frequency domain bootstrap, 50
function vector, 77

interpolating, 78
orthogonal, 81
refinable, 77
symmetric, 84

Gaussian noise
identical isotropic, 239

Gaussian process
cyclic, 51
linear, 42

geometry images, 123
Granger-causality, 8
Granger-causality index, 9
graphical models, 16

harmonic inversion, 277
harmonic functions

polar-separable, 243
heterogeneous media, 116
Hoffmann-La Roche AG, 76

image
mammography, 131

image registration, 119
images

geometry, 123
index

Granger-causality, 9
inpainting, 135

kernel estimate, 185, 187, 216
kurtosis, 48

least squares
ordinary (OLS), 244
total (TLS), 239

linear Gaussian process, 42
linearization, 268
local average, 184
local least-squares, 184
local maximum likelihood, 186
local polynomial smoothers, 184
locally stationary process, 215
logistic map, 43
Lorenz system, 43

M-smoother, 184, 206
mammography image, 131



Index 291

Markov Random Field, 269
mask, 77
matrix refinement equation, 77
mean phase coherence, 26
measure

confidence, 133
situation, 133

median smoother, 184
method

algebraic multigrid, 144
finite element, 143
Gauß–Seidel, 209
Jacobi, 208
Newton’s, 209

model
multi-dimensional signals, 233
occluding orientations, 270

model selection, 254
Bayesian, 257

models
graphical, 16

molecular tagging velocimetry (MTV),
273

morphology, 119
motion

occluded, 269
motion blur, 137, 138
motion layers, 269

separation, 269
multiple modes problem, 276
multiple motions, 238
multiple orientations, 270
multiple subspace, 267
multiresolution analysis, 79
multiwavelet, 76

biorthogonal, 87
Mumford Shah, 121, 132, 204

new periodogram from estimated
spectrum (NPS), 49

noise
additive, 183
correlated, 186
multiplicative, 186

nonlinear elasticity, 119
norm equivalence, 87

occluded motion, 269
optimal control, 125

order pattern, 156
orientation tensor, 270

estimation, 271
oscillator
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