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Preface

Interplay between matrix theory and matroid theory is the main theme of
this book, which offers a matroid-theoretic approach to linear algebra and,
reciprocally, a linear-algebraic approach to matroid theory. The book serves
also as the first comprehensive presentation of the theory and application of
mixed matrices and mixed polynomial matrices.

A matroid is an abstract mathematical structure that captures combi-
natorial properties of matrices, and combinatorial properties of matrices, in
turn, can be stated and analyzed successfully with the aid of matroid the-
ory. The most important result in matroid theory, deepest in mathematical
content and most useful in application, is the intersection theorem, a duality
theorem for a pair of matroids. Similarly, combinatorial properties of polyno-
mial matrices can be formulated in the language of valuated matroids, and
moreover, the intersection theorem can be generalized for a pair of valuated
matroids.

The concept of a mixed matrix was formulated in the early eighties as a
mathematical tool for systems analysis by means of matroid-theoretic com-
binatorial methods. A matrix is called a mixed matrix if it is expressed as
the sum of a “constant” matrix and a “generic” matrix having algebraically
independent nonzero entries. This concept is motivated by the physical ob-
servation that two different kinds of numbers, fixed constants and system
parameters, are to be distinguished in the description of engineering systems.
Mathematical analysis of a mixed matrix can be streamlined by the intersec-
tion theorem applied to the pair of matroids associated with the “constant”
and “generic” matrices. This approach can be extended further to a mixed
polynomial matrix on the basis of the intersection theorem for valuated ma-
troids.

The present volume grew out of an attempted revision of my previous
monograph, “Systems Analysis by Graphs and Matroids — Structural Solv-
ability and Controllability” (Algorithms and Combinatorics, Vol. 3, Springer-
Verlag, Berlin, 1987), which was an improved presentation of my doctoral
thesis written in 1983. It was realized, however, that the progress made in
the last decade was so remarkable that even a major revision was inadequate.
The present volume, sharing the same approach initiated in the above mono-
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graph, offers more advanced results obtained since then. For developments in
the neighboring areas the reader is encouraged to consult:

• A. Recski: “Matroid Theory and Its Applications in Electric Network
Theory and in Statics” (Algorithms and Combinatorics, Vol. 6, Springer-
Verlag, Berlin, 1989),

• R. A. Brualdi and H. J. Ryser: “Combinatorial Matrix Theory” (Encyclo-
pedia of Mathematics and Its Applications, Vol. 39, Cambridge University
Press, London, 1991),

• H. Narayanan: “Submodular Functions and Electrical Networks” (Annals
of Discrete Mathematics, Vol. 54, Elsevier, Amsterdam, 1997).

The present book is intended to be read profitably by graduate students in
engineering, mathematics, and computer science, and also by mathematics-
oriented engineers and application-oriented mathematicians. Self-contained
presentation is envisaged. In particular, no familiarity with matroid theory
is assumed. Instead, the book is written in the hope that the reader will
acquire familiarity with matroids through matrices, which should certainly
be more familiar to the majority of the readers. Abstract theory is always
accompanied by small examples of concrete matrices.

Chapter 1 is a brief introduction to the central ideas of our combinatorial
method for the structural analysis of engineering systems. Emphasis is laid
on relevant physical observations that are crucial to successful mathematical
modeling for structural analysis.

Chapter 2 explains fundamental facts about matrices, graphs, and ma-
troids. A decomposition principle based on submodularity is described and
the Dulmage–Mendelsohn decomposition is derived as its application.

Chapter 3 discusses the physical motivation of the concepts of mixed
matrix and mixed polynomial matrix. The dual viewpoint from structural
analysis and dimensional analysis is explained by way of examples.

Chapter 4 develops the theory of mixed matrices. Particular emphasis is
put on the combinatorial canonical form (CCF) of layered mixed matrices
and related decompositions, which generalize the Dulmage–Mendelsohn de-
composition. Applications to the structural solvability of systems of equations
are also discussed.

Chapter 5 is mostly devoted to an exposition of the theory of valu-
ated matroids, preceded by a concise account of canonical forms of poly-
nomial/rational matrices.

Chapter 6 investigates mathematical properties of mixed polynomial ma-
trices using the CCF and valuated matroids as main tools of analysis. Control
theoretic problems are treated by means of mixed polynomial matrices.

Chapter 7 presents three supplementary topics: the combinatorial relax-
ation algorithm, combinatorial system theory, and mixed skew-symmetric
matrices.

Expressions are referred to by their numbers; for example, (2.1) desig-
nates the expression (2.1), which is the first numbered expression in Chap. 2.
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Similarly for figures and tables. Major symbols used in this book are listed
in Notation Table.

The ideas and results presented in this book have been developed with
the help, guidance, encouragement, support, and criticisms offered by many
people. My deepest gratitude is expressed to Professor Masao Iri, who in-
troduced me to the field of mathematical engineering and guided me as the
thesis supervisor. I appreciate the generous hospitality of Professor Bernhard
Korte during my repeated stays at the University of Bonn, where a consider-
able part of the theoretical development was done. I benefited substantially
from discussions and collaborations with Pawel Bujakiewicz, François Cellier,
Andreas Dress, Jim Geelen, András Frank, Hisashi Ito, Satoru Iwata, András
Recski, Mark Scharbrodt, András Sebő, Masaaki Sugihara, and Jacob van der
Woude. Several friends helped me in writing this book. Most notable among
these were Akiyoshi Shioura and Akihisa Tamura who went through all the
text and provided comments. I am also indebted to Daisuke Furihata, Koichi
Kubota, Tomomi Matsui, and Reiko Tanaka. Finally, I thank the editors of
Springer-Verlag, Joachim Heinze and Martin Peters, for their support in the
production of this book, and Erich Goldstein for English editing.

Kyoto, June 1999 Kazuo Murota
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Preface to the Softcover Edition

Since the appearance of the original edition in 2000 steady progress has been
made in the theory and application of mixed matrices. Geelen–Iwata [354]
gives a novel rank formula for mixed skew-symmetric matrices and derives
therefrom the Lovász min-max formula in Remark 7.3.2 for the linear matroid
parity problem. Harvey–Karger–Murota [355] and Harvey–Karger–Yekhanin
[356] exploit mixed matrices in the context of matrix completion; the former
discussing its application to network coding. Iwata [357] proposes a matroidal
abstraction of matrix pencils and gives an alternative proof for Theorem
7.2.11. Iwata–Shimizu [358] discusses a combinatorial characterization for the
singular part of the Kronecker form of generic matrix pencils, extending the
graph-theoretic characterization for regular pencils by Theorem 5.1.8. Iwata–
Takamatsu [359] gives an efficient algorithm for computing the degrees of all
cofactors of a mixed polynomial matrix, a nice combination of the algorithm
of Section 6.2 with the all-pair shortest path algorithm. Iwata–Takamatsu
[360] considers minimizing the DAE index, in the sense of Section 1.1.1, in
hybrid analysis for circuit simulation, giving an efficient solution algorithm
by making use of the algorithm [359] above.

In the softcover edition, updates and corrections are made in the refer-
ence list: [59], [62], [82], [91], [93], [139], [141], [142], [146], [189], [236], [299],
[327]. References [354] to [360] mentioned above are added. Typographical
errors in the original edition have been corrected: MQ is changed to M(Q)
in lines 26 and 34 of page 142, and ∂(M ∩CQ) is changed to ∂M ∩CQ in line
12 of page 143 and line 5 of page 144.

Tokyo, July 2009 Kazuo Murota
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1. Introduction to Structural Approach —
Overview of the Book

This chapter is a brief introduction to the central ideas of the combinatorial
method of this book for the structural analysis of engineering systems. We
explain the motivations and the general framework by referring, as a specific
example, to the problem of computing the index of a system of differential-
algebraic equations (DAEs). In this approach, engineering systems are de-
scribed by mixed polynomial matrices. A kind of dimensional analysis is also
invoked. It is emphasized that relevant physical observations are crucial to
successful mathematical modeling for structural analysis. Though the DAE-
index problem is considered as an example, the methodology introduced here
is more general in scope and is applied to other problems in subsequent chap-
ters.

1.1 Structural Approach to Index of DAE

1.1.1 Index of Differential-algebraic Equations

Let us start with a simple electrical network1 of Fig. 1.1 to introduce the
concept of an index of a system of differential-algebraic equations (DAEs)
and to explain a graph-theoretic method.

The network consists of a voltage source V (branch 1), two ohmic resistors
R1 and R2 (branch 2 and branch 3), an inductor L (branch 4), and a capacitor
C (branch 5). A state of this network is described by a 10 dimensional vector
x = (ξ1, · · · , ξ5, η1, · · · , η5)T representing currents ξi in and the voltage ηi

across branch i (i = 1, · · · , 5) with reference to the directions indicated in
Fig. 1.1. The governing equations in the frequency domain are given by a
system of equations A(1)x = b, where b = (0, 0, 0, 0, 0;V, 0, 0, 0, 0)T is another
10 dimensional vector representing the source, and A(1) is a 10 × 10 matrix
defined by
1 This example, described in Cellier [28, §3.7], was communicated to the author

by P. Bujakiewicz, F. Cellier, and R. Huber.

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 1,
c© Springer-Verlag Berlin Heidelberg 2010
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A(1) =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
1 −1 0 0 −1
−1 0 1 1 1

−1 0 0 0 −1
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 sL 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 sC

. (1.1)

As usual, s is the variable for the Laplace transformation that corresponds
to d/dt, the differentiation with respect to time (see Remark 1.1.1 for the
Laplace transformation). The first two equations, corresponding to the 1st
and 2nd rows of A(1), represent Kirchhoff’s current law (KCL), while the
following three equations Kirchhoff’s voltage law (KVL). The last five equa-
tions express the element characteristics (constitutive equations). The system
of equations, A(1)x = b, represents a mixture of differential equations and
algebraic equations (i.e., a linear time-invariant DAE), since the coefficient
matrix A(1) contains the variable s.

V

L

R1

R

C

2

2
5

3

1

4
Fig. 1.1. An electrical network

For a linear time-invariant DAE in general, say Ax = b with A = A(s)
being a nonsingular polynomial matrix in s, the index is defined (see Remark
1.1.2) by

ν(A) = max
i,j

degs(A
−1)ji + 1. (1.2)

Here it should be clear that each entry (A−1)ji of A−1 is a rational function in
s and the degree of a rational function p/q (with p and q being polynomials)
is defined by degs(p/q) = degs p− degs q. An alternative expression for ν(A)
is
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ν(A) = max
i,j

degs((i, j)-cofactor of A) − degs detA+ 1. (1.3)

For the matrix A(1) of (1.1), we see

max
i,j

degs((i, j)-cofactor of A(1)) = degs((6, 5)-cofactor of A(1)) = 2,

detA(1) = R1R2 + sL ·R1 + sL ·R2 (1.4)

by direct calculation and therefore ν(A(1)) = 2 − 1 + 1 = 2 by the formula
(1.3).

The solution to Ax = b is of course given by x = A−1b, and therefore
ν(A) − 1 equals the highest order of the derivatives of the input b that can
possibly appear in the solution x. As such, a high index indicates difficulty
in the numerical solution of the DAE, and sometimes even inadequacy in
the mathematical modeling. Note that the index is equal to one for a system
of purely algebraic equations (where A(s) is free from s), and to zero for a
system of ordinary differential equations in the normal form (dx/dt = A0x
with a constant matrix A0, represented by A(s) = sI −A0).

Remark 1.1.1. For a function x(t), t ∈ [0,∞), the Laplace transform is
defined by x̂(s) =

∫∞
0
x(t)e−stdt, s ∈ C. The Laplace transform of dx(t)/dt

is given by sx̂(s) if x(0) = 0. See Doetsch [49] and Widder [341] for precise
mathematical accounts and Chen [33], Kailath [152] and Zadeh–Desoer [350]
for system theoretic aspects of the Laplace transformation. �

Remark 1.1.2. The definition of the index given in (1.2) applies only to
linear time-invariant DAE systems. An index can be defined for more general
systems and two kinds are distinguished in the literature, a differential index
and a perturbation index, which coincide with each other for linear time-
invariant DAE systems. See Brenan–Campbell–Petzold [21], Hairer–Lubich–
Roche [100], and Hairer–Wanner [101] for details. �

Remark 1.1.3. Extensive study has been made recently on the DAE in-
dex in the literature of numerical computation and system modeling. See,
e.g., Brenan–Campbell–Petzold [21], Bujakiewicz [26], Bujakiewicz–van den
Bosch [27], Cellier–Elmqvist [29], Duff–Gear [60], Elmqvist–Otter–Cellier
[72], Gani–Cameron [86], Gear [88, 89], Günther–Feldmann [98], Günther–
Rentrop [99], Hairer–Wanner [101], Mattsson–Söderlind [188], Pantelides
[264], Ponton–Gawthrop [272], and Ungar–Kröner–Marquardt [324]. �

1.1.2 Graph-theoretic Structural Approach

Structural considerations turn out to be useful in computing the index of
DAE. This section describes the basic idea of the graph-theoretic structural
methods.

In the graph-theoretic structural approach we extract the information
about the degree of the entries of the matrix, ignoring the numerical values



4 1. Introduction to Structural Approach — Overview of the Book

of the coefficients. Associated with the matrix A(1) of (1.1), for example, we
consider

A
(1)
str =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
t1 t2 0 0 t3
t4 0 t5 t6 t7

t8 0 0 0 t9
0 t10 t11 0 t12
0 0 t13 t14 0

0 0 0 0 0 t15 0 0 0 0
0 t16 0 0 0 0 t17 0 0 0
0 0 t18 0 0 0 0 t19 0 0
0 0 0 s t20 0 0 0 0 t21 0
0 0 0 0 t22 0 0 0 0 s t23

where t1, · · · , t23 are assumed to be independent parameters.
For a polynomial matrix A = A(s) = (Aij) in general, we consider a

matrix Astr = Astr(s), called the structured matrix associated with A, in
a similar manner. For a nonzero entry Aij , let αijs

wij be its leading term,
where αij ∈ R \ {0} and wij = degsAij . Then (Astr)ij is defined to be
equal to swij multiplied by an independent parameter tij . Note that the
numerical information about the leading coefficient αij is discarded with the
replacement by tij . Namely, we define the (i, j) entry of Astr by

(Astr)ij =
{
tijs

degs Aij (if Aij �= 0)
0 (if Aij = 0) (1.5)

where tij is an independent parameter. We refer to the index of Astr in the
sense of (1.2) or (1.3) as the structural index of A and denote it by νstr(A),
namely,

νstr(A) = ν(Astr). (1.6)

Two different matrices, say A and A′, are associated with the same struc-
tured matrix, Astr = A′

str, if degsAij = degsA
′
ij for all (i, j). In other words,

a structured matrix is associated with a family of matrices that have a com-
mon structure with respect to the degrees of the entries. Though there is
no guarantee that the structural index νstr(A) coincides with the true in-
dex ν(A) for a particular (numerically specified) matrix A, it is true that
νstr(A′) = ν(A′) for “almost all” matrices A′ that have the same structure
as A in the sense of A′

str = Astr. That is, the equality νstr(A′) = ν(A′) holds
true for “almost all” values of tij ’s, or, in mathematical terms, “generically”
with respect to the parameter set {tij | Aij �= 0}. (The precise definition of
“generically” is given in §2.1.)

The structural index has the advantage that it can be computed by an
efficient combinatorial algorithm free from numerical difficulties. This is based
on a close relationship between subdeterminants of a structured matrix and
matchings in a bipartite graph.
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Specifically, we consider a bipartite graph G(A) = (Row(A),Col(A);E)
with the left vertex set corresponding to the row set Row(A) of the matrix
A, the right vertex set corresponding to the column set Col(A), and the edge
set corresponding to the set of nonzero entries of A = (Aij), i.e.,

E = {(i, j) | i ∈ Row(A), j ∈ Col(A), Aij �= 0}.

Each edge (i, j) ∈ E is given a weight wij = degsAij .
For instance, the bipartite graph G(A(1)) associated with our example

matrix A(1) of (1.1) is given in Fig. 1.2(a). The thin lines indicate edges
(i, j) of weight wij = 0 and the thick lines designate two edges, (i, j) =
(9, 4), (10, 10), of weight wij = 1.

A matching M in G(A) is, by definition, a set of edges (i.e. M ⊆ E) such
that no two members of M have an end-vertex in common. The weight of
M , denoted w(M), is defined by

w(M) =
∑

(i,j)∈M

wij ,

while the size of M means |M |, the number of edges contained in M . We
denote by Mk the family of all the matchings of size k inG(A) for k = 1, 2, · · ·,
and by M the family of all the matchings of any size (i.e., M = ∪kMk).

For example, the thick lines in Fig. 1.2(b) show a matching M of weight
w(M) = 1 and of size |M | = 10, and M ′ = (M \{(3, 10), (10, 5)})∪{(10, 10)}
is a matching of weight w(M ′) = 2 and of size |M ′| = 9.

Assuming that Astr is an n×n matrix, we consider the defining expansion
of its determinant:

detAstr =
∑

π∈Sn

sgnπ ·
n∏

i=1

(Astr)iπ(i) =
∑

π∈Sn

sgnπ ·
n∏

i=1

tiπ(i) · s
∑n

i=1
wiπ(i) ,

where Sn denotes the set of all the permutations of order n, and sgnπ = ±1
is the signature of a permutation π. We observe the following facts:

1. Nonzero terms in this expansion correspond to matchings of size n in
G(A);

2. There is no cancellation among different nonzero terms in this expansion
by virtue of the independence among tij ’s.

These two facts imply the following:

1. The structured matrix Astr is nonsingular (i.e., detAstr �= 0) if and only
if there exists a matching of size n in G(A);

2. In the case of a nonsingular Astr, it holds that

degs detAstr = max
Mn∈Mn

w(Mn). (1.7)
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Fig. 1.2. Graph G(A(1)) and the maximum-weight matching

A similar argument applied to submatrices of Astr leads to more general
formulas:

rankAstr = max
M∈M

|M |,

max
|I|=|J|=k

degs detAstr[I, J ] = max
Mk∈Mk

w(Mk) (k = 1, · · · , rstr), (1.8)

where Astr[I, J ] means the submatrix of Astr having row set I and column
set J , and rstr = rankAstr. It should be clear that the left-hand side of (1.8)
designates the maximum degree of a minor (subdeterminant) of order k.
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A combination of the formulas (1.3) and (1.8) yields

νstr(A) = max
Mn−1∈Mn−1

w(Mn−1) − max
Mn∈Mn

w(Mn) + 1 (1.9)

for a nonsingular n × n polynomial matrix A. Thus we have arrived at a
combinatorial expression of the structural index.

For the matrix A(1) we have (cf. Fig. 1.2)

max
M

(1)
n−1∈M(1)

n−1

w(M (1)
n−1) = 2, max

M
(1)
n ∈M(1)

n

w(M (1)
n ) = 1

and therefore νstr(A(1)) = 2 − 1 + 1 = 2, in agreement with ν(A(1)) = 2.
It is important from the computational point of view that efficient combi-

natorial algorithms are available for checking the existence of a matching of a
specified size and also for finding a maximum-weight matching of a specified
size. Thus the structural index νstr, with the expression (1.9), can be com-
puted efficiently by solving weighted bipartite matching problems utilizing
those efficient combinatorial algorithms.

A number of graph-theoretic techniques (which may be considered vari-
ants of the above idea) have been proposed as “structural algorithms” (Bu-
jakiewicz [26], Bujakiewicz–van den Bosch [27], Duff–Gear [60], Pantelides
[264], Ungar–Kröner–Marquardt [324]). It is accepted that structural consid-
erations should be useful and effective in practice for the DAE-index problem
and that the generic values computed by graph-theoretic “structural algo-
rithms” have practical significance.

1.1.3 An Embarrassing Phenomenon

While the structural approach is accepted fairly favorably, its limitation has
also been realized in the literature. A graph-theoretic structural algorithm, ig-
noring numerical data, may well fail to render the correct answer if numerical
cancellations do occur for some reason or other. So the failure of a graph-
theoretic algorithm itself should not be a surprise. The aim of this section is
to demonstrate a further embarrassing phenomenon that the structural index
of our electrical network varies with how KVL is described.

Recall first that the 3rd row of the matrix A(1) represents the conservation
of voltage along the loop 1–5 (V –C). In place of this we now take another
loop 1–2–4 (V –R1–L) to obtain a second description of the same electrical
network. The coefficient matrix of the second description is given by
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A(2) =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 sL 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 sC

, (1.10)

which differs from A(1) in the 3rd row. The associated structured matrix A(2)
str

differs from A
(1)
str also in the 3rd row, and is given by

A
(2)
str =

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5
t1 t2 0 0 t3
t4 0 t5 t6 t7

t24 t25 0 t26 0
0 t10 t11 0 t12
0 0 t13 t14 0

0 0 0 0 0 t15 0 0 0 0
0 t16 0 0 0 0 t17 0 0 0
0 0 t18 0 0 0 0 t19 0 0
0 0 0 s t20 0 0 0 0 t21 0
0 0 0 0 t22 0 0 0 0 s t23

,

where {ti | i = 1, · · · , 7, 10, · · · , 26} is the set of independent parameters.
Naturally, the index should remain invariant against this trivial change

in the description of KVL, and in fact we have

ν(A(1)) = ν(A(2)) = 2.

It turns out, however, that the structural index does change, namely,

νstr(A(1)) = 2, νstr(A(2)) = 1,

where the latter is computed from the graph G(A(2)) in Fig. 1.3; we have

max
M

(2)
n−1∈M(2)

n−1

w(M (2)
n−1) = 2, max

M
(2)
n ∈M(2)

n

w(M (2)
n ) = 2

and therefore
νstr(A(2)) = ν(A(2)

str ) = 2 − 2 + 1 = 1

according to the expression (1.9).
The discrepancy between the structural index νstr(A(2)) and the true in-

dex ν(A(2)) is ascribed to the discrepancy between degs detA(2)
str = 2 and



1.1 Structural Approach to Index of DAE 9

Rows

1

2

3

4

5

6

7

8

9

10

Columns

1

2

3

4

5

6

7

8

9

10

weight=0

weight=1

(a)

Rows

1

2

3

4

5

6

7

8

9

10

Columns

1

2

3

4

5

6

7

8

9

10

maximum-weight

matching of size 10

(weight = 2)

(b)

Fig. 1.3. Graph G(A(2)) and the maximum-weight matching

degs detA(2) = 1, which in turn is caused by a numerical cancellation in the
expansion of detA(2). A closer look at this phenomenon reveals that this can-
cellation is not an accidental cancellation, but a cancellation with good reason
which could be better called structural cancellation. In fact, we can identify
a 2 × 2 singular submatrix of the coefficient matrix for the KCL and a 3 × 3
singular submatrix of the coefficient matrix for the KVL:
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ξ1 ξ5

1 −1
−1 1

,

η2 η3 η4
−1 0 −1
1 1 0
0 −1 1

as the reason for this cancellation. More specifically, the expansion of detA(2)
str

contains four “spurious” quadratic terms

t1 · t7 · t25 · t11 · t14 · t15 · t16 · t18 · st20 · st23, (1.11)
t1 · t7 · t26 · t10 · t13 · t15 · t16 · t18 · st20 · st23, (1.12)
t3 · t4 · t25 · t11 · t14 · t15 · t16 · t18 · st20 · st23, (1.13)
t3 · t4 · t26 · t10 · t13 · t15 · t16 · t18 · st20 · st23, (1.14)

which cancel one another when the numerical values as well as the system
parameters are given to tij ’s (t1 = t7 = t10 = t11 = t14 = 1, t3 = t4 = t13 =
t15 = t25 = t26 = −1, t16 = R1, t18 = R2, t20 = L, t23 = C). In fact, detA(2),
which is equal to detA(1) = R1R2 + sL ·R1 + sL ·R2 given in (1.4), does not
contain those terms. Note that the term (1.11) corresponds to the matching
in Fig. 1.3(b), and recall that the system parameters R1, R2, L, C are treated
as mutually independent parameters, which cannot be cancelled out among
themselves.

This example demonstrates that the structural index is not determined
uniquely by a physical/engineering system, but it depends on its mathemat-
ical description. It is emphasized that both

η1 η2 η3 η4 η5
−1 0 0 0 −1

A(1) : 0 1 1 0 −1
0 0 −1 1 0

and

η1 η2 η3 η4 η5
−1 −1 0 −1 0

A(2) : 0 1 1 0 −1
0 0 −1 1 0

are equally a legitimate description of KVL and there is nothing inherent to
distinguish between the two. In this way the structural index is vulnerable to
our innocent choice. This makes us reconsider the meaning of the structural
index, which will be discussed in the next section.

Remark 1.1.4. The limitation of the graph-theoretic structural approach,
as explained above, is now widely understood. Already Pantelides [264] rec-
ognized this phenomenon and more recently Ungar–Kröner–Marquardt [324]
expounded this point with reference to an example problem arising from an
analysis of distillation columns in chemical engineering. �

1.2 What Is Combinatorial Structure?

In view of the “embarrassing phenomenon” above we have to question the
physical relevance of the structural index (1.6) and reconsider how we should
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recognize the combinatorial structure of physical systems. The objective of
this section is to discuss this issue and to introduce an advanced framework
of structural analysis that uses mixed (polynomial) matrices as the main
mathematical tool. The framework realizes a reasonable balance between
physical faith and mathematical convenience in mathematical modeling of
physical/engineering systems. As for physical faith, it is based on two differ-
ent observations; the one is the distinction between “accurate” numbers (fixed
constants) and “inaccurate” numbers (independent system parameters), and
the other is the consistency with respect to physical dimensions. As for math-
ematical convenience, the analysis of mixed (polynomial) matrices and the
design of efficient algorithms for them can be done successfully by means of
matroid theory. Hence the name of “matroid-theoretic approach” for the ad-
vanced framework based on mixed matrices, as opposed to the conventional
graph-theoretic approach to structural analysis.

1.2.1 Two Kinds of Numbers

Let us continue with our electrical network. The matrix A(2) of (1.10) can be
written as

A(2)(s) = A(2)
0 + sA(2)

1

with

A
(2)
0 =

1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0

, A
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 L 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 C

.

(1.15)
We observe here that the nonzero entries of the coefficient matrices A(2)

k

(k = 0, 1) are classified into two groups: one group of fixed constants (±1)
and the other group of system parameters R1, R2, L and C. Accordingly, we
can split A(2)

k (k = 0, 1) into two parts:

A
(2)
k = Q(2)

k + T (2)
k (k = 0, 1)

with
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Q
(2)
0 =

1 −1 0 0 −1
−1 0 1 1 1

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0

, T
(2)
0 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 R1 0 0 0 0 0 0 0 0
0 0 R2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

,

Q
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, T
(2)
1 =

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 L 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 C

.

It is assumed that the system parameters, R1, R2, L, C, are independent
parameters. Even when concrete numbers are given to R1, R2, L, C, those
numbers are not expected to be exactly equal to their nominal values, but
they lie in certain intervals of real numbers of engineering tolerance. Even in
the extreme case where both R1 and R2 are specified to be 1Ω, for example,
their actual values will be something like R1 = 1.02Ω and R2 = 0.99Ω.

Generally, when a physical system is described by a polynomial matrix

A(s) =
N∑

k=0

skAk, (1.16)

it is often justified (see §1.2.2) to assume that the nonzero entries of the coef-
ficient matrices Ak (k = 0, 1, · · · , N) are classified similarly into two groups.
In other words, we can distinguish the following two kinds of numbers, to-
gether characterizing a physical system. We may refer to the numbers of the
first kind as “fixed constants” and to those of the second kind as “system
parameters.”

Accurate numbers (fixed constants): Numbers accounting for various sorts of
conservation laws such as Kirchhoff’s laws which, stemming from topo-
logical incidence relations, are precise in value (often ±1), and therefore
cause no serious numerical difficulty in arithmetic operations on them.

Inaccurate numbers (system parameters): Numbers representing independent
system parameters such as resistances in electrical networks and masses
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in mechanical systems which, being contaminated with noise and other
errors, take values independent of one another, and therefore can be mod-
eled as algebraically independent numbers.2

Accurate numbers often appear in equations for conservation laws such as
Kirchhoff’s laws, the law of conservation of mass, energy, or momentum, and
the principle of action and reaction, where the nonvanishing coefficients are
either 1 or −1, representing the underlying topological incidence relations.
Integer coefficients in chemical reactions (stoichiometric coefficients), such as
“2” and “1” in 2 ·H2O = 2 ·H2 + 1 ·O2, are also accurate numbers. Another
example of accurate numbers appears in the defining relation dx/dt = 1 · v
between velocity v and position x. Typical accurate numbers are illustrated
in Fig. 1.4.

The above observation leads to the assumption that the coefficient ma-
trices Ak (k = 0, 1, · · · , N) in (1.16) are expressed as

Ak = Qk + Tk (k = 0, 1, · · · , N), (1.17)

where

(A-Q1): Qk (k = 0, 1, · · · , N) are matrices over Q (the field of ratio-
nal numbers), and

(A-T): The collection T of nonzero entries of Tk (k = 0, 1, · · · , N) is
algebraically independent over Q.

Namely, each Ak may be assumed to be a mixed matrix, in the terminology
to be introduced formally in §1.3. Then A(s) is split accordingly into two
parts:

A(s) = Q(s) + T (s) (1.18)

with

Q(s) =
N∑

k=0

skQk, T (s) =
N∑

k=0

skTk. (1.19)

Namely, A(s) is a mixed polynomial matrix in the terminology of §1.3.
Our intention in the splitting (1.17) or (1.18) is to extract a more mean-

ingful combinatorial structure from the matrix A(s) by treating the Q-part
numerically and the T -part symbolically. This is based on the following ob-
servations.

Q-part: The nonzero pattern of the Q-matrices is subject to our arbitrary
choice in the mathematical description, as we have seen in our electrical
network, and hence the structure of the Q-part should be treated numer-
ically, or linear-algebraically. In fact, this is feasible in practice, since the
entries of the Q-matrices are usually small integers, causing no serious
numerical difficulty in arithmetic operations.

2 Informally, “algebraically independent numbers” are tantamount to “indepen-
dent parameters,” whereas a rigorous definition of algebraic independence will
be given in §2.1.1.
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�
�

�

ξ1

ξ2
ξ3

KCL

−1 · ξ1 − 1 · ξ2 + 1 · ξ3 = 0

�

�

�
η1

η2

η3

KVL

−1 · η1 − 1 · η2 + 1 · η3 = 0

�
�

�H2O
H2

O2

Stoichiometry

2 · H2O = 2 · H2 + 1 · O2

Velocity v – displacement x v = 1 · ẋ (= s · x)

Current ξ – charge Q ξ = 1 · Q̇ (= s · Q)

Fig. 1.4. Accurate numbers

T -part: The nonzero pattern of the T -matrices is relatively stable against our
arbitrary choice in the mathematical description of constitutive equa-
tions and therefore it can be regarded as representing some aspect of
the combinatorial structure of the system. It can be treated properly by
graph-theoretic concepts and algorithms.

Combination: The structural information from theQ-part and the T -part can
be combined properly and efficiently by virtue of the fact that each part
defines a well-behaved and well-studied combinatorial structure called
matroid. Mathematical and algorithmic results from matroid theory af-
ford effective methods of system analysis.

We may summarize the above as follows:
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Q-part by linear algebra
T -part by graph theory
Combination by matroid theory

In §1.3 we shall take a glimpse at how the DAE-index problem can be
treated using mixed polynomial matrices and how the embarrassing phe-
nomenon of §1.1.3 can be resolved properly.

1.2.2 Descriptor Form Rather than Standard Form

In introducing mixed polynomial matrices we have assumed that the nonzero
entries of the coefficient matrices are either fixed constants or independent
parameters. This is an assumption on a description of a physical system, and
not an assumption on the system itself. For a system in question there can
be many different descriptions, but some of them may satisfy the assumption
and others may fail to meet it. In this section we discuss this issue by com-
paring the state-space equations (Kalman [153]) and the descriptor equations
(Luenberger [182, 183]).

Let us consider another example, a simple mechanical system (Fig. 1.5)
which consists of two masses m1, m2, two springs k1, k2, and a damper f ; u
is the force exerted from outside.

f

=

=

m1

k1 x2

x1

x3 x1

x2x4

k2

m2

.

.

u

Fig. 1.5. A mechanical system

We may describe the system in the form of state-space equations:

ẋ(t) = Âx(t) + B̂u(t) (1.20)

in terms of x = (x1, x2, x3, x4) and u = (u), where x1 and x2 are vertical
displacements (downwards, as indicated in Fig. 1.5) of masses m1 and m2,
respectively, and x3 and x4 are their velocities, and
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Â =

x1 x2 x3 x4

0 0 1 0
0 0 0 1

−k1/m1 0 −f/m1 f/m1

0 −k2/m2 f/m2 −f/m2

, B̂ =

u
0
0

1/m1

0

. (1.21)

It should be clear that ẋ is a short-hand notation for dx/dt, the time deriva-
tive of x.

The state-space equations (1.20) have been useful for investigating an-
alytic and algebraic properties of a dynamical system, and the structural
or combinatorial analysis at the early stage3 was based on it. It is gradu-
ally recognized, however, that the state-space equations are not very suitable
for representing the combinatorial structure of a system in that the entries
of matrices Â and B̂ of (1.20) are usually not independent but interrelated
to one another, being subject to algebraic relations. For instance, we have
Â33 + Â34 = 0 in (1.21), and consequently Â of (1.21) does not admit a
splitting into Q-part and T -part satisfying (A-Q1) and (A-T).

In this respect, the so-called descriptor form

F̄ ẋ(t) = Āx(t) + B̄u(t) (1.22)

is more promising, having more flexibility to avoid complicated algebraic rela-
tions among entries of the coefficient matrices. Here x is called the descriptor-
vector and u is the input-vector. The matrix F̄ is not necessarily nonsingular,
so that the reduction of (1.22) to the standard state-space form (1.20) is not
straightforward. Even when F̄ is nonsingular, the reduction to the standard
state-space form (1.20) with Â = F̄−1Ā and B̂ = F̄−1B̄ entailing compli-
cated algebraic relations among the entries of Â and B̂, is not advantageous
from the combinatorial point of view.

To describe our mechanical system in the descriptor form (1.22), it may
be natural to introduce two additional variables x5 (= force by the damper
f) and x6 (= relative velocity of the two masses). Additional equations (con-
straints) for these variables are given by4

x5 = fx6, x6 = ẋ1 − ẋ2.

Then the coefficient matrices in (1.22) are given by

F̄ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 m1 0 0 0
0 0 0 m2 0 0
0 0 0 0 0 0
1 −1 0 0 0 0

, Ā =

0 0 1 0 0 0
0 0 0 1 0 0

−k1 0 0 0 −1 0
0 −k2 0 0 1 0
0 0 0 0 −1 f
0 0 0 0 0 1

, B̄ =

0
0
1
0
0
0

. (1.23)

3 Structural approach in the literature of control theory was initiated by Lin [173]
in the mid-seventies.

4 We could replace the equation x6 = ẋ1− ẋ2 by x6 = x3−x4, which may be more
natural. Our choice is to make the example less trivial.
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The Laplace transform of the equation (1.22) gives a frequency domain
description:

sF̄ x̂(s) = Āx̂(s) + B̄û(s), or
[
Ā− sF̄ B̄

]
[

x̂(s)
û(s)

]

= 0,

where x(0) = 0, u(0) = 0 is assumed (see Remark 1.1.1 for the Laplace
transform). Then the system is described by a polynomial matrix

A(s) =
[
Ā− sF̄ B̄

]
. (1.24)

For our mechanical system we have

A(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0

−k1 0 −sm1 0 −1 0 1
0 −k2 0 −sm2 1 0 0
0 0 0 0 −1 f 0
−s s 0 0 0 1 0

(1.25)

as the matrix of (1.24). Note that no complicated algebraic expressions are
involved in this matrix, for which it is reasonable to assume (A-Q1) and (A-T)
above. Consequently, A(s) of (1.25) is expressed as A(s) = Q(s) + T (s) with

Q(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

, T (s) =

x1 x2 x3 x4 x5 x6 u
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−k1 0 −sm1 0 0 0 0
0 −k2 0 −sm2 0 0 0
0 0 0 0 0 f 0
0 0 0 0 0 0 0

.

(1.26)
Here we have T = {m1,m2, k1, k2, f} as the set of system parameters.

It is emphasized again that the coefficient matrices Â and B̂ in the stan-
dard state-space form do not admit such natural splitting into two parts. Thus
we may conclude that the descriptor form is more suitable for representing
the combinatorial structure than the standard state-space form.

1.2.3 Dimensional Analysis

Here is a kind of dimensional analysis concerning “accurate numbers,” i.e.,
concerning the constant part Q(s) =

∑N
k=0 s

kQk of the matrix A(s) in (1.18).
First we consider the physical dimensional consistency in the system of

equations A(s)x = b, where A(s) is assumed to be an m × n matrix. Since
this system is to represent a physical system, relevant physical dimensions are
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associated with both the variables (corresponding to the components of x)
and the equations (corresponding to the components of b), or alternatively,
with both columns and rows of the matrix A(s). Also the entries of A(s) have
physical dimensions.

In our mechanical system, for instance, we may choose time T , length
L and mass M as the fundamental quantities in the dimensional analysis.
Then the dimensions of velocity and force are given by T−1L and T−2LM ,
respectively. The physical dimensions associated with the equations, i.e., with
the rows of A(s) of (1.25), are

row 1 row 2 row 3 row 4 row 5 row 6
velocity velocity force force force velocity
T−1L T−1L T−2LM T−2LM T−2LM T−1L

(1.27)

whereas those with the variables (xi and u), i.e., with the columns of A(s),
are

col 1 col 2 col 3 col 4 col 5 col 6 col 7
length length velocity velocity force velocity force
L L T−1L T−1L T−2LM T−1L T−2LM

(1.28)

The (3, 1)-entry “−k1” of A(s), for example, has a dimension of T−2M .
The principle of dimensional homogeneity demands that

[Dimension of ith row]
= [Dimension of (i, j) entry] × [Dimension of jth column] (1.29)

for each (i, j) with Aij �= 0. For instance, this identity reads

T−2LM = T−2M × L

for (i, j) = (3, 1) in our mechanical system.
Choosing time as one of the fundamental dimensions, we denote by −ri

and −cj the exponent to the dimension of time associated respectively with
the ith row and the jth column. Then the (i, j) entry of A(s) should have
the dimension of time with exponent cj − ri.

In our mechanical system we have

r1 = r2 = 1, r3 = r4 = r5 = 2, r6 = 1;
c1 = c2 = 0, c3 = c4 = 1, c5 = 2, c6 = 1, c7 = 2

from (1.27) and (1.28).
The “accurate numbers” usually represent topological and/or geometrical

incidence coefficients (cf. Fig. 1.4), which have no physical dimensions, so
that it is natural to expect that the entries of Qk in (1.19) are dimensionless
constants. On the other hand, the variable (indeterminate) “s” should have
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the physical dimension of the inverse of time, since it corresponds to d/dt,
the differentiation with respect to time. This implies, in particular, that each
entry of the term skQk has the physical dimension of time with exponent
−k. On the other hand, the (i, j) entry of A(s), and hence the (i, j) entry of
Q(s), should have the dimension of time with exponent cj − ri, as pointed
out above.

Combining these two facts we obtain

ri − cj = k if (Qk)ij �= 0, (1.30)

or in matrix form:

Q(s) = diag [sr1 , · · · , srm ] ·Q(1) · diag [s−c1 , · · · , s−cn ], (1.31)

where diag [d1, d2, · · ·] means a diagonal matrix having diagonal entries
d1, d2, · · ·. It follows from this decomposition that every nonvanishing sub-
determinant of Q(s) is a monomial in s over Q, i.e., of the form αsp with a
nonvanishing rational number α and a nonnegative integer p.

In our mechanical system, it can be verified that Q(s) of (1.26) admits an
expression of the form (1.31):

−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

=

s 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s2 0 0
0 0 0 0 s2 0
0 0 0 0 0 s

·

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−1 1 0 0 0 1 0

·

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s−1 0 0 0 0
0 0 0 s−1 0 0 0
0 0 0 0 s−2 0 0
0 0 0 0 0 s−1 0
0 0 0 0 0 0 s−2

.

Note that the diagonal entries sri and s−cj are determined from the negative
of the exponents to T (time) in (1.27) and (1.28).

We have thus arrived at a subclass of mixed polynomial matrices suitable
for representing the structure of linear time-invariant dynamical systems.
Namely, we are to consider the class of polynomial matrices A(s) in indeter-
minate s with rational coefficients which are represented as

A(s) = Q(s) + T (s),

where

(A-Q2): Every nonvanishing subdeterminant of Q(s) is a monomial
in s over Q, and
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(A-T): The collection T of the nonzero coefficients of the entries of
T (s) is algebraically independent over Q.

The dual viewpoint of dimensional analysis and structural analysis con-
stitutes the physical foundation of the mathematical development explained
in this book. Chapter 3 will be devoted to a full discussion about this issue.

1.3 Mathematics on Mixed Polynomial Matrices

While the previous section is devoted to physical motivations for mixed poly-
nomial matrices, this section offers an informal introduction to their math-
ematical aspects through a successful treatment of the DAE-index problem
left unanswered in §1.1.3.

1.3.1 Formal Definitions

The concept of a mixed matrix is defined formally as follows. Let K be a
subfield of a field F . A matrix A = (Aij) over F (i.e., Aij ∈ F ) is called a
mixed matrix with respect to (K,F ) if

A = Q+ T, (1.32)

where

(M-Q) Q = (Qij) is a matrix over K (i.e., Qij ∈ K), and
(M-T) T = (Tij) is a matrix over F (i.e., Tij ∈ F ) such that the set

of its nonzero entries is algebraically independent over K.

For example, A(2)
0 in (1.15) is a mixed matrix with respect to (K,F ) =

(Q,Q(T )), where T = {R1, R2} and Q(T ) is the field of rational functions
in T with rational coefficients.

Similarly, a polynomial matrix A(s) over F (i.e., Aij ∈ F [s]) is called a
mixed polynomial matrix with respect to (K,F ) if

A(s) = Q(s) + T (s) =
N∑

k=0

skQk +
N∑

k=0

skTk (1.33)

for some integer N ≥ 0, where

(MP-Q1) Qk (k = 0, 1, · · · , N) are matrices over K, and
(MP-T) Tk (k = 0, 1, · · · , N) are matrices over F such that the set

of their nonzero entries is algebraically independent over K.

A mixed polynomial matrix with respect to (K,F ) is a mixed matrix with
respect to (K(s),F (s)). It should be obvious that (MP-Q1) and (MP-T) gen-
eralize (A-Q1) and (A-T), respectively. Corresponding to (A-Q2) we consider
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(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
in s over K.

The major part of this book is devoted to the development of a theory
of mixed (polynomial) matrices. Mixed matrices can be treated successfully
by means of the standard results in the theory of matroids and submodular
functions. For mixed polynomial matrices, on the other hand, a quantitative
generalization of matroid theory, the theory of valuated matroids, is needed.

Matroid (Chap. 2) Mixed matrix (Chap. 4)
Valuated matroid (Chap. 5) Mixed polynomial matrix (Chap. 6)

Remark 1.3.1. The concept of a mixed matrix is useful also in solving a sys-
tem of linear/nonlinear equations f(x) = 0. Suppose we solve this equation
numerically by the Newton method. This amounts to solving

J(x)Δx = −f(x)

for a correctionΔx, where J(x) is the Jacobian matrix of f(x). The equations
may be divided into linear and nonlinear parts as

f(x) = Qx + g(x),

where Q is a constant matrix representing the linear part and g(x) is the
nonlinear part. Accordingly, the Jacobian matrix J(x) takes the form of

J(x) = Q+ T (x),

where T (x) is the Jacobian matrix of the nonlinear part g(x). This expression
suggests that we may treat J(x) = Q + T (x) as a mixed matrix by regard-
ing (or modeling) the nonvanishing entries of T (x) as being algebraically
independent over K = R, where F is a certain field consisting of functions
(e.g., the field of rational functions). This direction will be pursued further
in §4.4.5. �

1.3.2 Resolution of the Index Problem

In this section we describe how the DAE-index problem can be treated suc-
cessfully by means of mixed polynomial matrices. In so doing we intend to
convey a general idea of the mathematical issues around mixed polynomial
matrices without entering into technical details. Precise definitions and state-
ments are given in subsequent chapters (§6.2 in particular).

For the DAE-index problem, we consider the degree of the determinant of
an n× n mixed polynomial matrix A(s) = Q(s) + T (s). The row set and the
column set of A(s) are denoted by R and C, respectively, and the submatrices
of Q and T with row set I and column set J are written as Q[I, J ] and T [I, J ].

The following identity (cf. Theorem 6.2.4) shows how to combine the
structural information from Q-part and T -part to obtain the information
about A.
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Theorem 1.3.2. For a nonsingular mixed polynomial matrix A(s) = Q(s)+
T (s),

degs detA = max
|I|=|J|

I⊆R,J⊆C

{degs detQ[I, J ] + degs detT [R \ I, C \ J ]}. (1.34)

(We adopt the convention that degs 0 = −∞, so that the maximum in (1.34)
is taken effectively over all (I, J) such that both Q[I, J ] and T [R \ I, C \ J ]
are nonsingular.) �

It is mentioned that the assumptions (MP-Q1) and (MP-T) are crucial for
this formula, whereas generally the right-hand side of (1.34) is only an upper
bound on degs detA.

The right-hand side of the identity (1.34) involves a maximization over all
pairs (I, J), the number of which is almost as large as 2|R|+|C|, too large for
an exhaustive search for maximization. Fortunately, however, it is possible to
design an efficient algorithm to compute this maximum on the basis of the
facts that each of the functions

fQ(I, J) = degs detQ[I, J ], fT (I, J) = degs detT [I, J ]

can be evaluated easily, and that the maximization (“combination of Q-part
and T -part”) can be done efficiently, as follows.

Q-part: The matrix Q(s) is a polynomial matrix with coefficients in K, and
the function fQ(I, J) may be computed in many different ways (see §7.1).
If the stronger condition (MP-Q2) on Q(s) is satisfied with the expression
(1.31), it holds that

fQ(I, J) =
{∑

i∈I ri −
∑

j∈J cj (if detQ(1)[I, J ] �= 0)
−∞ (otherwise)

where Q(1) is a matrix over K and therefore detQ(1)[I, J ] can be com-
puted by means of arithmetic operations over K.

T -part: The matrix T (s) is a structured matrix in that the nonzero coeffi-
cients are algebraically independent. Therefore the function fT (I, J) can
be evaluated efficiently by means of bipartite matchings, as has been
explained in §1.1.2 (recall (1.7) in particular).

Combination: Each of fQ(I, J) and fT (I, J) enjoys a combinatorially nice
property, being a variant of a valuated matroid. Therefore, the maxi-
mum can be computed by a straightforward application of an algorith-
mic scheme for the valuated matroid intersection problem, where the
functions fQ(I, J) and fT (I, J) are evaluated polynomially many times
(polynomial in n). If the stronger condition (MP-Q2) on Q(s) is satis-
fied, the maximization can be reduced to an easier problem (the ordinary
weighted matroid intersection problem).
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For easy reference, let us give a temporary name, say “Algorithm D,” to the
above algorithm for computing the degree of determinant, while deferring a
concrete description to Chap. 6 (cf. Remark 6.2.17).

With “Algorithm D” for the degree of determinant we can compute the
index ν(A) of A(s) based on the formula (1.3):

ν(A) = max
i,j

degs((i, j)-cofactor of A) − degs detA+ 1.

A simplest way is to apply “Algorithm D” repeatedly to the whole matrix A
and all the submatrices of order n − 1 (which are n2 in number) to obtain
degs detA and degs((i, j)-cofactor of A) for all (i, j). This naive method al-
ready gives a polynomial-time algorithm for ν(A), though an improvement
for efficiency is possible.

Let us illustrate the above method for the matrix A(2) of (1.10), the
second coefficient matrix of our electrical network. We regard it as a mixed
polynomial matrix A(2)(s) = Q(2)(s) + T (2)(s) with

Q(2)(s) =
ξ1 ξ2 ξ3ξ4 ξ5 η1 η2 η3 η4 η5
1 −1 0 0 −1
−1 0 1 1 1

−1−1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 0

,

T (2)(s) =
ξ1 ξ2 ξ3 ξ4 ξ5 η1η2η3η4 η5
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 R1 0 0 0 0 0 0 0 0
0 0 R2 0 0 0 0 0 0 0
0 0 0 sL 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 sC

under the assumption that R1, R2, L, and C are independent parameters. The
matrix Q(2)(s), being free from s, satisfies the stronger condition (MP-Q2)
trivially. On the right-hand side of (1.34) in Theorem 1.3.2 we can take

I = R \ {row 8, row 9}, J = C \ {column 3, column 4}

as a maximizer,5 for which

degs detQ(2)[I, J ] = 0, degs detT (2)[R \ I, C \ J ] = 1.

Hence we obtain degs detA(2) = 1. In a similar manner we obtain

5 It can be checked easily that, if degs det T (2)[R \ I ′, C \ J ′] = 2, then

degs det Q(2)[I ′, J ′] = −∞ (i.e., det Q(2)[I ′, J ′] = 0). In particular, this
is the case with I ′ = R \ {row 7, row 8, row 9, row 10} and J ′ = C \
{column 2, column 3, column 4, column 10}, which corresponds to the “spurious”
quadratic terms (1.11)–(1.14).
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max
i,j

degs((i, j)-cofactor of A(2)) = 2,

and therefore ν(A(2)) = 2 − 1 + 1 = 2 by (1.3). Thus, the present method
gives the correct answer for the matrix A(2) for which the graph-theoretic
method fails.

Finally, we mention a duality theorem which forms a basis for “Algorithm
D” for computing the maximum in (1.34), and which provides a systematic
method for index reduction. This theorem is a concrete manifestation of a
general duality theorem for the valuated matroid intersection problem.

Consider a transformation of A(s) to

Ã(s) = diag (s;−pR) ·A(s) · diag (s; pC)

with two integer vectors pR ∈ ZR and pC ∈ ZC , where diag (s; p) for a vector
p = (pi) means a diagonal matrix diag [sp1 , sp2 , · · ·]. This is quite a natural
transformation that corresponds to rewriting the system of equations Ax = b
into Ãx̃ = b̃ in terms of

x̃ = diag (s;−pC) · x, b̃ = diag (s;−pR) · b.

The transformation yields another mixed polynomial6 matrix Ã(s) = Q̃(s)+
T̃ (s) with

Q̃(s) = diag (s;−pR) ·Q(s) · diag (s; pC),
T̃ (s) = diag (s;−pR) · T (s) · diag (s; pC).

For any choice of pR ∈ ZR and pC ∈ ZC we obviously have

max
|I|=|J|

I⊆R,J⊆C

{degs det Q̃[I, J ] + degs det T̃ [R \ I, C \ J ]}

≤ max
|I|=|J|

I⊆R,J⊆C

degs det Q̃[I, J ] + max
|I|=|J|

I⊆R,J⊆C

degs det T̃ [R \ I, C \ J ]. (1.35)

A natural question here is whether the inequality in (1.35) turns into an
equality for an appropriate choice of pR and pC .

The duality theorem asserts the existence of a pair of vectors pR ∈ ZR

and pC ∈ ZC (“dual variables”) which makes the inequality of (1.35) into an
equality. Combining this with Theorem 1.3.2 we obtain the following theorem
(cf. Theorem 6.2.15).

Theorem 1.3.3. For a nonsingular mixed polynomial matrix A(s) = Q(s)+
T (s), there exist pR ∈ ZR and pC ∈ ZC such that

Ã(s) = diag (s;−pR) ·A(s) · diag (s; pC) = Q̃(s) + T̃ (s)
6 Strictly speaking, “polynomial” is to be replaced by “Laurent polynomial”

(cf. §2.1.1), since negative powers of s can appear in Ã(s).
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satisfies

degs det Ã = max
|I|=|J|

I⊆R,J⊆C

degs det Q̃[I, J ]+ max
|I|=|J|

I⊆R,J⊆C

degs det T̃ [R\I, C \J ]. (1.36)

A further condition (i) pR ≥ 0, pC ≥ 0, or (ii) pR ≤ 0, pC ≤ 0, may be
imposed on pR and pC . �

The “Algorithm D” for computing degs detA consists of finding such a
pair of vectors (pR, pC) to transform A(s) to Ã(s) as well as an optimal pair
of subsets (I, J) in the right-hand side of (1.34).

In addition to the algorithmic significance, the transformation to Ã(s) has
another meaning of index reduction transformation. Recall that the index is
equal to one for a system of purely algebraic equations and to zero for a
system of ordinary differential equations in the normal form.

Corollary 1.3.4. The index of Ã(s) is at most one: ν(Ã) ≤ 1.

Proof. For any I ⊆ R and J ⊆ C, consider the expression of degs det Ã[I, J ]
as in Theorem 1.3.2. This shows that degs det Ã[I, J ] is bounded by the right-
hand side of (1.36), which is equal to degs det Ã. Then (1.3) establishes the
claim.

Theorem 1.3.3 is illustrated below for the matrix A(2) of (1.10) of our
electrical network. By “Algorithm D” we can find

pR = (0, 0, 0, 0, 0; 0, 0, 0, 0, 1), pC = (1, 0, 0, 0, 1; 0, 0, 0, 0, 0)

as the “dual variables,” which yields

Ã(2)(s) =

Q1 ξ2 ξ3 ξ4 Q5 η1 η2 η3 η4 η5
s −1 0 0 −s
−s 0 1 1 s

−1 −1 0 −1 0
0 1 1 0 −1
0 0 −1 1 0

0 0 0 0 0 −1 0 0 0 0
0 R1 0 0 0 0 −1 0 0 0
0 0 R2 0 0 0 0 −1 0 0
0 0 0 sL 0 0 0 0 −1 0
0 0 0 0 −1 0 0 0 0 C

. (1.37)

As asserted in (1.36), we have

degs det Ã(2) = 2 = 1 + 1 = max
I,J

degs det Q̃(2)[I, J ] + max
I,J

degs det T̃ (2)[I, J ]

in contrast to
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degs detA(2) = 1 < 0 + 2 = max
I,J

degs detQ(2)[I, J ] + max
I,J

degs detT (2)[I, J ].

In accordance with the change of variables x̃ = diag (s;−pC) ·x, the 1st and
5th columns of Ã(2) are indexed by

Q1 = s−(pC)1ξ1 =
∫
ξ1dt (charge supplied by the source),

Q5 = s−(pC)5ξ5 =
∫
ξ5dt (charge stored in the capacitor),

respectively. The last row of Ã(2) represents the constitutive equation Q5 =
Cη5 (“charge is proportional to voltage”) rather than ξ5 = Cη̇5 (“current
is proportional to the time derivative of voltage”), which corresponds to the
last row of A(2). The “dual variables” pR and pC admit such a physical
interpretation.

Remark 1.3.5. The structural index computed by a “structural algorithm,”
whether graph-theoretic or matroid-theoretic, is equal to the true index value
only in the generic case (“almost surely”) and there is no guarantee of equal-
ity for a particular (numerically specified) matrix. “Combinatorial relaxation
algorithms,” to be described in Chap. 7, are refinements of the “structural
algorithms” such that they first compute the generic values by combinato-
rial algorithms and then invoke a minimum amount of numerical arithmetic
operations to always guarantee the true index value. �

Remark 1.3.6. Theorem 1.3.2 implies as an immediate corollary that A is
nonsingular if and only if there exist I ⊆ R and J ⊆ C such that both Q[I, J ]
and T [R \ I, C \ J ] are nonsingular. Application of this result to submatrices
yields a rank identity:

rankA = max
|I|=|J|

I⊆R,J⊆C

{rankQ[I, J ] + rankT [R \ I, C \ J ]},

which is true for a mixed matrix A = Q+T in general. This identity acts as a
first bridge between mixed matrices and matroids, as will be seen in Chap. 4
(cf. Theorem 4.2.8, in particular). �

1.3.3 Block-triangular Decomposition

Kirchhoff’s laws can be written in many different ways, on which the success
and failure of the graph-theoretic method depends. This is what we have
seen with the coefficient matrices A(1) and A(2) of our electrical network of
Fig. 1.1; A(1) is good for the graph-theoretic method, while A(2) is not.

The matroid-theoretic method, i.e., the method of mixed polynomial ma-
trices, works for bothA(1) andA(2). It is stable against arbitrary choices in the
representation of KCL and KVL, giving a correct answer for any legitimate
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representation of Kirchhoff’s laws. Though the “embarrassing phenomenon”
has been resolved by the matroid-theoretic method, no answer has yet been
given to the question: Why is A(1) better than A(2)?

In this section we shall answer this question by considering block-triangular
decompositions of the coefficient matrices. In so doing we intend to introduce
another mathematical aspect of mixed (polynomial) matrices.

Recall from §1.1.3 that the discrepancy νstr(A(2)) �= ν(A(2)) is caused
by the “spurious” quadratic terms (1.11)–(1.14) in detA(2)

str , whereas those
terms do not appear in detA(1)

str . The reason for this difference is apparent
from the following block-triangular forms of A(1) and A(2) obtained through
reorderings of rows and columns:

Ā(1) =

ξ1 ξ2 ξ3 ξ4 η2 η3 η4 ξ5 η5 η1
KCL 1 −1 0 0 −1
KCL −1 0 1 1 1
KVL 1 1 0 −1
KVL 0 −1 1

branch 2 0 R1 0 0 −1 0 0
branch 3 0 0 R2 0 0 −1 0
branch 4 0 0 0 sL 0 0 −1
branch 5 −1 sC

KVL −1 −1
branch 1 −1

,

Ā(2) =

ξ1 ξ2 ξ3 ξ4 η2 η3 η4 ξ5 η5 η1
KCL 1 −1 0 0 −1
KCL −1 0 1 1 1
KVL 1 1 0 −1
KVL 0 −1 1 0

branch 2 0 R1 0 0 −1 0 0 0 0
branch 3 0 0 R2 0 0 −1 0 0 0
branch 4 0 0 0 sL 0 0 −1 0 0
branch 5 0 0 0 0 0 0 0 −1 sC

KVL −1 0 −1 0 −1
branch 1 −1

.

In Ā(1) the entry “sC” cannot contribute to det Ā(1) for a combinatorial rea-
son that it lies in an off-diagonal block, whereas “sC” disappears in det Ā(2)

as a result of cancellation. This is why “sC” does not appear in detA(1)
str but

does survive in detA(2)
str .

The above observation leads naturally to a further question: Which de-
scription of Kirchhoff’s laws gives a finest block-triangular decomposition?
This may be rephrased to the following problem: Given a coefficient matrix
A of the form
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A =
K C L O
O K V L

constitutive eqns
,

such as A(1) and A(2), find a finest block-triangular decomposition using a
transformation of the form

Ā = Pr ·
SKCL O O
O SKVL O
O O I

·
K C L O
O K V L

constitutive eqns
· Pc, (1.38)

where SKCL and SKVL are nonsingular matrices, I is an identity matrix, and
Pr and Pc are permutation matrices.

It will be shown in Chap. 4 that there exists a canonical (finest) block-
triangular decomposition under the transformation (1.38) and it can be com-
puted by an efficient algorithm. The canonical form of A = A(2) is given
by

Ā(3) =

ξ1 ξ2 ξ3 ξ4 η2 η3 η4 ξ5 η5 η1
KCL 1 −1 −1
KCL −1 1 1
KVL 1 1 0 −1
KVL 0 −1 1

branch 2 R1 0 0 −1 0 0
branch 3 0 R2 0 0 −1 0
branch 4 0 0 sL 0 0 −1
branch 5 −1 sC

KVL −1 −1
branch 1 −1

(1.39)

that is obtained from A(2) through (1.38) with

SKCL =
1 0
1 1 , SKVL =

−1 0 0
−1 −1 −1
−1 0 −1

.

The canonical form does not depend on how Kirchhoff’s laws are initially
written (in particular, A(1) and A(2) have a common canonical form (1.39)),
and therefore, it can be regarded as representing a certain combinatorial
structure inherent in our electrical network.

Returning to the determinant, note first that the transformation (1.38)
changes the determinant only by a constant factor (i.e., det Ā = ±detSKCL ·
detSKVL · detA). The determinant of Ā is obviously the product of the de-
terminants of the diagonal blocks. Hence the off-diagonal entries, such as
“sC” in (1.39), do not appear in the determinant. Furthermore, a theorem
in Chap. 4 (Theorem 4.5.4) states that any system parameter contained in a
diagonal block appears in det Ā. This explains, in our example, why R1, R2

and sL appear in
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detA(1) = detA(2) = −det Ā(3) = R1R2 + sL ·R1 + sL ·R2.

For the degree of det Ā(3), we may apply the method of §1.3.2 to each diagonal
block and sum up the degrees thus obtained. This will be more efficient than
to apply the same method to the whole matrix.

Block-triangular decompositions of the above kind are one of the ma-
jor topics studied in this book; among which are the Dulmage–Mendelsohn
decomposition in Chap. 2 and the combinatorial canonical form (CCF) in
Chap. 4.

Notes. The concept of a mixed matrix was introduced in Murota–Iri [238]
with the observation on two kinds of numbers explained in §1.2.1, while the
dimensional analysis in §1.2.3 is due to Murota [200]. This chapter is an
improved version of a presentation (Murota [223]) at ICIAM 95.



2. Matrix, Graph, and Matroid

This chapter lays the mathematical foundation for combinatorial methods
of systems analysis. Combinatorial properties of numerical matrices can be
stated and analyzed with the aid of matroid theory, whereas those of polyno-
mial matrices are formulated in the language of valuated matroids in Chap. 5.
Emphasis is laid also on the general decomposition principle based on sub-
modularity, and accordingly the Dulmage–Mendelsohn decomposition, which
serves as a fundamental tool for the generic-case analysis of matrices, is pre-
sented in a systematic manner.

2.1 Matrix

2.1.1 Polynomial and Algebraic Independence

Let K be a field (typically K = Q (rational numbers) or K = R (real
numbers)) and X be an indeterminate (independent variable). We denote by
K[X] the ring of polynomials in X over K, i.e.,

K[X] = {
N∑

k=0

αkX
k | 0 ≤ N ∈ Z, αk ∈ K (0 ≤ k ≤ N)}.

For p(X) =
∑N

k=0 αkX
k with αN �= 0, the highest indexN is called the degree

of p(X), denoted deg p, whereas αN is the leading coefficient. A polynomial
is called monic if the leading coefficient is equal to one. We denote by K(X)
the field of rational functions in X over K, i.e.,

K(X) = {p(X)/q(X) | p(X), q(X) ∈ K[X], q(X) �= 0}.

For a rational function f(X) ∈ K(X), the degree of f(X), denoted deg f ,
is defined by deg f = deg p − deg q with reference to an expression f(X) =
p(X)/q(X) with p(X), q(X) ∈ K[X], where deg f is well-defined, indepen-
dent of the expression. A rational function f(X) ∈ K(X) is said to be
proper if deg f ≤ 0, and strictly proper if deg f < 0. A rational function
f(X) ∈ K(X) is called a Laurent polynomial if XNf(X) ∈ K[X] for some

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 2,
c© Springer-Verlag Berlin Heidelberg 2010



32 2. Matrix, Graph, and Matroid

integer N ∈ Z; in other words, f(X) is a Laurent polynomial if and only if
f(X) ∈ K[X, 1/X], where

K[X, 1/X] = {
N2∑

k=−N1

αkX
k | 0 ≤ N1, N2 ∈ Z, αk ∈ K (−N1 ≤ k ≤ N2)}.

For a Laurent polynomial f(X) we define

ordf = −min{N ∈ Z | XNf(X) ∈ K[X]}. (2.1)

Obviously, f(X) is a polynomial if and only if ordf ≥ 0.
Let F be an extension field of K (i.e., F ⊇ K). For a subset Y of F ,

we denote by K(Y) and K[Y] the field adjunction and the ring adjunction,
respectively; that is, K(Y) is the extension field of K generated by Y over
K while K[Y] the ring generated by Y over K.

An element y of F is called algebraic over K if there exists a nontrivial
polynomial p(X) in one indeterminate X over K such that p(y) = 0, where
p(X) is called nontrivial if some of its coefficients are distinct from zero. An
element of F is called transcendental over K if it is not algebraic over K. A
subset (more precisely, multiset) Y = {y1, · · · , yq} of F is called algebraically
independent over K if either of the following equivalent conditions holds:

(i) For any i, yi is transcendental over K(Y \ {yi}),
(ii) There exists no nontrivial polynomial p(X1, · · · ,Xq) in q inde-

terminates over K such that p(y1, · · · , yq) = 0,

where p(X1, · · · ,Xq) is called nontrivial if some of its coefficients are distinct
from zero. We call Y algebraically dependent if it is not algebraically indepen-
dent. In this book we often use an informal expression like “y1, · · · , yq are al-
gebraically independent over K” to mean the set {y1, · · · , yq} is algebraically
independent over K, which is a stronger assertion than the elementwise tran-
scendency of each yi over K.

The degree of transcendency of F over K, denoted dimK F , means the
maximum cardinality of a subset of F that is algebraically independent over
K, where dimK F can be infinite. For instance, dimQ R = +∞.

Example 2.1.1. Let t1, t2, t3 be independent parameters (indeterminates)
over Q. For z1 = t1 + t2, z2 = (t2 + t3)2, z3 = t1 − t3 we can find a nontrivial
polynomial p(X1,X2,X3) = (X1−X3)2−X2 for which p(z1, z2, z3) = 0. Hence
{z1, z2, z3} is algebraically dependent over Q, whereas each zi is transcenden-
tal over Q. We see dimQ Q(z1, z2, z3) = 2. On the other hand, for y1 = t1t2,
y2 = t2 + t3, y3 = 2t3/t1, there is no nontrivial polynomial q(X1,X2,X3)
over Q such that q(y1, y2, y3) = 0, and therefore, {y1, y2, y3} is algebraically
independent over Q. Accordingly, dimQ Q(y1, y2, y3) = 3. �

We refer to Jacobson [149, 150] and van der Waerden [325] as general
references for algebraic concepts.



2.1 Matrix 33

2.1.2 Determinant

We consider matrices over a field F . For a matrix A, the row set and the col-
umn set are denoted by Row(A) and Col(A), i.e., A = (Aij | i ∈ Row(A), j ∈
Col(A)), where Aij is the (i, j)-entry. For I ⊆ Row(A) and J ⊆ Col(A),
A[I, J ] = (Aij | i ∈ I, j ∈ J) means the submatrix of A with row set I and
column set J .

For a square matrix A, its determinant is denoted by detA. Namely, for
an n× n matrix A, we define

detA =
∑

π∈Sn

sgnπ ·
n∏

i=1

Aiπ(i), (2.2)

where Sn denotes the set of all the permutations of order n, and sgnπ = ±1
is the signature of a permutation π. A matrix is nonsingular if it is square
and its determinant is distinct from zero. The set of nonsingular matrices of
order n over F will be denoted by GL(n,F ).

For I ⊆ R ≡ Row(A) and J ⊆ C ≡ Col(A), we denote by detA[I, J ]
the determinant of the submatrix A[I, J ]. Since the sign of a determinant
depends on the orderings of rows and columns, we always assume that the
orderings of the elements of I and J are compatible with those of R and
C, unless otherwise stated. The determinant of a submatrix is sometimes
referred to as a minor or as a subdeterminant.

Proposition 2.1.2 (Laplace expansion). For a square matrix A and i ∈
R, it holds that

detA =
∑

j∈C

(−1)i+j ·Aij · detA[R \ {i}, C \ {j}]. (2.3)

Proof. In the summation of (2.2) classify π according to the value of π(i) to
obtain

detA =
n∑

j=1

Aij

⎡

⎣
∑

π:π(i)=j

sgnπ ·
∏

k �=i

Akπ(k)

⎤

⎦ .

The expression in [ ] is equal to (−1)i+j detA[R \ {i}, C \ {j}].
The formula (2.3) is called the Laplace expansion with respect to row

i. A more general form of this formula is an expansion with respect to a
subset I ⊆ R. The following expression (2.4) is called the generalized Laplace
expansion with respect to row set I ⊆ R.

Proposition 2.1.3 (Generalized Laplace expansion). For a square ma-
trix A and I ⊆ R, it holds that

detA =
∑

J⊆C,|J|=|I|
sgn (I, J) · detA[I, J ] · detA[R \ I, C \ J ]. (2.4)
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Here, sgn (I, J) = ±1 denotes the signature of the permutation
(
i1, · · · , ik; ik+1, · · · , in
j1, · · · , jk; jk+1, · · · , jn

)

,

where I = {i1, · · · , ik}, R \ I = {ik+1, · · · , in} with i1 < · · · < ik; ik+1 <
· · · < in, and J = {j1, · · · , jk}, C \ J = {jk+1, · · · , jn} with j1 < · · · < jk;
jk+1 < · · · < jn.

Proof. The proof is similar to the one for Proposition 2.1.2.

We now derive the Grassmann–Plücker identity, which would be the most
important identity for determinants in the context of the combinatorial study
of matrices, to be explained in Remark 2.1.8.

Proposition 2.1.4 (Grassmann–Plücker identity). Let A be a matrix
with |R| ≤ |C|, where R = Row(A) and C = Col(A). For J, J ′ ⊆ C with
|J | = |J ′| = |R| and i ∈ J \ J ′, it holds that

detA[R, J ]·detA[R, J ′] =
∑

j∈J ′\J

detA[R, J−i+j]·detA[R, J ′+i−j], (2.5)

where J−i+j is a short-hand notation for (J\{i})∪{j} in which the column j
is put at the position of column i in J ; similarly for J ′+i−j = (J ′∪{i})\{j}.
Proof. To avoid complication in notation, we present the idea for a 4 × 6
matrix A =

[
a1 a2 a3 a4 a5 a6

]
with J = {1, 2, 3, 4}, J ′ = {3, 4, 5, 6} and

i = 1, where aj (j = 1, · · · , 6) are 4-dimensional column vectors. Consider a
8 × 8 matrix

Ã =
[

a1 a2 a3 a4 a3 a4 a5 a6

a1 0 0 0 a3 a4 a5 a6

]

,

which is singular. The generalized Laplace expansion (2.4) applied to Ã yields
(2.5).

Example 2.1.5. The Grassmann–Plücker identity is illustrated here. For

A =
1 0 0 a14 a15 a16
0 1 0 a24 a25 a26
0 0 1 a34 a35 a36

with C = {1, 2, 3, 4, 5, 6}, J = {1, 2, 3}, J ′ = {4, 5, 6}, i = 1, we have the
following identity:

1 0 0 a14 a15 a16
0 1 0 a24 a25 a26
0 0 1 a34 a35 a36

=
a14 0 0 1 a15 a16
a24 1 0 0 a25 a26
a34 0 1 0 a35 a36

+
a15 0 0 a14 1 a16
a25 1 0 a24 0 a26
a35 0 1 a34 0 a36

+
a16 0 0 a14 a15 1
a26 1 0 a24 a25 0
a36 0 1 a34 a35 0

,

where | · | means a determinant. Note how the columns are ordered. �
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The determinant of a matrix product AB admits an expansion in terms
of the minors of A and B, called the Cauchy–Binet formula.

Proposition 2.1.6 (Cauchy–Binet formula). For an m × n matrix A
and an n×m matrix B, where m ≤ n, it holds that

det(AB) =
∑

|J|=m

detA[R, J ] · detB[J,C],

where R = Row(A), C = Col(B), and J runs over all subsets of size m of
Col(A) = Row(B).

Proof. This formula can be derived from the generalized Laplace expansion
(2.4) applied to the (m+ n) × (m+ n) matrix

M =
[
Om A
B −In

]

.

In fact, the expansion (2.4) with respect to the row set I = R yields

detM =
∑

|J|=m

(−1)n detA[R, J ] · detB[J,C],

a summation over J ⊆ Col(A) with |J | = m, whereas
[
Im A
O In

]

·
[
Om A
B −In

]

=
[
AB O
B −In

]

implies detM = (−1)n det(AB).

Proposition 2.1.7 (Schur complement). If A is square and D is non-
singular, then

det
[
A B
C D

]

= detD · det
[
A−BD−1C

]
.

Proof. This follows from
[
I −B
O I

]

·
[
I O
O D−1

]

·
[
A B
C D

]

=
[
A−BD−1C O
D−1C I

]

.

The submatrix A−BD−1C is often called the Schur complement.

Remark 2.1.8. The Grassmann–Plücker identity has important combina-
torial implications, which play significant roles in this book.

In the Grassmann–Plücker identity, if the left-hand side of (2.5) is distinct
from zero, then there exists at least one nonzero term in the summation on
the right-hand side. This means that B = {J ⊆ C | detA[R, J ] �= 0} (= the
family of column bases of A) has the following property:
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(BM±) For J, J ′ ∈ B and for i ∈ J \ J ′, there exists j ∈ J ′ \ J such
that J − i+ j ∈ B and J ′ + i− j ∈ B .

This property is formulated in §2.3.4 as the simultaneous exchange property
for matroids.

In case the entries of the matrix A are rational functions (more generally,
when F is a non-Archimedean valuated field), we can talk of the consistency
of (2.5) with respect to degree (additive valuation). Let ω : B → Z denote
the degree of detA[R, J ] for J ∈ B, i.e., ω(J) = deg detA[R, J ]. The degree
of the left-hand side of (2.5) is equal to ω(J) + ω(J ′), and there exists, in
the summation on the right-hand side, at least one term of degree greater
than or equal to this. This means the function ω : B → Z has the following
property:

(VM) For J, J ′ ∈ B and for i ∈ J \ J ′, there exists j ∈ J ′ \ J such
that J − i+ j ∈ B and J ′ + i− j ∈ B, and
ω(J) + ω(J ′) ≤ ω(J − i+ j) + ω(J ′ + i− j).

This property is formulated in §5.2 as an axiom of valuated matroids.
In case the entries of the matrix are real numbers (more generally, when

F is an ordered field), we can talk of the consistency of (2.5) with respect
to sign (±1). Let σ : B → {1,−1} denote the sign of detA[R, J ] for J ∈ B,
i.e., σ(J) = sgn detA[R, J ], where J is considered an ordered set and assume
σ(πJ) = sgnπ ·σ(J) for a permutation π of J . If the left-hand side of (2.5) is
positive, then there exists at least one positive term in the summation on the
right-hand side. This means the function σ : B → {1,−1} has the following
property:

(OM) For J, J ′ ∈ B and for i ∈ J \ J ′, there exists j ∈ J ′ \ J such
that J − i+ j ∈ B and J ′ + i− j ∈ B, and
σ(J) · σ(J ′) = σ(J − i+ j) · σ(J ′ + i− j),

where we still assume the convention in Proposition 2.1.4 that J−i+j denotes
the ordered set in which the column j is put at the position of column i in
J . This property is formulated as an axiom of oriented matroids, though
not treated in this book (see Björner–Las Vergnas–Sturmfels–White–Ziegler
[14]). �

2.1.3 Rank, Term-rank and Generic-rank

The rank of A, as defined in linear algebra, is equal to (i) the maximum num-
ber of linearly independent column vectors of A, (ii) the maximum number of
linearly independent row vectors of A, and (iii) the maximum size of a nonsin-
gular submatrix of A. We denote the rank of A by rankA. A maximum-sized
set of linearly independent column vectors is called a column basis of A. A
row basis is defined in a similar manner.

Let A be a matrix with R = Row(A) and C = Col(A), and define ρ :
2C → Z and λ : 2R × 2C → Z by
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ρ(J) = rankA[R, J ], J ⊆ C, (2.6)
λ(I, J) = rankA[I, J ], I ⊆ R, J ⊆ C. (2.7)

These functions satisfy the following inequalities, of which the first is called
the submodular inequality. These inequalities are most fundamental in the
combinatorial study of matrices, as will be explained later.

Proposition 2.1.9.

(1) ρ(J1) + ρ(J2) ≥ ρ(J1 ∩ J2) + ρ(J1 ∪ J2), J1, J2 ⊆ C.
(2) λ(I1, J1) + λ(I2, J2) ≥ λ(I1 ∪ I2, J1 ∩ J2) + λ(I1 ∩ I2, J1 ∪ J2),

I1, I2 ⊆ R; J1, J2 ⊆ C.

Proof. (1) We denote by aj the column vector of A at column j ∈ C. For
the submatrix A[R, J1 ∩ J2], take a column basis, say {aj | j ∈ B12}, where
B12 ⊆ J1∩J2 and |B12| = ρ(J1∩J2). It is possible to make a column basis of
A[R, J1] by adding some vectors from among {aj | j ∈ J1 \J2} to the already
chosen set {aj | j ∈ B12}. Let {aj | j ∈ B1} be the added vectors, where
B1 ⊆ J1 \J2 and |B12|+ |B1| = ρ(J1). Similarly, we can make a column basis
of A[R, J1 ∪ J2] by augmenting {aj | j ∈ B12 ∪ B1} with some vectors of
{aj | j ∈ J2 \J1}. Let {aj | j ∈ B2} be the added vectors, where B2 ⊆ J2 \J1

and |B12| + |B1| + |B2| = ρ(J1 ∪ J2). Since {aj | j ∈ B12 ∪ B2} is a set of
linearly independent vectors and B12∪B2 ⊆ J2, we have |B12|+ |B2| ≤ ρ(J2).
This establishes the desired inequality.

(2) Consider Ã = (Im | A), where Im is the identity matrix of order
m = |R|. We have Col(Ã) = R∪C. Putting ρ̃(I∪J) = rank Ã[Row(Ã), I∪J ],
we see from

Ã = (Im | A) =

� R �� C �

A

O

O

JR \ I

I

� �

that λ(I, J) = ρ̃((R\I)∪J)+|I|−m. Then the submodularity of ρ̃ established
in (1) is equivalent to the claimed inequality for λ.

The concept of the term-rank of a matrix, introduced by Ore [256], is a
combinatorial version of the rank and plays a significant role in the combi-
natorial analysis of matrices. As already mentioned, the rank of a matrix is
equal to the maximum size of a nonsingular submatrix, i.e.,

rankA = max{|I| | A[I, J ] is nonsingular, I ⊆ R, J ⊆ C}.
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As a combinatorial version of nonsingularity, let us say that a matrix A is
term-nonsingular if the defining expansion (2.2) of the determinant contains
at least one nonvanishing term, that is, if Aiπ(i) �= 0 (∀ i ∈ R) for some
bijection π : R → C. Obviously, nonsingularity implies term-nonsingularity,
since (2.2) is distinct from zero only if the summation contains a nonzero
term. The term-rank of A is then defined by

term-rankA = max{|I| | A[I, J ] is term-nonsingular, I ⊆ R, J ⊆ C}.

In other words, the term-rank of A is defined as the maximum of k such
that Ai1j1 �= 0, Ai2j2 �= 0, · · ·, Aikjk

�= 0 for some suitably chosen dis-
tinct rows i1, i2, · · · , ik and distinct columns j1, j2, · · · , jk. A set of pairs
{(i1, j1), (i2, j2), · · · , (ik, jk)} with the property that Ai1j1 �= 0, Ai2j2 �= 0,
· · ·, Aikjk

�= 0 is sometimes called a partial transversal. It holds that

rankA ≤ term-rankA, (2.8)

since nonsingularity implies term-nonsingularity.
Another related concept, called the generic-rank, is defined for a ma-

trix containing parameters, as follows. Let the entries Aij of A be rational
functions over a field K in q independent parameters, or indeterminates,
X1, · · · ,Xq; i.e., Aij ∈ K(X1, · · · ,Xq) (= the field of rational functions in
(X1, · · · ,Xq) over K). Then any subdeterminant is a rational function in
X1, · · · ,Xq over K. The rank of A viewed as a matrix over K(X1, · · · ,Xq)
is defined to be the maximum size of a submatrix whose determinant is a
nonzero rational function. We call this rank the generic rank of A, and de-
note it by generic-rankA. The generic-rank of A is equal to the rank of A
with parameters X = (X1, · · · ,Xq) fixed to a set of numbers t = (t1, · · · , tq)
(in some extension field of K) which is algebraically independent over K:

generic-rankA = rankA(t). (2.9)

This means, in the case of K = Q, that (2.9) holds true for “almost all”
choices of real numbers t = (t1, · · · , tq) ∈ Rq.

Let F be an extension field of K containing an infinite number of elements
(typically, K = Q and F = R). If a set of numerical values a ∈ F q are
substituted for the parameters X = (X1, · · · ,Xq), each entry of A(a) belongs
to F , and therefore the rank of A(a) as a matrix over F can be defined.
This rank is uniquely determined for those parameter values a ∈ F q which
lie outside some proper algebraic variety1 (⊂ F q). The uniquely determined
rank is equal to the maximum of rankA(a) over a ∈ F q, and also to the
generic-rank of A:

generic-rankA = max
a∈F q

rankA(a).

1 By a proper algebraic variety is meant a proper subset of F q that can be
represented as {(x1, · · · , xq) ∈ F q | p(x1, · · · , xq) = 0} for some p(X) ∈
K [X1, · · · , Xq].
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Example 2.1.10. For a matrix A =
[
X2 X
X 1

]

, we have generic-rankA = 1

and term-rankA = 2. �

Example 2.1.11. For a matrix A =
[
X X
1 X

]

over K = GF(2) (= the field

consisting of 0 and 1), we have generic-rankA = term-rankA = 2, whereas
maxa∈K rankA(a) = 1. �

We are often interested in the cases where the generic-rank and the term-
rank coincide. A matrix A is called a generic matrix if the set of its nonva-
nishing entries is algebraically independent over some field. This means that
each of the nonvanishing entries of A can be regarded as an independent
parameter by itself. For example, among three matrices

A1 =
[
X1 X2

X3 0

]

, A2 =
[
X1X2 X2 +X3

2X3/X1 0

]

, A3 =
[
X1 +X2 (X2 +X3)2

X1 −X3 0

]

,

where X1,X2,X3 are algebraically independent numbers (or independent pa-
rameters), A1 and A2 are generic matrices and A3 is not. Note that, in A2,
there is no algebraic relation among Y1 = X1X2, Y2 = X2+X3, Y3 = 2X3/X1,
whereas, in A3, we have a relation (Z1 − Z3)2 = Z2 for Z1 = X1 + X2,
Z2 = (X2 +X3)2, Z3 = X1 −X3 (cf. Example 2.1.1).

The following fact is obvious, but fundamental (Edmonds [67]).

Proposition 2.1.12. For a generic matrix A, it holds that

generic-rankA = term-rankA. (2.10)

Proof. Consider a k × k term-nonsingular submatrix of A, where k =
term-rankA. The defining expansion of its determinant contains a term, say,
Ai1j1Ai2j2 · · ·Aikjk

, which cannot be cancelled out. Hence generic-rankA ≥
term-rankA. The reverse inequality is true in general by (2.8), in which
rankA = generic-rankA.

Remark 2.1.13. The term-rank of A is in fact a graph-theoretic concept
(see §2.2.3 for terminology). Consider a bipartite graphG = (V +, V −; Ã) that
has the vertex bipartition (V +, V −) = (C,R) corresponding to the column
set C and the row set R, and the arc set Ã defined by

Ã = {(j, i) | i ∈ R, j ∈ C,Aij �= 0}.

That is, an arc represents a nonvanishing entry of A. Then term-rank of A
is equal to the maximum size of a matching in G, which can be computed
efficiently in polynomial time (cf. §2.2.3). �
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2.1.4 Block-triangular Forms

We distinguish two kinds of block-triangular decompositions for matrices.
The one employs a simultaneous permutation of rows and columns and the
other uses two independent permutations.

The first block-triangular decomposition is defined for a square matrix
A such that Row(A) and Col(A) have a natural one-to-one correspondence
ψ : Col(A) → Row(A). Let (C1, · · · , Cb) be a partition of C = Col(A) into
disjoint blocks and (R1, · · · , Rb) the corresponding partition of R = Row(A)
with Rk = ψ(Ck) for k = 1, · · · , b. We say that A is block-triangularized with
respect to (R1, · · · , Rb) and (C1, · · · , Cb) if

A[Rk, Cl] = O for 1 ≤ l < k ≤ b.

If this is the case, we can bring A into an explicit upper block-triangular form
Ā = PAPT in the ordinary sense by using a permutation matrix P , where
it is tacitly assumed that Row(A) = Col(A) = {1, 2, · · · , n} and ψ(j) = j for
j = 1, 2, · · · , n. For a general ψ, however, Ā = PAPT should be replaced by
Ā = PAΨ−1PT with another permutation matrix Ψ representing ψ.

A partial order is induced among the blocks {Ck | k = 1, · · · , b} in a
natural manner by the zero/nonzero structure of a block-triangular matrix
A. The partial order � is the reflexive and transitive closure of the relation
defined by: Ck � Cl if A[Rk, Cl] �= O.

Usually we want to find a finest partition of C as well as the corresponding
one of R for which a given matrix A is block-triangularized. This problem
can be treated successfully by means of a graph-theoretic method, as will be
explained in §2.2.1.

Example 2.1.14. For a 6 × 6 matrix

A =

1 2 3 4 5 6
1 a12 a13
2 a22 a25
3 a33
4 a41 a44 a46
5 a51 a53
6 a63 a64 a66

(2.11)

the finest block-triangular decomposition is given by

PAPT =

C1 C2 C3

4 6 1 2 5 3
R1 4 a44 a46 a41

6 a64 a66 a63
1 a12 a13

R2 2 a22 a25
5 a51 a53

R3 3 a33

(2.12)
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with R1 = C1 = {4, 6} � R2 = C2 = {1, 2, 5} � R3 = C3 = {3}. �

The second block-triangular decomposition is defined for a matrix A of
any size, where no correspondence between Col(A) and Row(A) is assumed.
Let (C0;C1, · · · , Cb;C∞) and (R0;R1, · · · , Rb;R∞), where b ≥ 0, be partitions
of C = Col(A) and R = Row(A), respectively, into disjoint blocks such that

|R0| < |C0| or |R0| = |C0| = 0,
|Rk| = |Ck| > 0 for k = 1, · · · , b,
|R∞| > |C∞| or |R∞| = |C∞| = 0.

(2.13)

We say that A is block-triangularized with respect to (R0;R1, · · · , Rb;R∞)
and (C0;C1, · · · , Cb;C∞) if

A[Rk, Cl] = O for 0 ≤ l < k ≤ ∞. (2.14)

The submatrices A[R0, C0] and A[R∞, C∞] are called the horizontal tail and
the vertical tail, respectively. Clearly, if A is block-triangularized in this sense,
we can put it into an explicit upper block-triangular form Ā = PrAPc in the
ordinary sense by using certain permutation matrices Pr and Pc.

A partial order is induced among the blocks {Ck | k = 1, · · · , b} in a
similar manner by the zero/nonzero structure of a block-triangular matrix
A. The partial order � is the reflexive and transitive closure of the relation
defined by: Ck � Cl if A[Rk, Cl] �= O. It is often convenient to extend the
partial order onto {C0, C∞} ∪ {Ck | k = 1, · · · , b} by defining

C0 � Ck � C∞ (∀k). (2.15)

We adopt this convention unless otherwise stated.
Usually we want to find finest partitions of R and C for which a given

matrix A is block-triangularized. This problem can be treated successfully by
another graph-theoretic method, called the Dulmage–Mendelsohn decompo-
sition, to be explained in §2.2.3.

Example 2.1.15. If a transformation of the form Ā = PrAPc is applicable
to the matrix A of Example 2.1.14, the finest block-triangular decomposition
using two permutation matrices is given by

PrAPc =

C1 C2 C3 C4 C5

4 6 5 2 1 3
R1 4′ a44 a46 a41

6′ a64 a66 a63
R2 2′ a25 a22
R3 1′ a12 a13
R4 5′ a51 a53
R5 3′ a33

. (2.16)

This consists of five blocks (R1, C1) = ({4′, 6′}, {4, 6}), (R2, C2) = ({2′}, {5}),
(R3, C3) = ({1′}, {2}), (R4, C4) = ({5′}, {1}), (R5, C5) = ({3′}, {3}) with
partial order C1 � C2 � C3 � C5, C4 � C5. �
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Remark 2.1.16. The two kinds of decompositions above are closely related
as follows, and this fact seems to cause complications and confusions in the
literature. A considerable number of papers propose or describe a “two-stage
method,” so to speak, that first chooses ψ : Col(A) → Row(A) such that
Aψ(j),j �= 0 (j ∈ Col(A)) and then finds the finest decomposition of the first
kind with respect to the chosen ψ. This amounts to a decomposition under
a transformation PrAPc = PA(Ψ−1PT), where Ψ is the permutation matrix
representing ψ. The following points are emphasized here concerning this
“two-stage method.”

(1) The decomposition produced by the “two-stage method” depends ap-
parently on the choice of ψ. The resulting decomposition, however, is not
affected by the nonuniqueness of ψ, but coincides with the finest decompo-
sition under a transformation of the form PrAPc (see the algorithm for the
DM-decomposition in §2.2.3). In this sense, the “two-stage method” is fully
justified from the mathematical point of view.

(2) Still, the “two-stage method” seems to lack in philosophical soundness.
The invariance (or insensitivity) of the resulting decomposition to the choice
of ψ indicates that the “two-stage method” based on PAΨ−1PT should be
recognized in a different manner, more intrinsically without reference to ψ.
It can be said that the “two-stage method” is not so much a decomposition
concept as an algorithmic procedure for computing the (finest) decomposition
under transformations of the form PrAPc. �

In applications of the second block-triangularization technique it is often
required to impose an additional condition

rankA[Rk, Ck] = min(|Rk|, |Ck|) for k = 0, 1, · · · , b,∞ (2.17)

on the diagonal blocks in the decomposition. If this is the case, A is said
to be properly block-triangularized with respect to (R0;R1, · · · , Rb;R∞) and
(C0;C1, · · · , Cb;C∞). Note that the additional condition (2.17) is of numerical
nature, while the condition (2.14) refers to the zero/nonzero structure only.

Not every matrix has a proper block-triangular form. Consider, for ex-

ample, A =
[

1 1
1 1

]

, which can never be properly block-triangularized for any

partitions. The term-rank is the key concept for the statement of a necessary
and sufficient condition for the existence of a proper block-triangular form.

Proposition 2.1.17. A matrix A can be put in a proper block-triangular
form with a suitable choice of partitions of R and C, if and only if rankA =
term-rankA.

Proof. This will be proven later as an immediate corollary of Proposition
2.2.26.

In this book we often encounter questions of the following type:
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A class of matrices and a class of “admissible transformations” for
the class of matrices are specified. Given a matrix A belonging to the
class, can we transform it to a proper block-triangular matrix Ā by
means of an admissible transformation?

By Proposition 2.1.17 this question is equivalent to:

Given a matrix A, can we transform it by means of an admissible
transformation to a matrix Ā such that rank Ā = term-rank Ā ?

The simplest problem of this kind is the case where the class of matrices
comprises all the matrices and any equivalence transformation (Ā = SrASc

with nonsingular Sr and Sc) is admissible. In this case the answer is in the
affirmative and the proper block-triangular matrix Ā is given by the rank

normal form of A, i.e., Ā =
[
O Ir
O O

]

with Ir denoting the identity matrix of

size r = rankA. Other instances of such questions, more of combinatorial
nature, include: the Dulmage–Mendelsohn decomposition of generic matrices
(§2.2.3), the combinatorial canonical form of layered mixed matrices (§4.4),
the combinatorial canonical form of matrices with respect to pivotal trans-
formations (Remark 4.7.10), and the decomposition of generic partitioned
matrices (§4.8.4).

2.2 Graph

Graphs are convenient tools to represent the structures of matrices and sys-
tems. Decompositions of graphs, when combined with appropriate physical
interpretations, lead to effective decomposition methods for matrices and sys-
tems.

2.2.1 Directed Graph and Bipartite Graph

Let G = (V,A) be a directed graph with vertex set V and arc set A. For an
arc a ∈ A, ∂+a denotes the initial vertex of a, ∂−a the terminal vertex of a,
and ∂a = {∂+a, ∂−a} the set of vertices incident to a. For a vertex v ∈ V ,
δ+v means the set of arcs going out of v, δ−v the set of arcs coming into v,
and δv = δ+v ∪ δ−v the set of arcs incident to v. The incidence matrix of G
is a matrix with row set indexed by V and column set by A such that, for
v ∈ V and a ∈ A, the (v, a) entry is equal to 1 if v = ∂+a, to −1 if v = ∂−a,
and to 0 otherwise, where, for an arc a with ∂+a = ∂−a, the corresponding
column is set to zero.

For V ′ (⊆ V ) the (vertex-)induced subgraph, or the section graph, on V ′

is a graph G′ = (V ′, A′) with A′ = {a ∈ A | ∂+a ∈ V ′, ∂−a ∈ V ′}. We also
denote G′ by G \ V ′′, where V ′′ = V \ V ′, saying that G′ is obtained from G
by deleting the vertices in V ′′.
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For two vertices u and v, we say that v is reachable from u on G, which
we denote as u ∗−→ v, if there exists a directed path from u to v on G. Based
on the reachability we define an equivalence relation ∼ on V by: u ∼ v ⇐⇒
[u ∗−→ v and v ∗−→u]. In fact it is straightforward to verify (i) [reflexivity]
v ∼ v, (ii) [symmetry] u ∼ v ⇒ v ∼ u, and (iii) [transitivity] u ∼ v, v ∼
w ⇒ u ∼ w. Accordingly, the vertex set V is partitioned into equivalence
classes {Vk}k, called strongly connected components (or strong components,
in short). Namely, two vertices u and v belong, by definition, to the same
strong component if and only if u ∗−→ v and v ∗−→u. A partial order � can
be defined on the family {Vk}k of strong components by

Vk � Vl ⇐⇒ vl
∗−→ vk on G for some vk ∈ Vk and vl ∈ Vl.

Each strong component Vk determines a vertex-induced subgraph Gk =
(Vk, Ak) of G, also called a strong component of G. The partial order �
is induced naturally on the family of strong components {Gk}k by: Gk � Gl

⇐⇒ Vk � Vl. The decomposition of G into partially ordered strong compo-
nents {Gk}k is referred to as the strong component decomposition of G. An
efficient algorithm of complexity O(|A|) is known for the strong component
decomposition (see Aho–Hopcroft–Ullman [1, 2], Tarjan [310]).

For an n × n matrix A = (Aij | i, j = 1, · · · , n) we can represent the
zero/nonzero pattern of the matrix in terms of a directed graph2 G = (V, Ã)
with V = {1, · · · , n} and Ã = {(j, i) | Aij �= 0}. The strong component de-
composition of the graph G corresponds to a (finest possible) block-triangular
decomposition of the matrix A by means of a simultaneous permutation of
the rows and the columns.

Example 2.2.1. For the matrix A of (2.11) the zero/nonzero structure can
be represented by a directed graph G of Fig. 2.1. The graph has three strong
components, V1 = {4, 6}, V2 = {1, 2, 5}, V3 = {3}, with V1 � V2 � V3. The
strong component decomposition of G yields a block-triangular form given in
(2.12), where Vk corresponds to Rk = Ck for k = 1, 2, 3. �

In applications of linear algebra it is often crucial to recognize the relevant
transformations associated with a matrix. For example, we can talk of the
Jordan canonical form of A only if A is subject to similarity transformations,
SAS−1 with nonsingular S. This is the case when A corresponds to a mapping
in a single vector space. If a matrix A corresponds to a mapping between a
pair of different vector spaces, it is subject to equivalence transformations,
SrASc with nonsingular matrices Sr and Sc. In this case, it is meaningless
to consider the Jordan canonical form of A, whereas it is still sound to talk
about the rank of A. Consider, for instance, a state-space equation ẋ =
Ax +Bu for a dynamical system. The matrix A here is subject to similarity
transformations, and B to equivalence transformations. It should be clear
2 This graph is called the Coates graph in Chen [34].



2.2 Graph 45

1

2

3
4

5

6

�

�

�

	




�

�

�

�

	

�






V1

V2

V3

Fig. 2.1. Strong component decomposition (Example 2.2.1)

that even if B happens to be square, having as many rows as columns, it is
meaningless to consider the Jordan canonical form of B.

Such distinctions in the nature of matrices should be respected also in the
combinatorial analysis of matrices. As we have observed, the decomposition
of a matrix A through the strong component decomposition of the associated
graph gives the finest block-triangularization under a transformation of the
form PAPT = PAP−1 with a permutation matrix P . For this decomposition
method to be applicable it is assumed tacitly that the matrix in question
represents a mapping in a single vector space and is subject to similarity
transformations, so that the structure of the matrix can in turn be represented
by the associated graph defined above.

For a matrix A under equivalence transformations, on the other hand, a
natural transformation of a combinatorial nature will be given by PrAPc with
two permutation matrices Pr and Pc. For such a matrix there is no reason for
restricting Pc to be the inverse of Pr, and accordingly the strong component
decomposition does not make much sense. Note that the associated graph
itself is not very meaningful, since the associated graph does not remain
isomorphic when the matrix A changes to PrAPc.

The structure of such a matrix A (subject to equivalence transformations)
can be better represented by another graph G = (V, Ã) with V = Col(A) ∪
Row(A) and Ã = {(j, i) | Aij �= 0}. By definition, each arc has the initial
vertex in Col(A) and the terminal vertex in Row(A), and therefore this graph
is a bipartite graph. Recall that, in general, a graph G = (V, Ã) is called a
bipartite graph if the vertex set V can be partitioned into two disjoint parts,
say V + and V −, in such a way that |∂a∩ V +| = |∂a∩ V −| = 1 for all a ∈ Ã.
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We write G = (V +, V −; Ã) for a bipartite graph and often assume ∂+a ∈ V +

and ∂−a ∈ V − for a ∈ Ã. In this notation the bipartite graph associated
with a matrix A is G = (V +, V −; Ã) with V + = Col(A) and V − = Row(A).

Example 2.2.2. In case the matrix A of (2.11) in Example 2.1.14 represents
a mapping between a pair of different vector spaces, the structure of A is
expressed more appropriately by a bipartite graph, shown in Fig. 2.2. �

V +

V −

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

Fig. 2.2. Bipartite graph representation (Example 2.2.2)

The decomposition under a transformation of the form PrAPc will be
treated in §2.2.3 as the Dulmage–Mendelsohn decomposition.

Remark 2.2.3. For a nonzero entry Aij of a matrix A, the associated bi-
partite graph, as defined above, has an arc (j, i) directed from column j to
row i. This convention makes sense when we consider signal-flow graphs and
is often found in the literature of engineering. It is also legitimate to direct
an arc from row i to column j. In this book we use whichever convention is
more convenient in the context. �

Let us dwell on the distinction of the two kinds of graph representations
by referring to the two kinds of descriptions of dynamical systems introduced
in §1.2.2, namely, the standard form of state-space equations (1.20):

ẋ = Âx + B̂u

and the descriptor form (1.22):

F̄ ẋ = Āx + B̄u.

The matrix Â in the standard form has a natural one-to-one correspondence
between Row(Â) and Col(Â), since the ith equation describes the dynamics
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of the ith variable. The matrix Ā in the descriptor form, on the other hand,
has no such natural correspondence between Row(Ā) and Col(Ā). In other
words, the concept of “diagonal” is meaningful for the matrix Â and not
for the matrix Ā. Mathematically, Â is subject to similarity transformations,
SÂS−1, and Ā to equivalence transformations, SrĀSc.

Accordingly, the standard form (1.20) is represented by a directed graph
G = (V,A) called the signal-flow graph.3 The vertex set V and the arc set A
are defined by

V = X ∪ U, X = {x1, · · · , xn}, U = {u1, · · · , um},
A = {(xj , xi) | Âij �= 0} ∪ {(uj , xi) | B̂ij �= 0}.

The natural graphical representation of the descriptor form (1.22), on the
other hand, is the bipartite graph G = (V +, V −; Ã) associated with the
matrix D(s) = [Ā − sF̄ | B̄], where s is an indeterminate. Namely, V + =
Col(D) = X ∪U stands for the set of variables and V − = Row(D) for the set
of equations, say {e1, · · · , en}, and the arcs correspond to the nonvanishing
entries of D(s), i.e.,

Ã = {(xj , ei) | Āij �= 0 or F̄ij �= 0} ∪ {(uj , ei) | B̄ij �= 0}.

It is sometimes convenient to assign weight 1 to arc (xj , ei) with F̄ij �= 0 and
weight 0 to the other arcs.

The above distinction between standard form and the descriptor form im-
plies, in particular, that the finest decomposition of Â is obtained through the
strong component decomposition, whereas that of Ā is through the Dulmage–
Mendelsohn decomposition.

For the standard form (1.20) another graph representation is sometimes
useful. For k ≥ 1 the dynamic graph of time-span k is defined to be Gk

0 =
(Xk

0 ∪ Uk−1
0 , Ak−1

0 ) with

Xk
0 =

k⋃

t=0

Xt, Xt = {xt
i | i = 1, · · · , n} (t = 0, 1, · · · , k),

Uk−1
0 =

k−1⋃

t=0

U t, U t = {ut
j | j = 1, · · · ,m} (t = 0, 1, · · · , k − 1),

Ak−1
0 = {(xt

j , x
t+1
i ) | Âij �= 0; t = 0, 1, · · · , k − 1}

∪{(ut
j , x

t+1
i ) | B̂ij �= 0; t = 0, 1, · · · , k − 1}.

Example 2.2.4. The graph representations are illustrated for the mechan-
ical system treated in §1.2.2 (see also Fig. 1.5). The signal-flow graph rep-
resenting the standard form (1.21) and the bipartite graph associated with
3 The signal-flow graph defined here is different from the Mason graph (Chen [34]),

which is sometimes called the signal-flow graph, too.
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Fig. 2.3. Signal-flow graph of the mechanical system of Fig. 1.5

V +

V −

x1 x2 x3 x4 x5 x6 u

e1 e2 e3 e4 e5 e6

Fig. 2.4. Bipartite graph of the mechanical system of Fig. 1.5

the descriptor form (1.23) are given in Figs. 2.3 and 2.4, respectively. The
dynamic graph of time-span k = 4 for (1.21) is also depicted in Fig. 2.5. �

2.2.2 Jordan–Hölder-type Theorem for Submodular Functions

We describe here a general decomposition principle of submodular functions,
known as the Jordan–Hölder-type theorem for submodular functions. We
shall make essential use of this general framework in a number of different
places in this book. Recall that we have already encountered in §2.1.3 a
typical submodular function, the rank function ρ of (2.6) associated with a
matrix.

Let V be a finite set, L (�= ∅) be a sublattice of the boolean lattice 2V :

X,Y ∈ L ⇒ X ∪ Y,X ∩ Y ∈ L, (2.18)
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Fig. 2.5. Dynamic graph G4
0 of the mechanical system of Fig. 1.5

and f : 2V → R be a submodular function:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), X, Y ⊆ V. (2.19)

We say that L is an f-skeleton if, in addition, f is modular on L:

f(X) + f(Y ) = f(X ∪ Y ) + f(X ∩ Y ), X, Y ∈ L. (2.20)

The decomposition principle applies to a pair of a submodular function
f and an f -skeleton L. In principle, an f -skeleton L can be specified quite
generally, but in our subsequent applications it is often derived from f itself
as the family of the minimizers, as follows (Ore [257]).

Theorem 2.2.5. For a submodular function f : 2V → R, the family of the
minimizers:

Lmin(f) = {X ⊆ V | f(X) ≤ f(Y ),∀Y ⊆ V } (2.21)

forms a sublattice of 2V , and moreover it is an f-skeleton.

Proof. Let α denote the minimum value of f . For X,Y ∈ Lmin(f) we have

2α = f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ≥ 2α,

which shows f(X ∪ Y ) = f(X ∩ Y ) = α, i.e., X ∪ Y,X ∩ Y ∈ Lmin(f).

First we consider a representation of a sublattice L of 2V , independent of
a submodular function f . This is a fundamental result from lattice theory,
called Birkhoff’s representation theorem, which shows a one-to-one correspon-
dence between sublattices of 2V and pairs of a partition of V into blocks with
a partial order among the blocks. This correspondence is given as follows.
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Given a sublattice L of 2V , take any maximal ascending chain of L:

X0 (= minL)⊂
�=X1

⊂
�=X2

⊂
�= · · · ⊂

�=Xb (= maxL), (2.22)

where Xk ∈ L (k = 0, 1, · · · , b), and put

V0 = X0,

Vk = Xk \Xk−1 (k = 1, · · · , b), (2.23)
V∞ = V \Xb.

Then the family of the “intervals” (difference sets) {Vk | k = 1, · · · , b} is
uniquely determined independently of the choice of the chain. A partial order
� is introduced on {Vk | k = 1, · · · , b} by

Vk � Vl ⇐⇒ [Vl ⊆ X ∈ L ⇒ Vk ⊆ X]. (2.24)

In this way, a sublattice L determines a pair of a partition {V0;V1, · · · , Vb;V∞}
of V and a partial order � on {V1, · · · , Vb}, which will be denoted by

P(L) = ({V0;V1, · · · , Vb;V∞},�). (2.25)

Note that Vk �= ∅ for k = 1, · · · , b, whereas V0 and V∞ are distinguished
blocks that can be empty. By (2.24) the indexing of the blocks is consistent
with the partial order in the sense that Vk � Vl ⇒ k ≤ l.

It is often convenient to extend the partial order onto {V0, V∞} ∪ {Vk |
k = 1, · · · , b} by defining

V0 � Vk � V∞ (∀k). (2.26)

We adopt this convention unless otherwise stated.

Remark 2.2.6. In the above argument we have constructed the partition
{V0;V1, · · · , Vb;V∞} with reference to a particular maximal chain of L. There
is another way of construction of P(L) from L that refers to join-irreducible
elements instead of a maximal chain. An element Z ∈ L is said to be join-
irreducible if Z = Z ′ ∪ Z ′′ with Z ′, Z ′′ ∈ L means Z ′ = Z or Z ′′ = Z.
Let {Zk | k = 1, · · · , b} be the family of all the join-irreducible elements
of L distinct from minL. For each Zk there exists a unique element of L,
say Yk, that lies immediately below Zk (i.e., Yk ⊂ Zk and � ∃X ∈ L such
that Yk ⊂ X ⊂ Zk). Define Vk = Zk \ Yk for k = 1, · · · , b, V0 = minL and
V∞ = V \maxL. Then {V0;V1, · · · , Vb;V∞} forms a partition of V . A partial
order � is induced on {Vk | k = 1, · · · , b} by [Vk � Vl ⇐⇒ Zk ⊆ Zl]. It
is known that this construction coincides with the one defined by (2.23) and
(2.24). �



2.2 Graph 51

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 6}
{1, 2, 4, 5, 6}

{1, 2, 3, 4, 5}

{1, 2, 4, 5} {1, 2, 3}
{1, 2}

∅

∈ L; �: join-irreducible �= minL

V∞
7

V2
6

V3
3V1

4, 5

V0
1, 2

P(L)

Fig. 2.6. Representation of a sublattice by partially ordered blocks

Example 2.2.7. Let L be a sublattice of 2V indicated by • in Fig. 2.6, where
V = {1, 2, 3, 4, 5, 6, 7}. We have minL = {1, 2} and maxL = {1, 2, 3, 4, 5, 6}.
A maximal chain (2.22) with

X0 = {1, 2}, X1 = {1, 2, 4, 5}, X2 = {1, 2, 4, 5, 6}, X3 = {1, 2, 3, 4, 5, 6}

yields V0 = {1, 2}, V1 = {4, 5}, V2 = {6}, V3 = {3}, V∞ = {7}. The partial or-
der P(L) is depicted also in Fig. 2.6. There are three join-irreducible elements
distinct from minL, i.e., Z1 = {1, 2, 4, 5}, Z2 = {1, 2, 4, 5, 6}, Z3 = {1, 2, 3},
indicated by � in Fig. 2.6, and the immediately-below elements Yk are
Y1 = {1, 2}, Y2 = {1, 2, 4, 5}, Y3 = {1, 2}. Note that Zk corresponds to
Vk as Vk = Zk \ Yk for k = 1, 2, 3. �

Conversely, suppose we are given P = ({V0;V1, · · · , Vb;V∞},�), a pair of
a partition of V with two distinguished subsets V0 and V∞ and a partial order
� on {V1, · · · , Vb}. Define L(P) ⊆ 2V by

L(P) = {X ⊆ V | (i) V0 ⊆ X ⊆ V \ V∞;
(ii) X ∩ Vl �= ∅, Vk � Vl (1 ≤ k, l ≤ b) ⇒ Vk ⊆ X}, (2.27)

which implies that X ∈ L(P) can be expressed as X =
⋃

k∈I∪{0} Vk for some
I ⊆ {1, · · · , b}. Then L = L(P) forms a sublattice of 2V with minL = V0 and
maxL = V \ V∞.

Example 2.2.8. For the P in Fig. 2.6, L(P) consists of six elements: V0 =
{1, 2}, V0 ∪ V1 = {1, 2, 4, 5}, V0 ∪ V3 = {1, 2, 3}, V0 ∪ V1 ∪ V2 = {1, 2, 4, 5, 6},
V0 ∪ V1 ∪ V3 = {1, 2, 3, 4, 5}, V0 ∪ V1 ∪ V2 ∪ V3 = {1, 2, 3, 4, 5, 6}. �
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Remark 2.2.9. For a partially ordered set P = (S,�) in general, T ⊆ S is
called an order ideal (or simply ideal) if [s � t ∈ T ⇒ s ∈ T ]. The family
of order ideals of P = (S,�) forms a sublattice of 2S (with respect to set
inclusion). With this general terminology, we may say that L(P) is isomorphic
to the lattice of order ideals of ({V1, · · · , Vb},�). �

Birkhoff’s representation theorem states, roughly, that the mappings
Φ : L �→ P(L) of (2.25) and Ψ : P �→ L(P) of (2.27) establish a one-to-
one correspondence between the class of sublattices Λ = {L} and that of
partitions Π = {P}. To make the statement more precise we need some
more notation.

We denote by Λ(V ;V0, V∞) the collection of the sublattices of 2V that have
V0 as the minimum element and V \V∞ as the maximum, where V0∩V∞ = ∅,
i.e.,

Λ(V ;V0, V∞) = {L | L: sublattice of 2V , minL = V0,maxL = V \ V∞}.
(2.28)

For L1,L2 ∈ Λ(V ;V0, V∞), L1 ∧ L2 will mean the sublattice L1 ∩ L2, and
L1 ∨L2 the sublattice generated by L1 ∪L2. The family Λ(V ;V0, V∞) forms
a lattice (Λ(V ;V0, V∞),∨,∧) (in the sense of Remark 2.2.14) with respect to
∧ and ∨ thus defined.

We denote by

Π(V ;V0, V∞) = {P | P = ({V0;V1, · · · , Vb;V∞},�)} (2.29)

the collection of the pairs of a partition {V0;V1, · · · , Vb;V∞} of V with two
distinguished subsets V0 and V∞ and a partial order � on {V1, · · · , Vb}. A
partial order, denoted also as �, can be introduced on Π(V ;V0, V∞) with
respect to the refinement relation as follows. For P1 = ({V0; {V (1)

k };V∞},�1),
P2 = ({V0; {V (2)

l };V∞},�2) ∈ Π(V ;V0, V∞), we say P1 � P2 if and only if

(i) {V (1)
k } is a refinement of {V (2)

l } as a partition of V \ (V0 ∪ V∞),
that is, any V (1)

k is contained in some V (2)
l , and

(ii) V (1)
k1

⊆ V (2)
l1

, V (1)
k2

⊆ V (2)
l2

, V (1)
k1

�1 V
(1)
k2

=⇒ V
(2)
l1

�2 V
(2)
l2

.

It is easy to see that the partially ordered set (Π(V ;V0, V∞),�) thus defined
forms a lattice (Π(V ;V0, V∞),∨,∧), in which P1 ∨ P2 is the finest common
aggregation of P1 and P2 and P1 ∧ P2 is the coarsest common refinement of
P1 and P2.

We are now ready to state Birkhoff’s representation theorem.

Theorem 2.2.10 (Birkhoff’s representation theorem). Let V0 and V∞
be disjoint subsets of V . The two families Λ(V ;V0, V∞) and Π(V ;V0, V∞)
are in one-to-one correspondence to each other through mutually inverse
mappings, Φ : Λ(V ;V0, V∞) → Π(V ;V0, V∞) and Ψ : Π(V ;V0, V∞) →
Λ(V ;V0, V∞), defined by Φ : L �→ P(L) of (2.25) and Ψ : P �→ L(P) of (2.27),
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respectively. Moreover, for L1,L2 ∈ Λ(V ;V0, V∞) and P1,P2 ∈ Π(V ;V0, V∞)
it holds that

P(L1 ∧ L2) = P(L1) ∨ P(L2), P(L1 ∨ L2) = P(L1) ∧ P(L2),
L(P1 ∧ P2) = L(P1) ∨ L(P2), L(P1 ∨ P2) = L(P1) ∧ L(P2).

�

Remark 2.2.11. Theorem 2.2.10 above, referring to two distinguished sub-
sets V0 and V∞, is slightly different from the standard statement of Birkhoff’s
representation theorem. This is for convenience in our subsequent applica-
tions. The essence, however, lies in the case of V0 = V∞ = ∅. �

Concerning the partial order, we introduce the following additional nota-
tion:

Vk ≺ Vl ⇐⇒ Vk � Vl and Vk �= Vl; (2.30)

Vk ≺· Vl ⇐⇒
{

(i) Vk ≺ Vl and
(ii) � ∃ Vj such that Vk ≺ Vj ≺ Vl;

(2.31)

〈Vl〉 =
⋃

Vk≺Vl

Vk. (2.32)

Example 2.2.12. In Example 2.2.7 (see Fig. 2.6) it holds that V0 ≺· V1 and
V1 ≺· V2, while V0 ≺· V2 is not true. We have 〈V0〉 = ∅, 〈V1〉 = V0 = {1, 2},
〈V2〉 = V0 ∪ V1 = {1, 2, 4, 5}, 〈V3〉 = V0 = {1, 2}, 〈V∞〉 = V0 ∪ V1 ∪ V2 ∪ V3 =
{1, 2, 3, 4, 5, 6}. Note that 〈Vk〉 = Yk for k = 1, 2, 3. �

So far we have considered how a sublattice L of 2V induces a decompo-
sition of the ground set V into partially ordered blocks. We now go on to
explain how a submodular function f is decomposed into minors on those
blocks if it is modular on L. With reference to the maximal chain (2.22) we
define fk : 2Vk → R by

f0(Y ) = f(Y ), Y ⊆ V0,

fk(Y ) = f(Xk−1 ∪ Y ) − f(Xk−1), Y ⊆ Vk (k = 1, · · · , b), (2.33)
f∞(Y ) = f(Xb ∪ Y ) − f(Xb), Y ⊆ V∞.

Obviously, each fk : 2Vk → R is a submodular function.
The following theorem is sometimes called the Jordan–Hölder-type theo-

rem for submodular functions, after an analogous statement in module theory.

Theorem 2.2.13. Assume that f : 2V → R is submodular and a sublattice
L ⊆ 2V is an f-skeleton, as in (2.19) and (2.20). Let fk (k = 1, · · · , b) be
defined by (2.33) with reference to a maximal chain of L. For k = 1, · · · , b, it
holds that

fk(Y ) = f(〈Vk〉 ∪ Y ) − f(〈Vk〉), Y ⊆ Vk.

In particular, the family {(Vk, fk) | k = 1, · · · , b} is determined independently
of the choice of a maximal chain.
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Proof. Noting Xk−1 ⊇ 〈Vk〉, we putW = Xk−1\〈Vk〉. Then fk(Y ) = f(〈Vk〉∪
Y ∪W ) − f(〈Vk〉 ∪W ). It follows from the submodularity (2.20) of f that

f(〈Vk〉 ∪ Vk) − f(〈Vk〉 ∪ Y ) ≥ f(〈Vk〉 ∪ Vk ∪W ) − f(〈Vk〉 ∪ Y ∪W ),
f(〈Vk〉 ∪ Y ) − f(〈Vk〉) ≥ f(〈Vk〉 ∪ Y ∪W ) − f(〈Vk〉 ∪W ). (2.34)

Addition of these yields

f(〈Vk〉 ∪ Vk) − f(〈Vk〉) ≥ f(〈Vk〉 ∪ Vk ∪W ) − f(〈Vk〉 ∪W ).

The inequality here is an equality by the modularity of f on L, since 〈Vk〉∪Vk,
〈Vk〉, 〈Vk〉 ∪ Vk ∪ W (= Xk) and 〈Vk〉 ∪ W (= Xk−1) all belong to L by
Birkhoff’s representation theorem. Therefore, we have an equality also in
(2.34).

Remark 2.2.14. In abstract terms a lattice is a triple L = (S,∨,∧) of a
nonempty set S and two binary operations ∨ and ∧ on S (called “join” and
“meet” respectively) such that x∨x = x, x∧x = x; x∨y = y∨x, x∧y = y∧x;
x∨(y∨z) = (x∨y)∨z, x∧(y∧z) = (x∧y)∧z; x∧(x∨y) = x, x∨(x∧y) = x
for x, y, z ∈ S. A lattice L = (S,∨,∧) gives rise to a partially ordered set
P = (S,�) with � defined by [x � y ⇐⇒ x∨ y = y]. Such partially ordered
set P = (S,�) enjoys a nice property that for x, y ∈ S there exist a (unique)
minimum element among {z ∈ S | x � z, y � z} (denoted as sup{x, y}) and
a (unique) maximum element among {z ∈ S | z � x, z � y} (denoted as
inf{x, y}). Conversely, a partially ordered set P = (S,�) such that sup{x, y}
and inf{x, y} exist for any x, y ∈ S induces a lattice L = (S,∨,∧) with ∨ and
∧ defined by x∨y = sup{x, y} and x∧y = inf{x, y}. A lattice L = (S,∨,∧) is
called distributive if x∧(y∨z) = (x∧y)∨(x∧z), x∨(y∧z) = (x∨y)∧(x∨z).
See Birkhoff [12] and Aigner [4] for lattice theory. �

Notes. The general decomposition principle given as Theorem 2.2.13 is due
to Iri [129], Nakamura [245], and Nakamura–Iri [247]. This is an outcome
of a series of successive generalizations of the concept of principal partitions
for graphs and matroids. See also Kishi–Kajitani [157, 158, 159], Ohtsuki–
Ishizaki–Watanabe [254], Ozawa [260, 262] for principal partitions of graphs,
and Bruno–Weinberg [25], Iri [126], Nakamura–Iri [246], Narayanan–Vartak
[249], Tomizawa [313], Tomizawa–Fujishige [316] for principal partitions of
matroids. In this book we shall make use of this decomposition principle in
a number of places. For example, it underlies the Dulmage–Mendelsohn de-
composition of bipartite graphs (§2.2.3), the min-cut decomposition for inde-
pendent matching problems (§2.3.5), the M-decomposition of graphs (§4.3.2),
and the combinatorial canonical form of layered mixed matrices (§4.4). An-
other general decomposition principle for submodular functions, called the
principal structure, is described in §4.9.2.



2.2 Graph 55

2.2.3 Dulmage–Mendelsohn Decomposition

This section is devoted to a comprehensive account of the Dulmage–Mendel-
sohn decomposition (or the DM-decomposition for short), a unique decom-
position of a bipartite graph with respect to maximum matchings due to
Dulmage–Mendelsohn [63, 64, 65, 66]. A standard reference for matching the-
ory, with emphasis on structures rather than algorithms, is Lovász–Plummer
[181].

Let G = (V +, V −;A) be a bipartite graph with vertex set consisting of
two disjoint parts V + and V − and with arc set A, where arcs are directed
from V + to V −. For M (⊆ A) in general, we denote by ∂+M (resp., ∂−M)
the set of vertices in V + (resp., V −) incident to arcs in M . Also we put
∂M = ∂+M ∪ ∂−M .

A matching M is a subset of A such that no two arcs in M share a
common vertex incident to them. In other words, M is a matching if and
only if |M | = |∂+M | = |∂−M |. A matching of maximum size (cardinality)
is called a maximum matching. The size of a maximum matching in G is
denoted by ν(G). A matching with ∂+M = V + and ∂−M = V − is called
a perfect matching. An arc of G is said to be admissible if it is contained in
some maximum matching in G.

A cover is a pair (U+, U−) of U+ ⊆ V + and U− ⊆ V − such that no arcs
exist between V + \U+ and V − \U−. The size of a cover (U+, U−) is defined
to be |U+| + |U−| and a cover of minimum size is called a minimum cover.
We denote by C(G) the family of minimum covers of G.

A duality relation exists between the maximum matchings and the mini-
mum covers.

Theorem 2.2.15 (König–Egerváry). For a bipartite graph we have

max{|M | |M : matching} = min{|U+| + |U−| | (U+, U−) : cover}. (2.35)

Proof. This is a special case of Theorem 2.3.27.

To rewrite Theorem 2.2.15 into another form we define Γ : 2V + → 2V −

and γ : 2V + → Z by

Γ (X) = {v ∈ V − | ∃u ∈ X : (u, v) ∈ A}, X ⊆ V +, (2.36)
γ(X) = |Γ (X)|, X ⊆ V +, (2.37)

where Γ (X) denotes the set of vertices in V − adjacent to some vertex in
X (⊆ V +). In passing we note the following fundamental properties.

Lemma 2.2.16. For X,Y ⊆ V + it holds that

Γ (X ∪ Y ) = Γ (X) ∪ Γ (Y ), Γ (X ∩ Y ) ⊆ Γ (X) ∩ Γ (Y ),
γ(X) + γ(Y ) ≥ γ(X ∪ Y ) + γ(X ∩ Y ).
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Proof. The first claim is easy to verify, while the second follows from

|Γ (X∪Y )|+ |Γ (X∩Y )| ≤ |Γ (X)∪Γ (Y )|+ |Γ (X)∩Γ (Y )| = |Γ (X)|+ |Γ (Y )|.

The second expression of the duality is given in terms of γ as follows.

Theorem 2.2.17 (Hall–Ore).

max{|M | |M : matching} = min{γ(X) − |X| | X ⊆ V +} + |V +|. (2.38)

Proof. This follows from Theorem 2.2.15 and the fact that (U+, U−) is a cover
if and only if Γ (V + \ U+) ⊆ U−.

The function

p0(X) = γ(X) − |X|, X ⊆ V +, (2.39)

appearing in the above identity is called the surplus function in Lovász–
Plummer [181], and −p0 is the deficiency according to Ore [256].

Lemma 2.2.18. The surplus function p0(X) of (2.39) is submodular, i.e.,

p0(X) + p0(Y ) ≥ p0(X ∪ Y ) + p0(X ∩ Y ).

Proof. This is immediate from the submodularity of γ in Lemma 2.2.16.

We may say that the second expression (2.38) for the duality reveals
the submodularity inherent in the problem at the sacrifice of the symmetry
apparent in the first expression (2.35). On the basis of the submodularity of
p0 we shall derive the DM-decomposition.

Example 2.2.19. The above theorems are illustrated here for the bipartite
graph G = (V +, V −;A) in Fig. 2.7, where V + = {u1, · · · , u7} and V − =
{v1, · · · , v7}. In Theorem 2.2.15,

M = {(u2, v1), (u3, v2), (u4, v3), (u5, v4), (u6, v5), (u7, v6)}

is a maximum matching of size |M | = 6, and

(U+, U−) = ({u4, u5, u6, u7}, {v1, v2})

is a minimum cover of size |U+| + |U−| = 6. In Theorem 2.2.17, the
surplus function p0(X) = γ(X) − |X| takes the minimum value −1 at
X = {u1, u2, u3}, for example, and hence the right-hand side of (2.38) is
equal to 6. It is mentioned in advance that the four subgraphs G0, G1, G2,
G∞, indicated by vertical broken lines in Fig. 2.7, are the components of the
DM-decomposition to be derived below. �
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Fig. 2.7. DM-decomposition

The family of subgraphs Gk = (V +
k , V

−
k ;Ak) in the DM-decomposition is

constructed as follows. In view of the minimax relation (2.38) it is natural to
look at the family of the minimizers of surplus function p0:

Lmin(p0) = {X ⊆ V + | p0(X) ≤ p0(Y ),∀Y ⊆ V +}, (2.40)

which forms a sublattice of 2V +
by virtue of the submodularity of p0

(cf. Lemma 2.2.18 and Theorem 2.2.5). According to the Jordan–Hölder-
type theorem for submodular functions (§2.2.2), the sublattice Lmin(p0) de-
termines

P(Lmin(p0)) = ({V +
0 ;V +

1 , · · · , V +
b ;V +

∞},�), (2.41)

a pair of a partition of V + and a partial order �. Here V +
k �= ∅ for k =

1, · · · , b, whereas V +
0 and V +

∞ are distinguished blocks that can be empty.
In accordance with (2.23) we may assume V +

0 = X0, V +
k = Xk \ Xk−1

(k = 1, · · · , b), V +
∞ = V + \ Xb for a maximal chain (Xk | k = 0, 1, · · · , b) of

L = Lmin(p0) (cf. (2.22)). Define

V −
0 = Γ (X0),
V −

k = Γ (Xk) \ Γ (Xk−1) (k = 1, · · · , b), (2.42)
V −
∞ = V − \ Γ (Xb)
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to obtain a partition (V −
0 ;V −

1 , · · · , V −
b ;V −

∞) of V −, which is determined inde-
pendently of the chosen maximal chain by the following lemma. The notation
〈V +

k 〉 is defined in (2.32).

Lemma 2.2.20. V −
k = Γ (V +

k ) \ Γ (〈V +
k 〉) (k = 1, · · · , b).

Proof. Theorem 2.2.13 implies |V −
k | = γ(Xk−1 ∪ V +

k )− γ(Xk−1) = γ(〈V +
k 〉 ∪

V +
k ) − γ(〈V +

k 〉). Since V −
k = Γ (Xk−1 ∪ V +

k ) \ Γ (Xk−1) = Γ (V +
k ) \ Γ (Xk−1)

and Γ (〈V +
k 〉 ∪ V +

k ) \ Γ (〈V +
k 〉) = Γ (V +

k ) \ Γ (〈V +
k 〉), it follows that |V −

k | =
|Γ (V +

k ) \ Γ (Xk−1)| = |Γ (V +
k ) \ Γ (〈V +

k 〉)|, in which Γ (Xk−1) ⊇ Γ (〈V +
k 〉).

Therefore, V −
k = Γ (V +

k ) \ Γ (〈V +
k 〉).

The arc set A of G is partitioned accordingly as

A =

( ∞⋃

k=0

Ak

)

∪

⎛

⎝
⋃

k �=l

Akl

⎞

⎠ ,

Ak = {a ∈ A | ∂+a ∈ V +
k , ∂

−a ∈ V −
k } (k = 0, 1, · · · , b,∞),

Akl = {a ∈ A | ∂+a ∈ V +
l , ∂

−a ∈ V −
k } (k �= l; k, l = 0, 1, · · · , b,∞).

Thus we have obtained the family of subgraphs Gk = (V +
k , V

−
k ;Ak) (k =

0, 1, · · · , b,∞), which we call the DM-components. Furthermore we define
Gk � Gl if and only if V +

k � V +
l in P(Lmin(p0)), where it is emphasized that

G0 � Gk � G∞ for any k. We call G0 the horizontal tail (or the minimal
inconsistent component), G∞ the vertical tail (or the maximal inconsistent
component) and the others Gk (k = 1, · · · , b) the consistent components.

Example 2.2.21. For the graph in Fig. 2.7 it can be verified that

Lmin(p0) = {{u1, u2, u3}, {u1, u2, u3, u4}, {u1, u2, u3, u5, u6},
{u1, u2, u3, u4, u5, u6}}.

This yields (2.41) with b = 2, V +
0 = {u1, u2, u3}, V +

1 = {u4}, V +
2 = {u5, u6},

V +
∞ = {u7} and the partial order: V +

0 � V +
k � V +

∞ for k = 1, 2. Hence the
four subgraphs G0, G1, G2, G∞, indicated by vertical broken lines in Fig. 2.7
with the partial order G0 � Gk � G∞ for k = 1, 2. The identity in Lemma
2.2.20 for k = 2 reads {v4, v5} = {v2, v4, v5} \ {v1, v2}. �

The DM-decomposition reveals the structure of a bipartite graph with
respect to maximum matchings and minimum covers, as follows. Recall the
notation ν(G) for the size of a maximum matching in G and C(G) for the
family of minimum covers of G.

Theorem 2.2.22 (Dulmage–Mendelsohn decomposition). Let Gk =
(V +

k , V
−
k ;Ak) (k = 0, 1, · · · , b,∞) be the DM-components of a bipartite graph

G = (V +, V −;A).
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(1) For 1 ≤ k ≤ b (consistent components): ν(Gk) = |V +
k | = |V −

k |,
C(Gk) = {(V +

k , ∅), (∅, V
−
k )}, and each a ∈ Ak is admissible in Gk;

For k = 0 (horizontal tail): ν(G0) = |V −
0 |, |V −

0 | < |V +
0 | if V −

0 �= ∅, C(G0) =
{(∅, V −

0 )}, and each a ∈ A0 is admissible in G0;
For k = ∞ (vertical tail): ν(G∞) = |V +

∞ |, |V +
∞ | < |V −

∞ | if V +
∞ �= ∅, C(G∞) =

{(V +
∞ , ∅)}, and each a ∈ A∞ is admissible in G∞.
(2) The partial order � among the components Gk is represented by the

existence of arcs:

Akl = ∅ unless Gk � Gl (1 ≤ k, l ≤ b); (2.43)
Akl �= ∅ if Gk ≺· Gl (1 ≤ k, l ≤ b). (2.44)

(3) The minimum covers of G are in one-to-one correspondence with the
order ideals:

C(G) = {(
⋃

k∈I

V +
k ,

⋃

k∈I

V −
k ) | {Gk | k ∈ I} : order ideal },

where I = {0, 1, · · · , b,∞} \ I, and it is emphasized that 0 ∈ I and ∞ �∈ I if
I corresponds to an order ideal.

(4) M (⊆ A) is a maximum matching of G if and only if M ⊆
⋃∞

k=0Ak

and M ∩Ak is a maximum matching of Gk for k = 0, 1, · · · , b,∞.

Proof. We prove (1), (3), (2) and (4). First note from (2.42) that

Akl = ∅ (k > l). (2.45)

(1) [Size of vertex sets] Since V +
0 ∈ Lmin(p0), we have

0 = p0(∅) ≥ min p0 = p0(V +
0 ) = γ(V +

0 ) − |V +
0 | = |V −

0 | − |V +
0 |.

If the equality holds here, then p0(∅) = min p0, which implies V +
0 = ∅ and

therefore V −
0 = ∅. For k = 1, · · · , b, we have min p0 = γ(Xk−1) − |Xk−1| =

γ(Xk)−|Xk|, which means |V +
k | = |V −

k | by (2.42). If V +
∞ �= ∅, then p0(V +) >

min p0 = p0(Xb), i.e., γ(V +)−|V +| > γ(Xb)−|Xb|. Combination of this with
|V −| ≥ γ(V +), |V −

∞ | = |V −|−γ(Xb), |V +
∞ | = |V +|− |Xb| yields |V −

∞ | > |V +
∞ |.

[Size of maximum matchings] For k = 0, 1, · · · , b, put Yk =
k⋃

l=0

V −
l and

let G(k) be the subgraph of G induced on Xk ∪Yk. It follows from (2.45) and
Theorem 2.2.17 that

ν(G(k)) = min{p0(X) | X ⊆ Xk} + |Xk| = |Yk|,

which implies ν(Gk) = |V −
k | for k = 0, 1, · · · , b. Since A∞k = ∅ for k =

0, 1, · · · , b by (2.45) and ν(G(b)) = |Yb|, we have

|V +
∞ | ≥ ν(G∞) ≥ ν(G) − |Yb| = min p0 + |V +| − |Yb| = |V +| − |Xb| = |V +

∞ |.
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[Minimum covers] For k = 0, 1, · · · , b,∞, the surplus function p(k) :
2V +

k → Z of Gk is given by

p(k)(X) = |Γ (X) ∩ V −
k | − |X| = p0(Xk−1 ∪X) − p0(Xk−1), X ⊆ V +

k ,

where Xk−1 = ∅ for k = 0 and Xk−1 = Xb for k = ∞. This shows that

Lmin(p(k)) =

⎧
⎨

⎩

{V +
0 } (k = 0)

{∅, V +
k } (1 ≤ k ≤ b)

{∅} (k = ∞).
(2.46)

[Admissibility of each arc] For a = (u, v) ∈ Ak consider a cover (W+,W−)
of Gk \ {u, v}. Since (W+ ∪ {u},W− ∪ {v}) is a cover of Gk but not a
minimum cover by (2.46), we have |W+|+ |W−|+ 2 ≥ ν(Gk) + 1. Therefore,
ν(Gk \ {u, v}) = min{|W+| + |W−|} ≥ ν(Gk) − 1. A maximum matching of
Gk \ {u, v} augmented with (u, v) yields a maximum matching of Gk.

(3) This follows from the facts that (U+, U−) is a cover if and only if
Γ (V + \ U+) ⊆ U−, and that X ∈ Lmin(p0) if and only if X corresponds to
an order ideal.

(2) For the proof of (2.43) suppose that Gk �� Gl. Then there exists an
order ideal I such that k �∈ I and l ∈ I. By (3), (

⋃
j∈I V

+
j ,

⋃
j∈I V

−
j ) is a

minimum cover. This means in particular that there exists no arc between
V +

l and V −
k , that is, Akl = ∅.

For the proof of (2.44) suppose that Gk ≺· Gl, where k < l. Put

I = {i | k < i < l,Gk ≺ Gi}, I∗ = I ∪ {k},
J = {j | k < j < l} \ I, J∗ = J ∪ {l}.

We have (i) i ∈ I∗, j ∈ J ⇒ Gi �� Gj , and (ii) i ∈ I ⇒ Gi �� Gl. The
statement (i) is due to the transitivity of the partial order and the statement
(ii) is by the assumption Gk ≺· Gl. It then follows that

i ∈ I∗, j ∈ J∗, (i, j) �= (k, l) ⇒ Gi �� Gj ⇒ Aij = ∅,

where (2.43) is used. If Akl = ∅ is the case, we have Aij = ∅ for i ∈ I∗ and

j ∈ J∗. This implies X = Xk−1 ∪
(⋃

j∈J∗ V
+
j

)
belongs to Lmin(p0), since

p0(X)=(|Yk−1|+
∑

j∈J∗

|V −
j |)−(|Xk−1|+

∑

j∈J∗

|V +
j |)= |Yk−1|−|Xk−1|=min p0.

Hence we have X ∈ Lmin(p0), V +
k �⊆ X and V +

l ⊆ X. This contradicts the
definition (2.24) of V +

k � V +
l . Therefore, Akl �= ∅.

(4) Let (U+, U−) be a minimum cover. By Theorem 2.2.15, a matching
M is maximum if and only if there exists no a ∈M such that ∂+a ∈ U+ and
∂−a ∈ U−. Then the assertion follows from (1)–(3) above.
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Corollary 2.2.23.
(1) a ∈ A is admissible in G if and only if a ∈

⋃∞
k=0Ak.

(2) V +
0 = {v ∈ V + | ν(G) = ν(G \ {v})},
V −
∞ = {v ∈ V − | ν(G) = ν(G \ {v})}.

Proof. (1) This follows from (1) and (4) of Theorem 2.2.22.
(2) Note V + \ V +

0 = {v ∈ V + | ∃(U+, U−) ∈ C(G), v ∈ U+}. If
(U+, U−) ∈ C(G) and v ∈ U+, then (U+ \ {v}, U−) is a cover of G \ {v},
and hence ν(G \ {v}) ≤ |U+| + |U−| − 1 = ν(G) − 1. Conversely, for v ∈ V +

0

and any cover (W+,W−) of G \ {v}, (W+ ∪ {v},W−) is a cover of G but
not a minimum cover. Hence |W+ ∪ {v}| + |W−| ≥ ν(G) + 1. Therefore,
ν(G \ {v}) = min{|W+| + |W−|} ≥ ν(G). Similarly for V −

∞ .

An algorithm for the DM-decomposition is given below. For a matching
M an auxiliary graph G̃M = (V + ∪ V −, Ã;S+, S−) is defined by

Ã = {(u, v) | (u, v) ∈ A or (v, u) ∈M}, S+ = V + \∂+M, S− = V − \∂−M.

Recall the notation ∗−→ for the reachability by a directed path.

Algorithm for the DM-decomposition of G = (V +, V −;A)

1. Find4 a maximum matching M on G = (V +, V −;A).
2. Let V0 = {v ∈ V + ∪ V − | u ∗−→ v on G̃M for some u ∈ S+}.
3. Let V∞ = {v ∈ V + ∪ V − | v ∗−→u on G̃M for some u ∈ S−}.
4. Let G′ denote the graph obtained from G̃M by deleting the vertices V0 ∪
V∞ (and arcs incident thereto).

5. Let Vk (k = 1, · · · , b) be the strong components of G′.
6. Let Gk = (V +

k , V
−
k ;Ak) be the subgraph of G induced on Vk (k =

0, 1, · · · , b,∞).
7. Define a partial order � on {Gk | k = 1, · · · , b} as follows:

Gk � Gl ⇐⇒ vl
∗−→ vk on G̃M for some vk ∈ Vk and vl ∈ Vl.

Also define G0 � Gk � G∞ for any k. �

The validity of the above algorithm will be established in §2.3.5 as a special
case of a more general algorithm (the algorithm for the min-cut decomposi-
tion of an independent matching problem; see Lemma 2.3.35, to be specific).
This implies, in particular, that the decomposition constructed by the above
algorithm does not depend on the initially chosen maximal matching M .

4 A maximum matching can be found in O(|A| (min(|V +|, |V −|))1/2) time by
an augmenting path method using layered networks; see Lawler [171] and
Papadimitriou–Steiglitz [265]. More recent algorithms can be found in Ahuja–
Magnanti–Orlin [3].
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A bipartite graph G = (V +, V −;A) with V + ∪ V − �= ∅ is said to be
DM-irreducible if it cannot be decomposed into more than one nonempty
component in the DM-decomposition. Otherwise, it is called DM-reducible.
A graph G with V + = ∅ or V − = ∅ is DM-irreducible, as the whole graph is
a (vertical or horizontal) tail. Note that G with A = ∅, V + �= ∅ and V − �= ∅
is DM-reducible, as it can be decomposed into two nonempty components,
the horizontal tail G0 = (V +, ∅; ∅) and the vertical tail G∞ = (∅, V −; ∅).

The following theorem is a reformulation of the result due to Marcus–Minc
[186] and Brualdi [22] (see also Brualdi–Ryser [24, Theorem 4.2.2]).

Theorem 2.2.24. For a bipartite graph G = (V +, V −;A) with |V +| = |V −|
the following three conditions are equivalent:

(i) G is DM-irreducible,
(ii) C(G) = {(V +, ∅), (∅, V −)},
(iii) ν(G \ {u, v}) = ν(G) − 1 for ∀u ∈ V +, ∀ v ∈ V −.

Proof. The equivalence between (i) and (ii) follows from Theorem 2.2.22(1).
For (ii) ⇒ (iii), first note (ii) implies ν(G) = |V +|, and hence ν(G \

{u, v}) ≤ |V +|−1 = ν(G)−1. Take a minimum cover (W+,W−) of G\{u, v}.
Since (W+ ∪ {u},W− ∪ {v}) is a cover of G but not a minimum cover, we
see ν(G) + 1 ≤ |W+ ∪ {u}| + |W− ∪ {v}| = ν(G \ {u, v}) + 2.

For (iii) ⇒ (ii) suppose that (ii) fails. We divide into two cases: (a) ν(G) =
|V +| and (b) ν(G) < |V +|. In case (a), there exists (U+, U−) ∈ C(G) such
that U+ �= ∅ and U− �= ∅. For u ∈ U+ and v ∈ U−, (U+ \ {u}, U− \ {v}) is a
cover of G \ {u, v}. Hence ν(G \ {u, v}) ≤ |U+ \ {u}|+ |U− \ {v}| = ν(G)− 2.
In case (b), both horizontal and vertical tails are nonempty. For u ∈ V +

0 and
v ∈ V −

∞ we have ν(G \ {u, v}) = ν(G) by Corollary 2.2.23(2).

The concept of DM-decomposition may be extended to matrices by means
of the DM-decomposition of associated bipartite graphs. Recall from §2.2.1
that for a matrix A = (Aij) the associated bipartite graph is defined by G =
(V +, V −; Ã) with V + = Col(A), V − = Row(A) and Ã = {(j, i) | Aij �= 0}.
A DM-component Gk = (V +

k , V
−
k ;Ak) of G corresponds to the submatrix

A[V −
k , V

+
k ], which will be referred to as a DM-component of A.

The following relation is obvious from the definitions, but provides the
DM-decomposition with a linear algebraic significance.

Proposition 2.2.25. term-rankA = ν(G). �

The DM-decomposition of A gives the finest block-triangularization of
a matrix by means of a transformation PrAPc using two permutation ma-
trices Pr and Pc, where it is imposed that each diagonal block in a block-
triangularization has full term-rank. In fact, Theorem 2.2.22(1) combined
with Proposition 2.2.25 above guarantees this term-rank condition for the di-
agonal blocks produced by the DM-decomposition. Furthermore, term-rank
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coincides with rank for a generic matrix, in which all nonzero entries are in-
dependent parameters (cf. Proposition 2.1.12). Hence, for a generic matrix,
the DM-decomposition gives the finest proper block-triangularization in the
sense of §2.1.4.

For instance, the matrix version of the DM-decomposition of the graph
in Fig. 2.7 is given by

A =

V +
0 V +

1 V +
2 V +

∞
V −

0 t1 t2 t3
t4 t5 t6 t7

V −
1 t8
V −

2 t9 t10
t11 t12 t13

V −
∞ t14

t15

.

Note that term-rankA[V −
k , V

+
k ] = min(|V +

k |, |V −
k |) for k = 0, 1, 2,∞. The

matrix PrAPc of (2.16) in Example 2.1.15 gives an instance of the DM-
decomposition of a term-nonsingular matrix.

Though term-rank is a natural combinatorial counterpart, it is not the
same as rank, which is undoubtedly more important in applications. A nu-
merical (nongeneric) matrix may or may not have the same rank as term-
rank, and accordingly, the DM-decomposition may or may not be a proper
block-triangular form. The present argument shows the following.

Proposition 2.2.26. For a matrix A the following three conditions (i)–(iii)
are equivalent.

(i) rankA = term-rankA.
(ii) The DM-decomposition is a proper block-triangularization, i.e., the

DM-components A[V −
k , V

+
k ] (k = 0, 1, · · · , b,∞) satisfy

rankA[V −
k , V

+
k ] = min(|V +

k |, |V −
k |) (k = 0, 1, · · · , b,∞).

(iii) There exist I ⊆ Row(A) and J ⊆ Col(A) such that rankA[I, J ] = 0,
rankA[Row(A)\I, J ] = |Row(A)\I|, and rankA[I,Col(A)\J ] = |Col(A)\J |.

Proof. The equivalence of (i) and (ii) is immediate from Theorem 2.2.22. For
(iii) take I = Row(A) \ V −

0 and J = Col(A) \ V +
0 .

The concept of DM-irreducibility can be naturally defined for matri-
ces, and it coincides with the well-studied concept of full indecomposability
(cf. Brualdi–Ryser [24] and Schneider [288]). To see this, first recall that a
matrix A is said to be fully indecomposable if it does not contain a zero subma-
trix A[I, J ] = O with I �= ∅, J �= ∅ and |I| + |J | = max(|Row(A)|, |Col(A)|).
Since A[I, J ] = O if and only if (V − \ I, V + \ J) is a cover of the asso-
ciated graph G = (V +, V −; Ã), matrix A is fully indecomposable if and
only if G has no cover (U+, U−) such that U+ �= V +, U− �= V − and
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|U+| + |U−| = min(|V +|, |V −|). The latter condition is equivalent to the
DM-irreducibility (cf. Theorem 2.2.24). Henceforth we use DM-irreducibility
as a synonym of full indecomposability.

The DM-irreducibility for square generic matrices admits two further
characterizations in addition to those given in Theorem 2.2.24. The first says
that the DM-irreducibility for a generic matrix is equivalent to the inverse
matrix having a completely dense nonzero pattern.

Theorem 2.2.27. A square generic matrix A is DM-irreducible if and only
if A is nonsingular and (A−1)ji �= 0 for all (j, i).

Proof. Since (A−1)ji = detA[R \ {i}, C \ {j}]/detA, where R = Row(A)
and C = Col(A), the claim here reduces to the equivalence of (i) and (iii) in
Theorem 2.2.24.

The determinant of a generic matrix A can be regarded as a polynomial in
the nonzero entries. Specifically, let T denote the set of nonzero entries of A,
which is algebraically independent over a ground field K. Then detA ∈ K[T ],
where K[T ] means the ring of polynomials in T over K.

The following theorem gives an algebraic characterization of the DM-
irreducibility in terms of the irreducibility of the determinant as a multi-
variate polynomial. This is proven in Ryser [285] and credited essentially to
Frobenius [78] in Ryser [286].

Theorem 2.2.28. A square generic matrix A is DM-irreducible if and only
if detA is an irreducible (nonzero) polynomial in K[T ], where T denotes the
set of nonzero entries of A.

Proof. The “if” part is obvious, since, for a DM-reducible A with no tails,
detA is equal to the product of the determinants of the diagonal blocks of
the DM-decomposition of A (and detA = 0 if a nonempty tail exists). For
the “only if” part assume that detA is factored as detA = f1 · f2 with
f1, f2 ∈ K[T ] \ K. For k = 1, 2, let Tk denote the set of the variables of T
that appear in fk. Put

Rk = {i ∈ R | Aij ∈ Tk}, Ck = {j ∈ C | Aij ∈ Tk} (k = 1, 2),

where R = Row(A) and C = Col(A). Then R1 ∩ R2 = ∅, R1 ∪ R2 = R,
C1 ∩C2 = ∅, C1 ∪C2 = C for k = 1, 2, since for each pair of terms in f1 and
f2 their product remains in f1 · f2 = detA as a nonvanishing term, which in
turn corresponds to a perfect matching in the associated bipartite graph. We
may assume |R1| ≥ |C1| ≥ 1 without loss of generality. If A[R1, C2] = O, A
is DM-reducible. If Aij �= 0 for some i ∈ R1 and j ∈ C2, the variable t = Aij

cannot appear in detA, since otherwise t must be contained in fk for k = 1
or 2, which implies i ∈ Rk and j ∈ Ck, a contradiction to R1 ∩ R2 = ∅ and
C1∩C2 = ∅. The disappearance of t in detA implies detA[R\{i}, C\{j}] = 0,
or equivalently, ν(G \ {i, j}) < ν(G) − 1 in terms of the associated bipartite
graph G. This shows the DM-reducibility by Theorem 2.2.24.
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Remark 2.2.29. We have derived the DM-decomposition in a systematic
manner on the basis of the Jordan–Hölder-type theorem for submodular func-
tions, though alternative quicker derivations would have been possible. Our
systematic derivation here enables us to generalize the DM-decomposition to
a more sophisticated decomposition in §4.4, called the CCF (combinatorial
canonical form) of layered mixed matrices. The DM-decomposition serves as
one of the main tools for the graph-theoretic methods for systems analysis
(see Duff–Erisman–Reid [59], Murota [204, Chaps. 2 and 3]), whereas the
CCF is for the matroid-theoretic methods to be developed in Chap. 4 and
Chap. 6. Applications of the DM-decomposition can be found in Ashcraft–Liu
[8], Erisman–Grimes–Lewis–Poole–Simon [73], Hellerman–Rarick [109, 110],
O’Neil–Szyld [255], and Pothen–Fan [273]. �

2.2.4 Maximum Flow and Menger-type Linking

In §2.2.4 and §2.2.5 we describe some fundamental results from network flow
theory that are needed in this book; maximum flow in §2.2.4 and mini-
mum cost flow in §2.2.5. For systematic and comprehensive expositions of
network flow theory, the reader is referred to standard textbooks such as
Ahuja–Magnanti–Orlin [3], Cook–Cunningham–Pulleyblank–Schrijver [40],
Ford–Fulkerson [75], Iri [123], Lawler [171], Nemhauser–Rinnooy Kan–Todd
[250], Nemhauser–Wolsey [251], and Papadimitriou–Steiglitz [265].

Consider a network N = (V,A, c; s+, s−), where V is the vertex set, A is
the arc set, c : A → R+ ∪ {+∞} is a function defining the capacity of arcs
(R+: set of nonnegative reals), and s+ and s− are two distinct vertices called
the source and the sink (s+, s− ∈ V and s+ �= s−). A flow in N is a function
ϕ : A→ R. A function ∂ϕ : V → R derived from ϕ by

∂ϕ(v) =
∑

{ϕ(a) | a ∈ δ+v} −
∑

{ϕ(a) | a ∈ δ−v}, v ∈ V, (2.47)

is called the boundary of ϕ. Recall that for v ∈ V , δ+v means the set of arcs
going out of v and δ−v the set of arcs coming into v. A feasible flow in N is
a flow ϕ : A→ R that satisfies

capacity condition : 0 ≤ ϕ(a) ≤ c(a), a ∈ A,
conservation condition : ∂ϕ(v) = 0, v ∈ V \ {s+, s−}.

We call val(ϕ) = ∂ϕ(s+) (= −∂ϕ(s−)) the value of ϕ. The maximum flow
problem is to find a feasible flow ϕ that maximizes val(ϕ).

Suppose we tear the network N into two parts in such a way that s+ and
s− belong to different parts. Such tearing is specified by a set S ⊆ V such
that s+ ∈ S and s− ∈ V \ S; we put

S = {S ⊆ V | s+ ∈ S, s− ∈ V \ S}. (2.48)

The set of arcs going from S to V \ S is denoted as



66 2. Matrix, Graph, and Matroid

C(S) = {a ∈ A | ∂+a ∈ S, ∂−a ∈ V \ S}, (2.49)

which is referred to as the cut corresponding to S. Total amount of flow from
s+ to s− is obviously bounded by the total capacity of the arcs in C(S). That
is, denoting the capacity of the cut by

κ(S) =
∑

{c(a) | a ∈ C(S)}, (2.50)

we have an inequality
val(ϕ) ≤ κ(S) (2.51)

for any flow ϕ and any S ∈ S.
The celebrated max-flow min-cut theorem asserts that the inequality

(2.51) is satisfied with equality for a suitable choice of ϕ and S.

Theorem 2.2.30 (Max-flow min-cut theorem). The maximum value
of a flow is equal to the minimum capacity of a cut:

max{val(ϕ) | ϕ : feasible flow} = min{κ(S) | S ∈ S}.

If the capacity function is integer-valued, there exists an integer-valued max-
imum flow. �

In passing it is mentioned that the function κ : S → R satisfies the
submodular inequality:

κ(S) + κ(T ) ≥ κ(S ∪ T ) + κ(S ∩ T ), S, T ∈ S. (2.52)

This can be proven easily by the nonnegativity of c.
Next we turn to Menger-type linkings in a graph. Let G = (V,A;X,Y ) be

a graph with vertex set V composed of three disjoint parts as V = X∪U ∪Y .
We call X the entrance and Y the exit (including the case where X = ∅ or
Y = ∅). By a Menger-type linking5 from X to Y is meant a set of pairwise
vertex-disjoint directed paths, each from a vertex in X to a vertex in Y . The
size of a linking is defined to be the number of directed paths from X to Y
contained in the linking. A linking of the maximum size is called a maximum
linking and, in case |X| = |Y |, a linking of size |X| is called a perfect linking.
By a separator of (X,Y ) is meant such a subset of V that intersects any
directed path from a vertex in X to a vertex in Y . A separator of minimum
cardinality is called a minimum separator.

Menger-type linkings can be treated as a special case of network flow.
Assuming, for simplicity of presentation, that there is no arc entering x ∈ X
5 Four variants of Menger-type linking are considered in the literature according

to (i) whether arcs are directed or undirected, and (ii) whether paths are vertex-
disjoint or arc-disjoint. Only the version of directed arcs and vertex-disjoint paths
is used in this book.
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or leaving y ∈ Y , we consider a network NG = (Ṽ , Ã, c; s+, s−) using copies
of X, Y and U and new vertices s+ and s− as follows:

Ṽ = {s+, s−} ∪X∗ ∪ U∗ ∪ U∗ ∪ Y ∗,

X∗ = {x∗ | x ∈ X}, U∗ = {u∗ | u ∈ U},
U∗ = {u∗ | u ∈ U}, Y ∗ = {y∗ | y ∈ Y },

Ã = Ão ∪ Ãd,

Ão = {(v∗, w∗) | (v, w) ∈ A},
Ãd = {(s+, x∗) | x ∈ X} ∪ {(u∗, u∗) | u ∈ U} ∪ {(y∗, s−) | y ∈ Y },

c(a) =
{

1 (a ∈ Ãd)
+∞ (a ∈ Ão).

Note that U∗ and U∗ are disjoint copies of U .
There exists a one-to-one correspondence between Menger-type maximum

linkings in G from X to Y and integral maximum flows in NG from s+

to s− which have no circulation (flow along a cycle). On the other hand,
minimum separators of (X,Y ) in G correspond to minimum cuts with respect
to (s+, s−) inNG. The max-flow min-cut theorem forNG implies the following
relationship between linkings and separators.

Theorem 2.2.31 (Menger’s theorem). Let G = (V,A;X,Y ) be a graph
with entrance X and exit Y . The maximum size of a Menger-type vertex-
disjoint linking from X to Y is equal to the minimum cardinality of a sepa-
rator of (X,Y ). �

Remark 2.2.32. Based on the submodularity (2.52) of the cut capacity
function κ, a unique decomposition of a network into subnetworks can be
defined (see Picard–Queyranne [268] and Murota [204, §8.2]). This decompo-
sition can be tailored readily to a decomposition of a graph into subgraphs
with respect to Menger-type maximum linkings and minimum separators.
The decomposition thus obtained is named “Menger-decomposition” (or “M-
decomposition” for short) by Murota [196, 205]. See also Murota [204, §8.3]
for details. �

2.2.5 Minimum Cost Flow and Weighted Matching

The minimum cost flow problem can be described as follows. Let G = (V,A)
be a graph with vertex set V and arc set A. Suppose we are also given
an upper capacity function c : A → R ∪ {+∞}, a lower capacity function
c : A → R ∪ {−∞}, and a cost function γ : A → R. Namely, we are given
a network N = (V,A, c, c, γ). A flow in N is a function ϕ : A → R, and a
feasible flow (circulation) in N is a flow ϕ : A→ R that satisfies

capacity condition : c(a) ≤ ϕ(a) ≤ c(a), a ∈ A,
conservation condition : ∂ϕ(v) = 0, v ∈ V,
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where ∂ϕ : V → R is the boundary of ϕ defined in (2.47). The cost of flow ϕ
is defined to be

cost(ϕ) =
∑

a∈A

γ(a)ϕ(a).

The minimum cost flow problem is to find a feasible flow ϕ that minimizes
cost(ϕ). A feasible flow that attains the minimum cost is called an optimal
flow or a minimum cost flow.

The optimality of a feasible flow can be characterized in a manner suitable
for algorithmic verification. With a feasible flow ϕ : A → R we associate an
auxiliary network Ñϕ = (V, Ã, γ̃). The arc set of Ñϕ is given by Ã = A∗ ∪B∗

with

A∗ = {a | a ∈ A,ϕ(a) < c(a)},
B∗ = {a | a ∈ A, c(a) < ϕ(a)} (a: reorientation of a)

and the arc length function γ̃ : Ã→ R is defined by

γ̃(a) =
{
γ(a) (a ∈ A∗)
−γ(a) (a = (u, v) ∈ B∗, a = (v, u) ∈ A). (2.53)

Then optimality of a feasible flow can be characterized as follows.

Theorem 2.2.33. For a feasible flow ϕ : A→ R, the following three condi-
tions (i)–(iii) are equivalent.

(i) ϕ is optimal, i.e., ϕ minimizes cost(ϕ).
(ii) There exists a “potential” function p : V → R such that, for each

a ∈ A,

γ(a) + p(∂+a) − p(∂−a) > 0 =⇒ ϕ(a) = c(a), (2.54)
γ(a) + p(∂+a) − p(∂−a) < 0 =⇒ ϕ(a) = c(a). (2.55)

(iii) There exists no cycle of negative length with respect to γ̃ in the
auxiliary network Ñϕ.

Moreover, if the cost γ is integer-valued, we can choose p to be integer-
valued in (ii).

Proof. Put γp(a) = γ(a) + p(∂+a) − p(∂−a) for a ∈ A.
(ii) ⇒ (i): For any feasible ϕ′ : A→ R we have

cost(ϕ′) =
∑

a∈A

γp(a)ϕ′(a) =
∑

a:γp(a)>0

γp(a)ϕ′(a) +
∑

a:γp(a)<0

γp(a)ϕ′(a)

≥
∑

a:γp(a)>0

γp(a)c(a) +
∑

a:γp(a)<0

γp(a)c(a) = cost(ϕ).

(i) ⇒ (iii): Suppose there exists a cycle of negative length in Ñϕ. Let
C̃ ⊆ Ã be the arc set of such a cycle of minimum cardinality. Then ϕ′ defined
by
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ϕ′(a) =

⎧
⎨

⎩

ϕ(a) + ε (a ∈ A∗ ∩ C̃)
ϕ(a) − ε (a ∈ B∗ ∩ C̃)
ϕ(a) (otherwise)

(2.56)

with a sufficiently small ε > 0 is feasible and

cost(ϕ′) − cost(ϕ) = ε
∑

a∈C̃

γ̃(a) < 0.

(iii) ⇒ (ii): Since there exists no cycle of negative length in Ñϕ, there
exists p : V → R such that γ̃(a) + p(∂+a) − p(∂−a) ≥ 0 (∀ a ∈ Ã) (see
Theorem 2.2.35 below). This condition is equivalent to the condition in (ii).

As to the existence of optimal flows, the following theorem states funda-
mental facts. The second statement below refers to another auxiliary network
Ñ∞ = (V,A∗ ∪B∗, γ̃) defined by

A∗ = {a | a ∈ A, c(a) = +∞},
B∗ = {a | a ∈ A, c(a) = −∞} (a: reorientation of a)

and γ̃ : A∗ ∪ B∗ → R of (2.53). It is noted that the existence of an optimal
flow is equivalent to the boundedness of the cost (infϕ cost(ϕ) > −∞) under
the assumption of feasibility.

Theorem 2.2.34. (1) A feasible flow exists if and only if
∑

{c(a) | a ∈ C(S)} ≥
∑

{c(a) | a ∈ C(V \ S)}

for each S ⊆ V , where C(S) is defined by (2.49). Moreover, if the capacity
functions c and c are integer-valued and there exists a (real-valued) feasible
flow, then there exists an integer-valued feasible flow.

(2) Assume that a feasible flow exists. An optimal flow exists if and only
if there exists no cycle of negative length with respect to γ̃ in the auxiliary
network Ñ∞ = (V,A∗ ∪B∗, γ̃).

(3) If the capacity functions c and c are integer-valued and there exists a
(real-valued) optimal flow, then there exists an integer-valued optimal flow.

Proof. (1) This is a theorem due to Hoffman [111], which may be regarded as
a variant of Theorem 2.2.30.

(2) The “only if” part is immediate from Theorem 2.2.33 ((i) ⇒ (iii) to
be specific). The “if” part can be shown by repeated modifications of feasible
flows as in (2.56).

(3) This can be shown by repeated modifications of integral feasible flows
as in (2.56), in which we can take ε = 1. Note that an initial integral feasible
flow exists by (1).

The following basic facts are stated here for the convenience of reference.
The function γ : A → R is now interpreted as the arc-length function of a
network N = (V,A, γ).
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Theorem 2.2.35. Let N = (V,A, γ) be a network with γ : A→ R.
(1) There exists p : V → R such that

γ(a) + p(∂+a) − p(∂−a) ≥ 0 (∀ a ∈ A) (2.57)

if and only if there exists no (directed) cycle of negative length with respect
to γ. Moreover, if γ is integer-valued, we can take integer-valued p.

(2) There exists p : V → R such that

γ(a) + p(∂+a) − p(∂−a) = 0 (∀ a ∈ A) (2.58)

if and only if
∑

a∈A

χC(a)γ(a) = 0 (∀ C : circuit in N), (2.59)

where χC(a) = 1 or −1 according to whether a ∈ A is contained in C in the
positive or negative direction6 (and χC(a) = 0 if a ∈ A is not contained in
C). Moreover, if γ is integer-valued, we can take integer-valued p. �

Next we turn to the weighted bipartite matching problem. Let G =
(V +, V −;A) be a bipartite graph and w : A → R be a weight function.
The weight of a matching M is defined to be

w(M) =
∑

a∈M

w(a).

Given a nonnegative integer k, the maximum weight k-matching problem is
to find a k-matching M (i.e., a matching M of size k) that maximizes the
weight w(M). A k-matching that attains the maximum weight is called an
optimal k-matching.

This problem can be formulated as the minimum cost flow problem in a
network NG = (Ṽ , Ã, c, c, γ) with

Ṽ = V + ∪ V − ∪ {s+, s−},
Ã = A ∪ {(s+, u) | u ∈ V +} ∪ {(v, s−) | v ∈ V −} ∪ {(s−, s+)},

and c, c, γ given by

c(a) c(a) γ(a)
a ∈ A 0 +∞ −w(a)
a = (s+, u) (u ∈ V +) −∞ 1 0
a = (v, s−) (v ∈ V −) −∞ 1 0
a = (s−, s+) k k 0

Then the optimality criterion for NG is translated into the following theorem
for the weighted matching problem on G = (V +, V −;A).
6 It is understood that a circuit in N (i.e., a circuit of the underlying undirected

graph) is endowed with a direction.
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Theorem 2.2.36. A k-matching M in G = (V +, V −;A) is optimal (maxi-
mum) with respect to w : A→ R if and only if there exist a “potential” func-
tion p : V +∪V − → R and a scalar q ∈ R such that p(v) ≥ 0 (v ∈ V +∪V −),
{v ∈ V + ∪ V − | p(v) > 0} ⊆ ∂M , and

w(u, v) − p(u) − p(v) − q
{

= 0 ((u, v) ∈M)
≤ 0 ((u, v) ∈ A) (2.60)

where w(u, v) means w(a) for a = (u, v) ∈ A. Moreover, if the weight w is
integer-valued, we can choose p and q to be integer-valued.

Proof. Note first that an integral feasible flow in NG corresponds to a k-
matching in G. Let p̃ : Ṽ → R be the potential function in Theorem 2.2.33,
and put p(u) = p̃(u) − p̃(s+) (u ∈ V +), p(v) = p̃(s−) − p̃(v) (v ∈ V −),
and q = p̃(s+) − p̃(s−). Then (2.54) and (2.55) for p̃ are equivalent to the
conditions on p and q above.

2.3 Matroid

2.3.1 From Matrix to Matroid

As the name shows, the concept of a matroid is a combinatorial abstraction
of matrices with respect to linear independence. The abstract definition of a
matroid, to be given in §2.3.2, is preceded here by linear algebraic motivations
explained by means of a concrete example.

Take a 3 × 5 matrix

A =

1 2 3 4 5
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

,

of which the columns are indexed by V = Col(A) = {1, · · · , 5}, and consider
linear dependence/independence among column vectors, say {av | v ∈ V }.
A subset I ⊆ V is said to be independent if the corresponding subfamily
{av | v ∈ I} of column vectors is linearly independent. Denote by I ⊆ 2V

the family of independent subsets, i.e.,

I = {I ⊆ V | {av | v ∈ I} is linearly independent}, (2.61)

where

(I-1) ∅ ∈ I
by convention. For the matrix A above an inspection shows
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I = {∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}.

Obviously, it holds that

(I-2) I ⊆ J ∈ I =⇒ I ∈ I,

since a subset of an independent subset is also independent. A nontrivial
property of I is described by

(I-3) I, J ∈ I, |I| < |J | =⇒ I ∪ {v} ∈ I for some v ∈ J \ I.
For I = {1, 2} and J = {2, 3, 4}, for instance, we can take v = 3 to obtain
I ∪ {v} = {1, 2, 3} ∈ I, whereas v = 4 leads to I ∪ {v} = {1, 2, 4} �∈ I. It is a
good exercise in linear algebra (and hence left to the reader) to prove (I-3) in
general, where I is defined by (2.61) for a given matrix A = (av | v ∈ V ). In
this way a matrix gives rise to a pair (V, I) with the properties (I-1), (I-2),
(I-3).

Since I satisfies (I-2), it is redundant to enumerate all the members of I,
and only the maximal members of I (maximal with respect to set inclusion)
suffice. In our example, the family B of the maximal members of I is given
by

B={{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}},

which is the family of column bases of the matrix A. The family B satisfies

(BM−) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B − u+ v ∈ B,

where B − u + v is a short-hand notation for (B \ {u}) ∪ {v}. This is a
consequence of the Grassmann–Plücker identity (see Remark 2.1.8 for (BM±),
which implies (BM−)). For B = {1, 2, 3}, B′ = {3, 4, 5} and u = 1, for
example, we can take v = 4 to obtain B − u + v = {2, 3, 4} ∈ B, whereas
v = 5 yields B − u + v = {2, 3, 5} �∈ B. Thus a matrix gives rise to a pair
(V,B) with the property (BM−).

The linear independence structure of column vectors can be represented
also by the rank function ρ : 2V → Z defined by

ρ(X) = rankA[Row(A),X], X ⊆ V.

The following two properties of ρ are obvious:

(R-1) 0 ≤ ρ(X) ≤ |X|,
(R-2) X ⊆ Y =⇒ ρ(X) ≤ ρ(Y ).

The key property of ρ is the submodularity:

(R-3) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ), X, Y ⊆ V ,
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which has been shown in Proposition 2.1.9(1). Thus a matrix yields a pair
(V, ρ) with the properties (R-1), (R-2), (R-3).

To sum up, a matrix gives rise to (V, I), (V,B) and (V, ρ), each represent-
ing (some aspects of) the linear independence structure of column vectors.
The conditions (I-1), (I-2), (I-3) for I, (BM−) for B, and (R-1), (R-2), (R-3)
for ρ are stated without reference to the original matrix, and are meaningful
by themselves as conditions on a family I ⊆ 2V , a family B ⊆ 2V , and a
set function ρ : 2V → Z, respectively. It turns out that these three abstract
structures, (V, I), (V,B) and (V, ρ), are equivalent (in an appropriate sense),
and therefore define one and the same combinatorial structure underlying
linear independence. This structure is named a matroid.

We are now ready to formally define a matroid in terms of abstract axioms.

2.3.2 Basic Concepts

A matroid can be defined in many different ways. For our purpose it is con-
venient to feature independent sets, bases, and the rank function. Statements
marked with ((P)) are given proofs at the end of §2.3.2.

A matroid is a pair M = (V, I) of a finite set V and a collection I of
subsets of V such that

(I-1) ∅ ∈ I,
(I-2) I ⊆ J ∈ I =⇒ I ∈ I,
(I-3) I, J ∈ I, |I| < |J | =⇒ I ∪ {v} ∈ I for some v ∈ J \ I.

The set V is called the ground set and I ∈ I an independent set; accordingly,
I is the family of independent sets.

Denote by B the family of the maximal members of I (maximal with
respect to set inclusion); namely, B = max I in short. The family B
satisfies((P1))

(BM−) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B − u+ v ∈ B.

We call (BM−) the (one-sided) basis exchange property. A member of B is
called a base. The size of a base is uniquely determined((P2)) and is called the
rank of M, denoted as rankM; i.e.,

rankM = |B| = max{|I| | I ∈ I} for B ∈ B.

Conversely((P3)), a nonempty family B of subsets of V forms the basis family
of a matroid if it satisfies the axiom (BM−); the matroid M = (V, I) is given
by

I = {I ⊆ V | I ⊆ B ∈ B}. (2.62)

ForX ⊆ V , the rank ρ(X) ofX is defined as the uniquely determined((P4))

cardinality of a maximal independent set contained in X. That is,
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ρ(X) = max{|I| | I ⊆ X, I ∈ I}.

The rank function ρ : 2V → Z satisfies((P5)) the conditions:

(R-1) 0 ≤ ρ(X) ≤ |X|,
(R-2) X ⊆ Y =⇒ ρ(X) ≤ ρ(Y ),
(R-3) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ), X, Y ⊆ V .

The property (R-3) is the submodularity. Conversely((P6)), a function ρ :
2V → Z satisfying these properties is the rank function of a matroid; the
matroid M = (V, I) is given by

I = {I ⊆ V | ρ(I) = |I|}.

To sum up, a matroid can be defined as (V, I) with (I-1)–(I-3), (V,B)
with (BM−), or (V, ρ) with (R-1)–(R-3). Given one of these, we can derive
the other two as follows:

Given Define
(V, I) ⇒ B = max I, ρ(X) = max{|I| | I ⊆ X, I ∈ I}
(V,B) ⇒ I = {I | I ⊆ B ∈ B}, ρ(X) = max{|X ∩B| | B ∈ B}
(V, ρ) ⇒ I = {I ⊆ V | ρ(I) = |I|}, B = {B ⊆ V | ρ(B) = |B| = ρ(V )}

We use notations M = (V,B, I, ρ), M = (V,B, ρ), etc., whenever convenient.
A subset X ⊆ V not belonging to I is called a dependent set, and a

minimal dependent set (minimal with respect to set inclusion) is a circuit.
We call X ⊆ V a spanning set if it contains a base. For X ⊆ V , the closure
cl(X) of X is defined by

cl(X) = {v ∈ V | ρ(X ∪ {v}) = ρ(X)}. (2.63)

It is also possible to characterize a matroid in terms of the family of dependent
sets, the family of circuits, the family of spanning sets, or the closure function.

An element of V not contained in any base is called a loop, whereas an
element contained in every base is a coloop. A pair of elements of V , neither of
which is a loop, are said to be in parallel, if there exists no base that contains
both of them. A pair of elements of V , neither of which is a coloop, are said
to be in series, if there exists no base that is disjoint from them. The relation
of being in parallel is transitive in that if both {u, v} and {v, w} are parallel
pairs, then {u,w} is also a parallel pair. The relation of being in series is also
transitive.

Given a matroid M = (V,B, I, ρ), we can derive a number of matroids,
as follows.

The dual of M, denoted M∗, is a matroid on V of which the basis family
B∗ is given by

B∗ = {V \B | B ∈ B}.
In fact, B∗ satisfies the exchange property (BM−) because (BM−) for B∗ is
tantamount to the condition
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(BM+) For B,B′ ∈ B and for v ∈ B′ \ B, there exists u ∈ B \ B′

such that B − u+ v ∈ B,

for B, and it can be shown (cf. Theorem 2.3.14) that (BM+) for B is equivalent
to (BM−) for B. Note that (BM+) is not identical with (BM−). The rank
function ρ∗ of M∗ is given by

ρ∗(X) = |X| + ρ(V \X) − ρ(V ), X ⊆ V. (2.64)

The restriction of M to U (⊆ V ), denoted as MU , is a matroid on U in
which X (⊆ U) is independent if and only if X is independent in M. We also
say that MU is obtained from M by deleting the elements of V \U . The rank
function ρU of MU is simply the restriction of ρ to U , i.e., ρU (X) = ρ(X) for
X ⊆ U .

The contraction of M to U(⊆ V ), denoted as MU , is a matroid on U in
which X (⊆ U) is independent if and only if X ∪ B is independent in M
for a base B of MV \U . We also say that MU is obtained by contracting the
elements of V \ U . The rank function ρU of MU is given by

ρU (X) = ρ(X ∪ (V \ U)) − ρ(V \ U), X ⊆ U.

We have (MU )∗ = (M∗)U .
The truncation of M to k, where k ≤ rankM, is a matroid on V in which

X (⊆ V ) is a base if and only if |X| = k and X is independent in M. The
rank function is given by min(ρ(X), k).

The elongation of M to l, where l ≥ rankM, is a matroid on V in which
X (⊆ V ) is a base if and only if |X| = l and X is spanning in M. The dual
of the truncation of M to k coincides with the elongation of M∗ to |V | − k,
where k ≤ rankM.

For two matroids M1 and M2 on disjoint ground sets V1 and V2, respec-
tively, their direct sum, denoted as M1 ⊕ M2, is a matroid on V1 ∪ V2 in
which X (⊆ V1 ∪ V2) is independent if and only if X ∩ Vi is independent in
Mi for i = 1, 2. Besides this rather trivial operation, there is another opera-
tion of “adding” two matroids, called union operation, which will be treated
in §2.3.6.

A matroid M1 = (V, ρ1) is said to be a strong quotient of another matroid
M2 = (V, ρ2) if

ρ2(X) − ρ2(Y ) ≥ ρ1(X) − ρ1(Y ), X ⊇ Y. (2.65)

If this is the case, we write M2 → M1 and say that M2 → M1 is a strong
map. Obviously, rankM2 ≥ rankM1 if M2 → M1.

Lemma 2.3.1. If M2 → M1 and rankM2 = rankM1, then M2 = M1.

Proof. The inequality (2.65) with Y = ∅ gives ρ2(X) ≥ ρ1(X), whereas (2.65)
with X = V yields ρ2(Y ) ≤ ρ1(Y ) since ρ2(V ) = ρ1(V ). Hence ρ2 = ρ1.
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Proofs of the Marked Statements. Proofs of the marked statements are
sketched below.

((P1)) For B,B′ ∈ B = max I, we have |B| = |B′| since |B| < |B′|
would imply by (I-3) the existence of v ∈ B′ \ B such that B ∪ {v} ∈ I,
a contradiction to the maximality of B. Then application of (I-3) to I =
B − u ∈ I and J = B′ ∈ I yields (BM−).

((P2)) We show (BM−) ⇒ |B| = |B′|. For B,B′ ∈ B, put B1 = B − u+
v ∈ B using u ∈ B \ B′ and v ∈ B′ \ B in (BM−). Then |B1| = |B| and
|B1 \B′| = |B \B′| − 1. Applying the same argument to (B1, B

′) we obtain
B2 ∈ B with |B2| = |B1| = |B| and |B2 \ B′| = |B1 \ B′| − 1 = |B \ B′| − 2.
Repeating this we can prove |B′| = |B|.

((P3)) (I-1) and (I-2) are obviously satisfied by I of (2.62). To show (I-3)
suppose that I ⊆ BI ∈ B, J ⊆ BJ ∈ B and |I| < |J |, where |BI ∩ BJ | is
maximized over such BI and BJ . Then BI \ I ⊆ BJ , since otherwise there
exist u ∈ (BI \BJ )\I and v ∈ BJ \BI , for which B′

I = BI−u+v ∈ B, I ⊆ B′
I

and |B′
I ∩BJ | = |BI ∩BJ |+1 (a contradiction). Since |BI | = |BJ | by ((P2)),

it follows from |BI | = |I|+ |BI \I| = |I|− |J |+ |(BI \I)∩J |+ |(BI \I)∪J | ≤
|I| − |J | + |(BI \ I) ∩ J | + |BJ | that |(BI \ I) ∩ J | ≥ |J | − |I| > 0, i.e.,
∃ v ∈ (BI \ I) ∩ J . For this v we have I ∪ {v} ⊆ BI , and hence I ∪ {v} ∈ I.

((P4)) Let I and J be two maximal independent sets contained in X.
If |I| < |J |, then (I-3) implies I ∪ {v} is also a maximal independent set
contained in X, a contradiction.

((P5)) (R-1) and (R-2) are obviously satisfied. To show (R-3) first observe
from ((P4)) that for X1 ⊆ X2 ⊆ X3, there exist independent sets Ii ⊆ Xi

(i = 1, 2, 3) such that I1 ⊆ I2 ⊆ I3 and |Ii| = ρ(Xi) (i = 1, 2, 3). Applying
this fact to X1 = X ∩ Y , X2 = X, X3 = X ∪ Y we obtain J1, J2, J3

such that J1 ⊆ X ∩ Y , J2 ⊆ X \ Y , J3 ⊆ Y \ X, J1 ∈ I, J1 ∪ J2 ∈ I,
J1∪J2∪J3 ∈ I, |J1| = ρ(X∩Y ), |J1|+|J2| = ρ(X), |J1|+|J2|+|J3| = ρ(X∪Y ).
Combination of these equalities with an inequality ρ(Y ) ≥ |J1| + |J3| yields
the submodularity (R-3).

((P6)) (I-1) is obvious. For (I-2) suppose that I ⊆ J and ρ(J) = |J |. By
(R-1) we have |I| ≥ ρ(I) and |J \I| ≥ ρ(J \I). Addition of these, combined by
(R-3), yields |J | ≥ ρ(I) + ρ(J \ I) ≥ ρ(∅) + ρ(J) = |J |. Hence |I| = ρ(I). For
(I-3) it suffices to show [ρ(I ∪ {v}) = ρ(I) for all v ∈ J \ I ⇒ ρ(J) ≤ ρ(I)]
for I, J ∈ I. Let v1, · · · , vm be the elements of J \I. It follows from (R-2) and
(R-3) that ρ(I) ≤ ρ(I ∪ {v1, v2}) ≤ ρ(I ∪ {v1}) + ρ(I ∪ {v2}) − ρ(I) = ρ(I).
Hence ρ(I ∪ {v1, v2}) = ρ(I). Similarly, ρ(I) ≤ ρ(I ∪ {v1, v2, v3}) ≤ ρ(I ∪
{v1, v2}) + ρ(I ∪ {v3}) − ρ(I) = ρ(I). Continuing in this way, we arrive at
ρ(J) ≤ ρ(I ∪ {v1, · · · , vm}) = ρ(I).

Notes. The concept of a matroid was introduced by Whitney [340] and
the earlier key papers are compiled in Kung [166]. For topics on matroids
and submodular functions not covered in this book, the reader is referred to
Bixby–Cunningham [13], Edmonds [68], Fujishige [82], Lawler [171], Oxley
[259], Topkis [319], Welsh [333], and White [336, 337, 338] for theory, and to
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Iri [127, 128], Iri–Fujishige [130], Lee–Ryan [172], Murota [204], and Recski
[277] for applications.

2.3.3 Examples

Example 2.3.2 (Free matroid). Let V be a finite set. Put I = 2V and
B = {V }. This is called the free matroid on V , in which every subset of V is
independent. We have ρ(X) = |X| for X ⊆ V . �

Example 2.3.3 (Uniform matroid). Let V be a finite set and r ≤ |V |
be an integer. Put I = {I ⊆ V | |I| ≤ r} and B = {B ⊆ V | |B| = r}. This
is called the uniform matroid of rank r. The uniform matroid of rank |V | is
the free matroid, and that of rank zero is called the trivial matroid. �

Example 2.3.4 (Partition matroid). Let (Vi | i ∈ P ) be a partition of a
finite set V , i.e.,

⋃
i∈P Vi = V and Vi ∩ Vj = ∅ for i �= j. Then I = {I ⊆ V |

|I ∩ Vi| ≤ 1 (∀i ∈ P )} forms the family of independent sets of a matroid on
V , called a partition matroid. �

Example 2.3.5 (Transversal matroid). For a bipartite graph G =
(V +, V −;A) let I be the family of subsets of V + that can be matched
into V −; i.e., a subset I of V + belongs to I if and only if there exists a
matching that covers I (see §2.2.3 for matchings). Then I satisfies (I-1)–
(I-3), and defines a matroid on V +. A matroid obtained in this manner
is called a transversal matroid. The uniform matroid of rank r on V is a
transversal matroid defined by a complete bipartite graph with V + = V ,
|V −| = r and A = {(v, i) | v ∈ V, i ∈ V −}. The partition matroid on V
defined by (Vi | i ∈ P ) is a transversal matroid with V + = V , V − = P and
A = {(v, i) | v ∈ Vi, i ∈ P}. �

Example 2.3.6 (Gammoid). Let G = (W,A;S, T ) be a directed graph
with vertex set W , arc set A and disjoint entrance S and exit T (S ⊆ W ,
T ⊆ W ). Denote by I the family of subsets of S that can be linked into T ;
i.e., a subset I of S belongs to I if and only if there exists a Menger-type
(vertex-disjoint) linking of size |I| from I to a subset of T (see §2.2.4 for
linkings). Then I satisfies (I-1)–(I-3), and defines a matroid on S. A matroid
obtained in this manner is called a gammoid. If G is a bipartite graph, the
gammoid defined by G is a transversal matroid. �

Example 2.3.7 (Matching matroid). Let G = (V,A) be a graph with
vertex set V and arc set A. Denote by I the family of subsets of V
that can be covered by some matching.7 That is, I = {I ⊆ V | I ⊆
∂M for some matching M}. Then I satisfies (I-1)–(I-3), and defines a ma-
troid on V . A matroid obtained in this manner is called a matching matroid.

�

7 A matching in a nonbipartite graph is a subset of arcs no two of which share a
common vertex incident to them.
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Example 2.3.8 (Linear matroid). Let A be a matrix over a field F ,
and V be the set of the column vectors of A. Linear independence among
the column vectors of A defines a matroid on V , which will be denoted by
M(A). Namely, I ⊆ V is independent in M(A) if and only if the column
vectors in I are linearly independent. The rank function ρ of M(A) is given
by (2.6). A matroid that can be obtained in this way is called a linear matroid
representable over F . If the matrix A is given explicitly, the matroid is said
to be represented over F .

A linear subspace U of F V defines a matroid, denoted as M{U}, in which
I(⊆ V ) is independent if and only if there exists no vector x = (x(v) | v ∈
V ) ∈ U \ {0} such that {v ∈ V | x(v) �= 0} ⊆ I. This matroid can be linearly
represented by a matrix A such that U = kerA; namely, M{U} = M(A) if
U = kerA. This shows

rank [M{U}] + dimU = |V |.

The orthogonal complement U⊥ of U (or, more precisely, the subspace of the
dual space of F V consisting of elements that annihilate on U) corresponds to
the matroid dual to M{U}, i.e., M{U⊥} = M{U}∗. For two nested subspaces
U1 ⊆ U2 it holds that M{U1} → M{U2}, where “→” denotes a strong map.
To see this we may assume U1 = kerA[I1, V ] and U2 = kerA[I2, V ] for a
matrix A and I1 ⊇ I2. Then Proposition 2.1.9(2) implies (2.65) for ρi(J) =
rankA[Ii, J ], i = 1, 2. Hence we may interpret the strong map relation as a
combinatorial abstraction of the nesting of linear subspaces. �

Example 2.3.9 (Graphic matroid). Let G = (V,A) be a graph with
vertex set V and arc set A. Define I to be the family of subsets of A that
contain no (undirected) cycles in G. Then I satisfies (I-1)–(I-3) and defines
a matroid on A. This matroid coincides with the linear matroid defined by
the incidence matrix of G. A matroid obtained in this way is called a graphic
matroid. �

Example 2.3.10 (Algebraic matroid). Let F be an extension field of a
field K, and V a finite subset of F . Define I to be the family of subsets of V
that are algebraically independent over K (see §2.1.1 for algebraic indepen-
dence). Then I satisfies (I-1)–(I-3) and defines a matroid on V . A matroid
obtained in this way is called an algebraic matroid. The rank function is given
by the degree of transcendency of the extension field K(X) over K:

ρ(X) = dimK K(X), X ⊆ V.
�

2.3.4 Basis Exchange Properties

We consider a number of basis exchange properties in a matroid. First recall
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(BM−) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B − u+ v ∈ B,

which characterizes the basis family B of a matroid (see §2.3.2).
We have observed in Remark 2.1.8 that the Grassmann–Plücker identity

(Proposition 2.1.4) implies a stronger exchange property:

(BM±) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B − u+ v ∈ B and B′ + u− v ∈ B,

for a linear matroid (cf. Example 2.3.8). The following lemma (Brualdi [23])
claims that (BM±) is implied by (BM−) in general, and therefore satisfied
by any matroid. (BM±) is often called the simultaneous exchange property.

Lemma 2.3.11. For B ⊆ 2V , (BM−) =⇒ (BM±).

Proof. First note that (BM−) implies

(BM+loc) For B,B′ ∈ B with |B \B′| = 2 and for v ∈ B′ \B, there
exists u ∈ B \B′ such that B − u+ v ∈ B.

Define

D = {(B,B′) | B,B′ ∈ B, ∃u∗ ∈ B \B′,∀v ∈ B′ \B :
B − u∗ + v �∈ B, or B′ + u∗ − v �∈ B},

which denotes the set of pairs (B,B′) for which the simultaneous exchange
(BM±) fails. We want to show D = ∅.

To the contrary suppose that D �= ∅. Take (B,B′) ∈ D such that |B \B′|
is minimum, and let u∗ ∈ B \ B′ be as in the definition of D. Take any
u0 ∈ (B \B′) \ {u∗}, which is possible since |B \B′| ≥ 2. Define

X = {v ∈ B′ \B | B′ + u∗ − v ∈ B}, Y = {v ∈ B′ \B | B − u0 + v ∈ B},

where Y �= ∅ by (BM−). If X ∩ Y �= ∅, take any v0 ∈ X ∩ Y ; otherwise take
any v0 ∈ Y . We have B1 ≡ B − u0 + v0 ∈ B by v0 ∈ Y .

Claim: (B1, B
′) ∈ D.

To prove this claim it suffices to show

B′ + u∗ − v ∈ B, v ∈ B′ \B1 =⇒ B2 ≡ B1 − u∗ + v �∈ B.

Note that B − u∗ + v �∈ B by the choice of u∗. In case of X ∩ Y �= ∅, we
have B′ + u∗ − v0 ∈ B by v0 ∈ X, and therefore B − u∗ + v0 �∈ B. Then
the contraposition of (BM−) applied to (B,B2) shows B2 �∈ B, since B ∈ B,
B − u∗ + v0 �∈ B and B − u∗ + v �∈ B. In the remaining case of X ∩ Y = ∅,
since v ∈ X, we have v �∈ Y , i.e., B − u0 + v �∈ B. Then the contraposition of
(BM+loc) applied to (B,B2) shows B2 �∈ B, since B ∈ B, B−u0 + v �∈ B and
B − u∗ + v �∈ B. Thus the above claim has been proven.
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Since |B1 \ B′| = |B \ B′| − 1, the above claim contradicts our choice of
(B,B′) ∈ D. Therefore we conclude D = ∅, completing the proof of the the-
orem. (See also Brualdi [23], Kung [167], Welsh [333] for alternative proofs.)

In connection to dual matroids we have seen in §2.3.2 another exchange
property8

(BM+) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B′ + u− v ∈ B.

The next lemma shows that (BM+) also implies the simultaneous exchange
property (BM±).

Lemma 2.3.12. For B ⊆ 2V , (BM+) =⇒ (BM±).

Proof. This is an immediate corollary to Lemma 2.3.11, since (BM+) for B
is equivalent to (BM−) for B∗ = {V \ B | B ∈ B}, and (BM±) for B is
equivalent to (BM±) for B∗.

We mention a weaker statement on simultaneous exchange:

(BM±w) For distinct B,B′ ∈ B, there exist u ∈ B\B′ and v ∈ B′\B
such that B − u+ v ∈ B and B′ + u− v ∈ B.

The following fact was observed by Kelmans [156] (according to White [339])
and independently by Tomizawa [314].

Lemma 2.3.13. For B ⊆ 2V , (BM±w) =⇒ (BM−).

Proof. Take B,B′ ∈ B and u ∈ B \ B′. By (BM±w) there exist u1 ∈ B \ B′

and v1 ∈ B′ \B such that B − u1 + v1 ∈ B and B′ + u1 − v1 ∈ B. If u1 = u,
(BM−) is satisfied with v = v1. Otherwise, put B′′ = B′ + u1 − v1 ∈ B, for
which u ∈ B \B′′ and |B′′ \B| = |B′ \B| − 1. Again by (BM±w) there exist
u2 ∈ B \B′′ and v2 ∈ B′′ \B such that B−u2 +v2 ∈ B and B′′+u2−v2 ∈ B.
If u2 = u, (BM−) is satisfied with v = v2. Otherwise, continue the above
argument to eventually obtain a valid v ∈ B \B′.

The above lemmas imply the following theorem, stating the equivalence
among exchange properties. This means that any one of (BM+), (BM−),
(BM±), (BM±w) serves as an axiom of the basis family of a matroid.

Theorem 2.3.14. For B ⊆ 2V , the exchange properties (BM+), (BM−),
(BM±), (BM±w) are equivalent.

Proof. Obviously, (BM±) ⇒ (BM−), (BM±) ⇒ (BM+) and (BM±) ⇒
(BM±w). We have (BM−) ⇒ (BM±) by Lemma 2.3.11, and (BM+) ⇒ (BM±)
by Lemma 2.3.12. Finally, (BM±w) ⇒ (BM−) by Lemma 2.3.13.

8 At first sight (BM+) here may appear different from the one in §2.3.2, but they
are identical through a change of notation B ↔ B′ and u ↔ v.
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Remark 2.3.15. In the proof of Lemmas 2.3.11 and 2.3.12, we intentionally
avoided referring to rank functions. This is because the exchange proper-
ties play the major role in the argument of valuated matroids in §5.2. The
equivalence of (BM±) and (BM±w) remains valid for their generalizations in
valuated matroids (see Theorem 5.2.25) and the present proof technique is
generalized to prove it. �

The simultaneous exchange property has an important consequence, as
observed by Brualdi [23]. For B ∈ B and B′ ⊆ V we define the exchangeability
graph, denoted G(B,B′), as a bipartite graph (B \B′, B′ \B;A) having the
vertex bipartition (B \B′, B′ \B) and the arc set

A = {(u, v) | u ∈ B \B′, v ∈ B′ \B,B − u+ v ∈ B}. (2.66)

Lemma 2.3.16 (Perfect-matching lemma). Let B ∈ B. If B′ is also a
base, then G(B,B′) has a perfect matching.

Proof. For any u1 ∈ B \B′ there exists v1 ∈ B′ \B such that B−u1 + v1 ∈ B
and B′

2 := B′ +u1 − v1 ∈ B. By the same argument applied to (B,B′
2), there

exist u2 ∈ (B \B′) \ {u1} and v2 ∈ (B′ \B) \ {v1} such that B− u2 + v2 ∈ B
and B′

3 := B′
2 +u2−v2 = B′+{u1, u2}−{v1, v2} ∈ B. Repeating this process

we obtain B − ui + vi ∈ B (i = 1, · · · ,m), where m = |B \ B′| = |B′ \ B|,
B \B′ = {u1, · · · , um} and B′ \B = {v1, · · · , vm}.

The converse of the above statement is not always true, as follows.

Example 2.3.17. Consider the matroid M = (V,B) defined by a matrix

u1 u2 v1 v2
1 0 1 1
0 1 1 1

on the column set V = {u1, u2, v1, v2}. Take B = {u1, u2} and B′ =
{v1, v2}. Then B ∈ B and B′ �∈ B, whereas G(B,B′) is a complete bipar-
tite graph, admitting two perfect matchings, M1 = {(u1, v1), (u2, v2)} and
M2 = {(u1, v2), (u2, v1)}. �

A partial converse of Lemma 2.3.16 holds in the following form.

Lemma 2.3.18 (Unique-matching lemma). Let B ∈ B and B′ ⊆ V
with |B′| = |B|. If there exists exactly one perfect matching in G(B,B′),
then B′ ∈ B.

Proof. The proof is given later based on a series of lemmas below.

First we note the following fact, rephrasing the existence of a unique
perfect matching with reference to suitable orderings of the elements of B\B′

and B′ \B.
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Lemma 2.3.19. For B ∈ B and B′ ⊆ V with |B′ \ B| = |B \ B′| = m, the
graph G(B,B′) has a unique perfect matching if and only if there exist some
indexings of the elements of B \ B′ and B′ \ B, say B \ B′ = {u1, · · · , um}
and B′ \ B = {v1, · · · , vm}, such that B − ui + vi ∈ B (1 ≤ i ≤ m) and
B − ui + vj �∈ B (1 ≤ i < j ≤ m).

Proof. This is immediate from the properties of the DM-decomposition de-
scribed in Theorem 2.2.22. Note that there exists a unique perfect matching
if and only if the tails are empty and each consistent DM-component is com-
posed of a single arc.

Lemma 2.3.20. Let B ∈ B and u, u◦, v, v◦ be four distinct elements with
{u, u◦} ⊆ B, {v, v◦} ⊆ V \ B, and put B′ = B − {u, u◦} + {v, v◦}. If M =
{(u, v), (u◦, v◦)} is the unique perfect matching in G(B,B′), then B′ ∈ B.

Proof. Put B◦ = B−u◦+v◦ and B∗ = B−u+v. By applying the simultaneous
exchange axiom to (B◦, B∗) with u ∈ B◦ \ B∗ we obtain B∗ − v′ + u ∈ B
and B◦ + v′ − u ∈ B for some v′ ∈ B∗ \ B◦ = {u◦, v}. If v′ = u◦, we have
B∗ − u◦ + u = B − u◦ + v ∈ B and B◦ + u◦ − u = B − u + v◦ ∈ B, which
means that M ′ = {(u◦, v), (u, v◦)} is another perfect matching in G(B,B′),
a contradiction to the uniqueness of M . Therefore we must have v′ = v, and
then B′ = B◦ + v − u ∈ B.

Lemma 2.3.21. Let B ∈ B and B′ ⊆ V with |B′| = |B|. If there exists
exactly one perfect matching M in G(B,B′), then for any (u◦, v◦) ∈ M it
holds that B◦ ≡ B−u◦+v◦ ∈ B and there exists exactly one perfect matching
in G(B◦, B′).

Proof. The first assertion, B◦ ∈ B, is obvious. Using the notation in Lemma
2.3.19 we have M = {(ui, vi) | i = 1, · · · ,m} and (u◦, v◦) = (uk, vk) for some
k. For i �= k, j �= k, put

Bij = B◦ − ui + vj = B − {ui, u
◦} + {vj , v◦}.

Since G(B,Bii) has a unique perfect matching {(ui, vi), (u◦, v◦)}, we have
Bii ∈ B by Lemma 2.3.20. We also claim that Bij �∈ B if i < j. To see
this, suppose Bij ∈ B. Then Lemma 2.3.16 implies the existence of a perfect
matching in G(B,Bij), which is either M1 = {(ui, vj), (u◦, v◦)} or M2 =
{(ui, v

◦), (u◦, vj)}. But M1 is possible only if i ≥ j and M2 is possible only
if i ≥ k ≥ j. Hence G(B◦, B′) meets the condition in Lemma 2.3.19.

We are now in the position to prove the unique-matching lemma.

(Proof of Lemma 2.3.18) The proof is by induction on m = |B \B′|. The
case of m = 1 is obvious. So assume m ≥ 2. Take any (u◦, v◦) contained
in the unique perfect matching, and put B◦ = B − u◦ + v◦. Lemma 2.3.21
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shows that B◦ ∈ B and G(B◦, B′) has a unique perfect matching. Then the
induction hypothesis yields B′ ∈ B. �

As a corollary to the unique-matching lemma we obtain an exchange-
augmentation property for independent sets. Recall that I denotes the family
of independent sets of the matroid M = (V,B, I, ρ).

Lemma 2.3.22. Suppose that {u1, · · · , um} ⊆ I ∈ I and {v0, v1, · · · , vm} ⊆
V \ I, where ui (1 ≤ i ≤ m) and vj (0 ≤ j ≤ m) are distinct. If I + v0 ∈ I,
I + vi �∈ I (1 ≤ i ≤ m), I − ui + vi ∈ I (1 ≤ i ≤ m) and I − ui + vj �∈ I
(1 ≤ i < j ≤ m), then I − {u1, · · · , um} + {v0, v1, · · · , vm} ∈ I.

Proof. Put B = I + v0 and B′ = I −{u1, · · · , um}+ {v0, v1, · · · , vm}. Then B
is a base of the truncation of M, say M′ = (V,B′), with rankM′ = |I|+1. We
claim that B−ui +vi ∈ B′ (1 ≤ i ≤ m) and B−ui +vj �∈ B′ (1 ≤ i < j ≤ m).
The former follows from

ρ(B − ui + vi) ≥ ρ(I + v0 + vi) + ρ(I − ui + vi) − ρ(I + vi)
= (|I| + 1) + |I| − |I| = |I| + 1,

whereas the latter is obvious from I − ui + vj �∈ I (1 ≤ i < j ≤ m).
Then Lemma 2.3.18 together with Lemma 2.3.19 implies that B′ = B −
{u1, · · · , um} + {v1, · · · , vm} belongs to B′, and hence to I.

Remark 2.3.23. In the case where the matroid is defined by a matrix, the
unique-matching lemma is a restatement of an obvious fact that a triangular
matrix having nonzero diagonal elements is nonsingular. Let M = (V,B) be
a matroid defined by a matrix A with V = Col(A) and rankA = |R|, where
R = Row(A). For B ∈ B define Ã = A[R,B]−1A, where it is noted that
Row(Ã) can be identified with B while Col(Ã) = V . Then B − u + v ∈ B if
and only if (u, v) entry of Ã is distinct from zero. For B′ ⊆ V with |B′| =
|B| = |R|, the graph G(B,B′) has a unique perfect matching if and only if the
rows (B \B′) and the columns (B′ \B) of the submatrix Ã[B \B′, B′ \B] can
be rearranged so that the resulting matrix may be a triangular matrix with
nonzero diagonal entries. If this is the case, the submatrix Ã[B \B′, B′ \B]
is nonsingular, which corresponds to the nonsingularity of A[R,B′], i.e., the
condition B′ ∈ B. �

Remark 2.3.24. The unique-matching lemma reveals a key property un-
derlying the (unweighted or linear-weighted) matroid intersection algorithm,
to be explained later. In the literature (e.g., Iri–Tomizawa [133, Lemma 2],
Krogdahl [164], Lawler [171, Lemma 3.1 of Chap. 8], and Schrijver [291, The-
orem 4.3]) this fact is stated often with an explicit reference to the orderings
of the elements just as in Lemma 2.3.19 and Lemma 2.3.22, and is accordingly
referred to as “no-shortcut lemma” (cf. Kung [167] for this name). We have
adopted the present form, referring to the uniqueness of a perfect matching,
because this is suitable for its extension to valuated matroids in §5.2. �
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2.3.5 Independent Matching Problem

The matroid intersection problem and its extensions will play a major role
in this book. The problem may be described as follows:

[Matroid intersection problem]
Given a pair of matroids M1 and M2 defined on a common ground
set V , find a common independent set of maximum size.

In this section we feature an equivalent variant of the matroid intersec-
tion problem called the independent matching problem, which is defined as
follows. Suppose we are given a bipartite graphG = (V +, V −;A) and two ma-
troids M+ = (V +,B+, I+, ρ+) and M− = (V −,B−, I−, ρ−). Here, (V +, V −)
is the bipartition of the vertex set of G, A is the arc set of G; M+ is a ma-
troid on V + with the family of bases B+, the family of independent sets I+,
and the rank function ρ+; and similarly for M−. Arcs are directed from V +

to V − and therefore the initial vertex ∂+a ∈ V + and the terminal vertex
∂−a ∈ V − for each a ∈ A.

A matching M(⊆ A) is called an independent matching if

∂+M ∈ I+, ∂−M ∈ I−, (2.67)

where ∂+M (resp., ∂−M) denotes the set of vertices in V + (resp., V −) in-
cident to M . That is, M(⊆ A) is an independent matching if and only if
|M | = |∂+M | = |∂−M | and the sets of end-vertices of M , i.e., ∂+M and
∂−M , are independent in M+ and M−, respectively. The independent match-
ing problem is to find an independent matching M of maximum cardinality:

[Independent matching problem]
Find a matching M(⊆ A) that maximizes |M | subject to the con-
straint that ∂+M ∈ I+ and ∂−M ∈ I−.

The matroid intersection problem above is a special case of the inde-
pendent matching problem, in which V + and V − are disjoint copies of V ,
M+ � M1, M− � M2, and A = {(v+, v−) | v ∈ V }, where v+ ∈ V + and
v− ∈ V − denote the copies of v ∈ V .

Example 2.3.25. Here is an example of the independent matching problem.
Consider a bipartite graphG = (V +, V −;A), shown in Fig. 2.8(a), with V + =
{x1, x2, x3, x4}, V − = {y1, y2, y3, y4, y5}, and A = {(x1, y1), (x2, y1), (x2, y2),
(x3, y2), (x3, y3), (x4, y4), (x4, y5)}. The matroid M+ is assumed to be a free
matroid on V +, whereas M− is a linear matroid defined by the matrix

y1 y2 y3 y4 y5
1 1 1 0 0
1 2 0 1 0
0 0 0 0 1

.
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Then M = {(x3, y3), (x4, y4)} is an independent matching with ∂+M =
{x3, x4} and ∂−M = {y3, y4} being independent in M+ and M−, respec-
tively. Another matching M ′ = {(x2, y2), (x3, y3), (x4, y4)} is not an indepen-
dent matching, since ∂−M = {y2, y3, y4} is not independent in M−. �
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Fig. 2.8. Graph G and auxiliary graph G̃M (©: arc in M ; +: vertex in S+; −:
vertex in S−)

The objective of this section is twofold:

1. To establish an extension of the min-max duality for bipartite matchings,
which has been formulated as the König–Egerváry theorem and the Hall–
Ore theorem, to that for independent matchings.

2. To give an efficient algorithm for finding a maximum independent match-
ing.

We shall prove the min-max duality for independent matchings by showing
the validity of the algorithm.

Let us recall the König–Egerváry theorem (Theorem 2.2.15). It states
that the maximum size of a matching is equal to the minimum size of a
cover, where a cover means a pair (U+, U−) with U+ ⊆ V + and U− ⊆ V −

such that ∂+a ∈ U+ or ∂−a ∈ U− for each a ∈ A, and the size of (U+, U−)
is defined to be |U+| + |U−|. We also recall that the inequality

|M | ≤ |U+| + |U−| (2.68)

is an obvious relation valid for any matching M and any cover (U+, U−).
For a cover (U+, U−) we define the rank of (U+, U−) by
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ρ+(U+) + ρ−(U−),

with reference to the rank functions of the respective matroids M+ and M−.
The obvious relation (2.68) is extended as follows.

Lemma 2.3.26. The inequality

|M | ≤ ρ+(U+) + ρ−(U−) (2.69)

holds true for any independent matching M and any cover (U+, U−).

Proof. Since (U+, U−) is a cover, M can be expressed as M = M+ ∪M−

with ∂+M+ ⊆ U+ and ∂−M− ⊆ U−. Then

|M+| = |∂+M+| = ρ+(∂+M+) ≤ ρ+(U+),
|M−| = |∂−M−| = ρ−(∂−M−) ≤ ρ−(U−),

and the addition of these yields

|M | ≤ |M+| + |M−| ≤ ρ+(U+) + ρ−(U−).

The duality in the independent matching problem consists in the assertion
that the equality holds in (2.69) for someM and (U+, U−). We say (U+, U−)
is a minimum cover if it attains the minimum in (2.70) below.

Theorem 2.3.27.

max{|M | |M : independent matching}
= min{ρ+(U+) + ρ−(U−) | (U+, U−) : cover}. (2.70)

Proof. Lemma 2.3.26 shows max |M | ≤ min{ρ+(U+)+ρ−(U−)}. The equality
is proven later in Lemma 2.3.32 along with the validity of an algorithm for
computing this common value.

It is sometimes convenient to recast Theorem 2.3.27 into different forms.
For U ⊆ V + ∪ V − define the cut capacity of U by

κ(U) =
{
ρ+(V + \ U) + ρ−(V − ∩ U) (� ∃a ∈ A : ∂+a ∈ U, ∂−a �∈ U)
+∞ (∃a ∈ A : ∂+a ∈ U, ∂−a �∈ U). (2.71)

Noting that κ(U) is finite if and only if (V + \ U, V − ∩ U) is a cover, we can
rewrite Theorem 2.3.27 to

max{|M | |M : independent matching} = min{κ(U) | U ⊆ V + ∪ V −}. (2.72)

The function κ to be minimized is submodular in U .
Another form of Theorem 2.3.27 refers to a function Γ : 2V − → 2V +

defined by
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Γ (Y ) = {u ∈ V + | ∃v ∈ Y : (u, v) ∈ A}, Y ⊆ V −. (2.73)

Since (U+, U−) is a cover if and only if Γ (V − \ U−) ⊆ U+, the right-hand
side of (2.70) can be rewritten as

min{ρ+(U+) + ρ−(U−) | (U+, U−): cover}
= min{ρ+(Γ (V − \ U−)) + ρ−(U−) | U− ⊆ V −}
= min{ρ+(Γ (Y )) + ρ−(V − \ Y ) | Y ⊆ V −}.

Therefore Theorem 2.3.27 can be expressed as

max{|M | |M : independent matching}
= min{ρ+(Γ (Y )) + ρ−(V − \ Y ) | Y ⊆ V −}. (2.74)

Again the function ρ+(Γ (Y ))+ρ−(V −\Y ) to be minimized is submodular in
Y . These alternative expressions (2.71) and (2.74) reveal the submodularity
inherent in the problem at the sacrifice of the symmetry apparent in the
original expression (2.70).

The duality result above implies a number of important consequences.
First of all, if both M+ and M− are free matroids, for which ρ+(U+) =
|U+| and ρ−(U−) = |U−|, the identity (2.70) reduces to the König–Egerváry
theorem (Theorem 2.2.15), whereas (2.74) reduces to the Hall–Ore theorem
(Theorem 2.2.17).

Next, consider the case where M− is free (and M+ is general). The ex-
pression (2.74) in this case takes the form

max{|M | |M : matching with ∂+M ∈ I+}
= min{ρ+(Γ (Y )) + |V − \ Y | | Y ⊆ V −}. (2.75)

We call this the Rado–Perfect theorem (cf. Rado [274], Perfect [266]).
Thirdly, the matroid intersection theorem of Edmonds [68, 70] can also

be derived from Theorem 2.3.27.

Theorem 2.3.28 (Matroid intersection theorem). For two matroids
Mi = (V, Ii, ρi) (i = 1, 2) it holds that

max{|I| | I ∈ I1 ∩ I2} = min{ρ1(X) + ρ2(V \X) | X ⊆ V }.

Proof. Let V + and V − be disjoint copies of V and put A = {(v+, v−) | v ∈ V },
where v+ ∈ V + and v− ∈ V − denote the copies of v ∈ V . Consider an
independent matching problem on (V +, V −;A) with M+ � M1 and M− �
M2. Then the assertion follows from Theorem 2.3.27.

We now turn to the algorithm for computing an independent matching
of the maximum size. The algorithm, starting with the empty matching M ,
finds a sequence of independent matchings M with |M | = 0, 1, 2, · · · with the
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Fig. 2.9. Auxiliary graph for the independent matching problem

aid of an auxiliary graph G̃M = (Ṽ , Ã;S+, S−) that has vertex set Ṽ , arc set
Ã, entrance vertex set S+ and exit vertex set S− (see Fig. 2.9). The vertex
set Ṽ is given by

Ṽ = V + ∪ V −,

whereas S+, S− and Ã are defined with reference to independent matching
M , as follows. The entrance S+ and the exit S− are defined by

S+ = V + \ cl+(∂+M), S− = V − \ cl−(∂−M),

where

cl+(X) = {v ∈ V + | ρ+(X ∪ {v}) = ρ+(X)}, X ⊆ V +,

cl−(X) = {v ∈ V − | ρ−(X ∪ {v}) = ρ−(X)}, X ⊆ V −,

in accordance with (2.63). The arc set Ã consists of four disjoint parts:

Ã = A◦ ∪M◦ ∪A+ ∪A−,

where

A◦ = {a | a ∈ A} (copy of A),
M◦ = {a | a ∈M} (a: reorientation of a),
A+ = {(u, v) | u ∈ ∂+M,v ∈ cl+(∂+M) \ ∂+M,∂+M − u+ v ∈ I+},
A− = {(v, u) | u ∈ ∂−M,v ∈ cl−(∂−M) \ ∂−M,∂−M − u+ v ∈ I−}.

Note that Ṽ = V + ∪ V − is partitioned into six disjoint parts with possible
additional connections by M◦ ∪A+ ∪A−.
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Example 2.3.29 (Continued from Example 2.3.25). The auxiliary graph
G̃M = (Ṽ , Ã;S+, S−) for the independent matching M = {(x3, y3), (x4, y4)}
is depicted in Fig. 2.8(b), where S+ = {x1, x2}, S− = {y5}, A◦ = A, M◦ =
{(y3, x3), (y4, x4)}, A+ = ∅, and A− = {(y1, y3), (y1, y4), (y2, y3), (y2, y4)}. �

The algorithm for the independent matching problem reads as follows.

Algorithm for independent matching problem

Starting with the empty matching M , repeat (i)–(ii) below:
(i) Find a shortest path P (in the number of arcs) from S+ to S−

in G̃M . [Stop if there is no path from S+ to S−.]
(ii) Update M to

M = (M \ {a ∈M | a ∈ P ∩M◦}) ∪ (P ∩A◦).
�

The validity of the algorithm is shown by the lemmas after the example
below.

Example 2.3.30. In the auxiliary graph G̃M in Fig. 2.8(b), we can take
P = {(x1, y1), (y1, y4), (y4, x4), (x4, y5)} as a shortest path from S+ to S−.
Then the matching is updated toM = {(x1, y1), (x3, y3), (x4, y5)} in Step (ii)
of the algorithm, and the auxiliary graph changes to G̃M shown in Fig. 2.10.
The entrance is S+ = {x2}, whereas the exit S− is empty, and therefore, no
path exists from S+ to S−. Then the algorithm terminates in Step (i). It will
be shown in Example 2.3.34 that M is a maximum independent matching. �
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Fig. 2.10. Auxiliary graph G̃M (©: arc in M ; +: vertex in S+)
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The following two lemmas justify the above algorithm. The former shows
that the independence of ∂+M and ∂−M in the respective matroids is main-
tained, whereas the latter guarantees that the independent matching at the
termination of the algorithm is of the maximum size.

Lemma 2.3.31. ∂+M ∈ I+ and ∂−M ∈ I−.

Proof. Let v0 ∈ S+ be the starting vertex of P and put {(ui, vi) | i =
1, · · · , l} = P ∩ A+, where l = |P ∩ A+| and the indices are chosen so that
v0, u1, v1, u2, v2, · · · , ul, vl represents the order in which they appear on P .
Then

∂+M = ∂+M − {u1, · · · , ul} + {v0, v1, · · · , vl}.
Since P is a shortest path, Lemma 2.3.22 guarantees ∂+M ∈ I+. The other
claim can be proven similarly.

Lemma 2.3.32. Let U ⊆ Ṽ be the set of vertices reachable from S+ in G̃M

at the termination of the algorithm, and put U+ = V +\U and U− = V −∩U .
Then (U+, U−) is a cover for the independent matching problem and |M | =
ρ+(U+) + ρ−(U−). Therefore, M is a maximum independent matching.

Proof. By the definition there is no a ∈ Ã with ∂+a ∈ U and ∂−a ∈ Ṽ \ U .
In particular, there is no a ∈ A with ∂+a ∈ V + \ U+ and ∂−a ∈ V − \ U−,
namely, (U+, U−) is a cover.

Put I+ = ∂+M , J+ = I+ ∩ U+, and I+ \ J+ = {u1, · · · , um}. For each
v ∈ U+\J+ ⊆ cl+(I+)\I+, we have ρ+(I++v−ui) ≤ |I+|−1 for i = 1, · · · ,m,
since there is no arc going out of U . The submodularity of ρ+ implies that

ρ+(I++v−{u1, u2}) ≤ ρ+(I++v−u1)+ρ+(I++v−u2)−ρ+(I++v) ≤ |I+|−2.

Repeating such process, we obtain

ρ+(J+ + v) = ρ+(I+ + v − {u1, · · · , um}) ≤ |I+| −m = |J+|.

Hence, for v, v′ ∈ U+ \ J+ with v �= v′,

ρ+(J+ + {v, v′}) ≤ ρ+(J+ + v) + ρ+(J+ + v′) − ρ+(J+) ≤ |J+|.

Repeating this we obtain ρ+(U+) ≤ |J+|, and hence ρ+(U+) = |J+|.
Symmetrically, put I− = ∂−M , J− = I−∩U−. For each v ∈ U− \J− and

u ∈ I− \J− there is no arc (v, u), and hence ρ−(I− + v−u) ≤ |I−| − 1. By a
similar argument using the submodularity of ρ− we obtain ρ−(U−) = |J−|.

Then |M | = |J+| + |J−| = ρ+(U+) + ρ−(U−), where the first equality
follows from the fact that {∂+a, ∂−a} ⊆ U or {∂+a, ∂−a} ⊆ Ṽ \ U for each
a ∈ M . Finally, we recall Lemma 2.3.26 to conclude that M is a maximum
independent matching.

To sum up, we obtain the following optimality criterion in terms of the
auxiliary graph.
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Theorem 2.3.33. An independent matching M is maximum if and only if
there exists no directed path from S+ to S− in G̃M = (Ṽ , Ã;S+, S−). �

Example 2.3.34 (Continued from Example 2.3.30). In Fig. 2.10, there ex-
ists no path from S+ to S−. This means, by Theorem 2.3.33, that M is
a maximum independent matching. A minimum cover (U+, U−) can be
constructed as in Lemma 2.3.32. The set of vertices reachable from S+

is given by U = {x1, x2, x3, y1, y2, y3}, and U+ = V + \ U = {x4} and
U− = V − ∩U = {y1, y2, y3} satisfy ρ+(U+) = 1 and ρ−(U−) = 2, adding up
to |M | = 3. �

The auxiliary graph G̃M is useful to capture the family of all minimum
covers. A pair (U+, U−) is a minimum cover if and only if U = (V +\U+)∪U−

gives the minimum cut capacity κ defined in (2.71). Namely, the family of all
minimum covers is expressed as

{(U+, U−) | U+ = V + \ U,U− = V − ∩ U,U ∈ Lmin(κ)} (2.76)

in terms of the family of all minimum cuts

Lmin(κ) = {U ⊆ V + ∪ V − | κ(U) ≤ κ(W ), ∀W ⊆ V + ∪ V −}.

The family Lmin(κ) forms a lattice due to the submodularity of κ (cf. Theorem
2.2.5), and by Birkhoff’s representation theorem (Theorem 2.2.10) it can be
represented as a pair of a partition {V0;V1, · · · , Vb;V∞} of V + ∪ V − and a
partial order � on {V1, · · · , Vb}. Let us call ({V0;V1, · · · , Vb;V∞},�) the min-
cut decomposition for the independent matching problem. This decomposition
can be computed from the auxiliary graph G̃M on the basis of the following
fact.

Lemma 2.3.35. Let G̃M = (Ṽ , Ã;S+, S−) be the auxiliary graph associated
with a maximum independent matching M . The family of the minimum cuts
Lmin(κ) is represented in terms of G̃M as

Lmin(κ) = {U ⊆ Ṽ | S+ ⊆ U ⊆ Ṽ \S−; � ∃a ∈ Ã : ∂+a ∈ U, ∂−a �∈ U}. (2.77)

Proof. For U ⊆ Ṽ define (U+, U−) = (V + \ U, V − ∩ U), (I+, I−) =
(∂+M,∂−M), and (J+, J−) = (I+∩U+, I−∩U−). By definition, κ(U) < +∞
⇐⇒ � ∃a ∈ A : ∂+a ∈ U, ∂−a �∈ U . For such U , we have U ∈ Lmin(κ) ⇐⇒
(i) |M | = |J+| + |J−|, (ii) |J+| = ρ+(U+), and (iii) |J−| = ρ−(U−), since
|M | ≤ |J+|+ |J−| ≤ ρ+(U+) + ρ−(U−). Denote by L′ the right hand side of
(2.77). The proof of Lemma 2.3.32 shows Lmin(κ) ⊇ L′. Conversely, suppose
U ∈ Lmin(κ). The following claims show U ∈ L′.

Claim 1: S+ ⊆ U ⊆ Ṽ \ S−. If S+ �⊆ U , there exists v ∈ U+ ∩ S+. Then
J+ +v ∈ I+, which implies ρ+(U+) ≥ ρ+(J+ +v) = |J+|+1, a contradiction
to (ii) above. Similarly, S− ∩ U �= ∅ contradicts (iii).

Claim 2: � ∃a ∈M◦ : ∂+a ∈ U, ∂−a �∈ U . This follows from (i).
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Claim 3: � ∃a ∈ A+ : ∂+a ∈ U, ∂−a �∈ U . If there is a = (u, v) ∈ A+ with
u ∈ U , v �∈ U , then J+ + v ⊆ I+ + v − u ∈ I+, leading to a contradiction to
(ii).

Claim 4: � ∃a ∈ A− : ∂+a ∈ U, ∂−a �∈ U . This is proven similarly.

The min-cut decomposition for the independent matching problem can
be found by the following procedure. It differs from the one for the DM-
decomposition only in the first step. Recall the notation ∗−→ for the reacha-
bility by a directed path.

Algorithm for min-cut decomposition of an independent matching
problem

1. Find a maximum independent matching M .
2. Let V0 = {v ∈ V + ∪ V − | w ∗−→ v on G̃M for some w ∈ S+}.
3. Let V∞ = {v ∈ V + ∪ V − | v ∗−→w on G̃M for some w ∈ S−}.
4. Let G̃′ denote the graph obtained from G̃M by deleting the vertices V0 ∪
V∞ (and arcs incident thereto).

5. Let Vk (k = 1, · · · , b) be the strong components of G̃′.
6. Define a partial order � on {Vk | k = 1, · · · , b} as follows:

Vk � Vl ⇐⇒ vl
∗−→ vk on G̃′ for some vk ∈ Vk and vl ∈ Vl.

�

Example 2.3.36. The min-cut decomposition for the independent match-
ing problem in Example 2.3.25 is obtained from the auxiliary graph G̃M
in Fig. 2.10. According to the notation in the algorithm, we have V0 =
{x1, x2, x3, y1, y2, y3} and V∞ = ∅. The subgraph G̃′, having vertex set
{x4, y4, y5} and arc set {(x4, y4), (x4, y5), (y5, x4)}, is decomposed into two
strong components, V1 = {y4} and V2 = {x4, y5} with V1 � V2. The min-
cut decomposition is given by ({V0;V1, V2;V∞},�). We have Lmin(κ) =
{V0, V0 ∪ V1, V0 ∪ V1 ∪ V2}, with which the family of all minimum covers
is obtained as (2.76). Thus we can enumerate all the minimum covers as
(U+, U−) = ({x4}, {y1, y2, y3}), ({x4}, {y1, y2, y3, y4}), (∅, {y1, y2, y3, y4, y5}).

�

Remark 2.3.37. The independent matching problem is closely related to
the rank of a triple matrix product, as is pointed out by Tomizawa–Iri [317].
Consider a triple matrix product P = Q1TQ2, where T is a generic matrix
(cf. §2.1.3) and Qi (i = 1, 2) are numerical matrices. Put R1 = Row(Q1),
C2 = Col(Q2), and first suppose |R1| = |C2| = k. By the Cauchy–Binet
formula (Proposition 2.1.6) we have

detP =
∑

|I|=|J|=k

±detQ1[R1, I] · detT [I, J ] · detQ2[J,C2].

There is no numerical cancellation in the summation above by virtue of the
assumed algebraic independence of the nonzero entries of T , and hence P is
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nonsingular if and only if Q1[R1, I], T [I, J ], and Q2[J,C2] are all nonsingular
for some I and J . By applying the above argument to square submatrices of
P for a general P = Q1TQ2, we see that

rankP = max{|I| | rankQ1[R1, I] = |I|
= rankT [I, J ] = |J | = rankQ2[J,C2]}.

We define an independent matching problem as follows. The vertex sets V +

and V − are the row set and the column set of T , respectively, and the arc set
A = {(i, j) | Tij �= 0}. The matroids M+ and M− attached to V + and V −

respectively are the linear matroids defined by Q1 and the transpose of Q2.
Then we see from the above expression that rankP is equal to the maximum
size of an independent matching. Namely,

rank (Q1TQ2) = max{|M | |M : independent matching}. (2.78)

If Qi (i = 1, 2) are identity matrices, this expression reduces to (2.10). �

The weighted version of the independent matching problem as well as the
weighted matroid intersection problem will be treated in the framework of
valuated matroids in §5.2.

2.3.6 Union

Given a bipartite graph G = (V +, V −;A) and a matroid M+ = (V +, I+, ρ+),
we can induce another matroid through matchings. Define Ĩ ⊆ 2V −

and
ρ̃ : 2V − → Z by

Ĩ = {∂−M |M : matching with ∂+M ∈ I+},
ρ̃(X) = max{|I| | I ∈ Ĩ, I ⊆ X}, X ⊆ V −.

It follows from the Rado–Perfect theorem (2.75) that

ρ̃(X) = min{ρ+(Γ (X ′)) + |X \X ′| | X ′ ⊆ X}, X ⊆ V −. (2.79)

Theorem 2.3.38. M̃ = (V −, Ĩ, ρ̃) is a matroid with the family of indepen-
dent sets Ĩ and the rank function ρ̃.

Proof. We show that ρ̃ in (2.79) satisfies the rank axiom of a matroid. Obvi-
ously, 0 ≤ ρ̃(X) ≤ |X| and ρ̃(X) ≤ ρ̃(Y ) for X ⊆ Y . For the submodularity
of ρ̃ we see

ρ̃(X) + ρ̃(Y ) = min
X′⊆X,Y ′⊆Y

{
ρ+(Γ (X ′)) + ρ+(Γ (Y ′)) + |X \X ′| + |Y \ Y ′|

}
,

into which we substitute



94 2. Matrix, Graph, and Matroid

ρ+(Γ (X ′)) + ρ+(Γ (Y ′)) ≥ ρ+(Γ (X ′) ∪ Γ (Y ′)) + ρ+(Γ (X ′) ∩ Γ (Y ′))
≥ ρ+(Γ (X ′ ∪ Y ′)) + ρ+(Γ (X ′ ∩ Y ′))

to obtain

ρ̃(X) + ρ̃(Y ) ≥ min
X′⊆X,Y ′⊆Y

{
ρ+(Γ (X ′ ∪ Y ′)) + |(X ∪ Y ) \ (X ′ ∪ Y ′)|

+ρ+(Γ (X ′ ∩ Y ′)) + |(X ∩ Y ) \ (X ′ ∩ Y ′)|
}

≥ min
Z′⊆X∪Y

{
ρ+(Γ (Z ′)) + |(X ∪ Y ) \ Z ′|

}

+ min
Z′′⊆X∩Y

{
ρ+(Γ (Z ′′)) + |(X ∩ Y ) \ Z ′′|

}

= ρ̃(X ∪ Y ) + ρ̃(X ∩ Y ).

(It is also possible to show that Ĩ satisfies the axiom of independent sets of
a matroid by a slight modification of the argument in the proof of Lemma
2.3.31. Remark 5.2.19 gives yet another alternative proof.)

Given two matroids M1 = (V, I1, ρ1) and M2 = (V, I2, ρ2) with the same
ground set V , we can define another matroid called the union of M1 and M2,
denoted as M1 ∨ M2 = (V, I1 ∨ I2, ρ1 ∨ ρ2). The family of independent sets
I1 ∨ I2 is defined by

I1∨I2 = {I1∪I2 | I1 ∈ I1, I2 ∈ I2} = {I1∪I2 | I1 ∈ I1, I2 ∈ I2, I1∩I2 = ∅}

and the rank function ρ1 ∨ ρ2 : 2V → Z is given by

(ρ1 ∨ ρ2)(X) = min{ρ1(Y ) + ρ2(Y ) + |X \ Y | | Y ⊆ X}, X ⊆ V. (2.80)

This construction is a special case of the induction of a matroid by a
bipartite graph explained above. Let V1 and V2 be disjoint copies of V and
put V + = V1 ∪ V2 and V − = V . Regarding Mi as being defined on Vi

(i = 1, 2), we consider M+ = M1 ⊕ M2 (direct sum) defined on V +. Define
A = {(v1, v), (v2, v) | v ∈ V }, where v1 ∈ V1 and v2 ∈ V2 denote the copies of
v ∈ V (see Fig. 2.11). The matroid induced on V − from M+ by the bipartite
graph (V +, V −;A) coincides with (is isomorphic to) M1∨M2. The expression
(2.79) with ρ+(Γ (X ′)) = ρ1(X ′) + ρ2(X ′) yields (2.80).

The rank of the union is closely related to the maximum size of a common
independent set of M1 and M∗

2 = (V, I∗
2 , ρ

∗
2) (the dual of M2). Namely,

rank (M1 ∨ M2) = max{|I| | I ∈ I1 ∩ I∗
2} + rank (M2). (2.81)

This relation follows from (2.80) combined with Theorem 2.3.28 and (2.64).
The union operation extends to a finite number of matroids Mi =

(V, Ii, ρi) (i ∈ T ) in an obvious way. The family of independent sets of their
union is given by

{
⋃

i∈T

Ii | Ii ∈ Ii (i ∈ T )} = {
⋃

i∈T

Ii | Ii ∈ Ii (i ∈ T ), Ii ∩ Ij = ∅ (i �= j)}
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Fig. 2.11. Bipartite graph for union operation

and the rank function
∨

i∈T ρi : 2V → Z by
(
∨

i∈T

ρi

)

(X) = min{
∑

i∈T

ρi(Y ) + |X \ Y | | Y ⊆ X}, X ⊆ V. (2.82)

In this connection we mention the following facts observed in Murota
[206].

Proposition 2.3.39. For a finite family of matroids Mi = (V, ρi) (i ∈ T )
on a common ground set V with rank functions ρi, define λ(K,X) to be the
rank of X ⊆ V in the union of the partial family {Mi | i ∈ K}, i.e.,

λ(K,X) =

(
∨

i∈K

ρi

)

(X), K ⊆ T,X ⊆ V.

Then it holds that

λ(K,X)+λ(L, Y ) ≥ λ(K∪L,X∩Y )+λ(K∩L,X∪Y ), K, L ⊆ T ;X,Y ⊆ V.

Proof. From (2.82) we have

λ(K,X) + λ(L, Y )

= min
X′⊆X,Y ′⊆Y

{
∑

i∈K

ρi(X ′) +
∑

i∈L

ρi(Y ′) + |X \X ′| + |Y \ Y ′|
}

.

Into this expression we substitute
∑

i∈K

ρi(X ′) +
∑

i∈L

ρi(Y ′)

=
∑

i∈K\L

ρi(X ′) +
∑

i∈K∩L

[ρi(X ′) + ρi(Y ′)] +
∑

i∈L\K

ρi(Y ′)
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≥
∑

i∈K\L

ρi(X ′ ∩ Y ′) +
∑

i∈K∩L

[ρi(X ′ ∪ Y ′) + ρi(X ′ ∩ Y ′)] +
∑

i∈L\K

ρi(X ′ ∩ Y ′)

=
∑

i∈K∪L

ρi(X ′ ∩ Y ′) +
∑

i∈K∩L

ρi(X ′ ∪ Y ′)

to obtain

λ(K,X) + λ(L, Y ) ≥ min
X′⊆X,Y ′⊆Y

{
∑

i∈K∪L

ρi(X ′ ∩ Y ′) + |(X ∩ Y ) \ (X ′ ∩ Y ′)|

+
∑

i∈K∩L

ρi(X ′ ∪ Y ′) + |(X ∪ Y ) \ (X ′ ∪ Y ′)|
}

≥ min
Z′⊆X∩Y

{
∑

i∈K∪L

ρi(Z ′) + |(X ∩ Y ) \ Z ′|
}

+ min
Z′′⊆X∪Y

{
∑

i∈K∩L

ρi(Z ′′) + |(X ∪ Y ) \ Z ′′|
}

= λ(K ∪ L,X ∩ Y ) + λ(K ∩ L,X ∪ Y ).

Proposition 2.3.40. For three matroids Mi (i = 1, 2, 3) it holds that

rank (M1 ∨ M2 ∨ M3) + rank (M2) ≤ rank (M1 ∨ M2) + rank (M2 ∨ M3).

Proof. Take X = V and T = {1, 2, 3} in Proposition 2.3.39. An alternative
proof is to make use of the fact that there exist disjoint I1, B2, I3 ⊆ V such
that B2 is a base of M2, I1 ∪B2 is a base of M1 ∨M2, and I1 ∪B2 ∪ I3 is a
base of M1 ∨ M2 ∨ M3. Then we have rank (M2 ∨ M3) ≥ |B2| + |I3|.

As another application of Proposition 2.3.39 we mention the following
observation of Kung [168].

Theorem 2.3.41. For two matroids M1 and M2 it holds that M1 ∨M2 →
M1, where “→” means a strong map.

Proof. In Proposition 2.3.39, take K = {1, 2} and L = {1} to obtain

(ρ1 ∨ ρ2)(X) + ρ1(Y ) ≥ (ρ1 ∨ ρ2)(X ∩ Y ) + ρ1(X ∪ Y ).

If X ⊇ Y , this means (ρ1 ∨ ρ2)(X) − (ρ1 ∨ ρ2)(Y ) ≥ ρ1(X) − ρ1(Y ), the
definition (2.65) of a strong map.

Remark 2.3.42. In Example 2.3.8 we have defined the matroid M{U} as-
sociated with a linear subspace U . For two subspaces Ui = kerAi (i = 1, 2),
we have
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U1 ∩ U2 = ker
[
A1

A2

]

.

This implies
M{U1 ∩ U2} = M{U1} ∨ M{U2}

when U1 and U2 are in the “general position” (in an appropriate sense). See
§4.2 for more precise accounts. �

2.3.7 Bimatroid (Linking System)

The notion of a bimatroid was introduced first by Schrijver [290, 291] under
the name of a linking system, and later by Kung [165] under the name bima-
troid. Just as a matroid can be defined either by the basis family or by the
rank function, a bimatroid can be defined either as a triple L = (S, T, Λ) of
disjoint finite sets S, T and Λ ⊆ 2S ×2T (family of “linked pairs”), or equiva-
lently as a triple L = (S, T, λ) of disjoint finite sets S, T and λ : 2S ×2T → Z
(“birank function”). Unless otherwise indicated, the reader is referred to
Schrijver [290, 291] for proofs not included here.

A canonical example of a bimatroid arises from a matrix. Let A be a
matrix over a field F , and put S = Row(A) and T = Col(A). Define Λ to
be the family of all pairs (X,Y ) such that |X| = |Y | and the corresponding
submatrix A[X,Y ] is nonsingular. It is an exercise in linear algebra to show
that Λ has the following properties:

(L-1) If (X,Y ) ∈ Λ and x ∈ X, then ∃ y ∈ Y such that (X \ {x}, Y \
{y}) ∈ Λ;

(L-2) If (X,Y ) ∈ Λ and y ∈ Y , then ∃x ∈ X such that (X \ {x}, Y \
{y}) ∈ Λ;

(L-3) If (Xi, Yi) ∈ Λ (i = 1, 2), then ∃X ⊆ S, ∃Y ⊆ T such that
(X,Y ) ∈ Λ, X1 ⊆ X ⊆ X1 ∪X2, Y2 ⊆ Y ⊆ Y1 ∪ Y2.

The rank function for submatrices, defined by λ(X,Y ) = rankA[X,Y ] for
X ⊆ S, Y ⊆ T , has the following properties (cf. Proposition 2.1.9 for (B-3)):

(B-1) 0 ≤ λ(X,Y ) ≤ min{|X|, |Y |} for X ⊆ S and Y ⊆ T ;
(B-2) λ(X ′, Y ′) ≤ λ(X,Y ) for X ′ ⊆ X ⊆ S and Y ′ ⊆ Y ⊆ T ;
(B-3) λ(X,Y ) + λ(X ′, Y ′) ≥ λ(X ∪X ′, Y ∩ Y ′) + λ(X ∩X ′, Y ∪ Y ′)

for X,X ′ ⊆ S and Y, Y ′ ⊆ T .

The family Λ and the function λ determine each other by

λ(X,Y ) = max{|X ′| | (X ′, Y ′) ∈ Λ,X ′ ⊆ X,Y ′ ⊆ Y },
X ⊆ S, Y ⊆ T, (2.83)

Λ = {(X,Y ) | λ(X,Y ) = |X| = |Y |, X ⊆ S, Y ⊆ T}. (2.84)

With this example in mind we start a formal description of bimatroids.
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A bimatroid (or linking system) is a triple L = (S, T, Λ), where S and
T are disjoint finite sets, and Λ is a nonempty subset of 2S × 2T such that
(L-1)–(L-3) above are satisfied. We call S the row set (or exit set) and T the
column set (or entrance set) of L, and write S = Row(L) and T = Col(L). A
member (X,Y ) of Λ is called a linked pair.

For a bimatroid L = (S, T, Λ) the birank function (or linking function)
λ : 2S × 2T → Z is defined by (2.83). It can be proven that λ satisfies (B-1)–
(B-3) above. Conversely, a function λ : 2S × 2T → Z satisfying (B-1)–(B-3)
determines a bimatroid by (2.84). Namely, (L-1)–(L-3) for Λ ⊆ 2S × 2T are
equivalent to (B-1)–(B-3) for λ : 2S ×2T → Z. Thus, a bimatroid L is defined
by a triple (S, T, Λ) with the properties (L-1)–(L-3) or equivalently by a triple
(S, T, λ) with the properties (B-1)–(B-3).

It follows from (L-1) and (L-2) that |X| = |Y | if (X,Y ) ∈ Λ. A linked
pair can be enlarged monotonically, i.e.,

(X1, Y1) ∈ Λ, |X1| ≤ λ(X,Y ),X1 ⊆ X,Y1 ⊆ Y
=⇒ ∃ (X2, Y2) ∈ Λ, |X2| = λ(X,Y ),X1 ⊆ X2 ⊆ X,Y1 ⊆ Y2 ⊆ Y. (2.85)

The maximum size of a linked pair in L is referred to as the rank of L,
i.e., rankL = λ(S, T ). A bimatroid L is called trivial if rankL = 0, and
nonsingular if rankL = |S| = |T |.

Example 2.3.43. Besides the canonical example from a matrix, another
example of a bimatroid is obtained from linkings/matchings in a graph. Let
G = (V,A;S, T ) be a directed graph with S and T being disjoint subsets of
V . With reference to Menger-type linkings from S to T , define Λ ⊆ 2S × 2T

as follows: (X,Y ) ∈ Λ if and only if there exists a Menger-type linking of size
|X| = |Y | from X to Y . Then L = (S, T, Λ) is a bimatroid, satisfying the
conditions (L-1)–(L-3). �

As the name suggests, bimatroids are closely related to matroids. Given
a bimatroid L = (S, T, Λ), define B ⊆ 2S∪T by

B = {(S \X) ∪ Y | (X,Y ) ∈ Λ}. (2.86)

Then B is the basis family of a matroid on S ∪ T with B � S. See Fig. 2.12
for this correspondence in the case of a matrix, where the left submatrix with
column set S is an identity matrix. The rank function ρ : 2S∪T → Z of the
matroid is expressed as

ρ(X ∪ Y ) = λ(S \X,Y ) + |X|, X ⊆ S, Y ⊆ T

using the birank function λ. Conversely, if (S∪T,B) is a matroid with B � S
and S ∩ T = ∅, then

Λ = {(X,Y ) | X ⊆ S, Y ⊆ T, (S \X) ∪ Y ∈ B}
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(X, Y ) ∈ Λ ⇐⇒ B ∈ B

Fig. 2.12. Matroid associated with a bimatroid

is the family of linked pairs of a bimatroid. As such, the concept of bimatroids
can be regarded as a variant of matroids. Matroids are more convenient in
some cases and bimatroids are more natural in other cases.

The restriction of the associated matroid (S ∪ T,B) to T = Col(L) is
called the column matroid of L, denoted CM(L). By definition, Y ⊆ T is
independent in CM(L) if and only if (X,Y ) ∈ Λ for some X ⊆ S. Similarly,
the row matroid RM(L) is the restriction to S = Row(L) of the dual of
(S∪T,B). Namely, X ⊆ S is independent in RM(L) if and only if (X,Y ) ∈ Λ
for some Y ⊆ T .

The underlying bipartite graph of a bimatroid L = (S, T, Λ) is a bipartite
graph G(L) = (S, T,Δ) with vertex set S ∪ T and arc set Δ ⊆ S × T such
that

(x, y) ∈ Δ ⇐⇒ ({x}, {y}) ∈ Λ.
The information represented in the underlying bipartite graph is only partial
in the sense that different bimatroids can have the same underlying bipartite
graph. Still it carries some crucial portion of the combinatorial structure, as
pointed out by Schrijver [290, 291].

Theorem 2.3.44. Let L = (S, T, Λ) be a bimatroid and G(L) = (S, T,Δ) be
its underlying bipartite graph.

(1) If (X,Y ) ∈ Λ, there exists a perfect matching between X and Y in
G(L) = (S, T,Δ).

(2) If there exists a unique perfect matching between X and Y in G(L) =
(S, T,Δ), then (X,Y ) ∈ Λ.

Proof. When translated to statements for the matroid associated with L =
(S, T, Λ), these claims reduce respectively to the perfect-matching lemma
(Lemma 2.3.16) and the unique matching lemma (Lemma 2.3.18).
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Remark 2.3.45. In case L = (S, T, Λ) is defined in terms of a matrix A,
considering the underlying bipartite graph is to consider the zero/nonzero
pattern of the matrix A while disregarding the numerical values of the entries.
The first statement of Theorem 2.3.44 corresponds in this case to the obvious
fact that, if rankA[X,Y ] = |X| = |Y |, then term-rankA[X,Y ] = |X| = |Y |.
The second statement claims that, if X and Y can be permuted so that
A[X,Y ] is a triangular matrix with nonzero diagonal entries, then A[X,Y ] is
nonsingular. �

Two additional properties of a bimatroid follow. The first is an easy ob-
servation of Murota [220], to be used in §7.1.

Theorem 2.3.46. Let L = (S, T, λ) be a bimatroid with birank function λ.
For X0 ⊆ S, Y0 ⊆ T , and an integer k ≥ max(|X0|, |Y0|), there exist X ⊆ S
and Y ⊆ T such that X ⊇ X0, Y ⊇ Y0, and λ(X,Y ) = |X| = |Y | = k if
and only if the following four conditions are satisfied: (i) λ(S, T ) ≥ k, (ii)
λ(X0, T ) = |X0|, (iii) λ(S, Y0) = |Y0|, and (iv) λ(X0, Y0) ≥ |X0| + |Y0| − k.
Proof. The conditions (i)–(iii) are obviously necessary. The necessity of (iv)
can be shown as follows:

k = λ(X,Y ) ≤ λ(X,Y0) + λ(X,Y \ Y0)
≤ λ(X0, Y0) + λ(X \X0, Y0) + λ(X,Y \ Y0)
≤ λ(X0, Y0) + |X \X0| + |Y \ Y0|
= λ(X0, Y0) − |X0| − |Y0| + 2k.

For sufficiency, put r0 = λ(X0, Y0) and see: ∃X1 ⊆ X0,∃Y1 ⊆ Y0 such that
λ(X1, Y1) = |X1| = |Y1| = r0. Hence λ(X0, Y1) = |Y1|, whereas λ(X0, T ) =
|X0| by (ii). Then, by (2.85), ∃Y2 ⊆ T \Y0 such that λ(X0, Y1 ∪Y2) = |X0| =
|Y1| + |Y2|. By (B-3) we have

λ(S, Y0 ∪ Y2) + λ(X0, Y0) ≥ λ(S, Y0) + λ(X0, Y0 ∪ Y2) = |Y0| + |Y1| + |Y2|,

where the (last) equality is due to (iii) and the above claim. Therefore
λ(S, Y0 ∪ Y2) ≥ |Y0| + |Y2|, and hence λ(S, Y0 ∪ Y2) = |Y0| + |Y2|. On the
other hand,

|X0| ≥ λ(X0, Y0 ∪ Y2) ≥ λ(X0, Y1 ∪ Y2) = |X0|

implies λ(X0, Y0 ∪ Y2) = |X0|. Hence, by (2.85), ∃X2 ⊆ S \X0 such that

|X0| + |X2| = λ(X0 ∪X2, Y0 ∪ Y2) = |Y0| + |Y2| = |X0| + |Y0| − r0 ≤ k,

where the last inequality is due to (iv). Hence, by (i) and (2.85), ∃X ⊇
X0 ∪X2,∃Y ⊇ Y0 ∪ Y2 such that λ(X,Y ) = |X| = |Y | = k. This completes
the proof of sufficiency.

The second is a matroid-theoretic abstraction of the König–Egerváry the-
orem (Theorem 2.2.15). This is due to Bapat [9] and will be used in §4.2 and
§4.8.
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Theorem 2.3.47 (König–Egerváry theorem for bimatroids). Let
L = (S, T, λ) be a bimatroid with birank function λ. Then there exists
(X,Y ) ∈ 2S × 2T such that

(i) |X| + |Y | − λ(X,Y ) = |S| + |T | − λ(S, T ),
(ii) λ(X \ {x}, Y \ {y}) = λ(X,Y ), ∀x ∈ X, ∀y ∈ Y .

If min(|S|, |T |) > λ(S, T ), then X �= ∅ and Y �= ∅.

Proof. Obviously, there exists (X,Y ) satisfying (i) (e.g., X = S, Y = T ). Let
(X,Y ) be such a pair with |X|+ |Y | minimal. Put λ(X,Y ) = a and suppose
that (ii) fails. Then λ(X \ {x}, Y \ {y}) ≤ a− 1 for some x ∈ X, y ∈ Y . The
inequality (B-3) shows

2a− 1 ≥ λ(X,Y ) + λ(X \ {x}, Y \ {y}) ≥ λ(X \ {x}, Y ) + λ(X,Y \ {y}).

This implies that either λ(X \ {x}, Y ) = a − 1 or λ(X,Y \ {y}) = a − 1.
In the former case, (X \ {x}, Y ) satisfies (i), contradicting the minimality of
|X|+|Y |. Similarly for the latter case. Therefore, (X,Y ) satisfies (ii). Suppose
that min(|S|, |T |) > λ(S, T ) and either X = ∅ or Y = ∅. Then we would have
|S|+ |T | − λ(S, T ) > max(|S|, |T |) ≥ max(|X|, |Y |) = |X|+ |Y | − λ(X,Y ), a
contradiction to (i).

A canonical choice of the pair (X,Y ) in Theorem 2.3.47 can be made by
way of the canonical partition of a bimatroid introduced by Geelen [92]. For
a bimatroid L = (S, T, λ) and Z ⊆ S ∪ T , we denote by L \ Z the bimatroid
with Z deleted, i.e., L \ Z = (S \ Z, T \ Z, λ′) with λ′(X,Y ) = λ(X,Y ) for
X ⊆ S \ Z and Y ⊆ T \ Z. Define a partition of S ∪ T into three disjoint
parts by

D(L) = {z ∈ S ∪ T | rank (L \ {z}) = rankL},
A(L) = {z ∈ S ∪ T | D(L \ {z}) = D(L)},
C(L) = (S ∪ T ) \ (D(L) ∪A(L)).

The partition (D(L), A(L), C(L)) is called the canonical partition of L.
The canonical partition enjoys the following nice properties (Geelen [92]).

Proposition 2.3.48. For x ∈ S \D(L) the following hold true.
(1) D(L \ {x}) ∩ S = D(L) ∩ S.
(2) D(L \ {x}) ∩ T ⊇ D(L) ∩ T .
(3) If y ∈ D(L \ {x}) \D(L), then x ∈ D(L \ {y}).
(4) A(L \ {x}) ∩ T ⊆ A(L) ∩ T .

Proof. (1) Note the relation S \ D(L) = {coloops of RM(L)} as well as
the similar relation for L \ {x}. Since x is a coloop of RM(L), we have
{coloops of RM(L)} = {x} ∪ {coloops of RM(L \ {x})}.

(2) For y ∈ D(L) ∩ T we have rank (L \ {x, y}) = rank (L \ {x}), since
λ(S \ {x}, T ) ≥ λ(S \ {x}, T \ {y}) ≥ λ(S \ {x}, T ) + λ(S, T \ {y})− λ(S, T )
by (B-2) and (B-3), and λ(S, T ) = rankL = λ(S, T \ {y}).
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(3) We have rank (L \ {x, y}) = rank (L \ {x}) = rankL − 1 since y ∈
D(L \ {x}), whereas rank (L \ {y}) = rankL − 1 since y �∈ D(L). Hence,
rank (L \ {x, y}) = rank (L \ {y}).

(4) Let y ∈ A(L\{x})∩T . We have x �∈ D(L\{y}) by (3) (with the roles
of x and y interchanged), and hence D(L\{x, y})∩S = D(L\{y})∩S by (1),
whereas D(L \ {x, y})∩S = D(L \ {x})∩S = D(L)∩S since y ∈ A(L \ {x})
and x ∈ S \D(L). Therefore, D(L\{y})∩S = D(L)∩S. On the other hand,
D(L \ {y}) ∩ T = D(L) ∩ T since y ∈ T \D(L). Hence D(L \ {y}) = D(L),
i.e., y ∈ A(L).

Proposition 2.3.49. If x ∈ A(L), then the canonical partition of L \ {x} is
(D(L), A(L) \ {x}, C(L)).

Proof. We have D(L \ {x}) = D(L) by definition. For y ∈ C(L) we see
D(L \ {x}) = D(L)⊂

�=D(L \ {y}) ⊆ D(L \ {x, y}) using Proposition 2.3.48,
and hence y �∈ A(L \ {x}). Therefore, C(L \ {x}) ⊇ C(L). The proof is
completed by showing A(L \ {x}) ⊇ A(L) \ {x}. Suppose that there exists
y ∈ A(L) \ {x} with y �∈ A(L \ {x}), and take z ∈ D(L \ {x, y}) \D(L \ {x}).
It then follows that rank (L \ {x}) = rank (L \ {y}) = rank (L \ {z}) =
rankL − 1 and rank (L \ {x, y, z}) = rank (L \ {x, y}) = rank (L \ {y, z}) =
rank (L \ {z, x}) = rankL − 2. This means x ∈ D(L \ {y, z}) \ D(L \ {y}),
y ∈ D(L\{z, x})\D(L\{z}), and z ∈ D(L\{x, y})\D(L\{x}). The first of
these implies, by Proposition 2.3.48(1), that x and z are on the opposite sides,
i.e., |{z, x} ∩ S| = |{z, x} ∩ T | = 1. Similarly, |{x, y} ∩ S| = |{x, y} ∩ T | = 1
and |{y, z} ∩ S| = |{y, z} ∩ T | = 1. However, this is impossible.

Proposition 2.3.50. The conditions (i) and (ii) in Theorem 2.3.47 are sat-
isfied by (X,Y ) = (D(L) ∩ S, (D(L) ∪ C(L)) ∩ T ), and symmetrically by
(X,Y ) = ((D(L) ∪ C(L)) ∩ S,D(L) ∩ T ).

Proof. We prove for the former. For z ∈ A(L) we have rank (L \ {z}) =
rankL − 1, while the canonical partition of L \ {z} remains the same as in
Proposition 2.3.49. Hence L′ = L \A(L) satisfies rankL′ = rankL − |A(L)|,
D(L′) = D(L), A(L′) = ∅, and C(L′) = C(L). For x ∈ C(L) ∩ S we have
rank (L′ \ {x}) = rankL′ − 1, D(L′ \ {x}) ∩ S = D(L′) ∩ S by Proposition
2.3.48(1) and A(L′ \ {x}) ∩ T = ∅ by Proposition 2.3.48(4). Hence L′′ =
L′ \ (C(L)∩S) satisfies rankL′′ = rankL′−|C(L)∩S|, D(L′′)∩S = D(L′)∩
S = D(L) ∩ S = X, and A(L′′) ∩ T = ∅. Note that Row(L′′) = X and
Col(L′′) = Y . We claim D(L′′)∩Y = Y . Suppose there exists y ∈ Y \D(L′′).
Then D(L′′ \ {y})∩Y = D(L′′)∩Y and D(L′′ \ {y})∩X ⊇ D(L′′)∩X = X,
which together imply D(L′′ \ {y}) = D(L′′), i.e., y ∈ A(L′′), a contradiction
to A(L′′) ∩ T = ∅. Therefore, we have D(L′′) = X ∪ Y , which is equivalent,
by (B-3), to the condition (ii). As for the condition (i), we have λ(X,Y ) =
rankL′′ = rankL − |A(L)| − |C(L) ∩ S| = λ(S, T ) − |S \X| − |T \ Y |.
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A number of natural operations can be defined for bimatroids, as intro-
duced by Schrijver [290, 291]. Though all these operations can be transformed
in principle to operations for the corresponding matroids, they are most nat-
urally expressed for bimatroids. This is especially true for union and product
operations.

For X ⊆ S and Y ⊆ T , the restriction of L = (S, T, Λ) to (X,Y ) is a
bimatroid L[X,Y ] = (X,Y,Λ′) with

Λ′ = {(X ′, Y ′) | X ′ ⊆ X,Y ′ ⊆ Y, (X ′, Y ′) ∈ Λ}.

We have L[X,Y ] = L \ Z for Z = (S \X) ∪ (T \ Y ).
The dual (or transpose) of L = (S, T, Λ) is a bimatroid L∗ = (T, S, Λ∗)

with Λ∗ = {(Y,X) | (X,Y ) ∈ Λ}.
For a nonsingular bimatroid L = (S, T, Λ), the inverse of L is a bimatroid

L−1 = (T, S, Λ−1) with

Λ−1 = {(Y,X) | (S \X,T \ Y ) ∈ Λ}.

For two bimatroids Li = (Si, Ti, Λi) (i = 1, 2), the union of L1 and L2

can be defined as a bimatroid L1 ∨ L2 = (S1 ∪ S2, T1 ∪ T2, Λ1 ∨ Λ2) with

Λ1 ∨ Λ2 = {(X1 ∪X2, Y1 ∪ Y2) |
X1 ∩X2 = ∅, Y1 ∩ Y2 = ∅, (X1, Y1) ∈ Λ1, (X2, Y2) ∈ Λ2}.

It should be clear that S1 ∩ S2 �= ∅ and T1 ∩ T2 �= ∅ in general.

Theorem 2.3.51. L1 ∨L2 = (S1 ∪ S2, T1 ∪ T2, Λ1 ∨Λ2) is a bimatroid, and
the birank function λ1 ∨ λ2 of L1 ∨ L2 is given by

(λ1 ∨ λ2)(X,Y )
= min{λ1(X ′ ∩ S1, Y

′ ∩ T1) + λ2(X ′ ∩ S2, Y
′ ∩ T2) + |X \X ′| + |Y \ Y ′| |

X ′ ⊆ X,Y ′ ⊆ Y }, X ⊆ S1 ∪ S2, Y ⊆ T1 ∪ T2.
�

Remark 2.3.52. The union operation of bimatroids corresponds roughly to
the sum of matrices. See Theorem 4.2.9 for a precise statement. �

For two bimatroids Li = (Si, Ti, Λi) (i = 1, 2) with Col(L1) = Row(L2),
the product of L1 and L2 can be defined as a bimatroid L1 ∗L2 = (S1, T2, Λ1 ∗
Λ2) with

Λ1 ∗ Λ2 = {(X,Z) | ∃Y ⊆ T1 : (X,Y ) ∈ Λ1, (Y,Z) ∈ Λ2}.

Theorem 2.3.53. L1 ∗L2 = (S1, T2, Λ1 ∗Λ2) is a bimatroid, and the birank
function λ1 ∗ λ2 of L1 ∗ L2 is given by

(λ1 ∗λ2)(X,Z) = min{λ1(X,T1 \Y )+λ2(Y,Z) | Y ⊆ T1}, X ⊆ S1, Z ⊆ T2.

�
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Remark 2.3.54. The product operation for bimatroids is motivated by the
Cauchy–Binet formula for the product of matrices (Proposition 2.1.6). Sup-
pose that Li = (Si, Ti, Λi) (i = 1, 2) are defined by matrices Ai (i = 1, 2), and
let L12 = (S1, T2, Λ12) denote the bimatroid defined by A1A2. The Cauchy–
Binet formula shows that, if (A1A2)[X,Z] is nonsingular, there exists Y such
that both A1[X,Y ] and A2[Y,Z] are nonsingular. When translated to bi-
matroids, this means that if (X,Z) ∈ Λ12, then there exists Y such that
(X,Y ) ∈ Λ1 and (Y,Z) ∈ Λ2. The necessary condition here is adopted as
the definition of the product of bimatroids. Therefore, if (X,Z) ∈ Λ12, then
(X,Z) ∈ Λ1 ∗ Λ2.

The converse is not true because of possible numerical cancellations.
Namely, L1 ∗ L2 does not always agree with L12. Consider, for example,

A1 = ( 1 1 ), A2 =
(

1
−1

)

, for which A1A2 = O while rank (L1 ∗L2) = 1. �

For three bimatroids Li = (Si, Ti, Λi) (i = 1, 2, 3) with Col(L1) =
Row(L2) and Col(L2) = Row(L3), we can define the triple product L1 ∗
L2 ∗L3, which notation is justified since (L1 ∗L2) ∗L3 = L1 ∗ (L2 ∗L3). The
following inequality is observed by Murota [211].

Theorem 2.3.55 (Frobenius inequality for bimatroids). For three bi-
matroids Li (i = 1, 2, 3) such that L1 ∗ L2 ∗ L3 can be defined, it holds that

rank (L1 ∗ L2 ∗ L3) + rank (L2) ≥ rank (L1 ∗ L2) + rank (L2 ∗ L3).

Proof. Put Li = (Si, Ti, λi) (i = 1, 2, 3), where T1 = S2 and T2 = S3. By
Theorem 2.3.53 we have

rank (L1 ∗ L2) = min{λ1(S1, T1 \X1) + λ2(X1, T2) | X1 ⊆ T1},
rank (L2 ∗ L3) = min{λ2(S2, T2 \X2) + λ3(X2, T3) | X2 ⊆ T2}.

From these relations as well as

λ2(X1, T2) + λ2(S2, T2 \X2) ≤ λ2(X1, T2 \X2) + λ2(S2, T2),

it follows that

rank (L1 ∗ L2) + rank (L2 ∗ L3)
≤ min

X1,X2
{λ1(S1, T1 \X1) + λ2(X1, T2 \X2) + λ3(X2, T3)} + λ2(S2, T2)

= rank (L1 ∗ L2 ∗ L3) + rank (L2).

Remark 2.3.56. The inequality in Theorem 2.3.55 may be compared with
the similar inequality for matrix products:

rank (A1 ·A2 ·A3) + rank (A2) ≥ rank (A1 ·A2) + rank (A2 ·A3),
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which is sometimes referred to as the Frobenius inequality. It is emphasized
that neither of these inequalities implies the other, because of the possible dis-
crepancy (Remark 2.3.54) between the matrix multiplication and bimatroid
multiplication. �

Suppose a matroid M = (T, I, μ) (with family I of independent sets and
rank function μ) is defined on the column set T = Col(L) of a bimatroid
L = (S, T, λ). Then another matroid, denoted by L ∗ M, is induced on S =
Row(L), as is noted by Schrijver [290, 291]. This generalizes the induction of
a matroid through a bipartite graph in Theorem 2.3.38.

Theorem 2.3.57. For a bimatroid L = (S, T, Λ, λ) and a matroid M =
(T, I, μ),

Ĩ = {X ⊆ S | ∃ Y ⊆ T : (X,Y ) ∈ Λ, Y ∈ I}
forms the family of independent sets of a matroid, denoted by L ∗ M. The
rank function λ ∗ μ of L ∗ M is given by

(λ ∗ μ)(X) = min{λ(X,T \ Y ) + μ(Y ) | Y ⊆ T}, X ⊆ S.
�

Finally we mention the following facts concerning strong map relations,
both due to Kung [165, 168].

Theorem 2.3.58. For a bimatroid L = (S, T, λ) and a matroid M = (T, μ),
L ∗ M is a strong quotient of RM(L), i.e., RM(L) → L ∗ M. �

Theorem 2.3.59. For two bimatroids Li (i = 1, 2) such that L1 ∗L2 can be
defined, RM(L1 ∗L2) and CM(L1 ∗L2) are strong quotients of RM(L1) and
CM(L2), respectively, namely, RM(L1) → RM(L1 ∗ L2) and CM(L2) →
CM(L1 ∗ L2).

Proof. This is a corollary of Theorem 2.3.58. Note that RM(L1 ∗ L2) =
L1 ∗ RM(L2).

Remark 2.3.60. The inequality (B-3) was first termed the bi-submodularity
in Schrijver [290, 291]. Recently, however, bisubmodularity also denotes a
similar but different inequality that appears in connection to delta-matroids
and jump systems as in Bouchet–Cunningham [19]. In view of this situation
we refrain from using the terms bi-submodularity and bisubmodularity to
avoid possible confusions, though we still use the prefix “bi” in “bimatroid”
and “birank function,” admitting an inconsistent compromise. �



3. Physical Observations for Mixed Matrix
Formulation

The dual viewpoint from structural analysis and dimensional analysis, as
previewed in §1.2, is explained in more detail. Firstly, two different kinds,
“accurate” and “inaccurate,” are distinguished among numbers characteriz-
ing real-world systems, and secondly, algebraic implications of the principle
of dimensional homogeneity are discussed. These observations lead to the
concepts of “mixed matrices,” “mixed polynomial matrices,” and “physical
matrices” as the mathematical models of matrices arising from real problems.

3.1 Mixed Matrix for Modeling Two Kinds of Numbers

3.1.1 Two Kinds of Numbers

A real-world physical/engineering system will be characterized by a set of
relations among various kinds of numbers representing physical quantities,
parameter values, incidence relations, etc., where it is important to recog-
nize the difference in the nature of the quantities involved in the real-world
problem and to establish a mathematical model that reflects the difference.

A primitive, yet fruitful, way of classifying numbers would be to distin-
guish nonvanishing elements from zeros. This dichotomy often leads to graph-
theoretic methods for structural analysis, such as those described in §1.1.2
for the DAE-index problem, where the existence of nonvanishing numbers is
represented by a set of arcs in a certain graph.

Closer investigation would reveal, however, that two different kinds can
be distinguished among the nonvanishing numbers; that is, some of the non-
vanishing numbers are accurate, and others are inaccurate but independent
as a consequence of the fact that they are contaminated by random noises
and errors. The purpose of this section1 is to explain this statement by means
of examples and to introduce the class of mixed matrices as a mathematical
tool for handling those two kinds of numbers.

The distinction between accurate and inaccurate numbers, however, is
not a matter in mathematics but in mathematical modeling, i.e., the way in
1 This section deals with the same issue as previewed in §1.2.1, in more detail with

different examples. Knowledge from §1.2.1 is not presupposed here.

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 3,
c© Springer-Verlag Berlin Heidelberg 2010
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which we recognize the problem, and therefore it is impossible in principle to
give a mathematical definition to it. The following typical examples will help
clarify what is meant by accurate and inaccurate numbers, and how numbers
of different nature arise in mathematical descriptions of real systems.

Example 3.1.1. Consider a simple electrical network in Fig. 3.1 (taken from
Iri [128]), which consists of five resistors of resistances ri (branch i) (i =
1, · · · , 5) and a voltage source of voltage e (branch 6). Then the current ξi in
and the voltage ηi across branch i (i = 1, · · · , 6) in the directions indicated
in Fig. 3.1 are to satisfy the structural equations (Kirchhoff’s laws) and the
constitutive equations (Ohm’s law), which altogether are expressed as

⎡

⎢
⎢
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⎢
⎢
⎢
⎢
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⎢
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⎢
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1 0 0 −1 0 −1
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. (3.1)

The upper six equations of (3.1) are the structural equations,2 while the
remaining six the constitutive equations.

The values of resistances ri (i = 1, · · · , 5), being subject to various kinds
of noises, are expected to be inaccurate, or approximately equal to their nom-
inal values to within an engineering tolerance. The nonvanishing coefficients
appearing in the upper half of (3.1), on the other hand, are accurate and
exactly equal to 1 or −1, since they stem from the incidence coefficients of
the underlying graph.

The unique solvability of this electrical network reduces to the nonsingu-
larity of the coefficient matrix of (3.1). By direct calculation, the determinant
of (3.1) turns out to be r1r2(r3 + r4) + (r1 + r2)(r3r4 + r4r5 + r5r3), which
is expected to be distinct from zero since ri’s (i = 1, · · · , 5) are mutually
independent, or uncorrelated, nonvanishing numbers (or, more directly, since
ri > 0). �

In general, the system of equations governing an electrical network is
expressed in the following form:
2 These equations express the Kirchhoff’s laws with respect to a tree-cotree pair

({1, 2, 3}, {4, 5, 6}).
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Fig. 3.1. An electrical network of Example 3.1.1

K C L O
O K V L

constitutive eqns

ξ
η

=
∗
∗
∗
, (3.2)

where for the submatrices labeled “KCL” and “KVL” the fundamental cutset
matrix D and the fundamental circuit matrix R of the underlying graph may
be taken (cf. Chen [34], Iri [123, 128], Recski [277]). The nonvanishing entries
in “KCL” and “KVL” are accurate, being either 1 or −1, while some of the
entries in “constitutive eqns” are inaccurate.

Another simple electrical network, with mutual couplings, is shown below.

Example 3.1.2. Consider the electrical network in Fig. 3.2, which consists
of five elements: two resistors of resistances ri (branch i) (i = 1, 2), a voltage
source (branch 3) controlled by the voltage across branch 1, a current source
(branch 4) controlled by the current in branch 2, and an independent voltage
source of voltage e (branch 5). Namely,

η1 = r1ξ1, η2 = r2ξ2, η3 = αη1, ξ4 = βξ2, η5 = e,

where ξi and ηi are the current in and the voltage across branch i (i =
1, · · · , 5) in the directions indicated in Fig. 3.2. We then obtain the following
system of equations:
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⎡
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. (3.3)

In accordance with (3.2), the upper five equations of (3.3) are the structural
equations, while the remaining five the constitutive equations.
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Fig. 3.2. An electrical network of Example 3.1.2

The values of the physical parameters r1, r2, α and β are inaccurate num-
bers which are only approximately equal to their nominal values on account
of various kinds of noises and errors.

The unique solvability of this network amounts to the nonsingularity of
the coefficient matrix of (3.3). If we calculate its determinant directly, we see
it is equal to −r2−(1−α)(1+β)r1, which is highly probably distinct from zero
by the independence of the physical parameters {r1, r2, α, β}. In this sense,
we may say that the electrical network of this example is solvable in general,
i.e., solvable generically with respect to the parameter set {r1, r2, α, β}. The
solvability of this system will be treated in §4.3.3 by a systematic combina-
torial method (without a direct computation of the determinant). �

The third example is concerned with a chemical process simulation.
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Example 3.1.3 (Ethylene dichloride production system). Consider
a hypothetical system (Fig. 3.3) for the production of ethylene dichloride
(C2H4Cl2), which is slightly modified from an example used in “Users’ Man-
ual of Generalized Interrelated Flow Simulation” of “The Service Bureau
Co.”

reactor

C2H4 + Cl2 −→ C2H4Cl2

90 % conv. of C2H4

purification
�1 chlorine feed

100 mol Cl2/h

�2 ethylene feed

100 mol C2H4/h

�3

�4 �5

�
6 recycle

�
7 product

Fig. 3.3. Hypothetical ethylene dichloride production system of Example 3.1.3

Feeds to the system are 100 mol/h of pure chlorine (Cl2) (stream 1), and
100 mol/h of pure ethylene (C2H4) (stream 2). In the reactor, 90% of the
input ethylene is converted into ethylene dichloride according to the reaction
formula

C2H4 + Cl2 → C2H4Cl2. (3.4)

At the purification stage, the product ethylene dichloride is recovered and
the unreacted chlorine and ethylene are separated for recycle. The degree of
purification is described in terms of component recovery ratios a1, a2 and
a3 of chlorine, ethylene and ethylene dichloride, respectively, which indicate
the ratios of the amounts recovered in stream 6 of the respective components
over those in stream 5.

We now consider the following problem.

[Problem] Given the component recovery ratios a1 and a2 of chlo-
rine and ethylene, determine the recovery ratio x = a3 of ethylene
dichloride with which a specified production rate y mol/h of ethylene
dichloride is realized.

Let ui1, ui2 and ui3 mol/h be the component flow rates of chlorine, ethy-
lene and ethylene dichloride in stream i, respectively. The system of equations
to be solved may be put in the following form, where u is an auxiliary variable
in the reactor and r (= 0.90) is the conversion ratio of ethylene:
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str3=str1+str6: u31 = u61 + 100,
u3j = u6j (j = 2, 3);

str4=str2+str3: u42 = u32 + 100,
u4j = u3j (j = 1, 3);

reactor: u = r u42,
u5j = u4j − u (j = 1, 2),
u53 = u43 + u,

purification: u6j = aj u5j (j = 1, 2),
u63 = x u53,
u7j = u5j − u6j (j = 1, 2),
y = u53 − u63.

(3.5)

This is a system of linear/nonlinear equations in unknown variables x, u
and uij , where the equation “u63 = x u53” in the purification is the only
nonlinear equation. We may regard aj (j = 1, 2) and r (= 0.90) as inaccurate
and independent numbers. It should be noted in this example that, in the
chemical reaction formula of (3.4), we encounter accurate numbers, ±1, as
the integer coefficients in the reaction formula, which are sometimes called
the “stoichiometric coefficients.” The Jacobian matrix J of (3.5) is shown in
Fig. 3.4, and the solvability of (3.5) will be discussed in §4.3.3. �

x u31 u32 u33 u41 u42 u43 u51 u52 u53 u61 u62 u63 u71 u72 u
y 1 −1

u31 −1 1
u32 −1 1
u33 −1 1
u41 1 −1
u42 1 −1
u43 1 −1
u51 1 −1 −1
u52 1 −1 −1
u53 1 −1 1
u61 a1 −1
u62 a2 −1
u63 u53 x −1
u71 1 −1 −1
u72 1 −1 −1
u r −1

Fig. 3.4. Jacobian matrix of (3.5) (chemical process simulation in Example 3.1.3)

As illustrated by the examples above, the accurate numbers often ap-
pear in equations for conservation laws such as Kirchhoff’s laws, the law of
conservation of mass, energy or momentum, and the principle of action and
reaction, where the nonvanishing coefficients are either 1 or −1, representing
the underlying topological incidence relations. Another typical example is the
integer coefficients, i.e., the stoichiometric coefficients, in chemical reactions.
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If we consider a gyrator in electrical networks, which has the element
characteristic represented by

(
η1
η2

)

=
(

0 r1
r2 0

)(
ξ1

ξ2

)

,

the ratio r1/r2 is exactly equal to −1. Thus, accurate numbers arise also
as ratios of inaccurate numbers, or in other words, as numbers representing
mutual dependence among quantities which may be inaccurate by themselves.
(Electrical networks containing gyrators are treated in §7.3.5.)

When we deal with dynamical systems, we encounter another example
of accurate numbers which represent the defining relations such as those
between velocity v and position x and between current ξ and charge Q:

v = 1 · dx
dt
, ξ = 1 · dQ

dt
.

Typical accurate numbers have been illustrated in Fig. 1.4.
To sum up, we can distinguish between accurate numbers and inaccurate

numbers. We may alternatively refer to the numbers of the first kind as “fixed
constants” and to those of the second kind as “system parameters.” For easy
reference we reiterate this distinction below:

Accurate numbers (fixed constants): Numbers accounting for various sorts of
conservation laws such as Kirchhoff’s laws which, stemming from topo-
logical incidence relations, are precise in value (often ±1).

Inaccurate numbers (system parameters): Numbers representing independent
physical parameters such as resistances in electrical networks and masses
in mechanical systems which, being contaminated with noise and other
errors, take values independent of one another.

In the above, we have explained informally what we mean by “two kinds
of numbers.” We now formulate this intuitive concept in more mathematical
terms referring to a pair of nested fields.

Let us denote by D the (multi)set of finitely many numbers characterizing
a system in question. Typically, for a linear system, the set of entries of the
coefficient matrix may be taken for D. As the basic assumption we postulate
that the numbers in D are contained in a field F , i.e.,

Basic Assumption: D ⊆ F , (3.6)

where it is assumed that F contains Q (the field of rational numbers).
In addition to the field F we consider a subfield K of F :

Q ⊆ K ⊆ F (3.7)

with the intention that accurate numbers should belong to K and inaccurate
ones to F \ K. Accordingly, the set D is divided into two disjoint subsets
(multisets) as
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D = Q∪ T (3.8)

with
Q = D ∩ K, T = D \ K. (3.9)

Our physical intuition that inaccurate numbers are independent of one an-
other can be translated into a mathematical statement:

Generality Assumption: T is algebraically independent over K. (3.10)

Assuming the algebraic independence of T is equivalent to regarding the
members of T as independent parameters, and therefore to considering the
family of systems parametrized by those parameters in T .

We have so far assumed that the subfield K was given a priori. In practical
situations, however, the choice of K is in some sense at our disposal and
the statement (3.10) is adopted as a mathematical assumption in system
modeling. That is, how to choose the subfield K in a real problem is not a
matter of mathematics but is determined by how we model that problem. In
contrast, the underlying field F is just a mathematical formality and it may
be chosen to be sufficiently large.

For instance, in Example 3.1.1 above we may choose K = Q, F =
Q(r1, r2, r3, r4, r5) and assume that T = {r1, r2, r3, r4, r5} satisfies (3.10).
In Example 3.1.2, we may take K = Q, F = Q(g1, g2, α, β) and T =
{g1, g2, α, β}. A reasonable choice in Example 3.1.3 would be K = Q,
F = Q(a1, a2, r, x, u53) and T = {a1, a2, r, x, u53}.

Here are three generality assumptions that may possibly be adopted in
system modeling. The first is

GA1: The nonvanishing elements of D are algebraically independent
over Q.

This requires that (3.10) should hold for K = Q and T = D \ {0}. The
generality assumption GA1 seems to be too stringent to be literally satis-
fied in practical situations, but is convenient for graph-theoretic methods for
structural analysis such as those described in §1.1.2 and §4.3.2. The second
is

GA2: Those elements of D which do not belong to the rational num-
ber field Q are algebraically independent over Q.

This requires that (3.10) should hold for K = Q and T = D \Q. The gener-
ality assumption GA2 is appropriate in many cases, including Examples 3.1.1
to 3.1.3 above, and will be adopted mostly in this book. The third is

GA3: Those elements of D which do not belong to the real number
field R are algebraically independent over R.

This requires that (3.10) should hold for K = R and T = D \ R. The
generality assumption GA3 will be useful in dealing with a system of lin-
ear/nonlinear equations, where D denotes the set of partial derivatives (en-
tries of the Jacobian matrix). Taking notice of the fact that the derivatives
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of linear functions are (real) constants, we classify the partial derivatives D
into constants and nonconstants; the latter standing for nonlinearity. This
classification conforms to the above choice of K = R. See also Remark 1.3.1.

It is important to recognize here that a generality assumption is con-
cerned with the property of a mathematical description of a real system, and
not of the system itself. The assumption GA2, for example, is often justified
when the system in question is described by a collection of elementary re-
lations among elementary variables rather than by a compact sophisticated
representation. In Example 3.1.3, for instance, the auxiliary variable u in the
reactor of (3.5) could have been eliminated, the reactor being then described
more compactly by

u5j = u4j − ru42 (j = 1, 2), u53 = u43 + ru42.

If the system were so described, the assumption GA2 is no longer valid even
if we may assume that r is independent of other quantities. In fact, the three
occurrences of one and the same r themselves could never be independent of
each other. The issue of mathematical description against generality assump-
tion will be considered again for dynamical systems in §3.1.2.

Remark 3.1.4. In the above argument we have assumed that the subfield
K is chosen from physical considerations in mathematical modeling. From
the mathematical point of view, however, we may think of the following
problem: Given D ⊆ F , find a subfield K and a bipartition D = Q∪ T such
that Q ⊆ K and T is algebraically independent over K. It is not difficult to
see that there exist a largest subset T and a smallest subfield K that satisfy
these conditions, and they are given by

T = {t ∈ D | t is transcendental over Q(D \ {t})}, (3.11)
K = Q(D \ T ). (3.12)

The expressions (3.11) and (3.12) can be derived from a matroid-theoretic
consideration as follows (see §2.3.2 for matroid-theoretic terms). Let M be the
algebraic matroid (see Example 2.3.10) defined on D with respect to algebraic
independence over Q. For a given T , (3.12) is an obvious choice of the smallest
K to meet the condition that Q = D \ T ⊆ K. Then the condition (3.10) is
equivalent to the statement that T is independent in the contraction of M
to T . This statement is tantamount to saying that T consists of coloops of
M. It follows, therefore, that the largest T is given by (3.11). �

Remark 3.1.5. Some comments would be in order here on the mutual re-
lations among the generality assumptions GA1, GA2 and GA3 above. First
of all, GA2 is weaker than GA1; that is, if D satisfies GA1, it satisfies GA2,
too. No other implications exist, as exemplified below, where F = R(x, ex)
and T of (3.11) is also given. Note that the algebraic independence of
{ex, x, e

√
2, e

√
3} over Q follows from Theorem 3.1.6 below.
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D GA1 GA2 GA3 T

{ex, x, e
√

2, e
√

3} yes yes yes {ex, x, e
√

2, e
√

3}
{ex, x, e

√
2x, e

√
3} yes yes no {ex, x, e

√
2x, e

√
3}

{ex, x, π, 1} no yes yes {ex, x, π}
{x, π, π2,

√
2} no no yes {x}

{ex, x, πx, 1} no yes no {ex, x, πx}
{ex, x, πx, π} no no no {ex}

This example is given for mathematical completeness, and not for physical
significance. �

Theorem 3.1.6 (Lindemann–Weierstrass theorem). Let y1, · · · , yq be
algebraic numbers over Q that are linearly independent over Q. Then the set
{exp y1, · · · , exp yq} is algebraically independent over Q.

Proof. See, e.g., Jacobson [148, 149].

3.1.2 Mixed Matrix and Mixed Polynomial Matrix

The distinction of two kinds of numbers can be embodied in the concept
of mixed matrices. It is generalized to another concept of mixed polynomial
matrices to deal with dynamical systems.

Consider a matrix A over a field F and denote by D the set of its entries.
With reference to a subfield K of F , the set D is divided into two parts,
D = Q∪T by (3.9), and accordingly, the matrix A is expressed as A = Q+T ,
where T is the set of the nonzero entries of T . The generality assumption
(3.10) then amounts to an assumption of the algebraic independence over K
of the nonzero entries of T . This leads to the following formal definition.

Let K be a subfield of a field F . An m×n matrix A over F (i.e., Aij ∈ F )
is called a mixed matrix with respect to (K,F ) if

A = Q+ T, (3.13)

where

(M-Q) Q is an m× n matrix over K (i.e., Qij ∈ K), and
(M-T) T is an m× n matrix over F (i.e., Tij ∈ F ) such that the set

T of its nonzero entries is algebraically independent over K.

We usually assume
Tij �= 0 ⇒ Qij = 0

to make the decomposition (3.13) unique. The class of m × n mixed ma-
trices with respect to (K,F ) is denoted as MM(K,F ;m,n) (or simply as
MM(K,F )) and the subfield K will be called the ground field.

Mixed matrices are useful also in dealing with linear time-invariant dy-
namical systems. In this case, we encounter a field composed of, say, the
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Laplace transforms, or a field consisting of operators such as Heaviside’s and
Mikusiński’s.

Specifically, suppose that a dynamical system is written in the descriptor
form (Katayama [155], Luenberger [182, 183]):

F
dx

dt
= A x +B u, (3.14)

where x is an n-dimensional vector called the descriptor-vector, u is an m-
dimensional input-vector, and F , A and B are n × n, n × n, and n × m
matrices, respectively. The Laplace transform of the equation (3.14) gives a
frequency domain description:

s F x = A x +B u, or
[
A− sF B

]
[

x
u

]

= 0, (3.15)

where x(0) = 0, u(0) = 0 is assumed (see Remark 1.1.1 for the Laplace
transform).

Suppose further that the generality assumption GA2 is acceptable. Then
the matrices F , A and B are mixed matrices with ground field Q:

F = QF + TF , A = QA + TA, B = QB + TB

such that the set of the nonvanishing entries of [TF | TA | TB ] is algebraically
independent over Q.

The coefficient matrix D(s) = [A − sF | B] in the frequency domain
description is a polynomial matrix (a matrix pencil) with the expression

D(s) = D0 + sD1,

where the coefficient matrices, D0 and D1, are mixed matrices expressed as

D0 = [A | B] = [QA | QB ] + [TA | TB ],
D1 = [−F | O] = [−QF | O] + [−TF | O].

Such matrix as D(s) is called a mixed polynomial matrix (a formal definition
is given later).

The matrix D(s) = [A− sF | B] is also a mixed matrix with ground field
K = Q(s), since the expression

D(s) = Q(s) + T (s) (3.16)

with
Q(s) = [QA − sQF | QB ], T (s) = [TA − sTF | TB ]

satisfies the conditions (M-Q) and (M-T), in spite of the occurrences of the
symbol s in both of the matrices Q(s) and T (s).
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Example 3.1.7. Consider the mechanical system3 in Fig. 3.5 consisting of
two masses m1 and m2, two springs k1 and k2, and a damper f ;u is the
force exerted from outside. We may choose x = (x1, x2, x3, x4, x5, x6) as the
descriptor-vector, where x1 (resp. x2) is the vertical displacement (down-
wards) of mass m1 (resp. m2), x3 (resp. x4) is its velocity, x5 is the force by
the damper f , and x6 is the relative velocity of the two masses.

f

=

=

m1

k1 x2

x1

x3 x1

x2x4

k2

m2

.

.

u

Fig. 3.5. A mechanical system of Exam-
ple 3.1.7

Then the system can be expressed in the descriptor form (3.14) with

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 m1 0 0 0
0 0 0 m2 0 0
0 0 0 0 0 0
1 −1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0
0 0 0 1 0 0

−k1 0 0 0 −1 0
0 −k2 0 0 1 0
0 0 0 0 −1 f
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.17)

The matrix D(s) = [A− sF | B] is given as

D(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0

−k1 0 −sm1 0 −1 0 1
0 −k2 0 −sm2 1 0 0
0 0 0 0 −1 f 0
−s s 0 0 0 1 0

.

If we regard {m1,m2, k1, k2, f} as independent free parameters, i.e., as being
algebraically independent, the additive decomposition D(s) = Q(s)+T (s) in
(3.16) is given by

3 This mechanical system has been considered in §1.2.2.
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Q(s) =

x1 x2 x3 x4 x5 x6 u
−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

, (3.18)

T (s) =

x1 x2 x3 x4 x5 x6 u
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−k1 0 −sm1 0 0 0 0
0 −k2 0 −sm2 0 0 0
0 0 0 0 0 f 0
0 0 0 0 0 0 0

. (3.19)

In this way the mechanical system can be described by means of a mixed
polynomial matrix with an appropriate choice of variables and equations.

The mechanical system could be described more compactly in the stan-
dard form (Â − sI4)x̂ + B̂u = 0 in terms of a four-dimensional state-vector
x̂ = (x1, x2, x3, x4) and the input-vector u = (u). In such a compact rep-
resentation, however, the generality assumptions will not be acceptable. In
fact, the coefficient matrix

[Â− sI4 | B̂] =

x1 x2 x3 x4 u
−s 0 1 0 0
0 −s 0 1 0

−k1/m1 0 −f/m1 − s f/m1 1/m1

0 −k2/m2 f/m2 −f/m2 − s 0

may not be regarded as a mixed matrix.
This mechanical system will be considered again in Example 3.2.2. �

The above argument can be extended to a linear time-invariant dynamical
system described by a polynomial matrix

A(s) =
N∑

k=0

skAk .

The variable s here is primarily intended to mean the variable for the Laplace
transform for continuous-time systems, though it could be interpreted as
the variable for the z-transform for discrete-time systems (see Chen [33],
Zadeh–Desoer [350] for the z-transform). In such reprepresentation, it is often
justified to assume that the coefficient matrices Ak (k = 0, 1, · · · , N) are
expressed in the form

Ak = Qk + Tk (k = 0, 1, · · · , N)

such that
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(MP-Q1) Qk (k = 0, 1, · · · , N) are matrices over K, and
(MP-T) Tk (k = 0, 1, · · · , N) are matrices over F such that the set

T of their nonzero entries is algebraically independent over K.

Then A(s) is split accordingly into two parts:

A(s) = Q(s) + T (s) (3.20)

with

Q(s) =
N∑

k=0

skQk, T (s) =
N∑

k=0

skTk.

Such a matrix A(s) will be called a mixed polynomial matrix with respect to
(K,F ). Obviously, each Ak is a mixed matrix with respect to (K,F ). Also
note that A(s) is a mixed matrix with respect to (K(s),F (s)) in spite of the
occurrences of the symbol s in both of the matrices Q(s) and T (s).

In §3.2 we will discuss more on the mixed polynomial matrices from the
viewpoint of the dimensional analysis to arrive at the concept of physical
matrices.

Notes. This section is based on Murota–Iri [237, 238] as well as Murota
[204].

3.2 Algebraic Implication of Dimensional Consistency

3.2.1 Introductory Comments

The concept of physical dimensions would be counted among the most fun-
damental in recognizing the nature of physical quantities. The principle of
dimensional homogeneity claims that any equation describing a physical phe-
nomenon must be consistent with respect to physical dimensions. This princi-
ple constitutes the basis of dimensional analysis, which has long been known
to scientists and engineers, and has proved to be fruitful in various fields (de
Jong [46], Huntley [116], Langhaar [169], Schouten [289, Chap. VI]). It is
important to notice that we cannot talk of dimensional homogeneity before
we recognize the difference in the nature of quantities from the viewpoint of
physical dimensions.

Suppose a physical system is described by a system of equations, which
may in turn be expressed by a matrix when linearized if necessary. With
each entry of the matrix is associated a physical dimension in a physically
consistent manner.

It is pointed out in the present section that, by virtue of the principle of
dimensional homogeneity, the physically-dimensioned coefficient matrix de-
scribing a physical system enjoys a kind of total unimodularity in a certain
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ring defined appropriately with reference to physical dimensions. Several im-
plications of this fact are discussed in §3.3 in connection to the mathematical
framework for the structural analysis introduced in §3.1. To reflect the dual
viewpoint from structural analysis and dimensional analysis, the notion of
“physical matrix” is introduced as a mathematical model of a typical matrix
that we encounter in real physical systems. The concept of physical matrix
plays a central role, especially in the structural analysis of dynamical systems,
to be treated in Chap. 6.

3.2.2 Dimensioned Matrix

A physical system is usually described by a set of relations among relevant
physical quantities, to each of which is assigned a physical dimension. When
a set of fundamental dimensions, or equivalently, a set of fundamental quan-
tities, is chosen, the dimensions of the remaining physical quantities can be
uniquely expressed by the so-called dimensional formulas. For example, a
standard choice of fundamental quantities in mechanics consists of length L,
mass M and time T , and the dimensional formula for force is then given by
[LMT−2] = [L][M ][T ]−2 or simply by LMT−2. In general, the exponents to
the fundamental dimensions, namely the powers in the dimensional formula,
may take on not only integers but also rational numbers.

Here we do not go into philosophical arguments such as those on what
the physical dimensions are and which set of physical quantities are most
fundamental. Instead we assume that the fundamental quantities with the
associated fundamental dimensions are given along with the dimensional for-
mulas for other quantities.

Let us consider a linear (or linearized) system represented by a system of
linear equations:

Ax = b, (3.21)

where we assume that the entries of the m× n matrix A = (Aij), as well as
the components of x = (xj) and b = (bi), belong to some field F , namely,

Aij , xj , bi ∈ F (i = 1, · · · ,m; j = 1, · · · , n).

It is also assumed that F is an extension of the field Q of rational numbers
(i.e., F ⊇ Q).

Let Z1, · · · , Zd be a chosen set of fundamental quantities. Not only the
components of x and b but also the entries of A have physical dimensions,
expressed in the form of

[Z1]p1 · · · [Zd]pd

with exponents pk ∈ Q (k = 1, · · · , d).
From the algebraic point of view, we may regard Z1, · · · , Zd as indeter-

minates over F and consider the extension field E of F generated over F by
all the formal fractional powers of Z1, · · · , Zd; i.e.,
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E = F ({Z1
p1 · · ·Zd

pd | pk ∈ Q, k = 1, · · · , d}). (3.22)

Accordingly, (3.21) may be replaced by the following system of equations in
the extension field E:

Ãx̃ = b̃, (3.23)

where

Ãij = Aij

d∏

k=1

Zk
pijk , x̃j = xj

d∏

k=1

Zk
cjk , b̃i = bi

d∏

k=1

Zk
rik (3.24)

with the exponents pijk, cjk, rik of rational numbers representing the physical
dimensions. The ith equation of (3.23) reads

∑

j:Aij �=0

(

Aijxj ·
d∏

k=1

Zk
pijk+cjk

)

= bi ·
d∏

k=1

Zk
rik . (3.25)

The principle of dimensional homogeneity means the physical dimensional
consistency of the ith equation in the sense that

[Dimension of (i, j) entry] × [Dimension of jth column]
= [Dimension of ith row]

for each (i, j) with Aij �= 0. It follows from (3.25) that the physical dimen-
sional consistency is equivalent to the relations

pijk = rik − cjk (i = 1, · · · ,m; j = 1, · · · , n; k = 1, · · · , d) (3.26)

among the exponents pijk, cjk, rik. Based on this observation we will define
the notion of dimensioned matrix as follows.

Let Ã = (Ãij) be a matrix over E (defined by (3.22)) which is expressed
as in (3.24) with exponents pijk ∈ Q. We call Ã a dimensioned matrix if
(3.26) holds for some suitably chosen rik and cjk (∈ Q). The set of m × n
dimensioned matrices with ground field F and fundamental quantities (i.e.,
indeterminates) Z1, · · · , Zd will be denoted by D(F ;m,n;Z1, · · · , Zd), or sim-
ply by D(F ;Z1, · · · , Zd) if the size is not relevant.

The following proposition is a restatement of the definition, where

Dr = diag

[
d∏

k=1

Zk
r1k , · · · ,

d∏

k=1

Zk
rmk

]

, (3.27)

Dc = diag

[
d∏

k=1

Zk
c1k , · · · ,

d∏

k=1

Zk
cnk

]

(3.28)

with rik ∈ Q and cjk ∈ Q (i = 1, · · · ,m; j = 1, · · · , n; k = 1, · · · , d).
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Proposition 3.2.1. A matrix Ã over E belongs to D(F ;m,n;Z1, · · · , Zd) if
and only if it can be expressed as

Ã = Dr A Dc
−1,

where A is a matrix over F , and Dr and Dc are nonsingular diagonal matrices
of (3.27) and (3.28). �

Example 3.2.2. Recall the mechanical system (Fig. 3.5) of Example 3.1.7.
As the fundamental quantities in dimensional analysis, we may choose time
T , length L and massM . Then the dimensions of velocity and force are given
by T−1L and T−2LM , respectively. The physical dimensions associated with
the equations, i.e., with the rows of D(s) are

row 1 row 2 row 3 row 4 row 5 row 6
velocity velocity force force force velocity
T−1L T−1L T−2LM T−2LM T−2LM T−1L

(3.29)

whereas those with the variables (xi and u), i.e., with the columns of D(s),
are

col 1 col 2 col 3 col 4 col 5 col 6 col 7
length length velocity velocity force velocity force
L L T−1L T−1L T−2LM T−1L T−2LM

(3.30)

Accordingly, the diagonal matrices Dr and Dc of (3.27) and (3.28) are given
by

Dr = diag [T−1L, T−1L, T−2LM, T−2LM, T−2LM, T−1L],
Dc = diag [L, L, T−1L, T−1L, T−2LM, T−1L, T−2LM ],

where T = Z1 =time, L = Z2 =length and M = Z3 =mass.
In this example, any minor of Q(s) = [QA − sQF | QB ] of (3.18) can

easily be verified to be a monomial in s over Q. In fact, this is a general
phenomenon, to be discussed in §3.3; see Example 3.3.1. �

3.2.3 Total Unimodularity of a Dimensioned Matrix

Let R be an integral domain, i.e., a commutative ring without zero divisors
and with a unit element. An element of R is called invertible if there exists
another element of R such that their product equals the unit element. A
matrix over R is said to be totally unimodular (over R) if every nonvanishing
minor (=subdeterminant) is an invertible element of R. We will denote by
U(R;m,n) the set of m × n totally unimodular matrices over R, or simply
by U(R) if the size is not relevant. The significance of this concept4 lies in
4 In the canonical case of R being the ring of integers, the total unimodularity of

incidence matrices of graphs is known to play substantial roles in combinatorial
optimization (Lawler [171], Schrijver [292]).
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the fact that, if a matrix is totally unimodular over R, not only its inverse
but also all its pivotal transforms are matrices over R. The objective of this
section is to point out that the dimensioned matrices can be characterized as
totally unimodular matrices over a certain ring.

Consider a ring generated over F by all the formal fractional powers of
Z1, · · · , Zd:

F 〈Z1, · · · , Zd〉 = F [{Z1
p1 · · ·Zd

pd | pk ∈ Q, k = 1, · · · , d}]. (3.31)

Obviously, F 〈Z1, · · · , Zd〉 is an integral domain whose quotient field is the
field E defined in (3.22). An element of F 〈Z1, · · · , Zd〉 is invertible if and
only if it is of the form:

α

d∏

k=1

Zk
pk (α ∈ F \ {0}, pk ∈ Q for k = 1, · · · , d).

As an immediate consequence of the definition, a dimensioned matrix is
totally unimodular over F 〈Z1, · · · , Zd〉.

Proposition 3.2.3. D(F ;Z1, · · · , Zd) ⊆ U(F 〈Z1, · · · , Zd〉).
That is, for Ã ∈ D(F ;Z1, · · · , Zd) it holds that, for any (I, J),

det Ã[I, J ] = α
d∏

k=1

Zk
pk

for some α ∈ F and pk ∈ Q (k = 1, · · · , d).

Proof. The expression (3.24) of Ã with pijk = rik − cjk implies

det Ã[I, J ] = detA[I, J ] ·
d∏

k=1

Zk
pk

with pk =
∑

i∈I

rik −
∑

j∈J

cjk ∈ Q.

Moreover, these two classes of matrices coincide with each other, as stated
in Theorem 3.2.4 below. This theorem, coupled with Proposition 3.2.1, pro-
vides us with a concrete representation of a totally unimodular matrix over
F 〈Z1, · · · , Zd〉.

Theorem 3.2.4. D(F ;Z1, · · · , Zd) = U(F 〈Z1, · · · , Zd〉).

Proof. By Proposition 3.2.3, it suffices to show that every totally unimodular
matrix over F 〈Z1, · · · , Zd〉 is a dimensioned matrix. Furthermore, the proof
can be reduced to the case of d = 1 by induction on d, and the present
theorem follows from Proposition 3.2.5 below.
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Proposition 3.2.5. Let Z be an indeterminate over F , and let Ã = (Ãij)
be an m× n totally unimodular matrix over F 〈Z〉, i.e., Ã ∈ U(F 〈Z〉;m,n).
Then there exist Aij ∈ F , ri ∈ Q and cj ∈ Q (i = 1, · · · ,m; j = 1, · · · , n)
such that

Ãij = AijZ
ri−cj .

(Aij’s are uniquely determined as Aij = Ãij |Z=1, while ri’s and cj’s are not.)

Proof. By definition, Ãij can be expressed as

Ãij = AijZ
pij (Aij ∈ F , pij ∈ Q).

Consider a bipartite (directed) graph G = (V +, V −;E) associated with Ã,
where V + corresponds to the row set of Ã and V − to the column set, and
the arc set E is defined as E = {(i, j) | Ãij �= 0}. By Theorem 2.2.35(2), pij

can be expressed as pij = ri − cj for some suitable ri (i = 1, · · · ,m) and cj
(j = 1, · · · , n) if the algebraic sum of pij ’s along any circuit in G is equal to
zero.

Suppose, to the contrary, that there exists a circuit in G along which
the algebraic sum (cf. (2.59)) of pij ’s is distinct from zero. Let C0 be such a
circuit with the minimal number of arcs, and let i1, j1, i2, j2, · · · , is, js(= j0)
be the sequence of vertices lying on C0, where I = {i1, · · · , is} ⊆ V + and
J = {j1, · · · , js} ⊆ V −. Then, putting

p =
s∑

r=1

pirjr
, q =

s∑

r=1

pirjr−1 ,

we have p �= q.
The minimal circuit C0 has no chord, that is, if (ir′ , jr′′) is an arc, then

r′ − r′′ ≡ 0 or 1 (mods). Therefore the determinant of the submatrix Ã[I, J ]
is equal, up to a sign, to

Δ =
s∏

r=1

Ãirjr
+ (−1)s−1

s∏

r=1

Ãirjr−1 = αZp + βZq,

where

α =
s∏

r=1

Airjr
�= 0, β = (−1)s−1

s∏

r=1

Airjr−1 �= 0.

Since p �= q, Δ is not invertible in F 〈Z〉. This contradicts the total unimod-
ularity of Ã.

We conclude this section with a rather obvious remark on the use of the
principle of dimensional consistency in structural analysis. When we are given
a system of equations that is supposed to represent a physical system, we can
sometimes detect errors in its description by verifying the condition (3.26):
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pijk = rik − cjk for dimensional homogeneity. In case rik and cjk are known
along with pijk, the test for (3.26) is straightforward. Even in the case where
only pijk are given, without information about rik and cjk, we can efficiently
decide whether (3.26) can be satisfied for some suitable rik and cjk: Consider
a tree in the bipartite graph associated with A, and for each k, set rik and
cjk so that the condition (3.26) may be satisfied for the tree arcs, and then
check if (3.26) holds for all cotree arcs (see the proof of Proposition 3.2.5).

Notes. This section is based on Murota [200] as well as Murota [204].

3.3 Physical Matrix

3.3.1 Physical Matrix

We have already introduced two concepts of matrices that we encounter in the
description of real systems, namely the mixed matrix and the dimensioned
matrix. The former is motivated by structural analysis while the latter derives
from dimensional analysis. In this section these two are combined to a third
concept of “physical matrix” which models a matrix arising from real-world
systems.

As has been discussed in §3.2.2, when we describe a physical system in the
form of Ax = b with an m×n matrix A over F , we usually know the physical
dimensions associated with its rows and columns. Then we can determine the
dimensioned matrix Ã over F 〈Z1, · · · , Zd〉 that corresponds to A by (3.24)
and (3.26) (see (3.31) for the definition of F 〈Z1, · · · , Zd〉). We call Ã the
dimensioned matrix corresponding to A (with the implicit understanding of
the given physical dimensions). By Proposition 3.2.1, this correspondence
between A and Ã ∈ D(F ;m,n;Z1, · · · , Zd) is given by

Ã = Dr A Dc
−1, (3.32)

where Dr and Dc are the known diagonal matrices of (3.27) and (3.28) rep-
resenting the physical dimensions of the rows (equations) and the columns
(variables).

When A is a mixed matrix of the form A = Q + T with a ground field
K (⊆ F ), i.e., when A ∈ MM(K,F ;m,n), we can express the corresponding
dimensioned matrix Ã of (3.32) as

Ã = Q̃+ T̃

with
Q̃ = Dr Q Dc

−1, T̃ = Dr T Dc
−1.

This shows that Ã is also a mixed matrix, but with the quotient field of
K〈Z1 · · · , Zd〉 as the ground field. In a slight abuse of notation we may write
Ã ∈ MM(K〈Z1, · · · , Zd〉,F 〈Z1, · · · , Zd〉;m,n). In particular, Q̃ is a matrix



3.3 Physical Matrix 127

over K〈Z1, · · · , Zd〉. Note also that the matrices Q̃ and T̃ constituting the
mixed matrix Ã coincide with the dimensioned matrices corresponding to Q
and T , respectively.

The most important physical observation to be made here is concerned
with the physical dimensions of the nonvanishing entries of Q. Usually, the
matrix Q represents various kinds of conservation laws or structural equa-
tions, and consists of incidence coefficients such as those induced from the
underlying topological/geometrical incidence relations in electrical networks
and the stoichiometric coefficients in chemical reactions. Thus it is natural
to expect that

The nonvanishing entries of Q are dimensionless. (3.33)

This statement is true of the examples considered above, provided that
the generality assumption GA2 is accepted. In fact, the claim (3.33) can
be verified easily for the coefficient matrix (3.3) of the electrical network
of Example 3.1.2, for the matrices F , A and B in (3.17) of the mechanical
system of Example 3.1.7, and also for the Jacobian matrix (Fig. 3.4) of the
ethylene dichloride production system of Example 3.1.3.

The observation (3.33) above can be stated in algebraic terms as follows.
Let A = Q+T ∈ MM(K,F ) be a mixed matrix and Ã be the corresponding
dimensioned matrix expressed as (3.24) with exponents pijk of dimensions.
The condition that the nonvanishing entries of Q are dimensionless is equiv-
alent to:

Qij �= 0 implies pijk = 0 for k = 1, · · · , d; (3.34)

or alternatively,
Dr Q Dc

−1 = Q (3.35)

with reference to (3.32). The condition (3.34), or (3.35), does not exclude
dimensionless nonvanishing entries from T ; for instance, in Example 3.1.2,
the parameters α and β contained in T are dimensionless.

We are now in the position to introduce the concept of physical matrices
as a mathematical model of the matrices that we encounter in real-world sys-
tems. It reflects the dual viewpoint from structural analysis and dimensional
analysis.

Suppose a matrix A over F is given along with a subfield K of F and
a pair (Dr,Dc) of diagonal matrices of the forms (3.27) and (3.28), respec-
tively. We say that a matrix A over F is a physical matrix with respect to
(K,F ;Dr,Dc), if

(i) A = Q+ T is a mixed matrix with respect to (K,F ), and
(ii) Dr Q Dc

−1 = Q.

When (Dr, Dc) is understood, we say simply that A is a physical matrix with
respect to (K,F ).
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3.3.2 Physical Matrices in a Dynamical System

In the previous section we considered the physical dimensional consistency
for mixed matrices to arrive at the concept of physical matrix. We now ex-
tend this approach to mixed polynomial matrices that describe linear time-
invariant dynamical systems.

Recalling the notation from §3.1.2 let

A(s) =
N∑

k=0

skAk =
N∑

k=0

skQk +
N∑

k=0

skTk = Q(s) + T (s)

be an m× n mixed polynomial matrix with Ak = Qk + Tk (k = 0, 1, · · · , N).
Let (Dr,Dc) be the pair of matrices of (3.27) and (3.28) representing the
physical dimensions of A = A(s), where we assume that time is chosen as
one of the fundamental dimensions, say Z1.

The most important fact to note here is:

The symbol s should have the dimension of Z1
−1 (the inverse of time)

since it represents “d/dt” (the differentiation with respect to time).

It then follows that, for each k = 0, 1, · · · , N , the dimensions associated with
the coefficient matrix Ak is given by (Dr, Z1

−kDc), since (Dr,Dc) is associ-
ated with skAk.

Let us now assume that the coefficient matrix Ak = Qk +Tk is a physical
matrix, namely, that

Dr Qk (Z1
−kDc)−1 = Qk.

This implies

Dr Q(s) Dc
−1 =

N∑

k=0

skDrQkDc
−1 =

N∑

k=0

(sZ1
−1)kQk = Q(sZ1

−1).

Substitution of Z1 = s (and Zk = 1 for k ≥ 2) into this expression reveals a
remarkable identity: Q(s) = (Dr|Z1=s)

−1
Q(1) (Dc|Z1=s), that is,

Q(s) = diag [s−r11 , · · · , s−rm1 ] ·Q(1) · diag [sc11 , · · · , scn1 ]

using the exponents ri1 ∈ Q and cj1 ∈ Q in (3.27) and (3.28). This relation
shows the existence of ri ∈ Q (i = 1, · · · ,m) and cj ∈ Q (j = 1, · · · , n)
such that ri − cj = degsQij ∈ Z for all (i, j) with Qij �= 0. This implies the
existence of such ri ∈ Z (i = 1, · · · ,m) and cj ∈ Z (j = 1, · · · , n) by Theorem
2.2.35(2). That is,

Q(s) = diag [sr1 , · · · , srm ] ·Q(1) · diag [s−c1 , · · · , s−cn ] (3.36)

for some ri ∈ Z (i = 1, · · · ,m) and cj ∈ Z (j = 1, · · · , n). Note that, if ri1 ∈ Z
and cj1 ∈ Z, we may take ri = −ri1 and cj = −cj1, and the exponents ri and
cj have a natural physical meaning.
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We have thus revealed an important property (3.36) of the Q-part of a
mixed polynomial matrix that is subject to dimensional consistency. In other
words, we have identified a subclass of mixed polynomial matrices on the
basis of dimensional analysis.

Example 3.3.1. For the mechanical system (Fig. 3.5) treated in Examples
3.1.7 and 3.2.2, the matrix Q(s) = [QA − sQF | QB ] of (3.18) admits an
expression of the form (3.36):

−s 0 1 0 0 0 0
0 −s 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−s s 0 0 0 1 0

=

s 0 0 0 0 0
0 s 0 0 0 0
0 0 s2 0 0 0
0 0 0 s2 0 0
0 0 0 0 s2 0
0 0 0 0 0 s

·

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
−1 1 0 0 0 1 0

·

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s−1 0 0 0 0
0 0 0 s−1 0 0 0
0 0 0 0 s−2 0 0
0 0 0 0 0 s−1 0
0 0 0 0 0 0 s−2

.

Note that the diagonal entries sri and s−cj are determined from the negative
of the exponents to T (time) in (3.29) and (3.30) as

(r1, · · · , r6) = (1, 1, 2, 2, 2, 1), (c1, · · · , c7) = (0, 0, 1, 1, 2, 1, 2).
�

The decomposition property (3.36) is equivalent to the total unimodular-
ity in K[s, 1/s], the ring of Laurent polynomials, as follows. Recall that

K[s, 1/s] = {
N2∑

k=−N1

αks
k | 0 ≤ N1, N2 ∈ Z, αk ∈ K (−N1 ≤ k ≤ N2)}

and that an element of K[s, 1/s] is invertible if and only if it is of the form
αsp for some α ∈ K \ {0} and p ∈ Z. If an m × n matrix Q(s) admits
a decomposition (3.36) with some ri ∈ Z (i = 1, · · · ,m) and cj ∈ Z (j =
1, · · · , n), then every subdeterminant of Q(s) is of the form αsp with α ∈ K
and p ∈ Z. That is, Q(s) is a total unimodular matrix over K[s, 1/s]. The
following theorem reveals that the converse is also true.

Theorem 3.3.2. Let Q(s) be an m×n matrix over K[s, 1/s]. Then Q(s) is
totally unimodular over K[s, 1/s] if and only if



130 3. Physical Observations for Mixed Matrix Formulation

Q(s) = diag [sr1 , · · · , srm ] ·Q(1) · diag [s−c1 , · · · , s−cn ] (3.37)

for some integers ri (i = 1, · · · ,m) and cj (j = 1, · · · , n). For a polynomial
matrix Q(s), in particular, every (nonvanishing) subdeterminant of Q(s) is
a monomial in s over K if and only if (3.37) is true for some integers ri
(i = 1, · · · ,m) and cj (j = 1, · · · , n).

Proof. This is a corollary of Theorem 3.2.4 (or rather Proposition 3.2.5).

Theorem 3.3.2 allows us to characterize the mixed polynomial matrices
having property (3.36) as those polynomial matrices A(s) = Q(s) + T (s)
which satisfy

(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
over K, i.e., of the form αsp with α ∈ K and an integer p, and

(MP-T) The collection of nonzero coefficients in T (s) is algebraically
independent over K.

Namely, (MP-Q2) and (MP-T) characterize the physically meaningful sub-
class of mixed polynomial matrices subject to dimensional consistency.

The extra property (MP-Q2), or equivalently (3.36), has significant im-
plications with respect to computational complexity in applications of mixed
polynomial matrices.

Proposition 3.3.3. Let M(Q(s)) denote the matroid defined on the column
set of Q(s) by the linear independence of the column vectors over K(s). If
Q(s) is a total unimodular matrix over K[s, 1/s], then M(Q(s)) = M(Q(1)),
and therefore M(Q(s)) is representable over K. �

Proposition 3.3.4. If Q(s) admits the decomposition (3.36), then

degs detQ[I, J ] =
{∑

i∈I ri −
∑

j∈J cj (if detQ(1)[I, J ] �= 0)
−∞ (otherwise).

Here Q(1) is a matrix over K and therefore detQ(1)[I, J ] can be computed
by means of arithmetic operations over K. �

In Chap. 6 we shall investigate some problems such as dynamical degree
and controllability for dynamical systems described by mixed polynomial
matrices A(s) = Q(s) + T (s) having the additional property (MP-Q2) for
K = Q.

Notes. This section is based on Murota [200] as well as Murota [204].
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This chapter is devoted to a study on mixed matrices and layered mixed
matrices using matroid-theoretic methods. Particular emphasis is laid on the
combinatorial canonical form (CCF) of layered mixed matrices and related
decompositions, which generalize the Dulmage–Mendelsohn decomposition.
Applications to the structural solvability of systems of equations are also
discussed.

4.1 Mixed Matrix and Layered Mixed Matrix

In the previous section we have introduced the concept of mixed matrices
as a possible mathematical tool for systems analysis by means of matroid-
theoretic combinatorial methods. A mixed matrix is a matrix A expressed as
A = Q+T , where Q is a “constant” matrix and T is a “generic” matrix in the
sense that the nonzero entries of T are algebraically independent parameters.
A layered mixed (or LM-) matrix is defined as a mixed matrix such that Q
and T have disjoint nonzero rows, i.e., no row of A = Q + T has both a
nonzero entry from Q and a nonzero entry from T .

The concept of a mixed matrix has been motivated by the physical ob-
servation that, when we describe a physical system in terms of elementary
variables, we can often distinguish two kinds of numbers, accurate numbers
and inaccurate numbers, together characterizing the physical system. The
“accurate numbers” constitute the matrix Q whereas the “inaccurate num-
bers” the matrix T . We may also refer to the numbers of the first kind as
“fixed constants” and to those of the second kind as “system parameters.”

In this chapter we shall investigate the mathematical properties of a mixed
matrix and an LM-matrix. Here is a preview of some nice properties enjoyed
by a mixed matrix or an LM-matrix.

• The rank is expressed as the minimum of a submodular function and can
be computed efficiently by a matroid-theoretic algorithm (§4.2).

• A concept of irreducibility is defined with respect to a natural transforma-
tion of physical significance. Irreducibility for an LM-matrix is an extension
of the well-known concept of full indecomposability for a generic matrix.
The irreducibility of an LM-matrix can be characterized, e.g., in terms

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 4,
c© Springer-Verlag Berlin Heidelberg 2010
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of the irreducibility of determinant, which is an extension of Frobenius’s
characterization of a fully indecomposable generic matrix (§4.5).

• There exists a unique canonical block-triangular decomposition, called the
combinatorial canonical form (CCF for short), into irreducible components.
This is a generalization of the Dulmage–Mendelsohn decomposition. The
CCF can be computed by an efficient algorithm (§4.4).

We now give the precise mathematical definitions of mixed matrices and
layered mixed matrices.

Let K be a subfield of a field F . An m×n matrix A = (Aij) over F (i.e.,
Aij ∈ F ) is called a mixed matrix with respect to (K,F ) if

A = Q+ T, (4.1)

where

(M-Q) Q is an m× n matrix over K (i.e., Qij ∈ K), and
(M-T) T is an m× n matrix over F (i.e., Tij ∈ F ) such that the set

T of its nonzero entries is algebraically independent over K.

The class of m×n mixed matrices is denoted as MM(K,F ;m,n) (or simply
as MM(K,F ) without reference to the size (m,n)) and the subfield K will
be called the ground field.

A mixed matrix A of (4.1) is called a layered mixed matrix (or an LM-
matrix) with respect to (K,F ) if the nonzero rows of Q and T are disjoint.
In other words, A is an LM-matrix if it can be put into the following form
with a permutation of rows:

A =
(
Q
T

)

=
(
Q
O

)

+
(
O
T

)

, (4.2)

where

(L-Q) Q is an mQ × n matrix over K (i.e., Qij ∈ K), and
(L-T) T is an mT × n matrix over F (i.e., Tij ∈ F ) such that the

set T of its nonzero entries is algebraically independent over K.

The class of such LM-matrices is denoted as LM(K,F ;mQ,mT , n) (or simply
as LM(K,F )). Obviously we have

LM(K,F ;mQ,mT , n) ⊆ MM(K,F ;mQ +mT , n).

Though an LM-matrix is a special case of mixed matrix, the following
argument would indicate that the class of LM-matrices is as general as the
class of mixed matrices both in theory and in application. Consider a system
of equations Ax = b in x ∈ F n described with an m × n mixed matrix
A = Q+T . By introducing an auxiliary variable w ∈ F m we can equivalently
rewrite the equation as
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(
Im Q

−Im T

)(
w
x

)

=
(

b
0

)

.

It may be assumed that F is so large that we can choosem numbers in F , say
t1, · · · , tm, which are algebraically independent over the field K(T ), where
T denotes the set of the nonzero entries of T . Then, multiplying each of the
last m equations by t1, · · · , tm, we obtain a system of equations

(
Im Q

−diag [t1, · · · , tm] T ′

)(
w
x

)

=
(

b
0

)

, (4.3)

where diag [t1, · · · , tm] is a diagonal matrix with “new” parameters t1, · · · , tm,
and T ′

ij = tiTij . The coefficient matrix of (4.3) is an LM-matrix with respect
to (K,F ) since the nonvanishing entries of [−diag [t1, · · · , tm] | T ′] are al-
gebraically independent over K. In this way any system of equations with
a mixed matrix as its coefficient can be equivalently rewritten into an aug-
mented system using an LM-matrix. Hence we may restrict ourselves to LM-
matrices when we deal with the unique solvability of a system of equations
having a mixed matrix as its coefficient matrix.

In general, with a mixed matrix A = Q + T ∈ MM(K,F ;m,n) we will
associate a (2m) × (m+ n) LM-matrix Ã ∈ LM(K,F ;m,m,m+ n) defined
by

Ã =
(
Q̃
T̃

)

=
(

Im Q
−diag [t1, · · · , tm] T ′

)

. (4.4)

Note that the column set of Ã has a natural one-to-one correspondence with
the union of the column set and the row set ofA. Evidently, rank Ã = rankA+
m.

Example 4.1.1. Let {α, β, γ, t1, t2} be algebraically independent over Q,
and put K = Q and F = Q(α, β, γ, t1, t2). An equation

(
2 + α 3
β 4 + γ

)(
x1

x2

)

=
(
b1
b2

)

described with a 2×2 mixed matrix with respect to (K,F ) can be rewritten
as ⎛

⎜
⎜
⎝

1 0 2 3
0 1 0 4

−t1 0 t1α 0
0 −t2 t2β t2γ

⎞

⎟
⎟
⎠

⎛

⎜
⎝

w1

w2

x1

x2

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

b1
b2
0
0

⎞

⎟
⎟
⎠

by means of a 4 × 4 LM-matrix with respect to (K,F ). Note that T̃ =
{−t1,−t2, t1α, t2β, t2γ} is algebraically independent over K. �

A more size-efficient transformation can be obtained following the same
principle as above but by distinguishing “mixed” rows from “pure” rows that
consist either solely of constants or solely of independent nonzero entries.



134 4. Theory and Application of Mixed Matrices

Suppose the coefficient matrix A ∈ MM(K,F ;m,n) has m1 (≤ m) “mixed”
rows, say,

A = Q+ T =

⎛

⎝
Q1

Q2

O

⎞

⎠+

⎛

⎝
T1

O
T3

⎞

⎠
 R1

 R2

 R3

⎫
⎬

⎭
R, (4.5)

where R1, R2, and R3 are disjoint row subsets of the row set R of A such that
R1∪R2∪R3 = R and |Ri| = mi (i = 1, 2, 3), Q1 and Q2 are matrices over K,
and T1 and T3 are matrices over F with independent nonzero entries. Then
by introducing an auxiliary m1-dimensional vector w, we obtain a similar
augmented system as (4.3) but now with an (m+m1)× (n+m1) LM-matrix

Ã =

(
Q̃

T̃

)

=

⎛

⎜
⎜
⎝

Im1 Q1

O Q2

−diag[t1, · · · , tm1 ] T
′
1

O T3

⎞

⎟
⎟
⎠ , (4.6)

where diag [t1, · · · , tm1 ] is a diagonal matrix with “new” parameters t1, · · · , tm1

∈ F and (T ′
1)ij = ti(T1)ij . We have Ã ∈ LM(K,F ;m1+m2,m1+m3,m1+n)

and rank Ã = rankA+m1.
When m1 = m, this transformation is equivalent to the above transfor-

mation (4.4). In the other extreme case of m1 = 0, i.e., when A is already
an LM-matrix, this transformation does not change A (i.e., Ã = A). The
transformation (4.6) will obviously be more attractive than transformation
(4.4) in practical situations.

Notes. The concept of mixed matrices was introduced in Murota–Iri [237,
238], whereas that of LM-matrices was subsequently introduced in Murota
[201] and Murota–Iri–Nakamura [239]. As survey papers on mixed matrices,
we may mention Murota [218] for mathematical properties and Murota [208,
214, 215] for applications to systems analysis.

4.2 Rank of Mixed Matrices

In this section we consider combinatorial characterizations of the rank of
a mixed matrix A with respect to (K,F ). The rank of A is defined with
reference to the field F , and not to the ground field K. Hence the rank of A
is equal to (i) the maximum number of linearly independent column vectors
of A with coefficients taken from F , (ii) the maximum number of linearly
independent row vectors of A with coefficients taken from F , and (iii) the
maximum size of a submatrix of A for which the determinant does not vanish
in F .
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4.2.1 Rank Identities for LM-matrices

We will first concentrate on an LM-matrix A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n).

Then all the results for an LM-matrix will be translated to those for a general
mixed matrix through the trick of (4.4). We put C = Col(A), R = Row(A),
RQ = Row(Q) and RT = Row(T ); then Col(Q) = Col(T ) = C, and R =
RQ ∪RT .

Before dealing with a general LM-matrix, let us review what is known for
the matrix T , all the nonzero entries of which are algebraically independent
over K. Note that a generic matrix T can be regarded as a special case of an
LM-matrix with mQ = 0.

The structure of T is represented by the functions τ, γ : 2C → Z and
Γ : 2C → 2R defined by

τ(J) = term-rankT [RT , J ], J ⊆ C, (4.7)
Γ (J) = {i ∈ RT | ∃j ∈ J : Tij �= 0}, J ⊆ C, (4.8)
γ(J) = |Γ (J)|, J ⊆ C. (4.9)

It should be clear that Γ (J) stands for the set of nonzero rows of the sub-
matrix T [RT , J ], and γ(J) for the number of nonzero rows of T [RT , J ]. The
functions τ and γ both enjoy submodularity (cf. Propositions 2.1.9 and 2.1.12,
Lemma 2.2.16), that is,

τ(J1) + τ(J2) ≥ τ(J1 ∪ J2) + τ(J1 ∩ J2), J1, J2 ⊆ C,
γ(J1) + γ(J2) ≥ γ(J1 ∪ J2) + γ(J1 ∩ J2), J1, J2 ⊆ C.

These two functions are related by

τ(J) = min{γ(J ′) − |J ′| | J ′ ⊆ J} + |J |, J ⊆ C. (4.10)

This is a version of the fundamental minimax relation (cf. Theorem 2.2.17)
concerning the maximum matchings and the minimum covers of a bipartite
graph, which is called the Hall–Ore theorem in §2.2.3. Recall also that the
function γ(J) − |J | is called the surplus function.

Combining Proposition 2.1.12 and (4.10) we obtain a rank formula for T :

rankT = term-rankT = min{γ(J) − |J | | J ⊆ C} + |C|. (4.11)

It is emphasized that the first equality, connecting the algebraic quantity
(rank) to a combinatorial quantity (term-rank), is a consequence of the al-
gebraic independence of the set T of the nonzero entries of T , whereas the
second equality is due to a purely combinatorial min-max duality theorem.
We will use an argument of this type to derive a rank formula for a general
LM-matrix.

We are now in the position to consider a general LM-matrix A. Note that
a submatrix of T is nonsingular if and only if it is term-nonsingular.
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Lemma 4.2.1. A square LM-matrix A =
(

Q
T

)
∈ LM(K,F ) is nonsingular

if and only if both Q[RQ, J ] and T [RT , C\J ] are nonsingular for some J ⊆ C.

Proof. Consider the generalized Laplace expansion (cf. Proposition 2.1.3):

detA =
∑

J⊆C,|J|=mQ

±detQ[RQ, J ] · detT [RT , C \ J ].

If detA �= 0, the summation contains at least one nonvanishing term, namely,
detQ[RQ, J ] �= 0 and detT [RT , C \ J ] �= 0 for some J . Conversely, sup-
pose that both Q[RQ, J0] and T [RT , C \ J0] are nonsingular for some J0.
Let t1t2 · · · tmT

be a term contained in detT [RT , C \ J0]. The algebraic inde-
pendence of T ensures that no similar terms arise from different J ’s. Hence
t1t2 · · · tmT

appears in detA with a nonzero coefficient, which is equal to
detQ[RQ, J0]. Hence detA �= 0.

The following fact is a basic rank identity for an LM-matrix.

Theorem 4.2.2. For an LM-matrix A =
(

Q
T

)
∈ LM(K,F ),

rankA = max{rankQ[RQ, J ] + term-rankT [RT , C \ J ] | J ⊆ C}. (4.12)

Proof. Lemma 4.2.1 applied to submatrices of A establishes the claim.

As the second step of the derivation of the rank formula for A, the right-
hand side of the basic identity (4.12) in Theorem 4.2.2 should be rewritten
using a combinatorial min-max duality result. To this end, we will first trans-
late (4.12) into a matroid-theoretic expression.

Let M(A), M(Q) and M(T ) be the matroids defined on C by matrices A,
Q and T , respectively, with respect to the linear independence among column
vectors. The rank function of M(Q) is given by

ρ(J) = rankQ[RQ, J ], J ⊆ C, (4.13)

while that of M(T ) is τ of (4.7). Then (4.12) in Theorem 4.2.2 is rewritten
as

rankA = max{ρ(J) + τ(C \ J) | J ⊆ C}, (4.14)

and Lemma 4.2.1 is rephrased as follows, where ∨ means the union of ma-
troids.

Theorem 4.2.3. For an LM-matrix A =
(

Q
T

)
∈ LM(K,F ), it holds that

M(A) = M(Q) ∨ M(T ) and that

rankA = min{ρ(J) + τ(J) − |J | | J ⊆ C} + |C|. (4.15)

Proof. It follows from Lemma 4.2.1, applied to submatrices of A, that
rankA[R, J ] = |J | if and only if rankQ[RQ, J

′] = |J ′| and rankT [RT , J\J ′] =
|J \ J ′| for some J ′ ⊆ J . That is, J is independent in M(A) if and only if it
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can be partitioned into two disjoint subsets that are independent in M(Q)
and M(T ), respectively. Namely, M(A) = M(Q) ∨ M(T ). Then we have
rankA = rankM(A) = rank (M(Q)∨M(T )), in which rank (M(Q)∨M(T ))
equals the right-hand side of (4.15) by the rank formula (2.80) for matroid
union.

Remark 4.2.4. A combination of (4.14) and (4.15) yields

ρ(J1) + τ(C \ J1) ≤ rankA ≤ ρ(J2) + τ(J2) + |C \ J2| (J1, J2 ⊆ C).

This makes it possible to estimate rankA using any J1, J2 ⊆ C. Further-
more, by Theorem 4.2.2 and Theorem 4.2.3, there exist J1, J2 for which this
estimate is tight. In particular, Theorem 4.2.2 guarantees the existence of a
“certificate” (namely, J attaining the maximum) for the nonsingularity of A,
whereas Theorem 4.2.3 the existence of a “certificate” (namely, J attaining
the minimum) for the singularity of A. �

The rank formula (4.15) is certainly a nontrivial and meaningful expres-
sion, giving a combinatorial characterization of rankA in terms of the min-
imum value of a submodular function. But it is not satisfactory enough in
that it does not extend the rank formula (4.11) for T . In fact, in this special
case (with A = T and ρ = 0) the expression (4.15) reduces to

rankT = min{τ(J) − |J | | J ⊆ C} + |C|,

which is almost a triviality, since the minimum on the right-hand side is
obviously attained by J = C and therefore the formula claims that rankT =
τ(C), i.e., rankT = term-rankT .

In order to obtain a more useful rank formula for A, we will introduce a
set function p : 2C → Z defined by

p(J) = ρ(J) + γ(J) − |J |, J ⊆ C, (4.16)

as an extension of the surplus function γ(J)− |J | in the rank formula (4.11)
for T . We name p the LM-surplus function. This function p expresses a com-
bination of the combinatorial structures of the constituent matrices Q and T ,
with ρ standing for Q and γ for T . The LM-surplus function p is submodular,
namely,

p(J1) + p(J2) ≥ p(J1 ∪ J2) + p(J1 ∩ J2), J1, J2 ⊆ C, (4.17)

since both ρ and γ are submodular. In the special case where A = T (i.e.,
mQ = 0 and ρ = 0), the LM-surplus function p(J) reduces indeed to γ(J) −
|J |, which is the surplus function appearing in (4.11).

The following theorem gives another minimax expression for the rank of
an LM-matrix, due to Murota [201, 204] and Murota–Iri–Nakamura [239].
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Theorem 4.2.5. For an LM-matrix A =
(

Q
T

)
∈ LM(K,F ), it holds that

rankA = min{ρ(J) + γ(J) − |J | | J ⊆ C} + |C|. (4.18)

Using the notation p this formula can be written as

rankA = min{p(J) | J ⊆ C} + |C|. (4.19)

Proof. The right-hand sides of (4.15) and (4.18) are equal, since

min
J

{ρ(J) + τ(J) − |J | | J ⊆ C}

= min
J

{ρ(J) + min
J ′

{γ(J ′) − |J ′| | J ′ ⊆ J} | J ⊆ C}

= min
J ′

{min
J

{ρ(J) | J ⊇ J ′} + γ(J ′) − |J ′| | J ′ ⊆ C}

= min
J ′

{ρ(J ′) + γ(J ′) − |J ′| | J ′ ⊆ C},

where the first equality is by (4.10) and the last equality is due to the mono-
tonicity of ρ(J) with respect to J .

The two expressions, (4.15) in Theorem 4.2.3 and (4.18) in Theorem 4.2.5,
look very similar, with τ in (4.15) replaced by γ in (4.18). Moreover, in both
formulas, the functions to be minimized are submodular in J . However, the
second expression (4.18) is superior to the first (4.15) for two reasons:

1. It contains the rank formula (4.11) for T (=the Hall–Ore theorem for
bipartite matchings) as a special case;

2. It leads to a canonical block-triangular decomposition, to be explained
at length in §4.4.

Example 4.2.6. Consider a 4 × 5 LM-matrix

A =
(
Q
T

)

=

x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

f1 t1 0 0 0 t2
f2 0 t3 0 0 t4

with T = {t1, t2, t3, t4} being algebraically independent over Q. The columns
and the rows are indexed as Col(A) = C = {x1, x2, x3, x4, x5} and Row(T ) =
RT = {f1, f2}. It turns out that J = {x1, x3} attains the maximum on the
right-hand side of (4.12) with rankQ[RQ, J ] = term-rankT [RT , C \ J ] = 2.
Hence rankA = 2 + 2 = 4. This can be obtained also from the rank formulas
(4.15) in Theorem 4.2.3 and (4.18) in Theorem 4.2.5. It can be verified that,
in either formula, J = {x3, x4} attains the minimum value −1 with ρ(J) = 1,
τ(J) = γ(J) = 0 and |J | = 2. �
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4.2.2 Rank Identities for Mixed Matrices

In this subsection we provide some results on the rank of a general mixed
matrix A. In principle, these results are straightforward translations of the
above results for an LM-matrix applied to the associated LM-matrix Ã of
(4.4), for which we have rank Ã = rankA + m. We use the notations R =
Row(A) and C = Col(A).

Lemma 4.2.1 yields the following counterpart. Note that a submatrix of
T is nonsingular if and only if it is term-nonsingular.

Lemma 4.2.7. A square mixed matrix A = Q+T is nonsingular if and only
if both Q[I, J ] and T [R\I, C \J ] are nonsingular for some I ⊆ R and J ⊆ C.

�

The following identity is obtained from Theorem 4.2.2.

Theorem 4.2.8. For a mixed matrix A = Q+ T ,

rankA = max{rankQ[I, J ] + term-rankT [R \ I, C \ J ] | I ⊆ R, J ⊆ C}.
(4.20)

�

The content of Lemma 4.2.7 can be expressed in matroid-theoretic terms
as follows. We denote by L(A), L(Q), and L(T ) the bimatroids (cf. §2.3.7)
defined respectively by matrices A, Q, and T ; for example, (I, J) is a linked
pair in L(A) if and only if A[I, J ] is nonsingular.

Theorem 4.2.9. For a mixed matrix A = Q + T , it holds that L(A) =
L(Q) ∨ L(T ), where ∨ means the union of bimatroids. �

Theorem 4.2.10. For a mixed matrix A = Q + T ∈ MM(K,F ;m,n), it
holds that

rankA = rank [ M([Im | Q]) ∨ M([Im | T ]) ] −m
= maximum size of a common independent set

of M([Im | Q])∗ and M([Im | T ]),

where M([Im | Q])∗ (� M([−QT | In])) is the dual of M([Im | Q]).

Proof. Apply Theorem 4.2.3 to the LM-matrix Ã of (4.4) and use the relation
rank Ã = rankA + |R|. The second equality is due to the general relation
(2.81) between union and intersection of two matroids.

Define ρ̂, τ̂ , γ̂ : 2R × 2C → Z and Γ̂ : 2R × 2C → 2R by

ρ̂(I, J) = rankQ[I, J ], I ⊆ R, J ⊆ C,
τ̂(I, J) = term-rankT [I, J ], I ⊆ R, J ⊆ C,
Γ̂ (I, J) = {i ∈ I | ∃j ∈ J : Tij �= 0}, I ⊆ R, J ⊆ C,
γ̂(I, J) = |Γ̂ (I, J)|, I ⊆ R, J ⊆ C.

Note that Γ̂ (I, J) = I ∩ Γ̂ (R, J).
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Theorem 4.2.11. For a mixed matrix A = Q+ T , it holds that

rankA = min
I⊆R,J⊆C

{ρ̂(I, J) + τ̂(I, J) − |I| − |J |} + |R| + |C|, (4.21)

rankA = min
I⊆R,J⊆C

{ρ̂(I, J) + γ̂(I, J) − |I| − |J |} + |R| + |C|. (4.22)

Proof. Consider the LM-matrix Ã of (4.4) and let ρ̃, τ̃ , γ̃ : 2R∪C → Z and
Γ̃ : 2R∪C → 2R be the functions associated with Ã by (4.13), (4.7), (4.9) and
(4.8). For I ⊆ R and J ⊆ C we have

ρ̃(I ∪ J) = ρ̂(R \ I, J) + |I|,
τ̃(I ∪ J) = τ̂(R \ I, J) + |I|,
Γ̃ (I ∪ J) = Γ̂ (R, J) ∪ I = Γ̂ (R \ I, J) ∪ I,
γ̃(I ∪ J) = γ̂(R \ I, J) + |I|.

Substituting these expressions into the rank formulas (4.15) and (4.18) for Ã
and noting the relation rank Ã = rankA+ |R|, we obtain the claims.

From the second formula in Theorem 4.2.11 we can derive some variants.

Corollary 4.2.12. For a mixed matrix A = Q+ T , it holds that

rankA = min
I⊆R,J⊆C

{rankQ[I, J ] − |I| − |J | | rankT [I, J ] = 0} + |R| + |C|,

(4.23)
rankA = min

J⊆C
{rankQ[R \ Γ̂ (R, J), J ] + |Γ̂ (R, J)| − |J |} + |C|. (4.24)

Proof. The second rank formula (4.22) in Theorem 4.2.11 can be rewritten as

rankA = min
I,J

{rankQ[I, J ] − |I \ Γ̂ (R, J)| − |J |} + |R| + |C|.

Since the function to be minimized does not increase when I is replaced by
I \ Γ̂ (R, J), we may assume I ∩ Γ̂ (R, J) = ∅, i.e., rankT [I, J ] = 0. Hence
follows the first expression. Furthermore, we may choose I as large as possible
under this condition, i.e., I = R\Γ̂ (R, J), which results in the second formula.

If A is an LM-matrix, in particular, the expression (4.24) specializes di-
rectly to the rank formula (4.18) in Theorem 4.2.5, from which (4.24) itself
has been derived by way of (4.22) and (4.23). Note that Γ̂ (R, J) = Γ (J) ⊆ RT

and rankQ[R \ Γ̂ (R, J), J ] = rankQ[RQ, J ] for an LM-matrix. This demon-
strates the equivalence of these formulas.

Just as the duality concerning bipartite matchings can be expressed equiv-
alently by the Hall–Ore theorem and by the König–Egerváry theorem, the
rank formula above, which is a generalization of the Hall–Ore theorem, ad-
mits a reformulation of the König–Egerváry type found by Bapat [9].
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Theorem 4.2.13 (König–Egerváry theorem for mixed matrix). Let
A = Q+ T be a mixed matrix. Then there exist I ⊆ R and J ⊆ C such that

(i) |I| + |J | − rankQ[I, J ] = |R| + |C| − rankA,
(ii) rankT [I, J ] = 0.

Proof. Take (I, J) that attains the minimum on the right-hand side of (4.23).

Remark 4.2.14. Theorem 4.2.13 is a refinement of the previous result of
Hartfiel–Loewy [102] for a square mixed matrix, named the “determinan-
tal version of the Frobenius–König theorem,” and its extension to a general
rectangular mixed matrix by Murota [218]. The original proof of Hartfiel–
Loewy (for the square case) was quite involved, based on factorizations of
determinants. �

Remark 4.2.15. As is naturally expected, the König–Egerváry-type result
(Theorem 4.2.13) is equivalent to the rank formula (4.23), under an obvious
inequality

rankA ≤ rankA[R, J ] + rankA[R,C \ J ]
≤ rankA[I, J ] + rankA[R \ I, J ] + rankA[R,C \ J ]
≤ rankQ[I, J ] + |R \ I| + |C \ J |

valid for (I, J) with T [I, J ] = O (i.e., with I ∩ Γ̂ (R, J) = ∅).
Furthermore, it is pointed out by Bapat [9] that Theorem 4.2.13 can be

proved independently of the rank formula using a fundamental property of a
general bimatroid. By Theorem 2.3.47 (applied to the bimatroid associated
with A), there exist I ⊆ R and J ⊆ C such that

(i) |I| + |J | − rankA[I, J ] = |R| + |C| − rankA,
(ii) rankA[I \ {i}, J \ {j}] = rankA[I, J ], ∀i ∈ I, ∀j ∈ J .

We claim that (ii) implies T [I, J ] = O. Suppose, to the contrary, that Tij �= 0
for some i ∈ I and j ∈ J . Since rankA[I \ {i}, J \ {j}] = rankA[I, J ] (=: r),
there exist I ′ ⊆ I \ {i} and J ′ ⊆ J \ {j} such that rankA[I ′, J ′] = |I ′| =
|J ′| = r. Consider the Laplace expansion of detA[I ′∪{i}, J ′∪{j}]. It contains
a nonvanishing term Tij · detA[I ′, J ′], which is not cancelled out by virtue
of the algebraic independence of the nonzero entries of T . This implies a
contradiction that r = rankA[I, J ] ≥ rankA[I ′ ∪ {i}, J ′ ∪ {j}] = |I ′| + 1 =
r + 1. �

Remark 4.2.16. When numerical values are substituted into the nonzero
entries of the T -part of a mixed matrix, the rank of the resulting numerical
matrix can possibly decrease. On the basis of Theorem 4.2.13 a systematic
procedure has been given by Geelen [92] that assigns numerical values so that
the rank remains the same. �

Finally we mention the following fact in connection with the basic rank
identity (4.20).
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Theorem 4.2.17. For a maximizer (I, J) in (4.20) that is minimal with
respect to set inclusion, we have |I| = |J | and detA[I, J ] ∈ K∗, where K∗ =
K \ {0}.

Proof. Suppose |I| > rankQ[I, J ]. Then there exists i ∈ I such that
rankQ[I, J ] = rankQ[I \ {i}, J ]. This implies that (I \ {i}, J) is also a maxi-
mizer in (4.20), which contradicts the minimality of (I, J). Similarly for |J |.
Hence |I| = |J | = rankQ[I, J ], that is, Q[I, J ] is nonsingular, and a fortiori
A[I, J ] is nonsingular, i.e., detA[I, J ] �= 0.

Suppose detA[I, J ] �∈ K. Then there exist nonempty I ′ ⊆ I and
nonempty J ′ ⊆ J such that both T [I ′, J ′] and Q[I \ I ′, J \ J ′] are non-
singular, which implies that (I \ I ′, J \ J ′) is also a maximizer in (4.20), a
contradiction.

A mixed matrix A with the property detA ∈ K∗ will be investigated in
§4.6.1.

Notes. The rank formulas for mixed matrices (Lemma 4.2.7, Theorem 4.2.8,
Theorem 4.2.9, Theorem 4.2.10) are due to Murota–Iri [237, 238]. Theorem
4.2.17 is by Murota [198].

4.2.3 Reduction to Independent Matching Problems

We explain how the computation of rankA for an LM-matrix A =
(

Q
T

)
can

be reduced to solving an independent matching problem. This leads to an
efficient algorithm, to be described in §4.2.4, for computing the rank of an
LM-matrix with arithmetic operations in the ground field K.

Here and henceforth CQ = {jQ | j ∈ C} denotes a disjoint copy of
C = Col(A) (with jQ ∈ CQ denoting the copy of j ∈ C), whereas RQ =
Row(Q), RT = Row(T ), |RQ| = mQ, |RT | = mT and |C| = n. Denote by
M(Q) = (CQ, IQ) the matroid associated with Q, where CQ = Col(Q) and
IQ is the family of independent sets, namely,

IQ = {JQ ⊆ CQ | rankQ[RQ, JQ] = |JQ|}.

We consider an independent matching problem defined on a bipartite
graph G = (V +, V −;E) with V + = RT ∪ CQ, V − = C and E = ET ∪ EQ,
where

ET = {(i, j) | i ∈ RT , j ∈ C, Tij �= 0}, EQ = {(jQ, j) | j ∈ C}.

The matroid M+ = (V +, I+) attached to V + is the direct sum of the free
matroid on RT and M(Q) on CQ, i.e.,

I+ = {I+ ⊆ V + | I+ ∩ CQ ∈ IQ},

whereas the free matroid M− = (V −, I−) (with I− = 2V −
) is attached to

V −. The set of the end-vertices of a matching M will be designated as ∂M
(⊆ V ).
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We then have the following characterization of rankA in terms of the
maximum size of an independent matching.

Theorem 4.2.18. For an LM-matrix A, rankA coincides with the maximum
size of an independent matching in the independent matching problem defined
above. That is,

rankA = max{|M | |M : independent matching}.

Proof. The proof is based on the basic rank identity of Theorem 4.2.2. Con-
sider J ⊆ C that attains the maximum on the right-hand side of (4.12).
We may assume that rankQ[RQ, J ] = |J |. Then there exists an independent
matching M such that ∂M ∩CQ = JQ and |∂M ∩RT | = term-rankT [RT , C \
J ], where JQ ⊆ CQ is the copy of J . Hence follows rankA ≤ |M |. Con-
versely, given an independent matching M , we put JQ = ∂M ∩CQ to obtain
rankQ[RQ, J ] = |J | and term-rankT [RT , C \ J ] ≥ |∂M ∩ RT |. This shows
rankA ≥ rankQ[RQ, J ] + term-rankT [RT , C \ J ] ≥ |M |.

RT C CQ

ET EQ
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x2
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x4

x5

x1Q
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�

�

�

�











Fig. 4.1. Graph G (©: arc in a maximum independent matching M)

Example 4.2.19. The independent matching problem associated with the
4 × 5 LM-matrix in Example 4.2.6:

A =
(
Q
T

)

=

x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

f1 t1 0 0 0 t2
f2 0 t3 0 0 t4
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is illustrated in Fig. 4.1. The columns and the rows are indexed as Col(A) =
C = {x1, x2, x3, x4, x5} and Row(T ) = RT = {f1, f2} and accordingly
CQ = {x1Q, x2Q, x3Q, x4Q, x5Q}. A maximum independent matching M =
{(f1, x5), (f2, x2), (x1Q, x1), (x3Q, x3)} is marked by ©. We have rankA =
|M | = 4. Note also that J = {x1, x3}, corresponding to JQ = ∂M ∩ CQ =
{x1Q, x3Q}, attains the maximum on the right-hand side of (4.12). �

The LM-surplus function p characterizing the rank of A in the identity
(4.19) of Theorem 4.2.5 is closely related to the cut function of the indepen-
dent matching problem. The rank functions ρ+ and ρ− of M+ and M− are
given by

ρ+(X) = |X ∩RT | + ρ(X ∩ CQ), X ⊆ V +,

ρ−(Y ) = |Y |, Y ⊆ V −.

For U ⊆ V + ∪ V −, there is no arc going out of U if and only if Γ (J) ⊆ I
and J ⊆ K, where I = RT \ U , J = C \ U , and K (⊆ C) is the copy of
KQ = CQ \ U (⊆ CQ). Then the cut function κ(U) (cf. (2.71)) is given by

κ(U) = ρ+(V + \ U) + ρ−(V − ∩ U) = |I| + ρ(K) + |C \ J |, (4.25)

and its minimum can be computed as follows:

min
U

{κ(U) | U ⊆ V + ∪ V −}

= min
I,J,K

{|I| + ρ(K) + |C \ J | | Γ (J) ⊆ I, J ⊆ K}

= min
J

{|Γ (J)| + ρ(J) + |C \ J | | J ⊆ C}

= min
J

{γ(J) + ρ(J) − |J | | J ⊆ C} + |C|

= min
J

{p(J) | J ⊆ C} + |C|. (4.26)

This reveals the following relation between the minimizers of p and κ.

Lemma 4.2.20.

Lmin(p) = {J ⊆ C | J = C \ U, U ∈ Lmin(κ)},

where Lmin(p) and Lmin(κ) denote the families of the minimizers of p : 2C →
Z and κ : 2V +∪V − → Z, respectively. �

Remark 4.2.21. By combining Theorem 4.2.18, the above relation (4.26),
and the general min-max theorem for the independent matching problem
(Theorem 2.3.27 or (2.72)), we obtain

rankA = max
M : indep.
matching

|M | = min
U
κ(U) = min

J
p(J) + |C|.
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This argument affords an alternative proof of the rank formula of Theorem
4.2.5, though the min-max theorem for the independent matching problem is
almost equivalent to the matroid union/partition theorem of Edmonds used
in deriving Theorem 4.2.5. Note that the relation (4.26) has been derived
independently of Theorem 4.2.5. �

4.2.4 Algorithms for the Rank

Algorithm for LM-matrices. An efficient (polynomial time) algorithm
is described here which computes the rank of an LM-matrix A =

(
Q
T

)
∈

LM(K,F ;mQ,mT , n). On the basis of Theorem 4.2.18 the algorithm solves
the associated independent matching problem by specializing the general al-
gorithmic scheme described in §2.3.5.

Recall that the associated independent matching problem is defined on
the bipartite graph G = (V +, V −;E) = (RT ∪CQ, C;ET ∪EQ), where RT =
Row(T ), C = Col(A), CQ is a disjoint copy of C (with jQ ∈ CQ denoting the
copy of j ∈ C), and

ET = {(i, j) | i ∈ RT , j ∈ C, Tij �= 0}, EQ = {(jQ, j) | j ∈ C}.

The algorithm works with a directed graph G̃ = G̃M = (Ṽ , Ẽ) with vertex
set Ṽ = RT ∪CQ∪C and arc set Ẽ = ET ∪EQ∪E+∪M◦, where E+ andM◦

are defined and updated in the algorithm; E+ represents the structure of the
matroid M(Q) and M◦ expresses an independent matching M ⊆ ET ∪EQ as

M◦ = {a | a ∈M} (a: reorientation of a).

It is noted that the arcs in E+ have both ends in CQ and the arcs in M◦ are
directed from C to RT ∪ CQ, i.e., ∂+M◦ ⊆ C and ∂−M◦ ⊆ RT ∪ CQ.

Since M is an independent matching, I = {i ∈ C | iQ ∈ ∂−M◦ ∩ CQ} is
an independent set of M(Q), whereas we denote by J the set of elements of
C \ I which are dependent on I in M(Q). Namely,

rankQ[RQ, I] = |I|, J = {j ∈ C \ I | rankQ[RQ, I ∪ {j}] = |I|}.

Besides the graph G̃ we use a matrix (or two-dimensional array) P and
a vector (or one-dimensional array) base to implement the structure of the
matroid M(Q). The array P represents a matrix over K, of size mQ × n,
which is obtained from Q by row-transformations; we have P = Q at the
beginning of the algorithm (Step 1 below). The variable base is a vector of
size mQ, which represents a mapping (correspondence): RQ → C ∪ {0}. The
sets I and J are represented as

I = {i ∈ C | i = base[h] �= 0, h ∈ RQ},
J = {j ∈ C \ I | ∀h : base[h] = 0 ⇒ P [h, j] = 0}.
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For i ∈ I and j ∈ J , I−i+j is independent in M(Q) if and only if P [h, j] �= 0
for the h ∈ RQ such that i = base[h]. Optionally, it computes an mQ ×mQ

matrix S over K such that SQ = P . If such information is not needed, the
matrix S may simply be eliminated from the computation without any side
effect.

The entrance S+ ⊆ Ṽ and the exit S− ⊆ Ṽ are defined by

S+ = (RT \ ∂−M◦) ∪ {jQ ∈ CQ | j ∈ C \ (I ∪ J)}, S− = C \ ∂+M◦.

The algorithm looks for a shortest path from the entrance S+ to the exit S−

to augment the matching M .

Algorithm for computing the rank of an LM-matrix A

Step 1:
M◦ := ∅; base[i] := 0 (i ∈ RQ); P [i, j] := Qij (i ∈ RQ, j ∈ C);
S := unit matrix of order mQ.

Step 2:
I := {i ∈ C | iQ ∈ ∂−M◦ ∩ CQ};
J := {j ∈ C \ I | ∀h : base[h] = 0 ⇒ P [h, j] = 0};
S+

T := RT \ ∂−M◦; S+
Q := {jQ ∈ CQ | j ∈ C \ (I ∪ J)};

S+ := S+
T ∪ S+

Q ; S− := C \ ∂+M◦;
E+ := {(iQ, jQ) | h ∈ RQ, j ∈ J, P [h, j] �= 0, i = base[h] �= 0};

[Ẽ is updated accordingly]
If there exists in G̃ = (Ṽ , Ẽ) a directed path from S+ to S− then go to
Step 3; otherwise (including the case where S+ = ∅ or S− = ∅) stop with
the conclusion that rankA = |M◦|.

Step 3:
Let L (⊆ Ẽ) be (the set of arcs on) a shortest path from S+ to S−

(“shortest” in the number of arcs);
M◦ := (M◦ \ L) ∪ {(j, i) | (i, j) ∈ L ∩ET } ∪ {(j, jQ) | (jQ, j) ∈ L ∩EQ};
If the initial vertex (∈ S+) of the path L belongs to S+

Q , then do the
following:

{Let jQ (∈ S+
Q ⊆ CQ) be the initial vertex;

Find h such that base[h] = 0 and P [h, j] �= 0;
[j ∈ C corresponds to jQ ∈ CQ]

base[h] := j; w := 1/P [h, j];
P [k, l] := P [k, l] − w × P [k, j] × P [h, l] (k ∈ RQ \ {h}, l ∈ C \ {j});
S[k, l] := S[k, l] − w × P [k, j] × S[h, l] (k ∈ RQ \ {h}, l ∈ RQ);
P [k, j] := 0 (k ∈ RQ \ {h}) };

For all (iQ, jQ) ∈ L ∩ E+ (in the order from S+ to S− along L) do the
following:

{Find h such that i = base[h]; [j ∈ C corresponds to jQ ∈ CQ]
base[h] := j; w := 1/P [h, j];
P [k, l] := P [k, l] − w × P [k, j] × P [h, l] (k ∈ RQ \ {h}, l ∈ C \ {j});
S[k, l] := S[k, l] − w × P [k, j] × S[h, l] (k ∈ RQ \ {h}, l ∈ RQ);
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P [k, j] := 0 (k ∈ RQ \ {h}) };
Go to Step 2. �

In the above algorithm, ∂+M◦∩C is an independent set in M(Q)∨M(T ),
since I is independent in M(Q) and (∂+M◦∩C)\ I is independent in M(T ).
Since M(Q) ∨M(T ) = M(A) by Theorem 4.2.3, we have rankA[R, ∂+M◦ ∩
C] = |M◦|. At each execution of Step 3 the size of M◦ increases by one, and
at the termination of the algorithm we have the relation: rankA = |M◦|.

The updates of P in Step 3 are the standard pivoting operations on
P , which is a matrix over the subfield K. The sparsity of P should be
taken into account in actual implementations of the algorithm. Computa-
tional techniques developed for solving sparse linear programs can be uti-
lized here. As indicated in Step 3, pivoting operations are required for each
arc (iQ, jQ) ∈ L∩E+. It is important to traverse the path L from S+ to S−,
not from S− to S+, to avoid unnecessary fill-ins. See Murota–Scharbrodt
[241] for other implementation issues.

The above algorithm uses arithmetic operations in the subfield K only,
and, according to the result of Cunningham [43], runs in O(n3 log n), where
m = mQ +mT = O(n) is assumed for simplicity in this complexity bound.
The algorithm will be efficient enough for practical applications (see §4.4.6).
Theoretically (but not practically) the rank of an LM-matrix can be com-
puted in (n2.62) time, according to Gabow and Xu [84].

Example 4.2.22. The algorithm above is illustrated here for the 4× 5 LM-
matrix used in Example 4.2.19:

A =
(
Q
T

)

=

x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

f1 t1 0 0 0 t2
f2 0 t3 0 0 t4

where Col(A) = C = {x1, x2, x3, x4, x5} and Row(T ) = RT = {f1, f2}. We
work with a 2 × 5 matrix P , a 2 × 2 matrix S, and a vector base of size 2.
The copy of C is denoted as CQ = {x1Q, x2Q, x3Q, x4Q, x5Q}.

The flow of computation is traced below.

Step 1: M◦ := ∅;

base := r1 0
r2 0

,
P :=

x1 x2 x3 x4 x5

r1 1 1 1 1 0
r2 0 2 1 1 0

,
S := 1 0

0 1 .

Step 2: I := ∅; J := {x5};
S+

T := {f1, f2}; S+
Q := {x1Q, x2Q, x3Q, x4Q};

S+ := {f1, f2, x1Q, x2Q, x3Q, x4Q}; S− := {x1, x2, x3, x4, x5};
E+ := ∅;
There exists a path from S+ to S−. [See G̃(0) in Fig .4.2]
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Fig. 4.2. Graph G̃(0) (+: vertex in S+; −: vertex in S−)

Step 3: L := {(x1Q, x1)}; M◦ := {(x1, x1Q)};
The initial vertex x1Q of L is in S+

Q , and the matrices are updated (with
h = r1) to

base := r1 x1

r2 0
,

P :=

x1 x2 x3 x4 x5

r1 1 1 1 1 0
r2 0 2 1 1 0

,
S := 1 0

0 1 .

Noting L ∩ E+ = ∅ we return to Step 2.
Step 2: I := {x1}; J := {x5};

S+
T := {f1, f2}; S+

Q := {x2Q, x3Q, x4Q}; S+ := {f1, f2, x2Q, x3Q, x4Q};
S− := {x2, x3, x4, x5};
E+ := ∅;
There exists a path from S+ to S−. [See G̃(1) in Fig. 4.3]

Step 3: L := {(x2Q, x2)}; M◦ := {(x1, x1Q), (x2, x2Q)};
The initial vertex x2Q of L is in S+

Q , and the matrices are updated (with
h = r2) to

base := r1 x1

r2 x2

,
P :=

x1 x2 x3 x4 x5

r1 1 0 1/2 1/2 0
r2 0 2 1 1 0

,
S := 1 −1/2

0 1 .

Noting L ∩ E+ = ∅ we return to Step 2.
Step 2: I := {x1, x2}; J := {x3, x4, x5};

S+
T := {f1, f2}; S+

Q := ∅; S+ := {f1, f2}; S− := {x3, x4, x5};
E+ := {(x1Q, x3Q), (x1Q, x4Q), (x2Q, x3Q), (x2Q, x4Q)};
There exists a path from S+ to S−. [See G̃(2) in Fig. 4.4]
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Fig. 4.3. Graph G̃(1) (©: arc in M ; +: vertex in S+; −: vertex in S−)
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Fig. 4.4. Graph G̃(2) (©: arc in M ; +: vertex in S+; −: vertex in S−)

Step 3: L := {(f1, x5)}; M◦ := {(x1, x1Q), (x2, x2Q), (x5, f1)};
The initial vertex f1 �∈ S+

Q and L ∩ E+ = ∅, and therefore the matrices
remain unchanged and we return to Step 2.

Step 2: I := {x1, x2}; J := {x3, x4, x5};
S+

T := {f2}; S+
Q := ∅; S+ := {f2}; S− := {x3, x4};

E+ := {(x1Q, x3Q), (x1Q, x4Q), (x2Q, x3Q), (x2Q, x4Q)};
There exists a path from S+ to S−. [See G̃(3) in Fig. 4.5]

Step 3: L := {(f2, x2), (x2, x2Q), (x2Q, x3Q), (x3Q, x3)};
M◦ := {(x1, x1Q), (x3, x3Q), (x5, f1), (x2, f2)};
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Fig. 4.5. Graph G̃(3) (©: arc in M ; +: vertex in S+; −: vertex in S−)

The initial vertex f2 �∈ S+
Q and L∩E+ = {(x2Q, x3Q)}, and the matrices

are updated (with h = r2) to

base := r1 x1

r2 x3

,
P :=

x1 x2 x3 x4 x5

r1 1 −1 0 0 0
r2 0 2 1 1 0

,
S := 1 −1

0 1 .

Step 2: I := {x1, x3}; J := {x2, x4, x5};
S+

T := ∅; S+
Q := ∅; S+ := ∅; S− := {x4};

E+ := {(x1Q, x2Q), (x3Q, x2Q), (x3Q, x4Q)};
There exists no path from S+ (= ∅) to S−;
We stop with the conclusion that rankA = |M◦| = 4.

[See G̃(4) in Fig. 4.6]
�

Remark 4.2.23. It is easy to observe that the arcs in M , directed from
RT ∪CQ to C, are never used in the shortest path from S+ to S−, whereas the
reoriented arcs, implemented as M◦, are indispensable. This means that the
arcs of M could have been eliminated in the above algorithm for computing
the rank. They are included, however, for the consistency with the algorithm
for computing the CCF, to be presented in §4.4.4, in which the arcs of M are
necessary. �

Algorithm for Mixed Matrices. The rank of a mixed matrix A = Q+ T
can be computed by applying the above algorithm to the associated LM-
matrix Ã =

( Q̃

T̃

)
of (4.4). Adaptation to the special form of Ã results in

some simplifications in the algorithm. Put R = Row(A) and C = Col(A).
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Fig. 4.6. Graph G̃(4) (©: arc in M ; S+ = ∅, −: vertex in S−)

The vertex set in the general algorithm for Ã would consist of three disjoint
parts, say R̃T ∪ C̃Q ∪ C̃, where R̃T corresponds to R � Row(T̃ ), and C̃ and
C̃Q are copies of R ∪ C � Col(Ã).

First we exploit the structure of the matrix Q̃. In the matroid M(Q̃), the
column set corresponding to R is a basis because of the identity submatrix.
Let M̃0 be the set of arcs, from C̃Q to C̃, connecting the corresponding copies
of R. Then we may take M̃0 as the initial independent matching.

R̃T

R

C̃

R

C̃Q

R

C C

�
�
�

M̃0



�
�
�





�
�


⇒
RT RQ

CT CQ

E
(0)
TQ�
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E
(0)
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E
(0)
T

�
�

E+(0)


Initial graph G(0)

Fig. 4.7. Auxiliary graph for a mixed matrix

Next, by virtue of the diagonal matrix contained in the matrix T̃ , the
underlying graph can be simplified: the arcs in M̃0 may be contracted (see
Fig. 4.7). Namely, we may work on a graph with the vertex set consisting of
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four disjoint parts, RQ ∪CQ ∪RT ∪CT , where RQ = Row(Q), CQ = Col(Q),
RT = Row(T ), and CT = Col(T ). We denote by ϕQ : R ∪ C → RQ ∪ CQ

and ϕT : R ∪ C → RT ∪ CT the obvious one-to-one correspondences. The
copies of i ∈ R in RQ and RT are written as iQ and iT , respectively, that is,
iQ = ϕQ(i) and iT = ϕT (i). Similarly, we write jQ = ϕQ(j) and jT = ϕT (j).

The initial graph, say G(0), has the arc set E∗(0) ∪ E+(0), where E∗(0) =
E

(0)
TQ ∪ E(0)

QT ∪ E(0)
T and

E
(0)
TQ = {(iT , iQ) | i ∈ R},

E
(0)
QT = {(jQ, jT ) | j ∈ C},

E
(0)
T = {(iT , jT ) | Tij �= 0, i ∈ R, j ∈ C},

E+(0) = {(iQ, jQ) | Qij �= 0, i ∈ R, j ∈ C}.

The initial matching M̃0 turns into an empty matching in the graph G(0),
and a shortest path L is sought from S+ = RT to S− = CT in G(0) at the
first stage of the algorithm.

At a general stage, we maintain I ⊆ R, J ⊆ C and a matching M ⊆
E

(0)
T in (RT , CT ;E(0)

T ) such that ∂+M ⊆ ϕT (I), ∂−M ⊆ ϕT (J), and Q̂ ≡
Q[R \ I, C \ J ] is nonsingular. This means that I ∪ (C \ J) is independent
in M(Q̃) and (R \ I) ∪ ϕ−1

T (∂−M) is independent in M(T̃ ), and therefore,
R ∪ (C \ J) ∪ ϕ−1

T (∂−M) is independent in M(Ã). Noting

Q̃ =
(
R \ I I C \ J J

R \ I I∗ O Q̂ Q[R \ I, J ]
I O I∗ Q[I, C \ J ] Q[I, J ]

)

,

where I∗ denotes an identity matrix of appropriate size, let P be the pivotal
transform of Q with pivot Q̂. Namely,

P =
(

R \ I J

C \ J Q̂−1 Q̂−1Q[R \ I, J ]
I −Q[I, C \ J ]Q̂−1 Q[I, J ] −Q[I, C \ J ]Q̂−1Q[R \ I, J ]

)

,

where RP ≡ Row(P ) � I ∪ (C \ J) and CP ≡ Col(P ) � (R \ I) ∪ J . The
one-to-one correspondence between RP ∪CP and R∪C, which changes with
(I, J), is represented by σ : RP ∪ CP → R ∪ C in the algorithm below. We
start the algorithm with I = R, J = C, M = ∅, and P = Q.

The matching M , the sets I and J and the structure of P are represented
by a graph G = (V,E) with vertex set V = RQ ∪ CQ ∪RT ∪ CT and arc set
E = E∗ ∪ E+, where E∗ = ETQ ∪ EQT ∪ ET ∪M◦ and

ETQ = {(iT , iQ) | i ∈ I} ∪ {(jT , jQ) | j ∈ C \ J},
EQT = {(iQ, iT ) | i ∈ R \ I} ∪ {(jQ, jT ) | j ∈ J},
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ET = E
(0)
T \M,

M◦ = {a | a ∈M} (a: reorientation of a),
E+ = {(iQ, jQ) | Pij �= 0, i ∈ (C \ J) ∪ I, j ∈ (R \ I) ∪ J}.

Note that I = {i ∈ R | (iT , iQ) ∈ E}, J = {j ∈ C | (jQ, jT ) ∈ E}, and
M = {(iT , jT ) | (jT , iT ) ∈ E}. The entrance S+ and the exit S− are defined
by

S+ = {iT ∈ RT | i ∈ I} \ ∂−M◦, S− = {jT ∈ CT | j ∈ J} \ ∂+M◦,

and a shortest path L is sought from S+ to S− in G.

Algorithm for computing the rank of a mixed matrix A = Q+ T

Step 1:
E∗ := {(iT , iQ) | i ∈ R} ∪ {(jQ, jT ) | j ∈ C}

∪ {(iT , jT ) | Tij �= 0, i ∈ R, j ∈ C};
P [i, j] := Qij (i ∈ R, j ∈ C); σ(i) := i (i ∈ R ∪ C);

Step 2:
I := {i ∈ R | (iT , iQ) ∈ E∗}; J := {j ∈ C | (jQ, jT ) ∈ E∗};
M◦ := {(jT , iT ) ∈ E∗};
S+ := {iT ∈ RT | i ∈ I} \ ∂−M◦; S− := {jT ∈ CT | j ∈ J} \ ∂+M◦;
E+ := {(iQ, jQ) | P [σ−1(i), σ−1(j)] �= 0, i ∈ I ∪ (C \ J), j ∈ (R \ I) ∪ J};
E := E∗ ∪ E+;
If there exists in G = (V,E) a directed path from S+ to S− then go to
Step 3; otherwise (including the case where S+ = ∅ or S− = ∅) stop with
the conclusion that rankA = |M◦| + |C \ J |.

Step 3:
Let L (⊆ E) be (the set of arcs on) a shortest path from S+ to S−

(“shortest” in the number of arcs);
E∗ := (E∗ \ L) ∪ {a | a ∈ L ∩ E∗}; [Reverse arcs in L ∩ E∗]
For all (iQ, jQ) ∈ L ∩ E+ (in the order from S+ to S− along L) do the
following:

{h := σ−1(i); g := σ−1(j); σ(h) := j; σ(g) := i;
w := 1/P [h, g]; P [h, g] := w;
P [k, g] := −w × P [k, g] (k ∈ RP \ {h});
P [h, l] := w × P [h, l] (l ∈ CP \ {g});
P [k, l] := P [k, l]−w × P [k, g]× P [h, l] (k ∈ RP \ {h}, l ∈ CP \ {g})
};

Go to Step 2. �

4.3 Structural Solvability of Systems of Equations

4.3.1 Formulation of Structural Solvability

The unique solvability of a system of linear equations is obviously equivalent
to the nonsingularity of the coefficient matrix. In this section we consider the



154 4. Theory and Application of Mixed Matrices

solvability of a system of linear/nonlinear equations from a combinatorial
structural point of view. A mathematical formalism is given to the intuitive
idea that a system of linear/nonlinear equations has a structure that admits a
unique solution in general. The notion of “structural solvability” in its crude
form seems to have been proposed first by Iri–Tsunekawa–Yajima [135] along
with a graph-theoretic criterion for checking it. The present formulation is
due to Iri–Tsunekawa–Murota [134] and Murota–Iri [237, 238].

We consider a system of equations in the following “standard form” with
unknowns xj (j = 1, · · · , N) and uk (k = 1, · · · ,K), and parameters yi (i =
1, · · · ,M):

yi = fi(x,u) (i = 1, · · · ,M),
uk = gk(x,u) (k = 1, · · · ,K), (4.27)

where fi (i = 1, · · · ,M) and gk (k = 1, · · · ,K) are assumed to be sufficiently
smooth real-valued functions. This form is most natural and convenient when
treating a physical/engineering system represented by a set of functional
relations among elementary state variables, where, for arbitrarily given values
of y-variables, the values of x- and u-variables are adjusted so that all the
equations may be satisfied.

We are concerned with whether the system (4.27) of equations has a
structure which admits a unique solution. In the following we assume that
M = N , since the number of equations must usually be equal to the number
of unknowns in order for (4.27) to have a unique solution. We denote the
Jacobian matrix of (4.27) with respect to x and u by

J(x,u) =
(
J [f, x] J [f, u]
J [g, x] J [g, u] − IK

)

, (4.28)

where

J [f, x] =
(
∂fi

∂xj

)

, J [f, u] =
(
∂fi

∂ul

)

,

J [g, x] =
(
∂gk
∂xj

)

, J [g, u] =
(
∂gk
∂ul

)

.

Suppose that (4.27) has a solution (x,u) = (x̂, û) for some y = ŷ. It
follows from the implicit-function theorem (cf., e.g., Spivak [302]) that, if

det J(x̂, û) �= 0, (4.29)

(4.27) has a unique solution (x,u) around (x̂, û) in accordance with an ar-
bitrary perturbation of y in a neighborhood of ŷ. It should be noted also
that, from the computational point of view, the condition (4.29) guarantees
the feasibility of a Newton-like iterative method for the numerical solution of
(4.27) with xj (j = 1, · · · , N) and uk (k = 1, · · · ,K) as unknowns.

The above condition (4.29), however, depends not only on the functional
forms of fi and gk but also on particular values of (x̂, û), which are usually
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not known before we start numerical computation. Furthermore, it is difficult
to distinguish numerically the “exact zero” from a “very small” number due
to the existence of rounding errors. Hence, we will consider an alternative
condition that the Jacobian, as a function in xj (j = 1, · · · , N) and uk (k =
1, · · · ,K), does not vanish identically:

det J(x,u) �= 0.

More precisely, we shall regard the partial derivatives of functions fi and
gk as elements of a field F which is an extension of the rational number field
Q. That is, denoting by

D = {∂fi/∂xj , ∂fi/∂ul, ∂gk/∂xj , ∂gk/∂ul |
i = 1, · · ·M ; j = 1, · · · , N ; k, l = 1, · · · ,K}

the collection of partial derivatives of fi and gk, we adopt

Basic Assumption: D ⊆ F .

This assumption is literally valid, for example, if fi and gk are rational func-
tions of xj (j = 1, · · · , N) and ul (l = 1, · · · ,K), in which case the field of all
rational functions in xj (j = 1, · · · , N) and ul (l = 1, · · · ,K) may be taken as
the field F . We say that the system (4.27) of equations is structurally solvable
if the Jacobian matrix J(x,u) of (4.28), as a matrix over F , is nonsingular,
i.e., if

det J(x,u) �= 0 in F . (4.30)

The structural solvability condition (4.30) implies a one-to-one correspon-
dence between xj (j = 1, · · · , N) and yi (i = 1, · · · ,M) in the following (struc-
tural) sense. The submatrix J [g, u]− I is term-nonsingular under a plausible
assumption that the diagonal entries of J [g, u] are distinct from one (see
§2.1.3 for the terminology of “term-nonsingular”). This means further that
J [g, u]−I is likely to be nonsingular. Then, by the implicit-function theorem,
the second subsystem of (4.27):

uk = gk(x,u) (k = 1, · · · ,K) (4.31)

can be solved for uk as

uk = uk(x) (k = 1, · · · ,K). (4.32)

Substitution of (4.32) into the first subsystem of (4.27) yields a system of
equations

yi = fi(x,u(x)) (i = 1, · · · ,M) (4.33)

in unknowns xj (j = 1, · · · , N). The Jacobian matrix J [y, x] of (4.33) is given
by

J [y, x] = J [f, x] − J [f, u](J [g, u] − I)−1J [g, x] (4.34)
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as long as J [g, u] − I is nonsingular. In fact, this expression is derived from
the relations among the differentials of (4.27):

dy = J [f, x]dx + J [f, u]du,

du = J [g, x]dx + J [g, u]du

through elimination of du. If (4.27) is structurally solvable (4.30), the Ja-
cobian matrix J [y, x] above is nonsingular by a formula in matrix algebra
(cf. Proposition 2.1.7):

det
[
A B
C D

]

= detD · det[A−BD−1C]

(where A and D are square matrices and detD �= 0), and hence xj (j =
1, · · · , N) and yi (i = 1, · · · ,M) are in one-to-one correspondence, at least
locally.

In the following we consider combinatorial characterizations of the struc-
tural solvability under two different generality assumptions, GA1 and GA2
introduced in §3.1.1. Generality assumption GA1 leads to a graph-theoretic
method in §4.3.2, whereas GA2 to a matroid-theoretic method in §4.3.3.

4.3.2 Graphical Conditions for Structural Solvability

The structure of a system of equations in the standard form (4.27) can be
expressed in terms of a graph with vertices corresponding to variables (i.e.,
unknowns (x,u) and parameters y) and arcs representing the existence of
the explicit direct functional dependence. To be concrete, we consider the
vertex set X ∪ U ∪ Y , where X = {x1, · · · , xN}, U = {u1, · · · , uK} and
Y = {y1, · · · , yM}. The functional dependence yi = fi(x,u) is expressed by a
set of arcs coming into yi from those xj and ul which effectively appear in fi.
In a similar manner, the functional dependence uk = gk(x,u) is expressed
by a set of arcs coming into uk from xj and ul appearing effectively in gk.

The graph thus obtained may be regarded as a kind of signal-flow graph
representing the causal relation among variables, or the flow of information
in the system. This graph is called the representation graph (Iri–Tsunekawa–
Murota [134]) of the system of equations. When it is acyclic, it is also called
the computational graph (Bauer [10]), in which emphasis is laid on the aspect
that it represents the order of successive function evaluations according to
which the values of yi are computed from those of xj .

Example 4.3.1. For a system of equations:

y1 = f1(x1, u1, u3), u1 = g1(x1, u2),
y2 = f2(u1, u3), u2 = g2(x1, x2, u3),
y3 = f3(x2, u3, u4), u3 = g3(u1),

u4 = g4(x2, x3, u3),

the representation graph G is shown in Fig. 4.8. �
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Fig. 4.8. Representation graph of Example 4.3.1 (linking arcs in thick lines)

By the definition of the sets X, Y , and U , the representation graph of a
system of equations in the standard form satisfies the following properties:

i) Each vertex xj ∈ X has no in-coming arcs, and vice versa.
ii)Each vertex yi ∈ Y has no out-going arcs. (Some of the vertices of U may

possibly have no out-going arcs.)

Note that the representation graph expresses nothing more than the existence
of functional dependence among variables, concrete functional forms being
disregarded.

The objective of this section is to translate the structural solvability con-
dition (4.30) into a condition on the representation graph under the generality
assumption

GA1: The nonvanishing elements of D are algebraically independent
over Q

about the collection D of the partial derivatives. Structural solvability under
GA1 is equivalent to generic solvability when the nonvanishing elements of D
are regarded as independent parameters. It is also noted that the structural
solvability under GA1 is equivalent to the nonsingularity of J [y, x] of (4.34)
since GA1 guarantees the nonsingularity of J [g, u] − I.

The generality assumption GA1 can be partly justified as follows. When
the system of equations describes a physical system, the functions fi and gk
represent element characteristics which cannot be free from noises and/or
errors. Hence the nonvanishing partial derivatives of fi and gk, even when
they are constant (i.e., when the functions are linear), are so “general” that
they do not satisfy any polynomial relation with integer coefficients. Thus
we are led to GA1. It is admitted at the same time that concrete numerical
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data stored in a computer with a finite number of digits cannot satisfy this
assumption in the rigorous mathematical sense, and that the assumption is
sometimes too stringent to be satisfied in practical problems.

The structural solvability (4.30) under GA1 is equivalent to the existence
of a Menger-type perfect linking in G as follows (see §2.2.4 for Menger-type
linkings).

Theorem 4.3.2. A system of equations in the standard form (4.27) is struc-
turally solvable under GA1 if and only if there exists on the representation
graph G = (X ∪ U ∪ Y,A;X,Y ) a Menger-type perfect linking from X to Y .

Proof. First, the diagonal entries of J [g, u]− I are distinct from zero by GA1.
Next, J(x,u) of (4.28) is nonsingular if and only if it is term-nonsingular. This
follows from Proposition 2.1.12 when combined with a simple observation
that multiplication of the last K rows of J(x,u) by algebraically independent
numbers yields a matrix with algebraically independent nonvanishing entries.

It remains to show the equivalence of the term-nonsingularity of J(x,u)
and the existence of a Menger-type perfect linking.

Suppose J(x,u) is term-nonsingular. Fix a bijection π : X ∪ U → Y ∪ U
such that Jπ(v)v �= 0 (∀ v ∈ X ∪ U). Obviously M = N . For each xj ∈ X
(1 ≤ j ≤ N) determine a sequence uk1 , uk2 , · · · , ukm(j) ∈ U and yσ(j) ∈ Y by
π(xj) = uk1 , π(uk1) = uk2 , · · ·, π(ukm(j)−1) = ukm(j) , and π(ukm(j)) = yσ(j).
Such sequences for different j have no vertex in common, and the collection
of such sequences gives a Menger-type perfect linking in G.

Conversely, suppose that there exists a Menger-type perfect linking in G,
and let U ′ (⊆ U) denote the set of u-vertices lying on the linking. Then M =
N and the linking gives a bijection π : X ∪U ′ → Y ∪U ′ such that Jπ(v)v �= 0
(∀ v ∈ X ∪U ′). The bijection π can be extended to π : X ∪U → Y ∪U such
that Jπ(v)v �= 0 (∀ v ∈ X∪U) by defining π(v) = v for v ∈ U \U ′. This shows
the term-nonsingularity of J(x,u).

The above criterion for structural solvability was put to practical use in a
chemical process simulator developed in Japan in the seventies (IJUSE [121],
ITPA [118], ITPA–IJUSE [119, 120], and Sebastian–Noble–Thambynayagam–
Wood [293]). See Murota [204, §10] for an account of other graph-theoretic
techniques employed there.

Example 4.3.3. Recall the system of equations in Example 4.3.1. As shown
in Fig. 4.8, there exists a Menger-type perfect linking: x1 → y1, x2 → u2 →
u1 → y2, x3 → u4 → y3, in the representation graph G. Hence, by Theorem
4.3.2, this system of equations is structurally solvable under GA1. �

Next we turn to another example which is not structurally solvable. This
motivates us to look at minimum separators as the reason for the failure of
structural solvability.
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Example 4.3.4. A system of equations:

y1 = f1(u1, u3), u1 = g1(x1, x2, u2),
y2 = f2(u2, u3), u2 = g2(x2, x3, u3),
y3 = f3(u2), u3 = g3(u1)

has the representation graph G shown in Fig. 4.9, in which there is a path
from any xj (j = 1, 2, 3) to any yi (i = 1, 2, 3). However, since a maximum
linking from X = {x1, x2, x3} to Y = {y1, y2, y3} is of size 2, not a perfect
linking, Theorem 4.3.2 reveals that this system is not structurally solvable.
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Fig. 4.9. Representation graph of Example 4.3.4 (linking arcs in thick lines)

An intuitive interpretation of this fact would be that three degrees of
freedom at the entrance X are reduced to two of the intermediate variables,
u1 and u2, and, as a result, it is not possible in general to adjust the values
of x1, x2 and x3 so as to make y1, y2 and y3 equal to arbitrarily prescribed
values.

More precisely, we may say the following, referring to Menger’s theorem
(Theorem 2.2.31). In the representation graph G of Fig. 4.9, {u1, u2} is a
minimum separator of (X,Y ). The cardinality of a minimum separator in
the representation graph of the system (4.27) of equations may be inter-
preted as the effective degrees of freedom of the system. Thus, for a system
of equations not necessarily structurally solvable, a minimum separator in its
representation graph can reveal where the inconsistency comes from. �

Remark 4.3.5. Theorem 4.3.2, as well as the argument in Example 4.3.4,
suggests that some meaningful decomposition of a system of equations
should be obtained through a decomposition of its representation graph
based on maximum linkings and minimum separators. In fact, this idea has
been worked out by Murota [196, 205] and the obtained decomposition is
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named “Menger-decomposition” (or “M-decomposition” for short). The M-
decomposition is constructed as follows. The linking problem can be formu-
lated as a network flow problem (see §2.2.4), maximum linkings corresponding
to maximum flows and minimum separators to minimum cuts. On the other
hand, the submodularity (2.52) of the cut capacity function of a network
leads to a canonical decomposition with respect to minimum cuts, accord-
ing to the Jordan–Hölder-type theorem for submodular functions explained
in §2.2.2. The essence of the M-decomposition is a straightforward combina-
tion of these two results. See Murota [196, 197, 205] as well as Murota [204,
§8, §11] for details about M-decomposition and its application to systems of
equations, and van der Woude [327] for its application to control theoretic
problems. Another decomposition of the representation graph is also proposed
by Iri–Tsunekawa–Yajima [135], and is named “L-decomposition” by Iri–
Tsunekawa–Murota [134]; see also Murota [204, §8, §11] for L-decomposition.

�

Remark 4.3.6. The structural solvability for systems of equations with de-
grees of freedom is discussed by Sugihara [304, 305]. This is closely related
to the combinatorial analysis of rigidity in statics, as expounded in Recski
[277]. �

4.3.3 Matroidal Conditions for Structural Solvability

With the aid of the combinatorial characterizations of the rank of a mixed
matrix, we can deal with the structural solvability of a system of equations
(4.27) under more realistic generality assumptions such as

GA2: Those elements of D which do not belong to the rational num-
ber field Q are algebraically independent over Q, and

GA3: Those elements of D which do not belong to the real number
field R are algebraically independent over R,

where D denotes the collection of the partial derivatives of the equations.
Recall that the generality assumptions GA2 and GA3 have been introduced
in §3.1.1 on the basis of the physical observation on the two kinds of numbers.

To be specific, we assume GA2 (and GA3 can be treated similarly). The
set D is divided into two parts, D = Q∪T with Q = D ∩Q and T = D \Q.
Accordingly, the Jacobian matrix A = J(x,u) is expressed as A = Q + T ,
which is, by GA2, a mixed matrix with respect to (Q,F ).

The following theorem gives a matroid-theoretic criterion for the struc-
tural solvability of the system (4.27) of equations under the realistic assump-
tion GA2.

Theorem 4.3.7. Let the Jacobian matrix A = J(x,u) of (4.28) be decom-
posed into two parts, A = Q + T , such that Q is a matrix over Q and the
nonzero entries of T do not belong to Q. Then the system (4.27) of equations
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is structurally solvable under GA2 if and only if M = N and the maximum
size of a common independent set of M([IM+K | Q])∗ and M([IM+K | T ]) is
equal to N +K.

Proof. Apply the rank formula of Theorem 4.2.10 to A = Q + T , which is a
mixed matrix under GA2.

Theorem 4.3.7 implies that we can test for the structural solvability under
GA2 by the efficient matroid-theoretic algorithm of §4.2.4 using arithmetic
operations on rational numbers. It is important in practice that the entries
of Q are often simple integers and it seems, empirically, that no serious nu-
merical difficulty arises from the round-off errors in handling those “rational”
numbers.

Example 4.3.8. By way of the hypothetical ethylene dichloride production
system described in Example 3.1.3, we will demonstrate the effectiveness of
Theorem 4.3.7 as compared to the graph-theoretic criterion (Theorem 4.3.2)
for the structural solvability under the assumption GA1.
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Fig. 4.10. Representation graph of the system (3.5) (cf. Example 3.1.3)

The system (3.5) of equations is in the form (4.27) with M = N = 1
and K = 15. The representation graph of this system, as defined in §4.3.2,
is depicted in Fig. 4.10, on which a Menger-type perfect linking (e.g., x →
u63 → y) exists from the x-vertex {x} to the y-vertex {y}. Therefore the
graph-theoretic method (Theorem 4.3.2), assuming GA1, would conclude that
this system was structurally solvable, in contradiction to the fact that the
Jacobian of this system (Fig. 3.4) vanishes for any value of a1, a2, r, x, and
u53.
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This contradiction stems from the assumption GA1, which obviously fails
to hold in this case. In fact, in the DM-decomposition of the Jacobian matrix,
shown in Fig. 4.11, we can detect the rank deficiency in the 4 × 4 block
corresponding to variables {u43, u33, u63, u53}. A more adequate assumption
for this problem would be the GA2, which implies the choice of K = Q and
T = {a1, a2, r, x, u53}.

u71 u61 u51 u41 u31 x u43 u33 u63 u53 u72 u u62 u52 u42 u32

u71 −1 −1 1
u61 −1 a1 0 0
u51 0 −1 1 0 −1
u41 0 0 −1 1
u31 1 0 0 −1
u63 u53 −1 x
u53 1 0 0 −1 1
u43 −1 1 0 0
u33 0 −1 1 0
y 0 0 −1 1

u72 −1 −1 1
u −1 0 0 r 0

u62 0 −1 a2 0 0
u52 −1 0 −1 1 0
u42 0 0 0 −1 1
u32 0 1 0 0 −1

Fig. 4.11. DM-decomposition of the Jacobian matrix of (3.5) (cf. Fig. 3.4)

Accordingly, the Jacobian matrix, say A, of Fig. 3.4 is recognized as a
mixed matrix with respect to Q, to which the algorithm of §4.2.4 is applied.
The maximum size of a common independent set of M([I | Q])∗ and M([I |
T ]) is equal to 15, whereas N +K = 16. Theorem 4.3.7 then reveals that the
system (3.5) is not structurally solvable.

Alternatively, we may consider the LM-matrix (4.6) associated with A,
which is given in Fig. 4.12. Since A contains four mixed rows, namely, the rows
indexed by u61, u62, u63 and u, it suffices to increase the size of the matrix
by four. As a result the associated LM-matrix is 20× 20. An implementation
of the algorithm of §4.2.4 found the rank to be 19, with deficiency 1. Hence
the system (3.5) is not structurally solvable. �

Example 4.3.9. Recall the electrical network of Example 3.1.2 containing
mutual couplings. If we regard the set of the physical parameters {r1, r2, α, β}
as being algebraically independent over Q, assuming GA2, the coefficient
matrix, say A, of (3.3) is a mixed matrix with respect to (Q,F ) for F =
Q(r1, r2, α, β), i.e., A ∈ MM(Q,F , 10, 10). It is expressed as A = Q + T
with
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w1 w2 w3 w4 x u31 u32 u33 u41 u42 u43 u51 u52 u53 u61 u62 u63 u71 u72 u
u61 1 −1
u62 1 −1
u63 1 −1
u 1 −1
y 1 −1

u31 −1 1
u32 −1 1
u33 −1 1
u41 1 −1
u42 1 −1
u43 1 −1
u51 1 −1 −1
u52 1 −1 −1
u53 1 −1 1
u71 1 −1 −1
u72 1 −1 −1
u61 −t1 a1

u62 −t2 a2

u63 −t3 u53 x
u −t4 r

Fig. 4.12. LM-matrix associated with Jacobian matrix of (3.5) (chemical process
simulation in Example 3.1.3)

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1
1 0 0 0 −1
0 1 −1 0 0

1 0 0 −1 1
0 1 1 −1 0

0 −1
0 −1

0 −1
−1 0

0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

r1 0
r2 0

0 α 0
β 0 0

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Then we can apply Theorem 4.2.10 to check for the solvability of this electrical
network.

Or alternatively, we may treat A as if it were a layered mixed matrix,
A ∈ LM(Q,F ; 5, 5, 10), as follows. On expressing A as

A =
(
Q
T

)

with

Q =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1 1
1 0 0 0 −1
0 1 −1 0 0

1 0 0 −1 1
0 1 1 −1 0

⎤

⎥
⎥
⎥
⎥
⎦
,

T =

⎡

⎢
⎢
⎢
⎢
⎣

r1 −1
r2 −1

0 α −1
β −1 0

0 −1

⎤

⎥
⎥
⎥
⎥
⎦

and conceptually multiplying the rows of T by algebraically independent
transcendentals, we can apply Theorem 4.2.2 or Theorem 4.2.3. We may take
J = {ξ3, ξ4, ξ5, η3, η4} for the subset that attains the maximum (=10) on the
right-hand side of (4.12). Therefore A is nonsingular.

The latter approach agrees with the established method for testing the
unique solvability of an electrical network (Iri [127, 128], Iri–Tomizawa [131,
132], Petersen [267], Recski [275, 276, 277]). It is remarkable in the case of an
electrical network that the matrix Q above, expressing the incidence relations
in the underlying graph, is totally unimodular over Z, and hence totally free
from rounding errors in the pivoting operations. �

The structural solvability of two realistic problems in chemical engineering
is investigated below by the matroid-theoretic method under the realistic
assumption GA2.

Example 4.3.10 (Reactor-separator model). This example is taken
from the reactor-separator model (EV-6) of Yajima–Tsunekawa–Kobayashi
[344]. The original problem, involving 218 variables, is modified to the stan-
dard form (4.27) with 120 unknowns and as many equations; N = M = 18
and K = 102 in the notation of (4.27). The Jacobian matrix in Fig. 4.13 is
sparse, containing 351 nonvanishing entries.

Before the matroid-theoretic method is considered, it is confirmed by
the graph-theoretic method (by Theorem 4.3.2) that the whole system of
equations is structurally solvable under the generality assumption GA1.

Of the 351 nonvanishing entries of the Jacobian matrix of size 120, 172
entries are rational constants (1 or −1) and the remaining 179 entries are
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Fig. 4.13. Jacobian matrix of the reactor-separator model (Example 4.3.10)

regarded here as being algebraically independent, by assuming GA2. Ac-
cordingly, the Jacobian matrix A belongs to MM(Q,F ; 120, 120). Then the
maximum size of a common independent set I∪J (I ⊆ Row(A), J ⊆ Col(A))
of M([I120 | Q])∗ and M([I120 | T ]) is found to be 120 with |I| = 91 and
|J | = 29. Therefore this system of equations remains to be structurally solv-
able under the more realistic assumption GA2.

In passing we mention the M- and L-decompositions (cf. Remark 4.3.5).
This system is decomposed by the M-decomposition into 71 structurally solv-
able subproblems, of which only four components have more than one un-
known variable; more precisely, the four components have 25, 10, 9 and 9
unknowns, respectively. The L-decomposition, on the other hand, leads to 47
structurally solvable subproblems, the largest being of size 48. See Murota
[204, §11] for detailed data about these decompositions. �

Example 4.3.11 (Hydrogen production system). This example arises
from an analysis of an industrial hydrogen production system. The standard
form (4.27) of equations with N = M = 13 and K = 531 is obtained; it
involves N +K = 544 unknowns and as many equations. Fig. 4.14 demon-
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strates the sparsity of the Jacobian matrix A, which has 1464 nonvanishing
entries.

Fig. 4.14. Jacobian matrix of the hydrogen production system (Example 4.3.11)

The whole system is structurally solvable under GA1, as verified by the
graph-theoretic method of Theorem 4.3.2.

Under the generality assumption GA2, the 1464 nonvanishing entries of
the Jacobian matrix A are divided into 1142 rational constants (1 or −1) and
322 algebraically independent transcendentals. For a common independent
set I ∪ J (I ⊆ Row(A), J ⊆ Col(A)) of M([I544 | Q])∗ and M([I544 | T ])
such that |J | is maximal, we have |I| = 455 and |J | = 89. It is noteworthy
that the maximum size of J is much smaller than term-rankT = 178. It
may also be remarked that no fractions are involved in the course of pivotal
transformations of Q-matrix, although Q has not been proved to be totally
unimodular.

We mention again the M- and L-decompositions (cf. Remark 4.3.5). The
M-decomposition yields 268 structurally solvable subproblems, while the L-
decomposition 234 subproblems. The size of an M-component varies from 1 to
104, whereas that of an L-component from 1 to 120. There is no substantial
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difference between the two decompositions in this example. See Murota [204,
§11] for detailed data about these decompositions. �

We will return to the above problems in §4.4.6 to illustrate the application
of a matroid-theoretic decomposition technique for systems of equations.

Notes. In Examples 4.3.8, 4.3.10, and 4.3.11, the problem data was provided
by J. Tsunekawa and S. Kobayashi of the Institute of Japanese Union of
Scientists and Engineers and the computation was done by M. Ichikawa [117].

4.4 Combinatorial Canonical Form of LM-matrices

4.4.1 LM-equivalence

For an LM-matrix A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n) we define an LM-

admissible transformation to be a transformation of the form:

Pr

(
S O
O I

)(
Q
T

)

Pc, (4.35)

where Pr and Pc are permutation matrices, and S is a nonsingular matrix over
the ground field K (i.e., S ∈ GL(mQ,K)). An LM-admissible transformation

brings an LM-matrix into another LM-matrix, since
(

S O
O I

)(
Q
T

)
=
(

SQ
T

)

and SQ is again a matrix over K. Two LM-matrices are said to be LM-
equivalent if they are connected by an LM-admissible transformation. If A′

is LM-equivalent to A, then Col(A′) may be identified with Col(A) through
the permutation Pc.

The objective of this section is to consider a block-triangular decomposi-
tion of LM-matrices under the LM-admissible transformation (4.35). It will be
shown that there exists a canonical proper block-triangular form (“proper”
in the sense of §2.1.4) among the matrices LM-equivalent to a given LM-
matrix. The canonical form is called the combinatorial canonical form or
CCF for short.

In the special case where mQ = 0, the LM-admissible transforma-
tion (4.35) reduces to PrTPc, involving permutations only. Accordingly the
decomposition by means of the LM-admissible transformation reduces to
the Dulmage–Mendelsohn decomposition. In the other extreme case where
mT = 0, the transformation (4.35) reduces to PrSQPc, and the decomposi-
tion by means of (4.35) agrees with the ordinary Gauss–Jordan elimination in
matrix computation. Hence, the theory of CCF to be developed here amounts
to a natural amalgamation of the results on the DM-decomposition and the
LU-decomposition.

Example 4.4.1. Consider a 3 × 3 LM-matrix
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A =
(
Q
T

)

=

⎛

⎝
1 1 0
1 2 3
0 t1 t2

⎞

⎠ ,

where T = {t1, t2} is the set of algebraically independent parameters. This
matrix cannot be decomposed into smaller blocks by means of permutations
of rows and columns (DM-irreducible). However, by choosing S =

(
1 0
−1 1

)

and Pr = Pc = I in the LM-admissible transformation (4.35), we can obtain
a block-triangular decomposition:

Ā =
(
SQ
T

)

=

⎛

⎝
1 1 0

1 3
t1 t2

⎞

⎠ .

Thus the LM-admissible transformation is more powerful than mere permu-
tations. �

Example 4.4.2. Here is an example containing a “tail” (nonsquare diagonal
block as in the DM-decomposition). Recall the 4 × 5 LM-matrix

A =
(
Q
T

)

=

x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

f1 t1 0 0 0 t2
f2 0 t3 0 0 t4

used in Examples 4.2.19 and 4.2.22. By choosing

S =
[

1 −1
0 1

]

, Pr =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , Pc =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

in the LM-admissible transformation (4.35), we obtain the CCF:

Ā =

x3 x4 x1 x2 x5

1 1 0 2 0
1 −1 0

f1 t1 0 t2
f2 0 t3 t4

with a nonempty horizontal tail C0 = {x3, x4}, a single square block C1 =
{x1, x2, x5}, and an empty vertical tail C∞ = ∅. Note the rank deficiency is
localized to the tail, and accordingly, this is a proper block-triangularization
in the sense of §2.1.4. �
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Example 4.4.3. Let us discuss a physical meaning of the LM-equivalence
with reference to the electrical network of Example 3.1.2. Consider an LM-
matrix

A =
(
Q
T

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5

0 0 1 1 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 1
0 0 0 0 0 0 1 1 −1 0

r1 0 0 0 0 t1 0 0 0 0
0 r2 0 0 0 0 t2 0 0 0
0 0 0 0 0 α 0 t3 0 0
0 β 0 t4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 t5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where T = {r1, r2, α, β; t1, · · · , t5} is the set of algebraically independent
parameters. This matrix is essentially the same as the coefficient matrix of
(3.3).

A block-triangular form under the LM-admissible transformation (4.35)
is obtained as follows. Choosing

S =

⎛

⎜
⎜
⎜
⎝

0 −1 0 0 0
0 0 −1 0 0
1 1 1 0 0
0 0 0 −1 0
0 0 0 −1 1

⎞

⎟
⎟
⎟
⎠

in (4.35) we first transform Q to

Q′ = SQ =

⎛

⎜
⎜
⎜
⎜
⎝

ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5

−1 0 0 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 −1
0 0 0 0 0 −1 1 1 0 −1

⎞

⎟
⎟
⎟
⎟
⎠
, (4.36)

and then permute the rows and the columns of
(

Q′

T

)
with permutation

matrices Pr and Pc defined respectively by
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

to obtain an explicit block-triangular LM-matrix

Ā = Pr

(
Q′

T

)

Pc =

ξ3 ξ5 η4 ξ
1 ξ2 ξ4 η1 η2 η3 η5

1 −1
1 −1

1 −1 −1
1 1 1 0 0 0
0 0 0 −1 1 1 −1
r1 0 0 t1 0 0
0 r2 0 0 t2 0
0 0 0 α 0 t3
0 β t4 0 0 0

t5

.

It turns out that this is the finest block-triangular matrix which is LM-
equivalent to A. Namely, Ā is the CCF of A.

The column set of Ā is partitioned into five blocks:

C1 = {ξ3}, C2 = {ξ5}, C3 = {η4}, C4 = {ξ1, ξ2, ξ4, η1, η2, η3}, C5 = {η5}.

A partial order among the blocks:

C5

↑
C4

↗ ↑ ↖
C1 C2 C3

(4.37)

is defined by the zero/nonzero structure of Ā. This partial order indicates,
for example, that the blocks C1 and C2, having no order relation, could be
exchanged in position without destroying the block-triangular form provided
the corresponding rows are exchanged in position accordingly. This corre-
sponds to the fact that the entry in the first row of the column ξ5 is equal to
0.

The matrix Q has been obtained from the Kirchhoff’s conservation laws.
In Example 3.1.3 we have chosen three nodes a, b, c in Fig. 3.2 for the KCL
(Kirchhoff’s current law) to obtain
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ξ3 + ξ4 + ξ5 = 0, ξ1 − ξ5 = 0, ξ2 − ξ3 = 0,

and two loops consisting of branches 1–5–4 and 2–3–4 for the KVL (Kirch-
hoff’s voltage law) to obtain

η1 + η5 − η4 = 0, η2 + η3 − η4 = 0.

These conservation equations have been written in a matrix form:

Q

(
ξ
η

)

= 0. (4.38)

The Kirchhoff’s conservation laws could have been represented equally
well in a different way. For example, another set of three nodes b, c, d for the
KCL yields

−ξ1 + ξ5 = 0, −ξ2 + ξ3 = 0, ξ1 + ξ2 + ξ4 = 0,

and another choice of two independent loops 1–5–4 and 1–2–3–5 for the KVL
leads to

−η1 − η5 + η4 = 0, −η1 + η2 + η3 − η5 = 0.

Then we would obtain

Q′
(

ξ
η

)

= 0 (4.39)

with another coefficient matrix Q′, which is identical with Q′ of (4.36).
There seems to be nothing with which to choose between the two expres-

sions (4.38) and (4.39) in themselves. The conservation laws claim that (ξ,η)
should belong to a linear subspace, but does not prescribe how the linear
space should be described. Both (4.38) and (4.39) are legitimate descriptions
of one and the same subspace, and as a consequence, the coefficient matrices
Q and Q′ are related as Q′ = SQ. The transformation matrix S in the LM-
admissible transformation (4.35) serves to yield a hierarchical decomposition
independent of an arbitrary choice in the description of the conservation laws.
Such invariance or stability of the CCF should be compared favorably with
the susceptibility of the DM-decomposition. In fact, the DM-decomposition
of A yields a coarser decomposition

C5

↑
C1 ∪ C2 ∪ C3 ∪ C4

whereas that of Ā is given by (4.37). �
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4.4.2 Theorem of CCF

This section is to establish the combinatorial canonical form (CCF) of LM-
matrices, which has already been introduced informally by means of examples
in §4.4.1. We shall prove the existence and uniqueness of the finest proper
block-triangular decomposition of an LM-matrix (“proper” in the sense of
§2.1.4) under the LM-admissible transformation (4.35).

The LM-surplus function p : 2C → Z defined as p(J) = ρ(J) + γ(J)− |J |
in (4.16) plays a crucial role. Key facts about p are the following:

1. The rank of an LM-matrix is characterized by the minimum of p (cf. The-
orem 4.2.5).

2. The function p is submodular (cf. (4.17)).
3. The function p is invariant under LM-equivalence. Namely, if Â is LM-

equivalent to A, the LM-surplus function p̂ associated with Â is the same
as p.

Seeing that the rank of A is expressed by the minimum of p, it is natural to
look at the family of minimizers:

Lmin(p) = {J ⊆ C | p(J) ≤ p(J ′),∀J ′ ⊆ C}, (4.40)

which forms a sublattice of 2C by virtue of the submodularity (4.17) of p
(cf. Theorem 2.2.5).

We are going to make use of a general decomposition principle, the
Jordan–Hölder-type theorem for submodular functions, explained in §2.2.2.
According to this, the sublattice Lmin(p) determines a pair of a partition of
C = Col(A) and a partial order �:

P(Lmin(p)) = ({C0;C1, · · · , Cb;C∞},�). (4.41)

Here b ≥ 0 and Ck �= ∅ for k = 1, · · · , b, whereas C0 and C∞ are distin-
guished blocks that can be empty. It is assumed that the blocks are indexed
consistently with the partial order in the sense that

Ck � Cl ⇒ k ≤ l. (4.42)

The following theorem claims the existence of the CCF, a proper block-
triangular decomposition of an LM-matrix under LM-equivalence. It was es-
tablished first in an unpublished report of Murota [201] in 1985 and published
by Murota [204] and Murota–Iri–Nakamura [239].

Theorem 4.4.4 (Combinatorial Canonical Form). For an LM-matrix
A ∈ LM(K,F ) there exists another LM-matrix Ā which is LM-equivalent to
A and satisfies the following properties.

(B1) [Nonzero structure and partial order � ] Ā is block-triangularized,
i.e.,

Ā[Rk, Cl] = O if 0 ≤ l < k ≤ ∞, (4.43)
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with respect to partitions (R0;R1, · · · , Rb;R∞) and (C0;C1, · · · , Cb;C∞) of
the row set Row(Ā) and the column set Col(Ā) respectively, where b ≥ 0,
Rk �= ∅ and Ck �= ∅ for k = 1, · · · , b, and R0, R∞, C0 and C∞ can be empty.

Moreover, when Col(Ā) is identified with Col(A), the above partition
(C0;C1, · · · , Cb;C∞) agrees with that defined by the lattice Lmin(p) and the
partial order on {C1, · · · , Cb} induced by the zero/nonzero structure of Ā
agrees with the partial order � defined by Lmin(p); i.e.,

Ā[Rk, Cl] = O unless Ck � Cl (1 ≤ k, l ≤ b); (4.44)
Ā[Rk, Cl] �= O if Ck ≺· Cl (1 ≤ k, l ≤ b). (4.45)

(B2) [Size of diagonal blocks]

|R0| < |C0| or |R0| = |C0| = 0,
|Rk| = |Ck| > 0 for k = 1, · · · , b,
|R∞| > |C∞| or |R∞| = |C∞| = 0.

(B3) [Rank of diagonal blocks]

rank Ā[R0, C0] = |R0|,
rank Ā[Rk, Ck] = |Rk| = |Ck| for k = 1, · · · , b,
rank Ā[R∞, C∞] = |C∞|.

(B4) [Rank of submatrices of diagonal blocks]

rank Ā[R0, C0 \ {j}] = |R0| (j ∈ C0),
rank Ā[Rk \ {i}, Ck \ {j}] = |Rk| − 1 = |Ck| − 1 (i ∈ Rk, j ∈ Ck)

for k = 1, · · · , b,
rank Ā[R∞ \ {i}, C∞] = |C∞| (i ∈ R∞).

(B5) [Uniqueness] Ā is the finest proper block-triangular matrix that
is LM-equivalent to A. Namely, if Â is LM-equivalent to A and is block-
triangularized with respect to certain partitions (R̂0; R̂1, · · · , R̂q; R̂∞) and
(Ĉ0; Ĉ1, · · · , Ĉq; Ĉ∞) of Row(Â) and Col(Â) (= Col(A)) with the diagonal
blocks satisfying the conditions (B2) and (B3), then each Ĉk is a union of
some blocks in (C0;C1, · · · , Cb;C∞).

Proof. A constructive proof is given in §4.4.3.

The matrix Ā in the theorem is called the CCF of A. The CCF is uniquely
determined so far as the partitions of the row and column sets as well as the
partial order among the blocks are concerned, whereas there remains some
indeterminacy, or degree of freedom, in the numerical values of the entries
in the Q-part. For example, elementary row transformations within a block
change numerical values without affecting the block structure. When the
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numerical indeterminacy is to be emphasized, such Ā will be called a CCF,
instead of the CCF. In Example 4.4.1, for instance, both of

Ā =

⎡

⎣
1 1 0

1 3
t1 t2

⎤

⎦ , Ā′ =

⎡

⎣
−1 0 −1

3 1
t2 t1

⎤

⎦

are qualified as the CCF of A.
The submatrices Ā[R0, C0] and Ā[R∞, C∞] are called the horizontal tail

and the vertical tail, respectively. The tails are nonsquare if they are not
empty, and the “discrepancies from squareness”:

δ0 = |C0| − |R0|, δ∞ = |R∞| − |C∞|
indicate the rank deficiencies of the whole matrix A, since

δ0 = |C| − rank Ā = |C| − rankA, δ∞ = |R| − rank Ā = |R| − rankA

by (B1) and (B3). Thus the rank deficiency is localized to the tails. In partic-
ular, A is nonsingular if and only if both tails are empty (i.e., C0 = R∞ = ∅).

For a nonsingular A, the CCF gives a finer decomposition than the
DM-decomposition, as is expected from the comparison of the admissible

transformations: Pr

(
S O
O I

)

APc for the CCF and PrAPc for the DM-

decomposition. This can be explained also in terms of the LM-surplus func-
tion p of (4.16) and the (original) surplus function p0 of (2.39) defined as

p0(J) = γA(J) − |J |, J ⊆ C,
with

γA(J) = |{i ∈ Row(A) | ∃j ∈ J : Aij �= 0}|, J ⊆ C. (4.46)

Proposition 4.4.5. If A ∈ LM(K,F ) is nonsingular, then min p = min p0
= 0 and Lmin(p) ⊇ Lmin(p0). Hence the decomposition of Col(A) in the CCF
of A is a refinement of the one in the DM-decomposition.

Proof. First note that p(J) ≤ p0(J) for J ⊆ C. By Theorem 4.2.5, A is
nonsingular if and only if min p = 0. This implies min p0 = 0. The inclusion
Lmin(p) ⊇ Lmin(p0) is then evident.

Example 4.4.6. For a singular matrix the CCF is not necessarily a refine-
ment of the DM-decomposition. Consider, e.g., a matrixA ∈ LM(Q,F ; 4, 0, 4)
(for any F ⊇ Q) and its CCF Ā:

A =

1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1

, Ā =

1 1 1 1
0 0 1 1

.

The CCF consists of tails only with C0 = Col(A), |R0| = 2, C∞ = ∅ and
|R∞| = 2. On the other hand, the DM-decomposition evidently decomposes
A into two square blocks. �
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4.4.3 Construction of CCF

This subsection gives a constructive proof of Theorem 4.4.4. The following
mathematical construction of the CCF will be polished up to a practically
efficient algorithm in §4.4.4.

As already mentioned, we consider the submodular function p, the sub-
lattice Lmin(p) of its minimizers, and the associated partition

P(Lmin(p)) = ({C0;C1, · · · , Cb;C∞},�)

of C = Col(A) = Col(Q) = Col(T ) (see (4.16), (4.40), (4.41) for the defi-
nitions of p, Lmin(p), and P(Lmin(p))). In accordance with (2.23) we define

Xk =
k⋃

l=0

Cl for k = 0, 1, · · · , b to obtain

X0 (= minLmin(p))⊂
�=X1

⊂
�=X2

⊂
�= · · · ⊂

�=Xb (= maxLmin(p)), (4.47)

which is a maximal chain of Lmin(p) by (4.42).
Note that the LM-admissible transformation (4.35) is equivalent to

Pr

(
S O
O PT

)(
Q
T

)

Pc, (4.48)

which contains another permutation matrix PT . In what follows we will find
these four matrices Pc, S, PT , Pr that bring about the CCF.

[Matrix Pc]: The permutation matrix Pc is such that the column set C is
reordered as C0, C1, · · · , Cb, C∞, where the ordering of columns within each
block is arbitrary.

[Matrix S]: Recall the notation ρ(J) = rankQ[RQ, J ], J ⊆ C, and note
that Col(QPc) can be identified with C through permutation Pc. By the
usual row elimination operations, we can bring QPc into a block-triangular
matrix (in the sense of §2.1.4) with column partition (C0;C1, · · · , Cb;C∞).
More precisely, we can find a nonsingular matrix S ∈ GL(mQ,K) and a
partition

(RQ0;RQ1, · · · , RQb;RQ∞) (4.49)

of Row(SQPc) such that Q̄ = SQPc satisfies

Q̄[RQk, Cl] = O (0 ≤ l < k ≤ ∞) (4.50)

and

rank Q̄[RQ0, C0] = |RQ0| = ρ(X0),
rank Q̄[RQk, Ck] = |RQk| = ρ(Xk) − ρ(Xk−1) (k = 1, · · · , b), (4.51)

|RQ∞| = mQ − ρ(Xb).
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We may further impose that

For 0 ≤ k < l ≤ ∞, the nonzero row vectors of Q̄[RQk, Cl] are
linearly independent of the row vectors of Q̄[RQl, Cl]. (4.52)

[Matrix PT ]: Define a partition of RT = Row(T ):

(RT0;RT1, · · · , RTb;RT∞) (4.53)

by

RT0 = Γ (X0),
RTk = Γ (Xk) \ Γ (Xk−1) (k = 1, · · · , b), (4.54)
RT∞ = RT \ Γ (Xb)

using the notation Γ (J) = {i ∈ RT | ∃j ∈ J : Tij �= 0} of (4.8). Let PT be
a permutation matrix which permutes RT compatibly with (4.53), so that
T̄ = PTTPc is in an explicit block-triangular form:

T [RTk, Cl] = T̄ [RTk, Cl] = O (0 ≤ l < k ≤ ∞), (4.55)

where it is understood that Row(T̄ ) = Row(T ) and Col(T̄ ) = Col(T ) = C
through the permutations PT and Pc. Note that

|RT0| = γ(X0),
|RTk| = γ(Xk) − γ(Xk−1) (k = 1, · · · , b), (4.56)
|RT∞| = mT − γ(Xb)

with γ(J) = |Γ (J)|.
[Matrix Pr]: We have constructed two block-triangular matrices Q̄ and

T̄ , the former being block-triangularized with respect to the partitions (4.41)
and (4.49) and the latter with respect to (4.41) and (4.53). Put these two
matrices together:

Ā =
(
Q̄
T̄

)

,

and define a partition of Row(Ā):

(R0;R1, · · · , Rb;R∞) (4.57)

by Rk = RQk ∪RTk for k = 0, 1, · · · , b,∞. By (4.50) and (4.55), Ā is (essen-
tially) block-triangularized with respect to the partitions (4.41) and (4.57),
namely,

Ā[Rk, Cl] = O (0 ≤ l < k ≤ ∞).

To obtain an explicit block-triangular form, we use a matrix Pr that reorders
Row(Ā) compatibly with (4.57), and redefine Ā to be PrĀ.
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The matrix Ā constructed above is LM-equivalent to A. Obviously, it is
block-triangularized, satisfying (4.43) in (B1). We go on to prove (B2), (B3),
(B4), and (B5), while deferring the proof of the claims (4.44) and (4.45)
concerning partial order.

[Proof of (B2)]: Since C0 ∈ Lmin(p), ρ(C0) = |RQ0|, and γ(C0) = |RT0|,
we have

0 = p(∅) ≥ min p = p(C0) = ρ(C0) + γ(C0) − |C0| = |R0| − |C0|.

Hence |R0| ≤ |C0|. If the equality holds here, then p(∅) = min p, i.e., ∅ ∈
Lmin(p). Since C0 = minLmin(p), this implies C0 = ∅ and therefore R0 = ∅.

For k = 1, · · · , b, we have p(Xk−1) = p(Xk) (= min p), i.e.,

ρ(Xk−1) + γ(Xk−1) − |Xk−1| = ρ(Xk) + γ(Xk) − |Xk|.

This reduces to |Rk| = |Ck| by (4.51) and (4.56).
If C∞ �= ∅, then p(C) > min p = p(Xb), i.e.,

ρ(C) + γ(C) − |C| > ρ(Xb) + γ(Xb) − |Xb|.

Combination of this with

|R| ≥ ρ(C) + γ(C), |R∞| = |R| − ρ(Xb) − γ(Xb), |C∞| = |C| − |Xb|

yields |R∞| > |C∞|.

[Proof of (B3)]: Put Yk =
k⋃

l=0

Rl for k = 0, 1, · · · , b, and note

min p = p(Xk) = ρ(Xk) + γ(Xk) − |Xk| = |Yk| − |Xk| (k = 0, 1, · · · , b).
(4.58)

For k = 0, 1, · · · , b, it follows from (4.43), Theorem 4.2.5, and (4.58) that

rank Ā[Yk,Xk] = rank Ā[Row(Ā),Xk] = rankA[R,Xk]
= min{p(X) | X ⊆ Xk} + |Xk| = |Yk|,

which implies

rank Ā[Rk, Ck] = |Rk| (k = 0, 1, · · · , b).

Since Ā[R∞,Xb] = O and rank Ā[Yb,Xb] = |Yb|, we have

rank Ā[R∞, C∞] = rank Ā− |Yb| = min p+ |C| − |Yb| = |C| − |Xb| = |C∞|.

[Proof of (B4)]: By (4.43) and Theorem 4.2.5,

rank Ā[R0, C0 \ {j}] = min{p(X) | X ⊆ C0 \ {j}} + |C0| − 1
≥ min p+ |C0| = |R0|.
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For k = 1, · · · , b, put C ′ = Xk \ {j}. Similarly we have

rank Ā[Rk \ {i}, Ck \ {j}] = rank Ā[R \ {i}, C ′] − |Yk−1|
= min{p′(X) | X ⊆ C ′} + |C ′| − |Yk−1|, (4.59)

where p′ : 2C′ → Z, the LM-surplus function associated with Ā[R \ {i}, C ′],
is given by

p′(X) = rank Q̄[Row(Q̄) \ {i},X] + |Γ (X) \ {i}| − |X|, X ⊆ C ′.

We see p(X) − 1 ≤ p′(X) ≤ p(X) for X ⊆ C ′, and p′(X) = p(X) for
X ⊆ Xk−1. We further claim that min p′ = min p, since otherwise there
exists X ⊆ C ′ with X ∈ Lmin(p) and X �⊆ Xk−1, which, combined with
Xk−1 ∈ Lmin(p), implies (cf. Theorem 2.2.5) that X ∪Xk−1 ∈ Lmin(p) and
Xk−1

⊂
�=X ∪ Xk−1

⊂
�=Xk, a contradiction to our assumption that (4.47) is a

maximal chain. Hence (4.59) is equal to min p+|C ′|−|Yk−1| = |C ′|−|Xk−1| =
|Ck|−1. The final case, rank Ā[R∞\{i}, C∞], can be treated mutatis mutandis
(by replacing C ′ with C, the index k with ∞, and k − 1 with b).

[Proof of (B5)]: Since Â is a block-triangular matrix with the rank
conditions in (B3), it holds that

rank Â = |C| − |X̂k| + |Ŷk| (k = 0, 1, · · · , q),

where

Ŷk =
k⋃

l=0

R̂l, X̂k =
k⋃

l=0

Ĉl (k = 0, 1, · · · , q).

On the other hand, since Â and A are LM-equivalent, they share the same
LM-surplus function p (i.e., the same ρ and γ). By virtue of this invariance
of p as well as Theorem 4.2.5, the rank of Â can be expressed as

rank Â = min p+ |C|

in terms of the original LM-surplus function p. Hence follows

min p = |Ŷk| − |X̂k| = ρ(X̂k) + γ(X̂k) − |X̂k| = p(X̂k),

where the second equality is due to the assumed rank condition of Â. That
is, X̂k ∈ Lmin(p) for k = 0, 1, · · · , q. This implies the claim of (B5).

[Proof of (4.44)]: First we note that Lmin(p) is both ρ- and γ-skeleton,
since ρ and γ are submodular while p = ρ + γ − | · | is modular on Lmin(p)
(see §2.2.2 for the definition of skeleton). It then follows from Theorem 2.2.13
that

|RQk| = ρ(〈Ck〉 ∪ Ck) − ρ(〈Ck〉) (k = 0, 1, · · · , b), (4.60)
|RTk| = γ(〈Ck〉 ∪ Ck) − γ(〈Ck〉) (k = 0, 1, · · · , b), (4.61)
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where

〈Ck〉 =
⋃

{Cj | Cj ≺ Ck} =
⋃

{Cj | Cj � Ck, Cj �= Ck}

for k = 0, 1, · · · , b,∞. It is emphasized that C0 ⊆ 〈Ck〉 for k = 1, · · · , b,∞
according to the convention of (2.26), whereas 〈C0〉 = ∅.

Lemma 4.4.7. For 1 ≤ k, l ≤ b, it holds that Q̄[RQk, Cl] �= O ⇒ Ck � Cl.

Proof. Put 〈RQl〉 =
⋃

{RQk | Ck ≺ Cl} for l = 0, 1, · · · , b. It suffices to show

Q̄[Row(Q̄) \ (〈RQl〉 ∪RQl), Cl] = O (4.62)

for l = 0, 1, · · · , b. We prove (4.62) by induction on l. First, (4.62) for l = 0
holds true by (4.50). Next we consider a general l ≥ 1. If Cj ⊆ 〈Cl〉, then
j < l by (4.42) and therefore, by the induction hypothesis,

Q̄[Row(Q̄) \ (〈RQj〉 ∪RQj), Cj ] = O.

Since 〈RQj〉 ∪RQj ⊆ 〈RQl〉, this yields

Q̄[Row(Q̄) \ 〈RQl〉, Cj ] = O

for all j with Cj ⊆ 〈Cl〉. Therefore,

Q̄[Row(Q̄) \ 〈RQl〉, 〈Cl〉] = O. (4.63)

From this and (4.51) follows

|〈RQl〉| = rank Q̄[〈RQl〉, 〈Cl〉] = rank Q̄[Row(Q̄), 〈Cl〉] = ρ(〈Cl〉).

Hence, by (4.63) and (4.60),

rank Q̄[Row(Q̄) \ 〈RQl〉, Cl] = rank Q̄[Row(Q̄), 〈Cl〉 ∪ Cl] − |〈RQl〉|
= ρ(〈Cl〉 ∪ Cl) − ρ(〈Cl〉) = |RQl|.

This means (4.62) by the condition (4.52).

Lemma 4.4.8. RTk = Γ (Ck) \ Γ (〈Ck〉) (k = 1, · · · , b).

Proof. Since RTk = Γ (Xk−1 ∪Ck) \Γ (Xk−1) = Γ (Ck) \Γ (Xk−1) (cf. (4.54))
and Γ (〈Ck〉 ∪ Ck) \ Γ (〈Ck〉) = Γ (Ck) \ Γ (〈Ck〉), it follows from (4.61) that

|RTk| = |Γ (Ck) \ Γ (Xk−1)| = |Γ (Ck) \ Γ (〈Ck〉)|,

in which Γ (Xk−1) ⊇ Γ (〈Ck〉). Therefore, RTk = Γ (Ck) \ Γ (〈Ck〉).

Lemma 4.4.9. For 1 ≤ k, l ≤ b, it holds that T̄ [RTk, Cl] �= O ⇒ Ck � Cl.
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Proof. Suppose that T̄ [RTk, Cl] �= O, where we may assume 1 ≤ k < l ≤ b.
Then, ∃ i ∈ RTk, ∃ j ∈ Cl : Tij �= 0. This implies i �∈ RTl and i ∈ Γ (Cl).
With the expression RTl = Γ (Cl) \ Γ (〈Cl〉) (cf. Lemma 4.4.8) we see that
i ∈ Γ (〈Cl〉), i.e.,

∃ l1 : k ≤ l1 < l0, Cl1 ≺ Cl0 , T̄ [RTk, Cl1 ] �= O,
where l0 = l. Repeating this, we see that ∃ l1,∃ l2, · · · ,∃ ls: Ck = Cls ≺
Cls−1 ≺ · · · ≺ Cl1 ≺ Cl0 = Cl.

The claim (4.44) is established by Lemmas 4.4.7 and 4.4.9, since Ā[Rk, Cl]
�= O if and only if Q̄[RQk, Cl] �= O or T̄ [RTk, Cl] �= O.

[Proof of (4.45)]: Suppose that Ck ≺· Cl. We may assume 1 ≤ k < l ≤ b
by (4.42). Put

I = {i | k < i < l, Ck ≺ Ci}, I∗ = I ∪ {k},
J = {j | k < j < l} \ I, J∗ = J ∪ {l}.

We have (i) i ∈ I∗, j ∈ J ⇒ Ci �� Cj , and (ii) i ∈ I ⇒ Ci �� Cl. The
statement (i) is due to the transitivity of the partial order and the statement
(ii) is by the assumption Ck ≺· Cl. It then follows that

i ∈ I∗, j ∈ J∗, (i, j) �= (k, l) ⇒ Ci �� Cj ⇒ Ā[Ri, Cj ] = O,

where (4.44) is used.
If Ā[Rk, Cl] = O were the case, we would have Ā[

⋃
i∈I∗ Ri,

⋃
j∈J∗ Cj ] = O.

Then ρ(X) + γ(X) = |Yk−1| +
∑

j∈J∗ |Rj | for X = Xk−1 ∪
(⋃

j∈J∗ Cj

)
and

Yk−1 =
⋃k−1

l=0 Rl, and therefore X belongs to Lmin(p), since

p(X) = (ρ(X) + γ(X)) − |X|

=

⎛

⎝|Yk−1| +
∑

j∈J∗

|Rj |

⎞

⎠−

⎛

⎝|Xk−1| +
∑

j∈J∗

|Cj |

⎞

⎠

= |Yk−1| − |Xk−1| = min p,

where (B2) and (4.58) are used. Hence we have X ∈ Lmin(p), Ck �⊆ X, and
Cl ⊆ X. This contradicts the definition (2.24) of Ck � Cl. Hence we must
have Ā[Rk, Cl] �= O, completing the proof of (4.45).

The proof of Theorem 4.4.4 is completed.

Remark 4.4.10. The construction of the CCF is a natural generalization of
that of the DM-decomposition. Note in particular that both rely on the same
decomposition principle, the Jordan–Hölder-type theorem for submodular
functions, which is applied to the surplus functions, p0 and p, respectively.
The admissible transformations are not explicit in this. The properties of
the resulting decompositions are established in relation to the admissible
transformations by virtue of the rank formulas expressed in terms of the
surplus functions. The corresponding items are compared in Table 4.1. �
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Table 4.1. DM-decomposition and CCF

DM-decomposition CCF

matrix generic matrix T LM-matrix
(

Q
T

)

surplus function p0 = γ − | · | p = ρ + γ − | · |
rank formula Theorem 2.2.17 (Hall–Ore): Theorem 4.2.5:

rank T = min p0 + |C| rank
(

Q
T

)
= min p + |C|

transformation PrTPc Pr

(
S O
O I

)(
Q
T

)
Pc

4.4.4 Algorithm for CCF

We describe here an efficient (polynomial time) algorithm for computing the
CCF of an LM-matrix A =

(
Q
T

)
∈ LM(K,F ;mQ,mT , n). The fundamental

idea of the algorithm is to combine the following facts that have already been
established.

1. The rank of an LM-matrix is characterized by the associated LM-surplus
function p (cf. Theorem 4.2.5), and this characterization can be reformu-
lated in terms of an independent matching problem (cf. Theorem 4.2.18).

2. The CCF is constructed from Lmin(p), the family of the minimizers of
the submodular function p (cf. Theorem 4.4.4), and moreover Lmin(p) is
closely related to Lmin(κ), the family of the minimizers of the cut capacity
function κ of the associated independent matching problem (cf. Lemma
4.2.20).

3. In an independent matching problem, in general, Lmin(κ) induces a de-
composition of the vertex set (the min-cut decomposition) and moreover
the decomposition can be computed by an efficient algorithm (cf. Lemma
2.3.35).

Namely, the fundamental idea of the algorithm is to compute the CCF of an
LM-matrix by finding the min-cut decomposition of the independent match-
ing problem associated with the LM-matrix.

Before going on to a detailed description of the concrete procedure, it
would be worth while demonstrating a connection between the CCF and the
DM-decomposition in the case of an LM-matrix A with Q of full-row rank.
The validity of this procedure follows from that of the general case.

Algorithm for the CCF of A with Q of full-row rank

Step 1: Find J ⊆ C such that Q[RQ, J ] is nonsingular and rankA = |J | +
term-rankT [RT , C \J ] (such J exists by Lemma 4.2.1 or Theorem 4.2.3).

Step 2: Put

S := Q[RQ, J ]−1, A′ :=
(
S O
O I

)

A. (4.64)



182 4. Theory and Application of Mixed Matrices

Step 3: Find the DM-decomposition Ā of A′, namely, Ā := Pr A
′ Pc with

suitable permutation matrices Pr and Pc. (Ā is the CCF of A.) �

Example 4.4.11. For the LM-matrix of Example 4.4.3, which is nonsingu-
lar, we can take J = {ξ5, ξ3, ξ4, η4, η3} in Step 1. The inverse of

Q[RQ, J ] =

ξ5 ξ3 ξ4 η4 η3
1 1 1 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 −1 1

coincides with the transformation matrix S in Example 4.4.3. �

The following is an algorithm for finding the CCF of a general LM-matrix.
Steps 1–3 are identical with the algorithm for computing the rank given in
§4.2.4, except that at the end of Step 2 here we go on to Step 4 for decompo-
sition. The algorithm works with the same directed graph G̃ = G̃M = (Ṽ , Ẽ)
that has vertex set Ṽ = RT ∪CQ ∪C and arc set Ẽ = ET ∪EQ ∪E+ ∪M◦,
where RT = Row(T ), CQ = {jQ | j ∈ C} is a disjoint copy of C = Col(A),

ET = {(i, j) | i ∈ RT , j ∈ C, Tij �= 0}, EQ = {(jQ, j) | j ∈ C},

and E+ and M◦ are defined and updated in the algorithm; E+ represents
the structure of the matroid M(Q) and M◦ is the set of reoriented arcs in an
independent matching M ⊆ ET ∪ EQ. Recall also that E+ and M◦ consist
of arcs, respectively, from CQ to CQ and from C to RT ∪ CQ. The array S,
at the termination of the algorithm, gives the matrix S in the LM-admissible
transformation (4.35). When the transformation matrix is not needed, it may
simply be eliminated from the computation without any side effect.

Algorithm for the CCF of an LM-matrix A

Step 1:
M◦ := ∅; base[i] := 0 (i ∈ RQ); P [i, j] := Qij (i ∈ RQ, j ∈ C);
S := unit matrix of order mQ.

Step 2:
I := {i ∈ C | iQ ∈ ∂−M◦ ∩ CQ};
J := {j ∈ C \ I | ∀h : base[h] = 0 ⇒ P [h, j] = 0};
S+

T := RT \ ∂−M◦; S+
Q := {jQ ∈ CQ | j ∈ C \ (I ∪ J)};

S+ := S+
T ∪ S+

Q ; S− := C \ ∂+M◦;
E+ := {(iQ, jQ) | h ∈ RQ, j ∈ J, P [h, j] �= 0, i = base[h] �= 0};

[Ẽ is updated accordingly]
If there exists in G̃ = (Ṽ , Ẽ) a directed path from S+ to S− then go to
Step 3; otherwise (including the case where S+ = ∅ or S− = ∅) go to
Step 4.
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Step 3:
Let L (⊆ Ẽ) be (the set of arcs on) a shortest path from S+ to S−

(“shortest” in the number of arcs);
M◦ := (M◦ \ L) ∪ {(j, i) | (i, j) ∈ L ∩ET } ∪ {(j, jQ) | (jQ, j) ∈ L ∩EQ};
If the initial vertex (∈ S+) of the path L belongs to S+

Q , then do the
following:

{Let jQ (∈ S+
Q ⊆ CQ) be the initial vertex;

Find h such that base[h] = 0 and P [h, j] �= 0;
[j ∈ C corresponds to jQ ∈ CQ]

base[h] := j; w := 1/P [h, j];
P [k, l] := P [k, l] − w × P [k, j] × P [h, l] (k ∈ RQ \ {h}, l ∈ C \ {j});
S[k, l] := S[k, l] − w × P [k, j] × S[h, l] (k ∈ RQ \ {h}, l ∈ RQ);
P [k, j] := 0 (k ∈ RQ \ {h}) };

For all (iQ, jQ) ∈ L ∩ E+ (in the order from S+ to S− along L) do the
following:

{Find h such that i = base[h]; [j ∈ C corresponds to jQ ∈ CQ]
base[h] := j; w := 1/P [h, j];
P [k, l] := P [k, l] − w × P [k, j] × P [h, l] (k ∈ RQ \ {h}, l ∈ C \ {j});
S[k, l] := S[k, l] − w × P [k, j] × S[h, l] (k ∈ RQ \ {h}, l ∈ RQ);
P [k, j] := 0 (k ∈ RQ \ {h}) };

Go to Step 2.
Step 4:

Let V∞ (⊆ Ṽ ) be the set of vertices reachable from S+ by a directed
path in G̃;
Let V0 (⊆ Ṽ ) be the set of vertices reachable to S− by a directed path
in G̃;
C0 := C ∩ V0; C∞ := C ∩ V∞;
Let G̃′ denote the graph obtained from G̃ by deleting the vertices V0∪V∞
(and arcs incident thereto);
Decompose G̃′ into strongly connected components {Vλ | λ ∈ Λ} (Vλ ⊆
Ṽ ), where Vλ � Vλ′ if and only if there is a directed path from Vλ to Vλ′ ;
Let {Ck | k = 1, · · · , b} be the subcollection of {C∩Vλ | λ ∈ Λ} consisting
of all the nonempty sets C ∩ Vλ, where Ck’s are indexed in such a way
that for l < k there does not exist a directed path in G̃′ from Ck to Cl;
R0 := (RT ∩ V0) ∪ {h ∈ RQ | base[h] ∈ C0};
R∞ := (RT ∩ V∞) ∪ {h ∈ RQ | base[h] ∈ C∞ ∪ {0}};
Rk := (RT ∩ Vk) ∪ {h ∈ RQ | base[h] ∈ Ck} (k = 1, · · · , b);

Ā := Pr

(
P
T

)

Pc, where the permutation matrices Pr and Pc are

determined so that the rows and the columns of Ā are ordered as
(R0;R1, · · · , Rb;R∞) and (C0;C1, · · · , Cb;C∞), respectively. �

The matrix Ā obtained in Step 4 is the CCF of the input matrix A, where
(R0;R1, · · · , Rb;R∞) and (C0;C1, · · · , Cb;C∞) give the partitions of the row
set and the column set, respectively. The partial order among the blocks is
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induced from the partial order among the strongly connected components
{Vλ | λ ∈ Λ}. The strong component decomposition {Vλ | λ ∈ Λ} is es-
sentially the same as the min-cut decomposition (cf. §2.3.5) of the associated
independent matching problem, except that the partial order is reversed here.

The above algorithm runs in O(n3 log n) time with arithmetic operations
in the subfield K only, where m = mQ +mT = O(n) is assumed, for simplic-
ity, in this complexity bound. Note that Step 4 runs in O(n2) time, whereas
Steps 1–3 in O(n3 log n) time (cf. §4.2.4). The algorithm will be efficient
enough also for practical applications. It can be made more efficient if we
first compute the DM-decomposition by purely graph-theoretic algorithm
and then apply the above algorithm to each of the DM-irreducible compo-
nents; such two-stage procedure works for a nonsingular A, since the CCF
is a refinement of the DM-decomposition. See Murota–Scharbrodt [241] for
improvements in implementation and Gabow and Xu [84] for a theoretical
complexity bound of (n2.62) for the CCF computation.

Example 4.4.12. The algorithm above is illustrated here for the 4× 5 LM-
matrix used in Examples 4.2.6, 4.2.19 and 4.2.22. After repeating Step 1 to
Step 3 (cf. Example 4.2.22) the algorithm reaches
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Fig. 4.15. Graph G̃′ (Vλ1 , Vλ2 : strongly connected components)

Step 4: V∞ := ∅; V0 := {x3, x4, x3Q, x4Q}; C0 := {x3, x4}; C∞ := ∅;
The graph G̃′ of Fig. 4.15 is obtained;
Strongly connected components of G̃′ are given by {Vλ1 , Vλ2}, where
Vλ1 = {x5Q}, Vλ2 = {x1, x2, x5, x1Q, x2Q, f1, f2} and Vλ1 � Vλ2 ;
Since C ∩ Vλ1 = ∅, we have b := 1 and C1 := C ∩ Vλ2 = {x1, x2, x5};
R0 := {r2}; R∞ := ∅; R1 := {r1, f1, f2};
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Ā := Pr

(
P
T

)

Pc =

x3 x4 x1 x2 x5

r2 1 1 0 2 0
r1 1 −1 0
f1 t1 0 t2
f2 0 t3 t4

is the CCF. �

Example 4.4.13. This is an example with a nonempty vertical tail. Con-
sider

A =
(
Q
T

)

=

x1 x2 x3 x4 x5 x6 x7

1 0 0 1 0 1 −1
−2 0 1 −2 0 0 2
1 0 0 1 1 1 −1

f1 t1 t2
f2 t3 t4
f3 t5 t6 t7
f4 t8 t9 t10 t11
f5 t12
f6 t13

,

where T = {ti | i = 1, · · · , 13} is the set of algebraically independent pa-
rameters. The bipartite graph G = (V +, V −;E) with V + = RT ∪ CQ,
V − = C for the independent matching problem is depicted in Fig. 4.16, where
RT = {f1, · · · , f6}, C = {x1, · · · , x7} and CQ = {x1Q, · · · , x7Q}. A maximum
independent matching M of size 7 is found. The auxiliary graph G̃ is shown
in Fig. 4.17, from which we obtain the partition {V0;Vλ1 , · · · , Vλ5 ;V∞} of
Ṽ = RT ∪ CQ ∪ C, where

V0 = ∅, V∞ = {f1, f2, f5, f6, x5Q, x1, x5, x6},
Vλ1 = {x2Q}, Vλ2 = {f3, f4, x4Q, x7Q, x2, x4, x7}, Vλ3 = {x3Q, x3}
Vλ4 = {x1Q}, Vλ5 = {x6Q},

with the partial order shown in Fig. 4.18. For the partition of the column set
we have (C0;C1, C2;C∞) with

C0 = ∅, C1 = C ∩ Vλ2 = {x2, x4, x7}, C2 = C ∩ Vλ3 = {x3},
C∞ = C ∩ V∞ = {x1, x5, x6}.

Notice that C1 and C2 have no order relation with each other. The CCF of
A is given by
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Fig. 4.16. Independent matching problem of Example 4.4.13
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Fig. 4.17. Auxiliary graph G̃ of Example 4.4.13 (©: arc in a maximum inde-
pendent matching M ; +: vertex in S+; S− = ∅)
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V∞
f1, f2, f5, f6

x5Q, x1, x5, x6

Vλ4

x1Q

Vλ5

x6Q

Vλ2

f3, f4, x4Q, x7Q

x2, x4, x7

Vλ3

x3Q, x3

Vλ1

x2Q

Fig. 4.18. Partial order of Example 4.4.13 (V0 = ∅)

Ā =

C1 C2 C∞
x2 x4 x7 x3 x1 x5 x6

0 1 −1 1 1
f3 t5 t6 0 t7
f4 t8 t9 t11 t10

1 2
0 1 0

f1 t1 0 t2
f2 t3 t4 0
f5 0 0 t12
f6 0 0 t13

.

�

4.4.5 Decomposition of Systems of Equations by CCF

When solving a system of linear equations Ax = b repeatedly for right-hand
side vectors b = b(θ) with varying parameters θ but with a fixed coefficient
matrix A, it is standard to first decompose A (possibly with permutations of
rows and columns) into LU-factors as A = LU , and then solve the triangular
systems Ly = b, Ux = y for different values of b = b(θ). It is important here
that the LU-factors of A can be determined independently of the parameters
θ.

No less of interest are the cases where the coefficient A, as well as b,
changes with parameters, but with its zero/nonzero pattern kept fixed. Such
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situations often arise in practice, for example, in solving a system of non-
linear equations by the Newton method, or in determining the frequency
characteristic of an electrical network by computing its responses to inputs
of various frequencies. In this case we cannot calculate the LU-factors of A
in advance, so that we usually resort to graph-theoretic methods and rear-
range the equations and the variables to obtain a block-triangular form. In
particular, the block-triangularization based on the DM-decomposition is of
fundamental importance. Each time the parameter values are specified, the
equations corresponding to the DM-blocks may be solved either by direct
inversion through LU-decomposition or by some iterative method.

The above two approaches, namely, the LU-decomposition and the DM-
decomposition, are two extremes in that the former applies to a constant
matrix A with fixed numerical values and the latter to a symbolic matrix
A with a fixed pattern. It is often the case, however, that the matrix A is a
mixture of constant numbers and symbols, which may be modeled as a mixed
matrix under the assumption of algebraic independence of the symbols.

As a typical situation, let us consider the iterative solution of a system of
linear/nonlinear equations f(x) = 0 by the Newton method. This amounts to
solving J(x)Δx = −f(x) for a correction Δx through the LU-decomposition
of J(x), where J(x) is the Jacobian matrix of f(x). The equations may be
divided into linear and nonlinear parts as f(x) = Qx + g(x), where Q is
a constant matrix. Accordingly, we have J(x) = Q + T (x), where T (x) is
the Jacobian matrix of the nonlinear part g(x). Then we may treat J(x) =
Q+T (x) as a mixed matrix, regarding (or modeling) the nonvanishing entries
of T (x) as independent symbols, even when the nonvanishing entries of T (x)
are subject to algebraic relations.

We will describe here how the CCF can be utilized to generate an efficient
solution of a system of equations

A(θ)x = b(θ) (4.65)

for varying values of parameters θ, where x, b ∈ Rn. We express the coefficient
matrix as

A(θ) = Q+ T (θ)

and regard it as a mixed matrix with ground field Q or R treating the
nonvanishing entries of T (θ) as if they were algebraically independent. As
discussed in §4.1, we may introduce an auxiliary vector w to obtain the
augmented system of equations with the LM-matrix Ã of (4.4) or (4.6) as the
coefficient matrix (where we may put ti = 1 for all i).

The CCF of Ã, being a block-triangular matrix, determines a hierarchical
decomposition of the whole augmented system into smaller subsystems. Since
the LM-admissible transformation (4.35) is more general than permutations,
the problem decomposition by the CCF is finer than the one by the DM-
decomposition. The crucial point is that the transformation (4.35) needed in
the CCF decomposition is determined independently of the particular values
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of θ and hence this procedure is feasible in practice. That is, we can use one
and the same decomposition for varying values of θ and then we may repeat-
edly solve the subproblems with the diagonal CCF-blocks as the coefficients
whenever the parameter values are specified.

For the subproblems to be solved uniquely, the diagonal blocks of the CCF
of Ã must be nonsingular. If the assumption of the algebraic independence
of the nonvanishing entries of T (θ) is literally met, the nonsingularity of the
diagonal blocks is guaranteed by Theorem 4.4.4. Even if the assumption is not
satisfied, the diagonal blocks must be nonsingular if the original coefficient
matrix A is nonsingular at all, which fact is obvious from the block-triangular
structure of the matrix. Therefore the decomposition procedure above can be
carried out successfully if the original system is uniquely solvable at all.

Let Āk be the kth diagonal block of the CCF of Ã in (4.4) (with ti = 1),
which is the coefficient matrix of the kth subproblem. The row set of Āk is
divided into RQk and RTk. The column set, say Ck, is also partitioned as
Ck = Cwk ∪ Cxk, where Cwk and Cxk correspond to part of the variables w
and x, respectively. In what follows we show that

min(|Cxk|, |RTk|) (4.66)

can be adopted as a rough measure for the substantial size of the subproblem.
The kth subproblem may be solved as follows. Since Āk is LM-irreducible,

the T -part of Āk does not have zero columns. Hence the subproblem can be
expressed as

⎛

⎝

Cwk Cxk

RQk Q1 Q2

RTk −I T1

↓ O T2

⎞

⎠
(

wk

xk

)

=

⎛

⎝
b̄k

0
0

⎞

⎠ ,

where b̄k = b̄k(θ) is to be computed from b(θ) each time θ is given. On
eliminating the auxiliary variable wk we obtain a system of equations

(
Q1T1 +Q2

T2

)

xk =
(

b̄k

0

)

in |Cxk| variables. The amount of computation needed to determine xk in
this way may be estimated roughly by

2
(
|RQk||Cwk||Cxk| + |Cxk|3/3

)
.

Another approach to the subproblem may be conceivable that makes no
distinction between wk and xk. Since Āk[RQk, Ck] is of full-row rank, we can
make the subsystem into the form

RQk

RTk

(
I Q1

T1 T2

)(
z1

z2

)

=
(

b̄k

0

)

(4.67)
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by a nonsingular transformation independent of θ, where (z1,z2) is a rear-
rangement of (wk,xk). The Gaussian elimination procedure applied to (4.67),
possibly with permutations of rows in RTk, can be done with

2
(
|RTk|2|RQk| + |RTk|3/3

)

arithmetic operations.
In practical applications, the following procedure would be recommended

for the solution of (4.65).

[Problem decomposition by the CCF]

1. Introduce auxiliary variables to separate the equations that depend on
the parameters. Denote by Ã the coefficient matrix of the augmented
system, which is now in the form:

Ã =

(
Q̃

T̃ (θ)

)

.

To be more precise, express the ith equation of (4.65) as
∑

j∈Ji

aijxj +
∑

j∈Ki

aij(θ)xj = bi(θ).

In case |Ji| ≥ 1 and |Ki| ≥ 1, we introduce an auxiliary variable, say wi,
to obtain ∑

j∈Ji

aijxj + wi = bi(θ),

∑

j∈Ki

aij(θ)xj − wi = 0.

Denoting by m1 the number of auxiliary variables thus introduced, we
see that m1 ≤ n and Ã is an (m1 + n) × (m1 + n) matrix.

2. Find the DM-decomposition of Ã into blocks (Ãkl | 1 ≤ k, l ≤ D) to
obtain the block-triangularization:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ã11 Ã12 Ã13 · · · Ã1D

O Ã22 Ã23 · · · Ã2D

O O
. . .

...

O O
. . . . . .

...
O O · · · O ÃDD

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

z1

z2
...
...

zD

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b̃1(θ)
b̃2(θ)

...

...
b̃D(θ)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
,

where z = (z1, · · · ,zD) is a rearrangement of the variables (x,w).
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3. For each DM-component Ãkk, which is an LM-matrix of a smaller size:

Ãkk =

(
Q̃k

T̃k(θ)

)

,

find its CCF:
SkÃkk = (Āk;ij | 1 ≤ i, j ≤ Dk)

where Āk;ij = O for i > j, and Sk is a constant matrix representing the
row transformation of (4.35) and the column permutation is suppressed
for simplicity. Accordingly put zk = (zk;1, · · · ,zk;Dk

).
4. Each time the value of θ is given, solve the subproblems as follows:

for k := D downto 1 do
Put b̄k := Sk [b̃k − (Ãk,k+1zk+1 + · · · + ÃkDzD)].
for i := Dk downto 1 do

Solve

Āk;iizk;i = b̄k;i − (Āk;i,i+1zk;i+1 + · · · + Āk;iDk
zDk

) (4.68)

for zk;i, where (b̄k;1, · · · , b̄k;Dk
) = b̄k. �

It should be noted that there is no need to keep Sk explicitly. In solving (4.68),
the LU-decomposition of Āk;ii is to be determined each time θ is given.

4.4.6 Application of CCF

The decomposition technique based on the CCF, as described in §4.4.5, is ap-
plied to a series of example problems: an electrical network, the hypothetical
ethylene dichloride production system of Example 3.1.3, the reactor-separator
model of Example 4.3.10, the hydrogen production system of Example 4.3.11,
and a collection of test matrices taken from the Harwell–Boeing database.

Example 4.4.14. The decomposition by the CCF is applied to a simple
electrical network of Fig. 4.19, which is taken from Nakamura [243, Example
4.1.3]. It consists of six resistors of resistances ri (branch i) (i = 1, · · · , 6), and
three voltage-controlled current sources (branch i) with mutual conductances
gi (i = 7, 8, 9); the current sources of branches 7, 8, and 9 are controlled
respectively by the voltages across branches 2, 4, and 5. Then the current ξi

in and the voltage ηi across branch i (i = 1, · · · , 9) are to satisfy a system of
equations of the form (3.2) with the coefficient matrix
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r1

r2

r3

r4

r5

r6

ξ7 = g7η2

	

ξ8 = g8η4



ξ9 = g9η5



Fig. 4.19. An electrical network of Example 4.4.14

A =

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 η1 η2 η3 η4 η5 η6 η7 η8 η9
1 0 0 0 0 0 −1 0 0
0 1 1 0 0 0 1 0 0
0 1 0 1 1 0 1 0 −1
0 0 0 0 0 1 0 0 −1
0 1 0 1 0 0 1 1 0

0 −1 1 1 0 0 0 0 0
−1 0 1 1 0 0 −1 0 0
0 0 0 1 −1 0 0 −1 0
0 0 0 0 −1 −1 0 0 −1

r1 −1
r2 −1
r3 −1
r4 −1
r5 −1
r6 −1

−1 g7 0
−1 g8 0

−1 g9 0

.

The unique solvability of the network reduces to the nonsingularity of the
matrix A.

We will regard ri (i = 1, · · · , 6) and gi (i = 7, 8, 9) as real numbers which
are algebraically independent over the field of rationals. Then we have A ∈
MM(Q,R; 18, 18). Here we would rather treat A as an LM-matrix, just as
we did in Example 4.3.9, by multiplying the last 9 rows by independent
transcendentals. That is, we multiply the last 9 equations by transcendental
numbers and express the modified coefficient, which we denote also as A, in
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the form of A =
(

Q
T

)
with Q being the first 9 rows and T being the last 9

rows: A ∈ LM(Q,R; 9, 9, 18).
Then the CCF of A is found to be

C1 C2 C3 C4 C5 C6 C7 C8 C9

η7 η1 ξ
1 η8 η9 η6 ξ

6 η5 ξ
5 ξ9 ξ2 η2 ξ

3 η3 ξ
4 η4 ξ7 ξ8

−1 −1 1 1
−1 r1

1 −1
−1 −1 1

−1 −1 −1
−1 r6

1 −1
0 1 −1 1 1 1
−1 r5 0
g9 0 −1

1 0 1 0 0 0 1 0
1 0 0 0 1 0 1 1
0 −1 0 1 0 1 0 0
r2 −1 0 0 0 0 0 0
0 0 r3 −1 0 0 0 0
0 0 0 0 r4 −1 0 0
0 g7 0 0 0 0 −1 0
0 0 0 0 0 g8 0 −1

.

It has empty tails (C0 = ∅, R∞ = ∅) and nine square diagonal blocks; the
partial order among the column sets are shown in Fig. 4.20. �

Example 4.4.15. In Example 4.3.8 we have seen that the graph-theoretic
method is not sufficient for the analysis of the hypothetical ethylene dichlo-
ride production system of Example 3.1.3. Though the DM-decomposition
(Fig. 4.11) can be useful to localize the source of singularity, it fails to
fully identify the rank structure of the Jacobian matrix. Here we apply
the CCF-decomposition technique to the associated LM-matrix given in
Fig. 4.12. The CCF, shown in Fig. 4.21, contains a 5 × 6 horizontal tail
C0 = {w3, x, u33, u43, u53, u63}, a 5 × 4 vertical tail C∞ = {w2, w4, u52, u42},
and nine nonsingular blocks C1 = {u32}, C2 = {u71}, C3 = {u72}, C4 = {u},
C5 = {u61}, C6 = {u31}, C7 = {u41}, C8 = {w1, u51}, C9 = {u62}. The
partial order among the nonsingular blocks is given by C5 ≺ C8, C6 ≺ C8,
C7 ≺ C8. The existence of the nonempty tails shows the rank deficiency of
the matrix. �

Example 4.4.16. The decomposition technique described in §4.4.5 is ap-
plied to the reactor-separator model used in Example 4.3.10. The Jacobian
matrix, say A, is regarded as a mixed matrix, i.e., A ∈ MM(Q,F ; 120, 120).
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C3

ξ1

C2

η1

C1

η7

C9

ξ2, η2, ξ
3, η3, ξ

4, η4, ξ
7, ξ8

C8

η5, ξ
5, ξ9

C7

ξ6

C6

η6

C5

η9

C4

η8

Fig. 4.20. Partial order of Example 4.4.14

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C∞
w3 x u33 u43 u53 u63 u32 u71 u72 u u61 u31 u41 w1 u51 u62 w2 w4 u42 u52

u63 1 −1
y 1 −1

u33 −1 1
u43 1 −1
u63−t3 u53 x
u42 ⇑ 1 −1
u71 horizontal tail −1
u72 −1 −1 1
u53 1
u61 −1 1
u31 −1 1
u41 −1 1
u51 1 −1
u61 −t1 a1

u32 1 −1
u62 1 −1
u 1

u52 vertical tail ⇒ 1 −1
u62 −t2 a2

u −t4 r

Fig. 4.21. CCF of the LM-matrix associated with Jacobian matrix of (3.5) (chem-
ical process simulation in Example 3.1.3)
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The DM-decomposition yields four nontrivial blocks involving more than
one unknown variable. The maximum size of the blocks is 25. See Table 4.2.

The CCF of the corresponding LM-matrix Ã ∈ LM(Q,F ; 120, 120, 240)
in the sense of (4.4) provides a decomposition of the augmented system of
equations with 120 auxiliary variables. The CCF of Ã has empty tails and
five nontrivial blocks, the maximum size of which being equal to 17. In Ta-
ble 4.2, the DM-decomposition of A and the CCF of Ã are compared, where
|RTk| (the number of rows of the T -part of each block) is indicated in brack-
ets. Recall that the substantial size of a subproblem can be measured by
min(|Cxk|, |RTk|) in (4.66).

The more compact transformation (4.6) to another LM-matrix, say Ãcpt,
is also applied to A, for which m1 (number of mixed rows) = 85, m2 (number
of purely constant rows) = 34, m3 (number of purely symbolic rows) = 1
in the notation of (4.5). Hence we obtain Ãcpt ∈ LM(Q,F ; 119, 86, 205). As
expected, the CCF of Ãcpt agrees with that of Ã up to singleton blocks. The
matrix Ãcpt, the DM-decomposition and the CCF of Ãcpt are depicted in
Fig. 4.22. �

Table 4.2. Decompositions for the reactor-separator model (Example 4.4.16)

DM-decomposition of CCF of

A ∈ MM(Q, F ; 120, 120) Ã ∈ LM(Q, F ; 120, 120, 240)
size # blocks size # blocks

Cxk Ck = Cwk + Cxk [RTk]

25 1 17 = 8 + 9 [ 9 ] 1
10 1 15 = 6 + 9 [ 6 ] 1
9 2 14 = 4 + 10 [ 9 ] 1

8 = 0 + 8 [ 4 ] 1
5 = 0 + 5 [ 5 ] 1

1 67 1 181

Example 4.4.17. The decomposition technique is applied to the problem of
the industrial hydrogen production system described in Example 4.3.11. The
Jacobian matrix A is thought of as a mixed matrix: A ∈ MM(Q,F ; 544, 544).
The CCF of the corresponding LM-matrix Ã ∈ LM(Q,F ; 544, 544, 1088) in
the sense of (4.4) has empty tails and contains 23 nontrivial blocks with
more than one variable. The DM-decomposition of A and the CCF of Ã are
summarized in Table 4.3. Note that the substantial sizes of the subproblems
in terms of min(|Cxk|, |RTk|) are much smaller than those obtained by the
DM-decomposition. �
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LM-matrix Ãcpt ∈ LM(Q, F ; 119, 86, 205)
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DM-decomposition of Ãcpt
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-200
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CCF of Ãcpt

Fig. 4.22. LM-matrix Ãcpt and its decompositions in Example 4.4.16 (reactor-
separator model)
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Table 4.3. Decompositions for the hydrogen production system (Example 4.4.17)

DM-decomposition of CCF of

A ∈ MM(Q, F ; 544, 544) Ã ∈ LM(Q, F ; 544, 544, 1088)
size # blocks size # blocks

Cxk Ck = Cwk + Cxk [RTk]

104 1 114 = 75 + 39 [ 75 ] 1
28 1 24 = 15 + 9 [ 15 ] 1
23 1 18 = 10 + 8 [ 10 ] 1
14 1 14 = 8 + 6 [ 8 ] 1
10 5 6 = 4 + 2 [ 4 ] 1
8 1 4 = 2 + 2 [ 2 ] 15
6 7 2 = 1 + 1 [ 1 ] 3
4 2
3 9
1 240 1 846

Example 4.4.18. A collection of matrices are taken from the Harwell–
Boeing database (Duff–Grimes–Lewis [61, 62]), Problems IMPCOL and
WEST in particular, for test LM-matrices. Each matrix is thought of as
a mixed matrix, where integer entries of absolute value ≤ 10 are included
in the Q-part and the remaining entries are put into the T -part. The re-
sulting mixed matrix is then converted into an LM-matrix according to the
compact transformation (4.6). Table 4.4 summarizes properties of the test
LM-matrices. All the matrices are square.

Table 4.4. LM-matrices made from Harwell–Boeing matrices (Example 4.4.18)

Problem # Cols # Q-Rows # T -Rows # Entries # Entries
(n) (mQ) (mT ) in Q in T

IMPCOL A 228 171 57 338 276
IMPCOL B 89 58 31 137 194
IMPCOL C 154 136 18 399 35
IMPCOL D 483 425 58 1255 116
IMPCOL E 364 223 141 566 1015
WEST0067 86 31 55 94 238
WEST0132 211 93 118 203 368
WEST0156 229 135 94 264 244
WEST0167 262 115 147 244 452

Table 4.5 describes the block structures of the DM-decompositions and
the CCF of those matrices. It turned out, in particular, that all the LM-
matrices are nonsingular.
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Table 4.5. Decompositions of the LM-matrices in Example 4.4.18

Problem Rank DM-decomp. CCF
size # blocks size # blocks

IMPCOL A 228 30 1 27 1
12 1 10 1
2 9 2 9
1 168 1 173

IMPCOL B 89 66 1 45 1
1 23 1 44

IMPCOL C 154 8 1 4 1
7 3
1 125 1 150

IMPCOL D 483 115 1 5 1
4 1
2 1

1 368 1 472
IMPCOL E 364 73 1 70 1

36 1 27 1
19 1 10 1
2 1 2 1
1 234 1 255

WEST0067 86 85 1 85 1
1 1 1 1

WEST0132 211 127 1 115 1
1 84 1 96

WEST0156 229 35 1 32 1
1 194 1 197

WEST0167 262 129 1 117 1
1 133 1 145

Table 4.6. Behavior of the CCF algorithm

Problem # Pivots # Base Change of
exchanges # Entries

IMPCOL A 787 6 −60
IMPCOL B 146 0 −8
IMPCOL C 6426 1 −144
IMPCOL D 76096 3 +24
IMPCOL E 2015 16 +157
WEST0067 21 0 +9
WEST0132 332 4 −14
WEST0156 227 6 −21
WEST0167 334 5 −22
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Table 4.6 shows some data about the behavior of the CCF algorithm. The
first column counts the total number of pivoting operations and the second
the total number of pairs (iQ, jQ) ∈ L ∩ E+ in Step 3. The third column
designates difference of the number of nonzero Q-entries in the CCF and in
the input LM-matrix. The data is based on an implementation of a minor
variant of the CCF algorithm (called “new algorithm” in [241]). Though such
data are implementation dependent, they would serve to convey a rough idea
about the behavior of the CCF algorithm. �

Notes. The examples in this section has been computed using a sightly
modified version of the FORTRAN program originally coded by M. Ichikawa
[117] and the Mathematica program coded by M. Scharbrodt [241].

4.4.7 CCF over Rings

We consider an extension of the concept of LM-matrix and its CCF when the
ground field is replaced by a ring. Let D be an integral domain, and K the
field of quotients of D; it is still assumed that K is a subfield of F . To be
more concrete, we are mainly interested in the cases where D is the ring of
integers Z or the ring of univariate polynomials over a field.

We say that a matrix A =
(

Q
T

)
is an LM-matrix with respect to (D,F ),

denoted as A ∈ LM(D,F ), if A ∈ LM(K,F ) and furthermore, Q is a matrix
over D. Accordingly, the admissible transformation over D is defined to be
an invertible transformation of the form (cf. (4.35))

Pr

(
S O
O I

)(
Q
T

)

Pc (4.69)

with a matrix S over D. For the invertibility of the transformation it is
imposed that S is invertible over D, i.e., that S has an inverse S−1 over K
and furthermore each entry of S−1 belongs to D. As is well known, matrix
S has its inverse S−1 over D if and only if detS is an invertible element
of D, in which case S is called unimodular over D. With this terminology
we can say that an admissible transformation over D is defined to be a
transformation of the form (4.69) with S unimodular over D. It is obvious
from the definition that such an admissible transformation is a transformation
in the class LM(D,F ).

Given A ∈ LM(D,F ), we can regard it as a member of LM(K,F ) and
construct its CCF, say Ā, using an LM-admissible transformation with a
nonsingular matrix S over K. Here we can assume that S is a matrix over D,
since we may multiply S with any nonvanishing number in D. This means
that Ā ∈ LM(D,F ) (see the matrix Ā2 in Example 4.4.20 below). Note,
however, the transformation that brings A to Ā is not necessarily admissible
for LM(D,F ), since S may not be unimodular over D.

The following theorem claims that, if D is a well-behaved ring called
principal ideal domain (PID), there exists an admissible transformation over
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D such that the resulting matrix agrees with a CCF in its diagonal blocks.
The ring of integers Z and the ring of univariate polynomials over a field are
typical examples of PID, where the reader is referred to van der Waerden
[325] for the definition of PID.

In the statement of the theorem below, a linear extension of a partial
order means a linear order (=total order) that is compatible with the partial
order, also called a topological sorting in computer science. Our indexing
convention (4.42) for the blocks {Ck} in the CCF of A represents a linear
extension of the partial order � in the CCF.

Theorem 4.4.19. Let A be an LM-matrix with respect to (D,F ), where D
is a PID. Let (C0;C1, · · · , Cb;C∞) denote the partition of C in the CCF of
A and � the partial order among the blocks (using the notation of Theorem
4.4.4). For any linear extension of �, which is represented by the linear order
of the index k of the blocks, there exist permutation matrices Pr and Pc, a
unimodular matrix S over D, and a CCF Ā of A (as an LM-matrix with
respect to (K,F )) such that

Â = Pr

(
S O
O I

)(
Q
T

)

Pc

is in the same block-triangular form as Ā, having the same diagonal blocks,
i.e., Â[Rk, Cl] = Ā[Rk, Cl] = O for k > l and Â[Rk, Ck] = Ā[Rk, Ck] for
k = 0, 1, · · · , b,∞. (It is not claimed that Â[Rk, Cl] coincides with Ā[Rk, Cl]
for k < l.)

Proof. In the proof of Theorem 4.4.4, the transformation to the Hermite nor-
mal form (see Newman [252], Schrijver [292]) under a unimodular transforma-
tion guarantees the existence of a unimodular matrix S such that Q̄ = SQPc

satisfies (4.50) and (4.51). However, we cannot impose the further condition
(4.52), which fact causes the discrepancy in the upper off-diagonal blocks of
Â and Ā.

Example 4.4.20. Let D = Z, K = Q, and F = Q(t1, t2), where t1 and t2
are indeterminates. Consider a 3 × 3 LM-matrix with respect to (D,F ) =
(Z,Q(t1, t2)):

A =
(
Q
T

)

=

x1 x2 x3

2 −2 −4
3 1 2
0 t1 t2

.

First regard A as a member of LM(Q,Q(t1, t2)). By choosing S = S1 below
(with detS1 = 1) in the LM-admissible transformation (4.35) we obtain a
CCF Ā1, where
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Ā1 =

x1 x2 x3

2
4 8
t1 t2

, S1 =
1/4 1/2
−3/2 1 .

The CCF Ā1 has two square blocks C1 = {x1} and C2 = {x2, x3} with no
order relation between them.

The transformation matrix S = S1 is not a matrix over Z. However, a
transformation over Z can be constructed easily by putting S = S2 = 4 · S1,
which yields another CCF:

Ā2 =

x1 x2 x3

8
16 32
t1 t2

.

It is noted, however, that the transformation with S = S2 is not invertible
over Z since S2, with detS2 = 16, is not unimodular.

Restricting S to a unimodular matrix over Z, we may take S = Ŝ below
(with det Ŝ = 1) to transform A to a block-triangular matrix Â, where

Â =

x1 x2 x3

1 3 6
8 16
t1 t2

, Ŝ =
−1 1
−3 2 .

The order relation of the blocks in Â is given by: C1 = {x1} � C2 = {x2, x3}.
This matrix Â has the same diagonal blocks as yet another CCF of A, Ā3

below, that is obtained with S = S3, where

Ā3 =

x1 x2 x3

1
8 16
t1 t2

, S3 =
1/8 1/4
−3 2 .

�

A concrete instance of Theorem 4.4.19 with D being a ring of univariate
polynomials will be given in Example 6.3.10.

Notes. The content of Theorem 4.4.19 was observed by Murota [216] in the
case where D is a ring of univariate polynomials, whereas the present form
is found in Murota [218]. We consider some variants and extensions of the
CCF later in §4.6, §4.7, §4.8, and §4.9. It is mentioned in this connection that
a hierarchical decomposition of discrete systems possessing group symmetry
has been investigated in Murota [217] by combining the combinatorial method
for the CCF and the conventional group representation theory.
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4.5 Irreducibility of LM-matrices

In this section we investigate into a concept of irreducibility for LM-matrices.
Most of the results below are natural extensions of those concerning DM-
irreducibility (or full indecomposability) for generic matrices treated in §2.2.3.

4.5.1 Theorems on LM-irreducibility

With respect to the LM-admissible transformation (4.35) we can define a
concept of irreducibility for LM-matrices. An LM-matrix A ∈ LM(K,F ) is
defined to be LM-reducible if it can be decomposed into smaller submatri-
ces by means of the LM-admissible transformation (4.35). Otherwise, A is
called LM-irreducible. In other words, A is LM-reducible if there exists a
DM-reducible matrix A′ that is LM-equivalent to A, and A is LM-irreducible
if any LM-matrix A′ that is LM-equivalent to A is DM-irreducible. An LM-
irreducible matrix is DM-irreducible, and not conversely. Note that an LM-
matrix A is LM-irreducible if Row(A) = ∅ or Col(A) = ∅, since the whole
matrix A is a (horizontal or vertical) tail. On the other hand, a zero ma-
trix A = O with Row(A) �= ∅ and Col(A) �= ∅ is LM-reducible, since it can
be decomposed into the horizontal tail with (R0, C0) = (∅,Col(A)) and the
vertical tail with (R∞, C∞) = (Row(A), ∅).

From Theorem 4.4.4 we obtain the following characterization of LM-
irreducibility in terms of the lattice Lmin(p) of the minimizers of the LM-
surplus function p. This is a kind of “dual” characterization of the LM-
irreducibility in contrast to the “primal” characterization (definition) in terms
of the indecomposability with respect to the LM-admissible transformation.

Theorem 4.5.1. Let A ∈ LM(K,F ) be an LM-matrix.
(a) In case |R| < |C|: A is LM-irreducible ⇐⇒ Lmin(p) = {C};
(b) In case |R| = |C|: A is LM-irreducible ⇐⇒ Lmin(p) = {∅, C};
(c) In case |R| > |C|: A is LM-irreducible ⇐⇒ Lmin(p) = {∅}. �

The validity of the algorithm for CCF in §4.4.4 yields a characterization
of the LM-irreducibility in terms of the graph G̃ used in the algorithm. In
particular, we mention the case of square LM-matrices.

Theorem 4.5.2. A square LM-matrix A is LM-irreducible (and hence non-
singular) if and only if in Step 4 of the algorithm of §4.4.4 both V0 and V∞
are empty and RT ∪ C is contained in a single strong component of G̃. �

The following theorem refers to the rank of submatrices of an LM-
irreducible matrix. This is an extension of Theorem 2.2.24 for a generic ma-
trix.

Theorem 4.5.3. Let A ∈ LM(K,F ) be LM-irreducible.
(a) In case |R| < |C|: rankA[R,C \ {j}] = |R| (∀j ∈ C);
(b) In case |R| = |C|: rankA[R\{i}, C\{j}] = |R|−1 (∀i ∈ R,∀j ∈ C);
(c) In case |R| > |C|: rankA[R \ {i}, C] = |C| (∀i ∈ R).
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Proof. See the proof of (B4) of Theorem 4.4.4.

As immediate corollaries we obtain the following properties of a nonsin-
gular irreducible LM-matrix. We regard the determinant of A ∈ LM(K,F )
as a polynomial in T (=set of nonzero entries of T ) with coefficients from the
ground field K, that is, detA ∈ K[T ].

Theorem 4.5.4. Let A ∈ LM(K,F ) be nonsingular and LM-irreducible.
(1) A−1 is completely dense, i.e., (A−1)ji �= 0 for all (j, i).
(2) Each element of T appears in detA.

Proof. (1) This follows from Theorem 4.5.3(b), since (A−1)ji = detA[R \
{i}, C \ {j}]/detA.

(2) If t ∈ T is the (i, j) entry of A, detA contains t·detA[R\{i}, C\{j}] �=
0, which is not cancelled out.

The converse of Theorem 4.5.4(1) does not hold true. That is, a nonsin-
gular LM-matrix A may possibly be LM-reducible even if (A−1)ji �= 0 for all
(j, i).

Example 4.5.5. Consider an LM-matrix A and its CCF Ā:

A =
(
Q
T

)

=
1 −1 0
1 0 1
0 t1 t2

, Ā =
1 −1 0
0 1 1
0 t1 t2

,

where t1 and t2 are indeterminates over K = Q. Every minor of order two of
A is nonsingular and hence (A−1)ji �= 0 for all (j, i). But A is LM-reducible
with its CCF splitting into two blocks. �

The following theorem (Murota [207]) states that the combinatorial irre-
ducibility (namely LM-irreducibility) is essentially equivalent to the algebraic
irreducibility of the determinant as a polynomial in T over K. This is an ex-
tension of Theorem 2.2.28 for a generic matrix.

Theorem 4.5.6. Let A ∈ LM(K,F ) be a nonsingular LM-matrix. If A is
LM-irreducible, detA is irreducible as a polynomial in T over K. Conversely,
if detA is an irreducible polynomial, then in the CCF of A, there is at most
one diagonal block that contains elements of T and all the other diagonal
blocks are 1 × 1 matrices over K.

Proof. The proof of the first half is given later in §4.5.2. The second half
follows easily from Theorem 4.4.4 and Theorem 4.5.4(2).

Remark 4.5.7. If two square LM-matrices A(k) ∈ LM(K,F ) (k = 1, 2) are
LM-equivalent, being connected by an LM-admissible transformation (4.35),
they have an identical determinant up to a constant factor: detA(1) = c ·
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detA(2) with c ∈ K∗ = K \ {0}. The converse of this statement, however, is
not true. For example, the LM-matrices

A(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1
t1 0 0 t4 0 0
0 t2 0 0 t5 0
0 0 t3 0 0 t6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1
t1 0 0 t4 0 0
0 t2 0 0 t5 0
0 0 t3 0 0 t6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

have an identical determinant (both being LM-irreducible). However, these
matrices are not LM-equivalent. Thus, the determinant does not characterize
the LM-equivalence.

In this connection we mention an observation of Ryser [285] that a fully
indecomposable (DM-irreducible) matrix is determined, up to scaling, by the
determinant of its formal incidence matrix. To be precise, let B(k) (k = 1, 2)
be two fully indecomposable square matrices over K, and M (k) (k = 1, 2) be
the formal incidence matrices defined byM (k)

ij = B(k)
ij Tij with indeterminates

Tij . Then, B(1) = DrB
(2)Dc for some nonsingular diagonal matrices Dr and

Dc over K if and only if detM (1) = c · detM (2) for some c ∈ K∗. �

A minor (=subdeterminant) of A ∈ LM(K,F ) is also a polynomial in T
over K. Let dk(T ) ∈ K[T ] denote the kth determinantal divisor of A, i.e.,
the greatest common divisor of all minors of order k as polynomials in T over
K. Note that dk(T ) ∈ K∗ means dk(T ) is a nonzero “constant” free from
any variables in T .

Theorem 4.5.8. Let A ∈ LM(K,F ) be LM-irreducible.
(a) In case |R| < |C|: dk(T ) ∈ K∗ for k = 1, · · · , |R|;
(b) In case |R| = |C|: dk(T ) ∈ K∗ for k = 1, · · · , |R| − 1;
(c) In case |R| > |C|: dk(T ) ∈ K∗ for k = 1, · · · , |C|.

Proof. We prove (b), while (a) and (c) can be proven similarly. By the Laplace
expansion (Proposition 2.1.2), dk−1(T ) divides dk(T ) for k = 2, · · · , |R| − 1,
and hence it suffices to show that dk(T ) is free from any t ∈ T for k = |R|−1.
Suppose t appears at position (i, j). It follows from Theorem 4.5.3(b) that
δ ≡ detA[R\{i}, C \{j}] �= 0. Obviously δ does not contain t, and, a fortiori,
dk(T ) does not contain t, since dk(T ) is a divisor of δ.

The determinantal divisors of a general (possibly reducible) LM-matrix
can be expressed in terms of the CCF as follows.

Theorem 4.5.9. Let dk(T ) denote the kth determinantal divisor of A ∈
LM(K,F ) for k = 1, · · · , r, where r = rankA. Then dk(T ) ∈ K∗ for k =
1, · · · , r − 1, and dr(T ) is decomposed into irreducible factors (in the ring
K[T ]) as
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dr(T ) = α ·
∏

l∈I

det Ā[Rl, Cl],

where α ∈ K∗, and Ā[Rl, Cl] (l ∈ I) are the LM-irreducible square blocks in
the CCF of A that contain an element of T .

Proof. The claim follows from Theorems 4.4.4, 4.5.6 and 4.5.8.

4.5.2 Proof of the Irreducibility of Determinant

The proof of the first half of Theorem 4.5.6 is given below. Assume that A is
nonsingular and LM-irreducible, and suppose that detA is decomposed as

detA = f1 · f2 (4.70)

with fk ∈ K[T ]\K (k = 1, 2). For k = 1, 2, we denote by Tk (�= ∅) the subset
of T consisting of the indeterminates appearing in fk. Since detA is linear in
each element of T and since Theorem 4.5.4(2) holds, {T1, T2} is a nontrivial
partition of T , i.e., T1 ∩ T2 = ∅ and T1 ∪ T2 = T . Put

RTk = {i ∈ RT | Tij ∈ Tk}, Ck = {j ∈ C | Tij ∈ Tk} (k = 1, 2). (4.71)

Then we have RTk �= ∅, Ck �= ∅ (k = 1, 2) and

RT1 ∩RT2 = ∅, RT1 ∪RT2 = RT , C1 ∩ C2 = ∅, C1 ∪ C2 = C,

where the first and the third relation are obvious, the second relation RT1 ∪
RT2 = RT is due to the fact that the matrix T has no zero row because of
the nonsingularity of A, and the last relation C1 ∪ C2 = C follows from the
fact that the matrix T has no zero column because of the LM-irreducibility
of A.

We claim that

T [RT1, C2] = O, T [RT2, C1] = O. (4.72)

For, if there exist i ∈ RT1, j ∈ C2 such that Tij �= 0, the indeterminate Tij

must appear in detA by Theorem 4.5.4(2), which contradicts the definitions
(4.71). Thus we have the first assertion in (4.72). Similarly for the second.

By Lemma 4.2.1 there exists Ĵ ⊆ C such that

Q[RQ, Ĵ ] and T [RT , C \ Ĵ ] are nonsingular. (4.73)

Fixing arbitrarily a one-to-one correspondence ϕ : RQ → Ĵ and choosing
S = Q[RQ, Ĵ ]−1 in the LM-admissible transformation (4.35), we may assume
Q[RQ, Ĵ ] = I. It should be noted here that the LM-admissible transformation
changes the determinant only by a factor in K \ {0}. Put
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CTk = Ck \ Ĵ (k = 1, 2), CT = CT1 ∪ CT2 (= C \ Ĵ),
CQk = Ck ∩ Ĵ (k = 1, 2), CQ = CQ1 ∪ CQ2 (= Ĵ),
RQk = ϕ−1(CQk) (k = 1, 2), Rk = RQk ∪RTk (k = 1, 2).

Then we see that T [RTk, CTk] is nonsingular for k = 1, 2 by (4.72) and (4.73),
and that |Rk| = |Ck| (k = 1, 2) and RQ1 ∪ RQ2 = RQ. Hence we can extend
ϕ : RQ → Ĵ to ϕ : R→ C in such a way that

Qi,ϕ(i) = 1 (i ∈ RQ), Ti,ϕ(i) �= 0 (i ∈ RT ). (4.74)

Hence we have the following picture of the matrix A:

CQ1 CT1 CQ2 CT2

RQ1 I Q[RQ1, CT1] O Q[RQ1, CT2]
RT1 T [RT1, CQ1] T [RT1, CT1] O O
RQ2 O Q[RQ2, CT1] I Q[RQ2, CT2]
RT2 O O T [RT2, CQ2] T [RT2, CT2]

, (4.75)

where the diagonal submatrices are all nonsingular.
By the Laplace expansion of (4.75) with respect to the rows of RT2 we

obtain

detA =
∑

J2⊆C2

± detA[R \RT2, C \ J2] · detT [RT2, J2],

in which no similar terms appear among the nonvanishing terms for distinct
J2. Consider the particular term for J2 = CT2. By (4.74), detT [RT2, CT2]
contains a nonvanishing term τ =

∏
i∈RT2

Ti,ϕ(i), which, multiplied by
detA[R \ RT2, C \ CT2] = detA[R1, C1], appears in detA. In other words,
if we think of detA as a polynomial in T2 over K[T1], the coefficient of τ is
equal to detA[R1, C1]. On the other hand, since the term τ is contained in
f2 of (4.70) with a nonzero coefficient, say c′, in K, the coefficient of τ in
f1 · f2 is equal to c′ · f1 ∈ K[T1]. Therefore, we see that

f1 = c1 · detA[R1, C1], c1 ∈ K.

Similarly we have

f2 = c2 · detA[R2, C2], c2 ∈ K.

That is,

detA = c1c2 · detA[R1, C1] · detA[R2, C2] = detA[R1, C1] · detA[R2, C2],
(4.76)

where we see c1c2 = 1 from (4.75).
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Remark 4.5.10. Before proceeding further, we explain our intuition be-
hind the rigorous arguments that follow, though this remark is not neces-
sary from the mathematical logical point of view. Since A is LM-irreducible,
Q[RQ2, CT1] is not a zero matrix (see (4.75)), that is, there exist i0 ∈ RQ2,
j0 ∈ CT1 such that Qi0j0 �= 0. Since A[R \ {i0}, C \ {j0}] is nonsingular by
Theorem 4.5.3, we have a nonzero term :

∏

i∈R

Ai,σ(i) =
∏

i∈RQ

Qi,σ(i) ·
∏

i∈RT

Ti,σ(i)

involving Qi0j0 in the usual expansion of detA into the sum of products,
where σ : R→ C is a permutation, or a one-to-one correspondence such that
σ(i0) = j0.

One might be tempted to claim that this contradicts (4.76) based on the
observation that this term cannot appear on the right hand side of (4.76)
since i0 ∈ RQ2 ⊆ R2 and σ(i0) = j0 ∈ CT1 ⊆ C1. This reasoning, however, is
not rigorous since this term may or may not be cancelled out by similar terms.
In fact, the following example of an LM-irreducible matrix demonstrates that
such cancellation does occur:

A =

CQ1 CT1 CQ2 CT2

c1 c2 c3 c4 c5 c6
RQ1 r1 1 0 1 0 0 1

r2 0 1 1 0 0 1
RT1 r3 x1 x2 x3 0 0 0
RQ2 r4 0 0 1(∗) 1 0 1

r5 0 0 1 0 1 1
RT2 r6 0 0 0 y1 y2 y3

where RQ1 = {r1, r2}, RT1 = {r3}, RQ2 = {r4, r5}, RT2 = {r6};CQ1 =
{c1, c2}, CT1 = {c3}, CQ2 = {c4, c5}, CT2 = {c6}. If we choose i0 = r4, j0 = c3
(at the position (∗)), we have

detA[R \ {i0}, C \ {j0}] = x1y1 + x2y1.

These terms, however, are cancelled out and do not appear in

detA = −x1y3 − x2y3 − x3y1 − x3y2 + x3y3.

A rather sophisticated argument below is to overcome this complication in
deriving a contradiction. It is noted in passing that detA above is an irre-
ducible polynomial in Q[x1, x2, x3, y1, y2, y3]. �

Associated with the matrix A of (4.75), we define, with reference to ϕ, a
graph G = (V,E) with vertex set V = RT ∪C and arc set E = EQ∪ET ∪EM ,
where
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EQ = {(ϕ(i), j) | i ∈ RQ, j ∈ CT , Qij �= 0},
ET = {(i, j) | i ∈ RT , j ∈ C, Tij �= 0},
EM = {(ϕ(i), i) | i ∈ RT }.

Note that by (4.72) there exist no arcs between RT1 and C2 nor between
RT2 and C1. Also note that (i) a vertex of RT has exactly one in-coming arc,
which is in EM , (ii) a vertex of CT has exactly one out-going arc, which is
in EM , (iii) the arcs coming into a vertex of CQ belong to ET , whereas the
arcs going out of a vertex of CQ belong to EQ.

The graph G is strongly connected by the LM-irreducibility of A and
Theorem 4.5.2, since G is obtained from the graph G̃ in the CCF-algorithm
of §4.4.4 by identifying the corresponding copies of C. Therefore, there exists
in G a directed simple cycle which contains both a vertex of C1 and a vertex
of C2. Choose such a directed cycle H having the minimum number of arcs,
and let EH (⊆ E) denote the set of arcs in H. We index the arcs of EH ∩EQ

in such a way that
e1, e2, · · · , em (= e0)

appear in this order along the cycle H, ∂+em ∈ C2, and ∂−em ∈ C1, where,
for e ∈ E in general, ∂+e and ∂−e designate the initial and terminal vertices.
Note here that {∂+er, ∂

−er} ⊆ C (= C1∪C2) for r = 1, · · · ,m since er ∈ EQ.
From among the arcs e1, e2, · · · , em, we pick up those which connect from

C1 to C2 or from C2 to C1, and denote them as

ê1, ê2, · · · , êm̂ (= ê0),

where they are indexed again along H and êm̂ = em; put Ê = {ê1, · · · , êm̂}.
Note that m̂ is even and that

{
∂+ês ∈ C1, ∂

−ês ∈ C2 (s: odd)
∂+ês ∈ C2, ∂

−ês ∈ C1 (s: even)

for s = 1, · · · , m̂.
With reference to ϕ we define

ir = ϕ−1(∂+er) ∈ RQ, jr = ∂−er−1 ∈ CT (r = 1, · · · ,m),

îs = ϕ−1(∂+ês) ∈ RQ, ĵs = ∂−ês−1 ∈ CT (s = 1, · · · , m̂).

This means

er = (ϕ(ir), jr+1) (r = 1, · · · ,m), ês = (ϕ(̂is), ĵs+1) (s = 1, · · · , m̂).

Here and below the indices r and s are to be understood with modulo m and
modulo m̂, respectively. We further define r(s) (s = 1, · · · , m̂) by jr(s) = ĵs
(s = 1, · · · , m̂), and put
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I−s = {ir | r(s) ≤ r ≤ r(s+ 1) − 1} (s = 1, · · · , m̂),
J−

s = ϕ(I−s ) = {ϕ(ir) | r(s) ≤ r ≤ r(s+ 1) − 1} (s = 1, · · · , m̂),
J+

s = {jr | r(s) ≤ r ≤ r(s+ 1) − 1} (s = 1, · · · , m̂);

Î−1 =
⋃

s:odd

I−s , Î
−
2 =

⋃

s:even

I−s , Î
− = Î−1 ∪ Î−2 = {ir | r = 1, · · · ,m},

Ĵ−
1 =

⋃

s:odd

J−
s , Ĵ

−
2 =

⋃

s:even

J−
s , Ĵ

− = Ĵ−
1 ∪ Ĵ−

2 = {ϕ(ir) | r = 1, · · · ,m},

Ĵ+
1 =

⋃

s:odd

J+
s , Ĵ

+
2 =

⋃

s:even

J+
s , Ĵ

+ = Ĵ+
1 ∪ Ĵ+

2 = {jr | r = 1, · · · ,m}.

Then the end vertices of the arcs of EH ∩ EQ are partitioned into m̂ (≥
2) disjoint “blocks” J+

s ∪ J−
s (s = 1, · · · , m̂), the consecutive blocks being

connected by arcs of Ê. Also note that
{
J+

s ⊆ CT1, J
−
s ⊆ CQ1 (s: odd)

J+
s ⊆ CT2, J

−
s ⊆ CQ2 (s: even)

for s = 1, · · · , m̂.
With the notation above we now make key observations which are con-

sequences of the minimality of the chosen cycle H. The first observation is
that

e ∈ EQ, ϕ(ir) = ∂+e ∈ J−
s , jr′ = ∂−e ∈ J+

s ⇒ r′ ≤ r + 1. (4.77)

This states that there are no “forward” arcs in EQ within each block. The
second observation is that

e ∈ EQ, ∂
+e ∈ J−

s , ∂
−e ∈ J+

s′ , s �= s′ ⇒ e ∈ Ê. (4.78)

This says that the arcs of Ê are the only arcs of EQ connecting vertices in
different blocks.

In terms of matrix Q, (4.77) and (4.78) are rephrased as follows:

Qirjr′ �= 0, ir ∈ I−s , jr′ ∈ J+
s ⇒ r′ ≤ r + 1, (4.79)

that is, Q[I−s , J
+
s ] is in a lower-left Hessenberg form for each s; and

Qirjr′ �= 0, ir ∈ I−s , jr′ ∈ J+
s′ , s �= s′ ⇒

{
s′ = s+ 1 (mod m̂)
r′ = r + 1 = r(s′) (modm).

(4.80)
In addition, we have

Qirjr+1 �= 0 (r = 1, · · · ,m) (4.81)

that correspond to arcs of EH ∩ EQ.
In the case of m̂ = 4, for example, Q[Î−, Ĵ+] looks as follows
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Q[Î−, Ĵ+] =

J+
1 J+

2 J+
3 J+

4

I−1 H11 D12 O O
I−2 O H22 D23 O
I−3 O O H33 D34

I−4 D41 O O H44

, (4.82)

where the rows are indexed by i1, i2, · · · , im in this order, and the columns
by j1, j2, · · · , jm in this order. For each s = 1, · · · , m̂, Hss = Q[I−s , J

+
s ] is

a lower-left Hessenberg matrix with nonzero upper subdiagonal entries that
correspond to arcs in (EH ∩EQ) \ Ê, and Ds,s+1 = Q[I−s , J

+
s+1] contains the

only one nonzero entry in the lower-left corner that corresponds to an arc in
Ê.

It follows from (4.79), (4.80), and (4.81) (also (4.82)) that

detQ[Î−, Ĵ+] = detQ[Î−1 , Ĵ
+
1 ] · detQ[Î−2 , Ĵ

+
2 ] + α (4.83)

with α = ±
∏m

r=1Qirjr+1 �= 0.
By introducing Î−k , Ĵ

−
k , and Ĵ+

k (k = 1, 2) into (4.75), we obtain the
following more detailed picture:

A =

CQ1 CT1 CQ2 CT2

ĴQ
1 Ĵ−

1 ĴT
1 Ĵ+

1 ĴQ
2 Ĵ−

2 ĴT
2 Ĵ+

2

RQ1 Î
Q
1 I O Q[∗] Q[∗] O O Q[∗] Q[∗]
Î−1 O I Q[∗] Q[1, 1] O O Q[∗] Q[1, 2]

RT1 T [∗] T [#] T [#] T [∗] O O O O

RQ2 Î
Q
2 O O Q[∗] Q[∗] I O Q[∗] Q[∗]
Î−2 O O Q[∗] Q[2, 1] O I Q[∗] Q[2, 2]

RT2 O O O O T [∗] T [#] T [#] T [∗]
← C1 \ Ĵ∗

1 → ← C2 \ Ĵ∗
2 →

. (4.84)

Here

ÎQ
k = RQk \ Î−k , ĴQ

k = CQk \ Ĵ−
k , ĴT

k = CTk \ Ĵ+
k (k = 1, 2);

T [∗] and T [#] are each a submatrix of T ; Q[∗] denotes a submatrix of Q, and
Q[k, l] = Q[Î−k , Ĵ

+
l ] (k, l = 1, 2) are submatrices of Q[Î−, Ĵ+] of (4.82), i.e.,

Q[Î−, Ĵ+] =
Ĵ+

1 Ĵ+
2

Î−1 Q[1, 1] Q[1, 2]
Î−2 Q[2, 1] Q[2, 2]

. (4.85)

Since H is a directed cycle and EM is a matching in G,

E∗
M = (EM \ EH) ∪ {(j, i) | i ∈ RT , j ∈ C, (i, j) ∈ ET ∩ EH}

is again a matching of size |RT |. This implies that T [RTk, Ck \ Ĵ∗
k ] is nonsin-

gular for k = 1, 2, where
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Ĵ∗
k = (CQk \ Ĵ−

k ) ∪ Ĵ+
k = ĴQ

k ∪ Ĵ+
k (k = 1, 2).

To be specific, ϕ∗ : RT → C defined by (ϕ∗(i), i) ∈ E∗
M gives a one-to-one

correspondence between RT and C \ (Ĵ∗
1 ∪ Ĵ∗

2 ) such that ϕ∗(RTk) = Ck \ Ĵ∗
k

(k = 1, 2), and that

τk ≡
∏

i∈RT k

Ti,ϕ∗(i) �= 0 (k = 1, 2).

We consider the term τ1 · τ2 in detA. By the Laplace expansion of detA
with A of (4.84) we see that the coefficient c∗ ∈ K of τ1 · τ2 in detA is given
by

c∗ = detQ[RQ, Ĵ
∗
1 ∪ Ĵ∗

2 ].

For the determinant on the right-hand side we have

detQ[RQ, Ĵ
∗
1 ∪ Ĵ∗

2 ] = detQ[Î−, Ĵ+] = detQ[Î−1 , Ĵ
+
1 ] · detQ[Î−2 , Ĵ

+
2 ] + α,

where the first equality follows from

Q[RQ, Ĵ
∗
1 ∪ Ĵ∗

2 ] =

ĴQ
1 Ĵ+

1 ĴQ
2 Ĵ+

2

ÎQ
1 I Q[∗] O Q[∗]
Î−1 O Q[1, 1] O Q[1, 2]
ÎQ
2 O Q[∗] I Q[∗]
Î−2 O Q[2, 1] O Q[2, 2]

and (4.85), and the second equality from (4.83). Therefore,

c∗ = detQ[Î−1 , Ĵ
+
1 ] · detQ[Î−2 , Ĵ

+
2 ] + α. (4.86)

On the other hand, since τk is contained in detA[Rk, Ck] with the coeffi-
cient equal to Q[Î−k , Ĵ

+
k ] for k = 1, 2, the expression (4.76) requires that

c∗ = detQ[Î−1 , Ĵ
+
1 ] · detQ[Î−2 , Ĵ

+
2 ]. (4.87)

Thus we are led to two contradictory expressions, (4.86) and (4.87), for c∗.
This completes the proof of Theorem 4.5.6.

Notes. This section is based on Murota [207] and Murota [218].

4.6 Decomposition of Mixed Matrices

The decomposition of LM-matrices has been established by the CCF in §4.4.
The decomposition of general mixed matrices is considered in this section.
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4.6.1 LU-decomposition of Invertible Mixed Matrices

We investigate here the invertibility of a mixed matrix A = Q + T in K[T ]
(=the ring of polynomials in the nonvanishing entries T of T over K). More
specifically, we are interested in whether we can compute A−1 by means of
pivot operations in K[T ] and also in how simple we can make the LU-factors
of A by applying suitable permutations to the rows and columns.

Let A = Q+T be a square mixed matrix, A ∈ MM(K,F ;n, n), which we
regard as a matrix over K[T ]. Recall a well-known fact that A is invertible
in K[T ], i.e., A−1 ∈ K[T ], if and only if detA ∈ K∗(= K \ {0}). By way of
illustration of our problem we start with an example.

Example 4.6.1. A matrix

A =

1 2 3 4 5
1 −1 1 1 0 1
2 1 0 x 1 0
3 0 1 1 0 1
4 y −1 1 0 −1
5 1 1 0 z 0

is a mixed matrix, A = Q + T ∈ MM(K,F ; 5, 5) for K = Q and F =
Q(x, y, z) with

Q =

1 2 3 4 5
1 −1 1 1 0 1
2 1 0 0 1 0
3 0 1 1 0 1
4 0 −1 1 0 −1
5 1 1 0 0 0

, T =

1 2 3 4 5
1 0 0 0 0 0
2 0 0 x 0 0
3 0 0 0 0 0
4 y 0 0 0 0
5 0 0 0 z 0

,

if T = {x, y, z} is algebraically independent over Q. Note that detA = 2
and hence A is invertible in Q[x, y, z]. The matrix A is decomposed into
LU-factors in Q(x, y, z) as A = L U with

L =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
−1 1 0 0 0
0 1 1 0 0
−y y − 1 y − 1 − 2/x 1 0
−1 2 2 + 1/x −(xz + 1)/2 1

⎤

⎥
⎥
⎥
⎥
⎦
, U =

⎡

⎢
⎢
⎢
⎢
⎣

−1 1 1 0 1
0 1 x+ 1 1 1
0 0 −x −1 0
0 0 0 −2/x 0
0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎦
.

Observe that some of the entries of L and U do not belong to Q[x, y, z].
However, after rearranging the rows and the columns of A as

PrAPc =

5 2 4 3 1
1 1 1 0 1 −1
5 0 1 z 0 1
2 0 0 1 x 1
4 −1 −1 0 1 y
3 1 1 0 1 0

,
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we have the LU-decomposition PrAPc = LU with

L =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 0 0 1 0
1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
, U =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 1 −1
0 1 z 0 1
0 0 1 x 1
0 0 0 2 y − 1
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
.

These LU-factors are much simpler in the sense that all the entries of L are
numbers in Q and consequently the entries of U are polynomials in x, y, and
z over Q of degree at most one. �

In the following, we establish a theorem (Theorem 4.6.4) stating that it is
always possible to find permutations of rows and columns through which an
invertible matrix A can be brought to a form decomposable into LU-factors
with the L-factor being a matrix over K. Furthermore, we show how to find
suitable permutations.

First, a necessary and sufficient condition for the invertibility of a mixed
matrix is given. A matrix is said to be strictly upper triangular if it is an
upper triangular matrix with zero diagonals.

Theorem 4.6.2. A square mixed matrix A = Q + T ∈ MM(K,F ;n, n) is
invertible in K[T ], if and only if detQ �= 0 and Pc

T(Q−1T )Pc is strictly
upper triangular for some permutation matrix Pc.

Proof. Firstly suppose that Pc
T(Q−1T )Pc is strictly upper triangular for some

permutation matrix Pc. Then, since detQ �= 0 and A = Q+ T , we have

detA = det[Q(I +Q−1T )] = detQ · det[I + Pc
T(Q−1T )Pc] = detQ ∈ K∗.

Conversely, if detA ∈ K∗, then detQ = detA �= 0. Put S = Q−1. Suppose
that Pc

T(Q−1T )Pc = Pc
T(ST )Pc is not strictly upper triangular for any

permutation matrix Pc. Then ST has a cycle of nonzero entries, that is,
there exist an integer M ≥ 1 and a sequence of indices i(m) and j(m) (m =
1, · · · ,M) such that Sj(m),i(m) �= 0 and Ti(m),j(m+1) �= 0 for m = 1, · · · ,M ,
where j(M + 1) = j(1). Choose M to be the minimum of such integers. We
write Sj(m),i(m) = sm and Ti(m),j(m+1) = tm.

For k = 0, 1, · · ·, consider the expression of the (j(1), i(1)) entry of
(ST )kMS in the form of the sum of products of Sji’s and Tij ’s. Corresponding
to the above cycle, it contains a term

s1(s1s2 · · · sM )k · (t1t2 · · · tM )k,

since no other similar terms of (t1t2 · · · tM )k exist due to the minimality of
M and since it cannot be canceled out by nonsimilar terms by virtue of the
algebraic independence of T .
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Next we formally expand A−1 as1

A−1 = [Q(I +Q−1T )]−1 = S − STS + STSTS − · · · .

Each entry of A−1 on the left-hand side is a polynomial in T over K since A
is invertible. On the right-hand side, the (j(1), i(1)) entry contains a term of
arbitrarily high degree, since the nonzero term (t1t2 · · · tM )k of degree kM ,
stemming from (ST )kMS, as above, cannot be canceled out for k = 0, 1, · · ·.
This is a contradiction.

Example 4.6.3. For the matrix A = Q + T in Example 4.6.1, we have
detQ = 2 and

Pc
T(Q−1T )Pc =

5 2 4 3 1
5 0 0 −z 0 −y/2
2 0 0 z 0 0
4 0 0 0 x 0
3 0 0 0 0 y/2
1 0 0 0 0 0

,

which is strictly upper triangular. �

We now state the theorem of LU-decomposition of mixed matrices due to
Murota [198].

Theorem 4.6.4. A square mixed matrix A = Q + T ∈ MM(K,F ;n, n) is
invertible in K[T ], if and only if there exist permutation matrices Pr and Pc,
an n×n matrix L = (Lij) over K and an n×n matrix U = (Uij) over F such
that (i) PrAPc = L U , (ii) Lij = 0 for i < j and Lii = 1 for i = 1, · · · , n,
and (iii) Uij = 0 for i > j, Uii ∈ K∗, and Uij is a polynomial of degree at
most one in T over K.

Proof. It suffices to prove the “only if” part. Let Pc be the permutation
matrix in Theorem 4.6.2 for which Pc

T(Q−1T )Pc is strictly upper triangular.
Since detQ �= 0, a standard result on the LU-decomposition or the Gaussian
elimination (cf., e.g., Gantmacher [87], Golub–Van Loan [97]) shows that
there exist a permutation matrix Pr, a lower triangular matrix with unit
diagonals L ∈ GL(n,K), and a nonsingular upper triangular matrix V ∈
GL(n,K) such that PrQPc = LV . Then we obtain

PrAPc = Pr(Q+ T )Pc = (PrQPc)[I + Pc
T(Q−1T )Pc]

= (LV )[I + Pc
T(Q−1T )Pc] = LU

with U = V [I + Pc
T(Q−1T )Pc], which is an upper triangular matrix. Obvi-

ously L is a matrix over K, and consequently the entries of U = L−1PrAPc

are polynomials in T of degree at most one.

1 This expansion converges for sufficiently small absolute values of T .
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Remark 4.6.5. In Theorem 4.6.4 the assumption of algebraic independence
of T as a whole cannot be weakened to element-wise transcendency of the

members of T . Consider, e.g., A =
[

1 + x x
−x 1 − x

]

, which can be expressed

as A = Q+ T with Q =
[

1 0
0 1

]

and T =
[
x x
−x −x

]

. Although detA = 1 and

each entry of T is transcendental over Q, there exists no LU-decomposition
with the L-factor over Q. �

Given a mixed matrix A ∈ MM(K,F ;n, n), we can test for its invertibil-
ity with O(n3) arithmetic operations in K on the basis of Theorem 4.6.2:
first compute Q−1 by elimination operations in K, then determine the
zero/nonzero pattern of Q−1T by boolean operations and finally check for the
acyclicity of the graph associated with Q−1T as defined in §2.2.1. This proce-
dure simultaneously provides the permutation matrix Pc. In this connection
we may recall Theorem 4.2.17, which shows how an invertible submatrix can
be extracted.

Theorem 4.6.4 reads that if A ∈ MM(K,F ;n, n) is invertible, it can
be brought to an upper triangular form U over F by a transformation
(L−1Pr)APc = U with L ∈ GL(n,K) and permutation matrices Pr and
Pc. In the next subsection we will consider the problem of reducing a general
mixed matrix A ∈ MM(K,F ;m,n) to an upper block-triangular form by a
transformation S AP with S ∈ GL(m,K) and a permutation matrix P .

4.6.2 Block-triangularization of General Mixed Matrices

We consider a block-triangularization of a mixed matrix A = Q + T ∈
MM(K,F ;m,n) under a transformation of the form

Â = S AP, (4.88)

where S ∈ GL(m,K) and P is a permutation matrix. For a proper block-
triangularization (in the sense of §2.1.4) the following conditions are re-
quired of Â and of partitions (R̂0; R̂1, · · · , R̂b̂; R̂∞) and (Ĉ0; Ĉ1, · · · , Ĉb̂; Ĉ∞)
of Row(Â) and Col(Â):

R̂k �= ∅, Ĉk �= ∅ (k = 1, · · · , b̂); R̂0, R̂∞, Ĉ0, Ĉ∞ can be empty,
Â[R̂k, Ĉl] = O if 0 ≤ l < k ≤ ∞,
rank Â[R̂0, Ĉ0] = |R̂0| (< |Ĉ0| if R̂0 �= ∅),
rank Â[R̂k, Ĉk] = |R̂k| = |Ĉk| > 0 for k = 1, · · · , b̂,
rank Â[R̂∞, Ĉ∞] = |Ĉ∞| (< |R̂∞| if Ĉ∞ �= ∅).

Note that the existence of such Â is by no means obvious and that the trans-
formed matrix Â = (SQP ) + (STP ) no longer belongs to MM(K,F ;m,n)
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in general. Roughly speaking, such Â can be constructed as an aggregation
of the CCF of the associated LM-matrix.

Let Ã ∈ LM(K,F ;m,m,m + n) be the LM-matrix associated with A
in the sense of (4.4). Putting R = Row(A) and C = Col(A), we identify
C̃ = Col(Ã) with R∪C through a one-to-one correspondence ψ : R∪C → C̃.
Let ρ̃, γ̃, p̃ : 2C̃ → Z be the functions associated with Ã by (4.13), (4.9), and
(4.16).

Recalling that the CCF of Ã is obtained (cf. §4.4.3) from the lattice
Lmin(p̃) (⊆ 2C̃) of the minimizers of the LM-surplus function p̃, we consider
here a subfamily of Lmin(p̃) defined by

L̂ = {X ∈ Lmin(p̃) | I ⊇ Γ̂ (R, J) for I = ψ−1(X) ∩R, J = ψ−1(X) ∩ C},
(4.89)

where
Γ̂ (R, J) = {i ∈ R | ∃j ∈ J : Tij �= 0}, J ⊆ C.

Lemma 4.6.6. L̂ �= ∅ and L̂ is a sublattice of Lmin(p̃).

Proof. For X ∈ Lmin(p̃), put I = ψ−1(X) ∩ R and J = ψ−1(X) ∩ C, and
define I ′ = I ∪ Γ̂ (R, J) and X ′ = ψ(I ′ ∪ J) ⊇ X. Since γ̃(X ′) = γ̃(X),
ρ̃(X ′) ≤ ρ̃(X) + |I ′ \ I|, and |X ′| = |X| + |I ′ \ I|, we have p̃(X ′) ≤ p̃(X),
which shows X ′ ∈ Lmin(p̃). If X is the maximum element of Lmin(p̃), we must
have X ′ = X, i.e., I ⊇ Γ̂ (R, J), which means X ∈ L̂, and therefore L̂ �= ∅.
It follows from Lemma 2.2.16 that L0 = {X ⊆ C̃ | I ⊇ Γ̂ (R, J) for I =
ψ−1(X) ∩ R, J = ψ−1(X) ∩ C} forms a sublattice of 2C̃ . Hence L̂ = L0 ∩
Lmin(p̃) is a sublattice of Lmin(p̃).

By Lemma 4.6.6 above and Birkhoff’s representation theorem (Theo-
rem 2.2.10), L̂ determines a partition of C̃ which is an aggregation of
the one induced by Lmin(p̃). Accordingly (cf. §4.4.3), L̂ induces a block-
triangularization, coarser than the CCF, of the LM-matrix Ã under a trans-
formation (4.35) with S ∈ GL(m,K) and permutation matrices Pr and Pc.
We shall see that this matrix S gives the desired transformation in Â = SAP .

Let

Ā = Pr

(
S

Im

)(
Im Q
−Im T

)

Pc

be the block-triangular matrix induced by L̂, and let (R̄0; R̄1, · · · , R̄b; R̄∞)
and (C̄0; C̄1, · · · , C̄b; C̄∞) be the associated partitions of Row(Ā) and Col(Ā).
Then we have

Ā[R̄k, C̄l] = O for l < k. (4.90)

Define
Q̄ = S[ Im | Q ], T̄ = [−Im | T ]

so that

Ā = Pr

(
Q̄
T̄

)

Pc.
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Note that
S = Q̄[Row(Q̄), ψ(R)], (4.91)

where ψ is regarded as ψ : R∪C → Col(Q̄) through the natural identification
of Col(Q̄) with C̃; similarly for Col(T̄ ). From the identity

(
O SA

−Im T

)

=
(
Im S
O Im

)(
S

Im

)(
Im Q
−Im T

)

=
(
Q̄+ ST̄
T̄

)

we see that

SA = (Q̄+ ST̄ )[Row(Q̄), ψ(C)]. (4.92)

For k = 0, 1, · · · , b,∞, put R̄Qk = Row(Q̄)∩ R̄k and R̄Tk = Row(T̄ )∩ R̄k,
where Row(Ā) is identified with Row(Q̄)∪Row(T̄ ) through the permutation
Pr. Similarly, Col(Ā) is identified with Col(Q̄) (= Col(T̄ )) through the per-
mutation Pc. By the condition I ⊇ Γ̂ (R, J) in the definition of L̂ and the
construction of the CCF (cf. (4.54) in particular), it holds that

ψ(R̄Tk) = C̄k ∩ ψ(R). (4.93)

Hence the diagonal submatrix Ā[R̄k, C̄k] is of the following form:

Ā[R̄k, C̄k] =
(
C̄k ∩ ψ(R) C̄k ∩ ψ(C)

R̄Qk Q1k Q2k

R̄Tk −I Tk

)

,

that is, the submatrix Ā[R̄Tk, C̄k ∩ ψ(R)] is equal to −I (the negative of an
identity matrix).

We now claim

(Q̄+ ST̄ )[R̄Qk, C̄l ∩ ψ(C)] = O for l < k. (4.94)

To show this, first note from (4.90) that

Q̄[R̄Qk, C̄l ∩ ψ(C)] = O, T̄ [R̄Tk, C̄l ∩ ψ(C)] = O for l < k.

Then we have

(ST̄ )[R̄Qk, C̄l ∩ ψ(C)] =
∑

j

S[R̄Qk, R̄Tj ] · T̄ [R̄Tj , C̄l ∩ ψ(C)]

=
∑

j

Q̄[R̄Qk, C̄j ∩ ψ(R)] · T̄ [R̄Tj , C̄l ∩ ψ(C)] = O

with the aid of (4.91) and (4.93). Thus the claim (4.94) is proven.
Noting that |R̄Qk| = |C̄k∩ψ(C)| for k = 1, · · · , b, define {R̂l | l = 1, · · · , b̂}

to be the family of nonempty blocks among {R̄Qk | k = 1, · · · , b} and likewise
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{Ĉl | l = 1, · · · , b̂} to be the family of nonempty blocks among {C̄k ∩ ψ(C) |
k = 1, · · · , b}. Also define

R̂0 = R̄Q0, R̂∞ = R̄Q∞, Ĉ0 = C̄0 ∩ ψ(C), Ĉ∞ = C̄∞ ∩ ψ(C).

The expressions (4.92) and (4.94) show that

(SA)[R̂k, Ĉl] = O if 0 ≤ l < k ≤ ∞, (4.95)

namely, the matrix SA is block-triangularized with respect to the partitions
(R̂0; R̂1, · · · , R̂b̂; R̂∞) and (Ĉ0; Ĉ1, · · · , Ĉb̂; Ĉ∞). Hence, Â = S AP with some
permutation matrix P is explicitly block-triangularized. Denote by � the
partial order on {Ĉ0; Ĉ1, · · · , Ĉb̂; Ĉ∞} that is induced from the partial order
defined by L̂ on {C̄0; C̄1, · · · , C̄b; C̄∞}.

Example 4.6.7. The construction explained above is illustrated for a mixed
matrix A ∈ MM(Q,F ; 5, 5):

A =

x1 x2 x3 x4 x5

w1 1 1 t1 1 t2
w2 −1 −1 1 t3 0
w3 0 0 t4 t5 t6
w4 0 0 0 0 1
w5 t7 t8 0 0 0

,

where ti (i = 1, · · · , 8) are indeterminates over Q and F = Q(t1, · · · , t8). By
the CCF of the associated LM-matrix Ã ∈ LM(Q,F ; 5, 5, 10) we see that

Ā = Pr

(
S O
O I5

)(
I5 Q
−I5 T

)

Pc

=

←− C̄1 −→ ←− C̄2 −→ C̄3 C̄4

← C1 → C2 ←− C3 −→ C4 C5 C6

x1 x2 w5 w1 w2 x3 x4 w3 x5 w4

r1 1 1 1 1
w5 t7 t8 −1
r2 1
r3 1 1 1 1
w1 −1 0 t1 0 t2
w2 0 −1 0 t3
w3 0 0 t4 t5 −1 t6
r4 1
r5 1 1
w4 −1

,

where
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S =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦
.

In the CCF of Ã, the column set Col(Ã), identified with {w1, · · · , w5} ∪
{x1, · · · , x5}, is divided into six (nonempty) blocks:

C1 = {x1, x2}, C2 = {w5}, C3 = {w1, w2, x3, x4}, C4 = {w3},
C5 = {x5}, C6 = {w4} (C0 = C∞ = ∅)

with the partial order being the transitive closure of the relations:

C1 � C2; C3 � C4; C1 � C3 � C5 � C6.

This corresponds to the lattice Lmin(p̃).
The sublattice L̂ of (4.89), on the other hand, yields a coarser partition

consisting of four blocks:

C̄1 = {x1, x2, w5}, C̄2 = {x3, x4, w1, w2, w3}, C̄3 = {x5}, C̄4 = {w4}

with C̄1 � C̄2 � C̄3 � C̄4, where C̄0 = C̄∞ = ∅. Namely, L̂ = {∅, C̄1, C̄1 ∪
C̄2, C̄1 ∪ C̄2 ∪ C̄3, C̄1 ∪ C̄2 ∪ C̄3 ∪ C̄4}. Note, for example, that C̄1 = C1 ∪C2 ∈
Lmin(p̃), and I = ψ−1(C̄1) ∩ R = {w5}, and J = ψ−1(C̄1) ∩ C = {x1, x2}
satisfy the condition I ⊇ Γ̂ (R, J).

Finally, for the partition of Col(A), we obtain

Ĉ1 = {x1, x2}, Ĉ2 = {x3, x4}, Ĉ3 = {x5}

with the partial order Ĉ1 � Ĉ2 � Ĉ3, where Ĉ0 = Ĉ∞ = ∅. Accordingly, the
following block-triangular form is obtained:

SAP =

Ĉ1 Ĉ2 Ĉ3

x1 x2 x3 x4 x5

r1 1 1 t1 1 t2
r2 t7 t8
r3 t1 + 1 t3 + 1 t2
r4 t4 t5 t6
r5 1

,

where P = I5. �

The theorem on the block-triangularization of a general mixed matrix is
now stated.

Theorem 4.6.8. The matrix Â as well as partitions (R̂0; R̂1, · · · , R̂b̂; R̂∞)
and (Ĉ0; Ĉ1, · · · , Ĉb̂; Ĉ∞) constructed above gives a proper block-triangular
form, having the following properties.
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(1) Â is block-triangularized, i.e.,

Â[R̂k, Ĉl] = O if 0 ≤ l < k ≤ ∞. (4.96)

Moreover, the partial order on {Ĉ1, · · · , Ĉb̂} induced by the zero/nonzero
structure of Â agrees with the partial order � defined from L̂; i.e.,

Â[R̂k, Ĉl] = O unless Ĉk � Ĉl (1 ≤ k, l ≤ b̂);
Â[R̂k, Ĉl] �= O if Ĉk ≺· Ĉl (1 ≤ k, l ≤ b̂).

(2)
rank Â[R̂0, Ĉ0] = |R̂0| (< |Ĉ0| if R̂0 �= ∅),
rank Â[R̂k, Ĉk] = |R̂k| = |Ĉk| > 0 for k = 1, · · · , b̂,
rank Â[R̂∞, Ĉ∞] = |Ĉ∞| (< |R̂∞| if Ĉ∞ �= ∅).

(3) Â is the finest proper block-triangular matrix (“proper” in the sense
of §2.1.4) among those obtained by a transformation of the form (4.88).

Proof. (1)–(2) The claim (4.96) has been shown in (4.95). The other claims in
(1) and (2) can be proven similarly to the corresponding claims in Theorem
4.4.4.

(3) Suppose that there exist S ∈ GL(m,K), W ⊆ RS ≡ Row(S), and
J ⊆ C such that

(SA)[RS \W,J ] = O, (4.97)
rank (SA)[W,J ] = |W |,
rank (SA)[RS \W,C \ J ] = |C \ J |.

This means
rankA = rankSA = n− |J | + |W |,

which implies by Theorem 4.2.5 that

min p̃ = rank Ã− (m+ n) = rankA− n = |W | − |J |. (4.98)

To show that Â is the finest proper block-triangularization, it suffices to
prove that X = ψ(I ∪ J) ∈ Lmin(p̃) for I = Γ̂ (R, J), which implies X ∈ L̂.
By the algebraic independence of T , (4.97) is equivalent to

(SQ)[RS \W,J ] = O, (ST )[RS \W,J ] = O. (4.99)

Moreover, the latter condition is further equivalent, again by the algebraic
independence of T , to

S[RS \W, I] = O. (4.100)

From the first of (4.99) and (4.100), we see that

ρ̃(X) = rank (Im | Q)[R,X] = rank (S(Im | Q))[RS ,X] ≤ |W |. (4.101)
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On the other hand, the definition of I implies

γ̃(X) = |I ∪ Γ̂ (R, J)| = |I|. (4.102)

Combining (4.101) and (4.102), we obtain

p̃(X) = ρ̃(X) + γ̃(X) − |X| ≤ |W | − |J |,

which shows X ∈ Lmin(p̃) by (4.98). Hence Â is the finest proper block-
triangular form under the admissible transformation (4.88).

Notes. Section 4.6.1 is based on Murota [198]. Theorem 4.6.8 was first stated
in §24 of Murota [204], whereas the proof is improved here.

4.7 Related Decompositions

In the literature of electrical network theory, it has been known that a system
of equations describing an electrical network can be put in a block-triangular
form if one chooses appropriate bases (tree-cotree pairs) for Kirchhoff’s laws
and rearranges the variables and the equations (for both Kirchhoff’s laws and
element characteristics). A decomposition method, called 2-graph method, re-
ferring to a pair of current-graph and voltage-graph is investigated in Ozawa
[260, 261, 262] for networks involving controlled sources. Based on the re-
sult of Tomizawa–Iri [317], a decomposition of networks with admittance
expressions is considered by Iri [127] in relation to the independent-matching
problem. An attempt has been made in Nakamura–Iri [246] and Nakamura
[243, 244] to define a block-triangularization for a system of equations de-
scribing the most general class of networks with arbitrary mutual couplings
(such as those containing controlled sources, nullators, and norators) as an
application of the principal partition for a pair of matroids. This section is
devoted to clarifying the relationship of the CCF-based decomposition to
some of those decomposition techniques and to extending the concept of LM-
equivalence to multilayered matrices.

4.7.1 Decomposition as Matroid Union

For an LM-matrix A =
(

Q
T

)
∈ LM(K,F ) the CCF of A has been constructed

on the basis of the LM-surplus function p which is submodular and charac-
terizes the rank of A (cf. Theorem 4.2.5). In Theorem 4.2.3, on the other
hand, we have encountered another submodular function that characterizes
the rank of A, namely, pτ : 2C → Z defined by

pτ (J) = ρ(J) + τ(J) − |J |, J ⊆ C, (4.103)

which is only slightly different from the LM-surplus function
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p(J) = ρ(J) + γ(J) − |J |, J ⊆ C.

It is quite natural to be tempted to apply to pτ the Jordan–Hölder-type
theorem for submodular functions with a vague hope that some meaningful
decomposition of an LM-matrix might be obtained. Indeed it was claimed in
Nakamura–Iri [246] and Nakamura [243, 244] (before the CCF is established)
that this approach yielded a block-triangularization of a system of equations
(3.2) for an electrical network. It is certainly true that, for an LM-matrix in
general, the Jordan–Hölder-type theorem applied to pτ yields a partition of
the column set (currents and voltages of branches in the case of electrical
networks) into partially ordered blocks. Let us call this decomposition the
principal partition with respect to the matroid union M(Q)∨M(T ), as ρ and
τ are the rank functions of M(Q) and M(T ), respectively.

The objective of this subsection is to compare the CCF and the principal
partition with respect to M(Q)∨M(T ) and to discuss the irrelevance of the
latter by identifying the corresponding admissible transformation, which is
different from the LM-admissible transformation (4.35) for LM-equivalence.
Remember that partition of C in the CCF corresponds to Lmin(p) (the family
of the minimizers of p), while that in the principal partition with respect to
M(Q) ∨ M(T ) is given by Lmin(pτ ).

Let us begin with two simple examples which demonstrate that the prin-
cipal partition with respect to M(Q) ∨M(T ) provides a finer partition of C
than the CCF does, and that it is too fine for a useful block-triangularization.

Example 4.7.1. Consider an LM-matrix

A =
[
Q

T

]

=

ξ1 ξ2 η1 η2
1

1
−t1 y11 y12

−t2 y21 y22

.

It is easy to verify that

Lmin(pτ ) = {∅, {η1}, {η2}, {η1, η2}, {ξ1, η1, η2}, {ξ2, η1, η2}, {ξ1, ξ2, η1, η2}}

and therefore the principal partition with respect to M(Q)∨M(T ) based on
pτ yields a partition of C = {ξ1, ξ2, η1, η2} into four singletons with partial
order given by {ηi} ≺ {ξj} (i, j = 1, 2). However, it is clear by inspection
that {η1, η2} cannot be split in solving the system of equations. On the other
hand, the CCF is based on

Lmin(p) = {∅, {η1, η2}, {ξ1, η1, η2}, {ξ2, η1, η2}, {ξ1, ξ2, η1, η2}}

and gives a more natural partition C = {ξ1} ∪ {ξ2} ∪ {η1, η2} with partial
order {η1, η2} ≺ {ξi} (i = 1, 2).
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It is mentioned that the above matrix A (with t1 = t2 = 1) appears as the
coefficient matrix of a system of equations (3.2) that describes a free electrical
network consisting of two branches connected in series with complete mutual
couplings given in terms of admittances. As the notation shows, ξi and ηi are
the current in and the voltage across branch i (i = 1, 2). �

Example 4.7.2. Consider an electrical network consisting of two branches
connected in parallel, where branch 1 is a current source controlled by the
voltage across branch 2, i.e., ξ1 = gη2, and the branch 2 is an ohmic resistor,
i.e., η2 = rξ2. These equations, together with Kirchhoff’s laws η1 − η2 = 0
and ξ1 + ξ2 = 0, are put into the form (3.2) with

A =
[
Q
T

]

=

ξ1 ξ2 η1 η2
1 1

1 −1
−1 g

r −1

,

where ξi and ηi are, as usual, the current in and the voltage across branch
i (i = 1, 2). We have

Lmin(pτ ) = {∅, {η1}, {η1, η2}, {ξ1, ξ2, η1, η2}},
Lmin(p) = {∅, {η1}, {ξ1, ξ2, η1, η2}}.

The former yields the partition {η1}∪{η2}∪{ξ1, ξ2} with partial order {η1} ≺
{η2} ≺ {ξ1, ξ2}, whereas the latter gives {η1}∪{η2, ξ1, ξ2} with partial order
{η1} ≺ {η2, ξ1, ξ2}. It is obvious from the CCF of A:

η1 η2 ξ1 ξ2

1 −1
1 1

g −1
−1 r

that the variables {ξ1, ξ2} cannot be determined independently of η2. �

The following proposition gives a precise comparison of the two decom-
positions.

Proposition 4.7.3. For an LM-matrix A ∈ LM(K,F ), the following hold.
(1) pτ (J) ≤ p(J) for J ⊆ C.
(2) min pτ = min p.
(3) Lmin(pτ ) ⊇ Lmin(p).
(4) minLmin(pτ ) = minLmin(p).

Proof. (1) This is obvious from (4.10).
(2) This has been shown in the proof of Theorem 4.2.5.
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(3) Immediate from (1) and (2) above.
(4) For J = minLmin(pτ ) let J ′ (⊆ J) be a minimizer in (4.10), i.e., such

that τ(J) = γ(J ′) − |J ′| + |J |. From (2), we have

min p = min pτ = ρ(J) + γ(J ′) − |J ′| ≥ ρ(J ′) + γ(J ′) − |J ′| = p(J ′),

i.e., J ′ ∈ Lmin(p). This implies J ′ = J = minLmin(p) by (3).

In view of the correspondence between the distributive sublattices and
the partition into partially ordered blocks (§2.2.2), the inclusion Lmin(pτ ) ⊇
Lmin(p) shows that the hierarchical decomposition of the column set C by the
principal partition with respect to M(Q)∨M(T ) is finer than that of the CCF.
In other words, the column set of each block of the CCF is an aggregation of
some blocks of the principal partition with respect to M(Q) ∨ M(T ).

In Theorem 4.4.4 we have seen that the decomposition of C based on p
provides the finest block-triangular form under the equivalence transforma-
tion of the form (4.35). By a similar argument it can be shown on the basis of
Theorem 4.2.3 that the principal partition of C with respect to M(Q)∨M(T )
corresponds to a block-triangularization under a wider class of transforma-
tions of the following form:

Pr

(
SQ 0
0 ST

)(
Q
T

)

Pc, (4.104)

where SQ ∈ GL(mQ,K), ST ∈ GL(mT ,F ), and Pr and Pc are permutation
matrices of orders m (= mQ +mT ) and n, respectively. That is, we have the
following.

Theorem 4.7.4. For A ∈ LM(K,F ;mQ,mT , n), the partition of Col(A) by
the principal partition with respect to M(Q) ∨ M(T ) yields the finest proper
block-triangularization (“proper” in the sense of §2.1.4) under the transfor-
mation (4.104). �

The transformation (4.104), however, does not seem natural and would be
different from what is intended in considering a hierarchical decomposition of
a system into subsystems. Recall, for instance, the matrix A of Example 4.7.1.
Since its column set is decomposed into singletons by Lmin(pτ ), it can be
put in a triangular form by the transformation of the form (4.104) with
ST = (yij)−1, which can be determined only after the parameter values yij

are fixed. This simple example demonstrates that the transformation (4.35)
for LM-equivalence is more suitable in practical situations than (4.104), and
hence p is more appropriate than pτ . Note also that the transformed matrix
in (4.104) no longer belongs to LM(K,F ;mQ,mT , n). We shall come back
to this issue in §4.7.2.
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4.7.2 Multilayered Matrix

In §4.7.1 (Theorem 4.7.4 in particular) we have seen that, for an LM-matrix
A =

(
Q
T

)
∈ LM(K,F ), the principal partition with respect to M(Q)∨M(T )

yields the finest proper block-triangularization under a transformation of the
form

Pr

(
SQ 0
0 ST

)(
Q
T

)

Pc (4.105)

with SQ ∈ GL(mQ,K) and ST ∈ GL(mT ,F ). It has been mentioned at
the same time that the transformed matrix no longer belongs to the class of
LM-matrices. This suggests that the block-triangularization under a transfor-
mation of the form (4.105) should be considered in a wider class of matrices.

Let F 0 be an intermediate field of K ⊆ F , i.e., K ⊆ F 0 ⊆ F , and
consider an (mQ +mT )× n matrix A over F of the form A =

(
Q
T

)
such that

(i) Q is an mQ × n matrix over K,
(ii) T = Q1T1 is an mT × n matrix over F , where Q1 is an mT × n

matrix over F 0, and T1 is a diagonal matrix of order n with its
diagonal entries being algebraically independent numbers in F
over F 0.

The set of such matrices A will be denoted by LC(K,F 0,F ;mQ,mT , n).
This class of matrices is closed under the transformation (4.105) with ST ∈
GL(mT ,F 0). Moreover, Theorem 4.2.3 and Theorem 4.7.4 can be extended
to this class.

Theorem 4.7.5. For A =
(

Q
T

)
∈ LC(K,F 0,F ;mQ,mT , n) it holds that

M(A) = M(Q) ∨ M(T ) and that

rankA = min{ρQ(J) + ρT (J) − |J | | J ⊆ C} + |C|,

where ρQ(J) = rankQ[Row(Q), J ] and ρT (J) = rankT [Row(T ), J ] for J ⊆
C = Col(A). The partition of C by the principal partition with respect to
M(Q) ∨ M(T ) yields the finest proper block-triangularization (“proper” in
the sense of §2.1.4) under the transformation (4.105) with SQ ∈ GL(mQ,K)
and ST ∈ GL(mT ,F 0).

Proof. Lemma 4.2.1 and Theorem 4.2.2 are still valid for A ∈ LC(K,F 0,F ).
Then the subsequent arguments carry over to this case.

The considerations above naturally suggest an extension to a multilayered
matrix, which, by definition, is a matrix of the form

A =

⎡

⎢
⎢
⎢
⎣

A0

A1

...
Aμ

⎤

⎥
⎥
⎥
⎦

(4.106)
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such that A0 is an m0 × n matrix over K, and Aα = QαTα is an mα × n
matrix over F α, where K ⊆ F 0 ⊆ F 1 ⊆ · · · ⊆ F μ is a sequence of field
extensions, Qα is an mα × n matrix over F α−1, and Tα is a diagonal matrix
of order n with its diagonal entries being algebraically independent numbers
in F α over F α−1 (α = 1, · · · , μ). Putting C = Col(A) we define p̃ : 2C → Z
by

p̃(J) = ρ0(J) + ρ1(J) + · · · + ρμ(J) − |J |, J ⊆ C, (4.107)

where ρα(J) = rankAα[Row(Aα), J ], J ⊆ C, for α = 0, 1, · · · , μ.

Theorem 4.7.6. For a multilayered matrix A of (4.106) it holds that

rankA = min{p̃(J) | J ⊆ C} + |C|. (4.108)

Furthermore, the family Lmin(p̃) of the minimizers of p̃ yields the finest proper
block-triangularization (“proper” in the sense of §2.1.4) under the transfor-
mation

Pr

⎡

⎢
⎢
⎢
⎣

S0

S1

. . .
Sμ

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

A0

A1

...
Aμ

⎤

⎥
⎥
⎥
⎦
Pc, (4.109)

where S0 ∈ GL(m0,K); Sα ∈ GL(mα,F α−1) (α = 1, · · · , μ); and Pr and Pc

are permutation matrices. �

Remark 4.7.7. An LM-matrix A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n) can be

regarded as a multilayered matrix (4.106) in a number of different ways.
A canonical way is to take A0 = Q and Aα to be the αth row of T for
α = 1, · · · ,mT (with μ = mT ). Then the function p̃ of (4.107) agrees with
the LM-surplus function, and the transformation (4.109) is equivalent to the
LM-admissible transformation (4.35) for LM-matrices, so far as the block-
triangular decomposition is concerned. �

Remark 4.7.8. The canonical form of multilayered matrices introduced
above seems to have a natural meaning for electrical networks involving
multiports (see Recski [277, §8.1] for an exposition on multiports from the
viewpoint of matroid theory). To be specific, consider an electrical network
consisting of μ multiports, each of which is described by a set of equations
with coefficient matrix Aα (α = 1, · · · , μ). Let A0 denote the matrix (over
Q) for Kirchhoff’s laws. Then the coefficient matrix for the whole system
is written as (4.106), and the admissible transformation (4.109) reflects the
locality in the sense that we can choose an appropriate description for each
device. Furthermore, the assumption of the algebraic independence among
different devices would be fairly realistic. �

As an application of Theorem 4.7.5 we derive here the maximum-rank
minimum-term rank theorem for the pivotal transforms of a matrix, due to
Iri [122, 124]. For an m× n matrix N over K, a pivotal transform means
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N =
[
N11 N12

N21 N22

]

�→ N ′ =
[

N11
−1 N11

−1N12

−N21N11
−1 N22 −N21N11

−1N12

]

for a nonsingular submatrix N11. This transformation is invertible, and hence
defines an equivalence relation ∼

pv
among matrices (of the same size).

Theorem 4.7.9 (Maximum-rank minimum-term rank theorem).
For an m× n matrix N over K it holds that

max
N ′ ∼

pv
N

rankN ′ = min
N ′ ∼

pv
N

term-rankN ′.

Moreover, there exists an m× n matrix N◦ over K such that N◦ ∼
pv
N and

rankN◦ = term-rankN◦. (4.110)

Proof. Put Q = [Im N ] and T = [Im N ]D, where D = diag (t1, · · · , tm+n)
with ti (i = 1, · · · ,m + n) being indeterminates over K, and consider A =(

Q
T

)
∈ LC(K,K,F ;m,m,m + n) where F = K(t1, · · · , tm+n). The column

set C of A is given by C = Col(Q) � Row(N) ∪ Col(N). By Theorem 4.7.5
there exists B ⊆ C such that rankQ[Row(Q), B] = |B| = m and rankA =
m + rankT [Row(T ), C \ B]. Put S = Q[Row(Q), B]−1, Q̄ = SQ, and T̄ =
ST , to obtain Ā =

( Q̄
T̄

)
. This is the canonical block-triangular form of A

(cf. (4.64)). Since Ā (with columns permuted) is of the form

Ā =
(

B C \B
Im N◦

Im ·DB N◦ ·DC\B

)

,

where N◦ = Q̄[Row(Q̄), C \B], DB = diag (ti | i ∈ B), DC\B = diag (ti | i ∈
C \B), it can be seen that

term-rank Ā = term-rank
(
Im N◦

Im N◦

)

= m+ term-rankN◦.

On the other hand, rank Ā = rankA = m + rankT [Row(T ), C \ B] = m +
rank T̄ [Row(T̄ ), C \ B] = m + rankN◦ by the choice of B. Finally, we have
rank Ā = term-rank Ā, since Ā is in a proper block-triangular form. Hence
follows (4.110). Note that N◦ is a pivotal transform of N with respect to
N [Row(N) \B,Col(N) ∩B].

Remark 4.7.10. The matrix N◦ constructed in the proof of Theorem 4.7.9
coincides with the combinatorial canonical form of N with respect to its piv-
otal transforms introduced by Iri [125]. Note that N◦ can be put into a proper
block-triangular form by (4.110) and Proposition 2.1.17. See Iri [125] for its
relationship to the principal partition of graphs and to the topological de-
grees of freedom of electrical networks considered by Iri [122], Kishi–Kajitani
[157, 158, 159], Ohtsuki–Ishizaki–Watanabe [254]. Also see Maurer [189] for
a matroid theoretic generalization of Theorem 4.7.9. �
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4.7.3 Electrical Network with Admittance Expression

A decomposition method has been proposed by Iri [127] for electrical networks
with admittance expressions (see Iri [128] for an explicit illustration). We
discuss here its relationship to the CCF.

When the branch characteristics of an electrical network are given in terms
of self- and mutual admittances Y , the coefficient matrix A of the system (3.2)
of equations in (ξ,η) takes the form:

A =

Bξ Bη

D O
O R
−I Y

, (4.111)

whereD is a fundamental cutset matrix and R is a fundamental circuit matrix
of the underlying graph. The column set C = Col(A) is the disjoint union of
two copies, say Bξ and Bη, of the set B of branches; i.e., C = Bξ ∪Bη. Note
that Row(Y ) is identified with Bξ and Col(Y ) with Bη. It is mentioned that
the above system of equations represents the “free” network that is obtained
after the branches of voltage sources are contracted and those of current
sources are deleted (see Recski [277] for more about this).

The unique solvability of the network is equivalent to the nonsingularity
of DYDT by the following lemma.

Lemma 4.7.11. Suppose D and R in (4.111) are of full-row rank and
kerD = (kerR)⊥. Then detA = c · det(DYDT) for some c �= 0.

Proof. By the assumption there exist a matrix N , nonsingular matrices SD

and SR, and permutation matrix P such that D = SD[I | N ]P and R =
SR[−NT | I]P . We assume P = I for notational simplicity, and partition Y
as Y = (Yij | i, j = 1, 2) accordingly. We observe

⎡

⎣
I O D
O I O
O O I

⎤

⎦

⎡

⎣
D O
O R
−I Y

⎤

⎦ =

⎡

⎣
O DY
O R
−I Y

⎤

⎦ ,

[
SD

−1 O
O SR

−1

] [
DY
R

]

=
[
SD

−1(DYDT)SD
−T Y12 +NY22

O I

] [
I O

−NT I

]

to prove the claim with c = ±(detSR/detSD) �= 0.

The decomposition proposed by Iri [127, 128] may be described as follows.
Under the assumption that the nonvanishing entries of Y are algebraically
independent over Q, the nonsingularity of DYDT can be expressed in terms
of an independent matching problem, as has been explained in Remark 2.3.37.
Namely, we consider an independent matching problem on the bipartite graph
G = (V +, V −; Ã) with vertex sets V + = Row(Y ) (= Bξ), V − = Col(Y ) (=
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Bη), and arc set Ã = {(i, j) | Yij �= 0}. The matroids M+ and M− attached to
V + and V − are both isomorphic to the linear matroid M(D) = (B,μ) defined
by the matrix D. It should be clear that μ(I) = rankD[Row(D), I] (I ⊆ B),
which is equal to the rank of I (= maximum size of a circuit-free subset of I)
in the underlying graph. Then rank (DYDT) is equal to the maximum size
of an independent matching (cf. (2.78)). Though not explicit in Iri [127, 128],
Iri’s decomposition can be identified as the min-cut decomposition (§2.3.5)
for this independent matching problem.

To be specific, define

ΓY (J) = {i ∈ Bξ | ∃j ∈ J : Yij �= 0}, J ⊆ Bη,

H = {(I, J) ∈ 2Bξ × 2Bη | I ⊇ ΓY (J)},

pμ(I, J) =
{
μ(I) + μ(Bη \ J) − μ(B) ((I, J) ∈ H)
+∞ ((I, J) �∈ H),

Lmin(pμ) = {I ∪ J ⊆ Bξ ∪Bη | pμ(I, J) = min pμ}.

Then (I, J) ∈ H if and only if (I,Bη \ J) is a cover in the independent
matching problem, and the cut capacity function κ : Bξ ∪Bη → Z, as defined
in (2.71), is given by

κ(I ∪ J) = pμ(Bξ \ I,Bη \ J) + μ(B).

The min-cut decomposition is induced from the lattice Lmin(κ) of the mini-
mizers of κ. However, it is more convenient here to consider Lmin(pμ) in place
of Lmin(κ); obviously, I ∪ J ∈ Lmin(κ) ⇐⇒ (Bξ \ I) ∪ (Bη \ J) ∈ Lmin(pμ).
The decomposition of C = Bξ ∪ Bη proposed by Iri [127] is the one induced
from Lmin(pμ) according to the general principle of §2.2.2.

On the other hand, we may regard A as a member of LM(Q,R) with

A =
[
Q
T

]

, Q =
[
D O
O R

]

, T =
[
−I Y

]
,

where a trivial scaling of the constitutive equations (matrix T ) using tran-
scendental numbers is assumed to bring A into the class of LM(Q,R) (as in
Example 4.3.9). We shall show that the decomposition through the CCF of
A agrees essentially with Iri’s decomposition.

The LM-surplus function p associated with A is given by

p(I ∪ J) = μ(I) + ν(J) + |I ∪ ΓY (J)| − |I ∪ J |, I ⊆ Bξ, J ⊆ Bη,

where ν(J) = rankR[Row(R), J ] (J ⊆ Bη), which is equal to the nullity of J
(= maximum size of a cutset-free subset of J) in the underlying graph. Since

ν(J) = μ(Bη \ J) + |J | − μ(B), J ⊆ Bη,

we have
p(I ∪ J) = pμ(I, J), (I, J) ∈ H. (4.112)
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Proposition 4.7.12.
(1) min{p(I ∪ J) | I ⊆ Bξ, J ⊆ Bη} = min{pμ(I, J) | I ⊆ Bξ, J ⊆ Bη}.
(2) Lmin(p) ⊇ Lmin(pμ).
(3) {J ⊆ Bη | ∃ I ⊆ Bξ : I ∪ J ∈ Lmin(p)} = {J ⊆ Bη | ∃ I ⊆ Bξ :

I ∪ J ∈ Lmin(pμ)}.
Proof. (1) We have

min p = min{min{μ(I) + |ΓY (J) \ I| | I ⊆ Bξ} + ν(J) − |J | | J ⊆ Bη}
= min{μ(ΓY (J)) + ν(J) − |J | | J ⊆ Bη},

which shows that the minimum of p is attained by an (I, J) in H.
(2) This is immediate from (4.112) and (1) above.
(3) Both sides of (3) agrees with the minimizers J (⊆ Bη) of μ(ΓY (J)) +

ν(J) − |J |.
Proposition 4.7.12(2) shows that the decomposition by the CCF applied to

(4.111) yields a finer partition of the variables {ξ,η}. However, the difference
is not substantial, since, as indicated by Proposition 4.7.12(3), they provide
an identical partition for the voltage variables η which play the primary
role in (4.111); the current variables ξ are only secondary as they are readily
obtained from η as ξ = Y η. In this way, we may say that they give essentially
the same decomposition. However, the inclusion in Proposition 4.7.12(2) is
proper in general, as is exemplified below.

Example 4.7.13. For a matrix

A =

ξ1 ξ2 η1 η2
1

1
−1 y11 0

−1 y21 y22

,

the CCF based on Lmin(p) decomposes {ξ1, ξ2, η1, η2} into four singletons
with partial order: {η2} ≺ {η1} ≺ {ξ1}, {η2} ≺ {ξ2}. The decomposition by
Lmin(pμ), on the other hand, gives a partition into two blocks with {ξ2, η2} ≺
{ξ1, η1}. �

4.8 Partitioned Matrix

“Partitioned matrix,” investigated in Ito–Iwata–Murota [138], offers a gen-
eral framework in which we can gain a deeper understanding of proper
block-triangularizations of matrices with respect to existence, uniqueness,
and algorithmic construction. Some of the nice properties enjoyed by the
DM-decomposition of generic matrices and the CCF of LM-matrices carry
over to this general setting, whereas the construction by combinatorial algo-
rithms does not.
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4.8.1 Definitions

We consider an m × n matrix over a field F whose row set and column set
are independently divided into groups:

A =

⎡

⎢
⎢
⎢
⎣

A11 A12 · · · A1ν

A21 A22 · · · A2ν

...
...

. . .
...

Aμ1 Aμ2 · · · Aμν

⎤

⎥
⎥
⎥
⎦
, (4.113)

which we call a partitioned matrix, where Aαβ is an mα × nβ matrix called
the (α, β)-submatrix of A for α = 1, · · · , μ and β = 1, · · · , ν. We are con-
cerned with a proper block-triangularization of A by means of an equivalence
transformation of the form

Sr
−1ASc =

⎡

⎢
⎢
⎢
⎢
⎣

Sr1 O · · · O

O Sr2
. . .

...
...

. . . . . . O
O · · · O Srμ

⎤

⎥
⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎢
⎣

A11 A12 · · · A1ν

A21 A22 · · · A2ν

...
...

. . .
...

Aμ1 Aμ2 · · · Aμν

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Sc1 O · · · O

O Sc2
. . . O

...
. . . . . . O

O · · · O Scν

⎤

⎥
⎥
⎥
⎥
⎦

(4.114)
with

Sr =
μ⊕

α=1

Srα =

⎡

⎢
⎢
⎢
⎢
⎣

Sr1 O · · · O

O Sr2
. . .

...
...

. . . . . . O
O · · · O Srμ

⎤

⎥
⎥
⎥
⎥
⎦
, Sc =

ν⊕

β=1

Scβ =

⎡

⎢
⎢
⎢
⎢
⎣

Sc1 O · · · O

O Sc2
. . . O

...
. . . . . . O

O · · · O Scν

⎤

⎥
⎥
⎥
⎥
⎦

(4.115)
being nonsingular matrices over F . Such an equivalence transformation, pre-
serving the given partition structure, is called a partition-respecting equiva-
lence transformation (or PE-transformation for short). Then our problem is
to bring a partitioned matrix A into a proper block-triangular form by means
of a PE-transformation.

The block-diagonal structure imposed on the transformation matrices Sr

and Sc can be expressed in terms of two families of projection matrices,
Π = {Πα}μ

α=1 and Γ = {Γβ}ν
β=1. The matrix Πα is an m × m projection

matrix such that the (α, α)-submatrix of Πα is the unit matrix Imα
of di-

mension mα and the other submatrices are zeroes. Similarly, Γβ is an n× n
projection matrix such that the (β, β)-submatrix of Γβ is the unit matrix Inβ

of dimension nβ and all the other submatrices are zeroes. Then a transfor-
mation Sr

−1ASc with nonsingular Sr and Sc is a PE-transformation if and
only if

ΠαSr = SrΠα (α = 1, · · · , μ), ΓβSc = ScΓβ (β = 1, · · · , ν). (4.116)
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Note that this condition is equivalent to the off-diagonal submatrices of Sr

and Sc being zeroes. Sometimes we denote a partitioned matrix by a triple
(A,Π, Γ ) of matrix A and two families of projection matrices Π = {Πα}μ

α=1

and Γ = {Γβ}ν
β=1.

The concepts of partitioned matrices and PE-transformations may be
described in terms of linear maps, as follows. Let U ∼= F m and V ∼= F n

be F -linear spaces which are, respectively, expressed as direct sums of lower
dimensional component spaces:

U =
μ⊕

α=1

Uα, dimF Uα = mα (α = 1, · · · , μ), (4.117)

V =
ν⊕

β=1

Vβ , dimF Vβ = nβ (β = 1, · · · , ν). (4.118)

A linear transformation f : V → U is defined by a family of linear transfor-
mations

fαβ : Vβ → Uα, α = 1, · · · , μ; β = 1, · · · , ν.
When a family of bases for {Uα}μ

α=1 and one for {Vβ}ν
β=1 are chosen, f is

represented by a partitioned matrix A, where Aαβ corresponds to fαβ . A PE-
transformation corresponds to a change of “local basis families” for {Uα}μ

α=1

and {Vβ}ν
β=1. The block-triangularization of a partitioned matrix by a PE-

transformation amounts to finding a global hierarchical decomposition by
means of a local basis change.

Example 4.8.1. The block-triangularization of a partitioned matrix by a
PE-transformation is illustrated for a 4 × 5 partitioned matrix over F = Q:

A =

◦ ◦ ◦ • •
�
�
(
(

⎡

⎢
⎢
⎣

1 1 1 1 0
0 2 1 1 1
2 −2 0 0 2
0 3 0 0 4

⎤

⎥
⎥
⎦
,

where μ = 2, ν = 2, m1 = 2, m2 = 2, n1 = 3, n2 = 2. With the choice of

Sr =

⎡

⎢
⎢
⎣

1 1
1 0 O

O
0 1
1 0

⎤

⎥
⎥
⎦ , Sc =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1
0 1 0
1 0 0

O

O
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎦

we have

Ã = Sr
−1ASc =

◦ ◦ ◦ • •
�
�
(
(

⎡

⎢
⎢
⎣

1 2 0 1 1
0 0 1 0 −1
0 3 0 0 4
0 0 2 0 2

⎤

⎥
⎥
⎦
.



4.8 Partitioned Matrix 233

Using permutation matrices

Pr =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , Pc =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
,

we can transform Ã into an explicit upper block-triangular form:

Ā = PrÃPc =

◦ • ◦ ◦ •
�
(
�
(

⎡

⎢
⎢
⎣

1 1 2 0 1
3 0 4

O 1 −1
2 2

⎤

⎥
⎥
⎦

with two square blocks, a nonempty horizontal tail (|R0| = 1, |C0| = 2) and
an empty vertical tail. Note that this is a proper block-triangular matrix. �

We now introduce a submodular function pPE for a partitioned matrix,
which is a generalization of the (LM-)surplus function for a generic (or LM-)
matrix. We denote by W the family of all the subspaces of V that can be
represented as a direct sum of subspaces of Vβ ’s, i.e.,

W = {W |W : subspace of V , ΓβW ⊆W (β = 1, · · · , ν)}. (4.119)

For W1 ∈ W and W2 ∈ W, we have W1 +W2 ∈ W and W1 ∩W2 ∈ W, which
means that W forms a lattice. Furthermore, we have

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2),

which means W is a modular lattice (not distributive in general). Regarding
Aα = ΠαA as a linear map, we define pPE : W → Z by

pPE(W ) =
μ∑

α=1

dim(AαW ) − dimW, W ∈ W. (4.120)

We call pPE : W → Z the PE-surplus function associated with a partitioned
matrix A.

Lemma 4.8.2. The PE-surplus function pPE : W → Z is submodular, i.e.,

pPE(W1) + pPE(W2) ≥ pPE(W1 +W2) + pPE(W1 ∩W2), W1,W2 ∈ W.

Proof. It suffices to show that dim(AαW ) is submodular for each α. This
follows from Aα(W1 +W2) = AαW1 + AαW2 and Aα(W1 ∩W2) ⊆ AαW1 ∩
AαW2.

The following proposition shows that the PE-surplus function pPE is rel-
evant in dealing with the rank of partitioned matrices.
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Proposition 4.8.3. For an m× n partitioned matrix A,

rankA ≤ min{pPE(W ) |W ∈ W} + n ≤ term-rankA.

Proof. For any W ∈ W there exists a matrix Sc of the form of (4.115) such
that a subfamily of the column vectors of Sc is a basis of W . Let

Ã =

⎛

⎜
⎜
⎜
⎝

J �W C \ J
Ã1[R1, J ] Ã1[R1, C \ J ]
Ã2[R2, J ] Ã2[R2, C \ J ]

...
...

Ãμ[Rμ, J ] Ãμ[Rμ, C \ J ]

⎞

⎟
⎟
⎟
⎠

(4.121)

be obtained fromA by a PE-transformation using such Sc, where C = Col(Ã),
Rα = Row(Ãα), and the subset of C indicated by “J � W” corresponds to
the subspace W (hence |J | = dimW ). Then, rank Ãα[Rα, J ] = dim(AαW )
for each α, and

rankA = rank Ã ≤
μ∑

α=1

rank Ãα[Rα, J ] + rank Ã[R,C \ J ]

≤
μ∑

α=1

dim(AαW ) + n− dimW = pPE(W ) + n. (4.122)

This establishes the first inequality.
For the second inequality, let p0 : Col(A) → Z be the surplus function

(2.39) associated with A, and let J ⊆ Col(A) be a minimizer of p0. Then we
have p0(J) + n = term-rankA by the Hall–Ore theorem (Theorem 2.2.17).
Define W to be the subspace of V spanned by the unit vectors corresponding
to J . Then W ∈ W, dimW = |J | and

∑μ
α=1 dim(AαW ) ≤ γA(J) (cf. (4.46)).

Therefore pPE(W ) + n ≤ p0(J) + n = term-rankA.

It may be said that the relation

rankA ≤ min{pPE(W ) |W ∈ W} + n (4.123)

states a weak duality of the same kind as the easier part of min-max relations.
Though the equality is not always guaranteed in (4.123), this weak duality
turns out to be most fundamental in that the strong duality (the equality
in (4.123)) is equivalent to the existence of a proper block-triangularization,
as will be stated in Theorem 4.8.6. Note in this connection that both rankA
and min pPE are invariant under PE-transformations, whereas term-rankA is
not.

Example 4.8.4. A simplest partitioned matrix that cannot be brought into

a proper block-triangular form is A =
[

1 1
1 1

]

with μ = ν = 2. We have

rankA = 1 while min pPE + 2 = 2 = term-rankA. �
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Remark 4.8.5. An LM-matrix A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n) can be

regarded as a partitioned matrix such that the column set is partitioned into
singletons (ν = n, nβ = 1 for β = 1, · · · , ν) and the row set is partitioned into
Row(Q) and singletons from Row(T ) (μ = 1 +mT ; m1 = mQ, mα = 1 for
α = 2, · · · , μ). Then, W ∼= 2Col(A), and the associated PE-surplus function
pPE agrees with the LM-surplus function p defined in (4.16). �

4.8.2 Existence of Proper Block-triangularization

In Proposition 4.8.3 we have seen a weak duality between the rank and the
PE-surplus function pPE for a partitioned matrix. We shall show that the
strong duality (the validity of the minimax formula) is equivalent to the
existence of a proper block-triangularization. The block-triangularization can
be constructed on the basis of the family of the minimizers of pPE:

Lmin(pPE) = {W ∈ W | pPE(W ) = min
W ′∈W

pPE(W ′)}, (4.124)

which forms a modular lattice (cf. Lemma 4.8.2 and Theorem 2.2.5).

Theorem 4.8.6. For anm×n partitioned matrix A, a proper block-triangular
matrix can be obtained by a PE-transformation (4.114) if and only if

rankA = min{pPE(W ) |W ∈ W} + n. (4.125)

Proof. [“only if” part] Suppose Ã is a proper block-triangular matrix obtained
from A by a PE-transformation. Since rankA and min pPE are invariant under
PE-transformations, Proposition 4.8.3 implies

rankA = rank Ã ≤ min{pPE(W ) |W ∈ W} + n ≤ term-rank Ã,

in which rank Ã = term-rank Ã by Proposition 2.1.17.
[“if” part] Let C be a maximal chain of Lmin(pPE):

C :W0
⊂
�=W1

⊂
�= · · · ⊂

�=Wb.

Denoting Wk ∩ Vβ by Wkβ , we obtain from C a family of increasing chains

Cβ :W0β ⊆W1β ⊆ · · · ⊆Wbβ

for β = 1, · · · , ν. Let Ψkβ be a set of linearly independent column vectors
spanning Wkβ for k = 0, 1, · · · , b and Ψ∞β spanning Vβ such that

Ψ0β ⊆ Ψ1β ⊆ · · · ⊆ Ψbβ ⊆ Ψ∞β .

Then Ψk =
⋃ν

β=1 Ψkβ spans Wk for k = 0, 1, · · · , b, and Ψ =
⋃ν

β=1 Ψ∞β

becomes a basis of V . Order the n column vectors of Ψ as [Ψ∞1, Ψ∞2, · · · , Ψ∞ν ]
to get a nonsingular matrix Sc =

⊕ν
β=1 Scβ .
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Similarly, we obtain from C another family of increasing chains

AαC : AαW0 ⊆ AαW1 ⊆ · · · ⊆ AαWb

for α = 1, · · · , μ. Let Φkα be a set of linearly independent column vectors
spanning AαWk for k = 0, 1, · · · , b and Φ∞α spanning Uα such that

Φ0α ⊆ Φ1α ⊆ · · · ⊆ Φbα ⊆ Φ∞α.

Then Φk =
⋃μ

α=1 Φkα spans AWk for k = 0, 1, · · · , b, and Φ =
⋃μ

α=1 Φ∞α be-
comes a basis of U . Order the m column vectors of Φ as [Φ∞1, Φ∞2, · · · , Φ∞μ]
to get a nonsingular matrix Sr =

⊕μ
α=1 Srα.

Put Ã = Sr
−1ASc. Let Ck ⊆ Col(Ã) be the column subset corresponding

to Ψ̂k, and Rk ⊆ Row(Ã) the row subset corresponding to Φ̂k, where

Ψ̂0 = Ψ0, Φ̂0 = Φ0,

Ψ̂k = Ψk \ Ψk−1, Φ̂k = Φk \ Φk−1, for k = 1, · · · , b,
Ψ̂∞ = Ψ \ Ψb, Φ̂∞ = Φ \ Φb.

Then the consistency of the basis vectors Ψ and Φ with the chains C and AαC
implies that

Ã[Rk, Cl] = O if 0 ≤ l < k ≤ ∞.
Since

pPE(Wk) =
k∑

l=0

|Rl| −
k∑

l=0

|Cl|

and pPE(Wk−1) = pPE(Wk) (= min pPE) for k = 1, · · · , b, it holds that

|Rk| = |Ck| for k = 1, · · · , b.

Furthermore it can be shown from (4.125) (see the proof of Theorem 4.4.4)
that

rank Ã[Rk, Ck] = min(|Rk|, |Ck|) for k = 0, 1, · · · , b,∞.

That is to say, Ã is in a proper block-triangular form, where the number
of square blocks b is given by the length of C. This completes the proof of
Theorem 4.8.6.

When the strong duality (or the rank formula) (4.125) holds true, the
lattice Lmin(pPE) admits an alternative expression. Define L(A,Π, Γ ) to be
the family of subspaces W of V such that

ΓβW ⊆W (β = 1, · · · , ν), ΠαAW ⊆ AW (α = 1, · · · , μ), kerA ⊆W.
(4.126)

Theorem 4.8.7. For an m × n partitioned matrix A, the rank formula
(4.125) holds true if and only if L(A,Π, Γ ) �= ∅. If L(A,Π, Γ ) �= ∅, then
Lmin(pPE) = L(A,Π, Γ ).
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Proof. For W ∈ W we have (cf. (4.122))

pPE(W ) =
μ∑

α=1

dim(ΠαAW ) − dimW

≥ dim(AW ) − dimW ≥ −dim(kerA) = rankA− n.

It then follows that pPE(W ) + n = rankA if and only if

μ∑

α=1

dim(ΠαAW ) = dim(AW ) = dimW − dim(kerA).

The first equality here is equivalent to ΠαAW ⊆ AW (α = 1, · · · , μ), and the
second to kerA ⊆ W . Therefore, the rank formula (4.125) holds true if and
only if L(A,Π, Γ ) �= ∅. The final claim is obvious from the above argument.

Remark 4.8.8. Theorems 4.8.6 and 4.8.7 imply that the nonemptyness of
L(A,Π, Γ ) is necessary and sufficient for the existence of a proper block-
triangular form under PE-transformations. It may be said that L(A,Π, Γ )
captures the geometric aspect of proper block-triangularization more directly,
while Lmin(pPE) gives a combinatorial representation of the same lattice. �

A partitioned matrix A of full rank (i.e., rankA = min(m,n)) has a proper
block-triangular form by Theorem 4.8.6 and the following fact.

Proposition 4.8.9. The rank formula (4.125) holds true for a partitioned
matrix of full rank.

Proof. This follows from pPE(0) = 0, pPE(V ) ≤ m−n and the first inequality
in Proposition 4.8.3.

A partitioned matrix A admitting a proper block-triangularization is
called PE-reducible if it can be transformed into a proper block-triangular
form with two or more nonempty blocks by a PE-transformation; otherwise
it is called PE-irreducible. Note that PE-reducibility or PE-irreducibility is
defined only if A possesses a proper block-triangular form.

Proposition 4.8.10.
(1) A PE-irreducible partitioned matrix is of full rank.
(2) A partitioned matrix of full rank is PE-irreducible if and only if

Lmin(pPE) =

⎧
⎨

⎩

{V } (if m < n)
{0, V } (if m = n)
{0} (if m > n) .
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Proof. (1) and the “only if” part of (2) follow from the proof of Theorem
4.8.6. For the “if” part of (2), suppose that A can be brought to a proper
block-triangular matrix Ã with two or more nonempty blocks by a PE-
transformation. Then there exists ∅ �= I ⊆ Row(Ã) and ∅ �= J ⊆ Col(Ã)
such that rank Ã[I, J ] = 0, rank Ã[Row(Ã) \ I, J ] = |Row(Ã) \ I|, and
rank Ã[I,Col(Ã) \ J ] = |Col(Ã) \ J |. The subspace W ∈ W that corresponds
to J (as in (4.121)) satisfies pPE(W ) = rankA − n. Furthermore, W �= V if
m ≤ n and W �= 0 if m ≥ n.

If Ã is a proper block-triangular matrix obtained from A by a PE-
transformation and if, in addition, all the diagonal blocks Ã[Rk, Ck] for
k = 0, 1, · · · , b,∞ are PE-irreducible, we say that Ã is a PE-irreducible de-
composition of A, whereas the diagonal blocks Ã[Rk, Ck] (k = 0, 1, · · · , b,∞)
are called the PE-irreducible components of A. The matrix Ã constructed
in the proof of Theorem 4.8.6 is a PE-irreducible decomposition due to the
maximality of the chain C. The PE-irreducible components of a partitioned
matrix are uniquely determined up to PE-transformations, as follows.

Theorem 4.8.11. The set of PE-irreducible components of a partitioned
matrix is unique to within PE-transformations of each component.

Proof. The proof relies on a module-theoretic argument, in particular, on the
Jordan–Hölder theorem for modules. See Ito–Iwata–Murota [138] for details.

4.8.3 Partial Order Among Blocks

For a block-triangular matrix in general a partial order is defined among
the blocks by the zero/nonzero structure of the off-diagonal blocks. Unlike
the CCF of LM-matrices, the partial order among the blocks is not uniquely
determined for partitioned matrices. Recall, by contrast, that the CCF gives a
unique decomposition of an LM-matrix that is finest not only with respect to
the partition into blocks but also with respect to the partial order among the
blocks. Mathematically, the nonuniqueness of the partial order for partitioned
matrices is ascribed to the nondistributivity of the lattice Lmin(pPE) of the
minimizers of the PE-surplus function pPE, whereas the uniqueness for LM-
matrices is due to the distributivity of the lattice Lmin(p) of the minimizers
of the LM-surplus function p.

Let A be a partitioned matrix, as in §4.8.1, and Ã = Sr
−1ASc be a proper

block-triangular matrix obtained from A by a PE-transformation. Denote by
(R0;R1, · · · , Rb;R∞) and (C0;C1, · · · , Cb;C∞) the partitions of R = Row(Ã)
and C = Col(Ã), respectively. The partial order � defined among the blocks
is the reflexive and transitive closure of the relation given by: Ck � Cl if
Ã[Rk, Cl] �= O with the convention (2.15). We denote this partially ordered
set ({C0;C1, · · · , Cb;C∞},�) by P(Ã). The order ideals of P(Ã) constitute a
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distributive sublattice of 2C , which we denote by D(Ã); namely, D(Ã) = L(P)
for P = P(Ã) in the notation of (2.27).

A subset J of Col(Ã) can be naturally identified with a subspace of V ,
on which the given A acts. We denote this subspace by ψ(J, Sc), i.e.,

ψ(J, Sc) = span{Sc(0, · · · , 0,
j
∨
1, 0, · · · , 0)T | j ∈ J}. (4.127)

Then

ψ(J1∪J2, Sc) = ψ(J1, Sc)+ψ(J2, Sc), ψ(J1∩J2, Sc) = ψ(J1, Sc)∩ψ(J2, Sc),

and hence
ψ(D(Ã), Sc) = {ψ(J, Sc) | J ∈ D(Ã)}

is a distributive sublattice of the modular lattice formed by the subspaces of
V .

Proposition 4.8.12. If Ã = Sr
−1ASc is a proper block-triangular matrix ob-

tained from a partitioned matrix A by a PE-transformation, then ψ(D(Ã), Sc)
is a sublattice of Lmin(pPE) = L(A,Π, Γ ).

Proof. For J ∈ D(Ã) put W = ψ(J, Sc). Since Ã = Sr
−1ASc is a PE-

transformation, we have ΓβW ⊆ W for β = 1, · · · , ν. It follows from the
definition of a proper block-triangular form that kerA ⊆ W and from the
definition of the partial order that ΠαAW ⊆ AW for α = 1, · · · , μ. Hence
W ∈ L(A,Π, Γ ).

Suppose we have two proper block-triangular matrices, Ã = Sr
−1ASc

and Ã′ = S′
r
−1
AS′

c, obtained from A by PE-transformations. We say that
Ã is a finer decomposition than Ã′ if ψ(D(Ã′), S′

c) is a proper sublattice of
ψ(D(Ã), Sc). Furthermore, we say that Ã is a finest-possible decomposition of
A if there exists no proper block-triangular matrix Ã′ which is obtained from
A by a PE-transformation and is finer than Ã.

Theorem 4.8.13. Suppose that a partitioned matrix A has a proper block-
triangular form under PE-transformations. Then Ã = Sr

−1ASc is a finest-
possible decomposition of A if and only if ψ(D(Ã), Sc) is a maximal distribu-
tive sublattice of Lmin(pPE) = L(A,Π, Γ ).

Proof. This follows from Proposition 4.8.12 and Lemma 4.8.14 below.

Lemma 4.8.14. For any distributive sublattice D′ of L(A,Π, Γ ) there exists
a PE-transformation Ã = Sr

−1ASc such that ψ(D(Ã), Sc) ⊇ D′.

Proof. According to Birkhoff’s representation theorem, the distributive lat-
tice D′ can be represented by a partially ordered set P ′ = ({Z1, · · · , Zb},⊆)
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consisting of the join-irreducible elements of D′ except the minimum ele-
ment of D′ (see Remark 2.2.6). We assume that k ≤ l if Zk ⊆ Zl, and put
Z0 = minD′. For each β = 1, · · · , ν, let Ψ̂0β be a set of basis vectors of
Z0 ∩ Vβ . For k = 1, · · · , b inductively define Ψ̂kβ to be a set of vectors such

that Ψ̂kβ ∪
(⋃

Zl⊂Zk
Ψ̂lβ

)
is a basis of Zk ∩ Vβ , and finally let Ψ̂∞β be such

that Ψβ = Ψ̂∞β ∪
(⋃b

k=0 Ψ̂kβ

)
is a basis of Vβ . Then define the matrix Scβ

from the column vectors of Ψβ for β = 1, · · · , ν, and put Sc =
⊕ν

β=1 Scβ . The
other transformation matrix Sr =

⊕μ
α=1 Srα should be constructed similarly

from the basis vectors {Φ̂kα | k = 0, 1, · · · , b,∞;α = 1, · · · , μ} compatible
with ΠαAZk for k = 0, 1, · · · , b and α = 1, · · · , μ. We claim that

Ã[Rk, Cl] = O unless Zk ⊆ Zl.

This is because Zl ∈ D′ ⊆ L(A,Π, Γ ) implies ΠαAZl ⊆ AZl (α = 1, · · · , μ),
where ΠαAZl is spanned by

⋃
Zk⊆Zl

Φ̂kα. The claim in turn implies that
Ck � Cl ⇒ Zk ⊆ Zl. Hence ψ(D(Ã), Sc) ⊇ D′.

An instance of nonunique partial order will be given in Example 4.8.24.

4.8.4 Generic Partitioned Matrix

We have seen that not every partitioned matrix admits a proper block-
triangularization. In this section we introduce a certain genericity assumption
on the nonzero entries with a view to identifying a subclass of partitioned
matrices for which the proper block-triangularization exists.

We consider a partitioned matrix A that is generic in the following sense.
Let K be a subfield of a field F , A�

αβ be an mα × nβ matrix over K for α =
1, · · · , μ and β = 1, · · · , ν, and T = {tαβ ∈ F | α = 1, · · · , μ; β = 1, · · · , ν}
be algebraically independent over K. Then

A =

⎡

⎢
⎢
⎢
⎣

A11 A12 · · · A1ν

A21 A22 · · · A2ν

...
...

. . .
...

Aμ1 Aμ2 · · · Aμν

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

t11A
�
11 t12A

�
12 · · · t1νA

�
1ν

t21A
�
21 t22A

�
22 · · · t2νA

�
2ν

...
...

. . .
...

tμ1A
�
μ1 tμ2A

�
μ2 · · · tμνA

�
μν

⎤

⎥
⎥
⎥
⎦

is a partitioned matrix over the field F , where Aαβ = tαβA
�
αβ for α = 1, · · · , μ

and β = 1, · · · , ν. Such a matrix A is named a generic partitioned matrix (or
GP-matrix for short) of type (m1, · · · ,mμ;n1, · · · , nν) with ground field K.
A GP-matrix of type (1, · · · , 1; 1, · · · , 1) is nothing but a generic matrix. A
GP-matrix is called a GP(2)-matrix if mα ≤ 2 for α = 1, · · · , μ and nβ ≤ 2
for β = 1, · · · , ν.

For a generic partitioned matrix it is natural to assume that the matrices
Sr and Sc in the PE-transformation (4.114) are nonsingular matrices over
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the ground field K. We call such a transformation a GP-transformation.
It is emphasized that a GP-transformation preserves not only the partition
structure but the genericity in the above sense, and therefore the resulting
matrix remains a generic partitioned matrix.

A generic partitioned matrix A admitting a proper block-triangularization
under GP-transformations is called GP-reducible if it can be transformed
into a proper block-triangular form with two or more nonempty blocks by
a GP-transformation; otherwise it is called GP-irreducible. Note that GP-
reducibility or GP-irreducibility is defined only if A possesses a proper block-
triangular form.

The main objective of this section is to show that the proper block-
triangularization is possible for GP(2)-matrices, whereas this is not the case
with generic partitioned matrices of general type.

Example 4.8.15. The basic concepts introduced above are illustrated here.
Consider a 6 × 6 matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2t11 t11 t12 t12 t13 t13
t13

t21 t21 t22 t23
t23

t31 t31 t32 −t32
t32 t33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is a GP(2)-matrix of type (2, 2, 2; 2, 2, 2) with K = Q. Using admissible
transformation matrices:

Sr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1 0
0 1

1 −1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Sc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
−1 1

1 0
0 1

1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

we obtain

Ã = Sr
−1ASc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t11 t12 t12 t13 t13
t13

t21 t22 t23
t23

t31 t32 t33
t32 t33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which can be put into an explicit upper block-triangular form:



242 4. Theory and Application of Mixed Matrices

Ā = PrÃPc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t13 t11 t11 t12 t12 t13
t21 t22 t23
t31 t32 t33

t32 t33
t13
t23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with permutation matrices

Pr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Pc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix Ā is a proper block-triangular matrix (in an explicit block-
triangular form), giving a GP-irreducible decomposition with the horizon-

tal tail Ā[R0, C0] = [ t13 t11 ], the vertical tail Ā[R∞, C∞] =
[
t13
t23

]

, and two

square diagonal blocks Ā[R1, C1] =
[
t21 t22
t31 t32

]

and Ā[R2, C2] = [t32]. �

Compatibly with the restriction of PE-transformations to GP-transforma-
tions, namely, the restriction to transformations over K, we introduce a vari-
ant of the PE-surplus function pPE as follows. Let U◦ ∼= Km and V ◦ ∼= Kn

be K-linear spaces which are, respectively, expressed as direct sums of lower
dimensional component spaces:

U◦ =
μ⊕

α=1

U◦
α, dimK U

◦
α = mα (α = 1, · · · , μ),

V ◦ =
ν⊕

β=1

V ◦
β , dimK V

◦
β = nβ (β = 1, · · · , ν).

Then we have the relations (4.117) and (4.118) for U = U◦ ⊗K F , V =
V ◦ ⊗K F , Uα = U◦

α ⊗K F and Vβ = V ◦
β ⊗K F , where it should be clear that

U◦ ⊗K F , for example, denotes the linear space obtained from U◦ (∼= Km)
by extending the base field to F , and hence U◦ ⊗K F ∼= F m. We denote by
W◦ the family of all the subspaces of V that can be generated by a direct
sum of subspaces of V ◦

β ’s, i.e.,

W◦ = {W ◦ ⊗K F |W ◦: subspace of V ◦, ΓβW
◦ ⊆W ◦ (β = 1, · · · , ν)}.

(4.128)
Similarly, we denote by Y◦ the family of all the subspaces of U that can be
generated by a direct sum of subspaces of U◦

α’s. Then both W◦ and Y◦ form
a modular lattice. We define pGP : W◦ → Z and λ : Y◦ ×W◦ → Z by
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pGP(W ) =
μ∑

α=1

dim(AαW ) − dimW, W ∈ W◦, (4.129)

λ(Y,W ) = dim(AW/Y ) = dim(AW ) − dim(AW ∩ Y ),
Y ∈ Y◦,W ∈ W◦, (4.130)

and call them the GP-surplus function and the GP-birank function, respec-
tively. Note that pGP is the restriction of pPE : W → Z to W◦, and hence,
by Lemma 4.8.2, pGP is submodular on W◦.

A combination of Proposition 4.8.3 and Theorem 4.8.6 can be adapted as
follows.

Proposition 4.8.16. For an m× n generic partitioned matrix A,

rankA ≤ min{pGP(W ) |W ∈ W◦} + n ≤ term-rankA,

and a proper block-triangular matrix can be obtained by a GP-transformation
if and only if

rankA = min{pGP(W ) |W ∈ W◦} + n. (4.131)

Proof. The proof is similar to those of Proposition 4.8.3 and Theorem 4.8.6.

Next, we have the following lemmas, the latter of which should be com-
pared with Theorem 2.3.47.

Lemma 4.8.17. For a generic partitioned matrix A the function λ : Y◦ ×
W◦ → Z is submodular, i.e.,

λ(Y1,W1) + λ(Y2,W2) ≥ λ(Y1 + Y2,W1 +W2) + λ(Y1 ∩ Y2,W1 ∩W2)

for Yi ∈ Y◦, Wi ∈ W◦ (i = 1, 2).

Proof. It is clear from the following calculation:

λ(Y1,W1) + λ(Y2,W2)
= dim(AW1) + dim(AW2) − dim(AW1 ∩ Y1) − dim(AW2 ∩ Y2)
= dim(A(W1 +W2)) + dim((AW1 ∩AW2)/(Y1 ∩ Y2))
−dim((AW1 ∩ Y1) + (AW2 ∩ Y2))

≥ dim(A(W1 +W2)) + dim(A(W1 ∩W2)/(Y1 ∩ Y2))
−dim(A(W1 +W2) ∩ (Y1 + Y2))

= λ(Y1 + Y2,W1 +W2) + λ(Y1 ∩ Y2,W1 ∩W2).

Lemma 4.8.18. For an m × n generic partitioned matrix A, there exists a
pair Y ∗ ∈ Y◦ and W ∗ ∈ W◦ such that

(i) dimW ∗ − dimY ∗ − λ(Y ∗,W ∗) = n− rankA, and
(ii) λ(Y ′,W ′) = λ(Y ∗,W ∗) for any Y ′ ⊃ Y ∗ and W ′ ⊂W ∗ such that

dimY ′ = dimY ∗ + 1 and dimW ′ = dimW ∗ − 1.
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Proof. Consider a pair (Y ∗,W ∗) which minimizes dimW ∗ − dimY ∗ subject
to (i). Such (Y ∗,W ∗) certainly exists since (i) is satisfied by ({0}, V ). Then
for any Y ′ ⊃ Y ∗ and W ′ ⊂W ∗ such that dimY ′ = dimY ∗+1 and dimW ′ =
dimW ∗ − 1, it follows from Lemma 4.8.17 that

λ(Y ∗,W ∗) + λ(Y ′,W ′) ≥ λ(Y ′,W ∗) + λ(Y ∗,W ′).

Because of the minimality of dimW ∗ − dimY ∗ we have λ(Y ′,W ∗) =
λ(Y ∗,W ∗) since otherwise (Y ′,W ∗) would satisfy (i) with dimW ∗−dimY ′ <
dimW ∗ − dimY ∗. Likewise we have λ(Y ∗,W ′) = λ(Y ∗,W ∗). Therefore
λ(Y ′,W ′) ≥ λ(Y ∗,W ∗). On the other hand, it is clear that λ(Y ′,W ′) ≤
λ(Y ∗,W ∗) since Y ′ ⊃ Y ∗ and W ′ ⊂W ∗. Hence (Y ∗,W ∗) satisfies (ii).

Whereas the above two lemmas are valid for generic partitioned matrices
in general (even the genericity is irrelevant), the following theorem states a
key property valid for GP(2)-matrices (and not for generic partitioned ma-
trices of general type). We call this the König–Egerváry theorem for GP(2)-
matrices, since for a generic matrix it reduces to the König–Egerváry theorem
for bipartite graphs.

Theorem 4.8.19. For anm×n GP(2)-matrix A, there exists a pair Y ∗ ∈ Y◦

and W ∗ ∈ W◦ such that
(i) dimW ∗ − dimY ∗ = n− rankA, and
(ii) λ(Y ∗,W ∗) = 0.

In other words, there exists a GP-transformation Ã = Sr
−1ASc and subsets

R∗ ⊆ Row(Ã) and C∗ ⊆ Col(Ã) such that
(i′) |R∗| + |C∗| = m+ n− rankA, and
(ii′′) rank Ã[R∗, C∗] = 0.

Proof. Given a pair (Y ∗,W ∗) of Lemma 4.8.18, consider a GP-transformation
Ã = Sr

−1ASc such that a subset of the column vectors of Sr spans Y ∗ and
a subset of the column vectors of Sc spans W ∗. We denote by R∗ the com-
plement of the subset of Row(Ã) corresponding to Y ∗ and by C∗ the subset
of Col(Ã) corresponding to W ∗. Note that Row(Ã) and Col(Ã) have natural
one-to-one correspondences with Col(Sr) and Col(Sc), respectively, and that
|R∗| = m− dimY ∗, |C∗| = dimW ∗ and λ(Y ∗,W ∗) = rank Ã[R∗, C∗].

We claim that rank Ãαβ [R∗, C∗] �= 1 for each (α, β), where Ãαβ [R∗, C∗] is
a short-hand notation for Ãαβ [R∗ ∩ Row(Ãαβ), C∗ ∩ Col(Ãαβ)]. Assume, to
the contrary, that Ãαβ [R∗, C∗] has rank 1 for some (α, β). We may further
assume that Ãαβ [R∗, C∗] is in the rank normal form, i.e.,

(
tαβ 0
0 0

)

,

(
tαβ

0

)

,
(
tαβ 0

)
, or

(
tαβ

)
,

and that Ãαβ [R∗, C∗] has the only nonzero element at (i, j)-entry of Ã. Let
Ã[I∗, J∗] be a maximum-sized nonsingular submatrix of Ã[R∗ \{i}, C∗ \{j}],
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and then Ã[I∗ ∪ {i}, J∗ ∪ {j}] is nonsingular since the nonzero terms aris-
ing from tαβ det Ã[I∗, J∗] would not vanish in the determinant expansion of
Ã[I∗ ∪ {i}, J∗ ∪ {j}] because of the genericity. Therefore we have

rank Ã[R∗, C∗] > rank Ã[R∗ \ {i}, C∗ \ {j}],

which contradicts the condition (ii) of Lemma 4.8.18. Hence rank Ãαβ [R∗, C∗]
is 0 or 2.

Consider a generic matrix B = (bαβ) with Row(B) = {1, · · · , μ} and
Col(B) = {1, · · · , ν} defined by

bαβ =
{
tαβ if rank Ãαβ [R∗, C∗] = 2,
0 if rank Ãαβ [R∗, C∗] = 0.

Note the correspondence between the entry bαβ of B and the submatrix
Aαβ of A. The DM-decomposition of B splits R = Row(B) and C =
Col(B) into blocks (R0;R1, · · · , Rb;R∞) and (C0;C1, · · · , Cb;C∞), respec-
tively. Accordingly, R∗ and C∗ are split into blocks (R∗

0;R
∗
1, · · · , R∗

b ;R
∗
∞)

and (C∗
0 ;C∗

1 , · · · , C∗
b ;C∗

∞), respectively. Since rank Ãαβ [R∗, C∗] is either 2 or
0, it follows from the genericity that

rank Ã[R∗, C∗] = 2 rankB.

Moreover, Ã[R∗, C∗] is in a proper block-triangular form with respect to the
blocks (R∗

0;R
∗
1, · · · , R∗

b ;R
∗
∞) and (C∗

0 ;C∗
1 , · · · , C∗

b ;C∗
∞). For any i ∈ R∗ \R∗

∞,
we would have

rank Ã[R∗ \ {i}, C∗] < rank Ã[R∗, C∗],

which contradicts the condition (ii) in Lemma 4.8.18. Similarly, for any j ∈
C∗ \ C∗

0 , we would have

rank Ã[R∗, C∗ \ {j}] < rank Ã[R∗, C∗],

which also contradicts the condition (ii) in Lemma 4.8.18. ThereforeR∗ = R∗
∞

and C∗ = C∗
0 . That is to say, Ã[R∗, C∗] = O, i.e., rank Ã[R∗, C∗] = 0.

We now state the main result of this section, namely the rank identity
for GP(2)-matrices, due to Iwata–Murota [144]. This is an extension of the
Hall–Ore theorem for generic matrices.

Theorem 4.8.20. For an m× n GP(2)-matrix A,

rankA = min{pGP(W ) |W ∈ W◦} + n. (4.132)

Hence a proper block-triangular form can be obtained by a GP-transformation.
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Proof. Let (Y ∗,W ∗) be the pair of Theorem 4.8.19. From (ii) it follows that
AαW

∗ ⊆ Y ∗ ∩ Uα. Using this and (i) we obtain

rankA = dimY ∗ − dimW ∗ + n

≥
μ∑

α=1

dim(AαW
∗) − dimW ∗ + n = pGP(W ∗) + n.

The other direction of the inequality follows from Proposition 4.8.16.

Remark 4.8.21. A compilation of Theorem 4.8.20 and the previous results
show that the rank identity (4.132) holds for the following types of generic
partitioned matrices:

• Generic matrix: mα = 1 for α = 1, · · · , μ and nβ = 1 for β = 1, · · · , ν.
• Multilayered matrix: nβ = 1 for β = 1, · · · , ν.
• Transposed multilayered matrix: mα = 1 for α = 1, · · · , μ.
• GP(2)-matrix: mα ≤ 2 for α = 1, · · · , μ and nβ ≤ 2 for β = 1, · · · , ν.
The second case above is easily seen from Theorem 4.7.6, whereas the third
follows from this with Theorem 4.8.6 and an observation that A has a proper
block-triangular form if and only if the transpose of A does also. The identity
(4.132) is not valid for generic partitioned matrices in general, as illustrated
in the following example. �

Example 4.8.22. The identity (4.132) is not valid for generic partitioned
matrices in general. Consider a 6 × 6 generic partitioned matrix of type
(3, 3; 2, 2, 2):

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t12
t11 t13

t12 t13
t22 t23

t21 t23
t21 t22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It can be easily verified that rankA = 5 < min pGP + n = 6. �

Example 4.8.23. The block-triangular decomposition of a GP(2)-matrix
depends on the ground field K. Consider, for example, a 4× 4 GP(2)-matrix

A =

⎡

⎢
⎢
⎣

t11 t12
2 t11 t12
t21 t22

t21 t22

⎤

⎥
⎥
⎦ .

If regarded as a GP(2)-matrix with the ground field K = Q, A is GP-
irreducible. If R is the ground field K, on the other hand, the following
block-triangularization of A is obtained:
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Ã = Sr
−1ASc =

⎡

⎢
⎢
⎣

t11 −t12
t11 t12

t21
√

2 t22
t21

√
2 t22

⎤

⎥
⎥
⎦

with

Sr =

⎡

⎢
⎢
⎣

√
2
√

2
−2 2

−1 1√
2
√

2

⎤

⎥
⎥
⎦ , Sc =

⎡

⎢
⎢
⎣

√
2
√

2
−1 1

2 2
−
√

2
√

2

⎤

⎥
⎥
⎦ .

By using permutation matrices

Pr =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , Pc =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

we obtain an explicit upper block-triangular (block-diagonal) matrix

Ā = PrÃPc =

⎡

⎢
⎢
⎣

t11 −t12
t21

√
2 t22

t11 t12
t21

√
2 t22

⎤

⎥
⎥
⎦ .

Thus, when K = R, the matrix A is decomposed into a block-triangular
(block-diagonal) form with two square blocks and empty tails. �

Example 4.8.24. Unlike the CCF of LM-matrices, the partial order among
the blocks is not uniquely determined in the block-triangularization of GP(2)-
matrices. The analysis in §4.8.3 for partitioned matrices carries over, mutatis
mutandis, to generic partitioned matrices. Here is an illustration by means
of an 8 × 8 GP(2)-matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t14
2t11 t14

t22 t23 −2t23
t22 t23

t32 t33 −2t33
t32 t33

t41 t42 2t42 t43 t44
t41 2t42 4t42 t43 t44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with the ground field Q. For nonsingular matrices
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Sr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1 0
0 1

1 0
0 1

0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Sc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1 0
0 1

1 2
0 1

0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

we have

Ã = Sr
−1ASc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t14
2t11 t14

t22 t23
t22 t23

t32 t33
t32 t33

t41 2t42 4t42 t43 2t43 t44
t41 t42 2t42 t43 2t43 t44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With suitable permutation matrices Pr and Pc, we obtain an explicit upper
block-triangular form

Ā = PrÃPc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t14
2t11 t14

t41 t44 2t42 t43 4t42 2t43
t41 t44 t42 t43 2t42 2t43

t22 t23
t32 t33

t22 t23
t32 t33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus Ā is a GP-irreducible decomposition of A with empty tails and square

diagonal blocks Ā[R1, C1] =

⎡

⎢
⎢
⎣

t11 t14
2t11 t14

t41 t44
t41 t44

⎤

⎥
⎥
⎦, Ā[R2, C2] =

[
t22 t23
t32 t33

]

, and

Ā[R3, C3] =
[
t22 t23
t32 t33

]

. For another pair of transformation matrices

S′
r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1 −2
0 1

1 −2
0 1

1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S′
c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1 −2
0 1

1 0
0 1

1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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we have

Ã′ = S′
r
−1
AS′

c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t14
2t11 t14

t22 t23
t22 t23

t32 t33
t32 t33

t41 t42 t43 t44
t41 2t42 t43 t44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With suitable permutation matrices P ′
r and P ′

c, we obtain another explicit
upper block-triangular form

Ā′ = P ′
rÃ

′P ′
c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11 t14
2t11 t14
t41 t44 t42 t43

t41 t44 2t42 t43
t22 t23
t32 t33

t22 t23
t32 t33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus Ā′ is another GP-irreducible decomposition of A, which has empty tails

and square diagonal blocks Ā′[R′
1, C

′
1] =

⎡

⎢
⎢
⎣

t11 t14
2t11 t14
t41 t44

t41 t44

⎤

⎥
⎥
⎦, Ā′[R′

2, C
′
2] =

[
t22 t23
t32 t33

]

, and Ā′[R′
3, C

′
3] =

[
t22 t23
t32 t33

]

. The partial orders among the block

in the two block-triangular forms are given by

Ā :
C2 C3

\/
C1

Ā′ :
C ′

2

| C ′
3

C ′
1

.

�

Notes. This section is a reorganization of the results from Ito–Iwata–Murota
[138] and Iwata–Murota [144]. In particular, Theorems 4.8.6, 4.8.7, 4.8.11,
and 4.8.13, are from Ito–Iwata–Murota [138], and Theorems 4.8.19 and 4.8.20
are from Iwata–Murota [144]. Ito–Iwata–Murota [138] deals also with the
block-triangularization under partition-respecting similarity transformations
with a motivation from the hidden Markov information sources investigated in
Ito [136] and Ito–Amari–Kobayashi [137]. Partition matrices are investigated
also in the context of “Matrix Problem,” though from a different viewpoint
(Gabriel–Roiter [85] and Simson [301]).
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4.9 Principal Structures of LM-matrices

4.9.1 Motivations

Suppose an engineering system is described by a system of nonlinear equa-
tions

fi(x) = 0, i ∈ R, (4.133)

in a set of variables x = (xj | j ∈ C). Then a physical state of the engineering
system is specified by a point x of the manifold (in a loose sense) described
by (4.133). Let A = A(x) denote the Jacobian matrix of f(x) and assume
that rankA = |R| < |C| (for all x in an open set).

If |C| − |R| variables {xj | j ∈ C \ J}, where J ⊆ C and |J | = |R|, are
chosen in such a way that the submatrix A[R, J ] is nonsingular, the remaining
variables {xj | j ∈ J} can be determined uniquely in general by (4.133).
Such variables {xj | j ∈ C \ J} are sometimes called design variables in the
engineering literature. Design variables can be regarded as local coordinates of
the manifold described by (4.133) (see Takamatsu–Hashimoto–Tomita [308]).

The choice of design variables is, to some extent, at our disposal. From
a computational point of view, it is advantageous to select a set of design
variables so that the system (4.133) of equations in the remaining dependent
variables may be hierarchically decomposable as fine as possible. Even though
we may not expect an optimal one in this respect, we would like to ask: “How
fine can we decompose the system with a clever choice of design variables?”
Assuming that the Jacobian matrix is an LM-matrix, we shall give a combi-
natorial answer to this question in terms of the horizontal principal structure
of LM-matrices in §4.9.5.

As a second motivation for the same question, suppose we are given a
linear program:

Maximize cTx subject to Ax = b, x ≥ 0

with an m × n LM-matrix of rank m as the coefficient matrix A. A basic
solution, corresponding to an m×m nonsingular submatrix A[R, J ] for some
J ⊆ C, is computed by solving A[R, J ]x[J ] = b and putting x[C \ J ] = 0.
The submatrix A[R, J ] is again an LM-matrix, for which a canonical decom-
position is obtained by the CCF. Furthermore we may be interested in the
family of the decompositions of the submatrices A[R, J ] for all possible basic
solutions. Mathematically this leads to the same question as the above on de-
sign variable selection, and a combinatorial answer is given as the horizontal
principal structure of LM-matrices in §4.9.5.

Next, consider a pair of primal and dual linear programs:

(P) Maximize cTx subject to Ax ≤ b,

(D) Minimize yTb subject to yTA = cT, y ≥ 0,
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where A is assumed to be an m × n LM-matrix of rank n. A basic solution
to the dual problem (D) corresponds to an n × n nonsingular submatrix
A[I, C] for some I ⊆ R, and is computed by solving y[I]TA[I, C] = c[I]T

and putting y[R \ I] = 0. In this case we may be interested in the family
of the decompositions obtained by the CCF of the submatrices A[I, C] for
all I ⊆ R such that A[I, C] is nonsingular. This question is not the same as
the previous one, since the transpose of an LM-matrix is not an LM-matrix.
We shall give a combinatorial answer to this second question by the vertical
principal structure of LM-matrices in §4.9.4.

We may ask a more general question: For an LM-matrix A of rank r, what
is the coarsest decomposition of the row and the column sides which is finer
than any decomposition induced by the CCF of r×r nonsingular submatrices
of A? We address this problem in Remark 4.9.20.

Example 4.9.1. The idea of the vertical principal structure is illustrated
here in an informal manner. Consider a 5 × 3 LM-matrix

A =

x1 x2 x3

r1 1 2 1
r2 1 1 −1
r3 0 t1 t2
r4 0 t3 t4
r5 t5 t6 0

with ground field Q, where C = {x1, x2, x3}, R = {r1, r2, r3, r4, r5}, and
ti (i = 1, · · · , 6) are indeterminates. This matrix is LM-irreducible, the whole
matrix being a vertical tail.

For a nonsingular submatrix A[I, C] we denote by PCCF(I, C) the par-
tition of C (together with the partial order) in the CCF of the subma-
trix A[I, C]. For I = {r1, r2, r3}, for instance, the CCF of A[I, C] =
A[{r1, r2, r3}, C] is given by

x1 x2 x3

r1 1 2 1
r2 −1 −2
r3 t1 t2

,

which is obtained from A[{r1, r2, r3}, C] by subtracting row r1 from row r2.
Hence, PCCF({r1, r2, r3}, C) is given by {x1} ≺ {x2, x3}.

By inspection we see that A[I, C] is a nonsingular submatrix for any I ⊆ R
with |I| = 3, and PCCF(I, C) for all I are given as follows:

PCCF(I, C) I
{x3} ≺ {x1, x2} {r1, r2, r5}
{x1, x2, x3} {ri, rj , r5}(i = 1, 2; j = 3, 4)
{x1} ≺ {x2, x3} otherwise
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This shows that the decomposition of C defined by {x1} ≺ {x2}, {x3} ≺
{x2} gives the coarsest common refinement of PCCF(I, C) for all I, which we
denote by

∧
I PCCF(I, C) (see Theorem 2.2.10 for this notation). The vertical

principal structure of A will give a succinct description of
∧

I PCCF(I, C) in
Example 4.9.5. �

4.9.2 Principal Structure of Submodular Systems

The concept of the principal structure of submodular systems was introduced
first by Fujishige [81], and subsequently generalized for submodular functions
on arbitrary lattices by Tomizawa–Fujishige [315]. This section is devoted to
a description of this concept.

Let L be a lattice with finite length and f a submodular function on it:

f(X) + f(Y ) ≥ f(X ∨ Y ) + f(X ∧ Y ), X, Y ∈ L,

where ∨ and ∧ are the join and the meet in L. The partial order � in L is
defined by:

X � Y ⇐⇒ X ∨ Y = Y ( ⇐⇒ X ∧ Y = X).

For each X ∈ L,

Lmin(f ;X) = {Y ∈ L | X � Y, f(Y ) = min{f(Y ′) | X � Y ′ ∈ L} }
(4.134)

forms a sublattice of L by the submodularity of f (the proof is similar to
that of Theorem 2.2.5). We denote by D(f ;X) the minimum element of this
sublattice, i.e.,

D(f ;X) = minLmin(f ;X). (4.135)

A mapping φ : L → L is said to be a closure function if it satisfies the
following three conditions:

(CL0) ∀X ∈ L : X � φ(X),
(CL1) ∀X,Y ∈ L : X � Y ⇒ φ(X) � φ(Y ),
(CL2) ∀X ∈ L : φ(φ(X)) = φ(X).

With this terminology we have the following lemma.

Lemma 4.9.2. The mapping D(f ; · ) : L → L is a closure function on L.

Proof. The conditions (CL0) and (CL2) are immediate from the definition.
The condition (CL1) is proved as follows. Because of the definition ofD(f ; · ),
we have

f(D(f ;Y )) ≤ f(D(f ;X) ∨D(f ;Y )).

It follows from the submodularity of f and the above inequality that

f(D(f ;X)) ≥ f(D(f ;X) ∧D(f ;Y )).
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On the other hand, if X � Y , it holds that X � D(f ;X) ∧D(f ;Y ). Hence,
from the minimality of D(f ;X) we have D(f ;X) = D(f ;X)∧D(f ;Y ), which
implies D(f ;X) � D(f ;Y ).

For a closure function φ, it can be easily shown that φ(X ∧Y ) = X ∧Y if
φ(X) = X and φ(Y ) = Y . That is to say, the family {X ∈ L | φ(X) = X} of
“closed sets” is a lower semilattice. Therefore the subset KPS(f) defined by

KPS(f) = {X ∈ L | D(f ;X) = X} (4.136)

is a lower semilattice containing the maximum element of L. We say that
KPS(f) is the principal structure of (L, f). Denoting the minimum sublattice
which contains KPS(f) by LPS(f), we will call LPS(f) the principal sublattice
of (L, f).

The principal structure KPS(f), which is derived from (4.134), is closely
related to the family of the (global) minimizers of f :

Lmin(f) = {Y ∈ L | f(Y ) = min{f(Y ′) | Y ′ ∈ L} }, (4.137)

which forms a sublattice of L. Denote the maximum elements of L and
Lmin(f) by maxL and maxLmin(f), respectively.

Lemma 4.9.3. For X � maxLmin(f), it holds that

X ∈ KPS(f) ⇐⇒ X ∈ Lmin(f).

Therefore, if maxL ∈ Lmin(f), then KPS(f) = LPS(f) = Lmin(f).

Proof. If X � maxLmin(f), the lattice (4.134) is a sublattice of Lmin(f).

Originally, the principal structure is defined in the case of L = 2V for a
finite set V , as follows. Let f : 2V → R be a submodular function:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), X, Y ⊆ V,

with f(∅) = 0. Such a pair (2V , f) is called a submodular system. Given an
element v ∈ V , we denote by D(f ; v) the minimum element of the distributive
lattice

Lmin(f ; v) = {X ⊆ V | v ∈ X, f(X) = min{f(Y ) | v ∈ Y ⊆ V } }. (4.138)

Since the relation + defined by

v + v′ ⇐⇒ v ∈ D(f ; v′)

is reflexive and transitive, the relation ∼ defined by

v ∼ v′ ⇐⇒ v + v′, v′ + v
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is an equivalence relation, and determines a partition of V into equivalence
classes {V1, · · · , Vs}. A partial order � is induced among the equivalence
classes in such a way that Vk � Vl if and only if v + v′ for v ∈ Vk and v′ ∈ Vl.
This decomposition, together with the partial order � among the blocks, is
called the principal structure of the submodular system (2V , f). We denote
this by PPS(f). According to Birkhoff’s representation theorem (Theorem
2.2.10), the principal structure PPS(f) corresponds to a sublattice of 2V ,
which we denote by L(PPS(f)). This sublattice coincides with the principal
sublattice LPS(f) for L = 2V , as stated below.

Lemma 4.9.4. L(PPS(f)) = LPS(f) for a submodular function f : 2V → R.

Proof. L(PPS(f)) is the sublattice of L = 2V generated by {D(f ; v) | v ∈ V },
whereas LPS(f) is by KPS(f) = {D(f ;X) | X ⊆ V }. Since {D(f ; v) | v ∈
V } ⊆ KPS(f), we have L(PPS(f)) ⊆ LPS(f). Conversely, for X = D(f ;X) ∈
KPS(f), we have X =

⋃
v∈X D(f ; v) ∈ L(PPS(f)) since D(f ;X) ⊇ D(f ; v) ⊇

{v} for v ∈ X. This implies LPS(f) ⊆ L(PPS(f)).

Example 4.9.5. As an example of a submodular function we consider the
LM-surplus function p : 2C → Z associated with the LM-matrixA of Example
4.9.1, where C = {x1, x2, x3} and p(X) = ρ(X) + γ(X) − |X| as defined in
(4.16). From the values of p shown in Fig. 4.23, we see that D(p;x1) = {x1},
D(p;x2) = {x1, x2, x3}, and D(p;x3) = {x3}. Hence PPS(p) is given by:
{x1} ≺ {x2}, {x3} ≺ {x2}. We have KPS(p) = {∅, {x1}, {x3}, {x1, x2, x3}}
and LPS(p) = KPS(p) ∪ {{x1, x3}}. We may observe here that PPS(p) agrees
with

∧
I∈Brow

PCCF(I, C), the coarsest common refinement of {PCCF(I, C) |
I ∈ Brow} that we considered in Example 4.9.1. Corollary 4.9.11 will reveal
that this is always the case. �

4.9.3 Principal Structure of Generic Matrices

Before entering into the general case of LM-matrices we consider here the
principal structure of generic matrices. This special case deserves a separate
consideration not only because it is the origin of the main idea, but also
because it has an interesting application to the problem of making matrices
sparser.

Let A be a generic matrix with R = Row(A) and C = Col(A), and

Brow = {I ⊆ R | rankA = rankA[I, C] = |I|} (4.139)

be the family of row-bases of A. We assume in this subsection that rankA =
|C|.

For each I ∈ Brow the submatrix A[I, C] is nonsingular, and the DM-
decomposition of A[I, C] determines a block-triangularization with nonsin-
gular diagonal blocks. Denote by PDM(I, C) the pair of the partition of C



4.9 Principal Structures of LM-matrices 255

{x1, x2, x3}, p = 2

{x1, x2}
p = 3

{x2, x3}
p = 3

{x1, x3} p = 3

{x1}
p = 1

{x3}
p = 2

{x2} p = 3

∅, p = 0

∈ KPS(p) ∈ LPS(p) \ KPS(p)

D(p; x1) = {x1}
D(p; x2) = {x1, x2, x3}
D(p; x3) = {x3}

{x2}

{x1} {x3}

PPS(p)

Fig. 4.23. The principal structure of the LM-surplus function p of the LM-matrix
in Example 4.9.1

and the partial order among the blocks in the DM-decomposition of the sub-
matrix A[I, C], and by

∧
I∈Brow

PDM(I, C) the coarsest partition of C which
is finer than all PDM(I, C) with I ∈ Brow.

The surplus function p0 : 2C → Z defined as p0(X) = γ(X) − |X| for
X ⊆ C in (2.39) is submodular, and hence we may think of the principal
structure PPS(p0) of p0, which we call the principal structure of the generic
matrix A. It is observed by Murota [210] that the principal structure PPS(p0)
of the surplus function p0 is identical with the SP-decomposition introduced
by McCormick [190]. With this observation a result of McCormick [190] can
be formulated as follows.

Theorem 4.9.6. For a generic matrix A of full-column rank and its surplus
function p0 : 2C → Z, we have

PPS(p0) =
∧

I∈Brow

PDM(I, C).

Proof. This is proven later as a special case of Corollary 4.9.11.

The principal structure PPS(p0), or rather the family {D(p0; j) | j ∈ C}
defining PPS(p0), plays a key role in the algorithm of Hoffman–McCormick
[112] for making matrices optimally sparse.

Suppose we are given a matrix A = (Aij) of full-column rank and we
want to find a nonsingular matrix S = (Sjk) such that Ā = AS has the
minimum number of nonzero entries. For a generic matrix A this problem has
a nice combinatorial answer with an efficient algorithm, while for a general
numerical matrix it is NP-hard due to “unexpected” numerical cancellations.
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The algorithm of Hoffman–McCormick [112] may be described as follows,
where C = Col(A) ∼= Row(S) and we fix an arbitrary one-to-one correspon-
dence between Row(S) and Col(S).

Algorithm for optimally sparse matrix Ā = AS

1. Fix a one-to-one mapping σ : C → R such that Aσ(j),j �= 0 for j ∈ C
(such σ exists since rankA = |C|).

2. For each k ∈ C, solve the system of equations in {Sjk | j ∈ D(p0; k)}:
∑

j∈D(p0;k)

AijSjk =
{

1 (i = σ(k))
0 (i ∈ σ(D(p0; k) \ {k}))

(4.140)

and put Sjk = 0 for j ∈ C \D(p0; k).
3. Put Ā = AS. �

For the validity of the algorithm we have the following two lemmas.

Lemma 4.9.7. The matrix S constructed by the algorithm is nonsingular.

Proof. Let D1,D2, · · ·, be the distinct elements among {D(p0; j) | j ∈ C},
and put Xt =

⋃
{Ds | Ds ⊂ Dt,Ds �= Dt} and Ct = Dt \Xt for t = 1, 2, · · ·.

By construction, S is block-triangular with respect to the partition {Ct} of
C (∼= Row(S) ∼= Col(S)), and therefore it suffices to show that S[Ct, Ct]
is nonsingular for each t. From (4.140) we have an identity: A[σ(Dt),Dt] ·
S[Dt,Dt] = Ā[σ(Dt),Dt], which can be rewritten as

(
Xt Ct

σ(Xt) A11 A12

σ(Ct) A21 A22

) (
Xt Ct

S11 S12

O S22

)

=
(
Xt Ct

Ā11 O
Ā21 I

)

,

where Ā[σ(Xt), Ct] = O and Ā[σ(Ct), Ct] = I. In the above expression, A11 =
A[σ(Xt),Xt] is nonsingular since Aσ(j),j �= 0 for j ∈ Xt, and then it follows
that (A22 − A21A11

−1A12)S22 = I. This implies that S22 = S[Ct, Ct] is
nonsingular.

Lemma 4.9.8. The matrix Ā constructed by the algorithm contains the min-
imum number of nonzero entries.

Proof. Consider Ā = AS for a nonsingular matrix S in general, and put
Jk = {j | Sjk �= 0} for k ∈ C. By the nonsingularity of S, we may assume
k ∈ Jk for all k ∈ C with the understanding of the above-mentioned one-
to-one correspondence between Row(S) and Col(S). The assumed genericity
of the nonzero entries of A implies that the number of the nonzero entries
in the column k of Ā is not smaller than |{i ∈ R | ∃j ∈ Jk : Aij �=
0}| − |Jk| + 1 = p0(Jk) + 1, whereas this lower bound is attained in the
algorithm with Jk = D(p0; k).
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Example 4.9.9. The above argument is illustrated here for a generic matrix

A =

x1 x2 x3

a11 a12 0
a21 a22 0
a31 a32 a33
0 a42 a43
0 a52 a53

,

where the underlined entries indicate σ : C → R. We have D(p0;x1) =
{x1}, D(p0;x2) = {x1, x2, x3}, and D(p0;x3) = {x3}, since p0(∅) = 0,
p0({x1}) = 2, p0({x2}) = 4, p0({x3}) = 2, p0({x1, x2}) = 3, p0({x1, x3}) = 3,
p0({x2, x3}) = 3, p0({x1, x2, x3}) = 2. By the algorithm above, the matrix A
is transformed to a sparser matrix Ā = SA, where

S =
s11 s12 0
0 s22 0
0 s32 s33

, Ā =

ā11 ā12 0
1 0 0
ā31 1 ā33
0 0 1
0 ā52 ā53

.

The two boldface zeros in Ā are created. The entries of S are determined
from

a21s11 = 1,

⎡

⎣
a21 a22 0
a31 a32 a33
0 a42 a43

⎤

⎦

⎡

⎣
s12
s22
s32

⎤

⎦ =

⎡

⎣
0
1
0

⎤

⎦ , a43s33 = 1.

�

Computational aspects of this algorithm and its variants are reported in
Chang–McCormick [31, 32], McCormick [191], and McCormick–Chang [192].

4.9.4 Vertical Principal Structure of LM-matrices

Let A =
(

Q
T

)
∈ LM(K,F ) be an LM-matrix with R = Row(A) and

C = Col(A), and Brow ⊆ 2R be the family of row-bases of A as in (4.139).
For I ∈ Brow the submatrix A[I, C] is an LM-matrix of full-row rank, and
the CCF of A[I, C] determines a block-triangularization with an empty ver-
tical tail. Denote by PCCF(I, C) the pair of the partition of C and the
partial order among the blocks in the CCF of the submatrix A[I, C], and
by

∧
I∈Brow

PCCF(I, C) the coarsest partition of C which is finer than all
PCCF(I, C) with I ∈ Brow. We also denote by LCCF(I, C) the sublattice
of 2C that corresponds to PCCF(I, C), and by

∨
I∈Brow

LCCF(I, C) the sub-
lattice generated by {LCCF(I, C) | I ∈ Brow}. Note that L(PCCF(I, C)) =
LCCF(I, C) and

L(
∧

I∈Brow

PCCF(I, C)) =
∨

I∈Brow

LCCF(I, C)
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with the notation of Theorem 2.2.10.
The LM-surplus function p : 2C → Z defined as p(X) = ρ(X)+γ(X)−|X|

for X ⊆ C in (4.16) is submodular, and hence we may think of the principal
structure of p. We name this the vertical principal structure of an LM-matrix
A. The following theorem of Murota [210] connects this with the family of
the CCF.

Theorem 4.9.10. For an LM-matrix A and its LM-surplus function p :
2C → Z, we have

KPS(p) =
⋃

I∈Brow

LCCF(I, C).

Proof. The proof is given later.

Theorem 4.9.10 can be reformulated in terms of the principal sublattice
and the corresponding partitions, as follows.

Corollary 4.9.11. For an LM-matrix A and its LM-surplus function p :
2C → Z, we have

LPS(p) =
∨

I∈Brow

LCCF(I, C), PPS(p) =
∧

I∈Brow

PCCF(I, C). (4.141)

�

This corollary shows that the above result is a generalization of Theorem
4.9.6. We mention that the vertical principal structure PPS(p) of an LM-
matrix A ∈ LM(K,F ) can be found by an efficient algorithm using arithmetic
operations in K.

Example 4.9.12. In Examples 4.9.1 and 4.9.5 we have seen an instance of
the identity (4.141). Note that PPS(p) �= PCCF(I, C) for each I ∈ Brow. �

Remark 4.9.13. The LM-surplus function p remains invariant against LM-
admissible transformations, whereas Brow does not. For example, consider a
pair of LM-equivalent LM-matrices

A(1) =
r1 1 1 0
r2 0 0 1
r3 0 0 t

, A(2) =
r1 1 1 1
r2 1 1 2
r3 0 0 t

.

We have B(1)
row = {{r1, r2}, {r1, r3}} and B(2)

row = B(1)
row ∪ {{r2, r3}}. One of the

consequences of Theorem 4.9.10 is that
⋃

I∈Brow
LCCF(I, C) remains invariant

under LM-equivalence in spite of its apparent dependence on Brow. �
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Proof of Theorem 4.9.10. We need to introduce the LM-surplus function
for submatrices of A =

(
Q
T

)
. Putting RQ = Row(Q) and RT = Row(T ),

define Γ : 2RT × 2C → 2RT , γ : 2RT × 2C → Z, and ρ : 2RQ × 2C → Z by

Γ (I, J) = {i ∈ I | ∃j ∈ J : Tij �= 0}, I ⊆ RT , J ⊆ C,
γ(I, J) = |Γ (I, J)|, I ⊆ RT , J ⊆ C,
ρ(I, J) = rankQ[I, J ], I ⊆ RQ, J ⊆ C.

Then for I ⊆ R the LM-surplus function pI : 2C → Z of the submatrix
A[I, C] is given by

pI(J) = ρ(I ∩RQ, J) + γ(I ∩RT , J) − |J |, J ⊆ C.

We have

LCCF(I, C) = Lmin(pI) = KPS(pI), I ∈ Brow, (4.142)

by the construction of the CCF (cf. §4.4.3) and Lemma 4.9.3. Hence, in order
to prove Theorem 4.9.10, we shall reveal the relation between KPS(pR) and
KPS(pI), i.e., the relation betweenD(pR;X) andD(pI ;X), defined in (4.135).

Lemma 4.9.14. For X ⊆ C and I ⊆ R we have D(pR;X) ⊆ D(pI ;X).

Proof. Put DR = D(pR;X) and DI = D(pI ;X). By Proposition 2.1.9(2) we
have

ρ(RQ, J) − ρ(RQ, J ∩ J ′) ≥ ρ(I ′′, J ∪ J ′) − ρ(I ′′, J ′), I ′′ ⊆ RQ, J, J
′ ⊆ C.

Similarly, it can be shown that

γ(RT , J) − γ(RT , J ∩ J ′) ≥ γ(I ′, J ∪ J ′) − γ(I ′, J ′), I ′ ⊆ RT , J, J
′ ⊆ C.

These inequalities imply

pR(DR) − pR(DR ∩DI) ≥ pI(DR ∪DI) − pI(DI).

The right-hand side of this is nonnegative since X ⊆ DR ∪ DI and DI ∈
Lmin(pI ;X). Hence follows pR(DR) ≥ pR(DR ∩DI). This implies DR ∩DI ∈
Lmin(pR;X), from which follows DR = DR ∩ DI by the minimality of DR.
Therefore, DR ⊆ DI .

Lemma 4.9.15. For X ⊆ C, there exists I ∈ Brow such that D(pR;X) =
D(pI ;X).

Proof. Put DR = D(pR;X), C ′ = C \DR, and ΓT = Γ (RT ,DR).
(i) First choose I1 ⊆ RQ such that

rankQ[RQ,DR] = rankQ[I1,DR] = |I1|.
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The row vectors of Q[RQ \ I1,DR] can be expressed as linear combinations
of those of Q[I1,DR], i.e., Q[RQ \ I1,DR] = SQ[I1,DR] for some matrix S
over K. If we put

Q̄ =
(
I1 RQ \ I1

I1 I O
RQ \ I1 −S I

)

Q, (4.143)

we have Q̄[RQ \ I1,DR] = O. Furthermore, put

Ā =
(
Q̄
T

)

=

⎛

⎜
⎜
⎝

DR C ′ = C \DR

I1 Q̄[I1,DR] Q̄[I1, C ′]
RQ \ I1 O Q̄[RQ \ I1, C ′]

ΓT T [ΓT ,DR] T [ΓT , C
′]

RT \ ΓT O T [RT \ ΓT , C
′]

⎞

⎟
⎟
⎠, (4.144)

which is an LM-matrix. Denoting by p̄I the LM-surplus function associated
with Ā[I, C] we have p̄I(J) = pI(J) if I1 ⊆ I ⊆ R and J ⊆ C.

(ii) Next choose I2 ⊆ ΓT ⊆ RT such that

rankA[R,DR] = rankA[I1 ∪ I2,DR] = |I1| + |I2|.

This is equivalent, by (4.143), to

rank Ā[R,DR] = rank Ā[I1 ∪ I2,DR] = |I1| + |I2|. (4.145)

(iii) Put

R′ = R \ (I1 ∪ ΓT ) = (RQ \ I1) ∪ (RT \ ΓT ),

and note that Ā[R′,DR] = O as seen in (4.144). We claim

rank Ā[R′, C ′] = |C ′|. (4.146)

To compute the rank of Ā[R′, C ′] by Theorem 4.2.5, we consider p̄R′(J),
J ⊆ C ′. Since

p̄R′(J) = rank Q̄[RQ \ I1, J ] + γ(RT \ ΓT , J) − |J |,

by the definition, and furthermore

rank Q̄[RQ \ I1, J ] = rank Q̄[RQ,DR ∪ J ] − |I1|
= rankQ[RQ,DR ∪ J ] − rankQ[RQ,DR],

γ(RT \ ΓT , J) = γ(RT ,DR ∪ J) − γ(RT ,DR),

by the choice of I1 and the definition of ΓT , we have

p̄R′(J) = pR(DR ∪ J) − pR(DR).
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This is nonnegative for all J ⊆ C ′ since X ⊆ DR ∪J and DR ∈ Lmin(pR;X).
Hence follows (4.146) from Theorem 4.2.5. Therefore there exists I3 ⊆ R′

such that
rank Ā[R′, C ′] = rank Ā[I3, C ′] = |I3| = |C ′|. (4.147)

(iv) We claim that I = I1 ∪ I2 ∪ I3 belongs to Brow. By (4.145), (4.147),
and Ā[I3,DR] = O, we see

rankA[I, C] = rank Ā[I, C] = |I|. (4.148)

On the other hand, since Ā[R′,DR] = O and Ā[R′, C ′] is of full-column rank
by (4.147), we see

rankA = rank Ā = rank Ā[R\R′,DR]+ |C ′| = |I1|+ |I2|+ |I3| = |I|. (4.149)

Combination of this and (4.148) shows that I ∈ Brow.
(v) Furthermore we claim that

pI(DR) = min{pI(J) | J ⊆ C}. (4.150)

By the definitions of I1 and I2, we have

pI(DR) = pI1∪I2(DR) = |I1| + |I2| − |DR|.

We also have
min{pI(J) | J ⊆ C} = |I| − |C|

from (4.148) and Theorem 4.2.5. Noting the relation |I1| + |I2| − |DR| =
|I| − |C| due to (4.147), we establish (4.150).

(vi) Since X ⊆ DR, (4.150) means DR ∈ Lmin(pI ;X). The minimality of
DI = D(pI ;X) then implies that DR ⊇ DI . The other direction DR ⊆ DI is
already shown in Lemma 4.9.14.

With the above lemmas we can now prove Theorem 4.9.10. It follows from
Lemma 4.9.14 that D(pI ;X) = X implies D(pR;X) = X. Hence, KPS(pI) ⊆
KPS(pR) holds for any I ⊆ R. On the other hand, Lemma 4.9.15 implies
KPS(pR) ⊆

⋃

I∈Brow

KPS(pI). Therefore, we have

KPS(pR) =
⋃

I∈Brow

KPS(pI),

which establishes Theorem 4.9.10 when combined with the relation (4.142).

4.9.5 Horizontal Principal Structure of LM-matrices

Let A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n) be an LM-matrix with R = Row(A)

and C = Col(A). In the previous subsection we have characterized the com-
mon refinement of the CCF of all A[I, C] with I ∈ Brow by means of the
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principal structure of the LM-surplus function p : 2C → Z. Here we are con-
cerned with the “transpose version” of the problem by considering the family
of submatrices A[R, J ] for J ∈ Bcol, where

Bcol = {J ⊆ C | rankA = rankA[R, J ] = |J |}. (4.151)

The present problem is not reduced to the previous one, since the trans-
pose of an LM-matrix is no longer an LM-matrix. The transpose of an LM-
matrix, however, may be regarded as a partitioned matrix, for which we have
developed a general framework in §4.8. In particular, the function q to be
introduced in place of p is essentially the same as the PE-surplus function
associated with the transpose of A.

We regard the mQ × n matrix Q as a representation of a linear transfor-
mation from Kn to the dual space VQ

∗ ∼= KmQ of VQ
∼= KmQ . Let L be the

set of the pairs of a subspace W of VQ and a subset I of RT = Row(T ), i.e.,

L = {(W, I) |W : subspace of VQ, I ⊆ RT },

which forms a modular lattice with the operations ∧ and ∨ defined by

(W1, I1) ∧ (W2, I2) = (W1 ∩W2, I1 ∩ I2)
(W1, I1) ∨ (W2, I2) = (W1 +W2, I1 ∪ I2)

for Wh ⊆ VQ and Ih ⊆ RT (h = 1, 2). We define κ, q : L → Z by

κ(W, I) = |{j ∈ C | Qj /∈W⊥ or ∃i ∈ I : Tij �= 0}|, (W, I) ∈ L, (4.152)
q(W, I) = κ(W, I) − dimW − |I|, (W, I) ∈ L, (4.153)

where Qj denotes the column vector of Q indexed by j ∈ C, Tij is the (i, j)
entry of T , and W⊥ is the subspace of VQ

∗ annihilating W , i.e.,

W⊥ = {v ∈ VQ
∗ | 〈w, v〉 = 0, ∀w ∈W},

in which 〈 · , · 〉 means the inner product (pairing). Note that Qj ∈ VQ
∗.

Remark 4.9.16. For A =
(

Q
T

)
∈ LM(K,F ;mQ,mT , n) we regard AT as a

partitioned matrix (4.113) with the parameters

μ = n, ν = 1 +mT , mα = 1 (α = 1, · · · , μ), nβ =
{
mQ (β = 1)
1 (β = 2, · · · , ν).

The function q defined above is essentially the same as the PE-surplus func-
tion pPE defined by (4.120), in which “W ∈ W” is replaced by “(W, I) ∈ L”,
“
∑μ

α=1 dim(AαW )” by “κ(W, I)”, and “dimW” by “dimW + |I|”. �

The following identity holds true.



4.9 Principal Structures of LM-matrices 263

Lemma 4.9.17. For an m× n LM-matrix A,

rankA = min{q(W, I) | (W, I) ∈ L} +m.

Proof. The CCF of A gives a proper block-triangularization under an LM-
admissible transformation, which is a PE-transformation for AT. Then The-
orem 4.8.6 shows the validity of the claimed identity.

For J ∈ Bcol the submatrix A[R, J ] is an LM-matrix of full-column rank.
Let LCCF(R, J) denote the sublattice of L that corresponds to the CCF
of A[R, J ] in the sense of Proposition 4.8.12 (applied to the transpose of
A[R, J ]). Note that LCCF(R, J) contains maxL = (VQ, RT ), since the CCF
of A[R, J ] has an empty horizontal tail.

The function q : L → Z is submodular, and hence we may think of
the principal structure KPS(q) as well as the principal sublattice LPS(q). We
name this the horizontal principal structure of an LM-matrix A. The following
theorem of Iwata–Murota [145] connects this with the family of CCF.

Theorem 4.9.18. For an LM-matrix A and the function q : L → Z of
(4.153), we have

KPS(q) =
⋃

J∈Bcol

LCCF(R, J), LPS(q) =
∨

J∈Bcol

LCCF(R, J).

Proof. The proof is given later.

Example 4.9.19. Let us illustrate the above result for an LM-matrix

A =

x1 x2 x3 x4 x5

y1 0 1 1 1 1
y2 0 2 0 2 0
z1 t1 0 0 0 t2
z2 t3 0 t4 t5 0

,

where C = {x1, x2, x3, x4, x5}, RQ = {y1, y2} and RT = {z1, z2}. The whole
matrix A is the horizontal tail of its CCF.

As is easily verified, we have

KPS(q) = {(0, ∅), (V1, ∅), (V2, ∅), (0, Z1), (V2, Z1), (V2, RT ), (VQ, RT )},

where Z1 = {z1}, Z2 = {z2}, and V1 and V2 are the 1-dimensional vec-
tor spaces spanned by (0, 1) ∈ VQ and (2,−1) ∈ VQ, respectively. Note, for
example, that q(V1, Z1) = q(VQ, Z1) = 2 and q(VQ, RT ) = 1. The princi-
pal structure KPS(q) and the principal sublattice LPS(q) are illustrated in
Fig. 4.24.

On the other hand, we have Bcol = {Jh | h = 1, · · · , 5} with Jh = C \{xh}
for h = 1, · · · , 5. In view of
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(0, ∅)

(V1, ∅)
(V2, ∅)

(0, Z1)

(V2, Z1)

(V2, RT )

(VQ, RT )

(VQ, ∅) (V1, Z1)

(VQ, Z1)

∈ KPS(q)

Fig. 4.24. Principal sublattice LPS(q) of the horizontal principal structure of the
LM-matrix in Example 4.9.19

Ã =
V1 0 1
V2 2 −1
z1 1 0
z2 0 1

x1 x2 x3 x4 x5

0 1 1 1 1
0 2 0 2 0
t1 0 0 0 t2
t3 0 t4 t5 0

=

x1 x2 x3 x4 x5

0 2 0 2 0
0 0 2 0 2
t1 0 0 0 t2
t3 0 t4 t5 0

,

we see that the CCF of A[R, Jh], denoted by Ãh, are given as follows:

Ã1 =

x2 x4 x3 x5

V1 2 2
z2 t5 t4
V2 2 2
z1 t2

, Ã2 =

x1 x3 x5 x4

V2 0 2 2
z1 t1 0 t2
z2 t3 t4 0 t5
V1 2

, Ã3 =

x2 x4 x1 x5

V1 2 2
z2 t5 t3
z1 t1 t2
V2 2

,

Ã4 =

x1 x3 x5 x2

V2 0 2 2
z1 t1 0 t2
z2 t3 t4 0
V1 2

, Ã5 =

x2 x4 x1 x3

V1 2 2
z2 t5 t3 t4
z1 t1
V2 2

.

Figure 4.25 illustrates the sublattices LCCF(R, Jh) for h = 1, · · · , 5, which
correspond to Ãh above. For example, the height of LCCF(R, J5) is four,
since Ã5 is in a block-triangular form with four diagonal blocks, and a par-
allelepiped appears in LCCF(R, J5), since the (3, 4) entry of Ã5 is zero. We
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(0, ∅)

(0, Z1)

(V2, Z1)

(V2, RT )

(VQ, RT )

(0, ∅)

(V1, ∅)

(VQ, RT )

(0, ∅)

(V2, ∅)

(V2, Z1)

(V2, RT )

(VQ, RT )

LCCF(R, J1) LCCF(R, J2) LCCF(R, J3)

(0, ∅)

(V1, ∅)

(V2, RT )

(VQ, RT )

(0, ∅)

(V2, ∅) (0, Z1)

(V2, Z1)

(V2, RT )

(VQ, RT )

LCCF(R, J4) LCCF(R, J5)

Fig. 4.25. The Hasse diagrams for LCCF(R, Jh)’s in Example 4.9.19.
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can easily observe that KPS(q) agrees with
⋃5

h=1 LCCF(R, Jh). Furthermore
LPS(q) �= LCCF(R, J) for any single J ∈ Bcol. �

Remark 4.9.20. We intend that the horizontal principal structure is de-
fined primarily for an LM-matrix of full-row rank, while the vertical princi-
pal structure for an LM-matrix of full-column rank. It will be natural to ask:
For an LM-matrix A of rank r in general what is the coarsest simultaneous
decomposition of the row and the column sides which is finer than any de-
composition induced by the CCF of an r× r nonsingular submatrix of A? A
simple combination of the results for the horizontal and vertical structures
gives a solution to this question if A is already in the CCF. All the diagonal
blocks of A should remain in the CCF of an r×r nonsingular submatrix of A.
The refinement of the horizontal tail of A is given by the principal structure
of q while the principal structure of p gives the refinement of the vertical tail.
This explains, at the same time, why we name the former the “horizontal
principal structure” and the latter the “vertical principal structure.” �

Proof of Theorem 4.9.18. We need to define the function “q” of (4.153)
for submatrices of A =

(
Q
T

)
. Define κ : L × 2C → Z by

κ((W, I), J) = |{j ∈ J | Qj /∈W⊥ or ∃ i ∈ I : Tij �= 0}|, (W, I) ∈ L, J ⊆ C.

Then for J ⊆ C the function qJ : L → Z associated with the submatrix
A[R, J ] by (4.153) is given by

qJ(W, I) = κ((W, I), J) − dimW − |I|, (W, I) ∈ L.

Lemma 4.9.21.

qJ1(X1) + qJ2(X2) ≥ qJ1∩J2(X1 ∨X2) + qJ1∪J2(X1 ∧X2),
Xi ∈ L, Ji ⊆ C (i = 1, 2).

Proof. With Ω((W, I), J) = {j ∈ J | Qj ∈W⊥, T [I, j] = 0} we have

qJ(W, I) = |J | − |Ω((W, I), J)| − dimW − |I|, (W, I) ∈ L, J ⊆ C.

Noting

Ω(X1, J1) ∩Ω(X2, J2) = Ω(X1 ∨X2, J1 ∩ J2),
Ω(X1, J1) ∪Ω(X2, J2) ⊆ Ω(X1 ∧X2, J1 ∪ J2),

we obtain

|Ω(X1, J1)| + |Ω(X2, J2)|
= |Ω(X1, J1) ∩Ω(X2, J2)| + |Ω(X1, J1) ∪Ω(X2, J2)|
≤ |Ω(X1 ∨X2, J1 ∩ J2)| + |Ω(X1 ∧X2, J1 ∪ J2)|.
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This implies the desired inequality.

Consider a submatrix A[R, J ] for J ∈ Bcol. Since A[R, J ] is of full-column
rank, having no horizontal tail in its CCF, we have

KPS(qJ ) = Lmin(qJ) = LCCF(R, J) (4.154)

by Lemma 4.9.3 and the arguments in §4.8.

Lemma 4.9.22. For X ∈ L and J ⊆ C we have D(qC ;X) � D(qJ ;X).

Proof. Put DC = D(qC ;X) and DJ = D(qJ ;X). By Lemma 4.9.21 we have

qC(DC) − qC(DC ∧DJ ) ≥ qJ (DC ∨DJ ) − qJ(DJ ).

The right-hand side is nonnegative sinceX � DC∨DJ andDJ ∈ Lmin(qJ ;X).
This implies DC � DJ . See the proof of Lemma 4.9.14.

Lemma 4.9.23. For X ∈ L, there exists J ∈ Bcol such that D(qC ;X) =
D(qJ ;X).

Proof. Put DC = (WC , IC) = D(qC ;X). By an LM-admissible transforma-
tion that takes a basis in VQ compatible with WC , the matrix A can be
transformed to the following form:

Â =
[
Q̂
T

]

=

⎛

⎜
⎜
⎝

C ′ K

R′
Q Q̂[R′

Q, C
′] Q̂[R′

Q,K]
H O Q̂[H,K]
R′

T T [R′
T , C

′] T [R′
T ,K]

IC O T [IC ,K]

⎞

⎟
⎟
⎠,

where |H| = dimWC , R′
Q = Row(Q̂) \H, R′

T = RT \ IC ,

K = {j ∈ C | Qj /∈WC
⊥ or ∃ i ∈ IC : Tij �= 0}

and C ′ = C \K. We put R̂ = Row(Â).
Putting R′ = R′

Q ∪R′
T we claim that

rank Â[R′, C ′] = |R′|. (4.155)

This can be shown as follows. Since Â[H ∪ IC , C ′] = O, it holds that

rank Â[R′, C ′] = rank Â[R̂, C ′] = rankA[R,C ′]. (4.156)

Applying Lemma 4.9.17 to A[R,C ′] and noting that Qj ∈ WC
⊥ and

T [IC , j] = 0 for all j ∈ C ′, we obtain
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rankA[R,C ′] = min{qC′(W, I) | (W, I) ∈ L} +m
= min{qC′(W, I) |W ⊇WC , I ⊇ IC} +m. (4.157)

For W ⊇WC and I ⊇ IC , we have

κ((W, I), C ′) = κ((W, I), C) − |K| = κ((W, I), C) − κ((WC , IC), C).

Hence it holds that

qC′(W, I) = κ((W, I), C ′) − |I| − dimW
= qC(W, I) − qC(WC , IC) − |IC | − dimWC , (4.158)

in which
qC(W, I) − qC(WC , IC) ≥ 0 (4.159)

by the definition of DC = (WC , IC) and (W, I) , X. Combining (4.156),
(4.157), (4.158), (4.159), and m− |IC | − dimWC = |R′|, we obtain (4.155).

Therefore there exists J ′ ⊆ C ′ such that

rank Â[R′, J ′] = |R′| = |J ′|.
At the same time, there exists JK ⊆ K such that

rank Â[H ∪ IC ,K] = rank Â[H ∪ IC , JK ] = |JK |.
Put J = J ′ ∪ JK . We have

rank Â[R̂, J ] = |J |, (4.160)

since both Â[R′, J ′] and Â[H ∪ IC , JK ] are of full-column rank, and Â[H ∪
IC , J

′] = O. On the other hand, since Â[R′, C ′] is of full-row rank,

rank Â = rank Â[R′, C ′] + rank Â[H ∪ IC ,K] = |J ′| + |JK | = |J |.
Thus we obtain J ∈ Bcol.

Applying Lemma 4.9.17 to A[R, J ] and using rankA[R, J ] = rank Â[R̂, J ]
and (4.160), we obtain

min{qJ (Y ) | Y ∈ L} = |J | −m,
which together with qJ(DC) = |JK | − |IC | −dimWC = |J | −m and X � DC

implies
qJ(DC) = min{qJ (Y ) | X � Y ∈ L}.

Thus we obtain DC , D(qJ ;X), which completes the proof since we have
already shown DC � D(qJ ;X) in Lemma 4.9.22.

We are now ready to complete the proof of Theorem 4.9.18. It follows from
Lemma 4.9.22 that D(qJ ;X) = X implies D(qC ;X) = X. Hence, KPS(qJ ) ⊆
KPS(qC) holds for any J ⊆ C. On the other hand, from Lemma 4.9.23,
X = D(qC ;X) implies the existence of J ∈ Bcol such that X = D(qJ ;X).
Hence

KPS(qC) =
⋃

J∈Bcol

KPS(qJ ),

which establishes Theorem 4.9.18 when combined with (4.154).
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Notes. A series of theorems described in this section, due to McCormick
[190], Murota [210], and Iwata–Murota [145], clarified a relationship between
the two general decomposition principles for submodular functions, i.e., be-
tween the Jordan–Hölder-type theorem of §2.2.2 and the principal structure
of §4.9.2, in the context of block-triangularization of matrices. The combina-
torial essence of those theorems has been extracted by Iwata–Murota [143]
and Iwata [139] without reference to matrices.



5. Polynomial Matrix and Valuated Matroid

Matrices consisting of polynomials or rational functions play fundamental
roles in various branches in engineering. Combinatorial properties of poly-
nomial matrices are abstracted in the language of valuated matroids. This
chapter is mostly devoted to an exposition of the theory of valuated ma-
troids, whereas the first section describes a number of canonical forms of
polynomial/rational matrices that are amenable to combinatorial methods of
analysis to be explained in Chap. 6.

5.1 Polynomial/Rational Matrix

Matrices consisting of polynomials or rational functions play fundamental
roles in various branches in engineering (Gohberg–Lancaster–Rodman [95]).
In dynamical system theory, for example, a linear time-invariant system is
described by a polynomial matrix called the system matrix (the Laplace
transform of the state-space equations), or by a rational function matrix
called the transfer function matrix (Rosenbrock [284], Vidyasagar [331]).

In this section three canonical forms of polynomial/rational matrices are
described: the Smith form of polynomial matrices, the Smith–McMillan form
at infinity of rational matrices, and the Kronecker form of matrix pencils.

5.1.1 Polynomial Matrix and Smith Form

Let A(s) = (Aij(s)) be an m × n polynomial matrix with Aij(s) being a
polynomial in s with coefficients from a certain field F (i.e., Aij(s) ∈ F [s]).
Typically F is the real number field R.

The kth determinantal divisor, denoted by dk(s), is defined to be the
greatest common divisor of all the minors of order k:

dk(s) = gcd{detA[I, J ] | |I| = |J | = k} (k = 0, 1, · · · , r), (5.1)

where r = rankA and d0(s) = 1 by convention. The kth invariant factor (or
invariant polynomial), denoted by ek(s), is defined by

ek(s) =
dk(s)
dk−1(s)

(k = 1, · · · , r). (5.2)

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 5,
c© Springer-Verlag Berlin Heidelberg 2010
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Note that dk−1(s) divides dk(s) by the Laplace expansion (Proposition 2.1.2).
Furthermore, it is known that ek−1(s) divides ek(s) for k = 1, · · · , r (see
Example 5.2.16 for a combinatorial proof).

We call a polynomial matrix U(s) unimodular if it is square and its deter-
minant is a nonvanishing constant (in F ). A square polynomial matrix U(s)
is invertible (i.e., ∃ U−1 with (U−1)ji ∈ F [s]) if and only if it is unimodular.
The following fundamental result claims the existence of a canonical diagonal
form under the unimodular equivalence.

Theorem 5.1.1 (Smith normal form). For a polynomial matrix A(s),
there exist unimodular matrices U(s) and V (s) such that

U(s)A(s)V (s) = diag (e1(s), · · · , er(s), 0, · · · , 0),

where r = rankA(s), and ek(s) (k = 1, · · · , r) are polynomials such that
ek−1(s) divides ek(s) for k = 2, · · · , r. Furthermore, ek(s) coincides with the
kth invariant factor given by (5.2). �

The Smith normal form is uniquely determined by (5.2) and is invariant
under unimodular equivalence transformations. A significance of the Smith
normal form is indicated by the following fact.

Lemma 5.1.2. For a polynomial matrix A(s) and a polynomial vector b(s),
there exists a polynomial vector x(s) such that A(s)x(s) = b(s) if and only
if A(s) and [A(s) | b(s)] have the same invariant factors. �

Remark 5.1.3. The invariant factors ek(s) are also called the elementary
divisors, though some books (e.g., Gantmacher [87]) distinguish between the
two, defining elementary divisors to be the prime powers appearing in the
factorization of the invariant factors. �

Remark 5.1.4. The theorem on the Smith normal form holds true more
generally for a matrix over a PID (principal ideal domain), of which a Eu-
clidean domain (e.g., the ring of polynomials in a single variable) is a spe-
cial case. A square matrix U over a PID, say R, is invertible (i.e., ∃ U−1

with (U−1)ji ∈ R) if and only if its determinant is an invertible element
in R. Such a matrix U is said to be unimodular over R. Theorem 5.1.1
can be generalized as follows: For a matrix A over R, there exist unimod-
ular matrices U and V such that UAV = diag (e1, · · · , er, 0, · · · , 0), where
r = rankA and ek−1 divides ek for k = 1, · · · , r. Furthermore, ek = dk/dk−1

with dk = gcd{detA[I, J ] | |I| = |J | = k} (k = 1, · · · , r). See Newman [252]
for the proof. �

5.1.2 Rational Matrix and Smith–McMillan Form at Infinity

Let A(s) = (Aij(s)) be an m× n rational function matrix with Aij(s) being
a rational function in s with coefficients from a certain field F (i.e., Aij(s) ∈
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F (s)). Typically F is the real number field R. In this book, we are often
concerned with the highest degree of a minor (subdeterminant) of order k of
A(s):

δk = δk(A) = max{degs detA[I, J ] | |I| = |J | = k} (k = 0, 1, 2, · · ·). (5.3)

By convention δ0(A) = 0, and δk(A) = −∞ for k > r.
A rational function f(s) is called proper if degs f(s) ≤ 0, where the degree

of a rational function f(s) = p(s)/q(s) (with p(s) and q(s) being polynomials)
is defined by

degs f(s) = degs p(s) − degs q(s), f(s) = p(s)/q(s).

By convention we put degs(0) = −∞.
We call a rational matrix A(s) = (Aij(s)) proper if its entries are proper

rational functions, i.e., degsAij(s) ≤ 0 for all (i, j). A square proper ra-
tional matrix is called biproper if it is invertible and its inverse is a proper
rational matrix. A proper rational matrix A(s) is biproper if and only if
degs detA(s) = 0.

Since the proper rational functions form a Euclidean ring, any proper
rational matrix can be brought into a canonical form (the Smith form) ac-
cording to the general principle explained in Remark 5.1.4. This is sometimes
referred to as the structure at infinity in the control literature. From this we
see further that any rational matrix can be brought into the Smith–McMillan
form at infinity, as stated below (Verghese–Kailath [329]).

Theorem 5.1.5 (Smith–McMillan form at infinity). For a rational
function matrix A(s), there exist biproper matrices U(s) and V (s) such that

U(s)A(s)V (s) =
(
Γ (s) O
O O

)

,

where
Γ (s) = diag (st1 , · · · , str ),

r = rankA(s), and tk = tk(A) (k = 1, · · · , r) are integers with t1 ≥ · · · ≥ tr.
Furthermore, tk can be expressed in terms of the minors of A as

tk(A) = δk(A) − δk−1(A) (k = 1, · · · , r) (5.4)

using δk(A) in (5.3). �

The integers tk (k = 1, · · · , r), uniquely determined by (5.4), are referred
to as the contents at infinity. If they are positive, tk (k = 1, · · · , r) are the
orders of the poles at infinity, and if negative, −tk (k = 1, · · · , r) are the
orders of the zeroes at infinity. It should be noted in (5.4) that δk(A)’s are
invariant under biproper equivalence transformations, that is,
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δk(A) = δk(A′) (k = 1, · · · , r) (5.5)

if A′(s) = U(s)A(s)V (s) with biproper matrices U(s) and V (s).
A significance of the Smith–McMillan normal form at infinity is indicated

by the following fact.
Lemma 5.1.6. For a rational function matrix A(s) and a rational function
vector b(s), there exists a vector x(s) of proper rational functions such that
A(s)x(s) = b(s) if and only if A(s) and [A(s) | b(s)] have the same contents
at infinity. �

Remark 5.1.7. A (proper) rational function matrix typically appears as
the transfer function matrix of a linear time-invariant dynamical system,
and the Smith–McMillan form at infinity of the transfer function matrix has
control-theoretic significances (decoupling, disturbance rejection, etc.). See
Bhattacharyya [11], Commault–Dion [37], Descusse–Dion [47], Hautus [103],
Hautus–Heymann [104, 105], Svaricek [307], and Verghese–Kailath [329].

The transfer function matrix of a system in the descriptor form

F ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t)

with “state” x(t) ∈ RN , input u(t), and output y(t), is given by

P (s) = C(sF −A)−1B,

provided that det(sF − A) �= 0 (while F can be singular). In such a case it
is desirable to express the Smith–McMillan form at infinity of P (s) directly
from the matrices F , A, B and C, without referring to the entries of P (s)
explicitly. From the formula (cf. Proposition 2.1.7)

det
(
A− sF B′

C ′ O

)

= det(A− sF ) · det[−C ′(A− sF )−1B′],

where C ′ denotes a submatrix of C with k rows and B′ is a submatrix of B
with k columns, it follows that

δk(P ) = δN+k(D; I0, J0) − δN (A− sF ),

where

D(s) =
(
A− sF B
C O

)

,

I0 and J0 are respectively the row and column sets corresponding to the
N ×N nonsingular submatrix A− sF , and

δN+k(D; I0, J0) = max{degs detD[I, J ] | I ⊇ I0, J ⊇ J0, |I| = |J | = N + k}
means the highest degree of a minor of order N + k that contains row set
I0 and column set J0. Note that δN+k(D; I0, J0) = δN+k(D̃) − 2Nd for a
sufficiently large integer d and

D̃(s) =
(

diag (sd, · · · , sd) O
O I

)(
A− sF B
C O

)(
diag (sd, · · · , sd) O

O I

)

.

�
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5.1.3 Matrix Pencil and Kronecker Form

A polynomial matrix A(s) = (Aij(s)) with degsAij(s) ≤ 1 for all (i, j) is
called a pencil. Obviously, a pencil A(s) can be represented as A(s) = sX+Y
in terms of a pair of constant matrices X and Y . A pencil A(s) is said to be
regular if it is square and detA(s) is a nonvanishing polynomial. A pencil is
called singular if it is not regular.

A pencil can be brought into a canonical block-diagonal matrix by means
of strict equivalence PA(s)Q using constant nonsingular matrices P and Q.
The block-diagonal matrix is known as the Kronecker form (Gantmacher [87,
Chap. XII]). For m ≥ 1 and ε ≥ 0, we define an m ×m bidiagonal matrix
Nm(s) and an ε× (ε+ 1) bidiagonal matrix Lε(s) by

Nm(s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 s
1 s

. . . . . .
. . . s

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, Lε(s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 s
1 s

. . . . . .
. . . s

1 s

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

For η ≥ 0 we define Uη(s) to be the transpose of Lη(s).

Theorem 5.1.8 (Kronecker form). For a pencil A(s) over a field F ,
there exist nonsingular matrices P and Q over F such that

PA(s)Q = block-diag (sIm0 +B;Nm1(s), · · · , Nmb
(s);

Lε1(s), · · · , Lεc
(s);Uη1(s), · · · , Uηd

(s)), (5.6)

where

m1 ≥ · · · ≥ mb ≥ 1, ε1 ≥ · · · ≥ εc ≥ 0, η1 ≥ · · · ≥ ηd ≥ 0,

and B is an m0 × m0 matrix over F . The indices, m0; b, m1, · · · ,mb; c,
ε1, · · · , εc; d, η1, · · · , ηd, are uniquely determined. Denoting r = rankA and
using δk(A) (k = 0, 1, 2, · · ·) in (5.3), we have

b = r − max
k≥0

δk(A), c = |Col(A)| − r, d = |Row(A)| − r, (5.7)

m0 = δr(A) −
c∑

i=1

εi −
d∑

j=1

ηj , (5.8)

mk = δr−k(A) − δr−k+1(A) + 1 (k = 1, · · · , b). (5.9)

For a regular pencil, in particular, the indices, m0; b, m1, · · · ,mb, are deter-
mined by δk(A) (k = 0, 1, 2, · · ·).
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Proof.1 The formulas (5.7)–(5.9) can be derived from the block diagonal struc-
ture (5.6). The uniqueness of the indices ε1, · · · , εc and η1, · · · , ηd is not dif-
ficult to establish.

The existence of block diagonal form (5.6) is proven here. Put A(s) =
sX + Y , where X and Y are matrices over F .

Claim: There exist nonsingular matrices P̄ and Q̄ over F and partitions
(R1, · · · , Rμ;R∞) and (C1, · · · , Cμ;C∞) of the row set R and the column set
C of Ā(s) = sX̄ + Ȳ = P̄ (sX + Y )Q̄ such that

rank X̄[Ri, Cj ] = 0 (1 ≤ j ≤ μ, j ≤ i ≤ ∞),
rank Ȳ [Ri, Cj ] = 0 (1 ≤ j ≤ μ, j + 1 ≤ i ≤ ∞),
rank X̄[Rj−1, Cj ] = |Cj | (2 ≤ j ≤ μ),
rank X̄[R∞, C∞] = |C∞|,
rank Ȳ [Ri, Ci] = |Ri| (1 ≤ i ≤ μ).

Here Rμ, R∞, and C∞ can be empty, whereas other blocks are nonempty.
Note that Ā(s) is an upper block-triangular matrix and that the rank condi-
tions imply

|C1| ≥ |R1| ≥ |C2| ≥ |R2| ≥ · · · ≥ |Cμ| ≥ |Rμ|, |R∞| ≥ |C∞|.

The upper block-triangular form in the claim can be constructed as fol-
lows. The column set C1 is determined by a column-transformation for X,
since X̄[R,C1] = O and X̄[R,C \ C1] is of full-column rank by the rank
conditions. Then the row set R1 is determined by a row-transformation for
the submatrix Y [R,C1], since Ȳ [R \R1, C1] = O and Ȳ [R1, C1] is of full-row
rank. Next, C2 is determined by a column-transformation for the submatrix
X[R\R1, C \C1] (with X denoting the modified X), since X̄[R\R1, C2] = O
and X̄[R \ R1, (C \ C1) \ C2)] is of full-column rank. Then the row set R2

is determined from the submatrix Y [R \ R1, C2]. Continuing this way, we
eventually arrive at Cμ+1 = ∅ for some μ ≥ 0; then we terminate by defining
R∞ and C∞ to be the complements of

⋃μ
i=1Ri and

⋃μ
j=1 Cj , respectively.

In the above claim we may further assume that

X̄[Ri, Cj ] = O unless 2 ≤ j = i+ 1 ≤ μ or i = j = ∞,
Ȳ [Ri, Cj ] = O unless 1 ≤ i = j ≤ ∞,

X̄[Rj−1, Cj ] =
[
I|Cj |
O

]

(2 ≤ j ≤ μ),

X̄[R∞, C∞] =
[
I|C∞|
O

]

,

Ȳ [Ri, Ci] =
[
I|Ri| O

]
(1 ≤ i ≤ μ),

1 The present proof, valid for an arbitrary F , is communicated by S. Iwata. See
Gantmacher [87, Chap. XII, §2] for an alternative proof in the case of F = C.
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where IN denotes the identity matrix of order N . Then the matrix Ā(s) takes
the form depicted in Fig. 5.1 for μ = 4.

1 s

1 s

1 s

1

s

O

O

�� �� �� �� ��

�

	

�

	

�

	

�
	

�

	

C1 C2 C3 C4 C∞

R1

R2

R3

R4

R∞

Fig. 5.1. Matrix Ā(s) in the proof for the Kronecker form (μ = 4)

Consider the submatrix Ā[
⋃μ

i=1Ri,
⋃μ

j=1 Cj ]. With suitable permutations
of rows and columns, it can be put into a block-diagonal form with each
diagonal block being equal to Nm(s) with 1 ≤ m ≤ μ or Lε(s) with 0 ≤ ε ≤
μ−1, whereNm(s) appears with multiplicity |Rm|−|Cm+1| (note: |Cμ+1| = 0)
and Lε(s) with multiplicity |Cε+1| − |Rε+1|. Namely,

Ā[
μ⋃

i=1

Ri,

μ⋃

j=1

Cj ] = block-diag (Nm1(s), · · · , Nmb
(s);Lε1(s), · · · , Lεc

(s))

with

b =
μ∑

i=1

|Ri| −
μ∑

j=2

|Cj |, c =
μ∑

j=1

|Cj | −
μ∑

i=1

|Ri|,

|{k | mk = m}| = |Rm| − |Cm+1| (1 ≤ m ≤ μ),
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|{k | εk = ε}| = |Cε+1| − |Rε+1| (0 ≤ ε ≤ μ− 1).

For the submatrix Ā[R∞, C∞], we apply the above argument to its trans-
pose. Let (R̂1, · · · , R̂μ̂; R̂∞) and (Ĉ1, · · · , Ĉμ̂; Ĉ∞) be the resulting parti-
tions of R∞ and C∞, respectively. Since rank X̄[R∞, C∞] = |C∞|, we have
|Ĉi| = |R̂i+1| for i = 1, · · · , μ̂ − 1 and |Ĉμ̂| = 0. This means that there exist
nonsingular matrices P̂ and Q̂ such that

P̂ Ā[R∞, C∞]Q̂ = block-diag (Uη1(s), · · · , Uηd
(s); sX̂∞ + Ŷ∞),

where X̂∞ is nonsingular. Finally, we can transform X̂∞ to the identity ma-
trix to obtain the desired block-diagonal form (5.6).

The matrices Nmk
(s) (k = 1, · · · , b) are called the nilpotent blocks and

the number m1 = max1≤k≤bmk is the index of nilpotency. The indices
{ε1, · · · , εc} and {η1, · · · , ηd} are called Kronecker column indices and row
indices, respectively. For algorithms to compute the Kronecker form, see the
references in Golub–Van Loan [97, pp. 389–390].

Remark 5.1.9. The Kronecker form is a fundamental tool for the analysis
of a dynamical system in the descriptor form (Katayama [155], Luenberger
[182, 183]):

F
dx

dt
= Ax +Bu, (5.10)

where the matrix F is square (n×n) but not necessarily nonsingular. Consider
the Laplace transform2 of the above system:

(
A− sF B

)
(

x̄
ū

)

= −F x(0−),

where s is the symbol (or indeterminate) standing for the differentiation with
respect to time, and x̄ and ū are the Laplace transforms of x(t) and u(t),
respectively. For the unique solvability, as a system of differential equations
in x, the matrix A− sF is usually assumed to be a regular pencil.

Then, by Theorem 5.1.8, there exist two real-constant nonsingular matri-
ces P and Q such that

P (A− sF )Q = block-diag (A0 − sIm0 ; Im1 − sJm1 , · · · , Imb
− sJmb

) ,

where Jm is an m×m matrix defined by Nm(s) = Im + sJm. Using this we
can rewrite the descriptor form (5.10) into

dx0

dt
= A0x0 +B0u, (5.11)

Jmk

dxk

dt
= xk +Bku (k = 1, · · · , b), (5.12)

2 To be more precise, L− transform (Kailath [152, §1.2]) defined by x̄(s) =∫∞
0− x(t)e−stdt.
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where xk ∈ Rmk for k = 0, 1, · · · , b and
⎛

⎜
⎜
⎜
⎝

x0

x1

...
xb

⎞

⎟
⎟
⎟
⎠

= Q−1x,

⎛

⎜
⎜
⎜
⎝

B0

B1

...
Bb

⎞

⎟
⎟
⎟
⎠

= PB.

The subsystems in (5.11) and (5.12) admit explicit solutions:

x0(t) = exp(A0t)x0(0) +
∫ t

0

exp[A0(t− τ)]B0u(τ)dτ,

xk(t) = −
(

mk−2∑

p=0

δ(p)(t)Jmk

p+1

)

xk(0−) −
mk−1∑

p=0

Jmk

pBku(p)(t)

(k = 1, · · · , b),

where δ(p)(t) and u(p)(t) are the pth derivatives of the Dirac delta func-
tion (the unit impulse function) and the input-vector u(t), respectively.
Thus the first subsystem (5.11), in the standard form, expresses the ex-
ponential modes, while the second (5.12) accounts for the impulse modes.
In this context, m0 = degs det(A − sF ) is sometimes called the dynami-
cal degree (Hayakawa–Hosoe–Ito [108]), which stands for the number of ex-
ponential modes, whereas the number of impulse modes is represented by∑b

k=1(mk − 1) = rankF − degs det(A− sF ). See Suda [303] for more about
the role of the Kronecker form in control theory. �

Remark 5.1.10. The index of nilpotency has an important significance in
numerical analysis of a system of equations consisting of a mixture of dif-
ferential and algebraic relations, which is often abbreviated to DAE in the
literature of numerical analysis. For a linear time-invariant DAE in general,
say Ax = b with A = A(s) being an n× n nonsingular polynomial matrix in
s, the index is defined by

ν(A) = max
i,j

degs(A
−1)ji + 1.

Here it should be clear that each entry (A−1)ji of A−1 is a rational function
in s. An alternative expression for ν(A) is

ν(A) = δn−1(A) − δn(A) + 1.

When degsAij(s) ≤ 1 for all (i, j), the index ν(A) agrees with the index of
nilpotency of A as a matrix pencil; namely, we have ν(A) = m1.

The solution x to Ax = b is of course given by x = A−1b, and therefore
ν(A) − 1 equals the highest order of the derivatives of the input b that can
possibly appear in the solution x. As such, a high index indicates the difficulty
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in numerical solution of the DAE, and sometimes even the inadequacy in
mathematical modeling. The structural approach to the DAE index has been
expounded in Chap. 1. See Brenan–Campbell–Petzold [21], Gear [88, 89],
Hairer–Wanner [101], and Ungar–Kröner–Marquardt [324] for more about
the index of DAE. �

Remark 5.1.11. It turns out that the Smith form of a polynomial matrix is
closely related, at least in the generic case, to the DM-decomposition and the
CCF of LM-matrices (to be explained in §6.3). The combinatorial properties
of the degree of subdeterminants, on the other hand, will be investigated in
the next section in a more abstract framework of “valuated matroids.” �

5.2 Valuated Matroid

5.2.1 Introduction

While matroids are a combinatorial abstraction of matrices over a field with
respect to linear independence, valuated matroids originate from a combina-
torial structure of polynomial/rational matrices with respect to the degree of
determinants. The axiomatic development will be motivated and illustrated
by the special case of polynomial/rational matrices. The concept of valuated
matroids was introduced by Dress–Wenzel [54, 57].

A valuated matroid is a pair M = (V, ω) of a finite set V and a function
ω : 2V → R ∪ {−∞} such that

B = {B ⊆ V | ω(B) �= −∞} (5.13)

is nonempty and that the following exchange property holds:

(VM) For B,B′ ∈ B and u ∈ B \ B′, there exists v ∈ B′ \ B such
that B − u+ v ∈ B, B′ + u− v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v). (5.14)

If this is the case, B satisfies the simultaneous exchange property:

(BM±) For B,B′ ∈ B and for u ∈ B \ B′, there exists v ∈ B′ \ B
such that B − u+ v ∈ B and B′ + u− v ∈ B

introduced in §2.3.4, and accordingly B forms the basis family of a matroid.
Therefore, we can alternatively say that a valuated matroid is a triple M =
(V,B, ω), where (V,B) is a matroid (defined in terms of the basis family) and
ω : B → R is a function satisfying (VM). It is also said that ω is a valuation
of the matroid (V,B). We denote by r the rank of the underlying matroid
(V,B).

A valuated matroid M = (V,B, ω) such that ω(B) = 0 for all B ∈ B can
be identified with the underlying matroid (V,B). In fact, (VM) for ω : 2V →
{0,−∞} reduces to (BM±). This ω is called the trivial valuation.
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Remark 5.2.1. As we have seen in §2.3, the theory of matroids offers deep
and useful results for a pair of matroids (independent matchings as well as
intersection in §2.3.5 and union in §2.3.6). The most interesting part of the
theory of valuated matroids lies in a generalization of these results, to be
described in §5.2.9. Specifically, for two valuated matroids M1 = (V,B1, ω1)
and M2 = (V,B2, ω2), the “sum” ω1 + ω2 turns out to be a nice combi-
natorial object, though it is not a valuated matroid in general. Note that
(ω1 +ω2)(B) > −∞ if and only if B is a common base (i.e., B ∈ B1 ∩B2). �

5.2.2 Examples

Examples of valuated matroids are shown.

Example 5.2.2. A linear weighting on a matroid (V,B) is a valuation. That
is, for p : V → R and α ∈ R, the function ω : B → R defined by

ω(B) = α+
∑

{p(u) | u ∈ B} (B ∈ B)

is a matroid valuation, satisfying (VM) with equality in (5.14). Such ω is
called a separable valuation. �

Example 5.2.3. Let A(s) be an m × n matrix of rank m with each en-
try being a rational function in a variable s, and let (C,B) denote the
(linear) matroid defined on the column set C of A(s) in terms of the
linear independence of the column vectors (cf. Example 2.3.8). Namely,
B = {B ⊆ C | detA[R,B] �= 0}, where R denotes the row set of A. Then
ω : B → Z defined by

ω(B) = degs detA[R,B] (B ∈ B) (5.15)

is a valuation of (C,B). In fact, by considering the degree of the terms in the
Grassmann–Plücker identity (Proposition 2.1.4):

detA[R,B] · detA[R,B′] =
∑

j∈B′\B

detA[R,B − i+ j] · detA[R,B′ + i− j]

for i ∈ B \B′, we obtain

ω(B) + ω(B′) ≤ max
j∈B′\B

[ω(B − i+ j) + ω(B′ + i− j)] ,

the exchange axiom (VM). This observation by Dress–Wenzel [57] is the origin
of the concept of valuated matroids.

A concrete instance of (nonseparable) valuation of this kind is provided
by

A(s) =

x1 x2 x3 x4

s+ 1 s 1 0
1 1 1 1 ,
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where C = {x1, x2, x3, x4}. For B = {x1, x2} and B′ = {x3, x4} we have
ω(B) = ω(B′) = 0 and ω(B− xi + xj) = ω(B′ + xi − xj) = 1 for i = 1, 2 and
j = 3, 4. �

Example 5.2.4. This is an example from combinatorial optimization due to
Murota [224]. Let G = (V,A) be a directed graph, and S and T be disjoint
subsets of the vertex set V . By L (⊆ A) we denote (the arc set of) a Menger-
type vertex-disjoint linking from S to T , and by ∂+L (⊆ S) the set of its
initial vertices. Put B = {∂+L | L ∈ L}, where L (⊆ 2A) denotes the family of
maximum linkings. It is well known (see also the augmenting-path argument
below) that B forms the basis family of a matroid (S,B). Given a cost function
γ : A→ R, define a function ω : B → R by

ω(B) = −min
L

{
∑

a∈L

γ(a) | ∂+L = B,L ∈ L} (B ∈ B).

By definition, −ω(B) means the minimum cost of a maximum linking L with
initial vertex set B.

The function ω is a valuation of (S,B), satisfying the exchange axiom
(VM). To see this, let L,L′ ∈ L be such that ∂+L = B, ∂+L′ = B′,
ω(B) = −

∑
a∈L γ(a), and ω(B′) = −

∑
a∈L′ γ(a). For u ∈ B \B′, a standard

augmenting-path argument shows that there exists P ⊆ (L\L′)∪(L′\L) such
that (P ∩L)∪(P ∩ L′) forms a directed path from u to some v ∈ B′\B, where
P ∩ L′ means the set of arcs in P∩L′ reoriented. Note the maximality of L and
L′ is used here. For L̃ = (L\(P∩L))∪(P∩L′) and L̃′ = (L′\(P∩L′))∪(P∩L),
we have L̃, L̃′ ∈ L, ∂+L̃ = B − u+ v, ∂+L̃′ = B′ + u− v, and therefore,

ω(B) + ω(B′) = −
∑

a∈L

γ(a) −
∑

a∈L′

γ(a) = −
∑

a∈L̃

γ(a) −
∑

a∈L̃′

γ(a)

≤ ω(B − u+ v) + ω(B′ + u− v).

An example of this kind is provided by G = (V,A) with V = S ∪ T , S =
{s1, s2, s3, s4}, T = {t1, t2},

A = {(s1, t1), (s2, t2), (s3, t1), (s3, t2), (s4, t1), (s4, t2)},

γ(a) = 0 except for γ(s3, t2) = 1 and γ(s4, t2) = 2. We have, for example,
ω({s1, s2}) = 0, ω({s1, s3}) = −1, ω({s1, s4}) = −2. This valuation is not
separable, since the system of equations α + pi + pj = ω({si, sj}) (i �= j) in
(α, p1, p2, p3, p4) ∈ R5 has no solution. �

5.2.3 Basic Operations

Basic operations for a valuated matroid, such as dual, restriction, contraction,
truncation, and elongation, are explained here, whereas other more sophisti-
cated operations such as union are treated in §5.2.6.
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Let M = (V,B, ω) be a valuated matroid. For α ∈ R and 0 ≤ β ∈ R, the
function ωα,β : B → R defined by

ωα,β(B) = α+ βω(B) (B ∈ B)

is a matroid valuation. For p : V → R we define ω[p] : B → R (or ω[p] :
2V → R ∪ {−∞}) by

ω[p](B) = ω(B) +
∑

{p(u) | u ∈ B}. (5.16)

M[p] = (V,B, ω[p]) is again a valuated matroid, called a similarity transfor-
mation of M by p. A linear weighting is a similarity transformation of the
trivial valuation.

The dual of M = (V,B, ω) is a valuated matroid M∗ = (V,B∗, ω∗) defined
by

B∗ = {B ⊆ V | V \B ∈ B}, ω∗(B) = ω(V \B) for B ∈ B∗.

The restriction and the contraction of M = (V,B, ω) to U (⊆ V ) are
defined as follows (Dress–Wenzel [57]). Let (U,BU ) and (U,BU ) be the re-
striction and the contraction of the underlying matroid (V,B) to U . Similarly
for (V \U,BV \U ) and (V \U,BV \U ). Fix a base I of (V \U,BV \U ) and a base
J of (V \ U,BV \U ), and define ωU

I : BU → R and ωJ
U : BU → R by

ωU
I (X) = ω(I ∪X), X ∈ BU ; ωJ

U (X) = ω(J ∪X), X ∈ BU .

Theorem 5.2.5.
(1) MU

I = (U,BU , ωU
I ) is a valuated matroid, and for I, I ′ ∈ BV \U there

exists αU
I,I′ ∈ R, independent of X ∈ BU , such that

ωU
I′(X) = ωU

I (X) + αU
I,I′ , X ∈ BU .

(2) MJ
U = (U,BU , ω

J
U ) is a valuated matroid, and for J, J ′ ∈ BV \U there

exists βJ,J ′

U ∈ R, independent of X ∈ BU , such that

ωJ ′

U (X) = ωJ
U (X) + βJ,J ′

U , X ∈ BU .

Proof. (1) It is obvious that ωU
I satisfies (VM). We may assume I \ I ′ = {u}

and I ′ \ I = {u′}. For X,Y ∈ BU we apply (VM) to (I ∪ X, I ′ ∪ Y ) and
u ∈ (I ∪X) \ (I ′ ∪ Y ) to obtain

ω(I ∪X) + ω(I ′ ∪ Y ) ≤ ω(I ′ ∪X) + ω(I ∪ Y ),

since u′ is the only exchangeable element of (I ′ ∪ Y ) \ (I ∪X). The reverse
inequality can be shown similarly, and therefore

ω(I ′ ∪X) − ω(I ∪X) = ω(I ′ ∪ Y ) − ω(I ∪ Y ) = αU
I,I′ .
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(2) This can be proven similarly.

Let (V,Bk) and (V,Bl) denote the truncation to k and the elongation
to l, respectively, of the underlying matroid (V,B) of a valuated matroid
M = (V,B, ω), where k ≤ r ≤ l. By definition,

Bk = {I ⊆ V | |I| = k, ∃B : I ⊆ B ∈ B}, (5.17)
Bl = {S ⊆ V | |S| = l, ∃B : S ⊇ B ∈ B}. (5.18)

For a spanning set S0 of (V,B) and an independent set I0 of (V,B), define
ωk,S0 : Bk → R and ωl,I0 : Bl → R by

ωk,S0(I) = max{ω(B) | I ∪ S0 ⊇ B ⊇ I,B ∈ B} (I ∈ Bk), (5.19)

ωl,I0(S) = max{ω(B) | S ∩ I0 ⊆ B ⊆ S,B ∈ B} (S ∈ Bl). (5.20)

The following theorem (Murota [229]) states that these constructions yield
valuated matroids. We call Mk,S0 = (V,Bk, ωk,S0) the truncation of M to
rank k relative to a spanning set S0, and Ml,I0 = (V,Bl, ωl,I0) the elongation
of M to rank l relative to an independent set I0.

Theorem 5.2.6. For a valuated matroid M = (V,B, ω) of rank r, let ωk,S0

and ωl,I0 be defined by (5.19) and (5.20) for a spanning set S0 and an inde-
pendent set I0, where 0 ≤ k ≤ r ≤ l ≤ |V |.

(1) Mk,S0 = (V,Bk, ωk,S0) is a valuated matroid (of rank k).
(2) Ml,I0 = (V,Bl, ωl,I0) is a valuated matroid (of rank l).
(3) (ωr+s,I0)∗ = (ω∗)(r+s)∗,I∗

0
for s with 0 ≤ s ≤ |V |−r, where (r+s)∗ =

|V | − (r + s) and I∗0 = V \ I0.

Proof. First note that (2) follows from (1) and (3), and that (3) can be proven
by a direct calculation:

(ω∗)(r+s)∗,I∗
0
(I) = max{ω∗(B′) | I ∪ I∗0 ⊇ B′ ⊇ I}

= max{ω(B) | (V \ I) ∩ I0 ⊆ B ⊆ V \ I}
= ωr+s,I0(V \ I) = (ωr+s,I0)∗(I),

where I ⊆ V and |I| = (r + s)∗.
Next, we show that the proof of (1) reduces to the case of S0 = V . Define

p : V → R by

p(u) =
{
α (u ∈ S0)
0 (u ∈ V \ S0)

with a sufficiently large number α, and consider ω[p] of (5.16), which is also
a valuation of (V,B). Then we have

ωk,S0(I) = (ω[p])k,V (I) −
∑

{p(u) | u ∈ I} − α(r − k).
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Hence it suffices to prove that (ω[p])k,V is a valuation, which is done later in
Lemma 5.2.21.

For two valuated matroids M1 = (V1,B1, ω1) and M2 = (V2,B2, ω2) with
disjoint ground sets (V1 ∩ V2 = ∅), the direct sum is a valuated matroid
M = (V1 ∪ V2,B, ω) defined by B = {B1 ∪ B2 | B1 ∈ B1, B2 ∈ B2} and
ω(B) = ω1(B ∩ V1) + ω2(B ∩ V2). It is noted that this construction does not
necessarily yield a valuated matroid if V1 ∩ V2 �= ∅.

5.2.4 Greedy Algorithms

A greedy algorithm works for valuated matroids and this property in turn
characterizes valuated matroids.

Let M = (V,B, ω) be a valuated matroid. ForB ∈ B, u ∈ B, and v ∈ V \B,
we define

ω(B, u, v) = ω(B − u+ v) − ω(B), (5.21)

which we refer to as the exchange gain of ω at B for the pair (u, v). Note
that ω(B, u, v) = −∞ if B − u+ v �∈ B.

The following fact is most fundamental, showing the local optimality im-
plies the global optimality. This is due to Dress–Wenzel [57].

Theorem 5.2.7. Let B ∈ B. Then ω(B) ≥ ω(B′) for any B′ ⊆ V if and
only if

ω(B, u, v) ≤ 0 for any u ∈ B and v ∈ V \B. (5.22)

Proof. We prove ω(B) ≥ ω(B′) by induction on d = |B′ \B|. Obviously, this
is true for d = 0. For d ≥ 1, there exist u ∈ B \B′ and v ∈ B′ \B such that

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v),

in which ω(B − u + v) ≤ ω(B) by (5.22) and ω(B′ + u − v) ≤ ω(B) by the
induction hypothesis. Hence follows ω(B′) ≤ ω(B).

For the maximization of ω the greedy algorithm of Dress–Wenzel [54] starts
with an arbitrary base B0 = {u1, u2, · · · , ur} ∈ B with an arbitrary ordering
of the elements, and repeats the following for k = 1, 2, · · · , r (= rankM):

Find vk ∈ (V \Bk−1) ∪ {uk} = V \ {v1, · · · , vk−1, uk+1, · · · , ur} such
that

ω(Bk−1 − uk + vk) ≥ ω(Bk−1 − uk + v) (∀v ∈ (V \Bk−1) ∪ {uk})

and put Bk = Bk−1 − uk + vk.

In this way an optimal base (maximizing ω) can be found with r(|V |− r)+1
function evaluations of ω. Moreover, the success of this algorithm character-
izes valuations, a result of Dress–Wenzel [54].
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Theorem 5.2.8. Let (V,B) be a matroid, and ω : B → R. If ω is a valuation,
the above algorithm yields an optimal base. Conversely, if for any p ∈ RV the
above algorithm applied to ω[p] yields an optimal base with respect to ω[p],
then ω is a valuation.

Proof. The algorithm works for a valuation due to Lemma 5.2.9 below, applied
to a sequence of the contractions of (V,B, ω) to V \ {v1, · · · , vk−1} (k =
1, 2, · · ·). For the converse, suppose that (VM) fails for B,B′ ∈ B and u∗ ∈
B \B′. Note that |B \B′| ≥ 2. Define p : V → R by

p(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 (v = u∗)
−ω(B, u∗, v) (v ∈ B′ \B,B − u∗ + v ∈ B)
+M1 (v ∈ B′ \B,B − u∗ + v �∈ B)
+M2 (v ∈ B ∩B′)
−M2 (v ∈ V \ (B′ ∪ {u∗}))

with sufficiently large positive numbers M1 and M2 such that M1 - M2.
Then B′ is the unique maximizer of ω[p] and ω[p](B) ≥ ω[p](B − u∗ + v)
for v ∈ V \ B. The latter means that the algorithm applied to B0 = B with
u1 = u∗ fails by choosing v1 = u∗.

The proof above relies on the following fundamental fact due to Shioura
[298].

Lemma 5.2.9. Let (V,B, ω) be a valuated matroid, û ∈ B ∈ B, and v̂ ∈
(V \B)∪{û}. If ω(B − û+ v̂) = max

v∈(V \B)∪{û}
ω(B − û+ v), there exists B̂ ∈ B

such that v̂ ∈ B̂ and ω(B̂) = maxω.

Proof. Take any B′ ∈ B with ω(B′) = maxω. If v̂ ∈ B′, put B̂ = B′.
Otherwise, v̂ ∈ (B− û+ v̂)\B′, and therefore, there exists u ∈ B′\(B− û+ v̂)
such that

ω(B − û+ v̂) + ω(B′) ≤ ω(B − û+ u) + ω(B′ + v̂ − u),

which must be satisfied with equality since ω(B− û+u) ≤ ω(B− û+ v̂) and
ω(B′ + v̂ − u) ≤ maxω = ω(B′). Hence B̂ = B′ + v̂ − u is a valid choice.

Example 5.2.10. In case ω is defined by an m× n rational matrix A(s) of
rank m (cf. Example 5.2.3), the exchange gain (5.21) can be represented as

ω(B, i, j) = degs(A[R,B]−1A[R,C \B])ij (i ∈ B, j ∈ C \B), (5.23)

where the right-hand side designates the degree of the (i, j) entry of the
m× (n−m) rational matrix A[R,B]−1A[R,C \B]. Hence, by Theorem 5.2.7,
we see

B maximizes degs detA[R,B]
⇐⇒ A[R,B]−1A[R,C \B] is a proper rational matrix. (5.24)

�
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Remark 5.2.11. Greedy algorithms are fundamental in combinatorial op-
timization. Investigation of variants of greedy algorithms leads to many
interesting combinatorial structures. See, for example, Edmonds [68, 69],
Faigle [74], Lawler [171], and Welsh [333] (matroids and polymatroids);
Korte–Lovász–Schrader [163] (greedoids); Bouchet [15] and Chandrasekaran–
Kabadi [30] (delta matroids); Dress–Terhalle [51, 52, 53] (variants of val-
uated matroids); and Dress–Wenzel [55] and Murota [222] (valuated delta
matroids). �

5.2.5 Valuated Bimatroid

In §2.3.7 we explained about bimatroids, which can be regarded as a variant
of matroids (see (2.86) in particular). Following Murota [221] we introduce
here a variant of valuated matroids in a similar vein.

Let S and T be disjoint finite sets and δ : 2S ×2T → R∪{−∞} be a map
such that

δ(X,Y ) = ω((S \X) ∪ Y ) (X ⊆ S, Y ⊆ T ) (5.25)

for some valuated matroid (S ∪ T, ω) with ω(S) �= −∞. Then (S, T, Λ) with

Λ = {(X,Y ) | δ(X,Y ) �= −∞, X ⊆ S, Y ⊆ T}
is a bimatroid due to (2.86). Note that (∅, ∅) ∈ Λ and that |X| = |Y | for
(X,Y ) ∈ Λ.

The axiom (VM) for ω can be translated into a condition on δ that (VB-1)
and (VB-2) below hold true for any (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Λ:

(VB-1) For any x′ ∈ X ′ \ X, either (a1) or (b1) (or both) holds,
where
(a1) ∃y′ ∈ Y ′ \ Y :
δ(X,Y ) + δ(X ′, Y ′) ≤ δ(X + x′, Y + y′) + δ(X ′ − x′, Y ′ − y′),
(b1) ∃x ∈ X \X ′:
δ(X,Y ) + δ(X ′, Y ′) ≤ δ(X − x+ x′, Y ) + δ(X ′ − x′ + x, Y ′).

(VB-2) For any y ∈ Y \Y ′, either (a2) or (b2) (or both) holds, where
(a2) ∃x ∈ X \X ′:
δ(X,Y ) + δ(X ′, Y ′) ≤ δ(X − x, Y − y) + δ(X ′ + x, Y ′ + y),
(b2) ∃y′ ∈ Y ′ \ Y :
δ(X,Y ) + δ(X ′, Y ′) ≤ δ(X,Y − y + y′) + δ(X ′, Y ′ − y′ + y).

A triple (S, T, δ) (or quadruple (S, T, Λ, δ)) satisfying (VB-1) and (VB-2) is
named a valuated bimatroid.

We are now interested in optimal linked pairs (X,Y ) ∈ Λ of a specified
size k with respect to the value of δ. Define

r = max{|X| | ∃(X,Y ) ∈ Λ},
Λk = {(X,Y ) ∈ Λ | |X| = |Y | = k} (0 ≤ k ≤ r),
δk = max{δ(X,Y ) | (X,Y ) ∈ Λk} (0 ≤ k ≤ r),

Mk = {(X,Y ) ∈ Λk | δ(X,Y ) = δk} (0 ≤ k ≤ r).
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The optimal linked pairs can be chosen to be nested (Murota [221]).

Theorem 5.2.12. For any (Xk, Yk) ∈ Mk with 1 ≤ k ≤ r − 1, there exist
(Xl, Yl) ∈ Ml (0 ≤ l ≤ r, l �= k) such that

(∅ =) X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk ⊂ Xk+1 ⊂ · · · ⊂ Xr,

(∅ =) Y0 ⊂ Y1 ⊂ · · · ⊂ Yk−1 ⊂ Yk ⊂ Yk+1 ⊂ · · · ⊂ Yr.

Proof. Take any (X−, Y−) ∈ Mk−1 and apply (VB-1) to (X,Y ) = (X−, Y−),
(X ′, Y ′) = (Xk, Yk) and any x′ ∈ Xk \X− (�= ∅). In case (a1),

δk−1 + δk = δ(X−, Y−) + δ(Xk, Yk)
≤ δ(X− + x′, Y− + y′) + δ(Xk − x′, Yk − y′) ≤ δk + δk−1,

and therefore (Xk−1, Yk−1) = (Xk − x′, Yk − y′) is eligible. In case (b1),

δk−1 + δk = δ(X−, Y−) + δ(Xk, Yk)
≤ δ(X− − x+ x′, Y−) + δ(Xk − x′ + x, Yk) ≤ δk−1 + δk,

which shows (X̃−, Ỹ−) = (X− − x + x′, Y−) ∈ Mk−1 with |X̃− \ Xk| =
|X− \Xk| − 1. We now apply the same argument to (X̃−, Ỹ−). This process
eventually reaches the case (a1).

The nesting property implies the following fact (Murota [221]).

Theorem 5.2.13. The sequence (δ0, δ1, · · · , δr) is concave, i.e.,

δk−1 + δk+1 ≤ 2δk (1 ≤ k ≤ r − 1).

Proof. Take (Xk−1, Yk−1) ∈ Mk−1 and (Xk+1, Yk+1) ∈ Mk+1 with Xk−1 ⊂
Xk+1 and Yk−1 ⊂ Yk+1 (cf. Theorem 5.2.12). By (VB-1) there exist x ∈
Xk+1 \Xk−1 and y ∈ Yk+1 \ Yk−1 such that

δk−1 + δk+1 ≤ δ(Xk−1 + x, Yk−1 + y) + δ(Xk+1 − x, Yk+1 − y) ≤ 2δk.

The nesting property revealed in Theorem 5.2.12 justifies the following
incremental greedy algorithm for computing δk for k = 0, 1, · · · , r.

Greedy algorithm for δk (k = 1, 2, · · ·)
X0 := ∅; Y0 := ∅;
for k := 1, 2, · · · do

Find x ∈ S \Xk−1, y ∈ T \ Yk−1 maximizing δ(Xk−1 + x, Yk−1 + y)
and put Xk := Xk−1 + x, Yk := Yk−1 + y, and δk := δ(Xk, Yk).

The iteration stops when δ(Xk, Yk) = −∞, and then we see r = k − 1. This
algorithm involves O(r|S| |T |) evaluations of δ to compute the whole sequence
(δ0, δ1, · · · , δr).
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For a valuated bimatroid δ : 2S × 2T → R ∪ {−∞} we define a function
δ̃ : 2S × 2T → R by

δ̃(X,Y ) = max{δ(X ′, Y ′) | X ′ ⊆ X,Y ′ ⊆ Y }.

Note that δ̃(X,Y ) is finite for all (X,Y ) since δ(∅, ∅) > −∞.

Theorem 5.2.14. The function δ̃ : 2S × 2T → R derived from a valuated
bimatroid δ : 2S × 2T → R ∪ {−∞} satisfies

δ̃(X,Y ) + δ̃(X ′, Y ′) ≥ δ̃(X ∪X ′, Y ∩ Y ′) + δ̃(X ∩X ′, Y ∪ Y ′)
(X,X ′ ⊆ S;Y, Y ′ ⊆ T ).

Proof. It suffices to show

δ̃(X,Y ) + δ̃(X + x, Y + y) ≥ δ̃(X + x, Y ) + δ̃(X,Y + y), (5.26)
δ̃(X + x1, Y ) + δ̃(X + x2, Y ) ≥ δ̃(X,Y ) + δ̃(X + {x1, x2}, Y ), (5.27)
δ̃(X,Y + y1) + δ̃(X,Y + y2) ≥ δ̃(X,Y ) + δ̃(X,Y + {y1, y2}), (5.28)

where x, x1, x2 ∈ S \X and y, y1, y2 ∈ T \ Y .
To show (5.26) take X1 ⊆ X + x, Y1 ⊆ Y , X2 ⊆ X, and Y2 ⊆ Y + y such

that δ̃(X + x, Y ) = δ(X1, Y1) and δ̃(X,Y + y) = δ(X2, Y2). If x �∈ X1, we are
done, since δ̃(X,Y ) ≥ δ(X1, Y1) and δ̃(X +x, Y + y) ≥ δ(X2, Y2). Otherwise,
apply (VB-1) for x ∈ X1 \ X2 to obtain either (a) δ(X1, Y1) + δ(X2, Y2) ≤
δ(X1 − x, Y1 − y1) + δ(X2 + x, Y2 + y1) ≤ δ̃(X,Y ) + δ̃(X + x, Y + y) for some
y1 ∈ Y1 \ Y2 or (b) δ(X1, Y1) + δ(X2, Y2) ≤ δ(X1 − x+ x2, Y1) + δ(X2 − x2 +
x, Y2) ≤ δ̃(X,Y ) + δ̃(X + x, Y + y) for some x2 ∈ X2 \X1.

To show (5.27) takeX1 ⊆ X,X2 ⊆ X+{x1, x2}, and Y1, Y2 ⊆ Y such that
δ̃(X,Y ) = δ(X1, Y1) and δ̃(X + {x1, x2}, Y ) = δ(X2, Y2). If x2 �∈ X2, we are
done, since δ̃(X+x1, Y ) ≥ δ(X2, Y2) and δ̃(X+x2, Y ) ≥ δ(X1, Y1). Otherwise,
apply (VB-1) for x2 ∈ X2 \X1 to obtain either (a) δ(X1, Y1) + δ(X2, Y2) ≤
δ(X1 + x2, Y1 + y2) + δ(X2 − x2, Y2 − y2) ≤ δ̃(X + x2, Y ) + δ̃(X + x1, Y ) for
some y2 ∈ Y2 \ Y1 or (b) δ(X1, Y1) + δ(X2, Y2) ≤ δ(X1 − x+ x2, Y1) + δ(X2 −
x2 + x, Y2) ≤ δ̃(X + x2, Y ) + δ̃(X + x1, Y ) for some x ∈ X1 \X2.

The final case (5.28) can be shown similarly.

Example 5.2.15. From an m × n rational matrix A(s) with R = Row(A)
and C = Col(A), a valuated bimatroid (R,C, δ) is defined by

δ(I, J) = degs detA[I, J ] (I ⊆ R, J ⊆ C). (5.29)

The associated valuated matroid in (5.25) is the one defined by anm×(m+n)
matrix [Im A] according to (5.15) (see also Fig. 2.12). A weaker form of the
nesting property of Theorem 5.2.12 in this special case has been observed by
Svaricek [306], [307, Satz 6.23]. The concavity of the sequence δk in Theorem
5.2.13 is equivalent to the monotone decrease of the sequence tk = δk − δk−1,
which is called the sequence of contents at infinity in connection to the Smith–
McMillan form at infinity of A(s) (cf. Theorem 5.1.5). �
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Example 5.2.16. Another valuated bimatroid arises from a polynomial ma-
trix A(s). For a number α and a polynomial f(s) we denote by ord(α)

s f(s)
the maximum p such that (s− α)p divides f(s). Then

δ(α)(I, J) = −ord(α)
s detA[I, J ] (I ⊆ R, J ⊆ C) (5.30)

defines a valuated bimatroid (R,C, δ(α)), where R = Row(A) and C =
Col(A). This is in fact a variant of the valuated bimatroid in Example 5.2.15,
since δ(α)(I, J) for A(s) coincides with δ(I, J) for A(α + 1/s). The expo-
nent to (s − α) in the factorization of the kth determinantal divisor dk(s)
of A(s) is given by min{ord(α)

s detA[I, J ] | |I| = |J | = k}, which is equal to
−max{δ(α)(I, J) | |I| = |J | = k}. Then Theorem 5.2.13 implies that (k−1)st
invariant factor ek−1(s) = dk−1(s)/dk−2(s) divides the kth invariant factor
ek(s) = dk(s)/dk−1(s) for k = 2, · · · , r (cf. Theorem 5.1.1). �

Example 5.2.17. Let G = (V +, V −;A) be a bipartite graph and w : A→ R
be a weight function. A valuated bimatroid (V +, V −, δ) is defined by

δ(I, J) = max{w(M) |M : matching, ∂+M = I, ∂−M = J}
(I ⊆ V +, J ⊆ V −).

Then Theorem 5.2.13 shows the concavity of the sequence of

δk = max{w(M) |M : k-matching}.
�

5.2.6 Induction Through Bipartite Graphs

A valuated matroid can be transformed into another valuated matroid
through matchings in a bipartite graph. This is an extension of the well-
known fact (cf. §2.3.6) that a matroid can be transformed into another ma-
troid through a bipartite graph.

Let G = (V +, V −;A) be a bipartite graph, w : A→ R a weight function,
and M = (V +,B, ω) a valuated matroid. Then, by Theorem 2.3.38,

B̃ = {∂−M |M : matching, ∂+M ∈ B}

forms the basis family of a matroid, provided B̃ �= ∅. Here ∂+M ⊆ V + and
∂−M ⊆ V − denote the sets of vertices incident to M . Define ω̃ : B̃ → R by

ω̃(X) = max
M

{w(M) + ω(∂+M) |M : matching, ∂+M ∈ B, ∂−M = X},

X ∈ B̃. (5.31)

This construction yields a valuated matroid as follows (Murota [227]).

Theorem 5.2.18. M̃ = (V −, B̃, ω̃) is a valuated matroid, provided B̃ �= ∅.
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Proof. The induction through G = (V +, V −;A) with w : A → R can be
decomposed into two stages. Let G+ = (V +, A;A+) and G− = (A, V −;A−)
be bipartite graphs with

A+ = {(v, a) | v ∈ V +, a ∈ A, v = ∂+a},
A− = {(a, v) | v ∈ V −, a ∈ A, v = ∂−a},

and define w+ : A+ → R and w− : A− → R by

w+(v, a) = w(a), w−(a, v) = 0 (a ∈ A).

It is not difficult to see that the transformation of M = (V +,B, ω) by (G,w)
is equivalent to the transformation of M to M◦ = (A,B◦, ω◦) by (G+, w+)
followed by the transformation of M◦ by (G−, w−). Hence it suffices to con-
sider the following two special cases of G = (V +, V −;A) and w : A→ R:

Case 1: deg v = 1 for ∀ v ∈ V −,
Case 2: deg v = 1 for ∀ v ∈ V +, and w(a) = 0 for ∀ a ∈ A.

In either case we shall show (VM) for ω̃, i.e., for B,B′ ∈ B̃ and u ∈ B \ B′,
there exists v ∈ B′ \B such that

ω̃(B) + ω̃(B′) ≤ ω̃(B − u+ v) + ω̃(B′ + u− v). (5.32)

Fix u ∈ B \B′.
Case 1: For v ∈ V − let ϕ(v) denote the unique element of V + such that

(ϕ(v), v) ∈ A. Then |ϕ−1(x) ∩B| ≤ 1, |ϕ−1(x) ∩B′| ≤ 1 for all x ∈ V +, and
ϕ(B), ϕ(B′) ∈ B, where ϕ(B) = {ϕ(v) | v ∈ B}. By definition, we have

ω̃(B) = ω(ϕ(B)) + w̄(B), ω̃(B′) = ω(ϕ(B′)) + w̄(B′)

with w̄(B) =
∑

v∈B w(ϕ(v), v).
If ϕ(u) ∈ ϕ(B′), then ϕ(u) = ϕ(v) for some v ∈ B′ \B, and

ω(ϕ(B − u+ v)) + ω(ϕ(B′ + u− v)) = ω(ϕ(B)) + ω(ϕ(B′)),
w̄(B − u+ v) + w̄(B′ + u− v) = w̄(B) + w̄(B′). (5.33)

Consequently, (5.32) holds true with equality. If x = ϕ(u) �∈ ϕ(B′), then by
(VM), there exists y ∈ ϕ(B′) \ ϕ(B) with

ω(ϕ(B)) + ω(ϕ(B′)) ≤ ω(ϕ(B) − x+ y) + ω(ϕ(B′) + x− y)
= ω(ϕ(B − u+ v)) + ω(ϕ(B′ + u− v)),

where v ∈ B′ \B, ϕ(v) = y. Combination of this and (5.33) yields (5.32).
Case 2: We may restrict ourselves to a further special case where

∃t ∈ V − : deg t = 2, deg v = 1 (∀ v ∈ V − \ {t}),
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in addition to deg v = 1 for all v ∈ V +, since the general case can be obtained
as a composition of a series of such special cases. Let t1, t2 ∈ V + denote the
elements of V + such that (t1, t), (t2, t) ∈ A, and for v ∈ V − \ {t} let ϕ(v)
denote the unique element of V + such that (ϕ(v), v) ∈ A. Put x = ϕ(u).

We consider the case where t ∈ B∩B′, since otherwise the proof is easier.
We have

ω̃(B) = ω(B̄ + tk), ω̃(B′) = ω(B̄′ + tl)

with B̄ = ϕ(B − t) and B̄′ = ϕ(B′ − t) for some k, l ∈ {1, 2}.
Case 2(a) [k = l]: Since x = ϕ(u) ∈ (B̄ + tk) \ (B̄′ + tk), there exist

y ∈ B̄′ \ B̄ such that

ω(B̄ + tk) + ω(B̄′ + tk) ≤ ω(B̄ + tk − x+ y) + ω(B̄′ + tk + x− y).

We can take v = ϕ−1(y) ∈ B′ \B in (5.32).
Case 2(b) [k �= l]: We may assume k = 1, l = 2 and

ω(B̄ + t1) > ω(B̄ + t2), ω(B̄′ + t2) > ω(B̄′ + t1). (5.34)

Since x = ϕ(u) ∈ (B̄ + t1) \ (B̄′ + t2), there exists y ∈ (B̄′ + t2) \ (B̄ + t1)
with

ω(B̄ + t1) + ω(B̄′ + t2) ≤ ω(B̄ + t1 − x+ y) + ω(B̄′ + t2 + x− y). (5.35)

If y �= t2, RHS of (5.35) ≤ RHS of (5.32) with v = ϕ−1(y) ∈ B′ \ B
(RHS=right hand side). If y = t2,

RHS of (5.35) = ω(B̄ − x+ t1 + t2) + ω(B̄′ + x)
≤ ω(B̄ − x+ t2 + z) + ω(B̄′ + x+ t1 − z)

for some z ∈ (B̄′ + x) \ (B̄ − x+ t1 + t2). By (5.34) we must have z �= x, and
therefore z ∈ B̄′ \ B̄. Then (5.32) is satisfied with v = ϕ−1(z).

Remark 5.2.19. The present proof of Theorem 5.2.18 is elementary, as com-
pared with the original proof by Murota [227] and an alternative proof by
Shioura [297]. The present proof, if specialized to ω = 0 and w = 0, serves also
as an alternative proof of Theorem 2.3.38, showing that B̃ satisfies (BM±).

�

Theorem 5.2.18 has important consequences. Let M1 = (V,B1, ω1) and
M2 = (V,B2, ω2) be valuated matroids. Denote by (V,B1 ∨ B2) the union of
the underlying matroids (V,B1) and (V,B2), where, by definition, B1 ∨ B2

is the family of the maximal elements of {X1 ∪ X2 | X1 ∈ B1,X2 ∈ B2}
(cf. §2.3.6). Define ω1 ∨ ω2 : B1 ∨ B2 → R by

(ω1 ∨ ω2)(X) = max{ω1(X1) + ω2(X2) | X1 ∪X2 = X,X1 ∈ B1,X2 ∈ B2},
X ∈ B1 ∨ B2.

We call M1 ∨ M2 = (V,B1 ∨ B2, ω1 ∨ ω2) the union of M1 and M2 on the
basis of the following fact (Murota [227]).
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Theorem 5.2.20. M1 ∨ M2 = (V,B1 ∨ B2, ω1 ∨ ω2) is a valuated matroid.

Proof. Let V1 and V2 be disjoint copies of V , and U be a set with |U | =
r1 + r2 − r12, where r1, r2 and r12 denote the ranks of (V,B1), (V,B2) and
(V,B1∨B2). Consider a bipartite graph G = (V +, V −;A) with V + = V1∪V2,
V − = V ∪ U , and

A = {(v1, v) | v ∈ V } ∪ {(v2, v) | v ∈ V } ∪ {(v2, u) | v ∈ V, u ∈ U},

where vi ∈ Vi is the copy of v ∈ V (i = 1, 2). Let ω̃ be the valuation induced
on V − from the valuation ω on V + defined by ω(X1∪X2) = ω1(X1)+ω2(X2)
(Xi ∈ Bi (i = 1, 2)) and weight function w = 0 on A. Then (ω1 ∨ ω2)(X) =
ω̃(X ∪ U) for X ⊆ V .

By showing the following lemma using Theorem 5.2.18 we can complete
the proof of Theorem 5.2.6 concerning truncation. For a valuated matroid
M = (V,B, ω) and k ≤ r = rankM, define Bk ⊆ 2V by (5.17) and ωk : Bk →
R by

ωk(I) = max{ω(B) | I ⊆ B ∈ B}, I ∈ Bk.

Lemma 5.2.21. Mk = (V,Bk, ωk) is a valuated matroid, where k ≤ r.

Proof. Let V ′ be a copy of V , and U be a set with |U | = r − k. Consider a
bipartite graph G = (V +, V −;A) with V + = V ′, V − = V ∪ U , and

A = {(v′, v) | v ∈ V } ∪ {(v′, u) | v ∈ V, u ∈ U},

where v′ ∈ V ′ is the copy of v ∈ V . Let ω̃ be the valuation induced on V −

from ω on V + (� V ) and w = 0 on A. Then ωk(I) = ω̃(I ∪ U) for I ⊆ V .
See also Murota [229] for the original proof that does not rely on Theorem
5.2.18.

Just as a matroid can be induced by a bimatroid (Theorem 2.3.57), a
valuated matroid can be induced by a valuated bimatroid, as follows. This
construction appears more general than the induction of a valuated matroid
by a bipartite graph, though the proof shows that it is just a variant thereof.

Theorem 5.2.22. For a valuated bimatroid (S, T, Λ, δ) and a valuated ma-
troid (T,B, ω), assume that

Λ ∗ B = {X ⊆ S | ∃Y ⊆ T : (X,Y ) ∈ Λ, Y ∈ B}

is nonempty. Then (S,Λ ∗ B, δ ∗ ω) with

(δ ∗ ω)(X) = max
Y

{δ(X,Y ) + ω(Y ) | (X,Y ) ∈ Λ, Y ∈ B}, X ∈ Λ ∗ B

is a valuated matroid.
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Proof. Let S′ be a copy of S, and T ′ and T ′′ be copies of T . Consider a
bipartite graph G = (V +, V −;A) with V + = S′ ∪ T ′ ∪ T ′′, V − = S ∪ T , and

A = {(x′, x) | x ∈ S} ∪ {(y′, y) | y ∈ T} ∪ {(y′′, y) | y ∈ T},

where x′ ∈ S′ is the copy of x ∈ S, and y′ ∈ T ′ [resp. y′′ ∈ T ′′] is the copy of
y ∈ T . Define ω′ : 2S′∪T ′∪T ′′ → R ∪ {−∞} by ω′(X ′ ∪ Y ′

1 ∪ Y ′′
2 ) = δ(X,T \

Y1) + ω(Y2) for X ′ ⊆ S′, Y ′
1 ⊆ T ′, and Y ′′

2 ⊆ T ′′. Let ω̃′ be the valuation
induced on V − from ω′ with w = 0 on A. Then (δ ∗ ω)(X) = ω̃′(X ∪ T ) for
X ⊆ S.

Using a similar proof technique we can show that a product operation can
be defined for valuated bimatroids in a manner compatible with the bimatroid
product in Theorem 2.3.53.

Theorem 5.2.23. For two valuated bimatroids (Si, Ti, δi) (i = 1, 2) with
T1 = S2, define δ1 ∗ δ2 : 2S1 × 2T2 → R ∪ {−∞} by

(δ1 ∗ δ2)(X,Z) = max{δ1(X,Y ) + δ2(Y,Z) | Y ⊆ T1}, X ⊆ S1, Z ⊆ T2.

Then (S1, T2, δ1 ∗ δ2) is a valuated bimatroid.

Proof. Let S′
i be a copy of Si, and T ′

i be a copy of Ti (i = 1, 2), where T ′
1∩S′

2 =
∅. Consider a bipartite graph G = (V +, V −;A) with V + = S′

1 ∪T ′
1 ∪S′

2 ∪T ′
2,

V − = S1 ∪ T1 ∪ T2, and

A = {(x′, x) | x ∈ S1}∪{(y′, y) | y ∈ T1}∪{(y′′, y) | y ∈ T1}∪{(z′, z) | z ∈ T2},

where x′ ∈ S′
1 is the copy of x ∈ S1, y′ ∈ T ′

1 [resp. y′′ ∈ S′
2] is the copy of y ∈

T1, and z′ ∈ T ′
2 is the copy of z ∈ T2. Define ω′ : 2S′

1∪T ′
1∪S′

2∪T ′
2 → R ∪ {−∞}

by ω′(X ′∪Y ′
1∪Y ′′

2 ∪Z ′) = δ1(S1\X,Y1)+δ2(S2\Y2, Z) for X ′ ⊆ S′
1, Y

′
1 ⊆ T ′

1,
Y ′′

2 ⊆ S′
2, and Z ′ ⊆ T ′

2. Let ω̃′ be the valuation induced on V − from ω′ with
w = 0 on A. Then (δ1 ∗ δ2)(X,Z) = ω̃′((S1 \X) ∪ T1 ∪ Z) for X ⊆ S1 and
Z ⊆ T2.

Theorem 5.2.23 above implies as an immediate corollary that a union op-
eration can be defined for valuated bimatroids compatibly with the bimatroid
union in Theorem 2.3.51. It should be clear that S1 ∩S2 �= ∅ and T1 ∩T2 �= ∅
in general.

Theorem 5.2.24. For two valuated bimatroids (Si, Ti, δi) (i = 1, 2), define
δ1 ∨ δ2 : 2S1∪S2 × 2T1∪T2 → R ∪ {−∞} by

(δ1 ∨ δ2)(X,Y )
= max{δ1(X1, Y1) + δ2(X2, Y2) | X1 ∪X2 = X,Y1 ∪ Y2 = Y,

X1 ∩X2 = ∅, Y1 ∩ Y2 = ∅}, X ⊆ S1 ∪ S2, Y ⊆ T1 ∪ T2.

Then (S1 ∪ S2, T1 ∪ T2, δ1 ∨ δ2) is a valuated bimatroid.
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Proof. Let S′
i be a copy of Si, and T ′

i be a copy of Ti (i = 1, 2), where S′
1∩S′

2 =
∅ and T ′

1∩T ′
2 = ∅. Consider a valuated bimatroid (S′

1∪S′
2, T

′
1∪T ′

2, δ12) defined
by δ12(X ′

1∪X ′
2, Y

′
1∪Y ′

2) = δ1(X1, Y1)+δ2(X2, Y2), where X ′
i ⊆ S′

i denotes the
copy of Xi ⊆ Si and similarly for Y ′

i ⊆ T ′
i . Also consider valuated bimatroids

(S1∪S2, S
′
1∪S′

2, δS) and (T ′
1∪T ′

2, T1∪T2, δT ), where δS(X,X ′
1∪X ′

2) is equal
to 0 if X1 ∪X2 = X and X1 ∩X2 = ∅, and to −∞ otherwise; and similarly,
δT (Y ′

1 ∪ Y ′
2 , Y ) is equal to 0 if Y1 ∪ Y2 = Y and Y1 ∩ Y2 = ∅, and to −∞

otherwise. Then we have δ1∨δ2 = δS ∗δ12 ∗δT , which is a valuated bimatroid
by Theorem 5.2.23.

5.2.7 Characterizations

The objective of this section is to give other axioms that characterize a val-
uated matroid.

First we consider two seemingly weaker (but actually equivalent) exchange
axioms for ω : B → R or ω : 2V → R ∪ {−∞} with B = {B ⊆ V | ω(B) �=
−∞}.

(VMw) For B,B′ ∈ B with B �= B′, there exist u ∈ B \ B′ and
v ∈ B′ \B such that B − u+ v ∈ B, B′ + u− v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v),

(VMloc) B satisfies (BM±), and for B,B′ ∈ B with |B \ B′| = 2,
there exist u ∈ B \ B′ and v ∈ B′ \ B such that B − u+ v ∈ B,
B′ + u− v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v).

Note that (VMw) is a quantitative generalization of the self-dual exchange
axiom (BM±w) of §2.3.4, and (VMloc) states a local exchange property.

These exchange axioms are in fact equivalent as follows (Dress–Wenzel
[56], Murota [228]).

Theorem 5.2.25. For a function ω : 2V → R∪ {−∞}, the three conditions
(VM), (VMw), and (VMloc) are equivalent, where B = {B ⊆ V | ω(B) �=
−∞}.

Proof. Since (VMw) ⇒ (BM±w) and also (BM±w) ⇔ (BM±) by Theorem
2.3.14, we see (VMw) ⇒ (VMloc), whereas (VM) ⇒ (VMw) is obvious since
B \ B′ �= ∅ for distinct B,B′ ∈ B. To prove (VMloc) ⇒ (VM) we assume
(VMloc). For p : V → R we abbreviate ω[p] of (5.16) to ωp, and define

ωp(B, u, v) = ωp(B − u+ v) − ωp(B) (B ∈ B),

consistently with ω(B, u, v) of (5.21), where ωp(B, u, v) = −∞ ifB−u+v �∈ B.
For B,B′ ∈ B and u ∈ B \B′, v ∈ B′ \B, we have



296 5. Polynomial Matrix and Valuated Matroid

ω(B, u, v) + ω(B′, v, u) = ωp(B, u, v) + ωp(B′, v, u). (5.36)

If B ∈ B, B \ B′ = {u0, u1}, B′ \ B = {v0, v1} (with u0 �= u1, v0 �= v1),
(VMloc) implies

ωp(B′) − ωp(B) ≤ max(ωp(B, u0, v0) + ωp(B, u1, v1),
ωp(B, u0, v1) + ωp(B, u1, v0)). (5.37)

Define

D = {(B,B′) | B,B′ ∈ B,∃u∗ ∈ B \B′,∀v ∈ B′ \B :
ω(B) + ω(B′) > ω(B − u∗ + v) + ω(B′ + u∗ − v)},

which denotes the set of pairs (B,B′) for which the exchangeability in (VM)
fails. We want to show D = ∅.

Suppose, to the contrary, that D �= ∅, and take (B,B′) ∈ D such that
|B′ \B| is minimum and let u∗ ∈ B \B′ be as in the definition of D. We have
|B′ \B| > 2. Define p : V → R by

p(v) =

⎧
⎨

⎩

−ω(B, u∗, v) (v ∈ B′ \B,B − u∗ + v ∈ B)
ω(B′, v, u∗) + ε (v ∈ B′ \B,B − u∗ + v �∈ B, B′ + u∗ − v ∈ B)
0 (otherwise)

with some ε > 0 and consider ωp.

Claim 1:
ωp(B, u∗, v) = 0 if v ∈ B′ \B,B − u∗ + v ∈ B, (5.38)
ωp(B′, v, u∗) < 0 for v ∈ B′ \B. (5.39)

The inequality (5.39) can be shown as follows. If B − u∗ + v ∈ B, we have
ωp(B, u∗, v) = 0 by (5.38) and

ωp(B, u∗, v) + ωp(B′, v, u∗) = ω(B, u∗, v) + ω(B′, v, u∗) < 0

by (5.36) and the definition of u∗. Otherwise we have ωp(B′, v, u∗) = −ε or
−∞ according to whether B′ + u∗ − v ∈ B or not.

Claim 2: There exist u0 ∈ B \ B′ and v0 ∈ B′ \ B such that u0 �= u∗,
B′ + u0 − v0 ∈ B, and

ωp(B′, v0, u0) ≥ ωp(B′, v, u0) (v ∈ B′ \B). (5.40)

Since |B \ B′| > 2, there exists u0 ∈ B \ B′ distinct from u∗. By (BM±) we
have B′ + u0 − v0 ∈ B for some v0 ∈ B′ \ B. We can further assume (5.40)
by redefining v0 to be the element v ∈ B′ \B that maximizes ωp(B′, v, u0).

Claim 3: (B,B′′) ∈ D with B′′ = B′ + u0 − v0.
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To prove this it suffices to show

ωp(B, u∗, v) + ωp(B′′, v, u∗) < 0 (v ∈ B′′ \B).

We may restrict ourselves to v with B − u∗ + v ∈ B, since otherwise the first
term ωp(B, u∗, v) is equal to −∞. For such v the first term is equal to zero
by (5.38). For the second term it follows from (5.37), (5.39), and (5.40) that

ωp(B′′, v, u∗)
= ωp(B′ + {u0, u∗} − {v0, v}) − ωp(B′ + u0 − v0)
≤ max [ωp(B′, v0, u0) + ωp(B′, v, u∗), ωp(B′, v, u0) + ωp(B′, v0, u∗)]

−ωp(B′, v0, u0)
< max [ωp(B′, v0, u0), ωp(B′, v, u0)] − ωp(B′, v0, u0) = 0.

Since |B′′\B| = |B′\B|−1, Claim 3 contradicts our choice of (B,B′) ∈ D.
Therefore we conclude D = ∅.

It is also mentioned that another exchange axiom

(VMd) For B,B′ ∈ B and u ∈ B \ B′, there exist v ∈ B′ \ B and
u′ ∈ B \B′ such that B − u+ v ∈ B, B′ + u′ − v ∈ B, and

ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u′ − v)

is known to be equivalent to (VM) (see Murota [226]) .
A valuated matroid can be characterized as a family of matroids. For

p : V → R we define

Bp = {B ∈ B | ω[p](B) ≥ ω[p](B′) (∀B′ ∈ B)},

which denotes the set of the maximizers of ω[p] (see (5.16) for the notation
ω[p]). It is immediate from (VM) that Bp forms the basis family of a matroid,
whereas Murota [227, 228] points out that the converse is also true.

Theorem 5.2.26. Let (V,B) be a matroid. A function ω : B → R is a
valuation of (V,B) if and only if for any p : V → R the family Bp of the
maximizers of ω[p] forms the basis family of a matroid. If ω is integer-valued,
we may restrict p to be integer-valued in the “if” part.

Proof. We abbreviate ω[p] to ωp.
The “only if” part is easy to see. Take B,B′ ∈ Bp and u ∈ B \B′. Since

ωp satisfies (VM), there exists v ∈ B′ \B such that

2 maxωp = ωp(B) + ωp(B′) ≤ ωp(B − u+ v) + ωp(B′ + u− v),

which shows B−u+v ∈ Bp and B′ +u−v ∈ Bp. That is, Bp satisfies (BM±).
For the “if” part it suffices, by Theorem 5.2.25, to show the local exchange

axiom (VMloc). Under the assumption of (BM±) for B, (VMloc) is equivalent
to the following claim.
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Claim 1: If B,B′ ∈ B, B \ B′ = {u0, u1}, B′ \ B = {v0, v1} (with u0 �= u1,
v0 �= v1), then

ω(B′) − ω(B) ≤ max(ω00 + ω11, ω01 + ω10), (5.41)

where ωij = ω(B, ui, vj) for i, j = 0, 1.

This claim can be proven as follows. Denote by γ and μ the left hand side
and the right hand side of (5.41), respectively. We consider a bipartite graph
G = ({u0, u1}, {v0, v1};E) with E = {(ui, vj) | B − ui + vj ∈ B}. The graph
G has a perfect matching (of size 2) by (BM±). In addition we associate ωij

with edge (ui, vj) as the weight. Then μ is equal to the maximum weight of
a perfect matching in G and, by a variant of Theorem 2.2.36, there exists
p̂ : {u0, u1, v0, v1} → R such that

p̂(ui) + p̂(vj) ≥ ωij ((ui, vj) ∈ E),
∑

i=0,1

p̂(ui) +
∑

j=0,1

p̂(vj) = μ.

To show γ ≤ μ, suppose, to the contrary, that γ > μ. Then we can modify
p̂ to p̄ : {u0, u1, v0, v1} → R such that

p̄(ui) + p̄(vj) ≥ ωij ((ui, vj) ∈ E),
∑

i=0,1

p̄(ui) +
∑

j=0,1

p̄(vj) = γ.

Using p̄ we define p : V → R by

p(v) =

⎧
⎪⎪⎨

⎪⎪⎩

+p̄(v) (v ∈ B \B′)
−p̄(v) (v ∈ B′ \B)
+M (v ∈ B ∩B′)
−M (v ∈ V \ (B′ ∪B))

where M > 0 is a sufficiently large number.
For this p we have {B,B′} ⊆ Bp, i.e., ωp(B) = ωp(B′) ≥ ωp(B′′) (∀B′′ ∈

B). In fact, this is immediate from the following relations:

ωp(B′) − ωp(B) = [ω(B′) − ω(B)] −
∑

i=0,1

p̄(ui) −
∑

j=0,1

p̄(vj) = 0,

ωp(B − ui + vj) − ωp(B)
= [ω(B − ui + vj) − ω(B)] + [p(B − ui + vj) − p(B)]
= ωij − p̄(ui) − p̄(vj) ≤ 0,

ωp(B′′) − ωp(B) ≤ ω(B′′) − ω(B) +
∑

i=0,1

|p̄(ui)| +
∑

j=0,1

|p̄(vj)| −M ≤ 0

unless B ∩B′ ⊆ B′′ ⊆ B ∪B′.

Since B,B′ ∈ Bp and (V,Bp) satisfies (BM±) by the assumption, there exists
j ∈ {0, 1} such that ωp(B − u0 + vj) = ωp(B′ + u0 − vj) = ωp(B). Putting
k = 1 − j and noting B′ + u0 − vj = B − u1 + vk, we obtain
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0 = ωp(B − u0 + vj) + ωp(B − u1 + vk) − 2ωp(B)

= ω(B − u0 + vj) + ω(B − u1 + vk) − 2ω(B) −
∑

i=0,1

p̄(ui) −
∑

j=0,1

p̄(vj)

= ω0j + ω1k − γ ≤ μ− γ,

a contradiction to γ > μ. This completes the proof of the claim.
If ω is integer-valued, we have ωij ∈ Z for all (i, j), and consequently, p̂,

p̄ and p can be chosen to be integer-valued.

Finally we consider “level sets” of ω : B → R defined by

L(ω, α) = {B ∈ B | ω(B) ≥ α} (5.42)

for α ∈ R. A level set of a matroid valuation does not necessarily form the
basis family of a matroid, as the following example shows.

Example 5.2.27. Consider a valuated matroid (V,B, ω) defined by V =
{1, 2, 3, 4}, B = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, and ω({1, 2}) = 1, ω({2, 3}) =
2, ω({3, 4}) = 1, ω({4, 1}) = 0. Then L(ω, 1) = {{1, 2}, {2, 3}, {3, 4}} does
not satisfy the simultaneous basis exchange property (BM±). �

It follows from (VM), however, that the family L = L(ω, α) satisfies the
following (weaker) exchange properties:

(BL) For B,B′ ∈ L and for u ∈ B \B′, there exists v ∈ B′ \B such
that B − u+ v ∈ L or B′ + u− v ∈ L,

(BLw) For distinct B,B′ ∈ L, there exist u ∈ B \B′ and v ∈ B′ \B
such that B − u+ v ∈ L or B′ + u− v ∈ L.

To see this, observe that the inequality (5.14) for (VM) implies:

ω(B) ≥ α, ω(B′) ≥ α =⇒ max{ω(B − u+ v), ω(B′ + u− v)} ≥ α.

For L ⊆ 2V in general, it holds obviously that (BM±) ⇒ (BL) ⇒
(BLw), but the converse is not true. In fact, “(BM±) �⇐ (BL)” is demon-
strated by L = {{1, 2}, {2, 3}, {3, 4}} and “(BL) �⇐ (BLw)” is by L =
{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}}.

The following theorem of Shioura [299] characterizes a valuated matroid
in terms of the level sets of ω[p]. See (5.16) for the notation ω[p].

Theorem 5.2.28. Let (V,B) be a matroid. For a function ω : B → R, the
following three conditions are equivalent:

(i) ω : B → R is a valuation of (V,B),
(ii) For any p : V → R and for any α ∈ R, L(ω[p], α) satisfies (BL),
(iii) For any p : V → R and for any α ∈ R, L(ω[p], α) satisfies (BLw).
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Proof. [(i) ⇒ (ii) ⇒ (iii)] If ω is a valuation, so is ω[p]. Hence the claim
follows from the observations above.

[(iii) ⇒ (i)] By Theorem 5.2.25 it suffices to show the local exchange axiom
(VMloc). Suppose that {B,B′} ⊆ B, B \ B′ = {u0, u1}, B′ \ B = {v0, v1}
with u0 �= u1, v0 �= v1. Put Bij = B − ui + vj for i, j = 0, 1. By (BM±) for
B it holds that {B00, B11} ⊆ B or {B01, B10} ⊆ B. Hence we may assume
{B00, B11} ⊆ B without loss of generality. Define p by

p(u0) = [ω(B′) − ω(B) + ω(B00) − ω(B11)]/2,
p(u1) = [ω(B′) − ω(B) − ω(B00) + ω(B11)]/2 + t,
p(v1) = t,

p(v) = 0 (v ∈ V \ {u0, u1, v1}),

so that ω[p](B′) = ω[p](B) and ω[p](B00) = ω[p](B11), where t ∈ R is a
parameter. Since {B,B′} ⊆ L(ω[p], α) for α = ω[p](B′) = ω[p](B), the proof
of (VMloc) is completed if

{B00, B11} ⊆ L(ω[p], α) or {B01, B10} ⊆ L(ω[p], α) (5.43)

is shown for some t. If {B01, B10} ⊆ B, take

t = [ω(B00) − ω(B11) + ω(B10) − ω(B01)]/2

so that ω[p](B01) = ω[p](B10). Then (5.43) follows from (BLw). If B01 �∈
B, we can take t large enough for ω[p](B10) < α, and then (BLw) implies
{B00, B11} ⊆ L(ω[p], α). In the remaining case where B10 �∈ B, we can take
t small enough for ω[p](B01) < α, and then (BLw) implies {B00, B11} ⊆
L(ω[p], α).

5.2.8 Further Exchange Properties

We shall establish a number of lemmas concerning basis exchange in a single
valuated matroid. They will play key roles for the valuated matroid intersec-
tion problem, to be explained later.

For B ∈ B and B′ ⊆ V we consider the exchangeability graph G(B,B′)
introduced in §2.3.4. G(B,B′) = (B\B′, B′\B;A) is a bipartite graph having
(B \B′, B′ \B) as the vertex bipartition and

A = {(u, v) | u ∈ B \B′, v ∈ B′ \B,B − u+ v ∈ B} (5.44)

as the arc set. The key properties of the exchangeability in a matroid have
been formulated as the perfect-matching lemma (Lemma 2.3.16) and the
unique-matching lemma (Lemma 2.3.18).

To capture the exchangeability with valuations, we need quantitative ex-
tensions of the perfect-matching lemma and the unique-matching lemma. To
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this end we attach the exchange gain ω(B, u, v) of (5.21) to each arc (u, v)
as “arc weight,” and denote by ω̂(B,B′) the maximum weight of a perfect
matching in G(B,B′) with respect to the arc weight ω(B, u, v), i.e.,

ω̂(B,B′) = max{
∑

(u,v)∈M

ω(B, u, v) |M : perfect matching in G(B,B′)}.

(5.45)
The perfect-matching lemma is generalized as follows (Murota [224]).

Lemma 5.2.29 (Upper-bound lemma). For B,B′ ∈ B,

ω(B′) ≤ ω(B) + ω̂(B,B′). (5.46)

Proof. For any u1 ∈ B \B′ there exists v1 ∈ B′ \B with

ω(B) + ω(B′) ≤ ω(B − u1 + v1) + ω(B′ + u1 − v1),

which can be rewritten as

ω(B′) ≤ ω(B, u1, v1) + ω(B′
2)

with B′
2 = B′ + u1 − v1. By the same argument applied to (B,B′

2) we obtain

ω(B′
2) ≤ ω(B, u2, v2) + ω(B′

3)

for some u2 ∈ (B \B′)−u1 and v2 ∈ (B′ \B)−v1, where B′
3 = B′

2 +u2−v2 =
B′ + {u1, u2} − {v1, v2}. Hence

ω(B′) ≤ ω(B′
3) +

2∑

i=1

ω(B, ui, vi).

Repeating this process we arrive at

ω(B′) ≤ ω(B) +
m∑

i=1

ω(B, ui, vi) ≤ ω(B) + ω̂(B,B′),

where m = |B \B′| = |B′ \B|, B \B′ = {u1, · · · , um}, B′ \B = {v1, · · · , vm}.

Remark 5.2.30. For a trivial valuation ω : 2V → {0,−∞}, the upper-
bound lemma guarantees ω̂(B,B′) �= −∞, which shows the existence of a
perfect matching in G(B,B′). Thus, the perfect-matching lemma is a special
case of the upper-bound lemma. �

Remark 5.2.31. The upper-bound lemma gives an alternative proof for the
optimality condition given in Theorem 5.2.7. The necessity of (5.22) is ob-
vious. For sufficiency take any B′ ∈ B and consider G(B,B′). The condi-
tion (5.22) is equivalent to all the arcs having nonpositive weights. Hence
ω̂(B,B′) ≤ 0. Then the upper-bound lemma implies ω(B′) ≤ ω(B). �
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In the upper-bound lemma it is natural to ask for a (sufficient) condition
under which the bound (5.46) is tight. Comparison of the unique-matching
lemma (Lemma 2.3.18) and the upper-bound lemma will suggest

[Unique-max condition]
There exists exactly one maximum-weight perfect matching inG(B,B′).

In what follows we shall show (in Lemma 5.2.35 below) that this is indeed a
sufficient condition for the tightness in (5.46).

First we note the following fact, rephrasing the unique-max condition in
terms of “potential” or “dual variable”.

Lemma 5.2.32. Let B ∈ B and B′ ⊆ V with |B′ \B| = |B \B′| = m.
(1) G(B,B′) has a perfect matching if and only if there exist p̂ : (B \

B′) ∪ (B′ \B) → R and indexings of the elements of B \B′ and B′ \B, say
B \B′ = {u1, · · · , um} and B′ \B = {v1, · · · , vm}, such that

ω(B, ui, vj) − p̂(ui) + p̂(vj)
{

= 0 (1 ≤ i = j ≤ m)
≤ 0 (1 ≤ i, j ≤ m). (5.47)

Then, ω̂(B,B′) =
∑m

i=1 p̂(ui) −
∑m

j=1 p̂(vj).
(2) The pair (B,B′) satisfies the unique-max condition if and only if there

exist p̂ : (B \B′)∪ (B′ \B) → R and indexings of the elements of B \B′ and
B′ \B, say B \B′ = {u1, · · · , um} and B′ \B = {v1, · · · , vm}, such that

ω(B, ui, vj) − p̂(ui) + p̂(vj)

⎧
⎨

⎩

= 0 (1 ≤ i = j ≤ m)
≤ 0 (1 ≤ j < i ≤ m)
< 0 (1 ≤ i < j ≤ m).

(5.48)

Proof. This follows from Theorem 2.2.36.

Lemma 5.2.33. Let B ∈ B and u, u◦, v, v◦ be four distinct elements with
{u, u◦} ⊆ B, {v, v◦} ⊆ V \ B, and let B′ = B − {u, u◦} + {v, v◦}. Assume
that M = {(u, v), (u◦, v◦)} is the unique maximum-weight perfect matching
in G(B,B′).

(1) B′ ∈ B and ω(B′) = ω(B) + ω̂(B,B′).
(2) For B◦ = B − u◦ + v◦ we have

ω(B◦, u, v) = ω(B, u, v),
ω(B◦, u, u◦) = ω(B, u, v◦) − ω(B, u◦, v◦),
ω(B◦, v◦, v) = ω(B, u◦, v) − ω(B, u◦, v◦).

Proof. (1) Putting B∗ = B − u+ v we see

ω(B∗) + ω(B◦) = ω(B, u, v) + ω(B, u◦, v◦) + 2ω(B) = ω̂(B,B′) + 2ω(B).
(5.49)

By applying the exchange axiom (5.14) to (B◦, B∗) with u ∈ B◦ \B∗ we have
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ω(B∗) + ω(B◦) ≤ ω(B∗ − v′ + u) + ω(B◦ + v′ − u)

for some v′ ∈ B∗ \B◦ = {u◦, v}. Combining this with (5.49) we obtain

ω̂(B,B′) + 2ω(B) ≤ ω(B∗ − v′ + u) + ω(B◦ + v′ − u). (5.50)

Suppose that v′ = u◦. Then

RHS of (5.50) = ω(B∗ − u◦ + u) + ω(B◦ + u◦ − u)
= ω(B − u◦ + v) + ω(B − u+ v◦)
= ω(B, u◦, v) + ω(B, u, v◦) + 2ω(B).

This means that M ′ = {(u◦, v), (u, v◦)} is also a maximum-weight perfect
matching in G(B,B′), a contradiction to the uniqueness of M .

Therefore we have v′ = v in (5.50), and then

RHS of (5.50) = ω(B∗ − v + u) + ω(B◦ + v − u) = ω(B) + ω(B′).

Hence follows ω(B) + ω̂(B,B′) ≤ ω(B′). The reverse inequality has already
been shown in the upper-bound lemma (Lemma 5.2.29). Note that B′ ∈ B
follows from ω(B′) �= −∞.

(2) By straightforward calculations as follows:

ω(B◦, u, v) = ω(B − u◦ + v◦ − u+ v) − ω(B − u◦ + v◦)
= ω(B′) − ω(B) − ω(B, u◦, v◦)
= ω̂(B,B′) − ω(B, u◦, v◦)
= ω(B, u, v),

ω(B◦, u, u◦) = ω(B − u+ v◦) − ω(B − u◦ + v◦)
= ω(B, u, v◦) − ω(B, u◦, v◦),

ω(B◦, v◦, v) = ω(B − u◦ + v) − ω(B − u◦ + v◦)
= ω(B, u◦, v) − ω(B, u◦, v◦).

Lemma 5.2.34. Let B ∈ B and B′ ⊆ V with |B′| = |B|. If there exists
exactly one maximum-weight perfect matching M in G(B,B′), then for any
(u◦, v◦) ∈M the following hold true.

(1) B◦ ≡ B − u◦ + v◦ ∈ B.
(2) There exists exactly one maximum-weight perfect matching in G(B◦, B′).
(3) ω̂(B◦, B′) = ω̂(B,B′) − ω(B, u◦, v◦).

Proof. (1) This is obvious.
(2) Using the notation in Lemma 5.2.32 we have M = {(ui, vi) | i =

1, · · · ,m} and (u◦, v◦) = (uk, vk) for some k. Put

Bij = B◦ − ui + vj = B − {ui, u
◦} + {vj , v◦}



304 5. Polynomial Matrix and Valuated Matroid

for i �= k, j �= k. It then follows from (5.46) and (5.48) that

ω(B◦, ui, vj)
= ω(Bij) − ω(B◦)
≤ ω̂(B,Bij) − ω(B, uk, vk)
= max [ω(B, uk, vk) + ω(B, ui, vj), ω(B, ui, vk) + ω(B, uk, vj)]

−ω(B, uk, vk)
≤ [p̂(ui) + p̂(uk) − p̂(vj) − p̂(vk)] − [p̂(uk) − p̂(vk)]
= p̂(ui) − p̂(vj),

where the second inequality is strict for i < j. For i = j, on the other hand,
both inequalities are satisfied with equalities, since G(B,Bii) has a unique
maximum-weight perfect matching {(ui, vi), (u◦, v◦)} and Lemma 5.2.33 im-
plies ω(B◦, ui, vi) = ω(B, ui, vi) = p̂(ui) − p̂(vi). Thus, the potential p̂ for
(B,B′) serves as a certificate of the unique-max condition also for (B◦, B′).

(3) ω̂(B◦, B′) =
∑

i�=k (p̂(ui) − p̂(vi)) = ω̂(B,B′) − ω(B, u◦, v◦).

We are now in a position to state a main result of this section. The
“unique-max lemma” below, due to Murota [224], is a quantitative extension
of the unique-matching lemma (Lemma 2.3.18).

Lemma 5.2.35 (Unique-max lemma). Let B ∈ B and B′ ⊆ V with
|B′| = |B|. If there exists exactly one maximum-weight perfect matching in
G(B,B′), then B′ ∈ B and

ω(B′) = ω(B) + ω̂(B,B′). (5.51)

Proof. By induction on m = |B \ B′|. The case of m = 1 is obvious. So
assume m ≥ 2. Take any (u◦, v◦) contained in the unique maximum-weight
perfect matching, and put B◦ = B−u◦+v◦. (B◦, B′) satisfies the unique-max
condition by Lemma 5.2.34(2), and we have

ω(B′) = ω(B◦) + ω̂(B◦, B′)

by the induction hypothesis. By Lemma 5.2.34(3) we see

ω̂(B◦, B′) = ω̂(B,B′) − ω(B, u◦, v◦)

while ω(B◦) = ω(B) + ω(B, u◦, v◦) by definition. Hence follows (5.51).

Remark 5.2.36. A remark is in order on the relation between “unique-
matching condition” (= uniqueness of a perfect matching in G(B,B′))
and “unique-max condition” (= uniqueness of the maximum-weight perfect
matching in G(B,B′)). Obviously the former implies the latter, and not con-
versely in general. However, for a separable valuation, induced from a linear
weighting (Example 5.2.2), these two conditions are equivalent, and conse-
quently the unique-max lemma reduces to the unique-matching lemma. See
also Frank [76, Lemma 2] in this connection. �
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Remark 5.2.37. There is an alternative proof of the unique-max lemma,
suggested by A. Sebő, that makes use of the unique-matching lemma as well
as the upper-bound lemma in contrast to the above proof. Let p̂ : (B \B′) ∪
(B′ \B) → R be as in Lemma 5.2.32 and extend it to p : V → R by defining

p(v) =

⎧
⎨

⎩

p̂(v) (v ∈ (B \B′) ∪ (B′ \B))
+M (v ∈ B ∩B′)
−M (v ∈ V \ (B′ ∪B))

with a sufficiently large M > 0. We abbreviate ω[p] of (5.16) to ωp. It follows
from Theorem 5.2.26 (“only if” part) that the family of the maximizers of
ωp:

Bp = {B′′′ ∈ B | ωp(B′′′) ≥ ωp(B′′) (B′′ ∈ B)}
forms the basis family of a matroid, say Mp = (V,Bp). We claim that B ∈ Bp.
To see this, first note that

ωp(B′′) − ωp(B) ≤ ω(B′′) − ω(B) −M/2 ≤ 0

unless B ∩B′ ⊆ B′′ ⊆ B ∪B′. If B ∩B′ ⊆ B′′ ⊆ B ∪B′, on the other hand,
we have ωp(B′′) − ωp(B) ≤ 0 by the upper-bound lemma and the inequality

ωp(B, u, v) = ω(B, u, v) − p̂(u) + p̂(v) ≤ 0 (u ∈ B \B′′, v ∈ B′′ \B).

We also claim that the exchangeability graph Gp(B,B′) in Mp has a unique
perfect matching, since B − ui + vi ∈ Bp (1 ≤ i ≤ m) and B − ui + vj �∈ Bp

(1 ≤ i < j ≤ m) by (5.48). By applying the unique-matching lemma to the
given pair (B,B′) in the matroid Mp = (V,Bp), we obtain B′ ∈ Bp, which
means ωp(B′) = ωp(B), i.e.,

ω(B′) = ω(B) +
m∑

i=1

p̂(ui) −
m∑

i=1

p̂(vi) = ω(B) + ω̂(B,B′).
�

The following lemma will be used in §5.2.12.

Lemma 5.2.38. Under the same assumption as in Lemma 5.2.35, let p̂, ui,
and vj be as in Lemma 5.2.32. Then

ω(B′, vj , ui) ≤ p̂(vj) − p̂(ui) (1 ≤ i, j ≤ m).

Proof. Putting B′
ij = B′ − vj + ui and using Lemma 5.2.29, Lemma 5.2.35,

and (5.48) we see

ω(B′, vj , ui) = ω(B′
ij) − ω(B′) ≤ ω̂(B,B′

ij) − ω̂(B,B′)

≤

⎡

⎣
∑

k �=i

p̂(uk) −
∑

k �=j

p̂(vk)

⎤

⎦−
[

m∑

k=1

p̂(uk) −
m∑

k=1

p̂(vk)

]

= p̂(vj) − p̂(ui).
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5.2.9 Valuated Independent Assignment Problem

The independent matching problem (§2.3.5) is generalized in this section
to a weighted version, called the valuated independent assignment problem,
introduced by Murota [224, 225].

The problem we consider is the following:

[Valuated independent assignment problem (VIAP)]
Given a bipartite graphG = (V +, V −;A), a pair of valuated matroids
M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), and a weight function
w : A→ R, find a matching M (⊆ A) that maximizes

Ω(M) ≡ w(M) + ω+(∂+M) + ω−(∂−M) (5.52)

subject to the constraint

∂+M ∈ B+, ∂−M ∈ B−, (5.53)

where w(M) =
∑

{w(a) | a ∈M}, and ∂+M (resp., ∂−M) denotes the set of
vertices in V + (resp., V −) incident to M . A matching M satisfying the con-
straint (5.53) is called an independent assignment. Obviously, an independent
assignment is an independent matching in the sense of §2.3.5.

The above problem reduces to the independent assignment problem of
Iri–Tomizawa [133] if the valuations are trivial with ω± = 0 on B±:

[Independent assignment problem (IAP)]
Given a bipartite graph G = (V +, V −;A), a pair of matroids M+ =
(V +,B+) and M− = (V −,B−), and a weight function w : A →
R, find a matching M (⊆ A) that maximizes w(M) subject to the
constraint ∂+M ∈ B+, ∂−M ∈ B−.

The special case of IAP where the matroids are free with B+ = 2V +

and B− = 2V −
coincides with the conventional assignment problem, and the

further special case with w ≡ 0 is the problem of finding a perfect matching.
Another series of specializations of VIAP is obtained by choosing a very

special underlying graph G≡ = (V +, V −;A≡) that represents a one-to-one
correspondence between V + and V −. In other words, given a pair of valu-
ated matroids M1 = (V,B1, ω1) and M2 = (V,B2, ω2) defined on a common
ground set V , and a weight function w : V → R, we consider a VIAP in
which V + and V − are disjoint copies of V and A≡ = {(v+, v−) | v ∈ V },
where v+ ∈ V + and v− ∈ V − denote the copies of v ∈ V , and M+ and
M− are isomorphic to M1 and M2, respectively. The VIAP in this case is
equivalent to

[Valuated matroid intersection problem]
Given a pair of valuated matroids M1 = (V,B1, ω1) and M2 =
(V,B2, ω2) and a weight function w : V → R, find a common base
B ∈ B1 ∩ B2 that maximizes w(B) + ω1(B) + ω2(B),
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where w(B) =
∑

v∈B w(v). If the valuations are trivial with ω± = 0 on B±,
this reduces to

[Optimal common base problem]
Given a pair of matroids M1 = (V,B1) and M2 = (V,B2) and a
weight function w : V → R, find a common base B ∈ B1 ∩ B2 that
maximizes w(B).

A further special case with w ≡ 0 is the problem of finding a common base
of two matroids.

The following two problems also fall into the category of VIAP.

[Disjoint bases problem]
Given a pair of valuated matroids M1 = (V,B1, ω1) and M2 =
(V,B2, ω2), find disjoint bases B1 and B2 (i.e., B1∩B2 = ∅, B1 ∈ B1,
and B2 ∈ B2) that maximize ω1(B1) + ω2(B2).

[Partition problem]
Given a pair of valuated matroids M1 = (V,B1, ω1) and M2 =
(V,B2, ω2), find a partition (B, V \B) of V that maximizes ω1(B) +
ω2(V \B).

The disjoint bases problem for more than two valuated matroids can also
be formulated as a valuated independent assignment problem (on a bipartite
graph similar to Fig. 2.11). The partition problem is an intersection problem
in disguise, since it is the intersection problem for M1 and (M2)∗, the dual
of M2.

In the ordinary independent matching problem (§2.3.5), the constraint
imposed on a matching M is that ∂±M be independent in M± rather than
that ∂±M be a base in M±. This motivates us to consider the following
extension of VIAP parametrized by an integer k:

[VIAP(k)]
Given a bipartite graphG = (V +, V −;A), a pair of valuated matroids
M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), and a weight function
w : A→ R, find a matching M (⊆ A) that maximizes

Ω(M,B+, B−) ≡ w(M) + ω+(B+) + ω−(B−)

subject to the constraint that |M | = k and

∂+M ⊆ B+ ∈ B+, ∂−M ⊆ B− ∈ B−. (5.54)

Obviously, VIAP(k) with k = max(r+, r−) agrees with the original VIAP,
where r+ = rankM+ and r− = rankM−. Note that VIAP(k) with k =
max(r+, r−) is feasible only if r+ = r− and the same is true for VIAP. A
special case of VIAP(k) with trivial valuations ω± = 0 and trivial weighting
vector w = 0 reads:
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[Independent matching problem]
Given a bipartite graph G = (V +, V −;A) and a pair of matroids
M+ = (V +, I+) and M− = (V −, I−), find a matching M (⊆ A)
such that |M | = k, ∂+M ∈ I+, and ∂−M ∈ I−.

This problem may be regarded as a variant of the independent matching prob-
lem treated in §2.3.5. The VIAP(k) contains another well-studied important
problem:

[Weighted matroid intersection problem]
Given a pair of matroids M1 = (V, I1) and M2 = (V, I2) and a weight
function w : V → R, find a common independent set I ∈ I1 ∩ I2 of
size k that maximizes w(I).

In the above we have demonstrated that VIAP(k) contains a host of
important problems. Finally, we explain that we can formulate VIAP(k) as an
instance of the original VIAP. This fact justifies our subsequent developments
focusing on the original VIAP.

For an instance of VIAP(k), we consider a VIAP on a bipartite graph
Gk = (V +

k , V
−
k ;Ak) with valuated matroids M+

k = (V +
k ,B

+
k , ω

+
k ) and M−

k =
(V −

k ,B
−
k , ω

−
k ) defined as follows. Let r+ and r− denote the ranks of the given

valuated matroids M+ and M−, respectively. The graph Gk = (V +
k , V

−
k ;Ak)

is defined by

V +
k = V + ∪ U+

k , U+
k ≡ {u+

i | 1 ≤ i ≤ r− − k},
V −

k = V − ∪ U−
k , U−

k ≡ {u−i | 1 ≤ i ≤ r+ − k},
Ak = A ∪ {(u, u−i ) | u ∈ V +, u−i ∈ U−

k } ∪ {(u+
i , u) | u ∈ V −, u+

i ∈ U+
k }.

The valuated matroid M+
k is the direct sum of M+ and the free matroid on

U+
k with trivial valuation (which is zero), i.e., B+

k = {B ∪U+
k | B ∈ B+} and

ω+
k (B ∪ U+

k ) = ω+(B) for B ∈ B+. Similarly for M−
k . Note that M+

k and
M−

k have a common rank equal to r+ + r− − k. The weight wk : Ak → R is
defined by

wk(a) =
{
w(a) (a ∈ A)
0 (a ∈ Ak \A).

With an independent assignmentMk in Gk we can associate a feasible so-
lution (M,B+, B−) for VIAP(k) by definingM = Mk∩A, B+ = ∂+Mk \U+

k ,
and B− = ∂−Mk \ U−

k . Conversely, from (M,B+, B−) feasible for VIAP(k)
we can construct an independent assignment Mk in Gk. Moreover, for the
objective function Ω(M,B+, B−) of VIAP(k), we have Ω(M,B+, B−) =
wk(Mk)+ω+

k (∂+Mk)+ω−
k (∂−Mk), in agreement with the objective function

of the associated VIAP.

5.2.10 Optimality Criteria

In this section we establish two forms of optimality criteria for the valuated in-
dependent assignment problem (VIAP). The first criterion refers to a “poten-



5.2 Valuated Matroid 309

tial” function and the second to “negative cycles.” Both criteria are natural
extensions of the well-established corresponding results for the independent
assignment problem. Recall that the VIAP is given in terms of a bipartite
graph G = (V +, V −;A), a pair of valuated matroids M+ = (V +,B+, ω+)
and M− = (V −,B−, ω−), and a weight function w : A→ R.

Potential Criterion. The first optimality criterion is stated in the following
theorem of Murota [224]. The formulation in (1) refers to the existence of
a “potential” function, whereas its reformulation in (2) reveals its duality
nature.

Theorem 5.2.39 (Potential criterion for VIAP).
(1) An independent assignment M in G is optimal for the valuated inde-

pendent assignment problem (5.52)–(5.53) if and only if there exists a “po-
tential” function p : V + ∪ V − → R such that

(i) w(a) − p(∂+a) + p(∂−a)
{
≤ 0 (a ∈ A)
= 0 (a ∈M),

(ii) ∂+M is a maximum-weight base of M+ with respect to ω+[p+],
(iii) ∂−M is a maximum-weight base of M− with respect to ω−[−p−],

where p± is the restriction of p to V ±, and ω+[p+] (resp., ω−[−p−]) is the
similarity transformation defined in (5.16); namely,

ω+[p+](B+) = ω+(B+) +
∑

{p(u) | u ∈ B+} (B+ ⊆ V +),

ω−[−p−](B−) = ω−(B−) −
∑

{p(u) | u ∈ B−} (B− ⊆ V −).

(2) max
M

{Ω(M) |M : independent assignment}
= min

p
{max(ω+[p+]) + max(ω−[−p−]) |
w(a) − p(∂+a) + p(∂−a) ≤ 0 (a ∈ A)}.

(3) If ω+, ω−, and w are all integer-valued, the potential p in (1) and (2)
can be taken to be integer-valued.

(4) Let p be a potential that satisfies (i)–(iii) in (1) for some (optimal)
independent assignment M =M0. An independent assignment M ′ is optimal
if and only if it satisfies (i)–(iii) (with M replaced by M ′).

Proof. The proof is given later.

The optimality condition for the valuated matroid intersection problem
deserves a separate statement in a form of weight splitting, though it is
an immediate corollary of the above theorem. Recall that the intersection
problem is to maximize w(B)+ω1(B)+ω2(B) for a pair of valuated matroids
M1 = (V,B1, ω1) and M2 = (V,B2, ω2) and a weight function w : V → R.
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Theorem 5.2.40 (Weight splitting for valuated matroid intersec-
tion).

(1) A common base B of M1 = (V,B1, ω1) and M2 = (V,B2, ω2) maxi-
mizes w(B) + ω1(B) + ω2(B) if and only if there exist w1, w2 : V → R such
that

(i) [“weight splitting”] w(v) = w1(v) + w2(v) (v ∈ V ),
(ii) B is a maximum-weight base of M1 with respect to ω1[w1],
(iii) B is a maximum-weight base of M2 with respect to ω2[w2],

where ω1[w1] (resp., ω2[w2]) is the similarity transformation defined in (5.16).
(2) max

B
{w(B) + ω1(B) + ω2(B)}

= min
w1,w2

{max(ω1[w1]) + max(ω2[w2]) | w(v) = w1(v) + w2(v) (v ∈ V )}.
(3) If ω1, ω2, and w are all integer-valued, we may assume that w1, w2 :

V → Z.

Proof. Formulate the valuated matroid intersection problem as the VIAP on
G≡ = (V +, V −;A≡) as defined in §5.2.9, and apply Theorem 5.2.39 above.

By putting ω± = 0 in the above theorems we can obtain the standard re-
sults for the independent assignment problem and the optimal common base
problem, as well as for the related problems such as the weighted matroid in-
tersection problem. For these results, see Bixby–Cunningham [13], Edmonds
[68, 70], Faigle [74], Frank [76, 77], Fujishige [79, 82], Iri–Tomizawa [133],
Lawler [170, 171], Welsh [333], and Zimmermann [352].

Remark 5.2.41. The optimality criterion in Theorem 5.2.40(2) can be re-
formulated as a Fenchel-type duality between a pair of matroid valuations and
their conjugate functions, as reported in Murota [230]. It is also mentioned
that Theorem 5.2.39 can be extended for the submodular flow problem with
a certain nonlinear objective function, called M-convex function (see Murota
[227, 231, 234]). �

Negative-cycle Criterion. To describe the second criterion for optimality
in VIAP we need to introduce an auxiliary graph G̃M = (Ṽ , Ã) associated
with an independent assignment M . We put B+ = ∂+M and B− = ∂−M .
The vertex set Ṽ of G̃M is given by Ṽ = V + ∪V − and the arc set Ã consists
of four disjoint parts:

Ã = A◦ ∪M◦ ∪A+ ∪A−,

where

A◦ = {a | a ∈ A} (copy of A),
M◦ = {a | a ∈M} (a: reorientation of a),
A+ = {(u, v) | u ∈ B+, v ∈ V + \B+, B+ − u+ v ∈ B+},
A− = {(v, u) | u ∈ B−, v ∈ V − \B−, B− − u+ v ∈ B−}.
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In addition, arc length γM (a) (a ∈ Ã) is defined by

γM (a) =

⎧
⎪⎪⎨

⎪⎪⎩

−w(a) (a ∈ A◦)
w(a) (a = (u, v) ∈M◦, a = (v, u) ∈M)
−ω+(B+, u, v) (a = (u, v) ∈ A+)
−ω−(B−, u, v) (a = (v, u) ∈ A−)

where ω+(B+, u, v) and ω−(B−, u, v) are defined according to (5.21). A di-
rected cycle of negative length will be called a negative cycle.

The second criterion for optimality is stated in the following theorem of
Murota [224].

Theorem 5.2.42 (Negative-cycle criterion for VIAP). An indepen-
dent assignment M in G is optimal for the valuated independent assignment
problem (5.52)–(5.53) if and only if there exists in G̃M no negative cycle with
respect to the arc length γM .

Proof. The proof is given later.

Remark 5.2.43. The arcs of A+ or A− represent the exchangeability in the
respective matroids. In fact, the subgraphs (V +, A+) and (V −, A−) of G̃M

can be identified respectively with the exchangeability graphs G(B+, V + \
B+) for M+ andG(B−, V −\B−) for M− introduced in §5.2.8. Note, however,
that the arc length in G̃M is the negative of the arc weight in G(B+, V +\B+)
or G(B−, V − \B−). �

Proof of the Optimality Criteria. The main body of the proof consists in
proving the equivalence of the following three conditions for an independent
assignment M :

(OPT) M is optimal,
(NNC) There is no negative cycle in G̃M ,
(POT) There exists a potential p with (i)–(iii) in Theorem 5.2.39(1).

We prove (OPT) ⇒ (NNC) ⇒ (POT) ⇒ (OPT). We abbreviate γM to γ
whenever convenient.

(OPT) ⇒ (NNC): Suppose G̃M has a negative cycle. Let Q (⊆ Ã) be the
arc set of a negative cycle having the smallest number of arcs, and put

B
+

= (B+ \ {∂+a | a ∈ Q ∩A+}) ∪ {∂−a | a ∈ Q ∩A+}, (5.55)

B
−

= (B− \ {∂−a | a ∈ Q ∩A−}) ∪ {∂+a | a ∈ Q ∩A−}, (5.56)

where B+ = ∂+M and B− = ∂−M as before.

Lemma 5.2.44. (B+, B
+

) and (B−, B
−

) satisfy the unique-max condition
in M+ and M− respectively.
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Proof. We prove the claim for (B+, B
+

) by adapting Fujishige’s proof tech-
nique developed in Fujishige [79] for the independent assignment problem
(see also Fujishige [82, Lemma 5.4]).

First note that the exchangeability graph G(B+, B
+
) for M+ has a per-

fect matching Q ∩ A+ under the correspondence in Remark 5.2.43. Take
a maximum-weight perfect matching M ′ = {(ui, vi) | i = 1, · · · ,m} in
G(B+, B

+
), where m = |B+ \ B+|, as well as the potential function p̂ in

Lemma 5.2.32(1). Then M ′ is a subset of

A∗ = {(u, v) | u ∈ B+ \B+
, v ∈ B+ \B+, ω+(B+, u, v) − p̂(u) + p̂(v) = 0}.

Put Q′ = (Q \ A+) ∪ M ′, regarding M ′ as a subset of A+. Then Q′ is a
disjoint union of cycles in G̃M with its length

γ(Q′) = γ(Q) + [γ(M ′) − γ(Q ∩A+)]

being negative, since −γ(M ′) is equal to the maximum weight of a perfect
matching in G(B+, B

+
) and Q ∩ A+ is a perfect matching in G(B+, B

+
).

The minimality of Q (with respect to the number of arcs) implies that Q′

itself is a negative cycle having the smallest number of arcs.
Suppose, to the contrary, that (B+, B

+
) does not satisfy the unique-

max condition. Since (ui, vi) ∈ A∗ for i = 1, · · · ,m, it follows from Lemma
5.2.32(2) that there are distinct indices ik (k = 1, · · · , q; q ≥ 2) such that
(uik

, vik+1) ∈ A∗ for k = 1, · · · , q, where iq+1 = i1. That is,

ω+(B+, uik
, vik+1) = p̂(uik

) − p̂(vik+1) (k = 1, · · · , q).

On the other hand we have

ω+(B+, uik
, vik

) = p̂(uik
) − p̂(vik

) (k = 1, · · · , q).

It then follows that
q∑

k=1

ω+(B+, uik
, vik+1) =

q∑

k=1

ω+(B+, uik
, vik

)

(

=
q∑

k=1

[p̂(uik
) − p̂(vik

)]

)

i.e.,
q∑

k=1

γ(uik
, vik+1) =

q∑

k=1

γ(uik
, vik

). (5.57)

For k = 1, · · · , q, let P ′(vik+1 , uik
) denote the path on Q′ from vik+1 to

uik
, and let Q′

k be the directed cycle formed by arc (uik
, vik+1) and path

P ′(vik+1 , uik
). Obviously,

γ(Q′
k) = γ(uik

, vik+1) + γ(P ′(vik+1 , uik
)) (k = 1, · · · , q). (5.58)

A simple but crucial observation here is that
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(
q⋃

k=1

P ′(vik+1 , uik
)

)

∪ {(uik
, vik

) | k = 1, · · · , q} = q′ ·Q′

for some q′ with 1 ≤ q′ < q, where the union denotes the multiset union, and
this expression means that each element of Q′ appears q′ times on the left
hand side. Hence by adding (5.58) over k = 1, · · · , q we obtain

q∑

k=1

γ(Q′
k) =

q∑

k=1

γ(uik
, vik+1) +

q∑

k=1

γ(P ′(vik+1 , uik
))

=

[
q∑

k=1

γ(uik
, vik+1) −

q∑

k=1

γ(uik
, vik

)

]

+ q′ · γ(Q′)

= q′ · γ(Q′) < 0,

where the last equality is due to (5.57). This implies that γ(Q′
k) < 0 for

some k, while Q′
k has a smaller number of arcs than Q′. This contradicts the

minimality of Q′. Therefore (B+, B
+

) satisfies the unique-max condition.
Similarly for (B−, B

−
).

Lemma 5.2.45. For a negative cycle Q in G̃M having the smallest number
of arcs,

M = (M \ {a ∈M | a ∈ Q ∩M◦}) ∪ (Q ∩A◦)

is an independent assignment with Ω(M) ≥ Ω(M) − γM (Q) (> Ω(M)).

Proof. Note that B
+

= ∂+M and B
−

= ∂−M for B
+

and B
−

defined in
(5.55) and (5.56), and recall the notation B+ = ∂+M and B− = ∂−M . By
Lemma 5.2.44 and the unique-max lemma (Lemma 5.2.35) we have

ω+(B
+
) = ω+(B+) + ω̂+(B+, B

+
) ≥ ω+(B+) − γ(Q ∩A+),

ω−(B
−

) = ω−(B−) + ω̂−(B−, B
−

) ≥ ω−(B−) − γ(Q ∩A−).

Also we have
w(M) = w(M) − γ(Q ∩ (A◦ ∪M◦)).

Addition of these inequalities yields Ω(M) ≥ Ω(M) − γ(Q).

The above lemma shows “(OPT) ⇒ (NNC)”.
(NNC) ⇒ (POT): By Theorem 2.2.35(1), (NNC) implies the existence of

a function p : V + ∪ V − → R such that

γ(a) + p(∂+a) − p(∂−a) ≥ 0 (a ∈ Ã). (5.59)

This condition for a ∈ A◦ ∪M◦ is equivalent to the condition (i) in Theorem
5.2.39(1). For a = (u, v) ∈ A+ it means
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ω+(B+, u, v) − p(u) + p(v) ≤ 0.

Namely, ω+[p+](B+, u, v) ≤ 0 for all (u, v) with B++u−v ∈ B+. This in turn
implies the condition (ii) by Theorem 5.2.7. Similarly, the above condition
for a ∈ A− implies the condition (iii). Thus “(NNC) ⇒ (POT)” has been
shown.

(POT) ⇒ (OPT): For any independent assignment M and any function
p : V + ∪ V − → R we see

Ω(M) = ω+(∂+M) + ω−(∂−M) + w(M)

=

[

ω+(∂+M) +
∑

a∈M

p(∂+a)

]

+

[

ω−(∂−M) −
∑

a∈M

p(∂−a)

]

+
∑

a∈M

[w(a) − p(∂+a) + p(∂−a)]

= ω+[p+](∂+M) + ω−[−p−](∂−M) +
∑

a∈M

wp(a), (5.60)

where wp(a) = w(a) − p(∂+a) + p(∂−a).
Suppose M and p satisfy (i)–(iii) of Theorem 5.2.39(1), and take an arbi-

trary independent assignment M ′. Then we have

Ω(M ′) = ω+[p+](∂+M ′) + ω−[−p−](∂−M ′) +
∑

a∈M ′

wp(a)

≤ ω+[p+](∂+M) + ω−[−p−](∂−M)
= Ω(M). (5.61)

This shows thatM is optimal, establishing “(POT) ⇒ (OPT)”. Thus we have
shown the equivalence of the three conditions (OPT), (NNC), and (POT).

For the statement (2) of Theorem 5.2.39, the expression (5.60), valid for
any M and p, implies that LHS ≤ RHS, whereas Theorem 5.2.39(1) shows
that the equality is attained. The integrality asserted in the statement (3)
of Theorem 5.2.39 can be imposed in (5.59). Finally for the statement (4) of
Theorem 5.2.39 we note in the inequality (5.61) that Ω(M ′) = Ω(M) if and
only if ω+[p+](∂+M ′) = ω+[p+](∂+M), ω−[−p−](∂−M ′) = ω−[−p−](∂−M),
and wp(a) = 0 for a ∈M ′.

We have completed the proofs of Theorem 5.2.39 and Theorem 5.2.42.

Extension to VIAP(k). The optimality criteria for VIAP(k) introduced
in §5.2.9 are stated explicitly for later references.

Theorem 5.2.46.
(1) A feasible solution (M,B+, B−) for VIAP(k) is optimal if and only

if there exists a “potential” function p : V + ∪ V − → R such that

(i) w(a) − p(∂+a) + p(∂−a)
{
≤ 0 (a ∈ A)
= 0 (a ∈M)
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(ii) B+ is a maximum-weight base of M+ with respect to ω+[p+],
(iii) B− is a maximum-weight base of M− with respect to ω−[−p−],
(iv) p(u) ≥ p(v) (u ∈ V +, v ∈ B+ \ ∂+M),
(v) p(u) ≤ p(v) (u ∈ V −, v ∈ B− \ ∂−M).
(2) If ω+, ω−, and w are all integer-valued, the potential p in (1) can be

taken to be integer-valued.
(3) Let p be a potential that satisfies (i)–(v) in (1) for some (optimal)

(M0, B
+
0 , B

−
0 ). Then (M,B+, B−) is optimal if and only if it satisfies (i)–

(v).

Proof. Formulate VIAP(k) as the VIAP on Gk = (V +
k , V

−
k ;Ak) as defined in

§5.2.9, and apply Theorem 5.2.39.

For a negative-cycle criterion of optimality we need to introduce an aux-
iliary graph G̃(M,B+,B−) = (Ṽ , Ã) associated with (M,B+, B−), which is a
slight modification of the one used for VIAP. The vertex set Ṽ of G̃(M,B+,B−)

is given by
Ṽ = V + ∪ V − ∪ {s+, s−},

where s+ and s− are new vertices referred to as the source vertex and the
sink vertex respectively. The arc set Ã consists of eight disjoint parts:

Ã = (A◦ ∪M◦) ∪ (A+ ∪ F+ ∪ S+) ∪ (A− ∪ F− ∪ S−),

where

A◦ = {a | a ∈ A} (copy of A),
M◦ = {a | a ∈M} (a: reorientation of a),
A+ = {(u, v) | u ∈ B+, v ∈ V + \B+, B+ − u+ v ∈ B+},
F+ = {(u, s+) | u ∈ V +}, (5.62)
S+ = {(s+, v) | v ∈ B+ \ ∂+M},
A− = {(v, u) | u ∈ B−, v ∈ V − \B−, B− − u+ v ∈ B−},
F− = {(s−, u) | u ∈ V −},
S− = {(v, s−) | v ∈ B− \ ∂−M}.

The arc length γ(a) = γ(M,B+,B−)(a) (a ∈ Ã) is defined by

γ(a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−w(a) (a ∈ A◦)
w(a) (a = (u, v) ∈M◦, a = (v, u) ∈M)
−ω+(B+, u, v) (a = (u, v) ∈ A+)
−ω−(B−, u, v) (a = (v, u) ∈ A−)
0 (a ∈ F+ ∪ S+ ∪ F− ∪ S−).

(5.63)

Theorem 5.2.47. A feasible solution (M,B+, B−) for VIAP(k) is optimal
if and only if there exists in G̃(M,B+,B−) no negative cycle with respect to the
arc length γ(M,B+,B−).
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Proof. Formulate VIAP(k) as the VIAP on Gk = (V +
k , V

−
k ;Ak) as defined in

§5.2.9, and apply Theorem 5.2.42.

Remark 5.2.48. The definitions of F+ and F− could be replaced by

F+ = {(u, s+) | u ∈ ∂+M ∪ (V + \B+)},
F− = {(s−, u) | u ∈ ∂−M ∪ (V − \B−)}

without affecting the above theorem. The present definition is more conve-
nient for the algorithm to be developed later. �

Remark 5.2.49. When k = r+ = r−, the auxiliary graph G̃(M,B+,B−) con-
tains the auxiliary graph G̃M as a subgraph. �

5.2.11 Application to Triple Matrix Product

Before going on to algorithms for the valuated independent assignment prob-
lem, we digress here into a possible application of the duality result in The-
orem 5.2.39 to linear algebra. The connection to a triple matrix product ex-
plained here conforms with the historical development of the independent
assignment problem explained in Remark 2.3.37.

The following fact is noted by Murota [233].

Theorem 5.2.50. Assume that a matrix product P (s) = Q1(s)T (s)Q2(s)
is nonsingular, where Q1(s) (resp., Q2(s)) is a k × m (resp., n × k) ra-
tional matrix over a field K, and T (s) is an m × n rational matrix over
an extension field F (⊇ K) such that the set of the coefficients is alge-
braically independent over K. Then there exist k × k nonsingular rational
matrices S1(s), S2(s) and diagonal matrices diag (s; p) = diag (sp1 , · · · , spm),
diag (s; q) = diag (sq1 , · · · , sqn) with p ∈ Zm and q ∈ Zn such that

degs detP = degs detS1 + degs detS2

and the matrices

Q̄1(s) = S1(s)
−1
Q1(s) diag (s; p),

T̄ (s) = diag (s;−p)T (s) diag (s;−q),
Q̄2(s) = diag (s; q)Q2(s)S2(s)

−1

are all proper. Note that S1(s)
−1
P (s)S2(s)

−1 = Q̄1(s)T̄ (s)Q̄2(s).

Proof. Firstly, by the Cauchy–Binet formula (Proposition 2.1.6), we have

detP =
∑

|I|=|J|=k

±detQ1[R, I] · detT [I, J ] · detQ2[J,C],
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where R = Row(Q1) and C = Col(Q2). There is no numerical cancellation
in the summation above by virtue of the assumed algebraic independence of
the coefficients in T (s), and hence

degs detP = max
|I|=|J|=k

{degs detQ1[R, I]+degs detT [I, J ]+degs detQ2[J,C]}.

Next, consider a valuated independent assignment problem defined as
follows. The vertex sets V + and V − are the row set and the column set of
T (s), respectively, and the arc set A = {(i, j) | Tij(s) �= 0}. The valuated
matroids M+ = (V +, ω+) and M− = (V −, ω−) attached to V + and V −

respectively are those defined by Q1(s) and the transpose of Q2(s) as in
(5.15), i.e.,

ω+(I) = degs detQ1[R, I], ω−(J) = degs detQ2[J,C]

and the weight wij of an edge (i, j) ∈ A is defined by wij = degs Tij(s).
Note that the maximum value of

∑
(i,j)∈M wij over all matchings M with

I = ∂+M and J = ∂−M is equal to degs detT [I, J ].
Then we see from the above expression of degs detP that degs detP is

equal to the maximum value of the objective function Ω(M) of (5.52) over all
independent assignment M . Let M be an optimal independent assignment
and put I = ∂+M and J = ∂−M . Let p̂ : V + ∪ V − → Z be the potential
in Theorem 5.2.39, and define p ∈ Zm and q ∈ Zn by pi = p̂i for i ∈
V + and qj = −p̂j for j ∈ V −. Define S1 = Q1[R, I] diag (s; pI) and S2 =
diag (s; qJ )Q2[J,C], where pI = (pi | i ∈ I) ∈ ZI is the restriction of p to I
and similarly for qJ ∈ ZJ .

The conditions (i), (ii), and (iii) in Theorem 5.2.39(1), coupled with (5.24),
imply the properness of T̄ (s), Q̄1(s), and Q̄2(s), respectively.

Remark 5.2.51. The close relationship between the triple matrix product
and the independent assignment problem through the Cauchy–Binet formula
was first observed by Tomizawa–Iri [317, 318]. To be more precise, the rank
of P = Q1TQ2 was expressed in Tomizawa–Iri [317] as the maximum size
of an independent matching (cf. Remark 2.3.37), whereas the degree of the
determinant of P (s) = Q1T (s)Q2 with constant matrices Qi (i = 1, 2) was
represented in Tomizawa–Iri [318] as the optimal value of an independent
assignment. Theorem 5.2.50 gives an extension of this idea to the more general
case with polynomial/rational matrices Qi(s) (i = 1, 2) by means of valuated
matroids with an additional explicit statement concerning the transformation
into proper matrices. �

5.2.12 Cycle-canceling Algorithms

This section describes a primal-type cycle-canceling algorithm for the valu-
ated independent assignment problem, due to Murota [225]. The algorithm
runs in strongly polynomial time with oracles for the valuations ω±. Another
algorithm of primal-dual augmenting type will be given in §5.2.13.
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Algorithms. Our cycle-canceling algorithm is based on the negative-cycle
criterion (Theorem 5.2.42). It can be polished up to a strongly polynomial
algorithm using the minimum-ratio-cycle strategy.

In Theorem 5.2.42 we have shown a negative-cycle criterion for the opti-
mality with reference to an auxiliary graph G̃M = (Ṽ , Ã) with Ṽ = V + ∪V −

and Ã = A◦ ∪M◦ ∪A+ ∪A−, where

A◦ = {a | a ∈ A} (copy of A),
M◦ = {a | a ∈M} (a: reorientation of a),
A+ = {(u, v) | u ∈ B+, v ∈ V + \B+, B+ − u+ v ∈ B+},
A− = {(v, u) | u ∈ B−, v ∈ V − \B−, B− − u+ v ∈ B−}.

Here B+ = ∂+M and B− = ∂−M . The arc length γM (a) (a ∈ Ã) is defined
by

γM (a) =

⎧
⎪⎪⎨

⎪⎪⎩

−w(a) (a ∈ A◦)
w(a) (a = (u, v) ∈M◦, a = (v, u) ∈M)
−ω+(B+, u, v) (a = (u, v) ∈ A+)
−ω−(B−, u, v) (a = (v, u) ∈ A−)

where ω+(B+, u, v) and ω−(B−, u, v) are as in (5.21).
Theorem 5.2.42 as well as its proof suggests the following algorithm for

solving the valuated independent assignment problem.

Cycle-canceling algorithm
Starting from an arbitrary independent assignmentM , repeat (i)–(ii)
below while there exists a negative cycle in G̃M :
(i) Find a negative cycle Q having the smallest number of arcs in

the auxiliary graph G̃M (with respect to the arc length γM ).
(ii) Modify the current independent matching along the cycle Q by

M = (M \ {a ∈M | a ∈ Q ∩M◦}) ∪ (Q ∩A◦).

The validity of this procedure follows from Theorem 5.2.42 and Lemma 5.2.45.

Remark 5.2.52. This is a straightforward extension of the primal algorithm
of Fujishige [79] for the ordinary independent assignment problem, which
extends the classical idea of Klein [160] and which is further extended later
by Fujishige [80] and by Zimmermann [352] for the submodular flow problem
(see also Fujishige [82] and the references therein). �

The above algorithm assumes an initial independent assignmentM , which
can be found by the algorithm for the independent matching problem treated
in §2.3.5. For each M the graph G̃M can be constructed with r+(|V +| − r+)
evaluations of ω+ and r−(|V −|−r−) evaluations of ω−, where r+ and r− are
the ranks of M+ and M− respectively (we have r+ = r− for a feasible prob-
lem). When the valuated matroids are associated with polynomial/rational
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matrices as in Examples 5.2.3 and 5.2.10, ω±(·, ·, ·) can be determined by
pivoting operations on the matrices if arithmetic operations on rational func-
tions can be performed.

A negative cycle having the smallest number of arcs in (i) can be found
easily by a variant of the standard shortest-path algorithm. It should however
be worth noting that the minimality of the number of arcs is not really
necessary, and in fact this observation adds more flexibility to the algorithm,
as we will see soon. Recalling the notation

B
+

= (B+ \ {∂+a | a ∈ Q ∩A+}) ∪ {∂−a | a ∈ Q ∩A+}, (5.64)

B
−

= (B− \ {∂−a | a ∈ Q ∩A−}) ∪ {∂+a | a ∈ Q ∩A−}, (5.65)

we call a cycle Q in G̃M admissible if both (B+, B
+
) and (B−, B

−
) satisfy

the unique-max condition in M+ and M− respectively. The admissibility of
Q guarantees (by the unique-max lemma) that the modified matching M
remains an independent assignment.

In the proof of Lemma 5.2.44 it has been shown that if a negative cycle
Q is not admissible, a family of cycles, denoted Q′

k (k = 1, · · · , q) there, is
naturally defined and that at least one of its members is a negative cycle. We
call each Q′

k an induced cycle. The above observations lead to the following
refinements of Lemma 5.2.44 and Lemma 5.2.45.

Lemma 5.2.53. Let Q be a negative cycle in G̃M . Then either Q is ad-
missible or else it induces a negative cycle having a smaller number of arcs
than Q. In particular, a negative cycle having the smallest number of arcs is
admissible. �

Lemma 5.2.54. For an admissible cycle Q in G̃M , M is an independent
assignment with Ω(M) ≥ Ω(M) − γM (Q). �

The algorithm finds the optimal independent assignment in a finite num-
ber of steps since there exist a finite number of independent assignments in
the given graph and the objective function value Ω(M) increases monotoni-
cally; we have seen

Ω(M) ≥ Ω(M) − γM (Q) (> Ω(M)). (5.66)

However, the number of iterations of the loop (i)–(ii) is not bounded by a
polynomial in the problem size, as is also the case with the original form of
the primal algorithm for the ordinary independent assignment problem.

Zimmermann [353] has shown (for the submodular flow problem) that a
judicious choice of a negative cycle renders the number of iterations bounded
by r+ (= r−). The idea is to introduce an auxiliary weight function α on Ã
and to select a cycle Q of minimum ratio γM (Q)/α(Q) (satisfying some extra
condition). In what follows we shall show that this idea carries over to our
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problem, making the number of iterations of the loop (i)–(ii) of our algorithm
bounded by r+ (= r−).

We maintain a subset M• of Ã, called the active arc set, and define
α : Ã→ {0, 1} by

α(a) =
{

1 (a ∈M•)
0 (a ∈ Ã \M•).

An arc is said to be active if it belongs to M•. A cycle Q (⊆ Ã) is called a
minimum-ratio cycle with respect to (γM , α) if γM (Q)/α(Q) takes the mini-
mum value among all cycles with α(Q) > 0.

Cycle-canceling algorithm with minimum-ratio cycle
Starting from an arbitrary independent assignment M and active
arc set defined by M• = M◦ (≡ {a | a ∈ M}), repeat (i)–(iii) below
while there exists a negative cycle in G̃M :
(i) Find an admissible minimum-ratio cycle Q in the auxiliary graph

G̃M (with respect to (γM , α)).
(ii) Modify the current active arc set by

M• = M• \ (Q ∩M◦)

and the function α accordingly.
(iii) Modify the current independent matching along the cycle Q by

M = (M \ {a ∈M | a ∈ Q ∩M◦}) ∪ (Q ∩A◦).

The following properties are maintained throughout the computation:

• Any negative cycle in G̃M contains an active arc (cf. Lemma 5.2.60).
• M is an independent assignment (i.e., ∂+M ∈ B+, ∂−M ∈ B−).

Because of the first property, the minimum-ratio cycle in (i) is well-defined,
as long as G̃M contains a negative cycle. In (ii), on the other hand, the active
arc setM• decreases monotonically, at least by one element in each iteration.
This implies the termination of the algorithm in at most r+ (= r−) iterations,
whereas the obtained matching M is an optimal independent assignment by
the second property and Theorem 5.2.42.

An admissible minimum-ratio cycle can be found in a polynomial time in
the problem size as follows. By an algorithm of Megiddo [193] a minimum-
ratio cycle Q can be generated in O(|Ṽ |2|Ã| log |Ṽ |) time. We can test for the
admissibility of Q on the basis of Lemma 5.2.32 by means of an algorithm for
the weighted bipartite matching problem. This takes O(|Ṽ |3) or less time. In
case Q is not admissible, it induces at least one minimum-ratio cycle having
a smaller number of arcs than Q, as will be shown later in Lemma 5.2.57.
We pick up one of the induced minimum-ratio cycles, and repeat the above
procedure. After repeating not more than |Ṽ | times we are guaranteed to
obtain an admissible minimum-ratio cycle.
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Summarizing the above arguments we have the following theorem due to
Murota [225].

Theorem 5.2.55. The cycle-canceling algorithm with minimum-ratio cycle
selection is a strongly polynomial time algorithm (modulo a polynomial num-
ber of evaluations of ω±). �

Other algorithms for VIAP based on the negative-cycle criterion can be
found in Murota [225] and Shigeno [296].

Validity of the Minimum-ratio Cycle Algorithm. We shall show the
validity of the cycle-canceling algorithm using the minimum-ratio cycle se-
lection. Basically we follow the arguments in Goldberg–Tarjan [96], Zimmer-
mann [353] while establishing two lemmas (Lemma 5.2.57 and Lemma 5.2.59)
specific to our problem. We abbreviate γM to γ for notational simplicity.

For ε ≥ 0 an independent assignment M is said to be ε-optimal (with
respect to α) if there exists a function p : Ṽ → R such that

γp(a) ≡ γ(a) + p(∂+a) − p(∂−a) ≥ −εα(a) (a ∈ Ã). (5.67)

Noting (5.67) is equivalent to saying that the modified arc length γ̂(a) =
γ(a) + εα(a) admits a function p such that

γ̂(a) + p(∂+a) − p(∂−a) ≥ 0 (a ∈ Ã),

we see that the existence of p with (5.67) is also equivalent to

γ(Q) ≥ −εα(Q) (Q : negative cycle).

This implies obviously that α(Q) > 0 for any negative cycle Q; that is:

any negative cycle in G̃M contains an active arc. (5.68)

Conversely suppose (5.68) is true and

there exists a negative cycle. (5.69)

Then the “minimum cycle ratio”

μ = min
{
γ(Q)
α(Q)

| Q : cycle with α(Q) > 0
}

(5.70)

is a well-defined negative number, and M is ε-optimal for ε = −μ > 0. Hence
we have the following statement.

Lemma 5.2.56. Condition (5.68) is satisfied if and only if M is ε-optimal
for some ε ≥ 0.
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Proof. In addition to the above argument note that the case ε = 0 corresponds
to an optimal M , for which (5.68) is vacuously true due to Theorem 5.2.42.

Under the condition (5.68) we define ε(M) to be the minimum value of
ε ≥ 0 for which M is ε-optimal. The above argument shows, under (5.69),
that

ε(M) = −μ. (5.71)

The following lemma substantiates the step (i) of the algorithm.

Lemma 5.2.57. Assume (5.68) and (5.69), and let Q be a minimum-ratio
cycle. Either Q is admissible or else it induces a minimum-ratio cycle having
a smaller number of arcs than Q. In particular, a minimum-ratio cycle having
the smallest number of arcs is admissible.

Proof. We modify the proof of Lemma 5.2.44. Let B
+

and B
−

be defined
by (5.64) and (5.65). Suppose that Q is not admissible, and assume without
loss of generality that (B+, B

+
) does not satisfy the unique-max condition.

Take a maximum-weight perfect matching M ′ in G(B+, B
+
) for M+. Put

Q′ = (Q\A+)∪M ′, which is a collection of disjoint cycles, say Q′ =
⋃l

j=1Q
′
j .

Then α(Q′) = α(Q) (since α(M ′) = α(Q ∩A+) = 0) and

γ(Q′) = γ(Q) + [γ(M ′) − γ(Q ∩A+)] (5.72)

holds. By the choice of M ′ we have γ(Q′) ≤ γ(Q), which implies

γ(Q′)/α(Q′) ≤ γ(Q)/α(Q) = μ. (5.73)

We claim that the equality holds in (5.73). In fact, (5.73) shows

γ(Q′) =
l∑

j=1

γ(Q′
j) ≤ μ α(Q′) = μ

l∑

j=1

α(Q′
j),

whereas γ(Q′
j) ≥ μα(Q′

j) for all j by (5.68) and (5.70). With the equality in
(5.73) we obtain γ(Q′) = γ(Q) since α(Q′) = α(Q).

It then follows from (5.72) that

γ(Q ∩A+) = γ(M ′) = −ω̂+(B+, B
+

). (5.74)

Hence, putting

M ′′ = Q ∩A+ = {(ui, vi) | i = 1, · · · ,m}

we have M ′′ ⊆ A∗, where

A∗ = {(u, v) | u ∈ B+ \B+
, v ∈ B+ \B+, ω+(B+, u, v) − p̂(u) + p̂(v) = 0},
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and p̂ is the potential function in Lemma 5.2.32(1).
Since (B+, B

+
) does not satisfy the unique-max condition, there exist

distinct indices ik (k = 1, · · · , q; q ≥ 2) such that (uik
, vik+1) ∈ A∗ for k =

1, · · · , q, where iq+1 = i1. Then

ω+(B+, uik
, vik+1) = p̂(uik

) − p̂(vik+1) (k = 1, · · · , q),
ω+(B+, uik

, vik
) = p̂(uik

) − p̂(vik
) (k = 1, · · · , q),

q∑

k=1

γ(uik
, vik+1) =

q∑

k=1

γ(uik
, vik

)

hold true, where the second equation is due to M ′′ ⊆ A∗.
For k = 1, · · · , q, let P (vik+1 , uik

) denote the path on Q from vik+1 to
uik

, and let Qk be the directed cycle formed by arc (uik
, vik+1) and path

P (vik+1 , uik
). By a similar argument as in the proof of Lemma 5.2.44 we

obtain
q∑

k=1

(γ(Qk) − μα(Qk)) = q′(γ(Q) − μα(Q)) = 0

for some q′ with 1 ≤ q′ < q, which shows γ(Qk) − μα(Qk) = 0 for each k.
Therefore Qk is a minimum-ratio cycle for k with α(Qk) > 0, while such k
exists since

∑q
k=1 α(Qk) = q′α(Q) > 0.

Lemma 5.2.58. Assume (5.68) and (5.69), and let Q be an admissible
minimum-ratio cycle. Then M is an independent assignment with Ω(M) =
Ω(M) − γM (Q).

Proof. The same as the proof of Lemma 5.2.45, except that (5.74) is used.

Lemma 5.2.59. Assume (5.68) and (5.69), and let Q be an admissible
minimum-ratio cycle. Then ε(M) ≤ ε(M) for M = (M \ {a ∈ M | a ∈
Q ∩M◦}) ∪ (Q ∩A◦).

Proof. Put ε = ε(M), which is equal to −μ by (5.71). By the ε-optimality of
M , we have

γp(a) ≡ γ(a) + p(∂+a) − p(∂−a) ≥ −εα(a) (a ∈ Ã)

for some p. Note that

γp(a) = −εα(a) (a ∈ Q). (5.75)

Denote by G̃M = (V ,A) the auxiliary graph for M ; with obvious additional
notations A = A◦ ∪M◦ ∪A+ ∪A−

, γ, and α. We will show

γp(a) ≡ γ(a) + p(∂+a) − p(∂−a) ≥ −εα(a) (a ∈ A) (5.76)
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for the same p. This is obvious for a ∈ M
◦ \ M◦ since α(a) = 0 and its

reorientation a ∈ Q ∩A◦ satisfies γp(a) = 0.
In what follows we show (5.76) for a ∈ A+

; the proof for the remaining
case with a ∈ A−

is similar. We abbreviate ω+, V +, B+ and B
+

to ω, V , B
and B respectively. Then (5.76) for a ∈ A+

can be written as

ω(B, u, v) ≤ p(u) − p(v) (u ∈ B, v ∈ V \B) (5.77)

since ω(B, u, v) = −∞ if (u, v) �∈ A+
.

Recalling the definition

γ(a) = −ω(B, u, v) (a = (u, v) ∈ A+)

and noting α(a) = 0 (a ∈ A+) we see from (5.67) that

ω(B, u, v) ≤ p(u) − p(v) (u ∈ B, v ∈ V \B). (5.78)

[Note that (u, v) �∈ A+ implies ω(B, u, v) = −∞.] The equation (5.75) shows
that this is satisfied with equality for (u, v) ∈ Q ∩A+. Hence

ω̂(B,B) =
∑

u∈B\B

p(u) −
∑

v∈B\B

p(v). (5.79)

For u ∈ B and v ∈ V \ B put B′ = B − u + v. It follows from
the upper-bound lemma (Lemma 5.2.29), the unique-max lemma (Lemma
5.2.35), (5.78), and (5.79) that

ω(B, u, v)
= ω(B′) − ω(B)
≤ ω̂(B,B′) − ω̂(B,B)

≤

⎡

⎣
∑

u′∈B\B′

p(u′) −
∑

v′∈B′\B

p(v′)

⎤

⎦−

⎡

⎣
∑

u′∈B\B

p(u′) −
∑

v′∈B\B

p(v′)

⎤

⎦

= p(u) − p(v).

Thus (5.77) is established. It may be remarked that the essence of (5.77) lies
in Lemma 5.2.38.

Combining Lemma 5.2.56 and Lemma 5.2.59 we see that the condition
(5.68) is preserved in updating an independent matching in the step (iii) of
the algorithm. That is, we have the following.

Lemma 5.2.60. Assume (5.68) and (5.69), and let Q be an admissible
minimum-ratio cycle. Then the condition (5.68) is satisfied by M . �

We have justified all the claims about the cycle-canceling algorithm with
minimum-ratio cycle selection.



5.2 Valuated Matroid 325

5.2.13 Augmenting Algorithms

This section describes a primal-dual-type augmenting algorithm for the val-
uated independent assignment problem, due to Murota [225]. The algorithm
is an extension of the well-established primal-dual algorithm for the ordinary
independent assignment problem and the weighted matroid intersection prob-
lem. The algorithm will be used in §6.2.6 for an analysis of mixed polynomial
matrices.

Algorithms. The augmenting algorithm for VIAP solves VIAP(k) for k =
0, 1, 2, · · · with the aid of the auxiliary graph G̃(M,B+,B−) = (Ṽ , Ã) introduced
in §5.2.10. The vertex set Ṽ is given by

Ṽ = V + ∪ V − ∪ {s+, s−},

where s+ and s− are new vertices referred to as the source vertex and the sink
vertex respectively, and the arc set Ã consists of eight disjoint components:

Ã = (A◦ ∪M◦) ∪ (A+ ∪ F+ ∪ S+) ∪ (A− ∪ F− ∪ S−)

with components defined (cf. (5.62)) by

A◦ = {a | a ∈ A} (copy of A),
M◦ = {a | a ∈M} (a: reorientation of a),
A+ = {(u, v) | u ∈ B+, v ∈ V + \B+, B+ − u+ v ∈ B+},
F+ = {(u, s+) | u ∈ V +},
S+ = {(s+, v) | v ∈ B+ \ ∂+M},
A− = {(v, u) | u ∈ B−, v ∈ V − \B−, B− − u+ v ∈ B−},
F− = {(s−, u) | u ∈ V −},
S− = {(v, s−) | v ∈ B− \ ∂−M}.

The arc length γ(a) = γ(M,B+,B−)(a) (a ∈ Ã) is defined (cf. (5.63)) by

γ(a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−w(a) (a ∈ A◦)
w(a) (a = (u, v) ∈M◦, a = (v, u) ∈M)
−ω+(B+, u, v) (a = (u, v) ∈ A+)
−ω−(B−, u, v) (a = (v, u) ∈ A−)
0 (a ∈ F+ ∪ S+ ∪ F− ∪ S−).

The following fact is most fundamental.

Lemma 5.2.61. Let (M,B+, B−) be a feasible solution to VIAP(k). The
problem VIAP(k + 1) has a feasible solution if and only if there exists a
directed path from s+ to s− in G̃(M,B+,B−).
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Proof. First note that the graph G̃(M,B+,B−) does not depend on w nor on
ω±, except for the arc length. By Theorem 2.3.33 it suffices to prove the
claim that there exists a directed path from s+ to s− in G̃(M,B+,B−) if and
only if there exists a directed path from S+ to S− in the auxiliary graph G̃M

of §2.3.5. This claim follows from general facts (i) and (ii) below valid for
I ⊆ B ∈ B in a matroid (V, I,B, cl):

(i) For v ∈ V \B: v �∈ cl(I) ⇐⇒ ∃u ∈ B \ I : B − u+ v ∈ B,
(ii) For u ∈ I, v ∈ cl(I) \ I: I − u+ v ∈ I ⇐⇒ B − u+ v ∈ B.

Suppose that (M,B+, B−) is optimal for VIAP(k), and that VIAP(k+1)
is feasible. It follows from Lemma 5.2.61 that there is a (directed) path in
G̃(M,B+,B−) from the source s+ to the sink s−, and from Theorem 5.2.47 that
there is a shortest path from s+ to s− with respect to γ. Then the following
theorem holds true (Murota [225]).

Theorem 5.2.62. Let (M,B+, B−) be optimal for VIAP(k) and P be a
shortest path, from the source s+ to the sink s− in G̃(M,B+,B−), having the

smallest number of arcs. Then (M,B
+
, B

−
) defined by

M = (M \ {a ∈M | a ∈ P ∩M◦}) ∪ (P ∩A◦), (5.80)

B
+

= (B+ \ {∂+a | a ∈ P ∩A+}) ∪ {∂−a | a ∈ P ∩A+}, (5.81)

B
−

= (B− \ {∂−a | a ∈ P ∩A−}) ∪ {∂+a | a ∈ P ∩A−} (5.82)

is optimal for VIAP(k + 1).

Proof. The proof is given later.

With this theorem, we obtain the following algorithm of augmenting type
that solves VIAP(k) for k = 0, 1, 2, · · ·. At the beginning of the algorithm we
set M = ∅ and find a maximum-weight base B+ of M+ with respect to ω+

and a maximum-weight base B− of M− with respect to ω−. Obviously this
choice gives the optimal solution to VIAP(0).

Augmenting algorithm (outline)
Starting from the empty matching M and maximum-weight bases
B+ and B− of M+ and M− with respect to ω+ and ω−, repeat
(i)–(ii) below for k = 0, 1, 2, · · ·:
(i) Find a shortest path P having the smallest number of arcs

from s+ to s− in G̃(M,B+,B−) with respect to the arc length
γ(M,B+,B−).
[Stop if there is no path from s+ to s−.]

(ii) Update (M,B+, B−) to (M,B
+
, B

−
) by (5.80), (5.81), (5.82).

Remark 5.2.63. The above algorithm is a natural extension of the primal-
dual algorithm for the ordinary independent assignment problem and the
weighted matroid intersection problem due to Iri–Tomizawa [133] and Lawler
[170, 171] (see also Frank [76]). �
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The algorithm outlined above can be made more efficient by the explicit
use of a potential function p : Ṽ → R, the use of which has been invented
independently by Tomizawa [312] and by Edmonds–Karp [71] in the primal-
dual algorithm for the ordinary minimum-cost flow problem.

Suppose again that (M,B+, B−) is optimal for VIAP(k). By Theorem
5.2.47 there is a potential p : Ṽ → R such that

γp(a) ≡ γ(a) + p(∂+a) − p(∂−a) ≥ 0 (a ∈ Ã). (5.83)

This condition is equivalent to the following set of conditions appearing in
Theorem 5.2.46(1):

w(a) − p(∂+a) + p(∂−a)
{
≤ 0 (a ∈ A)
= 0 (a ∈M) (5.84)

B+ is a maximum-weight base of M+ with respect to ω+[p+], (5.85)
B− is a maximum-weight base of M− with respect to ω−[−p−], (5.86)
p(u) ≥ p(v) (u ∈ V +, v ∈ B+ \ ∂+M), (5.87)
p(u) ≤ p(v) (u ∈ V −, v ∈ B− \ ∂−M), (5.88)

where p± denotes the restriction of p to V ± and

ω+[p+](B) = ω+(B) +
∑

v∈B

p+(v) = ω+(B) +
∑

v∈B

p(v) (B ∈ B+),

ω−[−p−](B) = ω−(B) −
∑

v∈B

p−(v) = ω−(B) −
∑

v∈B

p(v) (B ∈ B−).

We maintain such a potential function p in addition to (M,B+, B−) and
seek a shortest path with respect to the modified arc length γp, which is non-
negative by virtue of (5.83). At the beginning of the algorithm the potential
p is chosen as

p(v) =
{

0 (v ∈ V + ∪ {s+})
−maxa∈A w(a) (v ∈ V − ∪ {s−}) (5.89)

which is easily seen to be legitimate. In the general steps p is updated to

p(v) = p(v) +Δp(v) (v ∈ Ṽ ) (5.90)

based on the length Δp(v) of the shortest path from the source s+ to v with
respect to the modified arc length γp.

Augmenting algorithm (with potential)
(Step 0)

(i) Set M = ∅.
(ii) Define p by (5.89).
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(iii) Find maximum-weight bases B+ and B− of M+ and M−

with respect to ω+ and ω−.
(Step 1) Repeat (i)–(iii) below for k = 0, 1, 2, · · ·:

(i) Find a shortest path P having the smallest number of arcs
from s+ to s− in G̃(M,B+,B−) with respect to the modified
arc length γp of (5.83).
[Stop if there is no path from s+ to s−.]

(ii) For each v ∈ Ṽ compute the length Δp(v) of the shortest
path from s+ to v in G̃(M,B+,B−) with respect to the modified
arc length γp; Update p to p by (5.90).

(iii) Update (M,B+, B−) to (M,B
+
, B

−
) by (5.80), (5.81),

(5.82).

Remark 5.2.64. In the description of the algorithm above, we have assumed
that Δp(v) takes a finite value for all v in order to focus on the main ideas.
In actual implementations, however, this issue should be taken care of in an
appropriate manner. �

Validity of the Augmenting Algorithm. We show that (M,B
+
, B

−
, p)

satisfies the conditions (5.84)–(5.88). It then follows from Theorem 5.2.46
that (M,B

+
, B

−
) is optimal for VIAP(k + 1). Theorem 5.2.62 also follows

from this.
First note that M is a matching of size k + 1 and that

γp(a) ≡ γ(a) + p(∂+a) − p(∂−a)
= γp(a) +Δp(∂+a) −Δp(∂−a) ≥ 0 (a ∈ Ã) (5.91)

by the definition of Δp.

Lemma 5.2.65.

w(a) − p(∂+a) + p(∂−a)
{
≤ 0 (a ∈ A)
= 0 (a ∈M).

Proof. The first follows from (5.91) for a ∈ A◦, while the second is due to

γp(a) +Δp(∂+a) −Δp(∂−a) = γ(a) + p(∂+a) − p(∂−a) = 0 (a ∈M ∪ P ).

Lemma 5.2.66.

p(u) ≥ p(v) (u ∈ V +, v ∈ B+ \ ∂+M),

p(u) ≤ p(v) (u ∈ V −, v ∈ B− \ ∂−M).
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Proof. The inequality (5.91) for a = (u, s+), (v, s+), (s+, v) implies p(u) −
p(s+) ≥ 0 and p(v) − p(s+) = 0. The proof for the second claim is similar.

Let

{(u+
i , v

+
i ) | i = 1, · · · , l+} = P ∩A+,

{(v−i , u−i ) | i = 1, · · · , l−} = P ∩A−,

where l+ = |P ∩ A+|, l− = |P ∩ A−|, and the indices are chosen so that
u+

1 , v
+
1 , u+

2 , v
+
2 , · · ·, u+

l+ , v
+
l+ represents the order in which they appear on P ,

and similarly for v−l− , u
−
l− , · · ·, v−2 , u−2 , v−1 , u

−
1 . We see

B
+

= B+ − {u+
1 , · · · , u+

l+} + {v+1 , · · · , v+l+} ⊇ ∂+M,

B
−

= B− − {u−1 , · · · , u−l−} + {v−1 , · · · , v−l−} ⊇ ∂−M.

Lemma 5.2.67.
(1) (B+, B

+
) and (B−, B

−
) satisfy the unique-max condition in M+ and

M− respectively.
(2)

ω̂(B+, B
+
) =

l+∑

i=1

(
p(u+

i ) − p(v+i )
)
,

ω̂(B−, B
−

) = −
l−∑

i=1

(
p(u−i ) − p(v−i )

)
.

Proof. We prove the case “+” only and omit the superscript “+”. By (5.91)
for a ∈ A+ we have

ω(B, ui, vj) ≤ p(ui) − p(vj) (1 ≤ i, j ≤ l).

Here we have an equality if i = j and a strict inequality if i < j by the
definitions of p and P . Then the unique-max property and the expression in
(2) follow from Lemma 5.2.32.

Lemma 5.2.68.

ω+[p+](B
+

) ≥ ω+[p+](B+
1 ) (B+

1 ∈ B+),

ω−[−p−](B
−

) ≥ ω−[−p−](B−
1 ) (B−

1 ∈ B−).

Proof. Again we prove the case “+” only. By Lemma 5.2.7 it suffices to show

ω[p](B − u+ v) ≤ ω[p](B) (u ∈ B, v ∈ V \B).

Note first that

ω[p](B − u+ v) − ω[p](B) = ω(B − u+ v) − ω(B) − p(u) + p(v). (5.92)
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Here we have

ω(B − u+ v) − ω(B) ≤ ω̂(B,B − u+ v) ≤
∑

u′∈B

p(u′) −
∑

v′∈B−u+v

p(v′)

by the upper-bound lemma (Lemma 5.2.29) and (5.91) for a ∈ A+, and

ω(B) − ω(B) = ω̂(B,B) =
l∑

i=1

(p(ui) − p(vi))

by Lemma 5.2.67 and the unique-max lemma (Lemma 5.2.35). Therefore the
RHS of (5.92) is bounded by

∑

u′∈B

p(u′) −
∑

v′∈B−u+v

p(v′) −
l∑

i=1

(p(ui) − p(vi)) − p(u) + p(v) = 0.

Thus we have shown (5.84) in Lemma 5.2.65, (5.85) and (5.86) in Lemma
5.2.68, (5.87) and (5.88) in Lemma 5.2.66. This completes the proof of The-
orem 5.2.62.

Notes. The concept of valuated matroids has been obtained by Dress–
Wenzel [54, 57] through a quantitative generalization of the exchange axiom
of matroids. Duality results for a pair of valuated matroids are established by
Murota [224, 230]. This direction is further pursued by Murota [227, 231, 234]
to arrive at the concept of “M-convex functions.” Besides the exchange axiom,
the concept of matroids can also be defined in terms of submodular functions,
and the equivalence between the exchange property and the submodularity is
one of the most fundamental facts in matroid theory, described in §2.3.2. In
harmony with the generalization of matroids to M-convex functions in terms
of the exchange axiom, the concept of submodular functions has been gener-
alized to that of “L-convex functions” by Murota [231]. Then the equivalence
between the exchange property and the submodularity is generalized to the
conjugacy between M-convex functions and L-convex functions. With these
concepts a discrete analogue of convex analysis (Rockafellar [280, 281, 282]),
called “discrete convex analysis,” has been developed by Murota [231]. See
Murota [232, 235, 236] for expositions on “discrete convex analysis” using
M-convex and L-convex functions.



6. Theory and Application of Mixed
Polynomial Matrices

This chapter is devoted to a study of the mathematical properties of mixed
polynomial matrices with particular emphasis on applications to control the-
oretic problems. Mathematically, the analysis of mixed polynomial matrices
relies heavily on the results in Chap. 4 and Chap. 5, in particular, the CCF
of LM-matrices and the properties of valuated matroids.

6.1 Descriptions of Dynamical Systems

Mixed polynomial matrices arise naturally from the description of dynamical
systems. The objective of this section is to collect relevant definitions and
concepts for later reference.

6.1.1 Mixed Polynomial Matrix Descriptions

In §3.1.2 as well as in §1.2.2 we have compared two kinds of descriptions
of linear time-invariant dynamical systems from the viewpoint of structural
analysis using mixed polynomial matrices. The first kind is the standard form:

dx

dt
= Ax +Bu, (6.1)

where x ∈ Rn and u ∈ Rm, and the other the descriptor form:

F
dx

dt
= Ax +Bu, (6.2)

where x ∈ Rn, u ∈ Rm, and F is usually a square matrix. It has been argued
by way of examples that the coefficient matrix [A− sF | B] of the frequency
domain representation of the descriptor form (6.2), with a suitable choice of
variables, can often be modeled by a mixed polynomial matrix.

Let us recall the definition of a mixed polynomial matrix. A matrix A(s)
of polynomials in s over a field F is called a mixed polynomial matrix with
respect to (K,F ), where K is a subfield of F , if A(s) is split into two parts:

A(s) = Q(s) + T (s) (6.3)

in such a way that

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 6,
c© Springer-Verlag Berlin Heidelberg 2010
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(MP-Q1) The coefficients in Q(s) belong to K, and
(MP-T) The collection T of nonzero coefficients in T (s) is alge-

braically independent over K.

A mixed polynomial matrix with respect to (K,F ) is a mixed matrix with
respect to (K(s),F (s)). On expressing

A(s) =
N∑

k=0

skAk , Q(s) =
N∑

k=0

skQk , T (s) =
N∑

k=0

skTk,

we have
Ak = Qk + Tk (k = 0, 1, · · · , N)

and for each k, Ak is a mixed matrix with respect to (K,F ).
A subclass of mixed polynomial matrices has been identified with reference

to the physical dimensional consistency. The subclass is characterized by
replacing (MP-Q1) with a stronger condition:

(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
over K, i.e., of the form αsp with α ∈ K and an integer p.

Recall from Theorem 3.3.2 that (MP-Q2) holds if and only if

Q(s) = diag [sr1 , · · · , srm ] ·Q(1) · diag [s−c1 , · · · , s−cn ] (6.4)

for some integers ri (i = 1, · · · ,m) and cj (j = 1, · · · , n).
An LM-polynomial matrix with respect to (K,F ) will mean a mixed poly-

nomial matrix with respect to (K,F ) which is an LM-matrix with respect to
(K(s),F (s)). Namely, an LM-polynomial matrix A(s) with respect to (K,F )
can be expressed as

A(s) =
(
Q(s)
T (s)

)

(6.5)

in such a way that (MP-Q1) and (MP-T) are satisfied. A subclass of LM-
polynomial matrices can be identified by imposing the condition (MP-Q2).

A generic polynomial matrix with respect to (K,F ) will mean a matrix
A(s) of polynomials in s over F such that the collection of nonzero coefficients
is algebraically independent over K. In other words, a generic polynomial
matrix is a mixed polynomial matrix A(s) = Q(s) + T (s) with Q(s) = O,
which trivially satisfies (MP-Q2).

6.1.2 Relationship to Other Descriptions

In the literature of structural approach in control theory a number of differ-
ent mathematical frameworks have been proposed to cope with the problem
of “parameter dependency.” In this section we consider to what extent the
mixed polynomial matrix description is general in comparison with other
frameworks.
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Firstly, the present framework includes the graph-theoretic approach
based on the standard form, in which all the nonvanishing entries of the
matrices A and B of (6.1) are assumed to be algebraically independent pa-
rameters, since the decomposition

[A− sIn | B] = [−sIn | O] + [A | B]

satisfies (MP-Q2) and (MP-T) with Q(s) = [−sIn | O] and T (s) = [A | B].
Similarly, the graph-theoretic approach based on the descriptor form, in which
all the nonvanishing entries of the matrices F , A, and B of (6.2) are assumed
to be algebraically independent parameters, also fits the present setting.

Corfmat–Morse [42] considered the standard form (6.1) with the coeffi-
cients A and B “linearly parametrized” as

A = A0 +
k∑

i=1

BiPiCi, B = B0 +
k∑

i=1

BiPiDi, (6.6)

where Pi (i = 1, · · · , k) are matrices such that all the entries are independent
parameters, and Bi, Ci, Di (i = 1, · · · , k) as well as A0, B0 are fixed constant
matrices. The linear parametrization (6.6) for the standard form (6.1) may
be extended to that for the descriptor system (6.2) by assuming the following
forms of the coefficients:

F = F0+
k∑

i=1

BiPiFi, A = A0+
k∑

i=1

BiPiCi, B = B0+
k∑

i=1

BiPiDi, (6.7)

where Pi (i = 1, · · · , k) are matrices such that all the nonvanishing entries
are independent parameters, and Fi, Bi, Ci, Di (i = 1, · · · , k) as well as F0,
A0, B0 are fixed constant matrices. The case of Pi being scalars is considered
by Hosoe–Hayakawa–Aoki [114].

A mixed polynomial matrix description for (6.7) can be obtained by set-
ting

F =

⎡

⎢
⎣

F1

...
Fk

⎤

⎥
⎦ C =

⎡

⎢
⎣

C1

...
Ck

⎤

⎥
⎦ D =

⎡

⎢
⎣

D1

...
Dk

⎤

⎥
⎦ P =

⎡

⎢
⎣

P1

. . .
Pk

⎤

⎥
⎦

and B = [B1 | · · · | Bk], and introducing auxiliary variables

v = (C − sF )x +Du, w = Pv.

Then the descriptor system (6.2) with (6.7) can be equivalently rewritten into
another descriptor system in descriptor-vector (x,v,w) and input-vector u.
The coefficient matrix is given by

⎡

⎣
A0 − sF0 O B B0

C − sF −I O D
O P −I O

⎤

⎦ ,
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which is a mixed polynomial matrix Q(s) + T (s) with

Q(s) =

⎡

⎣
A0 − sF0 O B B0

C − sF −I O D
O O −I O

⎤

⎦ , T (s) =

⎡

⎣
O O O O
O O O O
O P O O

⎤

⎦ .

Thus, the linear parametrization as extended above is included in the present
framework. The stronger condition (MP-Q2) need not be satisfied from the
mathematical point of view, though it is likely to be the case for the physical
reason.

A special class of linearly parametrized systems is considered by Hayakawa
–Hosoe–Hayashi–Ito [106]. This class includes the so-called compartmen-
tal systems (see, e.g., Hayakawa–Hosoe–Hayashi–Ito [106, 107], Zazworsky–
Knudsen [351] for compartmental systems). Denote by ai (i = 1, · · · , n) and
bj (j = 1, · · · ,m), respectively, the column-vectors of the matrices A and B
in the standard form (6.1), namely,

A = [a1, · · · ,an], B = [b1, · · · , bm].

It is assumed that the column vectors are expressed as

ai = Aipi (i = 1, · · · , n), bj = Bjrj (j = 1, · · · ,m)

with vectors pi and rj of independent parameters and fixed constant matrices
Ai and Bj . By introducing auxiliary variables

wi = xipi (i = 1, · · · , n), vj = ujrj (j = 1, · · · ,m),

we obtain a descriptor system in descriptor-vector (x,w,v) and input-vector
u, where w = (w1

T, · · · ,wn
T)T and v = (v1

T, · · · ,vm
T)T. The coefficient

matrix is then given by
⎡

⎣
−sIn A B O
P −I O O
O O −I R

⎤

⎦ , (6.8)

where

A = [A1 | · · · | An], B = [B1 | · · · | Bm],

P =

⎡

⎢
⎣

p1

. . .
pn

⎤

⎥
⎦ , R =

⎡

⎢
⎣

r1

. . .
rm

⎤

⎥
⎦ .

The matrix in (6.8) is a mixed polynomial matrix Q(s) + T (s) with

Q(s) =

⎡

⎣
−sIn A B O
O −I O O
O O −I O

⎤

⎦ , T (s) =

⎡

⎣
O O O O
P O O O
O O O R

⎤

⎦ .
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The matrix Q(s) meets the stronger condition (MP-Q2).
Anderson–Hong [6] considered the standard form (6.1) with A and B

expressed in the form of “matrix nets”:

A = A0 +
k∑

i=1

μiAi, B = B0 +
k∑

i=1

μiBi,

where μi (i = 1, · · · , k) are scalar independent parameters, and Ai and Bi

(i = 0, 1, · · · , k) are fixed constant matrices. This does not seem to fit in the
present framework of mixed polynomial matrices.

6.2 Degree of Determinant of Mixed Polynomial
Matrices

6.2.1 Introduction

In this section we investigate combinatorial characterizations of the highest
degree of a minor of order k:

δk(A) = max
I,J

{degs detA[I, J ] | |I| = |J | = k} (6.9)

for a mixed polynomial matrix A(s) with a view to laying a theoretical foun-
dation for the structural analysis of dynamical systems by means of mixed
polynomial matrices. Recall from §5.1.2 and §5.1.3 that the sequence of δk(A)
(k = 1, 2, · · ·) determines the Smith–McMillan form at infinity and also the
structural indices of the Kronecker form.

We have already encountered the function δ(I, J) = degs detA[I, J ] as
an example of the abstract concept of a valuated bimatroid (see Example
5.2.15). In particular, Theorem 5.2.13 shows the concavity of the sequence
δ1(A), δ2(A), · · ·, in the sense of

δk−1(A) + δk+1(A) ≤ 2δk(A) (1 ≤ k ≤ r − 1), (6.10)

where δ0(A) = 0 and r = rankA. It is emphasized that A(s) is not restricted
to a mixed polynomial matrix in this inequality.

The framework of the valuated independent assignment problem intro-
duced in §5.2.9 will play the major role in the investigation of δk(A) for a
mixed polynomial matrix A(s).

Remark 6.2.1. In parallel to δk(A) it is often meaningful (see Example
5.2.16) to consider

ok(A) = min
I,J

{ords detA[I, J ] | |I| = |J | = k}, (6.11)
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where ords denotes the minimum degree of a nonzero term in a polynomial
in s. Since ok(A) is equal to −δk(B) for B(s) = A(1/s), all the results for
δk(A) can be translated to those for ok(A). For instance, (6.10) yields

ok−1(A) + ok+1(A) ≥ 2ok(A) (1 ≤ k ≤ r − 1),

where o0(A) = 0 and r = rankA. �

6.2.2 Graph-theoretic Method

Let us start with a graph-theoretic characterization of δk(A) for a polynomial
matrix A(s). We consider a bipartite graph G(A) = (R,C;E), where R =
Row(A), C = Col(A), and E = {(i, j) | i ∈ R, j ∈ C,Aij(s) �= 0}. To arc
(i, j) ∈ E is attached a weight wij = degsAij(s), and the weight of M ⊆ E
is defined by w(M) =

∑
(i,j)∈M wij . The weighted matching problem treated

in §2.2.5 is closely related to δk(A).

Theorem 6.2.2. Let A(s) be a polynomial matrix.
(1) δk(A) ≤ max{w(M) |M : k-matching in G(A)},

where the right-hand side is equal to −∞ if no k-matching exists.
(2) The equality holds if A(s) is a generic polynomial matrix, i.e., if the

nonzero coefficients in A(s) are algebraically independent.

Proof. Consider the defining expansion of the determinant of a submatrix
A[I, J ] of order |I| = |J | = k:

detA[I, J ] =
∑

σ:I→J

sgnσ
∏

i∈I

Aiσ(i)(s), (6.12)

where σ runs over all one-to-one correspondences from I to J , and sgnσ is
defined with reference to a fixed one-to-one correspondence. Put δ̂k(A) =
max{w(M) | M : k-matching}. It is easy to see that the highest degree of a
nonzero term

∏
i∈I Aiσ(i)(s) is equal to δ̂k(A), i.e.,

max
|I|=|J|=k

max
σ:I→J

degs

∏

i∈I

Aiσ(i)(s) = max
|I|=|J|=k

max
σ:I→J

∑

i∈I

wiσ(i) = δ̂k(A).

This expression, when combined with the definition (6.9) of δk(A), shows that
δk(A) ≤ δ̂k(A). The equality holds if A(s) is a generic polynomial matrix since
no cancellation occurs on the right-hand side of (6.12).

The above theorem is most fundamental among the graph-theoretic meth-
ods for degree of determinant as well as for structure at infinity. The graph-
theoretic method for the DAE-index problem based on this theorem has been
fully demonstrated in §1.1. For graph-theoretic methods for structure at in-
finity and related topics, see Commault–Dion–Hovelaque [38], Commault–
Dion–Perez [39], Dion–Commault [48], Linnemann [174], Svaricek [307], van
der Woude [326, 327], and van der Woude–Murota [328].
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Remark 6.2.3. Theorem 6.2.2 can be translated for ok(A) defined by (6.11).
Namely,

ok(A) = min{w(M) |M : k-matching in G(A)} (6.13)

for a generic polynomial matrix A(s). Henceforth no explicit statements will
be made on such translations for ok(A). �

6.2.3 Basic Identities

We present basic identities concerning the degree of the determinant of (lay-
ered) mixed polynomial matrices.

Theorem 6.2.4. For a square mixed polynomial matrix A(s) = Q(s)+T (s),

degs detA = max
|I|=|J|

I⊆R,J⊆C

{degs detQ[I, J ] + degs detT [R \ I, C \ J ]}. (6.14)

(It is implied that the right-hand side is equal to −∞ for a singular matrix
A.) In other words, the valuated bimatroid associated with A(s) by (5.29) is
the union of the valuated bimatroids defined by Q(s) and T (s).

Proof. It follows from the defining expansion (2.2) of determinant that

detA =
∑

|I|=|J|
±detQ[I, J ] · detT [R \ I, C \ J ].

Since the degree of a sum is bounded by the maximum degree of a summand,
we obtain

degs detA ≤ max
|I|=|J|

degs(detQ[I, J ] · detT [R \ I, C \ J ])

= max
|I|=|J|

{degs detQ[I, J ] + degs detT [R \ I, C \ J ]},

where the inequality turns into an equality provided the highest-degree terms
do not cancel one another. The algebraic independence of the nonzero coef-
ficients in T (s) ensures this.

The above theorem immediately yields a similar identity for an LM-
polynomial matrix A(s) =

(
Q(s)
T (s)

)
. Recall the notations RQ = Row(Q),

RT = Row(T ), C = Col(A), mQ = |RQ|, mT = |RT |, and n = |C|.

Theorem 6.2.5. For a square LM-polynomial matrix A(s) =
(

Q(s)
T (s)

)
,

degs detA = max
J⊆C,|J|=|RQ|

{degs detQ[RQ, J ]+degs detT [RT , C\J ]}. (6.15)

(It is implied that the right-hand side is equal to −∞ for a singular matrix
A.) �
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In what follows we focus on an LM-polynomial matrix and consider a
variant of δk. Namely, for A(s) =

(
Q(s)
T (s)

)
we define1

δLM
k (A) = max

I,J
{degs detA[RQ ∪ I, J ] |

I ⊆ RT , J ⊆ C, |I| = k, |J | = mQ + k}, (6.16)

where 0 ≤ k ≤ min(mT , n−mQ). It should be clear that δLM
k (A) designates

the highest degree of a minor of order mQ + k with row set containing RQ.
By convention, δLM

k (A) = −∞ if there exists no (I, J) that satisfies the
conditions on the right-hand side of (6.16). By substituting (6.15) into (6.16)
we obtain

δLM
k (A) = max

I,J,B
{degs detQ[RQ, B] + degs detT [I, J \B] | I ⊆ RT ,

B ⊆ J ⊆ C, |I| = k, |J | = mQ + k, |B| = mQ}. (6.17)

We prefer to work with δLM
k for an LM-polynomial matrix rather than to

deal directly with δk for a mixed polynomial matrix. This is because (i) any
algorithm for δLM

k can be used to compute δk for a general mixed polyno-
mial matrix (as explained below), and (ii) our algorithm description is much
simpler for δLM

k .
The reduction of δk to δLM

k is as follows. Given anm×n mixed polynomial
matrix A(s) = Q(s) + T (s) we consider a (2m) × (m + n) LM-polynomial
matrix

Ã(s) =
(
Q̃(s)
T̃ (s)

)

=
(

diag [sd1 , · · · , sdm ] Q(s)
−diag [t1sd1 , · · · , tmsdm ] T (s)

)

(6.18)

using “new” variables t1, · · · , tm and exponents (integers)

di = max
j∈CA

degsQij(s) (i ∈ RA), (6.19)

where RA = Row(A) and CA = Col(A).

Lemma 6.2.6. Let A(s) be an m× n mixed polynomial matrix and Ã(s) be
the associated LM-polynomial matrix defined by (6.18) and (6.19). Then

δk(A) = δLM
k (Ã) −

m∑

i=1

di.

Proof. Define

Â(s) =
(

RA CA

RQ diag (sd1 , · · · , sdm) Q(s)
RT −diag (sd1 , · · · , sdm) T (s)

)

,

1 The notation δLM
k (A) is defined also for a rational matrix A(s) by (6.16).
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where RQ = Row(Q) and RT = Row(T ) have a natural one-to-one cor-
respondence with RA. The matrix Â(s) is obtained from Ã(s) by dividing
the (m + i)th row by ti and redefining Tij(s)/ti to be Tij(s) (j ∈ CA) for
i = 1, · · · ,m. The latter fact implies δLM

k (Ã) = δLM
k (Â), where δLM

k (Â) is
defined similarly to (6.16), though Â(s) is not an LM-polynomial matrix.

If J ⊇ RA, we have

degs det Â[RQ ∪ I, J ] = degs detA[I, CA ∩ J ] +
m∑

i=1

di (I ⊆ RT ). (6.20)

Hence, taking the maximum of this expression over all I and J with |I| =
|J | −m = k and J ⊇ RA, we see that δk(A) +

∑m
i=1 di is equal to

max{degs det Â[RQ ∪ I, J ] | I ⊆ RT , RA ⊆ J ⊆ C, |I| = k, |J | = m+ k}.

It remains to be shown that the extra constraint “J ⊇ RA” can be re-
moved without affecting the maximum value. Fix I ⊆ RT and let J ⊆ RA∪CA

be a maximizer of degs det Â[RQ ∪ I, J ] satisfying J ⊇ RA. We claim that
Â[RQ∪I, J ]−1Â[RQ∪I, CA\J ] is a proper rational matrix. Then, by (5.24), J
is an optimum solution to the maximization problem without the constraint
“J ⊇ RA”.

The claim can be proven as follows. Denoting by IQ and IA the copies of
I in RQ and RA, respectively, we partition the matrix Â[RQ ∪ I,RA ∪CA] as

Â[RQ ∪ I,RA ∪ CA] =

⎛

⎝

RA ∩ IA RA \ IA CA ∩ J CA \ J
RQ ∩ IQ D1 O Q11 Q12

RQ \ IQ O D2 Q21 Q22

RT ∩ I −D1 O T11 T12

⎞

⎠

with the obvious short-hand notations D1, Q11, T11, etc. for the relevant
submatrices of diag (sd1 , · · · , sdm), Q(s), T (s), etc. By row transformations
we obtain
⎛

⎝
D1 O Q11 Q12

O D2 Q21 Q22

−D1 O T11 T12

⎞

⎠ ⇒

⎛

⎝
I O O D1

−1[Q12 −Q11A11
−1A12]

O I O D2
−1[Q22 −Q21A11

−1A12]
O O I A11

−1A12

⎞

⎠ ,

where Aij = Qij +Tij . This shows Â[RQ∪I, J ]−1Â[RQ∪I, CA\J ] =
(

B1(s)
B2(s)

)

with

B1(s) = diag (s−d1 , · · · , s−dm){Q[RQ, CA \ J ] −Q[RQ, CA ∩ J ]B2(s)},
B2(s) = A[I, CA ∩ J ]−1A[I, CA \ J ].

Here B2(s) is a proper rational matrix by the choice of J (cf. (6.20) and
(5.24)), and diag (s−d1 , · · · , s−dm)Q[RQ, CA] is also proper by the definition
(6.19) of di. Therefore, Â[RQ ∪ I, J ]−1Â[RQ ∪ I, CA \ J ] is a proper rational
matrix.
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Example 6.2.7. Consider a 2 × 3 mixed polynomial matrix:

A(s) =

c1 c2 c3
r1 s3 + 1 s2 + α1 α2s+ 1
r2 s

2 + α3 s 0

with respect to (K,F ) = (Q,Q(α1, α2, α3)), where {α1, α2, α3} is assumed
to be algebraically independent over Q. We have A(s) = Q(s) + T (s) with

Q(s) =
s3 + 1 s2 1
s2 s 0

, T (s) =
0 α1 α2s

α3 0 0
.

The associated LM-polynomial matrix is given by

Ã(s) =

r1 r2 c1 c2 c3
rQ1 s3 s3 + 1 s2 1
rQ2 s2 s2 s 0
rT1 −t1s3 0 α1 α2s

rT2 −t2s2 α3 0 0

,

where d1 = 3 and d2 = 2 in (6.19). It is easy to see by inspection that

δ1(A) = degs detA[r1, c1] = 3,
δ2(A) = degs detA[{r1, r2}, {c1, c3}] = 3,

δLM
1 (Ã) = degs det Ã[{rQ1, rQ2, rT1}, {r1, r2, c1}] = 3 + 5,

δLM
2 (Ã) = degs det Ã[{rQ1, rQ2, rT1, rT2}, {r1, r2, c1, c3}] = 3 + 5,

which verify the relation δLM
k (Ã) = δk(A) + (d1 + d2) in Lemma 6.2.6. �

6.2.4 Reduction to Valuated Independent Assignment

We describe how the computation of δLM
k (A) for an LM-polynomial matrix

A(s) =
(

Q(s)
T (s)

)
can be reduced to solving a valuated independent assignment

problem of §5.2.9. Assuming Q(s) to be of full-row rank, we denote by MQ =
(CQ,BQ, ωQ) the valuated matroid associated with Q(s) (see Example 5.2.3);
namely,

BQ = {B ⊆ CQ | detQ[RQ, B] �= 0}, (6.21)
ωQ(B) = degs detQ[RQ, B] (B ∈ BQ). (6.22)

Here and henceforth CQ = {jQ | j ∈ C} denotes a disjoint copy of the column
set C of A (with jQ ∈ CQ denoting the copy of j ∈ C), whereas RQ and RT

mean, as before, the row sets of Q(s) and T (s), respectively, with |RQ| = mQ,
|RT | = mT and |C| = n.
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We consider a valuated independent assignment problem defined on a
bipartite graph G = (V +, V −;E) with V + = RT ∪ CQ, V − = C, and E =
ET ∪ EQ, where

ET = {(i, j) | i ∈ RT , j ∈ C, Tij(s) �= 0}, EQ = {(jQ, j) | j ∈ C}.

The valuated matroids M+
k = (V +,B+

k , ω
+
k ) and M−

k = (V −,B−
k , ω

−
k ) at-

tached to V + and V − are defined by

B+
k = {B+ ⊆ V + | B+ ∩ CQ ∈ BQ, |B+ ∩RT | = k},

B−
k = {B− ⊆ V − | |B−| = mQ + k}

and

ω+
k (B+) = ωQ(B+ ∩ CQ) (B+ ∈ B+

k ),
ω−

k (B−) = 0 (B− ∈ B−
k ).

The weight wij of an arc (i, j) ∈ E is defined by

wij =
{

degs Tij(s) ((i, j) ∈ ET )
0 ((i, j) ∈ EQ). (6.23)

The value of an independent assignment M is given by

Ωk(M) = w(M) + ω+
k (∂+M) + ω−

k (∂−M)

=
∑

(i,j)∈M∩ET

degs Tij(s) + degs detQ[RQ, ∂
+(M ∩ EQ)].

We then have the following characterization of δLM
k (A) in terms of the

optimal value of the valuated independent assignment problem.

Theorem 6.2.8. For an LM-polynomial matrix A(s) =
(

Q(s)
T (s)

)
with Q(s) of

full-row rank and an integer k with 0 ≤ k ≤ min(mT , n −mQ), δLM
k (A) of

(6.16) coincides with the optimal value of the valuated independent assign-
ment problem defined above. That is,

δLM
k (A) = max{Ωk(M) |M : independent assignment},

where the right-hand side is defined to be −∞ if there exists no independent
assignment M .

Proof. Define

Δ(I, J,B) = degs detQ[RQ, B] + degs detT [I, J \B],

which is the function to be maximized in the expression (6.17) for δLM
k (A).

By virtue of the algebraic independence of the nonzero coefficients in T (s),
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the second term, degs detT [I, J \B], is equal to the maximum weight (with
respect to wij) of a matching of size |I| = |J \ B| in the bipartite graph
(RT , C;ET ) that covers I and J \B (see Theorem 6.2.2). Given (I, J,B) with
|I| = k and Δ(I, J,B) > −∞, we can construct an independent assignment
M such that

I = ∂+(M ∩ ET ), J = ∂−M, B = ∂+(M ∩ EQ), (6.24)

and that M ∩ET is a maximum weight k-matching in the graph (RT , C;ET )
that covers I and J \B. Note that detQ[RQ, B] �= 0 and |I| = k if and only
if B ∪ I ∈ B+

k . Moreover, ω+
k (B ∪ I) = degs detQ[RQ, B] by the definition,

and therefore we have Δ(I, J,B) = Ωk(M). Conversely, an independent as-
signment M with Ωk(M) maximum determines (I, J,B), as above, for which
Δ(I, J,B) = Ωk(M) holds true. Hence the maximum value of Δ(I, J,B) is
equal to that of Ωk(M).

Example 6.2.9. The valuated independent assignment problem associated
with a 4 × 5 LM-polynomial matrix

A(s) =

x1 x2 x3 x4 x5

s3 0 s3 + 1 s2 1
0 s2 s2 s 0

f1 −t1s3 0 0 α1 α2s

f2 0 −t2s2 α3 0 0

(6.25)

with k = 2 is illustrated in Fig. 6.1. This matrix is essentially the same
as Ã(s) in Example 6.2.7, but the columns and the rows are now in-
dexed as C = {x1, x2, x3, x4, x5} and RT = {f1, f2}; accordingly CQ =
{x1Q, x2Q, x3Q, x4Q, x5Q}. An optimal independent assignment

M = {(f1, x5), (f2, x2), (x1Q, x1), (x3Q, x3)}

is marked by © in Fig. 6.1. We have I = ∂+(M ∩ ET ) = {f1, f2}, J =
∂−M = {x1, x2, x3, x5}, B = ∂+(M ∩ EQ) = {x1Q, x3Q} ∈ BQ, ωQ(B) = 5,
w(M) = 1 + 2 = 3, and therefore Ω2(M) = 5 + 3 = 8, which agrees with
δLM
2 (A) = 8. �

Theorem 6.2.8 enables us to design an efficient algorithm to compute
δLM
k by specializing the general algorithmic scheme for valuated independent

assignment problems given in §5.2.13. This will be described in detail in
§6.2.6.

Remark 6.2.10. When the stronger condition (MP-Q2) may be assumed for
the matrix Q(s) of an LM-polynomial matrix A(s), the valuated independent
assignment problem reduces to a linearly-weighted independent assignment
problem. By Theorem 3.3.2, (MP-Q2) implies Q(s) = diag [sr1 , · · · , srm ] ·
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RT C CQ

ET EQ

f1

f2

x1

x2

x3

x4
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�w = 3
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w = 0

 0

 0

 0
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Fig. 6.1. Valuated independent assignment problem for δLM
2 (A) of Example 6.2.9

(©: arc in M , B = {x1Q, x3Q})

Q(1) · diag [s−c1 , · · · , s−cn ] for some integers ri (i = 1, · · · ,m) and cj (j =
1, · · · , n). Hence ωQ(B) =

∑
i∈RQ

ri −
∑

j∈B cj , which is a separable valu-
ation (cf. Example 5.2.2). In place of the valuated independent assignment
problem we may consider an independent assignment problem on the same
bipartite graph G = (V +, V −;E) and the same (non-valuated) matroids
M+

k = (V +,B+
k ) and M−

k = (V −,B−
k ), but with the arc weight redefined as

wij =
{

degs Tij(s) ((i, j) ∈ ET )
−cj ((i, j) = (jQ, j) ∈ EQ).

Then we have

δLM
k (A) = max{w(M) |M : independent assignment} +

∑

i∈RQ

ri.

This formulation under (MP-Q2) was introduced first by Murota [200] in
characterizing the dynamical degree (see also Murota [204, §27]), and then
applied to the problem of disturbance rejection by Murota–van der Woude
[242]. �

6.2.5 Duality Theorems

The basic identities on the degree of subdeterminants presented in §6.2.3 are
recast here into novel identities of duality nature. They are obtained from
the duality result (Theorem 5.2.39) on the valuated independent assignment
problem.
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Consider the valuated independent assignment problem for δLM
k (A). Let

M be an optimal independent assignment and (I, J,B) be defined by I =
∂+(M ∩ ET ), J = ∂−M , and B = ∂+(M ∩ EQ) (cf. (6.24)), where |I| = k,
|J | = mQ + k, and |B| = mQ.

Let p̂ : RT ∪C∪CQ → Z be the potential function in Theorem 5.2.39. We
may assume that p̂(jQ) = p̂(j) for j ∈ C, where jQ ∈ CQ denotes the copy
of j ∈ C. To see this, first note that p̂(jQ) ≥ p̂(j) for j ∈ C and the equality
holds if (jQ, j) ∈ M . For j ∈ C with (jQ, j) �∈ M , we can redefine p̂(jQ)
to be equal to p̂(j) without violating the conditions (i) and (ii) in Theorem
5.2.39(1). Define q ∈ ZRT and p ∈ ZC by

qi = p̂(i) (i ∈ RT ), pj = −p̂(j) (j ∈ C). (6.26)

The conditions (i)–(iii) in Theorem 5.2.39(1) are expressed as follows:

degs Tij(s) ≤ qi + pj ((i, j) ∈ ET ), (6.27)
degs Tij(s) = qi + pj ((i, j) ∈M ∩ ET ), (6.28)
ωQ[−p](B) = max

B′∈BQ

ωQ[−p](B′), (6.29)

q(I) = max
|I′|=k

q(I ′), (6.30)

p(J) = max
|J ′|=mQ+k

p(J ′), (6.31)

where q(I) =
∑

i∈I

qi and p(J) =
∑

j∈J

pj . These conditions imply

δLM
k (A) = degs detQ[RQ, B] + degs detT [I, J \B]

= ωQ(B) + q(I) + p(J \B)
= ωQ[−p](B) + q(I) + p(J)
= max

B′∈BQ

ωQ[−p](B′) + max
|I′|=k

q(I ′) + max
|J ′|=mQ+k

p(J ′). (6.32)

Thus we obtain the following theorem of Murota [233].

Theorem 6.2.11. For an LM-polynomial matrix A(s) =
(

Q(s)
T (s)

)
and an in-

teger k such that δLM
k (A) > −∞, the following identity holds true:

δLM
k (A) = min

qi+pj≥degs Tij

[

max
|I|=k

q(I) + max
|J|=mQ+k

p(J) + max
B∈BQ

ωQ[−p](B)
]

,

where the minimum is taken over all q ∈ RRT and p ∈ RC satisfying qi+pj ≥
degs Tij for all (i, j), and the minimum is attained by integer vectors q ∈ ZRT

and p ∈ ZC .

Proof. Let (I, J,B) be associated with an optimalM as above. For any (q′, p′)
with q′i + p′j ≥ degs Tij (∀(i, j)), we have
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δLM
k (A) = degs detQ[RQ, B] + degs detT [I, J \B]

≤ ωQ(B) + q′(I) + p′(J \B)
= ωQ[−p′](B) + q′(I) + p′(J)
≤ max

B′∈BQ

ωQ[−p′](B′) + max
|I′|=k

q′(I ′) + max
|J ′|=mQ+k

p′(J ′),

whereas the inequalities turn into equalities for (q′, p′) = (q, p), as in (6.32).

With p and q above, we can transform the matrix A(s) to another LM-
polynomial matrix that is somehow canonical with respect to δLM

k .

Theorem 6.2.12. For an LM-polynomial matrix A(s) =
(

Q(s)
T (s)

)
and an in-

teger k such that δLM
k (A) > −∞, there exist p ∈ ZC and q ∈ ZRT such

that

Ā(s) =
(
Q̄(s)
T̄ (s)

)

=
(
ImQ

O
O diag (s;−q)

)

·
(
Q(s)
T (s)

)

· diag (s;−p)

satisfy

δLM
k (Ā) = max

|B|=mQ

degs det Q̄[RQ, B] + max
|I|=|J|=k

degs det T̄ [I, J ]. (6.33)

We may additionally impose either

δLM
k (A) = δLM

k (Ā) + max
|I|=k

q(I) + max
|J|=mQ+k

p(J) (6.34)

or that Ā(s) be a polynomial matrix.

Proof. Let (I, J,B) be associated with an optimal M , and p and q be defined
by (6.26). Put S(s) = (Q[RQ, B]·diag (s;−pB))−1, where pB is the restriction
of p to B, and define

Â(s) =
(
Q̂(s)
T̂ (s)

)

=
(
S(s) O
O diag (s;−q)

)

·A(s) · diag (s;−p). (6.35)

The conditions (6.27)–(6.29) mean that

Â(s) =

⎛

⎝

B J \B C \ J
RQ ImQ

Q′
2(s) Q′

3(s)
I T ′

1(s) T •
2 (s) T ′

3(s)
RT \ I T ′′

1 (s) T ′′
2 (s) T ′′

3 (s)

⎞

⎠

is a proper rational matrix, in which T •
2 (s) admits a transversal consisting of

entries of degree zero. Obviously,

δLM
k (Â) = max

|B′|=mQ

degs det Q̂[RQ, B
′] + max

|I′|=|J ′|=k
degs det T̂ [I ′, J ′],
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in which all the three terms are equal to zero. This implies the first identity
(6.33). The second identity (6.34) is due to (6.32) combined with δLM

k (Ā) =
δLM
k (Â) + degs detS−1 = ωQ[−p](B). To make Ā(s) a polynomial matrix,

replace p by p − α1 with a sufficiently large α ∈ Z, where 1 is the vector of
all components equal to one. Note that this change does not affect (6.33).

Example 6.2.13. We illustrate the above argument for the LM-polynomial
matrix A(s) of (6.25) with k = 2. The vectors p ∈ ZC and q ∈ ZRT of (6.26)
are given by p = (−1,−1,−3,−4,−3) and q = (4, 3). Accordingly we have

Ā(s) =

x1 x2 x3 x4 x5

s4 0 s6 + s3 s6 s3

0 s3 s5 s5 0
f1 −t1 0 0 α1 α2

f2 0 −t2 α3 0 0

,

for which (6.33) holds true with δLM
2 (Ā) = 9 = 9 + 0. All the entries of Ā(s)

are polynomials, and the identity (6.34) also holds true, though these two may
not be compatible in general. Recall from Example 6.2.9 that I = {f1, f2},
J = {x1, x2, x3, x5}, B = {x1Q, x3Q}. The matrix Â(s) of (6.35) is equal to

Â(s) =

x1 x3 x5 x2 x4

1 0 1
s

−s3−1
s3

−1
s

0 1 0 1
s2 1

f1 −t1 0 α2 0 α1

f2 0 α3 0 −t2 0

.

In §6.2.6 we will come back to this example and explain how the vectors p
and q can be found (see the variable p in Fig. 6.4, in particular). �

As corollaries to the above theorem we obtain the following two theorems
on the degree of the whole determinant. The first theorem shows that an
LM-polynomial matrix can be transformed so that the maximization on the
right-hand side of (6.15) in Theorem 6.2.5 may be done separately for Q- and
T -parts. The second is a similar statement for a mixed polynomial matrix
treated in Theorem 6.2.4.

Theorem 6.2.14. For a nonsingular LM-polynomial matrix A(s) =
(

Q(s)
T (s)

)

there exists p ∈ ZC such that

Ā(s) =
(
Q̄(s)
T̄ (s)

)

=
(
Q(s)
T (s)

)

· diag (s;−p)

satisfies
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degs det Ā = max
|B|=|RQ|

degs det Q̄[RQ, B] + max
|J|=|RT |

degs det T̄ [RT , J ].

An additional condition that Ā(s) be a polynomial matrix may be imposed.

Proof. Apply Theorem 6.2.12 with k = mT = n−mQ to obtain p ∈ ZC . The
row transformation by diag (s;−q) is not necessary in the case of k = mT .
To make Ā(s) a polynomial matrix, replace p by p − α1 with a sufficiently
large α ∈ Z, where 1 is the vector of all components equal to one.

Theorem 6.2.15. For a nonsingular mixed polynomial matrix A(s) = Q(s)+
T (s), there exist pR ∈ ZR and pC ∈ ZC such that

Ā(s) = diag (s;−pR) ·A(s) · diag (s; pC)

satisfies

degs det Ā = max
|I|=|J|

I⊆R,J⊆C

degs det Q̄[I, J ]+ max
|I|=|J|

I⊆R,J⊆C

degs det T̄ [R\I, C\J ], (6.36)

where

Q̄(s) = diag (s;−pR) ·Q(s) · diag (s; pC),
T̄ (s) = diag (s;−pR) · T (s) · diag (s; pC).

An additional condition (i) pR ≥ 0, pC ≥ 0, or (ii) pR ≤ 0, pC ≤ 0, may be
imposed on pR and pC .

Proof. Apply Theorem 6.2.14 to the associated LM-polynomial matrix (6.18)
to obtain p̂ ∈ ZR∪C . Denote by p̂R and p̂C the restrictions of p̂ to R and to
C, respectively. Then put pR = d− p̂R and pC = −p̂C , where d ∈ ZR is the
vector of exponents in (6.18). For the additional condition, replace pR with
pR + α1 and pC with pC + α1 using a suitable α ∈ Z.

Example 6.2.16. The matrix Ā(s) in Theorem 6.2.15 may not be a polyno-
mial matrix. Consider, for example, a 2×2 mixed matrix A(s) = Q(s)+T (s)
with

A(s) =
s s+ 1 + t1s

s+ 1 + t2s t3s
, Q(s) =

s s+ 1
s+ 1 0 , T (s) =

0 t1s
t2s t3s

.

We may take pR = (1, 1) and pC = (0, 0) to obtain

Ā(s) =
1 1 + 1/s+ t1

1 + 1/s+ t2 t3
, Q̄(s) =

1 1 + 1/s
1 + 1/s 0 , T̄ (s) =

0 t1
t2 t3

,

for which (6.36) holds true. However, it can be verified that Ā(s) cannot be
a polynomial matrix in (6.36). �

See (1.37) for another example of Theorem 6.2.15.
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6.2.6 Algorithm

In §6.2.4 we have explained how to reduce the computation of δLM
k (A) to

solving a valuated independent assignment problem. Here we will provide an
algorithm for δLM

k (A) by adapting the augmenting algorithm of §5.2.13 for a
general valuated independent assignment problem.

The associated valuated independent assignment problem is defined on
the bipartite graph G = (V +, V −;E) = (RT ∪CQ, C;ET ∪EQ), where CQ is
a disjoint copy of C (with jQ ∈ CQ denoting the copy of j ∈ C), and

ET = {(i, j) | i ∈ RT , j ∈ C, Tij(s) �= 0}, EQ = {(jQ, j) | j ∈ C}.

To V + and V − are attached the valuated matroids M+ = (V +,B+, ω+) and
M− = (V −,B−, ω−) defined by

B+ = {B+ ⊆ V + | B+ ⊇ RT , B
+ ∩ CQ ∈ BQ}, B− = {V −},

ω+(B+) = ωQ(B+ ∩ CQ) (B+ ∈ B+), ω−(B−) = 0 (B− ∈ B−),

where BQ and ωQ are given in (6.21) and (6.22). The arc weight w is the
same as in (6.23).

The algorithm solves VIAP(mQ + k) for k = 0, 1, 2, · · · , kmax by the aug-
menting algorithm of §5.2.13 to compute the value of δLM

k (A) successively
for k = 0, 1, 2, · · · , kmax, where kmax is the maximum k with δLM

k (A) > −∞.
Namely, the algorithm maintains a pair (M,B) of a matching M ⊆ ET ∪EQ

and a base B ∈ BQ (⊆ 2CQ) that maximizes

Ω′′(M,B) ≡ w(M) + ωQ(B) = w(M ∩ ET ) + ωQ(B) (6.37)

subject to the constraint that ∂+(M ∩EQ) = B and M is of a specified size.
We put

MT = M ∩ ET , MQ = M ∩ EQ.

With reference to (M,B) it constructs an auxiliary directed graph G̃ =
G̃(M,B) = (Ṽ , Ẽ) with vertex set Ṽ = RT ∪ CQ ∪ C and arc set Ẽ = ET ∪
EQ ∪ E+ ∪M◦, where

E+ = {(iQ, jQ) | iQ ∈ B, jQ ∈ CQ \B,B − iQ + jQ ∈ BQ},
M◦ = {a | a ∈M} (a: reorientation of a).

It should be emphasized that the arcs in E+ have both ends in CQ and
that the arcs in M◦ are directed from C to RT ∪ CQ, i.e., ∂+M◦ ⊆ C and
∂−M◦ ⊆ RT ∪ CQ. We put

M◦
T = {a ∈M◦ | ∂−a ∈ RT } = {a | a ∈MT },

M◦
Q = {a ∈M◦ | ∂−a ∈ CQ} = {a | a ∈MQ}.

We define the entrance S+ ⊆ Ṽ and the exit S− ⊆ Ṽ by



6.2 Degree of Determinant of Mixed Polynomial Matrices 349

S+ = RT \ ∂+MT = RT \ ∂−M◦
T , S− = C \ ∂−M = C \ ∂+M◦.

Note that no vertex in CQ belongs to the entrance S+.
We define the arc length γ = γ(M,B) : Ẽ → Z by

γ(M,B)(a) =

⎧
⎪⎪⎨

⎪⎪⎩

−degs Tij(s) (a = (i, j) ∈ ET )
degs Tij(s) (a = (j, i) ∈M◦

T )
−ωQ(B, iQ, jQ) (a = (iQ, jQ) ∈ E+)
0 (a ∈ EQ ∪M◦

Q)

(6.38)

where ωQ(B, iQ, jQ) = ωQ(B − iQ + jQ) − ωQ(B), compatibly with the no-
tation (5.21). By (5.23) we can compute ωQ(B, iQ, jQ) by means of pivoting
operations on Q(s), namely, for P (s) = S(s)Q(s) with S(s) = Q[RQ, B]−1

we have ωQ(B, iQ, jQ) = degs Pij(s).
Suppose there is a shortest path in G̃(M,B) from the entrance S+ to the

exit S− with respect to the arc length γ, and let L be (the set of arcs on) a
shortest path from S+ to S− having the smallest number of arcs. Then we
can update (M,B) to (M,B) by

M = M − {a ∈M | a ∈ L ∩M◦} + (L ∩ (ET ∪ EQ)), (6.39)
B = B − {∂+a | a ∈ L ∩ E+} + {∂−a | a ∈ L ∩ E+}. (6.40)

In fact,M is obviously a matching with ∂+(M∩EQ) = B and |M | = |M |+1,
and furthermore, Theorem 5.2.62 shows that B ∈ BQ and (M,B) maximizes
Ω′′(M,B) under these constraints.

Our algorithm for δLM
k (A) repeats finding a shortest path and updating

(M,B) as follows.

Outline of the algorithm
Starting from a maximum-weight base B ∈ BQ with respect to ωQ

and the corresponding matching M = {(jQ, j) | jQ ∈ B}, repeat
(i)–(ii) below:
(i) Find a shortest path L having the smallest number of arcs from

S+ to S− in G̃(M,B) with respect to the arc length γ(M,B) of
(6.38). [Stop if there is no path from S+ to S−.]

(ii) Update (M,B) according to (6.39) and (6.40).

An initial base B of maximum value of ωQ can be found by the greedy
algorithm described in §5.2.4. At each stage of this algorithm it holds that
δLM
k (A) = Ω′′(M,B) for k = |M | −mQ and that (I, J,B) defined by (6.24)

gives the maximum in the expression (6.17) of δLM
k (A).

As has been explained in §5.2.13, the above algorithm can be made more
efficient by the explicit use of a potential function on the auxiliary graph
G̃ = (Ṽ , Ẽ). To this end we maintain p : Ṽ → Z that satisfies
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− degs Tij(s) + p(i) − p(j) ≥ 0 ((i, j) ∈ ET ), (6.41)
−degs Tij(s) + p(i) − p(j) = 0 ((i, j) ∈MT ), (6.42)

p(jQ) − p(j) ≥ 0 (j ∈ C), (6.43)
p(jQ) − p(j) = 0 ((jQ, j) ∈MQ), (6.44)

−ωQ(B, iQ, jQ) + p(iQ) − p(jQ) ≥ 0 ((iQ, jQ) ∈ E+), (6.45)
p(i) − p(k) ≥ 0 (i ∈ RT , k ∈ S+), (6.46)
p(k) − p(j) ≥ 0 (j ∈ C, k ∈ S−). (6.47)

It is remarked that the existence of such p implies the optimality of (M,B)
with respect to Ω′′ of (6.37). In fact, for any (M ′, B′) with |M ′| = |M | and
∂+(M ′ ∩ EQ) = B′ we have

w(M ′) + ωQ(B′) = wp(M ′) + ωQ[pQ](B′) + p(∂+M ′
T ) − p(∂−M ′)

≤ ωQ[pQ](B) + p(∂+MT ) − p(∂−M)
= w(M) + ωQ(B),

where M ′
T = M ′ ∩ ET , wp(a) = w(a) − p(∂+a) + p(∂−a), and pQ denotes

the restriction of p to CQ. Note that wp(M ′) ≤ wp(M) = 0 by (6.41)–(6.44),
ωQ[pQ](B′) ≤ ωQ[pQ](B) by (6.45) and Theorem 5.2.7, p(∂+M ′

T ) ≤ p(∂+MT )
by (6.46), and p(∂−M ′) ≥ p(∂−M) by (6.47).

Initially, we have MT = ∅ and ωQ(B, iQ, jQ) ≤ 0 for all (iQ, jQ) ∈ E+,
and therefore we can put

p(i) = max
k∈RT ,j∈C

degs Tkj(s) (i ∈ RT ), p(j) = p(jQ) = 0 (j ∈ C)

(6.48)
to meet the conditions (6.41)–(6.47). In general steps, p is updated to

p(v) = p(v) +Δp(v) (v ∈ Ṽ ) (6.49)

based on the length Δp(v) of the shortest path from S+ to v with respect to
the modified arc length

γp(a) = γ(a) + p(∂+a) − p(∂−a) ≥ 0 (a ∈ Ẽ), (6.50)

where the nonnegativity of γp is due to (6.41)–(6.47). Then p satisfies the
conditions (6.41)–(6.47) (see Lemmas 5.2.65, 5.2.66, and 5.2.68).

To compute ωQ(B, iQ, jQ) we use two matrices (or two-dimensional ar-
rays) P = P (s) and S = S(s), as well as two vectors (or one-dimensional
arrays) base and p. The array P represents an mQ × n matrix of rational
functions in s over K, where P = Q at the beginning of the algorithm (Step
1 below). The other array S is an mQ ×mQ matrix of rational functions in
s over K, which is set to the unit (identity) matrix in Step 1. The variable
base is a vector of size mQ, which represents a mapping (correspondence):
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RQ → C ∪ {0}. The vector p, indexed by RT ∪ C ∪ CQ, represents the po-
tential function satisfying (6.41)–(6.47). We also use a scalar (integer-valued)
variable δQ to compute ωQ(B).

The following algorithm computes δLM
k (A) for k = 0, 1, 2, · · · , kmax, as well

as the value of kmax, where kmax = −1 by convention, if rankQ(s) < mQ.

Algorithm for δLM
k (A) (k = 0, 1, 2, · · · , kmax)

Step 1: [Initialize]
M := ∅; B := ∅; δQ := 0;
base[i] := 0 (i ∈ RQ); P [i, j] := Qij (i ∈ RQ, j ∈ C);
S := unit matrix of order mQ;
p[i] := max

k∈RT ,j∈C
degs Tkj (i ∈ RT ); p[j] := p[jQ] := 0 (j ∈ C). [cf. (6.48)]

Step 2: [Find B ∈ BQ that maximizes ωQ]
While |B| < mQ do

{Find (h, j) that maximizes degs P [h, j]
subject to base[h] = 0, jQ �∈ B, and P [h, j] �= 0;

If there exists no such (h, j), then stop with kmax := −1;
B := B + jQ; δQ := δQ + degs P [h, j]; M := M + (jQ, j);
base[h] := j; w := 1/P [h, j];
P [h, l] := w × P [h, l] (l ∈ C); S[h, l] := w × S[h, l] (l ∈ RQ);
P [m, l] := P [m, l] − P [m, j] × P [h, l] (m ∈ RQ \ {h}, l ∈ C \ {j});
S[m, l] := S[m, l] − P [m, j] × S[h, l] (m ∈ RQ \ {h}, l ∈ RQ);
P [m, j] := 0 (m ∈ RQ \ {h}) };

k := 0.
Step 3: [Construct the auxiliary graph G̃(M,B)]

δLM
k (A) := δQ +

∑

(i,j)∈M∩ET

degs Tij ;

S+ := RT \ ∂+(M ∩ ET ); S− := C \ ∂−M ; M◦ := {a | a ∈M};
E+ := {(iQ, jQ) | h ∈ RQ, jQ �∈ B,P [h, j] �= 0, i = base[h]};

γ(a) :=

⎧
⎪⎪⎨

⎪⎪⎩

−degs Tij(s) (a = (i, j) ∈ ET )
degs Tij(s) (a = (j, i) ∈M◦

T )
−degs P [h, j] (a = (iQ, jQ) ∈ E+, base[h] = i)
0 (a ∈ EQ ∪M◦

Q)
[cf. (6.38)]

where M◦
T = {a | a ∈M ∩ ET }, M◦

Q = {a | a ∈M ∩ EQ};
γp(a) := γ(a) + p[∂+a] − p[∂−a] (a ∈ Ẽ). [cf. (6.50)]

Step 4: [Augment M along a shortest path]
For each v ∈ Ṽ compute the length Δp(v) of the shortest path from S+

to v in G̃(M,B) with respect to the modified arc length γp;
If there is no path from S+ to S− (including the case where S+ = ∅ or
S− = ∅), then stop with kmax := k;
Let L (⊆ Ẽ) be (the set of arcs on) a shortest path, having the smallest
number of arcs, from S+ to S− with respect to the modified arc length
γp;
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M := M − {a ∈M | a ∈ L ∩M◦} + (L ∩ (ET ∪ EQ)) ; k := k + 1;
p[v] := p[v] +Δp(v) (v ∈ Ṽ ); [cf. (6.49)]
For all (iQ, jQ) ∈ L ∩ E+ (in the order from S+ to S− along L) do the
following:

{Find h such that i = base[h];
B := B − iQ + jQ; δQ := δQ + degs P [h, j];
base[h] := j; w := 1/P [h, j];
P [h, l] := w × P [h, l] (l ∈ C); S[h, l] := w × S[h, l] (l ∈ RQ);
P [m, l] := P [m, l] − P [m, j] × P [h, l] (m ∈ RQ \ {h}, l ∈ C \ {j});
S[m, l] := S[m, l] − P [m, j] × S[h, l] (m ∈ RQ \ {h}, l ∈ RQ);
P [m, j] := 0 (m ∈ RQ \ {h}) };

Go to Step 3. �

Step 2 for finding a maximum-weight base B ∈ BQ is justified by the
greedy algorithm for a valuated bimatroid given in §5.2.5 (see also Example
5.2.15).

For the updates of P in Steps 2 and 4, the algorithm assumes the avail-
ability of arithmetic operations on rational functions in a single variable s
over the subfield K. It is emphasized that no arithmetic operations are done
on the T -part, so that no rational function operations involving coefficients
in T (which are independent symbols) are needed.

The updates of P are the standard pivoting operations on rational func-
tions in s over K, the total number of which is bounded by O(|R|2|C| kmax).
Note that pivoting operations are required for each arc (iQ, jQ) ∈ L ∩ E+

(see Step 4). The sparsity of P should be taken into account in actual imple-
mentations of the algorithm.

The matrix S(s) gives the inverse of Q[RQ, B], which is often useful (see,
e.g., the proof of Theorem 6.2.12). When S(s) is not needed, it may simply
be eliminated from the computation without any side effect.

The shortest path in Step 4 can be found in time linear in the size of the
graph G̃, which is O((|R|+|C|)2), by means of the standard graph algorithms;
see, e.g., Aho–Hopcroft–Ullman [1, 2].

Remark 6.2.17. The above algorithm can be used to compute δk(A) for a
mixed polynomial matrix A(s) by considering the associated LM-mixed poly-
nomial matrix on the basis of Lemma 6.2.6. This is what is called “Algorithm
D” in §1.3.2. �

Example 6.2.18. The algorithm above is illustrated here for the 4× 5 LM-
polynomial matrix A(s) of (6.25):

A(s) =

x1 x2 x3 x4 x5

s3 0 s3 + 1 s2 1
0 s2 s2 s 0

f1 −t1s3 0 0 α1 α2s

f2 0 −t2s2 α3 0 0

.
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We work with a 2× 5 matrix P (s), a 2× 2 matrix S(s), a vector base of size
2, and another vector p of size 12.

The flow of computation is traced below.

Step 1: M := ∅; B := ∅; δQ := 0;

(base, P, S) :=
r1 0
r2 0

,

x1 x2 x3 x4 x5

s3 0 s3 + 1 s2 1
0 s2 s2 s 0

,
1 0
0 1

;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

3 3 0 0 0 0 0 0 0 0 0 0 .

Step 2: (h, j) := (r1, x1); B := {x1Q}, δQ := 3; M := {(x1Q, x1)};

(base, P, S) :=
r1 x1

r2 0
,

x1 x2 x3 x4 x5

1 0 s3+1
s3

1
s

1
s3

0 s2 s2 s 0
,

1
s3 0

0 1
;

(h, j) := (r2, x2); B := {x1Q, x2Q}, δQ := 5; M := {(x1Q, x1), (x2Q, x2)};

(base, P, S) :=
r1 x1

r2 x2

,

x1 x2 x3 x4 x5

1 0 s3+1
s3

1
s

1
s3

0 1 1 1
s 0

,
1
s3 0

0 1
s2

;

k := 0.
Step 3: δLM

0 (A) := 5; S+ := {f1, f2}; S− := {x3, x4, x5};
M◦ := {(x1, x1Q), (x2, x2Q)};
E+ := {(x1Q, x3Q), (x1Q, x4Q), (x1Q, x5Q), (x2Q, x3Q), (x2Q, x4Q)};
γ and γp are given in G̃(0) of Fig. 6.2. [See G̃(0) in Fig. 6.2]

Step 4:

Δp :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

0 0 0 1 0 1 2 0 1 0 1 3 ;

There exists a path from S+ to S−;
L := {(f1, x1), (x1, x1Q), (x1Q, x3Q), (x3Q, x3)};
M := {(f1, x1), (x2Q, x2), (x3Q, x3)}; k := 1;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

3 3 0 1 0 1 2 0 1 0 1 3 ;

(iQ, jQ) := (x1Q, x3Q) ∈ L ∩ E+; h := r1; B := {x3Q, x2Q}, δQ := 5;

(base, P, S) :=
r1 x3

r2 x2

,

x1 x2 x3 x4 x5

s3

s3+1 0 1 s2

s3+1
1

s3+1

− s3

s3+1 1 0 1
s(s3+1)

−1
s3+1

,
1

s3+1 0
−1

s3+1
1
s2

.
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RT C CQ

ET EQ

E+

f1

f2

x1

x2

x3

x4

x5

x1Q

x2Q

x3Q

x4Q

x5Q

+

+

−

−

−

�
γ/γp

= −3/0

�

0/3

�−1/2

�
−2/1

�0/3



γ/γp

= 0/0

0/0

0/0

0/0

0/0

�

�


0/0


1/1


0/0


1/1



3/3

v f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

p 3 3 0 0 0 0 0 0 0 0 0 0
Δp 0 0 0 1 0 1 2 0 1 0 1 3

Fig. 6.2. Graph G̃(0) (©: arc in M , B = {x1Q, x2Q}, S+ = {f1, f2}, S− =
{x3, x4, x5})

Step 3: δLM
1 (A) := 5 + 3 = 8; S+ := {f2}; S− := {x4, x5};

M◦ := {(x1, f1), (x2, x2Q), (x3, x3Q)};
E+ := {(x2Q, x1Q), (x2Q, x4Q), (x2Q, x5Q), (x3Q, x1Q),

(x3Q, x4Q), (x3Q, x5Q)};
γ and γp are given in G̃(1) of Fig. 6.3. [See G̃(1) in Fig. 6.3]

Step 4:

Δp :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

1 0 1 0 3 3 1 1 0 3 3 1 ;

There exists a path from S+ to S−;
L := {(f2, x2), (x2, x2Q), (x2Q, x1Q), (x1Q, x1), (x1, f1), (f1, x5)};
M := {(f1, x5), (f2, x2), (x1Q, x1), (x3Q, x3)}; k := 2;

p :=
f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

4 3 1 1 3 4 3 1 1 3 4 4 ;

(iQ, jQ) := (x2Q, x1Q) ∈ L ∩ E+; h := r2; B := {x3Q, x1Q}, δQ := 5;

(base, P, S) :=
r1 x3

r2 x1

,

x1 x2 x3 x4 x5

0 1 1 1
s 0

1 −s3−1
s3 0 −1

s4
1
s3

,
0 1

s2

1
s3

−s3−1
s5

.



6.3 Smith Form of Mixed Polynomial Matrices 355

RT C CQ

ET EQ

E+

f1

f2

x1

x2

x3

x4

x5

x1Q

x2Q

x3Q

x4Q

x5Q

+ −

−

�
γ/γp

= ±3/0

�

0/2

�−1/0

�
−2/0

�0/3



γ/γp

= 0/0

0/0

0/0

0/0

0/1

�
�

�

	0/1


4/4

	
0/0


3/0


3/1
1/0

v f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

p 3 3 0 1 0 1 2 0 1 0 1 3
Δp 1 0 1 0 3 3 1 1 0 3 3 1

Fig. 6.3. Graph G̃(1) (©: arc in M , B = {x2Q, x3Q}, S+ = {f2}, S− = {x4, x5})

Step 3: δLM
2 (A) := 5 + 3 = 8; S+ := ∅; S− := {x4};

M◦ := {(x5, f1), (x2, f2), (x1, x1Q), (x3, x3Q)};
E+ := {(x1Q, x2Q), (x1Q, x4Q), (x1Q, x5Q), (x3Q, x2Q), (x3Q, x4Q)};
γ and γp are given in G̃(2) of Fig. 6.4. [See G̃(2) in Fig. 6.4]

Step 4: There exists no path from S+ (= ∅) to S−;
Stop with kmax := 2.

�

Notes. This section is based mostly on Murota [233]. In particular, The-
orems 6.2.8, 6.2.11, 6.2.14, and 6.2.15 are found in Murota [233], whereas
Theorem 6.2.4 is given in Murota [200]. The problem of computing the de-
gree of determinant will be considered again in §7.1.

6.3 Smith Form of Mixed Polynomial Matrices

The Smith normal form of a mixed polynomial matrix A(s) = Q(s) + T (s)
is investigated. It is shown that all the invariant factors except for the last
are polynomials in s free from the coefficients in T (s), and the last invariant
factor can be expressed in terms of the CCF of an associated LM-matrix.

6.3.1 Expression of Invariant Factors

Let A(s) = Q(s)+T (s) be an m×n mixed polynomial matrix of rank r with
respect to (K,F ) satisfying, by definition, (MP-Q1) and (MP-T) in §6.1.1.
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v f1 f2 x1 x2 x3 x4 x5 x1Q x2Q x3Q x4Q x5Q

p 4 3 1 1 3 4 3 1 1 3 4 4

Fig. 6.4. Graph G̃(2) (©: arc in M , B = {x1Q, x3Q}, S+ = ∅, S− = {x4})

Regarding A(s) as a polynomial matrix in s over F , we define (cf. §5.1.1) the
kth determinantal divisor dk(s) ∈ F [s] by

dk(s) = gcd F [s]{detA[I, J ] | |I| = |J | = k} (k = 1, · · · , r) (6.51)

and the kth invariant factor ek(s) ∈ F [s] by

ek(s) =
dk(s)
dk−1(s)

(k = 1, · · · , r), (6.52)

where dk(s) and ek(s) are chosen to be monic in F [s] for k = 1, · · · , r. Then
the Smith form of A(s) is given (cf. Theorem 5.1.1) by

ΣA(s) = diag (e1(s), · · · , er(s), 0, · · · , 0).

Note that the coefficients of dk(s) and ek(s) are, in general, rational functions
in T over K, where T (⊆ F ) denotes the set of the coefficients in the entries
of T (s).

Example 6.3.1. Consider a 2 × 2 mixed polynomial matrix A(s) = Q(s) +
T (s) with respect to (K,F ) = (Q,Q(τ1, τ2, τ3)) given by

A(s) =
(
s+ τ1 s+ τ3

0 τ2s+ 1

)

, Q(s) =
(
s s
0 1

)

, T (s) =
(
τ1 τ3
0 τ2s

)

.

The Smith form of A(s) is given by ΣA(s) = diag [1, (s+τ1)(s+1/τ2)], which
is true under the condition of algebraic independence of T = {τ1, τ2, τ3}.
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This expression, however, is no longer valid if specific numerical values are
given to the parameters in T . Namely, it can be verified easily that ΣA(s) =
diag [s + τ1, s + τ1] if τ1 = 1/τ2 = τ3, and otherwise the first expression is
valid. It is emphasized that the theorems of this section deal with the generic
situation where no algebraic relation exists among the parameters in T . �

Before entering into the Smith form it is in order to point out a remarkable
implication of the stronger condition on Q(s):

(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
over K, i.e., of the form αsp with α ∈ K and an integer p,

introduced for physical-dimensional consistency. If A(s) = Q(s) + T (s) is
nonsingular, its determinant is a nonvanishing polynomial in (s, T ) over K.
The following lemma claims that detA(s) contains no (nonmonomial) poly-
nomial in s free from T as an irreducible factor in K[s, T ]. This fact affords
a rich structure to the class of mixed polynomial matrices with the condition
(MP-Q2) (see Remark 6.2.10 for another implication of (MP-Q2)).

Lemma 6.3.2. For a nonsingular mixed polynomial matrix A(s) = Q(s) +
T (s) satisfying the stronger condition (MP-Q2), the decomposition of detA(s)
into irreducible factors in K[s, T ] is expressed as

detA(s) = αsp ·
∏

k

ψk(s, T ),

where α ∈ K \{0}, p is a nonnegative integer, and ψk(s, T ) ∈ K[s, T ]\K[s]
and ψk(s, T ) is irreducible in K[s, T ] for each k. Hence, detA(z) = 0 for z
algebraic over K(T ) implies either z = 0 or z is transcendental over K.

Proof. By (6.4) we have

A(s) = diag [sr1 , · · · , srn ] · (Q(1) + T̃ (s)) · diag [s−c1 , · · · , s−cn ],

where T̃ (s) = diag [s−r1 , · · · , s−rn ] · T (s) · diag [sc1 , · · · , scn ]. For any nonzero
number, say z, that is algebraic over K, Q(1) + T̃ (z) is a mixed matrix
with respect to (K,F (z)). Applications of Theorem 4.2.8 to Q(1)+ T̃ (s) and
Q(1) + T̃ (z) show that the nonsingularity of A(s) implies that of A(z). This
means that detA(s) has no factor in K[s] except for a monomial in s.

The properties of the Smith form of A(s) are stated in Theorems 6.3.3 and
6.3.4 below. The former refers to ek(s) for k = 1, · · · , r−1, whereas the latter
to er(s). Recall the notation ords(·) for the lowest degree of a nonvanishing
term of a polynomial (cf. §2.1.1).

Theorem 6.3.3. Let A(s) = Q(s) + T (s) be a mixed polynomial matrix of
rank r with respect to (K,F ). For k = 1, · · · , r − 1, the kth monic determi-
nantal divisor dk(s) and the kth monic invariant factor ek(s) of A(s) contain
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no elements of T , that is, dk(s) ∈ K[s] and ek(s) ∈ K[s]. Moreover, if Q(s)
satisfies the stronger condition (MP-Q2), then they are monomials:

dk(s) = spk , ek(s) = spk−pk−1 (k = 1, · · · , r − 1) (6.53)

with exponents given by

pk = min{ords detA[I, J ] | |I| = |J | = k} (k = 1, · · · , r − 1), (6.54)

where p0 = 0 by convention.

Proof. The proof is given in §6.3.2.

To determine the last invariant factor er(s) we associate with A(s) an
augmented (2m) × (m+ n) matrix

Ã(s) = Ã(s; t) =
(

Im Q(s)
−diag (t1, · · · , tm) T (s)

)

=
(
Q̃(s)
T̃ (s; t)

)

, (6.55)

where t1, · · · , tm are new indeterminates, t = (t1, · · · , tm), and

Q̃(s) = [Im | Q(s)], T̃ (s; t) = [−diag (t1, · · · , tm) | T (s)].

Since (
Im O
Im Im

)(
Im Q(s)
−Im T (s)

)(
Im −Q(s)
O In

)

=
(
Im O
O A(s)

)

,

the Smith form of Ã(s; 1) = Ã(s; t)
∣
∣
∣
t1=···=tm=1

is given as

(
Im O
O ΣA(s)

)

(6.56)

in terms of the Smith form ΣA(s) of A(s). In particular, the last invariant
factor of Ã(s; 1) is equal to er(s).

The augmented matrix Ã(s; t) in (6.55) is an LM-matrix with respect
to (K(s),F (s, t)). It can also be viewed as an LM-matrix with respect to
(K[s],F (s, t)) for the integral domain D = K[s] in the sense of §4.4.7, i.e.,
Ã(s; t) ∈ LM(K[s],F (s, t)), since Q̃(s) is a polynomial matrix over K. The
CCF of such an LM-matrix has been considered in Theorem 4.4.19.

Let Ā = Ā(s; t) be the CCF of Ã(s; t) in Theorem 4.4.19 and denote by
{Āl(s; t) | l = 0, 1, · · · , b,∞} the family of the LM-irreducible diagonal blocks
of Ā(s; t), where Ā0 = Ā0(s; t) and Ā∞ = Ā∞(s; t) are the horizontal and the
vertical tail, and Āl = Āl(s; t) (l = 1, · · · , b) are the square LM-irreducible
blocks; we put Rl = Row(Āl) and Cl = Col(Āl) for l = 0, 1, · · · , b,∞. Recall
from Theorem 4.4.19 that there exists Â(s; t) obtained from Ã(s; t) through
a unimodular transformation over K[s] such that Â[Rl, Cj ] = Ā[Rl, Cj ] =
O for l > j and Â[Rl, Cl] = Ā[Rl, Cl] for l = 0, 1, · · · , b,∞. In particular,
the diagonal block Ā[Rl, Cl] consists of polynomials in (s, t, T ) over K for
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l = 0, 1, · · · , b,∞. We denote by d̄0r(s) and d̄∞r (s) the monic determinantal
divisors in F (t)[s] of the largest order of Ā0(s; t) and Ā∞(s; t), respectively.

The following theorem states that er(s) is characterized by the diagonal
blocks of Ā(s; t).

Theorem 6.3.4. Let A(s) = Q(s) + T (s) be a mixed polynomial matrix of
rank r with respect to (K,F ) and {Āl(s; t) | l = 0, 1, · · · , b,∞} be as above.
The rth monic determinantal divisor dr(s) and the rth monic invariant factor
er(s) of A(s) can be expressed as

dr(s) = αr ·d′r(s)·
b∏

l=1

det Āl(s; 1), er(s) = αr ·e′r(s)·
b∏

l=1

det Āl(s; 1), (6.57)

where αr ∈ F , d′r(s) = d̄0r(s) · d̄∞r (s) ∈ K[s], and e′r(s) ∈ K[s]. Moreover, if
Q(s) satisfies the stronger condition (MP-Q2), it holds that

d̄0r(s) = sp̄
0
r , d̄∞r (s) = sp̄

∞
r , e′r(s) = sp̄

0
r+p̄∞

r −pr−1 , (6.58)

where

p̄0r = min{ords det Ā0(s; t)[R0, J ] | |J | = |R0|}, (6.59)
p̄∞r = min{ords det Ā∞(s; t)[I, C∞] | |I| = |C∞|}, (6.60)

and pr−1 is given by (6.54).

Proof. The proof is given in §6.3.2.

As a corollary to this theorem we can identify those parameters in T
which affect the Smith form of A(s).

Theorem 6.3.5. The rth monic invariant factor of A(s) depends on τ ∈ T
if and only if τ is contained in some square LM-irreducible block Āl(s; t) of
the CCF of Ã(s; t) such that det Āl(s; t) is not a monomial in s over F .

Proof. Recall the expression of er(s) in Theorem 6.3.4. All the parameters of T
contained in Āl(s; 1) with 1 ≤ l ≤ b appear in det Āl(s; 1) by Theorem 4.5.4.
They remain after the normalization by αr ∈ F if and only if det Āl(s; 1) is
not a monomial in s over F .

Remark 6.3.6. The monomiality of det Āl(s; 1) in Theorem 6.3.5 can be
checked efficiently by computing degs det Āl(s; 1) and ords det Āl(s; 1) by
the algorithm of §6.2, since det Āl(s; 1) is monomial in s if and only if
degs det Āl(s; 1) = ords det Āl(s; 1). See §6.4.4 for a concrete procedure for
this idea with an additional improvement. �

Remark 6.3.7. In case A(s) is an LM-matrix, there is no need to introduce
the augmented LM-matrix Ã(s; t). The claims in Theorems 6.3.4 and 6.3.5
remain valid when we redefine Ā to be the CCF of A(s) ∈ LM(K[s],F (s))
such as in Theorem 4.4.19. �
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Let us specialize Theorems 6.3.3 and 6.3.4 to a generic polynomial ma-
trix A(s) (of which all the nonzero coefficients are algebraically indepen-
dent). Such A(s) is a mixed polynomial matrix with Q(s) = O, satisfying the
stronger assumption (MP-Q2) trivially.

Theorem 6.3.8. Let A(s) be a generic polynomial matrix of rank r, and
{Āl(s) | l = 0, 1, · · · , b,∞} be the DM-components of A(s). For k = 1, · · · , r−
1, the kth monic determinantal divisor dk(s) and the kth monic invariant
factor ek(s) of A(s) are monomials given by (6.53) and (6.54). The rth monic
determinantal divisor dr(s) and the rth monic invariant factor er(s) of A(s)
are given by (6.57)–(6.60), in which Āl(s; t) is replaced by Āl(s).

Proof. In addition to Theorems 6.3.3 and 6.3.4, note Remark 6.3.7 and the
fact that the CCF reduces to the DM-decomposition in this special case.

Remark 6.3.9. The present results on the Smith form, Theorems 6.3.4 and
6.3.8 in particular, will find direct applications in the argument on structural
controllability in §6.4. �

Example 6.3.10. The theorems above are illustrated here for a 5×5 matrix

A(s) =

⎛

⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5

w1 0 0 1 + τ1s 3s τ2
w2 s 1 1 0 τ3 + τ4s
w3 2s2 2s 2s 0 τ5s
w4 0 0 0 s2 τ6
w5 2s3 2s2 2s2 0 s+ τ7s2

⎞

⎟
⎟
⎟
⎟
⎠
.

This is a mixed polynomial matrix with respect to (K,F ) = (Q,Q(T )) for
T = {τ1, τ2, τ3, τ4, τ5, τ6, τ7}, admitting the decomposition A(s) = Q(s)+T (s)
with

Q(s) =

⎛

⎜
⎜
⎜
⎝

0 0 1 3s 0
s 1 1 0 0

2s2 2s 2s 0 0
0 0 0 s2 0

2s3 2s2 2s2 0 s

⎞

⎟
⎟
⎟
⎠
, T (s) =

⎛

⎜
⎜
⎜
⎝

0 0 τ1s 0 τ2
0 0 0 0 τ3 + τ4s
0 0 0 0 τ5s
0 0 0 0 τ6
0 0 0 0 τ7s

2

⎞

⎟
⎟
⎟
⎠
.

Note that Q(s) satisfies the stronger condition (MP-Q2) with

(r1, · · · , r5) = (1, 1, 2, 2, 3), (c1, · · · , c5) = (0, 1, 1, 0, 2)

in (6.4). The augmented LM-matrix Ã(s; t) of (6.55) is given by
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Ã(s; t) =

w1 w2 w3 w4 w5 x1 x2 x3 x4 x5

1 0 0 1 3s 0
1 s 1 1 0 0

1 2s2 2s 2s 0 0
1 0 0 0 s2 0

1 2s3 2s2 2s2 0 s
−t1 0 0 τ1s 0 τ2

−t2 0 0 0 0 τ3 + τ4s
−t3 0 0 0 0 τ5s

−t4 0 0 0 0 τ6
−t5 0 0 0 0 τ7s

2

.

The CCF Ā(s; t) of Ã(s; t), of which the diagonal blocks are matrices over
Q[s, t, T ], is given by

Ā(s; t) =

C0 C1 C2 C3 C∞
x1 x2 w1 x3 x4 w4 w3 w5 w2 x5

s 1 1 1
1 1 −3/s

−t1 τ1s τ2
s2 1

−t4 τ6
1 0 −2s 0
0 1 −2s2 s

−t3 0 0 τ5s
0 −t5 0 τ7s

2

0 0 −t2 τ3 + τ4s

.

Note that the diagonal blocks are polynomial matrices in s whereas a fraction
“−3/s” is contained in an off-diagonal block. The CCF consists of nonempty
tails and three square diagonal blocks. The CCF reveals that r = rankA(s) =
4 (< 5). According to Theorem 6.3.4 we see that

d4(s) = α4 · sp̄
0
4+p̄∞

4 · (τ1s+ 1) · s2 · (−1)

with p̄04 = 0 and p̄∞4 = 1, where α4 = −1/τ1 to make d4(s) a monic polyno-
mial. Therefore,

d4(s) = s3 · (s+ 1/τ1).

As for the other determinantal divisors, we obtain d1(s) = d2(s) = d3(s) = 1
from (6.53) and (6.54). Hence the Smith form ΣA(s) of A(s) is given by

ΣA(s) = diag [1, 1, 1, s3(s+ 1/τ1), 0].

Note that τ1, contained in Ā1(s; t), is the only member of T that appears in
ΣA(s), as predicted by Theorem 6.3.5.

Finally, we mention the matrix Â(s; t). We choose, for instance,
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{x1, x2} ≺ {w1, x3} ≺ {x4} ≺ {w4} ≺ {w3, w5, w2, x5}

as a linear extension of the partial order in the CCF of Ã(s; t). Then

Â(s; t) = Pr

(
L(s) O
O I5

)

Ã(s; t)Pc, Ā(s; t) = Pr

(
U(s)L(s) O

O I5

)

Ã(s; t)Pc

with

L(s) =

⎛

⎜
⎜
⎜
⎝

1
1

−2s 1
1

−2s2 1

⎞

⎟
⎟
⎟
⎠
, U(s) =

⎛

⎜
⎜
⎜
⎝

1 −3/s
1

1
1

1

⎞

⎟
⎟
⎟
⎠

and permutation matrices Pr and Pc. Note that L(s) is a unimodular poly-
nomial matrix in s over Q. The block-triangular matrix Â(s; t) is given by

Â(s; t) =

C0 C1 C2 C3 C∞
x1 x2 w1 x3 x4 w4 w3 w5 w2 x5

s 1 1 1
1 1 3s

−t1 τ1s τ2
s2 1

−t4 τ6
1 0 −2s 0
0 1 −2s2 s

−t3 0 0 τ5s
0 −t5 0 τ7s

2

0 0 −t2 τ3 + τ4s

.

As claimed, the matrix Â is a polynomial matrix in s and it agrees with Ā
in the diagonal blocks. Also notice the difference between the zero/nonzero
structures of Ā and Â. In particular, we can exchange the positions of the
two blocks {w1, x3} and {x4} in Ā without destroying the block-triangular
structure if we accordingly exchange the corresponding rows, whereas these
two blocks must be arranged in this order in Â to put it in an explicit block-
triangular form. In other words, the square diagonal blocks are partially or-
dered as {w1, x3} ≺ {w4}, {x4} ≺ {w4} with respect to the zero/nonzero
structure in Ā, whereas they are totally ordered as {w1, x3} ≺ {x4} ≺ {w4}
in Â. �

Remark 6.3.11. It is natural to ask whether the Smith form of A(s) =
Q(s) + T (s) can be computed efficiently. This problem has been solved in
two special cases. If T (s) = O, then A(s) is simply a polynomial matrix over
K, for which Kannan [154] proposes a polynomial time algorithm. If Q(s)
satisfies the stronger condition (MP-Q2), which is trivially true in the other
extreme case of Q(s) = O, an efficient (polynomial-time) matroid-theoretic
algorithm of §6.2 is available. �
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6.3.2 Proofs

A minor (subdeterminant) of A(s) = A(s, T ), is a polynomial in s and T
over K. Let d∗k(s, T ) ∈ K[s, T ] denote the kth determinantal divisor of A,
i.e., the greatest common divisor of all minors of order k in A as polynomials
in (s, T ) over K. Theorem 6.3.3 follows from the following lemma as well as
Lemma 6.3.2.

Lemma 6.3.12. d∗r−1(s, T ) ∈ K[s], that is, no τ ∈ T appears in d∗r−1.

Proof. Since r = rankA, there exists a nonsingular submatrix A[I, J ] with
|I| = |J | = r. For τ ∈ T let (i, j) denote the position at which τ appears in
A. If τ does not appear in δ = detA[I, J ] (�= 0), then d∗r−1 is free from τ since
d∗r−1 divides δ. If τ does appear in δ, then i ∈ I and j ∈ J and furthermore
δ′ = detA[I \ {i}, J \ {j}] �= 0. Obviously, δ′ does not contain τ and hence
d∗r−1 is free from τ since d∗r−1 divides δ′.

We now turn to the proof of Theorem 6.3.4. Firstly, Ã(s; t) and Â(s; t)
share the same Smith form, since they are connected by a unimodular trans-
formation. Secondly, the Smith form ΣA(s) of A(s) can be obtained from that
of Ã(s; 1) by (6.56). The following lemma claims that Ã(s; t) and Ã(s; 1) have
essentially identical Smith forms. We write Ã(s; t, T ) for Ã(s; t) to explicitly
indicate its dependence on the coefficients T in T (s).

Lemma 6.3.13. The Smith form of Ã(s; 1, T ), as a matrix over F [s], is
obtained from that of Ã(s; t, T ), as a matrix over F (t)[s], by setting t1 =
· · · = tm = 1. Conversely, the Smith form of Ã(s; t, T ) is obtained from that
of Ã(s; 1, T ) by replacing τ ∈ T with τ/ti if τ is contained in the ith row. �

This allows us to concentrate on the Smith form of Â(s; t). Regard-
ing Â(s; t) = Â(s; t, T ) as a matrix over the ring K[s, t, T ], we denote by
d̂r+m(s; t) (∈ K[s, t, T ]) the (r+m)th determinantal divisor of Â(s; t). Then

dr(s) = αr · d̂r+m(s; 1), (6.61)

where αr ∈ K(T ) ⊆ F is introduced for normalization to a monic polyno-
mial in F [s]. Since Â is block-triangularized with full-rank diagonal blocks
(cf. Theorem 4.4.19), a nonvanishing minor of Â of order r +m is expressed
as

det Â[R0, J ] · det Â[I, C∞] ·
b∏

l=1

det Â[Rl, Cl]

= det Ā[R0, J ] · det Ā[I, C∞] ·
b∏

l=1

det Ā[Rl, Cl] (6.62)

for J ⊆ C0 and I ⊆ R∞. Then Theorem 6.3.4 follows from (6.61) and (6.62)
and the lemma below, where gcd K[s,t,T ]{·} denotes the greatest common
divisor in the ring K[s, t, T ].
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Lemma 6.3.14.

gcd K[s,t,T ]{det Ā[R0, J ] | |J | = |R0|, J ⊆ C0} ∈ K[s],
gcd K[s,t,T ]{det Ā[I, C∞] | |I| = |C∞|, I ⊆ R∞} ∈ K[s].

Proof. This follows from Theorem 4.5.8.

Notes. This section is based on Murota [213, 216].

6.4 Controllability of Dynamical Systems

Structural controllability of a control system is investigated using mixed poly-
nomial matrices. A necessary and sufficient condition for structural controlla-
bility is given in terms of the CCF of an associated LM-matrix, along with an
efficient algorithm for testing it. As a special case, the structural controllabil-
ity of a descriptor system is expressed in terms of the Dulmage–Mendelsohn
decomposition of an associated bipartite graph.

6.4.1 Controllability

Controllability is one of the most fundamental characteristics for a control
system. A linear time-invariant dynamical system in the standard form

dx

dt
= Ax +Bu, (6.63)

where x = x(t) ∈ Rn is the state-vector and u = u(t) ∈ Rm is the input-
vector, is said to be controllable if any initial state x0 = x(0) can be brought
to any prescribed final state xf = x(tf ) in a finite time tf by suitably chosen
input u(t) (0 ≤ t ≤ tf ).

The following characterizations of controllability are well known (see
Kailath [152], Rosenbrock [284], Wolovich [342], Wonham [343]).

Theorem 6.4.1. The following five conditions are equivalent.
(i) The system (6.63) is controllable.
(ii) rank [B | AB | A2B | · · · | An−1B] = n.
(iii) The n2 × n(n+m− 1) matrix

D̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B −In
O A B −In

A B −In
. . . . . . . . .

A B −In O
A B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.64)

is of rankn2.
(iv) rank [A− zIn | B] = n for any complex number z.
(v) The nth monic determinantal divisor of [A− sIn | B] is equal to 1. �
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The n × nm matrix [B | AB | A2B | · · · | An−1B] in (ii) above is called
the controllability matrix, while [A− sIn | B] in (v) the modal controllability
matrix.

Controllability concept can be defined for a system of descriptor form

F
dx

dt
= Ax +Bu (6.65)

in a number of different ways (see, for example, Kodama–Ikeda [162], Pan-
dolfi [263], Hayakawa–Hosoe–Ito [108], Verghese–Lévy–Kailath [330], Yip–
Sincovec [349], Cobb [36]), where the matrix F is square (n × n) but not
necessarily nonsingular. We define the descriptor system (6.65) to be control-
lable if

rank [A− zF | B] = n for any complex number z. (6.66)

It should be obvious that this is equivalent to saying that the nth monic
determinantal divisor of [A− sF | B] is equal to 1.

The significance of this definition of controllability can be understood with
reference to the canonical decomposition of a descriptor system explained in
Remark 5.1.9. It is easy to see from Theorem 6.4.1 that the descriptor system
(6.65) is controllable if and only if the subsystem (5.11) derived from it is
controllable in the ordinary sense. In other words, the present definition of
controllability means the controllability of the exponential modes, agreeing
with the notion of “R-controllability” of Yip–Sincovec [349].

For later references, we put together the relevant conditions:

(C1) det(A− sF ) �= 0,
(C2) rank [A | B] = n,
(C3) rank [A− zF | B] = n for any z ∈ C, z �= 0,

where it should be evident that (C2) and (C3) together are equivalent to the
controllability condition (6.66). The condition (C2) is for the controllability
of zero mode, whereas (C3) for nonzero modes. We often use the notation

D(s) =
[
A− sF B

]
. (6.67)

6.4.2 Structural Controllability

The notion of “structural controllability” was first introduced by Lin [173]
along with its graphical condition for single-input systems, followed by sub-
sequent extensions to multi-input systems by Shields–Pearson [295], Glover–
Silverman [94], Davison [45], Hosoe–Matsumoto [115], and Maeda [184]. It
also motivated many related works (e.g., Kobayashi–Yoshikawa [161], Maeda–
Yamada [185], Hosoe [113], Linnemann [174], Murota–Poljak [240], Reinschke
[279], Yamada–Foulds [345], Yamada–Luenberger [346, 347, 348]). This sec-
tion is devoted to a sketch of the graph-theoretic approach to structural
controllability with particular emphasis on the comparison of different graph
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representations, signal-flow graphs and dynamic graphs for systems in stan-
dard form, and bipartite graphs for systems in descriptor form. The reader
is referred to Murota [204, Chap. 3], Reinschke [279, Chap. 1], and Šiljak
[300, Chap. 1] for more details on the graph-theoretic approach to structural
controllability.

Let us first consider the conventional case of the standard form (6.63).
Associated with a particular instance of the system (6.63) with the entries
of A and B being given concrete real numbers, we consider the structured
system, which is described by the same state-space equations as the original
system except that the nonvanishing entries of the coefficient matrices A
and B are replaced by independent parameters (or indeterminates). Then
the original system is said to be structurally controllable if the associated
structured system is generically controllable with respect to those parameters,
i.e., if it is controllable (in the sense of Theorem 6.4.1) for those parameter
values which lie outside some proper algebraic variety in the parameter space.

It is easy to see that the structural controllability is equivalent to the
condition that the generic-rank of the controllability matrix is equal to n,
i.e.,

generic-rank [B | AB | A2B | · · · | An−1B] = n (6.68)

with respect to those parameters. Note that the generic-rank of the controlla-
bility matrix of the structured system is equal to the rank of the controllabil-
ity matrix with parameter values fixed to arbitrary transcendental numbers
which are algebraically independent over the rational number field Q, since
each entry of the controllability matrix is a polynomial (with coefficients from
Q) in those parameters. Note also that the condition (6.68) is not equivalent
to

term-rank [B | AB | A2B | · · · | An−1B] = n.

The following is the fundamental result (Lin [173], Shields–Pearson [295],
Glover–Silverman [94], Maeda [184]) giving a graph-theoretic characterization
of the structural controllability in terms of the signal-flow graph G = (V,E)
associated with (6.63). Recall from §2.2.1 that the vertex set V and the arc
set E are defined by

V = X ∪ U, X = {x1, · · · , xn}, U = {u1, · · · , um},
E = {(xj , xi) | Aij �= 0} ∪ {(uj , xi) | Bij �= 0}.

By a stem we mean a directed path in G with its initial vertex belonging to
U .

Theorem 6.4.2. A system in the standard form (6.63) is structurally con-
trollable if and only if the signal-flow graph G satisfies both (a) and (b) below:

(a) There exists a set of mutually disjoint cycles and stems such that all the
vertices in X are covered,
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(b) Any vertex xi (∈ X) is reachable by a directed path from some uj (∈ U),
i.e., uj

∗−→xi on G.

Proof. This theorem is derived later from a more general result in Remark
6.4.9. See also Shields–Pearson [295], Glover–Silverman [94], Davison [45],
Hosoe–Matsumoto [115], and Maeda [184], as well as Murota [204, Chap. 3],
Šiljak [300, Chap. 1], and Linnemann [176].

A system is said to be reachable if it satisfies the condition (b) above,
namely, if any vertex xi (∈ X) is reachable by a directed path from some
uj (∈ U) in the signal-flow graph G.

The structural controllability can be characterized also in terms of the
dynamic graph, as is observed by Murota [204, Theorem 15.1]. Recall from
§2.2.1 (see also Example 2.2.4) that for a system (6.63) the dynamic graph
of time-span n is defined to be Gn

0 = (Xn
0 ∪ Un−1

0 , En−1
0 ) with

Xn
0 =

n⋃

t=0

Xt, Xt = {xt
i | i = 1, · · · , n} (t = 0, 1, · · · , n),

Un−1
0 =

n−1⋃

t=0

U t, U t = {ut
j | j = 1, · · · ,m} (t = 0, 1, · · · , n− 1),

En−1
0 = {(xt

j , x
t+1
i ) | Aij �= 0; t = 0, 1, · · · , n− 1}

∪{(ut
j , x

t+1
i ) | Bij �= 0; t = 0, 1, · · · , n− 1}.

Theorem 6.4.3. A system in the standard form (6.63) is structurally con-
trollable if and only if there exists in the dynamic graph Gn

0 of time-span n a
Menger-type vertex-disjoint linking of size n from Un−1

0 to Xn.

Proof. This follows from Theorem 6.4.4 below.

The generic dimension of the controllable subspace means the generic rank
of the controllability matrix, i.e., rank [B | AB | · · · | An−1B] when the
nonzero entries of A and B are algebraically independent parameters. A sys-
tem is structurally controllable if and only if the generic dimension of the
controllable subspace is equal to n.

The following result of Poljak [271] is an extension of Theorem 6.4.3 above.

Theorem 6.4.4. For a reachable system (6.63), the generic dimension of the
controllable subspace is equal to the maximum size of a Menger-type vertex-
disjoint linking from Un−1

0 to Xn in the dynamic graph Gn
0 of time-span n.

Proof. The proof is based on the max-flow min-cut theorem (Theorem 2.2.30)
and Theorem 6.4.5 below. See Poljak [271] for the detail.

The following theorem, due to Hosoe [113], is a fundamental result on the
generic dimension of the controllable subspace. For X ′ ⊆ X = {x1, · · · , xn}
we use the notation [A[X ′,X ′] | B[X ′, U ]] to mean the |X ′| × (|X ′| + m)
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matrix formed with the submatrices A[X ′,X ′] and B[X ′, U ], where U =
{u1, · · · , um}.

Theorem 6.4.5. For a reachable system (6.63), the generic dimension of
the controllable subspace is equal to

max{|X ′| | term-rank ([A[X ′,X ′] | B[X ′, U ]]) = |X ′|, X ′ ⊆ X}.
�

Remark 6.4.6. Under the reachability assumption, Theorem 6.4.4 implies

term-rank D̄ = generic-rank D̄

for the matrix D̄ in (6.64), where the generic-rank is defined with respect
to the nonzero entries of A and B. Note that generic-rank D̄ = n(n − 1) +
generic-rank [B | AB | · · · | An−1B] and that term-rank D̄ equals to n(n− 1)
plus the maximum size of a Menger-type vertex-disjoint linking from Un−1

0 to
Xn in Gn

0 . The former can be shown by row elimination on D̄ and the latter
by the linkage lemma (cf. Murota [204, Prop. 7.1], Welsh [333, Chap. 13, §1]).

�

In the remainder of this section we consider structural controllability for
descriptor systems, following Murota [199]. As has been discussed in §1.2.2,
the descriptor form (6.65) is a more elementary description than the stan-
dard form (6.63), and hence will be more suitable for structural analysis. We
define a descriptor system (6.65) to be structurally solvable if the condition
(C1) in §6.4.1 is satisfied under the assumption that the nonvanishing entries
of the coefficient matrices F , A, and B are algebraically independent over
Q. A descriptor system (6.65) is said to be structurally controllable if, in
addition, the conditions (C2) and (C3) in §6.4.1 are satisfied under the same
assumption.

We shall derive a necessary and sufficient graph-theoretic condition for the
structural controllability. As has been discussed in §2.2.1, the natural graph
representation of a descriptor system is a bipartite graph, and accordingly, it
will be reasonable to aim at establishing a graph-theoretic condition on the
bipartite graph for the structural controllability.

Let G = (V +, V −;E) be the bipartite graph associated with the descrip-
tor system (6.65). Namely, V + = X ∪ U = {x1, · · · , xn} ∪ {u1, · · · , um},
V − = {e1, · · · , en}, and E = EA ∪ EF ∪ EB with EA = {(xj , ei) | Aij �= 0},
EF = {(xj , ei) | Fij �= 0}, and EB = {(uj , ei) | Bij �= 0}. No parallel arcs are
introduced even if EA ∩EF �= ∅. We call an arc an s-arc if it belongs to EF .

The first two conditions (C1) and (C2) are easy to handle. Let GA−sF

and G[A|B] denote the bipartite graphs associated with A − sF and [A |
B], respectively. Namely, GA−sF = (X,V −;EA ∪ EF ) and G[A|B] = (X ∪
U, V −;EA ∪ EB). Then, by Proposition 2.2.25, we have

(C1) ⇐⇒ term-rank (A− sF ) = n ⇐⇒ ν(GA−sF ) = n, (6.69)
(C2) ⇐⇒ term-rank [A | B] = n ⇐⇒ ν(G[A|B]) = n, (6.70)
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where ν( · ) denotes the size of a maximum matching in a bipartite graph.
For the third condition (C3) we consider the DM-decomposition of G. Let
Gk = (V +

k , V
−
k ;Ek) (k = 0, 1, · · · , b,∞) be the DM-components of G =

(V +, V −;E). In this notation, k = 0 and k = ∞ designate the horizontal tail
and the vertical tail, respectively, though the vertical tail does not exist (is
empty) under the condition (C1) or (C2).

A necessary and sufficient graph-theoretic condition for the structural
controllability of a descriptor system is given as follows (Murota [199]).

Theorem 6.4.7. A descriptor system (6.65) is structurally solvable if and
only if

(B1) ν(GA−sF ) = n.

It is structurally controllable if and only if the following two conditions (B2)
and (B3) hold in addition to (B1):

(B2) ν(G[A|B]) = n,
(B3) None of the consistent DM-components Gk (k = 1, · · · , b) of the bipar-

tite graph G contain s-arcs.

Proof. This follows from (6.69), (6.70), and Theorem 6.3.8 as well as Theorem
6.4.1(v). See Murota [204, §14.2] for an alternative proof.

In the particular case with nonsingular F , Theorem 6.4.7 reduces to the
following, which makes no reference to the DM-decomposition.

Corollary 6.4.8. A descriptor system (6.65) with term-rankF = n is struc-
turally controllable if and only if the following two conditions (B2) and (B4)
hold:

(B2) ν(G[A|B]) = n,
(B4) ν(G \ {xj}) = n for any xj ∈ X.

Proof. Since term-rankF = n, the condition (B3) is satisfied if and only if
the whole graph G is the horizontal tail. The latter condition is equivalent
to (B4) by Corollary 2.2.23(2).

Remark 6.4.9. Theorem 6.4.2 can be derived from Corollary 6.4.8. First ob-
serve that the system in the standard form (6.63) is structurally controllable
if and only if so is the descriptor system (6.65) with the same A and B, and a
nonsingular diagonal F . The condition (a) in Theorem 6.4.2 is easily seen to
be equivalent to (B2). According to the algorithm for the DM-decomposition
in §2.2.3, the condition (b) in Theorem 6.4.2 is equivalent to saying that the
whole graph G is the horizontal tail, which is equivalent to (B4) by Corollary
2.2.23(2). �
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The conditions given in Theorem 6.4.7 can be checked efficiently with
O((m+n)5/2) graph manipulations as follows. (B1) and (B2) may be checked
by finding maximum matchings in GA−sF and G[A|B], respectively. Suppose
(B1) is satisfied and there exists in GA−sF a perfect matching, say M . It
is also a maximum matching in G. Let GM = (V + ∪ V −, E ∪M◦) be the
auxiliary graph associated with the matching M in G, where M◦ is the set
of reorientations of the arcs in M , and define G′ to be the subgraph of GM

which is obtained from GM by deleting all the vertices reachable from U .
Then (B3) is equivalent to the condition that none of the strong components
of G′ contain s-arcs.

Remark 6.4.10. Graph-theoretic conditions for the structural controllabil-
ity of a descriptor system were first given, almost simultaneously, by Aoki–
Hosoe–Hayakawa [7] and Matsumoto–Ikeda [187] with different expressions.
However, both of these graph-theoretic conditions lack in the natural in-
variance, being expressed in terms of noninvariant graph representations as
follows. Aoki–Hosoe–Hayakawa [7] uses a graph Ĝ = (V,E) that has vertex
set V = X ∪ U and the arc set

E = {(xj , xi) | (A− sF )ij �= 0} ∪ {(uj , xi) | Bij �= 0}.

The graph Ĝ thus defined is not unique in that Ĝ depends on the casual choice
of ordering of the equations. In particular, the subgraph of Ĝ on X does not
reflect the fact that A − sF is subject not to similarity transformations,
but to equivalence transformations. On the other hand, Matsumoto–Ikeda
[187] employs a graph representation which can only be determined after a
maximum matching on the bipartite graph associated with A− sF is found.
This representation is not unique, either, since it depends on the choice of
the maximum matching.

Though the conclusions derived from the criteria of Aoki–Hosoe–Hayakawa
[7] and Matsumoto–Ikeda [187] are known to be unaffected by the nonunique-
ness of the graph representations, it would be preferable to express the con-
trollability condition in such a way that the underlying invariance may be
represented explicitly. The conditions (B1)–(B3) in Theorem 6.4.7 are invari-
ant in this respect, since the DM-decomposition of the bipartite graph G
remains the same (isomorphic) under the changes of ordering of equations. �

Example 6.4.11. The structural controllability criterion in Theorem 6.4.7
is illustrated for a descriptor system (6.65) with

F =

⎛

⎝
f1 0 0
f2 f3 f4
0 0 0

⎞

⎠ , A =

⎛

⎝
a1 a2 0
a3 0 0
0 0 a4

⎞

⎠ , B =

⎛

⎝
0
b
0

⎞

⎠ ,

which is taken from Matsumoto–Ikeda [187]. We assume that the set of
parameters {f1, f2, f3, f4; a1, a2, a3, a4; b} is algebraically independent over
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Q. The bipartite graph G is depicted in Fig. 6.5 together with its DM-
decomposition, which consists of the horizontal tail G0 = (V +

0 , V
−
0 ;E0) with

V +
0 = {x1, x2, u} and V −

0 = {e1, e2}, and the only one consistent component
G1 = (V +

1 , V
−
1 ;E1) with V +

1 = {x3}, V −
1 = {e3}, and E1 = {a4}. No s-arc is

contained in G1, in agreement with the condition (B3) of Theorem 6.4.7. The
other two conditions, (B1) and (B2), are easily seen to be met. Thus this sys-
tem has been shown to be structurally controllable. It should be noted that
the s-arcs contained in G0 do not affect the controllability. �

V −

e1

e2

e3

V +

x1

x2

x3

u

Graph G

V −

e2

e1

e3

V +

u

x2

x1

x3

G0

G1

DM-decomposition

Fig. 6.5. Bipartite graph G of Example 6.4.11 and its DM-decomposition (bold
line: s-arc)

Example 6.4.12. Modify the system of Example 6.4.11 by fixing a2 = 0, fol-
lowing Matsumoto–Ikeda [187]. That is, we assume {f1, f2, f3, f4; a1, a3, a4; b}
is the set of algebraically independent parameters. The two conditions (B1)
and (B2) are still satisfied, whereas (B3) is not, as demonstrated in Fig. 6.6.
The DM-decomposition of the modified bipartite graph yields a horizontal
tail G0 with V +

0 = {x2, u} and V −
0 = {e2}, and two consistent compo-

nents G1 with V +
1 = {x1} and V −

1 = {e1}, and G2 with V +
2 = {x3} and

V −
2 = {e3}. The component G1 contains an s-arc. In fact, it is easy to verify

that rankD(z) = 2 < 3 for z = a1/f1. �

Example 6.4.13. Consider the descriptor system (6.65) given by

F =

⎛

⎜
⎝

f1 0 f2 0
0 f3 0 f4
0 0 0 0
0 0 0 0

⎞

⎟
⎠ , A =

⎛

⎜
⎝

0 0 0 a1
0 a2 0 0
a3 0 a4 0
0 a5 0 a6

⎞

⎟
⎠ , B =

⎛

⎜
⎝

b
0
0
0

⎞

⎟
⎠ ,
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where {fi | i = 1, · · · , 4} ∪ {ai | i = 1, · · · , 6} ∪ {b} is assumed to be alge-
braically independent over Q. (This example is taken from Matsumoto–Ikeda
[187].) The conditions (B1) and (B2) are satisfied. The DM-decomposition
of the bipartite graph G yields the horizontal tail G0 with V +

0 = {x1, x3, u}
and V −

0 = {e1, e3}, and one consistent component G1 with V +
1 = {x2, x4}

and V −
1 = {e2, e4}. The s-arcs corresponding to f3 and f4 are contained in

G1, causing this system to be uncontrollable. �

V −

e2

e1

e3

V +

u

x2

x1

x3

G0

G1

G2

Fig. 6.6. DM-decomposition of the graph G of Example 6.4.12 (bold line: s-arc)

Example 6.4.14. Consider the descriptor system (6.65) with

F =

⎛

⎜
⎝

0 0 0 0
f1 0 0 0
0 f2 0 0
f3 0 0 0

⎞

⎟
⎠ , A =

⎛

⎜
⎝

a1 0 0 a2
0 0 0 a3
0 a4 a5 0
0 a6 a7 0

⎞

⎟
⎠ , B =

⎛

⎜
⎝

b1 0
0 b2
0 0
0 0

⎞

⎟
⎠ ,

taken from Aoki–Hosoe–Hayakawa [7]. The conditions (B1) and (B2) are eas-
ily verified to hold. The third condition (B3) is trivially met, since the whole
graph G constitutes the horizontal tail in the DM-decomposition. Therefore,
this system is structurally controllable. �

6.4.3 Mixed Polynomial Matrix Formulation

Though the notion of structural controllability is quite appealing, it is often
doubtful from the physical point of view to assume that all the nonvanishing
entries of the coefficient matrices are independent parameters, since they usu-
ally do not stand for individual physical parameters, as has been discussed in
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Chap. 3. In particular, some of the entries may be fixed or correlated num-
bers having mutual algebraic dependence. This observation has motivated
a number of generalizations and refinements in the structural approach in
control theory (see, e.g., Hayakawa–Hosoe–Hayashi–Ito [106, 107], Yamada–
Luenberger [346]).

In this section we are concerned with a combinatorial characterization of
structural controllability in the spirit of our physical observations in Chap. 3.
In particular, we consider the descriptor system (6.65) in which F , A, and B
are mixed matrices with ground field Q:

F = QF + TF , A = QA + TA, B = QB + TB , (6.71)

such that the set T of the nonvanishing entries of [TF | TA | TB ] is alge-
braically independent over Q. This implies that [A− sF | B] = Q(s) + T (s)
is a mixed polynomial matrix. Furthermore, it is assumed that the matrix
Q(s) satisfies the stronger condition for the dimensional consistency.

It should be clear that assuming algebraic independence for T is equiva-
lent to regarding the members of T as independent parameters, and therefore
to considering a family of systems parametrized by those parameters in T .
A particular system in this family having algebraically independent parame-
ter values is controllable if and only if almost all members of the family are
controllable.

We formulate the above problem in more general terms for a mixed poly-
nomial matrix, following Murota [203]. Let

A(s) = Q(s) + T (s) (6.72)

be an m×n mixed polynomial matrix of rank m with respect to (K,F ) such
that Q(s) satisfies the stronger assumption

(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
over K, i.e., of the form αsp with α ∈ K and an integer p.

In view of (6.66) we simply say that A(s) is structurally controllable if
the mth monic determinantal divisor of A(s) is equal to 1. This condition is
tantamount to saying that the Smith form of A(s), as a polynomial matrix
in s over F , is equal to [Im | O]. We put R = Row(A) and C = Col(A) and
denote the mth monic determinantal divisor of A(s) by dm(s). The roots of
dm(s) will be called the uncontrollable modes.

We shall derive a necessary and sufficient condition for structural con-
trollability together with an efficient algorithm for testing it. The proposed
algorithm is suitable for practical applications in that it is free from numeri-
cal difficulty of rounding errors and is guaranteed to run in polynomial time
in the size of the control system in question.

The existence of a zero uncontrollable mode is easy to characterize.
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Proposition 6.4.15. An m × n mixed polynomial matrix A(s) of rank m
satisfying (MP-Q2) is free from a zero uncontrollable mode if and only if there
exists (I, J) such that rankQ(0)[R \ I, C \ J ] + term-rankT (0)[I, J ] = m.

Proof. A(s) does not have a zero uncontrollable mode if and only if rankA(0)
= m. Then Theorem 4.2.8 establishes this.

The multiplicity of the zero uncontrollable mode is obviously equal to
om(A) = min{ords detA[I, J ] | |I| = |J | = m}, where ords denotes the
minimum degree in s of a nonzero term in a polynomial. Then, by Remark
6.2.3, it can be characterized in terms of an independent assignment problem
(see also Remark 6.2.10).

The nonzero uncontrollable modes can be treated by means of the CCF
of an LM-polynomial matrix. This is based on the fact (Theorem 6.3.4) that
the CCF corresponds to the decomposition of the determinantal divisor into
irreducible factors.

To be specific, we consider, as in (6.55), an LM-polynomial matrix

Ã(s) = Ã(s; t) =
(

Im Q(s)
−diag (t1, · · · , tm) T (s)

)

=
(
Q̃(s)
T̃ (s; t)

)

(6.73)

associated with A(s), where t1, · · · , tm are new indeterminates and t =
(t1, · · · , tm). Put C̃ = Col(Ã) � R ∪ C. With reference to (6.4) we define
ζ : C̃ → Z by

ζ(j) =
{
−rj (j ∈ R)
−cj (j ∈ C) (6.74)

as well as the usual convention ζ(J) =
∑

j∈J ζ(j) for J ⊆ C̃.
Regarding Ã(s) as an LM-matrix with respect to (K[s],F (s, t)) we may

think of its block-triangular form (“CCF over a ring”) in the sense of Theorem
4.4.19, which is obtained from Ã(s) through a unimodular transformation
over K[s]. Let Â(s) and Ā(s) be the block-triangular matrix and the CCF of
Ã(s) as in Theorem 4.4.19. Note that Â(s) and Ā(s) have identical diagonal
blocks, though they may differ in the upper-triangular part. The families of
the row sets and the column sets in the CCF are denoted respectively by
{R̄k | k = 0, 1, · · · , b} and {C̄k | k = 0, 1, · · · , b}, and the diagonal blocks by

Āk =
(
Q̄k

T̄k

)

= Ā[R̄k, C̄k], k = 0, 1, · · · , b.

In this notation, k = 0 designates the horizontal tail, whereas the vertical
tail does not exist (is empty) since rank Ã = 2m by rankA = m. We define

Jk = {J ⊆ C̄k | Q̄k[Row(Q̄k), C̄k \ J ]: nonsingular,
T̄k[Row(T̄k), J ]: term-nonsingular}, k = 1, · · · , b.

For J ⊆ C̄k such that T̄k[Row(T̄k), J ] is term-nonsingular, we denote by
ξk(J) and ηk(J) the highest and lowest degrees in s of a nonzero term in
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det T̄k[Row(T̄k), J ]. Note that ξk(J) and ηk(J) can be expressed in terms of
weighted-matching problems (cf. §6.2.2).

Theorem 6.4.16. For an m × n mixed polynomial matrix A(s) of rank m
satisfying (MP-Q2), the number of nonzero uncontrollable modes is given by

b∑

k=1

[
max{ζ(C̄k \ J) + ξk(J) | J ∈ Jk} − min{ζ(C̄k \ J) + ηk(J) | J ∈ Jk}

]
.

Hence there exist no nonzero uncontrollable modes if and only if

max{ζ(C̄k \J)+ ξk(J) | J ∈ Jk} = min{ζ(C̄k \J)+ ηk(J) | J ∈ Jk} (6.75)

for each k = 1, · · · , b.

Proof. The determinant of Āk(s; 1) = Āk(s; t)
∣
∣
t1=···=tm=1

can be expressed
as det Āk(s; 1) = αks

pk · ψ̄k(s, T ), where αk is a nonzero constant, pk is a
nonnegative integer, and ψ̄k(s, T ) ∈ K[s, T ] is not divisible by s. We note

degs ψ̄k(s)=max{ζ(C̄k\J)+ξk(J) | J ∈ Jk}−min{ζ(C̄k\J)+ηk(J) | J ∈ Jk},

which is a corollary of Theorem 6.2.5. Then the claim follows from Theorem
6.3.4.

Remark 6.4.17. See Murota [203] as well as Murota [204, Theorem 28.1]
for an alternative formulation of the condition for structural controllability
in the form of a weighted matroid partition problem. �

On the basis of the combinatorial characterization in Proposition 6.4.15
and Theorem 6.4.16, an efficient algorithm for testing the existence of
zero/nonzero uncontrollable modes is designed in the next section.

Theorem 6.4.16 above includes many previously known results on the
structural controllability as special cases. In particular, it is a direct gener-
alization of Theorem 6.4.7 for the case where all the nonvanishing entries of
the coefficients are taken for independent parameters. Note that the CCF
used in Theorem 6.4.16 is a generalization of the DM-decomposition used in
Theorem 6.4.7. Theorem 6.4.16 also implies the results of Hayakawa–Hosoe–
Hayashi–Ito [106] (see Murota [204, §31.1] for detail).

6.4.4 Algorithm

In this section we describe an efficient algorithm to check for the existence of
nonzero uncontrollable modes of A(s) = Q(s)+T (s) on the basis of Theorem
6.4.16, whereas the algorithm of §4.2.4 for computing the rank of an LM-
matrix can be utilized readily for the zero uncontrollable mode by Proposition
6.4.15.
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Before describing the concrete procedure for detecting nonzero uncontrol-
lable modes we will outline the basic idea in general terms. As shown in §4.2.3
and §4.4.4, the CCF of the LM-matrix Ã(s) of (6.73) can be computed via
the independent matching problem on a bipartite graph. The CCF can be
obtained from the strong components of a subgraph of the auxiliary graph
associated with a maximum independent matching. Moreover, the argument
in §6.2 shows that max{ζ(C̄k \ J) + ξk(J)} and min{ζ(C̄k \ J) + ηk(J)},
characterizing the existence of nonzero uncontrollable modes in Theorem
6.4.16, can be expressed in terms of independent assignment problems in
the strong component corresponding to the block Āk of the CCF. In this way
the existence of nonzero uncontrollable modes can be found by computing
max{ζ(C̄k \ J) + ξk(J)} and min{ζ(C̄k \ J) + ηk(J)} separately by efficient
algorithms that employ arithmetic operations on rational numbers only.

It is possible to design a faster algorithm by making use of a fundamental
fact about the network flow problem. To be more specific, the condition (6.75)
is equivalent to a graph-theoretic condition that there exists in the strong
component for the block Āk no directed cycle of nonzero length with respect
to an appropriately defined arc length. This latter condition is equivalent
further to the existence of a potential function such that the length of an arc
is the difference of the potentials of the end-vertices (see Theorem 2.2.35(2)).
The existence of such a potential function is easy to check. The objective of
this section is to describe this idea in concrete terms.

A concrete description of the algorithm for the condition (6.75) follows.
We use an auxiliary network N = (V,E, γ) with underlying graph G = (V,E)
and length function γ : E → Z, in a way consistent with the algorithm in
§4.2.4 for a mixed matrix. The vertex set V is defined as

V = VQ ∪ VT = (RQ ∪ CQ) ∪ (RT ∪ CT ),

where RQ = Row(Q), CQ = Col(Q), RT = Row(T ), CT = Col(T ), VQ =
RQ ∪ CQ, and VT = RT ∪ CT . The arc set E consists of five disjoint parts,

E = ETQ ∪ EQT ∪ EQ ∪ ET ∪ EM ,

to be defined below. We denote by ϕQ : R∪C → RQ ∪CQ and ϕT : R∪C →
RT ∪ CT the obvious one-to-one correspondences.

Let Î ⊆ R and Ĵ ⊆ C be such that Q(1)[R \ Î , C \ Ĵ ] is nonsingular
and term-rankT [Î , Ĵ ] = |Î|, where such (Î , Ĵ) exists by Theorem 4.2.8 since
rankA(1) = m. We define

ETQ = {(ϕT (i), ϕQ(i)) | i ∈ Î} ∪ {(ϕT (j), ϕQ(j)) | j ∈ C \ Ĵ},
EQT = {(ϕQ(i), ϕT (i)) | i ∈ R \ Î} ∪ {(ϕQ(j), ϕT (j)) | j ∈ Ĵ}.

Let P be the pivotal transform of Q = Q(1) with pivot Q̂ ≡ Q[R \ Î , C \ Ĵ ].
Namely,
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P =
( R \ Î Ĵ

C \ Ĵ Q̂−1 Q̂−1Q[R \ Î , Ĵ ]
Î −Q[Î , C \ Ĵ ]Q̂−1 Q[Î , Ĵ ] −Q[Î , C \ Ĵ ]Q̂−1Q[R \ Î , Ĵ ]

)

,

(6.76)
where Row(P ) = (C \ Ĵ) ∪ Î and Col(P ) = (R \ Î) ∪ Ĵ . Note that P is a
constant matrix free from s. With reference to P we define

EQ = {(ϕQ(i), ϕQ(j)) | Pij �= 0, i ∈ (C \ Ĵ) ∪ Î , j ∈ (R \ Î) ∪ Ĵ}.

The structure of T is represented by ET and EM . For each nonzero entry
Tij(s) of T (s) we consider a pair of parallel arcs a0ij and a1ij with ∂+a0ij =
∂+a1ij = ϕT (i) ∈ RT and ∂−a0ij = ∂−a1ij = ϕT (j) ∈ CT . Putting

E0
T = {a0ij | Tij �= 0, i ∈ R, j ∈ C}, E1

T = {a1ij | Tij �= 0, i ∈ R, j ∈ C},

we define ET = E0
T ∪ E1

T . Since term-rankT [Î , Ĵ ] = |Î|, the bipartite graph
(RT , CT ;ET ) with vertex set RT ∪ CT and arc set ET has a matching M
(⊆ ET ) such that |M | = |Î|, ϕT (Î) = ∂+M , and ϕT (Ĵ) ⊇ ∂−M . We define
EM as the set of reoriented arcs of M , i.e.,

EM = {ā | a ∈M},

where ā denotes the reorientation of a.
The length function γ : E → Z is defined with reference to ri (i =

1, · · · ,m) and cj (j = 1, · · · , n) of (6.4) as

γ(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ri if a = (ϕT (i), ϕQ(i)) ∈ ETQ, i ∈ Î ,
−cj if a = (ϕT (j), ϕQ(j)) ∈ ETQ, j ∈ C \ Ĵ ,
ri if a = (ϕQ(i), ϕT (i)) ∈ EQT , i ∈ R \ Î ,
cj if a = (ϕQ(j), ϕT (j)) ∈ EQT , j ∈ Ĵ ,
0 if a ∈ EQ,
−ordsTij(s) if a ∈ E0

T ,
−degs Tij(s) if a ∈ E1

T ,
−γ(a′) if a ∈ EM is the reorientation of a′ ∈M ⊆ ET .

For a nonzero entry Tij(s) of T (s) with ordsTij(s) = degs Tij(s) (which is the
case if Tij(s) is a monomial in s), the pair of arcs, having the same length,
may be replaced by a single arc of the same length.

We are now ready to rephrase the condition (6.75) in terms of the network
N = (G, γ). Let V ◦ be the set of vertices of G which are not reachable to the
exit

S− = ϕT (Ĵ) \ ∂−M ⊆ CT (6.77)

by a directed path. The subgraph of G induced on V ◦ is denoted as G◦. The
strong components of G◦ correspond to the consistent diagonal blocks of the
CCF of Ã, where it is noted that the vertical tail is empty. For each strong
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component of G◦, say Ĝ = (V̂ , Ê), we consider the condition that the sum of
the lengths γ(a) along any directed cycle in Ĝ is equal to zero, i.e.,

∑

a∈Ĉ

γ(a) = 0 (∀ Ĉ : directed cycle in Ĝ). (6.78)

Since Ĝ is strongly connected, this condition is equivalent, by Theorem
2.2.35(2), to the existence of a potential function π : V̂ → Z such that

γ(a) = π(∂−a) − π(∂+a) (a ∈ Ê). (6.79)

Theorem 6.4.18. An m×n mixed polynomial matrix A(s) of rank m satis-
fying (MP-Q2) has no nonzero uncontrollable mode if and only if each strong
component of the subgraph G◦ admits a potential function π such that (6.79)
holds.

Proof. For simplicity of notation let us assume that G itself is a strong com-
ponent. We also assume for simplicity of argument that each Tij(s) is a
monomial in s so that each pair of parallel arcs in ET is replaced by a sin-
gle arc. Consider the independent assignment problem as in §6.2 to com-
pute degs det Ã(s) for Ã(s) of (6.73). Then max{ζ(C̄k \ J) + ξk(J)} cor-
responds to the maximum weight of an independent assignment, whereas
min{ζ(C̄k \ J) + ηk(J)} to the minimum. Hence, the condition (6.75) is tan-
tamount to saying that all the independent assignments have the same weight.
This is the case if and only if the weight of an arbitrarily chosen independent
assignment is the maximum and the minimum at the same time. By The-
orem 5.2.42, the independent assignment associated with (Î , Ĵ ,M) has the
maximum weight if and only if there exists no negative cycle in the auxiliary
network, whereas it has the minimum weight if and only if there exists no
positive cycle. The network N employed above is essentially the same as the
auxiliary network as defined in §5.2.10. Therefore, (6.78) is necessary and
sufficient for (6.75).

Remark 6.4.19. The potential function π of (6.79), if it exists, can be con-
structed as follows. First fix a spanning tree T̂ ⊆ Ê and a vertex u ∈ V̂ . For
each v ∈ V̂ , set π(v) equal to the length of the path in T̂ connecting u to v.
Finally check for the validity of this π by verifying the condition (6.79) for
each a ∈ Ê \ T̂ . �

The overall computational complexity for testing for the existence of un-
controllable modes on the basis of Proposition 6.4.15 and Theorem 6.4.18 is
dominated by that for the construction of the graph G and therefore bounded
by O(n3 log n), where m ≤ n is assumed. Note that the decomposition of G
into strong components can be done in O(|E|) time and the potential func-
tion of (6.79) for a strong component Ĝ = (V̂ , Ê), if it exists, can be found in
time of O(|Ê|) by the procedure of Remark 6.4.19. It should be emphasized
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here that the whole algorithm involves only pivoting operations on the matrix
Q(1), the entries of which are rational numbers (simple numbers such as ±1
in practical applications).

Remark 6.4.20. When the above algorithm is applied to [A − sF | B] =
Q(s)+T (s) with nonsingular A−sF , we can choose Ĵ andM so that ϕT (Ĵ)\
∂−M = ϕT (U), where U = Col(B). Then the exit S− defined in (6.77)
coincides with ϕT (U). �

Remark 6.4.21. The graph-theoretic criterion in Theorem 6.4.7 can be de-
rived from Proposition 6.4.15 and Theorem 6.4.18 applied to the matrix
[A − sF | B] = Q(s) + T (s) with Q(s) = O. The derivation relies on the
observation of Remark 6.4.20. Note that the graph G in Theorem 6.4.7 is
identical with the subgraph (RT , CT ;ET ) in the network N , except that the
arcs are reoriented. �

6.4.5 Examples

This section illustrates the algorithm of §6.4.4 as well as Theorem 6.4.16 by
means of two examples.

Example 6.4.22. Recall again the mechanical system (Fig. 3.5) treated in
Example 3.1.7. The matrix D(s) = [A− sF | B] is given as

D(s) =

x1 x2 x3 x4 x5 x6 u
w1 −s 0 1 0 0 0 0
w2 0 −s 0 1 0 0 0
w3 −k1 0 −sm1 0 −1 0 1
w4 0 −k2 0 −sm2 1 0 0
w5 0 0 0 0 −1 f 0
w6 −s s 0 0 0 1 0

,

which can be expressed as D(s) = Q(s) + T (s) with Q(s) and T (s) of (3.18)
and (3.19). As we have seen in Examples 3.2.2 and 3.3.1 the stronger condition
(MP-Q2) is satisfied with (r1, · · · , r6) = (1, 1, 2, 2, 2, 1) and (c1, · · · , c7) =
(0, 0, 1, 1, 2, 1, 2). Hence the nonsingularity of A− sF is equivalent to that of
A−F , which can be verified by the algorithm of §4.2.4. It can also be verified
that rankD(0) = 6, which means, by Proposition 6.4.15, the controllability
of the zero mode.

As for the controllability of nonzero modes, we may take Î = {w3, w4},
Ĵ = {x3, x4, u}, and M = {(wT

3 , x
T
3 ), (wT

4 , x
T
4 )} in accordance with Remark

6.4.20. Then the matrix P of (6.76) is
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P =

w1 w2 w5 w6 x3 x4 u
x1 −1 0 0 0 −1 0 0
x2 0 −1 0 0 0 −1 0
x5 0 0 −1 0 0 0 0
x6 −1 1 0 1 −1 1 0
w3 0 0 −1 0 0 0 1
w4 0 0 1 0 0 0 0

.

The auxiliary network N = (G, γ) = (V,E, γ) is depicted in Fig. 6.7, where
xT

i = ϕT (xi), x
Q
i = ϕQ(xi), etc., and the associated length γ(a) is

γ(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−2 (a = (xT
5 , x

Q
5 ), (wT

3 , w
Q
3 ), (wT

4 , w
Q
4 ))

−1 (a = (xT
6 , x

Q
6 ), (wT

3 , x
T
3 ), (wT

4 , x
T
4 ))

1 (a = (xT
3 , w

T
3 ), (xT

4 , w
T
4 ), (xQ

3 , x
T
3 ), (xQ

4 , x
T
4 ),

(wQ
1 , w

T
1 ), (wQ

2 , w
T
2 ), (wQ

6 , w
T
6 ))

2 (a = (uQ, uT ), (wQ
5 , w

T
5 ))

0 (otherwise).

All the vertices except those in V ◦ = {wT
1 , w

Q
1 , w

T
2 , w

Q
2 , w

T
6 , w

Q
6 } are reach-

able to S− = {uT }, and the subgraph G◦ consists of three (disconnected) arcs
(wQ

1 , w
T
1 ), (wQ

2 , w
T
2 ) and (wQ

6 , w
T
6 ). Then condition in Theorem 6.4.18 is triv-

ially met, and therefore this mechanical system is structurally controllable.
�

Example 6.4.23. Consider a hypothetical descriptor system with

F =

⎡

⎣
0 0 p1
1 1 p2
0 0 0

⎤

⎦ , A =

⎡

⎣
1 p3 0
0 0 1
−1 −1 p4

⎤

⎦ , B =

⎡

⎣
p5
0
0

⎤

⎦ , (6.80)

where {pi | i = 1, · · · , 5} is to be understood as independent parameters. The
matrix D(s) = [A− sF | B] is then a mixed matrix D(s) = Q(s) +T (s) with

Q(s) =

⎡

⎣
1 0 0 0
−s −s 1 0
−1 −1 0 0

⎤

⎦ , T (s) =

⎡

⎣
0 p3 −sp1 p5
0 0 −sp2 0
0 0 p4 0

⎤

⎦ ,

where Row(D) = {w1, w2, w3} and Col(D) = {x1, x2, x3, u}. Note that Q(s)
satisfies the property (MP-Q2), admitting the expression (6.4) with, e.g.,
(r1, r2, r3) = (0, 1, 0) and (c1, c2, c3, c4) = (0, 0, 1, 0).

It is easy to see by inspection that A−sF is nonsingular and the zero mode
is controllable (i.e., rankD(0) = 3). For the controllability of nonzero modes,
we may take Î = {w1, w2}, Ĵ = {x2, x3, u}, and M = {(wT

1 , x
T
2 ), (wT

2 , x
T
3 )}

in accordance with Remark 6.4.20. Then the matrix P of (6.76) is
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Fig. 6.7. Auxiliary network N for the mechanical system (Example 6.4.22)
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Fig. 6.8. Auxiliary network N in Example 6.4.23

P =

w3 x2 x3 u
x1 −1 1 0 0
w1 1 −1 0 0
w2 −1 0 1 0

.

The auxiliary network N = (G, γ) = (V,E, γ) is depicted in Fig. 6.8, where
xT

i = ϕT (xi), x
Q
i = ϕQ(xi), etc. The exit is S− = {uT }, to which the vertices

not in V ◦ = {xT
3 , x

Q
3 , w

T
2 , w

Q
2 , w

T
3 , w

Q
3 } are reachable. The subnetwork on G◦,

shown in Fig. 6.9 with the length γ in parentheses, contains directed cycles.
The sum of the lengths along the cycle consisting of {wT

2 , w
Q
2 , w

Q
3 , w

T
3 , x

T
3 }

vanishes, whereas that of {wT
2 , w

Q
2 , x

Q
3 , x

T
3 } does not. Thus it is revealed, by

Theorem 6.4.18, that this system has a nonzero uncontrollable mode. The
graph-theoretic methods such as Theorem 6.4.7, treating the nonvanishing
entries of F , A, and B of (6.80) as if they were independent, would fail to
detect this fact.

The associated LM-polynomial matrix in (6.73) and its CCF are given
respectively by
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w1 w2 w3 x1 x2 x3 u
1 1 0 0 0

1 −s −s 1 0
1 −1 −1 0 0

−t1 0 p3 −sp1 p5
−t2 0 0 −sp2 0

−t3 0 0 p4 0

,

C̄0 C̄1

u w1 x1 x2 w2 w3 x3

0 1 0 −1 1
0 0 1 1 −1
p5 −t1 0 p3 −sp1

1 −s 1
−t2 0 −sp2
0 −t3 p4

.

The CCF has the horizontal tail with C̄0 = {u,w1, x1, x2} and one square
block with C̄1 = {w2, w3, x3}, while the vertical tail is empty. The de-
terminant of the 3 × 3 diagonal block corresponding to C̄1 is equal to
−(t3p2 + t2p4)s + t2t3, which has the root s = 1/(p2 + p4) when ti = 1.
This represents the uncontrollable mode. Thus the CCF reveals directly how
the nonzero uncontrollable mode arises. Finally it is mentioned that the CCF
above is obtained through a unimodular transformation by

U =

⎡

⎣
1 0 1
0 0 −1
0 1 −s

⎤

⎦ .

�

wT
2

wT
3

xT
3 xQ

3

wQ
2

wQ
3

�

� 	



�






�

(γ = 1)

(0)
(1) (−1)

(0)

(γ = −1)

(0)

(γ = 0)

Fig. 6.9. Subnetwork on G◦ in Example 6.4.23

Notes. The mixed matrix formulation in §6.4.3 and the algorithm in §6.4.4
are taken from Murota [203].
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6.5 Fixed Modes of Decentralized Systems

Structurally fixed modes of a decentralized control system are investigated
using mixed polynomial matrices. A necessary and sufficient condition for the
existence of structurally fixed modes is given along with an efficient algorithm
for testing it.

6.5.1 Fixed Modes

The concept of (decentralized) fixed modes, introduced by Wang–Davison
[332], is recognized as one of the fundamental concepts for the decentralized
control (see Šiljak [300, §1.6], Trave–Titli–Tarras [320]). To be specific, con-
sider a linear time-invariant dynamical system with ν local control stations
described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (6.81)

where A, B, and C are real matrices, x ∈ Rn is the state-vector, u =
(u1

T, · · · ,uν
T)T ∈ Rm and y = (y1

T, · · · ,yν
T)T ∈ Rl are the input-vector

and the output-vector, respectively, consisting of the input-vectors uk (k =
1, · · · , ν) and the output-vectors yk (k = 1, · · · , ν) of the local control stations.
The matrices B and C are partitioned into ν blocks as

B =
(
B1 | · · · | Bν

)
, C =

⎛

⎝
C1
...
Cν

⎞

⎠

in correspondence to the local stations.
The local output feedback is specified by a block-diagonal matrix

K = diag [K1, · · · ,Kν ], (6.82)

which represents the nondynamic decentralized output feedback

u(t) = Ky(t), i.e., uk = Kkyk (k = 1, · · · , ν).

The local output feedback control with dynamic compensation is described
by

ż(t) = Lz(t) +My(t), u(t) = Nz(t) +Ky(t) + Pv(t), (6.83)

where z = (z1
T, · · · ,zν

T)T and v = (v1
T, · · · ,vν

T)T are the state-vector
and the external input-vector, respectively, consisting of the kth feedback
controller (k = 1, · · · , ν); the matrices L, M , N , and P are block-diagonal
matrices of appropriate sizes.

Let K be the family of all matrices K of the form (6.82). The greatest
common divisor of the characteristic polynomials of A+BKC, for all K ∈ K,
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is called the fixed polynomial of (A,B,C) with respect to K, and denoted by
ψ(s) = ψ(s;A,B,C,K). Namely,

ψ(s;A,B,C,K) = gcd{det(A+BKC − sIn) | K ∈ K}. (6.84)

A complex number λ ∈ C is called a fixed mode of (A,B,C) with respect
to K if λ is an eigenvalue of A + BKC for all K ∈ K, or equivalently, if
ψ(λ;A,B,C,K) = 0.

The importance of the concept of fixed modes is demonstrated by the
following facts due to Wang–Davison [332] and Corfmat–Morse [41]:

1. The system (6.81) is stabilizable by the decentralized dynamic output
feedback (6.83) if and only if all the fixed modes of (A,B,C) have nega-
tive real parts, and

2. The spectrum of the closed-loop system (6.81) and (6.83) is freely
assignable by means of K ∈ K if and only if there exist no fixed modes
of (A,B,C).

The fixed polynomial and fixed modes can be defined by (6.84) with re-
spect to an arbitrarily specified family (feedback structure) K of the matrices
K, not necessarily of the form (6.82). A natural choice is to let K be a fam-
ily of matrices K which are subject to an arbitrarily specified zero/nonzero
structure (cf. Wang–Davison [332], Pichai–Sezer–Šiljak [269]). Namely, for an
m× l matrix K̂ = (K̂ij) with K̂ij ∈ {0, 1} we define

K = {K | Kij = 0 if K̂ij = 0}. (6.85)

We refer to the following fundamental result of Anderson–Clements [5]
in a form extended to a general feedback structure and with a proof based
on a rank identity for mixed matrices. We use the notation X = Row(A) �
Col(A) � Row(B) � Col(C), U = Col(B), and Y = Row(C), where |X| = n,
|U | = m, and |Y | = l; and also2

CK = {(I, J) | I ⊆ U, J ⊆ Y, K̂[U \ I, Y \ J ] = O}. (6.86)

Note that (I, J) ∈ CK is a cover of K ∈ K as defined in §2.2.3.

Theorem 6.5.1. Let K and CK be defined by (6.85) and (6.86). For a com-
plex number λ ∈ C and a nonnegative integer d ∈ Z, we have

max
K∈K

rank (A+BKC − λIn) ≤ n− d

if and only if there exists (I, J) ∈ CK such that

rank
(
A− λIn B[X, I]
C[J,X] O

)

≤ n− d. (6.87)

In particular, λ ∈ C is a fixed mode of (A,B,C) with respect to K if and only
if (6.87) with d = 1 holds for some (I, J) ∈ CK.
2 It is understood that (I, J) ∈ CK if I = U or J = Y .
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Proof. First note that rank (A+BKC − λIn) = rankD − (m+ l) for

D =

⎛

⎝

X U Y

X A− λIn B O
U O −Im K
Y C O −Il

⎞

⎠. (6.88)

The maximum of rankD over all K ∈ K is attained when Kij �= 0 for all
(i, j) with K̂ij �= 0, and the nonzero entries of K are indeterminates. In this
case, D is a mixed matrix D = Q+ T with

Q =

⎛

⎝
A− λIn B O
O −Im O
C O −Il

⎞

⎠ , T =

⎛

⎝
O O O
O O K
O O O

⎞

⎠ , (6.89)

and an application of the rank identity (4.23) in Corollary 4.2.12 to D yields
the desired result as follows. Let (Ĩ , J̃) be a minimizer on the right-hand side
of (4.23), where Ĩ ⊆ Row(D) and J̃ ⊆ Col(D), for which we have

rankD = rankQ[Ĩ , J̃ ] − |Ĩ| − |J̃ | + 2(n+m+ l)

and rankT [Ĩ , J̃ ] = 0. The structure of T allows us to assume that Ĩ ⊇ X ∪Y
and J̃ ⊇ X ∪ U . Putting I = U \ Ĩ and J = Y \ J̃ , we have (I, J) ∈ CK and

rankQ[Ĩ , J̃ ] = rank
(
A− λIn B[X, I]
C[J,X] O

)

+ |U \ I| + |Y \ J |.

Therefore, we obtain

rank (A+BKC − λIn) = rank
(
A− λIn B[X, I]
C[J,X] O

)

.

As the above proof reveals, the content of Theorem 6.5.1 lies in a min-max
duality assertion that

max
K∈K

rank (A+BKC − λIn) = min
(I,J)∈CK

rank
(
A− λIn B[X, I]
C[J,X] O

)

. (6.90)

This identity is observed by Tanino–Takahashi [309] in the special case of K
of the form (6.82).

We also mention the following result of Tarokh [311], with a simple proof
using a basic fact about mixed matrices.

Theorem 6.5.2. A complex number λ ∈ C is a fixed mode of (A,B,C) with

respect to K of (6.85) if and only if
(

A − λIn B[X, I]
C[J, X] O

)
is singular for all

(I, J) such that K[I, J ] is nonsingular.
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Proof. Application of Lemma 4.2.7 to the mixed matrix D = Q+ T in (6.88)
and (6.89).

As a refinement of the above theorem, Tanino–Takahashi [309] showed

max
K∈K

rank (A+BKC − λIn) = max
I,J

{

rank
(
A− λIn B[X, I]
C[J,X] O

)

− |I|
}

,

(6.91)
where the maximum on the right-hand side is taken over all (I, J) such that
K[I, J ] is nonsingular. This identity can be derived similarly from Theorem
4.2.8 applied to the mixed matrix D = Q+ T in (6.88) and (6.89).

Remark 6.5.3. Though both Theorem 6.5.1 and Theorem 6.5.2 are con-
cerned with combinatorial characterizations of fixed modes, they are com-
plementary in the following sense. The former guarantees the existence of a
“certificate” (namely, (I, J) in the theorem) for λ being a fixed mode, whereas
the latter (in its contraposition) for λ not being a fixed mode. �

Remark 6.5.4. In §6.4 we have discussed the controllability for (A,B). The
fixed mode problem contains this as a special case. Given (A,B), consider
a fixed mode problem with C = In and K defined by K̂ij = 1 for all (i, j).
Then, by a fundamental result in control theory (Wolovich [342]), (A,B) is
controllable if and only if (A,B,C) has no fixed modes with respect to K. �

6.5.2 Structurally Fixed Modes

The concept of a structurally fixed mode is proposed by Sezer–Šiljak [294]
on the basis of the observation that some fixed modes stem from an acciden-
tal matching of numerical values of system parameters and others from the
combinatorial structure of the system. For a system (A,B,C) we associate
a family S of systems that are “structurally equivalent” to (A,B,C), where
(Â, B̂, Ĉ) is said to be structurally equivalent to (A,B,C) if Â, B̂, and Ĉ have
respectively the same zero/nonzero structure as that of A, B, and C. A sys-
tem (A,B,C) is said to have structurally fixed modes if every (Â, B̂, Ĉ) ∈ S
has fixed modes. It is noted that considering the family S of structurally
equivalent systems is algebraically tantamount to considering a single system
in which all the nonzero entries of A, B, and C are algebraically indepen-
dent. See Šiljak [300, §1.6] and Trave–Titli–Tarras [320] for more account on
structurally fixed modes.

Example 6.5.5. For a scalar system (A,B,C) = ((1), (0), (0)) we associate
a structured system (Â, B̂, Ĉ) = ((a), (0), (0)) with an independent parameter
a. The system (A,B,C) has a fixed mode λ = 1 with respect to K = {(k) | k ∈
R}, and the structured system (Â, B̂, Ĉ) has a fixed mode λ = a. Accordingly,
the system (A,B,C) has a structurally fixed mode. Note that the fixed mode
of (Â, B̂, Ĉ) varies with a. �
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The following theorem of Sezer–Šiljak [294] gives a combinatorial charac-
terization of the existence of structurally fixed modes of a system (A,B,C).
The feedback structure is represented by a family K of matrices K subject
to an arbitrarily specified zero/nonzero structure.

Theorem 6.5.6. A system (A,B,C) has structurally fixed modes with re-
spect to K of (6.85) if and only if either of the following two conditions is
satisfied, where CK is defined in (6.86).

(i) There exists (I, J) ∈ CK and a partition of X into disjoint subsets
X1, X2, X3 with X2 �= ∅ such that A[X1,X2 ∪ X3] = O, A[X2,X3] = O,
B[X1 ∪X2, I] = O, and C[J,X2 ∪X3] = O, that is, such that

A =

⎛

⎝

X1 X2 X3

X1 A11 O O
X2 A21 A22 O
X3 A31 A32 A33

⎞

⎠, B =

⎛

⎝

I U \ I
X1 O B12

X2 O B22

X3 B31 B32

⎞

⎠,

C =
(
X1 X2 X3

J C11 O O
Y \ J C21 C22 C23

)

.

(ii) There exists (I, J) ∈ CK such that

term-rank
(

A B[X, I]
C[J,X] O

)

≤ n− 1. (6.92)

Proof. This is proven later using Theorem 6.5.7 below. It may be noted that
the necessity of (ii) follows from Theorem 6.5.1.

The criteria given in the above theorem can be reformulated as follows
(Linnemann [175], Pichai–Sezer–Šiljak [269]). We represent the structure of
a system (A,B,C) with feedback K by a directed graph G = (V,E). The
vertex set V and the arc set E are defined by

V = X ∪ U ∪ Y, X = {x1, · · · , xn}, U = {u1, · · · , um}, Y = {y1, · · · , yl},
E = EA ∪ EB ∪ EC ∪ EK ,

EA = {(xj , xi) | Aij �= 0}, EB = {(uj , xi) | Bij �= 0},
EC = {(xj , yi) | Cij �= 0}, EK = {(yj , ui) | K̂ij �= 0}.

Note that G is the graph associated with the matrix
(

A B O
O O K
C O O

)
as in §2.2.1.

Theorem 6.5.7. A system (A,B,C) has no structurally fixed modes with
respect to K of (6.85) if and only if both of the following two conditions are
satisfied:

(G1) Each vertex of X is contained in a strong component of G which in-
cludes an arc of EK ,
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(G2) There exists a set of mutually disjoint cycles in G that covers the
vertices of X.

Proof. This will be proven later as a corollary of a more general result in
§6.5.3; see Remark 6.5.16.

The equivalence of Theorem 6.5.6 and Theorem 6.5.7 can be shown by
a fairly easy graph-theoretic argument. First, the condition (i) of Theorem
6.5.6 is easily seen to be equivalent to the violation of (G1) of Theorem 6.5.7.
Next, denote by D0 the matrix D in (6.88) with λ = 0. The condition in (G2)
of Theorem 6.5.7 is equivalent to the term-nonsingularity of D0. Note that
(Ĩ , J̃) is a cover of D0 if and only if Y \ J̃ ⊆ Ĩ, U \ Ĩ ⊆ J̃ , (I, J) ∈ CK and
(Ĩ ∩ (X ∪ Y ), J̃ ∩ (X ∪ U)) is a cover of the matrix in (6.92) for I = Ĩ ∩ U ,
J = J̃ ∩ Y . Then the König–Egerváry theorem (Theorem 2.2.15) shows the
equivalence between the condition (ii) of Theorem 6.5.6 and the violation of
(G2) of Theorem 6.5.7.

The two theorems are certainly equivalent as above, and moreover both
show how to check for the existence of a structurally fixed mode efficiently
using binary operations only. They are, however, complementary in the sense
that Theorem 6.5.6 guarantees a “certificate” for the existence of a struc-
turally fixed mode whereas Theorem 6.5.7 for the nonexistence. See also Re-
mark 6.5.3.

Example 6.5.8. The conditions (G1) and (G2) in Theorem 6.5.7 do not
discriminate the existence of zero and nonzero fixed modes. Consider, for
example, a scalar system (n = 1) with A = (0), B = (b), C = (c), and K =
(0). Obviously, this system has a (structurally) fixed mode at zero, and no
nonzero fixed mode. Neither (G1) nor (G2) in Theorem 6.5.7 is satisfied. Note
also that both of the conditions (i) and (ii) in Theorem 6.5.6 are satisfied. In
contrast, the matroid-theoretic method to be developed in the next subsection
will separate zero and nonzero fixed modes. �

Example 6.5.9. Consider a decentralized system (n = 6) with three local
stations described by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 a1 0 0 0 0
0 0 0 0 0 0
a2 0 0 1 0 1
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, K =

⎛

⎝
k1 k2 0 0 0 0
0 0 k3 k4 0 0
0 0 0 0 k5 k6

⎞

⎠ ,

and C = I6, where {a1, a2, b1, b2, b3} is the set of independent parameters (see
Reinschke [278, Example 4] and the references cited therein for the origin of
this system). It can be verified that λ = 0 is a fixed mode of all the systems
parametrized by {a1, a2, b1, b2, b3}. In this sense, the family parametrized
by {a1, a2, b1, b2, b3} has a structure that admits a fixed mode. This fact,
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however, cannot be captured in the present formulation of structurally fixed
modes, since λ = 0 is not a fixed mode if the four entries of A having a
constant value of one are replaced by free parameters. Accordingly, the graph-
theoretic method of Theorem 6.5.7 leads us to the conclusion that this system
has no structurally fixed mode. In contrast, the matroid-theoretic method to
be developed in the next subsection is capable of detecting this kind of fixed
mode, as will be explained in Example 6.5.19. �

6.5.3 Mixed Polynomial Matrix Formulation

Let us introduce a formulation of structurally fixed modes, due to Murota
[209], which is more general and would be more realistic than the one de-
scribed in §6.5.2.

Let
A(s) = Q(s) + T (s) (6.93)

be an n× n mixed polynomial matrix with respect to (K,F ) = (Q,R) such
that Q(s) satisfies the stronger assumption

(MP-Q2) Every nonvanishing subdeterminant of Q(s) is a monomial
over K, i.e., of the form αsp with α ∈ K and an integer p.

We put R = Row(A) and C = Col(A). Let K be an n×n generic matrix, the
nonzero entries of which are algebraically independent numbers in R. Then

AK(s) = A(s) +K = Q(s) + T (s) +K = Q(s) + TK(s) (6.94)

is a mixed polynomial matrix, where TK(s) = T (s)+K. We assume through-
out that AK(s) is nonsingular.

Denote by K the set of nonzero entries of K, and by S the set of nonzero
coefficients in T (s). Then K∪S is algebraically independent over Q. It should
be clear that assuming the algebraic independence of S is equivalent to re-
garding the members of S as independent parameters, and therefore to con-
sidering a family of systems parametrized by those parameters in S. A partic-
ular system in this family having algebraically independent parameter values
has a fixed mode with respect to K if and only if each system parametrized
by S has a fixed mode with respect to K. Note, however, the value of a fixed
mode varies, in general, with the parameters in S.

We define the fixed polynomial ψ(s) as the greatest common divisor in
C[s] of all detAK(s), where arbitrary values are substituted into K. Namely,

ψ(s) = gcd{detAK(s) | K ∈ K} (6.95)

with the obvious understanding of the notation “K ∈ K”. Also we call a
complex number λ ∈ C a fixed mode if ψ(λ) = 0.
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Remark 6.5.10. The structurally fixed mode as formulated in §6.5.2 is a
special case of the present formulation. To see this, note the identity

det(A+BKC − sIn) = (−1)m+l det

⎛

⎝
A− sIn B O
O −Im K
C O −Il

⎞

⎠

and take

Q(s) =

⎛

⎝
−sIn O O
O −Im O
O O −Il

⎞

⎠ , T (s) =

⎛

⎝
A B O
O O O
C O O

⎞

⎠ , K =

⎛

⎝
O O O
O O K
O O O

⎞

⎠ (6.96)

in the decomposition (6.94). Then S is equal to the set of nonzero entries of
A, B, and C, and K to the set of nonzero entries of K. �

We shall derive a necessary and sufficient condition, of a combinatorial
nature, for the existence of fixed modes with the aid of the CCF of LM-
matrices. The derived condition can be tested efficiently. The proposed algo-
rithm is suitable for practical applications in that it is free from numerical
difficulty of rounding errors and is guaranteed to run in polynomial time in
the size of the control system in question. The established criterion naturally
reduces to the graph-theoretic criterion of §6.5.2.

Regarding detAK(s) as a polynomial in (s,S,K) over Q, we consider the
decomposition into irreducible polynomials in Q[s,S,K]. As a consequence
of the assumption (MP-Q2), this is expressed (cf. Lemma 6.3.2) as

detAK(s) = αsp ·
∏

k∈Ψ1

ψk(s,S) ·
∏

k∈Ψ2

ψk(s,S,K), (6.97)

where α ∈ Q \ {0}, p is a nonnegative integer, ψk(s,S) ∈ Q[s,S] \ Q[s] for
k ∈ Ψ1, and ψk(s,S,K) ∈ Q[s,S,K] \ Q[s,S] for k ∈ Ψ2. The index sets,
Ψ1 and Ψ2, classify the irreducible factors according to whether they do not
contain or do contain variables in K.

Lemma 6.5.11. The fixed polynomial ψ(s) is given as

ψ(s) = αsp ·
∏

k∈Ψ1

ψk(s,S). (6.98)

Proof. This is easy to see.

The existence of a zero fixed mode is easy to characterize.

Theorem 6.5.12. For nonsingular AK(s) of (6.94) satisfying (MP-Q2), the
following conditions are equivalent.

(i) λ = 0 is not a fixed mode.
(ii) There exists (I, J) such that Q(0)[R \ I, C \ J ] is nonsingular and

(T (0) +K)[I, J ] is term-nonsingular.
(iii) There exists no (I, J) such that T (0)[I, J ] = O, K[I, J ] = O, and

rankQ(0)[I, J ] ≤ |I| + |J | − n− 1.
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Proof. The equivalence of (i) to the nonsingularity of AK(0) is obvious. The
equivalence to (ii) and (iii) are by Lemma 4.2.7 and by (4.23) in Corollary
4.2.12.

The multiplicity of the zero fixed mode, the exponent p in (6.97), is equal
to ords detAK(s), which can be characterized in terms of an independent
assignment problem (weighted matroid intersection problem) as in §6.2.4 (see
Remark 6.2.3 and Remark 6.2.10). Recall the notation ords for the minimum
degree in s of a nonzero term in a polynomial introduced in (2.1). To be
specific, we consider, as in (6.55), an LM-polynomial matrix

ÃK(s) = ÃK(s; t) =
(

In Q(s)
−diag (t1, · · · , tn) TK(s)

)

=
(

Q̃(s)
T̃K(s; t)

)

(6.99)

associated with AK(s), where t1, · · · , tn are new indeterminates and t =
(t1, · · · , tn). Put C̃ = Col(ÃK) � R ∪ C. With reference to (6.4) we define
ζ : C̃ → Z by

ζ(j) =
{
−rj (j ∈ R)
−cj (j ∈ C) (6.100)

as well as the usual convention ζ(J) =
∑

j∈J ζ(j) for J ⊆ C̃. For J ⊆ C̃

such that T̃K [Row(T̃K), J ] is term-nonsingular, we denote by η(J) the lowest
degree in s of a nonzero term in det T̃K [Row(T̃K), J ]. Note that η(J) admits
a combinatorial expression, namely (cf. (6.13)),

η(J) = min{w(M) |M : n-matching with ∂−M = J in GT̃ }, (6.101)

where GT̃ = (Row(T̃K), C̃;ET̃ ) is a bipartite graph with arc set ET̃ = {(i, j) |
i ∈ Row(T̃K), j ∈ C̃, (T̃K)ij �= 0} and w(M) =

∑
(i,j)∈M ords(T̃K)ij . Also we

define

J = {J ⊆ C̃ | Q̃[Row(Q̃), C̃ \ J ]: nonsingular,
T̃K [Row(T̃K), J ]: term-nonsingular}. (6.102)

Theorem 6.5.13. For nonsingular AK(s) of (6.94) satisfying (MP-Q2), the
multiplicity p of the zero fixed mode is given by

p = min{ζ(C̃ \ J) + η(J) | J ∈ J } − ζ(R).

Proof. This is a straightforward adaptation of Theorem 6.2.5.

On the basis of this theorem, the multiplicity of the zero fixed mode can
be computed efficiently by a variant of the algorithm in §6.2.6.

The nonzero fixed modes can be treated by means of the CCF of the LM-
polynomial matrix ÃK(s). This is based on the fact (Theorem 4.5.9) that the
CCF corresponds to the decomposition of the determinant into irreducible
factors.
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Regarding ÃK(s) as an LM-matrix with respect to (Q[s],R(s)) we may
think of its block-triangular form (“CCF over a ring”) in the sense of Theorem
4.4.19, which is obtained from ÃK(s) through a unimodular transformation
over Q[s]. Let ÂK(s) and ĀK(s) be the block-triangular matrix and the
CCF of ÃK(s) as in Theorem 4.4.19. The families of the row sets and the
column sets in the CCF are denoted respectively by {R̄k | k = 1, · · · , b} and
{C̄k | k = 1, · · · , b}, and the square diagonal blocks by

Āk =
(
Q̄k

T̄k

)

= ĀK [R̄k, C̄k], k = 1, · · · , b.

Note that ÂK(s) and ĀK(s) have identical diagonal blocks, though they may
differ in the upper-triangular part. Similarly to (6.102) we define

Jk = {J ⊆ C̄k | Q̄k[Row(Q̄k), C̄k \ J ]: nonsingular,
T̄k[Row(T̄k), J ]: term-nonsingular}, k = 1, · · · , b.

For J ⊆ C̄k such that T̄k[Row(T̄k), J ] is term-nonsingular, we denote by
ξk(J) and ηk(J) the highest and lowest degrees in s of a nonzero term in
det T̄k[Row(T̄k), J ]. Note that ξk(J) and ηk(J) can be expressed in terms of
weighted-matching problems, just as (6.101).

To identify the nonzero fixed modes, we classify the diagonal blocks into
three categories by defining three index sets

Ψ̄0 = {k | Āk contains no variable of S ∪ K}, (6.103)
Ψ̄1 = {k | Āk contains a variable of S and no variable of K}, (6.104)
Ψ̄2 = {k | Āk contains a variable of K}. (6.105)

Theorem 6.5.14. For nonsingular AK(s) of (6.94) satisfying (MP-Q2), the
number of nonzero fixed modes is given by
∑

k∈Ψ̄1

[
max{ζ(C̄k \ J) + ξk(J) | J ∈ Jk} − min{ζ(C̄k \ J) + ηk(J) | J ∈ Jk}

]
.

Hence there exist no nonzero fixed modes if and only if

max{ζ(C̄k \J)+ξk(J) | J ∈ Jk} = min{ζ(C̄k \J)+ηk(J) | J ∈ Jk} (6.106)

for each k ∈ Ψ̄1.

Proof. It follows from (6.99) that

detAK(s) = det ÃK(s; 1), (6.107)

where ÃK(s; 1) = ÃK(s; t)
∣
∣
∣
t1=···=tn=1

. On the other hand, we have
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det ÃK(s; t) = det ÂK(s; t) = det ĀK(s; t) =
b∏

k=1

det Āk(s; t), (6.108)

where the first equality may be assumed by the fact that ÂK(s; t) is obtained
form ÃK(s; t) through a unimodular transformation over Q[s].

According to Theorem 4.5.9 the expression (6.108) gives a decomposition
into irreducible factors in the ring Q(s)[S,K, t]. In view of Lemma 6.3.2 we
see further that, for each k, det Āk(s; t) is a product of a monomial in s and an
irreducible polynomial in Q[s,S,K, t]. This statement needs only a marginal
modification even after the substitution of t1 = · · · = tn = 1. Namely, we
claim that, for k = 1, · · · , b, we have

det Āk(s; 1) = ρk(s) · ψ̄k(s,S,K), (6.109)

where ρk(s) ∈ Q[s] is a monomial in s, and ψ̄k(s,S,K) ∈ Q[s,S,K] \ Q[s] is
irreducible in Q[s,S,K].

The proof of (6.109) is easy. Denote by Ti the set of elements of T ≡
S ∪ K contained in the row of T̃K(s; t) corresponding to ti (i = 1, · · · , n).
Also denote det Āk(s; t) by fk(T1, · · · , Tn; t1, · · · , tn), which is irreducible in
Q(s)[T1, · · · , Tn, t1, · · · , tn] by Theorem 4.5.6. We see

fk(T1, · · · , Tn; t1, · · · , tn) =

⎛

⎝
∏

i∈Row(T̄k)

ti

⎞

⎠ · fk(T1/t1, · · · , Tn/tn; 1, · · · , 1),

where Ti/ti means substituting a/ti for each indeterminate a ∈ Ti. This
expression implies that det Āk(s; 1) is irreducible in Q(s)[S,K], which, with
Lemma 6.3.2, completes the proof of (6.109).

With reference to (6.97), a combination of (6.107), (6.108), and (6.109)
shows

∏

k∈Ψ1

ψk(s,S) =
∏

k∈Ψ̄1

ψ̄k(s,S),
∏

k∈Ψ2

ψk(s,S,K) =
∏

k∈Ψ̄2

ψ̄k(s,S,K).

In particular, the first expression above gives the nonmonomial part of the
fixed polynomial in Lemma 6.5.11. Finally we note

degs ψ̄k(s)=max{ζ(C̄k\J)+ξk(J) | J ∈ Jk}−min{ζ(C̄k\J)+ηk(J) | J ∈ Jk},

which is a corollary of Theorem 6.2.5.

On the basis of the combinatorial characterization of fixed modes in Theo-
rem 6.5.12 and Theorem 6.5.14, an efficient algorithm for testing the existence
of zero/nonzero fixed modes is designed in the next section.
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6.5.4 Algorithm

In this section we describe an efficient algorithm to check for the existence of
nonzero fixed modes on the basis of Theorem 6.5.14, whereas the algorithm
of §4.2.4 for computing the rank of an LM-matrix can be utilized readily for
the zero fixed mode by Theorem 6.5.12. The basic idea of the algorithm for
nonzero fixed modes is the same as that for nonzero uncontrollable modes in
§6.4.4.

A concrete description of the algorithm for the condition (6.106) follows.
We use an auxiliary network N = (V,E, γ) with underlying graph G = (V,E)
and length function γ : E → Z, in a way consistent with §4.2.4. The vertex
set V is defined as

V = VQ ∪ VT = (RQ ∪ CQ) ∪ (RT ∪ CT ),

where RQ = Row(Q), CQ = Col(Q), RT = Row(T ), CT = Col(T ), VQ =
RQ ∪ CQ, and VT = RT ∪ CT . The arc set E consists of six disjoint parts,

E = ETQ ∪ EQT ∪ EQ ∪ ET ∪ EK ∪ EM ,

to be defined below. We denote by ϕQ : R∪C → RQ ∪CQ and ϕT : R∪C →
RT ∪ CT the obvious one-to-one correspondences.

Let Î ⊆ R and Ĵ ⊆ C be such that Q(1)[R \ Î , C \ Ĵ ] is nonsingular and
TK [Î , Ĵ ] is term-nonsingular, where such (Î , Ĵ) exists by the nonsingularity
of AK(1) and Lemma 4.2.7. We define

ETQ = {(ϕT (i), ϕQ(i)) | i ∈ Î} ∪ {(ϕT (j), ϕQ(j)) | j ∈ C \ Ĵ},
EQT = {(ϕQ(i), ϕT (i)) | i ∈ R \ Î} ∪ {(ϕQ(j), ϕT (j)) | j ∈ Ĵ}.

Let P be the pivotal transform of Q = Q(1) with pivot Q̂ ≡ Q[R \ Î , C \ Ĵ ]
(cf. (6.76)), where Row(P ) = (C \ Ĵ)∪ Î and Col(P ) = (R \ Î)∪ Ĵ . Note that
P is a constant matrix free from s. With reference to P we define

EQ = {(ϕQ(i), ϕQ(j)) | Pij �= 0, i ∈ (C \ Ĵ) ∪ Î , j ∈ (R \ Î) ∪ Ĵ}.

The structure of TK(s) = T (s) +K is represented by ET , EK , and EM .
For each nonzero entry Tij(s) of T (s) we consider a pair of parallel arcs a0ij
and a1ij with ∂+a0ij = ∂+a1ij = ϕT (i) ∈ RT and ∂−a0ij = ∂−a1ij = ϕT (j) ∈ CT .
Putting

E0
T = {a0ij | Tij �= 0, i ∈ R, j ∈ C}, E1

T = {a1ij | Tij �= 0, i ∈ R, j ∈ C},

we define ET = E0
T ∪ E1

T and

EK = {(ϕT (i), ϕT (j)) | Kij �= 0, i ∈ R, j ∈ C}.

Since TK [Î , Ĵ ] is term-nonsingular, the bipartite graph (RT , CT ;ET ∪ EK)
with vertex set RT ∪CT and arc set ET ∪EK has a matchingM (⊆ ET ∪EK)
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such that |M | = |Î|(= |Ĵ |), ϕT (Î) = ∂+M , and ϕT (Ĵ) = ∂−M . We define
EM as the set of reoriented arcs of M , i.e.,

EM = {ā | a ∈M},

where ā denotes the reorientation of a.
The length function γ : E → Z is defined with reference to ri and ci

(i = 1, · · · , n) of (6.4) as

γ(a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ri if a = (ϕT (i), ϕQ(i)) ∈ ETQ, i ∈ Î ,
−cj if a = (ϕT (j), ϕQ(j)) ∈ ETQ, j ∈ C \ Ĵ ,
ri if a = (ϕQ(i), ϕT (i)) ∈ EQT , i ∈ R \ Î ,
cj if a = (ϕQ(j), ϕT (j)) ∈ EQT , j ∈ Ĵ ,
0 if a ∈ EQ ∪ EK ,
−ordsTij(s) if a ∈ E0

T ,
−degs Tij(s) if a ∈ E1

T ,
−γ(a′) if a ∈ EM is the reorientation of a′ ∈M.

For a nonzero entry Tij(s) of T (s) with ordsTij(s) = degs Tij(s) (which is the
case if Tij(s) is a monomial in s), the pair of arcs, having the same length,
may be replaced by a single arc of the same length.

We are now ready to rephrase the condition (6.106) in terms of the net-
work N = (G, γ). Note that the strong components of G correspond to
diagonal blocks of the CCF of ÃK . For each strong component of G, say
Ĝ = (V̂ , Ê), we consider the condition that the sum of the lengths γ(a) along
any directed cycle in Ĝ is equal to zero (cf. (6.78)). Since Ĝ is strongly con-
nected, this condition is equivalent, by Theorem 2.2.35(2), to the existence
of a potential function π : V̂ → Z such that

γ(a) = π(∂−a) − π(∂+a) (∀ a ∈ Ê). (6.110)

Theorem 6.5.15. For nonsingular AK(s) of (6.94) satisfying (MP-Q2),
there exist no nonzero fixed modes if and only if each strong component of
G either contains an arc of EK or admits a potential function π such that
(6.110) holds.

Proof. For simplicity of notation let us assume that G itself is a strong com-
ponent that does not contain an arc of EK . We also assume for simplicity of
argument that each Tij(s) is a monomial in s so that each pair of parallel
arcs in ET is replaced by a single arcs. Consider the independent assignment
problem as in §6.2 to compute degs det ÃK(s) for ÃK(s) of (6.99). The rest
of the proof is the same as that of Theorem 6.4.18.

The overall computational complexity for testing for the existence of
fixed modes on the basis of Theorem 6.5.12 and Theorem 6.5.15 is domi-
nated by that for the construction of the graph G and therefore bounded by
O(n3 log n). Note that the decomposition of G into strong components can be
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done in O(|E|) time and the potential function of (6.110) for a strong com-
ponent Ĝ = (V̂ , Ê), if any, can be found in time of O(|Ê|) by the procedure
of Remark 6.4.19. It should be emphasized here that the whole algorithm
involves only pivoting operations on the matrix Q(1), the entries of which
are rational numbers (simple numbers such as ±1 in practical applications).

Remark 6.5.16. The graph-theoretic criterion in Theorem 6.5.7 can be
derived from Theorem 6.5.12 and Theorem 6.5.15 applied to the matrix
D(s) = Q(s)+T (s)+K defined by (6.96) in Remark 6.5.10. Recall (cf. (6.88))
that both Row(D) and Col(D) have a natural one-to-one correspondence
with X ∪ U ∪ Y , to be denoted by νR : Row(D) → X ∪ U ∪ Y and
νC : Col(D) → X ∪ U ∪ Y . Note also that Q(s) satisfies (MP-Q2) with

ri =
{

1 (νR(i) ∈ X)
0 (νR(i) ∈ U ∪ Y ), cj = 0 (j ∈ Col(D)).

In considering nonzero fixed modes we may take (Î , Ĵ) = (∅, ∅) since Q(s) is
nonsingular. The auxiliary network N = (G, γ) for (Î , Ĵ) = (∅, ∅) is easy to
identify. We have

ETQ = {(ϕT (j), ϕQ(j)) | j ∈ Col(D)},
EQT = {(ϕQ(i), ϕT (i)) | i ∈ Row(D)},
EQ = {(ϕQ(j), ϕQ(i)) | νR(i) = νC(j), i ∈ Row(D), j ∈ Col(D)},
ET = {(ϕT (i), ϕT (j)) | Tij �= 0},
EK = {(ϕT (i), ϕT (j)) | Kij �= 0},
EM = ∅,

and γ(a) = 1 if a = (ϕQ(i), ϕT (i)) ∈ EQT with νR(i) ∈ X, and γ(a) = 0
otherwise. Let us call an arc a with γ(a) = 1 a critical arc. A critical arc
corresponds to an element of X. It is easy to see that a strong component of
G (of N) containing a critical arc cannot admit a potential function.

We mean by (M1) the condition that each strong component of G either
contains an arc of EK or admits a potential function π such that (6.110)
holds, and by (M2) the condition of nonsingularity of D(0). We also refer to
the conditions (G1) and (G2) in Theorem 6.5.7.

The equivalence of (G2) and (M2) is easy to see. Also the implication,
(G1) =⇒ (M1), is easy to see. The converse is not always true (see Example
6.5.18). Under the condition (M2), however, every critical arc is contained in
a strong component of G, and consequently, the converse, (M1) =⇒ (G1), is
also true. Thus we have shown [(M2) ⇐⇒ (G2)], [(G1) =⇒ (M1)], and [(M1),
(M2) =⇒ (G1)], proving [(M1), (M2) ⇐⇒ (G1), (G2)]. It is emphasized,
however, that (G1) alone does not correspond to the nonexistence of nonzero
fixed modes, as we have seen in Example 6.5.8. �
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6.5.5 Examples

Example 6.5.17. The algorithm described in §6.5.4 as well as the derivation
in §6.5.3 is illustrated here by means of an example. Consider a 9 × 9 mixed
polynomial matrix AK(s) = Q(s) + T (s) +K of (6.94) with Q(s) and T (s)
given by

x1 x2 x3 x4 x5 x6 x7 x8 x9

w1 1 0 1 0 0 0 0 0 0
w2 0 0 1 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0
w4 −1 0 −1 0 0 0 0 0 0
w5 0 0 0 0 1 s 0 s 0
w6 1 0 1 0 −1 −s s 0 0
w7 0 0 0 0 0 0 0 0 0
w8 −s 0 −s 0 0 0 0 0 1
w9 0 0 0 0 0 0 0 0 0

,

x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 0 0 0 0 0 0 0
0 sf1 0 0 0 0 a1 0 0
0 a2 sf2 a3 a4 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a5
0 0 0 0 0 0 0 a6 0
0 0 0 0 0 0 0 a7 a8
0 0 0 0 0 0 0 0 0
0 0 0 0 a9 sf3 0 0 0

,

and

K =

x1 x2 x3 x4 x5 x6 x7 x8 x9

w1 0 0 0 0 0 0 0 0 k1
w2 0 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0
w4 0 0 0 k2 0 0 0 0 0
w5 0 0 0 0 0 0 k3 0 0
w6 0 0 0 0 0 0 0 0 0
w7 0 0 0 0 0 0 k4 0 0
w8 0 0 0 0 0 0 0 0 0
w9 0 0 0 0 0 0 0 0 0

.

The assumption (MP-Q2) is satisfied, where (6.4) holds true with

(r1, · · · , r9) = (0, 0, 0, 0, 0, 0, 0, 1, 0), (c1, · · · , c9) = (0, 0, 0, 0, 0,−1,−1,−1, 1).

Note that S = {a1, · · · , a9} ∪ {f1, · · · , f3} and K = {k1, · · · , k4}.
By direct calculation we obtain

detAK(s) = [s] ×
[
(a9 − f3)(f1f2s2 − a2)

]

× [k2(k1s+ 1)(a7s− k4s+ a7k3 − a6k4)] ,

where the brackets [ ] correspond to the three parts in (6.97). It follows from
Lemma 6.5.11 that the fixed polynomial is given by ψ(s) = (a9 − f3) · s ·
(f1f2s2 − a2), where α = (a9 − f3) and p = 1 in (6.98).

The associated LM-polynomial matrix ÃK(s) of (6.99) is given by
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w1 w2 w3 w4 w5 w6 w7 w8 w9 x1 x2 x3 x4 x5 x6 x7 x8 x9

1 1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
1 −1 0 −1 0 0 0 0 0 0

1 0 0 0 0 1 s 0 s 0
1 1 0 1 0 −1 −s s 0 0

1 0 0 0 0 0 0 0 0 0
1 −s 0 −s 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0
−t1 0 0 0 0 0 0 0 0 k1

−t2 0 sf1 0 0 0 0 a1 0 0
−t3 0 a2 sf2 a3 a4 0 0 0 0

−t4 0 0 0 k2 0 0 0 0 0
−t5 0 0 0 0 0 0 k3 0 a5

−t6 0 0 0 0 0 0 0 a6 0
−t7 0 0 0 0 0 0 k4 a7 a8

−t8 0 0 0 0 0 0 0 0 0
−t9 0 0 0 0 a9 sf3 0 0 0

.

The CCF ĀK(s), being identical with the block-triangular matrix ÂK(s) in
this example, is given by

C̄1 C̄2 C̄3 C̄4 C̄5 C̄6 C̄7 C̄8 C̄9 C̄10 C̄11

x1 w2 x2 x3 w3 x4 w4 x5 x6 w9 w5 w6 x7 x8 w7 w1 x9 w8

1 1 1
1 0 1

−t2 sf1 0 a1

0 a2 sf2 −t3 a3 a4

1 1
k2 −t4

1
−1 −s 1 s −1
a9 sf3 −t9

1
1 1 s s −1
0 −t6 0 a6

−t5 0 k3 0 a5

0 0 k4 a7 −t7 a8

1
s 1 1

−t1 k1

−t8

.

The CCF has 11 blocks of column sets: C̄1 = {x1}, C̄2 = {w2, x2, x3},
C̄3 = {w3}, C̄4 = {x4}, C̄5 = {w4}, C̄6 = {x5, x6}, C̄7 = {w9}, C̄8 =
{w5, w6, x7, x8}, C̄9 = {w7}, C̄10 = {w1, x9}, C̄11 = {w8}. The index sets
of (6.103)–(6.105) are given by Ψ̄0 = {1, 3, 5, 7, 9, 11}, Ψ̄1 = {2, 6}, and
Ψ̄2 = {4, 8, 10}, and ψ̄k(s) of (6.109) for k ∈ Ψ̄1 ∪ Ψ̄2 are:

ψ̄2(s) = (f1f2s2 − a2), ψ̄6(s) = (a9 − f3);
ψ̄4(s) = k2, ψ̄8(s) = (a7s− k4s+ a7k3 − a6k4), ψ̄10(s) = (k1s+ 1).
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Note also that det Ā6 = s · ψ̄6.
We now illustrate the algorithm of §6.5.4. Suppose we have found Î =

{w2, w3, w4, w5, w7, w9}, Ĵ = {x2, x3, x4, x6, x7, x8}, and a matching M =
{a7, f1, f2, f3, k2, k3} by applying the algorithm of §4.2.4 to AK(1) above.
Then the matrix P of (6.76) is given by

P =

w1 w6 w8 x2 x3 x4 x6 x7 x8

x1 1 0 0 0 1 0 0 0 0
x5 1 −1 0 0 0 0 1 −1 0
x9 1 0 1 0 0 0 0 0 0
w2 0 0 0 0 1 0 0 0 0
w3 0 0 0 0 0 0 0 0 0
w4 1 0 0 0 0 0 0 0 0
w5 −1 1 0 0 0 0 0 1 1
w7 0 0 0 0 0 0 0 0 0
w9 0 0 0 0 0 0 0 0 0

and the auxiliary network N = (G, γ) = (V,E, γ) is depicted in Fig. 6.10,
where xT

i = ϕT (xi), x
Q
i = ϕQ(xi), etc. The associated length γ(a) is as

follows:

γ(a) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 (a = (xQ
6 , x

T
6 ), (xQ

7 , x
T
7 ), (xQ

8 , x
T
8 ), (xT

9 , x
Q
9 ),

(wT
2 , x

T
2 ), (wT

3 , x
T
3 ), (wT

9 , x
T
6 ))

1 (a = (wQ
8 , w

T
8 ), (xT

2 , w
T
2 ), (xT

3 , w
T
3 ), (xT

6 , w
T
9 ))

0 (otherwise).

The diagonal blocks in the CCF are determined from the strong compo-
nents of G. In particular, the diagonal blocks with indices in Ψ̄1 = {2, 6}
correspond respectively to Ĝ2 consisting of {wT

2 , w
Q
2 , w

T
3 , x

T
2 , x

T
3 , x

Q
3 } and

Ĝ6 of {wT
9 , x

T
5 , x

Q
5 , x

T
6 , x

Q
6 }. These two strong components are extracted in

Fig. 6.11, where the length γ(a) is attached in parentheses to each arc a.
Theorem 6.5.15 reveals that Ĝ2 brings about nonzero fixed modes since

it contains a directed cycle of nonzero length. On the other hand, Ĝ6 has
no directed cycle of nonzero length, introducing no nonzero fixed modes.
Accordingly, Ĝ6 admits a potential function π such that π(xT

6 ) = −1,
π(wT

9 ) = π(xT
5 ) = π(xQ

5 ) = π(xQ
6 ) = 0. We also see by the equivalence of (i)

and (iii) in Theorem 6.5.12 that λ = 0 is a fixed mode, since T [I, J ](0) = O,
K[I, J ] = O, and rankQ(0)[I, J ] ≤ |I| + |J | − 10 for I = {w1, · · · , w9} and
J = {x6}. Furthermore, by Theorem 6.5.13, λ = 0 is simple (i.e., with mul-
tiplicity one). �

Example 6.5.18. The present method successfully discriminates the exis-
tence of zero and nonzero fixed modes. Consider again the problem of Exam-
ple 6.5.8. It has a zero fixed mode and no nonzero fixed mode, while neither
graph-theoretic condition in Theorem 6.5.7 is satisfied. In line with Remark
6.5.16 we apply the present method to
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Fig. 6.10. Auxiliary network N in Example 6.5.17
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Fig. 6.11. Strong components free from EK in Example 6.5.17 (Ĝ6 admits a po-

tential and Ĝ2 does not)

D(s) =

⎡

⎣
−s b 0
0 −1 0
c 0 −1

⎤

⎦ =

⎡

⎣
−s 0 0
0 −1 0
0 0 −1

⎤

⎦+

⎡

⎣
0 b 0
0 0 0
c 0 0

⎤

⎦+

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦

to obtain the auxiliary network N = (G, γ) for (Î , Ĵ) = (∅, ∅). The graph G
is acyclic, and each strong component, consisting of a single vertex, admits
a potential function in a trivial manner. By Theorem 6.5.15 we can conclude
that there exists no nonzero fixed mode. The existence of a zero fixed mode is
exhibited by (I, J) = ({x, u}, {x, y}) in Theorem 6.5.12(iii), where Row(D) =
Col(D) = {x, u, y}. �

Example 6.5.19. The present method successfully detects the zero fixed
mode in Example 6.5.9, which is overlooked by the graph-theoretic method.
We take the matrix of (6.96) with n = 6, m = 3, and l = 6 as the matrix
AK(s) of size 15, which turns out to satisfy (MP-Q2) with

(r1, · · · , r15) = (1, 1, 1, 2, 1, 2; 0, 0, 0; 0, 0, 0, 1, 0, 1),
(c1, · · · , c15) = (0, 0, 0, 1, 0, 1; 0, 0, 0; 0, 0, 0, 1, 0, 1).

Then Theorem 6.5.12 reveals the existence of the zero fixed mode. �

Notes. The mixed matrix formulation in §6.5.3 and the algorithm in §6.5.4
are taken from Murota [209].
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This chapter introduces three supplementary, mutually independent, topics:
the combinatorial relaxation algorithm, combinatorial system theory, and
mixed skew-symmetric matrices.

7.1 Combinatorial Relaxation Algorithm

The “combinatorial relaxation” approach to algebraic computation initiated
by Murota [212] is described here for the problem of computing the maxi-
mum degree of subdeterminants of a polynomial/rational matrix, the prob-
lem treated in §6.2 by graph-theoretic and valuated matroid-theoretic meth-
ods. A purely combinatorial algorithm, whether graph-theoretic or matroid-
theoretic, is based on a genericity assumption, and hence can possibly fail
when the assumed genericity is not satisfied by specific input data. An al-
gorithm of “combinatorial relaxation” type is a remedy for this. It always
returns the correct answer, while sharing the spirit of generic approach. It
is efficient, behaving as a combinatorial algorithm in most cases, and at the
same time it is reliable, coping with nongeneric cases where numerical can-
cellation does affect the answer.

7.1.1 Outline of the Algorithm

Let A(s) = (Aij(s)) be an m× n rational function matrix with Aij(s) being
a rational function in s with coefficients from a certain field F (typically
the real number field R). We shall present an algorithm for computing the
highest degree of a minor of order k of A(s):

δk(A) = max{degs detA[I, J ] | |I| = |J | = k}. (7.1)

As a combinatorial counterpart of δk(A) we consider the maximum weight of
a k-matching in the associated bipartite graph G(A) = (V,E) introduced in
§6.2.2; each arc of G(A) corresponds to a nonzero entry Aij(s) and is given
a weight wij = degsAij(s). We then define

δ̂k(A) = max{w(M) |M is a k-matching in G(A)}, (7.2)

K. Murota, Matrices and Matroids for Systems Analysis,
Algorithms and Combinatorics 20, DOI 10.1007/978-3-642-03994-2 7,
c© Springer-Verlag Berlin Heidelberg 2010
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where δ̂k(A) = −∞ if no k-matching exists.
As has been discussed in §6.2.2 (Theorem 6.2.2 in the case of a polyno-

mial matrix), the combinatorial value δ̂k(A) is an upper bound on δk(A) and
it is generically tight. Recall that the word “generic” refers to an algebraic
assumption that the nonzero coefficients in A(s) are subject to no algebraic
relations, whereas its practical interpretation would be “so long as no acci-
dental numerical cancellation occurs.” To make this statement more precise,
we define an m× n constant matrix A◦ = (A◦

ij) by

A◦
ij =

{
lims→∞ s

−wijAij(s) if Aij(s) �= 0
0 if Aij(s) = 0. (7.3)

Let us call A◦
ij the leading coefficient of Aij(s), since, when Aij(s) is a poly-

nomial, A◦
ij is equal to the coefficient of the highest-degree term in Aij(s).

Theorem 7.1.1. Let A(s) be a rational function matrix.
(1) δk(A) ≤ δ̂k(A).
(2) The equality holds generically, i.e., if the set of nonzero leading coef-

ficients {A◦
ij | A◦

ij �= 0} is algebraically independent (over a subfield of F ).
�

We say that A(s) is upper-tight (for k) if δk(A) = δ̂k(A). Note that genericity
is sufficient and not necessary for the upper-tightness.

The algorithm, outlined below, takes advantage of two facts:

(i) δ̂k(A) is generically equal to δk(A), and
(ii) δ̂k(A) can be computed efficiently by a combinatorial algorithm.

The algorithm first computes δ̂k(A), instead of δk(A), by solving a weighted-
matching problem using an efficient combinatorial algorithm (Phase 1), and
then checks whether δ̂k(A) equals δk(A) (Phase 2). The algorithm invokes an
exception-handling algebraic elimination routine to modify A only when it
detects discrepancy between δ̂k(A) and δk(A) due to numerical cancellation
(Phase 3). In Phase 3, where δk(A) ≤ δ̂k(A)− 1, the matrix A is modified to
another matrix A′ such that δk(A′) = δk(A) and δ̂k(A′) ≤ δ̂k(A) − 1.

Algorithm for computing δk(A) (outline)

Phase 1 : Compute δ̂k(A) by solving the weighted-matching problem in G(A)
using an efficient combinatorial algorithm (cf. Ahuja–Magnanti–Orlin [3],
Cook–Cunningham–Pulleyblank–Schrijver [40], Lawler [171]).

Phase 2 : Test whether δk(A) = δ̂k(A) or not (without computing δk(A)).
If so, output δ̂k(A) and stop.

Phase 3 : Modify A to another matrix A′ such that δk(A′) = δk(A) and
δ̂k(A′) ≤ δ̂k(A) − 1. Put A := A′ and go to Phase 1. �
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The test in Phase 2 for the upper-tightness can be reduced to computing
the ranks of four constant matrices (see Theorem 7.1.9). The modification
algorithm of Phase 3, to be described in detail in §7.1.3, makes essential use of
dual variables based on the duality theorem for the polyhedral description of
matchings. Since numerical cancellation occurs only rarely (or nongenerically)
the above algorithm is combinatorial in almost all cases and hence suitable
for large scale problems.

Remark 7.1.2. In more general terms an algorithm of “combinatorial re-
laxation” type consists of the following three distinct phases:

Phase 1: Consider a relaxation (or an easier problem) of a combinatorial
nature to the original problem and find a solution to the relaxed problem.

Phase 2: Test for the validity of this solution to the original problem (without
computing the solution to the original problem).

Phase 3 (In case of invalid solution): Modify the relaxation so that the
invalid solution is eliminated.

It is crucial for computational efficiency that the relaxed problem can be
solved efficiently and that the modification of the relaxation in Phase 3 need
not be invoked many times. �

Example 7.1.3. Some technical issues of the combinatorial relaxation algo-
rithm above are illustrated here for a specific example. Consider a polynomial
matrix over F = R (m = n = 4):

A(s) =

⎛

⎜
⎜
⎝

c1 c2 c3 c4
r1 αs4 s5 0 2s3

r2 s5 s6 + 1 s4 s2

r3 s4 + s s5 −s3 0
r4 2s2 s 0 s+ 2

⎞

⎟
⎟
⎠

with a nonzero parameter α introduced for an illustrative purpose. The as-
sociated bipartite graph G = G(A), shown in Fig. 7.1, has 8 vertices and 13
arcs. The leading coefficient matrix (7.3) is given by

A◦ =

⎛

⎜
⎝

α 1 0 2
1 1 1 1
1 1 −1 0
2 1 0 1

⎞

⎟
⎠ . (7.4)

Let us consider the minors of order k = 3, and assume α �= 1 as the
first case. We may take, for example, M (1) = {(r1, c4), (r2, c2), (r3, c1)} as
a matching of size 3 of maximum weight w(M (1)) = 3 + 6 + 4 = 13. The
corresponding submatrix
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r1

r2

r3

r4

c1

c2

c3

c4

w11 = 4

w12 = 5

w42 = 1

w44 = 1

Fig. 7.1. Bipartite graph G(A) (Example 7.1.3)

A[∂+M (1), ∂−M (1)] =

⎛

⎝

c1 c2 c4
r1 αs4 s5 2s3

r2 s5 s6 + 1 s2

r3 s4 + s s5 0

⎞

⎠

has another matching M (2) = {(r1, c4), (r2, c1), (r3, c2)} of weight w(M (2)) =
3 + 5 + 5 = 13. In the determinant expansion of this minor, the two terms of
degree 13 arising from M (1) and M (2) cancel each other, and

detA[{r1, r2, r3}, {c1, c2, c4}] = (1 − α)s11 − 2s10 + s8 − 2s7 − 2s4.

Therefore,

δ3(A[{r1, r2, r3}, {c1, c2, c4}]) = 11

< 13 = w(M (1)) = δ̂3(A[{r1, r2, r3}, {c1, c2, c4}]).

Nevertheless, we have δ3(A) = 13 = δ̂3(A), provided α �= 1, because
of the existence of another minor of degree 13. Consider a third matching
M (3) = {(r1, c2), (r2, c1), (r3, c3)} of weight w(M (3)) = 5 + 5 + 3 = 13. The
corresponding submatrix

A[∂+M (3), ∂−M (3)] =

⎛

⎝

c1 c2 c3

r1 αs4 s5 0
r2 s5 s6 + 1 s4

r3 s4 + s s5 −s3

⎞

⎠
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admits four matchings (of size 3) of weight 13, and has the determinant

detA[{r1, r2, r3}, {c1, c2, c3}] = 2(1 − α)s13 + s10 − αs7.

Hence δ3(A) = 13 = δ̂3(A), provided α �= 1.
The phenomenon observed above illustrates a challenging complication:

after we have found a matching M of maximum weight in Phase 1, we must
look globally for a k×k minor of degree w(M) before we can decide in Phase 2
whether w(M) is equal to δk(A) or not.

In case α = 1 we can verify by inspection that there exists no 3 × 3
minor of degree equal to 13, whereas degs detA[{r1, r2, r3}, {c2, c3, c4}] = 12.
Accordingly we conclude

δ̂3(A) = 13, δ3(A) =
{

13 if α �= 1
12 if α = 1.

The values of δ̂k(A) and δk(A) for k = 1, 2, 4 can be found similarly:

δ̂1(A) = 6, δ1(A) = 6,

δ̂2(A) = 10, δ2(A) =
{

10 if α �= 1
9 if α = 1,

δ̂4(A) = 14, δ4(A) =
{

14 if α �= 5
13 if α = 5. �

7.1.2 Test for Upper-tightness

This section describes a procedure for Phase 2 which tests for the upper-
tightness δk(A) = δ̂k(A) of A(s) without computing δk(A). The procedure
makes use of the standard duality result for bipartite matchings, which follows
from the integrality of the associated linear programs.

We consider the following primal-dual pair of linear programs (Chvátal
[35], Lawler [171], Lovász–Plummer [181], Schrijver [292]):

PLP(k): Maximize
∑

e∈E

weξe,

subject to
∑

∂e�i

ξe ≤ 1 (i ∈ V ), (7.5)

∑

e∈E

ξe = k,

ξe ≥ 0 (e ∈ E);

DLP(k): Minimize
∑

i∈V

pi + kq (≡ π(p, q)),

subject to pi + pj + q ≥ wij ((i, j) ∈ E), (7.6)
pi ≥ 0 (i ∈ V ).
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Note that ξ = (ξe | e ∈ E) ∈ RE is the primal variable and p = (pi | i ∈
V ) = pR ⊕ pC = (pRi | i ∈ R) ⊕ (pCj | j ∈ C) ∈ RV and q ∈ R are the dual
variables.

As is well known, these linear programs enjoy the integrality property.

Lemma 7.1.4.
(1) PLP(k) has an integral optimal solution with ξe ∈ {0, 1} (e ∈ E).
(2) If we is integer for e ∈ E, DLP(k) has an integral optimal solution

with pi ∈ Z (i ∈ V ) and q ∈ Z.

Proof. The coefficient matrix is seen to be totally unimodular by Camion’s
criterion (Lawler [171, Th.16.4], Schrijver [292, Th.19.3(vi)]).

By virtue of the linear programming duality as well as the primal inte-
grality we have

δ̂k(A) = min{π(p, q) | (p, q) is feasible to DLP(k)}. (7.7)

By the dual integrality we henceforth assume that the dual variables are
integer-valued.

The optimality of a k-matching is expressed as follows. For e = (i, j) ∈ E,
the reduced weight is defined by

w̃e = w̃ij = wij − pi − pj − q. (7.8)

Then (p, q) is (dual) feasible if and only if w̃e ≤ 0 (e ∈ E) and pi ≥ 0 (i ∈ V ).
An arc e ∈ E is said to be tight (with respect to (p, q)) if w̃e = 0. We put

E∗ = E∗(p, q) = {e ∈ E | w̃e = 0}, (7.9)

which is the set of tight arcs, and define a subgraph G∗ = G∗(p, q) =
(V,E∗(p, q)). A vertex i ∈ V is said to be active (with respect to p) if pi > 0,
and we put

V ∗ = V ∗(p) = {i ∈ V | pi > 0}, (7.10)
I∗ = I∗(p) = {i ∈ R | pi > 0} = V ∗ ∩R, (7.11)
J∗ = J∗(p) = {j ∈ C | pj > 0} = V ∗ ∩ C. (7.12)

We call I∗ and J∗ active rows and columns, respectively. The complementary
slackness condition yields the following optimality criterion. Note that this is
essentially the same as Theorem 2.2.36.

Lemma 7.1.5. Let M be a k-matching in G(A) and (p, q) be a dual feasible
solution. Then both M and (p, q) are optimal (i.e., w(M) = π(p, q)) if and
only if M ⊆ E∗(p, q) and ∂M ⊇ V ∗(p). �

The following corollary is important for our algorithm. Note that G∗(p, q)
depends on the choice of (p, q).
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Lemma 7.1.6. Let (p, q) be an optimal dual solution. Then M is an optimal
k-matching in G if and only if M is a k-matching in G∗(p, q) such that
∂M ⊇ V ∗(p). �

To derive a necessary and sufficient condition for the upper-tightness we
extract the “tight part” from A(s) which is composed of the entries that can
potentially contribute to the coefficient of sδ̂k(A) in a minor of order k. For a
dual feasible (p, q) we define an m× n constant matrix

T (A; p, q) = A∗ = (A∗
ij)

by

A∗
ij = lim

s→∞
s−pi−pj−qAij(s) =

{
A◦

ij if (i, j) ∈ E∗(p, q)
0 otherwise. (7.13)

We call A∗ the tight coefficient matrix (with respect to (p, q)). Note that
T (A; p, q) = A∗ varies with the choice of (p, q), not unique even for optimal
(p, q). The tight coefficient matrix A∗ can also be defined by

Aij(s) = spi+pj+q(A∗
ij + o(1)), (7.14)

where o(1) denotes an expression (rational function) that tends to zero as
s→ ∞. In a matrix form we can also write this as

A(s) = sq · diag (s; pR) · (A∗ + o(1)) · diag (s; pC) (7.15)

using the notation
diag (s; r) = diag (sr1 , sr2 , · · ·) (7.16)

for a diagonal matrix with diagonal entries sr1 , sr2 , · · ·, where r = (r1, r2, · · ·).
In terms of the tight coefficient matrix A∗, Lemma 7.1.6 can be rephrased

as follows. It should be clear that A∗
ij �= 0 if and only if (i, j) ∈ E∗.

Lemma 7.1.7. Let (p, q) be an optimal dual solution and assume |I| = |J | =
k for I ⊆ R and J ⊆ C. Then δ̂k(A[I, J ]) = δ̂k(A) if and only if I ⊇ I∗,
J ⊇ J∗, and

term-rankA∗[I, J ] = |I| = |J | = k. (7.17)

In particular, there exist such I ⊆ R and J ⊆ C. �

For I ⊆ R and J ⊆ C with |I| = |J | = k it follows from (7.14) that

detA[I, J ] = sp(I∪J)+kq (detA∗[I, J ] + o(1)) ,

where p(I ∪ J) =
∑

i∈I∪J pi. If (p, q) is optimal and if I ⊇ I∗ and J ⊇ J∗,
we have p(I ∪ J) + kq = p(V ) + kq = π(p, q) = δ̂k(A), and therefore

detA[I, J ] = sδ̂k(A) (detA∗[I, J ] + o(1)) .

This yields the following criterion for the upper-tightness. Note that “term-
rank” in (7.17) of Lemma 7.1.7 is replaced with “rank” in (7.18) below.
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Lemma 7.1.8. Let (p, q) be an optimal dual solution. Then δk(A) = δ̂k(A)
if and only if there exist I ⊇ I∗ and J ⊇ J∗ such that

rankA∗[I, J ] = |I| = |J | = k. (7.18)

�

The above criterion, involving existential quantifiers, is not readily checked
efficiently. It can, however, be rewritten in a form suitable for straightforward
verification. In fact, the following theorem shows that the upper-tightness is
equivalent to a set of rank conditions for four constant matrices.

Theorem 7.1.9. Let (p, q) be an optimal dual solution, I∗ and J∗ be the
active rows and columns defined by (7.11) and (7.12), and A∗ be the tight
coefficient matrix defined by (7.13). Then δk(A) = δ̂k(A) if and only if the
following four conditions are satisfied:

(R1) rankA∗[R,C] ≥ k,
(R2) rankA∗[I∗, C] = |I∗|,
(R3) rankA∗[R, J∗] = |J∗|,
(R4) rankA∗[I∗, J∗] ≥ |I∗| + |J∗| − k.

Proof. This follows from Lemma 7.1.8 and Theorem 2.3.46 for λ(I, J) =
rankA∗[I, J ].

The following similar theorem for term-rank will be used later.

Theorem 7.1.10. Let (p, q) be a dual feasible solution, and I∗ and J∗ be
defined by (7.11) and (7.12), and A∗ by (7.13). Then the following three con-
ditions (i)–(iii) are equivalent.

(i) (p, q) is optimal.
(ii) There exist I ⊇ I∗ and J ⊇ J∗ such that

term-rankA∗[I, J ] = |I| = |J | = k.
(iii) The following four conditions are satisfied:

(T1) term-rankA∗[R,C] ≥ k,
(T2) term-rankA∗[I∗, C] = |I∗|,
(T3) term-rankA∗[R, J∗] = |J∗|,
(T4) term-rankA∗[I∗, J∗] ≥ |I∗| + |J∗| − k.

Proof. This follows from Lemma 7.1.5, Lemma 7.1.7 and Theorem 2.3.46 for
λ(I, J) = term-rankA∗[I, J ].

Example 7.1.11 (Continued from Example 7.1.3). First we consider the
case of k = 3. As the optimal dual variables we may take

pr1 = 2, pr2 = 3, pr3 = 2, pr4 = 0; (7.19)
pc1 = 1, pc2 = 2, pc3 = 0, pc4 = 0; (7.20)
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and q = 1. We have

δ̂3(A) = π(p, q) =
∑

i∈V

pi + kq = 13.

Those variables and the reduced weights w̃e of (7.8) are illustrated in Fig. 7.2.

pr1 = 2

pr2 = 3

pr3 = 2

pr4 = 0

pc1 = 1

pc2 = 2

pc3 = 0

pc4 = 0

q = 1

w̃11 = 0

w̃12 = 0

w̃42 = −2

w̃44 = 0

Fig. 7.2. Dual variables and reduced weights for G(A) (Example 7.1.11, k = 3)

According to (7.13) we have the tight coefficient matrix

T (A; p, q) = A∗ =

⎛

⎜
⎜
⎝

• •
• α 1 0 2
• 1 1 1 0
• 1 1 −1 0

2 0 0 1

⎞

⎟
⎟
⎠, (7.21)

which should be compared with A◦ of (7.4); A∗ contains a smaller number of
nonzero entries. The symbol • denotes active rows and columns. The graph
G∗ consisting of the tight arcs is shown in Fig. 7.3. Noting I∗(p) = {r1, r2, r3},
J∗(p) = {c1, c2}, we see that the conditions (R1)–(R3) in Theorem 7.1.9 are
satisfied for all values of α. On the other hand, the last condition (R4) is
violated when α = 1. Hence by Theorem 7.1.9 we see

δ3(A)
{

= δ̂3(A) = 13 if α �= 1
≤ δ̂3(A) − 1 = 12 if α = 1.
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In the case of α = 1 we cannot tell how small δ3(A) is, though we know for
sure that δ3(A) is strictly smaller than δ̂3(A) = 13.

r1

r2

r3

r4

c1

c2

c3

c4

Fig. 7.3. Graph G∗(p, q) of tight arcs (Example 7.1.11, k = 3) (©: active vertex)

Next we consider the case of k = 2. We may choose the following optimal
dual variables:

p′r1
= 0, p′r2

= 1, p′r3
= 0, p′r4

= 0; p′c1
= 0, p′c2

= 1, p′c3
= 0, p′c4

= 0;

and q′ = 4, from which we see δ̂2(A) = π(p′, q′) = 10. The tight coefficient
matrix is given by

T (A; p′, q′) = A∗ =

⎛

⎜
⎜
⎝

•
α 1 0 0

• 1 1 0 0
1 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠,

where the symbol • indicates the active row and column. Noting I∗(p′) =
{r2}, J∗(p′) = {c2}, we see that the conditions (R2)–(R4) in Theorem 7.1.9
are satisfied for all values of α, whereas the first condition (R1) is violated
when α = 1. Hence by Theorem 7.1.9 we see

δ2(A)
{

= δ̂2(A) = 10 if α �= 1
≤ δ̂2(A) − 1 = 9 if α = 1.

The exact values of δ3(A) and δ2(A) when α = 1 will be determined later in
Example 7.1.14. �
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7.1.3 Transformation Towards Upper-tightness

When the matrix A(s) is not upper-tight, the combinatorial quantity δ̂k(A)
gives only an upper bound on δk(A). We will show how to transform A(s)
efficiently to an upper-tight matrix through repeated biproper transforma-
tions (see §5.1.2 for the definition of biproper transformations). Note that
the Smith–McMillan form at infinity (cf. §5.1.2) guarantees the existence of
such an upper-tight matrix, though this fact is not used below. For S = F (s),
F [s], F [1/s], or F [s, 1/s], we denote by M(S) the set of matrices with entries
in S.

Given A(s) ∈ M(F (s)) with δk(A) < δ̂k(A), we are to modify A(s) to
another matrix A′(s) = (A′

ij(s)) such that

(P1) A′(s) = U(s)A(s)V (s), where U(s), V (s) ∈ M(F [1/s]) and
detU(s), detV (s) ∈ F \ {0}, and

(P2) δ̂k(A′) ≤ δ̂k(A) − 1.

In particular, U(s) and V (s) are biproper matrices, and therefore δk(A′) =
δk(A) by (5.5). When A(s) ∈ M(F [s, 1/s]), the modified matrix A′(s) re-
mains in M(F [s, 1/s]) by the condition that U(s), V (s) ∈ M(F [1/s]). It
should be obvious that we can get an upper-tight matrix by repeatedly ap-
plying this transformation.

Recall that a constant matrix A∗, called the tight coefficient matrix, is
derived from A(s) with reference to an optimal dual variable (p, q), which is
assumed to be integer-valued. Since A(s) is not upper-tight, at least one of
the four rank conditions (R1)–(R4) in Theorem 7.1.9 is violated, whereas the
term-rank conditions (T1)–(T4) in Theorem 7.1.10 are satisfied. We consider
the modification algorithm for each case.

If (R1) is violated: We have rankA∗[R,C] < k ≤ term-rankA∗[R,C].
Then there exists a nonsingular constant matrix U = (Uhi) (see the construc-
tion below) such that

term-rank (UA∗) ≤ k − 1. (7.22)

We transform A to A′ by

A′(s) = U(s)A(s), (7.23)

where U(s) = (Uhi(s)) is given by

Uhi(s) = Uhi s
σ(h,i), σ(h, i) = pRh − pRi (7.24)

with reference to the dual variable pR = (pRi | i ∈ R) associated with the
rows. The transformation matrix U(s) can be written also as

U(s) = diag (s; pR) · U · diag (s;−pR) (7.25)

using the notation (7.16).
We claim that the property (P2) is satisfied.
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Lemma 7.1.12. (P2) is implied by (7.22).

Proof. The dual variable (p, q) is optimal for A. First we claim that (p, q) is
feasible for the modified matrix A′. By (7.15) and (7.25) we have

s−q · diag (s;−pR) ·A′(s) · diag (s;−pC)
= U · s−q · diag (s;−pR) ·A(s) · diag (s;−pC)
= U(A∗ + o(1)) = UA∗ + o(1),

which shows that w′
ij − pi − pj − q ≤ 0 for w′

ij = degsA
′
ij(s).

Then (7.22) and Theorem 7.1.10 imply that (p, q) is not optimal for the
modified matrix A′, whereas it is for the original matrix A. Hence we have

δ̂k(A′) < π(p, q) = δ̂k(A).

By the integrality we finally obtain δ̂k(A′) ≤ δ̂k(A) − 1.

As to the property (P1) we easily see the following.

Lemma 7.1.13. (P1) is satisfied if [ Uhi �= 0 =⇒ pRh ≤ pRi ]. �

The above statement says that U should be in a triangular form with
respect to the orderings of rows and columns determined by the dual vari-
able pR = (pRi | i ∈ R) associated with the rows of A(s). Such U can be
constructed as follows.

Let τ : {1, · · · ,m} → R be a one-to-one correspondence such that [i ≤
h⇒ pRτ(i) ≥ pRτ(h)]. We denote by a∗

i ∈ F n the row vector of A∗ indexed by
i ∈ R. Let {a∗

i | i ∈ B} be the basis of row vectors of A∗ that is constructed
by picking up the independent vectors from the sequence a∗

τ(1), a∗
τ(2), · · ·,

considered in this order. Also let {a∗
i | i ∈ D} be the set of vectors consisting

of the first
d = m− k + 1 (7.26)

vectors in this sequence that do not belong to the basis. Hence B ⊆ R,
D ⊆ R, B ∩D = ∅, |B| = rankA∗[R,C] < k, and |D| = d.

The row vector (Uhi | i ∈ R) of the matrix U is defined for h ∈ D by the
relation

− a∗
h =

∑

i∈B

Uhia
∗
i (h ∈ D), (7.27)

where Uhh = 1, and Uhi = 0 if i ∈ R \ (B ∪ {h}). For h ∈ R \D, it is defined
to be the unit vector corresponding to h (i.e, Uhi = δhi), where δhi denotes
the Kronecker delta (δhi = 1 for h = i and = 0 otherwise). Then we have
Uhi = 0 if τ−1(i) > τ−1(h), which guarantees the condition in Lemma 7.1.13.

The row vector of UA∗ indexed by h ∈ D is zero by (7.27), and therefore
term-rank (UA∗) ≤ m− d = k − 1, as desired in (7.22).
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If (R2) is violated: We have rankA∗[I∗, C] < |I∗| = term-rankA∗[I∗, C].
Then there exists a nonsingular constant matrix U = (Uhi) such that

term-rank (UA∗)[I∗, C] ≤ |I∗| − 1. (7.28)

As in the case of (R1) we transform A to A′ by (7.23) with U(s) defined by
(7.24). Lemma 7.1.13 remains true, insuring the property (P1). On the other
hand, (P2) is implied by (7.28). The proof is similar for Lemma 7.1.12; the
feasibility of (p, q) for A′ is shown in the same manner, while the nonopti-
mality follows from (7.28) and Theorem 7.1.10.

The constant matrix U is constructed similarly as in the case (R1). How-
ever, in the sequence a∗

τ(1), a∗
τ(2), · · ·, we consider only those terms a∗

τ(i)

which are the row vectors of the submatrix A∗[I∗, C] (i.e., those vectors with
τ(i) ∈ I∗). The independent vectors are chosen from this subsequence so
that {a∗

i | i ∈ B} may constitute the basis of row vectors of the submatrix
A∗[I∗, C]. Also we put d = 1 instead of (7.26). Namely, we pick up the first
dependent vector in the subsequence. Then the row vector of UA∗ indexed
by h ∈ D is zero by (7.27), and therefore term-rank (UA∗)[I∗, C] ≤ |I∗| − 1,
as required by (7.28).

If (R3) is violated: We have rankA∗[R, J∗] < |J∗| = term-rankA∗[R, J∗].
The modification in this case should be obvious from the one for the case
(R2). Just exchange the roles of the rows and the columns. This means in
particular that the matrix A is modified to A′ by means of a transformation
of the form A′(s) = A(s)V (s) with

V (s) = diag (s;−pC) · V · diag (s; pC), (7.29)

where V is a nonsingular constant matrix such that

term-rank (A∗V )[R, J∗] ≤ |J∗| − 1. (7.30)

If (R4) is violated: We have rankA∗[I∗, J∗] < |I∗| + |J∗| − k ≤
term-rankA∗[I∗, J∗]. Then there exists a nonsingular constant matrix U =
(Uhi) such that

term-rank (UA∗)[I∗, J∗] ≤ |I∗| + |J∗| − k − 1. (7.31)

As in the case of (R1) we transform A to A′ by (7.23) with U(s) defined by
(7.24). Lemma 7.1.13 remains true, insuring the property (P1). On the other
hand, (P2) is implied by (7.31). The proof is similar for Lemma 7.1.12; the
feasibility of (p, q) for A′ is shown in the same manner, while the nonopti-
mality follows from (7.31) and Theorem 7.1.10.

The constant matrix U is constructed similarly as in the case (R1). How-
ever, we order the row vectors {a∗

i [J
∗] | i ∈ I∗} of the submatrix A∗[I∗, J∗]

into a sequence (a∗
τ(i)[J

∗] | i = 1, 2, · · ·), and consider its subsequence consist-
ing of the vectors with τ(i) ∈ I∗. The independent vectors are chosen from
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this subsequence so that {a∗
i [J

∗] | i ∈ B} may constitute the basis of row
vectors of the submatrix A∗[I∗, J∗]. Also we put d = k + 1 − |J∗| instead of
(7.26), and define D ⊆ I∗ to be the set of the first d indices of the dependent
row vectors a∗

i [J
∗].

The row vector (Uhi | i ∈ R) of the matrix U is defined similarly except
that (7.27) is replaced by

−a∗
h[J∗] =

∑

i∈B

Uhia
∗
i [J

∗] (h ∈ D).

Then the row vector of (UA∗)[I∗, J∗] indexed by h ∈ D is zero, and therefore
term-rank (UA∗)[I∗, J∗] ≤ |I∗|−d = |I∗|+ |J∗|−k−1, as required by (7.31).

Example 7.1.14 (Continued from Example 7.1.11). Consider the case of
k = 3, α = 1, where the matrix A(s) of Example 7.1.3 is not upper-tight,
since, as we have seen in Example 7.1.11, the tight coefficient matrix A∗ of
(7.21),

T (A; p, q) = A∗ =

⎛

⎜
⎜
⎝

• •
• 1 1 0 2
• 1 1 1 0
• 1 1 −1 0

2 0 0 1

⎞

⎟
⎟
⎠,

does not satisfy the condition (R4) of Theorem 7.1.9. Namely, we have
rankA∗[I∗, J∗] = 1 < |I∗| + |J∗| − 3 = 2 where I∗(p) = {r1, r2, r3},
J∗(p) = {c1, c2} (indicated by •), and the optimal dual variable (p, q) is
given by (7.19) and (7.20).

We take the second row as the basis of the row vectors of A∗[I∗, J∗] (i.e.,
B = {r2}, D = {r1, r3}, d = 2) to get

U =

⎛

⎜
⎝

1 −1 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

⎞

⎟
⎠ ,

which, together with the dual variable pR of (7.19), yields

U(s) = diag (s2, s3, s2, s0) ·U ·diag (s−2, s−3, s−2, s0) =

⎛

⎜
⎝

1 −s−1 0 0
0 1 0 0
0 −s−1 1 0
0 0 0 1

⎞

⎟
⎠ .

Then the matrix A is modified to

A′(s) = U(s)A(s) =

⎛

⎜
⎜
⎝

c1 c2 c3 c4

r1 0 −s−1 −s3 2s3 − s
r2 s5 s6 + 1 s4 s2

r3 s −s−1 −2s3 −s
r4 2s2 s 0 s+ 2

⎞

⎟
⎟
⎠.
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This matrix turns out to be upper-tight for k = 3 with δ̂3(A′) = δ3(A′) = 12,
which is verified as follows.

We find an optimal matching M (4) = {(r1, c4), (r2, c2), (r3, c3)} of size 3
of weight w(M (4)) = 3 + 6 + 3 = 12 as well as the optimal dual variables

p′r1
= 1, p′r2

= 3, p′r3
= 0, p′r4

= 0; p′c1
= 0, p′c2

= 1, p′c3
= 1, p′c4

= 0;

and q′ = 2, which shows δ̂3(A′) = π(p′, q′) = 12. The tight coefficient matrix

T (A′; p′, q′) = (A′)∗ =

⎛

⎜
⎜
⎝

• •
• 0 0 0 2
• 1 1 0 0

0 0 −2 0
2 0 0 0

⎞

⎟
⎟
⎠

satisfies the four conditions (R1)–(R4) in Theorem 7.1.9, where I∗(p′) =
{r1, r2}, J∗(p′) = {c2, c3} (indicated by •). Hence δ̂3(A′) = δ3(A′). �

7.1.4 Algorithm Description

Combining the procedures given above we obtain the following algorithm for
computing δk(A) for A(s) ∈ M(F (s)). For

wmax(A) = max
i∈R,j∈C

degsAij(s), (7.32)

wmin(A) = −max
j∈C

∑

i∈R

(degree of the denominator of Aij(s)), (7.33)

we have k · wmin(A) ≤ δk(A) ≤ δ̂k(A) ≤ k · wmax(A) if δk(A) > −∞. Hence
the number of modifications of the matrix is bounded by

δ̂k(A(0)) − δk(A(0)) ≤ k(wmax(A(0)) − wmin(A(0))),

where A(0) denotes the input matrix.

Algorithm for computing δk(A)

Step 0
Define wmin(A) as (7.33).

Step 1
(1) : Find a maximum weight k-matching M and integer-valued optimal

dual variables, pRi (i ∈ R), pCj (j ∈ C) and q, for G(A);
δ̂k(A) := w(M) (δ̂k(A) = −∞ if no k-matching exists).

(2) : If δ̂k(A) < k · wmin, then stop with δk(A) = −∞.
Step 2

(1) : A∗
ij := lims→∞ s

−pRi−pCj−qAij(s) (i ∈ R, j ∈ C). [cf.(7.13)]
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(2) : If the four conditions (R1)–(R4) in Theorem 7.1.9 are satisfied, then
stop with δk(A) = δ̂k(A).

Step 3 [A is not upper-tight]
(1) : Modify the matrix A(s) as described in §7.1.3, according to which

of (R1)–(R4) is violated. (If (R1) is violated, for example, let U be
defined by (7.27) and A(s) := diag (s; pR) · U · diag (s;−pR)A(s)).

(2) : Go to Step 1. �

The stopping criterion in Step 1 (2) is to cope with the case of δk(A(0)) =
−∞. In Step 2, we need row/column elimination operations on A∗. Though it
requires O(max(m3, n3)) arithmetic operations in F in the worst case, it can
be done much faster since A∗ is usually very sparse in practical applications.

Finally let us mention the probabilistic behavior of the algorithm. As
already noted in Theorem 7.1.1, δ̂k(A) differs from δk(A) only because of
accidental numerical cancellation. Let us fix the structure (i.e., the position
of the nonzero coefficients) of the input matrix A = A(0) and regard the
numerical values of coefficients in R = F as real-valued random variables
with continuous distributions. Then we have δ̂k(A) = δk(A) with probabil-
ity one, which means that Step 3 is performed only with null probability.
Since the worst-case time complexity for the weighted-matching problem is
bounded by O((m + n)3), we obtain the following statement, indicating the
practical efficiency of the proposed algorithm: The average time complexity
(in the above sense) of the proposed algorithm for a fixed k is bounded by a
polynomial in m+ n (e.g., (m+ n)3).

Notes. The idea of the combinatorial relaxation algorithm was proposed
first by Murota [212] for the Newton diagram of determinantal equations,
which was followed by Murota [219] (the degree of the determinant of (skew-
symmetric) polynomial matrices), Murota [220] (the degree of subdetermi-
nants), Iwata–Murota–Sakuta [147] (primal-dual type algorithm together
with comparative computational results), Iwata–Murota [146] (mixed poly-
nomial matrix formulation using valuated matroids), and Iwata [141] (matrix
pencil using strict equivalence). This section is based on Murota [220].

7.2 Combinatorial System Theory

This section is devoted to the description of a combinatorial analogue of the
dynamical system theory of Murota [202, 206, 211]. The theory is developed in
a matroid-theoretic framework by replacing the matricesA andB in the state-
space equations ẋ = Ax + Bu or xk+1 = Axk + Buk with bimatroids. The
main objective is to extend the combinatorial mathematical aspects in the
arguments of structural controllability, rather than to pursue physical faith in
the structural approach. Combinatorial counterparts are given to a number of
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fundamental concepts such as controllability in the conventional system the-
ory, revealing the combinatorial nature of some fundamental results in the
conventional system theory. However, the present theory is not a direct gen-
eralization of the existing “generic” approach, mainly because of the possible
discrepancy between the matrix multiplication and bimatroid multiplication.
Here the discrepancy means the failure of the relation L(A)∗L(B) = L(A ·B)
for matrices A and B, where L(·) denotes the bimatroid defined by a matrix.

7.2.1 Definition of Combinatorial Dynamical Systems

A combinatorial analogue of the dynamical system

xk+1 = Axk +Buk (7.34)

is obtained by replacing the matrices A and B with two bimatroids. To be
more precise, a combinatorial dynamical system (to be abbreviated as CDS)
is a pair (A,B) of bimatroids such that Row(A) = Col(A) = Row(B) (≡ S)
and that S and Col(B) (≡ P ) are mutually disjoint: A = (S, S, Λ(A), α),
B = (S, P, Λ(B), β), where α and β are birank functions. The set S is called
the state set, whereas P is the input set. A bimatroid F is called a state
feedback if Row(F) = P and Col(F) = S.

As a counterpart of (7.34), we consider

(Xk+1,Xk ∪ Uk) ∈ Λ(A ∨ B), Xk,Xk+1 ⊆ S, Uk ⊆ P. (7.35)

By definition, this means thatXk+1 can be partitioned into two disjoint parts,
say X ′

k+1 and X ′′
k+1, such that (X ′

k+1,Xk) ∈ Λ(A) and (X ′′
k+1, Uk) ∈ Λ(B).

See Fig. 7.4 and compare it with the dynamic graph introduced in §2.2.1
(see also Fig. 2.5). The equation (7.35) will be referred to as the state-space
equation for the CDS.

An input is a sequence (Uk)K−1
k=0 = (Uk | k = 0, 1, · · · ,K − 1), Uk ⊆ P .

We say that a sequence (Xk)K
k=0 = (Xk | k = 0, 1, · · · ,K),Xk ⊆ S, is a

trajectory compatible with (Uk)K−1
k=0 if (7.35) holds for k = 0, 1, · · · ,K−1. An

input is said to be admissible for (X ′,X) if there exists a trajectory (Xk)K
k=0

compatible with it such that X0 = X ′ and XK = X. Put

RSk(X0) = {Xk ⊆ S | some (Ui)k−1
i=0 is admissible for (X0,Xk)}, (7.36)

RS(X0) =
∞⋃

k=0

RSk(X0). (7.37)

Then we say that X (⊆ S) is reachable at time k (≥ 0) from X0 (⊆ S) if
X ∈ RSk(X0), and that a CDS is reachable if {x} ∈ RS(∅) for ∀x ∈ S. We
also say that a CDS is controllable if RS(∅) = 2S .
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Fig. 7.4. Combinatorial dynamical system

7.2.2 Power Products

We first consider an “autonomous” system in which input bimatroid B is
trivial (of rank zero). In this case the state-space equation (7.35) reduces to

(Xk+1,Xk) ∈ Λ(A), Xk,Xk+1 ⊆ S. (7.38)

In other words, we investigate the power products of a single bimatroid A
such that Row(A) = Col(A).

Since Row(A) = Col(A), we can think of the product of A with itself.
We define Ak recursively by Ak = Ak−1 ∗ A = A ∗ Ak−1 for k = 1, 2, · · ·,
where, for convenience, we put A0 = (S, S, Λ(A0)) with Λ(A0) = {(X,X) |
X ⊆ S}. For an autonomous system,

⋃
X0⊆S RSk(X0) agrees with the family

of independent sets of RM(Ak), which we are interested in.

Remark 7.2.1. Even in the special case where A arises from a generic ma-
trix A with independent nonzero entries, the power products of A = L(A)
do not agree with the bimatroids associated with the power products of A,
i.e., L(Ak) �= (L(A))k. In fact, for
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A =

x1 x2 x3 x4 x5

x1 0 0 t1 0 0
x2 t2 0 t3 0 0
x3 t4 0 0 0 0
x4 0 t5 0 0 0
x5 0 0 0 t6 0

,

where ti (i = 1, · · · , 6) are indeterminates, the 2 × 2 submatrix of A3 with
row set {x2, x5} and column set {x1, x3} is singular, i.e., ({x2, x5}, {x1, x3}) �∈
Λ(L(A3)), whereas ({x2, x5}, {x1, x3}) ∈ Λ(L(A)3). �

In spite of such discrepancy between L(Ak) and L(A)k in the families of
the linked pairs, they share the same rank (=the maximum size of linked
pairs), as is stated in the following theorem of Poljak [270].

Theorem 7.2.2. rank (L(Ak)) = rank (L(A)k) for a square generic matrix
A.

Proof. See Poljak [270].

Fundamental properties of the power products of a bimatroid are stated
in the following two theorems shown by Murota [211]. The first theorem
reveals that the sequence r(Ak) = rank (Ak), k = 0, 1, 2, · · ·, is convex and
nonincreasing.

Theorem 7.2.3. Let A be a bimatroid with Row(A) = Col(A) = S.
(1) r(Ak−1) − r(Ak) ≥ r(Ak) − r(Ak+1), k = 1, 2, · · · .
(2) There exists τ = τ(A) (0 ≤ τ ≤ |S|) such that

r(A0) > r(A1) > · · · > r(Aτ−1) > r(Aτ ) = r(Ak), k = τ + 1, τ + 2, · · · .

Proof. (1) This follows from Theorem 2.3.55 with L1 = L3 = A and L2 =
Ak−1.

(2) First note the obvious relation: r(Ak) ≥ r(Ak+1). Let τ be the small-
est k such that the equality holds, where τ ≤ |S| since 0 ≤ r(Aτ ) ≤
r(A0) − τ = |S| − τ . Then (1) implies that the equality must hold for all
k ≥ τ .

The integer τ = τ(A) above is called the transition index of A. We sym-
bolically write r(A∞) for r(Aτ ) though the limit of Ak (as k → ∞) may not
exist.

The ranks of the associated row and column matroids, RM(Ak) and
CM(Ak), satisfy similar inequalities, since rank (Ak) = rank (RM(Ak)) =
rank (CM(Ak)). The following theorem establishes a stronger assertion than
the inequality of Theorem 7.2.3(2) above. It claims that the sequences of
{RM(Ak)}k and {CM(Ak)}k have nice nesting structures and consequently
their limits do exist, which will be denoted by RM(A∞) and CM(A∞).
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Theorem 7.2.4. Let τ be the transition index of a bimatroid A with Row(A)
= Col(A). Then

RM(A0)→�= RM(A1)→�= · · ·→�= RM(Aτ−1)→�= RM(Aτ ) = RM(Ak), k ≥ τ+1,

CM(A0)→�= CM(A1)→�= · · ·→�= CM(Aτ−1)→�= CM(Aτ ) = CM(Ak), k ≥ τ + 1,

where M1
→
�= M2 means that M2 is a strong quotient of, and not isomorphic

to, M1.

Proof. It follows from Theorem 2.3.59 that RM(Ak) → RM(Ak+1) and
CM(Ak) → CM(Ak+1). Combining these with Theorem 7.2.3(2) and
Lemma 2.3.1, we establish the theorem.

Based on Theorem 7.2.3 we can define a set of characteristic indices
(ω0;ω1, ω2, · · ·) of A by

ω0 = r(A∞),
ωk = r(Ak+1) + r(Ak−1) − 2r(Ak), k = 1, 2, · · · ,

where ωk ≥ 0 (k = 0, 1, · · ·). Note that ωk = 0 for k > τ and that

ω0 +
τ∑

k=1

kωk = |S|.

In the particular case where A = L(A) with a square generic matrix A
having independent nonzero entries, this set of indices (ω0;ω1, ω2, · · ·) deter-
mines the Jordan canonical form of the matrix A. Motivated by this we call
(ω0;ω1, ω2, · · ·) the Jordan type of a bimatroid A.

Remark 7.2.5. Theorems 7.2.3 and 7.2.4 are motivated by similar phenom-
ena for matrix products Ak, k = 0, 1, 2, · · ·. The same inequalities as in The-
orem 7.2.3 hold true for the sequence rankAk, k = 0, 1, 2, · · ·, with τ being
the maximum size of a Jordan block for a zero eigenvalue. The strong map
sequence of Theorem 7.2.4 corresponds to the nesting structure of subspaces:

Im(A0)⊃
�= Im(A1)⊃

�= · · · ⊃
�= Im(Aτ−1)⊃

�= Im(Aτ ) = Im(Ak), k ≥ τ + 1.

Recall from Example 2.3.8 that the strong map relation may be interpreted
as a combinatorial abstraction of the nesting of linear subspaces. �

7.2.3 Eigensets and Recurrent Sets

In this section we study eigensets and recurrent sets of a bimatroid, intro-
duced by Murota [202, 211]. A subset X ⊆ S is said to be an eigenset of a
bimatroid A = (S, S, Λ(A)) if (X,X) ∈ Λ(A), and a recurrent set of A if
(X,X) ∈ Λ(Ak) for some k ≥ 1. By definition, an eigenset is a recurrent set,
but the converse is not true in general.
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Eigensets of a bimatroid may be regarded as a combinatorial analogue of
eigenvectors of a matrix as follows. Let A be a matrix and A the correspond-
ing bimatroid, both having S as the row set and the column set. Just as we
think of A as a mapping in RS we may regard A as a (multivalued) mapping
in 2S , where it is kept in mind that X ∈ 2S can be expressed alternatively
by its characteristic vector χX ∈ RS . A vector x ∈ RS is an eigenvector of
A if it is invariant in direction when transformed by A. In parallel, a subset
X ∈ 2S or its characteristic vector χX is an eigenset of A if it can be kept
invariant when transformed by A.

We denote by EIG(A) the family of eigensets of A, and by max-EIG(A)
that of maximum-sized eigensets of A. Similarly, we denote by REC(A) the
family of recurrent sets of A, and by max-REC(A) that of maximum-sized
recurrent sets of A.

Example 7.2.6. For illustration, let us consider the bimatroid A defined by
a matrix

x1 x2 x3

x1 1 1 1
x2 1 1 2
x3 1 1 1

.

Writing X → Y instead of (X,Y ) ∈ Λ(A), we have {x1, x2} → {x1, x3},
{x1, x2} → {x2, x3}, {x2, x3} → {x1, x3}, {x2, x3} → {x2, x3}; {xi} → {xj}
for i, j = 1, 2, 3, and ∅ → ∅. Hence,

EIG(A) = REC(A) = {{x2, x3}, {x1}, {x2}, {x3}, ∅},
max-EIG(A) = max-REC(A) = {{x2, x3}}.

This example shows that a maximal recurrent set is not necessarily a
maximum-sized recurrent set, nor is a maximal eigenset a maximum eigenset.
In fact, the singleton set {x1} is maximal and not maximum. �

We first consider recurrent sets of maximum size.

Theorem 7.2.7. Let A be a bimatroid with Row(A) = Col(A) and k ≥
τ(A) (=the transition index). Then

max-REC(A) = max-EIG(Ak) = maxRM(A∞) ∩ maxCM(A∞),

where maxRM(A∞) denotes the family of bases (=maximum-sized inde-
pendent sets) of RM(A∞), and similarly for maxCM(A∞); accordingly,
the right-most term means the family of common bases of RM(A∞) and
CM(A∞).

Proof. Suppose X ∈ REC(A). Then (X,X) ∈ Λ(Ak) for some k ≥ 1. This
implies that (X,X) ∈ Λ(Akm) for any m. Choosing m so that km ≥ τ , we
see X is independent both in RM(A∞) and CM(A∞), cf. Theorem 7.2.4.
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If X is a common base of RM(A∞) and CM(A∞) and k ≥ τ , then
(X,Y ) ∈ Λ(Ak) and (Z,X) ∈ Λ(Ak) for some Y and Z. It then follows from
the property (L-3) of a bimatroid that (X ′,X ′′) ∈ Λ(Ak) for some X ′ ⊇ X
and X ′′ ⊇ X. We must have X ′ = X ′′ = X since |X| = rank (Ak). Hence
X ∈ EIG(Ak) ⊆ REC(A).

The claim of the theorem follows from the above argument.

Theorem 7.2.8. REC(A) is a hereditary family. That is, if Y ⊆ X ∈
REC(A), then Y ∈ REC(A).

Proof. The proof consists of three steps (i)–(iii). The assertion of the theorem
follows from the claim in (iii) by induction.

(i) First we claim: x ∈ X ∈ EIG(A) ⇒ {x} ∈ REC(A). By Theo-
rem 2.3.44(1), there is a permutation σ of X such that ({x}, {σ(x)}) ∈ Λ(A).
For each x ∈ X there exists k ≥ 1 such that σk(x) = x. This implies that
({x}, {x}) ∈ Λ(Ak). Hence {x} ∈ REC(A).

(ii) Next we claim: x ∈ X ∈ EIG(A) ⇒ X \ {x} ∈ REC(A). Since
(X,X) ∈ Λ(A), A[X,X] is a nonsingular bimatroid. Put A′ = A[X,X]−1

(the inverse bimatroid; see §2.3). Then X ∈ EIG(A′). The first claim implies
that, for each x ∈ X there exists a sequence x0 (= x), x1, · · · , xk (= x)
in X such that ({xi}, {xi−1}) ∈ Λ(A′) for i = 1, · · · , k. This is equivalent
to (Xi−1,Xi) ∈ Λ(A[X,X]), with Xi = X \ {xi} for i = 1, · · · , k. Hence
(X \ {x},X \ {x}) ∈ Λ(Ak), establishing the claim.

(iii) We finally claim: x ∈ X ∈ REC(A) ⇒ X \ {x} ∈ REC(A). Since
X ∈ EIG(Ak) for some k ≥ 1, we see X \ {x} ∈ REC(Ak) by the second
claim above. This implies X \ {x} ∈ REC(A).

Remark 7.2.9. By the proof of Theorem 7.2.7, a recurrent set of A is a
common independent set of RM(A∞) and CM(A∞). The converse, however,
is not true in general, since an arbitrary common independent set cannot
always be augmented to a common base. For a concrete instance, consider
the bimatroid A defined by a matrix

x1 x2 x3

x1 1 1 0
x2 0 0 1
x3 0 0 1

and the singleton set {x2}. This is not a recurrent set, though it is indepen-
dent both in RM(A∞) and CM(A∞). �

Remark 7.2.10. The family of eigensets is not necessarily hereditary. For
the bimatroid A defined by a matrix

x1 x2

x1 0 1
x2 1 0
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we have EIG(A) = {{x1, x2}, ∅}. �

Our next result shows that the maximum size of a recurrent set coincides
with that of an eigenset. Since an eigenset is a “static” concept that does
not involve dynamics, we may say that the formula below gives a “static”
characterization of the limit of the dynamics, limk→∞ r(Ak).

Theorem 7.2.11. For a bimatroid A with Row(A) = Col(A),

max{|X| | X ∈ EIG(A)} = max{|X| | X ∈ REC(A)} = r(A∞).

Proof. By Theorem 7.2.7 as well as the obvious inclusion EIG(A) ⊆ REC(A),
we see

max{|X| | X ∈ EIG(A)} ≤ max{|X| | X ∈ REC(A)} = r(A∞).

The inequality here is an equality by the following lemma.

Lemma 7.2.12. If X is a recurrent set of maximum size and x ∈ X, then
there exists an eigenset Y such that x ∈ Y and |X| = |Y |.

Proof. We denote by S− and S+ two disjoint copies of S = Row(A) = Col(A).
For X ⊆ S we compatibly denote by X− and X+ the copies of X in S− and
S+, respectively.

Consider two matroids MA = (S− ∪ S+,BA) and M0 = (S− ∪ S+,B0)
with the base families

BA = {(S−\X−)∪Y + | (X,Y ) ∈ Λ(A)}, B0 = {(S−\X−)∪Y + | X = Y },

where MA is the matroid associated with A by (2.86). It is easy to see that

X ∈ EIG(A) ⇐⇒ (S− \X−) ∪X+ ∈ BA

⇐⇒ ∃H ∈ BA ∩ B0 : X+ = H ∩ S+.

Let BA ⊆ RS−∪S+
denote the convex hull of the characteristic vectors χH

of H ∈ BA, and define B0 ⊆ RS−∪S+
similarly from B0.

ForX ∈ max-REC(A), there existXi (i = 0, 1, · · · , k) withX0 = Xk = X
such that (Xi−1,Xi) ∈ Λ(A) for i = 1, · · · , k. This means that

[(χS)− − (χXi−1)
−] ⊕ (χXi

)+ ∈ BA, i = 1, 2, · · · , k,

where for a vector ξ ∈ RS in general we write ξ− and ξ+ for the corresponding
vectors in RS−

and RS+
, respectively. Taking the average of these expressions

and putting μ =
∑k

i=1 χXi
/k, we obtain

h̄ = [(χS)− − μ−] ⊕ μ+ ∈ BA ∩B0.

We also have h̄(S+) = |X| = r(A∞). This shows that max{h(S+) | h ∈
BA ∩B0} = r(A∞) and that h̄ attains the maximum.
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By the integrality of matroid intersection, BA ∩ B0 is the convex hull of
the characteristic vectors of common bases of MA and M0. In particular, we
can express h̄ as a convex combination

h̄ =
m∑

j=1

cjhj ,

m∑

j=1

cj = 1, cj > 0 (j = 1, · · · ,m)

of such incidence vectors hj = χHj
(j = 1, · · · ,m) with hj(S+) = r(A∞).

Note that Hj ∈ BA ∩ B0 is equivalent to Hj = (S− \ Zj
−) ∪ Zj

+ for some
Zj ∈ EIG(A), and that hj(S+) = |Zj | = r(A∞). Since x ∈ X, we have
h̄(x+) > 0. This implies that hj(x+) > 0 for some j, i.e., x ∈ Zj for some j.
This Zj gives the desired Y .

Remark 7.2.13. A recurrent set of maximum size is not necessarily an
eigenset, i.e., max-REC(A) �= max-EIG(A). For the bimatroid A defined
by a matrix

x1 x2 x3 x4 x5

x1 0 0 1 0 0
x2 0 0 0 1 0
x3 0 1 0 0 1
x4 0 0 1 0 0
x5 1 0 0 0 0

it can be verified that max-EIG(A) = {{x1, x3, x5}, {x2, x3, x4}} and
max-REC(A) = max-EIG(A) ∪ {{x1, x2, x3}, {x3, x4, x5}}. �

Remark 7.2.14. Theorem 7.2.11 does not imply

max{|X| | rankA[X,X] = |X|,X ⊆ S} = lim
k→∞

rank (Ak) (7.39)

for a numerical matrix A with Row(A) = Col(A) = S because of the possi-
ble discrepancy between matrix multiplication and bimatroid multiplication
(cf. Remark 2.3.54). In fact, A =

(
1 1

−1 −1

)
serves as a counterexample to

(7.39). The equality (7.39) is true, however, if the nonzero entries of A are al-
gebraically independent, which fact follows from the combination of Theorem
7.2.11 with Theorem 7.2.2. �

7.2.4 Controllability of Combinatorial Dynamical Systems

This section gives a number of controllability criteria for a CDS (A,B).
Before stating the general results, it is worth while explaining the relation
between the structural controllability and the controllability of a CDS in a
typical situation.

Consider a conventional dynamical system (7.34) described by matrices A
and B, with which we can associate a CDS (A,B) under the correspondence:
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A = L(A), B = L(B). In the special case where the matrices A and B
are generic (“structured” in the sense of §6.4.2), the associated bimatroids
A and B can be represented by matchings in bipartite graphs. In this case
the associated CDS (A,B) is controllable if and only if there exists in the
dynamic graph Gn

0 of the system (7.34) a Menger-type vertex-disjoint linking
of size n from Un−1

0 toXn (see §2.2.1 or §6.4.2 for the definitions of Gn
0 , Un−1

0 ,
and Xn). Theorem 6.4.3 then reveals that a “structured” system (A,B) is
controllable in the ordinary sense if and only if the associated CDS (A,B)
is controllable. It is noted at the same time that the controllability of the
associated CDS (A,B) is only necessary for general numerical matrices A
and B.

For the controllability criteria we shall investigate the structure of the
sequence {RSk(∅)}k, i.e., the sequence of those sets which are reachable at
time k from the empty set (cf. (7.36)). As the following theorem claims,
RSk(∅) forms the family of independent sets of a matroid, denoted by Rk,
and the sequence {Rk}k is determined by a recurrence relation. The matroid
Rk will be referred to as the reachability matroid.

Theorem 7.2.15. For each k (≥ 0), RSk(∅) of (7.36) forms the family of
independent sets of a matroid Rk. The matroids are determined by

Rk = (A ∗ Rk−1) ∨ RM(B), k = 1, 2, · · · ,

where R0 is a trivial matroid (of rank zero), A∗Rk−1 is the matroid induced
from Rk−1 by A, and ∨ means the matroid union.

Proof. We prove the claims by induction on k. Assume that RSk−1(∅) defines
a matroid Rk−1. It follows from the state-space equation (7.35) that Xk ∈
RSk(∅) if and only if Xk = X ′

k ∪ X ′′
k , X ′

k ∩ X ′′
k = ∅, (X ′

k,Xk−1) ∈ Λ(A),
(X ′′

k , Uk−1) ∈ Λ(B), and Xk−1 ∈ RSk−1(∅) for some X ′
k, X ′′

k , Xk−1, and
Uk−1. The latter condition can be rephrased thatXk = X ′

k∪X ′′
k , X ′

k∩X ′′
k = ∅

for some independent set X ′
k of A ∗ Rk−1 and some independent set X ′′

k of
RM(B). Note that, by the induction assumption, the notation A ∗ Rk−1

makes sense to mean the matroid induced from Rk−1 by A. Hence RSk(∅)
forms the family of independent sets of the union of A ∗Rk−1 and RM(B).

Theorem 7.2.15 motivates us to investigate a sequence of matroids subject
to a recurrence relation. The following general theorem proven in Murota
[206] reveals some fundamental properties of the reachability matroids, where
we choose N = RM(B).

Theorem 7.2.16. Let A = (S, S, α) be a bimatroid with birank function α,
and N = (S, ν) be a matroid with rank function ν. Define a sequence of
matroids Rk by the recurrence relation

Rk = (A ∗ Rk−1) ∨ N, k = 1, 2, · · · , (7.40)
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starting with a trivial matroid R0 on S.
(1) r(Rk) − r(Rk−1) ≥ r(Rk+1) − r(Rk), k = 1, 2, · · · .
(2) There exists κ = κ(A,N) (≥ 0) such that

r(R0) < r(R1) < · · · < r(Rκ−1) < r(Rκ) = r(Rk), k = κ+ 1, κ+ 2, · · · .

(3) R0
←
�= R1

←
�= · · ·←�= Rκ−1

←
�= Rκ = Rk, k = κ+ 1, κ+ 2, · · ·,

where Rk
←
�= Rk+1 means that Rk is a strong quotient of, and not isomorphic

to, Rk+1.

Proof. Let S(i) (i = 0, 1, 2, · · ·) be disjoint copies of S, and denote by A(i) =
(S(i), S(i−1), α(i)) and N(i) = (S(i), ν(i)) (i = 0, 1, 2, · · ·) the bimatroids and
matroids that are isomorphic to A and N, respectively. Denote by M(i) the
dual of the matroid associated with A(i) by (2.86); S(i)∪S(i−1) is the ground
set of M(i), and (X,Y ) ∈ Λ(A(i)) if and only if X ∪ (S(i−1) \ Y ) is a base of
M(i). Furthermore, define a matroid

Gj,k =

⎛

⎝
k∨

i=j+1

M(i)

⎞

⎠ ∨

⎛

⎝
k∨

i=j

N(i)

⎞

⎠ ,

the ground set of which is
⋃k

i=j S
(i). It is straightforward to verify that Rk �

(G1,k)S(k) (=the contraction of G1,k to S(k)) and that

r(Rk) = r(G1,k) − (k − 1)|S|, (7.41)

since
⋃k−1

i=1 S
(i), being a base of

∨k
i=2 M(i), is independent in G1,k.

Proposition 2.3.40 applied to a triple (M(2)∨N(1),G2,k,M(k+1)∨N(k+1))
yields

r(G1,k+1) + r(G2,k) ≤ r(G1,k) + r(G2,k+1).

Noting G2,k � G1,k−1 and G2,k+1 � G1,k and using (7.41), we obtain the
desired inequality in (1).

The strong map relation Rk ← Rk+1 follows from the expressions

Rk � (G2,k+1)S(k+1) , Rk+1 � ([M(2) ∨ N(1)] ∨ G2,k+1)S(k+1) ,

and Theorem 2.3.41. Hence, r(Rk) ≤ r(Rk+1), k = 0, 1, 2, · · ·. Let κ be the
smallest k (> 0) such that the equality holds. Then (1) implies that the
equality must hold for all k ≥ κ, establishing (2). Finally recall Lemma 2.3.1
to obtain the assertion of (3).

The strong map relation for Rk shows that the reachable part grows
with time to a matroid Rκ, denoted also as R∞. Compare this with the
similar phenomenon for the conventional system (7.34) that the controllable
subspaces Rk = Im[B | AB | A2B | · · · | Ak−1B] increase with k, where A and
B are numerical matrices. In this connection recall from Example 2.3.8 that
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the strong map relation may be interpreted as a combinatorial abstraction of
the nesting of linear subspaces.

The ultimate rank r(Rκ), i.e., r(R∞), of the sequence {Rk}k defined by
the recurrence relation (7.40) admits a “static” characterization, as follows.
Recall that A[X,X] denotes the restriction of A to (X,X), and N[X] the
restriction of N to X.

Theorem 7.2.17. Let A = (S, S, α), N = (S, ν), and {Rk}k be as in The-
orem 7.2.16. If

α(X,S \X) + ν(X) ≥ 1, ∅ �= ∀X ⊆ S,

it holds that

rank (R∞) = max{|X| | rank
(
A[X,X] ∨ N[X]

)
= |X|, X ⊆ S}.

Proof. See Murota [206].

By specializing the above theorem to the case of N = RM(B), we obtain
a formula for the ultimate rank of the reachability matroid of a CDS (A,B),
which is called the controllable dimension. This result is a generalization of
Theorem 6.4.5.

Corollary 7.2.18. If a CDS (A,B) is reachable (i.e., {x} ∈ RS(∅) for all
x ∈ S), the controllable dimension is given by

rank (R∞) = max{|X| | rank
(
A[X,X] ∨ B[X,P ]

)
= |X|, X ⊆ S}. (7.42)

Proof. With Theorem 7.2.17 it suffices to show that the reachability of (A,B)
is equivalent to

α(X,S \X) + β(X,P ) ≥ 1, ∅ �= ∀X ⊆ S,

where α and β are the birank functions of A and B.

The formula (7.42) yields the following controllability criteria shown in
Murota [206].

Theorem 7.2.19. For a CDS (A,B), the following three conditions are
equivalent:

(i) (A,B) is controllable;
(ii) (A,B) is reachable, and RM(A) ∨ RM(B) is the free matroid;
(iii) (A,B) is reachable, and there exists a state feedback F such that

A ∨ (B ∗ F) is a nonsingular bimatroid.

Proof. First note that reachability is necessary for controllability; so we as-
sume reachability. By definition, controllability is equivalent to rank (R∞) =
|S|. On the other hand, the expression of rank (R∞) in Corollary 7.2.18 shows
that rank (R∞) = |S| if and only if rank (A ∨ B) = |S|. Hence follows the
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equivalence of (i) and (ii), since rank (A ∨ B) = rank (RM(A) ∨ RM(B)).
The equivalence of (ii) and (iii) is easy to show. Assume (iii), i.e., that
(S, S) ∈ Λ(A ∨ (B ∗ F)) for some F. This is equivalent to saying that there
exist X,X ′ ⊆ S, and U ⊆ P such that (X ′,X) ∈ Λ(A), (S \X ′, U) ∈ Λ(B),
and (U, S \ X) ∈ Λ(F). Hence S = X ′ ∪ (S \ X ′) is independent in
RM(A)∨RM(B), showing (ii). Similarly we can show that (ii) implies (iii),
by choosing F to be the “free” bimatroid, in which every pair is a linked pair.

Remark 7.2.20. Compare the second criterion (ii) in Theorem 7.2.19 with
the structural controllability theorem (Theorem 6.4.2). Note that, in case of
A = L(A), B = L(B) with generic matrices A and B, RM(A) ∨ RM(B) is
the free matroid if and only if term-rank [A | B] = n. �

The integer κ = κ(A,B) (0 ≤ κ ≤ n = |S|) in Theorem 7.2.16 for N =
RM(B) is called the controllability index of the CDS (A,B). The inequalities
in (1) and (2) show that Δrk = r(Rk) − r(Rk−1), k = 1, 2, · · ·, form a
nonnegative and nonincreasing sequence that vanishes for k > κ. This enables
us to define a set of nonnegative indices {κi} by

κi = |{k | Δrk ≥ i}|, i = 1, 2, · · · ,

just as in the conventional dynamical system theory. Note that κ1 = κ(A,B).
The indices {κi} are called the controllability indices of (A,B).

For a controllable system we can find a nicely nested input sequence with
reference to the controllability indices as follows.

Theorem 7.2.21. Suppose (A,B) is controllable. There exists an input
(Uk | k = 0, 1, · · · ,K − 1) with K ≤ |S| admissible for (∅, S) such that

U0 ⊆ U1 ⊆ · · · ⊆ UK−1

and that
{κ̃u | u ∈ P} = {κi | i = 1, · · · , |P |},

where κ̃u = |{k | Uk � u, 0 ≤ k ≤ K − 1}| indicates how many times u ∈ P
is used.

Proof. See Murota [206].

Notes. Sections 7.2.2 and 7.2.3 are based on Murota [211], whereas §7.2.4 is
on Murota [206].
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7.3 Mixed Skew-symmetric Matrix

7.3.1 Introduction

A square matrix A = (Aij) over a field is said to be skew-symmetric if AT =
−A and all the diagonal entries are equal to zero, where the second condition
is implied by the first if the characteristic of the underlying field is distinct
from two. The definition of skew-symmetry presupposes that the row set and
the column set of A are indexed by a common finite set, say V = {1, · · · , n}.

Skew-symmetric matrices enjoy rich combinatorial structures. Among oth-
ers, the rank of a skew-symmetric matrix A is equal to the maximum size
of a matching in the associated undirected graph G = (V,E) with vertex
set V and arc set E = {(i, j) | Aij �= 0}, provided that the nonzero entries
of the matrix are independent parameters except for the obvious constraint
Aij +Aji = 0 due to skew-symmetry. This fact was exploited by Tutte [322] in
deriving a fundamental duality result for maximum matchings (cf. Theorem
7.3.9). Combinatorial properties of a skew-symmetric matrix with numerical
data are abstracted as delta-matroids by Bouchet [15]. A delta-matroid is
an abstract discrete structure defined in terms of an exchange axiom (to be
explained in §7.3.3).

Skew-symmetric matrices are also important in applications. Electrical
network theory, in particular, employs an ideal element called a gyrator,
which is described by a skew-symmetric matrix of order two. The solvability
of RCG networks (electrical networks involving gyrators as well as resistors
and capacitors) has been analyzed successfully with the aid of the results on
the matroid parity problem (Recski [276, 277], Ueno–Kajitani [323]).

In this section we introduce the skew-symmetric version of a mixed matrix
as a further mathematical tool for systems analysis by means of matroid-
theoretic combinatorial methods. A mixed skew-symmetric matrix is a matrix
A expressed as A = Q+ T , where Q is a “constant” skew-symmetric matrix
and T is a “generic” skew-symmetric matrix in the sense that the nonzero
entries of T are independent parameters except for the obvious constraint
due to skew-symmetry.

A formal definition of mixed skew-symmetric matrix reads as follows. Let
F be a field, and K be a subfield of F . A skew-symmetric matrix A over
F (i.e., Aij = −Aji ∈ F , Aii = 0) is called a mixed skew-symmetric matrix
with respect to (K,F ) if

A = Q+ T, (7.43)

where

(MS-Q) Q is a skew-symmetric matrix over K (i.e., Qij ∈ K), and
(MS-T) T is a skew-symmetric matrix over F (i.e., Tij ∈ F ) such

that the set T = {Tij | Tij �= 0, i < j} of its nonzero entries in
the upper-triangular part is algebraically independent over K.
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Example 7.3.1. Here is a small example of a mixed skew-symmetric matrix
A = Q+ T :

⎡

⎢
⎢
⎣

0 −1 1 t1
1 0 2 0
−1 −2 0 t2
−t1 0 −t2 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 −1 1 0
1 0 2 0
−1 −2 0 0
0 0 0 0

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

0 0 0 t1
0 0 0 0
0 0 0 t2

−t1 0 −t2 0

⎤

⎥
⎥
⎦ ,

where T = {t1, t2} is assumed to be algebraically independent over Q. This
is a mixed skew-symmetric matrix with respect to (K,F ) for K = Q and
F = Q(t1, t2). �

The objective of this section is to present major mathematical results on
mixed skew-symmetric matrices and to treat the solvability of electrical net-
works with gyrators using those results. The mathematical analysis of mixed
skew-symmetric matrices leads to an extension of the matroid parity problem,
called the delta-matroid parity problem, introduced by Geelen–Iwata–Murota
[93]. In particular, the rank formula for a mixed skew-symmetric matrix takes
the form of a novel min-max formula for a pair of linear delta-matroids, which
is an extension of the duality result for the linear matroid parity problem due
to Lovász [177, 179, 180].

The table below indicates how the combinatorial tools used in the analysis
of mixed matrices are generalized for mixed skew-symmetric matrices.

Mixed matrix Mixed skew-symmetric matrix
T -part bipartite matching nonbipartite matching
Q-part linear matroid linear delta-matroid
Combination matroid union/intersection delta-matroid covering/parity

Remark 7.3.2. Given a matroid M = (V,B, ρ) on ground set V with basis
family B and rank function ρ, and also a partition Π of V into pairs, called
lines, the matroid parity problem is to find a base containing the maximum
number of lines (or equivalently to find a largest independent set consisting
of lines). We denote by ν(M,Π) the optimal value of the matroid parity
problem (the maximum number of lines contained in a base). The matroid
parity problem was introduced by Lawler (cf. Lawler [171], Lovász–Plummer
[181]).

The matroid parity problem is polynomially unsolvable in general, as
pointed out by Jensen–Korte [151] and Lovász [179]. (This statement is in-
dependent of the P�=NP conjecture.) It is solvable, however, if the matroid
in question is represented by a matrix. This special case is called the linear
matroid parity problem. Lovász [177, 179, 180] showed a polynomial-time al-
gorithm for finding an optimal base for the linear matroid parity problem.
This algorithm has been followed by more efficient algorithms: an augmenting
path algorithm of Gabow–Stallmann [83] and an algorithm of Orlin–Vande
Vate [258]. Those algorithms are based on a min-max theorem for ν(M,Π),
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due to Lovász [177, 179, 180], which states that, for a linear matroid M
representable over a field F , we have

ν(M,Π) = min
M→M◦,{Vi}

{

ρ(V ) − ρ◦(V ) +
∑

i

⌊
ρ◦(Vi)

2

⌋}

, (7.44)

where the minimum is taken over all matroids M◦ = (V,B◦, ρ◦) that are
strong quotients of M (see (2.65)) and all partitions {Vi} of V that are
compatible with the partition Π (that is, each Vi is a union of lines), and the
minimum is attained by a linear matroid M◦ representable over F . �

7.3.2 Skew-symmetric Matrix

A matrix A = (Aij) over a field F is said to be skew-symmetric if Aij = −Aji

for all (i, j) and Aii = 0 for all i, where the second condition is implied by
the first if the characteristic of F is distinct from two. The definition of skew-
symmetry presupposes that the row set and the column set of A are indexed
by a common finite set, say V = {1, · · · , n}. The support graph of A is an
undirected graph G = (V,E) with vertex set V and arc set E = {(i, j) |
Aij �= 0}. For I ⊆ V , A[I] designates A[I, I], the principal submatrix of A
indexed by I. We also denote by I/J the symmetric difference of I and J ,
namely, I/J = (I ∪ J) \ (I ∩ J).

For a skew-symmetric A of an even order the Pfaffian of A is defined by

pf A =
∑

P

aP , (7.45)

where the summation is taken over all partitions P = {{i1, j1}, · · · , {iν , jν}}
(ν = n/2) of V into unordered pairs and

aP = sgn
(

1 2 · · · 2ν − 1 2ν
i1 j1 · · · iν jν

) ν∏

k=1

Aikjk
.

Note that a nonzero term aP in the Pfaffian corresponds to a perfect matching
in the support graph G, since

∏ν
k=1Aikjk

�= 0 if and only if (ik, jk) ∈ E for
k = 1, · · · , ν. We define pf A = 0 if n is odd.

The following fact is well known.

Proposition 7.3.3. For a skew-symmetric A we have detA = (pf A)2.

Proof. For n odd, both detA and pf A vanish, since detA = det((−A)T) =
(−1)n detA. The content of this identity lies in the case of even n; see Muir
[195] for the proof.

Pfaffians enjoy an identity similar to the Grassmann–Plücker identity
for determinants (Proposition 2.1.4). We use the notation pfA(i1, · · · , iK)
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for pf(A[{i1, · · · , iK}]), where pfA(i2, i1, i3, · · · , iK) = −pfA(i1, i2, i3, · · · , iK),
etc., and, in particular, pfA(i1, · · · , iK) = 0 if the indices i1, · · · , iK are not
distinct. We also use the notation î for the omission of an index i, that is,
(i1, i2, · · · , îk, · · · , iK) = (i1, i2, · · · , ik−1, ik+1, · · · , iK).

Proposition 7.3.4 (Grassmann–Plücker identity for Pfaffians). For
a skew-symmetric matrix A, it holds that

L∑

l=1

(−1)l · pfA(jl, i1, i2, · · · , iK) · pfA(j1, j2, · · · , ĵl, · · · , jL)

+
K∑

k=1

(−1)k · pfA(i1, i2, · · · , îk, · · · , iK) · pfA(ik, j1, j2, · · · , jL) = 0. (7.46)

In particular, for i ∈ I/J , it holds that

pfA(I) · pfA(J) =
∑

j∈(I�J)\{i}
σj · pfA(I/{i, j}) · pfA(J/{i, j}) (7.47)

with appropriately chosen sign σj = ±1 depending on the ordering of the
elements of I, J , etc.

Proof. By the definition of the Pfaffian we have

pfA(jl, i1, i2, · · · , iK) =
K∑

k=1

(−1)k−1 · pfA(jl, ik) · pfA(i1, i2, · · · , îk, · · · , iK),

pfA(ik, j1, j2, · · · , jL) =
L∑

l=1

(−1)l−1 · pfA(ik, jl) · pfA(j1, j2, · · · , ĵl, · · · , jL),

as well as pfA(jl, ik)+pfA(ik, jl) = 0. Substitution of these into the left-hand
side of (7.46) establishes the identity. For (7.47), take I = {j1, i1, i2, · · · , iK},
J = {j2, · · · , jL}, i = j1 in (7.46).

Remark 7.3.5. The Grassmann–Plücker identity for Pfaffians is known to
physicists as Wick’s theorem. The expression (7.47) using symmetric differ-
ence is found in Wenzel [334] and Dress–Wenzel [55]. The present proof of
(7.46) is taken from Ohta [253]. �

Proposition 7.3.6. The rank of a skew-symmetric matrix is equal to the
maximum size of a nonsingular principal submatrix.

Proof. Let (I, J) be such that rankA = rankA[I, J ] = |I| = |J |. Then Propo-
sition 2.1.9(2) with (I1, J1) = (I, I), (I2, J2) = (I ∪ J, I ∪ J) shows

2r ≥ rankA[I, I]+rankA[I∪J, I∪J ] ≥ rankA[I∪J, I]+rankA[I, I∪J ] ≥ 2r,
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where r = rankA. This implies |I| = rankA[I, I] = rankA.

For a matrix A, a pivotal transform means the matrix A′ resulting from
the transformation

A =
[
A11 A12

A21 A22

]

�→ A′ =
[

A11
−1 A11

−1A12

−A21A11
−1 A22 −A21A11

−1A12

]

for a nonsingular submatrix A11. The pivotal transformation preserves skew-
symmetry. We denote by A ∗ I the pivotal transform of a skew-symmetric
matrix A with respect to a nonsingular principal submatrix A[I]. The follow-
ing is a fundamental identity due to Tucker [321].

Proposition 7.3.7. For a skew-symmetric matrix A and I ⊆ V such that
A[I] is nonsingular we have

det(A ∗ I)[J ] = detA[I/J ]/detA[I] (J ⊆ V ).

Proof. First note the relation
[

A11
−1 O

−A21A11
−1 I2

][
A11 O I1 A12

A21 I2 O A22

]

=
[
I1 O A11

−1 A11
−1A12

O I2 −A21A11
−1 A22 −A21A11

−1A12

]

where I1 and I2 denote unit matrices and A11 = A[I]. The claim can be
proven by considering the determinant of the relevant submatrix.

A skew-symmetric matrix A = (Aij) is said to be generic if the set
{Aij | Aij �= 0, i < j} of its nonzero entries in the upper-triangular part is
algebraically independent. A generic skew-symmetric matrix is in fact a com-
binatorial object, since it does not carry numerical information. Its structure
is fully represented by the support graph G, and conversely, for any graph
G we may associate a generic skew-symmetric matrix (sometimes called the
Tutte matrix of G) such that its support graph coincides with G. For a graph
G we denote by ν(G) the maximum size of a matching in G and by odd(G) the
number of odd components of G, where an odd component means a connected
component having an odd number of vertices.

For the rank of a generic skew-symmetric matrix we have the following
graph-theoretic characterizations.

Proposition 7.3.8. The rank of a generic skew-symmetric matrix A is equal
to the maximum size of a matching in the support graph of A.

Proof. The algebraic independence implies that pf A is nonzero if and only if
there exists at least one nonzero term aP in the definition (7.45). Hence, A
is nonsingular if and only if the support graph of A has a perfect matching.
Application of this argument to principal submatrices establishes the claim
by Proposition 7.3.6.
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Theorem 7.3.9 (Tutte–Berge formula). For a graph G = (V,E) we
have

2ν(G) = min{|V | + |U | − odd(G \ U) | U ⊆ V }, (7.48)

where G \ U means the graph obtained from G by deleting the vertices of U .

Proof. This will be derived from a more general theorem below. Standard
combinatorial proofs can be found in Lovász–Plummer [181] and Cook–
Cunningham–Pulleyblank–Schrijver [40].

The rank of a principal submatrix A[I, I] of a generic skew-symmetric
matrix A can be expressed in terms of matchings by Proposition 7.3.8 above,
and hence Theorem 7.3.9 gives a formula:

rankA[I, I] = min{2|I| − |I ′| − odd(G[I ′]) | I ′ ⊆ I},

where G[I ′] means the subgraph of G induced on I ′. This formula can be
generalized for a general submatrix A[I, J ] in the following form, which is
ascribed to L. Lovász in Cunningham–Geelen [44].

Theorem 7.3.10. For a generic skew-symmetric matrix A we have

rankA[I, J ] = min{|I \ I ′| + |J \ J ′| + |I ′ ∩ J ′| − odd(G[I ′ ∩ J ′]) |
(I ′, J ′) ∈ D(I, J)}, (7.49)

where D(I, J) = {(I ′, J ′) | A[I ′\J ′, J ′] = O,A[I ′, J ′\I ′] = O, I ′ ⊆ I, J ′ ⊆ J}.

Proof.1 The inequality

rankA[I, J ] ≤ |I \ I ′| + |J \ J ′| + |I ′ ∩ J ′| − odd(G[I ′ ∩ J ′]) (7.50)

is valid for any (I ′, J ′) ∈ D(I, J), since

rankA[I, J ] ≤ |I \ I ′| + |J \ J ′| + rankA[I ′, J ′],
rankA[I ′, J ′] = rankA[I ′ ∩ J ′] ≤ |I ′ ∩ J ′| − odd(G[I ′ ∩ J ′]).

By Theorem 2.3.47 there exist I∗ ⊆ I and J∗ ⊆ J such that
(i) |I∗| + |J∗| − rankA[I∗, J∗] = |I| + |J | − rankA[I, J ],
(ii) rankA[I∗ \ {i}, J∗ \ {j}] = rankA[I∗, J∗], ∀i ∈ I∗, ∀j ∈ J∗.

We claim that (ii) implies (I∗, J∗) ∈ D(I, J). Suppose, to the contrary, that
Aij �= 0 for some (i, j) with i ∈ I∗ \ J∗, j ∈ J∗ or i ∈ I∗, j ∈ J∗ \ I∗.
Since rankA[I∗ \ {i}, J∗ \ {j}] = rankA[I∗, J∗] (=: r), there exist I ′′ ⊆
I∗ \ {i} and J ′′ ⊆ J∗ \ {j} such that rankA[I ′′, J ′′] = |I ′′| = |J ′′| = r.
Consider the Laplace expansion of detA[I ′′ ∪ {i}, J ′′ ∪ {j}]. It contains a
nonvanishing term Aij · detA[I ′′, J ′′], which is not cancelled out by virtue of

1 This proof as well as the derivation of Theorem 7.3.9 from this theorem is taken
from Geelen [90]. Compare this proof with Remark 4.2.15.
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the unique occurrence of the variable Aij . This implies a contradiction that
r = rankA[I∗, J∗] ≥ rankA[I ′′ ∪ {i}, J ′′ ∪ {j}] = |I ′′| + 1 = r + 1.

Since (I∗, J∗) ∈ D(I, J), we have rankA[I∗, J∗] = rankA[I∗ ∩ J∗], and
also rankA[I∗ ∩ J∗] = rankA[(I∗ ∩ J∗) \ {i}] for all i ∈ I∗ ∩ J∗ by (ii). The
latter implies, by Gallai’s lemma below, that rankA[I∗ ∩ J∗] = |I∗ ∩ J∗| −
odd(G[I∗ ∩ J∗]). Substitution of these into (i) shows that (7.50) holds with
equality for (I ′, J ′) = (I∗, J∗).

The following fundamental fact, used in the proof above, deserves to be
stated as a theorem.

Theorem 7.3.11 (Gallai’s lemma). Let G = (V,E) be a connected graph.
If ν(G \ {v}) = ν(G) for all v ∈ V , then 2ν(G \ {v}) = |V | − 1 for all v ∈ V .

Proof.2 Let M be the matching matroid (see Example 2.3.7) defined by G.
The assumption means that M has no coloops. If (u, v) is an arc, then there
is no maximum matching missing both u and v, that is, u and v are in series.
Since series pairs are transitive (cf. §2.3.2) and G is connected, every pair of
vertices is in series. This implies that a maximum matching misses just one
vertex, i.e., 2ν(G) = |V | − 1. Hence, 2ν(G \ {v}) = 2ν(G) = |V | − 1 for all
v ∈ V .

Theorem 7.3.9 is now proven from Theorem 7.3.10. For a minimizer
(I∗, J∗) ∈ D(V, V ) in (7.49) we have

rankA = |V \ I∗| + |V \ J∗| + |I∗ ∩ J∗| − odd(G[I∗ ∩ J∗])
≥ |V | + |V \ (I∗ ∪ J∗)| − odd(G[I∗ ∪ J∗]).

On the other hand, for any U ⊆ V it holds that

rankA ≤ rankA[V \ U ] + rankA[U, V \ U ] + rankA[V,U ]
≤ (|V \ U | − odd(G \ U)) + |U | + |U |.

Hence follows (7.48), since rankA = 2ν(G).

Remark 7.3.12. It is shown by Cunningham–Geelen [44] that the rank of a
general submatrix A[I, J ] can be characterized in terms of “path-matching”
(a generalization of matching) and that it can be computed in polynomial
time, though the algorithm is not really combinatorial. �

Remark 7.3.13. For a numerically specified skew-symmetric matrix, the
maximum size of a matching in the support graph is only an upper bound on
the rank (due to accidental numerical cancellation). A systematic procedure
has been given by Geelen [91] that assigns integers in the range of {1, · · · , n}
(n: the size of the matrix) to the nonzero entries of a generic skew-symmetric
matrix so that the rank of the resulting (numerical) skew-symmetric matrix
attains this upper bound. �

2 This proof, communicated by J. Geelen, reveals the matroid-theoretic nature of
the proof given in Lovász–Plummer [181].
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Remark 7.3.14. A canonical decomposition representing the structure of
maximum matchings of nonbipartite graphs is known as the Gallai–Edmonds
decomposition (see Lovász–Plummer [181]). As a refinement of this decom-
position, a canonical block-triangularization of skew-symmetric matrices is
given by Iwata [140]. This is a generalization of the Dulmage–Mendelsohn
decomposition expounded in §2.2.3. �

7.3.3 Delta-matroid

The concept of a delta-matroid was introduced by Bouchet [15] as a gen-
eralization of a matroid. Essentially equivalent combinatorial structures
were proposed independently by Chandrasekaran–Kabadi [30] and by Dress–
Havel [50]; see also Bouchet–Cunningham [19] and Bouchet–Dress–Havel [20].

A delta-matroid is a pair (V,F) of a finite set V and a nonempty family F
of its subsets, called feasible sets, that satisfy the symmetric exchange axiom:

(DM) For F, F ′ ∈ F and u ∈ F/F ′, there exists v ∈ F/F ′ such
that F/{u, v} ∈ F .

A delta-matroid is said to be an even delta-matroid if |F/F ′| is even for all
F, F ′ ∈ F . As is easily seen, (V,F) is an even delta-matroid if and only if it
satisfies

(DMeven) For F, F ′ ∈ F and u ∈ F/F ′, there exists v ∈ (F/F ′) \
{u} such that F/{u, v} ∈ F .

It is also known (cf. Wenzel [335], Duchamp [58]) that an even delta-matroid is
characterized by a stronger exchange axiom (simultaneous exchange axiom):

(DM±) For F, F ′ ∈ F and u ∈ F/F ′, there exists v ∈ (F/F ′)\{u}
such that F/{u, v} ∈ F and F ′/{u, v} ∈ F .

A number of operations can be defined for a delta-matroid M = (V,F)
with respect to a subset X ⊆ V . The twisting of M by X is a delta-matroid
M/X = (V,F/X), where F/X = {F/X | F ∈ F}. Two delta-matroids
are said to be equivalent if they are transformed to each other by twisting.
The delta-matroid M∗ = M/V is called the dual of M. The deletion of
X from M means a delta-matroid M \ X = (V \ X,F \ X) defined by
F \X = {F | F ∈ F , F ⊆ V \X}, where F \X is assumed to be nonempty.
The contraction of M by X, denoted M/X, is defined as (M/X) \X. Note
that these operations preserve evenness.

A skew-symmetric matrix defines an even delta-matroid (Bouchet [16]).
Let A be a skew-symmetric matrix over a field and V be its row/column set.
The family of the nonsingular principal submatrices

F(A) = {X ⊆ V | rankA[X] = |X|}

satisfies the simultaneous exchange axiom (DM±) by (7.47) in Proposition
7.3.4, and hence M(A) = (V,F(A)) forms an even delta-matroid, in which
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the empty set is feasible. A delta-matroid M that can be expressed as M =
M(A)/X for some skew-symmetric matrix A over a field F and a subset
X ⊆ V (not necessarily feasible in M(A)) is called a linear delta-matroid
representable over F . If the matrix A and the subset X are given explicitly,
M is said to be represented over F . In case X is feasible in M(A), we have
M(A)/X = M(A ∗X) by Proposition 7.3.7.

A matroid M = (V,B) given in terms of the basis family B is an even
delta-matroid, since (BM±) in §2.3.4 implies (DM±) (or alternatively, since
(BM+) and (BM−) together imply (DMeven)). Moreover, a linear matroid is
a linear delta-matroid, as follows. Let M = (V,B) be represented by a matrix
with column set V in the sense that B is the family of column bases of the
matrix (see Example 2.3.8). For any base B of M we may assume that the
matrix is in the following form:

(
B V \B

B I D
)
,

where I is an identity matrix. Define a skew-symmetric matrix A by

A =
(

B V \B
B O D
V \B −DT O

)

. (7.51)

Then, for X ⊆ V , A[X/B] is nonsingular if and only if D[B \ X,X \ B]
is nonsingular, which in turn is equivalent to X ∈ B. Hence we have M =
M(A)/B, which shows that M is indeed a linear delta-matroid.

For a pair of delta-matroids M1 = (V1,F1) and M2 = (V2,F2) with
V1∩V2 = ∅, their direct sum M1⊕M2 = (V1∪V2,F1⊕F2) is a delta-matroid
with

F1 ⊕F2 = {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2}.
If M1 = M(A1)/X1 and M2 = M(A2)/X2, we have M1⊕M2 = M(A)/X
for X = X1 ∪X2 and

A =
(
V1 V2

V1 A1 O
V2 O A2

)

.

For a pair of delta-matroids M1 = (V,F1) and M2 = (V,F2), we define
their union by M1 ∨ M2 = (V,F1 ∨ F2) with

F1 ∨ F2 = {F1 ∪ F2 | F1 ∩ F2 = ∅, F1 ∈ F1, F2 ∈ F2}. (7.52)

It is known (Bouchet [17]) that M1 ∨ M2 is a delta-matroid.
The delta-covering problem, posed by Bouchet [18], is to find F1 ∈ F1 and

F2 ∈ F2 maximizing |F1/F2| for a given pair of delta-matroids M1 = (V,F1)
and M2 = (V,F2). The delta-covering problem contains the following decision
problems as special cases:
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[Partition problem]
Given a pair of delta-matroids M1 = (V,F1) and M2 = (V,F2), does
there exist a partition (F1, F2) of V such that F1 ∈ F1 and F2 ∈ F2?

[Intersection problem]
Given a pair of delta-matroids M1 and M2, does there exist a com-
mon feasible set?

Note that the intersection problem for M1 and M2 is the partition problem
for M1 and M2

∗.
The following is an observation, to be used in §7.3.4, that the optimal value

of the delta-covering problem is equal to the maximum size of a feasible set
in the sum M1 ∨ M2 if the empty set is feasible in one of the given delta-
matroids.

Lemma 7.3.15. For a pair of delta-matroids M1 = (V,F1) and M2 =
(V,F2) such that ∅ ∈ F1, it holds that

max{|F1/F2| | F1 ∈ F1, F2 ∈ F2}
= max{|F1 ∪ F2| | F1 ∩ F2 = ∅, F1 ∈ F1, F2 ∈ F2}.

Proof. Take F1 ∈ F1 and F2 ∈ F2 with maximum |F1/F2|. For u ∈ F1 ∩ F2,
if any, there exists v ∈ F1 = F1/∅ such that F ′

1 = F1 \ {u, v} ∈ F1. The
maximality of |F1/F2| implies v ∈ F1 \ F2. Hence |F ′

1/F2| = |F1/F2| and
|F ′

1 ∩ F2| = |F1 ∩ F2| − 1. Repeated transformation from (F1, F2) to (F ′
1, F2)

leads to a disjoint pair (F1, F2).

A min-max relation is known for the delta-covering problem in the case
of linear delta-matroids. The min-max relation refers to a distance between
two delta-matroids and the number of odd components with respect to a pair
of even delta-matroids.

The distance between two delta-matroids M = (V,F) and M◦ = (V,F◦),
denoted dist(M,M◦), is defined to be the minimum cardinality of Z such that
M = M+ \ Z and M◦ = M+/Z for some delta-matroid M+ = (V ∪ Z,F+),
where dist(M,M◦) = +∞ if no such M+ exists. Note that dist(M,M◦) =
dist(M◦,M) since M+ \ Z = (M+/Z)/Z and M+/Z = (M+/Z) \ Z.

For a pair of even delta-matroids M1 = (V,F1) and M2 = (V,F2), let
(V1, · · · , Vk) be the finest partition of V that simultaneously gives direct-sum
decompositions of both M1 and M2. We say that Vi is an odd component
with respect to (M1,M2) if |F1 ∩ Vi| + |F2 ∩ Vi| − |Vi| is odd for F1 ∈ F1

and F2 ∈ F2. Denoting by odd(M1,M2) the number of odd components with
respect to (M1,M2), we have |F1/F2| ≤ |V |−odd(M1,M2) for any F1 ∈ F1

and F2 ∈ F2.
The min-max relation, due to Geelen–Iwata–Murota [93], reads as follows.

Theorem 7.3.16. For a pair of linear delta-matroids M1 = (V,F1) and
M2 = (V,F2) representable over fields F 1 and F 2, respectively, we have
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max{|F1/F2| | F1 ∈ F1, F2 ∈ F2}
= min{dist(M1,M◦

1) + dist(M2,M◦
2) − odd(M◦

1,M
◦
2)

| M◦
1, M◦

2: even delta-matroids} + |V |,

and the minimum is attained by M◦
1 and M◦

2 representable over F 1 and F 2,
respectively. �

The delta-matroid parity problem (or delta-parity problem) has been in-
troduced by Geelen–Iwata–Murota [93] as a natural generalization of the
matroid parity problem (see Remark 7.3.2 for the matroid parity problem).
Let M = (V,F) be a delta-matroid on V with |V | even, and Π be a partition
of V into pairs, called lines. For F ⊆ V , we denote by δΠ(F ) the number of
lines exactly one element of which belongs to F . In other words,

δΠ(F ) = |{v ∈ V | v ∈ F, v̄ ∈ V \ F}|, (7.53)

where, for v ∈ V , v̄ denotes the element such that {v, v̄} is a line. The delta-
parity problem is to find a feasible set F ∈ F that minimizes δΠ(F ). We
denote by δ(M,Π) the optimal value of this problem, that is,

δ(M,Π) = min{δΠ(F ) | F ∈ F}. (7.54)

An obvious lower bound exists on δ(M,Π) in the case of an even delta-
matroid M. Let M = M1 ⊕ · · · ⊕Mk be the finest direct sum decomposition
of M which is compatible with the partition Π (that is, the ground set of
each Mi is a union of lines). Then each component Mi is also an even delta-
matroid. A component Mi is called an odd component if every feasible set of
Mi is of odd cardinality. Denoting the number of such odd components by
odd(M,Π), we have δ(M,Π) ≥ odd(M,Π).

In the linear case, we can tighten this lower bound by considering another
delta-matroid M◦ as follows (Geelen–Iwata–Murota [93]).

Theorem 7.3.17. For a linear delta-matroid M representable over a field
F , we have

δ(M,Π) = max{odd(M◦,Π) − dist(M,M◦) | M◦: even delta-matroid},

and the maximum is attained by M◦ representable over F . �

Remark 7.3.18. The delta-parity problem and the delta-covering problem
are equivalent. Given an instance of the delta-parity problem, M = (V,F)
and Π, let L denote the family of subsets of V that can be represented
as a union of lines. Then MΠ = (V,L) forms an even delta-matroid, and
δΠ(F ) = |V | − max{|F/L| | L ∈ L} holds for F ⊆ V . Hence the delta-
parity problem is a delta-covering problem for (M,MΠ). Conversely, given
a pair of delta-matroids (V,F1) and (V,F2) for the delta-covering problem,
denote their copies by M1 = (V1,F ′

1) and M2 = (V2,F ′
2), respectively. Let
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M = (V1 ∪ V2,F) be the direct sum of M1 and M∗
2, the dual of M2, and Π

be the partition of the ground set V1 ∪V2 into the pairs of the corresponding
copies. For a pair of feasible sets F1 ∈ F1 and F2 ∈ F2, it is easy to see that
δΠ(F ) = |V | − |F1/F2| holds for F = F ′

1 ∪ (V2 \ F ′
2) ∈ F , where F ′

1 and F ′
2

are the copies of F1 and F2. Therefore the delta-covering problem on (V,F1)
and (V,F2) is reduced to the delta-parity problem for M with the partition
Π. �

An augmenting path algorithm is given by Geelen–Iwata–Murota [93]
for solving the delta-parity problem on linearly represented delta-matroids.
The algorithm consists of O(n) augmentations, each augmentation involv-
ing O(n3) elementary pivoting operations. Hence the time complexity of the
algorithm is O(n4) in total, where the bound can be reduced slightly with
the use of the so-called fast matrix multiplications. This algorithm can be
adapted to solve the delta-covering problem. Note in this connection that
the delta-parity problem, as well as the delta-covering problem, for a pair
of general delta-matroids is polynomially unsolvable, since it contains the
matroid-parity problem as a special case (see Remark 7.3.2 and Remark
7.3.19).

Remark 7.3.19. The delta-parity problem is a natural generalization of the
matroid parity problem, which has been explained in Remark 7.3.2. For a
matroid M = (V, ρ) with rank function ρ and a partition Π of V into lines,
let ν(M,Π) denote the optimal value of the matroid parity problem, and
δ(M,Π) be the optimal value of the delta-parity problem when M is regarded
as a delta-matroid. Then it is obvious that 2ν(M,Π) = rankM − δ(M,Π).
This shows that the matroid parity problem is a special case of the delta-
matroid parity problem. Moreover, the representation indicated in (7.51)
shows that the linear matroid parity problem is a linear delta-matroid parity
problem.

The augmenting path algorithm of Geelen–Iwata–Murota [93] for the lin-
ear delta-parity problem is based on the idea in the algorithm of Gabow–
Stallmann [83] for the linear matroid parity problem.

Also the min-max theorem (Theorem 7.3.17) for the linear delta-matroid
parity problem is closely related to the Lovász min-max theorem (7.44) for
the linear matroid parity problem. To see this, first rewrite (7.44) to

δ(M,Π) = rankM − 2ν(M,Π)

= max
M→M◦,{Vi}

[(

ρ◦(V ) − 2
∑

i

⌊
ρ◦(Vi)

2

⌋)

− (ρ(V ) − ρ◦(V ))

]

, (7.55)

where the maximum is taken over all matroids M◦ = (V, ρ◦) that are strong
quotients of M and all partitions {Vi} of V that are compatible with the
partition Π. For the second term in the maximization (7.55) we can show

ρ(V ) − ρ◦(V ) = dist(M,M◦),
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where the proof for “≥” relies on the factorization theorem for strong maps
(cf. Kung [168, §8.2.B], Welsh [333, §17.4]) and that for “≤” is straightfor-
ward using (DM). The first term in the maximization (7.55) corresponds to
odd(M◦,Π) in the sense that, if {Vi} runs over direct sum decompositions
of M◦, we have

max
{Vi}

(

ρ◦(V ) − 2
∑

i

⌊
ρ◦(Vi)

2

⌋)

= odd(M◦,Π).

This follows easily from ρ◦(V ) =
∑

i ρ
◦(Vi) and the fact that ρ◦(Vi) −

2
⌊

ρ◦(Vi)
2

⌋
is equal to 1 or 0 according to whether Vi is an odd component or

not.
It should be emphasized, however, that the two min-max formulas, the

expression (7.55) and Theorem 7.3.17 (specialized to the matroid parity prob-
lem), are not identical. To be specific, we cannot assume the partition {Vi}
in (7.55) to be a direct sum decomposition of M◦, nor can we assume the
M◦ in Theorem 7.3.17 to be a strong quotient of M. This subtle point is
demonstrated by the matroid parity problem defined by a linear matroid M
associated with the matrix

v1 v2 v3 v4 v5 v6 v7 v8
1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1

over F = GF(2), and a partition Π = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}}
of V = {v1, · · · , v8}. We have rankM = 4, ν(M,Π) = 1, and δ(M,Π) =
2. In (7.55) we can take M for M◦ and Π for {Vi}; then ρ◦({v1, v2}) =
ρ◦({v3, v4}) = ρ◦({v5, v6}) = 1 and ρ◦({v7, v8}) = 2. Note that Π does not
give a direct sum decomposition of M◦ = M. For Theorem 7.3.17 let M+ be
the linear delta-matroid defined by a skew-symmetric matrix

A+ =

v1 v3 v5 v7 v2 v4 v6 v8 z
v1 1 0 0 1 0
v3 0 1 0 1 0
v5 0 0 1 1 0
v7 0 0 0 1 0
v2 1 0 0 0 0
v4 0 1 0 0 0
v6 0 0 1 0 0
v8 1 1 1 1 1
z 0 0 0 0 0 0 0 1

over GF(2). Fixing a base B = {v1, v3, v5, v7} of the matroid M, we can
identify the matroid M with the delta-matroid (M+ \ {z})/B. For M◦ =
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(M+/{z})/B, we have: odd(M◦,Π)−dist(M,M◦) = 3− 1 = 2 = δ(M,Π).
Note that the family of feasible sets of M◦ is given by {{vi, vj , vk, v7, v8} |
i ∈ {1, 2}, j ∈ {3, 4}, k ∈ {5, 6}}, and that Π itself gives the finest direct
sum decomposition of M◦ compatible with Π, where {v1, v2}, {v3, v4}, and
{v5, v6} are the odd components. It should be emphasized that M◦ can be
identified with a matroid, which, however, is not a strong quotient of M. �

7.3.4 Rank of Mixed Skew-symmetric Matrices

The rank of a mixed skew-symmetric matrix A = Q + T can be treated
successfully by means of the delta-covering problem for the associated linear
delta-matroids.

The following identity is most fundamental, where it is recalled that
the nonsingularity of a principal submatrix of T is characterized by graph-
theoretic terms (see Proposition 7.3.8).

Lemma 7.3.20. A mixed skew-symmetric matrix A = Q+T is nonsingular
if and only if both Q[I] and T [V \ I] are nonsingular for some I ⊆ V .

Proof. By the definition of Pfaffians we see

pf A =
∑

I⊆V

±pf Q[I] · pf T [V \ I]. (7.56)

No cancellation can occur among terms with distinct I by virtue of the alge-
braic independence of the nonzero entries of T in the upper-triangular part.
Hence pf A �= 0 if and only if pf Q[I] �= 0 and pf T [V \ I] �= 0 for some I ⊆ V .

The above statement can be rephrased in terms of the union of delta-
matroids as follows.

Theorem 7.3.21. For a mixed skew-symmetric matrix A = Q+T , the delta-
matroid defined by A is the union of the delta-matroids defined by Q and T ,
that is, M(A) = M(Q) ∨ M(T ).

Proof. This follows from the definition (7.52) of the union and Lemma 7.3.20
applied to principal submatrices of A.

Theorem 7.3.22. For a mixed skew-symmetric matrix A = Q+ T ,

rankA = max{rankQ[I] + rankT [V \ I] | I ⊆ V } (7.57)
= max{|FQ/FT | | FQ ∈ FQ, FT ∈ FT }, (7.58)

where M(Q) = (V,FQ) and M(T ) = (V,FT ) are the linear delta-matroids
defined respectively by Q and T .
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Proof. The first identity follows from Lemma 7.3.20, whereas the second is
obtained from Theorem 7.3.21 with Lemma 7.3.15.

The rank formula (7.58) enables us to compute the rank of A = Q + T
by solving the delta-covering problem for (M(Q),M(T )). This can be done
in polynomial time (O(n4) to be specific) using arithmetic operations in K
by adapting the algorithm for delta-covering problem for a pair of linear
delta-matroids.

Remark 7.3.23. The linear matroid parity problem can be reduced to the
problem of computing the rank of a mixed skew-symmetric matrix. Given a
pair of matrices B = (bi | i = 1, · · · , N) and C = (ci | i = 1, · · · , N), the
matroid parity problem (cf. Remark 7.3.2) is to find I ⊆ V = {1, · · · , N}
of maximum cardinality such that the column vectors {bi, ci | i ∈ I} are
linearly independent. We denote by ν the optimal value (= max |I|) of the
matroid parity problem.

Defining a mixed skew-symmetric matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O b1 c1 · · · bN cN

−bT
1 0 t1 0 0

−cT
1 −t1 0 0 0

...
. . .

−bT
N 0 0 0 tN

−cT
N 0 0 −tN 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.59)

using indeterminates t1, · · · , tN , we have

rankA = 2(N + ν). (7.60)

Proof of (7.60): The rank identity (7.57) yields

rankA = 2max
I

(f(I) + |V \ I|), f(I) = rank (bi, ci | i ∈ I).

Hence it suffices to show ν coincides with ν̂ = maxI(f(I) − |I|). For an
optimal I of the matroid parity problem we have ν = |I| = f(I) − |I| ≤ ν̂.
Conversely, let I be a maximizer of f(I)−|I| that is minimal with respect to
set inclusion. Then f(I) = 2|I|, since otherwise there exists i ∈ I such that
f(I \ {i}) ≥ f(I) − 1, which implies that I \ {i} is also a maximizer. Hence
ν ≥ |I| = f(I) − |I| = ν̂.

The formula (7.60) is equivalent to a well-known identity due to Lovász
[178] (cf. Lovász–Plummer [181, Theorem 11.1.2]), which reads

rank
N∑

i=1

xi(bi ∧ ci) = 2ν, (7.61)
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where b ∧ c = bcT − cbT (called wedge product) and xi (i = 1, · · · , N) are
indeterminates. The equivalence between (7.60) and (7.61) can be shown
easily by considering a Schur complement of A and using the identity

[
b c

]
[

0 t
−t 0

]−1 [
bT

cT

]

= −1
t
(b ∧ c)

(see Proposition 2.1.7 for Schur complement). �

7.3.5 Electrical Network Containing Gyrators

When the branch characteristics of an electrical network are given in terms
of self- and mutual admittances Y , the network can be described by a matrix
A of the form

A =
D O
O R
−I Y

, (7.62)

where D is a fundamental cutset matrix and R is a fundamental circuit
matrix of the underlying graph. Recall from §4.7.3 the convention that the
above system of equations describes the “free” network that is obtained after
the branches of voltage sources are contracted and those of current sources
are deleted. Since kerD = (kerR)⊥, the matrix A is nonsingular if and only
if DYDT is nonsingular (see Lemma 4.7.11). That is, the unique solvability
of the network is equivalent to the nonsingularity of DYDT.

Under the genericity assumption that the set of the nonvanishing entries of
Y is algebraically independent over Q, the matrix A above is a mixed matrix.
This makes it possible to formulate the unique solvability of the network in
terms of an independent matching problem (see also Remark 2.3.37 for a
variant of this formulation for the nonsingularity of DYDT). This genericity
assumption, though fairly reasonable in many cases, is not always justified.

An ideal element called a gyrator is commonly employed in electrical net-
work theory. It is a two-port element, the element characteristic of which is
represented as [

ξ
ξ̄

]

=
[

0 g
−g 0

] [
η
η̄

]

(7.63)

for the current-voltage pairs (ξ, η), (ξ̄, η̄) at the ports, where g �= 0. Note that
the admittance matrix of a gyrator is a skew-symmetric matrix of order two.
Accordingly, it is not reasonable to impose the above-mentioned genericity
assumption on Y when the electrical network in question contains gyrators.
Gyrators are certainly ideal or artificial elements, but they play a pivotal role
in electrical network theory (cf. Rohrer [283], Saito [287]). For example, any
passive network is known to be “equivalent” to an RCG network, which is,
by definition, a network consisting of resistors, capacitors, and gyrators (and
possibly, sources).
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Example 7.3.24. Consider the electrical network in Fig. 7.5, taken from
Ueno–Kajitani [323], which consists of five elements: two gyrators (two pairs
of branches {1, 1̄} and {2, 2̄}), two capacitors C3 and C4 (branches 3 and 4),
and one resistor of conductance g5 (branch 5). It is understood that voltage
sources and current sources are already contracted and deleted, respectively.
The matrix A describing this network is given by

A =

ξ1 ξ1̄ ξ2 ξ2̄ ξ3 ξ4 ξ5 η1 η1̄ η2 η2̄ η3 η4 η5
1 0 −1 0 0 1 0
0 1 1 1 0 −1 0
0 0 1 0 1 −1 1

1 −1 1 0 −1 0 0
0 −1 0 1 0 0 0

−1 1 0 0 1 1 0
0 0 0 0 −1 0 1

−1 g1
−1 −g1

−1 g2
−1 −g2

−1 sC3

−1 sC4

−1 g5

(7.64)

and the underlying graph G is depicted in the right of Fig. 7.5. �
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Fig. 7.5. An electrical network with gyrators (Example 7.3.24)

Thus we are motivated to consider matrices of the form (7.62) such that Y
is a direct sum of a generic skew-symmetric matrix Ys and a generic diagonal
matrix Yd. Namely, we consider a matrix
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A =

Ds Dd O O
O O Rs Rd

−Is O Ys O
O −Id O Yd

, (7.65)

in which Ys is a generic skew-symmetric matrix, Yd is a generic diagonal
matrix, Ds, Dd, Rs and Rd are matrices over a field such that [Ds Dd] and
[Rs Rd] are of full-row rank and

ker[Ds Dd] = (ker[Rs Rd])⊥, (7.66)

and Is and Id are unit matrices of appropriate dimensions. In Example 7.3.24,
for instance, we have

Ys =

g1
−g1

g2
−g2

, Yd =
sC3

sC4

g5

under the reasonable assumption that {g1, g2, C3, C4, g5} is algebraically in-
dependent. It is emphasized, however, that Ys and Yd are not assumed to be
nonsingular, and that Ys is not restricted to a block-diagonal matrix consist-
ing of 2 × 2 blocks.

The objective of this subsection is to show the equivalence of the nonsin-
gularity of A to that of a certain mixed skew-symmetric matrix associated
with A. This implies by Theorem 7.3.22 that the nonsingularity of A, and
hence the unique solvability of an electrical network described by A, can
be tested by the efficient algorithm developed for the delta-parity/covering
problem.

Remark 7.3.25. Though any passive network is “equivalent” to an RCG
network, this does not mean that the present framework is general enough to
treat an arbitrary passive network under the reasonable genericity assump-
tion. Recall, for example, that an ideal transformer is described as

[
η
ξ

]

=
[
t 0
0 −1/t

] [
η̄
ξ̄

]

.

When a network containing transformers are rewritten as an RCG network,
the genericity of the element t is not translated nicely to fit in our present
formulation. �

First we observe a linear algebraic fact, independent of the genericity of
Ys and Yd. Define a skew-symmetric matrix Ā by
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Ā =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

O O Rs Rd O O
O O O O −Rs −Rd

−Rs
T O Ys O O O

−Rd
T O O O O −Yd

O Rs
T O O −Ys O

O Rd
T O Yd

T O O

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.67)

Lemma 7.3.26. Let A and Ā be defined by (7.65) and (7.67), respectively,
where [Ds Dd] and [Rs Rd] are of full-row rank and (7.66) is assumed.3 Then,
det Ā = c2 · (detA)2 for some c �= 0.

Proof. First assume that Ys and Yd are nonsingular and put Zs = Ys
−1 and

Zd = Yd
−1. Define

B =
[
Rs Rd

]
[
Zs O
O Zd

] [
Rs

T

Rd
T

]

= RsZsRs
T +RdZdRd

T.

Taking the Schur complement (Proposition 2.1.7) we see det Ā = (detYs ·
detYd)2 · detS, where

S =
[
RsZsRs

T −RdZdRd
T

RdZdRd
T −RsZsRs

T

]

.

On the other other hand, detS = (detB)2, since

det
[
M −N
N −M

]

= det[N +M ] · det[N −M ]

for two square matrices M and N of the same size. Finally, detB = c ·
(detYs ·detYd)−1 ·detA for some c �= 0 by Lemma 4.7.11. Therefore, det Ā =
c2 · (detA)2 with nonzero c independent of Ys and Yd. This identity makes
sense regardless of the nonsingularity of Ys and Yd.

With the matrix A of (7.65) we associate a mixed skew-symmetric matrix
Â defined by

Â =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

O O Rs Rd O O
O O O O −Rs −Rd

−Rs
T O Ŷs O O O

−Rd
T O O O O −Yd

O Rs
T O O −Ys O

O Rd
T O Yd

T O O

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.68)

where Ŷs is a copy of Ys but with a new indeterminate for each independent
entry of Ys. The matrix Â is almost the same as Ā, but Â is a mixed skew-
symmetric matrix while Ā is not because of the repeated occurrence of Ys.
3 In this lemma Yd can be any symmetric matrix and no genericity assumption on

Ys and Yd is needed.
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Lemma 7.3.27. Ā is nonsingular if and only if Â is nonsingular.

Proof. Obviously, the nonsingularity of Ā implies that of Â. To show the
converse, we use Lemma 7.3.20. Denote by W1 ∪W2 ∪Es1 ∪Ed1 ∪Es2 ∪Ed2

the column set of Â in the natural order with reference to (7.68). This serves
also as the index set for Ā. We have a natural correspondences ϕs : Es1 → Es2

and ϕd : Ed1 → Ed2. By the special structure of Â we can take I in Lemma
7.3.20 so that I ⊇ W1 ∪ W2, ϕs(I ∩ Es1) = I ∩ Es2 and ϕd(I ∩ Ed1) =
I ∩ Ed2. Consider now the expansion of the Pfaffian of Ā in the form of
(7.56). The term corresponding to the I above has no similar terms, and
cannot be cancelled out. Hence pf Ā �= 0, i.e., Ā is nonsingular.

The following theorem due to Iwata [142] gives a combinatorial char-
acterization of the nonsingularity of A in (7.65). Put Es = Col(Rs) and
Ed = Col(Rd).

Theorem 7.3.28. The following three conditions, (i) to (iii), are equivalent
for the matrix A in (7.65), where Ys is a generic skew-symmetric matrix, Yd

is a generic diagonal matrix, and the orthogonality (7.66) is assumed.
(i) A is nonsingular.
(ii) There exists J ⊆ Es∪Ed such that Ys[J∩Es] is nonsingular, Yd[J∩Ed]

is nonsingular, and the submatrix of [Rs Rd] with columns in (Es ∪ Ed) \ J
and all rows is nonsingular.

(iii) The associated mixed skew-symmetric matrix Â defined by (7.68) is
nonsingular.

Proof. The equivalence of (i) and (iii) is due to Lemma 7.3.26 and Lemma
7.3.27. The equivalence of (ii) and (iii) is implicit in the proof of Lemma
7.3.27.

The above theorem has a number of implications. First, the equivalence
of (i) and (iii) enables us to test for the nonsingularity of A by using the
algorithm for the delta-parity/covering problem. Second, the equivalence of
(i) and (ii) implies as an immediate corollary the unique solvability criterion
for electrical networks, which is explained below.

Let us consider an RCG network, though the following argument is valid
for an electrical network consisting of gyrators and other elements free from
mutual couplings. After the branches of voltage sources are contracted and
those of current sources are deleted, the network is described by a matrix A
of the form (7.65) under the genericity assumption that the element charac-
teristics are independent of one another. In this case, Ys is a direct sum of
generic skew-symmetric matrices of order two and Yd is a generic diagonal
matrix; both Ys and Yd are nonsingular. Moreover, [Ds Dd] is a fundamental
cutset matrix and [Rs Rd] is a fundamental circuit matrix of the underly-
ing graph, say G = (V,E). Note that E = Es ∪ Ed for Es = Col(Rs) and
Ed = Col(Rd), and that Es is partitioned into pairs according to the block
structure of Ys.
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In the literature of electrical network theory a tree in G is called a proper
tree if each pair in Es is either contained in the tree or disjoint from the
tree.4 Similarly, a spanning forest in G is said to be proper if each pair in Es

is either contained in it or disjoint from it.
The following solvability criterion for an RCG network, essentially due to

Milić [194] (see also Recski [277], Ueno–Kajitani [323]), can be derived as an
immediate consequence of Theorem 7.3.28.

Theorem 7.3.29. An RCG network is uniquely solvable (under the gener-
icity assumption) if and only if there exists a proper spanning forest.

Proof. This follows from the equivalence of (i) and (ii) in Theorem 7.3.28. Note
that the submatrix of [Rs Rd] with columns in (Es ∪ Ed) \ J and all rows is
nonsingular if and only if J is a spanning forest, whereas the nonsingularity
of Ys[J ∩ Es] imposes the properness on the spanning forest.

The connection of the solvability condition above to the matroid parity
problem was pointed out first by Recski [276]. In the special case where
the network consists of gyrators only, the associated mixed skew-symmetric
matrix Â takes the form of (7.59), and therefore, testing for the nonsingularity
of Â can be reduced to a matroid parity problem, as is shown in (7.60). It
is indicated by Ueno–Kajitani [323] and Recski [277] that the solvability in
the general case can be reduced to solving polynomially many matroid parity
problems; at most (|V | + |Ed|)|E|2 problems by Ueno–Kajitani [323] and at
most |Ed| problems by Recski [277]. Recently, it is observed by Iwata [142]
that a single matroid parity problem suffices, as follows.

Given a graph G = (V,Es ∪Ed) with Es partitioned into pairs, we make
a copy of G, denoted G′ = (V ′, E′

s ∪ E′
d), and consider the direct sum of G

and G′, denoted Ĝ = (V̂ , Ê), where V̂ = V ∪ V ′, Ê = Es ∪ Ed ∪ E′
s ∪ E′

d.
The arc set Ê is partitioned into pairs as follows: {a, b} is a pair in Ê if (i)
{a, b} ⊆ Es and it is a pair in Es, (ii) {a, b} ⊆ E′

s and it is the copy of a
pair in Es, or (iii) a ∈ Ed, b ∈ E′

d and they are the copies of each other. We
denote this partition of Ê by Π̂ and call Ĝ the duplication of G.

The observation of Iwata [142] reads as follows. Recall the notation ν(·)
for the maximum number of pairs contained in a base.

Theorem 7.3.30. A graph G has a proper spanning forest if and only if
ν(M(Ĝ), Π̂) = r for the duplication Ĝ of G, where r denotes the number
of arcs in a spanning forest of G. Hence, the unique solvability of an RCG
network can be determined by solving a single matroid parity problem for a
graphic matroid.
4 In the literature (e.g., Recski [277]) “normal tree” sometimes used as a synonym

for “proper tree.” A normal tree in an RCG network, however, often means a
proper tree that contains as many capacitors as possible.
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Proof. The existence of a proper spanning forest in G is obviously equivalent
to the existence of a proper spanning forest in Ĝ. The latter condition can be
stated in terms of a single matroid parity problem for the graphic matroid
M(Ĝ) defined by Ĝ and the partition Π̂ above.

Example 7.3.31. The solvability conditions above are illustrated for the
RCG network (Fig. 7.5) of Example 7.3.24. There exists a proper tree,
e.g., {1, 1̄, 3}, in G. Therefore, this network is uniquely solvable by Theo-
rem 7.3.29. The duplication Ĝ has eight vertices and seven parity pairs of
arcs: {{1, 1̄}, {2, 2̄}, {1′, 1̄′}, {2′, 2̄′}, {3, 3′}, {4, 4′}, {5, 5′}}. The correspond-
ing proper spanning forest in Ĝ is given by {1, 1̄, 1′, 1̄′, 3, 3′}. We have
ν(M(Ĝ),Π) = 3 = r in the notation of Theorem 7.3.30. �
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294. M. E. Sezer and D. D. Šiljak: Structurally fixed modes, Syst. Control Lett., 1
(1981), 60–64.

295. R. W. Shields and J. B. Pearson: Structural controllability of multiinput linear
systems, IEEE Trans. Automat. Control, AC-21 (1976), 203–212.

296. M. Shigeno: A Dual Approximation Approach to Matroid Optimization Prob-
lems, Doctor’s dissertation, Tokyo Institute of Technology, 1996.

297. A. Shioura: A constructive proof for the induction of M-convex functions
through networks, Disc. Appl. Math., 82 (1998), 271–278.

298. A. Shioura: Minimization of an M-convex function, Disc. Appl. Math., 84
(1998), 215–220.



466 References

299. A. Shioura: Level set characterization of M-convex functions, IEICE
Trans. Fundment. Electr., Comm. Comput. Sci., E83-A (2000), 586–589.
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Notation Table

Chapter 1

ξi : current in branch i §1.1.2
ηi : voltage across branch i §1.1.2
ν(A) : index of polynomial matrix A (1.2)
Astr : structured matrix associated with polynomial matrix A (1.5)
νstr(A) : structural index of polynomial matrix A (1.6)
A-Q1 : assumption on Q-part of mixed polynomial matrix §1.2.1
A-T : assumption on T -part of mixed polynomial matrix §1.2.1
A-Q2 : stronger assumption on Q-part of mixed polynomial matrix §1.2.3
F : field §1.3.1
K : ground field, subfield of F §1.3.1
A = Q+ T : mixed matrix (1.32)
M-Q : assumption on Q-part of mixed matrix §1.3.1
M-T : assumption on T -part of mixed matrix §1.3.1
T : set of independent parameters §1.3.1
A(s) = Q(s) + T (s) : mixed polynomial matrix (1.33)
MP-Q1 : assumption on Q-part of mixed polynomial matrix §1.3.1
MP-T : assumption on T -part of mixed polynomial matrix §1.3.1
MP-Q2 : stronger assumption on Q-part of mixed polynomial matrix §1.3.1

Chapter 2

F : field §2.1.1
K : ground field, subfield of F §2.1.1
Q : field of rational numbers §2.1.1
R : field of real numbers §2.1.1
K[X] : ring of polynomials in X over K §2.1.1
deg p : degree of polynomial p §2.1.1
K(X) : field of rational functions in X over K §2.1.1
K[X, 1/X] : ring of Laurent polynomials in X over K §2.1.1
ordf : order of Laurent polynomial f §2.1.1
K(Y) : field adjunction of Y to K §2.1.1
K[Y] : ring adjunction of Y to K §2.1.1
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dimK F : degree of transcendency of F over K §2.1.1
Row(A) : row set of matrix A §2.1.2
Col(A) : column set of matrix A §2.1.2
Aij : (i, j)-entry of matrix A §2.1.2
A[I, J ] : submatrix of A with row set I and column set J §2.1.2
detA : determinant of matrix A (2.2)
GL(n,F ) : set of nonsingular matrices of order n over F §2.1.2
BM± : simultaneous exchange property of matroids §2.1.2
VM : axiom of valuated matroids §2.1.2
OM : axiom of oriented matroids §2.1.2
rankA : rank of matrix A §2.1.3
term-rankA : term-rank of matrix A §2.1.3
G = (V,A) : graph with vertex set V and arc set A §2.2.1
∂+a : initial vertex of arc a §2.2.1
∂−a : terminal vertex of arc a §2.2.1
∂a : set of vertices incident to arc a §2.2.1
δ+v : set of arcs leaving vertex v §2.2.1
δ−v : set of arcs entering vertex v §2.2.1
δv : set of arcs incident to vertex v §2.2.1
G \ U : graph obtained from G by deleting vertices in U §2.2.1
u

∗−→ v : directed path exists from u to v §2.2.1
∼ : equivalence relation by reachability §2.2.1
� : partial order among strong components §2.2.1
G = (V +, V −;A) : bipartite graph with bipartition (V +, V −) of

vertex set and arc set A §2.2.1
Gk

0 : dynamic graph of time-span k §2.2.1
L : sublattice of 2V (2.18)
Lmin(f) : family of the minimizers of f (2.21)
P(L) : partition determined by sublattice L (2.25)
L(P) : sublattice determined by partition P (2.27)
Λ(V ;V0, V∞) : collection of sublattices of 2V with minimum V0

and maximum V \ V∞ (2.28)
Π(V ;V0, V∞) : collection of pairs of a partition of V with two

distinguished subsets V0 and V∞ and a partial order � (2.29)
≺ : � and �= (2.30)
≺· : “covered by” relation with respect to a partial order (2.31)
〈 〉 : set of elements below with respect to a partial order (2.32)
L = (S,∨,∧) : lattice with join ∨ and meet ∧ §2.2.2
M : matching §2.2.3
∂+M : set of vertices in V + incident to arcs in M §2.2.3
∂−M : set of vertices in V − incident to arcs in M §2.2.3
∂M : set of vertices incident to arcs in M §2.2.3
ν(G) : size of a maximum matching in bipartite graph G §2.2.3
(U+, U−) : cover of bipartite graph G §2.2.3
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C(G) : family of minimum covers of bipartite graph G §2.2.3
Γ : set of adjacent vertices (2.36)
γ : number of adjacent vertices (2.37)
p0 : surplus function (2.39)
N = (V,A, c; s+, s−) : network with vertex set V , arc set A,

capacity c, source s+, and sink s− §2.2.4
ϕ : flow §2.2.4
∂ϕ : boundary of flow ϕ (2.47)
val(ϕ) : value of flow ϕ §2.2.4
S : family of S with s+ ∈ S, s− ∈ V \ S (2.48)
C(S) : cut corresponding to S (2.49)
κ(S) : capacity of cut S (2.50)
G = (V,A;X,Y ) : graph with vertex set V , arc set A, entrance X,

and exit Y §2.2.4
N = (V,A, c, c, γ) : network with vertex set V , arc set A, upper

capacity c, lower capacity c, and cost γ §2.2.5
cost(ϕ) : cost of flow ϕ §2.2.5
w(M) : weight of matching M §2.2.5
M = (V, I) : matroid on V with family of independent sets I §2.3.2
M = (V,B, I, ρ) : matroid on V with family of bases B, family of

independent sets I, and rank function ρ §2.3.2
BM− : (one-sided) basis exchange property §2.3.2
rankM : rank of matroid M §2.3.2
cl(X) : closure of subset X §2.3.2
M∗ : dual of matroid M §2.3.2
BM+ : dual exchange property §2.3.2
MU : restriction of matroid M to U §2.3.2
MU : contraction of matroid M to U §2.3.2
M1 ⊕ M2 : direct sum of matroids M1 and M2 §2.3.2
M1 → M2 : strong map for matroids M1 and M2 §2.3.2
M(A) : linear matroid defined by matrix A §2.3.3
M{U} : linear matroid defined by subspace U §2.3.3
ker : kernel of a matrix §2.3.3
BM± : simultaneous exchange property §2.3.4
BM+loc : local exchange property §2.3.4
G(B,B′) : exchangeability graph for a pair of bases (B,B′) (2.66)
κ(U) : cut capacity of U (2.71)
Γ : set of adjacent vertices (2.73)
M1 ∨ M2 : union of matroids M1 and M2 §2.3.6
L = (S, T, Λ) : bimatroid with row set S, column set T , and

family of linked pairs Λ §2.3.7
Row(L) : row set of bimatroid L §2.3.7
Col(L) : column set of bimatroid L §2.3.7
RM(L) : row matroid of bimatroid L §2.3.7
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CM(L) : column matroid of bimatroid L §2.3.7
G(L) : underlying bipartite graph of bimatroid L §2.3.7
L \ Z : deletion of Z from bimatroid L §2.3.7
(D(L), A(L), C(L)) : canonical partition of bimatroid L §2.3.7
L[X,Y ] : restriction of bimatroid L to (X,Y ) §2.3.7
L∗ : dual of bimatroid L §2.3.7
L−1 : inverse of bimatroid L §2.3.7
L1 ∨ L2 : union of bimatroids L1 and L2 §2.3.7
L1 ∗ L2 : product of bimatroids L1 and L2 §2.3.7
L ∗ M : matroid induced from matroid M by bimatroid L §2.3.7

Chapter 3

D : (multi)set of numbers characterizing a physical system (3.8)
Q : (multi)set of accurate numbers (3.9)
T : (multi)set of inaccurate numbers (3.9)
GA1 : first generality assumption §3.1.1
GA2 : second generality assumption §3.1.1
GA3 : third generality assumption §3.1.1
A = Q+ T : mixed matrix (3.13)
M-Q : assumption on Q-part of mixed matrix §3.1.2
M-T : assumption on T -part of mixed matrix §3.1.2
MM(K,F ;m,n) : set of m×n mixed matrices with respect to (K,F ) §3.1.2
MM(K,F ) : set of mixed matrices with respect to (K,F ) §3.1.2
A(s) = Q(s) + T (s) : mixed polynomial matrix (3.20)
MP-Q1 : assumption on Q-part of mixed polynomial matrix §3.1.2
MP-T : assumption on T -part of mixed polynomial matrix §3.1.2
D(F ;m,n;Z1, · · · , Zd) : set of m× n dimensioned matrices with

ground field F and fundamental quantities Z1, · · · , Zd §3.2.2
D(F ;Z1, · · · , Zd) : set of dimensioned matrices with ground

field F and fundamental quantities Z1, · · · , Zd §3.2.2
Dr : diagonal matrix representing physical dimensions of rows (3.27)
Dc : diagonal matrix representing physical dimensions of columns (3.28)
U(R;m,n) : set of m× n totally unimodular matrices over ring R §3.2.3
U(R) : set of totally unimodular matrices over ring R §3.2.3
F 〈Z1, · · · , Zd〉 : ring generated over F by formal fractional

powers of Z1, · · · , Zd (3.31)
MP-Q2 : stronger assumption on Q-part of mixed polynomial matrix §3.3.2

Chapter 4

A = Q+ T : mixed matrix (4.1)
M-Q : assumption on Q-part of mixed matrix §4.1
M-T : assumption on T -part of mixed matrix §4.1
MM(K,F ;m,n) : set of m× n mixed matrices with respect to (K,F ) §4.1
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MM(K,F ) : set of mixed matrices with respect to (K,F ) §4.1

A =
(

Q
T

)
: LM-matrix (4.2)

L-Q : assumption on Q-part of LM-matrix §4.1
L-T : assumption on T -part of LM-matrix §4.1
LM(K,F ;mQ,mT , n) : set of (mQ +mT ) × n LM-matrices with

respect to (K,F ) §4.1
LM(K,F ) : set of LM-matrices with respect to (K,F ) §4.1
τ : term-rank of T -part (4.7)
Γ : set of nonzero rows of T -part (4.8)
γ : number of nonzero rows of T -part (4.9)
ρ : rank of Q-part (4.13)
p : LM-surplus function (4.16)
J(x,u) : Jacobian matrix with respect to x and u (4.28)
GA1 : first generality assumption §4.3.2
GA2 : second generality assumption §4.3.3
GA3 : third generality assumption §4.3.3
S : nonsingular matrix in LM-admissible transformation (4.35)
Pr : row permutation matrix in LM-admissible transformation (4.35)
Pc : column permutation matrix in LM-admissible transformation (4.35)
D : integral domain §4.4.7
dk : kth determinantal divisor §4.5.1
pτ : function characterizing the rank of LM-matrix (4.103)
LC(K,F 0,F ;mQ,mT , n) : set of matrices §4.7.2
∼
pv

: equivalence with respect to pivotal transformation §4.7.2

D : fundamental cutset matrix §4.7.3
R : fundamental circuit matrix §4.7.3
Y : admittance matrix §4.7.3
ker : kernel of a matrix §4.7.3
Sr : row transformation matrix in PE-equivalence (4.115)
Sc : column transformation matrix in PE-equivalence (4.115)
Π = {Πα}μ

α=1 : family of projection matrices §4.8.1
Γ = {Γβ}ν

β=1 : family of projection matrices §4.8.1
(A,Π, Γ ) : partitioned matrix §4.8.1
W : family of subspaces of V compatible with Γ (4.119)
pPE : PE-surplus function (4.120)
Lmin(pPE) : family of minimizers of PE-surplus function pPE (4.124)
L(A,Π, Γ ) : family of subspaces of V with property (4.126) §4.8.1
P(Ã) : partially ordered set determined by Ã §4.8.1
D(Ã) : distributive lattice of order ideals of P(Ã) §4.8.1
ψ(J, Sc) : subspace determined by (J, Sc) (4.127)
W◦ : family of subspaces of V compatible with Γ (4.128)
Y◦ : family of subspaces of U compatible with Π §4.8.4
pGP : GP-surplus function (4.129)
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λ : GP-birank function (4.130)
L : lattice §4.9.2
f : submodular function §4.9.2
� : partial order in L §4.9.2
Lmin(f ;X) : sublattice of minimizers of f not smaller than X (4.134)
D(f ;X) : minimum element of Lmin(f ;X) (4.135)
KPS(f) : principal structure of (L, f) (4.136)
LPS(f) : principal sublattice of (L, f) §4.9.2
Lmin(f) : family of minimizers of f (4.137)
Lmin(f ; v) : family of minimizers of f containing v (4.138)
D(f ; v) : minimum element of Lmin(f ; v) §4.9.2
Brow : family of row-bases of a matrix (4.139)
PDM(I, C) : partition in the DM-decomposition of A[I, C] §4.9.3
PCCF(I, C) : partition in the CCF of A[I, C] §4.9.4
LCCF(I, C) : sublattice corresponding to PCCF(I, C) §4.9.4
Bcol : family of column-bases of a matrix (4.151)
q : surplus function for horizontal principal structure (4.153)
LCCF(R, J) : sublattice corresponding to the CCF of A[R, J ] §4.9.5

Chapter 5

dk : kth determinantal divisor (5.1)
ek : kth invariant factor (invariant polynomial) (5.2)
δk : highest degree of a minor of order k (5.3)
tk : contents at infinity (5.4)
M = (V, ω) : valuated matroid on V with valuation ω §5.2.1
M = (V,B, ω) : valuated matroid on V with family of bases B

and valuation ω §5.2.1
VM : exchange axiom of valuated matroids §5.2.1
M[p] = (V,B, ω[p]) : similarity transformation of valuated matroid M (5.16)
M∗ = (V,B∗, ω∗) : dual of valuated matroid M §5.2.3
MU

I = (V,BU , ωU
I ) : restriction of valuated matroid M §5.2.3

MJ
U = (V,BU , ω

J
U ) : contraction of valuated matroid M §5.2.3

Mk,S0 = (V,Bk, ωk,S0) : truncation of valuated matroid M (5.19)
Ml,I0 = (V,Bl, ωl,I0) : elongation of valuated matroid M (5.20)
ω(B, u, v) : exchange gain (5.21)
VB-1, VB-2 : exchange axioms of valuated bimatroids §5.2.5
(S, T, δ) : valuated bimatroid §5.2.5
(S, T, Λ, δ) : valuated bimatroid §5.2.5
M1 ∨ M2 : union of valuated matroids M1 and M2 §5.2.6
VMw : weak exchange axiom of valuated matroids §5.2.7
VMloc : local exchange axiom of valuated matroids §5.2.7
VMd : variant of exchange axiom of valuated matroids §5.2.7
Bp : set of maximizers of ω[p] §5.2.7
L(ω, α) : level set (5.42)
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BL : exchange property of level sets §5.2.7
BLw : weaker exchange property of level sets §5.2.7
G(B,B′) : exchangeability graph (5.44)
ω̂(B,B′) : maximum weight of a perfect matching in G(B,B′) (5.45)
VIAP : valuated independent assignment problem §5.2.9
Ω(M) : objective function of VIAP (5.52)
VIAP(k) : valuated independent k-assignment problem §5.2.9
Ω(M,B+, B−) : objective function of VIAP(k) (5.52)
diag (s; p) : diagonal matrix with diagonal entries spi §5.2.11

Chapter 6

A(s) = Q(s) + T (s) : mixed polynomial matrix (6.3)
MP-Q1 : assumption on Q-part of mixed polynomial matrix §6.1.1
MP-T : assumption on T -part of mixed polynomial matrix §6.1.1
MP-Q2 : stronger assumption on Q-part of mixed polynomial matrix §6.1.1
A(s) =

(
Q(s)
T (s)

)
: LM-polynomial matrix (6.5)

δk : highest degree of a minor of order k (6.9)
ok : lowest order of a minor of order k (6.11)
δLM
k : highest degree of a minor of order mQ + k for LM-matrix (6.16)
dk : kth determinantal divisor (6.51)
ek : kth invariant factor (invariant polynomial) (6.52)
ΣA : Smith form of A §6.3.1
D(s) = [A− sF | B] : modal controllability matrix (6.67)
Gn

0 : dynamic graph of time-span n §6.4.2
ζ : weight function for Q-part (6.74)
ξk : highest degree of a nonzero term in det T̄k[Row(T̄k), J ] §6.4.2
ηk : lowest degree of a nonzero term in det T̄k[Row(T̄k), J ] §6.4.2
ψ(s;A,B,C,K) : fixed polynomial of (A,B,C) with respect to K (6.84)
K : feedback structure (6.85)
CK : family of covers of feedback structure K (6.86)
K : set of nonzero entries of K §6.5.3
S : set of nonzero coefficients in T (s) §6.5.3
ψ(s) : fixed polynomial (6.95)
ζ : weight function for Q-part (6.100)
η(J) : lowest degree of a nonzero term in det T̃K [Row(T̃K), J ] (6.101)
Ψ̄0 : index set (6.103)
Ψ̄1 : index set (6.104)
Ψ̄2 : index set (6.105)

Chapter 7

δk : highest degree of a minor of order k (7.1)
δ̂k : combinatorial counterpart of δk (7.2)
A◦ = (A◦

ij) : leading coefficient matrix (7.3)
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PLP(k) : primal linear program (7.5)
DLP(k) : dual linear program (7.6)
ξ : primal variable §7.1.2
p = pR ⊕ pC : dual variable §7.1.2
q : dual variable §7.1.2
V ∗ : set of active vertices (7.10)
I∗ : set of active rows (7.11)
J∗ : set of active columns (7.12)
T (A; p, q) = A∗ : tight coefficient matrix (7.13)
RSk(X0) : family of reachable sets at time k (7.36)
RS(X0) : family of reachable sets (7.37)
τ(A) : transition index of bimatroid A §7.2.2
RM(A∞) : limit of RM(Ak) §7.2.2
CM(A∞) : limit of CM(Ak) §7.2.2
(ω0;ω1, ω2, · · ·) : Jordan type §7.2.2
EIG(A) : family of eigensets of bimatroid A §7.2.3
max-EIG(A) : family of maximum-sized eigensets of bimatroid A §7.2.3
REC(A) : family of recurrent sets of bimatroid A §7.2.3
max-REC(A) : family of maximum-sized recurrent sets of

bimatroid A §7.2.3
Rk : reachability matroid §7.2.4
R∞ : ultimate reachability matroid §7.2.4
r(R∞) : controllable dimension §7.2.4
κ(A,B) : controllability index of CDS (A,B) §7.2.4
{κi} : controllability indices §7.2.4
A = Q+ T : mixed skew-symmetric matrix (7.43)
MS-Q : assumption on Q-part of mixed skew-symmetric matrix §7.3.1
MS-T : assumption on T -part of mixed skew-symmetric matrix §7.3.1
ν(M,Π) : optimal value of the matroid parity problem (M,Π) §7.3.1
A[I] : principal submatrix of A indexed by I §7.3.2
I/J : symmetric difference of sets I and J §7.3.2
pf A : Pfaffian of skew-symmetric matrix A (7.45)
A∗I : pivotal transform of A with respect to principal submatrix A[I] §7.3.2
ν(G) : maximum size of a matching in graph G §7.3.2
odd(G) : number of odd components of graph G §7.3.2
G \ U : graph obtained from G by deleting vertices of U §7.3.2
G[U ] : subgraph of G induced on U §7.3.2
M = (V,F) : delta-matroid on V with family of feasible sets F §7.3.3
DM : symmetric exchange axiom of delta-matroids §7.3.3
DMeven : exchange axiom of even delta-matroids §7.3.3
DM± : simultaneous exchange axiom of delta-matroids §7.3.3
M/X = (V,F/X) : twisting of delta-matroid M by X §7.3.3
M∗ : dual of delta-matroid M §7.3.3
M \X = (V \X,F \X) : deletion of X from delta-matroid M §7.3.3
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M/X : contraction of delta-matroid M by X §7.3.3
M(A) : delta-matroid defined by skew-symmetric matrix A §7.3.3
M1 ⊕ M2 : direct sum of delta-matroids M1 and M2 §7.3.3
M1 ∨ M2 : union of delta-matroids M1 and M2 §7.3.3
dist(M1,M2) : distance between delta-matroids M1 and M2 §7.3.3
odd(M1,M2) : number of odd components with respect to (M1,M2) §7.3.3
Π : partition of V into pairs (lines) §7.3.3
δΠ(F ) : number of lines exactly one of which belongs to F (7.53)
δ(M,Π) : optimal value of the delta-parity problem (M,Π) (7.54)
odd(M,Π) : number of odd components of M with respect to Π §7.3.3
b ∧ c : wedge product of vectors b and c §7.3.4
ker : kernel of a matrix §7.3.5
Ĝ : duplication of graph G §7.3.5
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Dynamical degree, 279

Eigenset, 422
Elementary divisor, 272
Elongation, 75, 284
Entrance, 66
Entrance set, 98
Equivalence transformation, 44
Equivalent delta-matroid, 438
Even delta-matroid, 438
Exchange gain, 285
Exchangeability graph, 81
Exit, 66
Exit set, 98
Exponential mode, 279

Feasible flow, 65
Fenchel-type duality, 310

Field adjunction, 32
Finer decomposition, 239
Finest-possible decomposition, 239
Fixed constant, 12, 113
Fixed mode, 385, 390
Fixed polynomial, 385, 390
Flow, 65
Formal incidence matrix, 204
Free matroid, 77
Frequency domain description, 17
Frobenius inequality, 105
Frobenius inequality for bimatroid, 104
Fully indecomposable, 63
Fundamental dimension, 121
Fundamental quantity, 18, 121

GA1, 114, 157
GA2, 114, 160
GA3, 114, 160
Gallai’s lemma, 437
Gammoid, 77
Generality assumption GA1, 114, 157
Generality assumption GA2, 114, 160
Generality assumption GA3, 114, 160
Generalized Laplace expansion, 33
Generic, 435
Generic dimension of controllable

subspace, 367
Generic matrix, 39
Generic partitioned matrix, 240
Generic polynomial matrix, 332
Generic rank, 38
GP-birank function, 243
GP-irreducible, 241
GP-matrix, 240
GP(2)-matrix, 240
GP-reducible, 241
GP-surplus function, 243
GP-transformation, 241
Graphic matroid, 78
2-graph method, 221
Grassmann–Plücker identity, 34, 35
Grassmann–Plücker identity for

Pfaffian, 434
Greedy algorithm, 285
Greedy algorithm for δk, 288
Ground field, 116, 132
Ground set, 73
Gyrator, 113, 446

Hall–Ore theorem, 56
Harwell–Boeing database, 197
Horizontal principal structure of

LM-matrix, 263
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Horizontal tail, 41, 58, 174
Hydrogen production system, 165, 195

IAP, 306
Ideal, 52
Impulse mode, 279
Inaccurate number, 12, 113
Incidence matrix, 43
Incident vertex, 43
Independent assignment, 306
Independent assignment problem, 306
Independent matching, 84
Independent matching problem, 84, 308
Independent set, 73
Index, 2
Index of nilpotency, 278
Induced cycle, 319
Induced subgraph, 43
Induction of matroid by bipartite

graph, 93
Initial vertex, 43
In parallel, 74
Input, 419
Input set, 419
In series, 74
Intersection problem, 440
Invariant factor, 271
Invariant polynomial, 271
Inverse, 103
Invertible, 123

Join-irreducible, 50
Jordan–Hölder-type theorem for

submodular functions, 53
Jordan type, 422

König–Egerváry theorem, 55
König–Egerváry theorem for bimatroid,

101
König–Egerváry theorem for GP(2)-

matrix, 244
KCL, 2
Kirchhoff’s current law, 2
Kirchhoff’s voltage law, 2
Kronecker column index, 278
Kronecker form, 275
Kronecker row index, 278
KVL, 2

Laplace expansion, 33
Laplace transform, 3, 278
Lattice, 54
Laurent polynomial, 31
Layered mixed matrix, 132

L-convex function, 330
L-decomposition, 160
Leading coefficient, 31, 404
Level set, 299
Lindemann–Weierstrass theorem, 116
Line, 432, 441
Linear delta-matroid, 439
Linear matroid, 78
Linear matroid parity problem, 432
Linked pair, 98
Linking function, 98
Linking system, 98
LM-admissible transformation, 167
LM-equivalent, 167
LM-irreducible, 202
LM-matrix, 132
LM-polynomial matrix, 332
LM-reducible, 202
LM-surplus function, 137
Loop, 74
L-Q, 132
L-T, 132
LU-decomposition, 188

Mason graph, 47
Matching, 55
Matching matroid, 77
Matrix net, 335
Matroid, 73
Matroid intersection problem, 84
Matroid intersection theorem, 87
Matroid parity problem, 432
Max-flow min-cut theorem, 66
Maximal ascending chain, 50
Maximal chain, 50
Maximal inconsistent component, 58
Maximum flow problem, 65
Maximum linking, 66
Maximum matching, 55
Maximum weight k-matching problem,

70
Maximum-rank minimum-term rank

theorem, 227
M-convex function, 310, 330
M-decomposition, 67, 160
Menger’s theorem, 67
Menger-decomposition, 67, 160
Menger-type linking, 66, 158
Min-cut decomposition for independent

matching problem, 91
Minimal inconsistent component, 58
Minimum cost flow, 68
Minimum cost flow problem, 68
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Minimum cover, 55
Minimum separator, 66
Minimum-ratio cycle, 320
Minor, 33
Mixed matrix, 13, 20, 116, 132
Mixed polynomial matrix, 13, 20, 120
Mixed skew-symmetric matrix, 431
Modal controllability matrix, 365
Modular, 49
Modular lattice, 233
Monic polynomial, 31
MP-Q1, 20, 120, 332
MP-Q2, 21, 130, 332, 357, 373, 390
MP-T, 20, 120, 130, 332
M-Q, 20, 116, 132
MS-Q, 431
MS-T, 431
M-T, 20, 116, 132
Multilayered matrix, 225
Multiport, 226
Mutual admittance, 228

Negative cycle, 311
Negative-cycle criterion for VIAP, 311
Network, 65
Newton method, 21, 188
Nilpotent block, 278
Nonsingular bimatroid, 98
Nonsingular matrix, 33
Normal tree, 451
No-shortcut lemma, 83

Odd component, 435, 440, 441
ε-optimal, 321
Optimal k-matching, 70
Optimal common base problem, 307
Optimal flow, 68
Order ideal, 52
Order of poles at infinity, 273
Order of zeroes at infinity, 273

Partial order, 44, 50, 51
Partial transversal, 38
Partition, 50, 51
Partitioned matrix, 231
Partition matroid, 77
Partition problem, 307, 440
Partition-respecting equivalence

transformation, 231
Path-matching, 437
PE-irreducible, 237
PE-irreducible component, 238
PE-irreducible decomposition, 238
Pencil, 275

PE-reducible, 237
Perfect linking, 66
Perfect matching, 55
Perfect-matching lemma, 81
PE-surplus function, 233
PE-transformation, 231
Pfaffian, 433
Physical matrix, 127
PID, 199, 272
Pivotal transform, 226, 435
Polynomial, 31
Potential criterion for VIAP, 309
Principal ideal domain, 199, 272
Principal partition, 54
Principal partition with respect to

matroid union, 222
Principal structure, 253
Principal structure of generic matrix,

255
Principal structure of submodular

system, 254
Principal sublattice, 253
Principle of dimensional homogeneity,

18, 122
Problem decomposition by CCF, 190
Product, 103, 294
Proper, 31
Proper block-triangular form, 42
Proper rational function, 31, 273
Proper rational matrix, 273
Proper spanning forest, 451
Proper tree, 451
Properly block-triangularized, 42

Rado–Perfect theorem, 87
Rank, 36, 73, 85, 98
RCG network, 446
R-controllability, 365
Reachability matroid, 427
Reachable, 44, 367, 419
Reactor-separator model, 164, 193
Recurrent set, 422
Regular pencil, 275
Representable, 78, 439
Representation graph, 156
Represented, 78, 439
Restriction, 75, 103, 283
Ring adjunction, 32
Ring of polynomials, 31
Row matroid, 99
Row set, 33, 98

Schur complement, 35
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Section graph, 43
Separable valuation, 281
Separator, 66
Signal-flow graph, 47
Similarity transformation, 44, 283
Simultaneous exchange axiom, 438
Simultaneous exchange property, 79
Singular pencil, 275
Sink, 65
Skeleton, 49
Skew-symmetric, 433
Smith–McMillan form at infinity, 273
Smith normal form, 272
Source, 65
Spanning set, 74
SP-decomposition, 255
Standard form, 154, 331
State feedback, 419
State set, 419
State-space equation, 15, 419
Stem, 366
Stoichiometric coefficient, 13, 112
Strict equivalence, 275
Strictly proper, 31
Strictly upper triangular, 213
Strong component, 44
Strong component decomposition, 44
Strong map, 75
Strong quotient, 75
Strongly connected component, 44
Structural controllability, 365
Structural index, 4
Structurally controllable, 366, 373
Structurally fixed mode, 387
Structurally solvable, 155, 368
Structural solvability, 154
Structured matrix, 4
Structured system, 366
Structure at infinity, 273
Subdeterminant, 33
Sublattice, 48
Submodular function, 49, 252
Submodular inequality, 37, 49
Submodular system, 253
Support graph, 433
Surplus function, 56, 137, 233, 243
Symmetric difference, 433
Symmetric exchange axiom, 438
System parameter, 12, 113

Term-nonsingular, 38
Term-rank, 38
Terminal vertex, 43

Tight, 408
Tight coefficient matrix, 409
Totally unimodular, 123, 124
Transcendental, 32
Transfer function matrix, 274
Transformer, 448
Transition index, 421
Transpose, 103
Transversal matroid, 77
Triple matrix product, 92, 316
Trivial bimatroid, 98
Trivial matroid, 77
Trivial valuation, 280
Truncation, 75, 284
Tutte–Berge formula, 436
Tutte matrix, 435
Twisting, 438
Two kinds of numbers, 12, 107

Uncontrollable mode, 373
Underlying bipartite graph, 99
Uniform matroid, 77, 83
Unimodular, 272
Unimodular matrix, 199
Union, 94, 103, 292, 294, 439
Unique-matching lemma, 81, 82
Unique-max condition, 302
Unique-max lemma, 304
Upper-bound lemma, 301
Upper-tight, 404

Valuated bimatroid, 287
Valuated independent assignment

problem, 306
Valuated matroid, 280
Valuated matroid intersection problem,

306
Valuation, 280
Value of flow, 65
Vertex-induced subgraph, 43
Vertical principal structure of

LM-matrix, 258
Vertical tail, 41, 58, 174
VIAP, 306
VIAP(k), 307

Wedge product, 446
Weighted bipartite matching problem,

70
Weighted matroid intersection problem,

308
Weight splitting, 310
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