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Decrease your frequency by expanding your
horizon. Increase your Q by purifying your
mind. Eventually, you will achieve inner
peace and view the internal harmony of our
world.

—A lesson from a harmonic oscillator



Dedicated to my parents Lanying Zhang
and Dehua Miao
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Supervisor’s Foreword

Quantum mechanics is a successful and elegant theory for describing the behaviors
of both microscopic atoms and macroscopic condensed-matter systems. However,
there remains the interesting and fundamental question as to how an apparently
macroscopic classical world emerges from the microscopic one described by
quantum wave functions. Recent achievements in high-precision measurement
technologies could eventually lead to answering this question through studies of
quantum phenomena in the macroscopic regime.

By coupling coherent light to mechanical degrees of freedom via radiation
pressure, several groups around the world have built state-of-the-art optome-
chanical devices that are very sensitive to the tiny motions of mechanical oscil-
lators. One prominent example is the laser interferometer gravitational-wave
detector, which aims to detect weak gravitational waves from astrophysical
sources in the universe. With high-power laser beams, and high mechanical quality
test masses, future advanced gravitational-wave detectors will achieve extremely
high displacement sensitivity—so high that they will be limited by fundamental
noise of quantum origin, and the kilogram-scale test masses will have to be
considered quantum mechanically. This means, on the one hand, that we should
manipulate the optomechanical interaction between the optical field and the test
masses coherently at the quantum level, in order to further improve the detector
sensitivity; and, on the other hand, that advanced gravitational-wave detectors will
be ideal platforms for studying the quantum dynamics of kilogram-scale test
masses—truly macroscopic objects.

These two interesting aspects of advanced gravitational-wave detectors, and of
more general optomechanical devices, are the main subjects of this dissertation.
The author, Dr. Haixing Miao, starts with a quantum model for the optomechanical
device, and studies its various quantum features in detail. In the first part of the
thesis, different approaches are considered for surpassing the quantum limit on the
displacement sensitivity of gravitational-wave detectors; in the second part,
experimental protocols are considered for probing the quantum behaviors of
macroscopic mechanical oscillators with both linear and non-linear optomechan-
ical interactions. This thesis has inspired much interesting work within the
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gravitational-wave community, and has been awarded the prestigious Gravitational
Wave International Committee (GWIC) thesis prize in 2011. In addition, the
formalism developed here may be equally well applied to general quantum limited
measurement devices, which are also of interest to the quantum optics community.

Australia, September 2011 Winthrop Professor David Blair
Director, Australian International Gravitational

Research Centre
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Preface

Recent significant achievements in fabricating low-loss optical and mechanical ele-
ments have aroused intensive interest in optomechanical devices which couple optical
fields to mechanical oscillators, e.g., in laser interferometer gravitationalwave (GW)
detectors. Not only can such devices be used as sensitive probes for weak forces and
tiny displacements, but they also lead to the possibilities of investigating quantum
behaviors of macroscopic mechanical oscillators, both of which are the main topics of
this thesis. They can shed light on improving the sensitivity of quantum-limited
measurement, and on understanding the quantumto-classical transition.

This thesis summarizes and puts into perspective several research projects that I
worked on together with the UWA group and the LIGO Macroscopic Quantum
Mechanics (MQM) discussion group. In the first part of this thesis, we will discuss
different approaches for surpassing the standard quantum limit for the displacement
sensitivity of optomechanical devices, mostly in the context of GW detectors. They
include: (1) Modifying the input optics. We consider filtering two frequency-inde-
pendent squeezed light beams through a tuned resonant cavity to obtain an appro-
priate frequency dependence, which can be used to reduce the measurement noise of
the GW detector over the entire detection band; (2) Modifying the output optics. We
study a time-domain variational readout scheme which measures the conserved
dynamical quantity of a mechanical oscillator: the mechanical quadrature. This
evades the measurement-induced back action and achieves a sensitivity limited only
by the shot noise. This scheme is useful for improving the sensitivity of signal-
recycled GW detectors, provided the signalrecycling cavity is detuned, and the
optical spring effect is strong enough to shift the test-mass pendulum frequency from
1 Hz up to the detection band around 100 Hz; (3) Modifying the dynamics. We
explore frequency dependence in double optical springs in order to cancel the
positive inertia of the test mass, which can significantly enhance the mechanical
response and allow us to surpass the SQL over a broad frequency band.

In the second part of this thesis, two essential procedures for an MQM
experiment with optomechanical devices are considered: (1) state preparation, in
which we prepare a mechanical oscillator in specific quantum states. We study
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the preparations of both Gaussian and non-Gaussian quantum states, and also the
creation of quantum entanglements between the mechanical oscillator and the
optical field. Specifically, for the Gaussian quantum states, e.g., the quantum
ground state, we consider the use of passive cooling and optimal feedback control
in cavity-assisted schemes. For non-Gaussian quantum states, we introduce the
idea of coherently transferring quantum states from the optical field to the
mechanical oscillator. For the quantum entanglement, we consider the entangle-
ment between the mechanical oscillator and the finite degrees-of-freedom cavity
modes, and also the infinite degrees-of-freedom continuum optical mode. (2) state
verification, in which we probe and verify the prepared quantum states. A similar
time-dependent homodyne detection method as discussed in the first part is
implemented to evade the back action, which allows us to achieve a verification
accuracy that is below the Heisenberg limit. The experimental requirements and
feasibilities of these two procedures are considered in both small-scale cavity-
assisted optomechanical devices, and in large-scale advanced GW detectors.

xiv Preface
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Chapter 1
Introduction

Measuring weak forces lies in the heart of modern physics: on the small scale,
atomic-force microscopy [18] probes microscopic structures, or even Casimir force,
by measuring the displacement of a micro-mechanical cantilever [38]; on the large
scale, gravitational-wave (GW) detectors search for ripples in spacetime, by mea-
suring the differential displacements of spatially-separated test masses induced by
tiny gravitational tidal forces [cf. Fig. 1.1] [24–26]. The core of all these systems is
an optomechanical device with mechanical degrees of freedom coupled to a coher-
ent optical field, as shown schematically in Fig. 1.2. With the availability of highly
coherent lasers and low-loss optical and mechanical components, optomechanical
devices can attain such a high sensitivity that even the quantum dynamics of the
macroscopic mechanical oscillator has to be taken into account, which leads to the
fundament quantum limit for the measurement sensitivity—the so-called “Standard
Quantum Limit".

Standard Quantum Limit(SQL)—The SQL was first realized by Braginsky in the
1960s, when he studied whether quantum mechanics imposes any limit on the force
sensitivity of bar-type GW detectors. As we will see, such a limit is directly related
to the fundamental Heisenberg uncertainty principle, and it applies universally to
all devices that use a mechanical oscillator as a probe mass. Its force noise spectral
density SF

SQL reads:

SF
SQL(�) = 2�|m[(�2 − ω2

m)+ 2iγm�]|, (1.1)

with� the angular frequency, m the mass,ωm the eigenfrequency, andγm the damping
rate of the mechanical oscillator.

In the case of an interferometric GW detector, such as LIGO [25], the mechanical
oscillators are kg-scale test masses suspended with a pendulum frequency around
1 Hz. Since the frequency of the GW signal that we are interested in is around
100 Hz, they can be well approximated as free masses with ωm ∼ 0. In addition,
the gravitational tidal force on two test masses separated by L is Ftidal = mLḧ with
h the GW strain, which in the frequency domain reads −mLh�2. Therefore, the
corresponding h-referred SQL reads:

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 1
Springer Theses, DOI: 10.1007/978-3-642-25640-0_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

Fig. 1.1 A schematic plot of an atomic-force microscope (left), and a gravitational-wave (GW)
detector (right)

Fig. 1.2 A schematic plot of an optomechanical system (left), and the corresponding spacetime
diagram (right). The output optical field that contains the information of the oscillator motion is
measured continuously by a photodetector. For clarity, the input and output optical fields are placed
on opposite sides of the oscillator world line

SSQL
h (�) = 2�

m�2L2 , (1.2)

where we have ignored the damping rate γm because the quality factor of a typical
suspension is very high.

There are two perspectives on the origin of the SQL. The first is based upon the
dynamics of the optomechanical system. At high frequencies, the quantum fluctuation
of the optical phase gives rise to phase shot noise, which is inversely proportional to
the optical power; while at low frequencies, the quantum fluctuation of the optical
amplitude creates a random radiation-pressure force on the mechanical oscillator and
induces radiation-pressure noise which is directly proportional to the optical power.
If these two types of noise are not correlated, they will induce a lower bound on
the detector sensitivity independent of the optical power. The locus of such a lower
bound gives the SQL, as shown schematically in Fig. 1.3. The second perspective
is based upon the fact that oscillator positions at different times do not commute
with each other—[x̂(t), x̂(t ′)] �= 0(t �= t ′). Therefore, according to the Heisenberg
uncertainty principle, a precise measurement of the oscillator position at an early time
will deteriorate the precision of a later measurement. Since we infer the external force
by measuring the changes in the oscillator position, this will impose a limit on the
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Fig. 1.3 A schematic plot of the displacement noise spectral density for a typical GW detector.
When we increase the power, the shot noise will decrease and the radiation-pressure noise will
increase, and vise versa. The locus of the power-independent lower bound of the total spectrum
defines the SQL (blue)

force sensitivity. These two perspectives are intimately connected to each other due
to the linearity of the system dynamics, as will be shown in Chap. 2.

Surpassing the SQL—From these previous two perspectives on the SQL, we can
find different approaches towards surpassing it, as discussed extensively in the liter-
ature. The first approach is to modify the input and output optics such that the shot
noise and the radiation-pressure noise are correlated, because the SQL exists only
when these two noises are uncorrelated. As shown by Kimble et al. [30], by using
frequency-dependent squeezed light, the correlation between the shot noise and the
radiation-pressure noise allows the sensitivity to be improved by the squeezing factor
over the entire detection band. The required frequency dependence can be realized
by filtering frequency-independent squeezed light through two detuned Fabry-Pérot
cavities before sending into the dark port of the interferometer. Motivated by the
work of Corbitt et al. [8], we figure out that such a frequency dependence can also
be achieved by filtering two frequency-independent squeezed lights through a tuned
Fabry-Pérot cavity. In addition to the detection at the interferometer dark port, another
detection at the filter cavity output is essential to maximize the sensitivity. The con-
figuration is shown schematically in Fig. 1.4. An advantage of this scheme is that it
only requires a relatively short filter cavity (∼30 m), in contrast to the km-long filter
cavity proposed in Ref. [30]. It can be a feasible add-on to advanced GW detectors.
This is discussed in detail in Chap. 3.

The second approach is to modify the dynamics of the mechanical oscillator, e.g.,
by shifting its eigenfrequency to where the signal is, and amplifying the signal at the
shifted frequency. This is particularly useful for GW detectors in which the pendulum
frequency of the test masses is very low. If the test-mass frequency is shifted to ωm,

the corresponding SQL surpassing ratio is:

η ≡ SF
SQL|modified

SF
SQL|freemass

= �2

|(�2 − ω2
m)+ 2iγm�| . (1.3)

http://dx.doi.org/10.1007/978-3-642-25640-0_2
http://dx.doi.org/10.1007/978-3-642-25640-0_3
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Fig. 1.4 A schematic plot showing the double-squeezed input configuration of an advanced GW
detector. Two frequency-independent squeezed (SQZ) light are filtered by a tuned Fabry-Pérot
cavity before being injected into the dark port of the interferometer. Two photodetections (PD) are
made, at both the filter cavity, and at the interferometer outputs, to maximize the sensitivity

This is equal to the quality factor ωm/(2γm)—which can be approximately 107—
around the resonant frequency ωm, thus achieving a significant enhancement. One
might naively expect that such a modification of test-mass dynamics can be achieved
by a classical feedback control. However, classical control can modify the test-mass
dynamics but not increase the sensitivity. This is because a classical control feeds
back the measurement noise and signal in the same manner. We have to implement
a quantum feedback which modifies the test-mass dynamics without increasing the
measurement noise. One possible way to achieve a quantum feedback is to use the
optical-spring effect. This happens when a test-mass is coupled to a detuned optical
cavity: the intra-cavity power, or equivalently the radiation-pressure force on the test-
mass, depends on the location of the test-mass as shown in Fig. 1.5, which creates a
spring. One issue with the optical spring is the anti-damping force which destablizes
the system. This arises from the delay in the response with a finite cavity storage
time. To stabilize the system, one can use a feedback control method as described
in Ref. [4]. An interesting alternative is to implement the idea of a double optical
spring by pumping the cavity with two lasers at different frequencies [9, 45]. One
laser with a small detuning provides a large positive damping, while another with a
large detuning, but with a high power, provides a strong restoring force. The resulting
system is self-stabilized with both positive rigidity and positive damping, as shown
schematically in the right panel of Fig. 1.5.

One limitation with such a modification of the test-mass dynamics mentioned
above is that it only allows a narrow band amplification around the shifted resonant
frequency. Recently, as realized by Khalili, this limitation can be overcome by using
the frequency dependence of double optical springs, with which the response function
of the free test-mass becomes:

−m�2 + K1(�)+ K2(�) (1.4)
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Fig. 1.5 Plot showing the optical spring effect in a detuned optical cavity. The radiation pressure is
proportional to the intra-cavity power which depends on the position of the test mass. The non-zero
delay in the cavity response gives rise to an (anti-)damping force. By injecting two laser beams at
different frequencies, this creates a double optical spring and the system can be stabilized (right
panel)

with K1 and K2 the optical rigidity. Ideally, if K1(0)+ K2(0) = 0, K ′
1(0)+ K ′

2(0) =
0 and K ′′

1 (0)+ K ′′
2 (0) = 2m, the inertia of the test mass is canceled, and a broadband

resonance can be achieved. The advantage of this scheme is its immunity to the optical
loss compared with modifying the input and/or output optics. Another parameter
regime we are interested in is where two lasers with identical power are equally
detuned, but with opposite signs. Even though this does not surpass the SQL, yet it
allows us to follow the SQL at low frequencies instead of at one particular frequency
in the case shown by Fig. 1.3. This is discussed in details in Chap. 4.

A third method is to measure conserved dynamical quantity of the test-mass,
also called quantum nondemolition (QND) quantities, which at different times com-
mute with each other. There will be no associated back action, in contrast to the
case of measuring non-conserved quantities. For a free mass, the conserved quantity
is the momentum (speed), and it can be measured, e.g., by adopting speed-meter
configurations [5, 11, 23, 29, 44]. For a high-frequency mechanical oscillator, the
conserved quantities are the mechanical quadratures X1 and X2, which are defined
by the equations:

x̂

δxq
≡ X̂1 cosωmt + X̂2 sinωmt,

p̂

δpq
≡ −X̂1 sinωmt + X̂2 cosωmt, (1.5)

with δxq ≡ √
�/(2mωm) and δpq ≡ √

�mωm/2. The quadratures commute with
themselves at different times [X̂1(t), X̂1(t ′)] = [X̂2(t), X̂2(t ′)] = 0. To measure
mechanical quadratures in the cavity-assisted case, one can modulate the optical cav-
ity field strength sinusoidally at the mechanical frequency, as pointed out in the pio-
neering work of Braginsky [3]. In this case, the measured quantity is proportional to:

E(t)x̂(t) = E0 x̂(t) cosωmt = E0[X̂1 + X̂1 cos 2ωmt + X̂2 sin 2ωmt]/2. (1.6)

If the cavity bandwidth is smaller than the mechanical frequency (the so-called
good-cavity condition), the 2ωm terms will have insignificant contributions to the out-
put, and we will measure mostly X̂1, achieving a QND measurement. However, such

http://dx.doi.org/10.1007/978-3-642-25640-0_4
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a good-cavity condition is not always satisfied, especially in broadband GW detec-
tors and small-scale devices. Here, we consider a time-domain variational method
for measuring the mechanical quadratures, which does not need such a good-cavity
condition. By manipulating the output instead of the input field, the measurement-
induced back action can be evaded in the measurement data, achieving essentially
the same effect as modulating the input field. This approach is motivated by the work
of Vyatchanin et al. [52, 53], in which a time-domain variational method is proposed
for detecting GWs with known arrival time.

Macroscopic Quantum Mechanics—We have been discussing the SQL for mea-
suring force with optomechanical devices, and have already seen that the quantum
dynamics of the mechanical oscillator plays a significant role. A natural question
follows: “Can we use such a device to probe the quantum dynamics of a macroscopic
mechanical oscillator, and thereby gain a better understanding of the quantum-to-
classical transition, and of quantum mechanics in the macroscopic regime?" The
answer would be affirmative if we could overcome a large obstacle in front of us:
the thermal decoherence. The coupling between the mechanical oscillator and high-
temperature (usually 300 K) heat bath induces random motion which is many order
of magnitude higher than that of the quantum zero-point motion.

The solution to such a challenge lies in the optomechanical system itself—that is,
the optical field. As the typical optical frequencyω0 is around 3×1014 Hz (infrared),
each single quantum �ω0 has an effective temperature of �ω0/kB ∼ 15, 000 K,
which is much higher than the room temperature. This means that the optical field
is almost in its ground state, with low entropy, and can create an effectively zero-
temperature heat bath at room temperature. This fact illuminates two approaches
to preparing a pure quantum ground state of the mechanical oscillator: (i) Ther-
modynamical cooling. In this approach, the mechanical oscillator is coupled to a
detuned optical cavity. There is a positive damping force in the optical spring effect
when the cavity is red detuned (i.e., laser frequency tuned to be below the resonant
frequency of the cavity). If the optomechanical damping γopt is much larger than
its original value γm, the oscillator is settled down in thermal equilibrium with the
zero-temperature optical heat bath, as shown schematically in Fig. 1.6. With this
method, many novel experiments have already demonstrated significant reductions
of the thermal occupation number of the mechanical oscillator [1, 6, 7, 9, 10, 16,
19, 21, 27, 31, 36, 39, 41, 42, 46–50]. In this thesis, we will discuss such a cooling
effect in the three-mode optomechanical interaction where two optical cavity modes
are coupled to a mechanical oscillator (i.e., to a mechanical mode) [refer to Chap.
6 for details]. Due to the optimal frequency matching—the frequency gap between
two cavity modes is equal to the mechanical frequency—this method significantly
enhances the optomechanical coupling, given the same input optical power as the
existing two-mode optomechanical interaction used in those cooling experiments.
In addition, it is also shown to be less susceptible to classical laser noise. (ii) Uncer-
tainty reduction based upon information. Since the optical field is coupled to the
oscillator, even if there is no optical spring effect, the information of the oscilla-
tor position continuously flows out and is available for detection. From this infor-
mation, we can reduce our ignorance of the quantum state of the oscillator, and

http://dx.doi.org/10.1007/978-3-642-25640-0_6
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Fig. 1.6 Plot showing that the mechanical oscillator is coupled to both the environmental heat bath
with temperature T=300 K, and to the optical field with effective temperature Teff = 0 K. The

effective temperature of the mechanical oscillator is given by Tm = γm T +γopt Teff
γm+γopt

. This approaches
zero if γopt � γm , which is intuitively expected

map out a classical trajectory of its mean position and momentum in phase space.
The remaining uncertainty of the quantum state will be Heisenberg-limited if the
measurement is fast and sensitive enough (i.e., the information extraction rate is
high), and the thermal noise induces an insignificant contribution to the uncertainty
of the quantum state. In this way, the mechanical oscillator is projected to a posterior
state, also called the conditional quantum state. The usual mathematical treatment of
such a process is by using the stochastic master equation [13, 14, 17, 23, 37]. Since
we are not interested in the transient behavior, the frequency-domain Wiener filter
approach provides a neat alternative to obtain the steady-state conditional variance
of the oscillator position and momentum (defining the remaining uncertainty). Such
an approach also allows us to include non-Markovian noise, which is difficult to deal
with by using the stochastic master equation. To localize the quantum state in phase
space (zero mean position and momentum), one just needs to feed back the acquired
classical information with a classical control. There is a unique optimal controller that
makes the residual uncertainty minimum, and close to that of the conditional quantum
state [12].

Due to the intimate connection between the quantity of information in a system
and its thermodynamical entropy, these two approaches merge together in the case
of cavity-assisted cooling scheme. This is motivated by the pioneering work of Mar-
quardt et al. [34] and Wilson-Rae et al. [54]. They showed that there is a quantum
limit for the achievable occupation number, which is given by γ 2/(2ωm)

2. In order
to achieve the quantum ground state, the cavity bandwidth γ has to be much smaller
than ωm, and this is the so-called good-cavity limit, or resolved-sideband limit. The
usual understanding of such a limit is from the thermodynamical point of view, and
we point out that it can also be understood as an information loss. By recovering the
information at the cavity output, we can achieve a nearly pure quantum state, mostly
independent of the cavity bandwidth. This is explained in Chap. 7.

Preparing non-Gaussian quantum states—In the above-mentioned situations, the
quantum state is Gaussian. By Gaussian, we mean that its Wigner function, which
describes the distribution of the position and momentum in phase space, is a two-
dimensional Gaussian function. Since the Wigner function is positive and remains
Gaussian, it is describable by a classical probability. A unequivocal signature for
‘quantumness’ is that the Wigner function can have negative values, e.g. in the well-
known ‘Schrödinger’s Cat’ state or the Fock state. To prepare these states, it generally
requires nonlinear coupling between the mechanical oscillator and external degrees of
freedom. For optomechanical systems, this can be satisfied if the zero-point uncer-
tainty of the oscillator position xq is the same order of magnitude as the linear

http://dx.doi.org/10.1007/978-3-642-25640-0_7
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Fig. 1.7 Possible schemes for preparing non-Gaussian quantum states of mechanical oscillators.
The left panel shows the schematic configuration similar to that of an advanced GW detector with
kg-scale suspended test masses in both arm cavities. The right panel shows a coupled-cavity scheme
proposed in Ref. [50], where a ng-scale membrane is incorporated into a high-finesse cavity. In both
cases, a non-Gaussian optical state is injected into the dark port of the interferometer

dynamical range of the optical cavity which is quantified by ratio of the optical
wavelength λ to the finesse F :

λ/(Fxq) � 1. (1.7)

This condition is also the requirement that the momentum kick induced by a
single photon in a cavity be comparable to the zero-point uncertainty of the oscilla-
tor momentum. Usually, λ ∼ 10−6 m and F ∼ 106,which indicates that xq ∼ 10−12

m and mωm ∼ 10−10. This is rather challenging to achieve with the current experi-
mental conditions.

Here we propose a protocol for preparations of a non-Gaussian quantum state
which does not require nonlinear optomechanical coupling. The idea is to inject
a non-Gaussian optical state, e.g., a single-photon pulse created by a cavity QED
process [28, 32, 35], into the dark port of the interferometric optomechanical device,
as shown schematically in Fig. 1.7. The radiation-pressure force of the single photon
on the mechanical oscillator is coherently amplified by the classical pumping from
the bright port. As we will show, the qualitative requirement for preparing a non-
Gaussian state becomes:

λ/(Fxq) �
√

Nγ . (1.8)

Here, Nγ = I0τ/(�ω0) (I0 is the pumping laser power, and ω0 the frequency)
is the number of pumping photons within the duration τ of the single-photon pulse,
and we gain a significant factor of

√
Nγ , as compared with Eq. (1.7), which makes

this method experimentally achievable.
Quantum entanglement—As one of the most fascinating features of quantum

mechanics, quantum entanglement has triggered many interesting discussions
concerning the foundation of quantum mechanics, and it also finds tremendous
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applications in modern quantum information and computing. If two or more sub-
systems are entangled, the state of the individual cannot be specified without tak-
ing into account the others. Any local measurement on one subsystem will affect
others instantaneously according to the standard interpretation, which violates the
so-called “local realism” rooted in the classical physics. The famous “Einstein-
Podolsky-Rosen” (EPR) paradox refers to the quantum entanglement for questioning
the completeness of quantum mechanics [15]. To great extents, creating and testing
quantum entanglements has been the driving force for gaining better understanding
of quantum mechanics.

Interestingly, the optomechanical coupling not only allows us to prepare pure
quantum states, but also to create quantum entanglements involving macroscopic
mechanical oscillators. Since this directly involves macroscopic degrees of freedom,
such entanglements can help us gain insights into the quantum-to-classical transition
and various decoherence effects which are significant issues in quantum computing,
and many quantum communication protocols [2].

In the case of a cavity-assisted optomechanical system, it is shown that stationary
EPR-type quantum entanglement between cavity modes and an oscillator [51], or
even between two macroscopic oscillators [22, 33, 40] can be created. We also
analyze such optomechanical entanglement in the three-mode system. The optimal
frequency matching that enhances the cooling also makes the quantum entanglement
easier to achieve experimentally. Additionally, we investigate how the finite cavity
bandwidth that induces the cooling limit influences the entanglement in general
optomechanical devices. We show that the optomechanical entanglement can be
significantly enhanced if we recover the information at the cavity output. In some
cases, the existence of the entanglement critically depends on whether we take care
of the information loss or not.

Motivated by the work of Ref. [40] which shows that the temperature—the strength
of thermal decoherence—only affects the entanglement implicitly, we analyze the
entanglement in the simplest optomechanical system with a mechanical oscillator
coupled to a coherent optical field. Simple though this system is, analyzing the entan-
glement is highly nontrivial because the coherent optical field has infinite degrees of
freedom. The results are very interesting—the existence of the optomechanical entan-
glement is indeed not influenced by the temperature directly, and the entanglement
exists even when the temperature is high and the mechanical oscillator is highly
classical. We obtain an elegant scaling for the entanglement strength, which only
depends on the ratios between the characteristic frequencies of the optomechanical
interaction and the thermal decoherence. This is discussed in detail in Chap. 8.

State verification—Being able to prepare pure quantum states or entanglements
does not tell the full story of an MQM experiment. We need a verification stage, during
which the prepared states are probed and verified, to follow up the preparation stage.
Suppose the preparation stage finishes at t = 0, the task of the verifier is to make an
ensemble measurement of different mechanical quadratures:

X̂ζ (0) = x̂(0) cos ζ + p̂(0)

mωm
sin ζ, (1.9)

http://dx.doi.org/10.1007/978-3-642-25640-0_8
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with x̂(0) and p̂(0) the oscillator position and momentum at t = 0. By building up the
statistics, we can map out their marginal distributions, from which the full Wigner
function of the quantum state can be constructed. By comparing the verified quantum
state with the prepared one, we can justify the quantum state preparation procedure.
This is a rather routine procedure in the quantum tomography of an optical quantum
state. However, this is nontrivial with optomechanical devices. Unlike the quantum
optics experiments where the optical quadrature can be easily measured with a homo-
dyne detection, in most cases that we are interested in, we only measure the position
x̂(t) instead of quadratures and the associated back action will perturb the quantum
state that we try to probe. Similar to what is discussed in the first part of this the-
sis, we also use the time-domain variational measurement to probe the mechanical
quadratures with the quantum back action evaded from the measurement data. Given
a continuous measurement from t = 0 to Tint, we can construct the following integral
estimator:

X̂ =
∫ Tint

0
dtg(t)x̂(t) ∝ x̂(0) cos ζ ′ + p̂(0)

mωm
sin ζ ′, (1.10)

with cos ζ ′ ≡ ∫ Tint
0 dtg(t) cosωmt and sin ζ ′ ≡ ∫ Tint

0 dtg(t) sinωmt. In this way,

a mechanical quadrature X̂ζ ′ can be probed. Here, g(t) is some filtering function,
which is determined by the time-dependent homodyne phase and also by the way in
which data at different times are combined. By optimizing the filtering function, we
can achieve a verification accuracy that is below the Heisenberg limit.

A three-stage MQM experiment—By combining the state preparation and the
verification, we can outline a complete procedure for an MQM experiment. In order
to probe various decoherence effects, and the quantum dynamics, we can include an
evolution stage during which the mechanical oscillator freely evolves. We discuss
such a three-stage procedure: the preparation, evolution, and verification in advanced
GW detectors. The details are in Chap. 11.
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Chapter 2
Quantum Theory of Gravitational-Wave
Detectors

2.1 Preface

This chapter gives an overview of the quantum theory of gravitational-wave (GW)
detectors. It is a modified version of the chapter contributed to a book in progress—
Advanced Gravitational-Wave Detectors—edited by David Blair. This chapter is
written by Yanbei Chen, and myself. It gives a detailed introduction on how to analyze
the quantum noise in advanced GW detectors by using input–output formalism,
which is also valid for general optomechanical devices. It discusses the origin of
the Standard Quantum Limit (SQL) for GW sensitivity from both the dynamics of
the optical field, and of the test-mass, which leads us to different approaches for
surpassing the SQL: (i) creating correlations between the shot noise and back-action
noise; (ii) modifying the dynamics of the test-mass, e.g., through the optical-spring
effect; (iii) measuring the conserved dynamical quantity of the test-mass. For each
of these approaches, the corresponding feasible configurations to achieve them are
discussed in detail. This chapter presents the basic concepts and mathematical tools
for understanding later chapters.

2.2 Introduction

The most difficult challenge in building a laser interferometer gravitational-wave
(GW) detector is isolating the test masses from the rest of the world (e.g., random
kicks from residual gas molecules, seismic activities, acoustic noises, thermal fluc-
tuations, etc.), whilst keeping the device locked around the correct point of operation
(e.g., pitch and yaw angles of the mirrors, locations of the beam spots, resonance
condition of the cavities, and dark-port condition for the Michelson interferometer).
Once all these issues have been solved, we arrive at the issue that we are going to ana-
lyze in this chapter: the fundamental noise that arises from quantum fluctuations in
the system. A simple estimate, following the steps of Braginsky [2], will already lead

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 13
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us into the quantum world—as it will turn out, the superb sensitivity of GW detectors
will be constrained by the back-action noise imposed by the Heisenberg Uncertainty
Principle, when it is applied to test masses as heavy as 40 kg in the case of Advanced
LIGO (AdvLIGO). As Braginsky realized in his analysis, there exists a Standard
Quantum Limit (SQL) for the sensitivities of GW detectors—further improvements
of detector sensitivity beyond this point require us to consider the application of
techniques that manipulate the quantum coherence of light to our advantage. In this
chapter, we will introduce a set of theoretical tools that will allow us to analyze GW
detectors within the framework of quantum mechanics; using these tools, we will
describe several examples in which the SQL can be surpassed.

The outline of this chapter is as follows: In Sect. 2.3, we will make an order-
of-magnitude estimate of the quantum noise in a typical GW detector, from which
we can gain a qualitative understanding of the origin of the SQL; then, in Sect. 2.4,
we will introduce the basic concepts and tools to study the quantum dynamics of
an interferometer, and the associated quantum noise. In Sect. 2.5, we will analyze
the quantum noise in some simple systems to illustrate the procedures for imple-
menting these tools—these simple systems are the fundamental building blocks for
an advanced GW detector. We will start to study the quantum noise in a typical
advanced GW detector in Sect. 2.6. We will increase the complexity step by step,
each of which is connected in sequence to the simple systems analyzed in the previ-
ous section. Section 2.7 will present a rigorous derivation of the SQL from a more
general context of linear continuous quantum measurements. This can enhance the
understanding of the results in the previous section, and also pave the way to differ-
ent approaches towards surpassing the SQL. In Sect. 2.8, we will talk about the first
approach to surpassing the SQL by building correlations among quantum noises, and,
in Sect. 2.9, we will illustrate the second approach to beating the SQL by modifying
the dynamics of the test mass—in particular, we will discuss the optical spring effect
to realize such an approach. Section 2.10 will present an alternative point of view on
the origin of the SQL. This will introduce the idea of a speed meter as a third option
for surpassing the SQL, in Sect. 2.11—two possible experimental configurations of
the speed meter will be discussed. Finally, in Sect. 2.12, we will conclude with a
summary of the main results in this chapter.

2.3 An Order-of-Magnitude Estimate

Here, we first make an order-of-magnitude estimate of the quantum limit for the
sensitivity. We assume that test-masses have a reduced mass of m, and it is being
measured by a laser beam with optical power I0, and an angular frequency ω0.

Within a measurement duration τ, the number of photons is Nγ = I0τ/(�ω0). For a
coherent light source (e.g., an ideal laser), the number of photons follows a Poisson
distribution, and thus its root-mean-square fluctuation is

√
Nγ . The correspond-

ing fractional error in the phase measurement, also called the shot noise, would be
δφsh = 1/

√
Nγ . For detecting GWs with a period comparable to τ, the displacement
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noise spectrum of the shot noise is:

Sx
sh ≈ δφ2

sh

k2 τ = �c2

I0ω0
, (2.1)

with k ≡ ω0/c as the wave number.
Meanwhile, the photon-number fluctuation also induces a random radiation-

pressure force on the test-mass, which is the radiation-pressure noise (also called the
back-action noise). Its magnitude is δFrp = √

Nγ �k/τ,which is equal to the number
fluctuation multiplied by the force of a single photon �k/τ. Since the response func-
tion of a free mass in the frequency domain is −1/m�2, the corresponding noise
spectrum is:

Sx
rp ≈ δF2

rp

m2�4 τ = I0ω0

c2

�

m2�4 . (2.2)

The total noise spectrum is a sum of Sx
sh and Sx

rp, namely:

Sx
tot = Sx

sh + Sx
rp = � c2

I0ω0
+ I0ω0

c2

�

m2�4 ≥ 2�

m�2 , (2.3)

as illustrated in Fig. 2.1. The corresponding lower bound that does not depend on
the optical power is Sx

SQL ≡ 2�/(m�2). In terms of GW strain h, it reads

Sh
SQL = 1

L2 Sx
SQL = 2�

m�2L2 , (2.4)

with L being the arm length of the interferometer. This introduces us to the SQL
[2, 3, 10], which arises as a trade-off between the shot noise and radiation-pressure
noise. In the rest of this chapter, we will develop the necessary tools to analyze
quantum noise of interferometers from first principles, and to derive the SQL more
rigorously. This will allow us to design GW detectors that surpass this limit.

2.4 Basics for Analyzing Quantum Noise

To rigorously analyze the quantum noise in a detector, we need to study its quantum
dynamics, of which the basics will be introduced in this section.

2.4.1 Quantization of the Optical Field and the Dynamics

For the optical field, the quantum operator of its quantized electric field is

Ê = u(x, y, z)
∫ +∞

0

dω

2π

√
2π�ω

Ac

[
âωeikz−iωt + â†

ωe+iωt−ikz
]
. (2.5)
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Fig. 2.1 A schematic plot of
the displacement noise
spectrum for a typical
interferometer. Increasing or
decreasing the optical power,
the power-independent lower
bound of the total spectrum
will trace over the SQL

Here â†
ω and âω are the creation and annihilation operators, which satisfy [âω, â†

ω′ ] =
2π δ(ω−ω′); A is the cross-sectional area of the optical beam; u(x, y, z) is the spatial
mode, satisfying (1/A) ∫ dxdy|u(x, y, z)|2 = 1.

For ground-based GW detectors, the GW signal that we are interested in is in the
audio frequency range from 10 to 104 Hz. It creates sidebands on top of the carrier
frequency of the laser ω0 (3 × 1014 Hz). Therefore, it is convenient to introduce
operators at these sideband frequencies to analyze the quantum noise. The upper and
lower sideband operators are â+ ≡ âω0+� and â− ≡ âω0−�, from which we can
define the amplitude quadrature â1 and phase quadrature â2 as:

â1 = (â+ + â†
−)/

√
2, â2 = (â+ − â†

−)/(i
√

2). (2.6)

They coherently create one photon and annihilate one photon in the upper and lower
sidebands, and this is, therefore, also called the two-photon formalism [9]. The elec-
tric field can then be rewritten as

Ê(x, y, z, t) = u(x, y, z)

√
4π�ω0

Ac

[
â1(z, t) cosω0t + â2(z, t) sinω0t

]
.

where ω is approximated as ω0 and the time-domain quadratures are defined as

â1,2(z, t) ≡
∫ +∞

0

d�

2π

(
â1,2e−i�t+ikz + â†

1,2ei�t−ikz
)
. (2.7)

These correspond to amplitude and phase modulations in the classical limit.1

After having introduced this quantization, we can look further at the dynamics of
the optical field. The equations of motion that we will encounter turn out to be very

1 To see such correspondence, suppose the electric field has a large steady-state amplitude A:

Ê(z, t) = [A+ â1(z, t)] cosω0t + â2(z, t) sinω0t ≈ A

[
1 + â1(z, t)

A

]
cos

[
ω0t − â2(z, t)

A

]
.
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Fig. 2.2 Two basic
dynamical processes of the
optical field in analyzing the
quantum noise of an
interferometer

simple, and only two are relevant, as shown in Fig. 2.2: (i) A free propagation. Given a
free propagation distance of L, the new field Ê ′(t) is

Ê ′(t) = Ê(t − τ), (2.8)

with τ ≡ L/c; (ii) Continuity condition on the mirror surface.

Ê2(t) = √
T Ê4(t)− √

RÊ1(t), (2.9)

Ê3(t) = √
RÊ4(t)+ √

T Ê1(t), (2.10)

with transmissivity T, reflectivity R, and a sign of convention as indicated in the
figure. These equations relate the optical field before and after the mirror. Due to the
linearity of this system, they are both identical to the classical equations of motion.

In later discussions, different quantities of the optical field will always be com-
pared at the same location, and they will all share the same spatial mode. In addition,
the propagation phase shift can be absorbed into the time delay. Therefore, we will

ignore the factors u(x, y, z)
√

4π�ω0Ac , and e±ikz, hereafter.

2.4.2 Quantum States of the Optical Field

To determine the expectation value and the quantum fluctuation of the Heisenberg
operators (related to the quantum noise), e.g., 〈ψ |̂O|ψ〉, not only should we specify
the evolution of Ô, but we also need to specify the quantum state |ψ〉. Of particular
interest to us are vacuum, coherent, and squeezed states.

Vacuum state—The vacuum state |0〉 is, by definition, the state with no excitation
and for every frequency, â�|0〉 = 0. The associated fluctuation is:

〈0|âi (�)â
†
j (�

′)|0〉sym = πδi jδ(�−�′), (i, j = 1, 2). (2.11)

Equivalently, the double-sided spectral densities 2 for â1,2 are

2 For any pair of operators Ô1 and Ô2, the double-sided spectral density is defined through

1

2π
〈0|Ô1(�

′)Ô†
2 (�)|0〉sym ≡ 1

2π
〈0|Ô1(�

′)Ô†
2 (�)+ Ô†

2 (�)Ô1(�
′)|0〉 ≡ 1

2
SO1 O2 (�)δ(�−�′).
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Fig. 2.3 A schematic plot of the electric field and the fluctuations of amplitude and phase quadrature
(shaded area). The left panel shows the time evolution of E, and the right panel shows E in the
space expanded by the amplitude and phase quadratures (E1, E2)

Sa1(�) = Sa2(�) = 1, Sa1a2(�) = 0. (2.12)

Coherent state—The coherent state is defined by [1] as:

|α〉 ≡ D̂[α]|0〉 ≡ exp

[∫
d�

2π
(α� â†

� − α∗
�â�)

]
|0〉, (2.13)

which satisfies â�′ |α〉 = α(�′) |α〉. The operator D̂ is unitary, so D̂† D̂ = Î .
We can use this to make a unitary transformation for studying the problem

|ψ〉 → D̂†|ψ〉, Ô → D̂† Ô D̂, (2.14)

which leaves the physics invariant. This means that the coherent state can be replaced
by the vacuum state, as long as we perform corresponding transformations of Ô
into D̂† Ô D̂. For the annihilation and creation operators, we have D̂†(α)â� D̂(α) =
â� + α� and D̂†(α)â†

� D̂(α) = â†
� + α∗

�, i.e., the original operators plus some
complex constants.

An ideal single-mode laser with a central frequency ω0 can be modeled as a
coherent state, and α� = π ā δ(�−ω0),with ā = √

2I0/(�ω0) and I0 is the optical
power. Under transformation D̂, the electric field reads [cf. Eq. (2.7)]:

Ê(t) = [ā + â1(t)] cosω0t + â2(t) sinω0t, (2.15)

which is simply a sum of a classical amplitude and quantum quadrature fields. This
is what we intuitively expect for the optical field from a single-mode laser, namely
“quantum fluctuations” superimposed onto a “classical carrier”. In Fig. 2.3, we show
E(t) and the associated fluctuations in the amplitude and phase quadratures schemat-
ically. As we will see later, these fluctuations are attributable to the quantum noise
and the associated SQL.

Squeezed state—A more complicated state would be the squeezed state:

|[χ ]〉 ≡ exp

[∫ +∞

0

d�

2π

(
χ� â†

+â†
− − χ∗

� â+â−
)
]

|0〉 ≡ Ŝ[χ ]|0〉. (2.16)
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Fig. 2.4 The fluctuations of the amplitude and phase quadratures (shaded areas) of the squeezed
state. The left two panels show the case of amplitude squeezing; the right two panels show the phase
squeezing

Similar to the coherent-state case, we can also better understand a squeezed state by
making a unitary transformation of the basis through Ŝ. By redefining
χ� ≡ ξ� e−2iφ� (ξ�, φ� ∈ ), for quadratures, this leads to:

Ŝ†â1 Ŝ = â1(cosh ξ + sinh ξ cos 2φ)− â2 sinh ξ sin 2φ, (2.17)

Ŝ†â2 Ŝ = â2(cosh ξ − sinh ξ cos 2φ)− â1 sinh ξ sin 2φ. (2.18)

Let us look at two special cases: (1) φ = π/2. We have

Ŝ†â1 Ŝ = e−ξ â1, Ŝ†â2 Ŝ = eξ â2, (2.19)

in which the amplitude quadrature fluctuation is squeezed by e−ξ while the phase
quadrature is magnified by eξ ; (2) φ = 0. The situation will just be the opposite.
Both cases are shown schematically in Fig. 2.4.

2.4.3 Dynamics of the Test-Mass

Similarly, due to the linear dynamics, the quantum equations of motion for the test
masses (relative motion) are formally identical to their classical counterparts:

˙̂x(t) = p̂(t)/m, ˙̂p(t) = Î (t)/c + mLḧ(t). (2.20)

Here x̂ and p̂ are the position and momentum operators, which satisfy
[x̂, p̂] = i�; Î (t)/c is the radiation pressure, which is a linear function of the
optical quadrature fluctuations; mLḧ(t) is the GW tidal force. Since the detection
frequency (∼100 Hz) is much larger than the pendulum frequency (∼1 Hz) of the
test-masses in a typical detector, they are treated as free masses.
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Fig. 2.5 A schematic plot of two homodyne readout schemes

2.4.4 Homodyne Detection

In this section, we will consider how to detect the phase shift of the output optical
field which contains the GW signal. To make a phase sensitive measurement, we
need to measure the quadratures of the optical field, instead of its power. This can
be achieved by a homodyne detection in which the output signal light is mixed with
a local oscillator, thus producing a photon flux that depends linearly on the phase
(i.e., on the GW strain). Specifically, for a local oscillator L(t) = L1 cosω0t +
L2 sinω0t and output b̂(t) = b̂1(t) cosω0t + b̂2(t) sinω0t, the photocurrent is
i(t) ∝ |L(t) + b̂(t)|2 = 2L1b̂1(t) + 2L2b̂2(t) + · · · . The rest of the terms, repre-
sented by “· · · ”, contain either frequency components that are strictly DC and around
2ω0, and terms quadratic in b̂. In such a way, we can measure a given quadrature
b̂ζ (t) = b̂1(t) cos ζ + b̂2(t) sin ζ, by choosing the correct local oscillator, such that
tan ζ = L2/L1.

In order to realize the above ideal superposition, there are two possible schemes:
introducing the local oscillator from the injected laser (external scheme as shown
in the right panel of Fig. 2.5;) or intentionally offsetting the two arms at the very
beginning, with a very small phase mismatch, which results in the so-called DC
readout scheme, as shown in the left panel of Fig. 2.5.

2.5 Examples

Before analyzing the quantum noise in an advanced interferometric GW detector,
it is illustrative to first consider three examples: (1) A test mass coupled to an optical
field in free space; (2) A tuned Fabry-Pérot cavity with a movable end mirror as
the test mass; (3) A detuned Fabry-Pérot cavity with a movable end mirror. These
three examples summarize the main physical processes in an advanced GW detector.
Understanding them will not only help us to get familiar with the tools for analyzing
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Fig. 2.6 A schematic plot of the interaction between the test mass and a coherent optical field in
free space (left); and the associated physical quantities (right)

quantum noise in a GW detector, but can also provide intuitive pictures which will
be useful in understanding more complicated configurations.

2.5.1 Example I: Free Space

The model is shown schematically in Fig. 2.6. The laser-pumped input optical field
can be written as [cf. Eq. (2.15)]:

Êin(t) =
[√

2I0/(�ω0)+ â1(t)
]

cosω0t + â2(t) sinω0t. (2.21)

The output field Êout(t) is simply:

Êout(t) = Êin(t − 2τ − 2x̂/c), (2.22)

with a delay time τ ≡ L/c. We define output quadratures b̂1 and b̂2 through:

Êout(t) =
[√

2I0/(�ω0)+ b̂1(t)
]

cosω0t + b̂2(t) sinω0t. (2.23)

Since the displacement of the test mass is small, and the uncertainty of ω0 x̂/c is
much smaller than unity, we can make a Taylor expansion of Eq. (2.22) in a series
of ω0 x̂/c. Up to the leading order, we obtain the following input–output relations:

b̂1(t) = â1(t − 2τ), (2.24)

b̂2(t) = â2(t − 2τ)− 2

√
2I0

�ω0

ω0

c
x̂(t − τ), (2.25)

where, for simplicity, we have assumed that ω0 L/c = n π, with n an integer.
The equation of motion for the test-mass displacement x̂ is simply:

m ¨̂x(t) = F̂rp(t)+ 1

2
mLḧ(t). (2.26)



22 2 Quantum Theory of Gravitational-Wave Detectors

Here we have chosen an inertial reference frame, as indicated in Fig. 2.6, such that
the gravitational tidal force is equal to 1

2 mLḧ(t); the radiation-pressure force F̂rp on
the test-mass is given by:

F̂rp(t) = 2
A
4π

|Êin(t − τ)|2 = 2
I0

c

[

1 +
√

2�ω0

I0
â1(t − τ)

]

, (2.27)

where in the second equality we have kept to the first order of the amplitude quadra-
ture. There is a DC component in the radiation-pressure force, which can be balanced
in the experiment (e.g., by the wire tension in the case of a suspended pendulum). We
are interested in the perturbed part, proportional to the amplitude quadrature, which
accounts for the radiation-pressure noise.

We can solve Eqs. (2.24), (2.25) and (2.26) by transforming them into the fre-
quency domain, after which we obtain:

�b(�) = M �a(�)+ �D h(�), (2.28)

where �a = (â1, â2)
T, �b = (b̂1, b̂2)

T (superscript T denoting transpose); the transfer
matrix M and transfer vector �D can be read off from the following explicit expression
of Eq. (2.28):

[
b̂1(�)

b̂2(�)

]
= e2i�τ

[
1 0
−κ 1

] [
â1(�)

â2(�)

]
+

[
0
ei�τ

√
2κ

]
h(�)

hSQL
, (2.29)

with

κ = 8I0ω0

mc2�2 , hSQL =
√

8�

m�2L2 . (2.30)

As we can see, the GW signal is contained in the output phase quadrature b̂2. It
can be decomposed into signal and noise components:

b̂2(�) = 〈b̂2(�)〉 +�b̂2(�), (2.31)

where 〈b̂2(�)〉 is the expectation value of the output, which is proportional to the
GW signal h, and�b2 is the quantum fluctuation with zero expectation. By defining
〈b̂2(�)〉 ≡ T h, we introduce the following quantity:

T = ei�τ
√

2κ
1

hSQL
, (2.32)

which is the transfer function from the GW strain h to the output phase quadrature.
This particular form indicates that the output phase modulation is proportional to the
GW strain, delayed by a constant time τ. The noise part

�b̂2(�) = e2i�τ â2(�)− e2i�τκ â1(�), (2.33)
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contains two parts: (i) the first one is the shot noise n̂sh ≡ e2i�τ â2,which arises from
the phase-quadrature fluctuation of the input optical field and has a flat spectrum [cf.
Eq. (2.12)]:

Ssh(�) = 1; (2.34)

and (ii) the second one is the radiation-pressure noise n̂rp ≡ (−e2i�τκ â1). This
arises from the amplitude-quadrature fluctuation, and has the following noise spec-
trum:

Srp(�) = κ2, (2.35)

with a frequency dependence of 1/�4.

Given the coherent state of the input optical field, the amplitude and phase-
quadrature fluctuations are not correlated. Therefore, we can obtain the total noise
spectrum simply by summing up Ssh and Srp. By normalizing with the transfer func-
tion T , the signal-referred noise spectrum can be written as:

Sh(�) = 1

|T |2 S
�b̂2
(�) =

[
1

κ
+ κ

] h2
SQL

2
≥ h2

SQL. (2.36)

The shot-noise contribution (first term) is inversely proportional to the optical
power (κ ∝ I0) and the radiation-pressure noise (second term) is proportional to I0.

The balance between them gives the SQL for detecting GWs with this simple model.
We will find that although this model is simple, it summarizes the main features of
a GW detector.

2.5.2 Example II: A Tuned Fabry-Pérot Cavity

Now we consider the case of a tuned Fabry-Pérot cavity. In Fig. 2.7, we show the
model schematically. In comparison with the previous case, an additional mirror
with transmissivity (of power) T, and reflectivity R, are placed in front of the test-
mass, in effect “wrapping” around the original system. We define the new input
and output optical fields Ê ′

in,out, in a similar way to that of Êin,out, by simply replacing

�a, �b with new amplitude and phase quadratures �α, �β. We need to determine a new
input–output relation between α̂1,2 and β̂1,2. From the continuity condition on the
front mirror surface (cf. Eqs. (2.9) and (2.10), we have:

Êin = √
RÊout + √

T Ê ′
in, (2.37)

Ê ′
out = √

T Êout − √
RÊ ′

in. (2.38)
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Fig. 2.7 A schematic plot of
the tuned-cavity model (left);
and the associated physical
quantities (right)

Correspondingly, �a, �b are related to new quadrature fields �α, �β by:

�a = √
R �b + √

T �α, (2.39)

�β = √
T �b − √

R �α. (2.40)

Together with Eq. (2.28), it would be straightforward to obtain the new input–output
relation. Generally, the expression is rather cumbersome. We will focus on the case
in which the transmissivity T is small (i.e., a high-finesse cavity). In addition, since
the GW sideband frequency � we are interested in is around 100 Hz, �τ is much
smaller than unity even when the cavity length L is 4 km. Therefore, we can make a
Taylor expansion of the new input–output relation as a series of the dimensionless
quantities T and �τ. Up to the leading order, this leads to:

[
β̂1(�)

β̂2(�)

]
= e2iφ

[
1 0

−K 1

] [
α̂1(�)

α̂2(�)

]
+ e−iφ

[
0√
2K

]
h

hSQL
. (2.41)

We have introduced:

φ ≡ arctan(�/γ ), K ≡ 2γ ιc
�2(�2 + γ 2)

, (2.42)

with the cavity bandwidth γ ≡ T c/(4L), parameter ιc ≡ 8ω0 Ic/(mLc), and intra-
cavity power Ic ≡ 4I0/T .

The same as the previous free-space case, we need to read out the phase quadra-
ture of the output field which contains the GW signal. The corresponding signal-
referred noise spectrum Sh has a similar form to the previous free-space case, but with
κ replaced by K [cf. Eq. (2.36)], i.e.:

Sh(�) =
[

1

K + K
] h2

SQL

2
≥ h2

SQL. (2.43)

For frequencies around� ∼ γ, the shot noise spectrum almost decreases by a factor
of 1/T 2 in comparison with the free-space case. This is attributable to the coherent
amplification of the optical power and the signal. The additional mirror serves as a
quantum feedback, which allows signals to build up coherently, whilst noise adds
up incoherently over time (On the other hand, a classical feedback will not normally
increase the signal-to-noise ratio, as feeding back what is already known will not
increase knowledge.). For frequencies� > γ, the shot noise increases as�2, rather
than remaining constant in the previous case. This is due to the non-zero response time
of the cavity, and signal with frequencies higher than γ are averaged out. Therefore,
the cavity bandwidth roughly determines the detection bandwidth.
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Fig. 2.8 A schematic plot of a detuned cavity; and the associated physical quantities (right). Here,
θ is the detuned phase

2.5.3 Example III: A Detuned Fabry-Pérot Cavity

If the cavity is not tuned, as shown schematically in Fig. 2.8, namely, ω0τ = θ +
nπ (θ �= 0)with n an integer, the free propagation will not only induce a phase shift,
but also a rotation of the quadratures. This simply arises from the following fact:
given a free-space propagation of τ, and from the relation Êout(t) = Ê in(t − τ),

the quadrature evolves as:

[
b̂1(�)

b̂2(�)

]
= ei�τ

[
cosω0τ − sinω0τ

sinω0τ cosω0τ

] [
â1(�)

â2(�)

]
, (2.44)

which is a delay and rotation.
Correspondingly, Eqs. (2.39) and (2.40) are modified:

�a = √
R R2θ �b + √

T Rθ �α, (2.45)

�β = √
T Rθ �b − √

R �α, (2.46)

where Rθ is the rotation matrix, defined as

Rθ ≡
(

cos θ − sin θ
sin θ cos θ

)
. (2.47)

Similarly, if the detuned phase is small, with θ � 1, we can make a Taylor
expansion of these equations in series of θ, T and�τ. After some manipulation, the
new input–output relation can be expressed in the following compact form:

�β(�) = 1

C [M �α(�)+ �D h(�)], (2.48)

where

C = �2[(�+ iγ )2 −�2] +�ιc, (2.49)

M =
[−�2(�2 + γ 2 −�2)−� ιc 2γ��2

−2γ��2 + 2γ ιc −�2(�2 + γ 2 −�2)−�ιc

]
, (2.50)
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�D =
[

��

(−γ + i�)�

]
2
√
γ ιc

hSQL
, (2.51)

with detuning frequency � ≡ θ/τ. Here we have ignored the tiny frequency-
dependent phase correction�θ/ω0.Unlike in the previous two cases, the GW signal
here appears in both amplitude and phase quadratures. To readout the GW signal,
we can make a homodyne detection of a certain output quadrature:

β̂ζ (�) = β̂1(�) cos ζ + β̂2(�) sin ζ. (2.52)

Given a coherent state input, the corresponding signal-referred noise spectrum den-
sity is

Sh(�) = (cos ζ, sin ζ )MMT(cos ζ, sin ζ )T

|D1 cos ζ + D2 sin ζ |2 , (2.53)

with D1,2 being the components of the vector �D. This expression recovers the
previous two cases: (1) the tuned cavity, by setting � = 0, and phase quadra-
ture measurement ζ = 0; (2) the free-space case, by setting the cavity bandwidth
γ → ∞.We will postpone discussing the physical significance of this formula until
we consider a signal-recycled GW detector, which can actually be mapped into a
detuned Fabry-Pérot cavity.

2.6 Quantum Noise in an Advanced GW Detector

After having introduced some basic principles and examples, we are now ready to
analyze the quantum noise of a typical advanced GW detector: a Michelson inter-
ferometer with Fabry-Pérot arm cavities, a power-recycling mirror (PRM), and a
signal-recycling mirror (SRM). This is shown schematically in Fig. 2.9.

To make a direct one-to-one correspondence between the input–output relation
of an advanced GW detector and the three examples we have considered, we will
gradually introduce important optical elements, and discuss them in the follow-
ing sequence: (1) a simple Michelson interferometer with only end test-masses
(Sect. 2.6.1); (2) a power-recycled interferometer with both power-recycling mir-
ror and arm cavities (Sect. 2.6.2); (3) a power- and signal-recycled interferometer
(Sect. 2.6.3).

2.6.1 Input–Output Relation of a Simple Michelson Interferometer

A simple Michelson interferometer is shown schematically in Fig. 2.10. Ideally, the
interferometer is set up to have identical arms, so that at the zero working point of the
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Fig. 2.9 A schematic plot of an advanced GW detector. The beam splitter (BS) splits the laser light
into two beams. The internal test-mass (ITM) and end test-mass (ETM) with optical coatings on
their surface form the Fabry-Pérot arm cavities which amplifies both the signal and optical power.
The power recycling mirror (PRM) can further increase the circulating power. The signal-recycling
mirror (SRM) folds the signal back into the interferometer, and it significantly enriches the dynamics
of the system, as discussed in the main text

Fig. 2.10 A schematic plot of a simple Michelson interferometer (left); and its mathematical model
with propagating optical fields (right)

interferometer (i.e., when locked on a dark fringe), fields entering from each port will
only return to that port. The carrier light enters and exits from the common (bright)
port, while the differential port remains dark. The differential motion of the test mass
x̂ A − x̂B, which contains the GW signal causes a differential phase modulation, and
therefore induces an output signal out of the differential (dark) port, at which we
make homodyne detections.

We follow steps similar to those in Sect. 2.5.1 to derive the input–output rela-
tion here. As we will see, the input–output relation of the differential displacement
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we are interested in is exactly the same as the free-space scenario considered in
Sect. 2.5.1. The laser-pumped input optical field into the common port is:

Ê in
c (t) = [√2I0/(�ω0)+ ĉ1(t)] cosω0t + ĉ2(t) sinω0t. (2.54)

With no laser pumping, the input field into the differential port is simply:

Ê in
d (t) = [

â1(t) cosω0t + â2(t) sinω0t
]
. (2.55)

The fields, after passing through the half-half beam splitter, and while propagating
towards ETMA and ETMB, are:

Ê in
A,B(t) = Ê in

c (t)∓ Ê in
d (t)√

2
. (2.56)

The fields returning from the ETM are

Êout
A,B(t) = Ê in

A,B(t − 2τ − 2x̂ A,B/c), (2.57)

where τ ≡ L/c is the time for light to propagate from the beam splitter to each of
the ETMs. To the leading order in x̂ A,B, we have:

Êout
d (t) = Êout

B (t)− Êout
A (t)√

2
≡ [b̂1(t) cosω0t + b̂2(t) sinω0t], (2.58)

with

b̂1(t) = â1(t − 2τ), (2.59)

b̂2(t) = â2(t − 2τ)−
√

2I0

�ω0

ω0

c
x̂d(t − τ), (2.60)

where we have assumed ω0 L/c = nπ, with n an integer; and have defined the
differential-mode motion:

x̂d(t) ≡ x̂B(t)− x̂ A(t). (2.61)

Radiation-pressure forces acting on the two test-masses have both common and
differential components, which are proportional to ĉ1 and â1 respectively. If test
masses have nearly the same mass, m, then ĉ1 (â1) will only induce common-mode
(differential-mode) motion. Mathematically, we have, up to leading order in fluctu-
ations/modulations:

F̂A,B(t) = 2
I0

c

[

1 +
√

�ω0

I0

ĉ1(t − τ)∓ â1(t − τ)√
2

]

. (2.62)



2.6 Quantum Noise in an Advanced GW Detector 29

For the differential mode:

F̂B(t)− F̂A(t) = 2

√
2�ω0 I0

c
â1(t − τ). (2.63)

This means that the motion of the differential mode under both the radiation-
pressure force and the tidal force, Fh

A,B = ∓mLḧ(t)/2, from GW is:

m ¨̂xd(t) = F̂B(t)− F̂A(t)+Fh
B(t)−Fh

A(t) = 2

√
2�ω0 I0

c
â1(t−τ)+mLḧ(t). (2.64)

Equations (2.59), (2.60) and (2.61) are identical to Eqs. (2.24)–(2.26), if we iden-
tify the previous 2 x̂ by the differential displacement x̂d here. Since the GW signal
also increases by a factor of 2, due to the differential motion of two arms, the signal
strength will not change. Therefore, the signal-referred noise spectrum obtained in
the free-space case also applies [cf. Eq. (2.36)], namely:

Sh(�) =
[

1

κ
+ κ

] h2
SQL

2
, (2.65)

except for the fact that here:

κ = 4I0ω0

mc2�2 , hSQL =
√

4

m�2L2 . (2.66)

2.6.2 Interferometer With Power-Recycling Mirror
and Arm Cavities

In order to decrease the shot noise, we need to increase the optical power. It would be
difficult to achieve a high optical power by solely increasing the input power. Instead,
we can add a power-recycling mirror, as first proposed by [13] (see Fig. 2.11). The
output optical field from the common port gets coherently reflected back into the
interferometer, and amplifies the circulation power. Since we are only concerned
with the optical field in the differential port, the effect of the PRM can easily be
included by simply replacing the input I0 in Êc

in(t) (Eq. 2.54) by:

I ′
0 ≡ 4

TPRM
I0, (2.67)

where TPRM is the power transmissivity of the PRM. Further improvement of the
sensitivity comes from the arm cavities formed by the ITMs and ETMs. These cavities
are tuned on resonance, further increasing the optical power circulating in the arms,
and also coherently amplifying the GW signal by increasing the effective arm length.
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Fig. 2.11 A schematic plot of a Michelson interferometer with a power-recycled mirror (PRM) and
additional ITMs to form arm cavities (left). The corresponding propagating fields are indicated in
the right diagram

The input–output relation at the differential port also has the same form as the
tuned Fabry-Pérot cavity discussed in Sect. 2.5.2. This can be shown as follows: The
new optical fields Ê in′

A and Êout′
A are related to Ê in

A and Êout
A simply by:

Ê in
A = √

RI Êout
A + √

TI Ê in′
A , (2.68)

Êout′
A = √

TI Êout
A − √

RI Ê in′
A , (2.69)

where
√

RI and
√

TI are the reflectivity and transmissivity of the ITM, respectively.
Similar relations hold for the fields propagating in the arm cavity B. These new fields
are connected to the new input Ê in′

c and Ê in′
d by:

Ê in′
A,B = Ê in′

c (t)∓ Ê in′
d (t)√

2
. (2.70)

In addition, the new output in the differential port is:

Êout′
d = Êout′

B (t)− Êout′
A (t)√

2
. (2.71)

The relations between the new inputs Ê in′
d , Êout′

d and outputs Ê in
d , Êout

d , at the
differential port, are simply defined by:

Ê in
d = √

RI Êout
d + √

TI Ê in′
d , (2.72)

Êout′
d = √

TI Êout
d − √

RI Ê in′
d . (2.73)

These have the same form as Eqs. (2.37) and (2.38). Therefore, as long as we are
only concerned with the fields at the differential port, the new input and output are
related to the previous ones without arm cavities in a similar way as that of a single
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Fig. 2.12 The GW
strain-referred sensitivity of
an advanced GW detector
with power-recycled mirror
and arm cavities, given the
specifications detailed in the
main text. Here, we have
normalized the spectrum by
hq , which is defined to be
hSQL at 100 Hz 10 100 1000
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tuned Fabry-Pérot cavity. There is only one difference: in the single tuned cavity
analysis, we assumed the front mirror is fixed, while in the GW detector, both ITMs
and ETMs can move and the relative motion is detected, which has a reduced mass
of m/2 in each arm. By further taking into account a factor of two increase in the
sensitivity from two arms, the resulting signal-referred noise spectrum reads [cf. Eq.
(2.43)]:

Sh(�) =
[

1

K + K
] h2

SQL

2
, (2.74)

with

K ≡ 2γ ιc
�2(�2 + γ 2)

, hSQL =
√

8�

m�2L2 . (2.75)

The cavity bandwidth, γ ≡ TI c/(4L), and the parameter ιc are the same as in
Eq. (2.42), but with Ic ≡ 8I0/(TPRMTI ), which is enhanced by both the power-
recycling and arm cavities. To illustrate this sensitivity, we can choose the following
specifications for different parameters (close to those of the AdvLIGO): mass of
individual test mass m = 40 kg, intra-cavity optical power Ic = 800 kW, arm cavity
length L = 4 km, optical angular frequency ω0 = 1.9 × 1015s−1 (wavelength equal
to 1µm), arm cavity bandwidth γ /(2π) = 100 Hz. The corresponding sensitivity is
shown in Fig. 2.12, and it achieves the SQL round 100 Hz.

2.6.3 Interferometer With Signal-Recycling

Now we are ready to analyze the quantum noise in an advanced GW detector with
both power- and signal-recycling. The schematic plot of the configuration is shown
in Fig. 2.13, where a signal-recycling mirror is added onto the differential port,
as first proposed by [17, 23]. After previously introducing all the techniques, the
effect on the detector sensitivity also becomes apparent. With the same idea, we can
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Fig. 2.13 A schematic plot of a Michelson interferometer with a power- (PRM) and signal-recycled
mirrors (SRM) and additional ITMs to form arm cavities (left). The corresponding propagating fields
are indicated in the right-hand diagram, with θ being the detuned phase

relate the new input and output fields Ê in′′
d , Êout′′

d to the Ê in′
d , Êout′

d fields analyzed in
the previous section. The relation reads:

Ê in′
d (t) = √

RS Êout′
d (t − 2θ/ω0)+ √

TS Ê in′′
d (t − θ/ω0), (2.76)

Êout′′
d (t) = √

TS Êout′
d (t − θ/ω0)− √

RS Ê in′′
d (t), (2.77)

with θ the detuned phase and RS and TS the reflectivity and transmissivity of the
SRM, respectively. The corresponding quadratures will undergo rotations iden-
tical to those shown in the single detuned cavity analysis [cf. Eqs. (2.45) and
(2.46)]. The expression for this input–output relation is very lengthy and complicated
[6, 7]. We will follow the approach in Ref. [11] and map the entire signal-recycled
interferometer into a single detuned cavity, which will then allow us to directly use
the results obtained in Sect. 2.5.3.

The idea behind this mapping is based upon the fact that the length, LSR,

of the signal-recycling cavity formed by the ITMs and the SRM is, of the order
of 10 m, which is very short compared with kilometer long arm cavity. The propa-
gation phase shift of the sidebands around 100 Hz, ei�LSR , is negligible [18, 19]. As
shown schematically in Fig. 2.14, the signal-recycling cavity can be replaced by one
mirror with a set of effective reflectivities and transmissivities, which are related to
TS,I and RS,I by:

reff = −
√

RS + √
RI e2iθ

1 + √
RI e2iθ

, t ′eff =
√

RI + √
RS RI e2iθ

1 + √
RS RI e2iθ

, (2.78)

teff = t ′eff =
√

TS TI eiθ

1 + √
RS RI e2iθ

. (2.79)

From the resonant condition of the effective cavity:
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Fig. 2.14 Mapping from a three-mirror cavity to a two-mirror cavity by defining the effective
transmissivities (teff , t ′eff ) and reflectivities (reff , r ′

eff ) of the signal-recycling cavity

r ′
eff e2i�res L/c = 1, (2.80)

we can define its effective bandwidth γeff and detuning �eff through:

�res ≡ −�eff − i γeff . (2.81)

Up to the leading order of TI , �eff and γeff can be expressed in terms of√
TS,I ,

√
RS,I and θ through

�eff = 2
√

RSγI sin 2θ

1 + RS + 2
√

RS cos 2θ
, γeff = (1 − RS)γI

1 + RS + 2
√

RS cos 2θ
, (2.82)

with the bandwidth of the arm cavity γI ≡ c TI /(4L).
After this equivalent mapping into a single detuned cavity, it is straightforward to

obtain the input–output relation for the signal-recycling interferometer, through the
following replacement in Eq. (2.48):

γ → γeff , � → �eff . (2.83)

For illustration, we assume an ideal phase-quadrature detection with ζ = π/2;
the corresponding GW strain-referred sensitivity is given by [cf. Eq. (2.53)]:

Sh(�) = 4γ 2
eff(ιc +�eff�

2)2 + [�eff ιc +�2(γ 2
eff −�2

eff +�2)]2

4γeff ιc�2(γ 2
eff +�2)

h2
SQL. (2.84)

One interesting example is when θ = π/2, giving

γeff = 1 + √
RS

1 − √
RS
γ, �eff = 0. (2.85)

The resulting noise spectrum is the same as the previous case without signal-
recycling, but with an increased detection bandwidth [a factor of (1 + √

RS)/(1 −√
RS) ]. This is the so-called Resonant-Sideband-Extraction (RSE) scheme which

will be implemented in AdvLIGO. The spectrum is shown in Fig. 2.15. In general,
θ �= π/2 and we also show the noise spectrum in the case for a SR cavity detuned
phase θ = 1.1. As we can see, there are two minima in the sensitivity curve. Inter-
estingly, they surpass the SQL around the most sensitive frequency (∼100 Hz for
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Fig. 2.15 The GW
strain-referred sensitivity of
a signal-recycling GW
detector given a
phase-quadrature detection
ζ = π/2. The solid curve
corresponds to the RSE
scheme with θ = π/2 and√

RS = 0.6. The dashed
curve shows the case with
θ = 1.1 and

√
RS = 0.9
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given specifications). To gain a better insight into these features which surpasses the
SQL, we need to examine the origin of the SQL from a more general picture of linear
continuous measurements. Not only will it allow us to understand this particular
example, but it can also provide an insight into the SQL, and thus help us to find
other approaches to surpass it.

2.7 Derivation of the SQL: A General Argument

Throughout the previous discussions, we have learnt that there are two types of
noise, namely shot noise and radiation-pressure noise. They together give rise to the
SQL of the detector sensitivity. Actually, the SQL exists in general linear continuous
measurements, and it is directly related to the fundamental Heisenberg Uncertainty
Principle [3]. We will elaborate on this point in this section.

The model of a typical measurement process is shown schematically in Fig. 2.16.
The signal—a classical force G (e.g., from the GW) is driving the probe (e.g., the
test mass) which is in turn coupled to an external detector (e.g., the optical field).
The detector reads out the probe motion by monitoring its displacement x̂, and at
the same time it exerts a back-action force F̂ onto the conjugate momentum of the
probe. The signal force G can then be extracted from the detector output Ŷ , which
contains both the signal and the fundamental measurement noise Ẑ (i.e., the shot
noise). Mathematically, the displacement-referred output Ŷ , i.e., the measurement
result, can be written as:

Ŷ (t) = x̂0 + Ẑ(t)+
∫ t

−∞
dt ′ Rxx (t − t ′)[F̂(t ′)+ G(t ′)]. (2.86)

Here x̂0 is the free-evolution value of the probe displacement when the detector is
detached, and it has the following two-time commutator:
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Fig. 2.16 A schematic
model of a linear continuous
measurement process

[x̂0(t), x̂0(t
′)] = −i� Rxx (t − t ′), (2.87)

where Rxx (t) is the response function of the probe to the external force. Here, we
require that the detector is tunable, and has a parameter ε, with:

Ẑε(t) = ε

ε0
Ẑε0(t), F̂ε(t) = ε0

ε
F̂ε0(t). (2.88)

The fact that Ŷ (t) is the measurement result itself dictates that

[Ŷ (t), Ŷ (t ′)] = 0, (2.89)

because measuring Ŷ (t) continuously should not impose any additional noise [3].
In addition, since Ẑ and F̂ are operators that belong to a different system (the detector)
from the probe, they both commute with the probe displacement x̂0. It is therefore
required that the two-time commutator of Ẑ and F̂ terms in Ŷ must cancel the
commutator from x̂0. In fact, because Ẑ and F̂ have different scalings in ε, and
because the cancelation must happen at all orders of ε, we can obtain:

[Ẑ(t), Ẑ(t ′)] = [F̂(t), F̂(t ′)] = 0, [Ẑ(t), F̂(t ′)] = i� δ(t − t ′). (2.90)

This indicates that the shot noise and the back-action noise do not commute at the
same moment. In the frequency domain, this can be written as:

[Ẑ(�), Ẑ(�′)] = [F̂(�), F̂(�′)] = 0, [Ẑ(�), F̂(�′)] = 2π i� δ(�−�′).
(2.91)

If we introduce the single-sided (cross) spectral densities SZ Z (�), SF F (�) and
SZ F (�), the above commutation relations dictate the Heisenberg Uncertainty Prin-
ciple:

SZ Z (�)SF F (�)− |SZ F (�)|2 ≥ �
2. (2.92)

This generally will not set a bound on the noise spectrum in measuring the probe
displacement [cf. Eq. (2.86)] which is given by:

Sx (�) = SZ Z (�)+ 2[Rxx (�) SZ F (�)] + |Rxx (�)|2SF F (�) (2.93)

with Rxx (�) the Fourier transform of Rxx (t).However, when there is no correlation
between the shot noise and the back-action noise, namely SZ F = 0, it induces the
SQL for the displacement measurement:

Sx (�) ≥ 2|Rxx (�)|
√

SZ Z (�)SF F (�) ≥ 2�|Rxx (�)| ≡ Sx
SQL. (2.94)
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In the case of GW detection, the external force is the GW tidal force on the test
masses and we have G(t) = mLḧ(t) (m is the reduced mass). Therefore, the SQL
for the GW signal-referred sensitivity reads

Sh
SQL = 2�

m2�4L2|Rxx (�)| . (2.95)

For a free mass, Rxx (�) = −1/(m�2); this gives the free-mass SQL:

Sh
SQL = 2�

m�2L2 , (2.96)

which justifies the order-of-magnitude estimate we obtained in Eq. (2.4).
From the above derivation, we immediately realize that there are two possible

approaches to surpassing the free-mass SQL: (1) Creating correlations between the
shot noise Ẑ and the back-action noise F̂ with non-zero SZ F . Correspondingly,
the inequality in Eq. (2.94) is not satisfied, and the total noise spectrum will not be
bounded by the SQL; (2) Modifying the dynamics of the probe: The free-mass SQL
will no longer be relevant if the probe has a different response to the external force
than the free mass. In particular, for an oscillator with a resonance frequency ωm and
decay rate γm, the response function reads Rxx (�) = 1/[−m(�2 − ω2

m + iγm�)],
and then around resonance frequency:

Sh
SQL|oscillator

Sh
SQL|free mass

=
√
(�2 − ω2

m)
2 + γ 2

m�
2

�2

∣
∣
∣
�=ωm

= γm

ωm
. (2.97)

The free-mass SQL can therefore be surpassed by a significant amount of the mechan-
ical quality factor ωm/γm around its resonance frequency. We will explore these two
approaches in detail in the next two sections.

2.8 Beating the SQL by Building Correlations

In this section, we will focus on the first approach to beat the SQL, by creating
correlations between the shot noise and the back-action noise. This can be achieved
by: (i) signal-recycling; (ii) squeezed input; (iii) variational readout. The details of
these methods will be discussed.

2.8.1 Signal-Recycling

In the previous section (cf. Sect. 2.6.3), we showed that the signal-recycled inter-
ferometer can be mapped into a detuned cavity, in which the amplitude and phase
quadratures will rotate and mix with each other. When their fluctuations are reflected
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back to the test mass by the signal-recycling mirror, both will contribute to the
radiation-pressure noise, similarly for the shot noise, which will have contributions
from both fluctuations. Therefore, the shot noise and radiation-pressure noise natu-
rally acquire correlations. In the case of phase-quadrature readout, it can be shown
that this correlation is given by [8]:

SZ F = �
�eff(�

2
eff + 3γ 2

eff −�2)

2γeff(γ
2
eff +�2)

. (2.98)

This accounts for the two minima in the sensitivity curve, which surpass the SQL,
as shown in Fig. 2.15.

2.8.2 Squeezed Input

As pointed out in the pioneering work of [16], a frequency-dependent squeezed input
can be used to surpass the SQL; in this case, the shot noise and radiation-pressure
noise are naturally correlated as a result of the correlation between the amplitude
and phase quadratures of the input squeezed light. To illustrate this point, we will
only look at the scheme discussed in Sect. 2.6.2 without a signal-recycling mirror. It
can be easily generalized and extended to general schemes. Given a squeezed input,
the amplitude and phase quadrature will be transformed according to Eqs. (2.17)
and (2.18). As shown in [16], if the squeezing angle φ has the following frequency
dependence:

φ(�) = −arccot K(�), (2.99)

the amplitude and phase fluctuations are squeezed at low and high frequencies,
respectively, and the noise spectrum will be reduced by a overall squeezing factor of
e2q , namely:

Sh
sqz = e−2q

[
K + 1

K
] h2

SQL

2
, (2.100)

which surpasses the SQL at around the most sensitive frequencies, as indicated
in Fig. 2.18 . It is possible to achieve a frequency-dependent squeezing, as pre-
scribed in Eq. (2.99), because different sideband frequencies all represent different
degrees of freedom, and therefore squeezing them in different ways is totally allowed.
In practice, one must invent the right device that generates such a frequency depen-
dence. This usually implies devices with a certain time scale that is comparable to
the detection band of the detector, which is very long compared with usual quantum
optical devices (Fig. 2.17).

Kimble et al. invented one such device—a detuned Fabry Pérot cavity. For Fabry-
Pérot Michelson interferometers, they showed that a squeezing angle of arctan K can



38 2 Quantum Theory of Gravitational-Wave Detectors

Fig. 2.17 A schematic plot
of the frequency-dependent
squeezed input
configuration. A
frequency-independent
squeezed light, filtered by
two detuned Fabry-Pérot
cavities in sequence,
produces the required
frequency dependence

Fig. 2.18 The GW
strain-referred sensitivity of
a frequency-dependent
squeezing input
interferometer (solid curve).
The squeezing factor is
e−2q = 0.1. The other
specification is the same as
Fig. 2.12

10 100 1000
0.1

1

10

100

f Hz

Sh

hq

SQL

be generated by feeding a frequency-independent squeezed light into two consecutive
Fabry-Pérot cavities, each with a perfect end mirror, and prescribed values of detuning
and bandwidth. The specifications for the filter cavity parameters can be obtained by
using the technique given in the Appendix of [21]. This technique is valid for general
schemes, such as a signal-recycling configuration, shown explicitly in [14], in which
the noise spectrum is also reduced by the squeezing factor for the entire detection
band.

2.8.3 Variational Readout: Back-Action Evasion

Another natural way to build correlations is to measure a certain combination of the
amplitude quadrature b̂1 and phase quadrature b̂2 at the output, namely:

b̂ζ = b̂1 cos ζ + b̂2 sin ζ

= (â1 cos ζ + â2 sin ζ )− â1K sin ζ + √
2K h

hSQL
sin ζ.

(2.101)
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Fig. 2.19 A schematic plot
of the variational-readout
configuration. The output is
filtered by two detuned
Fabry-Pérot cavities before
the detection

The shot noise (â1 cos ζ + â2 sin ζ ) and the radiation-pressure noise â1K sin ζ
has non-zero correlation. If the detection angle ζ has the following frequency
dependence:

ζ(�) = arccot K(�), (2.102)

we can completely evade the effect of back-action, and obtain a shot-noise only
sensitivity, namely:

Sh
var = h2

SQL

2K . (2.103)

Such back-action- evading scheme was first invented by Vyatchanin et al. in a time
domain formalism [24, 25], aimed at detecting GWs with known arrival time. The
above frequency-domain formalism was developed by Kimble et al., and it is valid for
all possible stationary signals. The required frequency dependency can be achieved
in a similar way to that of frequency-dependent squeezing, i.e., by filtering the
output through detuned Fabry-Pérot cavity, as shown schematically in Fig. 2.19.
The specifications for the filter cavities can also be obtained by using the results in
Ref. [21]. The corresponding sensitivity curve is shown in Fig. 2.20.

2.8.4 Optical Losses

In the above discussions, we have assumed an ideal lossless situation. However,
in reality, there are multiple channels in which losses can be introduced. These include
the scattering and losses in the optical elements, and the non-zero transmission of the
end mirrors. These optical losses will introduce uncorrelated vacuum fluctuations,
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Fig. 2.20 The GW
strain-referred sensitivity of
a variational-readout scheme
(solid curve). The
low-frequency back-action
noise is completed evaded,
thus achieving a sensitivity
limited only by shot noise
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and destroy the quantum coherence. They can be modeled by an overall reduction
of the field amplitude by

√
1 − ε, and then an introduction of

√
ε for the vacuum:

�b → √
1 − ε �b + √

ε�n. (2.104)

Here �n is associated with the uncorrelated vacuum fluctuations. They will not only
affect the injected squeezed state but also the output field, which undermines the
sensitivity. As shown by Kimble et al., the squeezed-input configuration is reasonably
robust against optical loss as long as the filter cavities have a length comparable to
the arm cavity (∼4 km). However, the variational-readout scheme is very susceptible
to the optical losses. If we apply the condition in Eq. (2.102), the noise spectrum
with the output loss [cf. Eq. (2.104)] is:

Sh
loss(�) =

[
ε

2(1 − ε)K sin2 ζ
+ 1

2K
]

h2
SQL. (2.105)

At low frequencies, K ∼ �−2 and sin2 ζ ∼ �4, and thus the first term scales as
�−2. This means that the loss will severely affect the low-frequency sensitivity. In
addition, as shown by Kimble et al., around the frequency where the SQL is attained
for a conventional scheme without a signal-recycling mirror, the SQL beating ratio
of a variational-readout scheme with loss is given by:

μ ≡
√

Sh
SQL

Sh
var

≈ 4
√
ε, (2.106)

only if the interferometer can manage a factor of 1/
√
ε times stronger optical power.

Given a typical loss of 0.01, this produces a factor of 0.3 and a power 10 times
greater, which is rather challenging. Therefore, a low-loss optical setup is essential
for implementation.



2.9 Optical Spring: Modification of Test-Mass Dynamics 41

2.9 Optical Spring: Modification of Test-Mass Dynamics

Apart from building correlations, as shown by Eq. (2.97), the free-mass SQL can
also be surpassed by modifying the dynamics of the test-mass. One might expect that
this will require a significant modification of the topology of current GW detectors.
As it turns out, a detuned signal-recycling interferometer naturally achieves this.
This is intimately connected to the rotation of the amplitude and phase quadrature in
the signal-recycling cavity, which produces correlations between the shot noise and
radiation-pressure noise. As we have previously mentioned, the radiation pressure
force not only depends on the amplitude quadrature, but also on the phase quadrature.
Since the latter contains the test-mass displacement, it induces a position-dependent
force and modifies the test-mass dynamics; This phenomenon is also called the
“optical-spring” effect. A similar idea, but with a different configuration, was first
proposed by [19], and is the so-called “optical bar” GW detector.

2.9.1 Qualitative Understanding of Optical-Spring Effect

The optical-spring effect can be understood qualitatively by looking at the case of a
single detuned cavity. The displacement of the end mirror (test-mass) x will change
the intra-cavity power Ic, which in turn changes the radiation-pressure force. In the
adiabatic limit, the intra-cavity power as a function of x reads:

Ic(x) = γ 2 I max
c

γ 2 + [�+ (ω0x/L)]2 , (2.107)

which is shown in the left panel of Fig. 2.21. Since the radiation-pressure force is
equal to F(x) = Ic(x)/c, such a position-dependent force will introduce a rigidity,
which is minus the derivative of the force −d F(x)/dx, around the equilibrium point
x = 0.Depending on the sign of the detuning, it will create either negative or positive
rigidity. In the case of a detuned signal-recycling configuration for AdvLIGO, a strong
optical-spring effect can shift the pendulum frequency of 1 Hz up to the detection
band. Around the new resonant frequency, we can surpass the free-mass SQL. This
actually accounts for the low-frequency dip in Fig. 2.15. One can refer to Ref. [7] for
a detailed discussion of the mechanical resonance due to this optical-spring effect.

Due to a delayed response of the intra-cavity power to the test-mass motion, the
optical spring also has a friction component. For � < 0, such a delayed response
gives a positive damping, which pumps energy out of the test mass. For � > 0,
the damping is negative, which will destabilize the system. Using the input–output
relation derived in Sect. 2.5.3, one can easily determine the expression for an optical
spring in the frequency domain as:

K (�) = −2Icω0

Lc

�

(�−�+ iγ )(�+�+ iγ )
. (2.108)
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Fig. 2.21 The optical power as a function of cavity detuning � (left). A double optical spring,
Ktot(�) = K1(�)+ K2(�),which has both positive rigidity and damping (right). The black curve
(right) shows a parametric plot of the optical spring K (�) as a function of detuning

For sideband frequencies� < �, γ,we can perform a Taylor expansion and obtain

K (�) = 2Icω0

Lc

[
�

γ 2 +�2 + 2iγ�

(γ 2 +�2)2
�

]
≡ Kopt − iγopt�. (2.109)

We have introduced the rigidity Kopt (real part of K) and the damping γopt (imaginary
part). As we can see, the positive (negative) rigidity is always accompanied by a
negative (positive) damping. In either case, the system is unstable. To stabilize the
system, one can use a feedback control as described by [6]. An interesting alternative
is to implement the idea of a double optical spring, by pumping the cavity with two
lasers at different frequencies [12, 22]. One laser with a small detuning provides a
large positive damping while another with a large detune, but with a high power,
provides a strong restoring force. The resulting system is self-stabilized with both
positive rigidity and positive damping, as shown schematically in the right panel of
Fig. 2.21.

2.10 Continuous State Demolition: Another Viewpoint
on the SQL

In the previous section (cf. Sect. 2.7), we derive the SQL by focusing on the quantum
nature of the detection (the optical field). In this section, we will derive the SQL from
another perspective—continuous state demolition. This will guide us to finding new
approaches to surpassing the SQL.

In the Heisenberg picture, suppose we attempt to measure the position of a free
mass successively at discrete times separated by τ.We measure x̂ at time t1, then right
after t1, the quantum state of the test mass is characterized by a standard deviation
comparable to the individual-measurement error ε, or:
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�x(t1 + 0) = ε. (2.110)

The value of ε decreases indefinitely as individual-measurement sensitivity increases.
Applying free-mass quantum mechanics for the duration of t ∈ (t1, t2), we have

[x̂(t1 + 0), x̂(t2 − 0)] = i�(t2 − t1)

m
= i�τ

m
. (2.111)

The decreasing ε will lead to an increasing variance in �x(t2 − 0) right before the
second measurement. This is because the Heisenberg Uncertainty Principle dictates
that:

�x(t1 + 0) ·�x(t2 − 0) ≥ �τ/(2m), (2.112)

and

�x(t2 − 0) >
�τ

2mε
. (2.113)

This large variance in the x(t2 − 0) distribution will be reduced down to ε by the
subsequent measurement on x(t2)—but at the price of demolishing a quantum state
with a large spread of x(t2) into classical superpositions of quantum states with much
smaller variances.

If the successive measurements are done without coordination, i.e., if the meters
that collapse the mirror’s states at t1 and t2 are not correlated, then the demolition
will cause an additional noise, because the new center of the wavefunction after
collapse is randomly chosen among a distribution with variance �x(t2 − 0). If we
now characterize the noise of each individual measurement in position, we obtain,

�x ≥ max

(
ε,

�τ

2mε

)
≥

√
�τ

2m
. (2.114)

This provides us with the scale of the standard quantum limit. In fact, if for any pulse
with duration τ, which can vary at all scales, our measurement error is always:

�x ∼
√

�τ

2m
, (2.115)

then the noise spectral density of the device is characterized by:

Sx (�) ∼ �

2m�2 . (2.116)

Therefore, the SQL can be traced back to the fact that the test mass positions at
different times do not commute with themselves [cf. Eq. (2.111)].
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2.11 Speed Meters

This alternative viewpoint on the SQL naturally brings us to the idea of a speed
meter, which measures the speed (momentum) instead of the position of the test
mass. Since the momentum of a free mass is a conserved dynamical quantity, and its
Heisenberg operators at different times commute with each other, one can measure
it continuously without imposing additional noise, thus allowing us to surpass the
SQL.

Apart from beating the SQL, other more practical issues that make the speed meter
attractive are the following: (1) the previous schemes require frequency-dependent
squeezing or readout which has led to the requirement of two extra kilometer-scale
filter cavities—a high cost in practical construction; (2) the high value of K at low
frequencies leads to a strong sensitivity to optical losses. As it turns out, these issues
are resolved simultaneously when we try to build a speed meter, which has a con-
stant sensitivity to the speed of test masses in low frequencies—the requirement for
frequency dependence on squeezing and readout quadrature therefore vanishes. In
fact, if we imagine an interferometer with a constant κ [cf. Eq. (2.29)] or K [cf. Eq.
(2.41)] in the input–output relation, it will indeed respond to the speed of the mirror.

Here we will discuss two realizations, both found as prototypes in the early papers
of [5, 15], but later gradually deformed into the shape of kilometer-scale laser inter-
ferometers [11, 20, 21].

2.11.1 Realization I: Coupled Cavities

A possible Michelson variant is shown in Fig. 2.22. An additional sloshing cavity is
added after the interferometer output. It has an input-mirror with transmissivity Ts and
a totally-reflected end mirror. There is another extraction mirror (with a transmissivity
of T0) between the interferometer output and the sloshing cavity, through which we
read out the signal. This configuration emerges from the two-resonator model of
Braginsky and Khalili, where it was pointed out that if two resonators are coupled,
then a sloshing of signal light between the two cavities cancel each other out, leaving
only a sensitivity to the change in mirror position, i.e., the speed. The characteristic
sloshing frequency is given by:

ωs =
√

Tsc

2L
. (2.117)

The explicit expression for the response function of the output to the test mass motion
can be found by analyzing the input–output relation, giving:

T (�) = ω0

L

i�

�2 − ω2
s + iγ�

, (2.118)
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Fig. 2.22 A schematic plot of a speed-meter configuration with coupled cavities. A sloshing cavity
is added after the dark port. Such a configuration can be mapped into a three-mirror cavity as
schematically shown in the right-hand panel, forming a pair of coupled cavities

with γ ≡ 4T0c/L due to the extraction mirror. This can also be derived by fitting
the speed meter into the two-resonator model. We can map the speed meter con-
figuration into a three-mirror cavity, as shown schematically in Fig. 2.22. The ‘x̂’
corresponds to the differential motion of the end test masses. The left cavity corre-
sponds to the power-recycled Michelson interferometer, and the right cavity is still
the sloshing cavity. The optical fields are summarized by two cavity modes α̂ and β̂.
Their equations of motion are:

α̇(t)+ γ α̂(t) = iωs β̂(t)+ i
ω0

L
x̂(t), (2.119)

β̇(t) = iωs α̂(t). (2.120)

We have assumed that both cavity modes are on resonance with respect to the carrier
laser frequency. In addition, we attribute the decay only to the left cavity (due to
the extraction mirror). The coupling between the two modes is manifested by the
sloshing terms on the right hand side (proportional toωs). Solving the above equation
in the frequency domain will immediately give the result in Eq. (2.118).

The GW strain sensitivity of such a configuration can be derived by using the
input–output formalism that we have introduced. Given a frequency-independent
squeezing (phase squeezing factor e−2q), the result is (refer to Ref. [21] for more
details):

Sh =
[

e−2q

2Ksm
+ e2q(cot ζ − Ksm)

2

2Ksm

]
h2

SQL, (2.121)

where ζ is the readout quadrature angle, and
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Fig. 2.23 The GW strain-referred sensitivity of the speed meter scheme shown in Fig. 2.22. We
have chosen γ /2π = 210 Hz, ωs/2π = 180 Hz and Ic = 800 kW. The dotted curve is the case
without a phase-squeezed input, and the solid curve has e−2q = 0.1 (a 10 dB squeezing)

Ksm = 16ω0γ Ic

mcL[(�2 − ω2
s )

2 + γ 2�2] . (2.122)

The first term in Sh is the shot-noise term, and the second is the radiation-pressure
noise. At low frequencies, Ksm is almost a constant. By choosing cot ζ = Ksm(0),
the low-frequency radiation-pressure (back-action) can be completely evaded. We
show the resulting GW strain sensitivity in Fig. 2.23.

There is, however, a subtle issue: the original Braginsky and Khalili argument
stated that momentum can be measured without additional noise—yet in speed
meters, we still need back-action evasion: is this still consistent? The answer is
yes, because when speed is coupled to an external observable, it ceases to be pro-
portional to the conserved, canonical momentum. Here, we sketch a mathematical
proof by Khalili. Suppose the Lagrangian is:

L = 1

2
mẋ2 + αȧ1x, (2.123)

which is the model of a speed meter: the time derivative of the external observable a1
represents the sloshing. Here, the quantity α is a coupling constant. This is equivalent
to:

L = 1

2
mẋ2 − αa1 ẋ, (2.124)

where the coupling becomes a speed coupling, but the canonical momentum is given
by:

p = ∂L
∂ ẋ

= mẋ − αa1, (2.125)

which is conserved, but differs from the kinetic momentum, mẋ . This means that a
meter that measures speed must add a constant αa1/m, in order to evade the back-
action. Note that this is a constant combination between the output phase quadrature
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Fig. 2.24 A schematic plot
of a Sagnac-type speed meter
configuration

and amplitude quadrature—therefore, back-action evasion is straightforward with-
out requiring additional filtering. This is manifested by the fact that Ksm is almost
constant at low frequencies.

2.11.2 Realization II: Zero-Area Sagnac

Another possible speed meter configuration is a zero-area Sagnac interferometer,
which is shown schematically in Fig. 2.24. This has a different optical topology
from the Michelson scheme, where the light travels through two opposite loops in
the interferometer. To understand its response to the test-mass motion, we can look
at a single trip. The light propagating towards arm A first picks up a phase shift
proportional to ET MA, displacement x̂ A(t), and it accumulates another phase shift
due to motion of ET MB, but at t − τ (τ is the delay time). A similar situation holds
for the light propagating towards arm B, but with the roles of ET MA and ET MB
swapped. When they recombine at the beam splitter, the total phase shift is simply:

φtot(t) ∝ x̂ A(t)+ x̂B(t − τ)− x̂B(t)− x̂ A(t − τ) ≈ [ ˙̂xA(t)− ˙̂xB(t)]τ. (2.126)

It naturally has no response to a static change in arm length, but only to the differ-
ential speed of the two test masses. Therefore, it is a natural speed meter. This has
been recognized by the GW community, but connection with the “Quantum Non-
demolition” (QND) speed meter, has never been made. As shown in [25], the GW
strain sensitivity of such a configuration is identical to the previous coupled-cavities
configuration.



48 2 Quantum Theory of Gravitational-Wave Detectors

2.12 Conclusions

We have introduced the basic concepts for studying the quantum dynamics and
associated quantum noise of an interferometric GW detector. Different insights into
the origin of the SQL allow us to find out possible approaches towards surpassing
it. In particular, we have considered modifying the input/ouput optics using either
frequency-dependent squeezing or a variational readout, and modifying the test mass
dynamics through the optical spring effect; and measuring a QND observable of the
test mass by using a speed meter. This not only serves as a review of advanced
configurations for future GW detectors, but it additionally provides valid examples
to help clarify many subtle issues in continuous quantum measurement.
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Chapter 3
Modifying Input Optics: Double Squeezed-Input

3.1 Preface

In this chapter, we consider improving the sensitivity of future interferometric GW
detectors by modifying their input optics. In particular, we discuss simultaneously
injecting two squeezed light, filtered through a resonant Fabry-Pérot cavity, into
the dark port of the interferometer. This is motivated by the work of Corbitt et al.
[29], in which a similar scheme, but with a single squeezed light was proposed and
analyzed. Here we show that the extra squeezed light, together with an additional
homodyne detection suggested previously by Khalili [9], allows a reduction of quan-
tum noise over the entire detection band. To motivate future implementations, we take
into account a realistic technical noise budget for the Advanced LIGO (AdvLIGO),
and numerically optimize the parameters of both the filter and the interferometer
for detecting gravitational-wave signals from two important astrophysics sources:
neutron-star–neutron-Star (NS–NS) binaries and Bursts. Assuming the optical loss
of the ∼ 30 m filter cavity to be 10 ppm per bounce, and 10dB squeezing injection,
the corresponding quantum noise with optimal parameters decreases by a factor of
10 at high frequencies and goes below the technical noise at low and intermediate
frequencies. This is a joint research by Farid Khalili, Yanbei Chen and myself. It is
published in Phys. Rev. D 80, 042006 (2009).

3.2 Introduction

During the last decade, several laser interferometric gravitational-wave (GW) detec-
tors including LIGO [10], VIRGO [17], GEO600 [16] and TAMA [19] have been
built and operated almost at their design sensitivity, aiming at extracting GW signals
from various astrophysical sources. At present, the development of next-generation
detectors, such as AdvLIGO [20], is also under way, and the sensitivities of these
advanced detectors are anticipated to be limited by quantum noise over almost the
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whole observational band from 10 Hz to 104 Hz. At high frequencies, the dominant
quantum noise is photon shot noise, caused by phase fluctuation of the optical field;
while at low frequencies, the radiation-pressure noise, due to the amplitude fluctu-
ation, dominates and it exerts a noisy random force on the probe masses. These two
noises, if uncorrelated, will impose a lower bound on the noise spectrum, which is
called the Standard Quantum Limit (SQL). In terms of the GW strain h ≡ �L/L ,
this limit is given by

SSQL
h = 8�

m�2L2 . (3.1)

This can also be derived from the fact that position measurements of the free test
mass do not commute with themselves at different times [21].

The existence of the SQL was first realized by Braginsky in the 1960s [9, 14]. Since
then, various approaches have been proposed to beat the SQL. One recognized by
Braginsky is to measure conserved quantities of the probe masses, also called Quan-
tum Nondemolition (QND) quantities. This can be achieved, e.g. by adopting “speed
meter” configurations [1, 5, 15, 25, 35, 36], which measure the conserved quantity—
momentum rather than the position. An alternative is to change the dynamics of the
probe mass, e.g. by using optical rigidity [3, 6], in which case the above-mentioned
free mass SQL is no longer relevant. As shown by Buonanno and Chen [4, 7, 26],
optical rigidity exists in signal-recycled (SR) interferometric GW detectors; there-
fore we can beat the SQL without radical redesigns of the existing topology of the
interferometers. Another approach is to modify the input and/or output optics of the
interferometers, such that photon shot noise and radiation-pressure noise are cor-
related. After the initial paper by Unruh [18], this was further developed by other
authors [2, 11, 23, 27, 29, 30, 31, 34, 37]. A natural way to achieve this is injecting a
squeezed vacuum state, whose phase and amplitude fluctuations are correlated, into
the dark port of the interferometer. With great advancements in preparation of the
squeezed state [33, 12], squeezed-input interferometers will be promising candidates
for third-generation GW detectors. As elaborated in the work of Kimble et al. [2],
frequency-dependent squeezing is essential to reduce the quantum noise at various
frequencies of the observation band. In addition, they demonstrated that this can be
realized by filtering the frequency-independent squeezed vacuum state through two
detuned Fabry-Pérot cavities before sending into the interferometer. Their results
were extended by Purdue and Chen [15] who discussed the filters for general cases.

Another method, which also uses an additional filter cavity and squeezed state, but
in a completely different way, was proposed by Corbitt, Mavalvala, and
Whitcomb (hereafter referred to as CMW) [29]. They proposed to use a tuned optical
cavity as a high-pass filter for the squeezed state. This scheme does not create the
noises correlation, but instead, renders their spectral densities frequency-dependent.
At high frequencies, the phase-squeezed vacuum state gets reflected by the filter and
enters the interferometer such that high-frequency shot noise is reduced; while at low
frequencies, ordinary vacuum transmits through the filter and enters the interferome-
ter, thus low-frequency radiation-pressure noise remains unchanged. One significant
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Fig. 3.1 Schematic plot of
the proposed configuration.
Two squeezed light beams
ŝ, p̂ are injected from both
side of the filter cavity rather
than the one which was
considered in Refs. [29, 9].
The signal is detected by the
main homodyne detector
(MHD) and an additional
detector (AHD) is placed at
the idle port of the filter
cavity. From Ref. [24]
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advantage is that the squeezed vacuum state does not really enter the filter cavity, and
thus it is less susceptible to the optical losses. However, it does not perform so well
as hoped, and there is a noticeable degradation of sensitivity in the intermediate-
frequency range. One of us—Khalili [9] pointed out that this has to do with the
quantum entanglement between the optical fields at the two ports of the filter cavity.
Equivalently, it can be interpreted physically as follows: some information about the
phase and amplitude fluctuations flows out from the idle port of the filter cavity and
the remaining quantum state which enters the interferometer is not pure. In order to
recover the sensitivity, the filter cavity needs to have a low optical loss, such that
this information can be collected by an additional homodyne detector ( AHD) at the
idle port. Given an achievable optical loss of the filter cavity ∼10 ppm per bounce,
Khalili showed that we can obtain the desired sensitivity at intermediate frequencies.
A natural extension of this scheme is to send an additional squeezed vacuum state
into the idle port of the filter cavity, such that the low-frequencies radiation-pressure
noise is also suppressed. The corresponding configuration is shown schematically in
Fig. 3.1, where two squeezed vacuum states ŝ and p̂ are injected from two ports of
the filter cavity, and some ordinary vacuum state n̂ leaks into the filter due to optical
losses. By optimizing the squeezing angles of these squeezed states, we will show
that the resulting quantum noise is reduced over the entire observational band.

The outline of this chapter is as follows: in Sect. 3.3, we will calculate the quantum
noises in this double squeezed-input CMW scheme with AHD (later referred to
as CMWA). We will use the same notation as in Ref [26], which enables us to
extend the results in Ref. [9] to the case of signal-recycled interferometers easily.
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Table 3.1 Main quantities in this paper

Quantity Value for estimates Descriptions

� GW frequency
c 3.0 × 108 m/s Speed of light
ω0 1.8 × 1015 s−1 Laser frequency
m 40 kg Test mass
L 4 km Arm cavity length
Ic 840 kW Optical power
ιc = 8ω0 Ic

mLc (2π × 100)3 s−3

γarm 2π × 100 s−1 Cavity bandwith
rSR SRM reflectivity
φSR Phase detuning of SR cavity
δ Effective detuning
γ Effective bandwidth
φ MHD homodyne angle
ζ AHD homodyne angle
L f 30 m Filter cavity Length

γI,E,L = T 2
I,E,L
2τ f

γ f = γI + γE + γL Filter cavity bandwith
ri (i = s, p) (ln 10)/2 (10dB) Squeezing factors
θi (i = s, p) Squeezing angles

In Sect. 3.4, we numerically optimize the parameters of this new scheme, as employed
in the search for GW signals from NS–NS binaries and Bursts. Finally, we summarize
our results in Sect. 3.5 For simplicity, we will neglect the optical losses inside the
main interferometer, but we do consider the losses from the filter cavity, and also
from the non-unity quantum efficiency of the photodiodes. The losses from the main
interferometer are not expected to be important, as shown in Refs. [2, 7, 9]. The main
quantities used in this paper are listed in Table 3.1.

3.3 Quantum Noise Calculation

3.3.1 Filter Cavity

In this section, we will derive single-sided spectral densities of the two outgoing
fields â and q̂ as shown in Fig. 3.1. From the continuity of optical fields, we can
relate them to the ingoing fields, which include two squeezed vacuum states ŝ, p̂
and one ordinary vacuum n̂ entering from the lossy mirror (LM) [9]. Specifically, we
have

â(�) = RI(�)ŝ(�)+ T (�) p̂(�)+ AI(�)n̂(�), (3.2)

q̂(�) = RE(�) p̂(�)+ T (�)ŝ(�)+ AE(�)n̂(�). (3.3)
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Here â = (âA, âϕ)T, q̂ = (q̂A, q̂ϕ)T are amplitude and phase quadratures (sub-
script A stands for amplitude and ϕ for phase). In our case, the carrier light beam
is resonant inside the filter cavity. Therefore, the effective amplitude reflectivity R,
transmissivity T and loss A can be written as,

RI(�) = γ I − γE − γL + i�

γ f − i�
, RE(�) = γE − γ I − γL + i�

γ f − i�
, (3.4a)

T (�) = −2
√
γ IγE

γ f − i�
, (3.4b)

A I(�) = −2
√
γ IγL

γ f −i� , AE(�) = 2
√
γEγL

γ f −i� , (3.4c)

where γ f ≡ γI + γE + γL. They satisfy the following identities:

|RI(�)|2 + |T (�)|2 + |AI(�)|2 = |RE(�)|2 + |T (�)|2 + |AE(�)|2 = 1, (3.5a)

R∗
I (�)T (�)+ RE(�)T ∗(�)+ A∗

I (�)AE(�) = 0. (3.5b)

If the input and end mirrors of the filter cavity are identical, namely γI = γE,

we will have RI,RE ∼ 1 and T ∼ 0 when � � γ f and RI,RE ∼ 0 and T ∼ 1
when � � γ f . Therefore, the squeezed vacuum ŝ enters the interferometer at high
frequencies while p̂ becomes significant mostly at low frequencies. By adjusting
the squeezing factor and angle of these two squeezed fields, we can reduce both the
high-frequency shot noise, and the low-frequency radiation-pressure noise, simulta-
neously.

To calculate the noise spectral densities, we assume that these two squeezed
vacuum sates have frequency-independent squeezing angles θi (i = s, p), and can
be represented as follows:

ŝ = R̃(rs, θs)v̂s, p̂ = R̃(rp, θp)v̂p, (3.6)

with

R̃(r, θ) ≡
(

cosh r − cos θ sinh r − sin θ sinh r
− sin θ sinh r cosh r + cos θ sinh r

)
. (3.7)

Here r is the squeezing factor, and v̂i = (v̂i A, v̂iϕ)
T are ordinary vacuums with

single-sided spectral densities: SA(�) = Sϕ(�) = 1, SAϕ(�) = 0 [19].
The noise spectral densities of the two filter-cavity outputs can then be written as

S̃ââ(�) = |RI(�)|2 R̃(2rs, 2θs)+ |T (�)|2 R̃(2rp, 2θp)+ |AI(�)|2̃I, (3.8)

S̃q̂q̂(�) = |RE(�)|2 R̃(2rp, 2θp)+ |T (�)|2 R̃(2rs, 2θs)+ |AE(�)|2̃I, (3.9)
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S̃âq̂(�) = RE(�)T ∗(�)R̃(2rp, 2θp)+ R∗
I (�)T (�)R̃(2rs, 2θs)+ AE(�)A∗

I (�)̃I,
(3.10)

where S̃âq̂(�) is the cross correlation between two outputs; Ĩ is the identity matrix
and

S̃i (�) =
(

SA,i (�) SAϕ,i (�)

SAϕ,i (�) Sϕ,i (�)

)
, (3.11)

with i = ââ, q̂q̂, âq̂, whose elements are single-sided spectral densities.

3.3.2 Quantum Noise of the Interferometer

According to Ref. [26], the input–output relation, which connects the ingoing fields
â and the GW signal h with the outgoing fields b̂, for a signal-recycled interferometer
can be written as:

b̂ = 1

M

(
C̃ â + D

h

hSQL

)
. (3.12)

In the above equation,

M = [δ2 − (�+ iγ )2]�2 − διc, (3.13)

and C̃ is the transfer function matrix, with elements:

C̃11 = C̃22 = �2(�2 − δ2 + γ 2)+ διc, (3.14a)

C̃12 = − 2γ δ�2, C̃21 = 2γ δ�2 − 2γ ιc, (3.14b)

where ιc ≡ 8ω0 Ic/(mcL). The elements of the transfer function vector D are

D1 = −2δ
√
γ ιc�, D2 = −2(γ − i�)

√
γ ιc�. (3.15a)

The effective detuning δ, and bandwidth γ, are given by:

δ= 2rSRγarm sin(2φSR)

1 + r2
SR + 2rSR cos(2φSR)

, (3.16a)

γ = (1 − r2
SR)γarm

1 + r2
SR + 2rSR cos(2φSR)

, (3.16b)

where rSR is the amplitude reflectivity of the signal-recycling mirror (SRM), and
φSR is the phase detuning of the SR cavity. If the main homodyne detector ( MHD)
measures:
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b̂φ(�) = √
η[sin φb̂A(�)+ cosφb̂ϕ(�)] + √

1 − ηv̂(�), (3.17)

where φ is the homodyne angle and v̂ is the additional vacuum state due to the non-
unity quantum efficiency of the photodiode, and then the corresponding h-referred
quantum-noise spectral density can be written as:

Sh(�) = h2
SQL

(sin φ cosφ)C̃ S̃IC̃†(sin φ cosφ)T + 1−η
η

|M |2
(sin φ cosφ)D̃ D̃†(sin φ cosφ)T

. (3.18)

This can be minimized by adjusting the squeezing angle θ of ŝ and p̂. We can
estimate the optimal θ qualitatively from the asymptotic behavior of the resulting
noise spectrum. At very high frequencies (� � γ ), from Eq. (3.2), â ∼ ŝ and thus:

Sh(�) ∝ cosh(2rs)+ cos[2(φ + θs)] sinh(2rs). (3.19)

If the squeezing angle of ŝ :

θs = π

2
+ nπ − φ, (3.20)

where n is integer, we achieve the optimal case, namely Sh ∝ e−2rs . Similarly, at
very low frequencies (� � γ ), we have â ∼ p̂ and the spectral density Sh ∝ e−2rp

if

θp = arctan

[
2 cosφ sin β

cos(β − φ)+ 3 cos(β + φ)

]
. (3.21)

More accurate values for optimal θs,p can be obtained numerically, as we will
show in the next section. Given optimal θs,p, the sensitivity of this double squeezed-
input scheme improves at both high and low frequencies. However, for the same
reason as in the case of single squeezed-input that the two outputs of the filter cavity
are entangled [9], this double squeezed-input scheme does not perform well in the
intermediate frequency range. To recover the sensitivity, we need to use an additional
homodyne detector (AHD) at the idle port E of the filter cavity. The corresponding
measured quantity is:

q̂ζ (�) = √
η[sin ζ b̂A(�)+ cos ζ b̂ϕ(�)] + √

1 − ηv̂′(�) (3.22)

where ζ is the homodyne angle and v′(�) is the additional vacuum state, which
enters due to the non-unity quantum efficiency of photodiode. We combine q̂ζ (�)
with the output b̂φ(�) using a linear filter K(�), obtaining:

ô(�) = b̂φ(�)− K(�)q̂ζ (�). (3.23)

Correspondingly, the noise spectral density of this new output ô(�) can be written
as:
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Sô(�) = Sb̂φ
(�)− 2
[K(�)Sb̂φ,q̂ζ

(�)] + |K(�)|2Sq̂ζ (�). (3.24)

The minimum quantum noise is achieved when K(�) = Sb̂φ,q̂ζ
(�)/Sb̂φ

(�), and
theresulting h-referred noise spectrum with the AHD is then:

SAHD
h (�) = Sh(�)− h2

SQL
η|(sin φ cosφ)C̃ S̃IE(sin ζ cos ζ )T|2
(sin φ cosφ)D̃ D̃†(sin φ cosφ)TSζ (�)

, (3.25)

where Sζ (�) ≡ η(sin ζ cos ζ )S̃E(sin ζ cos ζ )T +1−η. The second term has a minus
sign, which shows explicitly that the sensitivity increases as a result of the additional
detection.

3.4 Numerical Optimizations

In this section, we will take into account realistic technical noise, and numerically
optimize interferometer parameters for detecting GW signals from specific astro-
physics sources, which include Neutron-Star–Neutron-Star (NS–NS) binaries and
Bursts.

For a binary system, according to Ref. [13], spectral density of the GW signal is
given by

Sh(2π f ) = π

12

(GM)5/3

c3r2

�( fmax − f )

(π f )7/3
. (3.26)

Here the “chirp” mass M is defined as M ≡ μ3/5 M2/5 with μ and M being the
reduced mass and total mass of the binary system. With other parameters being fixed,
the corresponding spectrum shows a frequency dependence of f −7/3. Therefore, as
a measure of the detector sensitivity, we can define an integrated signal-to-noise ratio
(SNR) for NS–NS binaries as:

ρ2
NSNS ∝

∫ fmax

fmin

f −7/3d f

Squant
h (2π f )+ Stech

h (2π f )
. (3.27)

The upper limit of the integral fmax ∼ fISCO ≈ 4400×(M/M⊙)Hz is determined
by the innermost stable circular orbit (ISCO) frequency, and the lower limit fmin is
set to be 10 Hz, at which the noise can no longer be considered as stationary. Here we
choose M = 2.8M⊙, which is the same as in Ref. [8]. Here Squant

h is the quantum
noise spectrum derived in the previous sections and Stech

h corresponds to the technical
noise obtained from Bench [22].

Other interesting astrophysical sources are Bursts [32]. The exact spectrum is not
well-modeled and a usual applied simple model is to assume a logarithmic-flat signal
spectrum, i.e. Sh(2π f ) ∝ f −1. The corresponding integrated SNR is then given by:
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Table 3.2 Optimization results for NS–NS SNRs

Configurations Parameters
ρ rSR φSR γI γE φ θp ζ

AdvLIGO 1.0 0.8 1.4 — — −1.0 — —
FISAdvLIGO 1.0 0.7 1.5 — — −1.2 −0.6§ —
CMW 1.0 0.8 1.6 240 240 −0.8 −0.6 —
CMWA 1.2 0.7 1.6 230 210 0.0 −0.1 0.7
§ This is the squeezing angle θ in the case of single squeezed-input.

Table 3.3 Optimization results for Bursts SNRs

Configurations Parameters
ρ rSR φSR γI γE φ θp ζ

AdvLIGO 1.0 0.7 1.5 — — −0.2 — —
FISAdvLIGO 1.5 0.8 1.6 — — 0.0 −1.6§ —
CMW 1.5 0.8 1.6 0.0 0.0 0.0 −1.4 —
CMWA 1.5 0.8 1.6 140 140 0.0 −0.2 0.9

ρ2
Bursts ∝

∫ fmax

fmin

d log f

Squant
h (2π f )+ Stech

h (2π f )
. (3.28)

The integration limit is taken to be the same as in the NS–NS binaries case.
To estimate the SNR and also motivate future implementation of this scheme,

we assume the filter cavity has a length of ∼ 30 m and an achievable optical loss
of 10 ppm per bounce and also consider the non-unity quantum efficiency of the
photodiodes η = 0.9 for both MHD and AHD. Other relevant parameters will be
further optimized numerically. For comparison, we will also optimize other related
configurations, which includes AdvLIGO, AdvLIGO with frequency-independent
squeezed-input (FISAdvLIGO for short), and the CMW scheme. Specifically, the free
parameters for these different schemes that need to be optimized are the following:

AdvLIGO: rSR, φSR, φ, (3.29a)

FISAdvLIGO: rSR, φSR, φ, θ, (3.29b)

CMW: rSR, φSR, φ, γI, γE, θs, θp, (3.29c)

CMWA: rSR, φSR, φ, γI, γE, θs, θp, ζ. (3.29d)

The resulting optimal parameters for different schemes are listed in Tables 3.2
and 3.3. They are rounded to have two significant digits at most in view of various
uncertainties in the technical noise. The integrated SNR ρ is normalized with respect
to that of the AdvLIGO configuration. The optimal θs from the numerical result is
in accord with the asymptotic estimation, namely θs ≈ (π/2)− φ (cf. Eq. (3.20)).

The corresponding quantum-noise spectrums of different schemes optimized
for detecting gravitational waves from NSNS binaries are shown in Fig. 3.2. The
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Fig. 3.2 Quantum-noise
spectra of different schemes
with optimized parameters
for detecting gravitational
waves from NS–NS binaries.
The optimal values for the
parameters are listed in
Table. 3.2. From Ref. [24]

Fig. 3.3 Quantum-noise
spectra of different schemes
which are optimized for
detecting GWs from Bursts.
The optimal values for the
parameters are listed in
Table. 3.3. From Ref. [24]

AdvLIGO, FISAdvLIGO and CMW schemes almost have the identical integrated
sensitivities and the CMWA scheme shows a moderate 20% improvement in SNR.
This is attributable to the fact that the signal spectrum of NSNS binaries has a f −7/3

dependence and low-frequency sensitivity is very crucial. However, due to low-
frequency technical noise, advantages of the CMWA scheme are at most limited in
the case for detecting low-frequency sources.

The case for detecting GWs from Bursts is shown in Fig. 3.3. All other three
schemes have a significant 50% improvement in terms of SNR over AdvLIGO. The
sensitivities of the optimal FISAdvLIGO, CMW and CMWA at high frequencies
almost overlap each other. In addition, the detuned phase φSR of the signal-recycling
cavity of those three are nearly equal to π/2,which significantly increases the effec-
tive detection bandwidth of the gravitational-wave detectors and is the same as in
the Resonant-Sideband Extraction (RSE) scheme. This is because a broadband sen-
sitivity is preferable in the case of Bursts which have a logarithmic-flat spectrum.

To show explicitly how different parameters affect the sensitivity of the CMWA
scheme, we present the quantum-noise spectra of different schemes, by using the
same parameters as the optimal CMWA in Fig. 3.4. In the case of AdvLIGO, we obtain
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Fig. 3.4 Quantum-noise
spectrums of different
schemes using the same
parameters as the optimal
CMWA to show how
different parameters affect
sensitivity of the CMWA
scheme. From Ref. [24]

a RSE configuration with φSR ≈ π/2. The quantum noise of FISAdvLIGO with
squeezing angle θ = θs is lower at high frequencies, but higher at low frequencies
than the RSE AdvLIGO. FISAdvLIGO with θ = θp behaves in the opposite way,
with a significant increase of sensitivity at low frequencies but worse sensitivity at
high frequencies. The CMW scheme with double squeezed-input, just as expected,
can improve the sensitivity at both high and low frequencies but performs not so
well at intermediate frequencies. The CMWA scheme performs very nicely over the
whole observational band compared with others and it would be more attractive if
the technical noise of the AdvLIGO design could be further decreased.

3.5 Conclusions

We have proposed and analyzed the double squeezed-input CMWA scheme as an
option for increasing the sensitivity of future advanced GW detectors. Given an
achievable optical loss of the filter cavity, and 10 dB squeezing, this CMWA config-
uration shows a noticeable reduction in quantum noise at both high and low frequen-
cies compared with other schemes. Since the length of the filter cavity considered
here is around 30 m, with the development of better low-loss coating and squeezing-
state sources, the CMWA scheme could be a promising and relatively simple add-on
to AdvLIGO, without needing to dramatically modify the existing interferometer
topology.
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Chapter 4
Modifying Test-Mass Dynamics: Double
Optical Spring

4.1 Preface

In this chapter, we will discuss the approach to surpassing the free-mass Standard
Quantum Limit (SQL) by modifying the the test-mass dynamics with double optical
springs. We explore the frequency dependence of the optical spring effect. In partic-
ular, we show that the frequency dependence of double optical springs allows us to
create a “negative inertia”, which cancels the positive inertia of the test-mass with
the mechanical response significantly enhanced. This can surpass the free-mass SQL
over a broad frequency range. In addition, we show the feasibility of demonstrating
such an effect with Gingin high optical power test facility. The same setup could
eventually be implemented in future advanced GW detectors. This is a joint effort by
Farid Khalili, Stefan Danilishin, Helge Mueller-Ebhardt, Yanbei Chen, Chunnong
Zhao, and myself. It is an ongoing research project.

4.2 Introduction

There are two types of fundamental quantum noise in an advanced gravitational-wave
(GW) detector: one, known as measurement shot noise, originates from fundamental
phase fluctuations of light waves, while the other one, caused by quantum fluctuations
of light wave amplitude, results in fluctuations of radiation pressure on the test-masses
of the interferometer, called the back-action noise. If these two are not correlated, they
impose a lower bound on the detector sensitivity, which is in essence the Standard
Quantum Limit (SQL) [1, 5, 2]. For a free probe mass, the SQL, written in terms of
GW strain amplitude spectrum, is given by:

hfm
SQL =

√
2�

m�2L2 , (4.1)
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66 4 Modifying Test-Mass Dynamics

where m is the reduced mass, and L the arm length of an interferometric GW detector.
In order to further improve the sensitivity, many approaches were proposed in the
literature to surpass this limit. Most of them, such as variational measurement [7],
are based on the utilization of the cross correlations between the shot noise and back-
action noise. These methods, however, are extremely susceptible to the influence of
optical loss, and impose the following severe limitation on the amount by which
these methods can beat the SQL (see, e.g., Ref. [6]):

ξ = h

hfm
SQL

= 4

√
1 − η

η
. (4.2)

Here, h is the sensitivity of the GW detector in terms of the GW strain spectrum;
η is the normalized quantum efficiency of the meter readout. Estimates show that,
at present, η is limited mostly by the photodetector quantum efficiency. Given the
values of η span a range of 0.95–0.99 (considered as moderately optimistic), this
yields:

ξ � 0.5 − 0.3. (4.3)

which is not very useful.
There is another method to overcome the free-mass SQL, which is not influenced

by optical loss, and thus not susceptible to this limitation. Instead of reducing the
total noise, it increases the signal displacement of the test mass, and thus surpasses
the free-mass SQL by converting an initially free test-mass into a more “responsive”
object, e.g., a harmonic oscillator. In the general case, the SQL for force detection is
equal to:

√
SF

SQL(�) =
√

2�m|χ−1(�)|, (4.4)

where χ/m is the mechanical susceptibility, which is in essence the system Green’s
function Fourier transform. Correspondingly, the SQL for the system characterized
by χ in terms of GW strain is equal to

hSQL = 1

L

√
SF

SQL(�)

m�2 = hfm
SQL

√
|χ−1(�)|
�2 (4.5)

For a free mass, χ−1 = −�2, and the factor in the square root is simply unity, while
for a mechanical oscillator χ−1 = −(�2 − ω2

m) + iγm�, and the corresponding
SQL is smaller than the one for the free mass by a significant factor of

√
ωm/γm,

which can be 104 for a high-Q oscillator.
To modify the dynamics of a free test mass into that of a harmonic oscillator,

a well-known approach of using optical rigidity induced by the position-dependent
radiation-pressure force is widely used. Unfortunately, with a single optical spring,
only narrow-band gain can be obtained. We show here that by using two optical
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springs and exploiting their frequency dependence, it is possible to create a negative
optical inertia [9], which compensates positive inertia of the test mass, and thus
allows the free-mass SQL to be surpassed over a broad frequency band.

The outline of this chapter is as follows: in Sect. 4.3, we give a general mathe-
matical treatment of the optical negative inertial and derive the resulting mechanical
response function; in Sect. 4.4, we try to address the problem when the cavity band-
width is an issue as in case of Gingin setup; in Sect. 4.6, we conclude our results and
outline future works in this direction.

4.3 General Considerations

It is shown in Ref. [4] that a signal-recycled interferometric GW detector can be
mapped into a detuned Fabry-Pérot optical cavity. We do not need to go into the details
of an interferometer and can only consider a single cavity for a general discussion.
As previously proposed in Ref. [10], instead of a single carrier light beam considered
in Ref. [4], here we include two carrier light beams with different frequencies, and
each of them will induce an optical rigidity and affect the dynamics of the test mass.
The resulting effective mechanical susceptibility χ of the test mass can be read off
from the response of the test mass displacement x to the external force F, namely:

x(s) = χ(s)F(s)

m
=⇒ χ−1(s) = s2 + K1(s)+ K2(s)

m
, (4.6)

with s = −i�. The optical rigidities K1,2 are given by:

K1,2 = m J1,2δ1,2

s2 + 2γ s +	2
1,2

(4.7)

with

J1,2 = 4ω1,2 I1,2

mcL
, 	1,2 =

√
γ 2 + δ1,2. (4.8)

Here, γ is the cavity bandwidth, which is equal to γ = πc
2LF , with F the optical

finesse; ω1,2 are the frequencies of two carrier light beams; I1,2 are the intracavity
powers; δ1,2 = ωc1,2 − ω0 are the detunings with respect to the cavity resonant
frequency given by ω0.

The negative inertia regime is reached when:

K1(0)+ K2(0) = 0,
1

2

∂2[K1(s)+ K2(s)]
∂s2

∣
∣
∣
s=0

+m = 0. (4.9)

The first equation indicates that the static rigidity from two carrier light beams cancel
each other while the second equation gives a zero inertia which can significantly
enhance the mechanical response to the external force (i.e., the GW tidal force, in
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the context here). These two conditions provide us with the following two equations:

J1δ1

	2
1

+ J2δ2

	2
2

= 0,
J1δ1(	

2
1 − 4γ 2)

	6
1

+ J2δ2(	
2
2 − 4γ 2)

	6
2

= 1. (4.10)

Solving these equations with respect to J1δ1 and J2δ2, one gets:

J1δ1 = 	2
1(

1
	2

1
− 1

	2
2

) (
1 − 4γ 2

	2

) , J2δ2 = 	2
2(

1
	2

2
− 1

	2
1

) (
1 − 4γ 2

	2

) , (4.11)

where

	2 =
(

1

	2
1

+ 1

	2
2

)−1

. (4.12)

In the practically interesting case of

δ1 ∼ δ2 � γ, (4.13)

we have:

J1 = δ1(
1
δ2

1
− 1

δ2
2

) , J2 = δ2(
1
δ2

2
− 1

δ2
1

) , (4.14)

which implies the following relation between the optical powers of the two carriers
and their detunings:

J1

J2
≡ Ic1

Ic2
≈ −δ1

δ2
. (4.15)

One can easily see that these detunings should have opposite signs, in order to
compensate for the static rigidity. Note also that because J1,2 > 0, the detuning with
the larger magnitude has to be negative.

Substituting Eq. (4.11) into Eq. (4.6), one gets the following expression for the
mechanical response function:

χ−1(s) = s2 − 	2
1	

2
2(s

2 + 2γ s)

(s2 + 2γ s +	2
1)(s

2 + 2γ s +	2
2)

(
1 − 4γ 2/	2

) . (4.16)

In order to reveal the characteristic features of this expression, we expand it into
a Taylor series in s:
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χ−1(s) ≈ 1

1 − 4γ 2

	2

[
−2γ s + 4γ s3

(
1

	2 − 2γ 2	
4
1 +	2

1	
2
2 +	4

2

	4
1	

2
2

)

+ s4

(
1

	2 − 12γ 2	
4
1 +	2

1	
2
2 +	4

2

	4
1	

2
2

+ 16γ 4	
4
1 +	4

2

	2	4
1	

4
2

)]
+ O(s5).

(4.17)
Assuming again that δ1 ∼ δ2 � γ, we obtain the following simple expression

for the mechanical response function:

χ−1(s) ≈ −2γ s + 4γ s3

	2 + s4

	4 + O(s5). (4.18)

4.4 Further Considerations: Removing the Friction Term

In Eq. (4.18) of the previous section, there is a friction term ∼ γ s in the effec-
tive response function, which limits the low-frequency improvement. It will not be
important if the cavity bandwidth is narrow, as mentioned. However, to experimen-
tally demonstrate the “negative inertia” effect with the Gingin High Power Facility,
it would be rather challenging for the given specifications. One might think that
this friction term could be removed by using a feedback control. However, this will
not work because any classical feedback does not allow us to improve the detector
sensitivity. Even though the controlled dynamics of the test mass will not have the
friction term, the quantum limit will still be given by the original response function
χ(�) rather than the controlled one. This is shown explicitly in Ref. [3], where a
feedback control is used to control the instability induced by the optical spring, while
the sensitivity for detecting GWs remains unaffected.

We thus need to remove the friction term internally with the help of the optical
spring (a quantum feedback control method) instead of externally with a classical
feedback control. For this purpose, in addition to Eq. (4.9), we need to further impose
the following requirement on the optical spring:

∂[K1(s)+ K2(s)]
∂s

∣
∣
∣
s=0

= 0. (4.19)

It seems rather trivial to satisfy this condition, as we have five free parameters:
J1,2, δ1,2 and γ. As it turns out, there are no reasonable solutions (imaginary roots).
To solve this problem, we realize that in an actual signal-recycled interferometer, the
signal-recycling cavity acts as an effective mirror and one can tune cavity bandwidth
of two carriers over a large range [4, 8]. In the case of the Gingin setup, a three-mirror
coupled cavity can achieve the same effect. Therefore, we do not need to assume the
same cavity bandwidth γ for both carriers. Given different cavity bandwidths γ1,2,

we find that sthe following achievable specifications can satisfy both conditions in
Eqs. (4.9) and (4.19):

	1/2π = 200 Hz,	2/2π = −500 Hz, γ1/2π = 36 Hz, γ2/2π = 400 Hz. (4.20)
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Fig. 4.1 The resulting
response function with a
double optical spring (solid),
compared with that of a free
mass (dashed)
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With test mass m = 0.8 kg and a cavity length L = 80 m, the intracavity powers for
the two carriers are

I1 = 3 kW, I2 = 10 kW. (4.21)

The resulting response function, compared with that of the free-mass, is shown
in the Fig. 4.1. As we can see, this setup provides us with significant improvement
at low frequencies.

4.5 “Speed-Meter” Type of Response

In this section, we will look at another parameter regime, in which two optical
springs have opposite detunings, and they cancel each other. In this case, the test
mass dynamics is not modified, but we can achieve a “speed-meter” type of response.
Unlike a typical speed meter, which allows us to surpass the SQL at low frequencies,
the scheme considered does not. However, its sensitivity can follow the SQL over a
large range at low frequency, which is also very interesting.

The “speed-meter” type of response can be achieved if we choose the right quadra-
ture. From Eqs. (47) and (48) in the scaling-law paper [4], the response of the two
output quadratures to the test-mass displacement is given by:

RY1 F =
√
γIc

2�

	

(�−	+ iγ )(�+	+ iγ )
(4.22)

RY2 F = −
√
γIc

2�

(γ − i�)

(�−	+ iγ )(�+	+ iγ )
(4.23)

where γ is the cavity bandwidth, and	 is the cavity detuning, and Ic = 8ω0 Ic/(Lc).
If we read out

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ (4.24)
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at the quadrature angle

ζ = arctan
γ

	
, (4.25)

the resulting response of Ŷζ to the displacement will be:

RYζ F =
√
γIc

2�

i� cos ζ

(�−	+ iγ )(�+	+ iγ )
. (4.26)

For a small cavity bandwidth γ < 	, and at low frequencies � < 	, so we
simply have

RYζ F ≈
√
γIc

2�

cos ζ

	2 (−i�). (4.27)

This basically indicates that the detector has a “speed-meter” type of response.
In our case, we consider that the two carriers A and B have opposite detunings so

that the optical-spring effects perfectly cancel each other, as discussed in the double-
optical-spring (DOS) paper [10]. If we further require the detection quadrature angle
ζA = −ζB is opposite for two carriers, the responses of them [(cf. Eq. (4.27))] will
be the same, Ŷ A

ζ = Ŷ B
ζ , and we essentially have two identical probes. By combining

their two readouts with kernel functions K A and K B, we have:

Ŷtot = K A(�)ŶA + K B(�)ŶB . (4.28)

By optimizing K A and K B using the technique introduced in the Ref. [10], we
can obtain maximal sensitivity. For a numerical estimate, we choose the following
specifications:

	/(2π) = 100 Hz, γ /(2π) = 50 Hz, ζ = arctan(0.5), IA = IB = 400 kW.

(4.29)
The resulting noise curve and the optimal kernel functions are shown in Fig. 4.2.

At low frequencies, we almost follow the SQL. There is actually an analytical formula
for the noise curve, which is:

Sh(�) = 1

L2

[
1

|RYζ F |2 + S2
SQL(�)

4
|RYζ F |2

]

≥ Sh
SQL, (4.30)

where SSQL = �/(m�2) and the optical power is twice that of an individual carrier.
Given the response in (4.27), we have:

Sh(�) = Sh
SQL

[
1

|RYζ F |2SSQL
+ SSQL(�)

4
|RYζ F |2

]

∝ Sh
SQL. (4.31)

Thiss basically means that we can follow the SQL but never be able to surpass
it. This is in contrast with a true “speed meter” in which the SQL can be surpassed
significant as long as we have a sufficient large optical power. The next question would
be how we could recover the true “speed-meter” response in the DOS configuration.
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Fig. 4.2 The top figure
shows the DOS noise curve
normalized with respect to
the standard quantum limit at
100 Hz. The bottom one
shows the corresponding
optimal kernel functions for
the two carriers
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4.6 Conclusions and Future Work

We have shown the possibility of a “negative inertia” effect attributable to the specific
frequency dependence of double optical springs. This is capable of reducing the
effective inertia of the probe mass, and thus can significantly enhance the mechanical
response of the interferometer to GW signals. This effect allows the interferometer to
surpass the free-mass SQL over a wide frequency band. There are several issues that
need to be further investigated: (1) the stability of the system. What feedback control
method is necessary to stabilize the system? (cf. the discussions in Ref. [10] for the
single optical spring case); (2) if one uses a third carrier for readout purposes, how
much improvement in sensitivity could be obtained, compared to the current double-
carrier case? In addition, we have considered the “speed-meter” type of response, and
have shown that double optical springs allow us to follow the SQL at low frequencies.
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Chapter 5
Measuring a Conserved Quantity: Variational
Quadrature Readout

5.1 Preface

In this chapter, we consider surpassing the Standard Quantum Limit (SQL) for mea-
suring a weak force with a mechanical oscillator. By using a time-dependent varia-
tional readout, we can measure the mechanical quadrature—a conserved quantity of
the oscillator motion—and evade measurement-induced back-action. This is moti-
vated by the pioneering work of Vyatchanin et al. [7, 8], in which such a back-action-
evading variational scheme is proposed to detect a force signal with known arrival
time. Here, we will go beyond such a limitation and make it suitable for all possible
stationary signals, which can be characterized by their spectrum. This will be useful
for: (i) improving the sensitivity of future GW detectors if the test-mass frequency
(∼1 Hz) is upshifted to the detection band (∼100 Hz) by the optical-spring effect
and (ii) improving the sensitivity of an atom force microscopy with a high-frequency
mechanical oscillator as the probe. This is a continuing joint research effort by Stefan
Danilishin, Yanbei Chen, and myself.

5.2 Introduction

Due to recent significant achievements in fabricating high-quality mechanical devices,
electromechanical and optomechanical devices have played important roles in prob-
ing weak forces and tiny displacements. Two notable examples on the large scale
and small scale are: (i) a gravitational-wave detector, in which kg-scale test-masses
are coupled to high-power optical field for probing tiny ripples in the spacetime-
gravitational waves [9], and (ii) an atomic-force microscope, in which a microme-
chanical oscillator coupled to an electric or optical field is used to probe atomic
forces [6]. Their force sensitivity is limited by the SQL [1], and which has a spectral
density of:
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SSQL
F (�) = �

|Rxx (�)| , (5.1)

where the mechanical response Rxx (�) = −1/m[(�2 − ω2
m)] for a high-Q oscillator

with eigenfrequency ωm . The origin of such a limit comes from the fact that we try
to measure the external force by monitoring the changes in the oscillator position x̂
at different times, which do not commute with each other, i.e.,

[x̂(t), x̂(t ′)] = − i�

mωm
sinωm(t − t ′). (5.2)

This leads to the following Heisenberg uncertainty principle:

�x(t)�x(t ′) ≥ �

2mωm
sinωm(t − t ′), (5.3)

which basically means that the oscillator positions at different times cannot be simul-
taneously measured with an arbitrarily high accuracy; this gives rise to the SQL for
the force sensitivity.

There are two approaches to overcoming such a limit [1]: (i) a stroboscopic
measurement. Thiss measures the oscillator with pulses separated by an integer times
the oscillation period. From the commutator relation Eq. (5.2), we learn that if t−t ′ =
2nπ/ωm, [x̂(t), x̂(t ′)] = 0, and, then they are simultaneously measurable; (ii) a
quadrature measurement. Instead of measuring the oscillator position, this measures
quantum nondemolition (QND) observables-mechanical quadratures X̂1,2 which are
defined through the equation:

x̂(t) ≡ X̂1(t) cosωmt + X̂2(t)

mωm
sinωmt. (5.4)

These observables satisfy

[X̂1(t), X̂1(t
′)] = [X̂2(t), X̂2(t

′)] = 0, [X̂1(t), X̂2(t
′)] = i�δ(t − t ′)dt. (5.5)

Therefore, if we are able to detect the force by measuring only one of the quadra-
tures, e.g., X̂1(t), there will not be an associated quantum limit. To realize such
a measurement, Braginsky et al. proposed to modulate the electro/optomechanical
interaction strength G at the mechanical frequency, namely G(t) = G0 cosωmt [2].
Specifically, the interaction Hamiltonian can be written as:

Ĥint = �G(t)x̂(t)â1(t) = �G0 cosωmt

[

X̂1(t) cosωmt + X̂2(t)

mωm
sinωmt

]

â1(t)

= 1

2
�G0

[

X̂1(t)+ X̂1(t) cos 2ωmt + X̂2(t)

mωm
sin 2ωmt

]

, (5.6)
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where â1(t) represents the electrical/optical degrees of freedom. If â1(t) is changing
slowly compared with 2ωm and it does not have a significant fluctuation at 2ωm,

we will measure the QND observable X̂1 without imposing any back-action. For
optomechanical devices, this can be realized with a mechanical oscillator coupled
to a high-finesse cavity, such that the cavity bandwidth γ is much smaller than the
mechanical frequency, as proposed by Clerk et al. [3].

Here, we will consider another regime where the probing field is not slowly chang-
ing and has fluctuations at 2ωm, e.g., one with a large cavity bandwidth in the case of
a cavity-assisted scheme. With a time-domain variational readout, we can evade the
measurement-induced back-action from the output data, thus realizing a quasi-QND
measurement. This will be useful for small-scale atomic force microscopy, where
a high-finesse cavity could be difficult to incorporate. It is also useful for large-
scale GW detectors, because a large cavity bandwidth is preferred for increasing the
detection bandwidth.

The outline of this chapter is as follows: In Sect. 5.3, we will analyze the dynamics
of an optomechanical system. In Sect. 5.4, we will consider the time-domain varia-
tional scheme and demonstrate how the back action can be evaded if we effectively
sense only one of the quadrature. One limitation for such a scheme is that it lose
the resonant gain. In Sect. 5.5, we will introduce another variational scheme which
mimics a stroboscopic measurement, in which we can recover the resonant gain by
introducing an insignificant back-action.

5.3 Dynamics

A schematic plot of a typical cavity-assisted optomechanical device is shown in
Fig. 5.1. In the limit of a large cavity bandwidth γ � ωm, with the cavity mode
adiabatically eliminated, the input-output relation for the optical field becomes,

b̂1(t) = â1(t), (5.7)

b̂2(t) = â2(t)+ (α/�)x̂(t). (5.8)

Here â1,2(b̂1,2) are the input (output) amplitude and phase quadratures; α deter-
mines the interaction strength, and it is related to the optical power I0 by α ≡
8
√

2(F/λ)√�I0/ω0 where F is the cavity finesse, and ω0 the laser frequency.
The equations of motion for the oscillator are

˙̂x(t) = p̂(t)/m, (5.9)

˙̂p(t) = −mω2
m x̂(t)+ αâ1(t)+ ξ̂th(t). (5.10)

Here, we can split the oscillator position into a perturbed part δ x̂, and a free
oscillation part x̂q , which is given by:
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Fig. 5.1 A schematic plot showing an optomechanical system. A mechanical oscillator with eigen-
frequency ωm interacts with a cavity mode â, which is also coupled to the input (âin) and output
(âout) optical modes

x̂q(t) = δxq [X̂0 cosωmt + P̂0 sinωmt], (5.11)

where δxq ≡ √
�/(2mωm). The perturbed part includes the effects of the radiation-

pressure noise, thermal noise, and external driving force (our signal), namely:

δ x̂(t) =
∫ t

0
dt ′Gx (t − t ′)[αâ1(t

′)+ ξth(t
′)+ Fext(t

′)], (5.12)

where Gx (t) ≡ �(t) sinωmt/(mωm) denotes the Green’s function.

5.4 Variational Quadrature Readout

In order to make the detection scheme work for all possible signals, we need to
discretize the measurement process into small time sections, the sum of which tells
us the shape of the signal. This idea is similar to the discrete sampling variational
measurement discussed in Ref. [4, 5], in which a back-action-evading scheme for a
free mass is proposed. Here, we try to derive the noise spectrum for this scheme, and
focus on the oscillator case.

Suppose we divide the measurement from t = 0 to t = T into N sections (the
spectral resolution bandwidth is given by 1/T). For simplicity, we assume that each
section has the same duration�τ, namely�τ = T/N . With time-dependent homo-
dyne detection, we can construct the following N integral estimators for the output
signal:

Ŷi =
∫ τi+1

τi

dt
[
g(i)1 (t)b̂1(t)+ g(i)2 (t)b̂2(t)

]
, (τi = i�τ, i = 0, 1, · · · , N − 1).

(5.13)
In order to form a quasi-QND measurement, each section should measure the

same quadrature. This is because:

[Ŷi , Ŷ j ] = 0(i �= j), [X̂ζ , X̂ζ ′ ] �= 0. (5.14)

That is, different quadratures are probed, the added noise between different sections
will be Heisenberg-limited. This requirement can be trivially satisfied if τ is equal to
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an integer times the oscillation period, and g2 is the corresponding periodic function.
One simple choice would be:

�τ = τm = 2π/ωm, g
( j)
2 (t) = g

(i)
2 (t + jτm − iτm). (5.15)

In this case, the filtering function has the following Fourier decomposition:

g2(t) = 1

τm

+∞∑

n=−∞
g̃2,n(nωm)e

−inωm t , g̃2,n(nωm) =
∫ τm

0
dtg2(t)e

inωm t . (5.16)

We encounter one immediate problem with this scheme: each section only senses
â1 for one oscillation period, while the effects of back-action accumulate from t = 0.
The back-action of each section can not be evaded, if the filtering functions only
satisfy the back-action-evading (BAE) condition [cf. Eq. (5.18)]. As it turns out, we
have to sacrifice the sensitivity around the mechanical resonance. This is because of
the following argument: by swapping the integration order, the back-action part of
the estimator:

δŶi =
∫ τi+1

τi

dtg(i)1 (t)â1(t)+ (α2/�)

∫ τi+1

τi

dt â1(t)
∫ τi+1

t
dt ′Gx (t

′ − t)g(i)2 (t ′)

+ (α2/�)

∫ τi

0
dtâ1(t)

∫ τi+1

τi

dt ′Gx (t
′ − t)g(i)2 (t ′).

(5.17)
If the BAE condition is satisfied, namely:

g(i)1 (t)+ (α2/�)

∫ τi+1

t
dt ′Gx (t

′ − t)g(i)2 (t ′) = 0. (5.18)

We have

δŶi = (α2/�)

∫ τi

0
dtâ1(t)

∫ τi+1

τi

dt ′Gx (t
′ − t)g(i)2 (t ′). (5.19)

Therefore, to eliminate this accumulated back-action, we require
∫ τi+1
τi

dt ′Gx (t ′ −
t)g(i)2 (t ′) = 0 for any t, which automatically leads to:

∫ τi+1

τi

dtg(i)2 (t)x̂q(t) = 0. (5.20)

If this is the case, we obtain:

Ŷ BAE
i =

∫ τi+1

τi

dtg(i)2 (t)[â2(t)+ (α/�)

∫ t

τi

dt ′Gx (t − t ′)Fext(t
′)]. (5.21)

We can recover the sensitivity around ωm by using stroboscopic variation mea-
surement, as we will discuss in Sect. 5.5. Even though we do not have resonance
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gain, this scheme could still be interesting if the signals that we are searching for do
not have frequency components at ωm .

In the following, we will derive the noise spectrum for such a scheme. Using these
BAE estimators, we can construct the output spectrum for the entire measurement
process; we have:

Ẑn = τm

N−1∑

k=0

Ŷ BAE
k einωeτk , ωe ≡ 2π/T . (5.22)

The corresponding spectrum SZ Z would be defined through

〈Ẑn Ẑn′ 〉 = SZ Z δnn′ Nτm . (5.23)

Substituting the expressions for g2 and Ŷ BAE
k into the above equation, and after

some straightforward calculations, we obtain:

SZ Z (nωe) =
∞∑

k=−∞
|g̃k(kωm)|2

[
1

2
+ α2

�2

4 sin2(nωeτm/2)

(nωeτm + 2kπ)2
R2

xx (nωe)SF (nωe)

]

(g̃k(±ωm) = 0), (5.24)

where the mechanical response function Rxx (ω) = [m(ω2 − ω2
m)]−1. Taking the

limit T → ∞ (i.e., a very good bandwidth resolution), we have:

SZ Z (�) =
∞∑

k=−∞
|g̃k(kωm)|2

[
1

2
+ α2

�2

sin2(ωτm/2)

[(ωτm/2)+ kπ ]2 R2
xx (�)SF (�)

]
, (5.25)

where q is the squeezing factor—a 10 dB squeezing gives e−2q = 0.1; SF (�) is
the force noise spectrum that contains both thermal noise, and the external driving
force. This result is intuitively expected. Basically, the displacement sensitivity is the
original one multiplied by the sinc function due to the discrete sampling. Therefore,
if the GW signal has a characteristic frequency much lower than the mechanical
frequency, the filtering function g2 should be mostly a constant. In this case, the
normalized noise is given by:

Sh(�) = 1

m2L2�4

[
�

2

2α2

(�τm/2)2

sin2(�τm/2)
R−2

xx (�)+ Sth
F (�)

]
. (5.26)

Even though this is shot-noise limited, this sensitivity does not really increase
a lot at low frequencies, because it rises as 1/�2 and physically we know that the
oscillator does not has a good response at low frequencies. However, we show that
back-action can be evaded simply by manipulating the output, for all possible signals.
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5.5 Stroboscopic Variational Measurement

In order to recover the sensitivity around the mechanical resonance, we have to
devote most of the measurement time to the amplitude quadrature, and only measure
the phase quadrature for a short period of time �t  ω−1

m every oscillator cycle
—the idea of stroboscopic variational measurement. This is different from what is
proposed in Ref. [4] and here the driving field is still constant in time.

As in previous considerations, we divide the measurement into N sections with
�τ = τm . Instead of measuring both amplitude and phase quadrature simultaneously,
we measure the phase quadrature during [τi , τi +�t], and switch to the amplitude
quadrature during [τi +�t, τi+1]. Mathematically, we have the following 2N integral
estimators:

X̂i =
∫ τi+1

τi +�t
dtg(i)1 (t)b̂1(t), Ŷi =

∫ τi +�t

τi

dtg(i)2 (t)b̂2(t). (5.27)

To minimize the back-action, we can construct the following quantities:

Ôi ≡
i−1∑

n=0

X̂n(t)+ Ŷi (t). (5.28)

Basically, for each phase quadrature readout, we take into account all the back-
action imposed during the history. One can easily find that as long as g1(t) and g2(t)
are periodic functions at the mechanical frequency and

g
(i)
1 (t)+

∫ τi +�t

τi

dt ′Gx (t
′ − t)g(i)2 (t ′) = 0, (t < τi ) (5.29)

we have

Ôi =
∫ τi +�t

τi

dtg(i)2 (t)â2(t)+(α/�)g(i)2 (t)
∫ t

0
dt ′Gx (t − t ′)[αH(t ′)â1(t

′)+ Fext(t)],
(5.30)

where H(t) is a periodic function of τm and H(t) = �(t) − �(t − �t) during
[0, τm]. Therefore, most of the back actions are evaded, and the remaining part is
imposed during the period when we measure the phase quadrature. This is exactly the
same as in the stroboscopic measurement, but with an important difference that the
probing light beam is always on in our case, which is more feasible experimentally.
By applying the same procedure as in the previous case, we can evaluate the output
spectrum from:

Ẑn = τm

N−1∑

k=1

(Ôk − Ô0)e
inωeτk . (5.31)
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Here we remove the initial condition term of the oscillator position by subtracting
Ôk with Ô0. After some manipulations, and expanding the results in series ofωm�t,
we find:

SZ Z (nωe) =
∞∑

k=−∞
|g̃k(kωm)|2 �t

2τm

+
N0∑

k=−N0

|g̃k(kωm)|2
[

α4�t5

24�2m2τm sin2(nωeτm/2)
+ α2�t2

2�2τ 2
m

R2
xx (nωe)SF (nωe)

]

,

(5.32)
where N0 ωm�t  1 so that the Taylor expansion is justified, and terms with larger
k are small and do not contribute to the summation. Suppose g2 only has a frequency
component at ωm . Taking the continuous limit, the normalized spectral density for
detecting GWs is given by:

Sh(�) = 1

m2L2�4

[
�

2τm

α2 R2
xx (�)�t

+ α2τm�t3

12m2 R2
xx (�) sin2(�τm/2)

+ Sth
F (�)

]
.

(5.33)
Due to the presence of the sin factor in the denominator, the back-action noise

never vanishes, even at the mechanical resonance. However, the added noise in prin-
ciple can be arbitrarily small, if the optimal time scale is chosen, and the measurement
is sufficiently sensitive.

5.6 Conclusions

We have considered two types of variational measurement schemes for measuring
the QND variable-the mechanical quadrature. In both cases, there are insignificant
contributions from the back-action noise to the sensitivity. In contrast to the approach
of modulating the interaction strength, and requiring a good-cavity condition, we
have considered the case with a large cavity bandwidth. Therefore, these schemes
are more suitable for small-scale cavity-assisted devices and large-scale broadband
GW detectors.
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Chapter 6
MQM With Three-Mode Optomechanical
Interactions

6.1 Preface

In this chapter, we discuss the Macroscopic Quantum Mechanics (MQM) of a three-
mode optomechanical system, in which two orthogonal transverse optical cavity
modes are coupled to one mechanical mode through radiation pressure. This work
is motivated by the investigations of three-mode parametric instability in large-scale
gravitational-wave (GW) detectors with high-power optical cavities, as first pointed
out by Braginsky et al. [3]. We realized that the same mechanism that induces insta-
bility, in a different parameter regime, can also be used to cool the mechanical
resonator down to its quantum ground state. Different from the classical analysis
by Braginsky et al. we present a full quantum analysis of three-mode optomechan-
ical parametric interactions, which properly takes into account quantum fluctua-
tions and correlations. We obtain the quantum limit for the ground state cooling
with three-mode interactions. In addition, we show that it can also create tripartite
optomechanical quantum entanglement between the cavity modes and the mechan-
ical oscillator. Compared with the conventional cavity-assisted optomechanical
devices using a single cavity mode, three-mode interactions can achieve an optimal
frequency matching: the frequency separation of the two cavity modes is equal to the
mechanical-mode frequency. This allows the carrier and sideband fields to simulta-
neously resonate and coherently build up. Such a mechanism significantly enhances
the optomechanical couplings in the quantum regime. It allows us to explore quan-
tum behaviors of optomechanical interactions in small-scale table-top experiments.
We show explicitly that given experimentally achievable parameters, three-mode
scheme can realize quantum ground-state cooling of milligram scale mechanical
oscillators and create robust stationary tripartite optomechanical quantum entangle-
ments. This chapter summarizes a joint research effort by Chunnong Zhao, Li Ju,
David Blair, Zhongyang Zhang and me. The relevant publications are Phys. Rev. A
78, 063809 (2008), Phys. Rev. A 79, 063801 (2009), andu Phys. Rev. Letts. 104,
243902 (2009).
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6.2 Introduction

Optomechanical interactions have recently become of great interest, for their poten-
tial in exploring the quantum behavior of macroscopic objects. Various experiments
have demonstrated that the mechanical mode of a mechanical oscillator can be cooled
significantly through two-mode optomechanical interactions [2, 7, 8, 9, 12, 17, 24,
27, 30, 33, 34, 38]. The basic setup consists of a Fabry-Pérot cavity with an end
mirror. Linear oscillations of the mirror mechanical mode at frequency ωm scatter
the optical-cavity mode (usually TEM00) at frequency ω0 into Stokes (ω0 − ωm)

and anti-Stokes (ω0 +ωm) sideband modes, which have the same spatial mode shape
as the TEM00 mode. The optical cavity is appropriately detuned such that the anti-
Stokes sideband is close to resonance. Therefore, the anti-Stokes process is favored
over the Stokes process. As a natural consequence of energy conservation, the ther-
mal energy of the mechanical mode has to decrease in order to create higher-energy
anti-Stokes photons at ω0 + ωm . If the cavity-mode decay rate, which is related to
the optical finesse, is smaller than the mechanical-mode frequency, theoretical analy-
sis shows that these experiments can eventually achieve the quantum ground state
of a macroscopic mechanical oscillator [11, 20, 41], which would be a significant
breakthrough in physics from both experimental and theoretical points of view. With
the same scheme, many interesting issues have been raised in the literature, such as
teleportation of a quantum state into mechanical degrees of freedom [19], creation
of stationary quantum entanglements between the cavity mode and the mechanical
oscillator [28, 40], or even between two oscillators [15, 26]. This in turn could be
implemented in future quantum communications and computing.

The concept of three-mode optomechanical parametric interactions was first intro-
duced and analyzed theoretically in the pioneering work of Braginsky et al. [3].
It was shown that three-mode interactions inside high-power optical cavities of large-
scale laser interferometric gravitational-wave (GW) detectors have the potential to
induce instabilities, which would severely undermine the operation of detectors. This
analysis was elaborated by many other authors to more accurately simulate the real
situation in next-generation advanced gravitational-wave detectors [4, 13, 16] and to
find strategies for suppressing instability [5, 13]. Recently, the UWA group experi-
mentally demonstrated three-mode interactions in an 80-m high-power optical cavity
by exciting the mechanical modes and observing resonant scattering of light into a
transverse cavity mode [43].

In contrast to the two-mode case, in three-mode interactions, a single mechanical
mode of the mechanical oscillator scatters the main cavity TEM00 mode into another
transverse cavity mode, which has a different spatial distribution from the TEM00
mode. Specifically, when the TEM00 mode is scattered by the mechanical mode, the
frequency is split into Stokes and anti-Stokes sidebands at ω0 ± ωm, and in addi-
tion, the spatial wavefront is also modulated by the mechanical mode. Three-mode
interactions strongly arise when both the modulation frequency and spatial mode
distribution are closely matched to those of another transverse optical-cavity mode.
Under these circumstances, both the carrier and sideband modes are simultaneously
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resonant inside the cavity and get coherently built up. Taking into account the res-
onance of the mechanical mode, the system is triply resonant, with the interaction
strength scaled by the product of the two optical quality factors and the mechanical
quality factor. If the transverse optical cavity mode has a frequency lower than the
TEM00 mode, the Stokes sideband will be on resonance and the interaction provides
positive amplification of the mechanical mode, while if the transverse mode has a
frequency above the main cavity TEM00 mode, the anti-Stokes sideband will res-
onate, and the system has negative gain and the mechanical mode will be cooled.
The underlying principle of both two and three mode interactions is similar to the
Brillouin scattering, except that the modulation occurs not through changes in
refractive index of the medium, but through bulk surface motion of a macroscopic
mechanical oscillator (i.e. the mechanical mode) which modulates the optical path of
the light.

While three-mode interactions are inconvenient by-products of the design of
advanced GW detectors, they can be engineered to occur in small-scale systems with
low mass resonators, which can serve as an optomechanical amplifier and be applied
to mechanical-mode cooling [23, 42]. Besides, due to its triply resonant feature,
the three-mode system has significant advantages compared with the two-mode sys-
tem and allows much stronger optomechanical couplings. To motivate experimental
realizations, we have suggested a small-scale table-top experiment with a milligram
mechanical oscillator in a coupled cavity [42]. Using the extra degree of freedom of
the coupled cavity, the cavity mode gap (i.e., the difference between the two relevant
cavity modes) can be continuously tuned such that it is equal to plus or minus the
mechanical-mode frequency, which maximizes the three-mode interaction strength.
We also pointed out that, in the negative-gain regime, this experimental setup can be
applied to resolved-sideband cooling of a mechanical oscillator down to its quantum
ground state. In that paper, we used the classical analysis presented by Braginsky
et al. to obtain the effective thermal occupation number n̄ of the mechanical mode.
This analysis breaks down when n̄ � 1 and the quantum fluctuations of the cavity
modes have to be taken into account. To overcome this limitation, we used the sim-
ilarity in the Hamiltonian of the two-mode and the three-mode system, and argued
that the quantum limit for cooling in both systems is the same without investigating
the detailed dynamics. However, in order to gain a quantitative understanding of the
three-mode system in the quantum regime, it is essential to develop a full quantum
analysis which includes the dynamical effects of the quantum fluctuations. Besides,
as we will show, the quantum analysis reveals a most interesting non-classical feature
of three-mode systems: stationary tripartite quantum entanglement.

The outline of this chapter is as follows: in Sect. 6.3, we start from the classical
analysis given by Braginsky et al. and then quantize it with the standard approach.
In Sect. 6.4, we use the quantized Hamiltonian as the starting point to analyze the
dynamics of the three-mode system. Further, based upon the Fluctuation-Dissipation-
Theorem (FDT), we derive the quantum limit for the achievable thermal occupa-
tion number in cooling experiments. To motivate future small-scale experiments,
we provide an experimentally achievable specification for the quantum ground state
cooling of a mechanical oscillator. In Sect. 6.5, we investigate the stationary tripartite
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Fig. 6.1 Spatial shapes of
the TEM00, and of TEM01
modes and the mechanical
torsional mode. From Ref.
[3]

TEM00 TEM01 Torsional mode

optomechanical quantum entanglement, and we show that the same specification for
the cooling experiments can also be applied to realize robust stationary optomechan-
ical entanglements.

6.3 Quantization of Three-Mode Parametric Interactions

In this section, we will first present the classical formulations of three-mode opto-
mechanical parametric interactions given by Braginsky et al. [3], and then apply
standard procedures to obtain the quantized version.

Classical Picture. A detailed quantitative classical formulation of three-mode
interactions was given in the Appendix of Ref. [3]. A Lagrangian formalism was
used to derive the classical equations of motion and analyze the stability of the
entire three-mode optomechanical system. The formalism can be easily converted
into Hamiltonian language, which can then be quantized straightforwardly. For con-
venience, we will use slightly different notation and definitions for the optical fields.
Further, we assume that the two optical-cavity modes are the TEM00 and TEM01
modes, and that the mechanical mode has a torsional mode shape (about the vertical
axis) which has a large spatial overlap with the TEM01 mode as shown in Fig. 6.1.
This can be easily extended to general cases with other transverse optical modes and
mechanical modes. Assuming the electric field is linearly polarized in the transverse
direction perpendicular to the z axis, the electromagnetic fields (E, H) of the cavity
modes can be written as:

Ei (t) =
(

�ωi

ε0V

)1/2

fi (�r⊥) sin(ki z)qi (t), (6.1)

Hi (t) = ε0

ki

(
�ωi

ε0V

)1/2

fi (�r⊥) cos(ki z)q̇i (t). (6.2)

Here, i = 0, 1 represent the TEM00 and TEM01 modes; fi (�r⊥) are the transverse
mode shapes; ωi denotes the eigenfrequency; ki are the wave numbers; V is the
volume of the optical cavity; qi (t) are the generalized coordinates of the fields; and
q̇i (t) are the time derivatives of qi (t). At the present stage, the appearance of �ωi is
just to make the generalized coordinates q̂i dimensionless. The classical Hamiltonian
of this system is given by:

H = Hm + 1

2

∫
d�r⊥(L + x uz)[ε0(E0 + E1)

2 + μ0(H0 + H1)
2], (6.3)
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where L is the length of the cavity; x is the generalized coordinate of the mechanical
mode; uz is the vertical displacement. The free Hamiltonian of the mechanical mode
is

Hm = 1

2
�ωm(q

2
m + p2

m) (6.4)

with qm ≡ x/
√

�/(mωm), and pm is the momentum normalized with respect to√
�mωm .

After integrating over the transverse direction, and taking into account the mode
shapes, we obtain:

H = Hm + H0 + H1 + Hint. (6.5)

Defining dimensionless canonical momentum pi (t) ≡ q̇i (t)/ωi , the free Hamil-
tonian of the two cavity modes are:

Hi = 1

2
�ωi (q

2
i + p2

i ) (6.6)

and the interaction Hamiltonian is given by

Hint = � G0qm(q0q1 + p0 p1), (6.7)

where the coupling constant is defined as G0 ≡ √
� �ω0ω1/(m ωm L2), with the

geometrical overlapping factor � ≡ (L
∫

d�r⊥uz f0 f1/V )2.
Given the above Hamiltonian, it is straightforward to derive the classical equations

of motion and analyze the dynamics of the system, which would be identical to those
in the Appendix of Ref. [3]. To quantify the strength of three-mode interactions,
Braginsky et al. introduced the parametric gain R, as defined by:

R = ± 2�I0ω1

m ωm L2γ0γ1γm
= ±2�I0 Q0 Q1 Qm

m ω0ω2
m L2 , (6.8)

where ± correspond to either positive gain or negative gain; I0 is the input optical
power of the TEM00 mode; and we have defined optical and mechanical-mode quality
factors Qi = ωi/γi (i = 0, 1,m). Due to optomechanical interaction, the decay rate
γm of the mechanical mode will be modified to an effective one γ ′

m, which is

γ ′
m ≈ (1 − R)γm . (6.9)

When R > 1, the decay rate becomes negative and this corresponds to instability.
Here we are particularly interested in the regime where R < 0 which gives rise to
the mechanical-mode cooling. The effective thermal occupation number n̄′

th of the
mechanical mode is given by

n̄′
th = n̄thγm

γ ′
m

= n̄th

1 − R (6.10)
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with n̄th denoting the original thermal occupation number. It seems that when −R 	
1, n̄′

th can be arbitrarily small. However, in this case, the classical analysis breaks
down and the quantum fluctuations of the cavity modes will set forth a quantum limit
for the minimally achievable n̄′

th, which will be detailed in the following quantum
analysis.

Quantized Hamiltonian. The classical Hamiltonian derived above can be quan-
tized by identifying the generalized coordinate and momentum as Heisenberg oper-
ators, which satisfy the following commutation relations:

[q̂ j , p̂ j ′ ] = i δ j j ′, ( j, j ′ = 0, 1,m). (6.11)

The quantized Hamiltonian is then given by

Ĥ = 1

2

∑

i=m,0,1

�ωi (q̂
2
i + p̂2

i )+ �G0q̂m(q̂0q̂1 + p̂0 p̂1)+ Ĥext, (6.12)

where we have added Ĥext to take into account the coupling between cavity modes
and external continuum optical fields due to the non-zero transmission of the cavity.
This Hamiltonian is convenient for discussing stationary tripartite quantum entan-
glement as will be shown in Sect. 6.5, as these generalized coordinates qi and pi

correspond to the amplitude and phase quadratures in the quantum optics entangle-
ment experiments.

To discuss the ground-state cooling as will be investigated in Sect. 6.4, it is illumi-
nating to introduce annihilation operators for the two cavity modes
â ≡ (q̂0 +i p̂0)/

√
2 and b̂ ≡ (q̂1+i p̂1)/

√
2, so that the normally-ordered quantized

Hamiltonian can be rewritten as:

Ĥ = 1

2
�ωm(q̂

2
m + p̂2

m)+ �ω0â†â + �ω1b̂†b̂ + �G0q̂m(â
†b̂ + b̂†â)+ Ĥext. (6.13)

6.4 Quantum Limit for Three-Mode Cooling

In this section, we will start from the Hamiltonian in Eq. (6.13) to derive the dynamics
and discuss the quantum limit for the ground-state cooling experiments using three-
mode optomechanical interactions. As we will see, due to similar mathematical
structure as in the two-mode case, the corresponding quantum limit for three-mode
cooling is identical to the resolved-sideband limit derived by Marquardt et al. [15]
and Wilson-Rae et al. [39] in the two-mode case.

Equations of Motion. The dynamics of this three-mode system can be derived
from the quantum Langevin equations (QLEs). In the experiments, the TEM00 mode
is driven on resonance at ω0. Therefore, we choose a rotating frame at ω0, obtaining
the corresponding nonlinear QLEs as:
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˙̂qm = ωm p̂m, (6.14)

˙̂pm = −ωmq̂m − γm p̂m − G0(â
†b̂ + b̂†â)+ ξth, (6.15)

˙̂a = −γ0 â − i G0q̂mb̂ + √
2γ0 âin, (6.16)

˙̂b = −(γ1 + i �)b̂ − i G0q̂mâ + √
2γ1 b̂in. (6.17)

Here the TEM00 and TEM01 mode gap is given by� ≡ ω1 −ω0; G0(â†b̂ + b̂†â)
corresponds to the radiation pressure which modifies the dynamics of the mechan-
ical mode and is also responsible for the quantum limit; we have added thermal
noise ξth whose correlation function, in the Markovian approximation, is given by
〈ξth(t)ξth(t ′)〉 = 2γmn̄thδ(t − t ′). In obtaining the above equations, we have also
used the rotating-wave approximation for Ĥext,namely:

Ĥext = i �(
√

2γ0 â†âin + √
2γ1 b̂†b̂in − H.c.) (6.18)

with H.c. denoting the Hermitian conjugate.
To solve the above equations, we can linearize them by replacing every Heisenberg

operator with the sum of a steady part and a small perturbed part, namely ô = ō +
δô(ε) with ε � 1.We treat the Brownian thermal noise ξth, the vacuum fluctuations√
γ0δâin,

√
γ1δb̂in and δq̂m as being of the order of ε. In the experiments, the TEM00

mode is pumped externally with a large classical amplitude āin while the TEM01
mode is not with b̄in = 0. Therefore, to the zeroth order of ε, the steady part of the
cavity modes are simply given by

ā = √
2/γ0 āin = √

2I0/(γ0�ω0), b̄ = −iG0āq̄m . (6.19)

Without loss of generality, we can set q̄m = 0. Therefore, b̄ = 0 and this allows
us to eliminate the TEM00 mode from the first-order equations, which are:

δ ˙̂qm = ωm δ p̂m, (6.20)

δ ˙̂pm = −ωm δq̂m − γm δ p̂m − G0ā(δb̂ + δb̂†)+ ξth, (6.21)

δ
˙̂b = −(γ1 + i �)δb̂ − i G0ā δq̂m + √

2γ1 δb̂in. (6.22)

Here we have chosen an appropriate phase reference such that āin is real and
positive. The above equations can be solved in the frequency domain, namely:

q̃m(	) = −ωm[F̃rp(	)+ ξ̃th(	)]
(	2 − ω2

m)+ i γm	
, (6.23)

δb̃(	) = G0 ā δq̃m(	)+ i
√

2γ1δb̃in(	)

(	−�)+ i γ1
, (6.24)
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where the radiation pressure

F̃rp(	) = 2G2
0 ā2�δq̃m(	)− 2G0ā

√
γ1[(γ1 − i	)δq̃2(	)−�δ p̃2(	)]

[(	−�)+ i γ1][(	+�)+ i γ1] (6.25)

with the amplitude and phase quadratures δq̃2(	) = [δb̃(	) + δb̃†(−	)]/√2 and
δ p̃2(	) = [δb̃(	)−δb̃†(−	)]/(√2i). In the expression for F̃rp, the part proportional
to δq̃m is called the optical spring effect. For a high quality-factor oscillator with
ωm 	 γm, the decay rate γm and the eigenfrequency ωm of the mechanical mode
will be modified to new effective values γ ′

m and ω′
m, as given by:

γ ′
m = γm + 4G2

0 ā2�ωmγ1

[(ωm −�)2 + γ 2
1 ][(ωm +�)2 + γ 2

1 ] , (6.26)

ω′
m = ωm + G2

0ā2�(ω2
m −�2 − γ 2

1 )

[(ωm −�)2 + γ 2
1 ][(ωm +�)2 + γ 2

1 ] . (6.27)

In our case, the TEM00 and TEM01 mode gap is � = ω1 − ω0 = ωm . In the
resolved-sideband case with γ1 � ωm, we obtain:

γ ′
m ≈ γm + G2

0ā2

γ1
; ω′

m ≈ ωm − G2
0ā2

4ωm
. (6.28)

If we define the parametric gain as R = (γm − γ ′
m)/γm, then in this case

R = −G2
0ā2

γ1γm
= − 2�I0ω1

mωm L2γ0γ1γm
. (6.29)

This is identical to Eq. (6.8) in the negative-gain regime, which was obtained
from classical analysis by Braginsky et al. [3]. However, in contrast to Eq. (6.10),
the resulting thermal occupation number of the mechanical mode is given by

n̄′
th = n̄thγm

γ ′
m

+ n̄quant = n̄th

1 − R + n̄quant (6.30)

where the extra term n̄quant originates from the vacuum fluctuations in Frp,

i.e. terms proportional to δ p̃2 and δq̃2. Since, in the case of large R, or equiva-
lently strong optomechanical coupling, n̄′

th ≈ n̄quant and the mechanical mode will
finally reach a thermal equilibrium with the cavity modes. The lowest achievable
thermal occupation number n̄quant will be determined by this optical heat bath (i.e.,
cavity mode + external continuum mode).

To derive this quantum limit n̄quant, we will apply the Fluctuation-Dissipation-
Theorem (FDT). Specifically, given any two quantities Â(t) and B̂(t)which linearly
depend on field strength, we can define the forward correlation function:

CÂB̂(t − t ′) ≡ 〈 Â(t)B̂(t ′)〉 (t > t ′), (6.31)
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where 〈 〉 denotes the ensemble average. According to the FDT, we have

SÂB̂(	)+ SÂB̂(−	)
SÂB̂(	)− SÂB̂(−	)

= eβ �	 + 1

eβ �	 − 1
= 2n̄eff(	)+ 1, (6.32)

or equivalently,

n̄eff(	) = SÂB̂(−	)
SÂB̂(	)− SÂB̂(−	)

. (6.33)

where SÂB̂(	) is the power spectral density (Fourier transform of CÂB̂), β =
1/(kB Teff) and the effective thermal occupation number n̄eff ≡ 1/(eβ �	 − 1).
In our case, we can simply substitute A, B with the amplitude of the TEM01 mode
δb̂ by fixing q̂m = 0. From Eq. (6.24) and using the fact that for vacuum fluctuation
〈δb̃in(	)δb̃

†
in(	

′)〉 = 2πδ(	−	′), we obtain:

S
δb̂ δb̂(	) = 2γ1

(	−�)2 + γ 2
1

. (6.34)

Since the mechanical mode have a very high intrinsic quality factor (ωm 	 γm),

the energy transfer between the cavity modes and the mechanical mode only happens
around ωm . Therefore, from Eqs. (6.33) and (6.34), the final quantum limit is given
by:

n̄quant ≈ n̄eff(ωm) =
(
γ1

2ωm

)2

, (6.35)

where we have used the fact that for the resonant case, � = ω1 − ω0 = ωm .

To achieve the quantum ground state, i.e. n̄quant ∼ 0, we require ωm 	 γ1 and this
is simply the resolved-sideband limit obtained in the pioneering works of Marquardt
et al. [20] and Wilson-Rae et al. [41].

The reason why the quantum limit for three-mode cooling is identical to the two-
mode case can be readily understood from the fact that the TEM00 mode is eliminated
from the optomechanical dynamics as shown explicitly in Eqs. (6.20)–(6.22) and
we essentially obtain an effective two-mode system. As suggested by Yanbei Chen
[private communication], this equivalence can be made more obvious by mapping this
three-mode system into a power and signal-recycled laser interferometer, as shown in
Fig. 6.2. The TEM00 and TEM01 modes can be viewed as the common and differential
modes in the interferometer, respectively. The torsional mode corresponds to the
differential motion of the end mirrors and � is equivalent to the detuning of the
signal-recycling cavity. In the power- and signal-recycled interferometer, even though
there is no high-order transverse optical mode involved, the two degrees of freedom
of the power-recycling mirror and the signal recycling mirror enable simultaneous
resonances of the carrier and sideband modes, which is achieved naturally with the
three-mode optomechanical scheme.
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Fig. 6.2 Equivalent mapping from a three-mode system to a power- and signal-recycled interfer-
ometer. The TEM00 and TEM01 modes can be viewed as the common and differential optical modes
in the interferometer respectively. The torsional mechanical mode is equivalent to the differential
motion of two end mirrors in the interferometer. By adjusting the positions of the power-recycling
mirror (PRM) and signal-recycling mirror (SRM), we can make the carrier and sideband modes
simultaneously resonate inside the cavity, the same as in the three-mode scheme. From Ref. [22]

The above discussion shows that, mathematically, two-mode interactions and
three-mode interactions are very similar. However, it is very important to emphasize
that, from an experimental point of view, there is an important difference. Specifically,
the steady-state amplitude ā in the radiation pressure Frp is amplified by the optical
resonance, while for the two-mode case, this amplitude is highly suppressed due to
large detuning. In other words, in order to achieve the same optomechanical coupling
strength experimentally, the input optical power in the two-mode scheme needs to
be 1 + (�/γ0)

2 times larger than the the three-mode scheme. This is a large factor
in the resolved-sideband regime with � 	 γ0 (the optimal� = ωm). Besides,
in the three-mode interactions, the condition � = ωm also naturally optimizes the
energy transfer from the mechanical mode to the cavity mode [10, 20, 41]. Therefore,
the three-mode scheme greatly enhances the optomechanical coupling and is able
to achieve resolved-sideband limit without compromising the intra-cavity optical
power. As mentioned in Ref. [44], the amplitude and laser phase noise can also
be reduced significantly with three-mode scheme, simply due to the filtering of the
cavity resonance.

To motivate future cooling experiments with three-mode interactions, we now
present an experimentally achievable specification for the quantum ground state
cooling of a milligram-scale mechanical oscillator. We choose that the mass of
the mechanical oscillator m = 0.1 mg; the length of the cavity L = 2 cm; the
mechanical-mode frequency ωm/2π = 106 Hz; the mechanical-mode quality factor
Qm ≡ ωm/γm = 107; and the optical finesse F = 104. Given an input opti-
cal power of the TEM00 mode I0 = 50 mW, and the environmental temperature
T = 4 K, the corresponding effective thermal occupation number of the mechanical
oscillator ∼ 0.5.
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6.5 Stationary Tripartite Optomechanical Quantum
Entanglement

As shown in the works of Vitali et al. [40] and Paternostro et al. [28], optomechanical
interaction provides a very efficient way of generating stationary quantum entangle-
ments among cavity modes and the mechanical mode. Once experimentally realized,
it will have significant impact on future quantum communications. Following their
formalism, we will investigate the stationary tripartite quantum entanglement in the
three-mode optomechanical system by first analyzing the dynamics and then eval-
uating the entanglement measure —the logarithmic negativity EN defined in Refs.
[1, 39].

Starting from the Hamiltonian in Eq. (6.12), the corresponding nonlinear QLEs
in the rotating frame at the laser frequency ωL can be written as:

˙̂qm = ωm p̂m, (6.36)
˙̂pm = −ωmq̂m − γm p̂m − G0(q̂0q̂1 + p̂0 p̂1)+ ξth, (6.37)

˙̂q0 = −γ0q̂0 +�0 p̂0 + G0q̂m p̂1 + √
2γ0q̂ in

0 , (6.38)

˙̂p0 = −γ0 p̂0 −�0q̂0 − G0q̂mq̂1 + √
2γ0 p̂in

0 , (6.39)

˙̂q1 = −γ1q̂1 +�1 p̂1 + G0q̂m p̂0 + √
2γ1q̂ in

1 , (6.40)

˙̂p1 = −γ1 p̂1 −�1q̂1 − G0q̂mq̂0 + √
2γ1 p̂in

1 , (6.41)

where �0 = ω0 − ωL , and �1 = ω1 − ωL . Slightly different from the cooling
experiments, here we need to externally drive both the TEM00 and TEM01 modes
simultaneously, to create tripartite quantum entanglement. We choose an appropriate
phase reference such that the classical amplitude p̄i = 0 and q̄i = 0 (i = 0, 1),
which is related to the input optical power Ii by q̄i = √

2Ii/(�ωiγi ). Similar to the
previous case, we can linearize the above equations as:

˙̂xT = M x̂T + n̂T, (6.42)

with T denoting the transpose:

x̂T ≡ ( δq̂m, δ p̂m, δq̂0, δ p̂0, δq̂1, δ p̂1 )
T, (6.43)

n̂T ≡ (0, ξth,
√

2γ0 δq̂ in
0 ,

√
2γ0 δ p̂in

0 ,
√

2γ1 δq̂ in
1 ,

√
2γ1 δ p̂in

1 )
T, (6.44)

and matrix M is given by:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ωm 0 0 0 0
−ωm −γm G0q̄1 0 G0q̄0 0
0 0 −γ0 �0 0 0
G0q̄1 0 −�0 −γ0 0 0
0 0 0 0 −γ1 �1
G0q̄0 0 0 0 −�1 −γ1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.45)
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At first sight, this mathematical structure is identical to the one analyzed by Pater-
nostro et al. [28]. Apart from differing in the coupling constants (here we need to
consider the overlapping factor �), there is another important difference: after lin-
earization, the radiation pressure term G0(q̂0q̂1 + p̂0 p̂1) in Eq. (6.37) is proportional
to q̄0δq̂1 + q̄1δq̂0, rather than to q̄0δq̂0 − q̄1δq̂1, as considered in Ref. [28]. As we
will show, similar to the case for cooling experiments, the coherent build-up of both
the TEM00 and TEM01 modes, and the optimal mode gap ω1 − ω0 = ωm enhance
the entanglement significantly, which make it easier to achieve experimentally.

Assuming the system is stable, i.e., all eigenvalues of M have negative real parts,
the stationary solutions to Eq. (6.42) can be written formally as:

x̂i (∞) =
∑

j

∫ ∞

0
dt ′[eM(t−t ′)]i j n̂ j (t

′), (6.46)

where we have neglected the initial-condition terms, which decay away as the system
approaches the stationary state. We assume that all the noises are Markovian Gaussian
processes, and that the correlation functions are:

σi j (t − t ′) ≡ Di j δ(t − t ′), (6.47)

where Di j are the elements of matrix D, and

Di j = Diag[0, 2γmkB T/(�ωm), γ0, γ0, γ1, γ1]. (6.48)

The corresponding stationary covariance matrix among the cavity modes and the
mechanical mode can then be written as:

V(∞) =
∫ ∞

0
dt[eMt ]D[eMt ]T, (6.49)

and the components of V can be obtained by solving the following linear equations:

M V + V MT = −D. (6.50)

For this tripartite continuous-variable system (one mechanical mode + two cavity
modes), one necessary and sufficient condition for separability is the positivity of
partially-transposed covariance matrix [29, 36, 37]. In our case, a partial transpose
is equivalent to time reversal and can be realized by reversing the momentum of the
mechanical mode from p̂m to − p̂m, namely

Vpt = V| p̂m→− p̂m . (6.51)

By evaluating the positivity of the eigenvalue of Vpt, we can directly determine
whether entanglement exists or not. To reveal the richness of the entanglement struc-
ture, we will not directly analyze the positivity of Vpt for the entire system, but rather,
following Ref. [28], we look at the entanglement between any bipartite subsystem
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using the logarithmic negativity EN .Given the 4×4 covariance matrix Vsub for any
bipartite subsystem,

Vsub =
[

A2×2 C2×2

CT
2×2 B2×2

]
, (6.52)

the logarithmic negativity EN is defined by [1, 29]

EN = max[0,− ln 2σ−] (6.53)

with σ− ≡
√
 − √

2 − 4 det Vsub/
√

2, and  ≡ det A + det B − 2 det C.
For numerical estimations, we will use the same specification as given in the

previous section for the cooling experiments. We will focus on the situation relevant
to the experiments, with ω1 − ω0 = ωm, and the TEM00 mode driven on resonance
(�0 = 0, �1 = ωm). In Fig. 6.3, we show the resulting EN as a function of the input
optical powers of both optical modes. Given the specifications, the entanglement
strength between each optical mode and the mechanical mode becomes stronger as
the optical power of their counterpart increases (until the system becomes unstable).
This is understandable, because we have a q̂m(q̂0q̂1 + q̂0q̂1) type of interaction, and
the coupling strength between the TEM00 mode and the mechanical mode directly
depends on the classical amplitude of the TEM01 and vice versa. For the entanglement
between the two optical modes, this reaches a maximum when both modes have
medium power. This can be attributable to the fact that the entanglement between
these two optical modes is mediated by the mechanical mode, and both E0m

N and E1m
N

should be large to give a reasonable E01
N . Besides, as shown explicitly in Fig. 6.4,

the condition ω1 − ω0 = ωm will naturally optimize the entanglement between the
TEM01 mode and the mechanical mode. This is because the Lorentzian profiles of
the TEM01 mode and the mechanical have the largest overlap when� = ωm . In this
case, both the TEM01 mode and the mechanical mode are driven by the same vacuum
field, which gives the maximal entanglement. Therefore, the optimal condition for
the cooling experiment will simultaneously optimize the entanglement strength, as
has also been observed by Genes et al. [10].

To illustrate the robustness of this tripartite entanglement, we show the dependence
of EN on the environmental temperature in Fig. 6.5. The entanglement between the
optical modes and the mechanical mode is very robust and it persists even when the
temperature goes up to 80 K. Although the entanglement between the two optical
modes is relatively weak, it changes more slowly as the temperature increases, and
it vanishes when the temperature becomes higher than 15 K. The robustness of the
optomechanical entanglement was also shown previously by Vitali et al. [40]. This
is attributable to the strong optomechanical coupling, which suppresses the thermal
decoherence of the mechanical mode. With both the TEM00 mode and the TEM01
mode on resonance, we can obtain much higher intra-cavity power, as compared
with the equivalent detuned two-mode system. Given moderate input optical power,
this allows us to achieve stronger entanglement between the optical modes and the
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Fig. 6.3 Logrithmic negativity EN as a function of the input optical powers of both modes. Other
specifications are identical to those for cooling experiments given in the previous section. The left
panel shows E0m

N for the entanglement between the TEM00 mode and the mechanical mode; The
middle panel presents E1m

N for the TEM01 mode and the mechanical mode; the right panel shows
E01

N for the TEM00 mode and the TEM01 mode. From Ref. [22]

Fig. 6.4 Logarithmic negativity E1m
N as a function of the cavity modes gap � ≡ ω1 − ω0. As we

can see, the condition � ≈ ωm , which optimizes the cooling, also maximizes the entanglement
between the TEM01 mode and the mechanical mode. Here we have assumed I0 = 4.5 W (higher I0
will make the system unstable for small �) and I1 = 0.W. Since it can be viewed as an effective
two-mode system in this case with I1 = 0, we simply recover the results given by Vitali et al. [19].
From Ref. [22]

mechanical mode of a massive mechanical oscillator (∼ mg).Of course, this robust-
ness of entanglement is conditional on the fact that the mirrors of the cavity can
sustain a high optical power ∼104 W. If the beam size is of the order of mm, this
corresponds to a power density of around 106 W/cm2, which is achievable with the
present technology [32].

To verify this tripartite entanglement experimentally, we can apply the same pro-
tocol as proposed in Refs. [18, 28, 40]. Specifically, through measuring the out-
going field, we can build up statistics and construct the covariance matrix Vexp of
this tripartite system based on the measurement results, and then analyze whether
the partially-transposed covariance matrix Vpt

exp fails to be positive definite. If Vpt
exp

has a negative eigenvalue, this will give an unambiguous signature for quantum
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Fig. 6.5 Logarithmic
negativity as a function of
temperature. The solid curve
stands for E0m

N , the dashed
curve for E0m

N and dash-dot
curve for E01

N . We have
chosen the optimal
parameters for each curve.
From Ref. [32]

entanglement, because any classical correlation always gives a positive definite Vpt
exp.

Besides, we can also use Vexp to evaluate the logarithmic negativity EN of any bipar-
tite subsystem to determine whether entanglement exists or not in a given subsystem.
Since the tripartite entanglement is stationary, this means that the optomechanical
interactions protect the quantum entanglement from the thermal decoherence, which
is a significant problem in non-stationary quantum entanglements. In principle, we
can make a sufficiently long integration of the output signal such that the shot noise
is negligibly small, and Vexp should be a direct verification of what we have obtained
theoretically.

6.6 Three-Mode Interactions With a Coupled Cavity

In this section, we will discuss how to explore three-mode interactions using a coupled
cavity. To make our analysis close to realistic experiments, we consider a torsional
acoustic mode with frequency ∼1 MHz interacting with the optical TEM10 and
TEM00 modes. This configuration is chosen because MHz frequency can be easily
achieved in a mm-scale structure, and the torsional mode has a large spatial overlap
with the TEM10 mode.

To begin with, let us consider a single Fabry-Pérot cavity to see why a coupled
cavity is necessary. The free spectral range of a single cavity with length ∼10 cm
is approximately 1 GHz. Therefore, as shown in Fig. 6.6, one has to build either a
near-planar or near-concentric cavity to obtain a desired mode gap around 1 MHz
between the TEM10 and TEM00 modes. For both cases, the cavity is marginally stable
and susceptible to misalignment. It is also difficult to get accesses to both instability
and cooling regimes in a single setup. Creating a coupled Fabry-Perot cavity solves
these problems. As we will show later, the resulting scheme is stable. Additionally,
we can easily tune between the instability and cooling regimes. The coupled cavity
is showed schematically in Fig. 6.7. It is similar to the configuration of power- or
signal-recycling interferometers [6, 21] when one considers either the common mode
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Fig. 6.6 The optical modes of a single Fabry-Pérot cavity with length ∼10 cm. The panel (a) shows
the mode distribution for a near-concentric cavity with g-factor ∼−1which is suitable for observing
PI, while panel (b) is the near-planar case with g-factor ∼1which suits for cooling experiment.
In both cases, there are no symmetric modes on the opposite side of the TEM00 mode because
the higher-order mode TEMmn marked with ‘?’ are highly lossy due to diffraction losses. This
is preferred for experimental realizations of three-mode interactions because we know from Eq.
(6.8) that any symmetric mode on the opposite side of the TEM00 mode will reduce the absolute
value of the parametric gain. However, both cavities are marginally stable and very susceptible to
misalignment. From Ref. [42]
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E12
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Fig. 6.7 The optical fields of the coupled cavity. Here δφ01,12 are the round-trip phase shifts of
light in the sub-cavity (formed by M0 and M1,) and in the main cavity (formed by M1 and M2,)
respectively. We use the convention that the mirrors have minus reflectivity on the side with a coating
layer. From Ref. [42]

or the differential mode. The field dynamics can be easily obtained as shown in Ref.
[31], by treating the sub-cavity as an effective mirror, with frequency- and mode-
dependent transmissivity and reflectivity. Specifically, the effective transmissivity t01
is:

t01 ≡ E12

Ein
= t0t1

1 + r0r1eiδφ01
, (6.54)

and the effective reflectivity r10 is given by:

r10 ≡ E12

E21
= −r1 − t2

1 r0eiδφ01

1 + r0r1eiδφ01
. (6.55)

The corresponding E12 inside the main cavity can be written as:

E12 = Eint01

1 + r10r2eiδφ12
= Eint01

1 − |r10|r2ei[arg(r10)+δφ12+π ] . (6.56)

The resonance occurs when the phase factor in Eq. (6.56) is equal to 2nπ, which
critically depends upon the phase angle of the effective reflectivity, namely arg(r10).
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M0 L1 M2M1Tuning

L01 L12

Laser & mode-
matching optics

Fig. 6.8 The optical layout for the table top experiment, where a 1 MHz torsional micro-oscillator
(M2) interacts with the optical TEM10 mode and the TEM00 mode. By tuning the positions of
mirror M0 and lens L1, we can continuously change the frequency of TEM10. If the losses in L1
were an issue, it could easily be replaced by a concave mirror. From Ref. [42]

Specifically, when the TEM00 mode resonates inside the main cavity, which requires
that δφTEM00

01 = δφ
TEM00
12 = 2nπ, the phase shift of the TEM10 mode δφTEM10

i j is:

δφ
TEM10
i j = 2Li j

c
�ω − 2�i j

g + 2n′π, i j = 01, 12, (6.57)

where�ω ≡ ω1 −ω0 is the mode gap between TEM10 and TEM00;�g is the Gouy
phase and n, n′ are integers. In order to satisfy the resonant condition for three-
mode interactions, we need to adjust δφTEM10

01 , which changes arg(r10), such that
�ω = ±ωm . To achieve this, one obvious way is to change the length of sub-cavity
L01 but this turns out to be impractical due to a small tuning range. An alternative and
more practical approach, as shown in Fig. 6.8, is to add another lens or concave mirror
inside the sub-cavity to tune the Gouy phase�01

g . The resulting scheme is similar to
the proposed stable recycling cavity for next-generation gravitational-wave detectors
[25]. With the additional lens, the Gaussian beam gets focused inside the sub-cavity.
Since the Gouy phase changes from almost −π

2 to π
2 within one Rayleigh range

around the waist, one can easily obtain a desired δφTEM10
01 simply by adjusting the

position of M0 near the waist. This might lead to problems with power density due
to the small waist size, but for the table top experiment we consider here, the power
density is quite low.

The corresponding �01
g with an additional lens can be derived straightforwardly

by using the ray transfer relation for a Gaussian beam, which is given by

q ′ = f q

f − q
. (6.58)

Here f is the focal length of L1; q(
′) ≡ z(

′) + i z(
′)

R ; z is the displacement relative
to the waist; zR is the Rayleigh range and superscript ′ denotes quantities after the
lens. This dictates

z′ = f (z f − z2 − z2
R)

( f − z)2 + z2
R

, (6.59)

zR = zR f 2

( f − z)2 + z2
R

. (6.60)
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M0 L1 M2M1

(a) Mode matching for Stokes mode (R>0)

236 mm 74 mm 75 mm

M0 L1 M2M1

(b) Mode matching for Anti-Stokes mode (R<0)

232 mm 77 mm 75 mm

Fig. 6.9 The mode matching for the positive gain and negative gain by adjusting the relative position
of M0 and L1. Only small adjustment is needed to tune from one case to another. From Ref. [42]

The resulting Gouy phase at any point is given by

�g(z) =
{

arctan (z/zR) , z < zL

arctan
[
(z − zL + z′

L)/z
′
R

] + arctan (zL/zR)− arctan
(
z′

L/z
′
R

)
, z ≥ zL

(6.61)
where z(

′)
L is the position of L1 relative to the waist. Gouy phase�01

g is the difference
between wavefront at M0 and M1, namely

�01
g = �g(zM0)−�g(zM1), (6.62)

where zM0 and zM1 are the positions of M0 and M1 relative to the waist respectively.
Therefore, by adjusting the positions of M0 and L1 as shown in Fig. 6.8, we can
continuously tune �01

g such that �ω = ωm .

Equations (6.54)–(6.62) provide the design tools of the coupled cavity for three-
mode interactions. To realize the experiment, we first need to design the main cavity
and specify L12, ωm, the radius of curvatures (RoCs) of M0,M1,M2 and the focal
length of L1. From Eqs. (6.56) and (6.57), we can find out the required arg(r01)

which gives the right mode gap between TEM10 and TEM00. This will gives us one
constraint. Combining with the requirement of mode matching to M0,we can fix two
degrees of freedom of the system, namely the positions of M0 and L1.To demonstrate
this principle explicitly, we present a solution that is close to a realistic experimental
setup. We assume the following:

L12 = 75 mm ωm = 1 MHz f = 100 mm,
R0 = 500 mm r0 = √

0.999 A0 = 500 ppm,
R1 = 100 mm r1 = √

0.9 A1 = 500 ppm,
R2 = ∞ mm r2 = √

0.9995 A2 = 500 ppm.

Here, Ri (i = 0, 1, 2) are RoCs; ri denotes the amplitude reflectivity; ti is the
amplitude transmissivity and Ai is the optical loss which satisfy r2

i + t2
i + Ai =

1 (i = 0, 1, 2).
The results of mode matching for both positive- (instability) and negative-gain

(cooling) configurations are shown in Fig. 6.9. In Fig. 6.10, we show the mode gap
between TEM10 and TEM00 as a function of the position of M0 relative to L1 and
the position of L1 relative to M1. In this particular case, the dependence is almost
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(a) (b)

Fig. 6.10 Panels (a) and (b) show the mode gap between TEM10 and TEM00 as a function of
position of M0 relative to L1 and position of L1 relative to M1 respectively. The dots in both figures
are the situations considered in Fig. 6.9. Clearly, we can tune between the instability and cooling
regimes continuously. From Ref. [42]

(a) (b)

Fig. 6.11 The normalized gain of the TEM00 mode and the TEM10 mode in the positive and negative
gain configurations. The mode gap is equal to ωm ∼ 1 MHz, which fulfils the resonant condition
for the three-mode opto-acoustic interactions. Here we simply assume that the size of the mirrors is
infinite so the quality factor of the TEM10 mode is solely due to optical losses such as absorption.
This assumption is reasonable when the mode number is small. Given the specifications in the main
text, Qa ≈ Qs = 2.4 × 109 and ωm/γa < 1. Therefore, it can be implemented in the resolved-
sideband cooling. (a) the TEM10 mode is 1 MHz below the TEM00 mode; (b) the TEM10 mode is
1 MHz above the TEM00 mode. From Ref. [42]

linear with a slope ∼2 mm/MHz for both panels. This indicates that to tune within
a cavity linewidth ∼0.1 MHz, the mirror position needs to be adjusted within sev-
eral 100 µm, which can be achieved easily. Therefore, we can continuously tune
between instability and cooling regimes. Figure 6.11 shows the resulting resonance
curves for both cases with the corresponding mode matching shown in Fig. 6.9.
The corresponding mode gap between the TEM10 and TEM00 modes is equal to
ωm ∼1 MHz.More importantly, there is no symmetric mode on the opposite side of
the TEM00 mode, whose presence could contribute a parametric gain with the oppo-
site sign, thereby suppressing the overall effects. The absolute value of parametric
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gain R could be larger than 1, if we further assume that the intra-cavity power Ic is
100 mW, Qm = 106, the mass of the oscillator m = 1 mg and the wavelength of light
is 1,064 nm. Since the cavity is in the resolved-sideband regime where the cavity
linewidth is much smaller than the mechanical frequency [20], this configuration can
also be applied in the resolved-sideband cooling of acoustic modes, which is less
susceptible to quantum noise.

6.7 Conclusions

We have analyzed the three-mode optomechanical parametric interactions in the
quantum picture. We have derived the quantum limit for cooling experiments with
three-mode interactions based upon the Fluctuation-Dissipation-Theorem. We have
shown the existence of tripartite quantum entanglements in this system. The simulta-
neous resonances of the carrier and sideband modes in the three-mode system allows
more efficient mechanical-mode cooling and more robust optomechanical entan-
glement than in the two-mode system. This work provides the theoretical basis for
the feasibility of realizing both ground-state cooling and stationary optomechanical
quantum entanglements using three-mode optomechanical parametric interactions
in small-scale table-top experiments and also large-scale GW interferometers.
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Chapter 7
Achieving the Ground State and Enhancing
Optomechanical Entanglement

7.1 Preface

In the previous chapter, we have seen that in order to achieve the quantum ground state
of a mechanical oscillator, with three-mode or even general optomechanical devices,
the cavity bandwidth needs to be smaller than the mechanical frequency. This is the
so-called resolved-sideband or good-cavity limit. In this chapter, we provide a new
but physically equivalent insight into the origin of such a limit: that is information
loss due to a finite cavity bandwidth. With an optimal feedback control to recover this
information, we can surpass the resolved-sideband limit and achieve the quantum
ground state. Interestingly, recovering this information can also significantly enhance
the optomechanical entanglement. Especially when the environmental temperature
is high, the entanglement will either exist or vanish, depending critically on whether
the information is recovered or not, which is a vivid example of a quantum eraser.
This is a joint research effort by Stefan Danilishin, Helge Müller-Ebhardt, Yanbei
Chen, and myself.

7.2 Introduction

Recently, achieving the quantum ground state of a macroscopic mechanical oscil-
lator has triggered great interest among physicists. It will not only have significant
impact on quantum-limited measurements [5] but will also shed light on quantum
entanglements involving macroscopic mechanical degrees of freedom [4, 24, 32, 40,
44, 57], which can be useful for future quantum computing and help us to understand
transitions between the classical and quantum domains [12, 13, 45, 6].

By using conventional cryogenic refrigeration, O’Connell et al. have successfully
cooled a 6 GHz micromechanical oscillator down to its ground state [43]. Meanwhile,
in order to cool larger-size and lower-frequency mechanical oscillators at high envi-
ronmental temperature, there have been great efforts in trying different approaches:

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 107
Springer Theses, DOI: 10.1007/978-3-642-25640-0_7,
© Springer-Verlag Berlin Heidelberg 2012
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active feedback control, and parametrically coupling the oscillator to optical or
electrical degrees of freedom [2, 3, 7–10, 18, 21, 23, 27, 30, 35, 39, 42, 47,
49, 50, 51, 54, 55]. The cooling mechanism has been extensively discussed, and
certain classical and quantum limits have been derived [11, 14, 20, 31, 33, 48, 58,
60, 59]. In the case of cavity-assisted cooling schemes, pioneering theoretical works
by Marquardt et al. [33] and Wilson-Rae et al. [59] showed that the quantum limit
for the occupation number is (γ /2ωm)

2. 1 This dictates that, in order to achieve the
ground state of the mechanical oscillator, the cavity bandwidth γ must be smaller
than the mechanical frequency ωm, which is the so-called “resolved-sideband" or
“good-cavity" limit. This limit is derived by analyzing the quantum fluctuations of
the radiation pressure force on the mechanical oscillator. From a physically equiva-
lent perspective, it can actually be attributable to information loss: information of the
oscillator motion leaks into the environment without being carefully treated, which
induces decoherence.

This perspective immediately illuminates two possible approaches for surpassing
such a limit: (i) the first one is to implement the novel scheme proposed by Elste et al.
[17], in which the quantum noise is destructively interfered, and information of the
oscillator motion aroundωm does not leak into the environment. Corbitt suggested an
intuitive understanding by thinking of an optical cavity with a movable front mirror
rather than a movable end mirror in those cooling experiments (private communi-
cation). In this hypothetical scheme, the optical fields directly reflected, and those
filtered through the cavity, both contain the information of the front-mirror motion.
If the cavity detuning is appropriate, these two pieces of information destructively
interfere with each other, and the quantum coherence of the mechanical oscillator is
maintained. (ii) the second approach is to recover the information by detecting the
cavity output. This will work because a conditional quantum state—the best knowl-
edge of the oscillator state, conditional on the measurement result—is always pure
for an ideal continuous measurement with no readout loss. Indeed, when the cavity
bandwidth is much larger than the mechanical frequency, the cavity mode will follow
the oscillator dynamics and can therefore be adiabatically eliminated. The quantum
noise can be treated as being Markovian and a standard Stochastic-Master-Equation
(SME) analysis has already shown how the conditional quantum state approaches a
pure state under a continuous measurement [15, 16, 19, 25, 38]. For the non-zero
cavity bandwidth considered here, the cavity mode has a dynamical timescale com-
parable to that of the mechanical oscillator. Correspondingly, the quantum noise has
correlations at different times, and is non-Markovian. To estimate the conditional
state, a Wiener-filtering approach is more transparent than the SME [14]. As we will
show, the conditional quantum state of the oscillator in the cavity-assisted cooling
schemes is indeed almost pure, with a residual impurity contributed by the thermal
noise, and by imperfections in detections and optomechanical entanglement between
the oscillator and the cavity mode. In order to further localize the oscillator in phase
space and achieve its ground state, an optimal feedback control is essential [11].

1 There is a factor of two difference in defining the cavity bandwidth here compared with the one
defined in Ref. [33].
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Fig. 7.1 A contour plot of the occupation number as a function of cavity bandwidth γ and detuning
� for the unconditional state (left) as obtained in Refs. [33, 39] and optimally controlled state
(right), for which the details are in Sects.7.4, 7.5, 7.6. From Ref. [50]

Fig. 7.2 Optomechanical
entanglement strength EN
as a function of temperature
T with (solid) and without
(dashed) recovering
information (details are in
Sect. 7.7). From Ref. [37]

Recovering information

Without recovering information

In Fig. 7.1, the final occupation number of the unconditional state and optimally
controlled state is shown. As long as the optimal control is applied, the mini-
mally achievable occupation number of the oscillator will not be constrained by
the resolved-sideband limit.

Another interesting issue in the optomechanical system is creating a quantum
entanglement between the cavity mode and the oscillator, or even between two oscil-
lators [24, 31,34, 40, 44, 57]. Intuitively, one might think that such an entanglement
must be very vulnerable to thermal decoherence, and that the environmental tem-
perature needs to be extremely low in order to create it. However, as shown in Ref.
[40], and in a more recent investigation [36], the environmental temperature—even
though being an important factor—affects the entanglement implicitly, and only the
ratio between the interaction strength and thermal decoherence matters. The reason
why, in Refs. [24, 31, 44, 57], the temperature plays a dominant role in determin-
ing the existence of the entanglement can also be traced back to information loss,
as briefly mentioned in Ref. [36]. Here, we will address this issue more explicitly.
Figure 7.2 shows that by recovering the information contained in the cavity output,
the optomechanical entanglement can even be revived at high temperature. This is a
vivid example of a quantum eraser first proposed by Scully and Drühl [52] and later
demonstrated experimentally [28]: quantum coherence can be revived by recovering
lost information.

The outline of this chapter is as follows: in Sect. 7.3, we will analyze the system
dynamics by applying the standard Langevin-equation approach and derive the spec-
tral densities of important dynamical quantities. In Sect. 7.4, we obtain unconditional
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Fig. 7.3 Schematic plot of
an optomechanical system
with a mechanical oscillator
x̂ coupled to a cavity mode
â, which in turn couples to
the external ingoing (âin) and
outgoing (âout) optical field.
From Ref.[37]

variances of the oscillator position and momentum, and evaluate the corresponding
occupation number, which recovers the resolved-sideband limit. In Sect. 7.5, condi-
tional variances are derived via the Wiener-filtering approach, which clearly demon-
strates that the conditional quantum state is almost pure. In Sect. 7.6, we show the
occupation number of the optimally controlled state and the corresponding optimal
controller to achieve it. In Sect. 7.7, we consider the optomechanical entanglement
and demonstrate that significant enhancements in the entanglement strength can be
achieved after recovering information. In Sect. 7.8, to motivate cavity-assisted cool-
ing experiments, we consider imperfections in a real experiment and obtain a numer-
ical estimation of the occupation number given a set of experimentally achievable
specifications. Finally, we conclude with our main results in Sect. 7.9

7.3 Dynamics and Spectral Densities

In this section, we will analyze the optomechanical dynamics and derive the spectral
densities of relevant quantities which are essential for calculating the occupation
number of the mechanical oscillator.

7.3.1 Dynamics

Even though the dynamics of such a system has been discussed extensively in the
literature [20, 33, 59], we will go through some equations for the coherence of this
book. An optomechanical system and the relevant dynamical quantities are shown
schematically in Fig. 7.3. The corresponding Hamiltonian is given by:

Ĥ = �ωc â†â+ p̂2

2m
+1

2
m ω2

m x̂2+� G0 x̂ â†â+i �

√
2γ (âine−i ω0 t â†−H.c.). (7.1)

Here,ωc andω0 are the cavity resonant frequency and the laser frequency, respec-
tively; â is the annihilation operator for the cavity mode, which satisfies [â, â†] = 1;
x̂ and p̂ denote the oscillator position and momentum, with [x̂, p̂] = i �; m is the
mass of the oscillator; G0 ≡ ω0/L is the optomechanical coupling constant, with L
the cavity length. In the rotating frame at the laser frequency ω0, a set of nonlinear
Langevin equations can be obtained:

˙̂x(t) = p̂(t)/m, (7.2)
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˙̂p(t) = −γm p̂(t)− m ω2
m x̂(t)− � G0â†(t)â(t)+ ξ̂th(t), (7.3)

˙̂a(t) = −(γ − i�)â(t)− i G0 x̂(t)â(t)+ √
2γ âin(t), (7.4)

where the cavity detuning � ≡ ω0 − ωc. To take into account the fluctuation-
dissipation mechanism of the oscillator coupled to a thermal heat bath at temperature
T, we have included the mechanical damping γm and the associated Brownian force
ξ̂th, of which the correlation function is 〈ξ̂th(t)ξ̂th(t ′)〉 = 2 m γmkB T δ(t − t ′) in
the high-temperature limit. In a cooling experiment, the cavity mode is driven by a
coherent laser and, to a good approximation, the system is linear. To linearize the
system, we simply replace any operator ô(t) with the sum of a steady-state part
and a small perturbed part, namely ô(t) → ō + ô(t).2 We assume that the mean
displacement of the oscillator is equal to zero: x̄ = 0. The solution to ā is simply
ā = √

2γ āin/(γ − i �), and āin = √
I0/(�ω0) with I0 the input optical power.

We have chosen an appropriate phase reference such that ā is real and positive. The
resulting linearized equations are:

m[ ¨̂x(t)+ γm
˙̂x(t)+ ω2

m x̂(t)] = −� Ḡ0[â†(t)+ â(t)] + ξ̂th(t), (7.5)

˙̂a(t)+ (γ − i�)â(t) = −i Ḡ0 x̂(t)+ √
2γ âin(t), (7.6)

with Ḡ0 ≡ G0ā. The input-output relation of the cavity, which relates the cavity
mode to the external continuum optical mode, is [19]:

âout(t) = √
η[−âin(t)+ √

2γ â(t)] + √
1 − η n̂(t), (7.7)

whereη is the quantum efficiency of the photodetector, and n̂ is the associated vacuum
fluctuation that is not correlated with âin. The linearized dynamics of this system are
fully described by Eqs. (7.5), (7.6) and (7.7) which can be solved in the frequency
domain.

Mechanical oscillator part—By denoting the Fourier component of any quantity
O as Õ(�), the solution for the oscillator position is:

x̃(�) = R̃eff(�)[F̃BA(�)+ ξ̃th(�)]. (7.8)

Here, the back-action force F̃BA(�) is:

F̃BA(�) = 2 � Ḡ0
√
γ χ(�)[(γ − i�)ṽ1(�)−� ṽ2(�)], (7.9)

where we have defined the amplitude quadrature ṽ1(�) and the phase quadrature
ṽ2(�) of the vacuum fluctuation, namely ṽ1(�) ≡ [ãin(�) + ã†

in(−�)]/
√

2 and

ṽ2(�) ≡ [ãin(�)− ã†
in(−�)]/(i

√
2).Due to the well-known “optical-spring” effect,

2 For simplicity, we use the same ô to denote its perturbed part.
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the mechanical response of the oscillator is modified from its original value R̃xx (�) =
−[m(�2 + 2 i γm�− ω2

m)]−1 to an effective one given by:

R̃eff(�) ≡ [R̃−1
xx (�)− 
̃(�)]−1, (7.10)

with 
̃(�) ≡ 2 � Ḡ2
0�χ, and χ ≡ [(�+�+ iγ )(�−�+ iγ )]−1.

Cavity mode part—The solution for the cavity mode is:

ã(�) = Ḡ0 x̃(�)+ i
√

2γ ãin(�)

�+�+ iγ
. (7.11)

In terms of amplitude and phase quadratures, this can be rewritten as:

ã1(�) = √
2γ χ [(−γ + i�)ṽ1(�)+� ṽ2(�)] − √

2 Ḡ0 χ � x̃(�), (7.12)

ã2(�) = √
2γ χ [−� ṽ1(�)− (γ − i�)ṽ2(�)] + √

2 Ḡ0 χ (γ − i�) x̃(�). (7.13)

Cavity output part—Similarly, we introduce amplitude and phase quadratures
for the cavity output: Ỹ1(�) ≡ [ãout(�) + ã†

out(−�)]/2, and Ỹ2(�) ≡ [ãout(�) −
ã†

out(−�)]/2. Their solutions are:

Ỹi (�) = Ỹ vac
i (�)+ √

η R̃Yi F (�) x̃(�), (i = 1, 2). (7.14)

The vacuum parts Ỹ vac
i of the output, which induce measurement shot noise, are

the following:

Ỹ vac
1 (�) = √

1 − η ñ1(�)+ √
η χ [(�2 − γ 2 −�2)ṽ1(�)+ 2 γ � ṽ2(�)], (7.15)

Ỹ vac
2 (�) = √

1 − η ñ2(�)+√
η χ [−2 γ � ṽ1(�)+(�2 −γ 2 −�2)ṽ2(�)]. (7.16)

The output responses R̃Yi F (�) are defined as [29]:

R̃Y1 F (�) ≡ −2
√
γ Ḡ0�χ, R̃Y2 F (�) ≡ 2

√
γ Ḡ0(γ − i�)χ. (7.17)

7.3.2 Spectral Densities

Given the above solutions, we can analyze the statistical properties of the dynamical
quantities. We consider all noises to be Gaussian and stationary but not necessarily
Markovian. Their statistical properties are fully quantified by their spectral densities.
We define a symmetrized single-sided spectral density S̃AB(�) according to the
standard formula [56]:

2πδ(�−�′)S̃AB(�) = 〈A(�)B̃†(�′)〉sym = 〈 Ã(�)B̃†(�′)+ B̃†(�′) Ã(�)〉.
(7.18)
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For vacuum fluctuations â1,2, we simply have S̃a1a1(�) = S̃a2a2(�) = 1 and
S̃a1a2(�) = 0.

Mechanical oscillator part—The spectral density for oscillator position is (cf.
Eqs. (7.8) and (7.9))

S̃xx (�) = |R̃eff(�)|2 S̃tot
F F (�), (7.19)

with total force-noise spectrum:

S̃F F (�) = 4 � m�3
q γ |χ |2(γ 2 +�2 +�2)+ 2 � m�2

F , (7.20)

where we have introduced characteristic frequencies for the optomechanical inter-
action �q ≡ (� Ḡ2

0/m)1/3, and the thermal noise �F ≡ √
2γmkB T/�. The spectral

density for the oscillator momentum is simply S̃pp(�) = m2�2 S̃xx (�).

Cavity mode part—The spectral density for the cavity mode is a little complicated:

Saa(�) = M0M†
0 + M0M1

† + M1M0
† + M2 S̃xx (�). (7.21)

Here, the elements of the matrix Saa are denoted by S̃ai a j (�) (i, j = 1, 2); the
matrix M0 is:

M0 ≡ √
2γ χ

[−γ + i� �

−� −γ + i�

]
; (7.22)

the matrix M1 is:

M1 ≡ 2
√

2�Ḡ2
0
√
γ |χ |2 R̃eff(�)

[−�(γ − i�) �2

(γ − i�)2 −�(γ − i�)

]
; (7.23)

the matrix M2 is:

M2 ≡ 2Ḡ2
0|χ |2

[
�2 −�(γ + i�)

−�(γ − i�) γ 2 +�2

]
. (7.24)

The cross-correlations between the cavity mode and the output [SaY ]i j ≡
S̃ai Y j (�) are given by

SaY = M0M†
3 + M0M†

1 + M1M†
3 + √

2γM2 S̃xx (�), (7.25)

with

M3 ≡
[
�2 − γ 2 −�2 2γ�

−2γ� �2 − γ 2 −�2

]
. (7.26)

The cross-correlation between the cavity mode and the oscillator is the following:
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[
S̃a1x (�)

S̃a2x (�)

]
= 2�Ḡ0

√
γχ∗ R̃∗

eff(�)M0

[
γ + i�

−�
]

+ √
2Ḡ0χ

[ −�
γ − i�

]
S̃xx (�).

(7.27)
For the oscillator momentum, S̃ak p(�) = i m� S̃ak x (k = 1, 2).
Cavity output part—As an important feature of the quantum noise in this opto-

mechanical system, there is a nonvanishing correlation between the shot noise Ŷ vac
i

and the quantum back-action noise F̂BA, and it has the following spectral densities
(cf. Eqs. (7.9), (7.15) and (7.16)):

S̃FY vac
1
(�) = 2

√
� m γ η�3

q (γ + i�)χ∗, (7.28)

S̃FY vac
2
(�) = 2

√
� m γ η�3

q �χ
∗ (7.29)

where χ∗ is the complex conjugate of χ. Correspondingly, the spectral densities for
the output quadratures are:

S̃Yi Y j (�) = δi j + η R̃Yi F (�)R̃
eff
xx (�)S̃FY vac

j
(�)

+ η [R̃Y j F (�)R̃
eff
xx (�)S̃FY vac

i
(�)]∗ + η R̃Yi F (�)R̃

∗
Y j F (�)S̃xx (�).

(7.30)
The information of the oscillator position x̂, contained in the output Ŷi , is quan-

tified by the the cross-correlations between x̂ and Ŷi , which are:

S̃xYi (�) = √
η R̃eff

xx (�)S̃FY vac
i
(�)+ √

η R̃∗
Yi F (�)S̃xx (�). (7.31)

Similarly, for the oscillator momentum, S̃pYk (�) = −i m� S̃xYk (�) (k = 1, 2).

7.4 Unconditional Quantum State and Resolved-Sideband
Limit

In the red-detuned regime (� < 0), where the cavity-assisted cooling experiments
are currently working, a delayed response of the cavity mode to the oscillator motion
gives rise to a viscous damping which can significantly reduce the thermal occupation
number of the oscillator, as shown schematically in Fig. 7.4. Physically, it is because
the mechanical response is changed into an effective one (cf. Eq. (7.10)), while the
thermal force spectrum remains the same. The ground state can be achieved when
the occupation number is much smaller than one. If we neglect the information of the
oscillator motion contained in the output, the resulting quantum state of the oscillator
will be unconditional and the corresponding occupation number of the oscillator can
be obtained with the following standard definition:

N ≡ 1

�ωm

(
Vpp

2 m
+ 1

2
m ω2

m Vxx

)
− 1

2
, (7.32)
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Fig. 7.4 A block diagram for an optomechanical system. The optomechanical cooling can be viewed
as a feedback mechanism. This reduces the thermal occupation number of the oscillator, which
has an effective temperature much lower than the heat bath. Meanwhile, some information of the
oscillator motion flows into the environment without being appropriately recovered, leading to the
resolved-sideband limit. From Ref. [37]

where the variances of the oscillator position Vxx and momentum Vpp are related to
the spectral densities by the following formula:

Vxx,pp =
∞∫

0

d�

2π
S̃xx,pp(�). (7.33)

Since N is dimensionless, it only depends on the following ratios:

�q/ωm, γ /ωm, �/ωm, �F/ωm, γm/ωm . (7.34)

The oscillator mass and frequency only enter implicitly. As long as these ratios are
the same in different experiments, the final achievable thermal occupation number
of different oscillators will be identical.

The resulting N is shown in the left panel of Fig. 7.1. To highlight the quantum
limit, we have fixed the interaction strength �q with �q/ωm = 0.5, and we have
neglected the thermal force noise. In the optimal cooling regime with � = −ωm, a
simple closed form for the occupation number can be obtained [20]

N = γ 2/(2ωm)
2 + [1 + (γ /ωm)

2](�q/ωm)
3

4[1 + (γ /ωm)2 − 2(�q/ωm)3)] . (7.35)

The resolved-sideband limit is achieved for a weak interaction strength�q → 0,
and

Nlim = γ 2/(2ωm)
2. (7.36)

In the next section, we will demonstrate that such a limit can indeed be surpassed
by recovering the information contained in the cavity output.

7.5 Conditional Quantum State and Wiener Filtering

Since, given a non-zero cavity bandwidth, the cavity output contains the informa-
tion of the oscillator position (cf. Eq. (7.31)), according to the quantum mechanics,
measurements of the output will collapse the oscillator wave function and project
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it into a conditional quantum state that is in accord with the measurement result.
The conditional state or equivalently its Wigner function is completely determined
by the conditional mean [xcond, pcond] and the covariance matrix Vcond between the
position and momentum. More explicitly, the Wigner function reads

W (x, p) = 1

2π
√

det Vcond
exp

[
−1

2
δ 
X Vcond−1

δ 
X T
]
, (7.37)

with δ 
X = [x − xcond, p − pcond]. Since more information is acquired, the con-
ditional quantum state is always more pure than its unconditional counterpart.
In the limiting case of an ideal measurement, the conditional quantum state of the
mechanical oscillator would be pure with variances constrained by the Heisenberg
Uncertainty, i.e., det Vcond|pure state = �

2/4.
To derive the conditional mean and variances, a mathematical tool that is usu-

ally applied is the Stochastic-Master-Equation (SME), which is most convenient for
treating Markovian process [15, 16, 19, 25, 38]. In the case considered here, how-
ever, the cavity has a bandwidth comparable to the mechanical frequency, and the
quantum noise is non-Markovian. The corresponding conditional mean and variance
can be derived more easily with the Wiener-filtering approach. As shown in Ref.
[14], the conditional mean of any quantity ô(t), given a certain measurement result
Y (t ′) (t < t ′), can be written as:

o(t)cond ≡ 〈ô(t)〉cond =
t∫

−∞
dt ′ Ko(t − t ′)Y (t ′). (7.38)

Here, Ko(t) is the optimal Wiener filter, and is derived by using the standard
Wiener-Hopf method. Its frequency representation is:

K̃o(�) = 1

ψ̃+(�)

[
S̃oY (�)

ψ̃−(�)

]

+
≡ G̃o(�)

ψ̃+(�)
, (7.39)

where [ ]+ means taking the causal component and ψ̃± is a spectral factorization
of the output S̃Y Y ≡ ψ̃+ψ̃−, with ψ̃+ (ψ̃+) and its inverse analytical in the upper-
half (lower-half) complex plane, and we have introduced G̃o(�). The conditional
covariance between Â and B̂ is given by:

V cond
AB ≡ 〈 Â(0)B̂(0)〉cond

sym − 〈 Â(0)〉cond〈B̂(0)〉cond

=
∞∫

0

d�

2π

[
S̃AB(�)− G̃ A(�)G̃

∗
B(�)

]
.

(7.40)

Since the first term is the unconditional variance, the second term can be inter-
preted as reductions in the uncertainty due to acquiring additional information from
the measurement.
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These results can be directly applied to an optomechanical system. Suppose we
measure the following quadrature of the cavity output:

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ, (7.41)

and its spectral density is:

S̃Y Y (�) = S̃Y1Y1(�) sin2 ζ + �[S̃Y1Y2(�)] sin(2ζ )+ S̃Y2Y2(�) cos2 ζ (7.42)

The cross-correlation between Ŷζ and the oscillator position (momentum) is
simply

S̃xY,pY = S̃xY1,pY1(�) sin ζ + S̃xY2,pY2(�) cos ζ. (7.43)

Substituting for the spectral densities S̃Yi Y j , S̃xYi ,pYi and S̃xx,pp, derived in
Sect. 7.3.2 into Eq. (7.40), we can obtain the conditional covariances of the oscillator
position and momentum, namely V cond

xx , V cond
pp and V cond

xp .

To quantify how pure the conditional quantum state is, the occupation number,
defined in Eq. (7.32), is no longer an adequate summarizing figure. This is because
generally V cond

xp is not equal to zero, and a pure squeezed state can have a large
occupation number, as defined in Eq. (7.32). A well-defined figure of merit is the
uncertainty product, which is given by:

U ≡ 2

�

√
V cond

xx V cond
pp − V cond

xp
2
. (7.44)

From this, we can introduce an effective occupation number:

Neff = (U − 1)/2, (7.45)

which quantifies how far the quantum state deviates from the pure one with Neff = 0.
This is identical to the previous definition (cf. Eq. (7.32)) in the limiting case of
V cond

xx = V cond
pp /(m2ω2

m) and V cond
xp = 0, which is actually satisfied in most of the

parameter regimes plotted in Fig. 7.1.
For a numerical estimate, and for comparing with the unconditional quantum state

in the previous section, we assume the same specification and an ideal phase quadra-
ture detection with ζ = 0 and η = 1. The resulting effective occupation number is
shown in Fig. 7.5. Just as expected, the conditional quantum state is not constrained
by the resolved-sideband limit and is almost independent of detailed specifications of
γ and�. The residual occupation number or impurity of the state, shown in Fig. 7.5,
is due to the information of the oscillator motion being confined inside the cavity.
Such a confinement is actually attributable to the quantum entanglement between
the cavity mode and the oscillator, as we will discuss in Sect. 7.7.
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Fig. 7.5 A contour plot for
the effective occupation
number of the conditional
quantum state. For
comparison, we have chosen
the same specifications as in
the unconditional case. From
Ref. [37]
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7.6 Optimal Feedback Control

Even though the conditional quantum state has minimum variances in position and
momentum, the oscillator itself actually wanders around in phase space, with its
center given by the conditional mean [xcond(t), pcond(t)] at any instant t. In order
to localize the mechanical oscillator and achieve its ground state, we need to apply
a feedback control, i.e., a force onto the oscillator, according to the measurement
results. Such a procedure is shown schematically in Fig. 7.6. Depending on different
controllers, the resulting controlled state will have different occupation numbers.
The minimum occupation number can only be achieved if the unique optimal con-
troller is applied. In Ref. [11], the optimal controller was derived for a general linear
continuous measurement. It can be directly applied to the optomechanical system
with non-Markovian quantum noise, as considered here.

Specifically, given the measured output quadrature Ŷζ , the feedback force applied
to the oscillator can be written in the time and the frequency domains as:

F̂FB(t) =
t∫

−∞
dt ′ C(t − t ′)Ŷζ (t ′) , and F̃FB(�) = C̃(�)Ỹζ (�), (7.46)

where C(t) is a causal control kernel. The equation of motion for the oscillator will
be modified to (cf. Eq. (7.6)):

m[ ¨̂xctrl(t)+γm
˙̂xctrl(t)+ω2

m x̂ctrl(t)] = −� Ḡ0[â†(t)+â(t)]+ξ̂th(t)+ F̂FB(t). (7.47)

In the frequency domain, the controlled oscillator position x̂ctrl is related to the
uncontrolled one x̂ by:

x̃ctrl(�) = x̃(�)+ R̃eff
xx (�)C̃(�)Ỹζ (�)

1 − R̃eff
xx (�)R̃Yζ F (�)C̃(�)

. (7.48)

As shown in Ref. [11], by minimizing the effective occupation number of the
controlled state, the optimal controller can be derived, and it is given by:

C̃opt(�) = − R̃eff
xx (�)

−1
K̃ opt

ctrl(�)

1 − R̃Y F (�)K̃
opt
ctrl(�)

, (7.49)
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Fig. 7.6 A block diagram for the feedback control scheme. A force is applied onto the mechanical
oscillator, based on the measurement result, with a control kernel C̃ . In the detuned case (� �= 0,)
the radiation pressure and the control force work together to place the mechanical oscillator near
its quantum ground state. From Ref. [37]

where

K̃ opt
ctrl(�) = 1

ψ̃+(�)

⎡

⎣G̃x (�)− Gx (0)√
V cond

pp /V cond
xx − i �

⎤

⎦, (7.50)

with G̃x (�) = [S̃xY (�)/ψ̃−(�)]+, as defined in Eq. (7.39).
From Eq. (7.48), we can find out the spectral densities and the covariance for the

controlled position and momentum. As it turns out, there is an intimate connection
between the optimally-controlled state and the conditional quantum state. Due to the
requirement of stationarity, this ensures that V ctrl

xp = 0 [Vxp = (1/2)mV̇xx (0) = 0 ],
and therefore the optimally-controlled state is always less pure than the conditional
state. The corresponding purity of the optimally controlled state is [17]

U opt
ctrl = 2

�

√
V ctrl

xx V ctrl
pp |optimally controlled = 2

�

[√
V cond

xx V cond
pp + |V cond

xp |
]
. (7.51)

The occupation number N for the optimally-controlled state was shown in Fig. 7.1
in the introduction. Since V cond

xp is quite small compared with V cond
xx,pp, the resulting

occupation number is very close to that of the conditional quantum state. Therefore,
as long as the optimal controller is applied, the mechanical oscillator is almost in its
quantum ground state, and the resolved-sideband limit does not impose significant
constraints.

7.7 Conditional Optomechanical Entanglement
and Quantum Eraser

In this section, we will analyze the optomechanical entanglement between the oscil-
lator and the cavity mode. In particular, we will show: (i) the residual impurity of the
conditional quantum state of the oscillator is induced by this optomechanical entan-
glement; (ii) if the environmental temperature is high, the existence of entanglement
critically depends on whether the information in the cavity output is recovered or
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not. In other words, the quantum correlation is affected by the “eraser” of certain
information, which manifests in the idea of the “quantum eraser” proposed by Scully
and Drühl [52].

The existence of optomechanical entanglement is shown in the pioneering work
by Vitali et al. [57]. The entanglement criterion, i.e., inseparability, is based upon
positivity of the partially transposed density matrix [26, 1, 56]. In the case of Gaussian
variables considered here, this reduces to the following uncertainty principle in phase
space:

Vpt + 1

2
K ≥ 0, K =

(
0 −2i
2i 0

)
, (7.52)

with K denoting the commutator matrix. Partial transpose is equivalent to time
reversal and the momentum of the oscillator changes sign. The corresponding
partially transposed covariance matrix Vpt = V| p̂→−p. From the Williamson the-
orem, there exists a symplectic transformation S ∈ Sp(4,R) such that STVptS =
⊕2

i=1 Diag[λi , λi ]. Using the fact that STKS = K, the above uncertainty principle
requires λi ≥ 1. If ∃λ < 1, the states are entangled. The amount of entanglement
can be quantified by the logarithmic negativity EN [60, 61], which is defined as

EN ≡ max[− ln λ, 0]. (7.53)

Given a 4 × 4 covariance matrix V between the oscillator [x̂, p̂] and the cavity
mode [â1, â2], the simplectic eigenvalue λ has the following closed form:

λ =
√
� −

√
�2 − 4 det V/

√
2, (7.54)

where � ≡ det A + det B − 2 det C and

V = 〈[x̂, p̂, â1, â2]T [x̂, p̂, â1, â2]〉sym =
[

A2×2 C2×2

CT
2×2 B2×2

]
. (7.55)

In Ref. [57], the information contained in the cavity output was ignored and uncon-
ditional covariances were used to evaluate the entanglement measure EN . We can
call this unconditional entanglement. If the information were recovered, conditional
covariances obtained in Eq. (7.40) would replace the unconditional counterparts.
In Fig. 7.7, we compare the unconditional and conditional entanglement. It clearly
shows that the entanglement strength increases dramatically in the conditional case.
Additionally, the regime where the entanglement is strong is in accord with where the
conditional quantum state of the oscillator is less pure as shown in Fig. 7.5. Indeed,
there is a simple analytical relation between the effective occupation number Neff
and the logarithmic negativity EN in this ideal case with no thermal noise—that is

EN = −2 ln
[√

Neff + 1 − √
Neff

]
≈ 2

√
Neff , (7.56)
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Fig. 7.7 Contour plots of the logarithmic negativity EN for unconditional (left) and conditional
(right) entanglement between the cavity mode and the oscillator. We have assumed that �q/ωm =
0.5 to make sure that the resulting optomechanical system is stable in the parameter regimes shown
in the figure. To manifest the entanglement, we have ignored thermal noise. From Ref. [37]

Fig. 7.8 Logarithmic negativity EN as a function of cavity bandwidth and environmental temper-
ature. We have chosen �q/ωm = 1, � = 0, Qm = 5 × 105 and ωm/2π = 106 Hz. The shaded
regimes are where entanglement vanishes. From Ref. [37]

for small Neff [56]. Therefore, the limitation of a cooling experiment actually comes
from the optomechanical entanglement, which justifies our claim in Sect. 7.5

If we take into account the environmental temperature as shown in Fig. 7.2 in the
introduction part, the unconditional entanglement vanishes when the temperature
is higher than 10 K given the following specifications: γ /ωm = 1, �/ωm = −1,
�q/ωm = 1 and Qm = 5 × 105 with ωm/2π = 106 Hz. In contrast, the condi-
tional one exists even when the temperature becomes higher than 100 K. Therefore,
only when the information contained in the cavity output is properly treated will
the observer be able to recover the quantum correlation between the oscillator and
the cavity mode at high temperature. In fact, the temperature is not the dominant
figure that determines the existence of quantum entanglement. A recent investiga-
tion showed that, in the simple system with an oscillator interacting with a coherent
optical field, quantum entanglement always exists between the oscillator and outgo-
ing optical field [36]. The resulting entanglement strength only depends on the ratio
between the characteristic interaction strength �q and the thermal-noise strength
�F , rather than on the environmental temperature. We can make some correspon-
dences to the results in Ref. [36] by assuming a large cavity bandwidth. In such
a case, the cavity mode exchanges information with the external outgoing field at
a timescale much shorter than the thermal decoherence timescale of the oscillator.
In Fig. 7.8, we show the resulting EN of the conditional entanglement as a function
of cavity bandwidth and environmental temperature with fixed interaction strength.
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Fig. 7.9 Occupation number of the optimally-controlled state as a function of the temperature and
the cavity detuning. The other specifications are chosen to be achievable in a real experiment, and
are detailed in the main text. From Ref. [37]

The entanglement can persist at a very high temperature (104 K, as shown in this
plot!) as long as the cavity bandwidth is large. This, to some extent, recovers the
results obtained in Ref. [52].

7.8 Effects of Imperfections and Thermal Noise

To motivate cavity-assisted cooling experiments, we will consider the effects of
various imperfections that exist in a real experiment, which include nonunity quan-
tum efficiency of photodetection, thermal noise, and optical loss. The effects of
nonunity quantum efficiency and thermal noise have already been taken into account
in the equations of motion. With an optical loss, some uncorrelated vacuum fields
enter the cavity in an unpredictable way. A small optical loss will not modify the
cavity bandwidth significantly but will introduce an additional force noise, which is
(cf. Eq. (7.28))

Sadd
F F (�) = 4 � m�3

q γε |χ |2(γ 2 +�2 +�2), (7.57)

where γε ≡ c ε/(4L) is the effective bandwidth that is induced by an optical loss
of ε. For numerical estimations, we will use the following experimentally achievable
parameters:

m = 1 mg, I0 = 3 mW, F = 3 × 104, ωm/(2π) = 105 Hz,

Qm = 5 × 106, L = 1 cm, η = 0.95, ε = 10 ppm,
(7.58)

where F is the cavity finesse, and Qm ≡ ωm/(γm) is the mechanical quality factor.
This gives a coupling strength of �q/ωm ≈ 0.6 (for � = −ωm,) and a cavity
bandwidth γ /ωm = 2.5.The final results will not change if we increase both the mass
and power by the same factor, which essentially gives the same effective interaction
strength.

In Fig. 7.9, we show the corresponding occupation number for the controlled
state as a function of environmental temperature and cavity detuning. An occupation
number less than one can be achieved when the environmental temperature becomes
lower than 10 K given the above specifications. If the oscillator can sustain a higher
optical power, one can increase the interaction strength to reduce thermal excitations.
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7.9 Conclusions

We have shown that both the conditional state and the optimally-controlled state of
the mechanical oscillator can achieve a low occupation number, even if the cavity
bandwidth is large. Therefore, as long as the information of the oscillator motion con-
tained in the cavity output is carefully recovered, the resolved-sideband limit will not
pose a fundamental limit in cavity-assisted cooling experiments. This work can help
in the understanding of the intermediate regime between optomechanical cooling
and feedback cooling, which will be useful in the search for the optimal parameters
for a given experimental setup. In addition, we have shown that the optomechan-
ical entanglement between the cavity mode and the oscillator can be significantly
enhanced by recovering information, and its existence becomes insensitive to the
environmental temperature.
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Chapter 8
Universal Entanglement Between an Oscillator
and Continuous Fields

8.1 Preface

In the previous two chapters, we have studied the optomechanical entanglement
between the optical cavity modes and the mechanical oscillator, both of which have
finite degrees of freedom. In this chapter, we study the entanglement between a
mechanical oscillator and a coherent continuous optical field which contains infi-
nite degrees of freedom. This system is interesting because it lies in the heart of
all optomechanical systems. With a rigorous functional analysis, we develop a new
mathematical framework for treating quantum entanglement that involves infinite
degrees of freedom. We show that quantum entanglement is always present between
the oscillator and the continuous optical field-even when the environmental temper-
ature is high, and the oscillator is highly classical. Such a universal entanglement is
also shown to be able to survive more than one mechanical oscillation period, if the
characteristic frequency of the optomechanical interaction is larger than that of the
thermal noise. In addition, we introduce effective optical modes, which are ordered
by their entanglement strength, to better understand the entanglement structure, in
analogy with the energy spectrum of an atomic system. In particular, we derive the
optical mode that is maximally entangled with the mechanical oscillator, which will
be useful for future quantum computing, and for encoding information into mechan-
ical degrees of freedom. This is a joint research effort by Stefan Danilishin, Yanbei
Chen and myself. It is published in Phys. Rev. A 81, 052307 (2010).

8.2 Introduction

Entanglement, as one of the most fascinating features of quantum mechanics, lies
in the heart of quantum computing and many quantum communication protocols
[2]. Great efforts have been devoted to theoretical and experimental investigations of
quantum entanglements in different systems with discrete or continuous variables.
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Due to recent significant achievements in fabricating high-Q mechanical oscilla-
tors, the quantum entanglement with mechanical degrees of freedom has aroused
great interest. Especially, many table-top experiments have demonstrated significant
cooling of the mechanical degrees of freedom via feedback or passive damping (self-
cooling) [2, 3, 7–10, 14, 19, 20, 21, 24, 25, 29, 32, 34, 38, 40, 41, 42, 45, 46], which
in principle allows us to achieve the quantum ground state [11, 12, 18, 26, 28, 39,
49, 51, 52]. More recently, with a conventional cryogenic refrigeration, O’Connell
et al. have succeeded in the ground-state cooling of a micromechanical oscillator
[35]. These experiments not only illuminate quantum-limited measurements [5], but
also pave the way for creating quantum entanglement with mechanical degrees of
freedom. Theoretical analysis shows that by coupling a mechanical oscillator to
a Fabry-Pérot cavity, one can create stationary (Einstein-Podosky-Rosen) EPR-type
quantum entanglement between optical modes and an oscillator [48], or even between
two macroscopic oscillators [22, 27]. In Ref. [33], it was shown that entanglement
between two oscillators can also be created by conditioning on the continuous mea-
surements of the common and differential optical modes in a laser interferometer.

Here, we consider the quantum entanglement between a mechanical oscilla-
tor and a coherent optical field, which models the essential process in all above-
mentioned optomechanical systems. There are two important motivations behind this:
(1) evaluation of entanglement involving a field which contains infinite degrees of
freedom. The entanglement structure itself is an interesting problem. To our knowl-
edge, only finite-degrees-of-freedom entanglements have been investigated in the
literature; (2) the effect of thermal decoherence. There is an interesting observa-
tion: on the one hand, the environmental temperature enters as an explicit factor and
directly determines the existence of the optomechanical entanglement considered in
Refs. [20, 48]; on the other hand, only the ratio between the optomechanical interac-
tion and thermal decoherence determines the existence of the entanglement instead of
the thermal decoherence alone, and the environmental temperature only influences
the entanglement strength implicitly as shown in Refs. [15, 33]. By studying this
essential process, we can have a complete picture of the thermal decoherence.

The model and its spacetime diagram are shown schematically in Fig. 8.1.
A similar system was analyzed previously by Pirandola et al. [37]. They used a
narrow-detection-band approximation to introduce sideband modes, which maps the
outgoing field into two effective degrees of freedom. In the situation here, sideband
modes are not well-defined, because the interaction turns off at t = 0 and only the
half-space [−∞, 0] is involved. Instead, we will directly evaluate the entanglement
between the oscillator and the outgoing field b̂ (with infinite degrees of freedom),
using the positivity of partial transpose (PPT) criterion [1, 13, 23, 36, 43, 44, 47]. Only
in the weak-interaction and low-thermal-noise limit can we make correspondences
between our results and those obtained in Ref. [37].

The outline of this chapter is as follows: in Sect. 8.3, we will analyze the dynamics
of this system, and introduce the covariance between the dynamical quantities, which
will be essential for analyzing the quantum entanglement. In Sect. 8.4, we take
the continuous limit and extend the PPT criterion to the case with infinite degrees
of freedom. In addition, we apply a rigorous functional analysis and obtain the
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Fig. 8.1 A schematic plot of the model and the corresponding spacetime diagram. Here x̂, â and b̂
denote the oscillator position, ingoing and outgoing field respectively. For clarity, we intentionally
place â and b̂ on different sides of the oscillator world line. The tilted lines represent the light
rays. The optical field entering after the moment of interest (t = 0) is out of causal contact, and thus
irrelevant. From Ref. [31]

entanglement measure of which a simple scaling is derived. In Sect. 8.5, we study
the survival time of the entanglement under thermal decoherence. In Sect. 8.6, we
introduce effective optical modes to understand the entanglement structure and obtain
the maximally-entangled mode. In Sect. 8.7, we make a numerical estimate given a set
of experimental achievable specification to motivate future experiment to investigate
entanglement. We conclude with our main results in Sect. 8.8.

8.3 Dynamics and Covariance Matrix

Due to the linearity of the system dynamics, its Heisenberg equations of motion are
formally identical to the classical equations of motion, apart from the fact that every
dynamical quantity is now treated as a quantum operator. For the optical field, the
standard input-output relations are:

b̂1(t) = â1(t), (8.1)

b̂2(t) = â2(t)+ κ x̂(t). (8.2)

Here, â1(b̂1) and â2(b̂2) are the amplitude and phase quadratures of the ingoing
(outgoing) optical field. They are defined through the optical electric field: Êin(t) =√

4π�ω0Sc

[
(ā + â1(t)) cosω0t + â2(t) sinω0t

]
which contains a steady-state part ā

and quantum fluctuation parts â1,2. In this equation, S is the cross-sectional area of the
optical beam, ā = √

I0/(�ω0) with I0 the optical power and ω0 the laser frequency.
A similar relation for Êout and b̂1,2 also holds. In Eq. (8.2), the displacement of the
mechanical oscillator x̂ modulates the phase quadrature of the outgoing optical field
with an optomechanical coupling constant κ ≡ ω0ā/c. To quantify the interaction
strength, we introduce a characteristic interaction frequency �q , which is defined
by �q ≡ √

�κ2/m.
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For the mechanical oscillator, the equations of motion are given by:

˙̂x(t) = p̂(t)

m
, (8.3)

˙̂p(t) = −γm p̂(t)− mω2
m x̂(t)+ F̂rad(t)+ ξ̂th(t). (8.4)

Here, p̂ is the oscillator momentum. To include the fluctuation-dissipation mecha-
nism of the oscillator coupled to the thermal heat bath at temperature T, we have
introduced the mechanical damping γm, and the corresponding thermal force noise
ξ̂th which has the following correlation function in the high temperature limit:
〈ξ̂th(t)ξth(t ′)〉 = 2mγmkB T δ(t − t ′) ≡ 2�m�2

Fδ(t − t ′) with �F a characteristic
frequency of the thermal noise. The presence of thermal noise ξ̂th ensures the correct
commutator between x̂(t) and p̂(t) [16]. The radiation-pressure force F̂rad, up to the
first order in the quantum fluctuation, is proportional to â1(t), and F̂rad(t) = �κ â1(t).

The above equations completely quantify the linear dynamics of the system and
they can be easily solved. The solution to oscillator position x̂ is simply:

x̂(t) =
∫ t

−∞
dt ′Gx (t − t ′)

[
�κ â1(t

′)+ ξ̂th(t
′)
]
, (8.5)

where the Green’s function Gx (t) ≡ e−γm t sin(ωmt)/(mωm).The radiation-pressure
term �κ â1 induces quantum correlations between the oscillator and the optical field,
but it is undermined by ξ̂th. This leads to the question of whether quantum entangle-
ment exists or not, after evolving the entire system from t = −∞ to 0.

Since the variables involved are Gaussian, and linear dynamics will preserve Gaus-
sianity, the quantum entanglement is completely encoded in the covariance matrix
V. With the optical field labeled by the continuous time coordinate t, elements of V
involving optical degrees of freedom are defined in the functional space L2[−∞, 0].
Specifically,

V =
[

A CT

C B

]
. (8.6)

Here Ai j = 〈 �Xi �X j 〉sym(i, j = 1, 2), with vector �X ≡ [x̂(0), p̂(0)] and
〈 �Xi �X j 〉sym ≡ 〈 �Xi �X j + �X j �Xi 〉/2 denoting the symmetrized ensemble average;
Ci j and Bi j should be viewed as vectors and operators in L2[−∞, 0]. In the coor-
dinate representation, (t |Ci j ) = 〈 �Xi b̂ j (t)〉sym and (t |Bi j |t ′) = 〈b̂i (t)b̂ j (t ′)〉sym, in
which ( | ) denotes the scalar inner product in L2[−∞, 0].
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8.4 Universal Entanglement

According to Refs. [1, 50], in order for one particle and a joint system of arbitrarily
large N particles to be separable, a necessary and sufficient condition is that the
partially-transposed density matrix 	T1

1|N (with respect to the first particle) should be

positive semidefinite, i.e., 	T1
1|N ≥ 0. In phase space of continuous Gaussian variables,

this reduces to the Uncertainty Principle:

Vpt + 1

2
K ≥ 0. (8.7)

Here, the commutator matrix K = ⊕N+1
k=1 2σy with σy denoting a Pauli matrix.

According to the Williamson theorem, there exists a symplectic transformation
S ∈ Sp(2N+2,R) such that STVptS = ⊕N+1

k=1 Diag[λk, λk]. Using the fact that
STKS = K, the above Uncertainty Principle reads λk ≥ 1. If this fails to be the
case, i.e., ∃λk < 1, the states are entangled. The amount of entanglement can be
quantified by the logarithmic negativity EN [47], which is defined as:

EN ≡ max
[∑

k
ln λk, 0

]
for k : λk < 1. (8.8)

In the case considered here, N approaches ∞, and the partial transpose is equiv-
alent to time reversal and therefore Vpt = V| p̂(0)→− p̂(0). According to Ref. [47], λk

can be obtained by solving an eigenvalue problem:

Vptv = 1

2
λK v, (8.9)

where v ≡ [α0, β0, |α), |β)]T with | f ) denoting the vector in L2[−∞, 0].
Normalizing x̂ and p̂ with respect to their zero-point values, the commutator reads
[x̂, p̂] = 2 i. For the optical field, we set [b̂1(t), b̂2(t ′)] = 2i δ(t − t ′), which gives
the coordinate representation of K.

Due to uniqueness of |α) and |β) in terms of α0 and β0 for any λ < 1 (non-
singular), Eq. (8.9) leads to the following characteristic equation [cf. Eq. (8.6)]

det[A + λ σy − CT(λ σy + B)−1C]. = 0 (8.10)

It can be shown that:

(λ σy + B)−1 =
[

1 + B†
λ M−1 Bλ −B†

λ M−1

−M−1 Bλ M−1

]
, (8.11)

where we have used the fact that B†
12 = B21 in L2[−∞, 0] and have defined

Bλ ≡ B12 − i λ and M ≡ B22 − B†
λ Bλ.
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Fig. 8.2 Logarithmic
negativity EN as a function
of the ratio �q/�F . A
mechanical quality factor
Qm = 103 is chosen. From
Ref. [31]

To solve this characteristic equation, we need to invert the operator M which can
be achieved via the Wiener-Hopf method. 1 Given any function |g) = M−1|h), in
the frequency domain as:

g̃(�) =
∫ 0

−∞
dt ei � t M−1|h) = 1

ψ̃ −

[
h̃

ψ̃+

]

−
. (8.12)

Here, [ ]− means taking the causal part of the given function (i.e., with poles in
the lower-half complex plane), and the factorization

ψ̃+ψ̃− ≡ �+ i λ � κ2(G̃x − G̃∗
x )+ 2� m κ2�2

F G̃x G̃∗
x (8.13)

with� ≡ 1−λ2, and G̃x denoting the Fourier transformation of Gx (t). In the above
equation, ψ̃+(ψ̃−) and its inverse are analytic in upper-half (lower-half) complex
plane, and ψ̃+(−�) = ψ̃∗+(�) = ψ̃−(�). In deriving Eq. (8.13), we have used
〈âi (t) â j (t ′)〉sym = δi j δ(t − t ′), and the correlation function for the thermal noise.

Finally, an implicit polynomial equation for the symplectic eigenvalue λ is derived
from Eq. (8.10). As it turns out, there always exists one eigenvalue λ whose mag-
nitude is smaller than one. In Fig. 8.2, the corresponding logarithmic negativity
[c.f. Eq. (8.8)] is shown as a function of �q/�F . For a high-Q oscillator Qm ≡
ωm/γm � 1, up to the leading order of 1/Qm, a very elegant expression for EN
can be derived:

EN = 1

2
ln

[

1 + 25

8

�2
q

�2
F

]

. (8.14)

This only depends on the ratio between �q and �F , which clearly indicates the
universality of the quantum entanglement. The reason why thermal decoherence
(�F ) alone determines the existence of entanglement in Refs. [22, 48] originates
from the finite transmission of the cavity, and the information of the cavity mode and
the oscillator motion leaks into the environment, inducing additional decoherence.
This is addressed thoroughly in Ref. [30].

1 An introduction of this method in solving a similar problem can be found in the appendix of
Ref. [30].



8.5 Entanglement Survival Duration 133

8.5 Entanglement Survival Duration

We now investigate how long such an entanglement can survive under thermal deco-
herence. After turning off the optomechanical coupling at t = 0, the mechanical
oscillator freely evolves for a finite duration τ, driven only by thermal noise. Due to
the thermal decoherence, entanglement will gradually vanish. Mathematically, the
symplectic eigenvalue will become larger than unity when τ is larger than the survival
time τs . By replacing [x̂(0), p̂(0)] with [x̂(τ ), p̂(τ )] and making similar analysis, up
to the leading order of 1/Qm, we find that τs satisfies a transcendental equation:

4�4
F θ

2
s − (2�2

F +�2
q)

2 sin2 θs − 25ω4
m = 0, (8.15)

with θs ≡ ωmτs . In the case of �q < �F < ωm, the oscillating term can be
neglected, leading to:

θs = 5

2

ω2
m

�2
F

= 5 Qm

2 n̄th + 1
, (8.16)

where we have defined the thermal occupation number n̄th through kB T/(�ωm) =
n̄th + (1/2). Therefore, in this case, if Qm is larger than n̄th, the entanglement
will be able to survive longer than one oscillation period. Since Qm > n̄th is also
the requirement that the thermal noise induces a momentum diffusion smaller than
its zero-point uncertainty [5], this condition is what we intuitively expect. In the
strong interaction case with �q � �F , the transcendental equation can be solved
numerically, showing that θs > 1 is always valid, and that the entanglement can
survive at least up to one oscillation period.

8.6 Maximally-Entangled Mode

To gain insight into the structure of this entanglement, we apply the techniques
in Ref. [17] and decompose the outgoing field into independent single modes, by
convoluting them with some weight functions fi , namely

Ôi ≡ ( fi |b̂), [Ôi , Ô†
j ] = 2 δi j , (8.17)

which requires ( fi | f j ) = δi j . If we define gi1 ≡ �[ fi ] and gi2 ≡ �[ fi ], the single-
mode quadratures will be

X̂i ≡ (Ôi + Ô†
i )/

√
2 =

∫ 0

−∞
dt gi1 b̂1 − gi2 b̂2, (8.18)

Ŷi ≡ (Ôi − Ô†
i )/(i

√
2) =

∫ 0

−∞
dt gi2 b̂1 + gi1 b̂2. (8.19)
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Different choices of weight function will generally give optical modes that have
different strengths of entanglement with the mechanical oscillator. The function of
particular interest is the one that gives an effective optical mode maximally entangled
with the oscillator. Using the fact that logarithmic negativity is an entanglement
monotone, the optimal weight function can be derived from the following constrained
variational equation:

δ E sub
N

δ gi
+ μi gi = 0 (i = 1, 2), (8.20)

where we have neglected unnecessary indices, μk is a Lagrange multiplier due to
the constraint ( f | f ) = 1, and E sub

N quantifies the entanglement in the subsystem

consisting of the oscillator and the effective optical mode [x̂(0), p̂(0), X̂ , Ŷ ]. As it
turns out, the optimal weight functions g1,2 have the shape of a decay oscillation,
with poles ω given by the following polynomial equation:

[(ω − ωm)
2 + γ 2

m][(ω + ωm)
2 + γ 2

m] + χ = 0, (8.21)

where the parameter χ is a functional of g1,2, and also depends on �q and �F .

Therefore, the weight functions are

gk(t) = Ak eγg t cos(ωg t + θk) (k = 1, 2), (8.22)

withγg andωg being imaginary and real parts ofω.Analytical solutions to parameters
Ak, ωg, γg and θk require exact expression for χ in terms of gk,�q and�F ,which is
rather complicated. Instead, we numerically optimize these parameters to maximize
E sub

N .

Taking into account ( f | f ) = 1, A1 and A2 can be reduced to a single
parameter ζ, which is defined through

A2
k = 4 γg(γ

2
g + ω2

g) cos2[ζ + k(π/2)]
γ 2
g + ω2

g + γ 2
g cos(2θk)+ γg ωg sin(2θk)

. (8.23)

From Eq. (8.21), ω2
g − γ 2

g = ω2
m − γ 2

m . In addition, a local unitary transformation
(rotation and squeezing) will not change the symplectic eigenvalue. Without loss of
generality, we can fix θ1 = π/2 and θ2 = 0. Therefore, only two parameters ωg and
ζ need to be optimized.

In the special case of the weak-interaction and low-thermal-noise limit (�q , �F

� ωm), the optimal ζopt is equal to π/4, which indicates A1 ≈ A2 = 2
√
γm for a

high-Q oscillator. In addition, as shown in the upper panel of Fig. 8.3 , the optimal
ω

opt
g = ωm, leading to:

f (t) = 2
√
γmeγm t±i ωm t+φ0 . (8.24)
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Fig. 8.3 Logarithmic negativity E sub
N as a function of quantity (ωg−ωm)/ωm in the weak-interaction

and low-thermal-noise case (upper panel) and strong-interaction and high-thermal-noise case (lower
panel). In the first case, we have chosen Qm = 103, �q/ωm = �F/ωm = 2 × 10−2. In the second
case, Qm = 106 (independent of Qm for higher Qm),�q/ωm = 50, �F/ωm = 20 and ζ = π/3.
From Ref. [31]

Therefore, the optimal weight function has the same shape as the Stokes and Anti-
Stokes sideband modes. This is similar to what has been obtained in Refs. [17, 37];
however, due to causality, the weight function here is defined in L2[−∞, 0] rather
than in L2[−∞,∞] which is essential for defining sideband modes.

In the case of strong interaction and high thermal noise (�q , �F > ωm), the
optimal ωg deviates from ωm and depends on �F and �q , as shown in the lower
panel of Fig. 8.3. More generally, the optimal ζopt = π/3, and ωopt

g can be fitted by

ω
opt
g ≈ (0.64�2

F + 0.57�2
q)

1/2. Correspondingly, the logarithmic negativity can be
approximated as:

E sub
N ≈ 1

2
ln

[

1 + 15. �2
q

13. �2
F +�2

q

]

, (8.25)

which again manifests universality of the entanglement. Therefore, as long as the
optimal weight function is chosen, one can always recover quantum correlations
between the oscillator and the outgoing field.

In principle, by choosing a weight function orthogonal to the optimal one obtained
above, one can derive the next-order optimal mode. Repeating this procedure will
generate a complete spectrum of effective optical modes ordered by E sub

N , which
is analogous to obtaining the wavefunctions and corresponding energy levels with
variational method in atomic systems. This not only helps to understand the full entan-
glement structure but also sheds light on experimental verifications of such univer-
sal entanglement. Rather than trying to recover the infinite-dimensional covariance
matrix in Eq. (8.6), we can apply right weight functions to extract different effective
optical modes and form low-dimension sub-systems. Taking the sub-system consist-
ing of the oscillator and the maximally entangled optical mode for instance, 4 × 4
covariance matrix can be determined by measuring correlations among different
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Table 8.1 Experimental specifications:

m ωm/(2π) Qm T I0 η

Small scale 50 ng 105Hz 107 4 K 0.1 W 0.05
Large scale 40 kg 1 Hz 1010 300 K 800 kW 0.05

quadratures. This can be achieved by using a local oscillator with time-dependent
phase, which allows to probe both mechanical quadratures [30] and those of the
effective optical mode. For example, a quadrature Ôζ = X̂ sin ζ + Ŷ cos ζ can be
measured with the following local oscillator light beam:

L(t) ∝ L1(t) cosω0t + L2(t) sinω0t (8.26)

with L1(t) = g1(t) cos ζ + g2(t) sin ζ, and L2(t) = g2(t) cos ζ − g1(t) sin ζ. Syn-
thesis of multiple measurements will recover the covariance matrix that we need to
verify the entanglement.

8.7 Numerical Estimates

To motivate future experiments for realizing such a universal entanglement, we will
include an important imperfection in a real experiment-the optical loss which comes
from the finite transmission of the mirror. This will induce an uncorrelated vacuum
field n̂1,2 and the input-output relation will be modified to [cf. Eqs. (8.3) and (8.4)]

b̂1(t) = √
1 − η â1(t)+ √

η n̂1(t) (8.27)

b̂2(t) = √
1 − η [â2(t)+ κ x̂(t)] + √

η n̂2(t) (8.28)

with η < 1 quantifying the optical loss. For a typical optical setup, η can be the order
of 0.05 or less. As it turns out, such a small optical loss almost has no effect on the
entanglement strength.

To make numerical estimates and demonstrate experimental feasibility, we will
consider experimentally achievable specifications for both small-scale and large-
scale experiments, which are listed in Table 8.1. For the small scale, the parameters
are chosen to be close to that of table-top cooling experiments with micromechan-
ical oscillator, and it gives �F/�q ≈ 40 and Qm/n̄th ≈ 10. For the large scale,
it is close to that of an advanced gravitational-wave detector with kg-scale test
masses interacting with a high-power optical field [6], and we have �F/�q ≈ 1
and Qm/n̄th ≈ 10−3. In both cases, there is non-vanishing entanglement between
the mechanical oscillator and the optical field, and this entanglement can survive up
to one mechanical oscillation period.
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8.8 Conclusions

We have demonstrated that quantum entanglement exists universally in a system
with a mechanical oscillator coupled to continuous optical field. The entanglement
measure—logarithmic negativity—displays an elegant scaling which depends on the
ratio between characteristic interaction and thermal-noise frequencies. Such scaling
should also apply in electromechanical systems, whose dynamics are similar to what
we have considered.
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Chapter 9
Nonlinear Optomechanical System for Probing
Mechanical Energy Quantization

9.1 Preface

In the previous chapters, we have been discussing linear optomechanical devices,
of which the dynamics are quantified by linear equations of motion. Motivated by
the pioneering theoretical work of Santamore [14], Martin and Zureck [10], and
by recent experimental work of Thompson et al. [16], we consider the quantum
limit for probing mechanical energy quantization with mechanical modes paramet-
rically coupled to external degrees of freedom. We find that the resolution of a single
mechanical quantum requires a strong-coupling regime—the decay rate of external
degrees of freedom should be smaller than the parametric coupling rate. In the case
of cavity-assisted optomechanical systems, the zero-point motion of the mechanical
oscillator needs to be comparable to the linear dynamical range of the optical system,
which is characterized by the optical wavelength divided by the cavity finesse. If this
condition is satisfied, the nonlinearity of the optomechanical system will become
important in the quantum regime. Since a direct probe of the mechanical energy nat-
urally means that we are able to create a non-Gaussian Fock state in the mechanical
oscillator, this condition also sets the requirement for creating a non-Gaussian state in
optomechanical devices. This is a collaborative research effort by Stefan Danilishin,
Thomas Corbitt, Yanbei Chen, and myself. It is published in Phys. Rev. Lett. 103,
1000402 (2009).

9.2 Introduction

Recently, significant cooling of mechanical modes of harmonic oscillators has been
achieved by extracting heat through parametric damping or active feedback [13,
16]. Theoretical calculations suggest that oscillators with a large thermal occupation
number (kB T � �ωm) can be cooled to be close to their ground state, if they have
high enough quality factors [11]. Once the ground state is approached, many inter-

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 141
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esting studies of macroscopic quantum mechanics can be performed, e.g. teleporting
a quantum state onto mechanical degrees of freedom [9], creating quantum entangle-
ment between a cavity mode and an oscillator [8] and between two macroscopic test
masses [17]. Most proposals involve the oscillator position being linearly coupled to
photons, in which case the quantum features of the oscillator, to a great extent, are
attributable to the quantization of photons. In order to probe the intrinsic quantum
nature of an oscillator, one of the most transparent approaches is to directly measure
its energy quantization, and the quantum jumps between discrete energy eigenstates.
Since linear couplings alone will not project an oscillator onto its energy eigenstates,
nonlinearities are generally required [10, 12, 14]. For cavity-assisted optomechanical
systems, one experimental scheme, proposed in the pioneering work of Thompson
et al. [16], is to place a dielectric membrane inside a high-finesse Fabry-Pérot cav-
ity, forming a pair of coupled cavities.1 If the membrane is appropriately located, a
dispersive coupling between the membrane position and the optical field is predom-
inantly quadratic, allowing the detection of mechanical energy quantization.

In this chapter, we show that in the experimental setup of Thompson et al. the
optical field also couples linearly to the membrane. Due to the finiteness of cavity
finesse (either intentional for readout or due to optical losses), this linear coupling
introduces quantum back-action. Interestingly, it sets forth a simple Standard Quan-
tum Limit (SQL), which dictates that only those systems whose cavity-mode decay
rates are smaller than the optomechanical coupling rate can successfully resolve
energy levels. We will further show that a similar constraint applies universally to
all experiments that attempt to probe mechanical energy quantization via parametric
coupling with external degrees of freedom (either optical or electrical).

9.3 Coupled Cavities

The optical configuration of the coupled cavities is shown in Fig. 9.1. Given the spec-
ifications in Ref. [16], the transmissivities of the membrane and end mirrors are quite
low, and thus a two-mode description is appropriate [1, 7], with the corresponding
Hamiltonian:

Ĥ = �ωm(q̂
2 + p̂2)/2 + �ω0(â

†â + b̂†b̂)− �ωs(â
†b̂ + b̂†â)

+ � G0q̂(â†â − b̂†b̂)+ Ĥext + Ĥξ . (9.1)

Here, q̂, p̂ are the normalized position and momentum of the membrane; â, b̂
are annihilation operators of cavity modes in the individual cavities (both res-
onate at ω0); ωs ≡ tmc/L is the optical coupling constant for â and b̂, through
the transmission of the membrane [7]; G0 ≡ 2

√
2ω0xq/L is the optomechanical

1 A similar configuration has been proposed by Braginsky et al. for detecting gravitational-waves,
Phys. Lett. A 232, 340 (1997) and Phys. Lett. A 246, 485 (1998).



9.3 Coupled Cavities 143

in

out

out

in

L
aser DAQ 

r1,t1 rm,tm r2,t2

â b̂

q̂

â

â

b̂

b̂

Fig. 9.1 The left panel presents the schematic configuration of coupled cavities in the proposed
experiment [3]. The right panel shows the optical modes, and we denote the reflectivity and trans-
missivity of the optical elements by ri and ti (i = 1, 2,m). From Ref. [10]

coupling constant with L denoting the cavity length, and the zero-point motion is
xq ≡ √

�/(2m ωm); Ĥext and Ĥξ correspond to the coupling of the system to the
environment and quantify the fluctuation and dissipation mechanism. By introducing
optical normal modes, namely the common mode ĉ ≡ (â + b̂)/

√
2 and differential

mode d̂ ≡ (â − b̂)/
√

2,

Ĥ/� = ωm

2
(q̂2 + p̂2)+ ω−ĉ†ĉ + ω+d̂†d̂ + G0q̂(ĉ†d̂ + d̂†ĉ)

+ i(
√

2γc ĉ†ĉin + √
2γd d̂†d̂in − H.c.)+ Ĥξ /� (9.2)

where ω± ≡ ω0 ± ωs and in the Markovian approximation Ĥext is written out
explicitly in the second line (with γc,d denoting decay rates, and H.c. for Hermitian
conjugate).

Before analyzing the detailed dynamics, here we follow Thompson et al. [16] and
Bhattacharya and Meystre [1], by assuming ωm � ωs and G0 � |ω+ −ω−| = 2ωs,

analogous to the dispersive regime in a photon-number counting experiment with
a superconducting qubit [2, 15]. This allows us to treat � G0q̂(ĉ†d̂ + d̂†ĉ) as a
perturbation, and diagonalize the Hamiltonian formally. Up to G2

0/(2ωs)
2, the optical

and optomechanical coupling parts of the original Hamiltonian can be written as:

Ĥ/� =
(

ω− − G2
0q̂2

2ωs

)

ô†ô +
(

ω+ + G2
0q̂2

2ωs

)

ê†ê. (9.3)

At first sight, the frequency shift of the eigenmodes ô and ê is proportional to q̂2.

Since the frequency separation of the two normal modes is 2ωs � γc,d , they can
be independently driven and detected. Besides, with γc,d < ωm, only the averaged
membrane motion is registered and, q̂2 = N̂ + 1/2, with N̂ denoting the number
of quanta. Therefore, previous authors had concluded that such a purely dispersive
coupling allows quantum non-demolition (QND) measurements of the mechanical
quanta.

However, the new eigenmodes ô and ê are given by:

ô = ĉ − [(G0d̂)/(2ωs)]q̂, ê = d̂ + [(G0ĉ)/(2ωs)]q̂. (9.4)
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If we pump ĉ with classical amplitude c̄, and left d̂ in vacuum state,
the detected mode ô will have a negligible linear response. However, the idle mode
ê ≈ [G0c̄/(2ωs)]q̂, which is dominated by linear coupling. If we choose to drive
d̂, the role of ô and ê will simply interchange. Such linear coupling can poten-
tially demolish the energy eigenstates that we wish to probe. We can make an
order-of-magnitude estimate. The optomechanical coupling term in Eq. (9.2), at
the linear order, is G0q̂(c̄ d̂ + c̄∗d̂†). According to the Fermi’s golden rule, it causes
decoherence of energy eigenstate near the ground level at a rate of:

τ−1
dec = G2

0|c̄|2 S̃d̂(−ωm) ≈ G2
0|c̄|2γd/(2ω

2
s ), (9.5)

where we have assumed that ĉ is on resonance, and

S̃d̂ ≡
∫

dt eiωt 〈d̂(t)d̂†(0)〉 = 2γd/[(ω − 2ωs)
2 + γ 2

d ]. (9.6)

On the other hand, from Eq. (9.3) and linear response theory [3], the measurement
time scale to resolve the energy eigenstate (i.e. measuring N̂ with a unit error) with
a shot-noise limited sensitivity is approximately given by:

τm ≈ [γ 2
c ω

2
s /(G

4
0|c̄|2)]S̃ĉ(0) = 2ω2

s γc/(G
4
0|c̄|2), (9.7)

where S̃ĉ(0) is the spectral density of ĉ at zero frequency. Requiring τm ≤ τdec yields

(γcγd/G2
0) � 1. (9.8)

In the case when the transmissivity of the end mirrors t1 = t2 ≡ t0, we have
γc = γd = c t2

0 /(2L).Defining the cavity finesse as F ≡ π/t2
0 , the above inequality

reduces to λ/(Fxq) � 8
√

2. Therefore, to probe mechanical energy quantization,
it requires a strong-coupling regime (cf. Eq. (9.8)), or equivalently, for such an
optomechanical system, zero-point mechanical motion xq to be comparable to the
linear dynamical range λ/F of the cavity.

We now carry out a detailed analysis of the dynamics according to the standard
input-output formalism [5]. In the rotating frame at the laser frequency ω+, the
nonlinear quantum Langevin equations are given by

˙̂q = ωm p̂, (9.9)

˙̂p = −ωm q̂ − γm p̂ − G0(ĉ
†d̂ + d̂†ĉ)+ ξth, (9.10)

˙̂c = −γc ĉ − i G0 q̂ d̂ + √
2γc ĉin, (9.11)

˙̂d = −(γd + 2 i ωs) d̂ − i G0 q̂ ĉ + √
2γd d̂in. (9.12)

Here, the mechanical damping and associated Brownian thermal force ξth origi-
nate from Ĥξ under the Markovian approximation. These equations can be solved
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perturbatively by decomposing every Heisenberg operator α̂ into different orders,
such that α̂ = ᾱ + ε α̂(1) + ε2α̂(2) + O[ε3]. We treat G0/(2ωs), and the vacuum
fluctuations

√
2γc ĉ(1)in and

√
2γd d̂(1)in (simply denoted by

√
2γc ĉin and

√
2γd d̂in in

later discussions) as being of the order of ε (ε � 1).
To the zeroth order, c̄ = √

2I0/(γc�ω0),with I0 denoting the input optical power,
and d̄ = 0. Up to the first order, the radiation pressure term reads G0c̄[d̂(1) + d̂(1)†]
(c̄ is set to be real by choosing an appropriate phase reference). In the frequency
domain, it can be written as:

F̃rp = 2
√
γd G0 c̄[(γd − iω)ṽ1 − 2ωs ṽ2] + 4G2

0c̄2ωs q̃

(ω + 2ωs + iγd)(ω − 2ωs + iγd)
, (9.13)

where ṽ1, ṽ2 and q̃ are the Fourier transformations of v̂1(t) ≡ (d̂in+d̂†
in)/

√
2, v̂2(t) ≡

(d̂in − d̂†
in)/(i

√
2) and q̂(t), respectively. The first part, containing vacuum fluctu-

ations, is the back-action F̂BA, which induces the quantum limit. The other part
proportional to q̃ is due to the optical-spring effect. Within the time scale for mea-
suring energy quantization, of the order of γ−1

c (� γ−1
m ), the positive damping can

be neglected but the negative rigidity has an interesting consequence—it modifiesωm

to an effectiveωeff (<ωm).Correspondingly, the position of the high-Q membrane is

q̂(t) = q̂m +
2
∫ t

0
dt ′ sinωeff(t − t ′)[F̂BA(t

′)+ ξth(t
′)], (9.14)

with 
 ≡ √
ωm/ωeff . The free quantum oscillation q̂m = 
(q̂0 cosωeff t +

p̂0 sinωeff t) and q̂0 and p̂0 are the initial position and momentum normalized with
respect to

√
�/(m ωeff) and

√
� m ωeff , respectively.

The dispersive response is given by the second-order perturbation O[ε2]. Adia-
batically eliminating rapidly oscillating components and assuming ωm � ωs which
can be shown to maximize the signal-to-noise ratio, we obtain

ĉ(2)(t) = −iG0

∫ t

0
dt ′e−γc(t−t ′)q̂(t ′) d̂(1)(t ′)

≈ G2
eff c̄ N̂ (t)/(2iγc ωs) . (9.15)

Here Geff ≡ 
G0 and N̂ (t) ≡ N̂0 +�N̂ (t) contains the number of mechanical
quanta N̂0 ≡ (q̂2

0 + p̂2
0)/2 and the noise term �N̂ (t) due to the back-action and

thermal noise. To read out N̂ (t),we integrate output phase quadrature for a duration τ.
According to the input-output relation ĉout + ĉin = √

2γc ĉ, the estimator reads:

Ŷ (τ ) =
∫ τ

0
dt[û2(t)− G2

eff c̄ N̂ (t)/(
√
γc ωs)], (9.16)

where û2 ≡ (ĉin − ĉ†
in)/(i

√
2). For Gaussian and Markovian process, the correlation

function 〈ĉ2(t) ĉ†
2(t

′)〉 = δ(t − t ′)/2. For typical experiments, the thermal occu-
pation number n̄th ≡ kB T/(�ωm) is much larger than unity, and 〈ξth(t) ξth(t ′)〉 ≈
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Fig. 9.2 The resolution �N
for measuring mechanical
energy quantization
depending on the integration
duration τ with total noise
(Solid) and quantum noise
only (Dashed). From
Ref. [6]
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2γmn̄th δ(t − t ′). Through evaluating the four-point correlation function of back-
action noise and ξth(t) in 〈�N̂ (t)�N̂ (t ′)〉,we obtain the resolution�N as a function
of τ :

�N 2 =
(
γcω

2
s

G4
eff c̄2τ

)

+ 5

6

(
γd G2

eff c̄2τ

2
√

2ω2
s

)2

+ 5

6

(
γmkB T τ√

2 �ωeff

)2

. (9.17)

In order to successfully observe energy quantization, the following conditions are
simultaneously required: (i) the resolution �N 2 should have a minimum equal or
less than unity. (ii) this minimum should be reachable within τ that is longer than
the cavity storage time 1/γc (which in turn must be longer than the oscillation period
1/ωeff of the membrane). (iii) the system dynamics should be stable when taking
into account optical rigidity which is approximately equal to G2

0c̄2/ωs forωm � ωs .

Specifically, the SQL in condition (i), set by the first two terms in �N 2, gives
γcγd/G2

eff � 1, or equivalently (γcγd/G2
0) � 
2. If we neglect the optical spring

effect (
 = 1), we simply recover Eq. (9.8). A strong negative optical rigidity
(ωeff � ωm, i.e.
 � 1) can significantly enhance the effective coupling strength
and ease the requirements on optomechanical properties. However, a small ωeff
also makes the system susceptible to the thermal noise. Taking account of all the
above conditions, the optimal ωeff = ωm

√
n̄th/Qm with mechanical quality factor

Qm ≡ ωm/γm, and there is a nontrivial constraint on the thermal occupation number,
namely (n̄th/Qm) ≤ [G2

0/(ωsγc)]2/3.

For a numerical estimate, we use a similar specification as given in Ref. [16],
but assume a slightly higher mechanical quality factor Qm, a lower environmental
temperature T, and a lower input optical power I0 such that all mentioned con-
ditions are satisfied. The parameters are the following: m = 50 pg, ωm/(2π) =
105 Hz, Qm = 3.2 × 107, λ = 532 nm, L = 3 cm, rm = 0.9999, F = 6 ×
105, T = 0.1 K and I0 ≈ 5 nW. The resulting resolution �N is shown in Fig. 9.2,
and we are able to resolve single mechanical quantum when τ ≈ 0.1 ms.

Even though we have been focusing on a double-sided setup where t1 ≈ t2,
the quantum limit also exists in the single-sided case originally proposed in Ref.
[16]. Ideally, a single-sided setup consists of a totally-reflected end mirror and the
vacuum fluctuations only enter from the front mirror. Therefore, the quantum noises
inside the two sub-cavities have the same origin, but different optical path. Through
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similar input-output calculations, we find that if laser detuning is equal to ±ωs,

the quantum noises destructively interfere with each other at low frequencies, due
to the same mechanism studied in great details in Ref. [4], achieving an ideal QND
measurement. However, in reality, the end mirror always has some finite transmission
or optical loss which introduces uncorrelated vacuum fluctuations. As it turns out,
the quantum limit is similar to Eq. (9.8), only with γc,d replaced by the damping rate
of two sub-cavities.

9.4 General Systems

Actually, the SQL obtained above applies to all schemes that attempt to probe
mechanical energy quantization via parametric coupling. Let us consider n mechan-
ical modes parametrically coupled with n′ normal external modes, describable by
the following Hamiltonian:

Ĥ =
n∑

ν=1

��ν(q̂
2
ν + p̂2

ν)/2 +
n′

∑

i=1

�ωi â†
i âi

+
n′

∑

i, j=1

n∑

ν=1

�χi jν q̂ν(â
†
i â j + â†

j âi )+ Ĥext + Ĥξ .

(9.18)

Here Greek indices identify mechanical modes and Latin indices identify exter-
nal modes; �ν and ωi are eigenfrequencies; q̂ν, p̂ν are normalized positions and
momenta; âi are annihilation operators of the external degrees of freedom; χi jν =
χ j iν are coupling constants. Similarly, we focus on the regime where |χi jν | �
|ωi − ω j | (dispersive) and �ν � |ωi − ω j | (adiabatic), and obtain

Ĥ =
n∑

ν=1

��ν(q̂
2
ν + p̂2

ν)/2 +
n′

∑

i=1

�ω′
i ô

†
i ôi + Ĥext + Ĥξ , (9.19)

where, up to χ2
i jν/|ωi − ω j |2,

ω′
i = ωi +

∑

ν

χi iν q̂ν +
∑

j �=i

∑

ν

(χi jν q̂ν)2

ωi − ω j
. (9.20)

In order to have quadratic couplings between a pair of external and mechanical
modes, ô1 and q̂1 for instance, we require that χ11ν = 0 and χ1iν = χ1i1δ1ν, and
then

ω′
1 = ω1 +

∑

i �=1

χ2
1i1

ω1 − ωi
q̂2

1 . (9.21)
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However, there still are linear couplings which originate from idle modes. This is
because, up to χi jν/|ωi − ω j |,

ôi = âi +
∑

j �=i

χi j1â j

ωi − ω j
q̂1 ≈ âi + χ1i1ā1

ωi − ω1
q̂1(i �= 1). (9.22)

where â1 is replaced with its classical amplitude ā1, for ā1 � âi .From Eqs. (9.21) and
(9.22), both linear and dispersive couplings are inversely proportional to |ωi − ω1|.
Therefore, we only need to consider a tripartite system formed by q̂1, ô1 and ô2
which is the closest to ô1 in frequency. The resulting Hamiltonian is identical to
Eq. (9.2), and thus the same standard quantum limit applies.

9.5 Conclusions

We have demonstrated the existence of standard quantum limit for probing mechan-
ical energy quantization in general systems where mechanical modes parametrically
interact with optical or electrical degrees of freedom. This work will shed light on
choosing the appropriate parameters for experimental realizations.
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Chapter 10
State Preparation: Non-Gaussian
Quantum State

10.1 Preface

As we conclude from the previous chapter, in order to create non-Gaussian quantum
states, a nonlinear optomechanical coupling is generally required. This is rather chal-
lenging to achieve, especially when the mass of the mechanical oscillator is large and
the frequency is low. In this chapter, we propose a protocol for coherently transferring
non-Gaussian quantum states from the optical field to a mechanical oscillator, which
does not require a nonlinear coupling in the optomechanical system. We demonstrate
its experimental feasibility in both future gravitational-wave detectors and table-top
optomechanical devices. This work not only outlines a feasible way to investigate
non-classicality in macroscopic optomechanical systems, but also presents a new
and elegant approach for solving non-Markovian open quantum dynamics in general
linear systems. This is a joint research effort by Farid Khalili, Stefan Danilishin,
Helge Müller-Edhardt, Huan Yang, Yanbei, and myself. It has been published in
Phys. Rev. Letts. 105, 070403 (2010).

10.2 Introduction

Recently, there have been intensive experimental and theoretical studies on the inves-
tigation of quantum behaviors of macroscopic mechanical oscillators in optomechan-
ical devices [20]. These activities are motivated by: (i) the necessity to achieve and go
beyond the Standard Quantum Limit (SQL) for high-precision measurements with
mechanical probes [2], (ii) the testing and interpretation of quantum theory with
macroscopic degrees of freedom [17], and (iii) quantum information processing
with optomechanical devices [20]. Non-Gaussian quantum states, such as Fock states,
lie in the heart of all these endeavors [1, 3]. A 6 GHz micromechanical oscillator has
been recently prepared in a single-quantum state by first cooling it down to the ground
state with a dilution refrigeration, and then later swapping the quantum state between

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 151
Springer Theses, DOI: 10.1007/978-3-642-25640-0_10,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 10.1 Possible experimental schemes: a an interferometric gravitational-wave detector with
kg-scale test masses (left) [10]. and b A tabletop coupled cavity scheme with a ng-scale membrane
(right) [30]. From Ref. [14]

it and a superconducting qubit [28]. This is possible due to the intrinsic nonlinearity
in the qubit system [4, 11]. For optomechanical system, to achieve nonlinearity in the
quantum regime, the zero-point displacement xq = √

�/(2mωm) of the oscillator
with mass m and frequency ωm is required to be comparable to the cavity linear
dynamical range given by the optical wavelength λ divided by the cavity finesse F
[15, 22, 24, 30]:

λ/(Fxq) � 1. (10.1)

Since, in a typical setup, λ ∼ 10−6 m and F � 1̃06, this gives xq � 10−12 m,which
is rather challenging to achieve.

Here, we propose a protocol for preparations of non-Gaussian quantum states with
optomechanical devices, which does not require an optomechanical nonlinearity.
The idea is to inject a non-Gaussian optical state, e.g., a single-photon pulse created
by a cavity QED process [13, 16, 23], into the dark port of an interferometric optome-
chanical device as shown schematically in Fig. 10.1. The radiation-pressure force of
the single photon on the mechanical oscillator is coherently amplified by the classical
pumping from the bright port, and, as we will show, the qualitative requirement for
preparing a non-Gaussian state becomes:

λ/(Fxq) �
√

Nγ . (10.2)

Here Nγ = I0τ/(�ω0) (I0 is the laser power into the bright port and ω0 the
frequency) is the number of pumping photons within the duration τ of the single-
photon pulse, and we gain a significant factor of

√
Nγ compared with Eq. (10.1),

making this scheme experimentally achievable.
To motivate experiments and make correct predictions, it is crucial to understand

(i) the dynamics: how the mechanical oscillator interacts with the single-photon
pulse, and (ii) the conditional process: how the continuous measurement affects
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the final quantum state. For the dynamics, we will study the full quantum dynam-
ics without using either the rotating-wave approximation [18], or the three-mode
approach [18, 29], because the interaction timescale will be shorter than one mechan-
ical oscillation period, in order to minimize the thermal decoherence effect–a strong
optomechanical coupling. For the conditional process, the non-trivial quantum cor-
relations at different times in the photon pulse make the open quantum dynamics
highly non-Markovian, which does not allow a transparent study with the standard
Stochastic-Master-Equation (SME) approach [5, 6, 7, 9, 26]. We develop a path-
integral approach. This solves the non-Markovian dynamics elegantly and gives an
explicit expression for the final quantum state of the mechanical oscillator, which is
also valid for general linear systems.

The outline of this chapter is as follows: in Sect. 10.3, we will make an order-of-
magnitude estimate of the experiment requirements of such a protocol by considering
a simple case. In Sect. 10.4, we will present the path-integral based approach to treat
non-Gaussian state preparation in general optomechanical systems, and an explicit
relation between the optical state and the oscillator state is obtained. In Sect. 10.5, we
will apply this result to the single-photon case, and find justifications for the previous
order-of-magnitude estimate. Finally, we will summarize our main results in Sect.
10.6. In the Appendix, there are further details of the equations and concepts that we
have introduced in the main sections.

10.3 Order-of-Magnitude Estimate

The model of such optomechanical devices is shown in Fig. 10.2. The oscillator
position x̂ is coupled to a thermal bath and also the cavity mode â (mediated by
radiation pressure) which in turn interacts with ingoing âin and outgoing âout optical
fields. To gain a qualitative picture, we first make an order-of-magnitude estimate by
considering a simple case in which the cavity bandwidth is large with â adiabatically
eliminated and the oscillator is a free mass (frequency ωm ∼ 0) with the thermal
force ignored. The corresponding Heisenberg equations of motion read (refer to
(Appendix 10.7.1) for more details):

˙̂x(t) = p̂(t)/m, ˙̂p(t) = αâ1(t), (10.3)
b̂1(t) = â1(t), b̂2(t) = â2(t)+ (α/�)x̂(t). (10.4)

Here, the coupling constant α ≡ 8
√

2(F/λ)√�I0/ω0; â1,2 (b̂1,2) are the
amplitude and phase quadratures of the ingoing field âin (outgoing field âout) with
â1 ≡ (âin + â†

in)/
√

2 and â2 ≡ (âin − â†
in)/(i

√
2) (the same for the relation between

b̂1,2 and âout).

Suppose, at t =−τ,the oscillator is prepared in some initial quantum state |ψm〉 =∫ ∞
−∞ ψm(x)|x〉dx and is interacting with a single photon up to t = 0. With a short

photon pulse (i.e., a short interaction duration), the oscillator position almost does
not change, and we obtain:
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Fig. 10.2 A model of the optomechanical device shown in Fig. 10.1 (upper left), its spacetime
diagram (right), and the couplings (lower left). Ingoing and outgoing rays (tilted lines) are placed
on opposite sides of the oscillator world line (vertical) for clarity. The ingoing field contains a
photon pulse, while the outgoing field—which contains the information of the oscillator motion—
is measured continuously. From Ref. [14]

X̂(0) = X̂(−τ), P̂(0) = P̂(−τ)+ κ Â1, (10.5)

B̂1 = Â1, B̂2 = Â2 + κ X̂(0). (10.6)

We have normalized the oscillator position and momentum by their zero-point
uncertainties: X̂ ≡ x̂/xq

(
xq ≡ √

�/2mωm
)

and P̂ ≡ p̂/pq
(

pq ≡ √
�mωm/2

) ;
we have introduced Â j = √

2/τ
∫ 0
−τ dtâ j (t)( j = 1, 2) which has an uncertainty

	 Â j = 1with 	 Â ≡ 〈ψ( Â − Ā)2|ψ〉1/2; B̂ j = √
2/τ

∫ 0
−τ dtb̂ j (t); κ ≡

α
√

2τ xq/� = 16
√

NγFxq/λ. These two equations are similar to those for studying
the atom-light interaction in a quantum memory [12, 19]. They can be transformed
back into an evolution operator: Û = exp[iκ Â1 X̂ ] in the Schrödinger picture. The
quantum state of the system at t = 0 is simply |ψ〉 = Û |ψo〉|ψm〉 with |ψo〉 the
initial optical state. Given a measurement of B̂2 with a precise result y, the oscillator
is projected into a conditional quantum state: |ψc

m〉 = 〈y|Û |ψo〉ψm〉 which, in the
coordinate representation ψc

m(X) ≡ 〈X |ψc
m〉, reads

ψc
m(X) = ψo(y − κX)ψm(X) (10.7)

—the optical state is mapped onto the mechanical oscillator. A significant mapping
requires thatψo(y−κX) dominates overψm(X) in determining the profile ofψc

m(X).
In momentum space, this dictates that the momentum uncertainty induced by the
optomechanical interaction should be large than that from the initial stateψm(X), i.e.,
κ	 Â1 > 	P̂(−τ).Suppose the oscillator is initially in its quantum ground state with
	P̂(−τ) = 1.Since	 Â1 = 1, this condition reads κ > 1, i.e.,λ/(Fxq) < 16

√
Nγ ,

which justifies Eq. (10.2).
In the above considerations, we have ignored the important thermal decoher-

ence effect. In a real experiment, it is essential that the momentum fluctuations due
to the thermal force within the interaction duration τ—	P̂th = (Sth

F Fτ)
1/2/pq–

should be small compared with that from the optomechanical interaction, namely,
	P̂th < κ. In the high temperature limit, the force spectrum Sth

F F of the thermal
force is 2mωmkB T/Qm with T the environmental temperature and Qm the mechan-
ical quality factor. More explicitly, such a requirement reads
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Table 10.1 Possible experimental specifications

Parameters λ (µm) F m ωm/2π (Hz) Qm T (K) I0 τ (ms)

large scale 1 6,000 4 kg 1 108 300 200 W 1
small scale 1 104 1 ng 105 107 4 0.2 µW 0.01

λ/(Fxq)
√

nth/Qm
√
ωmτ < 8

√
Nγ . (10.8)

with nth ≡ kB T/(�ωm) the thermal occupation number. These two conditions [cf.
Eqs. (10.2) and (10.8)] set the benchmarks for a successful non-Gaussian state-
preparation experiment. They can be satisfied with experimentally feasible specifi-
cations as shown in Table 10.1, in which the first row is close to that of a large-scale
gravitational-wave detector and the second row to that of a small-scale optomechan-
ical device in Ref. [30]. Such a qualitative picture will be justified by a rigorous
treatment below.

10.4 General Formalism

For a quantitative study, we divide the entire process from t = −τ to t = 0 into N
segments and later take the continuous limit. The n-th segment consists of: (i) a free
evolution, which is described by an evolution operator: Ûn ≡ exp[−i Ĥnτ/(N�)]
with Ĥn the system Hamiltonian at t = (n − N )τ/N , and (ii) a measurement of the
outgoing field at a certain quadrature ŷ = b̂1 cos θ + b̂2 sin θ, which is described
by a projection operator: P̂n = δ(ŷ − yn)with yn the measurement result of ŷ.After
the entire process and conditioning on the measurement results y = (y1, . . . , yN ),

the system is projected into a conditional quantum state:

ρ̂c( y) = P̂ yρ̂i P̂†
y/w( y) (10.9)

with P̂ y ≡ P̂N ÛN · · · P̂1Û1 and w[y] ≡ Trth,o,m[P̂yρ̂i P̂†
y ] the probability for

obtaining measurement results y. The initial density matrix ρ̂i of the system is
ρ̂th(−τ) ⊗ ρ̂o(−τ) ⊗ ρ̂m(−τ) with ρ̂th, ρ̂o, and ρ̂m for the thermal bath, optical
field, and mechanical oscillator, respectively.

The conditional quantum state of the mechanical oscillator ρ̂c
m is obtained by

tracing out the degrees of freedom of both the thermal heat bath and optical field, i.e.,

ρ̂c
m(y) = Trth,o[ρ̂c(y)] = Trth,o[P̂yρ̂i P̂†

y ]/w(y). (10.10)

In the standard SME approach, such a trace operation is made right after each
segment and this requires that these degrees of freedom at different segments to be
not correlated. However, it is not satisfied here, due to quantum correlations among
different segments (non-Markovian) arising from the non-trivial initial optical state.
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We apply a different approach based upon a path integral. By using the facts that:
P̂y = Û(τ )P̂H

N P̂H
N−1 . . . P̂H

1 ≡ Û(τ )P̂H
y , where Û(τ ) ≡ ∏N

n=1Ûn (time-ordered)

and P̂H
n ≡ δ(ŷn − yn) with ŷn ≡ Û†( nτ

N )ŷÛ( nτ
N ), and the optical quadrature at

different times commute: [ŷn, ŷn′ ] = 0, we obtain P̂H
y = ∏N

n=1δ(ŷn − yn) =
∫ d N ξ

(2π)N exp[i ∑N
n=1 ξn(ŷn − yn)]. In the continuous limit N → ∞, the total projec-

tion operator can be rewritten as a path integral:

P̂y = Û(τ )
∫

D[ξ ] exp

{
i
∫ 0

−τ
dtξ(t)[ŷ(t)− y(t)]

}
, (10.11)

which allows us to take the entire measurement history, and trace out the optical field
in a single step, instead of sequentially as in the SME approach.

To obtain an explicit expression for the conditional quantum state of the
mechanical oscillator, i.e., its Wigner function, we evaluate the generating function:

J [αx , αp; y] = Trm[eiαx x̂+iαp p̂ρ̂c
m(y)], (10.12)

which is related to the Wigner function by W [x, p; y] = ∫ d2α
(2π)2

e−i(αx x+αp p)

J [αx , αp; y].
From the facts that: Û(τ )† x̂Û(τ ) = x̂(0) and [x̂(0), ŷ(t)] = 0(t < 0) (also true

for p̂), and the property P̂†
y P̂y = P̂y, we obtain

J [α; y] = Trth,m,o[eiαx′
0P̂H

y ρ̂i ]/w(y), (10.13)

where vectors α ≡ (αx , αp), x̂0 ≡ (x̂(0), p̂(0)), and superscript ′ denotes
transpose. To move forward, we need to specify the initial density matrix ρ̂i

of the system. For the thermal bath in thermal equilibrium at temperature T,

ρ̂th(−τ) = e−Ĥth/kB T /Tr[e−Ĥth/kB T ]. For the optical field, we consider an arbi-
trary spatial profile f (x/c) for the photon pulse of which the creation operator reads
�̂† ≡ ∫ 0

−τ dt f ∗(t)â†
in(t). In the P-presentation, a general initial state of such a mode

can be written as ρ̂o(−τ) = ∫
d2ζ P(ζ )|ζ 〉〈ζ | with the vector ζ ≡ (�[ζ ],[ζ ]) and

|ζ 〉 ≡ exp[ζ �̂† − ζ ∗�̂]|0〉. Since the timescale of the photon profile f (t) will auto-
matically set the interaction duration, we can extend −τ to −∞ which is equivalent to
turning on the optomechanical interaction adiabatically. In this case, the initial state
of the oscillator-coupled to the thermal bath-decays away before the optomechanical
interaction starts, and thus does not influence ρ̂c

m .

By substituting in the initial state and Baker-Campbell-Hausdorff formula, the
generating function becomes:

J = 1

w(y)

∫
d2ζD[ξ ]ei[ζ ∗�̂−ζ �̂†,B̂]〈0|ei B̂ |0〉P(ζ ), (10.14)

where B̂ ≡ αx̂′
0 + ∫ 0

−∞ dtξ(t)[ŷ(t)− y(t)]. Further evaluation of J requires us to
manipulate the statistics of the measured optical quadrature ŷ(t) and the oscillator
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motion x̂0. We apply the tools introduced in Ref. [27] (refer to Appendix 10.7.2 for
some details) to (i) simplify the statistics of ŷ(t), while maintaining its full infor-
mation by causally whitening it into ẑ(t) such that 〈ẑ(t)ẑ(t ′)〉 = δ(t − t ′), and (ii)
separate x̂0 into a quantum part R̂ and a classical part which can be inferred from ẑ
by using the optimal Wiener filter K − x̂0 ≡ R̂ + ∫ 0

−∞ dt K (−t)ẑ(t)-such that R̂ is

not correlated with ẑ(t), namely 〈0|R̂ẑ(t)|0〉 = 0.With these tools, the path integral
can be completed, and it gives

J = 1

w(y)

∫
d2ζe−[αVcα

′+‖z−2ζ L′‖2]/2+iαxζ ′ P(ζ ). (10.15)

Here Vc ≡ 〈0|R̂′
R̂|0〉 with R̂ = (R̂x , R̂p); the modulus of a function: ||g||2 ≡

∫ 0
−∞ g(t)g∗(t)dt; xζ ≡ xc + ζ ∗γ + ζγ ∗; xc ≡ (xc, pc) = ∫ 0

−∞ dt K (−t)z(t)

with z(t) measured results of ẑ(t) and K = (Kx , K p); γ ≡ [�̂, R̂] and L ≡
(�[L],[L]) with L(t) ≡ [�̂, ẑ(t)], which characterize the contribution of the pho-
ton �̂ to both the oscillator motion R̂ and the output field ẑ, and determine the
efficiency of the state transfer.

Finally, the Wigner function for the quantum state of the oscillator reads (the
normalization factor is ignored):

W =
∫

d2ζe−[(x−xζ )V−1
c (x−xζ )′+‖z−2ζ L′‖2]/2 P(ζ ) (10.16)

with χ ≡ x − xζ . This formula directly relates the optical state to the resulting state
of the mechanical oscillator. Since no specific Hamiltonian is assumed in deriving it,
it is valid for general linear quantum dynamics. For cavity-assisted optomechanical
systems, γ, Vc, K and L can be obtained from the standard input-output relations
in Refs. [8, 21, 31] by using the formalism in Ref. [27]. The state transfer efficiency
can be measured quantitatively by the fidelity defined as � ≡ Tr[ρ̂c

m ρ̂o] which is
equal to the overlapping between two quantum states [12, 19] (cf. Appendix 10.7.3).

10.5 Single-Photon Case

As an example, we consider the simplest case where the optical field is in a single-
photon state with ρ̂o = |1〉〈1| and P(ζ ) = e|ζ |2∂2δ(2)(ζ )/∂ζ∂ζ ∗. From Eq. (10.16),
the normalized Wigner function reads:

W = 1 − γV
−1
c γ † − ‖L‖2 + |γV

−1
c δx′ + Z |2

2π
√

det Vc(1 − ‖L‖2 + |Z |2) e−δxV−1
c δx′/2, (10.17)

where δx ≡ x−xc and Z ≡ ∫ 0
−∞ dtz(t)L(t).Since the measurement results z(t) only

appear in the above Wigner function in terms of an integral, i.e., Z, the conditional
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Fig. 10.3 Distributions of measurement results (left panels) and the corresponding Wigner function
of the oscillator given the most probable measurement result (middle panels) and less probable
result but with a significant non-Gaussianity (right panels). The upper panels show the case with
a specification close to a gravitational-wave detector, and the lower panels close to a small-scale
optomechanical device as listed in Table 10.1. We have used normalized coordinates (with respect
to xq and pq ) and introduced �q ≡ √

�m/α2. From Ref. [14]

process is easy to study and the random vector Z = (�[Z ],[Z ]) follows a two-
dimensional distribution:

w[Z] = 1 − ‖L‖2 + ZZ′

2π
√

det VL
e−ZV

−1
L Z′/2 (10.18)

with VL ≡ ∫ 0
−∞ dt L′L.

With Eq. (10.17), we can justify the previous order-of-magnitude estimate by
using the same specifications listed in Table 10.1. As an example, we assume a
photon profile of f (t) = √

2γ f e(γ f +iω f )t . The resulting Wigner functions of the
mechanical oscillator are shown in Fig. 10.3. In the case of an advanced gravitational-
wave detector, ω f /2π = γ f /2π = 70 Hz, and the state transfer fidelity � =
0.58 (Z = 0.3 − 0.5i) and � = 0.95 (Z = 0); in the case of a small-scale device,
ω f /ωm = 0.1, γ f /ωm = 0.3, and the corresponding � = 0.34 (Z = 0.5−0.5i) and
� = 0.56 (Z = 0). In both cases, the Wigner function has negative regions-a unique
quantum feature. The prepared non-Gaussian quantum state can be independently
verified using the quantum tomography protocol proposed in Ref. [25] which allows
us to reconstruct the quantum state with a sub-Heisenberg accuracy. This is essential
for revealing these nonclassical negative regions.
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10.6 Conclusions

We have outlined an experimental protocol for creating non-Gaussian quantum
states in a macroscopic mechanical oscillator with optomechanical interactions. The
radiation-pressure induced by the photon pulse is coherently amplified, and this
allows us to transfer the optical state to the mechanical oscillator. Starting from an
order-of-magnitude estimate, we have convinced ourself that this protocol is feasible
for both future gravitational-wave detectors and small-scale table-top experiments.
This has been confirmed by a more rigorous treatment in which a path integral
is constructed for the measurement process. Such a path-integral-based approach
provides an elegant treatment of the non-Markovian conditional dynamics in an
open quantum system, and it is valid for general linear continuous measurements.

10.7 Appendix

10.7.1 Optomechanical Dynamics

In this section, we will briefly review the dynamics of a typical cavity-assisted opto-
mechanical system, in order to justify some of the equations in the main text. The
Hamiltonian for such an optomechanical system (shown schematically in Fig. 10.2)
can be written as (cf. Refs. [8, 21, 31])

Ĥ = p̂2

2m
+ 1

2
mω2

m x̂2 + �ωcâ†â + �G0 x̂ â†â

+ i�
√

2γ (âine−iω0t â† − H.c.)+ Ĥγ + Ĥγm . (10.19)

Here, x̂ and p̂ are the position and momentum operators for the oscillator; â is
the annihilation operator for the cavity mode; G0 ≡ ωm/L is the optomechanical
coupling constant with L the cavity length; γ is the cavity bandwidth; Ĥγ and Ĥγm

describe the dissipation mechanism of the cavity mode and the mechanical oscillator,
respectively.

In the rotating frame at the laser frequency ω0, the above Hamiltonian leads to
the following standard Langevin equations for the mechanical oscillator:

˙̂x(t) = p̂(t)

m
, (10.20)

˙̂p(t) = −γm p̂(t)− mω2
m x̂(t)+ �G0â†(t)â(t)+ F̂th(t), (10.21)

with F̂th the thermal force noise, and for the cavity mode:

˙̂a(t)+ (γ − i	)â(t) = iG0â(t)x̂(t)+ √
2γ âin(t), (10.22)
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with 	 ≡ ω0 − ωc. The standard input-output relation for the cavity mode is given
by (refer to Ref. [7])

âin(t)+ âout(t) = √
2γ â(t). (10.23)

Since the cavity mode is coherently driven with a laser, the above equation can
be linearized by replacing every quantity ô with a sum of the classical steady part ō
and a perturbed part. The equations of motion for the perturbed parts of the oscillator
read

˙̂x(t) = p̂(t)

m
, (10.24)

˙̂p(t) = −γm p̂(t)− mω2
m x̂(t)+ Ḡ0â1(t)+ F̂th(t), (10.25)

where the amplitude quadrature â1(t) ≡ [â(t) + â†(t)]/√2 and Ḡ0 ≡ √
2�G0ā.

Similarly, for the cavity mode,

˙̂a(t)+ (γ − i	)â(t) = i
Ḡ0√

2�
x̂(t)+ √

2γ âin(t). (10.26)

In the limit of a large cavity bandwidth considered in the order-of-magnitude
estimate (refer to Sect. 10.3), the time dependence of the cavity mode can be adia-
batically eliminated and we have

â(t) ≈ i
Ḡ0√
2�γ

x̂(t)+
√

2

γ
âin(t). (10.27)

Therefore, from Eq. (10.23),

âout(t) = âin(t)+ i
α√
2�

x̂(t). (10.28)

with α ≡ √
2Ḡ0/

√
γ . By defining the output amplitude and phase quadratures as

b̂1 = âout + â†
out√

2
, b̂2 = âout − â†

out

i
√

2
, (10.29)

we recover what has been shown in Eq. (10.4).

10.7.2 Causal whitening and Wiener Filter

In this section, we will briefly introduce the concepts of causal whitening and Wiener
filtering techniques applied in this paper (One can refer to Ref. [27] for more details).
They are implemented extensively in the classical signal filtering.



10.7 Appendix 161

Here, the reason why these classical techniques can be applied lies in following
fact: In a linear continuous measurement, the degrees of freedom of the measurement
output ŷ(t) at different times commute with each other [2], i.e.,

[ŷ(t), ŷ(t ′)] = 0. (10.30)

This basically means that in principle, they can be simultaneously measured with
arbitrarily high accuracy without imposing any limit. Therefore, they can be treated
just as classical entities, and classical filtering techniques apply.

Causal whitening—Causal whitening is a powerful tool for simplifying the statis-
tic of a random variable (the measurement output in this context), while maintaining
its complete information. Mathematically, given the spectrum Syy(�) of the output
ŷ(t), we can factorize it as:

Syy(�) = φ+(�)φ−(�), (10.31)

such that φ+(φ−) and its inverse are analytical functions in the upper- (lower-) half
complex plane, andφ∗+ = φ−.The causally-whitened output in the frequency domain
is defined as

ẑ(�) ≡ ŷ(�)

φ+(�)
. (10.32)

Since

〈ẑ(�)ẑ(�′)〉 = 2π
Syy

φ+φ−
δ(�−�′) = 2πδ(�−�′), (10.33)

the corresponding correlation function is:

〈ẑ(t)ẑ(t ′)〉 = δ(t − t ′), (10.34)

which corresponds to a white noise with no correlations at different times. This not
only simplifies the statistics, because ẑ is uniquely defined from ŷ, it also possesses
the same amount of information concerning the motion of the mechanical oscillator.

Wiener filter—A Wiener filter is the optimal filter satisfying the least mean-square
error criterion. Given a random variable x̂ (here the oscillator position), we can extract
a maximal amount of information about x̂(0) from the measurement data ŷ(t) (from
−∞ to 0) with the Wiener filter Kx (t). The conditional mean of x̂(0) is

x̂cond(0) =
∫ 0

−∞
dt Kx (−t)ŷ(t). (10.35)

The corresponding error R̂x (t) = x̂(0) − x̂cond(0) defines the remaining uncer-
tainty that we cannot learn from ŷ(t).Mathematically, this dictates that such an error
is not correlated with ŷ and is orthogonal to the space defined by the measurement
results, namely,
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〈R̂x (0)ŷ(t)〉 = 0. (10.36)

Therefore, the decomposition that we applied in this paper and also Ref. [27]:

x̂(0) =
∫ 0

−∞
dt Kx (−t)ŷ(t)+ R̂x (0) (10.37)

is very useful in separating the statistical dependence of x̂ on the measurement ŷ and
facilitates the analysis of the conditional dynamics.

The Wiener filter can be obtained using the standard Wiener-Hopf method, and
its frequency domain representation is:

Kx (�) = 1

φ+(�)

[
Sxy(�)

φ−(�)

]

+
, (10.38)

where Sxy is the cross-correlation between x̂ and ŷ, and [ f (�)]+ means taking the
component of f (�) that is analytical in the upper-half complex plane.

10.7.3 State Transfer Fidelity

To quantify the state transfer, we follow Refs. [12, 19] by defining the fidelity from the
overlap between the two Wigner functions of the prepared oscillator state Wm(X, P)
and the target state Wtag(X, P) :

� ≡ 2π
∫ ∞

−∞
d X

∫ ∞

−∞
d PWm(X, P)Wtag(X, P). (10.39)

Depending on the situation, X and P can be normalized with respect to either the
zero-point uncertainty xq and pq or xq

√
ωm/�q , and pq

√
�q/ωm .

Since the center of the prepared state is given by xc and pc, we need to shift
it to the center to compare with the target state, and this will not introduce any
statistical difference. In addition, the prepared state is a squeezed state defined by
Vc. To properly evaluate the overlap, we will apply the well-known Bogoliubov
transformation to the coordinates of the prepared state:

X̂ ′ = X̂(sinh β + cosh β cos 2φ)− P̂ cosh β sin 2φ, (10.40)

P̂ ′ = P̂(sinh β + cosh β cos 2φ)+ X̂ cosh β sin 2φ. (10.41)

By choosing an appropriate set of squeezing factor β and rotation angle φ, the
overlap with the target state can be maximized. Therefore, a properly modified defi-
nition for the fidelity should be:

�
′ ≡ max[�, {β, φ}]. (10.42)
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In the case of the single-photon injection, the Wigner function of the target
mechanical state is simply:

Wtag(X, P) = X2 + P2 − 1

2π
exp

[
− X2 + P2

2

]
. (10.43)
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Chapter 11
Probing Macroscopic Quantum States

11.1 Preface

In this chapter, we consider a subsequent verification stage which probes the prepared
macroscopic quantum state, and verifies the quantum dynamics. By adopting an
optimal time-dependent homodyne detection method, in which the phase of the local
oscillator varies in time, the conditional quantum state can be characterized below the
Heisenberg limit, thereby achieving a quantum tomography. In the limiting case of
no readout loss, such a scheme evades measurement-induced back-action, which is
identical to the variational-type measurement scheme invented by Vyatchanin et al.,
but in the context for detecting gravitational waves (GWs). To motivate Macroscopic
Quantum Mechanics (MQM) experiments with future GW detectors, we mostly
focus on the parameter regime where the characteristic measurement frequency is
much higher than the oscillator frequency and the classical noises are Markovian,
which captures the main features of a broadband GW detector. In addition, we discuss
verifications of Einstein-Podolsky-Rosen-type entanglement between macroscopic
test masses in future GW detectors, which enables us to test one particular version of
gravity decoherence conjectured by Diósi and Penrose. This is a joint research effort
by Stefan Danilishin, Helge Müller-Ebhardt, Henning Rehbein, Kentaro Somiya,
Yanbei Chen, and myself. It is published in Phys. Rev. A 81, 012114 (2010).

11.2 Introduction

Due to recent significant advancements in fabricating low-loss optical, electrical and
mechanical devices, we will soon be able to probe behaviors of macroscopic mechan-
ical oscillators in the quantum regime. This will not only shed light on quantum-
limited measurements of various physical quantities, such as a weak force, but also
help us to achieve a better understanding of quantum mechanics on macroscopic
scales.

H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 165
Springer Theses, DOI: 10.1007/978-3-642-25640-0_11,
© Springer-Verlag Berlin Heidelberg 2012
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As a premise of investigating macroscopic quantum mechanics (MQM), the
mechanical oscillator should be prepared close to being in a pure quantum state.
To achieve this, there are mainly three approaches raised in the literature: (i) The
first and the most transparent approach is to cool down the oscillator by coupling it
to an additional heat bath that has a temperature Tadd much lower than that of the
environment T0.As a result, the oscillator will achieve an effective temperature given
by Teff = (T0 γm + Tadd �add)/(γm + �add), with γm and �add denoting the damp-
ing due to coupling to the environment and the additional heat bath, respectively.
In the strong-damping regime, with �add � γm, we achieve the desired outcome
with Teff ≈ Tadd. Since the typical optical frequency ω0 can be much higher than
kB T0/�, a coherent optical field can be effectively behaved as a zero-temperature
heat bath. Indeed, by coupling an oscillator parametrically to an optical cavity, many
state-of-the-art experiments have demonstrated significant cooling of the oscillator,
achieving a very low thermal occupation number [2, 13, 14, 19, 23, 29, 33, 38, 42,
50, 51, 52, 54, 55]. A similar mechanism also applies to electromechanical systems
as demonstrated in the experiments [4, 24, 25, 45]; (ii) The second approach is to
introduce additional damping via feedback, i.e., the so-called cold-damping. The
feedback loop modifies the dynamics of the oscillator in a way similar to the previ-
ous cooling case. Such an approach has also been realized experimentally [11, 12,
48]. If the intrinsic mechanical and electrical/optical qualities of the coupled system
are high, those cooling and cold-damping experiments can eventually achieve the
quantum ground state of a mechanical oscillator [15, 17, 22, 36, 37, 49, 57, 60, 62];
(iii) The third approach is to construct a conditional quantum state of the mechani-
cal oscillator via continuous position measurements. Quantum mechanically, if the
oscillator position is being continuously monitored, a certain classical trajectory in
the phase space can be mapped out, and the oscillator is projected into a posteri-
ori state [3], which is also called a conditional quantum state [18, 21, 26, 40, 43,
44]. Given an ideal continuous measurement without loss, the resulting conditional
quantum state of the oscillator is a pure state.

Recently, we theoretically investigated this third approach for general linear posi-
tion measurements, in great detail [44]. The analysis of this work is independent of
the scale and mass of the oscillator—these parameters will only modify the structure
of resulting noises. In particular, we applied our formalism to discuss MQM exper-
iments with macroscopic test masses in future gravitational-wave (GW) detectors.
We demonstrated explicitly that, given the noise budget for the design sensitivity,
next-generation GW detectors such as Advanced LIGO [27] and Cryogenic Laser
Interferometer Observatory (CLIO) [41] can prepare nearly pure Gaussian quan-
tum states and create Einstein-Podolsky-Rosen (EPR) type entanglement between
macroscopic test masses. Besides, we showed that the free-mass Standard Quantum
Limit (SQL) [8, 9] for the detection sensitivity:

SSQL
x (�) = 2�

m�2 , (11.1)

where m is mass of the probing test mass, and � is the detection frequency. This
limit also serves as a benchmark for MQM experiments with GW detectors.
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Fig. 11.1 (color online)A schematic plot of a Wigner function W(x,p) (left) and the corresponding
uncertainty ellipse for the covariance matrix Vcond (this can be viewed as a projection of the Wigner
function). The center of the plot is given by the conditional mean (xcond, pcond). The Heisenberg
limit is shown as a unit circle with radius given by the zero-point fluctuation �/(2mωm). For a
pure Gaussian conditional quantum state, the area of the ellipse, i.e., π det Vcond/(2mωm)

2, is also
equal to that of the Heisenberg limit. Therefore, the uncertainty product det Vcond can be used as
an appropriate figure of merit for quantifying the purity of a quantum state. From Ref. [39]

More concretely, a Gaussian conditional quantum state is fully described by its
Wigner function, as shown schematically in Fig. 11.1. This is given by:

W (x, p) = 1

2π
√

det Vcond
exp

[
−1

2
�X Vcond−1 �X T

]
. (11.2)

Here, �X = [x − xcond, p − pcond] with xcond and pcond denoting the conditional
means of oscillator position x and momentum p, and Vcond is the covariance matrix
between position and momentum. The purity of the conditional quantum state can
be quantified by the uncertainty product, which is defined as:

U ≡ 2

�

√
det Vcond = 2

�

√
V cond

xx V cond
pp − V cond

xp
2
, (11.3)

which is also proportional to the square root of the area of the uncertainty ellipse
as shown in Fig. 11.1. In Ref. [44], we related this uncertainty product U of the
conditional quautum state of test masses in GW detectors to the SQL-beating ratio
of the classical noise, and also the amount of entanglement between test masses to
the size of the frequency window (i.e., the ratio between upper and lower ends of
that frequency window) in which the classical noise goes below the SQL.

A state-preparation stage alone does not provide a complete test of MQM. This is
because the measurement data in the state-preparation process only allow us to mea-
sure a classical trajectory of the oscillator—quantum fluctuations are only inferred
from the noise budget, but are not directly visible. Therefore, the resulting condi-
tional quantum state critically relies on the noise model of the measurement device.
If such a noise model is imprecise, it will yield severe discrepancies between the
actual quantum state and the conditional one. Therefore, there is a need for a second
measurement stage which has to follow up the preparation stage. In this chapter, we
will address the above issue by considering a subsequent state-verification procedure,
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in which we make a tomography of the conditional quantum state obtained during
the preparation stage. On the one hand, this verification stage can serve as a check
on the specific noise model used to verify the prepared quantum state. On the other
hand, if we insert an evolution stage with the oscillator evolving freely before the
verification, the quantum dynamics of the oscillator can also be probed, which allows
us to study different decoherence effects, and also to check whether a macroscopic
mechanical oscillator does evolve in the same way as a quantum harmonic oscillator
or not.

Since the conditional quantum state undergoes a random walk in the phase space,
as shown schematically in Fig. 11.2, the classical information of the conditional
mean, obtained by the preparer from the measurement data, needs to be passed onto
the verifier, who will then proceed with a tomography process. Suppose the state
preparation stage ends at t = 0, and the preparer obtains a conditional quantum
state whose Wigner function is W (x(0), p(0)). The task of the verifier is to try to
reconstruct this Wigner function, by synthesizing marginal distributions of different
mechanical quadratures X̂ζ (0) from ensemble measurements at t > 0, with

X̂ζ (0) ≡ x̂(0) cos ζ + p̂(0)

m ωm
sin ζ, (11.4)

where x̂(0) and p̂(0) denote the oscillator position and momentum at t = 0, andωm is
the oscillation frequency. This process is similar to the optical quantum tomography,
where different optical quadratures are measured with homodyne detections [34].
However, there is one significant difference—mechanical quadratures are not directly
accessible with linear position measurements, which measure:

x̂q(t) = x̂(0) cosωmt + p̂(0)

m ωm
sinωmt, (11.5)

rather than X̂ζ . To probe mechanical quadratures, we propose the use of a time-
dependent homodyne detection, with the local-oscillator phase varying in time. Given
a measurement duration of Tint, we can construct an integral estimator, which reads:

X̂ =
∫ Tint

0
dt g(t) x̂(t) ∝ x̂(0) cos ζ ′ + p̂(0)

m ωm
sin ζ ′ (11.6)

with cos ζ ′ ≡ ∫ Tint
0 dt g(t) cosωmt, and sin ζ ′ ≡ ∫ Tint

0 dt g(t) sinωmt. Therefore,

a mechanical quadrature X̂ζ ′ is probed [cf. Eq. (11.4)]. Here g(t) is some filtering
function, which is determined by the time-dependent homodyne phase, and also by
the way in which data at different times are combined.

The ability to measure mechanical quadratures does not guarantee the success
of a verification process. In order to recover the prepared quantum state, it requires
a verification accuracy below the Heisenberg limit. Physically, the output of the
verification process is a sum of the mechanical-quadrature signal and some uncor-
related Gaussian noise. Mathematically, it is equivalent to applying a Gaussian filter
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Fig. 11.2 (color online) A schematic plot of a random walk of the conditional quantum state, i.e.,
its Wigner function, in phase space. Its center is given by the conditional mean [xcond(t), pcond(t)],
with the uncertainty given by conditional variances V cond

xx,pp,xp. To verify the prepared conditional
quantum state, the only knowledge that verifier needs to know is the classical information of the
conditional mean provided by the preparer, provided the noises are Markovian. From Ref. [39]

onto the original Wigner function W (x, p) of the prepared state [44], and thus the
reconstructed Wigner function is:

Wrecon(x, p) =
∫ ∞

−∞
dx ′dp′ ψ(x − x ′, p − p′)W (x ′, p′), (11.7)

where the Gaussian filter ψ(x, p) is given by:

ψ(x, p) ≡ 1

2π
√

det Vadd
exp

[
−1

2
�ξ Vadd−1�ξ T

]
, (11.8)

with �ξ = [x, p], and Vadd denoting the covariance matrix for the added verification
noise. If the prepared quantum state is Gaussian, using the property of Gaussian
integration, the reconstructed Wigner function is:

Wrecon(x, p) = 1

2π
√

det Vrecon
exp

[
−1

2
�ξ Vrecon−1�ξ T

]
, (11.9)

and the covariance matrix Vrecon is:

Vrecon = Vcond + Vadd. (11.10)

In Fig. 11.3, we show schematically the effects of different levels of verifica-
tion accuracy given the same prepared conditional quantum state. A sub-Heisenberg
accuracy, with an uncertainty area smaller than the Heisenberg limit, is essential for
us to obtain a less distorted understanding of the original prepared quantum state. In
addition, if the prepared quantum state of the mechanical oscillator is non-Gaussian
[6, 28, 30, 31, 35], a sub-Heisenberg accuracy is a necessary condition for unveiling
the non-classicality of the quantum state, as shown schematically in Fig. 11.4, and
proved rigorously in the Appendix 11.9.1.



170 11 Probing Macroscopic Quantum States

Fig. 11.3 (color online) A schematic plot of the uncertainty ellipses of reconstructed states with the
same prepared Gaussian quantum state but different levels of verification accuracy, which shows
the necessity of a sub-Heisenberg accuracy. The center of the plot is given by the conditional
mean (xcond, pcond). The shaded areas correspond to the verification accuracy. The Heisenberg
limit is shown by a unit circle. The dashed and solid ellipses represent the prepared state and the
reconstructed states respectively. From Ref. [39]

Fig. 11.4 (color online) Values of reconstructed Wigner functions on the p = 0 plane, i.e.,
Wrecon(x, p = 0), for a single-quantum state, obtained at different levels of verification accuracy.
Solid curve shows the ideal case with no verification error. Dashed and dotted curves correspond to
the cases with a verification error of 1/4 and 1/2 of the Heisenberg limit, respectively. The negative
regime (shaded), or the non-classicality, vanishes as the verification error increases. This again
manifests the importance of a sub-Heisenberg verification accuracy. From Ref. [39]

Verifications of quantum states below the Heisenberg limit also naturally allow us
to test whether entanglement between two macroscopic test masses in GW detectors
can indeed be established, as predicted in Ref. [43, 44], and how long such an entan-
gled state can survive. Survival of macroscopic entanglement can test one particular
version of gravity decoherence conjectured by Diósi [16] and Penrose [47]. For an
individual object, it is not entirely clear what is the classical superposition of pointer
states that gravity decoherence will drive it into. For an entangled state among mul-
tiple objects, even though Gaussian, it would naturally have to decay into one that is
not entangled, within the gravity decoherence timescale.

As we will show, in order to achieve a sub-Heisenberg accuracy, we need to
optimize the local-oscillator phase of the time-dependent homodyne detection as
well as the weight with which data collected at different times will be combined.
If there is no readout loss, this optimization will automatically give a detection scheme
that evades measurement-induced back action, which is the same as the variational-
type measurement scheme proposed by Vyatchanin and Matsko [58] for detecting



11.2 Introduction 171

GW signals with known arrival time. Since, in a single measurement setup, different
quadratures do not commute with each other, namely:

[X̂ζ , X̂ζ ′ ] = i �

m ωm
sin(ζ − ζ ′), (11.11)

one needs multiple setups, where each makes ensemble measurements of one par-
ticular quadrature X̂ζ with a sub-Heisenberg accuracy—the synthesis of these mea-
surements yields a quantum tomography.

As a sequel to Ref. [44], and to motivate MQM experiments with future GW
detectors, we will also focus on the same parameter regime, where the characteristic
measurement frequency is much higher than the oscillator frequency, and the oscil-
lator can be treated as a free mass. In addition, we will consider situations where the
spectra of the classical noise can be modeled as being white. Non-Markovianity of
noise sources—although they certainly arise in actual GW detectors [44] and will
be crucial for the success of a real experiment—is a rather technical issue. This
non-Markovianity will not change the results presented here significantly, as we will
show and address in a separate paper [in preparation].

This chapter is organized as follows: in Sect. 11.3, we will formulate the sys-
tem model mathematically by writing down the Heisenberg equations of motion; in
Sect. 11.4, we will provide a timeline for a full MQM experiment with preparation,
evolution and verification stages, and use simple order-of-magnitude estimates to
show that this experimental proposal is indeed plausible; in Sect. 11.6, we will eval-
uate the verification accuracy in the presence of Markovian noises (largely confirming
the order-of-magnitude estimates, but with precise numerical factors); in Sect. 11.7,
we will consider verifications of macroscopic quantum entanglement between test
masses in GW detectors as a test of gravity decoherence; in Sect. 11.8, we will sum-
marize our main results. In the Appendix, we will present mathematical details for
solving the integral equations that we encounter in obtaining the optimal verification
scheme.

11.3 Model and Equations of Motion

In this section, we will present a mathematical description of the system model, as
shown schematically in the upper left panel of Fig. 11.5 The oscillator position is
linearly coupled to coherent optical fields through radiation pressure. Meanwhile,
information of the oscillator position flows into the outgoing optical fields continu-
ously. This models a measurement process in an optomechanical system without a
cavity, or with a large-bandwidth cavity. The corresponding Heisenberg equations,
valid for both preparation and verification stages, are formally identical to classical
equations of motion except that all quantities are Heisenberg operators. The oscillator
position x̂ and momentum p̂ satisfy the following equations:

˙̂x(t) = p̂(t)/m, (11.12)
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Fig. 11.5 A schematic plot of the system (upper left panel) and the corresponding spacetime dia-
gram (right panel) showing the timeline of the proposed MQM experiment (see Sect. 11.4.1 for
detailed explanations). In this schematic plot, the oscillator position is denoted by x̂ which is cou-
pled to the optical fields through radiation pressure. The ingoing and outgoing optical fields are
denoted by â1,2 and b̂1,2 with subscripts 1, 2 for the amplitude and phase quadratures, respectively.
In the spacetime diagram, the world line of the oscillator is shown by the middle vertical line. For
clarity, ingoing and outgoing optical fields are represented by the left and right regions on opposite
sides of the oscillator world line, even though in reality, the optical fields escape from the same side
as where they enter. We show light rays during the preparation and verification stages in red and
blue. In between, the yellow shaded region describes the evolution stage, with the light turned off
for a duration of τE . The conditional variance of the oscillator motion is represented by the shaded
region alongside the central vertical line (not drawn to the same scale as for the light propagation).
At the beginning of preparation, the conditional variance is dominated by that of the initial state
(orange). After a transient, it is determined by incoming radiation and measurements. Right after
state preparation, we show the expected growth of the conditional variance due to thermal noise
alone, and ignoring the effect of back-action noise, which is evaded during the verification process.
The verification stage lasts for a duration of τV , and it is shorter than τF , after which the oscillator
will be dominated by thermalization. From Ref. [39]

˙̂p(t) = −2γm p̂(t)− m ω2
m x̂(t)+ α â1(t)+ ξ̂F (t). (11.13)

Here, α â1 corresponds to the quantum-radiation-pressure noise, or the so-called
back-action noise; α ≡ (� m�2

q)
1/2 = (8 I0 ω0 �/c2)1/2 is the coupling constant

between the oscillator and the optical fields, with I0 denoting the optical power,
and �q quantifying the characteristic frequency of measurement strength. We have
included the fluctuation-dissipation mechanism of the mechanical oscillator by intro-
ducing the mechanical damping rate γm, and classical-force noise ξ̂F , i.e., the
Brownian thermal noise. In the Markovian limit, the correlation function for ξ̂F is
given by1:

1 Here 〈 〉sym stands for a symmetrized ensemble average. For a system characterized by a density
matrix ρ̂, it is defined as

〈ô1(t) ô2(t
′)〉sym ≡ Tr

{[ô1(t)ô2(t
′)+ ô2(t

′)ô1(t)]ρ̂
}
/2 .
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〈ξ̂F (t) ξ̂F (t
′)〉sym = Sth

F δ(t − t ′)/2, (11.14)

where Sth
F = 4mγmkB T0 ≡ 2� m�2

F and we have defined a characteristic frequency
�F for the thermal noise.

The amplitude and phase quadratures of ingoing optical fields â1,2, and of outgo-
ing optical fields b̂1,2, satisfy the following input-output relations:

b̂1(t) = √
η n̂1(t)+ √

1 − η â1(t), (11.15)

b̂2(t) = √
η n̂2(t)+ √

1 − η
[
â2(t)+ α

�
x̂(t)+ α

�
ξ̂x (t)

]
. (11.16)

Here n̂1,2, originate from non-unity quantum efficiency of the photodetector for
η > 0. In the paraxial and narrow-band approximation, â1,2 are related to the
electrical-field strength at the central frequency ω0 by [5, 10, 32]:

Ê(t) ≡
(

4π�ω0

S c

)1/2

{[ā + â1(t)] cosω0t + â2(t) sinω0t} (11.17)

with ā denoting the classical amplitude, and S standing for the effective cross-
sectional area of the laser beam. A similar relation also holds for the outgoing fields
b̂1,2. In addition, they satisfy [â1(t), â2(t ′)] = [b̂1(t), b̂2(t ′)] = i δ(t − t ′). Their
correlation functions are:

〈âi (t) â j (t
′)〉sym = δi j e

±2qδ(t − t ′)/2, (i, j = 1, 2) (11.18)

where q denotes the squeezing factor (q = 0 for a vacuum-state input), with “+" for
the amplitude quadrature and “−" for the phase quadrature. Correspondingly, the
correlation function for the back-action noise α â1 is simply

〈α â1(t) α â1(t
′)〉sym = SBA

F δ(t − t ′)/2, (11.19)

with SBA
F ≡ e2q

� m�2
q . In Eq. (11.16), ξ̂x is the sensing noise. One example is the

internal thermal noise, and it is defined as the difference between the center of mass
motion and the surface motion of the oscillator which is actually being measured. In
the Markovian approximation, it has the following correlation function:

〈ξ̂x (t) ξ̂x (t
′)〉sym = Sth

x δ(t − t ′)/2, (11.20)

where Sth
x = �/(m�2

x ) and we introduce a characteristic frequency �x for the
sensing noise.

Note that the �q ,�F , and �x that we have introduced are also the frequencies
at which the back-action noise, thermal noise, and sensing noise intersect the SQL
[cf. Eq. (11.1)], respectively. They are identical to what were introduced in Ref. [44].
For conveniences of later discussions, we introduce the following dimensionless
ratios:
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ζF = �F/�q , ζx = �q/�x . (11.21)

In addition, we define two characteristic timescales for the measurement and
thermal-noise strength as:

τq ≡ 1/�q , τF ≡ 1/�F . (11.22)

11.4 Outline of the Experiment With Order-of-Magnitude
Estimate

In this section, we will describe in detail the timeline of a plausible MQM experiment
(Sect. 11.4.1), and provide order-of-magnitude estimates of the conditional variance
of the prepared quantum state, the evolution of the prepared quantum state, and
the verification accuracy in the free-mass regime (Sects. 11.4.2–11.4.4). This will
provide qualitatively the requirements on the noise level for the success of an MQM
experiment. We will give more rigorous treatments in Sect. 11.6.

11.4.1 Timeline of Proposed Experiment

We have sketched a space-time diagram for the proposed MQM experiment in the
right panel of Fig. 11.5—with time going upward, we therefore start from the bottom
of the figure.

Lock Acquisition. At the beginning, the mechanical oscillator is in a highly mixed
state, and so are the optical fields. Therefore, the first step is to “acquire lock” of
the measurement device, and reach a steady-state operation mode, during which
several τq will have elapsed. From this time onwards, the initial-state information
will have been forgotten (propagating outward within the green strip), and the state
of the oscillator will be determined by the driving fields, including the classical-force
noise and sensing noise, as well as the quantum noise. This will be the start of the
state-preparation stage (region above the 45◦ green strip).

State Preparation. This stage is a steady-state operation of the measurement
device. The quantum state of the oscillator is collapsed continuously due to homo-
dyne readouts of the photocurrent. At any instant during state preparation, based on
the measured history of the photocurrent (mostly on data within several times τq to
the past of t), the conditional expectation xcond, pcond) for the oscillator position
x̂ and momentum p̂ can be constructed. The second moments, describable by the
covariance matrix between position and momentum, which consists of V cond

xx , V cond
xp

and V cond
pp , can be calculated from the noise model of the measurement device—they,

together with xcond and pcond, fully determine the quantum state, i.e., the Wigner
function of the oscillator at any instant [cf. Eq. (11.2)]. For a Gaussian steady state,
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the construction of )xcond, pcond) and the conditional covariance matrix from the
history of the photocurrent can be accomplished most easily using Wiener Filtering,
as shown in Ref. [44].

The preparation stage terminates at t = 0,when )xcond, pcond) and the covariance
matrix will be determined by data from several −τq up to 0 as shown by the red strip.

State Evolution. If we want to investigate the quantum dynamics of the oscillator
and study various decoherence effects, we can delay the verification process and allow
the oscillator to freely evolve with the interaction light turned off (as represented by
the yellow strip). During this period, the thermal noise will induce diffusions of
the oscillator position and momentum, thus increasing the conditional variance as
shown schematically by the broadening of the shaded region alongside the oscillator
world line. If there were any additional decoherence effect, the variance would grow
faster than the case with the thermal decoherence alone. A follow-up verification
allows us to check whether additional decoherence mechanisms, such as the gravity
decoherence conjectured by Diósi [16] and Penrose [47], exist or not.

State Verification. After the evolution stage, the verification stage starts (rep-
resented by blue strip). We intentionally use different colors to label the prepara-
tion light and verification light—symbolizing the fact that, in principle, a different
observer (verifier) could perform the verification process, and verify the quantum
state by him/herself. The only knowledge from the preparer would be the condi-
tional expectation xcond and pcond, if all noise sources are Markovian. The verifier
uses a time-dependent homodyne detection and collects the data from measuring
the photocurrents. The verification process lasts for a timescale of τV between the
characteristic measurement timescale τq and the thermal decoherence timescale τF ,

after which diffusions of x̂ and p̂ in the phase space become much larger than the
Heisenberg limit. Based upon the measurement data, the verifier can construct an
integral estimator for one particular mechanical quadrature [cf. Eq. 11.6].

The above three stages have to be repeated many times before enough data are
collected to build up reliable statistics. After finishing the experiment, the verifier
will obtain a reconstructed quantum state of the mechanical oscillator, and then can
proceed to compare with the preparer, and to interpret the results.

11.4.2 Order-of-Magnitude Estimate of the Conditional Variance

In this and the following two subsections, we will provide order-of-magnitude esti-
mates for a three-staged MQM experiment including preparation, evolution and veri-
fication stages. This gives us physical insight into the different timescales involved in
an MQM experiment, and also into the qualitative requirements for an experimental
realization. We will justify those estimates based upon more careful treatments in
the next several sections.

Based upon the measurement data from several−τq to 0, one can construct a condi-
tional quantum state for the mechanical oscillator. Suppose that the phase quadrature
of the outgoing fields is being measured and the photodetection is ideal with η = 0.
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Given a measurement timescale of τ (measuring from −τ to 0), variances for the
oscillator position and momentum at t = 0, in the free-mass regime with ωm → 0,
are approximately equal to [cf. Eqs. (11.12), (11.13), (11.15) and (11.16)]

δx2(0) ∼ Stot
x /τ + τ 3Stot

F /m
2 ∼ N

3
4

x N
1
4
F δx2

q , (11.23)

δp2(0) ∼ m2Stot
x /τ

3 + τ Stot
F ∼ N

1
4

x N
3
4
F δp2

q . (11.24)

Here, Stot
F ≡ SBA

F + Sth
F [cf. Eqs. (11.14) and (11.19)] and Stot

x ≡ Ssh
x + Sth

x with
Ssh

x denoting the shot noise due to â2 [cf. Eqs. (11.16) and (11.20)]; we have defined

Nx ≡ 1 + 2 ζ 2
x , NF ≡ 1 + 2 ζ 2

F , (11.25)

while

δx2
q ≡ �/(2m�q) , δp2

q ≡ � m�q/2. (11.26)

The optimal measurement timescale is given by τ ∼ τq .The purity of the prepared
conditional quantum state at t = 0 is approximately equal to [cf. Eq. (11.3)]

U (0) ∼ 2

�
δx(0) δp(0) ∼ Nx NF . (11.27)

If the classical noises are low, namely, Nx ∼ NF ∼ 1, the conditional quantum
state will be pure, with U (0) ∼ 1. For future GW detectors such as AdvLIGO, both
ζx and ζF will be around 0.1, and such a low classical-noise budget clearly allows
us to prepare nearly pure quantum states of the macroscopic test masses.

11.4.3 Order-of-Magnitude Estimate of State Evolution

During the evolution stage, the uncertainty ellipse of the conditional quantum state
will rotate at the mechanical frequency in the phase space, and meanwhile there is
a growth in the uncertainty due to thermal decoherence as shown schematically in
Fig. 11.6. Given a strong measurement, the variance of the resulting conditional quan-
tum state in position δx2(0)will be approximately equal to δx2

q as shown explicitly in
Eq. (11.23) with Nx , NF ∼ 1. It is much smaller than the zero-point uncertainty of an
ωm oscillator, which is given by �/(2m ωm).Therefore, the conditional quantum state
of the oscillator is highly squeezed in position. The position uncertainty contributed
by the initial-momentum will be comparable to that of the initial-position uncertainty
after a evolution duration of τq .This can be directly seen from an order-of-magnitude
estimate. In the free-mass regime,

x̂(t) ∼ x̂(0)+ p̂(0)

m
t. (11.28)
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Fig. 11.6 (color online) Rotation and diffusion of a highly position-squeezed conditional quantum
state, prepared by a strong measurement with �q � ωm . The initial-momentum uncertainty will
contribute an uncertainty in the position comparable to the initial-position uncertainty, when the
evolution duration τE ∼ τq . From Ref. [39]

For an evolution duration of τE , the corresponding variance in position is:

δx2(τE ) ∼ δx2(0)+ δp2(0)

m2 τ 2
E ∼ δx2(0)[1 + (�qτE )

2]. (11.29)

The contribution from the initial-momentum uncertainty (the second term) will
become important when �qτE ∼ 1, or equivalently τE ∼ τq .

Apart from a rotation, the uncertainty ellipse will also grow due to thermal deco-
herence. Variances in the position and momentum contributed by thermal decoher-
ence are approximately given by [cf. Eqs. (11.12) and (11.13)]

δx2
th(τE ) ∼ τ 3

E Sth
F /m2 = ζ 2

F (�qτE )
3δx2

q , (11.30)

δp2
th(τE ) ∼ τE Sth

F = ζ 2
F (�qτE )δp2

q . (11.31)

The growth in the uncertainty ellipse will simply be:

U th(τE ) ∼ 2

�
δxth(τE )δpth(τE ) ∼ ζ 2

F (�qτE )
2 = (τE/τF )

2. (11.32)

When τE > τF , U th(τE ) > 1, and the conditional quantum state will be domi-
nated by thermalization.

If there were any additional decoherence effect, the growth in the uncertainty
would be much larger than what has been estimated here. A subsequent verification
stage can serve as a check.



178 11 Probing Macroscopic Quantum States

11.4.4 Order-of-Magnitude Estimate of the Verification Accuracy

To verify the prepared conditional quantum state, the oscillator position needs to be
measured for a finite duration to obtain information about x̂(0) and p̂(0) [cf. Eqs.
(11.15) and (11.16)] or about x̂(τE ) and p̂(τE ) if the evolution stage is inserted. In
order for an entire state characterization to be possible, one might then expect that an
oscillation period must pass, and during this period, the thermal noise should cause
an insignificant diffusion of the oscillator momentum compared with its zero-point
uncertainty, which requires [44]:

kB T0

�ωm
< Qm (11.33)

with Qm ≡ ωm/(2γm) denoting the mechanical quality factor. This requirement
is unnecessary if the initial quantum state is prepared by a strong measurement.
As we have mentioned in the previous subsection, the resulting conditional quantum
state is highly squeezed in position, and the initial-momentum uncertainty will make
a significant contribution to the uncertainty in position after τ > τq . This means,
depending on the particular strategy, one can extract x̂ and p̂ below the levels of δxq

and δpq , respectively, as long as one is able to measure oscillator position with an
accuracy better than δxq , within a timescale of several τq . This is certainly possible
if the measurement-induced back-action is evaded.

To evade the measurement-induced back-action, one notices the fact that the
amplitude quadrature b̂1 contains â1, which is responsible for the back action, and
meanwhile the phase quadrature b̂2 contains the information of oscillator position,
part of which is contributed by the back action [cf. Eqs. (11.12)–(11.16)]. Therefore,
if we measure particular combinations of b̂1 and b̂2 at different times, by summing
up those measurements, we will be able to cancel the back action and obtain a
back-action-evading (BAE) estimator for a given mechanical quadrature. Such a
cancelation mechanism is only limited by the readout loss (η �= 0), which introduces
uncorrelated vacuum fluctuations.

We can make an order-of-magnitude estimate to show that a sub-Heisenberg
accuracy can be indeed achieved. With the BAE technique, the force noise that limits
the verification accuracy will only contain the thermal-noise part. Similar to Eqs.
(11.23) and (11.24) but with Stot

F replaced by Sth
F , the variances in position and

momentum during the verification stage are simply:

δx2
V ∼ Stot

x /τ + τ 3Sth
F /m

2 ∼ N 3/4
x ζ

1/2
F δx2

q , (11.34)

δp2
V ∼ m2Stot

x /τ
3 + τ Sth

F ∼ N 1/4
x ζ

3/2
F δp2

q . (11.35)

Here the optimal verification timescale would be τV ∼ ζ
−1/2
F τq , and τq < τV <

τF . A summarizing figure of merit for the verification accuracy is approximately
given by:
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U add|BAE ∼ 2

�
δxV δpV ∼ N 1/2

x ζF . (11.36)

A sub-Heisenberg accuracy can be achieved when ζF < 1.Note that this error can
be made arbitrarily small by lowering ζF indefinitely, i.e., a very strong measurement.
If phase-squeezed light is injected during the verification stage, we would have

U add|BAE ∼ (e−2q + 2ζ 2
x )

1/2ζF =
√

�2
F

�2
qe2q

+ 2�2
F

�2
x
. (11.37)

Increasing the squeezing factor always improves our verification sensitivity, with
a limit of

U add
lim |BAE ∼ �F/�x = ζx ζF , (11.38)

which can be much lower than unity in the case of future GW detectors, or of any
low-noise measurement device.

Had we not evaded the back-action noise, we would have
√

NF in the place of
ζF ,which means δxV δpV would be Heisenberg-limited—unless different squeezing
factors are assumed. For low squeezing (i.e., e±2q larger than both ζx and ζF ), we
need phase-squeezing for x̂ observation, and amplitude squeezing for p̂ observation,
with

U add|without BAE ∼ e−q , (11.39)

which is a significant factor (1/ζF ) worse than in the BAE scheme. Even though
there exists an optimal squeezing factor that this scheme can apply, which is:

U add
opt |without BAE ∼ ζx , (11.40)

it is still worse than the limiting situation of the BAE scheme [cf. Eq. (11.38)] by a
factor of 1/ζF (�1).

11.5 The Conditional Quantum State and its Evolution

The previous order-of-magnitude estimates provide us with a qualitative picture of
an MQM experiment, especially in the free-mass regime where future GW detectors
will be operating. As long as ζF and ζx are smaller than unity, i.e., the classical
noise goes below the SQL around the most sensitive frequency band (� ∼ �q) of
the measurement device, not only can we prepare a nearly pure quantum state, but
also we can make a sub-Heisenberg tomography of the prepared state. In this and
following sections, we will provide more rigorous treatments by directly analyzing
the detailed dynamics of the system.
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11.5.1 The Conditional Quantum State Obtained
From Wiener Filtering

The rigorous mathematical treatment of state preparation has been given in Ref. [44].
The main idea is to treat the conditional quantum state preparation as a classical
filtering problem, which is justified by the fact that the outgoing optical quadratures
b̂1,2 at different times commute with each other, the same as in a classical random
process. For such a Gaussian linear system, the Wiener filter, satisfying the minimum
mean-square error criterion, allows us to obtain an optimal estimate for the quantum
state of the oscillator, i.e., the conditional quantum state. Based upon the measurement
data y(t) (t < 0), conditional means for the oscillator position and momentum at
t = 0 can be constructed as [cf. Eq. (14) of Ref. [44]]

xcond(0) ≡ 〈x̂(0)〉cond =
∫ 0

−∞
dt Kx (−t)y(t), (11.41)

pcond(0) ≡ 〈 p̂(0)〉cond =
∫ 0

−∞
dt K p(−t)y(t). (11.42)

Here Kx and K p are causal Wiener filters. The covariance matrix is given by [cf.
Eq. (15) of Ref. [44]]:

Vcond
oi o j

(0) = 〈ôi (0)ô j (0)〉cond
sym − 〈ôi (0)〉cond〈ô j (0)〉cond, (11.43)

where i, j = 1, 2 and ô1, ô2 denote x̂, p̂, respectively. In the free-mass regime, we
showed that [cf. Eqs. (52)–(54) in Ref. [37]]:

Vcond(0) =
⎡

⎣ N
1
4
F N

3
4

x
√

2δx2
q N

1
2
F N

1
2

x �/2
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1
2
F N

1
2

x �/2 N
3
4
F N

1
4

x
√

2δp2
q

⎤

⎦. (11.44)

With conditional means and variances, the Wigner function or equivalently the
conditional quantum state is uniquely defined [cf. Eq. (11.2)]. Correspondingly,
purity of the conditional quantum state is quantified by

U (0) = 2

�

√
det Vcond(0) = Nx NF . (11.45)

This simply justifies the order-of-magnitude result presented in Eq. (11.27).

11.5.2 Evolution of the Conditional Quantum State

In the following discussions, we will analyze how such a conditional quantum state
evolves during the evolution stage. On the one hand, this confirms the qualitative
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results presented in Sect. 11.4.3. On the other hand, it provides a quantitative under-
standing of the timescale for the later verification stage.

The equations of motion for the oscillator during the evolution stage are given
by Eqs. (11.12) and (11.13) except that there is no radiation pressure, as the light
is turned off.2 For simplicity, and also in consideration of the case in a realistic
experiment, we will assume an oscillator with a high quality factor, i.e., ωm � γm .

Within a timescale much shorter than 1/γm, the oscillator can be well-approximated
as a free oscillator. Correspondingly, the analytical solution for the oscillator position
reads:

x̂(t) = x̂q(t)+
∫ ∞

0
dt ′ Gx (t − t ′)ξ̂F (t

′) . (11.46)

Here the free quantum oscillation x̂q(t) of the oscillator is given by Eq. (11.5).
We have defined the Green’s function as:

Gx (t) = �(t)
sin(ωm t)

m ωm
, (11.47)

with �(t) denoting the Heaviside function.
Given an evolution duration of τE , from Eqs. (11.14) and (11.46) the correspond-

ing covariance matrix evolves as

V(τE ) = RT
�Vcond(0)R�

+ Sth
F

8 m2ω3
m

[
2�− sin 2� 2 m ωm sin2�

2 mωm sin2 � m2ω2
m (2�+ sin 2�)

]
,

(11.48)

where � ≡ ωm τE , and the rotation matrix R� is given by:

R� =
[

cos� −m ωm sin�
(m ωm)

−1sin� cos�

]
. (11.49)

The first term in Eq. (11.48) represents a rotation of the covariance matrix Vcond(0)
due to the free quantum oscillation of the oscillator; the second term is contributed
by thermal decoherence which causes an increase in the uncertainty.

In the free-mass regime and the case of ωmτE � 1, elements of the covariance
matrix can be expanded as series of �. Up to the leading order in �, we obtain

Vxx (τE ) = V cond
xx + 4δx2

q

�
V cond

xp �qτE + δx2
q

δp2
q

V cond
pp (�qτE )

2

+ 2δx2
qζ

2
F
(�qτE )

3

3
,

(11.50)

2 Were the light turned on, the back action could still be evaded as long as one measures the
amplitude quadrature â1 during this period and take them into account during data processing.
Since no information of the oscillator position (contained in the phase quadrature of the outgoing
light) is collected, this is equivalent to the case with the light turned off.
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Vxp(τE ) = V cond
xp + �

2δp2
q

V cond
pp �qτE + �

2
ζ 2

F (�qτE )
2, (11.51)

Vpp(τE ) = V cond
pp + 2δp2

qζ
2
F�qτE , (11.52)

with V cond
xx,xp,pp denoting the elements of Vcond(0). Up to the leading order in �qτE ,

the uncertainty product of the resulting quantum state is:

U (τE ) = 2

�

√
det V(τE ) ≈ U (0)+ V cond

xx

δx2
q
(τE/τF )

2, (11.53)

with τF defined in Eq. (11.2). The second term is contributed by the thermal
decoherence and can be viewed as U th(τE ). Those formulas recover the results in
Eqs. (11.29)–(11.32), but now with precise numerical factors. As we can conclude
from Eq. (11.53), in order for a sub-Heisenberg tomography to be possible, the later
verification stage should finish within a timescale of τF , after which the contribution
from the thermal noise gives U th(τF ) ∼ 1.

11.6 State Verification in the Presence of Markovian Noises

In this section, we will treat the follow-up state verification stage with Markovian
noises in detail. This can justify the order-of-magnitude estimate we have derived
in Sect. 11.4.4. In addition, we will show explicitly how to construct the optimal
verification scheme that gives a sub-Heisenberg accuracy.

11.6.1 A Time-Dependent Homodyne Detection
and Back-Action-Evasion

In this subsection, we will analyze the time-dependent homodyne detection which
enables us to probe mechanical quadratures. We will further show how the BAE
scheme can be constructed. The BAE scheme is optimal only when there is no readout
loss (η = 0). We will consider more general situations, and derive the corresponding
optimal verification scheme in the next subsection.

The equations of motion for the oscillator during the verification stage (t > τE )

are given by Eqs. (11.12) and (11.13). The corresponding solution for the oscillator
position is different from Eq. (11.46) due to the presence of the back-action noise
which starts to act on the oscillator at t = τE . Specifically, it reads

x̂(t) = x̂q(t)+
∫ ∞

τE

dt ′ Gx (t − t ′)[α â1(t
′)+ ξ̂F (t

′)] . (11.54)
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Here the free quantum oscillation xq(t) is the signal that we seek to probe during
the verification stage. For optical quadratures, the equations of motion are given by
Eqs. (11.15) and (11.16). From these equations, we notice that among the outgoing
fields: b̂1 is pure noise, while b̂2 contains both signal x̂q(t) and noise. In order to
highlight this, we rewrite b̂1,2 as:

b̂1(t) = √
1 − η n̂1(t)+ √

η â1(t) ≡ δb̂1(t), (11.55)

b̂2(t) = δb̂2(t)+ √
1 − η (α/�) x̂q(t), (11.56)

with [cf. Eq. (11.54)]:

δb̂2(t) ≡ √
η n̂2(t)+ √

1 − η
{

â2(t)+ α

�
ξ̂x (t)

+ α

h

∫ ∞

τE

dt ′ Gx (t − t ′) [α â1(t
′)+ ξ̂F (t

′)]
}
.

(11.57)

In this way, we can directly see that â1 which causes the back-action is contained
in both the amplitude quadrature b̂1 and the phase quadrature b̂2. Therefore, by
measuring an appropriate combination of the two output quadratures, we will be
able to remove the effects of the back-action noise that is imposed on the oscillator
during the verification process at t > τE . Searching for such an optimal combination
is the main issue to be addressed in this section.

As mentioned in the introduction part, to probe mechanical quadratures and their
distributions, a time-dependent homodyne detection needs to be applied [cf. Eq.
(11.6)]. Specifically, the outgoing optical field:

B̂out(t) = b̂1(t) cosω0t + b̂2(t) sinω0t (11.58)

at t > τE is mixed with a strong local-oscillator light L(t) whose phase angle φos is
time-dependent, as shown schematically in Fig. 11.7, namely:

L(t) = L0 cos[ω0 t − φos(t)] (11.59)

with L0 a time-independent constant. Through a low-pass filtering (with a bandwidth
much smaller than ω0) of the beating signal, the resulting photocurrent is:

î(t) ∝ 2B̂out(t)L(t)

= L0 b̂1(t) cosφos(t)+ L0 b̂2(t) sin φos(t),
(11.60)

where the overline means averaging over many optical-oscillation periods. Note that
the Heisenberg operators for the photocurrent at different times commute with each
other, i.e.,

[î(t), î(t ′)] = 0, (11.61)
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Fig. 11.7 (color online) A schematic plot of time-dependent homodyne detection. The phase mod-
ulation of the local oscillator light varies in time. From Ref. [39]

and are therefore simultaneously measurable, as expected. Based on the measurement
results of î(t) from τE to Tint, we can construct the following weighted quantity Ŷ ,
with a weight function W(t):

Ŷ =
∫ Tint

0
�(t − τE )W (t)î(t)dt ≡ (g1|b̂1)+ (g2|b̂2). (11.62)

Here, the Heaviside function �(t − τE ) manifests the fact that the verification
stage starts at t = τE ; and we have introduced the scalar product of two vectors |A)
and |B) in the L2[0, Tint] space as the following:

(A|B) ≡
∫ Tint

0
A(t)B(t)dt . (11.63)

In addition, we have defined filtering functions g1 and g2 as

g1(t) ≡ �(t − τE )W (t) cosφos(t), (11.64)

g2(t) ≡ �(t − τE )W (t) sin φos(t). (11.65)

Since all the data can in principle be digitized and stored in hardware, the weight
function W(t) can be realized digitally during data processing. In addition, an overall
re-scaling of g1,2(t) → C0 g1,2(t), with C0 a time-independent constant, does not
affect the verification performance; also, there are multiple ways of achieving a
particular set of g1,2(t), by adjusting the phase φos(t) of the local oscillator and the
weight function W(t).

In light of Eqs. (11.55)–(11.57), we decompose the weighted quantity Ŷ [cf. Eq.
(11.62)] as a signal Ŷs and a noise part δŶ , namely:

Ŷ = Ŷs + δŶ . (11.66)

These are given by

Ŷs = √
1 − η (α/�) (g2|x̂q),

δŶ = (g1|δb̂1)+ (g2|δb̂2). (11.67)
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Since an overall normalization of g1,2 will not affect the signal-to-noise ratio as
mentioned, we can mathematically impose that:

(g2| f1) = cos ζ , (g2| f2) = sin ζ (11.68)

with

f1(t) ≡ cosωmt, f2(t) ≡ (�q/ωm) sinωmt (11.69)

in the coordinate representation. The signal part can then be rewritten as:

Ŷs = √
1 − η (α/�)δxq

[
x̂0 cos ζ + p̂0 sin ζ

]
, (11.70)

where we have introduced normalized the oscillator position and momentum as
x̂0 ≡ x̂(τE )/δxq and p̂0 ≡ p̂(τE )/δpq . In such a way, a mechanical quadrature of
X̂ζ would be probed [cf. Eq. (11.4)]. For the noise part, more explicitly, we have [cf.
Eqs. (11.55)–(11.57)]

δŶ = (g1|√η n̂1 + √
1 − η â1)+ (g2|√η n̂2 + √

1 − η â2)

+ √
1 − η (α2/h)(g2|Gx |â1)

+ √
1 − η (α/�)[(g2|Gx |ξ̂F )+ (g2|ξ̂x )], (11.71)

where the integration with Gx (t − t ′) has been augmented into applying a linear
operator Gx in the L2[0, Tint] space. In the above equation, terms on the first line
are the shot noise, the term on the second line is the back-action noise, while terms
on the third line are the classical-force and sensing noises.

The optimal g1(t) and g2(t) that give a sub-Heisenberg accuracy for each quadra-
ture will be rigorously derived for general situations in the next section. If â1 and
â2 are uncorrelated and there is no readout loss with η = 0, an optimal choice for
g1 would need to cancel the entire contribution from the back-action noise term
(proportional to â1). This is equivalent to impose, mathematically, that

(g1|â1)+ (α2/h)(g2|Gx |â1) = 0 (11.72)

or

|g1)+ (α2/h)Gadj
x |g2) = 0, (11.73)

where Gadj
x is the adjoint of Gx . Physically, this corresponds to bringing in a piece

of shot noise (g1|â1) to cancel the back-action noise (α2/h)(g2|Gx |â1)—therefore
achieving a shot-noise-limited only measurement. In the coordinate representation,
Eq. (11.73) can be written out more explicitly as:

g1(t)+ (α2/�)

∫ Tint

t
dt ′Gx (t

′ − t)g2(t
′) = 0, (11.74)
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which agrees exactly with the variational-type BAE measurement scheme first inves-
tigated by Vyatchanin et al. [58]. It is suitable for detecting signals with known
arrival time. For stationary signals, one would prefer frequency-domain variational
techniques proposed by Kimble et al. [32], which evades the back-action noise for
all possible signals, as long as they are Gaussian and stationary.

As realized by Kimble et al. [32] in their frequency-domain treatment, when the
readout loss is significant (large η) and when the back-action noise is strong (large
α), the variational approach becomes less effective, because in such a case, the
magnitude of g1 required to bring enough â1 to cancel the back-action noise would
also introduce significant noise n̂1 [cf. Eq. (11.71)]. This reasoning apparently leads
to a trade-off between the need to evade back action, and the need to minimize
loss-induced shot noise—such an optimization will be made in the next section.

11.6.2 Optimal Verification Scheme and Covariance Matrix
for the Added Noise: Formal Derivation

Imposing the BAE condition [cf. Eq. (11.74)] does not specify the shape of g2, nor
does Eq. (11.68), and so we have further freedom in choosing the g2 that minimizes
the noise in measuring a particular quadrature of X̂ζ . In addition, in the presence of
readout loss with η �= 0, totally evading back action is not the obvious optimum, as
mentioned. Therefore, we need to optimize g1 and g2 simultaneously. In this section,
we first carry out this procedure formally, and then we apply to the Markovian-noise
budget in the next subsection.

The total x̂q -referred noise in the weighted estimator Ŷ can be written as [cf. Eqs.
(11.70) and (11.71)]

σ 2[g1,2] = �
2

(1 − η)α2δx2
q
〈δŶ δŶ 〉sym

= 2

(1 − η)�q

2∑

i, j=1

(gi |Ci j |g j ), (11.75)

where the correlation functions Ci j among the noises are the following:

Ci j (t, t ′) ≡ 〈δb̂i (t)δb̂ j (t
′)〉sym , (i, j = 1, 2) . (11.76)

The optimal g1,2(t) that minimize σ 2 can be obtained through the standard con-
straint variational method. For this, we define an effective functional as

Jeff =(1 − η)(�q/4)σ
2[g1,2] − μ1( f1|g2)− μ2( f2|g2)

=1

2

∑

i, j

(gi |Ci j |g j )− (μ1 f1 + μ2 f2|g2), (11.77)
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where μ1 and μ2 are the Lagrange multipliers due to the normalization constraints
in Eq. (11.68). Requiring the functional derivative of Jeff with respect to g1 and g2
to be equal to zero, we obtain:

C11|g1)+ C12|g2) = 0, (11.78)

C21|g1)+ C22|g2) = |μ1 f1 + μ2 f2) . (11.79)

Here Ci j should be viewed as operators in the L2[0, Tint] space. This leads to
formal solutions for g1,2, namely:

|g1) = −C−1
11 C12|g2), (11.80)

|g2) = M|μ1 f1 + μ2 f2), (11.81)

where we have defined

M ≡
[
C22 − C21C−1

11 C12

]−1
. (11.82)

Re-imposing Eq. (11.68), the unknown Lagrange multipliers μ1,2 can be solved,
which are related to ζ by

[
( f1|M| f1) ( f1|M| f2)

( f2|M| f1) ( f2|M| f2)

] [
μ1
μ2

]
=

[
cos ζ
sin ζ

]
. (11.83)

Correspondingly, the minimum σ 2
min has the following quadratic form:

σ 2
min = [cos ζ sin ζ ]Vadd

norm

[
cos ζ
sin ζ

]
. (11.84)

Here, the normalized Vadd
norm is a 2 × 2 covariance matrix, and it is given by:

Vadd
norm = 2

(1 − η)�q

[
( f1|M| f1) ( f1|M| f2)

( f2|M| f1) ( f2|M| f2)

]−1

. (11.85)

This relates to the initial definition of the covariance matrix for the added verifi-
cation noise [cf. Eq. (11.8)] simply by:

Vadd = Diag[δxq , δpq ]Vadd
normDiag[δxq , δpq ]. (11.86)

Due to the linearity in Eqs. (11.79) and (11.83), the optimal g1,2 for a given
quadrature ζ can also be rewritten formally as:

g
ζ
1,2 = gX

1,2 cos ζ + gP
1,2 sin ζ, (11.87)

with gX
1,2 ≡ g

ζ
1,2(0) and gP

1,2 ≡ g
ζ
1,2(π/2). Such ζ -dependence of g1,2 manifests

the fact that a sub-Heisenberg tomography requires different filtering functions, or
equivalently different measurement setups, for different quadratures.
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11.6.3 Optimal Verification Scheme With Markovian Noise

Given Makovian noises, the corresponding correlation functions for the output noise
δb̂i can be written out explicitly as [cf. Eqs. (11.14), (11.19), (11.20), and (11.76)]:

C11(t, t ′) = η + (1 − η)e2q

2
δ(t − t ′), (11.88)

C12(t, t ′) = C21(t
′, t) = (1 − η)

e2qα2

2�
Gx (t

′ − t), (11.89)

C22(t, t ′) = �2

4
δ(t − t ′)+ (1 − η)

α4

�2

(
e2q

2
+ ζ 2

F

) ∫ ∞

0
dt1Gx (t − t1)Gx (t

′ − t1),

(11.90)

with � ≡ √
2[η + (1 − η)(e−2q + 2ζ 2

x )]. Substituting these Ci j into Eqs. (11.80)
and (11.81), we can obtain the equations for the optimal filtering functions g1 and
g2. Specifically, for g1, we have [cf. Eq. (11.80)]

g1(t)+ (1 − η)e2q

η + (1 − η)e2q

α2

�

∫ Tint

t
dt ′Gx (t

′ − t)g2(t
′) = 0. (11.91)

For g2, by writing out M explicitly, this gives [cf. Eq. (11.81)]

�2

4
g2(t)+ ζ ′

F
2 α

4

�2

∫∫ Tint

0
dt ′dt1Gx (t − t1)Gx (t

′ − t1)g2(t
′)

= μ1 f1(t)+ μ2 f2(t),

(11.92)

where we have introduced ζ ′
F , which is given by:

ζ ′
F ≡

[
η(1 − η)e2q

2[η + (1 − η)e2q ] + (1 − η)ζ 2
F

]1/2

≈
[η

2
+ ζ 2

F

]1/2
(11.93)

and it is equal to ζF for no readout loss. Although here g1 is still defined in terms
of g2, the optimal verification strategy does not totally evade the back action, as is
manifested in the term proportional to η inside the bracket of Eq. (11.93). In the limit
of no readout loss with η = 0, it is identical to the BAE condition in Eq. (11.74).
Typically, we have 1% readout loss η = 0.01, squeezing e2q = 10 and ζF = 0.2,
so this readout loss will only shift ζF by 6%, which is negligible. However, if the
thermal noise further decreases and/or the measurement strength increases, the effect
of readout loss will become significant, entering in a similar way as in the frequency-
domain variational measurement proposed by Kimble et al. [32].

The above integral equations for optimal g1 and g2 can be solved analytically, as
elaborated in Appendix 11.9.3, which in turn gives M and the corresponding Vadd

[cf. Eqs. (11.80) and (11.85)]. In the free-mass regime with�q � ωm, closed forms
for optimal g1 and g2 can be obtained, which, in terms of gX,P

1,2 [cf. Eq. (11.87)], are
given by:
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Fig. 11.8 (color online) Optimal filtering functions g1 (solid curve) and g2 (dashed curve) in the
presence of Markovian noises. We have assumed �q/2π = 100 Hz, ζx = ζF = 0.2, η = 0.01
and vacuum input )q = 0). For clarity, the origin of the time axis has been shifted from τE to 0.
From Ref. [39]

gX
1 = g1|ζ=0 = (�q/χ) e−�qχ t sin�qχ t; (11.94)

gP
1 = g1|ζ= π

2
= −√

2�q e−�qχ t sin
(
�qχ t + π

4

)
, (11.95)

and

gX
2 = g2|ζ=0 = 2�qχ e−�qχ t cos�qχ t; (11.96)

gP
2 = g2|ζ= π

2
= 2

√
2�qχ

2 e−�qχ t sin
(
�qχ t − π

4

)
, (11.97)

with χ ≡ [ζ ′
F

2/�]1/2. The corresponding verification timescale is set by τV =
(χ �q)

−1 and τq < τV < τF . To illustrate the behavior of the optimal filtering
functions, we show gX,P

1,2 in Fig. 11.8. As we can see, the verification process finishes
after several τq , i.e., in a timescale of τV .

The corresponding covariance matrix Vadd for the added verification noise is given
by

Vadd = 1

1 − η

⎡

⎣�
3
2 ζ

1
2

F ′δx2
q −�ζ ′

F�/2

−�ζ ′
F�/2 2�

1
2 ζ

3
2

F ′δp2
q

⎤

⎦ . (11.98)

A more summarizing measure of the verification accuracy is the uncertainty prod-
uct of the added noise ellipse with respect to the Heisenberg limit, namely:

U add = 2

�

√
det Vadd = �ζ ′

F

1 − η
. (11.99)

In the ideal case with η = 0, this simply recovers the order-of-magnitude estimate
given in Sect. 11.4.4. In Fig. 11.9, we show the uncertainty ellipse for the added noise
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Fig. 11.9 (color online) The uncertainty ellipse for the added verification noise in the presence of
Markovian noises. We assume ζx = ζF = 0.2 with vacuum input (dashed curve); and ζx = ζF =
0.2 with 10 dB squeezing (dotted curve). For contrast, we also show the Heisenberg limit in a unit
circle, and the ideal conditional quantum state with a solid ellipse. From Ref. [39]

in the case of ζx = ζF = 0.2, readout loss η = 1% and with (green dotted curve)
or without (red long-dashed curve) 10 dB input squeezing. In comparison, we also
plot the Heisenberg limit (unit circle) and the conditional state obtained through
an ideally noiseless state preparation (blue solid ellipse). As figure shows, the least
challenging scenario already begins to characterize the conditional quantum state
down to the Heisenberg Uncertainty. In these two cases, we have� = 1.48 and 0.62
respectively, leading to:

U add = 0.30 (vacuum) , 0.12 (10 dB squeezing). (11.100)

11.7 Verification of Macroscopic Quantum Entanglement

In this section, we will apply our protocol to verify macroscopic entanglement
between test masses in future GW detectors, which was proposed in Refs. [43, 44].
In the experiment as shown schematically in Fig. 11.10, measurements at the bright
and dark port of the interferometer continuously collapse the quantum state of the
corresponding common and differential modes of the test-mass motion. This creates
two highly squeezed Gaussian states in both modes. Since the common and differ-
ential modes are linear combinations of the center of mass motion of test masses in
the two arms, namely x̂c = x̂E + x̂N and x̂d = x̂E − x̂N, this will naturally generate
quantum entanglement between the two test masses, which is similar to creating
entanglement by mixing two optical squeezed states at the beam splitter [20, 7].
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Fig. 11.10 (color online) A schematic plot of an advanced interferometric GW detectors for macro-
scopic entanglement between test masses as a test for gravity decoherence. For simplicity, we have
not shown the setup at the bright port, which is identical to that at the dark port. From Ref. [39]

11.7.1 Entanglement Survival Time

To quantify the entanglement strength, we follow Refs. [43, 44] by evaluating the
entanglement monotone—the logarithmic negativity defined in Refs. [1, 56]. This
can be derived from the covariance matrix for the Gaussian-continuous-variable
system considered here. The bipartite covariances among (x̂E, p̂E, x̂N, p̂N) form the
following covariance matrix:

V =
[

VEE VEN
VNE VNN

]
, (11.101)

where

VEE = VNN =
[
(V c

xx + V d
xx )/4 (V c

xp + V d
xp)/2

(V c
xp + V d

xp)/2 (V c
pp + V d

pp)

]

, (11.102)

VNE = VEN =
[
(V c

xx − V d
xx )/4 (V c

xp − V d
xp)/2

(V c
xp − V d

xp)/2 (V c
pp − V d

pp)

]

. (11.103)

The logarithmic negativity EN can then be written as:
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EN = max[0,− log2 2σ−/�], (11.104)

where σ− ≡
√
(� − √

�2 − 4 det V)/2 and � ≡ det VNN + det VEE − 2 det VNE.

In contrast to Refs. [43, 44], now the covariance matrix V corresponds to the total
covariance matrix Vtot after the entire preparation-evolution-verification process. For
Gaussian quantum states, we have [cf. Eqs. (11.10), (11.48) and (11.48)]

Vtot = V(τE )+ Vadd. (11.105)

11.7.2 Entanglement Survival as a Test of Gravity Decoherence

When τE increases, the thermal decoherence will increase the uncertainty [cf. Eqs.
(11.48) and (11.105)] and eventually the entanglement vanishes, which indicates how
long the quantum entanglement can survive. Survival of such quantum entanglement
can help us to understand whether there is any additional decoherence effect, such
as the Gravity Decoherence suggested by Diósi and Penrose [16, 47]. According to
their models, quantum superpositions vanish within a timescale of �/EG . Here, EG

can be (a) self-energy of the mass-distribution-difference, namely

E (a)G =
∫

dxdy G[ρ(x)− ρ′(x)][ρ(y)− ρ′(y)]/r, (11.106)

with ρ denoting the mass density distribution and r ≡ |x − y|; Alternatively, it
can be (b) spread of mutual gravitational energy among components of the quantum
superposition, namely

E (b)G =
∫

dxdy Gρ(x)ρ′(y) δr/r3/2. (11.107)

with δr denoting the uncertainty in location. For the prepared test-mass quantum
states with width of δxq , we have

τ
(a)
G ≈ �q/(Gρ) , τ

(b)
G ≈ �

1/2L2�
1/2
q /(Gm3/2) . (11.108)

where L is the distance between two test masses. Substituting the typical values for
LIGO mirrors with ρ = 2.2 g/cm3, the separation between the two input test masses,
L ≈ 10 m, and m = 10 kg, we have:

τ a
G = 4.3 × 109 s, τ b

G = 1.2 × 10−5 s. (11.109)

It is therefore quite implausible to test model (a); while for model (b), �qτ
(b)
G is

less 0.01 with �q/2π = 100Hz. In Fig. 11.11, we show the entanglement survival
as a function of evolution duration. As we can see, the model (b) of gravity deco-
herence can easily be tested, as the entanglement can survive for several times the
measurement timescale τq , which is much longer than the predicted τ (b)G .
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Fig. 11.11 (color online) Logarithmic negative EN as a function of the evolution duration τE ,

which indicates how long the entanglement survives. The solid curve corresponds to the case where
�F/2π = 20 Hz and the dashed curve for �F/2π = 10 Hz. To maximize the entanglement, the
common mode is 10 dB phase squeezed for t > τE and t < 0, while the differential mode is 10 dB
amplitude squeezed at t < 0 and switching to 10 dB phase-squeezed at t > τE . From Ref. [39]

11.8 Conclusions

We have investigated in great details a follow-up verification stage after the state
preparation and evolution. We have showed the necessity of a sub-Heisenberg ver-
ification accuracy in probing the prepared conditional quantum state, and how to
achieve it with an optimal time-domain homodyne detection. Including this essential
building block—a sub-Heisenberg verification, we are able to outline a complete pro-
cedure of a three-staged experiment for testing macroscopic quantum mechanics. In
particular, we have been focusing on the relevant free-mass regime and have applied
the techniques to discuss MQM experiments with future GW detectors. However,
the system dynamics that have been considered describe general cases with a high-Q
mechanical oscillator coupled to coherent optical fields. In this respect, we note that
our results for Markovian systems only depend on the ratio between various noises
and the SQL, and therefore carries over directly to systems on other scales. In addi-
tion, the Markovian assumption applies more accurately to smaller-scale systems
which operate at higher frequencies.

11.9 Appendix

11.9.1 Necessity of a Sub-Heisenberg Accuracy for Revealing
Non-Classicality

As we have mentioned in the introduction, a sub-Heisenberg accuracy is a necessary
condition to probe the non-classicality, if the Wigner function of the prepared quan-
tum state has some negative regions, which do not have any classical counterpart.
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To prove this necessity, we use the relation between the Q function and the Wigner
function as pointed out by Khalili [31]. Given density matrix ρ̂, the Q function in
the coherent state basis |α) is equal to [23, 53, 59]:

Q = 1

π
(α|ρ̂|α), (11.110)

which is always positive defined. This is the Fourier transform of the following
characteristic function:

J (β, β∗) = Tr[eiβ∗âeiβâ†
ρ̂]. (11.111)

Here, â is the annihilation operator and is related to the normalized oscillator
position x̂/δxq and momentum p̂/δpq [cf. Eq. (11.26)] by the standard relation:

â = [(x̂/δxq)+ i( p̂/δpq)]/2. (11.112)

If we introduce the real and imaginary parts of β, namely, β = βr + iβi, the
characteristic function J can be rewritten as:

J (βr, βi) = e−(β2
r +β2

i )/2Tr[eiβr(x̂/δxq )+iβi( p̂/δpq ) ρ̂], (11.113)

where we have used the fact that eÂeB̂ = eÂ+B̂e[ Â, B̂]/2, as [ Â, B̂] commutes with
Â and B̂. Inside the bracket of Eq. (11.113), it is the characteristic function for the
Wigner function W(x,p), and thus:

J (βr, βi) = 1

(2π)2

∫
dx ′dp′e−(β2

r +β2
i )/2

e−iβr(x ′/δxq )−iβi(p′/δpq )W (x ′, p′).
(11.114)

Integrating over βr and βi, the resulting Q function is given by:

Q(x, p) = 1

2π

∫
dx ′dp′e

− 1
2

[
(x−x ′)2
δx2

q
+ (p−p′)2

δp2
q

]

W (x ′, p′). (11.115)

This will be the same as Eq. (11.7), if we identify Wrecon(x, p)with Q(x, p) and

Vadd =
[
δx2

q 0
0 δp2

q

]
, (11.116)

which is a Heisenberg-limited error. Since squeezing and a rotation of x̂ and p̂ axes
will not change the positivity of the Q function, Eq. (11.115) basically dictates that
the reconstructed Wigner function will always be positive if a Heisenberg-limited
error is introduced during the verification stage. Therefore, only if a sub-Heisenberg
accuracy is achieved will we be able to reveal the non-classicality of the prepared
quantum state.



11.9 Appendix 195

11.9.2 Wiener-Hopf Method for Solving Integral Equations

In this appendix, we will introduce the mathematical method invented by N. Wiener
and E. Hopf for solving a special type of integral equations. For more details, one
can refer to a comprehensive presentation of this method and its applications by
B. Noble [46]. Here, we will focus on integral equations that can be brought into the
following form, as encountered in obtaining the optimal verification scheme:

∫ +∞

0
dt ′C(t, t ′)g(t ′) = h(t) , t > 0 . (11.117)

with

C(t, t ′) = A(t − t ′)+
∑

α

∫ min[t,t ′]

0
dt ′′ B∗

α(t − t ′′)Bα(t ′ − t ′′), (11.118)

where α = 1, 2, . . . and Bα(t) = 0 if t < 0.
Assuming that solution for g(t) to be a square-integrable function in L2(−∞,∞),

one can split it into causal and anticausal parts as:

g(t) = g+(t)+ g−(t), (11.119)

where g−(t) is causal part:

g−(t) =
{

0, t > 0
g(t), t � 0

(11.120)

and g+(t) is the anticausal part of g(t):

g+(t) =
{

g(t), t > 0
0, t � 0 .

(11.121)

This definition enables us to expand the limits of integration in (11.117) and
(11.118) to the full range −∞ < (t, t ′, t ′′) < ∞ :

∫ +∞

−∞
dt ′ C(t, t ′)g+(t ′) = h(t) , t > 0, (11.122)

where

C(t, t ′) = A(t − t ′)+
∑

α

∫ +∞

−∞
dt ′′[B∗

α,+(t − t ′′)Bα,+(t ′ − t ′′)](+,t ′′), (11.123)

and the index (+, t ′′) stands for taking the causal part of a multidimensional function
in the argument t ′′.

Let us first utilize the method in a simple special case when Bα(t) ≡ 0,∀α, this
gives a conventional Wiener-Hopf integral equation:
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∫ +∞

0
dt ′ A(t − t ′)g(t ′) = h(t) , t > 0, (11.124)

which can be rewritten as:
[∫ +∞

−∞
dt ′ A(t − t ′)g+(t ′)− h(t)

]

(+,t)
= 0 . (11.125)

Applying a Fourier transform in t, and the convolution theorem, one gets:

∫ +∞

−∞
d�

2π

[
Ã(�)g̃+(�)− h̃(�)

]

+e−i�t = 0 . (11.126)

The spectrum of the causal (anticausal) function is simply:

g̃+(−)(�) =
∫ ∞

−∞
dt g+(−)(t)ei�t . (11.127)

However, this evident relation is not operational for us, as it provides no intuition
on how to directly get g̃±(�) given g̃(�) at our disposal. The surprisingly simple
answer gives complex analysis. Without loss of generality, we can assume that g(t)
asymptotically goes to zero at infinity as: ∀t : |g(t)| < e−γ0|t | where γ0 is some
arbitrary positive number, that guarantees regularity of g̃(�) at −∞ < � < ∞. In
terms of the analytic continuation g̃(s) of g̃(�) to the complex plane s = � + iγ,
the above assumption means that all the poles of g̃(s) are located outside its band of
analyticity −γ0 < Im(s) < γ0. Thus, the partition into causal and anticausal parts
for g̃(s) is now evident:

g̃(s) = g̃+(s)+ g̃−(s) (11.128)

where g̃+(s)(g̃−(s)) stands for the function equal to g̃(s) for γ > γ0(< −γ0) and
is analytic in the half plane above (below) the line γ = γ0(−γ0).

3 According to
properties of analytic continuation, this decomposition is unique and completely
determined by values of g̃(�) on the real axis. Moreover, as a Fourier transform of
valid L2-function, it has to approach zero when |s| → ∞. For more general cases,
this requirement could be relaxed to demand that ∞ should be a regular point of g̃(s)
so that lim|s|→∞ g̃(s) = const. This allows to include δ-function and other integrable

distributions into consideration, though it forces us to add the constant g(∞) to
formula (11.128) as additional term. For example, for g(t) = e−α|t |, α > 0 one has
the following Fourier transform:

g̃(s) = 2α

α2 + s2 = 2α

(s + iα)(s − iα)
(11.129)

3 Functions g̃+(s) and g̃−(s) are, in essence, Laplace transforms of g(t) for positive and negative
time, respectively, with only a substitution of the variable s → i p.
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that has one pole s+ = −iα in the lower half complex plane (LHP) and one s− = +iα
in the upper half complex plane (UHP). To split f̃ (�) in accordance with (11.128)
one can use the well-known formula:

g̃±(s) =
∑

{s±,k }

Res[g̃(s), s±,k]
(s − s±,k)σk

(11.130)

where summation goes over all poles {s+,k} (with σk is the order of pole s+,k)
of g̃(s) that belong to the LHP for g̃+(s) and over all poles {s−,k} of g̃(s) that
belong to the UHP for g̃−(s) otherwise, and Res[g̃(s), s] stands for residue of g̃(s)
at pole s. For our example function this formula gives:

g̃+(s) = i

s + iα
, g̃−(s) = − i

s − iα
. (11.131)

Using the residue theorem, one can easily show that:

g+(t) = e−αt , for t > 0 (11.132)

g−(t) = eαt , for t < 0 . (11.133)

Coming back to the Eq. (11.126), assume that function Ã(�) can be factorized in
the following way:

Ã(�) = ã−(�)ã+(�) (11.134)

where ã+(−)(�) is a function analytic in the UHP (LHP) with its inverse, ı.e., both
its poles and zeroes are located in the LHP (UHP). One gets the following equation:

[
ã−(�)ã+(�)g̃+(�)− h̃(�)

]

+ = 0 . (11.135)

To solve this equation, one realizes the following fact: for any function f̃ , [ f̃ (�)]+ =
0 means that f̃ has no poles in the LHP. Multiplication of f̃ by any function
g̃− which also has no poles in the LHP will evidently not change the equality, namely,
[g̃−(�) f̃ (�)]+ = 0. Multiplying Eq. (11.135) by 1/ã−(�), the solution reads

g̃+(�) = 1

ã+(�)

[ h̃(�)

ã−(�)

]

+ . (11.136)

On performing an inverse Fourier transform of g̃+(�), the time-domain solution
g+(t) can be obtained.

Now we are ready to solve Eq. (11.22) with the general kernel in Eq. (11.123).
Performing similar manipulations, one obtains the following equation for g̃+(�) in
the Fourier domain:
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[(

Ã +
∑

α

B̃α B̃∗
α

)

g̃+ −
∑

α

B̃α(B̃
∗
α g̃+)− − h̃

]

+
= 0, (11.137)

where we have omitted arguments� of all functions for brevity. Since B̃α is a causal
function, B̃∗

α is anticausal and g̃+ is causal, ()B̃∗
α g̃)− only depends on the value of g̃

on the poles of B̃∗
α. Performing a similar factorization:

ψ̃+ψ̃− = Ã +
∑

α

B̃α B̃∗
α, (11.138)

with ψ̃+ (ψ̃−) and 1/ψ̃+ (1/ψ̃−) analytic in the UHP (LHP),ψ+(−�) = ψ∗+(�) =
ψ−(�), we get the solution in the form:

g̃+ = 1

ψ̃+

[
h̃

ψ̃−

]

+
+ 1

ψ̃+

[
∑

α

B̃α(B̃∗
α g̃+)−
ψ̃−

]

+
. (11.139)

Even though g̃+ also enters the right hand side of the above equation, yet (B̃∗
α g̃+)−

can still be written out explicitly as:

(B̃∗
α g̃+)− =

∑

{�−,k }

g̃+(�−,k)Res[B̃∗(�), �−,k]
(�−�−,k)σk

. (11.140)

Here {�−,k} are poles of B̃∗(�) that belong to UHP, and therefore g̃+(�−,k) are
just constants that can be obtained by solving a set of linear algebra equations, by
evaluating Eq. (11.139) at those poles {�−,k}.

11.9.3 Solving Integral Equations in Section 11.6

Here, we will use the technique introduced in the previous section to obtain analytical
solutions to the integral equations we encountered in Sects. 11.6.2 and 11.6.3.

In the coordinate representation, the integral equations for g1,2 are the following
[cf. Eqs. (11.78) and (11.79)]:

∫ Tint

0
dt ′

[
C11(t, t ′) C12(t, t ′)
C21(t, t ′) C22(t, t ′)

] [
g1(t ′)
g2(t ′)

]
=

[
0

h(t)

]
, (11.141)

where Ci j (i, j = 1, 2) are given by Eqs. (11.88), (11.89) and (11.90), and we have
defined h(t) ≡ μ1 f1(t) + μ2 f2(t). Since the optimal g1,2(t) will automatically
cut off when t > τF , we can extend the integration upper bound Tint to ∞. This
brings the equations into the appropriate form considered in Appendix 11.9.2. In the
frequency domain, they can be written as
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[S̃11g̃1]+ + [S̃12 g̃2]+ = 0, (11.142)

[S̃21 g̃1]+ + [S̃22 g̃2]+ − �̃ = h̃, (11.143)

�̃ = (1 − η)(�4
q/2)(e

2q + 2ζ 2
F )[G̃x (G̃x g̃2)−]+. (11.144)

Here, S̃i j are the Fourier transformations of the correlation functions Ci j . Specif-
ically, they are

S̃11 = η + (1 − η)e2q

2
, (11.145)

S̃12 = − (1 − η)e2q�2
q

2(�+ ωm − iγm)(�− ωm − iγm)
, (11.146)

S̃21 = S̃∗
12, (11.147)

S̃22 = �2

4
+ (1 − η)(e2q + 2ζ 2

F )�
4
q

2[(�+ ωm)2 + γ 2
m][(�− ωm)2 + γ 2

m] . (11.148)

Since S̃11 is only a number, the solution to g̃1 is simply

g̃1 = −S̃−1
11 [S̃12g̃2]+. (11.149)

In the time-domain, this recovers the result in Eq. (11.91). Through a spectral
factorization

ψ̃+ψ̃− ≡ S̃22 − S̃−1
11 S̃12 S̃21, (11.150)

we obtain the solution for g̃2:

g̃2 = 1

ψ̃+

{
1

ψ̃−

[
h̃ − S̃−1

11 S̃21(S̃12g̃2)− + �̃
]}

+
. (11.151)

Substituting �̃ into the above equation, g̃2 becomes:

g̃2 = 1

ψ̃+

{
1

ψ̃−

[
h̃ + κ G̃x (G̃

∗
x g̃2)−

]}

+
(11.152)

with κ ≡ m2�4
qζ

′2
F . A simple inverse Fourier transformation gives g1(t) and g2(t).

The unknown Lagrange multipliers can be solved using Eq. (11.83). We can then
derive the covariance matrix Vadd for the added verification noise with Eq. (11.85).
In the free-mass regime, a closed form for Vadd can be obtained, as shown explicitly
in Eq. (11.98).
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Chapter 12
Conclusions and Future Work

12.1 Conclusions

To conclude, this thesis has covered two main topics concerning Macroscopic Quan-
tum Mechanics (MQM) in optomechanical devices. The first topic considers different
approaches to surpassing the Standard Quantum Limit (SQL) for measuring weak
forces, which include modifying the input/output optics, and the dynamics of the
mechanical oscillator. Concerning the approach of modifying the input optics, in
Chap. 3, we have proposed simultaneously injecting two squeezed light—filtered by
a resonant optical cavity—into the dark port of the laser interferometer GW detector.
This can reduce the low-frequency radiation-pressure noise, and the high-frequency
shot noise so that the detector sensitivity over the entire observational band from
10 Hz to 104 Hz can be improved. Given its relatively simple setup—only a 30 m
filter cavity is required—this could be a feasible add-on to future advanced GW
detectors. With the approach of modifying the output optics, in Chap. 5, we have pro-
posed the use of a time-domain variational method, in which the homodyne detection
angle has the optimal time-dependence. Such a scheme provides a transparent way to
probe the mechanical quadrature—the conserved dynamical quantity of a mechani-
cal oscillator—and allows us to surpass the SQL. This works in the cases where the
bandwidth of the optical cavity is much larger than the mechanical frequency, and
therefore it can be implemented in small-scale optomechanical devices, in which
high finesse is difficult to achieve, and also in large-scale broadband GW detectors
(e.g., Advanced LIGO). With the approach of modifying the mechanical dynamics,
in Chap. 4, we have explored the frequency dependence in double optical springs,
and we have shown that it can significantly enhance the mechanical response over a
broad frequency band. This is especially useful for GW detectors because the natural
frequency of the suspended test-masses is quite low, which gives a low mechanical
response in the detection band around 100 Hz.

The second topic is concerned with exploring quantum behaviors of macroscopic
mechanical oscillators with quantum-limited optomechanical devices. In Chap. 6, we
have discussed the use of three-mode optomechanical interactions to study MQM.
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We have pointed out the optimal frequency matching inherent in this interaction,
which allows a significant enhancement of the optomechanical coupling compared
with that in conventional two-mode interactions. Such a feature enables us to cool
milligram-scale mechanical oscillators down to their quantum ground state and
also to create quantum entanglement between the oscillator and the cavity modes.
In Chap. 7, we have discussed the quantum limit for ground state cooling, and the
creation of quantum entanglement in general optomechanical devices. We have used
an alternative point of view, based upon information loss, to explain the origin of
the resolved-sideband cooling limit. By recovering the information contained in the
cavity output, we can surpass such a cooling limit without imposing stringent require-
ments on the cavity bandwidth. We have also shown such an information recovery
can enhance the optomechanical entanglement. This work can help us find the proper
parameter regime to achieve the quantum ground state, and to realize quantum entan-
glement experimentally. In Chap. 8, we have investigated the quantum entanglement
between a mechanical oscillator and a continuum optical field. In contrast to the cases
studied in previous chapters, the continuum optical field contains infinite degrees of
freedom. We have developed a new functional method to analyze the entanglement
strength, and have derived an elegant scaling which shows that the entanglement
only depends on ratio of the optomechanical coupling to the thermal decoherence
strength. This illuminates the possibility of incorporating mechanical degrees of free-
dom for future quantum computing at high environmental temperature. In Chap. 9,
we have studied nonlinear optomechanical interactions for observing mechanical
energy quantization. We have derived a simple quantum limit that only involves the
fundamental parameters of an optomechanical device—this requires the zero-point
uncertainty of the mechanical oscillator to be comparable to the linear dynamical
range of the cavity, which is quantified by the ratio of the optical wavelength to
the cavity finesse. This limit applies universally to all optomechanical devices, and
therefore it serves as a guiding tool for choosing the right parameters for MQM
experiments. In Chap. 10, we have discussed preparing a mechanical oscillator in
non-Gaussian quantum states to explore the non-classical features of optomechani-
cal devices. We have proposed transferring a non-Gaussian quantum state from the
optical field to the mechanical oscillator by injecting a single-photon pulse into the
dark port of an interferometric optomechanical device. The radiation pressure of
the single-photon pulse is coherently amplified by the strong optical power from
the bright port, which makes such a state transfer possible. We have shown the
experimental feasibility in the case of both small-scale table-top experiments, and
large-scale advanced GW detectors. In Chap. 11, we have outlined a complete pro-
cedure for an MQM experiment, by including a verification stage to follow up the
preparation stage. With an optimal time-dependent homodyne detection, the prepared
quantum state can be probed and verified with a sub-Heisenberg accuracy. This not
only allows us to explore the quantum dynamics of the mechanical oscillator, but
also the non-classical feature of the quantum state. In particular, we have applied it
to study the survival duration of the quantum entanglement between macroscopic
test-masses which suffer from thermal decoherence. This complete procedure can
also be directly applied to small-scale optomechanical devices.
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12.2 Future Work

There are still many issues that need to be further investigated for a thorough under-
standing. Particularly, in Chap. 4, only preliminary results are obtained: they only
show the modified mechanical response due to the double optical spring but not
the resulting detector sensitivity. We need to combine the outputs of the two opti-
cal fields in an optimal way to maximize the detector sensitivity. In addition, the
resulting system is dynamically unstable and we need to figure out a way to control
such an instability. In Chap. 5, we have assumed no optical loss in the variational
readout, which certainly fails actually. If the optical loss is included, total evasion of
the measurement back-action is not obviously the optimum as we have found when
studying the verification problem in Chap. 11. Since the mathematical structure of
this problem is quite different from that in the verification case, we need to find a
new method to realize such an optimization. In Chap. 9, we have studied the opto-
mechanical dynamics by using the Langevin equation approach. This shows how
the dynamical quantities evolve, but the effect of measurement on the evolution of
the quantum state is not discussed. Therefore, it is necessary for us to use a differ-
ent approach to study how the mechanical oscillator jumps among different energy
eigenstates, while at the same time being, subjected to both a continuous measure-
ment and thermal decoherence. This can help us to address the question of whether
the quantum-Zeno effect exists or not in such a nonlinear optomechanical system. In
Chap. 11, we have assumed that the thermal force noise and measurement sensing
noise are white with flat noise spectra—a Markovian assumption. Non-Markovian
noises certainly arise in an actual GW detector. These noises at low frequencies,
such as the suspension thermal noise and the coating thermal noise, tend to rise
faster than what we have assumed. We have already developed the right tools to treat
such non-Markovianity but need further analysis to go through the details.
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