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Chapter 1
Introduction

1.1 Motivations, Goals and Results

1.1.1. The origins of the present work go back to some milestones marking the
birth of singularity theory of complex dimension �2. They include the Thesis
of Hirzebruch (1950) containing, among others, the modern theory of cyclic
quotient singularities; Milnor’s construction of the exotic 7-spheres as plumbed
manifolds associated with “plumbing graphs”; Mumford’s article about normal
surface singularities [79] stressing for the first time the close relationship of the
topology with the algebra; the treatment and classification of links of singularities
by Hirzebruch and his students in the 1960s (especially Brieskorn and Jänich,
and later their students) based on famous results on classification of manifolds by
Smale, Thom, Pontrjagin, Adams, Kervaire and Milnor, and the signature theorem
of Hirzebruch. Since then, and since the appearance of the very influential book
[77] of Milnor in 1968, the theory of normal surface singularities and isolated
hypersurface singularities produced an enormous amount of significant results. In
all of them, the link of an isolated singularity plays a central role.

In the presence of a smoothing, like in the case of hypersurfaces, the link appears
also as the boundary of the smoothing, the Milnor fiber. This interplay has enormous
consequences.

First, the link of a singularity is the boundary of an arbitrary small neighbourhood
of the singular point, hence one can localize the link in any arbitrarily small
representative. Hence, by resolving the singularity, the link appears as the boundary
of a small tubular neighbourhood of the exceptional locus, that is, as a plumbed
3-manifold. In this way, e.g. for isolated surface singularities, a bridge is created
between the link and resolution: the resolution at topological level is codified in the
resolution graph, which also serves as a plumbing graph for the link.

On the other hand, the same manifold is the boundary of the Milnor fiber, that
“nearby fiber” whose degeneration and monodromy measures the complexity of
the singularity. This interplay between the two holomorphic fillings of the link,
the resolution and the Milnor fiber, produces (perhaps) the nicest index-theoretical

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 1,
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2 1 Introduction

relations of hypersurface singularity theory: relations of Durfee [29] and Laufer [58]
valid for hypersurfaces, and generalizations of Looijenga, Wahl [68, 134], Seade
[113] for more general smoothings. It culminates in deformation theory describing
the miniversal deformation spaces in some cases.

The links of normal surface singularities, as special oriented 3-manifolds repre-
sented by negative definite plumbing graphs, started to have recently a significant
role in low-dimensional topology as well: they not only provide crucial testing
manifolds for the Seiberg–Witten, or Heegaard Floer theory of 3-manifolds, and
provide ground for surprising connections between these topological invariants
and the algebraic/analytic invariants of the singularity germs (see for example
[87] and [88] and the references therein), but they appear also as the outputs of
natural topological classification results, as solutions of some universal topological
properties – for example, the rational singularities appear as L-spaces [88], that is,
3-manifolds with vanishing reduced Heegaard Floer homology. Similarly, the
classification of symplectic fillings – or more particularly, the classification of
rational ball fillings – of some 3-manifolds find their natural foreground in some
singularity links, see [90] and [127] and references therein.

1.1.2. Although the literature of isolated singularities is huge, surprisingly, the lit-
erature of non-isolated singularities, even of the non-isolated hypersurface singular-
ities, is rather restricted. One of the main difficulties is generated by the fact that in
this case the link is not smooth.

On the other hand, the boundary of the Milnor fiber is smooth, but (till the present
work) there was no construction which would guarantee that it also appears as the
boundary of any arbitrary small representative of an isolated singular germ. Lacking
such a result, it is hard to prove in a conceptual way that this manifold is a plumbed
manifold, even in the case of surfaces.

The present work aims to fill in this gap: we provide a general procedure that
may be used to attack and treat non-isolated hypersurface singularities. First, the
localization property guarantees the existence of a plumbing representation. But
the strategy and the presentation is not limited to the plumbing representation of
the boundary (the proof of this fact is just the short Proposition 11.3.3), we target
a uniform conceptual treatment of the involved invariants of the singular germs
including its connection with the normalization, transversal type singularities and
different monodromy operators. Although the whole presentation is for surface
singularities, some results can definitely be extended to arbitrary dimensions.

More precisely, some of the conceptual results of the present work are the
following. Below, the germ of the holomorphic function f W .C3; 0/ ! .C; 0/

defines a complex analytic hypersurface singularity with 1-dimensional singular
locus ˙ . Its zero set ff D 0g is denoted by Vf , and its Milnor fiber by F . Its
oriented boundary @F is a connected oriented 3-manifold.

1. The oriented 3-manifold has a plumbing representation. In fact, we not only
prove this result, but provide a concrete algorithm for the construction of the
plumbing graph: given any germ f , anyone, with some experience in blowing



1.1 Motivations, Goals and Results 3

ups and handling equations of resolutions, is able to determine the graph after
some work. (For the algorithm, see Chap. 10.) The output graphs, in general,
are not irreducible, are not negative definite, hence in their discussion the
usual calculus – blowing up and down .�1/-rational curves – is not sufficient.
In our graph-manipulations we will use the calculus of oriented 3-manifolds
as it is described in Neumann’s foundational article [94] (in fact, we will
restrict ourself to a “reduced class of graph-operations”). The corresponding
background material and preliminary discussions are presented in Chap. 4. For
some interesting examples and peculiarities see Sect. 1.2.

In this direction some particular results were known in the literature. The fact
that the boundary of the Milnor fiber is plumbed was announced by F. Michel and
A. Pichon in [73,74], cf. Remark 10.2.12(c), and simple examples were provided
in [19, 73, 76] obtaining certain lens spaces and Seifert manifolds. Randell [108]
and Siersma [118,119] determined the homology of the boundary @F for several
cases. Moreover, they characterized via different criteria those situations when
@F is homology sphere; see also Remark 2.3.5.

However, the present work uses a different and novel strategy compared with
the existing literature of non-isolated singularities. Moreover, it provides the
plumbing graph for arbitrary germs (even for which ad hoc methods are not
available), and it points out for the first time in the literature that for these
boundary manifolds one needs to use “extended”, general plumbing graphs –
where the edges might have negative weights as well. Such graphs were not used
at all in complex algebraic geometry before. The sign decorations of edges are
irrelevant for trees, but are crucial in the presence of cycles in the plumbing
graph, as it is shown in many examples in this work.

The reason for the appearance of the negative edges is the following: certain
parts of the graph behave as “usual graphs of complex algebraic geometry” but
with opposite orientation. This fact is the outcome of the real analytic origin of
the plumbing representation, see the next Sect. 1.1.3.

2. Recall that for any germ g W .C3; 0/ ! .C; 0/ such that the pair .f; g/ forms
an ICIS (isolated complete intersection singularity), by a result of Caubel [19],
g determines an open book decomposition on @F (similarly as the classical
Milnor fibration is cut out by the argument of g). For any such g, our method
determines, as an additional decoration in the plumbing graph, the “multiplicity
system” of this open book decomposition too (for definitions, see 4.1.8).

3. The boundary @F consists of two parts (a fact already proved by D. Siersma
[118, 119] and used by F. Michel, A. Pichon and C. Weber in [73, 74, 76]
too): the first, @1F , is the complement of an open tubular neighbourhood of
the strict transforms of ˙ in the link of the normalization of Vf . The second
one, @2F , can be recovered from the transversal plane curve singularity types
of ˙ together with the corresponding vertical monodromy actions. Already
determining these two independent pieces can be a non-trivial task, but the
identification of their gluing can be incomparably harder. The present work
clarifies this gluing completely (in fact, resolves it so automatically, that if one
does not look for the phenomenon deliberately, one will not even see it).
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4. The monodromy action on @F , in general, is not trivial. In fact, its restriction to
the piece @1F is trivial, but the monodromy on @2F can be rather complicated.
In order to understand the monodromy action on @2F , we need the vertical
monodromies of the transversal singularity types, and, in fact, via the Wang exact
sequence, we need their Jordan block structure corresponding to eigenvalue one;
on the other hand, the monodromy action on @2F is induced by the horizontal
monodromy of the transversal singularity types. In the body of the paper we
determine this commuting pair of actions, and as a by-product, the homology
of @F and the characteristic polynomial of the algebraic monodromy action on
H1.@F / too (under certain assumptions).

The discussion includes the study of some monodromy operators of the ICIS
.f; g/ as well, as detailed below.

1.1.3. The “Main Algorithm” is based on a special construction: we take an
arbitrary germ g W .C3; 0/ ! .C; 0/ such that ˚ D .f; g/ forms an ICIS. The
topology of such a map is described in Looijenga’s book [67], and it will be used
intensively. We recall the necessary material in Chap. 3.

In general, ˚ provides a powerful tool to analyse the germ f or its g-polar
properties. Usually, for an arbitrary germ f with 1-dimensional singular locus, one
takes a plane curve singularity P W .C2; 0/ ! .C; 0/ and considers the composed
function P ı˚ . For certain germs P , this can be thought of as an approximation of
f by isolated singularities. For example, if P.c; d/ D cCdk , thenP ı˚ D f Cgk
is one of the most studied test series, the Iomdin series of f associated with
g [49, 62].

If we wish to understand the geometry of P ı ˚ , for example its Milnor fiber,
then we need to analyse all the intersections of fP D ıg with the discriminant� of
˚ , and we have to understand the whole monodromy representation of ˚ over the
complement of� – a very difficult task, in general. On the other hand, if we “only”
wish to determine some “correction terms” – for example, i.f /� i.f C gk/ for an
invariant i –, it is enough to study ˚ only above a neighbourhood of the link of the
distinguished discriminant component�1 WD ˚.Vf /.

This fact has been exploited at many different levels, and for several invariants,
see e.g. the articles of Lê and Teissier initiating and developing the “theory of
discriminants” [60, 62, 131]; the article of Siersma [117] about the zeta function of
the Iomdin series, or its generalizations by the first author, cf. [81] and the references
therein.

Using this principle, in [92] we determined the links of members of the Iomdin
series, that is, the links of isolated singularities f C gk for k � 0. In that work
the key new ingredient was the construction of a special graph �C , dual to a curve
configuration C in an embedded resolution of Vfg � C3 localized above a “wedge
neighbourhood” of �1 (for the terminology and more comments see Sect. 7.1).

The point is that the very same graph �C not only contains all the information
necessary to determine the links of the Iomdin series (and the correction terms
i.f / � i.f C gk/ for several invariants i ), but it is the right object to determine
@F as well.
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The bridge that connects @F with the previous discussion (about series and
discriminant of the ICIS .f; g/) is realized by the following fact. Let k be a
sufficiently large even integer. Consider the local real analytic germ

ff D jgjkg � .C3; 0/:

Then, for large k, its link (intersection with an arbitrary small sphere) is a smooth
oriented 3-manifold, independent of the choice of k, which, most importantly, is
diffeomorphic with @F , cf. Proposition 11.3.3. In particular, it means that @F can
be ‘localized’: it appears as the boundary of an arbitrary small neighbourhood of an
analytic germ! But, in this (non-isolated) case, the corresponding space-germ is not
complex, but real analytic.

As a consequence, after resolving this real analytic singularity, the tubular
neighbourhood of the exceptional set provides a plumbing representation G of @F .
The point is that the graph �C codifies all the necessary information to recover
the topology of the resolution and of the plumbing: the plumbing graph G of @F
appears as a “graph covering” of �C . The Main Algorithm (cf. Chap. 10) provides
a pure combinatorial description of G derived from �C . (The necessary abstract
theory of “coverings of graphs”, developed in [86], is reviewed in Chap. 5.)

The method emphasizes the importance of real analytic germs, and their neces-
sity even in the study of complex geometry.

In Chaps. 13–18 we determine several related homological invariants from
�C (characteristic polynomials of horizontal/vertical monodromies, Jordan block
structure, cf. below). In fact, we believe that �C contains even more information
than what was exploited in [92] or here, which can be the subject of future research.

On the other hand, finding the graphs �C can sometimes be a serious job.
Therefore, we decided to provide examples for �C in abundance in order to help
the reader understand the present work better, and support possible future research
as well.

As different embedded resolutions might produce different graphs �C , readers
with more experience in resolutions might find even simpler graphs in some cases.
Each �C can equally be used for the theory worked out.

1.1.4. The above presentation already suggests that the geometry of ˚ near the dis-
criminant component�1 is reflected in the topology of @F as well. Technically, this
is described in the commuting actions of the horizontal and vertical monodromies
on the fiber of ˚ . Similarly, one can consider the horizontal/vertical monodromies
of the local transversal types of ˙ , associated with �1. The determination of these
two pairs of representations is an important task (independently of the identification
of @F ), and it is crucial in many constructions about non-isolated singularities.

We wish to stress that our method provides (besides the result regarding @F )
a uniform discussion of these monodromy representations, and gives a clear
procedure to determine the corresponding characters of the Z2-representations and
the characteristic polynomials with precise closed formulae. This can be considered
as the generalization to isolated complete intersection singularities of A’Campo’s
formula [2–4], valid for hypersurface singularities. Moreover, we determine even
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the Jordan block structures in those characters which are needed for the homology
of @F and its algebraic monodromy. This is a generalization of results of Eisenbud–
Neumann [33] regarding Jordan blocks of algebraic monodromies associated with
3-dimensional graph manifolds.

1.1.5. The material of the present work can be grouped into several parts.
The first part contains results regarding the germ f , the ICIS˚ and the graph �C

read from a resolution. This is an introductory part, where we list all the background
material needed from the literature.

The second part contains the description of @F , its invariants, and establishes the
main connections with other geometrical objects.

Finally, the third part (but basically everywhere in the chapters), we present
many examples, among them treatments of specific classes of singularities as
homogeneous, suspensions, cylinders, etc.

Any example is given in two steps: first, the graph �C has to be determined,
a more or less independent task. This can be done in many different ways using
one’s preferred resolution tricks. Nevertheless, in most of the cases, it is not a trivial
procedure, except for special cases such as cylinders or homogeneous germs. Then,
in the second step, we run the Main Algorithm to get the plumbing graph of @F or
its monodromy, or the open book decomposition of g living on @F .

Our examples test and illustrate the theory, emphasizing the new aspects: the
obtained graphs are not the usual negative definite graphs provided by resolutions
of normal surface singularities, not even the dual graphs of complex curve configu-
rations of a complex surface (where the intersections of curves are always positive).
They contain pieces with “opposite” orientation, hence vertices may have to be
connected by negative-edges too. Indeed, in the resolution of the real singularity
ff D jgjkg, some singularities are orientation reversing equivalent with complex
Hirzebruch–Jung singularities; hence the corresponding Hirzebruch–Jung strings
should be sewed in the final graph with opposite orientation.

In Chaps. 20–23 for certain families (basically, for “composed singularities”) we
also provide alternative, topological constructions of @F .

1.1.6. The titles of the chapters and sections already listed in the Contents were
chosen so that they would guide the reader easily through the sections.

1.1.7. Most of the theoretical results of the present work were obtained in 2004–
2005; the Main Algorithm was presented at the Singularity Conference at Leuven,
2005. Since that time we added several examples and completed the theoretical part.
A completed version [93] was posted on the Algebraic Geometry preprint server on
2 September 2009.

1.2 List of Examples with Special Properties

In order to arouse the curiosity of the reader, and to exemplify the variety of 3-
manifolds obtained as @F , we list some peculiar examples. They are extracted from
the body of the work where a lot more examples are found.
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In the sequel we use the symbol � for orientation preserving diffeomorphism. If
M is a 3-manifold with fixed orientation, then �M is M with opposite orientation.

For certain choices of f , the boundary @F might have one of the following
peculiar properties:

1.2.1. @F cannot be represented by a negative definite plumbing, but �@F admits
such a representation, even with all edge decorations positive, see Example 10.4.5.

1.2.2. Neither @F , nor �@F can be represented by a negative definite plumbing, see
Sect. 19.7(4a).

1.2.3. @F can be represented by a negative definite graph, but it is impossible to
arrange all the edge decorations positive. Hence, such a graph cannot be the graph
of a normal surface singularity. See 10.4.4.

1.2.4. @F can be represented by a negative definite graph with all edge decorations
positive. If @F is a lens space then this property is automatically true. On the other
hand, examples with this property and which are not lens spaces are rather rare. The
examples 19.8(e-f) are Seifert manifolds with three special orbits.

1.2.5. In all the examples, @F is not orientation preserving diffeomorphic with the
link of the normalization of Vf (evidently, provided that the singular locus of Vf is
1-dimensional); a fact already noticed in [73].

1.2.6. There are examples when @F is orientation reversing diffeomorphic with the
link of the normalization of Vf , see 19.8(d).

1.2.7. There are examples when @F � �@F . In the world of negative definite
plumbed manifolds, if both M and �M can be represented by negative definite
graphs then the graph is either a string or it is cyclic [94]. Here in 21.1.3 we provide
examples for @F � �@F with plumbing graphs containing an arbitrary number of
cycles. See also Sect. 19.7(3b).

1.2.8. It may happen that @F fibers over S1 with rank H1.@F / arbitrary large, cf.
21.1.

1.2.9. @F might be non-irreducible, cf. 19.8.2(c) and 20.1.7.

1.2.10. Any S1-bundles with non-negative Euler number over any oriented surface
can be realized as @F , cf. 23.1 and 19.10.7.

1.2.11. The monodromy on @F , in general, is not trivial, the algebraic monodromy
might even have Jordan blocks of size two, cf. 20.2.

1.2.12. There exist pairs of singularity germs with diffeomorphic @F but different
characteristic polynomials of H1.@F /, and/or different mixed Hodge weight filtra-
tions on H1.@F /, and/or different multiplicities, cf. 19.9.3.
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Chapter 2
The Topology of a Hypersurface Germ f
in Three Variables

2.1 The Link and the Milnor Fiber F of Hypersurface
Singularities

Let f W .Cn; 0/ ! .C; 0/ be the germ of a complex analytic function and set
.Vf ; 0/ D .f �1.0/; 0/. Its singular locus .Sing.Vf /; 0/ consists of points ˙ WD
fx W @f .x/ D 0g.

Our primary interest is the local structure of f , namely a collection of invariants
and properties containing information about local ambient topological type of
.Vf ; 0/ – sometimes called the “local Milnor package” of the germ. To start with,
we fix some notations: B� is the closed ball in Cn of radius � and centered at the
origin; S� D S2n�1

� is its boundary @B�; Dr denotes a complex disc of radius r ,
while D2

r is a bidisc. Usually, Sk denotes the k-sphere with its natural orientation,
and T ı the interior of the closed ball or tubular neighbourhood T .

The next theorem characterizes the homeomorphism type of the triple .B�; B� \
Vf ; 0/ showing its local conic structure. In the general case of semi-analytic sets it
was proved by Lojasiewicz [66], the case of germs of complex algebraic/analytic
hypersurfaces with isolated singularities was established by Milnor [77], while the
generalization to non-isolated hypersurface singularities was done by Burghelea and
Verona [18]:

Theorem 2.1.1. [18, 66, 77] There exists �0 > 0 with the property that for any
0 < � � �0 the homeomorphism type of .B�; B� \ Vf / is independent of �, and is
the same as the homeomorphism type of the real cone on the pair .S�; S� \ Vf /,
where 0 corresponds to the vertex of the cone.

The intersection K WD Vf \ S� is called the link of .Vf ; 0/ (0 < � � �0). By
Milnor [77],

K is .n � 3/-connected. (2.1.2)

Moreover, K is an oriented manifold provided that f has an isolated singularity.
By the above theorem, the local structure is completely determined by K and its

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
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embedding into the .2n � 1/-sphere. A partial information about this embedding is
provided by the complement S� nK . The fundamental result of Milnor in [77] states
that it is a locally trivial fiber bundle over the circle.

Theorem 2.1.3. [77] There exists �0 with the property that for any 0 < � � �0 the
map f=jf j W S� nK ! S1 D fz 2 C W jzj D 1g is a smooth locally trivial fibration.
Moreover, for any such �, there exists ı� with the property that for any 0 < ı � ı� ,
the restriction f W Bı

� \ f �1.@Dı/ ! @Dı is a smooth locally trivial fibration. Its
diffeomorphism type is independent of the choices of � and ı. Furthermore, these
two fibrations are diffeomorphic.

Either of the fibrations above is referred to as the local Milnor fibration of the
germ f at the origin; its fiber is called the Milnor fiber. In this book we will deal
mainly with the second fibration. Let F�;ı WD B� \ f �1.ı/ be the Milnor fiber of
f in a small closed Milnor ball B� (where 0 < ı 	 �). Sometimes, when � and
ı are irrelevant, it will be simply denoted by F . It is a smooth oriented .2n � 2/-
manifold with boundary @F�;ı . If f has an isolated singularity then @F�;ı and K are
diffeomorphic.

The geometric monodromy (well defined up to an isotopy) of the Milnor fibration
fF�;ei˛ıg˛2Œ0;2�� is called the Milnor geometric monodromy of F�;ı . It induces a
Milnor geometric monodromy action on the boundary @F�;ı . This restriction can be
chosen the identity if˙ is empty or a point, otherwise this action can be non-trivial.

If f has an isolated singularity then the fibration and its fiber F have some very
pleasant properties.

Theorem 2.1.4. If ˙ D f0g then the following facts hold.

(a) [77] The homotopy type of F is a bouquet (wedge) of .n � 1/-spheres; their
number, �.f /, is called the “Milnor number” of f .

(b) [77] The Milnor fibration on the sphere provides an open book decomposition
of S� with binding K . In particular, the closure of any fiber .f=jf j/�1.ei˛/
(˛ 2 Œ0; 2��) is the link K .

(c) (Monodromy Theorem, see [15, 22, 59, 67] for different versions, or [41, 56]
for a comprehensive discussions) Let M W Hn�1.F;Z/ ! Hn�1.F;Z/ be the
algebraic monodormy operator induced by the geometric monodormy, and let
P.t/ be its characteristic polynomial. Then all the roots of P are roots of unity.
Moreover, the size of the Jordan blocks ofM for eigenvalue 	 6D 1 (respectively
	 D 1) is bounded by n (respectively by n � 1).

Example 2.1.5. If n D 2, then .Vf ; 0/ � .C2; 0/ is called plane curve singularity.
Even if f is isolated, it might have several local irreducible components, let their
number be #.f /. Then the Milnor number �.f / satisfies Milnor’s identity [77]:

�.f / D 2ı.f / � #.f /C 1; (2.1.6)
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where ı.f / is the Serre-invariant, or delta-invariant, or the number of double points
concentrated at the singularity [116].
ı.f / D 0 if and only if �.f / D 0, if and only if f is smooth.
The linkK is diffeomorphic to #.f / disjoint copies of S1. The pair .S�;K/ (that

is, the embedding K � S� , where S� D S3) is called the embedded link of f and
creates the connection with the classical knot theory.

For more details about invariants of plane curve singularities, see [16,136]; about
the topology of isolated hypersurface singularities in general, see [5, 77, 114].

For the convenience of the reader we recall the definition of the open book
decomposition as well.

Definition 2.1.7. An open book decomposition of a smooth manifoldM consists of a
codimension 2 submanifoldL, embedded inM with trivial normal bundle, together
with a smooth fiber bundle decomposition of its complement p W M nL ! S1. One
also requires a trivialization of the a tubular neighborhood ofL into the formL
D
such that the restriction of p to L 
 .D n 0/ is the map .x; y/ 7! y=jyj.

The submanifold L is called the binding of the open book, while the fibers of p
are the pages.

2.1.8. The above Theorem 2.1.4 about isolated hypersurface singularities became
a model for the investigation of non-isolated hypersurface germs as well. For these
germs similar statements are still valid in some weakened forms. For example, F
is a parallelizable manifold of real dimension 2n � 2, it has the homotopy type of
a finite CW-complex of dimension n � 1 [77]. Moreover, by a result of Kato and
Matsumoto [53],

F is .n � 2� dim˙/-connected. (2.1.9)

For example, if n D 3 and dim˙ D 1 then F is a connected finite CW-complex
of dimension 2, and K is connected of real dimension 3. This is the best one can
say using the general theory. Since all the spaces K , F , and @F might have non-
trivial fundamental groups, these spaces are extremely good sources for codifying
important information, but their study and complete characterization is much harder
than the study of simply connected spaces.

2.2 Germs with 1-Dimensional Singular Locus:
Transversal Type

In this section we restrict ourself to the case of a complex analytic germ f W
.C3; 0/ ! .C; 0/ whose singular locus .˙; 0/ is 1-dimensional. Denote by
[s
jD1˙j the decomposition of ˙ into irreducible components. As we have already

mentioned, in this case K is singular too: its singular part is L D [j Lj , where
Lj WD K \˙j .
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An important ingredient of the topological description of the germ .Vf ; 0/ and of
the local Milnor fibration is the collection of transversal type singularities, T˙j ,
associated with the components ˙j (j 2 f1; : : : ; sg) [49, 62]; their definition
follows.
T˙j is the equisingularity type (that is, the embedded topological type) of the

local plane curve singularity f jSlq W .Slq; q/ ! .C; 0/, where q 2 ˙j n f0g, and
.Slq; q/ is a transversal smooth complex 2-dimensional slice-germ of ˙j at q. The
topological type of f jSlq is independent of the choice of q and Slq . Similarly, its
Milnor fiber .f jSlq /�1.ı/ � Slq is independent of q and ı (for ı small), and it will
be denoted by F 0

j . We write �0
j for the Milnor number, #T˙j for the number of

irreducible components, and ı0
j for the Serre-invariant.

The monodromy diffeomorphism of F 0
j , induced by the family Œ0; 2�� 3 ˛ 7!

.f jSlq /�1.ıei˛/, is called the horizontal monodromy ofF 0
j , and is denoted bym0

j;hor .

The diffeomorphism induced by the family s 7! .f jSlq.s/ /�1.ı/, above an oriented
simple loop s 7! q.s/ 2 ˙j n f0g, which generates �1.˙j n f0g/ D Z (and with
ı small and fixed), is called the vertical monodromy. It is denoted by m0

j;ver . Both
monodromies are well-defined up to isotopy, and they commute up to an isotopy.

For a possible explanation of the names “horizontal/vertical”, see 3.1.10.
The primary goal of the present work is the study of the boundary @F of the

Milnor fiber F , although sometimes we will provide results regarding the Milnor
fiber itself or about the ambient topological type as well (but these will be mostly
immediate consequences of results regarding the boundary of F ).

2.3 The Decomposition of the Boundary of the Milnor Fiber

As in 2.2, let @F denote the boundary of the Milnor fiber F of f , that is @F D
@F�;ı D S� \ f �1.ı/. By the above discussion it is a smooth oriented 3-manifold.

Siersma in [118] provides a natural decomposition

@F D @1F [ @2F;

which will be described next.
Let T .Lj / be a small closed tubular neighbourhood of Lj in S� , and denote

by T ı.Lj / its interior. Then @2F D [j @2;j F with @2;j F D @F \ T .Lj /, and
@1F D @F n [j T

ı.Lj /. The parts @1F and @2F are glued together along their
boundaries, which is a union of tori.

Theorem 2.3.1. [118]

1. For each j , the natural projection T .Lj / ! Lj induces a locally trivial fibra-
tion of @2;j F over Lj with fiber F 0

j (the Milnor fiber of T˙j ) and monodromy
m0
j;ver of F 0

j . This induces a fibration of @.@2;j F / over Lj with fiber @F 0
j .
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2. The Milnor monodromy of @F can be chosen in such a way that it preserves both
@1F and @2F . Moreover, its restriction on @1F is trivial, and also on the gluing
tori @.@1F / D � [j @.@2;j F /.

3. The Milnor monodromy on @2F might be nontrivial. This monodromy action on
each @2;j F is induced by the horizontal monodromym0

j;hor acting on F 0
j . (Since

it commutes with m0
j;ver , it induces an action on the total space @2;j F of the

bundle described in part 1.)

Notice that by Theorem 2.3.1(1), since F 0
j is connected, we also obtain that

@2;j F is connected. (2.3.2)

Remark 2.3.3. One has the following relationship connecting the boundary @F
and the link K . Definitely, K has a similar decomposition K D K1 [ K2, where
K2 D [jK2;j , K2;j WD T .Lj / \K , and K1 WD K n [j T

ı.Lj /. Then K1 � @1F ,
hence @K1 � @.@1F / as well. On the other hand, each K2;j has the homotopy type
of Lj . More precisely, the homeomorphism type of K can be obtained from @F by
the following “surgery”: one replaces each @2;j F – considered as the total space of
a fibration with base space Lj and fiber F 0

j –, by a total space of a fibration with
base space Lj and whose fiber is the real cone over @F 0

j .
In particular, if each transversal type singularity T˙j is locally irreducible, then

K is an oriented topological 3-manifold (since the real cone over @F 0
j is a topological

disc).
For another construction/characterization of K see 7.5.10.

Corollary 2.3.4. @F is connected.

Proof. Use Remark 2.3.3 and the fact that K is connected, cf. (2.1.2). ut
Remark 2.3.5. Consider a germ f as above with 1-dimensional singular locus
and let Mq W Hq.F;Z/ ! Hq.F;Z/ be the monodromy operators acting on the
homology of the Milnor fiber. Furthermore, let M 0

j;ver be the algebraic vertical
transversal monodromy induced by m0

j;ver .
Randell and Siersma in the articles [108, 118, 119] determined the homology of

the link K and of the boundary @F for several cases. Moreover, they characterized
via different criteria those situations when the linkK and @F are homology spheres:

1. [108, (3.6)] K is a homology sphere if and only if det.Mq � I / D ˙1 for
q D 1; 2.

2. [118, 119] @F is a homology sphere if and only if det.M2 � I / D ˙1 and
det.M 0

j;ver � I / D ˙1 for any j .
3. [118] (in [118] attributed to Randell too) @F is a homology sphere if and only if
K is homology sphere and det.M 0

j;ver � I / D ˙1 for any j .

In fact, these statements were proved for arbitrary dimensions. For more
comments on these properties see 24.4.3.



Chapter 3
The Topology of a Pair .f; g/

3.1 Basics of ICIS: Good Representatives

In many cases it is convenient to add to the germ f another germ, say g, such that
the pair .f; g/ forms an isolated complete intersection singularity (ICIS in short).
Traditionally, one studies the g-polar geometry of f in this way, generalizing the
classical polar geometry, when g is a generic linear form. This method, suggested by
Thom and developed by Lê Dũng Tráng [60–62] and Teissier [130, 131], computes
certain invariants of f by induction on the dimension. This lead to the polar
invariants of Teissier, the carrousel description of the monodromy by Lê, and later
to the study of certain invariants of series and “composed singularities” by Siersma
[117] and the first author [81–83], or of Lê cycles and the numbers of Massey
[70–72]; see [132] as well. These techniques have generalizations in the theory
of one-parameter and equisingular deformations, initiated by Zariski and Teissier,
producing great results such as the Lê Ramanujam Theorem [63] and recent work
of Fernández de Bobadilla, see [10, 11] and references therein.

However, as an independent strategy, the germ g might also serve as an auxiliary
object to determine abstract g-independent invariants of f . For example, this book
contains the description of @F in terms of a pair .f; g/.

In all the above methods the key ingredient is the fiber structure of the ICIS
.f; g/.

First, we provide some basic definitions and properties of isolated complete
intersection singularities. Although, they are defined generally in the context of
germs .Cn; 0/ ! .Ck; 0/, we will keep our specific dimensions n D 3 and k D 2;
in this way we also fix the basic notations we will need.

For more details regarding this section see the book of Looijenga [67].

3.1.1. Consider an analytic germ ˚ D .f; g/ W .C3; 0/ ! .C2; 0/. The map ˚
defines an ICIS if the following property holds: if I � OC3;0 denotes the ideal
generated by f; g and the 2 
 2 minors of the Jacobian matrix .d˚/ in the local
algebra OC3;0 of convergent analytic germs .C3; 0/ ! .C; 0/, then dim OC3;0=I<1.

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 3,
© Springer-Verlag Berlin Heidelberg 2012

17



18 3 The Topology of a Pair .f; g/

In other words, the scheme-theoretical intersection ˚�1.0/ D ff D 0g \ fg D 0g
has only an isolated singularity at the origin. In particular, .Sing.Vf // \ Vg D f0g
and Vf intersects Vg in the complement of the origin transversally in a smooth
punctured curve.

Example 3.1.2. Let f W .C3; 0/ ! .C; 0/ be an analytic germ with 1-dimensional
critical locus. Then any generic linear form g W .C3; 0/ ! .C; 0/ has the property
that the pair ˚ D .f; g/ forms an ICIS.

In particular, any such f can be completed to an ICIS ˚ D .f; g/.

The critical locus .C˚; 0/ of ˚ is the set of points of .C3; 0/, where ˚ is
not a local submersion. Its image .�˚; 0/ WD ˚.C˚; 0/ � .C2; 0/ is called the
discriminant locus of ˚ .

Lemma 3.1.3. [67, 2.B] Fix a germ˚ as above. Then there exist a sufficiently small
closed ball B� � C3 of radius �, and a bidiscD2


 � C2 with radius 0 < 
 	 � such
that:

1. the set .˚�1.0/ n f0g/\ B� is non-singular;
2. @B�0 intersects ˚�1.0/ transversally for all 0 < �0 � �;
3. C˚ \ ˚�1.D2


/ \ @B� D ;; and the restriction of ˚ to ˚�1.D2

/ \ @B� is a

submersion.

Definition 3.1.4. The map ˚ W ˚�1.D2

/ \ B� ! D2


 with the above properties
is called a “good” representative of the ICIS ˚ . In the sequel, in the presence of
such a good representative,˙˚ will denote the intersection of the critical locus with
˚�1.D2


/ and�˚ its image in D2

 .

Also, we prefer to denote the local coordinates of .C2; 0/ by .c; d /.

With these notations one has the following fibration theorem, cf. 2.8 in [67]:

Theorem 3.1.5. (i) ˚ W B� \ ˚�1.D2

/ �! D2


 is proper. The analytic sets ˙˚

and�˚ are 1-dimensional, and the restriction ˚ j˙˚ W ˙˚ ! �˚ is proper with
finite fibers.

(ii) ˚ W .˚�1.D2

 � �˚/ \ B�;˚

�1.D2

 � �˚/ \ @B�/ ! D2


 � �˚ is a smooth
locally trivial fibration of a pair of spaces.

Definition 3.1.6. A fiber Fc;d D ˚�1.c; d / \ B� , for .c; d / 2 D2

 � �˚ , is called

a Milnor fiber of ˚ , while the fibration itself is referred to as the Milnor fibration
of ˚ . The fiber sometimes is denoted by F˚ too.

For any fixed base point b0 D .c0; d0/ � D2

��˚ , one has the natural geometric

monodromy representation:

mgeom;˚ W �1.D2

 ��˚; b0/ �! Diff 1.Fb0/=isotopy:

It induces the algebraic monodromy representation

M˚ W �1.D2

 ��˚; b0/ ! AutH�.Fb0 ;Z/:
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Proposition 3.1.7. [67] The Milnor fiber Fc;d of ˚ is connected.

3.1.8. If f has a 1-dimensional singular locus, then the singular locus ˙ D ˙f

is a subset of ˙˚ and ˚.˙/ D fc D 0g is an irreducible component of the
discriminant�˚ . By convention, we denote this component by�1. Then˚�1.�1/\
˙˚ is exactly ˙ . Recall that the irreducible components of ˙ are denoted by
f˙j gsjD1. Part (i) of Theorem 3.1.5 guarantees that the restriction ˚ W ˙j ! �1

is a branched covering for any 1 � j � s. Let dj denote its degree. Note that this
agrees with the degree of the restriction of the map g to ˙j .

In general, it is extremely difficult to determine either the geometric monodromy
mgeom;˚ , or the algebraic monodromy representationM˚ , hence it is hard to recover
information about the global Milnor fibration. This is mainly due to the fact that
the fundamental group �1.D2


 � �˚; b0/ D �1.@D
2

 n �˚; b0/ is non-abelian, in

general. Nevertheless, the fundamental group of a small tubular neighbourhood of
@D2


 \ �1 in @D2

 is abelian, hence the fiber structure above it can be understood

more easily. The representation restricted to the fundamental group of this tubular
neighbourhood still contains key information about the geometry of the fibration
“near�1”, hence about the singular locus of f .

The next definition targets this restriction of the representation.
For any fixed c0, set Dc0 WD fc D c0g \ D2


 . Then, if jc0j 	 
, the circle @Dc0

is disjoint from �˚ . Consider the torus Tı WD [c0@Dc0 , where the union is over c0
with jc0j D ı > 0. Hence, for 0 < ı 	 
, the restriction of ˚ on ˚�1.Tı/ is a fiber
bundle with fiber F˚ .

Definition 3.1.9. The monodromy above a circle in Tı, consisting of points with
fixed d -coordinates, is called the horizontal monodromy of ˚ near �1, and it is
denoted by m˚;hor . Similarly, the monodromy above a circle in Tı, consisting of
points with fixed c-coordinates, (e.g., above @Dı) is the vertical monodromy of ˚
near�1; it is denoted by m˚;ver .

They are defined up to an isotopy, and they commute up to an isotopy.

Remark 3.1.10. Usually, in our figures, in D2

 we take the c-coordinate as the

horizontal, while the d -coordinate as the vertical axis. Hence, the circle in Tı with
d constant is a “horizontal” circle, while c a circle with c constant is “vertical”.

Remark 3.1.11. Set .Vg; 0/ WD g�1.0/ in .C3; 0/. Clearly, F�;ı and˚�1.Dı/ can be
identified, where the second space is considered in B� \˚�1.D2


/, and its “corners”
are smoothed. Under this identification, F�;ı \ Vg corresponds to ˚�1.ı; 0/. Hence
@F�;ı and @˚�1.Dı/ can also be identified in such a way that @F�;ı \Vg corresponds
to @˚�1.ı; 0/. Notice that @˚�1.Dı/ consists of two parts, one of them being
˚�1.@Dı/, the other the complement of the interior of ˚�1.@Dı/ defined as

@0˚�1.Dı/ WD [.ı;d/2Dı@.˚�1.ı; d //:

By triviality over Dı of the family [.ı;d/2Dı@.˚�1.ı; d //, the part @0˚�1.Dı/ is
diffeomorphic to the productDı 
 @˚�1.ı; 0/.
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3.2 The Milnor Open Book Decompositions of @F

Besides the geometry of the ICIS, the germ g provides a different package as well.
These are invariants determined by the generalized Milnor fibration, or open book
decomposition, induced by arg.g/ D g=jgj on @F .

Before we describe it, we recall an immediate natural generalization of Milnor’s
result 2.1.4(b) valid for isolated complete intersections, which was established by
Hamm. Although, again, the result is valid for any map .Cn; 0/ ! .Ck; 0/; we state
it only for n D 3 and k D 2.

Theorem 3.2.1. [43] Assume that ˚ D .f; g/ W .C3; 0/ ! .C2; 0/ is an ICIS and
f has an isolated singularity at the origin. Let Kf be the link of f in a sufficiently
small sphere S�. Then g defines an open book decomposition in Kf with binding
Kf \ Vg and fibration g=jgj W Kf n Vg ! S1. The pages are diffeomorphic to the
fibers of ˚ .

At first glance it is not immediate what the right generalization of Hamm’s result
would be for the case when f has 1-dimensional singular locus, since the link is
singular.

The generalization was established by Caubel. The next results are either proved
or follow from the statements proved in [19]:

Theorem 3.2.2. 1. The argument of the restriction of g on @F�;ı n Vg defines an
open book decomposition on @F�;ı with binding @F�;ı \ Vg, and fibration g=jgj W
@F�;ı n Vg!S1.

2. The fibration g=jgj W @F�;ı n Vg ! S1 is equivalent to the fibration ˚ W
˚�1.@Dı/ ! @Dı with monodromym˚;ver (0 < ı 	 
).

3. Moreover, this structure is compatible with the action of the Milnor monodromy
on @F�;ı in the following sense. The restriction of the Milnor monodromy of @F�;ı
on a tubular neighbourhood of @F�;ı\Vg is trivial, and its restriction on @F�;ınVg
is equivalent to the horizontal monodromy of ˚�1.@Dı/ over the oriented circle
fjcj D ıg (induced by the local trivial family f˚�1.@Dc/gjcjDı).

Proof. The first part is stated and proved in Proposition 3.4 of [19]. Although the
second part is not stated in [loc.cit.], it follows from the proof of Proposition 3.4.
and by similar arguments as the proof of Theorem 5.11 in Milnor’s book [77]. The
last monodromy statement can be proved the same way. ut

3.3 The Decomposition of @F Revisited

Next, we present how one can recover the decomposition @F�;ı D @1F [ @2F ,
cf. 2.3, from the structure of ˚ via the identification of F�;ı with ˚�1.Dı/, cf.
Remark 3.1.11.
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For any j 2 f1; : : : ; sg, let T �j be a small closed tubular neighbourhood in
C3 of ˚�1.@D0/ \ ˙j . Then, for ı sufficiently small, and for any .ı; d / 2 @Dı ,
the fiber ˚�1.ı; d / intersects @T �j transversally. In particular, ˚�1.@Dı/ \ T

�
j and

˚�1.@Dı/ n .[j T
�
j / are fiber bundles over @Dı .

Proposition 3.3.1. One has the following facts:

1. There is an orientation preserving homeomorphism

@F�;ı �! ˚�1.@Dı/[ @0˚�1.Dı/

which sends a tubular neighbourhood T .Vg/ of Vg onto @0˚�1.Dı/ and @F�;ı n
T ı.Vg/ onto ˚�1.@Dı/ (identifying even their fiber structures, cf. 3.2.2). Under
this identification, T .Vg/ � @1F�;ı , and the fibration

g=jgj W @1F�;ı n T ı.Vg/ ! S1

corresponds to
˚ W ˚�1.@Dı/ n .[j T

�;ı
j / ! @Dı;

while
g=jgj W @2;j F�;ı ! S1 to ˚ W ˚�1.@Dı/\ T

�
j ! @Dı:

The identifications are compatible with the action of the Milnor/horizontal
monodromies (over the circle jcj D ı).

2. For each j 2 f1; : : : ; sg, the fibration g=jgj W @2;j F�;ı ! S1 can be identified
with the pullback of the fibration @2;j F�;ı ! Lj (cf. 2.3.1) under the map
arg.gjLj / W Lj ! S1, which is a regular cyclic covering of S1 of degree dj .
Therefore, the fiber of g=jgj W @2;j F�;ı ! S1 is a disjoint union of dj copies of
F 0
j and the monodromy of this fibration is

m˚
j;ver .x1; : : : ; xdj / D .m0

j;ver .xdj /; x1; : : : ; xdj�1/:

The action of the Milnor monodromy on @2;j F�;ı restricted to the fiber of g=jgj
is the “diagonal” action:

m˚
j;hor .x1; : : : ; xdj / D .m0

j;hor .x1/; : : : ; m
0
j;hor.xdj //:

Proof. The first part follows by combining arguments of [77] and [19], as in the
second part of 3.2.2. The point is that when we “push out” ˚�1.@Dı/ along the
level sets of arg.g/ into @F�;ı , this can be done by a vector field which preserves a
tubular neighbourhood of each ˙j . The second part is standard, it reflects the fiber
structure of ˚ , see e.g. [81] or [117]. ut
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Above, by Theorem 3.2.2 and by the structure of open books, the fibrations @F�;ın
Vg and @F�;ı nT ı.Vg/ over S1, both induced by g=jgj, are equivalent. A similar fact
is true for the fibrations @1F�;ı n Vg and @1F�;ı n T ı.Vg/.

3.4 Relation with the Normalization of the Zero Locus of f

The space @1F and the fibration g=jgj W @1F�;ı n Vg ! S1 have another
“incarnation” as well.

In order to see this, let n W .V norm
f ; n�1.0// ! .Vf ; 0/ be the normalization

of .Vf ; 0/. For the definition and general properties of the normalization of
2-dimensional analytic spaces, see the book of Laufer [57] or the monograph
of L. Kaup and B. Kaup [54] . Note that each local irreducible component of
.Vf ; 0/ lifts to a connected component of the normalization, hence .V norm

f ; n�1.0//
stands here for a multi-germ of normal surface singularities. Moreover, any normal
surface singularity has at most an isolated singularity, but usually this germ is not a
hypersurface germ, its embedded dimension can be arbitrarily large.

If .X; 0/ is an irreducible normal surface singularity, represented in some affine
space, say .X; 0/ � .CN ; 0/, then similarly as for hypersurface singularities one
defines its linkKX asX\S� � S� � CN , for � sufficiently small [57,67]. Moreover,
KX is connected (see, for example, [57, 4.1]).

Furthermore, if g W .X; 0/ ! .C; 0/ is an analytic non-constant germ on .X; 0/,
then similarly as in the cases of Milnor 2.1.4(b) and Hamm 3.2.1 one gets an open
book decomposition ofKX with bindingKX\Vg and projection g=jgj W KX nVg !
S1 [21, 43, 61].

Let us return to our situation. We denote the link of the multi-germ
.V norm
f ; n�1.0// byKnorm. It is the disjoint union of all the links of the components of

.V norm
f ; n�1.0//. Consider as well the lifting g ı n W .V norm

f ; n�1.0// ! .C; 0/ of g,
which determines an open book decomposition onKnorm with bindingKnorm \Vgın
and Milnor fibration

arg.g ı n/ W Knorm n Vgın ! S1:

Furthermore, for any j 2 f1; : : : ; sg let us denote by St.˙j / � V norm
f the strict

inverse image of ˙j , that is the closure of n�1.˙j n 0/. Set St.˙/ WD [j St.˙j /.
Then,Knorm \ Vgın \ St.˙/ D ;, and

arg.g ı n/ W .Knorm n Vgın; St.˙// ! S1

is a locally trivial fibration of a pair of spaces.
Usually St.˙j / is not irreducible. An upper bound for the number of its

irreducible components is the number of components of @F 0
j , or equivalently,

the number of irreducible branches #T˙j of the local transversal type T˙j .
Nevertheless, jSt.˙j /j can sometimes be strictly smaller, see the discussion and
examples of Sects. 7.5 or 10.3. Compare also with 10.3.6.
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Proposition 3.4.1. Let TSt.˙/ be a small closed tubular neighbourhood of St.˙/
in @V norm

f . Then the following facts hold:

(a) @1F is orientation preserving diffeomorphic to Knorm n T ı
St.˙/. In particular,

the number of connected components of @1F is the number of irreducible
components of f .

(b) The fibrations of the pairs of spaces

arg.g ı n/ W .Knorm n .Vgın [ T ı
St.˙//; @TSt.˙// ! S1

and
arg.g/ W .@1F�;ı n Vg; @.@1F�;ı// ! S1

are equivalent.
In particular, for any j , the number of tori along which the connected space

@2;j F is glued to @1F agrees with the number of irreducible components of St.˙j /.

Proof. The normalization map is an isomorphism above the regular part of Vf . ut
The above facts show clearly that @1F is guided by the link of the normalization,

while @2F by the local behaviour near ˙ .

3.4.2. By the results of the above subsections, the fiberFg;@F of the fibration arg.g/ W
@F n Vg ! S1 provided by Theorem 3.2.2 can be compared with the fiber Fg;Knorm

of the fibration arg.g ı n/ W Knorm n Vgın ! S1.
Indeed, by 3.3.1 and the above discussion one obtains that the fiber Fg;Knorm

intersects St.˙/ in N WD P

j #T˙j � dj points.

Corollary 3.4.3. 1. The fiber Fg;@F can be obtained as follows: take the fiber
Fg;Knorm and the N intersection points of it with St.˙/, delete some small disc
neighbourhoods of these points, and then, for each j 2 f1; : : : ; sg, glue to the
resulting surface with boundary dj copies of F 0

j along their boundaries.
2. In particular, at the level of Euler characteristics, one has

�.Fg;@F / D �.Fg;Knorm/C
X

j

dj .1��0
j �#T˙j / D �.Fg;Knorm/�2 �

X

j

dj ı
0
j :

3. Assume that dim˙f D 1. Then, for any germ g such that .f; g/ is an ICIS, the
Euler characteristics of the pages of the two open book decompositions induced
by the argument of g on @F and Knorm are not equal. More precisely, one has
the strict inequality:

�.Fg;@F / < �.Fg;Knorm/:

Proof. (1) follows from the above discussions, (2) rewrites (1) at the Euler
characteristic level and uses the Milnor identity (2.1.6), while (3) follows from
the fact that the Serre invariant is strictly positive for a non-smooth plane curve
singularity. ut



Chapter 4
Plumbing Graphs and Oriented Plumbed
3-Manifolds

4.1 Oriented Plumbed Manifolds

The first goal of the present work is to provide a plumbing representation of
the 3-manifold @F , where F is the Milnor fiber of a hypersurface singularity
f W .C3; 0/ ! .C; 0/ with 1-dimensional singular locus. The construction will be
compatible with the decomposition of @F into @1F and @2F , hence it also provides
plumbing representations for these oriented 3-manifolds with boundary.

Even more, for any g such that the pair .f; g/ forms an ICIS, as in Sect. 3.1, we
will also provide a plumbing representation of the pair .@F; @F \ Vg/ and of the
multiplicity system of the generalized Milnor fibrations @F n Vg , @1F n Vg and @2F
over S1 induced by g=jgj.

In this Chapter we recall the necessary definitions and relevant constructions.
Regarding plumbed 3-manifolds and plumbing calculus we follow Neumann’s
seminal article [94] with small modifications, which will be explained below.

4.1.1. The plumbing graph. For any graph � , we denote the set of vertices by
V .� / and the set of edges by E .� /. If there is no danger of confusion, we denote
them simply by V and E .

In the case of plumbing graphs of closed 3-manifolds, any vertex has two
decorations, both integers: one of them is the Euler obstruction, or ‘Euler number’,
while the other one is the ‘genus’, written as Œgv� and omitted if it is zero.
Furthermore, the edges also have two possible decorations: C or �. In most of
the cases we omit the decoration C, nevertheless we prefer to emphasize the sign �
with the symbol �.

Although, for plumbing representations of links of normal surface singularities
we need only the sign C, and for such graphs the intersection matrix associated with
the graph is always negative definite, in the present situation both restrictions should
be relieved. Nevertheless, all our 3-manifolds are oriented, hence we will restrict
ourselves to ‘orientable plumbing graphs’, cf. [94, (3.2)(i)]. These are characterized
by gv � 0 for any vertex v.

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 4,
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4.1.2. The plumbing construction. Fix a connected plumbing graph � .
The oriented plumbed 3-manifoldM.� / associated with � is constructed using

a set of S1-bundles f�v W Bv ! Svgv2V , whose total spaceBv has a fixed orientation.
They are indexed by the set of vertices V of the plumbing graph, so that the base-
space Sv of Bv is a closed orientable real surface of genus gv, and the Euler number
of the bundle Bv is the Euler number decoration of the vertex v on the graph. Then
one glues these bundles corresponding to the edges of � as follows. First, one
chooses an orientation of Sv and of the fibers compatible with the orientation of Bv.
Then, for each edge adjacent to v one fixes a point p 2 Sv, an orientation preserving
trivialization Dp 
 S1 ! ��1

v .Dp/ above a small closed disc Dp 3 p, and one
deletes its interior Dı

p 
 S1. Here, similarly as above, S1 is the unit circle with its
natural orientation. Then, any edge .v;w/ of � determines @Dp 
 S1 in Bv and
@Dq 
S1 in Bw, both diffeomorphic to S1 
S1. They are glued by an identification
map �

�

0 1
1 0

�

, where � D ˙ is the decoration of the edge.
If we allow disconnected plumbing graphs, for example� is the disjoint union of

the plumbing graphs �1 and �2, written as � D �1 C�2, then by conventionM.� /
is the oriented connected sum M.� / D M.�1/#M.�2/. Furthermore, sometimes it
is convenient to allow the empty graph too. It corresponds to M.;/ D S3.

For more details, see [94], page 303.
In order to codify certain additional geometric information (e.g., information on

links in the 3-manifold, or boundary components), we will be working with plumb-
ing graphs that have extra decorations, as made precise in the next subsections.

4.1.3. Oriented links in oriented closed plumbed 3-manifolds are represented
on the graph by arrowhead vertices; the other “usual” vertices will be called non-
arrowheads. Arrowhead vertices have no “Euler number” or “genus” decorations.
Each arrowhead is connected by an edge to some non-arrowhead vertex v, and this
edge has a sign-decoration C or �, similarly to the edges connecting two non-
arrowhead vertices (whose significance was explained in the preceding subsection).
Any arrowhead supported by a non-arrowhead v codifies a generic S1-fiber of Bv,
while the sign-decoration of the supporting edge determines an orientation on it.
The correspondence is realized as follows. For each non-arrowhead vertex v choose
an orientation of Sv and of the fibers as in the previous subsection. This is used in the
gluing of the bundles too, but it also identifies the orientation of link-components:
if an arrowhead is supported by a C-edge then the link component inherits the
fiber-orientation, otherwise the orientation is reversed. The disjoint union of these
oriented S1-fibers, indexed by the set of all arrowheads, constitutes an oriented link
K in the oriented plumbed 3-manifoldM D M.� /.

There is an exception to the above description when the graph consists of a
double arrow. In this case the 3-manifold is S3, and the arrows represent two Hopf
link-components. If the sign-decoration of the double-arrow is C then both Hoph
link-components inherit the orientation of the oriented Hopf S1-fibration, otherwise
the orientation of one of them is reversed.

Usually we write A for the set of arrowheads, and W for the set of non-
arrowheads, that is V D A t W .
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4.1.4. Multiplicity systems. Plumbing graphs with arrowhead vertices, in general,
might carry an extra set of decorations: each arrowhead and non-arrowhead vertex
has an additional ‘multiplicity weight’, denoted by .mv/.

The typical example of a graph with arrowheads and multiplicity system is pro-
vided by an embedded resolution graph of an analytic function defined on a normal
surface singularity, where the arrowheads correspond to the strict transforms of the
zero set of the analytic function, the non-arrowheads to irreducible exceptional
divisors, and the multiplicities are the vanishing orders of the pull-back of the
function along the exceptional divisors and strict transforms; see 4.3.

More generally, the set of multiplicities represent a relative 2-cycle in the
corresponding oriented plumbed 4-manifold, which in the homology group relative
to the boundary represents zero. The oriented plumbed 4-manifold P D P.� / is
constructed in a similar way as the plumbed 3-manifoldM D M.� /: one replaces
the S1-bundles with the corresponding disc-bundles Dv and one glues them by a
similar procedure. Then P is a 4-manifold with boundary such that @P D M . Each
vertex v determines a 2-cycle Cv in P : If v is an arrowhead then Cv is an oriented
generic disc-fiber of Dv – hence it is a relative cycle. If v is a non-arrowhead vertex
then Cv is the oriented “core” (i.e. the zero section) of Dv, – hence this is an absolute
cycle. Their simultaneous orientations can be arranged compatibly with the graph.

In the present work we consider only those multiplicity systems fmvgv2V , which
satisfy a set of compatibility relations. These relations are equivalent to the fact that
the class of C.m/ WD P

v2V mvCv in H2.P; @P;Z/ is zero. This can be rewritten
as follows. Let w be a fixed non-arrowhead vertex with Euler number ew. Let Ew

be the set of all adjacent edges, excluding loops supported by w. For each e 2 Ew,
connecting w to the vertex v.e/ (where v.e/ may be an arrowhead or not), let �e 2
fC;�g be its sign-decoration. Then:

ewmw C
X

e2Ew

�emv.e/ D 0: (4.1.5)

Indeed, this follows from the fact that H2.P;Z/ is freely generated by the
absolute classes of Cw (w 2 W ), hence the intersection numbers .C.m/; Cw/ vanish
for all non-arrowhead vertices w if and only if ŒC.m/� D 0 in H2.P; @P;Z/.

4.1.6. The intersection matrix and the multiplicity system. The combinatorics
and a part of the decorations of the graph � can be codified into the intersection
matrix of � . Furthermore, in the presence of arrowheads, the position of the
arrowheads can be codified in an incidence matrix. Their definition is the following.

Definition 4.1.7. The “intersection matrix” A of � is the symmetric matrix of size
jW j 
 jW j whose entry awv is the Euler number of w if w D v, while for w 6D v it
is

P

e �e , where the sum is over all edges e connecting w and v, and �e 2 fC;�g is
the edge-decoration of e.

The graph � is called negative definite if the intersection matrix A is negative
definite.
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The “incidence matrix” I of the arrows of � is a matrix of size jW j 
 jA j. For
any a 2 A let wa be that non-arrowhead vertex which supports the arrowhead a.
Then, for each a 2 A , the entry .a;wa/ is 1, all the other entries are zero.

The matrix .A;I/ of size jW j 
 .jW j C jA j/ consists of the blocks A and I.

The matrix of the linear system of equations (4.1.5) in variables fmwgw2V

is the matrix .A;I/. Hence, if A is non-degenerate then from the position of
the arrowheads, or from the incidence matrix, one recovers uniquely all the
multiplicities.

Note also that if P is the plumbed 4-manifold associated with the graph � , cf.
4.1.4, thenA can also be interpreted as the intersection form onH2.P;Z/ associated
with the basis fŒCw�gw2W .

4.1.8. The multiplicity system associated with an open book decomposition.
Consider a pair .M;K/ as in 4.1.3. K is called a fibered link if it is the binding of
an open book decomposition ofM .

The case of a fibered link K in a 3-manifold M has a special interest in purely
topological discussions too. Links provided by singularity theory are usually fibered.
In such cases the pair .M;K/ has a plumbed representation provided by a plumbing
graph (decorated with Euler numbers and genera) and arrows (representing K).
Additionally, p W M n K ! S1 is a locally trivial fibration with a trivialization
in a neighbourhood of K , cf. 2.1.7. In particular, p sends any oriented meridian of
any oriented component of K to the positive generator of H1.S

1;Z/.
In such a situation, we define a multiplicity system associated with the open book

decomposition as follows.
First, we fix the link-components as distinguished fibers of the corresponding

building blocks Bw. Then, for each non-arrowhead vertex w, let �w be an oriented
generic S1-fiber of Bw, different from any fixed fiber corresponding to components
of K . Here we use the same orientation of the S1-bundle which was used in the
plumbing construction. For a 2 A we define �a as the oriented meridian of the
corresponding oriented component of K . For any loop � let Œ�� be its homology
class.

Definition 4.1.9. The multiplicity system associated with the fibration p is the
collection of integers mv WD p�.Œ�w�/ 2 H1.S

1;Z/ D Z , v 2 V . (Clearly, ma D 1

for a 2 A .)

The fact that this is indeed a multiplicity system can be seen as follows. Let F
be the oriented page of p in M , with @F D K . By a homotopy one can push F nK
in the interior of P keeping K D @F fixed. Then its relative homology class can
be represented by the relative cycle C.m/. On the other hand, the corresponding
relative homology class is zero, since F sits in @P .

We wish to emphasize that if M is a rational homology sphere, and K is the
binding of an open book decomposition of M , then the open book decomposition
can be recovered from the pair .M;K/ by a theorem of Stallings. This means
that there is a unique open book decomposition for any fixed binding whenever
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H1.M;Q/ D 0. The book of Eisenbud and Neumann in [33, page 34] also provides
two different arguments for this fact, one of them based on [9], the other on [135].

On the other hand, in general, the information codified in the plumbing data of
the pair .M;K/ together with the multiplicity system (that is the graph with arrows
decorated with Euler numbers, genera and multiplicities), contains less information
than the open book decomposition itself; see [86] for different examples, or 4.4 here.

4.1.10. Arrowheads with multiplicity zero. Assume that K1 tK2 is an oriented
link in M , and the pair .M;K1 t K2/ has a plumbing representation as in 4.1.3.
Here K1 and K2 consist of two disjoint sets of link components such that .M;K1/

is a fibered link. In particular, its open book decomposition p defines a multiplicity
system on all the non-arrowheads and on all the arrows of K1 as in 4.1.8. Then,
we can put zero multiplicities on all the arrows of K2. (In fact, p�.Œ�a�/ D 0 for
all meridians of K2, hence this definition also works.) In this way, using zero-
multiplicity arrowheads, we can identify link components of M which are not
components in the binding of the open book decomposition .M;K1/.

4.1.11. Manifolds with boundary. Similarly, one can codify plumbed oriented 3-
manifolds with boundary, where each boundary component is a torus. In general,
one starts with an oriented closed 3-manifold M with a link K in it, cf. 4.1.3. Let
L be the collection of some of the components of K . Then after a small closed
tubular neighbourhood T .L/ of L is fixed, one deletes its interior T ı.L/ obtaining
a manifold with boundary M n T ı.L/. The other components of K , which are not
in L, are kept as link components in M n T ı.L/.

At the level of plumbing graphs, in the present article, this will be codified as
follows. Assume that the arrowhead representing a connected component of L is
connected by an edge to the non-arrowhead vertex v. Then replace this supporting
edge by a dash-edge (and delete its sign-decoration, or consider it irrelevant). An
arrowhead that is supported by a dash-edge will be called dash-arrow. Therefore,
the dash-arrows represent deleted solid tori containing as their core the components
of the corresponding link.

Equivalently, if rw is the number of dash-arrows supported by the non-arrowhead
vertex w, then one can also get the plumbed manifold with boundary using the
plumbing construction by deleting rw solid tori, the inverse image of rw small open
discs of the base space of Bw, from Bw. (This is codified in [94] by the decoration
Œrw� of w, instead of the rw dash-arrows of w used here.)

Notice that in this way, (i.e. by replacing an arrow supported by a usual edge by
an arrow supported by a dash-edge) one loses some information: for example, the
Euler-number of the supporting non-arrowhead w becomes irrelevant.

4.1.12. Fibrations and multiplicities. Additionally, ifM nT ı.K/ is a locally trivial
fibration p over S1, one can define again a multiplicity system: mw WD p�.Œ�w�/

for each non-arrowhead w, as above. Nevertheless, in this case, the arrowheads
supported by dash-arrows will carry no multiplicity decorations (or, equivalently,
they will be disregarded). This system satisfies the compatibility relations (4.1.5)
in the following modified way: if w is a non-arrowhead which supports no dash-
arrow, then (4.1.5) is valid for that w. But, in general, no other relation holds.
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(That is, (4.1.5) is valid for all non-arrowhead vertices w with the convention that
the multiplicity of the dash-arrows “can be anything”.)

Notice that if .M;K/ has an open book decomposition, then the fibration
of the complement of K contains less information than the original open book
decomposition: in general, a fibration K n T ı.K/ cannot be extended canonically
to an open book decomposition. Similarly, the multiplicity system associated with
a fibration p W M n T ı.K/ ! S1 contains less information than the multiplicity
system associated with the original open book decomposition.

4.2 The Plumbing Calculus

4.2.1. The plumbing calculus of oriented plumbed 3-manifolds and the corres-
ponding plumbing graphs targets the following classification result, cf. [94,
(3.2)(i)]. According to this, there are 8 permitted operations of plumbing graphs.
In Neumann’s notation, seven of them are: R0(a), R1, R3, R5, R6, R7, R2/4.
In Neumann’s list an eighth operation appears as well, R0(b)’. Since it can be
replaced by three consecutive applications of R0(a), we will omit it. (Note also that
Neumann’s list contains an additional operation R8; this one applies for graphs with
dash-arrows, and it will appear below in 4.2.8.)

These operations satisfy the following two key properties:

1. (Stability of the calculus) Applying any of the above seven operations, or their
inverses, to a plumbing graph � does not change the oriented diffeomorphism
type of M.� /.

2. (Sufficiency of the calculus) If �1 and �2 are two plumbing graphs and M.�1/
andM.�2/ are diffeomorphic by an orientation preserving diffeomorphism, then
�1 and �2 are related by a sequence of the above operations or their inverses.

The “oriented calculus” is part of a larger set of operations, for which a
similar statement is valid as above; it connects non-necessarily orientable plumbed
3-manifolds and their plumbed graphs. The larger class additionally contains
those operations which reverse orientation, or which are valid for non-orientable
manifolds too. For the complete list, from R0 to R8, see [94]. The oriented calculus
selects exactly those operations which preserve the orientation of the orientable
3-manifold. As we are interested only in the oriented special class, we discuss only
these ones.

For the completeness of the presentation we provide these operations, at least
those which will be used in the present work. The operations below are applied for
one of the connected components of the graph � .

[R0](a) Reverse the signs on all edges other than loops adjacent to any fixed vertex.

[R1] (blowing down) � D ˙1 and the edge signs �0; �1; �2 are related by
�0 D ���1�2.
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where each �j is connected and, for each j 2 f1; : : : ; tg, �j is connected to the
vertex i by kj edges, then replace � by the disjoint union of �1; : : : ; �t , and 2gi C
P

j .kj � 1/ copies of �

0
.

[R7] (Seifert graph exchange) Replace

�����
e ˙

where e 2 f�1; 0;C1g, by a star-shaped graph with all genera zero.
There are six cases, the pair .e;˙/ can be .�1;C/, .0;C/, .1;C/, .�1;�/,

.0;�/ and .1;�/. The corresponding star-shaped graphs are (in Kodaira’s notation,
used in elliptic fibrations, or using the notations of extended A-D-E graphs):
II; III. QA1/; IV . QA2/; II�. QE6/; III �. QE7/; IV �. QE8/.

Since they will not be used in the sequel, we omit the picture of the six graphs.

[R2/4] (Unoriented handle absorption followed by two RP2-extrusions) This
operation will not be used in the sequel, hence again we will not give more details
about it.

The interested reader can find details on both [R7] and [R2/4] in [94].

4.2.2. In the literature there are several special classes of graphs codifying special
families of 3-manifolds, for which the graph calculus, that is the set of allowed
operations, is more restrictive. Such special classes are for example, “spherical
plumbing graphs”, “orientable plumbing graphs with no cycles”, or “star-shaped
plumbing graphs”. For more examples and for their calculus, see e.g. Theorem 3.2
in [94].

Besides the study of special families of 3-manifolds, there is another motivation
to consider reduced sets of operations. If the class of plumbing graphs considered
is the result of a special geometric construction, then they might carry some
information in their shape or decorations which might be lost in the diffeomorphism
type ofM.� /. In such a situation, if we wish to preserve that extra information, then
we must use only those operations which preserve it. Of course, in such a case, we
cannot always expect the validity of the “sufficiency of the calculus”, but we gain a
stronger “stability”.

For example, in the case of the plumbing calculus of negative definite resolution
graph of a normal surface singularity, or the dual graph of any kind of complex
curve configuration on a smooth complex surface, we prefer to use only .�1/-blow
ups and its inverse instead of all possible operations of the smooth (oriented or non-
oriented) calculus. In this way, we can make sure that the graph modified by the
operation can again be realized in the corresponding complex analytical context.
Moreover, the blow ups preserve the number of independent cycles and the genera
of the graph (for their definition see below), which carry some analytic Hodge
theoretical information, cf. 18.1.9.
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4.2.3. The “reduced plumbing calculus”. In the present book, guided by results
of the present work, we also select a special set of operations from those used in
the calculus of oriented plumbed 3-manifolds and their graphs. The collection of
these operations is called reduced set of operations, and they generate the reduced
plumbing calculus.

Our graphs are constructed from a singularity theoretical viewpoint. Using only
the reduced set of operations allows for preserving features of these graphs inherited
from their algebro-geometric/analytic construction, which might be lost if we run all
the operations of the smooth calculus.

The principle by which we select the ‘reduced set of operations’ is the following.
For any decorated plumbing graph � let c.� / be the number of independent cycles
in � (i.e. the rank of H1.j� j/, where j� j is the topological realization of � ).
Furthermore, let g.� / be the sum of the genus decorations of � , i.e g.� / D
P

w2W .� / gw. The point is that all the graphs provided by our main construction,
associated with a fixed geometrical object (singularity) – but depending essentially
on the choice of an embedded resolution –, share two properties: all of them are
connected, and c.� / C g.� / is the same for all of them (describing a geometric
entity independent of the construction, cf. 13.6.10). Our reduced set contains exactly
those operations of the oriented calculus which

preserve connectedness and

keep the integer c.� /C g.� / of the graphs fixed.
(4.2.4)

In Neumann’s notation this list is the following : R0(a) (reverse the sign-decoration
on all edges other than loops adjacent to a vertex), R1 (blowing down ˙1 vertices),
R3 (0-chain absorption), and R5 (oriented handle absorption). The inverses of R1,
R3 and R5 are called: blowing up, 0-chain extrusion, oriented handle extrusion.

Remark 4.2.5. There is one particular case of the splitting operation R6 which still
satisfies the requirements (4.2.4). This operation has the following form, where the
two left-edges might have any sign-decorations:

[R6naive] (“Naive” splitting)

� � �� 00 e˙ ˙
� 0

Hence, this operation can also be inserted in the list of reduced calculus; neverthe-
less, one can prove that it is a consequence of those already listed there. Indeed, by
R0(a) we can assume that the signs of the left edges are C. By blowing up the left-
edge, and blowing down the strict transform of the 0-vertex, we realize that e can be
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replaced by e˙ 1. Hence by repeating this pair of operations, we can reduce e to 0.
Then a 0-chain absorption of this newly created 0-vertex finishes the argument.

In this book we will manipulate only the operations listed above. Nevertheless, if
the reader wishes to use some other operations of the (oriented) plumbing calculus,
this is perfectly fine if she or he wishes to focus only on @F . In fact, sometimes it is
helpful to have in mind the “splitting operation” R6 too, since it helps to represent
some of the manifolds as connected sums.

Definition 4.2.6. We write �1 � �2 if �1 can be obtained from �2 by the above
reduced plumbing calculus.

4.2.7. The strictly reduced calculus. We can go further, and consider an even more
restricted set of operations. It is based on the conjecture that under our construction
of graphs, all the possible graphs associated with the same geometric object, a non-
isolated singular germ f , share the same integers c.� / and g.� / (independently of
the different choices in the construction). In fact, we conjecture that these integers
are related to the weight filtration of the mixed Hodge structure on H1.@F;C/, see
Chap. 18.

Since these numbers are modified under the usual calculus, in fact even under the
reduced calculus, we get that the weight filtration of the mixed Hodge structure is not
a topological/smooth invariant of @F (provided that the above mentioned conjecture
is true). For concrete examples see 19.9.2 and 19.9.3.

This suggests, that if we would like to preserve this analytic information as well,
we have to exclude the oriented handle absorption R5 from the list of operations of
the “reduced calculus”, and use an even more restrictive set, which is called strictly
reduced oriented calculus. Hence, it only includes the operations R0(a), R1 and R3
and their inverses.

4.2.8. Reduced oriented plumbing calculus of graphs with arrows. If the graph
has some arrows and/or dash-arrows, then all the above operations R0(a), R1, R3
and R5 of the reduced calculus have their natural analogs, complemented with some
additional rules:

1. the vertex involved in R0(a), the .˙1/-vertex in R1, and the 0-vertex in R3 and
R5 should be a non-arrowhead;

2. the .˙1/-vertex blown down in R1 can have at most two edges (including
also those ones which support arrowheads); if the vertex has exactly one edge
supporting an arrowhead, then we do not modify it by blow down;

3. the 0-vertex absorbed in R3 and R5, cannot support any kind of arrow;
4. by the operations, the arrows of the other vertices are naturally kept, and in the

case of R3 the arrows supported by vertices i and j are summed;
5. if a vertex supports a dash-arrow then its Euler number is irrelevant.
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Additionally, one has the following operation as well:

[R8] (Annulus absorption for dash-arrows)

� ����

��
�

�

	 
: : :

�
�
��






�: : :

���
ei

Œgi �



� �



Œgi �

���

��
����
	 
: : :

�
�
��






�: : :

�

Here, if on the left hand side the vertex supports s arrows and t dash-arrows, then
on the right hand side it supports s arrows and tC1 dash-arrows. The Euler number

 can be any integer.

A special, “degenerate” version of this is the operation

� ��



���

where both graphs represent a manifold with boundary obtained from S3 by
removing the tubular neighbourhoods of two Hopf link-components.

In the presence of a multiplicity system, all the above operations can be extended
with taking the corresponding multiplicities into account in a natural and unique
way such that the formulae (4.1.5) stay stable under the operations. We emphasize
again, that the multiplicity of the dash-arrows is not well-defined, hence if a non-
arrowhead vertex supports a dash-arrow, then its Euler number is not well-defined
either.

4.2.9. Changing the orientation. If � is an orientable plumbing graph, that is a
graph with all gv � 0, then let �� be the same graph with the signs of all Euler
and edge decorations reversed. Then M.�� / D �M.� /, that is, �� provides the
same manifold as � but with opposite orientation.

4.3 Examples: Resolution Graphs of Surface Singularities

Let .X; x/ be a normal surface singularity and fix the germ f W .X; x/ ! .C; 0/

of an analytic function. In this section we review the definition of the embedded
resolution graph � .X; f / of f . More details can be found in the books of Laufer
[57] and Eisenbud–Neumann [33], and also in the survey article of Lipman [65].
In Sect. 4.4 we also recall the basic topological properties of the link KX of .X; x/
and of the pair .X; f �1.0// including the representation arg�.f / provided by the
Milnor fibration associated with f .

We use the notation .Vf ; x/ D .f �1.0/; x/.
4.3.1. The embedded resolution. Let .X; x/ be a normal surface singularity and let
f W .X; x/ ! .C; 0/ be the germ of an analytic function. An embedded resolution
� W .Y ;D/ ! .U; Vf / of .Vf ; x/ � .X; x/ is characterized by the following



36 4 Plumbing Graphs and Oriented Plumbed 3-Manifolds

properties. There is a sufficiently small neighborhoodU of x in X , smooth analytic
manifold Y , and analytic proper map � W Y ! U such that:

1) if E D ��1.x/, then the restriction �jY nE W Y nE ! U nfxg is biholomorphic,
and Y nE is dense in Y ;

2) D D ��1.Vf / is a divisor with only normal crossing singularities, i.e. at any
point P of E, there are local coordinates .u; v/ in a small neighbourhood of P ,
such that in these coordinates f ı � D uavb for some non-negative integers a
and b.

If such an embedded resolution � is fixed, then E D ��1.x/ is called the
exceptional curve associated with �. Let E D [w2W Ew be its decomposition in
irreducible components. The closure S of ��1.Vf nf0g/ is called the strict transform
of Vf . Let [a2A Sa be its decomposition into irreducible components. Obviously,
D D E [ S .

For simplicity, we will assume that W 6D ;, any two irreducible components of
E have at most one intersection point, and no irreducible exceptional component
has a self-intersection. This can always be realized by some additional blow ups.

4.3.2. The embedded resolution graph� .X; f /. We construct the dual embedded
resolution graph � .X; f / of the pair .X; f /, associated with a fixed resolution �,
as follows. Its vertices V D W t A consist of the nonarrowhead vertices W
corresponding to the irreducible exceptional components, and arrowhead vertices
A corresponding to the irreducible components of the strict transform S . If two
irreducible divisors corresponding to v1; v2 2 V have an intersection point then we
connect v1 and v2 by an edge in � .X; f /.

The graph � .X; f / is decorated as follows. The edges are decorated by C. Any
vertex w 2 W is decorated with the self-intersection ew WD Ew � Ew, which equals
to the Euler number of the normal bundle ofEw in Y , and with the genus gw ofEw.
Furthermore, the third decoration is the multiplicity (of f ), defined for any v 2 V ,
which is the vanishing order of f ı� along the irreducible component corresponding
to v. For example, if f defines an isolated singularity, then for any a 2 A one has
ma D 1.

4.3.3. The resolution graph � .X/ of .X; x/. We say that � W Y ! U is a
resolution of .X; x/ if Y is a smooth analytic manifold, U a sufficiently small
neighbourhood of x in X , � is a proper analytic map, such that Y n E (where
E D ��1.x/) is dense in Y and the restriction �jY nE W Y n E ! U n fxg is a
biholomorphism.

If E is a normal crossing curve, then the topology of the resolution and the
combinatorics of the irreducible exceptional components [wEw are codified in the
dual resolution graph � .X/, associated with �. It is defined similarly as � .X; f /
in 4.3.2, but without arrowheads and multiplicities.

4.3.4. Some properties of the graphs � .X; f / and � .X/.

(1) � D � .X/ can serve as a plumbing graph: the associated oriented plumbed
3-manifold M.� / is diffeomorphic to the link KX of X , and the space Y of
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the resolution can be identified with the plumbed 4-manifold P.� / considered
in 4.1.4.

Moreover, the multiplicity system of � .X; f / satisfies the system of equa-
tions (4.1.5).

(2) The graphs � .X; f / and � .X/ depend on the choice of �. Nevertheless,
different dual graphs associated with different resolutions are connected by a
sequence of blow ups and blow downs of .�1/-rational curves (operation R1
with � D �1).

By [94], from KX one can recover � .X/ up to this blow up ambiguity.
(3) The intersection matrix A is negative definite; see [79], [57], or [40]. In

particular, A is non-degenerate, hence the multiplicities fmwgw2W can be
recovered from the Euler numbers and the multiplicities fmaga2A , cf. 4.1.6.

(4) mv > 0 for any v 2 V , hence the set of multiplicities determine the
Euler numbers completely via (4.1.5). This “naive” property has a rather
important technical advantage: a multiplicity can always be determined by a
local computation, on the other hand the Euler number is a global characteristic
class.

This principle will be used frequently in the present book.
(5) The graphs � .X; f / and � .X/ are connected as follows from Zariski’s Main

Theorem, see [57] or [45].

4.3.5. Examples.

Plane curve singularities. If .X; x/ is smooth, then .Vf ; 0/ � .X; x/ can be
resolved using only quadratic modifications. In this case, the graph � .X; f / is a
tree, and gw D 0 for any w 2 W . See e.g. [16].

Cyclic coverings. Start with a normal surface singularity .X; x/ and a germ f W
.X; x/ ! .C; 0/. Consider the covering b W .C; 0/ ! .C; 0/ given by z 7! zN , and
construct the fiber product:

.X; x/
Y

f;b

.C; 0/ D f.x0; z/ 2 .X 
 C; x 
 0/ W f .x0/ D zN g:

By definition, Xf;N is the normalization of .X; x/
Q

f;b.C; 0/. The first projection
induces a ramified covering Xf;N ! X branched along Vf , with covering
transformation group ZN . For more details see 5.3.

Hirzebruch–Jung singularities [8, 47, 57, 109, 110]. For a normal surface singu-
larity, the following conditions are equivalent. If .X; x/ satisfies either one of them,
then it is called Hirzebruch–Jung singularity.

(a) The resolution graph � .X/ is a string, and gw D 0 for any w 2 W . (In the
terminology of low-dimensional topology, this is equivalent to the fact that the
link KX is a lens space.)

(b) There is a finite proper map � W .X; x/ ! .C2; 0/ such that the reduced
discriminant locus of � , in some local coordinates .u; v/ of .C2; 0/, is fuv D 0g.
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(c) .X; x/ is isomorphic with exactly one of the “model spaces” fAn;qgn;q, where
An;q is the normalization of .fxyn�qCzn D 0g; 0/, where 0 < q <n; .n; q/D 1.

Usually, Hirzebruch–Jung singularities appear as in (b). If there is a map � as in
(b) with smooth reduced discriminant locus, then .X; x/ is automatically smooth.
The following local situation is a prototype.

For any three strictly positive integers a; b and c, with gcd.a; b; c/ D 1, let .X; x/
be the normalization of .fxayb C zc D 0g; 0/ � .C3; 0/. Then the projection to the
.x; y/-plane induces a map which satisfies (b). Let z W .X; x/ ! .C; 0/ be induced
by .x; y; z/ 7! z. Then the minimal embedded resolution graph of the pair .X; z/ is
the following. (In the sequel sometimes we write .a; c/ for gcd.a; c/.)

First, consider the unique 0 � 	 < c=.a; c/ andm1 2 N with:

b C 	 � a

.a; c/
D m1 � c

.a; c/
: (4.3.6)

If 	 6D 0, consider the continued fraction:

c=.a; c/

	
D k1 � 1

k2 � 1

: : : � 1

ks

; k1; : : : ; ks � 2: (4.3.7)

Then the next string is the embedded resolution graph of z:

. a
.a;c/

/ . b
.b;c/

/
�k1 �k2 �ks
.m1/ .m2/ .ms/

� � �� �� � �

The arrow at the left (resp. right) hand side codifies the strict transform of fx D 0g
(resp. of fy D 0g). The first vertex has multiplicity m1 given by (4.3.6); while
m2; : : : ; ms can be computed by (4.1.5) with all edge-signs � D C, namely:

�k1m1 C a

.a; c/
Cm2 D 0; and � kimi Cmi�1 CmiC1 D 0 for i � 2:

The same graph might also serve as the resolution graph of the germ x, induced
by the projection .x; y; z/ 7! x. The multiplicities of x are given in the next graph,
where the arrows codify the same strict transforms:

.0/
�k1 �k2 �ks
.	/

. c
.a;c/

/ � � �

..b; c//

�� � � �

The other multiplicities can again be computed by (4.1.5), with all edge-signs C.
Symmetrically, the graph of y is:
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.0/ . c
.b;c/

/
�k1 �k2 �ks
..a; c//

� � �

. Q	/
� �� � �

where 0 � Q	 < c=.c; b/ and

aC Q	 � b

.b; c/
D ms � c

.b; c/
:

Hence, the embedded resolution graph � .X; xiyj zk/ of the germ xiyj zk defined
on X is the graph with the same shape, same Euler numbers and genera, and the
multiplicitymv (for any vertex v) satisfying

mv.x
iyj zk/ D i �mv.x/C j �mv.y/C k �mv.z/:

Remark 4.3.8. Note the negative sign in the (unusual) continued fraction expansion
(4.3.7). Such an expression in the sequel will be called Hirzebruch–Jung continued
fraction, and it will be denoted by Œk1; k2; : : : ; ks�. In the present work all continued
fraction expansions are of this type.

4.3.9. The strings Str. Next, we wish to define a string which will be used
systematically in the main result. Strangely enough, its Euler numbers will be
deleted. Before providing the precise definition, let us give a reason for it; see also
4.3.4(4).

As we already mentioned, once we know all the multiplicities and edge decora-
tions, all the Euler numbers can be recovered by (4.1.5). In the main construction,
we will glue together graphs whose multiplicity systems on common parts agree,
but under the gluings the Euler numbers might change. In particular, as “elementary
blocks” of the gluing construction we consider graphs with multiplicity decorations,
but no Euler numbers: their “correct” Euler numbers will be determined last, after
the gluing has been done and after deciding the edge-decorations.

Definition 4.3.10. In the sequel, for positive integers a, b and c,

StrC.a; bI c j i; j I k/ or Str.a; bI c j i; j I k/

denotes the string � .X; xiyj zk/, together with its two arrowheads, all vertices
(arrow-heads or not) weighted with multiplicities as above, and with all edge
decorations C, but with all Euler numbers deleted. Moreover,

Str�.a; bI c j i; j I k/

denotes the same string but with all edges (connecting arrowheads and non-
arrowheads) decorated with �.
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In particular, if 	 D 0, then the corresponding string Str˙.a; bI c j i; j I k/ is a
double arrow (decorated with C or �) having no non-arrowhead vertex.

The same ˙-double-arrow will be used for the string Str˙.a; bI c j i; j I k/ even
if a D 0 or b D 0 (with the convention a=.a; b/ D 0 whenever a D 0).

4.4 Examples: Multiplicity Systems and Milnor Fibrations

4.4.1. The homology of the link KX of .X; x/. Let .X; x/ be a normal surface
singularity, and let KX be its link, cf. 3.4. We fix a resolution Y with exceptional
setE D fEwgw2W and dual resolution graph � D � .X/. The intersection matrixA
can be identified with a Z-linear map A W ZjW j ! .ZjW j/�, where for a Z-module
M , M � denotes its dual HomZ.M;Z/. Since A is non-degenerate, coker .A/ is a
torsion group with jcoker .A/j D j det.A/j. Then from the homological long exact
sequence of the pair .Y ; KX/ D .P.� /;M.� // one has

Proposition 4.4.2. [48, 79, 112]

H1.KX;Z/ D coker .A/˚H1.E;Z/ D coker .A/˚ Z
2g.� /Cc.� /:

4.4.3. The topology of the pair .KX; Vf /. We consider an analytic germ f W
.X; x/!.C; 0/; which is not necessarily an isolated singularity. Set Kf WDKX\Vf .
In this section we wish to compare the multiplicity system of � .X; f / and the
generalized Milnor fibration arg WD f=jf j W KX n Kf ! S1. If f defines an
isolated singularity, then this is an open book of KX with bindingKf .

The next Proposition is a general fact for compact 3-manifolds, see for example
[33, page 34]:

Proposition 4.4.4. The fibration arg W KX nKf ! S1 is completely determined, up
to an isotopy, by the induced representation arg� W H1.KX nKf ;Z/ ! Z. Moreover,
if Zn WD coker .arg�/, then the page of arg has n connected components which are
cyclically permuted by the monodromy.

The map arg� can be compared with the multiplicity system as follows.
Let ZV be the free abelian group generated by fhvigv2V . Define the group H�

as the quotient of ZV factorized by the subgroup generated by:

ewhwi C
X

v2Vw

hvi .for all w 2 W /:

Proposition 4.4.5. [48, 94, 112] One has the following exact sequences

0 ! Z
A i! H� ! coker .A/ ! 0;

0 ! H�

j! H1.KX nKf ;Z/
q! H1.E;Z/ ! 0;
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where i is the composed map ZA ,! ZV ! H� , and j.Œhvi�/ D Œ�v�. (For the
definition of �v see 4.1.8.)

Define m W H� ! Z by m.Œhvi�/ D mv. Then arg� ıj D m inserts into the
diagram:

0 ! H�

j�! H1.KX nKf ;Z/
q�! H1.E;Z/ ! 0:

�
arg�

�����
m

Z

If KX is a rational homology sphere, that is H1.E;Z/ D 0, then j is an
isomorphism, and the set fmaga2A determines completely the Milnor fibration up
to an isotopy.

In general one has the divisibilities, where n is the order of coker.arg�/ as above,

n
ˇ

ˇ gcdfmv W v 2 V g ˇ

ˇ gcdfma W a 2 A g:

Nevertheless, it might happen that n 6D gcdfmv W v 2 V g, hence n cannot
be determined from m. Or, even if n D gcdfmv W v 2 V g, in general, from
the multiplicities one cannot recover arg�. We illustrate this by some examples
borrowed from [86].

In these examples .X; x/ will be a Brieskorn singularity, or a cyclic covering.
The reader might determine the corresponding graphs by his/her preferred method
applicable for such cases; nevertheless, for such singularities, and for any of
the coordinate functions, one can deduce the embedded resolution by using the
algorithm of cyclic coverings presented in the Sect. 5.3.

Example 4.4.6. Set .X; x/ D .fx2 C y7 � z14 D 0g; 0/ � .C3; 0/ and take
f1.x; y; z/ D z2 and f2.x; y; z/ D z2 � y. Then � .X; f1/ D � .X; f2/ is the graph

�

�1
Œ3�

�
.2/

.2/

In both cases coker .arg�/ is a factor of coker .m/ D Z2. In fact, coker .arg�
.f1// D Z2 and arg�.f2/ is onto. Indeed, the Milnor fibration of z2 is the pullback
by z 7! z2 of the Milnor fibration of z, hence coker .arg�/ D Z2. For the second
statement it is enough to verify that the double covering fx2 C y7 � z14 D
w2 C y � z2 D 0g � C4 is irreducible (notice that our equations are quasi-
homogeneous, hence we can replace a small ball centered at the origin with
the whole affine space). But this is true if its intersection with y D 1, that is
C WD fx2 D z14 � 1I w2 D z2 � 1g � C3, is irreducible. The covering C ! C,
.x;w; z/ 7! z, is a Z2 
 Z2 covering. The monodromy around ˙1 is .�1;�1/, and
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around any ˛ with ˛14 D 1 and ˛2 6D 1 is .�1;C1/. Hence the global monodromy
group is the whole group Z2 
 Z2, in particular C is irreducible.

Notice also that all the multiplicities of f2 are even, nevertheless there is no germ
g W .X; x/ ! .C; 0/ with f2 D g2.

Example 4.4.7. Set .X; x/ D .fz2 C .x2 �y3/.x3 �y2/ D 0g; 0/ and f1 D x2 and
f2 D x2 � y3. Then � .X; f1/ D � .X; f2/ is the following graph

�

�

�

�
�
�

�
�
�

�1
�4.2/

�4.2/

�
.6/

.2/

Then again, arg�.f1/ has cokernel Z2, and arg�.f2/ is onto.

Notice that in the above examples, .X; x/ D .fz2Ch.x; y/ D 0g; 0/, h is reduced,
f2 divides h but it is not equal to h. For all such cases the monodromy argument
given in 4.4.6 is valid. But all these examples define non-isolated singularities.

In order to construct examples of germs which define isolated singularities, we
will use the well-known construction of series of singularities. Namely, assume that
f1 and f2 have the same graph but have different representations arg�, and their zero
sets have non-isolated singularities. Next, we find a germ g such that the zero set
of fi and g have no common components (i D 1; 2). Then, for sufficiently large k,
the germs f1 C gk and f2 C gk , will define isolated singularities with the same
embedded resolution graphs, but different representations arg�.

Example 4.4.8. Set .X; x/ D .fx2 C y7 � z14 D 0g; 0/ � .C3; 0/ and take
f1.x; y; z/ D z2 and f2.x; y; z/ D z2 � y as in 4.4.6. Let P be the intersection
point of the strict transform Sa of ffi D 0g with the exceptional divisor E. Then, in
some local coordinate system .u; v/ of P , fu D 0g represents E, fv D 0g represents
Sa, and fi D u2v2. Consider g D y. Since y in the neighborhood of P can be
represented as y D u2 (modulo a local invertible germ), fi C gk near P has the
form u2v2 C u2k. For example, if k D 2, then one needs one more blowing up in
order to resolve fi C gk .

Therefore, � .X; z2 C yk/ D � .X; z2 � y C yk/ for any k � 2; and for k D 2,
the graphs have the following form:

� ��
�
��

�
�
��

�2 �1
Œ3�

.2/ .4/

.1/

.1/



4.4 Examples: Multiplicity Systems and Milnor Fibrations 43

Notice that now m is onto, hence both arg�.fi / are onto. Nevertheless,
arg�.f1/ 6D arg�.f2/ since their restrictions to a subgroup of H1.KX n Kf /

(localized near the exceptional curve of genus 3) are different. This follows similarly
as in 4.4.6.

Example 4.4.9. Set .X; x/ D .fz2C.x2�y3/.x3�y2/ D 0g; 0/ and f1 D x2Cyk
and f2 D x2 � y3 C yk , where k � 4. Then by a similar argument as above,
� .X; f1/ D � .X; f2/, but arg�.f1/ 6D arg�.f2/. The graph for k D 4 is

� �

�

�

�
�
�

�
�
�

�2�1
�4.2/

�4.2/

�
�

��

�
�

��

.6/.8/

.1/

.1/



Chapter 5
Cyclic Coverings of Graphs

5.1 The General Theory of Cyclic Coverings

In this section we review a graph-theoretical construction from [86].

Definition 5.1.1. A morphism of graphs p W �1 ! �2 consists of two maps pV W
V .�1/ ! V .�2/ and pE W E .�1/ ! E .�2/, such that if e 2 E .�1/ has end-
vertices v1 and v2, then pV .v1/ and pV .v2/ are the end-vertices of pE .e/. If pV

and pE are isomorphisms of sets, then we say that p is an isomorphism of graphs.
If � is a graph, we say that Z acts on� , if there are group-actionsaV W Z
V !

V and aE W Z 
 E ! E of Z with the following compatibility property: if e 2 E
has end-vertices v1 and v2, then aE .h; e/ has end-vertices aV .h; v1/ and aV .h; v2/.
The action is trivial if aV and aE are trivial actions.

If Z acts on both �1 and �2, then a morphism p W �1 ! �2 is equivariant if the
maps pV and pE are equivariant with respect to the actions of Z. If additionally p
is an isomorphism then it is called an equivariant isomorphism of graphs.

Fix a finite graph � , and assume that Z acts on it in a trivial way.

Definition 5.1.2. A Z-covering, or cyclic covering of � consists of a finite graph
G, that carries a Z-action, together with an equivariant morphism p W G ! �

such that the restriction of the Z-action on any set of type p�1.v/ (v 2 V .� /),
respectively p�1.e/ (e 2 E .� /), is transitive.

Fix a cyclic covering p W G ! � . For any v 2 V .� /, let nvZ be the maximal
subgroup of Z which acts trivially on p�1.v/. Similarly, for any e 2 E .� / with
end-vertices fv1; v2g, let de � lcm.nv1 ; nv2 /Z be the maximal subgroup of Z which
acts trivially on p�1.e/. These numbers define a system of strictly positive integers

.n;d/ D ˚fnvgv2V .� /I fdege2E .� /

�

:

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 5,
© Springer-Verlag Berlin Heidelberg 2012

45
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Definition 5.1.3. .n;d/ is called the covering data of the covering p W G ! � .

Sometimes we write
ne WD de � lcm.nv1 ; nv2 /:

Definition 5.1.4. Two cyclic coverings pi W Gi ! � .i D 1; 2/ are equivalent,
denoted by G1 � G2, if there is an equivariant isomorphism q W G1 ! G2 such that
p2 ı q D p1.

The set of equivalence classes of cyclic coverings of � , all associated with a
fixed covering data .n;d/, is denoted by G .�; .n;d//.

Theorem 5.1.5. [86] G .�; .n;d// has an abelian group structure and it is
independent of d.

In general, G .�; .n;d// is non-trivial. Here are some examples.

Example 5.1.6. [86] For a covering data .n;d/ one has:

1. Assume that � is a tree. Then G .�; .n;d// D 0 for any .n;d/. Therefore, up to
an isomorphism, there is only one coveringG of � . It has exactly gcdfnvgv2V .� /

connected components.
2. Assume that � is a cyclic graph, that is V .� / D fv1; v2; : : : ; vkg and E .� / D

f.v1; v2/; .v2; v3/; : : : ; .vk; v1/g, where k � 3. Then G .�; .n;d// D Zn, where
n D gcdfnv W v 2 V .� /g.

3. For any subgraph � 0 � � there is a natural surjection pr W G .�; .n;d// !
G .� 0; .n;d//.

4. Let � be a graph with c.� / D 1, and let � 0 be the unique minimal cyclic
subgraph of � . If n WD gcdfnv W v 2 V .� 0/g, then G .�; .n;d// D Zn.

Remark 5.1.7. If p W G ! � is a cyclic covering then c.G/ � c.� /. Indeed, if
jGj and j� j denote the topological realizations of the corresponding graphs, then
the invariant subspaceH1.jGj;Q/Z is isomorphic to H1.j� j;Q/.

On the other hand, we have the following result which will be a key ingredient
of the main construction in 10.2.8:

Theorem 5.1.8. [86, (1.20)] Fix � and .n;d/ as above. Set V 1 WD fv 2 V .� / W
nv D 1g. Let � 6D1 be the subgraph of � obtained from � by deleting the vertices
from V 1 and their adjacent edges. If each connected component of � 6D1 is a tree,
then G .�; .n;d// D 0.

5.1.9. Variations. One extends the set of coverings as follows (cf. [86, 1.25]).

1. Assume that we have two types of vertices: arrowheads A and non-arrowheads
W , i.e. V D A t W . Then in the definition of a coverings p W G ! � we add
the following axiom: A .G/ D p�1.A .� //.

2. Assume that our graphs have some decorations. Then for a covering p W G ! �

we also require that the decorations of G must be equivariant.
3. “Equivariant string insertion” means the following modification of � . One starts

with the following data:
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(a) a graph � and a system .n;d/ as above;
(b) a covering p W G ! � , as an element of G .�; .n;d//;
(c) for any edge e of � , we fix a string Str˙.e/ (with decorations):

Str˙.e/ W
.m1/ .m2/ .ms/

� � �� �� � �˙ ˙ ˙ ˙ ˙

Then the new graphG.fStr˙.e/ge/ is constructed as follows: we replace each
edge Qe 2 p�1

E .e/ (with end-vertices Qv1 and Qv2 and decoration ˙) of G as shown
below:

� �˙
Qv1 Qv2

is replaced by

.m1/ .m2/ .ms/Qv1 Qv2
� � �� �� � �˙ ˙ ˙ ˙ ˙

5.2 The Universal Cyclic Covering of � .X; f /

Fix a normal surface singularity .X; x/ and a germ f W .X; x/ ! .C; 0/ of an
analytic function. Fix also a resolution � W .Y ;D/ ! .U; Vf / as in 4.3.1, and
consider the associated embedded resolution graph � .X; f /. In this section we
recall the construction of a canonical cyclic covering of this graph via the Milnor
fibration of f . It is called the universal cyclic covering of � .X; f /. For more details
see [28, 86].

There are several reasons why we include this construction in the present work:

• The universal cyclic covering is the prototype of all cyclic coverings provided by
geometric constructions. For an analogous construction, which is an important
ingredient in some proofs of the book, see 7.1.6.

• It shows, for a fixed graph � .X; f /, how one can codify graph-theoretically the
possible differences of arg�. Thus, it is a necessary complement of Sect. 4.4.

• It guides all the geometry, in particular the resolution graphs, of cyclic coverings
Xf;N .

• By examples which show that a graph can have several cyclic coverings, we
emphasize the role and power of the key Theorem 5.1.8, which guarantees
that the graph provided by the Main Algorithm in Chap. 10 is well-defined and
unique.
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5.2.1. The construction of the covering p W G.X; f / ! � .X; f /.
Let T .Ew/ (w 2 W ) be a small tubular neighborhood of the irreducible curve Ew.
By our assumption that any two irreducible components of the exceptional divisor
have at most one intersection point (see 4.3.1), for any edge e D .v;w/ connecting
two non-arrowheads, the intersection T .Ew/ \ T .Ev/ is a bidisc Te. If T .Sa/, for
a 2 A , is a small tubular neighborhood of the irreducible component Sa of the
strict transform S (cf. 4.3.1), and a is adjacent to wa 2 W , then corresponding to
the edge e D .a;wa/ we introduce the bidisc Te D T .Sa/ \ T .Ewa /. Set T D
.[wT .Ew// [ .[aT .Sa//.

Next, we consider the smooth fiber f �1.ı/ � X lifted via �. For sufficiently
small ı > 0, the fiber F WD .f ı �/�1.ı/ � Y is in T . Set Fw D F \ T .Ew/ for
any w 2 W , Fa D F \ T .Sa/ for any a 2 A , and Fe D F \ Te for any e 2 E .

It is possible to chose the geometric monodromy acting on F in such a way that
it preserves the subspaces fFvgv2V and fFege2E . Then the connected components
of Fv, respectively of Fe , are cyclically permuted by this action. Let nv and ne be
the number of connected components of Fv and Fe respectively. Then, for any e D
.v1; v2/, we have ne D de � lcm.nv1 ; nv2 / for some de � 1.

Now, we are able to construct the covering p W G.X; f / ! � .X; f / associated
with the resolution �. Above a vertex v 2 V .� .X; f // there are exactly nv vertices
of G.X; f / which correspond to the connected components of Fv. The Z-action
is induced by the monodromy. If v is an arrowhead in � then by our agreement
5.1.9(1), all the vertices in G above v are arrowheads. Above an edge e of � ,
there are ne edges of G. They correspond to the connected components of Fe . The
Z-action is again generated by the monodromy.

Fix an edge Qe of G (above the edge e of � ) which corresponds to the connected
componentFQe of Fe . Similarly, take a vertex Qv ofG (above the vertex v of � ) which
corresponds to the connected component FQv of Fv. Then Qe has as an end the vertex
Qv if and only if FQe � FQv. In particular, Qv1 and Qv2 are connected in G if and only
if FQv1 \ FQv2 6D ;: if FQv1 \ FQv2 has de connected components, then Qv1 and Qv2 are
connected exactly by de edges.

Next, we list some basic properties of the universal covering graph comple-
mented with several examples. For more details see [86].

Example 5.2.2. Assume that the link KX is a rational homology sphere. Then the
covering data can be uniquely recovered from� .X; f /, hence, by 5.1.6(1),G.X; f /
itself is also determined. Indeed, for any v 2 V .� / let Vv denote the set of vertices
adjacent to v. Then nv D gcdfmw W w 2 Vv [ fvgg for any v 2 V .� /, and ne WD
gcd.mv1 ; mv2 / for any e D .v1; v2/ 2 E .� /. Moreover, the number of connected
components of G.X; f / is exactly gcdfmv W v 2 V .� /g.

In general, one has the following connectedness result.

Lemma 5.2.3. The number of connected components of the graphG.X; f / is equal
to the number of connected components of the Milnor fiber F of the germ f . This
number also agrees with jcoker .arg�.f //j. In particular, if f defines an isolated
singularity, then G.X; f / is a connected graph.
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Since jcoker .arg�.f //j divides gcdfmv W v 2 V g, the graph G.X; f / is
connected whenever gcdfmv W v 2 V g D 1. (Nevertheless, G.X; f / can be
connected even if gcdfmv W v 2 V g 6D 1, see e.g. 5.2.4.)

Example 5.2.4. Set .X; x/ D .fx2 C y7 � z14 D 0g; 0/ � .C3; 0/ and take
f1.x; y; z/ D z2 and f2.x; y; z/ D z2 � y as in 4.4.6. The next diagrams show
the coverings p W G.X; fi/ ! � .X; fi/ for i D 1; 2.

Note that the number of connected components of the graphs G.X; fi/ is
different.

�

Œ3�
�

.2/
.2/

.i D 1/

�
p

�

�

�

�

�

Œ3�
�

.2/
.2/

.i D 2/

�
p

��
�
��

�
�
��

Example 5.2.5. Set .X; x/ D .fx2 C y7 � z14 D 0g; 0/ � .C3; 0/ and take
f1.x; y; z/ D z2 C y2 and f2.x; y; z/ D z2 � y C y2 as in 4.4.8. The next diagrams
show the coverings p W G.X; fi/ ! � .X; fi/, where i D 1; 2.

In this case the number of independent cycles of the graphsG.X; fi / is different.

� ��
�
��

�
�
��

Œ3�

.2/ .4/

.1/

.1/
.i D 1/

�
p

�

�

�

�
�
�

�
�
��
�
��

�
�
��

� ��
�
��

�
�
��

Œ3�

.2/ .4/

.1/

.1/
.i D 2/

�
p

� �

��

��

�
�
��

�
�
��
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Example 5.2.6. Set .X; x/ D .fz2C .x2�y3/.x3�y2/ D 0g; 0/ and f1 D x2Cy4

and f2 D x2 � y3 C y4 as in 4.4.9. Then the coverings p W G.X; fi/ ! � .X; fi /

(for i D 1; 2) are:

� �

�

�

.i D 1/

�
�
�

������














.2/

.2/

�
�

��

�
�

��

.6/.8/

.1/

.1/

�
p
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�

�
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�

����
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Remark 5.2.7. Determining the complex monodromy.
Consider a pair .X; f / as above. Let arg W KX n Kf ! S1 be its generalized
Milnor fibration as in 4.4.4. Assume that the Milnor fiber F has n connected
components, and letM W H1.F;C/ ! H1.F;C/ be its algebraic monodromy acting
on H1.F;C/. Let P.t/ denote its characteristic polynomial P.t/ D det.tI � M/.
Let fmvgv2V be the multiplicities of the graph � D � .X; f /. In addition, for any
non-arrowhead vertex w 2 W of � .X; f /, denote by ıw the number of adjacent
vertices (with the notation of 5.2.2, ıw D jVwj). Then the following facts hold:

1. A’Campo’s formula [2–4]

tn � 1
P.t/

D
Y

w2W .� /

.tmw � 1/2�2gw�ıw : (5.2.8)

Hence, for the Euler characteristic of the page F one also has

�.F / D
X

w2W .� /

mw � .2 � 2gw � ıw/; (5.2.9)

and the dimension of the generalized 1-eigenspace .H1.F;C//1 is

.dimH1.F;C//1 D 2g.� /C 2c.� /C jA .� /j � 1: (5.2.10)
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Note that if f is an isolated singularity, then �.F / and P.t/ can be determined
from the pair .KX;Kf /, that is, only from the binding of the open book
decomposition, and the additional facts regarding arg�.f / are not needed.

This is in contrast with the Jordan block structure of the operatorM , see part
3 of this list.

2. By the Monodormy Theorem [2–4, 15, 22, 59, 61, 67], the size of a Jordan block
of M can at most be 2. Let #2

	 be the number of Jordan blocks with eigenvalue
	 and size 2. Then from the Wang exact sequence applied to the Milnor fibration
one gets (see e.g. [91]):

dim ker.M � I / D 2g.� /C c.� /C jA .� /j � 1: (5.2.11)

Therefore, using (5.2.10) too, #21 D c.� .X//, hence #21 depends only onKX , and
it is independent of the germ f .

3. [86, 3.25] Let G D G.X; f / be the universal covering of � .X; f /, let jGj
be its topological realization. The cyclic action on G induces an action on jGj.
At homological level, this induces a finite morphism MjGj on H1.jGj;C/. Then
there is an isomorphism of pairs

.H1.jGj;C/;MjGj/ D .im.MN � I /;M/; (5.2.12)

where N is an integer such that 	N D 1 for any eigenvalue 	 of M . Hence,
#2
	.f / equals the multiplicity of the root 	 in the characteristic polynomial of
MjGj.

For example, in the case of Example 5.2.5, the monodromy of f1 is finite,
while the monodromy of f2 has a Jordan block of size 2, that is #2�1.f2/ D 1.

4. Nevertheless, ifKX is a rational homology sphere, each #k	.f / can be determined
from � D � .X; f / [33, 86, 95]. Assume that f defines an isolated singularity,
and consider the integers nv (v 2 V .� /) and ne (e 2 E .� /) as in 5.2.2. For any
fixed positive integer N set nw WD gcd.nw; N / and ne WD gcd.ne; N /. Then

X

	ND1
#2	.f / D

X

e2E .� /

.ne � 1/�
X

w2W .� /

.nw � 1/: (5.2.13)

5.3 The Resolution Graph of f .x; y/ C zN D 0

Remark 5.3.1. Let .X; x/ be a normal surface singularity and f the germ of an
analytic function defined on .X; x/. Let us also fix a positive integer N .

The dual resolution graph of the cyclic covering Xf;N depends essentially on
the map arg�.f /. In Sect. 4.4 we emphasized that arg�.f / cannot be determined
from the dual embedded resolution graph� .X; f /. Hence, in general, the resolution
graph of Xf;N cannot be determined from � .X; f / and N either. Usually, from
� .X; f / and N one can read the covering data of all the edges and all the vertices
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with gw D 0, and obviously the graph � D � .X; f / itself, but still missing are
the covering data of vertices with gw > 0 and the global “twisting data” codified
in G .�; .n;d//, whenever this covering group is non-trivial. For concrete examples,
and a detailed discussion, see [86].

In order to determine the resolution graph of Xf;N , one needs to consider the
universal cyclic covering graph of � .X; f /, which codifies the missing informa-
tion, see [86]. On the other hand, if the link of .X; x/ is a rational homology sphere,
then the covering data can be recovered from the multiplicity system of � .X; f /
and the integer N , furthermore, any cyclic covering of � .X; f / can be determined
from � .X; f / and the covering data in a unique way, cf. 5.1. In particular, in such a
case, � .Xf;N / can be recovered from � .X; f / andN . This is definitely valid when
.X; x/ is a smooth germ, that is when Xf;N D ff .x; y/ C zN D 0g is the cyclic
cover of a plane curve singularity.

Since this special case is what will be needed in the sequel, in this section it is
all we recall. Different versions of this algorithm were used in several articles, see
[6, 44, 57, 84–86, 97, 99, 103–105]. For its generalization to the Iomdin series, see
[92]. It can also be viewed as the starting point of our Main Algorithm.

5.3.2. The resolution graph of Xf;N for a plane curve singularity f .
Assume that f W .C2; 0/ ! .C; 0/ is an isolated plane curve singularity, and
let us fix a positive integer N . As above, Xf;N denotes the germ of the isolated
hypersurface singularity ff .x; y/ C zN D 0g. Germs of this type are also called
suspensions. The projection .x; y; z/ 7! z induces a map z W .Xf;N ; 0/ ! .C; 0/.

In fact, the algorithm provides a possible embedded resolution graph � .Xf;N ; z/
from � .C2; f / and N . By adding the germ z we exploit fully the power of the
multiplicity system and its “local nature”, and we also exemplify the comment
4.3.4(4).

The graph � .Xf;N ; z/ is a cyclic covering p W � .Xf;N ; z/ ! � .C2; f / (with
arrowheads and decorations, cf. 5.1.9) of � .C2; f /. The covering data is the
following.

(a) For any w 2 W .� .C2; f //, let Vw be the set of all the vertices (arrowheads
and non-arrowheads) adjacent to w. Furthermore, set

nw WD gcd.mv W v 2 Vw [ fwg/:

Above w 2 W .� .C2; f // there are nw WD gcd.nw; N / vertices of � .Xf;N ; z/,
each with multiplicitymw=gcd.mw; N / and genus Qg, where:

2 � 2 Qg D .2 � jVwj/ � gcd.mw; N /C P

v2Vw
gcd.mw; mv; N /

nw
:

(b) Consider an edge e D .w1;w2/ of � .C2; f /

� �

.mw1/ .mw2/
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Set ne D gcd.mw1 ; mw2 /. Then e is covered by ne WD gcd.ne; N / copies of the
following string (cf. 4.3.9)

Str.
mw1

ne
;
mw2

ne
I N
ne

ˇ

ˇ0; 0I 1/:

(c) An arrowhead of � .C2; f /

� �
.mw/

.1/

is covered by one string of type Str.mw; 1IN j0; 0I 1/, whose right arrowhead
will remain an arrowhead of � .Xf;N ; z/ with multiplicity 1, and its left
arrowhead is identified with the unique vertex above w.

(d) In this way, we obtain all the vertices, edges and arrowheads of � .Xf;N ; z/,
all the multiplicities of z, and some of the Euler numbers. The missing Euler
numbers can be determined by (4.1.5). This ends the construction of� .Xf;N ; z/.

If we drop the arrowheads and multiplicities of � .Xf;N ; z/, we obtain � .Xf;N /.
The graphs � .Xf;N ; z/ and � .Xf;N /, in general, are not minimal. They can be
simplified by blowing down operation.

5.3.3. Brieskorn singularities. Evidently, the above strategy can be applied for an
arbitrary Brieskorn singularity f .x; y; z/ D xa1 C ya2 C za3 too. Nevertheless, in
the next paragraph we present a much shorter procedure valid for this case, see [99].

For any cyclic permutation .i; j; k/ of .1; 2; 3/ take:

di WD .ai ; Œaj ; ak�/I ˛i WD ai=di I qi WD Œaj ; ak�=di I

and 0 � !i < ˛i with 1C !iqi � 0 .mod ˛i /. Here Œ�; �� D lcm and .�; �/ D gcd.
For any i 2 f1; 2; 3g, we construct a string Sti . If !i 6D 0, take

˛i

!i
D ki1 � 1

ki2 � 1

: : : � 1

kis

; ki1; : : : ; kis � 2: (5.3.4)

Then Sti is the following graph (with a distinguished vertex x):

�ki1 �ki2 �kis
Sti W �x � �� � �

If !i D 0, then Sti contains only the distinguished vertex x, and it has no edges.
Then � .Vf / is the star-shaped graph obtained using .a1; a2/ copies of St3,

.a2; a3/ copies of St1, and .a3; a1/ copies of St2, by identifying their distinguished
vertices x. This vertex in � .Vf / will have genus g and Euler number e, where:



54 5 Cyclic Coverings of Graphs

2 � 2g D
X

.ai ; aj /�
Q

.ai ; aj /

.a1; a2; a3/

and

�e D .a1; a2; a3/

˛1˛2˛3
C

X

.ai ; aj /
!k

˛k
:

Above
P

and
Q

denotes the cyclic sum, respectively cyclic product.

5.3.5. Seifert invariants. Orbifold Euler number. [99] Those star shaped graphs
whose Euler numbers on the legs are � �2 characterize the Seifert manifolds. Their
topological invariants are codified as follows. Assume that f1; : : : ; 
g is an index set
for the legs. Each leg, via a continued fraction expansion as in (5.3.4), determines
a pair .˛`; !`/, the corresponding “orbit invariant”. Furthermore, the central vertex
has a genus decoration Œg� and Euler number e. Then the collection f.˛`; !`/; 1 �
` � 
Ig; eg is the Seifert invariant of the corresponding plumbed 3-manifold.

Usually, one also defines the orbifold Euler number by

eorb WD e C
X

`

!`=˛`: (5.3.6)

The intersection matrix (in the present normal form) is negative definite if and only
if eorb < 0. The rational number eorb is also called “virtual degree”, see [133].

One also has
�eorb �

Y

`

˛` D det.�A/

and
eorb.�M/ D �eorb.M/: (5.3.7)



Chapter 6
The Graph �C of a Pair .f; g/: The Definition

6.1 The Construction of the Curve C and Its Dual Graph

6.1.1. Introductory words. The main tool of the present book is the weighted graph
�C introduced and studied in [92]. It has two types of vertices, non-arrowheads and
arrowheads. The non-arrowhead vertices have two types of decorations: the first one
is an ordered triple .mIn; 
/ for some integersm; 
 > 0 and n � 0, while the second
one is the “genus” decoration Œg�, where g is a non-negative integer. If g D 0 then
we might omit this decoration. Any arrowhead has only one decoration, namely the
ordered triple .1I 0; 1/. The edges are not directed and loops are accepted. Each edge
has a decoration 2 f1; 2g, which in some special situations can be omitted, since it
can be recovered from the other decorations, cf. 6.2.4.

The graph �C was introduced to study hypersurface singularities in three
variables with 1-dimensional singular locus, and it was the main tool used getting
resolution graphs of the members of the generalized Iomdin series.

More precisely, in that article we started with a hypersurface germ f as above,
and chose an additional germ g W .C3; 0/ ! .C; 0/ such that the pair .f; g/ formed
an ICIS. The final output was the resolution graphs of the series of hypersurface
singularities f C gk , for k large, determined in terms of �C and k. Motivated by
the fact that in addition �C contains all the information needed to treat “almost all”
the correction terms of the invariants of the series (see [92], or 1.1.3 and 7.1 here),
we called �C “universal”. Its power is reinforced by the present work as well.

Nevertheless, perhaps, the name bi-colored relative graph associated with the
pair .f; g/ tells more about the geometry encoded in the graph. Here, the first
attribute points out that the edges can be decorated by two “colors” (1 and 2), a
key fact which has enormous geometrical effects and the source of pathological
behaviors. By “relative” we wish to stress, that the graph codifies the g-polar
geometry of f concentrated near the singular locus of Vf . In particular, in �C the
functionsf and g do not have a symmetric role. For more motivation and supporting
intuitive arguments regarding �C , see Sect. 7.1 too.

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 6,
© Springer-Verlag Berlin Heidelberg 2012
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Geometrically, the graph �C is the decorated dual graph of a special curve con-
figuration C in the embedded resolution of the pair .C3; Vf [ Vg/. Its presentation
is the subject of the next paragraphs.

6.1.2. The definition of C and �C [92]. Consider an ICIS .f; g/ W .C3; 0/ !
.C2; 0/ and the local divisor .D; 0/ WD .Vf [ Vg; 0/ � .C3; 0/. Let

˚ W ˚�1.D2

/\ B� ! D2




denote a good representative of .f; g/ as in Sect. 3.1. Denote by �˚ � D2

 its

discriminant, as before.
Take an embedded resolution

r W V emb ! U

of the pair .D; 0/ � .C3; 0/. This means the following. The space V emb is smooth,
r is proper, U is a small representative of .C3; 0/ of type U D ˚�1.D2


/ \ B� ,
and the total transform D WD r�1.D/ is a normal crossing divisor. Moreover,
we assume that the restriction of r on V emb n r�1.Sing.Vf / [ Sing.Vg// is a
biholomorphic isomorphism. (Note that Sing.Vf / [ Sing.Vg/ is a smaller set than
the “usual” singular locus Sing.D/ ofD; nevertheless, since the intersection Vf \Vg
is already transversal off the origin, the above assumption can always be satisfied
for a convenient resolution.)

In particular,

e˚ D ˚ ı r W �

r�1.˚�1.D2

 n�˚/\B�/; r�1.˚�1.D2


 n�˚/\ @B� /
� ! D2


 n�˚

is a smooth locally trivial fibration of a pair of spaces.
Note that the topology of r is rather complicated, more complicated than the

topology of a germ defined on a normal surface singularity. While in that case the
exceptional locus is a curve, here the exceptional locus is a surface. The description
and characterization of the embedding and intersection properties of the components
of D can be a rather difficult task. The point is that in our next construction we will
not need all these data, but only a special curve configuration. This curve is identified
by the vanishing behaviour of the pullbacks of f and g on D.

Denote by Dc those irreducible components of the total transform D along which
only f ı r vanishes, that is

Dc D r�1.Vf n Vg/:

Here � denotes the closure. Similarly, consider

Dd D r�1.Vg n Vf / and D0 D r�1.Vf \ Vg/:
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Definition 6.1.3. The curve configuration C is defined by

C D .Dc \ D0/ [ .Dc \ Dd /:

Thus, for each irreducible component C of C , there are exactly two irreducible
components B1 and B2 of D for which C is a component of B1 \ B2. By the
definition of C , we can assume that B1 is such that only f ı r vanishes on it, and
B2 is such that either only g ı r vanishes on it, or both f ı r and g ı r .

Let mf;Bi (respectively mg;Bi ) be the vanishing order of f ı r (respectively of
g ı r) along Bi (i D 1; 2). Then mf;B1 > 0, mg;B1 D 0, mf;B2 � 0, and mg;B2 > 0.
To the component C we assign the triple .mf;B1 Imf;B2 ;mg;B2/.

A componentC of C is either a compact (projective) curve or it is non-compact,
isomorphic to a complex disc. The union of the non-compact components is the
strict transform of Vf \ Vg . Therefore, .mf;B1 Imf;B2 ;mg;B2/ D .1I 0; 1/ for them.
The compact components are exactly those which are contained in r�1.0/.

The graph �C is the dual graph of the curve configuration C .
The set of vertices V consists of non-arrowheads W and arrowheads A . The

non-arrowhead vertices correspond to the compact irreducible curves of C while
the arrowhead vertices correspond to the non-compact ones.

In �C one connects the vertices vi and vj by ` edges if the corresponding curves
Ci and Cj � C intersect in ` points. Moreover, if a compact component Ci � C ,
corresponding to a vertex vi 2 W , intersects itself, then each self-intersection point
determines a loop supported by vi in the graph �C . The edges are not directed.

One decorates the graph �C as follows:

1. Each non-arrowhead vertex v 2 W has two weights: the ordered triple of integers
.mf;B1 Imf;B2 ;mg;B2/ assigned to the irreducible component C corresponding to
v, and the genus g of the normalization of C .

2. Each arrowhead vertex has a single weight: the ordered triple .1I 0; 1/.
3. Each edge has a weight 2 f1; 2g determined as follows. By construction, any edge

corresponds to an intersection point of three local irreducible components of D.
Among them either one or two local components belong to Dc . Correspondingly,
in the first case let the weight of the edge be 1, while in the second case 2.

6.2 Summary of Notation for �C and Local Equations

The next table and local coordinate realizations will be helpful in the further
discussions and proofs.
Vertices:

The vertex �

Œg�

.mIn; 
/
codifies a compact irreducible componentC of C of genus g.

There is a local neighbourhood Up of any generic point p 2 C with local
coordinates .u; v;w/ such that Up \ D D Bl

1 [ Bl
2 , Bl

1 D fu D 0g, Bl
2 D fv D 0g,
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and
f ı r jUp D umvn, and g ı r jUp D v
 with m; 
 > 0I n � 0.

Here Bl
i are local components of D at p. A missing Œg� means g D 0.

The arrowhead vertex� .1I 0; 1/ codifies a non-compact component. The local
description goes by the same principle as above.

Edges: An edge corresponds either to an intersection point p 2 Ci \ Cj , or to a
self-intersection of Ci if i D j . There is a local neighbourhood Up of p with local
coordinates .u; v;w/ such that Up \ D D Bl

1 [ Bl
2 [ Bl

3, and Bl
1 D fu D 0g; Bl

2 D
fv D 0g; Bl

3 D fw D 0g. Moreover, the local equations of f and g are as follows:

An edge with decoration 1:

� �

.mIn; 
/ .mI l; 	/
Œg� Œg0�
v1 v2

1
corresponds to local equations:

f ır jUp D umvnwl ; gır jUp D v
w	;

wherem; 
; 	 > 0 and n; l � 0.

One has similar equations with
m D 	 D 1, l D 0, 
 > 0, n � 0

if v2 is an arrowhead:

� �
.1In; 
/

.1I 0; 1/
Œg�

1

An edge with decoration 2:

� �

.mIn; 
/ .m0In; 
/
Œg� Œg0�
v1 v2

2
provides local equations:

f ır jUp D umvm
0

wn; gır jUp D w


with m;m0; 
 > 0 and n � 0.

One has similar equations with
m0 D 
 D 1, n D 0 andm > 0

if v2 is an arrowhead:

� �
.mI 0; 1/

.1I 0; 1/
Œg�

2

Remark 6.2.4. There is a compatibility between the weights that sometimes
simplifies the decorations. Indeed, consider the following edge:

� �

.mI a; b/ .nI c; d/
Œg� Œg0�

x
(a) if m ¤ n, then .a; b/ D .c; d / and x D 2;
(b) if .a; b/ ¤ .c; d /, thenm D n and x D 1.
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In particular, in the cases (a)–(b) above, the weight of the edge is determined by the
weights of the vertices, hence, in these cases it can be omitted.

Remark 6.2.5. Clearly, different resolutions r provide different curve configu-
rations C . In particular, the graph �C is not unique. We believe that there is a
“calculus” of such graphs connecting different graphs �C coming from different
embedded resolutions of .D; 0/ � .C3; 0/, see the open problem 24.4.23 at the end
of the book.

Remark 6.2.6. It is rather long and difficult to find a resolution r . In the literature
there are very explicit resolution algorithms, but they are rather involved, and in
general very slow, and usually with many irreducible exceptional components.
Nevertheless, in the next Chapters we list many examples.

Finding the resolution of those examples, which do not have some specific
form (which would help to find a canonical sequence of modifications or a direct
resolution) we use a sequence of ad hoc blow ups following the naive principle:
“blow up the worst singular locus”, with the hope to obtain a more or less small
configuration. Some of the computations are long, and are not given here. (Several
of them were, in fact, done with the help of Mathematica.) Hence, we admit that for
the reader the verification of some of the examples of �C listed in the body of the
book can be a really difficult job. Also, since the resolution procedure is not unique,
an independent computation might lead to a different �C .

On the other hand, we will also list several families where we can find in a
conceptual way resolutions which reflect the geometry and the structure of the
singularities. The next chapters, starting from Chap. 8, contain an abundance of
them.

Here we list some preliminary (specially chosen) examples in order to help the
reader follow the first properties of �C discussed in Chap. 7.

Example 6.2.7. Assume that f D x2y2C z2.xCy/ and take g D xCyC z. Then
a possible �C is:

�

�

�

�

�

�

� � ���
��

���� �
.2I 3; 1/
.2I 4; 1/
.2I 4; 1/
.2I 3; 1/

.2I 8; 2/

.2I 8; 2/
.1I 12; 4/.1I 8; 2/ .1I 3; 1/

.1I 0; 1/

Example 6.2.8. Assume that f D y3 C .x2 � z4/2 and g D z. Then a possible
�C is:
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�� � � �

� �

� � � �

�
�

�
�

�
�

�
�

� � ��

�

�

�

.3I 9; 1/

.6I 9; 1/
.6I 12; 1/

.2I 8; 1/
.2I 12; 1/

.2I 8; 1/
.2I 12; 1/

.3I 9; 1/

.6I 9; 1/
.6I 12; 1/

.1I 12; 1/ .1I 18; 2/
.1I 24; 3/

.1I 18; 2/ .1I 12; 1/
.1I 12; 2/
.1I 12; 3/

.1I 0; 1/

Example 6.2.9. Assume that f D x3y7 � z4 and g D x C y C z. A possible graph
�C is:

�� � � �

� � � �

�
��



�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

.4I 4; 1/

.4I 8; 1/
.12I 8; 1/
.20I 8; 1/
.20I 16; 1/
.20I 24; 1/

.7I 10; 1/

.7I 20; 2/

.7I 24; 1/

.3I 10; 1/

.3I 20; 2/

.3I 16; 1/

.4I 8; 1/

.8I 8; 1/
.8I 12; 1/
.8I 16; 1/

.28I 24; 1/ .1I 24; 1/
.1I 20; 2/

.1I 16; 1/ .12I 16; 1/
.1I 0; 1/ .1I 0; 1/

6.3 Assumption A

In the graph �C a special attention is needed for edges of weight 2 with both end-
vertices having first multiplicity m D 1 (including the case of loops too, when the
two end-vertices coincide). Such an edge corresponds to a point p which lies at
the intersection of three locally irreducible components on exactly two of which
only f ı r vanishes and that happens with multiplicity one. Thus the intersection
of these two locally irreducible components is the strict transform of a component
of Sing.Vf / with transversal type A1, which has not been blown up during the
resolution procedure r .
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Performing an additional blow up along this intersection, we obtain a new embed-
ded resolution r 0, whose special curve configuration C 0 will have an additional
rational curve. The relevant edge of the dual graph �C is changed to the dual graph
�C 0 with a new part via the following transformation:

� �� � � � � �.1In; 
/ .1In; 
/
Œg� Œg0�

2 � � � �� � � � � �.1In; 
/ .2In; 
/ .1In; 
/
Œg� Œg0�

22

In order to avoid some pathological cases in the discussion, and to have a uniform
treatment of the properties of �C (e.g. of the “cutting edges” and subgraphs � 1

C

and � 2
C , see the next chapter), we will assume that �C has no such edges, that

is, we have already performed the extra blow-ups, if it was necessary. The same
discussion/assumption is valid for loops and for the situation when one of the end-
vertices above is replaced by an arrowhead.

This assumption is not crucial at all, the interested reader might eliminate it at
the price of having to slightly modify the statements of the forthcoming Sects. 7.3
and 7.4. In fact, in the algorithm which provides @F , Assumption A is irrelevant.



Chapter 7
The Graph �C : Properties

7.1 Why One Should Work with C ?

From the definition 6.1.3 of the curve C it is not so transparent why exactly this
configuration should play the crucial role in several results regarding non-isolated
hypersurface singularities. In this section we wish to stress a universal property of
C , which motivates the definition, and will imply some immediate properties as
well. We keep the notations of Chap. 6. In particular, ˚ W ˚�1.D2


/ \ B� ! D2

 is

a good representative, .c; d / are the coordinates of the target, and ˚.˙f / D �1 D
fc D 0g.

We start with the definition of a special set “near” the discriminant component
�1. For any integerM > 0, define the wedge neighbourhood of �1 by

W
;M D f.c; d / 2 D2

 j 0 < jcj < jd jM g:

It is easy to verify that

W
;M � D2

 n�˚ provided that M � 0. (7.1.1)

Hence, W
;M is a small tubular neighbourhood of�1nf0g, not intersecting the other
components of the discriminant. In particular, the restriction of ˚ over W
;M is a
smooth locally trivial fiber bundle, equivalent with the restriction of the fibration
over the torus Tı, containing all the information about the commuting monodromies
m˚;hor and m˚;ver near�1, cf. Sect. 3.1.

The geometry of the fibration over W
;M , or of these two monodromies, were
frequently used in the literature in connection with the “correction terms” of several
singularity invariants. More precisely, if i denotes a numerical invariant, then,
usually i.f Cgk/, associated with the series f Cgk approximating f with k large,
are not easy to determine. Nevertheless, the correction term i.f C gk/ � i.f /, in
many cases, depends only on the behaviour of ˚ above W
;M . This is the source
of several formulas: in the classical case of Iomdin i is the Euler characteristic of

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 7,
© Springer-Verlag Berlin Heidelberg 2012
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the Milnor fiber [49], in Siersma’s article [117] i is the zeta function, in M. Saito’s
paper [111] i is the spectrum, while in [82,83] i is the signature of the Milnor fiber.

Now, the restriction of ˚ above W
;M provides an alternative definition/charac-
terization of the curve configuration C , associated with the resolution r .

Lemma 7.1.2. First characterization of C [92, (5.5)].
Fix a resolution r and set e˚ D ˚ ı r . Then, for M � 0, one has

e˚�1.W
;M /\ e˚�1.0/ D C : (7.1.3)

Proof. The proof follows by case-by-case local verification in the neighbourhood
of different type of points of the resolution r , and from the properness of e˚ .

For example, let us take a point p 2 D0 n C . We have to show that p 62
e˚�1.W
;M /. Assume the contrary, and take a local coordinate neighbourhood
Up of p with local coordinates .u; v;w/ such that e˚ jUp D .um; u�/ for some
integers �;m > 0 (up to an invertible element). Then there exists a sequence
fpj D .uj ; vj ;wj /g1

jD1 in e˚�1.W
;M / \ Up such that limj!1 pj D p, hence

uj ! 0. Since pj 2 e˚�1.W
;M / it follows that juj jm < juj jM�. This leads to a
contradiction forM sufficiently large.

The other local verifications are similar and are left to the reader. ut
Therefore, one expects, that from the dual graph �C of the special curve

configuration C , endowed with all the necessary multiplicity data (codifying the
local behavior of f and g near C ), one is able to extract topological information
about any set S � ˚�1.D2


/ \ B� with ˚.S / � W
;M .
Note that for ı > 0 sufficiently small, @Dı 2 W
;M , hence ˚�1.@Dı/, the non-

trivial part of the boundary of the Milnor fiber (by the discussion of Remark 3.1.11)
is such a space. Hence, ˚ over W
;M , or its lifting via r codified in �C , should
contain crucial information regarding @F and its Milnor monodromy.

This fact is exploited in the present work.
Now we continue with some immediate consequences. From (7.1.3) one obtains

the following.

Corollary 7.1.4. a) For any open (tubular) neighbourhood T .C / � V emb, there
exist a sufficiently large M and a sufficiently small 
 such that for any .c; d / 2
W
;M the “lifted Milnor fiber” e˚�1.c; d / is in T .C /.

b) For any p 2 C and local neighbourhood Up of p, there exist a sufficiently large
M and a sufficiently small 
 such that for any .c; d / 2 W
;M one has Up \
e˚�1.c; d / ¤ ;.

Therefore, the curve C can be regarded as the “limit” of the lifted Milnor fiber.
In particular, from 7.1.4 and from the connectedness of the Milnor fiber, see 3.1.7,
we obtain that

Corollary 7.1.5. C is connected.
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Remark 7.1.6. We point out a natural decomposition of eF ˚ , as an immediate
consequence of the fact that the curve C is a “limit” of this fiber. Here eF˚ D
e˚�1.c; d /, with .c; d / 2 W
;M as in 7.1.4. The construction resonate with the
construction of the universal cyclic covering graph presented in 5.2.1.

For each edge e of �C , let Pe be the corresponding intersection point of two
components of C . Let UPe be a small neighbourhood of Pe . Then eF ˚ intersects
UPe in a tubular neighbourhood of some embedded circles of eF ˚ . Consider the
collection B of all these circles. Then eF ˚ is a union

[

v2V .�C /

eF v; (7.1.7)

where each eF v is the closure of those components of eF˚ n B which are sitting in
a tubular neighbourhood of the corresponding component Cv of C . Moreover, both
horizontal and vertical monodromy actions over the torus Tı (cf. Sect. 3.1) can be
chosen in such a way that they preserve the cutting circles B and each subset eF v.
Furthermore, their restrictions on each eF v are isotopic to a pair of commuting finite
actions on eF v. (This last fact follows from the fact that any S1-bundle over a non-
closed Riemann surface is trivial, and from the particular form of the local equations
of f and g near Cv, cf. Sect. 6.2.)

The above limit procedure can be pushed further. Recall that�1 D fc D 0g\D2

,

hence�1 is in the closure of W
;M . Hence, the limit procedure .c; d / 7! .0; 0/ with
.c; d / 2 W
;M can be done in two steps: first .c; d / tends to some point of�1 n f0g,
then along this discriminant component we approach the origin. The analogues of
7.1.2 and 7.1.4 are the following:

Lemma 7.1.8. Second characterization of C [92, (5.8)].
With the same notations as in 7.1.2, one has

e˚�1.�1 n f0g/\ e˚�1.0/ D C : (7.1.9)

In particular,

a) For any open tubular neighbourhood T .C / � V emb , if jd j is sufficiently small
then e˚�1..0; d// � T .C /.

b) For any p 2 C and neighbourhood Up of p, if jd j is sufficiently small then
Up \ e˚�1..0; d// ¤ ;.

This lemma will also have connectivity consequences, see 7.4.3.

7.2 A Partition of �C and Cutting Edges

We start to review from [92] those properties of �C that are needed in the sequel.

Proposition 7.2.1. �C is connected.
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Proof. Use 7.1.5 and the construction of �C . ut
Definition 7.2.2. The vertices of the graph �C can be divided into two disjoint sets
V .�C / D V 1.�C / [ V 2.�C /, where V 1.�C / (respectively V 2.�C /) consists of
the vertices decorated by .mIn; 
/ with m D 1 (respectivelym � 2).

We will use similar notations for W .�C / and A .�C /.
The set of edges .v1; v2/ with ends v1 2 V 1.�C / and v2 2 W 2.�C / will be called

cutting edges. Their edge-decoration is always 2. We denote their index set by Ecut .

Note that A .�C / D A 1.�C /, hence V 2.�C / D W 2.�C /.
According to the decomposition V D V 1[V 2, we partition �C into two graphs

� 1
C and � 2

C .
The description of the subgraphs � 1

C and � 2
C is the subject of the next sections.

7.3 The Graph � 1
C

7.3.1. The construction of � 1
C . The graph � 1

C is constructed in two steps.
First, consider the maximal subgraph of �C , which is spanned by the vertices

v 2 V 1.�C / and has no edges of weight 2. Next, corresponding to each cutting
edge – whose end-vertices v1 and v2 carry weights .1In; 
/ and .mIn; 
/, m > 1

respectively – add an arrowhead decorated with the weight .mIn; 
/ connected to
v1 by an edge. We will keep the decoration 2 of these “inherited cutting edges”,
although their type can be recognized by the principle 6.2.4.

In particular, � 1
C has two types of arrowheads: first, all the arrowheads of �C

remain arrowheads of � 1
C , all of them with weight .1I 0; 1/; then, each cutting edge

provides an arrowhead with weights of type .mIn; 
/, with first entry m > 1.
We wish to provide more details regarding a special situation.
Assume that an edge of �C , decorated by 2, supports an arrowhead. Then, by

Assumption A, cf. 6.3, the other vertex of the edge should automatically have weight
.mI 0; 1/ with m > 1. In such a case, this edge becomes a double arrow of � 1

C : an
edge supporting two arrowheads, one with weight .1I 0; 1/, the other with .mI 0; 1/.
This double arrow forms a connected component of � 1

C .

7.3.2. The simplified graph G1
C . Deleting some of the information of � 1

C , we
obtain another graphG1

C , which looks like the weighted embedded resolution graph
of a germ of an analytic function defined on a normal surface singularity; that is,G1

C
will be a plumbing graph as in 4.3.

The construction runs as follows.
First, keep the genus-decorations of all non-arrowheads. Next, for any non-

arrowhead vertex, and for any arrowhead with decoration .1I 0; 1/, replace the
weight .1In; 
/ by .
/. The weight .mIn; 
/ of an arrowhead vertex with m > 1

is replaced by weight .0/. Furthermore, delete all old edge-decorations, and insert
everywhere the new edge-decoration C (hence, they can be even omitted by our
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convention from 4.3). Finally, we determine the Euler numbers via (4.1.5) using
edge-decorations �e D C.

Proposition 7.3.3. [92, (5.27)] G1
C is a possible embedded resolution graph of

V norm
f

gın�! .C; 0/;

where n W .V norm
f ; n�1.0// ! .Vf ; 0/ is the normalization.

In particular, the number of connected components of � 1
C coincides with the

number of irreducible components of the germ .Vf ; 0/. A connected component of
� 1

C which consists of a double arrow, corresponds to a smooth component of V norm
f

on which g ı n is smooth, and which has not been modified during the resolution.
The arrowheads with multiplicity .0/ represent the strict transforms of the

singular locus˙f .

If we do not wish to preserve the information about the position of the strict
transforms of the singular locus˙f , we delete the arrowheads with weight .0/ from
G1

C . What remains is exactly the disjoint union of the embedded resolution graphs
of the connected components of .V norm

f ; g ı n/.
In a similar way, if we do not wish to keep any information about the germ g, we

delete all multiplicity decorations and arrowheads with positive multiplicities. What
remains is the collection of resolution graphs of the components of V norm

f , where
the .0/-arrowheads mark the strict transforms of ˙f .

Example 7.3.4. Assume that f D x3y7 � z4 and g D x C y C z as in 6.2.9.
There are two cutting edges: the extreme edges of the horizontal string.
The graph � 1

C is the following:

�� �

�
��



�

��
.28I 24; 1/ .1I 24; 1/

.1I 20; 2/
.1I 16; 1/ .12I 16; 1/

.1I 0; 1/ .1I 0; 1/

G1
C is the graph:

�� �

�
��



�

��
.0/ .1/ .2/ .1/ .0/

.1/ .1/

�2 �2 �2

The two .0/-arrowheads correspond to the two components of the strict transform
of the singular locus of Vf . The normalization of Vf is an A3 singularity.



68 7 The Graph �C : Properties

7.4 The Graph � 2
C

7.4.1. The construction of � 2
C .

The “complementary” subgraph � 2
C is constructed in two steps as well.

First, consider the maximal subgraph of �C spanned by the vertices v 2 V 2.�C /.
Then, corresponding to each cutting edge (cf. 7.2.2), whose end-vertices v1 and v2
carry weights .1In; 
/ and .mIn; 
/ (m > 1) respectively, regardless of v1 being an
arrowhead or not, glue an edge decorated by 2 to v2, and make its other end-vertex
an arrowhead weighted .1In; 
/ .

This ends the definition of � 2
C . In order to understand its connected components,

we need the following notation.

Definition 7.4.2. For any j 2 f1; : : : ; sg, we denote by Dc;j the collection of those
componentsB � Dc which are projected via r onto˙j . Furthermore, define C˙j �
C as the union of those irreducible components C of C weighted .mIn; 
/ with
m > 1, for which C � B for some component B � Dc;j .

Now we are ready to start the list of properties of � 2
C .

Proposition 7.4.3. [92, (5.32)] There is a one-to-one correspondence between the
connected components of � 2

C and the irreducible components of .Sing.Vf /; 0/ D
.˙; 0/ D [j˙j .

More precisely, C˙j is connected and its irreducible components correspond to
the non-arrowhead vertices of one of the connected components � 2

C ;j of � 2
C .

Proof. Fix j . The connectedness of C˙j follows from the next claim, similar to the
limit properties 7.1.4 and 7.1.2.

a) For any open tubular neighbourhood T .C˙j / � V emb of C˙j , there exists a
sufficiently small � > 0 such that for any point q 2 ˙j �f0g � C3 with jqj < � ,
r�1.q/ � T .C˙j /.

b) For any p 2 C˙j and local neighbourhood Up of p, there exists a sufficiently
small � > 0 such that for any point q 2 ˙j �f0g with jqj < � , Up\r�1.q/ ¤ ;.

These two statements can be verified by similar local computations as in 7.1.4.
In fact, they can be deduced from 7.1.2 too.

This means that C˙j is the “limit” of r�1.q/ \ Dc;j , where q 2 ˙j n f0g
tends to 0. But the modification r , above any transversal slice Slq at q of ˙j (cf.
Sect. 2.2), realizes an embedded resolution of .Slq; Slq\Vf ; q/, hence r�1.q/\Dc;j

constitutes a collection of exceptional curves of an embedded resolution of this
plane curve singularity. Hence, by Zariski’s Main Theorem, cf. 4.3.4, it is connected.
This implies that its limit C˙j is connected as well. ut
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Example 7.4.4. Consider the example given in 6.2.9. In this case � 2
C has two

components. One of them (situated at the left of the diagram) is � 2
C ;1:

� � � � � � � � � �

�

.4I 4; 1/ .4I 8; 1/ .12I 8; 1/ .20I 8; 1/ .20I 16; 1/.20I 24; 1/.28I 24; 1/ .7I 24; 1/ .7I 20; 2/.7I 10; 1/

.1I 24; 1/

1 2 2 1 1 2 2 1 1

In fact, besides other data, � 2
C ;j contains all the information about the equisingu-

larity type of the transversal singularity T˙j of˙j . In order to make this statement
more precise, we need some preparation.

7.4.5. A partition of � 2
C ;j . We fix again the index j .

We introduce on W .� 2
C ;j / the following equivalence relation. First, we say that

w1 � w2 if w1 and w2 are connected by an edge of weight 1, then we extend � to an
equivalence relation. IfK D fwi1 ; : : : ;wit g is an equivalence class, with decorations
.mInil ; 
il /, then set 
.K/ WD gcd.
i1 ; : : : ; 
it / and m.K/ WD m.

Each class K defines a connected subgraph G.K/ of � 2
C ;j with vertices from K

and all the 1-edges connecting them. For the moment we keep all the decorations of
the corresponding vertices of G.K/.

The equivalence classes fK`g` determine a partition of W .� 2
C ;j /. The subgraphs

G.K`/ are connected by 2-edges.

7.4.6. Properties of the subgraphs G.K/.
For a fixed equivalence classK D fwi1 ;wi2 ; : : : ;wit g, consider the corresponding

irreducible curvesCi1; Ci2 ; : : : ; Cit of C . By construction, there exists an irreducible
componentB.K/ 2 Dc;j which contains all of them. Moreover, the union C .K/ WD
Ci1 [� � �[Cit is a connected curve. Let T .K/ denote a small tubular neighbourhood
of C .K/ in B.K/.

Note that the integerm.K/ is exactly the vanishing order of f ır alongB.K/. On
the other hand, the local equations show that the restriction g ı r jT .K/ W T .K/ ! C

provides the principal divisor .g ı r/�1.0/ D P

k 
ik Cik in T .K/. Here, T .K/
can be changed to the inverse image of a small disc D under g ı r jB.K/. Therefore,
the divisor

P

k 
ik Cik in T .K/ can be interpreted as a central fiber of the proper
analytic map g ı r jT .K/ W T .K/ ! D.

Lemma 7.4.7. The generic fiber of .gır/jT .K/ is a disjoint union of rational curves.

Proof. Fix d 6D 0 with jd j sufficiently small. Then g�1.d/ intersects ˙j in dj
points, say fqi gi , cf. 3.1.8. Then ..g ı r/jT .K//�1.d/ D [i .r

�1.qi /\ T .K//. But
r�1.qi / is the singular fiber of an embedded resolution of the transversal singularity
associated with ˙j , and r�1.qi / \ T .K/ is an irreducible curve of this exceptional
locus, hence each r�1.qi / \ T .K/ is a rational curve. ut
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Next, we recall a general property of a morphism whose generic fiber is rational,
see [42], page 554:

Fact. If S is a minimal smooth surface,D a disc in C, and � W S ! D any proper
holomorphic map whose generic fiber ��1.d/ ( 0 6D d 2 D) is irreducible and
rational, then � is a trivial P1-bundle over D.

If S is not minimal, and the generic fiber of� W S ! D is a disjoint union of (say,
N ) rational curves, then by the Stein Factorization theorem (see e.g. [45], page 280),
and if necessary after shrinkingD, there exists a map b W D0 ! D given by z 7! zN ,
and � 0 W S ! D0 such that � D b ı� 0, and the generic fiber of � 0 is irreducible and
rational. Since the central fibers of � and � 0 are the same, it follows from the above
fact that the central fiber of � can be blown down successively until an irreducible
rational curve is obtained. Being a principal divisor, its self-intersection is zero.

This discussion has the following consequences:

Proposition 7.4.8. Properties of the graph G.K/. a) The graph G.K/ is a tree
with all genus decorations gwk D 0. In particular, all the irreducible components
of C˙j are rational curves.

b) From the integers f
ikgtkD1 one can deduce the self-intersectionsC2
ik

of the curves
Cik in B.K/ as follows. First notice that the intersection matrix .Cik � Cik0

/k;k0 ,
where the intersections are considered in B.K/, is a negative semi-definite
matrix with rank t � 1, and the central divisor

P

k 
ikCik is one element of its
kernel (cf. [8], page 90). The intersections Cik �Cik0

for ik 6D ik0 can be read from
the graph G.K/ considered as a dual graph. Then the self-intersections can be
determined from the relations .

P

k 
ikCik / �Cik0
D 0. In particular, if t D 1, then

C2
i1

D 0. If t � 2, then the graph is not minimal; if we blow down successively
all the .�1/-curves we obtain a rational curve with self-intersection zero.

c) The number of irreducible (equivalently, connected) components of the generic
fiber of .g ı r/jT .K/ is 
.K/.

The fact that each irreducible component of the generic fiber is rational can
be translated into the relation:

2 � 
.K/ D
t

X

kD1

ik .2 � ıKwik /;

where ıKwik
is the number of vertices adjacent to wik in G.K/.

Example 7.4.9. Consider the example 6.2.9 and its graph � 2
C ;1 from 7.4.4. The

graphsG.Kl/ are:

� � � � � � � � � �

.4I 4; 1/ .4I 8; 1/ .12I 8; 1/ .20I 8; 1/ .20I 16; 1/.20I 24; 1/.28I 24; 1/ .7I 24; 1/ .7I 20; 2/.7I 10; 1/
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The corresponding central divisors and self-intersection numbers are the following:

� � � � � � � � � �

.1/ .1/ .1/ .1/ .1/ .1/ .1/ .1/ .2/ .1/

�1 �1 0 �1 �2 �1 0 �2 �1 �2

7.4.10. Now, we return to the connected component � 2
C ;j of � 2

C corresponding to

˙j (1 � j � s). We consider the partition fG.K`/g` of � 2
C ;j ; they are connected

by 2-edges. The geometry behind the next discussion is the following.
Recall that T˙j denotes the equisingular type of the transversal singularity

associated with ˙j , cf. Sect. 2.2, and deg.gj˙j / D dj , cf. 3.1.8. If .Sl; q/ is a
transversal slice as in Sect. 2.2, then r above .Sl; q/ determines a resolution of the
transversal plane curve singularity .Sl; Sl \ Vf ; q/. We denote its weighted dual
embedded resolution graph by G.T˙j /. Since in local coordinates it is easier to
work with the pullback of g, it is convenient to replace the single point q 2 ˙j �f0g
by the collection of dj points g�1.d/ \ ˙j , where jd j is small and non-zero. The
dual weighted graph associated with the curves situated above these points consists
of exactly dj identical copies of G.T˙j /, and it is denoted by dj �G.T˙j /.

Comparing the curves r�1.g�1.d/ \ ˙j / and C˙j via the corresponding local
equations, and using the results of Proposition 7.4.8, we obtain a cyclic covering of
graphs

p W dj �G.T˙j / ! fa base graphgj ;
where the base graph and the covering data can be determined from � 2

C ;j . This is
given in the next paragraphs.

The base graph will be denoted by � 2
C ;j = �. It is obtained from � 2

C ;j by collapsing
it along edges of weight 1. More precisely, each subgraph G.K`/ is replaced by a
non-arrowhead vertex. If two subgraphs G.K`/ and G.K`0/ are connected by k
2-edges in � 2

C ;j , then the corresponding vertices of � 2
C ;j = � are connected by

k edges. (In fact, in 7.4.12 we will see that each k � 1.) If the non-arrowhead
vertices of G.K`/ support k arrowheads altogether, then on the corresponding non-
arrowhead vertex of � 2

C ;j = � one has exactly k arrowheads.

Since � 2
C ;j is connected, it is obvious that � 2

C ;j = � is connected as well.

The covering data of p W dj �G.T˙j / ! � 2
C ;j = �.

Recall from 5.1 that the covering data of a projection p W G ! � is a collection of
positive integers fnvgv2V .� / and fnege2E .� /, such that for each edge e D .v1; v2/ 2
E .� / one has ne D de � lcm.nv1 ; nv2/ for some integer de .

Now, we define a covering data for � 2
C ;j = �. It is provided by the third entries 


of the weights .mIn; 
/ of the vertices of � 2
C ;j and will be denoted by �.

For any non-arrowhead vertex w of � 2
C ;j = �, which corresponds to K` in the

above construction, set nw WD 
.K`/. For any arrowhead vertex v of � 2
C ;j = �,
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which corresponds to an arrowhead of � 2
C ;j with weight .1In; 
/, set nv WD 
. For

any edge of � 2
C ;j = �, which comes from a 2-edge e of � 2

C ;j with endpoints with
weight .
In; 
/, set ne WD 
.

The degeneration of r�1.g�1.d/\˙j / into C˙j provides the next result:

Theorem 7.4.11. Characterization of the transversal singularities.

(a) For any j there exists a cyclic covering of graphs

p W dj �G.T˙j / ! � 2
C ;j = �

with covering data � and with the compatibility of the arrowheads: A .dj �
G.T˙j // D p�1.A .� 2

C ;j = �//, cf. 5.1.9.

(b) The decorations of G.T˙j / can be recovered from the decorations of � 2
C ;j as

follows: mw D m.K`/ for any w 2 W .G.T˙j // sitting above a vertex corre-
sponding toK`;mv D 1 for any arrowhead. The Euler numbers are determined
via (4.1.5).

In particular, the weighted dual embedded resolution graph G.T˙j / can be
completely determined from the weighted graph � 2

C ;j .

Corollary 7.4.12. 1. � 2
C ;j is a connected tree.

2. With covering data �, there is only one cyclic graph coveringp W G ! � 2
C ;j = �.

3. dj D gcdf
wjw 2 W .� 2
C ;j /g, where .mwInw; 
w/ is the weight of Cw

Proof. The first part follows from the connectedness statement from 7.4.3, form the
fact that G.T˙j / is a tree, and from 5.1.7. The second and third parts follow from
5.1.6(1) and the connectedness of G.T˙j /. ut
Remark 7.4.13. 1. For an example when the covering p W dj �G.T˙j /!� 2

C ;j = �
is not a bijection, see 7.5.5.

2. As we emphasized in 7.4.8(b–c), the collection of integers f
wg .w 2 W .� 2
C ;j //

satisfies serious compatibility restrictions. Moreover, since in the cyclic covering
dj � G.T˙j / ! � 2

C ;j = � the covering graph dj � G.T˙j / has no cycles, this

imposes some additional restrictions on the integers f
wg .w 2 W .� 2
C ;j //.

3. Corollary 7.4.12(3) implies that, in fact, there is a graph covering of connected
graphs

G.T˙j / ! � 2
C ;j = �

whose covering data are those from 
, where all integers are divided by dj .

Example 7.4.14. Let us continue the example 7.4.9 (as the continuation of 6.2.9
and 7.4.4). In this case d1 D 1 and the G.T˙1/ ! � 2

C ;1= � is a bijection. Hence
the algorithm gives for G.T˙1/ the embedded resolution graph
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� � � � �

�

.4/ .12/ .20/ .28/

.1/

.7/
�3 �2 �2 �1 �4

This is, of course, the minimal embedded resolution graph of T˙1 with local
equation u7 � v4 D 0, as it is expected from the equations of f D x3y7 � z4.

Example 7.4.15. Consider the graph in 6.2.8 for f D y3 C .x2 � z4/2 and g D z.
˙ D fy D x2 � z4 D 0g has two components, the transversal type of which
are cusps of type .2; 3/. In the next diagram we put in dash-boxes the equivalence
classes K and the supports of the two components f� 2

C ;j gjD1;2:

�� � � �

� �

� � � �

�
�

�
�

�
�

�
�

� � ��

�

�

�

.3I 9; 1/

.6I 9; 1/
.6I 12; 1/

.2I 8; 1/
.2I 12; 1/

.2I 8; 1/
.2I 12; 1/

.3I 9; 1/

.6I 9; 1/
.6I 12; 1/

.1I 12; 1/ .1I 18; 2/
.1I 24; 3/

.1I 18; 2/ .1I 12; 1/
.1I 12; 2/
.1I 12; 3/

.1I 0; 1/
By the above algorithm, one can easily recover the transversal types, and the

graph E6 of the normalization of Vf .

The results of this chapter together with Theorem 5.1.8 culminate in the
following corollary which is crucial for the algorithm presented in Chap. 10.

Theorem 7.4.16. Up to isomorphism of cyclic coverings of graphs (with a fixed
covering data), there is only one cyclic covering of the graph �C provided that the
covering data satisfies nv D 1 for any v 2 V 1.�C /.

7.5 Cutting Edges Revisited

7.5.1. In this section we will analyze in detail the properties of cutting edges and
we list some consequences.

Consider a cutting edge e of �C , cf. 7.2.2. Recall that it always has edge
decoration 2. Assume that the weights of the end-vertices have the form .
 In; 
/.
In order to indicate the dependence on e, we write 
 D 
.e/.
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Fix local coordinates as in Sect. 6.2, and set C �
e WD Bl

1 \ Bl
2. Here Bl

1 and Bl
2

are those two local components along which the restriction of the function f ı r
vanishes, but g ı r does not vanish. Then r projects C �

e onto a certain component
˙j of˙ . Moreover, r jC�

e
W C �

e ! ˙j is finite. Denote its degree by d.e/. Obviously

deg.r jC �
e / � deg.gj˙j / D deg.g ı r jC �

e / D 
.e/;

hence
d.e/ � dj D 
.e/: (7.5.2)

Since 
.e/ and dj can be obtained from � 2
C ;j (cf. 7.4.12), the degree d.e/ can

also be recovered from � 2
C ;j .

7.5.3. For every fixed j 2 f1; : : : ; sg, let Ecut;j be the set of cutting edges
connecting � 2

C ;j with � 1
C . Also, write #T˙j for the number of local irreducible

components of the transversal singularity T˙j , which coincides with the number of
connected components of @F 0

j .
The point is that #.T˙j / � jEcut;j j, and, in general, equality does not hold.

Indeed, from the local equations and from the covering r jC�

e
W C �

e ! ˙j one
deduces that each e 2 Ecut;j is “responsible” for d.e/ local irreducible components
of T˙j . In other words,

#T˙j D
X

e2Ecut;j

d.e/: (7.5.4)

Example 7.5.5. Consider the example from 6.2.7. In this case f D x2y2Cz2.xCy/,
hence it has two singular components ˙ D ˙1 [ ˙2 D fxy D z D 0g, whose
transversal type singularities are A1, hence #T˙j D 2 for j 2 f1; 2g. The linear
function g induces on both dj D 1. Furthermore, from the graph 6.2.7 we get that
in both cases Ecut;j D 1. This is compatible with the above discussion, since for the
cutting edges 
.e/ D 2 in either case.

The graph � 2
C ;j has three vertices, all of them are in the same class, hence

� 2
C ;j = � has only one vertex. The coveringG.T˙j / ! � 2

C ;j = � is the following:

� �

.2/

�1

�

.1/

.1/
���

��
����

Hence, in general, the coveringG.T˙j / ! � 2
C ;j = � is not a bijection.

Example 7.5.6. If #T˙j 6D 1, then even if both graphs � 1
C and � 2

C are trees,
it might happen that �C has cycles. For example, in the case presented in 10.4.1,
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˙ D ˙1 is irreducible with #T˙j D 2, both � 1
C and � 2

C are trees, and �C has one
cycle.

7.5.7. Relationship with the resolution graph of the normalization V norm
f .

By Theorem 7.3.3 there is a one-to-one correspondence between the cutting
edges and the irreducible components of the strict transform of˙f in the normaliza-
tion V norm

f of Vf . By the construction of the graph �C , and by the discussion 7.5.1,
these are in bijection with components of type C �

e . Moreover, via r and Theorem
7.3.3, each C �

e can be identified with the corresponding strict transform component
Ste � V norm

f . In particular, the restriction of the normalization map n satisfies:

deg.njSte W Ste ! ˙j / D deg.r jC�

e
W C �

e ! ˙j / D d.e/:

If St.˙j / denotes the strict transform of ˙j in V norm
f , then

St.˙j / D
[

e2Ecut;j

Ste;

and each Ste contributes d.e/ components in #T˙j , compatibly with (7.5.4).
Looking at the local equations, specifically at the last multiplicities 
, we obtain
the next reinterpretation of the identity (7.5.4).

Corollary 7.5.8. 1. The vertical monodromy m0
j;ver permutes the connected com-

ponents of @F 0
j ; each orbit corresponds to a cutting edge e 2 Ecut;j , and the

cardinality of the corresponding orbit is d.e/.
2. The vertical monodromym˚

j;ver permutes the connected components of dj � @F 0
j ;

each orbit corresponds to a cutting edge e 2 Ecut;j , and the cardinality of the
corresponding orbit is dj d.e/ D 
.e/.

7.5.9. The construction of the link K of f from �C .
Consider the link Knorm WD KV norm

f
of V norm

f . It is the disjoint union of the
(connected) links of the irreducible components of V norm

f . In it consider the 1-
dimensional sub-manifold

[

j

.Stj \Knorm/ D
[

j

[

e2Ecut;j

.Ste \Knorm/ � Knorm:

Assume that each component Ste \Knorm, denoted by S1e (and which is diffeomor-
phic to S1) is marked by two data, one of them is an element j 2 f1; : : : ; sg, the
index j D j.e/ of ˙j onto which Ste is mapped, the other is the degree d.e/ of
Ste ! ˙j .

We claim that from the data .Knorm;[e.S
1
e I j.e/; d.e/// one can recover the link

K of f . Indeed, for each j 2 f1; : : : ; sg fix a circle S1 D S1j . Moreover, for each
e with j.e/ D j fix a cyclic covering �e W S1e ! S1j of degree d.e/. Then K is
obtained fromKnorm by gluing its points via the maps �e.
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Proposition 7.5.10. Introduce an equivalence relation on Knorm as follows: x � x0
if and only if there exist e and e0, with x 2 S1e and x0 2 S1e0 (where e D e0 is allowed)
such that �e.x/ D �e0.x0/ (and any other equivalence has the form y � y). Then

K D Knorm= � :

Now, clearly, the above data .Knorm;[e.S
1
e I j.e/; d.e/// can be deduced from

�C . Recall that in Sect. 7.3 we provide the plumbing graphG1
C forKnorm from � 1

C .
One has only to modify this construction as follows. In the construction of � 1

C
one has to decorate the 2-edges e (or their arrowheads) by the extra decoration
.j.e/; d.e//, and keep this extra decoration for the .0/-arrowheads ofG1

C too. Then
this enhancedG1

C contains all the information needed to apply 7.5.10.

7.5.11. Here is a picture summarizing in a schematic form the essential features
of the decomposition of the graph �C into � 1

C and � 2
C , the classes K`, the types

of the intersection points corresponding to 1- and 2- and cutting edges, and the
degenerations (7.1.3), 7.1.4 and (7.1.9).
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�

˙j

0 q
� �

�

�

� 1
C

�

�

� 2
C ;j

�

�

K`1

C �
e

�

�

K`2

� generic fiber of ˚ overW
;M

� resolution component of V norm
f

� generic fiber of g
ˇ

ˇV norm
f

� exceptional component of the
resolution of T˙j

�B.K`2/ � Dc;j

� C

�	


�

ce
��
��

�	


�

e1
��
��

�	


�

e1
��
��

�	


�

e2
��
��

ce = cutting edge

e1 = 1-edge

e2 = 2-edge
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�
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�
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Chapter 8
Examples: Homogeneous Singularities

8.1 The General Case

Assume that f W .C3; 0/ ! .C; 0/ is the germ of a homogeneous polynomial of
degree d , and we choose g to be a generic linear function with respect to f .

Let C � CP2 be the projective plane curve ff D 0g.
We show that a possible graph �C can easily be determined from the combina-

torics of the components and the topological types of the local singularities of C .
In this projective setting we use the following notations.
LetC D [	2�C	 be the irreducible decomposition ofC , and set d	 WD deg.C	/.

Hence
P

	 d	 D d . Furthermore, let g	 be the genus of the normalization of C	.
Let fpj gj2˘ be the set of singular points of C . Assume that the local analytic

irreducible components of .C; pj / are .Cj;i ; pj /i2Ij . Clearly, there is an “identifi-
cation map” of global/local components c W [j Ij ! � which sends the index of a
local component Cj;i into the index 	 whenever Cj;i � C	.

Let �j be an embedded resolution graph of the local plane curve singularity
.C; pj / � .C2; pj /. It has jIj j arrowheads, each with multiplicity .1/.

These notations agree with some of the notations already considered for germs in
three variables in the previous sections, for example, in Sect. 2.2. Indeed, the number
of singular points of C is the same as the number of irreducible components of˙f ,
hence˘ corresponds to f1; : : : ; sg. Moreover, the local topological type of the plane
curve singularity .C; pj / � .CP2; pj / at a singular point pj of C agrees with the
corresponding T˙j , hence jIj j D #T˙j .

Proposition 8.1.1. A possible �C is constructed from the dual graphs f�j gj2˘ and
j�j additional non-arrowhead vertices as follows:

First, for each 	 2 � put a non-arrowhead vertex v	 in �C and decorate it with
.1I d; 1/ and Œg	�. Moreover, put d	 edges supported by v	, each of them decorated
by 1 and supporting an arrowhead weighted by .1I 0; 1/.

Then, consider each graph �j , keep its shape, but replace the decoration of
each non-arrowhead with multiplicity .m/ by the new decoration .mI d; 1/, and

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 8,
© Springer-Verlag Berlin Heidelberg 2012
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decorate all edges by 2. Furthermore, each arrowhead of �j , corresponding to the
local component Cj;i , is identified with v	, where 	 corresponds to Cj;i via the
local/global identification c.

Proof. The following sequence of blow ups is performed. First the origin of C3

is blown up. This creates an exceptional divisor E D CP2 which intersects the
strict transform St.Vf / of Vf along C . Moreover, the strict transform of Vg (where
g is the chosen linear function) intersects the strict transform of each irreducible
component V.f /	 in d	 discs.

The singular part of St.Vf / consists of discs meeting E in the singular points
pj of C . The plane curve singularity .C; pj / � .CP2; pj / can be resolved by
a sequence of blow ups infinitely near points of p; this sequence is replaced in
the present local product situation by blowing up infinitely near discs following
the blowing up procedure of the corresponding plane curve singularity. Then the
corresponding decorations follow easily. ut
Remark 8.1.2. Notice that if a local graph �j is a double-arrow (representing a
local singularity of type A1 with local equation xy D 0) and both local irreducible
components sit on the same global component C	, then by the above procedure the
double arrow transforms into a loop supported on v	 decorated by 2. If the two local
irreducible components sit on two different global components, then it becomes a
2-edge. In both cases, the corresponding edge will not satisfy Assumption A 6.3.

Nevertheless, if we consider embedded resolution graphs �j with at least one
non-arrowhead vertex (e.g. the graphs of A1 singularities will have one .�1/-
vertex), then the graph �C obtained in this way will satisfy Assumption A (and
will be related with the previous graph by the moves of 6.3).

Usually, it is preferable to take for �j the minimal embedded resolution.
Nevertheless, if we want to get �C satisfying Assumption A, then we follow the
convention that for an A1 singularity �j contains one non-arrowhead.

In the next examples we ask the reader to determine for each case the graphs �j .
Several procedures are described in [16, 136]. We will provide only the output �C .

Example 8.1.3. If f D zd � xyd�1 with d � 3, then �C is the following:

� � �

�

�� � �:::

.1I d; 1/ .d.d � 1/I d; 1/ .d.d � 2/I d; 1/

.d � 1I d; 1/

.d I d; 1/.1I 0; 1/

.1I 0; 1/
��

��

����

where there are d arrowheads, and all the edges connecting non-arrowheads have
decoration 2.
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Example 8.1.4. Assume that f D x2y2Cy2z2Cz2x2�2xyz.xCyCz/. ThenC is
an irreducible rational curve with three A2 (ordinary cusp) singularities. Therefore,
�C is:

��
��

����

��� !!!"
�

.1I 4; 1/
��

��

����

where is � �

.3I 4; 1/.6I 4; 1/

� .2I 4; 1/

.1I 0; 1/

.1I 0; 1/

.1I 0; 1/

.1I 0; 1/

Example 8.1.5. Let f D xd C yd C xyzd�2, where d � 3. Then a possible �C

which does not satisfy Assumption A is:

��
��

����

�
:::

.1I d; 1/

Œ
d.d�3/

2
�

����
2 (d arrowheads)

.1I 0; 1/

.1I 0; 1/

Its modification as in 6.3, or as in (8.1.2), which satisfies Assumption A is:

��
��

����

�
:::

.1I d; 1/

Œ
d.d�3/

2
�

����
� .2I d; 1/
2

2

(d arrowheads)

.1I 0; 1/

.1I 0; 1/

Remark 8.1.6. Consider a Zariski pair .C1; C2/. This means that C1 and C2 are
two irreducible projective curves that have the same degree and the topological type
of their local singularities are the same, while their embeddings in the projective
plane are topologically different. Then the two graphs�C .C1/ and�C .C2/ provided
by the above algorithm will be the same. In particular, any invariant derived from
�C (e.g. @F ) will not differentiate Zariski pairs.

Remark 8.1.7. Since dj D 1 for any j , and 
.e/ D d.e/ D 1 for any cutting
edge e, one also has #T˙j D jEcut;j j.

8.2 Line Arrangements

A special case of 8.1 is the case of line arrangements in CP2, that is, each connected
component of C is a line.

Having an arrangement, let fL	g	2� be the set of lines, and fpj gj2˘ the set of
intersection points. Write j�j D d , and for each j set mj for the cardinality of
Ij WD fL	 W L	 3 pj g. Then �C can be constructed as follows:
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For each 	 2 � put a non-arrowhead vertex v	 with weight .1I d; 1/. For each
j 2 ˘ put a non-arrowhead vertex vj with weight .mj I d; 1/. Join the vertices v	
and vj with a 2-edge whenever pj 2 L	. Finally, put on each vertex v	 an edge with
decoration 1, which supports an arrowhead with weight .1I 0; 1/.

Notice that vj is connected with mj vertices of type v	. Clearly, vj corresponds
to the exceptional divisor obtained by blowing up an intersection point of mj lines.
Notice that if in the special case of mj D 2 – i.e. when pj sits only on L	1 and
L	2 –, this blow up is imposed by Assumption A, cf. 6.3. Nevertheless, if we wish
to neglect Assumption A, then this vertex vj can be deleted together with the two
adjacent edges, and one can simply put a 2-edge connecting v	1 with v	2 .

Example 8.2.1. In the case of the A3 arrangement f D xyz.x � y/.y � z/.z � x/,
the two graphs �C (satisfying Assumption A or not) are:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

where on the left hand graph the four left-vertices are weighted by .3I 6; 1/, the next
six by .1I 6; 1/, the remaining three by .2I 6; 1/, and the arrowheads by .1I 0; 1/. The
edges supporting arrowheads are decorated by 1, the others by 2.

Example 8.2.2. The “simplified” graph �C , which does not satisfy Assumption A,
for the generic arrangement with d lines consists of d vertices v	, each decorated
with .1I d; 0/, each supporting an arrow .1I 0; 1/, and any pair of non-arrowheads is
connected by a 2-edge.



Chapter 9
Examples: Families Associated
with Plane Curve Singularities

9.1 Cylinders of Plane Curve Singularities

Consider f .x; y; z/ D f 0.x; y/ and g.x; y; z/ D z, where f 0 W .C2; 0/ ! .C; 0/

is an isolated plane curve singularity. It is well-known (see e.g. [16, 45, 136]) that
the embedded resolution of .C2; Vf 0/ can be obtained by a sequence of quadratic
transformations. Replacing the quadratic transformations of the infinitely near
points of 0 2 C2 by blow ups along the infinitely near 1-dimensional axis of the
z-axis, one obtains the following picture.

Let � .C2; f 0/ denote the minimal embedded resolution graph of the plane curve
singularity f 0 W .C2; 0/ ! .C; 0/. Recall that, besides the Euler numbers and genera
of the non-arrowheads, each vertex has a multiplicity decoration .m/, the vanishing
order of the pull-back of f 0 along the corresponding irreducible curve.

We say that ff D 0g is the cylinder of the plane curve ff 0 D 0g.
In this situation, one can get a possible dual graph �C from � .C2; f 0/ via the

following conversion.
The shapes of the two graphs agree, only the decorations are modified: the Euler

numbers are deleted, while for each vertex the multiplicity .m/ is replaced by
.mI 0; 1/. The genus decorations in �C – similarly as in � .C2; f 0/ – of all non-
arrowheads are zero. Moreover, all edges in �C have weight 2.

Example 9.1.1. Let f .x; y; z/D f 0.x; y/D .x2�y3/.y2�x3/. Then � .C2; f 0/ is:

� � � � �

� �

�2 �1 �5 �1 �2
.5/ .10/ .4/ .10/ .5/

.1/ .1/

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 9,
© Springer-Verlag Berlin Heidelberg 2012
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which is transformed into �C as:

� � � � �

� �

2 2 2 2
2 2

.5I 0; 1/ .10I 0; 1/ .4I 0; 1/ .10I 0; 1/ .5I 0; 1/

.1I 0; 1/ .1I 0; 1/

9.1.2. It is easy to verify that � 2
C D �C , and � 1

C consists of jA j double arrows,
where jA j is the number of irreducible components of f 0. The statements of 7.3
and 7.4 can easily be verified.

9.2 Germs of Type f D zf 0.x; y/

Here f 0 W .C2; 0/ ! .C; 0/ is an isolated plane curve singularity as above,
f .x; y; z/ WD zf 0.x; y/ and g is a generic linear form in variables .x; y; z/.

For this family we found no nice uniform presentation of �C with similar
simplicity and conceptual conciseness as in Sect. 9.1, or in the homogeneous
case. (We face the same obstruction as in the case of suspensions, explained
in the second paragraph of 9.3.1). Since the 3-manifold @F can be determined
completely and rather easily for any f D zf 0.x; y/ by another method, which will
be presented in Chap. 21, we decided to omit general technical graph-presentations
here. Nevertheless, particular testing examples can be determined without difficulty.
For example, consider f 0 D xd�1 C yd�1 when f becomes homogeneous and �C

can be determined as in Chap. 8. Or, consider f 0 D x2 C y3, whose �C is below.
For more comments (and mysteries) regarding the possible graphs �C , see 21.1.8.

Example 9.2.1. Assume that f D z.x2Cy3/ and take g to be a generic linear form.
The “ad hoc blowing up procedure”, using the naive principle to blow up the “worst
singular locus”, provides the following �C , where we only marked the 2-edges, and
all unmarked edges are 1-edges:

� � � �

� � �

�

� �

�

.3I 7; 1/ .6I 7; 1/ .6I 3; 1/ .2I 3; 1/

.1I 4; 1/ .1I 8; 2/ .1I 3; 1/
.1I 0; 1/

.1I 7; 1/

.1I 8; 2/ .1I 0; 1/

2 2

2

2
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9.3 Double Suspensions

Suspension, or cyclic covering singularities are defined by functions of the form
f .x; y; z/D f 0.x; y/C zd , where f 0 W .C2; 0/ ! .C; 0/ is plane curve singularity.
If we wish to get f non-isolated, we have to start with f 0 non-isolated. When d D 2

the germ is called double suspension of f 0. When f 0 is not very complicated,
one might find a convenient resolution by “ad hoc” blow ups, such as in the
following case:

Example 9.3.1. Assume that f D x2yC z2 and g D xCy. Then a possible �C is:

�

�

�

� �

�

.2I 3; 1/

.1I 3; 1/

.2I 6; 2/

.1I 6; 2/

.2I 0; 1/

.1I 0; 1/

Of course, for the general family, we need a more conceptual and uniform
procedure. In general, when determining �C , the construction of an embedded
resolution r , as in 6.1, is not always simple, and it depends essentially on the
choice of the germ g. Ideally, for any f , it would be nice to find a germ g such
that the pair .f; g/ would admit a resolution r which reflects only the geometry
of f , e.g. it is a “canonical”, or “minimal” embedded resolution of Vf . For
example, in the homogeneous case, resolving f we automatically get a resolution
which is good for the pair .f; g/ as well, provided that g is a generic linear
form. But, in general, “canonical” resolutions attached to f by some geometric
constructions used to resolve hypersurfaces do not have the extra property that
they resolve a well-chosen g as well (or, at least, the authors do not know such
a general statement). Usually, the strict transform of g may still have “bad contacts”
with the created exceptional divisors even if we take for g the generic linear
form.

Nevertheless, for double suspensions f Df 0Cz2, if one constructs a “canonical”
resolution using the classical Jung construction fitting with the shape of f (that is,
based on the projection onto the .x; y/-plane, similarly as the methods described in
5.3), the obtained embedded resolution will be compatible with g too, provided that
we take for g a generic linear form. We expect that a similar phenomenon is valid
for arbitrary suspensions as well.

Since the embedded resolution of double suspensions is already present in
the literature [7], this case can be exemplified without too much extra work.
Nevertheless, the computations are not trivial, and their verification will require
some effort from the reader, and familiarity with [7]. In the sequel we present the
main steps needed to understand the procedure, we provide some examples, and we
let the reader explore his/her favorite example.
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We prefer to write g as g0.x; y/ C z, where g0 is a generic linear form (with
respect to f 0) in variables .x; y/.

The embedded resolution of Vfg � .C3; 0/ is constructed in several steps as in
[7]. Although in that article f 0 is isolated, the same procedure works in our case as
well. We summarize the steps in the following diagram:

QX X U3

Z U 2

� ��0

�
p0

�
p

��

� Vfg

�Vf 0g0

where

1. U 3 is a small representative of .C3; 0/ and p W U 3 ! U 2 is induced by the
projection .x; y; z/ ! .x; y/.

2. � W Z ! U 2 is an embedded resolution of .Vf 0g0 ; 0/ � .C2; 0/. We attach
to each irreducible component D of the exceptional divisor and to each strict
transform component two nonnegative integers: the vanishing order m.f 0/,
respectivelym.g0/ of f 0, respectively g0, along that component.

We take the minimal embedded resolution modified as in [7, (3.1)]: we assume
that there are no pairs of irreducible componentsDv1 ;Dv2 with .Dv1 ;Dv2 / 6D 0

having both multiplicities mv1.f
0/;mv2.f

0/ odd. This can always be achieved
from the minimal embedded resolution by an additional blow up at those
intersection points where the condition is not satisfied.

3. p0 WX !Z is the pull-back of p WU 3 !U 2 via �, that is, X is the product
of Z with the z-disc. By construction, in some local coordinates .u; v; z/ with
p0.u; v; z/ D .u; v/, any strict transform component of Vf in X has equation
umw.f

0/ C z2 above the generic point of an exceptional curve of Z, and
umw.f

0/vmv.f
0/ C z2 above an intersection point. The strict transform of Vg is

smooth; its local equations have similar form with the exponent of z being one.
Note that the contact of these two spaces along z D 0 is rather non-trivial.

4.  is an embedded resolution of .� 0/�1.Vf / � X , determined similarly as in
[7, (3.4)]. This procedure constructs a “tower” of exceptional ruled surfaces over
each exceptional divisor of Z. The algorithm of [7] constructs over each divisor
of Z a “minimal” tower, and the towers above divisors with even multiplicities
are constructed first. Both these two conventions will be released now in order to
get a resolution for the pair Vf [ Vg .

The composed map �0ı W QX ! U 3 serves for the modification r . Nevertheless,
we wish to say here a word of warning. Usually we require that r is an isomorphism
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above the complement of the singular locus of Vf . As it is explained in the
Introduction of [7], or can be verified using the definitions, �0 ı  fails to be an
isomorphism above the union of Sing.Vf / with the z-axis (because of the blow
ups of the infinite near z-axis during the modification �0, as pull back of �).
For example, the Milnor fiber of f is not lifted diffeomorphically under this
modification: it is blown up at its intersection points with the z-axis. Nevertheless,
as the boundary @F�;ı has no intersection points with the z-axis provided that ı 	 �,
this modification serves in this procedure as a genuine embedded resolution.

The above strategy leads to a combinatorial algorithm in two steps. In Step 1
one determines the embedded resolution graph � .f 0; g0/ WD � .C2; f 0g0/ (with
the additional property mentioned in (2) above), but now weighted with both
multiplicities .mv.f

0/;mv.g
0// of f 0 and g0. In Step 2 we determine the “towers”

similarly as in [7], eventually constructed in a different order, or with extra blow
ups. In the concrete examples below we will indicate the differences with [7]. Then,
one reads from the “towers” the graph �C of .f; g/. This appears as a “modified
cover” of � .f 0; g0/.

The following facts might be helpful in the construction of the above “modified
cover” of graphs.

The non-arrowhead vertices of � 1
C cover the non-arrowhead vertices of� .f 0; g0/

as follows. Fix w 2 W .� .C2; f 0g0//. If mw.f
0/ is even, and all the f 0-

multiplicities of the adjacent vertices are even, then w is covered by 2 non-arrowhead
vertices. In all other cases it is covered by only one vertex. This structure follows
closely the structure and the position of the strict transform of f in the resolution
towers as it is described in Sect. 3.5 of [7].

The .0; 1/ arrowheads of � .f 0; g0/ are covered by .1I 0; 1/-arrowheads of �C . If
a non-arrowhead w supports such an arrowhead in � .f 0; g0/, and mw.f

0/ is even,
then it is covered by two arrowheads, otherwise only by one. Geometrically this is
the only place where the strict transform of g plays a role.

The two properties above describe behaviors common with Z2 graph coverings.
Next, above the arrowheads of � .f 0; g0/ of type .1; 0/we put nothing. The graph

� 2
C appears above the arrowheads of � .f 0; g0/ of type .m; 0/, m > 1. Fix such an

arrowhead and the corresponding strict transform Sta.f
0/ of f 0, which is supported

by the exceptional componentEw. Then the entire tower above Sta.f 0/ is in Dc and
all the intersection curves with the tower aboveEw enter in C . Therefore, above the
arrowheads of � .f 0; g0/ of type .m; 0/withm > 1 a lot of curves of C may appear,
(and this part does not behave like a cyclic covering).

In certain cases, the genera of the projective irreducible components C of the
special curve configuration C may be difficult to determine from the local equations
of C . However, if the link of the normalization of Vf is a rational homology sphere,
then we can be sure that in �C all the genus decorations are zero, cf. 7.3.3 and 7.4.8.
This is the case in all the examples worked out in this section.
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Although in all the cases considered below the graph � .f 0; g0/ is easy to
determine, we provide them in order to emphasize the covering nature of the
procedure.

Example 9.3.2. Assume that f 0.x; y/ D xayb , where a > 0 and b > 0. The
normalization is a Hirzebruch–Jung singularity, hence its link is a rational homology
sphere.

We will distinguish three cases depending on the parity of a and b.

Case 1. If both a and b are even, that is f 0.x; y/ D x2ny2m, and g0 D x C y,
then by Step 1 the dual graph of the minimal good embedded resolution of Vf 0g0 ,
weighted by the vanishing orders of both f 0 and g0, is

�

.2.nCm/; 1/
�
.2m; 0/

�
.2n; 0/

�
.0; 1/

Here Step 2 follows closely [7] with the following additional information: the tower
above the exceptional divisor weighted .2.nCm/; 1/ was constructed first, then the
towers above the strict transforms of f 0. A possible graph �C of .f; g/ is:

�

�

�

�

.2I 2.nCm/; 1/

.4I 2.nCm/; 1/

.2n� 2I 2.nCm/; 1/

.2nI 2.nCm/; 1/

�

�

�

�

.2I 2.n Cm/; 1/

.4I 2.n Cm/; 1/

.2m� 2I 2.nCm/; 1/

.2mI 2.nCm/; 1/

�

�

.1I 2.n Cm/; 1/

.1I 2.nCm/; 1/

��������

��������

��
��

��
��

��
��

��
��

�

�

.1I 0; 1/

.1I 0; 1/

Case 2. If a is even and b is odd, that is f 0.x; y/ D x2ny2mC1, and g0 D x C y,
then by Step 1 one gets the graph:
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� �

.2nC 2mC 1; 1/ .2nC 4mC 2; 1/
�

.2n; 0/
�
.2mC 1; 0/

�
.0; 1/

Here the assumption of not having adjacent irreducible components with both
multiplicities mi.f /;mj .f / odd is taken into account.

By Step 2, a possible universal graph �C of .h; g/ is:

�

�

�

�

�

�

.2I 2.n Cm/; 1/

.4I 2.n Cm/; 1/

.2n�2I 2.nCm/; 1/

.2nI 2.n Cm/; 1/

.2nI 4.nCm/C2; 2/

.2nI 2.nCm/C1; 1/

�

�

�

�

�

�

.2I 2.n Cm/; 1/

.4I 2.n Cm/; 1/

.2m�2I 2.nCm/; 1/

.2mI 2.nCm/; 1/

.4mC2I 2nC4mC2; 1/

.2mC1I 2nC4mC2; 1/

� �

.1I 4nC 4mC 2; 2/ .1I 2nC 4mC 2; 1/

�
.1I 0; 1/

Here single blow-ups above the exceptional curves weighted .2n C 4m C 2; 1/

first, then .2n C 2m C 1; 1/ were used to ensure the strict transform of g to be in
transverse position with respect to the exceptional divisors appearing later. Then
towers were constructed in the following order: first above the exceptional curve
weighted .2nC4mC2; 1/ then .2nC2mC1; 1/, finally the strict transforms of f 0.

Case 3. Finally, if both a and b are odd, that is f 0.x; y/ D x2nC1y2mC1, and
g0 D x C y, then Step 1 produces the graph:

�

.2.nCmC 1/; 1/
�

.2mC 1; 0/
�

.2nC 1; 0/

�
.0; 1/
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While a possible graph �C is:

�

�

�

�

�

�

.2I 2.n CmC 1/; 1/

.4I 2.n CmC 1/; 1/

.2n�2I 2.nCmC1/; 1/

.2nI 2.n CmC 1/; 1/

.4nC2I 2.nCmC1/; 1/

.2nC1I 2.nCmC1/; 1/

�

�

�

�

�

�

.2I 2.n CmC 1/; 1/

.4I 2.n CmC 1/; 1/

.2m�2I 2.nCmC1/; 1/

.2mI 2.nCmC 1/; 1/

.4mC2I 2.nCmC1/; 1/

.2mC1I 2.nCmC1/; 1/

�

.1I 2.nCmC 1/; 1/

�
�
��

�
�

��
.1I 0; 1/.1I 0; 1/

Here, a tower above the exceptional curve was constructed first, then towers
above the strict transforms of f 0.

Example 9.3.3. Consider the infinite family Ta;2;1 given by the local equation
f .x; y; z/ D xa C y2 C xyz.

If a D 2 then by a change of coordinates, f can be rewritten as f .x; y; z/ D
x2 C y2, a case already treated in 9.1. Therefore, in this subsection we assume that
a � 3. In this case, again, by completing the square and renaming variables, f can
be brought to the form f .x; y; z/ D x2.xa�2 C y2/C z2. In particular, the previous
method can be used with g.x; y; z/ D x C y C z.

The singular locus is ˙f D fx D y D 0g with transversal type A1. Dividing
the equation by x2 and taking t WD y=x, we get that t2 C zt C xa�2 D 0, hence
t is in the normalization of the local ring, and the normalization is a hypersurface
singularity of type Aa�3. In particular, the link of the normalization is a rational
homology sphere.

First, we assume that a is odd, that is a D 2k C 3.

Step 1: For k � 1 the graph � .f 0; g0/ for f 0 D x2.xa�2 C y2/ and g0 D x C y is

� � � � � �

.4; 1/ .6; 1/ .2k; 1/ .2k C 2; 1/ .4k C 6; 2/ .2k C 3; 1/

�
.2; 0/

�

.0; 1/

�

.1; 0/
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Step 2: A possible �C for .f; g/ is:

�

�

�

�

�

�

�

�

�

� �

.2I 4; 1/

.1I 4; 1/

.1I 4; 1/

.1I 6; 1/

.1I 6; 1/

.1I 2k; 1/

.1I 2k; 1/

.1I 2k C 2; 1/

.1I 2k C 2; 1/

.1I 4k C 6; 2/ .1I 4k C 6; 2/

1

�
.1I 0; 1/

�

.1I 0; 1/

�
�
�

�
�
� �

�
�
��

�
�
�
��

For k D 0 (i.e., for a D 3), the first graph is

� �

.6; 1/ .3; 1/

�
.2; 0/

�

.1; 0/

� .0; 1/

which is “covered” by the graph �C :

�

.2I 6; 1/
�

.1I 6; 1/
�

.1I 6; 2/
� .1I 0; 1/

2

2

(For an alternative universal graph with different g, see 9.4.8.)

In case a D 2k, k � 3, Step 1 provides

� � � �

.4; 1/ .6; 1/ .2k � 2; 1/ .2k; 1/

�
.2; 0/

�

.0; 1/

��
��
.1; 0/

����
.1; 0/
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and �C is

�

.2I 4; 1/
�

�

.1I 4; 1/

.1I 4; 1/

�

�

.1I 6; 1/

.1I 6; 1/

�

�

.1I 2k � 2; 1/

.1I 2k � 2; 1/

� .1I 2k; 1/

�
.1I 0; 1/

�

.1I 0; 1/

�
�
�

�
�
� ��

��
��

������

For k D 2 (that is a D 4) Step 1 gives

�

.4; 1/

�
.2; 0/

�

.0; 1/

��
���

.1; 0/

����� .1; 0/

while Step 2 provides

�

.2I 4; 1/
� .1I 4; 1/

�
.1I 0; 1/

�.1I 0; 1/

2

2

Example 9.3.4. Consider the family f .x; y; z/ D xay.x2 C y3/C z2 with a � 2

and g D xCyC z. Again, we need to consider two cases depending on parity of a.
The equation of the normalization is xy.x2 C y3/ C z2 D 0 if a is odd, and it is
y.x2 C y3/ C z2 D 0 if a is even. In both cases one can determine the plumbing
graph of the link of the normalization using the algorithm 5.3. In particular, one gets
that the link of the normalization is a rational homology sphere.
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When a is even, and taking into account, that no adjacent vertices can have odd
f 0-multiplicities, Step 1 gives for f 0g0:

� � � �

.2aC 4; 1/ .3a C 8; 2/ .aC 3; 1/ .aC 4; 1/
�

.a; 0/

�
.1; 0/

�
.0; 1/

�
.1; 0/

Step 2 provides

�

�

�

�

.2I 2aC 4; 1/

.4I 2aC 4; 1/

.a � 2I 2a C 4; 1/

.aI 2aC 4; 1/

.1I 2aC 4; 1/

�

�

.1I 2aC 4; 1/

�

.1I 3a C 8; 2/

�

.1I 2a C 6; 2/
�

.1I a C 4; 1/
��

��
��

��
��

��

������

������

�
.1I 0; 1/

When a is odd, the first graph is:

� � �

�

.2aC 4; 1/ .3a C 8; 2/ .aC 3; 1/

.3aC 9; 2/

�
.a; 0/

�
.1; 0/

�
.1; 0/

�
.0; 1/
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while Step 2 provides

�

�

�

�

�

.2I 2aC 4; 1/

.4I 2aC 4; 1/

.a � 1I 2aC 4; 1/

.2aI 2a C 4; 1/

.aI 2a C 4; 1/

�

.1I 2aC 4; 1/
�

.1I 6a C 16; 4/

�

.1I 3a C 9; 2/

�

.1I aC 3; 1/
��

��
��

������

.1I 0; 1/

.1I 0; 1/

Example 9.3.5. The procedure 9.3.2 has a natural generalization for certain other
suspensions too. For example, consider f .x; y; z/DxmdyndCzd with gcd.m; n/D1,
and g.x; y; z/ D x C y C z, hence f 0.x; y/ D xdnydm, and g0 D x C y.

Note that f has d local irreducible components, and each component is smooth.
Hence, again we know that all the genus decorations of �C are zero.

By Step 1 the graph � .f 0; g0/ is

�

.d.nCm/; 1/
�
.dm; 0/

�
.dn; 0/

�
.0; 1/

Finally, by Step 2, a possible graph �C of .f; g/ is:
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�

�

�

�

.d I d.nCm/; 1/

.2d I d.n Cm/; 1/

.d.n� 1/I d.nCm/; 1/

.dnI d.nCm/; 1/

�

�

�

�

.d I d.n Cm/; 1/

.2d I d.n Cm/; 1/

.d.m�1/I d.nCm/; 1/

.dmI d.nCm/; 1/

�

�

�

.1I d.nCm/; 1/

.1I d.nCm/; 1/

.1I d.nCm/; 1/

��������

��������

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

��
��

��
��

��
��

��
��

�

�

�

.1I 0; 1/

.1I 0; 1/

.1I 0; 1/

where in the middle column there are d vertices.

For another suspension case, see 6.2.9.

9.4 The Ta;�;�-Family

9.4.6. The Ta;1;1-family. Let f D xa C xyz and set g D x C y C z.

If a D 2k C 1, k > 1, then a possible universal graph is:

� � �

.1I 2k � 1; 1/ .1I 5; 1/ .1I 3; 1/

� � �

.1I 2k � 1; 1/ .1I 5; 1/ .1I 3; 1/

� �.1I 2k C 1; 1/

.1I 3; 1/
�
�

�
�

�
�

�
�

2

2

�����

�

��
���

.1I 0; 1/

.1I 0; 1/

.1I 0; 1/

Above, all unmarked edges have weight 1.
The resolution process was started by a blow-up at the origin. Since f D x2kC1C

xyz D x.x2k C yz/, there is only one singularity remaining, of the form ft2k�2 C
sr D 0g. It is resolved by a series of blow-ups at infinitely near points, resulting in
the above graph.

If a D 3 then f is homogeneous. In particular, a single blow-up at the origin
suffices and we get
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� �

.1I 3; 1/ .1I 3; 1/
� .1I 0; 1/��

��#
.1I 0; 1/

����$
.1I 0; 1/

2

2

Set now a D 2k, k > 2. The same strategy for the resolution as above can
be followed. However, when the strict transform of f becomes smooth, it is not
in normal crossing with the exceptional divisors. Two additional blow-ups along
singular axes lead to the following universal graph:

� � � �

.1I 2k; 1/ .1I 2k � 3; 1/ .1I 5; 1/ .1I 3; 1/

� � � �

.1I 2k; 1/ .1I 2k � 3; 1/ .1I 5; 1/ .1I 3; 1/

�

.1I 3; 1/
�
�

�
�

2

2

�����

�

��
���

.1I 0; 1/

.1I 0; 1/

.1I 0; 1/

(All unmarked edges have weight 1, as before.)

Finally, in case a D 4 the previous resolution “strategy” leads to

� �

.1I 4; 1/ .1I 4; 1/

� �

.1I 4; 1/ .1I 4; 1/

�

.1I 3; 1/
�
�

�
�2

2

1

�

�

�

.1I 0; 1/
.1I 0; 1/

.1I 0; 1/

9.4.7. The Ta;2;1-family (again). Set f .x; y; z/ D xa C y2 C xyz.
The cases a D 3 and a D 5 (with g D z) were already considered in [92],

where �C was obtained using an alternative/ad hoc resolution. The graphs �C thus
obtained will serve as clarifying examples for several geometric discussions in this
work as well. The graphs are the following:

Example 9.4.8. If f D x3 C y2 C xyz and g D z then a possible �C is:

�

�

�

�

������

��
��

�

�

.3I 0; 1/

.2I 0; 1/

.3I 6; 1/

.2I 6; 1/

.1I 6; 1/
.1I 0; 1/
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Example 9.4.9. If f D x5 C y2 C xyz and g D z then a possible �C is:

� �

�

�

���
��

�

�����

�����

��
��

�

�.2I 0; 1/
.2I 4; 1/

.1I 4; 1/

.1I 4; 1/

.1I 10; 3/
.1I 0; 1/

The general case (i.e. arbitrary a � 3), with g D x C y C z, is clarified in 9.3.3.
Notice that in the two examples above and in 9.3.3 we used different germs g

and different sequences of blow ups. Thus, the output graphs are also different.



Part II
Plumbing Graphs Derived from �C



Chapter 10
The Main Algorithm

10.1 Preparations for the Main Algorithm

10.1.1. The goal of the chapter. The algorithm presented in this chapter provides
the plumbing representations of the 3-manifolds @F , @1F and @2F , and the
multiplicity systems of the open book decomposition of .@F; Vg/ as well as the
generalized Milnor fibrations @F n Vg , @1F n Vg and @2F over S1 induced by
arg.g/ D g=jgj.
10.1.2. Assumptions. In 6.3 we imposed Assumption A on �C , which can always
be realized by an additional blow up. Although in the Main Algorithm this
restriction is irrelevant, in the geometric interpretations 7.3–7.4–7.5 it simplified
and unified the presentation substantially.

In the next paragraph we introduce another restriction, Assumption B. In contrast
with Assumption A, this new restriction plays a relevant role in the formulation
of the algorithm and its proof. Nevertheless, in Chap. 12 we will formulate a new
version of the algorithm from which Assumption B will be removed (but the proof
of the new algorithm will still rely on the proof of the present original version).

10.1.3. Assumption B. In Chaps. 10 and 11 we will assume that �C has no such
edge decorated by 2 whose end-vertices would have the middle weights zero. This
requirement is regardless of whether those end-vertices are arrowheads or not.

In the sequel, we call such an edge vanishing 2-edge.
Their absence can be assumed because of the following reason. Assume that �C

is associated with some resolution r as in 6.1, and it has such a 2-edge e

.mI 0; 
/ .m0I 0; 
/
v v02

where the vertices v and v0 correspond to the curves Cv and Cv0 of C . (If v and v0 are
non-arrowheads, they might have genus decorations as well.) Then the embedded

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 10,
© Springer-Verlag Berlin Heidelberg 2012

101
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resolution r modified by an additional blow up with center p 2 Cv \Cv0 provides a
new graph � 0

C , where e is replaced by

� �

.mI 0; 
/ .m0I 0; 
/
v v021 1

.mImCm0; 
/ .m0ImCm0; 
/

10.1.4. Terminology – legs and stars. In the description of the algorithm we use
the following expressions.

Fix a non-arrowhead vertex v of �C with weights .mIn; 
/ and Œg�. Then v
determines a star in �C , which keeps track of all the edges adjacent to v along
with their decorations and the weights .kI l; 
/ of the vertices at the other end of
the edges, but disregards the type of these vertices. The aim is to unify the different
cases represented by loops and edges connecting non-arrowheads or arrowheads.

Definition 10.1.5. A leg supported by the vertex v has the form:

�

.mIn; 
/ .kI l; �/
Œg�

v

x

where x 2 f1; 2g and the decorations satisfy the same compatibility conditions as
the edges in 6.2.4. Then, a star, by definition, consists of a vertex v (together with
its decorations) and a collection of legs supported by v.

Once�C and v are fixed, the star of v in �C is constructed as follows. Its “center”
has the decorations .mIn; 
/ and Œg� of the vertex v. Furthermore, any edge with
decoration x, with end-vertices v and v0 (where v0 6D v, and v0 is either an arrowhead
or not) provides a leg with decorations x and the weight (the ordered triple) of v0. In
particular, if v0 is a non-arrowhead, and it is connected to v by more than one edge,
then each edge contributes a leg. Moreover, any loop supported by v and weighted
by x, provides two legs supported by v, both decorated by the same x and their “free
ends” by .kI l; �/ D .mIn; 
/.

One has the following geometrical interpretation: regard �C as the dual graph of
the curve configuration C , and let v correspond to the component C . Then the legs
of the star of v correspond to the inverse images of the double points of C sitting on
C by the normalization map C norm ! C .

10.2 The Main Algorithm: The Plumbing Graph of @F

Recall that in this section we assume that the graph �C satisfies Assumption B.
First, we construct the plumbing graph of the open book decomposition of @F

with binding Vg and fibration arg.g/ W @F n Vg ! S1, cf. 3.2.2 and 4.1.9. Hence,
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we have to determine the shape of the graph together with its arrows, and endow it
with the genus and Euler number decorations and a multiplicity system. The graph
will be determined as a covering graph G of �C , modified with strings as in 5.1.9.
In order to do this, we have to provide the covering data of the graph-covering,
see 5.1.2.

10.2.1. Step 1. – The covering data of the vertices fnvgv2V .�C /.

Case 1. Consider a non-arrowhead vertex w of �C decorated by .mIn; 
/ and Œg�.
(In fact, by 7.4.8, g D 0 wheneverm > 1.) Consider its star

�!!!
!!!

!!

��������

���
���

��

!!!!!!!!

.mIn; 
/
.m1In; 
/

.mt In; 
/

.mIn1; 
1/

.mIns; 
s/
Œg�

:::
:::

w

2

2

1

1

Let s and t be the number of legs weighted by x D 1 and x D 2 respectively. Then,
in the covering procedure, above the vertex w of �C put nw non-arrowhead vertices,
where

nw D gcd.m; n; n1; :::; ns ;m1; :::; mt /: (10.2.2)

Furthermore, put on each of these non-arrowhead vertices the same multiplicity
decoration . Qm/, where

Qm D m


gcd.m; n/
; (10.2.3)

and the genus decoration Œ Qgw� determined by the formula:

nw � .2 � 2 Qgw/ D .2 � 2g � s � t/ � gcd.m; n/ (10.2.4)

C
s

X

iD1
gcd.m; n; ni /C

t
X

jD1
gcd.m; n;mj /:

(In Step 3, the Euler number of each vertex will also be provided.)

Case 2. Consider an arrowhead vertex v of �C , that is, � .1I 0; 1/ . Above the
vertex v, in the covering graphG, put exactly one arrowhead vertex; i.e. set nv D 1.
Let the multiplicity of this arrowhead be 1. In particular, all arrowheads of G are:
� .1/ .

10.2.5. Step 2. – The covering data of edges fnege2E .�C / and the types of
inserted strings.
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Case 1. Consider an edge e in �C , with decoration 1:

� �

.mIn; 
/ .mI l; 	/
Œg� Œg0�
v1 v2

1

Define:
ne D gcd.m; n; l/:

Notice that Step 1 guarantees that both nv1 and nv2 divide ne.
Then, above the edge e insert cyclically in G exactly ne strings of type

Str

�

n

ne
;
l

ne
I m
ne

ˇ

ˇ

ˇ 
; 	I 0
�

:

If the edge e is a loop (that is, if v1 D v2), then the procedure is the same with
the only modification that the end-vertices of the ne strings are identified cyclically
with the nv1 vertices above v1, hence they will form 1-cycles in the graph. In other
words, on each vertex above v1 one puts ne=nv1 “closed” strings, that form loops.

If the right vertex v2 is an arrowhead, that is, the edge e is

� �
.1In; 
/

.1I 0; 1/
Œg�

1

then complete the same procedure as above with m D 1 and ne D 1: above such an
edge e put a single edge decorated by C, which supports that arrowhead ofG which
covers the corresponding arrowhead of �C .

Case 2. Consider an edge e in �C , with decoration 2:

� �

.mIn; 
/ .m0In; 
/
Œg� Œg0�
v1 v2

2

Notice that, by Assumption B (cf. 10.1.3), n 6D 0. For such an edge, define:

ne D gcd.m;m0; n/: (10.2.6)

Notice again that both nv1 and nv2 divide ne .
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Then, above the edge e insert cyclically in G exactly ne strings of type

Str�
�

m

ne
;
m0

ne
I n
ne

ˇ

ˇ

ˇ 0; 0I 

�

:

If the edge is a loop, then we modify the procedure as in the case of 1-loops. Notice
that by Assumption B, there are no 2-edges supporting arrowheads.

Note that above � 1
C and above the cutting edges the “covering degree” is always

one.

10.2.7. Step 3. – Determination of the missing Euler numbers. The decorations
provided by the first two steps are the following: the multiplicities of all the vertices,
all the genera, some of the Euler numbers, and all the sign-decorations of the edges
(those without � have decoration C). Then, finally, the missing Euler numbers are
determined by formula (4.1.5).

10.2.8. The output of the algorithm. Notice that the set of integers fnvgv2V .�C /

and fnege2E .�C / satisfy the axioms of a covering data. Furthermore, if v 2 V 1.�C /

then m D 1 hence nv D 1. Moreover, by Corollary 7.4.12, each � 2
C ;j is a tree.

Therefore, by Proposition 5.1.8 and Theorem 7.4.16 we get that

there is only one cyclic covering of �C with this covering data
(up to a graph-isomorphism).

The graphs obtained by the above algorithm can, in general, be simplified by the
operations of the oriented plumbing calculus (or their inverses), or by the reduced
plumbing calculus. If we are interested only in the output oriented 3-manifold, we
can apply this freely without any restriction. Nevertheless, if we wish to keep some
information from the (analytic) construction which provides the graph (for example,
if we wish to apply the results of Chaps. 13–18 regarding different horizontal and
vertical monodromies), then it is better to apply only the reduced plumbing calculus
of oriented 3-manifolds (with arrows), cf. 4.2. This is what we prefer to do in this
book.

Moreover, even if we rely only on the reduced calculus, during the plumbing
calculus, some invariants might still change. For example, the operation R5 modifies
the sum g.Gr/ of the genus decorations and the number c.Gr/ of independent 1-
cycles of a graph Gr . Since, in the sequel in some discussions these numbers will
also be involved, by our graph notations we wish to emphasize that a certain graph
is in the unmodified stage, or it was modified by the calculus. Hence, we will adopt
the following notation:

Definition 10.2.9. We write G, G1 andG2;j for the graphs obtained by the original
algorithm (associated with �C , � 1

C and � 2
C , see below), while the general notation

for the modified graph under the reduced plumbing calculus is Gm, Gm
1 , Gm

2;j .

Using these notations, one of the main results of the present work is the
following.
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Theorem 10.2.10. The oriented 3-manifold @F and the link Vg \ @F in it can be
represented by an orientable plumbing graph (see 4.1 for the terminology).

More precisely, let .f; g/ be as in Sect. 3.1. Then, the decorated graph G

constructed above is a possible plumbing graph of the pair .@F; @F \ Vg/,
which carries the multiplicity system of the open book decomposition arg.g/ W
@F n Vg!S1. If one deletes the arrowheads and the multiplicities, one obtains a
possible plumbing graph of the boundary of the Milnor fiber @F of f .

The proof of Theorem 10.2.10 will be given in Chap. 11. Nevertheless, in the
next paragraphs we wish to stress the main geometric idea of the proof.

If f is an isolated hypersurface singularity, then the linkK D Vf \S5� is smooth,
and there exists an orientation preserving diffeomorphism @F � K . Hence, @F can
be “localized”, i.e. can be represented as a boundary of an arbitrary small represen-
tative of a (singular) germ. If that germ is resolved by a modification – whose exis-
tence is guaranteed by the existence of resolution of singularities –, then K appears
as the boundary of the exceptional locus, hence one automatically gets a plumbing
representation for K . Its plumbing data can be read from the combinatorics of the
exceptional set and the multiplicity system from the corresponding vanishing orders.

If f is not isolated thenK is not smooth, and the above argument does not work.
Even the fact that @F has any kind of plumbing representation is not automatic at
all. Nevertheless, the case of isolated singularities suggests that, if we were able to
“localize” @F , as a link of a singular germ, then we would be able to extend the
above procedure valid for isolated singularities to the non-isolated case as well. This
realization is the main point in the proof of Theorem 10.2.10, but with the difference
that the germ whose local link is @F is not holomorphic (complex analytic), but it
is real analytic. One has the following surprising result.

Proposition 10.2.11. (See 11.3.3.) Let f be a hypersurface singularity with a 1-
dimensional singular locus. Take another germ g such that .f; g/ forms an ICIS as
in Sect. 3.1. For a sufficiently large even integer k consider the real analytic germ

Sk WD fz 2 .C3; 0/ W f .z/ D jg.z/jk g:

Then Sk n f0g is a smooth 4-manifold with a natural orientation whose link is
independent of the choice of g and k, and which, in fact, is orientation preserving
diffeomorphic to @F .

The proof of Theorem 10.2.10, in fact, describes the topology of a resolution
of Sk , and it shows that it is “guided” exactly by �C . Furthermore, the algorithm
which provides G from �C extracts the combinatorics of the exceptional locus and
its tubular neighbourhood from this resolution.

Notice that the above proposition is true for k odd too, nevertheless, Sk for k
even has nicer analytic properties: for example, if f and g are polynomials, then
Sk is a real algebraic variety.
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Remark 10.2.12. (a) We would also like to stress that even though Proposition
10.2.11 is formulated and proved for germs in three variables, it is true for
any germ f W .Cn; 0/ ! .C; 0/ with 1-dimensional singular locus – the only
modification in the statement and its proof is the replacement of C3 with Cn.

(b) The power of Theorem 10.2.10 is not just the fact that it proves that @F has
a plumbing representation; for that already Proposition 10.2.11 is enough.
Theorem 10.2.10 provides a very clear algorithm for the determination of the
plumbing representation, which can be performed for any concrete example.
Moreover, from the algorithm one can subtract essential theoretical information
as well, as will be done in the next chapters.

(c) The investigation of the geometry of real analytic germs and their fibration
properties is not new in the literature, see for example the results of A. Pichon
and J. Seade regarding the germs of type f g [106, 107].

(d) Theorem 10.2.10 was obtained in 2004–2005; the Main Algorithm was
presented at the Singularity Conference at Leuven, 2005. The material of
the present book was posted on the Algebraic Geometry preprint server in 2009
[93].

The fact that the boundary of the Milnor fiber is plumbed was announced by F.
Michel and A. Pichon in 2003 [73, 74]. Their proof appeared on the preprint server
in 2010 [75].

The techniques prior to the present book were not sufficiently powerful to
produce examples with cycles, and even to predict the necessity of edges with
negative decorations. These are novelties of the present work.

10.3 Plumbing Graphs of @1F and @2F

The above algorithm, which provides @F , is compatible with the decomposition of
this space into its parts @1F and @2F . In this section we make this statement precise.

10.3.1. The graphs of .V norm
f ; gın/ and @1F . Consider the graph� 1

C . Repeat Steps
1 and 2 from the Main Algorithm 10.2, but only for the vertices and edges contained
in � 1

C , excluding any edge inherited from a cutting edge. Replace any edge inherited
from a cutting edge by an edge supporting an arrowhead with multiplicity .0/. In
this way we get a graph with all the multiplicities determined and with all edge-
decorations C. Calculate the Euler numbers by (4.1.5). This graph will be denoted
byG1. (Note that it coincides with the graphG1

C considered in 7.3.2 and Proposition
7.3.3.)

Remark 10.3.2. The vertices of G1 can be identified with some of the vertices of
G, hence if we disregard the decorations of the graphs, then G1 is a subgraph of G.
However, as decorated graph, G1 is not a subgraph of G: that end-vertex of any
cutting edge which is situated in � 1

C will have different Euler numbers in the two
graphsG and G1. All the other Euler numbers evidently coincide.

The next theorem is essentially the same as Proposition 7.3.3; we consider it
again to have a complete picture of the algorithm and its consequences.
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Theorem 10.3.3. G1 is a possible embedded resolution graph of .V norm
f ; g ı n/,

where the arrows with multiplicity .0/ represent the link-components determined by
the strict transforms of Sing.Vf /. If we delete these 0-multiplicity arrows, we get a
possible embedded resolution graph of .V norm

f ; g ı n/. Furthermore, if we delete all
the arrowheads and all the multiplicities, we get a possible resolution graph of the
normalization of V norm

f .
If inG1 we replace the 0-multiplicity arrows by dash-arrows we get the plumbing

representation of the pair .@1F; Vg\@F /, where the remaining arrows represent the
link Vg \@F , and the multiplicities are the multiplicities of the local trivial fibration
arg.g/ W @1F n Vg ! S1. In particular, if all remaining non-dash-arrows and all
multiplicities are deleted as well, we get the plumbing graph of the 3-manifold with
boundary @1F .

If inG1 all arrows are replaced by dash-arrows and the multiplicities are deleted,
we get the plumbing graph of the manifold with boundary @1F n T ı.Vg/.

10.3.4. The graph of @2F . LetG2 be the graph obtained fromG as follows. Delete
all vertices and edges of G that are above the vertices and edges of � 1

C , and replace
the unique string above any cutting edge by a dash-arrow (putting no multiplicity
decoration on it). Obviously, G2 has s connected components fG2;j g1�j�s; where
G2;j is related with ˙j as in 7.4. Clearly, G2;j can be determined from � 2

C ;j by a
similar procedure as G is obtained from �C , and by adding dash-arrows above the
arrowheads.

Theorem 10.3.5. For each j D 1; : : : ; s, G2;j is a possible plumbing graph for
the 3-manifold with boundary @2;j F , where the set of multiplicities consists of
the multiplicity system associated with the fibration arg.g/ W @2;j F ! S1. If all
multiplicities are deleted then obviously we get a plumbing graph of the 3-manifold
with boundary @2;j F .

10.3.6. The gluing tori. Each connected component @2;j F (j D 1; : : : ; s) is glued
to @1F along @@2;j F , which is a union of tori. Since for each cutting edge e one
has ne D 1 (i.e. in the Main Algorithm exactly one string is inserted above e), the
number of these tori is exactly the cardinality of Ecut;j , the number of cutting edges
adjacent to � 2

C ;j .
Let e be such a cutting edge, and use the notations of 7.5 regarding this edge. Let

Te be the torus component of @.@2;j F / corresponding to e. Furthermore, consider
the fibration Te ! Lj from 2.3.1. Then the fiber of this projection consists of d.e/
circles, the corresponding orbit of the (permutation) action of m0

j;ver on @F 0
j . In

particular, the number of connected components of @F 0
j is

P

e2Ecut;j
d.e/, as it was

already noticed in (7.5.4). Recall also that m0
j;hor acts on Te trivially, cf. 2.3.1(2).

For more details see Sect. 7.5.
These gluing tori appear in the link K of Vf as well. Indeed, consider

Lj D K \ ˙j as in Sect. 2.1. Let T .Lj / be a tubular neighbourhood of Lj in
S5� as in 2.3. Then @T .Lj / intersectsK in jEcut;j j tori, which can be identified with
the gluing tori of @F , see also Remark 2.3.3.



10.3 Plumbing Graphs of @1F and @2F 109

Remark 10.3.7. From the plumbing graphs of @1F and @2F it is impossible to
recover the graph of @F , since the gluing information (an automorphism of the
gluing tori) cannot be read from the partial information contained in the graphs of
@1F and @2F . (See e.g. examples 10.4.1 and 10.4.2.) This gluing information is
exactly one of the main advantages of the graph �C and of the Main Algorithm,
which provides the full @F .

Remark 10.3.8. In fact, on G2;j one can put even more information/decoration
inherited from G. If one introduces a “canonical” framing (closed simple curve) of
the boundary components of @2;j F , then one can define a well-defined multiplicity
of the dash-arrows as well (inherited from G). Usually, such a framing is needed
when one wishes to “close” with solid tori a 3-manifold that has toric boundary
components.

Here we will make this completion via the following construction. Consider the
graph G2;j obtained as follows.

From the graph G delete all those vertices which are vertices of G1. All
the remaining vertices are non-arrowheads; keep their genus, Euler number and
multiplicity decorations. Keep all the edges which connect these vertices, and keep
their decorations as well. Finally, keep any edge which connects a vertex v in G1
with another vertex w not in G1, keep its decoration �, and replace v with an
arrowhead having the same multiplicity as v has inG1. This graph is denoted byG2.
Its connected components are indexed by f1; : : : ; sg and there is a natural bijection
(induced by inclusion) with the graphs G2;j . The connected component G2;j of G2
which contains the vertices of G2;j is called the canonical closure of G2;j . G2;j
contains jEcut;j j arrowheads.

It is clear that G2;j can be obtained from � 2
C ;j as well.

If we delete all the multiplicities of G2;j , but we keep the arrowheads, we get
a plumbing graph of a closed 3-manifold (without boundary) and a link in it. This
3-manifold, denoted by @2;j F , will be called the canonical closure of @2;j F , since
it can be obtained from @2;j F by gluing some solid tori to its boundary components
in a canonical way dictated by the above construction. The corresponding link in
it is denoted by Lcut;j . The manifold @2;j F is obtained from @2;j F by deleting the
interior of a tubular neighbourhood Tj of Lcut;j .

For each component of Lcut;j consider the oriented meridian �e in Tj . The
collection f�ege2Ecut;j serves as a framing in @.@2;j F /. Using this framing @2;j F

can be closed in a canonical way to get @2;j F .

Remark 10.3.9. Using the graph G one can decorate both the graphs G1 and G2
even more so that all boundary components of @1F and @2F will be canonically
identified with S1 
 S1 in such a way that gluing them provides @F .

Since a complete description of @F is already provided by the Main Algorithm,
we omit the description of these decorations. But, definitely, the interested reader
might consider and add this data to the picture as well.
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10.4 First Examples of Graphs of @F , @1F and @2F

Example 10.4.1. Assume that f D x3 C y2 C xyz and g D z as in 9.4.8. Then the
output of the Main Algorithm is the following graphG:
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0

2

1
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and all the multiplicities are .1/.

There is only one non-arrowhead vertex in G with multiplicity 1. Therefore, one
has the following graphs for .V norm

f ; g ı n/, @1F n T .Vg/, and @1F :

�

���

��� ��1
.0/

.0/

.1/
.1/

G1

� �
�1
.1/

.1/

.V norm
f ; g ı n/

�

�

� �

@1F n T .Vg/

�

�

�

@1F

� ��

Moreover, by plumbing calculus, the graph of @2F is also the double dash-arrow
� � . Notice that both parts @1F and @2F are extremely simple 3-manifolds with
boundary, namely, both are isomorphic to S1 
 S1 
 Œ0; 1�. The main information
in @F is exactly how these parts are glued.

By calculus starting from G, the boundary @F is represented by the graph:

��4
�

The multiplicity system of the open book decomposition .@F; Vg/ is given by:

� � � .1/
�1
.1/

��6
.0/

Example 10.4.2. Assume that f D x2y C z2 and g D x C y, cf. 9.3.1. Then,
by the Main Algorithm and plumbing calculus we get that the (minimal) plumbing
graph of @F consists of a unique vertex with genus zero and Euler number �4, i.e.
@F is the lens space L.4; 1/. Moreover,
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�

���

����1
.0/

.1/

�

.1/.2/

G1

�2 � �
�1
.1/

.1/

.V norm
f ; g ı n/

� �

@1F

and

�

��

�� �

�2

�2
@2F W

�

�

Notice that for the unique cutting 2-edge e in 9.3.1 one has d1 D 1, hence

 D d.e/ D 2. Therefore, although the transversal singularity has two local
irreducible components, @1F and @2F are glued by only one torus. The point is
that the transversal type is A1, and the two local irreducible components of the
transversal singularity are permuted by the vertical monodromy, see 7.5 and 10.3.6
(and compare also with the next example and Example (3.1) of [119]).

The open book decomposition of .@F; Vg/ is given by:

�

��

�� � � �

�
�2

�2

�

�

�1 �3 �1 �2
.2/ .0/ .2/ .1/

�

.1/
.1/

.1/

Example 10.4.3. In both cases of 9.4.8 and 9.4.9, the singular locus ˙ of Vf
is irreducible and consists of the z-coordinate axis. The transversal type is an A1
singularity, hence #T .˙/ D 2. Furthermore, jEcut;1j D 2 and for both cutting edges
d.e/ D 1. Therefore (see 7.5 and 10.3.6), the action of the vertical monodromy
does not permute the two local components, and in both cases 9.4.8 and 9.4.9, there
are two gluing tori.

On the other hand, it might happen that the two local components of a transversal
A1 singularity are permuted by the vertical monodromy, see e.g. 10.4.2.

Similarly, in the case of 6.2.7 (compare also with 7.5.5),˙ D ˙1 [ ˙2, and for
both ˙j the transversal type is A1, hence #T .˙j / D 2 (j D 1; 2). Moreover, for
both j , jEcut;j j D 1, dj D 1, and d.e/ D 2; hence @2;j F is glued to @1F by exactly
one torus.

Example 10.4.4. Assume that f D xd C yd C xyzd�2, d � 3. For �C see the
second graph of 8.1.5 (which satisfies Assumption A). In this case ˙ is irreducible
with transversal type A1. The gluing data are jEcut;1j D 2 and d1 D 1. For both
cutting edges d.e/ D 1, hence one has two gluing tori. The graph of @F is:



112 10 The Main Algorithm

� ��d �d
Œ
d.d�3/

2
�

�

Recall that if a normal surface singularity is weighted homogeneous, then its
link is a Seifert 3-manifold, and it can be represented by a star-shaped plumbing
graph (or, in the degenerate case, by a string). Note that this is not true in the present
situation: the above equation is homogeneous, nevertheless, the graph has a cycle.
The same remark is valid for the weighted homogeneous equation from 10.4.1.

Note also that the above graph has a negative definite intersection matrix A,
nevertheless there is no sequence of modifications by plumbing calculus which
would eliminate the negative edge-decoration. Hence, @F cannot be the link of a
normal surface singularity.

Example 10.4.5. For f D x3y7 � z4 the graph �C is given in 6.2.9. After a
computation, we get for Gm the next graph.
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This graph Gm can be transformed into its “normal form” in the sense of [33],
that is, with all the Euler numbers on the legs � �2. It is the following:
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�4

Its central vertex has Euler number e D �4. The eight pairs of normalized
Seifert invariants .˛`; !`/, .1 � ` � 8/, associated with the eight legs, are
determined as Hirzebruch–Jung continued fractions associated with the entries
of the corresponding legs: ˛`=!` for 1 � ` � 4 is Œ2; 2; 3� D 7=5, while the other
four are Œ3� D 3=1; cf. 5.3.5.
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Recall that the orbifold Euler number of the Seifert 3-manifold is defined as
eorb WD e C P

` !`=˛`, and the normal form graph is negative definite if and only
if eorb < 0. In this case eorb D 4=21 > 0, hence the graph is not negative definite.

In particular, this graph cannot be transformed into a negative definite graph by
plumbing calculus.

Note that Gm with opposite orientation (that is, �Gm) is negative definite.

Example 10.4.6. For f D x2y2 C z2.xC y/ a possible graph �C is given in 6.2.7.
For a possible Gm we get:

� � � � �

�

�

�

�

�
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����3

�1 �4 �1 �4 �1�2

�2

�2

�2

(Notice that for this graph it would be possible to use the RP
2-absorption of the

non-orientable calculus, but we do not do that.)
In this case @F is a rational homology sphere, since det.A/ 6D 0.

Example 10.4.7. Assume that f D y3C.x2�z4/2. Then using 6.2.8 we get forGm:

� � � � �

��2

1 4 0 4 1

Œ1� Œ1�

Example 10.4.8. Finally, the last example is the 1-parameter infinite family
f D xay.x2 C y3/ C z2 with a � 2. The reader may consider this as a model
for other infinite families.

A graph �C with g D x C y C z is given in 9.3.4.

Case 1. Assume that a is even. We determine G in several steps.
First, the graph G1 can be determined easily (in particular, the normalization of

Vf is the D5 singularity):

.1/

�2
�

�

.1/

�2

.0/

.0/

�

.2/

�2
�

.2/

�2
�

.1/

�2
��

��
��

������

�

�

�
.1/

Clearly, we have two gluing tori. Let v1 and v2 be the vertices of G1 which support
the (0)-arrows. Next, we wish to determine the multiplicity m1 of the vertex v0

1 of
G, which is not in G1 and is a neighbour of v1 in G. For this we have to analyze the
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cutting edge with weights .aI 2aC4; 1/ and .1I 2aC4; 1/. By (4.3.6) (pay attention
to the left-right ordering of the ends of the string),m1 satisfies aC	 D m1.2aC 4/

for some 	 with 0 � 	 < 2a C 4. Hence m1 D 1. In G the vertex v0
1 is glued to v1

by a �-edge, hence the Euler number of v1 in G is �1.
Finally, we analyze the graph � 2

C . Its shape and the first entries of the weights of
the vertices coincide with the minimal embedded resolution graph of the (transversal
type) plane curve singularity u2 C va, provided that we replace v1 and v2 by
arrowheads with multiplicity 1. Comparing the Main Algorithm and the algorithm
which provides the graph of suspension singularities (cf. 5.3), we realize that the
part of G above � 2

C is exactly the resolution graph of u2 C va C w2aC4 D 0 with
opposite orientation. More precisely, let

�

�

�

.1/

.1/

be the minimal embedded resolution graph of the germ w W .fu2 C va C w2aC4 D
0g; 0/ ! .C; 0/, induced by the projection .u; v;w/ 7! w. Let �� be this graph
with opposite orientation (in which one changes the signs of all Euler numbers
and edge-decorations, and keeps the multiplicities). Then the graph of the open
book decomposition of .@F; Vg/ is obtained by gluing �� with G1 such that the
arrows of �� are identified with v1 and v2 (and the Euler numbers of v1 and v1 are
recomputed as above, or via (4.1.5) using the multiplicities):

��

�

�

.1/

�1
�

�

.1/

�1
�

.2/

�2
�

.2/

�2
�

.1/

�2
��

��
��

������

�
.1/

This graph has a cycle. Moreover, � is a star-shaped graph whose central vertex
has genus gcd.a;4/

2
� 1. Determining � is standard, see 5.3, or [99].

Case 2. Assume that a is odd, a � 3. We proceed similarly as above. The graphG1
is the following:
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�

.1/

�4
.0/ �

.4/

�1

�.2/�2

�

.1/

�6
��

��
���

�������

.1/

.1/

�

There is only one gluing torus. Let v be the .�4/-vertex, and v0 its adjacent vertex
of G which is not in G1. Then the multiplicity of v0 is again 1. Hence, the Euler
number of v in G is �3. Therefore, the graph of .@F; Vg/ is

�

��

�

.1/

�3
�

.4/

�1

�.2/�2

�

.1/

�6
��

��
���

�������

.1/

.1/

where � is the minimal embedded resolution graph of the germ w W .fu2 C va C
w2aC4 D 0g; 0/ ! .C; 0/, and the unique arrow-head of �� is identified with the
.�3/-vertex.



Chapter 11
Proof of the Main Algorithm

11.1 Preliminary Remarks

11.1.1. The algorithm and its proof is a highly generalized version of the algorithm
which determines the resolution graph of cyclic coverings. Its origin goes back to
the case of suspensions, when one starts with an isolated plane curve singularity f 0
and a positive integer n, and one determines the resolution graph of the hypersurface
singularity ff 0.x; y/C zn D 0g from the embedded resolution graph of f 0 and the
integer n; see 5.3.

All the geometrical constructions behind the algorithms targeting cyclic cover-
ings are realized within the framework of complex analytic/algebraic geometry. In
particular, all the graphs involved are negative definite graphs and the plumbing
calculus reduces to blowing up/down .�1/-rational curves. Moreover, the following
general principle applies: for normal surface singularities the resolution graph is a
possible plumbing graph for the link, which is diffeomorphic with the boundary of
the Milnor fiber of any smoothing.

11.1.2. The first case when a more complicated “aid-graph” was used is in [92]. The
starting situation was the following: having a germ f with 1-dimensional singular
locus, and another germ g such that the pair .f; g/ forms an ICIS, one wished to
determine the resolution graphs of the hypersurface singularities f C gk , k � 0,
cf. 6.1.1. In order to find these “usual” – that is, negative definite – graphs, all the
necessary information about the ICIS .f; g/ was stored in the “unusual” decorations
of the “unusual” graph �C .

The machinery and construction developed in that article serve as a model
for the present work. We start again with the very same graph �C , but rather
significant differences appear. Although, in [92], the entire construction stayed
within the realm of complex analytic geometry, similarly as in the case of cyclic
coverings, the present case grows out of the complex analytic world. We must glue
together real analytic spaces with singularities, and sometimes the gluing maps even
reverse the “canonical” orientations of the regular parts. This generates additional

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 11,
© Springer-Verlag Berlin Heidelberg 2012
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difficulties we need to be handle during the proof. The output plumbing graphs are
“general plumbing graphs”, which may not be definite, or not even non-degenerate).
Moreover, we had to consider a larger set of moves of the smooth plumbing calculus
(not standard in algebraic geometry) in order to simplify them or to reduce them to
their ‘normal forms’.

The explanation of the idea why the graph�C contains all the information needed
to describe @F is given in Sect. 7.1. In fact, that is the main idea behind the whole
construction. In the next section we outline the main steps of the proof.

11.2 The Guiding Principle and the Outline of the Proof

Consider an ICIS ˚ D .f; g/ as in Sect. 3.1, an embedded resolution r W V emb !
.C3; 0/ of the divisor Vf [ Vg as in 6.1, as well as a “wedge” W
;M of�1 for some
M � 0 as in Sect. 7.1.

If one has a complex analytic isolated singularity .S ; 0/ � .C3; 0/ for which
˚.S / n f0g � W
;M then one can construct a resolution of S in three steps.

First, consider the r-strict transform eS � V emb of S . It is contained in a tubular
neighbourhood of C , cf. (7.1.3), and its singular locus is in C . Therefore eS can
be resolved in two further steps: first taking the normalization S norm of eS , then
resolving the isolated normal surface singularities of S norm. The point is that if S
is determined by f and g, then eS has nice local equations near any point of C
(which can be recovered from the decorations of �C ). For example, one can show
that eS is an equisingular family of curves along the regular part of C , hence the
singular locus of S norm will be situated above the double points of C . Moreover, all
these singular points will be of Hirzebruch–Jung type. In particular, the last step is
the resolution of these Hirzebruch–Jung singularities, whose combinatorial data is
again codified in �C .

Summing up we get the diagram:

� � �S S norm
eS S
\ \
V emb .C3; 0/

HJ r

Corresponding to the above three horizontal maps, we have the following steps at
the level of graphs:

• start with the graph �C (which stores all the local information about eS );
• provide a cyclic covering graph (in the sense of Chap. 5) corresponding to the

normalization step;
• modify this graph by Hirzebruch–Jung strings (see “variation” 5.1.9).

A key additional argument is a consequence of Theorem 5.1.8, which guarantees
the uniqueness of the cyclic covering graph with the inserted strings.



11.3 The First Step: The Real Varieties Sk 119

It is exactly this guiding principle that was used in [92] to determine the
resolution graph of any member of the generalized Iomdin-series S D ff CgkD0g,
k � 0.

Now, we want to obtain the plumbing-graph of the boundary @F of the Milnor
fiber of a non-isolated f . We show in Proposition 11.3.3 that @F is the link of the
real analytic germ

Sk D ff D jgjkg � .C3; 0/;

and ˚.Sk/ n f0g � W
;M , provided that k � 0. Hence, we will run the same
procedure as above within the world of real analytic geometry, which forces some
modifications.

A final remark: the Euler number of an S1-bundle over a curve is a “global
object”, its computation in a resolution can be rather involved (one needs more
charts and gluing information connecting them). Therefore, we will determine
the Euler numbers of our graphs in an indirect way: we consider the open book
decomposition induced by g, and we determine the associated multiplicity system
(this can easily be determined from local data!), then we apply (4.1.5).

11.3 The First Step: The Real Varieties Sk

We fix a pair ˚ D .f; g/ as in Sect. 3.1, and we use all the notations and results of
that part. In particular, we fix a good representative of ˚ whose discriminant is�˚ .
Similarly as above, we write .c; d / for the coordinates of .C2; 0/.

For any even integer k (compare also with 11.3.2) we set

Zk WD f.c; d / 2 .C2; 0/ W c D jd jkg:

The next lemma is elementary and its proof is left to the reader.

Lemma 11.3.1. Zk is a smooth real analytic (even algebraic) surface. For k
sufficiently large Zk \�˚ D f0g. Moreover, Zk n f0g � W
;M if k > M .

Remark 11.3.2. As mentioned before, all the important facts regardingZk (and the
space Sk which will be defined next) are valid for k odd as well. This is based on the
additional fact that the classification of oriented 2- and 3-dimensional topological
manifolds agrees with the classification of C1 manifolds. Nevertheless, it is more
convenient to use even integers k, since for them jd jk becomes real algebraic. In
fact, later we will impose even more divisibility assumptions on k.

The point is that k has only an auxiliary role and carries no geometric meaning,
e.g., it will not appear in any “final” formula of @F . Hence its value, as soon as it is
sufficiently large, is completely unimportant.

Next, define the real analytic variety Sk of real dimension 4 by

Sk WD ˚�1.Zk/ D fz 2 .C3; 0/ W f .z/ D jg.z/jkg:
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Proposition 11.3.3. For k sufficiently large, the real variety Sk n f0g is regular,
hence it is a smooth oriented 4-dimensional manifold. Moreover, for sufficiently
small � > 0, the sphere S� D S5� intersects Sk transversally. The intersection Sk \
S� is an oriented 3-manifold, which is diffeomorphic by an orientation preserving
diffeomorphism to @F .

In particular, the link of Sk (i.e. Sk \ S�) is independent of the choice of k.

Before we start the proof let us indicate how the orientation of Sknf0g is defined.
First, considerZk . It is a smooth real manifold. The projection on the d -axis induces
a diffeomorphism; we define the orientation of Zk by the pullback of the complex
orientation of the d -axis via this diffeomorphism. Next, all fibers of ˚ are complex
curves with their natural orientation. On the smooth part of ˚�1.Zk/ we define the
product orientation of the base and fibers.

Proof. The first statement follows from Lemma 11.3.1 and from the properties of
the ICIS ˚ (or by a direct computation). The second one is standard, using for
example the “curve selection lemma” from [77].

Next, we prove the diffeomorphism Sk \ S� ' @F .
First, recall that in certain topological arguments regarding the Milnor fiber of f ,

the sphere S� D @B� is replaced by the 5-manifold with corners @.˚�1.D2

/\ B�/,

the Milnor fiber F D ff D ıg \ B� by F� WD ff D ıg \ ˚�1.D2

/ \ B� ,

and the boundary @F by the boundary with corners @F�. For details, see e.g. [67], or
Remark 3.1.11. By a similar argument, one shows the equivalence of ˚�1.Zk/\B�
with S �

k WD ˚�1.Zk \ D2

/ \ B� , and ˚�1.Zk/ \ S� with the 3-manifold with

corners @S �
k . Hence, we need only to show the equivalence of @F� and @S �

k .
Consider the intersectionZk\@D2


 , i.e., the solution of the system fjcj2Cjd j2 D

2I c D jd jkg. It is a circle along which c is constant; let this value of c (determined
by 
 and k) be denoted by c0. Set Dc0 D fc D c0g \D2


 as in Sect. 3.1. Then

@Dc0 D @.Zk \D2

/; (11.3.4)

and @F� D @.˚�1.Dc0// has a decomposition:

@F� D ˚�1.@Dc0/ \ B�
[

˚�1.@Dc0 /\S�
˚�1.Dc0/\ S�:

Via (11.3.4), @S �
k has a decomposition

@S �
k D ˚�1.@Dc0/ \ B�

[

˚�1.@Dc0 /\S�
˚�1.Zk \D2


/\ S�:

Notice that there is an isotopy ofD2

 , preserving @D2


 , which sendsDc0 intoZk\D2

 .

Since the restriction of˚ on˚�1.D2

/\S� is a trivial fibration overD2


 , this isotopy
can be lifted. This identifies the pairs
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.˚�1.Dc0/\ S�; ˚
�1.@Dc0/ \ S�/ ' .˚�1.Zk \D2


/\ S�; ˚
�1.@Dc0/ \ S�/:

This ends the proof. ut

11.4 The Strict Transform fS k of Sk Via r

Consider the resolution r W V emb ! U as in 6.1. Let eS k be the strict transform of
Sk by r , i.e. eS k is the closure of r�1.Sk n f0g/ (in the euclidian topology).

Lemma 11.4.1.
eS k \ r�1.0/ D C :

Proof. The proof is similar to the proof of (7.1.3), and it is left to the reader. ut
Since the restriction of r induces a diffeomorphism eS k n C ! Sk n f0g, we get

that the singular locus of eS k satisfies

Sing.eS k/ � C :

Moreover, r induces a diffeomorphism between @Sk (the subject of our interest) and
@eS k . Since eS k can be replaced by its intersection with an arbitrarily small tubular
neighbourhood of C , the boundary @eS k can be localized totally near C . In fact, this
is the main advantage of the space Sk : in this way, the wanted 3-manifold appears
as a local link, or, after a resolution, as the boundary of a tubular neighbourhood of
a curve configuration.

Next, we analyze the local equations of eS k in the neighbourhood of any point
of C . For this we use the notations of Sect. 6.2. In all the cases, Up is a complex
3-ball around the point p 2 C with three complex local coordinates .u; v;w/.

It is convenient to use the following notation. If H D f.u; v;w/2Up W h.u; v;w/
D 0g is a real analytic variety in Up, then we denote by HC the closure of
H n fuvw D 0g. This way we neglect those components ofH which are included in
one of the coordinate planes. Using this notation, the local equations of eS k are as
follows.

If p is a generic point of a component C of C with decoration .mIn; 
/, then

eS k \Up D f.u; v;w/ W umvn D jvj
kgC D f.u; v;w/ W um D v

k
2 �n Nv 
k

2 g (11.4.2)

with m; 
 > 0.
If p is an intersection (singular) point of C of type 1 (i.e. if the corresponding

edge has decoration 1), then

eS k \ Up D f.u; v;w/ W umvnwl D jvj
kjwj	kgC (11.4.3)

with m; 
; 	 > 0.
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Finally, if p is an intersection (singular) point of C of type 2, then

eS k \ Up D f.u; v;w/ W umvm
0

wn D jwj
kgC (11.4.4)

with m;m0; 
 > 0.

11.5 Local Complex Algebraic Models for the Points of fS k

Notice that for k � 0 and for p as in (11.4.2)–(11.4.3)–(11.4.4), eS k \Up is a real
algebraic variety. We will show that any such germ is homeomorphic with the germ
of a certain complex algebraic hypersurface. In these computations we will assume
that k=2 is a multiple of all the integers appearing in the decorations of �C . More
precisely: whenever in the next discussion a fraction k=l appears for some l , then
we assume that k=l is, in fact, an even integer.

In the next paragraphs U will denote a local neighbourhood of the origin in C3.

11.5.1. Assume that p is a generic point of C as in (11.4.2). Consider the map

 p W f.x; y; z/ 2 U W xm D yng �! f.u; v;w/ 2 Up W umvn D jvj
kgC

given by the correspondences

8

<

:

u D x�1jyj
k=m
v D y

w D z

8

<

:

x D u�1jvj
k=m
y D v
z D w:

(11.5.2)

Then  p is regular real algebraic (i.e. it extends over x D 0 too), it is birational
and a homeomorphism. Moreover, it is a partial normalization of eS k \ Up , i.e. the
coordinatesx; y; z of fxm D yng\U are integral over the ring of regular functions of
eS k\Up. Indeed, birationality follows from the fact that the second set of equations
provides the inverse of the first one, and regularity follows from a limit computation,
or by rewriting the first equation into u D x�1jxj
k=n. This formula also shows that
 p is bijective and a homeomorphism. Moreover, since xm D vn, x is integral over
the ring of regular functions of eS k \ Up (a similar statement for y and z is trivial).

In particular, the normalizations of the source and of the target of  p canonically
coincide.

11.5.3. Assume that p is a singular point of C of type 1 as in (11.4.3). Consider
the map

 p W f.˛; ˇ; �/ 2 U W ˛m D ˇn�lg �! f.u; v;w/ 2 Up W umvnwl D jvj
kjwj	kgC



11.6 The Normalization S norm
k of eS k 123

given by

8

<

:

u D ˛�1jˇj
k=mj� j	k=m
v D ˇ

w D �

8

<

:

˛ D u�1jvj
k=mjwj	k=m
ˇ D v
� D w:

(11.5.4)

Then, again,  p is regular real algebraic, birational, and additionally, it is a
homeomorphism. Moreover, it is a partial normalization of eS k \ Up, i.e. the coor-
dinates ˛; ˇ; � are integral over the ring of regular functions of eS k \Up . Indeed,
the regularity follows from

u D ˛m�1˛mjˇj
k=m�2nj� j	k=m�2l ;

where k � 0 and m > 0. Moreover, ˛ is integral over the ring of eS k \ Up since
˛m D vnwl .

Hence again, the normalizations of the source and the target of  p canonically
coincide.

11.5.5. Assume that p is a singular point of C of type 2 as in (11.4.4). In this case
we can prove considerably less (from the analytic point of view). We consider the
map

 p W f.˛; ˇ; �/ 2 U W ˛n D ˇm�m
0g �! f.u; v;w/ 2 Up W umvm

0

wn D jwj
kgC

given by
8

<

:

u D ˇ�1jˇj
k=n
v D ��1j� j
k=n
w D ˛:

(11.5.6)

It is regular real algebraic and a homeomorphism, but it is not birational.

11.5.7. Notice also that the above maps, in all three cases, preserve the coordinate
axes.

11.6 The Normalization S norm
k

of fS k

11.6.1. Let nS W S norm
k ! eS k be the normalization of eS k ; for its existence,

see [14]. Since the normalization is compatible with restrictions on smaller open
sets, we get the globally defined S norm

k whose restrictions above an open set of type
eS k \ Up are the normalization of that eS k \ Up . In particular, the local behaviour
of the normalization S norm

k over the different open neighbourhoods eS k \ Up can
be tested in the charts considered in the previous section.
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In the first case, ifp is a generic point of C , and p is the “partial normalization”
from 11.5.1, then it induces an isomorphism of normalizations:

 normp W f.x; y; z/ 2 U Wxm D yngnorm �! f.u; v;w/ 2 Up W umvn D jvj
kgC;norm:

Since the left hand side is smooth, we get that S norm
k is smooth over the regular

points of C , hence, after normalization, only finitely many singular points survive
in S norm

k , and they are situated above the double points of C .
If p is a double point of C of type 1, then  p from 11.5.3 induces again an

isomorphism at the level of normalizations:

 normp W f.˛; ˇ; �/ W˛m D ˇn�lgnorm �! f.u; v;w/ W umvnwl D jvj
kjwj	kgC;norm:

Hence, the singular points in S norm
k , situated above the double points of C of

type 1, are equivalent with complex analytic singularities of Hirzebruch-Jung type.
Recall that these singularities are determined completely combinatorially (e.g. by
the integersm; n; l above), and by the above chart, this combinatorial data can also
be recovered from �C .

11.6.2. We emphasize that the two types of charts above in 11.6.1 are compati-
ble. By this we mean the following: consider a double point p of C of type 1, and
a neighbourhoodUp as above. Then C \ Up is the union of the v and w axis. Let q
be a generic point of C \Up and consider a sufficiently small local neighbourhood
Uq�Up (where we denote this inclusion by j ), and consider also the chart  p over
eS k\Up as in 11.5.1, respectively q over eS k\Uq as in 11.5.3. Then �1

p ıj ı q is
a complex analytic isomorphism onto its image which at the level of normalization
induces an isomorphism of complex analytic smooth germs. Indeed, if q is a generic
point of the w-axis, with non-zero w-coordinate, and the inclusion

f.u0; v0;w0/ 2 Uq W .u0/m.v0/n D jv0j
kgC j�! f.u; v;w/ W umvnwl D jvj
kjwj	kgC

is given by u D u0.w0/�l=mjw0j	k=m, v D v0 and w D w0, then  �1
p ı j ı  q is

given by ˛Dxzl=m, ˇ D y and � D z. Then the normalizations tautologically
coincide. For example, assume gcd.m; n/D 1 and take the free variables .t; �/
normalizing f˛m Dˇn�lg by ˛D tn� l=m, ˇD tm and � D � . Similarly, consider
the free variables .s; z/ normalizing fxm Dyng by xD sn, yD sm and z D z. Then
. �1

p ı j ı  q/norm is t D s and � D z.
In particular, the two complex charts  normp and  normq of 11.6.1 induce the

same orientation on their images, they identify the inverse image of C by the same
orientation and induce on a normal slice of C the same orientation. Note that these
are the key gluing-data for a plumbing construction.

11.6.3. On the other hand, if p is a singular point of C of type 2, then  p from
11.5.5 does not induce an analytic isomorphism, since  p itself is not birational. In
this case, 11.5.5 implies that at the level of normalizations the induced map



11.6 The Normalization S norm
k of eS k 125

 normp W f.˛; ˇ; �/ W ˛n D ˇm�m
0gnorm �! f.u; v;w/ W umvm

0

wn D jwj
kgC;norm

is regular and a homeomorphism. Nevertheless, one can prove slightly more:

Lemma 11.6.4.  normp induces a diffeomorphism over Up n f0g.

Proof. Let p be a double point of C of type 2 as in 11.5.5. Then C \ Up is the
union of the u and v axes. Let q be a generic point on the v axis, – the other case is
completely symmetric. Then q is in the image of the following map

'p;v W f.x; y; z/ 2 U 0 n fz D 0g W xn D ymzm
0g �!

f.u; v;w/ 2 Up n fv D 0g W umvm
0

wn D jwj
kgC

given by the correspondences

8

<

:

u D y�1jxj
k=m
v D z�1
w D x

8

<

:

y D u�1jwj
k=m
z D v�1
x D w:

(11.6.5)

Then 'p;v is regular on Up n fz D 0g, since

u D jxj
k=m�2nym�1ymjzj2m0

;

it is birational (its inverse is given by the second set of equations of (11.6.5)), and it
is a partial normalization, since ym D wnvm

0

. Therefore,

'norm
p;v W f.x; y; z/ 2 U 0 n fz D 0g W xn D ymzm

0gnorm �! n�1
S .eS k \Up n fv D 0g/

is an isomorphism. Using this isomorphism, the restriction of  normp from 11.6.3,

 norm
p W f.˛; ˇ; �/ 2 U nf� D 0g W ˛n D ˇm�m

0gnorm �! n�1
S .eS k\Up nfv D 0g/

can be understood explicitly. Indeed, the map

'�1
p;v ı  p W f.˛; ˇ; �/ 2 U n f� D 0g W ˛n D ˇm�m

0g �! (11.6.6)

f.x; y; z/ 2 U 0 n fz D 0g W xn D ymzm
0g

is given by
8

<

:

x D ˛

y D ˇj� j
km0=mn

z D � j� j�
k=n:
(11.6.7)

We claim that this induces a diffeomorphism at the level of normalization. In order
to verify this, we make two reductions. First, by a cyclic covering argument, we may
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assume thatm0 D 1. Second, we will also assume that gcd.m; n/ D 1 (otherwise the
normalization will have gcd.m; n/ components, and the normalization maps below
must be modified slightly; the details are left to the reader). We fix two integers a
and b such that an � bm D 1. Then the left hand side of (11.6.6) is normalized by
.t; �/ 2 .C2; 0/ n f� D 0g, ˛ D tm�a, ˇ D tn�b , � D � ; while the right hand side
is normalized by .s; z/ 2 .C2; 0/ n fz D 0g, x D smza, y D snzb and z D z. Hence,
at the normalization level

.'�1
p;v ı  p/norm W .C2; 0/ n f� D 0g ! .C2; 0/ n fz D 0g

is given by the diffeomorphism

�

s D t j� ja
k=mn
z D � j� j�
k=n: (11.6.8)

ut
11.6.9. Consider a singular point in S norm

k above a double point of C of type 2,
say p. By the results of 11.6.3, the type of this singularity can again be identified
with a (complex analytic) Hirzebruch–Jung singularity, identified via the homeo-
morphism  normp . In particular, corresponding to that point, in the plumbing graph
we have to insert an appropriate Hirzebruch–Jung string. In order to do this we need
to clarify orientation-compatibilities at the intersection points of this string with the
inverse image of C . More precisely, we have to clarify the compatibility of the chart
 p with “nearby” charts of type 11.5.1.

Let p be as in the previous paragraph, fix one of its neighbourhoods eS k \ Up
as in 11.6.3, and a generic point q on the v-axis with small neighbourhood
eS k \ Uq and chart  q W f.x0/n D .y0/mg ! f.u0/m.w0/n D jw0j
kg D eS k \ Uq
given by u0 D y0�1jx0j
k=m, w0 D x0 and v0 D z0, cf. Sect. 11.5.1. The inclusion
j W eS k \ Uq �! eS k \ Up is given by the equations u D u0.v0/�m0=m, v D v0 and
w D w0. Hence '�1

p;v ı j ı  q is given by x D x0, y D y0.z0/m0=m and z D .z0/�1.
This combined with (11.6.7), the map  �1

p ıj ı q W fx0n D y0m; z0 6D 0g ! f˛n D
ˇm�m

0

; � 6D 0g is given by (the inverse of)

8

<

:

x0 D ˛

y0 D ˇ�m
0=m

z0 D ��1j� j
k=n:
(11.6.10)

For simplicity assume again that gcd.m; n/ D 1 (the interested reader can reproduce
the general case). We take integers a and b with an � bm D m0 as above. Then the
free coordinates .t; �/ normalize f˛n D ˇm�m

0g by ˛ D tm�a, ˇ D tn�b and
� D � , while the free coordinates .s; z0/ normalize fx0n D y0mg by x0 D sm,
y0 D sn and z0 D z0. In particular, the isomorphism .'�1

p;v ı j ı  q/norm is given by
the correspondence .C2; 0/ n f� D 0g $ .C2; 0/ n fz0 D 0g:
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�

s D t�a=m

z0 D ��1j� j
k=n: (11.6.11)

Notice that the inverse image of C (in the two charts) is given by t D 0, respectively
by s D 0.

Now, consider the natural orientations of n�1
S .eS k \ Up/ provided via  p by the

complex structure of the source of  p , and also the orientation of n�1
S .C \ Up/ via

the same procedure. In a similar way, consider the orientations of n�1
S .eS k\Uq/ and

n�1
S .C \Uq/ induced by  q and the complex structure of its source. Then (11.6.11)

shows the following fact:

Lemma 11.6.12. .'�1
p;v ı j ı  q/norm is a diffeomorphism which reverses the

orientations. Moreover, its restriction on the inverse images of C reverses the
orientation of these Riemann surfaces as well. On the other hand, the orientation of
the transversal slices to the strict transforms of C are preserved.

11.7 The “Resolution” Sk of fS k

The singularities of S norm
k are situated above the double points of C . Above a

double point of type 1 they are isomorphic with complex analytic Hirzebruch–Jung
singularities; their resolution follows the resolution procedure of these germs, see
11.6.2.

We did not determine here the resolution and the real analytic type of the singu-
larity situating above a double point of type 2. Nevertheless, these singularities are
also identified by Lemma 11.6.12, up to an orientation reversing homeomorphism,
with complex analytic Hirzebruch–Jung singularities. This is enough to determine
the topology of S norm

k and to describe the plumbing representation of its boundary.
This will be done in the next section.

Although, for the purpose of the present work the above topological represen-
tation is sufficient, if we would like to handle real analytic invariants read from
the structure sheaf of the resolution (like, say, the geometric genus is read from
the resolution of a normal surface singularity), then an explicit description of this
variety would be more than necessary. This type of analytic questions are beyond
the aims of the present work, however we formulate this problem as an important
goal for further research.

11.7.1. Problem. Find an explicit description of the real analytic/algebraic resolu-
tion of the singularity

f.u; v;w/ 2 .C3; 0/ W umvm
0

wn D jwjkgC;

wherem; m0 > 0 and k is a sufficiently large (even) integer.



128 11 Proof of the Main Algorithm

11.8 The Plumbing Graph: The End of the Proof

Once the geometry of the tubular neighbourhood of the divisor C is clarified,
it is standard to describe the plumbing representation of the boundary of this
neighbourhood. We follow the strategy of [92], with a modification above the double
points of type 2.

11.8.1. Consider a component C of C with decoration .mIn; 
/. By 11.5.1, the
local equation of eS k in a neighbourhood of a generic point of C is xm D yn, hence
n�1

S .C / ! C is a regular covering of degree gcd.m; n/ over the regular part of C .
Let Cnorm be the normalization of C , i.e. the curve obtained by separating the self-
intersection points of C (which are codified by loops of �C attached to the vertex vC
which corresponds to C ). Then q W n�1

S .C / ! Cnorm is a cyclic branched covering
whose branch points B are situated above the double points of C . They correspond
bijectively to the legs of the star of vC , cf. 10.2.1. Notice that if vC 2 V 1.�C / (see
7.2.2 for notation) then m D 1, hence the covering is trivial. Otherwise Cnorm is
rational by Proposition 7.4.8.

Fix a branch point b 2 B whose neighbourhood has a local equation of type
zc D xayb . Then q�1.b/ has exactly gcd.a; b; c/ points; this number automatically
divides gcd.m; n/ for any choice of b. The number nvC of connected components of
n�1

S C is the order of coker.�1.C norm nB/ ! Zgcd.m;n//, where a small loop around
b is sent to the class of gcd.a; b; c/. Hence the formula (10.2.2) for nvC follows, and
(10.2.4) follows too by an Euler-characteristic argument.

In the local charts of 11.5.1,gD v
 Dy
 . Since, by normalization,yD tm=gcd.m;n/,
and t D 0 is the local equation of the strict transform ofC , the vanishing order of y


along the strict transform of C (i.e. the multiplicity of the open book decomposition
of arg.g/) is m
=gcd.m; n/, proving (10.2.3). This ends the proof of Step 1 of the
Main Algorithm and of Theorem 10.2.10.

11.8.2. Next, one has to insert the Hirzebruch–Jung strings corresponding to the
singularities of S norm

k . Type 1 singular points behave similarly as those appearing in
the case of cyclic coverings [86], or in the case of Iomdin series [92] (or anywhere in
complex analytic geometry). In particular, the orientation compatibilities of 11.6.2
imply that these strings should be glued in with all edges decorated C, as usual
for dual graphs of complex analytic curve configurations. One the other hand, the
way how the Hirzebruch–Jung strings of type 2 should be inserted is dictated by
Lemma 11.6.12. Assume that the corresponding singularity is above the intersection
point C1 \ C2 of two components of C . Then, in the plumbing representation we
have to connect their strict transforms (denoted by the same symbols) by a string
E1; : : : ; Es . By 11.6.12, when C1 is glued to the string, its orientation is reversed.
In order to keep the ambient orientation, we have to change the orientation of its
transversal slice too. But this is identified with the first curve E1 of the string. If
the orientation of E1 is changed, then, similarly as above, we have to change the
orientation of its transversal slice, which is identified with E2. By iteration, we see,
that all decorations of all edges of the string, inserted by Step 2, Case 2 in 10.2.5,
should be �.
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The multiplicity decorations are given by the vanishing orders of g, and are
computed by the usual procedures, see 4.3.5. This proves Step 2 of the Main
Algorithm. Finally, Step 3 does not require any further explanation, cf. (4.1.5). This
ends the proof of Theorem 10.2.10.

Theorems 10.3.3 and 10.3.5 are particular cases, which are obtained by forgetting
some information from the graph of @F .

11.9 The “Extended” Monodromy Action

Usually, when one has a plumbing graph G, besides the 3-manifold constructed
by gluing S1-bundles, one can consider the plumbed 4-manifold constructed by
gluing disc-bundles too. This is the case here as well; in fact, as it is clear from the
constructions of this section, the plumbed 4-manifold associated with G is exactly
the manifold Sk . The point we wish to stress in this section is that there is a natural
monodromy action on the pair .Sk; @Sk/ such that the induced action on @Sk

coincides with the Milnor monodromy action of @F .
Indeed, instead of only defining the space Zk D fc D jd jkg, as in 11.3, one

can take the family of spaces Zk.t/ WD fc D jd jkeit g for all values t 2 Œ0; 2��,
and repeat the constructions of the present section. In particular, one can define in a
natural way Sk.t/, eS k.t/ and Sk.t/ for all t . This is a locally trivial bundle over
the parameter t , hence moving t from 0 to 2� , we get the wished action on the pair
.Sk; @Sk/.

The monodromy action on the cohomology long exact sequence of .Sk; @Sk/

will have important consequences, see for example the proof of Corollary 16.2.11.

Proposition 11.9.1. Consider the above monodromy action on the pair .Sk; @Sk/.
Then the following facts hold:

(a) The action on @Sk coincides with the Milnor monodromy action on @F .
(b) At homological level, the generalized 1-eigenspace H1.Sk;C/1 equals

H1.eS k;C/. In particular,

rank H1.Sk/ D 2g.G/C c.G/;

rank H1.Sk/1 D rank H1.eS k/ D 2g.�C /C c.�C /:
(11.9.2)

Proof. (a) Similarly as in the proof of Proposition 11.3.3, when we compared
the spaces ˚�1.Zk/ \ S� and ˚�1.Dc0/ \ S�, one can identify the spaces
˚�1.Zk.t// \ S� and ˚�1.Dc0eit/ \ S� uniformly for any t . The second family
enters as a building block in @F via the decomposition from 11.3.3, and the above
action is exactly the Milnor monodromy action.

(b) Let � be a plumbing graph and P.� / the associated plumbed 4-manifold, cf.
4.1.4. Then one has the homotopy equivalences of P.� / with the core curve
configuration of the plumbing. On the other hand, the first homology of this
curve configuration is 2g.� /Cc.� /. Hence, rankH1.P.� // D 2g.� /Cc.� /.
Therefore, in the present situation, rank H1.Sk/ D 2g.G/C c.G/.
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A similar argument shows that rank H1.eS k/ D 2g.�C /C c.�C /.
Clearly, H1.Sk/ D H1.S

norm
k / too.

Next, we wish to understand the effect of the monodromy on eS k and S norm
k

induced by the t-parameter family.
We will consider a generic point of the exceptional curve of eS k . Note that via the

local equations c D f D umvn and d D g D v
 from Sect. 6.2, the parameterized
equation c D jd jkeit transforms into umvn D jvj
keit . This equation, via the
isomorphism 11.5.2, transforms into yn D xmeit . In other words, eS k.t/ locally
is the tubular neighbourhood of the z-axis in the variety given by local equation
f.x; y; z/ W yn D xmeit g. Homotopically, this set is equivalent with the z-axis, the
core curve, and the monodromy action induced on it is trivial. Analyzing all the other
points too, we get that the monodromy action on eS k.0/ is homotopically trivial.

Let us analyze now the graph covering S norm
k .t/ ! eS k.t/.

Again, let us take the same local situation as in the above discussion. For
any fixed t , the normalization of the variety yn D xmeit has gcd .m; n/ disjoint
components; therefore, the z-axis in the normalization is covered by gcd .m; n/
local discs. These components are cyclically permuted by the monodromy.

Again, analyzing all the points, we get a finite cyclic branched covering of
the core curve configuration of eS k.t/ by the core curve configuration of S norm

k .t/,
and the monodromy action corresponds to the cyclic action of the covering.
Therefore,H1.S

norm
k ;C/1 D H1.S

norm
k =action;C/ D H1.eS k;C/. ut



Chapter 12
The Collapsing Main Algorithm

12.1 Elimination of Assumption B

12.1.1. Preliminary remarks. In the formulation and the proof of the Main
Algorithm 10.2 the absence of “vanishing 2-edges” in �C is essential. If a certain
�C has such an edge, it can be modified by a blow up, which replaces the unwanted
edge by three “acceptable” edges, see 10.1.3. Therefore, in any situation, it is easy to
assure the condition of Assumption B, and the Main Algorithm serves as a complete
algorithm for @F , @F1, @2F and for the different multiplicity systems.

Nevertheless, if the graph �C is constructed by a canonical geometric procedure,
and it has vanishing 2-cycles, the above procedure of the Main Algorithm, which
starts with blowing up these edges, has some inconveniences.

First of all, in the new graph �C we create several new vertices and edges; on the
other hand, it turns out that in the output final graphG all these extra vertices/edges
can be eliminated, collapsed, see 12.1.3. This indicates that blowing up �C might
be unnecessary, and there should be a better procedure to eliminate the vanishing
2-edges in such a way that the new graph is not ‘increasing’.

But, in fact, the main reason to search for another approach/solution is dictated
by a more serious reason: we will see that “unicolored” graphs/subgraphs (that is,
graphs with uniform edge decorations) have big advantages in the determination
of the geometrical properties (like the structure of Jordan blocks, monodromy
operators). On the other hand, by the blow up step 10.1.3 we might destroy such
a property. Take for example the case of cylinders. As constructed in 9.1, and
before applying the blowing up procedure, the graph �C is unicolored: all the edge-
decorations are 2. This property is not preserved after the extra blow ups of 10.1.3.

Moreover, we will see in 17.1.7, that the “twist” (local variation map) associated
with a vanishing 2-edge is vanishing. Hence, the separating annulus (in the page
of the open book) codified by such an edge is ‘rigid’, and thus it should be glued
rigidly with its neighbourhood. Therefore, in the language of the graph, such an
edge should be rather collapsed than blown up!

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 12,
© Springer-Verlag Berlin Heidelberg 2012
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This last statement can also be reinterpreted in the following way. We will prove
in 17.1.7 that the twist of a 1-edge is negative, of a non-vanishing 2-edge is positive,
while, as we already said, of a vanishing 2-edge, is zero. Since by blowing up a
vanishing 2-edge we create two new 1-edges and one new 2-edge, we replace the
zero-twist-contribution by two contributions of different signs. Nevertheless, when
handling operators (see a concrete situation in Sects. 17.1.8–17.1.11), sometimes it
is more convenient to have a semi-definite matrix rather than a non-degenerate one,
which is not definite.

12.1.2. The goal of the chapter. In this section we present an alternative way
to modify �C and the steps of the Main Algorithm in the presence of vanishing
2-edges. This second method is also based on the algorithm just proved: we blow up
such a vanishing 2-edge, we run the Main Algorithm 10.2, then we apply the reduced
plumbing calculus for that part of the graph whose ancestor is that vanishing 2-edge
and its adjacent vertices, and we show that this part collapses into a single orbit of
vertices. Moreover, any connected subgraph whose edges are vanishing 2-edges, by
this procedure collapses into a single orbit of vertices.

We keep the output of all these steps as a shortcut, which will be built in the new
version of the Main Algorithm, called ‘Collapsing Main Algorithm’.

Obviously, if the original graph has no vanishing 2-edges, then the two algo-
rithms are the same.

12.1.3. Discussion. Consider a vanishing 2-edge e as in 10.1.3:

� �

.mI 0; 
/ .m0I 0; 
/
v v0

Œg� Œg0�

2

Assume that v; v0 2 W and v 6D v0. Assume that the 1-legs (cf. 10.1.4) of v
have weights f.mIni ; 
i /gsiD1, and the 2-legs of v, other than e, are decorated by
f.mj I 0; 
/gtjD1. Set N WD gcd.m; n1; : : : ; ns;m1; : : : ; mt/. We will have similar
notations s0; t 0; n0

i ; 

0
i ; m

0
j ; N

0 for v0 too.
In 10.1.3 we have replaced e by the string Str.e/:

� �� �

.mI 0; 
/ .m0I 0; 
/
Œg� Œg0�

v v0Nv Nv021 1
Str.e/ W

.mImCm0; 
/ .m0ImCm0; 
/

Then, let us run the Main Algorithm for this part of the graph. In the
covering graph G the number of vertices over v is nv WD gcd.N;m0/, over v0 is
nv0 WD gcd.N 0; m/, and over the new vertices Nv and Nv0 the number of vertices is
ne WD gcd.m;m0/. Moreover, over all the edges we have to put ne edges, they
form ne strings, containing the ne vertices sitting above the new vertices, and the
ends of these strings are cyclically identified with the vertices sitting over v and
v0 respectively. The vertices over v have multiplicity decoration .
/ and genus
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decoration Qg determined by (10.2.4), namely

nv � .2 � 2 Qg/ D .2 � 2g � s � t � 1/ �m (12.1.4)

C
s

X

iD1
gcd.m; ni /C

t
X

jD1
gcd.m;mj /C ne:

There is a similar statement for vertices over v0 too. The vertices of G over the
new vertices v and v0 have zero genera and multiplicity decorations .m
=ne/
and .m0
=ne/ respectively. Furthermore, if we apply Step 2 of the algorithm
from 10.2.5, then we realize that above the 1-edges the corresponding strings are
degenerate (hence we insert C�-edges only), while above the 2-edge of Str.e/ any
inserted string Str� has only one vertex with multiplicity .
/ and Euler decoration
.mCm0/=ne. In particular, the ne strings above Str.e/ have the form

� � � � �

.
/ .m

ne
/ .
/ .m

0

ne
/ .
/

0 0mCm0

ne

� �

The configuration of all the vertices and edges situating above e and its end-
vertices form n WD gcd.nv; nv0/ connected components.

Now, we run the plumbing calculus of oriented plumbed 3-manifolds, cf. 4.1.
Notice that by two 0-chain absorptions the above string can be collapsed. Hence,
after 0-chain and oriented handle absorptions each connected component collapses
into a single vertex. Their number will be n and all of them will carry multiplicity
.
/. The genus decoration ge of such a vertex can be computed as follows. First we
have a contribution from 0-chain absorptions, namely the sum of all the genera of the
vertices in the corresponding connected component, namely .nv QgCnv0 Qg0/=n. Then,
corresponding to oriented handle absorptions, we have to add one for each 1-cycle
of that component. This, by an Euler-characteristic argument is .ne�nv�nv0 Cn/=n.
Hence

nge D nv Qg C nv0 Qg0 C ne � nv � nv0 C n;

that is
n.1 � ge/ D nv.1 � Qg/C nv0.1 � Qg0/� ne:

This combined with (12.1.4), gives

n � .2 � 2ge/ D .2 � 2g � s � t � 1/ �mC
X

i

gcd.m; ni /C
X

j

gcd.m;mj /

C .2 � 2g0 � s0 � t 0 � 1/ �m0 C
X

i

gcd.m0; n0
i /C

X

j

gcd.m0; m0
j /:

12.1.5. Clearly, a certain vertex of �C may be the end-vertex of more than one
vanishing 2-edge. Hence, if we run the above procedure 12.1.3 for all the vanishing
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2-edges simultaneously, a bigger part of the graph will be collapsed. We make this
fact more precise in the next paragraphs.

Lemma 12.1.6. If Vg has at most an isolated singularity then there is no cutting
edge of �C which is simultaneously a vanishing 2-edge and both its end-vertices
are non-arrowheads.

Proof. Assume that we have such an edge; consider the corresponding intersection
point of C and the local equation around it as in Sect. 6.2: f ı r jUp D uvm

0

and
g ı r jUp D w
 , with m0 > 1. Then the local component u D 0 is in the strict
transform of Vf . Since along the local component w D 0 only g is vanishing, and
Vg has an isolated singularity, we get that w D 0 is situating in the strict transform of
Vg (otherwise w D 0 would be contained in an exceptional divisor which is above
the origin, but along such a divisor f ı r is also vanishing). But then we have a
compact curve in the intersection of the strict transforms of Vf and Vg , which is not
possible. ut

Consider again the graph�C , as it is given by a certain resolution, and unmodified
by the blowing up procedure 10.1.3. Thus it may not even satisfy Assumption B.
Nevertheless, for simplicity of the discussion, we assume that it has no cutting
edge which is simultaneously a vanishing 2-edge and both its end vertices are non-
arrowheads. (We believe that this condition is always automatically satisfied. If Vg
has at most an isolated singularity this is guaranteed by 12.1.6).

Consider a maximal connected subgraph �van of �C with only non-arrowhead
vertices and such that all its edges are vanishing 2-edges connecting these vertices.
In particular, �van has no edges supporting arrowheads. Such a subgraph is
supported either by � 1

C or by � 2
C . If it is a subgraph of � 1

C then it has only one
vertex. In the other case it might have several vertices. Since �C ;j is a tree by 7.4.12,

�van is always a tree. (12.1.7)

We wish to define for each component �van the numbers n�van , m�van and g�van .
Assume first that �van contains exactly one vertex, say w. Let the decoration

of w be .mIn; 
/. Then using the star of w we define n�van D nw as in (10.2.2),
m�van D m
=gcd.m; n/ as in (10.2.3), and g�van D Qgw as in (10.2.4), exactly as in
the Main Algorithm.

Next, assume that �van contains several vertices. For any vertex w of �van,
consider its star in �C :

�!!!
!!!

!!

��������

���
���

��

!!!!!!!!

.mI 0; 
/
.m1I 0; 
/

.mt I 0; 
/

.mIn1; 
1/

.mIns; 
s/
Œgw�

:::
:::

w

2

2

1

1
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Notice that the 2-legs of this star come from two sources: either they are
associated with the edges of �van, or they are 2-edges supporting arrowheads. Let Otw
be the number of this second group. The end decorations of these legs are .1I 0; 1/,
hence if there is a vertex w of �van with Otw > 1, then 
 D 1 automatically.

Associated with the star of w we consider the integers nw, Qgw and Ogw as follows:

• nw WD gcd.m; n1; : : : ; ns;m1; : : : ; mt/, as in (10.2.2);

• nw.2 � 2 Qgw/ D .2 � 2gw � s � t/m C
s

P

iD1
gcd.m; ni / C

t
P

jD1
gcd.m;mj /, as in

(10.2.4);

• nw.2 � 2 Ogw/ D .2 � 2gw � s � t/mC
s

P

iD1
gcd.m; ni /C Otw.

Furthermore, for any edge e 2 E .�van/, with decorations as in 12.1.3, define
• ne WD gcd.m;m0/, as in 12.1.3.

Then, similarly as in 12.1.3, if we eliminate the vanishing 2-edges of �van by the
blow up procedure of 10.1.3, and run the Main Algorithm 10.2, then above �van the
graph will have

n�van WD gcdf nw W w 2 V .�van/g (12.1.8)

connected components. Indeed, this follows from (12.1.7) and 5.1.6(1). Then,
after 0-chain and oriented handle absorptions, the whole subgraph above �van will
collapse into n�van vertices, all with multiplicity

m�van D 
; (12.1.9)

and genus decoration g�van , which is determined similarly as in 12.1.3. More
precisely, the contribution from the genera of the vertices is

P

w nw Qgw=n�van , while
the contribution from the cycles is

�
X

e2E .�van/

ne �
X

w2V .�van/

nw C n�van

�

=n�van : (12.1.10)

In particular, for g�van we get:

n�van .2� 2g�van / D
X

w2V .�van/

nw.2 � 2 Ogw/: (12.1.11)

12.1.12. If a 2-edge supports an arrowhead then it is automatically a vanishing
2-edge. Consider such an edge e of �C , whose non-arrowhead vertex w has weight
.mI 0; 1/. Let �van be the subgraph as in 12.1.5 which contains w. Since nw D 1, one
obtains that n�van D 1 too, hence �van can be collapsed by the procedure described
in 12.1.5 to a unique vertex.



136 12 The Collapsing Main Algorithm

In G, above e, similarly as above we get exactly one string of the form

� � � � �
.1/ .m/ .1/ .1/

.1/

0 0mC 1

� �
w

The first 0-vertex can be eliminated by 0-chain absorption. The obtained shorter
string is glued to the unique vertex constructed in 12.1.5 corresponding to �van.

Now we are able to formulate the new version of the Main Algorithm.

12.2 The Collapsing Main Algorithm

12.2.1. Start again with a graph �C , as it is given by a certain resolution, and
unmodified by the blowing up procedure 10.1.3. Assume that it has no cutting
edge which is simultaneously a vanishing 2-edge and both its end vertices are non-
arrowheads. If it has some vanishing 2-edges, we will not blow them up, as in
10.1.3; instead, we will “collapse” them by the procedure described in the previous
Sect. 12.1.

Denote by c�C the undecorated graph obtained from �C by contracting (indepen-
dently) each subgraphs of type �van into a unique vertex. All 1-edges, non-vanishing
2-edges, arrowhead vertices and vanishing 2-edges supporting arrowhead vertices
survive inheriting the natural adjacency relations.

Then, we construct a plumbing graph bG of the open book of @F with binding Vg
and fibration arg.g/ W @F n Vg ! S1 as follows. It will be determined as a covering
graph of c�C , modified with strings as in 5.1.9. In order to identify it, we have to
provide the covering data of the covering bG ! c�C , cf. 5.1.2.

12.2.2. Step 1. – The covering data of the vertices of c�C .
Over a vertex of c�C , obtained by the contraction of the subgraph �van of �C , we

insert n�van vertices in bG, all of them with genus decoration g�van and multiplicity
m�van . These numbers are defined in (12.1.8), (12.1.11) and (12.1.9) respectively.

Any arrowhead vertex of c�C is covered by one arrowhead vertex of bG, decorated
by multiplicity decoration .1/, similarly as in the original version 10.2.1.

12.2.3. Step 2. – The covering data of edges and the types of the inserted strings.

Case 1. The case of 1-edges is the same as in the original version 10.2.5. Over such
an edge e, which in �C has the form

� �

.mIn; 
/ .mI l; 	/
Œg� Œg0�
v1 v2

1

insert (cyclically) in bG exactly ne D gcd.m; n; l/ strings of type
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Str

�

n

ne
;
l

ne
I m
ne

ˇ

ˇ

ˇ 
; 	I 0
�

:

If the edge e is a loop, then the procedure is the same with the only modification that
the end-vertices of the strings are identified. If the right vertex v2 is an arrowhead,
then complete again the same procedure with m D 1 and ne D 1, namely: above
such an edge e put a single edge decorated by C. This edge supports that arrowhead
of bG which covers the corresponding arrowhead of c�C .

Case 2. The case of non-vanishing 2-edges is again unmodified. Above such an
edge e, which in �C has the form (with n > 0)

� �

.mIn; 
/ .m0In; 
/
Œg� Œg0�
v1 v2

2

insert (cyclically) in G exactly ne D gcd.m;m0; n/ strings of type

Str�
�

m

ne
;
m0

ne
I n
ne

ˇ

ˇ

ˇ 0; 0I 

�

:

If the edge is a loop, then we modify the procedure as in the case of 1-loops.

Case 3. Finally, we have to consider the case of those vanishing 2-edges which
support arrowheads (the others have been collapsed).

Above such an edge we insert in bG one string of type

� � �
.1/ .1/

.1/

0

�
w

If the 2-edge is supported in �C by a vertex which belongs to �van, then the end-
vertex w of the above string should be identified with the unique vertex of bG

corresponding to that subgraph �van, keeping its Œg�van � decoration too.

12.2.4. Step 3. – Determination of the missing Euler numbers. The first two
steps provide a graph with the next decorations: the multiplicities of all the vertices,
all the genera, some of the Euler numbers and all the sign-decorations of the edges.
The missing Euler numbers are determined by formula (4.1.5).

12.3 The Output of the Collapsing Main Algorithm

Similarly as in the first case, Theorem 5.1.8 guarantees that there is only one cyclic
graph-covering of �C with this covering data (up to a graph-isomorphism).

In fact, by 12.1.5, the output graph bG of the “Collapsing Algorithm” and the
output G of the original algorithm are connected by the reduced oriented plumbing
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calculus: bG � G. Hence, Theorem 10.2.10 is valid for bG as well: bG is a possible
plumbing graph of the pair .@F; @F \ Vg/, which carries the multiplicity system
of the open book decomposition arg.g/ W @F n Vg ! S1. The algorithm is again
compatible with the decomposition of @F into @1F and @2F . The part regarding
@1F is unmodified (since � 1

C has no 2-edges). The graph G2 transforms into cG2

similarly asG transforms into bG. Moreover, all the statements of 10.3 regardingG1
andG2 are valid for cG1 D G1 and cG2 with the natural modifications. The details are
left to the reader.

12.3.1. On the other hand, the difference between G and bG, the outputs of the
original and the new algorithms, both unmodified by plumbing calculus, can be
substantial, sometimes even spectacular. See e.g. the complete computation in the
case of cylinders in Chap. 20.

For example, the difference c.G/ � c.bG/ is the sum over all subgraphs �van

of the expression appearing in (12.1.10), which can be a rather large number. This
will have crucial consequences in the discussion of the Jordan blocks of the vertical
monodromies.

Similarly as in 10.2.8, we will use the notation bG for the output graph obtained
by the Collapsing Main Algorithm described above unmodified by any operation
of the plumbing calculus. We adopt similar notations for the graphs of @1F and
@2F , namely cG1 and cG2. (Recall that G � bG. Hence there is no need to consider
a “modified bG”, since for that we can use the already introduced notation Gm, cf.
10.2.8).



Chapter 13
Vertical/Horizontal Monodromies

13.1 The Monodromy Operators

Let f W .C3; 0/ ! .C; 0/ be a hypersurface singularity with a 1-dimensional
singular locus. In general, it is rather difficult to determine the horizontal and vertical
monodromies fm0

j;horgsiD1 and fm0
j;vergsiD1 of Sing.Vf /, especially the vertical one.

(For the terminology, see Sect. 2.2.) It is even more difficult to identify the two
commuting actions simultaneously.

This difficulty survives at the homological level too: in the literature there is no
general treatment of the corresponding two commuting operators. In lack of general
theory, the existing literature is limited to few sporadic examples, which are obtained
by ad hoc methods.

Our goal here is to provide a general procedure to treat these homological objects
and to produce (in principle without any obstruction) examples as complicated as
we wish.

Similarly, if we fix another germ g such that ˚ D .f; g/ is an ICIS, then
one of the most important tasks is the computation of the algebraic monodromy
representation of Z2 induced by m˚;hor and m˚;ver (for their definition, see
Sect. 3.1). Our treatment will include the determination of these objects as well.

In fact, our primary targets are the following algebraic monodromy operators:

• the commuting pairM 0
j;hor andM 0

j;ver , acting onH1.F
0
j /, induced bym0

j;hor and
m0
j;ver (1 � j � s),

• the commuting pair M˚
j;hor and M˚

j;ver , acting on H1.F˚ \ Tj / D H1.F
0
j /

˚dj
(cf. 3.3.1), induced by m˚

j;hor and m˚
j;ver (1 � j � s),

• the commuting pair M˚;hor and M˚;ver , acting on H1.F˚/, induced by m˚;hor

and m�;ver , cf. Sect. 3.1.

Here, usually, we considered homology with complex coefficients, but obviously,
one might also consider the integral case. In fact, in some of our examples, the
additional Z-invariants will also be discussed.

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 13,
© Springer-Verlag Berlin Heidelberg 2012
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We separate our discussion into two parts. In this chapter we determine
completely (via �C ) the character decomposition (i.e. the semi-simple part) of
the relevant Z2-representations. This includes the characteristic polynomials of all
the monodromy operators. Moreover, we connect the ranks of some generalized
eigenspaces with the combinatorics of the plumbing graph G as well. We wish to
emphasize that, although we get all our results rather automatically from the graph
�C , all these results are new, and were out of reach (in this generality) with previous
techniques. This shows once more the power of �C .

The second part treats the structure of the Jordan blocks. This is considerably
harder. Our main motivation in this part is the computation of the homology of @F
and its algebraic monodromy action. Since the homology of @F will be determined
via the homology of @F n Vg, that is, using the Wang exact sequence in which the
operator M˚;ver � I appears, the determination of the 2-Jordan blocks of M˚;ver

with eigenvalue one is a crucial ingredient.
Therefore, in this work, regarding the vertical monodromies, we will concentrate

only on the computation of the Jordan blocks with eigenvalue one, although for
some cases we will provide the complete picture. This second part (including the
discussion regarding the Jordan blocks of the vertical monodromies for eigenvalue
one, and the computation of homology and algebraic monodromy of @F ) constitutes
the next Chaps. 14–17.

Remark 13.1.1. Although F˚ is not the local Milnor fiber of a hypersurface
singularity, a convenient restriction of ˚ provides a map over a sufficiently small
disc (a transversal slice of the d -axis at one of its generic points) with generic
fiber F˚ such that the horizontal monodromy M˚;hor is the monodromy over the
small punctured disc. In other words, the horizontal monodromy M˚;hor can be
‘localized’, that is, it can be represented as the monodromy of a family of curves
over an arbitrarily small punctured disc. On the other hand, the vertical monodromy
M˚;ver cannot be localized in this sense. In particular, general results about the
monodromy of families over a punctured disc cannot be applied for the vertical
monodromies. (This is one of the reasons why their computation is so difficult. This
difficulty will be overcome here using the graph �C .)

13.2 General Facts

The statements of the next lemma are well-known for the horizontal monodromies
by the celebrated Monodromy Theorem (see e.g. [22,59] for the global case, [15,67]
for the local case, or [56] for a recent monograph). It may be known for the vertical
monodromies as well, however we were not able to find a reference for it:

Lemma 13.2.1. The eigenvalues of the operators M 0
j;hor ; M

0
j;hor ; M

˚
j;hor ; M

˚
j;ver

(1 � j � s), respectively M˚;hor and M�;ver , are roots of unity. Moreover, the size
of the Jordan blocks cannot be larger than two.
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Proof. For the operators acting on H1.F˚/ use the decomposition 7.1.6 of F˚ , and
the fact that the restriction of the geometric actions on each subset eF v is isotopic to
a finite action. (As a model for the proof, see e.g. [33, �13].) The same is true for the
operators acting on H1.F˚ \ Tj /. In this case only those subsets eF v appear which
are indexed by the non-arrowhead vertices of � 2

C ;j . Finally, the operatorsM˚
j;� and

M 0
j;� are connected by a simple algebraic operation, see 3.3.1(2). Compare with the

proofs of 13.4.6 and 16.2.3 as well. ut
Remark 13.2.2. By the Monodromy Theorem valid for isolated hypersurface
singularities, the Jordan blocks of M 0

j;hor with eigenvalue one must have size one,

see e.g. [56, (3.5.9)]. By the correspondence 3.3.1(2), this fact is true for M˚
j;hor

as well. Nevertheless, for the other four operators, such a restriction is not true
anymore: In 19.5.2 we provide an example when all M 0

j;ver , M
˚
j;ver M�;hor and

M�;ver have Jordan blocks of size 2 with eigenvalue one.
In fact, examples with M 0

j;ver having such a Jordan block can be constructed as
follows: Fix a topological/equisingularity type of isolated plane curve singularity S
whose monodromy has a 2-Jordan block. Let o be the order of the eigenvalue of this
block. Then one can construct a projective plane curve C of degree d (sufficiently
large), which is a multiple of o, and such that C has a local singularity of type S .
Let Vf be the cone over C . By a result of Steenbrink [125] M 0

j;ver D .M 0
j;hor/

�d ,
henceM 0

j;ver has a Jordan block with eigenvalue one and size two.

For the number of Jordan blocks we will use the following notation:

Definition 13.2.3. For any operatorM let #k	M denote the number of Jordan blocks
of M of size k with eigenvalue 	.

13.3 Characters: Algebraic Preliminaries

Let H be a finite dimensional C-vector space, and assume that M 2 Aut.H/. Let
PM.t/ (or PH;M .t/) be the characteristic polynomial det.tI �M/ of M . For each
eigenvalue 	, let HM;	 D ker..	I � M/N / (for N large) be the generalized 	-
eigenspace ofM . Obviously, the multiplicity of t�	 in PM .t/ is exactly dimHM;	.
When M is clear from the context, we simply write H	 D HM;	.

Sometimes it is more convenient to replace PM .t/ by its divisor

Div.H IM/ WD
X

	

dimHM;	 � .	/ 2 ZŒC��: (13.3.1)

More generally, assume that two commuting automorphismsM1 and M2 act on H .
Then, for each pair .	; �/ 2 C� 
 C�, set H.	;�/ WD HM1;	 \HM2;� and

Div.H IM1;M2/ WD
X

.	;�/

dim.H.	;�// � .	; �/ 2 ZŒC� 
 C
��: (13.3.2)

Above ZŒC�� and ZŒC� 
 C�� are the group rings of C� and C� 
 C� over Z.
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13.3.3. Key Example. Fix a triple of integers .mIn; 
/ with m; 
 > 0 and n � 0.
Let P be the set of points

P WD f.u; v/ 2 C
� 
 C

� j v
 D 1; umvn D 1g:

In fact, P is a finite subgroup ofC�
C� of orderm
. On this set of points we define
two commuting permutations: For each pair of real numbers .thor ; tver /, consider the
set of points

P.thor ; tver / WD f.u; v/ 2 C
� 
 C

� j v
 D eitver ; umvn D eithor g:

Fixing tver D 0 and moving thor from 0 to 2� , we get a locally trivial family of
m
 points, which defines a permutation �hor of P . Similarly, fixing thor D 0 and
moving tver from 0 to 2� , we get the permutation �ver of P . One can verify that
the two permutations commute, based for example on the fact that the torus fjuj D
jvj D 1g has an abelian fundamental group.

Let H WD H0.P;C/ be the vector space with base elements indexed by the
points from P , i.e. the vector space of elements of type

P

p2P cp �p, where cp 2 C.
For any permutation � of P , define �� 2 Aut.H/ by

��.
P

p cp � p/ WD P

p cp � �.p/:

Our goal is to determine

�.mIn; 
/ WD Div.H I �hor;�; �ver;�/ 2 ZŒC� 
 C
��:

Consider the following two elements of P:

h WD .e2�i=m; 1/ and v WD .e�2�in=m
; e2�i=
/:

By a computation one can verify that �hor and �ver can be obtained by multiplication
in P by h and v respectively. Let fP be the subgroup of the permutation group of
P generated by �hor and �ver . Having the forms of h and v, one can easily verify
that h and v (hence �hor and �ver in fP too) satisfy the relations

hm D vm
=.m;n/ D hnv
 D 1;

and that fP acts transitively on P . (Here .m; n/ D gcd.m; n/.) Define the group

G.mIn; 
/ WD f.	; �/ 2 C
� 
 C

� W 	m D 	n�
 D 1g: (13.3.4)

Note that for .	; �/ 2 G.mIn; 
/, one automatically has �m
=.m;n/ D 1.
Then G.mIn; 
/ is isomorphic to fP , and both have order m
. Since fP acts

transitively on P (which has the same order) both are isomorphic to P too. An
isomorphism fP �! P can be generated by �hor 7! h and �ver 7! v.



13.3 Characters: Algebraic Preliminaries 143

Therefore, for any .	; �/ 2 G.mIn; 
/ there is a .	; �/-eigenvector of the action
.�hor ; �ver / which has the form:

X

k;l

	k�l � ��k
hor�

�l
ver .p0/;

where p0 D .1; 1/ 2 P , and the index set k; l is taken in such a way that the set
f�khor�lvergk;l is exactly fP , and each element is represented once. In particular,

�.mIn; 
/ D
X

.	;�/2G.mIn;
/
.	; �/: (13.3.5)

As a particular example, assume that above one has 
 D 1. Then G.mIn; 1/ D
f	 W 	m D 1g and � D 	�n. Hence

�.mIn; 1/ D
X

	mD1
.	; 	�n/: (13.3.6)

From (13.3.5) it also follows that the characteristic polynomials of �hor;�, respec-
tively of �ver;� acting onH are the following:

P�hor;� .t/ D .tm � 1/
; P�ver;�.t/ D .tm
=.m;n/ � 1/.m;n/: (13.3.7)

Moreover, the characteristic polynomial of �hor;� restricted on the generalized 1-
eigenspaceH�ver;�;1 of �ver;� is

P�hor;� jH�ver;� ;1
.t/ D t .m;n/ � 1: (13.3.8)

13.3.9. The ‘d -covering’. Let H be a finite dimensional vector space with two
commuting automorphisms M1 and M2. Furthermore, fix a positive integer d . We
defineH.d/ WD H˚d and its automorphismsM.d/

1 and M.d/
2 by

M
.d/
1 .x1; : : : ; xd / D .M1.x1/; : : : ;M1.xd //;

and
M

.d/
2 .x1; : : : ; xd / D .M2.xd /; x1; : : : ; xd�1/:

It is not hard to see that Div.H.d/IM.d/
1 ;M

.d/
2 / can be recovered fromDiv.H IM1;

M2/ and the integer d . Indeed, consider the morphism

�.d/ W ZŒC� 
 C
�� ! ZŒC� 
 C

��; where �.d/..	; �// WD
X

˛dD�
.	; ˛/:

Then, one shows that

�.d/.Div.H IM1;M2// D Div.H.d/IM.d/
1 ;M

.d/
2 /:
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Lemma 13.3.10. For any fixed positive integer d one has:

(a) �.d/ is injective.
(b) �.d/.�.mIn; 
// D �.mIn; d
/.
Proof. (a) If one takes˝.d/ W ZŒC� 
C�� ! QŒC� 
C��, defined by˝.d/.	; ˛/ D
1
d
.	; ˛d /, then˝.d/ı�.d/ is the inclusionZŒC�
C�� ,! QŒC�
C��. For (b) notice

that the system f	m D	n�
 D 1; ˛d D �g is equivalent to f	m D 	n˛d
 D 1g. ut
We will also need the following property of d -coverings provided by elementary

linear algebra. Consider the vector spaceH and the two commuting automorphisms
M1 and M2 as above. Let HM2;1 be the generalized 1-eigenspace associated with
M2, and consider the restrictions of M1 and M2 (denoted by the same symbols M1

and M2) to this subspace. In this way we get the triple .HM2;1IM1;M2/. Similarly,
for any positive integer d , we can consider the triple .H.d/

M
.d/
2 ;1

IM.d/
1 ;M

.d/
2 /.

Lemma 13.3.11. For any triple .H IM1;M2/ and for any d , one has an isomor-
phism of triples

.HM2;1IM1;M2/ � .H
.d/

M
.d/
2 ;1

IM.d/
1 ;M

.d/
2 /:

Proof. First note that we may assume that all the eigenvalues of M2 are equal to 1.
Then, it is convenient to write M2 as fMd

2 for some fM2 which commutes with M1.
This can be done as follows: if M2 D I C N , where I is the identity and N is a
nilpotent operator, then

fM2 D .I CN/1=d WD I C 1

d
N C 1

2Šd

� 1

d
� 1

	

N2 C � � � :

Consider the matrix identities

2

6

4

0 0 � � � I

eMd�1
2 0 � � � 0

� � � � � � � � � � � �
0 � � � eM2 0

3

7

5

2

6

4

0 I 0 � � �
0 0 I � � �

� � � � � � � � � � � �
eMd
2 0 0 � � �

3

7

5

2

6

6

4

0 eM
�.d�1/
2 0 � � �

0 0 eM
�.d�2/
2 � � �

� � � � � � � � � � � �
I 0 0 � � �

3

7

7

5

D

2

6

4

0 eM2 0 � � �
0 0 eM2 � � �

� � � � � � � � � � � �
eM2 0 0 � � �

3

7

5

and

1

d

2

6

6

4

1 1 � � � 1

1 N�2 � � � N�d�1
2

� � � � � � � � � � � �
1 N�d � � � N�d�1

d

3

7

7

5

2

6

6

4

0 1 0 � � �
0 0 1 � � �
� � � � � � � � � � � �
1 0 0 � � �

3

7

7

5

2

6

6

4

1 1 � � � 1

1 �2 � � � �d

� � � � � � � � � � � �
1 �d�1

2 � � � �d�1
d

3

7

7

5

D

2

6

6

4

1

�2

� � �
�d

3

7

7

5



13.4 The Divisors Div˚ , Div˚j and Div0

j in Terms of �C 145

where 1 D �1; �2; � � � ; �d are the d -roots of unity, and N�i their conjugates. They show
that .H.d/IM.d/

1 ;M
.d/
2 / is isomorphic to ˚d

iD1.H IM1; �ifM2/.
On the other hand, .H IM1;fM2/ and .H IM1;M2/ are isomorphic. ut

13.4 The Divisors Div˚ , Div˚
j and Div0

j in Terms of �C

The three pairs of operators listed in Sect. 13.1 define three divisors. These are the
following.

Definition 13.4.1. We set

Div0
j WD Div.H1.F

0
j /IM 0

j;hor ;M
0
j;ver/ .1 � j � s/; (13.4.2)

Div˚j WD Div.H1.F
0
j /

˚dj IM˚
j;hor ;M

˚
j;ver /; .1 � j � s/; (13.4.3)

and
Div˚ WD Div.H1.F˚/IM˚;hor ;M˚;ver /: (13.4.4)

13.4.5. Some old/new notations. Recall that W .�C / (respectively W .� 2
C ;j /)

denote the set of non-arrowhead vertices of �C (respectively of � 2
C ;j , for any

j D 1; : : : ; s). For each w 2 W .�C /, let Cw be the corresponding irreducible
curve in C , gw its genus, and ıw the number of legs associated with the star of v,
i.e. the number of edges in �C adjacent to w, where each loop contributes twice (cf.
10.1.4). Moreover, assume that the decoration of w in �C is .mwInw; 
w/.

With these notations, one has the following A’Campo type identities, generaliza-
tions of the identity (5.2.8) proved in [4]:

Theorem 13.4.6.

Div˚ � .1; 1/ D
X

w2W .�C /

.2gw C ıw � 2/ ��.mwInw; 
w/: (13.4.7)

Moreover, for any j D 1; : : : ; s,

Div˚j �
X

�
dj D1

.1; �/ D
X

w2W .� 2C ;j /

.ıw � 2/ ��.mwInw; 
w/; (13.4.8)

Div0
j � .1; 1/ D

X

w2W .� 2C ;j /

.ıw � 2/ ��.mwInw; 
w=dj /; (13.4.9)

where dj D deg.gj˙j /, or dj D gcd.
w/w2W .� 2C ;j /
by 7.4.12.
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In particular, the above formulae provide the ranks of H1.F˚/ and H1.F
0
j / as

well:

rankH1.F˚/ D 1C
X

w2W .�C /

.2gw C ıw � 2/ �mw
w;

�0
j D rankH1.F

0
j / D 1C

X

w2W .� 2C ;j /

.ıw � 2/ �mw
w=dj :
(13.4.10)

Proof. As in any “A’Campo type” formula (cf. [4] or (5.2.8) above), it is more
convenient to work with a zeta-function of an action instead of its characteristic
polynomial. In the present case also, we will determine first the element

D.F˚/ WD Div .H0.F˚/IM0
˚;hor ;M

0
˚;ver /� Div .H1.F˚/IM˚;hor ;M˚;ver /

in ZŒC� 
 C��. Above, M0
˚;hor and M0

˚;ver are the horizontal and the vertical
monodromies acting on H0.F˚/. Since F˚ is connected, this space is C, and
M0
˚;hor DM0

˚;ver D IdC. Hence Div.H0.F˚/IM0
˚;hor ;M

0
˚;ver /D .1; 1/, and thus

the left hand side of (13.4.7) is �D.F˚/.
The point is that D.F˚/ is additive with respect to a Mayer–Vietoris exact

sequence. More precisely, if we consider the decomposition 7.1.6, then

D.F˚/ D
X

w2W .�C /

D.eF w/ �D.B/;

where B is the union of “cutting circles”. Since H0.B/ D H1.B/ and the
monodromy actions on them can also be identified, D.B/ D 0. On the other hand,
eF w is a regular covering over the regular part C reg

w of the curve Cw with a finite
fiber which can be identified with P in the Key Example 13.3.3. Moreover, the
horizontal and vertical actions on eF w are induced by the corresponding actions on
P . Hence D.eF w/ D �.C

reg
w / �D.P/ D �.C

reg
w / ��.mwInw; 
w/, where �.C reg

w /

stands for the Euler-characteristic of C reg
w , and equals 2 � 2gw � ıw.

The proof of (13.4.8) is similar. Using the results and notations of 3.3.1, one gets
that F˚ \ Tj is cut by “cutting circles” into the pieces feF wgw2� 2C ;j

. But F˚ \ Tj

consists of dj copies of F 0
j . Hence, with the additional fact that gw D 0 for all

w 2 W .� 2
C ;j /, we get

�D.[dj F
0
j Im˚

j;hor ; m
˚
j;hor / D

X

w2W .� 2C ;j /

.ıw � 2/ ��.mwInw; 
w/:

On the other hand, in this case, the 0-homology is different: H0.[dj F
0
j ;C/ D Cdj

on which the horizontal monodromy acts by identity and the vertical one by cyclic
permutation –, therefore its contribution is

P

�
dj D1.1; �/.
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Now, using the special forms of m˚
j;hor and m˚

j;hor from 3.3.1(2), by 13.3.9 and

13.3.10 one gets that ˝.dj /.Div˚j / D Div0
j , thus (13.4.9) follows too. ut

The results 13.4.6, (13.3.7) and (13.3.8) imply:

Corollary 13.4.11.(a) The characteristic polynomial of M˚;hor and M˚;ver , acting
on H D H1.F˚ ;C/, are

PM˚;hor
.t/ D.t � 1/ �

Y

w2W .�C /

.tmw � 1/
w.2gwCıw�2/;

PM˚;ver .t/ D.t � 1/ �
Y

w2W .�C /

.tmw
w=.mw;nw/ � 1/.mw;nw/.2gwCıw�2/:

The characteristic polynomial of the restriction ofM˚;hor on the generalized
eigenspaceH1.F˚;C/M˚;ver ;1 is

PM˚;hor jHM˚;ver ;1 .t/ D .t � 1/ �
Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2:

(b) There are similar formulae for the operators acting on H D H1.F˚ \ Tj /:

PM˚
j;hor

.t/ D .t � 1/dj �
Y

w2W .� 2C ;j /

.tmw � 1/
w.ıw�2/;

PM˚
j;ver
.t/ D .tdj � 1/�

Y

w2W .� 2C ;j /

.tmw
w=.mw;nw/ � 1/.mw;nw/.ıw�2/;

PM˚
j;hor jHM˚

j;ver ;1
.t/ D .t � 1/�

Y

w2W .� 2C ;j /

.t .mw;nw/ � 1/ıw�2:

(c) Finally, the characteristic polynomials of the local horizontal/vertical mon-
odromies acting onH D H1.F

0
j ;C/ are

PM 0

j;hor
.t/ D .t � 1/�

Y

w2W .� 2C ;j /

.tmw � 1/
w.ıw�2/=dj ;

PM 0

j;ver
.t/ D .t � 1/�

Y

w2W .� 2C ;j /

.tmw
w=dj .mw;nw/ � 1/.mw;nw/.ıw�2/;

PM 0

j;hor jHM 0

j;ver ;1
.t/ D .t � 1/�

Y

w2W .� 2C ;j /

.t .mw;nw/ � 1/ıw�2:
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Notice that the output of the right hand sides of the formulas in (c) (a posteriori)
should be independent of the choice of the germ g, since the left hand sides depend
only on the germ f .

Notice also that PM˚
j;hor jHM˚

j;ver ;1
.t/ D PM 0

j;hor jHM 0

j;ver ;1
.t/.

Remark 13.4.12. The above formulas from 13.4.6 and 13.4.11 are valid even if �C

does not satisfy Assumption A. In this case, it might happen that W .� 2
C ;j / D ;, see

e.g. 8.1.5. In such a situation, by convention,
P

W .� 2C ;j /
D 0 and

Q

W .� 2C ;j /
D 1.

13.5 Examples

13.5.1. Assume that f D x3y7 � z4; see 6.2.9 for a graph �C with g D xC y C z.
Then, by 13.4.11(c), the characteristic polynomials of the two vertical monodromies
M 0
j;ver (j D 1; 2) are .t7�1/3=.t�1/3 corresponding to the transversal type y7�z4,

and .t3 � 1/3=.t � 1/3 corresponding to the transversal type x3 � z4. This can also
be verified geometrically in an elementary way: by the Thom–Sebastiani theorem
(see [115]), in the first case F 0

j homotopically is the join of 7 points with 4 points.
Analyzing the equation of f we get that the vertical monodromy is the join of
the cyclic permutation of the 7 points with the trivial permutation of the 4 points.
A similar geometric description is valid for the second case as well.

In particular, in this case, these vertical operators have no eigenvalue 1.

13.5.2. If f D y3 C .x2 � z4/2 (see 6.2.8 for �C ), then the transversal type is
A2 and M 0

1;ver has characteristic polynomial .t � 1/2. Since the eigenvalues of the
commuting operatorM 0

1;hor are distinct, M 0
1;ver is the identity.

13.5.3. If f D xa C y2 C xyz (a D 3 or 5), cf. 9.4.8 and 9.4.9, then s D 1, the
transversal type is A1, andDiv0

1 D .1; 1/.

13.5.4. If f D x2y2 C z2.x C y/, or f D x2y C z2, cf. 6.2.7 and 9.3.1, then again
each transversal type is A1, but Div0

j D .1;�1/.
Remark 13.5.5. Assume that f is homogeneous of degree d . For g a generic linear
function, �C was constructed in Chap. 8. This says that any vertex has a decoration
of type .mI d; 1/. Moreover, by (13.3.6),

�.mI d; 1/ D
X

	mD1
.	; 	�d /:

Therefore, the statement of 13.4.6 is compatible with M˚;ver D .M˚;hor /
�d , or

M˚
j;ver D .M˚

j;hor /
�d already mentioned. See also 19.1 for more details.
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13.6 Vertical Monodromies and the Graph G

13.6.1. As we already explained, we are primarily interested in the generalized
eigenspaces of the vertical monodromies corresponding to eigenvalue one. Sec-
tion 13.4 provides their ranks in terms of �C . In this section we compute them
in terms of the combinatorics of the plumbing graph G.

The reader is invited to recall the definition of the graphs G and G2;j , the
plumbing graphs of .@F; Vg/ and @2;j F , which were introduced in 10.2.10 and
10.3.4, and are kept unmodified by plumbing calculus.

For any graph Gr with arrowheads A (Gr) and non-arrowheads W (Gr), and
where the arrowheads are supported by usual or dash-edges, we also define EW (Gr)
as the set of edges connecting non-arrowhead vertices. Recall that c(Gr) denotes the
number of independent cycles in Gr and g(Gr) the sum of the genus decorations of
Gr . These numbers, clearly, are not independent. For example, if Gr is connected,
then by an Euler-characteristic argument:

1 � c.Gr/ D jW .Gr/j � jEW .Gr/j: (13.6.2)

Example 13.6.3. Let G be one of the output graphs of the Main Algorithm
10.2. In order to determine c.G/ and g.G/, for each w 2 W .�C / we will
rewrite the decorationsm; n; n1; : : : ; ns;m1; : : : ; mt used in the Main Algorithm as
mw; nw; nw;1; : : : ; nw;s ; mw;1; : : : ; mw;t . Then, using the formulae of 10.2, we have
the following expressions in terms of �C for the cardinalities jA .G/j, jW .G/j, and
jEW .G/j of the corresponding sets associated with G:

jA .G/j DjA .�C /j;
jW .G/j D

X

w2W .�C /

gcd.mw; nw; nw;1; : : : ; nw;s ; mw;1; : : : ; mw;t /;

2jEW .G/j C jA .G/j D
X

w2W .�C /

�
X

i

gcd.mw; nw; nw;i /C
X

j

gcd.mw; nw; mw;j /
�

:

Moreover,

2g.G/ D
X

w2W .�C /

.2gw C ıw � 2/gcd.mw; nw/C 2jW .G/j � 2jEw.G/j � jA .G/jI

and c.G/ also follows via (13.6.2).

Remark 13.6.4. One can verify that, in general,

g.G/ � g.�C / and c.G/ � c.�C /.

Compare with Remark 5.1.7 above or with [86, (3.11)].
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Proposition 13.6.5. The ranks of the generalized eigenspaces H1.F˚;C/M˚;ver ;1

andH1.F
0
j ;C/M 0

j;ver ;1
satisfy the following identities:

dim H1.F˚;C/M˚;ver ;1 D 2g.G/C 2c.G/C jA .G/j � 1: (13.6.6)

dim H1.F
0
j ;C/M 0

j;ver ;1
D 2g.G2;j /C 2c.G2;j /C jA .G2;j /j � 1: (13.6.7)

Notice also that by 13.4.11, one also has the identity

dimH1.F˚ \ Tj ;C/M˚
j;ver ;1

D dimH1.F
0
j ;C/M 0

j;ver ;1
: (13.6.8)

Above, jA .G2;j /j is the number of arrowheads of G2;j , which, in fact, are
all dash-arrows. Their number is equal to jEcut;j j, the number of “cutting edges”
adjacent to � 2

C ;j .

Proof. By the third formula of 13.4.11(a) one has

dim H1.F˚/M˚;ver ;1 D 1C
X

w2W .�C /

gcd.mw; nw/ � .2gw C ıw � 2/:

Then use the identities of 13.6.3 and (13.6.2). The proof of the second identity is
similar. ut
Remark 13.6.9. Although, the graph � 2

C ;j is a tree whose vertices have zero genus-
decorations (cf. 7.4.12), in general, both g.G2;j / and c.G2;j / can be non-zero.

Consider for example a line arrangement with d lines and its graph �C as in
8.2. Fix an intersection point j 2 ˘ contained in mj lines, and consider its
corresponding vertex vj in �C . Above vj there is only one vertex in G, whose
genus egj via (10.2.4) is

2 � 2egj D .2 �mj / � gcd.mj ; d/Cmj :

Therefore, egj D 0 if and only if .mj �2/ �.gcd.mj ; d/�1/ D 0; hence egj typically
is not zero.

An example when c.G2;j / 6D 0 is provided in 19.4.5 for d even.
It might happen thatG1 andG2 have no cycles, while G does; for such examples

see 9.4.8 or 9.4.9.

13.6.10. Proposition 13.6.5 points out an important fact. Although the graph �C

depends on the choice of the resolution r in 6.1, hence the graphs G inherit this
dependency as well, certain numerical invariants of G, describing geometrical
invariants of the original germ f or of the pair .f; g/, are independent of this
ambiguity. Sometimes, even more surprisingly, the role of g is irrelevant too. Here
is the start of the list of such numerical invariants:

• jA .G/j= the number of irreducible components of Vf \ Vg;
• jA .G2;j /j= the number of gluing tori of @2;j F , cf. 10.3.6 (independent of g);
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• g.G/C c.G/ is an invariant of .f; g/ by (13.6.6);
• g.G2;j /C c.G2;j / is an invariant of f (independent of g) by (13.6.7).

For the continuation of the list and more comments on g.G/ and c.G/, see 15.1.7
and 15.2.

Note that all these invariants are stable with respect to the reduced oriented
plumbing calculus (in fact, the definition of the reduced set of operations relies
exactly on this observation). In particular, we also have:

Corollary 13.6.11. The statements of Proposition 13.6.5 are valid for any graph
Gm with Gm � G, and for any Gm

2;j with Gm
2;j � G2;j respectively. In particular,

for bG and bG2;j too.



Chapter 14
The Algebraic Monodromy of H1.@F /:
Starting Point

Let us fix again an ICIS .f; g/.
In order to determine the characteristic polynomial of the Milnor monodromy

acting on H1.@F / we need to understand two key geometrical objects:

the pair .@F; @F n Vg/ and the fibration arg.g/ W @F n Vg ! S1.

The first pair compares the homology of @F and @F n Vg. Then, from the fibration
we can try to determine the cohomology of @F nVg . This discussion will run through
several chapters. It ends with the complete description in the most significant cases,
however, the program will be obstructed in the general case.

The main reason for the lack of a complete general description lies in the fact
that for the variation map involved, the “uniform twist property”, usually valid in
complex geometry, is not valid in the present real analytic situation. Here for edges
with different decorations we glue together pieces with different orientations; for
technical details see 17.1.

14.1 The Pair .@F; @F n Vg/

From the long homological exact sequence of the pair .@F; @F n Vg/ we get

�! H2.@F; @F n Vg/ @�! H1.@F n Vg/ �! H1.@F / ! 0: (14.1.1)

By excision,

H2.@F; @F n Vg/ D H0.@F \ Vg/˝H2.D; @D/;

where D is a real 2-disc, hence it is free of rank jA .G/j D jA .�C /j, the number
of components of @F \ Vg . Since the monodromy is trivial in a neighbourhood of
@F \ Vg, cf. Theorem 3.2.2 and Proposition 3.3.1, we get:

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 14,
© Springer-Verlag Berlin Heidelberg 2012
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Lemma 14.1.2. The characteristic polynomials of the restrictions of the Milnor
monodromy action of F on @F and on @F n Vg satisfy

PH1.@F /;M .t/ D PH1.@F nVg/;M .t/ � .t � 1/�rank im @;

where
1 � rank im @ � jA .G/j: (14.1.3)

Here, the first inequality follows from the fact that H1.@F / 6D H1.@F n Vg/.
Indeed, consider a component of @F \Vg and a small loop around it in @F . Then its
homology class in H1.@F / is zero, but it is sent into ˙1 2 H1.S

1/ by arg.g/�, and
hence it is non-zero in H1.@F n Vg/.

At this generality, it is impossible to say more about rank im @: both bounds
in (14.1.3) are sharp. For example, one can prove (see Chap. 19), that if f is
homogeneous of degree d , and the projective curve C D ff D 0g has j�j
irreducible components, then rank im @ D d �j�jC1 and d D jA .G/j. Therefore,
in the case of arrangements rank im @ D 1, and if C is irreducible then rank im @ D
d D jA .G/j.

14.2 The Fibrations arg.g/

By Theorem 3.2.2, the fibration arg.g/ W @F n Vg ! S1 is equivalent to the
fibration ˚�1.@Dı/ ! @Dı with fiber F˚ and monodromy m˚;ver . Furthermore,
the Milnor monodromy on @F n Vg is identified with the induced monodromy by
m˚;hor . Therefore, from the Wang exact sequence of this second fibration

H1.F˚/
M˚;ver�I

——–�! H1.F˚/ �! H1.@F n Vg/ �! H0.F˚/ D Z ! 0 (14.2.1)

we get

PH1.@F nVg/;M .t/ D .t � 1/ � PM˚;hor jcoker .M˚;ver�I /.t/: (14.2.2)

This formula can be “localized” around the singular locus: the Wang exact sequence
of the fibration @2;j F ! S1 provides

PH1.@2;j F /;M .t/ D .t � 1/ � PM˚
j;hor jcoker .M˚

j;ver�I /.t/: (14.2.3)

Since the horizontal/Milnor monodromy on @1F is trivial, the left hand side of
(14.2.2) differs from the product (over j ) of the left hand side of (14.2.3) only by a
factor of type .t � 1/N . This, of course, is true for the right hand sides too: for some
N 2 Z one has

PM˚;hor jcoker .M˚;ver�I /.t/ D .t � 1/N �
Y

j

PM˚
j;hor jcoker .M˚

j;ver�I /.t/: (14.2.4)
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On the other hand, by Proposition 3.3.1, .H1.@2;j F /;M
˚
j;hor ;M

˚
j;ver / is the

“d -covering” of .H1.F
0
j /;M

0
j;hor ;M

0
j;ver /. Therefore, by Lemma 13.3.11, the gen-

eralized 1-eigenspaces of their vertical monodromies can be identified:

.H1.@2;j F /M˚
j;ver ;1

;M˚
j;hor ;M

˚
j;ver / D .H1.F

0
j /M 0

j;ver ;1
;M 0

j;hor ;M
0
j;ver /: (14.2.5)

In particular,

PM˚
j;hor jcoker .M˚

j;ver�I /.t/ D PM 0

j;hor jcoker .M 0

j;ver�I /.t/; (14.2.6)

the second polynomial being computed at the level of the homology of the local
transversal fiber H1.F

0
j /. Summing up, we get that

PH1.@F /;M .t/ D .t � 1/N �
Y

j

PM 0

j;hor jcoker .M 0

j;ver�I /.t/; (14.2.7)

for some integer N . This shows clearly, that in order to determine the characteristic
polynomialPH1.@F /;M , we need to clarify the triplet .H1.F

0
j /M 0

j;ver ;1
;M 0

j;hor ;M
0
j;ver /,

and the rank of H1.@F / which will take care of the integer N in (14.2.7).

14.2.8. It is more convenient to replace in the above expressions the coker of the
operators by their corresponding images. Moreover, similarly as above, it is useful
to study in parallel both “local” (i.e. the right hand side of (14.2.7)) and “global”
(the right hand side of (14.2.2)) expressions.

Accordingly, we introduce the following polynomials:

Definition 14.2.9. Let P #.t/ be the characteristic polynomial ofM˚;hor induced on
the image of .M˚;ver � I / on the generalized 1-eigenspaceH1.F˚/M˚;ver ;1.

Similarly, for any 1 � j � s, letP #
j .t/ be the characteristic polynomial ofM 0

j;hor

induced on the image of .M 0
j;ver�I / on the generalized 1-eigenspaceH1.F

0
j /M 0

j;ver ;1
.

Clearly, P #.t/ has degree #21M˚;ver while the degree of P #
j .t/ is #21M

0
j;ver .

Since the characteristic polynomials of the horizontal monodromies acting on
H1.F˚/M˚;ver ;1 and H1.F

0
j /M 0

j;ver ;1
are determined in Corollary 13.4.11, the above

facts give

Lemma 14.2.10.

PM˚;hor jH1.@F nVg/ .t/ D .t � 1/2

P #.t/
�

Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2:

Moreover, for any j , and for the horizontal monodromy of ˚ induced onH1.@2;j F /

PM˚;hor jH1.@2;j F / .t/ D .t � 1/2
P #
j .t/

�
Y

w2W .� 2C ;j /

.t .mw;nw/ � 1/ıw�2:
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Again, since the monodormy on @1F is trivial, we have

PM˚;hor jH1.@F nVg/ .t/ D
Y

j

PM˚;hor jH1.@2;j F / .t/ up to a factor .t � 1/N ;

and
mw D 1 for w 62 S

j W .� 2
C ;j /:

Thus Lemma 14.2.10 implies

P #.t/ D Q

j P
#
j .t/ up to a factor .t � 1/N . (14.2.11)

Therefore, 14.2.10 and 14.1.2 combined gives that in order to determine
PH1.@F /;M .t/ one needs to find P #.t/ (or, equivalently, all P #

j .t/) and the rank
of H1.@F /.

In the next chapters we will treat these missing terms by different geometric
methods.

14.2.12. The size of the Jordan blocks. By the above discussion we can now easily
prove an addendum of Lemma 13.2.1 regarding the size of the Jordan blocks of
different operators.

Proposition 14.2.13. All the Jordan blocks of the monodromy operators acting on
H1.@F n Vg/ and H1.@F / have size at most two. The number of Jordan blocks of
size two of the monodromy acting on H1.@F n Vg/ agrees for any fixed eigenvalue
with the number of size two Jordan blocks of M˚;hor acting on coker .M˚;ver � I /.
Moreover, this number is an upper bound for the number of Jordan blocks of size
two of the monodromy acting on H1.@F / for any fixed eigenvalue.

Proof. By the exact sequence (14.1.1) it is enough to prove the statement for
H1.@F n Vg/. This homology group can be inserted in the Wang exact sequence
(14.2.1). Since the size of the Jordan blocks of the monodromy acting on H1.F˚/

is at most two by 13.2.1, it is enough to show that the sequence (14.2.1) has
an equivariant splitting. Note that the last surjection of (14.2.1) is the same as
arg� W H1.@F n Vg/ ! Z, and the monodromy on Z acts trivially. Consider a
component of @F \ Vg , let � be a small oriented meridian around it in @F . Then
the class of � is preserved by the Milnor monodromy (as being part of @1F ) and
arg�.Œ��/ D 1; hence such a splitting exists. The last two statements also follow
from this discussion. ut
Remark 14.2.14. In order to understand the homology of @F , one does not need
any information regarding the generalized .	 6D 1/-eigenspaces of M˚;ver and
˚jM

˚
j;ver , although they codify important information about the ICIS ˚ . This will

be the subject of forthcoming research. Nevertheless, for f homogeneous, we will
determine the complete Jordan-block structure via the identities 19.1, see 19.5.



Chapter 15
The Ranks of H1.@F / and H1.@F nVg/ via
Plumbing

15.1 Plumbing Homology and Jordan Blocks

We start with general facts regarding the rank of the first homology group of
plumbed 3-manifolds. The statements are known, at least for negative definite
graphs; see Propositions 4.4.2 and 4.4.5, which serve as models for the next
discussion. For simplicity, we will state the results for the 3-manifolds @F , @F n Vg
and @2;j F , that is for the graphsGm � G andGm

2;j � G2;j (cf. 10.2.10 and 10.3.4),
although they are valid for any plumbed 3-manifold.

In the next definition, Gr denotes either the graph Gm or Gm
2;j (or any other

graph with similar decorations, and with two types of vertices: non-arrowheads W
and arrowheads A ).

Recall from 4.1.7 that A denotes the intersection matrix of Gr , I the incidence
matrix of the arrows ofGr , and .A;I/ is the block matrix of size jW j
.jW jCjA j/.
Definition 15.1.1. Set

corank AGr WD jW j � rank A and corank .A;I/Gr WD jW j C jA j � rank .A;I/.

Note that if a graph Gr has some dash-arrows (like G2;j ), then the Euler number
of the non-arrowhead supporting such dash-arrows is not well-defined; hence
rankAGr is not well-defined either. Nevertheless, rank .A;I/Gr is well-defined even
for such graphs.

Lemma 15.1.2. For any Gm � G and Gm
2;j � G2;j one has

rank H1.@F / D 2g.Gm/C c.Gm/C corankAGm;

rank H1.@F n Vg/ D 2g.Gm/C c.Gm/C corank .A;I/Gm;

rank H1.@2;j F / D 2g.Gm
2;j /C c.Gm

2;j /C corank .A;I/Gm2;j .1 � j � s/:

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
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In particular, for rank im @ from Lemma 14.1.2 one has

rank im @ D corank .A;I/Gm � corankAGm:

Proof. Let P be the plumbed 4-manifold associated with a plumbing graph Gr
obtained by plumbing disc-bundles, cf. 4.1.4. Assume that the arrowheads of Gr
represent the link K � @P . Consider the homology exact sequence of the pair
.P; @P nK/:

H2.P /
i�! H2.P; @P nK/ �! H1.@P nK/ �! H1.P / �! H1.P; @P nK/

Notice thatH1.P; @P nK/ D H3.P;K/ D 0, whileH2.P; @P nK/ D H2.P;K/ D
H2.P /˚H1.K/ (sinceK ,! P is homotopically trivial). Moreover, the morphism
i can be identified with .A;I/. Since the rank of H1.P / is 2g.Gr/ C c.Gr/, the
second identity follows. Taking K D A D ; in this argument, we get the first
identity. The last identity follows similarly. ut
Remark 15.1.3. Since H1.P;Z/ is free of rank 2g C c, the same argument over Z
shows thatH1.@P;Z/ D Z2gCc ˚ coker .A/. The point is that coker .A/ usually has
a Z-torsion summand, as it is shown by many examples of the present work, see for
example 19.2.1.

Lemma 15.1.2 via the identities (14.2.2), (14.2.3) and (14.2.6) reads as

Corollary 15.1.4.

dim coker .M˚;ver � I / D 2g.Gm/C c.Gm/C corank .A;I/Gm � 1;

dim coker .M 0
j;ver � I / D 2g.Gm

2;j /C c.Gm
2;j /C corank .A;I/Gm2;j � 1 .1�j �s/:

This combined with 13.6.5 and 13.6.11 gives

Corollary 15.1.5.

#21M˚;ver D c.Gm/� corank .A;I/Gm C jA .G/j;
#21M

0
j;ver D c.Gm

2;j /� corank .A;I/Gm2;j C jEcut;j j .1 � j � s/:

Remark 15.1.6. Although c.G/ and g.G/ can be computed easily from the graphs
�C or G, for the ranks of the matrices A and .A;I/ the authors found no “easy”
formula. Even in case of concrete examples their direct computation can be a
challenge. These “global data” of the graphs resonates with the “global information”
codified in the Jordan block structure of the vertical monodromies.

Remark 15.1.7. Clearly, the integers g.Gr/, c.Gr/ and corankAGr might change
under the reduced calculus (namely, under R4), see e.g. the construction of the
“collapsing” algorithm 12.2, or the next typical example realized in Sect. 19.7(3c):
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� �0 3

�
� �

3

Œ1�
(oriented handle absorption)

For the first graph A D



0 0

0 3

�

, hence corankA D c D 1 and g D 0, while for the

second one corankA D c D 0 and g D 1.

On the other hand, the expressions 2g.G/ C c.G/ C corankAG and 2g.G/ C
c.G/C corank .A;I/G are stable under the reduced plumbing calculus; in fact, they
are stable even under all the operations of the oriented plumbing calculus. This fact
together with 13.6.10 show that the following graph-expressions are independent of
the construction of G and are also stable under the reduced calculus:

• jA .G/j, g.G/C c.G/, cf. 13.6.10;
• g.G/ C corankAG and g.G/ C corank .A;I/G (from 15.1.2); in particular,

corank .A;I/G � corankAG and c.G/ � corankAG as well;
• and all the corresponding expressions for G2;j : jA .G2;j /j, g.G2;j / C c.G2;j /,
g.G2;j /C corank .A;I/G2;j .

15.2 Bounds for corank A and corank .A;I/

15.2.1. Bounds for corank .A;I/Gm . From Corollary 15.1.5 and jW j � rank.A;I/,
we get

jA .G/j � corank .A;I/Gm � c.Gm/C jA .G/j: (15.2.2)

These inequalities are sharp: the lower bound is realized for example in the case of
homogeneous singularities (see 19.2.3), while the upper bound is realized in the case
of cylinders, see (20.1.5). Decreasing c.Gm/ by (reduced) calculus, we decrease the
difference between the two bounds as well.

15.2.3. Bounds for corankAGm . By the last identity of Lemma 15.1.2 and the left
inequality of (14.1.3) we get

corankAGm � corank .A;I/Gm � 1: (15.2.4)

This and (15.2.2) imply

0 � corankAGm � c.Gm/C jA .G/j � 1: (15.2.5)

Here, again, both bounds can be realized: the lower bound for f irreducible
homogeneous, cf. 19.3.7, while the upper bound for cylinders, see (20.1.5).



160 15 The Ranks of H1.@F / and H1.@F nVg/ via Plumbing

Remark 15.2.6. Finally, since corank .A;I/Gm � jA .G/j, 15.1.5 implies

#21M˚;ver � c.Gm/; (15.2.7)

and, similarly, for any j
#21M

0
j;ver � c.Gm

2;j /: (15.2.8)

In particular, if we succeed to decrease c.Gm/ by reduced calculus, we get a better
estimate for the number of Jordan blocks. In particular, c.bG/, in general, is a much
better estimate than c.G/.

In the light of Theorem 3.2.2, the global inequality (15.2.7) reads as follows: Fix
a germ f with 1-dimensional singular locus, and choose g such that ˚ D .f; g/

forms an ICIS. Consider the fibration arg.g/ W @F n Vg ! S1. Then (15.2.7) says
that the number of 2-Jordan blocks with eigenvalue 1 of the algebraic monodromy
of the fibration arg.g/, for any germ g, is dominated by c.Gm/. The surprising factor
here is thatGm is a possible plumbing graph of @F , and @F is definitely independent
of the germ g.

It is instructive to compare the above identities and inequalities with similar
statements valid in the world of complex geometry, see e.g. Remark 5.2.7(2).



Chapter 16
The Characteristic Polynomial of @F Via
P# and P#

j

16.1 The Characteristic Polynomial of G ! �C and bG ! b�C

16.1.1. In order to continue our discussion regarding the polynomials P # and P #
j ,

1 � j � s (cf. 14.2.9 and 14.2.10), we have to consider some natural “combinato-
rial” characteristic polynomials associated with the graph coverings involved.

Consider the cyclic graph coveringG ! �C , cf. 10.2. Recall that above a vertex
w 2 W .�C / there are nw vertices, while above an edge e 2 Ew.�C / there are exactly
ne edges ofG, where the integers nw and ne are given in (10.2.2) and (10.2.6) of the
Main Algorithm. In particular, they can easily be read from the decorations of �C .
The cyclic action on G cyclically permutes the vertices situating above a fixed w
and the edges situating above a fixed e. Let jGj be the topological realization (as
a topological connected 1-complex) of the graph G. Then the action induces an
operator, say h.jGj/, on H1.jGj;C/.

Similarly, we consider the covering bG ! c�C from 12.2. The vertices of
c�C are the contracted subtrees Œ�van�; and above Œ�van�, in bG there are exactly
n�van vertices. Those edges of c�C which do not support arrowheads are inherited
from those edges E �

W of �C which connect non-arrowheads and are not vanishing
2-edges. Each of them is covered by ne edges. The cyclic action induces the operator
h.jbGj/ on H1.jbGj;C/.
Definition 16.1.2. We denote the characteristic polynomial of h.jGj/ and of h.jbGj/
by Ph.jGj/.t/ and P

h.jbGj/.t/ respectively.

By the connectivity ofG and bG, and by the fact that the cyclic action acts trivially
on H0.jGj/ D H0.jbGj/, we get

Lemma 16.1.3.

Ph.jGj/.t/ D .t � 1/ �
Q

e2EW .�C /
.tne � 1/

Q

w2W .�C /
.tnw � 1/

;
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j

P
h.jbGj/.t/ D .t � 1/ �

Q

e2E �

W .�C /
.tne � 1/

Q

�van
.tn�van � 1/ :

16.1.4. We list some additional properties of these polynomials:

(a) Their degrees are rank H1.jGj/ D c.G/ and rank H1.jbGj/ D c.bG/.
(b) Analyzing 12.1.5, one verifies the divisibility P

h.jbGj/ jPh.jGj/ .
(c) By Lemma 16.1.3, the multiplicity of the factor .t � 1/ in Ph.jGj/.t/ is exactly

c.�C /. This fact remains true for P
h.jbGj/ too, since each �van is a tree and

c.�C / D c.c�C /. Hence 1 is not a root of the polynomial Ph.jGj/=Ph.jbGj/.
(d) It might happen that c.bG/ > c.�C / (see for example 19.5.2). Hence h.jbGj/

might have non-trivial eigenvalues.

16.1.5. Obviously, the above discussion can be “localized” above the graph � 2
C .

With the natural notations, we set

Ph.jG2;j j/.t/ D .t � 1/ �
Q

e2EW .� 2C ;j /
.tne � 1/

Q

w2W .� 2C ;j /
.tnw � 1/

;

P
h.j cG2;j j/.t/ D .t � 1/ �

Q

e2E �

W .� 22;j /
.tne � 1/

Q

�van�� 22;j .t
n�van � 1/

:

In fact, the product over j of these localized polynomials contains all the non-trivial
eigenvalues of Ph.jGj/ and P

h.jbGj/ respectively. Indeed, in the formulae of 16.1.3, if

w is a vertex of � 1
C then nw D 1. Similarly, if e is an edge with at least one of its

end-vertices in � 1
C , then ne D 1 as well.

16.2 The Characteristic Polynomial of @F

16.2.1. In this section we compute the polynomials P # and P #
j under certain

additional assumptions. Via the identities of 14.2.10 and 14.1.2 this is sufficient
(together with the results of Chap. 15 regarding the rank H1.@F /) to determine the
characteristic polynomial of the Milnor monodromy of H1.@F /.

Let �C be the graph read from a resolution as in 6.1.2, which might have some
vanishing 2-edges that are not yet eliminated by blow ups considered in 10.1.3.

Definition 16.2.2. Let Gr be either the graph �C , or � 2
C ;j for some j . We say

that Gr is “unicolored”, if all its edges connecting non-arrowheads have the same
sign-decoration and there are no vanishing 2-edges among them. We say that Gr
is almost unicolored, if those edges which connect non-arrowheads and are not
vanishing 2-edges, have the same sign-decoration.
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Consider the polynomials Ph.jGj/.t/ and Ph.jG2;j j/.t/ introduced in 16.1. Recall
that their degrees are c.G/ and c.G2;j / respectively.

Theorem 16.2.3. (I) For any fixed j , the polynomial P #
j .t/ divides the polynomial

Ph.jG2;j j/.t/.
Moreover, the following statements are equivalent:

.a/ P #
j .t/ D Ph.jG2;j j/.t/

.b/ #21M
0
j;ver D c.G2;j /

.c/ corank .A;I/G2;j D jEcut;j j:
(16.2.4)

These equalities hold in the following situations: either (i) � 2
C ;j is unicolored,

or after determining G2;j via the Main Algorithm 10.2, the graph G2;j satisfies
either (ii) c.G2;j / D 0, or (iii) corank .A;I/G2;j D jEcut;j j.

(II) The polynomial P #.t/ divides the polynomial Ph.jGj/.t/.
Moreover, the following statements are equivalent:

.a/ P #.t/ D Ph.jGj/.t/

.b/ #21M˚;ver D c.G/

.c/ corank.A;I/G D jA .G/j:
(16.2.5)

These equalities hold in the following situations: either (i) �C is unicolored,
or after finding the graph G, it either satisfies (ii) c.G/ D 0 or (iii)
corank .A;I/ D jA .G/j.

But, even if (16.2.5) does not hold, one has

P #.t/ D Ph.jGj/.t/ up to a multiplicative factor of type .t � 1/N (16.2.6)

whenever (16.2.4) holds for all j .

Remark 16.2.7. The equivalent statements (16.2.5) are satisfied e.g. by all homo-
geneous singularities (see 19.2.3), as well as by all cylinders, provided that the
algebraic monodromy of the corresponding plane curve singularity is finite, see
(20.1.5). On the other hand, they are not satisfied by those cylinders, which do not
satisfy the above monodromy restriction. Nevertheless, their case will be covered
by the “collapsing” version 16.2.13.

The proof of Theorem 16.2.3 is given in Chap. 17. The major application targets
the characteristic polynomials of the monodromy acting on H1.@F /:

Theorem 16.2.8. Assume that (16.2.4) holds for all j , or (16.2.5) holds. Then

PH1.@F /;M .t/ D .t � 1/2CcorankAG�jA .G/j

Ph.jGj/.t/
�

Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2:
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In particular, one has the following formulae for the ranks of eigenspaces:

rank H1.@F /1 D 2g.�C /C c.�C /C corankAG; (16.2.9)

rank H1.@F / 6D1 D 2g.G/C c.G/ � 2g.�C /� c.�C /: (16.2.10)

More generally, in any situation (i.e. even if the above assumptions are not satisfied),
there exists a polynomial Q with Q.1/ 6D 0, which divides both Ph.jGj/ and
Q

w2W .�C /
.t .mw;nw/ � 1/2gwCıw�2, such that

PH1.@F /;M .t/ D .t � 1/N

Q.t/
�

Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2;

where N D 2C corankAG � jA .G/j � c.G/C deg.Q/.

Proof. Use 13.4.11, 15.1.2, 15.1.4 and 16.2.3. ut
Corollary 16.2.11. Assume that (16.2.4) holds for all j , or (16.2.5) holds. Then the
following facts hold over coefficients in C:

(a) The intersection matrix AG has a generalized eigen-decomposition .AG/	D1 ˚
.AG/	6D1 induced by the Milnor monodromy, and .AG/	6D1 is non-degenerate;

(b) There exist subspacesKi � Hi.@F /1 for i D 1; 2 with

codimK1 D dimK2 D corankAG

such that the cup-productH1.@F /	[H1.@F /� ! H2.@F /	� has the following
properties:

(1) H1.@F /	 [H1.@F /� D 0 for 1 6D 	 6D � 6D 1;
(2) ˚	6D1 H1.@F /	 [H1.@F /	 � K2;
(3) .˚	6D1 H1.@F /	/[K1 D 0;
(4) K1 [K1 � K2;
(5) K1 [K2 D 0.

Proof. We combine the proof of 15.1.2 with 11.9. Set PG WD Sk , and consider the
cohomological long exact sequence associated with the pair .PG; @PG/. The map
H2.PG; @PG/ ! H2.PG/ can be identified with AG . The sequence has a gen-
eralized eigenspace decomposition. Define Ki WD im ŒH i .PG/1 ! Hi.@F /1� �
Hi.@F /1 for i D 1; 2. For 	 6D 1, via (16.2.10) and (11.9.2), we get that the
inclusion H1.PG/	6D1 ! H1.@PG/	6D1 is an isomorphism. Hence .AG/	6D1 is non-
degenerate.

For the second part, lift the classes of H1.@X/ to H1.X/ before multiplying
them. (5) follows fromH3.X/ D 0. (Cf. also with [129].) ut

Such a result, in general, is the by-product of a structure-theorem regarding the
mixed Hodge structure of the cohomology ring (that is, it is the consequence of the
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fact that H2 has no such weight where the product would sit). Compare also with
the comments from 18.1.9 and with some of the open problems from 24.4.

16.2.12. The next theorem, based on the “Collapsing Main Algorithm” and the
corresponding improved version of the proof of Theorem 16.2.3, provides a better
“estimate” in the general case, and in the special cases of almost unicolored graphs
handles the presence of vanishing 2-edges as well.

Consider the polynomials P
h.jbGj/.t/ and P

h.j cG2;j j/.t/ introduced in 16.1. Recall

that their degrees are c.bG/ and c.bG2;j / respectively.

Theorem 16.2.13. (I) For any fixed j , the polynomialP #
j .t/ divides the polynomial

P
h.j cG2;j j/.t/.

Moreover, the following statements are equivalent:

.a/ P #
j .t/ D P

h.j cG2;j j/.t/

.b/ #21M
0
j;ver D c.bG2;j /

.c/ corank .A;I/
cG2;j

D jEcut;j j:
(16.2.14)

These equalities hold in the following situations: either (i) � 2
C ;j is almost

unicolored, or after determining bG2;j via the Collapsing Main Algorithm the

graph bG2;j satisfies either (ii) c.bG2;j / D 0, or (iii) corank .A;I/
cG2;j

D jEcut;j j.
(II) The polynomial P #.t/ divides the polynomial P

h.jbGj/.t/.
Moreover, the following statements are equivalent:

.a/ P #.t/ D P
h.jbGj/.t/

.b/ #21M˚;ver D c.bG/

.c/ corank .A;I/
bG

D jA .G/j:
(16.2.15)

These equalities hold in the following situations: either (i) �C is almost
unicolored, or after determining the graph bG, it either satisfies (ii) c.bG/ D 0

or (iii) corank .A;I/
bG

D jA .G/j.
But, even if (16.2.15) does not hold, one has

P #.t/ D P
h.jbGj/.t/ up to a multiplicative factor of type .t � 1/N (16.2.16)

whenever (16.2.14) holds for all j .

This implies:

Theorem 16.2.17. Assume that (16.2.14) holds for all j , or (16.2.15) holds. Then

PH1.@F /;M .t/ D .t � 1/2CcorankA
bG

�jA .G/j

P
h.jbGj/.t/

�
Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2
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In particular,

rankH1.@F /1 D 2g.�C /C c.�C /C corankA
bG
; (16.2.18)

rankH1.@F / 6D1 D 2g.bG/C c.bG/ � 2g.�C /� c.�C /: (16.2.19)

More generally, in any situation (even if the above assumptions are not satisfied),
there exists a polynomial Q with Q.1/ 6D 0, which divides both P

h.jbGj/ and
Q

w2W .�C /
.t .mw;nw/ � 1/2gwCıw�2, such that

PH1.@F /;M .t/ D .t � 1/N

Q.t/
�

Y

w2W .�C /

.t .mw;nw/ � 1/2gwCıw�2;

where N D 2C corankA
bG

� jA .G/j � c.bG/C deg.Q/.

Corollary 16.2.20. Assume that (16.2.14) holds for all j , or (16.2.15) holds. Then
the statement of Corollary 16.2.11 is valid provided that we replace G by bG.



Chapter 17
The Proof of the Characteristic Polynomial
Formulae

17.1 Counting Jordan Blocks of Size 2

Our goal is to prove Theorem 16.2.3. The proof is based on a specific construction.
The presentation is written for the graph G (later adapted to bG as well), but it can
be reformulated for G2;j as well.

17.1.1. The vertical monodromy m˚;ver as a quasi-periodic action. First, we
wish to understand the geometric monodromy m˚;ver W F˚ ! F˚ . For this
the topology of fibered links, as it is described in [33, �13], will be our model.
(Although, in [loc.cit.] the machinery is based on splice diagrams, Sect. 23 of [33]
gives the necessary hints for plumbing graphs as well.)

Nevertheless, our situation is more complicated. First, in the present situation we
will have three local types/contributions; two of them do not appear in the classical
complex analytic case of [33]. Secondly, the basic property which is satisfied by
analytic germs defined on normal surface singularities, namely that a “variation
operator” has a uniform twist, in our situation is not true, it is ruined by the new
local contributions.

Consider the graph �C from Chap. 6. For simplicity we will write E , EW , W ,
etc. for E .�C /, EW .�C /, W .�C /, etc. It is the dual graph of the curve configuration
C � V emb, where r W V emb ! U is a representative of an embedded resolution of
.Vf [Vg; 0/ � .C3; 0/. Then, by 7.1.4, for any tubular neighbourhoodT .C / � V emb

of C , one has an inclusion .˚ ı r/�1.c0; d0/ for .c0; d0/ 2 W
;M . For simplicity,
we write eF˚ for the diffeomorphically lifted fiber .˚ ı r/�1.c0; d0/ of ˚ .

Next, consider the decomposition 7.1.6 of eF˚ . More precisely, for any
intersection point p 2 Cv \ Cu (or, self-intersection point of Cv if v D u), which
corresponds to the edge e 2 E of �C , let T .e/ be a small closed ball centered
at p. Let T ı.e/ be its interior. Then, for .c0; d0/ sufficiently close to the origin,
eF˚ \ T .e/ is a union of annuli. Moreover, eF ˚ n [eT

ı.e/ is a union [v2V
eF v,

where eF v is in a small tubular neighbourhood of Cv (v 2 V ).
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If v is an arrowhead supported by an edge e, then the inclusion eF v \@T .e/ � eF v

admits a strong deformation retract. Hence the pieces feF vgv2A , and the separating
annuli feF˚ \T .e/ge2E nEW

can be neglected. Thus, instead of eF ˚ , we will consider
only

eF �̊ WD eF ˚ n .
[

e2E nEW

T .e/[
[

v2A

eF v /:

In particular, eF �̊ is separated by the annuli feF˚\T .e/ge2EW in surfaces feF wgw2W ,
and each eF w is the total space of a covering, where the base space is Cw n [eT .e/

and the fiber is isomorphic to Pw WD P from the Key Example 13.3.3.
Moreover, one might choose the horizontal/vertical monodromies of eF �̊ in such

a way that they will preserve this decomposition, and their action on eF w will be
induced by the permutations �w;hor WD �hor , respectively �w;ver WD �ver acting
on Pw (cf. 13.3.3). This shows that m˚;ver is isotopic to an action em˚;ver , which
preserves the above decomposition, and its restriction on each eF w is finite. Let q
be a common multiple of the orders of f�w;vergw2W . Then em

q
˚;ver is the identity on

each eF w, and acts as a “twist map” on each separating annulus. In the topological
characterization of em˚;ver , this twist is crucial.

Definition 17.1.2. [33, �13] Let h W A ! A be a homeomorphism of the oriented
annulusA D S1 
 Œ0; 1� with hj@A D id. The (algebraic) twist of h is defined as the
intersection number

twist.h/ WD .x; varh.x//;

where x 2 H1.A; @A;Z/ is a generator, and the variation map varh WH1.A; @A;Z/

! H1.A;Z/ is defined by varh.Œc�/ D Œh.c/ � c�, for any relative cycle c.
More generally, if B is a disjoint union of annuli and h W B ! B is a homeomor-

phism with hqj@B D id for some integer q > 0, for any componentA of B define

twist.hIA/ WD 1

q
twist.hq jA/:

Notice that twist.hIA/, defined in this way, is independent of the choice of q.

Example 17.1.3. In the “classical” situation one considers an analytic family of
curves (over a small disc), where the central fiber is a normal crossing divisor and
the generic fiber is smooth. The generic fiber is cut by separating annuli, which are
situated in the neighbourhood of the normal crossing intersection point of the central
fiber. Around such a point p, in convenient local coordinates .u; v/ 2 .C2; p/, the
family is given by the fibers of f .u; v/ D uavb for two positive integers a and b.
Hence, the union of annuli is the fiber f �1.�/ intersected with a small ball centered
at p (and � is small with respect to the radius of this ball). It consists of gcd.a; b/
annuli. The Milnor monodromy action h is induced by Œ0; 2�� 3 t 7! f �1.�eit /. In
order to make the computation, one must choose h in such a way that its restriction
on the boundary “near” the x-axis is finite of order a, and similarly, on the boundary
components “near” the y-axis is finite of order b. Then, one can show (see e.g. [33,
page 164]) that the twist, for each connected component A, is
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twist.hIA/ D �gcd.a; b/

ab
:

17.1.4. In fact, in most of the forthcoming arguments, what is really important is
not the value of the twist itself, but its sign.

Definition 17.1.5. In a geometric situation as in 17.1.1, we say that we have a
uniform twist, if for all the annuli the signs of all the twists are the same.

Example 17.1.6. In our present situation of 17.1.1, we are interested in the twist of
the separating annuli associated with the edges e 2 EW . Depending on whether the
edge is of type 1 or 2, we have to consider two different situations. For both cases
we will consider the local equations from Sect. 6.2.

If e is a 1-edge, then the fiber (union of annuli) and the vertical monodromy
action are given by

umvnwl D c; v
w	 D deit .with .c; d / constant, and t 2 Œ0; 2��/:

If e is a 2-edge, then the fiber (union of annuli) and the vertical monodromy
action are given by

umvm
0

wn D c; w
 D deit .with .c; d / constant, and t 2 Œ0; 2��/:

A 2-edge e is a vanishing 2-edge if n D 0.
We invite the reader to compute the corresponding twists exactly, in both cases.

In the present proof we need only the following statement.

Lemma 17.1.7. Fix an edge e 2 EW , set B WD eF˚ \ T .e/, and let A be one of the
connected components of B .

(a) If e is a 1-edge, then twist.hIA/ < 0.
(b) If e is a non-vanishing 2-edge, then twist.hIA/ > 0.
(c) If e is a vanishing 2-edge, then twist.hIA/ D 0.

Proof. The first case behaves as a “covering of degree m” of the classical case
v
w	 D eit (t 2 Œ0; 2��), which was exemplified in 17.1.3. The monodromy of the
second case behaves as the inverse of the monodromy of the classical monodromy
operator: umvm

0 D e�nit=
 (t 2 Œ0; 2��). Finally, assume that n D 0. Then the
restriction of the vertical monodromy to @B has order 
, hence one can take q D 
.
But h
 extends as the identity on the whole B . The details are left to the reader. ut
17.1.8. Now we continue the proof of Theorem 16.2.3. The structure of the 2-Jordan
blocks of M˚;ver is codified in the following commutative diagram, as given in [33,
(14.2)]:
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Above we use the following notations:

eFW WD [w2W
eF w; B WD [e2EW .

eF �̊ \ T .e//;

• q is a positive integer as in 17.1.1, henceMq
˚;ver is unipotent,

• var is the variation map associated with Qmq
˚;ver ,

• exc is the excision isomorphism, and T is the composite var ı exc,
• the horizontal line is a homological exact sequence.

Since B is the disjoint union of the separating annuli, var is a diagonal map. On the
diagonal, each entry corresponds to an annulus A, and equals the integer

q � twist.m˚;ver IA/

determined in 17.1.7.
Obviously, the number of all 2-Jordan blocks of M˚;ver is rank im.Mq

˚;ver � I /.
On the other hand, by the commutativity of the diagram,

im.Mq
˚;ver � I / ' j ı T .im.i// ' im.i/=ker.j ı T jim.i//: (17.1.9)

The point in (17.1.9) is that im.Mq
˚;ver � I / appears as a factor space of im.i/.

17.1.10. In some cases im.Mq
˚;ver � I / can be determined exactly.

Assume that �C has no vanishing 2-edges, i.e. the case 17.1.7(c) does not
occur. Then all diagonal entries of var are non-zero, hence both var and T are
isomorphisms. The next lemma is a direct consequence of [33, page 113]:

Lemma 17.1.11. Assume that �C is unicolored (cf. 16.2.2). Then the restriction of
j ı T on im.i/ is injective. In particular, if G is unicolored, then the number of all
2-Jordan blocks of M˚;ver is rank im .i/.

Proof. For any y; z 2 H1.eF ˚;eFW /, we consider the intersection number .y; T z/,
denoted by hy; zi. Since T is diagonal, and all entries on the diagonal have the same
sign, the form hy; zi is definite. Assume that j T i.x/ D 0. Then

0 D .x; j T i.x//H1.eF�

˚ /
D .i.x/; T i.x// D hi.x/; i.x/i;

hence i.x/ D 0. ut
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17.2 Characters

The correspondingZ2-characters of im.i/ can be determined by the following exact
sequence (as part of diagram 17.1.8):

0 �! im.i/ �! H1.eF
�̊ ;eFW /

Q@�! H0.eFW / �! H0.eF
�̊ / �! 0;

and the action of the vertical/horizontal monodromies on this sequence. In this proof
we only need those blocks of M˚;ver which have eigenvalue 1.

The action of the algebraic vertical monodromy on each term of this sequence is
finite: it is induced by a permutation of the connected components of the spaces eFW

and .B; @B/. The corresponding 1-eigenspaces form the following exact sequence:

0 �! im.i/ver;1 �! H1.eF
�̊ ;eFW /ver;1

Q@�! H0.eFW /ver;1 �! H0.eF
�̊ /ver;1 �! 0:

(17.2.1)
This sequence will be compared with another sequence which computes the
simplicial homology of the connected 1-complex jGj. Namely, one considers the
free vector spacesCjEW .G/j andCjW .G/j, generated by the edges EW .G/ and vertices
W .G/ of G, as well as the boundary operator @0. Then one has the exact sequence

0 �! H1.jGj/ �! C
jEW .G/j @0

�! C
jW .G/j �! H0.jGj/ �! 0: (17.2.2)

Lemma 17.2.3. The two exact sequences (17.2.1) and (17.2.2) are isomorphic.
Moreover, the horizontal monodromy acting on (17.2.1) can be identified with the
action on (17.2.2) induced by the cyclic action of the coveringG ! �C . (The cyclic
action is induced by the positive generator of Z, cf. 5.1.2.)

Proof. It suffices to identify the second and the third terms together with the
connecting morphisms, and their compatibility with the monodromy action. (In
fact, the isomorphism of the last terms is trivial: H0.eF

�̊ /ver;1 D H0.eF˚/ver;1 D
H0.jGj/ D C is clear since eF˚ and jGj are connected.)

The identification follows from the proof of the Main Algorithm. Recall, that
in the previous sections, we constructed a decomposition of eF �̊ , the lifted fiber
.˚ ı r/�1.c0; d0/. Let us repeat the very same construction for .˚ ı r/�1.@Dc0/,
where Dc0 is the disc f.c; d / W c D c0g as in Chap. 3, or in the proof of 11.3.3.
That is, we decompose the total space of the fibration over @Dc0 D S1 instead of
only one fiber. Let Tot.eFW / be the space we get instead of eFW , which, in fact,
is the total space of a fibration over S1 with fiber eFW and monodromy the vertical
monodromy. Since the geometric vertical monodromy permutes the components of
eFW , the algebraic vertical monodromyMH0.eFW /;ver acts finitely on H0.eFW /, and

the coker.MH0.eFW /;ver�I / can be identified withH0.eFW /ver;1. Hence, by the Wang

exact sequence of the above fibration, we get that H0.eFW /ver;1 D H0.Tot.eFW //.
On the other hand, in the proof of 11.3.3 (complemented also with the second part
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of 3.2.2), ˚�1.@Dc0/ \ B� appears as a part of @Sk . Therefore, Tot.eFW / appears
as a part of @eS k : that part which is situated in the neighbourhood of the regular
part of the compact components of C . Hence, by 11.6.1 and 11.8.1, H0.Tot.eFW //

is freely generated by the collection of curves situating in the normalization S norm
k

of eS k located above the compact components of C . This is codified exactly by the
non-arrowhead vertices of G.

For the second terms, first notice that by the isomorphism exc W H1.eF
�̊ ;eFW / !

H1.B; @B/, the rank ofH1.eF
�̊ ;eFW / counts the separating annuli of eF �̊ . Now, we

can repeat the entire construction and argument above for EW instead of W . Indeed,
H1.eF

�̊ ;eFW /ver;1 counts the separating tori (not considering those corresponding
to the binding of the open book) of .˚ ı r/�1.@Dc0/, and this, by the proof of the
Main Algorithm, is codified exactly by EW . The details are left to the reader.

Since all the maps and identifications are natural and compatible with the action
of the corresponding horizontal monodromies, the morphisms Q@ and @0 and the
actions of the horizontal monodromies are all identified. ut

Now, we are ready to finish the proof of 16.2.3. By the above discussion,
#21M˚;ver is equal to the dimension of I WD im.i/ver;1=ker.j T jim.i//ver;1, which
is smaller than dim.i/1 D dimH1.jGj/ D c.G/. Moreover, P # is the characteristic
polynomial of the horizontal monodromy acting on I , which clearly divides the
characteristic polynomial of the horizontal monodromy acting on H1.jGj/, which
is Ph.jGj/. If c.G/ D 0, or if c.G/ D #21M˚;ver (i.e., if corank .A;I/ D jA j, cf.
15.1.5), or if �C is unicolored (cf. 17.1.11), then P # D Ph.jGj/ .

17.2.4. The local case, valid for any j , follows by similar arguments if one replaces
�C by � 2

C ;j . The last statement follows from Lemma 14.2.10, or from the sentences
following it.

17.2.5. The proof of Theorem 16.2.13. Assume that �C has a vanishing 2-edge
e 2 EW , that is, the situation of 17.1.7(c) occurs. Let h WD Qm�;ver be as in 17.1.1,
and fix q such that the restriction of hq on eFW is the identity. The proof of 17.1.7(c)
shows that hq can be extended to eF �̊ \ T .e/ by the identity map. In particular, in
such a situation it is better to replace the space eFW from the diagram 17.1.8 by eF 0

W ,
defined as the union of eFW with all separating annuli eF �̊ \ T .e/ corresponding to
the vanishing 2-edges from EW . Moreover, we define B 0 as the union of the other
separating annuli. Then one gets a new diagram (involving the spaces eF �̊ , eF 0

W , B 0,
and morphisms i 0 and T 0) such that in the new “collapsing” situation T 0 becomes an
isomorphism. Then all the arguments above, complemented with the corresponding
facts from Chap. 12 about the “Collapsing Main Algorithm”, can be repeated, and
the second version 16.2.13 follows as well.

Example 17.2.6. Assume that f .x; y; z/ D f 0.x; y/ and g D z as in 9.1. Then
we have only vanishing 2-edges, hence eF 0

W D eF˚ . Therefore, in the new diagram
H1.eF

�̊ ;eF 0
W / D 0. In fact, since 
 D 1 for all vertices, we can even take q D 1

(use e.g. 13.3.3), hence in this case m�;ver is isotopic to the identity. (This can also
be proved by a direct argument, see Chap. 20).



Chapter 18
The Mixed Hodge Structure of H1.@F /

18.1 Generalities: Conjectures

18.1.1. We believe that a substantial part of the numerical identities and inequalities
obtained in the previous chapters are closely related with general properties of
mixed Hodge structures (in the sequel abbreviated by MHS) supported by different
(co)homology groups involved in the constructions.

Although the detailed study of the mixed Hodge structure onH1.@F / and related
properties exceeds the aims of the present work, we decided to dedicate a few
paragraphs to this subject too: we wish to formulate some of the expectations and to
shed light on the results of the book from this point of view as well.

For general results, terminology and properties of MHS, see for example the
articles of Deligne [26]. For the MHS on the cohomology of the Milnor fiber of local
singularities see the articles of Steenbrink [121,122,124], or consult the monographs
of Dimca, Kulikov, or Peters and Steenbrink [27,56,102]. On the link of an isolated
singularity Durfee defined a MHS [30], for different versions and generalizations
see [31, 32, 35, 122, 124].

For the convenience of the reader we recall the basic definition of MHS.

Definition 18.1.2. (a) A pure Hodge structure of weightm is a pair .H; F �/, where
H is a finite dimensional R-vector space and F � is a decreasing finite filtration
on HC D H ˝ C (called the Hodge filtration) such that

HC D F p ˚ Fm�pC1HC

for all p 2 Z, where the conjugation � on HC is induced by the conjugation
of C.

(b) A mixed Hodge structure is a triple .H;W�; F �/, where H is a finite dimen-
sional R-vector space, W� is a finite increasing filtration on H (called the
weight filtration), and F � is a finite decreasing filtration on HC such that F �

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 18,
© Springer-Verlag Berlin Heidelberg 2012
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on GrWm H induces a Hodge structure of weight m for all m. (Here GrWm H WD
WmH=Wm�1H .)

18.1.3. MHS on the cohomology of @F . Without entering in the theory of derived
categories and mixed Hodge modules, we outline a possible way to define a MHS
on the cohomology of @F .

If f W .C3; 0/ ! .C; 0/ is a hypersurface singularity, the cohomology of its
Milnor fiber F carries a MHS. This can be defined via Deligne’s nearby cycle
functor  f which produces the mixed Hodge module  f RC3 supported on Vf . If i
denotes the inclusion of the origin into Vf , thenHk.i� f RC3 / D Hk.F /, defining
a MHS on Hk.F /.

Usually, if Vf has an isolated singularity, then the MHS ofH�.@F / is defined via
the isomorphism ofH�.@F /with the cohomologyH�.Kf / of the link of Vf , which
is identified with a local cohomologyH�C1

f0g .Vf /. The MHS on the link of a normal
surface singularity can be defined in a similar way through local cohomology (see
[30–32, 35, 122, 124]).

If Vf has a non-isolated singularity, this procedure does not work: the link and @F
have different cohomologies. Therefore, for such a case we propose the following
definition.

Consider i Š fRC3 too; this has the property that Hk.i Š f RC3 / D Hk
c .F /.

Definition 18.1.4. Define the MHS on the cohomology of the boundary @F via

cone.i Š f RC3 ! i� f RC3 /: (18.1.5)

This definition automatically implies the following fact.

Corollary 18.1.6. One has an exact sequence of mixed Hodge structures:

0 ! H1.F / ! H1.@F / ! H2
c .F / ! H2.F / ! H2.@F / ! H3

c .F / ! 0:

(18.1.7)

Remark 18.1.8. The above definition agrees with the “link functor” cone.i Š !
i�/ of Durfee and Saito [32], which can be considered in any category where the
basic functors i Š, i� and cone are defined. The link functor can be applied to any
mixed Hodge module. If one applies it to the constant sheaf on Vf , one gets a MHS
supported by the cohomology of the link L (this case was discussed in [32]). When
one applies it to  f RC3 , one gets the MHS of the cohomology of @F .

The following cases are relevant from the point of view of the results of the
present work.

Example 18.1.9. (a) Assume that .X; x/ is a normal surface singularity. Let GX
be (one of its) dual resolution graphs. It is known that its intersection matrix A
is negative definite. We wish to give geometric meaning to the integers g.GX/
and c.GX/. Recall that in this case we only use the blowing up/down operations
of .�1/ rational vertices, which keep the integers g.GX/ and c.GX/ stable.
Therefore, they can be recovered from any negative definite plumbing graph,
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and thus these numbers depend only on the link KX of .X; x/. Recall also that
dimH1.KX/ D 2g.GX/C c.GX/, cf. 15.1.2.

The integers g.GX/ and c.GX/ have the following Hodge theoretical
interpretation. If W� denotes the weight filtration of H1.@X;R/, then
dimGrW�1H1.KX/ D 2g.GX/ and dimGrW0 H1.KX/ D c.GX/ (and all the
other graded components are zero). Hence, in this situation, GrW� H1.@X/ is
topological.

(b) Let us analyze how the facts from (a) are modified if we consider a more
general situation. Assume that V is a smooth complex surface and C � V

a normal crossing curve with all irreducible components compact. We will
denote by the same V a small tubular neighbourhood of C . Then the oriented
3-manifold @V can be represented by a plumbing graph – the dual graph of the
configuration C . Let this be denoted by GC . Similarly as above, A denotes the
associated intersection matrix of GC , or, equivalently, the intersection matrix
of the curve-configuration of the irreducible components of C . Again (as in
15.1.2), dimH1.@V / D 2g.GC / C c.GC / C corankA. Moreover, H1.@V;R/

admits a mixed Hodge structure such that dimGrW�2H1.@V / D corankA,
dimGrW�1H1.@V / D 2g.GC / and dimGrW0 H1.@V / D c.GC / (and all the
other graded components are zero), see e.g. [36, (6.9)].

The point is that now this decomposition depends essentially on C and the
analytic embedding of C into V , and, in general, cannot be deduced from the
topology of @V alone. (To see this, compare the following two cases: the union
of three generic lines in the projective plane and a smooth elliptic curve with self-
intersection zero). This discussion shows that if we wish to keep the information
regarding the weight filtration of @V , then we are only allowed to use those calculus-
operations which preserve c.GC /, g.GC / and corankA. In particular, the oriented
handle absorption should not be allowed.

We believe that the following properties hold for the MHS defined above:

18.1.10. Conjecture. The weight filtration of the mixed Hodge structure of
H1.@F /, defined in (18.1.5), satisfies

0 D W�3 � W�2 � W�1 � W0 D H1.@F /:

Moreover, for any graph G provided by the Main Algorithm one has:

dim GrWi H1.@F / D
8

<

:

corankAG if i D �2;
2g.G/ if i D �1;
c.G/ if i D 0:

(18.1.11)

Obviously, there is a corresponding dual cohomological statement:

18.1.12. Conjecture. The weight filtration of the mixed Hodge structure ofH1.@F /

satisfies
0 D W�1 � W0 � W1 � W2 D H1.@F /;
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and for any graph G provided by the Main Algorithm one has:

dim GrWi H
1.@F / D

8

<

:

corankAG if i D 2;

2g.G/ if i D 1;

c.G/ if i D 0:

(18.1.13)

Similarly, the weight filtration of H2.@F / satisfies

0 D W1 � W2 � W3 � W4 D H2.@F /;

and for any graph G provided by the Main Algorithm one has:

dim GrWi H
2.@F / D

8

<

:

corankAG if i D 2;

2g.G/ if i D 3;

c.G/ if i D 4:

(18.1.14)

Remark 18.1.15. (1) The monomorphism H1.F / ,! H1.@F / from (18.1.7) is
strictly compatible with both weight and Hodge filtrations; namely,

Wi.H
1.F // D H1.F /\Wi.H

1.@F // for any i .

There is a similar statement for the Hodge filtration too.
Moreover, we claim that the cup product H1.@F / ˝ H1.@F / 7! H2.@F )

is a morphism of mixed Hodge structures, in particular, it preserves the weight
filtration

Wi.H
1.@F // [Wj .H

1.@F // � WiCj .H2.@F //: (18.1.16)

For example, if AG is non-degenerate, then (18.1.13) and (18.1.14) would
imply that the cup-product H1.@F / ˝ H1.@F / ! H2.@F / was trivial. This
is compatible with the fact that the cup-product is indeed trivial, whenever AG
is non-degenerate: this is a result of Sullivan [129], see also [31].

Moreover, (18.1.16) can be compared with the list of inclusions of 16.2.11(b)
where the fact that .AG/	6D1 is non-degenerate was also used (see also 24.2).

(2) If true, the above Conjectures would have the following consequence: the
numerical invariants corankAG , g.G/ and c.G/ associated with the graph
G obtained from the Main Algorithm are independent of the choice of the
resolution r (or, of the graph �C used in the algorithm). Therefore, we
emphasize again, if one wishes to keep in Gm all the information regarding
the MHS of @F , one has to use only those operations of the reduced plumbing
calculus which preserve these numbers, that is, one has to exclude the oriented
handle absorption R5.

(3) Conjecture 18.1.12 is compatible with 18.1.9(a): the weights of H1.KX/ are
< 2, while the weighs of H2.KX/ are > 2.

(4) In 19.9 (treating homogeneous singularities) and in Sect. 20.3 (cylinders) we
provide evidences for the above Conjecture.
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Chapter 19
Homogeneous Singularities

Assume that f is homogeneous of degree d � 2. In order to determine a possible
�C , we take for g a generic linear function. We adopt the notations of Chap. 8,
where the graph �C is constructed.

We start our discussion with the list of some specific properties of the geometry
of homogeneous singularities regarding the graphs �C , G, or the ICIS ˚ . Then we
combine this new information with the general properties established in the previous
chapters.

19.1 The First Specific Feature: Mver D .Mhor/
�d

Clearly
jA .�C /j D jA .G/j D d:

Moreover, dj D 1 for any j , hence

M 0
j;hor D M˚

j;hor and M 0
j;ver D M˚

j;ver : (19.1.1)

Since f and g are homogeneous, by [125], we have

(

M 0
j;ver D .M 0

j;hor /
�d

M˚;ver D .M˚;hor /
�d :

(19.1.2)

In particular, for any of the pairs .M 0
j;ver ;M

0
j;hor / or .M˚;ver ;M˚;hor /, the number

of 2-Jordan blocks of the vertical operator coincides with the number of 2-Jordan
blocks of the horizontal operator. Moreover, the horizontal monodromies determine
the corresponding Z2-representations completely.

In fact, the identities (19.1.2) are true at the level of the geometric monodromies
as well. Let us check this for the pair .m˚;ver ; m˚;hor /; the local version is similar.

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 19,
© Springer-Verlag Berlin Heidelberg 2012

179



180 19 Homogeneous Singularities

Consider the homogeneous action on C3 given by 	 
 .x; y; z/ D .	x; 	y; 	z/.
This is projected via ˚ to the action 	 
 .c; d / D .	d c; 	d/ of C2. Hence, the
monodromy along the loop .eitdc; eitd/, t 2 Œ0; 2��, is lifted to a trivial action on
the Milnor fiber, that is

md
˚;hor �m˚;ver D I and .m0

j;hor /
d �m0

j;ver D I: (19.1.3)

19.2 The Second Specific Feature: The Graphs G2;j

Consider the graph �C of Chap. 8. In the Main Algorithm 10.2 applied for this
�C , one puts exactly one vertex in G, say ev	, above a vertex v	 of �C . If we
delete all these vertices from G, we get the union of the graphs G2;j , cf. 10.3.4
and Remark 10.3.8. The point is that

G2;j , with opposite orientation, is a possible embedded resolution graph
associated with the d -suspension of the transversal singularity T˙j

and the germ induced by the projection on the suspension coordinate.

More precisely, if f 0
j .u; v/ D f j.Slq;q/ (q 2 ˙j n f0g, cf. Sect. 2.2) is the local

equation of the transversal type plane curve singularity, then its d -suspension is
the isolated hypersurface singularity X WD .fwd D f 0

j .u; v/g; 0/. Then G2;j D
�� .X;w/.

This follows from a comparison of the Main Algorithm 10.2 and the algorithm
which provides the graph of suspension singularities 5.3. Independently, it can also
be proved by combining Proposition 3.3.1(2) and the local identity of (19.1.3), or
by the covering procedure which will be described in 19.3.

In particular, the graph G consists of the disjoint union of graphs of these
suspensions with opposite orientation, and j�j new vertices ev	 decorated by Œg	�,
altogether supporting d arrowheads. The edges connecting these new vertices to
the graphs G2;j are �-edges and reflect the combinatorics of the “identification
map” c (i.e. the incidence of the singular points on the components of C , see
8.1). The arrowheads are distributed as follows: each ev	 supports d	 arrowheads,
all of them connected by C edges. The gluing property of the two pieces (i.e.
of @1F and @2F ) is codified in the Euler numbers of the vertices ev	 in G.
This is determined by (4.1.5), once we carry the multiplicity system of g in the
construction: in the suspension graphs one has the multiplicity system of the germ
w W .fwd D f 0

j .u; v/g; 0/ ! .C; 0/, and eachev	 and arrowhead has multiplicity .1/.
This provides a very convenient “short-cut” to obtain G.

Example 19.2.1. A projective curve of the projective plane is called cuspidal if all
its singularities are locally analytically irreducible.

It is well-known that there exists a rational cuspidal projective curve C of degree
d D 5 with two local irreducible singularities with local equations u3 C v4 D 0
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and u2 C v7 D 0 (see e.g. [80]). Then the above procedure provides two suspension
singularities, both of Brieskorn type. Their equations are u3 C v4 C w5 D 0 and
u2 C v7 C w5 D 0. (We made the choice of C carefully: we wished to get pairwise
relative prime exponents in each singularity, in order to “minimize” jH1.@F;Z/j,
cf. 19.6.) The embedded resolution graphs of the coordinate function w restricted
on these suspension singularities are the following:

� � � �

�

� � � �

�

� ��3 �1 �3 �2

�4

�5 �1 �4 �2

�2

.4/ .12/ .5/ .3/

.3/

.3/ .14/ .4/ .2/

.7/

.1/ .1/

Reversing the orientations we get the following graphs, which coincide with the
graphsG2;j (j D 1; 2):

� � � �

�

� � � �

�

� �3 1 3 2

4

5 1 4 2

2

.4/ .12/ .5/ .3/

.3/

.3/ .14/ .4/ .2/

.7/

.1/ .1/
� � � �

�

� � � �

�

In order to get G, we have to insert one more vertex ev (corresponding to C )
with multiplicity .1/ and genus decoration zero, and d D 5 arrowheads, all with
multiplicity (1), connected with C edges toev:

� � � �

�

� � � �

�

�

�
��
�
��

�
��



��

3 1 3 2

4

5 1 4 2

2

.4/ .12/ .5/ .3/

.3/

.3/ .14/ .4/ .2/

.7/.1/ .1/

.1/

: : :

� � � �

�

� � � �

�

The missing Euler number e of ev is computed via (4.1.5), namely e C 5 � 3

�3 D 0, hence e D 1. Deleting all the multiplicities we obtain the graph of @F :

� � � �

�

� � � �

�

�
3 1 3 2

4

5 1 4 2

2

1� � � �

�

� � � �

�

By plumbing calculus, one can blow down twice 1-curves, and also one may
delete the �’s. This possible graph of @F is not the “normal form” of [94], the
interested reader may transform it easily to get a graph with all Euler numbers
negative. But even if we pass to the normal form, the intersection matrix will not
be negative definite, its index will be .�12;C1/.

Notice that @F is a rational homology sphere. In fact, it is easy to verify that
H1.@F;Z/ D Z5.
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As a consequence of the above discussion, we get:

Corollary 19.2.2. If C is a rational unicuspidal projective plane curve (i.e. C has
only one singular point at which C is locally analytically irreducible), and its local
singularity has only one Puiseux pair, then @F can be represented by a plumbing
graph which is either star-shaped or a string.

This will be exemplified more in Sect. 19.8.
Another consequence is the following

Corollary 19.2.3.
corank .A;I/G D jA .G/j:

Therefore, Theorem 16.2.3 applies and #21M˚;ver D c.G/ and P #.t/ D P.h/.jGj/.t/
too.

In particular, the characteristic polynomial of the monodromy acting on
H1.@F;Z/ is determined by Theorem 16.2.8, and

rankH1.@F / 6D1 D 2g.G/C c.G/ � 2g.�C /� c.�C /:

Moreover, the equivalent statements of (16.2.4) are also satisfied, in particular
corank .A;I/G2;j D jEcut;j j and #2jM

0
j;ver D c.G2;j / for any j .

Proof. Since each ev	 supports at least one arrowhead, the rank of .A;I/ is
maximal whenever all the ranks of the intersection matrices associated with G2;j
are maximal. But these matrices are definite, hence non-degenerate, cf. 4.3.4(3).
For the other statements see (16.2.5) and (16.2.10). ut

After stating the third specific feature, and determining corankA, we will return
to the characteristic polynomial formula.

19.3 The Third Specific Feature: The d-Covering

Let C D ff D 0g � P2 as before. It is well-known that there is a regular d -
covering F D ff D 1g ! P2 nC given by .x; y; z/ 7! Œx W y W z�. Let T be a small
tubular neighbourhood of C , and let @T be its boundary. In the next discussion it
is more convenient to orient @T not as the boundary of T , but as the boundary of
P2 nT ı. Then the above covering induces a regular d -covering, which is compatible
with the orientations:

@F ! @T:

Moreover, the Zd covering transformation on @F coincides with a representative of
the Milnor monodromy action on @F . Using either this, or just the homogeneity of
f , we get that

the geometric monodromy action is finite of order d .
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Example 19.3.1. Let us exemplify this covering procedure on a simple case.
Assume that C has degree 3 and has a cusp singularity. Then a possible plumbing
representation for @T (oriented as the boundary of T ) is the graph .i/ below.

� � �

�

� � �

�

��2 �1 3

�3

�2 �1 3

�3
.3/ .6/ .1/ .�9/

.2/

.i/ .ii/

Then the Z3-cyclic covering of @T can be computed as the Z3-covering of the
divisor marked in .ii/ by a similar algorithm as described in 5.3 for cyclic coverings.
This provides the graph .iii/ below (as the graph covering of the graph .i/). It is a
possible plumbing graph of @F with opposite orientation. Changing the orientation
and after reduced calculus, we get the graph .iv/. It is the graph that we get by the
Main Algorithm as well (after modified by reduced calculus).

The monodromy action permutes the three �2-curves.

�

�

� � �

�

���

��
�

�2
�2
�2 �3 1

�1
.iii/ .iv/ �

�

� ����

��
�

�2
�2
�2

0

19.3.2. The 3-manifold @T was studied extensively by several authors (see for
example the articles [23, 24, 46] of Cohen and Suciu, and E. Hironaka, and the
references therein). Hence, once the representation �1.@T / ! Zd associated with
the covering is identified, one can try to recover all data about @F from that of @T
(some of them can be done easily, some of them by rather hard work). Here we
will consider only one such computation, which provides some numerical data still
missing. This basically targets the rank of the 1-eigenspace dimH1.@F /1 associated
with the monodromy action.

19.3.3. The rank of H1.@F /1 and corankAG .
By the above discussion we getH1.@F /1 D H1.@T /. On the other hand,H1.@T /

can be computed easily, via 18.1.9(b), since @T is also a plumbed 3-manifold (cf.
18.1.9(c)). One can determine a possible plumbing graph for @T as follows.

Start with the curve C , blow up the infinitely near points of its singularities (as
in Chap. 8), and transform the combinatorics of the resulting curve configuration
into a graph. In this way we get as a plumbing graph the graph �C with some
natural modifications: we have to keep the genus decorations, delete the arrowheads
and the weight decorations of type .mIn; 
/, and have to insert the Euler numbers.
These can in turn be determined as follows: start with the intersection matrix of the
components of C . This, by Bézout’s theorem, is the � 
� matrix AC with entries
.d	d�/	;� . This intersection matrix is modified by blow ups to get the intersection
matrix A�C of the plumbing graph of @T . Hence, similarly as in 15.1.2, one has:
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dimH1.@F /1 D dimH1.@T / D 2g.�C /C c.�C /C corankA�C : (19.3.4)

Using the notations of Chap. 8, we compute each summand. g.�C / D P

	 g	 is
clear. Since each �j is a tree, one also gets

c.�C / D
X

j

. jIj j � 1 / � . j�j � 1 /:

Finally, by blowing up, the corank of an intersection matrix stays stable, hence
corankA�C D corankAC D corank ..d	d�/	;�/, i.e.:

corankA�C D j�j � 1: (19.3.5)

Therefore we get the identities (where b1.C / denotes the first Betti number of C ):

dimH1.@F /1 D 2g.�C /C
X

j

. jIj j � 1 / D b1.C /C j�j � 1: (19.3.6)

This has the following immediate consequence:

Corollary 19.3.7. corankAG D j�j � 1. Hence, in general, AG is degenerate.

Proof. corankAG D corankA�C by (16.2.9) and (19.3.4). Then use (19.3.5). ut
Now we start our list of applications.

19.4 The Characteristic Polynomial of @F

Using Theorem 16.2.8 and Corollary 19.3.7 we get:

Corollary 19.4.1. If f is homogeneous, then the characteristic polynomial of the
Milnor monodromy acting on H1.@F / is

.t � 1/j�j�d � Q

w2W .�C /
.t .mw;d / � 1/2gwCıw�2 � .tnw � 1/

Q

e2Ew.�C /
.tne � 1/

: (19.4.2)

For the integers nw and ne see 10.2, with the additional remark that all the second
entries of the vertex-decorations are equal to d .

Notice that this is a formula given entirely in terms of �C . If c.G/ D 0, then via
16.1.3 it simplifies to:

.t � 1/1Cj�j�d �
Y

w2W .�C /

.t .mw;d / � 1/2gwCıw�2: (19.4.3)
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Since the monodromy has finite order, the complex algebraic monodromy is
determined completely by its characteristic polynomial. By Corollary 19.2.3, the
complex monodromy is trivial if and only if c.G/ D c.�C / and g.G/ D g.�C /, cf.
also with 13.6.4.

19.4.4. Now, we provide a description of the characteristic polynomial in terms of
the projective curve C .

Let Div D P

k	.	/ 2 ZŒS1� be the divisor of the characteristic polynomial.
By 19.3, the multiplicity k1 of the eigenvalue 	 D 1 is b1.C /C j�j � 1.
On the other hand, for 	 6D 1, Sect. 14.2 and (19.1.1) provide the following

identity in terms of the local horizontal/Milnor algebraic monodromies of the
transversal types (i.e. in terms of the monodromy operators of the local singularities
of C ):

k	 D
X

j

X

	dD1
#fJordan block ofM 0

j;hor with eigenvalue 	g .	 6D 1/:

In order to see this, we apply 19.1 and the Wang homological exact sequence for
F 0
j ! @2;j ! S1 with 15.1.4.

Indeed, if B is a 1-Jordan block of M 0
j;hor with eigenvalue 	, and 	d D 1,

then this creates a 1-block in M 0
j;ver with eigenvalue 1, and the corresponding 1-

dimensional eigenspace survives in coker .M 0
j;ver � 1/.

If B is a 2-Jordan block of M 0
j;hor with eigenvalue 	, and 	d D 1, then this

creates a 2-block in M 0
j;ver with eigenvalue 1, and in coker .M 0

j;ver � 1/ only a 1-
dimensional space survives, andM 0

j;hor acts on it by multiplication by 	.

This and the last identity of 19.2.3 imply:

X

j

X

	dD1; 	6D1
#fJordan block of M 0

j;hor with eigenvalue 	g

D 2g.G/C c.G/ � 2g.�C /� c.�C /:

Example 19.4.5. Assume that C is irreducible and it has a unique singular point
.C; p/ which is locally equisingular to f.f 0 D u2 C v3/.u3 C v2/ D 0g. For the
embedded resolution graph of .C; p/ see 9.1.1. In order to get �C one has to add one
more vertex, which will have genus decoration Œg�, where 2g D .d�1/.d�2/�12,
and it will support d arrows. The reader is invited to complete the picture of �C .

By (19.4.2), we get that the characteristic polynomial of the monodromy operator
acting on H1.@F / is

.t � 1/.d�1/.d�2/�10

t .d;2/ � 1 �
� t .d;10/ � 1

t.d;5/ � 1
	2

:
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In all the cases, the multiplicity of the eigenvalue 1 is k1 D .d � 1/.d � 2/� 11 D
.d � 1/.d � 2/� �.f 0/. If d is odd, then there are no other eigenvalues, hence the
complex monodromy on H1.@F;C/ is trivial.

If d is even then other eigenvalues appear too. If 5 − d then only one appears,
namely �1, otherwise their divisor is the divisor of .t5 C 1/2=.t C 1/.

This result can be compared with 19.4.4: use that the algebraic monodromy of
the local transversal singularity has characteristic polynomial .t5 C 1/2.t � 1/, and
exactly one 2-Jordan block, which has eigenvalue �1.

The graph Gm for d D 10 is the following (for this d all the Hirzebruch–Jung
strings in the Main Algorithm are trivial):

�

�

�

�8
Œ30�

3
Œ2�

3
Œ2�

� �

In this case dimH1.@F / D 70, dimH1.@F /1 D 61, AG is non-degenerate with
j det.AG/j D 50.

Example 19.4.6. The characteristic polynomial of the example 10.4.4 is .t �
1/d

2�3dC1, hence the complex monodromy on H1.@F;C/ is trivial.

19.5 M 0
j;hor; M 0

j;ver; M ˚
j;hor; M ˚

j;ver; M˚;hor and M�;ver

In this section we show that the local horizontal/Milnor monodromy opera-
tors fM 0

j;horgj of the transversal types, together with the integers d and c.G/

completely determine the Z2-representations generated by the commuting pairs
.M 0

j;hor ;M
0
j;ver/, .M

˚
j;hor ;M

˚
j;ver /, respectively .M˚;hor ;M˚;ver /.

Indeed, the first two pairs agree by (19.1.1). Hence, by 19.1, it is enough to
determine M˚;hor . Moreover, for eigenvalues 	 6D 1, the following generalized
eigenspaces, together with the corresponding horizontal actions, coincide:

H1.F˚/M˚;hor ;	6D1 D ˚jH1.F˚ \ Tj /M˚
j;hor ;	6D1 D ˚jH1.F

0
j /M 0

j;hor ;	6D1: (19.5.1)

Next, we determine the action of M˚;hor on the generalized 1-eigenspaceH1.F˚/1
of M˚;hor .

The rank ofH1.F˚/M˚;hor ;1 can be determined in several ways.
First, one can consider the rank of the total space H1.F˚/, which is .d � 1/2.

Indeed, F˚ is the Milnor number of an ICIS .f; g/, where f is homogeneous of
degree d and g is a generic linear form. Hence, their Milnor number is the Milnor
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number of a homogeneous plane curve singularity of degree d . Since we already
determined the .	 6D 1/-generalized eigenspaces, the rank of H1.F˚/1 follows too.

There is another formula based on 13.4.11(a), which provides

rankH1.F˚/M˚;hor ;1 D 2g.�C /C 2c.�C /C d � 1

D d � j�j C b1.C /C
X

j

.jIj j � 1/:

In particular, since we have only one and two-dimensional Jordan blocks:

#11M˚;hor C 2#21M˚;hor D rankH1.F˚/M˚;hor ;1:

On the other hand, by 19.1 and (19.5.1) we have

#21M˚;ver D #21M˚;hor C
X

j

X

	dD16D	
#2	M

0
j;hor :

Since by 19.2.3 the left hand side of this identity is c.G/, we get

#21M˚;hor D c.G/ �
X

j

X

	dD16D	
#2	M

0
j;hor :

Example 19.5.2. Assume that we are in the situation of Example 19.4.5 with
d D 10. Then both local operators M 0

1;hor and M 0
1;ver have exactly one 2-Jordan

block, the first with eigenvalue �1, the other with 1. This is compatible with the fact
that c.G2;1/ D 1.

Since the order of any eigenvalue of M˚;hor divides 10, we get that M˚;ver

is unipotent. By Corollary 19.2.3, the number of 2-Jordan blocks of M˚;ver is
c.G/D 2. Hence M˚;hor has two 2-Jordan blocks as well. By (19.5.1), there is only
one with eigenvalue 6D 1, namely with eigenvalue �1. Hence the remaining block
has eigenvalue 1.

19.6 When is @F a Rational/Integral Homology Sphere?

By 19.4.4, or by the statements of 19.2, we get the following characterization:

Corollary 19.6.1. @F is a rational homology sphere if and only if C is an
irreducible, rational cuspidal curve (i.e. all its singularities are locally irreducible),
and there is no eigenvalue 	 of the local singularities .C; pj / with 	d D 1.

This situation can indeed appear, see e.g. 19.2.1, or many examples of the present
work.
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We wish to emphasize that the classification of rational cuspidal projective curves
is an open problem. (For a partial classification with d small see e.g. [80], or [12]
and the references therein.) It would be very interesting and important to continue
the program of the present work: some restrictions on the structure of @F might
provide new data in the classification problem as well.

The next natural question is: When is @F an integral homology sphere? The
answer is simple: Never (provided that d � 2)! This follows from the following
proposition:

Proposition 19.6.2. Assume that f is homogeneous of degree d . Then there exists
an element h 2 H1.@F;Z/ whose order is either infinity or a multiple of d . If
H1.@F;Z/ is finite, one can choose such an h fixed by the monodromy action.

Proof. By 19.6 we may assume thatC is irreducible, rational and cuspidal. Consider
the following diagram (for notations, see 19.3):

�1.@F /
i�����! �1.@T /

p�����! Zd
?

?

y

q

?

?

y
r

H1.@F;Z/ �����! H1.@T;Z/ Zd2

The first line, provided by the homotopy exact sequence of the covering, is exact.
Moreover, i is injective, and q; r and p are surjective. Let � 2 �1.@T / be the class
of a small loop around C . Then p.�d / D 0, hence �d 2 �1.@F /.

On the other hand, H1.@T;Z/ D Zd2 , and it is generated by Œ��. This follows
from the fact (see 19.3.3 and 15.1.3) that H1.@T;Z/ D cokerAC , but in this case
AC has only one entry, namely d2.

Hence r.�d / has order d in H1.@T;Z/. In particular, the order of q.�d / 2
H1.@F;Z/ is a multiple of d . Since the monodromy action in �1.@F / is conjugation
by � , the second part also follows. ut

The above bound is sharp: there are examples when H1.@F;Z/ D Zd , see e.g.
19.2.1. The above result also shows that the monodromy action over Z is trivial
wheneverH1.@F;Z/ D Zd .

The fact that for f homogeneous @F cannot be an integral homology sphere was
for the first time noticed by Siersma in [118], page 466, where he used a different
argument.

19.7 Cases with d Small

In this section we treat all possible examples with d D 2 and d D 3, and we
present some examples with d D 4. The statements are direct applications of the
Main Algorithm and the above discussions regarding the monodromy.
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One of our goals in this “classification list” is to provide an idea about the variety
of the possible 3-manifolds obtained in this way, and to check if the same 3-manifold
can be realized from essentially two different situations.

19.7.1. (d D 2) There is only one case: C is a union of two lines. A possible graph
Gm is 0 � hence @F � S1 
 S2. The monodromy is trivial.

19.7.2. (d D 3) There are six cases:
(3a) C is irreducible with a cusp. See 19.3.1, or 19.8.1(a) with d D 3 for the

graphGm of @F . In this caseH1.@F;Z/ D Z6˚Z2, hence the complex monodromy
is trivial. The integral homology has the following peculiar form (specific to the
homology of any Seifert 3-manifold):

H1.@F;Z/ D h x1; x2; x3; h j 2x1 D 2x2 D 2x3 D h; x1 C x2 C x3 D 0 i:

h has order 3 and it is preserved by the integral monodromy, while the elements
x1; x2; x3 are cyclically permuted (in order to prove this, use e.g. 19.3.1).

(3b) C is irreducible with a node. A possible graph of @F is

� �3 3

�

The rank ofH1.@F / is 1, and the complex monodromy is trivial.
By calculus, one can verify that G � �G.
(3c) C is the union of a line and an irreducible conic, intersecting each other

transversely. A possible graph for @F is 3 �[1], and the complex monodromy is
trivial.

(3d) C is the union of an irreducible conic and one of its tangent lines. Then
@F � S2 
 S1 and the monodromy is trivial.

(3e) C is the union of three lines in general position; then @F � S1 
 S1 
 S1
and the monodromy is trivial.

(3f) C is the union of three lines intersecting each other in one point: then by
reduced calculus we get for @F the graph Gm:

�

�

� ����

��
�

0

0

0 

Œ1�

(the decoration * is irrelevant)

In fact, if we apply the splitting operation (not permitted by reduced calculus),
we obtain that @F � #4S2 
 S1.

The characteristic polynomial of the monodromy is .t3 � 1/.t � 1/.
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19.7.3. (d D 4) We will start with the cases when C is irreducible, rational and
cuspidal (i.e. all singularities are locally irreducible). There are four cases:

(4a) C has three A2 singular points. A possible equation for f and �C is given
in 8.1.4. The boundary @F is a rational homology sphere with graph:

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

!!

!!

!!

��

��

��

(with all the Euler numbers 2)G W

(In this case, neitherG, nor G with the opposite orientation can be represented by a
negative definite graph.)

(4b) C has two singular points with local equations u2 C v3 D 0 and u2 C
v5 D 0. This case has an unexpected surprise in store: having two singular points
we expect that the graph will have two nodes. This is indeed the case for the
graph G, the immediate output of the Main Algorithm. Nevertheless, via reduced
plumbing calculus the chain connecting the two nodes disappears by a final 0-chain
absorption. We get that @F is a Seifert manifold with graph:

�

�

�

�

�

�

�

�

�

��
��

��

������

�
�
�

�
�
�

Gm W
�

��

are decorated by 2

are decorated by 5

The orbifold Euler number is 4=15 > 0, and the order of H1.@F;Z/ is 60.
(4c) C has one singular point with local equation u3 C v4 D 0. The 3-manifold

@F is a rational homology sphere, its plumbing graph is given in 19.8.2(a) (with
d D 4). It is worth mentioning that there are two projectively non-equivalent curves
of degree four with this local data, namely x4 � x3y C y3z D 0 and x4 � y3z D 0.

(4d) C has one singular point with local equation u2Cv7 D 0. In this case, rather
surprisingly, @F is the lens space of typeL.28; 15/ (that is, the graph is a string with
decorations: �2; �8; �2).

For an example of irreducible non-rational C , see 10.4.4 or 19.4.6.
For reducible C we give three more examples:
(4a’) Let C be the union of two conics intersecting each other transversely. The

characteristic polynomial is .t � 1/4, the complex monodromy is trivial, and the
graph of @F is:

� �

�

�

�

�

�














 are decorated by �4�2 �2Gm W
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(4b’) Let C D be the union of a smooth irreducible conic and two different
tangent lines. The characteristic polynomial is .t2 C 1/2.t � 1/3. The graph Gm is
�0 Œ3� .
(4c’) Let C be the union of two smooth conics intersecting tangentially in two

singular points of type A3 (e.g. the equation of f is x2y2 C z4). Then the graphGm

is 4 � [3]. The characteristic polynomial is .t2 C 1/2.t � 1/2.
19.7.4. It is also instructive to see the case when C is given by .x3 � y2z/.y3 �
x2z/ D 0. The curve C has two components, and they intersect each other in 6
points. One of them, say .C; p/, has local equation .u3� v2/.v3� u2/ D 0, cf. 9.1.1,
the others are nodes. Some of the cycles of G are generated by these intersections,
and one more by a 2-Jordan block of .C; p/: c.�C / D 5 and c.G/ D 6.

19.8 Rational Unicuspidal Curves with One Puiseux Pair

The present section is motivated by two facts.
First, by such curves we produce plumbed 3-manifolds with start-shaped graphs

(cf. 19.2.2), some of which are irreducible 3-manifolds with Seifert fiber-structure,
some of which are not irreducible. Seifert 3-manifolds play a special role in the
world of 3-manifolds. Therefore, it is an important task to classify all Seifert
manifolds realized as @F , where F is a Milnor fiber as above. Even if we restrict
ourselves to the homogeneous case, the problem looks surprisingly hard: although
all unicuspidal rational curves with one Puiseux pair produce star-shaped graphs,
in Sect. 19.7(4b) we have found a curve C with two cusps, which produces a
Seifert manifold as well. Since the classification of the cuspidal rational curves
is not finished, the above question looks hard. On the other hand, notice that
Seifert manifolds can also be produced by other types of germs as well, e.g. by
some weighted homogeneous germs as in 10.4.5 or 21.1.6, but not all weighted
homogeneous germs provide Seifert manifolds.

In this section we will list those star-shaped graphs which are produced by
unicuspidal curves with one Puiseux pair.

It is also worth mentioning, that the normalization of Vf (for any f where C is
irreducible and rational) has a very simple resolution graph: only one vertex with
genus zero and Euler number �d . This graph can be compared with those obtained
for @F listed below.

For the second motivation (of more analytic nature), see 19.8.5.

19.8.1. Assume that C is rational and unicuspidal of degree d � 3, and the
equisingularity type of its singularity is given by the local equation ua C vb D 0.
The possible triples .d; a; b/ are classified in [13].

In order to state this result, consider the Fibonacci numbers f'j gj	0 defined by
'0 D 0, '1 D 1, and 'jC2 D 'jC1 C 'j for j � 0.

Then .d; a; b/ (1 < a < b) is realized by a curve with the above properties if
and only if it appears in the following list:
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(a) .a; b/ D .d � 1; d/;
(b) .a; b/ D .d=2; 2d � 1/, where d is even;
(c) .a; b/ D .'2j�2; '2j / and d D '2j�1 C 1 D 'j�2'j , where j is odd and � 5;
(d) .a; b/ D .'j�2; 'jC2/ and d D 'j , where j is odd and � 5;
(e) .a; b/ D .'4; '8 C 1/ D .3; 22/ and d D '6 D 8;
(f) .a; b/ D .2'4; 2'8 C 1/ D .6; 43/ and d D 2'6 D 16.

(a) is realized e.g. by the curve fxd D zyd�1g, (b) by fzy � x2/d=2 D xyd�1.
The cases (c) and (d) appear in Kashiwara’s list [52], while (e) and (f) were found
by Orevkov in [98].

19.8.2. Now we list the graphs Gm for @F . The computations are straightforward,
perhaps except the cases (c) and (d); for these ones we provide more details.

� Case (a)

!!!
!

����

�

�

�

0 �.d � 1/
::: �.d � 1/

(d legs)

� Case (b)

!!!
!!!

!!

��������

�

�

�

�

�

�

0
�d
:::

�d
(d=2 legs):::

�2

�2
In the examples (a) and (b) the above “normal forms” are not negative definite,

hence the graphs cannot be transformed by plumbing calculus into a negative
definite graph (without changing the orientation).

� Case (c) Let � be the minimal resolution graph of the Brieskorn isolated
hypersurface singularity fuaCvbCwd D 0g, where .a; b; d/ D .'2j�2; '2j ; 'j�2'j /.
This is a star-shaped graph, it can be determined via the procedure 5.3 or 5.3.3. Here
we will indicate the steps of 5.3.3.

Some arithmetical properties of the Fibonacci numbers enter as important
ingredients in the computations. Namely, we need the facts that gcd.'j�2; 'j / D 1,
and for j odd one also has:

'j�2 � 'jC2 D '2j C 1; 'j�2 C 'jC2 D 3'j : (19.8.3)

Using the notations from 5.3.3, we will write .a1; a2; a3/ D .'2j�2; '2j ; 'j�2'j /.
Then .d1; d2; d3/ D .'j�2; 'j ; 'j�2'j /, .˛1; ˛2; ˛3/ D .'j�2; 'j ; 1/, and
.!1; !2; !3/ D .1; 1; 0/. Hence, the embedded resolution of the suspension germ
is a star shaped graph, whose each leg has only one vertex. There are 'j legs each
with Euler number �'j�2, and 'j�2 legs each with Euler number �'j . The central
vertex has Euler number �3 and genus decoration g D .'j � 1/.'j�2 � 1/=2. The
arrow of the function germ w has multiplicity 1 and it is supported by the central
vertex which has multiplicity 'j�2'j .
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Therefore, the graph Gm is the following: it is a star shaped graph with all the
legs having only one vertex. It has 'j legs each with Euler number 'j�2, and 'j�2
legs each with Euler number 'j , as well as a leg with Euler number 0. The central
vertex has genus decoration g D .'j �1/.'j�2�1/=2 and Euler number 3 (although
this is not relevant anymore, because of the 0-leg).

This 3-manifold is not irreducible. The irreducible components can be seen if we
apply the splitting operation to the unique 0-vertex. Then we get

2g D .'j � 1/.'j�2 � 1/ copies of �
0

, 'j�2 copies of �

'j
, and 'j copies of �

'j�2
.

� Case (d) In this case the graph Gm of @F is �
d

. This follows again from the
very special arithmetical properties (19.8.3) of the Fibonacci numbers.

Similarly as in the previous case, we have first to determine the minimal
resolution graph � of the Brieskorn singularity with coefficients .a; b; d/. Using
(19.8.3) it is easy to verify that these integers are pairwise relatively prime.
Moreover, 'j˙2 is not divisible by 3, and one also has the following congruences

'j�2'jC2 � 1 .mod 'j / 'j˙2'j � �3 .mod 'j
2/: (19.8.4)

Hence, by a computation, � consists of a central vertex with three legs. The
central vertex has decoration �2 (and genus 0), one leg consists of 'j � 1

vertices each decorated by �2, the second has three vertices with decorations
�2; �2; �d'j˙2=3e (where the first �2 vertex is connected to the central vertex).
The third leg has two vertices with decorations �3 and �d'j
2=3e, where the �3
vertex is connected to the central vertex. (Note that among the integers 'j�2 and
'jC2 exactly one has the form 3k � 1. The leg whose ˛-invariant has the form
3k � 1 will be the leg with two vertices, and the other leg will have three vertices.)

By the procedure 19.2 we have to change the orientation (hence the .�2/-
string transforms into a 2-string) and add one more vertex to the end-curve of
the 2-string, which will be decorated by 1. Hence this new extended string can be
contracted completely. After this contraction the central curve becomes a 1-curve.
This generates 3 more blow-downs and a 0-chain absorption.

As an interesting phenomenon: the graph of the normalization of Vf is �
�d

.
Hence the boundary of the Milnor fiber coincides with the link of the normalization
with opposite orientation.

� Case (e)

��
��

����

�

�

�

�

�1
�3
�11

�3
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� Case (f)

��
��

����

�

�

�

� �

�

�

�

�

�2 �2
�2

�2
�2
�3

�3

�9

�9

The normal forms in (e) and (f) are negative definite, a property which rather
rarely happens for non-isolated singularities. In particular, in both cases, @F is
diffeomorphic (under a diffeomorphism which preserves orientation) with the link
of a(n) (elliptic, not complete intersection) normal surface singularity.

19.8.5. Looking at the shapes and decorations of the above graphs, one can group
them in four categories (a)–(b), (c), (d) and (e)–(f). This is compatible with other
groupings based on certain analytic/combinatorial invariants of these curves, see
[12, 13].

For example, if � W X ! P2 is the minimal embedded resolution of C � P2, and
NC denotes the strict transform of C , then NC2 D d2 � ab D 3d � a � b � 1. In the

above six cases this value is the following: it is positive for (a) and (b), it is zero for
(c), it is �1 for (d), and �2 for (e) and (f).

Perhaps, the most striking “coincidence” is that the cases (e)–(f) are the only
cases when the logarithmic Kodaira dimension of P2 nC is 2 (for the first four cases
it is �1), while from the point of view of the present discussion (e)–(f) are the only
cases when @F is an irreducible Seifert 3-manifold, representable by a negative
definite graph (and which is not a lens space).

This suggests that the topology of @F probably carries a great amount of analytic
information about f .

19.9 The Weight Filtration of the Mixed Hodge Structure

Proposition 19.9.1. If f is homogeneous then the mixed Hodge structure of
H�.@F / satisfies Conjecture 18.1.12.

Proof. Let d denote the degree of f , and let C D ff D 0g � P
2 be the projective

curve as above. Recall that H1.P
2 n C;Z/ D Zj�j=.d1; : : : ; dj�j/. Therefore, the

representation

�1.P
2 n C;
/ ab�! H1.P

2 n C;Z/ ��! Zd ;

where ab is the Hurewicz epimorphism and �.Œa1; : : : ; aj�j�/ D P

a	, is well-
defined, it is onto, and it provides a cyclic covering � W Y ! P2, branched along C .
Moreover,F WD ��1.P2nC/ is a smooth affine variety which can be identified with
the open Milnor fiber of f , cf. 19.3.
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The singularities of Y are isolated and are situated above the singular points
of C : if ff 0

j .u; v/ D 0g is the local equation of a singular point of C , then

its cyclic covering (d -suspension) fwd D f 0
j .u; v/g is the local equation of the

corresponding singular point in Y above it. Let r W eY ! Y be the minimal
good resolution of the singularities of Y and set e� WD � ı r W eY ! P2. Then
eY is smooth and F D eY n e��1.C / is the complement of the normal crossing
curve configuration e��1.C /. Moreover, the dual graph associated with this curve
configuration is exactly �G, where G is the graph provided by the discussion 19.2
(which has the same g, c and corank as the graph provided by the Main Algorithm).
Therefore, for any sufficiently small tubular neighbourhood eT of e��1.C /, we have
@F D �@eT , cf. 19.3.

The point is that the natural mixed Hodge structure of H�.@eT / is transported
by this isomorphism into the mixed Hodge structure of H�.@F /. This follows,
for example, by analyzing the terms of the exact sequence (18.1.7). Namely, the
MHS on the local vanishing cohomology of the Milnor fiber F can be identified
with Deligne’s MHS on the affine smooth hypersurface eY n e��1.C /, see for
example Example (3.12) of [122], or [123]. Similarly, the local (Steenbrink) mixed
Hodge structures on H�

c .F / coincides with Deligne’s MHS on H�.eY ;e��1.C //.
Since the maps H2

c .F / ! H2.F / and H2.eY ;e��1.C // ! H2.eY n e��1.C // can
also be identified, their cones also agree. This proves that the MHS of H�.@F / is
the same as the MHS of H�.@eT /.

This combined with 18.1.9(b) (or with [36, (6.9)]) shows that this mixed Hodge
structure satisfies Conjecture 18.1.10, hence its dual structure in cohomology
satisfies Conjecture 18.1.12. ut

Note that the above proof provides an alternative way to show that the plumbing
graph constructed in 19.2 is indeed a possible graph for @F .

Remark 19.9.2. As we already mentioned, the oriented handle absorption modifies
the integers c.Gm/, g.Gm/ and corankAGm , and this can happen even in the homo-
geneous case. For example, if f D z.xy C z2/, (compare also with Sects. 19.7(3c)
and 15.1.7):

� �0 3

�
� �

3

Œ1�

The integers c.Gm/, 2g.Gm/ and corankAGm read from the left hand side
graph provide the ranks GrW� H1.@F /, while the right hand side graph does not
have this property. (In particular, the topological methods from 23.1 or 23.2 are
perfectly suitable to determine the oriented 3-manifold @F , or even the characteristic
polynomial of its algebraic Milnor monodromy, but they are not sufficiently fine to
recover the weight filtration of the mixed Hodge structure of H1.@F /.)
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Example 19.9.3. The weight filtration of the MHS ofH1.@F / is not a topological
invariant.

Consider the homogeneous function f D xy.xy C z2/ of degree d D 4. Its
graph G under strictly reduced calculus, that is, under reduced calculus excluding
R5, cf. 4.2.7, can be transformed into

� �0
0
Œ2�

�

In particular, c.G/ D 1, 2g.G/ D 4 and corankAG D 2, and these numbers
equal the ranks of GrW� H1.@F /.

Next, consider the homogeneous function f D z.x4 C y4/ of degree d D 5.
For its graph G see the left graph from 19.10.7 with c.G/ D 3, 2g.G/ D 0 and
corankAG D 4. In this case these are the ranks of GrW� H1.@F /.

Note that using R3 and R5, both graphs can be transformed into 0 � [3]. Hence, in
both cases, @F is orientation preserving diffeomorphic with the product of S1 with
a surface of genus 3. In particular, the smooth type of @F does not determine the
weight filtration ofH1.@F /. (This phenomenon might happen with links of isolated
singularities of higher dimension as well, see [126].)

Additionally, the two characteristic polynomials of the algebraic monodromies
acting onH1.@F / associated with the above two examples are .t2 C 1/2.t � 1/3 and
.t � 1/7 respectively. Hence, from @F one cannot, in general, read the characteristic
polynomial. (Note that the multiplicity of f cannot be read either!)

Example 19.9.4. In fact, the Milnor fibers of the above two functions treated
in 19.9.3 are also different. Indeed, let Sg denote the oriented closed surface
of genus g. Then for f D xy.xy C z2/ the Milnor fiber is diffeomorphic to
Œ0; 1� 
 S1 
 .S1 n 2 points/ (cf. 23.1), while for f D z.x4 C y4/, the Milnor
fiber is Œ0; 1� 
 S1 
 .S0 n 4 points/ (cf. Chap. 21). Note that, though these spaces
are not homeomorphic, in fact, they are homotopic.

19.9.5. The weight filtration on H1.@F / is compatible with the eigenspace decom-
position of the algebraic monodromy action. Indeed, from previous computations
and from 16.2.11(a) we obtain for the generalized eigenspaces the following
decomposition.

Proposition 19.9.6.

dim GrWi .H1.@F /	D1/ D
8

<

:

corankAG D corankA�C D j�j � 1 if i D �2;
2g.�C / if i D �1;
c.�C / if i D 0;

and

dim GrWi .H1.@F /	6D1/ D
8

<

:

0 if i D �2;
2g.G/ � 2g.�C / if i D �1;
c.G/ � c.�C / if i D 0:
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Remark 19.9.7. The case of weighted homogeneous germs.
It is a natural task to generalize the above results valid for homogeneous

singularities to weighted homogeneous non-isolated singularities. In fact, several
examples of the present book are of this type, nevertheless, in their study we did not
exploit their weighted homogeneous action.

The general strategy for the study of these germs, which exploits their C�-action,
is rather straightforward: one has to consider the toric resolution associated with
their Newton diagram. As an intermediate step, one has to consider a non-singular
subdivision of the fan determined by the Newton diagram. This, usually is not
unique, and depends on several choices. Then the identification of the curve C and
of the decorations of �C can be done via computations specific to toric resolutions.

We completed this program for several examples presented in this book, and
using the Main Algorithm and plumbing calculus we verified that they provide
the expected answer. Nevertheless, we were not satisfied with our computations:
the general statement formulated only in terms of the Newton diagram and
independently of the choice of the subdivision is still missing. Therefore, we decided
not to include these results; they will be completed in the near future.

19.10 Line Arrangements

Assume that C is a projective line arrangement. We will use the notations of 8.2.
Recall (cf. 19.3.7) that

jA .�C /j D jA .G/j D d , corankAG D d � 1, and g.�C / D 0.

Moreover, since the covering data of G over �C is trivial, one has

c.G/ D c.�C / D
X

j2˘
.mj � 1/� .d � 1/;

and by 13.6.3
2g.G/ D

X

j2˘
.mj � 2/

�

gcd.mj ; d/ � 1�:

19.10.1. Characteristic polynomial. Since nw D ne D 1 for w 2 W .�C / and
e 2 EW .�C /, Corollary 19.4.1 via a computation transforms into

Theorem 19.10.2. Let fL	g	2� be an arrangement with d D j�j lines and with
singular points ˘ . Then the characteristic polynomial of the monodromy acting on
H1.@F / is

.t � 1/j˘ j �
Y

j2˘
.t.mj ;d/ � 1/mj�2:
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19.10.3. Jordan blocks of M˚;hor and M˚;ver . Since M 0
j;hor is semisimple, from

19.5 we get
#2	M˚;hor D #2	M˚;ver D 0 for 	 6D 1, and

#21M˚;hor D #21M˚;ver D c.�C /:

Example 19.10.4. The generic arrangement. Consider the generic arrangement:
all the intersection points of the d lines are transversal. In this case there are
j˘ j D d.d�1/=2 intersection points, all withmj D 2. Therefore, the characteristic
polynomial is just .t � 1/j˘ j.

A possible graph for @F can be constructed as follows.
Consider the complete graph G with d vertices (i.e. any two different vertices

are connected by an edge). Decorate all these vertices by �1. Put on each edge e of
G a new vertex with decoration �d . In this way, the edge e is “cut” into two edges;
decorate one of them by � (and do this with all the edges of G).

Notice that any .�1/-vertex is adjacent to d � 1 vertices (all decorated by �d ).
Hence, if d � 3, this graph is not minimal, but otherwise in this way we get the
“normal form”. The graph has .d � 1/.d � 2/=2 cycles and corankA D d � 1.

Example 19.10.5. The A3 arrangement. Consider the arrangement from 8.2.1.
The characteristic polynomial is .t3�1/4 � .t�1/7. The graph can be deduced easily
from �C , which is presented in 8.2.1. There are 4 vertices with g D 1, 6 cycles and
corankAG D d � 1 D 5.

Example 19.10.6. The pencil. Assume that all the lines contain a fixed point. (For
example, f D xd C yd .) Then the characteristic polynomial is .t � 1/.td � 1/d�2,
and Gm is

�

�

�

��
�

���
Œg�



0

0

::: d legs and g D .d � 1/.d � 2/=2

In fact, @F � #.d�1/2S2 
 S1.
Example 19.10.7. Assume that f D z.xd�1 C yd�1/. Then the characteristic
polynomial is .t � 1/2d�3, and Gm is

�

�

�

�

��
�

���
�
�
�

�1 0

0

0

:::.d � 1/ 0-vertices
1
���

�
���
�

�
� �

�
�

� �

0

Œd � 2�

In particular, for any oriented surface S , the product S 
 S1 can be realized as @F .
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19.10.8. The torsion of the integral homology H1.@F;Z/. In general, even for
homogeneous f , H1.@F;Z/ might have nontrivial torsion. It would be important
to characterize completely this torsion group in the case of arrangements. The
interest in such a question is motivated by a conjecture which predicts that for
arrangementsH1.F;Z/ has no torsion. Hence it is natural to attack this conjecture
via the epimorphismH1.@F;Z/ ! H1.F;Z/.

Example 19.10.9. Assume that f is the generic arrangement with d D 4. Then the
torsion part of H1.@F;Z/ is Z4.

Indeed, by 15.1.3, the torsion part of H1.@F;Z/ is exactly the torsion part of
cokerAG . Since the intersection matrix A is determined explicitly in 19.10.4, a
computation provides the result.

In fact, for generic arrangements and larger d , the torsion part of H1.@F;Z/ is
even bigger. One can prove that A ˝ Zd has corank � .d 2 � 3d C 4/=2, which is
considerably larger than corankA D d � 1.



Chapter 20
Cylinders of Plane Curve Singularities:
f D f 0.x; y/

20.1 Using the Main Algorithm: The Graph G

Assume that f .x; y; z/ D f 0.x; y/, as in 9.1. Assume that f 0 has # D #.f 0/ local
irreducible components, and let � D �.f 0/ be its Milnor number.

For g.x; y; z/ D z a graph �C is determined in 9.1. In this section we determine
the graph Gm using the main steps of the collapsing algorithm. Nevertheless, we
provide certain numerical invariants for the originalG as well.

Let

� �

.mw/ .m0
w/

Œg� Œg0�
w w0

be an edge e of the minimal embedded resolution graph � 0 D � .C2; f 0/ of f 0.
Then using the recipe of 9.1, the transformation step from 10.1.3, and the algorithm
10.2, this edge will be replaced in G by ne D .mw1 ; mw2/ strings with the
decorations:

� � � � �

0
mwCm0

w
ne 0�

Œ Qgw� Œ Qgw0 �

�

Compare also with 12.1.3.
Above w there are nw vertices in G, where nw is the greatest common divisor

of mw and all the multiplicities of the adjacent vertices of w in � 0. Their genus
decoration Qgw is given by

nw.2 � 2 Qgw/ D .2 � ıw/mw C
X

e adjacent to w

ne:

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
Lecture Notes in Mathematics 2037, DOI 10.1007/978-3-642-23647-1 20,
© Springer-Verlag Berlin Heidelberg 2012
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There is a similar picture for edges supporting arrowheads. Note that

jA .G/j D #;

the number of local irreducible components of f 0.
In general, G is not a tree, the number c.G/ of its cycles is given by

1 � c.G/ D
X

w2W .� 0/

nw �
X

e2Ew.� 0/

ne: (20.1.1)

After executing all the 0-chain absorptions we get

�

�

�

��
��

���

�������

Œg�

.1/

0
.1/

0.1/
Gmod W :::

.1/

.1/

(# arrows)

Here, the Euler number of the central vertex is missing, since it is irrelevant.
The genus g is determined as a sum provided by the 0-chain absorption formula:
2g D 2c.G/C 2

P

w2W .� 0/ nw Qgw, which via the above identities is equal to 2� # �
P

w.2 � ıw/mw. Hence, by A’Campo’s formula (5.2.8) for �, we get

g D .�C 1 � #/=2:

20.1.2. Clearly, the fiber F˚ of ˚ D .f 0; z/ is the same as the Milnor fiber F 0
of f 0. Moreover, the vertical monodromy of F˚ is isotopic to the identity (this
follows either from 17.2.6, or by the observation that �˚ D fc D 0g, hence ˚ is a
trivial fibration overDı). Therefore, from (13.6.6) we get

� D 2g.G/C 2c.G/C # � 1: (20.1.3)

From the above diagram of Gmod , and by 15.1.2 we get

dim H1.@F / D 2g.Gmod/C c.Gmod /C corankAGmod

D .�C 1 � #/C 0C .# � 1/ D �:

On the other hand, again by 15.1.2 applied for G, we get

� D 2g.G/C c.G/C corankAG: (20.1.4)

Then, from (20.1.3), (20.1.4) and Corollary 15.1.5 we obtain
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�

corankAG D c.G/C # � 1;

corank .A;I/G D c.G/C #:
(20.1.5)

This shows that the upper bounds from 15.2.1 can be realized.
In fact, c.G/ has an intrinsic meaning (hence, by (20.1.5), corank .A;I/G and

corankAG too): the expression (20.1.1) combined with (5.2.13) gives that

c.G/ D the number of 2-Jordan blocks of the monodromy of f 0: (20.1.6)

20.1.7. If the arrowheads and multiplicities of Gmod above are deleted, we get a
graph which coincides with bG from Chap. 12.

It has c.bG/ D 0 and corankA
bG

D # � 1:

�

�

�

��
�

���
Œg�

0

0

bG W ::: # legs and g D .�C 1 � #/=2

By the “splitting operation” R6 of the plumbing calculus, we get another possible
non-connected plumbing graph for @F : the disjoint union of � vertices (without any
edges), all of them decorated with Euler number and genus zero. In other words:

@F � #�S
2 
 S1:

Although this presentation of @F can be deduced by other methods too (see e.g.
Sect. 20.2), the graph of G associated with the open book decomposition of g D z,
or any graph G computed in this way associated with any germ g, is a novelty of
the present method.

20.1.8. The characteristic polynomial. Since M˚;ver D id, the characteristic
polynomial PH1.@F / of the Milnor monodromy acting on H1.@F / is the formula
given in 13.4.11(a). It turns out that this expression coincides with the expression
of the characteristic polynomial of the monodromy of the isolated plane curve
singularity f 0 provided by A’Campo’s formula (5.2.8).

20.2 Comparing with a Different Geometric Construction

Let F 0 be the Milnor fiber of f 0. In the above situation it is easy to see (since
�˚ D fc D 0g) that F � F 0 
D, where D is a real 2-disc. In particular, we also
have the following geometric description for @F :

@F D F 0 
 S1 [@F 0�S1 @F 0 
D: (20.2.1)
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Using the Mayer–Vietoris exact sequence for this decomposition, one gets that

H1.@F;Z/ D H1.F
0;Z/: (20.2.2)

Since the monodromy acts on this sequence, we also obtain that the monodromy on
H1.@F;Z/ is the same as the monodromy of the plane curve singularity f 0 acting
on H1.F

0;Z/. In particular, in this way we get the Jordan block structure of the
monodromy acting on H1.@F;Z/ as well.

This shows that, in general, the algebraic monodromy acting on H1.@F / is not
finite: take e.g. for f 0 the germ from 9.1.1.

20.3 The Mixed Hodge Structure on H1.@F /

The isomorphism (20.2.2) can also be proved as follows. Here we prefer to discuss
the cohomological case, which is more traditional from the point of view of MHS.

Since H2
c .F / D H0

c .F
0/ D 0, by (18.1.7) the inclusion induces an isomorphism

H1.F / ! H1.@F /. Moreover, the inclusion of F 0 into F (cut out by z D 0)
induces also an isomorphism H1.F / ! H1.F 0/. Being induced by inclusions,
these isomorphisms preserve the mixed Hodge structures. Therefore, the mixed
Hodge structures on H1.F 0/ and H1.@F / coincide.

The mixed Hodge structure of H1.F 0/ is Steenbrink’s MHS defined on the
vanishing cohomology of the plane curve singularity f 0 [122, 124]. Its weight
filtration is compatible with the generalized eigenspace decompositions. According
to the general theory, H1.F 0/	D1 is pure of weight 2, and it has rank # � 1. On
the other hand, H1.F 0/	6D1, in general, has weights 0, 1 and 2, and the weight
filtration is the monodromy weight of the algebraic monodromy. In particular, the
ranks of GrW0 H

1.F 0/	6D1 and GrW2 H
1.F 0/	6D1 are equal, and they agree with the

number of 2-Jordan blocks of the monodromy (recall that the monodromy has no
2-blocks with eigenvalue one). Hence, this rank is exactly c.G/ by (20.1.6). In
particular, the rank of GrW0 H

1.F 0/ is c.G/, while the rank of GrW2 H
1.F 0/ is

c.G/C # � 1 D corankAG , cf. (20.1.5). Hence, by dimension computation, we get
that the remainingGrW1 H

1.F 0/ has rank 2g.G/. This supports Conjecture 18.1.12:

Corollary 20.3.1. If f is a cylinder of an isolated plane curve singularity then the
mixed Hodge structure of H�.@F / satisfies Conjecture 18.1.12.

Note that the information about the ranks of GrW� H1.F 0/ cannot be read from
bG: the graph bG contains information about # and � only.



Chapter 21
Germs f of Type zf 0.x; y/

21.1 A Geometric Representation of F and @F

In this section we assume that f .x; y; z/ D zf 0.x; y/, where f 0 is an isolated plane
curve singularity.

Similarly as in the case of cylinders (or, in the case of “composed singularities”
[81]), consider the ICIS N̊ 0 W .C3; 0/ ! .C2; 0/ given by N̊ 0 D .f 0.x; y/; z/. By
similar notations as in Chap. 3, the Milnor fiber F of f is

F D B3
� \ N̊ 0�1.fcd D tg \D2


/;

where 0 < t 	 
 	 �. For any 
 > 0 consider the disc D
 WD fc W jcj � 
g. Then,
by isotopy, the above representation of F can be transformed into

F D B3
� \ N̊ 0�1.D
 
 ftg nDı


0 
 ftg/;

for some 0 < 
0 	 
. From this the variable z can be eliminated, that is, if B2
� is the

�-ball in the .x; y/-plane, then

F D B2
� \ .f 0/�1.D
 nDı


0/: (21.1.1)

It can also be verified that the monodromy on F is isotopic to the identity, since it
is the rotation by 2� of the annulusD
 nD
0 .

In particular, the homotopy type of F is the same as the homotopy type of the
complement of the link of f 0 in S3� .

(21.1.1) provides a geometric picture for @F as well, and proves that its
monodromy action is trivial.

21.1.2. Projecting D
 n D
0 to S1 D @D
, and composing with f 0 we get a map
@F ! S1 which is a locally trivial fibration. Hence,

@F fibers over S1.
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206 21 Germs f of Type zf 0.x; y/

21.1.3. From (21.1.1) one can read the following plumbing representation for @F .
In order to understand the geometry behind the statement, let us analyze different
constituent parts of @F . Notice that B2

� \ .f 0/�1.@D
/ can be identified with the
complement of the link of f 0 in S3. Similarly, B2

� \ .f 0/�1.@D
0 / is the same, but
with opposite orientation. Moreover, they are glued together along their boundaries
in a natural way. Therefore, the plumbing graph can be constructed as follows.

Take the (minimal) embedded resolution graph of .C2; Vf 0/. This has # arrows,
where # is the number of irreducible components of f 0. Keep all the Euler numbers
and delete all the multiplicity decorations. Let the schematic form of the result be
the next “box”:

�

�
�

:::

Then a possible plumbing graph for @F is:

�

�

� ��0

0
:::

:::

�

�

Here, in �� , we change the sign of all Euler numbers and edge-decorations, that
is, we put � on all edges.

Notice that any 3-manifold M obtained in this way is orientation preserving
diffeomorphic with the manifold obtained by changing its orientation:M � �M .

The statement about the above shape of the graph can be tested using the
examples listed in Sect. 9.2 as well.

Example 21.1.4. The first (and simplest) example, when f 0 D xd�1Cyd�1, hence
f defines an arrangement, was already considered in 19.10.7. Its graph produced
by the Main Algorithm is the left diagram of 19.10.7 supporting (together with the
characteristic polynomial computation) the above statements.

Example 21.1.5. Assume that f D z.x2 C y3/ and take g to be a generic linear
form. The graph �C is given in 9.2.1. Running the algorithm and reduced calculus,
a possible Gm is

� �

� �

�

�
�
�
��

�
�
��2

�3

2

3

0

which is compatible with the predicted form from 21.1.3.
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Example 21.1.6. More generally, if f 0 D xa C yb , then in the graph of 21.1.3,
all the 0-vertices can be eliminated by 0-chain or handle absorption, hence we get
a star-shaped graph with four legs and central vertex with genus gcd.a; b/ � 1. In
particular, @F has a Seifert structure.

Remark 21.1.7. Let us consider again the ICIS ˚ D .f; g/ as in the original
construction.

(a) This family might also serve as a testing family for some of the characteristic
polynomial formulae 13.4.11, regarding the vertical monodromiesM 0

j;ver of the
transversal types (which, in fact, are much harder to test).

Indeed, if f D zf 0 and g is a generic linear function, then ˙f has two
components.˙1 D fx D y D 0g with d1 D 1, and˙2 D fz D f 0 D 0g. Let us
concentrate on the first component˙1. The transversal type T˙1 is the same as
the type of f 0 (in two variables). Hence, the Milnor fiber F 0

1 of the transversal
type can be identified with the Milnor fiber of f 0.

Since ff 0eit D ıg D ff 0 D ıe�itg, we get that the vertical monodromy of
F 0
1 coincides with the inverse of the Milnor monodromy acting on the Milnor

fiber of f 0. Hence, the characteristic polynomial of M 0
1;ver , determined by

13.4.11(c), should coincide with the characteristic polynomial of f 0 provided
by the classical A’Campo formula (5.2.8). The interested reader is invited to
verify this on all the available graphs �C .

(b) Let us also test the invariants of the fiber of ˚ . Let us write g as z C g0.x; y/,
where g0 is a generic linear form with respect to f 0.x; y/. Then, solving the
system zf 0.x; y/ D c and z C g0.x; y/ D d , we get the fiber F˚ of ˚ .
Eliminating z we get .d � g0.x; y//f 0.x; y/ D c, hence the fiber F˚ is the
same as the Milnor fiber of the plane curve singularity g0f 0.

For example, in the case of f 0 D x2 C y3, whose graph �C is given in 9.2.1,
the first formula of (13.4.10) provides for H1.F˚/ the rank 5, which is the Milnor
number of y.x2 C y3/.

It is interesting to identify and analyze the vertical monodromy of F˚ via the
local equation .
eit � g0.x; y//f 0.x; y/ D ı in two variables with 0 < ı 	 
 	 �.

Note that the present strategy provides a method for the study of the monodromy
of such a deformation for an arbitrary plane curve singularity pair .f 0; g0/: only has
to be computed the graph �C for .zf 0; z C g0/.

21.1.8. While computing the plumbing graph of @F for this family f D zf 0
via the Main Algorithm, the following amazing fact emerged: although the graph
�C shows no symmetry, after running the algorithm and calculus the output graph
has the symmetry (up to orientation) predicted in 21.1.3. For example, looking at
the starting graph 9.2.1, we realize absolutely no symmetry, nor even the hidden
potential presence of symmetry. Indeed, the two parts of �C , which provide �
and �� of 21.1.3 respectively, are rather different; they codify two different
geometric situations. Nevertheless, after calculus we get the two symmetric parts
represented by � and �� .
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To construct a resolution r which produces � (the embedded resolution of a
plane curve singularity) is rather natural (see e.g. the case of cylinders), but to
get a resolution r which (or part of it) produces �� in a natural way, is very
tricky. But, in fact, this is what �C does: a part of it produces � , another part
of it produces �� . This anti-duality is still a mystery for the authors. This shows
how hard it is to recognize and follow global geometric properties by manipulating
(local) equations/resolutions.



Chapter 22
The T�;�;�-Family

22.1 The Series Ta;1;1

We start our list of examples with the series associated with T1;1;1, where
T1;1;1 denotes the germ f D xyz. This germ was already clarified either as
an arrangement, see Sect. 19.7(3e), or by the algorithm of Chap. 21, hence @F D
S1 
 S1 
 S1.

Next we consider the series Ta;1;1 with one-parameter a � 2 given by f D
za C xyz. For g we take the generic linear function.

The case a D 2 can be rewritten as z2 D x2y2 and its graph �C is given in
9.3.2, Case 1. The case a D 3 is treated in Sect. 19.7(3c), the general a > 3 in
9.4. The Main Algorithm provides for the boundary of the Milnor fiber @F the
plumbing graph

� �

a 0

�

�

Œ1�

a
�

22.2 The Series Ta;2;1

Running the Main Algorithm and calculus for the graphs of 9.4.7 and 9.3.3, we get
for @F the plumbing graph:

� �

a 2

�
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210 22 The T�;�;�-Family

In fact, @F for Ta;b;1 (f D xa C yb C xyz) is given by the plumbing graph:

� �

a b

�

By a different geometric argument this was verified by the first author’s student
B. Sigurdsson in [120]. For a D b D 3 it follows from 10.4.4 or Sect. 19.7(3b).



Chapter 23
Germs f of Type Qf .xayb; z/: Suspensions

In this chapter we again provide an alternative way to identify the boundary of the
Milnor fiber for a special class of germs.

23.1 f of Type Qf .xy; z/

First, we sketch a geometric construction which provides @F and its monodromy,
provided that f .x; y; z/ D Qf .xy; z/, where Qf is an isolated plane curve singularity
in variables .u; z/.

We will use the following notations: QF D f Qf D 
g is the Milnor fiber and Q�
the Milnor number of Qf . Define I as zero if u is a component of Qf , otherwise I
denotes the intersection multiplicity . Qf ; u/0 at the origin. Set � WD QF \ fu D 0g.
Then, clearly, j�j D I .

Next, consider the Morse singularity h W .C2; 0/ ! .C; 0/, h.x; y/ D xy. Then
the Milnor fiber F of f can be reproduced via the projection N̊ W .C3; 0/ ! .C2; 0/

given by .x; y; z/ 7! .h.x; y/; z/ D .u; z/. Indeed, N̊ maps F onto QF . The fibers
of N̊ are as follows: above generic points of QF we have the Milnor fiber Fh D
S1 
 Œ0; 1� of h, while over the special points P 2 � we have the contractible
central fiber D _D of h (hereD is the real 2-disc).

Hence, @F decomposes into two parts, one of them is .S1 t S1/ 
 QF , while
the other is N̊ �1.@ QF /, which is a locally trivial fiber bundle over @ QF with fiber
Fh D S1 
 Œ0; 1�. The monodromy of this bundle is given by the variation map
of N̊ , hence it is the composition of I Dehn twists (corresponding to the variation
maps around the Morse points Pi ). Therefore, if we define the “double of QF ” as
d QF WD QF t@ QF .� QF /, then @F is an S1-bundle over d QF : two trivial copies of S1
 QF
are glued above @ QF so that the Euler number of the resulting S1-bundle is I .

A. Némethi and Á. Szilárd, Milnor Fiber Boundary of a Non-isolated Surface Singularity,
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212 23 Germs f of Type Qf .xayb; z/: Suspensions

Notice that the genus of d QF is exactly Q�, hence:

�

Œ Q��
I

@F is given by the plumbing graph

In particular, any S1-bundle with arbitrary genus and non-negative Euler number
can be realized as @F (and any such bundle might have many realizations by rather
different singularities).

It is interesting to note that even if Qf has many Puiseux pairs (hence its embedded
resolution graph has many rupture vertices), @F is still Seifert –, in fact, it is an S1-
bundle.

Example 23.1.1. Assume that f D za C xyz with a � 2 as in 22.1. Then QF D
fza C uz D 
g (0 < 
 	 1) and � D fu D 0; za D 
g. Then QF , via the
projection .u; z/ 7! z, is diffeomorphic with the annulus A WD fx W 
1 � jzj � 
2g,
where 
1 < a

p

 < 
2, and by this identification its special points from � are

[a
iD1Pi D fza D 
g. Notice that d QF is a torus. Moreover, the monodromy is

the rotation of A, hence it is isotopic to the identity. In particular, we get (a fact
compatible with 22.1):

�

Œ1�

a
@F is the torus bundle with trivial monodromy.

23.1.2. More generally, in the situation of 23.1, the monodromy on @F is induced
by the monodromy of Qf . Hence, if P@F (resp. P Qf ) denotes the characteristic

polynomial of the algebraic monodromy acting on H1.@F / (resp. H1. QF /), then

P@F .t/ D �

P Qf .t/
�2 � .t � 1/1�sign.I / (23.1.3)

where sign.I / is 1 for I > 0 and zero for I D 0.
The above result can be applied for f D xyz, f D z.z2Cxy/, f D xy.z2Cxy/

and f D za C xkyk . These cases can be compared with Sect. 19.7(3e), (3c), (4b’)
or (4c’). Moreover, (23.1.3) can also be compared with the formula from Theorem
16.2.8 valid for the characteristic polynomial.

23.1.4. The above construction provides the structure of the Milnor fiber F as well:
one may extract from it key information, such as the Euler characteristic, zeta-
function of the monodromy, etc.

23.2 f of Type Qf .xayb; z/

Assume now that a and b are two positive relative prime integers. Then, the
discussion of 23.1 can be modified as follows.

Fix any isolated plane curve singularity Qf .u; z/, and replace h by u D h.x; y/ WD
xayb in order to get f WD Qf ı N̊ . Then all the arguments of 23.1 remain valid with
the following modification.
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The difference is that in the case h D xy, N̊ restricted on @F is a trivial fibration
above any small neighbourhood of any point of �. In the new situation of h D
xayb , above a small neighbourhood of a point P of �, N̊ j@F is not a fibration; in
fact, in @F two special S1-fibers appear above P . One of them has the same local
neighbourhood (Seifert structure) as fx D 0g in S3 D fjxj2 C jyj2 D 1g with S1-
fibers/orbits cut out by the family xayb D constant; the other has local behaviour
as fy D 0g in the same space. These two local Seifert neighbourhoods in S3 are
well-understood, they are guided by the continued fractions of a=b, respectively
b=a.

Therefore, we get the following result:

Theorem 23.2.1. Let Qf .u; z/ be an isolated plane curve singularity, and a and b
two positive relative prime integers. Then @F associated with f D Qf .xayb; z/ is a
Seifert 3-manifold whose minimal star-shaped plumbing graph can be constructed
as follows:

(i) The central vertex has genus Q�, the Milnor number of Qf , while its Euler
number is I , where I is zero if uj Qf , otherwise I D . Qf ; u/0.

(ii) Let a=b D Œp0; p1; : : : ; ps�, respectively b=a D Œq0; q1; : : : ; qt � be the
Hirzebruch–Jung continued fraction expansions of a=b and b=a with p0; q0 �
1, pi � 2 for i � 1 and pj � 2 for j � 1. Then the graph has 2I legs (with
all vertices having genus-decoration zero). I strings have length s, the vertices
are decorated by Euler numbers p1; : : : ; ps such that the vertex decorated by
ps is the one glued to the central vertex; while the other I legs are strings
decorated by Euler numbers q1; : : : ; qt , and the qt -vertex is the one glued to
the central vertex.

If b D 1 then the first set of I legs is empty, if a D 1 then the second set of
I legs is empty. (If a D b D 1 then we recover 23.1, in which case the graph
has no legs.)

(iii) The orbifold Euler number of the Seifert 3-manifold is I
ab

� 0.
(iv) The characteristic polynomial of monodromy action on H1.@F / is

P@F .t/ D �

P Qf .t/
�2 � .t � 1/1�sign.I /:

Proof. We need to prove only (iii). For this use the fact that for any a and b one has:

Œp1; : : : ; ps�1�
Œp1; : : : ; ps�

C Œq1; : : : ; qt�1�
Œq1; : : : ; qt �

D 1 � 1

ab
:

This and (5.3.6) show that eorb.�@F / D �I=ab. Then use (5.3.7). ut

Example 23.2.2. If we take Qf D znCud , then f D znCxdaydb , Q� D .n�1/.d�1/
and I D n. In this way we recover the main result of [76].

See also 10.4.5 for an explicit example determined via �C .
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The reader can also verify that the graphs �C from 9.3 produce compatible
answers via the Main Algorithm. The next remark emphasizes certain advantages
of the Main Algorithm.

Remark 23.2.3. Let us assume that f D x2ny2m C z2 as in 9.3.2, Case 1. Set
d WD gcd.m; n/. Since �C is unicolored, the boundary @F and its characteristic
polynomial can be determined in two ways, either by 16.2.8, or by the above
topological theorem 23.2.1. Both theorems provide for the characteristic polynomial

P@F .t/ D .P Qf .t//
2 D .t2d � 1/2.t � 1/2

.t2 � 1/2
:

Nevertheless, the Main Algorithm also gives that #21M˚;ver D 1 provided that g is
the generic linear form, and also the following data about the graph G:

corankAG D c.G/ D 1; and 2g.G/ D 4.d � 1/:

This data provides not only rankH1.@F / D 2g.G/C c.G/C corankAG D 4d � 2,
but also the ranks of its “weight” decomposition.

Note that in this case, the mixed Hodge structure on H1. QF / (where QF is the
Milnor fiber of Qf as above) has two weights, the 1-dimensional eigenspaceH1. QF /1
has weight 2, while H1. QF /	6D1 has weight 1.

On the other hand, the Conjecture (18.1.13) regarding the weight decomposition
of H1.@F / predicts a similar decomposition compatible with the eigenspace
decomposition of the monodromy: in case of eigenvalue 1 weights 0 and 2 both
survive in rank one, while H1.@F /	6D1 has weight 1 and rank 4d � 4 D 2g.G/.

Similar study can be done for all the examples of 9.3.

Remark 23.2.4. In Theorem 23.2.1, if the total number of legs is less than two and
Q� D 0, then we get a lens space. In particular the graph (a posteriori) will have no
central vertex.

For example, take z2 D xy2. Then Qf D z2�u, hence I D 2 and Q� D 0. Thus we
have to glue to a vertex (with Euler number 2) two other vertices, both decorated by
2. Hence, @F is the lens space L.4; 1/, which can also be represented by a unique
vertex decorated by �4, cf. 10.4.2.



Part IV
What Next?



Chapter 24
Peculiar Structures on @F : Topics for Future
Research

In this chapter we list some topics that are closely related with the oriented
3-manifold @F , and are natural extensions of the present work. With this we plan to
generate some research in this direction.

We omit definitions and do not strive for a comprehensive treatment of the
subjects involved. We simply wish to arouse interest and generate further research
by pointing out some new phenomena generated by the “new” manifold @F

exhibited.

24.1 Contact Structures

Recently, there is an intense activity in the theory of contact structures of 3-
manifolds, see e.g. [100]. From the point of view of complex geometry, a
central place is occupied by links of normal surface singularities. This targets the
classification of their (tight) contact structures and the classification of the corre-
sponding Stein fillings. In the case of normal/isolated complex surface singularities,
the analytic structure of the singularity induces a canonical contact structure
on the link. Moreover, all the Milnor open book decompositions (that is, open
book decompositions associated with analytic map-germs) support (in the sense of
Giroux, cf. [38]) exactly this canonical contact structure, for details, see [20]. In
fact, [20] also proves that this canonical contact structure can be recovered from
the topology of the link, and can be topologically identified among all the contact
structures. Any resolution of the singularity (with perturbed analytic structure)
appears as a natural Stein filling of the canonical contact structure. Furthermore,
if the singularity is smoothable, then all the Milnor fibers (smoothings) appear as
natural Stein fillings of this contact structure.

One may ask the validity of similar properties in the present situation, that is,
for @F , where F is the Milnor fiber associated with a non-isolated singularity f W
.C3; 0/ ! .C; 0/.
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Although, in this case, the link is not smooth, hence from the point of view of
the theory of 3-manifolds it is not interesting, we can concentrate on the boundary
of the Milnor fiber. As it was emphasized in several places in the body of this book,
this class of 3-manifolds grows out from the class of negative definite plumbed 3-
manifolds (although we do not know a precise characterization of it).

For any such @F , we can ask about the classification of its (tight) contact
structures. Moreover, the Milnor fiber, as a Stein manifold with boundary, induces a
contact structure on @F . A crucial question is to characterize and identify this struc-
ture among all the contact structures. Note that all the open book decompositions
of @F cut out by germs g considered in this article (namely when the pair .f; g/ is
an ICIS) support the very same contact structure induced by F , cf. [19]. Hence this
structure too should have some universal property.

The point we wish to emphasize is that the present new geometric situation
(considering non-isolated f instead of isolated singularities) introduces a new set of
contact structures together with a new set of Stein fillings realizable by singularity
theory. Their classification is of major interest.

For example, consider a 3-manifold which can appear as @F for some non-
isolated f as in the present work, and also as a singularity link (that is, it can be
represented by a connected negative definite plumbing graph). In such a case, the
contact structure induced by the Milnor fiber F of f , let us call it Milnor fiber
contact structure, and the canonical contact structure (as singularity link) are, in
general, not contactomorphic.

The simplest proof of this statement is by comparison of the Chern classes of
the corresponding structures in H1.@F;Z/ D H2.@F;Z/, a fact already noticed
in [19]. The Chern class of the Milnor fiber contact structure is zero, since F is
parallelizable. On the other hand, the Chern class of the canonical contact structure
is the class of the canonical cycle in H1.@F;Z/ (that is, the restriction of the
canonical class of a resolution to its boundary). In particular, the Chern class of
the restriction of the canonical class to @F is zero if and only if the singularity/link
is numerically Gorenstein (see e.g. [85] for the terminology). Therefore, if @F can
be realized by a negative definite graph which is not numerically Gorenstein, then
the two contact structures are different. This is happening in the case of all lens
spaces which are not An-singularity links, and also in 19.8.2, cases (e)-(f).

24.2 Triple Product: Resonance Varieties

24.2.1. Triple product. For any oriented 3-manifold Y , the cohomology ring
H�.Y;Z/ of Y carries rather subtle information. This can be reformulated in the
triple product, induced by the cup product �Y 2 �3H 0 given by �Y .a; b; c/ D
ha [ b [ c; ŒY �i for a; b; c 2 H1.Y;Z/ (andH 0 is the dual of H1.Y;Z/).

Sullivan in [129] proved that for any pair .H;�/ (whereH is a finitely generated
free abelian group, and � 2 �3H 0), there exists a 3-manifold Y with H1.Y / D
H and �Y D �. Moreover, for any singularity link, � is trivial. In fact, by the
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proof of Sullivan, if Y can be represented by a plumbing graph with non-degenerate
intersection form, then the cup-productH1.Y /˝H1.Y / ! H2.Y / is trivial.

In our situation, however, Y D @F might have non-trivial �Y ; see e.g. the
example of S1 
 S1 
 S1 realized by f Dxyz. It would be very interesting to
determine the triple product for all the 3-manifolds appearing as @F , and connect it
with other singularity invariants. The same project can be formulated for the related
numerical invariant introduced by T. Mark in [69].

For partial results see 16.2.11 and 16.2.20. For results regarding the ring structure
for Seifert and graph 3-manifolds, see e.g. [1].

24.2.2. Resonance varieties. The d -th resonance variety of a space X is the set
Rd .X/ of cohomology classes 	 2 H1.X;C/ for which there is a subspace W �
H1.X;C/, of dimension d C 1, such that 	 [ W D 0. The resonance varieties of
arrangements were introduced by Falk in [37], and since then they play a central
role in several parts of mathematics.

Since the cup-product on H1.@F / might be non-trivial, and rather subtle, it
would be of major interest to determine the resonance varieties of @F and connect
them with other singularity invariants.

24.3 Relations with the Homology of the Milnor Fiber

24.3.1. From the cohomology long exact sequence of the pair .F; @F /, one gets a
monomorphism

H1.F;Z/ ,! H1.@F;Z/;

which is compatible with the monodromy action. In particular, we get an upper
bound for the first Betti number of F : rankH1.F / � rank H1.@F /. In fact, the
characteristic polynomial of the monodromy acting on H1.F / divides the charac-
teristic polynomial ofH1.@F /, which is expressed combinatorially in 19.10.1.

This is important, since, in general, the behaviour of rankH1.F / can be rather
involved, mysterious. Even in the case of arrangements (that is, in the “simplest
homogeneous case”), it is not known whether rankH1.F / can be deduced from the
combinatorics of the arrangement or not; see for example [17, 25, 64] and the refer-
ences therein. Note that by our algorithm, @F is deduced from the combinatorics of
the arrangement, hence we get a combinatorial upper bound for H1.F / as well.

In fact, one can determine an even better bound. Notice that a [ b [ c D 0 for
any a; b; c 2 H1.F /. Therefore, H1.F / should be injected in such a subspace of
H1.@F / on which the restriction of the triple product vanishes.

For homogeneous singularities, 19.9 combined with known facts regarding the
mixed Hodge structure of H1.F / might produce even stronger restrictions. Recall
that in the homogeneous case, H1.F /	6D1 is pure of weight 1, while H1.F /	D1 is
pure of weight 2.
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24.3.2. From a different point of view, more in the spirit of 24.1, the Milnor fiber F
is a Stein filling of @F . One of the most intriguing questions is if this Milnor fiber can
be characterized universally from @F (eventually under some restrictions on @F ).

The Milnor fiber also might help in the classification of the possible boundaries
as well. For example, we have the following statements:

Proposition 24.3.3. Let f W .C3; 0/ ! .C; 0/ be a hypersurface singularity with
Milnor fiber F .

(a) If F is a rational ball (that is, eH�.F;Q/ D 0) then f is smooth.
(b) If the boundary @F of the Milnor fiber is S3 then f is smooth.

Proof. (a) follows from A’Campo’s theorem [3], which says that for f non-smooth
the Lefschetz number of the monodromy is zero. Part (b) follows from (a) and a the-
orem of Eliashberg, which says that the only Stein filling of S3 is the ball [34]. ut

This result can be compared with the celebrated theorem of Mumford which
states that if the link of a normal surface singularity is S3 then the germ is smooth,
and also with the famous conjecture of Lê Dũng Tráng and M. Oka, which predicts
that if the link of the hypersurface germ f with 1-dimensional singular locus
is homeomorphic to S3, then Vf is an equisingular family of irreducible plane
curves.

24.4 Open Problems

Some general questions/open problems, or natural tasks for further study:

24.4.1. Determine/characterize all oriented plumbed 3-manifolds which might
appear as @F for some non-isolated hypersurface singularity f . (Recall that the
classification of those normal surface singularity links which might appear as
hypersurface singularity or complete intersection links is also open.)

24.4.2. Classify all lens spaces realized as @F . Classify all Seifert manifolds
realized as @F .

24.4.3. Find a @F (with f a non-isolated singularity) which is an integral homology
sphere (cf. also Question 3.21 of [119]).

Note that although we have the criteria from Remark 2.3.5, the structure
of monodromy operators is so rigid, that simultaneous realizations of those
unimodularity properties of the operators is seriously obstructed. This open problem
might lead to some compatibility conditions connecting these operators too.

24.4.4. Consider germs of map h W .C2; 0/ ! .C3; 0/, and let Vf be its image.
Connect the invariants of the present book with the invariants of h as they are
treated, for example, in the series of articles of D. Mond, see e.g. [78].
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24.4.5. Similarly, compare the analytic invariants and the more algebraic study of
non-isolated surface singularities, as it is presented for example in [50, 101, 128],
with the invariants of the present book.

24.4.6. Determine the Jordan block-structure of the algebraic monodromy acting
on H1.@F /.

24.4.7. Develop the mixed Hodge structure of H1.@F /. Prove Conjecture 18.1.10
from Chap. 18. (For the case of homogeneous germs and cylinders, see 19.9
and 20.3.)

24.4.8. Determine the graph Gı for which c.Gı/ is minimal among all c.Gm/,
where Gm � G. Has Gı got any intrinsic significance? Has c.Gı/ got any intrinsic
significance? (For example, is c.Gı/ independent of g? In what situations is this
minimum realized by bG?)

24.4.9. Determine completely the ring structure of H�.@F / (that is, the triple
product on H1.@F /), and the resonance varieties, cf. Chap. 24.

24.4.10. Can H1.F / be determined from @F (at least in particular cases, say, for
arrangements)? Or, from G of �C used here? Understand the monomorphism from
24.3 better. (Recall, that it is a famous conjecture for arrangements, that rankH1.F /

is determined combinatorially.)

24.4.11. In the case of arrangements, can the combinatorics of the arrangement be
recovered from @F ? (We conjecture that yes.)

24.4.12. Classify/characterize all the “Milnor fiber contact structures” induced on
3-manifolds realized as @F , cf. 24.1. Are there natural families for which one can
classify all the Stein fillings of the Milnor fiber (or all the) contact structures? Find
examples when the Milnor fiber contact structure (besides the Milnor fiber) has
other Stein fillings as well.

24.4.13. Compute the Seiberg–Witten invariants, or more generally, the Heegaard
Floer homologies (or generalized versions of the lattice homologies) for those 3-
manifolds @F which are rational homology spheres. How are they related to the
signature of F ? Is there any analogue of the Seiberg–Witten Invariant Conjecture
of the first author and Nicolaescu, cf. [87, 89]?

24.4.14. Clarify the open question 11.7.1 (i.e. determine the resolution of the real
analytic variety f.u; v;w/ 2 .C3; 0/ W umvm

0

wn D jwjkgC).

24.4.15. Establish the relationship between the present work (which determines the
boundary @F ) and [92], which determines the links K.f; g/k of the Iomdin series
f C gk (k � 0). In what sense is @F the “limit” of fK.f; g/kgk?

24.4.16. We conjecture that there exists some kind of rigidity property restricting
the pairs .@1F; @2F / (cf. 3.3) which form together a possible @F . That is, we
expect that the normalization has some effect on the possible types of transversal
singularities, and vice versa.
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24.4.17. Determine @F for any quasi-ordinary singularity f in terms of the
characteristic pairs of f . For some related homological results see [39, 55].

24.4.18. Determine the variation operator VARIII of Siersma [118, 119] in terms
of �C in the spirit of the present work.

24.4.19. Find a nice formula for the torsion ofH1.@F;Z/, at least for arrangements.

24.4.20. Determine @F for weighted homogeneous or Newton non-nondegenerate
singularities in terms of their Newton diagram. For the isolated singularity case, see
Oka’s algorithm [96]. See also 19.9.7.

24.4.21. Develop the analytic aspects and study the analytic invariants related
to @F ; moreover, analyze also its relations with deformation theory (for this last
subject see for example the thesis of D. van Straten or T. de Jong and their series of
articles [50, 51, 128]).

24.4.22. Are the techniques and results of the present book applicable in the context
of the equisingularity problems of non-isolated germs? (For such problems, consult
for example the article of F. de Bobadilla [11] containing several key conjectures
as well).

Questions related mostly to the technicalities used in the proofs and results:

24.4.23. Develop the “calculus” of decorated graphs such as �C , cf. 6.2.5.

24.4.24. Analyze the possible relations connecting the decorations of �C . Provide
an independent proof of the fact that the expressions 13.4.11(c) are independent of g.

24.4.25. Find closed formulae for corankA and corank .A;I/. In what situations
can we expect the validity of the relation corank .A;I/

bG
D c.bG/ C jA .G/j (or

similar formula for Gı instead of bG)?

24.4.26. Is it true that #21M˚;ver D c.bG/? Or for Gı instead of bG?

24.4.27. Is the technical Lemma 17.1.11 true in general?

24.4.28. Discuss the case of all eigenvalues of the vertical monodromyM˚;ver .
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70. Massey, D.: The Lê variaties I. Invent. Math. 99, 357–376 (1990)
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