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Preface

Entanglement was initially thought by some to be an oddity restricted to the
realm of thought experiments. However, Bell’s inequality delimiting local be-
havior and the experimental demonstration of its violation more than 25 years
ago made it entirely clear that non-local properties of pure quantum states are
more than an intellectual curiosity. Entanglement and non-locality are now
understood to figure prominently in the microphysical world, a realm into
which technology is rapidly hurtling. Information theory is also increasingly
recognized by physicists and philosophers as intimately related to the founda-
tions of mechanics. The clearest indicator of this relationship is that between
quantum information and entanglement. To some degree, a deep relationship
between information and mechanics in the quantum context was already there
to be seen upon the introduction by Max Born and Wolfgang Pauli of the idea
that the essence of pure quantum states lies in their provision of probabilities
regarding the behavior of quantum systems, via what has come to be known
as the Born rule. The significance of the relationship between mechanics and
information became even clearer with Leo Szilard’s analysis of James Clerk
Maxwell’s infamous demon thought experiment.

Here, in addition to examining both entanglement and quantum informa-
tion and their relationship, I endeavor to critically assess the influence of the
study of these subjects on the interpretation of quantum theory. The deep-
est implications of quantum phenomena remain controversial in large part
because there remains a need to more adequately interpret quantum theory
itself. For example, physicists and philosophers hold a variety of increasingly
subtle and radically differing interpretations of the quantum state, ranging
from (i) that it is merely a representation of the knowledge of an agent re-
garding the world or (ii) that it merely links the preparation of systems and
the registration of later measurement results without being of ontological sig-
nificance, to (iii) that it directly describes a continually growing number of
real universes that jointly constitute a unique ‘multiverse’ of incredible size or
(iv) that it is the only truly real entity that can be associated with a physical
system.
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Because both physical and philosophical approaches to foundational prob-
lems of physics are involved in this, it is important to address the negative
impressions to which the differences of methodology between the larger scien-
tific and philosophical communities have given rise. In that regard, one can do
no better than to recall the following comment of Michael Redhead in his 1993
Tarner Lectures at Cambridge. “One must admit that many physicists would
dismiss the sort of questions that philosophers of physics tackle as irrelevant
to what they see themselves as doing. . . Either these metaphysical questions
arise, they would say, as a result of philosophers involving themselves with
the technicalities of theoretical physics, which they, the philosophers never
really understand, or it is the physicists themselves who in some cases get
sidetracked and ensnared by the temptation to indulge in the subtle sophistry
of the philosophers posing unanswerable questions, a subject where there is no
discernable progress on premisses from which an argument could be launched,
where every conceivable position has been argued for by some group of philoso-
phers and equally refuted by another group. . . It may not come as a surprise
to learn that philosophers generally regard physicists as naive people, who do
physics in an uncritical way, rather like a child riding a bicycle, quite innocent
of the subtleties of rigid-body dynamics!” [372].

Readers are requested to remove any caricatures from their minds, should
they have previously entertained them. It behooves one to consider physics
and philosophy as constructively coming together wherever both are deployed
seriously and properly because our subjects necessitate the addressing of ques-
tions both philosophical and scientific. Physicists typically approach problems
within a clearly defined mathematical framework, whereas philosophers typi-
cally emphasize logical and conceptual rigor and may be more flexible in their
use of formalism in their attempts to surmount fundamental difficulties. Each
approach has its strengths and weaknesses. Specialists in the foundations of
physics tend to be concerned less with the department in which the office of
a colleague is located than about whether he or she has presented a clear
analysis of a problem. The work considered in this book provides evidence as
to why this is so. I believe that work is a sufficient basis for the rejection of
the forms of chauvinism to which Redhead refers, particularly on the part of
some physicists toward philosophy.

The greatest minds behind the quantum theory worked actively with tools
from both areas and used them to engage each other in valuable discussions
and to define lines of research that have played an important role in our
understanding of the physical world. Albert Einstein was correctly concerned
that Niels Bohr was, in his subtle use of philosophically inspired concepts
while building what has come to be known as the Copenhagen interpretation,
perhaps too adept at reassuring physicists that quantum theory could be well
founded by making use of ideas from outside physics proper. However, Bohr’s
interpretation achieved the status of an orthodoxy only after he was able to
defend his interpretation with a remarkable degree of success against repeated
logical and physical challenges from Einstein. Furthermore, Bohr’s approach
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was likely so long sustained as such due to Werner Heisenberg’s reworking of
Bohr’s approach into a helpful tool for using the quantum formalism. There
should be no doubt that a useful basis for engaging the quantum world was
achieved with the aid of the Copenhagen interpretation even though, from
the metaphysical realist philosophical perspective traditionally assumed in
physics, which itself is less easily combined with quantum mechanics, it is
deficient. By contrast, more recently conceived interpretations of quantum
mechanics, which may be of some practical benefit to physics in handling some
newly considered situations, have yet to offer similar depth or comparable
practical strength. Only Feynman’s approach to quantum theory currently
appears capable of supporting a new interpretation rivaling those of Dirac
and von Neumann or of Bohr, Pauli, and Heisenberg.

To their credit, physicists proffering interpretations of quantum theory
have often gone beyond the confines of physics when engaging fundamental
problems. For example, Bohr, Heisenberg, and Pauli were engaged in modes
of creative thinking physicists rarely consider. Similarly, Eugene Wigner seri-
ously contemplated the possibility of a psychophysics. One does well to con-
sider the methodology of the physicist–philosopher Abner Shimony, who has
struggled with the deepest of foundational issues and has explained his own
well informed use of philosophy in probing the foundations of quantum me-
chanics. “The language which we have employed for describing the conceptual
innovations of quantum mechanics is quite philosophical. We have no apology
for this language, because we consider it to be appropriate to the subject. We
do not regard philosophy as an autonomous discipline, with a subject mat-
ter distinct from other disciplines, but rather as the general investigation of
foundations questions and the general search for perspective. The change of
framework in physics from classical to quantum mechanical is clearly a funda-
mental transformation of the conception of nature, and hence is a philosoph-
ical matter according to our usage of the term. . . a highly formal exposition
of quantum mechanics is unclear concerning interpretation even though it is
clear concerning structure, whereas the formal and philosophical expositions
in combination may supplement each other and achieve a fuller clarification”
([407], p. 374).

Investigations of the foundational problems of quantum mechanics and the
physics of computation have provided an important context for the emergence
of quantum information science. The former two have also begun to benefit
from the last, largely due to the importance of information and the possibility

In my first book, Quantum information: An overview, I took pains to avoid
engaging issues requiring substantial philosophical discussion or arguing for
or against interpretations, as is appropriate in a technical overview. Here, by
contrast, I take foundational issues head-on in order to elucidate the centrality
of entanglement and information to quantum physics while discussing some
of the same situations.

or impossibility of its transmission or transformation in different contexts.
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Because entanglement has long been identified as distinctive of quantum
mechanics and has recently been shown to serve as an information theoretical
resource, it is the primary subject of the opening chapter, which also includes
a brief introduction to the mathematical formalism of quantum mechanics and
an explication of fundamental concepts such as quantum interference and un-
certainty in a manner emphasizing their foundational aspects and relation to
information. The second chapter provides an overview of further mathemat-
ical formalism and analyses that have played an important role in clarifying
the foundations of the theory. This includes a survey of quantum probabil-
ity, quantum logic, some fundamental theorems of the foundation of quantum
mechanics, the description and significance of quantum measurement, and im-
portant thought experiments conceived in the history of quantum theory, all
of which set the stage for a careful examination of the interpretation of quan-
tum mechanics. The third chapter critically examines the most prominent
interpretations of standard quantum mechanics that have emerged in light
of the results described in the first two chapters. This includes discussion of
recent interpretations in which information is taken to play a dominant role.
The ultimate focus of the book is the final chapter, which considers in detail
quantum information and its relationship to quantum mechanics, returning to
its relationship to entanglement. In addition to articulating that relationship,
the final chapter includes critical assessments of the various claims regarding
the nature of information and mechanics at the foundational level.

Engaging many issues in foundations of quantum mechanics at this ad-
vanced stage in the history of the subject involves formulations that some
readers may find challenging. However, the reward of mastering them more
than justifies the effort required.

Gregg Jaeger Cambridge, MA, 2009
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1

Superposition, Entanglement, and Limits of
Local Causality

A distinctive characteristic of quantum theory is that a pure quantum state
precisely characterizes the values of only half of the physical magnitudes of
the system it describes: Canonically conjugate magnitudes are not jointly pre-
cisely specifiable as they are in classical mechanics. Classically, the space of
particle joint position–momentum states, phase space, is a six-dimensional
manifold of points; in quantum mechanics, states can be associated only with
finite areas, for which the product of the variances of these quantities are less
than half the quantum of action ~, in an analogous space. In the case of a fun-
damental system such as an electron, position or momentum may be precisely
specified, but the precision of their joint specification is inherently limited,
as expressed in the Heisenberg–Robertson uncertainty relation, which follows
from the quantum superposition principle. Because the physical properties of
signals constrain communication, the uncertainties of states used for signaling
and correlations between transmitter and receiver being of paramount signifi-
cance, quantum mechanics also endows quantum information with a character
distinct from that of classical information.

The foundational aspects of both quantum mechanics and quantum infor-
mation science are most evident in situations having no classical analogue,
such as those where quantum entanglement is present. Indeed, entanglement
and quantum information can be closely related. Furthermore, quantum en-
tanglement is required for the general description of multi-particle systems.
Erwin Schrödinger viewed entanglement, which involves extraordinarily strong
correlations between subsystems in multi-partite systems such as those in-
volved in communication, as most distinctive of quantum mechanics [394].
Nonetheless, the superposition principle remains the primary element of the
theory, as Richard Feynman emphasized, in that both quantum uncertainty
and entanglement are implied by it. Foundational implications of all three were
explored by Schrödinger in 1935 in his famous “cat paper.” Like entanglement
already did then, quantum information now also serves as an important probe
of the quantum world.

G. Jaeger, Entanglement, Information, and the Interpretation 1
of Quantum Mechanics, The Frontiers Collection,
DOI 10.1007/978-3-540-92128-8 1, c© Springer-Verlag Berlin Heidelberg 2009



2 1 Superposition, Entanglement, and Limits of Local Causality

1.1 Quantum Interference

The conception of entanglement has evolved from Schrödinger’s relatively sim-
ple initial one to a rather subtle one. In recent years, entanglement has also
been empirically studied with increasing care using the highly developed tech-
nique of interferometry, which has long served as a key tool of experimental
physics. Indeed, it is through interference that entanglement is most clearly
manifested [12, 33, 254, 255, 422].

Quantum interference arises due to the coherent superposition of quan-
tum states corresponding to distinct values of a physical magnitude. Such
superpositions occur when there is indistinguishability in principle, by a pre-
cise measurement under fixed conditions, of alternative sequences of quantum
states that originate with a common initial preparation and arrive at a spe-
cific later eigenstate. That is, interference can be observed whenever there
exist several indistinguishable possibilities for the physical system in question
to reach a detectable final state [168, 171]. The distinguishability of such alter-
natives plays a central role in the quantification of information as encoded in
quantum signals. The communication of information using quantum systems
is very naturally characterized within quantum mechanics, because the very
use of quantum states involves considering two basic elements of signaling,
namely, state preparation and state measurement.

Paul Dirac viewed quantum interference as the interference of a physical
system with itself, as opposed to with other systems as occurs in classical
physics [139]. Quantum interference is similar to but importantly different
from the more familiar interference effect in classical physics wherein patterns
with discernible regularities are observed, for example, on the surface of a body
of water when the wakes of passing ships meet. A crucial difference is that
in classical physics what are added may be non-statistical quantities, whereas
in quantum physics what fundamentally are added are complex-valued state
amplitudes, the squares of which provide only probabilities of physical events.
Thus, the quantum wave-function does not directly describe any substance;
there is no thing the parts of which wave.

A simple apparatus for observing quantum interference is the Young
double-slit interferometer, illustrated in Figure 1.1, that often appears in text-
books on quantum mechanics, as in the Feynman Lectures [171]. In the basic
double-slit experiment, many identically prepared systems such as electrons
are directed precisely normally toward a double-slit diaphragm and, if not
absorbed by it, continue on to an opaque screen that acts as an array of area
detectors. Taking a1(x) to be the quantum amplitude corresponding to the
passage through one slit of the diaphragm toward the spatial point x on the
measurement screen which, like the diaphragm, is oriented perpendicularly
to the direction of the initial beam, the probability density of later finding
these systems at x upon measurement is found to be p1(x) = |a1(x)|2. Letting
a2(x) similarly be the amplitude corresponding to passage through the sec-
ond slit toward the same position x, the probability density for arrival at x is
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Fig. 1.1. The Young double-slit experiment. Every elementary system, such as
an electron, can pass through slit 1 and/or slit 2 and be detected near a point,
parameterized by x, and exhibit interference on an opaque detection screen. In a
statistical measurement on an ensemble of many particles, that is, a collection of
particles identically prepared, coming precisely from the left, there will be high values
and low values of the detection probability p12(x). If instead only slit 1 or slit 2 were
made available to incoming particles, two non-periodically modulated distributions,
p1(x) and p2(x), respectively, would instead result. If the systems were prepared in an
incoherent state before reaching the two slits, or equivalently were the environment
before the slits decoherence-inducing, the detection probability instead would be
p1(x) + p2(x), the sum of the distributions at far right.

p2(x) = |a2(x)|2. The amplitude for systems being found at x when both slits
are passable, so that either slit might be entered on the way to the screen, is

a12(x) =
1√
2

(
a1(x) + a2(x)

)
, (1.1)

according to the superposition principle,1 where the factor of 1/
√

2 appearing
here confers proper normalization on the total probability describing the en-
semble. The ensemble, a concept pioneered by Ludwig Boltzmann and Willard
Gibbs (cf. [479], p. 75; [496], p. 62) is a set of similar systems; in quantum
mechanics, these systems can be considered similar on the basis of their phys-
ical history, that is, their preparation and, in particular, are understood as a
Gibbs ensemble for which squared amplitudes provide the statistics.2

1 A set of postulates of quantum mechanics, of which the superposition principle
is the primary one, is provided in the appendix.

2 For more detail, see Section 1.7.
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The probability density of eventually finding the quantum systems at the
point x on the collection screen upon measurement is the complex square of
the amplitude a12(x), that is,

p12(x) = |a12(x)|2 (1.2)

=
1
2
|a1(x) + a2(x)|2

=
1
2

[
|a1(x)|2 + |a2(x)|2 (1.3)

+|a1(x)a2(x)|
(
exp

[
i(θ2(x)− θ1(x))] + exp

[
i(θ1(x)− θ2(x))

])]
,

where the {θi(x)} are the phases of the complex numbers {ai(x)} in the stan-
dard polar representation. It is because detections, as a matter of practice,
occur within a finite spatial interval that the pi(x) are detection-probability
densities rather than simple probabilities. The correctness of this quantum-
mechanical description has been extensively confirmed by observation, even
when the systems are sent into this apparatus one at a time; such indepen-
dency from intensity was first clearly observed in a related “feeble light”
diffraction experiment by Geoffrey Ingram Taylor [81, 444] and is also ex-
hibited in the interference of massive electrically neutral particles, such as
neutrons (cf. [516, 517]). That and similar later results support the character-
ization of Dirac that quantum interference is the self-interference of individual
systems.

When the above apparatus is instead modified so that only one slit in the
diaphragm of Figure 1.1 is available at a time, with both being made avail-
able in the full course of the experiment on the entire ensemble of systems—
assuming that diffraction from each slit is negligible—interference vanishes.
The observed probability distribution in such a modified experiment is sim-
ply proportional to the right-hand side of Equation 1.4, which describes a
detection pattern similar to that in the corresponding classical mechanical
experiment. Only then is it appropriate to add the measurement counts of
the two detected quantum subensembles, because the histories are fully dis-
tinguishable in principle—only one history of the particle is possible for each
quantum system—precluding quantum interference; the difference between
the interference patterns, shown in Figure 1.1, appearing in these two differ-
ent experiments illustrates the difference between what is observed in quantum
state superposition and what is observed in state mixing.

The important difference between this quantum mechanical experiment
and the analogous one in which particles are described by classical mechanics
is that in the quantum case the probability density is not additive:

p12(x) 6∝ p1(x) + p2(x) . (1.4)

Again, this arises because, in quantum mechanics, complex probability am-
plitudes are added and then squared in the mathematical description of the
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experiment. The predicted probability of a detection event in an interval ∆x
about a point x corresponding to the resolution of the detector-screen is ob-
tained by integrating the probability density p12(x) over the interval. Interfer-
ence is reflected in the presence of a modulated “interference term,” which is
proportional to

√
p1(x)p2(x) cos

(
θ2(x)− θ1(x)

)
, that arises from their being

complex-valued, which implies a non-zero-valued empirical visibility, V . The
visibility is defined as the difference of maximum and minimum detection-
event rates of the pattern, which yield probabilities through the relative fre-
quencies they provide, divided by their sum; in the absence of this term, V = 0.
Notably, a loss of quantum interference can also occur due to quantum state
decoherence, such as when one modifies the experiment by introducing strong
phase noise between the double-slight diaphragm and the detection screen.

However, one must consider not only the differences arising in such a formal
treatment of interference but also those arising from differences in theory
interpretation. From the logical perspective, which is taken up in detail in
Chapter 2, the propositions P1, P2 that a system detected in an interval
∆x of the screen prior to striking the screen had passed through one or the
other of the two slits, respectively, and the proposition P1∨P2 that either
one or both may have been traversed are ultimately relevant. The conditional
probability that the system arrived in ∆x by first passing through either
of the screens can also be used to describe interference; even in the case of
very simple situations such as this, interpretative background assumptions,
which are typically required for explaining experimental results, can change
the significance of an experiment. Consider the result of giving up a standard
interpretational assumption, for example, the eigenvalue-eigenstate link.

“Even interference phenomena, by themselves, say nothing about
whether or not observables have determinate values in the absence
of measurements. The usual story, in the case of a double-slit pho-
ton interference experiment, for example, is that you get the wrong
distribution of hits on the screen behind the slits, if you assume that
each individual photon goes through one or the other of the two slits,
when the photon is in a quantum state that is a linear superposition
of a state in which the photon goes through slit 1 and a state in which
it goes through slit 2.. . . when the state of the photon is the linear
superposition, the observable A, corresponding to localization in the
plane of the slits to slit 1 or slit 2, has no determinate value. . . The
interference pattern appears to be incompatible with the assumption
that the photon either goes through slit 1 or through slit 2, exclu-
sively. . . The loophole in the argument is the link between attributing
a definite value to the observable A and attributing a specific quan-
tum state to the photon. This is the orthodox (Dirac–von Neumann)
interpretation principle; specifically, the eigenvalue to eigenstate link.
If we reject this principle, then we can attribute a determinate value
to the observable A, [for example]. . . ” ([87], pp. 192-193)
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It may be that Schrödinger viewed entanglement rather than superposi-
tion as fundamental because, during at least some periods of his career, he
believed that the quantum state might actually directly describe a physical
substance (cf. [49]), in which case the character of quantum superposition
would be less distinctive. Unlike Schrödinger, Feynman believed that the sim-
ple double-slit experiment already involves the essence of quantum mechanics,
“its only true mystery,” which arises from the above-mentioned probability
amplitudes the calculus of which forms the basis of his own approach to the
theory [168]. Indeed, the characteristic behavior of entangled systems, like
that of non-composite systems, is also understandable in terms of the inter-
ference of indistinguishable possible histories, which are histories of composite
systems, reflected in state superpositions—see, for example, [249, 254]. Inter-
ference can also be ‘lost,’ that is, may be not seen when there is entanglement
with additional quantum systems, referred to as ancillae, allowing particle
paths to be distinguished [254], as in the case discussed in Section 1.5 below.

The empirical signature of entangled quantum systems, which must consist
of at least two subsystems by definition, is the occurrence of particularly
strong interference effects of “fourth order” (in amplitude) under the proper
experimental conditions, that is, interference observed not in simple events,
which exhibit “second-order” effects, but rather in joint-detection events as
seen, for example, in the seminal Hanbury-Brown–Twiss experiment [205].

1.2 Quantum Indeterminacy and Uncertainty

One of the foundational issues first to be addressed in the history of quantum
mechanics is the question of the conceptual origin of the a priori limitations
on the simultaneous determination of values of pairs of quantities, as char-
acterized by Heisenberg relations. These quantitative relations are involved
in interference phenomena in that, for example, they reflect the difference of
quantum from classical behavior in the double-slit experiment, which is es-
sentially illustrated by the differing ensemble detection patterns of Figure 1.1
in the case in which both slits are always available.

The wavelike appearance of the probability density for detections of sys-
tems and, hence, of detection count rates in specific position intervals, which
can be made as small as practicable without affecting the above analysis,
has often been viewed as due to a specifically quantum mechanical ambigu-
ity of form; the interferogram of the double-slit experiment is intuitive for
wavelike systems, although it emerges as a pattern in collections of discrete
localized detection events such as produced by particles. It has accordingly
been described as the manifestation of a qualitative quantum ‘wave–particle
duality.’ Although often intuitively helpful, this less precise characterization
is of limited value, as argued in 1960 by Alfred Landé, one of its strongest
critics.
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“Nor does the word ‘duality’ explain anything; it is a purely descrip-
tive term. Even worse, the road to a better understanding has been
blocked for thirty years by the creed that duality itself represents the
bottom of theoretical analysis, and that ‘we must try to understand
that there is nothing further to be understood’ in quantum theory.”
([292], p. x)

Landé’s criticism was directed toward the positions of Heisenberg and Pascual
Jordan, in particular. Jordan had, for example, in 1944 written the following.

“Experiments which let the wave side of light emerge clearly force
(through the action that is connected with every experiment) the
corpuscular nature of light back into the indeterminate and unob-
servable; other experiments, which force the corpuscular side of light
into prominence, leave undefined and indiscernible all the proper-
ties which usually betray to us the wave nature of light. With this
wonderful device of complementarity nature combines in one and
the same physical object properties and regularities that contradict
each other so that they could never exist directly at the same time.”
([263], p. 132)

For Heisenberg,

“the particle picture and the wave picture are merely two different
aspects of one and the same physical reality,” (cf. [256], pp. 68-69)

perhaps less susceptible to the sort of “action” to which the “mutually exclu-
sive” or “contradictory” properties of Jordan might be.3

For Niels Bohr, with whom this idea is most often identified, neither the
wave nor particle description ever applies directly to quantum objects, which
for him were “entities to which no specific properties or conceptions are ap-
plicable” ([354], p. 12). Nonetheless, it has been argued by a number of Bohr
scholars that wave–particle duality was the inspiration for his conception of
complementarity, to which Jordan referred ([233], Section 2.4 and references
therein). Heisenberg, whose name is now attached to the uncertainty principle,
characterized complementarity as follows.

“By this term. . . Bohr intended to characterize the fact that the same
phenomenon can sometimes be described by very different, possibly
even contradictory pictures, which are complementary in the sense
that both pictures are necessary if the ‘quantum’ character of the
phenomenon shall be made visible.” ([223])

Heisenberg viewed the uncertainty principle as a “law of nature” and essential
for the understanding of quantum mechanics, much as Bohr viewed comple-
mentarity ([256], p. 59). Shortly after its introduction, it was regarded as a
fundamental principle of the theory by several other influential physicists as
3 A characterization of quantum behavior in the double-slit experiment by Heisen-

berg can be found in [219], pp. 51-52.
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well. Most importantly, perhaps, Pauli understood it as so in his influential ar-
ticle in the Handbuch der Physik [338], as did Hermann Weyl in his important
early book Gruppentheorie und Quantenmechanik [491].

Today, physicists not specializing in the foundations of physics remain
largely unaware of the subtleties associated with the uncertainty principle,
under which uncertainty relations are primary to the theory, and its founda-
tional potential, often using the relations as merely rules of thumb. On the
other hand, the principle has also often been misinterpreted and over-applied
by those outside the community of physicists. As Hans Bethe has commented,

“The uncertainty principle has profoundly misled the lay public: they
believe that everything in quantum theory is fuzzy and uncertain.
Exactly the reverse is true. Only quantum theory can explain why
atoms exist at all[, for example].” ([47])

Outside of certain interpretations of the quantum formalism, the word uncer-
tainty as used in quantum theory should not be understood in an exclusively
epistemic sense, which the term itself most naturally suggests.4 Furthermore,
as Max Jammer noted,

“The term used by Heisenberg in these considerations was Umge-
nauigkeit (inexactness, imprecision) or Genauigkeit (precision, de-
gree of precision). In fact, in his classic paper these terms appear
more than 30 times (apart from the adjective genau), whereas the
term Unbestimmheit (indeterminacy) appears only twice and Un-
sicherheit (uncertainty) only three times. Significantly, the last term,
with one exception (p. 186), is used only in the Postscript, which was
written under the influence of Bohr.” ([256], p. 61)

Indeed, the uncertainty principle was introduced by Heisenberg as the re-
striction that “canonically conjugate quantities can be determined simultane-
ously only with a characteristic inaccuracy” [216, 217]. For example, there is a
trade-off between the precision of specification of position and momentum in
the quantum double-slit experiment, whether by preparation or measurement.
This appears to have been the original subject of interest to Heisenberg. More-
over, recent work in quantum measurement theory has shown that advances
can be made by considering simultaneous values of complementary physical
magnitudes, as shown below in Chapter 2.

The uncertainty relations are most often expressed in terms of the dis-
persions of Hermitian operators for quantum states.5 The dispersion of an
operator A, given a quantum state ρ, is

DispρA ≡ 〈(A− 〈A〉I)2〉ρ (1.5)

= 〈A2〉ρ − 〈A〉2ρ , (1.6)

4 Instead, indeterminacy and indefiniteness are here used in reference to properties.
5 Both of these are discussed in greater detail in the following section.
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where the brackets on the right hand sides indicates the expectation value.
The square root of the dispersion is the ‘uncertainty’

∆A ≡
√

DispρA (1.7)

of A in state ρ; often, no specific state is explicitly written but is clearly
implied. The product of joint uncertainties for two non-commuting quantum
observables A and B, following from the postulates of quantum mechanics,
takes the form of the Heisenberg–Robertson relation, namely,

〈(∆A)2〉ρ〈(∆B)2〉ρ ≥
1
4
|〈[A,B]〉ρ|2 . (1.8)

In standard quantum mechanics, observables are specific sorts of operators,
which are more precisely defined in the next section, representing physical
magnitudes.6 Two operators A and B commute if the commutator [A,B] ≡
AB−BA = O, O being the zero operator; operators for canonically conjugate
quantities do not commute, that is, provide a non-zero value to the right-
hand side of Equation 1.8. This relation clearly expresses a mathematically
complementarity: If the right-hand side is non-zero, the uncertainty of one
quantity is reduced when that of the other is increased. One can find the
range of likely values of individual observables in many situations with extreme
precision; as Bethe pointed out, there also not necessarily is an unavoidable
“fuzziness” of individual quantities. Rather, it is only that any observable that
does not commute with one that is at any given moment precisely determined
will be poorly specified at the time.

Heisenberg believed that a physical magnitude, such as position, depends
essentially on the experimental circumstances involved in providing its speci-
fication (cf. [281], p. 25).

“If one wants to clarify what is meant by ‘position of an object,’ for
example, of an electron, he has to describe an experiment by which
the ‘position of an electron’ can be measured; otherwise this term
has no meaning at all.” ([216]; as translated in [256], p. 58)

In order to illustrate this, he introduced a thought experiment involving its
measurement for an electron using a gamma-ray microscope [216, 217, 375].
It is important here to distinguish the relevance of experiments to quantities’
actual specification from their providing an explanation of the behavior of the
two quantities in conjunction with the Heisenberg relations; this is particularly
important because the supposed ‘Heisenberg effect,’ the disturbance of the
observed electron, by a gamma ray in this case, possibly corresponding to
6 The term observable may have its origins in Heisenberg’s characterization of ma-

trix mechanics, in which these commutators first arose, as “a quantum theoretical
mechanics, analogous to the classical mechanics in which only relations between
observable quantities appear” ([215], [332] p. 253).
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Jordan’s ‘forcing’ of one or the other of its “dual” characters, is sometimes
considered a cause of the corresponding behavior.7 Specifically, the gamma-
ray microscope example was introduced in order to illustrate the fact that, in
such situations, an increase of accuracy of position measurement by shortening
the wavelength of the gamma ray results also in a corresponding increase of
momentum transfer to the observed particle because “the inaccuracy of the
measurement of the position can never be smaller than the wave length of the
light” ([219], pp. 47-48).

Heisenberg argued that

“. . . in the act of observation at least one light quantum of the γ-ray
must have passed the microscope and must first have been deflected
by the electron. Therefore, the electron has been pushed by the light
quantum, it has changed its momentum and its velocity, and one
can show that the uncertainty of this change is just big enough to
guarantee the validity of the uncertainty relations.” ([219], pp. 47-48)

Although he believed that quantum uncertainty is manifested in the act of
observation, Heisenberg explicitly cautioned against considering momentum
transfer the cause of uncertainty in this example, at the prompting of Bohr8

who saw it as due to the principle of complementarity [98]; Bohr argued that
“The reciprocal uncertainty which always affects the values of those
quantities is. . . essentially an outcome of the limited accuracy with
which changes in energy and momentum can be defined. . . ” ([57], p.
63)

The perspective of Bohr in this regard became so influential that “the term
‘principle of complementarity’ came often to be erroneously understood as a
synonym for the Heisenberg relations.”9 As Jammer has noted,

“That complementarity and Heisenberg-indeterminacy are certainly
not synonymous follows from the simple fact that the latter. . . is an
immediate mathematical consequence of. . . the Dirac–Jordan trans-
formation theory, whereas complementarity is an extraneous inter-
pretative addition to it. In fact, the quantum mechanical formalism
with the inclusion of the Heisenberg relations can be, and has been,
interpreted in a logically consistent way without any recourse to
complementarity.” ([256], pp. 60-61)

Bohr’s articulation of complementarity as an interpretative principle is dis-
cussed at length in Section 3.4.10 Heisenberg also later used the term uncer-

7 For a discussion of the failure of the disturbance theory of the uncertainty relations
associated with such a use of the relation, see [371], Section 2.5.

8 See Bohr as quoted in Section 3.4, and the analysis of [373], pp. 14-17.
9 Vladimir Fock, cited in translation ([256], p. 60).

10 For an extended discussion of “Heisenberg’s microscope” and an analysis of
Heisenberg’s reasoning involving it, see [256], Section 3.2.



1.2 Quantum Indeterminacy and Uncertainty 11

tainty more freely but in regard to pertinent considerations of classical sta-
tistical mechanics. For example, in the context of observation, he commented
that

“[It] is very important to realize that our object has to be in contact
with the other part of the world, namely, the experimental arrange-
ment. . . at the moment of observation. . . [This] introduces a new el-
ement of uncertainty, since the measuring device is necessarily de-
scribed in terms of classical physics; such a description contains all
the uncertainties concerning the microscopic structure of the device
which we know from thermodynamics, and since the device is con-
nected with the rest of the world, it contains in fact the uncertainties
in the microscopic structure of the whole world.” ([219], p. 53)

In discussion with Einstein during the Fifth Solvay Congress, Bohr pro-
vided an analysis along similar lines to Heisenberg’s discussions of the micro-
scope but in the context of the double-slit experiment ([256], pp. 127-129).
Einstein argued that the transverse momentum transferred by particles when
passing the double-slit diaphragm could be measured with arbitrary precision
and that at the same time the position could be arbitrarily precisely measured
by sufficiently reducing the slit width. However, Bohr pointed out that the
transferred momentum was sufficiently uncontrollable in the apparatus that
the relation would actually be obeyed. Einstein had to agree. However, Ein-
stein then further suggested that, by introducing a slightly modified version
of the apparatus of Figure 1.1 wherein the initial beam is created by placing
a single-slit diaphragm before the double-slit diaphragm and then hanging
the latter diaphragm on a spring, a violation could be demonstrated. How-
ever, Bohr noted that in that case the difference of the particle momentum
for the two cases of passing through one slit and passing through the other,
δp = ωp = hω/λ, where ω is the angular frequency and λ is the wavelength of
the momentum. Therefore, if the second slit is considered to be a quantum sys-
tem, then the required measurement of the resulting diaphragm momentum
to the accuracy δp requires that the diaphragm have a position uncertainty
of δx = h/δp = λ/ω which, by basic interferometric principles, would destroy
the interference pattern. This apparatus was much later analyzed in great
detail by William Wootters and Wojciech Żurek in ultimate agreement with
Bohr’s claim [507].

Ultimately, three distinct types of Heisenberg relation have been articu-
lated. The first two of these were considered by Heisenberg between 1927 and
1930 [96, 216, 217]. The mathematical relation for quantum states, which is
considered above in regard to position and momentum, is

(∆X)ρ(∆P )ρ ≥
~
2
, (1.9)

where, again, the dispersions are calculated for the same state, ρ [375]. The
form for simultaneous measurement accuracies of these two quantities is
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(δx)(δp) ≥ ~
2
. (1.10)

Specifically, Heisenberg described the outcome of a joint measurement of posi-
tion and momentum in terms of the uncertainties of position and momentum
for Gaussian states [216]. The third sort is an accuracy–disturbance trade-off
relation for measurement sequences, which was first explicitly discussed by
Pauli in 1933,

δxDp ≥ ~
2
, (1.11)

where Dp indicates the disturbance of what was initially a momentum eigen-
state resulting from a position measurement of accuracy δx [179, 338]. It is
noteworthy that this last relation has been explicated by reference to quantum
information-theoretic concepts and causally so, as follows.

“The tradeoff between acquiring information and creating a distur-
bance is related to quantum randomness. It is because the outcome
of a measurement has a random element that we are unable to in-
fer the initial state of the system from the measurement outcome.
That acquiring information causes a disturbance is also connected
with the no-cloning principle. . . If we could make a perfect copy of a
quantum state, we could measure an observable of the copy without
disturbing the original. . . ”([362], p. 10)

One sees that the specific Heisenberg relation pertaining in a given situ-
ation is determined by whether values are provided by states, simultaneous
measurement accuracies, or measurement sequences, and can be understood
as arising in different ways under different interpretations of the quantum
formalism; it does not simply correspond to wave–particle duality.

Before continuing the discussion of foundational questions of quantum
mechanics, it is helpful to consider more explicitly the mathematical elements
and notation of modern quantum mechanics and the basic theory of quantum
entanglement with which they are typically bound up. This constitutes the
bulk of the following two sections. Those familiar with these, or who wish on
a first reading to avoid the detailed consideration of them, may wish to move
immediately on to Section 1.5, where additional experimental scenarios are
discussed.

1.3 Quantum States and Entanglement

In the standard Hilbert-space formalization of quantum mechanics, pure states
are described by state-vectors, |ψ〉, forming a linear state space attributed to
the system in question. This is the mathematical content of the superposition
principle: in the absence of further restrictions, which are referred to as super-
selection rules, it renders all sums of states in this space physically valid. In
particular, each quantum system is attributed a separable complete complex
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vector space, the Hilbert space H, constituting its state space, analogous to
that of classical mechanics, via the set of trace-class Hermitian linear oper-
ators ρ acting in it, the statistical operators, which include both pure states
and mixtures thereof, together with an appropriate inner product.11

State-vectors correspond to the pure statistical operators, that is, the pro-
jectors, P (|ψ〉), onto one-dimensional rays; each ray corresponds to the nor-
malized “ket” vectors |ψ〉 ∈ H that spans it. Any vector element of a ray can
be obtained from any other by multiplying it by a complex number; in this
way, the elements of the ray form an equivalence class that is identified with
a single normalized quantum state-vector |ψ〉. Accordingly, the Hilbert space
in question is a projective Hilbert space. Any state ρ can then be formally
expressed as a mixture of these projectors, that is, as an element of the convex
set of real-weight linear combinations of pure states. Given any linear oper-
ator, O, on H, the equation (O − oI)|ψ〉 = 0 of the eigenvalue problem, for
non-zero vectors |ψ〉 ∈ H, can be considered and its solutions indexed. When
this equation is satisfied, the vectors and corresponding scalars are referred to
as eigenvectors and eigenvalues, respectively; the eigenvectors for the problem
are typically labeled using eigenvalues oi, that is, written |oi〉.

The “bra” state-vectors 〈ψ| are elements of the Hilbert space H∗ that is
dual to H: The bra is best thought of as a map from H into the complex num-
bers C, namely, 〈ψ| : |ξ〉 7→ 〈ψ|ξ〉 = reiφ, where r, φ ∈ R, because the proba-
bilities associated with observing specific values of quantum mechanical mag-
nitudes are independent of the phase φ:

∣∣(e−iφi〈ψi|)(eiφj |ξj〉)
∣∣2 = |〈ψi|ξj〉|2

for all 〈ψi| ∈ H∗, |ξj〉 ∈ H and all φk = φj − φi.12 In order to associate states
with values designating physical quantities, one then uses Hermitian linear
operators O on H, rather than functions of phase-space points as is done in
the case of classical mechanics, a fact which is intimately related to the re-
marks made in the opening of this chapter. The projectors are outer products
such that P (|ψ〉)|ξ〉 = 〈ψ|ξ〉 = reiφ|ψ〉, for some value of the pair r, φ for each
|ψ〉, that is, P (|ψ〉) ≡ |ψ〉〈ψ|. The mixed states are mathematically distinct
from the pure states; it is particularly important to keep clearly in mind that
mixed states cannot be written as linear combinations of state-vectors but
only of the corresponding statistical operators, as shown below.
11 An operator is Hermitian if it is equal to its Hermitian conjugate O = O†, see

Appendix. An operator is trace class if its modulus |O| =
√
O†O is finite. For

Hermitian operators, the set of eigenvalues {oi}, called the eigenvalue spectrum, is
real and a complete basis for the space is formed by its eigenstate-vectors. If these
values all differ for a given quantum state, the operator is maximal for it (as is the
corresponding physical magnitude, cf. Section 2.3), and the set of eigenvalues is
non-degenerate; otherwise, the set of eigenvalues is called degenerate. In the case
of systems described by continuous observables, there generally does not exist
a eigenvector basis for the system, so that there are no eigenvalues to consider
although there does remain a well defined spectrum.

12 Cf. Equation 1.29 below.
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The spatial part of the full quantum state of any elementary particle is
infinite-dimensional; the corresponding state-vectors are referred to as wave-
functions. It is often sufficient for the purposes of calculation to consider only
part of the full states of particles such as photons, leaving aside consideration
of the spatial part; one can explain a broad range of quantum phenomena
equally well by attending only to the spin subspaces of particles or similar
subspaces of the full system Hilbert space. Two-level systems, such as spin- 1

2
particles, which are now often referred to as qubits—misleadingly so because
they are physical objects rather than information units—have a state space
representable by that of the 2 × 2 complex Hermitian trace-one matrices,
H(2). The general pure state in a two-dimensional complex Hilbert space
representing such a system has the following convenient representation

|ψ(θ, φ)〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 .=
(

cos(θ/2)
eiφ sin(θ/2)

)
, (1.12)

where θ ∈ (0, π), φ ∈ [0, 2π).13 Each state in this Hilbert space can be equiva-
lently specified by three numbers, the components of a real vector, called the
Stokes vector, in a ball in the Euclidean space of probabilities, the expecta-
tion values of operators corresponding to three orthogonal directions, to which
these matrices are naturally mapped; in the Stokes parameterization, the gen-
eral two-level system state lies in the Bloch ball (cf. Figure 4.2 of Chapter
4), the boundary of which is the Poincaré–Bloch sphere corresponding to the
set of pure states, P (|ψ(θ, φ)〉), again the interior (mixed) states being the
normalized convex linear combinations of these pure states or, equivalently, a
convex combination ρ .= {pi, P (|ψi〉)} of projectors weighted by the {pi}.

The structure naturally generalizing the Bloch ball to more general cases
is the convex set [318]. The state of a generic quantum system within a Hilbert
subspace of d dimensions is the convex set of statistical operators of the form
ρ = wρ1 + (1 − w)ρ2, where the ρi are well defined statistical operators and
0 ≤ w ≤ 1, which represents the mixing of the two states with weights w and
1−w, respectively. 14 The statistical operator ρ of a quantum system can be
viewed as a linear normalized map from the observables O(i) of the system
to their expectation values, the averages of values for the ensemble, 〈O(i)〉ρ =
tr(ρO(i)); this formula implements the fundamental Born rule. The pure and
mixed state sets can then naturally be distinguished by the expectation value
of the statistical operator itself, known as the purity P(ρ), which is identical
to the trace of the square of the statistical operator

P(ρ) = tr ρ2 , (1.13)

which is a positive real number less than one. When the statistical operator
ρ describes physical magnitudes taking a finite number d of values, d is the
13 When θ = 0 and π, φ is taken to be zero by convention.
14 Recall that in the literature of quantum mechanics, physical magnitudes are typ-

ically referred to as observables. Additional reasons for this choice of terminology
are given in the next chapter.
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dimension of the Hilbert space H attributed to the system and 1
d ≤ P(ρ) ≤ 1.

The dimension of the operator space associated with the system is then d2−1.
The quantum state is pure if P(ρ) = 1, that is, the system state cannot be
any more precisely specified, and is an extremal point of the convex set. In
the practical context, pure states are idealizations.

The purity of a quantum state is constant under transformations of the
form ρ → Uρ U†, where U is unitary, most importantly under the temporal
evolution over the interval t− t0, typically taken to be U(t, t0) = e−

i
~H(t−t0),

where H is the Hamiltonian operator, in accordance with the Schrödinger
equation. Unitary linear operators, U , are those for which U†U = UU† =
I, where “†” denotes Hermitian conjugation. The temporal evolution need
not, however, involve a time-independent Hamiltonian; temporal evolution in
quantum mechanics need not be so simple. Given two statistical operators ρ1

and ρ2, the following are equivalent: (i) ρ1 and ρ2 are unitarily equivalent:
ρ2 = Uρ1U

†, for some unitarity U ; (ii) ρ1 and ρ2 have identical eigenvalue
spectra; (iii) trρr1 = trρr2 for all r = 1, 2, . . . , n, where n = dimρ1 = dimρ2. A
quantum state is pure if and only if the statistical operator ρ is idempotent,
i.e., a projector: P 2(|ψ〉) = (|ψ〉〈ψ|)2 = 〈ψ|ψ〉|ψ〉〈ψ| = |ψ〉〈ψ| = P (|ψ〉). A
quantum state is mixed if it is not pure, that is, if P(ρ) < 1.

There is a fundamental difference between the superposition of quantum
states and the mixing of them, for example, by combining ensembles of quan-
tum systems. To see how these two mathematical operations (state-vector
addition and statistical operator addition) differ, one can, for example, con-
sider the (normalized) sum in the simple two-dimensional case

|↗〉 =
1√
2
(|↑〉+ |↓〉) (1.14)

of two orthogonal pure state-vectors |↑〉 and |↓〉. The vector superposition in
Equation 1.14 is a pure state: tr

(
P 2(|↗〉)) = tr

(
P (|↗〉)) = 1. The similar

linear combination formed by subtraction rather than addition is written |↘〉.
The corresponding two projectors are P (|↗〉) = |↗〉〈↗|, P (|↘〉) = |↘〉〈↘|.
By contrast to the case of state-vector addition, the normalized sum of a pair
of projectors, for example, P (|↑〉) and P (|↓〉) corresponding to pure states |↑〉
and |↓〉, in that case

ρmix =
1
2
(
P (|↑〉) + P (|↓〉)

)
, (1.15)

is mixed: tr(ρ2
mix) = tr

(
( 1
2 )2[P 2(|↑〉)+P 2(|↓〉)]

)
= 1

4 tr(P (| ↑〉)+P (| ↓〉)
)

= 1
2 .

The state ρmix can also be written as a different such sum, namely,

ρmix =
1
2
(
P (|↗〉) + P (|↘〉)

)
, (1.16)

which illustrates the non-uniqueness of the decomposition of mixed states as
convex combinations of pure states, which in general differ from eigenbasis to



16 1 Superposition, Entanglement, and Limits of Local Causality

eigenbasis. Furthermore, the statistical operator corresponding to the normal-
ized sum of |↗〉 and |↘〉 is P (|↑〉) 6= ρmix. The pure state |↗〉 is the result
of the quantum superposition of two state-vectors, whereas the fully mixed
state, which can also be written ρmix = 1

2 I, can be obtained by mixing two
distinct pure ensembles and, therefore, cannot be represented as a projector.
In general, given a finite set {P (|ψi〉)} of projectors each corresponding to
a distinct pure state |ψi〉 orthogonal to the others, any state ρ′ that can be
written

ρ′ =
∑
i

piP (|ψi〉) , (1.17)

with 0 < pi < 1 and
∑
i pi = 1, is a normalized mixed state. A typical mixed

state has an infinite number of such decompositions.
There are several ways that quantum state mixtures have been inter-

preted.15 Consider the more general mixture of two pure states

ρ = (1− w)P (|ψ1〉) + wP (|ψ2〉) , (1.18)

where 0 < w < 1 is the relative weight of the two pure states; because any
other mixed state can be obtained from one of this form by further mixing,
it can be used to describe the three ways mixed states have been interpreted.
The statistical interpretation of mixtures holds that such a mixture arises in
nature exactly by the combination of pure states in the ratio w : (1 − w).
The ignorance interpretation of mixtures holds that mixed states arise as
the result of the ignorance of cognitive agents, that is, observers about the
‘actual’ composition of collections of pure states in appropriate proportions.
A third interpretation of mixed states in quantum mechanics is that they
are primitive, that is, of the same fundamental character as pure quantum
states, and only arise as literal mixtures in the case they are operationally so
formed. Interpretations of mixed states often reflect specific interpretations
of probability or quantum mechanics as a whole. Consider the following view
of Heisenberg, an advocate of the Copenhagen interpretation of the theory,
associating mixedness with ignorance.

“The probability function combines objective and subjective ele-
ments. It contains statements about possibilities or better tenden-
cies. . . [that] are completely objective, they do not depend on any
observer; and it contains statements about our knowledge of the sys-
tem, which of course are subjective in so far as they may be different
for different observers. In ideal cases the subjective element. . .may
be practically negligible. . . The physicists then speak of a ‘pure case.’
” ([219], p. 53)

Heisenberg argued that due to the classicality of measuring apparatus,
15 For an extended discussion of a priori ways of approaching the question of the

nature of quantum mixtures, see [177], pp. 78-83.
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“After the [measurement] interaction has taken place, the probability
function contains the objective element of tendency and the subjec-
tive element of incomplete knowledge, even if it has been in a ‘pure
case’ before.” ([219], p. 54)

When any quantum state ρ is considered in the matrix representation
provided by an Hermitian operator O, the state will be (at least partially)
coherent in the eigenbasis of the operator if and only if its matrix has non-
zero (typically complex-valued) off-diagonal elements, which, as a result, are
sometimes referred to as coherences. When a density matrix commutes with
the operator O, the state will be diagonal and hence not coherent with respect
to this operator; the fully mixed state ρmix = 1

d I in an d-dimensional com-
plex Hilbert space commutes with all Hermitian operators and so contains no
coherence with respect to any observable, and so is sometimes referred to as
the incoherent state. Importantly, pure states typically evolve non-unitarily
from pure to mixed states when in non-trivial environments, a process referred
to as decoherence which is important, for example, for certain Collapse-Free
interpretations of quantum mechanics and, more practically, in quantum com-
puting. Thus, the degree of coherence of a state can change with time and,
importantly, typically does so as a result of interactions with the system’s
environment.

Entanglement is a pervasive quantum mechanical characteristic although
one that is manifested only in situations where more than one subsystem of
a mechanical system can be identified, so that each member of the ensemble
corresponding to its quantum state is collectively constituted by a collection
of parts; this is in contrast to generic quantum interference and quantum
uncertainty, which are often manifested by quantum mechanical ensembles,
and are relevant even when systems are not composed of parts, as well as to
state mixing which can occur in classical mechanics. Schrödinger introduced
the phrase entangled state, in German verschränkter Zustand, to designate
the non-separable pure states of quantum systems and considered it “the
characteristic trait of quantum mechanics” [394, 395]. Entanglement is asso-
ciated with a sort of coherence that differs from the coherence seen in classical
physics even more so than the coherence seen in non-composite quantum sys-
tems; although classical waves are capable of producing interference patterns,
coherence in local classical mechanical systems is incapable of supporting the
extremely high-modulation interference phenomena observed when quantum
systems are in entangled pure states, as in situations wherein Bell inequalities,
which are discussed below, are violated.

Specific phenomena involving entanglement are directly related to the un-
usual joint probabilities of physical events and the behavior of systems condi-
tioned by the behavior of others. Like single-system states, entangled states
are associated with interference that can be manifested when there is suffi-
ciently strong state coherence within a composite system. Interference effects
can be manifested in systems in entangled states because, in their preparation,
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there is indistinguishability in principle of alternatives for producing the same
sets of jointly occurring measurement events on more than one subsystem.
Recall that in the double-slit experiment systems hit the screen individually,
producing a statistical pattern of detection with periodic modulation corre-
sponding to interference. Similar but stronger modulation relative to classical
behavior is possible in the joint detection events of several particles forming
a compound system on a pair of detection screens [235, 254]; classical physics
also allows for modulations of joint detections due to correlation, but classical
coincidence probability distributions allow a maximum interference visibility
value of less than 1√

2
, whereas an entangled quantum system can produce full

interference visibility, that is, a visibility of 1
1 .

Schrödinger defined the entangled pure states as the pure quantum states
|Ψ〉 of composite systems that cannot be represented in the form of simple
tensor products of subsystem state-vectors, that is,

|Ψ〉 6= |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 , (1.19)

where ⊗ indicates the tensor product and the |ψi〉 are vectors providing the
states of the subsystems, such as elementary particles [394, 395]. Those states
of composite systems that can be represented as tensor products of subsystem
states constitute the complement in the set of pure states, the product states.16

It is easy to determine whether any pure state of system consisting of
only two subsystems is in an entangled state by making use of the Schmidt
decomposition, which is always available for such systems [392], because any
bipartite pure state |Ψ〉 can be written as a sum of bi-orthogonal terms: There
always exists a way of writing |Ψ〉 in the form

|Ψ〉 =
∑
i

ai|ui〉 ⊗ |vi〉 , (1.20)

with ai ∈ C, where the sets of vectors {|ui〉} and {|vi〉} consist of orthogonal
unit vectors spanning the space of possible state-vectors for the system and the
index i runs up to the smaller of the dimensions of the two subsystem Hilbert
spaces. The probabilities that are the squared magnitudes of the Schmidt
coefficients ai are precisely those quantities unchanged by unitary operations
performed locally on the individual subsystems. Any such vector-space basis
{|ui〉⊗|vi〉} is referred to as a Schmidt basis. When the squared magnitudes of
the coefficients ai all differ, this decomposition is unique; one generally takes
the amplitudes ai to be real numbers, which is easily done by introducing any
phases into the definitions of the {|ui〉} and {|vi〉}. Thus, whether a pure
state is entangled is clear: So long as there is more than one such amplitude
of non-zero magnitude, |Ψ〉 is an entangled state, whereas when there exists

16 In the Dirac notation used in this book, when notating quantum states associated
with tensor product spaces, the symbol for the tensor product (“⊗”) is often
omitted but implied.
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only one such amplitude then the state is a product state, that is, is a non-
entangled state. Nonetheless, it is important to recognize that the Schmidt
decomposition is typically not available for multipartite systems, a point the
significance of which is further discussed in Section 3.5.

A very simple but extremely historically and conceptually important ex-
ample of an entangled state is the two-particle spin-singlet state

|Ψ−〉 =
1√
2
(|↑↓〉 − |↓↑〉) , (1.21)

which often appears in discussions of the foundations of quantum mechanics;
in the literature of quantum information science specifically, where the spin
eigenstates |↑〉 and |↓〉 are chosen to form the so-called computational basis,
the standard basis vectors are written {|0〉, |1〉} rather than {|↑〉, |↓〉}.

The Schmidt decomposition allows one not only to identify entangled
states through the correlations they exhibit, but also allows one to quan-
tify entanglement: For Hilbert spaces of countable dimension, the number of
non-zero amplitudes ai in the Schmidt decomposition of a quantum state,
known as the Schmidt number, Sch(|Ψ〉), serves as a useful, although coarse
quantifier of the amount of entanglement in a system. The Schmidt measure
of entanglement of pure states

ES(|Ψ〉) ≡ log2

(
Sch(|Ψ〉)

)
, (1.22)

is also often used for this purpose [154, 155]. For systems with more than two
parts, a pure state is entangled if and only if, for at least one way of dividing
the system into parts, the state describing such a split system is entangled as
is, for example, the state |GHZ〉 = 1√

2
(|↑↑↑〉+|↓↓↓〉) of three two-level systems,

which yields a maximally entangled state |Φ+〉 for a bipartite splitting of the
system into one spin and the remaining two together.

Historically, Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR)
were among the first to be deeply concerned by the implications of the strong
correlations arising in systems in entangled quantum states. Indeed, they ar-
gued that quantum mechanics must be an incomplete theory, if it is to be un-
derstood as a fundamental local theory under a ‘realist’ interpretation, that is,
if it assumes a local world and is essentially to describe that world, as opposed
to describing only the knowledge of conscious agents.17 This was very natural,
because metaphysical realism had been widely assumed in physics. As Born
put it in his 1950 Joule Memorial Lecture entitled Physics and metaphysics,
17 The precise nature of the philosophical perspective this involves and those of

various other interpretations of quantum mechanics which differ in this regard
are discussed in detail in Chapter 3.
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“The generation to which Einstein, Bohr and I belong was taught
that there exists an objective physical world, which unfolds itself ac-
cording to immutable laws independent of us. . . Einstein still believes
that this should be the relation between the scientific observer and
his subject.” ([70])

By considering a two-particle system in the particular entangled quantum
state

Ψ(x1, x2) =
∫ ∞

−∞
exp

[
i

~
(x1 − x2 + x0)p

]
dp , (1.23)

where x1 and x2 are the particle positions, x0 is a fixed distance and p is
momentum [153], EPR presented a highly influential argument for the in-
completeness of quantum mechanics, often called the EPR paradox, based on
the assumption of several apparently natural broad conditions, discussed in
Section 1.6 below.

John Stewart Bell further drew out the counter-intuitive implications of
the presence of entangled states in quantum theory by delimiting the border
between local classically explicable behavior and behavior that is not locally
causal, with a theorem involving an inequality. This inequality must be obeyed
by local (hidden-variables) theories that might be introduced in order to ex-
plain all correlations between two distant subsystems forming a compound
system, such as one described by the above state when the particles are well
separated. Schrödinger believed that such states of widely separated subsys-
tems could not be realizable in practice [394]. However, it was subsequently
found to be violated in essence by a broad range of quantum-mechanical sys-
tems, such as a pair of photons in the singlet state of Equation 1.21 [22].
Bell-type theorems are discussed further in Section 1.8, below. When asked
to describe his theorem in “plain English,” Bell said that

“It comes from an analysis of the consequences of the idea that there
should be no action at a distance, under certain conditions that Ein-
stein, Podolsky, and Rosen focussed attention on in 1935—conditions
which lead to some very strange correlations as predicted by quan-
tum mechanics.” ([119], p. 45)

The two pure quantum states shown in Equations 1.21 and 1.23 are ex-
amples of pure state entanglement in bipartite systems. Although extremely
illustrative, these examples are hardly representative of the majority of physi-
cal situations. Indeed, pure such states of two-particle systems are exceptional
rather than typical in the world; typically, a system very soon interacts with
a number of other systems so that, even if it were prepared in a pure state,
it is typically described by a mixed state obtained from the greater system
state by ‘averaging over’ the degrees of freedom associated with the systems
with which it has interacted. In the last two decades, the definition of en-
tanglement has been broadened beyond Schrödinger’s original definition of
Equation 1.19, particularly through the use of information theory. Entangle-
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ment, at least qualitatively, is readily extended to include such mixed states.
A bipartite mixed state of a composite system of parts A and B is called sep-
arable when it can be given as convex combination of products of subsystem
states:

ρAB =
∑
i

piρAi ⊗ ρBi, (1.24)

where pi ∈ [0, 1] and
∑
i pi = 1, ρAi and ρBi being states on the respective

subsystem Hilbert spaces, and the pi being classical probabilities; entangled
states of bipartite systems with components labeled A and B are typically
denoted using “AB” in subscript, as in ρAB , or in superscript. The product
states of the form ρAB = ρA⊗ρB correspond to situations in which the states
ρA and ρB of the two subsystems are entirely uncorrelated. The entangled
mixed states are precisely the inseparable states. However, it is not always
possible to tell whether or not a given mixed state is separable. The problem
of determining whether a given state of a composite system is entangled is
known as the separability problem.

The separable mixed states ‘contain’ no entanglement, in the resource sense
that has arisen since the arrival of quantum information science; they can be
viewed as mixtures of product states and can be created by local operations
and classical communication, which are discussed below, from pure product
states. Separable states are those that can be jointly prepared by N spatially
separated observers each preparing one local state ρA(i) according to a shared
set of instructions {pi} [348].18 For example, in order to create a separable
bipartite state, an agent in one localized region (“lab”) needs merely to sample
the probability distribution {pi} and share the corresponding measurement
results with an agent in the other; the two agents can then create their own sets
of suitable local states each in its separate location in (classical) correlation
with the other. However, in the case of fully distributed composite systems,
because not all entangled states can be converted into each other in this way,
such transformations instead give rise to distinct classes of entangled states
and different sorts of entanglement, as discussed in Section 1.10 below.

When there are correlations between observables of subsystems of systems
in bipartite separable states, these can be fully accounted for locally in the
above sort of way because the separate quantum subsystem states, even when
located in spacelike-separated laboratories,19 provide descriptions enabling
such common-cause explanations of the joint properties of A and B. Such
correlations are commonly referred to as classical correlations. Accordingly,
the outcomes of local measurements on any separable state can be simulated
by a local hidden-variables theory, that is, the behavior of systems described
by such states can be accounted for using common-cause explanations.20

18 The sense in which entanglement can be considered a resource is explained in
Chapter 4.

19 Laboratories are discussed formally in Section 1.9.
20 Hidden-variables theories are discussed in Section 1.7.
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The quantum states in which correlations between A and B can violate a
Bell-type inequality are called Bell correlated, or EPR correlated. If a bipar-
tite pure state is entangled, then it is Bell correlated with certainty, as was
first pointed out by Sandu Popescu and Daniel Rohrlich [356] and by Nicolas
Gisin in the early 1990s [192].21 However, no simple logical relation between
entanglement and Bell correlation holds for the mixed entangled states. For
example, the Werner state

ρW =
1
2

(
1
4

I⊗ I
)

+
1
2
P (|Ψ−〉) (1.25)

is not Bell correlated although it is entangled, because ρW cannot be written
a convex combination of product states.

Let us recall some of the basic elements of the mathematics of random
processes, because these play an important role in quantum mechanics and
the hidden-variables theories sometimes considered as possible alternatives
to standard quantum theory. Expectation values are defined for random vari-
ables, such as the measurement outcomes in experiments on quantum systems;
a random variable is a measurable deterministic function from a given sam-
ple space S, that is, the set of all possible outcomes of a given experiment,
the subsets of which are known as events with those containing only a single
element being the elementary events, to the real numbers; see Section 2.9.
Given an elementary event ω, the value X(ω) is its realization. The expecta-
tion value, E[Y (X)], of a function Y (X) of a random variable X is given by
a linear operator such that

E[Y (X)] =
n∑
i=1

Y (xi)p(X = xi) , (1.26)

E[Y (X)] =
∫ +∞

−∞
Y (x)f(x)dx , (1.27)

in the cases of discrete and continuous variables, respectively, where in the
former p(X = xi) is the probability and in the latter f(x) is the probability
density function, both being collection of numbers between 0 and 1 summing
to 1. A stochastic process is the generalization of deterministic temporal evo-
lution by the consideration of a time-parameterized family of random variables
and joint probability distributions. In particular, a stochastic process is a map
X : S×T → RN from each elementary event–time pair (ω, t) to the real num-
bers, providing a trajectory t 7→ X(ω, t), where X(ω, t) is measurable for each
value of t and N is the dimension of the generally vector-valued process.

The quantum mechanical expectation value of a physical magnitude rep-
resented by an Hermitian operator O of a system in a pure state given by a
state-vector |ψ〉 is
21 Note that not all such states are Bell states, that is, elements of the Bell basis as,

say, |Ψ−〉 and |Φ+〉 are.
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〈O〉|ψ〉 = 〈ψ|O|ψ〉 =
∑
i

oi|〈oi|ψ〉|2, (1.28)

where {oi} is the set of eigenvalues comprising the eigenvalue spectrum of O.
Expectation values thus take the form of average values for measurements on
ensembles of quantum systems prepared in the same state under statistically
ideal circumstances. A related mathematical theorem central to quantum me-
chanics is the spectral theorem: each Hermitian operator O can be written

O =
∑
i

oiP (|oi〉) , (1.29)

where P (|oi〉) is the projector onto the finite Hilbert subspace spanned by |oi〉.
This provides the spectral decomposition (or eigenvalue expansion) of the op-
erator O.22 When the state of the system is instead mixed, by necessity being
described by a statistical operator ρ that is not a projector, the expectation
value is

〈O〉ρ = tr(ρO) . (1.30)

Consider now correlations specifically between pairs of subsystems, such
as those underlying the observed interference patterns of joint measurements
discussed above. In particular, consider a bipartite quantum system with the
Hilbert space H = H1⊗H2 in a possibly mixed state ρ. The pertinent observ-
ables A(i) in the two systems are uncorrelated between the two subsystems if
one can write ρ = ρ(1)⊗ρ(2), where ρ(i) ∈ Hi (i = 1, 2). The expectation value
of the product of the A(1) and A(2) on the subsystems can then be factored,
that is,

〈A(1) ⊗A(2)〉ρ = tr
(
ρ(A(1) ⊗ I)

)
tr

(
ρ(I⊗A(2))

)
(1.31)

In this case, probability of outcomes of joint measurements of the A(i) is simply
the product of the probabilities of outcomes of the measurements performed
separately. When joint measurements are correlated, in that the subsystems
are in the same state ρj (j = 1, . . . , n) with probabilities pj , the statistical op-
erator is separable, having the form of Equation 1.24, and the expectation val-
ues of measurements of the physical magnitudes A(i) are instead non-trivially
of the form

n∑
j=1

pjtr
(
ρ
(1)
j (A(1) ⊗ I)

)
tr

(
ρ
(2)
j (I⊗A(2))

)
. (1.32)

Any system with a density matrix non-trivially of the form shown in Equation
1.24 (with n ≥ 2) is classically correlated, even if it can be created by mixing
entangled states [489].
22 This theorem does not hold for operators in infinite-dimensional Hilbert spaces,

even when there does exist a countably infinite set of basis vectors, because there
may not exist a countably infinite set of eigenvectors that form a basis. However,
there do exist topologies on infinite-dimensional spaces for which the theorem in
a generalized form (the nuclear spectral theorem) does hold, cf., e.g., [50].
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The highest coincidence interference visibility obtainable in an experi-
ment using classically uncorrelated states, including results predicted by local
hidden-variables theory, is 0.5 [374]. By contrast, entangled states can attain
visibilities of two-particle interference of up to 1.0. Bell-type inequalities, such
as that appearing in Bell’s theorem, which are also discussed below, can be
shown to be violated once the visibility surpasses 1/

√
2 ≈ 0.71.

1.4 Quantum Entanglement Measures

A practical entanglement measure quantifying mixed bipartite-state entan-
glement in a few important quantum system sizes is negativity. Negativity is
defined in terms of the transpose of the density matrix representation of the
statistical operator, as follows.

N (ρ) =
1
2
(
||ρTA ||1 − 1

)
=

∣∣∣∣ ∑
i

λi

∣∣∣∣ , (1.33)

where || · ||1 is the trace-norm and i runs over the subset of negative eigen-
values of this density matrix; the operator ρTA (or ρTB) is positive if and
only if the statistical operator ρ is separable, but only in the cases of 2 × 2,
2 × 3 dimensional systems [238] and systems in Gaussian states of infinite
dimension [144]. The matrix elements of the partially transposed state are
〈iAjB|ρTA |kAlB〉 ≡ 〈kAjB|ρ|iAlB〉, stated above for transposition relative to
subsystem A. When applied to an entangled state of appropriate dimension,
such as a Bell state, the result of partial transposition is a matrix with at least
one negative eigenvalue. The matrix property of positivity of partial transpose
(PPT) is a necessary but not sufficient condition for separability when sub-
systems are of Hilbert spaces of dimension greater than two; for larger Hilbert
spaces, there exist entangled states whose density matrices are positive under
the partial transpose operation. The PPT-preserving class of quantum oper-
ations is that of bipartite quantum operations such that input states positive
under partial transposition are mapped to states that are also positive under
partial transposition.23

The negativity provides a criterion for determining state entanglement,
known as the Peres–Horodečki (PH) criterion: When the statistical operator
is separable, the matrix that results from the partial transposition operation
is another statistical operator, whereas a state ρ is entangled if the partial
transpose of the corresponding density matrix is negative, the result therefore
being precluded from being well defined as a density matrix [348]. The PH
criterion implies that both ρA ⊗ I − ρ ≥ O and I ⊗ ρB − ρ ≥ O, where ρJ
(J = A,B) is the reduced state describing the individual subsystem J and O
23 See Section 1.10 for the relationship between the PPT-preserving operations and

LOCC operations.
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is the zero operator, which is the reduction criterion for entanglement;24 the
violation of the reduction criterion also implies separability of ρ in the case of
two two-level systems and the case of one two-level system and one three-level
system (i.e., ‘qutrit’).

The reduced states are provided through the partial trace operation. Let
{|ui〉} and {|vj〉} be bases for Hilbert spaces H1 and H2 of countable dimen-
sion, describing two subsystems 1 and 2, respectively, forming a composite
system in state ρ. The set of vectors {|ui〉|vj〉} (i = 1, 2, . . . ; j = 1, 2, . . .) is
then a basis for the Hilbert space of the total system, H = H1 ⊗ H2. Any
operator O on H, such as ρ, can be written in the form

O =
∑
ij,kl

|ui〉|vj〉Oij,kl〈uk|〈vl|, (1.34)

where Oij,kl are the (scalar) matrix elements corresponding to O. Finding the
partial trace is somewhat like finding the marginal distribution of a component
of a two-dimensional random variable from the probability distribution of the
latter in classical probability theory: The partial trace ofO, with respect to the
first subsystem, for example, is tr1O ≡

∑
i〈ui|O|ui〉, which “averages over”

the degrees of freedom of the second. In particular, the result of partial tracing
the statistical operator ρ of the combined system over each of the subsystems
individually is the pair of reduced statistical operators ρ1 = tr2ρ , ρ2 = tr1ρ,
each describing the state of one subsystem, for example, in the case of the dis-
missal of the other subsystem. Importantly, the reduced statistical operator
is the only statistical operator providing correct measurement statistics for
subsystems [286]. Also, when the overall state ρ is an entangled pure state,
the reduced states ρ1 and ρ2 describing the component systems are mixed
rather than pure, which cannot occur for marginal distributions in classical
mechanics, marking another difference between classical and quantum statis-
tics.

There are currently two different, but relatable, general approaches to
measuring quantum entanglement, one in terms of matrix operations and ge-
ometry, as in the case of the negativity, and one based on ideal limits of
operations on quantum states, although there is no known single good en-
tanglement measure applicable to all mixed states of systems with more than
two subsystems. In the bipartite case, with the two subsystems labeled A
and B, an instance of the former, the concurrence, is widely used in prac-
tical situations. For pure states of two spins, this quantity can be written
C(|ΨAB〉) = |〈ΨAB|Ψ̃AB〉|, where |Ψ̃AB〉 ≡ σ⊗2

2 |Ψ∗AB〉 which is referred to as the
‘spin-flipped’ state-vector [505]. The concurrence of a mixed two-qubit state,
C(ρAB), can be expressed in terms of the minimum average pure-state concur-
rence C(|ΨAB〉) where the required minimum is to be taken over all possible
ways of decomposing the ensemble ρAB into a mixture of pure states |ΨAB〉,
24 This reduction property is sufficient for the recoverability of entanglement by

distillation, which is described in Section 1.10.
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as in Equations 1.17-1.18. The concurrence of a general state two-spin state
is then C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4}, where the λi are real square
roots of eigenvalues of the matrix ρABρ̃AB, ordered by decreasing size, and
are non-negative. The standard ‘operational’ measure of entanglement in the
quantum information literature, the entanglement of formation, Ef (ρAB), of
a mixed state ρAB of a pair of two-level systems (‘qubits’) is defined in the
large number limit of identical copies of the two-level system as the minimum
number required to form the state ρAB by local operations and classical com-
munication (LOCC) on this collection of copies. This quantity has the form
of the binary entropy function, expressed in terms of the concurrence

Ef (ρAB) = h

(
1 +

√
1− C2(ρAB)

2

)
, (1.35)

where h(x) = −x log2x− (1−x) log2(1−x), cf. Section 4.1 [505]. The square
of the concurrence of a state is often referred to as its tangle.

For pure states, the entanglement of formation is the von Neumann entropy
of the states of the individual components, equaling the number of Bell-state
pairs convertible to subsystem states by LOCC again in the large number limit
of converted bipartite systems. In fact, in the case of pure states, no classical
communication is required in this limit [300]. Thus, the number of identical
copies of the system available has an effect on the conversion properties of
the state concerned [296]. This provides entanglement in units of “e-bits,”
that is, the minimum number of Bell states (e.g. the singlet of Equation 1.21)
from which a state can be reached. Both the concurrence and the entropy-
based measure are, in fact, consistent with a definition initially suggested by
Abner Shimony [414]; that geometrical measure of the degree of entanglement
identifies it as the distance of the state from the nearest factorable state, that
is,

EG(|Ψ〉) =
1
2

min
∣∣∣∣ |Ψ〉 − |Ξ〉 ∣∣∣∣2, (1.36)

where |Ξ〉 is a (normalized) product state in Hilbert space and the minimum
is taken over the set of such normalized product states, provides the distance
of the closest separable approximation [414].25 This measure also relates di-
rectly to the definition of entanglement as non-factorability introduced by
Schrödinger. Any monotonically increasing function of EG(|Ψ〉), giving the
same ordering of normalized vectors |Ψ〉, serves as an equally good geometri-
cal entanglement measure [504]. One can find the nearest separable state to a
given state by solving the corresponding non-linear eigenvalue problem [486].

It is noteworthy that, like Schrödinger’s definition, EG(|Ψ〉) is defined in-
dependently of explicit locality considerations. This is a particularly impor-
tant attribute because the failure of local causality, for example, the use of
25 The Hilbert-space angle φ ≡ cos−1(|〈Ψ |Ξ〉|) is the natural distance between two

state-vectors used here, and takes the state overlap to a distance function deriv-
able from the Fubini–Study metric, a Riemannian metric on projective Hilbert-
space [504].
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the extent of Bell-inequality violation, has been found wanting as a mea-
sure of degree of entanglement, for reasons discussed below in Section 1.8.
The other popular geometrical entanglement measure is the relative entropy
‘distance’ introduced by Vedral [466, 468], discussed in Section 4.5, is not a
genuine metric in the mathematical sense, because it is asymmetrical in its
arguments. Geometrical approaches have also been used in constructive, al-
though imperfect attempts to provide an absolute multipartite-entanglement
measure which would allow for a comprehensive classification of entangled
states [18, 255, 407, 485]. This is perhaps not surprising, given that geometry
and symmetry are naturally connected through the identification of invariant
quantities and that symmetry has always played an important role in the in-
vestigation of quantum mechanics, most significantly in the case of Wigner’s
theorem, as in all parts of physics, cf. [500].26

In the case of systems with infinite degrees of freedom, the above geometri-
cal definition also will not work, because there is always a separable state with
an arbitrarily large amount of entanglement in a neighborhood surrounding
any such entangled state [112, 156]. Nonetheless, geometrical methods have
been used to make some progress in the classification of entangled states. Even
for three parties, each in possession of a system described by a d-dimensional
space, the combined pure state lies within in a d3-dimensional Hilbert space
and so depends on 2(d3−1) real parameters, whereas the transformations used
to unitarily transform, or equivalently to rotate this state, have only 3(d2−1)
independent real parameters. It is therefore often impossible to obtain the
extraordinarily useful Schmidt decomposition for pure states.27 Nonetheless,
multipartite extensions of Schmidt decomposition can be found in special situ-
ations. For example, the construction of a generalized Schmidt decomposition
may proceed in some three-spin systems [298, 347]. More generally, an N -
partite pure state can be written in generalized Schmidt form if and only if
each of its N − 1 partite subsystem states is separable [446].28

1.5 Surprising Implications of Entanglement

Having recalled the formal elements of quantum mechanics and the basics of
entanglement theory, let us return to the consideration of the simple double-
slit experiment to see how entanglement bears on it in a larger context.

Recall that a set of alternative histories available to a system is required
for its self-interference. For example, when only one of the two slits is available
at a time in the double-slit experiment, no interference pattern appears on the
26 Wigner’s theorem can be stated as follows. Let I : u→ v be a length-preserving

transformation (isometry) with respect to the Hilbert-space norm. Then I is
either a unitary or anti-unitary transformation. For a proof, see [304], p. 101.

27 As seen later in Chapter 3, this precludes one attempt straightforwardly to solve
the quantum measurement problem.

28 Multi-partite states are discussed in more detail in Section 1.10.
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detection screen, as shown in Figure 1.1, because only one total history is pos-
sible from preparation to detection, whereas when two different histories are
available an interference pattern can be seen. Indeed, the implementation of
the final apparatus configuration can be delayed until after the system under
measurement has entered the apparatus [492]. An interference-free detection
pattern should result even if both slits are left available to incoming particles
and one also detects particles after the two slits and this is so before the two
alternatives (of having passed through slit 1 or slit 2) have become distin-
guishable from each other in any given run of the apparatus—say if substan-
tially less than one particle is present in the apparatus during a configuration
switching-time interval. Having alternative histories be distinguishable in no
way rests on an assumption that the apparatus is a classical system; merely
introducing a quantum system that in principle can be definitively verified as
having entered a specific slit is sufficient to eliminate quantum interference.

A diverse set of experiments demonstrating such behavior has been car-
ried out, cf. [227]. Wootters and Żurek successfully modeled the standard
arrangement where path data is obtained by arranging for a momentum ex-
change between the photon and the initial slitted screen [507]. Scully, Englert
and Walther (SEW) later introduced a different method, in an experiment in
which laser-excited atoms forming a beam pass through an initial double-slit
diaphragm with their possible paths continuing through two auxiliary mi-
crowave cavities that can be configured so as to allow the path information
to be obtained before they exit another double-slit diaphragm, as shown in
Figure 1.2 below [402]. This apparatus allows entanglement to arise between
states corresponding to atomic-paths and those of cavity occupation. The in-
teraction involved is too weak to lead to sufficient momentum transfer for
path determination; momentum transfer is incapable of accounting for the
destruction of the interference pattern that would typically be observed in a
double-slit experiment. Interference can be restored by moving to an alterna-
tive configuration of the apparatus where an auxiliary system is introduced
that possesses a suitable observable not commuting with the path-indicating
operator that is precisely measurable by proper arrangement of the cavities.
Because the data regarding paths that would be present is then no longer
available, this phenomenon is called “quantum erasure” [400].

The SEW apparatus, allowing one to switch between the two pertinent
configurations, is essentially a modification of the double-slit experiment of
Figure 1.1. By switching between two configurations, data relating to one
or the other non-commuting observable is erased. The enlarged apparatus
allows alternation between the above two cases, with the option to make
the choice of configuration at any time before the final screen is contacted,
incorporating delayed choice. The auxiliary system can definitively indicate
which of the two slits was entered by the primary system by exploiting the
above-mentioned state entanglement [160, 402, 403]. However, the primary
and auxiliary systems are allowed to interact in such a way that phenomena
which would have occurred in one configuration are not exhibited in the other
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configuration. The incoming quantum ensemble is that of a beam of Rydberg
atoms rather than of elementary particles, the laser is introduced as the first
apparatus element and is oriented perpendicularly to the atom beam so as to
allow its excitation, the auxiliary system consisting of a pair of micro-cavities
is placed after it, and an additional double-slit diaphragm placed after the
cavities, as shown in Figure 1.2. The two micro-cavities are each long enough
that the atoms will de-excite with near certainty between their entrances and
exits. Therefore, each will capture any radiation emitted from atoms entering
it specifically, allowing the atoms of the beam to become entangled with the
cavity pair before continuing on into the remainder of the system. The two
cavities constituting the auxiliary system are positioned adjacent to each other
but separated by a wall that is covered on each side by shutters which, when
opened, allow captured radiation to be absorbed from either cavity without
the discriminating from which cavity it came. A rapid switch of the shutter
settings between open and closed positions allows the choice of configuration
to be delayed until very near the time any atom strikes the screen.

To allow potential path data to be registered, the laser is made sufficiently
powerful that, when turned on, it will excite every one of the beam atoms from
its ground state to its excited state with near certainty. The atomic system can
be considered prepared in the state |ψ(r)〉|j〉 = 1√

2
(|ψ1(r)〉+|ψ2(r)〉)|j〉, where

the position coordinate of the elementary particles of the standard experiment
is replaced by that of the atomic center-of-mass position coordinate r and the
atomic internal states are written |j〉, j = 0, 1, the ground and excited states,
respectively. Without the laser on, all atoms are in the ground state |0〉. The
atom beam is then in the pure product state |ψ(r)〉|0〉, so that its squared
magnitude, the probability density of detected atoms at the screen position
r = R, is

p(R) =
1
2

[(
||ψ1(R)〉|2 + ||ψ2(R)〉|2

)
+

(
〈ψ2(R)|ψ1(R)〉+ 〈ψ1(R)|ψ2(R)〉

)]
〈0|0〉

with 〈0|0〉 = 1, that is, one finds the sort of interference pattern observed
in the standard double-slit experiment when both slits are available. With
the laser turned on and the shutters kept closed, with the atoms prepared in
|ψ(R)〉|1〉, atomic radiation is deposited into one of the cavities and the state
of the enlarged system must be considered, which is

|Ψ〉 =
1
2
(
|ψ1〉|0〉|1C10C2〉+ |ψ2〉|0〉|0C11C2〉

)
=

1
2
(
|ψ1〉|1C10C2〉+ |ψ2〉|0C11C2〉

)
|0〉 (1.37)

where the subscripts {Ci} indicate the cavity pair with eigenstates |kC1lC2〉,
with k = 0, 1 indexing the occupation eigenvalue of cavity 1 feeding slit 1 and
l = 0, 1 indexing that of cavity feeding slit 2. Thus, with the laser turned on
and cavity shutters kept closed, the external atomic state and the occupation
state of the two-cavity system become entangled, whereas the internal atomic
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Fig. 1.2. Apparatus for quantum erasure. An enlargement of the standard double-
slit apparatus of Figure 1.1 by the addition of intermediate microcavities with in-
ternal shutters (dark dashed lines) and a radiation absorber (thick solid line) intro-
duced [402]. Excited atoms are input that de-excite with certainty within one of the
cavities. (a) Atom detections when shutters are open; path data are unavailable be-
cause radiation is indiscriminately absorbed. (b) Atom detections when the radiation
absorber is unreachable, with radiation is selectively contained in one cavity or the
other; path data, which are incompatible with interference, is available. Opening the
shutters, even after each atom has passed the double-slitted diaphragm, erases data
associated with paths, which is irretrievable from the common radiation absorber,
taking case (b) to case (a).

state factors out. The probability density for arrival of atoms at point R on
the screen, shown in case (b) of Figure 1.2, is

p =
1
2
[
(||ψ1〉|2 + ||ψ2〉|2)

+ 〈ψ1|ψ2〉〈1C10C2|0C11C2〉+ 〈ψ1|ψ2〉)〈0C11C2|1C10C2〉
]
〈0|0〉 ;

〈1C10C2|0C11C2〉 = 0 and 〈0C11C2|1C10C2〉 = 0 imply that the terms including
them are zero. The observed interference pattern of atoms striking the final
screen is p(R) = 1

2 ||ψ1(R)〉|2 + 1
2 ||ψ2(R)〉|2, a probability sum corresponding

to state mixture; the introduction of the cavities which selectively interact
with passing atoms depending on their proximity to each slit allows for dis-
tinguishability of the paths of the atoms as long as their interior shutters are
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kept closed. This atomic detection pattern can be understood as that resulting
from the enlargement of the system so as to include entangled subsystems.

Quantum path data encoded in this de facto two-cavity memory can read-
ily be “erased” by switching instead to the configuration in which the internal
shutters of the two cavities are opened, which allows the stored radiation to
reach the photon absorber. In that case, because the radiation in the cavities
from which path data might be retrievable is instead lost from them to the
absorber, taking both cavity states to their ground states |0C10C2〉,

|Ψ〉 =
1
2
(
|ψ1〉|0〉|0C10C2〉+ |ψ2〉|0〉|0C10C2〉

)
=

1
2
(
|ψ1〉+ |ψ2〉

)
|0〉|0C10C2〉 .

The path data are, therefore, no longer encoded in them; interference reap-
pears, as in case (a) of Figure 1.2, so that

p(R) = |〈Ψ(R)|Ψ(R)〉| (1.38)

=
1
2

[(
||ψ1(R)〉|2 + ||ψ2(R)〉|2

)
+

(
〈ψ2(R)|ψ1(R)〉+ 〈ψ1(R)|ψ2(R)〉

)]
.

This situation can be viewed as an instance of the following general sit-
uation. Performing different measurements on individual d-dimensional sub-
systems of a bipartite system in a pure state |Ψ〉AB, allows decompositions
into mixtures of pure states of a subsystem ensemble to be operationally pro-
duced that differ but are described by the same statistical operator. To see
this, consider two different decompositions of the same statistical state of the
first system (atom) into d orthogonal pure states corresponding to possible
measurement outcomes {i}:

ρA =
∑
i

|ai|2|ψi〉〈ψi| , (1.39)

ρA =
∑
i

|a′i|2|ψ′i〉〈ψ′i| , (1.40)

where {|ψi〉}, {|ψ′i〉} are differing bases for the subsystem Hilbert spaces. These
two decompositions also have differing ‘purifications’ describing the total bi-
partite system, namely,

|Ψ〉AB =
∑
i

ai|ψi〉|χi〉 , (1.41)

|Ψ ′〉AB =
∑
i

a′i|ψ′i〉|χ′i〉 , (1.42)

where {|χi〉} and {|χ′i〉} are orthonormal bases for the Hilbert space of the
second system (joint cavity); purifications are pure states of larger systems
from which these states arise through the partial tracing out of degrees of
freedom not associated with them.29 With these expressions at hand, one
29 Cf. Section 1.4.
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sees that by differently measuring the second system, that is, in the different
bases above, two different preparations are carried out providing ensembles
described by the very same reduced statistical operator, namely, ρA.

The purifications |Ψ〉 and |Ψ ′〉 are related to each other by a unitary trans-
formation of the state of the second system acting only on the space of the
second system, that is, of the form I⊗U . Thus, both of the two ensemble de-
scriptions, that of Equation 1.41 and that of Equation 1.42, are obtainable by
appropriate local actions on the second system alone. Likewise, one can con-
sider different decompositions for the reduced state of the second system and
find bases for the first system and purifications giving rise to that statistical
operator by measurements of the first system [362].30 This result illustrates
quantum erasure in a more general context, in that it describes the effect of
the ‘choice’ of measurement basis or, equivalently, of the choice of measure-
ment apparatus on what is observed about a quantum system, A, when it is
in contact with another, B, because knowledge obtained by a measurement
of system B, when classically communicated to A, results in a change of the
description of the subsystem at A. Any finite ensemble of bipartite quantum
states can be remotely prepared by two agents in distant laboratories through
local operations and classical communication using entanglement, although
there is no question of this effect enabling superluminal signaling (cf. [404]).

Schrödinger called such a process remote steering, and believed that in
practice such a procedure could not be carried out for well separated systems.

“Attention has recently [in the EPR paper] been called to the obvious
but very disconcerting fact that even though we restrict the disen-
tangling measurements to one system, the representative obtained
for the other system is by no means independent of the particular
choice of observations which we select for that purpose and which
by the way are entirely arbitrary. It is rather discomforting that the
theory should allow a system to be steered or piloted into one or the
other type of state at the experimenter’s mercy in spite of his having
no access to it.” ([395])

Nonetheless, one can experimentally observe such surprising implications of
the failure of local causality in systems prepared in entangled pure states.

1.6 The EPR Program and Absence of Local Causality

Nearly all those who made significant contributions to the construction and
formalization of quantum mechanics, like Schrödinger, appreciated that the
theory appeared to conflict with the traditional world view of working physi-
cists. These investigators conceived and described to their colleagues a number
30 This result, known as the GHJW theorem, was shown by Gisin, Hughston, Jozsa,

and Wootters [191, 246], is similar to a result originally obtained by Schrödinger
[272, 317]. It has also been extended by Cassinelli et al. [100].
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of sorts of quantum physical situation in which the traditional assumptions
evidently failed.

Let us begin by considering perhaps the most striking and boldest of these
conceptions, the Einstein–Podolsky–Rosen scenario to which reference is made
in the above comment by Schrödinger, which involves entanglement and the
failure of local causality and inspired the later investigations of Bell and oth-
ers that have come to be seen as constituting experimental metaphysics [408].
With it, EPR presented a forceful argument against the adequacy of the the-
ory, under a number of assumptions within a particular realist world view.
Their reasoning was designed to confront quantum mechanics with the heart
of the traditional physical world view and to argue that quantum theory is
inadequate by those lights by demonstrating a contradiction between the two
sets of principles, one more mathematical and one more conceptual, on which
real-world experiments would later bear. In particular, the argument of EPR
was designed to demonstrate the inadequacy of the standard formulation of
quantum mechanics for enabling a complete naturalistic description of the
physical world. It provided a deeper method for the investigation of the phys-
ical and philosophical issues encountered in micro-physics than any before it.
Their approach is now commonly referred to as the EPR program.

The physical situation presented by EPR shows that the lack of local
causality inherent in quantum mechanics presents serious problems if one
assumes quantum mechanics to be a complete fundamental theory, as it was
then assumed to be, that is, one in need of no further physical elements and
to be in accord with scientific realism.31 Although some have disputed the
fundamental character of non-relativistic quantum mechanics (cf. [187], p. 2),
most if not all of its problems are inherited by its relativistic successors, which
only introduce additional foundational questions. Einstein’s personal view of
the situation emphasized the importance of having physical theory locally and
objectively describe the world.

“I just want to explain what I mean when I say that we should try
to hold on to physical reality. We all of us have some idea of what
the basic axioms of physics will turn out to be. . . whatever we regard
as existing (real) should somehow be localized in time and space.
That is, the real in part of space A should (in theory) somehow
‘exist’ independently of what is thought of as real in space B. When
a system in physics extends over the parts of space A and B, then
that which exists in B should somehow exist independently of that
which exists in A. That which really exists in B should therefore not
depend on what kind of measurement is carried out in part of space
A; it should also be independent of whether or not any measurement
at all is carried out in space A. If one adheres to this programme,
one can hardly consider the quantum-theoretical description as a
complete representation of the physically real.” ([72], p. 164)

31 Cf. Einstein’s comment to Born quoted in Section 1.7.
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This can be seen as Einstein’s formulation of what later came to be known
in the physics literature, albeit somewhat misleadingly from the philosophical
point of view, as local realism because the EPR article stressed the importance
of locality as an essential characteristic of objective physical objects.

Before the EPR paper, Einstein had presented a less compelling thought
experiment directed toward this question, which was a simple situation not
involving entangled states, in which the wave-function of a ball is restricted to
two boxes, B1 and B2, which can be arbitrarily well separated in space [256].
This earlier thought experiment is sometimes referred to as the Einstein box
experiment [326]. It should not, however, be confused with the better known
experiment sometimes referred to as the Einstein–Bohr box experiment, which
involved the determination of energy changes within the box by measurements
of its weight, that is sometimes also said to present the Alarm-clock paradox.32

In Einstein’s ball–box experiment, when a measurement is made to ascer-
tain whether the ball is contained in one box, B1, one is also able to determine
whether the ball is contained in the other, B2. Thus, Einstein argued, the wave-
function provides an incomplete description of the ball’s location; otherwise,
the performance of the measurement on B1 would immediately cause the ball
to be present or absent in B2 arbitrarily far away, at odds with relativity; 33 it
would amount to there being a non-local causal influence at work. This early
argument was unsuccessful, however, because the constraint of relativity that
causal influences must propagate at speeds constrained by the speed of light
is not relevant, because wave-function doesn’t in general describe the den-
sity of a substance, despite the fact, for example, that Schrödinger had hoped
such an interpretation might be viable; the example involves only a logical de-
termination, not a causal influence, because there is no physical contingency
involved. All that is required for logical consistency is that one assume that
the ball must be in one and only one box at any given moment even when the
wave-function is not entirely absent from either box [418]. Therefore, one is
not driven to accept that a non-local causal influence is involved. For example,
one could consistently hold that the quantum state is represented by different
wave-functions in different frames of reference [175].

The EPR paper provides a much better argument than Einstein’s original
using the ball and box because it involves the consideration of two particles (in
an entangled quantum state) which can be arranged to be spacelike separated
from each other. Basic elements of a proper fundamental theory in the realist
world view favored by Einstein were explicitly laid out in the EPR paper in
the form of three conditions [153], even if not to the complete satisfaction of
Einstein himself who, as it turned out, did not have as much control of its
32 A related discussion involving the Stern-Gerlach apparatus can be found in [342],

pp. 29-32.
33 Related results pertaining to wave packet evolution, localization and causality are

shown in [212–214].



1.6 The EPR Program and Absence of Local Causality 35

final form as he would have liked.34 The first is the reality criterion, presented
as defining “physical reality” for the purposes of the scenario.

(1) “If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value
of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.”

This condition is, notably, also closely related to causality, in that, for example,
indeterminism for some is the condition that “the state of a system at time
t cannot in general be predicted with certainty given the history of its states
priority to t” ([137], p. 19). The second is a locality criterion.

(2) “Since at the time of measurement the two systems no longer
interact, no real change can take place in the second system
in consequence of anything that may be done to the first
system.”

The third is a completeness criterion, the one which EPR ultimately argued
quantum mechanics does not satisfy.35

(3) “Every element of the physical reality must have a counterpart
in the physical theory.”

The EPR argument, as presented, makes use of a quantum state, that
of Equation 1.23, involving continuous variables. However, it is readily and
perhaps better suited to physical systems involving discrete observables. In
particular, without affecting their argument, one can apply it to the biva-
lent observables associated with a less controversial choice of state, namely,
the spin-singlet state |Ψ−〉 (cf. Eq. 1.21) as was done by David Bohm [54].
The original EPR state has been viewed as somewhat artificial in nature
and as possessing mathematical peculiarities, not the least of which is that,
despite the intentions of the authors, the perfect correlations of measure-
ment outcomes at distant locations they take to be characteristic of the state
when the particles are well separated, are not, strictly speaking, so. More-
over, the singlet state has the valuable property of remaining of the same
anticorrelation-bearing form when re-expressed in any orthonormal eigenstate
basis obtainable from the computational basis by rotating the eigenstates of
either subsystem Hilbert space by an arbitrary non-zero angle ξ [54].

Using |Ψ−〉, then, the EPR argument can be stated in terms of two propo-
sitions.36

34 A reconstruction of the argument, a discussion of Einstein’s original, solo incom-
pleteness argument, and an analysis indicating reasons for Einstein’s dissatisfac-
tion are given in [124].

35 Bernard d’Espagnat’s discussion of the relation of often neglected question of
measurability to these considerations is illuminating ([126], Section 7-1-1).

36 See [407]. For a modern version of the EPR argument based on the logic of
quantum conditionals, also see [415].
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(I) If an agent can perform an operation that permits it to predict
with certainty the outcome of a measurement without disturbing
the measured spin, then the measurement has a definite outcome,
whether this operation is actually performed or not.

(II) For a pair of spins in the state |Ψ−〉, there is an operation that an
agent can perform allowing the outcome of a measurement of one
subsystem to be determined without disturbing the other spin.

By measuring the quantity corresponding to the projector P (| ↑〉) for one
spin, the value of the quantity corresponding to the projector P (| ↓〉) onto
the orthogonal state is also fully specified. By (II), one can similarly obtain
the values of the same two observables of the second spin without influencing
it, due to the perfect anti-correlation between spins in the composite system
state |Ψ−〉. By (I), the values of the second spin are definite. However, one
could just as well have measured the values of the quantities corresponding
to a different basis, such as the conjugate diagonal basis, those corresponding
to P (|↗〉) and P (|↘〉). But these other values must then be definite as well.
Therefore, the value of the states of both systems for all values of ξ must be
definite. The description of the system of particles by the quantum state |Ψ−〉
is thus seen to be incomplete in a specific way.

However, the EPR sense of completeness is far from universally shared,
and certainly not by non-realist followers of the Copenhagen school; it can
be viewed as unnecessarily strong, due to the appearance of counterfactual
events in (1) and (I), as was noted, for example, by Daniel Greenberger,
Michael Horne, Shimony and Anton Zeilinger (GHSZ), who carefully assessed
the EPR argument in light of contemporary interferometry, as follows.

“In the reality assumption the phrase ‘can predict’ occurs. The
phrase is ambiguous, because it may be understood in the strong
sense, that data are at hand for making the prediction, or in the
weak sense, that a measurement could be made to provide data for
the prediction. EPR assume the weak sense, and indeed unless they
did so they could not argue that an element of physical reality exists
for all components of spin, those which could have been measured as
well as the one that actually was measured. . . The preference for one
rather than the other of these two interpretations of the phrase is
not merely a semantical matter, but is an indication of a philosoph-
ical commitment. Bohr believed that the concept of reality cannot
be applied legitimately to a property unless there is an experimental
arrangement for observing it, whereas Einstein regarded this view as
anthropocentric and maintained that physical systems have intrinsic
properties whether they are observed or not.” ([194])

Despite the EPR argument, in 1964 Heisenberg, for example, continued to say
that
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“we have a consistent mathematical scheme [that] tells us everything
that can be observed. Nothing is in nature which cannot be described
by this scheme.” (reported in [176])

The claim of EPR that the quantum state is an incomplete description
serves primarily as part of an interpretative program of quantum mechanics,
in that it suggests that individual systems have intrinsic properties about
which the quantum state provides only a statistical description through an
ensemble of what are in reality differing individual systems. A completed
state, containing information not present in the quantum state, would then
provide a straightforward explanation of the perfect correlations predicted
by quantum mechanics, which it does not obviously explain. Bell’s theorem,
discussed below, later showed that such an approach is destined to failure,
because the empirically verifiable predictions of quantum mechanics for pairs
of two-level systems contradict the collection of assumptions of EPR.

1.7 Problems with Hidden-Variables Models

In the course of his rigorous mathematical formulation of quantum mechanics,
John von Neumann addressed the question of a hidden-variables alternative to
the approach to quantum mechanics that Dirac and others had been consid-
ering. For precision, let us from hereon refer to hidden-variables approaches,
theories, and models rather than hidden-variables interpretations.37 Advo-
cates of hidden-variables approaches to explaining the behavior of quantum
systems consider the quantum-mechanical specification of physical states to
be in some way incomplete, sometimes but not always along the lines argued
by EPR. In his formulation, von Neumann explicitly considered quantum me-
chanics to describe what he identified as a Gibbs ensemble,

“an ensemble of very many (identical) mechanical systems, each of
which may have an arbitrarily large number of degrees of freedom,
and each of which is entirely separated from the others, and does not
interact with any of them,” ([477], Section V.2)

as opposed to a Maxwell–Boltzmann ensemble, wherein one considers

“(interacting) components of a single, very complicated mechanical
system with many (only imperfectly known) degrees of freedom. . . ”
([477], Section V.2)

Von Neumann then provided a ‘no-go’ theorem against a class of hidden-
variables states potentially underlying the quantum ensembles, which is out-
lined below after the following brief description of various sorts of hidden
variables that can be considered in principle.
37 The term interpretation of quantum mechanics is here reserved for ways of under-

standing the standard quantum formalism or subsets thereof, rather than modi-
fications or extensions of it that add to the theory, as argued in Chapter 3.
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The first effectively hidden-variables model had been considered by Louis
de Broglie in the mid-1920’s [121, 122], before the introduction of New quan-
tum mechanics or von Neumann’s formulation of the theory. The early hidden-
variables theory outlined by de Broglie was later more fully developed, in par-
ticular, by Bohm who took hidden variables up again in the early 1950’s [52].
The possibility of extra ‘hidden variables’ (or ‘hidden parameters’) had also
been considered by Born almost immediately after he introduced the Born
rule which would, with their introduction, lose its fundamental status [67];
Born was initially inclined to view the wave-function as a “guiding field” for
the behavior of traditional particles.

“[T]he guiding field, represented by the scalar function ψ of the co-
ordinates of all the particles involved and the time, propagates in
accordance with Schrödinger’s differential equation. . . only a proba-
bility for a certain path is found, determined by the value of the ψ
function.” ([71], pp. 207-208)

The probabilistic interpretation of the distribution of complex-squares of
state-vector amplitudes is commonly called the Born hypothesis or Born rule,
although Born had not been fully committed to this view; it was Pauli who
clearly interpreted the modulus square of the wave-function as a general prob-
ability density, as opposed to providing probabilities for energies or angular
momenta of stationary states [337].38 Advocates of recent interpretations of
quantum mechanics, such as those of Henry Krips ([281], p. 118) and Hugh
Everett III [163–165], often seek to derive the Born rule rather than to hold
it as an independent theoretical postulate.

The ‘hidden’ variables are those parameters not in the quantum state that
would ostensibly complete the specification of the full set of physical mag-
nitudes for the system; they are not truly hidden in the sense of being in
principle inaccessible. Hidden-variables theories of quantum phenomena can
be formalized by reference to a putative complete state, λ, which in such the-
ories is taken to render the quantum-mechanically pure state ρ = |ψ〉〈ψ| as a
statistical state in the ordinary sense.39 The space of conjectured completed
states is, by definition, constrained by statistical principles, at least by the
need to preserve the functional subordination in the space of quantum ob-
servables and the preservation of the convex structure of the set of quantum
states. Such theories are offered in order to explain the inability of an exper-
imenter to prepare ensembles of quantum systems having zero dispersion.
38 For historical discussions of this understanding of the state-vector, see [27], pp.

48-49, and [256], Section 2.4.
39 Note that any ensemble approach to quantum statistics in which precise values

are attributed to all dynamical variables at all times has been referred to as a
“Gibbs ensemble” interpretation [496] to which Schrödinger refers [394], some-
what differently from von Neumann’s use of the term quoted above [477], cf.
Section 3.3 here.
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The mathematical setting for the consideration of hidden variables theories
therefore involves an observable O taking the value O|ψ〉(λ) in a quantum-pure
state |ψ〉 described by the map O|ψ〉 : Λ→ R, Λ being the domain of possible
values of hidden-variables λ. Assuming a probability measure µ that can be
used to characterize the degree of ignorance as to the value of λ, so that
{Λ, µ} constitutes a standard probability space, one has a probability density
function σ|ψ〉 for each |ψ〉. The probability that the hidden variable lies in the
interval λ+ dλ is given by σ|ψ〉(λ)dλ; the expectation value of O is

〈O〉|ψ〉 =
∫
λ

O|ψ〉(λ)σ|ψ〉(λ)dλ . (1.43)

In this construction, the values of quantum observables are random variables
over {Λ, µ}. As Michael Redhead has pointed out, some hidden-variable treat-
ments hold that the values of the quantum observables should not depend on
quantum states but only on the hidden variables; one can incorporate the
quantum state into the hidden variable, but this only renders the term hid-
den variable a greater misnomer (cf. [371], p. 47). Bell suggested the term
beable as an alternative [24], which has the shortcoming of suggesting poten-
tiality rather than actuality [270]. Shimony has offered the more appropriate
term existent [409]. This suggests a yet more precise term, existent magnitude.

The simplest sort of hidden-variables model is that in which λ provides def-
inite values to all physical magnitudes of a quantum system that correspond
to the quantum pure states P (|ψ〉). Such models, sometimes referred to as
non-contextual hidden-variables theories, determine the value of a quantity
obtained by measurement, regardless of which other quantities are simulta-
neously measured along with it, and specify the complete state of the overall
system composed of the measured system together with the measurement ap-
paratus. The contextual hidden-variables models, which were introduced by
Bell [23], require not only λ but also other relevant parameters associated with
the conditions of their measurement to assign each projector a definite value.40

Other categories pertaining to hidden-variables theories are the following. Al-
gebraic contextuality involves the specification of any other quantities that
are measured jointly with the quantity of interest. Environmental contextu-
ality involves there being some non-quantum-mechanical interaction between
the system subject to measurement and its environment that occurs before
measurement and that influences the value of the measured magnitudes. The
stochastic hidden-variables theories require the hidden variables and experi-
mental parameters to specify the probabilities of measurement outcomes cor-
responding to projectors. In the case of non-local hidden-variables theories,
the action on a subsystem of a composite system may have an immediate
effect on another, spacelike-separated system.
40 Thus, for example, Stanley Gudder has considered the context to be a maximal

Boolean subalgebra of the lattice of quantum Hilbert subspaces [200].
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One can imagine a situation wherein the measurement of a given quantity
attributed to a quantum-pure ensemble of systems gives different values even
though all members of the ensemble have the same specification. Then, either
there exist different subensembles distinguished by some hidden variable out-
side of the quantum description, or the measured dispersion of values arises di-
rectly from nature. In the former case, there must be as many subensembles as
there are different results. The “no-go” theorem proved by von Neumann ad-
dresses hidden-variables theories through an analysis of dispersion-free states
[477]; a state |ψ〉 is dispersion-free when the dispersion Disp|ψ〉O of all physi-
cal magnitudes O is zero when the system is in it. This pertains, for example,
to the Naive (realist) interpretation of quantum mechanics.41 The theorem
can be viewed as seeking to show that no dispersion-free descriptions exist
that enable a hidden-variables description of quantum phenomena.

The “no-go” theorem states that no hidden-variables model exists that
satisfies the following assumptions about operators in relation to physical
properties the behaviors of which are to be described by the model.

(1) Any real linear combination of three or more Hermitian self-adjoint
operators represents a measurable quantum magnitude.

(2) The corresponding linear combination of subsystem expectation
values is the expectation value of that combination of operators.

However, von Neumann’s result is less than definitive regarding the exis-
tence of a well defined hidden-variables theory. Although the second condition
seems natural to impose on the dispersion-free states because it is satisfied by
quantum-mechanical operators, there is no a priori support for this condition
for the individual dispersion-free states, which are to be averaged over.

1.8 Bell’s Theorem and Independence Conditions

Before Bell’s investigations of the constraints imposed by local causality had
begun, Einstein stressed the importance of locality for physics as follows.

“Unless one makes this kind of assumption about the independence
of the existence (the “being-thus”) of objects which are far apart
from one another in space—which stems in the first place from ev-
eryday thinking—physical thinking in the familiar sense would not
be possible. It is also hard to see any way of formulating and testing
the laws of physics unless one makes a clear distinction of this kind.”
([72], p. 170)

Bell drew out the implications of such an assumption in the context of joint
measurements, greatly clarifying the difference of the behavior of composite
physical systems manifesting internal correlations that might be produced
41 This interpretation is discussed in detail in Section 3.5
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by hidden variables from the correlations predicted by quantum mechanics
that they are incapable of simulating. In particular, he proved a now famous
theorem involving an inequality that the correlations of local-causal theories
must obey and that those of theories violating local causality need not.

Benefitting from the initial investigation of EPR by contemplating the
implications of their premises for predicted joint measurement statistics, Bell
first defined a specific sense of locality: A (hidden-variables) model describing a
bipartite system is (Bell-)local if a definite probability is assigned to the event
of there being a positive measurement outcome for every one of the bivalent
physical magnitudes of each subsystem by the complete state of the joint
system independently of measurements performed on the other subsystem,
even when the subsystems are relatively spacelike separated. His theorem
considers a putative complete state λ of the pair of particles that fully specifies
all the “elements of physical reality” present in the pair at any given instant.
As Shimony has tersely put it,

“[This complete state] determines the results of measurements on
the system, either by assigning a value to the measured quantity
that is revealed by measurement regardless of the details of the mea-
surement procedure, or by enabling the system to elicit a definite
response whenever it is measured, but a response which may de-
pend on the macroscopic features of the experimental arrangement
or even on the complete state of the measured system together with
that arrangement.” ([417])

A specific inequality was shown to hold for local models based on such states.
The term Bell-type theorem now refers to the collection of results having
in common with Bell’s original result the demonstration of the impossibility
of common-cause explanations of all quantum mechanical predictions, that is,
explanations of quantum correlations under the assumption of the Bell locality
condition (cf. [244], Section 8.7).

The measured bivalent physical magnitude of each subsystem was taken
by Bell for specificity to be the spin along a single direction as in Bohm’s
analysis. Bell then considered a probability measure, µ(λ), on the entire space
Λ of parameters providing complete states λ. The expectation values, Eµ(Λ),
of the bivalent quantities, as random variables, were therefore taken to be

Eµ(Λ)(n̂1, n̂2) =
∫
Λ

Aλ(n̂1)Bλ(n̂2)dµ(λ) , (1.44)

where λ ∈ Λ, and Aλ(n̂1) and Bλ(n̂2) are measurement outcomes along spe-
cific directions n̂1 and n̂2 on subsystems A and B, respectively. This leads
straightforwardly to the Bell inequality ,∣∣Eµ(Λ)(a, b)− Eµ(Λ)(a, c)

∣∣ ≤ 1 + Eµ(Λ)(b, c) , (1.45)

where {a, b, c} is any set of three angles specifying directions of measurement
in planes normal to the line of particle propagation; see Figure 1.3 [22, 24].
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Fig. 1.3. Schematic of apparatus for a Bell-type inequality test using polarization
interferometry. Two non-orthogonal states parameterized by angles θ1 and θ2, re-
spectively, from a set of specific values are measured in planes normal to the axis of
particle (counter-)propagation in two laboratories A and B.

As Jon Jarrett has explained, Bell’s locality condition can be identified
with the conjunction of two logically independent conditions [257], later de-
scriptively renamed parameter independence (PI), which regards the choice
of measurement in the distant laboratory, and measurement outcome inde-
pendence (OI) by Shimony [407]. PI is the condition that the probability of a
measurement outcome in one laboratory is independent of the particular mea-
surement chosen to be made in the other laboratory, once λ is determined.
OI is the condition that the probability of a measurement outcome in one
laboratory is independent of the measurement outcome found in the other
laboratory, although possibly dependent on the specific choice of measure-
ment made in the other lab and dependent on λ. A background assumption
is that the probability measure µ is independent of the specific choices of
measurements in the two laboratories ([419], p. 118).

Subsequent inequalities were obtained based on weaker assumptions that
still suffice for distinguishing Bell local from Bell non-local correlations. For
example, the Clauser–Horne (CH) inequality is the straightforward algebraic
result that probabilities constrained by Bell’s locality condition obey the re-
lation

− 1 ≤ p13 + p14 + p23 − p24 − p1 − p3 ≤ 0 (1.46)

as well as all inequalities resulting from permutations of the above indices,
where p1 and p3 are the probabilities that the first particle is found along
the first of the four directions {a, b, c, d} and the second particle is found
along the third direction; pij stands for the joint probability of finding the
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first particle along the direction i and the second particle along direction
j, 1 ≤ i, j ≤ 4. These particles correspond to quantum two-level systems.
No special restrictions are placed on the complete-state space Λ or on the
probability distribution used in the derivation of the CH result, for example.
Indeed, the CH inequality follows from the elementary algebra of probabilities
which, as such, lie in the interval [0, 1]. Nonetheless, the proofs of the above
results do continue to assume that the experimental arrangement prescribes
a probability distribution over state specifications that provides the above
probabilities as expectation values over complete states.

In practical experimental situations, it is generally impossible to have con-
trol of the putative complete state λ of such a composite quantum system,
greatly restricting the susceptibility of the early Bell-type inequalities to em-
pirical testing. For this reason, John Clauser, Horne, Shimony, and Richard
Holt (CHSH) modified the assumptions on the form of measured quantities so
as to allow for meaningful Bell locality tests in any experimental arrangement
sufficiently similar to that shown in Figure 1.3. The practically testable in-
equality CHSH obtained, now known as the CHSH inequality, can be written
simply as

|S| ≤ 2 , (1.47)

for S ≡ E(θ1, θ2)+E(θ′1, θ2)+E(θ1, θ′2)−E(θ′1, θ
′
2), where the Es are expecta-

tion values of the products of measurement outcomes given parameter values
θi and θ′i of the two different directions n̂i for the same laboratory i relative to
a reference direction as shown [107]. The correlation coefficients contributing
to S can be expressed in terms of normalized experimental detection rates.
The CHSH inequality is the Bell-type inequality to which reference is now
most often made in the physics literature.

The first experiment (later) considered to have demonstrated non-classical
behavior in the sense of violating the restrictions of local causality was that
reported in 1950 by Wu and Shaknov [509], for two-level spin systems in a
singlet state [54]. A maximum violation of this inequality by a factor of

√
2

beyond its bound can be achieved, for example, for a system in the fully
entangled state |Φ+〉 = 1√

2

(
|↑↑〉 + |↓↓〉

)
, where |↑〉 indicates, for example,

photon polarization oriented along one of the orthogonal axes of the plane
indicated in Figure 1.3 and |↓〉 indicates polarization oriented along the other,
by performing measurements with θ1 = π

4 , θ′1 = 0, θ2 = π
8 , and θ′2 = 3π

8 ; these
angles represent steps of π8 radians, where the two angles in each lab, that is,
on each side of the apparatus differ by π

4 radians [417]. Since its introduction,
the extent of the empirical value of |S| beyond 2 has served experimentalists
as a figure of merit for sources of non-separable quantum states.

Violations of Bell-type inequalities by microscopic systems have been
demonstrated many times since in a number of contexts; results systemat-
ically show the violation of Bell-locality bounds in accordance with quantum-
mechanical predictions [352]. Bell-type inequalities for pairs of systems of
arbitrarily high countable dimension have also been found, showing that it
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is not only for two-level system pairs that correlations are constrained by
local causality [114]. Because they rely on fundamental properties of proba-
bility, the expressions bounding the probabilities and expectation values in
these inequalities can be derived, for example, by enumerating all conceivable
classical possibilities. These can be viewed as extreme points spanning the
classical correlation polytopes, the faces of which are expressed by Bell-type
inequalities. These and other polytopes are discussed in detail in Chapter 4.

Because Bell-type inequalities involve sums of (joint) probabilities and ex-
pectation values, in order to show the incompatibility of the predictions of
quantum mechanics with these inequalities, the quantum counterparts and
expectation values can simply be substituted for the probabilities and expec-
tation values appearing in them. Even though Bell inequality violation was
empirically demonstrated without a locality “loophole”—which would be due
to a possible dependence of outcomes of detectors on state sources—by the
experiments of Alain Aspect et al. [11, 12] as well as later stricter tests (e.g.
[487]), other potential experimental loopholes remain. However, their closing
is not expected to have an effect on the results obtained.

Perhaps the greatest shortcoming of the Bell-type inequalities is that their
violation is limited in its value for testing state entanglement. Indeed, it is
unknown whether one will find them violated for many non-separable mixed
states. Some states can be transformed so as to violate a Bell-type inequality
by appropriate operations,42 which serve to “distill” correlations; states that
can be made to violate a Bell inequality in this way are referred to as distill-
able states. Importantly, all entangled states of pairs of spin-1/2 particles are
distillable [239]. However, there are higher-dimensional bipartite states that
are incapable of being so distilled, which are referred to as bound entangled. In
any event, violations of Bell-type theorems strongly point out the surprising
nature of quantum mechanics, and have motivated physicists and philoso-
phers to seek alternative interpretations of the theory, which are discussed in
Chapter 3.

1.9 Conditions Contradicted by Quantum Mechanics

In the case of perfectly correlated states of composite systems, the out-
come of a measurement on one system can be predicted with certainty given
the outcomes of appropriate measurements on other subsystems. Remark-
ably, a decade after Aspect’s tests of the CHSH inequality, it was shown by
Greenberger, Horne, Shimony, and Zeilinger (GHSZ) that the premises of the
Einstein–Podolsky–Rosen paper become inconsistent when applied to systems
possessing three or more subsystems, even for the cases involving such perfect
correlations [194].

The GHSZ demonstration shows that the incompatibility of the EPR as-
sumptions with quantum mechanics is stronger than that indicated by the
42 In particular, by CLOCC operations, see Section 1.10.
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violation of the Bell and CHSH inequalities, in that in the case of a pair of
two-level systems there is no internal contradiction at the level of perfect cor-
relations. Indeed, Bell produced an explicit model for the case of a pair of
spin-1/2 particles demonstrating the consistency of the EPR conditions with
the perfect correlations predicted by quantum mechanics [23]. Furthermore,
the contradiction between quantum mechanical predictions and the Bell and
CHSH inequalities are expressions violated only by statistical predictions of
quantum mechanics, rather than by individual events.

In the lead up to the exceptionally clear exposition of GHSZ, Greenberger,
Horne, and Zeilinger (GHZ) demonstrated the inconsistency in a new way in
systems consisting of three or more correlated spin-1/2 particles [195]. Because
this showed that the incompatibility of quantum mechanics with the EPR
assumptions arises at the level of perfect correlations rather than statistical
predictions and did not require the use of an inequality, these results are
often referred to as “Bell’s theorem without inequalities.” For example, the
correlations predicted for the outcomes of measurements of systems in the
state

1√
2
(|↑↑↑〉 − |↓↓↓〉) (1.48)

were shown to contradict the EPR assumptions as follows [44, 194, 195]. The
state of Equation 1.48, now referred to as the Greenberger–Horne–Zeilinger
(GHZ) state, is an eigenvector of all the operators σx ⊗ σy ⊗ σy, σy ⊗ σx ⊗
σy, σy ⊗ σy ⊗ σx, with corresponding eigenvalue +1 and of the operator
σx ⊗ σx ⊗ σx with corresponding eigenvalue −1. Measurement of the observ-
ables σx or σy on any two of the three two-level systems involved allows the
outcome for a corresponding third measurement to be inferred. The EPR
assumptions would then allow one to assign definite values to the local quan-
tities σ(i)

x and σ(i)
y , described by a function taking σ(i)

x and σ(i)
y each to the set

{−1,+1}, where the superscript indicates the subsystem in question. There
is, therefore, an immediate contradiction between the EPR premises and the
perfect correlations predicted by quantum mechanics.

Prior to the GHZ paper, Paul Heywood and Redhead had also pointed
out a contradiction between the conjunction of two conditions related to Bell
locality with quantum mechanics, by considering a pair of three-level spin
subsystems in a state such that the compound system they jointly form has
zero spin in all directions, namely, |Ψ〉 = 1√

3
(|+〉|−〉+ |−〉|+〉 − |0〉|0〉), where

+,−, 0 indicate the corresponding spin-projection eigenvalues [228]. In this
context, they introduced the notion of a locally maximal magnitude for a
bipartite system and two quantities A(i), respectively corresponding to the
operators A(1) ⊗ I and I ⊗ A(2), where A(i) is maximal for the subsystem
i = 1, 2. Such magnitudes are non-maximal for the composite system.

The two conditions introduced by Heywood and Redhead are ontological
locality (OLOC) and environmental locality (ELOC). The first is the require-
ment that if physical magnitudes P and P′ are locally maximal for the first
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subsystem and Q and Q′ are so for the second, then the magnitude P⊗I is
a unique magnitude for the composite system, as is I⊗Q. The second condi-
tion is the requirement that local magnitudes cannot be changed by changing
a spacelike separated piece of measuring apparatus. More specifically, then,
OLOC is the condition that

“If H1 and H2 are the Hilbert spaces for two spatially separated
systems and (A⊗ I) is a locally maximal operator, then [A⊗I]|φ〉{X} =

[A⊗I]|φ〉{Y} for any state |φ〉 of the joint system where X and Y are
both maximal operators on H1 ⊗H2 and [X,Y ] 6= 0.” ([371])

(The notation [O]|φ〉{P} means that the value of magnitude O in the quantum
state |ψ〉 depends only on an equivalence class of one-to-one functions gen-
erated by maximal magnitude P.) This condition is designed to ensure that
locally maximal magnitudes are not ‘split’ by contextuality of an ontological
nature in relation to the specification of differing maximal magnitudes for the
composite system. Precisely stated, the other condition, ELOC is that

“If S1 and S2 are two spatially separated systems, Q is [a magnitude]
for S1 and X and Y maximal [magnitudes] for the joint system (S1 +
S2), then if the difference between an apparatus set to measure X
and one set to measure Y is only in the setting of that part of it
located at S2, [Q⊗I]|φ〉{X}(X) = [Q⊗I]|φ〉{X}(Y).” ([371])

This second condition is designed to ensure that the value possessed by a
local magnitude cannot be changed to altering the arrangement of a remote
element of the total measuring apparatus. Heywood and Redhead then pointed
out that ELOC has no implication for local causality except in the presence of
a condition like OLOC. They then successfully argued that a theory wherein
physical magnitudes take only values that occur with non-zero probability
comes into contradiction with the conjunction of the two conditions of ‘onto-
logical and environmental locality.’

As shown later in Chapter 4, the various conditions so far described here
can be linked to information-theoretic situations and precisely related to en-
tangled quantum states. In order to set the stage for this later connection,
it is necessary to consider modern characterizations of several of the physical
situations previously considered. These involve, in particular, formalizations
of local quantum operations subsuming the sort first considered by EPR, Bell,
and others engaged in “experimental metaphysics.” Like the quantum-logical
investigation of quantum mechanics discussed in the following chapter, this is
carried out through further moves of a fairly technical nature, which are now
briefly summarized, rounding out this largely introductory chapter.
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1.10 Operations, Communication, and Entanglement

The lack of local causality associated with quantum entanglement in bipar-
tite pure states is exhibited in systems with components located in spacelike-
separated regions. In the language of quantum information science, such dis-
tinct regions are referred to as laboratories and the physical systems located
in them are attributed distinct Hilbert spaces, so that the corresponding com-
pound systems are describable by states in the Hilbert space that is formed by
taking the tensor product of the Hilbert spaces of the components; each labo-
ratory is taken to contain an agent physically described as a system that is ca-
pable of performing quantum operations on subsystems within its laboratory
and that has the potential to communicate with agents in other laboratories.
Communication and its relation to quantum entanglement is discussed in this
section assuming at most classical communication between agents.43 Investi-
gations of this sort have led to an understanding of quantum entanglement as
an information-processing resource, which has been seen to have a significance
beyond its historical one related mainly to Bell inequality violation.

The fundamental task of communication between agents is the communi-
cation of information with the greatest possible accuracy. A classical infor-
mation source can be defined via a sequence of probability distributions over
sets of symbols produced in a number of emissions by a transmitter into a
communication channel leading to a receiver.44 In order to represent realistic
physical situations, in addition to taking into account the ability of agents
to communicate information among themselves on the basis of which, for ex-
ample, quantum signal states can be locally manipulated by them, one must
take into account the ability of natural environments to induce transforma-
tions of quantum states. The latter, despite being quantum processes, are not
directly describable by the standard unitary evolution appropriate for closed
systems when considering limited regions of the universe. Natural physical
environments typically dephase or in other ways decohere subsystem states,
with implications for their ability to efficiently perform communication and
information processing tasks, and in many cases influence state non-locality
and entanglement (cf., e.g., [7]).

When a quantum system is in contact with an environment, it is an open
rather than a closed system. Fortunately, both situations can often be readily
described by the class of completely positive trace-preserving (CPTP) linear
transformations, ρ→ E(ρ), often called operations, taking statistical operators

43 More general situations, where channels for the communication of quantum in-
formation are also sometimes considered to be available, as discussed in Chapter
4.

44 This characterization is provided in full detail in Chapter 4.
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to statistical operators, each described by a superoperator, E(ρ), satisfying the
following conditions.45

(1) tr[E(ρ)] is the probability that the transformation ρ→ E(ρ) occurs.
(2) E(ρ) is a linear convex map on statistical operators, that is,

E
( ∑

i

piρi

)
=

∑
i

piE(ρi), (1.49)

pi being probabilities, so that E(ρ) extends uniquely to a linear map.

(3) E(ρ) is a completely positive (CP) map.

A linear map L : L(H) → L(H), where L(H) is the space of bounded linear
operators on H, is said to be positive if L(O) ≥ O for all O ≥ O, that is, all
O ∈ B(H) for which 〈ψ|O|ψ〉 ≥ 0 for all |ψ〉 ∈ H, where a map L : ρ 7→ L(ρ)
is linear if L(ρ) = p1L(ρ1) + p2L(ρ2) for ρ = p1ρ1 + p2ρ2.46 A positive L is
completely positive (CP) if, in addition, any IN ⊗L ∈ B(CN ⊗H) is positive,
for all N ∈ N. A map E : ρ→ E(ρ) satisfies the three above conditions if and
only if it can be written

E(ρ) =
∑
i

KiρK
†
i , (1.50)

for some set {Ki} of not necessarily Hermitian linear operators for which
I −

∑
iK

†
iKi ≥ O [279], an operator-sum representation. The Ki are the

decomposition operators (or operation elements); {Ki} is the operator de-
composition of E(ρ).47

Operations on composite quantum systems have been classified as follows.
The class of local operations (“LO”) is that of operations that are carried out
on individual subsystems located within the laboratories of their correspond-
ing agents, including unitary operations as well as measurements occurring
with the prescribed quantum likelihoods. The operations of classical commu-
nication (“CC”) are information transfer acts between agents in separate lab-
oratories carried out via classical means, and may be in one or two directions.
Local operations together with those of classical communication (“LOCC”)
45 In the quantum information science literature, this term has been used more

loosely to apply in cases where, for example, operator traces are not preserved.
For example, see the discussion of LOCC operations below.

46 The relation ≥ is defined as follows. A ≥ B if A − B ≥ O, where O is the zero
operator. It is an ordering on the set of self-adjoint bounded operators.

47 The trace preserving (TP) property for E(ρ), tr(E(ρ)) = tr(ρ) is equivalent to∑
i K

†
iKi = I, which is a completeness relation. Any CPTP map can be viewed

as the result of a unitary transformation acting in a larger Hilbert space containing
H1: for a state ρ ∈ H1 in the larger space H1 ⊗H2, there is a state ρ′ ∈ H2 such
that ρ = tr2(ρ ⊗ ρ′). Thus, any CPTP map can be given in the form D(ρ) =
tr2(U(ρ⊗ ρ′)U†), for some unitary operator, U , where ρ′ describes, for example,
the state of the environment [279].
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are operations on quantum systems by agents acting locally who are also ca-
pable of classically communicating. The distinction between LOCC and LO
is significant in that classical communication between agents allows the local
operations of an agent to be conditioned on outcomes of measurements that
might be carried out by other agents.

LOCC operations consist of combinations of local unitary operations, lo-
cal measurement operations, and the addition or disposal of parts of the total
system. Those operations that are trace preserving are referred to as LOCC
protocols.48 In the case of operations on a number of copies of a quantum
system for any of these classes, the adjective “collective” is added and the
above acronyms are given the prefix “C,” for example, the CLOCC class is
that of collective location operations and classical communication. In cases
where transformations are not achievable deterministically, but rather only
with some probability, they are considered stochastic operations and the ad-
jective “stochastic” is added as well as the prefix “S,” as in SLOCC.

When considering two-component systems described by statistical opera-
tors ρAB , the corresponding agents are customarily labeled A and B as done
occasionally above, indicating the native subsystems or laboratories of these
agents, considered physically, that is, as automata, unless otherwise indicated.
The actions of two agents capable of communicating can be correlated in ways
describable as global operations in both their laboratories that are not neces-
sarily describable as direct products of local operations. Because violations of
locality in the traditional sense are insufficient for the characterization of en-
tanglement in an arbitrary situation, despite their value in the investigation
of entangled quantum states, the distinction between the violation of local
causality and quantum state entanglement should always be borne in mind.

Any quantum operation OAB is implementable by a pair of parties via
LOCC when it is separable [468], that is, when it can be written as a convex
sum of local operations,OAB =

∑
i piAi⊗Bi, which guarantees that individual

operations are effectively carried out independently in the two laboratories
with probabilities pi, although the converse is not true, which accounts for
the possible local influence of communicated classical information. The class
of quantum states that can be prepared from a product state by LOCC is
known as the locally preparable class. Although LOCC enables correlated
mixed states to be created from previously uncorrelated states, it does not in
itself enable the creation of entangled states.

Operations are, in large part, transformations of quantum states that can
be described in the mathematical language of group theory, as shown fur-
ther below. In addition to the conventional requirement that a measure of
entanglement be non-negative and normalized in the sense that it be unity for
the Bell states, a fundamental pair of monotonicity conditions has been put
forth for any candidate, below indicated generically as EX(ρ), to be good a
measure of entanglement in contemporary treatments. This defines the class of
48 It is important to note that a LOCC operation is not necessarily a TP operation.
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entanglement monotones, which are functionals that characterize the strength
of genuinely quantum correlations through the requirement that no state be
convertible by local operations and classical communication (LOCC) to a
state having a greater value of the monotone. In particular, a quantity EX(ρ)
is called an entanglement monotone if it satisfies

EX(ρ) ≥
∑
i

piEX(ρi) , (1.51)

and

EX

( ∑
i

piρi

)
≤

∑
i

piEX(ρi) , (1.52)

for all local operations giving rise to states ρi with probabilities pi, where
at the end of the LOCC operation i, classical information is available with
probability pi and the state is ρi [469].

The first of the above two conditions, sometimes referred to as the funda-
mental postulate of entanglement theory, requires monotonicity on the average
for each local operation. The second condition requires EX(ρ) to be a convex
function that is monotonic under mixing, that is, the discarding of available
information, and provides mathematical convenience; it is sometimes relaxed.
The Schmidt measure ES and negativity N , discussed above in Section 1.4,
are examples of entanglement monotones for bipartite quantum systems.

Consider two sets of entanglement monotones, EΨl =
∑n
i=1 |ai|2 and

EΦl =
∑n
i=1 |bi|2, where l = 1, . . . , n, respectively obtained from the Schmidt

decomposition of two bipartite states |Ψ〉, |Φ〉 and having n components with
Schmidt coefficients ai, bi. The pure state |Ψ〉 can be transformed with cer-
tainty by local transformations to the pure state |Φ〉 if and only if EΨl ≥ EΦl
for all l = 1, . . . , n [471]. The following conditions are therefore now commonly
required of acceptable measures of bipartite entanglement EX on all states
ρAB of a pair of systems.

(i) EX(ρAB) = 0 if ρAB is separable.
(ii) EX(ρAB) is invariant under all local unitary operations UA ⊗ UB ,

that is, EX(ρAB) = EX
(
(UA ⊗ UB)ρAB(UA ⊗ UB)†

)
.

(iii) EX(ρAB) cannot be increased by any LOCC transformation,
that is, EX(ρAB) ≥ EX

(
Θ(ρAB)

)
, where Θ(ρAB) is a CPTP map.

The necessity of the first condition is obvious: separable states, specified by
Equation 1.24, are by definition not entangled. Conditions (ii) and (iii) are
necessary for entanglement to be considered a global property of quantum
systems; they render impossible the creation or distribution of entanglement
via LOCC alone. The last two conditions accord with each other because
local unitary operations are CPTP maps that can be inverted by local unitary
operations.

The proper asymptotic behavior of entanglement monotones in the limit
of many state copies, which is used in the analysis of entanglement as an op-
erational resource, requires that further conditions be imposed. For example,
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the following. (iv) The entanglement of n copies of a state ρAB is n times
the entanglement of one copy, EX(ρ⊗nAB) = nEX(ρAB), in particular for the
standard case of n Bell singlets, each of which are conventionally taken to
have entanglement equal to unity, that is, are n e-bits. An operational proce-
dure illustrating this relation is discussed below. With this fourth condition,
known as partial additivity, the pure state entanglement of bipartite quantum
systems is uniquely described by

E(|Ψ〉AB) ≡ S(ρX) = −tr(ρX log2ρX) , (1.53)

the von Neumann entropy, where ρX (X = A, B) is the (reduced) statistical
operator of either one of the two subsystems of the compound system in
state |Ψ〉AB [358]. Full additivity would require that E(ρ ⊗ σ) = E(ρ) +
E(σ); because bound entanglement, discussed below, may be activated, this
condition is often viewed as unwarranted. The two conditions are sometimes
simply replaced by the condition that, for pure states, the measure reduce to
this entropy.

The von Neumann entropy does have the property of being additive on
pure states of the composite system: using this entropy of the subsystem
reduced states as EX , and labeling the individual particles of laboratories A
and B in the n copies as Ai, Bi, the entanglement additivity property is

E
(
|Ψ〉A1B1 ⊗ |Ψ〉A2B2 ⊗ · · · ⊗ |Ψ〉AnBn

)
=

n∑
i=1

E(|Ψ〉AiBi)

for all pure states |Ψ〉AB . In the case of mixed states, additivity is desirable
but must be explicitly imposed and one refers to the additivity conjecture
for them.49 For mixed states ρAB of a pair of two-level systems A and B, a
good entanglement measure is the entanglement of formation, Ef , defined via
the convex-roof construction as the minimum average marginal entropy of the
single two-level-system reduced states for all possible decompositions of ρAB
as a mixture of pure subensembles each described by a state P (|Ψi〉AB), that
is,

Ef (ρAB) = min
{pi,|Ψi〉}

∑
i

piE(|Ψi〉AB) , (1.54)

where {pi, P (|Ψi〉)} represents a decomposition of ρAB .50 Note that, although
it can be expressed directly in terms of the von Neumann entropy S(ρA), the
form provided here allows for explicit reference to the states of the pertinent
pure sub-ensembles of two-level system pairs.
49 Note, however, that a uniqueness theorem not assuming additivity has also been

produced [469]. In the case of larger systems involving multiple parties, some of
the above conditions must be slightly modified.

50 This quantity is analogous to the total energy of thermodynamics, something
discussed in detail in Chapter 4.
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Again, it is possible to obtain pure entangled states that violate Bell in-
equalities beginning with mixed states that do not violate a Bell inequality
by using entanglement distillation. Such entanglement distillation is accom-
plished using entanglement purification, that is, the local manipulation of
a number of copies of a quantum state. Accordingly, the class of distillable
states is that of the states n copies of which can be converted via LOCC into
nr pure maximally entangled states, where r > 0. The pure states form two
distinct classes, the preparable and the distillable states, corresponding to
the product states and all other states, respectively. Distillation can mitigate
the detrimental effect of quantum decoherence. In the quantum information
processing context, entanglement has been viewed as a resource similar to
energy that can take several interchangeable forms and can be distributed
among quantum systems. Such problems were among the first considered in
quantum information science, which has emerged naturally from the study of
physical correlations in the study of quantum systems.

In order to find exactly how much of the resource of bipartite entangle-
ment they share, two parties can concentrate Bell singlet states between them;
they can distill, by CLOCC from a number, n, of copies of an initial bipartite
pure (not necessarily maximally) entangled state |Φ〉AB , the greatest number
k < n of singlet states possible: |Φ〉⊗nAB → |Ψ−〉⊗kAB , the resulting state clearly
containing k e-bits of entanglement. Distillation can be carried out with an
efficiency given by the von Neumann entropy S(ρ), where ρ is the reduced
statistical operator of a subsystem of AB [33]. This is a reversible process,
in the sense that there is an asymptotic scheme in which the inverse con-
version |Ψ−〉⊗kAB → |Φ〉⊗nAB can be performed, again via CLOCC, with equal
efficiency. The monotonicity condition (iii) implies that no entanglement dis-
tillation scheme can perform better than such an asymptotic scheme. One
thus sees that the original shared state contained k e-bits of entanglement,
shared between the two parties. The limit n → ∞ is associated with the use
of a standard unit of entanglement to describe the transformation process as-
sociated with condition (iv); taking this limit provides one with a well-defined
ratio characterizing the conversion process of a whole number of states to a
whole number of states because the entanglement of formation may take any
rational value.

Entanglement, like heat energy, cannot be increased by local operations
on remote subsystems. The reversible transformations, consisting of only lo-
cal operations that transform one entangled state into another, produce the
analogue of the Carnot cycle. This highly suggestive analogy has stimulated
an investigation into the depth of the similarities between quantum informa-
tion theory and thermodynamics, something taken up in detail in Section 4.8.
The Bell state entanglement resource allows global quantum operations to
be performed with the aid of quantum teleportation, which is also discussed
in detail in Chapter 4. The associated functional, the entanglement of distil-
lation, D(ρAB), is defined as the maximum fraction of singlets that can be
extracted, that is, distilled from n copies of ρAB by the CLOCC transforma-
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tion ρ⊗nAB → P (|Ψ−〉)⊗k in the asymptotic limit as n→∞:

D(ρAB) = lim sup
n→∞

(
k

n

)
, (1.55)

where k depends on n. This quantity can be viewed as analogous to ther-
modynamical free energy, and so is sometimes called the free entanglement.
It expresses, for example, the utility of a given entangled mixed state for
performing quantum teleportation.

According to condition (iii), it must be the case that D(ρAB) ≤ Ef (ρAB),
which reflects the irreversibility character of state mixing. For pure states of
a pair of qubits, both D(ρAB) and Ef (ρAB) are equal to the entropy S(ρA)
of the reduced statistical operator ρA = trB(ρAB), that is, Ef

(
P (|Ψ〉AB)

)
=

D
(
P (|Ψ〉AB)

)
= S(ρA), where |Ψ〉AB is the pure state in question. In the

manipulation of n entangled pairs of particles in state |Ψ〉AB , the optimal
probability of obtaining k singlets tends to 1 when k < D(P (|Ψ〉AB)), in the
infinite n limit; it is not possible to achieve the desired conversion for finite n.

For mixed states ρAB , it is also natural to consider the difference

B(ρAB) ≡ Ef (ρAB)−D(ρAB) , (1.56)

between the entanglement of formation and the entanglement of distillation,
known as the bound entanglement. The bound entanglement is clearly non-
negative: B(ρAB) ≥ 0. Bound states are not distillable but the formation of a
single copy of one requires entanglement; this can be viewed as arising from
extreme state mixing. Note, however, that the existence of bound states does
not preclude situations where forming a larger number of copies may require a
vanishingly small amount of entanglement per copy; the states that do not vi-
olate the PH criterion form a known such class. Non-violation of this criterion
is preserved under LOCC. It is currently an open problem whether one can
determine whether an arbitrary mixed state is distillable. An algorithm exists
for the problem of finding whether a mixed state can be (locally) prepared
[143]—this is a computationally NP-hard problem, however.

The main direction of investigation of quantum entanglement in recent
years has been through the consideration of entanglement as a resource for
information processing, which is taken up in Chapter 4. This has been shown
to bear on the central issues of the foundations of quantum mechanics. The
connection has been made in several divergent ways, each of which depends
to some extent on previous attempts to understand quantum measurement,
quantum probability, and logic, which are taken up in the next chapter. These
are themselves are tied up with the long quest to provide a fully satisfactory
interpretation of quantum mechanics, which is taken up in Chapter 3.



2

Quantum Measurement, Probability, and Logic

In the centuries preceding the development of quantum mechanics, the con-
ception of mechanical systems as objects existing independently of conscious
agents and possessing physical magnitudes that can, in principle, be arbitrar-
ily well specified was rarely questioned by physicists. In classical mechanics,
that is, that of the tradition of Newton, Lagrange, and Hamilton, the full set of
physical magnitudes describing each physical system is precisely determined
at all times by a collection of six parameters, the dynamical variables of vector
position q and vector momentum p, together constituting the state (q,p), in
accordance with Hamilton’s partial differential equations for the Hamiltonian
function H(q,p), and all imprecision of state specification is entirely due to
the ignorance of agents as to this objective state.

In classical mechanics, the domain of the dynamical variables constitutes
the state space, in which states evolve in time along precisely specifiable tra-
jectories in such a way that each magnitude is at every time uniquely deter-
mined by the state at any earlier time, that is, there is strict causality. Bohm
described the introduction of causality as a principle of physics as follows.

“[O]ne begins to consider the possibility that in processes by which
one thing comes out of others, the constancy of certain relationships
is no coincidence. Rather, we interpret this constancy as signifying
that such relationships are necessary, in the sense that they could
not be otherwise, because they are inherent and essential aspects of
what things are. The necessary relationships between objects, events,
conditions, or other things at a given time and those at later times
are then termed causal laws.” ([53], pp. 1-2)

The state of a compound system is also taken to be fully described through
those of its subsystems as specified by their dynamical variables, that is, their
(generalized) positions and momenta subject to the appropriate form of the
causal law of motion. This is the view of the world as a clockwork. In the
event that the state of a classical system is incompletely known to a conscious
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agent, the agent can describe the system statistically through the behavior of
a corresponding ensemble of possible copies of the system in states compat-
ible with his knowledge, each copy possessing precise values for its physical
magnitudes some or all of which are not precisely known by that agent. Such
ensembles can be used by another agent with more complete knowledge of the
states of the individual copies for communication with that agent by sending
these more precisely specified members of the ensemble as signals the receipt
of which provide information to the more ignorant agent when received.

Hans Reichenbach argued that inferences to determinism, such as captured
by Bohm’s simple reconstruction, are suspect, especially when they involve
inferences from behavior at one length scale to determinism at another.

“The idea of determinism, i.e., of strict causal laws governing the el-
ementary phenomena of nature, was recognized as an extrapolation
inferred from the causal regularities of the macrocosm. The validity
of this extrapolation was questioned as soon as it turned out that
macrocosmic regularity is equally compatible with irregularity in the
microcosmic domain, since the law of great numbers will transform
the probability character of the elementary phenomena into the prac-
tical certainty of statistical laws. Observations in the macrocosmic
domain will never furnish any evidence for causality of atomic oc-
currences so long as only effects of great numbers of atomic particles
are considered.” ([373], p. 1)

Already early in the twentieth century, the deterministic conception of me-
chanics was brought into question not only in the realm of quantum theory
but also in relation to the mechanics of classical systems having evolutions
with extreme sensitivity to initial conditions for arbitrary initial conditions
[384]. It is noteworthy that radioactive decay, observed as early as 1896, has
often retrospectively been viewed as pivotal for the early acceptance of inde-
terminism, even though that appears not to have actually been the case. In
particular, “van Brakel (1985) has surveyed the literature and come to the
conclusion that ‘before 1925 there is no publication in which the ‘indetermin-
istic’ nature of radioactive decay is considered to be a remarkable aspect of
the phenomenon’. . . On the other hand, he finds many publications claiming
such a role, all written after 1928” ([479] p. 140, [459]). That is, there is a
distinct possibility that the introduction of the New quantum mechanics of
microscopic systems motivated a revisionist account of the initial significance
of radioactivity for the increased acceptance of indeterminism.

The traditional pre-quantum mechanical picture of matter included causal
relations between systems located in space and time and involved in processes
under which they move between initial and final states in a continuous man-
ner and may interact with one another. A classic statement of determinism,
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following from causality, was made by Pierre Simon, Marquis de Laplace in
reference to the entire universe within space and time as a physical system:1

“We ought then to regard the present state of the universe as the
effect of its anterior state and as the cause of the one which is to
follow. Given for one instant an intelligence which could compre-
hend all the forces by which nature is animated and the respective
situation of the beings who compose it—an intelligence sufficiently
vast to submit these data to analysis—it would embrace in the same
formula the movements of the greatest bodies of the universe and
those of the lightest atom; for it, nothing would be uncertain, and
the future, as well as the past, would be present to its eyes.”([123],
pp. 3-4)

Laplace’s characterization has two aspects, that of the first sentence, which
is metaphysical, and that of the second, which is epistemic in that it has to
do with what is in principle calculable. What is in practice calculable may
be significant as well, because, for example, the universe may have a finite
number of components that could be used by agents, such as ourselves, for
the performance of calculations, a point which is addressed later in Chapter
4.

For the evolution of a complex system, even a classical one, to be deter-
ministic, a number of assumptions must be valid, including the assumption
that the system of interest is truly closed. Although a finite complete universe
is a closed system by definition, any part that human beings might actually
comprehend may never be closed, as reflected in the view of Émile Borel that
the classical description of gas “composed of molecules with positions and ve-
locities which are rigorously determined at a given instant is. . . a pure abstract
fiction” because one is driven, for the purposes of practical physics, to con-
sider the external forces acting on them as indeterminate [66]. Furthermore,
von Smoluchowski’s 1918 model of radioactive decay based on sensitivity to
initial conditions suggested early on that causality and random phenomena
are not inherently incompatible.

“As an explanation of the origins of the random variables observed in
classical systems, he suggested what is known as sensitive dependence
on initial conditions. In order to show that there is no contradiction
between ‘lawlike’ causes and ‘random’ effects, von Smoluchowski con-
structs a mechanical model reproducing precisely the exponential law
of radioactive decay. To complicate matters further, he says that he
‘of course does not believe radium atoms really possess such a struc-
ture’ [as that of a tiny planetary system]. Instead, radioactivity can
be taken ‘as the most complete type of ‘randomness’.” ([479], p. 140)

1 Also see [244], Section 2.6. It is interesting to compare this with the perspective of
the Collapse-Free interpretation discussed in the following chapter, which assumes
the validity of a universal quantum state deterministically evolving.
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The later popular idea that macroscopic behavior is essentially deter-
ministic whereas microscopic behavior is essentially indeterministic can be
viewed as the result of the long history of successes of classical physics in
the macroscopic realm and the necessity of explaining later ‘anomalous’ phe-
nomena in terms of the quantum mechanical behavior of microscopic systems,
against a background of deeply embedded philosophical assumptions. As Dud-
ley Shapere has pointed out,

“Determinism was a guiding principle. . . because it was based on
more general abstract or philosophical ideas, largely inherited from
the Greeks (or before) about what an explanation ought to be. One
could not have an explanation unless it explained every detail of
experience and allowed the specific prediction or retrodiction of every
detail of experience. That ideal of what an explanation ought to be
and must be if the theory is to be explanatory is rejected in quantum
mechanics.” ([99], p. 148)

Although irreducible randomness, as opposed to limitations on practical de-
scriptions free of stochastic elements, was increasingly accepted after the ar-
rival of the New quantum theory, Schrödinger began his 1935 cat paper by
reviewing the basic elements of the traditional approach, which he described
as “an ideal of the exact description of nature,” as a basis for criticizing the
new state of affairs in physics vis-à-vis its conceptual foundations after the
formalization of quantum mechanics had been essentially completed, although
he strongly criticized “naive realist” interpretations of the theory [394].

Einstein was also gravely concerned about the status of quantum me-
chanics in relation to these long-standing ideals of natural philosophy. “That
business about causality causes me a great deal of trouble. . . I would be very
unhappy to renounce complete causality” ([72], p. 23). However, as Arthur
Fine quotes Einstein saying in one of his letters to E. Zeisler, “For us causal
connections only exist as features of the theoretical constructs” ([174], p. 87).
Indeed, by 1950, Einstein had certainly come to see realism as a more crucial
element of a proper physics than causality. “In the center of the problematic
situation I see not so much the question of causality but the question of reality
(in a physical sense)” (Quote from a 1950 letter to Jerome Rothstein, [174]
p. 87). It is not that Einstein had a prejudice against probabilistic laws, but
rather only against irreducibly probabilistic laws in a fundamental theory (cf.,
[479], Chapter 4). Furthermore, as John Stachel has shown, “it was radical
non-locality that most bothered Einstein, even more than its probabilistic el-
ement” ([429], p. 246, cf. [428]). Einstein sought both realism and locality in
physical theory.

Few, if any, of the founders of quantum mechanics were entirely inflexi-
ble in the face of the new phenomena and the successes of quantum theory.
Rather, they sought the best balance of fundamental principles that still al-
lowed for the preservation of scientific naturalism. Thus, for example, Bohr’s
approach to quantum mechanics was an attempt to describe quantum phe-
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nomena within the broad outlines of traditional scientific methodology that
emphasized exactly that the scope of some principles may be limited by that
of others. This is most clear in his position that there is complementarity
between the continuous space-time description of microscopic systems and
their causal description. Related to but distinct from indeterminism, which is
metaphysical and regards the relation between system magnitudes of differ-
ent times, are indeterminacy (or indefiniteness), which is metaphysical and
regards magnitudes at just one time, and uncertainty, which is epistemic and
may relate to one time or several times.

“Bohr uses the concept of ‘complementarity’ at several places in the
interpretation of quantum theory. The knowledge of the position of
the particle is complementary to the knowledge of its velocity or mo-
mentum. . . ; still we must know both for determining the behavior
of the system. The space-time description of the atomic events is
complementary to their deterministic description. . . [The change in
the course of time of the probability function] is completely deter-
mined by the quantum mechanical equation, but it does not allow a
description in space and time. The observation, on the other hand,
enforces the description in space and time but breaks the determined
continuity of the probability function by changing our knowledge of
the system.” ([219], pp. 49-50)

His disciple Heisenberg, just quoted, was quite willing to abandon causality.

“Since all experiments obey the quantum laws and, consequently, the
indeterminacy relations, the incorrectness of the law of causality is
a definitively established consequence of quantum mechanics itself.”
([216], p. 197)

The differences of applicability of different sorts of ‘Heisenberg relation’ can
lead to confusion in regard to the distinction between indeterminism and un-
certainty. This relates to the fact that probabilities associated with quantum
states ρ may have both an objective and a subjective aspect, with the bound-
ary between them depending on the interpretation of the formalism assumed.

Eugene Wigner noted that in standard quantum mechanics there is “the
possibility of an observation giving various possible results even on a system
with a well defined and completely known state,” where “the acausality of
the theory manifests itself only at the observations undertaken” [502]. How-
ever, the concept of objective indefiniteness, namely, that physical magnitudes
inhere in an object without being simultaneously definite allows both inde-
terminism and indefiniteness to obtain without essentially involving the mind
in the description of measurement, as Wigner ultimately suggested. This idea
has been explicated more recently by Shimony, who has articulated it in the
following simple and striking context. “If. . . we concede that [a Bell state] Ψ
is a complete description of the polarization state of the pair of photons [in-
volved in demonstrating the violation of Bell’s inequality], then we must accept
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the indefiniteness of the [relevant projections of] polarization of each. . . as an
objective fact, not as a feature of the knowledge of one scientist or of all hu-
man beings collectively.” Furthermore, “[w]e must also acknowledge objective
chance and objective probability, since the outcome of the polarization anal-
ysis of each photon is a matter of probability” ([412], pp. 177-178). Shimony
made the following suggestion for interpreting the quantum state.

“It is convenient to use a term of Heisenberg to epitomize objective
indefiniteness together with the objective determination of probabili-
ties of the various possible outcomes; the polarizations of the photons
are potentialities. The work initiated by Bell has the consequence
of making virtually inescapable a philosophically radical interpreta-
tion of quantum mechanics: that there is a modality of existence of
physical systems which is somehow intermediate between bare logi-
cal possibility and full actuality, namely, the mode of potentiality.”
([412], pp. 177-178; also cf. [419], p. 108)

The interpretation of quantum theory, that is, the drawing out of the epis-
temic, metaphysical, and operational significance of the elements of the theory,
especially of the state function |ψ〉, is necessary because the formalism, like
that of any other physical theory is not, as is often suggested, self-interpreting.

In this chapter, various ways that physical magnitudes and measurements
have been quantum mechanically characterized are considered. This will equip
us with much of what we will need to appreciate more fully the import of
interpreting quantum mechanics. After setting out pertinent elements of logic
and probability theory, we consider fundamental results pointing out the above
restrictions and explore some apparently paradoxical situations that arise in
the application of the theory. For now, let us keep in mind the view of quantum
mechanics that prevailed in 1935, as summarized by Schrödinger.

“Continuing to expound the official teaching, let us turn to the al-
ready mentioned ψ-function. It is now the means for predicting prob-
ability of measurement results. In it is embodied the momentarily-
attained sum of theoretically based future expectation, somewhat as
laid down in a catalog. It is the relation- and determinacy-bridge
between measurements and measurements, as in the classical theory
the model and its state were. With this latter the ψ-function more-
over has much in common. It is, in principle, determined by a finite
number of suitably chosen measurements on the object, half as many
as were required in the classical theory. Thus the catalog of expecta-
tions is initially compiled. From then on it changes with time, just as
the state of the model of classical theory, in constrained and unique
fashion (“causally”)—the evolution of the ψ-function is governed by
a partial differential equation (of first order in time and solved for
∂ψ/∂t). This corresponds to the undisturbed motion of the model
in classical theory. But this goes on only until one again carries out
any measurement.” ([394])
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2.1 Logic and Mechanics

In characterizing a physical system at a given moment, one can both formally
and operationally consider the set of propositions, that is, true/false questions
about its magnitudes and their definiteness; one traditionally speaks of a
system having or not having any specific value of any magnitude by virtue
of that value lying or not lying in the corresponding Borel subset of the real
numbers.

In the case of a classical mechanical system, there is a specific real spatial
position vector of the particle and a specific real momentum vector, that is, a
location in phase space, as long as this particle exists. For classical systems,
complex propositions can be formed from the simplest ones via Boolean log-
ical connectives; for any proposition regarding system properties, there is a
subset of state space for which the proposition is true, any two propositions be-
ing physically equivalent if the same subset of state space attributes the same
value to them, modulo sets of Lebesgue measure zero. One can always provide
a characteristic function for all Borel subsets of the state space that provides
the desired logical mapping to propositions. These functions are idempotent,
that is, they are equal to their squares. However, when one attempts to ex-
tend this approach to the relation between states and properties to quantum
mechanical systems, it fails, and does so in specific ways. In particular, the
quantum state does not fully determine specific values of all their physical
magnitudes: from the logical point of view, the distributive law fails.

The failure of the distributive law can be related to the term observable
taking the place of the term property for the characterization of the physical
magnitudes of quantum-mechanical systems. Recall that the quantum state
of a system at a given time is capable of precisely specifying only a corre-
sponding subset of the physical magnitudes, that is, the currently “observed”
quantities and the others that are functions only of them, in the intervals
between measurement events, this being so only as long as quantities other
than these remain unmeasured, that is, “unobserved.” As Dirac put it,

“The expression that an observable ‘has a particular value’ for a par-
ticular state is permissible in quantum mechanics in the special case
when a measurement of the observable is certain to lead to the par-
ticular value, so that the state is an eigenvalue of the observable. . . In
the general case we cannot speak of an observable having a value for
a particular state, but we can speak of its having an average value
for the state. We can go further and speak of the probability of its
having any specified value for the state, meaning the probability of
this specified value being obtained when one makes a measurement
of the observable.” ([139], pp. 46-47)

These probabilities are the expectation values provided by the Born rule,
although there is some debate as to propriety of this procedure in the context
of traditional probability theory.



62 2 Quantum Measurement, Probability, and Logic

Bell argued that the use of the term observable can be misleading, much
as Bethe argued that the term uncertainty can be.

“There is indeed much talk of ‘observables’ in quantum theory books.
And from some popular presentations the general public could get
the impression that the very existence of the cosmos depends on our
being here to observe the observables. I do not know that this is
wrong. I am inclined to hope that we are indeed that important.
But I see no evidence that this is so in the success of contemporary
quantum theory.” ([24], p. 170)

Bell, Einstein, and Schrödinger sought a formulation of quantum theory lying
unequivocally in the traditional realist approach to physics in which physical
properties are independent of observing minds, and did so not simply for the
sake of tradition. Heisenberg described Einstein’s similar concern as follows.

“He pointed out to me that the very concept of observation was itself
problematic. Every observation, so he argued, presupposes that there
is an unambiguous connection known to us, between the phenomenon
to be observed and the sensation which eventually penetrates into
our consciousness. But we can only be sure of this connection, if we
know the natural laws by which it is determined. If, however, as is
obviously the case in modern atomic physics, these laws have to be
called in question, then even the concept of ‘observation’ loses its
clear meaning.” ([224], p. 114)

Recall that, in standard quantum mechanics, the observables are Hermitian
linear operators on separable Hilbert spaces, which is a rather indirect repre-
sentation by comparison to the direct representation of physical magnitudes as
functions in classical mechanics. A difference between classical and quantum
mechanics also arises in that, in the quantum case, the dynamical variables,
that is, the observables are constrained by commutation relations, and form a
non-Abelian (non-commutative) algebra; in the case of simple position Q and
momentum P , for example, one has [Q,P ] = i~.

In order to enable a logical interpretation of the quantum state |ψ〉 along
the lines of that of classical mechanics, physical magnitudes could be under-
stood via a value state, which is a Boolean value (0 or 1) attributed to the
system for each pairing of observable and value of that observable. However,
according to the Born rule, the Hilbert-space ray for pure quantum states
|ψ〉 instead provides only probabilities for all observables at any one time, in
particular, to the idempotent observables (projectors) which correspond to
propositions [67]; even in the case of pure states, only the proposition corre-
sponding to one Hilbert-space ray which takes the value 1, and the proposi-
tions corresponding to rays orthogonal to it, which take the value 0, have truth
values. The probabilities provided by the Born rule are not all definable as
measures over properties on a classical Kolmogorovian probability space, but
are well defined as such only in relation to quantities that have been measured
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and not subsequently disturbed by further measurements of non-commuting
quantities [244, 439]. As a result, the probabilities provided by quantum me-
chanics are best not defined on simple sets but instead on quantum events
or, operationally, experimental questions, that is, on pairings of individual
observables (defined on Hilbert space) and individual Borel subsets of the
real line (associated with values of measurement outcomes). Thus, the sort of
probability that appears in quantum mechanics is a generalized probability.

As with probability, which is taken up in detail in the following section, it
has been suggested that a generalization of standard logic is required for the
proper description the quantum world [166, 373, 437, 480]. In particular, it has
been suggested by Hilary Putnam and others that such a revision might lend
greater coherence to physical theory through the adoption of a conception
of logical truth under an empiricist approach to logic, within which logic
is capable of revision when our knowledge of the world increases as it has
with the emergence of quantum theory [366]; Redhead has suggested this
view of logic might be called instrumentalist [371]. By contrast with the case
of probability, however, the position that logic is empirical has come under
considerable criticism. One objection arises from the fact that it eliminates
the universality of logic in that, for example, human reasoning is already well
described by classical propositional logic but is apparently not by quantum
logic; there then would be, at the very least, different logics in different realms
[427].2 Other problems, as pointed out by Allen Stairs, are that

“ ‘Quantum Logic’ means so many things to so many people that
it has almost ceased to be a useful term. . . There is disagreement as
to whether quantum logic has anything to do with logic, and even
among those who think it does, there is disagreement concerning the
nature of logic in general and what quantum logic in particular can
do for us in our quest to understand quantum theory. . . In what I take
to be the most interesting version of quantum logic, the word ‘logic’
is taken very seriously. The aim is to present quantum mechanics
as a theory that posits novel relations among events or states of
affairs. . . which are reflected in logical structures of a strongly non-
classical character. On this view, logic functions in explanations: it
is part of an account of the strange behavior which quantum systems
exhibit.” ([432])

Quantum logic in the broadest sense has a history stretching back to the
early 1930’s and the work of Garrett Birkhoff and von Neumann, who demon-
strated the possibility of connecting the mathematics of lattice theory and
Hilbert space [48]. Their manner of associating logical states with quantum
systems was to straightforwardly assign binary values to closed linear sub-
2 An extensive but accessible introduction to more contemporary quantum logic

can be found in Chapter 7 of [244]. A useful bibliography is [340].
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spaces of the Hilbert space of the quantum system as mentioned above.3 In the
context of classical physics, Boolean logic and the traditional understanding
of the logical connectives and of negation interpretable in set-theoretic terms
can be unproblematically used, with the atomic propositions being those cor-
responding to a system being in one of the subsets of classical phase space.
Again, however, the projection operators representing propositions regarding
a quantum system form a non-Boolean algebra. Thus, to construct a quantum
logic, one must use different structures, for example, those related to partial
Boolean algebras.4

The quantum logic of von Neumann and Birkhoff, often called the logic
of subspaces, arises from the set of Hilbert subspaces of the complex Hilbert
space H describing the quantum system of interest, as follows. Each subspace
h̄ is identified with the operator Ph̄ that projects onto the subspace. The
lattice L̄(H) of closed linear subspaces of a Hilbert space H is seen to be
equivalent to the lattice of projection operators on H. One can define the two
operations ∧ (meet) and ∨ (join) acting pairwise on any two projectors P1

and P2 by P1∧P2 ≡ P1P2 , P1∨P2 ≡ P1 +P2−P1P2, and identify the zero as
the projector O onto the zero vector 0 and the identity as the projector I onto
all of H; ∨ corresponds to the linear span, ∧ to intersection. The rays of H are
considered to be the atomic propositions of L̄(H).5 Compound propositions
formed from them correspond to higher-dimensional closed linear subspaces.
The conjunction, ∧, is essentially the same as the conjunction of classical logic.
The central conclusion of Birkhoff and von Neumann was that

“one can reasonably expect to find a calculus of propositions which is
formally indistinguishable from the calculus of linear subspaces with
respect to set products, linear sums, and orthogonal complements—
and resembles the usual calculus of propositions with respect to and,
or, and not.” ([48])

However, the disjunction ∨ (join) and negation ′ behave much differently from
to set-theoretic disjunction and negation even if, as Putnam claims, these
are taken to be synonymous with those of traditional propositional logic. In
particular, Putnam has argued that one can reasonably claim that “adopting
quantum logic is not changing the meanings of the connectives, but merely
changing our minds about [the distributive law]” [366].

3 Given this, it is especially important to distinguish quantum logic from the im-
plementation of Boolean logic in quantum information science, which is based
on the manipulation of computational basis states by ‘quantum logic gates’; cf.
Section 4.5.

4 A detailed summary of the elements of Boolean and quantum logic are given in
section 5 of the Appendix.

5 An excellent critical résumé of the quantum-logical approach to quantum theory
can be found in [427]. For up-to-date reviews of quantum logic, see [117, 440].
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The propositions of quantum logic refer to the state of the physical sys-
tem at a given time. Their semantic interpretation involves no reference to
the preparation or measurement of the system. Following Birkhoff and von
Neumann, a quantum logic of events involving a system can be “read off” the
Hilbert space that describes it. The inherent algebraic structure of the pro-
jection operators on the Hilbert space, that of the partial Boolean algebra,
is formed by a family of Boolean algebras B(i) if the following conditions are
satisfied.

(1) The set-theoretical intersection, B(i) ∩B(j) = B(k), of two members
B(i), B(j) is a member of the family.

(2) If three elements of the partial Boolean algebra are such that two of
them belong to a given member of the family, then there exists a
Boolean algebra of which all three are members.

The complement of any element of the partial Boolean algebra is its com-
plement with respect to any of the members of a family to which it belongs;
the complement of the projector Pi is the operator P̃i = I − Pi such that
P̃i ∧ Pi = O and P̃i ∨ Pi = I. This complement is then unique and belongs to
any family to which the element belongs. Importantly, the matching of truth
values with closed linear subspaces of Hilbert space does not require that the
corresponding propositions are necessarily either true or false; this mathe-
matical correspondence is compatible with the indefiniteness of truth values
of statements regarding physical properties inherent in quantum mechanics
discussed in Chapter 1.6 Furthermore, the truth of an elementary quantum
proposition is insufficient to determine the value of all other propositions.

Again, the central move of the quantum logic approach is to consider the
lattice of propositions defined on Hilbert space, as described above, rather
than Boolean lattice of propositions defined on classical phase space or, equiv-
alently, to consider the related partial Boolean algebra. One can then attempt
to provide a truth-valuation, mapping subspaces onto the truth values of B2,
to arrive at a quantum propositional calculus in a manner resembling that in
classical propositional calculus. Such a valuation is subject to an admissibility
criterion: A truth-valuation is admissible if and only if there is a ray R such
that for every subspace S the value is 1 if and only if the former is a subspace
of the latter. Another peculiarity, in comparison with traditional logic, is that
the logic depends on the particular quantum system in question. Furthermore,
for Hilbert spaces of dimension greater than two, the valuations are not ho-
momorphisms from the lattice corresponding to the logic of subspaces L̄(H)
to B2; the valuations are not truth-functional, in that the values of compound
propositions are not determined by their components [371, 427].

6 It is also noteworthy in this regard that Reichenbach introduced a third logical
value as a basis on which to approach quantum mechanics ([373], Section 30).
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Recall that, most distinctively, the lattice structure of quantum logic is
non-distributive. As a relatively concrete illustration of this, consider the
propositional structure of a quantum two-level system, the case of spin-1/2.
The propositions corresponding to spin along a given direction z can be writ-
ten Lz = {0, pup, pdown, 1}. For another spatial orientation, z̄, one has a similar
system of propositions Lz̄ = {0̄, p̄up, p̄down, 1̄}. By identifying the least upper
bounds (lub’s) and greatest lower bounds (glb’s) of these two sets, one ob-
tains the “horizontal sum” Lz ⊗ Lz̄, which can be endowed with a modular
orthocomplemented structure. Even in this simple case involving the ‘past-
ing together’ of Boolean subalgebras, one obtains a structure differing from
a Boolean algebra because the distributive law fails to hold. For example,
beginning with the complex proposition pdown ∨ (p̄down ∧ p̄′down) and applying
the distributive law, one finds

pdown ∨ (p̄down ∧ p̄′down) = (pdown ∨ p̄down) ∧ (pdown ∨ p̄′down)
pdown ∨ 0 = 1 ∧ 1

pdown = 1,

which is erroneous. Moreover, beginning with the complex proposition of the
same form as that above, but with conjunction and disjunction interchanged,
one can also similarly obtain pdown = 0 [440].

In order understand the evolution of quantum systems in time, one con-
siders the quantum state space, which was described by Birkhoff and von
Neumann as follows.

“[Points in this space] correspond to the so-called ‘wave functions,’
and hence [phase space] is again a function space—usually assumed
to be Hilbert space. . . the law of propagation is contained. . . in quan-
tum mechanics, in equations due to Schrödinger. In any case, the law
of propagation may be imagined as inducing a steady fluid motion
in the phase-space. It may be noted that in quantum mechanics the
flow conserves distances (i.e. the equations are unitary).” ([48])

Notably, they viewed this as entirely compatible with causality.

“The [phase space] point p0 associated with [a system] S at time
t0, together with a prescribed mathematical ‘law of propagation,’ fix
the point pt associated with S at any later time t; this assumption
evidently embodies the principle of mathematical causation.” ([48])

This reflects a key element of von Neumann’s interpretation of quantum me-
chanics, which is discussed in the following chapter. Birkhoff and von Neu-
mann then made the following comments with regard to measurement that
touches on the distinction between quantum and classical behavior.
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“Now before a phase-space can become imbued with reality, its el-
ements and subsets must be correlated in some way with ‘exper-
imental propositions’ (which are subsets of different observation-
spaces). . . There is an obvious way to do this in dynamical systems
of the classical type. [their footnote: “Like systems idealizing the
solar system or projectile motion”] One can measure position and
its first time-derivative velocity—and hence momentum—explicitly,
and so establish a one-one correspondence which preserves inclusion
between subsets of phase-space and subsets of a suitable observation-
space.” ([48])

They then explicitly distinguished this from classical statistical theory.

“In the kinetic theory of gases and of electromagnetic waves no
such simple procedure is possible, but it was imagined for a long
time that ‘demons’ of small enough size could by tracing the mo-
tion of each particle. . .measure quantities corresponding to every
coördinate of the phase-space involved. In quantum theory not even
this is imagined, and the possibility of predicting in general the read-
ings from measurements on a physical system S from a knowledge of
its ‘state’ is denied; only statistical predictions are always possible.
This has been interpreted as a renunciation of the doctrine of pre-
determination; a thoughtful analysis shows that another and more
subtle idea is involved. The central idea is that physical quantities
are related, but are not all computable from a number of independent
basic quantities (such as position and velocity).” ([48])

It is noteworthy that Birkhoff and von Neumann considered the require-
ments of imbuing the space of states with “reality,” echoing the vocabulary
used by EPR the year before, and that they reflect on causality; one motive for
pursuing quantum logic in recent times, as is typical of interpretations of the
quantum formalism, has been to remove traditional paradoxes associated with
the theory’s description of the world while being straightforwardly compati-
ble with ‘realism’ in the EPR sense.7 Again, however, the atomic propositions
must be attributed definite truth values for this to work. Putnam proposed
mapping a new set of propositions {∆Q}, each associated with the value of
each observable Q lying in an Borel subset ∆ of its set of possible values,
onto corresponding projection operators; these projection operators PQ(∆)
are those associated with the subspaces the ranges of which are the subspaces
spanned by all eigenvectors |qi〉 corresponding to the eigenvalues qi ∈ ∆, the
set of corresponding measurement outcomes associated with measuring the
observable Q. One thereby associates with the operator the proposition ‘The
state of the system is in the range of PQ(∆)’ [366]. This is problematical if
the state of the system, which Redhead calls the Putnam state [371], is not

7 The usage of the term realism is taken up in detail in Chapter 3.
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in this range and one wishes to assert the value of the elementary proposition
in order to retain ‘realism.’

The Kochen–Specker theorem, considered in a later section, presents a
significant obstacle to straightforwardly providing a truth valuation under
these circumstance. In an attempt to enable an admissible truth valuation,
Putnam asserted that in quantum logic “every observable Q has a value, but
there is no value which it has.” Although consistent, this move undermines
the intuitions motivating ‘realism’ in the first place, to such an extent that
its appeal is almost entirely lost. The underlying components of the ‘realist’
understanding of quantum mechanics, are (i) the value-definiteness thesis,
the idea that every physical magnitude has a definite value at all times [433],
and (ii) that measurements reveal those values. These run contrary to the
idea objective indefiniteness, which allows a less conflicted description of the
behavior of quantum systems. As Richard Healey has argued,

“The content of the claim that every dynamical variable has a precise
value is quite obscure once one has adopted quantum logic, given that
the standard (classical) inferences can no longer be drawn from it.
And, in particular, it is by no means clear that the truth of this claim
suffices to permit a naive realist reading of the Born rules, according
to which the object system possessed the specific value revealed by
a measurement prior to, or independent of, the occurrence of that
measurement.”([211], p. 22)

Thus, as Peter Mittelstaedt has put it in relation to the historical development
of the interpretation of the quantum probability rule itself,

“[The] original Born interpretation, which was formulated for scat-
tering processes, was. . . not tenable in the general case. . . The prob-
abilities must not be related to the system S in state φ, since in the
preparation [of the quantum state] φ the value ai of an observable
A is in general not subjectively unknown but objectively undecided.
Instead, one has to interpret the formal expressions p(φ, ai) as the
probabilities of finding the value ai after measurement of the observ-
able A of the system S with preparation φ. In this improved ver-
sion, the statistical or Born interpretation is used in the present-day
literature.. . . On the other hand,. . . the meaning. . . for an individual
system is highly problematic.” ([319], p. 41)

2.2 Probability and Quantum Mechanics

From the perspective of logic, one sees that complications arise in quantum
mechanics because not all propositions are compatible, that is, the full set of
events in quantum mechanics is non-Boolean in a specific way. The proba-
bilities arising in quantum mechanics are probabilities generalizing those of



2.2 Probability and Quantum Mechanics 69

the traditional kind. Nonetheless, conceptions deriving from those of classical
probability can still be brought to bear on the generalized probabilities given
by the Born rule as a postulate of standard quantum mechanics. In this sec-
tion, we review the basic conceptions of probability. Two fundamental results
that help contextualize and characterize probability within quantum theory,
namely, Gleason’s theorem and the Kochen-Specker theorem, are then consid-
ered in the following section. It is valuable to have all these in mind when later
considering various surprising or arguably problematic quantum mechanical
situations, that is, the “quantum paradoxes” that have been contemplated.

There are several different conceptions of probability, most significantly
for our purposes the classical, relative frequency, propensity, and subjective
conceptions. Although there are difficulties associated with each, they typi-
cally do not bear directly on the situation in quantum mechanics per se.8 Let
us survey these conceptions in the mathematical context of the Kolmogorov
axiomatization of the probability calculus in modern form; in particular, the
third axiom as presented below is a more general one than that introduced
by Kolmogorov but reduces to it when the set of events is finite rather than
merely countable.9 In the Kolmogorov axiomatization, one is given the events
A,B,C, . . . and thus the sample space S of events (the unit event being iden-
tified in quantum mechanics with the projector I) defined as their union. The
triple (S, F, p), where F is a field of subsets of S, is referred to as a Kol-
mogorovian probability space when the following conditions are satisfied by
p, in particular, taking p(Ei) ∈ R as the probability of the event Ei.

(1) For any set of events {Ei}: 0 ≤ p(Ei) ≤ 1.
(2) p(S) = 1.
(3) For any countable sequence of mutually disjoint events E1, E2, . . .,

p(E1 ∪ E2 ∪ · · ·) =
∑
i p(Ei) (σ-additivity).

The probability of one event, B, conditional on another, A, is written
p(B|A) = p(B∩A)/p(A). If two events A and B are such that p(B|A) = p(B)
and p(A|B) = p(A), then they are probabilistically independent. In the con-
text of probability theory, one is primarily interested in experiments consisting
of a sequence of trials, each having an elementary event as an outcome. If the
trials are all independent, such a sequence is referred to as a Bernoulli se-
quence. If the trials are such that the probability of each event may not be
independent of its predecessor but is independent of all others of the sequence,
it is referred to as a Markov sequence.

The classical conception of probability, which predates the Kolmogorov
axiomatization, arose by abstraction from practical situations in which all
outcomes are in some sense equally possible, the probability of any one event
8 For an illuminating summary of difficulties in interpreting probability, from which

this survey has greatly benefited, see [203].
9 In some versions of the subjective interpretation of probability, this axiom is

brought into question.
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being the fraction of the total number of events that it represents, as in the
appearance of a quantity as a sum obtained in the rolling of a pair of fair dice
by adding together the value of the two upward faces. The introduction of the
principle of indifference, namely, that whenever there exists no evidence that
favors one possibility over another possibility they have equal probabilities,
helps avoid a circularity in the classical conception of probability. However, it
may be problematic to explicate the idea of “equally good evidence” for two
uncertain events without making use of probability. There is also an issue of
the impact of the number of events. In some applications, most importantly
here being quantum mechanical ones, probabilities may take irrational values;
this conception of probability requires the consideration of an infinite number
of events for these values to be defined. In such cases, one may appeal to a
generalization of the principle of indifference, in the form of the maximum
entropy principle. On this principle, one takes from the set of all distributions
consistent with background knowledge the one maximizing the information-
theoretic entropy. Although this is viable in the countably infinite case, there
is a certain arbitrariness to the procedure that is particularly problematic
in the case of uncountably infinite sets of events, because the principle of
indifference can be applied in ways that are incompatible with each other.

The frequency conception of probability is based on the direct identifica-
tion of the probability of events with their relative frequency of occurrence
in the total set (reference class) of actual events. Advocates of the Bayesian
subjective interpretation of probability consider this identification a category
mistake; that subjective view has been adopted by advocates of the Radi-
cal Bayesian interpretation of quantum mechanics, discussed in the following
chapter.10 A distinguishing element here is the consideration of actual out-
comes as opposed to possible outcomes. Thus, on this conception, probability
is defined operationally. This poses an immediate problem in cases where irra-
tional values of probability might be considered necessary because such values
clearly cannot exist for finite sets of events, such as physical measurements,
which clearly cannot ever constitute an infinite class if measurement is to be
carried out by agents. This problem is typically avoided by considering this
probability as an ideal limit as the number of events becomes infinite, which
is counterfactual in character, at some cost to its operational character.

The propensity conception of probability, by contrast, takes probability to
be a physical disposition or tendency of a situation in the world to provide each
kind of outcome, or a limiting relative frequency for each such outcome. This
conception is particularly practical when one desires to attribute probabilities
to events that by definition can only occur once, something quite unnatural for
the conceptions considered above. For example, Karl Popper considered the
probability of an outcome of a given type to be a propensity of a repeatable
experiment to produce the given outcome with just that limiting relative
10 A category mistake is committed when one discusses a matter in terms appropri-

ate only to matters of a significantly different character (cf. [386], p. 16).
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frequency [360]. Propensity may also derive its meaning from the role it plays
in theories of interest, including quantum mechanics. Bernard d’Espagnat
has argued that quantum “probabilities are both intrinsic and ‘of appearing,’
which mean [sic], they are ‘probabilities to appear to observers.’ ” ([126], p.
326). Typically, however, those advocating the propensity theory of quantum
probabilities typically wish not to view them in this way.

The subjective conception of probability identifies probability not with
any objective property of the world but directly with the degrees of belief of
relevant agents about events, subject to chosen constraints such as rationality,
which involves at least consistency. Traditionally, the subjective conception of
probability assumes that events are definite and that probabilities arise due
to the ignorance of subjects. A set of alternatives are considered that are
in a certain sense symmetric relative to this ignorance, with the result that
probability is uniformly divided over the elements of this typically finite set
[479].

The specific subjectivist approach to probability due to de Finetti has been
taken on board by ‘Radical Bayesian’ interpreters of the theory. The approach
of de Finetti takes an agent’s degree of belief in an event to be the probability
p if and only if p units of utility is the price (the so-called ‘fair price’) the
agent would buy or sell a wager that pays one unit of utility if E occurs and 0
otherwise, assuming that there is precisely one such price, an assumption that
is often challenged. One considers a ‘Dutch book,’ which is a series of bets
against an agent that the agent considers acceptable; such a series of bets can
be avoided by the agent if his subjective probabilities obey the Kolmogorov
axioms, that is, are coherent [268]. This provides an operational definition of
probability. Probabilities are considered to differ categorically from proposi-
tions, so that probability assignments are not considered propositions within
the theory. One considers an arbitrary sum as being the reward of betting on
E. Similarly to the situation in other conceptions of probability, one finds that
this sum must then be infinitely divisible in principle in order to guarantee
full precision of probability measurement; utility must also depend linearly on
the sums to avoid dependency of betting on probability assignments. Upon
learning new facts, agents probabilities are updated in accordance with Bayes’
rule and are dependent on their prior probability assignments.

With these various conceptions of probability in mind, let us now consider
a number of central technical results in the foundations of quantum mechanics
that have been obtained in relation to quantum mechanical propositions and
related probabilities.

2.3 The Completeness of Quantum Mechanics

The traditional approach to physics before the arrival of quantum mechan-
ics was, as seen above, one in which each state of the system attributes a
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definite value to all physical magnitudes, that is, one that fulfilled the value-
definiteness condition: each proposition regarding the system, which is of the
form “O ∈ ∆” where O is a quantity describing the physical magnitude and ∆
is a Borel subset of the real numbers, is assigned a definite truth value. Statis-
tical states are then given as probability measures µO : ∆→ p(O,µ,∆) on a
phase space specifying the probability that a measurement of the magnitude
O will lie in ∆ when the system is in the state µ. The Kochen-Specker the-
orem shows this approach to be impossible within the structure of standard
quantum mechanics. The related theorem of Gleason specifies the precise form
of the admissible quantum mechanical probability measures as a functional of
the quantum state.

Gleason’s theorem justifies, contra EPR, the claim that the state descrip-
tion of standard quantum mechanics is complete, by identifying the form of
all admissible measures with that of standard quantum mechanics [193], as
assumed, for example, under the Basic interpretation of the theory discussed
in Section 3.2 below. In the process, it eliminates an entire class of conceiv-
able local hidden-variables theories that had been considered to complete the
description of physical systems and would have relegated quantum mechanics
to the status of a trivially statistical theory and so would have demoted it
from the status of a fundamental theory of physics.

To understand the completeness of quantum state descriptions, one can
begin by considering a map p(Pi) from sets of quantum projectors {Pi} to
the real numbers between 0 and 1, p : Pi 7→ p(Pi), such that p(O) = 0 and
p(I) = 1, such that P1P2 = 0 implies p(P1 + P2) = p(P1) + p(P2), taking p to
be a countably additive probability measure, where O is the projector onto the
zero vector 0 and I projects onto the entirety of the Hilbert space pertaining to
the quantum system in question. In the course of his proof, Gleason provided
an important Lemma ([193]11): Let |φ〉 and |ψ〉 be two state-vectors in a
Hilbert space H of dimension at least 3, such that for a given system state
〈P (|ψ〉)〉 = 1 and 〈P (|φ〉)〉 = 0. Then |φ〉 and |ψ〉 cannot be arbitrarily close
to each other. In particular, || |φ〉 − |ψ〉 || > 1

2 .

The central result of Gleason is the following.

Theorem ([193]): All probability measures that can be defined on the lat-
tice of quantum propositions from the quantum statistical operators, that is
all quantum probabilities, are of the form p(Pi) = tr(ρPi), for some statistical
operator ρ on Hilbert space H, for all H of dimension greater than two.

Gleason’s theorem shows that every probability measure over the set of pro-
jectors arises from a quantum state ρ on the Hilbert space of the system.
The trace measure assigns to each projector the dimension of its range, which
can then be normalized by the dimension of the pertinent (finite-dimensional)
Hilbert space. It is thus obtainable by considering ρ to be the maximally
mixed state on the space (see [371], Section 1.5). Gleason’s theorem shows

11 This version of the lemma is that given by Bell [24].
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that the only natural generalization of Kolmogorovian probability functions
of the type needed for quantum mechanics is just that appearing in Hilbert-
space formulation. The values corresponding to orthogonal projectors thus
obey a rule of the type introduced by Born [67] and explicated by Pauli.

The relationship between these results and the putative dispersion-free
states, for which projectors take expectation values of only either 0 or 1 un-
der the above mapping, can be understood as follows [24]. The condition∑
i〈P (|φi〉)〉 = 1 implies that both 0 and 1 occur because (1) there are no

other possible values for satisfying the condition and (2) neither alone suf-
fices. But, then, there must be arbitrarily close pairs |ψ〉, |φ〉 having different
expectation values, 0 and 1 respectively; however, such pairs cannot be arbi-
trarily close, by the above lemma. Therefore, there can be no dispersion-free
states providing quantum statistics. Accordingly, no hidden variables that pa-
rameterize dispersion-free probability measures exist for systems with Hilbert
spaces of dimension greater than 2 [24]; because it provides the probability
measures definable on the lattice of quantum propositions corresponding to
the quantum projectors, the set of quantum states is complete. In the con-
text of quantum information theory, this is related to the no-cloning theorem,
discussed in Section 4.2; dispersion-free states would enable perfect quantum
cloning.

To see more explicitly how this considerations bear on the class of local
hidden-variables theories, following Kochen–Specker, consider the complete
set of Hermitian self-adjoint operators for the entire set of quantum states
of a system with a Hilbert space of dimension greater than two, with the
very natural constraint that the algebraic relations of these operators must
be reflected in the assigned values and the assignment of real numbers to
the operators of quantum mechanics that might be taken to represent the
values of the corresponding properties of that system. The Kochen–Specker
theorem shows that such an assignment cannot be found for a finite sublattice
of quantum propositions [277]. Consider the value function, vψ connecting an
observable O to a value of a physical magnitude O when a system is in a state
ψ, as mentioned at the outset of this chapter. It is natural to define F (O), the
value associated with F (O) for all functions F , where the mapping from values
of O to O is one-to-one and onto. One can then imagine taking vψ(F (O)) =
F (vψ(O)), which has the consequence that vψ is additive and multiplicative on
operators that commute, the latter itself having the consequence that vψ(I) for
all states ψ so long as there is at least one magnitude O for which vψ(O) = 0
(cf. [247], pp. 191-192). Another consequence of this multiplicativity is that
vψ(Pi) must be either 0 or 1 for all propositions Pi, which have corresponding
projectors Pi. Thus, if one considers a resolution of the identity into a set of
projectors {Pi}, that is, this set is such that

∑
i Pi = I in an interpretation of

quantum properties where one and only one of the corresponding magnitudes
Pi can take the value 1, one finds that, except for an overly restricted class of
properties, no such function exists.
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It is worth noting in passing that, because the calculations involved in
Gleason’s proof require the dispersion-free states to provide relationships be-
tween experiments that cannot, as a matter of principle, be made simultane-
ously, as noted by Bell ([22], Ch. 1), it does not preclude an essentially empty
hidden-variables theory of the kind that could be produced for any theory, that
is, if no constraints are placed on the relationships between observables ([277]);
it remains possible for a set of observables and states assigning probabilities
to Borel sets of values of the observables to have a set of hidden variables that
are sufficient, by simply considering real functions, one for each observable
such that probabilities associated with the Borel sets, for each state—for each
observable, a probability given by the hidden variable distribution given by
the inverse of the associated real function will suffice.

2.4 Problems with Measurement in Quantum Mechanics

Many have been uncomfortable with the fundamental role of measurement in
quantum mechanics. For example, one of Bell’s greatest concerns was that it
introduces conceptual imprecision into physics.

“If the theory is to apply to anything but idealized laboratory oper-
ations, are we not obliged to admit that more or less ‘measurement-
like’ processes are going on more or less all the time more or less ev-
erywhere? Is there then ever then a moment when there is no jumping
and the Schrödinger equation applies? The concept of ‘measurement’
becomes so fuzzy that it is quite surprising to have it appearing in
physical theory at the most fundamental level. . . does not any anal-
ysis of measurement require concepts more fundamental than mea-
surement? And should not the fundamental theory be about these
more fundamental concepts?” ([24], pp. 117-118)

Instead of the term measurement, Bell strongly preferred that the term ex-
periment be used, because

“in fact the [former] word has had such a damaging effect on the dis-
cussion, that I think it should now be banned altogether in quantum
mechanics. . . the latter word is altogether less misleading.” ([25], p.
20)

This concern can be related to the concern about the prominence of obser-
vation. Some have accepted the centrality of measurement to quantum me-
chanics despite the fact that it is seen as a key shortcoming of the theory.
Nonetheless, even Wigner, one of the more radical in approach to achieving
consistency between measurements and the remainder of quantum theory due
to his explicit appeal to observation, understood the discomfort it causes.



2.4 Problems with Measurement in Quantum Mechanics 75

“The principal difficulty [of quantum mechanics] is that it elevates
the measurement, that is the observation of a quantity, to the basic
concept of the theory. . . it seems dangerous to consider the act of
observation, a human act, as the basic one for a theory of inanimate
objects. It is, nevertheless, at least in my opinion, an unavoidable
conclusion. If it is accepted, we have considered the act of observa-
tion, a mental act, as the primitive concept of physics. . . ” ([502])

That quantum measurements are not dynamical defined in a way consistent
with the Schrödinger equation but are used to explicate how observables come
to have definite values after not having had them, was well understood by
Wigner, who acknowledged that by accepting measurement as fundamental
to the theory “it may well be said that we explain a riddle by a mystery”
([502], p. 1).

Given that quantum mechanics remains a fundamental theory, something
the results of the previous section support, and that theory ought to be
properly connected with practice, confronting this difficulty is unavoidable,
as Wigner noted, even if his own solution to it may be rejected. The stan-
dard approach to measurement in quantum theory is to consider measuring
instruments to be physical objects that can in principle be realized in the
world, say in a laboratory environment, rather than being mere conceptual
crutches. This is particularly important to bear in mind given the prominence
of thought experiments in the arguments pertaining to the foundations of the
theory, which would lose considerable force were they to be absolutely dis-
tanced from practice. Indeed, because quantum mechanics is one of our most
fundamental theories and, perhaps, the most empirically successful one in his-
tory, it must describe measurement whether it does so alone or together with
other equally fundamental elements of physics, if it is to be considered truly
complete, although, as with indeterminism, there also remains some question
regarding the uniqueness of quantum mechanics in this regard (cf. [389], p.
55). As Krips has pointed out, it is

“[not] necessary that [quantum theory] by itself generates [models
for the process of measurement], any more than we require a de-
scription of the functioning of devices for measuring charge, say, to
be entirely given from within electromagnetism (although arguably if
[quantum theory] is to be ‘complete’ then it must provide such mod-
els). . . [Nonetheless,] one would expect that [quantum theory] places
certain restrictions on how to measure. . . (just as the laws of electro-
magnetism do. . . ). These turn out to be quite strong. . . ” ([281], p.
106)

In quantum mechanics, as in classical physics, measurements must be per-
formed for one to find the values of physical magnitudes of a system, which
may have been prepared in an incompletely known state. Measurements re-
quire the physical coupling of some apparatus to the system that is the object
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of measurement. In quantum mechanics, however, due to (at least one version
of the) the Heisenberg relations, it cannot simply be assumed that measure-
ments have no effect on the physical state or its description, as can be con-
sistently assumed in classical mechanics. Recall that the distinctive element
of quantum theory most clearly setting it apart from classical statistical me-
chanics is the superposition principle regarding quantum states, which implies
the Heisenberg relations. A measurement result is given as the registration of
an appropriate physical magnitude, a pointer observable. Pointer-magnitude
values can differ from the those of the measurement memory register so long
as there is a well defined pointer function serving to bring the elements of the
two sets of values into one-to-one correspondence. In this way, quantum me-
chanics specifies the connection between the subject (observer) and observed
phenomena to which Einstein referred. However, the Schrödinger dynamics
typically fails to specify the result obtained.

The ongoing interest in the interpretation of quantum mechanics is strongly
related to the degree of concern over the difficulty of providing a detailed ac-
count of measurement, which is far greater than, for example, providing one
for classical measurements. Standard quantum mechanics assumes a formal
relationship between physical magnitudes and eigenstates, namely, that a sys-
tem magnitude is attributed a definite value when and only when the system
is in a state that is an eigenstate-vector of the operator corresponding to that
magnitude. Otherwise, at least on the Basic interpretation of the theory, no
such precise value need be attributed to the physical magnitude of the sys-
tem. This formal relationship, already mentioned in Chapter 1, known as the
eigenvalue–eigenstate link [371], makes explicit the meaning of Postulate I
of the standard formalism (cf. Appendix). Although some interpretations do
deny this link, those that do inherit other problems as a result, as shown in
the following chapter.12

The connection between measurement results and physical magnitudes
is made explicit through the calibration postulate, namely, the requirement
that if a system is in an eigenstate of an operator corresponding to a physical
magnitude then a measurement of this magnitude leads with certainty to an
outcome, indicating that the system is in this eigenstate at the moment the
measurement ends [319]. A quantum state is thus typically characterized by
its preparation—for example, as described by Schrödinger in his summary
quoted in the introduction of this chapter—which may be performed in the
same way as a measurement and may determine the system’s quantum state,
allowing the prediction of its future quantum state. In this way, one can view
probabilities specified by the quantum state as having an implicitly condi-
tional character. However, the conditional character of quantum probabilities
does not automatically render them epistemic in nature. The state may (or
may not) predict the outcomes of future measurements with perfect accuracy,
depending on whether or not the two projectors corresponding to the prepa-
12 See also, for example, [137], p. 22.



2.4 Problems with Measurement in Quantum Mechanics 77

ration and the measurement commute; in the former case, they may, whereas
in the latter they don’t.

The unusual role apparently played by measurement in quantum mechan-
ics, by comparison with classical mechanics, when straightforwardly apply-
ing the theory to even the simplest measurement situation, has been one
of the motives for the explicit interpretation of the quantum formalism, as
evidenced by the Bohr–Einstein debate. Indeed, there is considered to be a
measurement problem in quantum theory because, for example, when one
takes the Schrödinger evolution to describe the closed system constituted by
the measuring apparatus and the system under measurement, including their
environments when appropriate, absurdities appear due to the unitary char-
acter of this evolution.13 Such a description predicts a number of different but
equally valid measurement outcomes if one assumes measurement outcomes
to exist whenever the appropriate one-to-one correlation of measuring appa-
ratus states and object system states occurs and the superposition principle
is enforced.14 The measurement problem is also referred to as the problem of
‘the reduction of the wave packet’ to the post-measurement eigenstate or of
‘the actualization of potentialities,’ that is, of the appearance of individual
measurement outcomes (eigenvalues). The significance of this under a given
interpretation of quantum mechanics ultimately relates to some reliance on
the eigenvalue–eigenstate link or on causality.

Comparing the standard quantum predictions with the observed results,
one can fairly easily see why such a description of measurement fails (cf., e.g.,
[87], [371]). Consider a measuring apparatus initially in an eigenstate |p0〉 of
its pointer magnitude. Take the system measured for a magnitude of inter-
est having corresponding Hermitian operator O with discrete non-degenerate
eigenvalues {oj} to be in any eigenstate |oi〉 before the measurement process
begins. Finally, assume that the latter remains unchanged during the measure-
ment process, so that the physical magnitude measured is that before as well
as that after measurement has finished. Measurement should then result in
composite-system state transformations |Ψ (i)

j 〉 ≡ |p0〉|oj〉 → |Ψ (f)
j 〉 ≡ |pj〉|oj〉,

for each value of j that is a possible measurement outcome. However, the
system being measured must also be capable of being measured were it in-
stead initially not in an eigenstate of O but instead the state

∑
j aj |oj〉,

because that is also a state allowed by the superposition principle. Be-
cause the temporal evolution operator acting on the composite system of
the apparatus subsystem and the measured subsystem—assuming they form
a closed system—is unitary, it acts linearly on state-vectors and the formal
description of the measurement process involves a transformation of the form
|Ψ〉 ≡ |p0〉

∑
j aj |oj〉 → |Ψ ′〉 ≡

∑
j aj |pj〉|oj〉.

13 This is option discussed in detail in the account of the Collapse-Free interpretation
of quantum mechanics given in Chapter 3.

14 This has been seen as both a weakness and a strength in the case of the Collapse-
Free approach, cf. 3.4.
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Thus, in the statistical operator description, ρ(0) → ρ′(t) = U(t)ρ(0) U(t)†,
where

ρ = P (|Ψ〉) , ρ′ = P

( ∑
j

aj |pj〉|oj〉
)

; (2.1)

there is a transition from a pure state to a pure state because unitary transfor-
mations preserve purity. However, what one requires of measurement is that
the transformation of the overall system result in a final state of the form

ρ(f) =
∑
j

|aj |2P
(
|Ψ (f)
j 〉

)
, (2.2)

that is, a mixed state describing a collection of distinct states with probabili-
ties |aj |2, where a specific definite outcome is obtained for each measurement.
Because the composite system evolves into a coherent superposition involving
several distinct measuring system states for the ensemble, rather than just
one, this does not constitute a good measurement description. Indeed, any
unitary evolution, including that given by the Schrödinger equation, predicts
that measurement of the quantity O yields neither a definite outcome nor an
appropriate mixture. Furthermore, including the pure environmental state in
the description makes no difference in this regard.

This failure presents difficulties under a number of interpretations of quan-
tum mechanics. On the Basic interpretation, the Schrödinger cat thought ex-
periment and the Wigner friend experiment, both discussed below, strikingly
illustrate the measurement problem, which was to an extent anticipated by the
EPR thought experiment. Furthermore, when not introducing state collapse
during measurement, again if the above sort of correlation between measuring
apparatus and system is taken to constitute a successful measurement as is
naturally assumed, for example, in the absence of the introduction of some
additional psychophysical process à la Wigner, an exponential number of dif-
fering sequences of outcomes will arise when sequences of measurements are
performed.

2.5 Elements of Quantum Measurement Theory

The quantum measurement problem is the result of considering the measure-
ment process to take place in the same way as does any other quantum physical
process, as discussed by Bell in the quote provided in the previous section. A
natural way of avoiding the problem while continuing to treat measurement
devices as quantum systems is to make a distinction between measurements
and other physical processes. Measurement has been viewed via two ‘stages.’

The first stage is that of the system–apparatus quantum correlation dis-
cussed in the previous section, sometimes called pre-measurement, which, al-
though necessary, is in itself insufficient for a successful measurement, as just
seen. The second stage is a change of state of the measured system, the stage
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in which a measurement outcome appears. Von Neumann explained the need
for a two-stage description as follows.

“Why then do we need the special process 1. for the measurement?
This reason is this: In the measurement we cannot observe the system
S by itself, but must rather investigate the system S+M, in order
to obtain (numerically) its interaction with the measuring apparatus
M. The theory of measurement is a statement concerning S+M, and
should describe how the state of S is related to certain properties of
the state of M (namely, the positions of a pointer, since the observer
reads these). Moreover, it is rather arbitrary whether or not one
includes the observer in M, and replaces the relation between the S
state and the pointer positions in M by the relations of this state
and the chemical changes in the observer’s eye or even the brain (i.e.
to that which he has ‘seen’ or ‘perceived’).” ([477], Section V.2)

In von Neumann’s formal explication of this process, the first stage takes place
entirely in accordance with the usual unitary Schrödinger equation (process
2.), whereas the second stage involves a non-unitary change of state (pro-
cess 1.); the apparatus includes the physical system from which measurement
outcome data can be obtained, subject to the awareness of the measuring
agent.

The discontinuous change of quantum state in the second stage, associated
with the measurement outcome coming to be known, accords with the the re-
peatability hypothesis, that an immediate repetition of the measurement with
certainty yields the same result as the initial measurement. This second stage
was given a specific form, now known as the (original) projection postulate,
used by Dirac, Heisenberg, Pauli, and others beginning in the late 1920s. The
name projection postulate for the prescription was first given by Henry Mar-
genau in 1958 [310]; before then, it was typically referred to as a quantum
jump. Dirac described quantum jumping and corresponding state change, as
follows. “[A] measurement always causes the system to jump into an eigenstate
of the dynamical variable being measured” [139]. That is, there is a “quantum
jump” to the state corresponding to the outcome.15 This description of state
change is sometimes referred to as the collapse of the wave-function, as if it
were a lawful dynamical process rather than an instantaneous indeterministic
change.

One typically finds differences in the descriptions of measurement among
interpretations of the theory. For example, on the Copenhagen interpreta-
tion, discussed in Section 3.3 below, as articulated by Bohr in particular, the
measurement apparatus and process need not necessarily be given an explicit
quantum mechanical description as above but must only be capable of de-
scription in classical terms (cf. [322]). Heisenberg described the occurrence of a

15 The projection postulate is a central element of the Basic interpretation of quan-
tum mechanics, cf. Section 3.2.
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quantum jump in a way that emphasizes the subjective character of the obser-
vation associated with (selective) measurement. “[O]bservation itself changes
the probability function discontinuously; it selects of all the possible events
the actual one that has taken place” ([219], p. 54). Fellow Copenhagener Pauli
viewed the need for a random projection as arising naturally from the fact
that the interaction between the measuring system and the measured system
is “in many respects intrinsically uncontrollable,” in particular in relation to
the idea, rejected by Heisenberg in response to Bohr’s cautionary comments,
that the uncertainty relations might be similarly understood, as discussed in
Section 1.2 [338].

On the Collapse-Free interpretation of the theory, the distinction between
the above two sorts of (“relative state”) change is not fundamental. Instead,
it is understood (in most versions) to result from the emergence of differ-
ent observational perspectives. On it, measurement is entirely described by
the Schrödinger evolution acting in the tensor-product space for the compos-
ite system formed by the measured system, the measuring system, and the
entire environment of the two, within a superposition of states containing
correlations between all of these systems formally similar to that of Equa-
tion 2.6; ultimately, one considers this to involve a unique ‘wave-function of
the universe,’ an elaborate superposition state that never ‘collapses.’ Classical
phenomena are also sometimes viewed as naturally emerging in it due to the
pervasive effect of quantum state decoherence. Those portions of the resulting
ramifying set of situations in which different sequences of measurement out-
comes are obtained by measurers are assumed in some way to be inaccessible
to each other [319, 410]. This interpretation thus represents an attempt to
avoid the quantum measurement problem at the level of the entire universe
rather than invoking physical state projection at the fundamental level. The
Collapse-Free treatment was first carefully investigated by Everett with the
support of John A. Wheeler [135], although it was eventually rejected by the
latter. The various versions of the resulting Collapse-Free interpretation and
its measurement-related problems are discussed in Section 3.5.

In von Neumann’s statistical operator formulation, the change of state
during measurement of a quantity, typically one not commuting with that of
the preparation, is expressed explicitly by the rule that, when subject to mea-
surement, a quantum system initially in a pure state P (|ψ〉) evolves, typically
non-unitarily, into a mixed state ρ′:

P (|ψ〉) −→ ρ′ =
∑
i

(
〈ψi|P (|ψ〉)|ψi〉

)
P (|ψi〉) , (2.3)

where the projectors P (|ψi〉) onto the eigenvectors |ψi〉 sum to the identity.
The weights 〈ψi|P (|ψ〉)|ψi〉 = wk sum to unity and correspond to probabilities
that the values of the physical magnitude being measured are found to be
those of the subensembles corresponding to the projectors P (|ψi〉), after the
system was prepared in the state |ψ〉; see Figure 2.1. The state is thus no
longer coherent in the measurement basis {|ψi〉}.
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Fig. 2.1. Projection of a quantum state-vector |ψ〉 into a vector subspace S by
a projector P (S). The projection of |ψ〉 onto a ray corresponding to |ψm〉, with
which it makes an angle θ, is shown here; the probability for this transition to
occur is cos2 θ. A von Neumann measurement corresponds to the set of possible
such projections onto a complete orthogonal set rays of the Hilbert space being
measured. In a Neumann-Lüders measurement, the projections, then denoted by Pk

rather than P (|ψk〉), are onto subspaces that are not necessarily rays as shown here.

Projectors corresponding to any pair of possible outcomes i and j are
related by P (|ψi〉)P (|ψj〉) = δijP (|ψi〉); for each possible outcome, the same
subspace would projected to were the measurement immediately repeated, in
accordance with the repeatability hypothesis. In an arbitrary basis {|αi〉}, the
matrix elements of the final statistical operator are

[ρ′]ij =
∑
k

〈αi|ψk〉〈ψk|ψ〉〈ψ|ψk〉〈ψk|αj〉 =
∑
k

wk[ρ′k]ij , (2.4)

where wk = |〈ψk|ψ〉|2 and [ρ′k]ij = 〈αi|P (|ψk〉)|αj〉, exhibiting the fact that,
in general, von Neumann’s Process 1 takes pure states to mixtures described
by the weights wk. That is, these probabilities can be understood as standard
probabilities. Whenever the state is measured in a basis different from the
one in which it was prepared, that is, in general, Process 1 gives rise to a
non-unitary change in state and is irreversible [477]. When a subensemble,
corresponding to a given value of k, constituting a proportion wk of the total
normalized ideal ensemble, is then also selected—in the case of an individ-
ual system by its being actualized, which happens with probability wk—one
has P (|ψ〉) → Pk|ψ〉, the result generally having norm wk 6= 1. The result-
ing ensemble state must then also be renormalized through division by wk,
and the state may be describable by the statistical operator P (|ψk〉). Process
1 together with pure subensemble selection constitutes a maximal selective
measurement.
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By contrast, during the continuous Schrödinger evolution,

ρ(0) → ρ′(t) = U(t)ρ(0) U(t)† , (2.5)

where U(t) is the unitary operator describing that ‘automatic’ temporal evo-
lution, the purity of the statistical operator always remains unchanged. As von
Neumann emphasized, when the interaction between a measurement appara-
tus and a system being measured is analyzed, the unitarity of the Schrödinger
equation describing the state evolution of the composite system formed by
these two systems provides consistency between alternative descriptions of
system behavior in which the division (or Heisenberg Schnitt, or cut) between
measuring system and measured system is chosen differently.

Schrödinger vigorously objected to the introduction of Process 1, due to
its evident inconsistency with the usual Process 2, in that

“any measurement suspends the law that otherwise governing the
continuous time-dependence of the ψ-function and brings about in
it a quite different change, not governed by any laws, but rather
dictated by the result of the measurement. But laws differing from
the usual ones cannot apply during a measurement, for objectively
viewed it is a natural process like any other, and it cannot interrupt
the orderly course of natural events.” ([394])

Therefore, Schrödinger argued, ‘wave-function collapse’ could not be a dynam-
ical process; his objection is interpretational and distinguishes Schrödinger’s
particular views as to how quantum mechanics ought ultimately to be ar-
ticulated, although he, like Einstein, never arrived at a full interpretation of
quantum mechanics with which he was satisfied (cf. [49]).

A selective measurement of an observable is said to be maximal (or com-
plete) when it provides fully distinct values for the quantity measured, so that
no further knowledge of its preparation can be obtained by further measure-
ment of the observable. For such measurements, the projection as described by
von Neumann’s Process 1 in its original form is entirely satisfactory. However,
if instead the measurement performed is capable of discriminating only sets of
values, the measurement is said to be non-maximal; in that case, it provides
incomplete knowledge of the observable. Consider, for example, the measure-
ment of a spin-1 system (or qutrit), which is a quantum system possessing a
trivalent observable O with eigenvalues oi = −1, 0, 1; a maximal measurement
will have three possible outcomes, one for each of the possible values. By con-
trast, a measurement with only two outcomes, say “−” for system observable
values −1 or 0, and “+” for system observable value +1, is a non-maximal
measurement. An example situation wherein the latter is realized is a (im-
perfect) Stern–Gerlach type apparatus acting on a spin-1 system such that
a particle with z-spin +1~ enters a distinct spatial beam downstream from
the magnet but particles with spins 0~ or −1~ are not separated and enter a
common, second beam.
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If the outcome for a measurement of an observable corresponding to a sub-
space of finite dimension greater than one, then the von Neumann projection
postulate, including subensemble selection and renormalization, prescribes the
process

ρ −→ ρ′ = Pk , (2.6)

where the projector is written Pk, rather than P (|ψk〉), because the projec-
tion is made onto a subspace of dimension greater than one. However, this rule
dictates a system state after measurement that is independent of the details
of the state before the measurement, beyond those pertinent to the measure-
ment outcome itself, as can be seen mathematically in that state ρ associated
with its prepration does not appear in the description of the resulting state
ρ′. Thus, the von Neumann prescription fails to maintain the distinction be-
tween initially pure states and initially mixed states, and so fails to preserve
coherence of pure states in non-maximal measurements, which is not neces-
sarily lost because state decoherence does not always occur in non-maximal
measurements. Nonetheless, the original projection rule can be easily and
naturally adjusted to characterize more precisely measurements of physical
magnitudes whose eigenvectors have degenerate, that is, non-unique eigenval-
ues. The prescription for describing the state-change as a result of a selective
quantum measurement that maintains the distinction between the two sorts
of preparation in such cases is the Lüders projection (Lüders rule),

ρ −→ ρ′ =
PkρPk

tr(ρPk
) . (2.7)

By contrast to the original projection rule, the Lüders prescription of state
after measurement clearly is dependent on the state of the system before mea-
surement; in particular, the values of successive measurements under this rule
will coincide when another measurement is made between successive mea-
surements of O of an observable compatible with O in the sense that the
corresponding operators commute [273, 305]. That is, under the above rule,
first introduced by Gerhard Lüders, if one prepares two ensembles of systems
in the state ρ, the first being measured for some observable that is compatible
with O and the second having O measured first, the relative frequencies of
the values of the compatible observable for those two cases are the same and
yield pure subensembles from pure ensembles. Furthermore, this is the only
projection rule for which this is true [432], as shown in the next section. This
rule is now commonly considered to be the appropriate general description of
precise measurements in the standard theory. It can also be viewed as a con-
sequence of Feynman’s rules for computing quantum probability amplitudes
based on the indistinguishability of processes [427], discussed in Section 3.8.

An important aspect of the approach to measurement of von Neumann
is that physical theories are required to accommodate a physical correlate to
subjective perception. This is the principle of psychophysical parallelism:
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“it is a fundamental requirement of the scientific viewpoint—the so-
called principle of the psycho-physical parallelism—that it must be
possible so to describe the extraphysical process of the subjective per-
ception as if it were in reality in the physical world—i.e., to assign to
its parts equivalent physical processes in the objective environment,
in ordinary space.” ([477], p. 418-419)

He considered chains of physical systems connecting human observers with
physical phenomena, as in the situation of Schrödinger’s cat discussed below,
concluding that one “must always divide the world into two parts, the one
being the observed system, the other the observer” (Heisenberg’s Schnitt),
despite the fact that, mathematically, this inclusion can be shown to be arbi-
trary. That is, in quantum mechanics, one ultimately must be able to consider
a bipartite decomposition of composite system involved in a measurement into
observed system and observer system, even if the former lies within a human
observer’s body (cf. [477], p. 419).

In relation to this principle, von Neumann stated that

“[Bohr] was the first to point out that the dual description [of mea-
surement into the usual evolution and state projection] which is ne-
cessitated by the quantum mechanical description of nature is fully
justified by the physical nature of things that it may be connected
with the principle of the psycho-physical parallelism.” ([477], p. 420)

This requires only that the abstraktes Ich (‘abstract I’) be associated with
one component of the division and that the object of its attention be associ-
ated with the other. In the case of Schrödinger’s cat, if cats have consciousness
of the relevant sort humans have for observation, a conscious cat would cer-
tainly be aware that it is alive whenever it is so. If one is concerned primarily
with preserving the appearances, then there being two distinct state-evolution
processes in the standard formulation of quantum mechanics is not a grave
concern; Process 1 comes into play only when and as soon as the observer’s
interaction with the observed occurs and is consistent with its observations.

However, there remains the issue that “the principle of the psycho-physical
parallelism is violated, so long as it is not shown that the boundary between
the observed system and the observer can be displaced arbitrarily. . . ” ([477], p.
421). To address this, von Neumann also explicitly demonstrated that chang-
ing the boundary between the above two portions of the world has no affect on
quantum mechanical predictions, that is, that “the boundary between the two
parts is arbitrary to a very large extent” ([477], p. 420), although he did not
demonstrate that the stage of the progressing chain of measurement subpro-
cesses from the system to the observer’s brain at which the application of (the
measurement) Process 1 occurs in all cases does not create inconsistency in
quantum predictions. In any event, there is no evidence that the superposition
or projection of ‘states of consciousness’ can occur.
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This point was considered by Wigner, who argued that to be adequate
quantum mechanics must at least provide a prescription for the precise phys-
ical circumstances in which Process 1 should take place [499], if the quantum
measurement problem is truly to be resolved. Wigner identified six views re-
garding the relevance of Process 1 to this problem: Everett’s (“there is no need
to assume a reduction”), Fock’s (“measuring instruments must be described
classically”), Ludwig’s (“quantum mechanics does not apply to macroscopic
systems”), the London—Bauer elaboration [302] following von Neumann’s
above (adding a collapse postulate), the view that quantum mechanics never
describes individual events (which Wigner considers ultimately solipsistic on
the basis of the Friend thought experiment discussed in Section 2.7), and Zeh’s
(“the state of isolation [of the measuring instrument and measured system]
is very difficult to maintain. . . their state-vector. . . will soon go over into a
mixture”)—cf. [502], p. 1. As mentioned above, Wigner ultimately held the
view that the act of observation by the conscious agent making a measure-
ment plays a fundamental role in inducing a wave-funtion projection, through
a process now know as the von Neumann–London–Bauer collapse.

The quantum-logical approach discussed in Section 2.1, assuming state
projection takes place when a measurement outcome is registered by a con-
scious agent, has been used in the attempt to solve the measurement problem,
in the sense of explaining how measurements can have objectively definite out-
comes and still accord with quantum equations of motion. The idea is that
this problem will not arise if one assumes value-definiteness at all times rather
than only when the quantum system is in an eigenstate of the observable of
interest: if both the measuring apparatus and the measured system have def-
inite values for all physical magnitudes, then the outcomes would naturally
arise despite the existence of the joint superposition of Equation 2.1. However,
as already noted, the value-definiteness thesis is highly problematic.

Some have argued that the measurement problem is artificial, that is, “it
is often held that the restrictions placed on the measurement process from
within [quantum theory] are too strong in that they impose paradoxical re-
quirements” ([281], p. 107). However, as Shimony has pointed out,

“[it] has often been claimed that [the measurement problem] is
specious, arising from a narrow or inadequate representation of
the measurement process. . . however. . . the problem is a fundamental
anomaly, which cannot be lightly dismissed. Some proposals for solv-
ing this problem [postulate] nonlinear or stochastic modifications of
quantum mechanics. . . Our conclusion is that the main conceptual in-
novations of quantum mechanics [objective indefiniteness, objective
chance, objective probability, potentiality, entanglement, and quan-
tum non-locality] are probably embedded permanently in physical
theory, but that some further radical innovation will probably have
to be made.” ([410], p. 373)



86 2 Quantum Measurement, Probability, and Logic

Whatever the nature of this innovation, it appears increasingly likely that
it will be related to quantum entanglement and have some connection to
information theory.16 Because the following section is somewhat technical,
one may prefer on a first reading to proceed directly to Section 2.7.

2.6 Advances in Quantum Measurement Theory

An important result obtained by considering quantum mechanics from the
perspective of logic is the demonstration, mentioned above, that Lüders’ rule
for the state after quantum measurement is the only one that prescribes the
correct generalization of conditional probability to the quantum realm, in the
sense that it provides the classical rule for conditional probability when the
two operators related to the pertinent events commute [86, 244, 432].

To see how the Lüders rule is naturally picked out, consider a generalized
probability function q on the set of subspaces of Hilbert space H. Because
any such function is additive over orthogonal subspaces, it is defined by its
probability assignments to the one-dimensional subspaces of H. In addition,
Gleason’s theorem shows that q is provided via a density operator, ρq. Finally,
if such a q assigns the value 1 for a projector Q, then it assigns the value 0
to projectors onto rays in the complement of the subspace onto which Q
projects so that ρq|v〉 = 0 for all (not necessarily normalized) vectors along
such rays. For any such ray v̄, q(v̄) = tr(ρq|v〉〈v|) = tr

(
ρq

(
Q+(I−Q)

)
|v〉〈v|

)
=

tr(ρqQ|v〉〈v|), for all |v〉 ∈ v̄, because of the linearity of the trace and because
(I − Q)|v〉 = 0 by the definition of v̄. Thus, q(v̄) = |a|2q(|u〉〈u|) for some
a ∈ C, where |u〉 is the normalized vector along the ray, so that any q such
that ρq = 1 is fully specified by the values it assigns to vectors in the ray onto
which Q projects. Hence, for any generalized probability function p on the
subsets of H, there is a unique q on those subsets such that for all subspaces
of the subspace onto which Q projects one has q(P ) = p(P )/p(Q) and in turn
q is uniquely represented by ρq. Note then that

QPQ

tr(QPQ)
(2.8)

is a statistical operator, so that one can write

ρq =
QPQ

tr(QPQ)
. (2.9)

Therefore, Lüders’ rule provides the unique generalized probability function q
such that, for all projectors into subspaces of the space onto which Q projects,
q(P ) = p(P )/p(q). This uniqueness result bolsters standard quantum mea-
surement theory, despite the presence of the quantum measurement problem
16 One sophisticated move along these lines is discussed later in Section 3.8.
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which might be addressed by an innovative interpretation of the quantum
formalism.

One can further advance the description of processes within quantum me-
chanics along similar lines by continuing to elaborate and generalize the stan-
dard theory of quantum measurement, keeping in mind the basic require-
ments of probability theory. Consider for a moment quantum measurement in
a broad mathematical setting where the spectrum of the Hermitian operator
O representing a physical magnitude may be continuous, so that a measure-
ment might find its value within a Borel set ∆ ∈ R and leave the state of
the system with support (O,∆) with respect to O. A projector PO(∆) from
the spectral decomposition of O might describe the quantum mechanically
maximally specified state of such a system. Although there are conceptual
difficulties with such a description, unsharp measurements do provide a well-
defined way of proceeding [95, 426].

For simplicity, let us again consider measurements in the more straightfor-
ward case of discrete spectra. Unsharp measurements are the class of quan-
tum operations that are described by (normalized) positive-operator-valued
measures (POVMs) [118]. Given a nonempty set S and a σ-algebra Σ of its
subsets Xm, a positive-operator-valued measure E is a collection of operators
{E(Xm)} satisfying the following conditions.17

(i) Positivity : E(Xm) ≥ E(∅), for all Xm ∈ Σ.
(ii) Additivity : for all countable sequences of disjoint sets Xm in Σ,

E(∪mXm) =
∑
m

E(Xm) . (2.10)

(iii) Completeness: E(S) = I.

If the value space (S,Σ) of a POVM E is a subspace of the real Borel
space (R,B(R)), then E provides a unique Hermitian operator on H, namely∫

R Id dE , where Id is the identity map. The positive operators E(Xm) in the
range of a POVM are referred to as effects, the expectation values of which
provide the quantum probabilities.

Each quantum state ρ induces an expectation functional on L(H), the
space of linear operators on the Hilbert space H. This provides well defined
probabilities because the effects are bounded by O and I, so that the ranges
of the effect spectra are restricted to lie in the closed unit interval, due to
the positivity and normalization of the POVM; the operator ordering ≤ on
17 A Borel σ-algebra is the σ-algebra generated by the open intervals (or the closed

intervals) on a topological space—for example, in R—which are the Borel sets.
The set S is often a standard measurable space, that is, a Borel subset of a
complete separable metric space. Because such spaces of each cardinality are
isomorphic, they are all measure-theoretically equivalent to Borel subsets of the
real line, R. The sequences here are taken to converge in the weak operator
topology on L(H) [95].
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the effects has the zero operator and identity as its upper and lower bounds.
Only if the Hilbert space in question is C do the effects constitute a lattice, as
described in the Appendix A.5; a complementation ⊥ defined by E ≡ 1 − E
exists that satisfies (E⊥)⊥ = E and reverses the operator order but is not
an orthocomplementation, so that law of the excluded middle does not hold,
however.18 POVMs are thus the natural correspondents of standard proba-
bility measures, described in Section 2.2, in the operator space of quantum
mechanics.

The probability of outcome m upon a generalized measurement of a pure
state P (|ψ〉) is given by

p(m) = 〈ψ|E(Xm)|ψ〉 = tr
(
(|ψ〉〈ψ|)E(Xm)

)
. (2.11)

When the state is mixed, this probability is given by

p(m) = tr
(
ρE(Xm)

)
(2.12)

(cf. Section 2.2). The output of a POVM measurement of the initial state is
exhibited by post-measurement states and corresponding outcome probabili-
ties p(m). The post-measurement state ρ′m of a system initially described by
a statistical operator ρ under a POVM {E(Xm)} is often taken to be

ρ′m =
MmρM

†
m

tr
(
MmρM

†
m

) , (2.13)

where each of the E(Xm) can be written M†
mMm, Mm being called a measure-

ment decomposition operator (cf. [324]); in the special case that the Mm are
projectors, this expression coincides with the Lüders–von Neumann measure-
ment rule given by Equation 2.7—this can be seen by recalling that projectors
are Hermitian and idempotent.

When, and only when, the measurement operators Mm are projectors—so
that the POVM is a projection-valued measure (PVM)—are they identical
to decomposition operators E(Xm), in which case they are also multiplica-
tive, that is, E(Xm ∩ Xn) = E(Xm)E(Xn) for all countable subsets of the
corresponding set—equivalently, E(Xm)2 = E(Xm). When providing posi-
tive outcomes, POVM elements allow one to eliminate quantum states from
consideration as describing the measured system.19

18 Recall, as noted above in the first section of this chapter, the projection operators
do form an orthocomplement lattice with just this order and complement. The
lattice of projection operators L̄(H) has the sharp properties as its elements.

19 An example of a POVM used in this way is the following [32]. Given the two pro-
jectors P (¬|φ〉) ≡ I−P (|φ〉) and P (¬|φ′〉) ≡ I−P (|φ′〉), where 〈φ|φ′〉 = sin 2θ, one
can construct a POVM {Em} with the elements E1 = P (¬|φ〉)/(1+|〈φ|φ′〉|), E2 =
P (¬|φ′〉)/(1 + |〈φ|φ′〉|), E3 = I − (E1 + E2). POVM measurements using
{E1, E2, E3}, for example, are more efficient for quantum key distribution and
quantum eavesdropping than traditional measurements described by the pro-
jectors {P (¬|φ〉), P (¬|φ′〉)}. Similarly, POVMs sometimes allow quantum state
tomography to be performed with improved efficiency.
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The effects form a convex subset of L(H), the extremal elements of this
subset being the projection operators. A collection of effects is said to be
coexistent if the union of their ranges is contained within the range of a
POVM. Any two quantum observables E1 and E2 are representable as PVMs
on (R,B(R)) exactly when [E1, E2] = O, following from results of von Neu-
mann for Hermitian operators. For POVMs, however, commutativity remains
sufficient but is not necessary for coexistence [95]. The use of POVMs, that
is, unsharp measurements thus allows one to circumvent the restriction of
commutativity on measurements of noncommuting observables by including
unsharp properties. A regular effect is an effect with spectrum both above
and below 1

2 . One can define properties in general by the following set of
conditions, given an effect A.

(i) There exists a property A⊥;
(ii) There exist states ρ and ρ′ such that both tr(Aρ) > 1

2 and tr(Aρ′) > 1
2 ;

(iii) If A is regular, for any effect B below A and A⊥, 2B ≤ A+A⊥ = I.
(This renders ⊥ an orthocomplementation for the regular effects.)

The set of properties Ep(H) = {A ∈ E(H)|A � 1
2 I, A � 1

2 I} ∪ {O, I} satisfies
these conditions. The set of unsharp properties is then Eu(H) ≡ E(H)p/L(H).
A POVM is an unsharp observable if there exists an unsharp property in its
range [95]. Coexistent observables are those that can be measured simulta-
neously in a common measurement arrangement; when two observables are
coexistent, there exists an observable the statistics of which contain those of
both observables, known as the joint observable—typically, the two observ-
ables are recoverable as marginals of a joint distribution on the product of the
corresponding two outcome spaces.

The technical advances in the theory of quantum measurement described
in this section are formidable. However, beyond the first of the above, their ef-
fect on the quantum mechanical world view remains unclear in the absence of
an interpretation of quantum mechanics that involves a novel theory of mea-
surement that exploits them. In any event, the importance of measurement
in quantum mechanics was recognized early on in the history of the theory;
quantum measurement theory makes predictions that threaten basic elements
of the traditional understanding of the physical world. We now consider two
thought experiments illustrating this.

2.7 Schrödinger’s Cat and Wigner’s Friend

Two challenging thought experiments relating to the question of the sharp-
ness of measurements and the experiences of observers were provided by
Schrödinger and Wigner. Introduced in the decades following the formaliza-
tion of quantum theory, they helped illustrate the surprising character of its
predictions and continue to do so today. They suggest more than ever that
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radical innovations are needed to come to terms with the implications of the
theory. As will be seen in the following chapter, the interpretations of quan-
tum mechanics that have been offered since the introduction of these thought
experiments continue to leave much to be desired, assuming that quantum
mechanics remains one of our fundamental theories. As a result, these experi-
ments remain important examples with respect to which one can compare new
interpretations and consider the relevance of various physical effects, such as
state decoherence. In particular and foremost among the thought experiments
that followed the EPR experiment considered in the last chapter are those of
Schrödinger’s cat and Wigner’s friend; the latter is essentially an extension of
the former by the inclusion of an additional human observer.

Quantum mechanics allows one to conceive of situations clearly in contra-
diction with common sense, resulting from the application of the superposition
principle in the macroscopic realm. Such an application is desirable given that
it has the potential to serve as our most fundamental mechanical theory when
proper care is taken in the relativistic case. Schrödinger conceived a number
of physical examples, including what he called the “ridiculous case” of the
now infamous cat in a box that appears both alive and dead, in which all
matter is described quantum mechanically, in order to point out as starkly
as possible the difficulties posed by standard quantum theory within a realist
world view, such as that of common sense. Indeed, one of the characteristics
of standard quantum mechanics is that both the measurement apparatus and
the system being measured are treated exactly the same way as any other
quantum mechanical object is treated.20

Before considering these two thought experiments in detail, it is helpful to
have in mind at least one more recent example, beyond EPR’s early reality
criterion, of how realism, which is discussed further in the next chapter, has
been related to quantum mechanics. A clear such example has been provided
by Krips, who spelled out principles cohering with a realist world view in
terms of the elements Q of the set of physical quantities as follows. “(Det Q)
Physical quantities always have determinate values, (Pass Q) The measured
value of Q in [state] S at [time] t = the value possessed by Q in S at t, and
(NDQ) The value possessed by the measured quantity just after measurement
= the value registered by the measurement, i.e. the measured value” ([281],
Index of principles). This amounts to the conjunction of the value-definiteness
thesis, a principle of faithful measurement, and the repeatability hypothesis.
Although, as will be seen later, this involves a very strong form of realism, it
is the sort of realism that Schrödinger appears to have had in mind.
20 Note, however, that the Copenhagen interpretation can finesse this point by ap-

pealing to classical mechanics as an equally fundamental theory at the macro-
scopic scale; arguably, Bohr equivocated in this regard in that in one debate
with Einstein he applied the uncertainty principle to at least one macroscopic
measuring apparatus (cf. Section 3.3).
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Roger Penrose has explained the difficulty posed by these experiments,
particularly for the realist, as follows.

“Why, then, is there such reluctance to accept the state-vector as
describing an actual physical reality?. . . ‘Schrödinger’s cat’ (or some
essential equivalent such as ‘Wigner’s friend,’ etc.) It seems hard to
believe in any actual ‘reality’ at the level of a cat which requires that
such states of death and life can co-exist. The situation is, of course,
more puzzling for Wigner’s friend. . . According to strict quantum
mechanics, it seems to me, ψt—representing some complex linear
combination of a live cat and a dead one—should still have to provide
an objective description of a reality [in the box].” ([344], p. 132)

Schrödinger himself had at one point hoped that the complex-square of the
state amplitude of the wave-function could provide a complete direct physi-
cal description of quantum systems in ordinary three-dimensional space. On
such an understanding of the wave-function, physical magnitudes in quantum
mechanics are “smeared out,” something which might be viewed as unobjec-
tionable at scales below and up to the atomic scale (cf. [49], pp. 1-2). However,
he found such a description objectionable at the truly macroscopic scale, such
as that of a cat, because it contradicts experience.

Schrödinger’s experiment is the following.

“A cat is penned up in a steel chamber, along with the following
diabolical device (which must be secured against direct interference
by the cat): in a Geiger counter there is a tiny bit of radioactive
substance, so small, that perhaps in the course of one hour one of
the atoms decays, but also, with equal probability, perhaps none; if
it happens, the counter tube discharges and through a relay releases
a hammer which shatters a small flask of hydrocyanic acid. If one has
left this entire system to itself for an hour, one would say that the cat
still lives if meanwhile no atom has decayed. The first atomic decay
would have poisoned it. The ψ-function of the entire system would
express this by having in it the living and the dead cat (pardon the
expression) mixed or smeared out in equal parts.” ([394])

In such an arrangement, under the standard quantum mechanical description
of measurement, the answer to the question of whether the cat is alive or
dead can be viewed as indefinite until the box is opened by an experimenter
and the cat is observed. In von Neumann’s conception, at the point of ob-
servation the observed system is the object of the attention of the abstraktes
Ich, the essence of the observer, occuring in parallel with a state projection
that accords with what is observed ([477], p. 421); until then, one might, at
best, only ‘approximately’ (in some sense [14]) characterize the cat’s vital sta-
tus. The purpose of the example is to point out the apparent inadequacy of
the quantum-mechanical characterization of this situation as expressed in his
summary quoted at the end of the introduction to this chapter: Any cat is al-
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ways either alive or dead, whereas quantum mechanics (apparently) does not
describe the situation in that way, an apparently clear failure of the theory in
relation to the measurement problem described in Section 2.4.

Although this thought experiment is easily visualized, there are reasons for
doubting its efficacy. For example, one can question the very idea of applying
quantum mechanics to entire functioning biological organisms, all questions
of vitalism aside, as Heisenberg did.

“Logically, it may be that the difference between the two statements:
‘The cell is alive’ or ‘the cell is dead’ cannot be replaced by a quantum
theoretical statement about the state (certainly a mixture of many
states) of the system.” ([434])

It is unclear that ‘alive’ and ‘dead’ can be immediately reduced to well-defined
mechanical quantities. If this theoretical step cannot be made, the example is
a non-starter. Moreover, no rigorous experiment measuring such a biological
quantum superposition has been performed.21 This appears to be difficult
precisely because it is unclear what quantum physical magnitude one would
measure. Physicalists are responsible for providing a careful account of how
this should be done in practice. If this example is to be taken seriously as an
objection to the completeness of quantum theory such an account is clearly
required. Nonetheless, the thought experiment retains considerable force in
that the vital signs of any organism are clearly physical. Furthermore, Einstein
provided a simpler and less easy to criticize example of the same basic sort
which avoids the question of applying quantum theory directly to biology in
this way: He asked simply whether it makes sense that his bed would jump
into a definite state only when he or another observer enters the bedroom
and looks at the bed. Einstein’s example avoids the difficulties presented by
involving the vital state of the cat as a physical observable but without the
shock value of the consideration of the death of a potential pet.22

The Schrödinger cat experiment has been more effectively criticized on
the basis that it assumes that the collection of systems from the radioactive
sample to the observer who opens the box constitutes a genuinely closed
system, which it is clearly not in that, for example, the cat also must breathe
air to live (cf. [391]); Heisenberg noted that the state of this collection will,
de facto, be a mixed one. However, one can in principle straightforwardly
include all pertinent objects in any way interacting with these systems without
changing its fundamental implication, assuming again that cat biology and all
the necessary air molecules are in the domain of quantum theory. Because the
entangled state of the composite system in the ‘chain’ of interactions from the
21 However, work of Zeilinger and co-workers demonstrating the interference of C60

molecules, with the distant goal of similarly using viruses, shows that the avenue
for the experimental investigation of such examples remains open [9].

22 This example was offered in a personal communication with Putnam, recounted
in [367].
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radionuclide to the cat and its environment involves a ‘fuzzy’ micro-physical
object, the quantum-mechanical description of the cat will be ‘fuzzy’ as well.
The resulting state of all objects in this chain of interaction will involve the
(at least pairwise) entanglement of systems as they interact. This contradicts
common sense and what is observed in the natural world, at least at the level
of cats, in that a heart monitor on a cat records it as either alive or dead and
not both and not in a superposition of two such states, not to mention one of
the cat together with all the physical elements of the chain of measurement.

A further element of paradox arising from the quantum mechanical descrip-
tion of this measurement situation, in Schrödinger’s view, is the following.

“It is rather discomforting that the theory should allow a system
to be steered or piloted into one or the other type of state at the
experimenter’s mercy in spite of his having no access to it,” ([394],
p. 556)

as is the case when one considers the effect of measurement on entangled sys-
tems, as strikingly pointed out by delayed-choice versions of the ‘quantum
eraser’ experiment discussed in Chapter 1. That is, the state of the cat in this
example appears to be subject to the choice of measurement of one looking in
the box. Nonetheless, von Neumann, in his theory of measurement, provided
a demonstration that the changing of boundary between the observing and
observed portions of the universe has no essential effect on quantum mechan-
ical predictions and places no requirement to the effect that the application
of (the measurement) Process 1 occurs at a specific point in the process of
measurement, except to the extent required by psychophysical parallelism.23

Wigner argued that an objective prescription for the physical stage at
which Process 1 takes place, which is not provided by quantum theory, is
needed for a complete characterization of measurement [499]. If the cat’s con-
sciousness of its situation were considered part of a self-measurement on its
part, this would certainly pertain. More than a quarter century after the in-
troduction of Schrödinger’s cat experiment, Wigner offered another thought
experiment to probe this question, along the following lines. Consider a sys-
tem S that flashes when in one state, ψ1, and does not flash if in an orthogonal
one, ψ2. The friend, F, observing the flash will have corresponding states χi,
in respective cases. Thus, the bipartite composite system SF will have cor-
responding states ψi ⊗ χi. If the system, much like Schrödinger’s cat, is in a
superposition state αψ1 + βψ2, the linearity of quantum mechanics dictates
that the state of SF must be αψ1 ⊗ χ1 + βψ2 ⊗ χ2. The probability of the
friend seeing the flash will accordingly be |α|2, and that of not seeing the
flash will be |β|2. In order to provide a good answer to Wigner’s query to the
friend about his observation, the friend must receive a measurement result
when observing S that accords with his answer.
23 To make this connection more specific, a prescription for coordinating psycholog-

ical or subjective time with physical time might be required.
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Wigner noted that, “So long as I maintain my privileged position as ul-
timate observer,” there will be no logical inconsistency with von Neumann’s
theory of measurement [499]. However, after the experiment, if

“I ask my friend, ‘What did you feel about the flash before I asked
you?’ He will answer, ‘I told you already, I did [did not] see a flash,’ as
the case may be. In other words, the question whether he did or did
not see a flash was already decided in his mind, before I asked him. If
we accept this, we are driven to the conclusion that the proper wave
function immediately after the interaction of the friend and object
was already either ψ1×χ1 or ψ2×χ2 and not the linear combination
α(ψ1 × χ1) + β(ψ2 × χ2). This is a contradiction because the state
described by the wave function α(ψ1 × χ1) + β(ψ2 × χ2) describes
a state that has properties which neither ψ1 × χ1, nor ψ2 × χ2 has.
If we substitute for ‘friend’ some simple physical apparatus, such as
an atom which may or may not be excited by the light-flash, this
difference has observable effects and there is no doubt that α(ψ1 ×
χ1)+β(ψ2×χ2) describes the properties of the joint system correctly,
[whereas] the assumption that the wave function is either ψ1×χ1 or
ψ2 × χ2 does not. If the atom is replaced by a conscious being the
wave function, α(ψ1×χ1)+β(ψ2×χ2). . . appears absurd because it
implies that my friend was in a state of suspended animation before
he answered my question.” ([499], p. 293)

That is, if the friend is to have a specific result before being asked, the joint
state cannot have been the superposition state in the basis defined by the def-
inite results. From this, Wigner concluded that the result must have become
determinate at the moment the friend made his measurement as a result of his
being conscious and that (i) “it follows that the being with a consciousness
must have a different role in quantum mechanics than the inanimate mea-
suring device” and (ii) “the quantum mechanical equation of motion cannot
be linear” ([499], p. 294). He argued that the alternative denies the friend
consciousness and is tantamount to a form of solipsism. Furthermore, as he
put it,

“In von Neumann’s view. . . the content of [the observer’s] mind is
not obtainable by means of the laws of the theory. It is either that
these laws do not apply to the functioning of the mind (whatever
that word means) or that the conscious content of the mind is not
uniquely given by its state vector, i.e. by the quantity which quantum
mechanics uses for the description of all objects.” ([502], pp. 122-123)

Thus, Wigner believed that the problem is to be solved by assenting to
a special role for consciousness in quantum theory. However, most physicists
view this solution as even more objectionable than the original problem, ex-
actly because of its explicit appeal at the fundamental physical level to pro-
cesses that are not fully physical.
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Interpretations of Quantum Mechanics

Quantum mechanics was initially formulated in what appeared to be two fun-
damentally distinct ways, as Matrix mechanics with operator matrices sat-
isfying [Qi, Pj ] = i~δij , and Wave mechanics with the function ψ satisfying
i~(∂ψ(q)/∂t) = H(q,p)ψ(q), the former developed by Heisenberg, Born and
Jordan [73, 74], and the latter by Schrödinger [393]. Dirac, Jordan, Pauli, and
Schrödinger subsequently provided arguments for the equivalence of these two
approaches. However, the Dirac–Jordan equivalence proof made use of the
Dirac δ ‘function,’ which is not well defined as a function because it takes an
infinite value at a single point although it can be given a proper definition as
distribution (or “improper function”). Von Neumann finally rigorously proved
the equivalence and derived the hydrogen atom energy eigenvalue spectrum
by making use of Hilbert space, a separable complete vector space with an
inner product and a countable, potentially infinite basis (cf. [282] and [281],
Appendix 4), capturing the theory’s mathematical essence [473–477]. Much
later, exploring some ideas of Dirac involving the Lagrangian and action [139],
Feynman also produced a third, mathematically equivalent formulation of the
theory [168].

While quantum theory was being developed and such mathematical details
were being worked out, new world views were also considered by its founders,
as they engaged in ongoing discussions and debates and interacted within the
wider physics community. As Rudolf Peierls put it,

“[The] general community of physicists had to go through the same
arguments, and to face the same difficulties, which result from the
fact that our intuition is formed as a result of our every day experi-
ence on a scale on which neither the relativistic refinements nor the
quantum effects are noticeable. Most of them learned to accept the
new ideas, and to understand that they are an essential part of the
logic of quantum mechanics.” ([342], p. 25)

G. Jaeger, Entanglement, Information, and the Interpretation 95
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In the Mathematische Grundlagen der Physik, where the standard Hilbert-
space formalism was laid out in mathematically elegant form, von Neumann
included the quantum mechanical theory of measurement outlined in the pre-
vious chapter, which he viewed as an essential element of that formulation. In
addition, he raised the issue of interpreting the theory, which he also viewed
as an essential activity.

“The object of this book is to present the new quantum mechanics
in a unified representation which, so far as it is possible and useful,
is mathematically rigorous. . . In particular, the difficult problems of
interpretation, many of which are even now not fully resolved, will
be investigated in detail. In this context the relation of quantum
mechanics to statistics and to the classical statistical mechanics is of
special importance.” ([477], p. vii)

In particular, the measurement theory provided in that work involves the
introduction of specific elements of an interpretative character, for example,
the explication of the relation between probability and known measurement
outcomes and the assumption of psychophysical parallelism. Von Neumann’s
interpretation, which is sufficiently close to that of Dirac to be considered the
same, is here called the Basic interpretation.

There are differing views as to exactly what constitutes an interpretation
of quantum mechanics. Let us consider several characterizations. Mittelstaedt
has required any interpretation to satisfy several requirements.

“Any interpretation of quantum theory should provide interrelations
between the theoretical expressions of the theory and possible ex-
perimental outcomes. In particular, any interpretation of quantum
mechanics has to clarify which are the theoretical terms that cor-
respond to measurable quantities and whether there are limitations
of the measurability [sic]. . . Another essential problem is the ques-
tion of what kind of experimental results could correspond to the
Sch[r]ödinger wavefunction, which turns out to be a very important
theoretical entity.” ([319], p. 1)

Paul Teller has described an interpretation as follows.

“I take an interpretation to be a relevant similarity relation hypoth-
esized to hold between a model and the aspects of actual things that
the model is intended to characterize.” ([445], p. 5)

Bub’s view of interpretation differs from both of these. He sees it as

“an account that shows in what respects the theory is related to
preceding theories.” ([85], p. 143)

As these examples illustrate, there has been a tendency, for better or worse,
to inject philosophical biases or concerns into the very conception of interpre-
tation, which is largely avoided in this chapter.
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Several different interpretations of quantum mechanics are considered here.
A cluster of further recent efforts relating to quantum information are con-
sidered in the following chapter. Interpretations can be characterized by a
set of more or less simply stated theses. The relationship between quantum
mechanics and statistics typically differs from one interpretation to another,
as does the suggested relationship between the formalism and the world in-
cluding conscious agents. Hence, more generally than the characterizations
above, the interpretation of quantum mechanics is taken here primarily to
mean the specification of the epistemic, metaphysical, and operational signif-
icance of theory, most importantly of its state operator ρ or pure state-vector
|ψ〉. This sense of the term interpretation applies to all the ‘interpretations’
that have been identified, except for those involving only some modification
of the dynamics, that is, the theory itself. It also differs from that wherein
interpretation is constituted almost entirely by the specification of an ontol-
ogy, that is, existents, basic categories, and their relationships—for example,
Reichenbach’s sense [373]. Often, in a given interpretation, only states |ψ〉
representable as projectors ρpure = P (|ψ〉) ≡ |ψ〉〈ψ| have been considered;
here ρ, which encompasses all states including the ‘mixed’ states, is of equal
interest.

The explicit consideration of such interpretation of the quantum formalism
can be historically traced back at least to Einstein’s consideration at the 1927
Solvay conference ([303], p. 253) of two alternative understandings of quan-
tum theory, which he called “interpretation I” (his own proto-interpretation,
in which the quantum description is an incomplete one for the specification of
state for individual systems) and “interpretation II” (Bohr’s interpretation, in
which the quantum description is understood to be as complete a description
of quantum phenomena as can be given). This distinction reflects Einstein’s
philosophical preoccupations and a fundamental disagreement with Bohr. A
third early interpretation, first given in Dirac’s The Principles of Quantum
Mechanics and later more rigorously developed in von Neumann’s Grundla-
gen, is considered here first, before others falling more neatly into one of the
two options of Einstein’s early dichotomy. Despite subtle differences between
the presentations of von Neumann and Dirac, these two works provided the
same first completed interpretation of the theory, which is that primarily used
today, even after the undeniable impact of Bohr’s “Copenhagen interpreta-
tion.” Bub refers to it as that following “von Neumann’s basic approach” to
the measurement problem [84], which underlines that fact that the interpreta-
tion of quantum mechanics and quantum measurement theory are connected,
with elements of the two deeply influencing each other.

There have been a large number of physicists, including Peierls and per-
haps the majority of physicists during certain periods, who have viewed them-
selves as using the Copenhagen interpretation, which is commonly identified
with Bohr, Heisenberg, Jordan and Pauli, after it was fully expounded and as
Einstein’s “interpretation I” fell into disfavor. Henry Stapp has characterized
the development of that interpretation as follows.
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“This radical concept, called the Copenhagen interpretation, was
bitterly debated at first but became during the 30’s the orthodox
interpretation of quantum theory, nominally accepted by almost all
textbooks and practical workers in the field.” ([434])

Although this is an oversimplification of the historical situation likely the
result of identifying the Basic and Copenhagen interpretations, which differ
in fundamental respects despite shared concerns surrounding measurement, it
is true that interpretations of quantum mechanics have often been similarly
divided into the orthodox and the unorthodox, where the former term refers
to the Copenhagen interpretation and later ‘extensions’ thereof.

More helpfully, Mittelstaedt has identified, in addition to the Copenhagen
interpretation, three classes of interpretation that he has identified as “prob-
ably the most important.”

(1) the Minimal interpretation, which “does not assume that measuring
instruments are macroscopic bodies subject to the laws of classical physics.
Instead,. . . [they] are considered proper quantum systems. . . with respect to
measuring instruments[, it] replaces Bohr’s position with von Neumann’s ap-
proach” but on the other hand “refers to observed data only. . . merely the
values of a ‘pointer’ of a measurement apparatus” ([319], p. 9).

(2) the Realist interpretation, which is similar to the minimal interpreta-
tion but “is concerned not only with measurement outcomes but also with the
properties of an individual system” ([319], p. 12).

(3) the ‘Many worlds’ interpretation which, like the previous two, considers
quantum mechanics to be universal but “avoids any additional assumption
that goes beyond the pure formalism, even the very few weak assumptions
that are made in the minimal interpretation” ([319], p. 14).

As is done here, Mittelstaedt declines to consider the modal interpretation(s),
primarily on the grounds that “there has been no general agreement about the
value, the usefulness, and the philosophical implications of these approaches”
([319], p. 8). The characterization of (3) includes several versions of an inter-
pretation identified in this book with the Collapse-Free interpretation beyond
the example mentioned by name there.

Despite claims to the contrary, interpretations of quantum mechanics, in-
cluding versions of the Collapse-Free interpretation do explicitly or implic-
itly involve elements that are essentially philosophical, even though many
physicists have wishfully thought that quantum mechanics be considered ‘self-
interpreting’ and entirely independent of philosophy. A particularly strong
statement against explicit interpretation of the theory, perhaps targeting class
(2), was made by Léon Rosenfeld who, while advocating the Copenhagen ter-
minology and method of approaching the quantum formalism, viewed the need
for interpretation as arising from a pseudo-problem. “Historically, the false
problem (‘scheinproblem’) of ‘interpreting the formalism’ appears as a short-
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lived decay-product of the mechanistic philosophy of the nineteenth century”
([278], p. 41). For him, there was only one interpretation, namely, Bohr’s.

“We are not faced with a matter of choice between two possible lan-
guages or two possible interpretations, but with a rational language
intimately connected with the formalism and adapted to it, on the
one hand, and with rather wild, metaphysical speculations. . . on the
other.” ([278], p.107)

This sentiment continues to be expressed by others who, revealingly, do not
subscribe to the Copenhagen interpretation (cf. [376–379]). A number of those
who have similarly objected to the consideration of ‘metaphysical’ issues re-
lating to quantum mechanics have been advocates of the Copenhagen inter-
pretation who were influenced by positivism. Bohr has very often been viewed
as more a philosopher than a physicist, as Heisenberg saw him.

“Bohr’s view of his theory was much more sceptical than that of
many other physicists. . . his insight into the structure of the theory
was not a result of a mathematical analysis of the basic assumptions,
but rather an intense occupation with the actual phenomena, such
that it was possible for him to sense the relationship intuitively rather
than formally. Thus I understood: knowledge of nature was primarily
obtained in this way, and only as the next step can one succeed in
fixing one’s knowledge in mathematical form and subjecting it to
complete rational analysis. Bohr was primarily a philosopher, not a
physicist, but he understood that natural philosophy in our day and
age carries weight only if its every detail can be subjected to the
inexorable test of experiment.” ([221]; quoted in [462], pp. 21-22)

It would be a mistake to characterize Einstein’s “interpretation I,” which
is most closely related to what is called the Naive interpretation, as involving
“wild, metaphysical speculation,” no matter how problematic it is; follow-
ing the Mittelstaedt classification, it most closely resembles the “Minimal
interpretation.” However, contra Mittelstaedt, it is legitimate to view the on-
tological commitment of the Many-worlds variant of the Collapse-Free inter-
pretation as extreme and speculative.1 Many of those wishing to preserve the
traditional approach to interpreting physical theory do find themselves need-
ing to postulate the existence of unobserved (even unobservable) entities. All
of this shows that it behooves one to carefully consider rather than to reject
the consideration of philosophical questions relating to quantum mechanics.
Later interpretations have been mainly motivated by a desire both to achieve
conceptual clarity and to avoid apparently unresolved problems.

A more recent illustration of the desire to consider the quantum formalism
‘self-interpreting’ is the information-focused approach vigorously advocated
1 This is also a reason for not identifying, as has recently been suggested, as part

of some “new orthodoxy” flowing directly from the Copenhagen approach.
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by Chris Fuchs and Asher Peres in a year 2000 article in Physics Today,
wherein a polemic was offered for an “ ‘interpretation without interpretation’
for quantum mechanics.”

“The thread common to all the nonstandard ‘interpretations’ is the
desire to create a new theory with features that correspond to some
reality independent of our potential experiments. But, trying to ful-
fill a classical world view by encumbering quantum mechanics with
hidden variables, multiple worlds, consistency rules, or spontaneous
‘collapse’, without any improvement in its predictive power, only
gives the illusion of a better understanding. Contrary to those de-
sires, quantum theory does not describe physical reality. What it
does is provide an algorithm for computing probabilities for the
macroscopic events (‘detector clicks’) that are the consequence of
our experimental interventions. This strict definition of the scope of
quantum theory is the only interpretation ever needed, whether by
experimenters or theorists.” ([182])

Leaving aside the point that this conflates theory interpretation and theory
modification, it mistakenly attributes to all ‘non-standard’ interpretations a
“classical world view;” the intended target appears to be the realist approach
to theory interpretation, which requires a non-trivial degree of objectivity that
has been viewed as something inappropriately classical and encumbering by
positivist advocates of the Copenhagen interpretation. The criticism appears
very similar to Rosenfeld’s, particularly in its empiricism. However, it is now
being made by such advocates of a new interpretation, known as the Radi-
cal Bayesian interpretation, which revolves around the Bayesian subjectivist
understanding of probability rather than positivism.

The fact that Radical Bayesianism has appeared in the era of quantum
information science is not accidental; it explicitly interprets quantum theory
almost entirely as a theory of information rather than of physical objects
except for, as Fuchs puts it, a “Zing!”, a ghostly remnant of the physical
world. A strong motivation for reconsidering the interpretation of quantum
mechanics is to avoid paradox. Indeed, like many of those previously critical
of existing non-empiricist interpretations of quantum mechanics, Fuchs and
Peres claimed that

“attributing reality to quantum states leads to a host of ‘quantum
paradoxes.’ These are due solely to an incorrect interpretation of
quantum mechanics.” ([182])

Of course, many apparent difficulties could be removed by simply disregarding
the need to provide naturalist explanations of phenomena. However, as shown
below, this too comes at the cost of a loss of genuine physical insight.

No matter how persistent has been the anti-realist temptation, anti-realism
has been consistently rejected by the overwhelming majority of physicists, be-
cause of its anemic character vis-à-vis explanation, beginning with those who
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formulated the Basic interpretation, the most ‘standard’ of interpretations,
and the other ‘standard’ interpretation, the Copenhagen interpretation, which
is not truly anti-realist in character, despite various revisionist claims consid-
ered below. The next chapter focuses more conservatively on the established
relationship between quantum mechanics and information, which often differs
from that of the radical Bayesian interpretation. In that chapter, other in-
formational approaches to interpreting quantum mechanics and the ultimate
reasons why such an approach has appeared in this era are made clear. Other
exotic proto-interpretations are also examined there. It is shown that confu-
sion arises in all of them from a lack of care as to just what is required of
a fundamental physical theory and confusion as to the relationship between
information and the physical signals that can be used to communicate it.

As Josef Jauch correctly emphasized, specialization in research has often
been detrimental to the understanding of foundational questions in quantum
theory.

“[T]he pragmatic tendency of modern research has often obscured
the difference between knowing the usage of a language and under-
standing the meaning of the concepts.” ([258], p. v)

This assessment is increasingly accurate as regards modern quantum theory
after the achievements of its founders, many of whom were remarkably well
educated beyond physics proper. However, the failures of interpretation are
not entirely attributable to the technical character of physics. The formalistic
character of the twentieth-century philosophy to which physicists have been at
least indirectly exposed is partly responsible. In his The philosophy of quan-
tum mechanics, a comprehensive historical survey of the history of quantum
mechanics and its foundations, Jammer remarked that

“what it means to interpret this formalism. . . is not by any means a
simple question. In fact, . . . just as physicists disagree on what is the
correct interpretation of quantum mechanics, philosophers of science
disagree what it means to interpret such a theory. If for mathematical
theories the problem of interpretation, usually solved by applying the
language of model theory (in the technical sense) requires a concep-
tually quite elaborate apparatus, then for empirical theories—which
differ from the former not so much in syntax as in semantics—the
problem is considerably more difficult. . . ”([256], p. 10)

Because philosophical matters pertain to much of this confusion, let us at-
tempt to inoculate ourselves by briefly considering some of the philosophical
matters pertaining to the interpretation of quantum mechanics. This will also
help us better appreciate why some physicists might be so critical of theory
interpretation, beyond the simple view that interpretation itself is responsible
for the existence of the well known ‘paradoxes’ that result when considering
the counterintuitive behavior predicted by quantum mechanics.
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Bohr has often been incorrectly identified as a positivist.2 Perhaps under
the influence of such portrayals, some physicists have adopted the position
that theories are self-interpreting and need not describe an external world.
Instrumentalism, the position that theories are to serve as mere instruments
for the prediction of observations, can be seen as having strongly influenced
the Radical Bayesians; it supports their denial that the quantum state on
the one hand correctly predicts quantum measurement outcomes but on the
other does not describe the external world. As a more sophisticated example,
consider the anti-realist position of Roland Omnès in The interpretation of
quantum mechanics, which offers a “consistent histories” interpretation of
quantum mechanics in a version of the theory in which wave function ‘collapse’
does not take place. In his book, Omnès defines the term interpretation as

“a translation of the language of facts into the formal language of
a theory. . . in reexpressing the phenomena and the data within the
conceptual framework of the theory.” ([329], p. 98)

Similarly to the above attempt at “interpretation without interpretation,”
Omnès claims to

“reject a priori all kinds of philosophical criteria such as, for instance,
demanding that the theory should be an exact description of reality,
a complete explanation of it, or its intimate knowledge.” ([329], p.
98)

He further claims that quantum mechanics is a theory that “provides its own
interpretation,” which he considers “the interpretation” of the theory but,
again, one differing from Rosenfeld’s, that is from the Copenhagen interpre-
tation, and from the Radical Bayesian interpretation.

Omnès views any well defined such interpretation as “an intrinsic part of
the theory” that should satisfy two criteria, consistency and agreement with
experiment. He also suggests that an interpretation should be complete, by
which he means “that it gives explicit predictions, whatever experiment is
being considered,” and that it “must be totally explicit in its description of
phenomena” and include

“a clear understanding of the status of determinism and a derivation
of its empirical existence, whatever its limitations might be.” ([329],
p. 99)

On these grounds, for example, Omnès rejects the traditional Copenhagen in-
terpretation, viewing its consistency highly questionable. Further, he views it
as incomplete in that, contra Bohr, it “does not offer a theory of phenomena.”
Nonetheless, he believes that a related interpretation can be obtained that
satisfies the above criteria and “confirms the Copenhagen empirical prescrip-
tions. . . while removing the apparent contradictions they contained” ([329], p.

2 Cf. [233], p. 14.
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100). The latter involves the rejection of some Copenhagen theses, the refor-
mulation of some, and the placing of limitations on others.

Redhead has made the following note regarding the anemic character of
this sort of approach.

“Suffice it to point out that the naive distinction between observa-
tion and theoretical terms, and the inability of [an instrumentalist]
account to make credible the successful novel predictions in which
major theoretical advances such as QM abound.” ([371], pp. 44-45)

Any attempt to deny that physics describes at least some aspect of the phys-
ical world beyond raw data fails because all physical theories must have some
degree of realist commitment to be about the physics in the sense of the
term regularly used in science. Any attempt to “reject a priori all kinds of
philosophical criteria” is untenable when interpreting quantum mechanics or
indeed any physical theory, because that is internally inconsistent. Interpre-
tation explicitly involves the consideration of issues beyond the bounds of
physics proper; epistemology and metaphysics are not subsumed by physics.
It is obviously impossible to achieve a “clear understanding of the status of
determinism and a derivation of empirical existence” in quantum mechanics
as, for example, Omnès wishes without bringing philosophical criteria to bear.
Indeed, it is impossible in the case of any physical theory, even when this ac-
tivity is relatively straightforward, as it is often argued to be in the case of
classical mechanics. The tactic might be useful when first constructing a the-
ory, in order to avoid hindersome presumptions, but to reject all philosophical
criteria when interpreting a theory is to reject of one of the fundamental ac-
tivities of science, namely, arriving at a conception of the external world. As
Redhead puts the matter, theories ‘interpreted’ in the above ways “simply do
not contribute to our understanding of the natural world” ([371], p. 45).

To aid better the interpretation of quantum mechanics, consider Healey’s
minimal desiderata, including the sine qua non of explanatory power.

“A satisfactory interpretation. . . would provide a way of understand-
ing the central notions of the theory which permits a clear and ex-
act statement of its key principles. It would include a demonstra-
tion that, with this understanding, quantum mechanics is a consis-
tent, empirically adequate, and explanatorily powerful theory. And
it would give convincing and natural resolutions of the ‘paradoxes’.”
([211])

The paradoxes Healey has in mind are those of the sort discussed in the pre-
vious chapter. An interpretation of the theory need neither reject all philo-
sophical criteria nor require the rejection of an independent external world the
physics of which those who formulated it intended to capture in the first place.
A nuanced understanding of the Basic interpretation that includes objective
indefiniteness can currently be seen to be the most satisfactory according to
these criteria.
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3.1 Interpretation and Metaphysics

The revolutionary nature of quantum theory and the conceptual innovations
it requires, particularly in light of the experimental disconfirmation of local
hidden-variables theories by the observation of violations of Bell-type inequal-
ities, have led physicists to seek new ways of interpreting quantum mechanics,
for better or worse, including anti-realist moves that deny that there is an
objective universe and realist moves that postulate inaccessible universes.

There are metaphysical, epistemological, and theoretical aspects of most
issues in the foundations of quantum mechanics which are typically inter-
related in any given case, as seen above regarding the Heisenberg relations
and quantum logic. The adjective realist has been applied to each of these
aspects. Metaphysical realism, particularly in the form of scientific realism,
is the position most naturally adopted by physicists; it posits the existence,
independently of the mental, of the objects to which they devote their studies.
However, like interpretation, realism is a term that has been variously under-
stood and often used with insufficient care in the physics literature. This is
particularly so in the context of foundational questions in quantum theory,
most often in relation to quantum non-locality [314, 327]. Usage of the term
in that regard is typically vague or improper, which has led to the claim that
quantum mechanics conflicts with ‘local realism.’ Whether one agrees with
that claim depends on how one understands local and reality.

The prominence of the term reality in relation to quantum physics can be
traced at least as far back as the original EPR paper and its ‘reality crite-
rion.’ Bohr used the term with similar prominence in Quantum mechanics and
physical reality, his follow-up to the EPR paper which reiterated its title, Can
quantum-mechanical description of physical reality be considered complete?
Bell made similar use of the term in essays, as in Bertlmann’s socks and the
nature of reality. These opened the way toward increasing attention to the
philosophical issues arising from quantum mechanics and its explicit interpre-
tation. Because, unlike the locality requirements which they also addressed,
the analysis of the relationship of theory to reality is not physics proper, these
articles forced physicist readers to confront unfamiliar questions without pro-
viding sufficient context for them to grasp fully their exact meaning and full
significance. Predictably, this led to a variety of understandings of the reality
and related terms.

Margenau identified the issue of manifold meanings early on, in his own
follow-up article to the EPR paper, in which he made the following comment.

“The discussion of a recent paper by Einstein, Podolski and Rosen
has brought to light an interesting divergence of opinions as to the
meaning of reality.” ([308])
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Accordingly, Heisenberg cautioned physicists against making metaphysical
moves, explicitly or implicitly, through the imprecise use of terms. In par-
ticular, in relation to

“the statement that besides our world there exists another
world. . . One should be especially careful in using the words ‘real-
ity,’ ‘actually,’ etc., . . . ” ([219], p. 15)

Born later remarked, more strongly than Margenau, that the

“concept of reality is too much connected with emotions to allow a
generally acceptable definition. ” ([68], p. 103)

D’Espagnat has clearly characterized two of the most famous of realist
views in quantum physics, those of Einstein and Bell, as resting on common
sense, because they are based, for example, on such arguments as

“. . . nobody really succeeds in believing that the moon does not exist
when not looked at. Some physicists, and not the lesser ones (in his
mature years Einstein was, as it seems, quite avowedly one of them)
are fully convinced by such commonsense arguments. Similarly, John
Bell considered them to be decisive even after he discovered his the-
orem. . . and was content, in view of the said discovery, to hold this
reality to be nonlocal.” ([126], p. 197)

Philosophers, in general, have been less tentative and more careful and pre-
cise than physicists have in their use of reality and of related concepts in
understanding physics, as well as in their characterization of the positions of
founders of quantum mechanics; for them, metaphysics, theories of reference,
and semantics are central territories. For example, Krips takes proper care in
his use of realism and anti-realism; at the outset of his book, The metaphysics
of quantum theory, in relation to the case of the Copenhagen interpretation,
he has explained that

“Bohr was anti-realist in his attitude toward the formalism. . . he took
the state-vectors of systems to be purely heuristic devices. More-
over Heisenberg was anti-realist in respect of his endorsement. . . of
verificationist principles. . . But. . . neither. . . were anti-realists in the
metaphysical sense of denying the existence of an objective exter-
nal reality. . . nor did they eschew the scientific realist’s commitment
to describing that reality within science. . . In short the disagreement
between Bohr and Heisenberg on the one hand and Einstein on the
other was not a disagreement over metaphysical realism or indeed
scientific realism. Rather it was a disagreement about the terms in
which external reality was to be described.” ([281], p. 1)

Historians of science are also typically fully aware of all the meanings of the
terms involved. For example, Einstein’s position regarding reality has been
articulated well by Jammer, as follows.



106 3 Interpretations of Quantum Mechanics

“In 1936 Einstein published his credo concerning the philosophy of
physics in an essay ‘Physics and Reality,’ which started with the
remark that science is but a refinement of everyday thinking and
showed how the ordinary conception of a ‘real external world’ leads
the scientist to the formation of the concept of bodily objects by tak-
ing, out of the multitude of his sense experiences, certain repeatedly
occurring complexes of sense impressions. From the logical point of
view, this concept of bodily object is not to be identified with the to-
tality of sense impressions but is ‘an arbitrary creation of the human
mind.’ Although we form this concept originally on the basis of sense
impressions, we attribute it—and this is the second step in building
up ‘reality’—a significance which is to a high degree independent of
sense impressions and we thereby raise its status to that of an ob-
ject of ‘real existence.’. . . That the totality of sense impressions can
be put in order was for Einstein a fact ‘which leaves us in awe, for
we shall never understand it.’ The eternal mystery of the world, he
declared, ‘is its comprehensibility.’ ” ([256], p. 230)

Metaphysics plays an important role in the interpretation of any funda-
mental physical theory. It is, therefore, perilous not to engage in it, at least
implicitly, as Bohr, Einstein, Heisenberg, Schrödinger and other founders of
quantum theory managed to do with alacrity. Nonetheless, among both physi-
cists and philosophers, the greatest error in the pursuit of a well defined inter-
pretation has been naive realism, in the sense of interpreting the wave-function
as directly representing reality, in particular, directly representing individual
objects, which is sometimes incorrectly attributed to Einstein, as opposed to a
subtler realism of the kind he espoused. Schrödinger, with whom Einstein was
in written correspondence and sympathetic in regard to metaphysical issues
in quantum theory, offered the following comments in 1935 in regard to the
relationship between the wave-function and reality.

“For each measurement one is required to ascribe to the ψ-function
(= the prediction-catalog) a characteristic, quite sudden change,
which depends on the measurement result obtained, and so cannot
be foreseen; from which alone it is already quite clear that this second
kind of change of the ψ-function has nothing whatever in common
with its orderly development between two measurements. The abrupt
change by measurement. . . is the most interesting point of the entire
theory. It is precisely the point that demands the break with naive
realism. For this reason one can not put the ψ-function directly in
place of the model or of the physical thing. And indeed not because
one might never dare impute abrupt unforeseen changes to a physical
thing or to a model, but because in the realism point of view obser-
vation is a natural process like any other and cannot per se bring
about an interruption of the orderly flow of natural events.” ([394])
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As Omnès has simply put the matter, “nobody will ever see a wave function
when looking at a car or a chair” ([330], p. xi).

Again, however, criticism prompted by metaphysical excess has often been
incorrectly directed toward any metaphysical contemplation rather than to-
ward the specific offending moves. This was clearly noted by Bell, who de-
scribed the historical significance of this attitude for the development of quan-
tum physics itself when he said that quantum phenomena

“made physicists despair of finding any consistent space-time pic-
ture of what goes on on the atomic and subatomic scale. Making a
virtue of necessity, and influenced by positivistic and instrumentalist
philosophies, many came to hold that not only is it difficult to find
a coherent picture but it is wrong to look for one – if not actually
immoral then certainly unprofessional.” ([24], p. 142)

To understand better why such reactions are inappropriate, it is helpful to
know precisely how philosophers understand metaphysical realism.3 Popper
explicated the realist metaphysical position as follows.

“[T]hat this world exists independently of ourselves; that it existed
before life existed, according to our best hypotheses; and that it will
continue to exist, for all we know, long after we have all been swept
away.” ([361], p. 2)

He provided the following simple argument for the realist position,

“[T]heories are our own inventions, our own ideas. . . But some of
these ideas are so bold that they can clash with reality: they are
the testable theories of science. And when they clash, then we know
there is a reality: something that can inform us that our ideas are
mistaken. And this is why the realist is right. (Incidentally, this kind
of information—the rejection of our theories by reality is the only
information we can obtain from reality: all else is our own making.
This explains why our theories are coloured by our human point of
view, but less and less distorted by it as our search goes on.)” ([361],
p. 3)

This is essentially the way, for example, Bell himself understood the position,
which he also advocated.4

A more precise, technical definition of metaphysical realism is the follow-
ing, given in the following strong form by Michael Devitt.
3 The reader may also find it useful to consult d’Espagnat’s description of various

forms of realism in relation to physics [126], pp. 24-30.
4 See, for example, Bell’s comments on the Collapse-Free interpretation shown in

Section 3.5.
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“Tokens of the great majority of current common-sense, and scien-
tific, physical types objectively exist independently of the mental.”
([133])

The distinction between tokens and types is that a type is a general sort of
thing, as in “the ape,” whereas a token is a particular concrete instance of
a general sort of thing, as in “this particular ape”; types are considered ab-
stract and unique in character whereas tokens are concrete and particular,
say composed of a specific sort of material (cf., e.g., [488]). The token–type
distinction is of particular importance where logical and linguistic considera-
tions come into play. With this understood, one can go on to consider other
and subtler matters, such as what properties tokens are expected to have; in
common sense and fairly mature sciences, these characteristics are known well
enough for our purposes. As noted above, considerable attention was also paid
by philosophers to anti-realism during much of the twentieth century perhaps
more than to articulations of the forms of realism to which it is opposed (cf.
[145, 146]). A rather crude but direct characterization of anti-realism and its
relation to quantum mechanics has been given by Peter Gibbins.

“Philosophers have another motive, one which is inspired by their in-
tellectual cussedness. Quantum mechanics is most easily interpreted
antirealistically, that is, as a theory which, though it works, does not
describe the way the world is.” ([187], p. ix)

With this characterization, Gibbins could equally well be describing the re-
lated position of instrumentalism, namely, that scientific theories need only
serve as mere tools for making predictions of future observations, so that
believing them to be valid in no way obligates one to the existence of the en-
tities to which they refer. Although the detailed consideration of anti-realism
is philosophically important, the issues that such detailed consideration in-
volves are not especially pertinent to understanding quantum theory over and
above understanding other physical theories and will not be delved into fur-
ther here.5

As noted at various points above, physicists have paid far more attention to
the option of instrumentalism, which for obvious reasons comes far less natu-
rally to them, than to the much stronger position of metaphysical anti-realism.
Another, closely related position is scientific empiricism, such as described by
Bas van Fraassen in the context of a discussion of the implications of Bell’s
theorem.

“I wish merely to be agnostic about the existence of the unobservable
aspects of the world described by science. . . ”([464], p. 72)

5 The interested reader may wish to consult Peter Forrest’s book Quantum meta-
physics for a description of the pertinence of anti-realist thought, as well as
Peircean realism, to the interpretation of quantum mechanics [177].
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Van Fraassen more fully explicates this position as follows.

“To be an empiricist is to withhold belief in anything that goes be-
yond the actual, observable phenomena, and to recognize no objec-
tive modality in nature. To develop an empiricist account of science
is to depict it as involving a search for truth only about the em-
pirical world, about what is actual and observable. . . it must involve
throughout a resolute rejection of the demand for an explanation
of the regularities in the observable course of nature, by means of
truths concerning a reality beyond what is actual and observable, as
a demand which plays no role in the scientific enterprise.” ([463], pp.
202-203)

It is interesting here to note that Schrödinger, in his criticism of naive realism,
comment that

“The classical method of the precise model. . . is [perhaps] based on
the belief that somehow the initial state really determines uniquely
the subsequent events, or that a complete exactness would permit
predictive calculation of outcomes of all experiments with complete
exactness. Perhaps on the other hand this belief is based on the
method. But it is quite probable. . . that ‘complete model’ is a con-
tradiction in terms like ‘largest integer’.” ([394])

Unlike with Schrödinger, the negative effect of attempting to maintain a naive
realist approach to the physical world has prompted a number of physicists to
question the very holding of metaphysical views or commitment to a quantum
ontology. However, ultimately, as Clifford Hooker has noted,

“Some scientists do take the empirical success of the theory, com-
bined with its interpretational obscurity, as proof that empiricism is
the correct attitude, but this has not been widespread. . . There are
also many scientists, it must be admitted, who point to the empir-
ical adequacy and say ‘enough, get on with experiment’, but these
scientists have really dismissed the interpretational issue rather than
decided it, and they are seen to have their pragmatic motivations.
These scientists will be satisfied by crude empiricist renditions like
that of the physicist Leslie Ballentine and they ought to be satisfied
by the elegantly worked out, but ontologically noncommittal models
van Fraassen himself has provided. The irony is, for all its elegance,
van Fraassen’s interpretation is being, and is bound to be, largely
ignored by scientists just because it doesn’t treat the theoretical
problems seriously in the sense required.” ([234], p. 180)

W. Michael Dickson has suggested that, in view of the empiricist alternative,
realist physicists instead be committed to a specific verification criterion.
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“Physicists have a loose criterion for whether some element of a the-
ory corresponds to a real physical entity: If an experiment reveals
‘somewhat directly’ a physical entity corresponding to the theoreti-
cal element in question, and is more or less the way the theory says
it is. Empiricists correctly point out that this vague criterion is not
at all philosophically compelling. It is perhaps the correct criterion
for physics, but it provides only the barest of starting point for phi-
losophy: When the criterion is met, realists and empiricists are on
even ground as regards pure physics, and must settle the dispute
purely philosophically. . . ; when it is not met then the realist should
provisionally agree with the empiricist that the theoretical element
in question does not refer to a real physical entity. . . I propose that
the realist is committed to the following verification criterion: The
existence of a supposed unobservable entity is scientifically plausible
to the extent that measurable effects of the entity can (in principle)
be verified, and the properties assigned to the entity by science can
plausibly be said to be possessed to the extent that they can (in
principle) be measured.” ([136])

What is most important to recognize is that any appeal to anti-realism, em-
piricism, or instrumentalism to solve technical problems in quantum physics,
which often revolve around behavior that is not locally causal, is suspect in
itself. As Tim Maudlin has rightly pointed out,

“Realism in philosophy of science is generally contrasted with instru-
mentalism or empiricism, which views assert that one can have no
grounds to believe that the unobservable ontology of a theory is ac-
curate. In this sense, theories are neither realistic nor non-realistic,
only interpretations of (or better: attitudes toward) theories. And
the strongest argument in favor of instrumentalism, from Osiander
onwards, is underdetermination: the existence of many incompati-
ble theories all capable of ‘saving the phenomena’. The beauty of
Bell’s theorem, of course, is that it is insensitive to the details of
the theory suggested: any theory which can save the phenomena (if
the phenomena include claims about the behavior of macroscopic de-
vices located in space and time) must be non-local. Even a classical
instrumentalist would be forced to accept non-locality.” ([314], pp.
304-305)

Recall that the first explicitly ‘localist’ stance after the appearance of quantum
mechanics was that of Einstein, who in this regard commented that

“on one supposition we should, in my opinion, absolutely hold fast:
the real factual situation of the system S2 is independent of what
is done with the system S1, which is spatially separated from the
former.” ([151], p. 85)
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The not uncommon move, to jettison realism in light of the failure of ‘local
realism,’ that is the failure of locality, is simply a (philosophical) mistake.
Indeed, as Krips has correctly noted in accord with Dickson’s points,

“Q[uantum ]T[heory], or even an interpretation of [it], cannot of
course prove [a realist] metaphysics. But a particular interpretation
of QT can support this realist metaphysics by presenting QT as
descriptive of an objective reality.” ([281], p. 127)

That is, metaphysical realism gains support to the extent that quantum theory
is well interpretable non-instrumentalistically in such a way that the reality
described by quantum theory is objective, say by physical quantities taking
values when unmeasured and in a mind-independent way, given that the the-
ory makes correct predictions and is explanatory whether it is local or not.

Following the language of the EPR paper and other seminal works in
the foundations of quantum mechanics, the phrase realist interpretation is
now common in the literatures of both philosophy and physics in relation to
quantum mechanics. Krips offers the following characterization.

“What does it mean to adopt a ‘realist interpretation’ of [quantum
theory]? I shall take it to mean accepting that [quantum theory] is
true, that the objects [it] refers to (electrons, protons, etc.) exist,
that the properties it refers to are ‘real,’ and in particular that the
physical quantities it refers to are ‘real’; in short it also means that
we can interpret [quantum theory] ‘literally,’ in the sense that we
can take all its referential terms as genuinely referring and not just
as convenient fictions or metaphors for the real.” ([281], p. 126)

This roughly characterizes the class of interpretation Einstein had in mind,
and one to which even Heisenberg and Bohr might have had no objection.6

As Fine has also noted,

“While there can be no doubt that Einstein turned away from pos-
itivism to realism, or that realism was important in his thinking
about the quantum theory, there is considerable room for specula-
tion concerning exactly what Einstein’s realism involves.” ([174], p.
87)

Clearly, a metaphysical realist world view does contribute to our understand-
ing of the physical world, however unexpected the consequences of such a
world view might be, such as when it suggests the presence of objective in-
definiteness. The most important point is that naive realism is not the only
form of realism available as an attitude toward quantum theory.

For Einstein, metaphysical realism was not to be held out of absolute
necessity, but was seen as the best foundation for a coherent world view.
6 See also the Einstein’s statement to Born quoted in Section 1.7.
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“[The] ‘real’ in physics is to be taken as a type of program, to which
we are, however, not forced to cling a priori. No one is likely to be
inclined to attempt to give up this program within the realm of the
‘macroscopic’. . . But the ‘macroscopic’ and the ‘microscopic’ are so
inter-related that it appears impracticable to give up on this program
in the ‘microscopic’ alone.” ([152], p. 674)

Indeed, Fine has argued that Einstein’s realism, which Fine calls “motivational
realism,” was much weaker and more subtle than standard metaphysical re-
alism ([174], Chapter 6). Again, a central concern for Einstein was avoiding
observer-dependence.

“The sore point lies less in the renunciation of causality than in the
renunciation of the representation of a reality thought of as indepen-
dent of observation.” (cf. [428], p. 374)

It is widely recognized that more effort has been expended interpreting
quantum theory than any other physical theory in recent times simply be-
cause physicists have clear and natural motives for seeking interpretations of
quantum mechanics, as Hooker has pointed out.

“The theory is strikingly empirically adequate, as well understood
mathematically as any other theory (i.e. modestly so), but poorly
understood conceptually and ontologically. . . In fact, no theory has
drawn more interpretational discussion in the history of science, and
not just (or even mainly) by philosophers but primarily by scientists
themselves seeking theoretical understanding. . .With few (any?) ex-
ceptions, all of the outstanding scientists of this century have worried
the problem, seeking theoretical insight.” ([234], p. 180)

For example, Bell remarked

“When I look at quantum mechanics I see that it’s a dirty theory.
The formulations of quantum mechanics you see in the books involve
dividing the world into an observer and an observed, and you are not
told where that division comes—on which side of my spectacles it
comes, for example—or at which end of my optic nerve. You’re not
told about this division between the observer and the observed. . . So
you have a theory which is fundamentally ambiguous, but where the
ambiguity involves decimal places remote from human abilities to
test.” ([119], p. 54)

Although Bell’s interest was mainly a practical one, based on criteria internal
to physics, he strongly objected to “FAPP” (for all practical purposes) ratio-
nalizations, involving approximations that could not be rigorously justified.

The Copenhagen interpretation which, like the Basic interpretation, was
a widely accepted one, presents quantum mechanics as a final theory of me-
chanics as well as providing with a relatively intuitive basis on which to use
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it. Popper called advocates of such finalism—Pauli, for example—“end-of-the-
road people” ([361], p. 13) clearly differing from Einstein and Bell.

“[Einstein said] ‘it seems to me that those physicists who regard
the ways of description of quantum mechanics as in principle final
(‘definitiv ’) will react to these considerations as follows: they will
drop the requirement. . . of the independent existence of physical real
things in distant parts of space; and they could rightly claim that
quantum mechanics nowhere makes implicit the use of any such re-
quirement’.” ([361], p. 21)

Einstein was bothered by finalism on philosophical grounds; he continued to
struggle to bring quantum theory and the broader common-sense and scientific
conceptions of the world into harmony and, like Schrödinger, to provide argu-
ments against the validity of the world picture provided by the Copenhagen
interpretation, in particular, to challenge the idea of a holistic participatory
universe that interpretation appeared to accommodate. In order to get to the
heart of the matter, he delved directly into the philosophical issues the neglect
of which enabled what was, for him, a serious threat to the integrity of the
scientific world view. For example, the EPR paper contended that

“Any serious consideration of a physical theory must also take into
account the distinction between objective reality, which is indepen-
dent of any theory, and the physical concepts with which the theory
operates. These concepts are intended to correspond with the objec-
tive reality, an by means of these concepts we picture this reality to
ourselves.” ([153])

In a letter to Schrödinger, Einstein similarly spelled out his discomfort
with quantum mechanics under the subjectivist approach to interpretation
that was common at the time.

“Most [contemporary physicists] simply do not see what sort of risky
game they are playing with reality—reality is something indepen-
dent of what is experimentally established. They somehow think
that quantum theory provides a description of reality, and even a
complete description; this interpretation is, however, refuted most
elegantly by your [cat experiment]. . . Nobody really doubts that the
presence or absence of the cat is something independent of the act
of observation.” ([365], p. 39)

The option to put aside philosophical considerations and simply to accept the
most pragmatic interpretation of quantum theory is seductive to physicists,
but risks taking current physical theory too seriously; Einstein warned that the
Copenhagen interpretation can serve as “a gentle pillow for the true believer.”
Even Omnès in the end finds himself committed to the view that “the logic of
common sense is a secondary feature relying upon a somewhat deeper logical
structure having its roots in physical reality” ([329], p. 204).
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Although under a different interpretation, some have even been open to
the having physics dictate logic. The view of logic as a posteriori is, perhaps,
epitomized by the erstwhile claim of Putnam that “logic is just as empirical as
geometry” in light of the discoveries of quantum logic [366]. Stachel correctly
criticized this move, as follows.

“At any given state of scientific development what we confront is not
‘reality,’ but some particular theoretical structure, and its accompa-
nying modes of experimental protocol, which enable us to understand
and cope with some aspects of the world. . . The danger is such conso-
lations may divert us from confronting tensions within the existing
theoretical and experimental structure, or between that structure
and other, unassimilated elements—tensions that could lead to a
deeper comprehension of, changes to, or even the complete overthrow
of, that structure.” ([427], p. 233)

To put the matter in simple terms, although a conceptual shift in physics can
be an extremely valuable thing, a ‘corresponding’ shift in metaphysics or logic
is something altogether more dramatic and if an error more likely to be grave.
As is again shown below in the case of the Radical Bayesian interpretation,
a philosophical move motivated by a desire to finesse a paradox that does
not also address a genuine and essentially philosophical problem can actually
threaten to greatly hinder progress by shifting attention away from physics.

The only robust new mechanical theory to emerge from the continual prob-
ing of the foundations of quantum mechanics has been Bohmian mechanics,
an alternative model which is readily seen to cohere with realism and follows
the spirit of Einstein’s philosophy, even if not to the satisfaction of Einstein
himself or, thus far, the physics community as a whole. The basis for this sort
of mechanics was set out in essence early on by de Broglie and Bohm and will
not be discussed in detail here; let us simply note Bohm’s own description of
its origins.

“[Blokhinzhev and Terletzky] made it clear that . . . one may consis-
tently regard the current quantum theory as an essentially statistical
treatment, which would eventually be supplemented by a more de-
tailed theory permitting a more nearly complete treatment of the
behavior of the individual systems. Then in 1951, partly as a result
of the stimulus of discussions with Dr. Einstein, the author began
to seek such a model; and indeed shortly thereafter he found a sim-
ple causal explanation of the quantum mechanics which, as he later
learned, had already been proposed by de Broglie in 1927. . . partly
as a result of additional suggestions made by Vigier, de Broglie then
returned to his original proposals, since he now felt that the decisive
objections against them had been answered.” ([53], p. 110)

Bohmian mechanics is a different version of quantum theory with a capacity
for producing predictions differing from those of standard quantum mechanics.
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By contrast, the recently introduced Radical Bayesian interpretation is an
unsatisfactory approach to the interpretation of quantum mechanics because
it introduces no new empirical predictions while with the same stroke risking
greatly stunting the progress of physics, indeed, risking to do so more radically
than any previous interpretation previously suggested; as Redhead has said
“Setting dogmatic limitations on scientific theorizing, on the basis of obscure
philosophical preconceptions, is a dangerous prejudice from the standpoint of
a conjectural-fallibi[li]st approach to the nature of scientific activity” ([371],
p. 51).

It should be recalled that realism as a philosophical stance toward the
quantum world has also been targeted for rejection on the basis of empirical
evidence, in addition to being considered merely metaphysically ‘extravagant.’

“Recently, a new bogeyman seems to have been found: realism. Thus
[Lucien] Hardy states: ‘In 1965 Bell demonstrated that quantum me-
chanics is not a local realistic theory. He did this by deriving a set
of inequalities and then showing that these inequalities are violated
by quantum mechanics’ [206]. The conversational implication is that
Bell’s theorem only applies to local realistic theories, so that locality
(and hence perhaps also consistency with Relativity) can be recov-
ered if one only jettisons realism. But no standard theory, even a
non-realistic one (whatever that means) can be local, so we must
reject the conversational implication.” ([314], p. 304)

EPR’s ‘reality criterion,’ which was presumably conflated in that instance
with the form of metaphysical realism that nonetheless likely motivated it, is
perhaps a legitimate target for rejection on physical grounds as an element of
an interpretational program. Nonetheless, metaphysical realism is not. Indeed,
Bell himself, who always expected his inequality to be violated by rigorous
experimental testing, was deeply committed to realism, as reflected in his
response to the query would you “prefer to retain the notion of objective
reality and throw away one of the tenets of relativity: that signals cannot
travel faster than the speed of light?” which was

“Yes. One wants to be able to take a realistic view of the world, to
talk about the world as being there even when it is not observed. I
certainly believe in a world that was here before me, and will be here
after me, and I believe that you are part of it! And I believe that
most physicists take this point of view when they are being pushed
into a corner by philosophers.” ([119], p. 50)

Note also that Bell did not view (at least the Many-worlds version of) the
Collapse-Free approach as a solution to the difficulties presented by quantum
phenomena, despite its capability of being presented realistically, because he
viewed that interpretation as “radically solipsistic,” despite contrary claims
about it by various advocates (cf. [24], p. 136).

Finally, consider the following 1961 comment of Wigner.
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“The problems of epistemology and ontology have an increased in-
terest for the contemporary physicist. The reason is, in a nutshell,
that physicists find it impossible to give a satisfactory description of
atomic phenomena without explicit reference to the consciousness.”
([500], p. 33)

Although this reflects Wigner’s own theoretical bias toward the particular
possibility of a psychophysical approach to problems in the foundations of
physics, it is certainly the case that an exploration beyond the traditional
scope of physics is required to the interpret of quantum mechanics, relative
to the interpretation of other theories of physics, because standard quantum
theory is peculiar. At a minimum, it forces objective indefiniteness on physics.

A fair characterization of the current situation in the progression toward
a more solid foundation for quantum mechanics through the deployment of
physical and philosophical tools is the following, offered by R. I. G. Hughes.

“The theory uses the mathematical models provided by Hilbert
spaces, but it’s not clear what categorical elements we can hope
to find represented within them, nor, when we find them, to what
extent the quiddities of these representations will impel us to modify
the categorical framework whose elements have their images within
it; we obtain an interpretation by the dialectical process of bringing
to the theory a conceptual scheme, and then seeing how this concep-
tual scheme needs to be adjusted to fit it. Because there are several
solutions to this problem, there can be competing interpretations of
the same theory.” ([244], p. 176)

This situation is sometimes characterized as the “underdetermination” of in-
terpretation of quantum theory, which is addressed in a later section of this
chapter. Although this situation is sometimes bemoaned, it differs from the-
oretical underdetermination. There is no a priori reason that a correct in-
terpretation must be uniquely determined. That quantum mechanics is not
self-interpreting is a reflection of the non-triviality and importance of the
activity of theory interpretation as science continues its advance into new
realms. What one should seek are consistent interpretations of theories that
best assist us in deepening and broadening our understanding of the world
without requiring insufficiently warranted ontological commitments. Regard-
ing quantum mechanics, the most prudent attitude is to allow neither physics
nor philosophy alone to dictate our interpretation, but rather a balanced com-
bination of the two, for example, as both Bell and Einstein sought.

The process of attaining a better understanding of quantum mechanics
through the consideration of alternative interpretations of its formalism had
been an ongoing one even before von Neumann’s mathematically rigorous
formulation of the theory was available. It has centered on the meanings and
roles of the the operator matrices and/or the wave-function and of quantum
probabilities. This activity continues. Let us now consider several of the most
significant such interpretations to date.
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3.2 The Basic Interpretation

The interpretation given to the quantum formalism by von Neumann and
Dirac is distinct from the approaches that preceded it, in particular, the
Copenhagen interpretation with which it has sometimes been less than care-
fully identified; as Paul Feyerabend has correctly noted, “when dealing with
von Neumann’s investigations, we are not dealing with a refinement of Bohr—
we are dealing with a completely different approach” ([167], p. 237). Ballen-
tine, the most fervent contemporary advocate of the other preceding interpre-
tation, which attempted to remain true to naive realism, calls the interpre-
tation of von Neumann and his Princeton-associated colleagues that of the
Princeton school [16]. Whitaker, likely following Ballentine, has also called it
the Princeton interpretation ([496], p. 194). Bub has referred to it as simply
the basic approach [87]. Here, it is called the Basic interpretation.

The Basic interpretation emphasizes the fundamental nature of the Born
probability rule and combines it with the projection postulate for specifying
the state of a quantum system upon measurement. Like the Copenhagen inter-
pretation, it regards the quantum state as a complete description of quantum
phenomena as opposed, for example, to Einstein’s view of the quantum state
as an incomplete description of the quantum world. However, the Basic inter-
pretation does not require measuring apparatus to be describable in classical
terms—unlike the Copenhagen interpretation, it rests on the comparatively
explicit context-independent and mathematically internal description of the
measurement process discussed in the previous chapter. Indeed, the Dirac–von
Neumann approach was the first to involve a detailed mathematical investi-
gation of measurement explicitly internal to quantum mechanics, although it
should be recalled that Bohr was later driven to invoke a somewhat quantum
mechanical treatment of measurement in order to argue, contra Einstein, that
Heisenberg’s uncertainty relation could not be violated by a rigged double-slit
apparatus, as discussed in Section 1.2.

The Basic interpretation takes upon itself the requirement that quantum
mechanics describe not only measurement outcomes but also the indepen-
dently existing, although possibly indefinite physical quantities of systems
about which these measurements provide data. However, unlike versions of
the later Collapse-Free interpretation which also put no restrictions on the de-
scription of measurement apparatus but are often understood to describe very
large numbers of universes, there is no question that the theory describes the
evident universe as a single universe. It is consistent with the realist metaphys-
ical stance, despite its reference of the experience of observers whose physical
bodies are within its purview in the context of measurement.

Its realist character was spelled out later and variously by others; for ex-
ample,
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“the classical tradition of simply located objects characterized in-
dependently of experiment, was presupposed by Born and von Neu-
mann and imposed on the data with the help of an informal language
of ‘particles’ and ‘states’.” ([497], p. 71)

Its relation to psychophysical parallelism, also upheld in the Copenhagen in-
terpretation, differs importantly from that of, for example, Heisenberg.

Von Neumann explicated the principle of psychophysical parallelism as
follows.

“[T]he measurement or the related process of the subjective percep-
tion is a new entity relative to the physical environment and is not
reducible to the latter. Indeed, subjective perception leads us into the
intellectual inner life of the individual which is extra-observational
by its very nature. . . Nevertheless, it is a fundamental requirement
of the scientific viewpoint—the so-called principle of psycho-physical
parallelism—that it must be possible so to describe the extra-physical
process of the subjective perception as if it were in reality in the
physical world.” ([477], pp. 418-419)

That is, although the subjective experience of the observer is not physical,
the observer’s experience must be describable consistently with the physics of
its body. Von Neumann adds, “Indeed, experience only makes statements of
this type: an observer made a certain (subjective) observation; and never any
like this: a physical quantity has a certain value” ([477], p. 420). Thus, the
interpretation does not consider the domain of quantum theory to be that of
experience or knowledge, as von Neumann clearly states, despite invoking the
Heisenberg Schnitt.

“[In] any case, no matter how far we calculate [up the chain of ob-
servation toward the interior of the observer’s body] at some time
we must say: and this is perceived by the observer. That is, we must
always divide the world into two parts, the one being the observed
system, the other the observer. In the former, we can follow up all
physical processes (in principle at least) arbitrarily precisely. In the
latter it is meaningless. . . ” ([477], p. 419)

Thus, experience must only be consistent with events in the external world, it
need not constitute or create the external world. The interpretation is clearly
fully consistent with metaphysical realism, something not evident in the case
of the Copenhagen interpretation. Quantum mechanics is also taken to be a
fundamental theory of the physical world and is irreducibly probabilistic, the
idea which prompted Einstein’s famous protest, “God does not play dice with
the world.”7

7 Bell commented, “I would like to qualify this ‘God does not play dice’ business.
This is something which is often quoted, and which Einstein did say rather early
in his career, but afterwards was more concerned with other aspects of quantum
mechanics than with the question of indeterminism. And indeed, Aspect’s par-
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The following are central elements of the Basic interpretation given by von
Neumann in his Hilbert-space formulation of quantum mechanics.8

(1) Every physical system is attributed a separable Hilbert space H.
(2) Every physical magnitude is associated with an Hermitian self-adjoint,

not necessarily bounded, linear operator O, called an observable, and
vice versa.

(3) Every state of a physical system is assigned a statistical operator ρ
that is a linear bounded self-adjoint positive trace-class operator, and
vice versa.

(4) The Born rule provides expectation values for physical quantities.
(5) All facts about a physical system at time t are described via ρ(t).

Von Neumann considered any use of the Born rule, as in (4), as rendering the
associated interpretation a probabilistic one ([477], p. 210); elements (3)-(5)
render the theory irreducibly probabilistic. The Born rule, as clarified by Pauli,
is an element of this and all later probabilistic interpretations of the quantum
state.9 Element (5) is among the most distinctive of the Basic interpretation,
stating in essence that quantum theory is complete. Given (5), the Born rule
for assigning probabilities (4) requires each Hilbert-space ray, that is, pure
quantum state to provide the expectation values for all physical magnitudes.
Another assumption of the Basic interpretation is the rule regarding the wave
function |ψ〉 itself, provided by Dirac, that is, the rule for connecting pure
quantum states ρ = |ψ〉〈ψ| with physical magnitudes.

(6) (The eigenvalue–eigenstate link.) “The expression that an observable
‘has a particular value’ for a particular state is permissible in quantum
mechanics in the special case when a measurement of the observable is
certain to lead to the particular value, so that the state is in an eigenstate
of the observable. . . In the general case we cannot speak of an observable
having a value for a particular state, but we can speak of its having an
average value for the state. We can go further and speak of the probability
of its having any specified value for the state, meaning the probability of
this specified value being obtained when one makes a measurement of the
observable.” ([142], p. 253)

This statement can be viewed as incorporating the idea of objective indef-
initeness of physical magnitudes. Von Neumann similarly characterized the
probabilistic character of the quantum state ρ. A further distinctive assump-
tion of the Basic interpretation was stated by Dirac in 1927, namely,

ticular experiment [confirming Bell inequality violation] tests rather those other
aspects, specifically the question of no action at a distance” ([119], p. 46).

8 The postulates of quantum mechanics are given in standard form in Appendix B.
9 Born initially favored the view of elementary quantum systems as “corpuscles”

([256], p. 39); he was awarded the Nobel prize in 1954 “for his fundamental work
in quantum mechanics and especially for his statistical interpretation of the wave
function.”
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(7) (The projection postulate.) “[T]he state of the world at any given
moment [is described] by a wave function ψ, which normally varies
according to a causal law in such a way that its initial value determines
its value at any later moment. It may happen, however, that at a given
moment t1, ψ may be expanded into a series of the form ψ =

∑
n cnψn

in which the ψn are wave-functions that cannot interfere with each other
at times later than t1. In this case, the state of the world at times later
than t1 will not be described by ψ but by one of the ψn. One can say that
nature chooses the particular ψn that is suitable, since the only information
given by the theory is that the probability that any one of the ψn will be
selected is |cn|2. Once made, the choice is irrevocable and will affect the
entire future state of the world. The value of n chosen by nature can be
determined by experiment and the results of all experiments are numbers
that describe such choices of nature.” ([303], p. 262)

The causal law to which this statement refers is the Schrödinger equation.
Von Neumann and Dirac viewed both the unitary evolution and the state
projection as regarding probabilities provided by the statistical operator ρ.

It is also clear that Dirac considered observation to coincide with the state
projection.

“Consider an observation, consisting of the measurement of an ob-
servable α, to be made on a system in the state ψ. The state of the
system after the observation must be an eigenstate of α, since the
result of a measurement of α for this state must be a certainty.”
([139], p. 49)

Dirac understood the instantaneous change of state resulting from the mea-
surement involved in observation to incorporate this ‘indeterministic’ and
physical ‘jump,’ which he viewed as that arising from the unavoidable dis-
turbance of the system during measurement.

“When we measure a real dynamical variable ξ, belonging to the
eigenvalue ξ′, the disturbance involved in the act of measurement
causes a jump in the state of the dynamical system. From physical
continuity, if we make a second measurement of the same dynamical
variable immediately after the first, the result of the second measure-
ment must be the same as the first. Thus after the first measurement
has been made, there is no indeterminacy in the result of the second.
Hence after the first measurement is made, the system is in an eigen-
state of the dynamical variable ξ, the eigenvalue it belongs to being
equal to the result of the first measurement. This conclusion must
still hold if the second measurement is not actually made. In this
way, we see that a measurement always causes the system to jump
into an eigenstate of the dynamical variable that is being measured,
the eigenvalue this eigenstate belongs to being equal to the result of
the first measurement.” ([142], p. 36)
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Unless the system has previously been precisely measured for an observ-
able compatible with the corresponding projector being measured, or chance
has it that the measurement made is compatible with that projector, the sys-
tem state will change instantaneously upon measurement, which essentially
involves decoherence of the state in the corresponding eigenbasis. The prob-
lem of consistently describing measurements, described in Section 2.4 above,
remains a significant concern for physicists up to this day, particularly with
a two-process (1. projective. 2. unitary.) dynamics. To aid in the resolution
of this problem, a number of physicists have sought a specific mechanical
model of the wave-function ‘jump’; for example, Penrose, who has appealed
to gravity for this purpose, has expressed the following sentiment.

“Taking this formalism at face value, we have a statevector |ψ〉
which evolves for a while according to the completely deterministic
Schrödinger equation.. . . Then, at odd times, when an ‘observation’
is deemed to have been made, the Schrödinger evolved statevector
is discarded and replaced by another, which is selected in a random
way, with specific probability weightings, from among the eigenvec-
tors of the operator corresponding to the observation. As has been
argued on innumerable occasions, this is a wholly unsatisfactory pro-
cedure for a fundamental description of the ‘real world.’ ”([345], pp.
107-108)

However, he then adds,

“In the first place, it is often argued that |ψ〉 itself should not be
regarded as giving an objective description of the world (or part of
it) but as providing information merely of ‘one’s state of knowledge’
about the world. This view I really cannot accept.” ([345], p. 108)

This represents the view of most physicists that, despite the difficulty of the
measurement problem, a realist world view is to be preferred to a subjectivist
one, such as offered by some interpretations discussed below in later sections.

In addition to his relatively detailed theory of measurement, von Neumann
also provided in the Grundlagen the “no-go theorem” on hidden variables,
discussed in Section 1.7, which he believed established the impossibility of
dispersion-free quantum states. This conclusion turned out to be premature,
because this proof contained an unwarranted assumption; in 1952, Bohm con-
structed an explicit model showing that the implications of von Neumann’s
proof were other than he at the time understood. However, von Neumann’s
views on the question of such “hidden parameters” were more subtle than
generally appreciated.10

Regarding the question of causality, von Neumann understood the term
causal to pertain in two senses, one more formal than the other.11

10 See, for example, [19], pp. 33-35.
11 For similar comments by Dirac, see [142], pp. 46, 132-134.
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“The two interventions 1. and 2. are fundamentally different from
one another. That both are formally unique, i.e., causal, is not im-
portant; indeed, since we are working in terms of the statistical prop-
erties of mixtures, it is not surprising that each change, even if it is
statistical, effects a causal change of the probabilities and expecta-
tion values. Indeed, it is precisely for this reason that one introduces
statistical ensembles and probabilities! On the other hand, it is im-
portant that 2. does not increase the statistical uncertainty exist-
ing in U , but that 1. does: 2. transforms [pure] states into [pure]
states. . . while 1. can transform [pure] states into mixtures. In this
sense, therefore, the development of a state according to 1. is statis-
tical, while according to 2. it is causal. ” ([477], p. 357)

Margenau later argued that the quantum state description describes reality
in accordance with causality under the quantum description whereas an at-
tempted description of a classical sort of the same behavior would be acausal.

“The causally evolving ψ-states are not immediately tied to obser-
vations; they refer. . . to aggregates of observations. . . correspondence
of a hitherto unexpected type had to be introduced to restore causal-
ity. . . no juggling of ‘hidden parameters’ will wring knowledge of indi-
vidual observational events from states. But states continue to evolve
in a causal fashion.” ([309], p. 300)

Although it is clear that an interpretation of quantum mechanics can be
presented consistently with realism by its example, the Basic interpretation as
presented by von Neumann provides no direct explanation for the intersubjec-
tive agreement between results of measurements between different observers,
such as might be explained by providing some physical mechanism correspond-
ing to the postulated projection upon observation. If two observers observe
the same object, there is no a priori reason that the random outcomes for
their observations would be predicted to agree; agreement must simply be
assumed. Preferably, such a mechanism would be describable by Process 2.

After many decades of attempts, the measurement problem has still not
been explained away. This problem still appears insurmountable within stan-
dard quantum mechanics, as was recognized long ago by a number of physi-
cists, such as London and Bauer [302] and Wigner [499] who, like Dirac,
not only viewed state projection as a physical process but also went beyond
the principle of psychophysical parallelism and the view that the observer
‘makes the choice of eigenbasis’ at measurement to a stronger relation that is
pscyho-physical simpliciter, making the mind of the observer the cause of the
state-projection.

Although the Basic interpretation was a great advance beyond the alter-
native at the time of its inception, namely, the early-stage Copenhagen inter-
pretation, it cannot be the final word on the question of quantum phenomena;
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Shimony has expressed the following view regarding this, which emphasizes
the importance of retaining an epistemology founded in science (cf., [369]).

“[I]n order to hold on to epistemological naturalism at the founda-
tional level without resorting to physicalism a profound metaphysical
and scientific revolution is required. . . In this revolution, physics—
in its current formulation or in extrapolations from it that can be
envisaged—would not be the basic natural science. Mentality would
have a fundamental status in nature, either coordinate with phys-
ical reality or yet more fundamental. There have also been specu-
lations that quantum mechanics points to, or at least is hospitable
to, such a mentalistic revolution. . . None of them are convincing, but
to me physicalism is even less so. . . Quantum mechanics is plagued
with. . . ‘the measurement problem.’ There are, of course, serious pro-
posals to resolve this problem without modifying the formalism of
quantum mechanics, but there are students of the subject, among
whom I am one, who believe that phenomenology is right and quan-
tum mechanics is wrong, and that a successor to present quantum
mechanics will account in a natural way for the occurrence of definite
events.” ([416], pp. 306-307)

This view has been a primary motivation for the appearance modified versions
of quantum dynamics, such as pursued by Penrose, Philip Pearle and others.12

Bohmian mechanics and theories such as that of Penrose including gravita-
tional collapse involve not standard quantum mechanics but modified theories
of quantum mechanics, even though these make use of wave-functions.

For his part, after providing the Basic interpretation, von Neumann de-
scribed the probabilistic nature of quantum mechanics in his formulation as
follows.

“[T]he present system of quantum mechanics would have to be ob-
jectively false in order that another description of the elementary
process than the statistical one be possible.” ([477], p. 325 of the
1955 edition)

It is important to recognize that von Neumann did exhibit an openness to the
possibility of modifying quantum theory to make further progress; in their
seminal quantum logic paper of 1936, Birkhoff and von Neumann comment
that they were careful “to avoid being committed to quantum theory in its
present form” [48]. Von Neumann remarked that “quantum mechanics has, in
its present form, several serious lacunae, and it may even be that it is false,
although this possibility is highly unlikely” ([477], p. 327 of 1955 edition) but
also that no ‘fundamental’ physical theory has remained truly so ([478], p. 2).

12 Cf. Pearle’s overview of his and related attempts [341], as well as Shimony’s list
of desiderata for such attempts [412], p. 55.
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The influential Collapse-Free approach to interpreting quantum mechanics,
discussed below, includes only interpretations of quantum mechanics that do
not involve modifying or adding to the standard quantum dynamics but rather
reinterpreting the meaning of state projection.

Yet other relatively new approaches involve expanding or replacing the
formal elements of quantum mechanics. For example, Jordan suggested that
quantum mechanics needs an additional axiom in order to provide a consistent
description of the world as observed.

“Let us acknowledge that it is both possible and necessary to formu-
late a physical axiom not formulated hitherto. . . a special axiom to
express the empirical fact that. . . each large accumulation of micro-
physical individuals always shows a well defined state in space and
time—that a stone never, unlike an electron, has indeterminate coor-
dinates. One often vaguely believes this to be guaranteed by Heisen-
berg’s ∆p∆q > h; but in fact this relation only provides a possibility
and not a necessity for the validity of our axiom. . . ” ([264])

3.3 The Copenhagen Interpretation

The historically first well rounded interpretation of the quantum mechanics
was the Copenhagen interpretation. It is based on ideas articulated by Bohr
that predated the full Basic interpretation, although Dirac’s early version of
that interpretation appeared at roughly the same time as Bohr’s first article
on New quantum mechanics.

The Copenhagen interpretation, as currently understood, is actually the
product of several investigators.

“What is commonly known as the Copenhagen interpretation of
quantum mechanics, regarded as representing a unitary Copenhagen
point of view, differs significantly from Bohr’s complementarity inter-
pretation, which does not employ wave packet collapse in its account
of measurement and does not accord the subjective observer any
privileged role in measurement.. . . [T]he Copenhagen interpretation
is an invention of the mid-1950s, for which Heisenberg is chiefly re-
sponsible, various other physicists and philosophers, including Bohm,
Feyerabend, Hanson, and Popper, having further promoted the in-
vention in the service of their own philosophical agendas.” ([243])

The interpretation as considered here includes Heisenberg’s ideas, which were
influenced by Pauli’s views as much as Bohr’s founding ideas.13

13 For more on Pauli’s contribution see, for example, [226].
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The Copenhagen interpretation focused mainly on measurement and the
limitations of its efficacy in the quantum realm, for example, as described by
uncertainty relations. The widely recognized initial basis for the interpreta-
tion was laid down by Bohr in 1927 in his now famous Como lecture ([55],
and [256], Section 4.1). Because Bohr’s views were continually evolving, that
lecture cannot be considered a definitive statement of the interpretation. It is,
nonetheless, widely regarded as the best single statement of Bohr’s version as
given at any one time. Heisenberg described its seminal character as follows.

“Bohr considered the two pictures—particle picture and wave
picture—as two complementary descriptions of the same reality. Any
of these descriptions can only be partially true, there must be lim-
itations to the use of the particle concept as well as of the wave
concept, else one could not avoid contradictions. If one takes into
account those limitations which can be expressed by the uncertainty
relations, the contradictions disappear. In this way since the spring
of 1927 one has had a consistent interpretation of quantum theory,
which is frequently called the ‘Copenhagen interpretation’.” ([219],
p. 43)

As history progressed, Bohr spoke progressively less of wave–particle duality
and increasingly more of kinematic–dynamic complementarity. Whether there
indeed exists a consistent unitary Copenhagen interpretation remains a matter
of debate. Here, we primarily consider Bohr’s views as given in statements at
various later times together with those of Heisenberg and survey the elements
of the interpretation as consistently as possible.

On the Copenhagen interpretation, the state-vector is considered as pro-
viding, without reservation, as complete a description of the individual quan-
tum system as can be given by physics, much as it is understood to be on
the Basic interpretation, although the details of the quantum formalism it-
self rarely appear explicitly in the writings of Bohr. Dugald Murdoch has
described the relation between Bohr’s interpretation and a simple statistical
one as follows.

“[Although] Bohr did not think that the statistical interpretation
was mistaken, he saw no point in insisting upon it, since the state
vector provides as complete a description of an individual object as is
possible. . . [He] believed that on its own it did not provide a complete
basis for the interpretation of quantum mechanics.” ([322], p. 119)

Also like von Neumann, Bohr required measuring apparatus to be considered
genuine physical objects, rather than mere idealizations, which was a require-
ment that served him well in debates with Einstein. A key difference from the
Basic interpretation is that Bohr believed that the wave-function description
must necessarily be supplemented by classical concepts.

One of the clearer summaries by Bohr of the elements of the Copenhagen
interpretation is the following.
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“The unambiguous account of proper quantum phenomena must,
in principle, include a description of all relevant features of the ex-
perimental arrangement. . . In the case of quantum phenomena, the
unlimited divisibility of events implied in such an account is, in prin-
ciple, excluded by the requirement to specify the experimental con-
ditions. Indeed, the feature of wholeness typical of proper quantum
phenomena finds its logical expression in the circumstance that any
attempt at a well-defined subdivision would demand a change in the
experimental arrangement incompatible with the definition of the
phenomena under investigation.” ([64], p. 3)

In particular,

“the finite magnitude of the quantum of action prevents altogether
a sharp distinction between a phenomenon and the agency by which
it is observed, a distinction which underlies the customary concept
of observation and, therefore, forms the basis of the classical ideas
of motion. With this in view, it is not surprising that the physical
content of the quantum-mechanical methods is restricted to a formu-
lation of statistical regularities in the relationships between those re-
sults of measurement which characterize the various possible courses
of the phenomena.” ([57], p. 11)

And, crucially,

“it is decisive to recognize that, however far the phenomena tran-
scend the scope of classical physical explanation, the account of all
evidence must be expressed in classical terms.” ([63], p. 39)

The last of the above comments identifies a distinctive aspect of the Copen-
hagen interpretation, clearly differentiating it from the approach of the Basic
interpretation, namely, that all experimental arrangements are required to be
classically specifiable; quantum phenomena are viewed as dependent on the
(classical) measuring apparatus involved in measurement. The latter is re-
flected in the following comment by Bohr on Einstein’s argument regarding
the completeness of the quantum mechanical description.

“Of course there is in a case like [that of the EPR scenario] no ques-
tion of a mechanical disturbance of the system under investigation
during the last critical stage of the measuring procedure. But even at
this stage there is essentially the question of an influence on the very
conditions which define the possible types of predictions regarding
the future behavior of the system. Since these conditions constitute
an inherent element of the description of any phenomenon to which
the term ‘physical reality’ can be properly attached, we see that
[there is no justification for claims that the] quantum-mechanical
description is essentially incomplete.” ([58], pp. 60-61)
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Bohr was definitive regarding the centrality of epistemology to his inter-
pretation of quantum mechanics and believed that it neither requires nor
implies a particular metaphysical position ([412], p. 310). In particular, he
viewed the description of quantum phenomena as involving little realist on-
tological commitment although, importantly, he explicitly rejected idealism
([63], pp. 78-79). Bohr viewed his approach as, in a very particular sense, ob-
jectivist. According to him, although there are what he called “structures of
pure thinking,” the

“transition to reality is made by theoretical physics, which correlates
symbols to observed phenomena. . . these very structures are regarded
by the physicist as the objective reality. . . This procedure leads to
structures which are communicable, controllable, hence objective. It
is justifiable to call these by the old term ‘thing in itself’. They are
pure form, void of all sensible qualities. . . But that they are perfectly
empty does not fit the facts. Remember what practical use can be
made of them.” ([62], pp. 227, 232; cf. [281], p. 24)

Wheeler, who was strongly influenced by Bohr, pointed out that

“Indeed, in Bohr’s very last taped interview a few months before his
death, he singled out certain philosophers for particular criticism.
He said, ‘. . . they have not that instinct that is important to learn
something and that we must be prepared to learn something of great
importance. . . they did not see that it (the complementarity descrip-
tion of quantum theory) was an objective description and that it was
the only possible objective description.’ That represents the centre
of his thinking on quantum theory. I think the word objective in
Bohr’s sense referred to the idea of dealing with what’s right in front
of you: the perceptions that you experience and the measurements
you make, rather than Einstein’s idea of a universe existing ‘out
there’. . . ” ([119], pp. 58-59)

Wheeler’s characterization of Bohr’s views reflects the extent to which
Bohr’s emphasis on the role of the mind brings him very close to a form of
idealism. Again, however, it is unjustified to consider Bohr’s complementarity
interpretation idealist or subjectivist as has, for example, Diederik Aerts in
the following characterization.

“The complementarity principle introduces the necessity of a far
reaching subjective interpretation of the theory. If the nature of the
behavior of a quantum entity (wave or particle) depends on the choice
of the experiment that one decides to perform, then the nature of
reality as a whole depends explicitly on the act of observation of this
reality. As a consequence it makes no sense to speak about a reality
which exists independently of the observer.” ([2], Section 3.2)
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Neither did Bohr regard himself as a positivist, despite being sometimes la-
beled so. Positivism has been defined in several ways, a common element
being that under it knowledge claims must be entirely and directly grounded
in experience.14 That Bohr’s philosophy was influenced by positivism was ar-
gued, for example, by Popper who, it should be recalled, was always on guard
against denials of realism [93]. Bohr himself commented that the

“Positivist insistence on conceptual clarity is, of course, something I
fully endorse, but their prohibition on any discussion of the wider is-
sues, simply because we lack clear-cut enough concepts in this realm,
does not seem very useful to me—this same ban would prevent un-
derstanding of quantum theory.” ([222], p. 208)

In the final analysis, “Bohr was, basically, a realist” ([361], p. 9). His approach
contrasts with that of the early Heisenberg who, in 1927, argued that physics
must be merely a “formal description of the relation between perceptions”
([233], p. 16) and who later expressed the view that, in the light of quantum
mechanics, “objective reality has evaporated” [218]. Thus, while arguably in
agreement with Bohr, the early Heisenberg had taken a philosophical step
beyond Bohr’s position, in that Bohr only claimed that the physical content
of the quantum theory was limited. Nonetheless, late in his career Heisenberg
also distanced himself from positivism.

“The positivists have a simple solution: the world must be divided
into that which we can say clearly and the rest, which we had better
pass over in silence. But can any one conceive of a more pointless
philosophy, seeing that what we can say clearly amounts to next to
nothing. If we omitted all that is unclear, we would probably be left
with completely uninteresting and trivial tautologies.” ([222], p. 213)

One of the benefits of Bohr’s approach is that it allowed him to account for
the mutually exclusive character of non-commuting observables by pointing
out that the apparatus for precisely measuring two such quantities of microsys-
tems cannot be simultaneously used for two such measurements, as evidenced
by the Bohr–Einstein debate and the thought experiments around which it
turned [62, 319]. This and other debates were pivotal in the development of
the Copenhagen interpretation and its legitimacy. Wheeler commented on this
as follows.

“[Bohr’s view was] battle tested. Bohr argued and discussed with
everyone who had point of view, so that in the end I would say that
nobody has had a better picture of what quantum theory is and what
it means.” ([119], p. 59)

When the term complementarity was first introduced by Bohr, he applied it
to causality itself:
14 For a description of the details of the so-called ‘received view,’ see [13, 178, 201].
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“The very nature of the quantum theory thus forces us to regard
the space-time co-ordination and the claim of causality, the union
of which characterizes the classical theories, as complementary but
exclusive features of the description, symbolizing the idealization of
observation and definition, respectively.” ([56], p. 580)

Indeed, Bohr was of the view that

“the viewpoint of complementarity presents itself as a rational gen-
eralization of the ideal of causality.” ([61])

On Bohr’s view, quantum objects in absolute isolation are entities to which
no specific properties or conceptions are applicable (cf. [354], p. 12). It would
be most appropriate simply to say that on his view they do not exist in
themselves in the way that the objects of common sense do.

Although Bohr defended his interpretation very effectively in debates, sys-
tematic descriptions of the Copenhagen interpretation are best sought in the
work of others, including Pauli, Fock, and Heisenberg, which in some cases
differ strongly with Bohr in one aspect or another; some of the elements of
these descriptions differ from Bohr’s views, which form the basic core of the
interpretation, to the extent that a unified account can be given at all. It may
be that—as has been argued, for example, by Mara Beller—no fully consistent
version of the Copenhagen interpretation exists, and only “the appearance of
consensus was achieved despite fundamental disagreements among the propo-
nents” [26]. Stapp has similarly commented that “the diversity. . . in prevailing
conceptions of the Copenhagen interpretation itself” is “striking.”

“The cause of these divergences is not hard to find. Textbook
accounts of the Copenhagen interpretation generally gloss over
the subtle points. . . The writings of Bohr are extraordinarily elu-
sive. . . Heisenberg’s writings are more direct. But his way of speak-
ing suggests a subjective interpretation that appears quite contrary
to the apparent intentions of Bohr. . . [Furthermore, t]he writings of
Bohr and Heisenberg have. . . not produced a clear and unambiguous
picture of the basic logical structure of their position.” ([434])

He believes the Copenhagen interpretation can be clarified by identifying its
“logical essence,” consisting of two assertions:

“(1) The quantum formalism is to be interpreted pragmatically.
(2) Quantum theory provides for a complete scientific account of
atomic phenomena,”

which he goes on to spell out in some detail (cf. [434], pp. 1105-1107). The
concise, detailed and useful resumé of the interpretation given by Hans Pri-
mas,15 as eight theses underlying the interpretation which betray some of the
15 Primas refers to it as the “Copenhagen interpretation of Pioneer quantum me-

chanics” ([364], p. 98).
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tensions among the original Copenhagen interpreters, serves adequately to
characterize the interpretation for our purposes.

(1) Quantum mechanics refers to individual objects.
(2) The probabilities of quantum mechanics are primary.
(3) The placement of the cut between observed object and the means

of observation is left to the choice of the experimenter.
(4) The observational means are to be described in classical terms.
(5) The act of observation is irreversible and creates a document.
(6) The quantum jump is a transition from the potentially possible to

the actual.
(7) Complementary properties cannot be revealed simultaneously.
(8) Pure quantum states are objective but not ‘real.’

Bohr’s key interpretational concept, the principle of complementarity, appears
in relation to physical magnitudes in thesis 7: magnitudes corresponding to
non-commuting observables are mutually exclusive, being precisely those that
are ‘complementary.’ The clearest characterization of the principle of comple-
mentarity by Bohr himself is that, in quantum mechanics, one is forced

“to adopt a new mode of description designated as complementary
in the sense that any given application of classical concepts precludes
the simultaneous use of other classical concepts which in a different
connection are equally necessary for the elucidation of the phenom-
ena.” ([57], p. 10)

It has been argued by Healey that the first of the above theses is both in-
compatible with Bohr’s personal views and untenable because, with its inclu-
sion, the Copenhagen interpretation inherits the measurement problem ([211],
p. 11). It, therefore, can be regarded as inessential to the interpretation; it
is included here because it was certainly held by some of those who formu-
lated the interpretation, and as already noted, Bohr saw “no point in insisting
upon it” ([322], p. 119). However, Healey himself has strongly criticized what
he calls the “strong version” of the Copenhagen interpretation, wherein the
first thesis is not included and quantum states are allowed to refer only to
ensembles, that is, sets of identically prepared quantum systems, as follows.
Although rejecting the theory’s reference to individual quantum systems may
help such a “strong version” avoid the quantum measurement problem, one
result of the move is that the interpretation inherits instead the need to as-
sume definite measurement outcomes in each measurement, because quantum
mechanics is otherwise unable to show that measurements produce definite
outcomes at all; such an assumption is untenable, because it either requires
that all systems have definite values for all their dynamical variables at all
times, which is incompatible with the complementarity, the seventh thesis,
or is the interpretation rendered descriptively and explanatorily incomplete
([211], pp. 15-18).
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It was the individual process in a suitable well specified experimental sit-
uation to which Bohr referred when using the term phenomenon.

“It is certainly far more in accordance with the structure and in-
terpretation of the quantum mechanical symbolism, as well as with
elementary physical principles, to reserve the word ‘phenomenon’ for
the comprehension of the effects observed under given experimental
conditions.” ([60], p. 25)

A form of thesis 1, albeit with “objects” replaced by “phenomena,” appears
in this manner in the following remark of Bohr.

“To my mind there is no other alternative than to admit in this field
of experience, we are dealing with individual phenomena. . . ” ([63],
p. 51).

Thesis 2 is reflected in Bohr’s statement above that “the physical content
of the quantum-mechanical methods is restricted to a formulation of statistical
regularities in the relationships between those results of measurement which
characterize the various possible courses of the phenomena,” which some have
mistakenly taken as evidence that Bohr was an empiricist, a point addressed
below.

Thesis 3 imposes Heisenberg’s Schnitt. It and thesis 4 were both addressed
together by Heisenberg in the chapter of his Physics and philosophy dedicated
by title to the Copenhagen interpretation.

“Certainly quantum theory does not contain genuine subjective fea-
tures, it does not introduce the mind of the physicist as part of the
atomic event. But it starts from the division of the world into the
‘object’ and the rest of the world, and from the fact that at least
for the rest of the world we use the classical concepts in our descrip-
tion. This division is arbitrary and historically a direct consequence
of our scientific method; the use of the classical concepts is finally
a consequence of the general human way of thinking. But this is al-
ready a reference to ourselves and in so far as our description is not
completely objective.” ([219], pp. 55-56)

Pauli differed somewhat with Heisenberg with respect to the above character-
ization of the objectivity of quantum mechanics and was a strong advocate
of thesis 4, arguing as early as 1923 that in quantum theory “we give up the
laws of classical theory, but still always with the concepts of that theory”
[334]. The following imperative statement of Bohr relates to theses 4 and 5
and makes clear that, on the Copenhagen interpretation, not only must the
measurement apparatus be classically described but also the associated data
must enter a classical record. “[I]t is decisive to recognize that, however far
the phenomena transcend the scope of classical physical explanation, the ac-
count of all evidence must be expressed in classical terms” ([63], p. 39). This
is, perhaps, the most peculiar of the Copenhagen requirements. In essence, it



132 3 Interpretations of Quantum Mechanics

precludes the independence of quantum physics from classical physics; other-
wise classical mechanics itself is, in at least this sense, reduced to quantum
mechanics, which would then render Bohr’s requirement on the description of
quantum phenomena both superfluous and misleading; Heisenberg referred to
“the paradox of the quantum theory, namely, the necessity of using the clas-
sical concepts” and argued that “it would be a mistake to believe that [the]
application of the quantum-theoretical laws to the measuring device could
help to avoid the fundamental paradox of quantum theory” ([219], p. 56).

Although it is tempting to view thesis 4 conservatively as a direct im-
plication of the assumption that observers are inherently classical, another
imperative statement by Bohr reflecting thesis 5 precludes this.

“[It] is also essential to remember that all unambiguous infor-
mation concerning atomic objects is derived from the permanent
marks. . . left on the bodies which define the experimental condi-
tions. . . The description of atomic phenomena has in these respects a
perfectly objective character, in the sense that no explicit reference
is made to any individual observer.” ([64], p. 3)

Thesis 6 appears in the remark of Bohr that “no elementary phenomenon
is a phenomenon until it is a registered (observed) phenomenon” [56], which
served more recently as the starting point for Wheeler’s “it from bit” program,
which is discussed in Chapter 4 below. Similarly, Heisenberg remarked that
in quantum mechanics observation involves the actualization of “possibilities
or better tendencies (‘potentia’ in Aristotelian philosophy)” ([219], p. 53).
However, as Shimony has pointed out,

“This historical reference should perhaps be dismissed, since quan-
tum mechanical potentiality is completely devoid of teleological sig-
nificance. What it has in common with Aristotle’s conception is the
indefinite character of certain properties of the system. One does not
find Aristotle saying, however, that a property becomes indefinite be-
cause of observation and that the probabilities of all possible results
are well determined, whereby the quantum mechanical potentialities
acquire a mathematical structure.” ([412], p. 314)

As for the actualization of potentialities, a concept introduced by Heisenberg,
Heisenberg commented that

“we may say that the transition from the ‘possible’ to the ‘actual’
takes place as soon as the interaction of the object with the mea-
suring device, and thereby with the rest of the world, has come into
play; it is not connected with the registration of the result in the
mind of the observer.” ([219], pp. 54-55)

This latter view distinguishes the process of measurement under the Copen-
hagen interpretation somewhat from the imposition of state projection in the
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Basic interpretation. Nonetheless, Bub sees a close relationship between the
two interpretations.

“Bohr’s complementarity interpretation can be regarded as a ‘min-
imal revision’ of the orthodox von Neumann–Dirac interpretation
without the projection postulate, constrained by the determinateness
of the measured observable R and the requirement of maximizing
the set of propositions that (i) are determinate in the (unprojected)
quantum state (according to the orthodox interpretation) and (ii)
can be maintained as determinate, consistently with the determi-
nateness of R.” ([87], p. 203)

Heisenberg noted that the philosophical tendencies of physicists typically
differ from Kant’s highly influential position. In particular, Heisenberg re-
marked that Kant’s

“ ‘thing-in-itself’ is for the atomic physicist, if he uses this concept at
all, finally a mathematical structure; but this structure is—contrary
to Kant—indirectly deduced from experience.” ([87], p. 91)

Nonetheless, there are convincing reasons for viewing Bohr as a transcenden-
talist whose methodology relates to Kant’s, as argued by John Honner who,
in his study of Bohr, pointed out that

“a transcendental argument entails not a syllogism but a blunt as-
sertion about what cannot but be the case,”([233], p. 13)

and that
“Bohr’s framework of ‘complementarity’ is perhaps the most con-
tested of recent transcendental claims.” ([233], p. 14)

Thesis 8 as formulated by Primas is better stated with “real” replaced by
“real in the traditional sense.” For example, Bohr made the following claim.

“Now, the quantum postulate implies that any observation of atomic
phenomena will involve an interaction with an agency of observation
not to be neglected. Accordingly, an independent reality in the or-
dinary physical sense can neither be ascribed to the phenomena nor
to the agencies of observation. After all, the concept of observation
is in so far arbitrary as it depends on which objects are included in
the system to be observed.” ([57], p. 54)

The quantum postulate of Bohr is the idea that, whenever an interaction
involving a microscopic object takes place, there is a discontinuity; it is Bohr’s
way of providing an interpretational counterpart of Planck’s quantum of action
(cf. [354], pp. 9, 75) and is closely related to thesis 6 as Bohr held it. It can be
seen as introducing a ‘process’ somewhat analogous to that of the projection
postulate in the Basic interpretation.
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Regarding the philosophical character of the interpretation as a whole,
Beller has claimed that

“different scholars, with good textual evidence, have provided con-
flicting interpretations of [writings of proponents of the Copenhagen
interpretation]: while Popper presented Bohr as a ‘subjectivist,’ Fey-
erabend found him an ‘objectivist’; more recently, Murdoch con-
cluded that Bohr was a realist, while Faye argued with equal com-
petence that Bohr was an antirealist.” ([26])

Honner has pointed out one explanation for the diversity of understandings
of Bohr’s position.

“Bohr wrote many cryptic essays on atomic physics and human
knowledge and, despite his scrupulousness about clarity, his way of
thinking has remained too enigmatic for professional philosophers.
His interpretation of the implications of quantum mechanics and, in
particular, his notion of ‘complementarity’, remain and open to di-
vergent expositions. This may partly be due to the fact that ‘comple-
mentarity’ itself appears to embrace contrasting positions like ideal-
ism and pragmatism. But pace Wittgenstein, Bohr would claim that
it is as important to stammer about the profound as to speak clearly
about the obvious.” ([233], p. 3)

Similarly, Carl von Weizsäcker commented

“I would prefer to call it the Copenhagen interpretation of the formal-
ism, an interpretation by which the formalism is given a sufficiently
clear meaning to become part of a physical theory. In so saying I
express the opinion that the Copenhagen interpretation is correct
and indispensable. But I have to add that the interpretation, in my
view, has never been fully clarified. It needs an interpretation itself,
and only that will be its defence.” ([481], p. 25)

All considered, Heisenberg better articulated the Copenhagen interpre-
tation and its relation to the measurement process than Bohr himself—for
example,

“It should be emphasized. . . that the probability function does not in
itself represent a course of events in the course of time. It represents
a tendency for events and our knowledge of events. The probability
function can be connected with reality only if one essential condition
is fulfilled: if a new measurement is made to determine a certain
property of the system. Only then does the probability function allow
us to calculate the probable result of the new measurement. ” ([219],
pp. 46-47)
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and

“The result of the measurement again will be stated in terms of
classical physics.. . . [T]he theoretical interpretation of an experiment
requires three distinct steps: (1) the translation of the initial exper-
imental situation into a probability function; (2) the following up
of this function in the course of time; (3) the statement of a new
measurement to be made of the system, the result of which can then
be calculated from the probability function. For the first step, the
fulfillment of the uncertainty relations is a necessary condition. The
second step cannot be described in terms of the classical concepts;
there is no description of what happens to the system between the
initial observation and the next measurement. It is only in the third
step that we change over again from the ‘possible’ to the ‘actual’.”
([219], pp. 46-47)

This clear and simple prescription for avoiding the conceptual confusion likely
to be encountered by working physicists when contemplating the behavior of
quantum mechanical systems in experimental situations is likely as respon-
sible for the powerful influence of the Copenhagen interpretation as Bohr’s
pronouncements are.

Although Bohr’s success against Einstein was crucial, the consistency of
the complementarity interpretation as presented in the Bohr–Einstein debate
during the Fifth Solvay Congress may be seen as questionable. In the context
of double-slit experiment, Bohr was forced to apply the uncertainty principle
to the macroscopic screen which, as the measuring apparatus, is required
on the interpretation to be described entirely in classical terms. Although
this may not actually be inconsistent, it does involve the application of a
quantum mechanical principle to a classically characterized system (under
the interpretation), which undermines the assumption of a clear boundary
separating the classical realm from the quantum realm, which is clearly a
background assumption of the interpretation.16

Another difficulty related to thesis 4 was pointed out by von Weizsäker,
namely, that there is insufficient elucidation of the meaning of the term clas-
sical. “Bohr’s statement [that all experiments are to be described in classical
terms] implies an apparent paradox: classical physics has been superseded
by quantum theory; quantum theory is verified by experiments; experiments
must be described in terms of classical physics” ([481], p. 26). He suggested a
resolution of this problem by introducing an “interpretation of the interpre-
tation,” namely, that Bohr was stating
16 See, for example, the description in [496], pp. 205-210.
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“a truism, though a philosophically important one: a measuring in-
strument must be described by concepts appropriate to measuring
instruments. It is then not unnatural further to assume that classical
physics, in the form in which it developed historically, simply de-
scribes the approximation to quantum theory appropriate to objects
as far as they really can be fully observed. . . no further adaptation
of our intuitive faculty to quantum theory is needed or possible.”
([481], p. 26)

This suggestion also serves somewhat to mitigate the problem of Bohr’s ap-
plying a quantum mechanical rule to the measuring instruments in response
to Einstein in their discussion of the rigged double-slit experiment.17

Both the Basic and Copenhagen interpretations have been viewed as the
quantum orthodoxy contrasting with Einstein’s “Interpretation I.” Given the
choice, which of these ‘orthodox interpretations’ one prefers, and indeed within
each the emphasis one chooses to place on the role of observing agents, turns
on the question of how formally quantum a description of physics one prefers.

3.4 Orthodoxy and Explanation in Quantum Physics

The Copenhagen interpretation has most often been called the orthodox in-
terpretation of quantum mechanics, despite questions about its internal con-
sistency and the diversity of views of its advocates. This was emphatically
expressed by Peierls.

“I object to the term Copenhagen interpretation. . . this sounds as
if there were several interpretations of quantum mechanics. There
is only one. There is only one way in which you can understand
quantum mechanics. There are a number of people who are unhappy
about this, and they are trying to find something else. But nobody
has found anything else which is consistent yet, so when you refer
to the Copenhagen interpretation of the mechanics what you really
mean is quantum mechanics. And therefore the majority of physicists
don’t use the term; it’s mostly used by philosophers.” ([119], p. 71)

To the extent that philosophers concern themselves with quantum mechanics
per se, it is true that questions of interpretation and explanation interest
them most. They are the philosopher’s métier but also highly appropriate
for physicists to weigh in on. To the extent that physicists have failed to
engage foundational questions of quantum mechanics, which is clearly a lesser
extent than Peierls claimed it to be, this can be explained naturally by the
fact that physicists typically do not concern themselves explicitly with the
interpretations of the theories they use; they typically use them as best they
17 See the discussion of this portion of the Bohr–Einstein debate given in Section

1.2.
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can as they apply methods they find intuitive, have learned and devised, that
work quite well for calculation and experimentation and that allow for the
fine characterization of physical details.

Contra Peierls, Itamar Pitowsky is of the following opinion.

“I believe that von Neumann’s [343] contribution to the foundations
of quantum theory is exceedingly more important than that of Bohr.
For it is one thing to say that the only role of quantum theory is to
‘predict experimental outcomes,’ and that different measurements
are ‘complementary.’ It is quite another thing to provide an under-
standing of what it means for two experiments to be incompatible,
and yet for their possible outcomes to be related; to show how these
relations imply the uncertainty principle; and even, finally, to real-
ize that the structure of events dictates the numerical values of the
probabilities (Gleason’s theorem).” ([351])

Moreover, the increasingly visible collection of the physicists who have explic-
itly adopted during the past few decades interpretations other than the Basic
interpretation, which is that most often that used in deed if not in word, have
adopted some form of the Collapse-Free interpretation not simply identifiable
with the Copenhagen interpretation.

Before the emergence of quantum information science as a specific field of
investigation, Bub referred to the Collapse-Free approach as the “new ortho-
doxy” and claimed that there is a “growing consensus” among “most physi-
cists” that accepts it as the “modern, definitive” version of the Copenhagen
interpretation18 which he also regards as a ‘minimal revision’ of the Basic in-
terpretation by the exclusion of the projection postulate. He has also claimed
that for most physicists

“the measurement problem would hardly rate as even a ‘small cloud’
on the horizon.” ([87], pp. 207-212)

Many, for example Peierls, have been in agreement with Bub on the ques-
tion of the existence of a quantum orthodoxy. However, as can be seen by
inspection of the broad range of views and concerns expressed by a number of
the best physicists who have concerned themselves with the interpretation of
quantum mechanics, whose views are exhibited throughout these pages, the
measurement problem has remained more than a “small cloud on the horizon,”
except for Copenhagen true believers. However, Bub has also argued that the
measurement problem is widely misunderstood [85], although he reaches this
conclusion through a rather forced quantum-logical approach. This also mini-
mizes the divergence of ontological commitments among the various advocates
of the two interpretations that is clear when surveying the various versions of
the Collapse-Free approach as is done in the next section.
18 Note that, for Bub, the traditional “orthodoxy” is what he calls the Dirac–von

Neumann interpretation, that is, the Basic interpretation ([87], Chapters 7-8).



138 3 Interpretations of Quantum Mechanics

There is no single orthodoxy among the set of interpretations into which
Einstein’s original I–II dichotomy has devolved. For example, the various in-
terpretations that have emerged often differ significantly in their ontological
commitments. Nonetheless, if the ontological differences among the versions
of the Collapse-Free interpretation are put aside, then that rather popular
approach could be seen to accord in a number of respects with at least one
understanding of the Copenhagen interpretation. That option is assisted by
both the vagueness of Bohr’s presentation and the fact that, in Heisenberg’s
clearer articulation, quantum mechanics serves only to predict the results
of measurements, which are required to be only classically describable, rather
than to describe the microscopic world between measurements, say as a means
for explaining what is observed. Again, however, only such an instrumental-
ist view of science—which, as Bell pointed out, is not a philosophical view
to which the majority of physicists would assent if explicitly faced with the
question—would enable the association of the Collapse-Free interpretation
with Copenhagen interpretation much beyond the shared view of the projec-
tion postulate as non-fundamental.

Regarding the relationship of interpretation and explanation, d’Espagnat
has commented that

“[T]o account for the phenomena, present-day physics seems to favor
some kind of a two-level explanatory scheme. The level that may be
termed ‘the strictly scientific one’ consists in explaining both the reg-
ularity of the observed phenomena and the observed intersubjective
agreement by referring to laws. This, of course, is just the standpoint
normally taken up in science, but with here the significant difference,
motivating the notion of a possible ‘second level,’ that while in classi-
cal physics the laws were objectively interpretable—they supposedly
described what exists—in quantum physics they are but observa-
tional predictive rules.” ([126], p. 225)

Again, however, physicists overwhelmingly are, if only implicitly, scientific re-
alists, that is, they are realists about the entities of current science which,
in case of the microscopic ones, are not classical describable. The purpose of
interpreting quantum mechanics for them is precisely to provide and under-
standing of the relationship between the quantum formalism and the world of
quantum objects, rather than to merely explain appearances. Like Bell, Ein-
stein, Penrose, Schrödinger, and many others have, they would rather avoid
such a “second level,” by resolving the measurement problem.

The questions of whether there is a quantum orthodoxy and whether there
is such a “two-level explanatory scheme” at the moment are of little help for us
in coming to understand the physical world; they will be of greater importance
to historians of science.
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3.5 The Collapse-Free Approach

The Collapse-Free interpretation of quantum mechanics is distinguished by
the assumptions that fundamental quantum state change is always and only
unitary and that such state change occurs at the scale of the entire universe.
It assumes the burden of demonstrating that the occurrence of definite mea-
surement outcomes can be explained without using the projection postulate.
Although the interpretation was first explicated by Everett, later variants have
received equal if not greater attention as a result of their utility in quantum
cosmology.

Everett himself wrote only three articles on the interpretation [163–165];
the last of these was “The theory of the universal wave function,” the title
of which emphasizes the applicability of the quantum mechanical state de-
scription to the entire universe which, of course, includes the bodies of all
observing agents. Thus, despite Bub’s characterization of the Collapse-Free
interpretation as emerging naturally from the Copenhagen interpretation, the
former is clearly distinguished from the latter by this assumption—cf. the
conjunction of (i) the third of the Copenhagen theses stated in the previous
section, which requires the observer to be distinct from the observed object
by a cut the location of which is not determined by physics alone, and (ii) the
fourth thesis, which takes the observer necessarily to be classically described.

An explicitly ‘many-worlds’ version of the Collapse-Free interpretation of
particular significance was later offered by the Bryce S. DeWitt and R. Neill
Graham. This was later followed by others—most notably by Deustch’s ‘multi-
verse’ version—that, like it, involve additional analyses within Everett’s basic
approach. De Witt and Graham collected Everett’s work and their own in the
volume The many-worlds interpretation of quantum mechanics and described
his initiation of the Collapse-Free approach as follows.

“In 1957, in his Princeton doctoral thesis, Hugh Everett, III, pro-
posed a new interpretation of quantum mechanics that denies the
existence of a separate classical realm and asserts that it makes sense
to talk about a state vector for the whole universe. This state vector
never collapses, and hence reality as a whole is rigorously determinis-
tic. . . the state vector decomposes naturally into orthogonal vectors,
reflecting the continual splitting of the universe into a multitude of
mutually unobservable but equally real worlds, in each of which ev-
ery good measurement has yielded a definite result and in most of
which the familiar statistical quantum laws hold.” ([135], p. v)

An element of Everett’s original version is that measurement outcomes that
would ostensibly be witnessed by agents ‘in’ these various possible situations
are representable by reference to the universal wave-function applied to all
of physical reality, however circumscribed. The above rendition involves the
shared universe(s) of any given collection of observing agents being among an
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extremely large number of equally real ‘universes.’ Later versions assume a
more limited ontology, while retaining the idea of the universal wave-function.

The Collapse-Free interpretation has gone from something of a curiosity, as
was the case immediately after Everett’s own work, to an important element
of theoretical physics, albeit in a special context; this approach became im-
portant to cosmologists using quantum mechanics to study the early universe
to the extent that it became “rather difficult to think of any interpretation
of quantum cosmology that does not invoke this view in one way or another”
([247], p, 183). More dramatically, according to Bub, this interpretation forms
the core of a “new orthodoxy,” which involves considerable syncretism.

“This ‘new orthodoxy’ weaves together several strands: the physical
phenomenon of environment-induced decoherence, elements of Ev-
erett’s relative-state formulation of quantum mechanics, popularized
as the ‘many worlds’ interpretation, and the notion of ‘consistent
histories’ developed by Griffiths and extended in different ways by
Omnès, Gell-Mann and Hartle, and others.” ([87], pp. 212-213)

As already noted, however, there is considerable disagreement among advo-
cates as to the ontological commitment of the interpretation. “The maze of
many worlds and many minds interpretations of quantum mechanics is by
now sufficiently serpentine to make one think twice about entering” ([137], p.
48). Nonetheless, its conceptual and historical significance warrants giving it
serious consideration. Here, as unified a description and evaluation of the ap-
proach as is possible is presented. The problems shared by its various versions,
arising primarily from their common denial of the existence of a dynamically
fundamental ‘wave-function collapse’ process, are also taken up.

The preservation of psychophysical parallelism can be seen as an element
the interpretation has in common with its predecessors; one goal of the ap-
proach is to demonstrate that comprehensive collapse-free state evolution is
consistent with this requirement. Advocates see the Collapse-Free approach as
enabling an understanding of quantum mechanics by reference to the differing
experiences of subjects appearing in the universal wave-function as physical
systems in superpositions of the sort in which Wigner’s friend finds himself,
resolving the corresponding paradox; the approach “postulates that every sys-
tem that is subject to external observation can be regarded as part of a larger
isolated system” ([164], p. 316). This postulate, although virtually trivial, does
serve to connect all observed quantum systems to a universal system, that is,
the greater ‘universe.’ Quantum correlation enables this.

“In order to bring about this correspondence with experience for the
pure wave mechanical theory, we shall exploit the correlation between
subsystems of a composite system that is completely described by a
state function.” ([165], p. 9)

Everett claimed that the measurement problem in its simplest form can
be avoided exactly by embracing the mathematical description quantum me-



3.5 The Collapse-Free Approach 141

chanics naturally provides of measurements if only the Schrödinger equation is
allowed, that is, by dispensing with von Neumann’s process 1. “[T]he general
validity of pure wave mechanics, without any statistical assertions, is assumed
for all physical systems, including observers and measuring apparata [sic]”
([165], p. 8). The standard statistical predictions of quantum mechanics, as
given by the Born rule, are then to be derived rather than assumed. Quantum
state projections, which play an important role in the Basic interpretation,
namely, that of describing the objectification of measurement results, to the
extent they are considered relevant, are merely secondary elements of an ulti-
mately non-dynamical nature: They serve only to provide the so-called relative
states ‘within’ the universal wave function associated with quantum systems
capable of measurement, which are in turn taken to correspond to the expe-
rience of observers making measurements. This idea is reflected in the title of
Everett’s short article “ ‘Relative state’ formulation of quantum mechanics.”

The Collapse-Free approach has been touted both as the first truly ‘self-
interpreting’ version of the theory and, as we have seen, a natural successor
the Copenhagen interpretation. Similarly to others after the initial formative
period, Everett saw his approach as removing the need for philosophy to play
a primary role in the conception of the theory. For him,

“The wave function is taken as the basic physical entity with no a
priori interpretation. Interpretation only comes after an investigation
of the logical structure of the theory. Here as always the theory itself
sets the framework for its interpretation.” ([164], p. 316)

However, like any other, Everett’s approach to quantum mechanics involves
epistemic elements and ontological commitments, whether explicitly or implic-
itly and whether this is acknowledged by its advocates or not. For example,
some adherents have claimed that within it “the symbols of quantum mechan-
ics represent reality just as must as do those of classical mechanics” ([135], p.
167), that is, are amenable to naive realist interpretation. This assertion un-
derlines the specious nature of the claim that the Collapse-Free interpretation
is a direct extension of the Copenhagen interpretation.

The appeal now to a number of physicist advocates of the interpretation
is exactly that it can be seen as taking the quantum mechanical formalism
to describe reality differently from the way the Copenhagen interpretation is
often taken to, namely, as a reality wherein the choices of experiments by
observing agents play an central role. The greatest challenge of the approach
is to provide an adequate account of the probabilities of quantum mechanics
for the outcomes of all specific individual measurements in the way envisioned
by Everett. Another great challenge is that of providing a consistent mean-
ingful explication of the “branching” of systems supposed to occur during
measurements, as shown below.

The following set of elements of the Collapse-Free approach was laid out
by DeWitt in a version meant to improve Everett’s original, which has been
criticized as incomplete by both supporters and detractors.
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(1) The mathematical formalism of quantum mechanics is sufficient as it
stands. No metaphysics needs to be added to it.

(2) It is unnecessary to introduce external observers or to postulate the
existence of a realm where the laws of classical physics hold sway

(3) It makes sense to talk about a state-vector for the whole universe.

(4) This state-vector never collapses, and hence the universe as a whole is
rigorously deterministic.

(5) The ergodic properties of laboratory measuring instruments, although
strong guarantors of the internal consistency of the statistical inter-
pretation of quantum mechanics, are inessential to its foundations.

(6) The statistical interpretation need not be imposed a priori.

Assertion 1 involves either empiricist agnosticism or a philosophical position
that might be generically assumed to underwrite all of physics if one believes
specific metaphysics is implicit in the theory. Again, assertions 2 and 3 clearly
distinguish the approach from the Copenhagen interpretation in that all ob-
servers are described within the theory, that is, are described within it in the
same way as other physical objects are; furthermore, they are not in need of
an inherently classical mechanical description as in that interpretation.

The vagueness of Bohr’s language and the diversity of views identified
with the Copenhagen interpretation provides one motive for instead adopt-
ing the Collapse-Free approach. DeWitt saw the Basic and Copenhagen in-
terpretations as having introduced unjustified elements that are to be dis-
carded because they threaten quantum mechanics with inconsistency [134].
His approach prima facie reduces the number of assumptions required for in-
terpreting quantum mechanics. He attempted to show these elements to be
superfluous by providing derivations of what, there, are fundamental theo-
retical components for which those elements are traditionally understood to
account. He also viewed the relationship of this interpretation and the Ba-
sic interpretation as one not only between interpretations but as one between
theories. Like Everett, he exploited the principle of psychophysical parallelism
in this attempt to eliminate ‘superfluous’ interpretational elements.

“The new theory is not based on any radical departures from the con-
ventional one. The special postulates in the old theory which deal
with observation are omitted in the new theory. The altered theory
thereby acquires a new character. It has to be analyzed in and for
itself before any identification becomes possible between the quanti-
ties of the theory and the properties of the world of experience. The
identification, when made, leads back to the omitted postulates of
the conventional theory that deal with observation, but in a manner
which clarifies their role and logical position.” ([164], p. 315)

The “omitted postulates” are denied the status of first principles but, impor-
tantly, are not entirely rejected. Rather, the exceptionality of the measurement
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process is rejected; observers are supposed to be shown to play no special role.
A fortiori, consciousness is explicitly denied a physical role.

As mentioned above, the Wigner friend thought experiment is viewed as
a motivational example serving to emphasize the goals of the Collapse-Free
approach. For example, Everett explicitly considered the problem of making
consistent the experiences of two observers (A and B, B observing A who
observes the inanimate system S) but rejected Wigner’s solution of giving
consciousness a privileged role in quantum mechanics. He commented on the
difficulty traditionally understood to be presented by the Wigner friend sce-
nario, but ostensibly overcome by the Collapse-Free approach, as follows.

“If we are to deny the possibility of B’s use of a quantum mechanical
description (wave function obeying the wave equation) for A+S, then
we must be supplied with some alternative description for systems
which contain observers (or measuring apparatus). Furthermore, we
would have to have a criterion for telling precisely what type of sys-
tems would have the preferred positions of ‘measuring apparatus’ or
‘observer’ and be subject to alternative description. Such a criterion
is probably not capable of a rigorous formulation.” ([165], p. 4)

Because, from the point of view of B, there is continuous state evolution of
the joint system A+S, there is an inconsistency in allowing A to induce a
discontinuous collapse of the state of S. Everett’s goal was to show instead
that

“this concept of a universal wave mechanics, together with the nec-
essary correlation machinery for its interpretation, forms a logically
self consistent description of a universe in which several observers
are at work.” ([165], p. 9)

By quantum mechanically modeling all observers, Everett also hoped to ac-
count for the quantum probabilities without the use of a physical projective
state process.

“We shall be able to introduce into [the theory] systems which rep-
resent observers. Such systems can be conceived as automatically
functioning machines (servomechanisms) and which are capable of
responding to their environment. . . we shall deduce the probabilis-
tic assertions of [Dirac and von Neumann’s] Process 1 as subjective
appearances to such an observer, thus placing the theory in corre-
spondence with experience. We are then led to the novel situation in
which the formal theory is objectively continuous and casual, while
subjectively discontinuous and probabilistic. While this point of view
shall ultimately justify our use of the statistical assertions of the or-
thodox view, it enables us to do so in a logically consistent manner,
allowing for the existence of other observers.” ([165], p. 9)
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Omnès has assessed Everett’s prescription for using the quantum formal-
ism differently from and more critically than DeWitt.

“Everett’s contribution is not so much a theory but essentially a
representation of reality . . . a way of looking at reality originating es-
sentially from one’s own philosophical inclinations. It is not science
because no experiment can show it to be wrong and it is not a the-
oretical truth because there can be no proof of it. It is not nonsense
because one cannot prove it to be inconsistent.” ([329], p. 345)

Omnès considers there to be no physical difference between Everett’s treat-
ment and the standard theory. Indeed, it is not obvious that the predictions
of observers in the Basic interpretation will differ from those in Everett’s ver-
sion. However, DeWitt was correct when he referred to the approach as an
“altered theory” of quantum mechanics; the Collapse-Free approach, if suc-
cessful, would reduce the number of fundamental theoretical elements needed
in the theory because the projection postulate is removed with conceivable
differences in predictive consequences. Deutsch, for example, disagrees with
the claim that there are no new predictions under the Collapse-Free approach,
arguing that there are specific predictive and explanatory differences between
the Basic and the Collapse-Free interpretations. The criticism of the inter-
pretation on the specific grounds that it makes no new predictions is with-
out merit. The history of interpretations, in particular, which interpretation
of the formalism first appeared, is irrelevant. The primary motive for inter-
preting quantum mechanics is to find a valid way of understanding quantum
mechanics that allows one to provide consistent physical explanations. An in-
terpretation is superior when it helps one to construct superior explanations.
A reduction of the number of theoretical assumptions is preferable as well.

Omnès also objects to various versions of this interpretation on the grounds
that they are insufficiently empiricist. However, his criticisms would also apply
to most other interpretation of quantum mechanics, because these typically
do present the theory as more than a simple predictive device. Omnès’ critical
characterization can be understood as an indictment of any interpretation that
takes the formalism to be anything but a machine for predicting measurement
outcomes. His objections do not primarily target the theoretical aspects of the
Collapse-Free approach themselves; rather, that there are (sometimes implicit)
metaphysical elements is objectionable to him.

Substantive criticism or rejection of an interpretation of quantum mechan-
ics must involve a genuine interpretational failure, such as a logical inconsis-
tency, conceptual confusion, or explanatory shortcoming. One such criticism
of the Collapse-Free interpretation, by H. J. Groenwald, is that

“the statistical interpretation [of quantum mechanics] leaves for ex-
ample no place for speaking about the quantum state of the uni-
verse.” ([198], p. 45)
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Another issue, at least with Everett’s original version, is that it is ontologi-
cally vague. In any version of the interpretation, the components of a state
superposition for the set of systems consisting of object, measuring apparatus,
and environment on which it relies are in principle capable of interfering with
each other even though the observed quantities are considered determinate.
On this interpretation, how are the individual entities distinguished?

Criticism was leveled by Bell against the Collapse-Free interpretation in
DeWitt’s improved version on the basis of its imprecision, in that it associates
an independent universe with each of Everett’s branches and, therefore, in-
volves an explicit commitment to multiple unseen universes—a tremendous
increase in that commitment over that of previous interpretations, and their
ill-defined branchings.

“The idea that there are all those universes which we can’t see is hard
to swallow. But there are also technical problems with it which people
usually gloss over or don’t even realize when they study it. The actual
point at which a branching occurs is supposed to be the point at
which a measurement is made. But the point at which a measurement
is made is totally obscure. The experiments at CERN for example
take months and months, and at which particular second on which
particular day the measurement is made and the branching occurs is
perfectly obscure. So I believe that the many-universes interpretation
is a kind of heuristic, simplified theory, which people have done on
the backs of envelopes but haven’t really thought through. When you
try to think it through it is not coherent.” ([119], p. 55)

That is, removing the privileged role of observation in Everett’s way accom-
plishes little overall because branching is forced to take on the burden of
describing measurement with a branching process but that process is not
physically well specified.

A basic difficulty associated with the branching process is simply the
co-presence of ‘simultaneous’ actual but different measurement outcomes.
Wheeler, who was an early supporter of the Everett approach, later aban-
doned it essentially on that account.

“I supported this to begin with, because it seemed to represent the
logical follow-up of the formalism of quantum theory. I have changed
my view of it today because there’s too much metaphysical baggage
being carried along with it, in the sense that every time you see this
or that happening you have to envisage other universes in which I
see something else happening. This is to make science into a kind of
mysticism.” ([119], p. 60)

Murray Gell-Mann and James Hartle, who proposed another successor version
of the interpretation, criticized this aspect of Everett’s version, viewing it as
underdeveloped and, perhaps more importantly, inadequate in the cosmolog-
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ical context, precisely where it is best applied. Gell-Mann and Hartle were
concerned that this version

“did not adequately explain the origin of the classical domain or the
meaning of ‘branching’ that replaced the notion of measurement. It
was a theory of ‘many worlds’ (what we would call ‘many histories’),
but it did not sufficiently explain how these were defined or how they
arose. Also Everett’s discussion suggests that a probability formula is
somehow not needed in quantum mechanics, even though a ‘measure’
is introduced that, in the end, amounts to the same thing.” ([184],
p. 430)

This criticism was later echoed by Adrian Kent, most pertinently to DeWitt’s
version.

“[O]ne can perhaps intuitively view the corresponding components
of [a wave function] as describing a pair of independent worlds.
But. . . the axioms say nothing about the existence of multiple phys-
ical worlds corresponding to wave function components.” ([269])

The failure of the interpretation to address this problem, which relates di-
rectly to its ontological aspect has, nonetheless, not discouraged enthusiastic
proponents.

Deutsch, who has personally found the Collapse-Free interpretation excep-
tionally useful for understanding quantum computing, has offered a subtler
view the branching process but in a way that embraces the ‘multi-verse’ to
which it can be understood to give rise.

“In my favorite way of looking at this, there is an infinite number
of [universes] and this number is constant; that is, there is always
the same number of universes. Before a choice or decision is made,
in which more than one outcome is possible, all the universes are
identical, but when the choice is made, they partition themselves into
two groups, and in one group one outcome happens and in the other
group another outcome happens. Normally these two groups don’t
affect each other thenceforward, but as I have said, they occasionally
do.” ([119], p. 85)

This view of the relation between ‘universes’ may go some way toward resolv-
ing the issue of splitting a universe, but it does nothing to address the question
of the existence of unseen ‘other’ universes—for him, an infinite number—to
which Wheeler and others have objected.

As mentioned above, Deutsch also claims that there are overlooked empir-
ical differences between quantum mechanics as understood on the Collapse-
Free interpretation—at least in his version—and as understood on the Basic
interpretation.
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“There is a widespread belief that the conventional (i.e. wave func-
tion collapse) view and Everett’s are alternative interpretations of
the same quantum formalism, and are identical in their experimen-
tal predictions. Everett himself believed this. But he was mistaken.
The conventional ‘interpretation’, unlike Everett’s, is actually more
than just an interpretation of the quantum formalism. It postulates a
modification of the formalism, whose nature is unspecified but whose
effect is somehow to introduce non-unitary evolution into quantum
dynamics. More specifically, it asserts that certain physical systems
(human brains and the like) violate the quantum principle of super-
position. In fact, the characteristic assertion made by all realistic ‘in-
terpretations’ other than Everett’s is that ‘superpositions of distinct
states of consciousness do not occur in nature’. Such an assertion is
not just a matter of airy-fairy metaphysics. It is, in principle at least,
an experimentally testable statement.” ([128], p. 215)

However, Deutsch must then either be disputing von Neumann’s claim that
quantum mechanical predictions are invariant under changes of location of
the observing-system–observer-system Schnitt or be a physicalist about con-
sciousness. He claims that

“[it is] necessary, in order to perform a crucial test of Everett’s quan-
tum theory against all others, to determine experimentally whether
or not the superposition principle holds for states of distinct con-
sciousness.” ([128], p. 220)

Deutsch has proposed several thought experiments, in the literal sense. Of
these, the significant one is predicated on his claim that alternative ‘universes’
“sometimes do” affect each other. However, this is an inherently incoherent no-
tion. Deutsch equivocates when considering alternative universes to be actual.
It is the nature of the universe that it is universal: nothing can be external
to the universe. Therefore, the universe cannot be affected from the ‘outside.’
Recognizing this, Deutsch attempts to draw a distinction between the usual
notion of the universe and the sort of reality he has in mind.

“The word ‘universe’ has traditionally been used to mean ‘the whole
of physical reality’. In that sense, there can be at most one uni-
verse. We could stick to that definition, and say that the entity we
have been accustomed to calling ‘the universe’—namely, all the di-
rectly perceptible matter and energy around us, and the surrounding
space—is not the whole universe after all, but only a small portion
of it. Then we should have to invent a new name for that small, tan-
gible portion. But most physicists prefer to carry on using the word
‘universe’ to done the same entity that it has always denoted. . . A
new word, multiverse, has been coined to denote physical reality as
a whole.” ([130], pp. 45-46)
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Such a manifold is one in which similar objects in different ‘universes’ must
be identified in order that they can superpose under the superposition prin-
ciple, as he claims they should if his picture is correct. However, then each
object will have multiple actual values of its physical magnitudes; the mea-
surement problem resurfaces. If his claims are to be sustained and his version
of the Collapse-Free interpretation is to involve more than under-developed
“metaphysical speculation,” a new metaphysics of objects allowing for this is
needed, one that Deutsch has failed to supply.

Before examining yet another influential version of the Collapse-Free in-
terpretation, that of Gell-Mann and Hartle, it is helpful first to consider a
related version offered jointly by DeWitt and Graham and its treatment of
the branching problem. That version retains DeWitt’s assertions (1)-(6) above
and adds further detail relating to the branching process. Like Deutsch’s ver-
sion, and surprisingly in light of DeWitt’s own assertion 1 above, this involves
an extreme degree of ontological commitment. In particular, they assert that

“reality, which is described jointly by the dynamical variables and
the state vector, is not the reality we customarily think of, but is a
reality composed of many worlds. . . equally real worlds,” ([135], p. v)

a view they attribute to Everett—although he only refers to their being equally
real ‘branches’—each reflecting a unique sequence of measurement results in
the experience of the observer. For them, applying quantum mechanics to
cosmological situations requires an explication of the emergence of classical
behavior involved in the explicit ‘splitting’ of distinct real worlds, for which
they add an axiom. Bell viewed this formulation as rendering the Collapse-
Free interpretation a “pilot-wave theory without trajectories” ([22], p. 133).

DeWitt and Graham describe the branching process as follows.

“By virtue of the temporal development of the dynamical variables
the state vector decomposes naturally into a multitude of mutually
orthogonal vectors, reflecting a continual splitting of the universe into
a multitude of mutually unobservable but equally real worlds, in each
of which every good measurement has yielded a definite result and
in most of which the familiar statistical quantum laws hold.” ([135])

For them, like Deutsch, the single universe is composed of many such “worlds.”
Splitting is said to occur when a “measurement-like” interaction takes place.
Although such interactions remain imprecisely specified, splitting is required
to be such that the state of each resulting world serves as a good measurement
record, similarly to Copenhagen thesis (5). In their discussion, DeWitt and
Graham explicitly considered such an interaction between a coherent sum of
pertinent eigenstates and a system including a pointer. The determinateness
of outcomes as seen by individual conscious observers was to be underwritten
by the predicted correlations between those observers and pertinent outcomes
in each world. The “measurement-like” interactions involved in this approach
result in entangled states of the system and environment. Formally, one can



3.5 The Collapse-Free Approach 149

view such states as providing maps defining the “relative state.” For exam-
ple, consider an entangled state of the subject (apparatus A) and the object
(system S).

|Ξ〉 =
∑
ij

cij |ψi〉|χj〉 . (3.1)

The joint state |Ξ〉 provides a map ξ : HA → HS given by

|ψ〉 7→
∑
j

〈ψχj |Ξ〉|χj〉 =
∑
j

〈ψ|ψi〉cij |ψj〉 . (3.2)

The conceptual grounding of the quantum probabilities remained a key
goal in the DeWitt–Graham proposal. However, in this version, like Deutsch’s,
it seems there may be differences between what is observed and what is pre-
dicted by standard quantum mechanics, although they claim that “in most
of [these worlds] the familiar statistical quantum laws hold” which, however,
is also to say not in all worlds, although a theorem was offered that pur-
ports to show that the collection of such ‘deviant’ cases constitutes something
like a set of measure zero. An account of the probabilities to be attributed
to experimenters, which was considered sufficient proof that quantum theory
is ‘self-interpreting,’ was provided in the form of the “EWG metatheorem”
sketched in an influential 1970 Physics Today article by DeWitt, based on the
above standard description of pre-measurement [134]. To be self-interpreting
here appears to mean “requiring no metaphysics.” The statement of the the-
orem is: “The mathematical formalism of the quantum theory is capable of
yielding its own interpretation.” Its proof involves showing: (i) how the con-
ventional probability interpretation of quantum mechanics emerges from the
formalism itself, and (ii) how correspondence with reality can be achieved
even though the wave-function never “collapses.” The starting point of the
theorem is again “to take the mathematical formalism of quantum mechanics
as it stands, to deny the existence of a separate classical realm, to assert that
the state vector never ‘collapses’ ” and specifically to assume that “the world
must be sufficiently complicated that it be decomposable into systems and
apparatuses.”

The account involves, by this era of the universe, the simultaneous ex-
istence of 10100 very slightly differing ‘copies’ of the objects in the universe,
including embodied observers who are ‘unable to feel’ the constant splitting of
their worlds. The vector-space amplitudes of the universal wave-function are
given no a priori interpretation; their interpretation is to follow from the con-
sideration of sequences of measurements made by the apparatus—presumably
to be unproblematically identified despite the repeated splittings into different
new worlds with each additional measurement—on an ensemble of identical
systems, that is, systems prepared in the same pure state, each measurement
being of the type of Equation 3.2. In each case, the universe is assumed well
decomposable into ensemble and apparatus. The apparatus sequentially ob-
serves all systems of the ensemble, each measured exactly once.
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After such a sequence of measurements, the joint quantum system they
constitute is described as a state of product form |Ψ0〉 =

∏
i |ψi〉|Φ〉, where

〈s|ψi〉 = cs for all values of i, with successive resulting states described in
the basis {|s1〉|s2〉 · · · |A1, A2, . . .〉}, where the nth measurement process is
described as

Un(|s1〉|s2〉 · · · |A1, A2, . . . , An, . . .〉)
= |s1〉|s2〉 · · · |A1, A2, . . . , An + gsn, . . .〉 (3.3)

so that after a number of measurements the joint state will be

|Ψn〉 =
∑

s1,sn,...

∏
i

|ψi〉|Φ[s1, s2, . . . sn]〉 , (3.4)

where

|Φ[s1, s2, . . . sn]〉 =
∫
dA1

∫
dA2 . . . |A1 + gs1, A2 + gs2, . . .〉〈A1, A2, . . . |Φ〉,

(3.5)
the results of these measurements being, in general, non-identical.

The memories of the apparatus serve as pointers corresponding to the
resulting sequence of values, providing a distribution for each set of quantum
mechanically allowed values for the system observable. The relative frequency
function

f(s; s1, s2, . . . , sn) =
1
N

N∑
i=1

δssn (3.6)

and a hierarchy of functions of f(s; s1, s2, . . . , sN ) for measuring deviations
from complete randomness is then considered. Using this construction, DeWitt
showed that the state |Ψn〉 is negligibly different from a state differing from
it by terms in the superposition in which

∑
s[f(s; s1, s2, . . . , sN ) − ws]2 < ε,

for some arbitrarily small number ε, where ws are the ‘probabilities’ of the
measurement outcomes—identical to those dictated by the Born rule when
assuming wave-function “collapse” upon measurement, in the limit n→∞ —
and similarly for all the other statistical functions pertinent to differentiating
a random distribution from a non-random one [134]. In this way, the quan-
tities ws are shown “naturally” to appear despite the assumption of a non-
collapsing wave-function. Given this result, any observer presumably should,
contra Deutsch, be incapable of experimentally differentiating between his be-
ing in a universe with collapse or a ‘multi-verse’ without collapse on the basis
of quantum measurements.19

Everett’s goal is ostensibly achieved without contradiction by the EWG
meta-theorem by reference to the ‘experience’ of observers, despite the con-
cerns of von Neumann that motivated his introduction of the projective pro-
cess. However, the above-mentioned distributions appear to exist simultane-
ously along several branches, bearing in mind that space-time is not included
19 This would presumably preclude the success of the experiments suggested by

Deutsch, mentioned above.
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as a quantum object in standard quantum theory; the random events to which
they apply therefore no longer uniquely appear, which brings into question
the status of these quantities as probabilities at all. This problem has come
to be known as the problem of probabilities.

Fig. 3.1. Branching of histories with serial measurements of non-commuting idem-
potent observables in schematic form, with each history following one of the available
full trajectories leading from left to right [115]. On multiple-universe versions of the
Collapse-Free interpretation, this represents the ‘simultaneous’ existence of an ex-
ponentially increasing number of ‘universes,’ with the appearance of branches.

In addition to the question of the status of these probabilities as such, there
remains the equally serious problem of the presumed existence of an (at least)
exponentially growing number of worlds—on the order of 10100 according to
DeWitt—that have never been observed by anyone in our world or ever will
be observable. This is ontological excess with a vengeance, violating Ockham’s
principle to an extraordinary degree, in that not only are unnecessary entities
postulated, but unnecessary entire universes of entities (cf. [410]).

Some have argued that versions of the Collapse-Free interpretation such
as those of Deutsch and of DeWitt and Graham are distortions of the world
picture that is natural to the approach. For example, Frank Tipler has repre-
sented the situation a mathematically simpler way and has argued that
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“Many presentations of the MWI have made it appear more counter-
intuitive than it really is. For example, many accounts assert that ‘the
entire universe is split by measurement’. This is not true. Only the
observed/observer system splits; only that restricted portion of the
universe acted on [by] the measurement operator M splits.” ([453])

Tipler has offered the following account of how it is that “branching” occurs
during measurement-like interactions.

“If we let |Cosmos〉 be the parts of the universe which is [sic] not
acted on by M—and this will be most of it—then the state of the
entire Universe before the measurement is in |ψ〉|n〉|Cosmos〉, and
the effect of the measurement is

M |ψ〉|n〉|Cosmos〉 = α|↑〉|u〉|Cosmos〉+ β|↓〉|d〉|Cosmos〉
= (α|↑〉|u〉+ β|↓〉|d〉)|Cosmos〉 , (3.7)

which shows that |Cosmos〉 is not split.” ([453])

He continues by considering subjective perceptions.

“If a human being is the measuring apparatus, then any interaction
with the rest of the universe will split the human being if—but only
if—the interaction is such that it could result in different states of
the human organism which are distinguishable by the human sen-
sory system. The splitting is denoted by the correlations between
the human and the various subsets of the Universe with which he in-
teracts. . . the set of possible measurements can split a human being
into only a finite number of pieces. A very rough estimate of an up-
per bound for the number of pieces. . . is 2 raised to the 1026 power.
Admittedly a very large number, but still finite.” ([453])

The above equation does not, in itself, demonstrate that the “Cosmos” does
not “split” in some basis, in light of the superposition principle. What would
be the physical property corresponding to the “Cosmos eigenstate”? If there is
some such property, is it clear that the corresponding physical property is not
correlated to the measurement outcomes? In the case of the Stern–Gerlach
apparatus typically considered, for example, measurement outcomes are cor-
related with paths of systems in the resulting beams lying outside the “human
organism” and “sensory system.” Moreover, for example, quantum cosmology
does include space-time, which is continuously parameterized, in the Cosmos.
This measurement model also still fails to address the fundamental question
of the in-principle inaccessibility of branches other than the one a given agent
perceives. Tipler’s is one more rendering of the Collapse-Free approach that
is in need of a principle or mechanism for its own particular articulation of
the branching process that could preserve the supposedly physically ‘natural’
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character of the approach. It also still suffers from metaphysical excess due to
its naive realist interpretation of the wave-function.

Unless an anthropomorphic view is taken, it is not clear why one should
be particularly concerned with the splitting of human beings; but that would
run contrary to the realist character of Tipler’s rendering. He finally adds,
“I personally think the enlarged ontology of the MWI is really a very strong
argument for accepting rather than rejecting it,” arguing that

“the ontological enlargement required by the MWI is precisely analo-
gous to the spatial enlargement of the universe which was an implica-
tion of the Copernican theory. . . philosophers in Galileo’s time used
Ockham’s principle to support the Ptolemaic and Tychonic systems
against the Copernican system. . . Similarly, I would contend that the
MWI should be accepted because it is the most elegant interpretation
of the quantum mechanical formalism.” ([453])

The above descriptions of measurement processes implicitly contain a pre-
scription for specifying state branches: one is expected to simply “read off”
branches from the given state representations. A preferred basis problem per-
sists: how do branches objectively arise? In particular, how can they objec-
tively arise given that there are an infinite number of bases in which there
remain state superpositions ‘after’ the measurement-like interactions? Shi-
mony has brought this issue directly to bear on the question of the viability
of the interpretation.

“The Everett interpretation is sometimes defended by an analogy
to the Copernican theory: the true physical situation seems to be in
contradiction with appearances because naive people fail to take into
account their own physical states. I believe, however, that this anal-
ogy is faulty, and its weakness is instructive. The reconciliation of
the apparent turning of the celestial sphere with the correct physical
kinematics is achieved by an analysis of visual appearances in terms
of the actual relative motions of the bodies observed, including that
of the observer. But the Everett interpretation lacks an ingredient
needed to implement this analogy: namely, a principle in terms of
which one branch of the subject is endowed with subjective immedi-
acy.” ([412], p. 160)

Therefore, the Copernican analogy fails to bolster the approach.

“Without such a principle there is only potentiality. . . But with such
a principle the interpretation would lose its purity, and indeed there
would be a reduction of a superposition based upon an interaction
of the physical world with the mind.” ([412], p. 160)

In particular, it contradicts DeWitt’s assertion 2 which so fundamental to the
distinctiveness of contemporary forms of the interpretation.
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Like Deutsch, DeWitt, and Tipler, Gell-Mann and Hartle have taken a
specific metaphysical position, something not done by Everett in his writ-
ings, that they claim to be most appropriate to the Collapse-Free approach.
They explicitly reject realism, suggesting a different rendering of Everett’s
interpretation.

“The problem with the ‘local realism’ that Einstein would have liked
is not the locality but the realism. Quantum mechanics describes al-
ternative decohering histories and one cannot assign ‘reality’ simul-
taneously to different alternatives because they are contradictory.
Everett and others have described this situation, not incorrectly,
but in a way that has confused some, by saying that the histories
are all ‘equally real’ (meaning only that quantum mechanics prefers
none over another except via probabilities) and by referring to ‘many
worlds’ instead of ‘many histories.” ([184])

By appealing to histories in this way, Gell-Mann and Hartle have brought
the approach closer to the interpretations preceding it. This variant of the
Collapse-Free approach has come to be known as the Consistent-histories in-
terpretation of quantum mechanics. It is the version of the approach that most
plausibly plays the role that Bub identified for it, the “New orthodoxy.”

Relative to the DeWitt–Graham version, the Gell-Mann–Hartle account
contains more specific physical content. It also relies heavily on the efficacy
of quantum decoherence.

“[T]here was a unique initial state of the universe, perhaps even a
pure quantum state described by a gigantic wave function. The con-
tent of the universe was probably initially very erratic, when the
quantization of space was supposed to dominate; it later contained
practically pure thermal radiation, according to the big bang models,
so that there were not many classical phenomena to be mentioned
and there was practically no fact to be seen, except for very global
ones. Some time after, phenomena became possible. . . consider the
birth of a galaxy as such a phenomenon. According to pure quantum
mechanics. . . the corresponding reduced density operator is diago-
nal in the collective variables of the galaxy, but that does not tell
us where the galaxy is. There is only a probability for the whole
galaxy to be in some place rather than another. Two states of that
kind. . . have no possible relation and they completely ignore each
other because of decoherence. . . Decoherence implies that, when two
classical objects (e.g. two observers) belong to two different histories
of the universe, they must completely ignore each other. . . all the
histories of the universe are real.” ([184], p. 455)

Note, however, that here they themselves describe alternative histories as
“equally real.” DeWitt’s assertion 2 is also again violated if a distinct class
of classical objects is required, as suggested here by virtue of the apparent



3.5 The Collapse-Free Approach 155

requirement that they be present for phenomena to be possible. This rendering
appears to invoke the spirit of the Copenhagen approach.

What, according to Gell-Mann and Hartle distinguishes observers?

“Both singly and collectively we are examples of the general class of
complex adaptive systems. When they are considered within quan-
tum mechanics as portions of the universe, making observations, we
refer to such complex adaptive systems as information gathering and
utilizing systems (IGUSes). . . an IGUS uses probabilities for histories
and therefore performs further coarse graining on a quasiclassical do-
main. Naturally, its course graining is very much coarser than that of
the quasiclassical domain since it utilizes only a few of the variables
in the universe. The reason such systems as IGUSes exist, function-
ing in such a fashion, is to be sought in their evolution within the
universe. It seems likely that they evolved to make predictions be-
cause it is adaptive to do so. The reason, therefore, for their focus
on decohering variables is that these are the only variables for which
predictions can be made. The reason for their focus on the histories
of a quasiclassical domain is that these present enough regularity
over time to permit the generation of models (schemata) with sig-
nificant predictive power. . . the IGUS evolves to exploit a particular
quasiclassical domain or set of such domains.” ([184])

Although this version presents the most detailed picture of the interpretation,
it provides no genuine solution to the preferred-basis problem. It also equiv-
ocates regarding the ontological status of worlds, just as Everett’s original
version had done. The emphasis on ‘real histories’ as opposed to real worlds
does little to remove the incoherence of postulating multiple actualized uni-
verses unless strong empiricism is also taken on board.

Let us now return to the preferred-basis problem and consider some of
the specific ways in which it has been engaged. In general, the correlation
between the measuring apparatus and measured system involves an entangled
state that does not uniquely correspond to an element of the eigenbasis of any
particular pairing of Hermitian operators, even though it correlates these two
subsystems as strongly as is quantum mechanically possible; it is the same
issue that arises in the quantum measurement problem. The difficulty this
presents has been powerfully pointed out by Shimony.

“Part of the appeal of the Everett interpretation is the metaphor of
a trunk with many branches. . . The metaphor tacitly presupposes,
however, a preferred basis, in which the vector representing the state
of the system is expressed: the vector itself is a trunk, and the projec-
tions upon the basis vectors are the branches. But objectively there
is no preferred basis. There is a continuum of possible bases, all on
the same footing. But when one speaks in a more accurate way about
the mathematics of the quantum state, the quasi-familiarity of the
original metaphor is lost, and with it the appeal.” ([412], p. 159)
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Bell was also highly critical of this metaphor (cf. Figure 3.1).

“At the microscopic level there is no such asymmetry in time as
would be indicated by the existence of branching and non-existence
of debranching. Thus the structure of the wave function is not fun-
damentally tree-like. It does not associate a particular branch at the
present time with any particular branch in the past any more than
with any particular branch in the future. Moreover, it seems reason-
able to regard the coalescence of previously different branches, and
the resulting interference phenomena, as the characteristic feature of
quantum mechanics. In this respect, an accurate picture, which does
not have any tree-like character, is the ‘sum over all possible paths’
of Feynman.” ([24], p. 135)

The closest to Bell’s suggestion the interpretation has mustered, without be-
coming instead a version of the Process interpretation discussed in a following
section, is Deutsch’s “favorite version” of the interpretation portrays a ‘multi-
verse,’ although Deutsch is quite clear that the branches correspond to distinct
co-existing worlds that all always exist, even before ‘interacting.’

Considerable attention has been paid to quantum decoherence in hope of a
solution to the preferred-basis problem. However, as the decoherence-theorist
Erich Joos has succinctly assessed the situation,

“It should be emphasized that [the decoherence of the joint
apparatus–system state] does not solve the measurement problem. In
particular, an ignorance (i.e. ensemble) interpretation of [the state],
as suggested by some authors, would wrongly identify an improper
mixture with a proper one.” ([262], p. 42)

To see this, it is instructive to return to the simple ‘split portion’ of the
universe in Tipler’s spin measurement. It is clear that the claim that a branch
is objectively selected by the measuring apparatus is unjustified; the way
he has chosen to portray the state in Equation 3.6 involves an ambiguity,
namely, that a specific spin direction has not been identified Let us remove
the ambiguity by taking this direction to be the z–direction by writing

M |ψ〉|n〉 = (α|↑z〉|uz〉+ β|↓z〉|dz〉)|Cosmos〉 (3.8)

without contesting, for the moment, his claim that the “Cosmos” factors out.
Recall that the ‘measurement operator’ M , on the Everett interpretation, is a
unitary operator.20 For specificity, let us also take α = β = 1√

2
, that is, let the

first factor above be the Bell state |Φ+〉. With some thought, one recognizes
that the state of the right-hand side of Equation 3.8 can be rewritten in the
same general form but with equally strong correlations for measurement of
the x–spin, namely,
20 This operator is therefore better labeled U than M , which in the literature typi-

cally denotes a nonunitary, projective operator.
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M |ψ〉|n〉 =
1√
2
|↑x〉|ux〉+

1√
2
|↓x〉|dx〉 , (3.9)

which remains an instance of |Φ+〉. That is, there is a simple relationship
between z–spin and x–spin eigenstates, namely, | ↑z〉 = 1√

2
(| ↑x〉 + | ↓x〉) and

|↓z〉 = 1√
2
(|↑x〉 − |↓x〉). Of course, this is true not only in the case of the spin

eigenstates, but is so for the apparatus eigenstates |uz〉, |dz〉 as well, that is,
|uz〉 = 1√

2
(|ux〉+ |dx〉) and |dz〉 = 1√

2
(|ux〉− |dx〉). One sees that the required

perfect measurement correlations exist simultaneously for both z–spin and
x–spin, which are eigenstates of incompatible observables. In the absence of
Process 1 or complete decoherence, which typically would be achieved only in
the limit of infinite time, any ‘branching’ of worlds is ill defined. Furthermore,
there is nothing special about this particular manner of choosing the spin
axis: any direction will do. This is to what Shimony refers when he speaks of
a continuum of possible bases, all on the same footing.

Again, the process of quantum decoherence is usually relied upon to solve
the preferred-basis problem, as in the approach of Gell-Mann and Hartle
above. However, if, as is typical, the two subsystems become spacelike-related,
external noise will act locally on the state which, if it is a spin-singlet state
as it readily can be, is immune to phase decoherence. That is, there exist
decoherence-free states of the sort commonly understood to arise in measure-
ment. Again, because of the purity of the overall state required by the ap-
proach, the appeal to decoherence, this will not help matters from the purely
physical point of view. Unless the way that physical theory is related to reality
is altered in a way depending on interpretational moves, discussed below, that
are far more radical than would be seriously considered doing mere physics, are
required to finesse this problem. As von Neumann realized long ago, adding
the remainder of the universe to the chain of measurement changes nothing es-
sential. The pertinent correlations between the remainder of the universe and
the object system have exactly the above form; despite the extremely large
number of degrees of freedom introduced, any developed correlation or chain
of correlations that matters to measurement, say of a spin-1/2 system, can
be reformulated as the correlation of the measured system with the pertinent
remainder of the universe having two pertinent eigenstates.

A related attempt to resolve the preferred-basis problem is to examine the
Schmidt decomposition to see whether it might be involved in the ‘selection
of basis.’ The basis involved in this decomposition need not particularly be
connected with any specific measurement, nor will the basis typically corre-
spond to that of dynamically preserved measurement outcomes. Nonetheless,
specific moves of this kind have been investigated to help resolve the problem.
For example, Bub has considered, following Żurek [522], states not only of
the Hilbert spaces of system and apparatus, but these together that of the
environment; Bub and Andrew Elby showed that for states in this tripartite
composite Hilbert space, a unique Schmidt-like decomposition of states exists
even if the coefficients of the expansion coefficients involved are degenerate
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[159] as, for example, in the case of the GHZ state. In particular, they pro-
duced the following tridecompositional uniqueness theorem.

Suppose |Ψ〉 =
∑
i αi|ai〉|bi〉|ci〉, where {|ai〉} and {|ci〉} are linearly

independent, while {|bi〉} are merely noncollinear. Then there exist
no alternative linearly independent sets of vectors {|a′i〉} and {c′i},
and no alternative noncollinear set {|b′i〉}, such that

|Ψ〉 =
∑
i

αi|a′i〉|b′i〉|c′i〉 . (3.10)

(Unless each alternative set of vectors differs only trivially from the
set it replaces.)

This theorem generalizes in the obvious way to an arbitrary finite number
of component systems, say Tipler’s “Cosmos.” One may consider the system
of the third Hilbert space to be a compound environment with a state space
of countable Hilbert-space dimension. Unfortunately, there is no guarantee of
the existence of a generalized Schmidt decomposition [347].

The above result only proves the uniqueness of a Schmidt decomposition
should one exist, which is the assumption the theorem takes as its starting
point. As Peres pointed out in his note providing the necessary and sufficient
conditions for the existence of a generalized Schmidt decomposition,

“A natural question is whether [the Schmidt decomposition] process
can be extended to more than two subspaces. Such an extension of
Schmidt’s theorem would be useful for modal interpretations of quan-
tum theory, and triple sums can indeed sometimes be found in the
literature on that subject. The unlikeliness of occurrence [sic] of mul-
tiple Schmidt decompositions can readily be seen by counting the free
parameters involved: for example, if there are three particles, each
of which described by a d-dimensional space, their combined (pure)
state, in a d3-dimensional space, depends on 2(d3 − 1) real param-
eters (after discarding overall normalization and phase factors). On
the other hand, the three unimodular unitary transformations which
can be performed for these three particles have only 3(d2 − 1) free
parameters, not enough to solve the problem in general.” ([347])

Moreover, this decomposition is typically unavailable for measurements that
are nonideal [158]. In the article in which the tridecompositional uniqueness
theorem appeared, Elby and Bub assessed the situation as follows.

“Decoherence theorists can invoke tridecompositional uniqueness to
support their claim that environmental interactions make the pointer
reading become ‘classical’ in some sense. And modal interpreters can
claim that when a quantum state vector can be a tridecomposed
(with two of the three bases orthogonal), the observables picked out
by the tridecomposition have definite values.” ([159])
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Nonetheless, they pointed out,

“[One of us has argued] that ideal measurements of most observables
are impossible. If this is correct, then the unique biorthogonal decom-
position of the measuring device with the rest of the universe, if it
exists, usually picks out some apparatus basis other than the pointer-
reading basis. Furthermore, a nonideal measurement usually results
in a particle-apparatus-environment state that cannot be tridecom-
posed. Our technical results cannot help to solve these deep-seated
technical problems associated with nonideal measurements.” ([159])

Some advocates remain undaunted. For example, David Wallace has claimed
that

“the preferred-basis problem looks eminently solvable without chang-
ing the formalism. The main technical tool towards achieving this has
of course been decoherence theory. . . there are no purely conceptual
problems with using decoherence to solve the preferred-basis prob-
lem,. . . the inexactness of the process should give us no cause to reject
it as insufficient.” ([482])

However, with this degree of laxity, the same could be said of the measurement
problem itself, that is, of the main issue motivating the search for interpreta-
tions different from the widely used Basic interpretation in which it first arose.
Furthermore, to date, no technical result exists that shows that decoherence
helps one solve the preferred-basis problem.

In addition to the pre-measurement correlation between the system of
interest and measuring apparatus in the observable–pointer basis, there is on-
going interaction between the apparatus and its environment during measure-
ment. Interaction with the environment can to a great extent diagonalize the
density-matrix of the state of the system plus measuring apparatus in a spe-
cific basis, and rapidly do so in complex natural environments [261, 522]. The
overall interaction is entirely unitary, but the reduced joint system–apparatus
state may become increasingly diagonal as the three-component state evolves
toward environmental states that can rapidly become increasingly orthogo-
nal, although generally not fully so. However, this is as far as decoherence
itself can assist any interpretation. Most specifically, why one outcome versus
another appears in a given measurement basis cannot be explained by de-
coherence. Żurek, in his decoherence-based ‘existential interpretation’ of the
wave-function, has been driven to claim, along the lines of Everett’s original
expositions, that each possible measurement outcome simply does occur in
some universe within the ‘multi-verse.’

For his part, Everett was, rather surprisingly, satisfied with the following
prescription for assigning post-measurement states.
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“Subsystems do not possess states that are independent of states
of the remainder of the system, so that the subsystem states are
generally correlated with each other. One can arbitrarily choose a
state for one subsystem, and be led to the relative state for the
remainder.” ([164], p. 317)

This position has recently been championed by some philosophers in a way
that represents an extremely subjectivistic approach to the physical world
of the sort Bell considered radically solipsistic. A far more objectivist tack
has been pursued by Deutsch, who has suggested that an additional rule be
appended to the quantum formalism, specifying “how the interpretation basis
depends (solely) at each instant on the physical state and dynamical evolution
of a quantum system” that is

“based on an idea of Everett (private communication) that at any
rate during measurements the basis is determined by the require-
ment that in that basis the interaction indeed take the form of a
measurement,” ([127], p. 2)

in the context of a theory of measurement along the lines of that offered by
DeWitt. However, as we have seen, this move is insufficient, as Deutsch has
largely acknowledged.

Deutsch has also disputed the claim of DeWitt and Graham that the statis-
tics of measurements can be obtained directly from the Everett treatment
because

“there is nothing in the formalism telling us that a set of worlds of
measure zero must ‘occur with zero probability.’ Indeed, if we had
been willing to identify the Hilbert space norm measure with a phys-
ical probability, then [their] elaborate argument about sequences of
measurements would be redundant, since the norm of the [pertinent
state component] is in any case the desired value.” ([127], p. 20)

In an attempt to tackle these issues, Deutsch has proposed a “slight change” in
Everett’s treatment by introducing the following axiom. “The world consists
of a continuous infinite-measured set of universes” [127]. The interpretation of
the joint system–apparatus state |Ψ〉 =

∑
a1
ca1 |a1, t

′′;A2(a1)t′′〉 for the mea-
surement of an observable φ̂1(t′) is then that the set of universes is composed
of n1 disjoint sets, where the a1th subset is of measure |aa1 |2, each corre-
sponding subset being a “branch” and consisting of a continuous infinity of
universes playing the “same role as individual universes do in Everett’s orig-
inal version,” but with the probabilistic interpretation now “built in” [127].
With this move, Deutsch then considers “an ensemble of universes” described
by the density operator

ρε(t) =
∑
α

|〈ψ|α, t〉|2|α, t〉〈α, t| , (3.11)
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where |α, t〉 is the relative state of the αth branch at time t. The operator
ρε(t′′) then characterizes results of measurements considered to have ended
by time t′′. He then identifies a preferred “interpretation basis” {|α, t′′〉} =
{|a1, t

′′; a2, t
′′〉} that would allow one to consistently regard measurements as

a generic physically process, unlike in most other interpretations, through a
rather elaborate construction. Deutsch has thereby offered the most frank and
subtle Collapse-Free interpretation that can be clearly identified as such that
does not alter the theory beyond recognition or revert to instrumentalism.

As mentioned above, further attempts to come to terms with the short-
comings of the Collapse-Free approach have involved radical moves of a rather
more conceptual than mathematical character. In these, subjectivity is often
given a place more primary than physics. Wallace has argued that, given the
effect of decoherence,

“branching effects in such a theory can be understood, literally,
as replacement of one classical world with several—so that in the
Schrödinger Cat experiment, for instance, after the splitting there is
a part of the quantum state which should be understood as describ-
ing a world in which the cat is alive, and another which describes a
world in which it is dead. This account applies to human observers
as much as to cats. . . Each future observer is (initially) virtually a
copy of the original observer, bearing just those causal and structural
relations to the original that future selves bear to past selves in a
non-branching theory.” ([482])

Wallace views this move as entirely valid: “since the existence of such rela-
tions is all that there is to personal identity, the post-branching observers
can legitimately be understood as future selves of the original observer. . . ”
[482]. Maximillian Schlosshauer has defended a similar position, suggesting
that definiteness during measurement events is not a valid requirement of
fundamental physics.

“We demand objective definiteness because we experience definite-
ness on the subjective level of observation, and it should not be
viewed as an a priori requirement for a physical theory.” ([390], p.
1271)

However, again, this eliminates much of the motivation for the Collapse-Free
interpretation as an alternative to the Basic interpretation.

It is similarly claimed by some philosophers that progress is to be made in
solving the problems faced by the Collapse-Free interpretation by moves that
are likely to be seen as even more objectionable to physicists. The grounds
on which the theory is to be evaluated become radically different, as Simon
Saunders suggests.
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“[T]he question is no longer what is the space of possibilities?—but:
What is the space of possibilities in which we are located? That we
are ourselves constituted of processes of a very special sort is in part
explanatory; because our nature is in part contingent, a matter of
evolutionary circumstance, the demand for explanation is blunted.”
([388])

Two key aspects of the problem of reconciling the stochastic nature of ob-
served measurement outcomes and quantum probability with the determin-
istic unitary dynamics of the Collapse-Free approach are noted by Saunders:
the incoherence problem and the quantitative problem. The latter problem is
that of finding a well defined sense in which the Collapse-Free picture can sup-
port quantum probabilities as uncertainties that correspond to the quantities
given by the Born rule. However, this appears to differ little from what is of-
fered by hidden-variables treatments under the pilot-wave theory of quantum
mechanics. Wallace has claimed that substantial progress has been made by
Saunders toward resolving the problem associated with the first aspect with
his “subjective uncertainty theory,” wherein “an agent awaiting branching
should regard it as subjectively indeterministic. That is, he should expect to
become one future copy or another but not both, and he should be uncertain
as to which he will become” [482]. Saunders refers to his overall approach
as relativism. On this view, value-definiteness and probability are understood
as relational, which is to be understood in the sense that no dependence on
essential characteristics is allowed; “temporal relations are tenselessly true;
probabilistic relations are deterministically true” [387].

As seen from the perspective of Bell a decade earlier, this points to what
can be seen as the most novel element of the Everett theory, namely, “a
repudiation of the concept of the ‘past’, which could be considered in the
same liberating tradition of Einstein’s repudiation of absolute simultaneity”
([24], p. 118). Bell was highly critical of Everett’s treatment, which he called
“a radical solipsism” due to its reliance on the replacement of the past by
memories, and about which he said that

“if such a theory were taken seriously it would hardly be possible
to take anything else seriously. . . It is always interesting to find that
solipsists and positivists, when they have children, have life insur-
ance.” ([24], p. 136)

Spelling out Saunders’ proposal involves a further development of the version
of the Collapse-Free interpretation of Gell-Mann and Hartle, which relies on
solutions analogous to those that have been proposed in attempts to under-
stand the nature of time. What precisely does it mean for value-definiteness
to be relational? For him, this means that along a given Everett ‘branch,’
specified by a choice of basis and a selection of outcome, values are definite.
He assumes that decoherence is sufficient for the selection of the preferred
basis. What does it mean for probability to be relational? “Probabilistic facts
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are not made true by chance,” rather, decoherence wherein a general formula
for the relative state (relative to |ψj〉)

|φ〉ψk
=

∑
i

1√∑
i |cik|2

cik|φi〉 , (3.12)

given the universal wave-function

|Ψ〉 =
∑
ij

cij |φi〉|ψj〉 , (3.13)

is considered. An operator treatment, which has projectors describing pure
states—something that, as discussed in Section 2.1, is also used to consider
the quantum analogues of the characteristic functions on the phase space
of classical mechanics—is typically used [387]. This allows the consideration
of “decoherent histories”; the evolution of the universal state is represented
using a set of “mutually exclusive histories,” given by a sequence of projectors,
where interference between “disjoint histories” is insignificant [197, 328].

It was Robert Griffiths who first found necessary conditions for the con-
sistency of the additivity of quantum amplitudes and called those satisfying
them consistent histories [197]. With the projector representation, histories
h = {P1(t1), P2(t2), . . . Pn(tn)}, each associated with a series of events in-
volving a sequence of (non necessarily compatible) observables {Ai} (in the
Heisenberg picture) at sequential times ti are attributed weights

wρ(h) = tr
(
Pn(tn) . . . P2(t2)P1(t1)ρ0P1(t1)P2(t2) . . . Pn(tn)

)
, (3.14)

where ρ0 is the initial state and the weights of disjoint histories will sum to
one. The spectrum of each of the Ai is written as a combination of disjoint
subsets Dαi

i . One then considers time-dependent projectors Pαi
i (ti) onto the

subspace spanned by the eigenvectors of the Ai with eigenvalues lying in the
Dαi
i . In the Gell-Mann–Hartle approach, one makes use of this construction as

the basis for a decohering histories based version of the interpretation. They
considered a complex-valued decoherence functional D(h, h′) ≡ tr(hρh′†) for
pairs of histories h, h′ and for collections of histories [Pα], imposing the condi-
tions that the sequences {Pαi

i (ti)} of which they are constituted as a product
(i) sum to the identity operator and (ii) are mutually orthogonal within the
history. Histories are considered fully fine-grained if they are given by a set of
projectors onto rays and coarse-grained if some or all the projectors project
onto larger subspaces. Gell-Mann and Hartle also introduced a natural de-
coherence condition on collections of histories, namely, that for off-diagonal
elements both the real and imaginary parts of the functional approximately
vanish for decoherent collections, where the resulting matrix of values is

D([Pα], [Pα
′
]) ≡ tr

(
P
α′

n
n (tn) · · ·P

α′
1

1 (t1)ρ0P
α1
1 (t1) · · ·Pαn

n (tn)
)
, (3.15)

which is sufficient for the inconsistency of histories but not necessary [197,
328]. Any set of disjoint exhaustive histories is referred to as a decoherent
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history space; such sets are referred to as quasi-classical domains whenever
further fine-graining would result in a loss of decoherence [184].21

On Saunders’ treatment, an Everettian Lüders-type rule provides the rel-
ative states associated with the eigenvalue i:

ρ→ ρ′ =
(I⊗ Pi)ρ0(I⊗ Pi)

tr(I⊗ Piρ0)
. (3.16)

Then, a state Pi of the object system will be ‘actual’ relative to the state Pi of
the measuring system exactly when tr(Pi⊗I) = 1. He has attempted to extend
this rule without requiring a tensor space structure, writing the relative state
in a new notation, namely,

µρ(P ′/P ) ≡ tr(P ′PρPP ′)
tr(PρP )

, (3.17)

and saying that the pure state P is ‘actual’ relative to pure state P ′ when
µρ(P ′/P ) = 1, where the projectors P, P ′ do not necessarily commute. The
projectors for histories are again constructed using resolutions of the identity
{Pi} at each time t, but with elements that do not necessarily commute, and
considers their time-ordered products, denoted C = P γk

k P
γk1
k1

· · ·P γ11 . Saun-
ders then requires that their real part be zero if and only if C 6= C ′. Needless
to say, this amounts to the consideration of a theory differing in its formal
elements from standard quantum mechanics, because the tensor product struc-
ture of the theory, from which entanglement arises, is abandoned.

A resolution of the ‘quantitative problem’ mentioned by Wallace has been
proposed by Deutsch, who invokes decision theory. Recall that this is the prob-
lem of supporting quantum probabilities as uncertainties that correspond to
the quantities given by the Born rule. Unfortunately, an adequate presenta-
tion of the Deutsch treatment is beyond the scope of this book—let us simply
note that Huw Price has pointed out a significant difficulty associated with
Deutsch’s move [363]. Wallace has also noted this, but is not bothered by it.
He provides the following contextual characterization of this theory.

“The underlying principle is essentially that of symmetry: if there
is a physical symmetry between two possible outcomes there can be
no reason to prefer one to another. Such arguments have frequently
been advanced in non-quantum contexts but ultimately fall foul of
the problem that the symmetry is broken by one outcome rather
than another actually happening (leading to a requirement for prob-
ability to be introduced explicitly at the level either of the initial
conditions or of the dynamics to select which one happens). They
find their natural home—and succeed!—in Everettian quantum me-
chanics, where all outcomes occur and there is no breaking of the
symmetry.” ([483])

21 When considered from the point of view of Żurek’s environmentally induced deco-
herence, coarse graining is the averaging over environmental degrees of freedom.
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Such subjectivist quantum cosmological approaches to constructing a new
foundation may turn out to be valid but, again, they involve moving signifi-
cantly away from the original quantum theory the interpretation of which is
the true problem. For our purposes, it is more productive to return to the
consideration of standard quantum mechanics than to pursue these further.

3.6 The Naive Interpretation

The Naive interpretation of quantum mechanics takes the formalism to refer
only to ensembles of quantum systems and never to individual systems or,
necessarily, to beams of particles. This is the most fundamental principle of the
interpretation, which we can call principle 0. The adjective naive as used here
serves, among other things, to more precisely distinguish this interpretation
by reference to its association with naive realism. Another characteristic of the
interpretation is that it, like the Collapse-Free approach, attempts to minimize
the number of assumptions used to interpret quantum mechanics.

Among contemporary physicists, the best known advocate of this inter-
pretation has been Ballentine. “Ballentine’s paper has proved to be one of
the most stimulating sources of discussion and dialog” regarding statistical
interpretations [232]. He has referred to his interpretation as simply “the sta-
tistical interpretation” [16], although this phrase has been consistently used
throughout the years in describe any interpretation of quantum mechanics
that takes quantum probabilities not to refer to individual processes. Some
advocates claim that the approach does not require all dynamical variables
to have definite values at all times, although without this assumption the in-
terpretation is neither fully defined nor distinct from others. For that reason,
this is not considered here to be an element of the interpretation.22 The in-
terpretation has also been (incorrectly) attributed to John Taylor, who refers
to his version as the “ensemble interpretation”; importantly, Taylor rejects
the precise value principle ([119], Chapter 7); if this rejection is consistently
maintained, then there is little to distinguish his version from a generic statis-
tical interpretation that rejects applying quantum probabilities to individual
systems. Nonetheless, his views will be discussed here because they illuminate
important aspects of and motives behind the approach.23

Some or all of the distinguishing components of the Naive interpretation
were explicated at various times, either early on in the history of the theory
or in later textbooks, in the decades following the introduction of the theory.
Those contributing some, although not all, of these elements include John
Clarke Slater [425] and Einstein ([152], p. 665), whose position lies closer to
Taylor’s than to Ballentine’s. Three principles underlying the interpretation
22 Cf. Principle 1 below.
23 For a comprehensive review of the related cluster of interpretations, one can

consult [232].
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as considered here are the following, which have been identified by Healey
who refers to it as the naive realist interpretation ([211], Section 3.1).

(1) The precise value principle. Every observable has a precise value for
every state of the ensemble.

(2) The relative frequency principle. The quantum probabilities provide
the relative frequencies of measurement outcomes for the ensemble.

(3) The faithful measurement principle. Every good measurement reveals
a pre-existing value of the observable.

This interpretation is distinguished from others by principle 3 (in conjunction
with principle 0). Principles 1 and 3, were the interpretation consistent, would
provide a solution to the quantum measurement problem, in that they explain
the appearance of definite outcomes in individual experiments no matter how
the experimenter chooses to measure a quantum system. Nonetheless, a so-
lution to the measurement problem is not forthcoming under it, as shown
below, essentially as a result of the principle 2, which relates ensemble states
to measurement statistics in accordance with the Born rule.

On principal 2, quantum probabilities are defined as relative frequencies
by considering ensembles as ordered sets and taking the probability as the
relative frequency of occurrence of outcomes in the set of events in the large-
number limit.24 Other interpretations of quantum mechanics have made use
of this interpretation of probability, which is relatively uncontroversial. In
particular, Ballentine views quantum ensembles as infinite sets of individual
systems, with measurements constituting selections of putative subensembles
from the quantum ensemble.

Perhaps the strongest motive behind the Naive interpretation is the desire
to avoid paradoxes presented by the well known thought experiments, which
on it are seen as arising from the assumption that the state-vector is a de-
scription of individual systems, as in the Copenhagen interpretation, rather
than as one of ensembles only. Einstein had considered such a move on the
basis that, in the context of his other views, the alternative would imply that
quantum mechanics is incomplete.

“The statistical character of the theory would. . . have to be a nec-
essary consequence of the incompleteness of the description of the
systems in quantum mechanics, and there would no longer exist any
ground for the supposition that a future basis of physics must be
based on upon statistics. . . ” ([151], p. 87)

Indeed, he was
24 The term relative frequency principle for (2) was introduced by Hughes ([244], p.

163).
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“convinced that everyone who will take the trouble to carry through
such reflections conscientiously will find himself finally driven to this
interpretation of quantum-theoretical description (the ψ-function is
to be understood as the description not of a single system but of an
ensemble of systems).” ([152], p. 671)

Specific examples of the claim that paradox can be resolved by a strict
adherence to a statistical interpretation without the introduction of subjec-
tivity are the following of Taylor, involving two crucial thought experiments
already discussed. He first considers the EPR experiment.

“[I]t’s clear that a paradox arises there, because we’re assuming that
when a measurement is made, say, of the spin of a particular particle,
we can also measure the spin of a far away particle whose properties
are correlated [with it]. . . This would be paradoxical if you believe
that you are indeed measuring individual systems because it would
seem that you’re actually able to influence that far away particle, and
in some ways determine its spin simply by making a measurement
on the nearby particle. The ensemble interpretation says, however,
that we’re looking at a whole ensemble of such systems. . . we only
know about ensembles of such situations.” ([119], p. 107)

Ballentine has similarly pointed out that his interpretation would avoid the
EPR quandary in the same way, that is, by virtue of principle 0. Taylor later
considers the Schrödinger cat thought experiment.

“[A]ccording to any interpretation of quantum mechanics which at-
tempts to describe individual systems. . . the quantum mechanical
state is composed of the cat being alive for half the time, and the
cat being dead for the other half. In other words, the cat doesn’t
know whether it’s dead or alive, which is absolutely absurd! Now if
you take the ensemble interpretation, then in 50% of the cases the
cat is alive and 50% it’s dead. That’s quite reasonable. . . there is no
way of saying whether it is alive or dead in any particular case. It’s
a meaningless question.” ([119], pp. 110-111)

However, there is nothing specifically quantum mechanical about the en-
semble approach used to resolve the above quandaries in the minimalist con-
text of the naive interpretation, relative to any other theory of statistical
mechanics; one must explain the peculiarities of the statistics of quantum
mechanics, given by the Born rule, for this to represent an advance in the
understanding of the quantum world. But such an explanation, given the re-
maining assumptions of the interpretation, ultimately must be by reference to
some some hidden-variables theory of individual systems (cf. [371], pp. 45-48).
Perhaps recognizing this, Ballentine is quite open to such an explanation of
quantum mechanical predictions. The underlying theory of individual systems
would need to explain the inability of experimenters to prepare dispersion-free
statistical states, that is, states in which ensembles simultaneously have well



168 3 Interpretations of Quantum Mechanics

defined values of properties corresponding to non-commuting observables in
accordance with the precise-value principle. However, one then faces the fatal
difficulty that the Kochen–Specker theorem contradicts that principle.

In the Bohr–Einstein debate, Einstein unsuccessfully attempted to provide
a thought-experiment that would show that such ensembles could be prepared
by the appropriate use of a double-slit apparatus [303]. This situation is faced
together with the fact of the failure of local hidden-variable theories as evi-
denced by the empirical violation of Bell-type inequalities as well as the lack
of any clear line delimiting the boundary between the quantum and classi-
cal realms, as seen above in our discussion of the Copenhagen interpretation
which also (at least implicitly) assumes such a strict distinction. A detailed
theory of the dynamics of the hidden variables involved would also be highly
desirable, although it may not be necessary for establishing the consistency
of the interpretation.

As noted above, aspects of the measurement problem also remain under
the interpretation. If one begins, as on this view, with a system in a pure
quantum state to be interpreted as that of an ensemble, it must evolve to
a quantum mixed state, given by Equation 2.2, after measurement. The en-
tangled state of the measurement apparatus and the measured system result-
ing from pre-measurement and given in Equation 2.1 must, like all quantum
states, represent an ensemble of ‘fundamental states’ on this interpretation.
A subensemble of this ensemble will be picked out by measurement, which
increases one’s knowledge of the state in which the system has been prepared;
the behavior of the subensemble picked out during measurement, which is
described by |pn〉|on〉, can be traced backward in time in accordance with
the Schrödinger equation. This would allow the determination of the initial
fundamental ensemble state, which must also be the ensemble before measure-
ment began, because the measured value pre-exists, namely, that described by
|Ψ0〉|on〉 where |Ψ0〉 is the initial apparatus state. The backward-evolved state
must also describe an ensemble of ‘fundamental states’ all of which must be
different from those when the system is originally prepared in a superposition
with the joint system |Ψ0〉(

∑
j |oj〉), a contradiction. Thus, the measurement

problem remains for this interpretation.25

Von Neumann’s ‘no-go’ theorem, which was later shown to be of limited
scope, has also led many to disregard the Naive interpretation because it
depends on the existence of hidden variables ([256], p. 448). The theorem aside,
the Naive interpretation is fundamentally incoherent for that very reason.
Shimony has succinctly pointed this out as follows.
25 See also the analysis in [190].
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“Once you say that the quantum state applies to ensembles and the
ensembles are not necessarily homogeneous you cannot help asking
what differentiates the members of the ensembles from each other.
And whatever are the differentiating characteristics these are the
hidden variables. So I fail to see how one can have Ballentine’s in-
terpretation consistently. . . ”, ([413])

a point also made by Fock [3]. Schrödinger also dismissed such an interpreta-
tion in the 1935 cat paper, in the section entitled “Can one base the theory
on ideal ensembles?”

“The essence of this line of thought is precisely this, that one prac-
tically never knows all the determining parts of the system. . . To
describe an actual body at a given moment one relies therefore not
on one state of the model but on a so-called Gibbs ensemble. . . an
ideal, that is, merely imagined ensemble of states, that accurately
reflects our limited knowledge of the actual body. The body is then
considered to behave as though in a single state arbitrarily chosen
from this ensemble. This interpretation had the most extensive re-
sults. Its highest triumphs were in those cases for which not all states
appearing in the ensemble led to the same observable behavior. . . At
first thought one might well attempt likewise to refer back the always
uncertain statements of Q.M. to an ideal ensemble of states, of which
a quite specific one applies in any concrete instance—but one does
not know which one. That this won’t work is shown by. . . [careful
consideration of the behavior of] the oscillator energy. . . ” ([394])

Various attempts at finessing these arguments by bringing into question
broader fundamental concepts of physics have been made but have been, at
best, of extremely limited benefit. Much like the other alternatives to the well
established Basic and Copenhagen interpretations, the approach fails to rival
or surpass them.

“[The interpretation] rapidly loses its beguiling simplicity. One might
say that its chief attraction is that measurement may merely record,
and not, in any sense, create. But as soon as basic conservation laws,
certainly obeyed in experimental results, are not respected in the
premeasurement values, this feature must be lost. And with the talk
on the ‘experimental situation’, again the main selling point of the
[ensemble in which dynamical variables all have determinate values]
appears to have disappeared.” ([496], p. 216)
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3.7 The Radical Bayesian Interpretation

The Radical Bayesian interpretation is currently only a proto-interpretation
of quantum mechanics. Its distinctiveness lies in the use of a thoroughgoing
Bayesian subjectivist interpretation of quantum probabilities, and hence fully
subjective interpretation of the quantum state. Because this interpretation is
currently more of a research program in a relatively early stage of development,
no list of basic principles is given here. Instead, various claims and approaches
of its advocates will be considered. It is sufficiently distinct and interesting to
warrant separate consideration here because of its close connection to quantum
information science.

Advocates of this approach have argued that the Copenhagen interpreta-
tion, to which it is most closely related, differs markedly from the interpreta-
tion to emerge from its program because, it is claimed, under the Copenhagen
interpretation

“a system’s quantum state is determined by a sufficiently detailed
classical description of the preparation device, [something impossible
in the Radical Bayesian approach].” ([103])

The Radical Bayesian program is the most explicitly subjectivist approach to
interpreting quantum mechanics yet to be pursued. Without dismissing the
above consideration, it can be said that the program is closely related to the
most subjectivistic readings of the Copenhagen interpretation.

Several elements of the program are similar to those of the Copenhagen
approach, particularly in Stapp’s version [434] wherein the ideas of William
James are emphasized (cf. [434], Section IV and Appendices A and B). Heisen-
berg also early on made the following somewhat conflicted statement regarding
the possibility of an irreducible subjective element in quantum mechanics.

“The probability function does—unlike the common procedure in
Newtonian mechanics—not describe a certain event but, at least dur-
ing the process of observation, a whole ensemble of possible events.
The observation itself changes [it] discontinuously; it selects of all
possible events the actual one that has taken place. Certainly quan-
tum theory does not contain genuine subjective features, it does not
introduce the mind of the physicist as part of the atomic event.
But. . . our description is not entirely objective.” ([219], pp. 54-55)

Peierls, who believed there was only one legitimate way of understanding
quantum theory, a way he identified with the Copenhagen interpretation,
took a more avowedly subjectivist view of the quantum state than the young
Heisenberg.

“[T]he most fundamental statement of quantum mechanics is that
the wavefunction, or more generally the density matrix, represents
our knowledge of the system we are trying to describe.” ([342], p.
11)
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Furthermore, unlike in his youth, when he viewed quantum theory as almost
entirely objective in character, later Heisenberg viewed it (c. 1958), in agree-
ment with Peierls, as almost entirely subjective, rejecting the objectivist ideal
of previous physics cited at various stages by Einstein, Schrödinger, and many
others. For example, in The physicist’s conception of nature, he claimed that
the mathematics of physics

“no longer describes the behavior of elementary particles, but only
of our knowledge of their behavior.” ([220])

This view is echoed by the Radical Bayesian approach and lies at its core.
Recall also Bell’s summary of the relationships of the founders of the

Copenhagen interpretation to subjectivism.

“In the beginning Heisenberg and Pauli felt very close to Bohr. Those
three were the Copenhagen trio, the Three Musketeers of the Copen-
hagen interpretation. In later years, Pauli seems to have decided that
Bohr himself was not a complete supporter of the Copenhagen in-
terpretation. He reproached Bohr along the following lines: Bohr in-
sisted that there was this division between the quantum-mechanical
system and the classical apparatus. He explicitly repudiated the idea
that the human mind was somehow an important element in quan-
tum mechanics—that is, that the division was between the interior
world [mind] and the outer world [matter]. But Pauli was attracted
to that idea.. . . He felt that the real Copenhagen interpretation did
insist that the mind was something that you could not avoid referring
to in formulating quantum mechanics.” ([45], p. 53)

Pauli had his own particular view of the “undetached observer,” which has in-
fluenced the Radical Bayesians through the idea of a “participatory universe”
[494], stopping just short of Wheeler’s “it from bit” thesis (cf. Section 4.7).
His Copehagenist view differs in this regard from that of Radical Bayesians
only as to precisely where and how subjectivity enters quantum mechanics.

The general idea of a Bayesian approach to quantum probability actu-
ally goes back as least as far as 1984, when Lane P. Hughston suggested
that one “take a Bayesian attitude towards the wave function in quantum
mechanics.” However, Hughston proceeded to derive a Schrödinger-like state
evolution with an additional non-linear term [245]. By contrast, the Radical
Bayesians have not altered the quantum formalism itself which, as seen in
the introduction to this chapter, they view as “self-interpreting.” They ad-
vocate the revision, indeed, the virtual rejection of interpretative principles,
including those of the Copenhagen interpretation. As their analytical starting
point, the Radical Bayesians hold, “following de Finetti, that in the last anal-
ysis, probability assignments are always subjective...” [103]. What makes the
Radical Bayesian program radical is that, unlike the interpretations discussed
above, it throws out of all the standard axioms of quantum mechanics, or
more precisely, suggests their replacement with other unknown principles.
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What is positively asserted by its prime advocate, Fuchs, who described
this form of Bayesianism as “radical,” is its relationship to the subjectivity al-
ready present in the Copenhagen approach. “Quantum mechanics has always
been about information. It is just that the physics community has somehow
forgotten this” [181]. The meaning of the quantum state and the sort of in-
formation intended here are clear:

“a quantum state is specifically and only a mathematical symbol for
capturing a set of beliefs or gambling commitments.” ([181])

This suggests that it is human knowledge, rather than specifically information
in the technical sense, that is involved in this interpretation.26 The distinction
is important here because the Radical Bayesians point to the technical results
in quantum information science as evidence of the validity of their approach. It
is one thing to argue that information and knowledge are intimately connected;
it is another to say that the description of the signals used to communicate
information is only descriptive of human knowledge.

In the sense of interpretation considered here, the Radical Bayesian pro-
gram presents quantum mechanics as less a physical theory than an epistemic
one; not only is quantum mechanics fundamentally probabilistic, but its prob-
abilities are explicitly taken to describe only the degrees of belief of observers
and not the physical world. The position flies in the face of von Neumann’s
crucial insights regarding the place of consciousness in relation to physics. In
particular, as von Neumann pointed out

“measurement or the related process of the subjective perception is a
new entity relative to the physical environment and is not reducible
to the latter. Indeed, subjective perception leads us into the intel-
lectual inner life of the individual which is extra-observational by its
very nature. . .” ([477], p. 418)

and that

“experience only makes statements of this type: an observer made a
certain (subjective) observation; and never any like this: a physical
quantity has a certain value.” ([536], p. 420)

The Radical Bayesian program comes close to identifying the relationship
between quantum mechanics and the world with that of probability theory
and the world, which is something entirely different. Accordingly, in response
to the question “How could a theory that does not describe physical reality
give such accurate results. . . ?”, the response of Fuchs and Peres was,
26 The conflation of human knowledge with information, as seen in more detail in

the following chapter, is not uncommon in contemporary thought about quantum
mechanics.
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“The point is that a theory need make no direct reference to reality
in order to be successful or to be accurate in some of its predictions.
Probability theory is a prime example of that because it is a theory
of how to reason best in light of the information we have, regard-
less of the origin of that information. Quantum theory shares more
of this flavor than any other physical theory. Significant pieces of
its structure could just as well be called ‘laws of thought’ as ‘laws of
physics.’ However, this does not preclude quantum theory from mak-
ing some predictions with absolute certainty. Among these are the
quantitative relationships between physical constants such as energy
levels.” ([183])

Nonetheless, Fuchs at the very outset of his programmatic article “Quan-
tum mechanics as quantum information (and only a little more),” looks to
Einstein for support.

“Albert Einstein was the master of clear thought. . . . he was the first
person to say in absolutely unambiguous terms why the quantum
state should be viewed as information (or, to say the same thing, as
a representation of one’s beliefs and gambling commitments, credi-
ble or otherwise). . .Whatever these things called quantum states be,
they cannot be ‘real states of affairs’ for [a single EPR system] alone.
His argument was simply that a quantum-state assignment for a sys-
tem can be forced to go one way or the other by interacting with a
part of the world that should have no causal connection with the
system of interest.”

Beyond Einstein’s concern over what Schrödinger called “state steering,” the
full paragraph in praise of Einstein of which the above is an excerpt, is rather
odd, given Einstein’s belief that physical theories must serve exactly to de-
scribe reality; it is exactly the presence of beables, in Bell’s sense of theoretical
elements that are to correspond to elements of reality in the EPR sense (cf.
[24], p. 175), that is rejected when embracing subjectivism. Radical Bayesian-
ism is certainly not Einstein’s position regarding the nature of physical theory
or quantum theory specifically. Although it is true that the position against
which Einstein and his collaborators argued was the Copenhagenist position
that quantum mechanics is as complete description of the physical world as is
possible, their goal was one of establishing a complete physical description of
an objective and external reality, one to which existing quantum mechanics,
being a good physical theory, must by their lights refer [150].

One might ask how Einstein could have ‘missed’ the importance of sub-
jectivism, since it would certainly be incorrect to attribute it to him, even
if there may be some basis on which to argue that he committed himself to
an epistemic interpretation of quantum uncertainties. Moreover, for reasons
offered in the next chapter, the above picture also involves a fundamental mis-
construal of information itself that also cannot be attributed to him. Given his
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general assumptions about complete theoretical descriptions, what Einstein
likely expected that quantum mechanics would ultimately be shown to provide
is a statistical state of systems of the same general sort as classical statistical
mechanics gives of them. The corresponding thermodynamical state of a gas
is still a description of a physical system existing independently of our beliefs
about it, even though that description is, at least in the case of equilibrium,
reducible to a statistical one. Einstein, along with many other physicists af-
ter him, believed that quantum mechanics was a theory essentially describing
physical systems that have objectively real properties, the same properties
that are associated with quantum mechanical observables, not that quantum
mechanics is instead theory of states of belief or the knowledge of individuals.

One might imagine the difference to be simply a matter of one’s under-
standing of the nature of probabilities, rather than of physics. However, in that
case, the difference between the Bayesian interpretation of quantum mechanics
and other statistical interpretations would not be a matter of understanding
quantum physics as opposed to any other statistical physical theory, which
is precisely the same difficulty encountered by the advocates of the strongly
objectivist Naive interpretation, given that the theory has been shown to be
irreducibly probabilistic.

Einstein, like von Neumann, presumably expected any apparent subjectiv-
ity in quantum mechanics to dissolve in light of a deeper future fundamental
theory of physics, which presumably would still include several of its cur-
rent postulates. Recall, however, that the method for further exploration of
quantum phenomena advocated is

“to go to each and every axiom of quantum theory and give it an
information theoretic justification if we can. . . The raw distillate left
behind—minuscule though it may be with respect to the full-blown
theory—will be our first glimpse of what quantum mechanics is try-
ing to tell us about nature itself.” ([183])

There is little in the way of physical principles offered by the program. What
is offered instead is the following vision.

“. . . [the distillate] may be little more than a miniscule part of quan-
tum theory. But being a clear window into nature, we may start to
see sights through it we could hardly imagine before.” ([181])

As shown in the following chapter, a similar attitude toward the quan-
tum postulates has recently been used by others with different views of the
interpretation of probability, ultimately with little success. Like those others,
Fuchs argues that due to recent successes, “quantum information” holds the
key to the “what quantum mechanics is telling us.”
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“In the 75 years that have passed since the founding of quan-
tum mechanics, only the last 10 have turned to a view and an
attitude that may finally reveal the essence of the theory. Quan-
tum information—with its three specializations of quantum infor-
mation theory, quantum cryptography, and quantum computing—
leads the way in telling us how to quantify that idea. . . Quantum
algorithms. . . Secret keys. . . the list of triumphs is growing.” ([183])

But those triumphs are merely technological; they don’t in themselves provide
direct insight into the physics on which they are based. The claim is that

“Far from a strained application of the latest fad to a time-honored
problem, this method holds promise precisely because a large part—
but not all—of the structure of quantum theory has always concerned
information.” ([183])

But this merely begs the question.
Ultimately, Fuchs does hold that physics requires the removal of subjectiv-

ity, which is likely why he views the somewhat awkward invocation of Einstein
as fitting. Nonetheless, if the real physics lies in the “distillate,” then the at-
tempt to understand quantum theory as regarding information in the absence
of any specific new underlying mechanics is a distracting exercise. Rather than
looking to quantum protocols and probability theory for a window onto deeper
physics, someone seeking such a successor theory is far better off turning di-
rectly to physical phenomena in search of anomalies to be explained, in view,
for example, of the insightful analysis of the history of science of Thomas
Kuhn [284]. A thoroughgoing subjectivist interpretation is simply the wrong
way to go about a revolution within physics. The Radical Bayesians, in Put-
nam’s phrase, “seek to have a revolution and minimize it too.” The progress
made by quantum information science in relation to the foundations of quan-
tum mechanics such as in entanglement theory and the study of causality has
not depended on the subjective interpretation of quantum probability. Indeed,
this is one reason why the ongoing disputes regarding the interpretation of
probability itself have had essentially no impact on quantum theory.

Fuchs and Peres claimed to have had no a priori positivist incentive when
laying out the essentials of this program.

“Some people may deplore [the operationalist character of this in-
terpretation of quantum mechanics], but we were not led to reject a
free-standing reality in the quantum world out of a predilection for
positivism.” ([183])

As apparently unknown to Radical Bayesians as it is to the overwhelming
majority of physicists and philosophers today, Rothstein, who as shown above
received correspondence from Einstein in which the latter emphasized his
commitment to realism, had outlined a similar operationalistic program fifty
years ago, in which
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“paradoxes and questions of interpretation in quantum mechanics, as
well as reality, causality, and the completeness of quantum mechanics
are examined from an informational viewpoint” ([381]).

He was also of the view that quantum theory fundamentally concerns infor-
mation, although he did not invoke the particular subjectivist interpretation
of probability that distinguishes the Radical Bayesian approach and hadn’t
modern quantum protocols to consider. According to Rothstein,

“the concepts and terminology of information theory not only corre-
spond precisely to measurement, but that a closely related concept,
that of organization, corresponds precisely to laws, and to operations
as used in physics.. . . By measurement we obtain information about
the world, and by means of laws we bring some order into the oth-
erwise chaotic observations. Measurement provides the raw data of
experience; theory or laws organize it into a coherent whole. . . Bad
choices of quantities to analyze, even when they are operationally
defined, can hide whatever laws may be operating very effectively.
Operational definitions are thus by no means a universal panacea.
They are necessary rather than sufficient conditions for progress.”
(e.g. [381])

The similarities to the contemporary subjectivist approach are not insignifi-
cant, although there is no hint in Rothstein’s writings of the view that the laws
of quantum mechanics are anything like “laws of thought.” His operational-
ist ideas, which represent a serious information-based approach to quantum
mechanics a half-century previously, have made little long-term impact in the
study of the foundations of quantum mechanics despite their relatively high
profile at the time they were initially put forward.27

The differences between Rothstein’s ideas and Radical Bayesianism point
out even more strongly that what distinguishes the latter approach is almost
entirely its adoption of de Finetti’s conception of probability. It is, there-
fore, also noteworthy that a paper on the de Finetti conception of probability
was given before, by Richard Bevan Braithwaite in a 1956 Colston sympo-
sium entitled Observation and interpretation, with Bohm, Fierz, Landsberg,
Rosenfeld, and Vigier in attendance (cf. [278], p. 3). This presentation ap-
parently had little effect. The core mathematical results from the physicists
associated with the approach, Fuchs has argued, show that “all probabilities
in quantum mechanics can be interpreted as Bayesian degrees of belief and
that the Bayesian approach leads to a simple and consistent picture. . . ” [103].
Even granting this claim, it remains for advocates of the approach to show
27 It should, however, be noted that one of the set of pertinent articles that vari-

ously appeared in Philosophy of Science, Physical Review, and Science [380–383]
was reprinted in the influential collection, Quantum theory and measurement, of
Wheeler and Żurek [495].
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that the physical results they obtain derive their import primarily from that
conception of probability.

Given the zeal with which the program has been advocated, one would
expect that it would have by now been shown to allow quantum theory to
provide physical explanations that are superior to those provided under other
interpretations. Moreover, as Shimony has commented in a more general con-
text,

“[if] the definite occurrence of a measurement result is interpreted
epistemically rather than as a physical process. . . or a psychophysical
one. . . I do not know how [this] could be proved definitively, because
it is unclear what analytic and experimental discoveries would imply
the impossibility of an account of actualization of a potentiality as
a physical or psychophysical process.” ([411], p. 57)

That is, the character of quantum mechanics, most profoundly exhibited in
measurement outcomes, cannot be better attributed to a subjective proba-
bility than an objective one given, for example, of the option of invoking
the actualization of potentialities as understood in the context of the Basic
interpretation.

The subjectivism of the Radical Bayesian interpretation and its all-but-
anti-realist character would also appear to preclude quantum mechanics from
being a theory of physics at all, that is, from being at all capable of genuinely
explaining physical phenomena. The Radical Bayesians have answered this
concern quite directly but in a way that could only convince the converted.

“[I]t appears that the absence of a mechanistic explanation is just
the message that quantum mechanics is trying to send us. Accepting
the Bell/EPR analysis at face value means accepting what might be
the most important lesson about the world, or what we believe about
the world. . . [that one should] accept the lesson of no instruction sets
[behind measurement outcomes] if you wish to interpret quantum
mechanics [at all]. . . It might still be argued that an agent could
not be certain about [outcomes] without an objectively real state of
affairs guaranteeing [them]. This outcome, it seems to us, is based
on a prejudice. What would the existence of an instruction set add
to the agent’s beliefs about the outcome?” ([103])

The “prejudice” referred to here is any presumably realism stronger than
what Devitt calls “Fig-leaf Realism” such as that of the Kantian noumenal
world, an undifferentiated objective background reality; anything more would
provide some sort of “instruction set” for measurement outcomes. This misses
the point, of course, being of concern only to one who is already a Radical
Bayesian. Why must physics concern beliefs?
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Little or nothing seems to remain in quantum theory, so interpreted, re-
garding the physical world itself.

“The wedge that drives a distinction between Bayesian probabil-
ity theory in general and quantum mechanics in particular is per-
haps nothing more than this ‘Zing!’ of a quantum system that
is manifested when an agent interacts with it. . . Take all possible
information-disturbance curves for a quantum system, tie them in a
bundle, and that is the long-awaited property, the input we have been
looking for from nature. . . Hilbert-space dimension will survive to be
the stand-alone concept with no need of an agent for its definition.”
([181])

Presumably, “this Zing!” is related to the quantum of action as it relates to
measurement, that is, Bohr’s quantum postulate. Fuchs argues that quantum
mechanics is “a theory not about observables, not about beables, but about
‘dingables’ ” [181]. To anyone who would regard quantum probabilities as
objective rather than subjective on the basis that they are determined by
physical law, in that “quantum states |ψ〉 are independent theoretical con-
structs from the probabilities they give rise to, p(d) = 〈ψ|Ed|ψ〉, through the
Born rule”, the Radical Bayesians reply that

“these expressions are not independent at all. . . quantum states are
every bit as subjective as any other Bayesian probability [sic]. What
then is the role of the Born rule? Can it be dispensed with com-
pletely? It seems no. . . But from our perspective, its significance is
indeed different than in other developments of quantum foundations.
The Born rule is not a rule for setting probabilities, but rather a rule
for transforming or interconnecting them.” ([181])

Again, the resemblance here to Rothstein’s operationalist view of physical
laws as “organizers of experience” is striking.

One might rightly ask why the radical Bayesians believe the “Zing!” is
necessary at all; why not simply drop the external world altogether from the
interpretation as genuine revolutionaries might? One answer is that when one
has obtained all the knowledge one can about a quantum system, that system
can still do things that the physicist is required to explain, as Popper pointed
out. A mechanism is still necessary to understand quantum phenomenon, but
according to the Radical Bayesian view quantum mechanics simply does not
provide it. (Bub, following a similar methodology of reducing mechanics to
information theory, instead—and more reasonably given the lack of mecha-
nism resulting from such a move—insists on information also being physical.)
As for the measurement process that provides one with new knowledge about
a quantum system, “the levels of subjectivity for the state and the state-
change rule must be precisely the same for consistency’s sake” [181]. This is a
good point, which Copenhagen subjectivists (other than Pauli?) seem to have
overlooked.



One result produced under the guidance of this interpretation is a deriva-
tion that shows that

“Up to an overall unitary ‘readjustment’ of one’s final probabilistic
beliefs—the readjustment takes into account one’s initial state for the
system as well as one’s description of the measurement interaction—
quantum collapse is precisely Bayesian conditionalization.” ([181])

But this is simply a repackaging of the well known result of Stairs regarding
the Lüders rule [432], which predated quantum information theory. Radical
Bayesians have also claimed that

“a quantum state. . . explicitly someone’s information—must always
be known by someone. . . On the other hand, for many an applica-
tion in quantum information, it would be quite contrived to imagine
that there is always someone in the background describing the sys-
tem being measured or manipulated, and that what we are doing is
grounding the phenomenon with respect to his state of belief. The
solution, at least in the case of quantum state tomography, is found
through a quantum mechanical version of de Finetti’s classic theorem
on ‘unknown probabilities.’ ” ([181])

Quantum state tomography is the determination of the unknown state of an
ensemble of identically prepared quantum systems through the measurement
of the full set of observables, therefore including non-commuting observables,
for the state of a statistically significant number of members of the ensem-
ble. However, no-one would dispute that quantum state tomography is about
learning an unknown quantum state preparation or that Bayes’ theorem is
valid. An analogous situation arises in classical tomography, such as in clas-
sical optics when one desires to know, say an unknown polarization state of
a light beam, one performs a full set of measurements of polarization along
orthogonal axes; the procedure for finding a spin-1/2 quantum state is just
the same.

The question is what physical insight into the quantum world is gained
from this interpretation other than, to borrow a phrase from Einstein, a “gen-
tle pillow for the true believer in the information age”?

Yet another interpretation of quantum mechanics emphasizes quantum pro-
cesses and probabilities for transitions between quantum states over individual
quantum states. It was put forward by Feynman and follows from initial in-
sights of Dirac. On this Process interpretation, a distinction is made between
distinguishable and indistinguishable processes. A process is considered to be
distinguishable if and only if a record results based on which its occurrence or
non-occurrence can be determined. If there is only one possible process from

3.8 The Process Interpretation
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initial to final conditions, classical probabilities are appropriate for describing
the situation; otherwise, probabilities calculated via quantum amplitudes for
the possible intermediary processes consistent with those conditions are used.

Feynman provided the basis for the Process interpretation, in the context
of a Lagrangian rather than Hamiltonian formulation of the theory, as follows.

“We can take the view point, then, that the wave function is just
a mathematical construction. . . In the more complicated mechanical
systems. . . the state of motion of a system at a particular time is
not enough to determine in a simple manner the way that the sys-
tem will change in time. It is also necessary to know the behaviour
of the system at other times; information which a wave function is
not designed to furnish. . . Quantum mechanics can be worked [out]
entirely without a wave function, by speaking of matrices and ex-
pectation values only. In practice, however, wave function is a great
convenience, and dominates most of our thought in quantum me-
chanics. For this reason, we shall find it especially convenient, in
interpreting the physical meaning of the theory, to assume our me-
chanical system is such that, no matter how complex between T1 and
T2, outside of this range the action is the integral of a Lagrangian.
In this way we may speak of the state of the system at times T1 and
T2, at least, and represent it by a wave function. This will enable
us to describe the meaning of the new generalization in terms with
which we are already familiar.” ([168], pp. 45-46)

Although, in broad terms, the Process interpretation can be seen to be re-
lated to the Copenhagen interpretation, it is distinct because (i) it does not
require most of the theses of that interpretation, and (ii) it places less empha-
sis on quantum mechanics as a description of quantum states as of quantum
processes in which the quantum of action cannot be neglected as Stachel, in
particular, has done in fleshing out Feynman’s approach.

In order to make the connection of process with wave-function language,
in his Ph.D. thesis, The principle of least action in quantum mechanics, where
the approach was first well formulated, Feynman noted, following Dirac, that

“. . . we may speak of the state of the system at time T1 as being given
by a wave function ψ, and of the state of the system at time T2, by a
wave function χ. We can then make the physical assumption that the
probability that the system in state ψ at time T1 will be found, at
the time T2, in the state χ is the square of the absolute value of the
quantity 〈χ|1|ψ〉.. . .We can define other physical quantities in terms
of this, by determining the changes in this probability, or rather
in the quantity 〈χ|1|ψ〉, produced by perturbations of the motion.”
([168], p. 46)



Feynman’s reformulation was motivated mainly by Dirac’s article “The La-
grangian in quantum mechanics,” in which the latter argued that a Lagrangian
formulation of quantum mechanics would be superior because (i) it allows a
principle of least action to be used, and (ii) the action is relativistically invari-
ant [140]. In particular, Feynman took notice of Dirac’s comment that this
approach bears a strong relation to the theory of contact transformations of
which the transformation matrix is the quantum analogue.

One can take as a primary interpretative thesis of the approach that

(0) Quantum mechanical processes are the fundamental basis of quantum
theory; conditional probabilities are fundamental, rather than states.

Further assumptions are the following [431].

(1) Quantally measurable quantities are a subset of classically measurable
quantities, forming (sub)sets that can be measured in a single quantum process
(of registration).

(1.1) Quantum mechanics deals only with open systems, in interaction
with some device that prepares the system in a clearly demarcated way be-
fore it undergoes some sequence of interactions, during which no registration
occurs, and with another device that registers something about the system
afterwards. This entire cycle of preparation–interactions–registration consti-
tutes a quantum process.

(2) Quantum mechanics describes processes undergone by (real or virtual)
ensembles of physical systems, either predictively or retrodictively, whether
they are pure or mixed.

(2.1) In computing probabilities in quantum mechanics, the following rules
are to be used (cf. [169] and [427], pp. 314-315).

(2.1.1) There is a complex probability amplitude for each distinguishable
process leading from an initial preparation to a final (registered) result. The
probability for that process is equal to the modulus squared of its amplitude,
which must be a complex number of modulus ≤ 1.

(2.1.2) If several alternative subprocesses, indistinguishable within the
given physical arrangement, lead from the initial preparation to the final (reg-
istered) result, then the amplitudes for all the indistinguishable subprocesses
must be added to get the total amplitude for the entire (distinguishable) pro-
cess (quantum law of superposition of amplitudes).

(2.1.3) If several distinguishable alternative processes lead from the initial
preparation to the same final result, then the probabilities for all these pro-
cesses must be added to get the total probability for the final result (classical
law of addition of probabilities).
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(2.1.4) If an indistinguishable process consists of a sequence of steps, the
amplitudes for all the steps must be multiplied to get the total amplitude for
that process (quantum law of multiplication of amplitudes).

(2.1.5) If a distinguishable process consists of a sequence of steps, the
probabilities for all the steps must be multiplied to get the total probability
for that process (classical law of multiplication of probabilities).

Feynman viewed the following expression, which combines rules 2.1.2 and
2.1.4, as fundamental to his reformulation of quantum mechanics, now out-
lined.

φac =
∑
b

φabφbc , (3.18)

where φij designates the probability amplitude for obtaining outcome j in a
measurement of physical magnitude J conditionally upon performing mea-
surement of physical magnitude I and obtaining outcome i, for a sequence of
three measurement events in which magnitudes A,B,C are measured in that
order; the corresponding probabilities are Pij = |φij |2, cf. rule 2.1.1. He noted
that

“[this equation] is a typical representation of the wave nature of
matter. Here, the chance of finding a particle going from a to c
through several different routes (the values of b) may, if no attempt
is made to determine the route, be represented as the square of a sum
of several complex quantities—one for each available route.” ([169])

He then proceeds to show how the above rules

“may be readily extended to define a probability amplitude for a
particular completely specified space-time path.” ([169])

The mathematical starting point for this construction is the following.

“Assume that we have a particle which can take up various values of
a coordinate x. Imagine that we make an enormous number of suc-
cessive position measurements, let us say separated by a small time
interval ε. Then a succession of measurements such as A,B,C, . . . ,
might be the succession of measurements of the coordinate x at suc-
cessive times t1, t2, t3, . . . , where ti+1 = ti + ε. Let the value, which
might result from measurement of the coordinate at time ti, be xi.
Thus, if A is a measurement of x at t1 then x1 is what we previ-
ously denoted by a. From a classical point of view, the successive
values x1, x2, x3, . . . , of the coordinate practically define a path x(t).
Eventually, we expect to go [to] the limit ε→ 0.

The probability of such a path is a function of x1, x2, . . . xi, . . . , say
P (. . . , xi, xi+1, . . .). The probability that the path lies in a particular
region R of space-time is obtained classically by integrating P over
that region.” ([168], p. 77)



For this purpose, Feynman later introduced the postulate

“I. If an ideal measurement is performed to determine whether a par-
ticle has a path lying in a region of space-time, then the probability
that the result will be affirmative is the absolute square of a sum of
complex contributions, one from each path in the region.” ([169])

He then noted that, so stated, the postulate is incomplete because “the mean-
ing of a sum of terms one for ‘each’ path is ambiguous,” something mathemat-
ically resolvable by taking appropriate limits, and that, although the pertinent
integrals involve spatial coordinates, measurements of momentum can be sub-
sumed under an appropriate analysis of pointer measurements pertaining to
momentum [169].

A second postulate specifies the method for finding the probability ampli-
tude, Φ[x(t)], for each path x(t).

“II. The paths contribute equally in magnitude, but the phase of
their contribution is the classical action (in units of ~); i.e., the time
integral of the Lagrangian taken along the path,” ([169])

which is proportional to exp(1/~)S[x(t)], where S[x(t)] =
∫
L(ẋ(t), x(t))dt is

the time integral of the classical Langrangian L(ẋ(t), x(t)) taken along the
path in question. The assumption that the Langrangian is a quadratic func-
tion of velocities (and the assumption that finite although arbitrarily long
time intervals are involved) suffices for the mathematical equivalence of this
formulation of the theory to the usual one.

Thesis (0) accords with Einstein’s view that the quantum state does not
directly refer to individual systems, but rather to the behavior of ensembles
of systems

“In what relation does the ‘state’ (“Quantum state”) described by
a ψ function stand to a definite real situation? [Sachverhalt] (let us
call it ‘real state’)? Does the quantum state characterize a real state
(1) completely or (2) incompletely?
The question cannot be answered at once [ohne Weiteres] because in-
deed every measurement signifies an uncontrollable real intervention
[Eingriff] in the system (Heisenberg). The real state is thus not im-
mediately accessible to experience and its judgement always remains
hypothetical (comparable with the concept of force in classical me-
chanics, if we do not set up the laws of motion a priori). Assumptions
(1) and (2) are therefore both possible in principle.. . .

I reject (1). . . ” ([428], pp. 374-375)

Stachel has argued that violating Einstein’s (2) by interpreting the quan-
tum formalism as describing individual physical systems without reference
to an ensemble of which they are members leads to error, pointing out that

3.8 The Process Interpretation 183



184 3 Interpretations of Quantum Mechanics

“different state functions must be attributed to the same individual system
depending on whether it is treated as part of a predictive or retrodictive en-
semble” [431], something that flies in the face of the time-symmetry of the
Schrödinger evolution.

Thesis (1) of the Feynman formulation is similar to thesis (7) of the
Copenhagen interpretation. Accordingly, Stachel has attributed the process
approach Bohr as well as Feynman, pointing to the similarity of what we have
here called “processes” to Bohr’s “phenomena” [431]. An important feature
of this approach is that the Feynman rules on which it is based can be used
to derive the Lüders rule for updating the quantum state function (cf. [427],
Appendix).

“In wave function language, this rule is equivalent to the projection
postulate, so my demonstration shows that the Feynman rules are
bound to result in the quantum-mechanical prediction for any ex-
periment obtained from the wave function by use of the projection
postulate at some intermediate stage.” ([429], p 251)

This applies both to situations involving single-part and compound systems,
such as that considered by EPR. Stachel has articulated this approach within
a broader philosophical perspective, which he calls dynamic structural realism
[430]. On this view, there are entities of different natural kinds that may fall
into structural hierarchies, which are potentially subject to change.

“It seems that, as deeper and deeper levels of these structural hier-
archies are probed, the property of inherent individuality that char-
acterizes more complex, higher-level entities—such as a particular
crystal in physics, or a particular cell in biology—is lost. . . [M]odern
physics has reached a point at which we are led to postulate entities
that have [essential natures] but not [unique individuality].” ([430],
p. 56)

This picture is in contrast to realist world views that are both more radical,
such as Putnam’s quantum-logical realism, discussed in Chapter 2, and more
conservative, such as the Naive interpretation, discussed in Section 3.6.

Sukanya Sinha and Rafael Sorkin have also proposed a version of this
approach to quantum mechanics in this vein, in which

“reality is (just as classically) a single ‘history’, e.g. a definite collec-
tion of particles undergoing definite motions; and quantum dynamics
appears as a kind of stochastic law of motion for that history, a law
formulated in terms of non-classical probability amplitudes.” ([424])

Sinha and Sorkin have provided an analysis of the probabilities occurring in
an EPR-type experiment with photons by summing over possible histories of
the photons involved, without the use of state-vectors in the course of their
calculations, where events are characterized entirely in terms of the possible
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photon trajectories. They argue that such an approach “goes a long way to-
ward taking the ‘mystery’ out of quantum mechanics,” although this comes
at the price of “the presence of non-positive [probability] amplitudes and ref-
erences to two-way paths” [424].

Needless to say, however, the introduction of negative probability values in-
volves a considerable departure from traditional probability theory, one which
Feynman has argued is consistent, nonetheless [173]. Indeed, he compared
their introduction to that of the negative numbers and noted that they are
similarly useful in simplifying calculations.

“[C]onditional probabilities and probabilities of imagined intermedi-
ary states may be negative in a calculation of probabilities of physi-
cal events or states. If a physical theory for calculating probabilities
yields a negative probability for a given situation under certain as-
sumed conditions, we need not conclude the theory is incorrect. Two
other possibilities of interpretation exist. One is that the conditions
(for example initial conditions) may not be capable of being realized
in the physical world. The other possibility is that the situation for
which the probability appears to be negative is not one that can be
verified directly.” ([173], p. 238)

The latter option appears the most attractive one. However, it is unclear
whether that does much to alleviate the concern about the conflict between
negative probabilities and probability theory such as that of Kolmogorov. This
approach to interpreting quantum mechanics appears primarily as a modern,
minimal version of the Copenhagen approach.

3.9 Interpretational Underdetermination

Before moving on to the consideration of recent proto-interpretations that
have arisen since the emergence of quantum information science, it is ap-
propriate to consider another way that its results have influenced thinking
regarding the activity of quantum theory interpretation. Some physicists and
philosophers have engaged the foundations of quantum theory at a higher level
of mathematical abstraction than previously, with a view toward grounding
the theory in the technical notion of information as opposed to in human
knowledge or subjectivity as has been done in the past, and also differently
from Rothstein’s pioneering approach.

The most striking example is based on the Clifton–Bub–Halvorson (CBH)
theorem, which relates quantum theory directly to information-theoretic con-
straints [111, 204]. In light of the CBH theorem, Bub has taken a position
similar to that of the Radical Bayesians, in particular, that “the appropriate
aim of physics at the fundamental level is the representation and manipulation
of information,” although with one extremely important difference: quantum
mechanics nonetheless remains physics, rather than being something like a set
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of “laws of thought.” This is accomplished by taking information itself to be
physical.

Bub has specifically argued that:
(1) a quantum theory is best understood as a theory about the possibilities

and impossibilities of information transfer, as opposed to a theory about the
mechanics of physical entities,

(2) given the information-theoretic constraints, any mechanical theory of
quantum phenomena that includes an account of the measuring instruments
that reveal these phenomena must be empirically equivalent to a quantum
theory, and

(3) assuming the information-theoretic constraints are in fact satisfied in
our world, no mechanical theory of quantum phenomena that includes an
account of measurement interactions can be acceptable, and the appropriate
aim of physics at the fundamental level then becomes the representation and
manipulation of information ([88], emphasis added).

In arguing this, Bub introduces a specific notion of what constitutes “a
quantum theory” that transcends standard non-relativistic quantum mechan-
ics. In particular, for him, a quantum theory is one in which observables and
states have a specific sort of algebraic structure, that of a C∗-algebra.28 In
von Neumann’s standard formulation of quantum mechanics, the bounded
operators have such a structure. However, this definition has within its scope
not only the standard non-relativistic quantum theory but also the standard
quantum field theories. The CBH theorem concerns theories satisfying the
following requirements.

(i) the observables of the theory are represented by the self-adjoint opera-
tors in a non-commutative C∗- algebra (with individual algebras commuting).

(ii) the states of the theory are represented by C∗-algebraic states (as pos-
itive normalized linear functionals on the algebra), and spacelike separated
systems can be prepared in entangled states that allow remote steering.

(iii) dynamical changes are represented by completely positive linear maps.
The theorem shows that theories with observables and states of the above type
can be characterized in terms of just three information-theoretic constraints.

Bub’s argument is structured as follows. It is claimed that thesis (1) follows
from the CBH theorem and an understanding of the problems that arise when
one attempts to interpret quantum theory in the traditional manner, that is,
as a theory of mechanics. Second, it is argued specifically that information-
theoretic constraints preclude the possibility of such a mechanical theory in-
cluding an account of the behavior measuring instruments that reveal quan-
tum phenomena, which was exactly the interpretational focus for both Bohr
and von Neumann in their approaches to quantum mechanics. This accords
with the view, advocated by Bub, that quantum theory interpretation is nec-
28 A brief summary of the mathematics of C∗-algebras is given in section 6 of the

Appendix.
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essarily underdetermined by any empirical evidence. Thesis (3) is then argued
to follow, once one assumes that the world has built-in constraints on the ac-
quisition, representation, and communication of information—the strongest
of his assumptions.

The information-theoretic constraints considered are the following. First
is the impossibility of superluminal information transfer between two physical
systems by performing measurements on one of them. This condition means
that when two agents perform non-selective local measurements, the mea-
surements of one can have no influence on the statistics of outcomes obtained
by the other, and vice-versa.29 The subsystems possessed by the two agents
are kinematically independent if every element of the C∗-algebra of one com-
mutes pairwise with every element of the C∗-algebra of the other, that is,
the algebras are mutually commuting. Second is the impossibility of perfectly
broadcasting information possibly communicated using an unknown physical
state, which for pure states amounts to requirement that states cannot be
perfectly cloned.30 This constraint requires each of the two algebras to be
non-commutative. Third is the impossibility of communicating information
so as to implement a quantum bit commitment protocol with unconditional
security. The quantum bit commitment protocol is a primitive cryptographic
protocol involving two agents, which can be described as follows. One agent
supplies an encoded bit to a second agent as a warrant for commitment to a
binary value, that is, 0 or 1. Although it must be impossible for the second
agent to infer that value at this initial stage, the information provided, to-
gether with additional information supplied by the sender later, should allow
one to infer that value during the revelation stage of the protocol. The re-
ceiver should also be certain that the protocol will not allow for ‘cheating’ by
the sending of the initial information in a way that would allow the value to
be changed after the initial, ‘commitment’ stage. The “no bit commitment”
condition protects one against any a priori theoretical preclusion of entangled
states violating local causality.

Bub views the CBH theorem as grounds for taking the structure of
quantum mechanical states and observables to be representable as a non-
commutative C∗-algebra. Interpretative problems in the Hilbert-space formu-
lation of quantum mechanics are then to be viewed as arising from its incom-
patibility with a “proper” phase-space representation and a corresponding
problem of adequately describing state measurement [89]. As seen in previ-
ous chapters, these difficulties with the standard Hilbert-space formulation
are clear and widely acknowledged. Bub then goes further, arguing from this
that the rational epistemological stance is to remain uncommitted to any
29 Selective measurements could alter the statistics of measurements performed at

a distance simply because there is a change of the ensemble with regard to which
statistics are taken.

30 No-cloning for pure states is an immediate consequence in standard quantum
mechanics of the superposition principle.
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constructive interpretation of mechanical theory that purports to solve the
measurement problem; such interpretations are understood to be empirically
underdetermined. Thus, mechanistic interpretations of quantum mechanics
are invalid.

Crucially, however, in order to go through, with quantum theories remain-
ing physical theories at all, Bub’s argument requires an additional and crucial
background assumption, namely, “taking the notion of quantum information
as a new physical primitive” [89]. It requires information to be itself phys-
ical in nature, an assumption considered in detail in the following chapter.
Therefore, he believes the correct stance is to view any ‘quantum theory’ as
“a theory about the representation and manipulation of information, which
then becomes the appropriate aim of physics,” rather than to provide an ac-
count of the behavior of objects themselves because, as he sees it, satisfying
information-theoretic constraints requires whatever constructive account that
might be given to keep its extra machinery (hidden variables) forever hid-
den in principle ([89], p. 555). However, there is little reason that information
should be considered physical and, as shown in the next chapter, good reasons
for it not to be considered so.

In light of Bub’s argument, one could take a different lesson away from the
BCH theorem: Because, on the basis of the assumptions of his argument, the
necessary activity of understanding quantum mechanics as a theory of me-
chanics is precluded, there are grounds for rejecting the least justified of those
assumptions, namely, the assumption that information is a physical primitive.
Moreover, for reasons discussed in the following chapter, the assumption itself
is incoherent.
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Information and Quantum Mechanics

Information processing and communication by physical means, for example,
electronic circuitry, antennae, and the electromagnetic field are subject to con-
straints prescribed by the principles of the theories governing those means.
The physical principles governing quantum and classical computers and com-
munication lines differently constrain the behavior of quantum information,
distinguishing it from classical information. The development of the theory of
quantum information has mainly involved the extension of methods first devel-
oped for investigating information in relation to classical systems to methods
for investigating analogous situations involving quantum systems. In this way,
information theory has been broadened to include situations such as communi-
cation using the polarization states of individual or entangled photons directly
and, more significantly, with the latter as a resource (cf., e.g., [251]).

A central question when considering information in relation to the foun-
dations of quantum mechanics is whether quantum information and classical
information significantly differ, and if so, how fundamental their differences
are (cf. [149, 449, 450]). Classical and quantum information are similar in that
both can be used as resources for communication and computation. That there
are, nonetheless, fundamental differences between them can be seen by recog-
nizing that the quantity of information—as opposed to what the information
might be about—is defined in terms of the entropies of the distributions of
probabilities of the occurrence of corresponding events, more specifically, on
the probabilities of proper subsets of events among sets of possible events in-
volved in these activities. As seen in previous chapters, the respective sorts
of system used to encode information in these two contexts have quite dif-
ferent behaviors. Two differences between quantum information and classical
information can immediately be identified. (1) The entropy functions used to
quantify information in these two contexts are derived from different sorts of
probability distributions, specifically, distributions of different mathematical
forms. (2) The characterizations of classical and quantum systems are con-
ceptually quite different, leading to qualitatively different constraints on the
signs used for coding.

G. Jaeger, Entanglement, Information, and the Interpretation 189
of Quantum Mechanics, The Frontiers Collection,
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Whether these differences are fundamental depends on the understanding
of the probability distributions of which the pertinent entropies are func-
tionals and on the interpretation of quantum theory assumed. For example,
differences of this kind presumably do not exist on the problematic Naive
interpretation, where all probabilities arise due to ignorance, whereas on the
standard Basic interpretation they are fundamental, as is also so on other,
newer interpretations considered below. The Basic interpretation of quantum
mechanics will typically but not exclusively be considered here. Before analyz-
ing in detail the resulting distinction between quantum and classical informa-
tion, let us take note of some common misconceptions about the relationship
of information to the physical world related to the increasingly popular idea
that information is physical in nature. The greatest and most common error
of this sort is naively to identify information with the physical systems that
may be used in communicating it. This mistake is not unique to quantum in-
formation science; it has often been made in relation to classical information
as well. The error has repeatedly been noted in the traditional information
theory literature—having been pointed out in standard works such as Warren
Weaver’s gloss on Claude Shannon’s fundamental work in their joint book,
The mathematical theory of communication, and in Norman Abramson’s In-
formation theory and coding—but is far less often, if ever, explicitly noted in
the quantum information literature. Abramson, for example, when comment-
ing that one should use “the contraction binit for binary digit,” notes that,
“It is important to make a distinction between the binit (binary digit),” a
physical entity, “and the bit,” a unit of information ([1], p. 7). By contrast,
the quantum two-level system and the qubit were conflated in the course of
the very introduction the term into the physics literature [396]. As a result,
the conflation of (information-theoretic) symbols with (physical) signs is easily
made in the context of communicating by physical means.

The methodology of quantifying information aside, it is clear that infor-
mation is not essentially physical because it can be manifested in non-physical
contexts, such as in conscious experience.1 Although physicalists may assert
that consciousness is ultimately physical, this is far from having been shown;
even assuming it could be in some instances, considerable additional work
would be required to show a clear correspondence between the pertinent ex-
periential states and physical states in every pertinent case. In any event, in
order for information to be quantified, a specific encoding must be consid-
ered that is chosen not by physics but by the conscious agents communicating
it via the signal systems in question. Although the physics involved clearly
constrains the amount of information that can be encoded in these systems
by some maximum value, it does not, in itself, determine the amount of in-
formation encoded. Moreover, the same information can be communicated by
radically different physical systems. This confusion has not given rise to a mis-
1 Recall also von Neumann’s careful comments on the difference between physical

and mental events in relation to quantum measurement.
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understanding of the nature of classical physical world primarily because the
interpretation of classical mechanics is relatively uncontroversial. However, it
has done so in relation to understanding the quantum world when it has been
assumed in the course of interpreting quantum mechanics.

The term qubit was introduced into the physics literature as follows.

“[The interpretation of] the quantum entropy of some macrostate
of a thermodynamic system as a measure of resources necessary to
represent information about the system’s quantum microstate... is
accomplished by replacing the classical idea of a binary digit [that
is, binit] with a quantum two-state system, such as the spin of an
electron. These quantum bits, or ‘qubits,’ are the fundamental units
of quantum information.” ([396])

Presumably, at least in part, due to this conflationary early statement, it is
now common in the physics literature to use qubit to refer both to the most
basic physical system, in the sense of that with the smallest corresponding
Hilbert space, that is, a two-level system, and to the unit of quantum infor-
mation. The equivocal usage of the term qubit as referring to both the unit of
information and to the simplest quantum system was, early on, a source and,
later, a symptom of that error and related confusions.

One explanation for the ease with which the conflation of the qubit and
the quantum two-level system occurred and has been sustained is that there
is a specific mean number of quantum two-level systems that are necessary to
be able physically to communicate a given amount of information under ideal
circumstances. This allows one to make a highly qualified correspondence be-
tween the number of information units and the number of physical units, that
is, two-level systems by reference to physical entropy. However, it is an insuf-
ficient basis on which to make a direct correspondence between information
units and physical units, and even less so to an identity between the two-level
system and the qubit.

The phrase two-level system is used here to denote the system with the
simplest non-trivial quantum Hilbert space, which is preferable, for example,
to two-state system for the following reason. Any quantum system possessing
more than one state, that is, any non-trivial quantum system, possesses an in-
finite number of states due to the superposition principle. This is particularly
significant in relation to quantum signaling: it is the Hilbert-space dimension-
ality—and hence number of orthogonal states—that is genuinely pertinent to
quantum communication, not the number of quantum states. For example,
encoding n bits in states of two-level systems is inefficient when the those
states are not fully distinguishable; a greater number of two-level systems
than the minimum number n is then needed to communicate the information.
A maximum of two states, in particular, two orthogonal eigenstates at a time
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can be fully distinguished in that simplest of quantum systems, for example,
the energy eigenstates in the case of a spin- 1

2 system in a magnetic field.2

A physical system may be capable of realizing a symbol of a chosen code
as a sign, and so of being an element of a memory or a signal, but it cannot
serve as a unit of information unless the symbol is reducible to the physical
sign. This is impossible, despite the fact that physics clearly does pertain
to signaling, as in (at least some formulations of) relativity theory in which
the rate at which signals can travel is constrained from above by the speed of
light. Again, the analogous point can be made with regard to classical physical
systems. Traditionally, the relation between a sign and what it signifies is that
the former causes the latter to ‘come to mind,’ either typically or necessarily.3

Signs are entities designating other entities and, as we have seen, need not be
physical, although those pertinent to quantum mechanics clearly are. Signs
are only established, explicitly or implicitly, in communication by the mutual
agreement of agents that they are to serve to encode symbols according to a
freely chosen scheme and are distinct, in particular, from natural signs which
are entities that occur in Nature, which are understood as such, for example,
on the basis of causal relationships to other entities.

Once information units are (inappropriately) thought of as physical enti-
ties, it becomes natural to attribute spatial location to specific transmissions
of information (cf. [452]); statements suggesting that information is contained
in an entity, such as a computer, or otherwise localized are deeply misleading.
Such usage is at best of a façon de parler, regardless of how convenient it
may be in practice to indulge in. Strictly speaking, information, being non-
physical, cannot be contained in a physical system, despite being conveniently
described as “stored in” or “borne by” it. What can properly be said along
these lines is that information can be obtained by a localized cognitive agent
as a result of a physical process that may be constrained by the physics of
the local entities involved in the process; although a communication signal
consists of physical signs that enable the communication of information, it
does not contain information in any literal sense. Moreover, even assuming
that all information is physically processed, the processes involved may be far
different from that involving some simple bit-to-flip-flop correspondence.

Consider a traditional book, for example. Such a book is a physically
transportable collection of print-signs encoding symbols. However, fundamen-
tally, books relate to information because they encode conventional symbols.
Their specific physical form, vis-à-vis the information they may communicate,
is secondary. Physics merely constrains their efficacy: without at least some
cognitive context, a putative signal communicates no information. Once the
2 This may be the motivation for Fuchs’ comment that the only genuinely physical

aspect of a quantum system under the Radical Bayesian interpretation is its
dimensionality, cf. Section 3.7.

3 This brings into play notions such as reference and truth, about which see, for
example [368], Chapter 4.
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chain of convention is entirely lost, no information is communicated through
them. As Weaver noted, “If one is confronted with a very elementary situation
where he has to choose one of two alternative messages, then it is arbitrarily
said that the information associated with the situation, is unity. Note that it
is misleading (although often convenient) to say that one or the other message
conveys unit information” [406]. As Weaver continues,

“The concept of information applies not to the individual messages
(as the concept of the meaning would), but rather to the situation
as a whole. . . the two messages between which one must choose, in
such a selection, can be anything one likes. One might be the text of
the King James Version of the Bible, and the other might be ‘Yes.’
” ([406], p. 9)

With the symbol–sign relation clarified, let us move on consider more care-
fully the relationship between information and physics. Physics constrains the
behavior of information whenever physical entities and processes are used as
signs in communication and data processing. The behavior of information will
then depend on the theories used to describe the physical systems functioning
as the signs chosen for encoding, and is then constrained by physics. This
is why quantum information differs from classical information rather than,
say, simply because the signs involved typically differ in scale. It is necessary,
in particular, to examine correlations of chosen signs between subsystems of
a composite physical system. One then recognizes that information is com-
municated and processed differently using quantum signs rather than classical
ones, not least of all because the former can be in entangled states, wherein the
states of component systems are extraordinarily well correlated. It is in this
sense that quantum information is a newly discovered sort of information: It
is information that is, in general, differently physically constrained from that
previously considered by information theory. Understanding the behavior of
information under quantum constraints illuminates the foundations of quan-
tum mechanics, although, in light of the lack of identity between symbols and
the physical signs in which they are encoded, it is unlikely to determine it.

Basic thermodynamical results have been considered in this regard, in
particular, the constraint that the erasure of a quantity of physically encoded
information comes with an associated minimal thermodynamical cost. This
fact has also been used to argue that information is physical. Although more
subtle than the simple bit–flip-flop or qubit–two-level-system correspondences
just considered, such an approach is also misguided, as shown below. Before
considering the issue in detail, however, the basic elements of classical infor-
mation theory and quantum information theory are reviewed in the following
four sections. Those already familiar with these subjects may wish to proceed
directly to Section 4.5.
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4.1 The Theory of Information

The traditional theory of information is founded on the characterization of
information in terms of distributions of probabilities of the sort that occur in
classical physics. It includes early ideas introduced by Szilard [443] and Alan
Turing [457] and was firmly established in the late 1940s by Shannon in his
theory of communication [405]. Information is defined in this theory as the
improbability of the occurrence of events in which pre-designated sequences of
symbols appear—events in which observations are made, by the agent gaining
information, of what are typically, but not necessarily, physical systems.

Recall that in classical systems all physical magnitudes can in principle
be simultaneously specified and that, unlike for quantum systems, all indefi-
niteness associated with physical states must be subjective, arising only from
ignorance of a definite and actual, as opposed to a possibly indefinite and po-
tential, state of affairs in the external world. The fundamental unit measuring
information in this theory, the bit, is associated with sequences of symbols
from among a well defined and agreed set of possible sequences.4 Any physi-
cal system having two states, acting as signs, that are stable over a pertinent
time scale is capable of encoding two symbols, for example, ‘0’ and ‘1,’ and so
of being used to communicate one bit under appropriate circumstances. The
choice of the binary unit of information, which is the smallest that can be used,
results in the number 2 being the standard logarithmic base for information
theory, logarithmic functions being introduced as a matter of mathematical
convenience because the number of available states can be very large; it was
introduced by Ralph V. L. Hartley already in 1928 [208], much before Shan-
non’s comprehensive theory appeared.5 Because there are 2n states available
to n identical two-state systems for use in encoding, such a collection has an
associated capacity of log22n = n bits of information. A concrete physical
example of such a set of entities is a computer memory register. A pair of
symbols, ‘0’ and ‘1,’ is mathematically represented by a random variable x
taking two values and can be considered an element of the Galois field GF (2).
Similarly, strings of symbols can be represented by x ∈ GF (2)n. A mathemat-
ical field is a set of elements, with two operations (called multiplication and
addition) under which it is closed, that satisfies the axioms of associativity,
commutativity, and distributivity and within which there exist additive and
multiplicative identity elements and inverses. The Shannon information asso-
ciated with a string composed of symbols, such as ‘0’s and ‘1’s, in a classical
communication system is understood in terms of how improbable the string
is to appear as one of a previously designated set of possible strings.
4 The name bit is a contraction of binary unit. It was first formally introduced for

this purpose by John W. Tukey [8].
5 If the base e is used instead, the information unit is the nat. Turing used base 10

and called the associated unit the ban, named after Banbury, England. It is more
typically called the hartley after Hartley.
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It is significant that information is defined in Shannon’s theory indepen-
dently of any meanings that might be associated with it in practice, despite
the fundamental requirement that there be a priori agreement, implicit or
explicit in nature, as to the set of symbols that are available to agents and to
which probability distributions are assigned. Information theory is designed to
accommodate any code that could be used in communication, rather than only
those involved in language which do involve meaning as an essential compo-
nent. Thus, although communication and language are strongly related, infor-
mation theory possesses a character fundamentally different from linguistics,
which concerns itself with semantics, that is, word meanings, and syntax, that
is, the ways in which words can be combined to form structured sentences, as
well as various ways words and sentences are related to sounds, that is, sig-
nals sent as modulated gas pressure zones, such as in air. The central role of
information in communication theory was made clear in the following further
comment of Weaver.

“[T]he real reason that [Shannon-type] analysis deals with a con-
cept of information which characterizes the whole statistical nature
of the information source, and is not concerned with the individ-
ual messages (and not at all directly concerned with the meaning
of the individual messages,) is that. . . a communication system must
face the problem of handling any message that the source can pro-
duce. . . the system should be designed to handle well the jobs it is
most likely to be asked to do, and should resign itself to be less ef-
ficient at rare tasks. This sort of consideration leads at once to the
necessity of characterizing the statistical nature of the whole ensem-
ble of messages which a given kind of source can and will produce.
And information, as used in communication theory, does just this.”
([406], p. 14)

The information associated with an event contextualized in this way is
given by reference to the statistical characteristics of the information source:
The information content associated with a discrete event x is log2

(
p(x)

)−1 =
− log2 p(x), where p(x) is the probability of occurrence of x, for example, in
an associated signal. The simplest events involve the appearance of individual
symbols. In the case of a binary pair of symbols, for example ‘0’ and ‘1’, these
probabilities are p(0) and p(1). The information associated with a specific
event is considered obtained when the event is seen to occur. This mathe-
matical expression captures the intuition that no information is gained by
learning of an event that occurs with certainty (− log2 1 = 0) whereas learn-
ing, for example, the outcome of a fair coin toss (− log2

1
2 = 1) provides all

the information essential to the toss and eliminates the previous uncertainty
as to the outcome. More generally, an informative signaling event consists of
the occurrence of a sequence of specific symbols that are elements of a large
set of sequences any element of which could have appeared in its place.
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A number of mutually exclusive such events together with their probabili-
ties is said to constitute an information-theoretic scheme of the classical type.
There is an associated, entirely epistemic uncertainty in this case. By design,
only the probabilities of occurrence of these events is known to the receiver
beforehand. Indeed, were there no uncertainty, communication would be a
pointless exercise. Such a scheme differs from the analogous quantum scheme
because the uncertainties appearing in the quantum mechanical context can
be due in part to the objective indefiniteness of the physical magnitudes of
quantum signal states discussed in previous chapters. This is the fundamental
basis for the difference between classical and quantum information, which is
reflected in quantum probability.

The standard measure of classical information is a functional of the discrete
probability distribution {pi}ni=1, pi ≡ pX(xi) = P (X = xi), where P (X) is
the probability mass function for the random variable X over the n possible
values in a countable sample space S = {xi} of events xi, namely,

H(X) ≡ H[p1, p2, . . . , pn] = −
n∑
i

pilog2pi , (4.1)

known as the Shannon entropy.6 The Shannon entropy is the average infor-
mation, in units of bits, which is given by the expected value of the infor-
mation content over all possible events available under a given scheme, that
is, the information gained, on average, by an agent witnessing its elements.
When there are only two alternatives available, the Shannon entropy is just
Hbinary(p) = −p log2p − (1 − p) log2(1 − p), where p is, without loss of gen-
erality, the probability of the symbol ‘0’ and 1 − p is the probability of the
alternative symbol ‘1’. When p = 1

2 , so that the event is a priori entirely
unknown, one finds that H(p) = 1, again as intuitively expected from the
example of a fair coin toss.

The Shannon entropy applies primarily to sets of symbol strings, and by
design coincides with the entropy of the appropriately formed ensembles of
physical signals. In the context of coding information using classical systems,
the associated entropy is related to the physical entropy appearing in classical
statistical mechanics that quantifies the disorganization in such systems, that
is, the incompleteness of resulting specification of the classical microstate of
a member of the ensemble of available signs. The similarity of this informa-
tion entropy and classical physical entropy follows from the use of classical
systems for signaling. As seen below, a different measure of information is, in
general, needed to described communication when quantum signals are used
for communication.

In addition to the basic mathematical requirement that it be a continuous
function of probabilities, the Shannon entropy measure satisfies the conditions
of invariance under permutations of the probabilities, pi, and of additivity,
6 These various mathematical concepts were introduced in Section 1.3.
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H[p1, p2, . . . , pn] = H[q, p3, . . . , pn] + qH[(p1/q), (p2/q)], where q = p1 + p2.
Invariance under permutations of the probabilities is a natural condition to
impose because the set of possible specific sets of symbols is not affected by
their ordering. Additivity serves to ensure consistency between all possible
ways of making choices between subsets of events constituting a message.
Simple coding schemes which change the symbols used or their ordering in
a word provide illustrations of the sensibility of these conditions. Generally
speaking, the greater the uncertainty regarding the precise message being
transmitted from among a set of choices, the greater the resources required
to eliminate that uncertainty.

The Shannon joint entropy of a pair of (discrete) random variables, A and
B, is

H(A,B) = −
∑
a,b

p(a, b) log2 p(a, b) , (4.2)

where p(a, b) ≡ PAB(A = a,B = b) is the probability that both A = a
and B = b; sums are taken over the two sample spaces associated with A
and B. Because H(A) ≤ H(A,B), the uncertainty associated with A than
is less than or equal to that associated with the pair A,B. This constraint
does not hold for the von Neumann quantum entropy, as discussed below, and
distinguishes classical from quantum information. This is one of the grounds
for the introduction of the qubit concept.

The distinction between quantum information and classical information
on the basis of their respective entropy functions has incorrectly been seen as
trivial by some, such as Armond Duwell, [149], and Christopher Timpson who
has argued against the claim that the Shannon information is inadequate for
characterizing quantum information [449]. This is argued prejudicially with
respect to the interpretation of quantum formalism to the extent that it is
assumed that any associated signal source and receiver in communication are
essentially classical in description; this point is taken up again below. It also
inherits the difficulty of the Naive interpretation that local hidden variables
models are inadequate to account for the above difference.

In order to compare two classical discrete probability distributions, one
can use the relative entropy function, known as the Kullback–Leibler dis-
tance [283]. Given two probability distributions, p(a) = {p(a1), . . . , p(an)}
and p(b) = {p(b1), . . . , p(bn)}, this is

H[p(a)||p(b)] ≡
∑
i

p(ai) log2

p(ai)
p(bi)

, (4.3)

which is simply the ratio of the actual entropy to the maximum entropy
of the information source. Its complement relative to unity is the redun-
dancy. The conditional entropy of a classical random variable A relative to
another random variable B is H(A|B) ≡ H(A,B)−H(B). The classical mu-
tual information between two random variables, A and B, described by the
joint probability distribution p(a, b) = {p(ai, bj)} and marginal distributions
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p(a) = {p(ai)} =
∑
j p(ai, bj) and p(b) = {p(bj)} =

∑
i p(ai, bj), respectively,

is
H(A : B) ≡ H[p(a)] +H[p(b)]−H[p(a, b)] , (4.4)

which captures the degree of correlation between the two variables, in that it is
the amount of information about A that is acquired by determining the value
of B. It also captures the degree of distinguishability of a given correlated
situation from a fully uncorrelated situation: H(A : B) = H[p(a, b)||p(a)p(b)].
This function serves to characterize the information each distribution can pro-
vide about the other and serves as a measure of the communication resource
provided by “shared randomness.” In the quantum context, entanglement
is associated with the extraordinarily strong correlations between subsystem
signal states that are naturally associated with quantum analogue of this
quantity, which is used in quantum information theory because classical cor-
relations are demonstrably inadequate for describing the behavior of entangled
quantum states, cf. Section 4.6.

With these basic classical information-theoretical quantities specified, one
can consider with precision the behavior of classical communication systems,
which involve both signal systems and information. An information source
functions by producing sets of sequences of symbols characterized probabilis-
tically. Communication channels, whether classical or quantum, have specific
capacities for communicating information. Channels are also capable of fur-
ther enhancement through the use of quantum entanglement. Quantum com-
munication channels are distinguished from classical communication channels
by their ability to communicate quantum information—however inefficient it
may prove to be in traditional communication applications—which the latter
are incapable of transmitting, as well as classical information. In either case,
by comparing the entropy characteristic of a source with the capacity of a
communication channel with which it can be associated, one can determine
whether the information the source is capable of encoding can be successfully
communicated using the specified channel.

A very simple but useful description of a classical communication channel
involves introducing a source of potential noise. A communication system
with additive noise, shown in Figure 4.1, is one wherein a transmitted signal
s(t) can be influenced by additive random noise, n(t). In the presence of
such noise, the resulting classical signal, r(t), is given by r(t) = s(t) + n(t).
The basic memoryless classical noisy channel is the binary symmetric channel
(BSC). In such a channel, there is a probability p that noise can introduce
a symbol error, ‘0’↔ ‘1’, through a change of sign state during transmission.
This channel is readily generalized to one capable of transmitting any finite
number of symbols ‘0’,. . .‘N ’, namely, the uniform symmetric channel (USC)
with each being transmitted with the same probability, 1−p, or being changed
to another symbol with probability, q = p/(N − 1). One is then typically
interested in considering the process of error correction, that is, the elimination
of such errors, so that the signal is faithfully transmitted. Because the outputs
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Fig. 4.1. Communication system with additive noise. The transmitter and receiver
typically function so as to produce and receive physical signals of specific types. This
signal may encounter noise due to some physical source, causing the signal received
to differ from the signal transmitted, as shown.

of noisy communication channels depend probabilistically on their inputs, a
communication channel is characterized by the distribution possible channel
outputs conditional on possible inputs, that is, the mutual information H(A :
B).

The classical information channel capacity, defined as the maximum mu-
tual information over all possible inputs described by probabilities {pA(ai)},
is the primary quantity of interest when studying classical communication sys-
tems. The classical operational channel capacity can be defined as the greatest
bit-rate at which input information can be transmitted with arbitrarily low
error, that is, it appears in the fundamental noisy channel coding theorem
for classical channels: The capacity of a discrete, memoryless communication
channel is simply

C = max
{pA(ai)}

H(A : B) , (4.5)

where A describes the channel input and B characterizes the output. In
the case of a channel carrying binary signals, the capacity then lies in the
range [0, 1]. For the binary symmetric channel described above, the capacity
is 1 − H(p): In the case of a noiseless such channel, any transmitted sym-
bol is received at the destination without error and the channel capacity is
1 bit-output-per-symbol. If the transmission rate is less than the channel ca-
pacity, then for any ε > 0 there is a code having a block length large enough
that the error probability is less than ε. Therefore, error-free classical com-
munication is possible for rates below this (Shannon) channel capacity. Some
errors are guaranteed to exist at rates above this capacity, according to the
Shannon–Hartley theorem [324].

In addition to being used for the communication of information with a
given efficiency, communication channels are also involved in other, more co-
operative activities. One of the most important elements of the foundation of
information theory is the study of communication complexity, which involves
such activity. Roughly speaking, one information-theoretic task is considered
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more complex than another if it requires greater information resources, for ex-
ample, communicated bits to be used than the other requires. Communication
complexity theory concerns information processing tasks distributed between
two distinct processors, for example, two agents in spacelike separated lab-
oratories, as discussed in Section 1.10. The basic schema for investigation
communication complexity is the following: two separated agents, A and B,
each in possession of an n-bit string are allowed to perform local computa-
tions and to communicate in such a way that one of the agents is able to
announce the binary value of a given function, f : X × Y → Z, of these two
strings to the other agent. It is readily generalized to the case of any finite
number of agents. In particular, consider the first of two parties to possess the
n-component string x ∈ X = {0, 1}×n and the other party y ∈ Y = {0, 1}×n,
and let Z = {0, 1}. It is of course possible for the second party to determine
f(x, y) if the first one simply communicates x to it. However, the quantity of
interest is the minimum number of bits of information that need be commu-
nicated between A and B in order for this task to be accomplished, that is,
the (classical) communication complexity, K(f), of the task.

The computations required for determining the function f(x, y) can be
carried out either deterministically or probabilistically, giving rise to another
level of classification. In the deterministic case, a communicated symbol is a
function only of previously communicated symbol-values of the input from
the sender, and one considers the number of bits communicated in the worst
case scenario in the best possible correct deterministic protocol for computing
the function f(x, y). In the non-deterministic case, the symbols communicated
may depend on probabilistic choices as well; a non-deterministic protocol for
z is considered correct if it always returns 1 − z for f(x, y) = 1 − z and for
any x, y with f(x, y) = z it returns z for at least one sequence of probabilistic
choices made. The worst-case number of bits communicated, in the best pos-
sible correct non-deterministic protocol for z, is designated Nz(f). Therefore,
K(f) ≥ Nz(f). The case in which A and B may also share random variables
is similar to the situations in which quantum states are shared and symbol
values are gained from measurements in the computational basis, and so is
somewhat similar to the quantum case.

4.2 The Quantum Theory of Information

Quantum information theory describes the communication and processing of
information with symbols encoded in quantum mechanical systems, that is,
as quantum signs, which by their nature are subject to physical constraints
differing from those on classical signs. The development of quantum infor-
mation theory has involved the replacement or generalization of traditional
information-theoretic concepts so as to describe situations involving such
signs, something that is necessary because quantum mechanical systems are
described by non-standard probability distributions.
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The distinction between quantum information and classical information
has been drawn in several ways [101, 149, 396]. The most direct way is via
the entropy function used to measure information content, that is, by noting
that the (quantum) von Neumann entropy and the Shannon entropy involve
different sorts of probability, only one of the two being appropriate in all cases
of its type. Thus, when presenting his proof that the von Neumann entropy
is exactly the mean number of qubits needed for ideal encoding using states
of a quantum ensemble, Benjamin Schumacher noted that

“instead of simply applying classical information theory to proba-
bilities derived from quantum rules, we can adopt notions of coding
and measures of information that are themselves distinctly quantum
mechanical.” ([396])

A more formal approach is to note the differences in the abilities of agents to
transmit and process information using quantum mechanical systems versus
using classical systems, considering quantum procedures that are analogous to
classical procedures. In the latter case, quantum and classical information are
seen to differ in at least two specific respects. (1) Most of the information that
can be communicated using a generic quantum-mechanical system involves of
correlations between subsystems. (2) Quantum correlations can be extraordi-
narily strong. The differences are most clear when entangled quantum systems
are involved. The first follows from the exponential growth of the number of
parameters characterizing entangled states of quantum information-bearing
systems with the number of subsystems, rather than the linear growth of
classical systems and the subclass of fully factorable quantum states. The
second is characteristic of the violations of Bell locality and of entanglement
that appear in the same context. It is exhibited by the specific relatively
simple example of the Bell states. In those states, which are pure, the sub-
system (reduced) states are entirely indefinite, being fully mixed, while the
states of the two subsystems are fully correlated with each other; the state
of an individual subsystem is, therefore, entirely indefinite. This was clear to
Schrödinger already in 1935 ([394], Section 10), a year postdating Hartley’s
work but predating Shannon’s formal communication theory.

Entanglement between just two systems enables information processing
methods that are superior to those involving merely classically correlated
systems, as evidenced by the Deutsch–Jozsa algorithm, which accomplishes
a specific task in just one computational step what requires several steps
when performed using any classical system [132]. The potential improvement
in information processing power grows more pronounced as the number of
two-level subsystems used is increased. The Deutsch-Jozsa algorithm classifies
binary functions, for example, those with a domain of a two-place string and
a range of one symbol, f : {0, 1}×{0, 1} → {0, 1}, by distinguishing members
the class of constant functions, which take all input values to a single output
value, from the balanced functions, in which half of the input pairs of values
are taken to each element of the range. With this set of functions, the domain
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and range together allow the a total of 8 classifiable functions. The algorithm
allows one to classifying in only one evaluation of a given function, f(i, j),
based on the value of its output, rather than several [132].

Fig. 4.2. a: Top figure. The Bloch ball of states of the quantum two-level
system, for example, photon polarization. It is a real-valued representation
of the state space based on the expectation values of the Pauli operators
σi (i = 1, 2, 3) [251]. The conjugate bases lie along orthogonal axes. The pure
states, P

(
|ψ〉

)
, lie on the periphery, the Poincaré–Bloch sphere [355]. The

mixed states, ρ, lie in the interior; the fully mixed state 1
2 I lies at the origin.

To better understand how quantum systems can be used for communica-
tion and computation, first recall that the pure states of the two-level quantum
system can be represented by vectors in the two-dimensional complex Hilbert
space H = C2 and note that any orthonormal basis for the Hilbert space of
this system can be associated with two symbols, ‘0’ and ‘1’, and act as the
computational basis, {|0〉, |1〉}. When encoding symbols using this system, the
computational basis is typically taken either to be the vertical axis or the hor-
izontal axis. The computational basis for the qubit Hilbert space in the latter
case is shown in Figure 4.2; in the former case, these states correspond in-
stead to the poles of the Poincaré–Bloch sphere. This basis can be put in direct
correspondence with the finite Galois field. In the context of quantum infor-
mation processing, for example, the pure state |ψ〉 = a1|↑〉+a2|↓〉 of Equation
1.1 would be written |ψ〉 = a1|0〉 + a2|1〉, with ai ∈ C and |a1|2 = |a2|2 = 1.
Mixed ensembles are weighted sums of these, lying in the interior.
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Now, consider from the informational point of view our very first physical
example, the double-slit apparatus illustrated in Figure 1.1. The Shannon
information associated with using classical particles plus the diaphragm as
an information source—so that the uncertainty about a given signal and the
encoded symbol, which could be either ‘0’ or ‘1’, regards the path taken by the
classical particle in reaching the smallest resolvable interval about the point
x—is

H({pi}) = −p0 log2 p0 − p1 log2 p1 = −p0 log2 p0 − (1− p0) log2(1− p0) .

This is an appropriate measure in that case because the two classical signal
states, “from the top slit” and “from the bottom slit,” are perfectly distin-
guishable. If p0 = p1 = 1

2 , that is, both symbols occur with equal frequency,
one finds H({pi}) = log2 2 = 1, indicating that one bit of information per use
of this apparatus is communicated, just as when a classical particle signal and
a path-detection system consisting of a pair of area detectors, each assumed
to perfectly detecting the system path from one of the two slits, are used.

When using an elementary quantum system for signaling, again two paths
are available from the slits of the double-slitted diaphragm to a fixed point on
the detection screen, each possible with an associated quantum probability
pi (i = 1, 2), namely, p0 = |a1|2 and p1 = |a2|2. However, as discussed in
Section 1.1, the classical entropy measure is valid in the quantum case only
if only one of the two slits can be taken at a time, that is, the two signal
states, corresponding to symbols ‘0’ and ‘1’, are chosen to be |↓〉 and | ↑〉,
respectively, assuming a detector configuration resolving the two peaks at the
right of Figure 1.1, just as in the case for classical particles. Thus, in the
case of a typical quantum signal source the situation is different, due to the
imperfect distinguishability of quantum signal states in general; most state
pairs are imperfectly distinguishable, even in the case of noiseless channels.

In the quantum case, information is quantified instead by the von Neu-
mann entropy, which is bounded from above by the Shannon entropy. If the
sender is free to prepare any pair of quantum signal states, its upper bound
of 1 can be reached, say by equi-probably sending particles into only one slit
at a time, that is, sending two symbols by the encoding ‘0’→ |↑〉 and ‘1’→ |↓〉
involving perfectly distinguishable quantum states; if instead the set of signs
produced by the transmitter consists of quantum states that are not distin-
guishable by the receiver because they are not mutually orthogonal, quantum
interference will prevent that upper bound from being reached. The infor-
mation transmitted per encoded symbol will almost always be less than 1
bit, even when symbols are sent equi-probably; for example, the two symbols
could be sent equi-probably by encoding ‘0’→ |↑〉 and ‘1’→ 1√

2
(|↑〉+ |↓〉). The

standard measure of the quantum information associated with the diagonal
elements of the density matrix form of ρ is the von Neumann entropy

S(ρ) = −tr(ρ log2ρ) = −
∑
i

λilog2λi , (4.6)
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where {λi} is the set of quantum probabilities that constitute the set of
eigenvalues of ρ.7 In the first instance, the signal ensemble is described by
ρ = 1

2 |↑〉〈↑|+
1
2 |↓〉〈↓| =

1
2 I, so that λ1 = λ2 = 1

2 and S(ρ) = 1, whereas in the
second ρ = 1

2 [|↑〉〈↑|] + 1
2

[
1√
2
(|↑〉+ |↓〉) 1√

2
(〈↑|+ 〈↓|)

]
, so that λ1 = 1

2

(
1 + 1√

2

)
,

λ2 = 1
2

(
1− 1√

2

)
and S(ρ) = 0.39 < 1. If one were to simply use the Shannon

entropy with the symbol-state probabilities p0 = p1 = 1
2 as arguments, for

example, rather than the above statistical operator eigenvalues, one would
(incorrectly) judge that the same amount of information is communicated in
the two cases.8 Again, that procedure works only in the first instance, where
the quantum signal states used are perfectly distinguishable, as classical states
are.

The von Neumann and Shannon entropies are analogues, nonetheless; like
the Shannon entropy, the von Neumann entropy is a measure of uncertainty
associated with a state and achieves its maximum value for the maximum
uncertainty. S(ρ), like H({pi}), is non-negative and has a higher value the
lower the state purity and does reaches 1 for the maximally mixed state. For
the two-level system, ρmix = 1

2 I, for which λi = 1
2 , i = 1, 2, S(ρ) = 1. S(ρ) = 0

if and only if the ensemble state is pure, ρpure = |ψ〉〈ψ| for any state-vector |ψ〉,
so that λ1 = 1 and λ2 = 0 without loss of generality; noting that log2 1 = 0,
one sees that S(ρpure) = 0. In the general case of systems with d-dimensional
Hilbert spaces, one has 0 ≤ S(ρ) ≤ log2 d, with the limits again being reached
in the mixed and pure cases, respectively. However, the uncertainty is that
associated with the quantum probability distribution which, as such, is not
interpretable, in general, as a simple measure of ignorance of the values of
corresponding magnitudes.

The difference between the classical and quantum cases is particularly
clear in the case of a model of communication using the discrete version of
the double-slit experiment, as in a Mach–Zehnder interferometer configuration
shown in Figure 4.3, where the beam-path state of a photon more obviously
involves only two possibilities because there are two non-contiguous detec-
tion areas. This involves two-level systems formed by spatial-path occupation
eigenstates of systems emerging from exit ports of an initial beam-splitter,
that could be coherently recombined later. In this apparatus, one considers
a particular preparation P̄ of an ensemble ρ of signal systems emerging in
the two beams leading from a beam-splitter. Particles enter it from the left
and/or from below and leave in two exit paths. Each path then encounters a
mirror, a phase shifter, a second beam-splitter, and finally a particle detector
7 Here, 0 log 0 ≡ 0. We have assumed the set of eigenvalues of ρ to be countable;

see [484].
8 One could, of course, attempt to ‘reverse-engineer’ the quantum probabilities

into classical probabilities, and perhaps justify this under an interpretation of
quantum mechanics wherein their systems are a priori classical in nature, but
this would, quite unnaturally, inelegantly, and problematically depend on the
existence a hidden-variables theory of signal states that is generally valid.
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Fig. 4.3. The Mach–Zehnder interferometer providing a range of two-level system
states corresponding to a range of input amplitudes ai and phase shifts. Detectors Di

find count rates proportional to the probability of lying in the output states described
by state-projectors P (|0〉) and P (|1〉) [251, 253]. The probabilities of detection for
input amplitudes a0 = 0, a1 = 1 are p0 = sin2[(φ0−φ1)/2] and p1 = cos2[(φ0−φ1)/2].

Di. Intervening variable phase-shifters introduce a relative phase shift between
arms similarly to the way that different path-lengths from diaphragm slits to
a given point on the detection screen do in the double-slit experiment. As in
the double-slit experiment, changing the phases of the input amplitudes of
the apparatus modulates detection rates in a way that an interference pattern
appears at the photodetectors, although in this case temporally rather than
spatially. In this interferometer, it is not necessary to change the location of
the detection area to observe possible interferometric modulation as it is in
the standard two-slit experiment. The states emerging from the beamsplitter
can be proportional only to either |0〉 + i|1〉 or to i|0〉 + |1〉, the former if
the photon were input from the left, the latter if the photon were input from
below. The resulting detection rates at this receiver are proportional to the
corresponding probabilities, which are given in the caption below Figure 4.3.

Recall that the extent of the entropy reduction upon a recipient’s detection
event, for example resulting in a pure state, can be viewed as the information
gained by the associated identification of the signal state from among the set of
possible states the source can provide. For a general ensemble of quantum two-
level systems produced by the initial beams and beamsplitter, the eigenvalues
λi (i = 1, 2) of ρ do not in general correspond to the probabilities pj =
tr(|j̄〉〈j̄|ρ) of a system encoding the symbol j =‘0’,‘1’ because the possible
signals are typically indistinguishable, as shown in the second example above
[253]. When the individual messages j =‘0’,‘1’ are encoded in superposition
signal states |j̄〉 =

(
a
(j)
0 |0〉 + a

(j)
1 |1〉

)
that are not mutually orthogonal, as
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opposed, for example, to using the two eigenstates |i〉, less information will
be communicable than is classically possible.

Again, the von Neumann entropy and Shannon entropy agree only when
the source can be characterized as an ensemble formed from mutually orthog-
onal pure quantum states, such as |0〉 and |1〉, and one knows that both states
will be prepared only in one of those two states rather than in a superposition
of the two, for example, by prior agreement between a transmitting agent
and a receiving agent. In that case, the quantum states are fully distinguish-
able from each other by a single measurement, so that one is, in effect, using
quantum systems to communicate classical information, which is described
by the Shannon entropy, as in the first example above. In general, in contrast
to a classical signaling situation, because a quantum state ρ prepared in an
unknown basis cannot be identified based on learning of a single quantum
measurement outcome, the entropy provides only a loose bound on this in-
formation. In practice, the signaling basis could be unknown, for example,
because the receiver is an unintended one, such as an eavesdropper on a se-
cret communication intentionally kept ‘in the dark’ as to the coding method
in use, by virtue of the intentional use of non-orthogonal quantum states as
signal states.9

Again, in the general case, S(ρ) cannot be understood as a measure of
ignorance of the state ρ of the transmitted system. However, in the special case
that the receiver is given information about the signal states corresponding
to ρ =

∑
i piP (|i〉), where {|i〉} is a specified orthonormal signaling basis,

S(ρ) = H({pi}), which is the entropy of the (classical) probability distribution
corresponding to {pi}, the quantum entropy expresses classical mixing and can
be understood as the average ignorance as to the outcome of a measurement of
a system in the state ρ, although the system is non-classical. Nonetheless, even
then, if the decoding process is performed inefficiently by measuring states in
a different basis or if the channel is noisy, in which case the quantum states
used for encoding of this classical information are altered during transmission,
then the information, described by the classical mutual information between
source and destination is such that H(A : B) ≤ S(ρ)−

∑
i piS(ρi), where ρi is

the (possibly mixed) state in which the original transmitted pure state ends
up at the receiver.

Another way of viewing the situation in quantum communication is by
reference to the relationship between quantum measurement and quantum
state cloning. Quantum state cloning is defined as the process by which an
unknown quantum state of one system becomes also that of another quantum
system without, importantly, a change in the state of the first system being
induced in the process [138, 508]. A set of states from a known orthonormal
basis can be perfectly cloned because quantum states from a known basis
are perfectly distinguishable. This can be done in the obvious way: use the
9 This relates to quantum cryptography. The quantum entropy in relation to quan-

tum communication in more general situations is taken up in Section 4.6.
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outcome, which is one of a set of mutually exclusive possible outcomes of the
measurement of the observable corresponding to the known basis on a system
in the “original” state, to identify the state in which to place a second system
in a “blank” state. However, the no-cloning theorem shows that this procedure
generally fails. The theorem can be simply and precisely stated as follows. It
is impossible to make perfect copies of an unknown state of a quantum system
by a unitary operation.

That entirely unknown state cloning is impossible can be easily seen. Were
entirely unknown quantum states able to be perfectly so cloned, as many
perfect copies as desired could be made—because the state is unknown the
operation must be the same one operation regardless of any set of states
considered—and used to distinguish two quantum states to whatever precision
desired, in contradiction to the Holevo bound, described below, which limits
the information transmission capacity of a single-qubit channel to one bit of
information per use. A straightforward mathematical proof of the no-cloning
theorem is the following. Assume that a unitary operator U could perform
both of the following transformations on two different non-orthogonal vectors
|ψ〉, |φ〉: |a〉|ψ〉 → |ψ〉|ψ〉 and |a〉|φ〉 → |φ〉|φ〉, resulting in perfect copies of
two such two unknown vectors |ψ〉 and |φ〉 made from a given quantum state
|a〉. Such a unitary transformation would then give

c = 〈ψ|φ〉 = 〈ψ|〈a|a〉|φ〉 → 〈ψ|〈ψ|φ〉|φ〉 = 〈ψ|φ〉〈φ|ψ〉 = c2 , (4.7)

which is possible only if c = 0 or c = 1, in which case |ψ〉 and |φ〉 are ei-
ther identical or orthogonal, contradicting the assumption (cf., e.g., [512]).
Note that the related condition 〈ψ|φ〉 = 〈φ|ψ〉〈ψ|φ〉 is the condition that
the quantum state |φ〉 be dispersion-free for P (|ψ〉) ≡ |ψ〉〈ψ|, upon squaring
both sides and recalling, in considering the resulting right-hand side, that
projectors are idempotent, that is, that P (|ζ〉)2 = P (|ζ〉) for all |ζ〉, since
DispρA = 〈A2〉ρ − 〈A〉2ρ. Similarly to the situation just considered, this equa-
tion is only satisfied if c = 0 or c = 1, which is the case only when |ψ〉 and
|φ〉 are orthogonal or identical, respectively. Requiring this condition to hold
for all states |ψ〉—equivalently observables P (|ψ〉)—one sees that there are no
pure quantum states that are dispersion-free with respect to all observables,
but only ones that are so with respect to the pertinent set of commuting ob-
servables, for which one does have c = 0 or c = 1. Therefore, for the case of
pure states, perfect cloning is impossible.

Extending this result from the pure states |φ〉 to any quantum state ρ,
the corresponding condition tr(ρP (|ψ〉))2 = tr((ρP (|ψ〉)) for all |ψ〉 similarly
requires tr(ρP (|ψ〉)) = 0 or 1 for all |ψ〉, which holds only when ρ is the zero
operator in the first instance and the (non-normalized) identity operator in
the second, neither of which are well defined density matrices, because neither
has unit trace; the remaining possibility, that 〈ψ|ρ|ψ〉 is 0 for some |ψ〉 and 1
for others, is excluded by the fact that this quantity must vary continuously
as the state |ψ〉 is changed, cf. the discussion of Gleason’s theorem in Section
2.2 ([371], p. 62). Therefore, no unitary process can make identical copies of a
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general, unknown quantum state via such a process. Another argument that
unknown quantum state cloning cannot be performed by a unitary operation
is that the operation would then enable simultaneous measurement of two
properties with non-commuting operators, which is precluded by the basic
principles of quantum mechanics: it would enable the measurement of two
such properties via the measurement of a different one of them in each of the
identical copies.

Let us turn now to the question of conditional information in the quantum
context, something important for the consideration of composite quantum
signaling systems. As in the classical case, one can consider the quantum
conditional entropy, namely, the entropy of the state of a subsystem A given
the state of the other subsystem B of a bipartite system,

S(A|B) ≡ S(A,B)− S(B) (4.8)
= S(ρAB)− S(ρB) , (4.9)

which is analogous to the classical case. However, because the quantum con-
ditional entropy can take negative values, a quantum system can be more
definite in the joint state of two component systems than in the states of its
individual components, something which is not possible in classical physics, as
again can be seen by inspecting the entropies for the singlet state |Ψ−〉. This
divergence from classicality was recognized in general terms by Schrödinger
in 1935.

“Whenever one has a complete expectation catalog—a maximum to-
tal knowledge—a ψ-function—for two completely separated bodies,
or, in better terms, for each of them singly, then one obviously has it
also for the two bodies together. . . But the converse is not true. Max-
imal knowledge of a total system does not necessarily include total
knowledge of all its parts, not even when these are fully separated
from each other and at the moment are not influencing each other at
all. . . [if] conditional statements occur in the combined catalog, then
it can not possibly be maximal in regard to the individual systems.
For the content of two maximal individual catalogs would by itself
suffice for a maximal combined catalog; the conditional statements
could not be added on.” ([394], Section 10)

One, therefore, does not have additivity in the quantum case of entangled
states. Such behavior goes strongly against classical intuition and allows en-
tanglement to serve as a novel information processing resource.

The quantum mutual information between two subsystems described by
states ρA and ρB of a composite system described by a joint state ρAB is also
formally similar to but importantly different from its classical namesake:

I(A : B) ≡ S(A) + S(B)− S(A,B) (4.10)
= S(ρA) + S(ρB)− S(ρAB) . (4.11)
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This quantity differs from the analogous classical quantity in that it can ex-
ceed the bound for the classical mutual information; the quantum mutual
information reaches twice the maximum value obtained in the corresponding
classical mechanical situation: I(A : B) ≤ 2 min{S(A), S(B)}. For a bipar-
tite quantum pure state, I(A : B) = 2S(A) = 2S(B). When the quantum
mutual information exceeds the classical bound, it is supercorrelated. Use of
this measure allows a fully quantum mechanical characterization of mutual
information.

The quantum mutual information has been shown to have two different
but related operational meanings [199]. The first is as the total amount of
correlation, as measured by the minimal rate of randomness that is required
to completely erase all the correlations in a state ρAB in a many-copy setting
[199]. The second is as a relative entropy, because I(A : B) = S(ρAB ||ρA⊗ρB),
where S(ρ′||ρ) ≡ tr(ρ log2 ρ)− tr(ρ log2 ρ

′), which is the quantum relative en-
tropy [398]. It can, therefore, be used as an entanglement measure, as dis-
cussed in Section 1.4.

4.3 Entropy in Quantum Measurement Theory

The fact that the entropy of a quantum system is typically influenced by in-
teractions of the environment with the system, including those involved in
measurement, provides an avenue for the investigation of the foundations of
physics through the behavior of quantum information. In the study of deco-
herence, for example in relation to the Collapse-Free interpretation, one views
quantum measurement as essentially the result of the quantum mechanical
interaction of an object system with its environment, as discussed in Section
3.5 above.10

A quantum system that interacts with other systems in the environment
is an open system and is described by a statistical operator ρ having an
evolution that, in many instances, can be described via a CPTP map E(ρ, t).
In such cases, the time-dependent state can be found using the operator-
sum representation, given by Equation 1.55, through the operation elements
{Kj(t)} that characterize its evolution. In particular, with the Schrödinger
evolution U(t) describing the composite system comprising the object-system
S and its environment E, the operation elements describing the evolution of the
object-system are Kj(t) = 〈ej |U(t)|e0〉, where {|ej〉} is a basis for the Hilbert
space of the environment and |e0〉 is the initial state of the environment before
interaction.

Consider the measurement process as taking the object system and the
measurement environment to be initially uncorrelated, that is, let the initial
state of this composite system be ρC = ρS ⊗ ρE and consider a set of projec-
tors {Pj}. When the system S is involved in a measurement-type interaction

10 For a recent comprehensive review, see [391].
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it becomes entangled in the pre-measurement stage with the environment E
including, in particular, the measuring apparatus. When a precise measure-
ment of an observable with n distinct eigenvalues and characterized by the
general projectors {Pi} is made, the evolution of S before selection is

ρS → ρ′S =
n∑
i=0

PiρSPi . (4.12)

The entropy of the resulting state ρ′S is always greater than or equal to that of
the state ρS of the system before measurement. Von Neumann’s proof of this
was based directly on the second law of thermodynamics ([477], Section V.2),
although this was later shown also to follow from Klein’s inequality S(ρ) (cf.
[324], p. 515). It is the case, of course, that the mixing of states never decreases
the quantum entropy.

Recall that, in his formulation of quantum mechanics, von Neumann con-
sidered measurements to be fundamental, motivating the introduction of two
different processes of state evolution, namely, the ‘automatic’ Schrödinger
evolution (Process 2.) and that for measurement (Process 1.), discussed in
Section 2.5. Von Neumann remarked that

“it is important that 2. does not increase the statistical uncertainty
existing in [ρ], but that 1. does: 2. transforms [pure] states into
pure states while 1. can transform [pure] states into mixtures. In
this sense, therefore, the development of a state according to 1. is
statistical, while according to 2. it is causal. . . Just as in statistical
mechanics, therefore, 2. does not reproduce one of the most impor-
tant and striking properties of the real world, namely its irreversibil-
ity. . .1. behaves in a fundamentally different fashion. . . Therefore,
we have reached a point at which it is desirable to utilize the ther-
modynamical method of analysis, because it alone makes it possible
for us to understand correctly the differences between 1. and 2. into
which reversibility questions obviously enter.” ([477], Section V.2)

The form of the quantum entropy function S(ρ) was then derived by von Neu-
mann from thermodynamical principles. Indeed, his basic goal was a consistent
formalism of quantum measurement according with fundamental thermody-
namical principles. Von Neumann showed, in particular, that measurements
are irreversible when they induce any change in system state from that corre-
sponding to the Schrödinger evolution. In the case of selective measurements,
the evolution E(ρ, t) will not be trace-preserving. Any information encoded in
the preparation of the object–system can be acquired through the measure-
ment.

In some more general system–environment correlation processes that must
be described by positive-operator-valued measures rather than projectors, the
entropy of the state can instead decrease. The possible change of entropy in
a measured system is taken up again below, in Section 4.7.
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4.4 Quantum Communication and Its Limitations

Although the sending of simple messages using quantum signs is generally less
efficient than that using classical means, quantum communication protocols
can assist the communication of information between agents in different lab-
oratories allowing one to reach efficiencies surpassing those achievable using
only previously shared classical random data by using previously shared en-
tangled states. Entangled states, therefore, serve as an important and novel
communication resource. Nonetheless, communication cannot be carried out
either using previously shared entanglement or previously shared random data
alone. Were measurement of shared entangled states alone, for example, capa-
ble of signaling, the speed-of-light constraint on communication would appear
to be violated; this limitation appears necessary for the consistency of spe-
cial relativity and quantum mechanics.11 Before considering the implications
of quantum communication and computation protocols for the foundations
of quantum mechanics in the following sections, let us first review the basic
theory of quantum communication.

Any means for transmitting quantum information is formally considered
a quantum channel. In the physical context, each quantum channel involves
an equivalence class of means of signal transmission involving an ensemble
of quantum systems, for example, a collection of two-level systems such as
photon polarizations viewed on the basis of dichotomous magnitudes alone,
which must be prepared by the sender in states ρi (i = 1, 2, . . . , n) encoding n
symbols with corresponding probabilities pi, in which the receiver makes ap-
propriate measurements, as in the examples considered above in this chapter.

Quantum communication channels differ from classical channels in that, in
addition to the differences between quantum and classical systems involved,
there is an unavoidable interaction of any transmitted quantum signal state
and the environment that manifests itself in the irreversible evolution of the
local state, as briefly summarized in the previous section. Therefore, input
quantum states are, in general, irretrievable by local unitary transformations
from the states received as channel outputs. As in the case of classical chan-
nels, ideal quantum channels that do not introduce errors are called noiseless,
whereas realistic channels susceptible to errors are referred to as noisy chan-
nels. Quantum channels are typically assumed to be stationary and memory-
less; the CPTP map describing a channel is analogous to the Markov matrix
describing the probabilities of outputs in terms of inputs in the description
of stochastic classical channels. Therefore, the final state of an input pure
statistical operator after the effect of a channel is typically assumed to be of
the form ρ′ =

∑
iKiP (|ψ〉)K†

i .
The fidelity for situations in which a pure-state input |ψ〉 result final states

ρi with probabilities pi, that is, the statistical state ρ =
∑
i piρi is given

11 For more on this question and the putative “peaceful coexistence” of quantum
mechanics and relativity, see [313], pp. 148-158, [412], pp. 40, 309, and [371], pp.
106-107.
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by F
(
P (|ψ〉), ρ

)
= 〈ψ|ρ|ψ〉. For mixed-state input ω, the fidelity is given

by F (ρ, ω) =
[
tr(

√√
ωρ
√
ω)

]2
, the maximum value being attained by the

pure-state expression over the set of pure states in a larger Hilbert space
yielding ρi by partial tracing [265]. A noiseless channel transmits signals with
unit fidelity. A channel that completely decoheres a state ρ destroys all off-
diagonal elements of the statistical operators input under the process ρ→ ρ′ =∑
ρiiP (|ψi〉); such a channel transmits only classical information perfectly,

because it entirely destroys the coherence of input quantum states, rendering
it incapable of transmitting quantum information and, in that sense, is not a
truly quantum channel.

One can prepare the subsystems required for two-party communication
within a larger quantum system by placing them in a shared entangled joint
state ρAB having the appropriate partial traces ρA and ρB . When one desires
to broadcast quantum information, a chosen state output from a quantum
source is sent using a collection of copies of the state. Communication involves
encoding n symbols by a process E(ρ) to m inputs symbols for a quantum
transmission channel and then decoding them back to n symbols from m
outputs of the channel by the process D(ρ), because this can assist in limiting
the effect of noise sources acting on the communication channel. Any quantum
channel is attributed several types of transmission capacity. The most basic
of these are the classical capacity, the unassisted quantum capacity, and the
entanglement-assisted classical capacity [39, 40].

The classical capacity, C, of a quantum channel is simply the capacity of a
channel to transmit classical information using quantum systems, that is, the
maximum asymptotic rate at which bits can be transmitted with arbitrarily
good reliability using elements of the computational basis. It is the optimal
asymptotic (classical) mutual information per channel use, where possibly
entangled input quantum signal states are mapped back to classical data by
possibly collective measurement during decoding.

The unassisted quantum channel capacity, Q, is bounded from below by C,
because if a quantum channel can faithfully transmit a generic state of a two-
level system then it can always at least transmit a computational basis state,
|0〉 or |1〉. Q is known to be non-additive and may surpass the maximum value
of the coherent information that can be sent by a single channel use. Prior
classical communication cannot increase the quantum capacity of a channel
[37]. However, if a classical back-channel is also available, allowing for two-way
communication, an increase in quantum channel capacity is possible [36].

The unassisted quantum channel capacity can be described in terms of
entropies as Q(ρ) = maxpi

(
S

( ∑
i piρi

)
−

∑
i piS(ρi)

)
, where S

( ∑
i piρi

)
−∑

i piS(ρi) ≡ χ(ρ) is the Holevo information, which has a form that shows
that the information communicable via the ensemble is reduced from that
given by the von Neumann entropy as its components become increasingly
impure. The Holevo information can also be written in terms of quantum
relative entropy, χ(ρ) =

∑
i piS(ρi||ρavg), where ρavg =

∑
i piρi, which can be
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understood in terms of the information accessible to the receiver by examining
the quantum mutual information.

The entanglement-assisted classical capacity, CE , is the capacity of a quan-
tum channel to transmit classical information by making use of prior-shared
quantum entanglement. It is defined similarly to Q but applies in the case
where there is an interactive protocol that makes use of the quantum channel,
prior-shared entanglement, and unlimited classical communication between
source and destination laboratories, instead of a quantum encoding–decoding
scheme. Because entangled states alone do not allow for the transmit informa-
tion but are capable of improving the capacity of a quantum channel as, for
example, in the quantum dense-coding protocol, the value of Q bounds CE
from below. For a channel described by the identity map, the entanglement-
assisted classical capacity is twice that of the unassisted classical capacity
when this protocol is used, as seen below.

Specific quantum channels are typically characterized by their effects on
states of individual two-level systems and, in addition to being considered
stationary and memoryless, are also often considered noisy, in order to better
describe situations encountered in nature. From the point of view of foun-
dational questions of quantum mechanics, those related to decoherence are
particularly significant. For example, the (not necessarily completely) depo-
larizing channel takes a system to a fully mixed state with a probability,
p, known as the strength of depolarization, or leaving it unchanged with a
probability q = 1− p, and so is described by E(ρ) = p 1

2 I + (1− p)ρ, with cor-
responding decomposition operators E0 =

√
1− (3/4)pσ0, Ei = (1/2)

√
pσi,

where i = 1, 2, 3.
An important set of quantum channels for studying errors in quantum

communication is that of the Pauli channels, including the bit-flip, phase-flip
and bit+phase-flip channels. The phase-flip channel is described by the map
E(ρ) = p(σ3ρσ3) + (1 − p)ρ, which can be specified by two decomposition
operators E0 =

√
1− pσ0 and E1 =

√
pσ3, where σ3 is the Pauli operator

corresponding to the single two-level system gate describing phase-flipping.
In this channel, quantum information can be lost without energy being lost.
Like the depolarizing channel, it is useful in the study of the effect of quan-
tum decoherence. The descriptions and effects of the bit-flip and bit+phase-
flip channels are similar to that of the phase-flip channel, with the Pauli
operators σ1 and σ2, respectively, taking the place of the σ3 in the above.
Decomposition operators for these are thus E′0 =

√
1− pσ0, E

′
1 =

√
pσ1, and

E′′0 =
√

1− pσ0, E
′′
1 =

√
pσ2, respectively.

The above channels involve no change the number of field quanta. For
that reason, they are sometimes considered to involve “classical” noise, al-
though their effects are extremely important for understanding the behavior
of quantum information. A two-level system pure-state |ψ〉 that undergoes an
arbitrary ‘error’ of the above type by coupling to an environment, taken to
be in some initial state |ē〉, evolves unitarily together with the environment
into the entangled state. In particular,
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|ψ〉|ē〉 = (a0|0〉+ a1|1〉)|ē〉 → (a0|0〉+ a1|1〉)|ē0〉
+ (a1|0〉+ a0|1〉)|ē1〉
+ (a0|0〉 − a1|1〉)|ē2〉
+ (a1|0〉 − a0|1〉)|ē3〉 , (4.13)

where the |ēµ〉 (µ = 0, 1, 2, 3) are states of the environment that need not be
orthogonal and where each of the summands is the result of a distinct one of
the possible individual Pauli ‘errors.’

By contrast, the asymmetrical ‘decay’ of one computational-basis state to
the other, for example |1〉 to |0〉, with probability p as occurs in the amplitude-
damping channel, clearly does involve a change in field quanta. This channel
is significant in the characterization of quantum decoherence exactly because
it captures uniquely quantum noise effects. It can be described by the two
decomposition operators, described by the 2 × 2 matrices E0, which has one
non-zero entry [E0]12 =

√
p, and E1, which is diagonal with [E1]11 = 1 and

[E1]22 =
√

1− p.
Noisy channels are clearly the most important ones for the realistic de-

scription of quantum communication. However, even when using a noiseless
quantum channel and quantum data compression techniques, there are specific
limitations on optimal communication. Most significantly, Holevo’s theorem
provides the so-called Holevo bound characterizing the fundamental limit on
the amount of classical accessible information from a source to a destination
in terms of the entropy of an ensemble of quantum systems decomposable as
signal states {pi, ρi}; the optimal value of the mutual information I(A : B)
between sender’s input, A, and receiver’s measurement result, B, is bounded
by the Holevo information, with the receiver making measurements providing
outcomes m with probabilities qm, resulting in a post-measurement ensemble
{pi|m, ρi|m} and mutual information I(i : m) = H({pi})−

∑
m qmH({pi|m}),

which the receiver desires to maximize over all possible measurement strate-
gies. In this way, the destination can achieve the maximum accessible infor-
mation I(A : B) = max I(i : m). In the case of a single two-level system, one
sees that the bound is log2 2 = 1 bit per channel use. If the signal states are
pure states, then I(A : B) ≤ S(ρ), with the bound achieved if and only if the
encoding states ρi commute and Bob measures in the basis where they are
represented by diagonal matrices. This implies that I(A : B) ≤ S(ρ) ≤ log2 d,
where d is the dimensionality of the Hilbert space of the encoding system, in-
dicating that the amount of information encodable in a system is also bounded
by d, which corresponds to the number of orthogonal states available for this
purpose.

The general study of computational tasks and their efficiency in a context
where quantum channels as well as classical communication channels are avail-
able to agents is the subject of quantum communication complexity theory
[280, 510]. One can consider communication that remains largely classical but
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where an unlimited supply of quantum entanglement is available to the par-
ties that have the ability to perform local operations of the sort discussed in
Section 1.6. For example, rather than communicating using bits alone, parties
communicate making use of entangled states as in the dense-coding protocol.
The relation between entanglement and information in the quantum commu-
nication context is considered in greater detail below, in Section 4.9.

4.5 Quantum Information Processing and Speedup

Quantum information processing differs from classical information processing,
as seen above in example of the Deutsch–Jozsa algorithm, much as quantum
communication differs in important ways from its classical counterpart. Fun-
damentally, this is a consequence of the quantum state superposition principle
and the corresponding objective indefiniteness of quantum physical magni-
tudes.

Due to the superposition principle, the size of the space of signs avail-
able to systems composed of two-level systems grows far faster than that
available to analogous classical systems: The number of parameters corre-
sponding the accessible quantum computational states grows exponentially
in the number of two-level systems, whereas in the analogous classical sys-
tem it grows only linearly in the number of two-state systems. In addition,
different computational-basis states are typically simultaneously available and
processed at any given time during the operation of a quantum computational
algorithm. Thus, quantum computers are, in essence, complex interferometric
devices, that is, generalizations of the Mach–Zehnder interferometer of Fig-
ure 4.3 involving states lying in larger Hilbert spaces, relying on quantum
coherence for their operation. They are designed to exploit the computational
parallelism inherent in the typically enormous computational-basis-state su-
perpositions available within the Hilbert space of composite quantum systems.

Quantum computing is of particular interest because this extraordinary
degree of parallelism makes tractable some computational tasks that have
been viewed as intractable in principle in traditional computing theory. Al-
though the operation of any quantum algorithm in principle can be simulated
by a classical algorithm, the classical versions of key algorithms such as those
for searching and factoring operate less efficiently as the size of the associated
input data increases, in the latter case qualitatively so. The increase in compu-
tational efficiency that can appear in a quantum computational algorithm is
known as quantum speedup, and is at the center of debates as to the ultimate
nature of quantum computing and its relationship to classical computing.

Rolf Landauer summarized the conceptual history of the theory of quan-
tum computing and its most significant achievement, exponential quantum
speedup, as follows.
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“Paul Benioff first understood that a purely quantum mechanical
time evolution can cause interacting bits (or spins) to change with
time just as we would want them to do in a computer. David Deutsch
later realized that such a computer does not have to be confined to
executing a single program, but can be following a quantum mechan-
ically coherent superposition of different computational trajectories.
At the end we can gain some kinds of information that depend on all
of these parallel trajectories, much as the diffraction [sic] pattern in
a two-slit experiment depends on both trajectories. Eventually Shor
showed that this form of parallelism provides tremendous gains for
the factoring problem, finding the prime factors of a large number.”
([291])

Whether the quantum speedup is a true computational speedup has been de-
bated. It has been argued that the appearance of a computational speedup in
quantum algorithms is, in fact, an illusion, that there is no such parallelism
and that there is an improper accounting of the rate of computation in the
quantum case. Even some who agree that quantum speedup is genuine still
question the usual explanation of the origin of the speedup or whether com-
putational parallelism in any strong sense is present in quantum computing.

As seen in previous chapters in relation to many questions in the foun-
dations of quantum mechanics, one finds here that interpretational elements
of the theory—whether they originate in the Basic, Quantum logical, Naive
or Collapse-Free interpretation—can play a role in where one comes down in
relation to the nature and ultimate importance of quantum computing. Advo-
cates of the Many-worlds version of the Collapse-Free approach to quantum
mechanics most clearly take definite positive positions regarding both speedup
and quantum computational parallelism. The thinking of Deutsch, who is one
of the fathers of quantum computing, clearly exhibits this.

“When a quantum factorization engine is factorizing a 250-digit num-
ber, the number of interfering universes will be of the order of 10500.
This staggeringly large number is the reason why Shor’s algorithm
makes factorization tractable. I said that the algorithm requires only
a few thousand arithmetic operations. I meant, of course, a few thou-
sand operations in each universe that contributes to the answer. All
those computations are performed in parallel, in different universes,
and share their results. . . ” ([130], p. 216)

In the standard approach to quantum computing, which unlike Deutsch’s
accords with the Basic interpretation, what classically would be multiple
streams of data are seen represented together in a single quantum data set
acted on by a single quantum circuit in the unique Universe so long as a mea-
surement is not performed. On this interpretation, because of the size of the
Hilbert space of a collection of two-level systems, a single quantum circuit
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is thought of as operating on an exponentially large data set and, therefore,
operates with superior efficiency, without involving additional universes.

From another alternative perspective, Bub has argued that the speedup is
genuine but that it arises from the nature of quantum logical connectives
rather than computational parallelism, through what is a combination of
quantum logical and Copenhagenist perspectives [90]. Finally, physicist An-
drew Steane has opined in the philosophical literature that the speedup is
only apparent but has not denied the existence or pertinence of quantum
parallelism [436].

Steane has argued that the basis on which the accounting for the needed
computational resources is done is improper and that Deutsch’s claim that
the multiple-universe view is necessary to understand quantum computing is
simply incorrect. In particular, Steane claims that “in terms of the amount of
information manipulated in a given time,” quantum and classical computation
are equally efficient.

“Quantum superposition does not permit quantum computers to
perform many computations simultaneously except in a highly qual-
ified and to some extent misleading sense. Quantum computation
is therefore not well described by interpretations of quantum me-
chanics which invoke the concept of vast numbers of parallel uni-
verses. Rather, entanglement makes available types of computation
processes which, while not exponentially larger than classical ones,
are unavailable to classical systems. The essence of quantum com-
putation is that it uses entanglement to generate and manipulate a
physical representation of the correlations between logical entities,
without the need to completely represent the logical entities them-
selves.” ([436], p. 469)

Although Steane is correct in noting that quantum entanglement can play an
important role in quantum computation, which is certainly so in the case of
Shor’s factoring algorithm, it currently remains quite unclear whether entan-
glement must necessarily be present for every one of the unique properties of
quantum computers to be exhibited.

Before considering these various positions in greater detail, let us note that
there is a clear and important distinction between quantum gating operations
and the operations of quantum logic in the sense considered in the study of
the foundations of quantum mechanics following from the work of Birkhoff
and von Neumann. The transformations involved in quantum information
processing, the quantum logic gates, act on the states of the computational
basis in a way that realizes, in this basis, the truth tables of the corresponding
Boolean logical operations. Thus, in particular, they are not identical to the
operations of quantum logic considered in Chapter 2 to which reference is
made above.
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Quantum gates acting on single two-level systems are transformations on
the vector spaces of such systems appropriately mapping the computational
basis {|0〉, |1〉} to itself, as in the case of the quantum ‘NOT’ gate, which takes
the computational-basis vectors |0〉 to |1〉 and |1〉 to |0〉, similarly in informa-
tion processing effect as the classical NOT gate takes the state-value 0 to 1
and the state-value 1 to 0. Recall that this NOT gate is simply the Pauli oper-
ation σ1; in the Poincaré–Bloch sphere representation of Figure 4.2, it reflects
a state about the plane of the equator. It is often called the quantum bit-flip
transformation. Indeed, if the states under consideration were restricted to
those of the computational basis only, which amounts to considering classical
information, this would precisely be a classical bit-flip operation. The Pauli
matrices corresponding to state inversions along the remaining two Poincaré–
Bloch sphere, σ3 and σ2, are also quantum logic gates, namely, phase and
bit+phase flips, respectively. The Hadamard gate, H, is more obviously quan-
tum in character, in that it takes an eigenstate of a two-level system to a
balanced superposition of eigenstates in the initial basis. It effectively inter-
changes the computational and the diagonal bases: |0〉 ↔ |↗〉 and |1〉 ↔ |↘〉.
In matrix form, it can be written H = 1√

2
(σ1 + σ3). This gate provides opti-

mal interference between computational basis eigenstates, and has no classical
analog.

In order to achieve speedup over classical computational algorithms, a
number of two-level-system states are transformed in parallel, such as can be
provided by tensor products of Hadamard gate operations, H⊗n, acting on a
product of individual two-level-system states |i〉|j〉 · · · |n〉. Consider again the
Mach–Zehnder interferometer of Figure 4.3. If one arranges that there be no
phaseshift induced by the phaseshifter, the second beam-splitter has an effect
identical to the first. The effect is that a particle exits the interferometer with
the opposite eigenvalue value from the input value; there will be destructive
interference in one final exit path and constructive interference in the other,
the ‘bright’ and ‘dark’ ports depending on the beam-splitter port initially en-
tered. Hence, the two beam-splitters together acting as a NOT gate operation
(up to a phase factor) in the quantum computational basis, as the particle will
exit in the opposite path from which it entered. The beam-splitters in this ap-
paratus are each said to realize a “

√
NOT” gate. When instead phaseshifters

are also placed in the paths |i〉 (i = 0, 1) before and after each beam-splitter
and set to introduce a phaseshift of −π/2, the resulting two beam-splitter
complexes perform a Hadamard transformation on the input state.

As Steane has pointed out and as shown below, quantum information
processing often involves operations giving rise to entangled states. Significant
quantum speedup in quantum computing appears to require the maintenance
of highly coherent entangled superpositions of computational basis states in
order to be exponentially more efficient, although there is still some question
as to whether it is essential to quantum computation. Recall that the Hilbert
space of a compound quantum system is the tensor product of the Hilbert
spaces of the subsystems. The pure-state space for a system of N two-level
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systems is the Hilbert space H(N) = C2⊗C2⊗ · · ·⊗C2. N classical two-state
systems give rise to 2N possible classical computational states parameterized
by N -bit strings xi ∈ GF (2)N . In the quantum case, there are 2N complex
components of a vector |Ψ〉 ∈ H(N) written as a superposition state in the
computational basis, which are then reduced by one by fixing the value of its
unphysical global phase and normalizing it. The pure state of such a quantum
system is thus parameterized by 2N −1 complex numbers. The computational
basis {|xi〉} for the Hilbert space of many two-level systems does, nonetheless,
consist of vectors which are labeled by the 2N possible N -bit strings xi, which
can be viewed as corresponding eigenvalues. This correspondence allows for
“classical readout” of the result of quantum computation by measurement
corresponding to the computational basis, although not a classical treatment
of the quantum computation process itself. Thus, in this sense, the quantum
case allows for parallel processing of these classical states in one processor,
something that is not possible classically without multiplying the number of
processors by a correspondingly large factor.

A generic state of a system composed of N two-level systems, written in
the computational basis, is

|Ψ〉 =
2N−1∑
i=0

ai|xi〉 , (4.14)

where the sum is taken over all 2N N -element strings, ai ∈ C, and the global
phase angle is set to zero. A generic quantum computation is described by the
evolution of this state, typically from the initial fiducial state |x0〉 ≡ |00 . . . 0〉
and implemented by a series of unitary operations and oracle evaluations,
which are specific conditional gates involving an oracle function, followed by
a measurement readout projecting the unitarily transformed state onto the
computational basis, according to a fixed algorithm.12

An example of a fundamental “two-qubit” conditional logic operation is
the controlled-NOT, or c-NOT, which changes or leaves unchanged the com-
putational basis state of a second subsystem conditionally on the state of
that of the first, changing it only when the first subsystem state is |1〉, act-
ing as such component-wise on superposition states so that, for example,
(a0|0〉+a1|1〉)|0〉 → a0|00〉+a1|11〉. The result of this controlled operation on
the input is to take a separable state to an entangled one. A quantum oracle
call is similarly a controlled operation, but one that involves an evaluation of
an appropriate oracle function f(x).

Quantum computations are ultimately irreversible and probabilistic, al-
though the unitary logical portions of the evolution are deterministic and re-
versible. The operation of a standard quantum algorithm is typically viewed
as involving the evaluation of one function at a time, mathematically for many
12 There also exist non-standard “one-way” quantum computational methods that

operate somewhat differently, in that they drop the unitary steps [370].
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values at once using a specific set of quantum gates. This is typically under-
stood to involve a form of parallelism distinct from classical computational
parallelism, at least as viewed from our single, shared universe. Nonetheless,
Bub has argued that there is no genuine parallelism involved in efficient quan-
tum algorithms, despite his assertion that the speedup is genuine.

“[E]ven before the application of the final transformation, the sub-
space representing the global property of the function already con-
tains the state, i.e., the quantum proposition representing a partic-
ular global property, as opposed to alternative possible global prop-
erties, is already selected as true by the state. It is then simply a
question of determining, by a suitable measurement, which of the
alternative propositions is true, i.e., which of the alternative propo-
sitions is represented by the state. This is quite different from the
claim that the quantum state already contains the information cor-
relating all values in the domain of the function with corresponding
values in the range. There is, in principle, no way of extracting this
information by any measurement, while the information about the
global property encoded in a subspace can be extracted by a suitable
measurement. It is this difference that makes possible the represen-
tation of a global or disjunctive property of a function as a subspace
containing the quantum state of a computer register in a quantum
computation, while a classical computation represents such a prop-
erty as a subset containing the classical state. The possibility of an
exponential speedup arises because the classical state can end up in a
particular subset only by ending up at a particular point in the sub-
set, representing a particular pair of input-output values correlated
by the function.” ([90])

The crucial question in evaluating this characterization of the difference be-
tween quantum and classical computing, in relation to the question of par-
allelism, is precisely what is required of an evaluation of a function. Bub, in
effect, requires an evaluation to produce a definite actual value for a function
among a set of possible outcomes to be genuine. He considers computational
parallelism to occur only when more than such evaluations takes place in
parallel. For him, quantum parallelism would require the production of the
several different corresponding actual values during calculation rather than
only non-zero potentialities. This requirement is unnecessarily strict.

There are at least two problems with this requirement on the quantum
evaluation of functions, which become evident when one considers how quan-
tum algorithms are designed. First, the difference between possible almost-
certain and actual outcomes is ignored; even the expected outcome will not
be actualized with absolute certainty, that is, its appearance is only a poten-
tiality until measurement. Second, that algorithms are typically functionally
required to produce intermediate evaluations—that they usually involve sub-
routines or oracle evaluations—is overlooked. Although the distinction of the



4.5 Quantum Information Processing and Speedup 221

first point may not matter under the quantum-logical interpretation of the the-
ory, the second renders Bub’s conception of evaluation improper for crucial
algorithms. In order to be evaluations, intermediate steps would be required
to include a sequence of measurements on key quantum registers during com-
puting, which would render them inoperative; because the evolution of data
requires pertinent superpositions to be sustained until the computation ends
in a final read-out measurement, this would cause key algorithms to fail—for
example, the Deutsch–Jozsa and Grover search algorithms.13

In the course of some algorithms, such as the Shor factoring algorithm,
measurements of some subsystems (registers) are actually made in the course
of its operation but these involve neither the production of function values nor
collapsing superpositions in which various values are correlated in parallel.14

It may therefore appear possible to finesse the above problem by denying that
quantum algorithms do, in fact, involve intermediate evaluations despite the
functionality imposed by their designers. Indeed, Bub believes this to be so.

“Rather than ‘computing all values of a function at once,’ a quantum
algorithm achieves an exponential speed-up over a classical algorithm
precisely by avoiding the computation of any values of the function
at all.” ([90])

However, this is so only on a very particular and problematic view of the
quantum state. Recall that there are two clear positions regarding the origin
of the quantum speedup: (i) Bub’s view that it comes from quantum logic
(even though algorithms are designed to implement standard Boolean logic),
and (ii) the standard view that it comes from quantum parallelism in the
form of the computational-basis superpositions that are entangled. Having re-
jected (ii), Bub points to the nature of quantum-logical disjunction ∨, which
can be viewed as involved in quantum computation on quantum-logical inter-
pretations of the state vector. He argues that there need be no intermediate
function evaluations because a proposition “can be true (or false) even if none
of the disjuncts are either true or false.” It is on such a view that Bub claims

“The point of the procedure is precisely to avoid the evaluation of
the function in the determination of the global property, in the sense
of producing a value in the range of the function for a value in its
domain, and it is this feature—impossible in the Boolean logic of
classical computation—that leads to the speed-up relative to classical
algorithms.” ([90])

This claim stands or falls with the quantum-logical interpretation of the quan-
tum state, which was seen in Section 2.1 to fail to provide adequate explana-
tions: As Stachel has pointed out regarding this interpretation on Putnam’s
13 The Deutsch-Jozsa algorithm is described in Section 4.2.
14 For a clear summary of the various stages of this algorithm, see [46].



222 4 Information and Quantum Mechanics

comprehensive explication, which takes the quantum logical approach to its
logical conclusion,

“To summarize the nature of the quantum-logical explanation being
offered: the logic is read off the Hilbert space. The physical laws have
to be compatible with this logic. Measurement has to be compatible
with these physical laws. Our knowledge has to be compatible with
the measurements.
If you fail to see in what sense a deeper explanation of quantum
theory is achieved than follows from simply accepting the rules of
quantum mechanics, I can join you in puzzlement.” ([427], p. 305)

Bub claims, in effect, that quantum computer scientists design algorithms
that do not evaluate functions during their operation, despite their design
methodology but only provide correct answers in the end. It is hard to see
why one should prefer Bub’s view of the quantum state over the more intuitive
one of the designers of the algorithms themselves, given its shortcomings vis-
à-vis explanation. His explication of the operation of quantum algorithms is a
forced one, given that the gates implemented during the algorithms are essen-
tially Boolean in design and chosen precisely to evaluate in that way functions
that are encoded in computational-basis states. In the course of its operation,
a quantum algorithm typically ‘consults,’ that is, evaluates a quantum ora-
cle function in the course of its operation, with a different effect on various
components of the superposition of computational basis states conditioned on
the evaluation. Bub simply denies that these ‘consultations’ are evaluations
of functions at all. This approach, like the quantum logical interpretation on
which it depends, fails to explain; in this case, it is the quantum speedup that
is left unexplained. It merely remains internally consistent.

The standard view of quantum computation, according to which quantum
interference of computational basis states is responsible for the speedup and
evaluations of functions typically do occur coherently, is both natural and ex-
planatory but does not require the ontological excess of the multi-verse view
of Deutsch. Almost certain actual evaluations of functions, which accord with
the intentions of algorithm designers, are understood to take place more ef-
ficiently than classically due to the interference between the computational
basis states appearing in the intermediate steps, which are genuine evaluations
carried out by parallel processing under a Boolean logical scheme. Given that
interference is a direct consequence of the superposition principle, which is the
most fundamental postulate of quantum theory and is shared by all interpre-
tations in one way or another, there seems little reason to reject the standard
explanation of quantum speedup.
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Steane claims in his article “Quantum computation needs only one uni-
verse,” that not only is the Many-worlds interpretation not required for the
explanation of the efficacy of quantum computing, but that “quantum compu-
tation is. . . not well described by interpretations of quantum mechanics which
invoke the concept of vast numbers of parallel universes.” Although this is only
so to the extent that the multi-verse theory itself is problematic, as shown in
the previous chapter, he is correct in noting that the existence of quantum
speedup is sometimes incorrectly “used as evidence that quantum physics is
best understood in terms of vast numbers of parallel universes” [436]. In par-
ticular, Deutsch has claimed that the prime exemplar of quantum computing,
the Shor algorithm, is inexplicable without the ontological commitment he
sees as natural to the Collapse-Free interpretation.

“With Shor’s algorithm, the argument has been writ very large. To
those who still cling to a single-universe world-view, I issue this chal-
lenge: explain how Shor’s algorithm works. I do not merely mean
predict that it will work. . . I mean provide an explanation. When [it]
has factorized a number, using 10500 or so times the computational
resources that can be seen to be present, where was the number fac-
torize? There are only 1080 atoms in the entire visible universe, an
utterly minuscule number compared to 10500. So if the visible uni-
verse were the extent of physical reality, physical reality would not
even remotely contain the resources required to factorize such a large
number.” ([130], p. 217)

Deutsch’s challenge is readily met by the standard conception summarized fur-
ther above. The threat of the challenge is incorrectly represented by Deutsch,
because it is based on the conflation of computational resources with the num-
ber of actualized quantum states, a point considered further below. However,
Steane himself makes a not dissimilar error.

Steane’s position on the question of quantum speedup is that “Quantum
computers cannot manipulate classical information more efficiently than clas-
sical ones. . . ” as a consequence of Holevo’s theorem. This would be true if
quantum computation were simply a matter of communicating information.
However, communication is not what constitutes computing; computing ef-
ficiency is not bounded by communication efficiency. In particular, quantum
speedup is achieved by reducing the number of computational steps, such
as the number of oracle function evaluations, required to produce a result
rather than, for example, achieving greater mutual information between in-
put and outputs as is the case in more efficient communication. On insufficient
grounds, Steane views entanglement alone as responsible for the differences
between quantum and classical computation, stating that
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“entanglement makes available types of computation processes
which, while not exponentially larger than classical ones, are un-
available to classical systems. The essence of quantum computation
is that it uses entanglement to generate and manipulate a physical
representation of the correlations between logical entities, without
the need to completely represent the logical entities themselves.”
([436])

Similarly to Bub, Steane views quantum computations as merely involving
“elementary processing operations which achieve some given degree of trans-
formation of a body of information, such as evolving it from one state to
an orthogonal state” [436]. Unlike Deutsch, Steane correctly notes that the
number of qubits rather than the number of quantum symbols encoded in
actualized states of two-level systems is pertinent to information processing.
Nonetheless, he fails to recognize that accounting for computational resources
involves more than simply the number of qubits involved. Rather, computa-
tion rates are primarily quantified by the number of necessary computational
steps including oracle calls, a smaller number of which there clearly is under
the mentioned quantum algorithms relative to classical alternatives. Compu-
tational speedup is the reduction of the number of required such steps. It is
on that basis that speedup is seen to occur in quantum computing.

The number of required computational steps, such as oracle calls, for a
successful computation under a given algorithm is found by counting the nec-
essary transformations implemented by specific logic gates acting on the quan-
tum registers. The usual explanation of quantum speedup is, in fact, simply
that quantum mechanics allows a reduction of the number of computational
steps, most importantly oracle calls, required for their operation. The number
of oracle calls implemented in the course of the operation of an algorithm in no
way depends on the number of worlds assumed to exist by an interpretation,
contrary to the claim of Deutsch that the power of quantum computing is
inexplicable without reference to many parallel universes. Thus, the standard
explanation is in no way undermined by the arguments just considered.

4.6 Protocols and the Nature of Quantum Information

Quantum states enable agents to perform information processing tasks sur-
passing what they could achieve using only classical computing and communi-
cation systems. The superior capability of quantum communication involving
entangled systems is most clearly evidenced by the viability of the quantum
dense coding and quantum teleportation protocols.

Let us first consider the quantum dense-coding communication protocol.
Holevo’s theorem dictates that without previously shared entangled signs pro-
viding quantum correlated symbols, the transmission of a single two-level sys-
tem from one agent to another can support at most the communication of one
bit of information. Because communicating two units of information requires
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twice the communications resources needed to communicate a single unit, it
would appear that a pair of two-level systems is required to communicate two
bits. Indeed, were only individual two-level systems used for communication,
this would be the case. However, previously shared bipartite quantum systems
in Bell states are such that local operations on just one of the pertinent pair
of two-level systems are sufficient for one of the four Bell states to be trans-
formed to any other, allowing their correlations to be used as a communication
resource. Quantum dense coding, illustrated in Figure 4.4, makes use of this
property of Bell states of a compound system shared by two agents, typically
referred to as Alice and Bob, in labs A and B, respectively, to communicate
two bits of information by transferring only one two-level system [42].

Fig. 4.4. Schematic of the communication of two bits using quantum dense coding.
This protocol allows the communication of two bits of information transferring only
a single two-level system from a pair in a previously shared Bell state.

In particular, shared entanglement enables Alice and Bob, in effect, to
increase the capacity of a shared quantum channel via the quantum dense-
coding protocol consisting of the following three steps.

(1) Alice and Bob share pair of two-level systems, one in each laboratory,
in a previously agreed Bell basis state, say, the singlet state |Ψ−〉.

(2) Alice performs either the identity (I), basis-state flip (σ1), phase flip
(σ3) or basis-state+phase flip transformation (σ2) on her two-level
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system, so that the full system is in a different one of the four Bell
states, and sends it to Bob.

(3) Bob performs a Bell-state measurement on the pair of two-level systems
then in his laboratory, obtaining two bits of information, corresponding
to the identity of the new Bell state.

Step (1) can be realized using only a well-characterized source, which need
not be in the possession of either agent. Typically, a photon subspace, such as
the polarization subspace, is used as the system for carrying out the protocol.
A two-level system capable of encoding only one qubit is communicated from
Alice to Bob in step (2). The “Bell state measurement” of step (3) is a joint
measurement, in this case localized within a single laboratory, that perfectly
distinguishes any given Bell state from all other Bell states. Two bits are
communicated from Alice to Bob.

Fig. 4.5. Schematic of quantum state “teleportation,” the transposition of an un-
known quantum state |ψ〉 from one laboratory A to another B, using one e-bit of
communication resources, represented by the encoding state |Φ+〉, and two classical
bits, (i,j). A Bell-state measurement is indicated in laboratory A at left.

Like quantum dense coding, quantum state teleportation also cannot be
achieved using only classical communication but can be accomplished using
quantum states. Quantum (state) teleportation, illustrated in Figure 4.5, is
the placing of a remotely located quantum system into the unknown quantum
state identical to that of a locally possessed quantum system. This process is
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often described as ‘the transmission of an ‘unknown qubit state,’ |ψ〉, from
one agent to another. However, it is important to realize that this is neither
the communication of a qubit nor the transfer of a two-level system from
one of the mentioned laboratories to the other. Rather, an unknown state of
a two-level system is transposed in the process, a state which, furthermore,
has in no way been used by the ‘sender’ for encoding information to the
‘receiver.’ Indeed, there is no encoding or decoding, and hence no transmission
of information in the course of carrying out the protocol, other than that
required to carry out the protocol itself, although the state could, in principle,
play a role in communication in some larger unmentioned context involving
two other agents. The protocol can be used as part of a quantum computation.

As in the quantum dense coding protocol, the two agents involved first
share a pair of two-level systems in a Bell state [34, 75, 76]. Let the unknown
state in question be written |ψ〉 = a0|0〉 + a1|1〉, as in Equation 4.1, and, for
specificity, the initially shared Bell state be |Φ+〉 = 1√

2
(|00〉+ |11〉). Without

loss of generality, let the first of the subsystems in the shared pair be in the
possession of Alice and the second be in the possession of Bob. According to
the protocol, Alice first measures, in the Bell basis, the state of the different
pairing of subsystems, that constituted by the two systems in her laboratory,
namely, that the state of which is to be transposed and the one two-level
system of the pair which she and Bob jointly share that initially lies in her
laboratory. Before this measurement, the three two-level systems involved are
in the state

|Ψ〉 = |ψ〉|Φ+〉 =
1√
2
(a0|0〉+ a1|1〉)(|00〉+ |11〉) . (4.15)

This overall state can be conveniently rewritten as a sum of four terms wherein
each term has the first two subsystems in a Bell state differing from the others:

|Ψ〉 =
1
2
[

(|00〉+ |11〉) (a0|0〉+ a1|1〉) + (|00〉 − |11〉)(a0|0〉 − a1|1〉)

+ (|10〉+ |01〉) (a1|0〉+ a0|1〉) + (|10〉 − |01〉)(a1|0〉 − a0|1〉)
]
.

Now, when Alice performs a Bell-state measurement on her subsystems,
she obtains an outcome corresponding to the particular one of the four Bell
states in which her two subsystems end up, as manifest in the second of the
above forms of the state. The four a priori equiprobable possibilities of out-
come amount to two bits of (classical) information. Alice then communicates
the result of her joint measurement, that is, those two bits to Bob. Upon
receiving the two bits, Bob finally performs one of four corresponding ap-
propriate operations on the second subsystem of the composite system the
two agents are jointly sharing, placing his two-level system in the desired,
unknown state |ψ〉 = a0|0〉+ a1|1〉.

The character of protocols such as quantum dense coding and quantum
teleportation, considered in the context of Bell inequality tests, have led Pen-
rose to introduce a new term, “quanglement.”
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“There is a difficulty about [the term quantum information], namely
the appearance of the word ‘information.’ In my view, the prefix
‘quantum’ does not do enough to soften the association with ordinary
information, so I am proposing that we adopt a new term for it:
QUANGLEMENT. . . The term suggests ‘quantum mechanics’ and
it suggests ‘entanglement.’ ” ([346], p. 603)

Indeed, Penrose reconsiders entanglement and identifies it as the essence of
quantum information, emphasizing its role as a physical resource useful in
communication. In particular, he specifies that there is “no way to send an
ordinary signal by quanglement alone” ([346]), which is something true of
entangled states but not of states of individual two-level systems.

What Penrose appears to doing in his recent explorations of quantum
information is adopting the ‘reverse-wave interpretation’ of quantum subsys-
tem behavior [276]. In particular, in regard to the specific protocols above,
he suggests tracing trajectories in space-time corresponding to the propaga-
tion of entangled-system pairs conceived of as signal systems (cf. Figures 4.4
and 4.5). Moreover, he discusses the paradigmatic example of this conception
of space-time propagation of quantum systems: a pair of two-level systems
in a Bell state emitted from a non-linear crystal by spontaneous parametric
down-conversion. In this example, he draws a single continuous spacetime tra-
jectory from one emitted photon backward in time to the crystal, which is said
to be reflected as from a mirror and then forward in time to the other pho-
ton. Leveraging this picture, Penrose argues that “. . . past-directed channels
of quanglement can be used just as well as future-directed channels. If quan-
glement were transmittable information, then it would be possible to send
messages into the past, which it clearly isn’t.” Finally, he adds that “quan-
glement links have the novel feature that they can zig-zag backwards and
forwards in time, so as to achieve an effective ‘spacelike propagation’ ” [346].

It is not entirely clear from the writings of Penrose that there is much new
to his ‘quanglement’ beyond the above sort of heuristic crutch for understand-
ing the behavior of information in the manner of a quasi-physical substance.
However, in that case, as pointed out by Timpson in regard to signaling, that
any reference to pseudo-substances must be understood as such.

“ ‘How does the information get from A to B?’. . . is a perfectly legiti-
mate question if it is understood as a question about what the causal
processes involved in the transmission of. . . information are, but note
that it would be a mistake to take it as a question concerning how
information, construed as a particular, or as some pseudo-substance,
travels. . . Thus when considering an information transmission pro-
cess, one that involves entanglement or otherwise, we should not feel
it incumbent upon ourselves to provide a story about how some thing,
denoted by ‘the information’, travels from A to B; nor, a fortiori,
worry about whether this supposed thing took a spatio-temporally
continuous path or not.” ([451], p. 331)
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Timpson’s point applies equally well to Penrose’s ‘quanglement,’ that is, en-
tanglement. Moreover, Penrose remarks that

“not being capable of carrying information, quanglement does not
respect the normal restrictions of relativistic causality,” ([346], p.
607)

another characteristic of entanglement. Fundamentally, what Penrose is do-
ing is characterizing a sort of causal influence capable of acting backward in
time as well as forward. This idea can already be found in the course of the
ongoing attempt to ground the concept of entanglement; such influences have
previously been carefully considered, for example, by Maudlin ([313], Ch. 5)
in regard to entanglement and violations of Bell theorem. This idea is taken
up again in Section 4.9, below.

Another element of Penrose’s thinking, which seems also to have been
shared at least at one time in the past by Richard Jozsa, is the view that
a single two-level system state contains an infinite amount of information;
this idea was explored, for example, in Jozsa’s article, “Quantum information
and its properties” (in [301]). In Penrose’s view, quantum teleportation sends
an infinite amount of information because it faithfully reproduces in Bob’s
laboratory a specific pure state of a two-level system previously present in
Alice’s laboratory. The basis for Penrose’s view in this regard is simple. The
communication of the description of a particular pure state of a two-level
system would be that of a precise location in the Poincaré–Bloch sphere. The
specification of this location with absolute precision would require an infinite
amount of information. However, as we have already seen, what takes place
in quantum teleportation is not the communication of such information at
all; there is merely a complex and indirect transposition of what could serve
as a quantum signal state—in that it could serve to encode a symbol in an
appropriate, entirely absent context—in a quantum channel with a theoretical
information capacity of one bit per use.

It is helpful here to consider also that the standard textbook of quantum
computing and quantum information theory, written by Michael Nielsen and
Isaac Chuang, comes perilously close to endorsing this view.

“How much information is in a qubit? Paradoxically, there are an in-
finite number of points on the [Poincaré–Bloch] unit sphere, so that
in principle one could store an entire text of Shakespeare in the infi-
nite binary expansion of θ [the complement of the altitudinal angle
in the sphere]. However, this conclusion turns out to be misleading,
because of the behavior of a qubit when observed. ” ([324], p. 15)

(Note: here the term qubit, as is standard in that literature, is used to refer
to the two-level system rather than the information unit.) Fortunately, these
authors then proceed to discuss the misleading nature of this idea.
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“Recall that measurement of a qubit will given only 0 or 1. Further-
more, measurement changes the state of a qubit, collapsing it from
its superposition of |0〉 and |1〉 to the specific state consistent with
the measurement result. . . from a single measurement one obtains
only a single bit of information about the state of the qubit, thus
resolving the apparent paradox. It turns out that only if infinitely
many identically prepared qubits were measured would one be able
to determine α and β for a qubit in the [corresponding superposition
state]. But an even more interesting question to ask might be: how
much information is represented by a qubit if we do not measure it?
This is a trick question, because how can one quantify information if
it cannot be measured? Nevertheless, there is something conceptu-
ally important here, because when Nature evolves as a closed system
of qubits, not performing ‘measurements,’ she apparently does keep
track of all the continuous variables describing the state, like α and
β. In a sense, in the state of a qubit, Nature conceals a great deal of
‘hidden information.’ ” ([324], pp. 15-16)

Nielsen and Chuang thus do correctly note that measuring the state of one
two-level system may yield up to one bit of information but does not neces-
sarily do so. For example, the destination may be aware that the transmitter
is capable of sending only the states | ↑〉 and |↗〉, which are not perfectly
discriminable, so that less than one bit can be communicated with each state,
even when measurement is perfectly performed, as discussed previously in this
chapter. The point is that one cannot assess the information contained in a
signal state in isolation from its encoding, which may involve considerable
context, as Weaver noted long ago.

The above “paradox” arises when the information capacity of a single-
qubit channel is conflated with the state-specification of the two-level system
that serves as its signal. This is related to the primary error committed in
the article first formally introducing the qubit, in particular, in the paragraph
considered in the introduction of this chapter. Nielsen and Chuang do correctly
defuse the suggested paradox by noting that any functioning signal must be
decoded upon arrival at its destination. However, the metaphorical language of
the final comment of this passage regarding “hidden information” is evidence
of the incoherency of the notion of essentially inaccessible information with
which they continue to flirt. An analogous paradox can be presented in the
classical case as well, for example, by considering a large number of other
uncontrolled degrees of freedom of a classical system, such as those of the
particles within a piece of paper imprinted with either a one or a zero, and how
those might behave during classical signal transmission. Indeed, the “hidden
information” being referred to in the above text would be the information
that could be carried by hidden variables model of a two-level system should
hidden variables be used for encoding by supernatural agents, which is an
incoherent notion under naturalism.
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The above portrayal of state teleporation by Penrose is misleading pre-
cisely because no information is communicated from Alice to Bob in the pro-
cess of entanglement distribution, a fact which, rather surprisingly, he ac-
knowledges. In the case of the quantum teleportation protocol that he consid-
ers as an example, no information beyond the two bits of classical information
that are ‘consumed’ in the process of carrying out the protocol are communi-
cated, so that |ψ〉 is left unchanged in the end. If “quanglement” is nothing
over above entanglement, this term is merely a new contraction of the phrase
“quantum entanglement.” Despite his stated intention, Penrose insufficiently
distinguishes quantum information from classical information, which can be
understood as due to a reliance on a picture of both as pseudo-substances.
For his part, Jozsa takes care to mention that such ‘information’—i.e. the
description of a precise preparation of |ψ〉—is fundamentally inaccessible but,
nonetheless, also misses this point. If this ‘information’ is inaccessible, there
can be no communication of that information. Indeed, there is only the net
transposition of an unknown pure two-level-system state from one place to
another. Moreover, classical information conforming with the requirements of
causality is communicated in the course of carrying out the protocol.

Fuchs has criticized Penrose’s understanding of the behavior of the quan-
tum state in the quantum teleportation process in order to argue for the
essential subjectivity of the quantum state function, as follows.

“Roger Penrose argues in his book The Emperors New Mind that
when a system ‘has’ a state |ψ〉 there ought to be some property
in the system (in and of itself) that corresponds to its ‘|ψ〉-ness.’
For how else could the system be prepared to reveal a YES in the
case that Alice actually checks it? But there is a crucial oversight. . . If
Alice fails to reveal her information to anyone else in the world, there
is no one else who can predict the qubit’s ultimate revelation with
certainty. More importantly, there is nothing in quantum mechanics
that gives the qubit the power to stand up and say YES all by itself:
If Alice does not take the time to walk over to it and interact with it,
there is no revelation. There is only the confidence in Alice’s mind
that, should she interact with it, she could predict the consequence
of that interaction.” ([181])

The observer’s ability to make predictions is independent of the question of
the reality of the quantum state. It is an epistemic question. Even in a classical
situation, in the absence of information corresponding to the encoding, that
is, “Alice’s information,” no information can be transmitted as a matter of
communications theory. It is not a matter of the reality of the quantum state
or of quantum mechanics more generally, but only one of the basic principles
of communication theory.

The most fundamental points in relation to all of the above discussions
are (i) that information can be communicated only if the receiver knows the
encoding method involved, and (ii) that signal states must at least be accessi-
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ble in principle to encode information. A third noteworthy point was made by
Bohr, who pointed out in 1929 that, given a quantum system that has been
prepared,

“. . . a subsequent measurement to a certain degree deprives the in-
formation given by a previous measurement of its significance for
predicting the future course of the phenomena. . . these facts. . . set
a limit to the extent of the information obtainable. . . ” ([57], p. 18;
[354], p. 15)

4.7 Informational Interpretations of Quantum Mechanics

As seen above, due to the superposition principle, quantum information has
features not possessed by its classical counterpart, most importantly those
associated with entanglement; quantum signal state correlations arising from
state superposition in the tensor-product Hilbert space can behave in ways
that classical signal correlations cannot. It was evident early on, for example,
to EPR and Schrödinger, even before the explorations of Bohm, Bell, and
others motivated by their work, that special insight into the physical world
can be achieved by considering special situations involving entangled systems.
These situations have served as grounds for rejecting some interpretations of
the theory, although they have not proven definitive in determining the best
interpretation. A similar attitude now prevails toward situations considered
by quantum information science, because symbol entanglement is an informa-
tion processing resource with correlations between physical states serving to
enhance signaling.

The consideration of questions of an information-theoretic nature provides
a new perspective on the physical correlations that can be used to encode in-
formation. Indeed, valuable insights into the behavior of quantum systems
have been made in recent years by exploiting the tools of information theory.
The fact that quantum states enable communication and information process-
ing tasks to be accomplished that cannot be carried out, at least as efficiently,
using corresponding classical states lends further support to the view that in-
formation and the foundations of quantum mechanics are intimately related.
As a result, some have argued that quantum information theory is not only
useful but the essential key to understanding quantum mechanics. This claim
is plausible in some versions and implausible in others. It appears quite plausi-
ble, in light of recent results discussed in the final section of this chapter, that
in order for important information-theoretic concepts to sustain their funda-
mental character in the quantum context, the strength of correlations between
signs must be physically constrained in specific ways that the consideration of
information theoretic situations may better reveal. However, when the above
claim is based on the idea that information is physical or more fundamental
than the long-central physical correspondent of the philosophical concept of
substance, namely, matter, it is highly suspect.
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An influential version of the latter idea involves the assumption that an
ontological reduction of physical objects to information obtains. This reduc-
tionist claim is associated with what has been called the Information inter-
pretation of quantum mechanics [442]. “In the information interpretation of
quantum mechanics, information is the most fundamental, basic entity.” This
slowly developing approach is one of increasing interest, and involves the fol-
lowing picture.

“Every quantized system is associated with a definite discrete
amount of information. This information content remains constant
at all times and is permutated one-to-one throughout the system
evolution. What is interpreted as measurement is a particular type
of information transfer over a fictitious interface. The concept of a
many-to-one state reduction is not a fundamental one but results
from the practical impossibility to reconstruct the original state af-
ter the measurement.” ([442])

The last two statements characterize state reduction ‘for all practical pur-
poses,’ which is typically associated with single-universe variants of the
Collapse-Free interpretation including state decoherence, and are also com-
patible with subjectivism. However, this Informational interpretation differs
fundamentally from the Radical Bayesian interpretation, which suggests that
the fundamental referent of quantum information theory is knowledge, in that
the Informational interpretation considers quantum mechanics to describe ob-
jectified information, with a metaphysics more closely resembling logical atom-
ism, and does not deny quantum mechanics the status of a physical theory.

One motivation for the idea of the conservation of information involved
in this interpretation is that the no-cloning theorem discussed above and the
following no-deleting theorem, both of which are based on the superposition
principle, seem to recommended it. Given the superposition principle, these
theorems follow immediately from the Schrödinger state evolution, which is
unitary. The quantum no-deleting theorem is the statement that it is impossi-
ble to delete one copy of a pure qubit state [334]. Perfect reversible deletion of
non-orthogonal quantum states was shown to be impossible by the following
argument. Consider two copies of an unknown two-level system pure state
|ψ〉. No linear transformation exists from HA ⊗HB ⊗HC to itself such that
|ψ〉|ψ〉|C〉 7→ |ψ〉|B〉|C ′〉, where |ψ〉 is the state to be deleted, |B〉 is a blank
state, and |C ′〉 is a state that is independent of |ψ〉; the only linear trans-
formation capable of performing a transformation of the above form is one
that violates this final requirement by swapping the unknown state |ψ〉 with
the ancilla state |C〉; that is, that has |C ′〉 = |ψ〉. Conservation of informa-
tion is also a natural corollary of the single-universe variants of Collapse-Free
interpretations.

The primary idea of reducing physics to information was far earlier and
more influentially advocated by Wheeler in his it from bit thesis:
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“Every it, every particle, every field of force, even the spacetime con-
tinuum itself, derives its way of action and its very existence entirely,
even if in some contexts indirectly, from the detector-elicited answers
to yes or no questions, binary choices, bits. Otherwise stated, all
things physical, all its. . . must in the end submit to an information-
theoretic description.” ([494])

This famous claim can itself be seen as originating in the view of Bohr that “no
elementary phenomenon is a phenomenon until it is a registered (observed)
phenomenon,” that is, that “all things physical are information-theoretic in
origin and this is a participatory universe” [494]. This idea of Bohr was ap-
preciated and forcefully driven to the extreme by Wheeler. Similarly to the
presumption of Zeno and his predecessors that all things have spatial exten-
sion, those claiming physics is reducible to information must assume all things
must have what one might call informational magnitude. Indeed, for Wheeler
quanta exist only because “what we call existence is an information-theoretic
entity” [494].

Wheeler set out a basic agenda, namely, to find “what, if anything, has to
be added to distinguishability and complementarity to obtain all of standard
quantum theory” [494]. The example offered by Wheeler of a physical entity
most genuinely so reducible is the black hole, which is parameterized by its
area.

“[The area] expressed in units of the basic Bekenstein–Hawking area
4(~G/c3) loge 2, is given by the bit count, N , of that black hole. Here
N represents the number of bits of information it would have taken
to distinguish the initial configuration of particles and fields that fell
in to make this particular black hole from the 2N alternative quan-
tum configurations that would have produced a black hole externally
identical to it.” ([493] and [494], p. 755)

However, the black hole is perhaps the least exemplary of physical entities.
Indeed, despite their appearance at the center of most if not all spiral galaxies,
black holes are entities for which it is most often said “physics breaks down”
[209]. The theoretical motivation behind Wheeler’s thesis is a set of results in
loop quantum gravity, which is, unfortunately, beyond the scope of this book.
His deeper claim is that general relativity is reducible to quantum gravity
as an approximation, and that space and time are “secondary ideas.” On
that assumption, Wheeler’s position vis-à-vis matter may be more justified.
Ultimately, for him, the “it from bit” thesis constituted the basis of a research
program rather than an interpretation of quantum mechanics per se. It has
been others who have taken up this picture in that fashion.

The idea that physics is reducible to information is problematic for at
least two reasons. One difficulty is that it is far from clear that all physical
things have anything intrinsic corresponding to informational magnitudes,
much less that they are “submitting to information-theoretical descriptions”
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in all their aspects. That is, on this approach, physical objects are required to
have information-theoretic characterizations that are also the most complete
descriptions that can be given of them. A second, insurmountable difficulty
is that any information-theoretic description of an object is, by definition,
entirely different from the existent it describes. A physical entity is not a
simulacrum and cannot be equated with its own description; that this issue
could have been ignored is a symptom of the influence of postmodernism, one
negative effect of which has been characterized as follows.

“Our world, Jean Baudrillard tells us, has been launched into hyper-
space in a kind of postmodern apocalypse. The airless atmosphere
has asphyxiated the referent, leaving us satellites in aimless orbit
around an empty center. We breathe an ether of floating images that
no longer bear a relation to any reality whatsoever. That, according
to Baudrillard, is simulation: the substitution of signs of the real for
the real.” ([312])

In the current case, the orbit appears to be the “self-excited circuit” [492].
Česlav Bruckner and Anton Zeilinger were inspired to adopt an information-

theoretical interpretation of quantum mechanics by the following comment of
Feynman, not unrelated to the picture of the relationship between physics and
information offered by Wheeler, although inverted in that Feynman’s concern
can only be one in the presence of a computation realized in space.

“It always bothers me that, according to the laws as we understand
them today, it takes a computing machine an infinite number of
logical operations to figure our what goes on in no matter how tiny
a region of space, and no matter how tiny a region of time. How can
all that be going on in that tiny space?” ([170])

For the question itself to matter, the size of the physical region in which
the pertinent phenomena occur must be related to the information resources
required to simulate them using a computational device. It is not clear there
need be such a scaling.

In any event, Feynman’s concern as understood by advocates of the In-
formational interpretation is somewhat different. Bruckner and Zeilinger have
offered two intuitive postulates characterizing their position: (1) the amount
of information carried by any system is finite, and (2) the amount of infor-
mation carried is lesser the smaller the system in terms of the number of its
parts, rather than its spatial extent per se. These authors claim that their
postulates “solve Feynman’s problem” and that one arrives “at a natural
limit when a system only represents one bit of information” ([82], p. 57). The
second postulate is at best unremarkable, provided one take “amount of in-
formation” to have the usual meaning of “the maximum average amount of
information obtainable by witnessing an event” and one understands “carried
by” as the standard façon de parler discussed at the outset of this chapter.
In the absence of a specified encoding it is demonstrably false, as can be seen
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by reconsidering Weaver’s example of transmitting a bit: One can transmit
a bit using the printed text of the King James Version of the Bible, but one
can also transmit many more bits using, for example, any given single chapter
of that same printed text. That is, the actual information content of a given
signal depends on the encoding convention in use. An additional assumption
that would avoid this problem is needed, for example, that there is a natural
encoding such as that provided by the quantum logic of Birkhoff and von
Neumann which, however, is based on the Hilbert space formalism.

Zeilinger’s aim is to resolve the conceptual difficulties in the foundations
of quantum mechanics by demonstrating the measurement problem to be a
Scheinproblem. Bruckner and Zeilinger have so far failed to provide a robust
conceptual framework in which that problem is seen to evaporate, in particular
given its dependency on the Hilbert-space formalism, although Zeilinger has
made a serious attempt to do so. The world view offered by him is based on
what he refers to as a “foundational principle” for quantum mechanics that
accords with the above postulates. Zeilinger is also motivated by the fact that

“both the special and the general theory of relativity are based
on firm foundational principles, while [in] quantum mechanics. . . we
have a number of coexisting interpretations utilizing mutually con-
tradictory concepts.” ([515])

He argues that this fact is something that “contains an important message,”
namely that “a generally accepted foundational principle for quantum me-
chanics has not yet been identified,” and adds that “the purpose of [his] paper
is not to compare and analyze [existing] interpretations, but to go significantly
beyond them” [515]. As should now be evident, this approach bears similari-
ties, at least at the rhetorical level, to other new interpretations inspired by
quantum information science.

The ‘foundational principle’ offered by Zeilinger is grounded in a sort of
logical atomism akin to that introduced by Bertrand Russell [275] but, im-
portantly, without Russell’s assumption that everything that is physical is
ultimately composed of matter. “An elementary system carries 1 bit of in-
formation,” because “an elementary system represents the truth value of one
proposition.” Zeilinger remarks of his foundational principle that “this might
also be interpreted as a definition of what is the most elementary system” and
that it

“underline[s] that notions such as that a system ‘represents’ the truth
value of a proposition or that it ‘carries’ one bit of information only
implies a statement concerning what can be said about possible mea-
surement results.” ([515])

An obvious way of approaching this picture is to compare it with the ideas
of the early Wittgenstein, in which “the world is everything that is the case”
and “the totality of facts, not of things” ([503], Propositions I and I.I).



4.7 Informational Interpretations of Quantum Mechanics 237

Presumably because, on the face of it, the foundational principle is a tau-
tology, Zeilinger is driven to offer an analysis supporting it using the two
postulates given above. To obtain an ‘elementary system,’ one decomposes “a
system which may be represented by numerous propositions into constituent
systems”; “the limit” of this decomposition “is reached when an individual
system finally represents the truth value to one single proposition only.” Thus,
he can be seen as espousing logical atomism in a specific form in which all
facts are propositions represented by quantum state projectors, à la Birkhoff
and von Neumann. In his expositions of the approach, Zeilinger focuses on
propositions associated with the spin components of a spin- 1

2 particle.

“The spin of the particle carries the answer to one question only,
namely, the question, What is its spin along the z-axis?. . . Since this
is the only information the spin carries, measurement along any other
direction must necessarily contain an element of randomness. We
remark that this kind of randomness must then be irreducible, that
is, it cannot be reduced to hidden properties of the system, otherwise
the system would carry more than a single bit of information.” ([515])

The reasoning here is circular. Moreover, perfectly good hidden-variables mod-
els for the spin- 1

2 system do exist, such as that offered by Bell long ago [23].
Only an analysis of measurement in a world described by such models can
answer the question of whether the spin- 1

2 system under a hidden-variables
model could or could not be used to encode additional information. Zeilinger
further claims that

“We have thus found a reason for the irreducible randomness in quan-
tum measurement. It is the simple fact that an elementary system
cannot carry enough information to provide definite answers to all
questions that could be asked [of it].” ([515])

However, the pertinent fact, captured by Holevo’s theorem, follows from the
mathematical formalism of quantum mechanics itself rather than from the
foundational principle on offer. Were the principle truly foundational, one
would expect standard postulates of quantum mechanics themselves to emerge
non-problematically from it or be corrected by it. The measurement problem
is not shown to be illusory under the interpretation, as claimed.

In Relativity, the foundational Principle of Equivalence motivates the
mathematical formalism which, in turn, is used to provide physical expla-
nations. By contrast, this interpretation only rationalizes a form of logical
atomism through the purported foundational principle precisely by reference
to the predictions of the mathematical formalism of quantum mechanics that
are confirmed by experiment. The irreducible nature of quantum probability
can equally well understood, for example, from the point of view of the Basic
or Copenhagen interpretations. Zeilinger argues that this atomistic “view-
point. . . lends support to Bohr’s notion of complementarity,” noting that



238 4 Information and Quantum Mechanics

“when the measurement direction is orthogonal to the eigenstate
direction. . . for the new measurement situation the system does not
contain any information whatsoever, and the result is completely
random.” ([515])

More particularly,

“Measurements of a particle’s spin along orthogonal directions are
complementary, and the reason is, again, the fact that an elementary
system carries only one bit of information.” ([515])

It is true that, for example, Pauli had commented on the irreducible nature of
randomness in quantum mechanics as follows, some 45 years earlier, although
for him this was a natural result instead of the Copenhagen approach.

“The non-deterministic character of the natural laws postulated
by quantum mechanics rests precisely upon [the] possibilities of a
free choice of experimental procedures complementary one with the
other.” ([339])

However, Bohr’s notion of complementarity is more fundamental than this
new principle in that it applies directly to physical systems rather than in-
directly via information that they could be used to communicate under a
special convention. Thus, the principle of complementarity is a more satisfac-
tory foundational principle than the informational one Zeilinger has offered.
The ‘foundational principle’ is therefore better seen as a consequence of the
principle of complementarity than as a notion supporting or underlying it.

Finally, it is noteworthy in this regard that in 1937, Bohr commented on
similarities of quantum mechanics to relativity, as follows.

“Not withstanding all differences, a certain analogy between the pos-
tulate of relativity and the point of view of complementarity can be
seen in this, that according to the former the laws which in conse-
quence of the finite velocity of light appear in different forms de-
pending on the choice of the frame of reference, are equivalent to
one another, whereas, according to the latter the results obtained by
different measuring arrangements apparently contradictory because
of the finite size of the quantum of action, are logically compatible.”
([59], p. 291)

Thus, the complementarity interpretation can plausibly be seen as contextu-
alizing quantum measurement theory by providing a logical analogy to that of
another physical theory. The Informational interpretation only provides infor-
mational descriptions of various physical situations but adds nothing to the
theory.

A more common view of the relation of information to quantum mechan-
ics is the position that there is a reduction of information theory to quantum
physics, rather than the other way around. A particularly popular version of
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this is the following. “[T]he theory of information is not purely a mathemati-
cal concept, but. . . the properties of its basic units are dictated by the laws of
physics” [353]. An intuitive support for this view is the fact, as Neil Gershen-
feld concisely put it in his textbook The physics of information technology,
that the physics of computation, which he (at certain points) identifies with
information theory itself, provides “an explanation of how noise and energy
limit the amount of information that can be represented in a physical system,
which in turn provides insight into how to efficiently manipulate information
in the system” ([186], p. 36).

A strongly reductionist version can be found to be advocated in the influ-
ential lecture notes of John Preskill, who has provided the following charac-
terization of the role of quantum information science within physics.

“Why is a physicist teaching a course about information? In fact, the
physics of information and computation has been a recognized disci-
pline for at least several decades. This is natural. Information, after
all, is something that is encoded in the state of a physical system; a
computation is something that can be carried out on an actual phys-
ically realizable device. So the study of information and computation
should be linked to the study of the underlying physical processes.
Certainly, from an engineering perspective, mastery of principles of
physics and materials science is needed to develop state of the art
computing hardware.” ([362], p. 7)

Like Gershenfeld’s characterization, this prima facie is a clear and informative
rendition of the relationship. However, Preskill’s notion in the above statement
is that information can be understood only as encoded in a physical system.
This is more evident after noting a statement that later follows. “The moral
we draw [from the major achievements in the physics of computation] is that
‘information is physical’ ” ([362], p. 10).

The most influential version of this position is that of Landauer, earlier
presented in his essay “The physical nature of information” [288, 291].

“Information is not a disembodied abstract entity; it is always tied to
a physical representation. It is represented by engraving on a stone
tablet, a spin, a charge, a hole in a punched card, a mark on paper,
or some other equivalent. This ties the handling of information to
all the possibilities and restrictions of our real physical world, its
laws of physics and its storehouse of available parts. This view was
implicit in Szilard’s discussion of Maxwell’s demon. . . The acceptance
of the view, however, that information is a physical entity, has been
slow. . . Indeed, our assertion that information is physical amounts
to an assertion that mathematics and computer science are a part
of physics. . .Mathematicians, in particular, have long assumed that
mathematics was there first, and that physics needed that to describe
the universe.” ([291])
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The error of this statement is the invalid inference from a being typically as-
sociated with a physical representation in the physical context, such as the
technological one, to being essentially physical. In the case of information con-
ceived of as an entity—something that itself may be problematic, cf. [450]—it
is only the case that information may be constrained by physical law in some
respects (indeed, there are “restrictions”) when physical systems are used to
communicate, which again is only typical. Consider information acquired by
minds. Although human consciousness has been clearly shown to be ‘tied’ to
the human body, especially to the brain, this does not in itself suffice to show
that consciousness reduces to physics, however attractive that view might be
to engineers, physicians, physicists, and others whose preferred manner of
understanding of the world is rooted in physics.

Moreover, although physics does constrain information in the technologi-
cal context—which is what enables the achievements of the physics of com-
puter systems to which Preskill refers in his lectures, such as the possibility
of reversible computation—the entirety of the behavior of information is not
dictated by physics alone. This can be seen, for example, by noting that, al-
though the physical characteristics of a particular source and other elements
of a physical communication system constrain an agent’s ability to transmit
the information in question to a receiver, precisely how much information is
in fact communicated by a signal is ultimately dictated by the choices of the
sending and receiving agents using the source and system, rather than the
merely the physics of its signals. Again, this was pointed out by Weaver as
quoted in the introduction to this chapter: the sending agent using a com-
munication system is free to choose whatever encoding he or she wishes for
use with a given set of signals. Furthermore, the receiving agent must be in-
formed as to this choice of encoding in order to receive any information at all
from the sender. Moreover, an agent may be free to choose the sort of source
used, for example, a classical source or a quantum source to encode the very
same information in a given channel, so long as the channel has the required
communication capacity; in that case, the two physical theories describing the
signals, the classical and the quantum, are different theories.

One might still argue that classical mechanics has been successfully re-
duced to quantum mechanics. However, even with this granted, physicalists
must successfully argue that the agents choices are not actually free but en-
tirely dictated by quantum physics. This is very far from having been es-
tablished. An important element of mechanics is that agents have freedom of
choice in relation to experimental arrangements in measurement. For example,
Bohr stated that

“The freedom of experimentation, presupposed in classical physics, is
of course retained and corresponds to the free choice of experimental
arrangement for which the mathematical structure of the quantum
mechanical formalism offers the appropriate latitude.” ([57], p. 73)
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Pauli argued more strongly.

“The non-deterministic character of the natural laws postulated
by quantum mechanics rests precisely upon these possibilities of a
free choice of experimental procedures complementary one with the
other.” ([339])

Similarly, von Neumann’s account of measurement involves choices that are
not assumed to be physically determined, although the case that such choices
are determined might be made within the Collapse-Free approach, if the
branching ‘of worlds’ could be put on a firm footing. Neither of the physi-
cists of computation quoted above have cited any particular interpretation of
quantum mechanics to bolster their claims. The thesis is presumably not as-
sumed to rest on any particular set of quantum interpretational assumptions.

Rather than asking whether there is a reduction of one theory or ontology
to the other, assuming that question is well defined in the first place, a more
constructive approach to the relationship between information and mechanics
might be to ask whether there is supervenience either of information mag-
nitudes on physical magnitudes or vice-versa. By addressing this question,
rather than that of reduction, one equally well engages the issues of interest
while avoiding strong assumptions of the sort critically assessed above. Su-
pervenience is a sort of dependency that can exist between sets of properties
possessed by quite different sorts of entity and so could more plausibly hold in
the situations considered above; the relation of supervenience is neither sym-
metric nor dependent on a strong reductive relationship. Supervenience can
be defined as follows. A set of properties A supervenes on a set of properties
B if and only if two entities a and b that share all properties in B necessarily
also share all properties in A, in which case the properties in B are ‘base
properties’ and the properties in A are the ‘supervenient properties.’ Because
supervenience is weaker than reduction, it is a priori more plausible to assert
that quantum information supervenes on physics or vice-versa.

If information-theoretic properties supervene on physical properties, then
any two information-theoretic properties that are indistinct must necessar-
ily also be physically indistinct.15 Nonetheless, as argued above and further
below, the relationship between the physical properties and the information-
theoretical properties described in the physics literature, when properly ex-
plicated, also does not indicate supervenience one way or the other: different
signal states may communicate the same information and different informa-
tion may involve the same signal states. However, the recognition of a weaker
relationship, namely, that in the context of computation and communication
involving physical signs physics provides the pertinent probability distribu-
tions merely constraining signals, has fostered discoveries about the quantum
world through the study of quantum information. Putting aside questions of
reduction and supervenience, one can productively move on to consider in-
15 Cf., for example, [106], Chapter 2.
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sights into the nature of the quantum world already achieved by the study
of quantum information, for example, using thermodynamical methods. Im-
portantly, the behavior of signals used to communicate qubits and those used
to communicate bits are constrained by Landauer’s principle, which is essen-
tially a recontextualization of Szilard’s limit [519]. This principle dictates that
the erasure of information using a physical computing system is irreversible,
with an associated minimum physical energy cost of kT ln 2 per bit in an en-
vironment of temperature T , because there is an associated dissipation of a
minimum energy of kT ln 2 into the environment, kT being the mean thermal
energy [289, 290].

Szilard’s limit has been used to resolve the (classical) ‘Maxwell demon’
paradox [274]. The basis of the paradox is that the second law of thermody-
namics can be stated as “the entropy of a closed system never decreases” but
the following thought experiment is also conceivable. Consider a machine con-
sisting of a box within which there is a barrier with an internal door and which
contains a classical gas of molecules that is under the examination of a finite
intelligent ‘demon’ capable of controlling the door at will. The demon would
appear to be able to increase the mean kinetic energy of molecules on one
side of the barrier relative to that on the other and, hence, the temperature
difference between the two sides, by selectively opening and closing the door
based on the speeds of the individual molecules approaching the door. This
would result in a decrease of entropy in the box. An apparent paradox thus
arises because the demon could perform useful work with no energy expense
by cycling the machine while carrying out this process.

During the same era in which the mathematical foundations of quantum
mechanics were being clarified, the physical situation involved in the paradox
was described by Szilard in a manner simpler yet more rigorous than that of
Maxwell’s original description, as follows [443]. Szilard considered Maxwell’s
box to be a cylinder containing two equal chambers and to contain a one-
molecule fluid and the chamber in which the molecule is contained to be
both measured and (physically) recorded by the demon, and finally that the
diaphragm+door to be replaced by a piston. The result of the observation
of the molecular speed by the demon is used by him to connect the piston
to a mechanical load on which a specifiable amount of work W can be done.
This load is continually varied so as precisely to match the average force of
the fluid on the piston in a way that renders the process a quasi-static and
reversible thermodynamic one. In this situation, pressure of the fluid moves
the piston to one end of the container and so brings the gas back to its initial
volume, and an energy Q equal to the work W is given to the gas through heat
transfer from a constant temperature bath [293]. The net result is that the
gas has not only precisely its initial volume but also its initial temperature,
whereas the entropy of the heat bath has been reduced. The paradox can then
be resolved: There is a paradox in this situation only if the machine, minus
the demon, is a closed physical system, which it is not, because the demon
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must be a physical system as well as an intelligent one in order to be capable
of interacting with the door.

The apparent paradox is resolved by examining the physical behavior of
the pertinent truly closed system, namely, that consisting of both the box
and the demon, as follows. One first notes that the demon, which is a physical
system by virtue of its ability to open and close the door, must perform
physical measurements on the molecules and physically record them in order
to obtain their velocities while carrying out the required molecule-sorting
process. The pertinent entropy is that of the total system of machine and
the demon’s physical memory. One then also notes that the demon’s memory
must be erased for the entire procedure on the system, including the demon,
to be genuinely cyclic. This erasure comes at the thermodynamical cost of the
finite entropy increase, as discussed above. The apparent paradox is thereby
resolved, because there is a corresponding increase of entropy in the process,
removing the appearance of conflict with the second law of thermodynamics.

The increase in entropy in the total system will, in fact, always be at least
as much as the decrease of entropy of the gas in the process. Szilard stated
this as follows.

“One may reasonably assume that a measurement procedure is fun-
damentally associated with a certain definite average entropy pro-
duction, and that this restores concordance with the second law. The
amount of entropy generated by the measurement may, of course, al-
ways be greater than this fundamental amount, but not smaller.”
([443])

This fundamental amount he identified as k ln 2, namely, the minimum asso-
ciated with obtaining one bit of information by measurement, which is the
smallest amount of information a measurement can provide the demon when
it is considered part of the natural encoding procedure associated with this
cylinder–piston–molecule apparatus. Because the initial volume occupied by
the single molecule is changed by a factor of two in the process, the associ-
ated entropy change is k ln 2, because ∆Sthermo = ∆Q/T , where Sthermo is
the thermodynamical entropy and Q is heat energy. This analysis is widely
recognized as seminal. Indeed, Jordan, for his part, viewed Szilard’s treatment
as “one of the greatest achievements of modern theoretical physics. . . the ten-
dency in Szilard’s views is to acknowledge also a microphysical applicability
of thermodynamics” [264], which, notably, is the same move exploited by von
Neumann in his theory of quantum measurement.

Szilard thereby identified the physical ‘correspondent’ of the bit of infor-
mation, albeit in the limited sense in which such a correspondence is possible,
as argued in the introduction to this chapter regarding the relation of the
quantum two-level system and quantum bit and applicable mutatis mutandis
to that between the classical two-state system and the classical bit, although
Szilard did not specifically identify the role of erasure in resolving the Maxwell
demon paradox. It is in this analysis that he first provided Szilard’s limit; he
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identified the smallest free energy cost associated with a gain of information,
the basic unit of which is the bit, by a computing machine in a context in
which the associated (physical) memory system must ultimately be erased.
Although the latter point was one not obviously fully appreciated by Szilard,
it was later fully clarified by Charles Bennett in 1982 along the above lines
[30]. Computers have, since Szilard’s analysis, often been understood from the
thermodynamical point of view, as mechanisms that consume free energy in
producing mathematical work and produce waste heat in the process [289].16

Although Szilard’s analysis takes place entirely within classical physics,
it clearly describes the sort of situation now considered to be significant in
the domain of quantum mechanics. Żurek argued in the mid-1980s that it is
only in semi-classical or quantum treatments that such an analysis is uncon-
trovertibly consistent [519]. One objection to the application of equilibrium
thermodynamics in the classical scenario is that it restricts the validity of re-
sults to situations where the thermodynamic limit applies; the thermodynamic
limit is that of very large particle number and volume while the particle den-
sity remains constant, whereas Szilard’s idealization is employed in precisely
the opposite limit. Thus, Jauch and Baron argued that in a classical analysis
an inconsistency arises from the simultaneous employment of dynamical and
thermodynamical idealizations that are incompatible [259]. Żurek argued that
this objection is overcome by considering a large collection, such as a quantum
ensemble, of such Maxwell box experiments.

Żurek also noted that a more difficult problem exists, namely, that a clas-
sical gas particle is localized, and so will not fill the full box volume after
the insertion of Szilard’s piston, as a quantum description would require. In-
deed, because the piston acts only as a finite barrier, the wave-function of the
particle is still present on both sides of it, the particle location being inde-
terminate until the molecule is measured, in a quantum analysis [519]. More
recently, Seth Lloyd published an article involving the resolution of the para-
dox associated with a fully quantum Maxwell demon scenario that makes use
of entanglement [299].

Summarizing what has been established thus far in this chapter, both
reductionist positions, that physics is reducible to information and that infor-
mation is reducible to physics, are implausible. Nonetheless, because physics
constrains information processing, the two bear a close relationship that can
be helpful in the investigation of both. Accordingly, quantum information sci-
ence, in which there has been not only tremendous growth but also many
surprising discoveries, promises to offer new insight into the foundations of
quantum theory, as shown in the remainder of the chapter.
16 This clearly regards only to computers performing computations in a manner that

is not fully reversible.
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4.8 Entanglement ‘Thermodynamics’

Perhaps unsurprisingly in light of the above results, analogies between entan-
glement theory and thermodynamics have been usefully explored in quantum
information science. Seminally, Popescu and Rohrlich showed that any pro-
cess using collective local operations and classical communication that pre-
serves the degree of state entanglement must be a reversible one [358]. This
was established by an argument analogous to the well known thermodynamic
characterization of the ideal efficiency of an engine in the Carnot cycle.

“When Einstein searched for a universal formal principle from which
to derive a new mechanics (namely, special relativity) he took for
inspiration a general principle of thermodynamics: The laws of nature
are such that it is impossible to construct a perpetuum mobile. This
general principle (the second law) enabled Carnot to show that all
reversible heat engines operating between given temperatures T1 and
T2 are equally efficient. . . we can draw an analogy with entanglement,
as follows: The laws of physics are such that it is impossible to create
(or increase) entanglement between remote quantum systems by local
operations.” ([359])

The central condition on entanglement measures, given by Equation 1.51 and
sometimes called the fundamental postulate of entanglement, was seen to be
analogous to the second law of thermodynamics [110]: The “fundamental pos-
tulate” is that no net increase of entanglement between systems in distinct
laboratories can occur solely as a result of local operations and classical com-
munication. Together with the condition of partial additivity condition on
entanglement measures, which applies to collections of states, the postulate
provides a ‘unit of entanglement,’ the e-bit: “ebit denotes a single entangled
bit” ([359], p. 43). By considering these two conditions and exploiting tech-
niques of thermodynamics, Popescu and Rohrlich demonstrated that the von
Neumann entropy is the unique measure of ordinary bipartite entanglement
in a specific sense by approaching the problem of quantifying entanglement
of k pure states through that of finding defining a measure of entanglement
for n singlet states, |Ψ−〉 [358]. This inspired later, more speculative attempts
to use thermodynamical analogies, leading to what has come to be called
“entanglement thermodynamics.”

The argument of Popescu and Rohrlich runs as follows. The allowed local
transformations of quantum states of a bipartite quantum system, with one
subsystem in laboratory A and one in laboratory B, are reversible only in the
limit where the number of copies of a state becomes arbitrarily large. Further-
more, there is no way to define total entanglement for an infinite number of
state copies, because it would then clearly take an infinite value, something
physically precluded except when entanglement is defined intensively.



246 4 Information and Quantum Mechanics

“Here too, thermodynamics provides the formal principle: the ther-
modynamic limit requires us to define intensive quantities. Likewise,
the measure of entanglement must be intensive.” ([359], p. 43)

This requires that the measure of entanglement for n singlets must be propor-
tional to n. In that case, the entanglement of a collection of k systems in an
arbitrary pure state |Ψ〉AB approaches that of n systems each in the singlet
state |Ψ−〉, that is,

E(|Ψ〉AB) = lim
n,k→∞

(
n

k

)
E(|Ψ−〉AB) , (4.16)

which is identified as the “entropy of entanglement” of the state |Ψ〉AB [33].
Any such measure of pure-state entanglement is, therefore, determined up to
a constant factor, namely, the amount of entanglement associated with the
singlet state, which is then taken to be that of the fundamental unit, the e-bit.
This also constrains entanglement manipulation analogously to that of heat
in thermodynamics.

Again, following on the heals of this result, there have been attempts to
construct a full blown “entanglement thermodynamics.” More conservative
explorations of relationships between thermodynamics and quantum infor-
mation analogy have also taken place, for example [5]. Under the broader
analogy, entanglement plays the role analogous to heat in traditional thermo-
dynamics, the distillation of pure entangled states plays the role of extracting
work from heat. The bound entanglement is given by Equation 1.56, namely
B(ρ) ≡ Ef (ρ) − D(ρ). This expression is seen to be formally similar to the
Gibbs–Helmholtz equation of thermodynamics, namely, TS = U − A, where
U is the internal energy and A the free energy, with TS serving as the “bound
energy.”

Recall the three basic laws of thermodynamics, which can be given the fol-
lowing simple forms. (1) Heat is a form of energy. (2) It is impossible for any
cyclic process to occur the sole effect of which is the extraction of heat from
a reservoir and the performance of an equivalent amount of work. (3) The en-
tropy of a system approaches a constant value as the temperature approaches
zero. These laws allow the reversible transformation of work into heat and
vice versa. One can, therefore, formulate the assumptions of thermodynamics
as follows, “There is a form of energy (heat) that cannot be used to do work,
that nonetheless can be used to store work though work can be stored in heat
only if there is some heat to begin with, in which case work can be stored
reversibly” [242].

Now, consider two agents in laboratories A and B initially sharing a col-
lection of pairs of subsystems described by an n-fold product of the bipartite
system state ρ, ρ⊗n = ρ ⊗ · · · ⊗ ρ, with n a large number, who collectively
and locally operate on the members of each shared pair, communicate us-
ing a classical information channel if they desire, and can arrange their local
subsystems into subensembles ρi represented with probabilities pi. The “fun-
damental postulate” of entanglement theory, the putatitive ‘second law of
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entanglement thermodynamics,’ dictates that the entanglement remaining at
the end of such a CLOCC transformation, on average, cannot exceed the ini-
tial shared entanglement. The combination of the entangled-state distribution
process and the entanglement distillation process, which accumulates pure en-
tangled states from mixed states, is viewed as functioning analogously to the
process of cycling an engine that obtains work from heat; bound entangled
states, being those entangled states from which no pure entanglement can be
distilled (cf. Section 1.10), are similarly viewed as analogous to thermody-
namic systems from which no work can be drawn and are seen as containing
“fully disordered entanglement.”

The following “laws of entanglement thermodynamics” are then suggested
by analogy to the above traditional thermodynamic laws [242]. (1) The en-
tanglement of formation is conserved. (2) The disorder of entanglement can
only increase. (3) One cannot distill singlet states with perfect fidelity. The
“law” (1) corresponds to condition (ii) of Section 1.10. There is an analogy to
reversible work extraction, although in general one needs more entanglement
(in e-bits) to create a state than can be drawn from it. In traditional ther-
modynamics, the second law dictates that any thermodynamical system has
more energy than can be extracted from it, except when one of the reservoirs
is at zero temperature; the same holds in this “thermodynamics of entangle-
ment” where for a general mixed state ρ, D(ρ) < Ef (ρ). However, attempts
to continue further with this treatment of entanglement in order properly to
complete the analogy run into difficulties [110, 251]. In particular, it requires
the completion of the correspondence between fundamental quantities in the
two theories. For example, if a thermodynamic system gains a quantity ∆Q
of heat energy, there will be an entropy increase of ∆S = ∆Q/T . Given that
the role of entropy is played by S(ρ) in quantum entanglement theory, it is by
no means clear what quantity is to play the role of temperature, T . A well-
defined ‘entanglement temperature,’ T̄ (ρ), for mixed states (when S(ρ) > 0)
of the form T̄ (ρ) = B(ρ)/S(ρ), is required if the ‘entanglement entropy’ is to
be taken to be S(ρ), as is suggested by the fact that this results in the equal-
ity of the entanglement of formation and entanglement of distillation for pure
states (cf. [110]). For example, the third law of thermodynamics is expressed
in terms of the behavior of entropy with respect to temperature. However,
the temperature analogue is absent from the above statement of ‘laws of en-
tanglement thermodynamics.’ The lack of a well-defined such quantity brings
this approach strongly into question.

In addition to the difficulty of completing “entanglement thermodynam-
ics,” the argument for the uniqueness of the quantum entanglement measure
based on a mutatis mutandis argument has be seen to induce an unwarranted
dependence on the choice of unit—the introduction of the Bell singlet state as
providing an “e-bit” of entanglement—manifest in the ratio problem: ratios of
entanglement measures, such as the entanglement of formation or distillable
entanglement of two different states, depend in general on the particular state
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chosen as the basic unit of entanglement when the degree of entanglement is
referenced to it [323].

The definition of an entanglement unit is particularly problematic in the
multi-party context; in multiple-component systems their exist different sorts
of entanglement that are not quantifiable in terms of the e-bit. The argument
for the uniqueness in the case of two pure states of a pair of two-level systems
will not work in the multi-party context because reversible interconversions
cannot be performed between all pairs of such states. Moreover, it has been
shown that no unique measure of entanglement exists in the case of mixed
states [321]. By contrast, the thermodynamic entropy does have a unique
measure without such a ratio problem [189].

4.9 Information and Entanglement

The quantitative study of entanglement has usefully exploited suggestive rela-
tionships between, on the one hand, the behavior information in the possession
of agents with the ability to perform local actions on quantum systems and
with the ability to classically communicate and, on the other, the behavior of
heat. Despite the fact that such thermodynamical concepts have proven useful
in the quantum information context as analogues to concepts involving en-
tanglement, there are clear limitations to the thermodynamic analogy, as just
described. Nonetheless, the investigation of the relationship between informa-
tion and entanglement by making more direct use of results of the mathe-
matics of correlation and entropy has been productive. Indeed, as pointed out
by Leah Henderson, the “second law of entanglement thermodynamics” itself
follows directly from basic properties of relative entropy ([225], cf. [295]). The
remainder of this chapter focuses on this more direct approach to the study
of entanglement and on the relationship between entanglement and commu-
nication complexity.

The significance of entanglement for quantum communication has recently
been characterized in the following way by Wootters. “[It is] remarkable that,
even though entanglement by itself does not constitute a communication chan-
nel, the presence of entanglement allows modes of communication that are
not possible without it” ([506], p. 229). Indeed, prima facie, this fact appears
surprising. However, careful study of the character of and relationship be-
tween differing degrees of correlation does much to remove the apparent mys-
tery; even classical shared randomness serves as a communication resource.
As shown below, recent investigations have gone some distance toward re-
vealing the essential character of quantum behavior. If there turns out to be
something to entanglement beyond (i) that the uniquely strong correlations
associated with it occur only in quantum systems and (ii) that pure entangled
states violate local causality, then that something may well turn out to have
nothing in particular to do with communication theory. In any event, the in-
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vestigation of the standard theory of quantum mechanics through the theory
of communication is one of the most incisive currently being pursued.

Although the claim that entanglement allows for genuinely new modes of
communication may be an overstatement, entanglement does allow a number
of tasks to be accomplished more efficiently than is possible when only the
transmission of classical bits is allowed and quantum entanglement between
physical systems is absent, as already seen in this chapter. Without prior-
shared quantum entanglement or prior-shared classical randomness, agents
in distant laboratories must communicate to establish distant physical corre-
lations or to evaluate distributed functions; previously shared quantum en-
tanglement reduces the amount of communication required to carry out such
tasks compared with situations involving generic shared random strings. It is,
therefore, not surprising that demonstrations of the failure of local causality
given pure entangled states can be related to communication complexity.

The communication complexity of a function is the minimum number of
classical bits that must be broadcast for every party involved to come to
know the value of the function. A two-party quantum communication proto-
col exists that operates more efficiently than any local classical protocol for
determining a binary function of two input bits x0 and y0 separately received
by agents in distinct labs, who thereafter are not allowed to communicate.
A binary function can be determined when the two agents output two bits a
and b, such that a⊕ b = x0 ∧ y0 with as high a probability as possible, where
“⊕” indicates addition mod 2 (“XOR”) and “∧” indicates Boolean conjunc-
tion (“AND”). Let the two agents, A and B, begin with the binary strings
a = a1a2 and b = b1b2, respectively. Consider also the set of four conditions
consisting of the three conditions ai ⊕ bj = 0, for the cases when i and j
are not both unity, together with the condition that a1 ⊕ b1 = 1. With some
thought, one realizes that these four conditions cannot all be simultaneously
deterministically satisfied; they can, at best, be satisfied with a probability
of up to 3

4 when the strings are chosen randomly. Let the ai and bj be ran-
domly distributed independently of inputs. There is a quantum protocol in
which one agent sends one two-level system of an entangled pair to the other
agent, the outcome of a measurement on which can be used often correctly to
evaluate f(a,b) = a1 ⊕ b1 ⊕ (a2 ⊕ b2), even though the resulting evaluation
will sometimes be incorrect. The receiver can compute f(a,b) by obtaining
appropriate data regarding the string possessed by the sender, namely, a1 or
the binary sum of its two bits. This can be done quantum mechanically with
probability p(1−p) = cos2(π8 ) > 3

4 if the two agents make joint measurements
on the pair of two-level systems in a Bell state and perform appropriate local
rotations on the subsystems in both laboratories [91].

An exact procedure for this more efficient protocol is the following. Let
the agents, Alice and Bob, each possess one of two subsystems initially in the
shared Bell spin-singlet state |Φ−〉AB. Let a two-bit string x0y0 be taken as in-
put to be used in the determination of the function f(x, y) = x1⊕y1⊕(x0∧y0).
In the case that x0 = 0, Alice rotates its subsystem by − π

16 in the plane
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involved in the joint measurements shown in Figure 1.2 (of Section 1.8); oth-
erwise, a rotation of 3π

16 is applied. Alice then performs a spin measurement,
obtaining outcome bit a. Bob proceeds similarly, obtaining the outcome bit
b. The result of these two steps is a superposition of two Bell states, |Φ−〉AB

and |Ψ+〉AB; the probability amplitude for the former is cos(θA + θB) and for
the latter sin(θA + θB), where the θX (X = A,B) are the angles of those rota-
tions locally performed conditionally on the specific inputs. The probability
of a ⊕ b = 0, which is that of the two subsystems both ending up in their
original states is, therefore, p(a ⊕ b) = cos2(θA + θB), that is, the square of
the probability amplitude in the case that the outcomes are anti-correlated
(so that the XOR of the two is unity). Notice then that one has θA + θB = π

8
in every case. Finally, Alice classically communicates a ⊕ x1 to Bob, who
communicates b ⊕ y1 to A. After that communication round, both parties
can individually determine f(a, b), because they can then determine the bit
(a⊕ x1)⊕ (b⊕ y1) = x1 ⊕ y1 ⊕ (a⊕ b), which will be f(x, y) with probability
cos2(π8 ) = 0.854 [77], which exceeds the greatest classically achievable value
of 3

4 . More generally, one can consider n parties in possession of partial input
data for some n-variable function. It has been shown that there is a class of
quantum communication complexity protocols capable of increasing the effi-
ciency of solution of such problems beyond what is classically possible if and
only if a Bell-type inequality for three-level systems is violated [83].

Returning specifically to entangled pairs of two-level systems, recall the
CHSH inequality |S| ≤ 2, where S is defined in terms of expectation values of
joint measurements, and that the maximum value of |S| beyond 2 has been
taken as a measure of how ‘quantum mechanical’ a bipartite system is; once |S|
exceeds 2, the behavior of a system is no longer classical (Bell local) in nature
but can be described quantum mechanically.17 Recall also that the maximal
violation of the inequality by an entangled state is |S| = 2

√
2, the Tsirel’son

bound. Although Bell himself did not argue that causal violation of this in-
equality distinguishes quantum mechanics from other conceivable theories be-
sides classical mechanics, the question of whether it does is an important one.
Indeed, Shimony engaged the question by asking whether “non-locality plus
no signaling plus something else simple and fundamental” suffices to uniquely
single out quantum mechanics from the set of conceivable mechanical theories
providing correlated local-measurement outcomes [407].

Shimony’s question led Popescu and Rohrlich to consider, as a starting
point of investigation, whether quantum mechanics might be uniquely distin-
guished by the conjunction of non-locality and causality alone. In other words,
“Is quantum mechanics the only causal theory—i.e. theory under which sig-
naling is constrained from above by the speed of light—that violates the Bell
17 Note, however, this criterion is questionable in the case of mixed states, in that,

for example, a Werner state, which is obtained by mixing a fully mixed state
and a maximally entangled state of a pair of two-level systems, can be entangled
without violating the CHSH inequality [489], as discussed in Chapter 1
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inequality?” [357]. They introduced a schema they called the non-local box,
now referred to as the PR box, to model the generic class of ‘non-local’ theory.
They answered the question in the negative, by showing that a theory provid-
ing the values of this schema provides correlations that exceed the Tsirel’son
bound. This opened the way to the consideration of the relationship between
mechanical theories and information in greater generality than had previously
been done. Indeed, the communication complexity results obtained if these
non-physical boxes were available has become of considerable interest.18

As the above example indicates, entanglement has been shown to serve as
an information-theoretic resource that surpasses the local classical resource
of prior-shared random bit strings. Further insight into it has been gained
by investigating the quantitative relationships between it, considered via the
correlations exhibited by signs in shared Bell singlet states, that is, e-bits and
other information-theoretic resources; useful comparisons between shared ran-
dom classical data, shared secret data, prior-shared entanglement, and non-
local boxes have been drawn by studying whether and how the information-
theoretic resources can simulate one another. Such relationships have opera-
tional realizations in quantum protocols. The question of which probabilistic
‘machines’ or ‘boxes,’ or combinations thereof, are capable of capturing the
behavior of others, that is, are able to simulate them is, therefore, pivotal. The
term box is shorthand for black box in the traditional sense of an abstract
rule that may formalize a mechanism. Such boxes formalize communication
resources, being so in the sense that they must be resupplied after use for
communication. Finding the number of uses of various sorts of box that are
needed to provide the joint probabilities arising from the use of prior-shared
Bell states by means not quantum mechanical in nature serves to connect
quantum mechanics and information theory [454], enabling the systematic
classification of physical theory in relation to communication.

It is helpful here also to recall the implications of the violation of each
of the conditions, parameter independence (PI) and outcome independence
(OI), underlying Bell’s locality condition ([419], p. 118). Violating PI, some-
thing not occurring in quantum mechanics, allows one bit to be perfectly and
superluminally communicated using an ensemble of composite systems all in
the same complete state and making the same choice of measurements for
each member of the ensemble. Violating OI, as quantum mechanics does do,
implies influences into the past—although in the case of quantum mechanics
this does not allow for superluminal communication, because the outcomes of
measurements cannot be controlled by the agents making the measurements.
From the perspective of these conditions, Bell’s theorem, as in its CHSH form,
implies that (Bell-)local theories cannot simulate the behavior of outcomes of
measurements on a singlet without some communication.

The CHSH inequality can be reformulated in a particularly convenient
form by considering p(mA

x ⊕mB
y ≡ x∧y), the probability for the (mod 2) sum

18 See, for example, [20, 21, 104, 454, 461].
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of measurement outcomesmA
x ,mB

y ∈ Z2 to equal the product of “measurement
setting” parameters x and y in Z2 ≡ {0, 1}: Any local hidden-variables theory
describing a joint system shared by two agents A and B obeys the inequality
in the form

s =
∑

x,y∈Z2

p(mA
x ⊕mB

y ≡ x ∧ y) ≤ 3 . (4.17)

The corresponding Tsirel’son-type bound is then that the maximum quantum
mechanical value for the left-hand-side of this inequality is s = 3.41 = 2+

√
2.

The sum provided by quantum probabilities exceeds the constraints provided
by the condition of Bell locality by this specific amount. The non-local boxes
are found to exceed it by an even greater amount, reaching the value 4.

Correlation polytopes are natural structures for illustrating such rela-
tionships. The geometrical representation of joint probabilities within these
polytopes is a technique with a long history in the study of entanglement
[352, 455]. In particular, the probabilities arising in (Bell-)local theories as con-
strained by Bell-type inequalities provide specific boundaries between quan-
tum and other correlations. For an arbitrary number n of independent classical
events occurring with marginal probabilities (p1, p2, . . . , pn) and joint proba-
bilities (p12, . . .), these probabilities can be taken together to form a vector,
p = (p1, p2, . . . , pn, p12, . . .) in Euclidean space. Because the pi, i = 1, . . . , n
are assumed independent, each of them can reach both 0 and 1. The com-
bined values of p1, p2, . . . , pn of these extreme cases and the associated joint
probabilities pij = pipj can be interpreted as truth values; they correspond to
a two-valued (or dispersionless) measure.

Every convex polytope has an equivalent description as the convex hull
of extreme points or as an intersection of a finite number of half-spaces
each given by a linear inequality, which is useful for representing constraints.
The relationship between prior-shared non-local boxes and better known
information-theoretic resources can be illustrated by reference to this struc-
ture. Consider the joint probabilities p(x, y|A,B) of obtaining the pair of
outputs x and y conditionally on both inputs A and B, which by defini-
tion satisfy the conditions of positivity p(x, y|A,B) ≥ 0 for all a, b,X, and
Y and summing to one,

∑
x,y p(x, y|A,B) = 1 for all A and B. Two classes

of boxes can be distinguished. Signaling boxes are those allowing signaling
through the agents’ choices of input, acting like two-way classical channels;
non-signaling boxes are those for which such communication between agents
via the choice of A and B is not allowed. In the latter case, the marginal
probability p(x|A) is independent of B and p(y|B) is independent of A, that
is,

∑
y p(x, y|A,B) =

∑
y p(x, y|A,B′) = p(x|A) for all x,A,B,B′ and sim-

ilarly
∑
x p(x, y|A,B) =

∑
x p(x, y|A′, B) = p(y|B) for all y,B,A,A′; their

joint probabilities form a convex polytope, P.
Of the non-signaling boxes, one can consider boxes which satisfy locality

and those which don’t, where a box is a local if and only if its probabilities can
be simulated by independent agents initially sharing only a vector of random
variables v, that is, random classical data. Thus, for local boxes, p(x, y|A,B) =
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Fig. 4.6. Joint probability loci [20]. The polytope P of joint probabilities con-
strained by the no-signaling condition, corresponding to the “non-signaling boxes.”
Bell-type inequalities define the dashed lines and bound the local polytope L; the
vertices labeled L correspond to local correlations and those labeled NL to non-local
correlations. The quantum mechanical probabilities lie only in the region Q, the
boundary of which includes smooth curves.

∑
v pvpv(x|A)pv(y|B), where pv is the probability of occurrence of the vector

of values v. The set of joint probabilities given by these boxes is again a
convex polytope, the local polytope L, the vertices of which are deterministic,
that is, the marginal conditional probabilities take only the values 0 and 1;
the boundary of this polytope corresponds to the cases wherein either the
positivity conditions or the Bell-type inequalities are satisfied. The former
are also facets of P, whereas the latter are facets of L interior to P [20].
By contrast, the set of correlations obtainable by measurements on bipartite
quantum states Q, for a fixed number of measurement settings and outcomes,
is convex [287, 311, 455, 456] but does not form a polytope since the number
of extrema is infinite, providing smooth interior boundaries as well as facets
shared with P. The sets just described are related as L ⊂ Q ⊂ P, as shown
in Fig. 4.6.

Popescu and Rohrlich have found that non-local causal correlations are
exceptionally powerful. Spatially separated agents sharing only random clas-
sical data that are not allowed to communicate are unable to simulate the
non-signaling non-local boxes, L̄. The PR box, defined by its causal provision
of maximal correlations, gives the following conditional probabilities. If the
two-bit string xy is a member of {00, 01, 10} then p(mA

x = 0,mB
y = 0) = 1

2

and p(mA
x = 1,mB

y = 1) = 1
2 , and when xy takes the value 11 then

p(mA
x = 0,mB

y = 1) = 1
2 and p(mA

x = 1,mB
y = 0) = 1

2 ; all other perti-
nent probabilities are zero. For this schema, the value 4 can be reached by
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the left-hand side of the inequality of Equation 4.17. The PR box provides
probabilities that accord with causality in that the outcomes on both sides
of the measuring apparatus still occur locally at random, as they do in the
case of Bell states, but with stronger correlations between joint measurement
outcomes than those of any quantum state.

It has been shown that a single use of a prior-shared PR box is capable
of simulating all outcomes of projective measurements on a Bell state with-
out the communication of a bit [104]. Furthermore, there are sets of joint
probabilities constrained by the no-signaling conditions that cannot be ob-
tained by measurements on a Bell state. This establishes that the non-local
box information unit, the nl-bit, corresponding to the use of a single PR box
is a stronger resource than the e-bit [21, 260]. Then note that the quantum
dense coding protocol illustrated in Figure 4.5 shows that an e-bit allows one
to perfectly communicate two bits with a single use of a channel that per-
fectly communicates one qubit, where “perfectly communicates” is shorthand
for “communicates the encoding quantum state with perfect fidelity.” More-
over, it has been demonstrated that one bit of (superluminal) communication
and prior-shared classical randomness together are sufficient to produce all
Bell-inequality-violating measurement correlations which are associated with
1 e-bit [104]. Finally, of all the information-theoretic resources so far conceived,
one bit of super-luminal communication is the strongest resource because, un-
like a PR non-local box, it is not unconstrained by causality. Thus, in terms
of resource strength, an ordering relation has been established: 1 e-bit ≺ 1
nl-bit ≺ 1 bit (superluminal), in order of increasing strength.

The PR box and superluminal-signaling box provide statistics that would
be shocking were they to be physically realized. Providing PR non-local boxes
to two spacelike separated agents would allow them to perform all distributed
computations with perfect accuracy given a trivial amount of communication,
namely, 1 bit; the 1 bit is necessary for ‘preserving causality’ [460]. This result
reduces all possible distributed functions in the standard inner-product form:
The correlations provided by non-local boxes allow the inner-product func-
tions to be solved with just 1 bit of communication, with a maximum of an
exponential amount of prior-shared PR boxes. Such a collapse of the classes
of communication problems is remarkable, because the classification of com-
putational complexity problem is fundamental in computer science. “[T]heir
absence. . . goes squarely against the world view and experience of probably all
researchers in the field of complexity theory” [461]. By contrast, some com-
munication complexity problems using e-bits require unlimited prior-shared
entanglement and a number of communicated bits [109].

In this way, there naturally arises the question of whether what distin-
guishes quantum mechanics is the physical constraint corresponding to the
non-triviality of communication complexity theory when quantum resources
are allowed, which is an information-theoretic constraint, rather than the
physical constraint of causality. Although the above result suggests that non-
local PR boxes themselves describe correlations that can’t be realized on the
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grounds of the theory of communication rather than only physical experience,
researchers in theoretical computer science have had little time to contemplate
even previously shared quantum correlations, much less those correlations con-
strained by causality alone. It may be that changes in the foundation of their
subject based on these newly contemplated cases will reduce the surprise
evoked by the associated results.

The original question of what physical condition, together the constraint of
local causality, can provide non-local correlations of the strength predicted by
quantum mechanics but only that strength has yet to be precisely answered.
Thus far, a bound has been demonstrated assuming non-trivial computational
complexity, but one that only constrains correlations to a strength beyond the
specific strength of quantum correlations.

“In any world in which it is possible, without communication, to
implement an approximation to the [non-local PR box] that works
correctly with probability greater than 3+

√
6

6 ≈ .91, every Boolean
function has trivial probabilistic communication complexity.” ([77])

Recall that a Bell state approximates a PR non-local box with probability
0.854. This leaves a gap of about 5 percent. Should this difference be closed,
the physical condition the violation of which would correspond to the trivial-
ization of communication complexity hierarchy might then be identifiable.

4.10 The Great Arc

A series of steps involving quantum probability that form what can be called
the Great Arc in the study of the foundations of quantum mechanics can be
discerned. Each of these steps has influenced the interpretation of the theory,
the fundamental principle of which is that of state superposition. Each of these
has contributed to a deepening of our understanding of quantum mechanics
but has yet entirely to clarify its foundations. Related to this is that the quan-
tum measurement problem has yet to be adequately resolved. Interpretations
of the theory advocates of which have claimed explain away the measurement
problem only do so at the price of introducing equally difficult problems. The
most recent step along this arc has been the explicit consideration of the
information-theoretic implications of quantum mechanics.

One of the first steps in the probing of the foundations of quantum theory
was the raising of the question of how the probabilities appearing in quantum
mechanics are to be understood, which was addressed by Born and Pauli in
their interpretation of quantum amplitudes via the Born rule. Another was fur-
ther reflection on the adequacy of the wave-function description, as addressed
by Einstein in his rough division of interpretations into those presenting the
quantum formalism as complete and those presenting it as incomplete and by
von Neumann in his imperfect but influential argument against hidden vari-
ables. These initial steps regard the question of whether, as Einstein put it,
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God plays dice with the world, that is, whether the probabilities of quantum
theory are irreducible. In the fuller interpretations that emerged, there are
inelegant features: either there is a stochastic “collapse of the wavepacket”
only during measurement, with or without the mind playing a functional role
in the process, or there is an essential dependence on classical instruments or
subjectivity in understanding physical processes during measurements.

A third step forward was a more pointed probing of the completeness
of the theory and its conflict with local causality, as engaged by Einstein,
Podolsky, and Rosen. EPR also brought the question of the relationship be-
tween quantum mechanics and realism closer to the foreground. A fourth was
Gleason’s theorem demonstrating that the formalism of quantum mechanics
is complete in a particular sense. A fifth was the exploration of the extent
to which local hidden variables models can be well defined and whether they
can be empirically tested, addressed by Bell, CHSH, and others. The results
associated with these steps, the difficulties associated with a naive approach
to quantum propositions, and the experimental demonstrations of Aspect and
later workers showing local causality to fail, albeit with certain loopholes left
open, led some to reject realism on less than sufficient grounds.

A sixth major step was the discovery that the Bell locality condition is
logically decomposable into simpler conditions, outcome independence and
parameter independence, as shown by Jarrett and further considered by Shi-
mony, allowing one to determine that outcome independence is the condition
of the two that is violated in the quantum world. A seventh has been the
attempt to find simple conditions uniquely distinguishing quantum mechan-
ics from other theories on the basis of the sorts of joint correlations predicted
under these circumstances, pursued by Popescu and Rohrlich and then others,
that has benefited from the consideration of elements of communication com-
plexity theory. These last steps have pointed out that, like realism, causality
can be retained despite the counterintuitive non-local character of quantum
physics.

Given that quantum theory involves probability, state preparation and
state measurement, which are essential elements of signaling, and that com-
munication is based on the establishment of correlations using these, it is
clear that information theory will remain of considerable relevance to the in-
vestigation of the foundations of quantum physics. As seen in the previous
section, the perspective provided by the recent focus on information has con-
tributed to what is the most detailed picture yet of the broader implications of
quantum theory. Although there are good reasons to reject recently proffered
information-centered conceptions of physics, it appears that the requirement
that the mechanics of quantum signals allow for the realization of communica-
tion tasks consistently with basic information-theoretic principles, assuming
that physics is causal, may aid in the construction of a more satisfying picture
of the quantum world.
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The results considered in this chapter illustrate the way in which recent
foundational investigations have captured quantum physics in a new light.
In particular, they show that the quantitative consideration of information-
theoretic questions in relation to the physical constraints on quantum signals
has illuminated the most fundamental aspects of the theory. Like the preced-
ing results just summarized, they suggest that the foundations of quantum
mechanics are best investigated through a constructive and balanced combi-
nation of conceptual and mathematical analyses.
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Appendix

A.1 Mathematical Elements

The central mathematical structure of quantum mechanics is Hilbert space,
which is a specific sort of vector space. The Dirac notation commonly used
to describe Hilbert-space calculations in the physics literature is introduced
below, after this structure is described in standard mathematical notation.

A vector space V over a field F is a set of vectors together with operations
of scalar-multiplication and addition satisfying the following. For all elements
a, b ∈ F and u, v, w ∈ V (with the zero vector denoted 0), scalar multiples
and vector sums are elements of V such that:

(i) There is a unique scalar zero element 0 ∈ F such that 0u = 0 for all u;
(ii) 0 + u = u;
(iii) a(u+ v) = au+ av and (a+ b)u = au+ bu; and
(iv) u+ v = v + u, and u+ (v + w) = (u+ v) + w .

A (scalar) inner product (u, v) is assumed for all pairs u, v ∈ V such that:
(i) (u, v) = (v, u)∗, where ∗ indicates complex conjugation;
(ii) (u, u) ≥ 0, with (u, u) = 0 if and only if u = 0;
(iii) (u, v + w) = (u, v) + (u,w); and
(iv) (u, av) = a(u, v).

The norm of a vector, ||u|| ≡
√

(u, u), satisfies:
(i) ||u|| ≥ 0 for all u ∈ V , with ||u|| = 0 if and only if u = 0;
(ii) ||u+ v|| ≤ ||u||+ ||v||, for all u, v ∈ V ; and
(iii) ||au|| = |a| ||u||, for all a ∈ F and all u ∈ V .

The field F used in quantum mechanics is usually taken to be that of the
complex numbers, C. The vectors for which ||u|| = 1 are the unit vectors.
Vectors u and v are orthogonal (u ⊥ v) if and only if (u, v) = 0.

A function of two vector arguments that is more general than the inner
product, which serves similar purposes but is applicable in broader contexts,
is the Hermitian form, h(u, v), which satisfies:



260 A Appendix

(i) h(u, v) = h(v, u)∗;
(ii) h(u, av) = ah(u, v), for all a ∈ F , u, v ∈ V ; and
(iii) h(u+ v, w) = h(u,w) + h(v, w), for all u, v, w ∈ V .

A positive Hermitian form is an Hermitian form that also satisfies the con-
dition h(u, u) ≥ 0 for every u ∈ V . An Hermitian form is positive-definite
if h(u, u) = 0 implies u = 0; a positive-definite Hermitian form is an inner
product. A basis for a vector space is a set of mutually orthogonal vectors
such that every u ∈ V can be written as a linear combination of its elements;
a basis is orthonormal if it is composed entirely of unit vectors. A set S of
vectors in V is a subspace of V if S is a vector space in the same sense as V
itself is. The one-dimensional subspaces of V are called rays.

A Hilbert space, H, is a complete vector space with an inner product for
which (u, u) ≥ 0 for all u ∈ H. A map A : H → H, u 7→ Au is a linear
operator if, for all u, v ∈ H and scalars a ∈ F : (i) A(u + v) = Au + Av; and
(ii) A(au) = a(Au). If, instead of (ii), one has A(au) = a∗(Au), then A is an
anti-linear operator.1 A vector space with an inner product, such as a Hilbert
space, can be attributed a norm || · || = (v, v)1/2, which provides a distance via
d(v, w) = ||v−w||. Such a vector space is separable if there exists a countable
subset in the space that is everywhere dense, that is, for every vector there is an
element of the space within a distance ε of it for every positive real ε; the space
is complete if every Cauchy sequence—namely, every sequence such that for
every ε > 0 there is a number N(ε) such that ||vm− vn|| < ε if m,n > N(ε)—
has a limit in the space. (For finite-dimensional spaces, one usually considers
the norm topology, although weak topologies may be required to define needed
limits and to give proper definitions of continuity.) A subspace of a Hilbert
space H is a closed linear manifold, that is, a linear manifold containing its
limit points; a linear manifold in H is a collection of vectors such that the
scalar multiples and sums of all its vectors are in it.

A bounded linear operator is a linear transformation L between normed
vector spaces V and W such that the ratio of the norm of L(v) to the norm
of v is bounded by the same number, for all non-zero vectors v ∈ V . The
set of bounded linear operators on a Hilbert space H is designated B(H).
The sum of two operators A and B, A + B, is another operator defined by
(A+B)v = Av +Bv, for all v ∈ H; multiplication of an operator by a scalar
a is defined by (aA)v = a(Av), for all v ∈ H; multiplication of two operators
is defined by (AB)v = A(Bv), for all v ∈ H. The zero operator, O, and the
unit operator, I, are defined by Ov = 0 and Iv = v, respectively. An operator
B is the inverse of another operator A whenever AB = BA = I; it can be
written B = A−1. An ordering relation A ≥ B for self-adjoint bounded linear
operators is defined by A−B ≥ O.

A non-zero vector v ∈ H is an eigenvector of the linear operator A if Av =
λv, for any scalar λ, which is said to be the eigenvalue of A corresponding to
1 Together, the linear and anti-linear operators are fundamental to quantum me-

chanics.
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v; one can then write (A − λI)v = 0. By considering the linear operator A
in its matrix representation, the solutions to this eigenvalue problem can be
found by solving the characteristic equation det(A − λI) = 0, the left-hand
side of which, in cases where A has a finite set (spectrum) of eigenvalues, is
an nth-degree polynomial in λ.

The adjoint, A† of the operator A is defined by the property that
(A†v, w) = (v,Aw) for every v, w ∈ H. Any operator for which A† = A is
said to be (Hermitian) self-adjoint and has the two following properties. (i)
All eigenvalues are real. (ii) Any two eigenvectors v1 and v2 with correspond-
ing eigenvalues λ1 and λ2, respectively, are orthogonal to each other when λ1

and λ2 are non-identical. A linear operator O is unitary if OO† = O†O = I,
in which case O† = O−1. Unitary operators are usually designated by the
symbol U and have the following properties.

(i) The rows of U form an orthonormal basis.
(ii) The columns of U form an orthonormal basis.
(iii) U preserves inner products, that is, (v, w) = (Uv,Uw) for all v, w ∈ H.
(iv) U preserves norms and angles.
(v) The eigenvalues of U are of the form eiθ.

The matrix representing any unitary transformation U on a Hilbert space of
countable dimension d can be diagonalized as above, to take the form

eiθ1 0 · · · 0

0
. . . . . . 0

...
. . . . . .

...
0 · · · 0 eiθd

 .

A bounded linear operator O ∈ B(H) is positive, O ≥ O, if 〈ψ|O|ψ〉 ≥ 0
for all |ψ〉 ∈ H. The set of positive operators is convex. Positive operators
are Hermitian, always admit a positive square root, and, if invertible, have a
unique decomposition into polar form, by which is meant that such an operator
O can be written O = |O|U with U a unitary operator and |O| =

√
OO†,

analogous to the polar form of a complex number.
An Hermitian operator A is a projection operator (projector) if and only

if A2 = A, in which case it is usually denoted P (S), where S is a subspace of
H, often a ray. A bounded linear operator is a trace-class operator if its trace,
trA ≡

∑
k(Avk, vk), is absolutely convergent for any orthonormal basis {vk} of

H. The trace is a linear functional over the space of trace-class operators, that
is, tr(aA+bB) = a trA+b trB, for A,B trace-class, and is cyclic, i.e. tr(AB) =
tr(BA). The bilinear map 〈A,B〉 ≡ tr(A†B) is an inner product on the trace-
class operators, and provides the Hilbert–Schmidt norm. By contrast, the
spectral norm of an operator described by an n× n complex matrix A is
max

{
|λ|

∣∣λ ∈ Spec(A)
}
, where Spec(A) is the eigenvalue spectrum of A; it is

the square root of the spectral radius of A, which is the largest eigenvalue of
A†A.
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A.2 The Standard Postulates

A set of postulates for standard quantum mechanics is given here, which
similar to those given by von Neumann.2 In the standard approach to quantum
mechanics, the pure states of systems are elements of complex Hilbert spaces.

The first postulate is often referred to as the superposition principle.

Postulate I:
Each physical system is represented by a Hilbert space and described by

physical quantities and a state represented by linear operators in that space.

The Hilbert space is usually taken to be complex projective Hilbert space.
The treatment of the motion of quantum particles in space requires the use
of an infinite-dimensional separable Hilbert spaces.

The second postulate is known as the Born rule.

Postulate II:
Each physical quantity of a quantum system is represented by a positive

Hermitian operator O, the expectation value of which is given by tr(ρO),
where ρ is the bounded positive Hermitian trace-class operator representing
the state of the system.

The third postulate is commonly referred to as the Dirac–von Neumann
projection postulate.

Postulate III:
When a physical quantity of a system initially prepared in a state rep-

resented by the statistical operator ρ is measured, the state of the system
immediately after this measurement is represented by the statistical operator
ρ′ = PkρPk/tr(ρPk), where Pk is the projection operator onto the subspace
corresponding to measurement outcome k, with a probability given by the
expectation value of Pk for ρ.
This postulate and alternative versions of the projection postulate for different
situations are discussed in greater detail Chapter 2.

The fourth postulate provides a prescription for representing systems.
Postulate IV:

Each physical system composed of two or more subsystems is represented
by the Hilbert space that is the tensor product of the Hilbert spaces repre-
senting its subsystems; the operators representing its physical quantities act
in this product space.

The tensor product structure is described in Appendix A.
2 A related formulation is given by Arno Bohm, whose textbook takes great to

incorporate all situations in non-relativistic quantum mechanics through the use
of variants of some postulates [50].
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The fifth postulate is most commonly referred to as the Schrödinger evo-
lution.

Postulate V:
The temporal evolution of the state of each closed physical system, that

is, each physical system not interacting with anything outside of itself, takes
place according to ρ(t) = U(t)ρ(0)U†(t) (in the “Schrödinger picture”), where
t is the time parameter and U = e−itH/~ is a unitary operator, H being the
generator of time-translations.

This postulate provides the natural temporal evolution of closed systems,
which provides a linear transformation of state-vectors.

A.3 The Dirac Notation

The Hilbert-space structures described in the previous section can all be writ-
ten in Dirac notation, which we now introduce. The state of a physical system
described by a state-vector v is written as a ket, |v〉, and corresponds to a
pure statistical operator; the corresponding Hermitian adjoint is given by a
bra, 〈v|. The inner product (v, w) of two such vectors is written as the braket
〈v|w〉, and is a complex scalar. Operators acting from the left on a ket yield
a ket and acting from the right on a bra yield a bra. A ketbra, |v〉〈w|, is an
operator that, when acting on a ket |u〉, yields

|v〉〈w|(|u〉) = 〈w|u〉|v〉 = (w, u)|v〉 . (A.1)

Every statistical operator ρ can be written as a linear combination of (pure)
projector ketbras, P (|ui〉) ≡ |ui〉〈ui|, having weights pi. The inner product of
vectors, 〈v|w〉 taking |v〉 =

∑
i αi|i〉 and |w〉 =

∑
i βi|i〉, is therefore

〈v|w〉 .= (α∗1 α
∗
2 · · · )

β1

β2

...

 . (A.2)

The row vector (α∗1α
∗
2 · · ·) represents 〈v| and the column vector (β1β2 · · ·)T

represents |w〉. The general ketbra |v〉〈w| can be written as the outer product

|v〉〈w| .=

α1

α2

...

 (β∗1 β
∗
2 · · · ). (A.3)

Recalling that the projector P (|v〉) = |v〉〈v|, one thus has, for any |w〉,
P (|v〉)|w〉 = (〈v|w〉)|v〉; see Figure 2.1. Note that P 2 = |v〉〈v|v〉〈v| = P be-
cause |v〉 has norm 1, that is, projectors are idempotent.
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The matrix for an operator O and basis states |i〉 and |j〉 has elements
〈j|O|i〉 ∈ C. The representation of an operator by a collection of matrix ele-
ments is relative to the choice of eigenbasis. Hermitian operators (observables)
correspond to physical magnitudes and have matrices with real diagonal ele-
ments Oii and complex off-diagonal elements such that Oij = O∗ji. The matrix
representation of a statistical operator ρ, such as is necessary to describe mixed
quantum states, is known as a density matrix and is designated by the same
symbol. When the state is pure, the density matrix is of rank one. Recalling
the spectral representation, one can define a function of an operator O by

f(O) =
∑
n

f(on)P (|on〉) , (A.4)

under appropriate conditions.
The tensor product of two vectors |v〉 and |w〉 is written |v〉 ⊗ |w〉. The

tensor product space, written V ⊗ W , is the linear space formed by such
products of vectors: given bases |v1〉, . . . , |vk〉 and |w1〉, . . . , |wl〉 for two vector
spaces V and W , respectively, a corresponding basis for V ⊗W is given by

{|vi〉 ⊗ |wj〉 : 1 ≤ i ≤ k, 1 ≤ j ≤ l},

and dim(V ⊗W ) = kl. Any vector |Ψ〉 ∈ V ⊗W can be written in the form

|Ψ〉 =
∑
ij

αij |vi〉|wj〉 , (A.5)

where the αij are corresponding scalar components. Every linear operator O
in such a tensor product space V ⊗W , where

O(vi ⊗ wj) ≡ (O1vi)⊗ (O2wj) , (A.6)

is a linear combination of direct products of linear operators, namely,

O =
∑
i

O
(i)
1 ⊗O

(i)
2 . (A.7)

A.4 The Classification of Entangled States

Group theory has provided a basis for contemporary conceptions of entangle-
ment that have been developed in quantum information science which have
an operational basis.3 This is largely due to the fact that a specific group of
transformations can be associated with each of the classes of operations that
can be considered. In particular, the general approach to the classification
of entangled states is to examine the inherent transformational properties of
3 Note that the term ‘operational’ in this context is more restricted than the stan-

dard philosophical use of the term.
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states and to identify equivalence classes of states under these transforma-
tions, which themselves correspond to well known group structures, in partic-
ular based on the accessibility of states from each other by local operations as
mentioned above. A set G, together with a product map G × G → G, forms
a group if it satisfies the following conditions.

(1) Multiplication is associative: a(bc) = (ab)c for all a, b, c ∈ G.
(2) An identity element e ∈ G exists, for which eg = ge = g for all g ∈ G.
(3) An inverse g−1 ∈ G exists for every g ∈ G, such that g−1g = gg−1 = e.

A map θ between two groups G and H is a group homomorphism if θ(g1g2) =
θ(g1)θ(g2) for all g1, g2 ∈ G. An action of a group G on another set S is
given by a map G × S → S such that g2(g1s) = (g1g2)s and es = s for any
s ∈ S, that is, a homomorphism from the group into the group of one-to-one
transformations of S. A unitary representation of a group on a vector space
assigns unitary operators U on the space such that U(gh) = U(g)U(h) for
all g, h ∈ G; a mere projective representation is a representation for which
U(gh) = ω(g, h)U(g)U(h), where ω(g, h) is a phase. A representation is irre-
ducible if there is no vector subspace that is mapped to itself by every element
of the representation. Representations are equivalent if there is an isomor-
phism M between them such that MU(g) = U(g)M . The orbit O ≡ G · S
of an element m of a set S under the action of a group G is the subset of S
given by {gm|g ∈ G}, g ranging over all elements of G. Orbits stratify the set
of quantum states of a system.

The orbit of a statistical operator ρ under the group U(n) of unitary oper-
ators of dimension n is determined by its spectrum. An orbit O can therefore
be specified by a representative diagonal matrix, the eigenvalues of which are
ordered from greatest to smallest. Lower bounds on the number of parame-
ters needed to describe equivalence classes have been provided that show the
insufficiency of the total set of state descriptions of local systems for specify-
ing the state description of the compound system they comprise. The extra
parameters are known as ‘hidden non-localities.’ One can find equivalence
classes under local unitary transformations (LUTs) of the statistical operator
and equivalently under (local) rotations of the Stokes tensor, the tensor of ex-
pectation values of the tensor product of Pauli matrices, because compound
states are equivalent in their global behavior if they can be transformed into
each other by such operations. Let S be the vector subspace kept fixed by a
subgroup (the stabilizer, S) of elements of Gn, the n-subsystem Pauli group
formed (essentially) by the tensor product of Pauli matrices. This is equiva-
lent to invariance under the choice of local Hilbert space basis. Generally, each
group G of transformations acts transitively on an orbit O = G/S, where S is
the stabilizer subgroup of the orbit. Because states of N qubits are equivalent
in entanglement when they lie on the same orbit under LUTs of the statisti-
cal operator, each such orbit corresponds to a single entanglement class with
characteristic invariant quantities.
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The orbits have specific dimensionalities, dimO, given by the dimension
dimS of the stabilizer subgroups of states on the orbit and the dimension
dimG of the group in question: dimO = dimG − dimS. For LUTs, G, being
local, has elements of the form U1 ⊗ U2 ⊗ · · · ⊗ UN so that each unitary
transformation Ui acts on a Hilbert space corresponding to a component of
the total system in the possession of a single party in its local laboratory.
The dimension of the orbit is just the number of real parameters required to
specific the location of a state in the orbit. The Hilbert space of pure states of
N parties, each in possession of a single qubit is H(N) = C2 ⊗ C2 ⊗ · · · ⊗ C2.
Any pure state of the compound system is therefore described by 2(2N − 1)
real parameters, because there are 2N complex parameters and so 2N+1 real
parameters describing any state on this space, of which normalization reduces
the number of real parameters by one, as does the freedom of global phase. The
number of parameters describing a state thus grows exponentially with the
number of components, N . This fact has particularly significant ramifications
for quantum computation, discussed in Chapter 4.

More broadly, one can consider equivalence classes of multipartite states
under accessibility via SLOCC. In particular, on can find equivalence classes
of multipartite states via the criterion of mutual accessibility via invertible
local operations: a local invertible operator (ILO) is an operator that can be
written in tensor product form where each factor has a well-defined inverse
and acts in a single-party Hilbert subspace. Recall that SLOCC transforma-
tions are local quantum operations together with classical communication that
transform states with some finite probability of success, rather than with cer-
tainty. The number of state parameters that can be altered by a multiparty
ILO grows linearly in the number of parties, being 6N ; a single-qubit ILO
described by a four-complex-component matrix is required to have a non-
zero determinant scalable to unity because multiplication by a scalar does not
affect accessibility, and depends only on six real parameters [148].

Two pure states are of the same class in this sense if the parties involved
have a chance of successfully converting one state into another under SLOCC,
that is, if |Ψ ′〉 = M1 ⊗M2 ⊗ · · · ⊗MN |Ψ〉, where Mi ∈ SL(d,C) is an ILO
acting on the di-dimensional Hilbert space of subsystem i [38]. It is difficult
to find canonical states on the orbits of these multipartite states because the
set of equivalence classes of multi-qubit states under SLOCC, in the space
of orbits H(N)/(SL(2,C) × SL(2,C) × · · · × SL(2,C)), depends on at least
[2(2N − 1) − 6N ] parameters [148]. For N = 2, 3 there is a finite number
of equivalence classes, but there may be an infinite number for N > 3. The
situation when one party possesses more than one qubit is worse, even in the
case of three parties. In the case of two parties, there is a maximally entangled
state from which all states may be reached with certainty; in the case of three
parties, there is generally no such state [297].

One way of proceeding in the study of entanglement despite these difficul-
ties is to consider symmetrical states, which can be generated via special oper-
ations. In particular, the LOCC protocols known as twirling operations, have
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been applied to bipartite states of systems described by finite-dimensional
Hilbert spaces, to make limited further progress in this line of investigation cf.
[271]. The twirling operations, written in the form of group averages, namely,

T1 =
∫
U(d)

dU ⊗ U∗ρ (U ⊗ U∗)† , T2 =
∫
U(d)

dU ⊗ Uρ (U ⊗ U)† ,

have the following effects on states ρ.

T1(ρ) → ρiso(F ) = 1−F
d2−1 Id2 + Fd2−1

d2−1 P (|Ψ+
d 〉) , T1(ρ) → ρW(ε) = 1

d(d+ε)V ,

where F = tr
(
ρP (|Ψ+

d 〉)
)
, |Ψ+

d 〉 = 1√
d

∑d−1
i= |i〉|i〉 is a maximally entangled bi-

partite state in the product of two d-dimensional Hilbert spaces, V is the swap
operator which takes |φ〉⊗|ψ〉 → |ψ〉⊗|φ〉, dU is the normalized left-invariant
Haar measure on U , and ρW is a Werner state. One of these operations, T1,
maps the quantum state ρ into an isotropic state, which is separable if and
only if F ≤ 1

d , which characterizes the PPT property; the Werner states are
separable iff they have the PPT property. If a state ρ ∈ Hd ⊗Hd has a PPT,
then it is non-distillable, that is, a bound state [237].

A.5 Elements of Traditional and Quantum Logic

A Boolean algebra Bn is an algebraic structure given by the collection of 2n

subsets of the set I = {1, 2, . . . , n} and three operations under which it is
closed: the two binary operations of union (∨) and intersection (∧), and a
unary operation, complementation (¬). In addition to there being comple-
ments (and hence the null set ∅ being an element), one assumes

(1) Commutativity: S ∨ T = T ∨ S and S ∧ T = T ∧ S;
(2) Associativity: S∨ (T ∨U) = (S∨T )∨U and S∧ (T ∧U) = (S∧T )∧U ;
(3) Distributivity: S ∧ (T ∨ U) = (S ∧ T ) ∨ (S ∧ U) and S ∨ (T ∧ U) =

(S ∨ T ) ∧ (S ∨ U); and
(4) ¬∅ = I, ¬I = ∅, S ∧ ¬S = ∅, S ∨ ¬S = I, ¬(¬S) = S ,

for all its elements S, T, U . The algebra B1 is the propositional calculus arising
from the set I = {1}, which is also used in digital circuit theory, where ∅
corresponds to FALSE, I to TRUE, ∨ to OR, ∧ to AND, and ¬ to NOT. The
‘basic’ logic operation XOR corresponds to (S ∨ T )∧ (¬S ∨¬T ). A σ-algebra
is a nonempty collection S of subsets of a set X such that

(1) The empty set ∅ is in S;
(2) If A is in S, then the complement of A in X is in S; and
(3) If An is a sequence of elements of S, then the union of the elements of

the sequence is also in S.
A poset (partially ordered set) P is a set S together with a binary (partial
ordering) relation, ≤, that is
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(1) Reflexive: a ≤ a;
(2) Antisymmetric: a ≤ b and b ≤ a implies that a = b, for all a, b ∈ S;

and
(3) Transitive: a ≤ b and b ≤ c implies that a ≤ c, for all a, b, c ∈ S.

The least upper bound (lub) of two elements, a and b, under ≤ is written
a∨ b; the greatest lower bound (glb) is written a∧ b. An orthomodular poset
is a poset, with a unary operation ⊥, fulfilling the following four conditions.

(1) 0 ≤ a ≤ 1 for all a ∈ P , 0 being the zero element and 1 the unit;
(2) For all a, b ∈ P , (a⊥)⊥ = a, a ≤ b⇒ b⊥ ≤ a⊥, a ∨ a⊥ = 1;
(3) If a ≤ b⊥ then a ∨ b ∈ P ; and
(4) If a ≤ b, then there is an element c ∈ P such that c ≤ a⊥ and b = a∨c.

Condition (2) ensures that the operation ⊥ : P → P , corresponding to set-
theoretic complementation, is an orthocomplementation; (4) is the orthomod-
ular law. Two elements a and b of an orthomodular poset are said to be
orthogonal if a ≤ b⊥.

A lattice is a poset for which there exists both a lub and a glb for every pair
of elements. A lattice contains both a zero element, 0, and an identity element,
1, if 0 ≤ a and a ≤ 1 for every one of its elements a. A lattice is a complemented
lattice if there exists a complement, a⊥, for every one of its elements, a—
that is, if for every a there exists an element a⊥, such that a ∨ a⊥ = 1 and
a∧a⊥ = 0. A lattice is a distributive lattice if for all triplets of elements a, b, c,
a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c). An orthomodular
lattice is an orthomodular poset that is a lattice. A Boolean lattice (or Boolean
algebra) is a lattice that is both complemented and distributive. Every element
of a Boolean lattice has a unique complement that is an orthocomplement. An
orthomodular lattice is an orthomodular poset that is a lattice. Elements a and
b of an orthomodular poset are orthogonal if a ≤ b. Given two orthomodular
posets P1 and P2, P1 is orthorepresentable in P2 if there exists a mapping,
called the orthoembedding, h: P1 → P2, such that, for every a, b ∈ P1:

(1) h(0) = 0,
(2) h(a⊥) = h(a)⊥,
(3) a ≤ b if and only if h(a) ≤ h(b), and
(4) h(a ∨ b) = h(a) ∨ h(b) whenever a ⊥ b.

An orthomodular poset P1 is representable in another orthomodular poset P2

if there exists a mapping h : P1 → P2 such that h is an orthoembedding for
which h(a ∨ b) = h(a) ∨ h(b) for every a, b ∈ P1. The set h(P1) is then an
orthorepresentation of P1 in P2. A Boolean subalgebra of an orthomodular
poset is a suborthoposet that is then a Boolean algebra.
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A.6 C∗-Algebras

A Banach space is a normed space in which every Cauchy sequence con-
verges. The observables of a quantum system form a real Banach (i.e. com-
plete normed linear) space A such that A ∈ A. The powers of A,An ∈ A for
n= 0, 1, . . . , are well-defined and such that the usual rules for operating with
polynomials in a single variable hold. A Banach ∗-algebra is an algebra of
operators that form a Banach algebra with respect to the operator norm and
has defined on it an involution A→ A∗, satisfying i) (A+B)∗ = A∗ +B∗, ii)
(cA)∗ = c∗A∗,∀c ∈ C, iii) (AB)∗ = A∗B∗, and iv) (A)∗∗ = A, for all A,B ∈ A.
In the context of quantum mechanics, one identifies ∗ with †, (Hermitian) ad-
joint. A ∗-subalgebra is sometimes called an operator ∗-algebra. The set of
linear operators on Hilbert space fulfills these conditions. A Banach algebra
with involution, A can be given a representation on a Hilbert space H, by a
linear map π : A → B(H), into the bounded linear operators on H such that
i) π(AB) = π(A)π(B), and ii) π(A∗) = π(A)∗, for all A ∈ A. The Hilbert
space is then called the representation space. Every norm-closed ∗-subalgebra
of the algebra of all bounded operators on a Hilbert space, with the norm in-
duced by the inner product is a Banach ∗-algebra; it also fulfills the relations
||A∗|| = ||A|| and ||A∗A|| = ||A∗||||A||, so that ||A∗A|| = ||A||. A C∗-algebra
is Banach algebra for which ||A∗A|| = ||A||2, for all its elements. Quantum
mechanics can thus be viewed as a C∗-system where the C∗-algebra is that
of the set of all bounded self-adjoint operators acting on finite-dimensional
Hilbert space. A W∗-algebra A is a C∗-algebra, the dual space of a Banach
space A∗, so that (A∗)∗ = A.

The C∗-algebraic approach to quantum mechanics is based on the abstract
algebra A, the self-adjoint elements (the observables) of which form a Jordan
algebra. Quantum states are normalized positive linear function ρ on the C∗-
algebra A. Every state ρ assigns to each A ∈ A a complex number ρ(A) in
such a way that we have a ρ which is i) ρ(1) = 1 , normalized, ii) ρ(A∗A) ≥ 0,
positive, and iii) ρ(aA + bB) = aρ(B) + bρ(B), for every A,B ∈ A, for all
a, b ∈ C. The algebra of observables can be taken to be the algebra B(H) of all
bounded observables acting on a complex Hilbert space H. Every normalized
vector Ψ ∈ H defines a state ρΨ (A) ≡ 〈Ψ |AΨ〉, for all A ∈ A. Such a state
is known as a vector state. Generally, every density operator ρD ∈ B(H).
defines a state ρD(A) ≡ tr(DA), for all A ∈ A. Such states are normal states.
A normal state is pure if and only if D is a projection, i.e. D2 = D; it is
therefore pure if and only if it is a vector state.

Note that most C∗-algebras have an uncountable number of unitarily in-
equivalent representations. It was hoped that all quantum-mechanical theories
could be formulated independent of representation, but this has not been the
case thus far. Another difficulty for C∗-algebraic quantum mechanics is that it
presupposes a statistical interpretation, and in any non-classical system (i.e.
when the algebra of observables does not commute) a mixed statistical state
cannot determine the ensemble since the set of states.
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46. Beth, T., and M. Rötteler, in G. Alber, T. Beth, M. Horodečki, P. Horodečki,
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236. Horodečki, P., “Separability criterion and inseparable mixed states with pos-

itive partial transposition,” Phys. Lett. A 232, 333 (1997).
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355. Poincaré, H., Théorie mathématique de la lumière, II (Gauthier-Villars; Paris,

1892).
356. Popescu, S., and D. Rohrlich, “Generic quantum nonlocality,” Phys. Lett. A

166, 293 (1992).
357. Popescu, S., and D. Rohrlich, “Action and passion at a distance,” in Cohen

et al. (Eds.), Potentiality, entanglement and passion-at-a-distance (Kluwer;
Dordrecht, 1997); also http://xxx.lanl.gov quant-ph/9605004 (3 May, 1996).

358. Popescu, S., and D. Rohrlich, “Thermodynamics and the measure of entan-
glement,” Phys. Rev. A 56, R3319 (1997).

359. Popescu, S., and D. Rohrlich, “The joy of entanglement,” in [301], p. 29.
360. Popper, K. R., “The propensity interpretation of probability,” Brit. J. Phil.

Sci. 10, 25 (1959).
361. Popper, K. R., Quantum theory and the schism in physics (Rowan and Lit-

tlefield; Totowa, NJ, 1982).
362. Preskill, J., Physics 229: Advanced mathematical methods of physics—

Quantum computation and information, California Institute of Technology,
1998. http://www.theory.caltech.edu/people/preskill/ph229/ .

363. Price, H., “Probability in the Everett world: Comments on Wallace and
Greaves,” http://philsci-archive.pitt.edu/archive/00002654 .

364. Primas, H., Chemistry, quantum mechanics and reductionism (Springer;
Berlin, 1983).

365. Przibram, K. (Ed.),Letters on wave mechanics (Philosophical Libary; New
York, 1967).

366. Putnam, H., “Is logic empirical?” Boston Stud. Phil. Sci. 5, 216 (1969).
367. Putnam, H., “Quantum mechanics and the observer,” Erkenntnis 16, 193

(1981).



References 287

368. Putnam, H., Realism and reason (Cambridge University Press; Cambridge,
1983).

369. Quine, W. V. O., “Epistemology naturalized,” in Ontological relativity or
other essays (Random House; New York, 1969), p. 69.

370. Raussendorf, R., and H. J. Briegel, “A one-way quantum computer,” Phys.
Rev. Lett. 86, 5188 (2001).

371. Redhead, M. L. G., Incompleteness, nonlocality and realism (Oxford Univer-
sity Press; Oxford, 1987).

372. Redhead, M. L. G., From physics to metaphysics (Cambridge University Press;
Cambridge, 1995).

373. Reichenbach, H., Philosophic foundations of quantum mechanics (University
of California; Berkeley, 1944).

374. Richter, Th., “Interference and non-classical spatial intensity correlations,”
Quantum Opt. 3, 115 (1991).

375. Robertson, H. P., “The uncertainty principle,” Phys. Rev. 34, 163 (1929).
376. Rosenfeld, L., “Strife about complementarity,” Science Prog. 163, 393 (1953).
377. Rosenfeld, L., “Misunderstandings about the foundations of quantum theory,”

in [278].
378. Rosenfeld, L., “Physics and metaphysics,” Nature 181, 658 (1958).
379. Rosenfeld, L., “Foundations of quantum theory and complementarity,” Nature

190, 384 (1961).
380. Rothstein, J., “Information, logic, and physics,” Phil. Sci. 23, 31 (1956); paper

original presented before the American Physical Society in 1951.
381. Rothstein, J., “Information, measurement, and quantum mechanics,” Science

25, 510 (1951).
382. Rothstein, J., “Information and thermodynamics,” Phys. Rev. 85, 135 (1957).
383. Rothstein, J., “Information and organization as the language of the operational

viewpoint,” Phil. Sci. 29, 406 (1962).
384. Ruelle, D., Chance and chaos (Princeton University Press; Princeton, 1991).
385. Rungta, P., and C. M. Caves, “Concurrence-based entanglement measures for

isotropic states,” Phys. Rev. A 67, 012307 (2003).
386. Ryle, G., The concept of mind (The University of Chicago Press; Chicago,

1949).
387. Saunders, S., “Time, quantum mechanics, and decoherence,” Synthese 102,

235 (1995).
388. Saunders, S., “Time, quantum mechanics, and probability,” Synthese 114, 405

(1998).
389. Scheibe, E. (J. B. Sykes, translator), The logical analysis of quantum mechan-

ics (Pergammon Press; Oxford, 1973).
390. Schlosshauer, M., “Decoherence, the measurement problem, and interpreta-

tions of quantum mechanics,” Rev. Mod. Phys. 76, 1267 (2005).
391. Schlosshauer, M., Decoherence and the quantum-to-classical transition

(Springer; New York, 2007).
392. Schmidt, E. “Zur Theorie der linearen und nichtlinearen Integralgleichungen,”

Math. Annalen 63, 433 (1906).
393. Schrödinger, E. “Quantisierung als Eigenwertproblem,” Annalen der Physik

81, 109 (1926).
394. Schrödinger, E., “Die gegenwaertige Situation in der Quantenmechanik,” Die

Naturwissenschaften 23, 807 (1935).



288 References

395. Schrödinger, E., “Discussion of probability relations between separated sys-
tems,” Proc. Cambridge Philos. Soc. 32, 446 (1935).

396. Schumacher, B. W., “Quantum coding,” Phys. Rev. A 51, 2738 (1995).
397. Schumacher, B. W., “Sending entanglement through noisy quantum channels,”

Phys. Rev. A 54, 2614 (1996).
398. Schumacher, B. W., and M. D. Westmoreland, “Quantum mutual information

and the one-time pad,” http://xxx.lanl.gov quant-ph/0604207 (2006).
399. Schumacher, B. W., M. D. Westmoreland, and W. K. Wootters, “Limitation

on the amount of accessible information in a quantum channel,” Phys. Rev.
Lett. 76, 3452 (1996).
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