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Preface

The problem of allocating scarce resources among competing ends is central to eco-
nomic analysis. Resources are not sufficiently available to produce all of the goods
and services to satisfy human wants and therefore choices must be made concern-
ing how resources will be used. Particularly in its “neoclassical” phase, since about
1870 economic analysis tends to presuppose that the economic agents are optimizing.
Production units, or firms, maximize profit and households maximize their utility or
well-being. In general, there exist a variety of objectives, besides profit maximiza-
tion, high sales revenue or market share, environmental goals or the different goals
followed by economic policy. The scarcity of resources acts as a bottleneck in the
furthering of the objectives and represents the opportunity set from which the choices
can be made. The problem of optimal allocation of scarce resources can thus be sum-
marized as the optimization of some objective(s) subject to constraints. Constrained
optimization, referred to as a mathematical programming model, is useful in eco-
nomic analysis for providing deeper insights into the behavior of economic agents as
well as for preparing of decision support systems for businessmen and policymakers.

This book is intended to offer the reader a systematic exposition of both single-
and multiobjective optimization models with the focus on their use for economic
analysis. The emphasis is given to the exposition of mathematical optimization as an
instrument for qualitative analysis and to a wide range of applications in economics,
including efficiency analysis, industrial economics (with focus on regulatory eco-
nomics), international economics, input–output economics, quantitative economic
policy and environmental economics.

Part I of the book is devoted to single-objective optimization and starts with
the notion of scarcity and efficiency and with the formulation of different economic
problems leading to optimization models (Chapter 1). Kuhn–Tucker conditions as the
necessary optimality conditions for the general mathematical programming problem
are explored and their application as an instrument of qualitative economic analysis
is presented in Chapter 2.

Chapter 3 deals with convex programming and with the economic implications of
the convexity property. For an economist, the problem of optimal allocation of scarce
resources is immediately related to the pricing problem, referred to in the language of



xii Preface

mathematical programming as the dual problem. Therefore, the basic duality theory
is presented with the focus on its economic interpretation.

In Chapter 4, the theory of linear programming as the simplest and most widely
spread class of convex programming is developed. The chapter concentrates on the
implications of a linearity assumption for economic analysis and the applications of
linear programming in economics.

Data envelopment analysis (DEA) as one of the most important recent applications
of linear programming in economics is treated in Chapter 5. DEA represents a widely
used approach for measuring efficiency and productivity even when dealing with
multiple inputs and outputs without the need to assign prespecified weights to either.

Chapter 6 completes the first part of the book with geometric programming as a
special class of nonlinear programming focusing on various applications in economics
and management science.

In Part II of the book, multiobjective optimization is presented as an instrument
of economic analysis providing a deeper insight into the trade-off choices that have

Kuhn–Tucker conditions and with the duality theory for multiobjective optimization.
Examples from different fields of economics and the analysis of the behavior of a firm
facing a bicriteria objective under regulatory constraint demonstrate the possibilities
for the application of multiobjective optimization in economic analysis.

As in single-objective optimization, the most developed part of multiobjective
optimization is multiobjective linear programming, treated in Chapter 8.

The extension of geometric programming from the first part of the book to prob-
lems with multiple objectives is the subject of Chapter 9. A list of references is added
to each chapter separately with the aim of providing references for more detailed
study and further reading related to particular topics.

Because of the increasing complexity of recent economic problems, the use of
mathematical techniques including optimization plays a very important part in eco-
nomics education and in applied economic research. The book is intended for uni-
versity economists, graduate and postgraduate students and for quantitative oriented
economists in applied research who want to expand the array of mathematical tech-
niques at their disposal. Students of mathematics and operations research interested
in economic applications of mathematical programming can also benefit from using
this book. As a prerequisite to follow the text, the basics of calculus and linear algebra
are needed. Definitions, theorems, and propositions are stated rigorously, but due to
the mathematical prerequisite and to emphasize an economic interpretation, most of
the proofs are omitted and referred to in the literature.

Following not only the principle of the division of labor by the classical economist
Adam Smith, optimization under uncertainty referred to as stochastic programming
and questions of choice in dynamic economic models (there are some excellent mono-
graphs in this field) are not discussed in the book. These problems and models
require essentially higher mathematical background and I aimed to provide a not-too-
voluminous text.

A number of students and colleagues have contributed to this book directly or in-
directly. The book is an outgrowth of many courses in optimization and mathematical

to be made with respect to the objectives. Chapter 7 deals with the extension of the
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economics that I have taught at Vienna University of Economics and Business Ad-
ministration, Vienna University of Technology and Comenius University Bratislava,
Slovakia. Inspiring questions that students have raised in my courses have often
helped me both to clarify and to deepen my own perception of particular topics. I
am indebted to numerous authors and researchers who contributed to the study of
mathematical optimization and economics. Relevant literature sources are listed at
the end of each chapter.

I owe much to Gustav Feichtinger for his unending encouragement and support
during the long and fruitful time I shared with him at the Vienna University of Tech-
nology. I wish to express my gratitude to my first teachers at the University of
Economics in Bratislava, Juraj Fecanin, Milan Hamala, Jozef Sojka, and Ladislav
Unčovský, who introduced me to optimization and mathematical economics. I thank
Bernhard Böhm and František Turnovec for permission to include part of the research
outcome published in our joint papers into the book.

I am grateful to Clemens Hödl, Wolfgang Katzenberger, Carl-Louis Sandblom,
Susanne Warning, Wendy Williams, and Michael Weber who read the manuscript (or
its parts) and suggested many improvements.

The book went through several drafts, and I am deeply indebted to Viera
Zajačiková for her patience and excellent typing of the manuscript. I thank Daniel
Ševčovič and Robert Zvonár for preparing the figures.

I want to thank the publisher’s two anonymous referees for their very helpful
comments. Any errors or omissions in the book are the responsibility of the author
only and I will be grateful if they are pointed out to me.

Finally, I would like to thank the publisher for constructive cooperation and
patience, understanding and encouragement during the years it took to complete
the book.

Last but not least, I wish to express my thanks to my family—my wife Anni
and children Martin, Andrea, and Peter—for their encouragement and understanding
during the time-consuming task of preparing this book.

Mikuláš Luptáčik
Vienna, January 2009



Part I

Single-Objective Optimization

The very name of my subject, economics, suggests economizing or maxi-
mizing.

Paul A. Samuelson
Nobel Memorial Lecture

December 11, 1970



1

Scarcity and Efficiency

Scarcity is a fundamental problem faced by all economies. Not enough resources are
available to produce all of the goods and services to satisfy human wants. According
to a frequently cited definition of economics by Robbins [41, p. 16]: “Economics is
the science which studies human behavior as a relationship between ends and scarce
means which have alternative uses.” In the Concise Encyclopedia of Economics,1

this definition of economics is still used to define the subject today. Although this
definition is simplified and “it cannot be understood as a complete list of topics be-
longing to economics, the scarcity principle certainly plays some role in all economic
studies” [40, p. 13; translated by the author]. Scarce commodities are those which are
both desired and not freely available. The scarcity of resources cannot be eliminated;
rather, choices must be made about how resources will be used. The answer given
by economists is based on the notion of efficiency. In a very simple formulation, it
means that the desired end is achieved by minimal use of resources or under the given
amount of resources the desired end is maximized. Efficiency implies the recognition
of scarcity and at the same time the best possible use of the disposable resources.

The problems of optimal allocation of scarce resources are of particular interest
in microeconomics: the neoclassical theory of the household and the neoclassical
theory of the firm are two principal areas of study. Quantitative economic policy,
the theory of optimal economic growth, international economics and environmental
economics are other fields of application of the idea of best allocation of scarce
resources and therefore of the optimization models which “have come to occupy a
prominent position in modern economic theory” [36, p. 7]. Optimization models are
useful for economists not only for understanding the behavior of economic agents (that
means in a positive sense), but also in the preparation of decision support systems for
businessmen and policymakers (that means in a normative sense). In this first chapter,
some optimization models in economics will be formulated in order to illustrate the
variety of economic problems and to provide a good starting point for the analysis in
subsequent chapters.

1 http://www.econlib.org/library/CEE.html.

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
Springer Optimization and Its Applications 36, DOI 10.1007/978-0-387-89552-9_1,  
© Springer Science+Business Media, LLC 2010 



4 1 Scarcity and Efficiency

1.1 The Mathematical Programming Problem

The basic economic problem of allocating scarce resources among competing ends has
three components. First, there are the instruments whose values can be chosen by the
economic agent (such as a consumer or a producer). These are the decision variables
in the problem. Second, the scarcity of the resources is represented by the opportunity
set or the set of feasible values from which to choose. Finally, the competing ends
are described by some criterion function, called the objective function, which gives
the value attached to each of the alternative decisions. The mathematical problem in
the language of economics is the following: how to choose the instruments within
the opportunity set so as to maximize or minimize the objective function.

For this purpose, let us denote the decision variables by an n-dimensional vector
x′ = (x1, x2, . . . , xn) and them constraints reflecting the availability of the resources
by the inequalities

fi(x1, x2, . . . , xn) � 0 (i = 1, 2, . . . , m).

The set K = {x|x ∈ Rn, fi(x1, x2, . . . , xn) � 0 (i = 1, 2, . . . , m)} is the set of
feasible solutions or the opportunity set, which is a subset of the Euclidean n-space
(the space of all n-tuples of real numbers), K ⊂ En. It will generally be assumed
that K is not empty, that is, that there exists a feasible vector x, where x is feasible if
and only if x ∈ K .

A mathematical programming model reflecting the basic problem of the allocation
of scarce resources among alternative uses can be formulated as follows:

maximize (minimize) f0(x1, x2, . . . , xn)

subject to fi(x1, x2, . . . , xn) � 0 (i = 1, 2, . . . , m),
(1.1)

where f0(x) denotes the objective function. The term “programming” has been used
initially to denote that the aim of the calculation is to find a program.

1.2 Mathematical Programming Models in Economics

Mathematical programming has been applied to a wide variety of problems in eco-
nomics. According to [12, p. 9]—one of the groundbreaking books in this field—the
first economic problem solved by the explicit use of mathematical (linear) program-
ming was the diet problem. It was formulated and approximately solved by Jerome
Cornfield in an unpublished memorandum. It was solved by Stigler [43] without
obtaining the optimal solution and in 1947 by G. B. Dantzig and J. Laderman using
linear programming.

1.2.1 The Diet Problem

Each type of food, such as potatoes, meat, bread, apples, grapes, etc., contains a
specific quantity of nutrients, e.g., carbohydrates, protein, fat, vitamin D, and others.
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We consider n different foods available on the market, denoted by the index j =
1, 2, . . . , n, andm nutritional ingredients, denoted by the index i = 1, 2, . . . , m. The
quantity of the ith nutrient contained in one unit of food of type j is described by the
coefficient aij . For healthy nourishment bi units of the ith nutrient (i = 1, 2, . . . , m)
as the minimum requirements per day or per unit of time should be consumed. The
price per unit of food j (j = 1, 2, . . . , n), denoted by cj , is given and independent
of the purchased quantity of this food. In other words, no discount for a higher
quantity of purchased food j is provided. What foods, and how much of each, should
the hard-pressed consumer buy in order to provide a healthy diet for his family at
minimum cost?

Denoting the number of units of food j in the diet by xj , the constraints concerning
nutritional requirements can be formulated in the following way:

n∑
j=1

aij xj � bi (i = 1, 2, . . . , m). (1.2)

The total amount of the nutrient i (i = 1, 2, . . . , m) contained in the diet x =
(x1, x2, . . . , xn)

′ should be at least bi units.
The housewife or the houseman can only buy the food j or not. Therefore the

nonnegative conditions on the decision variables x1, x2, . . . , xn must be imposed:

xj � 0 (j = 1, 2, . . . , n). (1.3)

The system of inequalities (1.2)–(1.3) describes the set of feasible solutions or the
opportunity set and the mathematical programming problem consists of the mini-
mization of the objective function (the total cost of the diet) z = ∑n

j=1 cj xj under
the constraints (1.2)–(1.3). In matrix notation, we can simply write the mathematical
programming problem of the consumer as

minimize z = c′x
subject to Ax � b,

x � 0,

(1.4)

where c ∈ Rn, x ∈ Rn, b ∈ Rm, and A is an m× n matrix.
There are some modifications and extensions of the basic diet model (1.4). A

family food planning model taking into account changes in the eating habits, food
prices, and dietary allowances is described in [2].

The Consumer and Food Economics division of theAgricultural Research Service
of the U.S. Department of Agriculture has developed a system of specifying the food
quantities “to help families to plan nutritionally adequate and satisfying meals for the
money they can afford” [2, p. 327]. The foods are defined as food groups such as
milk products, eggs, meat, vegetables, fruits, etc. for a number of sex–age groups and
budget levels.

The goal was “to adjust the food plans as close as possible to the food consumption
patterns established by the 1965–1966 household survey data” [2, p. 328] so that they
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would be nutritionally adequate. The problem was formulated as the minimization
of the weighted total squared deviations of each food (group) quantity in the food
plan relative to the 1965 consumption levels for each sex–age group and income level
under consideration of the (new) nutritional constraints.

Let qj denote the past consumption of food quantity j and xj the corresponding
quantity in the new food plan. To find the optimal food plan the following mathemat-
ical programming model was formulated:

minimize
n∑
j=1

w2
j (qj − xj )

2

subject to Ax � b,

Rx � d,

(1.5)

wherewj are the weights for the relative contributions of deviations andA is the matrix
of food cost and nutrient composition data. The R matrix represents a set of upper
and lower bounds as well as proportionality constraints imposed on the components
of the solution vector to assure strictly positive and acceptable food quantities.

For further developments of the diet model and for applications of mathematical
programming to optimize human diets, the reader is referred to [2]. As shown in
this paper, the menus planned by mathematical programming “are superior to those
planned by conventional methods. . . . In the four hospitals cost savings of 10, 15%
to 15, 30% were achieved relative to the conventional plans” [2, p. 333].

1.2.2 The Neoclassical Theory of the Household

The household and the firm are the two most important economic agents. The house-
holds consume commodities and supply their capacity to work; the firms produce
commodities (and services) and demand labor.

Assuming that there are n goods (and services) available, let x be the column
vector of the goods purchased and consumed by the household,

x′ = (x1, x2, . . . , xn)
′.

The preferences of the household with respect to the consumption of particular goods
(and services) are described by the utility function U(x) of the household,

U(x) = U(x1, x2, . . . , xn),

giving utility as a function of consumption levels. It fulfills the usual neoclassical
properties:

(i) ∂U
∂xj

> 0—the marginal utility (utility received from the consumption of the last
“small” amount) of the good j (j = 1, 2, . . . , n) is positive and

(ii) decreasing, ∂
2U

∂x2
j

< 0 (j = 1, 2, . . . , n).
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Marginal utility decreases as consumption increases. This principle is known as
Gossen’s first law.

Let p be the row vector of (positive) given prices of the goods,

p = (p1, p2, . . . , pn),

and M the (positive) given income available to the household.
The household is assumed to behave so as to maximize utility subject to a budget

constraint. Thus the household chooses nonnegative amounts of goods x (it will
consume the particular good or not) so as to maximize the utility functionU(x) under
the constraint that expenditure on all n goods cannot exceed disposable income M .
The problem of the household is then

maximize U(x)

subject to px =
n∑
j=1

pjxj ≤ M,

x � 0.

For a comparison of the diet problem with the neoclassical theory of household, see
[12, Chapter II].

1.2.3 The Neoclassical Theory of the Firm

The firm is assumed to behave so as to maximize profit, subject to the technological
constraint described by the production function. Suppose that the firm uses n inputs
(labor, coal, iron ore, etc.) to produce a single output, let x be the column vector of
inputs,

x′ = (x1, x2, . . . , xn)
′,

and let q be the output. The firm’s production function is represented by

q = f (x) = f (x1, x2, . . . , xn), (1.6)

giving output as a function of its inputs. Equation (1.6) assumes nothing but the
existence of a maximum output corresponding to any combination of inputs.

Let r be a row vector of (positive) given prices of the inputs,

r = (r1, r2, . . . , rn),

and p the (positive) given price of the output.
A firm is in a competitive situation if it can buy and sell in any quantities at

exogenously given prices, which are independent of its production decisions. In
other words, the competitive firm is a price taker.

The firm behaves so as to maximize the profit π , given as the difference between
revenue, pq, and cost, given as the total expenditure on all inputs,
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rx =
n∑
j=1

rj xj .

The problem of the (competitive) firm can then be stated as the following mathematical
programming problem:

maximize
x

π(x) = pf (x)− rx

subject to x � 0.

Another version of this problem often used in production theory is based on the
assumption of the given output level q∗. The firm is trying to minimize its cost, M ,
of the inputs used to produce q∗. The expenditure of the firm is given by

M(x) = r1x1 + r2x2 + · · · + rnxn,

and the mathematical programming problem is then

minimize
x

M(x)

subject to f (x) = q∗ and x � 0.
(1.7)

Closely interrelated to this formulation is the problem of the firm with a given level
of expenditure or prespecified budget,M∗, and an objective function that maximizes
the production q. Thus the firm chooses levels of inputs so as to maximize output,
subject to a budget constraint:

maximize
x

f (x)

subject to r1x1 + r2x2 + · · · + rnxn � M∗ and x � 0.
(1.8)

For illustration of models (1.7) and (1.8), we consider the technology defined by
the Cobb–Douglas production function (for simplicity, but without loss of generality,
with just two inputs):

q = f (x1, x2) = axα1 x
β
2

with a > 0, 0 < α < 1, and 0 < β < 1.
In this case, problem (1.7) leads to the following mathematical programming

model:
minimize
x1,x2

r1x1 + r2x2

subject to axα1 x
β
2 � q∗ and x1 > 0, x2 > 0.

(1.9)

Problem (1.8) then takes the following form:

maximize
x1,x2

axα1 x
β
2

subject to r1x1 + r2x2 � M∗ and x1 > 0, x2 > 0.
(1.10)
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1.2.4 The Theory of Comparative Advantage

Many years ago, the English economists Robert Torrens2 (1780–1864) and Ri-
cardo [42] developed independently the classical theory of international trade, referred
to as the theory of comparative advantage. Dorfman, Samuelson, and Solow [12,
pp. 31–32] slightly modified a traditional numerical example of [42] in the following
form: “Portugal can divert resources from food to clothing production and in effect
convert one unit of food into one unit of clothing; England, on the other hand, can
convert one unit of food into two units of clothing.” If there exists an international
price ratio p1

p2
, somewhere between 1 and 2, both countries will be better off if they will

specialize: Portugal completely in food, England completely in clothing. England
will export clothing in exchange for food imports from Portugal. World production
will be optimal.

These economic conclusions can be derived using a mathematical programming
framework. First, we consider England and denote by x1 the units of food produced
and by x2 the clothing output. The real value of the national product of England
(expressed in clothing units) may be written as

Z = p1

p2
x1 + x2, or, say, Z = 1, 5x1 + x2. (1.11)

The problem is to maximize the national product (1.11) subject to the constraint

2x1 + x2 � C,

x1 � 0, x2 � 0.

In this inequality, C is England’s maximum output of clothing when no food is
produced. According to our assumption, clothing output must be cut back by two
units for every unit of food produced. Thus the maximum output of clothing, when
x1 units of food are produced, is x2 = C−2x1, and this leads to the inequality stated.

In a similar way, Portugal will maximize its national product:

Z′ = 1, 5x′
1 + x′

2 = p1

p2
x′

1 + x′
2

subject to x′
1 + x′

2 � C′,
x′

1 � 0, x′
2 � 0,

where x′
1 denotes the production of food and x′

2 the clothing output for Portugal. C′
is Portugal’s maximum output of clothing (or food) when no food (or no clothing) is
produced.

We will return to this problem in Section 4.6.1.

1.2.5 The Giffen Paradox

In a letter from A. Marshall to F. Y. Edgeworth dated April 22, 1909 [37, p. 441], the
following example is described: “I believe that people in Holland travel by canal boat

2 An Essay on the External Corn Trade, 1815.
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instead of railway sometimes on account of its cheapness. Suppose a man is in hurry
to travel 150 kilos. He had two florins for it and no more. The fare by boat was one
cent a kilo, by third-class train two cents. So he decided to go 100 kilos by boat and
fifty by train: total costs two florins. Arriving at the boat, he found the charge had
been raised to 1 1

4 cents per kilo. ‘So then I will travel 133 1
3 (or as near as may be) by

boat; I can’t afford more than 16 2
3 kilos by train.”’

This decision problem can be formulated as the following optimization prob-
lem [3]:

Let x1, x2 denote the distance traveled by train and boat, respectively, and c1, c2
are the times required per kilo covered by the two means of transportation, where
c1 < c2. The objective is to

minimize c1x1 + c2x2

subject to x1 + x2 � 150,

2x1 + x2 � 200,

x1, x2 � 0.

We write 200 cents for 2 florins.
After the increased boat charge, we are confronted with the following problem:

minimize c1x1 + c2x2

subject to x1 + x2 � 150,

2x1 + 5

4
x2 � 200,

x1, x2 � 0.

This problem illustrates the appearance of the Giffen paradox (or the Giffen com-
modity) if the quantity demanded increases as price increases, and it will be analyzed
in Section 4.6.2.

1.2.6 The Transportation Problem

One frequently encountered problem, first introduced by Hitchcock in 1941 and since
then in a wide variety of seemingly completely different problems reduced to this
model, is the following:

Let a company own m warehouses, denoted by the index i (i = 1, 2, . . . , m) in
each of which is a given amount of a certain commodity, denoted by ai . Let there also
be n retailers, denoted by the index j (j = 1, 2, . . . , n), with given demand bj for
this commodity. The unit transportation cost between each warehouse–retailer pair,
denoted by cij , is known. The objective of the company is to ship the commodity
from the warehouses to the retailers, such that

• no more units of commodity leave a warehouse than there are in stock,
• the demand of each retailer is satisfied, and
• the total transportation cost is minimized.
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For simplicity, we assume that the total supply equals the total demand:

m∑
i=1

ai =
n∑
j=1

bj .

If total supply exceeds total demand, exactly one dummy retailer is created to absorb
the excess supply; its demand equals

m∑
i=1

ai −
n∑
j=1

bj .

The case of excess demand is handled similarly, using exactly one dummy warehouse.
All unit transportation costs from a dummy warehouse or to a dummy retailer are
assumed to be equal.

Defining variables xij to denote the quantity shipped from the ith warehouse to
the j th retailer, we can formulate the following model of mathematical programming:

minimize z(x) =
m∑
i=1

n∑
j=1

cij xij

subject to
n∑
j=1

xij = ai (i = 1, 2, . . . , m),

m∑
i=1

xij = bj (j = 1, 2, . . . , n),

xij � 0 (i = 1, 2, . . . , m),

(j = 1, 2, . . . , n).

1.2.7 Portfolio Selection Model

Assume that a certain amount of financial funds is going to be invested in n different
securities. Let xj represent the proportion of the available funds that is allocated to
the j th security, j = 1, 2, . . . , n. Furthermore, zj denotes the gain at the end of the
planning horizon per dollar invested in security j . The values of zj are assumed to
be a random variable with known expected value:

E(zj ) = µj (j = 1, 2, . . . , n);
E stands for mathematical expectation.

Usually the securities with high expected values are securities with high risk.
In order to reduce the risk, the brokers recommend to their clients the diversi-
fication of financial funds to different securities, which is in contradiction to the
profit-maximization hypothesis. As a measure of risk, Markowitz [33, 34] chooses
the covariance matrix V = {σjk}, such that σjk = E[(zj − µj )(zk − µk)],
j, k = 1, 2, . . . , n. The expected gain of the portfolio selected is expressed by
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E(P ) =
n∑
j=1

µjxj

and the variance of the total gain by

V (P ) =
n∑
j=1

n∑
k=1

σjkxj xk.

The decision problem is now to choose the proportion xj in order to minimize
the variance of the total gain and simultaneously to maximize the expected gain. We
have an optimization problem with two objectives that are usually in conflict. One
possibility for finding a compromise solution is to minimize the variance of the total
gain for the lowest acceptable expected gain, or to maximize the expected gain of
the portfolio under the condition that the variance of the total gain does not exceed a
certain prescribed level.

Obviously, the solution to this problem depends on the risk aversion of the in-
vestors. If we denote the coefficient of the risk aversion by ρ (which is given), the
portfolio selection problem can be formulated as the following mathematical pro-
gramming problem:

maximize Q(x) =
n∑
j=1

µjxj − ρ

m∑
i=1

n∑
k=1

σjkxj xk

subject to
n∑
j=1

xj = 1, xj � 0 (j = 1, 2, . . . , n).

With respect to his risk aversion, the investor can find a compromise between the
maximization of the excepted gain and the minimization of the variance of the total
gain. Extensions and modifications of this basic model are now used widely in
economic analysis and financial management [14].

1.2.8 Input–Output Analysis and Mathematical Programming

One of the most interesting developments in the field of economics is the Leontief
model of industrial interdependence known as input–output analysis. The original
idea of developing a detailed accounting of intersectoral activity came from François
Quesnay, the founder of the first economic school, the physiocracy. In 1758, Ques-
nay published a “tableau économique,” which was the first model of the economy,
describing the relations between three economic sectors:

• the production class, consisting of peasants and tenant farmers;
• the class of the landowners, consisting of the nobility and clergy;
• the sterile class, covering all other occupations, especially commerce and handcraft.
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He illustrated how the landowners, who receive a sum of money as rent, spend half
this sum on agricultural products and half on products of artisans. In turn, farmers
buy industrial products and raw materials, and so on.

More than a century after Quesnay, Leon Walras developed a theory of general
equilibrium. In his model, Walras [47] utilized a set of production coefficients defined
as the respective quantities of each of the productive services that enter into the
production of a unit of each of the products. In the Walrasian general equilibrium
system, intermediate goods were expressed as a set of equations with the sales and
purchases of the intermediate industries forming the core of the system [28]. At
this point, Leontief was retaining Walras’s concept of an entirely self-contained,
self-determining system of economic interrelationships. The model was completely
closed, with all final demand and value added components taken as endogenous. Ten
years later, Leontief [29] reformulated the model, with the final demand and value
added components treated exogenously. In this way, Leontief’s model is the simplest
form of the Walrasian general equilibrium allowed to be applied.

Leontief’s first paper on input–output analysis appeared in 1936 [27]. Although
this was a “novel and important contribution to economic theory,” in the paper Leontief
emphasized “the numerical description of the American economic structure” [13,
p. 434]. His primary concern was linking theory and applications, and he stated
that an empirical analysis should be a “descriptive complement of its theoretical
analysis” [30, p. 229]. In a 1998 interview, Leontief said, “I am essentially a theorist.
But I felt very strongly that theory is just a construction of frameworks to understand
how real systems work” [16, p. 123].

The descriptive complement of Leontief’s model is the input–output table de-
scribing the sales and purchases between the sectors of an economy. Leontief’s first
input–output tables were constructed for the 1919 and 1929 U.S. economy [27], fol-
lowed by his first book on the input–output structure of the U.S. economy [28]. The
revised and extended version of this book that contained the U.S. input–output table
for 1939 appeared in 1951 [29]. The U.S. government continued to construct input–
output tables for 1947, 1958, and 1963, and—starting in 1967—for every year ending
in a 2 or a 7. Input–output analysis soon spread to Europe and Asia, and today it is
one of the most frequently applied techniques in economics. “For the development
of the input–output method and its application to important economic problems” [31,
p. 147], Wassily Leontief received the Nobel Prize for Economic Sciences in 1973.

In recent years, the input–output framework has been extended to such topics as
the interregional flows of products and accounting for energy consumption, environ-
mental pollution and employment associated with industrial production, structural
development of an economy, income distribution effects, and others. (For further
reading, see, e.g., [35, 25, 26, 11].)

The basic input–output model can be described as follows: Leontief imagined
an economy in which goods like iron, coal, plastics, paper, textile products, wood
products, etc. are produced in their respective industries by means of a primary factor
(which is produced external to this system), such as labor and by means of other inputs
such as iron, coal, plastics, paper, textile products, wood products, etc. The economy
is thus classified by industries, or sectors. Although sectors may have a variety of
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commodities as inputs, their outputs are not mixed.3 Each sector is identified with
the commodity that it produces. The observed monetary value of the flow from sector
i to sector j (or the monetary value of the good i used in sector j as an input) is
denoted by xij . Sector j ’s demand for inputs from other sectors during the year will
have been related to the value of the good produced by sector j over the same period.

In addition, in any country there are final sales to purchasers, who are external or
exogenous to industrial sectors, that constitute the producers and consumers in the
economy—for example, households, government, and foreign trade. The demand for
these external units, since it has not been used as an input to an industrial production
process, is generally referred to as final demand.

Thus if the economy is divided into n sectors, and if we denote xi as the total
output (production) of sector i and yi as the total final demand for sector i’s product,
we may write the distribution of sector i’s output:

n∑
j=1

xij + yi = xi (i = 1, 2, . . . , n). (1.12)

Using these data, the technical (or direct) input coefficients, denoted aij , can be
computed:

aij = xij

xj
(i, j = 1, 2, . . . , n). (1.13)

The coefficients aij describe the input of good i per unit of good j (produced by
sector j ). Under the assumption that the demand for input i changes proportionally
with the output of sector j , substituting (1.13) for xij in (1.12) results in

n∑
j=1

aij xj + yi = xi (j = 1, 2, . . . , n), (1.14)

or, in matrix notation,
Ax + y = x,

where x is the n-dimensional column vector of total industrial outputs, y is the n-
dimensional column vector of final demand, and A is the (n× n) matrix of technical
input coefficients.

Under the assumption of fixed technical coefficients aij and for exogenously given
levels of final demand y, the levels of total industrial output x are given by

x = (E − A)−1y, (1.15)

where E is the identity matrix and the matrix (E − A)−1 is the so-called Leontief
inverse. In contrast to the direct input coefficients aij , an element of this matrix shows
the input of good i per unit of final demand of good j . In this way, the elements of
the Leontief inverse describe the direct and indirect interdependencies between the

3 In the new formulation based on so-called make and absorption matrices, multiple outputs
of the sectors are included [35, Chapter 5].
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sectors of the economy. Equation (1.15) is the fundamental equation of input–output
analysis.

One important aspect of the input–output model is that substitutions of inputs are
not technologically feasible. However, in more general models, in which substitution
is possible, the model can be formulated as a mathematical programming problem
(see [12, Chapter 9] and [17, Chapter 9]).

Another formulation of the input–output model as a mathematical programming
problem, which can be seen as the reconciliation of input–output analysis and neo-
classical economics, is given by ten Raa [38, 39]. In contrast to the basic input–output
model, the final demand is not exogenously given but is an endogenous variable of
the model. Instead of the balance equations (1.14), the sectoral inequalities

xi �
n∑
j=1

aij xj + yi (i = 1, 2, . . . , n)

are introduced. They express the condition that supply must be sufficient to meet in-
tersectoral and final demand. The objective is to maximize the value of final demand,
p′y, where p′ is a row vector of given prices, say, world prices. For the production of
the goods, two primary factors, labor and capital, are used, whereK denotes the avail-
able stock of capital and L the available labor force. Under the assumption of fixed
capital coefficients kj (j = 1, 2, . . . , n) and labor coefficients lj (j = 1, 2, . . . , n),
the total sectoral production x is bounded by the capital and labor constraints

k′x � K

and

l′x � L,

where k′ is a row vector of capital coefficients and l′ is a row vector of labor coeffi-
cients. The following mathematical programming problem is obtained:

maximize p′y (1.16)

subject to (E − A)x − y � 0, (1.17)

k′x � K, (1.18)

l′x � L, (1.19)

x � 0, y � 0. (1.20)

One of the simplifying assumptions of the model (1.16)–(1.20) is that the capital
and labor coefficients are fixed. In other words, there is no possibility for continuous
substitution between the primary factors labor and capital. In such models “…growth
is likely to be impeded by shortages of specific factors rather than by a general scarcity
of resources…” [7, p. 29].

Following [18, 45, 7, 44], we postulate substitution possibilities for labor and
capital inputs, according to a Cobb–Douglas production function for each sector of
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the economy. (For the model with CES (constant elasticity of substitution) sectoral
production, see [45, pp. 138–164] and [32, pp. 53–61].) The function is written as

xj = εjL
αj
j K

βj
j (j = 1, 2, . . . , n), (1.21)

where xj , Lj , and Kj indicate gross output, employment, and capital stock in sector
j . We assume an exogenously given final demand y, and the balance equations (1.14)
are rewritten—similarly to the model by ten Raa [38]—as inequalities,

(E − A)x � y,

or

n∑
j=1

(δij − aij )xj − yi � 0 (i = 1, 2, . . . , n),

where δij = 0 for i �= j and δij = 1 for i = j (Kronecker delta). Now we substitute
function (1.21) for xj , and after a simple transformation, we get∑

j �=i
dijL

αj
j K

βj
j L

−αi
i K

−βi
i + yi

(1 − aii)εi
L

−αi
i K

−βi
i � 1, (1.22)

where
dij = aij εj

(1 − aii)εi
� 0 (i, j = 1, 2, . . . , n).

The economic interpretation of condition (1.22) is, in essence, the same as the inter-
pretation of condition (1.17) previously given. Particularly, the form (1.22) implies
that the sum of proportions of the deliveries from sector i (into all other sectors and
to the final demand) to the net production of sector i must be equal or less than one.

The form of constraints for the capital stock depends on the transferability of
capital between the particular sectors of the economy. Under the assumption of
perfect transferability, we have

n∑
j=1

Kj � K, (1.23)

where K indicates the total capital stock in the economy. In the case of nontransfer-
ability of capital, we have constraints for capital stock in each sector of the economy,

Kj � Kj (j = 1, 2, . . . , n), (1.24)

where Kj indicates the disposable capital stock in sector j .
As an objective function, we consider the minimization of labor input,

minL =
n∑
j=1

Lj . (1.25)
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For exogenously given final demand y, the objective function (1.25) implies the
maximization of labor productivity.

Summarizing, we have the following mathematical programming problem with
the substitution possibilities for labor and capital: Minimize (1.25) subject to the
constraints (1.22), (1.23), or (1.24) and the constraints

Lj > 0, Kj > 0 (j = 1, 2, . . . , n). (1.26)

1.2.9 Data Envelopment Analysis

In his classic paper on the measurement of productive efficiency. Farrel [15, p. 11]
describes the importance of efficient frontier estimation for modern economics in the
following way: “The problem of measuring the productive efficiency of an industry
is important to both the economic theorist and the economic policymaker. If the
theoretical arguments as to the relative efficiency of different economic systems are
to be subjected to empirical testing, it is essential to be able to make some actual
measurements of efficiency. Equally, if economic planning is to concern itself with
particular industries, it is important to know how far a given industry can be expected
to increase its output by simply increasing its efficiency, without absorbing further
resources.”

In the simplest case where a process or unit has a single input and a single output,
efficiency is defined as

efficiency = output

input
.

But in most cases, for the production of the particular good, different inputs are used
and the output is the result of all inputs operating in combination. A partial factor
ratio, such as output per worker, therefore gives a misleading indication of intrinsic
labor productivity.

Moreover, there are processes or nonprofit organizational units, such as local
authority departments, schools, universities, hospitals, bank branches, and the like,
using different inputs to produce different outputs where some of the outputs are
nonmarket goods (goods without market prices). How do we define and to measure
the efficiency of such relatively homogeneous units in the multiinput and multioutput
situations? Built on the work in [15], Charnes, Cooper, and Rhodes [5] developed a
mathematical programming–based technique for measuring the efficiency of a par-
ticular organizational unit relative to other units and thus estimating a “best practice”
or efficient frontier.

We denote the organizational units by j = 1, 2, . . . , n, referred to as decision
making units (DMUs), which are to be evaluated. Each DMU uses m different
inputs, denoted by i = 1, 2, . . . , m, to produce s different outputs (r = 1, 2, . . . , s).
Specifically, the input vector of DMUj is denoted by xj and the output vector by yj .
We assume (as in [6]) that each DMU has at least one positive input and one positive
output value.4

4 In the original study in [5], it was assumed that the input vectors xj and the output vector
yj for j = 1, 2, . . . , n are all positive.
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The main idea in [5] is the reduction of the multiple-output/multiple-input situation
(for each DMU) to that of a single “virtual” output and “virtual” input. The efficiency
is defined as

efficiency = "virtual” output

"virtual” input
= weighted sum of outputs

weighted sum of inputs
.

This definition requires a set of weights or multipliers to be estimated that proves to
be difficult. The problem can be resolved by arguing that the DMUs may have their
own particular value systems and therefore may legitimately define their own peculiar
set of multipliers. The observed output and input values, respectively, of DMU0 (the
DMU to be evaluated) are described by vectors y0 and x0. The efficiency of DMU0,
denoted by h0, is defined as follows:

h0(u, v) =
∑s
r=1 uryr0∑m
i=1 vixi0

,

where ur is the weight given to output r (r = 1, 2, . . . , s) and vi is the weight given
to input i (i = 1, 2, . . . , m). The key feature of the Charnes–Cooper–Rhodes (CCR)
model is that the multipliers ur and vi are treated as unknown. They will be chosen
so as to maximize the efficiency h0 of DMU0 subject to efficiencies of all DMUs in
the set having an upper bound of 1. In other words, even with their own particular
value system, the DMU0 cannot be better (more efficient) than the “best” DMUs in
the group; all DMUs lie on or below the efficiency frontier.

The mathematical programming problem for the CCR ratio is

maximize
u,v

h0(u, v) =
∑s
r=1 uryr0∑m
i=1 vixi0

subject to

∑s
r=1 uryrj∑m
i=1 vixij

� 1 (j = 1, 2, . . . , n),

ur � 0 (r = 1, 2, . . . , s),

vi � 0 (i = 1, 2, . . . , m).

(1.27)

1.3 Classification of Mathematical Programming Problems

With respect to the form of the objective function and of the functions in the con-
straints in the models of the previous section (and in mathematical programming
problems generally), mathematical programming problems can be classified in the
following way:

A. Linear programming

The diet problem, the models for the theory of comparative advantage and for the
Giffen paradox, the transportation problem, and the input–output model from the
previous section are characterized by the linearity of the objective function and the
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linearity of functions in the constraints. The development in this field of mathe-
matical programming started independently with the works by Kantorovic [20] and
Dantzig [8, 9]. The work by the Russian mathematician Leonid V. Kantorovic was
motivated by practical problems of production planning: How does one combine the
available resources in a factory such that production is maximized? The model and
solution method, based on the so-called “resolving multipliers,” was published in
1939 in Russian [20] and remained unknown in the West until the late 1950s or early
1960s. The translation, entitled “Mathematical Methods of Organizing and Planning
of Production,” appeared in 1960. According to [23, p. 240], “the importance of this
publication is due to the simultaneous presence of several ideas or elements, some
of which had also been present in earlier writing in different parts of economics or
mathematics.” One of these elements is the description of production in terms of
finite number of distinct production processes, each characterized by constant ratios
between the inputs and outputs, which has a long history in economics; see, e.g.,
[47, 4, 27, 28].5

The work of Leontief, who proposed a simple matrix structure for a description
of interindustrial flows in the economy, called the Interindustry Input–Output Model
of the American Economy (described in the previous section), fascinated George B.
Dantzig in his effort to formulate organization and production planning problems
as linear models. In 1946, Dantzig was the Mathematical Advisor to the U.S. Air
Force Comptroller. Challenged by his colleagues D. Hitchcock and M. Wood, he
was trying to determine “what could be done to mechanize the planning process” [10,
p. 79]. He soon saw the possibilities for the generalization of Leontief’s model. In his
reminiscences about the early days of linear programming, he writes, “In Leontief’s
model, there was a one-to-one correspondence between the production processes and
the items produced by these processes. What was needed was a model with many
alternative activities. The application was to be large-scale, hundreds of items and
activities. Finally, it had to be computable. Once the model was formulated, there
had to be a practical way to compute what quantities of these activities to engage in
that was consistent with their respective input–output characteristics and with given
resources” [10, p. 79]. The model he formulated was without the objective function
“because practical planners simply had no way to implement such a concept” [10,
p. 79].

By mid-1947, Dantzig used the linear form of the objective function to be opti-
mized, and the resulting mathematical problem to be solved was the minimization of
a linear form with respect to linear equations and inequalities. It is interesting that
at first he turned to the economists, assuming they had worked on this problem. He
visited T. C. Koopmans in June 1947 at the Cowles Foundation at the University of
Chicago to discuss this problem from a mathematical economist’s point of view. The
implications for general economic planning were immediately evident, and from that
time on there began a very intensive and fruitful cooperation between the economists
K. Arrow, P. Samuelson, H. Simon, R. Dorfman, R. Solow, T. C. Koopmans, and
L. Hurwicz and the mathematicians A. Tucker, H. Kuhn, D. Gale, and G. Dantzig,

5 For further discussion, see [23].
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to name only a few in the field of mathematical programming. It is worth noting
that six of them—Arrow, Samuelson, Simon, Solow, Koopmans, and Hurwicz—later
received the Nobel Prize in Economic Sciences.

But the visit of Dantzig with Koopmans was not fully successful, because
economists did not have a method of solution. Therefore, Dantzig tried his own luck
at finding an algorithm, and in the summer of 1947 he proposed the simplex method
for “Maximization of Linear Function of Variables Subject to Linear Inequalities”—
this is the title of the fundamental paper, which was circulated privately for several
years and published in [22].

The term “linear programming” arose out of a discussion of Dantzig with Koop-
mans. Concerning the first paper by Dantzig dealing with a system of linear in-
equalities and called “Programming in a Linear Structure,” Koopmans said, “Why
not shorten ‘Programming in Linear Structure’ to ‘Linear Programming?’ I replied,
‘That’s it! From now on that will be its name”’ [10, p. 85]. Linear programming was
born and “has been one of the most important postwar developments in economic
theory” [12, p. vii]. “For their contributions to the theory of optimum allocation of
resources” [31, p. 213], Leonid Kantorovic and Tjalling C. Koopmans received the
Nobel Prize for Economic Sciences in 1975.

B. Nonlinear programming

At the meeting of the Econometric Society in Wisconsin in 1948, which was attended
by well-known mathematicians and economists like H. Hotelling, Koopmans, J. von
Neumann, and many others, Dantzig presented the concept of linear programming.
The first comment in the discussion was Hotelling’s: “But we all know the world is
nonlinear” [10, p. 82]. Before Dantzig could reply, von Neumann said, “The speaker
titled his talk ‘Linear Programming’ and he carefully stated his axioms. If you have
an application that satisfies the axioms, use it. If it does not, then don’t” [10, p. 82].

The utility function in the theory of the household (the model in Section 1.2.2) is
based on positive but decreasing marginal utility, the neoclassical theory of the firm
(the model in Section 1.2.3) with the Cobb–Douglas production function is based on
positive but decreasing marginal products. The model (1.5) and the portfolio selection
model from the Section 1.2.7 consist of quadratic objective function, and the input–
output model with the substitution possibilities for labor and capital, according to
a Cobb–Douglas production function, contains nonlinear constraints. When at least
one of the functions fk(x) (k = 0, 1, 2, . . . , m) in problem (1.1) is nonlinear, we are
faced with nonlinear programming.

Karush [21] appears to have been first to deal with optimization problems with
inequalities as side constraints. The results of Karush did not have any significant
impact at that time. Therefore, in our opinion, the starting point of the development
of nonlinear programming is the paper by Kuhn and Tucker [24] on necessary and
sufficient optimality conditions for solutions of nonlinear programming problems. In
this context, the contribution by John [19] with his results on the same topic should
be mentioned as well.

In nonlinear programming, two classes of problems should be distinguished.
B.1. Convex programming. The mathematical programming problem (1.1),
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minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m),
(1.28)

is a convex programming problem if the functions fk(x) (k = 0, 1, 2, . . . , m) are
convex. Obviously, the linear programming problem is a special case of convex
programming, since a linear function is also convex. The convexity of the functions
fi(x) in the constraints of problem (1.28) implies the convexity of the set of feasible
solutions K . Furthermore, it is well known that the local minimum of a convex
function is a global one. For these reasons, the methods with convergence to a local
minimum can be used for solving problems of this class.

B.2. Nonconvex programming. Problem (1.28) is a nonconvex programming prob-
lem if either the function f0(x) or the set K is nonconvex. When the functions fi(x)
(i = 1, 2, . . . , m) are nonconvex, but the setK is convex, we speak about quasiconvex
programming.

A well-known example of nonconvex programming is the integer programming
problem (some or all variables xj , j = 1, 2, . . . , n1, where n1 ≤ n, are integer),
because of the nonconvexity of the set of feasible solutions K .

With respect to the particular type of objective functionf0(x) and of the constraints
fi(x) (see the previous section), we can distinguish special nonlinear programming
problems:

(a) Quadratic programming—if some of the functions fk(x) (k = 0, 1, 2, . . . , m)
in problem (1.1) are quadratic. The problems in (1.28) with quadratic convex
function f0(x) and linear constraints (e.g., the portfolio model in Section 1.2.7)
are the simplest nonlinear programming problems.

(b) Separable programming—if the functions fk(x) (k = 0, 1, 2, . . . , m) are sepa-
rable:

fk(x) =
n∑
j=1

fkj (xj ) (k = 0, 1, 2, . . . , m).

(c) The input–output model with substitution possibilities for labor and capital of the
previous section is a geometric programming problem, when all functions fk(x)
are polynomials with positive coefficients (so-called posynomials):

fk(x) =
Tk∑
t=1

ckt

n∏
j=1

x
aktj
j (k = 0, 1, 2, . . . , m),

where Tk is the number of terms in the polynomial k (k = 0, 1, 2, . . . , m), the
coefficients ckt are positive, the exponents aktj are any real numbers, and the
constraints are written in the form

fi(x) � 1 (i = 1, 2, . . . , m).

(d) The basic model of the data envelopment analysis is a fractional programming
problem when the functions fk(x) (k = 0, 1, 2, . . . , m) are in the form
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fk(x) = hk(x)
gk(x)

.

With respect to the specification of the function hk(x) and gk(x), the different
classes of fractional programming can be distinguished (see, e.g., [46]).

The economic implications of different mathematical programming models will
be discussed in subsequent chapters.
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2

Kuhn–Tucker Conditions

In this chapter, necessary conditions for optimality of solution points in mathematical
programming problems will be studied. Because of the orientation of this book to
present optimization theory as an instrument for qualitative economic analysis, the
theory to be described is not immediately concerned with computational aspects of
solution techniques, which can be found in many excellent books on mathematical
programming, e.g., [11, 12, 27, 23, 3].

The discussion begins with the extension of the Lagrange theory by Kuhn and
Tucker [18]—note the contributions by Karush [16] and John [15]—with the deriva-
tion of necessary optimality conditions for the optimization problems including in-
equality constraints.

The rationality of Kuhn–Tucker conditions and their relationship to a saddle point
of the Lagrangian function will be explored in Sections 2.2 and 2.3, respectively.

Section 2.4 deals with Kuhn–Tucker conditions for the general mathematical
programming problem, including equality and inequality constraints, as well as non-
negative and free variables. Two numerical examples are provided for illustration.

Section 2.5 is devoted to applications of Kuhn–Tucker conditions to a qualitative
economic analysis. We will show how to derive general qualitative conclusions, even
when the parameters of the involved functions are not numerically specified.

2.1 The Kuhn–Tucker Theorem

The basic mathematical programming problem (1.28), as described in Chapter 1, is
that of choosing values of n variables so as to minimize a function of those variables
subject to m inequality constraints:

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m).

This problem is a generalization of the classical optimization problem (which uses
constraints in equation form), since equality constraints are a special case of inequality
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constraints. By introducing m additional variables, called slack variables, yi(i =
1, 2, . . . , m), the mathematical programming problem (1.28) can be rewritten as a
classical optimization problem:

minimize f0(x)

subject to fi(x)+ y2
i = 0 (i = 1, 2, . . . , m).

A characterization of the solution to the mathematical programming problem (1.28)
is then analogous to the Lagrange theorem for classical optimization problems.

Under the assumption of so-called constraint qualifications (for a detailed discus-
sion, the reader is referred to [1, 26, 37]), which was designed to avoid cusps in the
feasible set, the Lagrange theory for a classical optimization problem can be extended
to problem (1.28) by the following theorem.

Theorem 2.1 (see [18]). Assume that fk(x) (k = 0, 1, . . . , m) are all differentiable.
If the function f0(x) attains at point x0 a local minimum subject to the set K =
{x|fi(x) � 0 (i = 1, 2, . . . , m)}, then there exists a vector of Lagrange multipliers
u0 such that the following conditions are satisfied:

∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
= 0 (j = 1, 2, . . . , n), (2.1)

fi(x0) � 0 (i = 1, 2, . . . , m), (2.2)

u0
i fi(x

0) = 0 (i = 1, 2, . . . , m), (2.3)

u0
i � 0 (i = 1, 2, . . . , m). (2.4)

In other words, the conditions (2.1)–(2.4) are necessary conditions for a local mini-
mum of problem (1.28). For a maximization problem, the nonnegativity condition (2.4)
is replaced by the nonpositivity condition u0 � 0. Conditions (2.1)–(2.4) are called
the Kuhn–Tucker conditions.

Proof. As in the case of the classical optimization problem, the Lagrange function
can be defined as a function of the original variables—in our case the variables x and
y—and of the Lagrange multipliers u:

L(x, y,u) = f0(x)+
m∑
i=1

ui(fi(x)+ y2
i ).

The necessary conditions for its local minimum are

∂L

∂xj
= ∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂(fi(x0)+ (y0
i )

2)

∂xj
= 0 (j = 1, 2, . . . , n), (2.5)

∂L

∂yi
= 2u0

i y
0
i = 0 (i = 1, 2, . . . , m), (2.6)
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∂L

∂ui
= fi(x0)+ (y0

i )
2 = 0 (i = 1, 2, . . . , m). (2.7)

Now it can be shown that the conditions in (2.6) correspond to the Kuhn–Tucker
conditions (2.3).

Suppose u0
i = 0. Then u0

i y
0
i = u0

i fi(x
0) = 0, and both conditions (2.6) and (2.3)

are satisfied.
If u0

i �= 0, then it follows from (2.6) that y0
i = 0 and therefore (y0

i )
2 = −fi(x0) =

0: Condition (2.3) is satisfied. On the other hand, it follows from (2.3) that fi(x0) = 0
and therefore y0

i = 0: Condition (2.6) is fulfilled.
Since the variables yi (i = 1, 2, . . . , m) are auxiliary variables, they can be

eliminated from conditions (2.5) and (2.7), and we obtain conditions (2.1) and (2.2).
It remains to show that the Lagrange multipliers must be nonnegative. For this

purpose, we consider the classical optimization problem:

minimize fo(x)

subject to fi(x) � bi (i = 1, 2, . . . , m).
(2.8)

For the Lagrange multipliers u0
i (i = 1, 2, . . . , m) of problem (2.8), the following

holds (see, e.g., [23, 1st ed., p. 231]):

∂f0(x0(b))
∂bi

= −u0
i (i = 1, 2, . . . , m), (2.9)

where x0 denotes the optimal solution of problem (2.8). Hence the Lagrange multi-
pliers u0

i (i = 1, 2, . . . , m) give us the change of the value of the objective function
due to a change of the constraint bi by a small amount. A higher value of the ith
component of the vector b implies an enlargement of the set K . Therefore, the new
optimal value of the objective function f0(x) cannot be worse:

∂f0(x
0)

∂bi
� 0 for a minimization problem (2.10)

and

∂f0(x0)

∂bi
� 0 for a maximization problem. (2.11)

The nonnegativity condition for the Lagrange multipliers (2.4) follows from (2.9)
and (2.10). Similarly, conditions in (2.9) and (2.11) imply that the Lagrange mul-
tipliers cannot be positive for problem (1.28) with the objective function to be
maximized. ��

For a geometric interpretation of the Kuhn–Tucker conditions (2.1)–(2.4), we
rewrite the conditions in (2.1) as follows:

∂f0(x0)

∂xj
= −

m∑
i=1

u0
i

∂fi(x0)

∂xj
(j = 1, 2, . . . , n),
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Fig. 2.1. Kuhn–Tucker conditions.

or

�f0(x0) = −
m∑
i=1

u0
i�fi(x0),

where �f0(x) denotes the gradient vector (the vector of first-order partial derivatives)
of the objective function, and �fi(x) is the gradient vector of the ith constraint
function (i = 1, 2, . . . , m). Thus the gradient of the objective function must, at
the optimal solution, be a nonpositive weighted combination of the gradients of the
active constraints (the constraints satisfied at the optimal solution as equalities). The
gradient vector of the objective function must therefore lie within the cone spanned by
the inward-pointing normals to the opportunity set at x0. This solution is illustrated
in Figure 2.1 for the problem in which n = 2, m = 3.

Using the Lagrange function (without slack variables) for the mathematical pro-
gramming problem (1.28),

	(x,u) = f0(x)+
m∑
i=1

uifi(x), (2.12)

the Kuhn–Tucker conditions (2.1)–(2.4) can be rewritten as follows:
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∂	(x0,u0)

∂xj
= 0 (j = 1, 2, . . . , n), (2.1′)

∂	(x0,u0)

∂ui
� 0 (i = 1, 2, . . . , m), (2.2′)

u0
i

∂	(x0,u0)

∂ui
= 0 (i = 1, 2, . . . , m), (2.3′)

u0
i � 0 (i = 1, 2, . . . , m). (2.4′)

The n conditions in (2.1′) are the same as in the classical programming case, or in
other words, as in the traditional Lagrange theory from classical differential calculus.

The m conditions in (2.2′) are the constraints of the mathematical programming
problem which permits solution at the boundary of the set of feasible solutions or at
an interior point of this set.

The m conditions in (2.3′), which are known as the complementary slackness
conditions of mathematical programming, serve essentially to determine which of the
two regimes will apply: whether the boundary or the interior minimum point occurs. If
the ith constraint is not binding (an interior point), then the corresponding Lagrange
multiplier will be zero. If the multiplier ui is positive, then the corresponding ith
constraint is binding (boundary solution). The reader should bear in mind that the
converse is not true.

Them conditions in (2.4′), requiring that the Lagrange multipliers be nonnegative,
stem from the fact that the constraints in (2.2′) are written as inequalities rather than
as equalities; if a constraint is an equality, then the corresponding element of u0 is
unrestricted, as in the classical programming case.

In most of the models of mathematical programming in economics (see Chapter 1),
nonnegativity conditions are required. Obviously, it would be possible to include
nonnegativity conditions in the set of constraints fi(x) � 0 (i = 1, 2, . . . , m). But
as we will show now, the Lagrange multipliers corresponding to the nonnegativity
conditions can be eliminated. It is therefore useful to consider the nonnegativity
conditions separately.

We consider the following mathematical programming problem:

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m), (1.28a)

−xj � 0 (j = 1, 2, . . . , n).

First, we write the Lagrange function for problem (1.28a):


(x,u,w) = f0(x)+
m∑
i=1

uifi(x)+
n∑
j=1

wj(−xj ).

Then according to Theorem 2.1, the Kuhn–Tucker conditions become

∂ψ

∂xj
= ∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
− w0

j = 0 (j = 1, 2, . . . , n),
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or, equivalently,

∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
= w0

j (j = 1, 2, . . . , n). (2.13)

Furthermore,

∂ψ

∂ui
= fi(x0) � 0 (i = 1, 2, . . . , m), (2.14)

u0
i

∂ψ

∂ui
= u0

i fi(x
0) = 0 (i = 1, 2, . . . , m), (2.15)

∂ψ

∂wj
= −x0

j � 0 (j = 1, 2, . . . , n), (2.16)

w0
j

∂ψ

∂wj
= w0

j (−x0
j ) = 0 (j = 1, 2, . . . , n),

which, because of (2.13), can be rewritten as

x0
j

(
∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj

)
= 0 (j = 1, 2, . . . , n), (2.17)

u0
i � 0 (i = 1, 2, . . . , m), (2.18)

w0
j � 0 (j = 1, 2, . . . , n). (2.19)

Using the Lagrange function (2.12), the Kuhn–Tucker conditions (2.13)–(2.19) can
be summarized symmetrically with respect to x and u as

∂	(x0,u0)

∂x
� 0, (2.20)

x0 ∂	(x
0,u0)

∂x
= 0, (2.21)

x0 � 0, (2.22)

∂	(x0,u0)

∂u
� 0, (2.23)

u0 ∂	(x
0,u0)

∂u
= 0, (2.24)

u0 � 0. (2.25)

The reader will note that in the case of nonnegativity conditions for the variables
x, condition (2.1) of the Kuhn–Tucker theorem has been replaced by two sets of
conditions (2.20)–(2.21). An intuitive explanation of this matter will be given in the
next section.
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2.2 Rationale of the Kuhn–Tucker Conditions

As already mentioned, the Kuhn–Tucker conditions are the natural generalization
of the Lagrange multiplier approach, from classical differential calculus replacing
equality constraints by inequality constraints, to take account of the possibility that
the maximum or minimum in question can occur not only at a boundary point but
also at an interior point. The calculus requirements are generally appropriate only if
the extremum (i.e., the maximum or minimum) occurs at a point at which all of the
variables (including the slack variables) take nonzero values.

Now we consider—for simplicity, but without loss of generality—the minimiza-
tion of the function f (x) subject to x � 0. In this case, the matter can be illustrated
graphically. Suppose first that we are at a point at which the value of x can either
be increased or decreased (the interior point A in Figure 2.2). By the usual logic of
marginal analysis, we must have df

dx
= 0, for otherwise either a rise or a fall in the

value of x could increase the value of f , and f would not be at its minimum.
On the other hand, suppose we are testing for the possibility of a boundary min-

imum at which x = 0. In Figure 2.2, two possibilities for local minimum of the
function f (x) subject to x � 0 can be observed. If df

dx
= 0, the point with x = 0

(point B in Figure 2.2) may be a minimum for the usual reasons, and if df
dx
> 0, it

may be a minimum point simply because it is impossible to reduce the value of x any
further (point C in Figure 2.2).

Direct generalization for the function with n variables leads to the following
conclusions. Given a differentiable function f (x1, x2, . . . , xn),

• for an interior minimum (maximum), it is necessary that ∂f
∂xj

= 0 (j = 1, 2, . . . , n);

• for a boundary minimum, it is necessary that ∂f
∂xj

� 0 (j = 1, 2, . . . , n).

The reader may check that—by the same reasoning—for a boundary maximum it is
necessary that ∂f

∂xj
� 0.

Fig. 2.2. Minimum of the function f (x) subject to x � 0.
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Similar to the interpretation of the complementary slackness conditions (2.3′) or
(2.24), the conditions in (2.21) serve to determine which solution case occurs; if
the value of xj under consideration is positive (interior minimum case), then (2.21)
requires ∂	

∂xj
= 0. If ∂	

∂xj
> 0, then we can only have a boundary minimum (xj = 0).

2.3 Kuhn–Tucker Conditions and a Saddle Point of the Lagrange
Function

We consider the Lagrange function 	(x,u) as defined in (2.12). The necessary
conditions for a local minimum of the Lagrange function (2.12), regarded as a function
of x only, subject only to the nonnegativity conditions xj � 0 (j = 1, 2, . . . , n) are
exactly the Kuhn–Tucker conditions (2.20)–(2.22) for problem (1.28a). At the same
time, the Kuhn–Tucker conditions (2.23)–(2.25) provide the necessary conditions for
a local maximum of the Lagrange function (2.12), regarded as a function of u only,
subject only to the nonnegativity conditions ui � 0 (i = 1, 2, . . . , m). A graphical
illustration of this property of the point (x0,u0) from the Kuhn–Tucker conditions
(2.20)–(2.25) is depicted in Figure 2.3. This leads to the following concept of a saddle
point.

Definition 2.1. A point (x0,u0) with x0 � 0 and u0 � 0 is said to be a saddle point
of the Lagrange function 	(x,u) if

Fig. 2.3. Saddle point of the Lagrange function.
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	(x0,u) � 	(x0,u0) � 	(x,u0)

for all x � 0, u � 0.

In other words, for a fixed u = u0, the Lagrange function is minimized at x0

(due to the second inequality of the relationship in Definition 2.1), whereas for a
fixed x = x0, the Lagrange function is maximized at u0 (which follows from the first
inequality of the relationship in Definition 2.1).

Now the relationship between the saddle point of the Lagrange function and the
optimal solution of problem (1.28a) can be established.

Theorem 2.2. If there exists a saddle point (x0,u0) of the Lagrange function	(x,u),
then x0 is an optimal solution for problem (1.28a).1

In order to obtain the converse of Theorem 2.2, we need convexity properties of
the functions fk(x) (k = 0, 1, 2, . . . , m), which will be discussed in the next chapter.

2.4 Kuhn–Tucker Conditions for the General Mathematical
Programming Problem

The real applications of mathematical programming in economics contain both types
of constraints: inequalities as well as equalities. Therefore, we define the general
mathematical programming problem as follows:

minimize f0(x, y)

subject to fi(x, y) � 0 (i = 1, 2, . . . , m),

gh(x, y) = 0 (h = m+ 1, . . . , r), (1.28b)

x � 0,

y ∈ R
l .

Obviously, problems (1.28) and (1.28a) are special cases of problem (1.28b).
Writing problem (1.28b) in the form (1.28) with 	(x, y,u, v) = f0(x, y) +∑m
i=1 uifi(x, y)+∑r

h=m+1 vhgh(x, y), the reader may verify that the Kuhn–Tucker
conditions take the symmetric form

∂	0

∂x
� 0,

∂	0

∂y
= 0,

∂	0

∂u
� 0,

∂	0

∂v
= 0,

x0 ∂	
0

∂x
= 0, u0 ∂	

∂u
= 0, x0 � 0, u0 � 0,

where 	0 = 	(x0, y0,u0, v0), (x0, y0) denotes the local minimum of the function
f0(x, y) under the constraints of problem (1.28b), and (u0, v0) are the corresponding

1 For the proof, see, e.g., [24, pp. 215–217] or [10, p. 539].
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Lagrange multipliers. It is worth noting that the Lagrange multipliers v related to the
equalities are not restricted to the nonnegativity (as in the classical Lagrange theory).

A summary of the rules for the formulation of the Kuhn–Tucker conditions for
the general mathematical programming problem is as follows:

Rule 1. For a minimization (maximization) problem write all inequality constraints
in the form

fi(x) � 0 (fi(x) � 0).

Rule 2. Write the Lagrange function as the sum of the objective function and the
weighted constraints.

Rule 3. The partial derivatives of the Lagrange function
(a) with respect to the nonnegative variables are nonnegative (nonpositive)

for a minimization (maximization) problem and the complementary
slackness condition

x
∂	

∂x
= 0

is fulfilled;
(b) with respect to the free variables are equal to zero;
(c) with respect to the Lagrange multipliers corresponding to the inequality

constraints are nonpositive (nonnegative) for a minimization (maximiza-
tion) problem and the complementary slackness condition

u
∂	

∂u
= 0

is fulfilled;
(d) with respect to the Lagrange multipliers corresponding to the equality

constraints are equal to zero.

For a numerical illustration, we consider the following example:

minimize f0(x) = x2
1 − 4x1 + x2

2 − 6x2

subject to x1 + x2 � 3,

−2x1 + x2 � 2.

The Lagrange function is

	(x,u) = x2
1 − 4x1 + x2

2 − 6x2 + u1(x1 + x2 − 3)+ u2(−2x1 + x2 − 2).

Application of the Kuhn–Tucker conditions (2.1′)–(2.4′) gives

∂	

∂x1
= 2x1 − 4 + u1 − 2u2 = 0, (2.26)

∂	

∂x2
= 2x2 − 6 + u1 + u2 = 0, (2.27)
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∂	

∂u1
= x1 + x2 − 3 � 0, (2.28)

u1
∂	

∂u1
= u1(x1 + x2 − 3) = 0, (2.29)

∂	

∂u2
= −2x1 + x2 − 2 � 0, (2.30)

u2
∂	

∂u2
= u2(−2x1 + x2 − 2) = 0, (2.31)

u1 � 0, u2 � 0. (2.32)

There is in general no simple computational procedure for the solution of these con-
ditions. In order to show how to use the Kuhn–Tucker conditions, it is necessary to
explore various cases defined principally by reference to whether each ui is zero.

For the first case, suppose thatu1 = 0 andu2 = 0. From conditions (2.26)–(2.27),
we get x1 = 2 and x2 = 3. This vector cannot be a solution of our problem because
it violates the first constraint x1 + x2 � 3.

Second, suppose that u1 �= 0 and u2 = 0. Then equations (2.26) and (2.27) are
reduced to

2x1 + u1 = 4,

2x2 + u1 = 6.

Due to the complementary slackness condition (2.29), inequality (2.28) must be ful-
filled as the equality

x1 + x2 = 3.

The above system of equations yields the solution x1 = 1, x2 = 2, and u1 = 2, which
also satisfies the remaining conditions (2.30)–(2.31). In other words, all Kuhn–Tucker
conditions (2.26)–(2.32) are satisfied.

The third case corresponds to u1 = 0, u2 �= 0. The resulting system of equations,

2x1 − 2u2 = 4,

2x2 + u2 = 6,

−2x1 + x2 = 2,

yields the solution x1 = 4
5 , x2 = 18

5 , u2 = − 6
5 , which violates conditions (2.28)

and (2.32).
The last possibility is u1 �= 0 and u2 �= 0. Because of the complementary

slackness conditions (2.29) and (2.31), both inequality constraints (2.28) and (2.30)
must be satisfied as equalities:

x1 + x2 = 3,

−2x1 + x2 = 2.

The solution is x1 = 1
3 and x2 = 8

3 . Substituting these values in (2.26)–(2.27), we
obtain a negative value for the Lagrange multiplier u2 = − 8

9 , which is a contradiction
to condition (2.32).
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Only the values x1 = 1, x2 = 2, u1 = 2, and u2 = 0 satisfy all Kuhn–Tucker
conditions and a simple inspection of the graph of the feasible solutions illustrates
that this is indeed the optimal solution of our example.

Without further assumption about the functions fk(x) (k = 0, 1, 2, . . . , m), The-
orem 2.1 provides only necessary conditions for a local optimal solution of prob-
lem (1.28).

In order to illustrate that the Kuhn–Tucker conditions are not sufficient condi-
tions for a local minimum (maximum) of mathematical programming problems, we
consider the following very simple one-variable example:

maximize f0(x) = (x − 1)3 (2.33)

subject to x � 2, (2.34)

x � 0. (2.35)

According to Rule 1 for the formulation of the Kuhn–Tucker condition, we rewrite
the constraint as 2 − x � 0. Then the Lagrange function is

	(x, u) = (x − 1)3 + u(2 − x).

Application of the Kuhn–Tucker conditions (2.20)–(2.25) for the maximization
problem gives

∂	

∂x
= 3(x − 1)2 − u � 0, (2.36)

x
∂	

∂x
= x[3(x − 1)2 − u] = 0, (2.37)

∂	

∂u
= 2 − x � 0, (2.38)

u
∂	

∂u
= u(2 − x) = 0, (2.39)

u � 0 (because of Rule 1). (2.40)

The reader may verify that x0 = 1 and u0 = 0 satisfy the Kuhn–Tucker conditions
(2.36)–(2.40). By simple inspection, it can be shown that the maximum of function
(2.33) under the constraints (2.34)–(2.35) is at the point x = 2 and not at the point
x0 = 1.

The question of sufficiency of the Kuhn–Tucker conditions or the “second-order
conditions” for the optimal solution of mathematical programming problems will be
explored in the next chapter.

2.5 The Kuhn–Tucker Conditions and Economic Analysis

As illustrated in the previous section, the Kuhn–Tucker conditions can be helpful in the
solution of specific numerical problems. Many algorithms of quadratic programming
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are based on these conditions. For economists, the Kuhn–Tucker conditions can be
more useful for derivation of qualitative results without the necessity of specifying nu-
merically the parameters of a mathematical programming problem. The primary aim
is to characterize the optimal behavior of an economic agent under consideration. “As
a result the Kuhn–Tucker conditions may perhaps constitute the most powerful single
weapon provided to economic theory by mathematical programming” [4, p. 165].

A few examples will illustrate how the Kuhn–Tucker conditions can be used as
an instrument for qualitative economic analysis.

2.5.1 Peak Load Pricing

Many profit-maximizing firms are confronted with the situation that the demand for
a given product varies by the hour of the day so that at some times the capacity of
the firm is fully utilized (peak periods), while at other times demand is slow so that
some capacity remains underutilized (off-peak periods). As shown by Littlechild [20]
with the aid of Kuhn–Tucker analysis and previously formulated by Steiner [35] and
Williamson [38], in such situations the differential pricing is—in the sense of profit
maximization—optimal. According to [4, p. 167], the following proposition can be
formulated.

Proposition 2.1. The profit-maximizing outputs will be such that prices at off-peak
periods will merely cover marginal operating costs (raw materials, labor, etc.),while
in peak periods the prices will exceed marginal operating costs. The sum of the
excesses of these prices over marginal operating costs for all peak periods will just
add up to marginal capital cost, i.e., they will sum to the marginal cost of increasing
capacity.

Proof. We denote the quantity demanded during each of the 24 hours of the day by
x1, x2, . . . , x24 and the corresponding prices (e.g., telephone rates) byp1, p2, . . . , p24.
It is assumed that all xi > 0, i.e., that some output is sold during each hour of the
day. The hourly output capacity is denoted by y. The function C(x1, x2, . . . , x24)

describes the daily total operating cost and g(y) the daily cost of capital (capacity).
We assume that the marginal operating cost, ∂C

∂xi
, as well as the marginal capacity

cost, dg
dy

, are positive. Furthermore, it is assumed that prices are not affected by the

firm’s output, i.e., ∂pi
∂xi

= 0. (Perfect competition prevails. The prices p1, . . . , p24
can therefore be regarded as given and fixed.)

The firm seeks to maximize the total profit per day,

π =
24∑
i=1

pixi − C(x1, x2, . . . , x24)− g(y),

subject to the 24 hourly capacity constraints,

xi � y (i = 1, 2, . . . , 24),

xi � 0 (i = 1, 2, . . . , 24),
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y � 0.

The Lagrange function has the form

	(x, y,u) =
24∑
i=1

pixi − C(x1, x2, . . . , x24)− g(y)+
24∑
i=1

ui(y − xi).

Under the assumption of a perfectly competitive firm, the Kuhn–Tucker conditions
are then

∂	

∂xi
= pi − ∂C

∂xi
− ui � 0 (i = 1, 2, . . . , 24), (2.41)

xi
∂	

∂xi
= xi

(
pi − ∂C

∂xi
− ui

)
= 0 (i = 1, 2, . . . , 24), (2.42)

∂	

∂y
= −dg

dy
+

24∑
i=1

ui � 0, (2.43)

y
∂	

∂y
= y

(
−dg
dy

+
24∑
i=1

ui

)
= 0, (2.44)

∂	

∂ui
= y − xi � 0 (i = 1, 2, . . . , 24), (2.45)

ui
∂	

∂ui
= ui(y − xi) = 0 (i = 1, 2, . . . , 24), (2.46)

ui � 0 (i = 1, 2, . . . , 24). (2.47)

Since we have assumed that xi > 0 (i = 1, 2, . . . , 24), it follows from (2.45) that
y > 0 (that is, if capacity, y, were zero, nothing could be produced).

Because we are only interested in solutions in which all xi and y are positive,
(2.41) and (2.43) become the following:

pi − ∂C

∂xi
− ui = 0 (i = 1, 2, . . . , 24), (2.41′)

−∂g
∂y

+
24∑
i=1

ui = 0. (2.43′)

In any off-peak period t , there is by definition excess capacity (y > xt ). Therefore,
by the complementary slackness condition (2.46), we must have ut = 0 for off-peak
periods.

Then the first part of Proposition 2.1 follows immediately from (2.41′):

pt = ∂C

∂xt
for any off-peak period t;

that is, for any off-peak period, it is optimal to set the price equal to the marginal
operating cost, ∂C

∂xt
. Since there is excess capacity, demand should be encouraged by

charging a price as low as possible without incurring a loss on the marginal unit sold.
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For any peak period, s, the capacity of the firm is fully utilized (xs = y). Since
we have assumed that dg

dy
> 0 (increasing output capacity requires additional capital),

it follows from (2.43′) that
dg

dy
=
∑
s

us > 0,

that is, at least for some of the peak periods, the Lagrange multipliers must be positive.
Then we obtain from (2.41′) that

ps = ∂C

∂xs
+ us for any peak period s.

The price will exceed the marginal operating cost by a supplementary amount equal
to the value of the Lagrange multiplier us . Moreover, by (2.43′) the sum of these
supplements for all peak periods together will be exactly equal to the marginal ca-
pacity cost, ∂g

∂y
. Since peak period demand presses on capacity, any increase in this

demand must require additional capital, and it must therefore cover its marginal cap-
ital cost, dg

dy
. ��

This completes the proof of Proposition 2.1 as the basic principles for the setting
of daytime and evening telephone rates, for the higher accommodation prices in the
peak season, etc. This principle can be applied in the recent discussion about the road
pricing system as well.

2.5.2 Revenue Maximization under a Profit Constraint2

Suppose that a firm produces a single product whose output is q and that its sales are
affected by its advertising expenditure a. The firm will maximize its total revenue
R(q, a) subject to a profit constraint,

� = R(q, a)− C(q)− a � m,

where C(q) indicates the cost of production and where the marginal revenue of ad-
vertising and the marginal cost of output are both positive ( ∂R

∂a
> 0, dC

dq
> 0). Then

the behavior of the firm is described by the following.

Proposition 2.2. The revenue-maximizing output will be such that the profit is equal
to the prescribed levelm, the marginal revenue ∂R

∂q
is positive, and the marginal profit

∂�
∂q

is negative.

Proof. The firm’s decision problem is

maximize R(q, a)

subject to R(q, a)− C(q)− a � m,

q � 0, a � 0.
2 Formulation of the problem by Baumol [4, p. 170].
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The Lagrange function becomes

	(q, a, u) = R(q, a)+ u(R(q, a)− C(q)− a −m),

and the Kuhn–Tucker conditions are

∂	

∂q
= ∂R

∂q
+ u

(
∂R

∂q
− dC

dq

)
� 0,

or

(1 + u)
∂R

∂q
− u

dC

dq
� 0, (2.48)

q
∂	

∂q
= q

[
(1 + u)

∂R

∂q
− u

dC

dq

]
= 0, (2.49)

∂	

∂a
= ∂R

∂a
+ u

∂R

∂a
− u � 0,

or

(1 + u)
∂R

∂a
� u,

or

∂R

∂a
� u

1 + u
, (2.50)

a
∂	

∂a
= a

[
(1 + u)

∂R

∂a
− u

]
= 0, (2.51)

∂	

∂u
= R(q, a)− C(q)− a −m � 0, (2.52)

u
∂	

∂u
= u [R(q, a)− C(q)− a −m] = 0, (2.53)

u � 0. (2.54)

Assuming q > 0 in the solution, condition (2.48) can be written as

∂R
∂q

dC
dq

= u

1 + u
. (2.48′)

Since we have assumed ∂R
∂a
> 0, it follows from (2.50) and (2.54) that u > 0. The

complementary slackness condition (2.53) then implies� = m. Taking into account
our assumption that dC

dq
> 0, it follows from (2.48′) that the marginal revenue ∂R

∂q
is

positive and smaller than the marginal cost dC
dq

. Therefore, the marginal profit with

respect to output, ∂�
∂q

= ∂R
∂q

− dC
dq

, must be negative. ��
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From the economic interpretation point of view, it is interesting to compare the
obtained results with the results for a profit-maximizing firm. The reader may verify
that the necessary condition for profit-maximizing output is that the marginal revenue
is equal to the marginal cost. In our model, at the constrained revenue-maximizing
output, the marginal revenue is lower than the marginal cost. The implication of this
result for the linear revenue function

R(q, a) = α1q + α2a with α1 > 0, α2 > 0

and the quadratic cost function

C(q) = cq2 with c > 03

is that the constrained revenue-maximizing output from our model is higher than the
profit-maximizing output. The optimal solution qπ for the profit-maximizing firm
follows directly from the condition

∂R

∂q
= α1 = dC

dq
= 2cq,

i.e.,

qπ = α1

2c
.

For the revenue-maximizing firm, the necessary condition for the optimal solution
becomes

∂R

∂q
= α1 = u

1 + u

dC

dq
= u

1 + u
2cq,

and consequently

qR = α1

2c

(
1 + u

u

)
>
α1

2c
= qπ .

2.5.3 Behavior of the Firm under Regulatory Constraint

The regulation of monopolies is an important subject in applied economic analysis.
In the sectors with network structure, such as telecommunications, electricity and
gas, and railway systems with high fixed and irreversible (sunk) costs, it is cheaper
to produce goods by a single firm than by many firms. These situations are called
natural monopolies and occur whenever the average costs of production for a single
firm are declining over a broad range of output levels. The reason lies in the so-called
“bundling advantage”: With increasing diameter of the pipe, the volume increases

3 It can be shown that in this case the second-order conditions are fulfilled.
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more rapidly than its girth, which is crucial for the costs. The average costs of
production fall as the scale of production increases; we say there are economies of
scale. A natural monopoly with ireversible costs implies a barrier to market entry
and is characterized by sustainable market power. In order to prevent this monopoly
power over the customers and to guarantee the reliability and quality of supply at
economically or politically desired prices, the regulation of monopolistic firms has
been introduced. For the regulation of interstate telephone and telegraph service and
of radio and television broadcasting in the United States, the Federal Communica-
tions Commission was created in 1934, and the Civil Aeronautics Board, which
regulated the prices charged by the interstate scheduled airlines as well as entry into
the industry, was established in 1938. The Federal Energy Regulatory Commission
was established in the United States in 1977. Independent regulatory agencies operate
now in all countries of the European Union.

The monopoly profit-maximizing level of output is that one for which marginal
revenue equals marginal cost. At this output level, price will exceed marginal cost.
The profitability of the monopolist will depend on the relationship between price and
average cost.

One approach to devising monopoly pricing schemes that is followed in many
regulatory situations is to permit the monopoly to charge a price above average cost
that is sufficient to earn a “fair” rate of return on investment. From an economic
point of view, the interesting question concerns the impact of regulation on the firm’s
input choices. In the most frequently quoted paper in regulatory economics Averch
and Johnson [2] showed that under the rate of return constraint the profit-maximizing
firm chooses an inefficient input mix in the sense “that (social) cost” is not minimized
at the output it selects [2, p. 1052].

Let us start the analysis considering a basic model of the monopoly firm producing
a single output using two inputs, capital and labor, where the respective quantities are
denoted q, x1 and x2; the production function permits inputs to be employed in any
proportion. The unit price of the firm’s output is denoted p. Suppose that it can buy
as much as it wants of the two inputs at constant unit prices of c1 and c2, respectively,
so that its profit function is

� = pq − c1x1 − c2x2. (2.55)

Assuming that x1 > 0 and x2 > 0 (in other words, both production factors are
essential), the profit maximization requires that

∂�

∂x1
= ∂pq

∂x1
− c1 = 0, (2.56)

∂�

∂x2
= ∂pq

∂x2
− c2 = 0, (2.57)

and consequently,
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∂pq

∂x1
∂pq

∂x2

= c1

c2
. (2.58)

The ratio of marginal revenue products will equal the ratio of the input prices. The
marginal revenue product ∂pq

∂xi
describes the extra revenue that accrues to a firm when

it sells the output that is produced by one more unit of input i (i = 1, 2). The marginal
revenue product of factor i (MRi ) is given by the multiplication of marginal revenue
(MR) by the marginal physical product (MPi ) of factor i: MRi = MR · MPi . The
marginal revenue is the additional revenue obtained by a firm when it is able to sell one
more unit of output. The marginal physical product describes the additional output
that can be produced by one more unit of a particular input while holding all other
inputs constant. According to (2.58), the firm uses an efficient mix of capital and
labor in the sense that cost is minimized at the output it selects. Rewriting (2.58) as

∂pq

∂x1

c1
=
∂pq

∂x2

c2
, (2.58′)

every additional Euro given to any input yields the same revenue.
Now, following [2], suppose that the firm is regulated by government, which im-

poses a constraint on its rate of return. The introduction of such regulatory constraint
is motivated by the following argument: “In judging the level of prices charged by
firms for services subject to public control, government regulatory agencies com-
monly employ a ‘fair rate of return’ criterion: After the firm subtracts its operating
expenses from gross revenues, the remaining net revenue should be just sufficient to
compensate the firm for its investment in plant and equipment. If the rate of return,
computed as the ratio of net revenue to the value of plant and equipment (the rate base),
is judged to be excessive, pressure is brought to bear on the firm to reduce prices. If the
rate is considered to be too low the firm is permitted to increase prices” [2, p. 1052].
The profit-maximizing behavior of the firm under such a regulatory constraint can
then be described by the following.

Proposition 2.3. The firm does not equate the marginal rate of factor substitution to
the ratio of the input prices. The firm has an incentive to increase its investment: The
amount of capital used with the regulatory constraint is not less than the amount used
without a constraint.

Proof. We define the firm’s production function as

q = f (x1, x2), where f1 = ∂f

∂x1
> 0, f2 = ∂f

∂x2
> 0,

f (0, x2) = f (x1, 0) = 0.

That is, marginal products are positive, and production requires both inputs.
The inverse demand function can be written
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p = p(q), where p′(q) = dp

dq
< 0.

The profit � is defined by (2.55).
Let x1 denote the physical quantity of plant and equipment in the rate base, b1

the acquisition cost per unit of plant and equipment in the rate base, β1 the value
of depreciation of plant and equipment during a time period in question, and B1 the
cumulative value of depreciation.

The regulatory constraint of [2] is

pq − c2x2 − β1

b1x1 − B1
� s, (2.59)

where the profit net of labor cost and capital depreciation constitutes a percentage of
the rate base (net depreciation) no greater than a specified maximum s.

For simplicity, in [2] it was assumed that depreciation (β1 and B1) is zero and the
acquisition cost b1 is equal to 1 (i.e., the value of the rate base is equal to the physical
quantity of capital). The price, or the “cost of capital,” c1 is the interest cost involved
in holding plant and equipment (to be distinguished from the acquisition cost b1).
The regulatory constraint (2.59) can then be rewritten as

pq − c2x2

x1
� s,

or

pq − sx1 − c2x2 � 0. (2.60)

The “fair rate of return” s is the rate of return allowed by the regulatory agency on
plant and equipment in order to compensate the firm for the cost of capital.

If s < c1, the allowable rate of return is less than the actual cost of capital and the
firm would withdraw from the market. Therefore, we shall assume that s � c1; the
allowable rate of return must at least cover the actual cost of capital.

The problem of the firm is to maximize the profit described by function (2.55)
subject to (2.60) and x1 � 0, x2 � 0. The Lagrange function is defined as

	(x1, x2, u) = p(q)q − c1x1 − c2x2 − u(p(q)q − sx1 − c2x2),

where q = f (x1, x2).
The Kuhn–Tucker necessary conditions for a maximum at x0

1 , x
0
2 , u

0 are

∂	

∂x1
= (1 − u)[p + p′q]f1 − c1 + us � 0, (a)

x1
∂	

∂x1
= x1{(1 − u)[p + p′q]f1 − c1 + us} = 0, (b)

∂	

∂x2
= (1 − u)[p + p′q]f2 − (1 − u)c2 � 0, (c)
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x2
∂	

∂x2
= x2{(1 − u)[p + p′q]f2 − (1 − u)c2} = 0, (d)

∂	

∂u
= −(p(q)q − sx1 − c2x2) � 0, (e)

u
∂	

∂u
= u(p(q)q − sx1 − c2x2) = 0, (f)

u � 0. (g)

Because the production requires both inputs x0
1 > 0, x0

2 > 0, and assuming u0 > 0
(i.e., the regulatory constraint (2.60) is binding at (x0

1 , x
0
2 )), conditions (a), (c), and (e)

can be rewritten as the following equalities:

(1 − u)[p + p′q]f1 + us = c1, (2.61)

[p + p′q]f2 = c2, (2.62)

pq − sx1 − c2x2 = 0. (2.63)

The expression (p + p′q) describes the marginal revenue and f1, f2 denote the
marginal physical products of capital and labor, respectively. Note that (2.61)–(2.63)
will determine the values of x0

1 , x0
2 , and u0.

If there is no regulatory constraint (2.60) so that the constraint is not active (u = 0),
(2.61) and (2.62) reduce to (2.56)–(2.57) with the familiar rule that the marginal
revenue product of each factor is equal to its price.

It follows from (2.61) that u0 > 0 (the binding regulatory constraint (2.60)) will
distort the equality of the marginal revenue product of capital (p + p′q)f1 with its
actual cost c1. Consequently, the relative proportions of capital and labor used by the
firm will be changed. The marginal rate of factor substitution f1

f2
is no longer equal

to the ratio of the input prices. The first part of Proposition 2.3 is proved.
Assuming that u > 0, it is clear from (2.61) that u = 1 implies c1 = s. On the

other hand, if c1 = s, (2.61) reduces to (2.56), which corresponds to the behavior of
unregulated monopoly. Therefore, we sharpen our assumption s � c1 to s > c1 and
get u0 �= 1.

Let the superscript 0 denote the solution of the optimization problem for the regu-
lated monopoly and asterisk the solution for the unregulated monopoly. Furthermore,
denote the expression [p + p′q]f1 for the marginal revenue product of capital and
the expression [p + p′q]f2 for the marginal revenue of labor by MR1 and MR2,
respectively.

Adding c1u
0 to both sides of (2.61) and rearranging terms yields

MR0
1 = c1 − (s − c1)

1 − u0 u
0. (2.64)

Under the assumption that s > c1 andu0 < 1 (as claimed in [2]), it follows from (2.64)
that MR0 < c1.

If the revenue function G ≡ pf (x1, x2) is concave (this assumption is not men-
tioned in [2]; it was introduced by Takayama [36]), then the marginal revenue prod-
uct of capital MR1 is a nonincreasing function of capital used, and consequently the



46 2 Kuhn–Tucker Conditions

amount of capital used under the regulatory constraint (x0
1 ) is not less than the amount

used without a constraint (x∗
1 ). IfG is assumed to be strictly concave, then ∂ MR1

∂x1
< 0;

hence x0
1 > x∗

1 . Furthermore, it follows from (2.61) and (2.62) that

MR1

MR2
= c1

c2
− (s − c1)

c2

u0

(1 − u0)
<
c1

c2
.

The marginal rate of substitution between inputs (MR1
MR2

) is lower than the ratio of
input prices. Each output is produced with more capital and less labor as compared
to the unregulated optimum. This effect of overcapitalization contained in the second
part of Proposition 2.3 is known as the Averch–Johnson effect. In their own words,
“If the rate of return allowed by the regulatory agency is greater than the cost of
capital but is less than the rate of return that would be enjoyed by the firm were it
free to maximize profit without regulatory constraint, then the firm will substitute
capital for the other factor of production and operate at an output where cost is not
minimized” [2, p. 1053]. ��

This inefficiency derives from the fact that the net return of the monopolist on
every unit of capital is s−c1, and this creates an incentive to substitute capital for labor.
Under regulatory constraint�0+c1x

0
1 −sx0

1 = 0, and consequently�0 = (s−c1)x
0
1 .

An important question in theAverch–Johnson analysis is whether u0 is indeed less
than one. The argument by Averch–Johnson roughly goes as follows: Since s > c1,
u0 cannot be equal to one, as shown before, for the unconstrained rate of return is
u0 = 0. Because of the continuity of u0 with respect to s, u0 should always be less
than one.

But the continuity of u0 is not intuitively obvious. The value of the Lagrange
multiplier may jump from zero to some nonzero value as the constraint moves from
a nonactive to an active stage. Takayama [36] showed that the continuity of u0 in the
Averch–Johnson model depends on the continuity of x0

1 and x0
2 with respect to s.

Another way to obtain the condition u0 < 1 uses the optimality conditions (2.61)–
(2.63). As already mentioned, under the assumptions x0

1 > 0, x0
2 > 0, and u0 > 0,

these equations determine the values of x0
1 , x0

2 , and u0. The value of u0 can be
obtained explicitly from (2.64), assuming that s − MR0

1 > 0:

u0 = c1 − MR0
1

s − MR0
1

> 0. (2.65)

Under our assumption that s > c1 and the new condition s > MR0
1, it follows directly

from (2.65) that u0 < 1.
If u0 = 1, then due to (2.61), s = c1, which contradicts the assumption of s > c1.
A condition similar to our condition s > MR0

1 is used by El-Hodiri and
Takayama [9]. Assuming that G is concave, the Averch–Johnson effect, x0

1 � x∗
1 ,

occurs if and only if MR0
1 −c1 � 0. They assert that u0 < 1 if and only if MR0

1 � c1
(i.e., if and only if x0

1 � x∗
1 ). They can prove the Averch–Johnson effect without

assuming anything about u0 but with the requirement that MR0
1 � c1.
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Averch and Johnson applied the model to one particular regulated industry—the
domestic telephone and telegraph industry. They found that “the model does raise
issues relevant to evaluating market behavior” [2, p. 1052]. The scientific discussion
as well as the real applications of the rate-of-return regulation has been initiated.

In the 1980s, the discussion—connected with privatization and deregulation poli-
cies in several countries—began to concentrate on the question of how a regulating
agency could give the best incentives for efficient production in the regulated firm.
The way to increase the efficiency is based on the promotion of the competition.
Internal subsidization was increasingly considered undesirable and this view has led
to reconsideration of the internal organization of firms which claimed to be natural
monopolies. Because in the utilities like telecommunications, electricity, and gas, it
is only the distributive grid which has the properties of a natural monopoly, vertical
desintegration or unbundling has been proposed. The electricity generation must be
separated from the transmission and distribution activities. With respect to these grids,
economies of scale are still predominant, maybe even increasing in recent decades.
With unbundling a market entry in those parts where no natural monopoly properties
prevail can ensure and a presupposition for effective competition is created. Compe-
tition is effective when each firm cannot appreciably raise the price above that of its
rivals for fear of losing its market share, and can only increase profit by cutting costs.
Regulation of networks which remain natural monopolies is needed in order to make
the entry possible for different providers and in this way to promote a competition.
How to design regulation to fulfill the above requirements and so provide incentives
for grid companies to reduce the costs and consequently the prices? The main draw-
back of the rate of return regulation is the lack of incentives for cost reduction and
technological innovation. “A profit maximizing firm subject to a fair return on in-
vestment regulation will overcapitalize and select those technical changes which will
allow to continue to do so—namely labor augmenting innovations” [34, p. 630].4 We
speak about costs based regulation, in which firms’ allowed rate of return is based
directly on the reported costs of the individual firm.

During the privatization of British Telecom, Littlechild [21], Director of the Office
for Electricity Regulation, proposed a new type of regulation, the so-called price-cap
regulation.5 The basic idea is that the price index of the monopolistically supplied
goods (or services) must not exceed the retail price index minus an exogenously
fixed productivity factor. The customer must be able to buy at the prices of given
period the same basket of goods (or services) as in the base period without increasing
expenditures. The retail price index (RPI) measuring the inflation rate is the consumer
price index, which is a Laspeyers index of the usual type:

RPI =
∑
i piq

0
i∑

i p
0
i q

0
i

.

The superscript 0 defines variables of the base period in which the fixed commodity

4 For further reading, see [13].
5 For further reading on price-cap regulation, see [7, 19, 17], and for a survey comparing rate

of return and price-cap regulation, see [22].
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basket of the index was empirically determined. We denote the price of commodity
i by pi and the quantity by qi (i = 1, 2, . . . , n).

The profit-maximizing firm is regulated by the following constraint:

n∑
i=1

piq
0
i �

n∑
i=1

p0
i q

0
i (1 + RPI −X), (2.66)

where X describes the productivity factor of the sector.
Because both the consumer price index (RPI) as well as the expenditures of the

base period (
∑n
i=1 p

0
i q

0
i ) are for the regulator exogenously given, the only control

variable for him remains the productivity factor (X). From the regulatory point of
view the relevant question therefore concerns the impact of X on the behavior of the
regulated firm.

For this purpose, we consider the following optimization problem:

maximize �(q) = p(q)q − C(q)

subject to p(q)q0 � b0,
(2.67)

where �(q) describes the profit function, C(q) is the cost function, and p(q) is the
inverse demand function. b0 denotes the right side of the regulatory constraint (2.66):

b0 = p0q0(1 + RPI −X).
The price cap (b0) can be faced as a function of the expenditures in the base period
(p0q0), of the retail price index (RPI), and of the productivity factor (X):

b0 = b

(
R0

(+),RPI
(+) , X(−)

)
,

where R0 = p0q0. With increasing expenditures (R0) and increasing consumer
price index (RPI), the price cap (b0) rises. The increasing productivity (X) makes
the constraint (2.66) tighter. In other words, the increasing productivity implies lower
prices for the consumers.

Furthermore, we postulate positive marginal cost and a declining demand func-
tion:

dC

dq
= MC > 0,

dp

dq
< 0.

The Lagrange function for the maximization problem (2.67) is

	(q, u) = p(q)q − C(q)+ u(b0 − p(q)q0).

Application of the Kuhn–Tucker conditions (2.20)–(2.21) yields

p − dC

dq
= −dp

dq
(q − uq0). (2.68)

Multiplying both sides of (2.68) by 1
p

, we obtain
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p − MC

p
= −dp

dq

q

p
+ u

q0

p

dp

dq
.

Using the notion of the price elasticity of demand ε = pdq
qdp

< 0, the following
optimality condition results:

p − MC

p
= −

(
1 − u

q0

q

)
1

ε
. (2.69)

For the unregulated monopolistic firm with the Lagrange multiplier u = 0, the
form (2.69) reduces to the well-known Lerner index (see, e.g., [5, p. 26]):

p − MC

p
= −1

ε
.

The Lerner index measures the market power of monopoly.
For a perfectly competitive firm, price equals marginal cost, so the Lerner index

equals 0. The higher the Lerner index is, the higher is the degree of monopoly power.
For the profit-maximizing firm, the Lerner index is equal to the reciprocal value of
the price elasticity of demand for the firm’s product. The lower the price elasticity of
demand for the firm’s product is, the higher is the degree of monopoly power.

Under the price-cap regulation the Lerner index is modified by the expression

1 − u · q0

q
.

From the Kuhn–Tucker condition (2.25) follows the nonnegativity of the Lagrange
multiplier u. According to (2.9), this multiplier describes the change of the monopoly
profit due to a change of the price cap:

u = ∂�

∂b0 � 0.

Moreover, it can be shown [33, pp. 166–168] that under the assumption of concavity
of � and convexity of p(q)q0,

∂u

∂b0 � 0.

The lower price cap—due to the stronger regulation by setting the productivity factor
(X) higher—implies higher Lagrange multiplier, and according to (2.69) the lower
the degree of monopoly power. In this way, price-cap regulation is an appropriate
instrument to reduce the market power of natural monopolies. The form (2.69) reveals
the central problem of price-cap regulation for the regulatory agency, the determi-
nation of the productivity factor (X). “Too high a price ceiling makes the firm an
unregulated monopolist, too low cap conflicts with viability, and in between the ‘right’
price level is difficult to compute” [19, p. 17]. One possibility of how to calculate
the X-factor in order to provide incentives for cost reduction and technological in-
novation and consequently for reduction of network tariffs in the electricity sector is
described by [25].

An application of regulatory constraints for environmental economics and policy
will be discussed in the next section.
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2.5.4 Environmental Regulation: The Effects of Different Restrictions

The forms of standards used in current environmental regulation vary tremendously.
The most frequently discussed forms are systems of permits which determine a fixed
amount of emission allowed for each emission source independent of the production
level of this source. The deficiencies of such a source-based system of permits are
investigated and summarized in [31, Chapter VIII] or [32]. Another form of environ-
mental regulation relates to restrictions on pollution per unit of output or input [8]. In
an economic sense, restrictions that are based on a unit of output or input are equiva-
lent to a productivity or intensity regulation, well known from the literature, beginning
with the Averch–Johnson model [2], and are discussed in the previous section.

In the paper by Helfand [14], the effects of five different forms of pollution
standards on input decisions, the level of production, and firm profits are examined
using a graphical approach. In this section, we analyze the effects of different kinds
of pollution control standards in a more general way using Kuhn–Tucker conditions.

The model used in [14] involves one firm, facing a horizontal output demand curve
and using two inputs, x1 and x2, with horizontal supply curves. The assumption that
there are only two inputs is only for simplicity but without loss of generality. The
assumption of a horizontal output demand curve is more limiting and is realistic
only for a good whose price is unaffected by production of the firm. In [14], this
assumption makes the problem tractable and permits a graphical presentation.

Assume that the firm produces a single output in the quantity q according to the
production function f (x1, x2) with the usual properties:

f1 = ∂f

∂x1
> 0, f2 = ∂f

∂x2
> 0,

f11 = ∂2f

∂x2
1

< 0, f22 = ∂2f

∂x2
2

< 0.
(2.70)

In other words, the marginal products of both inputs are positive but declining.
The firm also causes pollution, the level of which depends on the level of produc-

tion and the technology. In order to reduce the level of pollution, the firm can use an
abatement activity or invest in new technology. The resulting level of pollution (or
net pollution) can be described as follows:

P = G(f (x1, x2))− Ab(x3),

where Ab(x3) denotes the abatement activity as a function of abatement expenditure
x3 (or expenditure for development of a new technology). It is assumed that dAb

dx3
> 0,

that is, more abatement equipment (or higher expenditure for development of a new
technology) reduces the level of pollution. More generally, we describe the level of
net pollution as follows:

P = P(x1, x2, x3)

with P1 = ∂P
∂x1

> 0, P2 = ∂P
∂x2

> 0, and P3 = ∂P
∂x3

< 0.6

6 In this formulation of the net pollution function P , we differ slightly from the model in [14].
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The firm is assumed to maximize profits while facing an output price p and input
prices c1 and c2 as well as the price of abatement equipment c3 as given.

The necessary conditions for a profit-maximizing firm without regulatory con-
straint (i.e., pollution restrictions) are given by (2.56)–(2.57) in the previous section.
In economic terms, the value of the marginal product of input i (i = 1, 2) must be
equal to its price, i.e., the ratio of marginal revenue products will equal the ratio of
the input prices.

Now, similar to the regulatory constraint by [2], pollution restrictions in the form
of different kinds of pollution-control standards will be taken into account. What are
the effects for the level of production and the firm’s profit?

2.5.4.1 Standard as a Set Level of Emissions

Let Zp be the amount of total pollution permissible in a certain period of time. It can
be represented as a constraint in the form P(x) � Zp. The optimization problem of
the profit-maximizing firm is

maximize
x1,x2,x3

� = pf (x1, x2)− c1x1 − c2x2 − c3x3

subject to P(x1, x2, x3) � Zp,

x1 � 0, x2 � 0, x3 � 0.

We write the Lagrange function

	(x, u) = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(Zp − P(x1, x2, x3))

and the resulting Kuhn–Tucker conditions

∂	

∂x1
= pf1 − c1 − uP1 � 0, (2.71)

or

pf1 � c1 + uP1,

x1
∂	

∂x1
= x1(pf1 − c1 − uP1) = 0. (2.72)

Assuming that x1 > 0, it follows from (2.72) that

pf1 = c1 + uP1. (2.73)

Furthermore,

∂	

∂x2
= pf2 − c2 − uP2 � 0, (2.74)

or



52 2 Kuhn–Tucker Conditions

pf2 � c2 + uP2,

x2
∂	

∂x2
= x2(pf2 − c2 − uP2) = 0. (2.75)

Assuming that x2 > 0, (2.75) implies that

pf2 = c2 + uP2. (2.76)

We conclude that the value of the marginal product of the input i (i = 1, 2) is equal

to the marginal input costs, plus the pollution cost, uPi , where u = u0 = ∂�(x0(Zp))

∂Zp

and Pi = ∂P
∂xi

(i = 1, 2).

The Lagrange multiplier u0 describes the effect of a change of the environmental
standards for the profit of the firm and Pi expresses the increase of pollution caused
by increasing the ith input by a small unit (i.e., the marginal pollution with respect to
the input i):

∂	

∂x3
= −c3 − uP3 � 0,

x3
∂	

∂x3
= x3(−c3 − uP3) = 0.

x3 > 0 implies that c3 = −uP3, where P3 < 0. Therefore, the value of the pollution
reduction caused by one additional unit of abatement equipment is equal to its cost.

Finally, we obtain

∂	

∂u
= Zp − P(x1, x2, x3) � 0,

u
∂	

∂u
= u(Zp − P(x1, x2, x3)) = 0,

u � 0.

We conclude that P(x1, x2, x3) < Zp implies that u = 0. In this case, equali-
ties (2.73) and (2.76) reduce to pf1 = c1, pf2 = c2, and c3 > 0 implies that x3 = 0.
The economic interpretation of this result is straightforward: If the net pollution is
below the given level of emissions, no abatement will be necessary, and we get the
same solution as in the unregulated case.

For u > 0, we obtain P(x1, x2, x3) = Zp, and in the case of essential production
factors (x1 > 0, x2 > 0), conditions (2.73) and (2.76). Because u > 0 and P1 > 0,
P2 > 0, the value of marginal product of the input i (i = 1, 2) under regulation
must be higher than in the unregulated case (see conditions (2.56)–(2.57), (2.73),
and (2.76)).

Under the assumption (2.70) on the production function f (x1, x2) that the
marginal products are decreasing, we can conclude

pf I
1 > pf 0

1 implies xI
1 < x0

1 ,

pf I
2 > pf 0

2 implies xI
2 < x0

2 ,
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where the superscript I denotes the model with environmental constraint expressed
as a permissible amount of total pollution and 0 denotes the model without regula-
tion. The effect of this type of environmental regulation is obvious: Both inputs are
decreasing, and therefore the level of production also decreases. This is the only way
the firm can meet the environmental constraint.

2.5.4.2 Standard as Emissions per Unit of Output

Let ZPF be the emission standard expressed as a set level of pollution per unit of
output. This amount of emission may be discharged into the environment at a zero
price. The regulatory constraint then becomes

P(x1, x2, x3)

f (x1, x2)
� ZPF,

and the objective function of the firm is the profit maximization as in the previous
model.

The Lagrange function is

	 = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(ZPFf (x1, x2)− P(x1, x2, x3)),

and the Kuhn–Tucker conditions are

∂	

∂x1
= pf1 − c1 + u(ZPFf1 − P1) � 0, (2.77)

x1
∂	

∂x1
= x1[pf1 − c1 + u(ZPFf1 − P1)] = 0, (2.78)

∂	

∂x2
= pf2 − c2 + u(ZPFf2 − P2) � 0, (2.79)

x2
∂	

∂x2
= x2[pf2 − c2 + u(ZPFf2 − P2)] = 0, (2.80)

∂	

∂x3
= −c3 − uP3 � 0, (2.81)

x3
∂	

∂x3
= x3(−c3 − uP3) = 0, (2.82)

∂	

∂u
= ZPFf (x1, x2)− P(x1, x2, x3) � 0, (2.83)

u
∂	

∂u
= u[ZPFf (x1, x2)− P(x1, x2, x3)] = 0, (2.84)

u � 0. (2.85)

If ZPFf (x1, x2) > P (x1, x2, x3), then u = 0, and because c3 > 0, it follows
from (2.82) that x3 = 0.

If the price of abatement equipment c3 is higher than the value of the pollution
reduced by one additional unit of abatement equipment −uP3, then the abatement
expenditure x3 will be zero.
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Assuming essential production factors (x1 > 0, x2 > 0), the Kuhn–Tucker con-
ditions (2.77) and (2.79) become equalities:

pf1 − c1 + u(ZPFf1 − P1) = 0,

pf2 − c2 + u(ZPFf2 − P2) = 0,

or

f1 = c1 + uP1

p + uZPF
, (2.86)

f2 = c2 + uP2

p + uZPF
, (2.87)

and therefore

f1

f2
= c1 + uP1

c2 + uP2
. (2.88)

We can see that foru > 0 (the pollution constraint is binding), the ratio of marginal
products cannot equal the ratio of the input prices, as was the case in the absence of
the regulatory constraint.

In order to show the effect of the environmental constraint (2.83) for the behavior
of the firm, we compare the optimality conditions (2.86)–(2.87) with the optimality
conditions without environmental standard (2.56)–(2.57).

Let the superscript II denote the solution of the model with environmental con-
straint expressed as the maximum amount of emissions per unit of output, i.e., the
model in this section.

Recall the first-order optimality conditions for the unregulated firm:

f 0
1 = c1

p
and f 0

2 = c2

p
(2.89)

for a given price p of the output.
Comparison of (2.89) with (2.86)–(2.87) reveals that the effect of the environ-

mental regulatory constraint (2.83) on the production of the firm is ambiguous. It
depends on the relation between the expressions on the right side of (2.86)–(2.87)

and (2.89), respectively. If P II
i <

ciZPF
p

, then
ci+uP II

i

p+uZPF
<

ci
p

; therefore, f II
i < f 0

i ,

and consequently, due to the assumption (2.70), xII
i > x0

i (i = 1, 2). If the marginal
pollution with respect to the input i is lower than the exogenously given constant
ki = ciZPF

p
, then the amount of input i used in production will—compared with the

basic model—increase.
In the opposite case, if the marginal pollution with respect to the input i is relatively

high (higher than the parameter ki), the amount of input i used in production will—in
order to fulfill the environmental standard—decrease.

The effects on production, and therefore (taking into account the possible abate-
ment activity) on the level of pollution, remain ambiguous. To summarize, the effect
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of the standard defined as emissions per unit of output can lead to similar results as
in the Averch–Johnson model: Pollution increases with the imposition of an environ-
mental regulatory constraint. If production increases more rapidly than pollution, the
environmental standard can be achieved in spite of increasing pollution.

2.5.4.3 Standard as Emissions per Unit of a Specified Input

Another way in which individual stack policy can be effected is to fix an upper bound
for the emissions per unit of specified input, such as restricting the amount of sulfur
dioxide emissions per ton of coal used for electricity. Such a type of limitation is
referred to in [8] as intensity regulation and can be formalized as

P(x1, x2, x3)

xi
� ZPi, for i = 1, 2.

Without loss of generality we suppose that the intensity regulation is imposed for the
second production factor. Then the firm will face the following optimization problem:

maximize � = pf (x1, x2)− c1, x1 − c2x2 − c3x3

subject to P(x1, x2, x3) � ZP2x2,

x1 � 0, x2 � 0, x3 � 0.

Using the Lagrange function,

	(x, u) = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(ZP2x2 − P(x1, x2, x3)),

the Kuhn–Tucker conditions are

∂	

∂x1
= pf1 − c1 − uP1 � 0,

x1
∂	

∂x1
= x1(pf1 − c1 − uP1) = 0, (2.90)

∂	

∂x2
= pf2 − c2 + u(ZP2 − P2) � 0,

x2
∂	

∂x2
= x2[pf2 − c2 + u(ZP2 − P2)] = 0, (2.91)

∂	

∂x3
= −c3 − uP3 � 0,

x3
∂	

∂x3
= x3(−c3 − uP3) = 0,

∂	

∂u
= ZP2x2 − P(x1, x2, x3) � 0,

u
∂	

∂u
= u[ZP2x2 − P(x1, x2, x3)] = 0,

u � 0.
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Let the superscript III denote the solution of the model with intensity regulation.
Again assuming essential production factors (x1 > 0, x2 > 0) and u > 0 (the

environmental standard is binding), the Kuhn–Tucker condition (2.90) yields

f III
1 = c1

p
+ u

p
P1 >

c1

p
= f 0

1 .

Due to the assumption (2.70), we have xIII
1 < x0

1 ; the firm decreases the amount of
the first input used.

For the reaction with respect to the regulated input, we look at the Kuhn–Tucker
condition (2.91). It provides

f III
2 = c2

p
+ u

p
(P2 − ZP2).

If the marginal pollution with respect to the second input (P2) is higher than the
allowable amount of emissions per unit of this input, then the marginal product f III

2 is
higher than the marginal product f 0

2 (= c2
p
) in the absence of the regulatory constraint.

Therefore, due to the declining marginal product, the amount of the regulated input
used under the intensity regulation xIII

2 is lower than without such regulation x0
2 . The

firm will decrease the level of production. If the marginal pollutionP2 is lower than the
tolerated amount of emissions per unit of the second input, we get the opposite result.
Because in this case the marginal product f III

2 is lower than the marginal product f 0
2 ,

the amount of the regulated input used in the optimal solution xIII
2 is higher than the

amount x0
2 used without the regulatory constraint. We have theAverch–Johnson effect

with respect to the second input; the substitution of the first input by the second one.
More than fifty years after their formulation, the Kuhn–Tucker conditions became

a standard instrument of the analysis used in the textbooks of microeconomic theory
(e.g., [28, 33]) and in the monographs devoted to various fields of economics like the
theory of money [29], public economics [7], or industrial economics [6, 13]. More-
over, they provide the foundation for the development of more complex optimization
models dealing with multiple objectives or with dynamical economic systems.
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3

Convex Programming

The notion of convexity plays an important role in economic theory and modeling.
The indifference curves generally used in the theory of consumer demand embody
the assumption of a diminishing marginal rate of substitution. Denoting by xi the
quantity of the ith good in the consumer bundle (i = 1, 2), the diminishing marginal
rate of substitution implies that − dx2

dx1
falls as x1 increases. The more the consumer

has of the first good, the less will be the marginal rate of substitution of this good
for the second good. In other words, the more the consumer has of a particular
good, the less important to her (relative to other goods) is an extra unit of this good.
In mathematical terms, this assumption—very plausible from a consumer behavior
point of view—means that the indifference curves are convex. The assumption of a
diminishing marginal rate of substitution is therefore equivalent to the assumption
that all combinations of x1 and x2, which are preferred to or indifferent to a particular
combination x0

1 , x
0
2 , form a convex set. This definition is, on the other hand, related

to the concavity property of the utility function. The assumption of a diminishing
marginal rate of substitution (and of a convex preference curve) means that the “well-
balanced” bundles of commodities are preferred to bundles that are heavily weighted
toward one commodity. If the indifference curve is strictly convex (not a straight
line), any linear combination of the two indifferent bundles of goods will be preferred
to the initial bundles. The same kind of role as indifference curves in the theory of
consumer demand plays an isoquant in production theory. An isoquant shows all
possible combinations of inputs that result in a certain quantity of output. Under
the assumption of diminishing rate of technical substitution, the isoquants must be
convex.

In his book on convex structures and economic theory, Nikaido [17] emphasized
examples of convexity emerging “from the peculiarity of constraints that bind the
behavior of economic magnitudes” [17, p. 4]. Typical examples are the nonnegativ-
ity constraints like the nonnegativity of prices and the inequality constraints in the
economic models of mathematical programming described in Chapter 1. The convex-
ity assumption is crucial for the workability of mathematical programming models
and thereupon for their application in economics. This chapter deals with the basic
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© Springer Science+Business Media, LLC 2010 
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properties of mathematical programming under the assumption of convexity for the
objective function and for the functions in the constraints.

Section 3.1 furnishes the mathematical background, including the basic defini-
tions and properties. Section 3.2 deals with Kuhn–Tucker conditions as sufficient
optimality conditions for convex programming problems. Note that in the previous
chapter, in the absence of convexity assumptions, the Kuhn–Tucker conditions pro-
vide only necessary optimality conditions. In Section 3.3, the important concept of
duality will be introduced, and in the last section an economic interpretation of duality
in convex programming is discussed.

3.1 Basic Definitions and Properties

The mathematical programming problem

minimize f0(x)

subject to x ∈ K (3.1)

is called a convex programming problem if the objective function f0(x) and the
set of feasible solutions K are convex, where K = {x|x ∈ Rn, fi(x) � 0
(i = 1, 2, . . . , m)}.

The definition of a convex set originates in the intuitive perception that it has
no hollows, and it reads as follows: A convex set is a set that contains any segment
joining any two points in it. A rectangular playground (Figure 3.1) is convex, whereas
a gourd-shaped lake (Figure 3.2) is not. A folded balloon is not convex, but it becomes
convex when inflated.

Fig. 3.1. Convex set.

Fig. 3.2. Nonconvex set.
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The definition of a convex set involves the operation of joining two points by a
segment so that convex sets are conceivable only in a space admitting some sort of
linear structure. The simplest kind of such spaces is the Euclidean space Rn.

A formal definition of a convex set is the following.

Definition 3.1. A subset M of Rn is termed convex if x, y ∈ M implies (λx + (1 −
λ)y) ∈ M for 0 � λ � 1.

This turns out to be a very useful property for the mathematical programming
problem (3.1). The convexity of the setK implies that for any two feasible solutions
of (3.1), any convex linear combination of the set is a feasible solution.

Let f (x) be a real-valued function defined in Rn. Here f (x) is assumed to have
continuous partial derivatives ∂f

∂xj
(j = 1, 2, . . . , n).

Definition 3.2. A real-valued function f (x) defined on a convex setD inRn is called
convex on D if

f (λx + (1 − λ)y) � λf (x)+ (1 − λ)f (y) (3.2)

for any x, y ∈ D and 0 � λ � 1.

For the single-variable function depicted in Figure 3.3, the graph of the function
lies below the line segment joining any two points on the graph.

In the following, the domain of definition D of a convex function is taken to
be a convex set in Rn, although this basic assumption will not be stated explicitly
each time.

Related to convex sets, the following equivalent definition of a convex function
can be given.

Fig. 3.3. A convex function.
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Fig. 3.4. A concave function.

Definition 3.3. A real-valued function f (x) defined on a convex setD inRn is called
convex on D if for any α ∈ R the set Df = { (x,α)

α
� f (x), x ∈ D} is a convex

set in Rn × R. In other words, the convexity of a function f (x) is equivalent to the
convexity of the set of points lying on or above the graph of a function f (x) (the
epigraph of f ).

Definition 3.4. A real-valued function f (x) defined on a convex setD inRn is called
concave on D if

f (λx + (1 − λ)y) � λf (x)+ (1 − λ)f (y) (3.3)

for any x, y ∈ D and 0 � λ � 1.

The graph of the function depicted in Figure 3.4 lies above the line joining any
two points on the graph.

By analogy to Definition 3.3, the concavity of a function f (x) is equivalent to
the convexity of the set of points lying on or below the graph of a function f (x). A
function f (x) is concave if and only if the function (−f (x)) is convex.

Inequalities (3.2) and (3.3) allow the special case of a straight line, which could
be excluded by requiring the inequality to be strict for 0 < λ < 1.

Definition 3.5. A function f (x) is called strictly convex (strictly concave) if in (3.2)
(respectively, (3.3)) strict inequality holds.

Obviously, a linear function f (x) defined on a convex set D in Rn is convex and
concave (but neither strictly convex nor strictly concave). Only linear functions have
this property.

For practical applications and for economic interpretation of convexity, the ques-
tion arises of how to check a given function for convexity. The direct use of Def-
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inition 3.2 can be very cumbersome, and therefore some useful alternative criteria for
convexity will be derived in what follows. Let us start with single-variable function
f (x) defined in R.

Theorem 3.1. A functionf (x) that has continuous derivatives onD is convex (strictly
convex) if and only if the derivative f ′(x) is a nondecreasing (increasing) function
on D.

Proof.

(i) Suppose that f is differentiable and convex. Then for x < y and z = λx + (1 −
λ)y, where 0 < λ < 1, the following is true:

f (z) � λf (x)+ (1 − λ)f (y),

or

f (z) � y − z

y − x
f (x)+ z− x

y − x
f (y), (3.4)

where λ = y−z
y−x . It follows from (3.4) that

f (z)− f (x) � x − z

y − x
f (x)+ z− x

y − x
f (y) = z− x

y − x
(f (y)− f (x)),

f (z)− f (y) � y − z

y − x
f (x)+ z− y

y − x
f (y) = y − z

y − x
(f (x)− f (y)),

and consequently,

f (z)− f (x)

z− x
� f (y)− f (x)

y − x
� f (y)− f (z)

y − z
. (3.5)

By taking limits in inequality (3.5), z → x and z → y, we obtain

f ′(x) � f (y)− f (x)

y − x
� f ′(y). (3.6)

It follows from (3.6) that f ′(x) is a nondecreasing function. If the function f (x)
is strictly convex, we get a strict inequality in (3.6); in other words, f ′(x) is then
an increasing function.

(ii) Conversely, suppose that f ′ is nondecreasing. By the mean value theorem in
calculus, there are some numbers θ1 and θ2, where x � θ1 � z � θ2 � y,
such that

f ′(θ1) = f (z)− f (x)

z− x

and
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f ′(θ2) = f (y)− f (z)

y − z
.

Because f ′(θ1) � f ′(θ2), we obtain inequality (3.5) and consequently—using
inequality (3.4)—the convexity of f .
If f ′ is increasing, the relation in (3.5) is a strict inequality and, in this case, f is
strictly convex. ��

Theorem 3.2. If f is twice differentiable on D, f is convex on D if and only if f ′′ is
nonnegative on D.

Proof. It is well known in calculus that f ′ is nondecreasing onD if and only if f ′′ is
nonnegative on D. ��

Using the related function

	(µ) = f (x + µs), µ ∈ R, x ∈ Rn, s ∈ Rn,
we can extend the results of Theorems 3.1 and 3.2 to functions of n variables. For
this purpose, the following theorem will be proved.

Theorem 3.3. A function f (x), x ∈ Rn, is convex if and only if the function 	(µ),
µ ∈ R, is convex for any x ∈ Rn, s ∈ Rn.

Proof.

(i) Suppose that 	(µ) is convex. We can write

f (λy + (1 − λ)x) = f (x + λ(y − x)) = 	(λ),

where s = y − x. Then

	(λ) = 	(λ · 1 + (1 − λ) · 0) � λ	(1)+ (1 − λ)	(0) = λf (y)+ (1 − λ)f (x),
which implies the convexity of f (x).

(ii) Conversely, now suppose that f (x) is convex. We can write

	(λµ+ (1 − λ)ν) = f (x + {λµ+ (1 − λ)ν}s) = f (x + λµs + (1 − λ)νs)

= f (λ{x + µs} + (1 − λ){x + νs})
� λf (x + µs)+ (1 − λ)f (x + νs),

where f (x +µs) = 	(µ) and f (x + νs) = 	(ν). Consequently, 	(λµ+ (1 −
λ)ν) � λ	(µ)+ (1 − λ)	(ν), so that 	 is convex. ��
Using the gradient of the function f (x), defined as the vector of partial derivatives,

∇f (x) = (
∂f
∂x1
, . . . ,

∂f
∂xn
), the following theorem turns out to be useful.

Theorem 3.4. Let f (x) be differentiable at a point x belonging to D ∈ Rn. f is
convex only if

f (y)− f (x) � (y − x)′∇f (x) and (y − x)′∇f (y) � f (y)− f (x) (3.7)

for any x ∈ Rn, y ∈ Rn, where x �= y.
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slope

slope

Fig. 3.5. A convex function.

Proof. It follows from (3.6) that a function	(µ) = f (x+µs) forµ ∈ R and x ∈ Rn,
s ∈ Rn is convex if and only if

	′(µ)(ν − µ) � 	(ν)−	(µ) � 	′(ν)(ν − µ) (3.8)

holds for µ < ν. Now we set µ = 0, ν = 1, and s = y − x, and we obtain from (3.8)
the relations in (3.7). ��

This theorem simply states that a hyperplane tangent to the hypersurface repre-
senting f lies below the hypersurface. Figure 3.5 gives a graphical interpretation of
this statement when a single-variable function f is defined on a convex subset of R.
In this case, the “hypersurface” is the curve f (x), and the “hyperplane” is the straight
line tangent f (x)+ f ′(x)(y − x). The slope of the hyperplane tangent f ′(x) is not
larger than the slope of the segment joining the points f (x) and f (y).

In terms of the Hessian matrix [ ∂2f (x)
∂xi∂xj

], Theorem 3.4 can be formulated as follows.

Theorem 3.5. Let f (x) have continuous partial derivatives of the second order on

a convex subset D of Rn. Then f is convex on D if the Hessian matrix [ ∂2f (x)
∂xi∂xj

] is

positive semidefinite for each point x belonging to D.

Proof. Let x ∈ D, y ∈ D, and s = y − x. Suppose that f (x) is convex. Then by
Theorem 3.3 the function 	(µ) = f (x + µs) for µ ∈ R is convex. We differentiate
the function 	(µ) twice:

	′′(µ) = d

dµ

n∑
i=1

∂f (x + µs)
∂xi

si =
n∑
i=1

n∑
j=1

∂2f (x + µs)
∂xi∂xj

sisj = s′∇2f (x + µs)s.

From Theorem 3.2, we know that 	′′(µ) � 0 for any µ ∈ R, and therefore
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	′′(0) = s′∇2f (x)s � 0 for any x ∈ D and any s ∈ Rn.

This means that the Hessian matrix ∇2f (x) is positive semidefinite.
Conversely, suppose that ∇2f (x) is positive semidefinite for all x ∈ Rn. Then

for any x ∈ D, y ∈ D, s = y − x,

	′′(µ) = s∇2f (x + µs)s � 0 for any µ ∈ R.

Then it follows from Theorem 3.2 that 	(µ) is convex, and we can write

f (λy + (1 − λ)x) = f (x + λs) = 	(λ) = 	(λ1 + (1 − λ)0)

� λ	(1)+ (1 − λ)	(0) = λf (y)+ (1 − λ)f (x)

for any x ∈ D and any y ∈ D; f is convex on D. ��

Remark 3.1. As is well known in matrix theory, a quadratic form
∑
i

∑
j aij xixj with

aij = aji is positive semidefinite (definite) if and only if all the principal minors of
the matrix A = (aij ) are nonnegative (positive).

What are the implications of the convexity property of the functions fk(x) (k =
0, 1, 2, . . . , m) for the mathematical programming problem (3.1)? The following
lemma can be proved.

Lemma 3.1. Let f (x) be a convex function defined on D, where D is a convex set in
Rn. Then the set

Sb = {x|f (x) � b}
is convex (and closed) for any number b ∈ R.

Proof. Let x, y ∈ Sb and z = λx + (1 − λ)y, where 0 � λ � 1. Then

f (z) � λf (x)+ (1 − λ)f (y) � λb + (1 − λ)b = b,

and thus z ∈ Sb. (The set Sb is closed because of the inequality f (x) � b.) ��

Then the following property is very useful [17, pp. 17–18].

Theorem 3.6. The intersection of any given number of convex sets Sb is a convex set.

An immediate implication of Theorem 3.6 is the following.

Corollary 3.1. If the functions fi(x), x ∈ Rn (i = 1, 2, . . . , m), are convex, then
the set

K = {x|fi(x) � 0 (i = 1, 2, . . . , m)}
is convex and closed.
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In what follows, we restrict the convex programming problem (3.1) to the problem

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m),
(3.9)

where fk(x) (k = 0, 1, . . . , m) are convex functions. The assumption of convexity
for the objective function f0(x) in problem (3.1) or (3.9) is important because of the
following properties of convex functions.

Theorem 3.7.

(a) Each local minimum of a convex function f (x) over a convex set D is also a
global minimum of f (x) over D.

(b) The set of minimizing points for a convex programming problem is convex.
(c) A minimum of any strictly convex function is unique.

Proof.

(a) Assume that a point x0 inD is a local minimum of a function f (x). Now suppose
that there exists another point y ∈ D such that f (y) < f (x0). Because of the
convexity of the function f (x),

f (λx0 + (1 − λ)y) � λf (x0)+ (1 − λ)f (y)

< λf (x0)+ (1 − λ)f (x0) = f (x0)
(3.10)

for 0 < λ < 1. If we let λ be close to one, it follows from (3.10) that in a
sufficiently small neighborhood of the point x0, the value of the function f (x)
is smaller than f (x0). But this is a contradiction to our assumption that x0 is a
local minimizing point for f (x) overD. Therefore, for an arbitrary point y ∈ D,
we must have f (y) � f (x0).

(b) Let x0 ∈ D and y ∈ D be two minimizing points for f over D; that is,

f (x0) = f (y) = min
x∈D f (x) = f 0.

Then we have to show that z = λx0 + (1 − λ)y, 0 < λ < 1, is also a minimizing
point for f over D.
Because of the convexity of the function f (x), we obtain

f (z) = f (λx0 + (1 − λ)y) � λf (x0)+ (1 − λ)f (y) = f 0,

which shows that each point on the segment between x0 and y is a minimizing
point for f .

(c) Let us assume that a strictly convex function f (x) has two distinct minimizing
points x0 �= y. Then

f (λx0 + (1 − λ)y) < λf (x0)+ (1 − λ)f (y) = f (x0) = f (y)

for 0 < λ < 1, which is a contradiction to the assumption that x0 is a minimizing
point for f . ��
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For the convex programming problem (3.9), we can summarize as follows:

• Each local minimizing point x0 is also a global minimizing point.
• The set of optimal solutions is convex.

Now we consider the general mathematical programming problem containing
constraints in the form of inequalities and equations:

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m),

gh(x) = 0 (h = m+ 1, . . . , r),

x � 0.

(3.11)

Substituting each equation gh(x) by two inequalities gh(x) � 0 and −gh(x) � 0, we
have a convex programming problem if the functions f0(x), fi(x) (i = 1, 2, . . . , m),
gh(x), and −gh(x) (h = m + 1, . . . , r) are convex. This is only the case if the
functions gh(x) (h = m+ 1, . . . , r) are linear.

Consequently, the mathematical programming problem (3.11) is a convex pro-
gramming problem if

• the minimized objective function f0(x) is convex;
• the functions in the inequality constraints fi(x) � 0 (i = 1, 2, . . . , m) are convex;
• the functions gh(x) in the equations gh(x) = 0 (h = m+ 1, . . . , r) are linear.

Remark 3.2. According to Definitions 3.2 and 3.4, the concavity and strict concavity of
f correspond to the convexity and strict convexity of −f , respectively. Therefore, all
the above results can easily be adapted to corresponding results on concave functions.

The implications of the convexity property for the Kuhn–Tucker conditions will
be discussed in the next section.

3.2 Kuhn–Tucker Conditions for a Convex Programming
Problem

In Chapter 2, we proved the Kuhn–Tucker conditions as necessary conditions for
a local minimum of a mathematical programming problem (1.28). In the following
theorem, it can be seen that for a convex programming problem (3.9), these conditions
are also sufficient.

Theorem 3.8 (see [13]). If Lagrange multipliers u0
i (i = 1, 2, . . . , m) exist for a

convex programming problem (3.9) such that

∇f0(x0)+
m∑
i=1

u0
i∇fi(x0) = 0, (3.12)

fi(x0) � 0, (3.13)
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u0
i fi(x

0) = 0, (3.14)

u0
i � 0 (3.15)

for i = 1, 2, . . . , m, then x0 is an optimal solution of problem (3.9).

Proof. Because of the convexity of the functions fk(x) (k = 0, 1, . . . , m), it follows
from Theorem 3.4 that

fk(x)− fk(x0) � (x − x0)′∇fk(x0) (k = 0, 1, . . . , m). (3.16)

Using (3.16), (3.12), and then (3.16), (3.13), (3.14), and (3.15), we obtain

f0(x)− f0(x0) � (x − x0)′∇f0(x0) = (x − x0)
′
(

−
m∑
i=1

u0
i∇fi(x0)

)

= −
m∑
i=1

u0
i∇fi(x0)(x − x0)

� −
m∑
i=1

u0
i (fi(x)− fi(x0)) = −

m∑
i=1

u0
i fi(x)+

m∑
i=1

u0
i fi(x

0) � 0,

so that

f0(x) � f0(x0),

and therefore x0 is an optimal solution to the convex programming problem (3.9). ��
Thus for a convex programming problem (3.9) in which a suitable constraint

qualification condition is met, the Kuhn–Tucker conditions are both necessary and
sufficient for x0 to solve the mathematical programming problem.

The suitable constraint qualification condition for a convex programming prob-
lem (3.9) is formulated in a simple way.

Definition 3.6 (the Slater constraint qualification). The set of feasible solutions
for a convex programming problem (3.9) satisfies the Slater constraint qualification
if there exists a point x∗ ∈ Rn for which

fi(x∗) < 0 (i = 1, 2, . . . , m),

that is, a point at which all inequality constraints are satisfied as strict inequalities.

For an activity analysis model, this condition implies that if the initial endowments
of all primary factors are reduced proportionally by a certain amount, a positive
amount of each intermediary and each final product can be produced.

As an example of the nonlinear programming problem, we take the quadratic
programming problem (see the portfolio selection model in Section 1.2.7):
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min f0(x) = x′Cx + p′x
subject to Ax � bx � 0.

(3.17)

Here p′ is a given 1 × n row vector, C is a given n × n symmetric matrix, A is a
given m × n matrix, and b is a given m × 1 column vector. Under the assumption
that C is positive semidefinite, the objective function f0(x) is convex (because of
Theorem 3.5) and the linear constraintsAx � b are convex. The problem is therefore
one of convex programming.

The Lagrange function is

	(x,u) = x′Cx + p′x + u′(Ax − b),

and the Kuhn–Tucker conditions are

∂	

∂x
= 2Cx0 + p + A′u0 � 0, (3.18)

x0′ ∂	
∂x

= x0′
(2Cx0 + p + A′u0) = 0, (3.19)

x0 � 0, (3.20)

∂	

∂u
= Ax0 − b � 0, (3.21)

u0′ ∂	
∂u

= u0′
(Ax0 − b) = 0, (3.22)

u0 � 0. (3.23)

The Kuhn–Tucker conditions (3.18)–(3.23) are both necessary and sufficient. The
vector x0 thus solves the quadratic programming problem (3.17) if and only if there
is a u0 such that x0,u0 satisfy the Kuhn–Tucker conditions (3.18)–(3.23). Because
of the linearity of conditions (3.18), (3.20), (3.21), and (3.23), many algorithms for
quadratic programming are therefore based on the idea of finding solutions x0 and u0

to system (3.18)–(3.23). (Readers interested in quadratic programming problems are
referred to [14].)

According to Theorem 2.2 in Section 2.3, a sufficient condition for x0 to solve the
nonlinear programming problem (1.28) is that there exists a u0 such that (x0,u0) is a
saddle point of the Lagrange function 	(x,u). While this theorem does not require
any convexity or constraint qualification assumption, the converse of the theorem
does require such assumptions.

Theorem 3.9 (see [19]). Assume that the Slater constraint qualification for a convex
programming problem (3.9) is met. Then if x0 solves problem (3.9), there exists a
nonnegative vector u0 such that (x0,u0) is a saddle point of the Lagrange function

	(x,u) = f0(x)+
m∑
i=1

uifi(x)

with respect to the setN×M , whereN = {x|x ∈ Rn} andM = {u|u ∈ Rm,u � 0}.1
1 For the proof, see, e.g., [15, pp. 215–217] or [18, pp. 432–497].
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Thus if the Slater constraint qualification is met, then an optimal solution of the
convex programming problem (3.9) is equivalent to a saddle point of the Lagrange
function.

The Slater theorem is more general than the Kuhn–Tucker theorem because it does
not require differentiability of the functions fk(x) (k = 0, 1, . . . , m). A disadvantage
of this theorem is that the Slater constraint qualification is related to inequality con-
straints only. Fortunately, it can be shown [2, pp. 35–37] that Theorem 3.9 remains
valid if the Slater constraint qualification is met for the nonlinear constraints. (For a
convex programming problem (3.11), the equality conditions must be linear.)

Remark 3.3. It is easy to formulate the counterparts of Theorems 3.8 and 3.9 for a
constrained maximization problem with the convexity of fk(x) (k = 0, 1, . . . , m)
replaced by concavity.

More generally, the Kuhn–Tucker conditions as sufficient conditions for x0 to
solve the nonlinear programming problem can also be extended to problems where
fk(x) (k = 0, 1, 2, . . . , m) are quasiconvex.

Definition 3.7. A function f (x) defined on a convex setD inRn is called quasiconvex
if the set Sb = {x|f (x) � b} is convex for any real number b ∈ R.

Examples of quasiconvex functions are the strictly concave function f (x) = x1/2

defined on D = {x|x ∈ R, x � 0}, the function f (x) = ln x, or the function in
Figure 3.6.

Theorem 3.10. A function f (x) defined on a convex setD is quasiconvex if and only
if for any given x ∈ D, y ∈ D, and 0 < λ < 1,

f (λx + (1 − λ)y) � max[f (x), f (y)] (3.24)

Fig. 3.6. A quasiconvex function.
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is strictly quasiconvex if and only if strict inequality holds.2

A function f (x) is quasiconcave if and only if −f (x) is quasiconvex. This
extension to quasiconvex functions is a generalization since a function that is convex
(concave) is also quasiconvex (quasiconcave), but not vice versa. The Cobb–Douglas
production function

y = axα1 x
β
2 ,

with a > 0, α > 0, β > 0, is quasiconcave but it is not concave if α + β > 1.
Convexity is more restrictive than quasiconvexity.

Quasiconcave functions “are used widely in microeconomics and are the principal
ones that will be encountered in this book” [16, p. 67]. The strict quasiconcavity is
used to rule out the possibility of indifference curves having linear segments. In
the case in which the indifference curve has a linear segment, the utility maximizing
consumer will be indifferent among various bundles of commodities. The assumption
of a diminishing marginal rate of substitution is equivalent to assuming quasiconcavity
of the utility function.

Similarly to the proof of Theorem 3.7(a), the following property for the strictly
quasiconvex function can be shown (see [5, p. 89] or [10, p. 86]).

Theorem 3.11. Each local minimum (maximum) of a strictly quasiconvex (strictly
quasiconcave) functionf (x)over a convex setD is also a global minimum (maximum)
of f (x) over D.

Thus the strictly quasiconvex functions exhibit the same features as the convex
functions. They imply that

• the set of feasible solutions is convex and
• each local minimum is a global one.

These results are very useful because they rest on weaker conditions than those of
convexity as supposed in the Kuhn–Tucker theory.

The following theorem, proved byArrow and Enthoven [1, pp. 783–787], provides
an extension of the Kuhn–Tucker conditions as sufficient optimality conditions for a
quasiconvex programming problem.

Theorem 3.12. Let fk(x) (k = 0, 1, . . . , m) be differentiable quasiconvex functions
defined for x � 0. Let x0 and u0 satisfy the Kuhn–Tucker conditions (2.20)–(2.25)
from Chapter 2, and let one of the following conditions be satisfied:

(a) ∂f0(x0)
∂xj0

> 0 for at least one variable xj0;
(b) ∂f0(x0)

∂xj1
< 0 for some relevant variable xj1;

(c) ∂f0(x0)
∂x �= 0 and f0(x) is twice differentiable in the neighborhood of x0;

(d) f0(x) is convex.

2 For the proof, see, e.g., [10, p. 82] or [15, p. 82].
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Then x0 minimizes f0(x) subject to the constraints fi(x) � 0 (i = 1, 2, . . . , m) and
x � 0.

A relevant variable is one that can take on a positive value without necessarily
violating the constraints. Or, more formally, xj0 is a relevant variable if there is some
point in the constraint set, say, x∗, at which x∗

j0
> 0.

Only one of the above four conditions—and there may be others—need be satisfied
for x0 to minimize f0(x) subject to the constraints if the Kuhn–Tucker conditions are

satisfied at x0. Condition (a) will be satisfied if any ∂f0(x0)
∂xj0

> 0 and all xj are relevant

(the usual case in economic theory). If no xj0 is relevant, the problem is trivial.

From (a) and (b), it follows that ∂f0(x0)
∂x �= 0 is sufficient if all xj are relevant.

Looking at the quasiconvex programming problem (2.33)–(2.35) from Section 2.4
(the objective function f0(x) = (x−1)3 is quasiconcave), we can see that the Kuhn–
Tucker conditions (2.36)–(2.40) alone are not sufficient for x0 = 1 to solve this
problem.

None of conditions (a)–(d) is fulfilled, and the Kuhn–Tucker conditions fail to be
sufficient in this case. However, condition (c) is fulfilled for the point x∗ = 2, which
is the optimal solution of the quasiconvex problem (2.33)–(2.35).

3.3 Duality Theory

The mathematical programming model (1.1) described in Chapter 1 has been related
to the basic economic problem of the allocation of scarce resources among alternative
uses. An economist “is familiar with the fact that resource allocation and pricing
are two aspects of the same problem. An economist would expect that since linear
programming solves the allocation problem, it would solve the pricing problem also,
and this, in essence, is what the dualism property consists in” [7, p. 39].

Duality signifies that every mathematical programming problem is closely related
to another problem called its “dual.” The basic ideas of duality theory were first
developed by John von Neumann in his book with Oskar Morgenstern on the theory
of games. “What I am doing is conjecturing that the two problems are equivalent.
The theory that I am outlining for your problem is an analogue to the one we have
developed for games,” said von Neumann during his first visit to George Dantzig on
October 3, 1974 [6, p. 81]. “Thus I learned about Farkas’ lemma, and about duality
for the first time” [6, p. 81]. David Gale, Harold Kuhn, and A. W. Tucker are credited
as the publishers of the first rigorous proof of the duality theorem.

Far from being confined only to linear programming, the following reasons for the
relevance and usefulness of the duality concept for both economists and mathemati-
cians listed by Baumol [4, p. 103] can be affirmed for mathematical programming
models:

1. Duality yields a number of powerful theorems which add substantially to our
understanding of linear programming.
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2. Duality analysis has been very helpful in the solution of programming problems.
Indeed, as we shall see, it is frequently easier to find the solution of a programming
problem by first solving its associated dual problem.

3. The dual problem turns out to have an extremely illuminating economic interpre-
tation.

Let us consider the general mathematical programming problem (1.28) as defined in
Chapter 1:

minimize
x∈Rn f0(x) (3.25a)

subject to fi(x) � 0 (i = 1, 2, . . . , m). (3.25b)

Using the Lagrange function

	(x,u) = f0(x)+
m∑
i=1

uifi(x),

problem (3.25) can be written more generally as

min
x∈Rn sup

u∈Rm+
	(x,u). (3.26)

That this formulation is valid is shown by the following argument:

sup
u∈Rm+

	(x,u) = sup
u∈Rm+

(f0(x)+
m∑
i=1

uifi(x))

=
{
f0(x) for fi(x) � 0,

+∞ otherwise.

Therefore, min{f0(x)|(fi(x) � 0)} = minx∈Rn supu∈Rm+ 	(x,u). Problem (3.26) is
called the primal problem.

Definition 3.8. The problem

max
u∈Rm+

inf
x∈Rn 	(x,u) (3.27)

is called the dual problem associated with the primal problem (3.26).

Then the so-called weak duality theorem can be proven.

Theorem 3.13. If x0 is a feasible solution of the primal problem (3.26) and u0 is a
feasible solution of the dual problem (3.27), then the objective function value of prob-
lem (3.26) at the point x0 is not less than the objective function value of problem (3.27)
at the point u0.
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Proof. We denote the objective function of the dual problem (3.26) by d(u) :=
infx∈Rn 	(x,u). Because u0 � 0, fi(x) � 0 (i = 1, 2, . . . , m) and the definition of
infimum as a greatest lower bound, we can write

d(u0) = inf
x∈Rn

[
f0(x)+

m∑
i=1

u0
i fi(x)

]

� f0(x0)+
m∑
i=1

u0
i fi(x

0) � f0(x0).

(3.28)

The theorem is proved. ��
The difference between the optimal objective function values of (3.26) and (3.27)

when (3.28) holds as a strict inequality is called the duality gap.
Replacing supremum by maximum and infimum by minimum, we can write the

primal problem (3.26) as

min
x∈Rn max

u∈Rm+
	(x,u) (3.29)

and the dual problem (3.27) as

max
u∈Rm+

min
x∈Rn 	(x,u). (3.30)

Assuming that the functions f0(x) and fi(x) are all real-valued differentiable convex
functions on Rn, and that regularity conditions in the sense of the Slater constraint
qualification are satisfied, problem (3.25) is a convex programming problem and the
dual problem (3.30) is (due to Wolfe [21])

maximize 	(x,u) = f0(x)+
m∑
i=1

uifi(x) (3.31a)

subject to ∇f0(x)+
m∑
i=1

ui∇fi(x) = 0, (3.31b)

u � 0. (3.31c)

The constraints (3.31b) express the minimization of the Lagrange function 	(x,u)
with respect to x ∈ Rn.

The primal problem (3.29) is then

minimize 	(x,u)−
m∑
i=1

ui
∂	

∂ui
(3.25a′)

subject to
∂	

∂ui
� 0 (i = 1, 2, . . . , m), (3.25b′)
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which corresponds exactly to problem (3.25). The constraints (3.25b′) of the primal
problem are the necessary conditions for the maximization of the Lagrange function
	(x,u) with respect to the nonnegativity condition for the variables u1, . . . , um. In
a similar way, the dual problem (3.31) can be written as

maximize 	(x,u)−
n∑
j=1

xj
∂	

∂xj
(3.31a′)

subject to
∂	

∂xj
= 0 (j = 1, 2, . . . , n), (3.31b′)

ui � 0 (i = 1, 2, . . . , m). (3.31c′)

The first relationship between the primal problem (3.25) and the dual problem (3.31) is
given by Theorem 3.13, which states that for any feasible solution x of problem (3.25)
and for any feasible solution (x,u) of problem (3.31),

	(x,u) � f0(x) holds. (3.32)

In other words, the value of the objective of the maximization problem over feasible
solutions is never greater than the value of the objective of the minimization problem
over feasible solutions.

It follows from (3.32) that if the values of the dual objective function (3.31a) and
the primal objective function (3.25a) are the same, (x,u)must be an optimal solution
of the dual problem (3.31) and x an optimal solution of the primal problem (3.25),
respectively.

Some relationships between the primal problem (3.25) and the dual problem (3.31)
that require the convexity assumption for the functions fk(x) (k = 0, 1, . . . , m) are
described by the following two theorems.

Theorem 3.14 (strong duality theorem). If x0 is an optimal solution of prob-
lem (3.25), then there exists a vector u0 such that (x0,u0) is an optimal solution
of the dual problem (3.31) and the value of the primal objective function f0(x0) is
equal to the value of the dual objective function 	(x0,u0).

Proof. If x0 is an optimal solution of the primal problem (3.25), where fk(x)
(k = 0, 1, . . . , m) are convex functions, then there exists—according to the Kuhn–
Tucker theorem from Chapter 2—a vector of Lagrange multipliers u0 such that con-
ditions (2.1)–(2.4) are fulfilled. Then it follows from (2.1) and (2.4) that (x0,u0) is
a feasible solution of the dual problem (3.31), and it follows from (2.2) that x0 is a
feasible solution of problem (3.25). Finally, using condition (2.3), we obtain

f0(x0) = 	(x0,u0),

and because of the weak duality theorem, the vector (x0,u0) is an optimal solution
of the dual problem (3.31). ��

For the converse, we need an additional assumption, for example, that employed
in [11] or [10], which is formulated in the following.
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Theorem 3.15. Suppose that the matrix of second partial derivatives(
∂2	(x0,u0)

∂xj ∂xk

)
= ∂2	(x0,u0)

∂x2 = ∇2
x	(x

0,u0) (3.33)

is nonsingular. If (x0,u0) solves (3.31), then x0 solves (3.25).

Proof. If (x0,u0) is an optimal solution to problem (3.31), then it is also an optimal
solution to the following problem:

min

{
−	(x,u)‖∂	

∂x
= 0, u � 0

}
. (3.34)

The Lagrange function and the Kuhn–Tucker conditions for problem (3.34) yield

L(x,u,λ) = −	(x,u)+ λ
∂	

∂x
,

∂L0

∂x
= −∂	

0

∂x
+ λ0 ∂

2	0

∂x2 = 0, (a)

∂L0

∂u
= −∂	

0

∂u
+ λ0 ∂

2	0

∂x∂u
� 0, (b)

∂L0

∂u
u0 = −∂	

0

∂u
u0 + λ0 ∂

2	0

∂x∂u
u0 = 0, (c)

u0 � 0, (d)

∂L0

∂λ
= ∂	0

∂x
= 0, (e)

where L0 = L(x0,u0,λ0).
It follows from (a) and (e) that

λ0 ∂
2	0

∂x2 = 0.

In our assumption, the matrix (3.33) is nonsingular and therefore λ0 = 0. Substitution
of λ0 = 0 in conditions (a)–(e) provides

∂	0

∂x
= 0,

∂	0

∂u
� 0, u0 ∂	

0

∂u0 = 0, u0 � 0,

which are the Kuhn–Tucker conditions for the primal problem (3.25). Because of
the convexity of the functions fk(x) (k = 0, 1, . . . , m) and due to Theorem 3.8, the
vector x0 is the optimal solution of problem (3.25). ��

Because the nonnegativity conditions very often occur in economic models, we
conclude this section with a formulation of theWolfe dual problem to problem (1.28a):
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minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m),

−xj � 0 (j = 1, 2, . . . , n).

The Lagrange function is


(x,u,w) = f0(x)+
m∑
i=1

uifi(x)+
n∑
j=1

wj(−xj ) = 	(x,u)− w′x,

and the dual problem becomes

maximize 	(x,u)− w′x

subject to
∂	

∂x
− w = 0,

u � 0, w � 0.

Elimination of the Lagrange multipliers w yields (since x′ ∂	
∂x = x′w = w′x = 0)

maximize 	(x,u)− x′ ∂	
∂x

subject to
∂	

∂x
� 0,

u � 0.

3.4 Economic Interpretation of Duality in Convex Programming

Let us consider a primal nonlinear programming problem for determining a product
mix that maximizes profit,

�(x) = f0(x1, x2, . . . , xn), (3.35)

subject to the constraints

fi(x1, x2, . . . , xn) � bi (i = 1, 2, . . . , m), (3.36)

which limit the use of resource i for production to the quantity available bi , and

xj � 0 (j = 1, 2, . . . , n), (3.37)

which ensure nonnegative production of product j (j = 1, 2, . . . , n).
Assuming that f0(x) is concave and fi(x) (i = 1, 2, . . . , m) are convex functions,

the production model (3.35)–(3.37) is a convex programming problem. What are
the economic implications of these concavity–convexity assumptions? As shown
in Section 3.1, convexity of the functions fi(x) (i = 1, 2, . . . , m) implies that the
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constraint set of the primal problem is convex. Interpreting feasible solutions x to
be possible production levels, this means that given any two feasible levels x′ and
x′′, all linear convex combinations or “weighted average mixes” αx′ + (1 − α)x′′,
0 � α � 1, must also be feasible. In other words, one of the implications of the
convexity assumption is that the produced items come in divisible units.

The concavity of the profit function f0(x) means that marginal profit is nonin-
creasing. Mathematically, these assumptions imply that if x0 is a local maximum for
f0 under the constraints (3.36)–(3.37), then it is also a global maximum.

Remark 3.4. The reader can easily verify that a convex cost function (concave produc-
tion function) implies nondecreasing marginal cost (nonincreasing marginal products)
but that the converse implication is, in general, not valid.

Before we turn to the economic interpretation of duality, it will be useful to
review the Kuhn–Tucker conditions for the production model (3.35)–(3.37). Using
the Lagrange function

	(x,u) = f0(x)+
m∑
i=1

ui(bi − fi(x)),

the necessary and sufficient conditions (due to the concavity–convexity assumptions)
for (x0,u0) to be a solution of the problem (3.35)–(3.37) are

∂	(x0,u0)

∂xj
= ∂f0(x0)

∂xj
−

m∑
i=1

u0
i

∂fi(x0)

∂xj
� 0,

or

∂f0(x0)

∂xj
�

m∑
i=1

u0
i

∂fi(x0)

∂xj
(j = 1, 2, . . . , n), (3.38)

x0
j

∂	(x0,u0)

∂xj
= x0

j

[
∂f0(x0)

∂xj
−

m∑
i=1

u0
i

∂fi(x0)

∂xj

]
= 0, (3.39)

x0
j � 0 (j = 1, 2, . . . , n), (3.40)

∂	(x0,u0)

∂ui
= bi − fi(x0) � 0 (i = 1, 2, . . . , m), (3.41)

u0
i

∂	(x0,u0)

∂ui
= u0

i [bi − fi(x0)] = 0 (i = 1, 2, . . . , m), (3.42)

u0
i � 0 (i = 1, 2, . . . , m). (3.43)

Let us, according to (2.9), tentatively interpret the Lagrange multipliers u0
i , u

0
2,

. . . , u0
m as the shadow prices or accounting values for the m scarce resources as

expressed by the constraints (3.36). Then the Kuhn–Tucker conditions (3.38) have
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a clear economic interpretation. The left side, ∂f0(x0)
∂xj

, is the marginal profit yield

of product j . ∂fi (x0)
∂xj

is simply the (marginal) quantity of input i needed to produce

another unit of product j . Consequently,
u0
i ∂fi (x

0)

∂xj
is the accounting value of the

amount of input i needed to produce an incremental unit of product j . Thus the right
side of (3.38) is the value of all (scarce) resources needed to produce an additional
unit of product j . Therefore, the inequalities (3.38) imply that the marginal profit of
any product j cannot be higher than its marginal accounting input cost.

Now consider conditions (3.39), which assert that if the marginal profit yield of
product j is lower than the imputed accounting value of its inputs, then product j will,
optimally, not be produced because it incurs an opportunity loss. It is better to use the
inputs for the production of other products. If product j is produced, xj > 0, then its
marginal profit must equal the accounting value of its marginal input requirements,∑m
i=1

u0
i ∂fi (x

0)

∂xj
.

The economic interpretation of the Kuhn–Tucker conditions (3.41) is obvious;
the amount of input i used by an optimal product mix cannot exceed the available
quantity bi (i = 1, 2, . . . , m).

In economic terms, the conditions (3.42) are more interesting. They assert that if
in an optimal solution, there is an unused amount of input i (fi(x0) < bi), then it must
be a resource without deficit or a resource in excess (i.e., a resource with accounting
value zero). An additional amount of this resource does not change the optimal value
of the objective function (due to (2.9)). If the accounting value u0

i is positive, then
all of its available amount bi will be used by an optimal solution (fi(x0) = bi).

We now turn to the interpretation of the dual problem corresponding to the primal
problem (3.35)–(3.37).

According to the previous section, the dual takes the following form:

minimize 	(x,u)− x′ ∂	
∂x

= f0(x)+
m∑
i=1

ui[bi − fi(x)]

−
n∑
j=1

xj

[
∂f0(x)
∂xj

−
m∑
i=1

ui
∂fi(x)
∂xj

]
(3.44)

subject to
m∑
i=1

ui
∂fi(x)
∂xj

� ∂f0(x)
∂xj

(j = 1, 2, . . . , n), (3.45)

ui � 0 (i = 1, 2, . . . , m). (3.46)

The dual constraints (3.45)–(3.46) coincide with the Kuhn–Tucker conditions (3.38)
and (3.43); therefore, their economic interpretation is given above.

However, in that discussion, we tentatively took the Lagrange multipliers u0
i

(i = 1, 2, . . . , m) to be accounting values or shadow prices. More exactly, one might
wish that the value u0

i of the ith dual variable at optimum be equal to the marginal
profit of the ith input (due to (2.9)). In what sense is this valid?
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The first recognized papers dealing with this question are by Gale [9] and Balinski

and Baumol [3]. The problem arises because ∂�(x0(b))
∂bi

is not always defined. For
some changes in the values of the bi , there can be points of discontinuity in the
derivatives or points where there exist finite right- and left-side partial derivatives,
∂�(x0(b))
∂b+
i

and ∂�(x0(b))
∂b−
i

, but at which ∂�(x0(b))
∂bi

itself is not defined.

However, there is an earlier result by Uzawa [20], quoted in [3] and [9], that
comes very close to the desired proposition that u0

i equal ∂�
∂bi

. While the optimal

value of the dual variable u0
i cannot always be interpreted as the marginal profit of

the ith input, since the latter is not always defined, u0
i will invariably lie between the

corresponding right- and left-side partial derivatives, which exist and are finite, given
that the constraints qualification holds. In symbols, we have

∂�(x0(b))

∂b+
i

� u0
i � ∂�(x0(b))

∂b−
i

(3.47)

for all i. An intuitive geometric as well as a rigorous algebraic proof of this proposition
is given in [3, pp. 243–245] and [9, p. 24]. Independently of these papers, a more
general proof of the proposition (3.47) was developed by Horst [12].

Theorem 3.16. Let (3.35)–(3.37) be a convex problem, and assume that either Sla-
ter’s constraint qualification is satisfied or the constraints (3.36) are linear. Moreover,
let the set U(b) of optimal dual solutions be compact. Then we have

∂�0(b)

∂b+
i

= min
u∈U(b)

ui (i = 1, 2, . . . , m), (3.48)

∂�0(b)

∂b−
i

= max
u∈U(b)

ui (i = 1, 2, . . . , m), (3.49)

where ∂�0(b)
∂b+
i

denotes the right-side partial derivative and ∂�0(b)
∂b−
i

denotes the left-side

partial derivative of the primal objective function (3.35) at the optimal point x0. (For
the proof, see [12, Appendix, pp. 333–334].)

Using Theorem 3.16, Horst [12] offers a new interpretation of optimal dual vari-
ables in convex programming as equilibrium prices rather than as shadow prices. For
this purpose, we consider a production model (3.35)–(3.37) and the corresponding
dual problem (3.44)–(3.46). Suppose we begin with an optimal solution of our primal
and dual problem and let bi vary from its initial value b0

i . In other words, the firm can
buy or sell some quantity of resource i at the given unit price pi (i = 1, 2, . . . , m).
Denote by ei the ith unit vector in Rm and by t a positive real number. The opti-
mal profit obtainable by the firm when the amounts (b1, b2, . . . , bm) of resources are
available is described by the primal objective function �(x0(b)). If the firm buys
(sells) an extra quantity t > 0 of the production factor i, the increase (decrease) in
the optimal profit is �0(b + tei )−�0(b), [�0(b)−�0(b − tei )]. The cost to buy
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the extra quantity t of the ith resource (or the earned amount in the case of selling t
units of the ith resource) is described by pit . Then if for given pi the inequalities

�0(b + tei)−�0(b) � pit � �0(b)−�0(b − tei ) (3.50)

are satisfied, it is neither reasonable to buy nor to sell a quantity t > 0 of the production
factors i.

The inequalities (3.50) depend on the given unit price pi and on the quantity t .
Under the assumption of Theorem 3.16, dividing (3.50) by t > 0 and taking the limits
t → 0, we obtain

lim
t→0

�0(b + tei)−�0(b)
t

� pi � lim
t→0

�0(b)−�0(b − tei)

t
,

or

∂�0(b)

∂b+
i

� pi � ∂�0(b)

∂b−
i

(i = 1, 2, . . . , m). (3.51)

For a given unit price pi within the interval (3.51), “it is neither worth buying nor
worth selling a small quantity of the resource i; an equilibrium is attained” [12,
p. 331]. Inequality (3.51) is an extension of the classical result that the price of a
good is between the appropriate right- and left-side partial derivatives, when they
exist [20], which is connected with the Menger–Wieser theory of imputation.

Denote the extreme values from Theorem 3.16 by

u−
i := min

u∈U(b)
ui = ∂�0(b)

∂b+
i

(i = 1, 2, . . . , m)

and

u+
i := max

u∈U(b)
ui = ∂�0(b)

∂b−
i

(i = 1, 2, . . . , m).

Then by the arguments given above, u−
i approximately describes the gain in the

optimal profit when a unit of the ith resource is added; but this should not be done
unless pi < u−

i . Similarly, u+
i gives us approximately the loss in the optimal profit

when a unit of the ith resource is subtracted; but this should not be done unless
pi > u+

i . Therefore, the components ui of multiple optimal dual solutions should be
interpreted as equilibrium prices in the sense explained above and the extreme values
u−
i and u+

i as shadow prices or accounting values; u−
i as “shadow buying price”; and

u+
i as “shadow selling price.”

The following corollary provides a condition for the uniqueness of the optimal
dual solution and hence the validity of the classical shadow price interpretation.

Corollary 3.2. Let x0 be a solution of the convex problem (3.35)–(3.37), and assume
that the gradients∇fi(x0), i ∈ I (x0)are linearly independent. I (x0)describes the set
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of the active constraints, i.e., I (x0) = {i|fi(x0) = 0}. Then the dual problem (3.44)–
(3.46) has a unique solution u0, and

∂�0(b)
∂bi

= u0
i (i = 1, 2, . . . , m). (3.52)

Proof. By Theorem 3.14 applied to the problem (3.35)–(3.37), there exists a vector
u0 such that (x0,u0) is an optimal solution to the dual problem (3.44)–(3.46). In
other words, because of the Kuhn–Tucker condition (3.39), there exists a vector u0

such that

∂f0(x0)

∂xj
=

m∑
i=1

u0
i

∂fi(x0)

∂xj
for all x0

j > 0. (3.53)

Because of the Kuhn–Tucker conditions (3.42), the system of equations (3.53) can
be rewritten as

∂fo(x0)

∂xj
=
∑
i∈i(x0)

u0
i

∂fi(x0)

∂xj
for all x0

j > 0. (3.54)

(3.54), however, has one solution at most, since by assumption the gradients ∇fi(x0),
i ∈ I (x0) are linearly independent. From Theorem 3.16, it then follows that

∂�0(b)

∂b+
i

= ∂�0(b)

∂b−
i

= u0
i (i = 1, 2, . . . , m);

hence we have (3.52). ��
Finally, we turn to an economic interpretation of the dual objective function (3.44).

One of the two interpretations offered by Balinski and Baumol [3] is based on the
assumption that optimal values for the primal variables x0

1 , . . . , x
0
n are given, and

therefore the first term f0(x) in the objective function (3.44) can be omitted when the
objective function as a whole is minimized.

The item in square brackets [bi − fi(x)] in the second term of (3.44) gives the
unused amount of input i. Interpreting ui as the accounting value of the ith input
implies that the second term

∑m
i=1 ui[bi −fi(x)] expresses the (accounting) value of

all unused inputs.
The expression in square brackets [ ∂f0(x)

∂xj
−∑m

i=1 ui
∂fi (x)
∂xj

] in the third term of
the dual objective function (3.44) corresponds to the dual constraints (3.45) and is
therefore always nonpositive. According to the economic interpretation of the Kuhn–
Tucker condition (3.38) given above, [ ∂f0(x)

∂xj
−∑m

i=1 ui
∂fi (x)
∂xj

] is the marginal oppor-
tunity loss incurred by an increment in the output of product j . Multiplying by xj ,
the production level of that output, and summing over all products, we obtain the
marginal opportunity cost of all outputs taken together. In conclusion, minimization
of the dual objective function (3.44) with respect to the accounting values u1, . . . , um
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means the minimization of the value of unused inputs together with the marginal
opportunity cost of total output.

Another economic interpretation by Balinski and Baumol [3] is based on rewriting
the dual objective function (3.44) as follows:

	(x,u)− x′ ∂	
∂x

=
m∑
i=1

uibi +
[
f0(x)−

m∑
i=1

uifi(x)

]

−
n∑
j=1

xj

[
∂f0(x)
∂xj

−
m∑
i=1

ui
∂fi(x)
∂xj

]
. (3.44′)

This reformulation allows an interpretation in terms of economic rents. The economic
rent is the difference between the firm’s total return and the cost of the inputs needed
for production, evaluated by their marginal contributions.

The first term
∑m
i=1 uibi describes the marginal evaluation of the firm’s scarce

resources. The second term in (3.44′) (i.e., [f0(x)−∑m
i=1 uifi(x)]) is the excess of

the total profit� = f0(x) over the payments given to the inputs actually used fi(x), if
each were paid ui per unit. In other words, the second term in (3.44′) is the economic
rent received by the firm. If in an optimal solution there is excess capacity in every
production factor (fi(x0) < bi for all i) and hence u0

i = 0 (i = 1, 2, . . . , m), then
the entire return becomes economic rent.

Finally, the last term of (3.44′) can be interpreted as a deduction from rent resulting
from a product j whose marginal yield is negative, ∂f0(x)

∂xj
<
∑m
i=1 ui

∂fi (x)
∂xj

.
As we have seen in Chapter 1, in many economic models of mathematical pro-

gramming, the concavity property of the objective function (3.35) and the convexity
properties of the constraints (3.36) are reduced to their linearity. What the implica-
tions are—from a mathematical as well as from an economic interpretation point of
view—will be discussed in the next chapter.
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4

Linear Programming

The simplest and most widely spread models of convex programming are linear pro-
gramming models; in other words, models with linear objective function and with
linear constraints. This might turn out to be a serious restriction on our field of in-
terest. But as shown in Chapter 1, a wide variety of problems can be satisfactorily
represented by linear models. In many cases, the problem naturally takes a linear
form; in some cases where this is not so, the problem may be approximately repre-
sented by a linear model. As mentioned by Vandermeulen [37, p. 4], “At least in the
initial stages, linear models yield more economic output from less mathematical in-
put.” In the preface to their well-known book, Dorfman, Samuelson, and Solow [12]
denote linear programming as “one of the most important postwar developments in
economic theory” [12, p. vii]. In two recent books by ten Raa [35, 36] devoted to the
analysis of market economies with the profit motive as the driving force, the main
tools are linear programming and input–output analysis.

We start this chapter with the general linear programming problem and its ba-
sic properties. In Section 4.2, the economic implication of the linearity assumption
will be discussed. Section 4.3 deals with the duality theory of linear programming
and its economic interpretation. The paradox of “more for less” will be explored in
Section 4.4. Then the simplex computational procedure with its intuitive economic
explanation will be presented. The last section is devoted to some economic ap-
plications of linear programming. The model from Section 1.2.4 dealing with the
theory of comparative advantage and the Giffen paradox described by the model in
Section 1.2.5 will be analyzed. In the third application, two alternation formulations
of Leontief pollution model will be discussed.

4.1 The General Linear Programming Problem

Looking at the structure of the models in Sections 1.2.1, 1.2.4, 1.2.5, and 1.2.6 in
Chapter 1, the general linear programming problem can be formulated as follows:

minimize f0(x) = c′x (4.1)

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
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© Springer Science+Business Media, LLC 2010 



88 4 Linear Programming

subject to Ax = b, (4.2)

x � 0, (4.3)

where c′ = (c1, c2, . . . , cn) is a row vector, x = (x1, x2, . . . , xn) is a column vector,
A = (aij ) is an m× n matrix, and b = (b1, b2, . . . , bm) is a column vector.

The formulation of the constraints (4.2) as equalities is without loss of generality
taking into account corresponding slack variables in the case of inequalities. We
shall always assume that the equations in (4.2) have been multiplied by −1, where
necessary, in order to make all bi � 0.

Especially for the purpose of economic interpretation of the computational pro-
cedure, the following formulation of the problem (4.1)–(4.3) can be useful:

minimize f0(x) = c1x1 + c2x2 + · · · + cnxn

subject to x1P1 + x2P2 + · · · + xnPn = P0,

x � 0,

where Pj (j = 1, 2, . . . , n) is the j th column of the matrix A and P0 = b. The
set of feasible solutions K = {x|Ax = b, x � 0} is determined by the intersection
of the finite set of linear constraints (i.e., hyperplanes). The boundary of K (if K
is not empty) will consist of sections of some of the corresponding hyperplanes. If
K is empty, then our problem does not have any solutions. Otherwise—because of
the linearity of the constraints (4.2)–(4.3)—the setK is convex (due to Corollary 3.1
from Chapter 3). Therefore, if a problem has more than one solution, it has, in reality,
an infinite number of solutions. Out of all these solutions, it is our task to determine
one that minimizes the objective function (4.1). This work is somewhat simplified by
the results of Theorem 4.1 below.

Before proceeding with this theorem, we should introduce the notions of an ex-
treme point and a convex hull.

Definition 4.1. A point U in a convex set K is called an extreme point if U cannot
be expressed as a convex combination of any other two distinct points in K .

For example, the extreme points of a cube are its vertices.

Definition 4.2. The convex hull K(S) of any given set of points S is the set of all
linear convex combinations of points from S.

K(S) is the smallest convex set containing S. If S is just the eight vertices of a
cube, then K(S) is the whole cube.

If the set S consists of a finite number of points, the convex hull of S is termed a
convex polyhedron. K(S) of the eight vertices of a cube is a convex polyhedron. If
K is a closed and bounded set with a finite number of extreme points, then any point
in the set can be expressed as a convex combination of the extreme points. Thus K
is the convex hull of its extreme points.

If the set of feasible solutionsK described by (4.2)–(4.3) is not empty, it can either
be a convex polyhedron or a convex region that is unbounded in some direction. If
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it is a convex polyhedron, then our problem has a solution with a finite minimum
value for the objective function; if K is unbounded, the problem has a solution, but
the minimum might be unbounded.

For computational purposes, we assume that K is a convex polyhedron. As will
be shown later, computational devices exist that determine whether K is empty or
whether a linear programming problem has an unbounded solution.

Under the assumption that K is a convex polyhedron, we only need to look at
its extreme points in order to determine the optimal solution of problem (4.1)–(4.3).
This results from the following basic theorem of linear programming [17, Chapter 3].

Theorem 4.1. The objective function (4.1) takes its minimum at an extreme point of
the set K of feasible solutions. If it assumes its minimum at more than one extreme
point, then it takes on the same value for every convex combination of those particular
points.

Proof. Let us denote the extreme points of the convex polyhedronK by x(1), x(2), . . . ,
x(r) and the optimal solution by x0. This means that f0(x0) � f0(x) for all x ∈ K .

Every feasible solution x inK can be represented as a convex combination of the
extreme points in K; therefore,

x0 =
r∑
i=1

λix(i) with λi � 0 and
r∑
i=1

λi = 1.

Then since f0(x) is a linear function, we have

f0(x0) = f0

(
r∑
i=1

λix(i)
)

= f0(λ1x(1) + λ2x(2) + · · · + λrx(r))

= λ1f0(x(1))+ λ2f0(x(2))+ · · · + λrf0(x(r)).

Let f0(x(m)) = mini f0(x(i)). Then substituting for each f0(x(i)) the value f0(x(m)),
we can write

f0(x0) � λ1f0(x(m))+ λ2f0(x(m))+ · · · + λrf0(x(m)) = f0(x(m))

because of
∑r
i=1 λi = 1. Since we assumed that f0(x0) � f0(x) for all x ∈ K , we

must have
f0(x0) = f0(x(m));

there is an extreme point, x(m), at which the objective functionf0(x) takes its minimum
value.

Now let us assume that the objective function (4.1) takes its minimum at more
than one extreme point, say, at x(1), x(2), . . . , x(p), where p � r . Here we have
f0(x(1)) = f0(x(2)) = · · · = f0(x(p)) = z0. If x ∈ K is any convex combination of
the extreme points x(i) (i = 1, 2, . . . , p), then

f0(x) = f0(λ1x(1) + λ2x(2) + · · · + λpx(p))
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= λ1f0(x(1))+ λ2f0(x(2))+ · · · + λpf0(x(p)) =
p∑
i=1

λiz0 = z0

because of
∑p
i=1 λi = 1. ��

The question now arises of how to identify the extreme points in the set of fea-
sible solutions K described by (4.2)–(4.3). The answer is provided by the following
theorem [17, Chapter 3].

Theorem 4.2. x = (x1, x2, . . . , xn) is an extreme point of K if and only if the com-
ponents xj with positive value are coefficients of linearly independent vectors Pj in

n∑
j=1

xjPj = P0.

This result leads to the notion of basic solution defined as follows.

Definition 4.3. A basic solution to the linear programming problem is a feasible solu-
tion x = (x1, x2, . . . , xn), provided that the vectors Pj corresponding to the positive
coefficients xj in

n∑
j=1

xjPj = P0

are linearly independent. These positive variables xj are called basic variables.

Definition 4.4. A basic solution is called nondegenerate if it has exactly m positive
xj ; that is, all basic variables are positive.

From the above, we can conclude that the objective function in a linear program-
ming problem takes its optimum at an extreme point of the feasible set K , that is a
basic solution to set of constraints (4.2)–(4.3). Since there are at most ( nm ) sets of
m linearly independent vectors from the given set of n, the value ( nm ) is the upper
bound to the number of possible solutions to the problem. For large n andm, it would
be an impossible task to evaluate all basic solutions and select one that optimizes
the objective function. Therefore, we need a procedure for finding an extreme point
and determining whether it is the optimum. If it is not, it must be possible to find
a neighboring extreme point1 whose corresponding value of the objective function
is smaller than or equal to the preceding value. In a finite number of such steps, an
optimal solution is found. This is the basic simplex method, developed by Dantzig, as
a powerful scheme for solving any linear programming problem. It makes it possible
to discover whether the problem has an unbounded optimal solution or no feasible
solution.

Because the focus of this book is economic analysis, before going into compu-
tational aspects of the simplex method, in the next section we want to discuss the
economic implications following from the linearity of the objective function and the
linearity of the constraints.

1 Two extreme points are called neighbors if they are joined by a segment that belongs to a
one-dimensional face of the convex polyhedron.
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4.2 Implications of Linearity Assumption for Economic Analysis

We consider the product mix problem (3.35)–(3.37) from Chapter 3. Under the
linearity assumption of the profit function f0(x) and of the functions fi(x) (i =
1, 2, . . . , m), this production model takes the following form:

maximize f0(x) = c1x1 + c2x2 + · · · + cnxn (4.4)

subject to a11x1 + a12x2 + · · · + a1nxn � b1,

a21x1 + a22x2 + · · · + a2nxn � b2,

...
... (4.5)

am1x1 + am2x2 + · · · + amnxn � bm,

xj � 0 (j = 1, 2, . . . , n), (4.6)

where the coefficients cj (j = 1, 2, . . . , n) in the objective function and the coeffi-
cients aij in the constraints are given and constant. What does it mean in economic
terms, bearing in mind the interpretation of this model as a more general convex
programming problem?

The linear profit function (4.4) implies that the marginal profit of product j is
constant and independent of the decision made by the producer (∂f0(x)|∂xj = cj ,

j = 1, 2, . . . , n). This corresponds to the assumption of perfect competition. The
profit yield by every (additional) unit of product j is the same. In other words, the
demand for product j is completely elastic, and the demand curve for product j is
horizontal.

Linear programming replaces the continuous production function by a collection
of n independent linear activities or processes representing the production of distinct
goods in our model. The j th activity is completely described by its coefficients for
the m inputs: (a1j , a2j , . . . , amj ). The coefficient aij gives the quantity of the ith
input required to produce one unit of the commodity j . Activities are linear in the
sense that the quantity of the ith input used for production of the j th commodity is
a linear function of its level of production. The concept of marginal productivity of
an input is meaningless within the linear programming framework. It is not possible
to increase an activity level by increasing the quantity of a single input. All inputs
must be increased proportionately or in other words the inputs must be used in the
given fixed proportion. The behavior of output when all inputs change by the same
proportion is in economic theory characterized by the concept of returns to scale. If all
input quantities are multiplied by the scale factor α, the production function exhibits
constant (increasing, decreasing) returns to scale if output increases by the same
(greater, smaller) proportion. Therefore, the linear programming technology implies
constant returns to scale. A doubling of all input quantities leads to doubling of output
produced. Because a continuous substitution between the inputs is not possible, in
this type of model “growth is likely to be impeded by shortages of specific factors
rather than by a general scarcity of resources” [8, p. 29].

The diagrammatic representation of the unit isoquant for two inputs i = 1, 2 is
given in Figure 4.1 in the case of three processes j = 1, 2, 3.
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Fig. 4.1. Unit isoquant for a linear programming model with two input factors.

If the first process is used alone, unit output is obtained by combining a11 of
input 1 and a21 of input 2, as shown by the point P1 with coordinates (a11, a21).
Similarly, P2 and P3 represent unit output obtained by use of the second and third
processes, each taken alone. To combine the first and second processes, assign λa11
of the first input to the first process, giving output λ and (1 − λ)a12 of the first input
to the second process for output (1 − λ). Hence a total amount of the first input used
for unit output is λa11 + (1 − λ)a12. The corresponding amount of the second input
used for the first process is λa21 and (1 − λ)a22 for the second process. Hence a total
usage of the second input is λa21 + (1 − λ)a22. We have another point on the unit
isoquant with coordinates (λa11 + (1−λ)a22; λa21 + (1−λ)a22) for 0 < λ < 1, i.e.,
a point P on the segment P1P2. As λ increases from 0 to 1, so P moves from P2 to P1
along the segment. In the same way, combinations of the second and third processes
are described by points on the segment P2P3 and combinations of the first and third
processes by points on the segmentP1P3. It should be noticed that some combinations
are efficient and others not. In the case shown in Figure 4.1, combinations of P1P2
and of P2P3 are efficient, but those of P1P3 are not because the same unit output can
be produced with lower inputs by using the second process alone or in combination
with one of the other two processes. The complete unit isoquant is then described
by the piecewise linear curve P1P2P3, continued horizontally to the right of P1 and
vertically above P3 to indicate that in these regions the first or second input goes
to waste. Because of the fixed input proportions all other isoquants are obtained by
blowing up the unit isoquants radially from 0.
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The technology is linear in a double sense. The quantities of inputs used for
production vary linearly with the level of output and the processes are combined
linearly; the activities are additive. Some firms in the economy use one process and
some the other, a given proportion of output coming from each process.

The technology described by (4.5)–(4.6) permits any finite number of processes
to be used alone or in combination. Figure 4.1 illustrates the production function
when there is a small number (here three) of processes. But it is easy to see what
happens when the number of efficient processes increases and becomes large. The
unit isoquant then consists of a large number of small segments P1P2P3P4 . . . , and
the piecewise linear curve tends to become a curve that can be assumed to be con-
tinuous and differentiable. The not-so-smooth linear programming technology tends
to become a smooth (continuous) technology. That is a reason why linear program-
ming technology with a finite number of processes is more relevant to microeconomic
models, and a continuous production function as the limiting case of infinitely many
efficient processes is more relevant to macroeconomic models.

The final remark is related to the assumption of independent processes which
implies the absence of external effects. If such external effects are present, one must
take into account the interdependence between the costs of the ith process and the
output of the hth. Suppose that the n processes in the production model (4.4)–(4.6)
are assigned to different firms. The external economies case is one in which an
increase in the firm’s production produces benefits part of which devolve on others.
The standard examples are the training of a labor force or when an expansion of
the production of one company makes it cheaper to supply services to all the firms
in the industry. An expansion of the scale of a company’s operation can also have
disadvantageous effects. These are called external diseconomies of scale. Increased
use of the particular resources can make it harder for others to get these resources.

In conclusion, for the application of mathematical programming models in eco-
nomics, it is therefore of crucial importance to clarify the implications of the model
assumptions. The paper by Baumol and Bushnell [4] provides a qualitative theoretical
analysis of the error that might arise when a linear programming model is used to
solve a problem involving some nonlinearities.

4.3 Duality in Linear Programming

We turn, again, to the production model (4.4)–(4.6). According to the formulation of
the dual problem in Section 3.4, we obtain for f0(x) = ∑n

j=1 cj xj and for fi(x) =∑n
j=1 aij xj (i = 1, 2, . . . , m) the following dual linear programming problem:

minimize
n∑
j=1

cj xj +
m∑
i=1

ui

⎛⎝bi −
n∑
j=1

aij xj

⎞⎠−
n∑
j=1

xj

(
cj −

m∑
i=1

aijui

)

=
m∑
i=1

biui (4.7)
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subject to
m∑
i=1

aijui � cj (j = 1, 2, . . . , n), (4.8)

ui � 0 (i = 1, 2, . . . , m). (4.9)

Problem (4.7)–(4.9) is the dual problem corresponding to the primal problem (4.4)–
(4.6). In matrix notation, we have

primal problem dual problem
maximize f0(x) = c′x
subject to Ax � b,

x � 0,

minimize g(u) = u′b
subject to u′A � c′,

u′ � 0,

where u′ = (u1, u2, . . . , um) is a row vector of the dual variables.
Comparison of the two problems yields the rules for the construction of the dual

problem:

• If the primal problem involves maximization, the dual involves minimization, and
vice versa.

• If the primal problem contains inequalities with the � sign, the dual contains
inequalities with the � sign, and vice versa.

• The coefficients of the primal objective function are the coefficients of the constraint
vector in the dual problem, and vice versa.

• In the constraint inequalities of the primal problem, the matrixA is multiplied by a
column vector x, and in those of the dual problem by a row vector u′ (or the matrix
A in the dual problem is transposed, i.e., the rows and columns are interchanged
and multiplied by a column vector u); and vice versa.

• Apart from the number of nonnegativity conditions, if there are n variables and m
inequalities in the primal problem, in the dual problem there will be m variables
and n inequalities.

It follows from these characteristics that the dual of the dual problem is the original
linear programming problem itself. Therefore, given such a pair of problems, it is
entirely arbitrary which of them is referred to as the primal and which as the dual.
Each one is the dual of the other.

Before we proceed further, an important question of the economic interpretation
of the dual problem (4.7)–(4.9) arises. We are about to describe a simple situation
in which one wants to minimize the value of the firm’s scarce inputs under the con-
straints (4.8). The description may seem artificial at first, but it will appear less so as
we go on to consider the model (4.7)–(4.9) as a special case of problem (3.44)–(3.46)
and its economic interpretation.

A producer just looking for the optimal product mix described by the model (4.4)–
(4.6) has a visit from another producer, who wants to buy him out. He makes the
following offer to the producer: “If you produce one unit of good 1, you need a11
units of the first production factor, a21 units of the second factor, and so on until am1
units of the production factor m. I offer to pay you the amount ui � 0 for each unit
of the ith production factor in such a way that
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a11u1 + a21u2 + · · · + am1um � c1. (4.10)

You will get at least the amount corresponding to the profit you will earn by producing
one unit of the first commodity. But you can use the production factors for the
production of other goods (j = 2, . . . , n), too; therefore, the ‘prices’u1, u2, . . . , um
should satisfy a condition like (4.10) with respect to each commodity:

m∑
i=1

aijui � cj (j = 1, 2, . . . , n).

The dual constraints (4.8) come out. Now, if you sell the given production factors
to me, your return (and my expenditure) will be

∑m
i=1 biui . Because of your con-

straints (4.5) for any product mix x,

m∑
i=1

biui �
m∑
i=1

ui

n∑
j=1

aij xj =
n∑
j=1

xj

m∑
i=1

aijui

�
n∑
j=1

cj xj (due to (4.8)), (4.11)

you will be at least as well off.” Finally, the competitor minimizes his total expendi-
tures (4.7) under the condition (4.8)–(4.9).2

Now consider problem (4.4)–(4.6) as a special case of the convex programming
problem (3.35)–(3.37). As shown in Section 4.2, a linear profit function f0(x) implies
a constant (marginal) profit cj deriving from product j (j = 1, 2, . . . , n), and the
linearity of the constraints (4.5) implies the constant (marginal) quantity of input
i needed to produce one unit of product j , described by the input coefficients aij
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). Then the dual constraints (4.8) assert that
the total (accounting) value of the inputs that are necessary to produce one unit of
commodity j (j = 1, 2, . . . , n) cannot be lower than the profit that the firm makes
by producing a unit of this commodity. In other words, the sum of the accounting
values of the scarce inputs going into the product j is high enough to account for the
profit derived by a unit of commodity j .

Returning to the economic interpretation of the dual objective function (4.7) as
a special case of the objective function (3.44′), the following question arises: Why
does the rent enter the nonlinear dual but not the linear dual? Balinski and Baumol [3]
found an explanation in the old “adding-up” discussion of distribution theory: If each
input to a production process is paid the value of its marginal product, will the total
factor payment exhaust the total profit, or will it leave over some unimputed profit,
positive or negative? The answer can be found in Euler’s theorem, which states that
if f (x1, x2, . . . , xn) is a homogeneous production function of degree k, then

n∑
i=1

xi
∂f

∂xi
= kf (x1, x2, . . . , xn).

2 In a similar way, the economic interpretation of the dual to the diet problem can be given
(see [15, pp. 13–14]).
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A production function f (x1, x2, . . . , xn) is said to be homogeneous of degree k if

f (λx1, λx2, . . . , λxn) = λkf (x1, x2, . . . , xn) for all λ > 0. (4.12)

Homogeneous production functions play an important role in economics because they
are intimately connected to the concept of returns to scale. Correspondingly, returns
to scale are increasing if k > 1, constant if k = 1, and decreasing if k < 1. Now to
derive Euler’s theorem, we differentiate both sides of (4.12) with respect to λ and find

n∑
i=1

∂f

∂(λxi)
xi = kλk−1f (x1, x2, . . . , xn).

Setting λ = 1, we obtain Euler’s theorem. As already mentioned, the linear program-
ming model is characterized by constant returns to scale (linear homogeneity), and
therefore the profit function �(x(b1, b2, . . . , bm)), here viewed as a function of the
available input quantities b1, b2, . . . , bm, is a differentiable homogeneous function of

degree one. Then �(x0(b)) =∑m
i=1 bi

∂�(x0(b))
∂bi

=∑m
i=1 biu

0
i , where x0,u0 denote

the optimal solution of the primal and the dual problem, respectively.
Before we continue the discussion of the duality in linear programming, it is

convenient to rewrite our primal problem (4.4)–(4.6) and dual problem (4.7)–(4.9) by
introducing slack variables so that the constraints become equalities. We obtain

primal problem: maximize f0(x) =
n∑
j=1

cj xj

subject to
n∑
j=1

aij xj + li = bi (i = 1, 2, . . . , m),

xj � 0 (j = 1, 2, . . . , n),

li � 0 (i = 1, 2, . . . , m),

dual problem: minimize g(u) =
m∑
i=1

biui

subject to
m∑
i=1

aijui − qj = cj (j = 1, 2, . . . , n),

ui � 0 (i = 1, 2, . . . , m),

qj � 0 (j = 1, 2, . . . , n).

The primal slack variable li (i = 1, 2, . . . , m) describes the unused amount of input
i. For the purpose of the economic interpretation of the dual slack variable qj , we
rewrite the j th equation in dual constraints as

qj =
m∑
i=1

aijui − cj (j = 1, 2, . . . , n). (4.13)
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As already shown, the first expression on the right-hand side of (4.13) is the accounting
value of the resources used in producing a unit of output j , and cj is the unit profit of
output j . A positive value of qj implies that the resources used in producing output
j are worth more than the profit yielded by that commodity. Thus we may interpret
the dual slack variable qj as the accounting loss per unit of output j .

Summarizing, our primal and dual problem contain the following four types of
variables:

xj : the quantity of product j (the primal ordinary variables);
li : the unused capacity of input i (the primal slack variables);
ui : the accounting value of input i (the dual ordinary variables);
qj : the accounting loss per unit of output j (the dual slack variables).

We now turn to the relationship between the primal problem (4.4)–(4.6) and the
dual problem (4.7)–(4.9). The first observation, which we already made, is the com-
petitors’assertion (4.11) that the return of the producers by selling the given resources
under the primal and dual constraints cannot be lower than their profit for any product
mix x. Or, in other words, the firm’s total profit will never exceed the accounting
value assigned to the firm’s scarce inputs.

The reader can verify that this result is a straightforward application of the more
general weak duality theorem (Theorem 3.13 from Section 3.3) for the primal problem

max
x∈Rn+

min
u∈Rm+

	(x,u)

and the dual problem

min
u∈Rm+

max
x∈Rn+

	(x,u),

where f0(x) =∑n
j=1 cj xj and fi(x) = −∑n

j=1 aij xj + bi (i = 1, 2, . . . , m).
We formulate this result in the following lemma.

Lemma 4.1. Let x1, x2, . . . , xn be a feasible solution of the maximization problem
(4.4)–(4.6), and let u1, u2, . . . , um be a feasible solution of the minimization dual
problem (4.7)–(4.9). Then

n∑
j=1

cj xj �
m∑
i=1

biui . (4.11′)

The producer seeks now to maximize his total profit and the competitor seeks to
minimize his expenditure for buying the resources until both values are equal.

Theorem 4.3 (optimality criterion). If there exists a feasible solution x0
1 , x

0
2 , . . . , x

0
n

for the maximization problem (4.4)–(4.6) and a feasible solution u0
1, u

0
2, . . . , u

0
m for

the dual problem (4.7)–(4.9) such that
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n∑
j=1

cj x
0
j =

m∑
i=1

biu
0
i ,

then both of these solutions are optimal.

Proof. Relation (4.11′) implies that every feasible solution x1, x2, . . . , xn of problem
(4.4)–(4.6) satisfies

n∑
j=1

cj xj �
m∑
i=1

biu
0
i =

n∑
j=1

cj x
0
j

and that every feasible solution u1, u2, . . . , um satisfies

m∑
i=1

biui �
n∑
j=1

cj x
0
j =

m∑
i=1

biu
0
i . ��

In this way, the dual model will impute all of the firm’s profit to its scarce resources.
The next important theorem, dealing with the existence of optimal solutions for

the pair of linear programming problems (4.4)–(4.6) and (4.7)–(4.9), is the following.

Theorem 4.4 (duality theorem). If either the primal or the dual problem has a finite
optimal solution, then the other problem also has a finite optimal solution and the
values of the objective functions are equal; that is, max f0(x) = min g(u).

If either problem has an unbounded optimal solution, then the other problem must
be infeasible.

Proof. First, let us remember that each one of the problems (4.4)–(4.6) and (4.7)–
(4.9) is the dual of the other. Then the first part of this theorem is a straightforward
application of the strong duality theorem (Theorem 3.14 from Section 3.3) for convex
programming.

To prove the second part, we note that if the primal problem is unbounded, then
we have by (4.11) that

+∞ �
m∑
i=1

biui .

Any solution to the dual inequalities (4.8)–(4.9) must have a corresponding value
for the dual objective function (4.7) that is an upper bound for the primal objective
function (4.4). Since this contradicts the assumption of unboundedness, we must
conclude that there are no solutions to the dual problem. By the same argument, if
the dual problem is unbounded, then the primal problem must be infeasible. ��

However, the primal and dual may both be infeasible at the same time. For
example, both the problem
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maximize f0(x) = 3x1 − 2x2

subject to x1 − x2 � 2,

−x1 + x2 � −3,

x1x2 � 0

and its dual

minimize g(u) = 2u1 − 3u2

subject to u1 − u2 � 3,

−u1 + u2 � −2,

u1, u2 � 0

are infeasible. In conclusion, we can summarize that if the primal problem has a
feasible solution and if the dual problem has a feasible solution, then both problems
have optimal solutions.

As shown in Chapter 3, the Kuhn–Tucker conditions are both necessary and suf-
ficient for x0 to solve the convex programming problem and therefore the linear
programming problem as well. The Lagrange function for problem (4.4)–(4.6) is

	(x,u) =
n∑
j=1

cj xj +
m∑
i=1

ui

⎛⎝bi −
n∑
j=1

aij xj

⎞⎠,
and the Kuhn–Tucker conditions yield

∂φ

∂xj
= cj −

m∑
i=1

aiju
0
i � 0 (j = 1, 2, . . . , n), (4.14)

x0
j

∂φ

∂xj
= x0

j

(
cj −

m∑
i=1

aiju
0
i

)
= 0 (j = 1, 2, . . . , n), (4.15)

x0
j � 0 (j = 1, 2, . . . , n), (4.16)

∂φ

∂ui
= bi −

n∑
j=1

aij x
0
j � 0 (i = 1, 2, . . . , m), (4.17)

u0
i

∂φ

∂ui
= u0

i

⎛⎝bi −
n∑
j=1

aij x
0
j

⎞⎠ = 0 (i = 1, 2, . . . , m), (4.18)

u0
i � 0 (i = 1, 2, . . . , m). (4.19)

We can see that conditions (4.14) and (4.19) are exactly the dual constraints (4.8)–
(4.9), and the Lagrange multipliers u0

i , u
0
2, . . . , u

0
m are the dual variables. Condi-

tions (4.16)–(4.17) coincide with the primal constraints (4.6) and (4.5). Therefore,
the feasible solutions x0

1 , x
0
2 , . . . , x

0
n and u0

1, u
0
2, . . . , u

0
m satisfying conditions (4.15)

and (4.18) are optimal, and vice versa.
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In this way, the next major theorem of linear programming, the complementary
slackness theorem (see, e.g., [10, pp. 62–63]), or equilibrium theorem [15, pp. 19–20],
can be derived.

Theorem 4.5. The feasible solutions x0
1 , x

0
2 , . . . , x

0
n and u0

1, u
0
2, . . . , u

0
m of (4.4)–

(4.6) and (4.7)–(4.9), respectively, are optimal solutions if and only if

m∑
i=1

aiju
0
i > cj implies x0

j = 0, (4.20a)

x0
j > 0 implies

m∑
i=1

aiju
0
i = cj , (4.20b)

and

m∑
j=1

aij x
0
j < bi implies u0

i = 0, (4.21a)

u0
i > 0 implies

n∑
j=1

aij x
0
j = bi. (4.21b)

These conditions are usually called the complementary slackness conditions. Tak-
ing into account the primal slack variables l1, l2, . . . , lm and the dual slack variables
q1, q2, . . . , qn, conditions (4.15) and (4.18) can be rewritten as

x0
j q

0
j = 0 (j = 1, 2, . . . , n), (4.20′)

u0
i l

0
i = 0 (i = 1, 2, . . . , m). (4.21′)

The primal slack variables li (i = 1, 2, . . . , m) are naturally matched up with the
dual variables ui (i = 1, 2, . . . , m), and each primal variable xj is matched with the
dual slack qj . Conditions (4.15) and (4.18) or (4.20′)–(4.21′) require that in each of
the m+ n matching pairs, at least one variable must have value zero.

The economic interpretation of the above result follows immediately from the
interpretation of the Kuhn–Tucker conditions (3.39) and (3.42) from the previous
chapter. However, this is only if the system of equations (4.20b) has a unique solution.
According to Corollary 3.1, the sufficient condition for the uniqueness of the optimal
dual solution is that the gradients ∇fi(x0), i ∈ I (x0), are linearly independent. For
the linear programming problem (4.4)–(4.6), this condition implies that the optimal
solution x0

1 , x
0
2 , . . . , x

0
n is a nondegenerate basic solution. Then the dual problem

(4.7)–(4.9) has a unique solution, and the classical shadow price interpretation of the
dual variables according to (3.52) is valid. Hence u0

i is equal to the marginal profit
contribution of input i. That is, u0

i give us the increase of the firm’s profits if the
company were to increase its amount of the production factor i by one unit. In the
interpretation of Chvátal [10, p. 66], u0

i “specifies the maximum amount that the firm
should be willing to pay, over and above the present trading price, for each extra unit
of resource i.”
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With this interpretation of the dual variables u0
1, u

0
2, . . . , u

0
m as shadow prices (or

accounting values), condition (4.20a) says that if the cost of an activity (described as
the accounting value of the inputs) exceeds the profit derived from it, then it will not
be used; i.e., it will be operated at level zero. Because of an opportunity loss, the firm
has to use the inputs for the production of other goods. Summarizing, the conditions
in (4.20) assert that in the optimal product mix an opportunity loss cannot occur.

Condition (4.21a) states that if there are production factors of which there is a
surplus, that is, those whose supply is not exhausted, then the shadow price of those
production factors must be zero. An extra unit of those resources does not change the
firm’s profit. According to condition (4.21b), if the shadow price u0

i is positive, then
there must be a resource with deficit; that is, all of its available amount bi will be used
by an optimal product mix. In this way, the shadow prices reveal the bottleneck in
the production and indicate the possibilities of the most profitable expansion of the
production.

Thus the dual solution provides a deeper insight into the behavior of the given
decision-making units, and thereupon it can be very useful for supporting of the
decision process.

An interesting property arising in some linear programming economic models
will illustrate this point.

4.4 The More-for-Less Paradox

Let us consider the production problem (1.7) (described in Section 1.2.3) based on
the assumption of the minimization of the cost for the given output level. Suppose the
firm using n different technologies T1, T2, . . . , Tn has to produce the given amounts
b1, b2, . . . , bm of m different products P1, P2, . . . , Pm. The technology Tj is de-
scribed by the output coefficients aij , giving the amount of good Pi produced by the
technology Tj with unit intensity. The unit cost of technology Tj is described by the
coefficient cj (j = 1, 2, . . . , n). The decision problem of the firm is how to combine
the different technologies, and at which intensities, in order to produce the prescribed
amounts of the products P1, P2, . . . , Pm at the minimal cost.

For simplicity and without loss of generality, suppose only two products (m = 2)
and six technologies (n = 6) with the matrix of output coefficients

A =
(

3 2 3 2 2 4
1 1 2 2 3 5

)
,

with the output requirements b′ = (30, 40) and with the unit cost c′ = (2, 1, 4, 2, 6, 8),
expressed in Euros ( ). This problem can be formulated as

minimize f0(x) = 2x1 + x2 + 4x3 + 2x4 + 6x5 + 8x6

subject to 3x1 + 2x2 + 3x3 + 2x4 + 2x5 + 4x6 = 30,

x1 + x2 + 2x3 + 2x4 + 3x5 + 5x6 = 40,

x1, x2, x3, x4, x5, x6 � 0.

(4.22)
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The equalities in (4.22) imply that the produced goods are perishable and cannot be
put into store. The optimal solution to problem (4.22) is x0 = (0, 0, 0, 0, 5, 5) with
the objective function value f (x0) = 70. Although the method of solution will
be presented only in the next section, for problem (4.22) it can be easily shown—by
means of duality theory from the previous section—that the above solution is optimal.

The dual problem corresponding to problem (4.22) has the following form:

maximize g(u) = 30u1 + 40u2

subject to 3u1 + u2 � 2,

2u1 + u2 � 1,

3u1 + 2u2 � 4,

2u1 + 2u2 � 2,

2u1 + 3u2 � 6,

4u1 + 5u2 � 8.

(4.23)

Due to the Kuhn–Tucker conditions for the general mathematical programming prob-
lem (1.28b) from Section 2.4, the dual variables related to the equalities in primal
problem are not restricted to the nonnegativity. Therefore, the nonnegativity con-
straints for u1 and u2 in (4.23) are omitted. Applying Theorem 4.5, which provides
the necessary and sufficient conditions for the optimal solution of a linear program-
ming problem, we write the system of equations

2u0
1 + 3u0

2 = 6 (because of x0
5 > 0),

4u0
1 + 5u0

2 = 8 (because of x0
6 > 0),

which yields the solution u0 = (−3, 4). Because all dual constraints and all com-
plementary slackness conditions are fulfilled, this is the optimal solution for the dual
problem (4.23). Substituting u0

1 = −3 and u0
2 = 4 into the dual objective function,

we get the same value of 70 as for the primal objective function f (x0). The reader
can easily verify that the graphic method for solving problem (4.23) provides the
same solution.

Suppose we increase the output requirements in the production problem (4.22)
from (30, 40) to (60, 50); i.e., we change the right-hand side of problem (4.22) to
(60, 50). It can be shown in the same way as before that the optimal solution for
the new problem is x∗

2 = 10 and x∗
4 = 20 with the objective function value 50.

The optimal dual solution for the new problem is u∗ = (0, 1). We can see the firm
produces more units of both products (100% more of product P1 and 25% more of
product P2) for less total cost (71, 4% of the previous cost). Hence we have the
more-for-less paradox in this situation.

After the numerical illustration, we define the more-for-less paradox gener-
ally. Let us consider the following linear programming problem, with all cj
(j = 1, 2, . . . , n) and bi (i = 1, 2, . . . , m) assumed positive:
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minimize f0(x) = c′x
subject to Ax = b,

x � 0,

(4.24)

where A is an m × n matrix (m < n) and of full rank, b is an m × 1 vector, x is an
n× 1 vector, and c′ is a 1 × n vector.

Problem (4.24) has the more-for-less property if we can increase all or some
components of b and reduce the value of the objective function f0(x)without reducing
other components of b, and keeping all cj fixed. The following theorem provides the
necessary and sufficient condition for the more-for-less paradox.

Theorem 4.6. The linear programming problem (4.24) has the more-for-less property
if and only if every optimal solution of the corresponding dual problem

maximize g(u) = b′u
subject to A′u � c

has at least one negative dual variable u0
i .

The proof of this theorem can be found in two independent papers, the first by
Chobot and Turnovec [9, p. 379] and the second by Charnes, Duffuaa, and Ryan [6,
p. 195]. The more-for-less paradox in the case of the distribution model was first
studied by Charnes and Klingman [7], and Theorem 4.6 is an extension of the main
theorem of this paper.

To illustrate, we return to our numerical example (4.22). Because the optimal
solution x0 = (0, 0, 0, 0, 5, 5) is nondegenerate, the corresponding dual solution
u0

1 = −3 andu0
2 = 4 is unique and with one negative component. Due to Theorem 4.6,

there exists a vector �b > 0 (in our example, �b1 = 30, �b2 = 10) such that the
optimal solution x∗ = (0, 10, 0, 20, 0, 0) for the problem with these new right-hand
sides yields a lower objective function value (�f0(x) = −20). The optimal solution
for the corresponding dual problem is degenerate and nonnegative u∗ = (0, 1). The
new problem does not have the more-for-less property.

From the economic interpretation point of view, this result is remarkable. For
a given linear technology, how do we explain that the increasing production of all
goods can lead to a decreasing total production cost? Or, in other words, the reduced
level of production is accompanied by increasing total cost.

For the given unit cost cj (j = 1, 2, . . . , n) and the technological coefficients
aij , there exist a “technological” optimal structure of production, described by s0 =
(s0

1 , s
0
2 , . . . , s

0
m), which can be found by solving the following linear programming

problem [9, p. 348]:

minimize f0(x) =
n∑
j=1

cj xj (4.25)

subject to
n∑
j=1

aij xj − si = 0 (i = 1, 2, . . . , m),
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m∑
i=1

si = 1, (4.26)

xj � 0 (j = 1, 2, . . . , n),

si � 0 (i = 1, 2, . . . , m).

The “technological” optimal structure s0 can deviate considerably from the given
structure, described by the coefficients bi :

s = (s1, s2, . . . , sn), where si = bi∑n
i=1 bi

.

Because of the equality constraints in problem (4.24), it is not always possible to
realize the “technological” optimal structure s0. If the value of the structure s0, de-
scribed by the optimal value of the objective function (4.25), deviates considerably
from the value of the required production structure s, the increasing production in
problem (4.24) accompanied by changing the production structure toward the “tech-
nological” optimal structure s0 will lead to decreasing production costs.

To illustrate, let us return to our numerical example (4.22). In order to fulfill the
output requirements (with higher output of the product P2), the firm must use the
technologies T5 and T6 with higher output of product P2, but with the highest unit
cost (c5 = 6, c6 = 8). Changing the structure of the required outputs (with the
higher proportion of the product P1), the firm will switch to the technologies with
higher amount of the product P1 and with lower unit cost (c2 = 1, c4 = 2). The
values of the dual variables u1 and u2 show the cost reducing change in the output
structure. According to the negative value of the dual variable u1 = −3, an increase
of the amount of the product P1 by one unit reduces the total cost by three units. An
increase of the amount of the product P2 by one unit increases the total cost by four
units. Therefore, the increase of the output P1 from 30 to 60 units overcompensates
(because of the possibility to switch to cheaper technologies) for the increasing cost
caused by increasing output of the product P2, and the total costs are lower than
before.

In order to characterize the “technological” optimal structure analytically, we
consider the dual problem corresponding to problem (4.25)–(4.26):

maximize g(u) = um+1 (4.27)

subject to
m∑
i=1

aijui � cj (j = 1, 2, . . . , n), (4.28)

−ui + um+1 � 0 (i = 1, 2, . . . , m). (4.29)

Assuming si > 0, the complementary slackness theorem yields

um+1 = ui (i = 1, 2, . . . , m).

The dual constraints (4.28) can be then rewritten as
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m∑
i=1

aijum+1 � cj (j = 1, 2, . . . , n),

or

um+1 � cj∑m
i=1 aij

(j = 1, 2, . . . , n).

The optimal solution of the dual problem (4.27)–(4.29) is given by

u0
m+1 = min

cj∑
i aij

(j = 1, 2, . . . , n). (4.30)

Using the complementary slackness theorem, we can easily obtain the “technological”
optimal structure according to relation (4.30).

To illustrate, we consider our example (4.22) again. According to (4.25)–(4.26),
the linear programming problem for the estimation of the “technological optimal”
structure is the following:

minimize f0(x) = 2x1 + x2 + 4x3 + 2x4 + 6x5 + 8x6

subject to 3x1 + 2x2 + 3x3 + 2x4 + 2x5 + 4x6 − s1 = 0,

x1 + x2 + 2x3 + 2x4 + 3x5 + 5x6 − s2 = 0,

s1 + s2 = 1,

s1 � 0, s2 � 0, xj � 0 (j = 1, . . . , n).

The corresponding dual problem

maximize g(u) = u3

subject to 3u1 + u2 � 2,

2u1 + u2 � 1,

3u1 + 2u2 � 4,

2u1 + 2u2 � 2,

2u1 + 3u2 � 6,

4u1 + 5u2 � 8,

−u1 + u3 � 0,

−u2 + u3 � 0

is easy to solve. Assuming s1 > 0, s2 > 0, we obtain u3 = u2 = u1. Then the
remaining dual constraints reduce to

4u3 � 2,

3u3 � 1,

5u3 � 4,
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4u3 � 2,

5u3 � 6,

9u3 � 8.

Under the maximization of u3, the optimal solution is u0
3 = 1

3 , which corresponds
exactly to relation (4.30). Due to the complementary slackness theorem the optimal
value for the primal variables x1, x3, x4, x5, and x6 must be equal to zero. Conse-
quently, x0

2 = 1
3 , s0

1 = 2
3 , and s0

2 = 1
3 . The “technological optimal” is the technology

T2 with the structure of production s0
1 : s0

2 = 2 : 1. In our numerical example (4.22),
we changed the initial output requirements b = (30, 40) to b∗ = (60, 50), which
are closer to the “technological optimal” structure s0, and the optimal solution was
switched from technologies T5 and T6 to technologies T2 and T4. The reader can
easily verify that if we change the output requirements according to the structure s0

(e.g., b0
1 = 100 and b0

2 = 50), the firm will use technology T2 only (x0
2 = 50 and the

optimal value of the objective function f (x0) = 50). This is a degenerate optimal
solution, which implies that the optimal solution of the dual problems is not unique.
One of the optimal solutions is u0

1 = 1
2 and u0

2 = 0 (the solution is feasible and the
value of the dual objective function g(u0) = f (x0) = 50). Because of the nonnega-
tive dual solution, the modified problem (with the right-hand side vector b∗) has no
more the more-for-less property. According to Charnes, Duffuaa, and Ryan [6], we
obtained an optimal solution that resolves the paradox. By resolving the paradox,
they mean increasing the right-hand side until the total cost starts to increase from
the minimum obtained over all possible increases.

The numerical illustration of the more-for-less property given by example (4.22)
and the numerical examples in [9] and [6] may lead to the interpretation that the cost
reduction can be achieved by switching to the technologies with lower unit cost cj
only. The following example [24, p. 107], with the matrix of output coefficients

A =
(

3 2 1 2 4
1 1 2 2 5

)
,

output requirements b′ = (15, 5), and unit cost c′ = (5, 3, 3, 4, 6), shows that the
total cost can decrease even if the firm switches to the most expensive (with maxj cj )
technology.

It is obvious that in the above example the firm will choose the first technology only
(x0

1 = 5) in order to meet the output requirements with minimal cost (f0(x0) = 25).
The optimal dual solution is not unique, but for every optimal solution the dual variable
y0

2 is negative. One of the optimal solutions is, e.g., y0 = (2,−1).
Changing the output requirements from (15, 5) to (16, 20), it is optimal for the firm

to switch from the technology T1 (with c1 = 5) to the most expensive technology
T5(c5 = maxj cj = 6). Despite the increasing production of both products (the
production of the good P2 increases four times), the total cost decreases from 25 to 24
Euro. The “technological” optimal structure of production provides the explanation
for this result.

The minimum in (4.30) is unique in our example, and using the complementary
slackness theorem, the “technological” optimal structure s0 = ( 4

9 ,
5
9 )will be obtained.
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It is described by the structure of technology T5, which coincides with the structure
of the new output requirements b′. Only technology T5 will be chosen (x0

5 = 4), and
the total cost decreases to 24.

4.5 Computational Procedure: The Simplex Method

In the preceding sections, we have discussed the basic properties of linear program-
ming models, the economic implications of the linearity assumption, and (relatively
extensively) the economic interpretation of the duality. We have not been concerned
thus far with the question of how to obtain the solution of the general linear pro-
gramming problem (4.1)–(4.3). The examples we analyzed in the previous section
consisted of two variables (or two constraints) only and could be solved geometrically.

The best-known method for solving the linear programming problems is the sim-
plex method developed (as mentioned in Section 1.3) by G. Dantzig in 1947.

The simplex method can be treated from various points of view. It can be de-
scribed algebraically, not only as the method for solving linear programs, but as the
general method for solving linear inequalities or finding nonnegative solutions to
linear equations. A very nice feature of this method is its economic interpretation,
and therefore we shall consider this aspect in more detail. Finally, it can be made
plausible by geometric interpretation.

Let us consider the general linear programming problem (4.1)–(4.3). As shown
in Section 4.1, an optimal solution can always be found among the extreme points of
the feasible set or among the basic solutions.

In order to carry on the economic and algebraic discussion simultaneously, let
us to interpret problem (4.1)–(4.3) as a diet problem (described in Section 1.2.1) in
which it is required to meet nutritional requirements with minimal cost. The following
economic interpretation of the simplex method is based on [15, pp. 105–108].

Suppose that we found some diet, not necessarily the cheapest one, that is a basic
solution of (4.2). The question of how to find a starting basic solution is a serious
problem in itself and will be taken up later.

Let the initial basic solution be x0 = (x10, x20, . . . , xm0). It is a feasible diet that
uses—without loss of generality—the first m foods in amounts x10, x20, . . . , xm0.
According to our notation from Section 4.1, we have

x10P1 + x20P2 + · · · + xm0Pm = P0, (4.31)

where the associated vectors P1, P2, . . . , Pm are linearly independent. The corre-
sponding value of the objective function (4.1), the cost of the given diet, is

x10c1 + x20c2 + · · · + xm0cm = f 0
0 . (4.32)

SinceP1, P2, . . . , Pm are linearly independent, we can express any vector from the set
P1, P2, . . . , Pn as a linear combination of the basic vectors P1, P2, . . . , Pm. There-
fore, Pj can be expressed by
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x1jP1 + x2jP2 + · · · + xmjPm = Pj (j = 1, 2, . . . , n). (4.33)

Let us consider foodm+ 1, say, carrots, which is not in the current diet. Then (4.33)
is an expression for carrots as a linear combination of the foods in the current diet.
The dietary interpretation of this relation means that one unit of carrot has the same
nutritive content as x1,m+1 units of food 1 plus x2,m+1 units of food 2, and so on.
Gale [15, p. 107] denotes the menu vector (x1,m+1, x2,m+1, . . . , xm,m+1) as synthetic
carrots. Because of the minimization of the total cost of the diet, the following
question arises: What is cheaper, a real carrot or a synthetic carrot (without taking
into account that a nice red carrot probably tastes better)? The cost of a real carrot
is cm+1. The cost of a synthetic carrot, denoted by zm+1, is obviously given by the
expression

x1,m+1c1 + x2,m+1c2 + · · · + xm,m+1cm = zm+1,

or for any food j , which is not in the current diet,

x1j c1 + x2j c2 + · · · + xmj cm = zj . (4.34)

If real carrots are cheaper than synthetic carrots (that is, if cm+1 < zm+1), then real
carrots should be brought into the new diet. The total cost of the new diet (with the
carrot instead of one food from the previous diet) must be lower than the cost of the
diet without nice red carrots. This leads to the following rule of the simplex method.

Theorem 4.7. If, for any fixed j , the condition zj − cj > 0 holds, then a new feasible
solution can be found with the objective function value f0 smaller than f 0

0 . The lower
bound of f0 is either finite or infinite.

Proof. Multiplying (4.33) by some positive number θ and subtracting from (4.31),
for j = 1, 2, . . . , n, we get

(x10 − θx1j )P1 + (x20 − θx2j )P2 + · · · + (xm0 − θxmj )Pm + θPj = P0. (4.35)

Similarly, multiplication of (4.34) by the same θ and subtraction from (4.32) yields

(x10 − θx1j )c1 + (x20 − θx2j )c2 + · · · + (xm0 − θxmj )cm + θcj = f 0
0 − θ(zj − cj ),

(4.36)
where θcj has been added to both sides of (4.36). If all the coefficients of the vectors
P1, P2, . . . , Pm, Pj in (4.35) are nonnegative, then we have a new feasible solution
whose value of the objective function is, by (4.36), f0 = f 0

0 − θ(zj − cj ). Since
the variables x10, x20, . . . , xm0 in (4.35) are all positive, there is a value of θ > 0 for
which the coefficients of the vectors P1, P2, . . . , Pm in (4.35) remain positive.

If, for a fixed j , zj − cj > 0 holds, then we have

f0 = f 0
0 − θ(zj − cj ) < f 0

0

for θ > 0. The value of the objective function f0 corresponding to a new feasible
solution is lower than the value for the preceding solution.
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The two different cases—f0 is either finite or infinite—can be proved in the
following way.

If for fixed j at least one xij in (4.33) for i = 1, 2, . . . , m is positive, the largest
value of θ for which all coefficients in the brackets of (4.35) remain nonnegative is
given by

θ0 = min
xij>0

xi0

xij
> 0. (4.37)

Assuming that the problem is nondegenerate, i.e., that all basic solutions have m
positive components, the minimum in (4.37) will be reached for a unique i, e.g., for
i = 1. Then the coefficient of the vectors P1 in (4.35) will vanish and we have a new
basic feasible solution consisting of Pj and the vectors P2, P3, . . . , Pm of the original
basis. This new basis can be used for the next iteration as for the previous one. If
for at least one zj − cj > 0 holds and at least one of the coefficients xij is positive,
another solution with a smaller value of the objective function can be obtained. This
process will continue either until all zj − cj � 0 or until, for some zj − cj > 0, all
xij � 0. In the last case all coefficients of the vectorsP1, P2, . . . , Pm in (4.35) remain
positive, independently of the value θ . There is no upper bound to θ and the objective
function value can be decreased infinitely. In other words, the objective function has
a lower bound of −∞, the linear programming problem has an unbounded solution.
This completes the proof. ��

After the economic interpretation of the simplex method steps, the following
theorem (see [16, pp. 66–67]) confirms that these rules will indeed lead us to an
optimal solution of the problem.

Theorem 4.8 (optimality criterion). If for any basic solution x0 = (x10, x20, . . . ,

xm0) the conditions zj − cj � 0 hold for all j = 1, 2, . . . , n, then x0 is an optimal
solution of problem (4.1)–(4.3).

If the objective function in problem (4.1)–(4.3) is to be maximized, we would use
the following criterion instead of changing to a minimization problem: Compute the
zj − cj and select a new variable with zj − cj < 0; an optimum solution has been
found when all zj − cj � 0.

The results of Theorems 4.7 and 4.8 enable us to start with a basic solution and
generate a set of the new basic solutions that converge to the optimal solution or
determine that a finite optimal solution does not exist. The question arising now is
that of how to generate a new basic solution.

Let us start with the m linearly independent vectors P1, P2, . . . , Pm. We denote
the m × m matrix (P1, P2, . . . , Pm) by B and call it a basis. Now we decided to
replace the vector P1 of the old basis—for which the minimum in (4.37) will be
obtained by the vector Pm+1. According to (4.33), we have

Pm+1 = x1,m+1P1 + x2,m+1P2 + · · · + xm,m+1Pm. (4.38)

From (4.38) we obtain
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P1 = 1

x1,m+1
(Pm+1 − x2,m+1P2 − · · · − xm,m+1Pm). (4.39)

Substituting (4.38) for P1 into (4.33) yields

Pj = x1j

x1,m+1
(Pm+1 − x2,m+1P2 − · · · − xm,m+1Pm)

+ x2jP2 + · · · + xmjPm = (x2j − x1j

x1,m+1
x2,m+1)P2

+ (x3j − x1j

x1,m+1
x3,m+1)P3 + · · · + (xmj − x1j

x1,m+1
xm,m+1)Pm

+ x1j

x1,m+1
Pm+1.

(4.40)

The reader may verify that the expressions in the brackets in (4.40) are equivalent
to the complete elimination formulas of Jordan and Gauss when the pivot element is
x1,m+1. In other words, to generate a new basic solution, we can use the complete
elimination method of Jordan and Gauss, which is well known from linear algebra.

Furthermore, it can be shown [16, p. 60] that the vectors P2, P3, . . . , Pm, Pm+1
are linearly independent, and therefore the new solution x′ = (x′

2, x
′
3, . . . , x

′
m, x

′
m+1)

is a basic solution or an extreme point of the feasible set.
The last open question in our description of the simplex procedure is that of how

to find the initial basic solution. If the linear programming problem is of the form

maximize f0(x) = c′x
subject to Ax � b,

x � 0,

(4.41)

where b � 0, we write each inequality as an equality by adding a nonnegative slack
variable. The corresponding coefficients in the objective function for these slack
variables are usually set equal to zero. In this way, we obtain m unit vectors that are
linearly independent and build a starting basis.

If the problem was originally of the formAx � b, the equivalent set of equations is
obtained by the subtraction of a nonnegative slack variable from each inequality. Here
the equations contain a negative unit matrix which cannot be used for the initial basic
solution (because of the nonnegativity constraints). For this case and for the general
linear programming problem (4.1)–(4.3), the method of the artificial basis, or the two-
phase simplex method (see, e.g., [16], [10], or any textbook on linear programming)
can be used to start the simplex process. This procedure also determines whether or
not the problem has any feasible solution.

Once an initial basic solution has been found, the simplex procedure calls for the
successive application of the following.

1. The testing of the zj − cj elements to determine whether a minimum solution
has been found, i.e., whether zj − cj � 0 for all j .

2. The selection of the vector to be introduced into the basis if some zj − cj > 0.
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3. The selection of the vector to be eliminated from the basis, i.e., the vector with
minxik>0(

xi0
xik
), where k corresponds to the vector selected in Step 2. If all xik � 0,

then the solution is unbounded.
4. The new solution will be obtained by the complete elimination procedure of

Jordan and Gauss.

Each such iteration produces a new basic feasible solution, and according to
Theorems 4.7 and 4.8, we shall obtain an optimal solution or find an unbounded
solution.

For the illustration of the simplex method, let us solve the following hypothetical
production problem. A farmer has 100 acres of land at his disposal, a fixed commit-
ment of 160 man-days of labor, and the amount of 1100 for covering the input cost
(for seeding, cultivating, etc.). He wishes to apportion his production factors—land,
labor, and capital—between two crops, wheat and potatoes, to yield a maximum re-
turn on the market. Assuming good weather and given the prices of both crops, the
expected return is 120/acre for wheat and 40/acre for potatoes. The input cost is

20/acre for wheat and 10/acre for potatoes, and the amount of required labor is
four man-days per acre for wheat and one man-day per acre for potatoes. How many
acres of wheat and how many acres of potatoes should the farmer plant in order to
maximize his return revenue?

Denoting the number of acres of planted potatoes by x1 and the number of acres of
planted wheat by x2, we formulate his decision problem as the following optimization
problem:

maximize f0(x) = 40x1 + 120x2

subject to x1 + x2 � 100, (land constraint)

10x1 + 20x2 � 1100, (capital constraint)

x1 + 4x2 � 160, (labor constraint)

x1 � 0,

x2 � 0.

Transforming to equations by adding a nonnegative slack variable to all inequali-
ties except the nonnegativity constraints, we obtain the equivalent linear programming
problem:

maximize f0(x) = 40x1 + 120x2

subject to x1 + x2 + x3 = 100, (land constraint)

10x1 + 20x2 + x4 = 1100, (capital constraint)

x1 + 4x2 + x5 = 160, (labor constraint)

xj � 0 (j = 1, 2, . . . , 5).

The interpretation of the slack variable is straightforward: x3 denotes the number
of unplanted acres, x4 is the amount of money, and x5 is the number of man-days,
respectively, not used.
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Table 4.1.

i Basis cB
40 120 0 0 0
P1 P2 P3 P4 P5

P0

1 P3 0 1 1 1 0 0 100 R1
2 P4 0 10 20 0 1 0 1100 R2
3 P5 0 1 4 0 0 1 160 R3
4 zj − cj −40 −120 0 0 0 0 R4

According to our notation in the general linear programming problem (4.1)–(4.3),
the given vectors are then

P1 =
⎛⎝ 1

10
1

⎞⎠, P2 =
⎛⎝ 1

20
4

⎞⎠, P3 =
⎛⎝1

0
0

⎞⎠, P4 =
⎛⎝0

1
0

⎞⎠, P5 =
⎛⎝0

0
1

⎞⎠,
and

P0 =
⎛⎝ 100

1100
160

⎞⎠.
We see that these equations contain a starting basis of the slack vectors (P3, P4, P5)

with the associated first feasible solution of x1 = 0, x2 = 0, x3 = 100, x4 = 1100,
and x5 = 160. The first feasible basic solution is that the farmer does nothing. He
produces neither potatoes nor wheat and all production factors (land, capital, and
labor) are unused. The corresponding value of the objective function is zero, as all
coefficients for the slack variables in the objective function are here assumed to be
zero. The slack variables do not yield any return for the farmer. In some applications,
these coefficients can be other than zero, e.g., penalty costs for not using certain raw
materials, storage costs, etc.

For didactic purposes the steps of the simplex method will be described by
tableaus. The initial tableau in our example has the form shown in Table 4.1, where
cB denotes the vector of the objective function coefficients for the basic variables.

Because our initial basis B = (P3, P4, P5) is the identity matrix E3, the descrip-
tion of all vectors Pj in terms of this basis is very simple. According to (4.33),

Pj = Bxj , or xj = B−1Pj , (4.42)

where xj = (x1j , x2j , . . . , xmj ). For the initial tableau, B−1 = E and therefore

P1 = 1P3 + 10P4 + 1P5

and

P2 = 1P3 + 20P4 + 4P5.
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The elements zj can easily be obtained using (4.34). They are zero because
the coefficients ci for the basic variables are—as indicated in the third column of
Table 4.1—all zero. Since we are now maximizing instead of minimizing, we look
for negative rather than positive entries in the last row of Table 4.1. All coefficients for
the nonbasic variables are negative (the coefficients zj −cj for the basic variables are
always equal to zero), and therefore we may bring any of the vectors P1, P2 into next
basis. The production of both products (potatoes and wheat) will yield higher profit
for the farmer than to leave the production factors unused. The greatest immediate
increase in the value of the objective function is given by

min
j
θ0(zj − cj ) for j = 1, 2,

where for each j , θ0 is determined by (4.37). If there are a number of j for which
zj − cj < 0, the above rule is rather complicated to apply. A much simpler criterion
for selecting of a new basic vector is to select the one which corresponds to

min
j
(zj − cj ) or to max

j
|zj − cj |,

where |zj − cj | denotes the absolute value of (zj − cj ). In our example,

min
j
(zj − cj ) = z2 − c2 = −120.

One acre of planted wheat yields higher return than one acre of planted pota-
toes. The farmer will increase his return revenue if he plants wheat. Mathematically
speaking, the vector P2 will be introduced into the basis.

How many acres of wheat will the farmer plant? He has 100 acres of land, but
the input cost for wheat is 20 per acre and he needs four man-day per acre of wheat.
Taking into account the availability of 1100 for covering the input cost and a fixed
amount of 160 man-days of labor, the number of acres of wheat he can plant is given by

min

{
100

1
,

1100

20
,

160

4

}
= 40.

This rule corresponds exactly to the form (4.37), which determines the vector leaving
the basis:

θ0 = min
xi2>0

xi0

xi2
.

The farmer will plant 40 acres of wheat, he needs 160 man-days, therefore the slack
variable x5 will be zero and the vector P5 will be the one eliminated from the basis.
Our new feasible solution will have a new basis consisting of P3, P4, and P2. In
economic terms, the farmer will plant wheat (40 acres because of the scarcity of
labor), and he will not completely use the production factors land and capital (due
to the limitational type of production function). We next wish to compute the new
solution explicitly and to express each vector not in the basis in terms of the new basis.

According to (4.40), we obtain the new basic solution using Jordan–Gauss elim-
ination procedure (including the P0 column and the row with the elements zj − cj )
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Table 4.2.

i Basis cB
40 120 0 0 0
P1 P2 P3 P4 P5

P0

1 P3 0 3
4 0 1 0 − 1

4 60 R5 = R1 − R7
2 P4 0 5 0 0 1 −5 300 R6 = R2 − 20R7
3 P2 120 1

4 1 0 0 1
4 40 R7 = 1

4R3
4 zj − cj −10 0 0 0 30 4800 R8 = R4 + 120R7

on Table 4.1 with the pivot element x32 = 4 (with row 3 being the pivot row or the
row for the variable eliminated from the basis and column 2 being the pivot column
or the column for the variable entering the basis). The resulting solution is described
in Table 4.2. (The reader may verify the computations by continuous numeration of
the rows and using the formulas to the right of the tables.)

With 40 acres of wheat (x2 = 40), the farmer leaves 60 acres of land uncultivated
(x3 = 60), and he does not invest 300 (x5 = 300). His return revenue is 4800
(obviously higher than at the initial solution). According to (4.40), the elements in
the P1 (P5) column are the coefficients for the expression of the nonbasic vector P1
(P5) in terms of the basic vectors P3, P4, and P2. The reader may verify that

P1 = 3

4
P3 + 5P4 + 1

4
P2

and

P5 = −1

4
P3 − 5P4 + 1

4
P2.

Therefore, as a check on each complete elimination transformation, one should ex-
plicitly compute the individual f0 and zj − cj (using the form (4.34)) and compare
them with the transformed values of f0 and zj − cj .

The solution in Table 4.2 is not optimal because of z1 − c1 < 0. The return from
one acre of planted potatoes (c1 = 40) is higher than the revenue from “synthetic”
potatoes (z1 = 0 · 3

4 +0 ·5+120 · 1
4 = 30), and therefore the farmer will plant potatoes

in order to increase his return revenue. The number of acres of planted potatoes is
given by the form (4.37) again:

min

{
60
3
4

,
300

5
,

40
1
4

}
= 60 (see Table 4.2).

The farmer will use the total amount of capital; the slack variable x4 equals zero and
the vector P4 will be eliminated from the basis. Instead of this vector, the vector P1
will enter the basis. The new basis consists of vectors P3, P1, and P2. The selection
of the vector to be eliminated from the basis according to (4.37) ensures the feasibility
of the new solution (none of the variables will violate the nonnegativity restrictions).
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Table 4.3.

i Basis cB
40 120 0 0 0
P1 P2 P3 P4 P5

P0

1 P3 0 0 0 1 − 3
20

1
2 15 R9 = R5 − 3

4R10

2 P1 40 1 0 0 1
5 −1 60 R10 = 1

5R6
3 P2 120 0 1 0 − 1

20
1
2 25 R11 = R7 − 1

4R10
4 zj − cj 0 0 0 2 20 5400 R12 = R8 + 10R10

This will be obtained by application of Jordan–Gauss elimination formulas (4.40)
with the pivot element x21 = 5 (see Table 4.3).

The farmer should plant 60 acres of potatoes and 25 acres of wheat. Fifteen acres
of land remains uncultivated because of the scarcity of capital and labor. The return
revenue of the farmer has been raised to 5400.

Since all elements zj − cj are nonnegative due to Theorem 4.8, the solution in
Table 4.3 is optimal. If for the optimal solution some zj−cj = 0 for a vectorPj not in
the final basis, then this vector can be introduced into the basis without changing the
final value of the objective function. The resulting solution will also be a maximum
feasible solution, and hence we have determined multiple optimal solutions. Any
convex combination of these optimal solutions will also be an optimal solution.

In solving a linear programming problem, the decision maker is interested not only
in the solution of the primal problem but in dual solution as well. A very important
and useful feature of the simplex method is that we obtain the solution of the dual
problem simultaneously with the solution of the primal problem. It is contained in
the final simplex tableau without any additional effort. Where can it be found?

The scheme of the initial simplex tableau for problem (4.41) can be written as in
Table 4.4.

Table 4.4.

c 0
A E b
−c 0 0

The transformation of the tableau by the complete elimination procedure is nothing
more than the multiplication of their columns by the inverse basisB−1 (due to (4.42)).
Therefore, the final simplex tableau has the form given in Table 4.5.

Table 4.5.

B−1A B−1 B−1b
c′
BB

−1A− c c′
BB

−1 c′
BB

−1b

The interpretation of the elements in Table 4.5 is now straightforward. The ele-
ments B−1A are the coefficients of the linear combination of the vectors Pj in terms
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of the final basis. In the columns that correspond to the unit matrix in the initial
tableau (in other words, to the basic vectors of the initial solution), the inverse of
the final basis is developed. In the last column, the primal solution x0 = B−1b is
obtained.

According to duality theory, the optimal solution to the dual problem is given by

u0 = c′
BB

−1 (due to (4.20b): u0′
B = c′

B).

Therefore, in the last row of the final simplex tableau and in the columns corresponding
to the basic vectors of the initial tableau, we will find the dual solution.

The expression c′
BB

−1b shows the optimal value of the primal and the dual
objective function. To see this, let us decompose this expression in two ways:

• c′BB−1b = c′
Bx0, which is the optimal value of the primal objective function, and

• c′
BB

−1b = u0′
b, which is the optimal value of the dual objective function.

Finally, it is easy to show that the optimality criterion from Theorem 4.8 is equiv-
alent to the dual feasibility. We rewrite the elements zj as follows:

zj =
∑
i∈B

xij · ci = c′
BB

−1Pj = u′Pj .

According to the optimality criterion from Theorem 4.8,

zj − cj = u′Pj − cj � 0 for all j (for a maximization problem)

or

u′A− c′ � 0.

Therefore, if in the final tableau c′
BB

−1A− c′ � 0 (for the maximization primal
problem), rewritten as u′A − c′ � 0, holds, the solution is dual feasible too and
according to the duality theory both problems have optimal solutions.

To illustrate, we return to our numerical example in Table 4.3. The basis corre-
sponding to the final solution is given by the vectors P3, P1, P2, that is,

B = (P3, P1, P2) =
⎛⎝1 1 1

0 10 20
0 1 4

⎞⎠.
We see that in the columns corresponding to the basic vector of the initial table,
Table 4.1, the inverse of the final basis B,

B−1 =
⎛⎜⎝1 − 3

20
1
2

0 1
5 −1

0 − 1
20

1
2

⎞⎟⎠,
is found. The corresponding optimal solution x0 for the primal problem is
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x0 = B−1b = (x0
3 , x

0
1 , x

0
2 ) = (15, 60, 25),

and the optimal value of the objective function is

c′
Bx0 = (0, 40, 120)

⎛⎝15
60
25

⎞⎠ = 5400.

The optimal solution to the dual problem is given by

u0 = c′
BB

−1 = (u0
1, u

0
2, u

0
3) = (0, 2, 20).

It may be found in the fourth row and in the column of the inverse basis in the final
table, Table 4.3. The optimal value of the dual objective function is

u0′
b = (0, 2, 20)

⎛⎝ 100
1100
160

⎞⎠ = 5400.

If a vector that formed the unit matrix (the initial basis) had a cj �= 0, then the value of
this cj would have to be added back to the corresponding zj − cj in the final tableau
in order to obtain the correct value for the u0

i . We note that u0
i is equal to the zj that

has, for its corresponding unit vector in the initial simplex tableau, the vector whose
unit element is in position i. In our example, u0

1 = z3, since P3 is a unit vector with
its unit element in position i = 1.

Since our problem involves only two variables, it is amenable to graphical analysis.
In Figure 4.2, we plot x1 and x2 on the two axes. Because of the nonnegativity
constraints, we need to consider the nonnegative quadrant only. Let us first pretend
that the three constraints are given as equations and plot them as three straight lines.
Each of these lines—labeled as land constraint, capital constraint, and labor constraint,
respectively—divides the quadrant into two nonoverlapping regions.

Since each constraint is of the � type, only the points (order pairs) lying on or
below the border line will satisfy the particular constraint involved. All the points
located in the shaded area in Figure 4.2 satisfy all three constraints simultaneously.
This shaded area describes the set of feasible solutions. To maximize return revenue
f0, it is necessary to take the objective function into account. Writing the revenue
function in the form

x2 = f0 − 1

3
x1

and taking f0 to be a parameter, we can plot this equation as a family of parallel
straight lines with the common slope of − 1

3 . For every objective function f0 = c′x,
we can specify the gradient that indicates in which direction the equation c′x = f0
has to be shifted in order to achieve a better (i.e., for maximization problem, higher)
value of the objective function. The gradient of the objective function is orthogonal
to the straight lines, having the same value of the objective function (see Figure 4.2).
These lines (or hyperplanes in a more general treatment) are frequently referred to
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Fig. 4.2. Graphical solution of the farmer problem.

as isoprofit lines, isocost lines (depending on the meaning of the objective function),
or sometimes as contour lines. To maximize return revenue, we must select the
highest possible isorevenue while still staying in the feasible set. In Figure 4.2,
such a selection leads us to the extreme point (60, 25), which is the optimal solution
found by the simplex method. In terms of Figure 4.2, the simplex method has led us
systematically from the initial extreme point (0, 0) in Table 4.1 to the next extreme
point (0, 40) in Table 4.2, followed by a move to the optimal extreme point (60, 25)
described by Table 4.3. Note that we have arrived at the optimal solution without
having to compare all five extreme points.

Because of the primary aim of this book oriented to qualitative analysis, we
do not discuss further the numerical and efficiency aspects of the simplex method:
the more efficient revised simplex method with the popular “product form of the
inverse” developed by Dantzig and Orchard-Hays [11], the problem of degeneracy
and cycling, and problems requiring an unusually large number of iterations. There
are examples of linear programming problems [20] in which the simplex algorithm can
take an exponential number of computational steps in relation to the size of a model.
Fortunately, Khachian [19] showed that for linear programming problems, the number
of computational steps increases as a polynomial function of the size of the model.
With his “ellipsoid method,” new research in solving linear programming problems
started. In 1984, the method of project transformation, commonly referred to as
Karmarkar’s algorithm [18], was discovered. The so-called interior point approach
is now the subject of very intensive research and of considerable progress. For more
information on this subject, the reader is referred to [29].



4.6 Some Applications of Linear Programming in Economics 119

4.6 Some Applications of Linear Programming in Economics

In Section 1.2, we formulated several mathematical programming models used in
economics. Now we want to analyze some of these models more deeply in order to
show how linear programming can be used as an instrument of qualitative analysis.

4.6.1 The Theory of Comparative Advantage

One field of economics in which linear programming is very often applied is interna-
tional trade (see, e.g., [14]). A well-known example of Ricardo [28], slightly modified
by Dorfman, Samuelson, and Solow [12, pp. 31–32], leads—for England—to the fol-
lowing linear programming model (as formulated in Section 1.2.4):

maximize Z = p1

p2
x1 + x2

subject to 2x1 + x2 � C,

x1 � 0, x2 � 0,

where Z denotes the national product (NP) of England.
The optimization problem for Portugal has the same structure:

maximize Z ′ = p1

p2
x′

1 + x′
2

subject to x′
1 + x′

2 � C′,
x′

1 � 0, x′
2 � 0,

where Z ′ denotes the national product of Portugal.
The graphical representation of the feasible set, or “production possibility” curve,

for England is given in Figure 4.3, and for Portugal in Figure 4.4.
We can see that the decision about the production of food and clothing in England

and in Portugal depends on the slope of objective function, in other words, on the
international price ratio p1

p2
. If there exists a price ratio p1

p2
somewhere between 1 and

2, it is optimal for England to produce only clothing and for Portugal to produce only
food. Although Portugal needs less (or no more) input for both products, the best
production pattern for this country involves zero clothing production and complete
specialization on food. Portugal will export food in exchange for clothing imports
from England, which will specialize completely in clothing. Portugal has compar-
ative advantage in food production (it can convert one unit of food into one unit of
clothing, but the price for food is higher than that of clothing), and England in clothing
production (it can convert one unit of food into two units of clothing, but it gets for
one unit of food less than for two units of clothing). Both countries will be better off
than if they do not specialize. The world will, in fact, be at the Ricardo point, where
1 � MC (marginal cost) � 2. The reader may easily verify that for p1

p2
= 2, the

optimal solution for England is not unique (the contour line for NP, the isoincome
line, is parallel with the “production possibility” curve). The best production pattern
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Fig. 4.4. Production possibility set for Portugal.

for Portugal in this situation is a complete specialization on food. When p1
p2

= 1, the

optimal solution for Portugal is not unique. When p1
p2
< 1 (or > 2), both countries

will specialize completely in clothing (in food).
In the next step, we want to generalize this model for m commodities (i =

1, 2, . . . , m) and n countries (j = 1, 2, . . . , n) (see [14, Chapter 2 and appendix to
Chapter 2] and [34, Chapter 6]). The following notation is introduced:

• xij = quantity of good i produced in country j ,
• lij = constant labor input coefficient in the production of good i in country j ,
• Lj = total quantity of labor available in country j ,
• pi = given international price of good i.
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In the previous simple model with two countries and two commodities, we have
formulated the problem in terms of maximization of the (value of) national product of
each country separately considered. Now we will formulate the problem directly in
terms of maximization of world output. It can be shown [34, pp. 172–173] that world
output will be maximized if and only if each country maximizes its own national
output.

The problem of maximizing the value of world output under the constraints that
the amount of labor employed in each country cannot exceed the amount dispos-
able and under the nonnegativity constraints for outputs leads to the following linear
programming model:

maximize p1

⎛⎝ n∑
j=1

x1j

⎞⎠+ p2

⎛⎝ n∑
j=1

x2j

⎞⎠+ · · · + pm

⎛⎝ n∑
j=1

xmj

⎞⎠
subject to

m∑
i=1

lij xij � Lj (j = 1, 2, . . . , n),

xij � 0

(
i = 1, 2, . . . , m,
j = 1, 2, . . . , n

)
.

(4.43)

We are assuming that the resources within each country are completely substitutable
so that there is only a single resource limitation (labor) in each country. Further, we
postulate constant returns to scale in each country.

The solution to the primal problem (4.43) yields the allocation of m products
between n countries. In order to find it, we now ask a different question: What will
be the value of labor in each country?

For this purpose, we consider the dual problem to problem (4.43):

minimize
n∑
j=1

wjLj

subject to lijwj � pi (i = 1, 2, . . . , m),

wj � 0 (j = 1, 2, . . . , n),

(4.44)

where the shadow price of labor in country j , wj , is interpreted as the money wage
rate. Therefore, the dual problem (4.44) consists in minimizing the world total labor
reward (world production cost) subject to both the constraint that the value of the
resources used will be at least as great as the value of the goods produced and the
nonnegativity constraint on the wage rate.

Given pi > 0 (i = 1, 2, . . . , m) and lij > 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n),
it follows from the constraints of the dual problem (4.44) that the optimal wage rate
w0
j must be positive in every country. Due to the complementary slackness theorem,

if w0
j > 0, then

m∑
i=1

lij x
0
ij = Lj (j = 1, 2, . . . , n),
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where x0
ij denotes the optimal solution to the primal problem (4.43). Because the

optimal money wage rate is positive in the j th country, all of the labor available in
that country will be fully utilized. Consequently—due to the nonnegativity of outputs
and positivity of labor input coefficients lij—at least one good must be produced in
each country. Because the optimal solution to problem (4.43) must be a basic solution,
it consists of n positive components. Assuming that

pi

lij
�= pk

lkj

(
i, k = 1, 2, . . . , m,
j = 1, 2, . . . , n

)
, (4.45)

each country will specialize on its best product. To find it, we rewrite the constraint
in the dual problem (4.44) as

wj � pi

lij

(
i = 1, 2, . . . , m,
j = 1, 2, . . . , n

)
.

Then

w0
j = max

pi

lij
(i = 1, 2, . . . , m).

Because of the assumption (4.45), the optimal wage rate in country j is unique and
determined by the maximal ratio of the given international price pi to the labor input
coefficient lij for i = 1, 2, . . . , m. For this good (say, k) is the dual constraint in (4.44)
fulfilled as an equality, whereas

w0
j >

pi

lij
or w0

j lij > pi for i = 1, 2, . . . , m and i �= k.

According to the complementary slackness theorem, if the unit cost of good i (i =
1, 2, . . . , m; i �= k) in country j is greater than the price of this good, then good i will
not be produced in country j . In other words, country j will specialize in product k.

This reasoning can be applied to all countries (j = 1, 2, . . . , n) in order to estimate
the best product for each country.

The answer to the question whether the best product k is different from the best
product of all other countries or many countries will specialize on the same product
depends on the international relative prices for the goods.

Due to Theorem 4.4, for the optimal quantities x0
ij and the optimal wage ratesw0

j ,
the values of the objective functions are equal:

m∑
i=1

pi

n∑
j=1

x0
ij =

n∑
j=1

w0
jLj .

In economic terms, the value of world output coincides with total factor income of
the world.

The reader may verify that the application of this general model to the simple
Ricardian example from Section 1.2.4 leads to the same results as the graphical
solution in Figures 4.3 and 4.4.
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Fig. 4.5. Graphical solution of problem (4.46).

4.6.2 The Giffen Paradox

According to the letter fromA. Marshall to F.Y. Edgeworth quoted in Section 1.2.5, the
following linear programming problem of a traveler in Holland has been formulated:

minimize c1x1 + c2x2

subject to x1 + x2 � 150 (distance),

2x1 + x2 � 200 (budget),

x1 � 0, x2 � 0,

(4.46)

where x1, x2 denote the distance traveled by train and boat, respectively, and c1, c2
are the times required per kilo covered by the two vehicles (c1 < c2, the speed of the
train is higher than that of the boat).

In Figure 4.5, a graphical solution of problem (4.46) supports the travelers’ deci-
sion, described in the aforementioned letter, to go 100 km by boat and 50 km by train.

The optimal solution x0
1 = 50, x0

2 = 100 is the intersection point of the two
constraints:

x1 + x2 = 150,

2x1 + x2 = 200.

After the increased boat charge, we get the modified problem:
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minimize c1x1 + c2x2

subject to x1 + x2 � 150 (distance),

2x1 + 5

4
x2 � 200 (budget),

x1 � 0, x2 � 0.

The higher boat fare implies the shift of the budget constraint in Figure 4.5 upward
and consequently a new intersection point as the solution of the equation system

x1 + x2 = 150,

2x1 + 5

4
x2 = 200.

The new solution is x0
1 = 16 2

3 and x0
2 = 133 1

3 . In spite of the higher boat fare, the
distance traveled by boat will increase because the traveler—under the same budget
constraint—can afford less the more expensive mean of transportation. What is the
reason for this Giffen paradox (higher price will actually lead to a large purchase of
this good)?

The problem that confronts us now is about the directions in which variables tend
to change in response to changes in the data. (This type of analysis is in economics
known as comparative statics, or sensitivity analysis, in linear programming.)

Let us consider the linear programming problem

maximize f0(x) = c′x
subject to Ax � b,

x � 0.

Now suppose some arbitrary changes

A → A+�A,

b → b +�b,

c → c +�c

in the data, such that the new problem still has a solution, giving the changes

x → x +�x,

u → u +�u

in the primal and dual solutions, respectively. The resulting changes in the primal
solution x and in the dual solution u must fulfill the following condition (see [5,
p. 233] or [27, pp. 329–330]):

(�c′ − u′�A)�x −�u′(�b −�Ax) � 0. (4.47)

Assuming that �A = 0 and �c = 0, inequality (4.47) yields
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�u′�b � 0.

If the quantity of one of the available resources changes, then its shadow price changes
in the opposite direction. In other words, the marginal value of a resource increases
if its amount is reduced, and vice versa. This property, known as the principle of
Le Chatelier, was first applied in economics by Samuelson [30]. It was used in
thermodynamics for a long time and can be formulated in the following way: “If
the external conditions of a thermodynamic system are altered, the equilibrium of
the system will tend to move in such a direction as to oppose the change in external
conditions” [13, p. 111]. The Le Chatelier principle in linear programming was
introduced by Samuelson [31] and generalized for convex programming by Leblanc
and Moeseke [21].

Assuming �A = 0 and �b = 0, inequality (4.47) yields

�c′�x′ � 0.

In particular, in the case of a change in a single coefficient, �ck �= 0 and �cj = 0
for j �= k,

�ck�xk � 0.

The level of activity increases if the corresponding coefficient in the objective function
(the price of the commodity or the profit per unit of the activity) increases. In the paper
by Leblanc and Moeseke [21], this property is called the Le Chatelier principle II.

In our example (4.46) described above, we consider the case in which only one
element (a22) in the matrix A is changed and all coefficients of the vectors b and c
remain constant (�c = 0 and �b = 0). From (4.47), we obtain

−u2�a22�x2 +�u2�a22x2 � 0,

or

�a22(�u2x2 − u2�x2) � 0. (4.48)

First, we will show that the higher boat fare implies higher shadow price u2 for the
budget constraint, which can be interpreted as the marginal utility of money. For this
purpose, we write the problem (4.46) as a maximization problem:

maximize −c1x1 − c2x2

subject to −x1 − x2 � −150,

2x1 + x2 � 200,

x1 � 0, x2 � 0.

The corresponding dual problem has the following form:

minimize −150u1 + 200u2

subject to −u1 + 2u2 � −c1,

−u1 + u2 � −c2,

u1 � 0, u2 � 0.
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Using the complementary slackness theorem from Section 4.3, we obtain the shadow
price for the budget constraint,

u0
2 = c2 − c1 > 0 (because of c1 < c2).

Increasing boat fare from 1 cent to 1 1
4 cents per kilo leads to the following dual

problem:
minimize −150u1 + 200u2

subject to −u1 + 2u2 � −c1,

−u1 + 5

4
u2 � −c2,

u1 � 0, u2 � 0.

The reader may verify that the solution of this model yields

u∗
2 = 4

3
(c2 − c1) > u0

2.

The increasing boat fare (�a22 > 0) implies increasing marginal utility of money
(�u2 > 0). The reader may verify that this result is valid for any train and boat fares
p1 and p2, respectively, assuming that p1 > p2 and c2 > c1 (the boat is slower and
cheaper).

From (4.48), we conclude for �a22 > 0 that

�u2x2 − u2�x2 � 0,

or

�u2

u2
� �x2

x2
. (4.49)

As Beckmann [5] has pointed out, inequality (4.49) provides a sufficient condition
for the Giffen paradox. The distance traveled by boat can increase as a result of the
higher boat fare only if the marginal utility of money has been increased at least at
the same proportion.

Rewriting inequality (4.49) as

�x2 − x2
�u2

u2
� 0, (4.50)

we can observe the relation to the Slutsky equation in the neoclassical theory of
households. The Slutsky equation shows the response of a utility-maximizing con-
sumer to a change in price. It decomposes the total effect of a change in price on
demand into two components: first, a response to price change holding the consumer
on the original indifference curve (a substitution effect), and second, an income effect,
where income is changed, holding prices constant, to reach a tangency on the new
indifference curve.
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Denoting the purchases of the good j by xj , the price of the good j by pj , the
given income available to the household (or to the traveler) by M , and the utility
function (in terms of travel time) by U , we write the Slutsky equation as

∂xMi

∂pi
= ∂xUi

∂pi
− xMi

∂xMi

∂M
, (4.51)

where xi = xMi (p1, p2,M) is the “money income held constant” demand curve and
xi = xUi (p1, p2, U) is the “utility held constant” or “income-compensated” demand
curve. (For the modern derivation of the Slutsky equation, see [32, pp. 282–286].)
The first term on the right side of (4.51) describes the substitution effect, and the
second term the income effect.

Silberberg and Suen [32] show that along a given indifference curve, as some
prices change, the change in the marginal utility of income is related in a very simple
manner to the income effect of the good whose price has changed:

∂λH

∂pi
= −λM ∂x

M
i

∂M
,

where the Lagrange multiplier λM represents the marginal utility of income and λH

is a “compensated” marginal utility of income, showing the response in this value as
one moved along a single indifference curve,

λH (p1, p2, U
0) = λM(p1, p2,M

∗(p1, p2, U
0)).

According to the interpretation of the multiplier u2 as the marginal utility of money,
the term �u2

u2
in (4.50) represents its change and describes the income effect of the

increasing boat fare. Condition (4.49) points directly at the source of the Giffen
paradox, namely, sufficiently high income effect.

4.6.3 Leontief Pollution Model

In Section 1.2.8, the basic Leontief’s input–output model has been introduced. With
increasing pollution as a by-product of regular economic activities, there arises the
need to incorporate environmental effects in an input–output framework. In the well-
known paper [22], Leontief extended the input–output model in two ways. First, he
added rows to show the output of pollutants by industries. Second, he introduced a
pollution abatement “industry” with a specific technology for the elimination of each
pollutant. With respect to the exogenously given level of tolerated pollution, two
formulations of the model can be found in his paper.

In the first version, an exogenously given vector of tolerated level of pollutants
or environmental standards is treated as a negative variable on the right-hand side of
the model (see also [23]). It consists of the following equations:

(E − A11)x1 − A12x2 = y1, (4.52a)

−A21x1 + (E − A22)x2 = −y2, (4.52b)

where
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x1 is the n-dimensional vector of gross industrial outputs;
x2 is the k-dimensional vector of abatement (or antipollution) activity levels;
A11 is the n×nmatrix of conventional input coefficients, showing the input of good

i per unit of the output of good j (produced by sector j );
A12 is the n × k matrix with aig representing the input of good i per unit of the

eliminated pollutant g (eliminated by abatement activity g);
A21 is the k × n matrix that shows the output of pollutant g per unit of good i

(produced by sector i);
A22 is the k × k matrix that shows the output of pollutant g per unit of eliminated

pollutant h (eliminated by abatement activity h);
E is the identity matrix;
y1 is the n-dimensional vector of final demands for economic commodities;
y2 is the k-dimensional vector of the net generation of pollutants which remain

untreated. The gth element of this vector represents the environmental standard
of pollutant g and indicates the tolerated level of net pollution.

From (4.52a), we can see that one part of the industrial output is used as an input
in the other sectors of the economy (A11x1), another part is used as an input for
the abatement activities (A12x2), and another part is devoted for the final demand
(y1). The balance equations for the pollutants or for the undesirable outputs are
given by (4.52b). The total amount of pollution consists of pollution generated by
production of desirable goods (A21x1) and by the abatement activities themselves
(A22x2). One part of the gross pollution will be eliminated (x2), and the amount y2
remains untreated because it is tolerated.

The solution of (4.52) for given levels of final demand y1 and given pollution
standards y2 can be obtained by inverting the augmented Leontief matrix such that(

x1
x2

)
=
(
E − A11 −A12
−A21 E − A22

)−1 ( y1
−y2

)
.

The sufficient conditions for the existence of a nonnegative solution of the systems
in (4.52) are given in [25].

The price model corresponding to the model (4.52) has the form

p′(E − A11)− r′A21 = v′
1, (4.53a)

−p′A12 + r′(E − A22) = v′
2, (4.53b)

with p′ the (1 ×n) vector of commodity prices, and r′ the (1 × k) vector of prices (=
cost per unit) for eliminating pollutants. v′

1 and v′
2 are the exogenously given (1 × n)

and (1 × k) vectors of primary input values per unit of production and per unit level
of abatement activities, respectively.

Equation (4.53a) shows that the commodity prices p′ must be such that they
cover the costs of inputs from other sectors of the economy (p′A11), the costs of
primary factors v′

1, and the pollution costs (r′A21). Equation (4.53b) determines the
prices of pollutant r′ from abatement cost (p′A12), costs of primary inputs per unit
level of abatement activities v′

2, and the pollution costs of the abatement activities
themselves (r′A22).
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The solution of the price or of the dual model is then

(p′, r′) = (v′
1, v′

2)

(
E − A11 −A12
−A21 E − A22

)−1

.

In the second version of the Leontief pollution model, the environmental standard
has been defined—in the one-pollutant case—as the ratio of eliminated pollution
x2g to the gross pollution, which is the sum of net pollution and abatement activity
(x2g + y2g). Denoting the (k × k) diagonal matrix of proportions of abated gross
pollutants by Ŝ, we have

Ŝ(x2 + y2) = x2.

Then the quantity model can be formulated as (see also [33, 23, 1])

(E − A11)x1 − A12x2 = y1, (4.54a)

−ŜA21x1 + (E − ŜA22)x2 = 0. (4.54b)

Equation (4.54b) determines the level of abatement activity x2 as the sum of abated
pollution generated by the production (ŜA21x1) and by the antipollution activities
themselves (ŜA22x2). Obviously, if y2 = 0, then Ŝ = E. This is the case of
complete abatement (no pollution is tolerated), where the models (4.52) and (4.54)
coincide.

The corresponding price model is

p′
s(E − A11)− r′

s ŜA21 = v′
1, (4.55a)

−p′
sA12 + r′

s(E − ŜA22) = v′
2. (4.55b)

Note that prices in this model are subscripted by s.
According to (4.55a) the commodity prices p′

s include the costs of intermediate
inputs (p′

sA11), the costs of the primary inputs (v′
1), and the pollution abatement costs

(r′
s ŜA21). The interpretation of (4.55b) for the pollutant prices r′

s is similar.
The solution of the price model (4.55) is

(p′
s , r′

s) = (v′
1, v′

2)

(
E − A11 −A12

−ŜA21 E − ŜA22

)−1

.

The given environmental standards or the tolerated level of the net pollution y2,
the corresponding elements of the diagonal matrix Ŝ can be chosen such that the
models (4.52) and (4.54) share the same solution (for the levels of production and
abatement). Even in this case the commodity prices ps and the prices for eliminating
pollutants rs are smaller than or equal to the prices determined by the model (4.53)
for any nonnegative vector (v′

1, v′
2) when some net pollution is left untreated [26,

Theorem 1, p. 267].
Already in the paper by Lowe [23] the price solutions of both models were com-

pared. He showed that only the prices ps and rs were the appropriate industrial prices
and effluent charges because they were consistent with financial viability and national
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income–expenditure balance. That means that all chosen activities could be met from
revenue. At the other end, the prices determined by model (4.53) only possessed the
property of opportunity costs of environmental restriction in terms of extra value-
added or lost final demand. Differences in the two sets of prices appear, because
untreated net pollution is discharged free to final consumers. The question that arises
by imposing emission charges (effluent taxes) for untreated pollution is that of how
to estimate the level of emission charges in both models, such that the prices for both
models—providing the same level of production and of net pollution—are the same?

For this purpose, the augmented Leontief model (4.52) is formulated as an opti-
mization model with the net generation of pollutants y2 as endogenous variables that
are limited to specified amounts y2. However, untreated pollutants are not discharged
free in a receiving medium, but the polluters have to pay effluent charge on every
untreated unit. Denoting by t the vector of effluent taxes levied per unit of residual
pollutants, the environmental costs t′y2 will be added to the costs of primary factors
required by industrial production x1 and abatement activities x2. The gross national
product (GNP) at factor costs, including the environmental costs, should be mini-
mized for a given level of final demand y1. The resulting optimization model (with a
possibility of including alternative techniques of industrial production and pollution
abatement), denoted as Model I [26, p. 269], is then

minimize V (x1, x2, y2) = v′
1x1 + v′

2x2 + t′y2 (4.56)

subject to (E − A11)x1 − A12x2 � y1, (4.57)

−A21x1 + (E − A22)x2 + y2 � 0, (4.58)

−y2 � −y2, (4.59)

x1 � 0, x2 � 0, y2 � 0. (4.60)

The inequalities in (4.57) express the requirement that a given bill of goods y1 for
final demand be provided. According to the expressions (4.58) and (4.59), the actual
amount of pollutants y2 that remain untreated after abatement activity does not exceed
the environmental standards y2.

The subject of our interest is the dual or price model corresponding to the model
(4.56)–(4.60), i.e.,

maximize W(p, r, s) = p′y1 − s′y2 (4.61)

subject to p′(E − A11)− r′A21 � v′
1, (4.62)

−p′A12 + r′(E − A22) � v′
2, (4.63)

r′ − s′ � t′, (4.64)

p′ � 0, r′ � 0, s′ � 0, (4.65)

where s′ is a (1 × k) vector of dual variables related to the environmental con-
straints (4.59).

For positive levels of gross industrial outputs x1 and of abatement activities x2,
the constraints (4.62) and (4.63) are fulfilled as equalities (due to the complementary
slackness theorem):
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p′ = p′A11 + v′
1 + r′A21, (4.66)

r′ = p′A12 + v′
2 + r′A22. (4.67)

These equations correspond to (4.53a)–(4.53b) and provide the economic foundation
to the “polluter pays principle.”

A positive level of net pollution y2 > 0 implies an equality in expression (4.64),
r′ − s′ = t′ or r′ = t′ + s′, where sg indicates the increase of GNP at factor costs, by
tightening the environmental standard ȳ2g (g = 1, 2, . . . , k) by a small unit. If the
amount of untreated pollutantg is below the tolerated level ȳ2g , then the corresponding
dual variable sg is equal to zero and the price of pollutants g is determined by the
effluent tax tg levied on residual pollutant. When the environmental constraint (4.59)
is binding, the shadow price s′ can be positive, and the prices of pollutants r′ and
commodity prices p′ will rise to include the additional environmental cost s′ caused
by the obligation to meet the standards. The higher environmental quality is paid for
by increasing commodity prices and prices for eliminating pollutants.

The modification of model (4.54) by imposing effluent taxes t′s per unit of un-
treated pollution leads to the following optimization model, denoted in [26, p. 271]
as Model II:

minimize Vs(x1, x2, y2) = v′
1x1 + v′

2x2 + t′sy2 (4.68)

subject to (E − A11)x1 − A12x2 � y1, (4.69)

−ŜA21x1 + (E − ŜA22)x2 � 0, (4.70)

−(E − Ŝ)A21x1 − (E − Ŝ)A22x2 + y2 � 0, (4.71)

x1 � 0, x2 � 0, y2 � 0. (4.72)

Note that we use subscript s to distinguish the variables or parameters of both mod-
els. The objective function (4.68), apart from the possible differences in the level
of effluent taxes t′s and t′, respectively, is the same as the objective function (4.56).
Furthermore, there is no difference in the constraints (4.57) and (4.69). The expres-
sion (4.70) requires that the levels of abatement activities x2 must at least meet the
given proportions of gross pollution. Because of the objective function (4.68) in the
optimal solution of Model II, condition (4.71) will be fulfilled under equality. There-
upon constraint (4.71) describes the levels of untreated pollution y2 for which the
specific effluent taxes are levied.

Again, the subject of our analysis is the price model of Model II, i.e.,

maximize Ws(p, r, s) = p′
sy1 (4.73)

subject to p′
s(E − A11)− r′

s ŜA21 − s′
s(E − Ŝ)A21 � v′

1, (4.74)

−p′
sA12 + r′

s(E − ŜA22)− s′
s(E − Ŝ)A22 � v′

2, (4.75)

s′
s � t′s , (4.76)

p′
s � 0, r′

s � 0, s′
s � 0. (4.77)

Assuming again positive levels of industrial production x1 and of abatement activities
x2, the constraints (4.74) and (4.75) can be written as equalities:
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p′
s = p′

sA11 + v′
1 + r′ŜA21 + s′

s(E − Ŝ)A21, (4.78)

r′
s = p′

sA12 + v′
2 + r′ŜA22 + s′

s(E − Ŝ)A22. (4.79)

For positive levels of untreated pollution y2, the dual variables s′
s are equal to the

effluent taxes t′s . Then the price equations (4.78) and (4.79) get a clear economic
meaning. Compared with the price equation (4.66), the price equation (4.78) takes
into account not only the costs of intermediate inputs p′

sA11 and the primary inputs v′
1

but also the pollution abatement cost r′ŜA21 and the charges for untreated pollution,
given by t′s(E − Ŝ)A22, as well. The interpretation of (4.79) for the pollutant prices
r′
s is similar.

The answer to the question how to avoid the differences in the prices for the
models (4.53) and (4.55) is given in the following.

Proposition 4.1 (see [26, p. 272, including the proof]). If t′s = t′ + s′ for given
levels of the effluent taxes t′, and if the model (4.56)–(4.60) and the model (4.68)–
(4.72) share the same optimal solution, then the commodity prices and the prices
for eliminating pollutants for both programs, i.e., (4.61)–(4.65) and (4.73)–(4.77),
respectively, are equal.

In this way, the prices are consistent with financial viability and can be interpreted
as opportunity cost variables. The shadow prices s provide the appropriate rates for
the effluent taxes to be charged on untreated pollutions. If these charges are lower
than the shadow prices of environmental standards, then production and abatement
activities will exactly meet the standards. For effluent taxes higher than the shadow
prices, the pollutants will be cleaned up completely. It is cheaper to abate than to pay
taxes. The switch between completely protected economy (y2 = 0) and polluting up
to the standards (y2 = y2) follows from the linearity of the model.
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5

Data Envelopment Analysis

In Section 1.2.9, the original model of data envelopment analysis (DEA), developed
by Charnes, Cooper, and Rhodes [8], was introduced. With their study, DEA began
as a new approach for efficiency and productivity analysis. They described DEA as
a “mathematical programming model applied to observational data [that] provides a
new way of obtaining empirical estimates of extremal relationships such as the pro-
duction functions and/or efficient production possibility surfaces that are a cornerstone
of modern economics” [34, p. 8].

There are two fundamental approaches for the estimation of frontiers in econo-
mics—the parametric and nonparametric approaches.

The parametric approach, described in [29] and [4], requires the imposition
of a specific functional form (e.g., a regression equation, a production function,
etc.) relating the independent variables to the dependent variables. The functional
form selected also requires specific assumptions about the distribution of the error
terms (e.g., independently and identically normally distributed). As a result, one
can derive some conclusions about the underlying production processes by evaluat-
ing marginal products, partial elasticities, marginal costs, or elasticities of substitu-
tion.

DEA represents the nonparametric approach for frontier estimation in the sense
that it does not require any assumption about the functional form. That is, it does
not assume that the underlying technology “belongs to a certain class of functions
of a specific functional form which depend on a finite number of parameters, such
as the well-known Cobb–Douglas functional form” [15, p. 131]. DEA is also “non-
statistical” because it makes no explicit assumption on the probability distribution
of “errors” (i.e., the efficiency residuals) in the production function. In DEA, any
deviation from the frontier is treated as inefficiency, and there is no provision for ran-
dom shocks. DEA provides a single measure of efficiency even when dealing with
multiple inputs and outputs, and it obviates the need to assign prespecified weights
to either. It measures the efficiency of a decision-making unit (DMU) relative to all
other DMUs with the simple restriction that all DMUs lie on or below the efficient
frontier. Each DMU not on the frontier (an inefficient DMU) is scaled against a linear
or a convex combination of the DMUs on the frontier faced closest to it. For each
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inefficient unit, DEA identifies the sources and level of inefficiency for each of the
inputs and outputs.

At present, DEA—with the great number and variety of applications in the fields
of public services, banking, hospital management, agriculture, education, industrial
production, environmental economics, and so on, and with important new develop-
ments in concepts and methodology—has become one of the most widely used tools
for efficiency analysis. The recent book by Cooper, Seiford, and Tone [12, p. xxxi]
cites A Bibliography of Data Envelopment Analysis (1978–2001) by G. Tavares1 as
referencing more than 3,600 papers, books, etc., by more than 1,600 authors in 42
countries. According to Ray [31, p.1], an Internet search for DEA produces no fewer
than 12,700 entries. One can easily agree with Bouyssou [5] that “DEA can safely be
considered as one of the recent ‘success stories’ in operations research.” For further
reading on efficiency and productivity analysis containing the new developments in
the methodology as well as the empirical applications, the reader is referred to the
very recent book by Fried, Lovell, and Schmidt [23].

In this chapter, we discuss DEA as one of the most important recent applica-
tions of mathematical programming in economics. In Section 5.1, the concepts of
efficiency and productivity will be presented. They are closely related but different
measures of a firm’s resource-utilization performance. Section 5.2 provides a de-
scription of the basic DEA models and their classification with respect to the type of
envelopment surface efficiency measurement, the orientation, and the effect of scale
changes. Section 5.3 relates the DEA to the economic theory of production and to
the Pareto–Koopmans notion of efficiency. A novel application of DEA for measur-
ing of ecoefficiency—using data for industry in 16 OECD countries—is presented in
Section 5.4.

5.1 Productivity and Technical and Allocative Efficiency

Production is a process of transforming inputs (labor, capital, materials, etc.) into
outputs (goods or services). An input–output combination is a feasible production
plan if the output quantity can be produced from the associated input quantity. The
technology available to a firm at a given point in time defines which input–output
combinations are feasible. For simplicity, let us consider a simple production process
in which a single input (x) is used to produce a single output (y). The curve OP in
Figure 5.1 represents the maximum output attainable from each input level. Using
xA units of the input (x), the maximum yA units of the output (y) can be produced.
The line OP represents a production frontier because it sets a bound on the range of
all feasible input–output combinations. The set consisting of all points between the
production frontierOP and theX-axis (inclusive of these bounds) describes a feasible
production set. Thus production may take place at or below the frontier, but at no
points above it. Hence the production frontier reflects the current state of technology
in the industry. Firms in this industry operating on that frontier (like the points A

1 gtavares@rutcor.rutgers.edu.
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input

output

Fig. 5.1. Production frontier, technical efficiency, and productivity.

and B in Figure 5.1) are technically efficient: The higher output of the firm B (yB)—
compared with the output of the firm A (yA)—has been achieved by increasing input
(xB > xA). A firm operating at point C is inefficient because it produces the same
amount of output with more input than the firm operating at point A (or it produces a
smaller amount of output than the firm operating at point B although both firms use
the same amount of input). The amounts by which a firm lies below its production
frontier can be regarded as measures of relative technical efficiency.

To illustrate the distinction between technical efficiency and productivity, we use
Figure 5.1 again. The productivity of a firm is defined as a ratio of the output that it
produces to the input that it uses:2

productivity = output

input
.

In our figure, we use a ray through the origin to measure the productivity at a particular
data point. The slope of this ray is y

x
and hence provides a measure of productivity.

The firms operating at points A and B are technically efficient. If the firm operating
at point B were to move to point A, the slope of the ray would be greater, implying
higher productivity at point A. This movement is an example of exploiting scale
economies: To the right of point A, the output increases more weakly than the input;
to the left of pointA, the output increases more strongly than the input. PointA is the
point of (technically) optimal scale. Operation at any other point on the production
frontier results in lower productivity. If the technically inefficient firm operating at
point C were to move to the technically efficient point A (or B), the slope of the ray
would be greater, implying higher productivity at point A (or B).

2 When multiple inputs and/or outputs are involved, a method for aggregating these inputs
and/or outputs must be used.
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Fig. 5.2. Technical, allocative, and overall efficiency.

Summarizing, a firm may be technically efficient but may still be able to improve
its productivity by exploiting scale economies. Productivity and technical efficiency
are equivalent only when the technology exhibits constant returns to scale.

To explain the notion of allocative efficiency, we move to Figure 5.2. The solid
lines in this figure are segments of an isoquant that represents all possible combinations
of the input amounts (x1, x2) that are needed to produce a prescribed amount (e.g.,
one unit) of a single output. All points at this piecewise linear curve are technically
efficient: The amount of the first input can be reduced only if the amount of the
second input increases. P is a point in the interior of the production possibility set
representing the activity of a DMU that produces this same amount (one unit) of
output but with greater amounts of both inputs. Hence the corresponding DMU is
technically inefficient. To evaluate the performance of P , we will use the measure of
radial efficiency, represented as

0 <
OQ

OP
� 1.

This measure can be interpreted as the distance from O to Q relative to the distance
fromO to P . The technical efficiency (TE) is the ratio of the potential to actual input
consumption. The components of this ratio lie on the dotted line from the origin
through Q to P .

Technical efficiency as represented by points A and B per se is not sufficient to
minimize cost. Denoting the input prices by c1 and c2, the broken line c1x1 + c2x2 =
kP passing through P contains all input combinations with cost kP . However, this
cost can be reduced by moving this line parallel in a downward direction. The
coordinates of A then give c1x

A
1 + c2x

A
2 = kA, where kA < kP , showing that total

cost is reduced. Further parallel movement in a downward direction leads to the
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point B with the minimal cost at the given output level. The point B is technically
and allocatively efficient (AE), while the point A is technically but not allocatively
efficient.

The ratio

0 <
OC

OA
� 1

is commonly referred to as allocative efficiency. It provides a measure of the extent to
which the technically efficient DMU, represented by point A, falls short of achieving
minimal cost because of a failure to make the substitutions involved in moving from
A to B along the efficiency frontier.

The measure for overall efficiency can be represented in ratio form as

0 <
OR

OP
� 1.

This is a measure of the extent to which the originally observed values of P have
fallen short of achieving minimal cost. According to Farrel [18], overall efficiency
(OE) can be decomposed into two multiplicative components:

OE ≡ OR

OP
= OQ

OP︸︷︷︸
TE

· OR
OQ︸︷︷︸
AE

.

Overall efficiency is equal to the product of technical times allocative efficiency.
Overall efficiency (i.e., OE = 1) requires simultaneous technical and allocative
efficiency (TE = AE = 1), which is achieved at B in Figure 5.2.

5.2 Basic DEA Models

Once we step outside the simplified world of single-input, single-output production,
we must use a method for aggregating the inputs and/or outputs into a single index
of inputs and/or outputs to estimate a ratio measure of productivity and efficiency.
Charnes, Cooper, and Rhodes [8] introduced the method of DEA to measure the
efficiency of DMUs with multiple inputs and multiple outputs in the absence of
market prices.

As introduced in Section 1.2.9, we consider n DMUs (j = 1, 2, . . . , n), each
using a varying amount ofm different inputs (i = 1, 2, . . . , m) to produce s different
outputs (r = 1, 2, . . . , s). Specifically, DMUj consumes amount xij of input i and
produces amount yrj of output r . We assume that xij � 0 and yrj � 0 and further
that each DMU has at least one positive input and one positive output value. DEA
treats the observed inputs xj and outputs yj (j = 1, 2, . . . , n) as given constants
and chooses values of the input and output weights for a particular DMU0 such
that the efficiency—defined as the ratio of weighted sum of outputs to the weighted
sum of inputs—will be maximized subject to the less-than-unity constraints. These
constraints ensure that the optimal weights for DMU0 in the objective function do not
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imply an efficiency higher than unity either for itself or for any of the other DMUs.
The indicated maximization then accords the evaluated DMU0 the most favorable
weighting that the constraints allow.

There are two basic types of DEA models with respect to envelopment surfaces,
referred to as constant returns-to-scale (CRS) and variable returns-to-scale (VRS)
surfaces. The assumption of constant returns to scale implies that if an activity
(x, y) is feasible, then for every positive scalar t , the activity (tx, ty) is also feasible.
This postulate is in the theory of production denoted as “ray unboundedness.” The
appropriateness of a particular surface is frequently determined by economic and other
assumptions regarding the data set to be analyzed. The choice of envelopment surface
implies the selection of the particular DEA mathematical programming model.

5.2.1 The Input-Oriented Model under a Constant Returns-to-Scale
Assumption

The first measure of the efficiency of any DMU proposed by by Charnes, Cooper,
and Rhodes [8] leads to the following fractional programming problem (see (1.27))
for DMU0:

maximize
u,v

h0(u, v) =
∑s
r=1 yr0ur∑m
i=1 xi0vi

subject to

∑s
r=1 yrjur∑m
i=1 xij vi

� 1 (j = 1, 2, . . . , n),

ur � 0 (r = 1, 2, . . . , s),

vi � 0 (i = 1, 2, . . . , m),

where ur is the weight for output r (r = 1, 2, . . . , s) and vi is the weight given to
input i (i = 1, 2, . . . , m). An efficiency of unity implies that DMU0 lies on the
efficient frontier; the observed and the potential performance coincide. In this case,
DMU0 is said to be “best practice.” If the efficiency h0 is less than one, DMU0 is
relatively inefficient. Its performance is poorer than that of some of its peer DMUs.

The fractional program can be thought of as the conceptual DEA model, but for its
nonlinearity and nonconvexity it is not used for actual computation of the efficiency
scores. Fortunately, using the transformation of variables [7]:

µr = tur (r = 1, 2, . . . , s),

νi = tvi (i = 1, 2, . . . , m),

t = 1∑m
i=1 xi0vi

the fractional programming problem (1.27) can be converted into an ordinary linear
program:



5.2 Basic DEA Models 141

maximize
µ,ν

ω0(µ) =
s∑
r=1

yr0µr

subject to
s∑
r=1

yrjµr −
m∑
i=1

xij νi � 0 (j = 1, 2, . . . , n),

m∑
i=1

xi0νi = 1,

µr � 0 (r = 1, 2, . . . , s),

νi � 0 (i = 1, 2, . . . , m).

(5.1)

The measures of efficiency described by problems (1.27) and (5.1) are “units invari-
ant,” i.e., they are independent of the units of measurement used. The following
theorem can be proved [11, pp. 24 and 39].

Theorem 5.1. The optimal values of max h0 = h0 in (1.27) and maxw0 = w0 are
independent of the units in which the inputs and the outputs are measured provided
these units are the same for every DMU.

In the first paper by Charnes, Cooper, and Rhodes [8], only the nonnegativity con-
dition for the input and output weights (νi and µr , respectively) has been imposed.
However, they showed in a correction to this paper [8] that under the nonnegativ-
ity constraints, obviously inefficient units can appear as efficient. Therefore, they
restricted the input and output weights such that

νi � ε, µr � ε,

where ε is an infinitesimal or non-Archimedean constant.3

Therefore, the linear programming equivalent of the Charnes–Cooper–Rhodes
(CCR) ratio model that we will use in what follows is

3 Solving the non-Archimedean models as linear programs, with an explicit value for ε, can
lead to inaccurate results. If the value of ε used is “small enough,” then accurate results
would be obtained. However, what “small enough” is depends on the particular data set.
As shown by Ali and Seiford [2], if

ε � min
j=1,...,n

1∑m
i=1 xij

,

then the linear program (5.1) has unbounded objective function values. For a discussion of
this issue and other computational aspects of DEA, we refer to Ali [1].
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maximize
µ,ν

w0(µ) =
s∑
r=1

yr0µr

subject to
s∑
r=1

yrjµr −
m∑
i=1

xij νi � 0 (j = 1, 2, . . . , n),

m∑
i=1

xi0νi = 1,

−µr � −ε (r = 1, 2, . . . , s),

−νi � −ε (i = 1, 2, . . . , m),

(5.2)

whose dual problem is

minimize
θ,λ,s−,s+

g0(θ, s−, s+) = θ − ε

(
m∑
i=1

s−i +
s∑
r=1

s+r

)

subject to θxi0 −
n∑
j=1

xijλj − s−i = 0 (i = 1, 2, . . . , m),

n∑
j=1

yrjλj − s+r = yr0 (r = 1, 2, . . . , s),

(weights on DMUs) λj � 0 (j = 1, 2, . . . , n),

(input slacks) s−i � 0 (i = 1, 2, . . . , m),

(output slacks) s+r � 0 (r = 1, 2, . . . , s).

(5.3)

Leaving the data for DMU0 (the DMU being evaluated) in the constraints guarantees
that solutions exist for both problems (5.2) and (5.3), respectively. By the duality
theory of linear programming, it follows that they will have finite and equal optimal
values.

The condition for “DEA efficiency” now becomes

s∑
r=1

yr0µr = 1

for problem (5.2). Because of the duality theory of linear programming, it must hold
for the optimal solution (denoted by o) of the dual problem (5.3):

θo − ε

(
m∑
i=1

s−
0

i +
s∑
r=1

s+0

r

)
= 1.

Evidently, the following two statements are equivalent:

1. A DMU is efficient if and only if the following two conditions are satisfied:
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(a) θ0 = 1,

(b) s−
0

i = s+0

r = 0 for all i and r.
(5.4)

2. A DMU is efficient if and only if w0
0 = g0

0 = 1.

The (scalar) variable θ0
0 gives the proportion of all inputs of DMU0 that must be

sufficient—compared with the units on the efficient frontier—to achieve the given
output levels. In other words, 1 − θ0

0 gives the necessary proportional reduction of
all inputs of DMU0 being evaluated in order to achieve the efficient frontier. This
reduction is applied simultaneously to all inputs and results in a radial movement
toward the envelopment surface.

However, a DMU can be a boundary point (θ0 = 1) and be inefficient, as already
shown by Charnes, Cooper, and Rhodes [9].

Because of the presence of the non-Archimedean ε in the dual objective function,
θ is to be preemptively minimized, after which the sum of the slacks in (5.3) is to be
maximized. Thus the computation proceeds in two stages: with maximal reduction of
inputs being achieved first, via the optimal θ0; then in the second stage, substituting
θ0 in the dual constraints, movement onto the efficient frontier is achieved via the
slack variables (s− and s+). In this way, we do not specify the non-Archimedean
constant ε > 0 explicitly.

The nonzero slacks and/or the value of θ0 < 1 identify the sources and amounts
of inefficiency in each input and output of the DMU being evaluated.

As pointed out by Cooper, Thompson, and Thrall [13], the objective function
in (5.3) implies that two types of inefficiencies can be distinguished in (5.4). A value
of θ0 < 1 shows radial inefficiencies in the form of excessive use of all inputs without
altering their proportions. The positive slacks indicate that further reduction can be
made, which will necessarily alter the proportions used, and hence they show mix
inefficiencies.

Furthermore, (5.3) seeks values of λj to construct a composite unit, with out-
puts

∑
j yrj λj (r = 1, 2, . . . , s) and inputs

∑
j xij λj (i = 1, 2, . . . , m). The dual

constraints with respect to inputs imply that even after the proportional reduction of
all inputs, the inputs of the evaluated DMU0 cannot be lower than the inputs of the
composite unit. Similarly, the outputs of DMU0 cannot be higher than the outputs
of the composite unit. DMU0 will be efficient when it has proved impossible to con-
struct a composite unit that outperforms DMU0. Conversely, if DMU0 is inefficient,
the optimal values of λj form a composite unit outperforming DMU0 and provid-
ing targets for DMU0. In order words, the positive values of λj provide the linear
combination of the DMUs on the efficiency frontier faced closest to DMU0 (the peer
group for DMU0). In this way, the dual problem (5.3) constructs the piecewise lin-
ear envelopment surface and is called the envelopment problem, whereas the primal
problem (5.2) seeking the values for the weights is the multiplier problem.

Because of the focus on maximal movement toward the frontier through pro-
portional reduction of inputs, models (5.2)–(5.3) are denoted input-oriented CCR
models.
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Table 5.1. Example with one input and one output.

DMU 1 2 3 4 5 6 7
Input 2 3 5 7 3 6 8
Output 2 4 6 7 1 5 7

To illustrate, we consider an example consisting of seven DMUs each consuming
a single input to produce a single output (see Table 5.1).

We can evaluate the efficiency of DMU1 from the data in Table 5.1 by solving the
linear programming problem (5.2) below:

maximize
µ,ν

w0(µ) = 2µ

subject to 2µ− 2ν � 0, (DMU1)

4µ− 3ν � 0, (DMU2)

6µ− 5ν � 0, (DMU3)

7µ− 7ν � 0, (DMU4)

µ− 3ν � 0, (DMU5)

5µ− 6ν � 0, (DMU6)

7µ− 8ν � 0, (DMU7)

2ν = 1,

where all variables are constrained to be nonnegative. The optimal solution, easily
obtained by simple ratio calculations (or graphically), is given by µ0 = 0.375, ν0 =
0.5, and w0

01 = 0.75.
The corresponding dual problem (5.3) for DMU1 is stated as

minimize
λ,θ

θ

subject to 2λ1 + 4λ2 + 6λ3 + 7λ4 + λ5 + 5λ6 + 7λ7 � 2,

−2λ1 − 3λ2 − 5λ3 − 7λ4 − 3λ5 − 6λ6 − 8λ7 + 2θ � 0,

λj � 0 (j = 1, 2, . . . , 7),

θ free.

The optimal solution is λ0
2 = 0, 5; λ0

1 = λ0
3 = λ0

4 = λ0
5 = λ0

6 = λ0
7 = 0; and

θ0
1 = 0, 75.

In a similar way, the linear programming problems (5.2) and (5.3) for every DMU
are calculated with the optimal solution values given in Table 5.2.

Under constant returns to scale, the only efficient unit is DMU2 (θ0
2 = 1, s+ =

s− = 0), and it is the reference set of all the other DMUs. The efficient frontier must
pass through the origin, and it is given by the ray {λ(x2, y2)/λ � 0} as illustrated in
Figure 5.3.

The interpretation of the envelopment problem (5.3) for DMU1 withP1 = (2; 2) is
the selection of a point at the efficient frontier that allows the maximal input reduction
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Table 5.2. Optimal solution values for (5.2) and (5.3) with one input and one output.

DMU θ0 s+ s− λ w0
0 µ ν

1 0.75 0 0 λ2 = 1
2 0.75 3

8
1
2

2 1 0 0 λ2 = 1 1 1
4

1
3

3 0.90 0 0 λ2 = 3
2 0.90 3

20
1
5

4 0.75 0 0 λ2 = 7
4 0.75 3

28
1
7

5 0.25 0 0 λ2 = 1
4 0.25 1

4
1
3

6 0.625 0 0 λ2 = 5
4 0.625 1

8
1
6

7 0.656 0 0 λ2 = 7
4 0.656 3

32
1
8
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Fig. 5.3. Projections for the input-oriented CCR model from Table 5.1.

or minimal input necessary to produce two units of output. This is θ0
1 = 0.75; the

input of DMU1 should be reduced by one quarter. Hence P1 is projected into the
boundary point (1.5; 2) = λ2P2 = 0.5 × (3; 4).

The input of DMU5 should be reduced to 0.75, and therefore P5 is projected into
the boundary point (0.75; 1) = λ2P2 = 0.25 × (3; 4).
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It is apparent that each DMU would be projected onto this ray through P2, whose
slope is defined by the ratio of the multipliers µ and ν. From Figure 5.3, it is easy
to see that the slope of the efficiency frontier is 4

3 , which corresponds exactly to the
ratio of the multipliers

νj
µj

= 4
3 for j = 1, 2, . . . , 7.

In a similar way, the results for the remaining DMUs can be interpreted.
To move to multiple inputs and outputs and their treatment, we turn to Table 5.3,

which lists the performance of seven DMUs each with two inputs and one output.
The input values are normalized to values for getting one unit of output.

Table 5.3. Example with two inputs and two output.

DMU 1 2 3 4 5 6 7
Input 1 2 3 5 7 8 5 4
Input 2 5 3 2 2 3 4 6
Output 1 1 1 1 1 1 1

The linear program (5.2) for DMU1 is

maximize
µ,ν

w0(µ) = µ

subject to µ− 2ν1 − 5ν2 � 0, (DMU1)

µ− 3ν1 − 3ν2 � 0, (DMU2)

µ− 5ν1 − 2ν2 � 0, (DMU3)

µ− 7ν1 − 2ν2 � 0, (DMU4)

µ− 8ν1 − 3ν2 � 0, (DMU5)

µ− 5ν1 − 4ν2 � 0, (DMU6)

µ− 4ν1 − 6ν2 � 0, (DMU7)

2ν1 + 5ν2 = 1,

µ � 0, ν1 � 0, ν2 � 0.

This problem can be solved by the simplex method or by simply deleting ν2 from
the inequalities by inserting ν2 = 1−2ν1

5 and then solving graphically. An optimal
solution is ν0

1 = 0.222, ν0
2 = 0.111, µ0 = 1, and w0

0 = 1.
The envelopment problem (5.3) for DMU1 becomes the following:

minimize
λ,θ

θ

subject to λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 � 1,

−2λ1 − 3λ2 − 5λ3 − 7λ4 − 8λ5 − 5λ6 − 4λ7 + 2θ � 0,

−5λ1 − 3λ2 − 2λ3 − 2λ4 − 3λ5 − 4λ6 − 6λ7 + 5θ � 0,

λj � 0 (j = 1, 2, . . . , 7),

θ free.
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Table 5.4. Results of the example from Table 5.3.

DMU ν0
1 ν0

2 µ0 θ0 s+0
s−0

1 s−0

2 Reference set λ0
j

1 0.222 0.111 1 1 0 0 0 DMU1 λ0
1 = 1

2 0.222 0.111 1 1 0 0 0 DMU2 λ0
2 = 1

3 0.111 0.222 1 1 0 0 0 DMU3 λ0
3 = 1

4 0 0.5 1 1 0 2 0 DMU3 λ0
3 = 1

5 0 0.333 0.666 0.666 0 0.333 0 DMU3 λ0
3 = 1

6 0.0769 0.153846 0.6923 0.6923 0 0 0
DMU2,

DMU3

λ0
2 = 0.769,

λ0
3 = 0.231

7 0.1428 0.0714 0.64285 0.6428 0 0 0
DMU1,

DMU2

λ0
1 = 0.4286,
λ2 = 0.5714
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Fig. 5.4. Efficiency frontier for the example from Table 5.3.

The (unique) optimal solution is λ0
1 = 1; λ0

2 = λ0
3 = λ0

4 = λ0
5 = λ0

6 = λ0
7 = 0;

θ0 = 1; and all slack variables s+, s−1 , s−2 equal zero. DMU1 is CCR efficient.
We can proceed in a similar way with the other DMUs. The results are summarized

in Table 5.4, and Figure 5.4 portrays the situation geometrically. The efficient units
are DMU1, DMU2, and DMU3. The efficient frontier represented by the solid line
passes through the points P1, P2, and P3 corresponding to these units.
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The optimal solution for DMU4 yields θ0 = 1, DMU4 looks efficient. By com-
paring DMU4 with DMU3, one can see that both units use the same amount of input 2,
but DMU4 has two units of excess in input 1. This inefficiency is concealed because
the optimal solution forces the weight of input 1 to zero (ν0

1 = 0). This is exactly the
situation described by Charnes, Cooper, and Rhodes [9]. By assigning a small posi-
tive value ε to ν1 (or using two-phase optimization—see [1] and [11, Section 3.6]), it
is possible to identify the inefficiency of DMU such as DMU4 in our example. Look-
ing at the solution of the envelopment model, such an excess in an input is explicitly

given by the nonzero value of the slack variable (s−
0

1 = 2). Hence condition (b) in
statement (5.4) is not satisfied, so DMU4 did not achieve efficiency in its performance.

A DMU such as DMU4, with θ0 = 1 and with an excess in inputs, is called
radially efficient but mix inefficient (or weakly efficient). Using the duality theory
of linear programming, the reader can prove that the following definition of CCR
efficiency gives the same efficiency characterization as obtained from (5.4).

Definition 5.1 (CCR efficiency). DMU0 is efficient if θ0 = 1 and there exists at
least one optimal solution (µ0, ν0) with µ0 > 0 and ν0 > 0. Otherwise, DMU0 is
inefficient.

Thus CCR inefficiency means that either (i) θ0 < 1 or (ii) θ0 = 1 and at least one
element of (µ0, ν0) is zero for every optimal solution of (5.2). The multiplier ν0

1 for
DMU4 is zero.

Now let us analyze the solution for the inefficient DMU, e.g., DMU6 as given in
Table 5.4. θ0 = 0.69 indicates that DMU6 can simultaneously reduce both inputs
(without altering the proportions in which they are utilized) by 31% in order to achieve
the efficiency frontier. In other words, 69% of both inputs must be sufficient to produce
one unit of output. Hence DMU6 is technically inefficient. No mix efficiencies are

present because all slacks are zero.
0P ′

6
0P6

= 0.69 corresponds to radial efficiency of
DMU6. Also, we have

• input 1 of P ′
6 = 0, 6923 × 5(input 1 of DMU6) = 3, 4615;

• input 2 of P ′
6 = 0, 6923 × 4(input 2 of DMU6) = 2, 7692.

PointP ′
6 gives us the projection forP6 to the efficiency frontier, and it is a point on

the line segment (P2, P3). In other words,P ′
6 can be described as a linear combination

of the points P2 (it represents DMU2) and P3 (it represents DMU3). Therefore,
the reference set for DMU6 is created by DMU2 and DMU3. The solution of the
envelopment problem (5.3) for DMU6 yields λ0

2 = 0, 76923, λ0
3 = 0, 23076, and

λ0
1 = λ0

4 = λ0
5 = λ0

6 = λ0
7 = 0. Consequently, the values of point P ′

6 are calculated
as P ′

6 = λ0
2P2 + λ0

3P3:

• input 1 of P ′
6 = 0, 76923 × 3(input 1 of DMU2) + 0, 23076 × 5(input 1 of

DMU3) = 3, 461;
• input 2 of P ′

6 = 0, 76923 × 3(input 2 of DMU2) + 0, 23076 × 2(input 2 of
DMU3) = 2, 7692.
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Comparing these results we see that the coordinates of P ′
6, the (virtual) DMU used to

evaluate DMU6, can be derived in either of these two ways.
From the magnitude of coefficients λ0

2 and λ0
3, DMU6 has more similarity to

DMU2 than DMU3 (as can be seen from Table 5.3 and Figure 5.4).
The multipliers or weights µ, ν1, and ν2 are the dual variables to the envelopment

problem (5.3) and therefore have a role as a measure of the sensitivity of efficiency
score θ with respect to variations in input items. The higher optimal weight ν0

2 implies
that a reduction in input 2 has a bigger effect on efficiency than does a reduction in
input 1. In other words, the contribution of input 2 to the efficiency of DMU6 is

higher than the contribution of input 1. The ratio
ν0

2
ν0

1
= 0.153846

0.0769 = 2 indicates that it

is advantageous for DMU6 to weight input 2 two times more than input 1 in order to
maximize the efficiency. Half a unit of input 2 is as good as one unit of input 1. The
marginal rate of substitution of input 2 for input 1 along the line segment (P2, P3)—
where point P6 is projected—is two. As can be seen from Figure 5.4, the slope of the

line segment (P2, P3) is a half, which is exactly the ratio
ν0

1
ν0

2
. In this way, the ratio

ν0
1
ν0

2
expresses the slope of the line segment created by the reference set (or the peer

group) to DMU6.
In a similar way, the results for the inefficient unit DMU7 can be interpreted.
The interpretation for the inefficient unit DMU5 is slightly different. Sinceλ3 > 0,

the reference set for DMU5 consists of DMU3 only. One plan for the improvement
of P5 is to reduce both input values by multiplying them by 0.666 (projection to the
point P ′

5 on the line segment (P3, P4)) and further subtracting 0.333 from input 1.
When this is done, the thusly altered values coincide with the coordinates of P3.
Geometrically, then, the projection for P5 is

x′
1 = θ0x1 − s−

0

1 = 0.666 × 8 − 0, 333 = 5 (37.5% reduction),

x′
2 = θ0x2 − s−

0

2 = 0.666 × 3 − 0 = 2 (33% reduction),

y′ = y = 1 (no change),

which are the same values as for DMU3 (see Table 5.3).
However, we should be careful with the interpretation of the optimal weights for

an efficient unit. From Figure 5.4, we can see that P2 (representing the efficient unit
DMU2) lies on the line segment (P1, P2) as well as on the line segment (P2, P3).
Thus the optimal weights for an efficient DMU need not be unique, in the case of
DMU2, they are restricted to an interval corresponding to the different slope of (both)
the line segments containing the efficient unit DMU2.

Summarizing the results in Table 5.4, only DMU1, DMU2, and DMU3 are strong
(or fully) efficient in the sense of statement (5.4). DMU6 and DMU7 fail because
θ0 < 1. DMU4 has a value of θ0 = 1 because it is on the frontier. However, this
portion of frontier is not efficient because of the nonzero slack s−

0

1 . Finally, DMU5

fails to be efficient both because θ0 < 1 and the positive slack s−
0

1 is involved in the
projection of P5 to efficiency frontier.
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5.2.2 The Output-Oriented Model under a Constant Returns-to-Scale
Assumption

Up to this point, we have been dealing with a model whose objective is to minimize
inputs while producing at least the given output levels. Alternately, one could focus
on maximal movement via proportional augmentation of outputs (for given inputs).
In other words, we minimize the inefficiency of DMU0 given by the ratio of virtual
input to virtual output under the constraints that the so-defined inefficiency cannot be
lower than one for itself or for any of the other DMUs. The required optimization
problem is

minimize
u,v

z0(u, v) =
∑m
i=1 xi0vi∑s
r=1 yr0ur

subject to

∑m
i=1 xij vi∑s
r=1 yrjur

� 1 (j = 1, 2, . . . , n),

vi � 0 (i = 1, 2, . . . , m),

ur � 0 (r = 1, 2, . . . , s).

Again the Charnes–Cooper [7] transformation for linear fractional programming
yields the linear programming model (with lower bounds for the multipliers)

minimize
µ,ν

f0(ν) =
m∑
i=1

xi0νi

subject to −
s∑
r=1

yrjµr +
m∑
i=1

xij νi � 0 (j = 1, 2, . . . , n),

s∑
r=1

yr0µr = 1

µr � ε (r = 1, 2, . . . , s),

νi � ε (i = 1, 2, . . . , m),

(5.5)

whose dual problem is

maximize
ϕ,λ,s+,s−

q0(ϕ, s+, s−) = ϕ + ε

(
s∑
r=1

s+r +
m∑
i=1

s−i

)

subject to ϕyr0 −
n∑
j=1

yrjλj + s+r = 0 (r = 1, 2, . . . , s),

n∑
j=1

xijλj + s−i = xi0 (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n),

s+r � 0 (r = 1, 2, . . . , s),

s−i � 0 (i = 1, 2, . . . , m).

(5.6)
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Models (5.5) and (5.6) are called output-oriented CCR models. The objective
now is to maximize output production while not exceeding the given input levels.
Model (5.6) maximizes on ϕ to achieve proportional output augmentation. The vari-
able ϕ0

0 yields the proportion by which all the DMU0’s outputs should be produced
(under the given input levels) if DMU0 is efficient. It should be clear from the con-
struction of the output-oriented model that the optimal value ϕ0

0 cannot be smaller
than 1. Thereupon ϕ0

0 − 1 indicates the proportional increase of all DMU0’s outputs
in order to achieve the frontier. A proportional increase is possible until at least one
of the output slack variables is reduced to zero. As for the input-oriented model (5.3),
a DMU is efficient if and only if ϕ0 = 1 and all slack variables s+r and s−i are equal to
zero (or the multipliersµr for r = 1, 2, . . . , s and νi for i = 1, 2, . . . , m are positive).

The constraints in the envelopment problem (5.6) with respect to outputs indicate
that even after the proportional increase of all outputs, the outputs of the evaluated
DMU0 cannot be higher than the outputs of the composite unit. Similarly, the inputs
of DMU0 cannot be lower than the inputs of the composite unit. Again, the objective
function in (5.6) allows us to distinguish between mix and radial inefficiencies.

To illustrate the output-oriented model and for its comparison to the input-oriented
model, we consider the same example with one input and one output presented in
Table 5.1.

The linear program (5.5) for DMU1 is

minimize
µ,ν

f0(ν) = 2ν

subject to −2µ+ 2ν � 0, (DMU1)

−4µ+ 3ν � 0, (DMU2)

−6µ+ 5ν � 0, (DMU3)

−7µ+ 7ν � 0, (DMU4)

−µ+ 3ν � 0, (DMU5)

−5µ+ 6ν � 0, (DMU6)

−7µ+ 8ν � 0, (DMU7)

2µ = 1,

µ � 0, ν � 0.

The optimal solution is µ0 = 0, 5, ν0 = 0, 666, and f 0
0 = 1, 333.

The corresponding envelopment problem (5.6) is stated as

maximize
λ,ϕ

ϕ

subject to −2λ1 − 4λ2 − 6λ3 − 7λ4 − λ5 − 5λ6 − 7λ7 + 2ϕ � 0,

2λ1 + 3λ2 + 5λ3 + 7λ4 + 3λ5 + 6λ6 + 8λ7 � 2,

λj � 0 (j = 1, 2, . . . , 7),

ϕ free.
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Table 5.5. Optimal solutions for (5.5) and (5.6) with the data set from Table 5.1.

DMU ϕ∗ s+∗
s−∗

λ∗ f ∗
0 µ∗ ν∗

1 1.3333 0 0 λ2 = 0.6666 1.3333 0.5 0.6666

2 1 0 0 λ2 = 1 1 0.25 0.3333

3 1.1111 0 0 λ2 = 1.6666 1.1111 0.1666 0.2222

4 1.3333 0 0 λ2 = 2.3333 1.3333 0.1428 0.1905

5 4 0 0 λ2 = 1 4 1 1.3333

6 1.6 0 0 λ2 = 2 1.6 0.2 0.2666

7 1.5238 0 0 λ2 = 2.6666 1.5238 0.1428 0.1905
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Fig. 5.5. Projections for the output-oriented CCR model from Table 5.1.

The optimal solution is given by ϕ0 = 1, 3333, λ0
2 = 0, 666, λ0

1 = λ0
3 = λ0

4 =
λ0

5 = λ0
6 = λ0

7 = 0. DMU1 can increase its output by 33.33% while using no
more than the observed amount of input. P1 is projected into the boundary point
(2; 2.6666) = λ2P2 = 0.6666 × (3; 4) = (2; 2.6666).

In a similar way, the linear programming problems (5.5)—under the nonnegativity
constraints for the multipliers—and (5.6) for every DMU can be calculated. The
results are summarized in Table 5.5. Figure 5.5 depicts the efficiency frontier and the
projections of the inefficient DMUs to the efficiency frontier.

As seen in Figures 5.3 and 5.5 and looking at the results for both models (Tables 5.2
and 5.5), the two orientations yield identical envelopment surfaces and identical sets
of efficient and inefficient DMUs. The following theorems [34, pp. 23–24] provide
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the correspondence between solutions for the input-oriented CCR and output-oriented
CCR models.

Theorem 5.2. Let (θ0,λ0) be an optimal solution to model (5.3). Then

(ϕ∗,λ∗) =
(

1

θ0 ,
1

θ0 λ0
)

is optimal for (5.6), and the mapping

(θ,λ) →
(

1

θ
,

1

θ
λ

)
is a 1−1 correspondence between optimal solutions of (5.3) and (5.6).

Theorem 5.3. The mapping

(µ∗, ν∗) → 1

w0
0

(µ0, ν0)

is a 1−1 correspondence between optimal solutions of (5.2) and (5.5), and the re-
spective optimal values w0

0, f
0
0 satisfy the condition w0

0 · f 0
0 = 1.

The results in Tables 5.2 and 5.5 confirm the simple rule by which the solutions
of the input- and output-oriented CCR models are linked. In the same way, the slack
variables of the output-oriented model (s−∗

, s+∗
) are related to the slacks of the

input-oriented model (s−0
, s+0

):

s−∗ = 1

θ0 s−0
, s+∗ = 1

θ0 s+0
.

The reader should note that an inefficient DMU will be projected to different points
on the frontier under the input and output orientations, as illustrated in Figures 5.3
and 5.5.

5.2.3 The Additive Model under a Constant Returns-to-Scale Assumption

To further clarify what is being accommodated in DEA, we now introduce another
type, known as “additive models.” In the previous models, one set of variables (inputs
or outputs) preempts the other in proportional (radial) movement toward the frontier.
However, the projected point can be equivalently represented in terms of the vector
of output slacks s+ and the vector of excess inputs s−. In other words, the movement
toward the efficiency frontier is not radial but via augmenting particular outputs and
reducing particular inputs.

Generally speaking, an envelopment surface consists of portions of supporting
hyperplanes in Rm+s that form particular facets of the convex hull of the points
(yj , xj ) for j = 1, 2, . . . , n. The general equation for a hyperplane in Rm+s is
given by
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s∑
r=1

yrµr −
m∑
i=1

xiνi + µ0 = 0. (5.7)

Such a hyperplane is a supporting hyperplane (and forms a facet of the envelopment
surface) if and only if all the points (yj , xj ) lie on or beneath the hyperplane and,
additionally, the hyperplane passes through at least one of the points.

Under the assumption of constant returns to scale, all supporting hyperplanes
pass through the origin (see Figure 5.1 for one input and one output). Thus µ0 = 0,
and (5.7) reduces to

s∑
r=1

yrµr −
m∑
i=1

xiνi = 0.

Such a hyperplane forms a facet of the CRS envelopment surface if and only if

s∑
r=1

yrjµr −
m∑
i=1

xij νi � 0 (j = 1, 2, . . . , n),

s∑
r=1

yrkµr −
m∑
i=1

xikνi = 0 for some k.

(5.8)

The set of constraints (5.8) ensures that all points lie on or below the envelopment
surface. The maximization of the efficiency of DMU0 selects a hyperplane that
minimizes the distance from DMU0 to this envelopment surface.

The formulation of the additive CRS multiplier program (see [2]) that follows is
a direct consequence of the above conditions for the CRS envelopment surface:

maximize
µ,ν

w0(µ, ν) =
s∑
r=1

yr0µr −
m∑
i=1

xi0νi

subject to
s∑
r=1

yrjµr −
m∑
i=1

xij νi � 0 (j = 1, 2, . . . , n),

−µr � −1 (r = 1, 2, . . . , s),

−νi � −1 (i = 1, 2, . . . , m)

(5.9)

with ε = 1.
Note that the objective function value is nonpositive, and we are maximizing a

nonpositive quantity. Hence an optimal value of zero indicates that DMU0 lies on
the frontier. Inefficient units lie below the closest supporting hyperplane and thus
correspond to nonzero objective values. As in the oriented models, each of the n
optimal solutions given by the sets of values (µ0

j , ν
0
j ) for j = 1, 2, . . . , n is the set

of coefficients for a supporting hyperplane which defines a facet of the envelopment
surface.

The CRS envelopment model, which is the dual problem to the above multiplier
program, can be expressed as follows:



5.2 Basic DEA Models 155

minimize
λ,s−,s+

g0(λ, s−, s+) = −
s∑
r=1

s+r −
m∑
i=1

s−i

subject to
n∑
j=1

yrjλj − s+r = yr0 (r = 1, 2, . . . , s),

−
n∑
j=1

xijλj − s−i = −xi0 (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n),

s+r � 0 (r = 1, 2, . . . , s),

s−i � 0 (i = 1, 2, . . . , m).

(5.10)

From the complementary slackness conditions, we know that for each λ0
j > 0, the

corresponding constraint in the multiplier problem is binding, that is,
∑s
r=1 yrjµ

0
r −∑m

i=1 xij ν
0
i = 0. Thus the DMUj with λ0

j > 0 is efficient and lies on the hyperplane
which defines a facet of the frontier.

The duality theory of linear programming implies that w0
0 = g0

0 . Thus DMU0 is
efficient if and only if w0

0 = g0
0 = 0. In other words, in the additive model DMU0 is

efficient if and only if s+0

0 = 0 and s−0

0 = 0. The DMU0 is inefficient if it does not lie
on the frontier, i.e., if any component of the slack variables s+ or s− is positive; the
values of these nonzero components identify the sources and amounts of inefficiency
in the corresponding outputs and inputs.

As in the oriented models for an inefficient DMU0, the vector λ0 defines the
projected point on the efficient frontier as

(y′
0, x′

0) =
⎛⎝ n∑
j=1

λ0
jyj ,

n∑
j=1

λ0
jxj

⎞⎠.
An important distinction between the additive model and the oriented models lies
in the improvement to an efficient activity. In an input-oriented model, (1 − θ0)

represents reductions that can be achieved without altering the proportions in which
inputs are used. (ϕ0 − 1) plays a similar role for output expansions that do not alter
the proportions in which outputs are produced.

The projection in terms of the slack variables s+0
and s−0

is by the additive model
represented as

y′
0 = y0 + s+0

and x′
0 = x0 − s−0

.

For the example data set in Table 5.3, the multiplier form of the CRS model for DMU1
is given by

maximize
µ,ν

w1(µ, ν) = µ− 2ν1 − 5ν2

subject to µ− 2ν1 − 5ν2 � 0,
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µ− 3ν1 − 3ν2 � 0,

µ− 5ν1 − 2ν2 � 0,

µ− 7ν1 − 2ν2 � 0,

µ− 8ν1 − 3ν2 � 0,

µ− 5ν1 − 4ν2 � 0,

µ− 4ν1 − 6ν2 � 0,

−µ � −1,

−ν1 � −1,

−ν2 � −1,

while the corresponding envelopment problem is formulated as

minimize
λ,s+,s−

g1(λ, s
+, s−) = −s+ − s−1 − s−2

subject to λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 − s+ = 1,

−2λ1 − 3λ2 − 5λ3 − 7λ4 − 8λ5 − 5λ6 − 4λ7 − s−1 = −2,

−5λ1 − 3λ2 − 2λ3 − 2λ4 − 3λ5 − 4λ6 − 6λ7 − s−2 = −5,

λj � 0 (j = 1, 2, . . . , 7),

s+ � 0,

s−i � 0 (i = 1, 2).

The optimal solution to the multiplier problem is µ0 = 9, ν0
1 = 2, ν0

2 = 1, and

w0
1 = 0. The optimal envelopment solution (λ0, s+0

, s−0
) is given by λ0

1 = 1, λ0
j = 0

(j = 2, 3, . . . , 7), s+0 = 0, s−
0

1 = 0, s−
0

2 = 0. Thus DMU1 is efficient.
Table 5.6 reports optimal solutions for the additive CRS model for each DMU,

and Figure 5.6 depicts the efficient frontier and the projections for the inefficient

Table 5.6. Results for the additive model.

DMU ν0
1 ν0

2 µ w0 s+0
s−0

1 s−0

2 Reference set λ0
j

1 2 1 9 0 0 0 0 DMU1 λ0
1 = 1

2 1 1 6 0 0 0 0 DMU2 λ0
2 = 1

3 1 2 9 0 0 0 0 DMU3 λ0
3 = 1

4 1 2 9 2 0 2 0 DMU3 λ0
3 = 1

5 1 1 6 5 0 5 0 DMU2 λ0
2 = 1

6 1 1 6 3 0 2 1 DMU2 λ0
2 = 1

7 1 1 6 4 0 1 3 DMU2 λ0
2 = 1
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Fig. 5.6. Efficiency frontier and the projections for the additive model with the data from
Table 5.3.

DMUs. (For this simple example with one output, whose value is unitized to 1, we
can describe the situation using a two-dimensional graph.)

The efficient units are DMU1, DMU2, and DMU3 because all components of
the slack variables, s+ and s−, are equal to zero. The piecewise linear envelopment
surface passes through the points P1, P2, and P3 representing DMU1, DMU2, and
DMU3, respectively. It is easily verified that both DMU1 and DMU2 lie on the facet
of CRS envelopment surface defined by the hyperplane

9y − 2x1 − x2 = 0.

Similarly, both DMU2 and DMU3 lie on the facet of efficient frontier expressed by
the equation

9y − x1 − 2x2 = 0. (5.11)

The solution of the linear programming problem (5.9) for DMU2 is not unique. DMU2
lies on two above-defined facets of the envelopment surface. From the row for DMU2
in Table 5.6, a supporting hyperplane with equation

6y − x1 − x2 = 0 (5.12)
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is derived. In Figure 5.6, it is shown by the dotted line (with slope −1) passing
through the point P2.

DMU4, DMU5, DMU6, and DMU7 are obviously inefficient because of excess
inputs s−. For these DMUs, the objective function value, w0, measures the distance
to the closest supporting hyperplane, i.e., µy0 − νx0 = w0 with maximal w0, where
w0 � 0. For example, the supporting hyperplane (5.11) for DMU3 and the parallel
hyperplane

9y − x1 − 2x2 = −2

that passes through P4 are an L1 distance of 2 units apart. The supporting hyper-
plane (5.12) and the parallel hyperplane

6y − x1 − x2 = −5

passing through P5 are an L1 distance of 5 units apart. The multipliers ν1, ν2, and µ
obtained from the rows in Table 5.6 are the coefficients of supporting hyperplanes for
efficient DMUs, which serve as the closest supporting hyperplane for an inefficient
DMU. The projections on the efficient frontier for these units illustrate the difference
to the (input-)oriented model.

While in the input-oriented model the improvement to an efficient activity for
DMU5 is obtained first by the proportional reduction of both inputs by 33% (see
point P ′

5 in Figure 5.4), and additionally input 1 was reduced by 0,333, in the additive
model efficiency is achieved by reducing input 1 by 5 units. In this way, point P5 in
Figure 5.6 is projected to point P2 and the reference DMU for DMU5 is DMU2.

The arrows s−1 and s−2 in Figure 5.6 denote the efficiency improvement for the
inefficient DMU6 represented by point P6. In arriving at point P2 on the efficient
frontier, which is most distant from P6, DMU6 will reduce input 1 by 2 units and
input 2 by 1 unit. Consequently, the proportion in which inputs are used will change.

In the preceding sections, we discussed DEA models built on the assumption of
constant returns to scale of activities. This means that a proportional increase in
inputs leads to the same proportional increase in outputs. Geometrically speaking,
all supporting hyperplanes for a CRS-efficient frontier pass through the origin (see
Figure 5.3 for the single-input and single-output case). However, this assumption can
be modified or relaxed in order to “restrict our attention to production inefficiencies
at the given level of operations for each DMU, and thus develop an efficiency mea-
surement procedure that assigns an efficiency rating of one to a DMU if and only if
the DMU lies on the efficient production surface, even when it may not be operating
at the most efficient scale size. This identification of the efficient production surface
will also allow us to determine whether increasing, constant, or decreasing returns
to scale prevail in different segments of the production surface” [6, p. 1084]. The
extension of the CCR model proposed by Banker, Charnes, and Cooper [6] allows
us to analyze situations in which increasing inputs imply more (or less) than propor-
tional increasing outputs at points on the efficient production surface and separate
them from output increases resulting from the elimination of technical inefficiencies.

5.2.4 DEA Models under a Variable Returns-to-Scale Assumption
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Let us start with the simple example from the previous section (Table 5.1) with one
input and one output. The efficient frontier of the CCR model in Figure 5.7 is the dotted
line that passes through P2 from the origin. The output increases proportionally to
input. Under the assumption of variable returns to scale, the efficient frontier consists
of the bold lines connecting P1, P2, P3, and P4. DMU1, DMU2, DMU3, and DMU4
are on the frontier and efficient under variable returns-to-scale assumption. However,
only DMU2 is CCR efficient.

Reading values from this graph, the Banker–Charnes–Cooper (BCC) efficiency
(or the VRS efficiency) of DMU6, represented by P6, is evaluated by

QS

QP6
= 4

6
= 0, 6666,

while its CCR efficiency (or CRS efficiency) is smaller, with value

QR

QP6
= 3.75

6
= 0.625.

The BCC efficiency of DMU1, represented in Figure 5.7 by P1, is given by

LP1

LP1
= 1,

while its CCR efficiency is smaller than one because

LM

LP1
= 1.5

2
= 0.75.

DMU1 is BCC efficient but CCR inefficient.

Generally, the CRS efficiency does not exceed the VRS efficiency.

In the output orientation, the VRS efficiency of DMU6 is determined by

V T

P6T
= 6.5

5
= 1.3.

In order to achieve the VRS efficiency frontier in Figure 5.7, DMU6 should increase
its output (under the given input level) from its observed value to 1.3×5 = 6.5 units,
or by 30%.

CRS efficiency is evaluated by

WT

P6T
= 8

5
= 1.6,
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Fig. 5.7. Production frontier under CRS and VRS.

which means that the achievement of efficiency under a constant returns-to-scale
assumption would require augmenting DMU6’s output to 1.6 × 5 = 8 units, or by
60%. As Figure 5.7 makes clear, under a CRS assumption a still-greater augmentation
is needed to achieve efficiency. According to Theorem 5.2, the CRS efficiency in
the output-oriented model (1.6) is the reciprocal of its input efficiency (0.625). The
example of DMU6 illustrates that this simple “reciprocal relation” between input- and
output-oriented models is not valid under the variable returns-to-scale assumption.

As already mentioned and as illustrated in Figure 5.7, all supporting hyperplanes
for a CRS envelopment surface pass through the origin.

Under the variable returns-to-scale assumption, the equation for a hyperplane is
given by (5.7). Consequently, the conditions for a facet of the VRS envelopment
surface may be formulated as

s∑
r=1

yrjµr −
m∑
i=1

xij νi + µ0 � 0 (j = 1, 2, . . . , n),

s∑
r=1

yrkµr −
m∑
i=1

xikνi + µ0 = 0 for some k.

The difference between CRS and VRS models is present in the free variable µ0 (it
may be positive or negative or zero), which describes the shift of the supporting
hyperplanes from the origin.

The input-oriented VRS or BCC model in the multiplier form is expressed as
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maximize
µ,ν,µ0

w0(µ, z) =
s∑
r=1

yr0µr + µ0

subject to
s∑
r=1

yrjµr −
m∑
i=1

xij νi + µ0 � 0 (j = 1, 2, . . . , n),

m∑
i=1

xi0νi = 1,

µr � 0 (r = 1, 2, . . . , s),

νi � 0 (i = 1, 2, . . . , m),

µ0 free in sign.

(5.13)

The equivalent BCC fractional programming problem from which the linear pro-
gram (5.13) can be obtained (by a transformation of the variables as in the CCR
model) is stated as

maximize
u,v,u0

h0(u, v, uo) =
∑s
r=1 yr0ur + u0∑m

i=1 xi0vi

subject to

∑s
r=1 yrjur + u0∑m

i=1 xij vi
� 1 (j = 1, 2, . . . , n),

ur � 0 (r = 1, 2, . . . , s),

vi � 0 (i = 1, 2, . . . , m),

w0 free.

The envelopment problem as the dual form of the linear program (5.13) is given by

minimize
θ→ g0(θ) = θ

subject to
n∑
j=1

yrjλj � yr0 (r = 1, 2, . . . , s),

−
n∑
j=1

xijλj + θxi0 � 0 (i = 1, 2, . . . , m),

n∑
j=1

λj = 1,

λj � 0 (j = 1, 2, . . . , n),

θ free.

(5.14)

According to the duality theory of linear programming, the free variableµ0 in the mul-
tiplier problem (5.13) is the dual variable associated with the constraint

∑n
j=1 λj = 1,

which does not appear in the CCR model.
From the economic interpretation point of view, the BCC model assumes the

convex combination of the observed DMUs as the production possibility set, and
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the BCC score is called local pure technical efficiency (PTE). The constant returns-
to-scale assumption (without the convexity condition

∑n
j=1 λj = 1) implies that

the radial expansion and reduction of all observed DMUs, and their nonnegative
combinations are possible and the CCR score is called global technical efficiency
(TE). Therefore, comparisons of the CCR and BCC scores provide deeper insight
into the sources of inefficiency that a DMU might have.

Returning to our example in Figure 5.7, DMU1 is operating locally efficiently but
not globally efficiently due to its scale size. Thereupon it is an interesting subject to
decompose the inefficiency of a DMU into its component parts. Based on the CCR
and BCC scores, scale efficiency is defined by the ratio of the following two scores.

Definition 5.2 (scale efficiency). Let θ0
CCR and θ0

BCC denote the CCR and BCC scores
of a DMU. The scale efficiency is defined by

SE = θ0
CCR

θ0
BCC

= TE

PTE
. (5.15)

Using the relationship (5.15), the (global) technical efficiency (TE) of a DMU is
decomposed as

TE = PTE × SE .

The global or overall inefficiency of a DMU is explained by inefficient operation
(PTE) or by the scale effect (SE) or by both.

For the BCC-efficient DMU1 in Figure 5.7, its scale efficiency is given by

SE(DMU1) = θ0
CCR(DMU1)

θ0
BCC(DMU1)

= LM

LP1
= 0.75,

which implies that the overall inefficiency (TE) is caused by the scale inefficiency.
The scale efficiency for DMU6 is

SE(DMU6) = θ0
CCR(DMU6)

θ0
BCC(DMU6)

=
QR
QP6

QS
QP6

= QR

QP6
· QP6

QS
= QR

QS
= 3.75

4
= 0.9375.

The global technical inefficiency of DMU6 can be decomposed as

TE(DMU6) = PTE(DMU6)× SE(DMU6) = 0.6666 × 0.9375 = 0.62499.

Thus the overall inefficiency of DMU6 is primarily caused by its inefficient op-
eration but also caused—but to a lesser extent—by the disadvantageous conditions
under which DMU6 is operating.

For computational purposes—similar to the CCR case—the lower bound ε for the
multiplier µr (r = 1, 2, . . . , s) and νi (i = 1, 2, . . . , m) in the linear program (5.13)
are introduced, and the corresponding envelopment problem (5.14) is solved using
a two-phase procedure. In the first phase, we minimize θ , and in the second phase,
we maximize the sum of the slack variables, keeping θ = θ0 (the optimal objective
function value). The BCC efficiency is then given by the following.
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Definition 5.3 (BCC efficiency).A DMU is BCC efficient if and only if the following
two conditions are fulfilled:

(a) θ0 = 1;
(b) s−

0

i = s+0

r = 0 for all i and r .

An interesting property of BCC efficiency is provided by the next theorem [11,
p. 90].

Theorem 5.4. A DMU that has a minimum input value for any input item, or a max-
imum output value for any output item, is BCC efficient.

The multiplier problem of the output-oriented BCC model has the form

minimize f0(ν, ν0) =
m∑
i=1

xi0νi + ν0

subject to −
s∑
r=1

yrjµr +
m∑
i=1

xij νi + ν0 � 0 (j = 1, 2, . . . , n),

∑
r=
yr0µr = 1,

µr � ε (r = 1, 2, . . . , s),

νi � ε (i = 1, 2, . . . , m),

ν0 free in sign.

(5.16)

The dual (envelopment) problem associated with the linear program (5.16) is ex-
pressed as

maximize
ϕ,λ,s+,s−

q0(ϕ, s+, s−) = ϕ + ε

(
s∑
r=1

s+r +
m∑
i=1

s−i

)

subject to ϕyr0 −
n∑
j=1

yrjλj + s+r = 0 (r = 1, 2, . . . , s),

m∑
i=1

xijλj + s−i = xi0 (i = 1, 2, . . . , m),

n∑
j=1

λj = 1,

λj � 0 (j = 1, 2, . . . , n),

s+r � 0 (r = 1, 2, . . . , s),

s−i � 0 (i = 1, 2, . . . , m).

(5.17)
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Table 5.7. Results for the input-oriented BCC model with the data set from Table 5.1.

DMU θ0 s+0
s−0

λ0 µ0 ν0 µ0
0

1 1 0 0 λ1 = 1 0.25 0.5 0.5
2 1 0 0 λ2 = 1 0.25 0.3333 0
3 1 0 0 λ3 = 1 0.2 0.2 −0.2
4 1 0 0 λ4 = 1 0.2857 0.1428 −1
5 0.666 1 0 λ1 = 1 0 0.3333 0.6666
6 0.666 0 0 λ2 = λ3 = 0.5 0.1666 0.1666 −0.1666
7 0.875 0 0 λ4 = 1 0.25 0.125 −0.875

Table 5.8. Results for the output-oriented BCC model with the data set from Table 5.1.

DMU ϕ0 s+0
s−0

λ0 µ0 ν0 ν0
0

1 1 0 0 λ1 = 1 0.5 1 1
2 1 0 0 λ2 = 1 0.25 0.3333 0
3 1 0 0 λ3 = 1 0.1666 0.1666 −0.1666
4 1 0 0 λ4 = 1 0.1428 0.0714 −0.5
5 4 0 0 λ2 = 1 1 1.333 0
6 1.3 0 0 λ3 = λ4 = 0.5 0.2 0.1 −0.7
7 1 0 1 λ4 = 1 0.1428 0 −1

To illustrate and to compare with the CCR models, we return to the example in
Table 5.1. The results for the input-oriented BCC model are summarized in Table 5.7
and for the output-oriented BCC model in Table 5.8.

As explained above, the comparison of the CCR and BCC scores allows us to
decompose the inefficiency of a DMU into the pure technical efficiency and the scale
efficiency. In our example, the global technical inefficiency of DMU1, DMU3, and
DMU4 is due to their scale inefficiency.

The scale efficiency of DMU5 is given by

SE(DMU5) = θ0
CCR(DMU5)

θ0
BCC(DMU5)

= 0.25

0.666
= 0.375.

Thus the overall inefficiency of DMU5 is more attributable to SE(0.375) than to
PTE(0.666). As already shown, the global inefficiency of DMU6 is primarily caused
by its PTE (0.666); the scale efficiency is relatively high (0.9375).

The overall inefficiency of DMU7 (0.656) is explained by its PTE (0.875) and
SE (0.75).

We conclude this section by formulating the additive model under the assumption
of variable returns to scale. As in the previous input- and output-oriented models,
we need only to add the convexity condition

∑n
j=1 λj = 1 to the constraints of the

additive CRS model (5.10). The additiveVRS envelopment model can then be written
as follows:
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minimize
λ,s+,s−

g0(λ, s+, s−) = −
s∑
r=1

s+r −
m∑
i=1

s−i

subject to
n∑
j=1

yrjλj − s+r = yr0 (r = 1, 2, . . . , s),

−
n∑
j=1

xijλj − s−i = −xi0 (i = 1, 2, . . . , m),

n∑
j=1

λj = 1,

λj � 0 (j = 1, 2, . . . , n),

s+r � 0 (r = 1, 2, . . . , s),

s−i � 0 (i = 1, 2, . . . , m).

(5.18)

The dual (multiplier) problem associated with the linear program (5.18) is expressed as

maximize
µ,ν

w0(µ, ν, µ0) =
s∑
r=1

yr0µr −
m∑
i=1

xi0νi + µ0

subject to
s∑
r=1

yrjµr −
m∑
i=1

xij νi + µ0 � 0 (j = 1, 2, . . . , n),

−µr � −1 (r = 1, 2, . . . , s),

−νi � −1 (i = 1, 2, . . . , m),

µ0 free.

(5.19)

As in the CRS additive model, DMU0 is efficient if and only if s+0 = 0 and s−0 = 0.
As an illustration, the results of the additive model under the VRS assumption for the
data set given in Table 5.1 are summarized in Table 5.9.

Table 5.9. Results for the additive VRS model with the data set from Table 5.1.

DMU g0
0 s+ s− λλλ0 w0

0 µ0 ν0 µ0
0

1 0 0 0 λ1 = 1 0 1 2 2
2 0 0 0 λ2 = 1 0 1 1 −1
3 0 0 0 λ3 = 1 0 1 1 −1
4 0 0 0 λ4 = 1 0 2 1 −7
5 −3 3 0 λ2 = 1 −3 1 1 −1

6 −2 0 2 λ2 = λ3 = 1
2 −2 1 1 −1

7 −1 0 1 λ4 = 1 −1 2 1 −7
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A comparison of the results in Table 5.9 with those for oriented BCC models (see
Tables 5.7 and 5.8) shows that the set of efficient units is the same. The following
theorem [3] is valid.

Theorem 5.5. DMU0 is additive-efficient if and only if it is BCC efficient.

The additive model does not provide a scalar efficiency score like θ0 in the input-
oriented model. The objective function in (5.18) reflects inefficiencies present in
both inputs and outputs, whereas θ0 reflects purely technical efficiency. Therefore, in
the second phase of the optimization procedure, the slacks are maximized in order to
identify further inefficiences. Any positive slack variable necessarily implies a change
in the input or output proportions, or in other words, in the mix. In this way, the CCR
and BCC models distinguish between purely technical and mix inefficiencies.

Another property of the additive models is known as “translation invariance.” In
many applications, the assumption of semipositivity for some inputs or outputs may
be not fulfilled. Then the data set (X, Y ) can be translated by introducing arbitrary
constants αi (i = 1, 2, . . . , m) and βr (r = 1, 2, . . . , s) to obtain new data

x̄ij = xij + αi (i = 1, 2, . . . , m; j = 1, 2, . . . , n),

ȳrj = yrj + βr (r = 1, 2, . . . , s; j = 1, 2, . . . , n).

Will the optimal solution for the envelopment problem change because of the data
translation? Cooper, Seiford, and Tone [11, p. 94] define translation invariance as
follows:

Definition 5.4. Given any problem, a DEA model is said to be translation invariant
if translating the original input and/or output values results in a new problem that has
the same optimal solution for the envelopment form as the old one.

Turning to Figure 5.7, we can see that for the input-oriented BCC model, the
efficiency of DMU6 described by the ratio QS

QP6
remains the same even if we shift

the output value by changing the origin, e.g., by two units. Thus the input-oriented
BCC model is translation invariant with respect to outputs (but not inputs). Similarly,
the output-oriented BCC model is translation invariant with respect to inputs (but not
outputs). For the additive model, it can be shown that the efficiency evaluation is not
affected if the origin of the coordinate system is shifted.

Theorem 5.6 (see [2]). The additive model (5.18) is translation invariant.

It should be noted that the convexity condition
∑n
j=1 λj = 1 is crucial for the

proof of this theorem.
As mentioned above the additive DEA model lacks a one-dimensional efficiency

measure like θ0 or ϕ0. Because the slacks are expressed in different units, the value
of the objective function g0 in (5.18) cannot be used as an efficiency score.

In order to overcome such disadvantage of the additive model, Cooper, Seiford,
and Tone [11] proposed its modification by introducing a measure in the form of
a single scalar (with values between zero and one) called a “slack-based measure”
(SBM), which has the following properties:
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1. The measure is invariant with respect to the unit of measurement of each input
and output item (units invariant).

2. The measure is monotone decreasing in each input and output slack.

SBM accounts for all inefficiencies and can be expressed as a product of input and
output inefficiencies. For details, see [11, Section 4.4].

5.3 Production Technologies and Efficiency Measurement

As mentioned in the introduction, DEA provides a new (nonparametric) way for a
description of a production possibility set and, in particular, for estimation of an ef-
ficient subset or efficiency envelope based on observed input and output data. The
various parametric production functions (e.g., the Cobb–Douglas, constant elasticity
of substitution (CES), and translog functions) that have been widely used in empiri-
cal work are restricted to the single-output situation. The advantage of an alternative
description of the technology as a list of all of the technologically feasible combina-
tions of inputs and outputs is that it encompasses the situation of multiple outputs.
Shephard [36] introduced the concept of a distance function that can model multi-
output multiinput technologies and at the same time represents them with convenient
functional forms. In addition, this concept can be related to the important pioneering
work of Farrel [18] in measuring efficiency directly from observational data, at least
in the single-output case.

Our objective now is to relate DEA models developed in the previous section to
the theory of production and, in particular, to the input and output distance functions.
There are some papers and books in the literature dealing with these deeper economic
aspects of DEA, including Debreu–Farrel efficiency, Pareto–Koopmans efficiency,
and more general technical efficiency axiomatic approaches [14, 17, 6, 10, 32, 22, 31].

In what follows, we follow Färe and Primont [22, Chapter 2], with the notation
of the variables as introduced in Section 5.1, and relate the oriented DEA models to
Shephard’s concept of a distance function.

We denoted by x = (x1, x2, . . . , xm) the vector of m observed inputs and by
y = (y1, y2, . . . , ys) the vector of s observed outputs.

The technology set as the set of all feasible input–output vectors is represented by

T = {(x, y)|x ∈ Rm+, y ∈ Rs+, y can be produced from x}.
For a given T and for a single output, the production function

F : Rm+ → R+

is defined by

F(x) = max
y

{y|(x, y) ∈ T }. (5.20)

It represents the maximum output that can be produced for any specified input vector.
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Starting with a production function F , the technology set is then defined by

T ∗ = {(x, y)|F(x) � y, y ∈ R+}. (5.21)

IfF is defined fromT by (5.20) and ifT ∗ is defined fromF using (5.21), thenT ∗ = T .
The output distance function for the single-output case [37, 22] is defined by

D0(x, y) = min
ϕ

{
ϕ|F(x) � y

ϕ

}
.

It follows that
D0(x, y) = y

F(x)
.

The output distance function defined from the technology set is

D0(x, y) = min
ϕ

{
ϕ > 0

∣∣∣∣ (x,
y

ϕ

)
∈ T

}
. (5.22)

The advantage of definition (5.22) is that it remains valid even for a multioutput case.
Following Shephard [37] and Färe and Primont [22], we define the output possi-

bility set (the set of feasible outputs) P(x), for each x, as

P(x) = {y|(x, y) ∈ T }. (5.23)

Then an alternative and equivalent definition of the output distance function in terms
of the output sets is given by

D0(x, y) = min
ϕ

{
ϕ > 0

∣∣∣∣ ( y
ϕ

)
∈ P(x)

}
for all x ∈ Rm+ . (5.24)

The illustration of definition (5.24) for two outputs is provided in Figure 5.8.
A given input vector x∗ determines the output possibility set, P(x∗). An output

vector y∗ is arbitrarily chosen. The value D0(x∗, y∗) puts y∗
D0(x∗,y∗) on the boundary

of P(x∗) and on the ray through y∗. In Figure 5.8, y∗ is an interior point of P(x∗),
and thus D0(x∗, y∗) < 1.

The following two properties for the output possibility set, P(x), are introduced.

Postulate 5.1. 0s ∈ P(x) for all x ∈ Rm+ .

Postulate 5.2. For all (x, y) in Rm+s+ , if y ∈ P(x) and 0 < ϕ � 1, then ϕy ∈ P(x).
The first assumption implies that given any input vector, it is always possible

to produce nothing (y = 0s). The second postulate is interpreted as the weak dis-
posability of outputs. This means that if x can produce y, then x can produce any
proportional reduction of y.

It follows from Figure 5.8 that y ∈ P(x) if and only if D0(x, y) � 1.
The interesting implication of the above result is that the technology specified

by the output possibility set can be given an equivalent specification in terms of the
output distance function.
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Fig. 5.8. The output set and the output distance function.

For the analysis of input changes, Shephard [37] introduced the input distance
function. First, he defined the input possibility set L(y), for each y, as

L(y) = {x|(x, y) ∈ T }, (5.25)

where T is the technology set. It can be seen from a comparison of (5.23) and (5.25)
that output sets and input sets are “inverse” in the following sense:

y ∈ P(x) if and only if x ∈ L(y).
Analogously to the definition of the output distance function (5.24), the input distance
function in terms of the input sets is defined as

Di(y, x) = max
θ

{
θ > 0

∣∣∣∣ (x
θ

)
∈ L(y) for all y ∈ Rs+

}
.

The illustration of the input distance function for two inputs is provided in Figure 5.9.
A given output vector y∗ determines the input set, L(y∗). An input vector, x∗, is

arbitrarily chosen. The value of Di(y∗, x∗) puts x∗
Di(y∗,x∗) on the boundary of L(y∗)

and on the ray through x∗. In Figure 5.9, x∗ lies in the interior of the input set L(y∗),
and thus Di(y∗, x∗) > 1, for if x∗ had been outside L(y∗), the value of the input
distance function would have been less than one.

In order to characterize the input possibility set by the input distance function, we
assume that inputs are weakly disposable, i.e.,

if x ∈ L(y) and θ � 1, then θx ∈ L(y). (5.26)
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Fig. 5.9. The input set and the input distance function.

The economic interpretation is straightforward: If y can be produced from x, then
any proportional increase in x can produce y.

Using property (5.26), Färe and Primont [22, p. 22] proved the following.

Proposition 5.1. Inputs are weakly disposable if and only if

L(y) = {x|Di(y, x) � 1}.
We can summarize as follows: Weak disposability of outputs is necessary and

sufficient for the validity of

y ∈ P(x) if and only if D0(x, y) � 1,

and weak disposability of inputs is necessary and sufficient for the validity of

x ∈ L(y) if and only if Di(y, x) � 1.

Moreover, if both inputs and outputs are weakly disposable, the following inverse
relation between the two distance functions holds [22, p. 23]:

D0(x, y) = min
ϕ

{
ϕ

∣∣∣∣Di ( y
ϕ
, x
)

� 1

}
,

Di(y, x) = max
θ

{
θ

∣∣∣∣D0

(x
θ
, y
)

� 1

}
.

(5.27)

An interesting result can be derived if the inverse relation (5.27) is applied to the
technology with constant returns to scale (CRS). A formal definition of CRS is the
following.
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Definition 5.5. A technology described by T exhibits constant returns to scale glob-
ally if T = kT for all k > 0.

For global CRS, a technology set T is a cone with vertex at (0m, 0s). In terms of
output and input sets, the condition that P(θx) = θP (x) for all θ > 0 is equivalent
to the condition that L(ϕy) = ϕL(y) for all ϕ > 0, which is equivalent to global
CRS. The interesting result is contained in the next proposition, proved by Färe and
Primont [22, pp. 24–25].

Proposition 5.2. The technology exhibits global constant returns to scale if and only
if D0(x, y) = 1

Di(y,x)
for all (x, y) ∈ Rm+s+ .

In order to relate the input- and output-oriented DEA measures of technical effi-
ciency to the input and output distance functions, we introduce the following defini-
tions of the input and output efficiency, respectively [22, pp. 28–29].

Definition 5.6. A feasible production plan (x, y) is input efficient if any reduction
in one or more of the inputs will render y an infeasible output vector. Thus the
input-efficient subset of L(y) is defined by

Eff L(y) = {x|x ∈ L(y), x′ � x and x′ �= x ⇒ x′ /∈ L(y)}, y ≥ 0s .

Definition 5.7. A feasible production plan (x, y) is input-isoquant efficient if any
proportional reduction of the inputs will render y an infeasible output vector. Thus
the input-isoquant-efficient subset of L(y) is defined by

IsoqL(y) = {x|x ∈ L(y), θ < 1 ⇒ θx /∈ L(y)}, y ≥ 0s .

The notion of input-isoquant efficiency is weaker in the sense that an input-efficient
production plan is input-isoquant efficient, but not conversely. The reader can ver-
ify that these notions correspond to the notion of efficiency and strong efficiency,
respectively, in DEA models.

Similarly, on the output side we introduce the following.

Definition 5.8. A feasible production plan (x, y) is output efficient if y belongs to

Eff P(x) = {y|y ∈ P(x), y′ � y and y′ �= y ⇒ y′ /∈ P(x)}, x � 0m.

For a given input vector x, there does not exist an output vector y′ ∈ P(x) such
that the output at least of one good is higher than the output described by y.

Definition 5.9. A feasible production plan (x, y) is output-isoquant efficient if y be-
longs to

IsoqP(x) = {y|y ∈ P(x), ϕ > 1 ⇒ ϕy /∈ P(x)}, x � 0m.

The set IsoqP(x) is related to the set of strong efficient points in a DEA model.
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Now the Debreu [14] and Farrel [18] input-oriented measures of technical effi-
ciency can be calculated by(

1

Di(y, x)

)
= min

θ
{θ |θx ∈ L(y)}. (5.28)

We get an efficiency measure that lies between zero and one (due toDi(y, x) � 1) and
whose higher value implies higher input efficiency of a production plan, (x, y). Using
a set of observed inputs and outputs (xj , yj ) for different DMUs (j = 1, 2, . . . , n),
the Debreu–Farrel efficiency score can be obtained by solving a linear programming
problem.

We assume—in addition to our assumption in Section 5.1 (each DMU has at least
one positive input and one positive output value)—the following:

(i) n∑
j=1

xij > 0 (i = 1, 2, . . . , m).

A positive amount of each input is used by at least one DMU.

(ii) n∑
j=1

yrj > 0 (r = 1, 2, . . . , s).

A positive amount of each output is produced by at least one DMU.

(iii) (xj , yj ) ∈ T and (λjxj , λjyj ) ∈ T ,
for all λj � 0, where λj denotes the intensity level of activity of DMU j . We
specify a technology T that exhibits global constant returns to scale.

(iv) If (λjxj , λjyj ) ∈ T (j = 1, 2, . . . , n), then⎛⎝ n∑
j=1

λjxj ,
n∑
j=1

λjyj

⎞⎠ ∈ T .

We postulate the additivity property of the activities.

(v) If y ∈ P(x) and y′ � y, then y′ ∈ P(x); i.e., if (x, y) ∈ T and y′ � y, then
(x, y′) ∈ T . We assume strong disposability of outputs.

(vi) Next, we postulate strong disposability of inputs: If x ∈ L(y) and x′ � x, then
x′ ∈ L(y); i.e., if (x, y) ∈ T and x′ � x, then (x′, y) ∈ T .

These last two assumptions are often denoted as an inefficiency postulate. They
imply that if (

∑n
j=1 λjxj ,

∑n
j=1 λjyj ) ∈ T , x �

∑n
j=1 λjxj , and y �

∑n
j=1 λjyj ,

then (x, y) ∈ T .
Then the production possibility set, as the smallest convex cone that contains all

of the data points, is

T =
⎧⎨⎩(x, y)

∣∣∣∣ n∑
j=1

λjyj � y � 0s ,
n∑
j=1

λjxj � x, λj � 0, j = 1, 2, . . . , n

⎫⎬⎭.
The input possibility set that corresponds to T is described by
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L(y) =
⎧⎨⎩x

∣∣∣∣ n∑
j=1

λjyrj � yr (r = 1, 2, . . . , s),

n∑
j=1

λjxij � xi (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n)

⎫⎬⎭.
(5.29)

The specification of the input possibility set (5.29) can be applied to any observation
(or any DMU). In order to estimate the input-oriented measure of technical efficiency
for one specific DMU, denoted by subscript 0, we solve the following linear program-
ming problem:[

1

Di(y0, x0)

]
= min

θ,λ
{θ |θx0 ∈ L(y0)}

= min
θ,λ

⎧⎨⎩θ
∣∣∣∣ n∑
j=1

λjyrj � yr0 (r = 1, 2, . . . , s),

n∑
j=1

λjxij � θxi0 (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n)

⎫⎬⎭.

(5.30)

We obtained in the CCR input-oriented model (5.30)—without the input and output
slacks—from the previous section. The efficiency score θ∗ indicates that the observed
input vector, x0, of DMU0 could (at most) be proportionally reduced to θ∗x0 while
still producing y0; i.e., θ∗x0 ∈ L(y0) and θx0 /∈ L(y0) for θ < θ∗.

If the same output can be produced with proportionally less input, then, alterna-
tively, proportionally more output can be produced with the same input:[

1

D0(x0, y0)

]
= max

ϕ,λ
{ϕ|ϕy0 ∈ P(x0)}

= max
ϕ,λ

⎧⎨⎩ϕ
∣∣∣∣ n∑
j=1

λjyrj � ϕyr0 (r = 1, 2, . . . , s),

m∑
i=1

λjxij � xi0 (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n)

⎫⎬⎭.

(5.31)
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This alternative view of efficiency leads to the output-oriented CCR model (5.6)—
excluding the input and output slacks—from Section 5.2.2.

However, if we relax the assumption of constant returns to scale, then the input-
and output-oriented models will provide different information. Supposing that the
technology exhibits variable returns to scale (VRS), we postulate the convexity prop-
erty for the production possibility set, T .

Postulate 5.3. If (xj , yj ) ∈ T , j = 1, 2, . . . , n, and λj � 0 are nonnegative scalars
such that

∑n
j=1 λj = 1, then (

∑n
j=1 λjxj ,

∑n
j=1 λjyj ) ∈ T .

A piecewise linear technology that satisfies VRS is given by

L(y) =
⎧⎨⎩x

∣∣∣∣ n∑
j=1

λjyrj � yr (r = 1, 2, . . . , s),

n∑
j=1

λjxij � xi (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n),

n∑
j=1

λj = 1

⎫⎬⎭.
(5.32)

The VRS technology in (5.32) differs from the CRS technology in (5.29) because of
the additional constraint

∑n
j=1 λj = 1. The input-oriented model for DMU0 under

VRS is then[
1

Di(y0, x0)

]
= min

θ,λ

⎧⎨⎩θ
∣∣∣∣ n∑
j=1

λjyrj � yr0 (r = 1, 2, . . . , s),

n∑
j=1

λjxij � θxi0 (i = 1, 2, . . . , m),

λj � 0 (j = 1, 2, . . . , n),

n∑
j=1

λj = 1

⎫⎬⎭.
In the same way, the output-oriented model satisfying VRS can be formulated.

For technology exhibiting nonincreasing returns to scale (NIRS) globally, the
restriction

∑n
j=1 λj = 1 is replaced by

∑n
j=1 λj � 1, and for nondecreasing returns

to scale (NDRS) by
∑n
j=1 λj � 1.

In economics, the concept of efficiency is intimately related to the idea of Pareto
optimality: An input–output bundle is not Pareto optimal if there remains the pos-
sibility of any net increase in outputs or net reduction in inputs. The drawback of
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the radial models presented above is the presence of input and/or output slacks at the
optimal solution of these models. A DMU cannot be found to be Pareto efficient as
long as there is any slack in any input or output. Charnes et al. [10] showed how DEA
can be related to the Pareto notion of efficiency, and in this way the more general
additive DEA model can be derived.

Using the notation xj , yj for the observed vectors of the inputs and outputs of
the j th DMU, Charnes et al. [10] defined the “empirical production set” TE as the
convex hull of these points, i.e.,

TE =
⎧⎨⎩(x, y)|x =

n∑
j=1

xjµj , y =
n∑
j=1

yjµj , µj � 0,
n∑
j=1

µj = 1

⎫⎬⎭.
They extended it to the empirical production possibility set T̄E by adding to TE all
points with inputs in TE and outputs not greater than some output in TE :

T̄E = {(x, y)|x = x̄, y � ȳ for some (x̄, ȳ) ∈ TE}.
Comparison with the previous studies dealing with axiom systems to characterize the
production possibility set of DEA shows that the approach used by Charnes et al. [10]
uses fewer axioms than every production possibility set heretofore employed.

Let T rE , T̄ rE denote the sets corresponding to TE and T̄E when only the output yr
is considered. A frontier function fr(x) is then determined by

fr(x) = max yr for (x, y) ∈ T̄E.

Proposition 5.3. fr(x) is a concave, piecewise linear function on TE .

It is worth noting that the proof of this proposition given in Charnes et al. [10]
does not require the nonnegativity assumption for input and output values.

Charnes et al. [10]—and later other authors [12]—use the designations “Pareto
efficiency” and “Pareto–Koopmans efficiency” or “strong efficiency” synonymously
(or together) in recognition of Koopmans’s work in the adaptation of the Pareto
concept of “welfare efficiency” for use in “production economics.”

Definition 5.10. A Pareto–Koopmans-efficient (minimum) point for a finite set of
functions g1(x), g2(x), . . . , gk(x) is a point x0 such that there is no other point of
these functions such that

gk(x) � gk(x0) (k = 1, 2, . . . , K) (5.33)

with at least one strict inequality.

The question that now arises is that of how to test a point x0 for Pareto–Koopmans
efficiency. Charnes and Cooper [7] showed that x0 is Pareto–Koopmans efficient if
and only if x0 is an optimal solution to the mathematical programming problem
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minimize
x

K∑
k=1

gk(x)

subject to gk(x) � gk(x0), k = 1, 2, . . . , K.

(5.34)

Using (5.34), we can determine the Pareto–Koopmans-efficient points from n

empirical points. The Pareto–Koopmans empirical frontier function is then defined
on the convex hull of their inputs by convex combination of the output values. For
efficient production, we wish to maximize on outputs while minimizing on inputs.
Therefore, the functions gk(x) (k = 1, 2, . . . , K) include both outputs and inputs:

−gk(x) = yk (k = 1, 2, . . . , s),

gk(x) = xk (k = s + i, i = 1, 2, . . . , m) for (x, y) ∈ T̄E.
The optimization problem (5.34) need only consider (x, y) ∈ TE rather than T̄E .
Thus the constraint inequalities in (5.33) for a test point (x0, y0) are

y � y0, x � x0, (5.35)

which correspond to the envelopment constraints of DEA for an observed input vector
x0 and related output vector y0. The following theorem can be proved [10, pp. 96–97].

Theorem 5.7. The envelopment constraints of DEA in production analysis are the
Charnes–Cooper constraints of (5.34) for testing Pareto–Koopmans efficiency of an
empirical production unit.

Proof. Given the input–output vector (x0, y0), the Charnes–Cooper test (5.34) be-
comes

minimize
λ

−e′Yλ + e′Xλ (5.36)

subject to Yλ � y0,

Xλ � x0, (5.37)
e′λ = 1,

λ � 0.

Including the slack variables s− = x0 − Xλ and s+ = Yλ − y0, the terms
−e′(Yλ−y0)+e′(Xλ+x0) differ from (5.36) by only a constant, and we can rewrite
the problem (5.36)–(5.37) as

minimize
λ,s+,s−

−e′s+ − e′s− (5.38)

subject to Yλ − s+ = y0,

−Xλ − s− = −x0,
(5.39)

e′λ = 1,

λ � 0, s+ � 0, s− � 0,
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which is the additive DEA model (5.18) introduced in the previous section. Here the
optimal value of the objective function (5.38) is equal to zero if and only if (y0, x0)

is Pareto–Koopmans efficient. As shown by Charnes et al. [10], other variations of
T̄E can be considered easily by simple modification of or additions to the constraints
on λ. ��

Then the performance of DMU0 is to be considered Pareto–Koopmans efficient
if and only if the performance of other DMUs does not provide evidence that some of
the inputs or outputs of DMU0 could have been improved without worsening some
of its other inputs or outputs.

5.4 Technical versus Environmental Efficiency, or How to
Measure Ecoefficiency

The new concept in the current state of the public discussion on environmental policy
is the concept of ecoefficiency. There is an urgent need for ecoefficient solutions such
that goods and services can be produced with less energy and resources and with less
waste and emission. But how do we measure “ecoefficiency” in an operational way in
order to provide decision support for firms and for economic policy? It is necessary
to have new performance indicators for the firm and for the national economy that
take into account environmental aspects. From the 1980s onward, there arose in the
economic literature a growing interest in the construction of indicators of a firm’s
environmental behavior (see [38] for a survey).

The main problem in developing of the ecoefficiency indicators is the lack of eval-
uations like market prices for the waste and emissions (or the undesirable outputs as
the by-product of many production processes). According to Theorem 5.1, efficiency
indicators obtained by DEA are independent of the units in which the inputs and the
outputs are measured. Therefore, DEA can provide an appropriate methodological
approach for developing of the ecoefficiency indicators.

The first paper to present a nonparametric approach for multilateral productivity
comparison when some outputs are undesirable is by Färe et al. [20]. To treat desirable
and undesirable outputs asymmetrically, they use the enhanced hyperbolic output
efficiency measure. The resulting nonlinear programming problem is solved by taking
a linear approximation of the nonlinear constraints. This methodology was applied
to a sample of mills producing paper and pollutants.

Golany, Roll, and Rybak [25] applied DEA to measure the efficiency of power
plants, taking into account pollution generated by electricity production. An activity
analysis of the environmental performance of firms with an application to fossil fuel–
fired electric utilities can be found in papers by Färe, Grosskopf, and Tyteca [21] and
Tyteca [39]. The paper by Scheel [33] deals with incorporating undesirable outputs in
DEA as outputs with a negative sign. An overview about DEA in ecological context
is provided by Dyckhoff and Allen [16]. Hernandez Sancho, Picazo Tadeo, and
Reig Martinez [26] extended the Färe et al. [20] methodology in order to adapt their
enhanced indices of efficiency to situations in which only a subset of undesirable
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outputs is constrained by environmental regulations. They applied this method to
the analysis of productive efficiency for a sample of Spanish production firms in the
wooden goods and furnishings industry.

Korhonen and Luptáčik [28] proposed different variants of DEA models that can
be used for estimation of ecoefficiency. The first model (called “Model A”) uses
negative weights for undesirable outputs, the second (called “Model B”) considers
the undesirable outputs as inputs, and in the third variant (called “Model C”) the ratio
of the weighted sum of the desirable outputs minus that of the inputs to that of the
undesirable outputs is taken into account. It can be shown that the set of (strongly)
ecoefficient DMUs is the same, no matter which model is used.

In the second edition of the book by Cooper, Seiford, and Tone [12], a new
chapter dealing with undesirable outputs is added. The slacks-based measure of
efficiency mentioned in Section 5.2.4 is modified in order to take undesirable outputs
into account.

A new approach to modeling undesirable outputs, based on the zero-sum gains
DEA models, is proposed by Gomes and Lins [24]. These models consider the
production dependence among the DMUs, including, as an additional restriction, the
zero-sum game property. The approach can be used to model CO2 emission trade,
following the Kyoto protocol.

In what follows, we follow [28] and extend the data set of the basic DEA model
by p undesirable outputs (k = 1, 2, . . . , p) or pollutants (NOx,SO2,CO2, . . . ) gen-
erated by the production of s desirable outputs (r = 1, 2, . . . , s). We denote by
X ∈ Rm×n, Yg ∈ Rs×n, and Yb ∈ Rp×n the matrices, consisting of nonnegative
elements, describing the observed input, desirable outputs (“goods”), and pollutants
(“bads”) measures for the DMUs.

The problem we are facing now is how to take into account pollutants in order
to get an indicator for the ecoefficiency. We can consider two ways to approach the
problem.

5.4.1 Composition of Technical and Environmental Efficiency

We decompose the problem into two parts and measure the ecoefficiency in two steps.
Beside the standard DEA model (1.27) or (5.2) for measuring technical efficiency, we
formulate another DEA model for measuring the so-called environmental efficiency,
defined as a ratio of a weighted sum of (desirable) outputs to the weighted sum of
pollutants:

maximize
u,d

hE0 =
∑
r y

g
r0ur∑

k y
b
k0dk

subject to

∑
r y

g
rj ur∑

k y
b
kj dk

≤ 1 (j = 1, 2, . . . , n),

ur ≥ ε (r = 1, 2, . . . , s),

dk ≥ ε (k = 1, 2, . . . , p),

ε > 0 (“non-Archimedean” constant).
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By substitution of the variables µr = tur , δk = tdk , t = 1∑
k y

b
k0dk

, we obtain the

following linear programming problem:

maximize
µ,δ

hE0 =
∑
r

y
g
r0ur

subject to
∑
r

y
g
rjµr −

∑
k

ybkj δk ≤ 0 (j = 1, 2, . . . , n),

∑
k

ybk0δk = 1,

µr ≥ ε (r = 1, 2, . . . , s),

δk ≥ ε (k = 1, 2, . . . , p).

(5.40)

The envelopment model for the environmental efficiency is the following:

maximize
θE,λ,sg,sb

θE − ε

(∑
r

s
g
r +

∑
i

sbs

)
subject to

∑
j

y
g
rj λj − s

g
r = y

g
r0 (r = 1, 2, . . . , s),

θEybk0 −
∑
j

ybkjλj − sbk = 0 (k = 1, 2, . . . , p),

λj ≥ 0 (j = 1, 2, . . . , n),

s
g
r ≥ 0 (r = 1, 2, . . . , s),

sbk ≥ 0 (k = 1, 2, . . . , p).

(5.41)

In this way, we obtain for every DMU an indicator for technical efficiency and one
for environmental efficiency. We used the input-oriented CCR model, but any other
DEA model can be applied as well.

The concept of ecoefficiency described above includes technical as well as envi-
ronmental efficiency. How do we compose or aggregate the indicators of technical
and environmental efficiency in order to get an ecoefficiency performance indicator?
Because the DEA model chooses the most favorable weights for a DMU whose per-
formance is being evaluated, the technical and environmental efficiency scores are
now the output variables for the new DEA model (with the inputs equal to 1), which
yields the indicator for ecoefficiency.

To illustrate, we apply this approach to analyzing the relative ecoefficiency of
the industry in 16 OECD countries [30]. The data for the year 1993 are described
in Table 5.10. The desirable output is the industry production and the undesirable
output emissions of CO2. As the inputs, we consider the labor and the capital stock.
(In the case of a lack of data on capital stock for some countries as reported by the
OECD in 1997, we used an approximation. These data are denoted by an asterisk.)

Solving the input-oriented CCR model (5.3) and model (5.41), we obtained the
measures of the technical and environmental efficiency, respectively, given in Ta-
ble 5.11. The environmental efficiency model (5.41) in our case is a very simple
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Table 5.10. Data for 16 OECD countries. (Source: OECD (1997) and the author’s estimation.)

Labor
(in 1,000

employers)

Capital
(in billions

ATS)

CO2
(in 1,000

tons)

Industry
production

(in billions ATS)
Canada 1,647.00 1,867.05 93.60 2,693.85
USA 16,875.00 ∗30,319.065 694.30 35,481.53
Japan 10,885.00 31,100.01 296.90 30,413.81
Australia 1,009.00 1,039.56 46.60 1,218.09
New Zealand 233.80 ∗220.00 5.80 247.28
Austria 564.10 ∗927.407 11.90 1,020.15
Denmark 500.30 770.21 5.00 616.29
Finland 342.80 926.08 14.50 647.15
Germany 7,203.90 11,802.18 152.70 13,066.45
Greece 317.40 ∗431.747 9.20 237.20
Italy 2,801.00 6,438.52 84.60 4,226.74
Netherlands 719.60 ∗1,493.169 34.70 1,642.49
Norway 245.30 645.67 6.00 464.61
Spain 1,945.50 ∗3,100.74 45.30 2,363.80
Sweden 587.50 1,100.39 12.00 964.73
UK 4,379.00 7,178.00 81.80 6,570.72

DEA model with only one input (CO2) and one output (industry production). The
only efficient unit is the industry of Denmark. Austrian industry is environmentally
inefficient; for a given level of industry production, the emission of CO2 should be
reduced by approximately 30% in order to be environmentally efficient.

Industries in Canada, the USA, and Japan are technically efficient; Austrian in-
dustry is inefficient and should reduce, for a given level of industry production, both
inputs—employment and capital stock—by approximately 10% in order to achieve
technical efficiency. None of the countries is, under the assumption of constant returns
to scale, technically and environmentally efficient.

The results of technical and environmental efficiency provide the output variables
for the new DEA model (with input equal to 1). The ecoefficiency indicators are given
in column 3 of Table 5.11, and the ecoefficiency frontier is drawn in Figure 5.10. In-
dustries in Denmark and Japan are ecoefficient. As can be seen from Figure 5.10,
industries in the USA and Canada are weakly ecoefficient because of their environ-
mental inefficiency. Furthermore, for all units lying outside the ecoefficiency cone
(e.g., Austria), the indicator of the ecoefficiency is simply the better result from the
CCR model and model (5.41), respectively. For Norway, the UK, and Sweden, lying
inside the cone, the ecoefficiency indicator is higher than the indicators of technical
and environmental efficiency, respectively.

Looking at the solution of the corresponding multiplier model, we can see the
importance of technical and environmental efficiency in determining ecoefficiency.
For most of the countries, the reason for their ecoefficiency lies in their environmental
inefficiency—only Denmark, Norway, Sweden, and the UK have their strengths or



5.4 Technical versus Environmental Efficiency, or How to Measure Ecoefficiency 181

Table 5.11. Ecoefficiency of 16 OECD countries.

Technical
efficiency

Environ-
mental

efficiency

Ecoefficiency
(as a composite
of technical and
environmental

efficiency)
Ecoefficiency
under CRS

Ecoefficiency
under VRS

Canada 100.00 23.35 100.00 100.00 100.00
USA 100.00 41.46 100.00 100.00 100.00
Japan 100.00 83.11 100.00 100.00 100.00
Australia 81.21 21.21 81.21 84.00 84.92
New Zealand 77.90 34.59 77.90 91.51 100.00
Austria 90.64 69.55 90.64 99.72 100.00
Denmark 64.11 100.00 100.00 100.00 100.00
Finland 70.11 36.21 70.11 70.11 90.48
Germany 91.10 69.42 91.10 100.00 100.00
Greece 41.63 20.92 41.63 46.45 73.66
Italy 62.10 40.53 62.10 63.06 63.28
Netherlands 99.93 38.40 99.93 99.93 100.00
Norway 71.54 62.68 74.12 74.71 100.00
Spain 62.00 43.33 62.00 67.93 68.07
Sweden 76.29 65.22 77.68 85.14 89.55
UK 75.34 65.17 77.30 87.32 87.34
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Fig. 5.10. Ecoefficiency frontier for 16 OECD countries.
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advantages in environmental efficiency. The contribution of environmental efficiency
in determining the ecoefficiency of industry in Denmark was 77% (the contribution
of technical efficiency was 23%), in Norway 65% (35%), in Sweden 65% (36%), and
in the UK 65% (35%).

5.4.2 Comprehensive Measurement of Ecoefficiency

To provide deeper insight in the causes of the ecoinefficiency and to indicate potential
improvements for the particular inputs, desirable outputs, and pollutants, we formu-
late a model that incorporates all three categories. From the above-mentioned three
variants of DEA models proposed by Korhonen and Luptáčik [28], Model B will be
used in what follows. In this formulation, the pollutants are treated as the inputs in
the sense that we want to produce desirable outputs as much as possible and reduce
undesirable outputs and inputs. The corresponding DEA model can be expressed as
follows:

maximize
u,v,d

h0 =
∑
r y

g
r0ur∑

i xi0vi +∑k y
b
k0dk

subject to

∑
r y

g
rj ur∑

i xij vi +∑k y
b
kj dk

� 1 (j = 1, 2, . . . , n),

ur � ε (r = 1, 2, . . . , s),

vi � ε (i = 1, 2, . . . , m),

dk � ε (k = 1, 2, . . . , p).

(5.42)

The transformation of the variables leads to the linear multiplier program

maximize
µ,v,δ

h0 =
∑
r

y
g
r0µr

subject to
∑
r

y
g
rjµr −

∑
k

ybkj δk −
∑
i

xij νi ≤ 0 (j = 1, 2, . . . , n),

∑
i

xi0νi +
∑
k

ybk0δk = 1, (5.43)

µr ≥ ε (r = 1, 2, . . . , s),

vi ≥ ε (i = 1, 2, . . . , m),

δk ≥ ε (k = 1, 2, . . . , p)

and the envelopment model

maximize
θ,sg,sb,s−

θ − ε

(∑
r

s
g
r +

∑
k

sbk +
∑
i

s−i

)
subject to

∑
j

y
g
rj λj − s

g
r = y

g
r0 (r = 1, 2, . . . , s),
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θybk0 −
∑
j

ybsj λj − sbk = 0 (k = 1, 2, . . . , p),

(5.44)
θxi0 −

∑
j

xij λj − s−i = 0 (i = 1, 2, . . . , m),

s
g
r ≥ 0 (r = 1, 2, . . . , s),

sbk ≥ 0 (k = 1, 2, . . . , p),

s−i ≥ 0 (i = 1, 2, . . . , m).

In this model, the DMU simultaneously reduces the inputs and pollutants in order
to increase ecoefficiency. Using the data set of 16 OECD countries (Table 5.10),
model (5.44) yields the ecoefficiency indicators for the particular countries summa-
rized in column 4 of Table 5.11. Adding the constraint

∑n
j=1 λj = 1 to the constraints

of program (5.44), we obtain ecoefficiency under the assumption of variable returns
to scale (the last column in Table 5.11).

Comparison of columns 3 and 4 in Table 5.11 shows in tendency the same re-
sults. The reader may verify that the (comprehensive) ecoefficiency measured by
model (5.44) (column 4 in Table 5.11) is not lower than the ecoefficiency obtained as
a composition of technical and environmental efficiency (column 3 in Table 5.11). The
ecoefficient countries Denmark and Japan are ecoefficient again, and in the previous
model the weakly ecoefficient industries of Canada and the USA and the ecoineffi-
cient industry of Germany are ecoefficient with respect to model (5.44). The solution
of the multiplier problems (5.43) indicates the reasons for the ecoefficiency in the
particular countries with respect to particular inputs and outputs. The input variable
capital was given an importance rating of 53% and the variable CO2 an importance
rating of 47% in determining of the ecoefficiency in Denmark. The reason for the
ecoefficiency of Japan, the USA, and Canada lies in their technical efficiency. The
contribution of the input labor in determining the ecoefficiency was 33% for Japan,
40% for the USA, and 51% for Canada. The importance rating given to the input
capital was 67% for Japan, 60% in the USA, and 49% in Canada. In Germany, an
importance rating of 12% was given to labor, 79% to capital, and 9% to undesirable
output, CO2, in determining its industry ecoefficiency.

Austrian industry is ecoinefficient because of its scale inefficiency:

SEAustria = θECCR

θEBCC

= 0.9972.

The solution of the envelopment model (5.44) characterizes the peer group of any
ecoinefficient unit. Austrian industry is in the peer group created by Germany and
Japan. The linear combination of Germany (by approximately 98%) and of Japan (by
2%) provides the projection of Austrian industry on the ecoefficient frontier.

With regard to these results, the following remark must be added. Obviously, the
ecoefficiency of the industry in a particular country depends on its structure, especially
on the proportion of steel production in the total industrial production. According
to the OECD data for 1993 (reported by the OECD in 1997), the proportion of steel
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production in the industrial production of ecoefficient Denmark was indeed very
low (0.013). However, the proportion of steel production in ecoefficient Japan was
approximately the same (0.062) as in ecoinefficient Austria (0.065). Nevertheless, a
more interesting analysis can be done for particular industrial sectors rather than for
industry as a whole. The subject of our example was determined by the availability
of data.
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6

Geometric Programming

Which of you, intending to build a tower, sitteth not down first and counteth
the cost, whether he have sufficient to finish it?

Luke XIV,28,C.75

The open input–output model with continuous substitution between labor and capital,
according to a Cobb–Douglas production function introduced in Section 1.2.8, leads
to a mathematical programming problem in which the functions in the constraints are
polynomials with positive coefficients (so-called posynomials).

Optimization problems with this class of functions emerged first in connection
with engineering design problems. Zener [23] observed that many engineering de-
sign problems consisting of a sum of component costs could sometimes be maximized
almost by inspection under suitable conditions. Although Zener discovered this re-
markable fact through the process of engineering observation and inquiry, he soon
realized that such an observation should have roots in a deeper mathematical theory.
The mathematical foundation of Zener’s discovery has been done through application
of the arithmetic–geometric mean inequality relationship between sums and products
of positive numbers, developed by Duffin [8]. Therefore, Duffin called this new
branch of nonlinear optimization “geometric programming.” In 1967, Duffin, Pe-
terson, and Zener [9] published the classic well-known textbook that presented the
first comprehensive description of the method, along with some example problems
to illustrate this technique.

In a short time, geometric programming has been applied in a wide variety of fields
(see [6] or the bibliographical note in the special issue of the Journal of Optimization
Theory and Applications 26 (1978) devoted to geometric programming). Because
also in economics and management science very often problems arise that can be
formulated and solved by using this technique, we will now present the basic theory
of geometric programming with some economic applications.

In Section 6.1, the basic principle of geometric programming—using the well-
known economic lot size problem—will be explained. Section 6.2 deals with the
theoretical fundamentals, and Section 6.3 deals with the models of geometric pro-

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
Springer Optimization and Its Applications 36, DOI 10.1007/978-0-387-89552-9_6,  
© Springer Science+Business Media, LLC 2010 
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gramming in economics. In Section 6.4, the transformation of some optimization
problems into standard geometric programming models will be discussed.

6.1 The Principle of Geometric Programming

Let us consider the well-known economic lot size problem. For a given product, the
manufacturer must decide how many pieces of this product he should put into stock
periodically. The total variable cost consisting of manufacturing and storage cost is
given by

y = lT

2
x + rcx−1,

where x denotes the lot size (pieces per run), l the carrying cost per piece per month,
r the annual requirements, c the setup cost ( per run), and T the time period (1 year
or 12 months). The first part in this objective function represents the total carrying
cost, and the other part gives the total setup cost.

Let a1 = lT
2 and a2 = rc; then the function y to be minimized is of the form

y = a1x + a2x
−1. (6.1)

The solution to this problem can easily be found through differential calculus,

dy

dx
= a1 − a2x

−2 = 0,

from which it follows that

x0 =
√
a2

a1
=
√

2rc

lT
.

The optimum (minimum) total cost is given by

y0 = a1

(
2rc

lT

)1/2

+ a2

(
2rc

lT

)−1/2

,

or

y0 = [a1a2]1/2︸ ︷︷ ︸
A

+ [a1a2]1/2︸ ︷︷ ︸
B

. (6.2)

We see that at the optimum the minimal cost is again composed of two component
costs. If we look at the form (6.2), it is obvious that the ratio of these cost components
is independent of the coefficients a1 and a2 because the term a

1/2
1 a

1/2
2 is common to

both cost components. Consequently, the optimal cost distribution is invariant under
a change in the numerical values of a1 and a2. Algebraic analysis of cost components
A and B reveals that A is always equal to the magnitude of B. That is, the relative
contribution to the total optimal cost for carrying cost and for setup cost is invariant
to changes in the economic coefficients a1 and a2. At optimality, one-half of the total
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cost will be attributed to the carrying cost and one-half to the setup cost. The key
observation is that at an optimal solution, any other distribution of cost will yield a
higher total cost.

Prior knowledge of this fact (later it will be shown how we can obtain this infor-
mation) allows us to use this relationship in the following manner (from (6.1)):

a1x
0 = a2

1

x0 .

Hence

x0 =
√
a2

a1
=
√

2rc

lT
,

which is the well-known Harris–Anders form from inventory theory (see, e.g., [24,
p. 197]).

This result coincides with the optimal solution obtained previously via calculus
and leads us to an entirely new way of solving mathematical programming problems.
Instead of searching first for the optimal lot size and then determining the (resultant)
optimal cost, we first search for the optimal cost distribution and then determine the
resulting solution variables. This is the logic through which geometric programming
was originally discovered by Duffin and Zener.

6.2 The Theory of Geometric Programming

The input–output model with substitution possibilities between primary factors from
Section 1.2.8 is a special case of a general geometric programming problem that may
be formulated as follows:

minimize
x

g0(x) (6.3)

subject to gk(x) � 1 (k = 1, 2, . . . , m), (6.4)

xj > 0 (j = 1, 2, . . . , n), (6.5)

where

gk(x) =
Tk∑
t=1

ckt

n∏
j=1

x
aktj
j (k = 0, 1, . . . , m). (6.6)

Tk denotes the number of terms in the polynomial k (k = 0, 1, . . . , m), and the
exponents aktj are arbitrary real numbers, but the coefficients ckt are assumed to be
positive. Thus the functions gk(x) are called posynomials.

The program (6.3)–(6.6) is termed the primal problem, the posynomial go(x) is
the primal function, and the variables x1, x2, . . . , xn are the primal variables. The
constraints imposed by (6.4) are called forced constraints, whereas those imposed
by (6.5) are referred to as natural constraints. Collectively, the constraints (6.4)–
(6.5) are termed primal constraints.
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It should be mentioned that the posynomials in (1.22) from the input–output model
of Section 1.2.8 are nonconvex.

Making a change of variables by letting

ezj = xj (zj = ln xj ) (j = 1, 2, . . . , n),

the primal problem (6.3)–(6.6) may be transformed into the following program:

minimize
z

f0(z) (6.7)

subject to fk(z) � 1 (k = 1, 2, . . . , m), (6.8)

where

fk(z) =
Tk∑
t=1

ckt e
∑n
j=1 aktj zj (k = 0, 1, . . . , m) (6.9)

is a positive exponential function.
The most important aspect of program (6.7)–(6.9) is brought out in the following.

Theorem 6.1 (see [9, p. 83]). The transformed primal program (6.7)–(6.9) is a convex
program. Each positive exponential function (6.9) is convex.

Since the logarithmic function is monotone increasing, the solution of the trans-
formed primal problem (6.7)–(6.9) can be found by solving the following program:

minimize
z

ln f0(z) (6.10)

subject to ln fk(z) � 0 (k = 1, 2, . . . , m). (6.11)

The reader should have no trouble showing that the function ln fk(z) (k = 0, 1, 2,
. . . , m) is convex for arbitrary real numbers aktj and positive real numbers ckt . Thus
problem (6.10)–(6.11) is convex, and the duality theory developed in Chapter 3 can
be applied.

The dual problem corresponding to the primal problem (6.10)–(6.11) is the fol-
lowing:

maximize
z,λ

Φ(z,λ) (6.12)

subject to
∂Φ

∂z
= 0, (6.13)

λ � 0, (6.14)

where

Φ(z,λ) =
m∑
k=0

λk ln fk(z) with λ0 = 1. (6.15)
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Differentiation of (6.15) with respect to zj yields

∂Φ

∂zj
=

m∑
k=0

λk

∑Tk
t=1 ckt e

∑n
j=1 aktj zj aktj∑Tk

t=1 ckt e
∑n
j=1 aktj zj

. (6.16)

Letting

δkt = λk
ckt e

∑n
j=1 aktj zj∑Tk

t=1 ckt e
∑n
j=1 aktj zj

(k = 0, 1, . . . , m) (6.17)

and using (6.16), the constraints (6.13) become

m∑
k=0

Tk∑
t=1

δktaktj = 0 (j = 1, 2, . . . , n). (6.18)

Because λ0 = 1, it follows from (6.17) for k = 0 that

T0∑
t=1

δ0t = 1, (6.19)

where T0 denotes the number of terms in the primal objective function (6.3) and

Tk∑
t=1

δkt = λk (k = 1, 2, . . . , m). (6.20)

The nonnegativity constraints (6.14) and definition (6.17) imply that

δkt � 0 (t = 1, 2, . . . , Tk; k = 0, 1, . . . , m). (6.21)

Relation (6.17) can be rewritten as

δkt

ckt

Tk∑
t=1

ckt e
∑n
j=1 aktj zj = λke

∑n
j=1 aktj zj (k = 0, 1, . . . , m). (6.22)

After raising (6.22) to a power of δkt and then taking a logarithm, we obtain

δkt ln
δkt

ckt
+ δkt ln fk(z) = δkt ln λk + δkt

n∑
j=1

aktj zj

(k = 0, 1, . . . , m; t = 1, 2, . . . , Tk).

(6.23)

Summing (6.22) over k and t and taking into account (6.18), (6.19), and (6.20) gives

m∑
k=0

Tk∑
t=1

δkt ln
δkt

ckt
+

m∑
k=0

λk ln fk(z) =
m∑
k=1

λk ln λk,
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and thus

Φ(z,λ) =
m∑
k=0

Tk∑
t=1

δkt ln
ckt

δkt
+

m∑
k=1

λk ln λk

= ln

⎧⎨⎩
m∏
k=0

Tk∏
t=1

(
ckt

δkt

)δkt m∏
k=1

λ
λk
k

⎫⎬⎭ = ln v(δ).

The dual objective function (6.12) is now expressed as a function of the new vari-
ables δkt (notice (6.20)). Moreover, the function ln v(δ) is concave on its domain of
definition, namely, the positive orthant δkt > 0, k = 0, 1, . . . , m; t = 1, 2, . . . , Tk
(see [9, pp. 121–122]), such that the dual problem (6.12)–(6.14) becomes the convex
programming problem with linear constraints

maximize ln v(δ)

subject to (6.18)–(6.19) and (6.21).

Because of the monotonicity property of the logarithmic function, v(δ) and ln v(δ)
have the same set of maximizing points. Thus the dual program corresponding to the
primal geometric programming problem (6.3)–(6.6) may be formulated as follows:

maximize v(δ) =
m∏
k=0

Tk∏
t=1

(
ckt

δkt

)δkt m∏
k=1

λk(δ)
λk(δ), (6.24)

where

λk(δ) =
Tk∑
t=1

δkt (k = 1, 2, . . . , m),

subject to
m∑
k=0

Tk∑
t=1

aktj δkt = 0 (j = 1, 2, . . . , n), (6.18)

T0∑
t=1

δ0t = 1, (6.19)

δkt � 0

(
k = 0, 1, . . . , m,
t = 1, 2, . . . , Tk

)
, (6.21)

where T =∑m
k=0 Tk is the total number of terms in the primal problem.

In evaluating the product function v(δ), it must be understood that zz = z−z = 1
for z = 0. This will make v(δ) continuous over its domain of definition.

The function v(δ) is termed the dual function, and the components of T -
dimensional vector δ are called dual variables. Relation (6.21) is termed the non-
negativity condition, (6.19) is called the normality condition, and (6.18) constitutes
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the orthogonality condition. Collectively, these conditions are referred to as dual
constraints.

Notice how the dual problem (6.24) subject to (6.18), (6.19), and (6.21) is obtained
from its corresponding primal problem (6.3)–(6.6). The factors ckt appearing in the
dual function v(δ) are the coefficients of the posynomials gk(x) (k = 0, 1, . . . , m).
Each term of gk(x) (k = 0, 1, . . . , m) is associated with one and only one of the
dual variables δkt (t = 1, 2, . . . , Tk; k = 0, 1, . . . , m). Each factor λk(δ)λk(δ) of
v(δ) comes from a forced constraint gk(x) � 1. Notice that none of these factors
appears from the primal function because the normality condition forces λ0(δ) to
be 1. The normality condition is the only part of the dual problem (6.24) subject
to (6.18), (6.19), and (6.21) that distinguishes between the primal function g0(x) and
those posynomials gk(x) (k = 1, 2, . . . , m) that appear in the forced constraints.
Finally, the coefficients aktj appearing in the orthogonality condition are simply the
exponents of primal problem (6.3)–(6.6).

The difference between the number of variables and the number of independent
linear equations is conventionally called the number of degrees of freedom. Note
that there are n orthogonality conditions, one for each variable xj , a single normality
condition and T dual variables, one for each term. Hence (6.18)–(6.19) have T −(n+
1) degrees of freedom. Duffin, Peterson, and Zener [9] suggest calling this quantity
the degree of difficulty. A geometric programming problem with zero degrees of
difficulty (see the problem discussed in Section 6.1) is readily solved by first solving
its dual. The solution vector δ is easily determined because the dual constraints are
linear. Since the vector δ is the only solution to the dual constraints, it is also the
maximizing vector for the dual problem. If the degree of difficulty is greater than
zero, we have a nonlinear programming problem with a nonlinear objective function
but with linear constraints.

The question that arises now is that of how to obtain the optimal solution of
the primal problem x0 from the knowledge of the optimal solution δ0 of the dual
problem (6.24), (6.18)–(6.19), and (6.21).

Applying the weak duality theorem (Theorem 3.13), the so-called main lemma of
geometric programming can be derived.

Lemma 6.1. If x satisfies the constraints (6.4)–(6.5) and δ satisfies the constraints
(6.18)–(6.19) and (6.21), then

g0(x) � v(δ). (6.25)

Inequality (6.25) follows immediately from (3.32).
Duffin, Peterson, and Zener [9, pp. 115–116] proved this lemma using the geo-

metric inequality (a weighted geometric mean of positive numbers is always less than
or equal to the corresponding weighted arithmetic mean). For this reason, they called
this class of nonlinear programming problems geometric programming.

Relation (6.25) implies that the constrained minimum value of the primal function
g0(x) cannot be lower than the constrained maximum value of the dual function v(δ).
In this way the dual program provides a lower bound for the optimal value of the
primal function g0(x).
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Under the assumption of the Slater constraint qualification (Definition 3.6), which
corresponds to the definition of superconsistency of the primal problem in [9], the
application of Theorems 3.9 and 3.14 leads to the first duality theorem of geometric
programming (originally proved by Duffin, Peterson, and Zener [9, pp. 117–119]).

Theorem 6.2. Assume that the Slater constraint qualification for the primal prob-
lem (6.3)–(6.6) is met and that the primal function g0(x) attains its constrained
minimum value at a feasible point x0. Then the following hold:

(i) The corresponding dual problem (6.24) subject to (6.18), (6.19), and (6.21) has
an optimal solution.

(ii) g0(x0) = v(δ0), where δ0 denotes a feasible point at which the dual function
v(δ) attains its constrained maximum value.

(iii) If x0 is an optimal solution of the primal problem (6.3)–(6.6), then there are
nonnegative Lagrange multipliers µ0

k (k = 1, 2, . . . , m) such that the Lagrange
function

L(x,µ) = g0(x)+
m∑
k=1

µk(gk(x)− 1)

has the property

L(x0,µ) � g0(x0) = L(x0,µ0) � L(x,µ0)

for arbitrary xj > 0 and arbitrary µk � 0. Moreover, there is a maximizing
vector δ0 for the dual problem (6.24) subject to (6.18), (6.19), and (6.21) whose
components are

δ0
kt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cktx

akt1
1 · · · xaktnn

g0(x)
(k = 0; t = 1, 2, . . . , T0),

µkcktx
akt1
1 · · · xaktnn

g0(x)
(k = 1, 2, . . . , m; t = 1, 2, . . . , Tk),

(6.26)

where x = x0 and µ = µ0. Furthermore,

λk(δ
0) = µk

g0(x0)
(k = 1, 2, . . . , m). (6.27)

(iv) If δ0 is an optimal solution for the dual problem (6.24) subject to (6.18), (6.19),
and (6.21), each optimal solution x0 for the primal problem (6.3)–(6.6) satisfies
the system of equations

cktx
akt1
1 · · · xaktnn =

⎧⎪⎨⎪⎩
δ0
kt v(δ

0) (k = 0; t = 1, 2, . . . , T0),

δ0
kt

λk(δ
0)

(k = 1, 2, . . . , m; t = 1, 2, . . . , Tk),
(6.28)

where k ranges over all positive integers for which λk(δ
0) > 0.
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Relation (6.26) allows us to compute an optimal solution vector δ0 from the
knowledge of a minimizing vector x0 and appropriate Lagrange multipliers µ0

k

(k = 1, 2, . . . , m) of the primal problem (6.3)–(6.6). The relationship between the
Lagrange multipliers λk of the problem (6.12)–(6.14) and the Lagrange multipliersµ0

k

of the problem (6.3)–(6.6), described by formula (6.27), can be derived by comparing
both problems and taking into account the transformation of the variables.

On the other hand, (6.28) provides a formula for computing an optimal solution
x0 of the primal problem (6.3)–(6.6) from the knowledge of an optimal solution δ0

of the dual problem (6.24) subject to (6.18), (6.19), and (6.21). System (6.28) can
be solved easily because by taking the logarithm of both sides of each equation, we
obtain a system of linear equations with variables ln xj (j = 1, 2, . . . , n).

The first duality theorem of geometric programming supposes that an optimal
solution for the primal problem exists. The following theorem provides a sufficient
condition for this hypothesis to be satisfied [9, pp. 120–121].

Theorem 6.3. If the primal problem (6.3)–(6.6) has a feasible solution, and if there is
a feasible solution δ∗ of the dual problem with positive components, then there exists
an optimal solution of the primal problem (6.3)–(6.6).

The reader may prove that the following corollary is valid.

Corollary. If the primal problem (6.3)–(6.6) has a feasible solution and if its dual
problem (6.24) subject to (6.18), (6.19), and (6.21) has an optimal solution δ0 with
strictly positive components, then all the forced constraints for the primal problem
are active at an optimal solution x0, that is,

gk(x0) = 1 (k = 1, 2, . . . , m).

6.3 Models of Geometric Programming in Economics

Most applications of geometric programming as a technique for solving nonlinear op-
timization problems can be found in engineering [6, 20]. Starting with the paper by
Sengupta and Portillo-Campbell [21] and the book by Nijkamp [16], geometric pro-
gramming has been used as an instrument of economic analysis. The well-known and
very often-used Cobb–Douglas production function is a posynomial. Therefore, mod-
els of production with these types of production functions, allowing continuous sub-
stitution between inputs, are the typical field for economic applications of geometric
programming. Regional economics [16, 7, 11], environmental economics [17, 1, 13],
marketing mix problems [4], capital budgeting problems [18], and manpower plan-
ning [15] are other fields of geometric programming applications in economics and
management science.

In this section, we present some economic models and show how geometric pro-
gramming can support the decision-making process and contribute to explanation of
economic phenomena.
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6.3.1 The Economic Lot Size Problem

In order to demonstrate the fundamentals and the workability of geometric program-
ming for economic analysis, we turn to the simplest model introduced in the first
section. The problem contains the minimization of the total variable cost described
by the primal function:

y = lT

2
x + rcx−1,

or

y = a1x + a2x
−1 where a1 = lT

2
and a2 = rc.

The corresponding dual problem becomes

maximize v(δ) =
(
a1

δ01

)δ01
(
a2

δ02

)δ02

subject to δ01 + δ02 = 1,

δ01 − δ02 = 0.

The dual variable δ01 is related to the first term of the primal objective function de-
scribing the total carrying cost, and the dual variable δ02 to the second part describing
the total setup cost. The primal problem consists of two terms (thereupon two dual
variables) and one primal variable; the degree of difficulty is zero. The dual problem
yields the unique optimal solution

δ0
01 = δ0

02 = 1

2
.

According to (6.17), the dual variable δ01 (δ02) gives us the proportion of the carrying
cost (setup cost) on the total variable cost. The optimal solution of the dual model
provides (as mentioned in Section 6.1) prior knowledge of the optimal cost distribu-
tion. Without knowing the optimal lot size—and independently of the coefficients
a1 and a2—at the optimal solution, one-half of the total cost will be attributed to the
carrying cost and half to the setup cost. Knowing this fact, we can easily determine
the optimal lot size by setting

a1x = a2x
−1,

from which the Harris–Anders form follows:

x0 =
√
a2

a1
=
√

2rc

lT
.

The same result yields the application of formula (6.26), where the optimal dual
objective function value is
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v(δ0) =
(
a1

1/2

)1/2 (
a2

1/2

)1/2

= √4a1a2 = √
2lT rc.

At the optimum, the value of the dual objective function must coincide with the value
of the primal function

y0 = a1x
0 + a2x

0−1 = lT

2

√
2rc

lT
+ rc

√
lT

2rc
= √

2lT rc.

There are some extended versions of the basic economic lot size problem formulated
as models of geometric programming in the literature. An economic order quantity
model with obsolescence cost and an inventory model with shortage cost as geometric
programming problems can be found in [10, pp. 688–689].

6.3.2 The Minimization of Cost

We again consider the producer’s problem (1.7). It is to find, for a particular output
level q∗ and with a given structure of input prices, what input levels would constitute
the cheapest way of producing this output and what would be the minimum cost.
This question can be answered for all possible levels of output and the minimum cost
would depend on the level of output to be produced.

Assuming that the technology is defined by the Cobb–Douglas production function
(for simplicity, but without loss of generality, with two inputs only), the solution
of model (1.9) will yield the cost function C(r, q), expressing minimum cost as a
function of input prices r and output level q. A slight modification of the constraint
in model (1.9) leads to the following geometric programming problem:

minimize
x1,x2

M(x) = r1x1 + r2x2

subject to
q∗

a
x−α

1 x
−β
2 � 1,

x1 > 0, x2 > 0.

(6.29)

Problem (6.29) can be solved very easily because of the zero degree of difficulty
(d = T − n− 1 = 3 − 2 − 1 = 0). It is obvious that this property is preserved also
for n > 2 inputs in the Cobb–Douglas production function.

The normality and orthogonality conditions are

δ01 + δ02 = 1,

δ01 − αδ11 = 0,

δ02 − βδ11 = 0.

We find that δ0
01 = α

α+β , δ0
02 = β

α+β , and δ0
11 = 1

α+β . Because λ0
1 = δ0

11 > 0, the
constraint must be tight at optimality; this is, of course, quite obvious since production
higher than the given level q∗ increases the cost. The more interesting result provides
the dual variables δ01 and δ02. According to (6.26), they express the proportion of the
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cost of the first and second inputs, respectively, to the minimum cost of producing
output level q∗. In other words, δ01 and δ02 determine the optimal cost structure. As
in the economic lot size problem—again without knowing the optimal input levels—
it follows from the above dual solution that the optimal cost structure is determined
only by the elasticity coefficients α and β of the Cobb–Douglas production and is
independent of the output level. It is a well-known result in microeconomic theory
that the expansion path generated by the Cobb–Douglas production function is linear:
Independently of the change of the output level, the structure of the input cost remains
constant.

Using the dual function at δ0,

v(δ0) =
(
r1

δ0
01

)δ0
01
(
r2

δ0
02

)δ0
02
(
q∗

aδ0
11

)δ0
11

δ0
11
δ0

11

= (α + β)
( r1
α

) α
α+β
(
r2

β

) β
α+β (q∗

a

) 1
α+β

,

(6.30)

and formula (6.28),

r1x
0
1 = δ0

01v(δ
0), r2x

0
2 = δ0

02v(δ
0),

we obtain the optimal input quantities, x0
i , as a function of input prices, and the output

level:

x0
1 =

(
αr2

βr1

) β
α+β (q∗

a

) 1
α+β

and

x0
2 =

(
βr1

αr2

) α
α+β (q∗

a

) 1
α+β

.

These functions are the conditional (on the level of output) input demand functions
and are homogeneous of degree zero in input prices. Thus given an output level, a
proportional increase or decrease in all input prices will leave unchanged all input
demands, and hence only relative prices matter.

The cost function is given by

C(r, q) = r1x
0
1 + r2x

0
2

= r
α

α+β
1 r

β
α+β

2

(
q∗

a

) 1
α+β
[(

α

β

) β
α+β +

(
β

α

) α
α+β
]
.

(6.31)

The reader can verify that at the optimum the values of the dual function (6.30) and
the cost function (6.31) (due to Theorem 6.2) coincide. Under constant returns to
scale, that is, α + β = 1, the cost function (6.31) becomes
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C(r, q) = rα1 r
1−α
2

q∗

a

[(
α

1 − α

)1−α
+
(

1 − α

α

)α]
= rα1 r

1−α
2

q∗

a
α−α(1 − α)α−1.

In a similar way, problem (1.10) can be analyzed. Since the output q is positive,
instead of maximization of q, we minimize q−1, and model (1.10) can be rewritten
as a geometric programming problem:

minimize q−1 = 1

a
x−α

1 x
−β
2

subject to
r1

M
x1 + r2

M
x2 � 1,

x1 > 0, x2 > 0.

(6.32)

It is again a problem with zero degree of difficulty. The dual problem is

maximize v(δ) =
(

1

aδ0

)δ0
(

r1

Mδ11

)δ11
(

r2

Mδ12

)δ12

λ1(δ)
λ1(δ)

subject to δ0 = 1,

−αδ0 + δ11 = 0,

−βδ0 + δ12 = 0,

δ11 � 0, δ12 � 0,

where λ1(δ) = δ11 + δ12. The dual solution is easy to find: δ0
0 = 1 (there is only one

term in the primal function), δ0
11 = α, and δ0

12 = β.
Using the dual function at δ0,

v(δ0) = 1

a

( r1
αM

)α ( r2

βM

)β
(α + β)(α+β),

and formula (6.28),

r1x
0
1 = δ0

11

λ0
1

, r2x
0
2 = δ0

12

λ0
1

,

the optimal input quantities x0
i will be obtained:

x0
1 = αM

(α + β)r1
and x0

2 = βM

(α + β)r2
.

The demand for input i is a decreasing function of its price ri and an increasing
function of the available budget M . The maximal output level is

q0 = 1

a

( r1
αM

)α ( r2

βM

)β
(α + β)(α+β),

which coincides with the value of the dual function v(δ0).



200 6 Geometric Programming

Looking at the dual variables δ0
11 and δ0

12, an interesting interpretation is offered.
Because δ0

11 = α and δ0
12 = β, they indicate the percentage increase of production

due to the increase of the first and second inputs, respectively, by 1%. Hence the
Lagrange multiplier λ0

1 = δ0
11 + δ0

12 = α + β; it can be interpreted as the scale
elasticity coefficient. Under constant returns to scale, it equals 1; under increasing
(decreasing) returns to scale, it is greater (smaller) than 1.

6.3.3 The Economic Interpretation of Dual Variables as Elasticity Coefficients

In the production model (6.32), the dual variables corresponding to terms in the
forced constraints were exactly equal to the elasticity coefficients of the underlying
Cobb–Douglas production function. Dual variables as elasticity coefficients can be
important indicators in economic analysis because they are without dimension and
therefore easily comparable. The question that now arises is whether such an in-
terpretation of dual variables is valid in general or specifically for the underlying
model.

Let us consider the following mathematical programming problem:

minimize g0(x)

subject to fk(x) =
Tk∑
t=1

fkt (x) � bk (k = 1, 2, . . . , m),

xj > 0 (j = 1, 2, . . . , n),

(6.33)

where g0(x) and fk(x) (k = 1, 2, . . . , m) are posynomials and bk (k = 1, 2, . . . , m)
are given positive real numbers. Problem (6.33) written as a geometric programming
problem has the form

minimize g0(x)

subject to gk(x) = fk(x)
bk

� 1 (k = 1, 2, . . . , m),

xj � 0 (j = 1, 2, . . . , n).

(6.34)

For the Lagrange multipliers u0
k (k = 1, 2, . . . , m) of problem (6.33), the following

holds (see (2.9)):

∂g0(x0(b))
∂bk

= −u0
k (k = 1, 2, . . . , m).

Under the same assumptions, the following property [12, pp. 67–68] can be proven
for the Lagrange multipliers µ0

k (k = 1, 2, . . . , m) of problem (6.34).

Theorem 6.4. If the derivation ∂g0(x0(b))
∂bk

exists, then it holds that

∂g0(x0(b))
∂bk
bk

= −µ0
k (k = 1, 2, . . . , m). (6.35)
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Hence the Lagrange multipliers µ0
k (k = 1, 2, . . . , m) express the change of the

value of the primal function due to a change of the constraint bk (k = 1, 2, . . . , m)
by 1%.

Substituting (6.35) for µ0
k in (6.27) yields

λk(δ
0) =

∂g0(x0(b))bk
∂bk

g0(x0)
=

∂go(x0(b))
g0(x0)

∂bk
bk

(k = 1, 2, . . . , m), (6.36)

which is exactly the definition of elasticity. Hence λk(δ0) (k = 1, 2, . . . , m) indicates
the percentage change of the value of the primal function when the component bk
(k = 1, 2, . . . , m) changes by 1%.

It follows from (6.28) that

δ0
kt = λk(δ

0)cktx
akt1
1 x

akt2
2 · · · xaktnn (k = 1, 2, . . . , m; t = 1, 2, . . . , Tk). (6.37)

For abbreviation, we denote

wkt = cktx
akt1
1 x

akt2
2 · · · xaktnn (k = 1, 2, . . . , m; t = 1, 2, . . . , Tk)

and substitute (6.36) for λk(δ0) in (6.37):

δ0
kt =

∂g0(x0)

g0(x0)

∂bk
bk

wkt =
∂g0(x0)

g0(x0)

∂bk
bk

fkt

bk
=

∂g0(x0)

g0(x0)

∂fk1+···+∂fkt+···+∂fkTk
bk

fkt

bk
.

Suppose that only one term in fk will change and all others remain constant. Then
we obtain

δ0
kt =

∂g0(x0)

g0(x0)

∂fkt
fkt

(k = 1, 2, . . . , m; t = 1, 2, . . . , Tk),

or the elasticity of the value of the primal function with respect to the term t in
the inequality constraint k. Hence the dual variables δ0

kt (t = 1, 2, . . . , Tk; k =
1, 2, . . . , m) indicate the percentage change of the value of the primal function when
the corresponding term in the forced constraints changes by 1% (and all other terms
remain constant). Therefore, we interpret the dual variables δ0

kt (t = 1, 2, . . . , Tk; k =
1, 2, . . . , m) in geometric programming as elasticity coefficients in comparison with
the interpretation of dual variables as marginal coefficients in linear programming.

6.3.4 An Open Input–Output Model with Continuous Substitution between
Primary Factors

In Section 1.2.8, the basic input–output was extended by substitution possibilities for
labor and capital inputs according to a Cobb–Douglas production function for each
sector of the economy. Under the objective of labor input minimization and perfect
transferability of capital between the particular sectors of the economy, the following
geometric programming problem arises:



202 6 Geometric Programming

minimize L =
n∑
j=1

Lj (1.25)

subject to the forced constraints∑
j �=i

dijL
αj
j K

βj
j L

−αi
i K

−βi
i + ciL

−αi
i K

−βi
i � 1 (i = 1, 2, . . . , n), (1.22)

where

dij = aij εj

(1 − aii)εi
� 0 and ci = yi

(1 − aii)εi
> 0 (i, j = 1, 2, . . . , n),

due to the standard assumption aii < 1 and the positivity of the final demand,

capital constraint
1

K

n∑
j=1

Kj � 1, (1.23′)

and the natural constraints

Lj > 0, Kj > 0 (j = 1, 2, . . . , n). (1.26)

The conditions in (1.22) imply that the total sum of the proportions of the deliveries
from sector i (into all other sectors and to the final demand) to the net production of
sector i cannot be greater than one. In other words, the gross production of sector
i must be sufficient to meet the deliveries of this sector to all other sectors of the
economy and to the exogenously given final demand.

Condition (1.23′) expresses the constraint for the disposable capital input in the
economy that can be allocated between the particular sectors.

The solution of this geometric programming model yields—for exogenously given
final demand—the optimal allocation of labor and capital to the particular sectors of
the economy and thereupon, due to the Cobb–Douglas production function (1.21),
the optimal gross production for each sector of the economy.

To get deeper insight into the interdependencies described by model (1.25) subject
to (1.22), (1.23′), and (1.26), we turn to the corresponding dual model. For simplicity,
but without loss of generality, let us reduce the number of sectors to only two sectors
(n = 2). In this case, the dual model takes the form

maximize v(δ) =
(

1

δ01

)δ01
(

1

δ02

)δ02
(
d12

δ11

)δ11
(
c1

δ12

)δ12

· · ·
(
d21

δ21

)δ21
(
c2

δ22

)δ22
(
K1
K

δ31

)δ31
(
K2
K

δ32

)δ32

· · · λ1(δ)
λ1(δ)λ2(δ)

λ2(δ)λ3(δ)
λ3(δ),

where
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λk(δ) =
Tk∑
t=1

δkt for k = 1, 2, 3,

subject to δ01 � 0, δ02 � 0, . . . , δ32 � 0,

δ01 + δ02 = 1,

δ01 − α1δ11 − α1δ12 + α1δ21 = 0,

δ02 + α2δ11 − α2δ21 − α2δ22 = 0,

−β1δ11 − β1δ12 + β1δ21 + δ31 = 0,

β2δ11 − β2δ21 − β2δ22 + δ32 = 0,

where the first index at δkt relates to the constraint (or to the primal function) and
the second to the term in this constraint (or in the primal function). The number of
dual variables is equal to the number of terms in the primal problem (for two sectors,
there are eight), and to every primal variable there corresponds one orthogonality
condition. Thereupon the degree of difficulty is 3 (d = T − (n+ 1)).

The economic interpretation of the dual variables δ01 and δ02 corresponding to
the term in the primal function follows immediately from (6.26). They give us the
proportion of labor input (employment) of sector one and two, respectively, to the
total labor input (employment) in the economy.

According to the interpretation of dual variables δkt (k = 1, 2, . . . , m; t =
1, 2, . . . , Tk) as elasticity coefficients, the variable λ1(δ) indicates the percentage
increase of total employment due to increase of net production in sector one by 1%.
This effect can be decomposed in two parts (in the general case of n sectors to n
parts): δ0

11 describes the percentage increase of total employment due to increase of
the deliveries of sector one to sector two by 1%; δ0

12 indicates the percentage increase
of total employment due to increase of the final demand of sector one by 1%. In a
similar way, the dual variables λ2(δ

0) and δ0
21, δ0

22 can be interpreted.
The dual variable λ3(δ

0) describes the substitution effect; it indicates the per-
centage decrease of total employment when the disposable capital stock increases
by 1%.

It is worthwhile to note that either all δ0
kt for given k are equal to zero or all δ0

kt

are positive. If λk(δ0) = 0 for a given k, then all δ0
kt must be zero because of the

nonnegativity condition for dual variables δ0
kt . If δ0

kt = 0 for given k and one t , then
it follows from (6.37) that λk(δ0) = 0. Conversely, λk(δ0) > 0 implies δ0

kt > 0 for
all t . From the economic interpretation point of view, this result follows from the
following property of the Cobb–Douglas production function:

F(L, 0) = 0, F (0,K) = 0.

In other words, both production factors are essential, which coincides with the positiv-
ity or natural constraints for primal variables in the model of geometric programming.

One of the most important questions in the framework of input–output analysis
is that of how changes in the exogenously given final demand influence gross pro-
duction and consequently the employment in the economy. (For example, what are
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the production and employment effects for the Austrian economy due to increasing
international trade with the transforming Central European countries?) Under the
assumption of the Leontief production function with fixed input coefficients, the an-
swer is given by (1.15)—extended by labor input coefficients—and can be found in
every textbook on input–output analysis (see, e.g., [14]). How do we estimate the
employment effect under the assumption of substitution possibilities between labor
and capital described by the Cobb–Douglas production function?

Applying the technique developed by Beightler and Phillips [6] called the geomet-
ric programming inflationary rule, model (1.25) subject to (1.22), (1.23′), and (1.26)
provides an answer to the question above.

Suppose that the final demand y will be increased, and we have a new vector y∗ (all
other parameters remain unchanged). This implies new coefficients c∗1, c∗2, . . . , c∗n in
the constraints (1.22). How will the value of primal function or total employment in
the economy be changed?

Due to Theorem 6.2, it holds that

L0 = v(δ0) =
(

1

δ0
01

)δ0
01
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δ0
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)δ0
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· · ·
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· · ·
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· · ·
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· · ·
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nn

)δ0
nn

(
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K
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n+1,1

)δ0
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· · ·
(

Kn
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· · · λn(δ0)λn(δ
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where L0 is the optimal value of the primal function (the optimal level of total em-
ployment) and v(δ0) is the optimal value of the dual function corresponding to the
original final demand y. The vector of dual variables δ remains feasible although the
final demand, and consequently the coefficients ci (i = 1, 2, . . . , n), will change.

From the main lemma of geometric programming, it follows that

L∗ � v∗(δ0), (6.38)

where L∗ denotes the new level of total employment and v∗(δ0) is the value of dual
function corresponding to the solution δ0 of the dual problem, but with the new
coefficients c∗i (i = 1, 2, . . . , n) in the dual function.

Dividing both sides of (6.38) by L0, we obtain

L∗

L0 �
(
c∗1
c1

)δ0
1n
(
c∗2
c2

)δ0
2n · · ·

(
c∗n
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)δ0
nn
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)δ0
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, (6.39)

or

L∗ � L0
(
y∗

1

y1

)δ0
1n
(
y∗

2

y2

)δ0
2n · · ·

(
y∗
n

yn

)δ0
nn

. (6.40)
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The right-hand side of the form (6.39) provides a lower bound on the relative increase
of employment due to the increase of the final demand, or in other words, a lower
bound on the nonlinear employment multiplier.

Using the form (6.40)—without estimating the new solution for the primal and
dual model—we get a lower bound for the new level of employment corresponding
to the new vector of final demand.

Another interesting aspect of the model under consideration is related to the trans-
ferability of capital between the particular sectors of the economy. As mentioned in
Section 1.2.8, the opposite case to the perfect transferability postulated in model (1.25)
subject to (1.22), (1.23′), and (1.26) is a model with constraints for capital stock in
each sector of the economy:

Kj � Kj (j = 1, 2, . . . , n), (1.24)

where Kj indicates the disposable capital stock in sector j .
The question that arises now is, under what conditions are the solution of the

model with perfect transferability (constraint (1.23)) and the solution of the model
with nontransferability of capital (constraints (1.24)) the same? To find an answer,
we will compare the following geometric programming problems:

minimize g0(x)

subject to gk(x) � 1 (k = 1, 2, . . . , m),

gm+i (x) � 1 (i = 1, 2, . . . , l),

x � 0

(A)

and

minimize g0(x)

subject to gk(x) � 1 (k = 1, 2, . . . , m),
l∑
i=1

γigm+i (x) � 1,

x � 0,

(B)

where gk(x) =∑Tk
t=1ckt

∏n
j=1x

aktj
j (k = 0, 1, . . . , m), gm+1(x) = cm+i

∏n
j=1x

am+ij
j

(i = 1, 2, . . . , l)with ckt > 0 (t = 1, 2, . . . , Tk; k = 0, 1, 2, . . . , m,m+1, . . . , m+
l), γi � 0 (i = 1, 2, . . . , l), and

∑l
i=1 γi = 1. The coefficients γi (i = 1, 2, . . . , l)

are called surrogate multipliers [6].
Let us denote the optimal primal solution of problem (A) by x0

A and the optimal
dual solution by δ0

A, and denote the optimal primal solution of problem (B) by x0
B and

the optimal dual solution by δ0
B. Obviously, problem (A) corresponds to the above-

formulated input–output model under nontransferability of capital, and problem (B)
to the model with perfect transferability of capital across the sectors of the economy.
It is left to the reader to prove the following result.
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Proposition 6.1. If the surrogate multipliers γi (i = 1, 2, . . . , l) are proportional
to the elasticity coefficients δ0

m+i,A, i.e., γi = bδ0
m+i,A for certain b > 0 and i =

1, 2, . . . , l, then models (A) and (B) yield the same optimal allocation of labor and
capital to the particular sectors of the economy.

6.4 Transformation of Some Optimization Problems into
Standard Geometric Programming Models

Many optimization problems can be transformed into standard geometric program-
ming problems, even though they are not explicitly expressed in posynomial form.

Let us return to the input–output model that allows primary factor substitution,
as described in Section 6.3.4. However, instead of the Cobb–Douglas production
function, the more general-type so-called constant elasticity of substitution (CES)
production function [3] is postulated:

xj = εj {(1 − βj )L
−ρj
j + βjK

−ρj
j }−

1
ρj (j = 1, 2, . . . , n), (6.41)

where εj is an efficiency parameter, βj (0 < βj < 1) is a distribution parameter, and
ρj characterizes the elasticity of factor substitution.1 The elasticity of substitution
between the factors capital and labor is defined as

σj = d log(Kj |Lj )
d logRj

= Lj

Kj
Rj
d(Kj |Lj )
dRj

(j = 1, 2, . . . , n),

whereRj = − dKj
dLj

is the marginal rate of substitution. The parameterρj is interpreted
in terms of the constant elasticity of substitution σj :

σj = 1

1 + ρj
, or ρj = 1

σj
− 1.

Two limiting cases of the CES function arise. As ρj → ∞ (and σj → 0), there
ceases to be any substitution between factors and the production function becomes
one of fixed coefficients. As ρj → 0 (and σj → 1), the function is replaced by the
Cobb–Douglas form.

Taking the CES production function (6.41) instead of the Cobb–Douglas func-
tion (1.21) into the constraints (1.17), we get

n∑
j=1

(δij − aij )εj {(1 − βj )L
−ρj
j + βjK

−ρj
j }−

1
ρj − yi � 0 (i = 1, 2, . . . , n).

This system of inequalities can be written as

1 An input–output model with a CES production function can be found in [22, pp. 138–164].
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n∑
j �=i

dij {(1 − βj )L
−ρj
j + βjK

−ρj
j }−

1
ρj {(1 − βi)L

−ρi
i + βiK

−ρi
i } 1

ρi

+ yi

(1 − aii)εi
{(1 − βi)L

−ρi
i + βiK

−ρi
i } 1

ρi � 1 (i = 1, 2, . . . , n),

(6.42)

where dij = aij εj
(1−aii )εi � 0 (i, j = 1, 2, . . . , n).

We introduce the constraint

{(1 − βj )L
−ρj
j + βjK

−ρj
j }N−1

j � 1 (j = 1, 2, . . . , n), (6.43)

where Nj is an additional independent variable. Then the constraints (6.42) are
rewritten as

d12N
− 1
ρ2

2 N

1
ρ1

1 + · · · + d1nN
− 1
ρn

n N

1
ρ1

1 + y1

(1 − a11)ε1
N

1
ρ1

1 � 1,

...
...

...

dn1N
− 1
ρ1

1 N
1
ρn
n + · · · + dnn−1N

1
ρn−1
n−1 N

1
ρn
n + yn

(1 − ann)εn
N

1
ρn
n � 1.

(6.44)

Hence we have transformed the problem of minimizing the labor input (as described
by (1.25)) subject to the constraints (6.42), (1.23′), and (1.26) into the standard geo-
metric programming problem

minimize L =
n∑
j=1

Lj

subject to the forced constraints (6.43)–(6.44) and (1.23′) and the natural constraints

Lj > 0, Kj > 0, Nj > 0 (j = 1, 2, . . . , n).

The reader can verify that for ρj > 0 (or σj < 1), the constraints (6.43) at the op-
timum are fulfilled as equalities (due to the objective function (1.25)), and thereupon
the equivalence of the constraints (6.42) and (6.44) is ensured. From an economic
interpretation point of view, the elasticity of substitution σj > 1 (−1 < ρj < 0)
implies that output per capita increases indefinitely as capital used (relative to labor)
increases. On the other hand, as the use of labor increases (

Kj
Lj

→ 0), output per

capita declines to the limit (1−βj )−1/ρj [2, p. 54]. There is also some empirical evi-
dence (see, e.g., [3, 5, 19]) confirming the assumption of elasticity of substitution
below one.

As a second problem that can be transformed into standard geometric program-
ming model, let us consider the marketing mix problem for a large brewery described
by Balachandran and Gensch [4]. In this paper, the authors analyze the question of
how the different marketing decision variables (price, advertising expenditure, the
number of salesmen, etc.) should be combined in order to maximize sales. For this
purpose, Balachandran and Gensch [4, pp. 163–168] estimated the function for sales,
denoted by x0, as
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sales(x0) = 16.212 + 3.937A20.91
t−1B

1.31
t

− 0.0021A1−0.95
t−1 P−0.68

t T −0.84
t C−0.28

t − 0.00305A−0.18
ct

Q1.76
t

− 0.0046I−0.9
t S−1.1

t−1 − 0.0053P−0.76
t D−1.12

t ,

(6.45)

with the following interpretation of the marketing decision variables:

• The relative advertising expenditure At is defined as the ratio of dollars spent on
advertising by the particular firm during a given time period to the total industry
advertising effort in dollars spent. A1t represents advertising emphasizing price,
and A2t represents “mood” or image advertising.

• The relative in-store promotion It is defined as the ratio of dollars spent on in-store
promotion by the particular firm during a given time period (e.g., displays, signs,
and small customer gifts) to the total industries’ in-store effort in dollars spent.

• The relative price Pt is the retail price of the firm’s product divided by the average
price charged by competing firms.

• The relative price differential Ct is the dollar change in retail price from one time
period to the next divided by the average retail price change in the industry.

• Tt denotes special discounts a firm allows its wholesalers and retailers, and St
denotes the total salary and commissions of salesmen.

• Dt represents the availability of the firm’s product and is defined as the percentage
of weighted (by the quantity of the product sold) retail outlets that carried the
firm’s brand.

• The last three marketing variables are relative packaging (Bt ), relative quality (Qt ),
and the age composition of the population (Act ).

The brewery will maximize total beer sales (x0) under some budget constraints
that are imposed by the management on the marketing mix variables. Without going
into details (see [4, p. 169]), we can summarize these constraints as

gk(x) � 1 (k = 1, 2, . . . , m), (6.46)

where gk(x) are polynomials.
Instead of maximizing the sales function (6.45), we minimize

−x0 = f (x)− u(x),

where

f (x) = 0.0021A1−0.95
t−1 P−0.68

t T −0.84
t C−0.28

t + 0.0035A−0.18
ct

Q1.76
t

+ 0.0046I−0.9
t S

−1,1
t−1 + 0.0053P−0.76

t D−1.12
t

and

u(x) = 3.937A20.91
t−1B

1.31
t .
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Suppose that the maximum value of x0 is known to be positive. In this case, the
constraint

u(x)− f (x) � x0,

or

x0 + f (x)− u(x) � 0,

is feasible. Then the maximization of function (6.45) subject to the constraints (6.46)
is equivalent to the following geometric programming problem:

minimize x−1
0

subject to x0u(x)−1 + f (x)u(x)−1 � 1,

gk(x) � 1 (k = 1, 2, . . . , m),

x0 > 0, x > 0,

where x denotes the vector of the marketing decision variables described above.
In this way, a profit maximization problem with f (x) as a cost function and

u(x) as a revenue function (supposed with only one term) can be reformulated into a
geometric programming model.

As shown by Duffin, Peterson, and Zener [9, pp. 94–97], optimization problems
with functions of the form

G(x) =
∑
i

∏
j

[gij (x)]aij
[1 − pij (x)]bij

,

where both the functions gij (x) and pij (x) are posynomials and the constants aij
and bij are positive, can be reduced to geometric programming. These generalized
posynomials G can appear both as the function to be minimized and as functions in
the forced constraints. For the minimization problem, it is assumed that the functions
1 − pij (x) are positive.

In concluding this section, we should mention that the additional primal variables
(Nj in the input–output model and x0 in the marketing mix problem) used to trans-
form these problems to geometric programming models have a meaningful economic
interpretation.
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Part II

Multiobjective Optimization

Principeremo col definire un termine di ciu è comodo fare uso per scansare
lungaggini. Diremo che i componenti di una collettività godono, in una
certa posizione, del massimo di ofelimità, quanto è impossibile allontanarsi
pochissimo da quella posizione giovando, o nuocendo, a tutti i componenti
la collettività; ogni piccolissimo spostamento da quella posizione avendo
necessariamente per effetto di giovare a parte dei componenti la collettivitàe
di nuocere ad altri.

Wilfredo Pareto
1906
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Fundamentals of Multiobjective Optimization

To manage a business is to balance a variety of needs and goals.

Milan Zelený (1982)

In all of the mathematical programming problems considered thus far, we have as-
sumed that one particular objective function, such as the maximization of profit or
minimization of cost, was prespecified by some decision maker. In general, however,
there exist a large variety of objectives—including maximizing profit, revenue, and
market share; increasing environmental quality; etc. Zeleny [89, p. 1] states that
“multiple objectives are all around us.” There are some empirical studies supporting
this hypothesis. Smith, Boyes, and Peseau [70] found that for 557 large U.S. firms,
sales revenue and profits were objectives followed by the firms. Beedles [6] used time
series data for the time period 1929–1973 for three large firms and showed that the
firms pursued sales revenue, profits, and stock price as their objectives. The relevance
of different objectives in the relatively wide set of a firm’s objectives was analyzed by
Fritz [26]. The 1994 Nobel Prize winner for economics, Reinhard Selten, referring
to the new developments in this field, told the Austrian newspaper Die Presse that
“At the firms it is still more necessary to take into account that they are faced with
multiple objectives” (July 28, 2001; translated from German).

A wide array of theoretical and empirical contributions to multiple-objective deci-
sion analysis can be found in the literature of the past three decades. (For a very good
survey of the state of art, see Gal, Stewart, and Hanne [27]). The book by Ballestero
and Romero [3] makes reference to a bibliographical survey by Steuer, Gardiner,
and Gray [73] that reveals more than 1,200 reviewed journal articles published on
multiple-criteria decision making just between 1987 and 1992. The majority of appli-
cations are on a microeconomic level (project and plan evaluation, capital budgeting,
financial and investment planning, marketing policy, etc.). But macroeconomic policy
analysis also has a long history of treating multiple goals.

An excellent survey on the mathematical development of multicriteria optimiza-
tion, or the vector maximum problem, is provided by Stadler [71]. This review
describes the development of the subject from 1776 to 1960.

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
Springer Optimization and Its Applications 36, DOI 10.1007/978-0-387-89552-9_7,  
© Springer Science+Business Media, LLC 2010 
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That starting point of 1776 coincides exactly with the development of utility
theory as given by Stigler [74]. In Stadler’s view, “The mathematical foundation
of the consideration of N different desiderata in an optimization process have their
origin in economics, in particular in the development of welfare theory and utility
theory” [71, p. 16].

This chapter is organized as follows: In Section 7.1, we present some examples
of multiobjective programming models in economics. The extension of the Kuhn–
Tucker conditions to a vector minimization problem is given in Section 7.2, and
Section 7.3 deals with duality theory in multiobjective optimization. The behavior
of the firm facing a bicriteria objective under regulatory constraint is analyzed in
Section 7.4.

7.1 Examples of Multiobjective Programming Models in
Economics

In the past three decades, multiple-objective decision analysis has become one of
the most promising methodologies; it enhances the quality of decision making by
providing deeper insight into the structure of the modeled system and the trade-offs
that have to be made with respect to the objectives—an operational framework for
actual decision making.

Let us start with some examples from different fields of economics.

7.1.1 Welfare Economics

Welfare economics is concerned with the conditions that determine the total eco-
nomic welfare of a society. In the broadest sense, the welfare of a society depends on
the levels of satisfaction of all of its individuals or social groups. But almost every
alternative economic state to be judged by welfare economists will have favorable
effects on some people (or social groups) and unfavorable effects on others. This im-
plies interpersonal comparability of utility. But there is no obvious way to determine
whether individualA or individualB derives more satisfaction from the consumption
of a given bundle of goods. In order to dispense with interpersonal comparability of
utility, Lange [44] proposed defining the social welfare not as the sum of the utilities
of the individuals (a scalar quantity) but as a vector. The utilities of the individuals
are the components of this vector. Let there be n individuals or social groups in the
community, and let ui be the utility of the ith individual. Total welfare is then the
vector

u = (u1, u2, . . . , un).

Each component of u measures the utility or welfare of the corresponding individual
or social group.

Let the utility of each individual depend on the amount of commodities in his
possession. Denoting by xi1, xi2, . . . , xim the quantities of m commodities in the
possession of the ith individual, his utility (function) is
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ui = ui(xi1, xi2, . . . , xim).

The total amount of the j th commodity is then given by

xj =
n∑
i=1

xij (j = 1, 2, . . . , m).

These amounts depend on technological transformation, described by a function
f (x1, x2, . . . , xm) = 0. The problem is to maximize total welfare subject to the
constraint of the transformation function.

Without reference to Pareto, Lange [44, p. 216] defines an optimum as follows:
“A maximum of total welfare occurs when conditions cannot be changed so as to
increase the vector u, i.e., when it is impossible to increase the utility of any person
without decreasing that of others.”

Thereupon he formulated the following optimization problem for the ith individual
(i = 1, 2, . . . , n):

maximize ui(xi1, xi2, . . . , xim) (7.1)

subject to uk(xk1, xk2, . . . , xkn) = const (k = 1, . . . , i − 1, i + 1, . . . , n),
(7.2)

xj =
n∑
i=1

xij (j = 1, 2, . . . , m), (7.3)

f (x1, x2, . . . , xm) = 0. (7.4)

Lange [44, pp. 216–217] notes that this is equivalent to maximizing the Lagrange
function

L(x,µ, ν) =
n∑
i=1

αiui(xi )+
m∑
j=1

µj

(
n∑
i=1

xij − xj

)
+ νf (x1, x2, . . . , xm).

Besides the technological transformation (7.4), an optimal solution of the prob-
lem (7.1)–(7.4) is determined by the constants on the right-hand side of (7.2). As
indicated by Lange [44], it follows from the maximization of the individuals’ utili-
ties that these constants are uniquely related to the money incomes of the respective
individuals:

maximize ui(xi1, xi2, . . . , xim)

subject to
m∑
j=1

pjxij = Mi,

whereMi is the income of the ith individual and pj is the price of the j th commodity.
The commodity prices can be determined from the equalities of demand and supply
of each commodity, but the income Mi remains arbitrary. Therefore, the problem
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of determining the constants on the right-hand side of (7.2) is reduced to that of
determining the distribution of incomes.

One way of dealing with this problem, as indicated by Lange [44], is to establish
a social valuation of the distribution of commodities or incomes between the indi-
viduals, which can be expressed in the form of a scalar function of the vector u, i.e.,
W(u). The new problem is now

maximize W(u1, u2, . . . , un)

subject to (7.3) and (7.4).
This model of an exchange economy can easily be extended to a general equilib-

rium model for a competitive economy. Denote by x̄i an initial endowment of the
ith consumer (x̄ij > 0 for j = 1, 2, . . . , m) and by yk a production vector of the kth
firm (k = 1, 2, . . . , r), whose element ykj > 0 (< 0) is the output (input) of the j th
good. Let Yk be the possible set of yk , i.e., the set of yk that satisfies the restriction on
production Fk(yk) � 0. The distribution of incomes is described by λik , indicating
the proportion of profit of the kth firm distributed to the ith consumer.

An equilibrium point under perfect competition is defined as follows [56, pp. 92–
93].

Definition 7.1. The following are the conditions of an equilibrium point (xi , yk,p):

(a) Equalities of demand and supply for nonfree goods:

n∑
i=1

xij −
r∑
k=1

ykj −
n∑
i=1

x̄ij � 0,

pj

(
n∑
i=1

xij −
r∑
k=1

ykj −
n∑
i=1

x̄ij

)
= 0 (j = 1, 2, . . . , m).

(b) The equilibrium of consumers: xi is a maximum point of ui(xi ) subject to

m∑
j=1

pjxij �
m∑
j=1

pj x̄ij + max

⎡⎣0,
r∑
k=1

λkj

m∑
j=1

pjykj

⎤⎦ ≡ Mi (i = 1, 2, . . . , n).

(c) The equilibrium of firms: yk is a maximum of
∑m
j=1 pjykj subject to

Fk(yk) � 0 (yk ∈ Yk) (k = 1, 2, . . . , r).

A welfare maximum is defined as follows.

Definition 7.2. Consider a social welfare function as the weighted sum of utility
functions

∑n
i=1 αiui(xi ) with weights αi > 0 (i = 1, 2, . . . , n). We call a point

(xi , yk) that maximizes it, subject to the condition of no excess of demand over supply,∑n
i=1 xij �

∑n
i=1 x̄ij +∑r

k=1 ykj for j = 1, 2, . . . , m, and production subject to the
restriction on Fk(yk) � 0 (k = 1, 2, . . . , r), a welfare maximum point.
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Then under specific—and, from the economic interpretation viewpoint, widely
used—assumptions on the utility function ui(xi ) and production restrictions, Negishi
[56] proved that a competitive equilibrium is a welfare maximum point with the
weight of a consumer that is equal to the reciprocal value of equilibrium marginal
utility of income.

The main problem in the above-described model of welfare economics is the
formulation of a social welfare function (SWF). The discussion of the welfare criteria
for choosing among efficient allocations of resources, in other words between different
vectors u, moves between the goals of efficiency and equity.

The first pole—maximum efficiency—is represented by utilitarian SWF, for which
the society’s welfare is equal to the sum of utilities of the different individuals or social
groups. This concept implies that, according to Lange [44], the so-called marginal
social significance of the ith individual,Wi = ∂W

∂ui
, is the same for each individual. In

the other words, an increase in the welfare of a rich person by one unit has the same
social value as an increase of the welfare of a poor person by one unit. This type of
SWF can provide very unequal allocations of wealth between the individuals.

The second type of SWF was first posed by the philosopher John Rawls [61]. He
asserts that members of society would choose to depart from perfect equality only on
the condition that the worst-off person under an unequal distribution of utilities would
actually be better off than under equality. In other words, for a Rawlsian SWF, the
welfare of the society depends on the utility of only the poorest or worst-off individual
or social group. The use of this kind of SWF will favor the maximum equity, but it can
provide poor aggregate performance in terms of overall social welfare. The Rawlsian
criterion suggests that many efficient allocations may not be socially desirable and
that societies may choose equality even at considerable efficiency cost.

In order to provide a compromise between efficiency and equity, Romero [64]
proposed a general model in which the views underlying both the utilitarian and
the Rawlsian criteria are taken into account simultaneously. The following no-
tation is used: x = (x1, x2, . . . , xm) denotes a vector of policy instruments,
b = (b1, b2, . . . , bz) is a vector of model parameters, and u = (u1, u2, . . . , um) =
(h1(x,b), h2(x,b), . . . , hn(x,b)) = h(x,b) measures the policy outcome for the
corresponding individual or social group. The utility possibility frontier, or the fea-
sible domain of Pareto-efficient policies, is described by T (u1, u2, . . . , un) = k, and
the social welfare function by W(h(x,b)). The utilitarian SWF then takes the form

WU(h(x,b)) =
n∑
i=1

hi(x,b),

and the Rawlsian SWF is represented by

WR(h(x,b)) = Min
i

[hi(x,b)].

The model proposed by Romero [64] is the following multiobjective optimization
problem:
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maximize WU(h(x,b))

maximize WR(h(x,b))

subject to T (u1, u2, . . . , un) = k.

7.1.2 Quantitative Economic Policy

As already mentioned, the treatment of multiple goals has been used in macroeco-
nomic policy for a long time. Starting with Frisch [21, 22, 23], Tinbergen [81, 82]
(both Nobel laureates for economics in 1969), Klein [40] (Nobel laureate for eco-
nomics in 1980), and Theil [79], quantitative economic policy analysis, in which
multiple objectives are increasingly integrated, was developed. By “economic pol-
icy,” certain acts of economic behavior are indicated. In its broadest sense, therefore,
the phrase includes the entire subject matter of economic theory. This is particularly
true with regard to the “economic policy” of individuals or firms. This economic
policy is directed toward the maximization of the ordinary ophelimity functions. In
a narrower sense, we may restrict the meaning of “economic policy” to the behavior
of organized groups, such as trade unions, agricultural or industrial organizations,
etc. Here some collective ophelimity function will be the object to be maximized.
Despite this broad definition, Tinbergen himself and also the majority of later authors
restricted themselves to a “discussion of government economic policy.” In quantita-
tive economic policy, which leaves the structure and the organization of the economy
unchanged, four types of variables are distinguished:

• Data are variables in some sense exogenous to the economic system considered.
Their values or changes are given.

• Target variables represent the state of the economic system, and they are relevant to
the general well-being (e.g., real national income, level of employment, or balance
of payments). The decision maker is primarily interested in the values of these
variables.

• Instruments, or political parameters, are variables that the decision maker can
determine, and they are the tools through which the government can influence the
economy.

• Irrelevant variables are all the variables “that, though indispensable in a true picture
of the economy considered, are not considered interesting for the economic policy
studied” [83, pp. 7–8].

In the so-called fixed-target approach [81, 83], the decision maker has to specify
a priori the desired values for the targets, and then the values for the instruments can
be derived from the economic model solving the system of linear equations. The
mathematical conditions for the existence of solution are the well-known “law” of
Tinbergen: In a linear system of independent equations the number of target variables
should be equal to the number of instruments. In the general case in which there are
more instruments than targets, the system has, in principle, infinite solutions, and
then we can find one solution maximizing (however defined) welfare function. “And
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it is only the consequence of our method to replace the maximum problem by fixed
targets” [83, p. 38].

Starting with the papers by Frisch [23] and van Eijk and Sandee [16], a real pref-
erence function that should measure social welfare was introduced. The preference
function by Theil [80] is defined as

(y − y∗)′G1(y − y∗)+ (z − z∗)′G2(z − z∗), (7.5)

where y is an m-dimensional vector of the target variables, y∗ is an m-dimensional
vector of the desired (or reference) values for the target variables, z is ann-dimensional
vector of the instruments, z∗ is an n-dimensional vector of the desired values for
the instruments, and G1 and G2 are (m × m) and (n × n) matrices of preference
weights. In most cases, G1 and G2 are supposed to be diagonal so that there are
no cross-effects among deviations from desired values. The cost function (7.5) is
then minimized subject to the restrictions implied by the econometric model. The
particular version of this type of model is the linear-quadratic model. The explicitly
specified preference function to be minimized is quadratic in the target and instrument
variables, and the constraints are linear in these variables. If the econometric model
contains dynamic restrictions, the economic policy model leads to the optimal control
model, which is very often used, especially for deriving optimal stabilization problems
(see [18, 13, 20, 31, 15, 60, 30, 55] and numerous papers, especially those published
in the Journal of Economic Dynamics and Control).

The main source of criticism of the cost function (7.5) is related to its symmetry,
in which positive and negative deviations are equally penalized.

Despite rapid development in this field, the main difficulty of the aforementioned
approach to practical decision making is the specification of a scalar-valued pref-
erence function. Therefore, several authors suggested the use of modern methods
of interactive multiobjective programming (see [86, 85, 9, 10]). For this approach
to econometric decision models no—ex ante–explicitly specified scalar-valued ob-
jective function is needed. Instead, the preference structure of the decision maker is
revealed by an interactive question–answer procedure. Gruber [30, p. 1] expressed the
main implication of the interactive vector optimization procedures by a variation on
a theme by Leontief [47] as follows: “In econometric decision models, use observed
preferences of the decision maker instead of theoretically assumed (hypothetical,
‘plausible’) preferences.”

7.1.3 Optimal Monetary Policy

In the discussion of a monetary policy strategy lies the focus on flexible inflation
targeting [75, 76]. This objective has been adopted by the central banks of New
Zealand, the UK, Sweden, and other countries in the last decade [45]. Among the
academic researchers, an alternative objective to flexible inflation targeting, namely,
nominal income targeting, is intensely discussed (see, for instance, [19, 33, 52]).

According to Frisch and Staudinger [25], two new arguments provide support for
further research into nominal income targeting or for an optimal monetary policy that
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takes into account movements in inflation and output, the two strategic variables of the
central bank. First, the European Central Bank (ECB) announced a reference money
supply growth of 4.5%, calculated as a sum of an inflation target, and a forecasted
real output growth rate of 2.5%. The growth rate of nominal income is then the sum
of the money supply growth rate and the change in the velocity of money. It is also
given as the sum of the inflation rate and the growth rate of the real GDP. Second, due
to the apparent overprediction of inflation and underprediction of real output growth
in the U.S. economy, McCallum [51] suggested, instead of uncertain estimates of the
output gap, using a nominal income growth as a strategic variable for a monetary
policy.

Relying on Frisch and Staudinger [25] and on contributions by Calvo [12],
Roberts [63], and McCallum [51], the so-called new Keynesian model will be used
to analyze the policy of the central bank taking aim at two objectives, hitting the
inflation and output gap targets. The model consists of a forward-looking Phillips
curve in the form

�t = Et�t+1 + axt + εt (7.6)

and a forward-looking “investment = saving” (IS) curve,

xt = Etxt+1 − b(it − Et�t+1)+ ηt . (7.7)

The Phillips curve relates the inflation rate of the current period, denoted by �t ,
positively to the output gap xt = yt − yn of the current period. Et�t+1 is the
expected inflation rate of the next period based on the information available in period
t ; yt denotes the growth rate of nominal income; yn is the natural growth rate of
nominal income; and the term εt denotes a supply shock.

The IS curve relates output negatively to the real interest rate. Etxt+1 denotes the
expected output gap of the next period based on the information available in period t ,
and ηt denotes a demand shock, not correlated with the supply shock. In the paper by
Frisch and Staudinger [25], the objective function of the central bank is the quadratic
loss function involving the deviations from natural output and the deviations from an
exogenously given inflation target �∗. Therefore, the central bank minimizes 	 =
Et
∑∞
j=0

1
2δ
j [(�t+j −�∗)2 + αx2

t+j ] subject to (7.6) and (7.7), where α measures
the weight policy attached to output stabilization relative to inflation stabilization
such that 0 < α < ∞. For α = 0, a regime of strict inflation targeting [75] is
obtained, whereas α > 0 describes flexible inflation targeting. For a given α, the
central bank controls the nominal interest rate it to affect output and inflation such
that it minimizes the deviations from the inflation and output gap targets.

Because of the difficult task of estimating the parameter α, the following formu-
lation of the above model as a vector optimization problem with two objectives is
proposed:
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minimize 	1 = Et

∞∑
j=0

1

2
δj (�t+j −�∗)2

minimize 	2 = Et

∞∑
j=0

1

2
δj x2

t+j

subject to (7.6) and (7.7).

7.1.4 Optimal Behavior of a Monopolist Facing a Bicriteria Objective Function

Profit-maximizing behavior, one of the basic assumptions in the neoclassical the-
ory of the monopolistic firm, has already been criticized by Hicks [34] and Sci-
tovsky [68]. Following the contributions by Baumol [4, 5] and Williamson [87],
different goals have been proposed as a description of the firm’s managers’ behav-
ior. In Section 2.5.2, we discussed a model suggested by Baumol [4, 5] in which a
firm maximizes its total revenue subject to a minimum profit constraint. It has been
shown that at the constrained revenue-maximizing output, the marginal revenue is
lower than the marginal cost and the profit is equal to the prescribed level. However,
Baumol’s approach implies [65] that a firm orders various outcomes (each outcome
is a combination of a certain level of profit and a certain level of sales revenue) in a
lexicographic manner. In other words, the firm is assumed to have a marginal rate of
substitution of sales revenue for profit (the amount of profit it is willing to give up in
order to increase the revenue by one unit) that is infinite as long as profit exceeds the
minimum level acceptable to shareholders and that is always equal to zero as long as
profit is below the minimum level.

Fisher [17] suggested a symmetrical alternative with profit maximization subject
to a revenue constraint. Osborne [58] and Hall [32] investigated the implications of
these two alternatives, and Williamson [87] and Marris [53] proposed a multicriteria
objective function. Brown and Revankar [11] formalized this approach into a gener-
alized theory of the firm that specifies a firm’s utility function that includes revenue
as well as profit:

U = U(R,�),

where U is a twice-differentiable function with

U� = ∂U

∂�
> 0 and UR = ∂U

∂R
� 0.

R is revenue, a function of the output, q : R(q); and�(q) = R(q)−C(q) represents
profit, where C(q) denotes cost. The firm maximizes U , but it is constrained by

• its production function, q = f (x), where x denotes a vector of inputs;

• the demand for its product, q = h(p), where p is product price, or the product
price is a function of the output q : p = h−1(q);

• the supply functions of the production factors, xi = gi(ri), for i = 1, 2, . . . , n,
where xi is the ith input and ri is the price of that input.
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Then Brown and Revankar [11] show that if the marginal utility of revenue is positive,

• the product price is not likely to be less than the competitive price under profit
maximization; the extent to which the product price exceeds marginal cost depends
on the elasticity of product demand and on the marginal utility of profit and revenue,
respectively;

• the marginal products of the factors are forced down below the neoclassical level
in the same proportion, for given degrees of market imperfections;

• the marginal rates of substitution equilibrium conditions are identical to those
derived under profit maximization;

• labor and capital incomes are benefited at the expense of the owners of the firm.

Although the main results are derived regardless of the form of the utility function,
from the operational point of view and in order to reveal the pattern of “weight
structure” reflected in the firm’s utility function (“weights” referring to� andR), the
formulation of this model as a multiobjective optimization problem is proposed:

maximize �(q)

maximize R(q)

subject to q = f (x),

p = h−1(q),

xi = gi(ri) for i = 1, 2, . . . , n.

7.1.5 Leontief Pollution Model with Multiple Objectives

In Section 4.6.3, we introduced the augmented Leontief model describing the relation-
ships between the economic system and the environment. In this model, the levels of
gross industrial outputs and the abatement activity levels depend on the exogenously
given pollution standards. Thereupon the model allows us to analyze the impact of
changes in the level or structure of final demand and/or of tolerated net pollution (or
environmental standards) on the gross industrial production and abatement activities.
Early in the discussion of environmental problems, it was often claimed that there
is a trade-off between the goals of economic policy (like growth rate of GDP) and
the improvement of environmental quality. Sometimes this is expressed as a require-
ment to find a reasonable compromise between the “destruction” of jobs by imposing
cost-intensive constraints and the “destruction” of the environment.

However, in his seminal paper [46], Leontief concluded that the imposition of
effective limits y2 on net pollution results in higher industrial production and value-
added cost. Moreover, the notion of environmental quality is multidimensional, too.
Decreasing emission of one pollutant during a given period can be accompanied by
increasing emissions of another pollutant. For example, emission of SO2 decreased
in Austria from 400,000 tons in 1980 to 50,000 tons in 1997, and emission of CO
from nearly 1,700,000 tons in 1980 to 1,000,000 tons in 1997. But emission of N2O
(a by-product of NOx reduction using a catalyst) increased between 1980 and 1997
from nearly 6,000,000 tons to more than 7,000,000 tons [88].
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For these reasons, the Leontief pollution model from Section 4.6.3 will now be for-
mulated as an optimization model with multiple objectives. Luptáčik and Böhm [48]
proposed two versions of the model according to different sets of criteria. The essen-
tial difference from model (4.52) is that the pollution standards y2 are not treated as
exogenously given (it is no simple task to estimate their levels), but an objective to
keep the levels of net emissions (the residual amount of emissions after abatement)
as low as possible is considered. In other words, “minimization” of the emissions of
all pollutants is postulated.

Among the economic objectives, in the first version of their model, the minimiza-
tion of primary inputs to produce gross national output for the exogenously given
vector of final demand is considered.

Using the same notation of variables as in model (4.52), the following multicriteria
Leontief pollution model can be formulated:

minimize V (x1, x2) = v1
′x1 + v2

′x2

minimize W(x1, x2) = A21x1 − (E − A22)x2

subject to (E − A11)x1 − A12x2 � y1,

x1 � 0, x2 � 0,

where v1
′ is the n-dimensional row vector of primary inputs per unit of industrial

production and v2
′ is the k-dimensional row vector of primary inputs per unit of

antipollution activities.
In the second version of the model, the final demand is not exogenously given, but

the objective is now to maximize the value of final demand for given price vector c.
The constraints of this model are described by the following set of inequalities:

−(E − A11)x1 + A12x2 + y1 � 0, (7.8)

A21x1 − (E − A22)x2 − y2 � 0, (7.9)

v1
′x1 + v2

′x2 � V , (7.10)

x1 � 0, x2 � 0, y1 � 0, y2 � 0, (7.11)

where V denotes the disposable amount of the primary input (e.g., labor). The
inequalities (7.8) are the balance conditions for the production of goods, (7.9) are
those for net pollution, and (7.10) describes the constraint for the primary input.

The objective of environmental policy is the minimization of net pollution y2, and
the multiobjective optimization problem becomes

maximize f1(y1) = c′y1

minimize f2(y2) = y2

subject to the constraints (7.8)–(7.11).1

1 For the quantitative implications resulting from different economic objectives, see Luptáčik
and Böhm [48], and for an empirical demonstration based on an interactive approach, see
Böhm and Luptáčik [10].
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Fig. 7.1. A cost curve of environmental pollution.

7.1.6 A Nonlinear Model of Environmental Control

In the paper by Mastenbroek and Nijkamp [54], the following nonlinear model of
environmental control was presented. The costs of environmental pollution consist
of two components, the damage costs caused to the environment (the pollution costs)
and the costs caused by abatement activities (the costs of environmental control). It
is assumed that pollution costs, denoted by kp, rise progressively with an increase in
pollution p. In mathematical form a relation of this kind could be represented by the
following nonlinear function (see Figure 7.1):

kp = apK with K > 1 and a > 0.

The second cost component is made up by the costs of abatement measures. These
costs of environmental control (i.e., expenditures on environmental investments) will
probably increase progressively, as the required reduction in pollution increases. This
can be modeled as follows.

It is assumed that the total amount of pollution p consists of pollution generated
by production of goods (y) and consumption (c):

p = by + dc,

where b and d are the corresponding average emission coefficients.
In contrast to the Leontief pollution model from Section 4.6.3, the emission coef-

ficient b is now allowed to change by increasing the environmental investments (e.g.,
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purification plants and filters, new technology, etc.). According to Mastenbroek and
Nijkamp [54, p. 34], we can assume that

b = b0

(
i0

i

)µ
with 0 < µ < 1,

where b0 represents the average emission coefficient estimated at a certain current
level of pollution p0 and at a certain current volume i0 of environmental investments.
The parameter b is the new emission coefficient after the abatement measures have
been put into effect. It is clear that b = b0 if i0 = i and b decreases with increasing
environmental investments i.

The output y can be allocated between environmental investments and consump-
tion:

i + c � y.

The question now arises of how to regulate production and the allocation of output
between the cost of environmental control and consumption in order to keep simulta-
neously a high level of consumption and high environmental quality. In other words,
the consumption should be maximized and the damage cost to the environment should
be minimized. This leads to the following nonlinear multiobjective programming
model:

minimize f1(p) = apK

maximize f2(c) = c

subject to b0

(
i0

i

)µ
y + dc = p,

i + c � y,

c > 0, i > 0, p > 0, y > 0.

After a simple transformation, the multiobjective geometric programming model can
be obtained:

minimize f1(p) = apK

minimize (f2(c))
−1 = c−1

subject to li−µyp−1 + dcp−1 � 1,

iy−1 + cy−1 � 1,

c > 0, i > 0, p > 0, y > 0,

where l = b0i
µ
0 > 0.

7.2 Kuhn–Tucker Conditions for the Multiobjective
Programming Problem

The multiobjective mathematical programming problems described in the previous
section can be generally written as
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Minimize F(x) = (f1(x), f2(x), . . . , fs(x))

subject to G(x) � 0,

x ∈ Rn,
(7.12)

where F and G are vector-valued functions from Rn → Rs and Rn → Rm. We
assume that all the functions are differentiable at a point that is an optimal point or a
candidate for an optimal point of our problem (7.12). Without loss of generality, we
consider a vector minimization problem with s objectives, n variables, and m con-
straints. Minimization (or Min) and minimization (or min) indicate that the problem
under consideration is a minimization multiple-objective problem and minimization
single-objective problem, respectively.

In the seminal paper by Kuhn and Tucker [43] and subsequently in the papers by
Geoffrion [29], Bitran [8], Marusciac [50], and Singh [69]—to name only a few—the
extension of necessary (and under the convexity assumption of sufficient) optimal-
ity conditions of Kuhn–Tucker (or Karush–John) type to a problem with multiple
objectives is already provided.

LetM = {1, 2, . . . , m},K = {x|x ∈ Rn,G(x) � 0}, and I = {i ∈ M|gi(x0) = 0
for some fixed x0 ∈ K}.

The term vector minimum (maximum) problem was introduced by Kuhn and
Tucker [43, p. 488] as follows.

Definition 7.3. To find an x0 that minimizes (maximizes) the vector function F(x)
constrained byG(x) � 0, that is, to find an x0 satisfying the constraints and such that
F(x) ≤ F(x0) [F(x) ≥ F(x0)] for no x satisfying the constraints.

This notion is equivalent to the notion of a Pareto minimal (maximal) point as
given by Marusciac [50].

Definition 7.4. A point x0 ∈ K is a Pareto minimal (maximal) point of F onK if and
only if there exists no x ∈ K such that F(x) ≤ F(x0) [F(x) ≥ F(x0)].
Definition 7.5. A point x0 ∈ K is a weak Pareto minimal (maximal) point of F on
K if and only if there exists no x ∈ K such that F(x) < F(x0) [F(x) > F(x0)].

Another equivalent notion is Koopmans’s efficient point type in production the-
ory [41, p. 48].

Definition 7.6. A possible point in the commodity space is called efficient whenever
an increase in one of its coordinates (the net output of one good) can be achieved only
at the cost of a decrease in some other coordinate (the net output of another good).

The reader can verify that all above definitions correspond to Definition 5.10, and
thereupon in what follows, we will use the term Pareto–Koopmans efficiency.

The following theorem provides the necessary conditions for a Pareto–Koopmans
minimal point of problem (7.12).

Theorem 7.1. Let
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(i) x0 be a Pareto–Koopmans minimal point (weak Pareto–Koopmans minimal
point) of problem (7.12);

(ii) F(x), G(x) be differentiable at x0;
(iii) gi(x), for i ∈ I , satisfy the constraint qualification at x0.

Then there exist α0 ∈ Rs+, α0 �= 0, and a vector of Lagrange multipliers u0 ∈ Rm

such that

α0′∇F(x0)+ u0′∇G(x0) = 0, (7.13)

u0′
G(x0) = 0, (7.14)

G(x0) � 0, (7.15)

u0 � 0, (7.16)

where ∇F(x0) denotes the s × n matrix whose rows are the gradients at x0 of the
components of F and ∇G(x0) denotes them×nmatrix whose rows are the gradients
at x0 of the components G (Jacobians of F and G at the point x0).

The proof of this theorem can be found in [69, p. 118].
Assuming the convexity of the functionsf1(x), f2(x), . . . , fs(x) andg1(x), g2(x),

. . . , gm(x), the conditions (7.13)–(7.16) are also sufficient for x0 to be a Pareto–
Koopmans minimal point of problem (7.12) as proved by Singh [69, pp. 119–120].

Theorem 7.2. Suppose the following:

(i) F(x), G(x) are differentiable at x0;
(ii) F(x), G(x) are convex;

(iii) there exist α0 > 0 and a vector u0 ∈ Rm such that conditions (7.13)–(7.16) are
fulfilled.

Then x0 is a (weak) Pareto–Koopmans minimal point of F(x) over K .

The reader may verify that conditions (7.13)–(7.16) are exactly the Kuhn–Tucker
conditions for the so-called parametric problem

minimize
s∑
k=1

αkfk(x)

subject to x ∈ K,
(7.17)

where α = (α1, . . . , αs) is a vector of nonnegative components.
The interest in problem (7.17) arises from the fact that if α > 0, then due to

Theorem 7.2 every solution to problem (7.17) is Pareto–Koopmans efficient in prob-
lem (7.12).

Geoffrion [29] attempted to rule out efficient points with the property that the
marginal gain in one criterion can be made arbitrarily large relative to each of the
marginal losses incurred in other criteria. Therefore, he introduced the concept of
properly efficient solution, defined as follows.
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Definition 7.7. A point x0 is a properly efficient solution of problem (7.12) if it
is (Pareto–Koopmans) efficient and if there is a scalar ξ > 0 such that x ∈ K ,
fk(x) < fk(x0) implies

[fk(x0)− fi(x)]
[fl(x)− fl(x0)] � ξ

for some l with fl(x) > fl(x0).

These properties of the parametric problem (7.17) permit the application of nonlin-
ear programming theory to problem (7.17) in order to study and characterize efficient
points. In this way, the relationship between the saddle point of the Lagrange func-
tion and a properly efficient solution of the vector minimum problem (7.12) can be
obtained [43, p. 489].

Theorem 7.3 (equivalence theorem). Let the functions f1(x), f2(x), . . . , fs(x),
g1(x), g2(x), . . . , gm(x) be convex as well as differentiable for x � 0. Then
x0 is a properly efficient solution of problem (7.12) if and only if there is some
α0 > 0 such that x0 and some u0 give a solution of the saddle value problem for
	(x,u) = α0′

F(x)+ u′G(x).

For economic applications, the approach based on a vector-valued Lagrange func-
tion, where an (s × m) matrix U of dual variables is associated with the constraints
in K , is interesting. It seems reasonable to assume that the matrices of dual vari-
ables contain more information than the pairs (α,u). The dual variables uki can be
interpreted, under certain conditions [8, pp. 380–383], as the partial derivatives of the
objectives with respect to the components of vector b′ when gi(x) is written as

gi(x) = hi(x)− bi (i = 1, 2, . . . , m).

They represent the rate of change of (f1, f2, . . . , fs) at x0 with respect to small
changes in the right-hand side of the constraints. In other words, the elements of
matrix U are interpreted as shadow prices, similarly to the interpretation of dual
variables in the single-objective optimization models (however, extended with respect
to different objectives).

In the parametric approach mentioned above, a vector u of dual variables asso-
ciated to the constraints can be seen as an aggregation of the matrix U . In fact, for
fixed α, problem (7.17) can be interpreted as an aggregate version of problem (7.12).

The idea of a matrix of dual variables, rather than a vector, has been used by
Ritter [62], Zowe [91, 92], Craven [14], and Bitran [8] in connection with linear
multiobjective optimization problems by Gale, Kuhn, and Tucker [28], Isermann [36,
37, 38], and Rödder [67], and for a lexicographic linear programming by Isermann [39]
and Turnovec [84]. In these papers, extensions of the Kuhn–Tucker conditions for
a pair (x0, U0) are provided and a duality theory for multiobjective optimization
problems developed.

According to Bitran [8, pp. 389–390], Kuhn–Tucker conditions for problem (7.12)
using a matrix of dual variables U can be stated as follows.
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Theorem 7.4. Suppose the following:

(i) x0 is a Pareto–Koopmans minimal point of problem (7.12);
(ii) F(x), G(x) are differentiable at x0.

Then there is a pair (x0, U0) and α0 > 0 such that

α0[∇F(x0)+ U0∇G(x0)] = 0, (7.18)

α0′
U0 � 0, (7.19)

U0G(x0) = 0, (7.20)

G(x0) � 0. (7.21)

If F(x) and G(x) are convex and the Kuhn–Tucker conditions (7.18)–(7.21) hold at
a pair (x0, U0), then x0 is Pareto–Koopmans efficient in problem (7.12).

As already mentioned, the parametric approach to multiobjective optimization
consists of determining efficient points in problem (7.12) by solving mathematical
programming problems of type (7.17). In order to relate the approach using the matrix
of Lagrange multipliersU to the parametric approach, Bitran [8, pp. 394–395] proved
the following.

Theorem 7.5. Let F(x) and G(x) be differentiable and convex on Rn. Then there is
a pair (x0, U0) satisfying the Kuhn–Tucker conditions (7.18)–(7.21) if and only if x0

solves problem (7.17) for some α > 0, i.e., x0 is a Pareto–Koopmans minimal point
and x0 solves the linear approximation to problem (7.17) at x0.

Furthermore, Bitran [8] can show that α, u, and U are related such that

α′U = u′, (7.22)

where the α′ can be interpreted as the weights corresponding to the objectives. In this
way, as already mentioned, a vector u of dual variables is expressed as an aggregation
of the matrix U .

As a special case of the multiobjective minimization problem (7.12), let us con-
sider the following lexicographic minimization problem:

lex min{F(x)|x ∈ Rn, G(x) � 0}. (7.23)

A vector x ∈ Rn is said to be lexicographically nonnegative, denoted by

x lex � 0,

if either x = 0 or its first nonzero component is positive.
An m× n matrix A is called lexicographically nonnegative, denoted by

A lex � 0,

if all its columns are lexicographically nonnegative.
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Let F be an s-dimensional vector-valued function defined on Rn andK ⊂ Rn. A
vector x∗ ∈ K is said to be a lexicographically minimal point of F with respect toK
if for any x ∈ K ,

F(x∗) lex � F(x).

The problem of finding a lexicographically minimal point of F with respect to K is
called a lexicographic minimization problem, denoted by

lex min{F(x)|x ∈ K}.
Defining K = {x|G(x) � 0}, we obtain problem (7.23).

In the literature on multiple-criteria decision making, some examples of lexico-
graphic optimization models can be found. Behringer [7] reported on several math-
ematical and game-theoretic applications. Nijkamp [57] described an application of
a lexicographic optimization model to a land-use problem for industrial activities in
an area of the Rhine delta region near Rotterdam (the so-called Meuse flat). These
models reflect a structure that can be represented by a ranking of the objectives instead
of an ordinary optimization problem with a scalar-valued objective function.

A properly efficient solution for the lexicographic optimization problems is de-
fined as follows.

Definition 7.8. A lexicographically minimal point x0 is a properly optimal solution
to (7.23) if there exists no y ∈ Rn such that

∇F(x0)y lex < 0,

∇GI (x0)y � 0,

whereGI is a subvector ofG consisting of all components ofG corresponding to the
constraints active at x0, i.e., gi(x0) = 0.

Now the Kuhn–Tucker conditions for problem (7.23), as provided by Luptáčik
and Turnovec [49, p. 261], can be written as follows.

Theorem 7.6.

(i) If x0 is a properly optimal solution to problem (7.23), then there exists a matrix
U0 of dimension s ×m such that

∇F(x0)+ U0∇G(x0) = 0, (7.24)

G(x0) � 0, (7.25)

U0G(x0) = 0, (7.26)

U0 lex � 0. (7.27)

(ii) If problem (7.23) is convex, then conditions (7.24)–(7.27) are also sufficient for
x0 to be a properly optimal solution to (7.23).
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The reader can see that the form of conditions (7.24)–(7.27), except for a matrix of
Lagrange multipliersU0 instead of the vector u0 and the lexicographic relation (7.27)
instead of nonnegativity in the usual sense, is the same as the Kuhn–Tucker conditions
for a single-objective optimization problem described in Chapter 2.

To illustrate, let us consider the following lexicographic minimization problem:

lex minF(x) =
(
f1(x)
f2(x)

)
=
(
x2

1 − 2x1x2 + x2
2 − 2x1 + 2x2

−x1 + x2
2

)
subject to g1(x) = x1 + x2 − 8 � 0,

g2(x) = −x1 + x2 + 2 � 0.

We compute

∇F(x) =
(

2x1 − 2x2 − 2 −2x1 + 2x2 + 2
−1 2x2

)
and

∇G(x) =
(

1 1
−1 1

)
.

The Kuhn–Tucker conditions (7.24) become(
2x1 − 2x2 − 2 −2x1 + 2x2 + 2

−1 2x2

)
+
(
u11 u12
u21 u22

)(
1 1

−1 1

)
=
(

0 0
0 0

)
,

or

2x1 − 2x2 − 2 + u11 − u12 = 0, (7.28)

−2x1 + 2x2 + 2 + u11 + u12 = 0, (7.29)

−1 + u21 − u22 = 0, (7.30)

2x2 + u21 + u22 = 0. (7.31)

The conditions (7.25) are the feasibility conditions

x1 + x2 − 8 � 0, (7.32)

−x1 + x2 + 2 � 0. (7.33)

From (7.26), we obtain (
u11 u12
u21 u22

)(
x1 + x2 − 8

−x1 + x2 + 2

)
=
(

0
0

)
,

or

u11(x1 + x2 − 8)+ u12(−x1 + x2 + 2) = 0, (7.34)
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u21(x1 + x2 − 8)+ u22(−x1 + x2 + 2) = 0. (7.35)

According to condition (7.27), the matrix of Lagrange multipliers U0 must be lexi-
cographically nonnegative: (

u11 u12
u21 u22

)
lex �

(
0 0
0 0

)
. (7.36)

As already mentioned, the dual variables uki (k = 1, 2; i = 1, 2) can be interpreted as
shadow prices of the resource i with respect to the objective k. It follows from (7.34)
and (7.35) that if at least one uki (k = 1, 2) is different from zero, the corresponding
ith constraint must be fulfilled as equality; the ith resource is scarce.

Let us assume thatu11 = 0, u21 = 0, andu12 �= 0. Then it follows from (7.34) that
condition (7.33) is satisfied as equality and x2 = x1 − 2. Solving (7.28) and (7.29),
we will obtain the solution u12 = 2. Then (7.30) yields u22 = −1, and conse-
quently (7.31) yields x2 = 1

2 . Finally, x1 = 2 + x2 = 5
2 . The reader may verify

that both objective functions f1(x) and f2(x) are convex, and due to Theorem 7.5
x0 = ( 5

2 ,
1
2 ) is a properly optimal solution to our example.

7.3 Duality for Multiobjective Optimization Problems

As has been shown in the first part of this book, duality is an attractive and very useful
concept in single-objective mathematical programming as well as in economics. The
primal model concerns allocations of commodities, while the dual concerns prices.
The two concepts intersect in an equilibrium problem involving both allocations and
prices.

There seems to be no unified approach to dualization in multiobjective optimiza-
tion. One of the difficulties is the fact that an efficient solution to a multiobjective
problem is not unique but in general becomes a set. The definition of infimum (or
supremum) of a set with a partial order plays a key role in development of duality
theory in multiobjective optimization.

The first results on duality theory in multiobjective optimization can be found in
[77, 62, 91, 92, 66, 78]. For the special case of linear multiobjective problems, the
first papers are [28, 42, 35, 36, 37, 38].

Because of the different approaches to duality in multiobjective optimization—
which require a deeper mathematical background—and our emphasis on economic
applications, we will restrict our description to the parametric problem (7.17) and to
the lexicographic minimization problem (7.23) only.

7.3.1 Duality for Multiobjective Optimization Problems in Parametric Form

As mentioned in the previous section, the parametric approach to multiobjective
optimization consists of determining efficient points in problem (7.12) by solving
nonlinear programming problems of the following type:
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minimize {α′F(x)|x ∈ Rn, G(x) � 0}, (7.37)

where F(x) and G(x) are assumed to be differentiable and convex on Rn.
According to duality theory for convex programming from Section 3.3, the dual

problem to problem (7.37) becomes

maximize 	(x,u) = αF(x)+ uG(x)

subject to α′[∇F(x)] + u′[∇G(x)] = 0,

u � 0.

(7.38)

In Theorem 7.5, the equivalence between the Kuhn–Tucker conditions (7.18)–
(7.21) and the properly efficient solution x0 of problem (7.37) for some ᾱ > 0 has
been shown. The following corollary [8, p. 395] extends this result toward a strong
duality for the parametric approach:

Corollary 7.1. Let x0 andU satisfy the Kuhn–Tucker conditions (7.18)–(7.21). Then
x0 solves problem (7.37) for any α > 0, such that (7.18)–(7.19) hold. Moreover, αU

solves the nonlinear programming dual problem (7.38) to problem (7.37).

These properties of the parametric problem permit the application of nonlinear
programming duality theory to problem (7.37) to study and characterize efficient
points. The Kuhn–Tucker conditions provide a relation among α, u, U that can be
useful for practical purposes, for example, to generate weights α in order to take into
account the preferred choice of a decision maker with respect to a given efficient
alternative. Several interactive methods of multiobjective optimization, like those
of Zionts and Wallenius [90], Steuer [72], and others, are based on the solution of
problem (7.37).

Another application of this approach will be presented in Chapter 9 for multiob-
jective geometric programming.

7.3.2 Duality Theory for Convex Lexicographic Programming

We consider the lexicographic minimization problem (7.23),

lex min{F(x)|x ∈ Rn, G(x) � 0},
using the same notation as in Section 7.2. In what follows, problem (7.23) will be
called the primal problem. The Kuhn–Tucker conditions for problem (7.23) are given
by (7.24)–(7.27).

By L(x, U) = F(x) + UG(x), we shall denote a vector-valued Lagrange
function. Assuming convexity of all functions fk(x) (k = 1, 2, . . . , s) and gi(x)
(i = 1, 2, . . . , m), the lexicographic maximization problem

lex max{L(x, U)|∇xL(x, U) = 0, U lex � 0} (7.39)

will be called the dual problem. ∇xL(x, U) denotes the s× nmatrix whose rows are
the gradients at x of the components of L.

For the pair of lexicographic programming problems (7.23) and (7.39), the weak
duality properties are valid.
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Theorem 7.7 (see [49, p. 263]). LetF,G be convex functions with first partial deriva-
tives, x a feasible solution to (7.23), x0 a properly optimal solution to (7.23), and
(y, U) a feasible solution to the corresponding dual problem (7.39). Then

(i) F(x) lex � L(y, U);
(ii) if F(x) = L(y, U), then x is a properly optimal solution to (7.23) and (y, U) is

an optimal solution to (7.39);
(iii) there exists a matrix U0 such that (x0, U0) is an optimal solution to (7.39) and

F(x0) = L(x0, U0).

The proof can be found in[49, p. 264].
To illustrate, let us consider the numerical example from Section 7.2:

lex minF(x) =
(
f1(x)
f2(x)

)
=
(
x2

1 − 2x1x2 + x2
2 − 2x1 + 2x2

−x1 + x2
2

)
subject to g1(x) = x1 + x2 − 8 � 0,

g2(x) = −x1 + x2 + 2 � 0.

Because of the convexity of the functions f1(x), f2(x), g1(x), and g2(x), the dual
problem (7.39) can be formulated.

The vector-valued Lagrange function L(x, U) is given by

L(x, U)

=
(
x2

1 − 2x1x2 + x2
2 − 2x1 + 2x2

−x1 + x2
2

)
+
(
u11 u12
u21 u22

)(
x1 + x2 − 8

−x1 + x2 + 2

)
=
(
x2

1 − 2x1x2 + x2
2 − 2x1 + 2x2 + u11(x1 + x2 − 8)+ u12(−x1 + x2 + 2)

−x1 + x2
2 + u21(x1 + x2 − 8)+ u22(−x1 + x2 + 2)

)
.

According to (7.39), we can write the dual problem as

lex maxL(x, U)

subject to

(
2x1 − 2x2 − 2 + u11 − u12 −2x1 + 2x2 + 2 + u11 + u12

−1 + u21 − u22 2x2 + u21 + u22

)
=
(

0 0
0 0

)
and (

u11 u12
u21 u22

)
lex �

(
0 0
0 0

)
.

As already mentioned in Section 7.2, the element uki of matrix U is the dual variable
related to the kth objective and ith constraint.

Let x∗ = (3, 0) be a feasible solution of the primal problem and y∗ = (2, 0) and

U∗ =
(

0 2
1
2 − 1

2

)
be a feasible solution of the dual problem. The reader can easily verify that
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F(x∗) =

(
3

−3

)]
lex > L(y∗, U∗) =

(
0

−5

)
.

This result illustrates the first part of Theorem 7.7. As shown in the previous section,
using the Kuhn–Tucker conditions (7.24)–(7.27), the properly optimal solution to the
primal problem x0 and the matrix of Lagrange multipliers U0 can be estimated:

x0 =
(

5

2
,

1

2

)
, U0 =

(
0 2
0 −1

)
.

BecauseF(x0) = L(x0, U0), x0 is the properly optimal solution of the primal problem
and (x0, U0) the optimal solution of the dual problem.

7.4 Behavior of the Firm Facing a Bicriteria Objective Function
under Regulatory Constraint

In Section 2.5.3, the behavior of the firm under the “fair rate of return” regulation as
proposed by Averch and Johnson [1] has been analyzed.

The main result was a “misallocation of economic resources” in which the firm
“has an incentive to substitute between the factors in an uneconomic fashion” [1,
p. 1068]). The firm will substitute capital for labor (overcapitalization effect).

Essential assumption in the Averch–Johnson model is that the firm maximizes
profit. Bailey and Malone [2] argue that if the firm maximizes either revenue or
output, then it will tend to undercapitalize.

Taking into account both results, the following question arises: What is the impact
of the rate of return regulation for the firm maximizing revenue as well as profit as
described in Section 7.1.4?

In answering this question, let us accept the same assumption as postulated by
Averch and Johnson. The model is static as before, depreciation and regulatory lags
are ignored, the allowed rate of return set by the regulator (s) is assumed to be greater
than the firm’s cost of capital, and the firm is assumed to produce only a simple
product.

Hence the problem for the firm facing a bicriteria objective function is to maximize
profit and revenue subject to the regulatory constraint. Using the notation as in
Section 2.5.4, the following multiobjective optimization problem arises:

Maximize F(x) =
{
�(x)
R(x)

}
subject to pq − sx1 − c2x2 � 0,

where q = f (x1, x2), f (0, x2) = f (x1, 0) = 0, and p = p(q) with

p′(q) = dp

dq
< 0.

The revenue is given by
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R = p(q)q

and the profit by

� = p(q)q − c1x1 − c2x2,

where x1 and x2 denote the quantities of capital and labor and c1, c2 the prices of
capital and labor, respectively. Application of the Kuhn–Tucker conditions (7.13)–
(7.16) for the multiobjective programming problem yields

α1[(p + p′q)f1 − c1] + α2(p + p′q)f1 − u([(p + p′q)f1 − s] = 0, (7.40)

α1[(p + p′q)f2 − c2] + α2(p + p′q)f2 − u[(p + p′q)f2 − c2] = 0, (7.41)

u(pq − sx1 − c2x2) = 0,

pq − sx1 − c2x2 � 0,

u � 0.

Denoting by (p+p′q)f1 the marginal revenue of capital by MR1 and by (p+p′q)f2
the marginal revenue of labor by MR2, (7.40)–(7.41) can be rewritten as

(α1 + α2 − u)MR1 +us = α1c1, (7.42)

(α1 + α2 − u)MR2 +uc2 = α1c2. (7.43)

Furthermore, it follows from (7.42) and (7.43) that

MR1

MR2
= f1

f2
= α1c1 − us

(α1 − u)c2
. (7.44)

For the unregulated monopoly maximizing profit (u = 0 and α1 = 1, α2 = 0), the
marginal rate of substitution of capital for labor is equal to the ratio of their prices.

Under the conditions of effective regulatory constraint (u > 0) and s > c1
(u �= 1), (7.44) discloses that the equality of the marginal rate of substitution to
the ratio of the input prices is not fulfilled. For the revenue-maximizing firm under
regulatory constraint (α1 = 0; u > 0), the form (7.44) yields

f1

f2
= s

c2
>
c1

c2
,

i.e., the undercapitalization effect shown by Bailey and Malone [2]. What kind of
result will be obtained if the firm maximizes profit as well as revenue: over- or
undercapitalization?

The answer depends on the relation between α1 and u. If α1 > u (the preference
for profit maximization is relatively high or the regulatory constraint is not very tight),
then under the basic assumption s > c1 it can be shown that

f1

f2
= α1c1 − us

(α1 − u)c2
<
c1

c2
,
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i.e., Averch–Johnson effect or overcapitalization occurs. The profit-maximizing firm
(α1 = 1, α2 = 0) with 0 < u < 1 as a special case of our model confirms this result.

In the opposite case, α1 < u implies

f1

f2
= α1c1 − us

(α1 − u)c2
>
c1

c2
.

The result is undercapitalization, and the firm has an incentive to substitute labor for
capital. Consequently, from (7.44) we have the following proposition.

Proposition 7.1. In the firm maximizing revenue as well as profit and underlying
regulatory constraint (u > 0), the cost-minimizing allocation of production factors
in the sense

f1

f2
= c1

c2

cannot be achieved independently of the firm’s objective preferences. The overcapi-
talization effect of the profit maximization cannot be compensated by the undercapi-
talization effect of the revenue maximization.

It follows from the above proposition that regardless of the firm’s objectives, the
rate of return regulation leads to suboptimal allocation of production factors.
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8

Multiobjective Linear Programming

As in single-objective mathematical programming, the most developed part of mul-
tiobjective optimization—from the theoretical as well as the applications point of
view—is multiobjective linear programming. In 1951, Gale, Kuhn, and Tucker [7]
considered a pair of general matrix linear programming problems, i.e., a linear pro-
gramming problem with a matrix-valued linear objective function, and established
some theorems of existence and duality. With matrix linear programming problems
containing linear programming problems with a vector-valued as well as a scalar-
valued objective function as special cases, the developed theory comprises the re-
spective theoretical framework for vector linear programming problems as well as for
ordinary linear programming problems.

The chapter consists of four sections. In Section 8.1, some existence results for
multiple-objective linear programming are presented. A duality concept based on
Isermann [13, 15, 16, 17] and the multiple-objective simplex method are the subjects
of Section 8.2. In Section 8.3, interactive procedures represented by the Zionts–
Wallenius method are described. Section 8.4 is devoted to the analysis of the Leontief
pollution model consisting of multiple objectives.

8.1 Linear Vector Optimization Problems

The Leontief pollution model from Section 7.1.5 provides an example of a linear
multiobjective programming problem. In both versions of this model, the objective
functions as well as the constraints are linear.

For linear functions fk(x) (k = 1, 2, . . . , s) and gi(x) (i = 1, 2, . . . , m), the
multiobjective programming problem (7.12) can be written as

Minimize {F(x) = Cx|Ax = b, x � 0}, (8.1)

with A being an m × n matrix with rank (A) = m, b ∈ Rm, and C is the s × n

criterion matrix. Adding the slack variables, we replaced the inequality constraints
in (7.12) by equalities and explicitly introduced the nonnegativity constraints for the

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
Springer Optimization and Its Applications 36, DOI 10.1007/978-0-387-89552-9_8,  
© Springer Science+Business Media, LLC 2010 
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variables xj (j = 1, 2, . . . , n). The linear minimum problem (8.1) can be considered
as the problem of finding all x0 ∈ K = {x|Ax = b, x � 0}, which are efficient per
Definition 7.4, and the respective values F(x0). The set of all efficient solutions x0

for (8.1) will be denoted by K0. It can be shown that for linear vector optimization
problems, efficient solutions and properly efficient solutions coincide [11, Theorem 2,
p. 620]. Note that for s = 1, problem (8.1) reduces to the linear programming problem

minimize {f (x) = c′x|Ax = b, x � 0},

where c ∈ Rn and the notion of an efficient solution or of a Pareto minimal point in
Definition 7.4 is equivalent to the notion of optimality in ordinary linear programming
problems.

For simplicity and the possibility of a graphical presentation, let us return to
the production problem used in Section 4.5. Under the constraints for land, capital,
and labor, the farmer has to decide how many acres of wheat and how many acres
of potatoes he should plant in order to maximize his return revenue. Suppose that
we consider an additional objective of the farmer is, for example, maximizing the
utilization of the production factor land. Using the same notation as in Section 4.5,
the following multiple-objective linear programming (MOLP) problem is obtained:

Maximize F(x) =
{
f1(x) = 40x1 + 120x2,

f2(x) = x1 + x2

}
(8.2)

subject to x1 + x2 � 100,

10x1 + 20x2 � 1100, (8.3)

x1 + 4x2 � 160,

x1 � 0,

x2 � 0. (8.4)

The graphical representation including the set of feasible solutions K with all its
extreme points is given in Figure 8.1. There are five extreme points, denoted by x(1),
x(2), x(3), x(4), and x(5). The corresponding values of the objective functions f1(x)
and f2(x) respectively can be found in Table 8.1.

Single optimization with respect to the first objective f1(x) yields the unique
optimal solution x(3) = (60, 25) and f1(x(3)) = 5,400. Maximization of the second
objective function f2(x) leads to infinite many optimal solutions—represented by
the linear convex combination of points x(4) and x(5)—with the objective function
value equal to 100. Moving from point x(5) toward point x(4), the value of f2(x)
remains constant, but the value of the first objective function is increasing (from
4,000 to 4,800). Therefore, point x(5) cannot be a Pareto-efficient solution of the
MOLP (8.2)–(8.4). Similarly, the extreme points x(1) and x(2) are dominated by
points x(3) and x(4) and therefore cannot be candidates for an efficient solution of
problem (8.2)–(8.4). The graphical representation in criterion space is provided in
Figure 8.2.
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Table 8.1. The values of the objective functions for the extreme points.

x1 =
(

0
0

)
x2 =

(
0
40

)
x3 =

(
60
25

)
x4 =

(
90
10

)
x5 =

(
100

0

)
f1(x(k)) 0 4,800 5,400 (max) 4,800 4,000
f2(x(k)) 0 40 85 100 (max) 100 (max)

The ideal solution, consisting of the optimal values from the single optimization
represented by the point F̂ , is not possible. Consequently, the solution of the linear
vector optimization problem (8.2)–(8.4) consists in finding Pareto-efficient points of
F on the set of feasible solutionK . The set of efficient solutions for the MOLP (8.2)–
(8.4) is then described as the set of all linear convex combinations of the extreme
points x(3) and x(4):

K0 = {x|x = λx(3) + (1 − λ)x(4), 0 � λ � 1}. (8.5)

Before we try to do it, we will present some existence results for multiple-objective
linear programming.

With reference to the presentation of duality for single-objective linear program-
ming in Chapter 4, problem (8.1) will be rewritten as

Maximize {F(x) = C(x)|x ∈ K}. (8.6)

Let us consider the linear system

1x

2x

0

40

55

100

100 110 160

(3)x

x
1 + 4x

2 =160

50

(2)x

(4)x
(5)x

1f∇

(1)x

2f∇

2f

10x1 + 20x2 =1100

x
1 + x

2 =100

1f 50

Fig. 8.1. Graph of example (8.2)–(8.4) in decision space.
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Fig. 8.2. Graph of example (8.2)–(8.4) in criterion space.

Ax � b b � 0, x � 0 (8.7)

and the homogeneous linear system

Ax � 0, x � 0. (8.8)

Kreko [20, pp. 184–185] proved the following.

Theorem 8.1. The set of feasible solutions of system (8.7) is not bounded if and only
if system (8.8) has a nontrivial solution (x ≥ 0).

Assuming K is not empty, Isermann [17] distinguished two exhaustive cases:

(i) K is bounded; i.e., (8.7) has a solution x′, but (8.8) has no semipositive solution
(x ≥ 0).

(ii) K is not bounded; i.e., (8.7) as well as (8.8) have solutions x′ � 0 and x′′ ≥ 0,
respectively.

Following the respective definition for single-objective linear programming, Iser-
mann [17, p. 34] defined F(x) to be bounded from above in K if and only if

Cx ≥ 0, Ax = 0, x � 0 (8.9)

have no solution. According to Theorem 8.1, F(x) is not bounded from above in K
if and only if (8.9) has a solution x′′ ≥ 0. If F(x) is not bounded from above in K ,
then for each x ∈ K there exists some x′ ∈ K such that Cx′ ≥ Cx.

Then Isermann [17, p. 35] proved the following two lemmas.
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Lemma 8.1. Let K �= ∅. Problem (8.6) has no efficient solution if and only if F(x)
is not bounded from above in K .

Lemma 8.2. If problem (8.6) has an efficient solution, at least one feasible basic
solution for (8.6) is efficient.

Summarizing, Isermann [17, p. 35] formulated the existence properties of a linear
vector maximum problem (8.6) as follows.

Proposition 8.1. Problem (8.6) has no efficient solution if and only if

(i) K = ∅ or
(ii) F(x) is not bounded from above in K �= ∅.

The reader can easily verify that system (8.9) with the data from example (8.2)–
(8.4) has no solution, and thereupon F(x) is bounded from above in K .

To illustrate Lemma 8.1, let us consider a small numerical example of the multi-
criteria Leontief pollution model described in Section 7.1.5. Only two commodities
or sectors and one pollutant are considered with the matrix of input coefficients

A11 =
(

0.25 0.4
0.4 0.12

)
and with the following vector of primary inputs per unit of output: v′

1 = (0.8; 3.6).
The amounts of pollutant per unit of good i (i = 1, 2) are given by the vector
(0.5; 0.2). For elimination of the pollutant by one unit, 0.2 unit of input from
sector 2 and one unit of primary input are needed. The disposable amount of the
primary input is restricted to 362 units.

Maximization of the final demand and the minimization of net pollution under
the constraints (7.8)–(7.11) lead to

Maximize F(x, y) =
(

0 0 0 1 1 0
0 0 0 0 0 −1

)(
x
y

)
(8.10)

with x′ = (x1, x2, x3) and y′ = (y1, y2, y3)

subject to −0.75x1 + 0.4x2 + y1 � 0,

0.14x1 − 0.88x2 + 0.2x3 + y2 � 0, (8.11a)

0.5x1 + 0.2x2 − x3 − y3 � 0,

0.8x1 + 3.6x2 + x3 � 362, (8.11b)

x1, x2, x3, y1, y2, y3 � 0, (8.12)

where y1 and y2 denote the final demand for the commodities (which are now endoge-
nous variables) and y3 is the residual amount of emissions after abatement, which
should be minimized.

The reader can easily verify that the homogeneous system corresponding to sys-
tem (8.11) has the trivial solution x1 = x2 = x3 = y1 = y2 = y3 = 0 only; in other
words, system (8.9) has no solution.
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The set of feasible solutions described by (8.11)–(8.12) is bounded. The single
maximization of the final demand (the first objective function) yields the following
optimal solution: x(1)1 = 264, x(1)2 = 42, x(1)3 = 0; y(1)1 = 181, y(1)2 = 0, and y(1)3 =
140. The corresponding value of the first objective function f1(x(1), y(1)) = 181 and
of the second objective function—the level of net pollution—f2(x(1), y(1)) = 140.

The single minimization of the net pollution leads to the trivial solution x(2)1 =
x
(2)
2 = x

(2)
3 = y

(2)
1 = y

(2)
2 = y

(2)
3 = 0 and f1(x(2), y(2)) = f2(x(2), y(2)) = 0.

Deleting the constraint (8.11b) for the primary factor from system (8.11) implies
the existence of a nontrivial solution for the corresponding homogeneous system (and
for system (8.9)), and therefore the vector-valued function (8.10) is not bounded from
above with respect to (8.11a)–(8.12) and the set of efficient solutions is empty.

8.2 Duality in Multiple-Objective Linear Programming

As already mentioned in Section 7.3. there are different duality concepts for multiple-
objective optimization. In the paper by Isermann [16], three duality concepts in
multiple-objective linear programming—developed by Gale, Kuhn, and Tucker [7],
Kornbluth [19], and Isermann [13, 15, 17]—are described and related to each other.
A new concept of duality based on a set-expansion process for the computation of op-
timal solutions without scalarization is proposed by Galperin and Guerra Jimenez [8].
With reference to the theory of linear programming presented in Chapter 4, we will
now introduce a duality concept elaborated by Isermann [13, 15, 17].

Let us call problem (8.6) the primal problem. As in Section 7.2, we define an
(s×m)-dimensional matrixU = {uki} of dual variables, whereuki is the dual variable
assigned to the ith primal constraint and to the kth criteria. The multiple-objective
program

Minimize {H(U) = Ub|U ∈ T }, (8.13)

with T = {U |UAw ≤ Cw for no w � 0}, is called the dual problem of (8.6).
H(U) = (h1(U), h2(U), . . . , hs(U))

′ is the vector-valued objective function with
hk(U) = ∑m

i=1 ukibi for all k = 1, 2, . . . , s, and “Minimize” is the notation for
finding all efficient solutions in a minimizing sense, i.e., all U0 ∈ T for which there
exists no U∗ ∈ T such that H(U∗) ≤ H(U0). For s = 1, problem (8.13) reduces to
a linear program because the problem

minimize {h(u) = u′b|u′Aw < c′w for no w � 0},

with u ∈ Rm is equivalent to

minimize {h(u) = u′b|u′A � c′}. (8.14)

Problem (8.14) is the dual problem to the problem

maximize {f (x) = c′x|Ax = b, x � 0},
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obtained as a single-objective case (s = 1) of problem (8.6).
As for the primal problem (8.6), we can state similar necessary and sufficient

conditions that ensure the existence of at least one efficient solution for the dual
problem (8.13). We consider the system

UAw ≤ Cw for no w � 0

as well as the homogeneous system

UAw ≤ 0 for no w � 0.

Assuming that T is not empty, H(U) is bounded from below in T if and only if

Ub ≤ 0, UAw ≤ 0 for no w � 0 (8.15)

have no solution U . H(U) is not bounded from below in T if and only if (8.15) has
a solution U ′′.

Similarly to Proposition 8.1 above, Isermann [17, pp. 35–36] stated the following.

Proposition 8.2. Problem (8.13) has no efficient solution if and only if

(i) T = ∅ or
(ii) H(U) is not bounded from below in T �= ∅.

Isermann [16, p. 276] summarized the existence and duality properties of (8.6)
and (8.13) in the following.

Theorem 8.2. Consider problems (8.6) and (8.13).

(i) The following statements are equivalent:

• Both (8.6) and (8.13) have a feasible solution.

• Both (8.6) and (8.13) have an efficient solution and there exists at least one
pair (x0, U0) of efficient solutions such that Cx0 = U0b.

• The linear program

minimize u′b
subject to u′A− α′C � 0′,

α′ � e′,
(8.16)

where e′ = (1, 1, . . . , 1), has an optimal solution (u∗,α∗).
(ii) x0 is an efficient solution for (8.6) if and only if there exists a feasible solution

U0 for (8.13) such that Cx0 = U0b. U0 is then itself an efficient solution
for (8.13).

(iii) U0 is an efficient solution for (8.13) if and only if there exists a feasible solution
x0 for (8.6) such that Cx0 = U0b. x0 is then itself an efficient solution for (8.6).
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The dual pair of multiple-objective linear programming problems under consid-
eration can provide interesting and useful insights into the multiple-criteria decision-
making process. For this purpose, let us return to the production problem (8.2)–(8.4).
The respective dual problem can be interpreted as finding two (generally s) price
vectors with the components uki (k = 1, 2; i = 1, 2, 3; generally i = 1, 2, . . . , m)
describing the marginal contributions of the ith scarce resource with respect to the kth
objective such that the s-dimensional (in our example, two-dimensional) total value
of the resources is minimal. An efficient allocation of the scarce resources implies
a set of shadow prices such that the total value of the resources equals each of the
primal objective function values considered. In the same way, a properly selected set
of shadow prices implies an efficient production plan. How do we find the matrix of
shadow prices U0?

In connection with Theorem 8.2, efficient solutions for both the primal prob-
lem (8.6) and the dual problem (8.13) can be extracted directly from the multiple-
objective simplex tableau of the primal problem (8.6). The multiple-objective simplex
method (see, e.g., [4, 14]), as an extension of the single-objective simplex method
described in Section 4.5, at first seeks feasibility for the dual problem while main-
taining feasibility in the primal problem. As soon as feasible solutions for both
problems are determined, an initial pair (x0, U0) of efficient solutions is found such
that Cx0 = U0b. The further procedure of the multiple-objective simplex method
consists in finding all feasible solutions for the primal problem while maintaining
feasibility in the dual problem.

The initial simplex tableau in Table 4.4 is now extended by replacing a vector c by
a matrix C (see Table 8.2). Just as in single-objective linear programming, multiple-
objective simplex tableaux can be transformed by multiplication of their columns by
the inverse basis B−1 (see Table 8.3).

Table 8.2. Initial simplex tableau for the multiple-objective linear program.

C
A E b

−C 0 0

Table 8.3. Transformed simplex tableau.

B−1A B−1 B−1b
CBB

−1A− C CBB
−1 CBB

−1b

A feasible basic solution for the primal problem (8.6), x0, is then described by
the vector of basic variables x0

B = B−1b and by x0
N = 0, where x0

N denotes the
vector of nonbasic variables. The values of the objective functions are given by
F(x0) = CBB

−1b. Moreover, the feasibility for the dual problem

(CBB
−1A− C)w ≤ 0 for no w � 0
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Table 8.4.

f2 1 1 0 0 0
f1 40 120 0 0 0

i B cB cB P1 P2 P3 P4 P5 P0
1 P3 0 0 1 1 1 0 0 100
2 P4 0 0 10 20 0 1 1 1100

3 P5 0 0 1 4 0 0 0 160

4 z
(1)
j

− c
(1)
j

−40 −120 0 0 0 0

5 z
(2)
j

− c
(2)
j

−1 −1 0 0 0 0

implies CBB−1Ax ≤ Cx for no x ∈ K and because of CBB−1Ax = Cx0. Finally,
Cx0 ≤ Cx for no x ∈ K . Summarizing, if a feasible basic solution x0 is dual feasible,
i.e., U0 = CBB

−1 ∈ T , then x0 is an efficient solution for the primal problem (8.6).
Moreover,U0 = CBB

−1 is an efficient solution for the dual problem (8.13) according
to Theorem 8.2 because the expressionCBB−1b in Table 8.3 shows the corresponding
values of primal and dual objective functions. The expressionCBB−1b can be written
as H(U0) = U0b and as F(x0) = CBx0, respectively. Analogously to single-
objective linear programming, the multiple-objective simplex tableau for the primal
problem (8.6) yields, in connection with each efficient basic solution x0 for (8.6), an
efficient solution U0 for (8.13) such that F(x0) = H(U0).

To illustrate, let us return again to the farmer problem as described in Section 8.1.
The initial multiple-objective simplex tableau for the MOLP (8.2)–(8.4) concerning
the allocation of the scarce production factors—land, capital, and labor—for the
production of wheat and potatoes has the form given in Table 8.4.

Looking at the graphical presentation in Figure 8.1, the starting basic solution
is described by the point x(1). According to the rules of the simplex method, with
column P2 being the pivot column and row 3 being the pivot row (see Section 4.5),
we will obtain the new basic solution given in Table 8.5 and described by the point
x(2) in Figure 8.1.

The interpretation of the elements in the criterion rows 4 (for the first objective)
and 5 (for the second objective) is analogous to the interpretation of the elements
zj − cj in the single-objective simplex tableau. They indicate the change in the first
and second objective function by introducing a particular nonbasic variable into the
basis. Because the elements in the first column in both criterion rows are negative,
the basic solution x(2) cannot be efficient. The planting of potatoes can increase the
values of both objective functions, the revenue of the farmer as well as the utilization
of the production factor land. The result is given in Table 8.6.

As the reader can see in Figure 8.2, the received solution x(3) is an efficient
solution for the primal problem (8.2)–(8.4). Planting 60 acres of potatoes and 25
acres of wheat yields return revenue in the amount of 5,400 and 85 acres of land are
used. As indicated in the criterion rows 4 and 5 of Table 8.6, the value of the second
objective can be increased by introducing the nonbasic variable x5 into the basis (the
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Table 8.5.

f2 1 1 0 0 0
f1 40 120 0 0 0

i B cB cB P1 P2 P3 P4 P5 P0

1 P3 0 0 3
4 0 1 0 − 1

4 60

2 P4 0 0 5 0 0 1 −5 300

3 P2 120 1 1
4 1 0 0 1

4 40

4 z
(1)
j

− c
(1)
j

−10 0 0 0 300 4800

5 z
(2)
j

− c
(2)
j

− 3
4 0 0 0 1

4 40

Table 8.6.

f2 1 1 0 0 0
f1 40 120 0 0 0

i B cB cB P1 P2 P3 P4 P5 P0

1 P3 0 0 0 0 1 − 3
20

1
2 15

2 P1 40 1 1 0 0 1
5 −1 60

3 P2 120 1 0 1 0 − 1
20

1
2 25

4 z
(1)
j

− c
(1)
j

0 0 0 2 20 5400

5 z
(2)
j

− c
(2)
j

0 0 0 3
20 − 1

2 85

element in criterion row 5 and column P5 is negative), however, only with decreasing
value of the first objective function (the element in criterion row 4 and column P5 is
positive). In that sense, the elements in the criterion rows of the multiple-objective
simplex tableau characterize the trade-off between the different objectives, caused by
taking up of the particular product (e.g., planting potatoes) into the production plan.
By introducing the nonbasic variable x4 into the basis, the values of both objective
functions will decrease.

Due to Theorem 8.2, if x(3) is an efficient solution for (8.2)–(8.4), Table 8.6 must
provide an efficient solutionU0 for the dual problem. According to the interpretation
of the elements in Table 8.3, the dual solution U0 will be found in the criterion rows
(in our example, rows 4 and 5) and in the columns of the basic variables from the
initial simplex tableau (in our case, in columns P3, P4, and P5). Consequently, the
efficient solution U0

3 connected with efficient solution x(3) is given by

U0
3 =

(
0 2 20
0 3

20 − 1
2

)
.
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The elements of the matrix U0
3 are the shadow prices of the production factors land,

capital, and labor (the columns of the matrix U0
3 ) with respect to the first objective

function (the first row of the matrix U0) and to the second objective function (the
second row of the matrix U0), respectively. The increase of capital by 1 would
increase the return revenue by 2 and the utilization of land by 3

20 acre. One additional
man-day of labor would increase the return revenue by 20 and decrease the utilization
of land by 1

2 acre. One additional acre of land will not change the values of the
objective functions. For the efficient solution x(3), the marginal contribution of the
production factor land to both objectives equals zero.

Due to Theorem 8.2, the efficient solution x(3) for the MOLP (8.2)–(8.4) and
the properly selected shadow prices for the production factors imply that the total
value of all three resources equals the value of the first and second objective function,
respectively. Indeed,

Cx(3) =
(

40 120
1 1

)(
60
25

)
=
(

5400
85

)
,

U0
3 b =

(
0 2 20
0 3

20 − 1
2

)⎛⎝ 100
1100
160

⎞⎠ =
(

5400
85

)
.

The next efficient solution for the primal problem (8.2)–(8.4), represented by point
x(4) in Figure 8.1 and point F(x(4)) in Figure 8.2, can be obtained by entering the
nonbasic variable x5 into the basis. The resulting simplex tableau is given in Table 8.7.

The farmer should plant 90 acres of potatoes and 10 acres of wheat. The return
revenue has been decreased to 4,800, but the utilization of land has been raised. All
100 acres of land will be used. The efficient dual solution U0

4 connected with the
efficient solution x(4) is given in Table 8.7 as

U0
4 =

(−40 8 0
1 0 0

)
.

Table 8.7.

f2 1 1 0 0 0
f1 40 120 0 0 0

i B cB cB P1 P2 P3 P4 P5 P0

1 P5 0 0 0 0 2 − 3
10 1 30

2 P1 40 1 1 0 2 − 1
10 0 90

3 P2 120 1 0 1 −1 − 1
10 0 10

4 z
(1)
j

− c
(1)
j

0 0 −40 8 0 4800

5 z
(2)
j

− c
(2)
j

0 0 1 0 0 100



254 8 Multiobjective Linear Programming

The economic interpretation of the elements of this matrix as the shadow prices for the
production factors with respect to both objectives is analogous to the interpretation
of the matrix U0

3 , but now related to the efficient solution x(4). One additional acre
of land will decrease the return revenue by 40 and increase the utilization of land by
one acre. One additional Euro of capital will increase the return revenue by 8, and
it will not change the value of the second objective. The elements in criterion rows 4
and 5 in Table 8.7 confirm (as the reader can see in Figure 8.2) that the solution x(4)

is an efficient solution of the primal problem (8.2)–(8.4). Entering the slack variable
x3 into the basis (in other words, decreasing acres of land used for production) would
increase the return revenue and decrease the utilization of the production factor land.
More precisely (and in coincidence with the above interpretation of the shadow price
of land), one acre of uncultivated land will increase the return revenue by 40 and
decrease the utilization by one acre. Indeed, the transformation of Table 8.7, with
columnP3 being the pivot column and row 1 being the pivot row, will lead to Table 8.6
with the efficient solution x(3) again. For this solution, 15 acres of land remain
uncultivated and the return revenue has been raised by 600 ( 40 × 15) to 5,400.

The reader can easily verify thatU0
4 is the efficient solution such thatCx(4) = U0

4 b.
As can be seen from the graphical representation in Figures 8.1 and 8.2, the set of
efficient solutions for the MOLP (8.2)–(8.4) is the set of all linear convex combinations
of the extreme points x(3) and x(4), described by (8.5).

By Theorem 8.2, both problems (8.6) and (8.13) have no efficient solution if and
only if at least one problem has no feasible solution. In order to find out whether for
each problem of the dual pair (8.6) and (8.13) at least one efficient solution exists,
the linear program (8.16) may be applied.

For the example (8.2)–(8.4), it becomes

minimize h(u) = 100u1 + 1100u2 + 160u3 (8.17)

subject to u1 + 10u2 + u3 − 40α1 − α2 � 0,
(8.18)

u1 + 20u2 + 4u3 − 120α1 − α2 � 0,

α1 � 1,
(8.19)

α2 � 1,

u � 0, (8.20)

with the optimal solution u0
1 = 0, u0

2 = 2.15, u0
3 = 19.5, α0

1 = 1, α0
2 = 1 and the

optimal objective function value h(u0) = 5485. The problem (8.17)–(8.20) is the
dual problem to the following program:

maximize f (z) = z1 + z2

subject to x1 + x2 � 100,

10x1 + 20x2 � 1100,

x1 + 4x2 � 160,

−40x1 − 120x2 + z1 � 0,

−x1 − x2 + z2 � 0,

x1 � 0, x2 � 0, z1 � 0, z2 � 0.

(8.21)
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Generally, the linear program (8.16) is the dual to the problem

maximize f (z) =
s∑
k=1

zk

subject to Ax � b,

−Cx + Ez � 0,

x � 0, z � 0.

(8.22)

Problem (8.22) can be interpreted as a special case of the parametric problem (7.17)
with α = e. In other words, the sum of the objective function values should be
maximized subject to x ∈ K = {x|Ax � b, x � 0}.

The optimal solution in example (8.21) is x0
1 = 60 and x0

2 = 25, with the value of
the first objective function z0

1 = 5400 and the value of the second objective function
z0

2 = 85, corresponding to the efficient solution x(3) in Figure 8.2 and Table 8.6.
The variables z1 and z2 from problem (8.21) are the dual variables for the con-
straints (8.19), and x1, x2 are the dual variables for the constraints (8.18).

Thus, if (8.16) has an optimal solution (u0,α0), due to Theorems 7.2 and 8.2, a
first efficient basic solution for (8.6) is obtained. Solving (8.17)–(8.20), we find the
vector u0 = (0; 2.15; 19.5) and, as a dual solution, the efficient or Pareto–Koopmans
maximal point x(3) = (60; 25) with the objective function values z = (5400; 85).
Then due to Theorem 8.2, there exists an efficient solution for (8.13). To illustrate,
we will again use the production problem (8.2)–(8.4).

According to (7.22), a vector of dual variables u associated with the constraints
Ax � b can be seen as an aggregation of the matrix U :

u′ = α′U. (7.22)

Setting u0,α0 from (8.17)–(8.20) into (7.22) leads to the following set of equations:

u0
11 + u0

21 = 0, (8.23)

u0
12 + u0

22 = 2.15, (8.24)

u0
13 + u0

23 = 19.5. (8.25)

The linear vector optimization problem (8.6) is a special case of the multiobjective
mathematical programming problem (7.12) such that the Kuhn–Tucker conditions
from Section 7.2 can be applied. It follows from (7.20) that U0(Ax0 − b) = 0 for
x0 = (60; 25) that both shadow prices u0

11 and u0
21 must equal zero. The equality

Cx0 = U0b from Theorem 8.2 generates the next two conditions for the shadow
prices u12, u13, u22, and u23:

1100u0
12 + 160u0

13 = 5400, (8.26)

1100u0
22 + 160u0

23 = 85. (8.27)

Solving the system of equations (8.24)–(8.27) yields u0
12 = 2, u0

13 = 20, u0
22 = 3

20 ,
u0

23 = − 1
2 , and therewith the same matrix of shadow prices
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U0 =
(

0 2 20
0 3

20 − 1
2

)
,

as obtained in Table 8.6. If, however, (8.16) has no optimal solution, (8.6) and (8.13)
have no efficient solution.

Changing the coefficients on the right-hand side in (8.19)—in other words, the
weights for the objectives—the new efficient solution can be found. Useful infor-
mation for this purpose yields the postoptimality analysis,1 dealing with the changes
in the optimal solution due to variation in the parameters of the model. Generally,
two types of postoptimality—namely, sensitivity analysis and parametric program-
ming—will be distinguished.

In sensitivity analysis, the question is, what is the range over which a given pa-
rameter can change without changing the optimal basis? In parametric programming,
the question is, what happens if an actual change is such that it does not fall within
the above range? Sensitivity analysis related to the right-hand side of (8.19) provides
the following answers:2 If α1 � 0.02 and all other parameters remain unchanged, the
same efficient point x(3) will be obtained. If 0 � α2 � 40 and all other parameters
remain unchanged, the optimal solution will not change. Therefore, changing the
constraint α2 � 1 in (8.19), e.g., to α2 � 50, the new optimal solution for problem
(8.17)–(8.20) follows: u0

1 = 10, u0
2 = 8, u0

3 = 0, α0
1 = 1, and α0

2 = 50. The
optimal solution of the connected dual problem is x0

1 = 90, x0
2 = 10, z0

1 = 4800,
and z0

2 = 100. The Pareto–Koopmans maximal point x(4) from Table 8.7 has been
obtained. Using relation (7.22), we can write the following:

u0
11 + 50u0

21 = 10, (8.28)

u0
12 + 50u0

22 = 8, (8.29)

u0
13 + 50u0

23 = 0. (8.30)

Because of condition (7.20), U0(Ax0 − b) = 0 for x0 = (90; 10), the shadow prices
for the production factor labor with respect to the first and second objective functions,
u0

13 and u0
23, respectively, must be zero. The efficiency condition Cx0 = U0b leads

then to the following equations:

100u0
11 + 1100u0

12 = 4800, (8.31)

100u0
21 + 1100u0

22 = 100. (8.32)

Solving the set of linear equations (8.28), (8.29), (8.31), and (8.32) yields u0
11 = −40,

u0
12 = 8, u0

21 = 1, u0
22 = 0, and together with u0

13 = u0
23 = 0, the same matrix of

shadow prices

U0
4 =

(−40 8 0
1 0 0

)
,

1 Despite the high relevance of postoptimality analysis in economic models, here the reader
is referred to the literature, e.g., [5]. Most of the textbooks on linear programming contain
a section devoted to postoptimality analysis.

2 For technical details, see, e.g., [10, Chapter 8, Section 3].
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as given in Table 8.7.
This very simple farmer problem illustrates how to find a pair (x0, U0) of effi-

cient solutions for the primal and dual linear vector optimization problem (for the
mathematically exact description of the vector-maximum algorithms, see [25, Chap-
ter 9]) and what the economic meaning of the dual variables U0 is. At the same
time, the basic multiple-criteria decision-making problem arises: How do we choose,
from among the numerous (not only two, as in the farmer problem above) efficient
solutions, an efficient solution that will be accepted by the decision maker. In other
words, there is no other efficient solution that will be preferred by the decision maker.
Obviously, the acceptance or rejection of a specific efficient solution depends on
the preference structure of the decision maker. In Sections 7.1.1 (dealing with wel-
fare economics) and 7.1.2 (devoted to quantitative macroeconomic policy), we have
already underlined and pointed out an interactive procedure for the problem of an “ex-
ante” explicitly specified scalar-valued preference function. The interactive methods
represent a very important tool for multiple-criteria decision making, and therefore
the following section is devoted to the discussion of the underlying principles and the
presentation of one of the interactive methods, namely, the Zionts–Wallenius algo-
rithm, which has a clear economic interpretation and has been repeatedly applied for
optimization of macroeconomic and environmental policy [27, 2, 3].

8.3 Interactive Procedures and the Zionts–Wallenius Method

The interactive methods of multiple-objective programming are methods in which
the full preference structure of the decision maker is not postulated a priori, but
is implicitly revealed in response to a simple question–answer procedure with the
decision maker.

Interactive procedures are characterized by phases of decision making alternating
with phases of computation. According to Gardiner and Steuer [9] and Stewart [26],
they involve the following characteristic steps:

• A feasible (and usually efficient) solution or small number of solutions is generated
according to some specified procedure and presented to the decision maker for
examination.

• If the decision maker is satisfied with the solution (or one of the solutions) gen-
erated, then the process stops. Otherwise, he/she is requested to provide some
local preference information (make improved judgments) in the vicinity of the
solution(s) presented.

• The local information provided by the decision maker is the input to the solution
procedure in which a new solution is computed, and the process returns to the
first step.

The feedback between human and model enables the decision maker to explore
more deeply the range of possibilities in his feasible region and how the objectives
trade off against one another. In this way, the interactive procedure helps the decision
maker to understand better the complex structure of the system and to learn more
about the analyzed problem.



258 8 Multiobjective Linear Programming

In the literature, many interactive methods can be found. They can be classified
with respect to different criteria, the distinguishing feature being the relative diffi-
culty in applying them to real problems having multiple objectives. Such methods
include those of Benayoun et al. [1] (called the STEM method), Geoffrion, Dyer,
and Feiberg [12], Zionts and Wallenius [28], the interval criterion weights/vector-
maximum approach by Steuer [24], the visual interactive approach by Korhonen and
Laakso [18], interactive goal programming by Spronk [23], and others. As a represen-
tative of this approach of multiple optimization, we introduce the Zionts–Wallenius
method because of its simplicity to understand and use for those not familiar with
such models, and also because of its workability in practice.

The problem considered by Zionts and Wallenius [28] is one in which each of
the objective functions fk(x) (k = 1, 2, . . . , s) that the decision maker wants to
maximize is a concave function of decision variables, and the constraint set K is
a convex set. The utility function U or composite objective function is a linear
function (and, more generally, a concave function) of the objective function variables
fk(x) (k = 1, 2, . . . , s), but the precise weights in such a function are not known
explicitly. The method starts with an arbitrary set of positive weights αk satisfying∑s
k=1 αk = 1, and it generates a composite objective function using these weights.

The composite objective function
∑s
k=1 αkfk(x) is then maximized subject to the set

K = {x|Ax = b, x � 0}. The result is an efficient or Pareto–Koopmans solution in
the sense that it is not possible to increase one objective function without decreasing
at least one other objective function.

Returning to our numerical example (8.2)–(8.4) and setting α1 = α2 = 1
2 , we

will solve the following problem:

maximize U(x) = 1

2
(40x1 + 120x2)+ 1

2
(x1 + x2)

= 20.5x1 + 60.5x2

subject to (8.3)–(8.4). The initial simplex tableau is a slight modification of Table 8.4
(see Table 8.8).

Table 8.8. Initial tableau for problem (8.2)–(8.4) with α1 = αz = 1
2 .

1
2 f2 1 1 0 0 0

1
2 f1 140 120 0 0 0

i B α′CB c(1)
B

c(2)
B

P1 P2 P3 P4 P5 P0

1 P3 0 0 0 1 1 1 0 0 100
2 P4 0 0 0 10 20 0 1 0 1100
3 P5 0 0 0 1 4 0 0 1 160

4 α1
1
2 z

(1)
j

− c
(1)
j

−40 −120 0 0 0 0

5 α2
1
2 z

(2)
j

− c
(2)
j

−1 −1 0 0 0 0

6 zj − cj −20.5 −60.5 0 0 0 0
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As the optimal solution, the Pareto–Koopmans-efficient point x(3) will be obtained
(see Table 8.9).

Table 8.9. Simplex tableau for the efficient point x(3).

i B α′CB c(1)
B

c(2)
B

P1 P2 P3 P4 P5 P0

1 P3 0 0 0 0 0 1 − 3
20

1
2 15

2 P1 20.5 40 1 1 0 0 1
5 −1 60

3 P2 60.5 120 1 0 1 0 − 1
20

1
2 25

4 α1
1
2 z

(1)
j

− c
(1)
j

0 0 0 2 20 5400

5 α2
1
2 z

(2)
j

− c
(2)
j

0 0 0 3
20 − 1

2 85

6 zj − cj 0 0 0 43
40

39
4

After obtaining an efficient solution to the starting problem with an arbitrary set of
positive weights αk(k = 1, 2, . . . , s), we can divide the set of all nonbasic variables
into two subsets:

• those nonbasic variables which, when introduced into the basis, lead to efficient
adjacent extreme points in criterion space,

• those nonbasic variables that, when introduced into the basis, do not lead to efficient
adjacent extreme points in the space of the objective function variables fk(x).

Denote the first subset of variables as efficient variables and the second subset
as inefficient variables. In our very simple example with two objectives, only the
classification nonbasic variables into these categories is immediately visible from
criterion rows 4 and 5 in Table 8.9. As already noted in the interpretation of Table 8.6,
the elements in the criterion rows describe the changes in the objective functions
caused by introducing the nonbasic variables into the basis. According to Table 8.9
by introducing the nonbasic variable x4 into the basis the value of the first objective
function will decrease by two units and the value of the second objective function by
0.15 unit. Consequently, the nonbasic variable x4 is inefficient.

On the other hand, the introduction of the nonbasic variable x5 decreases the first
objective function value by 20 units and increases the second objective function value
by 0.5 unit. The nonbasic variable x5 is efficient.

To find an efficient subset of a set N of nonbasic variables in general, Zionts and
Wallenius [28] proposed solving for each nonbasic variable j ∈ N the following
linear programming problem:

minimize
s∑
k=1

(z
(k)
j − c

(k)
j )αk



260 8 Multiobjective Linear Programming

subject to
s∑
k=1

(z
(k)
j − c

(k)
j )αk � 0, j ∈ N, j �= k,

(8.33)
s∑
k=1

αk = 1,

αk � 0 (k = 1, 2, . . . , s),

where z(k)j − c
(k)
j represents the decrease in the objective function fk(x) due to an

increase of the nonbasic variable xj by a unit. Then

(i) if the minimum objective function value of (8.33) is negative, the variable xj is
efficient;

(ii) if the minimum objective function value of (8.33) is nonnegative, the variable xj
is not efficient.

The reader can verify that the minimum objective function value of (8.33) for the
nonbasic variable x5 is negative and for the nonbasic variable x4 is positive.

Considering the subset of efficient nonbasic variables the decision maker is now
asked, “Here is a trade: Are you willing to accept a decrease in objective function f1

of z(1)j − c
(1)
j , a decrease in objective function f2 of z(2)j − c

(2)
j , . . . , and a decrease

in objective function fs of z(s)j − c
(s)
j ? Respond yes, no, or indifferent to the trade”

(Zionts and Wallenius [28, p. 656]). There will be at least one positive z(k)j − c(k)j and

at least one negative z(k)j − c
(k)
j for each efficient variable. According to the decision

maker’s responses, the choice of the weights α to be used in finding a new efficient
solution is restricted as follows. For each “yes” answer, an inequality of the form

s∑
k=1

(z
(k)
j − c

(k)
j )αk � −ε, (8.34)

where ε is a sufficiently small positive number, will be formulated. For each “no”
response, an inequality of the form

s∑
k=1

(z
(k)
j − c

(k)
j )αk � ε (8.35)

will be constructed, and for each response of indifference, an inequality of the form

s∑
k=1

(z
(k)
j − c

(k)
j )αk = 0 (8.36)

will be constructed.
As mentioned by Zionts and Wallenius [28], responses of indifference imply an

unreasonably high degree of precision of judgment by the decision maker. Therefore,



8.3 Interactive Procedures and the Zionts–Wallenius Method 261

for practical implementation and in order to improve the convergence of the procedure,
they ignored the “I don’t know” responses when generating consistent multipliers.

Using linear programming a feasible solution to the set of constraints (8.34)–
(8.36), and

s∑
k=1

αk = 1, αk � ε (k = 1, 2, . . . , s)

is found. The relationships (8.34)–(8.36) are also used to eliminate efficient vari-
ables from subsequent question sessions. In other words, they are added to the
constraints (8.33) in the next step when an efficient subset of a set N of nonbasic
variables is to be found.

The resulting weights α are used to generate a new composite function,

s∑
k=1

αkfk(x),

which is then maximized under the constraints (8.3)–(8.4) to obtain a new solution, and
the procedure goes to the next iteration. An efficient subset of variables is assembled
as questions for the decision maker, and the process is continued until an efficient
solution has been reached, where there are no remaining efficient nonbasic variables.
(The reader should remember that the constraints (8.34)–(8.35) using earlier responses
by the decision maker are adjoined to the constraints of problem (8.33).)

Returning to our small model (8.2)–(8.4), let us assume that the (implicit) utility
function is U(x) = 0.7f1(x)+ 0.3f2(x), but we will only use the knowledge of this
function in answering the “yes” or “no” questions (because of the absence of the
“real” decision maker). The starting optimal solution is given in Table 8.9 with the
nonbasic variables x4 and x5. The only efficient variable is x5. We ask the decision
maker whether he/she is willing to accept a decrease of 20 units of f1 in return for
an increase of 0.5 unit of f2. To simulate a response, we compute an evaluation:
0.7 · (20) + 0.3 · (−0.5) > 0. Thus there is a net decrease in the decision maker’s
composite function; he/she does not like the trade-off posed by x5. Hence the solution
x(3) is optimal and the weightsα1 = 0.5 andα2 = 0.5 are equivalent (for this problem)
to our unknown multipliers.

Assume, for example, that the (implicit) composite function isU(x) = 0.02f1(x)
+0.98f2(x). The evaluation of the efficient trade-off—a decrease of 20 units of f1 in
return for an increase of 0.5 unit of f2—then yields 0.02 · (20)+ 0.98 · (−0.5) < 0.
Thus there is a net increase in the decision maker’s utility; he/she should like the
trade-off posed by nonbasic variable x5. Thereby an inequality of the form (8.34) is
generated and a feasible solution to the set of constraints (arbitrarily setting ε = 0.02)

20α1 − 1

2
α2 � −0.02,

α1 + α2 = 1,

α1, α2 � 0.02
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Table 8.10. Simplex tableau for the efficient point x(4).

i B α′CB c(1)
B

c(2)
B

P1 P2 P3 P4 P5 P0

1 P5 0 0 0 0 0 2 − 3
10 1 30

2 P1 1.78 40 1 1 0 2 − 1
10 0 90

3 P2 3.38 120 1 0 1 −1 1
10 0 10

4 α1 0.02 z
(1)
j

− c
(1)
j

0 0 −40 8 0 4800

5 α2 0.98 z
(2)
j

− c
(2)
j

0 0 1 0 0 100

6 zj − cj 0 0 0.18 0.16 0

is determined. A basic feasible solution is α1 = 0.02, α2 = 0.98. Using these
weights, we generate a new composite function U(x) = 0.02f1(x) + 0.98f2(x) =
1.78x1 +3.38x2, which is maximized subject to the constraints (8.3)–(8.4). Applying
the Jordan–Gauss elimination procedure with row 1 being the pivot row (the variable
x3 will be eliminated from the basis) and column P5 being the pivot column (the
variable x5 will enter into the basis) to Table 8.9 (however, with the new coefficients
α1 = 0.02 and α2 = 0.98), the new optimal solution x(4) = (90.10) will be obtained
(see Table 8.10).

Due to the higher weighting of the second objective, its value is increased to 100
units (all 100 acres of land are used) and the first objective function value decreased to

4,800. Hence the efficient solution x(4) may be accomplished by using 0.02f1(x)+
0.98f2(x) as the (implicit) utility function. As already mentioned in Section 8.1 and
expressed by (8.5), the set of efficient solutions for the MOLP (8.2)–(8.4) is described
as the set of all linear convex combinations of the extreme points x(3) and x(4). Being
an extreme-point method, the Zionts–Wallenius algorithm cannot find an optimal
solution if it lies in the interior of a facet.

8.4 The Leontief Pollution Model with Multiple Objectives

In Section 7.1.4, two versions of the augmented Leontief optimization model have
been formulated. In the first version, the objective functions are factor cost to produce
the gross national product and net pollution. Both are to be minimized for the given
final demand level. The criteria in the second model are maximization of the final
demand value and the minimization of net pollution under the constraint for primary
input. In the general notation used in Chapter 7, the model has the following form:

Minimize F(x1, x2, y1, y2) =
(−p′y1

y2

)
(8.37)

subject to −(E − A11)x1 + A12x2 + y1 � 0, (7.8)

A21x1 − (E − A22)x2 − y2 � 0, (7.9)
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v′
1x1 + v′

2x2 � V , (7.10)

x1 � 0, x2 � 0, y1 � 0, y2 � 0. (7.11)

Let us apply the Kuhn–Tucker conditions (7.13)–(7.16) as the necessary conditions
for a Pareto–Koopmans minimal point of this problem. The variables in our problem
are x1 ∈ Rn, x2 ∈ Rk , y1 ∈ Rn, and y2 ∈ Rk . All variables are nonnegative. We
compute

�F(x1, x2, y1, y2) =
(

0′ 0′ −p′ 0′
0k×n 0k×k 0k×n Ek×k

)
,

where 0k×n, 0k×k , and Ek×k denote matrices in dimensions k × n and k × k, respec-
tively,

�G(x1, x2, y1, y2) =
⎛⎝−(E − A11) A12 En×n 0n×n

A21 −(E − A22) 0k×n −Ek×k
v′

1 v′
2 0′ 0′

⎞⎠.
Because of the nonnegativity constraints (7.11), the Kuhn–Tucker conditions (7.13)
will be written as inequalities and complementary slackness conditions will be added.
Denoting by u1 ∈ Rn the vector of Lagrange multipliers corresponding to the con-
straints (7.8), by u2 ∈ Rk the vector of Lagrange multipliers corresponding to the
constraints (7.9), and by u ∈ R the Lagrange multiplier for the constraint (7.10), we
obtain

−u′
1(E − A11)+ u′

2A21 + uv′
1 � 0′, (8.38)

u′
1A12 − u′

2(E − A22)+ uv′
2 � 0′, (8.39)

−α1p′ + u′
1E � 0′, (8.40)

α′
2E − u′

2E � 0′, (8.41)

[−u′
1(E − A11)+ u′

2A21 + uv′
1]x1 = 0, (8.42)

[u′
1A12 − u′

2(E − A22)+ uv′
2]x2 = 0, (8.43)

[−α1p′ + u′
1E]y1 = 0, (8.44)

[α′
2E − u′

2E]y2 = 0, (8.45)

x1 � 0, x2 � 0, y1 � 0, y2 � 0, (7.11)

where α1 ∈ R and α2 ∈ Rk . Because the primary factor is perfectly transferable
between the production and abatement activities, we have one (equilibrium) shadow
price for this input.

The Kuhn–Tucker conditions (7.14)–(7.16) yield

u′
1[−(E − A11)x1 + A12x2 + y1] = 0, (8.46)

u′
2[A21x1 − (E − A22)x2 − y2] = 0, (8.47)

u[v′
1x1 + v′

2x2] = 0, (8.48)

the feasibility constraints (7.8)–(7.10), and the nonnegativity constraints for the La-
grange multipliers:
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u1 � 0, u2 � 0, u ≥ 0.

Because of the linearity of F(x1, x2, y1, y2) andG(x1, x2, y1, y2), the Kuhn–Tucker
conditions (8.38)–(8.45) and (7.11) are necessary and sufficient for Pareto–Koopmans
efficiency.

Assuming indecomposability of the input coefficients matrix A11, for any non-
negative vector of final demand y1, all goods will be produced (x1 > 0) and the
conditions (8.38) are fulfilled as equalities. The Lagrange multipliers u1 correspond
then to the prices in the Leontief augmented model. Rewriting the expression in the
brackets of (8.42) as

u′
1 = u′

1A11 + u′
2A21 + uv′

1,

we see that the commodity prices must be such that they cover not only the cost of
inputs from other sectors of the economy (u′

1A11) and the cost of primary factors
(uv′

1), but also the pollution cost (u′
2A21).

Interesting implications follow from conditions (8.40) and (8.41). The Lagrange
multipliers or shadow prices ui (i = 1, 2, . . . , n) cannot be lower than the given
prices pi (i = 1, 2, . . . , n) weighted by the factor α1. Because of the positivity of α1
and p, the shadow prices u1 must be positive, and due to (8.46), the constraints (7.8)
are fulfilled as equalities. There is no reason to have net production exceeding the
final demand. If the exogenously given price pi of the commodity i weighted by
the factor α1 is lower than the shadow price u1i , the final demand y1i will be zero.
In other words, if the production cost u1i of commodity i is higher than the final
demand contribution pi of this commodity to the social welfare described by (8.37),
the commodity i is used as the input for the production of other commodities and
for abatement activities only, and the final demand of this commodity y1i is zero.
At a Pareto–Koopmans efficient point, the positive final demand y1i implies that the
opportunity loss from the production of commodity i for the final demand is zero.

At the same time, condition (8.40) provides an upper bound for the factor α1 in
order to characterize a Pareto–Koopmans-efficient point of problem (8.37) under the
constraints (7.8)–(7.11):

α1 � u1i

pi
(i = 1, 2, . . . , n),

α1 = min
i

u1i

pi
.

The Kuhn–Tucker condition (8.41) yields lower bounds for the factors α2h (h =
1, 2, . . . , k), in order to get a Pareto–Koopmans minimal point of problem (8.37)
subject to (7.8)–(7.11):

α2 � u2.

The shadow prices u2 of pollutants are—similarly to the shadow prices of goods—
described as the accounting value of the inputs used for the abatement activity:

u′
2 = u′

1A12 + u′
2A22 + uv′

2. (8.49)

Equation (8.49) determines the prices of pollutants from the abatement cost (u′
1A12),

the primary cost per unit level of abatement activities (uv′
2), and the pollution cost of
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the abatement activities themselves (u′
2A22). Therefore, these equations provide the

economic foundation to the “polluter pays principle.”
If the marginal contribution of the net pollution reduction to the social welfare α2h

is higher than the shadow price u2h for the pollutant h—expressed as the accounting
cost of the corresponding abatement activity—the net pollution will be zero. The
complete abatement of the pollutant h leads to a Pareto–Koopmans-efficient point.
For the positive net pollution y2h, the accounting abatement cost for the pollutant h
is equal to the welfare benefit resulting from its reduction by one unit.

In order to illustrate the above-mentioned results and to indicate another inter-
esting implication of the multicriteria Leontief pollution model, let us return to the
small numerical example (8.10)–(8.12). In coincidence with the formulation of the
Kuhn–Tucker conditions provided above, we rewrite the problem (8.10)–(8.12) as a
minimization problem

Minimize F(x1, x3, y1, y3) =
(−p′y1

y3

)
, (8.50)

subject to the constraints (8.11)–(8.12), where p′ = (2, 4), x′
1 = (x1, x2), y′

1 =
(y1, y2), x3 describes the level of abatement activity, and y3 denotes the net pollution.
Supposing α1 = 1 and α2 = 1 and solving the above problem as the parametric
problem (7.17), we obtain the following solution:

x0
1 = 47.54, x0

2 = 89.90, x0
3 = 0,

y0
1 = 0, y0

2 = 72.4, y0
3 = 41.95.

Furthermore, the shadow price for commodity 1 is u0
11 = 2.14, the shadow price for

commodity 2 is u0
12 = 4, and the shadow price for the pollutant is u0

21 = 1. The
reader can observe that u0

11 > α1p1 = 2, and therefore y0
1 = 0. y0

2 > 0 implies
u0

12 = α1p2 = 4, and because of y0
3 > 0, u0

21 = α2 = 1. At the same time,

α1 = min{u0
11
p1

; u0
12
p2

} = min{ 2.14
2 ; 4

4 } = 1.
Usually the coefficients α1 and α2 can be interpreted as the weights for the par-

ticular objectives. In our example, α1 is the weight for the maximization of the final
demand value and α2 is the weight for the minimization of net pollution. Now sup-
pose that the preferences of society toward higher environmental quality increase.
The coefficients α1 will decrease (e.g., α∗

1 = 1
2 ), or the relative weight for the mini-

mization of net pollution increases. Solving problem (8.50), subject to the constraints
(8.11)–(8.12), as the parametric problem (7.17) with p′ = (2, 4) and α∗

1 = 1
2 , α2 = 1

yields

x∗
1 = 42.96 x∗

2 = 80.56, x∗
3 = 37.59,

y∗
1 = 0, y∗

2 = 57.36, y∗
3 = 0.

Looking at the dual solutions, the reader may observe again that all Kuhn–Tucker
conditions are fulfilled: u∗

11 = 1.189 > α∗
1p1 = 1, and consequently y∗

1 = 0.
Because the accounting abatement cost, expressed by the shadow price u∗

21 = 0.717,
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is lower than the marginal contribution of the net pollution reduction to the social
welfare (α2 = 1), the complete abatement of the pollution (y∗

3 = 0) occurs in the
Pareto–Koopmans-efficient solution.

Comparing the solutions of both examples, the following observation can be
made: With the higher relative weight for the environmental goal of net pollution
minimization, the production of both commodities and the final demand was decreas-
ing (x∗

1 < x0
1 , x

∗
2 < x0

2 , y
∗
2 < y0

2 ) and the environmental quality measured by the level
of net pollution was increasing (y∗

3 < y0
3 ). Is this a general result for the augmented

Leontief model (8.37) under the constraints (7.8)–(7.11), or a specific example only?
As pointed out by Luptáčik and Böhm [21], the following proposition provides

an answer to the question formulated above.

Proposition 8.3. In the augmented Leontief model (8.37) subject to (7.8)–(7.11), the
increasing relative weights for environmental quality will lead, in tendency, to a
nonincreasing final demand and a nonincreasing net pollution.

Proof. Using the parametric approach for solving the augmented Leontief model with
objectives (8.37) (should be maximized) and the constraints (7.8)–(7.11), we obtain
the following problem:

maximize α1p′y1 − α′
2y2

subject to (7.8)–(7.11).
(8.51)

Now we are looking for the change in the optimal solution of problem (8.51) caused by
the changes of the coefficients α1 and α2. Due to Luptáčik and Böhm [21], the answer
may be found using the Le Chatelier–Samuelson principle applied to the following
pair of linear programming problems:

maximize c′x subject to Ax � b, x � 0 (8.52)

and

minimize u′b subject to u′A � c′, u′ � 0, (8.53)

where x ∈ Rn, c ∈ Rn, b ∈ Rm, u ∈ Rm, andA ∈ Rm×n. The following theorem [22,
p. 329] is very useful for our purposes.

Theorem 8.3. Let x0 and u0 be the optimal solutions to (8.52) and (8.53), respectively.
If the vectors c and b vary by �c and �b, respectively, the corresponding change in
the optimal solutions, denoted by �x and �u, will be such that

�c′�x − �u′�b � 0, (8.54)

c′�x − �u′b � u′
0�b − �c′x0. (8.55)

The increasing weights α2 for the minimization of net pollution and decreasing
weight α1 for the maximization of the final demand value imply decreasing coeffi-
cients of the parametric objective function in (8.51). For the case in which only the
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coefficients of the objective function in (8.51) will be changed (�c �= 0 and �b = 0),
inequality (8.54) reduces to

�c′�x � 0. (8.56)

If �c = 0 and �b �= 0, then we obtain

�u′�b � 0.

The solution of the maximization problem tends to vary in the same direction (the solu-
tion of the minimization problem in the opposite direction) as the coefficients of the ob-
jective function. Direct application of the so-called Le Chatelier–Samuelson inequal-
ity (8.56) to our problem (8.51) with c′ = (0′, 0′, α1p′,−α2) and x′ = (x′

1, x′
2, y′

1, y′
2)

then yields
�c′�x = �α1p′�y1 + �α2�y2 � 0,

where �α1 < 0 and �α2 = 0 (as in our numerical example). Because we want
to maximize the value of final demand and to minimize net pollution, according
to the Le Chatelier–Samuelson principle, the final demand y1 tends to vary in the
same direction as the weight for the final demand, and the level of net pollution y2
in the opposite direction as the weights for the environmental goal. Summarizing,
the increasing relative weights for environmental quality will lead—in tendency—
to nonincreasing final demand and nonincreasing net pollution. The nonincreasing
or decreasing gross production x1 and increasing level of abatement activities x2,
as illustrated in our numerical example, follow from the structure of the Leontief
model. For the decreasing final demand, lower gross production is needed, which
subsequently reduces the amount of gross pollution. Furthermore, the level of net
pollution is reduced by increasing abatement activity. ��

These results depend crucially on the definition of the economic objectives. As
shown by Luptáčik and Böhm [21] for the other version of the multicriteria augmented
Leontief model described in Section 7.1.4, the opposite results have been derived.
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9

Multiobjective Geometric Programming

As shown in Chapter 6, problems leading to geometric programming models arise very
often, not only in engineering design but also in economics and management science.
Referring to the introductory discussion in Chapter 7, it seems obvious to include
geometric programming problems with several objectives in our consideration. A
nonlinear model of environmental control from Section 7.1.6 provides one example
and will be analyzed in Section 9.3.

This chapter uses the notation and results of Chapters 6 and 7 and contains
four sections. Efficient and properly efficient solutions of multiobjective geomet-
ric programming problems are derived in Section 9.1 as optimal solutions of ordin-
ary geometric programming problems. To illustrate, we present a simple production
model with maximization of production and maximization of environmental qual-
ity.

In Section 9.2, duality for a multiobjective optimization problem in parametric
form, as developed in Section 7.3.1, is used for multiobjective geometric program-
ming, and as an application a nonlinear model of environmental control from Sec-
tion 7.1.6 is analyzed in Section 9.3. The chapter concludes with Section 9.4, which
deals with the model of a monopolistic firm maximizing revenue and profit, as for-
mulated in Section 7.1.4.

9.1 Vector Minimization Problems in Geometric Programming

We consider the multiobjective mathematical programming problem (7.12):

Minimize F(x) = (f1(x), f2(x), . . . , fs(x)) (9.1)

subject to gi(x)− 1 � 0 (i = 1, 2, . . . , m), (9.2)

and

xj > 0 (j = 1, 2, . . . , n), (9.3)

M. Luptáčik, Mathematical Optimization and Economic Analysis,  
Springer Optimization and Its Applications 36, DOI 10.1007/978-0-387-89552-9_9,  
© Springer Science+Business Media, LLC 2010 
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where the objective functions f1(x), f2(x), . . . , fs(x) and the constraints g1(x),
g2(x), . . . , gm(x) are polynomials:

fk(x) =
Sk∑
t=1

ckt

n∏
j=1

x
aktj
j (k = 1, 2, . . . , s),

gi(x) =
Ti∑
t=1

dit

n∏
j=1

x
bitj
j (i = 1, 2, . . . , m).

The exponents aktj and bitj are arbitrary real numbers, and the coefficients ckt and
dit are positive.

Writing the multiobjective optimization problem (9.1)–(9.3) as the parametric
problem (7.17), we see that the following geometric programming problem (Pα)
ensues:

minimize
s∑
k=1

αkfk(x)

subject to (9.2) and (9.3).

(Pα)

The corresponding dual problem is (by Section 6.2)

maximize v(α, δ) =
s∏
k=1

Sk∏
t=1

(
αkckt

δkt

)δkt m∏
i=1

Ti∏
t=1

(
dit

δit

)δit m∏
i=1

λi(δ)
λi(δ),

where λi(δ) =
Ti∑
t=1

δit (i = 1, 2, . . . , m),

subject to
s∑
k=1

Sk∑
t=1

δkt = 1,

s∑
k=1

Sk∑
t=1

aktj δkt +
m∑
i=1

Ti∑
t=1

bitj δit = 0 (j = 1, 2, . . . , n),

δkt � 0

(
k = 1, 2, . . . , s,
t = 1, 2, . . . , Sk

)
,

δit � 0

(
i = 1, 2, . . . , m,
t = 1, 2, . . . , Ti

)
.

For fixed α = (α1, α2, . . . , αs) with αk > 0 (k = 1, 2, . . . , s), using geometric
programming theory (see Chapter 6) we can solve problem (Pα) to provide, by The-
orem 7.2, a Pareto–Koopmans-efficient solution to problem (9.1)–(9.3).

The linear combination of the objective functions with fixed αk (k = 1, 2, . . . , s)
in the parametric problem (Pα) implies—from an economic interpretation point of
view—that the marginal rate of substitution between the objective function values
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(the marginal gain in one objective relative to the marginal loss in another objective)
is constant and independent of their levels. Pascual and Ben-Israel [5] proposed a
new parametric problem (

∏
Pα) with a nonlinear combination of the objectives via

the power function. Then the new problem is

minimize
s∏
k=1

fk(x)αk

subject to (9.2) and (9.3).

(∏
Pα
)

The coefficients αk can be interpreted as elasticities of the “master” or “com-
posite” objective function F(x) with respect to the particular objectives fk(x)
(k = 1, 2, . . . , s). In the formulation (Pα), the coefficients αk (k = 1, 2, . . . , s)
express the marginal contribution of the objective k to the “master” or “composite”
objective function F(x). Problem (

∏
Pα) is not necessarily a geometric program,

since
∏s
k=1 fk(x)

αk need not be a polynomial. However, as shown in Section 6.4,
problem (

∏
Pα) can be transformed to the following geometric programming model:

minimize
s∏
k=1

x
αk
n+k

subject to (9.2), (9.3), and the additional constraints

fk(x)x
−1
n+k � 1 (k = 1, 2, . . . , s)

and

xn+k > 0 (k = 1, 2, . . . , s).

The dual problem becomes

maximize v(δ) =
(

1

δ0

)δ0 s∏
k=1

Sk∏
t=1

(
ckt

δkt

)δkt m∏
i=1

Ti∏
t=1

(
dit

δit

)δit s∏
k=1

α
αk
k

m∏
i=1

λ
λi
i (9.4)

subject to δ0 = 1, (9.5)

αkδ0 −
Sk∑
t=1

δkt = 0 (k = 1, 2, . . . , s), (9.6)

s∑
k=1

Sk∑
t=1

aktj δkt +
m∑
i=1

Ti∑
t=1

bitj δit = 0 (j = 1, 2, . . . , n), (9.7)

δkt � 0

(
k = 1, 2, . . . , s,
t = 1, 2, . . . , Sk

)
, (9.8)

δit � 0

(
i = 1, 2, . . . , m,
t = 1, 2, . . . , Ti

)
. (9.9)
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Here

λi(δ) =
Ti∑
t=1

δit (i = 1, 2, . . . , m). (9.10)

Using the duality theory of geometric programming, Pascual and Ben-Israel [5, p. 101]
proved the following.

Theorem 9.1. Let αk > 0 (k = 1, 2, . . . , s) satisfying
∑s
k=1 αk = 1 be fixed. If x0

is an optimal solution of the primal program (
∏

Pα), then x0 is an efficient solution
of problem (9.1)–(9.3).

To illustrate, let us consider a simple production model taking into account two
objectives: maximization of production and maximization of environmental quality.
Assume that the firm produces a single output in the quantity q according to the
production function

q = f (x1) = ax
β
1 ,

where x1 denotes the amount of the input factors (e.g., labor) used for production
and a > 0. β > 0 is the elasticity coefficient with respect to labor. For simplicity,
we consider only one production factor. The environmental quality depends on the
intensity of environmental protection activities and therefore on the amount of pro-
duction factor labor devoted to the preservation of environmental commodities and to
the creation of natural areas. Denoting the amount of labor used for the environmental
protection by x2, the second objective function is f2(x2) = bx

µ
2 , where b > 0 and

0 < µ � 1. It should be maximized as well. The total amount of labor is restricted
to t , i.e.,

x1 + x2 � t. (9.11)

The following vector optimization problem arises:

Maximize F(x) = (f1(x), f2(x))

subject to (9.11).

The reader may verify that the formulation of the parametric problem (Pα) leads to
a geometric programming with degree of difficulty one (see Section 6.2), while the
parametric (

∏
Pα) is a problem with degree of difficulty zero. As shown by Pascual

and Ben-Israel [5, p. 101], the degree of difficulty of problem (
∏

Pα) is smaller by
s − 1 than the degree of difficulty of problem (Pα). Problem (

∏
Pα) for our above

example becomes

minimize f
−α1
1 f

−α2
2 = (ax

β
1 )

−α1(bx
µ
2 )

−α2 = a0x
−α1β
1 x

−α2µ
2

subject to x1t
−1 + x2t

−1 � 1,

where a0 = a−α1b−α2 > 0.

Fortunately, the objective function is a posynomial and geometric programming the-
ory (see Section 6.2) can immediately be applied. Because the degree of difficulty is
zero, the dual solution is easily estimated:
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δ0
0 = 1, δ0

11 = α1β, and δ0
12 = α2µ.

According to (6.28), the solution of the primal problem is

x0
1 = α1β

α1β + α2µ
t and x0

2 = α2µ

α1β + α2µ
t.

The ratio in which the production factor labor should be allocated between the produc-
tion and environmental protection activities is uniquely determined by the weighted
coefficients αk (k = 1, 2) and elasticity coefficients β and µ:

x0
1

x0
2

= α1β

α2µ
.

A nonlinear model of environmental control by Mastenbroek and Nijkamp [4] (de-
scribed in Section 7.1.6) represents an extension of the model discussed above con-
sidering the pollution generated by production of goods and by the consumption
activities. It will be analyzed in Section 9.3.

An alternative approach for vector minimization problems with polynomials in
the objectives and in the constraints will be discussed in the following section. It
is based on duality for multiobjective optimization problems in parametric form, as
introduced in Section 7.3.1.

9.2 Duality for Multiobjective Geometric Programming in
Parametric Form

Let us return to the multiobjective geometric programming problem (9.1)–(9.3), where
the objective functions fk(x) (k = 1, 2, . . . , s) as well as the function gi(x) (i =
1, 2, . . . , m) in the constraints (9.2) are posynomials. In order to transform problem
(9.1)–(9.3) into a convex program, we change the variables xj (j = 1, 2, . . . , n) by
letting

ezj = xj , or zj = ln xj (j = 1, 2, . . . , n).

Then due to Theorem 6.1, each positive exponential function

hk(z) =
Sk∑
t=1

ckt e
∑n
j=1 aktj zj (k = 1, 2, . . . , s),

li(z) =
Ti∑
t=1

dit e
∑n
j=1 bitj zj (i = 1, 2, . . . , m)

is convex. Sk and Ti denote the number of terms in the objective k and the forced
constraints i, respectively. Since the logarithmic function is monotone increasing,
instead of the transformed problem with functions hk(z) (k = 1, 2, . . . , s) and li (z)
(i = 1, 2, . . . , m), we consider the following program:
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Minimize
z

lnH(z) (9.12)

subject to lnL(z) � 0, (9.13)

where

lnH(z) = (ln h1(z), ln h2(z), . . . , ln hs(z)),

lnL(z) = (ln l1(z), ln l2(z), . . . , ln lm(z)),

and

z ∈ Rn.

The functions ln hk(z) (k = 1, 2, . . . , s) and ln li (z) (i = 1, 2, . . . , m) are convex for
arbitrary real numbers aktj and bitj and positive real numbers ckt and dit . Thus the
duality for multiobjective optimization problems from Section 7.3.1 can be applied.
The dual problem to problem (9.12)–(9.13) is (see (7.38))

maximize 	(z,λ) = α′[lnH(z)] + λ′[lnL(z)] (9.14)

subject to α′[∇ lnH(z)] + λ′[∇L(z)] = 0, (9.15)

λ � 0. (9.16)

Differentiation of (9.14) with respect to zj yields

∂	

∂zj
=

s∑
k=1

αk

∑Sk
t=1 ckt e

∑n
j=1 aktj zj aktj∑Sk

t=1 ckt e
∑n
j=1 aktj zj

+
m∑
i=1

λi

∑Ti
t=1 dit e

∑n
j=1 bitj zj bitj∑Ti

t=1 dit e
∑n
j=1 bitj zj

.

Denote

δkt = αk
ckt e

∑n
j=1 aktj zj∑Sk

t=1 ckt e
∑n
j=1 aktj zj

(
k = 1, 2, . . . , s,
t = 1, 2, . . . , Sk

)
(9.17)

and

δit = λi
dit e

∑n
j=1 bitj zj∑Ti

t=1 dit e
∑n
j=1 bitj zj

(
i = 1, 2, . . . , m,
t = 1, 2, . . . , Ti

)
, (9.18)

where δkt describes the dual variable associated with term t in the objective k and δit
is the dual variable associated with term t in the forced constraint i. Then the dual
constraints (9.15) become
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s∑
t=1

Sk∑
t=1

aktj δkt +
m∑
i=1

Ti∑
t=1

bitj δit = 0 (j = 1, 2, . . . , n). (9.19)

It follows from (9.17) that

Sk∑
t=1

δkt = αk (k = 1, 2, . . . , s) (9.20)

and from (9.18) that

Ti∑
t=1

δit = λi (i = 1, 2, . . . , m). (9.21)

Definition (9.17) implies

(k = 1, 2, . . . , s),
δkt � 0 (9.22)

(t = 1, 2, . . . , Sk)

and the nonnegativity constraints (9.16) and definition (9.18) lead to

(i = 1, 2, . . . , m),
δit � 0 (9.23)

(t = 1, 2, . . . , Ti).

Analogously to the procedure in Section 6.2, relation (9.17) can be rewritten as

δkt

ckt

Sk∑
t=1

ckt e
∑n
j=1 aktj zj = αke

∑n
j=1 aktj zj , (9.24)

and relation (9.18) as

δit

dit

Ti∑
t=1

dit e
∑n
j=1 bitj zj = λie

∑n
j=1 bitj zj . (9.25)

After raising (9.24) to a power by δkt and (9.25) to a power by δit and then taking a
logarithm, we obtain

δkt ln
δkt

ckt
+ δkt ln hk(z) = δkt ln αk + δkt

n∑
j=1

aktj zj (k = 1, 2, . . . , s), (9.26)

δit ln
δit

dit
+ δit ln li (z) = δit ln λi + δit

n∑
j=1

bitj zj (i = 1, 2, . . . , m). (9.27)
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Summing (9.26) over k and t and (9.27) over i and t and taking into account (9.20)
and (9.21) gives

s∑
k=1

Sk∑
t=1

δkt ln
δkt

ckt
+

s∑
k=1

αk ln hk(z) =
s∑
k=1

Sk∑
t=1

n∑
j=1

δktaktj zj +
s∑
k=1

αk ln αk,

m∑
v=1

Ti∑
t=1

δit ln
δit

dit
+

m∑
i=1

λi ln li (z) =
m∑
i=1

λi ln λi +
m∑
i=1

Ti∑
t=1

n∑
j=1

δit bitj zj .

Summing the above equations and taking into account (9.19) yields

s∑
k=1

αk ln hk(z)+
m∑
i=1

λi ln li (z)

=
s∑
k=1

Sk∑
t=1

δkt ln
ckt

δkt
+

m∑
i=1

Ti∑
t=1

δit ln
dit

δit
+

s∑
k=1

αk ln αk +
m∑
i=1

λi ln λi.

The dual objective function (9.14) is now expressed as a function of the dual variables
δkt and δit :

	(z,λ) =
s∑
k=1

Sk∑
t=1

δkt ln
ckt

δkt
+

m∑
i=1

Ti∑
t=1

δit ln
dit

δit
+

s∑
k=1

αk ln αk +
m∑
i=1

λi ln λi

= ln

⎛⎝ s∏
k=1

Sk∏
t=1

(
ckt

δkt

)δkt m∏
i=1

Ti∏
t=1

(
dit

δit

)δit s∏
k=1

α
αk
k

m∏
i=1

λ(δ)λ(δ)

⎞⎠ = ln v(δ).

Because of the monotonicity property of the logarithmic function, v(δ) and ln v(δ)
have the same set of maximizing points. Thus the dual program (9.14)–(9.16) takes
the form

maximize v(δ) =
s∏
k=1

Sk∏
t=1

(
ckt

δkt

)δkt m∏
i=1

Ti∏
t=1

(
dit

δit

)δit s∏
k=1

α
αk
k

m∏
i=1

λi(δ)
λi (δ) (9.28)

subject to (9.19)–(9.23), which corresponds exactly to the model (9.4)–(9.10). The
reason is that by taking a logarithm of the objective function in (

∏
Pα), we obtain

problem (7.37). In other words, both approaches are based on the same type of
“master” or “composite” objective function F(x). It is a Cobb–Douglas type of
utility function, as expressed in (

∏
Pα), with elasticity of substitution between the

objectives equal to one.
Analogously to the single geometric programming problem in Chapter 6, an effi-

cient solution for (9.1)–(9.3) can be estimated from the system of equations

cktx
akt1
1 . . . x

aktn
n∑Sk

t=1 cktx
akt1
1 . . . x

aktn
n

= δ0
kt

αk

(k = 1, 2, . . . , s),
(t = 1, 2, . . . , Sk),

(9.29)
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dit x
bit1
1 . . . xbitnn = δ0

it

λi(δ
0)

(i = 1, 2, . . . , m),
(t = 1, 2, . . . , Ti),

(9.30)

where δ0 is an optimal solution for the dual problem (9.28) subject to (9.19)–(9.23)
and i ranges over all positive integers for which λi(δ0) > 0.

The advantage of the approach in this section is that for models in which the
objective function in (

∏
Pα) is not a posynomial, transformation to a geometric

program is not necessary. To illustrate, let us consider the following example:

Minimize F(x) =
{
f1(x) = 2x1 + 2x2,

f2(x) = x−1
1 x−1

2

}
subject to x1 > 0, x2 > 0.

This is a problem without forced constraints. According to (9.19), (9.20), and (9.22),
the dual constraints become

δ11 − δ21 = 0,

δ12 − δ21 = 0,

δ11 + δ12 = α1,

δ21 = α2

and yield the solution δ0
11 = δ0

12 = α2 and δ0
21 = α2 forα1 = 2α2. Because δ0

11 = δ0
12,

it follows from (9.17) that 2x0
1 = 2x0

2 and consequently x0
1 = x0

2 . It is a well-known
result that for a given girth, a rectangle maximizing its volume is a square. For a
given volume, a rectangle minimizing its girth is a square.

Applying the approach by Pascual and Ben-Israel [5] from Section 9.1, the ob-
jective function

f1(x)α1f2(x)α2 = (2x1 + 2x2)
α1x

−α2
1 x

−α2
2

is not a posynomial. Introducing a new variable x0, we can write the geometric
programming problem

minimize x
−α1
0 x

−α2
1 x

−α2
2

subject to 2x−1
0 x1 + 2x−1

0 x2 � 1,

x0 > 0, x1 > 0, x2 > 0.

The dual constraints

δ0 = 1,

−α1δ0 + δ11 + δ12 = 0,

−α2δ0 + δ11 = 0,

−α2δ0 + δ12 = 0

yield the solution δ0
11 = δ0

12 = α2 forα1 = 2α2. The optimal solution will be obtained
by using (6.28),
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2x−1
0 x1 = δ0

11

δ0
11 + δ0

12

= α2

2α2
= 1

2
,

2x−1
0 x2 = δ0

12

δ0
11 + δ0

12

= α2

2α2
= 1

2
,

which yields x0
1 = x0

2 .

9.3 A Nonlinear Model of Environmental Control

The model from Section 7.1.6 proposed by Mastenbroek and Nijkamp [4] leads to
the vector minimization problem

Minimize F(c, i, p, y) = (f1(p) = apκ, f2(c) = c−1) (9.31)

subject to li−µyp−1 + dcp−1 � 1, (9.32)

iy−1 + cy−1 � 1, (9.33)

c > 0, i > 0, p > 0, y > 0, (9.34)

where l = b0i
µ
0 > 0. The reader can verify that the parametric problem (Pα) related

to problem (9.31)–(9.34) leads to a geometric programming problem with degree of
difficulty equal to one. The corresponding parametric problem (

∏
Pα),

minimize (apκ)α1c−α2

subject to (9.32)–(9.34),
(9.35)

is a geometric programming problem with zero degree of difficulty. Denoting by
δ0 the dual variable related to the term in the objective function (9.35) and by δit
(i = 1, 2; t = 1, 2) the dual variables related to the term in the constraints (9.32)–
(9.33), the dual program takes the form

maximize v(δ) =
(

1

δ0

)δ0
(
l

δ11

)δ11
(
d

δ12

)δ12
(

1

δ21

)δ21
(

1

δ22

)δ22

(9.36)

subject to δ0 = 1, (9.37)

α1κδ0 − δ11 − δ12 = 0, (9.38)

δ11 − δ21 − δ22 = 0, (9.39)

−α2δ0 + δ12 + δ22 = 0, (9.40)

−µδ11 + δ21 = 0, (9.41)

δ0 � 0, δ11 � 0, δ12 � 0, δ21 � 0, δ22 � 0. (9.42)

Denoting by δ∗11 and δ∗21 the dual variables corresponding to the terms in the first and
second objective functions, respectively, the dual constraints (9.20) yield δ∗11 = α1
and δ∗21 = α2. Consequently, the dual constraints (9.19) provide the set of equations
(9.38)–(9.41) as above. The following optimal solution will be obtained:
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δ0
0 = 1, δ0

11 = α1κ − α2

µ
, δ0

12 = α1κ(µ− 1)+ α2

µ
,

δ0
21 = α1κ − α2, and δ0

22 = (α1κ − α2)(1 − µ)

µ
.

Assuming that 0 < µ < 1 (due to the assumption in Section 7.1.6), the nonnegativity
condition for δ11, δ21, and δ22 implies that

α2

α1
� κ, or α2 � α1κ.

An upper bound for the weighting of consumption is reasonable because the model
(9.31)–(9.34) does not explicitly contain constraints that take into account the scarcity
of production factors. Production and consequently consumption are restricted im-
plicitly only because of their negative environmental impact. In order to compensate
the negative effect of the damage cost for the vector-valued function (9.31), the (rel-
ative) weight for the second objective can be higher if the parameter κ is higher.

On the other side, from the nonnegativity condition for δ0
12 follows the lower

bound for the relative weights,

α2

α1
� (1 − µ)κ.

With increasing efficiency of environmental investments, described by the parameter
µ, the lower bound for the relative weight α2 can be reduced.

In order to get a nonnegative solution of the dual problem (9.36)–(9.41), the
coefficients α1 and α2 (or the weights for the objectives) are restricted to

(1 − µ)κ � α2

α1
� κ. (9.43)

Due to the results of Section 6.3.3 dealing with the economic interpretation of dual
variables in geometric programming, λ0

1 =∑t δ
0
1t indicates the effect of a change in

the pollution level (p) on the social disutility function (9.31). Because

λ0
1 = δ0

11 + δ0
12 = α1κ > 0, (9.44)

the constraint (9.32) for the optimal solution δ0 must be fulfilled, for any α1, α2
satisfying (9.43), as equality. In the other case, due to the minimization of (9.31),
the level of pollution can be reduced without violating any constraint. It follows
from (9.44) that for fixed α1, a higher coefficient κ (describing the influence of
pollution for the damage cost) implies a stronger impact of the pollution level for the
social disutility (9.31).

The coefficient λ0
2 = ∑

t δ
0
2t describes the impact of a change in the production

of good (y) for the social disutility (9.31). We obtain

λ0
2 = δ0

21 + δ0
22 = α1κ − α2

µ
� 0 (9.45)
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because of (9.43). For α2
α1
< κ , the dual variables δ0

21 and δ0
22 are positive, and there-

with λ0
2 is positive as well. The constraint (9.33) is fulfilled as equality, the produced

good can be used either for environmental investments (i)—decreasing the emission
coefficient b and consequently the damage cost—or for consumption. It follows
from (9.45) that for fixed α1 and α2, a lower coefficient κ and/or higher efficiency of
environmental investments described by parameter µ diminish the negative impact
of production for the social welfare combining minimization of pollution cost and
maximization of consumption.

On the other side, for given parameters κ and µ, the (relative) higher weight-
ing of the consumption maximization diminishes the negative effect of production.
For α2, at the upper bound of (9.43) is λ0

2 = 0. The negative effect of increasing
production causing higher environmental cost by production (reduced by decreasing
emission coefficient b) and consumption is compensated by the positive effect from
increasing consumption. If α2 < α1κ holds, the weighting—or, using the terminol-
ogy of Lange [3], social significance—of the consumption in the welfare function
is not enough to outweigh the negative effect of the increasing production for the
environment.

Similarly, the higher weighting of the pollution cost in the social welfare strength-
ens the impact of pollution level (p) for the composite welfare

Knowing the optimal solution of the dual problem (9.36)–(9.42), we can find
the optimal solution of the primal geometric problem (9.31)–(9.34). According
to (9.25)—analogously with (6.28)—each optimal solution c0, i0, p0, and y0 for
the primal problem (9.31)–(9.34) satisfies the system of equations

li−µyp−1 = δ0
11

λ0
1

= α1κ − α2

α1κµ
, (9.46)

dcp−1 = δ0
12

λ0
1

= α1κ(µ− 1)+ α2

α1κµ
, (9.47)

iy−1 = δ0
21

λ0
2

= µ, (9.48)

cy−1 = δ0
22

λ0
2

= 1 − µ, (9.49)

where λ1(δ
o) and λ2(δ

o) must be positive. Due to (9.44) λ1(δ) is positive for any
α1 > 0 and κ > 0. In order to ensure the positivity of λ2(δ), it is assumed in what
follows that α2 < α1κ . From (9.48) and (9.49), we have the following qualitative
result:

i0

c0 = µ

1 − µ
.

The optimal ratio in which the output y should be allocated between environmental
investment i0 and consumption c0 is uniquely determined by the efficiency parameter
µ and is independent of the other model parameters, including the social significance
of the objectives.
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Substituting i = µy from (9.48) into (9.46) and c = (1 − µ)y from (9.49)
into (9.47), two equations with two variables y and p will be obtained. As in the
general system (6.28), taking the logarithm of both sides of each equation, a system of
linear equations with the variables ln y and lnp arises that can be solved analytically.
After some transformations, the optimal solution results:

y0 =
(
k1

k2

δ0
12

δ0
11

) 1
µ

=
(
k1[α1κ(µ− 1)+ α2]

k2[α1κ − α2]
) 1
µ

,

p0 = k2
α1κµ

α1κ(µ− 1)+ α2
y0,

where k1 = lµ−µ and k2 = d(1 − µ). Because of the positivity condition for the
primal variables y and p, the dual variable δ12 must be positive. Thereupon the
following strict inequality is required:

α1κ(µ− 1)+ α2 > 0, or
α2

α1
> (1 − µ)κ.

To obtain an efficient solution of problem (9.31)–(9.34), condition (9.43) for the
weighting coefficients α1 and α2 should be reinforced as follows:

(1 − µ)κ <
α2

α1
< κ.

Under these strict inequalities, all primal and dual constraints are positive and both
forced constraints are fulfilled as equalities. The optimal solution of problem (9.35)
yields an efficient solution of problem (9.31)–(9.34). Moreover, using the duality
theory of geometric programming can provide useful insights into the qualitative
features of the efficient solution.

9.4 Optimal Behavior of a Monopolist Facing a Bicriteria
Objective Function

Another application of the program (
∏

Pα) and its dual (9.4)–(9.10) or (9.12)–(9.13)
and (9.14)–(9.16), respectively, offers the model of a monopolistic firm maximizing
revenue and profit from Section 7.1.4. Assuming the revenue function R(q) = aqβ ,
with a > 0, β > 0, implying positive marginal revenue and the cost function C(q) =
bq2, with b > 0 (yielding positive marginal cost), the profit function π(q) becomes
π(q) = aqβ − bq2. The following multiobjective optimization problem appears:

Maximize F(q) =
{
f1(q) = aqβ,

f2(q) = π(q)

}
. (9.50)

Unfortunately, the profit function π(q) is not a posynomial, but as described in Sec-
tion 6.4, simple transformation of the profit function π(q) allows the formulation of
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problem (9.50) as a multiobjective geometric programming problem. Denoting the
profit π(q) by the new variable y and introducing the constraint

aqβ − bq2 � y,

problem (9.50) is equivalent to the following problem:

Minimize F(q, y) =
{
f−1

1 (q) = 1
a
q−β,

f2(y) = y−1

}
(9.51)

subject to
1

a
yq−β + b

a
q2−β � 1,

q > 0, y > 0.

According to (9.19) and (9.20), the dual constraints are

−βδo11 − βδ11 + (2 − β)δ12 = 0,

−δo21 + δ11 = 0,

δo11 = α1,

δo21 = α2,

(9.52)

where δo11 and δo21 denote the dual variables corresponding to the terms in the first
and second objective function, respectively. Fortunately, we obtained a system of
equations with zero degree of difficulty such that the optimal solution of the dual
problem is easily estimated:

δo11
∗ = α1, δo21

∗ = α2, δ∗11 = α2, δ∗12 = β

2 − β
(α1 + α2),

and

λ∗
1 = δ∗11 + δ∗12 = 2α2 + α1β

2 − β
.

Taking into account the nonnegativity condition for the dual variables δ1t (t = 1, 2),
the parameter β must be smaller than two. It is easy to show that this condition is
fulfilled for any negative-sloped elastic demand function. Assume that the inverse
demand function takes the form

p = h−1(q) = aq−γ , with a > 0 and γ > 0.

The price elasticity of demand is then εp = − 1
γ

. Herewith γ < 1 implies price
elastic demand and, due to the Amoroso–Robinson form

MR = dR

dq
= 1

p

[
dp

dq

q

p
+ 1

]
,

positive marginal revenue (MR), which coincides with the assumption of positive β
in the revenue function R(q) = aqβ . Using the above inverse demand function, the
revenue function can be written as
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R(q) = p(q)q = aq−γ q = aq1−γ .

Letting β = 1 − γ , the condition β < 2 then implies γ > −1, which is obviously
fulfilled.

Using the form (9.30), we can derive the efficient solution of the primal problem:

δ∗12

λ∗
1

= β(α1 + α2)

2α2 + α1β
= b

a
q2−β,

q∗ =
[
aβ(α1 + α2)

b(2α2 + α1β)

] 1
2−β
, (9.53)

δ∗11

λ∗
1

= α2(2 − β)

2α2 + α1β
= 1

a
yq−β. (9.54)

Substituting (9.53) for q in (9.54) yields

y∗ = aα2(2 − β)

2α2 + α1β

[
aβ(α1 + α2)

b(2α2 + α1β)

] β
2−β
.

For α1 = 0 and α2 = 1, the solution of the profit-maximizing firm is easily obtained
from (9.53):

q∗
PM =

[
aβ

2b

] 1
2−β

.

The reader can verify that for β < 2 (fulfilled for any price elastic demand function
with negative slope),

q∗
PM < q∗.

The output of a monopolist maximizing profit and revenue is higher than the output
of the profit-maximization monopolist (see [1]). The difference between the output
levels q∗

PM and q∗ depends, for the given parameters a, b, and β, on the weighting of
both of the objectives expressed by the coefficients α1 and α2, respectively. It follows
from (9.53) that

∂q∗

∂α1
> 0 and

∂q∗

∂α2
< 0.

With increasing relevance of the revenue maximization, the output of a monopolis-
tic firm will increase; with increasing relevance of the profit maximization, it will
decrease.

As in the model of a profit-maximizing monopolist, the condition for competitive
output, price equal to the marginal cost, is violated for a monopolist maximizing a
utility function (with revenue and profit as arguments). The product price exceeds
marginal cost, and therefore the question concerning the effects of changes in profits
and turnover taxes on optimal output arises. To derive the effects of change in profits
tax (ρ) on optimal output, model (9.51) is modified as
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Minimize F(g, y(ρ)) =
{
f−1

1 (q) = 1
a
q−β,

f2(y(ρ)) = 1
(1−ρ)y

−1

}

subject to
1

a
yq−β + b

a
q2−β � 1,

q > 0, y > 0.

Because the change in the profits tax (ρ) results in changes of the coefficients but
not the exponents in the posynomials, the dual constraints (9.52) remain unchanged,
and therewith (due to the degree of difficulty being zero) the dual solution does
as well. According to (9.30), the optimal output q∗ as determined by (9.53)—and
consequently the profit y—remain unchanged. For the Cobb–Douglas type of utility
(“master” or “composite” objective) function, a change in the profit tax (ρ) does not
affect the behavior of a monopolist maximizing revenue and profit (see [2] for an
alternative derivation of this result).

What will be the change in the behavior of a monopolist facing a bicriteria objective
function with respect to a change in turnover tax? In order to answer this question,
we rewrite model (9.51) as R(q) = aqβ(1 − t), where 0 < t < 1 denotes a turnover
tax. The profit function then becomes

π(q) = aqβ(1 − t)− bq2

and model (9.51) is

Minimize F̃ (q, y) =
{
f−1

1 (q) = 1
a(1−t) q

−β,
f2(y) = y−1

}
subject to

1

a(1 − t)
yq−β + b

a(1 − t)
q2−β � 1,

q > 0, y > 0.

As in the previous model with the profit tax (ρ), due to the same exponents in the
posynomials, the dual constraints (9.52) remain unchanged, and therefore a change
in the turnover tax (t) does not change the dual solution. The solution of the primal
problem will be obtained by using (9.30):

δ∗12

λ∗
1

= β(α1 + α2)

2α2 + α1β
= b

a(1 − t)
q2−β,

q̃ =
[
aβ(1 − t)(α1 + α2)

b(2α2 + α1β)

] 1
2−β
.

(9.55)

Comparison of q̃ from (9.55) with q∗ from (9.53) yields

q̃ < q∗.

A monopolist maximizing the revenue and profit will reduce his output if the turnover
tax (t) increases.
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