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Preface

This book grew out of a 2-semester graduate course in laser physics and quan-
tum optics. It requires a solid understanding of elementary electromagnetism
as well as at least one, but preferably two, semesters of quantum mechanics.
Its present form resulted from many years of teaching and research at the
University of Arizona, the Max-Planck-Institut fiir Quantenoptik, and the
University of Munich. The contents have evolved significantly over the years,
due to the fact that quantum optics is a rapidly changing field. Because the
amount of material that can be covered in two semesters is finite, a number
of topics had to be left out or shortened when new material was added. Im-
portant omissions include the manipulation of atomic trajectories by light,
superradiance, and descriptions of experiments.

Rather than treating any given topic in great depth, this book aims to
give a broad coverage of the basic elements that we consider necessary to
carry out research in quantum optics. We have attempted to present a vari-
ety of theoretical tools, so that after completion of the course students should
be able to understand specialized research literature and to produce original
research of their own. In doing so, we have always sacrificed rigor to phys-
ical insight and have used the concept of “simplest nontrivial example” to
illustrate techniques or results that can be generalized to more complicated
situations. In the same spirit, we have not attempted to give exhaustive lists
of references, but rather have limited ourselves to those papers and books
that we found particularly useful.

The book is divided into three parts. Chapters 1-3 review various aspects
of electromagnetic theory and of quantum mechanics. The material of these
chapters, especially Chaps. 1-3, represents the minimum knowledge required
to follow the rest of the course. Chapter 2 introduces many nonlinear optics
phenomena by using a classical nonlinear oscillator model, and is usefully
referred to in later chapters. Depending on the level at which the course is
taught, one can skip Chaps. 1-3 totally or at the other extreme, give them
considerable emphasis.

Chapters 4-12 treat semiclassical light-matter interactions. They contain
more material than we have typically been able to teach in a one-semester
course. Especially if much time is spent on the Chaps. 1-3, some of Chaps. 4—
12 must be skipped. However, Chap. 4 on the density matrix, Chap. 5 on the
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interaction between matter and cw fields, Chap. 7 on semi-classical laser
theory, and to some extent Chap. 9 on nonlinear spectroscopy are central to
the book and cannot be ignored. In contrast one could omit Chap. 8 on optical
bistability, Chap. 10 on phase conjugation, Chap. 11 on optical instabilities,
or Chap. 12 on coherent transients.

Chapters 13—-19 discuss aspects of light-matter interaction that require
the quantization of the electromagnetic field. They are tightly knit together
and it is difficult to imagine skipping one of them in a one-semester course.
Chapter 13 draws an analogy between electromagnetic field modes and har-
monic oscillators to quantize the field in a simple way. Chapter 14 discusses
simple aspects of the interaction between a single mode of the field and a
two-level atom. Chapter 15 on reservoir theory in essential for the discus-
sion of resonance fluorescence (Chap. 16) and squeezing (Chap. 17). These
chapters are strongly connected to the nonlinear spectroscopy discussion of
Chap. 9. In resonance fluorescence and in squeezing the quantum nature of
the field appears mostly in the form of noise. We conclude in Chap. 19 by
giving elements of the quantum theory of the laser, which requires a proper
treatment of quantum fields to all orders.

In addition to being a textbook, this book contains many important for-
mulas in quantum optics that are not found elsewhere except in the original
literature or in specialized monographs. As such, and certainly for our own
research, this book is a very valuable reference. One particularly gratify-
ing feature of the book is that it reveals the close connection between many
seemingly unrelated or only distantly related topics, such as probe absorption,
four-wave mixing, optical instabilities, resonance fluorescence, and squeezing.

We are indebted to the many people who have made important contri-
butions to this book: they include first of all our students, who had to suf-
fer through several not-so-debugged versions of the book and have helped
with their corrections and suggestions. Special thanks to S. An, B. Capron,
T. Carty, P. Dobiasch, J. Grantham, A. Guzman, D. Holm, J. Lehan, R. Mor-
gan, M. Pereira, G. Reiner, E. Schumacher, J. Watanabe, and M. Watson.
We are also very grateful to many colleagues for their encouragements and
suggestions. Herbert Walther deserves more thanks than anybody else: this
book would not have been started or completed without his constant encour-
agement and support. Thanks are due especially to the late Fred Hopf as well
as to J.H. Eberly, H.M. Gibbs, J. Javanainen, S.W. Koch, W.E. Lamb, Jr.,
H. Pilloff, C.M. Savage, M.O. Scully, D.F. Walls, K. Wodkiewicz, and E.M.
Wright. We are also indebted to the Max-Planck-Institut fur Quantenop-
tik and to the U.S. Office of Naval Research for direct or indirect financial
support of this work.

Tucson, August 1989 Pierre Meystre
Murray Sargent 111
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Preface to the Second Edition

This edition contains a significant number of changes designed to improve
clarity. We have also added a new section on the theory of resonant light
pressure and the manipulation of atomic trajectories by light. This topic is
of considerable interest presently and has applications both in high resolu-
tion spectroscopy and in the emerging field of atom optics. Smaller changes
include a reformulation of the photon-echo problem in a way that reveals its
relationship to four-wave mixing, as well as a discussion of the quantization
of standing-waves versus running-waves of the electromagnetic field. Finally,
we have also improved a number of figures and have added some new ones.

We thank the readers who have taken the time to point out to us a num-
ber of misprints. Special tanks are due to Z. Bialynicka-Birula. S. Haroche,
K. Just, S. LaRochelle, E. Schumacher, and M. Wilkens.

Tucson, February 1991 P.M. M.S. III

Preface to the Third Edition

Important developments have taken place in quantum optics in the last few
years. Particularly noteworthy are cavity quantum electrodynamics, which
is already moving toward device applications, atom optics and laser cooling,
which are now quite mature subjects, and the recent experimental demonstra-
tion of Bose-Einstein condensation in low density alkali vapors. A number of
theoretical tools have been either developed or introduced to quantum optics
to handle the new situations at hand.

The third edition of Elements of Quantum Optics attempts to include
many of these developments, without changing the goal of the book, which
remains to give a broad description of the basic tools necessary to carry out re-
search in quantum optics. We have therefore maintained the general structure
of the text, but added topics called for by the developments we mentioned.
The discussion of light forces and atomic motion has been promoted to a
whole chapter, which includes in addition a simple analysis of Doppler cool-
ing. A new chapter on cavity QED has also been included. We have extended
the discussion of quasi-probability distributions of the electromagnetic field,
and added a section on the quantization of the Schrodinger field, aka second
quantization. This topic has become quite important in connection with atom
optics and Bose condensation, and is now a necessary part of quantum optics
education. We have expanded the chapter on system-reservoir interactions to
include an introduction to the Monte Carlo wave functions technique. This
method is proving exceedingly powerful in numerical simulations as well as
in its intuitive appeal in shedding new light on old problems. Finally, at a
more elementary level we have expanded the discussion of quantum mechan-
ics to include a more complete discussion of the coordinate and momentum



VIII  Preface

representations. We have also fixed whatever misprints have been brought to
our attention in the previous edition.

Because Murray Sargent moved from the sunny Southwest to the rainy
Northwest to pursue his interests in computer science, it rested on my shoul-
ders to include these changes in the book. Fans of Murray’s style and physical
understanding will no doubt regret this, as I missed his input, comments and
enthusiasm. I hope that the final product will nonetheless meet his and your
approval.

As always, I have benefited enormously from the input of my students
and colleagues. Special thanks are due this time to J.D. Berger, H. Giessen,
E.V. Goldstein, G. Lenz and M.G. Moore.

Tucson, November 1997 P.M.

Preface to the Fourth Edition

It has been 10 years since the publication of the third edition of this text, and
quantum optics continues to be a vibrant field with exciting and oftentimes
unexpected new developments. This is the motivation behind the addition of
a new chapter on quantum entanglement and quantum information, two areas
of considerable current interest. A section on the quantum theory of the beam
splitter has been included in that chapter, as this simple, yet rather subtle
device is central to much of the work on that topic. Spectacular progress
also continues in the study of quantum-degenerate atoms and molecules, and
quantum optics plays a leading role in that research, too. While it is well
beyond the scope of this book to cover this fast moving area in any kind of
depth, we have included a section on the Gross-Pitaevskii equation, which is a
good entry point to that exciting field. New sections on atom interferometry,
electromagnetically induced transparency (EIT), and slow light have also
been added. There is now a more detailed discussion of the electric dipole
approximation in Chap. 3, complemented by three problems that discuss
details of the minimum coupling Hamiltonian, and an introduction to the
input-output formalism in Chap. 18. More minor changes have been included
at various places, and hopefully all remaining misprints have been fixed. Many
of the figures have been redrawn and replace originals that dated in many
cases from the stone-age of word processing. I am particularly thankful to
Kiel Howe for his talent and dedication in carrying out this task.

Many thanks are also due to M. Bhattacharya, W. Chen, O. Dutta, R.
Kanamoto, V. S. Lethokov, D. Meiser, T. Miyakawa, C. P. Search, and H.
Uys. The final touches to this edition were performed at the Kavli Institute for
Theoretical Physics, University of California, Santa Barbara. It is a pleasure
to thank Dr. David Gross and the KITP staff for their perfect hospitality.

Tucson, June 2007 P.M.
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1 Classical Electromagnetic Fields

In this book we present the basic ideas needed to understand how laser light
interacts with various forms of matter. Among the important consequences
is an understanding of the laser itself. The present chapter summarizes clas-
sical electromagnetic fields, which describe laser light remarkably well. The
chapter also discusses the interaction of these fields with a medium con-
sisting of classical simple harmonic oscillators. It is surprising how well this
simple model describes linear absorption, a point discussed from a quantum
mechanical point of view in Sect. 3.3. The rest of the book is concerned
with nonlinear interactions of radiation with matter. Chapter 2 generalizes
the classical oscillator to treat simple kinds of nonlinear mechanisms, and
shows us a number of phenomena in a relatively simple context. Starting with
Chap. 3, we treat the medium quantum mechanically. The combination of a
classical description of light and a quantum mechanical description of matter
is called the semiclassical approximation. This approximation is not always
justified (Chaps. 13-19), but there are remarkably few cases in quantum op-
tics where we need to quantize the field.

In the present chapter, we limit ourselves both to classical electromagnetic
fields and to classical media. Section 1.1 briefly reviews Maxwell’s equations
in a vacuum. We derive the wave equation, and introduce the slowly-varying
amplitude and phase approximation for the electromagnetic field. Section 1.2
recalls Maxwell’s equations in a medium. We then show the roles of the in-
phase and in-quadrature parts of the polarization of the medium through
which the light propagates, and give a brief discussion of Beer’s law of light
absorption. Section 1.3 discusses the classical dipole oscillator. We introduce
the concept of the self-field and show how it leads to radiative damping.
Then we consider the classical Rabi problem, which allows us to introduce
the classical analog of the optical Bloch equations. The derivations in Sects.
1.1-1.3 are not necessarily the simplest ones, but they correspond as closely
as possible to their quantum mechanical counterparts that appear later in
the book.

Section 1.4 is concerned with the coherence of the electromagnetic field.
We review the Young and Hanbury Brown-Twiss experiments. We intro-
duce the notion of nth order coherence. We conclude this section by a brief
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comment on antibunching, which provides us with a powerful test of the
quantum nature of light.

With knowledge of Sects. 1.1-1.4, we have all the elements needed to un-
derstand an elementary treatment of the Free-Electron Laser (FEL), which
is presented in Sect. 1.5. The FEL is in some way the simplest laser to un-
derstand, since it can largely be described classically, i.e., there is no need to
quantize the matter.

1.1 Maxwell’s Equations in a Vacuum

In the absence of charges and currents, Maxwell’s equations are given by

V-B=0, (1.1)
V-E=0, (1.2)
oB
| D — 1.
V X 5 (1.3)
OE
B = -— 1.4
V X Ho€o ot ( )

where E is the electric field, B is the magnetic field, ug is the permeability
of the free space, and €g is the permittivity of free space (in this book we
use MKS units throughout). Alternatively it is useful to write ¢? for 1/ugeo,
where ¢ is the speed of light in the vacuum. Taking the curl of (1.3) and
substituting the rate of change of (1.4) we find

i&QE
2 o0t2

This equation can be simplified by noting that VXV = V(V.) — V2 and
using (1.2). We find the wave equation

VXVXE = — (1.5)

1 0°E _

2 o2
This tells us how an electromagnetic wave propagates in a vacuum. By direct
substitution, we can show that

V?E (1.6)

E(r,t) = Eof(K-r — vt) (1.7)

is a solution of (1.6) where f is an arbitrary function, Eq is a constant, v
is an oscillation frequency in radians/second (27 x Hz), K is a constant
vector in the direction of propagation of the field, and having the magnitude
K = |K| = v/c. This solution represents a transverse plane wave propagating
along the direction of K with speed ¢ =v/K.

A property of the wave equation (1.6) is that if Eq(r,¢) and Ey(r,t) are
solutions, then the superposition a;E;(r,t) + asEs(r,t) is also a solution,
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where a1 and as are any two constants. This is called the principle of super-
position. It is a direct consequence of the fact that differentiation is a linear
operation. In particular, the superposition

E(r,t) =Y Epf(Kpr —vt) (1.8)
k

is also a solution. This shows us that nonplane waves are also solutions of the
wave equation (1.6).

Quantum opticians like to decompose electric fields into “positive” and
“negative” frequency parts

E(r,t) = ET(r,t) + E" (r,t), (1.9)

where E*(r,t) has the form
Ef(r,t) =5 ) &u(r)e ™, (1.10)

where &,(r) is a complex function of r,v, is the corresponding frequency,
and in general
E (r,t) = [ET(r,t)]* . (1.11)

In itself this decomposition is just that of the analytic signal used in classical
coherence theory [see Born and Wolf (1970)], but as we see in Chap. 13,
it has deep foundations in the quantum theory of light detection. For now
we consider this to be a convenient mathematical trick that allows us to
work with exponentials rather than with sines and cosines. It is easy to see
that since the wave equation (1.6) is real, if ET(r,¢) is a solution, then so
is E~(r,t), and the linearity of (1.6) guarantees that the sum (1.9) is also a
solution.

In this book, we are concerned mostly with the interaction of monochro-
matic (or quasi-monochromatic) laser light with matter. In particular, con-
sider a linearly-polarized plane wave propagating in the z-direction. Its elec-
tric field can be described by

1 .
Et(z,t) = §>2E0(z,t)e‘[KZ_”t_¢(Z7t)] , (1.12)

where % is the direction of polarization, Ey(z,t) is a real amplitude, v is
the central frequency of the field, and the wave number K = v/c. If E(z,t)
is truly monochromatic, Fy and ¢ are constants in time and space. More
generally, we suppose they vary sufficiently slowly in time and space that the
following inequalities are valid:
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8;*;0 < vE,, (1.13)
6£o < KE, , (1.14)
ng <v, (1.15)
gf < K. (1.16)

These equations define the so-called slowly-varying amplitude and phase ap-
prozimation (SVAP), which plays a central role in laser physics and pulse
propagation problems. Physically it means that we consider light waves whose
amplitudes and phases vary little within an optical period and an optical
wavelength. Sometimes this approximation is called the SVEA, for slowly-
varying envelope approximation.

The SVAP leads to major mathematical simplifications as can be seen by
substituting the field (1.12) into the wave equation (1.6) and using (1.13-1.16)
to eliminate the small contributions Eo, ¢, EY/, ¢", and E¢. We find

0B,  10Ey

B Tear 0 (1.17)
o 15‘¢>

% T oo =0, (1.18)

where (1.17) results from equating the sum of the imaginary parts to zero
and (1.18) from the real parts. Thus the SVAP allows us to transform the
second-order wave equation (1.6) into first-order equations. Although this
does not seem like much of an achievement right now, since we can solve
(1.6) exactly anyway, it is a tremendous help when we consider Maxwell’s
equations in a medium. The SVAP is not always a good approximation. For
example, plasma physicists who shine light on targets typically must use the
second-order equations. In addition, the SVAP approximation also neglects
the backward propagation of light.

1.2 Maxwell’s Equations in a Medium

Inside a macroscopic medium, Maxwell’s equations (1.1-1.4) become

V-B=0, (1.19)

V-D = pprce , (1.20)
0B

E=— 1.21

vxH -4+ (1.22)

ot
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These equations are often called the macroscopic Maxwell’s equations, since
they relate vectors that are averaged over volumes containing many atoms
but which have linear dimensions small compared to significant variations
in the applied electric field. General derivations of (1.19-1.22) can be very
complicated, but the discussion by Jackson (1999) is quite readable. In (1.20,
1.22), the displacement electric field D is given for our purpose by

D=¢cE+P, (1.23)

where the permittivity e includes the contributions of the host lattice and
P is the induced polarization of the resonant or nearly resonant medium we
wish to treat explicitly. For example, in ruby the AlyO3 lattice has an index
of refraction of 1.76, which is included in &. The ruby color is given by Cr ions
which are responsible for laser action. We describe their interaction with light
by the polarization P. Indeed much of this book deals with the calculation
of P for various situations. The free charge density pgee in (1.20) consists of
all charges other than the bound charges inside atoms and molecules, whose
effects are provided for by P. We don’t need pgee in this book. In (1.22), the
magnetic field H is given by

H= B_ M, (1.24)

I

where p is the permeability of the host medium and M is the magnetization
of the medium. For the media we consider, M = 0 and p = p. The current
density J is often related to the applied electric field E by the constitutive
relation J = oE, where o is the conductivity of the medium.

The macroscopic wave equation corresponding to (1.6) is given by com-
bining the curl of (1.21) with (1.23, 1.24). In the process we find VXV XE =
V(V-E) — V2E ~ —V?E. In optics V-E =~ 0, since most light field vectors
vary little along the directions in which they point. For example, a plane-
wave field is constant along the direction it points, causing its V - E to vanish
identically. We find

9 0J 10°E 0’P
VE iy Y aee T e
where ¢ = 1/,/ep is now the speed of light in the host medium. In
Chap. 7 we use the 0J /0t term to simulate losses in a Fabry—Perot resonator.
We drop this term in our present discussion.

For a quasi-monochromatic field, the polarization induced in the medium
is also quasi-monochromatic, but generally has a different phase from the
field. Thus as for the field (1.9) we decompose the polarization into positive
and negative frequency parts

(1.25)

P(z,t) =P (2,t) + P~ (2,1) ,

but we include the complex amplitude P(z,t) = N[ X(z,t), that is,
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1 .
Pt (Z, t) — 5)27)(27 t)el[Kzfut7¢(z,t)]

1 .
= SXN(2)f X (2,t)elllzvi=oG0] (1.26)

Here N(z) is the number of systems per unit volume, [ is the dipole mo-
ment constant of a single oscillator, and X (z,t) is a complex dimensionless
amplitude that varies little in an optical period or wavelength. In quantum
mechanics, [ is given by the electric dipole matrix element p. Since the po-
larization is real, we have

P (z,t) = [P (z,8)]" . (1.27)

It is sometimes convenient to write X (z,t) in terms of its real and imaginary
parts in the form
X=U-iV. (1.28)

The classical real variables U and V' have quantum mechanical counterparts
that are components of the Bloch vector Ué; + Vés + Weés, as discussed
in Sect. 4.3. The slowly-varying amplitude and phase approximation for the
polarization is given by

oU

— 1.2

’8t < v|UJ, (1.29)

ov

— . 1.

’at < v|V] (1.30)
or equivalently by

oX

— X|.

’ 5 | <VIX]

We generalize the slowly-varying Maxwell equations (1.17, 1.18) to include
the polarization by treating the left-hand side of the wave equation (1.25)
as before and substituting (1.26) into the right-hand side of (1.25). Using
(1.29, 1.30) to eliminate the time derivatives of U and V and equating real
imaginary parts separately, we find

0B, 10E, K K

o: e P =ENEIY e
dp 109\ K _ _E

Bo (a * 8t> = g RP = NEIY (1.52)

These two equations play a central role in optical physics and quantum optics.
They tell us how light propagates through a medium and specifically how the
real and imaginary parts of the polarization act. Equation (1.31) shows that
the field amplitude is driven by the imaginary part of the polarization. This
in-quadrature component gives rise to absorption and emission.
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Equation (1.32) allows us to compute the phase velocity with which the
electromagnetic wave propagates in the medium. It is the real part of the
polarization, i.e, the part in-phase with the field, that determines the phase
velocity. The effects described by this equation are those associated with the
index of refraction of the medium, such as dispersion and self focusing.

Equations (1.31, 1.32) alone are not sufficient to describe physical prob-
lems completely, since they only tell us how a plane electromagnetic wave
responds to a given polarization of the medium. That polarization must still
be determined. Of course, we know that the polarization of a medium is
influenced by the field to which it is subjected. In particular, for atoms or
molecules without permanent polarization, it is the electromagnetic field it-
self that induces their polarization! Thus the polarization of the medium
drives the field, while the field drives the polarization of the medium. In gen-
eral this leads to a description of the interaction between the electromagnetic
field and matter expressed in terms of coupled, nonlinear, partial differen-
tial equations that have to be solved self-consistently. The polarization of
a medium consisting of classical simple harmonic oscillators is discussed in
Sect. 1.3 and Chap. 2 discusses similar media with anharmonic (nonlinear)
oscillators. Two-level atoms are discussed in Chaps. 3-7.

There is no known general solution to the problem, and the art of quantum
optics is to make reasonable approximations in the description of the field
and/or medium valid for cases of interest. Two general classes of problems
reduce the partial differential equations to ordinary differential equations:
1) problems for which the amplitude and phase vary only in time, e.g., in
a cavity, and 2) problems for which they vary only in space, i.e., a steady
state exists. The second of these leads to Beer’s law of absorption,! which we
consider here briefly. We take the steady-state limit given by

0Fy
0y

ot
in (1.31). We further shine a continuous beam of light into a medium that
responds linearly to the electric field as described by the slowly-varying com-
plex polarization

P=N(e)] (U-iV)=N(:)] X =c(x'+ix")Eo(z) , (1.33)

where Y’ and x” are the real and imaginary parts of the linear susceptibility
x- This susceptibility is another useful way of expressing the polarization.
Substituting the in-quadrature part of P into (1.31), we obtain

dE, K ,
=0 2R
dz g X 0
= —Re{a}Ey , (1.34)

! Beer’s law is perhaps more accurately called Bouguier-Lambert-Beer’s law. We
call it Beer’s law due to popular usage.
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where
K P _KNGX NG

“= 2e E() o 2e EO QEEO

is called the complex amplitude absorption coefficient. We use an amplitude
absorption coefficient instead of an intensity coefficient to be consistent with
coupled-mode equations important for phase conjugation and other nonlinear
mode interactions. If x”’ is independent of Ey, (1.34) can be readily integrated
to give

(V +iU) (1.35)

Eo(z) = Eo(0)e Refatz (1.36)
Taking the absolute square of (1.36) gives Beer’s law for the intensity

I(z) = I(0)e2Relotz | (1.37)

We emphasize that this important result can only be obtained if « is in-
dependent of I, that is, if the polarization (1.33) of the medium responds
linearly to the field amplitude Ey. Chapter 2 shows how to extend (1.33) to
treat larger fields, leading to the usual discussion of nonlinear optics. Time
dependent fields also lead to results such as (12.27) that differ from Beer’s
law. For these, (1.33) doesn’t hold any more (even in the weak-field limit) if
the medium cannot respond fast enough to the field changes. This can lead
to effects such as laser lethargy, for which the field is absorbed or amplified
according to the law

I(z) o exp(—by/z) , (1.38)

where b is some constant.

The phase equation (1.32) allows us to relate the in-phase component of
the susceptibility to the index of refraction n. As for the amplitude (1.34),
we consider the continuous wave limit, for which d¢/0t = 0. This gives

do¢/dz = —-Kx'/2 . (1.39)

Expanding the slowly varying phase ¢(z) ~ ¢¢ + 2d¢/dz, we find the total
phase factor
Kz—vt—¢~v[(K —d¢/dz)z/v —t] — ¢o
=v[(1+x'/2)z/c—1] — o
=v(z/v—1t)— ¢ .

Noting that the velocity component? v is also given by ¢/n, we find the index
of refraction (relative to the host medium)

n=1+x/2. (1.40)

2 Note that the character v, which represents a speed, is different from the char-
acter v, which represents a circular frequency (radians per second).
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In coupled-mode problems (see Sects. 2.2, 11.2) and pulse propagation, in-
stead of (1.12) it is more convenient to decompose the electric field in terms
of a complex amplitude £(z,t) = Ey(z,t) exp(—i¢), that is,

1 .
E(z,t) = §S(z,t)el(KZ*"t) +cc. . (1.41)
The polarization is then also defined without the explicit exp(i¢) as
1 .
P(z,t) = §P(z,t)el(Kz_”t) +cc.. (1.42)

Substituting these forms into the wave equation (1.25) and neglecting small
terms like 92€/0t%,0%P/0t?, and OP/0t, and equating the coefficients of
e!(K2=v1) on both sides of the equation, we find the slowly-varying Maxwell’s
equation

6£+18£ :igfp ) (1.43)
Jz ¢ Ot 2¢e
Note that in equating the coefficients of e(5#~**)  we make use of our assump-
tion that P(z,t)varies little in a wavelength. Should it vary appreciably in a
wavelength due, for example, to a grating induced by an interference fringe,
we would have to evaluate a projection integral as discussed for standing
wave interactions in Sect. 5.3.

In a significant number of laser phenomena, the plane-wave approximation
used in this chapter is inadequate. For these problems, Gaussian beams may
provide a reasonable description. A simple derivation of the Gaussian beam
as a limiting case of a spherical wave exp(iKr)/r is given in Sect. 7.7.

Group velocity

The preceding discussion introduced the velocity v = ¢/n, which is the veloc-
ity at which the phase of a monochromatic wave of frequency v propagates
in a medium with index of refraction n(v), or phase velocity. Consider now
the situation of two plane monochromatic waves of same amplitude £ that
differ slightly in frequency and wave number,

E(Z,t) — gei[(k‘g—’rAk)Z—(l/o-‘rAl/)t] + gei[(ko—Ak)z—(l/UAu)t]

. A
= 2&¢!(koz=vot) g |:AV (t — kz)} .
Av

When adding a group of waves with a small spread of wave numbers and
frequencies about kg and vy, we find similarly that the total field consists of
a carrier wave with phase velocity v = ¢/n and group velocity

dv

== (1.44)

Vg
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In case the absorption of light at the frequency vy is sufficiently weak to be
negligible, v, can be taken to be real and with k = vn(v)/c we find readily

dv c
= =— - 1.4
Y = dk (n+wvdn/dv),, (145)

We observe that in regions of “normal dispersion”, dn/dv > 0, the group
velocity is less than the phase velocity. However, the situation is reversed in
regions of “anomalous dispersion”, dn/dv < 0. Indeed v, can even exceed
¢ in this region. This has been the origin of much confusion in the past, in
particular it has been mentioned that this could be in conflict with special
relativity. This, however, is not the case. This is incorrect, because the group
velocity is not in general a signal velocity. This, as many other aspects of “fast
light“ and “slow light,” is discussed very clearly in Milonni (2005).

Chapter 12 discusses how quantum interference effects such as electromag-
netically induced transparency can be exploited to dramatically manipulate
the group velocity of light, resulting in particular in the generation of “slow
light.”

1.3 Linear Dipole Oscillator

As a simple and important example of the interaction between electromag-
netic waves and matter, let us consider the case of a medium consisting
of classical damped linear dipole oscillators. As discussed in Chap. 3, this
model describes the absorption by quantum mechanical atoms remarkably
well. Specifically we consider a charge (electron) cloud bound to a heavy pos-
itive nucleus and allowed to oscillate about its equilibrium position as shown
in Fig. 1.1. We use the coordinate x to label the deviation from the equilib-
rium position with the center of charge at the nucleus. For small x it is a
good approximation to describe the motion of the charged cloud as that of a
damped simple harmonic oscillator subject to a sinusoidal electric field. Such
a system obeys the Abraham-Lorentz equation of motion

F(t) + 2vi(t) + wia(t) = %E(t) : (1.46)

where w is the natural oscillation frequency of the oscillator, and the dots
stand for derivatives with respect to time. Note that since oscillating charges
radiate, they lose energy. The end of this section shows how this process
leads naturally to a damping constant . Quantum mechanically this decay
is determined by spontaneous emission and collisions.

The solution of (1.44) is probably known to the reader. We give a deriva-
tion below that ties in carefully with the corresponding quantum mechani-
cal treatments given in Chaps. 4, 5. Chapter 2 generalizes (1.44) by adding
nonlinear forces proportional to #? and 23 [see (2.1)]. These forces lead to
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Fig. 1.1. Negative charge cloud bound to a heavy positive nucleus by Coulomb
attraction. We suppose that some mysterious forces prevents the charge cloud from
collapsing into the nucleus

coupling between field modes producing important effects such as sum and
difference frequency generation and phase conjugation. As such (1.44) and
its nonlinear extensions allow us to see many “atom”-field interactions in a
simple classical context before we consider them in their more realistic, but
complex, quantum form.
We suppose the electric field has the form
1 .

E(t) = §Eoe_”’t +cc., (1.47)
where Fy is a constant real amplitude. In general the phase of x(t) differs
from that of E(t). This can be described by a complex amplitude for z, that
is,

2(t) = %on(t)e_i”t +ec., (1.48)

where X (t) is the dimensionless complex amplitude of (1.26). In the following
we suppose that it varies little in the damping time 1/~, which is a much more
severe approximation than the SVAP. Our problem is to find the steady-state
solution for X (t).

As in the discussion of (1.33, 1.34), we substitute (1.45, 1.46) into (1.44),
neglect the small quantities X and WX , and equate positive frequency com-
ponents. This gives

X = —[y+ilw? —1?)/2] X + —2 1.49
[+ iR = ) 2] X (1.49)

In steady state (X = 0), this gives the amplitude
P ieEy/2vmag (1.50)

oy di(w? —v2)/ 20

and hence the displacement
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i eEy e~ vt
t) = .C. 1.51
#(t) 22m1/’y+i(w2—1/2)/2y+cc (151)

We often deal with the near resonance, that is, the situation where |v —
w < v+w. For this case we can make the classical analog of the rotating-wave
approzimation defined in Sect. 3.2. Specifically we approximate w? — 12 by

w =12~ 2(w—v). (1.52)

This reduces (1.48, 1.49) to

ieFEy/2
e o/ vmzg , (1.53)
v+ i(w—v)
i eE ivt
x(t) = Lo ° +c.c. (1.54)

T 22mry +i(w —v)

Equation (1.52) shows that in steady state the dipole oscillates with the
same frequency as the driving field, but with a different phase. At resonance
(v =w), (1.52) reduces to

E
z(t,yv =w) = 20 ginwt , (1.55)

that is, the dipole lags by 7/2 behind the electric field (1.45), which oscillates
as cosvt. The corresponding polarization of the medium is P = Nex(t),
where IV is the number of oscillators per unit volume. Substituting this along
with (1.52) into (1.35), we find the complex amplitude Beer’s law absorption
coeflicient

N e? vy
a=K—
2ey 2my vy + i(w — v)
or ]
_ by —iw=v) .
- 2 2 ’ ( 5 )
7+ (w—v)
where the resonant absorption coefficient ag = KNe?/4eymv. The real

part of this expression shows the Lorentzian dependence observed in actual
absorption spectra (see Fig. 1.2). The corresponding quantum mechanical
absorption coefficient of (5.29) differs from (1.54) in three ways:

1. 9%+ (w—v)?is replaced by v2(1 + 1) + (w — v)?
2. N becomes negative for gain media (1.57)
3. e?/2mu is replaced by p/h

For weak fields interacting with absorbing media, only the third of these
differences needs to be considered and it just defines the strength of the
dipole moment being used. Hence the classical model mirrors the quantum
mechanical one well for linear absorption (for a physical interpretation of this
result, see Sect. 3.2).
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Fig. 1.2. Absorption (Lorentzian bell shape) and index parts of the complex ab-
sorption coefficient of (1.54)

Identifying the real and imaginary parts of (1-47) and using (1.33), we
obtain the equations of motion for the classical Bloch-vector components U
and V

U=—(w—v)V—-7U, (1.58)

V=(w—-—v)U—~V —eEy/2mvzg . (1.59)

Comparing (1.57) with (4.49) (in which v = 1/T5), we see that the Ey term
is multiplied by —W, which is the third component of the Bloch vector. This
component equals the probability that a two-level atom is in the upper level
minus the probability that it is in the lower level. Hence we see that the
classical (1.57) is reasonable as long as W ~ —1, i.e., so long as the atom is
in the lower level.

From the steady-state value of X given by (1.51), we have the steady-state
U and V values

eFEy w—v
= 1.60
2myag y? + (w —v)? (1.60)
and 5
| —! 7 (1.61)

C2mwagy? 4 (w—v)?

Since (1.44) is linear, once we know the solution for the single frequency
field (1.45), we can immediately generalize to a multifrequency field simply
by taking a corresponding superposition of single frequency solutions. The
various frequency components in z(t) oscillate independently of one another.
In contrast the nonlinear media in Chap. 2 and later chapters couple the
modes. Specifically, consider the multimode field

1 .
z,t) = = nl(z) eV Y 4 ce. .
E 5 & (Knz=vnt) 1.62
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where we allow the field amplitudes to be slowly varying functions of z and to
be complex since they do not in general have the same phases. The solution
for the oscillator displacement x(t) at the position z is a superposition of
solutions like (1.46), namely,

1 .
x(t) = 3 Zxoanel(K"Z_”"t) +cc., (1.63)

where mode n’s oscillator strength is proportional to xg, and the coefficients

eEn/mon

X, = (1.64)

2 2 ; :
w* — vi — vy

Here we don’t make the resonance approximation of (1.50), since some of
the modes may be off resonance. The steady-state polarization P(z,t) of a
medium consisting of such oscillators is then given by

1 .
P(z,t) = 5 D Pa(z)elFramml) e, (1.65)

where P, (z) is given by N(z)exon,Xp. In Sect. 2.1, we find that higher-order
terms occur when nonlinearities are included in the equation of motion (1.44).
These terms couple the modes and lead to anharmonic response. Finally, we
note that the multimode field (1.60) and the polarization (1.63) have the
same form in the unidirectional ring laser of Chap. 7, except that in a high-@
cavity the mode amplitudes &, and polarization components P,, are functions
of t, rather than z.

Radiative Damping

We now give a simple approximate justification for the inclusion of a damping
coefficient v in (1.44). As a charge oscillates it radiates electromagnetic energy
and consequently emits a “self-field” Es. We need to find the influence of this
self-field back on the charge’s motion in a self-consistent fashion. We find
that the main effect is the exponential damping of this motion as given by
(1.44). Specifically, we consider the equation governing the charge’s motion
under the influence of the self-field F,:

it+wir= "B, (1.66)
m
which is just Newton’s law with the Lorentz force
F; =e(E; + v X By) (1.67)

in the limit of small charge velocities (v < c¢), where the magnetic part of
the Lorentz force may be neglected.
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While we don’t know the explicit form of F,, we can calculate its effects
using the conservation of energy. We evaluate the force F,.4 of the radiating
charge by equating the work it expends on the charge (during a time interval
long compared to the optical period 1/w) to minus the energy radiated by
the charge during that time

t+At t+AL
/ Frg-vdt = —/ (radiated power) dt’ . (1.68)
t t

To calculate the radiated power, we note that the instantaneous electromag-
netic energy flow is given by the Poynting vector

1
S=—E;xB;, (1.69)
Ho

where for simplicity we suppose that the “host medium” is the vacuum. We
note that the electric field radiated in the far field of the dipole is

e nXx(nxv)
E;(R,t) = 1.7
(B, %) dmegc? ( R >t—R/c (70

as shown in Fig. 1.3. The corresponding magnetic field is Bg(R,t) =
¢ 'nxE4(R,t). In both expressions the dipole acceleration v is evaluated
at the retarded time ¢ — R/c and n is the unit vector R/R. Inserting these
expressions into (1.66), we find the Poynting vector [ Jackson (1999)]

1 B, -E)n

Hoc

S

e? 11 o
= 6230 jrge 2 WXV
e2p2sin 0
16m2c03R2

(1.71)

Fig. 1.3. Butterfly pattern given by (1.69) and emitted by an oscillating dipole.
The vector gives the direction and relative magnitude of the Poynting vector S as
a function of 6.
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The total power radiated is given by integration of S over a sphere surround-
ing the charge. Noting that

2m ™ -1
/ d(b/ dfsin® 0 = —27r/ d(cos0)(1 — cos? 0) = 87/3 , (1.72)
0 0 1

we find )
2 e
S.da=-——1?
/ 3 4megcd v
which is the Larmor power formula for an accelerated charge. We now sub-
stitute (1.71) into (1.66) and integrate by parts. We encounter the integral
t+At

t+ At t+ At
/ dtv-v=v-v —/ dtv-v.
t t t

Since v and its derivatives are periodic, the constant of integration on the
right hand side has a maximum magnitude, while the integrals continue to
increase as At increases. Hence the constant can be dropped. Equating the
integrands, we find the radiation force

(1.73)

2 e?

——V. 1.74
3 47rsoc3v ( )

Frad =
A more detailed analysis of this problem is given in Sect. 19.3 of Jackson
(1999), where the infinities associated with point-like charges are also dis-
cussed.
Assuming that the radiative damping is sufficiently small that the motion
of the dipole remains essentially harmonic, (1.72) yields

2 e2w?

Pr— 1.75
3 4megc? v (1.75)

Frad =mX=—

which indicates that radiation reaction acts as a friction on the motion of the
charge. This implies a damping rate constant

1 1e%w? - 1 w?rg

= - = 1.76
7 dep3 cAm 3 ¢ ( )
where the classical radius of the electron is
e2 1?’
ro = Treom® ~ 2.8 x 107" meters . (1.77)

For 1 um radiation, v = 2w x 1.8 MHz, which is in the range of decay values
found in atoms. In cgs units the 4weg in (1.74, 1.75).

With the replacement of e?/2muv by ?/h, see (1.55), the classical decay
rate (1.74) gives half the quantum mechanical decay rate (14.60). Here p is the
reduced dipole matrix element between the upper and lower level transition.
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The other half of the decay rate is contributed by the effects of vacuum
fluctuations missing in a classical description. Note that in both the classical
and quantum mechanical cases, an w? term appears. In the quantum case,
this term results from the density of states of free space (14.46), while for the
classical case it comes from the acceleration of the electron. In some sense the
density of states for the field reflects the fact that the field itself is radiated
by accelerating, oscillating charges. In free space the charge responsible for
this field is the bound electron itself, radiating a field that acts back on the
charge and causes it to emit radiation until no more downward transitions
are possible. For further discussion, see Milonni (1986, 1984, 1994).

1.4 Coherence

Coherence plays a central role in modern physics. It is very hard to find a
single domain of physics where this concept is not applied. In this book we
use it a great deal, speaking of coherent light, coherent transients, coherent
propagation, coherent states, coherent excitation, etc. Just what is coherent?
The answer typically depends on whom you ask! In a very general sense,
a process is coherent if it is characterized by the existence of some well-
defined deterministic phase relationship, or in other words, if some phase
is not subject to random noise. This is a very vague definition, but general
enough to encompass all processes usually called “coherent”. In this section
and Sect. 13.5 we consider the coherence of classical light. Chapters 4, 12
discuss coherence in atomic systems.

The classic book by Born and Wolf (1970) gives a discussion of coherent
light in pre-laser terms. With the advent of the laser, a number of new effects
have been discovered that have caused us to rethink our ideas about coherent
light. In addition, the Hanbury Brown-Twiss experiment, which had nothing
to do with lasers, plays an important role in this rethinking. Our discussion
is based on the theory of optical coherence as developed by R. Glauber and
summarized in his Les Houches lectures (1965).

We start with the famous Young double-slit experiment which shows how
coherent light passing through two slits interferes giving a characteristic in-
tensity pattern on a screen (see Fig. 1.4). Before going into the details of
this experiment, we need to know how the light intensity is measured, either
on a screen or with a photodetector. Both devices work by absorbing light.
The absorption sets up a chemical reaction in the case of film, and ionizes
atoms or lifts electrons into a conduction band in the cases of two kinds
of photodetec-tors. Section 13.5 shows by a quantum-mechanical analysis of
the detection process that these methods measure |E*(r,t)[?, rather than
|E(r,t)|?. This is why we performed the decomposition in (1.9).

Returning to Young’s double-slit experiment, we wish to determine
E*(r,t), where r is the location of the detector. ET(r,t) is made up of two
components, each coming from its respective slit



18 1 Classical Electromagnetic Fields

Ss

© :

Fig. 1.4. Young double-slit experiment illustrating how coherent light can interfere
with itself

E+(I',t):E+(I‘1,t1)+E+(I‘2,t2) ) (178)
where r; and ry are locations of the slits and ¢; and ¢9 are the retarded times
t172 =t— 81,2/6 (179)

s1 and so being the distances between the slits and the detector. From (1.76),
the intensity at the detector is given by
[E*(r,0)] = [EY (1, 1)]? + [EY 