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PREFACE 
  

This volume comprises the proceedings of a NATO Advanced Study 
Institute (ASI) held at Geilo, Norway, 11-21 April 2005, the eighteenth ASI 
in a series held every two years since 1971. The objective of this ASI was 
to identify and discuss areas where synergism between modern physics and 
biology may be most fruitfully applied to the study of bioprocesses for 
molecular recognition, and of networks for converting molecular reactions 
into usable signals and appropriate responses. 

Many fields of research are confronted with networks. Genetic and 
metabolic networks describe how proteins, substrates and genes interact in 
a cell; social networks quantify the interactions between people in the 
society; the Internet is a complex web of computers; ecological systems are 
best described as a web of species. In many cases, the interacting networks 
manifest so-called emergent properties that are not possessed by any of the 
individual components. This means that the detailed knowledge of the 
components is insufficient to describe the whole system. Recent work has 
indicated that networks in nature have so-called scale-free characteristics, 
and the associated dynamic network modelling shows unexpected results 
such as an amazing robustness against accidental failures, a property that is 
rooted in their inhomogeneous topology. Understanding these phenomena 
and turning them to use in chemical and biological threat detection and 
response will require exploring a wide range of network structures as well. 
Questions related to error and attack tolerance of complex networks and 
their robustness in particular, and the dynamics of networks in general also 
have to be addressed. Modelling the signal transduction networks in 
bioprocesses as in living cells is a challenging interdisciplinary research 
area. It is now realized that the many features of molecular interaction 
networks within a cell are shared to a large degree by the other complex 
systems mentioned above, such as the Internet, computer chips and society. 
Thus knowledge gained from the study of complex non-biological systems 
can be applied to the intricate braided relationships that govern cellular 
functions. Bio-inspired processes provide an attractive option for sensing 
chemical and biological (CB) agents because nature has solved many of the 
problems inherent to the sense-and-respond task. For example, many 
biological responses such as blood clotting, gene expression and the 
activation of enzymes require enormous amplification of signals carried by 
as few as a single molecule or ion. Adaptability to local environments, 
atomic level control of self-assembled structures, benign processing, 
combinatorial synthesis and complex computation are other features of 
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biological systems that are likely to prove useful in CB sensor 
development. 

The starting point, and the underlying theme throughout the ASI, was a 
thorough discussion of general network theory. The next focus was on 
genetic networks and bioprocesses. Finally, focus was placed on the 
possible universality of network structures and how this knowledge can be 
combined to attack the urgent problem of rapid detection and diagnosis of 
CB agents. 

The NATO ASI format in Geilo proved very efficient in getting 
researchers in different areas together and focus on the underlying theme 
that was common to all of them – that of networks and bioprocesses. In this 
manner a rapid communication was possible because a common vocabulary 
was developed during the ASI. 

The scientific content of the school was timely and these proceedings 
should provide a useful definition of the current status. The Institute 
brought together many lecturers, students and active researchers in the field 
from a wide range of countries, both NATO and NATO Partner Countries. 
The lectures fulfilled the aim of the Study Institute in creating a learning 
environment and a forum for discussion on the topics stated above. They 
were supplemented by a few contributed seminars and a large number of 
poster presentations. These seminars and posters were collected in extended 
abstract form and issued as an open report available at the Institute for 
Energy Technology, Kjeller, Norway (Report IFE/KR/E-2005/005, ISBN 
82-7017-535-8). 

Financial support was principally from the NATO Scientific Affairs 
Division, but also from the Institute for Energy Technology and the 
nationally coordinated research team COMPLEX in Norway. 

The editors are most grateful to M.H. Jensen, J.L. McCauley, R. Pynn 
and H. Thomas who helped them plan the programme and G. Helgesen for 
helping with many practical details. Finally, we would like to express our 
deep gratitude to Trine Løkseth of the Institute for Energy Technology, for 
all her work and care for all the practical organization before, during, and 
after the school, including the preparation of these proceedings. 
 
December 2005 
 
Arne T. Skjeltorp   Alexander V. Belushkin 
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STRUCTURE AND COMMUNICATION IN

COMPLEX NETWORKS

Center for Models of Life
Niels Bohr Institute, Blegdamsvej 17,
2100 Copenhagen

1. Introduction

Networks is tool to describe systems composed of many different units which
each typically interact with a few of the other units. Networks thus used to
quantify complex systems from the intricate interactions of proteins inside
a living cell, to ecosystems, social systems and computer networks. In most
cases the network quantify communication channels in the system. Thus di-
rectly connected nodes communicates easy, while more distant nodes only
obtain exchange information through a number of intermediate steps. In fact
already in 1982 a detailed study of social networks within university depart-
ments revealed that mutual information of one member about another one
was decaying exponentially with their distance, and increased linearly with
number of common friends (degenerate paths). We will take this viewpoint
and consider a Network as a description of who get direct information from
who, and which parts that has to resort to second hand or even more inac-
curate information: networks quantify the extent to which complex systems
operate under the constraints of a limited information horizon.

In the text we will first review a few facts about real world networks,
including broad degree distributions and degree correlations and some simple
models for how such broad degre distributions may self organize. Secondly
we introduce a few measures to characterize the topology of network: Cor-
relation profiles, network motifs, topological hierarchy, search information
and a measure for order in topology of the networks. Thirdly we discuss
self organization of networks under various degrees of limited information.
Finally we discuss biological networks, with focuss on basic physics of gene
regulation.
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2. Basic Network Concepts

In Figure 1-4 we define a few basic quantities in graph theory. For a pair
of nodes one define their distance as the length of the shortest path between
them. For a connected graph we can define its diameter as the maximum
distance between pairs. Examples of graphs include lattices in any dimension.

<

A =3

kA =3 is degree of node A

k =3

k =3

k =3

k =3

Edge or Link Vertex or Node

B

C

D

E

k > = 2L/N  is average degree

L= total number of links.
where N=number of nodes, and 

A
B

C D

E

k

Figure 1. A graph, with nodes and edges.

Degree Distribution:

A =3

k =3

k =3

k =3

k =3

B

C

D

E

A
B

C D

E 1 2 3 4

k

Figure 2. Degree distribution, here for undirected graph.

We now want to consider the simplest possible model for a random graph,
the Erdos-Reynei Graph. In this type of graph one have N nodes, each pair
connected to each other with probability p. The average (expected number of
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edges would be L = p · N(N − 1)/2. The degree distribution (probability that
a given node have k links to the remaining N-1 nodes) will be

P(k) = Ck
N−1 pk(1 − p)k (1)

where Ck
N−1 = (N − 1)!/(k!(N − 1 − k)!). For a random graph one gain the

neighborhood of any node increases by factor 〈k〉 for each step out in the
graph (for large graphs, as long as there is essentially zero probability to
reach same nodes through two different paths). Thus the network is traversed
when

diam∑
i=0

〈k〉i ≈ N (2)

that is when diam = log(N)/log(〈k〉), i.e. the distance between any two points
in a random graph grows very slowly with its overall size.

A path: Sequence of links and nodes that connect two nodes

have disconnected graph (e.g. if link DE absent)

A
B

C D

E

A circuit (here triangle or clique)

(Connected: there exist a path between any pair) 

Here connected graph, but could also

Figure 3. Path’s in graphs.

Another quantity which often is used to characterize networks is their
cliquishness. For each node this is defined as the fraction shown in Fig 4,
meaning that a large cliquishness indicate large locality in the network every-
body knows each other locally).

A network is defined as having small world property, when it is hav-
ing a relatively large cliquishness, while still having a diameter of order
log(N)/log(k). Many networks are indeed found to have this interplay be-
tween global accessibility and local connectedness.

Finally we would like to stress that a network also have a unique matrix
representation, Ai j where a link from node i to node j implies that Ai j =

1. A undirected network, even a symmetric matrix, Ai j = A ji. The matrix
representation opens for some simple manipulation where one for example
can calculate the number of triangles in a network =traceA3/6, where the
factor 6 = 3 · 2 comes from going two ways around each triangle, and from
starting the triangle a any of the three nodes.
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no. of cliques
C AA

B

C D

E

G

F

Clique

Clique

=

no. of cliques

Ak    (k    −1)/2A

3

3
=1

==

=

C C
=

3

6

max no of cliques

Figure 4. Cliquishness definition: the fraction of possible triangles that a node participate in,
given its degree. If all its friends are friends, its cliquishness is 1.

Then SMALL WORLD

cliquishness

Network with rater large

C =  3/6   (except −−−−

and with few additional

rather small diameter.
links (−−−), it also have 

Figure 5. Small world network (Watts and Strogatz).

3. Real Networks

From the genetic blueprint in our DNA to the world-wide Internet, infor-
mation and its dynamic counterpart communication sets the stage for fur-
ther action. However, we live under the limited information horizon, in the
sense that information is often imperfect and communication is always fi-
nite. Many complex systems are associated with information transfer. This
includes neural networks with their synaptic rewiring, molecular networks
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(Freeman, Sociometry 1977)

Α
= no. path through A  = 3

The betweenness of a node is
number of shortest paths
that goes through the node

A
B

C D

E
similar definition of link betweenness

β

Figure 6. Betweenness (load) on a node, assuming that all transport goes through shortest
paths.

evolved to modulate the protein activity in living cells, and social networks
exemplified by the Internet. Below we show respectively the worldwide inter-
net, a social network and some examples of molecular networks inside living
cells. In all these cases the purpose of the network is to serve as a scaffold for
information transfer.

Figure 7. Directors in US: Left representation, connected by link if two nodes in same board.
Right representation: Bipartite network representation consist of respective board nodes and
member nodes, defining two distinct classes of nodes. In a bipartite graph there are only links
from nodes in one class to a node in the other class. The shown network is a small sub-part of
the full network of all CEO’s in USA.

Betweenness: 
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For many real world networks, the distribution of proteins with a given
number of neighbors (connectivity) K may (very crudely) be approximated
by a power law

N(K) ∝ 1/Kγ (3)

with exponent γ ∼ 2.5 ± 0.5 (Jeong et al. (2001)) for protein-protein binding
networks, and exponent γ ∼ 1.5 ± 0.5 for “out-degree” distribution of tran-
scription regulators. Notice that the distribution of the number of proteins a
given protein regulate, the “out-degree”, differs from the much more narrow
distribution of “in-degrees”. We would now like to discuss features and pos-
sible reasons for why life may have chosen to organize its signaling in this
way.

One aspect of a wide distribution of connectivity, is the possible ampli-
fication of signals in the network. Consider a signal that enters a node, and
assume that it is transmitted along all exit links (unspecific broadcasting).
Thus it is amplified by a factor Kout. However, not all nodes has equal chance
to amplify signals. The probability to enter a node is proportional to Kin. Thus
one in average visit nodes with probability ∝ Kin and the weighted average
amplification factor in a directed network (Newman et al. 2001):

A =
〈KinKout(given Kin)〉

〈Kin〉 =
〈KinKout〉
〈Kin〉 (4)

The first equality assumes that there is no correlations between degree of
a node and the degree of its neighbors. The second equality assumes that
there is no correlations between a given proteins “in” and “out” degree. For
undirected random network the amplification would be:

A =
〈K(K − 1)〉

〈K〉 (5)

If all nodes has close to the same connectivity we recover the simple result
that when 〈K〉 = 2 thenA = 1. Thus to have marginal transmission, one input
signal in average should lead to one output signal through a new exit. When
A > 1 signals tends to be exponentially amplified, and thus most signals will
influence signaling over the entire network. For broad connectivity distribu-
tions A typically depend on the node with highest connectivity. To see this,
assume that the number degree distribution is power law distributed (eq. 3).
Then:

A =

∫ N

1
K2dK

Kγ∫ N

1
KdK
Kγ

− 1 ∼ N3−γ (6)
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Pajek

Figure 8. Presently known transcription regulations in Yeast (Sacromyces Cerevisia). Tran-
scription regulation describes how one protein regulate the production of another protein. The
network is directed, with both positive and negative regulations (see later for more detailed
explanation).
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for γ > 2. That is, in case of γ > 2 the denominator becomes independent of
N in the limit of large N. One notice that for γ < 3 then A is dependent of the
upper cut off in the integral, which represent the node (protein) with highest
connectivity. Most real world networks are fitted with exponents between 2
and 3. We stress that the estimate in eq. 6 only is valid when the network
consist of nodes which are randomly connected to each other. Further we are
analyzing the networks as if all signals are going anywhere where there is
connections.

4. Models for scale free networks

The scale free nature of the connectivity distribution itself is not that con-
vincing for biological network as for other real networks. More convinc-
ing examples are found in for example the Internet (Faloustas et al. (1999),
Barabasi & Alberts (1999) and Broder et al. 2000). The close to scale free fea-
tures of many networks have initiated some proposals for mechanisms, which
we review because emphasize certain potential evolutionary and topological
features of networks.

� Preferential attachment/cumulative advantage One mechanism to ob-
tain scale free networks is through growth models, where nodes are
subsequently added to the network, with links attached preferentially
to proteins that are highly connected (Price (1976), Barabasi & Alberts
(1999)). It is a growth model based on minimal information in the sense
that each new link is attached to the end of a randomly selected old link.
Thus one connect new nodes with a probability of connecting propor-
tional to the degree of the older nodes. Highly connected nodes therefore
grow faster. It pays to be “popular”. As a result the degree distribution
becomes

dn
dk

⇒ n(k) ∝ 1
kγ

(7)

with an exponent γ that can be tuned to values between 2 and 3, by
adding links also without adding new nodes.

The preferential growth model was originally proposed in an entirely
different contexts, relating to modeling of human behavior quantified by
the Zipf law (1949): That “law” states the empirical observation that
incomes, or assets, or number of times a particular words are used, all
tends to be distributed with power laws of type 1/s2. H. Simon (1955)
suggested that this reflected the human tendency to preferentially give
to what already has. For networks, a feature of this history dependent
model is that the most connected nodes also are the oldest.
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�
law distributed connectivity is the threshold networks considered by
Calderelli et al.(2002). In this model each protein i is assigned an overall
binding strength Gi selected from an exponential distribution, P(G) ∝
exp(−G). Then one assign a link to all proteins pairs i, j where Gi + G j

is larger than a fixed detection threshold Θ. Thereby a network with
scaling in some limited range are generated.

Analytically the scaling comes about because a given protein is assigned
a G with probability exp(−G), and thereby a number of binding partners
equal the number of proteins with G′ > Θ − G. This number is propor-
tional to exp(+G). Therefore there is probability P(> G) = exp(−G) for
having N ∝ exp(+G) partners:

P(> N) = 1/N ⇒ dP
dN

∝ 1/N2 (8)

Thus threshold networks also generate scale free networks (when thresh-
old Θ is rather large). In contrast to the preferential attachment model,
the threshold model is history independent. But in the above formula-
tion it is very non-specific: good binders bind to all reasonably strong
binders. Presumably real networks have a specific reason to have a broad
connectivity distribution. Life would would definitely not favor a prion
like mechanism where some proteins aggregate many other proteins into
one giant connected clump.

� Merging and creation (/duplication): A third scenario for generating
scale free network is the merging and creation model introduced by Kim
et al. (2003). In this one generate a scale free network by merging nodes
(proteins) and generate new proteins. In detail, one time step of this
algorithm consist of selecting a random node, and one of its neighbors.
These are merged into one node, see Fig. 9a). Subsequently one add a
new node to the network and link it to a few randomly selected nodes.
As a result one may generate a nearly scale-free network with degree
exponent γ ∼ 2.2, see Fig. 9b). The justification for this algorithm for
protein networks would be merging in order to shorten pathways, and
creation in order to generate new functions. In contrast to the preferential
attachment model, the merging/creation scenario does not demand per-
sistent growth. Instead it suggests an ongoing dynamics of an evolving
network which at any time has a very broad degree distribution.

Threshold networks:Another modelforgenerating networkswithpower
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Figure 9. Merging and creation model of Kim et al. (2003). In addition to the shown merging
step, a steady state network demands addition of a node for each merging. After a transient this
evolutionary algorithm generate networks with scale free degree distribution, as illustrated in
right panel.

The merging and creation model has its correspondence in physics, where
it original was suggested in the form of aggregation and injection model
for dust (Fields & Saslow (1965)). The mechanism is probably important
in the creation of larger aggregates in the interstellar vacuum. For protein
interaction networks an on going merging process may seems hopeless.
Rather a potential application may be in economy, where merging of
companies is a widespread phenomena.

As a summary, we stress that any of the above models only presents some
possible evolutionary elements in obtaining a broad degree distribution. As
we will subsequently see, then maybe the relative positioning of highly con-
nected proteins relative to each other may provide us with a more functional
view.

5. Basic analysis of network topologies

We now want to discuss how to identify non trivial topological features of
networks. That is, we want to go beyond the single node property defined
by the degree distribution, and thus deal with the networks as objects that are
indeed connected to each other. The hope is that this in the end may help us to
understand function-topology relationship of various types of network. The
key idea in this analysis is to compare the network at hand with a properly
randomized version of it. As we want to go beyond degree distributions we
want to compare with random networks with exactly the same degree distrib-
ution as the real network we are analyzing. One way to generate such random
networks is shown in Fig 10. Technically the significance of any pattern is
measured by its Z score:
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Z(pattern) =
N(pattern) − 〈Nrandom(pattern)〉

σrandom(pattern)
(9)

where Nrandom(pattern) is the number of times the pattern occurs in the ran-
domized network.

σ2
random(pattern) = 〈Nrandom(pattern)2〉 − 〈Nrandom(pattern)〉2 (10)

is the variance of this number among the random networks. Considering
patterns of links between proteins with various degrees, Maslov & Sneppen
(2002) reported a significant suppression of links between hubs, both for
regulatory networks and for the protein-protein interaction networks in yeast,
see Fig. 11. Similarly, by defining higher order occurrences of various local
patters of control, Shen-Orr et al. found some very frequent motifs in gene
regulation networks. These are illustrated in Fig. 12.

We stress that one should be careful when judging higher order correla-
tion patterns, because evaluation of these patterns are very sensitive to the
null model against which they are judged. At least one should maintain the
in and out degree of all nodes. But even when maintaining the degree distri-
butions, for example loops will easily appear to be hugely over represented
when comparing to a randomly reshuffled network. This is because a simple
randomization does not take into account that proteins with similar functions
tend to interact with each other (see question 1). This locality in itself give
more loops. In fact one often use the number of loops as a measure of locality,
quantified in terms of the so called cliquishness (Watts & Strogatz (1998)).

switch
partners

B D B D

A

CC

A

Figure 10. One step of the local rewiring algorithm (see Maslov et al. (2002)). A pair of
directed edges A→B and C→D. The two edges then switches connections in such a way that
A becomes linked to D, while C to B, provided that none of these edges already exist in the
network, in which case the move is aborted and a new pair of edges is selected. An independent
random network is obtained when this is repeated a large number of time, exceeding the total
number of edges in the system. This algorithm conserves both the in- and out- connectivity of
each individual node.



12

K(out)
here =3

K(in)
here =1

1 3 10 30
1

3

10

30

100

K
in

K
ou

t

 

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 11. Correlation profile (Maslov et al. 2000) showing correlation between connected
proteins in the regulatory network of yeast, quantified in terms of Z scores. The single output
modules is reflected in the abundance of high Kout controlling single Kin proteins. The dense
overlapping regulons correspond to the abundance of connections between Kout ∼ 10 with
Kin ∼ 3 proteins. Finally the suppression of connections between highly connected proteins
show that these tend to be on the periphery of the network.
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Figure 12. Genetic control motifs which are found to be over represented in regulatory
networks of both E.coli and Yeast (Shenn-Orr et al. 2002). Shenn-Orr et al. suggest that the
feed-forward loop may act as a low pass filter, see question 1.

The tendency of highly connected proteins to be at the periphery of regu-
latory networks may teach us something about the origin of broad connectiv-
ity distributions: Maybe the hub proteins that gives orders to the many tend
to give the same order to everyone below them.

One may speculate that the broad degree distribution of molecular net-
works is not an artifact of some particularly evolutionary dynamics (gene
duplication, merging etc.), but rather reflect the broad distribution of number
of proteins needed to do the different tasks required in a liven cell (Maslov et
al. (2004)). Thus the broad connectivity distributions in signaling and regula-
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tive molecular networks may reflects the widely different needs associated to
widely different functions that a living cell needs to cope with.

6. A Hierarchy measure of Networks

The topology of a network can be further characterized by its topological
hierarchy, defined as the extent to which the network is hierarchical, when
one assume that rank correlates with degree.

In fact in a number of systems nodes with higher degrees are on average
more important than their lower degree counterparts. For example, for the
Internet the number of hardwired connections a given Autonomous System
serves as a proxy of its importance with the most connected nodes being
global Internet Service Providers. For WWW the in-degree of a web page can
serve as a measure of its popularity and hence importance; highly connected
hub-airports of airline networks typically located in large cities, etc. In what
follows we use the degree of a node as a proxy for its rank in the hierarchy
based on the relative importance of nodes.

We quantify the hierarchical topology of a network is using the concept
of a hierarchical path: a path between two nodes in a network is called hi-
erarchical if it consists of one or two parts: either just an “up path” - where
one is allowed to step from node i to node j only if their degrees ki, k j satisfy
ki ≤ k j, or alternatively an “up path” followed by a “down path” - where only
steps to nodes of lower or equal degree are allowed. Either up or down path
is allowed to have zero length.

Thus,

� If path first from low to high degrees,

� and then from high to low

� The two nodes are connected hierarchically

Example: Consider the internet, moving from local provider, up to district
provider, state provider .... and the down again until another local provider is
reached.

This definition of a hierarchical path follows the above mentioned tra-
jectory of a request which is first forwarded up and then descends down
the levels of a hierarchy quantified by ki. It is also similar to the definition
proposed in by L. Gao, (Proc. IEEE INFOCOM, November (2000)). The
length of the shortest hierarchical path between a given pair of nodes can
be either: 1) equal to the length of the overall shortest path; 2) longer than it;
3) not exist at all if these two nodes cannot be connected by any hierarchical
path. The fraction of pairs in the first of these three categories is denoted as
F . Thus the hierarchical fraction F is the fraction of shortest paths in the
network that are hierarchical.
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Figure 13. Different ways to position low and high degree nodes: Left part of figure illustrate
Maximally hierarchical (top), random (middle) and anti-hierarchical (bottom) networks of
size N = 50 nodes and node degree distribution f (k) ∝ 1/k2.5. The Main figure show how F
depend on degree distribution in random scale free networks with distribution P(k) ∝ 1/kγ.
One see that as degree distribution narrows, the hubs tend to separate. For γ > 3 the network
effectively behaves as an Erdos-Reynei network.

In the figure 13 we illustrate how F behaves as function of γ for random
networks where all nodes are connected by at least one path. We also compare
with a few real world networks.

The overall behavior that F decrease with γ for random network can be
understood from the following simple local consideration. Let us first calcu-
late the probability that a given edge is attached to a node with degree larger
than k

Pedge(≥ k) ∝
∫ K

k
k′ f (k′)dk′

∝
⎧⎪⎪⎨⎪⎪⎩ 1 −

(
k
K

)2−γ
, for γ < 2

k2−γ, for γ > 2
(11)

Here for γ < 2 one can only have a scale-free distributions below an
upper cutoff K. For γ > 2 we can ignore the upper cutoff N. (We assume
thermodynamic limit and do not restrict ourself to connected network). Thus
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in the absence of degree-degree correlations the probability that a node of
degree k has at least one neighbor of degree higher than itself is given by

P(kneighbor ≥ k) ∝ (1 − Pedge(≥ k))k

∝
⎧⎪⎪⎨⎪⎪⎩ 1 −

(
k
K

)(2−γ)k
, for γ < 2

1 − (1 − k2−γ)k, for γ > 2
(12)

For γ ≤ 2 both low and high degree nodes always have a higher connected
neighbor. and for γ > 3 the high k nodes nearly never have a boss. For 2 <
γ < 3, low connected nodes often have no higher connected neighbors, but
as P(kneighbor > k) → 1 for increasing k there is a hierarchical core of highly
connected nodes. In popular terms, at these intermediate values of γ many
low degree nodes escape the hierarchy, while medium and highly connected
nodes have bosses. Above γ = 3, P(kneighbor > k) decreases to zero with
degree. Thus for these high values of γ a network becomes modular with
each of the modules centered around a local hub.

7. A communication perspective on network topology

A key feature of molecular as well as most other networks is that they define
the channels along which information flows in a system. Thus, in a typical
complex system one may say that the underlying network constrain the in-
formation horizon that each node in the network experience. This view of
networks can be formalized in terms of information measures that quantify
how easy it would be for a node to send a signal to other specific nodes in the

of bits of information required to transmit a message to a specific remote part
of the network, or reversely, to predict from where a message is received (see
Fig. 14).

In practice, imagine that you at node i want to send a message to node b in
a given network (left panel in Fig. 14). Assume that the message follow the
shortest path. That is, as we are only interested in specific signals we limit
ourselves to consider only this direct communication. If the signal deviate
from the shortest path, it is assumed to be lost. If there are several degenerate
shortest paths, the message can be sent along any of them. For each shortest
path we calculate the probability to follow this path, see Fig. 14. Assume that
without possessing information one would chose any new link at each node
along the path with equal probability. Then:

P{p(i, b)} =
1
ki

∏
j ∈ p(i,b)

1
k j − 1

, (13)

where j count all nodes on the path from a node i to the last node before the
target node b is reached. The factor k j − 1 instead of k j takes into account the

rest of the network (Sneppen et al. (2004)). To do this one count the number
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Figure 14. Information measures on network topology: Left panel: Search information
S (i → b) measures your ability to locate node b from node i. S (i → b) is the number of yes/no
questions needed to locate any of the shortest paths between node i and node b. For each such
path P{p(i, b)} = 1

ki

∏
j

1
k j−1 , with j counting nodes on the path p(i, b) until the last node

before b. Right panel: Target entropy Ti measures predictability of traffic to you located at
node i. ci j is the fraction of the messages targeted to i that passed through neighbor node j.

information we gain by following the path, and therefore reduce the number
of exit links by one. In Fig 14 we show the subsequent factors in going along
any of the two shortest path from node i to node b. The total information
needed to identify one of all the degenerate paths between i and b defines the
“search information”

IS (i → b) = −log2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
p(i,b)

P{p(i, b)}
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (14)

where the sum runs over all degenerate paths that connect i with b. A large
IS (i → b) means that one needs many yes/no questions to locate b. The
existence of many degenerate paths will be reflected in a small IS and conse-
quently in easy goal finding.

The value of IS (i → b) teaches us how easy it is to transmit a specific
message from node i to node b. To characterize a node, or a protein in a
network, one may ask how easy is it in average to send a specific message
from one node to another in the net:

A(i) =
∑

b

IS (i → b) (15)
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Figure 15. Examples of goal finding in different simple networks. Here S is short for the IS

used in text. The twoupper networks is networks where it is particularly easy to locate a given
target node. In contrast, the hierarchy in bottom is a network where it is only easy to locate a
target node, if you start at the top.

The overall ability for specific communication

IS =
∑

i

A(i) =
∑
i,b

IS (i → b) (16)

In a figure we investigate a few networks, and illustrate what high and low IS

means. In terms of degree distribution, then

IS ≈
∑
i,b

βilog(ki) (17)

where β is the betweenness of a node, counting the number of times it is used
in paths between other nodes. As betweenness of high degree nodes typically
are large, we get

IS (scale − f ree) > IS (Erdos − Reynei) (18)

We will now see than real networks further tend to place the hubs, such that IS

gets even larger. Thus we compare with the value IS (random) obtained for a
randomized network, maintaining degree distribution. In Fig. 16 we plot the
Z score defined as

Z =
IS − 〈IS (random)〉√〈IS (random)2〉 − 〈IS (random)〉2

(19)
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for the protein-protein network for both yeast (Sacromyces Cerevisia) (Uetz
et al. 2000 and Ito et al. 2001) and fly (Drosophilia) (Giot et al. 2003) as
well as for the hardwired Internet and a human network of governance (CEO)
defined by company executives in USA where two CEO’s was connected by a
link if they are members of the same board. One sees that IS > IS (random)
for most networks, except for the fly network. Thus most networks have a
topology that tends to hide nodes.

In Fig. 16 we also show another quantity, the ability to predict from
which of your neighbors the next message to you will arrive from. This quan-
tity measures predictability, or alternatively the order/disorder of the traffic
around a given node i. The predictability based on the orders that are targeted
to a given node i is

IT (i) = −
ki∑

j=1

ci jlog2(ci j), (20)

where j = 1, 2..., ki denotes the links from node i to its immediate neighbors
j and ci j is the fraction of the messages targeted to i that passed through node
j.

Notice that IT is a measure of order in the network. In analogy with the
global search information IS one may also define overall predictability of a
network

IT =
∑

i

IT (i) (21)

Z score
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Figure 16. Measure of communication ability of various networks (Rosvall et al. (2004)).
A high Z-score implies relatively high entropy. In all cases we show Z = (I − Ir)/σr for
I = IS and IT , by comparing with Ir for randomized networks with preserved degree dis-
tribution. σr is the standard deviation of the corresponding Ir, sampled over 100 realizations.
Results within the shaded area of two standard deviations are insignificant. All networks have
a relatively high search information IS . The network of governance CEO show a distinct
communication structure characterized by local predictability, low IT , and global inefficiency,
high IS .
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This quantity is large for Erdos-Reynei networks, and smaller for scale
free networks, thus presenting an intuitively right measure for order in net-
work topologies. For a given networkIT may subsequently be compared with
its random counterpart (keeping degree distribution). In general as the orga-
nization of a network gets more disorganized IT increases and the number
of hubs with disordered traffic increases. Also, as one consider networks with
increasing value of IT , nodes of low degree tend to be positioned between
the hubs.

In summa, networks are coupled to specific communication and their
topology should reflect this. The optimal topology for information transfer
relies on a system-specific balance between effective communication (search)
and not having the individual parts being unnecessarily disturbed (hide).

8. Communication and Structure in Social Networks

In a society the information horizon is set by each individual’s social contacts,
which in turn is a part of the global network of human communication. One
simple goal for individuals is to be central. Thus we here investigate a model
for a society where players try to be as close as possible to everybody else by
moving their social connections. Local communication gives rise to global or-
ganization. Communication and not correctness appears as a success-strategy
for individuals.

In other words we explore the local dynamic origin of global network
organization by modeling response to information transfer in a simplified
social system. The scenario is a set of players, that each tries to be as close
as possible to everybody else. The players adjust their social connections to
achieve this goal, guided by a limited knowledge about the individual players’
positions in the network. The finite information is in turn obtained by local
communication. When local communication is weak, the system disorganizes
into a highly dynamic and chaotic network where no single player is domi-
nating the system, see Fig. 17. In network language, the degree distribution

Imperfect
information

Figure 17. In a perfect world, a single vertex that can differentiate all exit edges from
each other might distribute all tasks and information efficiently. In real world networks, no
perfect “distributor” exists: even when every vertex “tries” to minimize its distances to all
other vertices, typical vertices tend to connect through more than one intermediate. Imperfect
information destabilize the central hub.
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Figure 18. Illustration of social model, where agents optimize their position based on in-
formation obtained through communication with other agents. Versions of the model can be
studied in java applets on cmol.nbi.dk.

is narrow, or in technical words exponential. On the other hand, when local
communication is strong, the system organizes into a coherent structure dom-
inated by a central hub that remains indefinitely frozen. In between, there is a
critical transition in the dynamics where no hubs take over for ever, and where
at the same time the network has players with all types of connectivities. The
network is scale-free and furthermore hierarchical, in a way that resembles

Every agent has a memory that corresponds to a rough picture of the net-
work, see Fig. 18. The memory consists of an estimated shortest path length
to any other agent in the network and the direction of the path in the form
of the nearest neighbor on the corresponding path. By successive rewiring
attempts the agents try to optimize their positions, that is, minimizing the
distances to other agents. After a successful rewiring the agents in the local
neighborhood of the rewiring (3 agents are involved) are allowed to “chat”
with each other to update their information of the network. The conversation
corresponds to a comparison of a fraction S of the two nearest neighbors’
memories. If a neighbor provides shorter paths to some agents, the agents

the Internet and often social and biological networks.
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adapt the new paths. The correctness of the information the agents have about
the system can accordingly be adjusted by the parameter S (0 ¡ S ¡ 1). A small
S results in bad information and the rewiring is close to random and no agent
can survive as a hub with many links for a long time. A high S results in good
information, the agents’ memories give a good picture of the network, and an
agent can survive as a hub for a long time since this topology minimizes the
path lengths for agents in the network.

Given the fixed number of edges, the hub structure is the core of any
network where distances is truly minimized. However, in practice each vertex
may have only limited information about the location of other vertices. When
changing their neighbors by moving links from one vertex to another, they
may make mistakes, e.g. because of their limited local information. This
will destabilize the centralized hub, and may lead to a distributed network
as shown in right panel of Fig. 14.
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Figure 19. Vertex degree distribution of the evolved network with 4 levels of information
exchange: no information between i and k in (iii,iv), full information in (iii) with respectively
and S = 0, S = 0.1 and S = 1.0 in (iv). In all lower cases we sample dynamics of an N = 1000
vertex system with E = 1500 edges (〈C〉 = 3). The plots show average of many samples. The
upper graphs show the corresponding networks for size N = 100.

In detail, the agent based model consists of different agents have different
and adjustable memories. Every agent, named by a number i = 1, 2, 3 . . . n,
is a vertex in a connected network that consists of N vertices and E edges.
Agent i has a memory

Mi =

{
Di(l)
Pi(l)

, l = 1, 2, . . . , i − 1, i + 1, . . .N,

with N − 1 distances D and pointers P to the other agents in the network.
The distance Di(l) is agent i’s estimated shortest path length to l. The pointer
Pi(l) is agent i’s nearest neighbor on the estimated shortest path to l. Thus
Mi may be seen as a simplified version of the gateway protocol used by the
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autonomous systems to direct transmission of E-mails across the hardwired
internet. Here, however, the memory will be used to rewire edges in the
network.

Initially the network is a hub of the N − 1 agents connected to a center
agent by N −1 edges (as in Fig. 1, left) plus E−N +1 randomly placed edges
on the periphery of the “hub”. The rewiring consists of three steps:

(i) An agent i and one of its neighbors j is chosen randomly.

(ii) An agent l � i, j is chosen randomly and if Di(l) > D j(l) then the
edge between i and j is rewired to an edge between i and k = P j(l). If l
did not satisfy the above criteria a new l is randomly chosen. If no such
l exists the rewiring is aborted.

(iii) The information i has lost by disconnecting j is replaced by infor-
mation from k. Further, there is full exchange of information between i
and k: If agent k list a shorter path to some other agents, then i adopts this
path with a pointer to k. Similarly for k, if agent i list a shorter path then
k adopts this path through i. The information j has lost by disconnecting
i is replaced by letting agent j change all its previous pointers toward i
to pointers toward k and add 1 to the corresponding distances.

The model defines an update of both the network (ii) and the information (iii)
that agents in the network have about each other’s locations. The step (ii) rep-
resents local optimization where agent i rewire from j to k with a probability
given by the fraction of the network which is estimated to becomes closer.
We stress that only a small part of the system is informed about a changed
geometry, and that decisions on moves may be based on outdated information.
When repeated many times the model leads to a break down of the central hub
into a steady state ensemble of networks with a broad distribution of vertex
degrees.

very broad, in fact close to the Zipf law 1/C2 reported for some real world
networks as well as for the size distributions of industrial companies. How-
ever there is correction to scaling at intermediate and large vertex degrees.
This limitation of the model can be removed by increasing the information
between agents during the rewiring. In particular we introduced a parameter S
for information exchange between agent j and agent k in the above algorithm
by adding a fourth step:

Figure 19 show that the degree distribution for vertices in the network is
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(iv) j consider a fraction S of the information it has stored with a pointer
toward k. For this fraction it is checked whether k list a shorter path than
j. For each path where this is the case, the memory of k is used to update
the memory of j.

The number of links in the network play a similar role as the information
exchange rate S. With many links in the system the agents suffer from their
limited information horizon and get messed up by all the links. With added
links an increased S is accordingly necessary to obtain a similar topology
as for a network with less links. On a transition line between the chaotic,
highly dynamic and “confused” state (typically low S and many links) and
the ordered and one-hub dominated frozen state (typically high S and few
links) the degree distribution is broad, in fact of scale-free form.

Scale free networks here appear at critical conditions between a frozen
(hub dominated) and a chaotic (Erdos-Reynei) stage.

9. Networks in molecular biology

Cells are controlled by the action of molecules upon molecules. Receptor
proteins in the outer cell membrane, sense the environment and may sub-
sequently induce changes in the states of specific proteins inside the cell.
These proteins then again interact and convey the signal further to other
proteins, and so forth, until some appropriate action is taken. The states of a
protein may for example be methylation status, phosphorylation or allosteric
conformation as well as sub-cellular localization. The final action may be
transcription regulation, thereby making more of some kinds of proteins, it
may be chemical, or it may be dynamical.

Molecular networks are typically directed, consisting of proteins that reg-
ulate activity or production of other proteins. In Fig. 20 we illustrate two
basic regulatory mechanisms in the genetic regulation of protein production,
respective a positive (activation) and a negative (repression) one.

As for social or computer networks, the molecular networks are the back-
bone for information across complex systems. The interactions in molecular
networks are obviously different from interactions in the other networks, i.s.
they are constrained to the basic rule of binding and unbinding reactions in
chemistry. When understanding molecular networks it is thus important to
quantify the dynamics associated to possible reactions:

� A negative regulation may be mere inhibitive for the production, it may
be blocking activity through binding or it may direct the degradation of
the regulated protein.

� A positive regulation may activate production, it may change the protein
property through f.ex. phosphorylation and thus instantly activate hidden
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In Fig. 21 we show different strategies for regulating the concentration
of a protein. In all cases the external regulation is taking place through a
change in c, that typically will represent either a protein or a change in bind-
ing constant. The shown strategies may be combined, for example may a
given protein be both positively regulated by another protein, and negatively
auto-regulated by itself.

Comparing the regulations in Fig. 21 one sees that protein degradation
(for negative), and translation control (for positive regulation) provides the
most dramatic change in protein concentration. In accordance with this ob-
servation, it is typically these types of interactions on find in relation to stress
responses, as f.es. the heat shock (model see Arnvig et al (2000) or the the
unfolded protein response i yeast (see Cox & Walter (1996), Sidrauski et al.
(1997), and for model see Bock & Sneppen 2004).

Simple regulation may be combined to provide intricate complete organ-
ism networks, as indeed illustrated by the yeast network in beginning of this
section. A particularly simple organism is the 186 phage or the lambda phage,
see Fig. 22. Such networks exhibit many of the features found in the larger
network as for example the presence of hubs. In addition they provide a
possibility to address the reason for the hubs, which in case of the phages

reservoir of passive proteins. Also on fast timescale, it may activate a
hidden reservoir of passive mRNA and thereby lead to a sudden burst in
protein production.

Figure 20. Positive and negative regulation by a transcription factor (TF).The positive regula-
tion is through a binding between the TF and the RNAp, that increases the chance that RNAp
binds to the promoter that is shown as medium dark region on the DNA strand. Negative
regulation occur when the operator is placed such that the bound TF prevents the RNAp
from binding to the promoter. On the rightmost panels we show how one typically draw the
elementary regulation in as an arrow in a regulatory network.
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Figure 21. Some ways to regulate the concentration of a protein (p), through respective
negative and positive control, and through respective transcription regulation and something
faster (from Bock & Sneppen (2004)). The upper panels is the simplest regulation option,
where c simply regulate transcription of mRNA for p. In this simplest case the time to obtain
new steady state is set by degradation rate of p. Fast regulation and eventual overshooting is
obtained when one use active degradation (lower left), respective translational control (lower
right). m in lower right panel is inactive mRNA for protein p, and it has a regulated conversion
time to an active but fast decaying active form.
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Abstract. The community structure in complex networks has been a popular topic in recent
literature. It is present in all types of complex networks ranging from bio-molecular networks,
where it reflects functional associations between proteins to information networks such as
the The World Wide Web (WWW). The World Wide Web – a quintessential large complex
network – presents formidable challenge for the efficient information retrieval and ranking.
Google has reached its current position as the world’s most popular search engine by efficient
and ingenious utilization of topological properties of this WWW network for ranking of indi-
vidual webpages. The topological structure of the WWW network is characterized by a strong
community structure in which groups of webpages (e.g. those devoted to a common topic)
are densely interconnected by hyperlinks. We study how such network architecture affects the
average Google ranking of individual webpages in the community. We demonstrate that the
Google rank of community webpages could either increase or decrease with the density of
inter-community links depending on the exact balance between average in- and out-degrees
in the community. The magnitude of this effect is described by a simple analytical formula
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and subsequently verified by numerical simulations of random scale-free networks with a
desired level of the community structure. A new algorithm allowing for generation of such
networks is proposed and studied. The number of inter-community links in such networks is
controlled by a temperature-like parameter with the strongest community structure realized in
“low-temperature” networks.

Networks have recently emerged as a unifying theme in complex systems
research. It is in fact no coincidence that networks and complexity are so
heavily intertwined. Any future definition of a complex system should reflect
the fact that such systems consist of many mutually interacting components.
These components are far from being identical as say electrons in systems
studied by condensed matter physics. In a truly complex system each of them
has a unique identity allowing one to separate it from the others. The very first
question one may ask about such a system is which other components a given
component interacts with? This information system-wide can be visualized as
a graph, whose nodes correspond to individual components of the complex
system in question and edges to their mutual interactions. Such a network
can be thought of as a backbone of the complex system. Of course, system’s
dynamics depends not only on the topology of an underlying network but also
on the exact form of interaction of components with each other, which can
be very different in various complex systems. However, the underlying net-
work may contain clues about the basic design principles and/or evolutionary
history of the complex system in question.

The World Wide Web (WWW) – a very large (∼ 1010 nodes) network
consisting of webpages connected by hyperlinks – presents a challenge for
the efficient information retrieval and ranking. Apart from the contents of
webpages, the topology of the network itself can be a rich source of infor-
mation about their relative importance and relevance to the search query. It
is the effective utilization of this topological information [1] which advanced
the Google search engine to its present position of the most popular tool on
the WWW and a profitable company with a current market capitalization over
100 billion dollars . To rank the importance of webpages Google simulates
the behavior of a large number of “random surfers” who just follow a ran-
domly selected hyperlink on each page they visit. The number of hits a given
page gets in the course of such simulated process determines its ranking. It is
intuitively clear that the larger is the number of hyperlinks pointing to a given
webpage (its in-degree in the network) the higher are the chances of a random
surfer to click on one of them and, therefore, the higher would be the result-
ing Google rank of this webpage. However, the algorithm goes beyond just
ranking nodes based on their in-degrees. Indeed, the traffic directed to a given
webpage along a particular incoming hyperlink is proportional to the popular-
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ity of the webpage containing this link. Therefore, the Google rank of a node
is given by the weighted in-degree where the weight of each neighboring
webpage reflects its importance and is determined self-consistently.

The WWW is a very heterogeneous collection of webpages which can be
grouped based on their textual contents, language in which they are written,
the Internet Service Provider (ISP) where they are hosted, etc. Therefore, it
should come as no surprise that the WWW has a strong community structure
[2] in which similar pages are more likely to contain hyperlinks to each other
than to the outside world. Formally a web community can be defined as a
collection of webpages characterized by a higher than average density of
links connecting them to each other. In this letter we are going to address
the question: how the community structure affects the Google rank of web-
pages inside the community. One might naively expect that the community
structure always boosts the Google rank of its webpages as it tends to “trap”
the random surfer inside the community for a longer time. However, it turned
out that it is not generally true. In fact the Google rank of community web-
pages could either increase or decrease with the density of inter-community
links depending on the exact balance between average in- and out-degrees in
the community. In the heart of the Google search engine lies the PageRank
algorithm determining the global “importance” of every web page based on
the link structure of the WWW network around it. While the details of the
algorithm have undoubtedly changed since its introduction in 1997, the cen-
tral “random surfer” idea first described in [1] remained essentially the same.
To a physicist the algorithm behind the PageRank just simulates an auxiliary
diffusion process taking place on the network in question.

Similar diffusion algorithms have been recently applied to study cita-
tion and metabolic networks [4] and the modularity of the Internet on the
“hardware level” represented by an undirected network of interconnections
between Autonomous Systems [5]. A large number of random walkers are
initially randomly distributed on the network and are allowed to move along
its directed links. As in principle some nodes in the network could have zero
out-degree but non-zero in-degree and would thus “trap” random walkers, the
authors of the algorithm introduced a finite probability α for a surfer to ran-
domly select a page in the network and directly jump there without following
any hyperlinks. This leaves the probability 1 − α for a surfer to randomly
select and follow one of the hyperlinks of the current webpage. According
to [3] the original PageRank algorithm used α = 0.15. The PageRank then
simulates this diffusion process until it converges to a stationary distribution.
The Google rank (PageRank) G(i) of a node i is proportional to the number of
random walkers at this node in such steady state. We chose to normalize it so
that
∑

i G(i) = N, where N is the total number of nodes in the network, but in
general the normalization factor does not matter as ranking relies on relative
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values of G(i) for different webpages. When one enters a search keyword
such as e.g. “statistical physics” on the Google website the search engine first
localizes the subset of webpages containing this keyword and then simply
presents them in the descending order based on their PageRank values. The
main equation determining the PageRank values G(i) for all webpages in the
WWW is

G(i) = α +
∑
j→i

(1 − α)
G( j)

Kout( j)
. (1)

Here Kout( j) denotes the the number of hyperlinks (the out-degree) in the
node j and the summation goes over all nodes j that have a hyperlink pointing
to the node i. In the matrix formalism the PageRank values are given by the
components of the principal eigenvector of an asymmetric positive matrix
related to the adjacency matrix of the network. Such eigenvector could be
easily found using a simple iterative algorithm [3]. The fast convergence of
this algorithm is ensured by the fact that the adjacency matrix of the network
is sparse. We first consider the effect of the community structure on Google
ranking in the simplest and most physically transparent case of α = 0. In
order for the algorithm to properly converge in this case we need to assume
that Kout(i) > 0 for all nodes in the network.

Consider a network in which Nc nodes form a community characterized
by higher than average density of edges linking these nodes to each other. Let
Ecw denote the total number of hyperlinks pointing from nodes in the commu-
nity to the outside world, while Ewc - the total number of hyperlinks pointing
in the opposite direction (See Fig. 1 for an illustration). Similarly Ecc and Eww

denote the total number of links connecting nodes within the community and,
respectively, the outside world. The total number of hyperlinks pointing to
nodes inside the community is given by Ecc +Ewc = Nc〈Kin〉c where 〈Kin〉c is
the average in-degree of community nodes. Similarly, Ecc +Ecw = Nc〈Kout〉c,

Figure 1. The illustration of hyperlink connections between the community C and the outside
world W. Ecw and Ewc are numbers of links from the community to the outside world and from
the outside world to the community, respectively.
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where 〈Kout〉c is the average out-degree in the community, gives the total
number of hyperlinks originating on community nodes. The Google rank
is computed in the steady state of the diffusion process where the average
number of random surfers currently visiting any given webpage does not
change with time. This means that the total current of surfers Jcw leaving the
community for the outside world must be precisely balanced by the current
Jwc entering the community during the same time interval. Let Gc = 〈G(i)〉i∈C

denote the average Google rank inside the community given by the average
number of random surfers on its nodes. If edges pointing away from the
community to the outside world start at an unbiased selection of nodes in
the community the average current flowing along any of those edges would
be given by Gc/〈Kout〉c while the total current leaving the community Jcw =

EcwGc/〈Kout〉c. Similar analysis gives Jwc = EwcGw/〈Kout〉w, where 〈Kout〉w
is the average out-degrees of nodes in the world outside the community.
Balancing these two currents one gets:

Gc

Gw
=

Ewc

Ecw
· 〈Kout〉c
〈Kout〉w . (2)

The Eq. 2 is based on a mean-field assumption that average values of the
Google rank and the out-degree on those community nodes that actually send
links to the outside world are equal to their overall average values inside the
community [6]. It is tempting to assume that higher than average density of
hyperlinks connecting nodes in the community is beneficial for the Google
rank of its nodes as it “traps” random surfers to spend more time within the
community. It turned out that this naive argument is not necessarily true. In
fact one is equally likely to observe an opposite effect: an excess of intra-
community links could lead to a lower than average Google rank of its nodes.
To see it explicitly one should replace Ewc and Ecw in Eq. 2 with identical
expressions 〈Kin〉cNc − Ecc and 〈Kout〉cNc − Ecc respectively:

Gc

Gw
=

( 〈Kin〉cNc − Ecc

〈Kout〉cNc − Ecc

)
· 〈Kout〉c
〈Kout〉w . (3)

From this equation it follows that enhancing the community structure (in-
creasing Ecc) while keeping other parameters such as 〈Kin〉c,〈Kout〉c and〈Kout〉w
fixed can be both good and bad for the average Google rank of the community
webpages. It depends on 〈Kin〉c/〈Kout〉c – the ratio between average in- and
out-degrees of community nodes. If the ratio is less than 1 the increase in Ecc

leads to a further decrease of Gc/Gw below one. If the community constitutes
just a small fraction of the whole network one could safely assume that Gw

remains approximately constant so that the average Google rank of the com-
munity, Gc, has to decrease. Similarly if the ratio is larger than 1, Gc grows
with the number of inter-community links Ecc (see Fig. 2 for an illustration
of both cases).
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Figure 2. The ratio of average Google ranks in the community and the outside world
Gc/Gw as a function of Ecc – the number of intra-community links – in two series of model
networks with varying degree of community structure. Open circles correspond to a ben-
eficial effect of the community structure on Google ranking in a scale-free network with
〈Kout〉c = 5.24 < 〈Kin〉c = 5.9. On the other hand, filled squares show a detrimental effect
in another series of networks where 〈Kout〉c = 5.6 > 〈Kin〉c = 4.8. Solid lines are fits with
the Eq. 3 with a given set of parameters for each of the networks. All networks with 10, 000
nodes have a community of 500 nodes were generated by the Metropolis rewiring algorithm
described later on in the text.

The real-life Google algorithm uses a non-zero value of α  0.15. In this
case one needs to consider the contribution to currents Jcw and Jwc due to
surfers’ random jumps that do not follow the existing hyperlinks. The total
number of random walkers residing on the nodes inside the community is
GcNc and the probability of them to randomly jump to a node in the outside
world is Nw/(Nc + Nw). So the contribution to the outgoing current due to
such jumps is given by αGcNcNw/(Nc + Nw) which for Nc � Nw can be
simplified as αGcNc. The total outgoing current then can then be written as
Jcw = (1 − α)GcEcw/〈Kout〉c + αGcNc. Similarly the incoming current Jwc is
given by (1 − α)GwEwc/〈Kout〉w + αGwNc. The Eq. 2 remains valid for α > 0
if one replaces Ewc and Ecw with “effective” numbers of edges E∗

wc and E∗
cw

given by

E∗
cw = Ecw(1 − α) + Nc〈Kout〉cα ;

E∗
wc = Ewc(1 − α) + Nc〈Kout〉wα . (4)

These effective numbers take into account contributions to both currents due
to random jumps.

For numerical studies of networks with a community structure we pro-
pose a particular version of the Metropolis network rewiring algorithm [8].
It allows one to generate an ensemble of random networks with user-defined
in- and out-degree distributions as well as with any desired density of links
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Figure 3. The ratio of average Google ranks in the community and the outside world Gc/Gw

as a function of the ratio of effective numbers of links E∗
wc/E

∗
cw. As predicted by the Eq. 2

these two ratios are basically equal to each other. Different symbols correspond to series of

between pre-selected Nc “artificial community” nodes. It starts from a seed
network with the preferred (scale-free in our case) distributions of in- and
out-degrees [9] and proceeds by a sequence of edge-swapping steps changing
a pair of randomly selected edges A→B and C→D into A→D and C→B
correspondingly. The decision on whether to accept or reject an elementary
step depends on changes in the energy function H and the inverse temperature
β. For our purposes of generating networks with community structure we
choose H = −Ecc, where Ecc is the number of edges connecting pre-selected
community nodes to each other.

networks with scale-free distributions of in- and out-degrees: P(Kin) ∼ K−2.1
in

and P(Kout) ∼ K−2.5
out correspondingly. The exponents were selected to be

identical to their values in the actual WWW network [2, 7] and a community
structure was generated by the Metropolis algorithm described above.

The reciprocal temperature β used in the Metropolis algorithm indirectly
determines the number of links within the community. A network without
any community structure is realized at an infinite temperature (β = 0), while
the algorithm run at zero temperature (β = ∞) produces a network with the
largest possible number of links within the community. One could also run
the algorithm with β < 0. Negative values of β generate networks with an
anti-community structure in which the number of intra-community links is
lower than that in a random network. The relation between Ecc and β for both
positive and negative values of β is shown in Fig. 4.

networks described in Fig. 2.

Figure 3 shows the results of a numerical test of Eqs. 2, 4on modeldirected
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Figure 4. The number of intra-community links Ecc in networks generated by the rewiring
algorithm as a function of the inverse temperature β. Negative values of β correspond to
networks with anti-community structure and are generated by changing the sign in front of
the Hamiltonian H. The solid line is the fit with the analytical expression obtained by solving
the Eq. 5 for Ecc. The inset shows the same plot with a logarithmic scale of the Y-axis.

To analytically derive such relation we consider the detailed balance in the
steady state of the Metropolis rewiring algorithm, in which the probabilities
of an increase and a decrease in Ecc are equal to each other. It results in the
equation

EcwEwc = EccEwwe−β . (5)

Additional constraints (i) Ecc + Ewc = 〈Kin〉cNc (the sum of in-degrees of all
nodes within the community), (ii) Ecc + Ecw = 〈Kout〉cNc (the sum of out-
degrees of all nodes within the community) and (iii) Ecc + Ecw + Ewc = E
(the total number of edges in the network) plugged into the Eq. (5) result in
a quadratic equation for Ecc as a function of 〈Kin〉c, 〈Kout〉c, E, and β – the
parameters strictly conserved in our rewiring algorithm. The Fig. 4 compares
the analytical expression for Ecc(β) obtained by solving the Eq. 5 with nu-
merical simulations for different values of β. Clearly, Ecc increases with β in
general accord with the Eq. 5. When β is sufficiently large, Ecc exponentially
approaches a limiting value equal to min(〈Kin〉c, 〈Kout〉c)Nc – the minimal
number of links within a community given the set of in- and out-degrees
of its nodes. The deviations between the analytical formula and numerical
results visible for large values of β could be attributed to the “no multi-
ple edges” restriction in networks generated by our rewiring algorithm. As
the density of inter-community links increases more and more of rewiring
steps leading to an increase of Ecc are aborted as the new link they are at-
tempting to create within a community already exists. This situation is more
appropriately described by the following equation: EcwEwc(1 − Ecc/E)(1 −
Eww/E) = EccEww(1 − Ecw/E)(1 − Ewc/E)e−β, reminiscent of the detailed
balance equation in two-fermion scattering (see also [11]).
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ranking of its constituent webpages. The sign of this effect can be negative
as well as positive depending on the exact balance of links leading from the
community to the outside world and, conversely, from the outside world to

bers could boost the average Google rank of their webpages? Within our
framework there is one solution easily available to the community members:
they could collectively reduce the total number of links leading from their
pages to the outside world (here we assume that they have no direct control
over the number of links going in the opposite direction). It is interesting to
note that this prescription does not work on the level of individual webpages:
the Google ranking of a webpage is generally independent on the number
of hyperlinks it contains. We are currently investigating whether this simple
collective strategy was empirically discovered in the real WWW and what
other strategies WWW communities actually use to boost their ranking [12].

Work at Brookhaven National Laboratory was carried out under Contract
No. DE-AC02-98CH10886, Division of Material Science, U.S. Department
of Energy.
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THE SOS RESPONSE OF BACTERIA TO DNA DAMAGE  
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A variety of sources such as radiation, chemical mutagens and products of 
metabolism induce damage to the genomes of organisms very often, from 
bacteria to man. Damage can be fatal for the organism since it can prevent 
DNA replication, and thus cell division. Evolution has given rise to 
elaborate mechanisms to either repair or bypass this damage. Upon 
encountering damage to their genomes, bacteria such as E. coli respond by 
activating the SOS network, consisting of about forty genes whose task is to 
repair/bypass the DNA damage, in order to enable DNA replication. The 
SOS genetic network deploys a variety of specific functions such as 
detecting damage, repairing it correctly by nucleotide excision (the NER 
mechanism) or by recombination, and if these functions do not succeed, 
bypassing damage by mutagenesis. The activation of all these functions 
requires a high degree of coordination and regulation, whose understanding 
is poor in spite of decades of study. I will survey recent findings in which 
the execution of the response was followed at the level of individual cells. 
These findings illuminate certain aspects of the concerted response, which 
are inacccessible to techniques in which large cell ensembles are 
interrogated. In particular, the findings show that the response exhibits 
highly precise modulations in the activation of a number of gene promoters, 
modulations which posess a digital character. Importantly, the precise 
timing mechanism responsible for the modulations is independent of the 
cell cycle, the main built-in clock of the cell. Genes responsible for the 
precision are identified. I will also highlight the importance of this network 
as one of the main forces driving the evolution of bacterial genomes.  
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1. Introduction 

DNA, the repository of all the information needed to encode an organism 
and the proteins that enable it to live is very often under attack. Damage to 
DNA can come from a variety of sources such as UV light the organism is 
exposed to, an assortment of chemicals that the organism ingests or breaths, 
and even products of the organism's own metabolism such as oxygen 
radicals. Lesions on the DNA may be lethal to a cell: they halt the DNA 
replication machinery, preventing the duplication of genetic information 
and cell division. In higher organisms, lesions may also cause cancer.  

In order to survive, evolution has selected for mechanisms that help 
organisms to overcome DNA damage, by either repairing it, or by 
bypassing it. In the case of bacteria such as Escherichia coli, the set of 
genes comprising a genetic network in charge of this is known as the SOS 
response [1]. The SOS network consists of nearly forty genes documented 
today, not all of whose function has been completely elucidated [2]. There 
are also recent hints that RNA may control certain aspects of the response. 
A considerable amount of control of the response is also carried out at the 
level of protein-protein interactions. The proteins encoded by these genes 
carry out a variety of functions, serving as detectors of damage, fixing the 
damage exactly and if this cannot be done, then replicating DNA over the 
lesion, in order to enable DNA replication to restart, thus enabling the cell 
to divide. There are also mechanisms which prevent cell division until 
repair/bypass have been accomplished, and mechanisms to shut off the 
response. In these set of lectures I will provide glimpses of how the SOS 
network works, illustrating the use of following gene expression at the level 
of single cells. A full account of the experiments will be published 
elsewhere [3]. More complete reviews of the SOS response are available 
[1]. These experiments reveal aspects of the network's performance that are 
not accessible to techniques in which large ensembles of cells are 
interrogated. One must not forget that ultimately, proteins act at the 
molecular level. I will therefore also illustrate the complexity of the 
response at this level, by presenting a birds eye view of recent findings 
about a protein complex playing a key role in the network: the RuvAB 
complex [4].  

1.1. DETECTION OF DNA DAMAGE AND THE EVENTS THAT ENSUE 

Under normal conditions, when a cell is healthy and its DNA is intact, the 
cell does not need to engage upon wasteful synthesis of proteins needed for 
repairing or bypassing lesions. The genes encoding these proteins are 
therefore downregulated, by a master repressor protein called LexA. Things 
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change when damage occurs. Damage is detected during DNA replication, 
when the accurate DNA polymerase encounters a lesion. Lesions are 
detected fast: a DNA polymerase complex translocates at a rate of about 
1000 bp/sec. A concerted chain of events then ensues, that allows repair 
genes to be expressed and carry out their function. The story goes more or 
less like this. 

A variety of agents such as UV or high energy radiation may give rise 
to lesions on the DNA such as dimerization of neighbouring pyrimidines. 
Upon encountering such a lesion, the highly accurate replication machinery 
of the cell at a replication fork comes to a halt. One important consequence 
of halting is that a tract of single-stranded DNA is exposed without being 
replicated. Single-stranded DNA is prone to attack and the cell quickly 
covers it with an important protein called RecA, which polymerizes along 
the single-stranded DNA substrate. This polymerization enables RecA to 
function as a coprotease: it greatly increases the inherent tendency of the 
LexA repressor to auto cleave. As we will see later, the RecA-DNA 
filament used to trigger the SOS response is also endowed with other 
important functions [5]. If the LexA pool decreases enough, then repair 
genes begin to be expressed [6]. Genes in the SOS network have LexA 
boxes at their promoters, with a consensus sequence. There are slight 
variations in the sequence of these boxes, with a consequent difference in 
the affinity of LexA. Genes or operons with weak boxes are expressed 
earlier than those with strong boxes. I will now sketch some of the 
important functions in repair and damage bypass, and refer the reader to 
more extensive reviews of the SOS response in the literature. 

1.2. DIFFERENT MECHANISMS FOR REPAIR 

One of the earliest expressed set of genes are the uvr genes, which encode 
for proteins which carry out nucleotide excision repair (NER). These 
proteins detect the damage on one strand, and excise it together with 
neighbouring bases on the same strand. The gap is quickly filled by DNA 
polymerases which leave the DNA intact, as if damage had not occurred. 
NER is by far the dominant repair mechanism. About 85% of lesions are 
repaired this way. Some lesions either escape NER, and another repair 
mechanism then sets in: recombination. Recombination is also carried out 
by RecA. The RecA on the RecA-DNA filament formed during the initial 
stages of the SOS response catalyses first the pairing of the single-stranded 
DNA in the filament with duplex DNA, one strand of which bears 
homology to the single-stranded DNA. After the homologous tract has been 
found, RecA catalysis strand exchange. 
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There are situations however when both NER and recombination fail to 
repair lesions on the DNA, and as a last resort, replication is restarted at a 
stalled fork, but at a price: mutagenesis. A special DNA polymerase, PolV, 
encoded by the processed products of the umuDC operon, carries out 
replication past the lesion, but in an inaccurate fashion [7,8]. It may 
introduce wrong nucleotides, and therefore mutations. PolV is formed when 
the UmuD protein undergoes cleavage, again by the RecA filament, to form 
UmuD'. Two of these molecules associate with UmuC, thus forming PolV. 
After a few nucleotides have been added PolV is replaced by the accurate 
PolIII DNA polymerase and the replication fork continues advancing until 
the next lesion is encountered.  

The events described above must occur before cell division. A healthy 
E. coli cell divides every ~25 min. Naturally, dealing with lesions takes 
time, and cell division must be prevented before repair/bypass have been 
accomplished succesfully. This is carried out by another SOS protein, SulA, 
which inhibits the function of proteins involved in the mechanics of cell 
division. 

Lastly, after successful repair of DNA damage, the LexA concentration 
must be restored in order to shut off the SOS network. There are a number 
of proteins suspected of playing roles in the shutoff. One of them is DinI, 
whose structure bears some resemblance with DNA [9]. It is believed that 
this structure enables it to interact with the RecA filament, inhibiting its 
function both as a protease and a recombinase. However there are other 
proteins which may also play a role, such as RecX [10], whose functions 
have not been fully elucidated. 

The picture that emerges from the above description of the SOS 
response is that provided enough lesions on the DNA exist to activate it, a 
promoter of the network would be expected to exhibit a singly-peaked 
activation response. 

2. Study of the SOS network by single cell experiments 

While a considerable amount of information has been amassed over the 
years on the SOS network and the biochemistry of its components, not 
much is known about the coordination of its onset, progression through the 
different repair mechanisms and final shutoff. One problem that has 
impeded advance in this direction is that experiments are typically carried 
out with large ensembles of cells, in which one measures only an average 
response. Experiments monitoring gene expression in single cells may 
provide a wealth of new information and a new window at how the network 
operates, by enabling the study of deviations from the average response. 
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Our experiments on the SOS network were performed using 
fluorescence techniques [3]. In brief, plasmids encoding for the green 
fluorescent protein (GFP), fused to one of the SOS promoters was 
introduced into E. coli cells, with about 10 plasmids per cell. Expression of 
GFP allowed to obtain the activity of the particular promoter on the 
plasmid, by the following procedure: the total fluorescence intensity I(t) at a 
given time t emitted by a cell, as well as its length L(t) are measured. The 
activity of the promoter is then given by: 

� � � � � � � �� �tLtI
tL

tPA dt
d1�  

Cells were then irradiated in situ by UV light in order to induce DNA 
damage in a controllable fashion, and observed with a home-made 
microscope held at 37 oC, both by dark field and fluorescence techniques. 

3. Results 

Typical curves of promoter activity of pRecA over time in individual cells 
are shown in Fig. 1, for UV doses of 10 and 20 J/m2. At 10 J/m2 the 
response is induced in many cells but not in all. Cells in which the response 
is induced fail to divide when their length is about four times their 
diameter, as healthy cells do. Instead they form long filaments due to the 
action of the SulA protein, that prevents cell division until repair has been 
accomplished. As the damage dose increases, less and less cells reach the 
stage when they are able to divide again. As in the case of Fig. 1 (left), most 
of the cells in which the response is induced exhibit a single peak of RecA 
activation, but a few exhibit a second peak as well. In contrast, the 20 J/m2 
dose is high enough to activate the SOS response in practically all cells, but 
low enough not to lead to cell death in the large majority of cells. The 
activity is noticeably modulated and three peaks can be discerned, 
appearing at times T1, T2 and T3. The activity at each peak is plotted as a 
function of the time of its appearance for many cells in Fig. 2 for both 
doses.  
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Figure 1. Normalized promoter activity PA/PA0 as a function of time from the recA 
promoter, measured in two individual cells irradiated at 10 J/m2 (left) 20 J/m2 (right).  

 
The data form three well-defined clusters, whose amplitude variation is 

larger than the temporal one. Part of the amplitude variation is due to the 
20% variation in the plasmid copy number per cell. Note that cells with 
slightly higher T1, have a corresponding higher T2 and T3. A full statistical 
analysis of data obtained at different doses shows that as the damage dose is 
increased, the modulations appear at longer times [3]. For example, at 35 
J/m2 the first peak appears after 40 min instead of at 29 min at 20 J/m2. One 
can also monitor the rate at which the cell size grows. The data also shows 
that this rate slows down considerably with increasing dose: while 
irradiated cells divide every 30 min, cells irradiated at 50 J/m2 show a 
doubling time above 100 min. Hence DNA damage slows down all the 
cell's metabolism. 

Importantly, the cell cycle of the cells was not synchronized before the 
cells were irradiated (for about 15 sec). Thus there is a highly precise 
timing device as part of the SOS genetic network, which is independent of 
the cell cycle. In spite of this precision, it is interesting to note that the 
modulations in promoter activity have not been observed in bulk 
experiments probing a large ensemble of cells. The varying amplitude of 
the peaks between cells, the spread in the timing of their appearance 
account partly for this. However, other factors such as inhomogeneous 
induction due to absorption of UV light when cells are irradiated in bulk 
may also lead to considerable spread in timing, averaging out the peaks. 
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Figure 2. Quantitative analysis of the oscillatory behavior. Normalized amplitudes of the 
peaks in promoter activity of recA are plotted as function of peak time for individual cells 
irradiated with a UV dose of 10 J/m2 (left) and 10 J/m2 (right).  

 
The behavior described above is not limited to the pRecA promoter. 

Indeed, experiments carried out with the pLexA and pUmu promoters 
exhibit similar modulations in promoter activity (those of the pUmu 
promoter appear at somewhat longer times). These facts suggest that 
modulations in promoter activity are due to modulations in the 
concentration of LexA. An analysis of the data at different damage doses 
yields the following picture. When cells are irradiated with a lower dose, 10 
J/m2, most cells exhibit a first peak, few exhibit a second peak and almost 
none a third one. Conversely, when cells are irradiated with a higher dose, 
20 J/m2, practically all cells exhibit three peaks. Note also that the 
amplitude of the three modulations rapidly becomes saturated with UV 
dose. Hence the SOS network was designed by evolution to respond 
"digitally": the number of modulations but not their amplitude increases 
with increasing DNA damage. 

How is time counted in the cell, how can one explain the high precision 
of the timing device, and which elements in the SOS network play a role?. 
It has been proposed by G. Walker and coworkers [11] that the products of 
the umuDC operon may act as a prokaryotic DNA damage checkpoint 
effecting a timed pause in DNA replication, in addition to their role as an 
error-prone DNA polymerase (PolV). Evidence has shown that UmuD, in 
its uncleaved form may delay the resumption of DNA replication, providing 
more time for NER to repair accurately as many lesions as possible. The 
inhibition of replication may occur for example by the direct interaction of 
UmuD with Pol III. The cleavage of UmuD by the RecA filament into 
UmuD' removes on one hand the replication block and by forming PolV, it 
helps in the resumption of replication by translesion synthesis. 
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 The findings by Walker suggested to us that the products of the umuDC 
operon may play a role in the modulations we observe. To test this 
hypothesis, we tampered with the umuDC operon. Our results with 
�umuDC, a mutant backround in which the umuDB operon was deleted, as 
well as with an uncleavable mutant of the UmuD protein (K97A) proved 
very revealing. Three salient features were observed: first, the second peak 
almost disappeared in both cases. Second, both the temporal variation in the 
first and third peaks was considerably larger than in the wild type. Third, 
the amplitude of the first peak depended on damage dose, contrary to the 
independence in the wild type. Hence the products of the umuDC operon 
play important roles in setting the precision of the timing device, and the 
digitality of the response. 

4. Summary and outlook 

DNA damage in organisms is very common, and is due both to 
environmental sources as well as internal ones such as products of 
metabolism. Genomic damage poses a big threat to life, and therefore 
evolution and natural selection have given rise to elaborate mechnisms for 
coping with it. In the case of bacteria, the SOS network is in charge of 
dealing with DNA damage. The experiments described above, which probe 
the response of the network at the level of individual cells, reveal a high 
level of regulation which is not limited to transcriptional control. An 
extensive set of interactions at the protein-protein level controls with high 
precision the temporal execution of the network's response, in a cell cycle-
independent fashion. Modulation in the activity of a number of promoters 
indicates that the activity is controlled by changes in the concentration of a 
global regulator, the LexA repressor. The experiments show that 
modulations are highly precise from cell to cell, in spite of noise sources 
such as fluctuations in the number of regulatory proteins. While the 
experiments did not identify each modulation with a particular function, 
they revealed that the products of the umuDC operon, which carry out 
various functions, are involved in the temporal control of the modulations, 
and in the presence of the second peak of activity. Interestingly, the cell 
responds "digitally" by increasing the number of modulations instead of 
increasing the amplitude of the response. Further investigations will study 
the effects of other genes, how is the response shut off, what is the origin of 
the modulations and many other questions. One can speculate as to the 
advantages of having digital behavior versus an analog one. For example, 
avoding too large a response amplitude may avoid an overshoot and make it 
easier for the response to shut off.  
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It is known that under adverse conditions, such as in the absence of 
nutrients, cells may enter a stationary phase, in which growth is very 
limited. Under these conditions, many physiological changes occur, and in 
some of the cells, the SOS response is induced. As a result of this, DNA 
polymerases other than the highly accurate PolII enter the fray. We've met 
one: PolV. But also PolII and PolIV are induced. These replicate DNA 
introducing errors, thereby allowing the cell to try new mutations that will 
enhance its survival under the new conditions. The study of mutagenesis 
during stationary phase is being currently carried out by many groups (see 
for example [12]), and it is expected that it will have a strong impact on the 
understanding of the evolution of microorganisms. 
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SELF-AFFINE SCALING DURING INTERFACIAL

CRACK FRONT PROPAGATION

Abstract. We have performed an experimental study of slow crack front propagation through
a weak plane of a transparent Plexiglas block. Spatial random toughness fluctuations along the
weak interface generate a rough crack line in pinning locally the crack front, and leads to an
intermittent dynamics of the crack front line. Using a high speed and high resolution camera
we are able to capture the features of this complex dynamics.

A new analysis procedure is proposed in order to measure the waiting time fluctuations,
and study the local burst dynamics and structure along the crack front during its propagation.
First, we confirm previous results [1]: the fracture front dynamics is governed by local and
irregular avalanches with very large size and velocity fluctuations, and can be described in
terms of a Family-Vicsek scaling with a roughness exponent ζ � 0.6 and a dynamic exponent
κ � 1.2. Then, focusing in particular on the avalanches structure, we show that the system
exhibits self-affine scaling with the same roughness exponent ζ for the local burst and the
fracture front line itself.

Keywords: Interfacial fracture, depinning transition, self-affinity, dynamic scaling.

1. Introduction

Since the pioneering work of Mandelbrot, Passoja and Paullay [2], it is now
well established that crack surfaces are self-affine objects. The scaling proper-
ties of the morphology of cracks manifest themselves through self-affine long
range correlations [2, 3, 4, 5, 6, 7, 8, 9] with a roughness exponent which is
found to be very robust for different materials and a broad range of length
scales. However, the physical role played by the heterogeneities which lead
to these self-affine long range correlations is not well understood.

In recent years front propagation in disordered media has become a chal-
lenging problem trying to describe the dynamics of interfaces in many dif-
ferent physical systems such as crack fronts [9], magnetic domain walls [10],
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or wetting [11]. Actually there exists few experimental data describing crack
front propagation through heterogeneous material, essentially due to the diffi-
culty of making direct observation and following the crack front line. Indeed,
the crack front line growing in a 3d heterogeneous medium has itself a 3-
d shape with different in-plane and out-of-plane roughnesses, respectively
ζ‖ and ζ⊥. Therefore, the interfacial crack front problem simplifies the 3-d
original one, both experimentally [12, 13] and theoretically [14]. Since the
crack front is constrained geometrically to lie in the plane where the motion is
driven by the stress transmitted through the two elastic plates, it is possible to
perform direct visualization and to follow the fracture front line. So far most
experiments on fracture front lines have been focused on the fracture front
line morphology leading to the estimated roughness exponent ζ = 0.55±0.03
[12], followed up by a longer study leading to ζ = 0.63 ± 0.03 [13]. Recently
the interfacial crack front propagation has started to be investigated [1]. This
study has shown that the fracture front line dynamics is intermittent -the
depinning on asperities triggers local instabilities- and can be described in
terms of a Family-Vicsek scaling [15] with a roughness exponent ζ = 0.6 and
a dynamic exponent κ = 1.2. In contrast to earlier numerical and theoretical
studies [8, 16, 17, 18], recent numerical simulations interpreted as a stress-
weighted percolation problem [19] give consistent results on the experimental
roughness and dynamic exponents.

In this work, we went further on in the investigation of the local dynamics
and this study appears as the continuation of the experimental work initiated
by Måløy and Schmittbuhl [1]. In the first part, we will recall the experimental
set-up and the sample preparation that permits us the direct observation of
an in-plane crack front which propagates into the annealing plane of two
transparent polymethylmethacrylate (PMMA) plates [12]. It is important to
underline that now, using a really powerful high speed and high resolution
camera (Photron Ultima), we are able actually to capture the details of the
complex crack front dynamics. Then, in order to analyze the local burst dy-
namics and in particular to extract the local waiting time fluctuations, we
propose in the second section a new analysis procedure. Both this analysis
and the fast video recording confirm the previous observations and results,
showing that the dynamics of the fracture front is driven by local and irregular
avalanches with very large size and velocity fluctuations. In this paper we
would like to focus on the scaling of the crack front line. We will first confirm
that the development of the crack roughness follows a Family-Vicsek scaling
and then examining in details the structure of the local avalanches we will
show that the system exhibits self-affine scaling with the same roughness
exponent ζ for the whole set of local bursts, and for the fracture front line
itself. More details concerning the dynamics and in particular the velocity
and waiting time fluctuations will be given elsewhere [20].
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2. Experimental procedure

2.1. SAMPLE PREPARATION

Two Plexiglas plates (32×14×1cm & 34×12×0.4cm) are annealed together at
205◦C during 30 mn under several bars of normal pressure, in order to create
a single block with a weak interface. Before the annealing procedure both
plates are sand-blasted on one side with 50μm steel particles or 100μm glass
beads. Sand-blasting introduces a random topography which induces local
toughness fluctuations during the annealing process. In order to estimate the
characteristic size of the local heterogeneities arising from the sand-blasting
process, we have measured the profile of a sand-blasted Plexiglas surface, us-
ing a white light interferometry technique (performed at SINTEF laboratory).
We found that these local irregularities have an upper cut-off size estimated
as 18 ± 2μm.
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m
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Figure 1. Two dimensional map of a sand blasted PMMA surface: white patches correspond
to asperities higher than 0.85μm, which corresponds to the standard deviation of the height of
this profile.

The two key points of the procedure are the transparency of the material
allowing the direct observation of the fracture front, and the random tough-
ness introduced along the interface which generates a rough crack line in
pinning the crack front.

2.2. MECHANICAL AND OPTICAL SET-UP

While the upper Plexiglas plate is clamped to a stiff aluminium frame, a press
applies a normal displacement to the lower one (1 cm thick) corresponding
to a crack opening in mode I configuration (pure tensile mode) at a low and
constant rate ∼ 10μm.s−1.

A high speed and high resolution camera (Photron Ultima) mounted on a
microscope allows us to follow the slow crack front propagation. Using this
camera at a spatial resolution of 1024 × 512 pixels, and an acquisition rate of
1000 f.p.s. we can follow the crack front during � 12s (obtaining � 12000
images). In this work, we will focus in particular on a given experiment with
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Figure 2. Sketch of the experimental setup: a thick PMMA plate (PL) is clamped into a rigid
frame (F). A normal displacement is imposed by a press (Pr) on the thin plate with a cylindrical
rod. A high speed and high resolution camera (C) mounted on a microscope follows the crack
front propagation.

an average crack front speed 〈v〉 = 28.1μm/s an a pixel size a = 3.5μm.
It is important to notice that the pixel size is smaller than the characteristic
scale of these local heterogeneities, estimated as 18 ± 2μm arising from the
sand-blasting process. In a forthcoming paper [20], we will present using
an extended set of data that all of these preliminary results are stable while
changing the experimental conditions (varying both the average front line
speed and the pixel size).

3. Analysis procedure and results

3.1. SCALING ANALYSIS OF THE CRACK FRONT

Image analysis is performed to extract the crack front by computing the gradi-
ent of the gray levels. A typical result is shown on figure 3. The front position
being defined as the contrast interface between the uncracked (in black) and
cracked parts is given by y = h(x, t).

The power spectrum P(k) of the deviations from the mean front position
h(x) − 〈h(x)〉, averaged over all the crack front position detected during an
experiment (in this case 9000 fronts), as function of the wave number k, is
shown on figure 4. The slope of the best fit P(k) ∝ k−(1+2ζ) gives an estimation
of the roughness exponent ζ = 0.54 ± 0.06. This value for the roughness
exponent is consistent with previous careful estimations ζ = 0.55 ± 0.05 [12]
and ζ = 0.63 ± 0.03 [13], where it has been extensively checked for fronts
at rest over a much larger range of scales (around 3.5 decades), and using
several techniques.

Moreover, we confirm that the development of the crack roughness fol-
lows rather well the Family-Vicsek scaling ansatz with a roughness exponent
ζ = 0.6 and a dynamic exponent κ = 1.2 ± 0.2. Considering the power
spectrum of the relative position Δh(x, t) = h(x, t) − hi, where hi = h(x, ti)
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Figure 3. Typical example of a picture recorded by the high speed camera (Photron Ultima)
during an experiment with an average crack front speed 〈v〉 = 28.1μm.s−1. The pixel size is
a = 3.5μm. During this experiment, the camera recorded in total 9000 frames with a time
delay of 1ms for each picture. The crack front propagates from bottom to top. The thick solid
line represents the interface separating the uncracked (in black) and cracked parts extracted
after image analysis. We superimpose 3 fracture front positions for later times (0.5, 1 and 2s),
suggesting the crack pinning and the burst activity.
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Figure 4. Power spectrum of the deviations from the mean front position h(x) − 〈h(x)〉 as
function of the reduced wave number k/ko with k0 = 2π/(3.5μm) averaged over 9000 crack
front positions detected. The lines correspond respectively to the best fits P(k) ∝ k−(1+2ζ) of all
the spectrum (dotted line), and excluding small and high wave number, 0.25 ≥ k/ko ≥ 10−2

(dashed line). An average over the slopes of the fits gives an estimation of the roughness
exponent: ζ = 0.54 ± 0.06. The reduced quantity is k0 = 2π/(3.5μm). The vertical axis is
arbitrary.

is the initial front, the Family-Vicsek scaling ansatz can be written in the
following way.

P(k,Δt) = Δt(1+2ζ)/κG(kΔt1/κ) with G(x) ∝
{

b x � c
x−(1+2ζ) x � c

where Δt = t − ti is the time delay between the analyzed images, b and c are
characteristic constants.
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Figure 5. Left: Power spectrum of the relative position Δh(x, t) as function of the re-
duced wave number k/ko with k0 = 2π/(3.5μm) for logarithmically increasing time delays
Δt = t − ti, from Δt = 20ms to Δt = 5s. Right: Data collapse for the scaling function
G(kΔt1/κ) = P(k,Δt)Δt−(1+2ζ)/κ, showing a dynamic Family-Vicsek scaling with a roughness
exponent ζ = 0.54 and a dynamic exponent κ = 1. The power spectra of the relative position
Δh(x,Δt) = h(x, t) − h(x, ti) have been averaged over 4000 different initial front hi = h(x, ti).
The dashed lines are guides for the eyes and have a slope of -2.1. The horizontal axis corre-
spond to reduced dimensionless quantities k/k0, t/t0, with k0 = 2π/(3.5μm), and Δt0 = 1ms.
The vertical axis are arbitrary.

On Fig. 5 to the left, we show the power spectrum of the relative position
Δh(x, t) for logarithmically increasing time delays Δt, from Δt = 20ms to
Δt = 5s, averaged over 4000 different initial front h(x, ti). When increasing
the time delays Δt, we observe a crossover behaviour from a flat spectrum -
indicating that no spatial correlations are present at small time delays Δt -,
towards a power law behaviour at larger times Δt, consistent with the self-
affine long range correlations previously observed P(k) ∝ k−(1+2ζ) with a
roughness exponent ζ = 0.54. Then, we plot on figure 5 to the right, the
scaling function G(kΔt1/κ) = P(k,Δt)Δt−(1+2ζ)/κ as a function of kΔt1/κ with a
roughness exponent ζ = 0.54 previously measured. A satisfying data collapse
is obtained for a dynamic exponent κ = 1. Performing the same procedure
for different experiments leads to the following estimation for the dynamic
exponent κ = 1.2± 0.2 with a roughness exponent of ζ = 0.6, consistent with
previous experimental results [1].

3.2. WAITING TIME MATRIX W AND LOCAL FRONT VELOCITY
MATRIX V

In order to study the local burst dynamics during the slow crack propagation
we have computed a waiting time matrix W(x, t). The fracture front lines
extracted from image analysis of the digital pictures (see Fig. 3) were added
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to obtain a waiting time matrix W. This matrix has the dimension of the orig-
inal image and an initial value equal to zero. We add the value 1 to the matrix
element w corresponding to each pixel of the front line position detected.
This procedure has been performed for all frames of a given experiment in
order to obtain the final waiting time matrix W for each experiment. Then, a
local normal speed of the interface V(x, t) can be deduced by computing the
matrix of the inverse waiting time w times the ratio of the pixel size a on the
typical time between two images δt. Therefore, we can associate to each pixel
corresponding to the crack line in each image, a local front velocity v = a

wδt .
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Figure 6. Distribution of the local front velocity normalized by the average crack speed v
〈v〉 for

an experiment with an average crack front speed 〈v〉 = 28.1μm/s. The solid line represents a
fit for velocities 2 times larger than the average crack front speed 〈v〉 and has a slope of −2.6.

Finally, we can obtain the probability distribution functions of the local
waiting time w and the local front velocity v, in estimating the occurrence
number of each measured waiting time or velocity on all pixels in all fracture
front line images. A typical example of a distribution P( v

〈v〉 ) of the local front
velocity v, obtained for an experiment with an average crack front speed 〈v〉 =
28.1μm/s is shown on Fig. 6, in log-log scale. For velocities larger than the
average crack front speed 〈v〉, we clearly observe that the local front velocities
are power law distributed P(v/〈v〉) ∝ (v/〈v〉)−η with an exponent η � 2.6.
This power law behaviour for the velocity distribution reveals a rich and non
trivial underlying dynamic as one can observe on a fast video recording that
the crack front is growing through irregular avalanches on all length scales.
Since in this study we would like to focus on the local burst dynamic, more
details concerning the velocity and waiting time fluctuations will be given
elsewhere [20], and now we are going to examine in particular the structure
of the local avalanches.
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3.3. LOCAL BURST STRUCTURE

In order to analyze the local burst activity, let us consider the velocity matrix
V. We can generate a clipped velocity matrix from V by setting the matrix
elements v equal to one for v > C · 〈v〉 and zero elsewhere. We present on

Figure 7. Spatial distribution of clusters size S . White clusters correspond to velocities
v > C · 〈v〉 with a clip level C = 8, during an experiment with an average crack front speed
〈v〉 = 28.1μm.s−1. The pixel size is a = 3.5μm. The crack front propagates from bottom to top.

Fig. 7 the spatial distribution of clusters of different sizes S obtained from
the clipped matrix for a clip level C = 8. The white clusters correspond to
velocities eight times larger than the average front speed v

〈v〉 > C = 8, which

was for this experiment 〈v〉 = 28.1μm.s−1. The clusters connected to the first
and the last front, and thus belonging to the upper and lower white parts are
excluded from the analysis.
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Figure 8. Distribution of the burst sizes S for an experiment with an average crack front
speed 〈v〉 = 28.1μm.s−1 and a pixel size a = 3.5μm. The clip level used here v

〈v〉 > C = 8.
Notice that the logarithmic binning allows to extract the scaling law underlying the large
statistics, over a large range of event sizes. The dashed line represents the best fit P(S ) ∝ S −γ

and gives an exponent γ = 1.7
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In Fig. 8, the cluster sizes S distribution P(S ) is given in a double loga-
rithmic scale. We clearly observe a power law behaviour P(S ) ∝ S −γ with an
exponent γ = 1.7 proving that the burst dynamics occurs on all length scales.
We have checked that this critical behaviour, and in particular the exponent γ,
is really stable: normalizing by the average burst size 〈S 〉, we can rescale all
the different distributions corresponding to diverse experimental conditions
and a wide range of clip level values (see [20] for more details).

We expect a correlation between the burst structure on small scales and
the self-affine scaling of the crack front line on larger scales. In order to in-
vestigate the spatial scaling on small scales in detail, we have for each cluster
S chosen the smallest bounding box enclosing it. The size of the bounding
box gives the length scale Ly of the clusters along the growth direction and
the length scale Lx of the clusters in the direction of the average fracture
frontline.
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Figure 9. Average length scale 〈Ly〉 in function of the average length scale 〈Lx〉. The dashed
line is a fit to the data points for Lx > 20 μm and has a slope 0.60 consistent with the
roughness exponent of the fracture front line. The dotted line represents the curve y = x and
serves as a guide for the eye.

Figure 9 shows the dependence of the average length scale 〈Ly〉 as func-
tion of 〈Lx〉 in a double logarithmic plot for the same previous experiment
(〈v〉 = 28.1μm.s−1, and a = 3.5μm), for a given clip value C = 8. We
clearly see that the avalanche clusters become anisotropic above a charac-
teristic length scale Ld ∼ 18μm. This typical size can be interpreted as a
correlation length for the disorder introduced by the sand-blasting technique
as we have observed previously on Fig. 1. Below Ld the local toughness is
marked by the same individual asperity and as a result the clipped velocity
bursts appear isotropic. A linear fit of the data points for Lx > 20μm gives
a slope 0.60 consistent with the roughness exponent ζ = 0.63 ± 0.03 of the
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fracture front line itself. This result shows that the system exhibits self-affine
scaling with the same roughness exponent ζ for the local dynamic bursts
as for the fracture front line itself, and brings a new confirmation of the
roughness exponent determined in such interfacial crack experiments. It is
important to note that most present theoretical and numerical works predict a
lower value for this roughness exponent [8, 16, 17, 18].

4. Conclusion

We have performed an experimental study of slow interfacial crack front
propagation. This work confirms previous experimentals results [1]: the frac-
ture frontline dynamics can be described in terms of a Family-Vicsek scaling
with a roughness exponent ζ � 0.6 and a dynamic exponent κ � 1.2. More-
over, we have observed that this dynamics is driven by local and irregular
avalanches whose size and velocity are power law distributed. We show that
the dynamics and the structure of the local bursts are playing a crucial role
for the scaling and the dynamics of the crack front itself. In particular, above
a typical size Ld ∼ 20μm, the burst size scales differently in the direction
parallel and normal to the fracture front with an exponent consistent with
the roughness exponent of the fracture front ζ � 0.6. However, if it appears
consistent to interpret this result as finite size effect related to the disorder,
more experimental work is needed to control and change the typical disorder
size, in order to be conclusive and affirm that this cut-off length scale really
corresponds to the quenched disorder correlation length introduced by the
sand-blasting procedure.

Recent simulations interpreted as a stress-weighted percolation problem
[19] give consistent results with the experimental roughness and dynamic
exponent measured, in contrast to earlier numerical and theoretical studies
[8, 16, 17, 18]. However so far, no theory or simulations have examined
the dynamics and in particular the local burst activity of the crack line, and
therefore it appears of central importance to develop these numerical studies.
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DIFFUSION, FRAGMENTATION AND MERGING PROCESSES IN

ICE CRYSTALS, ALPHA HELICES AND OTHER SYSTEMS

Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

NTNU, Institutt for fysikk, N-7491 Trondheim

Abstract. We investigate systems of nature driven by combinations of diffusive growth, size

equations for the size distribution of fragments and demonstrate the applicability of our models
in very different systems of nature, ranging from the distribution of ice crystal sizes from the
Greenland ice sheet to the length distribution of α-helices in proteins. Initially, we consider
processes where coagulation is absent. In this case the diffusion-fragmentation equation can
be solved exactly in terms of Bessel functions. Introducing the coagulation term, the full
non-linear model can be mapped exactly onto a Riccati equation that has various asymptotic
solutions for the distribution function. In particular, we find a standard exponential decay,
exp(−x), for large x, and observe a crossover from the Bessel function for intermediate values
of x.

1. Dynamics of Ice Crystal Formation

The North Greenland Ice Core Project (NorthGRIP) ice core provides pale-
oclimatic information back to about 120 kyr before present [1]. Each year,
precipitation on the ice core covers it with a new layer of snow, which gradu-
ally transforms into ice crystals as the layer sinks into the ice sheet. We study
the dynamics of the ice crystal distributions and use data previously obtained
from the upper 880 m of the NorthGRIP ice core [2]. The data covers a time
span of approximately 5300 years and going backwards in time, towards the
depth of 880m, the distributions evolve to a universal curve. The universality
indicates a common underlying physical process in the formation of crystals.
We identify this process as an interplay between fragmentation of the crystals
and diffusion of their grain boundaries. The process is described by the two-
parameter diffusion-fragmentation equation equation to which we obtain the
exact solution.

The crystal size distributions are obtained from fifteen vertical thin sec-
tions of ice evenly distributed in the depth interval 115 - 880 m. [2]. The thin
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sections have dimensions of 20 cm × 10 cm (height × width) and a thickness
of 0.4±0.1 mm. Where the height is close to the present annual snow accu-
mulation in the area which on the average, at the considered depths, becomes
equivalent to 19.5 cm ice. Therefore each sample roughly covers a full year
and averages over the seasonal variations. Digital images of ice thin sections
placed between crossed linear polarizers are used to map the dimensions of
individual ice crystals in the sample. In our analysis we define the crystal size
as the vertical extent of the smallest vertically aligned rectangle enclosing the
crystal., see Fig. 3.

In Fig. 1 we show the distributions of the crystals at selected depths.
Overall the average crystal size is increasing until some depth corresponding
to 2500 years back in time where it seems to saturate. Effectively, the process
behind the grain growth can be described in terms of boundary diffusion
between the ice crystals [3]. In this respect, it is the grain boundaries rather
than the grains themselves that have physical significance. The grains, char-
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Figure 1. Distributions of ice crystal sizes at depths 115m, 165m, 220m, 330m, 440m and
550m. The crystal size is defined as the vertical extension of the individual crystals. The
ragged curves are the measured histograms and the smooth lines are the temporal evolution
predicted by eq. (4) starting from the initial distribution at 115m. The total counts of ice crys-
tals decreases with depth (due to the overall increase of sizes) until the steady state is reached.
Note that the distributions vanish at a small, finite value to account for the experimental bias;
see [6].

acterized by small radii of curvature, tend to be eliminated by motions toward
their centers of curvature as time progresses. This causes smaller crystals to
be incorporated into the larger ones leading to an overall growth of the mean
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crystal size [4, 5]. This approximative description is captured by the widely
used Normal Grain Growth law. However, the diffusive growth never satu-
rates, in clear contradistinction to the experimental observations. Moreover,
the Normal Grain Growth law explains little about the actual shape of the
distributions which recently have been proposed to resemble log-normals.
Log-normal distributions are typically explained in terms of a multiplicative
process, and in fact such a process could be important in the crystal dynamics
if the individual crystals succesively did fragment. On the other hand, this
process would lead to an overall decrease in the crystal sizes.

Recently, we have proposed a new framework predicting to great accuracy
the evolution of the crystal size distributions and the observed distributions
[6, 7]. Our framework combines the process of grain bounday diffusion with
that of an occasional fragmentation, and demonstrates that the distributions
more likely are to be described by Bessel functions.

Our proposed model is formulated as a rate equation in the quantity N(x, t),
which is the density of ice crystals of length x at time t measured before
present. At a given time, N(x, t) can be increased or decreased by diffusion
with a diffusion constant D. It can receive fragments of size x from fragmen-
tations of larger crystals and it can decrease by its own fragmentation. The
fragmentation is defined as a rate f in length and time, i.e. for a given time
step dt the average number of fragmentation events over a length L is f Ldt.
We therefore end up with an integro-differential equation of the form:

∂N(x, t)
∂t

= D
∂2N(x, t)
∂x2

− f xN(x, t) + 2 f
∫ ∞

x
N(x′, t)dx′ (1)

Here, the first term on the right hand side is a diffusion term that corre-
sponds to the grain boundary diffusion of the Normal Grain Growth law. The
second term in Eq.(1) is the rate at which crystals of size x fragment and the
last term is the contribution from fragmentation of larger crystals into crystals
of size x. Combining the two ways a crystal of size x′ > x can produce a
fragment of size x with the assumption that there is a uniform probability,
1/x′ for where the crystal breaks, we get

f x′N(x′) · 2
x′
, (2)

where f x′N(x′) is the number of crystals of size x′ that fragments per time
and 2/x′ is the probability for generating a fragment of size x. If we integrate
(2) over all crystals larger than x we achieve the last term in (1). The model
has been generalized to over fragmentation kernels in [9].
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The integro-differential equation has analytical solutions, B((x + λ)/a1/3,
which are explicitly given in terms of the Bessel-function K1/3 and eigenval-
ues λ (see [8] for details),

B
( x + λ

a1/3

)
=

x3/2

√
3

K1/3

[
2
3

( x + λ
a1/3

)3/2]
. (3)

Here, the parameter a = D/ f is the ratio of the diffusion constant and frag-
mentation rate and a1/3 sets the natural length scale of the ice crystals. The
Bessel function distribution has a characteristic stretched exponential tail
exp(−x3/2), distinctively different from a log-normal tail exp(exp(−x2)).
Using the boundary condition that no new crystals are nucleated meaning that
N(0, t) = 0 for all times [6, 7], implies that only a discrete set of non-positive
values for λ is allowed. They are found by solving the equation B(λ/a1/3) = 0.
The largest eigenvalues are λ0/a1/3 = 0, λ1/a1/3 = −2.338 . . . , λ2/a1/3 =

−4.088 . . . , . . .. The general solution can then be expressed as a linear combi-
nation of the eigenfunctions B in the form,

N(x, t) =
∞∑

n=0

cnB
( x + λn

a1/3

)
eλn f (t−t0), (4)

where the coefficients cn is determined by matching N(x, t = t0) with the
intial distribution at time t = t0. The fact that all eigenvalues are negative
except λ0 = 0 guarantees that the dynamics converges to a unique steady
state solution, N(x, t) ∼ B(x/a1/3), at high ages (t → ∞). The characteristic
time τ of the exponential growth towards this steady steady state is found
from lamda1;

τ = − 1
λ1 f

≈ 1

2.338 f a1/3
.

In Fig. 2 we show the mean vertical size of the ice crystals, 〈x〉(t) as func-
tion of time. The dots are the experimental values and the solid line is an
exponential fit corresponding to the two leading terms in the solution,

〈x〉∞
1 +
( 〈x〉∞
〈x〉0 − 1

)
e−(t−t0)/τ

,

where 〈x〉0 is the observed average length at time t0 = 500 years and 〈x〉∞ is
the mean vertical size in the steady state, 〈x〉∞ = 32/3 Γ(4/3)

Γ(3/2) a
1/3. From the

figure, we estimate the characteristic time, τ = 600 ± 100 years and the
average length in the steady state 〈x〉∞ = 2.9 ± 0.1 mm. The two parame-
ters correspond to an effective fragmentation rate and a diffusion constant of
respectively f = (3.6 ± 0.2) · 10−4 mm−1·yr−1 and D = (2.8 ± 0.4) · 10−3

mm2yr−1. Using these estimates, we can predict the time evolution of crystal
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Figure 2. The mean vertical size of the ice crystals shown versus their age in years B.P.
The red line shows the best fit predicted from our dynamical description of ice crystal growth.
From the fit we read off the diffusion constant, D ≈ 2.8 · 10−3mm2·yr−1, and fragmentation
rate, f ≈ 3.6 · 10−4yr−1·mm−1

sizes from any initial distribution. The solid lines in Fig. 1 show the time
evolution of the distribution observed at time t0 = 500 years (depth 115m), in
excellent agreement with the experimental results.

We can be generalize our diffusion-fragmentation model by changing the
fragmentation rate to be proportional to xβ to account for energy/surface ar-
guments. In this case the stationary distribution can also be found, where e.g.
for β = 2 the solution will be B(x) ∼ √

xK1/4(x2/2) instead of eq.(3). It turns
out that the expression for β = 2 provides a poor fit to the experimental data
for the ice crystals.

2. The evolution of α-helices in proteins

The α-helix is the most abundant structural motif of proteins, covering about
one-third of the amino acid residues [10]. The α-helix is a stable structure in
which the C = 0 group of residue i makes a hydrogen bond with the NH of
residue i + 4.

The length distribution of α-helices in a representative set of 299 high res-
olution structures with low homology [11] exhibits a clear maximum around
a length of 7 amino acids followed by a long tail, see Fig. 3. The data do
not fit well any simple statistical distribution and a polynomial fit requires at
least a fourth order expression to become acceptable [11]. In the following
we will consider this ensemble of α-helices as the result of an ’infinitely’
long evolutionary process where diffusive growth competes with occational

. The time scale is taken from ref [1].
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Figure 3. The black dots represent the length distribution of α-helices from 299 high resolu-
tion protein structures with low homology [11]. The error bars are estimated as the square root
of the numbers. The full curve is the stationary distribution (i.e. infinite time limit) obtained

The ratio between the diffusion constant D and the fragmentation rate f resulting in the best
fit to the data is (D/ f )1/3 ≈ 6.1 number of amino acids. Note that N(x) vanishes for a helix
length equal to 3, as a α-helix needs one turn to be identified.

fragmentation. Here, the diffusive growth reflects the small structural changes
a given protein can accomodate without changing the arrangement of its
structural elements (its tertiary structure), whereas a ‘fragmentation’ process
reflects the breaking of a helix required to maintain an overall globular shape.
By considering the dynamics of the ensemble of α-helices, we effectively
randomize the particular evolutionary advantages of growing or shrinking
any particular α-helix in any particular protein. However, we believe that
the result of such ensemble average will reveal the main determinants of
α-helix formation in proteins, much in the same way as binding energies be-
tween amino acids tend to influence the frequencies of neighboring relations
between them in an ensemble of proteins [12].

The stationary solution to eq. (1) is defined by one free parameter (the
ratio D/ f ) and it nicely reproduces the overall rise and decline of the observed
length dependence of helix frequencies with D/ f ≈ 6.1, see Fig. 3, Simple
energy arguments suggest that a point mutation in the middle of the helix
to a residue not forming hydrogen bonds has a statistical weight of ≈ 1/400
relative to the weight of growing/shrinking the helix [13]. This corresponds to
the ratio (D/ f )1/3 ≈ 7.4 in reasonable agreement with our result. We take the

from eq. (1) plotted versus the helix length measured in terms the number of amino acids.
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difference to indicate the presence of other determinants of helical formation,
such as stability constraints of the overall protein structure.

3. Diffusion, Fragmentation and Coagulation

Since the pioneering work of Smoluchowski [14, 15] dating back to the be-
ginning of the last century, the literature on coagulation and fragmentation
processes has grown considerably. Smoluchowski original coagulation equa-
tion [14, 15] provides a mean field description of clusters that coalesce by
binary collisions with a constant rate. Scaling theory and exactly solvable
models in the kinetics of irreversible aggregation has recently been reviewed
in [16].

in [17], and mean field type of coagulation-fragmentation models have sub-
sequently been used in a diverse range of applications, including polymer
kinetics [18], aerosols [19], cluster formation in astrophysics [20] and animal
grouping in biology [21, 22]. We refer to [23, 24] (and references therein) for
a survey of the progress in the study of coagulation-fragmentation process.

We now present an extension to the diffusion and fragmentation model
introduced above to account for coagulation processes as well. The exten-
sion can be considered as a generalization of the Smoluchowski coagulation-
fragmentation equation to include processes where size diffusion is impor-
tant. We emphasize that our approach differs from the approach in e.g. [25],
where the clusters represent particles immersed in a gas or liquid type of
medium and the diffusive term added to the coagulation-fragmentation equa-
tion represents the random movement of the center of mass of each cluster.
Rather, the diffusion considered here is equivalent to the grain boundary
diffusion.

In this section we shall discuss an extenstion to Eq. (1), with constant
diffusion and a fragmentation probability growing linearly with the fragment
size. We add a nonlinear coagulation process where two random fragments
merge at a rate β > 0 and independent of their sizes. The basic equation for
the steady state solution is thus

D ∂2
xN(x)− f xN(x)+2 f

∫ ∞

x
dx′N(x′)+β/2

∫ x

0
dx′N(x′)N(x−x′)−2β̃N(x) = 0,

(5)
where the second last term on the left side is the feed to fragments of size x
from all smaller fragments and the last term is the drain from merging events
with all larger fragments. We have used the definition

β̃ = β/2
∫ ∞

0
dxN(x). (6)

Fragmentation and coagulation was first considered as combined processes
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Figure 4. The numerical steady-state distributions N(x) as function of x (both quantities
dimensionless) for different coagulation-to-fragmentation ratios b/x0. Note the crossover from
a a bessel-like tail ∼ exp(−2/3x3/2) to a pure exponential tail.

In addition to the characteristic length scale

x0 = (D/ f )1/3 (7)

in the pure diffusion-fragmentation equation we now have a new length scale
in the presence of coagulation

b = β̃/ f . (8)

In general we would like to solve equation (5) with the boundary conditions
that N(0) = 0 and N(x) → 0 for x → ∞. Furthermore, we need of course also
to invoke the condition that N(x) is positive. In [8] we map this non-linear
equation to a Riccatti type equation, which again can be mapped to a linear
second order differential equation doing a proper substitution. In [8] we do
a saddle point approximation to this linear equation and find a stable saddle
point leading to an approximation of N(x) for large x,

N(x) ≈ const. eτ0 x, (9)

where the relevant τ0, under the condition that N(x) is finite and positive,
becomes

τ0 =
i

< x > −b/x0

⎛⎜⎜⎜⎜⎝
√

2 < x >
b/x0

− 1 − 1

⎞⎟⎟⎟⎟⎠ . (10)

In Fig. 4 we show N(x) = Ñ(x̃) as function of x = x̃/x0 for different
values of b/x0. For small values of b/x0, one indeed observes a cross-over
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pure exponential for large values of x. At larger values of b/x0, only a single
exponential form is observed for x > 1.

4. Conclusion

We have proposed a general dynamical scheme which involves the three fun-
damental physical processes diffusive growth, size fragmentation and frag-
ment merging. In the case where merging is absent, we have applied the
scheme successfully to the crystal size distribution of the ice core of the
Greenland ice and to alpha-helices in proteins.We believe that the full dy-
namical scheme should also be relevant in many physical situations, such
as for solutions of macromolecules like polymers, proteins and micelles. In
fact, from measured distributions of fragment sizes we suggest that one might
be able to identify how important the merging process is compared to the
fragmentation process.
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MOLECULAR MECHANISMS IN BIOSIGNALLING:  

VISUAL RECEPTION 

 
MIKHAIL A. OSTROVSKY 
Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 
Joint Institute for Nuclear Research (JINR), Dubna 

 

1. Main chapter 

The main general idea, main topic of my lecture today is photobiological 
paradox of vision. The core of the paradox is: light in vision is not only a 
carrier of information, but also a risk factor of damage to the eye structures, 
first of all to the retina and to the layer of cell behind the retina – so called 
retinal pigment epithelium. In fact, the same paradox is real to other 
photobiological process – to photosynthesis. In this case light is used not 
only to convert and accumulate energy but also light can damage the 
photosynthetic molecular machinery. In both cases complex 
photoprotective systems, along with physiological system of visual 
reception or photosynthesis, have been developed in the course of 
evolution. In both cases the sophisticated photoprotective systems are able 
to solve the paradox of both photobiological processes. The impairment of 
these systems can lead in case of vision to human retina diseases or play 
role in progression of eye diseases like age-related macula degeneration, 
and in case of photosynthesis to destruction of plant cells or photosynthetic 
microorganisms. 

That is why speaking about vision two functional systems 
simultaneously and close relating to each other have been developed in the 
course of visual system evolution. I mean systems of photoreception and 
photoprotection. The first one includes on the level of the retina 
photoreceptor cells physiological processes of phototransduction, light and 
dark adaptation, and also molecular basis of colour discrimination. The 
second one consists of at least three lines of protection: permanent renewal 
of rod and cone outer segment, power and complex antioxidant system and 
optical media of the eye as cut-off filters. 

Let me start from the first system of photoreception, other words from 
the molecular mechanisms of visual biosignalling, and then I will consider 
the molecular mechanisms of potential light damage to the retina and retinal 
pigment epithelium and the complex, multipart system of photoprotection. 
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In order to present you all I am going to present, I should first of all to 
describe the eye structures – from eye itself to molecules, where all these 
physiological and pathological processes take place.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Eye and Retina. 
 

The figs 1 and 2 show you the general schemes of eye and retina. 
Light penetrate into the eye, goes through the retina, since the retina in the 
vertebrate and human eye is inverted, and absorbs partly (no more than 
about 15% of incoming light) by photoreceptor cells – rods and cones and 
the rest incoming light absorbs by retinal pigment epithelium cells that are 
placed behind the retina. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Simple diagram of 
 the organization of the retina. 
 
 

Ramon-y-Cajal          
1852-1934 



 73

Usually, two parts of retina is distinguished – the layer of light 

drawing of a rod and a cone. The rod- and cone-shape outer segment of 
both cells is the place where photons are absorbed and trigger the visual 

the very beginning of XX century, said: “Retina is a part of brain placed 
into the eye”. This is absolutely true, and neurophysiology of retina is an 

for electrophysiological studies not only in retina, but in brain 
neurophysiology as well. The retina is a layered structure that processes 
information in two stages. The outer synaptic or so called plexiform layer 
(the upper part of drawing of the neuronal part of retina) comprises the first 
stage and is where photoreceptors, bipolar cells, and horizontal cells 
interact synaptically. This is the synaptic layer where ON and OFF 
responses to light are formed, as well as the site where receptive field centre 
and surround organization is first thought to occur. The inner synaptic or 
plexiform layer (the middle part of drawing of the neuronal part of retina) is 
where the second stage of synaptic interactions occurs. This synaptic layer 
is where subsequent visual processing occurs that may contribute to the 
formation of transient responses, which may underlie motion and direction 
sensitivity. In addition, synaptic interactions in the inner synaptic layer may 
also contribute to the classical ganglion cells receptive field properties. The 
underside of the drawing represents the layer of ganglion cells, which long 
processes - axons leave eye and penetrate into brain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Drawing of Rod and Cone(left). Drawing of neuronal part of retina (right). 

“Retina is a part of brain placed into the
eye” (Ramon-y-Cajal, 1901) 

sensitive photoreceptor cells and neural retina. The fig. 3 (left) shows you 

process. The fig. 3 (right) shows you drawing of the neuronal part of retina. 

essential part modern neuroscience. Also, retina is a very convenient object 

As famous Spanish histologist Ramon-y-Cajal ( his picture on the Fig. 2) on 
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Now, let me focus on the rod and cone photoreceptor cells and light-
sensitive visual pigment molecule situated in the outer segment of the cells. 

and cones. One the left you can see the 3D images of the cells, please, pay 
your attention to the large rod outer segment. The suspension of these 
segments can be rather easy isolated and studied in vitro. One the right you 
can see the 2D electron microscopy images of the cells, and what is most 
important it is clear to see (upper right image) the inner structure of rod 
outer segment that contains hundreds photoreceptor flatted discs 
surrounding by plasma membrane of the cell. Each disc is build up with two 
membranes linked or locked on the edges; as a result there is a narrow cleft 
or space inside of disc - about �	
��angstrom/ – between the membranes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Rods and cones: electron microscopy.�
 
 
 
 
 
 

CONE 

ROD 

The fig. 4 shows nice electron microscopy images both human rods 
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pigment rhodopsin – typical membrane protein incorporated into the 
membrane. Within the core of the protein part of rhodopsin (this part named 
as opsin) one can see the chromophore group that is covalently attached to 
the opsin. The chromophore group of all known visual pigments as 
vertebrates as invertebrates animals as well as human is 11-cis isomer of 
retinal1 or retinal2 that are aldehydes of vitamin A1 or A2. The 11-cis isomer 
is the only isomer that is served as a visual pigments chromophore group 
among sixteen possible isomers of retinal. Other words, there is very good 
conformation correspondence between 11-cis retinal and nearby protein 
(opsin) surrounding in the chromophore domain of rhodopsin. It is clear to 

(green). This picture is not drawing one, but the real result of recently 
published X-ray analysis 3D structure of crystallized rhodopsin molecule.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

          
        

Figure 5. Rod, disc and visual pigment rodopsin (left) and Rhodopsin (upper right). 
 

11-cis retinal

Protein part (opsin) 

Next fig. 5 (left) shows you a drawing of rod cell, disc and visual 

see on the fig. 5 (right), where 11-cis retinal (red) is situated in the opsin 

11-cis retinal
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In reality, rhodopsin was the very first animal membrane protein which 
primary structure and topography in the membrane have been estimated. It 
was done almost simultaneously by two groups— in Russia by Yuri 
Ovchinnikov and his co-workers and in the US by Paul A. Hargrave co-
workers. 

transmembrane protein where seven transmembrane alpha-helical parts 
(“helical bundles”) linked by six extramembrane fragments (“loops”). In 
fact, rhodopsin is a protypical member of a large G-protein-coupled 
receptor (GPCR) family that plays a key role in all regulatory processes of 
living organisms. The signalling pathways regulated by these receptor 
proteins determine numerous crucial biological processes, including 
sensory reception, endocrine regulation and synaptic transmission. 
Approximately 5% of the human genome (above 600 genes) contains 
information about of these proteins. Over 40% of the currently used drugs 
aim at G-protein-coupled receptors as the main target. The visual pigment 
rhodopsin localized in the photoreceptor membrane of the photoreceptor 
cell rod outer segment is a perfect model for studies of structure and 
functions of G-protein-coupled receptors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Rhodopsin - Two- and Three-Dimensional organization for rhodopsin in the disk 
membrane.�
 

 

(Ovchinnikov et al.,  1982) 

As you can see on the Fig. 6 (left) rhodopsin is a heptahelical 

(Palczewski et al., 2000) 
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takes near 20 years to find way to crystallize membrane protein rhodopsin. 
Mainly postdoc Okada in Japan did it. After that Palczewski and co-
workers in America carried out the X-ray analysis. The picture shows you 
the highly organized structure in the extracellular region forms a basis for 
the arrangement of the seven-helix transmembrane motif 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 7. Chromophore site of rhodopsin (spectral tuning, photoisomerization). 
 

rhodopsin that is responsible for spectral tuning, 11-cis retinal 
photoisomerization and keeping rhodopsin as a G-protein-coupled receptor 
in the dark “silent” state. Other words, the ground-state chromophore, 11-
cis-retinal, holds the transmembrane region of the protein in the inactive 
conformation. Interactions of the chromophore with a cluster of key 
residues determine the wavelength of the maximum absorption. Changes in 
these interactions among rhodopsins facilitate colour discrimination. 
Identification of a set of residues that mediate interactions between the 
transmembrane helices and the cytoplasmic surface, where G-protein 
activation occurs, also suggests a possible structural change upon 
photoactivation. 

11-cis retinal 

On the Fig. 6 (right) the 3D structure of rhodopsin is presented. It 

Next Fig. 7 represents the 3D structure of chromophore site of 
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As far as of the wavelength of the maximum absorption and colour 

retinal with amino acids in the binding pocket of opsin causes the so called 
“opsin shift”. It means that if opsin itself absorbs at near 280 nm and free 
retinal – at 380 nm, the chromoprotein rhodopsin absorbs at 500 nm. 

Figure 8. Absorbance spectrum (spectral sensitivity) of rhodopsin – spectral tuning.�
 

The broad diversity of the absorption maximum position of all known 
visual pigments in animals and human in all types of visual cells is 
determined by the exact amino acid sequence of opsin that “spectrally 
tunes” the pigment to a specific wavelength. 

The goldfish four types cones visual pigments are the excellent 

occupied the near UV and all visible part of optical spectrum from about 
300 - 800 nm. The visual range of human is narrower. 
 

 
 
 
 

discrimination — this is the Fig. 8 — it is well known that the interaction of 

example. As you can see on the Fig. 9 the visual range of goldfish is 
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Figure 9. Goldfish, Carassius auratus:  cone visual pigments - spectral tuning.�
 

Before I will go to rhodopsin photochemistry, I should show you a 

awarded the Nobel Prize in physiology or medicine in 1967 for his 
monumental contributions to our understanding of the molecular basis of 
vision. He not only showed that the visual pigment molecules consist of a 
protein (termed opsin) to which is bound a derivative of vitamin A (vitamin 
A aldehyde, termed retinal). Wald and his co-workers, including his closest 
friend and co-workers - his wife Ruth Hubbard, discovered that only 11-cis 
retinal serves as chromophore for visual pigments and that the only 
photochemical reaction in vision is photo isomerization of 11-cis form of 
retinal to the all-trans form.  
 
 
 
 
 
 
 

 
 

Figure 10. George Wald (1906- 1972). 
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sequence of events that occurs following the absorption of a quantum of 
light by the rod visual pigment, rhodopsin that I took from the obituary of 
his pupil and also very famous scientist John E. Dowling. 

The scheme shows how light initiates the conversion of rhodopsin to 
retinal and opsin through a series of metarhodopsin intermediates. 
Metarhodopsin II is the active intermediate leading to excitation of the 
photoreceptor cell. Eventually, the chromophore of rhodopsin, retinal, 
separates from the protein opsin and is reduced to vitamin A (retinol). For 
the resynthesis or regeneration of rhodopsin, the vitamin A must be 
isomerized from the all-trans to the 11-cis form, and this isomerization 
takes place in the pigment epithelium overlying the receptors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  
 

how absorbed photon change the isomeric configuration of 11-cis retinal to 
its to all-trans form. Now days it is known that to be in the chromophore 
site of rhodopsin the 11-cis-retinal, on the contrary to free retinal state, 
exists in a twisted nonplanar state and that the �-ionone ring is additionally 
turned by about 65° relative to the polyene chain. It is also believed that the 
twisting of the polyene chain plays an important role in retinal 
isomerization upon absorbing a photon. 
 

h�

Next fig 11. (right part) shows you the George Wald’s scheme of the 

The fig 11.  (left part) shows the photochemical event itself, namely 
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Now, let me show you the modern scheme of rhodopsin 

I have to stress on this picture three key events of this photocycle. 
Number one event is photochemical one, namely photoisomerization 

of the 11-cis retinal chromophore to its distorted trans form. This is as I 
said the only light-dependent event in both vertebrate and invertebrate 
vision. Photoisomerization occurs on an ultrafast time scale with 
photorhodopsin as the photoproduct formed on a femtosecond time scale. 
Important photochemical properties of 11-cis retinal chromophore is a very 
high quantum efficiency (~0.67 versus ~0.20 for free retinal in solution) 
and an extremely low rate of thermal isomerization.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 12. Rhodopsin photochemistry (photolysis).�
 
 

 

 
 

#1

#2

#3 

photochemistry or rhodopsin photolysis —fig. 12. 
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After photoisomerization the rhodopsin molecule proceeds through a 
number of well-characterized spectral intermediates. Because the protein-
chromophore interactions change after chromophore photoisomerization the 
distinct max values of the intermediates are observed. Metarhodopsin-I is in a 
dynamic equilibrium under physiological conditions with metarhodopsin II 
(meta-II), which is characterized by an unprotonated Schiff base imine and 
a dramatically blue-shifted  value (380 nm).  

The number two key event is appearance of metarhodopsin II. Meta-II 
or so called physiologically activated rhodopsin is the photoproduct that is 
able to bind and activate G-protein. G-protein is named transducin in case 
of visual phototransduction. Meta-II eventually decays to free all-trans 
retinal and opsin apoprotein. In the course of Meta-I to Meta-II transition 
the retinal Schiff base is hydrolyzed and all-trans-retinal is released, and 
then is reduced to all-trans-retinol in the rod outer segment. 

So, the formation of free all-trans retinal and opsin in the rhodopsin 
photocycle I can mark as the number three key event. This process is rather 
slow one, and it occurs after the phototransduction process in the rod outer 
segment is completed. What I should stress regarding this third key event 
is: the appearance of free all-trans retinal in the disk photoreceptor 
membrane creates a hazard of light damage as to the rod cell as to the 
retinal pigment epithelium cell. I am going to consider this subject that I 
call as a photobiological paradox of vision a little bit later. 

But now let me stop briefly on the very first photochemical event of 
rhodopsin photocycle.  

Visual phototransduction, the conversion of incoming light to an 
electrical signal, takes place in the outer segments of the rod and cone 
photoreceptor cells.  

Light reduces the concentration of cGMP, which, in darkness, keeps 
open cationic channels present in the plasma membrane of the outer 
segment. Ca2+ plays an important role in phototransduction by modulating 
the cGMP-gated channels as well as cGMP synthesis and breakdown. Ca2+ 
is involved in a negative feedback that is essential for photoreceptor 
adaptation to background illumination.  

Visual phototransduction represents one of the best-characterized G-
protein-coupled receptor-mediated signaling pathways. Structural analyses 
of visual pigment rhodopsin, G protein, and several other phototransduction 
components have revealed common folds and motifs that are important for 
function.  
 

 
 

� 

max�
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Given the accelerated pace of structure and functional determination, it 
is anticipated that visual phototransduction will be the first G-protein-
coupled pathway for which a complete molecular description is ultimately 
available. 

Because light in vision is not only a carrier of information, but also a 
risk factor of damage to the eye structures, the complex photoprotective 
system, along with physiological system of visual reception, has been 
developed in the course of evolution. The sophisticated photoprotective 
system is able to solve the photobiological paradox of vision. The 
impairment of the system can lead to human retina diseases or play role in 
progression of eye diseases like age-related macula degeneration.  

Molecular mechanisms of potential light hazard to the eye structures, 
first of all to the retina, and main components of natural photoprotective 
system (permanent renewal of rod and cone outer segment, antioxidants and 
optical media of the eye) will be considered. 

Now let me stop briefly on the very first photochemical event of 

characterized by an unusually high rate of chromophore isomerization 
(faster than 200 femtoseconds). The quantum yield of this photoreaction is 
also high, namely 0.67 or in accordance with recently made estimations – 
0.65, but not less. It should be stressed that the rate of 11-cis-retinal 
isomerization as a rhodopsin chromophore group is about two orders of 
magnitude higher than in solution. The crucial role of the protein 
environment that produces this enormously high rate of isomerization as 
well as high quantum yield is doubtless. However, the underlying molecular 
mechanisms have not yet been studied in full. The very first product 
rhodopsin photocycle in the ground state is photorhodopsin. There are 
several laboratories, including our own lab, where this very first 

experimental results we have obtained recently in Moscow in collaboration 
with the laser physicists from Institute of Chemical Physics of the Russian 
Academy of Sciences. Using modern femtoseconds spectroscopy technique 
we were able to record the appearance of photorhodopsin. On the upper part 
of the picture you can see the differential spectrum of the product that has 
absorption maximum around 580 nm and that is recorded after 500 fs after 
rhodopsin solution photoexcitation by 70 fs laser flash. The wavelength of 
the flash in our case is 405 nm, namely in the blue part of alpha-band of 
rhodopsin absorption spectrum. In other words, the 405 nm flash is 
absorbed by rhodopsin chromophore group 11-cis retinal itself.  

 
 

rhodopsin photocycle.As it is marked on the Fig. 13 rhodopsin is 

photochemical event is careful studied. The Fig. 13 shows you the typical 
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Then, the photorhodopsin due to following conformation changes 

within the chromophore site of rhodopsin molecule turns in the absence of 
light into the next product, so called batorhodopsin. The absorption 
maximum of batorhodopsin is shifted to the more short-wavelength part of 
visible spectrum in comparison with photorhodopsin. On the lower part of  
 

Absorption spectra of primary products of rhodopsin photolysis at increasing delay of 
probing pulse. The very first product is photorhodopsin with 580 nm absorption maximum.  

Kinetics of optical absorbance increasing at different wavelength:  
500, 540 and 580 nm 

Figure 13. Femtoseconds spectroscopy of  rhodopsin (Ostrovsky et al., submitted). 
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the picture three kinetics curves of the rise of optical absorbance at different 
wavelength is presented. It is clear to see that the absorption maximum at 
580 nm that is the absorption maximum of photorhodopsin, reaches its 
highest value during about 200 - 250 fs. The physical importance of such 
high rate of rhodopsin chromophore group photoisomerization is clear: the 
energy of absorbed photon should be used as much as possible for this 
useful photochemical reaction that triggers the visual process, and not to be 
loosed via other concurrent reactions like worming up or fluorescence. The 
same situation takes place in case of other crucial photobiological process 
— photosynthesis, where the biological useful charge separation also 
occurs in the femtoseconds time scale. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 14a. Site-directed spin labeling of Cys140, 316 and pair Cys 322, 323 and electron 

 
The second biologically most important event in the rhodopsin 

photocycle is appearance of the transient product, called metarhodopsin II. 
This product and this stage of photocycle are presented on the left part of 

prototypical member of a large G-protein-coupled receptor family in more 
detail. The only I should say now is: these membrane protein receptors play 

Fig. 14a. A little bit later I will consider the visual pigment rhodopsin is a 

paramagnetic resonance spectroscopy (Ostrovsky et al. 1985). 
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a key role in very many regulatory processes of living organisms. But now 
let me stress that a unique feature of rhodopsin as a G-protein-coupled 
receptor is that its incorporated ligand, 11-cis-retinal chromophore, acts as a 
highly efficient antagonist that enables to maintain rhodopsin in its dark 
state inactive. This is extremely important for physiology of visual process 
to keep rhodopsin salient, to prevent its spontaneous interaction with G-
protein in the dark adaptation state, in order to diminish as much a possible 
dark noise of photoreceptor cell. As a result of photon absorption and 11-cis 
to all-trans retinal isomerization, the all-trans-retinal turns into a highly-
efficient agonist. On the stage of metarhodopsin II all-trans-retinal is still 
covalently bound up with the protein part of rhodopsin molecule — opsin. 
In spite of rhodopsin in its dark state, the metarhodopsin II, which general 
conformation state is now rather different from the initial dark rhodopsin 
conformation state, is capable to interact very efficiently with G-protein ; in 
case of vision (phototransduction) G-protein named transducin.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 14b. 
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At present there are numerous experimental data obtained by different 
experimental techniques that have clear shown in all details the 
conformation changes of rhodopsin molecule that lead to appearance of 
metarhodopsin I and then metarhodopsin II, which can bind G-protein and 
activate it. One of the powerful approach is site-directed spin labelling of 
rhodopsin and by means of electron paramagnetic resonance spectroscopy 
studying its light-induced conformation changes. We were one of the first 
who have applied this technique and demonstrated how the binding sites of 
opsin can be open on the stage of metarhodopsin II, in order to be prepared 

dimension model of rhodopsin molecule in the membrane and the sites, 
namely Cys140, 316 and pair Cys 322, 323 situated in the hydrophilic 
cytoplasm part of molecule, where the spin labels were attached.  
 
Figure 15. Light induced mobility of spin labels attached to SH-groups. Effects of 
transducinadding. (Ostrovsky et al.,1985. Pogozheva et al., 1989). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of spin label attached to Cys140. 
 
 

 
 

Green light 

Blue light  

to bind and interact with G-protein. On fig. 14b you can see the two-

Figure 15a. Spin labels and EPR spectra.         Figure 15b. Increase of light-induced mobility 
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Figure 15c. Decrease of light-induced mobility of Cys140 spin label after transducin adding. 
 

structure of spin labels molecules and electron paramagnetic resonance 
(EPR) spectra are presented. On figure 15b you can see the main 
phenomenon: green light that is absorbed by rhodopsin induces increase of 
spin label mobility that attached to SH-group (in this case to Cys140), and 
blue light that is absorbed mainly by metarhodopsin II leads to decrease of 
spin label mobility. It means that the conformation of photoregenerated 
product, first of all so called metarhodopsin III, returns, at least partly, to 
initial state. On figure 15c it is clear to see that adding of transducin to the 
photoreceptor membrane suspension decrease or completely prevents the 
light-induced mobility of spin label attached to Cys140. This is one of the 
first results demonstrated how light is able to open the hydrophilic loops of 
rhodopsin in the membrane during its transition to metarhodopsin II.  

plentiful data obtained by different techniques. On the right three-
dimension model of binding sites of metarhodopsin II is presented: it is 
clear to see that the hydrophilic loops C2 and C3, and nonloop cytoplasmic 
regions C1 are accessible to interaction with G-protein, namely with its 
alpha-subunit. On the right side the drawing of alpha- and beta-gamma G-
protein subunits binding to cytoplasmic surface of metarhodopsin II is 

Rhodopsin  

Rhodopsin  + 
Transducin  (5:1)

Rhodopsin  + 
Transducin  (2:1)

Light 

On the next Fig. 15 the main results are presented. On figure 15a the 

The next slide (Fig. 16) shows you the modern models based on the 
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presented. You can see that the area of metarhodopsin II to bind both alpha- 
and beta-gamma G-protein subunits is not enough. That is why a new 
model of rhodopsin molecules topography within the photoreceptor 
membrane as dimer, but not monomer, has been recently proposed. There 
are now several publication regarding the functional crosstalk between G 
protein-coupled receptors, first of all rhodopsin itself, in a homo- or 
heterodimeric assembly however the nature of this interface is not yet 
established 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
Figure 16. Three-dimension model of binding sites of  R* (Metarhodopsin II) with the -
subunite of the G-protein (Choi et al, 2002).�
 

Thus, the visual pigment rhodopsin is a seven trans membrane protein 
and is from the family of G protein coupled receptors (GPCRs). These trans 
membrane proteins switch from an inactive to an active form on the binding 
of a ligand. The activated receptor can trigger an intracellular signal 
cascade, in case of photoreceptor cell called phototranduction. 

Visual phototransduction, the conversion of incoming light to an 
electrical signal, takes place in the outer segments of the rod and cone 
photoreceptor cells. This process represents one of the best-characterized 
G-protein-coupled receptor-mediated signalling pathways. Structural 
analyses of visual pigment rhodopsin, G protein, and several other 
phototransduction components have revealed common folds and motifs that 
are important for function  process, by which light, captured by a visual 

         The loops C2 and C3, and nonloop 
cytoplasmic regions C1 are involved on  the 
metarhodopsin II stage in the specific 
interaction with alpha-subunit of  G-protein. 
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pigment molecule, generates a physiological response, namely an electrical 
signal called photoreceptor potential. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 17 a.  
 

On 
phototransduction process is presented.  

It was rather surprising discovery made in the second part of 60th 
actually at the same time by Japanese neurophysiologist Tsuneo Tomita and 
Russian  neurophysiologist Yuri Trifomov that vertebrate photoreceptor 
cell, in contrast to in vertebrate one, generates not depolarisation, but 
hyperpolarisation electrical response to light stimulus. On figure 17a, the 
lower part, you can see three intracellular recorded potentials in response to 
three light stimuli with increasing intensity. Later Dennis Baylor from 

Hyperpolarization 

Photocurrent  

Fig. 17a the final electrophysiological step of complex 
“((decrease of “dark current 
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Stanford University and Trevor Lamb from Cambridge (UK) have 
elaborated the technique using suction pipette as an electrode to measure 
electrical current through the rod and cone outer segment plasmatic 
membrane. On the left side above you can see series of photocurrents 
responses recorded for 20-ms light flashes with increasing intensities — 
from dim-flash to saturating levels. In fact, the photocurrent response 
reflects the diminishing of the constant dark current. It is easy to see not 
only rise of responses amplitude, but also the progression of time-to-peak 
from ~1.5 s to ~0.6 s as it is increased from very dim-flash to saturating 
one.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17b. 
 

On figure 17b the circulating current (“dark current”) in a rod as a very 
simple scheme is depicted. In the dark sodium ions leak into the outer 
segments of the rods. This produces depolarizing potential that keep 
calcium channels open in their synaptic endings. This results in continuous 
neurotransmitter release, namely glutamate, by the rods at their synapses. 
When light triggers rhodopsin breakdown the sodium permeability of the 
outer segment membrane decreases rapidly. The effect of light turns off the 

Circulating current (“dark current”) in a Rod 
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sodium entry causing the rod cells to develop a hyperpolarizing receptor 
potential that inhibits their release of neurotransmitter. The inhibition or 
even prevention of neurotransmitter release serves as a signal to the second 
order neurons in the retina – bipolar and horizontal cells that visual pigment 
molecules absorbed light.  

a rod, and in a blue and red cones recorded with suction pipette.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18a. 
                     
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18b. 
 

It is clear to see that the phototransduction amplification cascade is 
enough powerful in rod, in order to govern the rate of neurotransmitter 
release. At the same time, amplification cascade in cones need much more 
than one absorbed photon to initiate the phototransduction process. That is 

cGMP

cGMP-gated channels !!! 

Light 

The simplest schematic diagram 
of phototransduction 

Single Photon Responses in a Rod, and in a 
Blue and a Red Cones recorded with 
suction pipette ( )  

Signal propagation             
(Activation) Inactivation

The next Fig. 18a shows you single photon photocurrents responses in 

Mendez et al., 2000
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why, as it is well and long time known, the cone diurnal vision is about tow 
orders less sensitive than rod scotopic vision. 

What is also should be stressed is: the rising, going up, upward phase 
of the electrical response is the result of signal propagation or activation 
steps of amplification cascade, and descending, downward phase is the 
consequence of inactivation reactions of the cascade.The simplest 

18b. Photoactivated rhodopsin (R*), namely metarhodopsin II, activates in 
the photoreceptor disk membrane the second protein — GTP-binding 
protein transducuin (T). A single active rhodopsin R is able to cause 
hundreds of transducins to exchange bound GDP for GTP, forming active 
transducin-GTP complexes. A greatly amplified signal now passes to a 
third protein, cGMP phosphodiesterase (PDE, phosphodiesterase), which is 
activated by transducin-GTP complexes. Before phosphodiesterase 
activation the cGMP kept in the dark the cationic channels in the cell 
membrane in the open state. Activated PDE hydrolyses phosphodiesterase 
to 5’-GMP, which now cannot open the cationic channels in the cell 
membrane. So, with cGMP removed, channels close, interrupting a steady 
inward currents of Na+ and Ca+, thus hyperpolarizing the cell. The next step 
is inactivation of cascade. We will consider both activation and inactivation 
steps a little bit later in more details. Now, we only should note that, finally, 
the cGMP concentration is restored to the dark level by cGMP synthesis, 
which is mediated by guanylat cyclase (GC). 

The picture show: the activation steps (A) those are responsible, as we said 
before, for the upward phase of the electrical response, and B&C that are 
responsible for its downward phase.  

(A) As it clear to see, following absorption of a photon (h�), the 
activated rhodopsin (R* that is metarhodopsin II) repeatedly 
contacts molecules of the heterotrimeric G-protein, 
catalyzing the exchange of GDP for GTP, producing the 
active form G* �(=G–GTP). Two G* ��subunits bind to the 
two inhibitory �- subunits of the phosphodiesterase (E), 
thereby activating the corresponding �� and  �catalytic 
subunits, forming E* which then catalysis the hydrolysis of 
cGMP. The consequent reduction in the cytoplasmic 
concentration of cGMP leads to closure of the cyclic 
nucleotide gated channels, and blockage of the inward flux 
of Na+ and Ca2+ (thereby reducing the circulating electrical 
current). The exchanger continues to pump Ca2+ out, so that 
the cytoplasmic Ca2+ concentration declines, activating three 
‘calcium feedback’ mechanisms illustrated in this panel and 
in (B).  

schematic diagram of phototransduction process is presented on the Fig. 

Fig. 19 shows the rod phototransduction cascade in more details.  
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Figure 19. Schematic of the rod phototransduction cascade 
(from:http://dolphin.upenn.edu/~pugh/papers/PNL_99.html).�

 
As far as ‘calcium feedback’ mechanisms I can say that loss of Ca2+ 

from guanylyl cyclase activating proteins (GCAPs) allows them to bind to a 
cytoplasmic domain of the guanylyl cyclase (GC), increasing its activity. 
Also, loss of Ca2+ from calmodulin (CM) causes it to dissociate from the 
channels, lowering the K½ of the channel for cGMP.  

(B) Now let we consider the first step of R* inactivation. 
At the dark concentration of [Ca2+]i (left side of diagram), most of the 

recoverin (Rec) that is specific Ca2+- binding protein is in the Ca2+-bound 
form at the membrane. In the dark Rec–2Ca forms a complex with 
rhodopsin kinase (RK), blocking its activity. Rhodopsin kinase is also a 
specific protein that is able to phosphoralate R*, if it is in the free state. 
Other words, at resting Ca2+ levels contact between R* and uncomplexed 
RK occurs infrequently. When [Ca2+]i drops during the light response 
(arrows indicate progression of time), Ca2+ dissociates from Rec, which 
moves into solution. The concentration of free RK rapidly increases,  
increasing the frequency of interaction with R*, and leading to its rapid 
phosphorylation. Arrestin (Arr) that is the second protein involved in the R* 
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inactivation then binds to the phosphoralated R*, substantially quenching 
the R* activity.  

(C) The second step of phototransduction cascade inactivation is 
inactivation of G*–E* complex. G* or �(G–GTP) is inactivated when the 
terminal phosphate of its bound GTP is hydrolyzed. Although the G protein 
has intrinsic GTPase activity, this capacity is only activated when the G* is 
bound to the �-�subunit of PDE (PDE���) and when, in addition, the GTPase 
activating protein or GAP factor (RGS9–G�5) also binds. The resulting 
tetra-molecular complex, G* –PDE��–RGS9–G��5, rapidly hydrolyzes the 
GTP to GDP, returning the G-subunit to its inactive form, so that the E* 
and G* are simultaneously inactivated. 

As you can see, the molecular mechanism of cascade inactivation is 
even more complex that activation. Also, it should repeated that these 
mechanisms of cascade activation and inactivation are responsible for the 
upward and descending, downward phases of rod cell electrical response. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20. Guanylyl cyclase and synthesis of cGMP.�

 

attention to the final step of cascade activation and the very first step of  
cascade inactivation. The key protein of the final step of cascade is the 
cyclic nucleotide-gated (CNG) channel. These channels play a central role 
in the conversion of sensory information, such as light and odour, into 

GC

GCAP 

              2+   
Low Ca  

cGMP 

Low Ca induces 
with help of 
GCAP the 
activity of 

Guanylyl cyclase, 
and as a result the 

synthesis of 
cGMP 

Figure 20 shows you a piece of the scheme Fig. 19A, in order to pay you 
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primary receptor electrical signals. The cGMP-gated channel of 
photoreceptor outer segments is inserted solely into the plasma membrane. 
The channel is constantly kept open by cGMP und closes as cGMP 
phosphodiesterase hydrolyzes cGMP and reduces its concentration. The 
channel is nonselective for monovalent cations and discriminates bivalent 
cations for Ca2+. This channel consists of a complex of two distinct subunits 
and one or more associated proteins. Calmodulin that is specific calcium–
binding protein binds to the channel complex and modulates the sensitivity 
of the channel for cGMP in a Ca2+ dependent manner. The phenomenon of 
direct, reversible binding of cGMP to the channels was discovered in the 
middle of 80th simultaneously in Russia by Fensenko et al. and in the US by 
Yau and Nakatani. This allows for a steady influx of Na+ and Ca2+ into the 
outer segment and maintains the cell in a partially depolarized state.  

The influx of Ca2+ through the channel is balanced by an efflux of 
Ca2+ by the Na+/Ca2+-K+ exchanger in the ROS plasma membrane, 
thereby maintaining the intracellular level of Ca2+ at a relatively constant 
level. Also, low intracellular Na+ concentration is maintained by the 
balanced extrusion of Na+ by Na+-K+ ATPase localized in the plasma 
membrane of the rod inner segment.  

The light-induced closure of the channels to Ca2+ results in a 
reduction in intracellular Ca2+ since the Na+/Ca2+-K+ exchanger 
continues to extrude Ca2+ from the outer segment. The rod Na-Ca 
exchanger utilizes both the inward sodium gradient and the outward 
potassium gradient to drive calcium extrusion. 

The reduction in Ca2+ is a key event in the recovery of the rod outer 
segment to its dark state and in light adaptation. This feedback mechanism 
is suggested to occur through the interaction of Ca2+- binding proteins with 
various proteins involved in the phototransduction process, and in 
particular, guanylate cyclase (GC). Indeed, low Ca induces with help of 
another Ca-binding protein – GCAP the activity of guanylyl cyclase, and as 
a result the synthesis of cGMP 

According to the scheme the timing of shut-off and recovery events for 
single photon response is: GC<RK (rhodopsin kinase) < Arr (arrestin) and 
GTPase. Generally speaking, increasing of guanylyl cyclase activity by low 
Ca as a result of cGMP-channels closing and cGMP synthesis is the first, 
earliest event in the mechanism of cascade inactivation. 

 
 
 
 
 

Figure 21 shows you a possible scheme of timing of inactivation events. 
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Let me now to consider the last topic of my lecture, namely the so-

called photobiological paradox of vision. The essence of the paradox is: 
light in vision is not only a carrier of information, but also a risk factor of 
damage to the eye structures. The most dangerous hazard of light damage is 
related to the eye retina, namely to the rod cells, and to the retinal pigment 
epithelium cells (RPE).  

Why light is a risk factor to these cells? Because these cells are open t 
light and available to absorb light, and because they contain all three factors 
(components) that are necessary to initiate and develop the destructive free-
radical photooxidation reaction. Firstly, these cells are full of coloured 
substances that are able to absorb light and act as photosensitizes. Secondly, 
they contain easy oxidized substrates of oxidation like lipids with 
polyunsaturated fatty acids and SH-groups contained proteins like 
rhodopsin. And finally, there is a high tension of oxygen in these cells. It 
should be stressed that all these compounds are crucial necessary for 
normal, physiological process of photoreception. That is why the complex 
protective system that is able to prevent light hazard to the retina and RPE 
has been developed in the course of evolution. The photoprotective system 
of the eye — as vertebrate as invertebrate animals — includes several lines 
of protection. The most obvious and important defence line is the 
permanent renewal of rod and cone outer segments. Two other lines are the 

Figure 21. Timing of inactivation events.�
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powerful set of antioxidants, and optical media as cut-off filters. The lens 
plays a crucial role as a cut-off filter.  

Both the photobiological system and also complex system of visual 
reception, as I said before, have been developed simultaneously in the 
course of evolution. The sophisticated photoprotective system is able to 
solve the unavoidable photobiological paradox that is appropriated to any 
photobiological processes like vision or photosynthesis. However, the 
impairment of the photoprotective system can lead to human retina diseases 
or play role in progression of eye diseases like age-related macula 
degeneration.  

To understand the mechanism of the hazard of light damage let me 
now pay your attention on the so-called visual cycle. This cycle is a normal, 
physiological part of visual system goings-on. At the same time it is a 
potentially source of light hazard the retina and retinal pigment epithelium. 

As it was clear from Fig. 12, the third key step in rhodopsin photolysis 
is hydrolysis of covalent link between isomerised all-trans-retinal and 
amino acid of opsin — Lys296, to which the chromophore is attached. In 
fact, the released free all-trans-retinal can be, if not processed properly, a 
cause of light damage.  

rhodopsin in the rod outer segment undergoes photoactivation after photon 
absorption and finally the all-trans-retinal is released. To regenerate 
rhodopsin and maintain normal visual sensitivity, the all-trans isomer must 
be metabolised and reisomerized in the retinal pigment epithelium to 
produce the chromophore 11-cis-retinal again. I am not going to consider 
the rather complex biochemical steps that constitute the visual cycle and 
that involve both photoreceptor cells and retinal pigment epithelium. The 
only I should stress now is: a key step in the visual cycle is isomerization of 
all-trans retinol to 11-cis-retinol in the RPE. 

In fact, there are two pathways to process the all-trans-retinal that is 
released from opsin. The first one is to enzymatically convert it to all-trans-
retinol on the surface of the same disk membrane, where the rhodopsin 
molecule was bleached. This is a normal physiological way. It takes place, if 
retina was irradiated by visible light of physiological intensities or/if a special 
protein that situated in the edge of disk works properly. The physiological 
function of this protein is the active transport of all-trans-retinal from the disk. 
However, if too much rhodopsin molecules are bleached due to very bright light 
irradiation or if this special protein, so called ABCR protein, is deficient, the 
all-trans-retinal is not leave the disk membrane, but accumulated within the  
 

 
 
 

Figure 22 shows you the scheme of visual cycle. As it was shown, 
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Figure 22. Visual Cycle and Light damage. 
 
membrane. If so, one molecule of all-trans-retinal reacts very rapidly with 
one of membrane’s phospholipids, namely phosphatidylethanolamine, and 
then the second molecule of all-trans-retinal reacts with the same molecule 
of phosphatidylethanolamine. As a result the complex and phototoxic 
compound, so called A2E, is appeared. A2E was originally named from the 
two equivalents of vitamin A aldehyde (all-trans-retinal) and one 
equivalent of ethanolamine. So, in the eye, A2E forms when an excess of 
all-trans-retinal leads to chemical condensation reactions between all-trans-
retinal and phosphatidylethanolamine (2:1 ratio) in the photoreceptor disks. 
Once again, at normal physiological conditions most of all-trans-retinal 
molecules are reduced to all-trans-retinol by means of enzyme all-trans-
retinoldehydrogenase that is located in the photoreceptor outer segment. 
Only all-trans-retinal that escapes normal conversion can enter the A2E 
biosynthetic pathway.  

of all-trans-retinal — the membrane protein ABCR is situated and how it 
transports using the energy of ATP all-trans-retinal from the disk. The left part 

RPE cells, and illustration of the well established fact that bright light or/and 
ABCR deficiency promote accumulation of lipofuscin granules or so called 
“age pigment”. The lipofuscin granules are accumulated within the human  
 

Rod outer segment 

Phototoxicity 

RPE 

The right part of Fig. 23 shows you the scheme of where the active carrier 

of Fig. 23 shows you the drawing of rod outer segment apexes and adjoining 
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Figure 23. Bright light or/and ABCR deficiency promote accumulation of lipofuscin 
granules or “age pigment” in the RPE cells.�
 
pigment epithelium cells in the course of life span and its build up is 
accelerated by too bright light and/ or deficiency of the special transport 
protein ABCR. The main fluorophore along with 10-12 other fluorophores 
within the lipofuscin granule is A2E. 

These granules, as we and many other labs have established, are 
phototoxic and play an important role in the pathogenesis of retina 
degeneration deceases. Recently we have studied using atomic force and 
near-field microscopy techniques the ultrastructure organization and 
fluorescence properties of single lipofuscin granule isolated form human 
eye pigment epithelium. On the right part of the figure 24 you can see the 
topography of a granule, which structure is not homogeneous, other words, 
not like a ball or bean. On the left part you can see the phenomenon we 
have observed: the decrease of fluorescence of the granule at 532 nm in the 
course of it irradiation by different energy of visible light (from 3 to 24 
J/cm2 – spectra 2 to 5); the spectrum 1 represents the fluorescence of a 
granule in the dark, before its irradiation. One can propose that this 
phenomenon is owing to breakdown (photooxidation) of main fluorophore 
A2E, and formation of its more short-wavelength toxic products, so called 
A2E-epoxides. It was shown recently that A2E-epoxides are even more 
toxic then A2E itself. The studies of origin, structure and photo- and 
biochemistry of lipofuscin granules are necessary for understanding the 
aggravating role of light in progression of retina degeneration deceases. 

 

Active release of all-trans retinal by ABCR 

Lipofuscin granules

normal 
 retina 

degeneration 
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(Petrukhin et al., 2005). 
 

The reason of lipofuscin granules phototoxicity is its ability to light-
induced generation of toxic forms of oxygen.  

reactions of lipofuscin granules. As you can see, light, first of all UV and 
blue light, absorbed by the granules is able to induce oxygen consume, to 
generate singlet oxygen and superoxide radicals, and damage biological 
membranes, in our case the liposome membranes. 
 

Topography of single lipofuscin granule 

Decrease of fluorescence in the course of irradiation 
by visible light 

Excitation at 420 nm, fluorescence at 625 nm 

Figure 24. Structure and fluorescence of single lipofuscin granule: near field microscopy 

On the Fig. 25 is collected the main results related to light-induced 
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Figure 25. Wavelength dependence of light-induced reactions by lipofuscinranules.�

Singlet oxygen generation 
(Rozanowska et al., 1998) 

Oxygen consumption 
(Pawak et al., 2002 

Superoxide radicals             
(Boulton, Dontsov, Ostrovsky., 
1993)

Light-induced 
damage         

 to the liposome 
membrane    
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lipofuscin that are phototoxic agents (photosensitizers) and absorption 
spectra of human rod and blue, green and red cones. It is clear to see that 
blue light is potentially dangerous due to these photosensitizers for rods and 
blue cones. If we will insert UV and blue light cut-off filters in front of 
retina, we can partly avoid the blue light hazard, but it could also partly 
destroy the blue colour perception. However, I believe to protect retina 
against the hazard of light damage, especially after cataract surgery, is more 
important than to destroy slightly the blue colour vision perception. 

Now days we can say that the very possible molecular base of blue 
light hazard phenomenon that was discovered long time ago by American 
physiologist Ham is the phototoxicity of lipofuscin granules within the 
pigment epithelium cells.  
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Figure 26. Absorption spectra of all-trans retinal and lipofuscin that are photosensitizers and 
Absorption spectra of human rod and blue, green and red cones.�
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The Fig. 26 shows you the absorption spectra of all-trans retinal and 
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(laser flashes) to monkey retina published by Ham, Meuller and Sliney in 
1976. 

As I talk about the complex physiological protective system before, the 
system that is able to prevent light hazard to the retina and retina pigment 
epithelium includes, at least, three lines of protection: permanent renewal of 
rod and cone outer segment, set of antioxidants, and optical media as cut-

 

 
Figure 27. Action spectrum of light damage to monkey retina.(Ham, Meuller, 
Sliney, 1976).�
 

 
 
 
 
 
 
 

 
 
Figure 28. The complex protective system is able to prevent light hazard to the retina and 
RPE.�
�

 
 

- Permanent renewal of rod and cone outer segment, 

- Antioxidants, 

- Optical media as cut-off filters (Lens!!!) 

The Fig. 27 shows you the classical action spectrum of light damage 

off filters, where lens plays a crucial role (Fig. 28, the table) 
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As far as human lens as a cut-off filter is concerned, it should be 
stressed that the well known physiological phenomenon of age-related 
yellowing of human lens is extremely important to protect retina and retina 
pigment epithelium against blue light hazard. Based on our knowledge 
regarding the absorption spectra of all-trans retinal as a photosensitizer and 

middle of 80th new yellow artificial lenses (intraocular lenses), which 
transmittance spectrum was similar to the transmittance spectrum of 
natural, non-cataractal human lens at age near 50. The idea was to cut-off 
the UV and blue light that could reach the retina and retina pigment 
epithelium, and if so, can be absorbed by all-trans retinal and lipofuscin 
granules and generates the toxic free radical of oxygen. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. 
  

Today about one million yellow intraolular lenses (IOLs “Spectrum”) 

comparative statistical analysis of yellow IOLs and colorless IOLs 

Lens as a cut-off filter 
Age-related yellowing of  human 
lens (Fedorovich, Zak, Ostrovsky, 

1994) 

 Absorption spectra of 
photosensitizers,      and 
transmittance spectra of 
human lens and yellow 

artificial lens “Spectrum”  

age-related yellowing of human lens (see Fig. 29), we have developed in the 

have been produced and implanted in Russia since 1986 (Fig. 30). The 
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implantations has shown that so called macular edema – the adverse effect 
of cataract surgery – was observed about ten time less in case of yellow 
IOLs. Other words, yellow intraocular lenses are more protective than 
colorless ones. It is clear why: as it was shown in the recently published 
epidemiological study, the cataract surgery increases the amount of optical 
radiation that reaches the retina, and can promote retina diseases like age-
related macula degeneration. About 2 or 3 years ago the American Alcon 
Company has developed soft yellow AcrySof® Natural intraocular lenses. 
The transmittance spectrum of these lenses is very similar to our hard IOLs 
“Spectrum”. Now days it is obviously that yellow IOLs that mimic the 
optical transmission of ageing crystalline lens and absorb both blue and UV 
radiation should be widely used. The yellow IOLs (“Spectrum”, Alcon 
AcrySof® Natural) can reduce the risk for or progression of age-related 
macular degeneration, and this is tremendously important. In fact, this 
statement is a direct result of our modern understanding of molecular 
mechanisms of the photobiological paradox of vision and its consequence. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. About one million yellowintraolular lenses IOLs “Spectrum” have been produced 
and implanted in Russia since 1986. 
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Abstract.  Recent studies of complex systems indicate that real networks 
are far from random, instead having a highly robust, large-scale architecture 
that is governed by strict organizational principles.  Here, we will focus on 
cellular networks, discussing their scale-free and hierarchical features.  We 
will first discuss a few central network models, before illustrating the major 
network characteristics using examples primarily from bacterial metabolic 
networks.  Additionally, as the interactions in real networks have unequal 
strengths, we discuss the interplay between network topology and reaction 
fluxes in cellular metabolic networks, as provided by the flux balance 
method.  We find that the utilization of the metabolic networks is both 
globally and locally highly inhomogeneous, dominated by “hot-spots” that 
represent connected set of high-flux pathways. 

Keywords: complex system; network; scale-free; cellular metabolism; flux balance 
analysis. 

 

1. Introduction 

The last century brought with it a dramatic progress in the natural 
sciences, and the majority of the scientific and engineering developments 
can be directly related to the reductionist approach: One presumes that the 
often complex behavior of a system can be predicted and understood from 
the detailed knowledge of the system’s (often identical) elementary 
constituents.  The last 30 years or so have clearly revealed that our ability to  
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understand simple fundamental laws governing the individual “building 
blocks” is a far cry from being able to predict the overall behavior of a 
complex system (Anderson, 1972).  Furthermore, for most complex systems 
there exists a considerable variation in the nature of both the elementary 
building blocks and their interactions requiring novel methods capable of 
analyzing and predicting their large-scale behavior. 

In the last few years network approaches have shown great promise as a 
new tool to analyze and understand complex systems (Strogatz, 2001; 
Albert, 2002; Dorogovtsev, 2003; Bornholdt, 2003; Pastor-Satorras, 2004). 
For example, technological information systems like the internet and the 
world-wide web are naturally modeled as networks, where the nodes are 
routers (Faloutsos, 1999; Vázquez, 2002) or web-pages (Albert, 1999; 
Lawrence, 1999; Broder, 2000) and the links are physical wires or URL’s 
respectively.  Human society is also naturally described within the 
framework of network analysis, with people as nodes and the links between 
the nodes being either friendships (Milgram, 1967), collaborations 
(Kochen, 1989; Wasserman, 1994), sexual contacts (Liljeros, 2001), or co-
authorship of scientific papers (Redner, 1998; Newman, 2001) to name just 
a few possibilities.  

In the biological sciences we can represent systems as disparate as food 
webs in ecology and biochemical interactions in molecular biology as 
networks. In particular, the complex interactions of the various types of 
intracellular molecules offer a wide range of structures whose salient 
features are well captured by a network concept.  Important examples 
include the many interactions between genes, proteins and metabolites. The 
development of high-throughput measurement tools in molecular biology 
during the last several years has made available a huge amount of genomic- 
and postgenomic data.  For example, in the fields of transcriptomics and 
proteomics there is now a wealth of data on protein levels under various 
conditions, and genome wide analysis of gene expression at the mRNA 
level is now routine (Pandey, 2000; Caron, 2001; Burge, 
2001).Furthermore, protein-protein interaction maps have been generated 
for a variety of organisms including viruses (Flajolet, 2000), prokaryotes, 
like Helicobacter pylori (Rain, 2001) and eukaryotes, like Saccharomyces  
cerevisiae (Ito, 2000; Ito 2001; Schwikowski 2000; Uetz 2000; Gavin 2002; 
Ho, 2002; Jeong, 2001) and Caenorrhabditis elegans (Walhout, 2000).  
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2. Tools in Network Characterization 

We begin by discussing some of the tools of network analysis, and the 
key properties they reveal of real networks.  It is important to realize that 
the representation of different systems as networks has uncovered 
surprising similarities, many of which are intimately tied to power laws.  
Although the details of the networks, e.g., the explicit nature of a node and 
the nature of its interactions with other nodes, are frequently quite unique, 
the overall statistical features of different networks can be very similar.   

2.1. DEGREE DISTRIBUTION 

The simplest statistical measure of a network property is the average 
number of nearest neighbors of a node, also called the average degree k . 
A natural refinement of this property, revealing deeper insights into a 
network’s organization, is the distribution of the number of nearest 
neighbors )(kP of a randomly chosen node.  The degree of a node is 
defined from the nearest neighbor matrix {aij}, which contains the 
description of the whole network, as ��

j
iji ak , where aij=1 if there is a 

link between nodes i and j and zero otherwise.  For a surprisingly large 
number of networks, the degree distribution is best characterized by the 
power law functional form (Barabási, 1999) (Fig. 1a), 

 �kkP ~)( . (1) 

 
 
 
 
 
 
 
 
 
Figure 1. Characterizing degree distributions. For the power-law degree distribution (a), 
there exists no typical node, while for distributions with a single peak (see (b)) most nodes 
are well represented by the degree k  of the average (typical) node. 

Examples include the Internet on both the domain and router level, the 
World-Wide Web, the network of movie actors, sexual network, co-author 
networks and food webs to mention a few (for a more complete listing 
together with the pertinent references, see Albert, 2002). 
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However, if the degree distribution is instead single-peaked (e.g., 
Poisson or Gaussian) as in Fig. 1b, the majority of the nodes would be well 
described by the average degree, and hence, the properties of a “typical” 
node.  In contrast, for networks with a power-law degree distribution, the 
majority of the nodes have only one or two neighbors while coexisting with 
many nodes with hundreds and a few even with thousands of nearest 
neighbors. For the power law networks there exists no typical node, and 
thus they are often referred to as “scale-free”.  In Fig. 2a-c respectively, we 
show the degree distributions of the metabolic networks of the three notably 
disparate organisms of Archaeoglobus fulgidus (archae), Escherichia coli 
(bacterium) and C. elegans (eukaryote), all adhering to a power law  
functional form (Jeong, 2000).  The hypothesis that the scale-free network 
structure probably is a universal feature of metabolic networks is further 
strengthened (Fig. 2d) by the presence of a clear power law when averaging 
over 43 diverse organisms (Jeong, 2000). 

 

 
 
 
 
 
 
 
 
Figure 2.  Degree distributions of metabolic networks. The degree distribution displays a 
power law in both the in- and the out degrees for (a) A. fulgidus (archae), (b) E. coli 
(bacterium), (c) C. elegans (eukaryote), and (d) when averaged over 43 organisms (Jeong, 
2000). 

2.2. CLUSTERING COEFFICIENT 

In order to investigate the local network structure, we use the clustering 
of a node Ci, which measures the degree to which the neighborhood of a 
node resembles a complete subgraph (Watts, 1998).  The clustering of a 
node i can also be thought of as the probability that two nodes with a 
common neighbor are also neighbors of each other (i.e. form a triangle).  
For a node i with degree ki the clustering is defined as 
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representing the ratio of the number of actual connections ni between the 
neighbors of node i to the number of possible connections. For a node that 
is part of a fully interlinked cluster (all the nodes are connected to each 
other) 1�iC , while 0�iC  for a node which acts as a bridge between 
different clusters or parts of the network.  Accordingly, the overall 
clustering coefficient of a network with N nodes, given by 

 �� NCC i / ,  (3) 

gives a measure a network’s potential modularity: The larger the value of 
C , the more small, tightly connected small clusters exist in the network. 

One can also study the clustering of nodes with a given degree k, through 
which information about the actual modular organization of a network can 
be gleaned (Ravasz 2002; Ravasz 2003; Dorogovtsev, 2002; Vázquez, 
2002):  For all metabolic networks available, C(k) behaves like the power 
law 

 ��kkC ~)( , (4) 

suggesting the existence of a hierarchy of nodes with different degrees of 
modularity (as measured by the clustering coefficient) overlapping in an 
iterative manner (Ravasz, 2002). In Fig. 3a-c we show the clustering as 
function of k for the three single-celled organisms Aquidex aeolicus 
(archaea), E. coli (bacterium) and S. cerevisiae (eukaryote), respectively. In 
Fig. 3d C(k) is averaged over 43 organisms, displaying a robust power-law 
behavior. 

 
 

 
 
 
 
 
 
  
 
Figure 3.  The clustering of metabolic networks.  The average clustering as function of node 
degree k for (a) A. aeolicus (archaea), (b) E. coli (bacterium), (c) S. cerevisiae (eukaryote), 
and (d) averaged over 43 organisms, displays a power law behavior (Ravasz, 2002).  The 
dashed lines represent C(k)~1/k.  The inset in (d) displays all the 43 organisms together. 

(a) (b) (d
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2.3. DEGREE CORRELATIONS 

In many real networks, there exists non-trivial correlations in the node 
connectivities.  In networks with assortative degree correlations, the high 
degree nodes tend to be connected to other nodes with high degree, while in 
dissassortative networks, high degree nodes tend to be connected to low 
degree ones. The type and level of degree correlations in any network is 
typically measured as a Pearson’s correlation coefficient (Newman, 2002) 
or as the average connectivity knn(k) of the nearest neighbors of nodes with 
degree k (Pastor-Satorras, 2001).  Studies of real network correlations 
indicate that both technological and biological networks are dissassortative, 
while social networks tend to be assortative (Newman, 2003). 

2.4. WEIGHTED NETWORKS 

While the modelling of real networks has focused on understanding the 
structure of natural and man-made networks, it is also necessary to 
acknowledge the fact that the network links can be very different in their 
connection strengths or intensities, generally denoted link weights.  The 
effect of this difference can be captured by generalizing the above-
mentioned network tools to allow for varying link weights.  For instance for 
a node i, the node strength si, is defined as 

 ��
j

ijiji aws , (5) 

which can be readily recognized as the generalization of the node degree ki 
to weighted networks (Yook, 2001; Barrat, 2004).  Comparison of the node 
strength distribution with the degree distribution, and studies of quantities 
like s(k), can subsequently uncover non-trivial correlations between the link 
weights and the network topology (Barrat, 2004).  In section 4 of this 
chapter, we will investigate in more detail the effects of link weights on 
bacterial metabolic networks. 

 

3. Important Network Models 

Several network models are currently available to describe many of the 
aforementioned aspects of real networks.   In the following, we will limit 
ourselves to the description three such models, namely the random network 
model, the scale-free model and the hierarchical model.  These models are 
then compared to the features actually observed in metabolic networks. 
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3.1. RANDOM NETWORK MODEL 

Since the 1950's the properties of large networks with no apparent 
design principles were presumed to be well described by random graphs 
(Bollobas, 1985).  The random graph model represents the simplest and 
most straightforward realization of a complex network.  According to the 
Erdos-Renyi (ER) model of random networks (Erdos, 1960), we start with 
N nodes and connect every pair of nodes with probability p, creating a 
graph with approximately pN(N-1)/2 randomly distributed edges (Fig. 4a). 
For this model the degrees follow a Poisson distribution (Fig. 5a).   
 

Figure 4.  Graphical representation of three network models: (a) The ER (random) model, 
(b) the BA (scale-free) model and (c) the hierarchical model. Panel (c) demonstrates the 
iterative construction of a hierarchical network by starting from a fully connected cluster of 
four nodes (blue). This cluster is then copied three times (green) while connecting the 
peripheral nodes of the replicas to the central node of the starting cluster.  We end up with a 
64-node scale-free hierarchical network by once more repeating this replication and 
connection process (red nodes).  In panels (a) and (b) we emphasize the difference between 
the ER and the BA networks by coloring the five nodes with the highest number of links red 
and their first neighbors green.  For the scale-free network we reach more than 60% of the 
nodes using the five largest hubs, while for the random network only 27% of the nodes are 
directly accessible from the five most connected nodes, demonstrating the heterogeneous 
nature of scale-free networks.  Note that the networks in (a) and (b) consist of the same 
number of nodes and links. 

 

Consequently, the typical node is well described by the average degree 
k  of the network.  Furthermore, for this “democratic” network model, the 

clustering is independent of the node degree k (Fig. 5d).  This simple and 
beautiful model is, however, not able to accurately capture the topological 
properties of most real networks, as is clearly seen on comparison with e.g. 
Figs. 2 and 3. 
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3.2. SCALE-FREE NETWORK MODEL 

In the network model of Barabási and Albert (BA) (Fig. 4b), the 
emergence of a power-law degree distribution is attributed to two crucial 
mechanisms, both absent from the classical random network model 
(Barabási, 1999).  First, networks grow through the addition of new nodes 
linking to nodes that already are present in the system. Second, in most real 
networks there is a high probability that a new node link to an existing node 
with a large number of connections, a mechanism often referred to as 
preferential attachment. These two principles are implemented as follows: 
starting from a small core graph consisting of m0 nodes, a new node with m 
links (with 0mm � ) is added at each time step and connected to the 
already existing nodes.  Each of the m new links are then preferentially 
attached to a node i (with ki neighbors) chosen according to the probability 

 ���
j

jii kk / . (6) 

The simultaneous combination of these two network growth rules gives rise 
to the observed power-law degree distribution (Fig. 5b).  In contrast to a 
random network, the probability that a node is highly connected is 
statistically significant in a scale-free network; hence many network 
properties are determined by a relatively small number of highly connected 
nodes, frequently called “hubs”.  In Fig. 4a and b we show an example of 
the effect of the hubs on the network structure by coloring the five nodes 
with largest degrees are red and their nearest neighbors green.  While in the 
ER network only 27% of the nodes are reached by the five most connected 
ones, more than 60% of the nodes in the scale-free network are covered, 
demonstrating the key role played by the hubs.  Additionally, the hub’s 
dominance of the network topology cause the scale-free networks to be 
highly tolerant to random failures (perturbations) while being extremely 
sensitive to targeted attacks (Albert, 2000).  Comparing the properties of 
the BA network model with those of the ER model, we note that while the 
clustering of the BA network is larger, )(kC however is approximately 
constant (Fig. 5e), suggesting that a hierarchical structure is absent.  
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Figure 5.  Properties of the three network models. (a) The ER model gives a Poisson degree 
distribution P(k) (the probability that a randomly selected node has exactly k links), being 
strongly peaked around the average degree k  and decaying exponentially for large k.  For 
the scale-free (b) and the hierarchical (c) network models the degree distributions instead 
decay according to the power-law ��kkP ~)( . The average clustering coefficient for 
nodes with exactly k neighbors, C(k), is independent of k for both the ER (d) and the scale-
free (e) network model, while in contrast (f) 1~)( �kkC  for the hierarchical model (cf. 
Fig. 3). 
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3.3. HIERARCHICAL NETWORK MODEL 

Many real networks are expected to be fundamentally modular, meaning 
that the network can be partitioned into a collection of modules where each 
module performs an identifiable task, separable from the function(s) of 
other modules (Hartwell, 1999; Lauffenburger, 2000; Rao, 2001).  Thus, we 
expect a seamless combination of the scale-free property with such 
potential modularity.  In order to account for the modularity as reflected in 
the power-law behavior of )(kC (Fig. 3) and a scale-free degree 
distribution (Fig. 2), we can assume that clusters combine in an iterative 
manner, generating a hierarchical network (Ravasz, 2002; Vázquez, 2002) 
(Fig. 4c).  Such a network emerges from a repeated duplication and 
integration process of clustered nodes (Ravasz, 2002), which in principle 
can be repeated indefinitely.  

This process is depicted in Fig. 4c, where by starting from a small 
cluster of four densely linked nodes (blue), one next generates three replicas 
(green) of this hypothetical initial module and connect the three external 
nodes of the replicated clusters to the central node of the old cluster.  The 
centers of the replicas are also connected to each other, thus obtaining a 
large 16-node module. Subsequently, we again generate three replicas (red) 
of this 16-node module, and connect the replicas as described above, 
obtaining a new module now consisting of 64 nodes.  This (deterministic) 
hierarchical network model seamlessly integrates a scale-free topology with 
an inherent modular structure by generating a network that has a power law 
degree distribution (Fig. 5c) with degree exponent 

26.23ln/4ln1 ����  and a clustering coefficient C(k) which proves to 
be dependent on 1�k  (Fig. 5f).  However, it is of importance to note that 
modularity does not imply clear-cut sub-networks linked in well-defined 
ways (Ravasz, 2002; Holme, 2003).  Indeed, the boundaries of modules are 
often considerably blurred and bridged by highly connected nodes (hubs) 
which interconnect modules. 

3.4. BOSE-EINSTEIN CONDENSATION AND NETWORKS 

In most complex systems the nodes have differing abilities of attracting 
new links, which is independent of their number of nearest neighbors.  For 
instance, some Web pages quickly acquire a large number of links through 
a mixture of good content and marketing, although they are just recently 
published on the World-Wide Web.  This competition for links can be 
incorporated into the scale-free model by adding a "fitness" parameter, �i, 
to each node, i, describing its ability to compete for links at the expense of 
other nodes.  For example, a Web page with good up-to-date content and a 
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friendly interface would be expected to display a greater fitness than a low-
quality page that is only updated occasionally.  The probability �i that a 
new node connects to one with ki links is then modified from Eq. (4) such 
that �i = �i ki/�j �j kj (Bianconi, 2001). 

The competition generated by the various fitness levels means that each 
node evolves differently in time compared with others.  Indeed, the 
connectivity of each node is now given by ki(t) ~ tß(�), where the exponent 
ß(�) increases with �, and t is the time since the node was added to the 
network (Bianconi, 2001).  Consequently, fit nodes (ones with large �) can 
join the network at some later time and connect to many more links than 
less-fit nodes that have been around for longer.  

Amazingly, such competitive-fitness models appear to have close ties 
with Bose-Einstein condensation, currently one of the most investigated 
problems in atomic physics (Anderson, 1995; Bradley, 1995; Legget, 2001; 
Greiner, 2003).  In a normal atomic gas, the atoms are distributed among 
many different energy levels.  However in a Bose-Einstein condensate, all 
the atoms accumulate in the lowest energy state of the system and are 
described by the same quantum wave function.  By replacing each node in 
the network with an energy level having energy �i= exp(-� �i), the fitness 
model maps exactly onto a Bose gas (Bianconi, 2001).  According to this 
mapping, the nodes correspond to energy levels while the links are 
represented by atoms in these levels.  Additionally, the behavior of a Bose 
gas is uniquely determined by the distribution g(�) from which the random 
energy levels (or fitnesses) are selected.  One expects that the functional 
form of g(�) depends on the system.  For example, the attractiveness of a 
router to a network engineer comes from a rather different distribution than 
the fitness of a dot-com company competing for customers.  

For a wide class of g(�) distributions, a "fit-get-richer" phenomena 
emerges (Bianconi, 2001).  Although the fittest node acquires more links 
than its less-fit counterparts, there is no clear winner.  On the other hand, 
certain g(�) distributions can result in a Bose-Einstein condensation, where 
the fittest node does emerge as a clear winner.  For these distributions, a 
condensate develops by acquiring a significant fraction of the links which is 
independent of the size of the system.  In network language this 
corresponds to a "winner-takes-all" phenomenon.  While the precise form 
of the fitness distribution for the Web or the Internet is not known yet, it is 
likely that g(�) could be measured in the near future.  

4. Metabolic Network Utilization 

It is important to realize that despite their successes, purely topological 
approaches have intrinsic limitations.  Since the activity of the various 
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metabolic reactions or regulatory interactions differs widely, some being 
highly active under most growth conditions while others are switched on 
only for rare environmental circumstances, it is necessary to include this 
information in a network description.  Therefore, a biologically relevant 
understanding of metabolic- and other biochemical reaction networks 
requires us to consider the intensity (i.e., strength), the direction (when 
applicable), and the temporal aspects of the interactions.  While so far we 
know little about the temporal aspects of the various metabolic reactions, 
recent results have added insights on how the strength of the interactions 
(i.e., fluxes) of the metabolic reactions are organized (Almaas, 2004).  

A natural measurement of interaction strength for a metabolic network 
is given by the flux of the metabolic reactions, representing the amount of 
substrate being converted to a product within unit time.  Recent metabolic 
flux-balance approaches (FBA) (Edwards, 2000; Edwards, 2001; Ibarra, 
2002; Edwards, 2002; Segre, 2002) make it feasible to calculate the flux for 
each reaction.  This has markedly improved our ability to generate 
quantitative predictions on the relative importance of the various reactions, 
leading to experimentally testable hypotheses. The much utilized FBA 
approach can be stated as follows: Starting from a stoichiometric matrix 
representation of the E. coli K12 MG1655 metabolic network, which 
contains 537 metabolites and 739 reactions (Edwards, 2000; Edwards, 
2001; Ibarra, 2002; Edwards, 2002), the steady state concentrations of all 
metabolites satisfy the relation 

 0  ][ ���
j

jiji SA
dt
d � , (7) 

where ijS  is the stoichiometric coefficient of metabolite iA  in reaction j and 
j�  is the flux of reaction j.  We adhere to the convention of 0�ijS  

( 0�ijS ) if metabolite iA  is a substrate (product) in reaction j, and we 
constrain all fluxes to be positive by dividing each reversible reaction into 
two “forward” reactions with positive fluxes.  Any vector of positive fluxes 
{ j� } which satisfies Eq. (7) corresponds to a stoichiometrically allowed 
state of the metabolic network, and hence, a potential state of operation of 
the cell.  

Assuming that cellular metabolism is in a steady state and optimized for 
the maximal growth rate (Edwards, 2001; Ibarra, 2002), FBA allows us to 
calculate the flux for each reaction using linear optimization.  This provides 
a measure of each reaction’s relative activity (Almaas, 2004).  In a manner 
similar to that of the degree distribution, the flux (or weight) distribution of 
E. coli displays a strong overall inhomogeneity: reactions with fluxes 
spanning several orders of magnitude coexist under the same conditions 
(Fig. 6a).  This is captured by the flux distribution for E. coli which follows 
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a power law, where the probability that a reaction has flux � is given 
by ��� �� )(~)( 0P .  The flux exponent is predicted to be  = 1.5 by 
FBA methods (Almaas, 2004).   

 
 

 
 

 

 

 

 

 

 

 

 

Figure 6. Flux distribution for the metabolism of E. coli. (a) Flux distribution when 
maximizing the biomass production on succinate (black) and glutamate (red) rich uptake 
substrates. The solid line corresponds to the power law fit ��� �� )(~)( 0P  with 

0003.00 ��  and 5.1� . (b) The distribution of experimentally determined fluxes 
(see Emmerling, 2002) from the central metabolism of E. coli also displays power-law 
behavior which is best fit to �� �~)(P with 1� . 

In a recent experiment (Emmerling, 2002) the strength of the various 
fluxes of the central metabolism were measured in several E. coli mutants 
in addition to the wildtype, revealing the power-law flux dependence 

�� �~)(P  with 1�  (Fig. 6b) (Almaas, 2004).  This power law 
behavior indicates that the vast majority of the metabolic reactions have 
quite small fluxes, while coexisting with a few reactions with very large 
flux values.  Repeating these simulations for the bacterial organism H. 
pylori and the eukaryotic single-celled baker’s yeast S. cerevisiae, we find 
similar results. 

The observed flux distribution is compatible with two quite different 
potential local flux structures.  A homogeneous local organization would 
imply that all reactions producing (consuming) a given metabolite have 
comparable flux values.  On the other hand, a more delocalized “hot 
backbone” is expected if the local flux organization is heterogeneous, such 
that each metabolite has a dominant source (consuming) reaction.  To 
distinguish between these two scenarios for each metabolite i produced 
(consumed) by k reactions, we define the measure (Barthelemy, 2003; 
Derrida, 1987) 

(a) (b) 
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where ij�̂  is the mass carried by reaction j which produces (consumes) 
metabolite i.  If all reactions producing (consuming) metabolite i have 
comparable ij�̂  values, ),( ikY  scales as k/1 .  If, however, a single 
reaction’s activity dominates Eq. (8), we expect 1~),( ikY , i.e., ),( ikY  is 
independent of k. For the E. coli metabolism optimized for succinate and 
glutamate uptake (Fig. 7) we find that both the in and out degrees follow 
the power law 27.0~),( �kikY , representing an intermediate behavior 
between the two extreme cases (Almaas, 2004).  This indicates that the 
large-scale inhomogeneity observed in the overall flux distribution is 
increasingly valid at the level of the individual metabolites as well: the 
more reactions consume (produce) a given metabolite, the more likely it is 
that a single reaction carries the majority of the flux. This statement is valid 
also for the metabolism in H. pylori and S. cerevisiae. 

 

 

 

 

 

 

 

 

 

 

 
 

                                                                                                                                                    
Figure 7. haracterizing the local inhomogeneity of the metabolic flux distribution.  The 
measured kY(k) (see Eq. (7)) shown as function of k for incoming and outgoing reactions for 
fluxes calculated on both succinate and glutamate rich substrates, averaged over all 
metabolites, indicating 27.0~)( �kkY , as the straight line in the figure has 
slope 73.0�� . Inset: The non-zero mass flows ij�̂  producing (consuming) flavin 
adenine dinucleotide (FAD) on a glutamate rich substrate. 
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The local flux inhomogeneity described above suggests that we can 
identify a single reaction dominating the production or consumption of 
most metabolites.  Henceforth, we can construct a simple algorithm which 
systematically removes, for each metabolite, all reactions but the one 
providing the largest incoming and outgoing flux contribution. When the 
largest outgoing flux of metabolite A is identical to the largest incoming 
flux of metabolite B the high flux backbone (HFB) of the metabolism can 
be uncovered, whose identity is specific to the given growth condition.  The 
HFB mostly consists of reactions linked together, forming a giant 
component with a star-like topology which includes almost all metabolites 
produced under the given growth condition.  Only a few pathways are 
disconnected: while these pathways are parts of the HFB, their end product 
serves only as the second most important source for some other HFB 
metabolite.  It is interesting to note that groups of individual HFB reactions 
for the most part overlap with the traditional, biochemistry-based 
partitioning of cellular metabolism: e.g. all metabolites of the citric-acid 
cycle of E. coli are recovered, and so are a considerable fraction of other 
important pathways, such as those being involved in histidine-, murein- and 
purine biosynthesis, to mention a few.  However, while the detailed nature 
of the HFB depends on the particular growth conditions, the HFB in general 
captures the subset of reactions that dominate the activity of the metabolism 
for this condition.  As such, it offers a complementary approach to 
elementary flux mode analyses (Dandekar, 1999; Schuster, 2000; Stelling, 
2002), which successfully determine the available modes of operation for 
smaller metabolic sub-networks, but whose application to the full E. coli 
metabolism has not yet been possible. 

5. Conclusions 

During the last few years, it has become evident that power laws are 
abundant in complex systems, affecting both the evolution and the 
utilization of real networks.  The power-law degree distribution has become 
the trademark of scale-free networks and can generally be explained by 
invoking the principles of network growth and preferential attachment.  
These general principles can be realized by a wide variety of models which 
differ in their local growth rules.  In understanding the utilization of 
complex networks, it is important to realize that most links represent 
disparate connection strengths or transportation thresholds.  For the 
metabolic networks of E. coli, H. pylori and S. cerevisiae, we have 
implemented a flux-balance approach and calculated the distribution of link 
weights (fluxes), which (reflecting the scale-free network topology) 
displays a robust power-law independent of any environmental 
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perturbations.  Furthermore, this global inhomogeneity in the link strengths 
is also present at the level of the individual metabolites, allowing us to 
automatically uncover the high flux backbone of the metabolism. The HFB 
offers novel insights into the metabolic network's response to changes in the 
external environment.  Developing universal tools for analyzing a 
network’s response to changing conditions, and defining the nature and the 
degree of changes in a network under these conditions, could provide 
significant insights into the organization and principal forces shaping the 
evolution of networks. 
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MATHEMATICAL MODELING OF NEURAL ACTIVITY

Department of Mathematical Sciences and Technology
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(gaute.einevoll@umb.no)

Abstract. The fantastic properties of the brain are due to an intricate interplay between
billions of neurons (nerve cells) connected in a complex network. A central challenge is to
understand this network behavior and establish connections between properties at the micro-
scopic level (single neurons) and observed brain activity at the macroscopic systems level.
After a brief introduction to the brain, cortex and neurons, various mathematical models de-
scribing single neurons are outlined: biophysically realistic compartmental models, simplified
spiking neuron models and firing-rate models. Then examples of network modeling of the
early visual system are described with particular emphasis on mechanistic (“physics-type”)
modeling of the response of relay cells in the dorsal lateral geniculate nucleus to visual spot
stimuli. Finally an example of cortical population modeling related to the question of the
neural mechanism behind short-term memory, is given.

Keywords: Computational neuroscience, neural networks, vision, cortical
populations

1. Introduction

An important development in today’s science is the increased use of methods
from mathematics, computer science and theoretical physics in the explo-
ration of biological systems. This is due to great advances in the understand-
ing of living systems, establishment of new experimental techniques, method-
ological advances in mathematical modeling, and the continuing growth in
available computer power for numerical calculations and simulations.

Neuroscience is among the biological sub-disciplines where the use of
mathematical techniques are most established and recognized. An important
reason for this is the success of Hodgkin and Huxley [1] 50 years ago of
describing signal transport in a single neuron (nerve cell) as a modified elec-
trical circuit where the charge carriers are Na+, K+, Ca++, Cl− and other ions
flowing through the neuron cell membrane. This mathematical formulation,
known as Hodgkin-Huxleytheory, could not only account for the results from
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experiments used to construct the model and fit the model parameters. From
their model they could also predict the shape and velocity of the so called ac-
tion potential which is a pulse-like electrical disturbance travelling down thin
outgrowths, called axons, of neurons. From their model they calculated the
propagation velocity of the action potential in their experimental system, the
squid giant axon, to be 18.8 m/s which was roughly 10% off the experimental
value of 21.2 m/s. Such quantitatively accurate model predictions are rare in
theoretical biology. (Thorough introductions to Hodgkin-Huxley theory can
be found in Refs. [2, 3, 4]).

Due to its obvious success in describing action potentials, the Hodgkin-
Huxley approach has later been generalized to include modeling of the sig-
nal processing properties of entire neurons [5, 6]. Thus modelers now have
a relatively firm starting point for mathematical explorations of neural ac-
tivity. Hodgkin and Huxley’s model has also been modified to account for
membrane phenomena outside the nervous system, e.g., in the heart [7].

A single neuron is not particularly smart. The fantastic properties of the
brain are due to an intricate interplay between billions of neurons connected
in a complex network. A central challenge is to understand such network be-
havior, and establish connections between fairly well-understood properties
at the microscopic level (single neurons) and measurements of brain activity
at the macroscopic systems level using, for example, magnetoencephalogra-
phy (MEG), electroencephalography (EEG), positron emission tomography
(PET), or functional magnetic resonance imaging (fMRI).

Mathematical models in neuroscience can be distinguished by their pur-
pose [4]: Mechanistic models aim to account for the properties of neurons
or neural circuits on the basis of the underlying biophysical properties of
neurons and neural networks. This corresponds to the traditional physics ap-
proach to modeling nature. Descriptive (or statistical) models try to account
mathematically for experimental data without the aim to explain what aspects
of the neurons or neuronal circuitry gives rise to the mathematical structure.
Interpretive models aims to elucidate the functional roles of neural systems,
i.e., relating neural responses to the task of processing useful information
for the animal. Information theory is typically used in such modeling [4].
Interpretive modeling is unique to biological systems which have developed
under evolutionary pressure. While it makes sense to ask why a neuron has
particular properties, the question of why it is useful for a rock to fall to the
ground is not fruitful.

The outline of this chapter is as follows: After a brief introduction to the
structure of the brain and its constituent neurons, the various approaches for
modeling signal processing in single neurons is outlined in section 3. This
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Figure 1. Cross-section of the human brain illustrating the structure of cortex. The cortical
cells are located in a 2-4 mm thick layer at the brain surface (grey band). The inset illustrates
the layered structure of cortex where different types of neurons are preferentially located in
different layers. The inset also depicts two neurons with their cell bodies located in layers 4
and 5, respectively. (Traditionally, cortex is divided into six layers, but in the inset layers 2
and 3 have been merged.)

is followed by two examples of network modeling from our group [8] in
sections 4 and 5.

2. Brief introduction to brain, cortex and nerve cells

The human brain consists of more than 100 billion neurons (nerve cells). In
mammals the cortex is the most prominent structure and (as illustrated in Fig-
ure 1) consists of a convoluted thin (2-4 mm) layer of neurons located directly
below the brain surface. A piece of human cortex is qualitatively similar to
pieces of cortex in simpler mammals such as cats or rats. What distinguishes
the human cortex from the cortices of smaller mammals is mainly the size;
our cortex is much larger.

Cortex has a characteristic layered structure, where different types of
neurons are preferentially located at different cortical depths (cf. Figure 1).
Different parts of cortex perform different functions. For example, the part
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Figure 2. Left: Schematic illustration of neuron (nerve cell). Right: Schematic illustration of
synapses functionally connecting two neurons.

dealing with processing of visual input is located in the back, while cortical
areas associated with higher social skills are in the front. Nevertheless, the
physical structure of cortex is quite similar all over. This suggests that evo-
lution has found an efficient and flexible basic cortical circuit, which can be
used in most of the various information processing and computing tasks the
brain have to deal with.

In addition to cortex the brain also contains a number of smaller struc-
tures. An example is thalamus whose main task is to relay information from
the sensory systems (for example visual information from the eye) to the
appropriate cortical area.

A schematic illustration of a neuron is given in Figure 2 (left). Several
branch-like structures protrude from the cell body. These dendrites receive
signals from other neurons, and the signals are spread electrically to the cell
body. If a sufficient amount of electrical charge arrives at the cell body within
a certain time window, a pulse-like disturbance of the local membrane po-
tential, i.e., the jump in voltage across the cell membrane, is spontaneously
generated. This pulse-like disturbance is called an action potential. After gen-
eration in the cell body, the action potential will propagate without loss down
the axon. At the other end, the axons typically branch out and form synapses
with dendrites of other neurons. When an action potential reaches a synapse,
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designated molecules called neurotransmitters are released into the narrow
cleft between two neurons (see Figure 2 (right)). These neurotransmitters
rapidly diffuse across the cleft, and the arrival of these at designated receptors
at the receiving neuron results in the injection of an electrical ion current. This
electrical signal will then be spread down to the cell body of the receiving
neuron, and the whole cycle can start again.

Action potentials appear to be the most important carrier of information
between neurons. The shape and duration of these action potentials generated
in a particular neuron vary little, and the information must thus be encoded
in the sequence of time points when they are generated. But the question of
what aspects of these temporal sequences carry information, i.e., the nature of
the neural code, is still hotly debated. An important question is, for example,
whether a single action potential encodes information independently from the
other action potentials in the same neuron or whether correlations between
action potentials carry significant amounts of information. It should be noted
that there is no a priori reason that there should be a unique answer to the
neural code question, i.e., different codes may be employed in different parts
of the nervous system.

Neurons can be grouped in two main categories: excitatory and inhibitory.
Synaptic inputs from excitatory neurons increase the probability for the re-
ceiving neurons to fire action potentials, while inputs from inhibitory neurons
reduce the probability.

3. Modeling nerve cells

Various types of mathematical models are used to describe the signal process-
ing properties of neurons. These model types are distinguished by their scope
and the amount of biophysical details incorporated in the description.

3.1. COMPARTMENTAL MODELING

Compartmental modeling, illustrated in Figure 3, represents the highest level
of detail. Here the neuron is divided into compartments, so small that the
electrical potential can be assumed to be the same throughout the compart-
ment. Every compartment is described as a small electrical circuit where the
current is carried by ions (not electrons as in computers). The most important
dynamical variable is the potential difference across the cell membrane, the
membrane potential. The mathematical equation describing the dynamics of
this potential follows from Kirchhoff’s current law stating that current cannot
vanish.

Figure 3 illustrates the construction of a compartmental model based
on anatomically reconstructed dendritic trees. The mathematical equation
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Figure 3. Illustration of principle for construction of a compartmental neuron model from
an anatomically reconstructed neuron. The example neuron has been taken from Ref. [9].

describing the temporal development of the membrane potential Vi of com-
partment i in the figure is given by

gi,i+1(Vi+1 − Vi) − gi−1,i(Vi − Vi−1) = ci
dVi

dt
+
∑

s

Is
i +
∑

j

I j
i . (1)

The two terms on the left hand side of the equation represent ohmic currents
between compartment i and the neighboring compartments i + 1 and i − 1.
The first term on the right hand side represents currents due to capacitive
properties of the cell membrane, the second term represents currents due to
synaptic inputs from other neurons, while the third term represents currents
due to various other ion channels. Ion channels, which consists of particular
proteins embedded in the cell membrane, are often selective and let only one
type of ion through. The currents through the ion channels often depend in
an intricate way on, for example, the membrane potential or ion concentra-
tions. Synaptic input from other neurons are mediated through dedicated ion
channels which can be opened by the arrival of particular signal molecules
(neurotransmitters).

In Hodgkin and Huxley’s model for action potentials in squid axons three
ion channel currents were included: a sodium channel, a potassium channel
and a “leak” channel incorporating other non-specified currents. They found
that the generation and propagation of action potentials were due to sodium
and potassium currents with a particular dependency on time and membrane
potential [1].
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In the full compartmental model for a neuron there will be an equation
of the type shown in eq. (1) for each compartment, and the equation set
must be solved numerically to determine the membrane potential over the
entire neuron. The mathematical solution is in principle straightforward, and
dedicated (and free) computer simulation tools such as NEURON [10] and
GENESIS [6] are available. More information on compartmental modeling
can be found in Refs. [4, 5, 6, 11].

3.2. SIMPLIFIED SPIKING MODELS

Compartmental modeling can be computationally expensive. Moreover, de-
termination of the numerous parameters specifying the model is generally
difficult. Various simplified neuron models are thus also used. For exam-
ple, often the dendritic tree and cell body are collapsed into a single point,
essentially saying that the membrane potential is the same throughout.

Further, the modeling of the dynamics of the membrane potential does
often not include the generation of the action potential (spike) itself. Action
potentials have a standardized all-or-none behavior, and it is a waste of com-
puter resources to calculate the detailed time course every time. Instead the
action potentials are generated by a separate rule: when the membrane poten-
tial reaches a preset threshold for action potential firing, an action potential is
recorded, and the membrane voltage is reset to another predefined value. The
integrate-and-fire model is the most commonly used model of this type [3, 4].
In this model the subthreshold dynamics of the membrane potential (in the
single compartment) is given by

c
dV
dt

= −gL(V − EL) −
∑

s

Is . (2)

This equation follows directly from eq. (1) by (i) omitting the terms due to
currents between compartments and (ii) including only an ohmic leak current
(in addition to the synaptic currents). EL corresponds to the resting potential,
i.e., the membrane potential of the point neuron in the absence of synaptic
inputs.

Even with this drastic simplification, it is still difficult to find analytical
mathematical solutions. One generally has to resort to numerical solution
also here, but they require less computer resources than full compartmental
simulations.

3.3. FIRING RATE MODELS

At the coarsest level of detail, we have firing-rate models where only the
probability for action-potential firing is modelled. Then the “activity level”
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Figure 4. Illustration of early visual pathway.

(for example, membrane potential in the cell body) is typically converted to a
firing rate R via a non-linear sigmoidal function, i.e., R = P(V). This mimics
the observed conversion of membrane potential in the cell body to firing of
action potentials; the membrane potential has to be above a certain threshold
before action potentials are generated.

Firing-rate models are generally described by differential or integro-diff-
erential equations, and the extensive experience in analyzing and solving such
equations can be utilized. Sometimes each neuron is modelled as a single
discrete unit (see example in section 4), but there is also a long tradition
for considering neural field models where, for example, cortical tissue is
modelled as continuous lines or sheets of neurons [4, 12, 13] (see example
in section 5) .

4. Network modeling of early visual pathway

4.1. EARLY VISUAL PATHWAY

The study of vision has been a central research area in neuroscience. One rea-
son might be that humans are visual animals in the sense that a large portion
of our cortex is devoted to the processing of visual information, and that the
understanding of this sense thus is of particular interest to us. Another reason
is that the study of the visual system is experimentally and conceptually easier
than studies of other sensory systems (hearing, smelling, etc.).

When light hits the eye, neurons in the retina on the back side of the eye
get excited. Several types of neurons are involved in the signal processing
in the retina, but the output action potentials, which are transmitted towards
cortex, leave from retinal ganglion cells. The ganglion cell axons constitute
the optical nerve. This nerve transmits visual information to a part of the brain
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called dorsal lateral geniculate nucleus (dLGN), which is a part of thalamus.
The relay cells in dLGN receive visual signals from retinal ganglion cells and
transmit processed information to the primary visual cortex. From primary
visual cortex the signals are then fed to other parts of cortex (as well as
other brain structures), and this eventually results in a visual perception of
the surrounding world.

An important notion in studies of the visual system is the receptive field
of a neuron. This term refers to the limited area of the visual field where stim-
ulation with light (or darkness) influences the firing of action potentials in the
neuron. Visual stimulation of an area inside the receptive field of a neuron can
both increase and reduce the firing activity. For retinal ganglion cells and cells
in the dLGN the receptive fields are small, roughly circular, areas, and they
exhibit center-surround antagonism. This means that the cells have highest
response when stimulated by a circular spot of light (on a dark background)
exactly covering the receptive-field center. Illumination of an area outside
this receptive-field center, on the other hand, will reduce the firing activity.
Therefore, the receptive field can be described as a circular excitatory area
surrounded by a ring-shaped inhibitory area. Neurons responding to light
spots in this way are called on-cells. Off -cells have opposite response, i.e.,
they have largest activity when a dark spot covers the receptive-field center.
The antagonistic center-surround organization makes the system more suited
to detect changes in the light intensity than the absolute magnitude of the
intensity. In primary visual cortex the receptive fields are more complex, and
one finds cells that respond best to elongated (e.g., edges, bars) and/or moving
stimuli.

At the levels of retina and dLGN the on- and off-cells form two roughly
independent networks of cells both covering the entire visual field. In addi-
tion, these cells also group into three distinct classes (labeled, for example,
X,Y and W in cat) distinguished by their physiological properties such as
receptive-field size and signal propagation velocity [14]. These cell popula-
tions seem to be essentially uncoupled before reaching the visual cortex so
that there exist six independent pathways (in cat: on/off for each of X,Y, and
W). These pathways carry different types of information regarding the visual
input; information which somehow are merged at a higher processing level to
build our mental representation of the visual world.

4.2. DESCRIPTIVE MODELING OF RECEPTIVE FIELDS

A number of descriptive models have been suggested to describe receptive
fields of neurons in retina, dLGN and primary visual cortex [4]. An example
is the “difference-of-Gaussians”-model (DOG-model) describing the circular
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Figure 5. Illustration of DOG model for description of spatial receptive fields for neurons
in retina and dLGN. Left: Example of receptive-field function g(r) in eq. (3) with parameters
A1 = 1, A2 = 0.85, a1 = 0.6 deg, and a2 = 1.2 deg. Right: Response for centered circular spot
as a function of spot diameter for the same DOG model, eq. (4).

center- surround organization of spatial receptive fields for neurons in the
retina and dLGN,

g(r) =
A1

πa2
1

e−r2/a2
1 − A2

πa2
2

e−r2/a2
2 . (3)

Here A1 and A2 are weight parameters, and a1 and a2 (a2 > a1) describe
the spatial extension of the receptive field. This receptive-field function g(r)
describes the change in activity (f.ex., number of action potentials fired during
a particular time interval) in a particular neuron when a tiny test spot is shown
in the position r in the visual field. The position r = 0 corresponds to the
center point in the receptive field of the neuron. The visual field has two
spatial dimensions so the position vector r is two-dimensional, r = [x, y].
The DOG-model has circular symmetry, however, so the model response to
the test spot depends only on the distance r = |r| from the center point.

The parameters in the DOG-model for a particular neuron can be deter-
mined by fitting the formula in eq. (3) to results from a test-spot experiment.
But the model would have limited interest if it only could account for a single
experiment. However, many neurons in the early visual systems exhibit linear
response properties, i.e., the response to other visual stimuli can be found by
linear summation over contribution from many “imagined” test spots. For
example, the response R(d) to a circular spot of light with diameter d (not
necessarily small) centered at the receptive field, can be found from a simple
integral,

R(d) = ΔL∗
∫ d/2

0

∫ 2π

0
g(r) dθ rdr

= ΔL∗
(
A1(1 − e−d2/4a2

1) − A2(1 − e−d2/4a2
2)
)
, (4)
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Figure 6. Schematic overview of coupling pattern in dLGN circuit. The relay cells (r) and
interneurons (i) in dLGN receive their primary input from retinal ganglion cells (g) as well
as feedback from cells (t) in the thalamic reticular nucleus (TRN) cells and cells in the visual
cortex (c). The relay cells, interneurons and TRN cells also receive modulatory inputs from
the brainstem reticular formation (BRF). The excitatory connections are shown as solid lines,
the inhibitory as dashed lines, while dotted lines symbolize the modulatory connections.

where the constant ΔL∗ depends on the luminance of the spot. Correspond-
ingly, the response to any visual stimuli can be calculated when the parame-
ters A1, A2, a1, and a2 are known.

An example of a DOG receptive-field function (eq. 3) with the corre-
sponding spot-response (eq. 4) is shown in Figure 5. Note that the spot-
response curve has a maximum for a diameter dmax around 2 degrees. This
maximum corresponds to the transition from the excitatory center area to the
inhibitory surround, and dmax is thus the receptive-field center diameter.

4.3. MECHANISTIC MODELING OF RECEPTIVE-FIELD PROPERTIES IN
DLGN

In our group at the Norwegian University of Life Sciences we have for some
time worked on mathematical modeling of the early visual pathway with a
particular emphasis on dLGN (see, for example, Refs. [15, 16, 17]). This
work has been done in close collaboration with the experimental group of
Paul Heggelund at the Department of Physiology at the University of Oslo.
Our aim has primarily been to develop mechanistic (“physics-type”) models
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Figure 7. Example results for X relay cell in dLGN from Ruksenas et al. [18]. Left:
Post-stimulus time histograms (PSTHs) for spot diameter d = 1.6 degrees for retinal input
(S-potentials, top) and relay-cell action potentials (bottom). The PSTHs, which have been
found by averaging data from many trials, give a measure for the time-dependent firing rate
(action potentials/seconds). The horizontal lines show the time the stimulus is on. Right: Mean
firing rate, found by temporal averaging of PSTHs of the type shown left, for a set of different
spot diameters. Open dots correspond to retinal input, filled dots to relay-cell action potentials.
The curves show the best fit to the mathematical models described in the text [15].

of the formation of receptive fields of neurons in dLGN, i.e., understand how
these receptive fields are formed on the basis of the properties of the relevant
neurons and their connections. This endeavor requires quite a bit of knowl-
edge of biological details, but fortunately dLGN is (compared to other brain
parts) modestly complex. Following significant experimental efforts during
the last decades, the dLGN circuit is now mapped out relatively well [14]. A
schematic overview is given in Figure 6, where both feedforward (from the
eye) and feedback (from, e.g., visual cortex) connections are present.

The relay cells in dLGN are excited by retinal ganglion cells. In addition
they receive input from inhibitory interneurons, which in turn are excited
by retinal ganglion cells. The relay cells further receive feedback input from
inhibitory neurons in a brain part called thalamic reticular nucleus (TRN).
In addition there is a massive feedback from cortical neurons to relay cells,
interneuron and TRN neurons. This feedback shows that the early visual
system is more than a passive camera; cortex participates in deciding how
visual information is collected.

As an example of network modeling in the early visual system I will
here describe a project [15] where the response of dLGN relay cells to cir-
cular light or dark spots was modelled based on experiments done in Paul
Heggelund’s group. Ruksenas, Fjeld, Heggelund measured action potentials
in X-type relay cells in cat dLGN [18]. For such neurons the excitatory in-
put from retina appears to stem from a single ganglion cell. With a single
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Figure 8. Illustration of synaptic coupling pattern assumed in mathematical model. Left: The
model assumes a single excitatory input to the relay cell (r) and (in this case) five inputs to a
single interneuron (i) which in turn gives inhibitory input to the relay cell. Right: Illustration
of spatial distribution of receptive-field centers for the five ganglion cells providing input to
the interneuron. The center ganglion cell gives in addition direct excitatory input to the relay
cell.

electrode placed outside the relay cell, one can in addition to recording relay-
cell action potentials also record so called S-potentials. These S-potentials
have been shown to correspond to an action potential in the retinal ganglion
cells providing the input. One thus has experimental access to both the input
to and the output from the relay cell in question. The stimulus spots were
displayed for half a second, and by repeating the experiment many times so
called post-stimulus time histograms (PSTHs) for action potentials and S-
potentials were measured (see Figure 7 (left)). From these measurements the
mean firing rate (essentially the mean number of action potentials) while the
stimulus is on, was calculated. The experiment was done for a set of spot di-
ameters, and an example of the diameter dependence of the response is shown
in Figure 7 (right). Here we see that both the retinal input and the output from
the relay cell have a maximum for a particular spot diameter, in qualitative
agreement with the prediction from a DOG model (cf. Figure 5 (right)). We
also observe that this maximum occurs for a slightly smaller diameter for the
output curve (relay-cell response) than for the input curve (retinal ganglion-
cell response). Further we see that the response for very large spot diameters
is more reduced for the relay cell, i.e., larger center-surround antagonism. The
same observations were generally made for the 22 X-cells recorded from.

The goal of the modeling project was to investigate whether this change
between input and output could be accounted for based on knowledge about
the dLGN circuit.

The response of TRN-neurons and neurons in primary visual cortex to
small circular spots is limited. Based also on other knowledge about the
system, we thus focused on a simple feedforward circuit where a relay cell
receives (i) excitatory input from a single retinal ganglion cell and (ii) in-
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hibitory input from an interneuron which in turn is driven by a group (∼ 5) of
retinal ganglion cells. This group includes the ganglion cell which provides
the excitatory input, and its surrounding nearest neighbors. In the model these
neighbors are assumed to be located the same distance ra from the center
neuron (see Figure 8).

In our simple model we assume that the mean firing rate for the relay cell
Rr(d) essentially is a direct function of the weighted difference between the
excitatory and inhibitory inputs, i.e.,

Rr(d) = P
(
B1Rg(d; 0) − B2Rg(d; ra)

)
, (5)

where B1 is the net weight (excitation minus inhibition) from the central
ganglion cell, while B2 is the total inhibitory weight due to the surrounding
ganglion cells. Rg(d; 0) is the response of the central ganglion cell to a spot
with diameter d. This is assumed to be given by the expression for the de-
scriptive DOG-model in eq. (4). Rg(d; ra) is the response of the neighboring
ganglion cells assumed to have the same receptive-field function given in
eq. (3) (with the same model parameters). Since the circular spot is not cen-
tered on their receptive field, the diameter dependence of the response will be
different. The integral in eq. (4) must be redone, and Rg(d; ra) is found to be
given by a series of incomplete gamma functions [15]. To avoid unphysical
negative firing rates in the model the rectifying function P(x) is used in the
conversion of net input to firing rate for the relay cell, i.e., P(x) = x θ(x)
where θ(x) is the Heaviside step function.

In Ref. [15] we first fitted a DOG-model expression (analogous to eq. (3))
to the experimentally observed response curve for the retinal input in Fig-
ure 7 (right). With the retinal DOG parameters fixed, eq. (5) could then be
used to determine the three remaining parameters B1, B2, and ra by fitting to
the relay-cell response curve shown in the same figure.

As observed in Figure 7 the mathematical models could be fitted to the
example data for both the retinal input and the relay-cell response. Corre-
spondingly, we found that the models could be fitted to data for the 21 other
X-cells recorded from. But with so many model parameters, successful fits
do not necessarily imply that the model reflects reality. However, the mod-
eling also produced specific predictions which could be tested against other
experiments. We found, for example, that the model predictions for the dis-
tance between neighboring ganglion cells ra and the size of the interneuron
receptive-field center were compatible with experimental results from the
literature [15].

In the model above only spatial properties of the receptive field of relay
cells are considered, but the temporal properties are just as important and
interesting. Mathematical description for spatiotemporal receptive fields have
thus also been developed [4, 16].
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Firing-rate models have its limitations, however. A relay cell can, for
example, in certain situations generate a so called burst of action potentials,
i.e., a rapid sequence of action potentials. A more detailed neuron model
is necessary to include this effect in network studies. In our group we have
therefore also started computationally more demanding studies of the early
visual pathway where each neuron is described using the “integrate-and-
fire-or-burst” model [17] (a generalization of the integrate-and-fire model in
eq. (2)). The model results here are explicit sequences of time points when
action potentials are fired, and not firing rates (or mean firing rates as above).
A simulation of the whole dLGN circuit for a part of the visual field will
include tens of thousands of neurons, and the general network simulation
program NEST [19] is used for an efficient implementation of the model.

5. Cortical population modeling

The simple network model described above relates the response of neurons
to external stimuli, in this case visual stimuli. Most of the network modeling
that has been done so far has been on stimulus-driven responses, but in cortex
most of the neural activity is probably generated internally. A well-known
example is the observation of persistent firing activity (over many seconds)
in neurons in prefrontal cortex related to short-term memory [20].

As an example of modeling of internally generated activity we have re-
cently studied a two-population model where an excitatory and an inhibitory
population of neurons (for example, localized in the same cortical layer)
interact, and investigated the possibility for stable spatially localized pulses
(“bumps”) of activity [21]. Such stable structures could possibly account for
the abovementioned observed persistent firing activity.

In the model a one-dimensional continuum of neurons is assumed,

∂ue

∂t
= −ue +

∫ ∞

−∞
ωee(x − x′)P(ue(x′, t) − θe)dx′

−
∫ ∞

−∞
ωie(x − x′)P(ui(x′, t) − θi)dx′

τ
∂ui

∂t
= −ui +

∫ ∞

−∞
ωei(x − x′)P(ue(x′, t) − θe)dx′

−
∫ ∞

−∞
ωii(x − x′)P(ui(x′, t) − θi)dx′ . (6)

Here ue(x, t) and ui(x, t) represent the membrane potential in the cell body of
an excitatory and an inhibitory neuron, respectively, at the position x. Further,
ωmn(x) describes the spatial synaptic coupling functions and is here given by

ωmn(x) =
1

σmn
√
π

e−x2/σ2
mn , m, n = e or i . (7)
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Figure 9. Temporal evolution of pulse pairs for model given by eq. (6) with ωmn described

right column. Top row: τ = 3, stable pulses. Middle row: τ = 3.03, oscillatory pulses. Bottom
row: τ = 3.5, pulses collapse. Other parameter values: σee = 0.35, σei = 0.48, σie = 0.60,
σii = 0.69, θe = 0.12, θi = 0.08. Adapted from Ref. [21].

P(x) (assumed to be Heaviside’s step function) gives the firing rate from the
membrane potential, θn gives the threshold values for firing, and τ is the time
constant for inhibition (measured relative to the time constant for excitation).

Note that there is no external input in the model; the populations receive
all input from themselves and each other.
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Since P(x) is modelled as a Heaviside step function, the model is highly
nonlinear, and the mathematical analysis more involved than for the relay-
cell model in section 4. We will not go into details here, but in Ref. [21] we
found that the model could support stable localized pulses (i.e., suitable pairs
of pulses of excitatory and inhibitory activity) for a wide range of parameter
values. As illustrated in Figure 9 we further found that the inhibitory time
constant τ could control the stability of the pulses. Pulses found to be stable
for small or moderate τ could start to oscillate when τ was increased beyond
a critical value (by a so called Hopf bifurcation). A further increase of τ
eventually resulted in collapse of the pulses.

A conclusion from our study was that persistent (stable) activity, for ex-
ample related to short-term memory, could be explained by such a model, but
this is of course not proof that this mechanism is employed by the brain.

6. Final comments

Model studies of biological neural networks have just started. While one,
particularly for the early visual system, has had some success in describing
stimulus-driven responses, the modeling of cortical population activity has
generally been limited to qualitative studies of the type of phenomena simple
models can exhibit (stable pulses, traveling waves and fronts, oscillatory ac-
tivity, etc.). However, more details of the brain structure are steadily revealed
due to improved experimental techniques, and the foundation for building
biologically more realistic cortical models gradually improves. With access to
even more powerful computers, a significant research effort on large, complex
neural networks can be expected in the years to come.

Another challenge is to relate results from such network models to ex-
periments. The traditional neurophysiological method of measuring action
potentials with a sharp electrode placed inside or in the immediate vicinity
of the cell body, has given a wealth of insight into the properties of single
neurons. In cortex, however, information appears to be encoded in population
activity and not in the firing pattern of single neurons (which typically is
highly variable and “noisy”). A variety of experimental methods based on
different physical effects (optical, electrical, magnetic) have been developed
to study brain activity at the population level (∼ 0.1-1 mm). These meth-
ods probe different aspects of neural activity. For example, the electrical
potentials measured at the scalp in EEG appear to be related to ion currents
across the cell membrane in dendrites following synaptic input, and not to
the direct firing of action potentials. To model the contribution to EEG from
a population of neurons one thus has to employ full compartmental models
(even if a simpler model might be sufficient to model the firing pattern of
action potentials). For electrical and magnetic measurements (for example,
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EEG and MEG) the link from the underlying neural activity is in principle
clear, while a similar link to hemodynamic (for example, fMRI) or metabolic
(for example, PET) methods presently is more obscure.
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1.  Introduction 

We study the complex dynamics of microspheres dispersed in ferrofluids 
subjected to external oscillating magnetic fields, see Fig. 1.  

 

Figure 1.  Typical snapshots of microspheres in a ferrofluid confined to a plane and 
subjected to ac magnetic fields. 

The paths traced out by the microspheres may generally be very 
intricate and it is not trivial to give a compact description of the dynamic 
behavior. We have to rely on approximations and computer simulations that 
can predict the trajectories of the particles in the short term, but will 
eventually be so uncertain that we have to give up in the long term.  

If one moves into the world of many-body systems of atoms and 
molecules, diverse cooperative phenomena occur and can be described 
using various well-established mathematical and computational tools such 
as statistical mechanics, Monte Carlo- and molecular dynamics simulations 
etc. It would be of interest to find out whether some mathematical tools 
might be found to describe also few-particle phenomena like the random 
motion of particles in a plane described above, and in the limit of an 
increasing number of particles reach the many-body situation. 

What we do is to introduce the concept of “world lines”, a space-time 
description of the particle trajectories. One can compare this with an air show 

where the smoke trails left behind the planes represent the “frozen” 
dynamics of the planes. One can easily picture that the microspheres also 
trace out complicated space-time trajectories, which are interwoven in 
intricate patterns and networks, as shown in Fig. 2.   
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Figure 2.  Space-time trajectories of microspheres in a ferrofluid subjected to ac magnetic 
fields. 
 

A mathematical tool which can be used to analyze this is braid theory. 
It proves to be useful for a compact description of space-time particle 
network trajectories and statistical analysis. The complex dynamical modes 
describing the physical behavior of interacting particles in the present 
system may be distributed over a large energy range. As will be seen, it is 
an intermittent systems and the the modes have a broad distribution of 
frequencies. One way of making a systematic study of these modes is by 
ordering them after their occurrence frequencies. We let the mode which 
occur most often be ranked as number 1, the second most occurring mode 
be ranked number 2, and so forth to the least occurring mode which have 
the highest rank number. This rank-ordering statistics takes care of both 
common and rare events and is useful for displaying the whole range of the 
mode distribution.  
   A remarkable feature found by rank-ordering statistics in many different 
systems is the Zipf relation. This relation has been demonstrated for a 
variety of applications, such as linguistics [1], energy distribution of 
earthquakes [2] and in analyzing the coding and non-coding regions of 
DNA sequences [3]. The original Zipf relation came into being in an 
empirical manner in linguistics. By analyzing the occurrence of words in 
large written texts G.K. Zipf proposed a simple power law ( ) ~r r �" �  with 

1� � , where ( )r"  is the frequency of occurrence of a word with rank r  [1]. 
An attempt to understand the origin of this relation was connected to the 
hierarchical structures of languages [4], and gives the corrected Zipf-
Mandelbrot relation [5]:  

                                     ( )
( )

A
r

r �
"

#
� $

�
                                                      (1) 

where A  is a normalization constant and #  is a parameter. In this work we 
will report experiments and numerical simulations demonstrating this Zipf-
Mandelbrot relation.  
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2.  Experimental system 
 
The experimental system is essentially made up of two advanced materials 
(i) ferrofluid and (ii) monodisperse polystyrene microspheres [6].  The 
basic features of a ferrofluid [7] are shown below in Fig. 3 with basically 
three length scales: (i) macroscopic length scale, it resembles an ordinary 
liquid; (ii) colloidal length scale, solid nanoparticle dispersed in a liquid; 
and (iii) nanoscale, each particle consists of a single domain magnetic iron 

   
 
 
 
 
 
 
Figure 3. Characteristic features of a ferrofluid from nano- to macroscale as discussed in   
the text. 
 

In order to model a many-body system, it is important to have particles of 
the same shape and size. The unique Ugelstad microspheres [8] offer this 
possibility. This is demonstrated in the picture shown in Fig. 4. Here, 
10 micrometer polystyrene spheres are packed to a monolayer on a glass 
plate. The average uniformity is better than 2 %.  
 
 
 
 
 
 
 
 
 
Figure 4. SEM picture of a monolayer of closed packed 10 micrometer Ugelstad polystyrene 
spheres.  
 

By dispersing the microspheres into ferrofluids one obtains a so-called 
“magnetic hole” system [9], and a workable experimental realization is 
shown below in Fig. 5.  

 

oxide core, and a surface grafted with polymer chains (particle size ~ 10 nm). 
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Figure 5. Cross section of an experimental cell with polystyrene microspheres dispersed in 
ferrofluid confined between two plane parallel glass plates. The effective magnetic moment 
of the “hole”created by the sphere, m(t), is equal to the magnetic moment of the displaced 
ferrofluid, and m(t) and H are co-linear, but with opposite directions. The sphere diameter a 
is typically 10-100 μm and the separation between the glass plates typically 2h a� . 
 

If V is the sphere volume, %  is the effective magnetic susceptibility 
and H is the external magnetic field, then the magnetic moment of the 
“magnetic hole” is  
 

( ) ( )efft V t%� � $m H                                                      (2) 

where 3
3 2eff

%
%% ��  includes the demagnetization factor of a sphere, and %  

is the bulk magnetic susceptibility of the ferrofluid [10]. Demagnetization 
and mirror effects, etc must also be considered in a more precise 
calculation.  

Figure 6 shows the details of the experimental setup.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  The experimental setup. 
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The external planar, elliptically polarized field  ( )tH  is produced by two 
pairs of coils mounted perpendicular to each other carrying AC current with 
a phase difference of / 2& . The amplitude components 

x
H  and 

y
H  are 

varied by adjusting the maximum current through the coils. The field 
anisotropy parameter is defined as 

y x
H H' � � . For the experiments 

presented in this study we use 27
x

H �  Oe.  
In a slowly rotating external magnetic field, the microspheres try to line 

up in chains parallel with the field. Due to viscous forces there will be a 
phase lag between the direction of the magnetic field and the chains of 
microspheres. The chains will furthermore break up in smaller subchains 
and perform a half rotation before aligning again. For example, a chain of 7 
microspheres was observed to split into groups of 3 2 2� �  or 3 3 1� � . In 
an elliptically polarized magnetic field the division into subchains is so 
irregular that we get an apparently disordered behavior. In the frequency 
range studied here, the microspheres are nearly co-linear every half period 
of the external field. This suggests that in order to investigate the main 
dynamics we can focus on what happens along this axis.  

 

3.  The simulation model 
 
The magnetic holes interact via dipole interactions, and the interaction 
energy U  for a collection of n  magnetic holes is given by:  

                    
22

3 5
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r d
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                   (3) 

where ij i jr r r� �  is the vector joining the centers of the magnetic holes and 
d  is the diameter of a microsphere. The magnetic force on particle i  is 
then:  

                                1( )M n
i

i

U t/ $ )))$ $
�

/

r r
F

r
 .                                                     (4) 

The viscous force on a microsphere is to first order given by Stokes’ law:  
                             3Stokes d&0�F v ,                                                               (5) 

where 0  is the viscosity of the ferrofluid and v  the velocity of the sphere. 
Since the diameter of the microspheres and their velocities are relatively 
small, the Reynolds number, / 1Re d1� 0� � , where 1  is the ferrofluid 
density. The system is therefore overdamped and we may neglect the inertia 
forces. By assuming equilibrium between the magnetic and viscous forces,  

0M Stokes� � ��F F F ,                                               (6) 
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we can easily transform the equation of motion into a numerically solvable 
form [11].  

The angular velocity H2  of the external field is normalized by the 
critical angular velocity c2  for stable rotation of two microspheres with a 
circularly polarized magnetic field [11]:  
                                            

H c2 2 2� � ,                                                       (7) 
where 2H f2 &�  and f  is the frequency of the rotating magnetic field. At 

c2  a chain of two microspheres starts to show phase-slips relative to the 
magnetic field, and in our experiments this upper angular velocity for stable 
rotation is 2 0 62c2 &� ( )  s-1.  

4.  Data analysis  

The motion of the n interacting magnetic holes is observed with a light 
microscope, Fig. 7(a), and the images are acquired with an attached video 
camera and recorded and digitized on a workstation. A computer program 
is used to map the positions of the microspheres in the (x,y)-plane in real 
time, Fig. 7(b). Our next step in the analysis is to include the time, in order 
to obtain a space-time diagram (x,y,t), thus, creating the world lines of the 
microspheres. In this way we essentially "freeze" the dynamics of the 
microspheres at all times, Fig. 7(c). The geometrical braid, Fig. 7(d), will 
appear when projecting the space-time trajectories onto one of the spatial 
axis [12]. 

The theory of braids can be seen as a part of a larger piece of 
mathematic known as the theory of knots. Braids are purely abstract objects 
satisfying a number of rules. Emil Artin introduced the classification         
of braids in 1925 [13]. A thorough introduction to braid theory may be 
found in the book by Birman [14]. Here we will only give a brief 
description of the notion used in our analysis, see Fig. 8(a). The strings are 
labeled 1,2,3 ... from top to bottom, and the crossings are denoted as 
follow: If string 1 crosses over string 2, label the crossing 31, if it crosses 
under label the crossing 31

-1. It is then possible to code any braid as a 
sequence of these symbols, as illustrated in Fig. 8(b). The Greek letter 3    
is used by convention and something to attach the subscripts and 
superscripts to. 
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�
 
 
 
 
 
 
 
 
 
 

 
Figure 7.  (a) The experimental setup shown schematically. The thin layer of ferrofluid 
containing the uniformly sized microspheres is confined between two plane-parallel glass 
plates. A pair of Helmholtz coils produces a magnetic field in the plane; (b) the traced paths 
of the two-dimensional motion of seven microspheres; (c) the three-dimensional space-time 
trajectories of the spheres; (d) the irreducible braid representation of the space-time 
trajectories of the spheres. The strands are numbered from top to bottom relative to the y-
axis and the notation is explained in the text. The motions of the seven microspheres are 
taken from an experiment with � = 0.67 and � = 0.23. 
 

The braid generators, �i, are read out from the geometrical braid and the 
resulting sequence of braid generators gives the braid word. The set of all 
braids with n-strands is the Artin braid group Bn, containing every possible 
rotation of n magnetic holes. The braidwords found in experiments may not 
be topologically unique due to continuous deformations [15]. The challenge 
is to find a scheme to determine whether two braidwords are equivalent and 
thereby describe the same dynamics. This so-called word problem has been 
solved for Bn [16]. The Garside algorithm [17] is used in this analysis for a 
refinement of this solution [18]. After running through the Garside 
algorithm the braidword are represented by an ordered set of positive 
permutation braids. The positive permutation braids are small parts of the 
braidword and belong to a subset of Bn with two additional criteria: 1) the 
space-time diagram's strands have only overcrossings, and 2) two strands 
can cross each other only once.  
 

(b) 

(c) (d) 
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y

x
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Figure 8.  (a) The generators of the 4-strand Artin braid group and (b) an example of a braid 
B composed of these with the corresponding braid word written below. 

 
A convenient and unique way of labeling the different positive 

permutation braids is by using the so-called factorial coordinate method 
[17]. The algorithm for this method is given by the expression: 

 g(� ) = 1+g1(�)1!+…+gn-1(� )(n-1)!    with 0�  gi(� )�   i.         (8) 

The factorial coordinate gi(� ) counts the number of crossings of string i + 1 
with lower number strings within the positive permutation braid g(�) after a 
time �. One permutation braid typically corresponds to one half period of 
the rotating magnetic field. Figure 9 shows a simple example of this 
factorial coordinate method. 
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Figure 9. A simple example of labeling of braids with g-values for three spheres resulting in 
6 possible modes. 
  
 
5. Results and discussion 

   In this study we focus mainly on experiments with seven microspheres 
that have the anisotropy parameter '  between 0.58 and 0.85, and the 
angular frequency 2  in the range 0 23 0 452) � � ) . In these parameter 
ranges intermittent behavior is observed. This behavior generates many 
different modes with different frequency of occurrence, and is easily 
studied with the rank-ordering statistics. Outside these parameter ranges 
more regular behavior is observed. For experiments with a higher number 
of spheres n , we have studied what happens around 0 64' � ) . The 
experiments were run from 4 to 13 hours. In this work we present four 
different experiments with different n , ' , and 2  values.  
    The motion is grabbed and analyzed by a computer in real time. In this 
analyzing process the coordinates to each sphere is found, Figs. 7(b) and 
7(c), and also the braid generators, Fig.7(d). When observing the motion of 
the spheres two factors are striking:  

1. The spheres start out in a line and get almost aligned after one half 
period of the external rotating field. During this half period the line 
of spheres break up into smaller units before realigning.  

2. Some typical and stable modes occur frequently over some time. 
Then the motion is changing via a cascade of different and more 
rare modes for some time before reaching a stable mode again. This 
resembles intermittent behavior.  
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    The first factor reflects the fact that the time span for a dynamical mode 
is around one half period of the external rotating magnetic field. The 
second factor suggests that the system behaves like a scaling tree, similar to 
the lexicographic tree described by Mandelbrot for word frequencies in 
linguistics [19]. He used this scaling tree to derive the Zipf-Mandelbrot 
relation. As will be discussed below, a similar approach can be used to 
derive this relation for the system under study here.  

A small part of an experiment with 0 67' � )  and 0 232 � )  is displayed 
in Fig. 7. Seven spheres trace out their world lines and are projected into a 
braidword. The different dynamical modes of this experiment are measured 
and displayed in terms of their corresponding g-values in Fig. 10. We 
obtain 365 different dynamical modes in the experiment, while for the 
numerical simulations with same duration we obtain 392 different modes. 
A significant feature is that a small set of modes appears frequently and is 
interrupted by more rare modes. Small variations in the system parameters 
might lead to large changes in the braidword and the g-values. This can be 
seen in the differences between the experiment, Fig. 10, and the simulation, 
Fig. 11, which have nominally equal parameter values. However, these 
minor changes do not change the overall statistical properties of the 
dynamics. Examples of the braids formed by the most frequent mode and 
one of the least frequent modes in Fig. 11 are shown in Fig. 12. 

 
Figure 10. The dynamics of seven microspheres in an external rotating magnetic field is
displayed in terms of the factorial coordinates of the positive permutation braids g(4) as a
function of the time 4� for an experiment with 0 67' � )  and 0 232 � ) . The most frequent
modes (e.g., groups of 1+3+3 spheres, g = 1575)  reflect the symmetry in the system as
opposed to rarely occurring modes (e.g., 1+1+1+3+1 spheres, g = 265). 
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Figure 11. The dynamics of seven microspheres in an external rotating magnetic field is
displayed in terms of the factorial coordinates of the positive permutation braids g(4) as a
function of the time 4� for the simulation  corresponding to the experiment presented in
Fig. 10. The most frequent mode found here, g = 750, corresponds to groups of 3+2+2
spheres. 

 
Figure 12. The most frequent mode and one of the least frequent modes in Fig. 10 with
their corresponding braids and factorial g-values. 
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We then apply rank-ordering statistics to these braid permutations. In rank-
ordering statistics we count all the different modes and rank them 
afterwards. The rank r  of a mode is defined such that the most frequently 
occurring mode gets the rank 1r � , the next most frequently used mode 
gets rank 2, etc. The frequency of occurrence ( )r"  is normalized: 

1
( ) 1N

r
r"

�
�� , where N is the total number of different modes. Including all 

types of positive permutation braids for n  strands, N n� 5. For the case of 
seven microspheres we have 5040N �  possible modes.  

The rank-ordering analysis of the positive permutation braids is shown 
in a double logarithmic plot in Fig. 13. The data may be fitted to a straight 
line with a slope 1 6 0 1� ) 6 )  for 5r � . However, a non-linear fit on the whole 
r -range to the Zipf-Mandelbrot relation gives a better fit with parameters 

3 2 0 2A � ) 6 ) , 5 3 1 0# � ) 6 )  and 1 8 0 1� � ) 6 )  for both experiment and 
simulation. A simulation with four times as long duration gives 448 
different types of dynamical modes, however the fit gives the same 
parameters.  

 

 

 

 
 
 

 

 
 

 
Figure 13. The frequency of occurrence of braid permutations ( )r"  versus its rank r  found 
in the dynamics of seven microspheres for an experiment with 0 67' � )  and 0 232 � ) . Both 
data sets fit well to the Zipf-Mandelbrot relation, shown as a dashed line. 

Similar behavior to that discussed above is also observed for experiments 
with other values of '  and 2  , and the exponent �  is found to be between 
1.1 and 1.9, as first reported in Ref. [20]. A second example is an 
experiment with 0 83' � )  and 0 442 � ) . The rank-ordering analysis of this 
experiment gives a Zipf-Mandelbrot relation between ( )r"  and r  with 
exponent 1 4 0.1� � ) 6  as shown in Fig. 14. 
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Figure 14. The frequency of occurrence of braid permutations ( )r" versus rank r  found in 
the dynamics of seven microspheres with 0 83' � )  and 0 442 � ) . 

Some minor differences between the results found in the experiments and 
in the simulations may be due to higher order effects neglected in the 
simulations, such as hydrodynamic interaction between microspheres and 
hydrodynamic and magnetic interactions due to confinement of the 
ferrofluid by the walls. Complicated flow behaviors may occur even at low 
Reynolds numbers in colloidal suspensions. Despite its long-recognized 
ubiquity, hydrodynamic coupling in these suspensions is not completely 
understood [21].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. The frequency of occurrence of braid permutations ( )r"  versus the rank r  found 
for 11 microspheres with 0 64' � )  and 0 222 � ) . The value of the exponent is found to be 

0.98 0.10� � 6 . 
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Figure16 . The frequency of occurrence of braid permutations ( )r"  versus rank r  found in 

the computer simulation of the dynamics of 20 microspheres with 0 64' � )  and 0 152 � ) . 
Here, 0.80 0.08� � 6 . 

 
The Zipf-Mandelbrot relation is observed in systems with higher number of 

spheres as well. Figurs 15 and 16 are examples of 11 and 20 spheres, 
respectively. For both cases we used 0 64' � ) . When increasing the number 
of spheres the number of possible modes increases rapidly. For eleven 
spheres there exist 11! �  4.0·107 possible modes, while we obtain only 
2200 modes in the experiment. Twenty spheres have 20! �  4.0·1018 
possible modes and the simulation gave only 30,000 modes. In order to 
observe a behavior obeying the Zipf-Mandelbrot relation for systems with 

10n 7 , we thus need experiments over a very long time span in order to get 
good statistics. The exponents found for the results presented in Figs. 15 
and 16 are clearly lower than for the case  with seven spheres. 

It is also possible to extend this analysis to calculate the mode-mode 
correlations between modes of different rank [18] and estimate the 
information we get from the system in terms of the so-called Shannon 
entropy [22]. 
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6. Conclusions 
 
In this review we have shown that braid theory can be used to characterize 
the dynamics of magnetically interacting particles. An n- stranded space-
time braid may thus represent the motions of n non-magnetic microspheres 
in a thin ferrofuid layer subjected to oscillating external magnetic fields. It 
is possible to extract the positive permutation braids and use these as a 
measure of the collective modes in the system. The distribution of these 
dynamical modes was analyzed using rank-ordering statistics, and it was 
found to show a hierarchical structure of the Zipf-Mandelbrot type.  
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1. Introduction

Optical tweezers are often used in connection with other techniques to
study physical properties of biological systems. In particular, this com-
bination has often been used to study elastic properties of individual
strands of nucleic acids. The DNA used in this study is the shortest
so far reported, only 1.1 μm, 20 times its persistence length. We
use two different experimental geometries, one in which the axis of the
micropipette is orthogonal to that of the stretched polymer and one
where the axis of the micropipette is parallel to the stretched poly-
mer. By comparing the force-extension data to the predictions of the
celebrated worm-like-chain model (Marko and Siggia, 1995), we find
that the results obtained using the orthogonal geometry have severe
problems, the force increases slower than expected with extension of
the polymer. Also, the expected plateau at the transition away from
the B-form of dsDNA is not horizontal. However, if instead one uses
the parallel geometry the data obtained are fit well by the worm-like-
chain model. This difference can be explained by the elasticity of the
micropipette, which can be crucial to take into account when using
micropipettes in connection with optical tweezers.

The elastic properties of DNA are important as it is constantly
bend, pushed and pulled inside the living cell by macromolecules work-
ing on the DNA. E.g. the DNA is bend when the TATA-box bind-
ing protein attaches to the promoter during transcription initiation.

∗ Corresponding author, email: oddershede@nbi.dk
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Also,the RNA-polymerase is capable of exerting consideableforces (up
to 15 pN) while transcribing the DNA (Wang et al., 1998). One of
the pioneering experimental investigations of the elastical properties
of DNA are presented in (Wang et al., 1997). Another impressive in
vitro study of nucleic acids is that by (Liphardt et al., 2001), who
performed a mechanical unfolding of RNA loops using an optical trap
in connection with a micropipette. This setup was also used for a
test of Jarzynski’s equation (Jarzynski, 1997; Liphardt et al., 2002),
an important equation dealing with the difficult task of relating the
non-equilibrium behavior of a system with its equilibrium behavior.

Such in vitro experiments are good because single action-reaction
couples can be isolated and understood, but on the other hand, these
experiments are not per se biologically relevant as the conditions inside
a living cell are totally different from that within a test tube. Recently,
effort is also being put into investigating the more complex problem of
motion of single molecules in vivo, such as e.g. the motion of proteins
in the outer membrane of living E. coli bacteria (Oddershede et al.,
2002).

2. Methods

2.1. OPTICAL TRAPPING

The optical trap is based on a NdYVO4 laser with wavelength 1064 nm
and is implemented in an inverted Leica microscope with a quadrant
photodiode back focal plane detection scheme, for a full discription
of the equipment see (Oddershede et al., 2001). The water immersion
objective (Leica, NA=1.2) allows for optical trapping at any height
within the sample and prevents effects of spherical abberations. A laser
power of 0.8 W, measured at the output of the laser, was used in
all experiments presented here. Data are acquired using a National
Instruments card (PCI-MIO-16E-4) and the sample is mounted on a
three axis translational piezoelectric stage (Physik Instrumente) with
capacitative feedback control and nanometer position resolution. Data
aquisition was performed using costum made Labview programs. Si-
multaneous control over piezo stage and output from the quadrant
photodiode allows for accurate measurements of corresponding values
of force and distance.

2.2. DNA CONSTRUCT

The DNA is 3256 base pairs long, corresponding to 1.1 μm. It is
synthesized by PCR (Polymerase Chain Reaction) using 5’ modified
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primers. In one end of the PCR fragment there is a biotin and the
other a digoxygenin. The biotin is bound specifically to a streptavidin
coated bead with diameter 2.1 μm(Bangs Laboratories). The digoxy-
genin end is specically bound to an anti-digoxygenin coated bead with
diameter 2.88μm(Spherotech), to ensure a tight binding between the
anti-digoxygenin and the bead this binding is cross-linked with protein
C. The bufferused throughout the experiment contained 10 mM Tris-
HCl pH 7.9,250 mM NaCl, 15 mM MgCl2, 0.05 weight pct. BSA(Bovine
Serum Albumin),and 10 ng/microliter carrier DNA. First, the smaller
streptavidin coated beads were incubated with the PCR fragment in
buffer C. The number of tethers between beads can be controlled by
adjusting the ratio ofPCR fragmentto beads. Just before the experi-
ment, the smaller beads with DNA tethers were mixed with the larger
beads and further diluted in the buffer.

2.3. MICROPIPETTES, CHAMBERS

The buffer containing the DNA and beads was flushed into a microflu-
idic perfusion chamber. Micropipettes (outer diameter approximately
1.5 μm, inner diameter approximately 1 μm) were pointing into the
chamber and immobilized with respect to the chamber. Suction could
be applied to the pipettes to firmly attach the beads in the pipette. The
geometry of the micropipettes with respect to the axis of the propagat-
ing laserlight is of extreme importance for this study. Figure 1 shows a
schematic drawing of the geometry during a mechanical stretching of
a DNA polymer. The left and right parts of Figure 2.3 show scenaria
where the micropipette is respectively orthogonal and parallel to the
direction in which the polymer is stretched.

2.4. EXPERIMENTAL PROCEDURE

After flushing buffer containing DNA and beads into the microfluidic
chamber, one of the larger beads is optically trapped and immobilized
on a micropipette. Thereafter, one of the smaller beads with DNA
attached is optically trapped and brought into the same height as the
larger bead on the micropipette. A timeseries of the thermal fluctua-
tion of the bead inside the trap is monitored to calibrate the optical
trap. Then, the smaller bead is brought close to the larger bead and
allowed to fluctuate (and rotate) within the trap. When a DNA tether is
formed between the two beads, this can be seen on the output from the
quadrant photodiode if one tries to move the micropipette away. In the
experiment, the optical trap is held fixed and the micropipette attached
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Figure 1. Two different possible geometries for combining optical tweezers with mi-
cropipettes for single molecule mechanical studies. The orthogonal geometry, shown
to the left, is the most commonly used. The parallel geometry, shown to the right,
is the one we suggest to use in the future to avoid bending of the micropipette. The
arrow shows the direction of pull. The flexing of the micropipette in the orthogonal
geometry is exaggerated.

to the piezostage is moved at a velocity of 1000 nm/s a distance of 2000
nm away from the trap. For the calibration procedure data is sampled
at a 20-50 kHz rate using the quadrant photodiode. In the stretching
measurements, data is sampled at 5 kHz.

3. Calibration

When the micropipette is moved that will, in turn, force the bead in
the optical trap to be displaced from its equilibrium position. In order
to find the forces acting on this bead as a function of its displacement
from the center of the optical trap and hence to find the forces acting
on the DNA polymer, we need to perform a calibration.

The three coordinates describing the thermal fluctuations of the
bead are uncorrelated, and the equation of motion for each of them is
the same, but with different parameter values. Therefore we may look
at the equation of motion in one dimension, say, for the x-coordinate,
only. The optical tweezers exert a harmonic force κx on the bead.
The surrounding liquid exerts a frictional force on the bead, γẋ, with
γ the friction coefficient known from Stokes’ law γ = 3πηd. Here, d is
the diameter of the bead and η is the viscosity of the liquid. For beads
close to the surface of the coverslip, Faxén’s correction to Stokes’ law
should be invoked too. However, in the results presented here, the bead
is far away from any surface. The bead is also subject to a stochastic
force (T ) due to the Brownian motion of the surrounding liquid at
temperature T . Since the Reynolds number is very small, the inertial

–
–
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term can be neglected, yielding the equation of motion

0 = κx γẋ+ (t). (1)

Upon Fourier transformation of Eq. (1), one obtaines an equation for
the Fourier transformed of the position, x̃(f), and the power spectrum
Sx

〈
x̃(f) 2

〉
for the position x is calculated as

Sx =
kBT

π2γ(f2
c + f2)

. (2)

The characteristic parameter appearing in Sx(f), the corner frequency
is given by fc = κ

2πγ , where a typical value of f(c) in our experiments
is 1 kHz. Knowing γ, κ can be determined.

The recorded signal, stemming from a quadrant photo diode, gives
the position x and y of the bead measured in Volts. We want to deter-
mine the factor A, translating the recorded signal, in Volts to a position
in meters.

For a bead moving in a harmonic potential, the distribution of
positions visited is Gaussian. Thus, from a histogram of the positions
measured, we can determine the variance σ2

V (subscript V to indicate
measured in Volts)

σ2
V =

〈
x2

V

〉
〈xV 〉2 . (3)

In a harmonic potential, the equipartition theorem gives

σ2 =
kBT

κ
. (4)

With κ known from the relation fc = κ
2πγ , σ (measured in meters)

can be found. Now, A can be determined from σV and σ found from
Eqs. (3) and (4)

A =
σ

σV
. (5)

For a very precise analysis of the fluctuations of a bead in an optical
trap, additional terms must be taken into consideration, of which the
most severe is the filtering effect of the quadrant photodiode (Berg-
Sørensen et al., 2003), but also aliasing must be taken into account
and an analytical fit can be performed(Berg-Sørensen and Flyvbjerg,
2004). In our data analyses, we use a program (Hansen et al., 2005)
which does all this.
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Figure 2. Force versus extention of DNA using the parallel geometry. Black circles:
Data. Dashed red line: worm-like-chain theory prediction. Full blue line: Expected
location of the plateau where dsDNA changes conformation.

4. Results and discussion

Using the two different geometries shown in Figure 1 yield quite differ-
ent force-extention curves while stretching 1.1 μ DNA. Figure 2 shows
the force extension curve resulting from stretching DNA using a geom-
etry where the axis of the micropipette is parallel with the stretching
of DNA (right scenario in Figure 2).

Figure 3 shows the force-extension curve resulting from stretching
DNA with a setup where the micropipette is orthogonal to the direction
of the stretching.

Numerous models have predicted the force-extension behavior of
biopolymers such as DNA. One of the most famous models is the so-
called ’Worm-Like-Chain’ (WLC) (Marko and Siggia, 1995), predicting
that the force F nescessary to extend the polymer to a distance x is
given by:
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Figure 3. Force versus extention of DNA using the orthogonal geometry. Black
circles: Data. Dashed red line: worm-like-chain theory prediction. Full blue line:
Expected location of the plateau where dsDNA changes conformation.

F =
kBT

ξp
(

1
4(1 x/L0)2

1
4

+
x

L0
), (6)

where ξp is the persistence length and L0 the contour length. In our
experiment L0 = 1.1μm and we use ξp = 48 nm as the DNA persis-
tence length under the given electrolyte conditions (Wang et al., 1997).
The first quantitative experimental study of the elastical properties of
DNA (Wang et al., 1997) showed that the force-extension curve is well
fitted by a modified version of the Marko-Siggia WLC. However, for
simplicity, and as our goal was not to find the exact elastic properties
of the DNA, but rather to make some statement about the equipment,
we chose to use the WLC of equation 6, which actually is a good ap-
proximation both at high and low forces. At intermediate forces WLC
is expected to deviate up to 10 pct.

On both Figures 2 and 3 the prediction of WLC (equation 6) is
shown as a dashed red line. It is clear that the increase of the force
accordingly to WLC is significantly steeper than that observed with the

–
–
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orthogonal geometry. On the other hand, using the parallel geometry,
a much nicer resemblence is found. It should be noted, that in our
experiments only the relative, not the absolute, extension x is known.
Therefore, the data has been artificially shiftet horisontally to reach
the plateau simultaneously with the predictions of WLC.

It has been shown experimentally (Smith et al., 1996) that exert-
ing a sufficiently large force on DNA will cause the DNA to change
conformation and undergo a highly cooperative transition into a sta-
ble form which is 70 pct. longer than the usual B-form dsDNA. This
transformation happens around F=65 pN. In both Figures 2 and 3 we
observe this transformation happening around 65 pN (solid blue line
in Figures). Using the orthogonal setup geometry this transition does
not appear to happen at a constant force, whereas it does appear to
happen at constant force using the parallel setup. In both Figure 2 and
3 we also observe the onset to melting transition which happens at an
extension of about 1.8 μm.

If the micropipette is not sufficiently stiff with respect to bending,
then in the orthogonal setup, the elasticity of the micropipette might
cause the tip of the micropipette to bend when acted upon by a force
applied orthogonal to the axis of the micropette (the end of the mi-
cropipette is fixed in the perfusion chamber, which is moved by the
piezo electrical stage). This would give rise to a behavior as observed
in Figure 3, namely that the increase in force is slower than predicted
by WLC and that the plateau does not appear horisontal. In the par-
allel geometry, on the other hand, these deviations are not observed,
and largely, the force-extension curve follows WLC and the plateau is
horizontal. Of course, in the parallel configuration, the micropipette is
stretched lengthwise, but it appears that the micropipette is stiffer in
the direction along the pipette than orthogonal to it.

The stiffness of the micropipette used in a setup with orthogonal
geometry (Wuite et al., 2000) was estimated on the basis of the thermal
fluctuations of a bead attached to the micropipette to be κμpipette

4nN/μm. Our measurements give a different number: Judging from
Figure 2 and 3, it appears that at a force of F=65 pN, the pipette has
been stretched by an additional 200 nm, corresponding to a stiffness
of κμpipette 0.3 nN/μm. Of course, individual pipettes have varying
inner and outer diameters and have differing suspension lengths from
their fixed point to the tip, so their flexibility in the orthogonal direction
can be expected to vary substantially.

It is important to be aware of this artefact of the micropipette when
one uses a micropipette e.g. in connection with optical traps to study
mechanical behavior of biological molecules. For longer molecules as

~

~
~
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λ-DNA it is not so important, but for smaller polymers it becomes
increasingly important. Especially when the precision claimed signif-
icantly exceeds the effect brough up here. It should be noted, that a
number of experiments reported in literature, e.g. in (Smith et al., 1996)
and (Liphardt et al., 2001),(Liphardt et al., 2002) use the orthogonal
geometry. A close inspection of the force extension data presented in
these papers show that stretching DNA (Smith et al., 1996) does not
follow WLC and the plateau is not totally horisontal. Stretching DNA-
RNA hybrid handles (Liphardt et al., 2001; Liphardt et al., 2002) does
not follow WLC either. One reason for this could be the geometry of
the setup as examined in the present paper.

By no means do we claim to have solved the problem, there might be
other experimental artefacts that are even more severe. Another issue
which we did not consider, but which might be important is that of
the pulling speed; the amount of irrevserible work put into the system
might change the force-extention relations. However, as our two types
of experiments were done with the same pulling speed, they are directly
comparable, and our conclusion about the flexibility of the micropipette
as crucial, holds.

Our DNA had a contour length of 1.1 μm, and hence it is the
shortest so far reported in stretching experiments. The DNA used in
(Wang et al., 1997) was 1328 nm and that e.g. in (Smith et al., 1996)
was 16 μm λ-DNA. WLC is derived with the assumption that the
contour lenght is significantly longer than the persistence length. In
our case, this ratio is 23, and one obvious challange would be to go
to even shorter DNA’s and see the gradual increase in deviation from
WLC. Another subject that deserves investigation is whether DNA-
RNA hybrids have different force-extension properties than dsDNA.

5. Conclusion

By using optical tweezers we have stretched 1.1μm DNA to its tran-
sition point. The DNA was tethered between two beads, one held by
a micropipette and the other by optical tweezers. The optical tweezers
were equipped such as to enable accurate measurements of correspond-
ing values of force and extension of the DNA tether. We used two
different setups: One in which the micropipette was orthogonal to the
direction in which the polymer was being stretched, in the other the
micropipette was parallel to the stretching direction. Using the parallel
setup yielded results where the force-extension data resembled worm-
like-chain predictions and a horisontal transion plateau was observed as
expected at 65 pN. However, using the orthogonal geometry, which is
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widely reported in literature, we observed the force to increase slower
than expected and the plateau was not horizontal. This can be ex-
plained by the fact that the micropipette bends and hence, its elasticity
must be taken into account when pulling orthogonal to it at its tip.
Using a setup geometry where the pulling direction is parallel to the
micropipette decreases this effect, and is the route we devise out of this
problem.
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Abstract. Here we give examples of different physical phenomena observed in physical 
networks (networked aggregates and/or pore networks) realized in clays. We study the 
SAME material, from different points of view simultaneously, and in parallel. Knowledge 
gained from one type of study is utilized in another, for example: We demonstrate that 
studies of colloidal network structures of clay gels teaches us things about collapsed surface 
networks and surface roughness, and vice versa, we show that diffusion processes in clay 
samples teaches us things that are relevant for the polarizibility of clay particles exposed to 
external electric fields and vice versa, and we will show that water suspensions of nano-
layered clay particles teaches us lessons to be used for explaining adaptive structures of clay 
particles suspended in oil. The phenomena under study are independent, in their own right, 
each with their own level of description, but still interconnected. We use examples from our 
activities on nano-layered silicates (i.e. clays), in order to illustrate complexity and 
universality in materials physics. This research may be said to link nano physics with macro 
physics, and the systems we study, namely clays, enable us to interact with ideas both 
towards nano-technological applications (smart materials, diffusion in membranes, 
nanocomposites etc), and towards geology and environmental soil science. This is the 
strength of physics, namely the universal approach to problems. 

Keywords: Nanostructured materials, soft matter, complex matter, networks in 
materials, macroscopic stability and dynamics, complex physical phenomena 

1. Introduction 

Physical phenomena are often not independent of each other, i.e. 
interconnected, and this may be said to be the basic idea behind a project in 
our group [1] concerned with studies of many complex physical phenomena 
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in parallel, in one single material, namely clays. Clays were chosen for this 
project because so many different complex physical phenomena can be 
realized and studied experimentally in this one physical model system [2], 
and in particular clays are good representatives of macroscopically soft 
materials built from structures and networks of nano-particles [3]. Clays 
represent one of the traditional natural materials that humans have used 
since the beginning, and as such, there are both traditional and very modern 
industrial uses of clays: For example, clays are these days some of the 
“hottest” nano-particles for making new nano-composites [4]. Clays have 
important uses as rheology modifiers in for example paints, cosmetics, 
toothpaste and household cleansers [5]. Clays in the form of so-called 
“pillared layered structures” are used as molecular sieves and porous 
catalytic materials [6]. Clay land formations are important geologically, and 
thus both land surface stability, and stability of sub surface oil-wells 
possess problems that require basic understanding of all such relevant 
physical phenomena. It has also been suggested that clays may have played 
an essential and instrumental role for the origin of life, as we know it [7], 
and this evidently provides additional inspirational motivations for our 
research work on complex physical phenomena in clays.  

In this review, we present work that we have undertaken in our group 
[1], and results we have achieved [8]-[17] during recent years, on studies of 
interconnected complex and universal physical phenomena in our selected 
physical model system: Clays.  

 
 

Figure 1. The oldest sample known of baked clay: A 
figurine called “Venus of Vestonice” found in 1920 in the 
Czech Republic. Approximate age: 23000 B.C. (Dated from 
mammoth bone ash). The picture is scanned from [18]. 
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The following two figures describe examples of networks in materials: 
Polymer nanocomposits. 

 
Figure 2. Polymer nano-composites. 

 

Figure 3. Nano fillers in polymer nano-composites. 

:
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2. 

2.1. CLAYS AS PHYSICAL MODEL SYSTEMS FOR STUDIES OF 
NETWORKS AND PROCESSES IN SOFT AND COMPLEX  MATTER 

2.1.1. Synthetic fluorohectorite 

Fluorohectorite belongs to the 2:1 type clays (generic terms: Swelling clays, 
smectite clays). The fundamental level of description for the 2:1 clays is at 
the mesoscopic scale. i.e. the “building blocks” are 1 nanometer thick 
sheets with effective sheet “radius” in the 20 nm to 10 8m range, These 
sheets have charged surfaces (negative) and edges (small positive), and 
there are counter ions present in order to compensate for these charges.  

The properties of fluorohectorite are summarized in the following 
figure: 
 

 
Figure 4. Description of 2:1 clays. 

Because of the high surface charge, the florohectorite 1 nm thick sheets will 
not disperse independently in water, but instead the “building blocks” are 
stacked particles consisting of about 100 sheets [9], resulting in platelets of 
about 100 nm thick. This is unlike laponite which is discussed below, for 
which the lower surface charge allows individual sheet dispersion in water. 

 

Selected examples of interconnected physical phenomena in clays: 
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Figure 5. AFM image of synthetic fluorohectorite particle. 

2.1.2. Laponite 

Laponite is (like fluorohectorite) a synthetic 2:1 clay, but in this case lower 
surface charge allows for dispersion of individual 1 nm thick platelet sheets 
in water. This is at the basis of the laponite phase diagram explored 
investigated in [19] and explored by simulations in [20]. Laponite is (unlike 
fluorohectorite) monodisperse, i.e. the 1 nm thick sheets all have roughly 
the same radius (about 25 nm). The following figure illustrating possible 
networked structures based on nano-particles in laponite (adopted from 
[20]), showing from left to right, a liquid suspension of colloidal 
aggregates, an isotropic percolating gel structure, and to the right a 
percolating nematic structure. This networking is simply put stabilized by 
competition between van der Waals attractive forces and electrostatic 
repulsive forces screened by ion contents in the suspending liquid (water in 
this case), i.e DLVO theory, see [21]. 

 
Figure 6. Organization of laponite platelets depending on density into (from left to right) sol, 
isotropic and nematic ordering. The figure is taken from [20]. 
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2.2. ANISOTROPIC NETWORKS IN MATERIALS: LIQUID CRYSTALLINE 
STRUCTURES AND STUDIES OF ORDERED PHASES IN CLAY 

This project within our group [1] deals with Na-fluorohectorite synthetic 
clay suspended in salt water (NaCl), in which the following phase 
separation in gravity has been observed by us [2], [9], [15] (the figure is 
adopted from [2] and  [15]): 

 
Figure 7. Phase separation in aqueous dispersion of Na-fluorohectorite [15]. 

Based on synchrotron x-ray scattering experiments [9] as well as on visual 
observations in crossed polarizers [15], we have found that the phase just 
above a lowest sedimented phase has nematic like ordering of 
fluorohectorite platelet particles, and the following phase diagram has been  
established (adopted from [15]):  
Some of he first ideas and observations of nematic like ordering [22] in 
clays date back to Langmuir [23], and it has been a topic of several  
investigations both in clays and in other systems during recent years. 
Nematic networking in materials may have practical relevance for proerties 
of nanopatterns, nanocomposites, and macroscopically anisotropic gels. 

 

COLLOID PLATELET SYSTEMS [15]  
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Figure 8. Phase diagram of aqueous dispersion of Na-fluorohectorite [9]. 

2.3. NETWORKS IN SMART MATERIALS: ELECTRO-RHEOLOGICAL 

This activity started out using the same particles as studied in activity 2.2, 
above, but instead of immersing the particles in water, we immerse them in 
oil, and apply electric fields to the suspension, thus polarizing the clay 
particles, which in turn form chains in between the electrodes due to dipolar 
interactions.  

Later we have shown that also natural clays show the same behavior, which 
maybe not so strange because our synthetic fluorohectorite particles are very 
much like natural illite particles for example quick clays in Norway. We 
have so far studied these problems using optical microscopy and using both 
SAXS and WAXS synchtroton scattering techniques. We have thus investigated 
time scales for polarisibility of clay particles, we have determined the 
“directions of easy polarisibility” of clay particles, we have determined 
distributions of relative orientation of clay particles inside the dipolar 
chains, and we have determined field strengths needed for chain formation. 
The following collection of figures summarizes our own optical microscope 
observations, as well as our recent wide-angle-x-ray-scattering (WAXS) 
experiments performed at the Swiss-Norwegian Beam Lines (SNBL) at 
ESRF in Grenoble. In the upper right hand panel: Observations in an optical 
microscope of chaining of polarized copper electrodes. In the bottom left-
hand corner panel: Bragg-scattering from oil suspension of Na-
fluorohectorite in between Cu-electrodes in zero and in finite electric field 
showing change from pure random powder Bragg-scattering to ansitropic 

BEHAVIOR OF CLAY SYSTEMS [17]  
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Bragg-scattering due to orientation of clay particles in the electric field (one 
dimensional representation is shown un the lower right panle). The 
experiments show that the particles polarize perpendicular to the particle 
stacking direction (100 layers stack where each layer is 1 nm thick), and the 
data also measures the degree of misalignment of particles trapped in the 
chain-structure, for more details see  [17]. 

 

Figure 9. Upper panels: Left: Scetch of fluorohectorite particle. Middle: Scetch of dipolar 
chain with disorder. Right: Microscope image of dipolar chain formation between copper 
electrodes. Lower panels: Left: Narrow ring is isotropic powder scattering from oil-
suspended fluorohectorite particles (E=0). Broader ring scattering from silicone oil.   
Middle: Anisotropic scattering from dipolar chains (E = 500 V/mm). Right: Arrow 
indicationg polarization direction of clay particles. 

Our present clay-in-oil-suspension observations exemplifies what happens 
in general when a colloidal suspension of electrically-polarizable particles 
in non-conducting fluids. When such suspensions are subjected to an 
external electric field, usually of the order of 1kV/mm, the particles become 
polarized, and subsequent dipolar interactions are responsible for 
aggregating a series of interlinked particles that form chains and columns 
parallel to the applied field. Like in our case of clay particles, this 
structuring occurs within seconds, and disappears almost instantly when the 
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field is removed [30]-[34]. It coincides with a drastic change in rheological 
properties (viscosity, yield stress, shear modulus, etc.) of the suspensions 
[35], which is why they are sometimes called electro-rheological fluids 
(ERFs). This makes the mechanical behavior readily controllable by using 
an external electric field [30]-[36], like magneto-rheological fluids may be 
controlled by means of applied magnetic fields [37]. These structures thus 
are linear anisotropic networks that may be tuned on the nano-scale level by 
particle “design”, and at the human scale by applied electric (or magnetic 
fields). Our own research in this field currently also includes electro-
magneto-rheological behaviors in mixtures of laponite clay nano-platelets 
and magnetic ferro-fluid particles [38]. 

 

Figure 10. Physics of formation of dipolar networks, figure is scanned from  [33]. 

 
This project is of relevance to applications for smart materials, smart 

structures, smart and adaptive materials networks etc. 
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Figure 11. Possible breakdown mechanisms of dipolar chain networks, the figure is scanned 
from [33]. 

2.4. POROUS NETWORKS IN COMPLEX MATTER STRUCTURES: 
ANOMALOUS DIFFUSION FROM INTERPLAY OF MOLECULAR 
TRANSPORT NANOPORES AND MESOPORES? [16] 

Global transport differing from the normal diffusion equation, or anomalous 
diffusion, attracts much attention within complexity physics. Recently it has 
been demonstrated from NMR-imaging experiments that water transport in 
porous networks in zeolites may be used as model systems for anomalous 
diffusion, or subdiffusion [39]. This indicates that global water transport in 
zeolite porous networks (for which the pore-network consists of both nano-
pores and meso-pores) may be described in terms of a generalized diffusion 
equation including fractional derivatives, see [39] and references therein. It 
could be that this global water transport, and thus the numerical value of  
the fractional derivative “exponent” in this case reflects the underlying interplay 
between transport dynamics in nano-pores and meso-pores. Motivated partly 
by such questions, our group [1] has undertaken studies of water transport in 
systems of pressed, as well as of loosely packed powder samples of clays, 
in particular in fluorohectorite samples [16]. In our experiments, we have 
studied directly the water contents in the nano-pores by means of 
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synchrotron wide-angle-x-ray-scattering (WAXS). As described in section 
2.1 above, individual fluorohectorite particles are stacks of bout 100 x 1 nm 
thick sheets. We know that water may be intercalated in between the sheets 
and into the particles, mono-layer by mono-layer, up to 3 mono-layers of 
water for the case of fluorohectorite [9],[10],[12],[16]. This means that we 
by means of synchrotron WAXS can map out the global water-transport in 
such a system of a porous network defined by packed clay nano-particles by 
measuring the water-layer intercalation state as a function of space and time.  

The following picture shows an example of a simple sample in a holder 
used during our recent experiments (2004-5) at the National Brazilian 
synchrotron source, LNLS, in Campinas Brazil, where we studied 
intercalation fronts supplying humid athmosphere to one end of the sample, 
while keeping the other end of the sample dry, and at the same time 
controlling the temperature by means of a Peltier element (also seen below 
the sample in the picture). The Bragg-scattering from the 3 cm long sample 
can in this case be accessed at any time, through four x-ray transparent 
windows seen along the sample. For details of these experiments, see [16].  

The water transport (from left to right in the picture), surrounding our 
clay particles and also possibly 
their intercalation properties are 
essential for the polarizing 
properties discussed above (section 
2.3), thus demonstration the 
interconnection of these different 
physical phenomena: “Nano-
diffusion”and elctrorheology. 
 

Figure 12. Temperature controlled sample 
cell for studies of "nano-diffusion" in clays. 

There are still many open questions in this research [16], [39]-[41], and this 
project has relevance for universal description of molecular transport in 
systems with nano-pores, as well as for environmental questions connected 
to molecular transport in clayey soils.  

2.5. SURFACE STRUCTURING FROM  COLLAPSE OF 3-DIMENSIONAL  

Surfaces and profiles as characterized in terms of self-affinity are abundant 
in nature [42][43], and self-affine surfaces are characterized in terms of 
roughness Hurst, exponents [42]. One class of natural surfaces, which has 
attracted considerable attention during a number of years, are those 
associated with surface growth [42][43], where several experimental and 

NETWORKS [13] 



 186

theoretical model systems have been studied [43]. This is the background 
for a project in our group [1] concerned with collapsing 3-dimensional 
sol/gel structures into rough surfaces, and then asking the question whether 
there is any information left in the surface roughness (Hurst exponent) from 
the sol/gel network (fractal dimension). 

We conducted an experiment, preparing samples as shown in the 
following picture, starting with droplets of 3 dimensional laponite samples 
taken from the laponite phase diagram discussed in section 2.1.2 above. 

 

 
Figure 13. Scetch of sample preparation for AFM studies of rough deposited surfaces of 
laponite [13]. 

After drying, the rough surfaces are studied by means of Atomic Force 
Microscopy (AFM), and by analyzing the power spectra (PSD), of the 2-
dimensional rough surfaces, the following was found for dryed laponite 

surfaces:  

Figure 14. Power spectrum (PSD) of rough deposited 
clay surface [13]. 

 
At small length scales, the observed roughness presumably is a result of the 
collapsing of the clay aggregates due to the passing of the water meniscus. 

This is supported by the fact that our AFM images of very dilute sol 
samples, for which isolated aggregates can be seen, suggest considerable 
vertical collapse as water is removed. The observed Hurst exponent of the 
surface reflects the structure of the clusters before they collapse. This may 
be understood as follows: A fractal structure in three-dimensions is 
projected onto a two-dimensional plane. The height of the projected 
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structure at a given point is proportional to the fractal sitting above this 
point. All our AFM images are taken with a pixel size above the individual 
laponite particle size, which is about 1x25 nm2. Thus, at our smallest length 
scales we always measure collapsed clusters of such individual particles, 
and the measured Hurst exponent H at small length scales, thus, tells us 
something about the structure of clusters before collapse. It can be shown 
that the Hurst exponent of a collapsed structure H is related to the fractal 
dimension of an un-collapsed structure D by the equation D=2+H. Hence, 
when we find a Hurst exponent of one this tells us that the fractal dimension 
of the suspended and un-collapsed clusters is three.  

At large length scales, we essentially see the results of the 
sedimentation process, and a Hurst exponent of essentially zero signals a 
logarithmically rough surface, which is consistent with the annealed-
disorder Edwards-Wilkinson growth equation in 2+1 dimensions [43]. For 
further details of this project, see [13]. 

3. Summary and concluding remarks 

In the present review we have given examples of different physical phenomena 
observed in physical networks (networked aggregates and/or pore networks) 
realized in 2:1 clays. It is an important aspect of our different projects that we 
study the SAME material, from different points of view simultaneously and in 

parallel. Knowledge gained from one project is utilized in another, for example: 
We have demonstrated that studies of colloidal network structures of clay 
gels teaches us things about collapsed surface networks and surface 
roughness, and vice versa, we have seen that diffusion processes in clay 
samples teaches us things that are relevant for the polarizibility of clay 
particles exposed to external electric fields and vice versa, and we have 
seen that water suspensions of nano-layered clay particles teaches us 
important lessons to be used for explaining adaptive structures of clay 
particles suspended in oil. The phenomena under study are thus 
independent, in their own right, each with their own level of description 
[44], but still interconnected. 

Here we have written about our activities on nano-layered silicates, 
This research may be said to link nano physics with macro physics, and the 
systems we study, namely clays enable us to interact with ideas both 
towards nano-technological applications (smart materials, diffusion in 
membranes, nanocomposites etc),  and towards geology and environmental 
soil science. This is the strength of physics, namely the universal approach 
to problems [44]. 
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Abstract. We state the usual postulatory approach used by economists and then contrast it 
with our empirically based discovery of the dynamics of financial markets, where all 
predictions are calculated from ‘the market Green function’. In particular, we predict option 
prices in agreement with traders’ valuations, but without using any nonempirically 
determined parameters. Both global and local volatility are defined via the noise traders’ 
diffusion coefficient, and a new dynamic definition of ‘value’ is given. Self-fulfilling 
prophecies are discussed in the context of complexity. 

Keywords. Market dynamics, Markov processes, volatility, option prices, economics and 
finance 

1.  Introduction 

Economists postulate a model, nearly always stationary (near statistical 
equilibrium), and try to force fit it to empirical data by a best choice of 
arbitrary parameters (see, e.g., Chow & Kwan, 1998). They conclude that 
the data are too hard to fit over long time intervals. One object of this 
lecture is to explain that economic data are too easy to fit. In particular, 
finance data are very easy to fit over all observable time scales, and other 
economic data are far more sparse than finance data.  

Neo-classical economic theory (utility maximization) is a falsified 
model but is still taught in all leading textbooks as if it would describe the 
ideal standard to be achieved by real markets (the model is used by The 
World Bank, the IMF, the EU, the US Treasury, and the US Federal 
Reserve (Stiglitz, 2002)). Another main aim of this work is to make 
economists aware that they must discard all existing standard texts and start 
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over again, using empirically-based modelling (see also Soros (2000) for a 
related viewpoint). 

By market dynamics we mean excess demand dynamics:  dp/dt='(p,t) 
where '(p,t) = excess demand = D(p.t)-S(p,t), and where D(p,t) is demand  
and S(p,t) is supply at price p and time t. Financial markets suggest 
stochastic dynamics: price changes on the smallest time scales (�4	1 sec.) 
are not predictable, whereas in deterministic dynamics, even in chaotic and 
complex systems, changes on the smallest time scales are easily predictable 
due to local integrability.   

In stochastic dynamics, excess demand is modelled as drift plus noise. 
Ignoring for the time being the fact that price and time changes in markets 
are discrete, excess demand dynamics in finance markets is pretty well 
described by the stochastic differential equation (sde) 
 

  dp=prdt+ p2d(p,t)dB(t)   (1) 

 
where r is an interest rate, p2d(p,t) is the price diffusion coefficient and 
dB(t) is the Wiener process (dB/dt is white noise, but we use Ito calculus in 
order to preform coordinate transformations on (1) easily and 
systematically). The function d(p,t) characterizes the market and must be 
discovered from the data (McCauley, 2004). If d(p,t) would be constant 
then the price distribution would be lognormal (and the returns x=lnp would 
be Gaussian).  But for real markets d(p,t)
constant and cannot be merely 
postulated. 

Laws of physics are based on the four standard space-time symmetry 
principles (Wigner, 1967). Are there any corresponding symmetry 
principles for markets? Only one is known: the 

’

no arbitrage’ condition 
applied to a single asset in spatially separated markets is a geometric 
invariance principle analogous to rotational invariance. There are no other 
known space-time invariance principles for markets. 

 
1.1  PROVING ‘EQUILIBRIUM’ WITHOUT DYNAMICS 
 
Economists love to prove that equilibrium 

’

exists’ mathematically in a 
model, but dynamics is generally ignored. We now illustrate why existence 
proofs without dynamics are dangerous. The lognormal pricing model is 
defined by the sde (1) with d(p,t) = 3p = constant. The corresponding price 
density g(p,t) satisfies the Fokker-Planck partial differential equation (pde) 
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(2) 

 
whose fundamental time-dependent solution (Green function) is the 
lognormal distribution. The condition for statistical equilibrium is solved by 
the nonnormalizable function g(p)=Cp-2r�32 but statistical equilibrium is 
never reached by the (normalizable)  lognormal Green function, which 
instead vanishes as t goes to infinity. Unbounded prices mean that 
equilibrum can't be attained (due to the continuous spectrum of the Fokker-
Planck operator). Price controls, bounds on p(t), produce statistical 
equilibrium asymptotically via a discrete spectrum. The lognormal model is 
nonstationary, describing a hypothetical unstable market where the Gibbs 
entropy increases without bound. In spite of this fact finance theorists still 
talk about ‘equilibrium markets’. 

 

2.  The Myth of the Invisible Hand 
 
How would a hypothetical equilibrium market behave empirically? Market  
equilibrium would require that g(p,t) is asymptotically stationary (t-
independent) over an observable market time scale (a week, a month, a 
year), or equivalently, that all moments of the distribution g(p) must 
become constants, independent of time t. Statistical equilibrium demands a 
stationary process asymptotically. In particular, the average drift <pr(p,t)> 
must vanish, guaranteeing that <'(p,t)>=0, and because all higher moments 
of the distribution must be constant as well, the variance 
 

σ2 = Δp2 = p2 − p
2 = p(s)2 d(p,s) ds

t

t +Δt
   (3) 

 
must be asymptotically constant for a long enough time interval (t, t+�t). 
This condition on the variance is easily tested and is badly violated by real 
markets, as is the condition for vanishing excess demand. In other words, 
real markets are far from statistical equilibrium, equilibrium (stationary 
process) is a completely illegal zeroth order approximation to market 
reality. 

Why should anyone care about equilibrium? Because were equilibrium 
to hold, then we could take the equilibrium price p* to be either the average 
or most probable price, and this would yield a t-invariant definition of 
“value”, in agreement with neo-classical economic theory.  In the absence 
of equilibrium there is no t-invariant definition of “value”: we will explain 

∂g

∂t
= −r

∂
∂p

(pg) +
σp

2

2

∂2
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in part 6 that the ideas ‘undervalued’ and ‘overvalued’ when applied to 
future asset prices are effectively subjective. Next, we compare the 
equilibrium predictions with the empirical facts about financial markets. 

 
 

3.  Real financial markets 
 

 
x(t) = ln(p(t) / po)    (4) 

 
rather than prices p(t),  price increments �p, or small returns �p/p,  where po 
is a reference price, because the variable x is both additive and units-free. A 
Markov process (1) is a good zeroth order approximation because it agrees 
with the efficient market hypothesis (EMH), which simply means that 
markets are very hard to beat. Using Ito calculus, the sde for x is 
 

dx = (r − D(x, t) / 2)dt + D(x,t)dB(t)   (5) 
 
where D(x,t)=d(p,t).  "Volatility" is defined by the variance of x 
 

σ2 = Δx2 ≈ cΔt 2H    (6) 
 
where H is the Hurst exponent and �x=x(t+�t)-x(t). For stationarity H=0 is 
required, but real markets yield H	1/2 There is much extensive about 
stationarity in the finance literature). Real markets are 
nonstationary/unstable, there is no Invisible Hand to produce market 
stability. Traders, unable to know 'value' (as we explain in part 6), are 
uncertain and trade often, contributing to nonstationarity and volatility. 
These are the noise traders, the traders who provide liquidity in normal 
markets (Black, 1986).  

Here’s how we constructed our finance market model. Start with an 
empirical time series x(t) and construct the market density f(x,t), 
f(x,t)dx=g(p,t)dp, as unmassaged histograms. The empirical distribution is 
approximately exponential, is far from Gaussian for small to moderate 
intraday returns x. Discovering the dynamics means discovering the t-
dependence of three parameters (�$�$�) defined in McCauley (2004) in the 
distribution. We used the global volatility 32=�t to discover that �$��=�t -1/2, 
yielding 
 

f(x, t) = A±

Δt
e− x−δ / Δt     (7) 

It is necessary empirically to study logarithmic returns 



 195

Then, we plugged f(x,t) into the Fokker-Planck  equation 
 

∂f

∂t
= − ∂

∂x
(Rf) + 1

2

∂2

∂x2
(Df)    (8) 

  
Figure 1. The empirical distribution of financial returns is exponential for small to moderate 
intraday returns. 

 
where R is defined below and solved the 'inverse problem' to find D(x,t). 
The exponential distribution with x-dependence appearing in the form 
x/��t is generated by the diffusion coefficient 
 

D(x, t) = 1+ x − δ / Δt     (9) 

 
and where  
 

δ = Δx ≈ RΔt     (10) 
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locates the peak of the distribution, the most probable return. In other 
words, and this is the main point, we discovered the form of the noise the 
market. We emphasize that the ‘local volatility’ D(x,t) haracterizes the so-
called ‘noise traders’. 
 
 
4. Volatility and option prices 
 
Quite generally, the average/global volatility is 
 

σ2 = Δx2 = ds D(x,s)
t

t +Δt
 = ds dx'G(x, t; x' ,s)D(x' ,s)

−∞

∞
 

t

t +Δt
   (11) 

 
where G(x,t;x’,t’) is the market Green function satisfying the Fokker-
Planck  pde (8) and D(x,t) is the ‘local volatility’, 32 ~D(x,t)�t for �t<<1. 
The empirical distribution (7) is the market Green function for x’=0, 
G(x,t;0,0)=f(x,t). Our option pricing  prediction, based on the exact formula 
 
  C(p,K,T − t)er(T− t ) = (pT − K)θ(pT − K) er(T− t ) = (pex T − K)G(xT ,T;x, t)dxT

ln K / p

∞
   (12) 

 
agrees with traders’ prices without using any adjustable parameters 
(falsifiable model). In (12) C is the call price, T is the expiration time, t is 
the present time, p is the known price at time t, and K is the strike price at 
expiration. The reason that we can calculate option prices from the Market 
Green function is that, with the choice of R(x,t) )=r-D(x,t)/2 satisfying the 
risk neutral hedge condition, the correct ‘Black-Scholes’ pde is, to within a 
time transformation, just the backward time Kolmogorov pde 
corresponding to the market Fokker-Planck pde (8) (McCauley, 2004). 

There is nonuniqueness in deducing the t-dependence of the empirical 
density f(x,t) from the data, but we have the luck that for option pricing the 
nonuniqueness doesn't matter on a time scale small compared with 100 
years. Due to uniqueness in modelling empirical data via infinite precision 
dynamics, this leads to the viewpoint that the data are too easy to fit over 
long times To be honest, we already know this important lesson from 
nonlinear dynamics (Chhabra et al., 1989). 
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4.1  LIQUIDITY, NOISE TRADERS, AND CRASHES 
 
The essential unstated assumption so far is that we have an adequate 
‘liquidity bath’. By a normal market we mean the following: A liquidity 
bath is assumed, meaning that approximately reversible trades are possible 
via your discount broker in real time over the shortest time intervals (�t is 
on the order of a few seconds) on your Imac or PC. This assumption is 
represented by the noise term �D(x,t)dB(t), which describes the 
uncoordinated actions of the "noise traders". Noise traders  
provide the liquidity/entropy in the market. Mathematically seen, noise 
traders are the market (‘with measure one’). Noise traders, uncertain about 
'value', buy and sell often: a financial market is largely noise because most 
traders don't have either inside or other knowledge to trade on. Actually, it 
was von Neumann who suggested to Shannon to look for market entropy in 
liquidity. The liquidity/money bath is analogous to a thermal heat bath, but 
the liquidity bath cannot be described by equilibrium ideas like 
temperature. 

Fat tails do not describe market crashes, fat tails describe large returns 
that occur during perfectly normal markets. In contrast, a market crash is a 
liquidity drought (the noise traders can’t sell because there are no buyers) 
and is described qualitatively by R<<0 and D(x,t)	0. 
  
5. Three Easy Pieces 
 
We study the pde 
 

∂f

∂t
= −R

∂f

∂x
+ 1

2

∂2

∂x2
(Df)     (13) 

 
with R=constant (Alejandro-Quinones et al, 2004). To satisfy the 
replicating self-financing hedge condition in option pricing (risk neutral 
hedge) we need R=r-D(x,t)/2
constant, but we can take R 	 constant on any 
time scale small relative to 100 yrs: this is part of the nonuniqueness. 
Therefore, we can study 
 

∂f

∂t
= 1

2

∂2

∂x2
(Df)      (14) 
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and then replace x by x-R�t. This partial differential equation has nice 
scaling properties. In order to find out, set u=x/�Dt, f(x,t)=F(u)/�Dt, and 
D(x,t)=D(u). The result: given the returns density f(x,t) we can calculate the 
local volatility D(x,t), and vice/versa, and we can do that analytically for at 
least three essential cases.  

 
 
Figure 2. The market distribution is exponential for moderate returns but has fat 
tails for large returns. The tail exponents are nonuniversal and range from 2 to 7 
(see also Dacorogna et al., 2001). 

If 
D(u) = 1+ εu     (15) 

 
then 
 

F(u) = Ce− u ((ε u +1)α−1 )/ε       (16) 
 
where = '-2 . As ' increases then the tails of the distribution decay more 
slowly. The limit '=0 yields the Gaussian, and '=1 yields the exponential 
(7). 
 

Next, if 
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D(u) = 1+ εu2     (17) 
 
then the result is surprising: we can generate (nonstationary!) fat tails 
  

f(x, t) ≈ x
−μ

, x >> 1              (18) 
 
for all tail exponents 2<8<�: the exact solution is 
 

F(u) = C

(1+ εu2)1+1/ 2ε ≈ u−2−1/ε, u >> 1    (19) 

 
where 8=2+1/'. Note that were even one extra higher order term required in  
(17) to generate fat tails, then the empirically observed tail exponent 8 
would not determine all the free parameters in D(x,t).  

We can generate the observed financial distribution (Fig. 2) via a ‘noise 
trader function’ 
 

D(u) = 1+ u + εu2      (20) 
 
where the tail exponent 8=2+1/'� uniquely determines '. A decisive test of 
our model would be to measure D(x,t) empirically, which is very hard: 
Peinke (2001) tried, but his results fail for large returns x because he 
inadvertently made a small returns approximation. Finally, One sees 
immediately from (12) that option prices diverge if fat tails are included: 
option traders do not and cannot insure against fat tails. 
 

6. Our new dynamic definition of “value” 

Both f(x,t) and D(x,t) have extrema at x=lnpc/po=� where pc=poe� is the 
most probable price, and po is the initial most probable price. The price pc 
defines the ‘consensus price’ and so represents the most widely agreed 
upon “value” of the asset at time t. This is our non-neo classical definition 
of value. However, the peak �	R�t of f(x,t) does not stand still, it can shift 
suddenly in a market crash and even in normal intraday trading (the 
expected return R can change suddenly, discontinuously, with sudden 
changes in noise traders’ sentiments). In other words, “value” is very far 
from a time-invariant idea and depends on what the noise traders believe 
about an asset at any given time. In particular, ‘value’ is impossible to 
know in advance (complexity), we can at best know what value was at 
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different times in the past. This means that notions like ‘overvelued’ and 
‘undervalued’ are knowable only at the present time or historically, but 
cannot be predicted any degree of confidence for the future. This viewpoint 
is completely non-neo classical. Pricing options by using the empirical 
density (7) rather than the market Green function (still analytically 
unknown, hard to calculate) means approximating the present observed 
asset price p(t) by the consensus price. 

Fischer Black (1986) was wrong: there is no tendency for price to 
‘return to value’ because market dynamics are unstable, prices always 
diffuse away from ‘value’, there being no ‘springs’ in the market to pull 
prices back to value. But Soros (1998) was right, financial markets are 
dynamically unstable. 
 
 
7. Market Complexity 
 
So far, we’ve discussed nothing but simple stochastic dynamics that 
generates the historic statistics, so where’s the complexity? Predictions 
based on past statistics hold so long as there are no basic market shifts, or 
‘surprises’. Surprises generated by UTM (universal Turing machine) 
dynamics and undecidability were discussed by Moore (1990, 1991) and at 
the 2001 Geilo School (Skjeltorp and Viscek, 2002). Insurance companies 
assume that tomorrow will be statistically like yesterday. This assumes that 
the noise traders never change their diffusion coefficient D(x,t), never 
change their noisy behavior/psychology. This assumption will fail in an 
unknown way at some unknown time in the future. 

There are also self-fulfilling expectations that are not merely a 
repetition of past statistics, but represent the creation of something new. 
Examples of self-fulfilling expectations are communism via dictatorship 
(regulatory extremism) and globalization via deregulation (free market 
extremism). Feyman contrasted nonthinking nature with socio-economic 
phenomena and pointed out that the latter are very different from physics 
because wishful thinking can be made into reality by acting on it. But just 
as Turing said of numbers and arithmetic, we can assert about physics that 
mathematical laws of nature are beyond human invention, convention, and 
intervention, whereas all market phenomena are human-made, are invented 
by human will and actions. Here, we connect with Wigner (1967): a single 
space-time invariance principle (the assumption that arbitrage is to zeroth 
order impossible between spatially separated markets) is inadequate to pin 
down time-invariant mathematical laws of motion. Our market distribution 
is only a model, not a fixed market law, and will fail when the noise traders 
eventually change their habits enough that (21) no longer describes the 
market.  
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Neo-classical economics, the theoretical basis for globalization via 
deregulation that assumes that perfect knowledge of the future on the part 
of all traders, is a falsified model (McCauley, 2004) is mathematized 
ideology. There is neither simple uncertainty nor complexity in that 
ideology. Nor can the model be relaxed to make it perturbatively realistic in 
any sense: instead of approximately perfect knowledge (vanishing entropy), 
real markets reflect large and ever increasing entropy 

S(t) = −
−∞

∞
 

due to liquidity. Far from randomness and other simplicity, a very few 
traders do not generate noise but also do not behave predictably. E.g., 
George Soros (1998) defeats self-fulfilling expectations of opponents (e.g., 
the Bank of England) by generating surprises (or psychological tricks). 
Soros (1998, 2000) tries to describe how traders behave and discusses self-
reference and the Cretan Liar with in light of Gödel’s incompletelness 
theorem. However, it’s not clear to this writer that Soros does anything 
more complicated that to play winning poker with an adequate bankroll (he 
avoids the gamblers’ ruin). 

JMC is extremely grateful to Harry Thomas for a very careful reading 
of the preliminary manuscript and for suggesting improvements in the 
presentation (part 1.1 remains in spite of his objection), and likewise to 
Cornelia Küffner who also read the earlier ms and suggested clarifications 
of several key phrases. GHG and KEB (DMR # 0406323) thank the NSF 
for financial support. 
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THE MINORITY GAME: STATISTICAL PHYSICS OF

COLLECTIVE BEHAVIOUR OF ADAPTIVE AGENTS IN

A COMPETITIVE MARKET

DAVID SHERRINGTON*
Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
1 Keble Road, Oxford OX1 3NP, United Kingdom
(sherr@thphys.ox.ac.uk)

Abstract. A brief review is given of the minority game, an idealized model
stimulated by a market of speculative agents, with emphasis on its statistical physics.

The minority game is a minimalist model stimulated by considera-
tions of a stockmarket of independent speculative agents trying to
profit by buying low and selling high. It has potential interest both
from the perspective of economics (or econophysics) and from that of
statistical physics. In this paper I shall concentrate on the latter, in
whose community there is currently much interest in the emergence of
complex cooperative behaviour through the combination of competition
(frustration) and inhomogeneity (disorder), even when the microscopic
entities and interaction rules are simple.

The model describes a system of a large number N of agents each of
whom at each step of a discrete dynamics makes a bid that can be either
positive or negative (buy or sell). The objective of each agent is to make
a bid of opposite sign from that of the sum of all the bids (i.e. a minority
choice)1. Each agent decides his/her bid through the application of
a personal strategy operator to some common information, available
identically to all, but without direct knowledge of the strategies or
actions of other agents2. We here restrict to the simplest case in which
the strategy operators are allocated randomly and independently for
each agent before play commences and are not modified during play.
Each agent has a finite set of strategies, one of which is chosen and
used at each step; for simplicity discussion below is restricted to two

1 This is to emulate the way that a price rises if there are few sellers and falls if
there are few buyers.

2 This is to emulate the fact that in a stockmarket all have access to the
stockmaket indices, world news etc., but not to the minds of their competitors.

A.T. Skjeltorp and A.V. Belushkin (eds.),  
Dynamics of Complex Interconnected Systems: Networks and Bioprocesses, 203–210. 
© 2006 Springer.  
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strategies per agent. The choice is determined by ‘points’ allocated to
the strategies and at each step increased if the strategy yields the actual
minority choice and decreased if it yields the majority choice3. This is
the only mechanism for co-operation but is sufficient to yield complex
macroscopic behaviour.

In the original version of the model [2] the information on which
decisions were made was the history of the actual play over a finite
window (the last m time steps). However, simulations demonstrated
that utilising instead a random fictitious ‘history’ (information) at each
time-step produces essentially identical behaviour[3], suggesting that
its relevance is just to provide a mechanism for an effective interaction
among the agents. A natural non-trivial measure of the macroscopic
behaviour is the volatility, the standard deviation of the total bid. It
demonstrates statistical physics interest in several ways: (i) in exhibit-
ing non-trivial scaling behaviour as a function of d = D/N , where D
is the information dimension4[4], (ii) in exhibiting a cusp at a critical
dc following a tabula rasa start , and especially (iii) in that the system
is ergodic with volatility independent of starting point allocations for
d > dc but non-ergodic and preparation-dependent for d < dc; these
features are illustrated in fig 1 which shows both simulation and cal-
culation (discussed below), a variety of different intial conditions and
both uncorrelated and anti-correlated strategies5.

Since the information on which the agents act is the same for all, this
problem is manifestly mean-field 6. It therefore offers the potential for
exact solution for its macro-behaviour in the sense of the elimination
of the microscopic variables in favour of self-consistently determined
macro-parameters in the limit of large N [5]. The physics appears to be
robust to variations of detail, but for completeness the version discussed
explicitly is detailed.

Each agent i, i = 1, . . . , N , is taken to have twoD= dN -dimensional
strategies Ria = (R1

ia, . . . , R
dN
ia ), a = 1, with each component Rμ

ia
chosen independently randomly 1 at the outset and thereafter fixed.
The common random information enters in that μ(t) is chosen stochas-
tically randomly at each time-step t from the set μ(t) 1, . . . , D

3 Note that the minority choice is determined by the cumulative actions of all
the agents.

4 D = 2m in the original case but can be generalized to any value
5 In the case of anti-correlated strategies each agent’s two strategies yield opposite

choices when they act on any given information, although there is still no correlation
between the actions on different information fields, nor between agents.

6 Indeed it is similarly clear that the real stockmarket is dominantly mean-field,
albeit temporally non-local.

±
±

{ }9
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Figure 1. Volatilities in batch minority games with 2 strategies per agent; (a)
with completely uncorrelated strategies, (b) with each agent’s 2 strategies mutually
anti-correlated but with no correlation between agents. Shown are three different
bias asymmetries between the points allocated initially to each agent’s 2 strategies:
pi(0) = 0.0 (circles), 0.5 (squares) and 1.0 (diamonds). Also exhibited is a compar-
ison betweeen the results of simulation of the deterministic many-agent dynamics
(open symbols) and the numerical evaluation of the analytically-derived stochastic
single-agent ensemble dynamics. From [7].

and each agent plays one of his/her two strategies Rμ(t)
iai

, ai = 1.
The actual choices of ai used, hereafter called bi(t), are determined by
the current values of point differences pi(t); for the deterministic case
through bi(t) = sgn(pi(t))7. The pi(t) are updated every M time-steps
according to

pi(t+M) = pi(t) M−1
t+M−1∑

�=t

ξ
μ(�)
i

⎧⎨
⎩N−1/2

∑
j

(ωμ(�)
j + ξ

μ(�)
j sgn(pj(t)))

⎫⎬
⎭(1)

where ωi = (Ri1 + Ri2)/2, ξi = (Ri1 Ri2)/2.In the so-called ‘online’
game M = 1 but as M is increased to M O(N) the so-called ‘batch’

7 Generalization to stochastic update is straightforward but not discussed here
[6].

–

–
�–
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Figure 2. Volatility of batch minority games with anti-correlated strategies for a
range of values of the number of time-steps M between point updates, going between
M = 1 (on-line) on the left to M >> N (equivalent to batch) on the right. (P ≡ N)
From[8].

game results in which μ(
) in (1) may be replaced by an average [8] so
that

pi(t+1)= pi(t)
∑
j

Jijsgn(pj(t)) hi pi(t) ∂H/∂si si=sgn(pi(t)); (2)

where Jij = N−1 ∑D
μ=1 ξ

μ
i ξ

μ
j , hi = N−1/2 ∑D

μ=1 ω
μ
i ξ

μ
i ,H=

∑
(ij) Jijsisj+

hisi. The results in fig 1 are for the batch limit; for uncorrelated
patterns the two limits yield similar results but for anti-correlated

8 The time unit is rescaled here.
9 Thus the system behaves as if controlled by a ‘Hamiltonian’ of effective spins

interacting through random exchanges and in random fields. The random exchange
term has a form analagous to that of the Hopfield neural network model, but cru-
cially with opposite sign; the μ are analogues of the labels of the stored memories and
the ξ of their states, but they are now repellers rather than attractors. In Hopfield
model convention the reduced variable d is usually called α and that notation is
employed in figs 2 and 3.

8,9

– – –� �
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strategies there are significant differences of detail, as can be seen in
fig 2.

To proceed analytically a dynamical generating functional method
[9] is employed, with

Z =
∫ ∏

t

dp(t)W (p(t+ 1) p(t))P0(p(0)), (3)

where p(t) = (p1(t), . . . , pN (t)), W (p(t + 1) p(t)) denotes the trans-
formation operatation of eqn. 2 and P0(p(0)) denotes the probability
distribution of the initial score differences from which the dynamics is
started. The typical case results by averaging over the specific choices
of quenched strategies. The averaged generating functional may then
be transformed exactly into a form involving only macroscopic but tem-
porally non-local variables (C̃, G̃ and K̃) relatable to the correlation
and response functions of the original many-agent problem:

Z =
∫
DC̃(t, t′)DG̃(t, t′)DK̃(t, t′) exp

(
NΦ(C̃, G̃, K̃)

)
, (4)

where Φ is independent of N and the bold-face notation denotes ma-
trices in time. This expression is extremally dominated in the large N
limit and consequently permits steepest descents analysis. This yields
an effective stochastic single agent dynamics10

p(t+ 1) = p(t)
∑
t′≤t

(1 + G)−1
tt′ sgnp(t

′) + αη(t), (5)

where 〈η(t)η(t′)〉 = [(1 + G)−1(1 + C)(1 + GT)−1]tt′ (6)
and the G and C are two-time response and correlation functions de-
termined self-consistently as averages over an ensemble of such single
agents11. In the limit of largeN this analysis is believed to be exact, but
it is highly non-trivial. Empirical evidence for its correctness is shown in
fig 1 where comparison is made between the results of simulations over
many instances of the many-agent eqn. 2 and numerical evaluations
of the analytically-derived single-agent dynamics of eqn. 5, including
extension to anti-correlated strategies [8].

Hence, naive characterization in terms of a unique deterministic
‘representative agent’, as common in conventional economics theory, is
not possible. However, a single effective-agent description is available in
a much more subtle sense. This is that one can consider the system to
behave as though one has a ‘representative stochastic ensemble’

10 For simplicity we restrict to uncorrelated patterns here, although extension to
correlated strategies is possible and is discussed in [8] and is used in fig 1b.

11 C and G are the extremally dominating ‘values’ of C̃ and G̃. See [9] for details.

�

�

–



208

10
1

10
0

10
1

α
0.0

0.2

0.4

0.6

0.8

1.0

c

Figure 3. Persistent part Q of the correlation function for the batch MG with tabula
rasa initial conditions. Symbols are simulation data. Solid lines are the theoretical
predictions for the ergodic regime, extrapolated as dashed lines into the non-ergodic
phase below dc (where they are no longer valid), the changeover signalling the
predicted breakdown of the ergodic assumption. The different curves are for different
degrees of mutual correlation between agents’ two stategies; from anticorrelated at
the bottom to highly correlated at the top. From[8].

A complete closed-form solution the effective single-agent ensemble
dynamics is currently not available. However, one can solve for aymp-
totic long-time behaviour in the ergodic equilibrating region. where
stationarity ensures that the two-time correlation and response func-
tions become functions only of the relative times. Assuming also finite
integrated response and weak long term memory leads to a formulation
determining self-consistently the asymptotic order parameters Q =
limτ→∞C(τ) and the integrated response χ =

∑
τ G(τ). Breakdown

of the ergodic regime is signalled by diverging integrated response.
Again the analytic theory works well within this ergodic regime, as

12 Note that eqn. 5 is stochastic even though eqn. 2 is deterministic.

of non-interacting agents experiencing memory-weighting and coloured
noise, both determined self-consistently over the ensemble12.
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is demonstrated in fig 3. The volatility, however, requires also the non-
stationary parts of C andG and remains incompletely solved in general,
even in the ergodic regime [8].

It is of interest to query the origin of the large volatilities found for
tabula rasa starts in the non-ergodic regime. These can be ascribed
to oscillatory behaviour, clearly visible empirically in the temporal
correlation function

C(τ) = lim
t→∞N−1

∑
i

sgn(pi(t+ τ))sgn(pi(t)), (7)

which exhibits persistent oscillations (with period 2 in the rescaled
time units of eqn. 2) for d < dc [8]. Tabula rasa starts in this region
exhibit essentially no frozen agents, whereas highly biased starts result
in mostly frozen agents and hence reduce the oscillations and with
them the excess time-averaged volatility. The oscillations and the excess
volatility are also reduced by random asynchronous point updating [8]
and by adding appropriate stochasticity to the original MG dynamics
[10][6].

Thus, as well as its possible relevance as an idealized economics
model, the Minority Game is of interest as a novel complex many-
body system with both similarities and differences compared with other
problems previously studied in statistical physics. Techniques devel-
oped within the spin glass community have proven useful in its analysis
and suggest extensions to other dynamical many-body systems charac-
terised by a combination of local/personal and global/range-free para-
meters.
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