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Preface to the Second Edition

This second edition, unfortunately, had to be done without the contribution
of Raphael Hgegh-Krohn, who died on 28 January 1988. The authors of the
present edition hope very much that the result of their efforts would had been
appreciated by him. His beloved memory has been a steady inspiration to us.
Since the appearance of the first edition many new developments have taken
place. The present edition tries to take this into account in several ways, keep-
ing however the basic structure and contents of the first edition. At that time
the book was the first rigorous one to appear in the area and was written in a
sort, of pioneering spirit. In our opinion it is still valid as an introduction to all
the work which followed; therefore in this second edition we preserve its form
entirely (except for correcting some misprints and slightly improving some
formulations). A chapter has been however added, in which many new devel-
opments are included. These concern both new mathematical developments
in the definition and properties of the integrals, and new exciting applications
to areas like low dimensional topology and quantized gauge fields. In addition
we have added historical notes to each of the chapters and corrected several
misprints of the previous edition. As for references, we have kept all those of
the first edition, numbered from 1 to 56 (with the corresponding updating),
and added new references (in alphabetic order).

We are very grateful to many coworkers, friends and colleagues, who in-
spired us in a number of ways. Special thanks are due to Philippe Blanchard,
Zdzistaw Brzezniak, Luca Di Persio, Jorge Rezende, Jorg Schéfer, Ambar
Sengupta, Ludwig Streit, Aubrey Truman, Luciano Tubaro, and Jean-Claude
Zambrini. We also like to remember with gratitude the late Yuri L. Daleckii
and Michel Sirugue who gave important contributions to this area of research.

Trento, Sergio A. Albeverio
June 2005 Sonia Mazzucchi



Preface to the First Edition

In this work we develop a general theory of oscillatory integrals on real Hilbert
spaces and apply it to the mathematical foundation of the so-called Feynman
path integrals of non-relativistic quantum mechanics, quantum statistical me-
chanics and quantum field theory. The translation invariant integrals we define
provide a natural extension of the theory of finite dimensional oscillatory inte-
grals, which has recently undergone an impressive development, and appear to
be a suitable tool in infinite dimensional analysis. For example, on the basis of
the present work, we have extended the methods of stationary phase, Lagrange
immersions and corresponding asymptotic expansions to the infinite dimen-
sional case, covering in particular the expansions around the classical limit of
quantum mechanics. A particular case of the oscillatory integrals studied in
the present work are the Feynman path integrals used extensively in physics
literature, starting with the basic work on quantum dynamics by Dirac and
Feynman, in the 1940s.

In the introduction, we give a brief historical sketch and some references
concerning previous work on the problem of the mathematical justification
of Feynman’s heuristic formulation of the integral. However, our aim with
the present publication was not to write a review work, but rather to de-
velop from scratch a self-contained theory of oscillatory integrals in infinite
dimensional spaces, in view of the mathematical and physical applications
mentioned above.

The structure of the work is briefly as follows. It consists of nine chapters.
Chapter 1 is the introduction. Chapters 2 and 4 give the definitions and ba-
sic properties of the oscillatory integrals, which we call Fresnel integrals or
normalized integrals, for the cases where the phase function is a bounded per-
turbation of a non-degenerate quadratic form (positive in Chap. 2). Chapters 3
and 5-9 give applications to quantum mechanics, namely N-particle systems
with bounded potentials (Chap. 3) and systems of harmonic oscillators with
finitely or infinitely many degrees of freedom (Chaps.5-9), with relativistic
quantum fields as a particular case (Chap.9).



VIII  Preface to the First Edition

This work appeared first as a Preprint of the Mathematics Institute of
Oslo University, in October 1974.

The first named author would like to express his warm thanks to the
Institute of Mathematics, Oslo University, for the friendly hospitality. He
also gratefully acknowledges the financial support of the Norwegian Research
Council for Science and the Humanities. Both authors thank Mrs. S. Cordtsen,
Mrs. R. Mgller and Mrs. W. Kirkaloff heartily for their patience and skill in
typing the manuscript.

Oslo, Sergio A. Albeverio
March 1976 Raphael J. Hpegh-Krohn
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1

Introduction

Feynman path integrals have been introduced by Feynman in his formulation
of quantum mechanics [1].! Since their inception they have occupied a some-
what ambiguous position in theoretical physics. On one hand they have been
widely and profitably used in quantum mechanics, statistical mechanics and
quantum field theory, because of their strong intuitive, heuristic and formal
appeal. On the other hand most of their uses have not been supported by an
adequate mathematical justification. Especially in view of the potentialities
of Feynman’s approach as an alternative formulation of quantum dynamics,
the need for a mathematical foundation has been broadly felt and the math-
ematical study of Feynman path integrals repeatedly strongly advocated, see
e.g. [4]. This is, roughly speaking, a study of oscillating integrals in infinitely
many dimensions, hence closely connected with the development of the theory
of integration in function spaces, see e.g. [5]. The present work intends to give
a mathematical theory of Feynman path integrals and to yield applications to
non relativistic quantum mechanics, statistical mechanics and quantum field
theory. In order to establish connections with previous work, we shall give in
this introduction a short historical sketch of the mathematical foundations
of Feynman path integrals. For more details we refer to the references, in
particular to the review papers [6].

Let us first briefly sketch the heuristic idea of Feynman path integrals,
considering the simple case of a non relativistic particle of mass m, moving in
Euclidean space R™ under the influence of a conservative force given by the
potential V' (z), which we assume, for simplicity, to be a bounded continuous
real valued function on R™.

The classical Lagrangian, from which the classical Euler-Lagrange equa-
tions of motion follow, is

L (x fff) -7 (‘jif)z V(). (1.1)

1A vivid account of the origins of the idea, influenced particularly by remarks of
Dirac [2], has been given by Feynman himself in [3].
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Hamilton’s principle of least action states that the trajectory actually followed
by the particle going from the point y, at time zero, to the point x at time ¢,
is the one which makes the classical action, i.e. Hamilton’s principal function,

s = [ (1022 12

0

stationary, under variations of the path v = {y(7)}, 0 < 7 < ¢, with y(0) =y
and 7(t) = x, which leave fixed the initial and end points y and x, and the
time.

In quantum mechanics the state of the particle at time ¢ is described
by a function ¥(z,t) which, for every ¢, belongs to Lo (R™) and satisfies
Schrédinger’s equation of motion

0 h?
ih— =——A 1.
it (@, 1) = =5 Ao, ) + V@), ), (13)
with prescribed Cauchy data at time ¢t = 0,

¥(x,0) = p(x), (1.4)

where A is the Laplacian on R™ and % is Planck’s constant divided by 2.

The operator
h2
H=—-——AN+4+YV 1.
AV (), (15)

the Hamiltonian of the quantum mechanical particle, is self-adjoint on the

natural domain of A and therefore e~ is a strongly continuous unitary

group on Ly (R™). The solution of the initial value problem (1.3), (1.4) is

Y(,t) = e M p(a). (1.6)

From the Lie—Kato—Trotter product formula we have

i it it k
e~ wtH — o _ khm (e*ﬁxve*ﬁﬁHC’) , (1.7)
where
N 1.8
H = —— . .
0="5- (1.8)

Assuming now for simplicity that ¢ is taken in Schwartz space S (R"™), we
have, on the other hand

—#tHo — (9 'Et 7 [ megy? d 1.9
e o(z) mi e e(y)dy, (1.9)

m

hence, combining (1.7) and (1.9)
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where by definition x; = x and

k
(1.11)

2
m (r; —xj_
Se(Ty .., x0) = Z [5—( J (L)JQ ) V (x;)
Jj=1 k
The expression (1.10) gives the solution of Schrédinger’s equation as a limit
of integrals.

Feynman’s idea can now be formulated as the attempt to rewrite (1.10)
in such a way that it appears, formally at least, as an integral over a space
of continuous functions, called paths. Let namely ~v(7) be a real absolutely
continuous function on the interval [0,¢], such that v(r;) = x;, j =0,...,k,
where 7; = % and xg,...,x are given points in R", with x;, = x. Feynman
looks upon S (2, ..., xo) as a Riemann approximation for the classical action
S¢(y) along the path ~,

L
-

t 2 t

d

St(’y):/ T(-”Y) dr— [ V() ar (1.12)
o 2 \dr 0

Moreover when k — oo the measure in (1.10) becomes formally dy =

NTlp<,<;dv(7), N being a normalization, so that (1.10) becomes the heuris-

tic expression

[ e Osno (113)
y(r)==

where the integration should be over a suitable set of paths ending at time
t at the point x. This is Feynman’s path integral expression for the solu-
tion of Schrédinger’s equation and we shall now review some of the work
that has been done on its mathematical foundation.? Integration theory in
spaces of continuous functions was actually available well before the advent
of Feynman path integrals, particularly originated by Wiener’s work (1923)
on the Brownian motion, see e.g. [8]. It was however under the influence of
Feynman’s work that Kac [9] proved that the solution of the heat equation

%f(x,t) =oAf(x,t) —V(z)f(x,t), (1.14)

which is the analogue of Schrédinger’s equation when ¢ is replaced by —it, o
being diffusion’s constant, can be expressed by

fan = [ e 0O 0) + ) dW () (1.15)

2 For the physical foundation see the original work of Feynman and the book by
Feynman and Hibbs [1]. Also e.g. [7].



4 1 Introduction

where dW(y) is Wiener’s measure for the Wiener, i.e. Brownian motion,
process with variance o2dr, defined on continuous paths® v(7), 0 < 7 < ¢,
with (7) = 0. Hence (1.15) is an expectation with respect to the nor-
mal unit distribution indexed by the real Hilbert space of absolutely con-

tinuous functions ~(7), with norm |v||* = fot (g—z

that (1.15) can be formally rewritten as (1.13), with +S5(y) replaced by
2

—3 Ot% (3—:) dr — fOtV(’}/(T)) dr. Thus (1.15) is a rigorous path integral
(Wiener path integral) which plays for the heat equation a similar role as
the Feynman path integral for the Schrodinger equation. This fact has been
used [10] to provide a “definition by analytic continuation” of the Feynman
path integral, in the sense that Feynman’s path integral is then understood as
the analytic continuation to purely imaginary ¢ of the Wiener integral (1.15).
The analogous continuation of the Wiener integral solution of the equation
(1.14), with V replaced by iV, which corresponds to Schrodinger’s equation
with purely imaginary mass m, has been studied by Nelson [10] and allows
to cover the case of some singular potentials. These definitions by analytic
continuation, as well as the definition by the “sequential limit” (1.10),* have
the disadvantage of being indirect in as much as they do not exhibit Feyn-
man’s solution (1.13) as an integral of the exponential of the action over a
space of paths in physical space—time. In particular they are unsuitable for
the mathematical realization of the original Dirac’s and Feynman’s ideas (see
e.g. [1, 2])° about the approach to the classical limit & — 0, perhaps one of
the most beautiful features of the Feynman path integral formalism. Namely
(1.13) suggests that a suitable definition of the oscillatory integral should al-
low for the application of an infinite dimensional version of the method of
stationary phase, to obtain, for & — 0, an asymptotic expansion in powers
of h, with leading term given by the path which makes S;(7y) stationary i.e.,
according to Hamilton’s principle, the trajectory of classical motion. The de-
finition of Feynman path integrals and more general oscillatory integrals in
infinitely many dimensions which we give in this work is precisely well suited
for this discussion, as shown in [41].°

Before we come however to our definition, let us make few remarks on
other previous discussions of the mathematical foundations of Feynman path
integrals. The attempt to define Feynman integral as a Wiener integral with
purely imaginary variance meets the difficulty that the ensuing complex mea-
sure has infinite total variation (as first pointed out by Cameron [10], 1) and
Daletskii [10], 2), in relation to a remark in [5]) and is thus unsuitable to define
integrals like (1.13). For further remarks on this complex measure see [12].

A definition of Feynman path integrals for non relativistic quantum me-
chanics, not involving analytic continuation as the ones [10] mentioned before,

2
) dr. From this we see

3 Actually, Hélder continuous of index less than 1/2, see e.g. [8].

4 For the definition by a “sequential limit”, in more general situations, see e.g. [11].
® See also e.g. the references given in [41] and [42].

5 The results are also briefly announced in [42].
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has been given by Ito [13]. We shall describe this definition in Chap.2. Ito
treated potentials V'(x) which are either Fourier transforms of bounded com-
plex measures or of the form c,x®, with o = 1,2, ¢o > O. Ito’s definition has
been further discussed by Tarski [14]. Recently Morette-De Witt [15] has made
a proposal for a definition of Feynman path integral, which has some relations
with Ito’s definition, but is more distributional rather than Hilbert space the-
oretical in character. The proposal suggests writing the Fourier transform of
(1.13) as the “pseudomeasure”” e~%"' looked upon as a distribution acting

on the Fourier transform of e~ # /o V(r(r)dr provided this exists, where W is
the Fourier transform of Wiener’s measure with purely imaginary variance.
This proposal left open the classes of functions V' for which it actually works.
Such classes follow however from Chap.2 of the present work. Despite its,
so far, incompleteness as to the class of allowed potentials, let us also men-
tion a general attempt by Garczynski [16] to define Feynman path integrals
as averages with respect to certain quantum mechanical Brownian motion
processes, which generalize the classical ones. This approach has, incidentally,
connections with stochastic mechanics [17], which itself would be worthwhile
investigating in relation to the Feynman path formulation of quantum me-
chanics.®

Let us now make a corresponding brief historical sketch about the prob-
lem of the mathematical definition of Feynman path integrals in quantum field
theory. They were introduced as heuristic tools by Feynman in [1] and applied
by him to the derivation of the perturbation expansion in quantum electro-
dynamics. They have been used widely since then in the physical literature,

T A theory of related pseudomeasures has in-between been developed by Krée. See
e.g. [43] and references therein.

8 Besides the topics touched in this brief historical sketch of the mathematical
study of Feynman path integrals of non relativistic quantum mechanics there
are others we did not mention, either because they concern problems other than
those tackled later in this work or because no clear cut mathematical results
are available. Let us mention however three more areas in which Feynman path
integrals have been discussed and used, at least heuristically.

(a) Questions of the relation between Feynman’s quantization and the usual one:
see e.g. [10],6), [31, 35].

(b) Feynman’s path integrals on functions defined on manifolds other than
Fuclidean space, in particular for spin particles. Attempts using the sequen-
tial limit and analytic continuation approaches have been discussed to some
extent, see e.g. [6],7), [36] and references given therein. For the analytic con-
tinuation approach there is available the well developed theory of Wiener
integrals on Riemannian manifolds, see e.g. [37].

(¢) As mentioned before, an important application of Feynman path integrals is
in the discussion of the classical limit, where i — 0. In [41] we tackle this
problem and we refer to this paper and [42] also for references (besides e.g.
1,2, 5,7, 38]).
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see e.g. [18], also under the name of Feynman history integrals. We shall now
shortly give their formal expression. For more details see, besides the original
papers [1], also e.g. [18]. The classical formal action for the relativistic scalar
boson field is S(p) = So(p) + [gn1 V (@ (Z,t)) dEdt, with

1 d<p 2 n &p 2
_ - _ _ 2 2 -
Soe) = 3 / (m) ; <6xi) m2p ] dzdt

R+
where ¢ is a function of Z, ¢, m is a non negative constant, the mass of the field,
and V is the interaction. Similarly as in the case of a particle, the classical
solutions of the equations of motion is given by Hamilton’s principle of least
action. The corresponding quantized system is formally characterized by the so
called time ordered vacuum expectation values G (Z1,t1, ..., T, tg), formally
given, for t; < ... < 1y, k = 1,2,..., by the expectations of the products
b (Z1,t1) ... P (T, tx) in the vacuum state, where @ (7, t) is the quantum field
(see e.g. [18], 7)). An heuristic expression for these quantities in terms of
Feynman history integrals is

G(flatla B 7£k7tk) =T (/eiS(@)gO('flatl) . @(fk,tk)d(ﬂ) )

where T is the so called time ordering operator and the integrals are thought of
as integrals over a suitable subset of real functions ¢ on R"*! | see e.g. [18], 7).
A mathematical justification of this formula, or a related one, would actually
provide a solution of the well known problem of the construction of relativistic
quantum field theory. Somewhat in connection, in one way or the other, with
this problem, a large body of theory on integration in function spaces has been
developed since the fifties and we mention in particular the work by Friedrichs
[19], Gelfand [20], Gross [21] and Segal [22] and their associates, see also e.g.
[23]. With respect to the specific application to quantum field theory, more re-
cently a study of models has been undertaken, see e.g. [24], in which either the
relativistic interaction is replaced by an approximate one, with the ultimate
goal of removing at a later stage the approximation, or physical space—time
is replaced by a lower dimensional one. We find here methods which parallel
in a sense those discussed above in relation with Schrodinger’s equation and,
in a similar way as in that case, we can put these methods in connection with
the problem of giving meaning to Feynman path integral, although in this
case the connection is even a more indirect one as it was in the non rela-
tivistic case. We mention however these methods for their intrinsic interest.
The sequential approach based on Lie-Kato—Trotter formula has been used
especially in two space—time dimensional models particularly by Glimm, Jaffe
and Segal [25]. The analytic continuation approach, in which time is replaced
by imaginary time, is at the basis of the so called Euclidean—Markov quantum
field theory, pursued vigorously by Symanzik [26] and Nelson [27] and applied
particularly successfully, mostly in connection with the fundamental work of
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Glimm and Jaffe, for local relativistic models in two space—time dimensions,
with polynomial [24] or exponential interactions [28],° and in three space-time
dimensions with space cut-off [29],19 respectively in higher dimensions with
ultraviolet cut-off interactions [30].1' Much in the same way as for the heat,
Schrédinger and stochastic mechanics equations, there are connections also
with stochastic field theory [17], 4)-7).12

Coming now to the Feynman history integrals themselves, it does not seem,
to our knowledge, that any work has been done previous to our present work,
as to their direct mathematical definition as integrals on a space of paths in
physical space—time, except for the free case [14].

We shall now summarize briefly the content of the various sections of our
work.

In Chap.2 we introduce the basic definition for oscillating integrals on
a separable real Hilbert space, which we call Fresnel integrals, and we es-
tablish their properties. In Chap. 3 this theory is applied to the definition
of Feynman path integrals in non relativistic quantum mechanics. We prove
that the heuristic Feynman path integral formula (1.13) for the solution of
Schrodinger’s equation can be interpreted rigorously as a Fresnel integral over
a Hilbert space of continuous paths. In addition we derive corresponding for-
mulae also for the wave operators and for the scattering operator.'3 In Chap. 4
we extend, in view of further applications, the definition of Fresnel integrals
and give the properties of the new integral, called Fresnel integral relative to
a given quadratic form. This theory is applied in Chap.5 to the definition
of Feynman path integrals for the n-dimensional anharmonic oscillator and
in Chaps.6 and 7 to the expression of expectations of functions of dynami-
cal quantities of this anharmonic oscillator with respect to the ground state,
respectively the Gibbs states [33] and quasifree states [34] of the correspon-
dent harmonic oscillator.'* In Chap. 8 we express the time invariant quasifree
states on the Weyl algebra of an infinite dimensional harmonic oscillator by

9 The Wightman axioms for a local relativistic quantum field theory (see e.g. [40])
have been proved, in particular.

9 The space cut-off has now been removed [44].

' See also [45).

12 We did not mention here other topics which have some relations to Feynman’s
approach to the quantization of fields, for much the same reason as in the preced-
ing Footnote 8). For discussion of problems in defining Feynman path integrals
for spinor fields see e.g. [36] and references given therein. For the problem of the
formulation of Feynman path integral in general relativity see e.g. [39, 4],2), and
references given there.

Similar results hold for a system of N non relativistic quantum mechanical parti-
cles, moving each in d-dimensional space, interacting through a superposition of
v-body potentials (v = 1,2, ...) allowed in particular to be translation invariant.
The same results hold for a system of N anharmonic oscillators, with anharmonic-
ities given by superpositions of v-body potentials, as in the preceding footnote.

13

14
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Feynman path integrals defined as Fresnel integrals in the sense of Chap. 4,
and this also provides a characterization of such states.

Finally, in Chap.9 we apply the results of Chap.8 to the study of rela-
tivistic quantum field theory. For the ultra-violet cut-off models mentioned
above [30] we express certain expectation values, connected with the time or-
dered vacuum expectation values, in terms of Feynman history integrals, again
defined as Fresnel integrals relative to a quadratic form. We also derive the
correspondent expressions for the expectations with respect to any invariant
quasi-free state, in particular for the Gibbs states of statistical mechanics for
quantum fields ([33]3)).

Notes

The introduction appears here unchanged from the one of the first edition which
obviously took only into account developments up to the year of appearance (1975).
Simultaneously to the appearance of the first edition of this book, a method of
stationary phase for Feynman path integrals was developed [87] and Maslov’s
approach to Feynman path integrals via Poisson processes became known [38].
These and subsequent developments are discussed in Chap. 10. Concerning foot-
note 2 we might add the following more recent references (articles resp. books
on Feynman path integrals and their applications, of general interest, not nec-
essarily concerned with the rigorous approach discussed in the present book):
[60, 75, 74, 111, 125, 161, 179, 192, 113, 208, 209, 210, 211, 228, 229, 251, 253,
264, 287, 315, 318, 323, 325, 354, 376, 378, 401, 404, 409, 458, 467, 250, 90].



2

The Fresnel Integral of Functions
on a Separable Real Hilbert Space

We consider first the case of the finite dimensional real Hilbert space R,
with some positive definite scalar product (x,y). We shall use |z| for the
Hilbert norm of 2, such that |z|* = (z, ). Since ezl7” is a bounded continuous
function it has a Fourier transform in the sense of tempered distributions and
in fact

/e%\w\"‘ei(wvy)dx = (2mi) % e73lv1", (2.1)

with de = dz...dz,, where z; = (e;, ), e1,...,e, being some orthonormal
base in R™ with respect to the inner product (, ). For a function f in the
Schwartz space S (R™) we shall introduce for convenience the notation

/N F@)de = (2mi) " / F(x)d, (2.2)

so that ] f(z)dz is proportional to the usual integral with a normalization
factor that depends on the dimension. We get from (2.1) that, for any ¢ €
S (R™)

/eélml2¢(x)dx = /efélmlip(x)dx, (2.3)

where ¢(z) = [ el@¥p(y)dy.

Let now f(z) be the Fourier transform of a bounded complex measure
] < oo, f(z) = [e@¥du(y). We shall denote by F (R™) the linear
space of functions which are Fourier transforms of bounded complex measures.
Since the space of bounded complex measures M (R™) is a Banach algebra
under convolution in the total variation norm | x|, we get that F (R™)is a
Banach algebra under multiplication in the norm |[|f|, = |[g| for f(z) =
[ el@¥dpu(y). The elements in F (R™) are bounded continuous functions and
we have obviously || f|| . < || f|l,- For any f € F (R") of the form

f(a) = / D) du(y)
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we define

/Neélfff(x)dx _ /e—%lf\zdu(x). (2.4)

The right hand side is well defined since e~312° is bounded continuously
and p(z) is a bounded complex measure. (2.4) defines ]e%mzf(x)dx for all
f € F(R"), and it follows from (2.3) that, for f € S (R™), (2771)% ]e%‘”f(x)dx
is just the usual translation invariant integral [ ezlel® f(z)dz in R™. Hence

(27ri)% [ is an extension of the usual translation invariant integral on smooth
functions. This extension is a different direction than Lebesgue’s extension,
namely to the linear space of functions of the form e2!*1” f(z) with f € F (R™).
It follows from (2.4) that this extension is continuous in the sense that

~

/ o3l f()de| < [1£1l. 25)

Since ] is a continuous extension of the normalized integral from S (R") to
F (R™), we shall say that fe%‘”|2f(a:)da? is the normalized integral of the
function eémzf(x). By (2.5) we have that

~

F(f) = /eél’”‘zf(m)dx (2.6)

is a bounded continuous functional on F (R™). We shall call F (f) the Fresnel
integral of f and we shall say that f is a Fresnel integrable function if f €
F(R™).

Remark 1. We have chosen the denomination Fresnel integral for the contin-
uous linear functional (2.6) because of the so called Fresnel integrals in the
optical theory of wave diffraction, which are integrals of the form

w im 2
/ e2¥ dy .
0

We now summarize the properties of the Fresnel integral which we have
proved above.

Proposition 2.1. The space F (R™) of Fresnel integrable functions is a
Banach-function-algebra in the norm || f||,. The Fresnel integral

~

F(f) = / 3o’ f(2)de

is a continuous bounded linear functional on F (R™) such that |F(f)| </ fllo
and normalized such that F(1) = 1. For any f(z) € S (R™)



2 The Fresnel Integral of Functions on a Separable Real Hilbert Space 11

~

/eélzﬁf(x)dx = (27mi)"? /e%“”‘Z)f(:v)dx.

1t follows from the fact that F (R™) is a Banach algebra that F (f1,..., fn) is
a continuous k-linear form on F (R™) x ... x F (R™) such that

f(flv"'afk) < ||f1||onk||o

Moreover sums and products of Fresnel integrable functions are again Fresnel
integrable, and the composition with entire functions is also Fresnel integrable.

We shall now define the normalized integral and the Fresnel integral in a
real separable Hilbert space. So let ‘H be a real separable Hilbert space with
inner product (x,y) and norm |z|. H is then a separable metric group under
addition. Let M (H) be the Banach space of bounded complex Borel-measures
on H. Let p and v be two elements in M (H). The convolution p* v is defined
by

pxv(A) = /,u(A —z)dv(x) (2.7)

where A is a Borel set. It follows from the fact that H is a separable metric
group that (2.7) is well defined. Moreover M (H) is in fact a topological
semigroup under convolution in the weak topology. For a proof of this fact see
[46], Theorem 1.1 p. 57. So that p * v is simultaneously weakly continuous in
w and v. From (2.7) we have, for any bounded continuous function f on H,
that

/ F@)d () () = / f (@ + ) dpu()du(y),

which gives that p* v = v p and ||juxv| < |ull|v|, so that M (H) is
a commutative Banach algebra under convolution. We define F (H) as the
space of bounded continuous functions on H of the form

f(z) = / @D du(y), (2.8)

for some p € M (H). The mapping u — f given by (2.8) is linear and also
one-to-one. This is so because, if f = 0, then the p-measure of any set of the
form {y; (z,y) > a} is zero, from which it follows that the p-measure of any
closed convex set is zero. Therefore the p-measure of any ball is zero, from
which it follows that the p-measure of any strongly measurable set is zero,
which implies y¢ = 0. Therefore introducing the norm || f||, = [|x||, we get that
w — f is an isometry onto. It follows from (2.8) that convolution goes into
product, so that F (), with the norm ||f||, is a Banach-function-algebra of
continuous bounded functions. From (2.8) we also get that || f|| < [|f]l,- We
now define the normalized integral on H by

~

/eélml?‘f(x)dx = /e’élm‘2du(x), (2.9)
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for f given by (2.8). We also introduce the Fresnel integral of f € F (H) by

~

F(f) = / ezlol” £(z)da. (2.10)

We shall call F (H) the space of Fresnel integrable functions on H.

Proposition 2.2. The space F (H) of Fresnel integrable functions is a
Banach-function-algebra in the norm | f|,. The Fresnel integral F (f) is a
continuous bounded linear functional on F (H) such that |F (f)| < ||f]l, and
normalized so that F (1) = 1. It follows from the fact that F (H) is a Banach-
algebra that sum and products of Fresnel integrable functions are again Fresnel
integrable functions, and so are also compositions with entire functions.

If f € F(H) is a finitely based function, i.e. there exists a finite, dimen-
stonal orthogonal projection P in H such that f(x) = f(Pzx) or all x € H,
then

/eémzf(x)dm = / e’ f(x)da,
PH
where the normalized integral on the right hand side is the normalized integral

on the finite dimensional Hilbert space PH defined previously. This could also
be written

Fu(f) = Fpu(f).

Proof. The first part is proved as in Proposition 2.1. To prove the second part
we use the definition

~

/e%‘z|2f(m)d:s _ /e*%IIIQdM(m) .

H H

Now for f(x) to be finitely based with base PH implies easily that u has
support contained in PH, so that

[e e duta) = [ e HePdua)

H PH
= /e%‘x|2f(x)dx.
PH
This then proves Proposition 2.2. ]

It follows from its definition that F () is invariant under translations and
orthogonal transformations of H, and in fact the induced transformations
in F(H) are isometries of F(H). It follows from the definition (2.9) of the
normalized integral that it is invariant under orthogonal transformations of
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‘H. Consider now a translation © — x + a of H. The induced transformation
in F(H) is f — fq, where f,(z) = f(x +a). If

flx) = / ™) dp(y)
then
fal) = / oW 1OV dp(y) .

By the definition (2.9) we then have

~

/eélxﬁfa(w)dx :/e_%‘wlzei(a’l)du(gﬁ)

= ezlel® /e_%lx_a‘2du(w)
— eslal’? /e_%mzdu(x +a).
Now
/ei(“”y)du(y +a)=e '@ /ei(z’y)du(y) = @ f(z).
From the relation
e i) f () = /ei(g”’y)du(y +a)

we get by (2.9)

Hence

/ eslr=l f(a)de = esl” / e " du(x + a)

~

= [t fuaa

which proves that the normalized integral is also invariant under translations
of H. We state these results in the following proposition.

Proposition 2.3. Let the group of Euclidean transformations E(H) be the
group of transformations v — Ox + a, where a € ‘H and O is an orthogonal
transformation of H onto H. Then the space of Fresnel integrable functions
F(H) is invariant under E(H), and E(H) is in fact a group of isometries of
F(H). Moreover the normalized integral is invariant under the transforma-
tions in E(H).
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We shall now prove the analogue of the Fubini theorem for the normalized
integral. So let H = H; @ Ha, then f € F(H) defines a continuous function
f(x1,22) on Hy X Ha by f(z1Dax2) = f(x1,z2). For fixed xo9 € Ho, f(z1,22) €
F(H1). To see this, we note that we have by definition

f(z) = / @D dp(y) |

Since ||z1 @ x2]|* = ||#1]|* + ||@2]|* we get that H and Hy x Hy are equivalent
metric spaces, so that du(y) is actually a measure on the product space H; x
‘Ho with the product measure structure. We shall write this measure on H; x

Ho as dp(yr, y2)-
Hence

f(w1,20) = /ei(zhyl)ei(mz’yg)dﬂ(yh92) : (2.11)

Consider now the measure ji,, € M(H;) defined by

/w(yl)dumz(yl) =/w(yl)ei(“’”)du(yl,yz). (2.12)
H1

By the usual Fubini theorem we then have that

flay,ma) = / T dp,, (1) . (2.13)
Ha

This proves that, for fixed zo € Ha, f(x1,22) € F(H1). Hence the normalized
integral

~

g(x2) = /e%‘””l‘2f(x1,:cz)dx1 (2.14)
Ha

is well defined. We shall now see that g(x2) € F(Hz). By the definition of the
normalized integral and (2.13) we have that

~

/ e3P f(21, )y = / e3P dpug, (1) (2.15)

Ha Ha

and by (2.12) this is equal to

/ef%\yu?eim,yz)du(yhyz) . (2.16)

Hence

o) = / eHm22) dy (y) | (2.17)
Ho
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where v € M(Hz) is defined by

/w(yz)dV(yz) :/efé‘ylpw(yz)du(yl,yz)- (2.18)

Ha

This then proves that g(z2) € F(H2), and the normalized integral
/e%|“|2g(x2)dx2 (2.19)
Ha

is well defined.
By (2.17) and the definition of the normalized integral we have that

~

/e%|12|29($2)d9€2: /efélyzlzdl/(w)

Ho Ha

which by Fubini and (2.18) is equal to

~

/ e sllema el du(y,, o) = / o2l f(2)da

H

We have now proven the following proposition, which we may also call the
Fubini theorem for the normalized integral.

Proposition 2.4 (Fubini theorem). Let H = Hy @ Hz be the orthogonal
sum of two subspaces Hy and Hy. For f(z) € F(H) set f(z1,22) = f(x1®x2)
with 1 € Hy and x9 € Hy. Then for fived xo, f(x1,22) is in F(H1) and

~

g(x2) = /e%‘11‘2f($1»$2)d$1 (2.20)

Hi

is in F(Hz). Moreover

/e?'”' g(zo)dzy = /62”2' (N/eﬁl f(z1,z2)dzy | das

Ha
:/ezlm\ f(x)dz

H
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Remark. The normalized integral on a separable Hilbert space is the same as
the functional F defined by Ito in [13]

~

/e%|“|2f(x)dx = f(e%‘x|2f) .

Ito takes a completely different definition, he defines namely F for f €
F(H) by

F(ezlel f):liénl'[l(1—ixj)fE(e%le fia, V),
i

where F(g;a, V) is the expectation of g with respect to the Gaussian measure
with mean a € H and covariance operator V', where V is a strictly positive
definite symmetric trace class operator on ‘H with eigenvalues A;, such that
Z;’il Aj < oo. The limit is taken along the directed system of all strictly
positive definite trace class operators with the direction given by the relation
<, where V7 < V5 if and only if V5 — V; is positive. Ito proves that this limit
exists and is independent of a and moreover that it is invariant under nearly
isometric transformations, in the sense that

F(e291 f(Cw)) = J(C) ' F (et )
where Cx = Ax + b, with b € H and A a one-to-one map of H such that
tr([(A*A)? — 1]%) < 0o

for some a < 1. J(C) is defined by J(C) = [[;Z,(1 + a;), where a; are the
eigenvalues of (A*A)z — 1.

Instead of Ito’s definition we have used Parseval relation (2.9) as a defini-
tion for the normalized integral because we shall later need a generalization of
the normalized integral to spaces with indefinite metric. These generalizations
will be very natural in our setting and in fact defined again by a sort of Parse-
val relation. We feel also that the definition of the normalized integral by the
Parseval relation (2.9) gives a nice and simple introduction to the properties
of the normalized integral.

We also want to point out that the first part of the next section, i.e. the
formula for the finite time transition amplitude, was first derived by Ito [13],
but we shall give the proof of it here partly for the sake of completeness and
also because our proof is independent of Ito’s, and it will later on be extended
to cover different situations.

Notes

The name “Fresnel integral” is inspired by a particular integral which appeared in
the framework of classical optics, namely the “classical Fresnel integrals” fow sin(%x2)

dz, [ cos(32*)dz, [)° 5%’ da.
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It has been introduced in connection with (rigorous) Feynman path integrals in the
first edition of this book.

The study of oscillatory integrals in finite dimensions, of which the above clas-

sical Fresnel integrals are particular cases, has been developed in the nineteenth
century in work by Stokes, in connection on one hand with the classical method of
stationary phase and, on the other hand, with the theory of improper Riemann inte-
grals. The classical method of stationary phase is discussed, e.g., in [226, 145, 387].
Recent developments are connected with the theory of singularities of mappings
(including catastrophe theory), see, e.g., [123], and the theory of Fourier integral
operators [220, 278, 279, 363, 364, 366, 424].
The concept of Fresnel integrable function and Fubini theorem for oscillatory in-
tegrals appeared first in the first edition of this book, however the role of the
Banach algebra F(H) had already been pointed out in the paper by Ito [13] in 1967.
For recent theoretical developments on rigorously defined Feynman path integrals
see Chapter 10 and, e.g., [214, 274, 280, 281, 298, 299, 303, 301, 305, 316, 321, 388,
416, 418, 422, 439, 445, 446].
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The Feynman Path Integral
in Potential Scattering

In this section we consider the Schrodinger equation for a quantum mechan-
ical particle in R"™ under the influence of a potential V(z). The Schrédinger
equation for the wavefunction ¢ (x,t) is given by

Loy W

where m is the mass of the particle, /i is Planck’s constant and A is the

Laplacian Ay = Y00, gi}f. For typographical reasons we choose units for
time and length such that A = 1, in which case we get

oY 1

i—=—-——A V. 3.2

Vot 2m vrvy (82)
Hy = —5-A is a self adjoint operator in Ly(R™) on its natural domain of

definition. In what follows V' will be a bounded continuous real function on
R™ hence H = Hy + V is also a self adjoint operator with the same domain
as Hy. The solution of the initial value problem for (3.2) is therefore given by

U(z,t) = (7 p)(x) (3-3)

with initial data ¢ € Lo(R™), where e ' is the unitary group in Ls(R™)
generated by —H. We shall now express (3.3) as a so-called Feynman path
integral. In fact (3.3) will be given by the normalized integral of ¢'®, where
S is the classical action, over all path’s for the particle ending at = at time
t. This expression was suggested by Feynman and proved by Ito [13], and we
shall therefore call it the Feynman—Ito formula. It is the correspondent for the
Schrodinger equation of the Feynman—Kac formula for the heat equation.
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It is well known that e itH

namely that

can be expanded in powers of V. We have

d ... . o B
_eltHoe itH — eltHOVe itH
dt

= —i V(t)eltng—ltH ,

where V (t) = el!floVe~1tHo Integrating this formula we get
t
eltHog=itH=1 _ i/V(tl)eitlHOe_itlHdtl . (3.4)
0

By iteration we have then

citHo g _ 3 (i) // Vih) .. Vt)dt . dby,  (35)
=0 > 2,20
which by the norm boundedness of V' is obviously norm convergent for all ¢.

By substitution under the integrals we get from (3.5)

oo

o—itH _ Z(_Z)n / . / e HHOV (£,) ..V (ty)dty ... dt,, (3.6)

n=0 0<ty -+ <t, <O

or more explicitly

oo

e—itH _ Z(_l)n / . / e_i(t_tn)HOVe_i(tn_tn—l)HO o
=0 o<ii< <t <t
eTitemt)Hoye=itiHoqy o qe, (3.7)

We shall now assume that V' is of the form

Vi) = / 107 () (3.8)
R’!L
and that
p(z) = /ei‘”dy(a) (3.9)
RTL

where az = Y ;°, oz, for some bounded complex measures p and v on R,
Since €'“” is a generalized eigenfunction for Hy, with

2

. . it .
e 1tHoelaw — e am @ glaw (310)
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we get by substitution of (3.8), (3.9) and (3.7) in (3.3) that

sty = S [ f [

n=0 o< <<t <t
— o [(t_tn)(a0+"'+an)2+(tn—tn71)(040+"'+0¢n71)2+"'+(t2—t1)(ao+a1)2+t1a3] .

e

ei<j§0 aj>mdy(a0) ﬁ(du(aj)dtj) . (3.11)

Introducing the notation to = 0 we may simplify the exponent in (3.11)
and we get

<>o -5 i (t—t;Vip)ajop 1(2”2 aj>$
"/)(l',t): / / / / j,k=0 e \J=0

":0 0<t) < <tn <t
dv(a o)H(du(aj)dtj) (3.12)
j=1

where o V 7 = max{o, 7}.
By the symmetry of the integrand we have then

t ¢ ;
00 —1)" —%m Z (t—t; Vir)ajop 1<Z Otj>w
w(x,t)zz(m) ////e e &
o0

dv(an) Y (dpu(a)dt;) - (3.13)

Now Gi;(0,7) = (t — o V 7)d;; is the Green’s function or the kernel of

the inverse operator of f% as a self adjoint operator on Lo ([0, ¢]; R™) with

boundary conditions 9%(0) = u(t) = 0.

Hence if we introduce the real Hilbert space H of real continuous functions
~(7) from [0,t] to R™ such that S—Z € Lo([0,t];R™) and «(t) = 0 with inner

¢
product (y1,72) =m ‘?Tl ~d72 dr, then v(,1)(7,7) = Gij(0,7) = (t =0V T)d;
0
is in H for any (o,1), and for any v € H we have
7(0—7 1) = m(’y,’y(o,i)) . (314)
It follows from (3.14) that the functions on H given by

p(7(0) + 2) = / MO agiardy(a)

R”
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/ V(y(r) + x)dt = /t / (M agirad  (a)dt
0

: 0
both are Fourier transforms of bounded measures on H so that both functions
are in F(H), where F(H) is the space of Fresnel integrable functions on H
defined in the previous section. By Proposition 2.2 of Chap.2 we therefore
have that the continuous function f(v) on H given by

and

t
—i [V (y(r)4x)dt
fy)=e @ e((0) + ) (3.15)
is in F(H). Hence the normalized integral [, e2Pl” f(7)dy is well defined.
Since the exponent is invariant under the transformation v — ~ — z, it is
natural to introduce also the following two notations for this integral:

r ily)? _ r %m”%FdT
ez f(y)dy = e 0 fr)dy (3.16)
H ~v(t)=0
T imf|aar
= et 0T fy—a)dy, (3.17)
y(t)==

where (7 — )(r) = () —
We shall now compute the normalized integral (3.16), with f() given by
(3.15). By Proposition 2.2 of Chap. 2 we have that

n

~ ~ t

/e%|“/|2f('y)d’y o Z (_l)n /e%|’7|2 /V(’Y(T) + x)dt) (P(’Y(O) + :L')d")/

n!
H n=0 H
o ( R Z'Y(t 0‘1+7(0)o‘0>
_yu / o1l / / / /
n=0 TL
e dv(ao) [ ] e dulay)dt; | dy . (3.18)
Jj=1

Now, by expressing Z] 17(t5)a; +7(0)ag as a scalar product in H by the
formula (3.14), we see that the nth term in the sum in (3.18) is the normalized
integral of the Fourier transform of a bounded measure on H. Hence by the
definition (2.9) of the normalized integral we get that (3.18) is equal to

t t ) n
EOO: (_i)n / // / —am 2 oGt te)ak
] . cee e j,k=0
n:
0 0

ei(jzo ")de(OZO) ﬁ du(a;)dt; (3.19)
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where we have introduced the notation to ¢ty = 0. By the definition of the
matrix G (o, 7) we see that (3.19) is equal to (3.13). Hence we have proved the
Feynman-Ito formula, namely using the notation (3.17):

T Tm f —'7 —i.t V(y(r))dr
/ [lglar Ao opdy. (320

vy(t)=z

Introducing the classical action along the path + in the time interval [0, ¢]

2|4 ar - / Vi),

(3.20) may be written in more compact notations as

~

(o, t) = / &5 ((0))dy (3.21)

y(t)=x

With units such that & # 1 we easily get the formula
vlat)= [ M0 (322)

for the solution of the Schrodinger equation (3.1). We formulate this result,
which was first established by Ito, in the following theorem.

Theorem 3.1 (The Feynman-Ito formula).
Let' V' and ¢ be Fourier transforms of bounded complex measures in R™. Let H
be the real Hilbert space of continuous paths y from [0,t] to R™ such that y(t) =

0 and (di—;i € Ly([0,t]; R™) with inner product (yi,72) = % f( = %77—2) dr.

Then

7%jV( (T)4z)dr
fy)=¢ "o (7(0) + )

s in F(H), the space of Fresnel integrable functions on H and the solution of
the Schrédinger equation

B
B0 = g MUV

with boundary condition ¥ (x,0) = p(z) is given by the normalized integral

ik

~

(1) = / et f(7)dy

H
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i.e.

We shall now proceed to study the wave operator and the scattering oper-
ator in terms of Feynman path integrals. Let us again use units where i = 1.
Let us also, for typographically simplicity, assume that m = 1.

The wave operators W are defined by

Wy = st. lim e HeltHo (3.23)
t—+oo
whenever these limits exist.? It is well known that these limits exist for a wide

range of potentials V' (z) that fall off sufficiently fast. In what follows we shall
assume that V' (z) is such that the limits (3.23) exist. So that

V(z) = /ei‘”du(a)

R

! By the “translation invariance” of the normalized integral we have

~ ~

/ezh\‘rl fly / 55 7 +70l? (v + v0)dy ,

H H

where 7 is any element of H. Hence

V(3(r)dr
©(v(0))dy ,

_ i
h

C%e«

e

=
\ 2
w‘j

o

%

(%)

although defined by replacing in its argument (1) by v(7) + z, and interpreting
the result as f; eéwgf(’y)d’y7 is actually independent of the chosen particular
translation, which could be replaced by = + o, with o € H arbitrary, and only
depends on its value for 7 = t, which is required to be x.

The above Theorem 3.1 has been stated for the Schrédinger equation of a particle
moving in R™ under the action of the potential V. From the proof it is evident
that the same results hold for a system of N non relativistic quantum mechani-
cal particles moving each in d dimensional space, thus with n = Nd, under the
influence of a potential V' which is only restricted to belong to F(R"™) but is other-
wise arbitrary, hence can be e.g. a sum of v-body translation 1nvar1ant potentials
(v=1,2,. ) In this case —ﬁA is replaced by —ﬁ S 225 and (v1,72) by

i=1 m; 61
(y1,72) = Ot '?71 MdA’2 dr, where M is the matrix (M);; = m»L(S”,Z,j =1,...,n.
The elementary deﬁnltlons of mathematical scattering theory are e.g. in [47]. For
recent work see e.g. [32].

w
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and for instance*

V(@) < C(1+ )71
(see for example [43]).
By expanding e~ #Hoe=i(t=s)He=itHo i powers of V in a similar manner
as in (3.5) we get, with V(¢) = e~ *HoVeltHo that

o

eisHogit=s)H ity _ 5 (_j)n / / V). Vt)dt ... dt,
=0 s<hi<gin<t

where the sum is norm convergent for all s and ¢, i.e.

o—isHo g —i(t—s)H o—itHy _ Z(—l)" / O
n=0 s<t1< <tp <t
ceitn—tn—)Hoy/oitnHoqy ¢,
With
ola) = [ an(s)
we get then

oo

(e_iSHOe_i(t_s)HeitHOSD) () = nz::o(_i)n // //

s<ty <<t <t
o~ s[t1(anttan+B8) H(ta—t1) (aat+8) 4t (b —tn—1) (an+6)* —n5%]

il > aj+6> n
e <J’=1 H (dp(ey)dt;) (3.24)
i=1

We have
tilar + -+ ap + B)2 + (ta — t1) (g + - - - + B)?
et (tn - tn—l)(an +/6)2 - tnﬁ2 (325)
= tl()éf + 2t10&1(0¢2 + -t an, —|—ﬂ) +t20{§ + 2t20£2(043 + ..oy —|—ﬂ)
+ A teal + 2, anﬁ
—Zt At aaj+262tal, (3.26)
ij=1
where s At = min{s, t}.

4 This assumption is actually enough for proving the completeness of the wave
operators, in the sense that Range W, = Range W_, see [48]. A slightly weaker
condition, sufficient for the existence of the wave operators, is ([49]):

/|V 14 |z))*> " de < o0, €>0.

See also [11], 3).
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If we introduce § = — 3" | o — 3, (3.25) may also be written

1162+ (ta —t1) 04+ )+ 4+ (tn —tn_1)(0+ 1 + -+ ap_1)?
~tp(6 4+ a1+ -+ ay)?
= —tlaf — 2t101 — tga% — 2t20¢2((5 + 041)

o —tpal = 2than(0+ar+ -+ ano1)

—Zti \/théiOéj — 26Ztiai 5 (327)
ij i=1

where s V¢t = max{s,t}.
By the identity of (3.25) with (3.26) and (3.27) and the fact that |s —¢| =
sVt —sAtwe have that (3.25) is also equal to

n

1 n
> —5 It —tjlasa; + (8- ) > toi . (3.28)
ij=1 i=1

If s =0 and ¢ > 0 we get from (3.24) and (3.25) that

(e7itH Mo ) () = i(—i)” // //

=0 o<fi< <<t

j=1

.oon n n
—5 > tiAtgajar—if Y tjoai+i| Y a4 |z
e dk=1 J=1

- dv(B) [ dulay)dt; - (3.29)
j=1
By the substitution ¢; — —¢;,i=1,...,n we get that (3.29) is equal to

0o . -1 i —tjVigoj oy +iB i tjaj+i<_i aj+ﬁ>rc
2(71)” N A =t J=t

n=0 <t <. <t <0

dv(p) H dp(ey;)dt;

which, by the symmetry of the integrand, gives

[}

////

. n n n
=3 > —tjVigajap+if 3 t.foé.7‘+i<z aj+5>r
j=1

e IF= j

- duv(B) H dp(ey;)dt; . (3.30)

(e—itHeitHOLP) (z) = Z;J (—nl')n

-
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Consider now the separable real Hilbert space H_ of continuous functions
from [—o00,0] to R™ such that 4(0) = 0 and 3—: is in Lg([—00,0]; R™) with
norm given by
0
- /

We have that v, (t,j) = —sVt-0;; is in H_ and for all v € H_ we have

(7, 78,0) = 7(s,1) - (3.32)

(3.31)

From this it follows that
0 0
fy) = / V(y(r) + B + x)dr = / / (7)) q()dr (3.33)
—t Zt

is in F(H_). Hence, by Proposition 2.2 of Chap.2, e~ /(") again in F(H_)
and the normalized integral

~

/eéwe—if(wm (3.34)
H-
is well defined. By using (3.32) we may compute explicitly the normalized

integral (3.34) in the same way as in the proof of the Theorem 3.1 and we get

e%lv\Qe—if(v)d7 — Z (=" (3.35)

n'
n=0

\z
8

0

/ // / -3 ” —t]VtkaJak+lﬂ z tjo+ (i i a> H dp(og)dt;
Jk 1 j=1 j=1 .

—t

Introducing now the notation

~

0 0
i J |d—1|2d7 —i [ V(y(r)+B7+x)dr
Wi(z, 8) = /62*00 ‘ ‘e dy (3.36)

H-

we get from (3.30) that

(efitHeitHogp)(x) _ /Wt(x,,@)eiﬁmdl/(ﬂ) ’ (3.37)
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where
o(z) = / B (3) . (3.38)

Since ¢ is in Lo(R™), which implies that dv belongs to Ly N Lo, we have, by
the assumptions on the potential V', that (3.37) converges strongly. Hence, as
t — oo, Wi(x, 3) converges in the strong topology of operators on La(R™) to
a limit W, (x, 8), which by (3.37) satisfies

(Wep)(z) = / W (2, B)du(B) . (3.39)

By the physical interpretation of the wave operators, W (x, 3) as a function
of x is the wave function at time zero of the quantum mechanical particle with
asymptotic momentum 3 as t — —oo. If m # 1 and h # 1 one finds easily, by
following the previous calculation, that

~

. 0 0
b f |3—Z|2d7' -5 f V("/(T)+£T+I)d7‘
oo

m

Wt(x,ﬁ)/e - et dv, (3.40)

H_

and we recall that a particle of momentum [ has the classical velocity %
Hence we get the formula for the W, (z, 8) of (3.39):

0 0
im g \d%_|2d'r -+ [ V(y(r)+vr+a)dr
Wi (z,mv) = tlim et e dy. (3.41)

We shall also write this formula as an improper normalized integral

13

~ 0 0
o g Pdr —f [ V() tvrte)dr
Wi (z,mv) = / e e o dy, (3.42)
H_

o

i 0
keeping in mind that e % Jooo VOmtor+2)dr 4o o necessarily Fresnel inte-

grable on H_, and that the integral in (3.42) is defined by the limit (3.41).

On the other hand (3.42) can also be defined without the limit procedure
(3.41) in the case where V(z) is a potential such that the perturbation H =
Hy + V is gentle. For gentle perturbations see for instance the references
[50] and [51]. One has for example that if V' € L1(R™) N Lo (R™) then the
perturbation H = Hy+V is gentle and, for the case of R?, one has the stronger
result that if V€ Lj/»(R?) then the perturbation is gentle [[50] Theorems 4,
5 and 6].
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In the case when V is gentle and with small gentleness norm, i.e. if for
instance ||V]]1 and ||V]|s are bounded by a certain constant or, in the case
of R?, if |[V||3/2 is bounded by a certain constant, then (3.42) may also be
defined as follows, setting now again m =h=1:

~ 0 0
/ ; I |d—'y| dT —i [ V(y(r)+vr+a)
e e dy

i(‘

n=0

—00 —0o0 H_

V(v(t1) + vt1 +2) ... V(y(ts) + vty + x)dydty ... dt, . (3.43)

We have namely that V(y(t)+vt+2) € F(H_), hence the normalized integral
in the last line in (3.43) is well defined. In the same manner as earlier we may
compute this normalized integral, and we get by the earlier computations the
right hand side of (3.35), with ¢ = oco. Again by the earlier computations we
see that this is the same series as the perturbation expansion of W in powers
of V', namely

/ V(t)... V(ty)dty ...dt, (3.44)

n= 0 0<t1< ..t

By the assumption that the perturbation is small and gentle we have that
the integrals and the sum in (3.44) actually converge and the sum in (3.44)
is equal to the wave operator W,.. Hence the integrals and the sum in (3.43)
also converge and the sum is equal to W (z, 8) with 5 = mw.

Let us now take t = 0 and s < 0 in (3.24), and substitute (3.27) for (3.25).
We then have

(e_iSH"eiSHcp) (LL')

i -3 i —t;Vigojag+28 i tja
=Y [ [ /

n=0 s<t1 <. <tn<0

e (s H dp(ag)dty) (3.45)
j=1
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Due to the symmetry of the integrand we get, after a substitution ¢t; — —t;,1i =
1,...,n:

— . st € DE= .77
n!
n=0 0 0
e*i‘s"ﬂ”du(ﬁ) H dp(ay)dt; | (3.46)
i=1

with §,, = Z?:l o + .
For s < 0 we now define W7 (4,y) by

S

[wime oy = [ H et @e Ban. (@4
So that, with ¢ in Lo(R™) and
vla) = [ éordo(s)
- / e0%4(8)ds (3.48)
we have
[ wie.e mowanos) = .ty (a9)

From (3.46) we get

/W;(& y)e Yo(y)dyda (5) = i (_Triz)!m ////
m 5 b

=0

*%[ > tintrajar—2(8+ 3 ;) 3 tj%}
e j=1 j=1

i(8+ 3 oz _ -
e =t (x)dzdr(B) H dp(aq)dt;
i=1
0 (—l)m ” - —3 ‘;filtjAtkajak72(,6’+j1Z::1ocj)ji::ltjaj
-y ////e
m=0 0 0
(2m)" (5 + Y ay)dv(B) [ du(es)dts . (3.50)
j=1 i=1

With the notation ¢(8)dg8 = dv(8) and the substitution B—!—Z;nzl aj — 0
we have that (3.50) is equal to
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_ —s . m m
l) —5| X tiAtrojaR—28 Y tjoy
/ / / / " "
m)

@m)" () | 5 - Zaj d(SHd,u (or)d

Using now the inverse Fourier transform

(2m)"(6) = / p(@)e 7 dz |

we get (3.50) equal to

e’} ( l)m -3 J;zn::ltj/\tkajak—Q(sji::ltjaj
>

m=0

S a
e =1 e_“sxw() (x) dxdéHd,u a;)dt;

j=1

Hence we have proved the formula

W*(5, ) g:o n|0/ 0///6_[
| eim<

We introduce now the real separable Hilbert space H of continuous functions
~ from [0, 00| to R™ such that «(0) = 0 and % is in Ly([0, co], R™) with norm

given by
=[] 2
d
0

We verify easily that the function s A ¢t plays the same role in Hy as the
function —s V t in H_, and thus by the same calculations as for H_ we get
that [,~° V(y(7) + 07 4 x)dr is in F(H) and that

=

n
tj/\tkajak—Qts Z tjoy
1 j=1

I\gE]

J 1aj> ﬁdu(aj)dtj . (351)

T i) dr —i [ V(y(r)+d7+z)dr
Wi(d,x) = /e2g|d ] e j ! dy (3.52)

Hy
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If m or & are different from 1 we shall define the norm in H, by

z_m/d_“
T h d

and we get the corresponding formula

E=1h =% | V() +or+a)dr

(muv, ) e 0 dy . (3.53)

\2
v\s
0‘8

Let us now assume that the potential is so that the wave operators W defined
by (3.23) exist, then we get from (3.49) that

/ W* (5, 2)e A2 (3)d5 = (M e Ho)) () (3.54)

and the limit of (3.54) as s — —oo exists in the strong Lo-sense and defines
W= (0, z) by

/ W* (5, 2)e" 37 (8)dd = (W) (x) . (3.55)

By the physical interpretation of the wave operator W_ we have from (3.55)
that WZ*(4,z), as a function of § for fixed x, is the asymptotic probability
amplitude in momentum space as t — 400 of a particle located at x for ¢t = 0.
In the same way as for W, (z, ) we may introduce the improper normalized
integral as the limit as s — —oo in the weak sense in § = mwv and z of the
normalized integral (3.53) and then write

= im
2h
WX (muv, x) /

di —L [ V(y(r)+vr+a)dr

dy (3.56)

ogg
ORS

or

WX (mv,x) =

T % T d—z 2dt —+ [ V(yv(r)+vr)dr
/ w [lg e —h Ve dy . (3.57)
0)=

Of course in the case of gentle perturbations (3.56) or (3.57) may also be
defined by series expansion of the second term in the integral. Since the scat-
tering operator S is defined by

S =W*W, (3.58)

we get that the scattering amplitude S(d, 3), which is simply the kernel of S
in the momentum or Fourier transformed space, is given by the formula



3 The Feynman Path Integral in Potential Scattering 33

S<6,ﬂ>jfvVi(é,x)e%<ﬁ*”ILV4<x,ﬂ>dx, (3.50)

where we have taken A # 1 and the integration is to be understood in the
weak sense. (3.59) now gives a very interesting and surprising formula for the
scattering amplitude

S(mvy, mu_) = / e# (S()=50(10)) gy (3.60)

HE
where vo(7) = v_ -7 AO0+ vy -7V 0+ y are the asymptotes of v(7), S(7y) is
the action along the path v and Sp(7o) is the free action along the asymptotic
path 7p. (3.60) then expresses the quantum mechanical scattering amplitude
as a normalized integral, over all paths with given asymptotic behavior of
exp { £ ( — So0(70))}, where S(v) — So(v0) is the difference of the action
along ~ and the free action along its asymptotes vy. More precisely

5() - Solro) = [ ( df

and with v =4 4+ o we get

S(y) = So (70)

-

) dr (3.61)

oo [eS) 0
dT— / V(i+'yo)d7+mv+/%d7'+mv_ / %dr
—o0 0 —o0

ie.

S(7) — So(r0) == / \ /Oov<v+70>d7— F(0)(mvy. —mu_). (3.62)

Remark. Although S(y) and Sp(vy0) diverge, we see that S(v) — So(7y0) is well
defined whenever 7 is absolutely continuous with derivative in Ly(R), if vy
and v_ are different from zero and the potential V' tends to zero faster than
|z|~17¢ for some positive €. It is interesting to note that this are just the
conditions that are needed for the existence of the scattering amplitude in
quantum mechanics.

Let now 5(0) = x, we may then set

5(r) = {’y+(7)+x for 72>0

v-(t)+x for 7<0°’
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where 4 € Hy. With this notation we get from (3.62) that

S(v) = So(y) = %/’ /V(7++U+T+x)d7'—a?(mv+—mv,)
0

0

+m
2

dy_ |*
dr

8\0

0
dr — / V(v— + v +x)dr . (3.63)

Hence, using the identity (3.63) we give a precise meaning to the normalized
integral (3.60) by the following definition

e (S(M=50(10)) 4y

—

t)

f—lsl:gloo ’YT:V:E
~ O 1d~y_ |2 im Fldey 12
ﬁ — d im ay d

i [ i 1o Tl

RVZ @

-7 V(y—tv-_r+a)dr  —L [V(yy+vprta)dr

he 7 + T+

e > ‘e 0 dy , (3.64)

where the normalized integral above is the normalized integral on H = H, @
H_and v=v4 & v-.

From (3.64), (3.59), (3.56) and (3.42) we have proved (3.60) as defined by
(3.64). We formulate now these results in the following theorem.®

Theorem 3.2. Let the potential V' be the Fourier transform of a bounded
complex measure and also in a class of potentials such that the wave operators
(3.23) exist. Then the wave amplitudes W, (x,3) and WZ*(6,x) defined by
(3.39) and (3.55) are given by the following improper normalized integrals

"'z dr —+ f V(v(r)+vr+z)dr
Wy(x,mv) = /ew | d e dry
H_
and
/N 2ﬂ 70 %l % OfOV(’y(T)+1)T+r)dT
(mv, x) 0 0 dv,

where the improper normalized integrals are defined as the limits of the cor-
responding ordinary normalized integrals with the integrals over the half lines

® With obvious modifications the results hold also for the N particle system of
Footnote 2 of this chapter.
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of the function V (v(1) + vt + x) substituted by the integrals over finite time
intervals of the same function. Hy is the real separable Hilbert space of ab-
solutely continuous functions v from [0,00] to R™ such that v(0) = 0 and 3—1
dy
dr
of functions on [—o0,0]. Moreover the scattering amplitude S(a, [3), defined
as the Fourier transform of the kernel of the scattering operator S, is given
by the formula

2
dr. H_ is the corresponding space

is in Ly(R), with norm |y[3 = % [

where

m

d
—V(V)—E o

2
‘dT

S(v) = So(v0) = 7 (%‘j—z 2>d

with vo(7) =v_ -7 A0+ vy -7V 0+y, and the normalized integral above is
defined by (3.64).

Notes

The approach in this section was introduced in the first edition of this book. It was
used in an essential way for the development of the method of stationary phase
in infinite dimensions and the study of the semiclassical limit (for solutions of the
Schrodinger equation in finite time) in [87] and subsequent papers like [69, 70]. An-
other development, in the case of Hamiltonians with discrete spectrum, is connected
with the trace formula, see [66, 67]. The approach concerning scattering theory has
not been exploited much further, it gave however inspiration for further work, see,
e.g. [186, 187].



4

The Fresnel Integral Relative
to a Non-singular Quadratic Form

In Theorem 3.1 we obtained the solution ¥ (x,t) of the Schrodinger equation
with initial values ¢(z) and potential V' (z) in the form

where H was the real Hilbert space of continuous paths v such that y(t) = 0
and with norm square given by % fot 3—1|2d7, if both V' and ¢ are Fourier
transforms of bounded complex measures. If we are, and we shall be, interested
in the anharmonic oscillator, then we must deal with potentials of the form

V'(z) = %Z‘A2l‘ +V(x), (4.2)

where x A%z is a strictly positive definite form on R", corresponding to the
strictly positive definite symmetric linear transformation A2 on R™, and V (x)
is a nice function, which we shall take to be in the class of Fourier transforms
of bounded complex measures. For such potentials, of the form (4.2), we can
not prove (4.1) in the same way as in the previous section, because if we
substitute V’ for V' in (4.1) we do not get a Fresnel integrable function on
‘H and the formula therefore does not make sense as it stands. On the other
hand, we may write (4.1) with V' instead of V in the following manner
t

[ 3 dr— gy [/ AP (r)dr —f [V(3(r)dr
/ 7 PO SO oy, (@43)

y(t)==

where 3—2(7') = 4(7).
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For small values of ¢

t

“ / ar -3 [r a2 (s (4.4)
0

0

is namely a strictly positive definite quadratic form on the space of continuous
paths such that v(¢) = 0. Hence we may introduce the real Hilbert space H’ of
continuous functions from [0, ¢] to R™ with v(¢) = 0 such that (4.4) is bounded
with (4.4) as the norm square, and define (4.3) by

t t
EY [ A(T) d.,-,, (v(T)+2) A% (y(T)+x)dr| —+ [V(y(r)+z)dr
/ez[’o“ Jomasare] Sk [voe ey,

H!

(4.5)
where the normalized integral [}, is the one defined in Chap. 2.
One verifies then easily that
t t
—LzA? (m)dr 7%. V(~v(r)+x)dr it
e " I e " [ ©(v(0) + x) e mmeATT (4.6)

is Fresnel integrable on H’ and that, up to a constant, the Fresnel integral (4.5)
gives the solution of the corresponding Schrodinger equation at time t. The
constant, which depends only on t, m and A2, comes from the fact that the
normalized integral is defined by a normalization given by the inner product in
the Hilbert space. In this way we can thus prove an analogue of the Feynman-—
Ito formula also for the anharmonic oscillator. But this formula would then
only hold for small values of ¢. This is of course rather unsatisfactory, and we
shall therefore not give the detailed proof here.

If on the other hand we want to make sense out of (4.3) not only for small
t, we must define the Fresnel integral also for the case where the quadratic
form in question is not necessarily positive definite any longer. We shall see
that this is possible and in this way make sense of (4.3) not only for small
values of ¢. To define this extension of the Fresnel integral we shall introduce
a densely defined symmetric operator B in the separable real Hilbert space H
of Chap. 2, and the quadratic form is then given by

(«, Ba) @7

for x € D(B) C 'H. It is also necessary to assume that B is non degenerate in
some suitable sense, and we shall here assume that B is non degenerate in the
following sense. There exists a dense subspace D of H such that D contains
the range of B and there exists a symmetric bilinear form A(z,y) defined on
D x D such that Im A(z,z) <0 and

A(z, By) = (z,9) (4.8)

for all € D and all y in the domain D(B) of B. A is in the above sense an
inverse form of the form (4.7), and in the case where H is finite dimensional
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the existence of A is equivalent to B having an inverse and A is in that
case given by the inverse matrix of B. We shall further assume that D is a
separable Banach space with norm ||z|| which is stronger than the norm |z
in H, i.e.

x| < al|z| (4.9)

for all x € D, and we shall assume that the form A(x,y) is a continuous
symmetric bilinear form on D. From (4.9) and the self duality of H we get
the natural embedding

DcHcCD", (4.10)

where D* is the dual space of D. The embedding H C D* is just the restriction
mapping i.e. by restricting a continuous linear function on H to D we get,
by (4.9), a continuous linear mapping on D. It also follows from (4.9) that
||z||* < a|z|, where ||z||* is the norm in D*. Hence all the injections in (4.10)
are continuous. In the general case A is not uniquely given by B. However if
B is non degenerate in the stronger sense that it has a bounded continuous
inverse B~! on ‘H, then it follows easily that D = H, since D contains the
range of B, and that A(z,y) = (z, B~1y). Hence A is in this case unique and
real.

Since A(z,y) is continuous on D x D we have that, for fixed z, A(z,y) is
a continuous complex linear functional on D, hence in D*. This gives then a
mapping of D into D* which is, by (4.8), a left inverse of B, considered as a
map from D(B) C D* into D.

We now define the Fresnel integral with respect to the form A.

Definition 4.1. Let D be a real separable Banach space with norm || || and
let H be a real separable Hilbert space with inner product (, ) and norm | |,
such that D is densely contained in 'H and the norm in D is stronger than the
norm in H. Let B be a densely defined symmetric operator on H such that the
range of B is contained in D and let A(z,y) be a symmetric and continuous
bilinear form on D x D such that Im A(z,z) < 0,and A(z, By) = (z,y) for
all x € D and y € D(B). The space F(D*) of Fresnel integrable functions
on D* is the space of Fourier transforms of bounded complexr measures on D.
For any f € F(D*) we get, by the inclusion H C D*, that

f(z) = / @D dpu(y) (4.11)

D

for x € H. We now define, for any f € F(D*), the Fresnel integral with
respect to /\ by

A

/e%(z’Bz)f(m)dx = /eféA(“"’x)du(m) . (4.12)

H D
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The integral on the right hand side is well defined since Im A(z,x) < 0 and
A(z, ) is continuous on D. We shall also call f?? e2 (@52 f(x)dx the integral

normalized with respect to /\ of the function eé(x’Bz)f(z), and also use the
notation Fa(f) for this integral.

We have now the following proposition.

Proposition 4.1. The space of Fresnel integrable functions F(D*) is a
Banach-function-algebra in the norm || f||o = ||p|| and F(D*) C F(H). Fa(f)
is a bounded continuous linear functional on F(D*) such that |Fa(f)] <||fllo
and normalized such that Fa(l) = 1. The condition A(x, By) = (x,y) for
x € D andy € D(B) implies that B~ is well defined and A(x,y) = (z, B~'y)
for x € D and y in the range of B. Hence, if the range of B is dense in
D, A(x,y) is uniquely given by B and is the continuous extension of the
form (z, B~y). If B > al with a > 0 and the range of B dense in D, then
F(D*) C F(Hp) and

~

N
/e%(‘"’”’Bm)f(a:)dx = / eélIIQBf(x)d:c ,
H

Hp
with |z|% = (x, Bx) and where Hp is the closure of D(B) in the norm | |p.

Proof. Let f € F(D*), then, for x € H,

f(z) = / @ du(y) .

D

Since the D-norm is stronger than the H-norm, we have that the H-norm
|| is a continuous function on D, from which it follows that any H-continuous
function is also D-continuous, so the restriction of the integral with respect
to p from C'(D) to C(H) gives a measure on H, which we shall denote by 1.
Since e'(*¥) for € H is in C(H), we therefore have that, by the definition of

Hr,

f@) = [ Dty (1.13)
H
hence that f € F(H). That ||uxn|| = ||| is obvious, so that F(D*) is a

Banach subspace of F(H). That it is also a Banach algebra follows as in
Proposition 2.2 from the fact that D is a separable metric group. The bound
[FA(F)] < ||fllo follows from the fact that ImA(z,z) < 0, and Fa(1) =1 is
obvious from the definition (4.12). From

A(z, By) = (z,y) , (4.14)
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for z € D and any y € D(B), we get that By = 0 implies that y = 0, since D
is dense in H. Hence B! is well defined with domain equal to the range of
B. Hence

A(z,y) = (z, B~ 'y) (4.15)

for x € D and y in the range of B. So that, if the range of B is dense in D,
then A(z,y) is uniquely given by (4.15) and therefore also real.

If B > al with a > 0 and the range of B is dense in D, then, for 2 € R(B),
the range of B,

B~'af% = (2, B~'2) = Aw,a) | (4.16)

which is bounded and continuous in the D-norm. Hence B~! maps R(B) into
Hp, continuously in the D-norm on R(B). Since R(B) is dense in D it has
a unique continuous extension, which we shall also denote by B!, such that
B~! maps D into Hp boundedly. To prove the identity in the proposition we
first prove that F(D*) C F(Hp). Let f € F(D*), then for x € H we have

f(z) = / @D du(y) | (4.17)

D

Let g € C(Hp), we define up by

/ o(@)du(z) = / g(B~ x)du(z) | (4.18)
Hp D

g(B~'z) € O(D) since B~ : D — Hp continuously. If z € D(B) then by
(4.17) and (4.18) we have

so that

f(2) = / Ny (y) (4.19)

He

Now (4.19) holds for all x € D(B) and D(B) is by definition dense in Hp in
the Hp-norm. On the other hand the right hand side of (4.19) is obviously
uniformly continuous in the Hp-norm. But, from (4.17), f(z), for = € H,
is uniformly continuous in the H-norm, which is weaker than the H p-norm.
Hence by unique extension of uniformly continuous functions defined on dense
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subspaces, (4.19) must hold for all z in Hp. This then proves that, in this
case, F(D*) C F(Hp), and by (4.19.) we have

~

/e%‘IFBf(x)dx: /e*%‘w‘QBduB(x)

Hp Hp
= /efélB_lmlédN(m).
D

On the other hand we have (4.16) for all € R(B), but by the continuity of
B™': D — Hp and the continuity of A(z,x) in the D-norm we have that
|B~12|p = A(x, ) for all z in D, hence

~

/e%‘zléf(m)dm = /e*%A(gﬂ"”)du(x) ,

Hp D
which by (4.17) proves the identity in the proposition. O

Proposition 4.2. The integral normalized with respect to A\ is invariant un-
der translations by vectors in the domain of B, i.e., for y € D(B),

AN AN
/e%(z+y,B(r+y))f($ + y)dx _ /e%(z,Bac)f(x)dx )
H H

If H is finite dimensional then B~ is bounded and /\ is uniquely given by
A(x,y) = (x, B~Yy) for all x and y, and with H = R™

A

/ 02 (#:B2) f(g)da = |(1/21) B[ 3 / e P f(z)dz

H R™

for any f € S(R™), where |(1/2m1)B| is the determinant of the transforma-
tion (1/2m1)B in R™, and the integral on the right hand side is the Lebesgue
integral.t

! The square root |(1/27i)B |% is given by the formula
|(1/2mi)BIE = (1/2m)" /2| B||Fe T8

where (27)"/? is the positive root, HBH% is the positive root of the absolute
value of the determinant of B and sign B is the signature of the form B. This is
according to the formula

|(1/27i) B|2 /e%(x’B“)dx =1.

R"
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If H is infinite dimensional and B~ is bounded and everywhere defined,
then D = H, their norms are equivalent and /\ is uniquely given by A(x,y) =
(v, B~Yy) for all z and y. Moreover B is self adjoint and H = H ®H_, with
B =B, © B_, where By > al for some a >0, and

A ~ ~

i i 2 i B oo
/ef z, Bac)f( )d.’b _ / e2|ﬂﬂl|BJr / ez\xz‘B, f(l'l;xZ)dx2 dxy ,
H Hp, Hp_

where f(x1,22) = f(x1 @ x2), Hp, is the closure of D(By) C Hy in the
norm |;13|QBi = (x, BLx), and the integrals on the right hand side are ordinary
normalized integrals as defined in Chap. 2.

Proof. Let y € D(B), then
ez @HUBEHY) £y 4 y)) = 3Bz (B0 i@ BY) £ 4y - (4.20)
so we shall first prove that el(®BY) f(z +y) € F(D*). We have

el @BY) (g 4 y) = i@ BY) /ei(’”+y’z)du(z)
D

/ i(z,2) 1(:c By) 1y,z)dlu( )

D
/ i(z,2+By) yz)d'u( )
D

and since By € D, so that z — z — By is a continuous transformation in D,
we get

@ BY) (x4 y) = /ei(i’z)ei(y’z_By)du(z — By) , (4.21)
D

which is obviously in F(D*). Hence by (4.20), (4.21) and the definition of the
integral normalized with respect to A we get

AN
/ eHEHUBEH) f 4 y)dy = o35V / e HA@D W sBY) 4y (2 _ By |
H D

which by the definition of the measure du(z — By) is

e%(%By)/e—%A(£+By7x+3y)ei(y,x)du(w)
D
— o3 (WBY) g~ 5 A(By,BY) / o H0E0) =A@ BY) 6i0:2) 4 1)

D
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and, using now that for y € D(B) and « € D we have A(z, By) = (x,y),
we get

/e%A(I’z)du(x) .

This proves the translation invariance. We have proved previously that By =
0 = y = 0, which in the finite dimensional case implies that B is onto and
that B~! is bounded. In this case, since D is dense in H, we have that D = H
and therefore that A(z,y) = (z,B~'y) for all z and y. Let now f(x) €
S(R™),R"™ = H, then

A

[ e 2 [ s s (4.22)
H
with

f(x) = / @) Fy)dy .

On the other hand one verifies easily that, for f € S(R™),

/e*%@’B*‘z)f(x)dx — |(1/2x1)B|*3 /e%“’m)f(m)dx- (4.23)

This proves the second part of the proposition. Let now H be infinite dimen-
sional and B! bounded and everywhere defined. Then the range of B is H,
hence D = H, so that the D-norm ||z|| is a norm on H which is everywhere
defined, hence by the general theory of functional analysis it is bounded with
respect to the norm in H. Therefore the D-norm and H norm are equivalent.
Moreover since B is the inverse of a bounded symmetric operator, it is self
adjoint and let H = H @ H_ be the spectral decomposition of B in the sub-
spaces where B is positive and B is negative. This decomposition is unique
since we already know that zero is not an eigenvalue of B. Let =By be the
restrictions of B to H4. By the spectral representation theorem for self ad-
joint operators it follows from B~! bounded that B+ > al for some a > 0.
Let now f € F(D*), then since D = H and D and H are equivalent as metric
spaces and the fact that H and Hy x H_ are equivalent as metric spaces, we
get that any measure on D may be regarded as a measure on Hy x H_ and
therefore, for x = x1 ® x5 € H:

foy= [ e, ) (4.24)
H+ XH
Consider now the measure i, on H_ defined by

/g(yz)duzl(y2)= / g(=y2)e Y du(yr, ys) (4.25)

H- HyexH_
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for any g € C(H_). Then
f(x1,20) = /ei(“’y?)duzl(ym) . (4.26)
H—

Let now Hp, be the completion of D(B)NH+ in the norm |z|3, = (z,2)p, =
(x, Byx). Then for zo € D(B) N'H_ we have

- . —1
f(zlaxz) = /el(xz’B yZ)B_dluﬂcl(y2)
H_

ie.

Floroa) = / e vn_ g B () (4.27)
Hp_

where d,uff is the measure on Hp_ defined by
[ o) = [ 9B v, ) (1.25)
Hp_ H_
for any g € C(Hp). (4.28) defines a measure on Hp_, since
|BZ'yl5. = (y, BZ'y) < ally||? (4.29)
sothat B-! maps H_ into Hp_ continuously. By (4.27), for fixed x1, f (21, 22)€

F(Hp_). Hence we may compute the inner integral in Proposition 4.2, and we
get for fixed x4

= [ ) (4:30)
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which by the definition of du,, is equal to

efé(y%B y2)e—i(z1,y1)m .
HyxXH-

Hence

da = [ e e duy ). (4.31)
HyXH-

Define now the measure dv(y;) on Hy by

/h y1)dv(y1) / hyr)e® @B dp(y, ys) | (4.32)
HoXH_
then
g = [ e man)
Hy
= [t
N
Hence

g(w1) = / T duP (yy)

'HB+

so that g € F(Hp, ) and we may therefore compute the outer integral in the
proposition and we get
i 2 _ i 2
[ e = [ s )

Hpe Hp

+ +

_ / o Tl

H
_ /e*%(yuB;lyﬁdy(yl).
H

By the definition (4.32) of dv(y;) we get this equal to

/ e*%(ylyB+ Y1) i (y2,BZ ”2)du(y1 y2)
H+XH,

— /efé(yB y)du( ) = /ef%A(y,y)d#(y).

H D
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which by definition is the left hand side of the last equality in the proposition.
This then completes the proof of this proposition. O

The case where B is a bounded symmetric operator with D(B) = R(B) =
H, such that B~! is bounded, deserves special attention. We have seen that
in this case the space D must be equal to H and the form A(z,y) is unique
and equal to (z, B~'y). Since A is unique we may drop it in the notation of
the integral normalized with respect to A and we shall simply write

~ A

/e%@’”)f(x)dx Def /e%(x’Bx)f(:c)dx ) (4.33)

H H

where (z,y) = (z, By) and A(z,y) = (z, B~'y), in the case B and B~! are
both bounded with domains equal to H. In this case we have, for any function
f € F(H), so that

f(@) = / ¢ dp(a) (4.34)

H

the representation

f(z) = / @ dp(a) (4.35)

H

if we take v to be the measure defined by

[ hayivia) = [ (5 ta)dua)

H H

It follows now from (4.33) that

~

/e%@’x)f(:b)dx = /e_%w’a)dV(Q) : (4.36)

H H

From this we can see that it is natural to generalize the normalized integral
on a Hilbert space treated in Chap.2 to the following situation. Let F be
a real separable Banach space on which we have a non degenerate bounded
symmetric bilinear form (z,y), where non degenerate simply means that the
continuous mapping from F into E*, the dual of E, given by the form (z,y),
is one to one. Let F(FE, ()) be the Banach space of continuous functions on E
of the form

f(z) = / e dp(a) (4.37)

E
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where p is a bounded complex measure on E with norm ||f||o = ||p|| Since E
is a separable metric group it easily follows as in section 2 that F(FE, ( )) is a
Banach algebra. We now define the normalized integral on E, equipped with
the non degenerate form ( ), by

~

/ e2 (@) f(z)dx = / e 2l qu(a) (4.38)
E E
and from (4.36) we have that in the case where F is a separable Hilbert space
and (x,y) = (z, By), where B and B~! are both bounded and everywhere
defined, the normalized integral (4.38) is the same as the integral normalized
with respect to the form (x, B~1x). It follows easily as in section 2 that (4.38)
is a bounded continuous linear functional on F(FE, ( )).

Proposition 4.3. Let E1 and FEs be two real separable Banach spaces and
let (x1,x2) be a non degenerate bounded symmetric bilinear form on Ey. Let
T be a bounded one-to-one mapping of Eo into Ey with a bounded inverse.
Then (Ty1, Tya) is a non degenerate bounded symmetric bilinear form on Es.
Moreover if f € F(E1,(,)) then f(Ty) is in F(E2,{(T-,T-)) and

/e%@”’”f(x)dx = /e%@y’Ty)f(Ty)dy .
FE1 Es

Proof. The non degeneracy of (T, Ty2) follows from the fact that (a7, x2)
is non degenerate and that T is one-to-one continuous and with a range equal
to 1. Let now

fla) = / @) dy(a)
B,
then

F(Ty) = / TV i)

Eqy

= /ei<Ty7TB>dV(5) ,
Eo

where v is the measure on Es induced by p and the continuous transformation
T~ from E; to Ey. Hence f(Ty) is in F(Es, (T-,T-)) and

~

[t gy = [Tt s)

B> E>

= /e*%“"o‘)d,u(a).

Ey

This then proves the proposition. 0O
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Proposition 4.4. Let E be a real separable Banach space with a bounded
symmetric non-degenerate bilinear form (x,y). Let E = E1 @ Es be a splitting
of E into two closed subspaces Ey and Es such that (x1,229) =0 for x1 € Ey
and x9 € Ey. Assume now that the restriction of the form (x,y) to By x Ey
is non degenerate, then the restriction to Es X Fs is also non degenerate and
for any f € F(E,{,)) we have

~ ~

/c%“’”f(x)dx: /c%m’“) /eé(mg’mf(m,a:z)dxg day |
E

E1 E2
with f(x1,x2) = f(x1 B x2) for xq € Ey and x5 € Es.

Proof. Let x5 € F5 and assume that (zg,y2) = 0 for all yo € FEs. Since
E = Ey x Ey we then have that (zq,y) = 0 for all y € E, hence 25 = 0, and
the form restricted to F x Fs is non degenerate. Since now £ = E; @ E5, E
is equivalent as a metric group with £y x Fy and therefore

fla) = / elmerteldy(ay, ag)

E1 ><E2

hence

f(ajl’xQ) = /ei(x1,a1> .ei<$2702)du(a1’a2> .

So that, for fixed x1, f(z1,z2) € F(Ea,(,)) and

~

/e%u%m)f(ﬂ?l,xz)d%Q - / e*%<a2’a2>ei<$1’°‘1>du(a1,ag) . (4.39)

Es Eax By

We see that (4.39) is in F(F1,()) and we compute

~ ~

/e%m,m / e2(2272) f () o) da | day

E Ey
= [ e by, a)
E1XEs
— [ redua),
E
and this proves the proposition. 0

In the case where E is a Hilbert space and one has (z,y) = (x, By), with
B and B~! both bounded, a stronger version of Proposition 4.4 holds, we
have namely:
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Proposition 4.5. Let H be a real separable Hilbert space and let (x,y) =
(x, By), with B symmetric, such that D(B) = R(B) = H,? with a bounded
inverse B~1, then F(H,()) = F(H). If H1 is a closed subspace of H such
that the restriction of (x,y) to Hy x Hy is non degenerate, and Ho = B~V H7,
where 7-[1l is the orthogonal complement of Hi in H, then H = Hy ® Ha is
a splitting of H in two closed subspaces such that the restriction of (x,y) to
H1 X Hso is identically zero. Hence by the previous proposition the restriction
of {x,y) to Ha x Ha is non degenerate and for any f € F(H) we have

~ ~ ~

/e%@’gc)f(x)dx = /e%<$1""”1> /e%<w2’w2>f(x1,$2)dx2 dzy

H Hy 2

with f(x1,22) = f(x1 ® x2), where x = 11 & a2 is the splitting of H into
Hi1 @ Ha and the sum is orthogonal with respect to (x,y) = (x, By).

Proof. That F(H,()) = F(H) was already proved by (4.34) and (4.35). So let
now H; and Hs be as in the proposition. Since B~! has a bounded inverse
B, Hs = B~VHj{ is obviously a closed subspace and (z,y) = 0 for z € H; and
y € Ha. Let € H be such that (z,y) = 0 for all y € Hy +Ho. Then (z,y) =0
for all y € Hy, hence x € Hy. Now let y € Hy, then y = B!z with z € Hi
and 0 = (z,y) = (2,2) for all z € Hi, so that € H;, but since 2 € Ha
we have also (z,y) = 0 for all y in H;. Therefore, by the non degeneracy of
(x,y) in Hy X Hiy, we have that x = 0. This shows that Hy NHy = {0} and
that the orthogonal complement of B(H; + Hz) is zero. Hence B(H;y + Haz)
is dense and since B and B~! both are bounded and therefore preserve the
topology, we have that H; + Ho is dense in H. But since now both H; and
Ho are closed and H; NHe = {0} we get that H; + Hs = H. This proves the
proposition. O

Notes

This general approach was first presented in the first edition of this book. Special
cases have been presented later on in several contexts, under more restrictive as-
sumptions on the phase function, but going deeper in the analysis and leading to
applications like the treatment of magnetic fields [70] (see Sect.10.5.1).

% From Hellinger-Toeplitz theorem (see e.g. [56]) it follows then that B is necessarily
bounded
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Feynman Path Integrals
for the Anharmonic Oscillator

By the anharmonic oscillator with n degrees of freedom we shall understand
the mechanical system in R™ with classical action integral of the form:

t t

m/ )2dr — 7/71427017 - /V(’Y(T))dT» (5.1)

0 0

where A? is a strictly positive definite matrix in R and 4(7) = d—z and V(x)

is a nice function which in the following shall be taken to be in the space
F(R™) i.e.

Vi) = / e dpi(a) | (5.2)

R

where p is a bounded complex measure. We shall of course also assume, for
physical reasons, that V is reall. Let p(x) € F(R") with

p(z) = /ei‘”dy(a) , (5.3)

R

then we shall give a meaning to the Feynman path integral

T 1(f4rar—fra%ar —it'V( (r))dr
/JQ” froo) SO o, 6

v()=a
by using the integral defined in the previous section. For simplicity we shall

assume in what follows that m = A = 1. In the previous section we only
defined integrals over linear spaces, so we shall first have to transform the

! This condition is however not necessary for the mathematics involved, so that all
results actually hold also for complex V.
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non homogeneous boundary condition (¢) = x into a homogeneous one. This
is easily done if there exists a solution ((7) to the following boundary value
problem on the interval [0, ¢]:

B+AB=0, )=z, [0)=0. (5.5)
Let A1,..., A\, be the eigenvalues of A. If we now assume that
1\ =«

t k+ =) — 5.6

#(k+3) % (5.6)
forall k =0,1,...,and i = 1,...,n, then (5.5) has a unique solution given by

cos At
B(r) = s AL (5.7)

We then make formally the substitution v — « 4 5 in (5.4) and get

[ 5[4 ar—4 [4mA%G+ar [V +am)ar
| e ‘ P(1(0) + B0))dy
7(t)=0
(5.8)
Now, due to (5.5), we have that, if v(¢) =0,
t t
JG+prar— [o+ 9220+ ar
0 0
t
- / - [arar + s (5.9)
0

Since 4(t) = x and ((t) = —A tg At x, we may write (5.8) as

eféxA tg Ax / e%
(5.10)

Hence we have transformed the boundary condition to a homogeneous one.
Let now Hg be the real separable Hilbert space of continuous functions v from
[0,¢] to R™ such that y(¢) = 0 and |y|? = fo y2dr is finite. In Hy the quadratic

form fot (52 —~yA2v)dr is obviously bounded and therefore given by a bounded
symmetric operator B in Hy, so that, with (v,v) = |y|?, we have

O‘n

(32 fwA2“/)dTe*izV(V(T)Jrﬁ(f))df

©(7(0) + B(0))dy

(v, By) = [ (3 —vAy)dr . (5.11)

o
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From the Sturm-Liouville theory we also have that B is onto with a bounded
inverse B!, if A = 0 is not an eigenvalue of, the following eigenvalue problem
on [0,t]:

i+ A%u=X\i, ut)=0, u0)=0. (5.12)
One easily verifies that if ¢ satisfies (5.6), then zero is not an eigenvalue for
(5.12) and the Green’s function for the eigenvalue problem (5.12) is given by

cos Ao sin A(t — 1)
Acos At

We shall now assume that ¢ satisfies (5.6) i.e. that cos At is non degenerate.
Then since the range of B is equal to all Hy and B~! is bounded we are in the
case where the space D is equal to Hg and A is uniquely given by (v, B~1y).
Using then the notation introduced in (4.33) with (y1,72) = (71, By2) i.c.

go(o,T) = for o<r7. (5.13)

t
(r,72) = /(%% — N A*yp)dr, (5.14)
0

we verify exactly as in Chap. 3 that

—ingmwm)dr

fly)=e
is in F(Hop). Hence

©(7(0) + B(0))

o deatgiae / 0 f(7)dy (5.15)
Ho

is well defined and we take (5.15) to be the definition of the Feynman path
integral (5.4), which we shall now compute. As in Chap. 3 we have that

oo

=S [ [
n=0 0<t1 <o <t <t
i f: a;B(t;) i f: a;v(t;) 2
e im0 = du(ag) [] duey)dt;  (5.16)
j=1

where tg = 0, the sum converges strongly in F(Hy) and the integrands are
continuous in «; and t; in the weak F(Hy) topology, hence weakly and there-
fore strongly integrable in F(Hy), by the theorem of Pettis ([52], p. 131).

Since Fa is continuous in F(D*) = F(Hy) we may therefore commute the
sum and the integrals in (5.16) with the integral in (5.15). Hence it suffices to
compute

/e%<%7>eizaﬂ(t1)d7 ) (5.17)
Ho
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Now 7i(0) € Hy = Hy, hence it is of the form vi(o) = (v,7!) and therefore,
by the Definition 5.17 is equal to

-3 Zaiﬁti,%-)‘lj
e T (5.18)

Using now that (5.13) is the Green’s function for (5.12) one verifies by stan-

dard computations that

sin A(t —o V 7)cos A(o A T)
Acos At

(Yo y7) = (5.19)

So we have computed (5.15) and shown that it is equal to

eSS [of [

0<t; <...<t, <t

i 5 ayBt) 3 i o (e e ) n
I L (ao)Hdu(aj)dtj
— e~ 2Q:AtgtAac / // /
n= 0 0<t..
i Z @ C:;AAt -3 i aj (Ve e,

e 4=0 e k=0 H )dt; . (5.20)

Let us now define 2q(x) by

em2vAT (5.21)

where ’%A| is the determinant of the transformation %A. It is well known (2
is the normalized eigenfunction for the lowest eigenvalue of the self adjoint
operator

1 1
Hy=—=A+ -xA%z (5.22)
2 2
in Ly(R™). We have in fact
1
H()Q() = §tI‘ AQO 5 (523)

where tr A is the trace of A.
For0 <t; <...<t, <tweshall now compute the Feynman path integral
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/N %(Jt"‘vz(T)dT—f"vAz'ydr> i i o y(ts)
e 0 0 e J=1

I(z) = 20(7(0))dy

=x

~(t)
Def %
= e

/
20 (v(0) + B8(0)) dy .

By the previous calculation we have

O =

(48774 [r+0) 420y | 85 o)+

L cos A t; s &
1Y ojooai® =3 2o oy{vey )k

I(z) = e 3oAtgt A /e =0 e Ih=0 dpo(ao) ,
R'n/

where tp = 0 and dyy(ap) is given by

20(z) = /eimOdVo(ozo) ,
]Rn
from which we get
dvg(ap) = |47r3A|_1/4e_%a°A71a0d040 .

Substituting (5.27) in (5.25) we obtain

L& cos A t; P
I(z) = e 3% “‘xelgl e Ie_§j1§=:1% (rej vy
> 90(0.t;)
- . —iag go 0,t;)ai .
|47T‘3A|71/4 / el coglA Lo j=1 Y Jeféaogo(o,o)ao

R

ClaaA-1
[§] 204 Omeéo.

Now the integral above is equal to

. - n sinA(t—t-)efHAav
}27TA cos tAe—itA’E o~ 3rA(l—i tan tA)z 7 ;2 cos At /
sin A(t—t;)sin A(t—ty)

n
(e %] H
kz=1 J Acos AteltA

Nl

e J
Hence we have finally that?

n
. —i(t—t;)A
: 1ix e AP
tirA 7%wAwe j§1 ’

1 :
I(z) = ‘ﬁfh COStA‘ e 2%

-y ajAflefi(tft’jM’“)A sin A(t—t; Vi) o
e k=1

55

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

2 In the first edition of this book (5.30) contained a misprint. We present here the
exact formula, taking into account a suggestion by P.G. Hjiorth, to whom we are

very grateful.
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Now by an explicit calculation we obtain from (5.30) that

-1 i aj(QA)flefi‘tkftJ‘Aa
2 gt YL (531

/I(m)()o(:v)dx = |costA|%e*i7t”Ae
On the other hand it is well known from the standard theory of the quantum
mechanics for the harmonic oscillator that, for 0 <t; <...<t, <t,

(907 eialz(tl) o eianr(tn)e—itHo QO)

i aj(ZA)flef”tJ'ftk‘Aak
= (5.32)

1
it 2
—5trAe Gkt ,

where ¢l2#(7) = ¢~iTHogiazeimHo Hepce we have proved the formula
, [ [P yA2dr 13 (i)
|CosAt|*§/QO(ac) / ezt{v U=t 20(7(0))dv | da
Rn

y(t)==
= (20,0 et g, ) (5.33)

for0<t; <...<t,<t3

Let now
H=Hy+V(x). (5.34)
We have the norm convergent expansion
e =N (=i [ [ V()L V(e PHodty L d, , (5.35)
"0 0<hi <<t <t

where V(1) = e~ iTHoyeimHo,
If now f, g and V are taken to be in F(R"), then we get from (5.35),
(5.34) and the fact that the sum and the integrals in (5.16) can be taken in

the strong sense in F(Hy), that

o~

62 —aatar i fVGar
€

o

i
2
e

—

x

| cos At|% / f(2)20(x)
RTL

y(t)

9(7(0))§20(7(0))dy | da

= (£2o, fe " g02) . (5.36)

3 This formula will be rewritten in another form in (6.21) below.
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This then, by the density of F(R™){2y in Lo(R™), proves the formula

T %.t('z— A%y)dr —i.tV( (m))dr
w(x,t):|cosAt|*% / e va e "[ ! e(v(0))dy  (5.37)

y(t)==

for the solution of the Schrodinger equation for the anharmonic oscillator
D= Lay+ teatey s viep (5.39)
¥ =3 5 tA% x .

for all ¢ such that cos At is non singular and V' € F(R") and the initial
condition ¥ (x,0) = ¢(z) is in F(R™)N Lz (R™). From (5.36) we only get (5.37)
for ¢ € F(R™)- (2, but since the left hand side of (5.37) is continuous in Lo as
a function of ¢ and the right hand side for fixed z is continuous as a function of
@ in F(R™), by the fact that the sum and the integrals in (5.16) can be taken
in the strong F(Ho) sense, we get (5.37) for all ¢ € F(R™)NLy(R™). Although
the integral over v in (5.37) was defined by (5.15) using the translation by £,
we have, since D(B) = Hy, by Proposition 4.2, that the integral in (5.15) is
invariant under translations by any v € Hy i.e. by any path ~y(t) for which
vY(t) = 0 and the kinetic energy %fot 40(7)%dr is finite. Hence as a matter
of fact the definition of the integral over « in (5.37) does not depend on the
specific choice of 3. We state these results, for the case when m and h are not
necessarily both equal to one, in the following theorem.

Theorem 5.1. Let Hy be the real separable Hilbert space of continuous func-
tions v from [0,t] into R™ such that v(t) = 0 and with finite kinetic energy
%fg A(7)%dr, and norm given by |y|> = fot 4(1)?dr. Let B be the bounded
symmetric operator on Hy, with D(B) = Hy, given by (1, By2) = (71,72)
with

t

(1) = [ mi(r)? — )

0

where A? is a strictly positive definite matriz in R™. Then for all values of
t such that cos At is a non singular transformation in R™ we have that the
range of B is Ho and B~' is a bounded symmetric operator on Hy. Hence,
by Proposition 4.2, D = Ho and A(x,y) is uniquely given by B. Let 3(7) be
any continuous path with B(t) = x and finite kinetic energy, and let V and ¢
be in F(R™), then

() = e B gitrp) o VOABENT

is in F(Ho) and

p((0) + 5(0))

/ 0 f(7)dy (5.30)
Ho
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does not depend on 3. Moreover if ¢ is also an Lo(R™) then

ot ot
5K bf(Tn"y2 —’YA2"/)dT -5 f V(v(7))dr
€

(z,t) = | cos At] / e ; o(1(0))d

where the integral over v is defined by (5.39), and ¥(x,t) is the solution of
the Schréodinger equation for the anharmonic oscillator

02 (1) = 2 A+ a4 V()
ihe ¥(a,t) = —o— 5 A% x
with initial values ¥(x,0) = p(z).*

Let us now set, for 0 <t; < ... <t, <t o(x) € S(R") and ¢ such that
cos At is non singular:

I(z) = ] e%

et / 5 (687 - 0% )ar 135 eyt 48()
= e —t

O =

(4(1)2 =7 AZy)dr 132 asv(ty)
e =t ©(7(0))dy (5.40)

e = @(7(0) + 5(0))dy -
Ho
with A and Hj as given in the previous theorem, and ((7) same path with

finite kinetic energy such that §(t) = x. We then get in the same way as for
(5.24) that

L& cos At P
iy Ay cosAth 7% > ajgo(tjwtk)ak

I(x) :e*%wAtgtAm/e i=0 e Jk=0 O(ap)day  (5.41)
RTL

where tg = 0, go(o, 7) is given by (5.13) and

p(z) = /eim"@(ao)dao .
RTL
Since ¢ € S(R™) we get from (5.41) that I(z) € S(R™), hence I(x) is integrable
and we have by direct computation, if sin A¢ is non singular,
u cos At cos Aty

1 .
_1 i )
2 3 2. O Asm Atcos At Ok
e k=0

R

i
I(x)dr = |—AtgtA
[ = |5-at

-3 > a;jgo(ty,tr)on
e k=0 P(ap)dayg -

4 In Chaps. 5-7 all results are stated for the case of an anharmonic oscillator. From
the proofs it is evident that they hold also for N anharmonic oscillators, with
anharmonicity V which is a superposition of v-body potentials (v = 1,2,...),
which can also be translation invariant.
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Hence we have

i -3 - f: a;g(ty,tr)on
/I(x)dx = 2—AtgtA /e k=0 P(ag)dag,  (5.42)
™
R'ﬂ

where g(o,7) = g(7,0) and

_cos Ao cos A(t — 1)
Asin At

glo,7) = (5.43)

We now observe that g(o,7) is the Green’s function for the self adjoint
operator f% — A% on Ly([0,t];R™) with Neumann boundary conditions
5(0) = (1) Zo.

Let now H be the real separable Hilbert space of continuous functions
v from [0,¢] to R™ with finite kinetic energy without any conditions on the
boundary and with norm given by

t

b = [+ 227 (5.44)
0

Let By be the bounded symmetric operator with D(By) = H, given by
(71, Bn72) = (71,72) with

t

(1) = [ = vaP)ar (5.45)
0

Then if sin At is non singular we have from (5.43) that R(By) = H and By' is
bounded. Hence with D = By the form Ay of the previous section is uniquely
given by By and An(71,72) = (71, By 72). Define now v, € H x R™ by

(V:70) = (o) , (5.46)

then we get, by using the fact that g(o,7) is the Green’s function for the
Neumann boundary conditions, that

<707 '77') = g(a, T) . (547)
From this we obtain, for 0 <t¢; <...<t, <t

on
-3 %: a;g(ty,tr)ou

/eéﬁﬁ)eizaﬂ(tj)dfy — o gkl ) (5.48)
H
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Let us now define for any f(v) € F(H) the path integral

T N
/ 3 [ oAty :e/ H f(y)dy (5.49)
H H

We then have that

~

it"2_ 2 - _i ¥ e joti )
/th{(’Y A e 2t dy = e 2-7%::1 bt . (5.50)

Let now ¢ be such that sin At and cos At both are non singular, and let us
assume that f(v) is in F(H). Then one easily verifies that

t .
i[(48—~A?B)dr
eo

f(y+0) (5.51)

is in F(Hp) for any 8 € H, where Hy was defined as the space of paths v with
finite kinetic energy and such that «(¢) = 0. From (5.50) and (5.42) we now
easily get the following formula, if we use the fact that the linear functionals
v — (o) span a dense subset of H as well as of H:

~

3 [(52 =7 A%)dr
/ o Fy

R y(t)=

~

L [(34%—~yA2y)dr
- / L (5.52)

H

By the same method as used in the proof of Theorem 5.1 we now have that,
if 1,92 and V are in F(R™), then

o =zee b G 0)) (5.53)

is in F(H), hence by (5.52) and Theorem 5.1 we get

(gpl, e e

i~ t t
“2/ 3 [(3° =y Ay i [V (y(r))dr
e o 0
H

@1(7(t)p2(v(0))dy . (5.54)

We have proved this formula only for values of ¢ for which both cos At and
sin At are non singular. However from (5.43) we see that, for fixed o and T,
g(p,T) is a continuous function of ¢ for values of ¢ for which sin At is non
singular. From this it easily follows that the right hand side of (5.54) is a
continuous function of ¢ for values of ¢ for which sin At is non singular. Since
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the left hand side of (5.54) is a continuous function of ¢ we get that (5.54)
holds for all values of ¢ for which sin At is non singular. We summarize these
results in the following theorem, for the case when i and m are not necessarily
equal to 1:

Theorem 5.2. Let H be the separable real Hilbert space of continuous func-
tions vy fmm [0,t] to R™, such that the kinetic energy is finite with norm given
by |2 = fo (7 + ) dr. Let By be the bounded symmetric operator on 'H
with D (By) = H given by (y1, Bny2) = (71, 72), with

t
1
:ﬁ/ —’YA2)dT,
0

where A% is a strictly positive definite matriz in R™. Then for all values of t
such that sin At is non singular we have that the range of By is H and Bx,l
is a bounded symmetric operator on H. Hence, by Proposition 4.2, D = H
and Ay is uniquely given by By . Let now ¢1,ps and V be in F(R™) then

—%JV(V(T)) dr

fly)=e
is in F(H) and

P1(7(8))p2(7(0))

1o t t
. 1 T2 m'Q— A? dr—+ [V (v(7)) dT
((pl,e*ltHgOQ) = ‘—21 AsinAt‘ / o{ (i) ﬁof K
Y
H

P1(7(8)p2(7(0)) dv,
if p1 and w2 are in F (R™) N Ly (R™).

Remark 5.1. If A? is not necessarily positive definite but only non degenerate
as a transformation in R™, then with A as the unique square root of A2
with non negative imaginary part both Theorems 5.1 and 5.2 still hold in
the following sense. The Feynman path integrals are still well defined for all
values of ¢ such that cos At respectively sin At are non singular, and we may
use Proposition 4.5 to prove that the operators so defined form a semigroup
under ¢, and we can also prove, since the expansion in powers of V' converges,
that it is a group of unitary operators in Lo(R™), by using the same method
as in [30],3). Further, by computing directly the derivative with respect to ¢ of
(¢1,e7"H py) as given in Theorem 5.2, we get that the infinitesimal generator
for this unitary group is actually a self adjoint extension of

(-0 + zA%z + V(2))

defined on S(R™). The point of this remark is to show that the theory of
Fresnel integrable functions applied to quantum mechanics via Feynman path
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integral has much wider applications than the more classical treatment by
analytic continuation from real to imaginary time and then treating the cor-
responding heat equation by integration over the Wiener measure space.

Notes

This application of Feynman path integrals, first developed in the first edition of this
book, concerns potentials in the class “harmonic oscillator plus bounded potential”.
It has given rise to further developments in connection with the trace formula for
Schrodinger operators [67, 66] (see Sect. 10.3). Related work by Davies and Truman
concerns relations with statistical mechanics [204]. Extensions to include polynomi-
ally growing potentials are in [105, 104], see also Sect. 10.2.



6

Expectations with Respect to the Ground
State of the Harmonic Oscillator

We consider a harmonic oscillator with a finite number of degrees of freedom.
The classical action for the time interval [0,¢] is given by (5.1) with V' = 0.
The corresponding action for the whole trajectory is given by

1 OC. 1 i
SO(W):i /7(7)2 dT—§/’YA27 dr, (6.1)

where (1) and A? are as in (5.1) and we have set, for typographical reasons,
m = 1. Let now H be the real Hilbert space of real square integrable functions
on R with values in R™ and norm given by

b = [P ars [ o2 an (6.2)
Let B be the symmetric operator in H given by
(v, Bv) = / (3(1)? = vA%y) dr (6.3)

with domain D(B) equal to the functions v in H with compact support. We
then have, for any v € D(B), that

1

where (,) is the inner product in H. The Fourier transform of an element ~y
in H is given by

i) =1/VER [ 67t (6.5)
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and the mapping 7 — 4 is then an isometry of H onto the real subspace of
functions in Lo ((p2 + 1) dp) satisfying

(p) =4(-p) (6.6)

2>

and we have, for any v € D(B),

So(v) = %(% By) = /W (%pQ — %A2> A(p) dp. (6.7)
R

Moreover the range R(B) of B counsists of functions whose Fourier transforms
are smooth functions and in Lo [(p2 + 1) dp} . Let D be the real Banach space
of functions in H whose Fourier transforms are continuously differentiable
functions with norm given by

dy
I = o+ sup |0 (65

We have obviously that the norm in D is stronger than the norm in H and
that D contains the range of B. We now define on D x D the symmetric form

A (1,72) = gig%/%—(m (p° — A% +ie) " Aa(p) (PP +1)" dp.  (6.9)
R

That this limit exists follows from the fact that 41 (p)32(p) is continuously dif-
ferentiable and in L [(p2 + 1) dp] . That the form is continuous and bounded
on D x D follows by standard results and (6.8). That the form is symmetric,

A(%ﬁz) = A('Y%Vl)»

follows from (6.9) and (6.6). In fact the limit (6.9) has the following decom-
position into its real and imaginary parts

A, ) = P/%—(M(p2 — A%) T 35(p) (0P +1)° dp
R

—iﬂ/%_(PM (p° — A%) 42(p) (P* +1)* dp,  (6.10)

where the first integral is the principal value and hence real by (6.6). We see
therefore that

ImA(vy,7) <0. (6.11)
Let now 71 € D and 5 € D(B), then

A (71, By) = gigg)/%(p) (p° — A2 +ie) " (p° — A2) 4a(p) (P> +1) dp
R

= / A1 (p)32(p) (> +1) dp.
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So that

A (1, By2) = (1,72) - (6.12)

We have now verified that H, D, B and A satisfy the conditions in the Defi-
nition 4.1 for the Fresnel integral with respect to A.
Hence for any function f € F (D*) we have that

N
/ez“ B f() (6.13)
H
is well defined and given by (4.12). It follows from (6.8) that ¢, given by
(y,7) = (1),
isin D x R™, since
1 eipt
() =) — - ———. 14
Ye(p) or 211 (6.14)
So that
i3 ay(t)
fly)=e=! (6.15)
is in F (D*).
Hence we may compute (6.13) with f(y) given by (6.15) and we get
A
/e%(%BV)f(W) dy = o7 Zik=1 4 A7 7)o (6.16)
H

From the definition of A we easily compute

1
A (s ye) = e 10 6.17
(Y55 ve) = % Ae ( )
Hence we get that
4 Ll n
i i aj J -1 aj(2A —lg—iltj—tgla,
/e%(’y’BV)e ng ) dy=e RPN =it 1(24) " (6.18)
H

Let now {2y be the vacuum i.e. the function given by (5.21), and let us set in
this section

1,01 L, 1
Hy = 75A + ixA x— §trA, (6.19)
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where we have changed the notation so that
Hyf20=0. (6.20)

Let t1 < ... <t,, then we get from (6.18) and (5.32) that

(QO; eloaz(ty) eia"w(t”)go) _ e%('Y’BV)ei j;l a;y(ts) dy

i
e -

8 —8

142 1.42.) dr fj a;y(ts)
(347 =47a) dr i 5 dy, (6.21)

:\D i\p

where!

elaw(t) — e—ltHo elaweltHg )

Theorem 6.1. Let H be the real Hilbert space of real continuous and square
integrable functions such that the norm given by

? = 7%)? ar + 77@2 dr

is finite. Let B be the symmetric operator with domain equal to the functions
in H with compact support and given by

oo

(7, By) =250(v) = / (3(1)? —yA%y) dr,

— 00

and let D be the real Banach space of functions in 'H with differentiable Fourier
transforms and norm given by (6.8), and let A\ be given by (6.9). Then (H,
D, B, A) satisfies the condition of Definition 4.1 for the integral normalized
with respect to AN. Let f, g and V be in F(R™), then f(~(0))g(y(t)) and

exp [—ifot V(v(1)) dr] are all in F (D*) and

A t
i ; ifV(y(r)) dr—
(100,67 ) = [ @0 0 0)g(a0) o
H

where

H=Hy+V

! This is (5.33) written in a different way.
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Proof. The first part of the theorem is already proved. Let therefore f be in
F(R™) ie.

flx) = /eim dv(a), (6.22)
then
£60)) = [ ¢ dv(a),

which is in F (D*) by the definition of F (D*), since v(0) = (vo,7) and we
already proved that o € D. Hence also g(v(¢)) is in F (D*). Now

j V(y(r)) dr = j / () du(a) dr (6.23)
0 0

is again in F (D*) and therefore also exp [ fo dr} belongs to F (D*)

by Proposition 4.1 (which states that F (D*) is a Banach algebra). Since, also
by Proposition 4.1, the Fresnel integral with respect to A is a continuous
linear functional on this Banach algebra we have

A

/eisme—ié O g (8) dy
H

n=0

t t A
/ / / SOV (1)) ... V(y(tn)) dy dty ... dt,. (6.24)
0

H

Utilizing now (6.23), (6.21) and the perturbation expansion (5.35) the theorem
is proved. O

Theorem 6.2. Let the notations be the same as in Theorem 6.1, and let t; <
. < tm, then for f; e SR™),i=1,...m

(Qo, flefi(t27t1)Herfi(t3ftz)HfB o efi(t,,,Lft,,,L,I)HmeO)

A tfm Vin( m
. —i (7)) dr
= [esoe T
H j=1

This theorem is proved by the series expansion of the function
t"il
exp —i/V('y(T)) dr
t1

and the fact that this series converges in F(D*), in the same way as in the
proof of Theorem 6.1.
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Notes

This section, first presented in the first edition of this book, is geared towards quan-
tum field theory (looking at nonrelativistic quantum mechanics as a “zero dimen-
sional” quantum field theory). Formulae like (6.21) are typical of this view, see e.g.
[425] for similar formulae in the “Euclidean approach” to quantum fields.
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Expectations with Respect to the Gibbs State
of the Harmonic Oscillator

Let H, D, B and H be as in the previous section and define the continuous
symmetric form on D x D by

Do) = P[5 (02 = 497 5al0) (2 +1)°
R

—iﬂ/&l(p)cotgh <§A> -0 (p2 — A2) Y2(p) (p2 + 1)2 dp, (7.1)
R

where > 0 and cotghZ4 = (1 - e‘ﬁ’“)_1 (1+e7P4). We see that A(v,
v2) = Doo(71,72), and we verify in the same way as in the previous section
that H, D, B and A satisfy the conditions of Definition 4.1 for the integral
on ‘H normalized with respect to Ag, so that we have in particular that

Im As(7,7) <0 (7.2)
and, for 2 € D(B),

Np(m1, By2) = (71, 72)- (7.3)

From a direct computation we get, with ~, defined as in the previous section
(6.14), that

Dg(rsime) = (241 (1 — e #4)) 7" [e*”H‘A + e*f’Aei‘t*S‘A} L (74)

Set now

g98(s —t) = Dp(vs: e)- (7.5)
We may then compute the Fresnel integral

Ag o Com
/eiSo(’Y) 10 ayy(ty) d -3 Yglajgﬁ(tj_tk)ak' (7.6)

e J=1 y=e J
H
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From Theorem 2.1 of [33],3) and (2.24) of the same reference we then have,
for t; < ... <tp,

Dp
/ 150(7)61 Z a;y(ty) d’y
H
= (tr e_ﬁHO)71 tr (eia”(tl) . .eiamx(tm)e_ﬁHo) , (7.7)

where el®®(t) = o~itHoglaweitHo - Anq from this it follows that, for f; € S(R™),
i=1,...,nand with t; < ... <t,,

YA} m
a() - fonltm) = /ISWH ) do, (78)

H

where wg is the Gibbs state of the harmonic oscillator i.e. for any bounded
n
operator C on Lo(R™)

WY(C) = (tre PHo) ™ 1 (CePHo), (7.9)
Theorem 7.1. Let t1 < ... <ty and f; e F(R"™),i=1,...,m. If
H=Hy+V

with V€ F(R™) then

W (fremtm A fy et )

Ap

—i Vi(y(r)) dr
:/eisom t{ (+(r)) H ot

H

Proof. This theorem is again proved by series expansion of the function
exp( 1j;5 dT) and the fact that this series converges in F(D*)
in complete analogy with the proof of Theorems 6.1 and 6.2. O

Let now 0 < f(A) < 1 be a positive continuous function defined on the
positive real axis, and let us define, in conformity with (7.1), the symmetric
continuous form D x D

Np(v1,72) = P/%_(M(pQ - AQ)il%(p) (»* + 1)2 dp

in [ Sy (7 = 4% 52l (7 +1)” . (.10)

R

so that Ag is equal Ay for f(\) = e A
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It follows again easily that H, D, B, and A satisfy the conditions of Defi-
nition 4.1 for the integral normalized with respect to Ay, and by computation
we get

Dy ) = Ai(1 = f(A)) " [0 4 p(apelt==I4] - (7.01)

Therefore

Ay )

/eiSo(v)eiJEl o y(t5) dy = e—% 2 %‘gf(tj—tk)oﬂc7 (7.12)

H
with gr(s —t) = A p(vs,7e)-

Since the el@*(t) = e~itHogiaweitHo gpan the so called Weyl algebra on R”
as t and « varies, because z(t) = cos At -  + 1524 r where m = 14a(t) at
t = 0, we may define a linear functional on the Weyl algebra by setting, for
t1<...<tm,

w? (eialx(tl) .. eiamx(tr”)) — e~ 3 L aggs(ti—ty)an, (7.13)

We can verify that (7.13) is consistent with the commutation relations for
the Weyl algebra, and moreover w?c defines a normalized positive definite state
on the Weyl algebra, which is a quasi free state in the terminology of [34], 2),
3).

In fact any quasi free state invariant under the group of automorphisms
induced by e~'0 is of this form, and by (7.12) we have

Ay i
W) (elset)  femalin)) — / dSome A g ()

H

We shall return to these considerations in greater details in the next section.

Notes

This application of rigorous Feynman path integrals, first presented in the first
edition of this book, connects Gibbs states of quantum statistical mechanics with
time dependent observables. Corresponding formulae in an “Euclidean approach”
to quantum statistical mechanics were derived before, going back to work in [33].
For recent developments see e.g.[100, 101, 98, 99]. Another connection is with Gibbs
states in relativistic quantum field theory and quantum fields on curved space—times,
see [33, 3] and [233].
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The Invariant Quasi-free States

In this section we consider the harmonic oscillator with an infinite number of
degrees of freedom. Hence let h be a real separable Hilbert space and A2 be a
positive self-adjoint operator on h such that zero is not an eigenvalue of A2.
The harmonic oscillator in A with harmonic potential %x - A%z, where z - y is
the inner product in h, has the classical action given by

s@) =3 [4mPar=3 [ 2?2t dn (8.1)

where 4(7)? = 4(7) - (), and +(7) is the strong derivative in h of the tra-
jectory (1), where (7) is a continuous and differentiable function from R
to h. The corresponding quantum mechanical system is well known and eas-
iest described in terms of the so called annihilation-creation operators.! The
Hamiltonian is formally given by

1 1 1
where Hj is so normalized that
Hyf2y =0, (8.3)

{29 being the ground state of the harmonic oscillator. The precise definition
of (8.2) is in terms of annihilation-creation operators as follows.

Let ¢(y) be the self adjoint operator which is the quantization of the
function y - « on h and w(y) its canonical conjugate, then ¢(x) and 7(z) are
given in terms of the annihilation-creation operators a* and a by

o(x) =a” ((QA)_%.%) +a ((2A)_%x)

(@) = i [a* <<;A) : x) —a ((;A) : m)] (8.4)

! See e.g. [53], [25],2).
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for x in the domain of A=% and A2 respectively. The annihilation-creation
operators a*(z) and a(x) are linear in x and defined for all « € h, and satisfy

[a(x),a(y)] = [a"(z),a"(y)] =0 and
[a(z),a"(y)] ==y, (8.5)

which together with (8.4) gives

[m(e) W) = 2. (36)

A representation of the algebra generated by the annihilation-creation opera-
tors is provided by introducing a cyclic element §2; such that

a(x)f20 =0 (8.7)

for all x € h.
Let h¢ be the complexification of h. We extend by linearity a* and a to h*¢
and define the self adjoint operator

Bo(2) = a*(2) + a(z), (8.8)

where z = z + iy € h¢ and Z = x — iy if  and y are in h. We then have the
commutation relations

[Bo(z1), Bo(22)] = io(z1, 22), (8.9)

where o(z1,22) = Im(z1,22), and (z1,22) = Z1 - 22 is the inner product in
he. (8.7) then gives us the so called free Fock representation of the canonical
commutation relations. The Weyl algebra over h°¢ is the *-algebra generated
by elements €(z) with z € h¢, where the *-operator is given by €(z)* = e(—z2)
and the multiplication is given by

6(2’1) . 6(22) — e—ia(z1,z2)6(zl + 2’2), (810)

where o(z1 - z2) = Im(z1,22) and (z1,22) is the positive definite inner
product in h¢.2 It follows then from (8.9) that e(z) — ePo(*) provides a
*-representation of the Weyl algebra, which is called the free Fock represen-
tation of the Weyl algebra, and is given by the state (denoting by || || the
norm in h¢)

anle(2) = (20,0200 25) = e bl (s.11)

% See e.g. [54].
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A quasi-free state on the Weyl algebra is a state given by
ws(e(z)) = e 772, (8.12)

where s is a real symmetric and positive definite form on h® = h @ h as
a real Hilbert space. For a discussion of the quasi-free states see [34], 2)
and [34], 3). It follows from (8.10) that €(0) = 1 and therefore also that
€(—z) = €(2)7!, which is equal to €(z)*. Hence in any *-representation of
the Weyl algebra e(z) is represented by a unitary operator. Since w(e(z)) =
ws(e(—2)) = ws(e(2)*) we have that any state of the form (8.12) gives a
*_representation and therefore €(z) is represented in the form e'%+(*) where
the Bs(z) are self-adjoint and satisfy the commutation relations (8.9). It fol-
lows then that (8.12) is equivalent with

ws(Bs(21)Bs(22)) = s(z1, 22) + i0(21, 22). (8.13)

From the fact that

ws([Bs(21) +1Bs(22)][Bs(21) — iBs(22)]) > 0 (8.14)

we get that
|0(21, 20)| < 8(21,21) 2 5(22, 22) %, (8.15)

which must be satisfied in order for w, to be a positive state on the Weyl
algebra. On the other hand, if (8.15) is satisfied, then wy defines a positive
state on the Weyl algebra, and these states are the quasi-free states.

In this section we shall be concerned with the quasi-free states for the
Weyl algebra of the harmonic oscillator which are time invariant, and for this
reason we shall first define the Hamiltonian (8.2).

Since A is self adjoint we have that e is a strongly continuous unitary
group on h¢, and ay(e(z)) = € (e'2) then gives a one parameter group of
*-automorphisms of the Weyl algebra. Since wy(e(z)) = e~ 2l21” is obviously
invariant under oy, we get that a; induces a strongly continuous unitary group
!0 in the representation given by wy. Hence (2 is an eigenvector with eigen-
value zero for Hy, and one finds easily that Hy is a positive self adjoint opera-
tor. This is then the usual definition of the Hamiltonian H( for the harmonic
oscillator, in the free Fock representation.

Since e*fo is induced by a group of *-automorphisms oy of the Weyl alge-
bra leaving wy invariant, we may consider «; as the group of time isomorphisms
of the Weyl algebra for the harmonic oscillator. Any state of the Weyl algebra
invariant under oy will give a representation in which «a; is unitarily induced
and therefore such a representation will also carry a representative for the
energy of the harmonic oscillator, i.e. a Hamiltonian. We shall therefore be
interested in characterizing the quasi-free states invariant under ;.
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Let us first assume that A is cyclic in h, i.e. there exists a vector ¢y € h
which is cyclic for A, so that P(A)pg is dense in h, where P(A) is an arbitrary
polynomial in A. If A is not cyclic in h, then h decompose into a direct sum
of closed invariant subspaces each of which is cyclic.

Since g is cyclic in A, it is also cyclic in A¢ and by the spectral repre-
sentation theorem we have that h° is isomorphic with Lo (SpA, dv) = La(dv),
where dv is the spectral measure of A given by the cyclic vector ¢ i.e., for
any continuous complex function f(w) defined on SpA,

<meww=/fwwww. (8.16)

SpA

This isomorphism is given by

f(A)po — f(w) (8.17)

for any f € C(SpA). By (8.16) and the fact that ¢q is cyclic, (8.17) extends
by continuity to an isomorphism between h¢ and Lo (dv). It follows now from
(8.17) that, since ¢ belongs to h and is cyclic in h, the Hilbert space h is
mapped onto L5 (dv) i.e. the real subspace consisting of real functions. From
(8.17) we get

Af(A)po — wf(w),

hence we may take h = L5(dv), A to be the multiplication by w on L5 (dv)
and h¢ = Ly(dv).

A quasi-free state which is given by (8.12) is invariant under «; if and only
if the form s(z,z) is invariant under the transformation z — e'*4= since

a(e(z)) =€ (eitAz) .

We recall that s(z,z) is a symmetric (real valued positive definite) form on
the real symplectic space S = h¢ with the symplectic structure o(z1, 29) =
Im(z1, 22), where (z1,22) is the inner product in the complex Hilbert space
he¢, which satisfies the condition (8.15). Since e'*4 is unitary on k¢, it leaves o
invariant and is therefore a symplectic transformation of S and so induces a
*-automorphism «; of the Weyl algebra.

That ws given by (8.12), is invariant under oy, is obviously equivalent with
the positive symmetric form s(z1, 22) defined on S being invariant under the
symplectic transformation z — e'*4=. Let us recall that s(zy, 2) is symmetric
and bilinear only on the real space S = h€, i.e. bilinear only under real linear
combinations.

Let now f; and fo be Fourier transforms of real bounded signed measures
w1 and po

i) = [ dusto) (8.18)
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It follows from the spectral representation theorem that
Fi(A) = / oA (1) (8.19)
Hence

s(f1(A)po, f2(A)po) = //s(ei“Acpo,eit?Agoo,) dpy (1) dps(t).

By the invariance of s under z — ¥4+ we then get

s(f1(A)wo, f2(A)po) = //5(9007@“27“)‘4%00) dpa (th) dpa(t2)
= //S((po,&itAgoo) d,ul(tl) dﬂg(t+t1) (820)

Now

Fifaw) = @) fa@) = [ [ €407 dp(tr) data)
://eiwt din(t) dus(t+ 1), (8:21)
from which we get that
s (w0, f1f2(A)eo) =//8(<ﬂo,e“‘4s00) dpn (t1) dpa(t + t1).

Hence we have proved
s(f1(A)go, f2(A)po) = s(po, f1.f2(A) o) (8.22)

for any fi; and fo which are Fourier transforms of bounded signed real
measures on R. Hence (8.22) holds for all f; and f; in S(R) such that
fi(w) = fi(—w). Now we obviously have that the functions f in S(R) satisfy-
ing f(w) = f(—w) are dense in Cy[0, xc], the space of continuous functions on
[0, 00] tending to zero at infinity. Hence by continuity, since Sp(A4) C [0, oo],
(8.22) holds for all continuous bounded functions tending to zero at infin-
ity. The strong continuity of s(z,z) follows from the fact that s(z1,22) is
bilinear and s(z,z) is positive and defined for all z, and this gives that
s(f1(A)eo, f2(A)pp) is continuous in the strong Lo(dv) topology. We have
thus that

s(po, f1f2(A)eo) = s(f1(A)eo, f2(A)eo), (8.23)

for continuous f; and fo being zero at infinity, and in fact by the strong Lo (dv)
continuity also for all f; and fy in Lo(dv). From this we get that, if g > 0,
then

(0, 9(A)p0) = 5 (93 (A)w0, 9% ()0 (8.24)
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so that s(¢g, g(A)po) defines a bounded positive linear functional on the space
of continuous functions, hence a measure which is obviously absolutely con-
tinuous with respect to the spectral measure. So we have proved that

S(Fu(A)go, fa( A)go) = / TFofa(@)p(w) dv(w), (8.25)

where p is a positive measurable function, and the right hand side is also the
representation of s in the spectral representation of h¢. The condition (8.15)
for the positivity of the state w; is obviously equivalent to the condition

plw)>1 ae.

We should remark that we only assumed s(z1,22) to be bilinear under real
linear combinations, but in fact the invariance of s under z — e*4z gives
that s is of the form (8.25), which is actually a sesquilinear form. By the
fact that s(z1, 22) is everywhere defined, we get that p(w) is bounded almost
everywhere. So in fact we may write (8.25) also as

s(z1,22) = (21, Bz2),

where B is a bounded symmetric operator commuting with A, such that
B>1.

Theorem 8.1. Let h be a real separable Hilbert space and A be a positive self
adjoint operator on h such that zero is not an eigenvalue of A. Let S = h°
be the real symplectic space with symplectic structure given by o(z1,22) =
Im(z1, 22), where (21, z2) is the inner product on the complex Hilbert space h€.
2z — et is then a group of symplectic transformations on S and generates
therefore a group oy of *-automorphisms of the Weyl algebra over S, where

the Weyl algebra is the algebra generated by €(z), z € S with the multiplication
e(z1)e(z2) = e 719122 e(2) 4 2)

and *-operation given by €(z)* = e(—z). A quasi-free state of the Weyl algebra
is a state of the form

ws(e(2)) = 35,

where s(z, z) is a positive bilinear form on the real space S.

A necessary and sufficient condition for ws to be a quasi-free state invariant
under «ay, is that there exists a bounded, symmetric operator C' on the complex
Hilbert space h¢ such that C > 1, C' commutes with A and

s(z1, 22) = (21, Cz2),

where (,) is the inner product in the complex Hilbert space h®.
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Proof. If A is cyclic in h then the theorem is already proved. If A is not cyclic
in h, h decomposes in a direct sum h = @ h;, and, in each component h;, A

1
is cyclic, 7 runs over at most a countable index set since h is separable. Let
w; be a cyclic vector in h;. Then, with f; continuous, Z;L:l fi(A)yp; is dense
in h, and in the same way as in the cyclic case we prove that

s (Z fi(A)ei, Zgi(A)%) => s (i, (A fi(A)g))
i=1 i ij

- /ﬁ(w)mj(w)fj(w) dv(w).

The last line is actually the spectral resolution p;;(w) of a operator C' that
commutes with A. This proves the theorem. 0O

For simplicity of notation we shall now assume that A acts cyclic in h.
This is in reality no restriction since, if not, then h decomposes, h = ® h,,, in
n

at most a countable sum of cyclic subspaces.
Let now H be the real Hilbert space of h valued functions on R which are
continuous and such that the norm |v| is finite, where

Iy = / (%4 +yA%) dr

and - v is the inner product in h. On this Hilbert space the classical action
S() for the harmonic oscillator

s)=3 [1adr=5 [0 440 ar

is a bounded quadratic form. Let ¢ be a cyclic vector for A in h, we know then
that h may be identified with L% (dv), and therefore H with the real functions
in two real variables with norm

=] ((2)2+w272<t,w>> at dv(w), (5.28)

and recalling that zero is not an eigenvalue of A, so that the set {0} has
v-measure zero, we see that (8.28) defines a Hilbert norm. Introducing now
the Fourier transform A(p,w) of v(t,w) with respect to t, we get

2 = / / A(p,w) 20 + ) dp du(w), (8.20)

so that v — 4 is an isometry of H onto the real subspace of LS[(p? +
w?) dp dv(w)] consisting of functions satisfying

’A)/(pvw) = :)/(7])’&)). (830)
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Let now D be the subspace of functions in H consisting of functions v such
that §(p,w) is continuous in w and continuously differentiable in p with norm

vl =1l + Sup %(p, w)‘ : (8.31)

We define a bounded symmetric operator B in H by

(7) B’Y) = 25(7)7 (832)

with domain D(B) consisting of functions «(¢,w) which are continuous and
with compact support in R?. For w € D(B) we have that

4(p,w) = \/% / Py (t,w) dt (8.33)

is obviously continuous in w and p and continuously differentiable in p. Now
the Fourier transform of B~ is, by (8.32), given by

2 _ 2

— p "
- . 8.34
By(p,w) e A(p,w) (8.34)

From this it follows that the range R(B) of B consists of functions, the Fourier
transform of which are continuously differentiable in p with uniformly bounded
derivatives and continuous in w. Hence we have

R(B) C D. (8.35)

Let now C' > 0 be a bounded symmetric operator on h commuting with A.
Since A acts cyclically in h, we have that C is represented by a bounded mea-
surable function ¢(w) > 0 a.e. We now define the symmetric and continuous
form Ac(y1,72) on D x D by

2 w2)2

Ac(%ﬁz):/ dv(w) P/Vl(pvw)(i,z_
R

w2 "3/2(])7&)) dp

—ime(w) / )60 — ) (P + ) Aa(pow) dp b (8.36)
R

From (8.34) we have, for v1 € D and 2 € D(B),

Ac(y1, By2) = (11,72)- (8.37)

Since ¢(w) > 0 we also have that A¢ has non positive imaginary part, so that
‘H, D, B and A ¢ satisfy the conditions of Definition 4.1 for the integral on H
normalized with respect to A¢.



8 The Invariant Quasi-free States 81

Let now u € h, we define the element 2 (t) € H by

(Vasy) = u-7(s) (8.38)
and we have then that
1
Talt) =5 M, (8.39)
so that
s s 1 —1
(YY) = 5u- A7, (8.40)

which implies that v € Hifu e D (A_%). Furthermore we get by computa-
tion that
1 eips

Blpiw) = o= s ulw), (841

hence, for u(w) continuous and bounded and in D (A*%), that 45 (p,w) is in

D. Moreover further computations give

1 i
s ty . : _ _
ANc(ya, 7)) = —u 74 Sin [t —s|A+ 5 C cos(t s)A} v, (8.42)

Let now G (s — t) be the self adjoint operator in h defined by

Ge(s—t) = —i [sin|t — s|A +iC cos(t — s)A] . (8.43)

Then
Ac(Var 1) = u- Gels =t (8.44)
Let uq,...,u, bein D (A’%> and such that u;(w), ..., u,(w) are continuous

and bounded. Then ’yfl € D for i =1,...,n. Hence, with

i3 w0y (vnd
oy = BT B0

we get f(v) € F(D*), so that we may compute

Ao L i ) o
/ eiS('v)elj; wiy(t;) d,y _ e—§ jzku]Gc(t] tk)uk. (845)

H
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Let us now consider the quasi-free state of Theorem 8.1,
we(e(z)) = e 2 (=02, (8.46)
where C' > 1 and commutes with A. By (8.4) we have that, for u € D (A_%),
o(u) = a* ((QA)*%u) ta ((QA)’%u> (8.47)

is the quantization of the linear function u -z defined on h. In conformity with
the notation used in Chap.7 we define

w-a(t) = ar(p(u)), (8.48)

where o is the group of time automorphisms given by (8.20). In fact we have
then that, expressed in the Weyl algebra for the harmonic oscillator,

exp(iu - z(t)) = ¢ (eitA(2A)7%u) . (8.49)
Let now uq,...,u, bein D (A_%) and consider, for t; < ... <t,,

e (eiurﬂf(tl) . _.eiunwn)) _ (8.50)

We get easily, using (8.10) and (8.46), that (8.50) is equal to

— 3> ui-Ge(ty—ty)uy
ik

we (eiul'“’(tl) e ei“"'z(t")> =e (8.51)
So by (8.45) we have proved
Ac n
we (eiu1~x(t1) o eiunm(tn)) — / eis(,y)eljgl iy (ty) d’y. (852)
H

We state this fact in the following theorem:

Theorem 8.2. Let h be a real separable Hilbert space and A a positive self
adjoint operator on h such that zero is not an eigenvalue of A. The classical
action for the harmonic oscillator on h is given by

o0

/("V"'%%sz) dt.

— 00

DN | =

S(y) =

Let oy be the time automorphism of the Weyl algebra for the corresponding
quantum system. Let C' > 0 be a bounded self adjoint operator commuting with
A, then the Fresnel integral relative to 25(7), normalized with respect to A¢,
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where A¢ is given in (8.36), exists and for C > 1 this Fresnel integral induces
a quasi-free state on the Weyl algebra, invariant under oy, by the formula

AC L
we (eiul‘z(tl) o eiunw(t")) _ / eis(7)61j§1 u;y(t;) dv,

H
with wy, ..., U, inD(A*%) and t; < ... <t,.

Moreover any invariant quasi-free state on the Weyl algebra is obtained in this
way. In particular, if C' = 1 we get the free Fock state, and if C' = cotgh (gA)
we get the free Gibbs-state at temperature 1/0.

Proof. The first part is already proved. The moreover part follows from Theo-
rem 8.1. That we get the Fock state for C' = 1 follows by direct inspection and

that we get the free Gibbs-state with C' = cotgh (gA) follows from the form
of Go(s —t) given by (8.43) and [33], 3) (3.32). This proves the theorem. O

Remark. We have thus, in particular, that the Fresnel integrals relative to the
quadratic form 2S(y) on H correspond, in the sense of Theorem 8.2, to the
linear functionals on the Weyl algebra given by

wele(z)) = e72(5:C2) (8.53)

where C' > 0 and commutes with A. However these functionals are positive
states on the Weyl algebra only in the case C' > 1.

Notes

These results appeared first in the first edition of this book. They have relations with
the theory of quantum fields and the theory of representations of the Weyl algebra.
This work has lead to new developments in these directions, also in connection with
the approach of Feynman path integrals via Poisson processes, see [63] and references
therein. See also the final chapter of the present book.
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The Feynman History Integral
for the Relativistic Quantum Boson Field

The free relativistic scalar boson field in n space dimensions is a harmonic
oscillator in the sense of the previous section, with h = L5(R") and A% =
—A + m?2, where A is the Laplacian as a self adjoint operator on L5(R™)
and m is a non-negative constant called the mass of the field. Because of the
importance of this physical system we shall give it a more detailed treatment.

We shall first discuss the free relativistic boson field i.e. the system with
a classical action given by

s -3 [|(5) -3 (52) -mte] arar o
R™ =

Let H = H1 be a real Sobolev space, namely the Hilbert space of real valued
functions ¢ over R"*! for which the norm |¢| is finite:

2 _ i : = i ’ 2
Il” = ) " Z ox; e
Rn+1 1=

1

4z dt. (9.2)

Then S(p) is a bounded continuous quadratic form on H and we define a
bounded symmetric operator B on H by

(997 BSD) = 25(90)7 (9'3)

with domain D(B) equal to the set of functions in H with compact support
in R™*!. The Fourier transformation ¢ — ¢

~ _n+1 ipe
o) = @m 7 [ erple) d, (9.4
Rn+1
with @ = {¢, &}, is an isomorphism of H with the real subspace of Loy

((p? + 1) dp) consisting of functions (% such that

&(p) = o(—p). (9.5)
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Let D be the linear subspace of functions ¢ in H whose Fourier transforms
&(p) are continuously differentiable with bounded derivatives. The norm in D
is given by

0
[l = el + sup (9.6)

P
i,p 3}%‘
If ¢ € D(B) then ¢ is a smooth function and the Fourier transform of By is
given by
) 2
N Po—p~ —m~ |
B = 9.7
¢(p) 21 @) 9.7)
width p = {po, p}.
Now, since ¢ € D(B), we have that
a@ n+1

-7 = 27['72
Op; (2m)

/eipm(izj)go(:c) dz, (9.8)

C

where C' is compact. Since ¢ is in Ly(R™1) and C' = supp ¢ is compact, ¢
is also in L1, so that % is bounded and continuous. This gives immediately,
J

from (9.7), that By is in D. Let ¢(p) be a measurable non negative function
on R"™. We then define a continuous and bounded symmetric bilinear form
Ac(p,¢) on D x D by

- 2+1)?
Nc(p,v) = PRTZI @(P)%WP) dp

—iw/c(mé(p)é (P2 — 9% —m?) (0* + 1)*(p) dp,  (9.9)

where P [ Z%j;g—pjw dp = 5. {P Iz 1% dpo} dp for any smooth func-
tion f(p) and P [ R pgf(p—"f?'ﬂ dpy is the principal value integral. Since the first

"
term in (9.9) is real, we see that

Im Ac (e, ) 0.
Let now ¢ € D and 1 € D(B). Then we get from (9.9) that
ANc(p, BY) = (p,4), ((,): scalar product in H) (9.10)

and hence we have verified that H, D, B and /A¢ satisfy the conditions of
Definition 4.1 for the Fresnel integral with respect to the classical action S(¢)
and normalized according to Ac. This Fresnel integral will also be called
Feynman history integral, and if we want to emphasize the dependence on the
non negative function ¢ we shall call it the Feynman history integral relative
to C.
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Let now h¢ be the complexification of h = L5 (R™), and consider the Weyl
algebra over h¢. The quantized field ¢(Z) at time zero is then given in terms

of the Weyl algebra. In fact, for any f € h such that f € D (A’%), we have
() = ¢ ((2A)—%f> : (9.11)

where &(f)= [ &(Z) f(Z) dZ and A=/—A + m?. Thus &(f) = [ &(Z) f(Z) dT
is understood in the operator valued distributional sense, @(f) being a well
defined linear operator, depending on the test function f. For the definition
of the Weyl algebra over h¢ see the previous section. The time automorphism
of the Weyl algebra was given by

a(e(g)) = e (eg) . (9.12)

Now h¢ = Ly(R™) carries a natural unitary representation of the translation
group R™, so that, for any a € R, g — g, with g,(z) = g(x — a) is a unitary
transformation of h€. Since it is unitary it is also symplectic, hence

Ba(€(9)) = €(ga) (9.13)

is a *-automorphism of the Weyl algebra. We have the following theorem.

Theorem 9.1. Let h = L5R™) and h® = Ly(R™). Let g € h and €(g) the
corresponding element in the Weyl algebra over h®. The quantized time zero
field @(f) is then expressed in terms of this Weyl algebra by

() = ¢ ((2A)*%f>

for any f € h.
Any quasi-free state which is invariant under the time automorphisms o
and also under the space automorphisms (3, is of the form

wel(elg)) = e300,
where
(9.C9) = [ c@la@
R’V‘L
and ¢(p) is a bounded measurable function such that

c(p) > 1.

Proof. That we(e(g)) = ¢~ 2(9:C9) where C is a bounded symmetric operator
on h¢ such that C' > 1 and C' commutes with A, follows from Theorem 8.1.
Now, since we is to be invariant under (3,, we get

wo(€(9)) = wofa(e(9))) = wol€(ga)),
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hence

(9,C9) = (9a, Cga);

so that C is an operator in Lo(R™) which commutes with translation. Hence
C is of the form given in the theorem. This proves the theorem. O

Let now
e Pe(f) = a? (e@(f)> . (9.14)
We have the following:

Theorem 9.2. Let h = LY(R™) and h¢ = Ly(R™). The classical action for
the free relativistic scalar boson field in R™ is given by

1 dp S Op 2
_ = _ 2,2 =
S(@)_Q// <8t) Z((%j) m?p? | di dt,
R R

j=1

where m is a non negative constant called the mass of the free field. Let oy
and B, be the time and space automorphisms of the Weyl algebra over h€.
Let ¢(p) > 0 be a non negative bounded measurable function on R™. Then the
Fresnel integral relative to 25(p), normalized with respect to A¢ exists, where
Ac is given in (9.9), and is called the Feynman history integral relative to C.
If e(p) > 1, the corresponding Feynman history integral defines a quasi-free
state we on the Weyl algebra for the scalar field, i.e. the Weyl algebra over
h¢, and we is invariant under the time and space automorphisms oy and [,
of the Weyl algebra. The correspondence between the history integral and the
state is given, for ty < ... <t, by the formula

Ao

we (eigbtl(fl) i (fn)) _ /eiS(cp
H

)eij;fv(ﬁtj)fj(f) dz do,

if fi,..., fn arein D (A*%)
Moreover any quasi-free state invariant under space—time translations is
obtained in this way. In particular, for ¢(p) = 1 we get the free Fock repre-

sentation' and for c(p) = cotgh (gw(ﬁ)), with w(p) = \/p? + m?, we get the
free Gibbs state at temperature 1/[.

Proof. That the Fresnel integral relative to 25(p) normalized with respect
to A¢ exists, with Ag given by (9.9), was proven before. Consider now,

! In this case A¢ is the Feynman i.e. the causal propagator. For a discussion of its
role in relativistic local quantum field theory see [55].
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for ty <ty < ...<t,and fi,..., fn in D (A—%), wo (€90 ) i),

where we is the invariant quasi-free state of Theorem 9.1 and €®+(f) is defined
by (9.14). We have then, using (9.14) and (9.11):

we (ei@l(ﬁ) N .ei@m(fn)) = wo (agl (eiqs(fl)) .l (eitﬁ(fn)))

n

o o (71 1)) o, (0

Hence, using (9.12):
we (e@tl(fl) . .e@iﬂ/(f")) =we (e (eitlA(2A)*%f1> L€ (eit"A(QA)*%fn)) ,

and therefore, from the property (8.10) of the multiplication in the Weyl
algebra and the fact that, by Theorem 9.1,

welel(g)) = o3,
we have:

-3 Z;f fi(@GCe(tj—te.p) fu(P) dF

we (e@tl(fl) . .ei‘p‘"(f”)) =e (9.15)
where
A —1
Ge(t,p :—(Sint P2 +m? +ic(p cost\/ﬁ2+m2). 9.16

On the other hand we get easily that

i3 [e(@,) 1@ dz
F(g)=ei= 7 (9.17)

is in F(D*) so that we may compute

AC n
o 1Y (@@t (@) a7
/elS(“’)e T PEIE) oF dy (9.18)

H

Using now (9.9) for A¢ and a representation of the form (8.39) for the linear
functional [ ¢(Z,t)f(Z) dZ defined on H, we get, with

wih9) = [ o@ 0@ oz, (9.19)
that ¢.(f) is in D, so that F'(y) is in F(D*) and

Do(ba(f) tel(g) = / Gols - 1.0 F DI dp (9.20)
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Hence we obtain from (9.20) and (9.15) the identity in the theorem. That any
space and time invariant quasi free state is obtained in this way, follows from
the previous theorem. That we get the free vacuum or free Fock representation
for ¢(p) =1 is standard and that we get the free Gibbs state at temperature

1/6 if ¢(p) = cotgh (gw(ﬁ)) is proved in [33], 3) Chap.3 (3.36). This then
proves the theorem. O

Let now ¢ be a smooth non negative function on R" so that [ ¢(Z) dz =1
and (&) = 0 for |# > 1, and let ¥-(F) = £ "¢ (1Z). Then we define the
ultraviolet cut-off field &.(Z) by

&.(7) = / (7 - ve(@) dF. (9.21)

Let now V be a real function of a real variable such that V is the Fourier
transform of a bounded measure i.e. V. € F(R), we then define the space
cut-off interaction V§, where A is a finite subset of R", by

Ve = / V(@.(7) di. (9.22)?
A

Since
V(s) = / ¢ du(a), (9.23)
(9.22) is defined to be the element associated with the Weyl-algebra given by

VE = / / e @?(@) () dZ (9.24)
A

or, by Definition 9.11,

Ve = / / e(a(QA)*%ujf) dp(e) 4z, (9.25)
A

where A = \/—/A +m?2 and ¥Z () = Y- (i — ). The integral (9.25) does not
necessarily converge in the topology of the Weyl algebra or, for that-matter, in
the natural C*-topology of the Weyl algebra. However, in any representation
induced by a state invariant under space translation, the representative of
€ (a(2A)*%w§) is strongly continuous in « and &, since ¢ (a(2A)*%1/J§) =
el*®<(%) ig strongly continuous in «, because @, (Z) is self adjoint and one has

eiadig(f) — qeia';bg(o) UJ
T —x
2 As mentioned in the introduction, models with these interactions and their limit

when the space cut-off is removed (A — R"™) have been studied before, see [30],
[45] and references given therein.
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where Uz is a strongly continuous representation of R™, the state being in-
variant under space translation. Hence, in any representation induced by a
state which is space translation invariant, (9.25) exists as a strong Riemann
integral and therefore Vi is represented there. Let now p be a state on the
Weyl algebra which is space translation invariant. In the representation given
by p we then have V§ represented, and we shall use the notation Vi for its
representative. Assume now also that p is invariant under the free time iso-
morphism af. Then, in this representation o is induced by a unitary group
e" 1o where Hy is the self adjoint infinitesimal generator for this unitary
group. It follows easily from (9.25) that V5 is bounded, hence

H=Hy+Vj} (926)

is a self adjoint operator in the representation space. Let o be the automor-
phism on the bounded operators of the representation space induced by the
unitary group e ¥ . Let now p be any of the space-time invariant quasi free
states of Theorem 9.1, we then have the following theorem.

Theorem 9.3. Let we be a quasi free state on the Weyl algebra for the free
boson field on R™, invariant under space and time translations. Let V € F(R)
and define Hy as the self adjoint operator generating oY in the representation
given by we. Let moreover H be the self adjoint operator in the representation
space given by

H = Hy + / V(8.(7)) dz,
A

and let oy be the automorphism induced by H on the algebra of bounded op-
erators in the representation space. If Fy, ..., F, are in F(R), and f1,..., fn

in D (A_%) and t1 < ... <t,, then

—i tfan(gos(i",t) dz dt ™
e in 115 ( [et0s@ df)
j=1

is in F(D*) and
we (a, (F1(P(f1))) e, (F2(P(f2))) - - -, (Fn(P(fn))))

Ac
i —i[In [V(pe(Z,t) d7 dt
_ /elsme I [vee 115 (/w(f,tj)fj(@ dj’) ao.
H 7j=1

where
pe(@) = / 0@ — 7,00 dF.

Proof. The proof of this theorem follows in the same way as the proof of
Theorem 6.2 by series expansion and use of previous results of this section.
O



92 9 The Feynman History Integral for the Relativistic Quantum Boson Field
Notes

This approach was first presented in the first edition of this book. It played a sugges-
tive role in the formulation of the Euclidean fields with trigonometric interactions
[88, 238]. It also directly inspired the treatment of the Chern—Simons model via path
integrals [115, 116], see Sect. 10.5.5.
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Some Recent Developments

10.1 The Infinite Dimensional Oscillatory Integral

In Chaps.2 and 4 the “Fresnel integral”, i.e. the oscillatory integral with
quadratic phase function on a real separable (infinite dimensional) Hilbert
space H, is defined as a linear continuous functional on a Banach algebra of
functions. We recall that a Fresnel integrable function is an element of F(H),
the space of Fourier transforms of complex bounded variation measures on H,
and given a function f € F(H), with f(x) = fei(w7y)duf(y), the correspond-
ing Fresnel integral is defined by (2.9), i.e.

~

/eélg”lzf(x)dgc = /e_%|$‘2du(x).

In the 1980s Elworthy and Truman [223] proposed an alternative definition.
The Fresnel integral is realized as an “infinite dimensional oscillatory integral”,
defined by means of a twofold limiting procedure. More precisely an oscillatory
integral on an infinite dimensional Hilbert space is defined as the limit of a
sequence of finite dimensional approximations, that are defined, according to
an Hormander proposal [278], as the limit of regularized, hence absolutely
convergent Lebesgue integrals (see also, e.g., [220, 424]).

The study of oscillatory integrals on R™ of the form

/ @ f(z)dz, (10.1)

where @ : R” — R and f : R” — C are suitable smooth functions, is a classical
topic, largely developed in connection with various problems in mathematics
and physics. Well known examples of simple integrals of the above form are
the Fresnel integrals of the theory of wave diffraction and Airy’s integrals of
the theory of rainbow. The theory of Fourier integral operators [278, 279, 364]
also grew out of the investigation of oscillatory integrals. It allows the study of
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existence and regularity of a large class of elliptic and pseudoelliptic operators
and provides constructive tools for the solutions of the corresponding (elliptic,
parabolic and hyperbolic) equations.

If the function f is not absolutely integrable, then the integral (10.1) can
be defined in the following way [278]:

Definition 10.1. The oscillatory integral of a Borel function f : R® — C
with respect to a phase function @ : R" — R is well defined if for each test
function ¢ € S(R™) such that ¢(0) = 1 the integral

L) = [ 670 fa)plen)ds (10.2)

exists for all € > 0 and the limit im._,o I.(f, ) exists and is independent of
. In this case the limit is called the oscillatory integral of f with respect to
® and denoted by [g, @ f(z)dz.

In the particular case in which the phase function @ is a non-degenerate
quadratic form, in particular if @ is proportional to the scalar product in

2
R™, that is &(x) = (g’;) = % (h > 0 being a strictly positive constant),
it is convenient to include into the definition of the oscillatory integral the
“normalization factor” (2mih)™?, which is fundamental in the extension of

such a definition to the infinite dimensional case.

Definition 10.2. A Borel function f : R™ — C is called (Fresnel-type) inte-
grable if for each ¢ € S(R™) such that p(0) = 1 the integral

(2mih) /2 / e2lel” () p(ex)da (10.3)
exists for all € > 0 and the limit
lim (2if) "/ / el () p(ex)da (10.4)

ezxists and is independent of ¢. In this case the limit is called the Fresnel
integral of f and denoted by

/Oei’iﬂrzf(ac)dm (10.5)

Remark 10.1. One can easily verify that fﬂgne%hmzf(m)dx =1if f(z) =1
Vz € R™. In this sense the integral is normalized.

Remark 10.2. Definitions 10.1 and 10.2 are a generalization of the definition
of normalized Fresnel integrals of Chap.2, (2.9), as they allow, at least in
principle, to define the oscillatory integral (10.1) for a more general class of
phase functions @ and integrands f than the quadratic forms and the Fourier
transforms of measures. In fact this extension has been performed to include,
in finite dimensions, all even degree polynomial phase functions [103] and, in
infinite dimensions, quartic phase functions [105], see Sect. 10.2 below.



10.1 The Infinite Dimensional Oscillatory Integral 95

In [223] this definition is generalized to the case where R™ is replaced by a
real separable infinite dimensional Hilbert space (H, (, )):

Definition 10.3. A Borel measurable function f : H — C is called F" inte-
grable if for each sequence { P, }nen of projectors onto n-dimensional subspaces
of H, such that P, < P,4+1 and P, — I strongly as n — oo (I being the iden-
tity operator in H), the finite dimensional approzimations of the oscillatory
integral of f

=

P,H

o

i ¢ L -t
Pl f(P)a(Poa) ( / el a(pa))

P, H
are well defined (in the sense of Definition 10.2) and the limit lim,, o F3 (f)
exists and is independent of the sequence {P,}.

In this case the limit is called the infinite dimensional oscillatory integral of
f and is denoted by

Fpy= [ el fa)de.
) /H f(z)da

The “concrete” description of the class of all 7" integrable functions is still an
open problem of harmonic analysis, even when dim(H) < oo. The following
theorem shows that this class includes F(H), the class of Fresnel integrable
functions in the sense of definitions (2.9) and (4.12) of Chaps. 2 and 4.

Theorem 10.1. Let L : H — H be a self-adjoint trace class operator such
that (I — L) is invertible (I being the identity operator in H). Let us assume
that f € F(H). Then the function g : H — C given by

glo) =e (), weH

is F" integrable and the corresponding infinite dimensional oscillatory integral
F(g) is given by the following Cameron-Martin-Parseval type formula:

/ o2 (. (01=1)2) () d = (det(I—L))~"/? / e F@U-DTD 4, (1) (10.6)
H H

where det(I — L) = |det(I — L)|e=™ ™ U=L) js the Fredholm determinant
of the operator (I — L), |det(I — L)| its absolute value and Ind((I — L)) is
the number of negative eigenvalues of the operator (I — L), counted with their
multiplicity.

Proof. Given a sequence { P, },en of projectors onto n-dimensional subspaces
of H, such that P,, < P,y; and P,, — I strongly as n — oo (I being the iden-
tity operator in H), the finite dimensional approximations of the oscillatory

integral [,;e2r(*(I=1)?) f(z)dz are equal to:

/ eﬁlP,Lwﬁe*ﬁ(Pn%LP"‘"”)f(an)d(P”x)(/
- PR

° -1

eﬁlp’”xlzd(an))
(10.7)
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Let L, : P, H — P,H be the operator on P,’H given by L, := P,LP,. As
(I — L) is invertible, it is easy to see that for n sufficiently large the operator
(I —L,) on P,H is invertible and by Parseval’s formula the expression (10.7)
is equal to

(det(I — Ly,))~'/? / e 3 (Paas(I=Ln) " Pao) g, (P, ). (10.8)
Py H

By letting n — oo, L,, — L in trace norm and expression (10.8) converges to

the right hand side of (10.6). For more details see [69, 223]. O

Remark 10.3. We have Eeﬁ(z’u*mm)ﬂx)dz =1 for f(x) =1Vz € H only
when L = 0. In this sense the integral is not normalized.

. —1
On the other hand the normalization factor (f; iy ez Poel’ (P, z) in the

finite dimensional approximations of the infinite dimensional oscillatory inte-
gral is fundamental. In fact it makes the definition of the infinite dimensional
oscillatory integral coherent with the definition of the oscillatory integral on
R™. Indeed it is possible to generalize Proposition 2.2, in other words it is
possible to prove that if f € F(H) is a finitely based function, i.e. there exists
a finite dimensional orthogonal projection P in H such that f(z) = f(Px) for
all € H, then

[e] o
/ eﬁlmﬁf(a:)d:r :/ eﬁlmﬁj’(aﬂ)dz7
H PH
where the left hand side denotes an infinite dimensional oscillatory integral
(Definition 10.3) and the right hand side the oscillatory integral on the finite
dimensional space PH (Definition 10.2).

Results similar to those obtained in Chap.4 (the Fresnel integral relative
to a non singular quadratic form) can be obtained by introducing in the finite
dimensional approximations a suitable normalization constant. Indeed given a
self-adjoint invertible operator B on H, it is possible to define the normalized
infinite dimensional oscillatory integral with respect to B.

Definition 10.4. A Borel function f : H — C is called F% integrable if for
each sequence { P, },en of projectors onto n-dimensional subspaces of H, such
that P, < P,41 and P, — I strongly as n — oo (I being the identity operator
in H) the finite dimensional approzimations

[ e (R a)a(Pas),
P,H

are well defined and the limit

e

lim (det P, BP,)? / 2 (Pnt.BPut) £( P 2Yd (P, ) (10.9)
P, H

n—oo

exists and is independent of the sequence {P,}.
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In this case the limit is called the normalized oscillatory integral of f with
respect to B and is denoted by

— |
/eﬁ(r’Bm)f(x)dx
H

Again, given a function f € F(H), it is possible to prove that f is F% inte-
grable and the corresponding normalized infinite dimensional oscillatory inte-
gral can be computed by means of a formula similar to (10.6):

Theorem 10.2. Let us assume that f € F(H). Then f is Fk integrable
and the corresponding normalized oscillatory integral is given by the following
Cameron—Martin—Parseval type formula:

B R _
/ eﬁ(w,Bw)f(x)dm:/ e H @B 4 (). (10.10)

H H
Note that if we substitute into the latter the function f = 1, we have

[Pe2n(®:B2) f(1)dx = 1. For this reason the integral is called “normalized”.
The latter theorem shows that in the infinite dimensional case the normal-
ization constant in the finite dimensional approximations plays a crucial role
and Definitions 10.3 and 10.4 are not equivalent. Indeed Theorem 10.2 makes
sense even if the operator L := I — B is not trace class (in which case the
Fredholm determinant det(I — B) cannot be defined).

In fact it is possible to introduce different normalization constants in the
finite dimensional approximations and the properties of the corresponding in-
finite dimensional oscillatory integrals are related to the trace properties of
the operator associated to the quadratic part of the phase function [70]. More
precisely, for any p € N, let us consider the Schatten class 7,(H) of bounded
linear operators L in H such that

ILll, = (Te(L*L)P/%)te

is finite. (7,(H),| - ||p) is a Banach space. For any p € N, p > 2 and L € T,(H)
one defines the regularized Fredholm determinant det, : I + 7,(H) — R:

p—1 i

(<17,
det(I + L) =det (({ + L)ex —17), LeT,(H),
lot(I + L) = det (I + L) p;:lj 1) »(H)

where det denotes the usual Fredholm determinant, which is well defined as
it is possible to prove that the operator (I + L) exp Zf;% %Lj — [ is trace
class [412]. In particular det sy is called Carleman determinant.

For p € N, p > 2, L € T1(H), let us define the normalized quadratic form
on H :

Ny(L)(x) = (z, Lx) —ihTr Y =, =z €H. (10.11)

Again, for p € N, p > 2, let us define the class p normalized oscillatory integral.
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Definition 10.5. Let p € N, p > 2, L a bounded linear operator in H,
f+H — C a Borel measurable function. The class p normalized oscillatory
integral of the function f with respect to the operator L is well defined if for
each sequence { P, }nen of projectors onto n-dimensional subspaces of H, such
that P, < Pp11 and P, — I strongly as n — oo (I being the identity operator
in H) the finite dimensional approximations

——

/ eﬁ\w\”efﬁNp(PnLPn)(Pnz)f(pnx)d(pnw% (10.12)
PoH

are well defined and the limait

—

lim ezl = 3 No (PuLP) (Pa) £ (P, 2)d(P,) (10.13)

n—oo P”,H

exists and is independent of the sequence {P,}.
In this case the limit is denoted by

P i 2 i
Lu(f) = [ eHele 0 faya,
H

If L is not a trace class operator, then the quadratic form (10.11) is not well
defined. Nevertheless expression (10.12) still makes sense thanks to the fact
that all the functions under the integral are restricted to finite dimensional
subspaces. Moreover the limit (10.13) can make sense, as the following result
shows [70].

Theorem 10.3. Let us assume that f € F(H), L = L*, L € T,(H) and
det(,)(I — L) # 0 . Then the class-p normalized oscillatory integral of the
function f with respect to the operator L exists and is given by the following
Cameron—Martin—Parseval type formula:

P 2 i in -1
/ e lol’ o= 3 (2.2) f () = [det(I — L)]~V/2 / e BTy (@),
H (p) H
(10.14)

Similarly to what is done in Chaps.3 and 5, it is possible to prove
that, under suitable assumptions on the initial datum ¢, the solution to the
Schrédinger equation for an anharmonic oscillator potential

g = —E5 A+ (324% 4 V(2))d
{¢(%t7 x) = <,02(33), x EZRd (10.15)

(where A% > 0 is a positive d x d matrix with constant elements) can be repre-
sented by a well defined infinite dimensional oscillatory integral on the Hilbert
space (Hy, (, )) of real continuous functions ~(7) from [0,¢] to RY such that
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B t
& € Ly([0,¢];R?) and ~(¢) = 0 with inner product (v1,72) f cn de

0
From now on we will assume for notational simplicity that m , but the

whole discussion can be generalized to arbitrary m > 0.
By considering the unique self-adjoint operator L on H;, uniquely deter-
mined by the quadratic form

k) = [ ()4l
and the function v : H; — C
v(y) = /Ot V(y(1) + z)dT 4 22A? /Oty(r)dr, v € Hy,z € RY,
Feynman’s heuristic formula

« comt/ oF S B2~ 31 A (D) =V (AT o (0))dy 7
{lv(t)==}

can be interpreted as the infinite dimensional oscillatory integral on H; (in
the sense of Definition 10.3).

/ ¢35 (HT=L17) g~ ko) oy (0) + 7). (10.16)
H

t

One can easily verify that the operator L : ‘H; — H; is given on the vectors

v € Hi by
/ / A2 s)dsdr.

By analyzing the spectrum of L (see [223] for more details) it is easy to see
that L is trace class and I — L is invertible. The following holds:

Theorem 10.4. Let ¢ € F(RY) N L2(RY) and let V € F(R?). Then the func-
tion f.:Hy — C, x € RY, given by

Fol7) = e 7MW p((0) + )

is the Fourier transform of a complex bounded variation measure pg, on
H: and the infinite dimensional Fresnel integral of the function g.(vy) =
e”zm (1IN fo(v)

/ e2n (UL e~ 5™ (5 (0) + 2)dy.
He
is well defined (in the sense of Definition 10.3) and it is equal to

det (I — L)fl/Q/ eI TN Ay (7).
Hi

Moreover it is a representation of the solution of equation (10.15) evaluated
at x € RY at time t.
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For a proof see [223].

There is an interesting difference between (4.12), the definition of the
Fresnel integral with respect to a non singular quadratic form, and equa-
tion (10.6), the Parseval type equality for the infinite dimensional oscillatory
integral. In the latter one finds the multiplicative factor det(I — L)~'/? (the
Fredholm determinant) in front of the absolutely convergent integral on the
right hand side. As a consequence, equation (5.37) for the Fresnel integral
representation of the solution of the Schrédinger equation (10.15),

T3 [P orAydr —i [V (y(r)dr
G(x,t) = | cos At| "% / A VO

y(t)==

©(7(0))dy

(where the r.h.s. denotes a Fresnel integral in the sense of Definition 4.12) can
accordingly be replaced by

wan=[ o ()

(where the r.h.s. denotes an infinite dimensional oscillatory integral in the
sense of Definition 10.3). As one can see the latter formula does not contain
the “strange looking” multiplicative factor | cos At\*% .

It is interesting to note that the sequential approach of Definition 10.3
is not so different from Feynman’s original derivation of his famous heuristic
formula (1.13). In fact let us consider the sequence of partitions m, of the
interval [0,¢] into n subintervals of amplitude € = ¢/n:

O —

(42 -y A%)dr —ifvw(r))dr
e

to=0,t1 =¢€,...,t; =1€,...,t, =ne=t.

To each , let us associate a projector P,, : H; — H; onto a finite dimensional
subspace of Hy, consisting of piecewise polygonal paths. In other words each
projector P, acts on a path v € ‘H; in the following way:

Pp(y)(r) = ZX[ti,l,ti](T) ('Y(ti—l) + M(T — ti_1)>.

t; —ti1

By considering t»het infinite dimensional oscillatory integral on H; of the func-
tion f,(v) = e~ Jo VOM+2)A7,(1(0) + z), one has

[ e 0 fay
He
° . o 1
= lim eWMfo(Pmde[ / eW”%PWde}
n—oe PnHt PnHt

i

n—1
= lim (2riht/n)” % /e*?stmw‘-’%hp(y(O)+x)de(ti) (10.17)
=0

n—oo
Rnk

and one can recognize a formula analogous to (1.10) proposed by Feynman in
his original work. See [449] for the details.



10.2 Feynman Path Integrals for Polynomially Growing Potentials 101

Remark 10.4. Another reference to the sequential approach is [236] (which
contain in particular a discussion of continuous quantum observations). See
also Sect. 10.4.3 for a sequential approach through “classical paths” instead
of “polygonal paths”.

10.2 Feynman Path Integrals for Polynomially Growing
Potentials

As we have seen in the previous section, the Fresnel integral approach al-
lows to give a rigorous mathematical meaning to the Feynman path integral
representation of the solution of the Schrédinger equation if the potential V'
is of the type “quadratic plus bounded perturbation”. Indeed, in order to
define the infinite dimensional Fresnel integral, the perturbation to the har-
monic oscillator potential has to belong to F(R%), so that in particular it is
bounded. An extension to unbounded potentials which are Laplace transforms
of bounded measures has been developed in [73, 336] by means of the ana-
lytic continuation approach resp. by means of white noise analysis. It includes
some exponentially growing potentials but does not cover the case of poten-
tials which are polynomials of degree larger than 2. In fact the problem for
such polynomial potentials is not simple, as it has been proved [466] that in
one dimension, if the potential is time independent and super-quadratic in the
sense that V(z) > O(1 + |z|)?*€ at infinity, C > 0 and € > 0, then, as a func-
tion of (¢,x,y), the fundamental solution E(t,0,z,y) of the time dependent
Schrédinger equation is nowhere C1.

As we have seen in the previous section, the Definition 10.3 of the infi-
nite dimensional oscillatory integral is more flexible than definitions (2.9) and
(4.12). In fact it allows, at least in principle, to enlarge the class of “integrable
functions”. This fact is used in [104, 105] for providing a direct rigorous Feyn-
man path integral definition for the solution of the Schrédinger equation for
an anharmonic oscillator potential V (z) = 12A4%z + Az*, X > 0, (written for
d = 1) without using the “indirect” tool of analytic continuation from a repre-
sentation of the heat equation as for instance in [383, 217, 142, 441, 440, 207].
The first step is the definition and the computation of the oscillatory integral

[e]
/ e @) f () da,
for the case where the phase function ¢(z) = P(x) is an arbitrary even polyno-
mial with positive leading coefficient. In this case a generalization of Theorem
10.1 can be proved. In complete analogy with Fresnel integrals, one uses the
duality introduced by the Parseval type equality. The problem is the compu-
tation and the study of the Fourier transform of the distribution e#?(*). The
main tool is the following lemma, which can be proved by using the analyticity
of the function z — e***%P() > € C", k € R" and a change of integration
contour (see [103]).
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Lemma 10.1. Let P : R™ — R be a 2M-degree polynomial with positive

leading coefficient. Then the Fourier transform of the distribution ent (@),

Pk = / Tk POz, heR\ {0} (10.18)
s an entire bounded function and admits the following representations:
F(k) = einm/(4M) / e ke i PET IR 40 for h> 0 (10.19)
or
F(k) = e*i"”/(‘lM)/ eie_i”/(“l)k“e%P(e_i"/(41v1)m)dx, for i< 0 (10.20)

Remark 10.5. The integrals on the r.h.s. of (10.19) and (10.20) are absolutely
(elm/ (4M)

convergent thanks to the fast decreasing behavior of ent ) resp.

enPe™ ™M) when |z] — oo (for h > 0 resp. h < 0).

Lemma 10.1 allows the following generalization of Theorem 10.1 to the case
where the phase function is equal to an even degree polynomial P on R™:

Theorem 10.5. Let P : R" — R be a 2M -degree polynomial with positive
leading coefficient, and let f € F(R™), f = fiy. Then the oscillatory integral

/O ehP@ f(p)de,  heR\ {0}

n

1s well defined and it is given by the formula of Parseval’s type:

/° FP@) f(2)dz = /F(k:)duf(k:), (10.21)

n

where F(k) defined by (10.18) and is given by (10.19) resp. (10.20)
The integral on the r.h.s. of (10.21) is absolutely convergent (hence it can
be understood in Lebesgue sense).

It is particularly interesting to examine the case in which
1
P(x) = 5:1:(] — L)z — AB(x,z,z,x),
where b > 0, A < 0, I, L are n X n matrices, I being the identity, (I — L)

is symmetric and strictly positive and B : R™ x R" x R* x R®" — R is a
completely symmetric and positive fourth order covariant tensor on R™.
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Lemma 10.2. Under the assumptions above the Fourier transform F(k) of

) ) ) l;E~(I*L)a: —i\ .
the distribution &~ —73€ h Bzz.a,x) 4 e

(2mih)

Sx-(I-L)z .
I _ ik-x €27 —iA B(z,x,z,x)
F(k) = /n e “amnE en dez, (10.22)

is a bounded complex-valued entire function on R™ admitting the following
representation

. —Lg(I-L)z .
Pl — eie‘"/4k-re s ( ) e%B(z,x,z,z)dx _
@rhyr?
n Th)™

= Elei*/*Fae R Al@aem)ogia-Br)  (10.23)

where E denotes the expectation value with respect to the centered Gaussian

. . . ~ o5 =1
measure jie on R™ with covariance operator hI (i.e. pug(dx) = %ﬁdm}

Theorem 10.6. (“Parseval equality”) Let f € F(R™), f = fiy. Then, under
the assumptions above, the generalized Fresnel integral

/ eﬁx(I—L)xe A B(x,x,x,x)f(x)dx

is well defined and it is given by:

/ oo (I~ D)g S Bwa.0) f() 4y = / Fk)dus (k), (10.24)

n n

where F(k) is given by (10.23).
Moreover if jiy is such that the integral fe_gmd\,uf\(k) is convergent for all
x € R™ and the positive function g : R™ — R™, defined by

sea-Lx — g
o) = eF L / 252 | (k).

is summable with respect to the centered Gaussian measure on R™ with covari-
ance hl, then f extends to an analytic function on C™ and the corresponding
generalized Fresnel integral is given by:

/ eﬁm-(lfL)ze_TiL’\B(z,m,x,z)f(x)dx _ E[e%B(m,m,z,m)eﬁm-sz(eiﬂ/4x)].
| (10.25)

The technique used in the proof of Lemma 10.2 is similar to that in Lemma
10.1: again one uses the analyticity of the integrand and a change of integration
contour. However in (10.23) the convergence of the integral is not given by the
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leading term of the polynomial phase function, as in (10.19) and (10.20), but
is given by the Gaussian density e~ 25" (/=L)%_This allows the generalization
of the result to the infinite dimensional case. Indeed given a real separable
infinite dimensional Hilbert space H with inner product (, ) and norm | |, let
v be the finitely additive cylinder measure on H, defined by its characteristic
functional #(z) = e 2/#1". Let || || be a “measurable norm” on M (in the
sense of Gross [257]), that is || || is such that for every e > 0 there exist a
finite-dimensional projection P, : H — H, such that for all P 1 P, one has
v({x € H| [|[P(x)] > €}) < ¢, where P and P, are called orthogonal (P L P,)
if their ranges are orthogonal in (H,(, )). One can easily verify that || | is
weaker than | |. Denoting by B the completion of H in the || ||-norm and by
i the continuous inclusion of H in 3, one can prove that © = voi~! is a
countably additive Gaussian measure on the Borel subsets of B. The triple
(i, H, B) is called an abstract Wiener space [257, 337|. Given y € B* one can
easily verify that the restriction of y to H is continuous on H, so that one can
identify B* as a subset of H and each element y € B* can be regarded as a
random variable n(y) on (B, ). Given an orthogonal projection P in H, with
n
P(z) = (e;,x)e;

=1

for some orthonormal e1, ..., e, € H, the stochastic extension P of P on B is
well defined by
Py =3 ne) (e
i=1

Given a function f : H — By, where (B1, ]| ||5,) is another real separable
Banach space, the stochastic extension f of f to B exists if the functions
foP:B— By converge to f in probability with respect to y as P converges
strongly to the identity in H.

Let B : HxH xHxH — R be a completely symmetric positive covariant ten-
sor operator on H such that the map V : H — R,z +— V(x) = B(x,x,x,7) is
continuous in the || || norm. As a consequence V' is continuous in the | |-norm,
moreover it can be extended by continuity to a random variable V on B, with
V|y = V. Moreover given a self-adjoint trace class operator L : H — H, the
quadratic form on H x H:

x € H v (x,Lz)

can be extended to a random variable on B, denoted again by (- ,L - ). In
this setting one can prove the following generalization of Theorem 10.6 [105].

Theorem 10.7. Let L be self-adjoint trace class, (I — L) strictly positive,
A< 0and f € F(H), f = iy, and let us assume that the bounded variation
measure iy satisfies the following assumption

/ 2@ U= 1 () < 400, (10.26)
H
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Then the infinite dimensional oscillatory integral

/ eﬁ(m’(I_L)z)e_i%B(I’Lm’r)f(x)dx (10.27)
H

exists and is given by:

2y

/E[ein(k)(w)ei"ﬂeﬁ(w,&u) 12V (w )]duf(k)
H

It is also equal to :
Eci 2V () g (@, Lw)f( im/4 w)], (10.28)

where B denotes the expectation value with respect to the Gaussian measure

on B.

Such a result allows for an extension of the class of potentials for which
an infinite dimensional oscillatory integral representation of the solution of
the corresponding Schrédinger equation can be defined. Let us consider the
Schrédinger equation

0
ihs = Hy (10.29)

on L?(R%) for an anharmonic oscillator Hamiltonian H of the following form:

2
H = —%AJr %zAszr/\C’(z,z,x,x), (10.30)

where C' is a completely symmetric positive fourth order covariant tensor on
R?, A is a positive symmetric d x d matrix, A > 0 a positive constant. It is
well known, see [395], that H is essentially self-adjoint on C$°(R¢). Theorem
10.7 allows to give a well defined mathematical meaning to the “Feynman
path integral” representation of the solution of (10.29) with initial datum
(RS Lo (Rd)I

P(t,x) =
/ . o JE TP dr—k [E1(r) AP () +AC( () v YDA AT G (0))dy?
y(t)=x

(10.31)

as the analytic continuation (in the parameter A, from A < 0 to A > 0) of
an infinite dimensional generalized oscillatory integral on a suitable Hilbert
space. For the discussion which follows, it is convenient to modify the heuristic
expression (10.31) by introducing the change of variables v(7) — ~(t — 7)and
obtaining:

Y(t,x) =
« / o ok Ji G2 ar— 2 [B7 (DAY DFACHE A A OAONT H(y (1))dr.

(10.32)
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Let us consider the Hilbert space (Hy, (, )) of absolutely continuous paths
7 : [0,t] — R? with square integrable weak derivative fot F(1)?dr < oo, fixed
initial point 4(0) = 0 and inner product (y1,7v2) = f(f 41(8)%2(s)ds. The cylin-
drical Gaussian measure on H; with covariance operator the identity extends
to a o-additive measure on the Wiener space C; = {w € C([0,t]; R?) | w(0) =
0}: the Wiener measure P. (i,H, C) is an abstract Wiener space.
Let us consider moreover the Hilbert space H = R? x H,;, and the Banach
space B = R? x C; endowed with the product measure N(dz) x P(dw), N
being the Gaussian measure on R? with covariance equal to the d x d identity
matrix. (i, H, B) is an abstract Wiener space.
Let us consider two vectors 1, 2 € La(RY) N F(R?). Under suitable assump-
tions on @1, @9, the following infinite dimensional oscillatory integral on H:

Y1
dXHt

e~ Jo COMHaa (Dt (m+an(D+a)dr o (1) 4 g)dzdy”  (10.33)

« / T ()t A () A2 () dr
R

is well defined and can be explicitly computed in terms of an absolutely con-
vergent integral by means of the generalized Parseval type equality (Theo-
rem 10.7).

Let us consider the operator L : ' H — H given by:

(z,7) — (y,n) = L(z,7),

t 2 T u
y=tA%x + A2/ ~(r)dr, n(r) = A%x(tt — %) — / / A%y (r)drdu
0 0o Jt
(10.34)
and the fourth order tensor operator B:

B((z1,m); (x2,72), (¥3,73), (T4,72)) =

t
= / 0(71(7—) +331a72(7') +$2773(T) +x37fy4(7—) +.§L‘4)d7’. (1035)
0
Let us consider moreover the function f:H — C

fla,y) = 2rih)¥ 2212 5y (2)pa (4() + ). (10.36)

With this notation expression (10.33) can be written in the following form:

/ o2r (1214171 = (2.7). Lw.1)) o= 2 B ) (2. (). @) (2, 4)dady.
H

(10.37)
In the following we shall denote by A;, i = 1,...,d, the eigenvalues of the
matrix A.



10.2 Feynman Path Integrals for Polynomially Growing Potentials 107

Theorem 10.8. Let us assume that A\ < 0, and that for each i =1,...,d the
following inequalities are satisfied

Ait < 721 1— A, tan(Ait) > 0. (10.38)

Let 1,02 € La(RY)NF(R?). Let jug be the complex bounded variation measure
on R? such that fiy = @o. Let puy be the complex bounded variation measure
on RY such that fiy (z) = (2mih)¥2e= 217" 3 (z). Assume in addition that the
measures (i1, ibo satisfy the following assumption:

/ / 6%1A71 tan(At)we(y+cos(At)71z)(1—A tan(At)) " (y+cos(At) " lx)
R JRd

d|pz|(x)d|p1|(y) < oo (10.39)
Then the function f:H — C, given by (10.36) is the Fourier transform of a
bounded variation measure [y on H satisfying

| R =Dl ) < o0 (10.40)
H

(L being given by (10.34)) and the infinite dimensional oscillatory integral
(10.37) is well defined and is given by:

/ ( / oA @yt V(1) (@) g i S (VA () +2) A2 (VEwo(7) +2)dr
R xHy R xCy

ei% fot C(\/ﬁw(r)+x,\/ﬁw(r)+x,\/ﬁw(ﬂ-)-&-x,\/ﬁw(T)-i-x)drdP(w)ﬂdx) dﬂf (y7 ’Y)-
(10.41)

This is also equal to
(l)d/Q/ ei% j(;‘ C(Vhw(T)+z,Vhw(T)+z,Vhw(T)+2,Vhw(1)+2)dT
R x Cy

e% f(’t(\/ﬁu(T)+m)A2(ﬁw(7)+m)dT@(eiw/4$)wo(eiﬂ—/4\/_hu}(t) +ei”/4x)dP(w)dx.
(10.42)

Moreover the absolutely convergent integrals (10.41) and (10.42) are analytic
functions of the complex variable X if Im(\) > 0, and continuous in Im(\) =
0. In particular when X\ > 0 they represent the scalar product between w1 and
the solution of the Schrodinger equation (10.29) with Hamiltonian (10.30) and
initial datum ps.

For detailed proofs of these results see [105], where in addition the asymptotic
expansion of the oscillatory integral (10.37) in powers of the coupling constant
A is computed and its Borel summability is proved.
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The results in the present section show a strong connection between
two different approaches to the rigorous mathematical definition of Feynman
path integrals: the analytic continuation approach and the infinite dimen-
sional oscillatory integral approach. In fact, under suitable restrictions on the
integrable function f and on the phase function, an infinite dimensional os-
cillatory integral on a Hilbert space H is exactly equal to a Gaussian integral
(Theorem 10.7). As a consequence, under suitable assumptions on the ini-
tial vector ¢, an infinite dimensional oscillatory integral of a function on the
Hilbert space of absolutely continuous paths v : [0,¢] — R? with square inte-
grable weak derivative and fixed initial point v(0) = 0 is exactly equal to a
Wiener integral of the same function after a suitable analytic continuation.

10.3 The Stationary Phase Method
and the Semiclassical Expansion

One of the most fascinating features of Feynman’s heuristic representation
(1.13) for the solution of the Schrédinger equation is the fact that it creates a
connection between the classical Lagrangian description of the physical world
and the quantum one. In fact it provides a quantization method, allowing,
at least heuristically, to associate to each classical Lagrangian a quantum
evolution. Moreover it makes very intuitive the study of the semiclassical limit
of quantum mechanics, i.e. the study of the detailed behavior of the solution of
the Schrodinger equation when the Planck constant £ is regarded as a small
parameter converging to 0. In fact when A is small, the integrand ew5+(?)
in (1.13) is strongly oscillating and the main contribution to the integral
should come (in analogy with the classical stationary phase method for finite
dimensional integrals, see e.g. [123, 226, 173, 231, 230]) from those paths 7 that
make stationary the phase functional S;. These, by Hamilton’s least action
principle, are exactly the classical orbits of the system.

Fresnel integrals of Chaps.2-9 and infinite-dimensional oscillatory inte-
grals in the sense of Definition 10.3 provide not only a rigorous mathematical
realization for Feynman’s heuristic path integral formula (1.13), but also allow
the implementation of a rigorous infinite-dimensional version of the stationary
phase method [87, 69] and the corresponding study of the asymptotic semi-
classical expansion of the solution of the Schrédinger equation in the limit
h — 0 [87, 69, 66, 67].

The first results can be found in [87] and were obtained in the framework of
Fresnel integral approach of Chaps. 2-9. The authors consider Fresnel integrals
of the form

I(h) = /e%we—%vmgmdx, (10.43)
H

where H is a real separable Hilbert space and V and g are in F(H), and prove,
under additional regularity assumptions on Vg, that if the phase function
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1|z|?—V () has only non degenerate critical points, then I(h) is a C* function
of h and its asymptotic expansion at & = 0 depends only on the derivatives
of V and g at these critical points.

Theorem 10.9 ([87]). Let H be a real separable Hilbert space, and V and g
in F(H), i.e. there are bounded complex measures on H such that

Vi) = [ edpe) o) = [ éravta),

Let us assume V' and g C°, i.e. all moments of p and v exist. Moreover we
assume H = Hy & Ho where dim Ha < oo, and if du(B,v),dv(B,~) are the
measures on Hy X Ha given by p and v, then there is a \ such that ||| < A2
and

/ V2P| (8,7) < o0, / eV?Mld|v|(8,7) < oo.
H H

Then if the equation dV(x) = x has only a finite number of solutions
T1,...,Ty on the support of the function g, such that none of the operators
I—d?V(x;),i=1,...,n, has zero as an eigenvalue, then the function

I(h) = /e%“'c‘ze_%v(”)g(m)dx
H

is of the following form

where I} (k) k=1,...,n are C* functions of h such that
17(0) = F e det(1 — d°V (ax)) [~ g(n)

where ny, is the number of negative eigenvalues of the operator d2V (zy,) which
are larger than 1. -
Moreover if V(z) is gentle, that is there exists a constant X > 0 with

]| < N2 and /He\/i/_\o‘ldM(a) < o0, (10.44)

then the solutions of equation AV (x) = x have no limit points.

Proof. If condition (10.44) is satisfied, it is possible to prove that there exists
a decomposition H = H| ® Hb, with He C HS and H, finite dimensional
such that:

1

- L
?/H VAT ldlu|(8) < ﬁ/HeAﬁ'ﬁ ldu|(8',7) < 1. (10.45)
1
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So, if necessary by using the decomposition H = H} @ H), instead of H =
Hy @ Ha, we may assume that, with the notation of the theorem,

1 X 1 X
[ VA < 55 [ A6 <1. (10.46)
A Ha A H
Condition (10.46) implies that the equation
diV(y,z) =y

has a unique solution y = b(z) and z — b(z) is a smooth mapping of H; into
Hs. By using the Fubini theorem for oscillatory integrals (see Proposition 2.4),
I(h) is equal to
I(h) = /emIZ‘ ezt () =3 V)2 I (h, 2)de, (10.47)
Ho

i b(2)?
(MG~

with Io(h,2) = e VG)2) 1 (h, 2) and

Ii(h z) = /ei’i*h‘y‘ze_%v(y’z)g(y,z)dy. (10.48)
Ha

It is now possible to prove that the Fresnel integral I>(%) on the infinite
dimensional Hilbert space H; is a C'*° function of h on the real line and it is
analytic in Tmh < 0. Moreover I5(0) = |1 — d?V (b(z2),2)|~*/?g(b(2), z). The
integral I(h) on Hy can now be studied by means of the existing theory of
stationary phase for the asymptotic expansions of finite dimensional Fresnel
integrals (see [87] for the more details). O

In 1985 Rezende, assuming some additional regularity conditions for V' and
g and by considering a phase function 1(z, Bz) — V() (where B and B~!
are bounded symmetric operators on H), proved the Borel summability of the
asymptotic expansion in powers of the parameter /i of the integral

/ (z,Bx), ‘V(:r)g(x)dx
H

(For the concept of Borel summablhty see, e.g. [385, 423, 130, 227]).
Theorem 10.10 ([396]). Let V(z) = [, €"*du() and g(x) = [, e™*dv(a),

where 1 and v are bounded complex measures on H such that
[l dielie) < atfer, 0<n,

/|a|”d|y|(a) < Mnl/e",  0<n,

for some L, M,e > 0 verifying 2L||B~||(3 + 2v/2) < €2 (||B~Y|| denoting the
operator norm of B1).
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Then there is a unique point a € H such that dV (a) = Ba; B~1d?*V (a) is of
trace class and its trace-norm || ||1 satisfies the inequality | B~*d?V (a)||; < 1.
Let

/ 25 (@,B2) =3,V (@) g(z)dx.
H

Then I(h) is analytic in Im(R) < 0 and the function I*, given by
I*(h) = I(R)erV @~z (®Ba)  for Im(R) < 0,7 # 0,
is a continuous function of h in Im(h) < 0, with
I*(0) = det(I — B~*d*V (a))""/?g(a),

where det(I — B~'d?V(a)) is the Fredholm determinant of the operator
(I — B~1d%V(a)). Moreover one has the following asymptotic expansion and
estimate

S (Y (2
-2 (-3) X
Jof o z>}n o)

= [r(h) - det(r — B2V Wan( ;)mZ—n'(&fl:F),
n=0 °

[ A= vor (o) T
f[e“wﬂ'>du<aj)ei<“ﬁ>du<ﬂ>]
j=1

M ( 2|8 )l(l B 2L||B*1||(3+2\/§)—l—1/2(l 1),

= - Va)vE 26— 1v2) = 2)"
where
(ot Ao m) = (s —mn) -1 / / (A=t). —t)"
(z, ... 2, (tlxl + A tpr, +y)t A L dE,,
and 1
(T1,...,T2n) = W zg:(xg(l), To2)) - (To(2n-1)s To(2n)),
the summation being over all permutations o of {1,...,2n}.

Moreover the asymptotic expansion is Borel summable and determines I*(h)
uniquely.
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Analogous results have been proven [69] also in the framework of infinite
dimensional oscillatory integrals.

Theorems 10.9 and 10.10 can be applied to the study of the asymptotic be-
havior of the solution of the Schrédinger equation (10.15), by using the Feyn-
man path integral representation. The first rigorous results in this direction
can be found in [87] in the framework of infinite dimensional Fresnel integrals.
Analogous results concerning the Schrodinger equation with a magnetic field
can be found in [69] in the framework of infinite dimensional oscillatory inte-
grals. See also [447] for the discussion of the quasiclassical representation and
a comparison with Maslov’s results [38]. We summarize here the formulation
of [87] (see also [67, 69]). The authors consider a particular but physically
relevant form for the initial wave function p(z) = enf (@) y(z), where f is real
and f, x are independent of /. This initial data corresponds to an initial par-
ticle distribution pg(x) = |x|?(x) and to a limiting value of the probability
current Jr—g = f'(x)po(x)/m, giving an initial particle flux associated to the
velocity field f/(z)/m (f' stands for the gradient of f) .

Theorem 10.11. (/87]) Consider the Schrédinger equation

.0 h?

where the potential V' is the Fourier transform of some complex measure v
such that

Vi) = [ dau(s),
with

/ elPled|v|(B) < oo
Rd
for some € > 0. Let the initial condition be

U(y,0) = enf W y(y)

with x € C(RY) and f € C(R?) and such that the Lagrange manifold
Ly = (y, =V [) intersects transversally the subset Ay of the phase space made
of all points (y,p) such that p is the momentum at y of a classical particle
that starts at time zero from x, moves under the action of V and ends at y at
time t.

Then ¥(t,x), given by the Feynman path integral (defined rigorously as an oo
dimensional Fresnel integral)

/() eﬁfh(ﬂ?dTef%vamv))dw(v(O),o)dv:/ . e# 5 y(4(0), 0)d,
y(t y(t)=

=T =T

has an asymptotic expansion in powers of h, whose leading term is the sum of
the values of the function

o (L)) (o)
l
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taken at the points y9) such that a classical particle starting at y) at time
zero with momentum ¥ f(y9)) is in  at time t. S(39)) is the classical action
along this classical path 39 and m(j)(ﬁ(j)) is the Maslov index of the path

S0) e mU) i Lol ey :
) dce. m\9) ds the number of zeros of det —~(yY), 7)) ) as T varies on
the interval (0,t).

ay;”

If some critical point of the phase function is degenerate, the study of the
asymptotic behavior of the integral I(%) in (10.43) becomes more complicated.
In fact we know from the case of a finite dimensional Hilbert space H that
in this situation it is possible that the integral I(%), divided by the above
leading term, will not tend to a limit as 7 — 0. The problem is solved in
some situations by letting the functions V' and g depend on an additional
parameter y € R¥, for suitable k. In [87] it is proved that the same technique
can be generalized to the infinite dimensional case.

More detailed results are presented in [69] and [67]. In [69] the authors consider
phase functions which can degenerate and, under suitable assumptions, they
manage to reduce the study of the degeneracy to the one of degeneracy on
a finite dimensional subspace of the Hilbert space H and apply the existing
theory for finite dimensional oscillatory integrals. In fact they assume that the
phase function %(m, Bz) — V(z) has the point z. = 0 as a unique stationary
point, which is degenerate, i.e. Z := Ker(B — d?V)(0) # {0}. Under suitable
assumptions on B and V, they prove that Z is finite dimensional. By taking
the subspace Y = B(Z*) and applying the Fubini theorem one has

I(h) =/ 2 (0:B0) =7 V(@) g ()dy =
H

:CB/ eﬁ(z»Bﬂ)/ e%(y’Bly)e_%V(y"‘z)dydz, (10.49)
Z Y

where By and By are defined by
Biy=(ryoB)(y), yeY,
Bz =(nz0B)(2), :€2,

and Cp = (det B)~'/?(det B;)/?(det By)'/2. By assuming that V, g € F(H),
V = [ and g = 7, and under some growth conditions on p and v, one has
that the phase function

1
Yy = §(y, Biy) = V(y+2)

of the oscillatory integral J(z,h) = fyoeﬁ(y’Bly)e*%V(y“)dy has only one
nondegenerate stationary point a(z) € Y. By applying then the theory devel-
oped for the nondegenerate case one has

J(z, h) = e (@(2):Bra() o= V(a(=)+2) =, p)

I a2+ )] ataz) + 2

J*(2,0) = [det (31 -~ o5
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As I(h) = [, e?&) J*(z, h)dz, where ¢(z) = 3= (z, B22) + 3= (a(z), Bia(z)) —
1V (a(2)+z), the main contribution to the asymptotic behavior of I(h) comes
from J*(z,0). The phase function ¢ has z = 0 as a unique degenerate critical
point and, by applying the theory for the asymptotic behavior for finite dimen-
sional oscillatory integrals [279], one has to investigate the higher derivatives

of ¢ at 0. For example if dim(Z) = 1 and %?;Z (0) # 0 then

I(h) ~CH~Y®  as h—0.

More generally it is possible to handle other cases, taking into account the
classification of different types of degeneracies (see, e.g., [69]).

A quite different situation is handled in [64], [66] and [67], where the
Feynman path integral representation I(t, ) for the trace of the Schrodinger
group tre~ 7t is studied, as well as its asymptotic behavior as A — 0. More

precisely in [67] the oscillatory integral

—

1) = [ ek,
H

p,t

is considered, where H,; is the Hilbert space of periodic functions v €
H'(0,t;RY) such that (0) = ~(t), with norm |y|> = fot A'y(7')2d7'+f0t y(T)%dr,
and P(vy) = %fot F(r)2dr — fot Vi(y(r))dr, Vi(z) = t202%z + Vy(z) being the
classical potential. If V; : R — R is of class C?, then one proves that the
functional @ is of class C? and a path v € H,, is a stationary point for @ if
and only if 7 is a solution of the Newton equation

H(r)+Vi(y(r) =0 (10.50)
satisfying the periodic conditions

7(0) =~(@),  ¥(0) =5(@). (10.51)
V1 is also assumed to satisfy the following conditions:

1. V; has a finite number critical points ¢1, ..., cs, and each of them is non-
degenerate, i.e. det V{’(¢;) # 0

2. t > 0 is such that the function ~.,, given by v.,(7) = ¢;, 7 € [0,1], is a
non-degenerate stationary point for @

3. Any non-constant t—periodic solution v of (10.50) and (10.51) is a “non-
degenerate periodic solution”, in the sense of [222], i.e. dim ker @"(v) = 1.

Under additional assumptions, the authors prove that the set M of stationary
points of the phase function @ is a disjoint union of the following form:

M ={z.,...,z. .} U U M,
k=1
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where x.,, 7 = 1,... s, are nondegenerate and M}, are manifolds (diffeomorphic
to S1) of degenerate stationary points, on which the phase function is constant.
Under some growth conditions on V' they also prove that, as h — 0

I(t,h) =Y e#™Vi) I () + (2rih) =12 [en ?00) | M, I () + O(h)}

j=1
where ¢; are the points in condition 1, b, € M}, are all noncongruent ¢-periodic

solutions of (10.50) and (10.51) as in condition 3, |Mj| is the Riemannian
volume of My, IT and I;* are C* functions of i € R such that, in particular,

1:0) = (et [2[ cos (1/V7()) - 1]]) "

170 = (S et - nies)

where RF(t) denotes the fundamental solution of

{x(T) = —eV"(b(1))x(T), 7>0, €>0,
2(0) =z, %(0) =1yo

written as a first order system of 2d equations for real valued functions.

Remark 10.6. The problem of corresponding asymptotic expansions in powers
of h for the case of the Schrédinger equation with a quartic potential requires
a different treatment. For the corresponding finite dimensional approximation
a detailed presentation, including Borel summability, is given in [103]. The
case of the Schrédinger equation itself is discussed in [76].

10.4 Alternative Approaches to Rigorous Feynman Path
Integrals

10.4.1 Analytic Continuation

One of the first tools used in the rigorous mathematical realization of Feynman
path integrals was analytic continuation of Gaussian Wiener integrals (see
[10, 165, 166, 167, 383] and, e.g., [217, 89, 440, 441, 175, 178, 305, 306, 308]
for more recent developments).

The leading idea is the extension to the complex case of the Wiener integral
representation for the solution of the heat equation

ot
u(0,z) = ()

i.e. the Feynman-Kac formula

{ Ou=—5-Au+V(z)u (10.52)



116 10 Some Recent Developments

u(t, ) = /W e~ Jo VIWVI/mw)AT o /1 i (t))d P, o (w), (10.53)

t,a

where Wy, = {w € C(0,t;R?) : w(0) = x} and P, is the Wiener measure on
Wi . Then one introduces in (10.52) a real parameter \;, i = 1,2, 3, related
to the time t [70]

—Alﬁ%u =L h2Au+ V(z)u

2m

u(t, x) — th’w e_ﬁ fot V(\/h/(m)\l)w(T))deo( /h/(m)\l)w(t))dpt,m(w)7
resp. the Planck constant i [217]

Ao %u = 5= A3Au+ V(z)u
u(t,z) = [y, % Jo VIV Aa/muw()dr o /3T w(t))d P, o (w),

resp. the mass m [383]

Dy = i&u — iV (z)u,

ot
u(t2) = [y, e VIO (/TR w0(1) AP, o (w),
By substituting respectively \; = —i, Ay = ik, or A3 = —im, one gets, at least

heuristically, the Schrédinger equation (with 7 = 1 in the latter case) and its
solution. These procedures can be made completely rigorous under suitable
conditions on the potential V" and the initial datum ¢, see [165, 383, 167, 168,
297, 302, 447, 307, 217, 361, 377, 472, 175, 440, 70] for the details.

There are naturally many similarities, but no “automatic translation”,
of properties of infinite dimensional oscillatory integrals with properties of
infinite dimensional probabilistic integrals (of Wiener type) [120, 303, 265], e.g.
the method of stationary phase (discussed in 10.3) corresponds to the Laplace
methods, see, e.g. [102, 213, 234, 163, 202, 203, 304, 326, 327, 328, 329, 230].
Also related is the study of stochastic oscillatory integrals [290, 291, 359, 360,
391, 426, 429, 433, 435, 436, 437, 438, 439, 119, 152, 254].

Note that [441, 442, 58] handle the case of the Schrodinger equation on
manifolds.

10.4.2 White Noise Calculus Approach

An alternative approach to the rigorous mathematical realization of Feynman
path integrals can be found in white noise calculus [275, 427, 277, 336, 348,
206, 59]. The leading idea is not radically different from the one of the Fresnel
integral approach of chapters 2-9. In fact in the case of Fresnel integrals the
expression

(2mi) =/ /R o f(a)ds, (10.54)



10.4 Alternative Approaches to Rigorous Feynman Path Integrals 117

which has not a meaning as a traditional Lebesgue integral unless f is sum-
mable, is realized as a distributional pairing between ez (**) /(27i)%/2 and the
function f € F(R?), by means of the Parseval type equality:

~

[ete @ = [ e deDan @, fw) = [ de D).
]Rd Rd

Rd

In white noise calculus the pairing is realized in a different distributional
setting. Indeed by manipulating the integrand in (10.54), one has

(2mi)~4/2 /d e%(l’w)f(:v)dx
R

= (27Ti)_d/2 / e%(xvx)""%(xvx)f<x)e—%(af,x)dx
R

1 i 1
= |, e f@)dne @),
where the latter line can be interpreted as the distributional pairing of
i~4/2e3(@2)+5(2,2) apg f not with respect to Lebesgue measure but rather
with respect to the centered Gaussian measure jug on R? with covariance the
identity.

This idea can be generalized to the infinite dimensional case (following
Hida [275], see also [277]). The first step is the construction of the underlying
measure space, the infinite dimensional analogous of (R?, jug). The starting
point is a real separable Hilbert space E, with inner product (, ), and vector
subspaces & D & D ..., each &, being a Hilbert space with inner product
(, )p such that

1. € :=nNyé&, is dense in F and in each &,

2. |ulq < ul, for every ¢ > p and u € &,

3. for every p, the Hilbert-Schmidt norm ||iy|| ms of the inclusion iy, : €, —
&p is finite for some ¢ > p and lim,_. ||igpll s = 0.

Identifying E := &y with its dual &7, there is the chain of spaces
E=Mpép, C--CECECE=FExE CE L CE - CE :=Uply,

where £, = &), p € Z. In a typical example one has an Hilbert-Schmidt
operator K, with Hilbert-Schmidt norm || K| gs < 1, &, is taken as the range
Im(KP?) and

(u,v)p = (K Pu, K~ Pv). (10.55)

According to Milnos’ theorem there is a unique probability measure p on the
Borel o—algebra (of the weak topology) on £* such that for every x € £ the
function

& R (pa) = pla)
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is a mean zero Gaussian of variance |x|3. By unitary extension, for every z € E
there is a p-almost-everywhere defined mean 0, variance |z|p, Gaussian ran-
dom variable (-, ) on £*, and this extends by complex linearity to complex
Gaussian random variables corresponding to elements z of the complexifica-
tion E¢ of E.

In the following (£*, 1) will be taken as the underlying measure space for the
realization of the (at this level still heuristic) expression

/ e3 (B2 +3(@2) f()dp(x). (10.56)

As a second step one has to give a meaning to (10.56) as a suitable dis-
tributional pairing and to construct the space of functionals, or of infinite
dimensional distributions, to which ez (@) +3(z.7) belongs. The starting point
is the space L?(£*,p). It is unitary equivalent by the Hermite-Ito-Segal iso-
morphism Z to the symmetric Fock space Fs(E¢) on Eg, i.e. the Hilbert space
obtained by completing the symmetric tensor algebra over F¢ with respect
to the inner product given by ((3°,, tun, >, Um))o = >, M (tn,Vn)o, where
u, and v, are n—tensors and (-, -)p denotes the inner product on n-tensors
induced by the inner product on E¢. Analogously the inner products (-, -),, pro-
duce inner products ((-,-)), on Fy(Ec). The Hermite-Ito-Segal isomorphism
T: L*(&*, 1) — Fs(Ec), specified by

I(e(i’z)f(z,Z)o/Q) — Exp(z)

for every z € E¢, where (-, 2) : £* — C: ¢ — ¢(2) and Exp(z) = 1+Z+%+
Z;% +--- € Fs(Ec), allows to transfer the inner products ((-,-)), from F,(Ec)
to L2(£*, 1), denoted again with ((,-)),. A white noise distribution over £*
is defined as an element of the completion [£_,] of L?(£*, ) with respect to
the dual norm ((-,-))_p, for any integer p > 0. One has the chain of Hilbert
spaces

[€] = Mp[&p] C--- C &) C &) C [&] =
= L& p) = [E5] C [€1] C [E-2] -+~ C[€7] := UplEp)-

The elements of [£] are taken to be test functions over [£*], which is the
corresponding space of distributions.

It is important to recall that a distribution ¢ € [£*] can be characterized by
its S-transform Sy (an analogue of the finite dimensional Laplace transform)
which is the function on E¢ defined by:

Selz) = (p, eI~y s e g

(,) is the pairing between ¢ € [€*] and e(*)~(*2)/2 ¢ [£], where (-, )¢ denotes
the complex bilinear form induced on E¢ by the inner product on E. In fact
it is possible to prove the following characterization theorem [330], which is
a generalization of Potthoff-Streit’s characterization theorem [392] (see also
[259]).



10.4 Alternative Approaches to Rigorous Feynman Path Integrals 119

Theorem 10.12. A function F : €& — C is the S-transform of an element
© € [E*] if and only if satisfies the following conditions:

1. For all z1,29 € &, the mapping A\ — F(z1 + Az2), from R into C has an
entire extension to A\ € C;

2. For some continuous quadratic form B on £ there exists constants C; K >
0 such that for all z € Ec, a € C,

|F(az)| < Cexp(Klaf*|B(2))).

One can also recover a distribution ¢ € [£*] by means of its T-transform (an
analogue of the finite dimensional Fourier transform), defined by

To(j) = p(el7) = €207 Sp(—ij).
In this framework it is possible to realize the Feynman path integral represen-

tation for the fundamental solution K (¢,x;0,y) of the Schrodinger equation
over R?

Kt 2:0,y) = / P @O/DVEENT Gy ¢ 50,2,y € RY
y(t)=x,7(0)=y

in terms of white noise distributions on a suitable “path space” £* [427, 277,
206, 336, 348]. We limit ourselves to present here some results given in [336].
Let us consider the Hilbert space E = Ly := L*(R) ® R?, the nuclear space
E = S4:=S(R)®R4 i.e. the space of d—dimensional Schwartz test functions,
and the corresponding dual space £* = 5 = S'(R) ® R% Let u be the
Gaussian measure on the Borel g-algebra of S/, identified by its characteristic
function

/ eifX(T)f(T)deu(X) — e—%ff2(7')d7'7 f c Sd-
S

a
Heuristically the “paths” X € S can be interpreted as the “velocities”
(Gaussian white noises) of Brownian paths, as the d-dimensional Brownian

motion is given by B(t) = (fot Xi(7)dr, .. .,fg Xq(7)dT), X; being the iz,
component of the path X. One then considers the triple

[Sa] € L*(S3) € [S3]

and realizes the Feynman integrand as an element of [S}]. More precisely the
paths are modeled by

y(1) =2 — \/7_1/ X(0)do =z — VRh(X, L),

(where in the sequel we shall put A = 1 for notation simplicity) and the
Feynman integrand for the free particle is realized as the distribution

Io(a,t;,0) = Ne'= Jo X275 (0) — ),
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(where N stands for normalization and §(y(0) — y) fixes the initial point of
the path), defined rigorously by its T-transform:

1 i 2 1 2
TIo(f) = ———mc 2 eI dr—gm (e f(Ddr+e=y)”, 10.57
O(f) (27Tit)d/26 ( )
It is interesting to note that the values of TIy(f) for f = 0 as well as for a
generic f € Sy have a direct physical meaning, which becomes more clear by
using the following heuristic notation and a formal integration by parts

Th(f) = / e AT N I A75(5(0) — y)dp
S

’
d

— o 302 (NAT Jiw f()—iyf(0) /Ne‘él Js 3?7 o= [V FDAT 550 — y)dpe
(10.58)

In fact TIy(f) gives the fundamental solution K7 (¢, x;0,y) of the Schrédinger

equation with time dependent linear potential V (¢, z) = f(t)x

.0

1 )
(1a + §A — f(t)x)K7 (t,2;0,y) = 0, }ir%Kf(t,x;O,y) =d(z —y)

i 2 . .

multiplied by the factor e 2 Jo.ne ? (M7 i f()=if(0) a5 one can easily verify
by direct computation of expression (10.57). The same technique allows one to
handle more general potentials, such as those which are Laplace transform of
bounded measures (see [336] for a detailed exposition), a corresponding result
has been obtained by different methods in [73] and [92]. The white noise ap-
proach has been also successfully employed in the rigorous construction of the
Chern—Simons functional integral in topological field theory (see Sect. 10.5.5).
For other applications of the white noise approach to Feynman path integrals
see, e.g. [147, 148, 150, 176, 258, 260, 261, 414, 426).

10.4.3 The Sequential Approach

An alternative approach to the rigorous mathematical definition of Feynman
path integrals which is very close to Feynman’s original derivation of (1.13) is
the “sequential approach”. The starting point is the Lie-Kato—Trotter product
formula (which is also discussed in Chap. 1, see equations (1.7)-(1.11)), which
allows to write the unitary evolution operator e~ #*# whose generator is the
Hamiltonian operator H = Hy + V', Hy = f%A, in terms of the following
strong operator limit:

et = 5 lim (e*%%ve*%%HO)n. (10.59)

n—oo

By taking an vector ¢ in Schwartz space S (R™) and by substituting into

(10.59) the Green function of the unitary operator e~ ntHo,



10.4 Alternative Approaches to Rigorous Feynman Path Integrals 121

~ktHo () = (2milit m O y)d 10.60
e p(z) mi— e e(y)dy, (10.60)

d
2

one gets the following expression

o H ()
_dn i | m (imei1)? ¢
ht 2 % 2ej=1 {*#*V(%) ™
=5— nlirr;o (2“%%) / e " ’ (+) 4.0(330>

Rnd
dxg...drp—1 (10.61)

where z,, = x and the exponent in the integrand can be recognized as the
classical action functional:

N~ me )t
St($n,7$0)—z ET V(.’L'j)

In particular the term (%1#’1) is the (constant) velocity of the path con-

t
o

Jj=1

necting the points x;_; and z; in the time interval %
Equation (10.61) is a special case of the semigroup product formula

s— lim (F(t/n))" = exp(tF’(0)) (10.62)

n—oo

where ¢ +— F(t) is a strongly continuous mapping form the reals (or non-
negative reals) into the space of bounded linear operators on an Hilbert space
‘H, while F'(0) has to be interpreted as some operator extension of the strong
limit s — limy .ot~ '(F(¢) — I). In particular if A, B are self-adjoint operators
in H and F(t) = e“e*? one gets formally the Trotter product formula

5 — nli_)ngo(eitA/neitB/n)n _ eit(A+B) (1063)
(where the sum A + B has to be suitably interpreted). Precursors in this
approach are the works of Yu. Daleckii and others, e.g. [194, 195] (see also
ref. [10]).
Nelson in 1964 [383] proved (10.63) in connection with the rigorous mathe-
matical definition of Feynman path integrals, under the assumption that the
potential V' belongs to the class considered by Kato (see [10(6)]). Some time
later, in 1972, C.N. Friedman [11] studied (10.62) in connection with con-
tinuous quantum observation. Feynman himself in [1] considered particular
“ideal” quantum measurements of position, made to determine whether or
not the trajectory of a particle lies in a certain space—time region. By substi-
tuting in (10.62) for F(t) the operator EP(t)E, where P(t) is a contraction
semigroup in the Hilbert space H and FE is an orthogonal projection, and
letting P(t) = e~ 0 and B : Ly(R?) — Ly(R?) be the orthogonal projection
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given by multiplication by the characteristic function of a suitable region R
of R?, the limit 4

lim [[(Be™"o/mE)"y||?

n—oo

(if it exists) should give the probability that a continual observation during
the time interval [0, ] yields the result that the particle, whose initial state is
the vector ¢ € Ly(R9), lies constantly in the region R.

The leading idea of the “sequential approach” is the definition of the
Feynman path integral by means of a limiting procedure like (10.61), without
using the Trotter product formula. More precisely for any n € N one considers
a partition of the interval [0,¢] into n subintervals tg =0 < t; < ... < t; <
... <ty =t and for each j = 0...n a point z; € R?. The path v in the heuristic
expression (1.13) is then approximated by a broken line path, passing, for each
Jj = 0,...,n, from the point x; at time ¢;. There are two approaches to this
“time slicing approximation”: one can connect the point x; at time ¢; with
the point x;41 at time ¢;11 by means of a straight line path [449, 335, 244],
ie.y(r) =a; + %(T —t;j), T € [tj,tj41], or by means of a classical path
[239], i.e. the (unique for suitable V' and if |t;41 — t;| is sufficiently small)
solution of the classical equation of motion

mA(1) = =VV(1,7(7))
v(t) = zj,
Y(tj+1) = T4

An heuristic expression like

[ers st

is then realized as the limit of the time slicing approximation for suitable
functional f on the path space. Indeed denoting by +, the broken line path
(straight resp. piecewise classical) associated to the partition tg = 0 < t1 <
.. <tlj <..<t,=t,and by A, the amplitude of each time subinterval, i.e.
A, = |tj41 —t;], one defines

n

i 1 d/2 i n
= #5:(7) — i #St(vn) )
F(f) = /eﬁ f(dy = Jim ] (thtj) /Rndeﬁ f(%)j|=|1dw‘],

j=1

(10.64)

whenever the limit exists. The integrals on the r.h.s. do not converge ab-
solutely and are meant as (finite dimensional) oscillatory integrals.

Fujiwara in the case of approximation with piecewise classical paths and
Fujiwara and Kumano-go in the case of broken line paths prove the exis-
tence of the limit (10.64) for a suitable class of functionals f. They assume
that the potential V (¢, ) is a real valued function of (t,z) € R x R% and for
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any multi-index o, 92V (¢, ) is continuous in R x R?. Moreover they assume
that for any integer k > 2 there exists a positive constant Ay such that

[0SV (¢, 2)| < Ag, la| = K,

(this excludes polynomial behaviour at infinity). The so defined functional
F has some important properties. Integration by parts and Taylor expansion
formula with respect to functional differentiation hold. F' is invariant un-
der orthogonal transformations and transforms naturally under translations.
Moreover the fundamental theorem of calculus holds for F' and a semiclassical
approximation has been developed. Moreover it is possible to interchange the
order of integration with Riemann—Stieltjes integrals and to interchange the
operation of taking the integral and the one of taking a limit [244].

It is interesting to note that in the particular case where f € F(H), F(f) coin-
cides with the infinite dimensional oscillatory integral F"( f) (Definition 10.3).
For other sequential approaches see, e.g., [156, 177, 180, 218, 156, 284, 285,
286, 289, 443, 444, 445, 247].

10.4.4 The Approach via Poisson Processes

An alternative approach to the rigorous mathematical definitions of Feynman
path integrals is based on Poisson measures. It was originally proposed by
Maslov and Chebotarev [365, 368, 369, 370, 367, 332] and further developed by
Blanchard, Combe, Hoegh-Krohn, Rodriguez, Sirugue, Sirugue-Collin, [157,
183, 184, 185, 189], and, recently, by Kolokoltsov [324].

The potentials V which can be handled by this method are those belonging
to the Fresnel class F(H). The approach is based on the fact that given a
function V : R — C which is the Fourier transform of a finite complex Borel
measure ji, on R?,

V(z) = / drdn k), zERF
Rd

under suitable assumptions it is possible to construct a probabilistic represen-
tation of the solution of the Schrédinger equation in momentum representation:

S (p) = —30*0(p) — iV (=iV, )i (p)

2 (10.65)

¥(0,p) = &(p)
In fact for any pu, € F(R?) there exist a positive finite measure v and a
complex-valued measurable function f such that p,(dk) = f(k)v(dk). With-
out loss of generality it is possible to assume that v({0}) = 0, so that v is a
finite Lévy measure. Let us consider a Poisson process having Lévy measure
v (see, e.g. [393, 121, 122] for these concepts). This process has almost surely
piecewise constant paths. More precisely a typical path P on the time inter-
val [0, ¢] is defined by a finite number of independent random jumps 01, ..., 0p,
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distributed according to the probability measure v/\,, with A, = v(R%), oc-
curring at random times 7y, ...7,, distributed according to a Poisson measure
with intensity A,. Under the assumption that ¢(p) is a bounded continu-
ous function, it is possible to prove that the solution of the Cauchy problem
(10.65) can be represented by the following path integral:

)

7;(15, p) = et)‘VELO’t] [e*% > =0 (P5, Pi)(Tj41—75) H}lzl(*if(tsj))@(p(t))]

where the expectation E,[JO’t] is taken with respect to the measure associated

to the Poisson process and the sample path P(-) is given by

Po=p, 0<7<m

Pr=p+6, <7< ™m

P(r) = (10.66)

P,=p+d1+0a+..+6,, m<7<t

The present approach has also been successfully applied to the study of the
Klein-Gordon equation [183, 185], to Fermi systems [184], and to the solution
of the Dirac equation [332]. We refer to the above cited bibliography for a
more detailed discussion.

10.5 Recent Applications

The examples we are going to describe show that infinite dimensional os-
cillatory integrals are a flexible tool and can provide rigorous mathematical
realizations for a large class of Feynman path integral representations.

10.5.1 The Schrédinger Equation with Magnetic Fields

In [69, 70] the Feynman path integral representation for a Schrédinger equa-
tion with magnetic field is studied:

ih-2ep = L(—ihV + a(x))?) + Vo(z)
{w(%t,z) ZQw(x), xeRt >00 (10.67)

where a(x) and Vj(z) are a vector and a scalar potential respectively. Let us
assume that a(x) = Cz, where C is an anti-self-adjoint linear operator in R?
and Vp, ¢ € F(R?). Equation (10.67) describes the time evolution of a charged
quantum particle (with unitary charge and mass) in a constant magnetic field
B = rot (Cxz) and in a scalar potential Vj.

Let us consider the Hilbert space H; of absolutely continuous functions -~ :
[0,t] — R such that v(0) = 0 and fot 4(1)%dT < oo, with scalar product

(71,72) = fot 1(7)A2(7)dr. Let L : Hy — H;: be the operator on H; defined by
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(Lyise) = / (C1 (7Yia() + Ca((r )i (7))

It is possible to prove (see [70] for details) that L is symmetric and belongs to
the Hilbert-Schmidt class 75(H;). The Feynman path integral representation
for the solution of the Schrédinger equation (10.67)

W(t, ) = / ( )e%h I§ 32T [§ COM+3(dr— [§ Vo(y(D+2)T 0 (0) 4 )y
y(t)=x

can be rigorously mathematically realized as a class-2 normalized integral
over the Hilbert space H; (for the definition of class-p normalized integrals
see Sect. 10.1). More precisely the following holds:

Theorem 10.13. Under the above assumptions and if sin(tvC*C) # 0, the
solution of the Schrédinger equation (10.67) is given by the following class 2
normalized integral:

2 i t i i t
Wt z) = /H o7 Jo V2T 55 (E17) o3 fo Vo (r(M+@)AT o (1) 4 ) dry

For the proof see [70].

10.5.2 The Schrodinger Equation with Time Dependent Potentials

The aim of the present section is to provide a rigorous mathematical re-
alization for the Feynman path integral representation for the solution of
Schrédinger equation where the potential is explicitly time dependent:

iy = (— 22N+ V(t,z))y
{w(%,x) — o(2) (10.68)

First of all we consider a linearly forced harmonic oscillator, i.e. let us assume
that the potential V is of the type “quadratic plus linear” and that the linear
part depends explicitly on time:

1
V(t,x) = 593!2233 + f(t)-x, zeR? (10.69)

where (2 is a positive symmetric constant d x d matrix with eigenvalues (2;,
j=1...d,and f: I C R — R? is a continuous function. This potential is
particularly interesting from a physical point of view as it is used in simple
models for a large class of processes, as the vibration-relaxation of a diatomic
molecule in gas kinetics and the interaction of a particle with the field oscilla-
tors in quantum electrodynamics. Feynman calculated heuristically the Green
function for (10.69) in his famous paper on the path integral formulation of



126 10 Some Recent Developments

quantum mechanics [232]. Under suitable assumptions on the initial datum ¢
it is possible to prove that Feynman’s heuristic formula

t

Wit z) = /( ) o3 Jo 1(MIFAT=35 [§ /(D22 y(m)dr— [5 ()T 00 0))dy
y(t)=x

(10.70)

can be realized as an infinite dimensional oscillatory integral on the Hilbert
space H; of absolutely continuous paths 7 : [0,¢] — RY, such that (¢) = 0,
and square integrable weak derivative fg |4(7)|?dT < oo, endowed with the

inner product (y1,72) = fot A1 () -v2(7)dr. Let L : Hy — H; be the trace class
symmetric operator on H; given by:

) = [ / C(@) i, v e My

One can easily verify that if t # (n+1/2)7/(2;, n € Z and (2; any eigenvalue
of 2, then (I — L) is invertible and

det(I — L) = det(cos(£2t)).
Let moreover w,v € H; be defined by

w(r) = (;_2;(7_2 —t%), v(r) = %/j /OT f(r"dr"ar’. (10.71)

Then the heuristic Feynman path integral representation (10.70) can be real-
ized as the following infinite dimensional oscillatory integral on H;:

ot z) = / o2 S Pds— g [ (v(s)+2) Q2 ((s)+a)ds
Y(t)=0

e~ o J) 4205 3 (0) 4 2)dry = e~ i F 8P i [y F(s)ds

Ht

(where f}z is a rigorous functional in the sense of Definition 10.3). In-

deed let ¢ € F(R?), then one can easily see that the functional ~
eV W)y (4(0) + 2) belongs to F(H;) and the infinite dimensional os-
cillatory integral (10.72) on H; can be explicitly computed by means of the
Parseval-type equality (10.6). If moreover ¢ € S(R?), one can proceed further
and compute explicitly the Green function G(0,t,x,y):

Y(t,x) = y G(0,t, 2, y)e(y)dy,
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where

0] iQsin(2t) !
G(O7tax; Z/) = (27Tih)7d/2 det (—Sin(gt))e%(z cos(2t)x+y cos(2t)y—2xy)

ef%a: sin(02t) 1 fot sin(.Qs)f(s)dS*%y(fg cos(2s) f(s)ds—cos(2t) sin(2t) ! fg sin(£2s) f(s)ds)

e%()—l(% cos(£2t) sin(Qt)_l(fot sin(Qs)f(s)ds)2ffot sin(2s) f(s)ds fot cos(£2s) f(s)ds)

6’%9_1 jg cos(£2s) f(s) f: sin($2s’) f(s")ds'ds (1073)
where t # (n + 1/2)7/£2; (see [107] for more details).

An analogous result can be obtained for the Schrodinger equation with an
harmonic-oscillator potential with a time-dependent frequency:

1
Vit,z) = EmQQ(t)J;, zeR? (10.74)

where 2 :[0,¢] — L(RY,R9) is a continuous map from the time interval [0, ]
to the space of symmetric positive d x d matrices. This problem has been ana-
lyzed by several authors (see for instance [390, 314] and references therein) as
an approximate description for the vibration of complex physical systems, as
well as an exact model for some physical phenomena, as the motion of an ion
in a Paul trap, the quantum mechanical description of highly cooled ions, the
emergence of non classical optical states of light owing to a time-dependent
dielectric constant, or even in cosmology for the study of a three-dimensional
isotropic harmonic oscillator in a spatially flat universe, with metric given by
gij = R(t)0;;, with R(t) being the scale factor at time t.
If d = 1, it is possible to solve the Schrédinger equation with potential (10.74)
(and also the corresponding classical equation of motion) by adopting a suit-
able transformation of the time and space variables which allows to map the
solution of the time-independent harmonic oscillator to the solution of the
time-dependent one (see [397, 398, 399] and references therein). Indeed by
considering the classical equation of motion for the time-dependent harmonic
oscillator (10.74)

i(s) + 22(s)u(s) = 0, (10.75)

given two independent solutions w; and wus of (10.75) such that uy(0) =
u2(0) = 0 and wus(0) = u1(0) = 1, it is easy to prove that the function
¢ = u? + u2 is strictly positive £(s) > 0 Vs and it satisfies the following
differential equation:

26— 4482 —4=0.

Moreover the function 7 : [0, 00] — R

o) = | Ce(r) s

is well defined and strictly increasing. One verifies that



128 10 Some Recent Developments
u(s) = &(s)"/*(Acos(n(s)) + Bsin(n(s))) (10.76)

is the general solution of the classical equation of motion (10.75). In other
words by rescaling the time variable s — 7(s) and the space variable z +—
€122 it is possible to map the solution of the equation of motion for the
time-independent harmonic oscillator #(s) + u(s) = 0 into the solution of
(10.75). In fact it is possible to find (see, for instance, [309] for more details)
a general canonical transformation (x,p,t) — (X, P,7), given by

X =¢(t)y" Y2
d;_(tﬂ =¢(t)? (10.77)

P =9 = ("% — 56 1¢)

and the Hamiltonian is given by H(X,P,7) = $(P? + X?), while the
generating function of the transformation (z,p,t) — (X, P, 7) is given by
14
F(x,P,t) = &(t) " 22P + 5(tzTgscz and the transformation is given more ex-
plicitly as
p= 31F (x, P,t)
X = F(z,Pt) (10.78)
H(X,P;7)i = H(z,p;t) + & F(x, P,t)
A similar result holds also in the quantum case. In fact by considering the

Schrodinger equations for the time-independent and time-dependent harmonic
oscillator respectively,

(m% A 1 2)¢T1(t r) =0, (10.79)
i1+ 2 n— Lorat vt = o (10.80)

ot

it is possible to prove [397] the following relation between the two solutions
Yrp and Py

drr = () expli€(t)a® [ARE()Yrp (n(t), £(t) 7 2a). (10.81)

In an analogous way it is possible to prove that, denoting by Kr(t,0;z,y)
and Krp(t,0;z,y) the Green functions for the Schrodinger equations (10.79)
and (10.80) respectively, the following holds:

Krp(t,05,y) = £(t) 7/ explié (t)2® /ARE ()] K1 (n(t), 0: (1)~ 2, y).
(10.82)

It is interesting to note that the “correction term” &(t)~/4 expl[ié(t)22 /4hE(t)]
in equations (10.81) and (10.82) can be interpreted in terms of the classical
canonical transformation (10.78) (see [309] for more details).

Infinite dimensional oscillatory integrals provide a tool for the derivation
of (10.81) and (10.82). Indeed let us consider the following linear operator
L:Hy — Hy:
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(Ly)(7 / / 22 (u)y(u)dudr, v € Hs.

One can easily verify that L is self-adjoint, trace class and positive, moreover,
by using (10.76), it is possible to prove that, if t # =1 (7/2 + n7), n € N,
the operator I — L is invertible, its inverse can be explicitly computed and its
Fredholm determinant is given by det(I — L) = £(¢)*/2 cos(n(t)) (see [107] for
more details). Let us consider the vectors Go,u € H; given by

Go(r) =t -1, u(t) = %/ / 2% (r)drdu, x € R.
t Jo

With the notations introduced so far and by assuming that the initial vector
¢ belongs to F(R), so that ¢ = [ip, the heuristic Feynman path integral
representation for the solution of the Schriodinger equation with the time-
dependent potential (10.74)

s /{m o}eﬁfMﬂdeﬁfom’ DO (0) +)dy
Yl (t

can be rigorously realized as the infinite dimensional oscillatory integral asso-
ciated with the Cameron-Martin space H;:

U(t,2) = e 200 /H e U=D i) o(3(0) + )y,

that can be computed by means of Parseval-type equality (see Theorem 10.1).
Moreover if ¢ € S(R), one can proceed further and compute the Green func-
tion Krp(t,0;z,y):

s 3 — —-1/2,,
#<Zﬁ.§1}éf§§)<€(t> 17”2*?!2)*72&52("(”)@

(2mihsin(n(t)))/2

Krp(t,0;2,y) = &(t) /e T e 0

By recalling the well known formula for the Green function Kr;(t,0;x,y) of
the Schrodinger equation with a time-independent harmonic oscillator Hamil-
tonian (see, e.g., [413]):

o 3r (S8 (22 +y%) - 22

Kri(t,0;x,y) = (2mihsin(t))1/2

one can then verify directly the validity (10.82).

Remark 10.7. The case where d > 1 is more complicated. In fact neither a
transformation formula analogous to (10.77) exists in general, nor a formula
analogous to (10.82) relating the Green function of the Schrédinger equation
with a time-dependent resp. time-independent harmonic oscillator potential
(see for instance [398, 399] for some partial results in this direction).



130 10 Some Recent Developments

The above results can be generalized to more general time dependent poten-
tials of the following form

Vit,z) = Volt, ) + Vi(t,z), (10.83)

where V} is of the type (10.69) or (10.74) and V; : [0,1] x R? — R satisfies the
following assumptions:

1. For each 7 € [0,¢], the application Vi(7, -) : R? — R belongs to F(R?),
e Vi(1,2) = [pa e*o (dk), o, € M(RY)

2. The application 7 € [0,] — o, € M(R?) is continuous in the norm || - ||
of the Banach space M(R?)

Under the assumptions above it is possible to prove that the application
N € Hy s e TV wawt)du o (g ]

belongs to F(H;). Moreover by assuming that the initial datum ¢ belongs to
Ly(R?) N F(R?), the Feynman path integral representation for the solution of
the Schrodinger equation with time dependent potential (10.83)

/ o2 S HMPdr— g5 [ (v(1)+2) 22 (1) (3(r) +a)dr
~(t)=0
e Jo FO- (M F)dT =5 o VT (mta)dr o0 0) 4 2)dy

(with 22(7) = 22 independent of 7 if f # 0) can be rigorously mathemat-
ically realized as an infinite dimensional oscillatory integral. More precisely
the following holds.

Theorem 10.14. Under the assumptions above, the following infinite dimen-
sional oscillatory integral on the Cameron-Martin space Hy

/ " o L (T Pdr— g5 1 (y(r)+2) 22 (1) (+(r) +a)dr
Hi

e w Jo FO)- (M) F)dr o= g Vra(m+o)dT o0 0) + 2)dy (10.84)

is a representation of the solution of Schrodinger equation with time dependent
potential V' given by (10.83) and initial datum .

For a proof see [107].

10.5.3 Phase Space Feynman Path Integrals

Let us recall that Feynman’s original aim was to give a Lagrangian formulation
of quantum mechanics. On the other hand an Hamiltonian formulation could
be preferable from many points of view. For instance the discussion of the
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semiclassical limit of quantum mechanics is more natural in an Hamiltonian
setting (see, e.g., [69, 196, 216, 364] for a discussion of this behavior): in
fact the “phase space” rather than the “configuration space” is the natural
framework of classical mechanics.

In the physical literature one can often find a “phase space Feynman path
integral” representation for the solution of the Schrédinger equation, that is
an heuristic formula of the following type:

“ih(t, ) = const / eiﬁst(qm)ap(q(O))dqdp”. (10.85)

q(t)==

The integral is meant on the space of paths (¢(7),p(7)), 7 € [0,t] in the
phase space of the system (q(7))-¢[o,4 is the path in configuration space and
P(T)refo0,4g is the path in momentum space) and .Sy is the action functional in
the Hamiltonian formulation:

Su(g,p) = / (§(r)p(r) — H(q(r).p(r)))dr,

(H being the classical Hamiltonian of the system). Different approaches have
been proposed for giving a well defined mathematical meaning to the heuristic
formula (10.85), for instance via analytic continuation of probabilistic inte-
grals and by considering coherent states [196], or as an “infinite dimensional
distribution” (see [169, 170, 171, 172] and references therein). In particular
in [80] the phase space Feynman path integral (10.85) has been realized as
a well defined infinite dimensional oscillatory integral on a suitable Hilbert
space of paths. This approach is particularly advantageous if one is interested
in the study of the semiclassical limit by means of a rigorous application of
the stationary phase method (adapting the method in [87, 69] as recalled in
Sect. 10.3).

Let us introduce the Hilbert space H; x L, namely the space of paths in the
d—dimensional phase space (q(7),p(7))re[0,4, such that the path (¢(7))-c[0,4
belongs to the space of the absolutely continuous functions ¢ from [0,¢] to
R? such that q(t) = 0 and ¢ € L([0,¢],R¢), while the path in the momen-
tum space (p(7))re[0,4) belongs to Ly = La([0, 7], RY), endowed with the inner
product

t t
(e = [ 6O+ [ p(@padr
0 0
Let us consider the following bilinear form:

[q1,P1;(I27P2} =

/ &1 (T)pa(r)dr + / p1 (7 (7)dr — / p1()pe(r)dr = (a1, p1; B(ds, pa)),
0 0 0
(10.86)
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where B is the following operator in H; X Ly,
Blap)(r) = (| p(wdu.i(r) - p(r)), (1057)
t

B is densely defined, e.g. on C1([0,#]; R?) x C*(]0,t];RY), it is invertible with
inverse given by

B a)(r) = (| pladu-+ o(r).d(7) (10.85)
(on the range of B). The quadratic form on H; x L; given by (¢,p) —
((¢,p), B(q,p)) =2 fot q(m)p(r)dr — fot p(7)2dr can be recognized as the classi-
cal Hamiltonian action of the system S(g,p) (multiplied by 2) along the path
(q,p) for the free particle, i.e. H(g, p) = p*/2. The phase space Feynman path
integral representation, or in other words the integration with respect to the
phase space variables, becomes particularly interesting when the potential de-
pends explicitly both on position and on velocity, i.e. H(q,p) = p*/2+V (q,p).
Under suitable assumptions on the function V' and the initial datum ¢ it is
possible to realize the heuristic expression (10.85) as an infinite dimensional
oscillatory integral (in the sense of Definition 10.4):

Theorem 10.15. Let us consider the following Hamiltonian'

H(Q:P) = 24 v+ vap)

in L?(RY) and the corresponding Schrédinger equation

)= —LHY
{¢(07$)h= o(x), xcR? (10.89)

Let us assume that Vi, € F(R?) and fOtVQ(p(T))dT € F(Ly). Then the
functional

f(ag,p) = ¢z + q(o))e*% J3 V(a(s)+z,p(s))ds

belongs to F(Hy X Ly) and the well defined normalized Fresnel integral with
respect to the operator B in (10.87)

B _ .
/ o3r @PiB(@p)) o= f [V (a(r)+2) V227 5 (0(0) + 2)dgdp
He XLy

is a representation of the solution of the Cauchy problem (10.89).

For a proof of these results see [80]. For a different application of phase space
Feynman path integral see [452] and for a different approach [287].

! The general case presents problems due to the non commutativity of the quantized
expression of @ and P, for a different approach with more general Hamiltonians
see [420].
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10.5.4 The Stochastic Schrodinger Equation

A recent and particularly interesting application of Feynman path integrals
can be found in the quantum theory of measurement. Let us recall that the
continuous time evolution of a quantum system described by the traditional
Schrodinger equation (1.3) is valid if the quantum system is “undisturbed”,
but if it is submitted to the measurement of one of its observables the influ-
ence on the measuring apparatus on it cannot be neglected. In fact the state
of the system after the measurement is the result of a random and discon-
tinuous change, the so-called “collapse of the wave function”, which cannot
be described by the ordinary Schrédinger equation. There are several efforts
to include the process of measurement into the traditional quantum theory
and to deduce from its laws, instead of postulating, the collapse of the wave
function. In particular the aim of the quantum theory of measurement is a
description of the process of measurement taking into account the properties
of the measuring apparatus, which is handled as a quantum system, and its
interaction with the system submitted to the measurement [201].

An alternative Feynman path integral approach was proposed by Mensky
[373]. In fact he proposed an heuristic formula for the selective dynamics of
a particle whose position is continuously observed. According to Mensky the
state of the particle at time ¢ if the observed trajectory is the path w(s)sc(o,4
is given by the “restricted path integral”

Yt z,w) = “ /{ o }e%st(v)e*Af(f(’Y(S)*W(S))stw(,y(o))pfy ”(10.90)
y(t)=x

where ¢ € Ly(R?) is the initial state of the system, S; is the action functional
and A > 0 a real positive parameter. One can see that, as an effect of the
correction term e~ Jo (/(8)=w())’ds qye to the measurement, the paths v giving
the main contribution to the integral (10.90) are, heuristically, those closer to
the observed trajectory w.

Another alternative phenomenological description for the process of “un-
sharp” continuous quantum measurement can be given by means of a class
of stochastic Schrodinger equations, see for instance [144, 131, 132, 212, 373,
248, 134, 135, 136, 322, 57, 159]. A particular example is Belavkin’s equa-
tion, a stochastic Schrédinger equation describing the selective dynamics of a
d—dimensional particle submitted to the measurement of one of its (possible
M —dimensional vector) observables, described by the self-adjoint operator R
on L?(R9)

dy(t, ) = —L Hip(t, 2)dt — 3 R2(t, )dt + VAR (¢, 2)dW (t)
(10.91)
Y(0,z) = (,D(.’)C) (L.’L‘) € [O’T] x R

where H is the quantum mechanical Hamiltonian, W is an M —dimensional
Brownian motion on a probability space (2, F,P), dW(¢) is the Ito differen-
tial and A > 0 is a coupling constant, which is proportional to the accuracy
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of the measurement. In the particular case of the description of the continu-
ous measurement of position one has R = x (the multiplication operator in
L2(R%), so that equation (10.91) assumes the following form:

dyp(t,z) = —LH(t,2)dt — 3a?p(t, z)dt + VAz(t, 2)dW (t)

(10.92)
P(0,2) = p(x) (t,z) €[0,T] x RY,
while in the case of momentum measurement, (R = —iAV), one has:
Ap(t, ) = — L HY(t, 2)dt + AEAQ(E 2)dt — iVARVS(t, 2)dW (1)
(10.93)

(0, ) = () (t,x) €[0,T] x RZ

Belavkin derives (10.91) by modeling the measuring apparatus (but it would
be better to say “the informational environment”) by means of a one-
dimensional bosonic field and by assuming a particular form for the inter-
action Hamiltonian between the field and the system on which the measure-
ment is performed. The solution v of the Belavkin equation is a stochastic
process, whose expectation values have an interesting physical meaning. Let
w(s),s € [0,t] be a continuous path (from [0,¢] into RM), I a Borel set in
the Banach space C([0,¢],R*) endowed with the sup norm, and let P be the
Wiener measure on C([0,¢], RM). The probability that the observed trajec-
tory up to time ¢, i.e. the values of the observable R(s),c[o4, belongs to the
set of paths I is given by the following Wiener integral:

P(R(s) = w(s)scpog € 1) = / (t, ) PAP(w).

Moreover if we measure at time ¢ another observable of the system, denoted
with Z, then its expected value, conditioned to the information that the ob-
served trajectory of R up to time ¢ belongs to the Borel set I, is given by:

E(Z(8)|R(s) = w(s)scion € ) = /1 W(t’:z;id)}(f’w»

dP(w).

(where ¥(t,w) # 0 is assumed).

Infinite dimensional oscillatory (Fresnel) integrals provide a Feynman path
integral representation of the solution of the stochastic Schrodinger equations
(10.92) and (10.93) and, as a consequence, also a rigorous mathematical real-
ization of the heuristic formula (10.90) [96, 97, 450, 451, 81, 82]. The present
result is a generalization of Theorem 10.1 to complex valued phase functions.

Theorem 10.16 ([81]). Let H be a real separable Hilbert space, let y € H be
a vector in 'H and let Ly and Lo be two self-adjoint, trace class commuting
operators on H such that I + Ly is invertible and Lo is non negative. Let
moreover f: H — C be the Fourier transform of a complex bounded variation
measure fiy on H:



10.5 Recent Applications 135

flx) = pr(z),  f(z)= /Hei(’”’k)duf(k), z €H.
Then the function g : H — C given by
glr) = o2 L) ()

(L being the operator on the complexification HC of the real Hilbert space H
given by L = Ly +1Ls) is integrable (in the sense of Definition 10.3) and its
infinite dimensional oscillatory integral

/ o2 @I+ 1)2) o0:9) £ ()
H

can be explicitly computed by means of the following Parseval type equality:

/Heﬁ(17(I+L)””)e(y’x)f(£)dx = det(I—i—L)_l/Q/He 2m(k_iy’(HL)il(k_iy))dﬂf(k)
(10.94)

The following theorem gives an application of Theorem 10.16 to the solution
of the stochastic Schrodinger equation:

Theorem 10.17 ([81]). Let V and ¢ be Fourier transform of finite com-
plex measures on RY. Then there exists a (strong) solution of the stochas-
tic Schrédinger equation (10.92) and it can be represented by the following
infinite dimensional oscillatory integral with complex phase on the Hilbert
space (Hy, (, ) of absolutely continuous function ~ : [0,t] — R such that

f(f |5(s)[2ds < oo, with inner product (y1,72) = fot A1 (8)A2(s)ds:

Y(t,z) = /e%St(w)—AJZ(V(S)Jrz)zdseJLf ﬁ(w(8)+r)dW(S)ds¢(,y(0) + 2)dy

— e—)\|x\2t+ﬁw‘w(t)/ ezih(’y,(I—i—L)'y)e(l,'y)e—QAhfg’ z-y(s)ds
He

e Vv (9)ds oy (0) + 2)dy

where | € Hy , I(s) = \/sttw(T)dT and

t
L: Hf — Hf, (71, Lye) = —21)\h/ 1 (8)v2(s)ds
0

The existence and uniqueness of a strong solution of (10.92) is proved in [248].
For a detailed proof of the Feynman path integral representation (Theorem
10.17) see [81, 371]).

A corresponding result can be obtained for the Belavkin equation (10.93)
describing a continuous momentum measurement [82, 450, 451].
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10.5.5 The Chern—Simons Functional Integral

A particularly interesting application of heuristic Feynman path integrals can
be found in a paper by Witten [465], who conjectured that there should be
a connection between quantum field theories based on the so-called Chern—
Simons action and the Jones polynomial, a link invariant (see also [127, 160,
262, 362, 237]). (Witten’s work was preceded, in the abelian case, by work
of Schwarz [407, 408]). Witten’s heuristic calculations are based on a heuris-
tic Feynman path integral formulation of Chern—Simons theory, where the
integration is performed on a space of geometric objects, i.e. on a space of
connections. Chern—Simons theory is a quantum gauge field theory in 3 di-
mensions (Euclidean 3-dimensional space-time). More precisely let M be a
smooth 3-dimensional oriented manifold without boundary, let G be a com-
pact Lie group (the “gauge group”), and let ¢ be its Lie algebra with a fixed
Ad-invariant inner product (-,-). Let A be a g—valued connection 1-form and
let

Sos(A) = % /M (tanas)+ %(A AANAD),

be the Chern—Simons action, where k is a non-zero real constant, [A, A] is the
2-form whose value on a pair of vectors (X,Y) is 2[A(X), A(Y)] and (A A B),
for a g—valued 1-form A and a g—valued 2-form B is the 3-form whose value
on (X,Y,Z) is given by the skew-symmetrized form of (A(X), B(Y, Z)).

According to Witten—Schwarz’s conjecture, the heuristic Feynman path
measure of the form

1 .
dpp(A) = Ze‘SCS(A)DA, (10.95)

(where DA is a heuristic flat measure on the space Ajp; of smooth g—valued
connection 1-forms on M with compact support and Z is a normalization
constant) should allow for the computation of topological invariants of the
manifold M. Indeed let L be a link in M, i.e. a n-tuple (I1,...,1,), n € N, of
loops in M whose arcs are pairwise disjoint and let W LF(L) be the Wilson
loop function associated to L, that is the map:

WLF(L) : Ay 3 A [ Te(Hol(A, 1)) € C,
i=1

where Hol(A,l) denotes the holonomy of A around [. The heuristic integral
WLO(L) := / WLF(L)dpp (10.96)

is called Wilson loop observable associated to the link L. According to Witten
the function mapping every sufficiently regular link L to the associated Wilson
loop observable W LO(L) should be a link invariant.

A rigorous formulation of expression (10.96) and a justification of Witten—
Schwarz’s conjecture were obtained in the case G is abelian by Albeverio and
Schéfer [405, 115] in terms of Fresnel integrals, and in terms of white noise
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analysis by Leukert and Schéfer [353]. This result was generalized to the non
abelian case for M = R3 in [116] by means of white noise analysis (see also
[83] for a detailed exposition of this topic). Recently rigorous results on an
asymptotic expansion of (a regularization of) (10.96) in powers of k have been
obtained in [112].

We present here the result of [116], where a suitable choice of gauge leads
to a quadratic expression for the transformed Scg. In fact every connection
on R? can be gauge transformed into the form

A = apdxg + ardxq,
where ag and a; are functions over R? taking values in the Lie algebra g, and

arjr2x{o}) =0,  aojrx{@,0)} =0 (10.97)

In this gauge the Chern—Simons action Scg loses the cubic term and, after
integration by parts, becomes

Scs(ag,ar) = %< 0, —0201) 2R3, g)

and the Chern—Simons integrals take the form

flag, ar)eSes(90:90) daday (10.98)
A/

where the integral is meant on the space A’ of connections (ag,a1) satisfying
(10.97). Instead of (ag,a1) we shall use (ag, f1), with f; = 02a;. With this
convention the Chern—Simons action assumes the simple form Scg(ag, f1) =
%(ao, J1)r2(rs3 ). Expression (10.98) can be rigorously mathematically real-
ized by means of white noise analysis (see Sect.10.4.2), by considering the
Hilbert space E := L2 ,(R%g® g) ~ (L%, (R ® g) & (L2,,,(R?) @ g).
L2, ,(R3) denotes the space of real-valued functions which are square in-
tegrable with respect to the Lebesgue measure on R3. The operator K
in (10.55) is taken to be the identity on g @ g and is given by K1®3 on
L2, (R)®3 ~ L2 (R3), where K is the operator }1(—%4—“‘;)’1 on LZ,,(R).
&y is the space

{(Kpa()?Kpfl) +aop, fl € Lgeal(R?)) ® g}
and the (-, -), inner product is specified by the norm

(a0, )5 = 1K P aollZz(gs g + K" f1ll72 s )-

The Chern—Simons integrator is defined as the distribution ®¢g on £* =
S} e, (R?) whose S-transform (an infinite dimensional analogue of the finite
dimensional Laplace transform, relative to Gaussian measure rather than

Lebesgue measure, see Sect. 10.4.2) is
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SBcs(jo, j1) = o 7 1(70,31) 1223, g) = ((J0:31),(J01))0 /2

The construction of observables is rather involved. Indeed for general elements
A in the domain of @¢g the expression Hol(A,l) as well as the function
W LF(L) make no sense. The problem can be solved considering a “smeared”
version WLF(L,¢€) of WLF(L), defined by replacing all expressions [(t), t €
St with functions [¢(¢) concentrated in a e-neighborhood of I, given by I(t) :=
»e((-) — I(t)), where 9¢ := 6%@[;((—6)) and 9 is a element of C°°(R?) such that
¢ >0, supp(¢)) € Bi(0) and [5 ¥(2)dz = 1. The function WLF(L,€) so
constructed is measurable on £* and belongs to [€], so that Pos(WLF(L,€))
is well defined. Unfortunately for the definition of @cg(W LF(L)) it is not
sufficient to take lim._,o Pcs(WLF(L,€)), as this does not exist for all L
belonging to a sufficiently large set of links in R3 and the mapping

L— lil%écs(WLF(L,é)) eC

is not, in general, a link invariant. One has to introduce an additional reg-
ularization: the so called “framing procedure”. This is done by choosing a
suitable family (¢g)s>0 of diffeomorphisms of R? such that (s o lg)s>0 ap-
proximates the loop [l for every k¥ < n and compute WLO(L,¢;p5) =
Pes(WLF(L,€;¢5)). It is possible to prove (see [266, 267, 268] for details)
that if the framing (ps)s>o and the link L = (l4,...,1,,) satisfy suitable as-
sumptions, the limit
WLO(L, @) = lli% gg% WLO(L, € o)

exists and represents a topological invariant (see [83, 268, 269] for a detailed
exposition). However the values of the WLOs obtained by means of this pro-
cedure do not coincide with the values presented in various publications in the
physical literature, even if they are quite similar. In [269] Hahn conjectured
that the main reason for this non coincidence is the non compactness of the
manifold M = R3. In a recent paper [270] the same author studies the case
of a compact product manifolds M of the form M = ¥ x S', where X is an
oriented surface, by applying special gauge fixing procedures, called “quasi-
axial gauge” resp “torus gauge”. By using suitable regularization procedures
as “loop smearing” and “framing”, the values of the WLOs can be rigorously
computed, both for abelian and non-abelian groups G (see [270, 271, 272] for
a detailed exposition).

Notes

Section 10.1 An other alternative approach to the rigorous mathematical definition
of Feynman path integrals makes use of nonstandard analysis [78]. The starting point
is the finite dimensional approximation of the Feynman path integral by means of
piecewise linear paths, as explained in Chap. 1, (1.10):
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kn
i T2 i . .
e ip(z) =5 — lim (Zﬂiﬁz) / e w5t (30 )dag . dak

k—oo mk
Rk

The leading idea is the extension of the expression

kn
_kn i
(2ﬂi%£) / e W50 () dag . dy

Rnk

from k € N to a nonstandard hyperfinite infinite k¥ € *N. The result is just an
internal quantity. For a suitable class of potentials its standard part can be shown
to exist and to solve the Schrodinger equation.

In an analogous way the semiclassical approximation of the solution of the Schrédinger
equation can be obtained by taking the parameter i as an infinitesimal quantity.
Even if this approach provides a very suggestive realization of the Feynman path
integrals, it has not been systematically developed yet. For a more detailed description
of non standard methods in mathematical physics see [78] and references therein. For
a newer development see [380, 379, 381, 356, 357, 358|.

Section 10.2 The problem of defining rigorously Feynman path integrals for
Schrodinger operators which are polynomial (or have polynomial growth) of order
greater than 3 has been open since the very introduction of Feynman path integrals.
A “time slicing” or “sequential approach” is possible in the form of a Lie-Trotter—
Kato formula (see Sect.10.4.3 and, e.g., [395, 383]), however a rigorous study of the
semiclassical limit seems to be absent. The approach by Fujiwara and Kumano-Go of
piecewise classical paths does not extend beyond potentials with at most quadratic
growth at infinity [239, 240, 241, 242, 243, 246, 244, 335]. The approach by Laplace-
transform does allow special potentials of exponential growth, but also does not
cover polynomial potentials [73, 92, 336]. Rather indirect approaches to polynomial
potentials, involving approximations and analytic continuations, which seems to
make difficult any semiclassical expansion are in [411, 421, 137, 138, 139, 140].

For semiclassical expansions for eigenvalues and time independent eigenfunctions
based on the corresponding equations with polynomial potentials see e.g. [413, 205].
The approach developed in this section is based on [69, 223, 105].

Section 10.3 Semiclassical expansions constitute a basic chapter in quantum
theory, related as they are with the correspondence principle [338, 155, 363], ap-
proximate calculations [355, 474], quantization procedures [382], see also, e.g.,
[77, 181, 182, 215, 224, 225, 245, 375, 415, 448, 452, 454, 455, 456, 457]. They
are also used as heuristic tools in low dimensional topology and differential geom-
etry [127, 268, 269, 112, 124]. They are also related to ray optics and certain high
frequency approximations in electromagnetism [124, 220, 153, 154], as well as high
Reynolds numbers expansions in hydrodynamics [62, 334, 79, 453]. There exists re-
sults in quantum mechanics and in the above related areas based on a rigorous
version of the WKB method and the Fourier integral operators [220, 141, 162, 273,
158, 189, 400]. Rigorous results based on Feynman path integrals were first obtained
by Albeverio and Hgegh-Krohn during the writing of the first edition of the present
book, but were not included in it but rather published separately [87]. Further re-
sults on this line are connected with the trace formula for Schrédinger operators
[64, 65, 66, 67], which unfortunately seem to have escaped attention, despite the
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strong resonance obtained by the related heuristic Gutzwiller trace formula, also
developed at about the same time [263, 406].

Asymptotics of eigenvalues and time independent eigenfunctions can be obtained
for the corresponding heat equation, see [413, 204, 205, 215, 216, 221]. The trace
formula has interesting relations with certain problems of number theory, which
deserve further attention, see [91, 66, 67, 110]. See also the comment at the end of
section 10.4.1, concerning asymptotic expansions of infinite dimensional probabilistic
integrals.

Section 10.4 In this section we only described to a certain extent a few alternative

approaches. There are other ones. One has been presented in [420], we already
mentioned it in the notes of Sect.10.2. A combinatorial resp. discrete approach
has been presented in [191] resp [156]. An approach by Daubechies and Klauder
[196, 197, 198, 199, 200] concerns phase space integrals in quantum theory. The
semiclassical limit has not been discussed in it. There are approaches based on “exact
formulae” for special potentials. They are described extensively in several books [255,
256, 319, 406] (the reader should be aware that in these references not all formulae
are proven rigorously, some are only suggested on the basis of heuristic arguments
resp. on analogies with formulae in a corresponding probabilistic setting). Heuristic
formulae inspired by Feynman path integrals have also been widely used in quantum
theory in general [319, 406, 464] and especially in quantum field theory [164, 174,
296, 317, 389, 394, 462, 463, 475]. In particular those connected with instanton
expansions and of saddle point methods are of this type (and heuristically related
to the heat equation and associated probabilistic integrals). In addition there are
formulae related to critical point expansions. In the last two decades such formulae
have also given a lot of inspiration to other areas of mathematics, through work by
Atiyah and Witten, as well as work by e.g. Duistermaat, Donaldson, Kontsevich,
Polyakov.
There has often been, on the other side, an unfortunate tendency of completely
ignoring rigorization of path integrals, for the sake of “quick insight” or progress.
Even though this might be understandable for a time, it would certainly be negative
to mathematics in the long run, if it would develop into a systematic attitude. It is
in any case obvious that this is not the attitude of the present book, which insists on
the need of rigorous approaches. Let us finally mention that there are mathematical
approaches to supersymmetric Feynman path integrals, see, e.g., [349, 350, 352, 292,
419, 402).

Section 10.5 Here we only describe a few applications of Feynman path inte-
grals. There are other ones, as e.g. the application to the solution of Dirac equa-
tion [283, 288, 380, 381, 410, 468, 469, 470, 471, 157]. A non exhaustive list of
further applications and topics includes Feynman path integrals with singular po-
tentials [133, 235, 249, 252], relations to fractals [339, 340, 341, 342, 343, 431]
path integrals on manifolds [293, 294, 349, 350, 351, 352, 434, 441] resp. on
other non commutative structures [417], wave equations and related path integrals
[181, 182, 344, 345, 346, 347], hyperbolic systems [437, 438], quantum statistical
systems [430].

The approach to rigorous Chern—Simons integrals which we present here has been
developed in [115, 116, 117]. Sketches for an axiomatic approach have been given in
[310], see also [311, 312, 313].
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