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Preface

Various reasons concurred in my decision of writing this book. Some years ago
Freeman Dyson, reasoning on the process of learning and teaching quantum the-
ory, came out with the idea that a physics student, after learning the tricks of the
quantum formalism and getting right answers, ‘‘begins to worry because he does
not understand what he is doing’’. The student, says Dyson,1 ‘‘has no clear physical
picture in his head and tries to arrive at a physical explanation for each of the
mathematical tricks’’. He gets discouraged and after some months of unpleasant
and strenuous time, he suddenly says: ‘‘I understand now that there isn’t anything
to be understood’’. What happens? Dyson suggests that we learn to think in
quantum-mechanical language and no longer try to explain in terms of
pre-quantum conceptions. As an undergraduate student, facing my first quantum-
mechanics textbook, I had similar feelings. I felt lost within a mathematical
formalism with abstract objects and concepts. Bras, kets, and operators, came sea-
soned with counterintuitive statements that shook my own conceptions of nature.
Some years later, when I was ready to accept that there was nothing to understand,
Thomas A. Brody2 organized in Mexico a graduate students’ seminar on the inter-
pretations of the mathematical formalism of quantum mechanics; a seminar to show
that in the quantum theory, besides the facts and excellent agreement with experi-
mental results, one has to recognize the existence of open epistemological problems.
After those years, I taught quantum physics repeatedly, and I have tried to present the
fundamentals of the theory as a coherent and comprehensive body of phenomena,
using, whenever possible, simple mathematical techniques.

The twentieth century was, to some extent, the century of quantum theory. The
fundamentals of the present day nanoscience and nanotechnology are closely
linked with the electronic and optoelectronic properties of physical systems in the
quantum domain. Some systems like the repulsive square barrier and the square-

1 Innovation in Physics, F. J. Dyson, Scientific American, 199, 74 (1958).
2 The Philosophy Behind Physics, T. A. Brody; L. de la Peña and P. E. Hodgson, editors,
Springer-Verlag, Berlin-New York, 1993.
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well potentials, that were simple academic examples in standard quantum
mechanics courses, become systems of current interest in theoretical, experi-
mental, and applied physics. Studying these systems, fruitful approaches, models,
and techniques evolved. The scattering approach was one of them, and it has been
rather successful for studying transport properties. Since then I have gradually
introduced this powerful method in my lectures to discuss some simple problems.
Energy–eigenvalue equations and eigenfunctions are straightforwardly derived.
The ease with which students learn using this intuitive and algebraic method,
enticed me and enabled me to include other systems like the double-barrier
potentials, double quantum wells, and superlattices.

The general plan of this book is similar to that of most of the textbooks devoted
to a first course of non-relativistic quantum theory. In the first two chapters we will
briefly summarize the physical problems that show the limits of the classical
theories and the new ideas that explained, permanently or temporarily, those
problems. Concepts like energy quantization in the blackbody radiation, wave-
particle duality, and the Bohr postulates, are thoroughly discussed. We end up with
a simple and intuitive derivation of the Schrödinger equation. On the problem of
the interpretation of the wave function, we keep a consistent position, but avoid
excessive discussion of some controversial issues, which are studied in other books
such as Introduction to Quantum Mechanics by L. de la Peña. In the second part of
this book (Chaps. 3–5), we study the usual examples: free particle; infinite
quantum well; rectangular barrier and the finite quantum well. We study also more
complex systems like the double barrier, the double quantum well, and the finite
Kronig-Penney model. Fully solving these examples, we face additional properties
like the quantum coherence. We introduce the transfer matrix method and let the
students acquaint themselves with systems that are present in industrial opto-
electronic devices. Chapter 6 is devoted to the semiclassical method of Wentzel,
Kramers, and Brillouin (the WKB approximation). This topic is discussed using
also the transfer matrix method. New relations are derived and applied for simple
examples. From Chap. 7 onwards, we present most of the standard content in a
regular quantum book (operators, expected values, angular momentum and spin,
matrix representations, the Pauli equation, etc.), we study the well-known har-
monic oscillator, the Hydrogen atom, and the fine structure that spurred the crisis
of the old quantum theory, between 1920 and 1925. We end up with a summary of
the perturbation theory and a chapter on the distinguishable and indistinguishable
identical particles. We analyze the close relation between wave-function
symmetries, statistics and spin, and discuss properties like the Bose-Einstein
condensation and the Pauli exclusion principle.

Together with the formal presentation of the quantum theory, the main objec-
tive of this book is to present a coherent set of concepts and physical phenomena.
The most emblematic quantum properties like the tunneling effect through
potential barriers and the energy quantization in the confining potentials, appear
and reappear in more complex examples, modified or transformed. These phe-
nomena, together with the quantum version of the particle current density, the
transmission and reflection coefficients, and the splitting of the energy levels that
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give rise to the energy bands structure, are some of the physical phenomena
studied in this text. One of the aims is to show students that quantum theory, more
than a set of axioms and differential equations, is a consistent and intelligible
theory that clarifies the quantum behavior present in an uncountable number of
realizations of the microscopic and macroscopic systems. We pursue the mathe-
matical rigor and conceptual depth together with simple calculations and enhanced
comprehension of the quantum concepts.

The content and depth with which we discuss the fundamental issues of the
quantum theory is appropriate for a semester course or a trimester plus a com-
plementary course. In each chapter we have some solved problems, which in
certain cases complement the discussion of some topics. The second part of this
book can also be used as an introductory course to let electric and electronic
engineers get acquainted with semiconductor heterostructures, and the quantum
properties of these systems.

I thank Emilio Sordo and Luis Noreña for their friendship and for the facilities
that the Universidad Autónoma Metropolitana campus Azcapotzalco provides me;
to my students of different generations, especially to Fernando Zubieta, Michael
Morales, Maria Fernanda Avila, and Victor Ibarra for their support in an important
part of the transcription of my notes into the La-TeX language. I thank my stu-
dents, colleagues, and collaborators Jose Luis Cardoso and Alejandro Kunold. To
Jaime Grabinsky, Juergen Reiter, Arturo Robledo and Herbert Simanjuntak, for
their friendship and the useful comments and corrections. To Claus Ascheron,
Executive Editor of Springer Verlag, for his continued encouragement and interest
in the publication of this book. The friendship and hospitality of Dieter Weiss and
the University of Regensburg, where the last steps of this English version were
taken. The support of CONACyT Mexico and the Program: Apoyo para Año
Sabático is also acknowledged. I also thank the support and love of my wife
Liuddys.

México Pedro Pereyra
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Chapter 1
The Origin of Quantum Concepts

At the end of the nineteenth century, just when the classical theories had blossomed
into beautiful and elegant formulations, new challenges troubled the scientific com-
munity. The spectroscopic methods applied to analyze the atomic and the blackbody
radiations, accumulated evidences that could not be explained with the existing theo-
ries. The electromagnetic theory, that reached its summit with the Maxwell equations,
at the time recognized the ether as the medium of wave propagation, even though the
Michelson-Morley experiment denied it. With the discovery of electrons, in 1897,
the interest in understanding the atomic structure grew up steadily to become soon
a true challenge for experimental and theoretical physicists. These and other prob-
lems, underpinned a period of crisis and prolific creativity. Max Planck and Albert
Einstein, are emblematic symbols of two new theories of the modern physics that
grew out of the crisis: the quantum physics and the relativity theory. Both theories
undermined the classical physics and introduced new concepts that not only changed
physics but also pervaded and gave shape to the modern culture, dominated by the
communications industry and the optoelectronic devices.

To understand the formalism of quantum physics this book deals with, it is instruc-
tive to review some major problems that spurred the crisis and the fundamental ideas
and concepts that were used to explain them. In this and the following chapter, we
will briefly discuss some of these problems. The order of the presentation will not
necessarily be in chronological order.

One of the problems that revealed the need of fundamental changes in the classical
theories, and the first whose explanation opened the wide world of the quantum
physics, was the problem of the blackbody radiation. All bodies emit and absorb
radiation, and the intensity and frequency distribution of this radiation depends on
the body and its temperature. Before Max Planck put forward his theory, the low
frequency description of the spectral density was quite satisfactory, but for high
frequencies (see Fig. 1.1), it was completely wrong. Max Planck found the correct
spectral density assuming oscillators in the walls of the blackbody cavities that could
only absorb or emit multiples of discrete amounts of energy.

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 1
DOI: 10.1007/978-3-642-29378-8_1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1 The experimental
behavior of the blackbody
radiation density, as a func-
tion of the frequency ν. The
continuous curve, for low
frequencies, represents the
classical theories description

ρ(ν,T )

T = 270K

ν

Another problem that required a new approach, was the photoelectric effect,
observed when light struck on a metal and is followed by electrons coming out
of the metal surface. Prior to the explanation given by Albert Einstein to this prob-
lem, it was not clear why the emitted electrons energy depend on the light frequency
ν instead of its intensity. Moreover, it was not clear why the electron emission ceased
when the light frequency was lower than some critical value νc, which depended on
the specific metal.

The discovery of the electron by Joseph J. Thompson, in 1897, opened up the
atomic structure problem. This problem, and the explanation of the atomic emission
lines, remained open for some years. It was clear that, if the electron (the negative
electric charge) was part of a neutral atom, one had to admit the existence of positive
charges. The problem was, how and where to put, in a stationary configuration, the
positive and the negative charges together, and how can one then relate the electronic
configuration with the emission lines.

An effect, that appeared some years later, whose explanation was fundamental
to the understanding of the quantum phenomenology, was the Compton effect. In
the Compton effect the light scattered by particles changes its color (i.e. changes its
frequency), and the change is a function of the scattering angle, as shown in Fig. 1.4.
The explanation of this effect corroborated the quantization concepts as well as some
results of the special theory of relativity.

In the following sections we discuss these problems with more detail.

1.1 Blackbody Radiation

All bodies absorb and emit radiation with frequencies that cover the whole spectrum,
with intensity distribution that depends on the body itself and its temperature. The
problem of the intensity and the color of the radiated light was stated by Kirchhoff
in 1859. This problem was also of interest to the electric companies interested in
producing light bulbs with maximum efficiency. At the end of the nineteenth century,
there were precise measurements of the emitted and absorbed radiation, but without
a theoretical explanation. The isolation of the emitting body from other emission
sources was an important requirement. One way to achieve this was, for example, to
consider a closed box with the inner faces as the emitting surfaces. To observe the
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radiation inside the box, one makes a small hole. The radiation that comes out from
the hole is called the blackbody radiation. Some properties and important results
about this radiation were known at the end of the nineteenth century. Among these
properties, it was known that the radiation energy density could be obtained from
the empirical formula

u = σT 4, with σ = 7.56× 10−16 J K−4

m3 . (1.1)

Since the energy density can be obtained when the spectral density, ρ(ω, T ), per
unit volume and unit frequency is known, it was clear that one had, first, to derive
the frequency distribution of the radiation field.

By the end of the nineteenth century, it was usual to assume that the existing
physical theories were perfectly competent to explain any experimental result, and
could also be used to account for the observed results and to deduce (starting from
the implicit first principles) the empirical formulas. It was then reasonable to expect
that the radiation density (1.1) and the spectral density ρ(ω, T ), whose behavior was
as shown in Fig. 1.1, could be accounted for after an appropriate analysis. However,
all theoretical attempts to obtain the spectral density ρ(ω, T ) failed, even though the
reasoning lines, as will be seen here, were correct. The failures had a different but
subtle cause.

As mentioned before, if the spectral density ρ(ω, T )would be known, the product

du = ρ(ω, T )dω = ρν(ν, T )dν,

integrated over the whole domain of frequencies, should give the energy density
sought. In other words, given the spectral density ρ(ω, T ), the energy density would
be

u =
∫ ∞

0
ρ(ω, T )dω =

∫ ∞
0

ρν(ν, T )dν = σT 4. (1.2)

Therefore, the aim was to determine ρ(ω, T ). The theoretical attempts led to a
number of basic results and properties. Some of them useful and valid, others not.
Let us now mention three of them: the Wien displacement law, as a general condition
on the function ρ(ω, T ), and two results that make evident the nature of the problem
and the solution offered by Max Planck.

(i) Wien’s displacement law, refers to the displacement of the maximum of ρν(ν, T )
with the temperature, i.e. the change of color of the emitted radiation as the body
is heated up or cooled down. This phenomenon implies a necessary condition
on the spectral density ρν(ν, T ). To obtain the empirical law (1.1), the spectral
density should be a function like

ρν(ν, T ) = ν3 f (ν/T ), (1.3)
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with f (ν/T ) a function to be determined. It is easy to verify that a spectral
density like this will certainly produce a result that goes as T 4.

(ii) An important result, that was shown experimentally, was the independence of
the blackbody radiation from the specific material of the emitting walls. Taking
into account this result, it was clear that one could model the radiating walls as
if they were made up of independent harmonic oscillators. If each oscillator has
a characteristic oscillation frequency ν, and the characteristic frequencies have
a distribution function ρν(ν), one will obtain, using the classical physics laws,
the average oscillator energy (per degree of freedom1).

Ē = π2c3

ω2 ρ(ω) = c3

8πν2 ρν(ν). (1.4)

(iii) On the other hand, from the classical statistical physics it was known that the
average energy per degree of freedom in thermal equilibrium at temperature T ,
is given by

Ē = 1

2
kB T, (1.5)

with kB the Boltzmann constant.2

Combining these results, and taking into account that waves polarize in two perpen-
dicular planes, the classical physics analysis led to the spectral density

ρν(ν, T ) = 8πν2

c3 kB T, (1.6)

known as the Rayleigh-Jeans formula. This expression fulfills the Wien law when

f (ν/T ) = 8πkB

c3

1

ν/T
, (1.7)

and predicts a spectral distribution that grows quadratically with the frequency ν. As
can be seen in Fig. 1.1, the Rayleigh-Jeans formula plotted as a continuous curve,
describes well the experimental curve only in the low frequency region.3 Although
the Rayleigh-Jeans distribution is compatible with the Wien displacement law, it
diverges in the high frequency region. Thus, the integral (1.2) also diverges. This
behavior was known as the “ultraviolet catastrophe”.4

1 For derivations of the average energy and some other important expressions, see Lectures on
Physics by Richard P. Feynman, Robert Leighton and Matthew Sands (Addison-Wesley, 1964) and
Introducción a la mecánica cuántica by L. de la Peña (Fondo de Cultura Económica and UNAM,
México, 1991).
2 kB = 1.38065810−23J/K−1.
3 J. W. S. Rayleigh, Philosophical Magazine, series 5, 49 (301): 539 (1900); J. H. Jeans, Phil. Trans.
R. Soc. A, 196 274: 397 (1901).
4 Apparently this term was coined by Paul Ehrenfest, some years later.
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In the twilight of the nineteenth century, on December 14th of 1900, Max Planck
presented to the German Society of Physics and published in the Annalen der Physik,5

the first unconventional solution to this problem. To explain the blackbody spectrum,
Planck introduced the formal assumption that the electromagnetic energy could be
absorbed and emitted only in a quantized form. He found that he could account
for the observed spectra, and could prevent the divergence of the energy density, if
the oscillators in the walls of the radiating and absorbing cavity, oscillating with a
frequency ν, lose or gain energy in multiples of a characteristic energy Eν , called a
quantum of energy.

If the energy that is absorbed or emitted by an oscillator with frequency ν, is

E = nEν n = 1, 2, 3, . . . , (1.8)

a multiple of a characteristic energy Eν , the probability of finding the oscillator
in a state of energy E , which in the continuous energy description is given by the
Boltzmann distribution function

p(E, T ) = e−E/kB T∫
e−E/kB T d E

, (1.9)

will change to

p(Eν, T ) = e−nEν/kB T∑
n e−nEν/kB T

. (1.10)

With energy discretization the integrals have to be replaced by sums. This seem-
ingly inconsequential change, was at the end a fundamental one. With a discretized
distribution function the average energy becomes

Ē =
∑

n nEνe−nEν/kB T∑
n e−nEν/kB T

. (1.11)

It is not difficult to see that the sums in the numerator and denominator can easily be
evaluated. Indeed if we remember that

1

1− x
= 1+ x + x2 + · · · =

∑
n=0

xn, (1.12)

for absolute value of x less than 1, and also that

d

dx

∑
n=0

xn = 1

x

∑
n=0

nxn = 1

(1− x)2
, (1.13)

we can show that the energy average is given by

5 M. Planck, Ann. Phys., 4, 553 (1901).
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Fig. 1.2 The experimental
spectral distribution and the
Planck distribution for dif-
ferent temperatures. The
description is perfect from
low to high frequencies

ρ(ν,T )

T = 270K

T = 200K

ν

Ē = Eν
eEν/kB T − 1

. (1.14)

Using ex � 1+ x for small x , this expression reduces to kB T in the high temper-
atures limit. Combining with the average energy of equation (1.4), we have

ρν(ν, T ) = 8πν2

c3

Eν
eEν/kB T − 1

. (1.15)

For this distribution to satisfy the Wien displacement law, the characteristic energy
Eν , the minimum energy, absorbed or emitted, must be proportional to the frequency
ν. Writing the characteristic energy as

Eν = hν, (1.16)

with h the famous Planck constant,6 Max Planck found the spectral density

ρν(ν, T ) = 8πν2

c3

hν

ehν/kB T − 1
, (1.17)

that is known as the Planck spectral density. This density describes the experimental
results all the way from the low to the high frequencies (see Fig. 1.2). It is easy to
verify that at high temperatures, for which kB T � hν, the Planck spectral density
reduces to the spectral density of Rayleigh and Jeans.

An important test for the Planck spectral density is the calculation of the energy
density of the radiation field. Using Planck’s spectral density, we have

u = 8πh

c3

∫ ∞
0

ν3dν

ehν/kB T − 1
= 8πk4

B

c3h3 T 4
∫ ∞

0

x3dx

ex − 1
, (1.18)

where x = hν/kB T . As the integral on the right-hand side of (1.18) is a finite number
(in fact equal toπ4/15), this energy has not only the correct temperature dependence,
it can be used, based on the empirical energy density of (1.1), to obtain the Planck
constant

6 This is one of the fundamental constants in physics and of the laws of nature.
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Fig. 1.3 The photoelectric effect. When an electromagnetic radiation, with energy hν, strikes a
metal surface, the electrons absorb the whole energy and pay part for releasing the electrons from
the metal (known as the work function W ) to become free particles. The remaining energy hν−W ,
if some is left, transforms into the electron’s kinetic energy p2/2m

h = 6.6260755× 10−34Js = 4.1356692× 10−15eVs.

It is common to express hν as �ω with � = h/2π = 1.054572 × 10−34Js and
ω = 2πν. Note that the units of h are energy×time. It is not difficult to show that the
very small magnitude of h hides the quantum phenomena. Indeed, if the frequencies
of oscillations were, say of the order of 10 Hz, the absorbed or emitted energies
would be, as mentioned earlier, multiples of hν ≈ 10−32 J; a very small amount of
energy. We can then ask if changes of this magnitude can be observed or not in the
macroscopic physical systems. To answer this question let us suppose that we have a
classical oscillator, which is a particle of mass m = 1g attached to a spring of constant
k = 10 N/m. If the particle’s oscillations amplitude is, say xo = 1 cm, its energy and
oscillations frequency would be, respectively, of the order of E � 5 × 10−4J and
ν � 10 Hz. Furthermore, if the precision measuring the energy is, sayΔE � 10−6 E ,
the number of quanta of energy contained inΔE would be n = ΔE/hν, of the order
of 1022; a very large number! Hence, the contribution of one quantum of energy is
rather negligible. We will see later that the number of quanta will be considerably
less, of the order of one, when the energies and particles are of atomic dimensions
(Figs. 1.3, 1.4).

1.2 The Photoelectric Effect

In 1887, Heinrich Hertz noticed that when a metal surface was illuminated with UV
light, electrons were ejected from the surface - provided the light’s frequency was
above a certain, metal-dependent, threshold νc. The main properties related with
these phenomena are:

(i) the speed of the ejected electrons depends only on the frequency of the incident
light;
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(ii) the number of emitted electrons depends on the intensity of the incident radiation;
(iii) for each metal there is a frequency νc, called the critical frequency, below which

no photoelectric phenomenon is observed.

In 1902 Philipp Lenard noticed that “the usual conception that the light energy is
continuously distributed over the space through which it spreads, encounters serious
difficulties when trying to explain the photoelectric phenomenon’.7 In 1905 applying
Planck’s idea of quantization of the absorbed and emitted radiation energy, Albert
Einstein was able to explain the photoelectric effect by assuming a “corpuscular”
nature for the quanta of light, i.e. a dual nature where a wave and a particle property
coexist, and are part of the fundamental characteristics of the same object.

If the quantum of radiation, the light corpuscle, has an energy hν, and this energy
is transmitted to an electron in the corpuscle-electron interaction, part of the energy
is used to expel the electron from the metal 8 and the remaining is transformed into
its kinetic energy. This means that:

1

2
mev

2 = hν −W. (1.19)

When the frequency ν of the incident radiation is such that hν coincides with W , the
kinetic energy is zero, but when hν < W the electron will not be able to get out of
the metal. Thus hν = W is a particular condition that defines the critical frequency
νc = W/h. Each metal has its own critical frequency. When ν ≥ νc, each photon,
absorbed in the electron-photon interaction, makes possible the release of one free
electron, the number of free electrons depends then on the number of the photons,
i.e. on the radiation intensity. In this way, all three characteristics of the photoelectric
effect got a rather simple explanation.

Furthermore, according to the special theory of relativity, a massless particle, like
the radiation field corpuscle,9 has the linear momentum

p = Eν
c
= hν

c
. (1.20)

Since the wave velocity c is equal to the product νλ, where λ is the wave length, we
can write this relation as

p = h

λ
= �k, (1.21)

where k = 2π/λ = w/c is the wavenumber. Since both, p and k, are vector quantities
we must write in general as

7 In A. Einstein, Ann. Phys. 17,132 (1905).
8 This is known as the work function W, and it is related to the electron’s binding energy.
9 In the especial theory of relativity we have the relation E2 = p2c2+ (moc2)2 between energy E ,
momentum p and the rest energy moc2. It is clear that for mo = 0, we are left with E = pc. If m is
the mass of the particle when it is moving and E = mc2, the rest mass mo and the moving particle
mass m are related by m2(1− v2/c2) = m2

o.
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Fig. 1.4 The Compton effect. The change of the scattered radiation wave length Δλ = λ − λ0
(or change of frequency Δω = ω − ω0), depends on the scattering angle θ . This effect can be
explained when the radiation-electron interaction is modeled as a collision of particles

p = �k. (1.22)

This is a very important and recurrent relation in quantum theory, and will be useful
to explain the Compton effect, that we will discuss now, and to derive the Schrödinger
equation later.

1.3 The Compton Effect

In 1923, A. H. Compton noticed that the wavelength of X-rays scattered by electrons
in graphite increases as a function of the scattering angle θ . It turns out that these
phenomena can be understood by making use of the dual particle-wave nature for the
quantum particles involved in this process, together with the basic relations of the
special theory of relativity, that was already well established in those years. Indeed,
when the electron-photon interaction is analyzed as a collision of two particles, the
conservation laws of energy and momentum lead to

�ω0 + E0 = �ω + E, (1.23)

and
�k0 + p0 = �k + p. (1.24)

Here E0 = m0c2, E = mc2 = m0c2/
√

1− v2/c2, p0 = 0 and p = mv are the
electron energies and momenta, before and after the collision, respectively. Taking
the squares of these equations, written as

m2c4 = m2
0c4 + 2m0c2

�(ω0 − ω)+ �
2(ω0 − ω)2 (1.25)

and
�

2(k2 + k2
0 − 2kk0 cos θ) = m2v2, (1.26)
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and using the relations k = ω/c, k0 = ω0/c and m2c4 = m2
0c4 + m2v2c2, we can

easily obtain the following equation

ωω0(1− cos θ) = m0c2

�
(ω0 − ω), (1.27)

that can be written also as

λ− λ0 = h

m0c
(1− cos θ) = 2λc sin2 θ

2
. (1.28)

In the last equation the Compton wavelength λc = h/m0c was introduced. A defin-
ition that ascribes an undulatory property, the wavelength, to particles with mass. A
quantity that tends to zero as the mass increases. For electrons λc ≈ 2.4× 10−3nm.
It is evident from (1.28) that λ ≥ λ0. It shows also that the difference Δλ = λ− λ0
reaches its maximum value when the dispersion is backwards (“backscattering”), i.e.
when θ = π . The relative change of the wavelengthΔλ/λ0, is of the order of λc/λ0.
This ratio allows one to establish whether the Compton effect will be observed or
not. If the incident radiation is a visible light, λ0 from 400 to 750 nm, the relative
change will be of the order of 10−5. In contrast, if the incident radiation has a wave-
length shorter than those of the visible light, the relative change will be greater, and
the Compton effect might be seen. For instance, for X-ray with λ0 ≈ 10−2nm the
relative change is of the order of 10−1, which means 10% of the incident wavelength.
This effect can easily be observed and was observed indeed!

1.4 Rutherford’s Atom and Bohr’s Postulates

Searching for the atomic structure, Rutherford studied the dispersion ofα particles by
thin films of gold. To explain the high amount of α particles at high dispersion angles,
Rutherford suggested that atoms have a charge +Ne at the center, surrounded by
N electrons which, following the “saturnian” atom hypothesis proposed by Hantaro
Nagaoka, rotate in saturnian rings of radii R. With this model of atoms, Rutherford
deduced the angular distribution of the scattered particles. The results agreed sub-
stantially with those obtained by Geiger in 1910. Although these experiments and
the theory did not reveal the sign of the charge, Rutherford assumed always that the
positive charge was at the center.

According to the classical theory, an electron that rotates in a circular orbit around
a positive charge Ze is subject to a “centrifugal” force and to an attractive Coulomb
force. When the magnitudes of these forces are equal, it is possible to express the
electron energy as

E = −1

2
mω2

(
Ze2

2E

)2

, (1.29)
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and the angular frequency by

ω = 2

e2 Z

√
2 |E |3

m
. (1.30)

Here m and e are the mass and charge of the electron, while E is its energy. If the
absolute electron energy E takes any real value, the frequency ω will take also any
real value. But the experimental results showed that the emitted frequencies were
discrete.10 In 1885, J. J. Balmer found that the wavelengths of the four visible lines
of the Hydrogen spectrum can be obtained from

1

λ
= κ

(
1

4
− 1

n2

)
, with n = 3, 4, 5, 6, (1.31)

and κ = 17465cm−1. Shortly after J. R. Rydberg showed that all known series can
be obtained from

k = 2π

λ
= R

(
1

n2
1

− 1

n2
2

)
, with n1 < n2, (1.32)

and R = 109735.83cm−1. This constant is known as Rydberg’s constant. Some time
later, Niels Bohr, using Rutherford’s model and the fundamental ideas introduced
by Planck and Einstein, on the quantization of energy, proposed the following pos-
tulates on the stationary states of atoms and on the emitted and absorbed radiation
frequencies:

I. an atomic system can only exist in a number of discrete states;
II. the absorbed or emitted radiation during a transition between two stationary

states has a frequency ν given by hν = Ei − E f .

With these postulates he showed that it is possible to explain the separation and
regularity of the spectral lines, and the Rydberg formula for the Hydrogen spectrum.
Indeed, if one assumes that the energy is quantized as11

En = nhν/2, (1.33)

one can easily obtain the energy

En = −2π2me4

h2n2 , with n = 1, 2, 3, . . . (1.34)

10 At that time it was common to assume that the emitted radiation frequency was related with the
electron’s oscillation frequency.
11 N. Bohr, Philosophical Magazine, ser. 6 vol. 26, 1 (1913). Notice the factor 1/2.
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Given this energy it is possible to evaluate the difference En2 − En1 (associated with
the transition En1 → En2 ) and to obtain Rydberg’s formula.

En2 − En1 =
2π2me4

h2

(
1

n2
1

− 1

n2
2

)
, with n = 1, 2, 3, . . . (1.35)

In the early years of the twentieth century, the electromagnetic theory was considered
one of the most firmly established theories. It was known that accelerated charges
radiate energy (Bremsstrahlung). In Rutherford’s model the orbiting electrons are
accelerated charges, therefore they must lose energy and eventually collapse into
the nucleus. Nonetheless, that did not seem to occur. Given the coincidence with the
Rydberg formula, and the difficulty to explain these basic contradictions, Bohr’s pos-
tulates were accepted, for some years, as factual statements that reflect the behavior
of nature at the microscopic level:

hν = En2 − En1 =
2π2me4

h2

(
1

n2
1

− 1

n2
2

)
. (1.36)

Bohr’s model accounts for the observed results but does not explain why an
accelerated electron remains in a stable orbit, neither the emission mechanism, nor the
laws that determine the transition probabilities. Nevertheless, these postulates and the
correspondence principle with the classical description in the limit of large quantum
numbers n (also proposed by Bohr), were held for many years, and constituted what
later was called the old quantum theory. Meanwhile, there were many attempts to
explain them on a firmer basis, as well as to give them experimental support or to
question their general validity. In these attempts two fundamental schools became
pre-eminent in the future development of the quantum theory: the school of Arnold
Sommerfeld in Munich and the work of Max Born and collaborators in Göttingen. It
is beyond the purpose of this book to analyze in detail the work of Sommerfeld, Born,
Van Vleck, Heisenberg, Jordan, Pauli, Dirac etc.. We just recall and recognize that
the cumulative work of all of them reached, in the joint work of Born, Heisenberg
and Jordan, a zenithal point with the matrix version of the quantum theory, the matrix
mechanics. A few months later, following a different line of thought, closer to the
particle diffraction experiments and to the wave-particle duality proposed by Louis de
Broglie, Erwin Schrödinger introduced the wave version of the quantum theory, the
quantum wave mechanics. In the following chapter we discuss with more detail this
alternative approach to quantum theory. To conclude this chapter we will summarize
the ideas of Einstein published12 in 1917, with the title “About the quantum theory
of radiation” where, among other results, Einstein deduced the Planck distribution
and the second postulate of Niels Bohr.

12 A. Einstein, Mitteilungen der Physikalischen Gesellschaft Zürich 18 , 47 (1916) and Phys. Zs.
18, 121 (1917).
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1.5 On Einstein’s Radiation Theory

As an extension of the ideas that were used to explain the photoelectric effect, where
the quantization concept was not restricted to the emission and absorption mechanism
but taken also as a characteristic property of the radiation field, Einstein derived the
Planck distribution and the Bohr postulate, assuming that the emitting and absorbing
molecules in the walls, in thermal equilibrium with the blackbody radiation, are
themselves allowed to exist only in a discrete set of states.

1.5.1 Planck’s Distribution and the Second Postulate of Bohr

Einstein assumed that if a molecule exists only in a discrete set of states with energies
E1, E2, ... the relative frequency of finding the molecule in the state n, in analogy
with the Boltzmann-Gibbs distribution, should be given by

fn = cne−En/kB T , (1.37)

where cn is a normalization constant. A molecule in the state of energy En , in
thermal equilibrium with an electromagnetic field characterized by a spectral density
ρ, absorbs or emits energy and changes to the state of energy Em , with Em < En in
the absorption process and Em > En in the emission process. The probabilities for
these processes to occur during a time interval dt are

dW m
n = Bm

n ρdt and dW n
m = Bn

mρdt. (1.38)

Here, the coefficient Bm
n represents the transition probability per unit of time, from

the state with energy En to the state with energy Em . These are transitions induced by
the molecule-field interaction. Since the state n occurs with the frequency fn given
in (1.37), the number of transitions per unit time, from n to m, can be written as

cne−En/kbT Bm
n ρdt. (1.39)

For the excited molecules, Einstein envisaged also the possibility of making transi-
tions to lower states by spontaneous emission, independent of the field. Therefore
the probability that a molecule emits during a time dt is

dW = (An
m + Bn

mρ)dt, (1.40)

with An
m the probability of spontaneous emission per unit of time. To preserve the

equilibrium of these processes, one needs the balance condition

e−En/kbT Bm
n ρ = e−Em/kbT (An

m + Bn
mρ). (1.41)
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It is easy to verify that this condition, with Bm
n = Bn

m , leads to the spectral density

ρ = An
m

Bn
m

1

e
(

Em−En

)
/kbT − 1

. (1.42)

From Wien’s displacement law, it follows that

An
m

Bn
m
= αν3

nm and Em − En = hνnm, (1.43)

with α and h constants to be determined, for example, by comparing with the Ryd-
berg and the Rayleigh-Jeans formulas at high temperatures. It is worth noticing that
Einstein deduced, at the same time, Planck’s distribution and the second postulate of
Niels Bohr. We shall now briefly refer to Einstein’s specific heat model.

1.5.2 Einstein’s Specific Heat Model

In an exercise of congruence, Einstein suggested in 1907 that the quantization hypoth-
esis should explain also other physical problems where the classical description was
in contradiction with the experimental observations. One of these was the specific
heat of solids that, according to classical theory, must be constant, but experimentally
tends to zero as the temperature goes to zero. If atoms in a solid are represented by
oscillators, the average energy of one atom, per degree of freedom, will be given by

Ē = hν

ehν/kB T − 1
, (1.44)

with ν = ω/2π the average frequency of oscillations. If all atoms, in the Einstein
model vibrate with the average frequency ν, the internal energy of a solid containing
N atoms, with 3 degrees of freedom each, is given by

U = 3N�ω

e�ω/kB T − 1
. (1.45)

When the temperatures are high, the internal energy of the solid takes the form

U = 3NkB T, (1.46)

and the specific heat will be

CV =
(
∂U

∂T

)
V
= 3NkB . (1.47)
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Fig. 1.5 The visible electromagnetic spectrum

This expression coincides with the classical results. If temperatures are low, we have

CV = 3NkB

(
�ω

kT

)2

e−�ω/kT , (1.48)

an expression that tends to zero exponentially when T → 0. This function agrees
qualitatively well with the experimental results at low temperatures, a result that was
well known at the beginning of the 20th century. A more quantitative approach and
in actual agreement with CV that really behaves as T 3 was derived by Debye.13

1.6 Solved Problems

Exercise 1 A quantum of electromagnetic radiation has an energy of 1.77 eV. What
is the associated wavelength? To what color does this radiation correspond? (Fig.
1.5)

Solution We will use Planck’s relation E = hν = hc/λ. The constant hc in this and
other problems is

hc = 6.63 10−34 Js 3.0 108 m

s

= 19.89 10−26 Jm
1 eV

1.6 10−19J

1nm

10−9m
= 1243 eV nm. (1.49)

With this result we get

λ = hc

E
= 1243

1.77
nm = 702.25 nm. (1.50)

13 By adopting the idea of Einstein and limiting the frequency ω to a maximum frequency ωD .
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This wavelength corresponds to red light, which includes wavelengths between 640
and 750 nm, approximately.

Exercise 2 A mass of 2kg attached to a spring, whose constant is k = 200 N/m,
is moving harmonically with an amplitude of 10 cm on a smooth surface without
friction. If we assume that its energy can be written as a multiple of the quantum
of energy �ω i.e. as E = n�ω, determine the number of quanta n. If the energy is
determined with an error ΔE of one part in a million, i.e. Δ = ±E/1000000, how
many quanta of energy are contained in ΔE?

Solution We will calculate first the energy of the system. This is a classical system
and its energy at the maximum elongation point (when the kinetic energy is zero) is

E = 1

2
k A2 = 1

2
200

N

m
(0.1)2 [m2] = 1 J. (1.51)

The error will be then

ΔE = ± 1

1000000
E = ±0.000001 E . (1.52)

To use the energy nhν and get the number n, we need the frequency

ν = 1

2π

√
k

m
= 1

2π

√
200

2

= 10

2π
Hz = 1.5915 Hz. (1.53)

Therefore

n = E

hν
= 1 J

6.63 10−34 J s 1.5915 [Hz] = 9.4769 1032. (1.54)

This is a very big number. The number of quanta of energy to which the error ΔE
corresponds is

Δn = ΔE

hν
= ± 0.000001 J

6.63 10−34 J s 1.5915 Hz
= ±9.4769 1026. (1.55)

Exercise 3 Let us assume that X-rays are produced in a collision of electrons with a
target. If electrons deliver all their energy in this process, what minimum-acceleration
voltage is required to produce X-rays with a wavelength of 0.05nm?

Solution When an electron is accelerated by a potential difference ΔV , it acquires
a potential energy eΔV . If this energy is transformed into the energy hν of a photon
of wavelength λ = c/ν, we have

eΔV = hc/λ. (1.56)
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Hence

ΔV = �c

eλ
= 1243 eV nm

1.6 10−19C 0.05 nm

1.6 10−19J

1 eV

= 24860
J

C
. (1.57)

Thus the required accelerating potential is ΔV = 24860V.

1.7 Problems

1. Find the average energy in equation (1.14).
2. Show and discuss Wien’s displacement law.
3. Show that Planck’s spectral density can also be written as

ρ(ω, T ) = ω2

π2c3

�ω

e�ω/kB T − 1
. (1.58)

4. Consider the equation (1.14) and show that to fulfil the Wien displacement law,
the minimum absorbed or emitted energy Eν must be proportional to the fre-
quency ν.

5. Show that at high temperatures, the Planck distribution reduces to that of
Rayleigh and Jeans.

6. Plot Planck’s spectral density as a function of the frequency ν for three different
temperatures: T = 50K, 200K and 300K. Determine the frequency where the
spectral density reaches its maximum value. Determine in which direction the
maximum of the spectral density moves as the temperature increases.

7. Prove that Planck’s constant can be expressed as

� = kB

c

(
π2kB

15a

)1/3

, (1.59)

and obtain its numerical value in Js and eVs.
8. If the escape energy of electrons from a metal surface is 1.0 eV when the metal

is irradiated with green light, what is the work function for that metal?
9. If a potassium photocathode is irradiated with photons of wavelength λ = 253.7

nm (corresponding to the resonant line of mercury), the maximum energy of the
emitted electrons is 3.14 eV. If a visible radiation with λ = 589 nm (resonance
line of sodium) is used, the maximum energy of emitted electrons is 0.36 eV.

a. Calculate the Planck constant.
b. Calculate the work function for the extraction of electrons in potassium.
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c. What is the maximum radiation wavelength to produce the photoelectric
effect in potassium?

10. a) An antenna radiates with a frequency of 1 MHz and an output power of 1 kW.
How many photons are emitted per second? b) A first-magnitude star emits a
light flux of ∼ 1.6 10−10 W/m2, measured at the earth surface, with an average
wavelength of 556 nm. How many photons per second pass through the pupil of
an eye?

11. Derive equations (1.27) and (1.28).
12. A 10MeV photon hits an electron at rest. Determine the maximum loss of photon

energy. Would this loss change if the collision is with a proton at rest?
13. Determine the relative change in wavelength when the incident radiation in a

Compton experiment is of X-rays (with wavelength λ0 ∼ 10−9cm) on graphite.
14. Determine the wavelengths of the Balmer series for Hydrogen.
15. What is the energy difference Em − En if the emitted light is: a) yellow b) red

and c) blue?



Chapter 2
Diffraction, Duality and the Schrödinger
Equation

The ad hoc postulates introduced to explain the Hydrogen emission lines, assum-
ing that the atomic system exists only in a set of energy states, were taken with
reticence, and the resistance grew when new experimental results, for atoms in mag-
netic fields, could not be explained based on those postulates. Physicists of the stature
of Sommerfeld, Kramers, Heisenberg and Born were involved in different attempts
to formalize the quantization phenomenon. Throughout the 1910s and still in the
1920s, many problems were approached using the old quantum theory. The rota-
tional and vibrational spectra of molecules were studied and the electron spin was
envisioned. Arnold Sommerfeld, using his semiclassical quantization rules, that will
be considered below, studied the relativistic Hydrogen atom and introduced the fine
structure constant.1

At the end of the last chapter, we mentioned the matrix formulation of the quantum
theory by Heisenberg, Born and Jordan. In this theory, closely related to Bohr’s model,
the physical quantities are represented by a collection of Fourier coefficients like

Xn2,n1(t) ≡ ei2π(En2−En1 )t/h Xn2,n1(0), (2.1)

with two indices corresponding to the initial and final states. This phenomenological
theory was the first to appear;2 another, likewise phenomenological but more intu-
itive, led to the wave mechanics formulation by Erwin Schrödinger. In this book, we
will study and we will solve a number of examples using the Schrödinger equation.
Important precedents for the Schrödinger theory were the particle-wave duality, ex-

1 Arnold Sommerfeld introduced the fine-structure constant in 1916, in his relativistic deviations
of the atomic spectral lines in the Bohr model. The first physical interpretation of the fine-structure
constant, α = e2/(4πεo�c) = 7.297352569810−3, is the ratio of the velocity of the electron in the
first circular orbit of the relativistic Bohr atom to the speed of light in vacuum. It appears naturally
in Sommerfeld’s analysis, and determines the size of the splitting or fine-structure of the hydrogenic
spectral lines. The same constant appears in other fields of modern physics.
2 M. Born, W. Heisenberg, and P. Jordan, Zeitschrift für Physik, 35, 557(1925] (received November
16, 1925). [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics
(Dover Publications, 1968) ISBN 0-486-61881-1].

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 19
DOI: 10.1007/978-3-642-29378-8_2, © Springer-Verlag Berlin Heidelberg 2012
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tended for massive particles by Louis de Broglie. We will review now these topics,
the Sommerfeld-Wilson-Ishiwara’s quantization rules, and we will end up with a
simple derivation of the Schrödinger equation based on the wave equation and the
fundamental duality relation λ = �/p for the particle momentum and the wave-
length.

2.1 Sommerfeld-Wilson-Ishiwara’s Quantization Rule

Arnold Sommerfeld, William Wilson and Jun Ishiwara, independently and almost
simultaneously,3 showed that, to study the behavior of quantum systems with periodic
movements, as electrons in the Rutherford model, it is convenient to introduce the
action variables, defined as

Ji =
∮

pi dqi , (2.2)

where pi are the momenta and qi the corresponding coordinates, and to postulate
the action quantization in the form

Ji = ni h = 2π�ni , (2.3)

with ni an integer. The integral
∮

dqi means one period of motion. Since the action
has the same units as the Planck constant, it is often called the quantum of action.

2.1.1 The Quantization Rules and the Energies of the Hydrogen
Atom

We will see now how the quantization rule (2.3) applied to the Hydrogen atom
action variable Jϕ leads to the quantized Hydrogen-atom energies.4 We start with
the Hydrogen atom Hamiltonian written as

H = p2
r

2m
+ p2

ϕ

2mr2 −
e2

r
. (2.4)

Here the variable ϕ is a cyclic variable,5 thus its canonical conjugate, the angular
momentum pϕ, is a constant of the motion. Indeed

ṗϕ = −∂H

∂ϕ
= 0. (2.5)

3 Einstein also proposed similar rules of quantization.
4 We assume here that the Hydrogen nucleus is at rest.
5 A cyclic or ignorable variable does not appear explicitly in the Hamiltonian.



2.1 Sommerfeld-Wilson-Ishiwara’s Quantization Rule 21

Using the canonic Hamilton equation we have also

ϕ̇ = ∂H

∂ pϕ
= pϕ

mr2 . (2.6)

This leads us to express the angular momentum pϕ as

pϕ = mr2ϕ̇. (2.7)

Since the angular momentum pϕ is a constant of the motion, we obtain

Jϕ =
∮

pϕdϕ = 2π pϕ, (2.8)

and applying the Sommerfeld-Wilson-Ishiwara’s quantization rule, we have

pϕ = mr2ϕ̇ = n�. (2.9)

This shows that the angular momentum of the Hydrogen-atom electron is quantized.
To obtain the energy, we also need the momentum pr . For circular electron orbits, r
is constant. Thus, we must have

ṙ = ∂H

∂ pr
= pr

m
= 0. (2.10)

In a circular motion the radial component of the linear momentum is, of course, zero,
i.e. pr = 0. From the canonical Hamilton equation we have

ṗr = −∂H

∂r
= p2

ϕ

mr3 −
e2

r2 , (2.11)

and we conclude that
p2
ϕ

mr3 −
e2

r2 = 0. (2.12)

Substituting this equation, as well as (2.7) and (2.9) for the corresponding variables
in the Hamiltonian function of equation (2.4), we have

H → En = −2π2me4

h2n2 . (2.13)

This energy coincides with that in (1.34). Sommerfeld and his collaborators, among
whom was Werner Heisenberg, applied these postulates to systems whose orbits are
not necessarily circular, with interesting results related to the spectral lines intensities
and the hyperfine structures.

http://dx.doi.org/10.1007/978-3-642-29378-8_1
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2.1.2 The Rotator

A simple system where the quantization rule (2.3) can be used to obtain the quanti-
zation of the angular momentum is the rotator. A mass M attached to the end of a
massless rigid rod of length R. In the space of dimension two, this system is described
by the Lagrangian

L = M R2

2
θ̇2, (2.14)

and the momentum pθ, conjugate to the polar angle θ, is a constant of the motion
given by

pθ = M R2θ̇. (2.15)

The quantization of the polar angle θ action

Jθ =
∮

pθdθ = 2π pθ, (2.16)

leads to
pθ = M R2θ̇ = n�. (2.17)

In the Bohr model, this restriction imposed on the circular orbits was enough to
determine the energy levels.

In the space of dimension three, a rigid rotator can be described by two angles:
the inclination relative to a z-axis, θ, and the rotator angle in the x-y plane, ϕ. The
Lagrangian of this system is also purely kinetic

L = M R2

2
θ̇2 + M R2

2
sin2 θϕ̇2, (2.18)

and the conjugate momenta are pθ and pϕ = M R2 sin θϕ̇. Since the variable ϕ is
cyclic, the z-component of the angular momentum, pϕ, is a constant of the motion.
Thus

pϕ = mϕ�. (2.19)

The integer mϕ, is called the magnetic quantum number, and corresponds to the z
component of the angular momentum that will be studied later. If a charged particle
is at the end of the rotator, its magnetic moment is along the z axis and proportional
to pϕ. This phenomenon, the quantization of the angular momentum along a z-axis,
was called space quantization.6

6 In the modern quantum mechanics, the angular momentum is quantized in the same way, but
the process of quantization does not pick out a preferred axis. For this reason, the name ‘space
quantization’ fell out of favor, and the same phenomenon is now called the quantization of the
angular momentum.
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2.2 The De Broglie Wave-Particle Duality

In 1923, Louis de Broglie proposed an extension of the wave-particle dualism, in-
troduced by Einstein for the electromagnetic radiation, to particles with mass. In a
brief and “ingenious article”, according to Schrödinger, de Broglie showed that for
a particle with periodic motion, frequency ν0 and rest mass mo, one can define two
frequencies.7 The first is the frequency

ν1 = ν0

√
1− β2, (2.20)

that an observer at rest measures, with β = v/c. This relation is a direct consequence
of the time dilation in the special theory of relativity. The second frequency is a
consequence of the inertia principle of the special theory of relativity (E = mc2)
and of Planck’s postulate, E = hν, that in the particle’s system of reference can be
written as hν0 = m0c2. For the observer at rest, it will be hν = mc2. Therefore

ν = ν0√
1− β2

. (2.21)

In the same article, de Broglie showed that the relation between these frequencies

ν1 = ν
(
1− β2), (2.22)

is consistent with the following two solutions: the function

sin(2πν1t), (2.23)

describing the particle’s orbital motion, and the function

sin (2πνt − kx) , (2.24)

describing the wave motion of the particle. If we follow the phase θ = 2πνt−kx , the
propagation velocity of a fixed or constant phase point (determined by dθ/dt = 0)
gives us the phase velocity vp = dx/dt = w/k, that can be written as vp = �ω/�k =
c/β. The phases 2πν1t and 2πνt

(
1− x/tvp

)
must be in harmony and resonate as

the electron moves in its orbit. Indeed, if we take 2πν1t = 2πνt
(
1− x/tvp

)
and use

the phase velocity vp = c/β, we also obtain (2.22). De Broglie also suggested, that
a necessary condition for the stability of the orbiting electrons is that the wavelength
λ will fit an integer number of times in the orbit length 2πR, i.e. that

2πR = nλ. (2.25)

7 L. de Broglie, Comptes Rendus, 177, 507 (1923).
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Fig. 2.1 In the de Broglie
quantization condition the
electron orbit length equals
an integer number of the
wavelength λ

1

If T is the period of the orbiting motion, it is easy to show, by simple substitution,
that this stability condition can be written as

m0β
2c2T√

1− β2
= nh. (2.26)

Taking into account that m = m0/
√

1− β2 and β = v/c, the last equation can
be written in the form

mv2 = nhν, (2.27)

that is compatible with the quantization assumption used by N. Bohr for his phenom-
enological model, and with the quantization rule of Sommerfeld-Wilson-Ishiwara.
From the stability condition (2.25) and the last equation, we obtain the important
relation

mvλ = h, (2.28)

that summarizes the de Broglie duality concept, generally expressed in the form

λ = h

p
. (2.29)

This λ is known as the de Broglie wavelength, for particles with mass. This result
shows that (2.26) and the quantization conditions are equivalent to assuming the
stability condition of the orbital motion, that fixes the length of the electron orbit as
a multiple of its de Broglie’s wavelength.

In his doctoral thesis, de Broglie expressed his hope that the wave behavior of par-
ticles would be observed experimentally. Indeed, electron-diffraction experiments by
metal surfaces (C. Davisson and LH Germer 1927) and thin films (GP Thomson 1928)
were performed later and showed that electron’s wave properties, with wavelength
λ = h/mv, manifest as predicted by de Broglie.
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Fig. 2.2 The distribution of electrons passing through a single slit is almost rectangular, while
that of electrons passing through a double slit resembles the constructive-destructive interference,
characteristic of waves

2.3 Diffraction Experiments and the Wave-Like Nature
of Particles

In addition to the electron diffraction experiments by Davisson and Germer and
by Thomson, showing that electrons under certain circumstances manifest wave
properties, the diffraction experiments by one and two slits, made also evident this
kind of properties for quantum particles. In fact, if a beam of particles moves towards
a screen (B), and in the way stands another screen with one slit (the screen A), the
electrons distribution in B will be almost rectangular, as shown in Fig. 2.2a). However,
when a second slit exists on the screen A, the distribution of particles in B is as shown
in Fig. 2.2b), which is not the simple addition of two rectangular distributions, as
one could expect for “microscopic” particles like sand grains, but a distribution that
resembles the behavior of waves. This type of distribution contains clear features
of constructive and destructive interference observed when a beam of light passes
through the slits. It is worth noticing that each electron contributes with one point to
the diffraction pattern, therefore the wave interference pattern emerges only when the
number of points is large. This means, on one side, that the undulating characteristics
of the diffraction pattern manifests as a collective behavior. However, electrons may
arrive on the screen at different times.8 In that case the common interpretation is that
each quantum particle interferes with itself and, besides this, that the corpuscular
or wave characteristics manifest themselves depending on whether the quantum
particles are subject to a single or two slits diffraction experiment. What this means
is still an open question. In any case, if electrons passing through the double slit are
represented by the superposition of two spherical wave functions emerging from two
slits, we can describe them with

8 Recent experiments claim that similar distributions come out when particles are sent one by one.
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φ(r, t) = a1φ1 + a2φ2

= a1

(
eik·r1 + c1

eikr1

r1

)
e−iwt + a2

(
eik·r2 + c2

eikr2

r2

)
e−iwt , (2.30)

where r1 = r − d/2, r2 = r + d/2, k = kx̂ and the origin in the line of length d
that joins the two slits. The electrons distribution on the screen (at x = L), for the
special case where a1 = a2 = c1 = c2 = 1, will be given by

|φ(r, t)|2x=L = 4+ 1

r2
1

+ 1

r2
2

+4
cos k(L − r1)

r1
+4

cos k(L − r2)

r2
+2

cos k(r1 − r2)

r1r2
.

This function describes the interference of waves passing through the slits. It has
the highest maximum in the middle and secondary maxima when the condition
d sin(tan−1 y/L) = nλ is fulfilled. If the wave functions are described only by
spherical waves, i.e., if

φ(r, t) = a1φ1 + a2φ2 = a1
eikr1−iwt

r1
+ a2

eikr2−iwt

r2
, (2.31)

and a1 = a2 = 1, we will have

|φ(r, t)|2 = 1

r2
1

+ 1

r2
2

+ 2
cos k(r1 − r2)

r1r2
. (2.32)

This function is plotted in Fig. 2.3 for two values of t : for t1 corresponding to
x = x1 � L/3 and for t2 corresponding to x = 2x1 � 2L/3. In this figure, the
spherical waves moving away from the slits are also drawn. The geometric place
of the interference points are indicated by blue lines. These lines coincide with the
principal and the secondary wave maxima.

2.4 Schrödinger’s Wave Mechanics

Motivated by the de Broglie theory, the Austrian physicist Erwin Schrödinger, who
was not pleased with the quantization a la Bohr, had in mind that the quantization
phenomenon could rather be related to an eigenvalue problem. In fact, in 1926 he
published a series of papers in the “Annalen der Physik” with title: “Quantisierung
und Eigenwertprobleme” (quantization and eigenvalue problems) where he proposed
and developed the foundations of the Schrödinger wave mechanics. On January 26,
1926, Schrödinger sent the first of these papers9 where he considers a variational
problem and derives, among others, the equation

9 E. Schrödinger, Ann. Phys. 79, 361 (1926).
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Fig. 2.3 The blue lines in-
dicate the locus of the inter-
ference of spherical waves
coming from two slits. The
snapshots show the wave func-
tion |φ(r, t)|2 in the equation
(2.32), for times t1 and t2
such that x = x1 � L/3 and
x = 2x1 � 2L/3. The posi-
tion of the maxima (indicated
by arrows) coincides with the
blue lines

d

∇2ψ + 2m(E − V )

�2 ψ = 0, (2.33)

with ψ a real function and E the energy. As will be seen below, this equation is
closely related with the wave equation

∇2ψ − 1

v2

∂2ψ

∂t2 = 0, (2.34)

and with the Hamilton equation for particles with mass and total energy

E = p2

2m
+ V (r). (2.35)

Schrödinger’s equation is, in some ways, a hybrid in which the wavelike and
the corpuscular descriptions merge. To make this fact evident let us now derive
the stationary Schrödinger equation (2.33), starting from the wave equation.

Suppose we have the wave equation (2.34). A solution ψ(r, t), factored in the
form

ψ(r, t) = e−iωtϕ(r), (2.36)

and replaced in the wave equation, leaves us with the differential equation

∇2ϕ(r)+ ω2

v2 ϕ(r) = 0. (2.37)
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On the other side, let us consider the de Broglie relation λ = h/p (that synthesizes
the duality concept that matured during the first quarter of the twentieth century), as
a bridge to make contact with the massive particles dynamics, which together with
some identities introduced before leads to

ω2

v2 =
(

2π

λ

)2

= p2

�2 . (2.38)

If we replace this relation and make use of the Hamilton equation (2.35) in (2.37),
we have the celebrated Schrödinger equation

− �
2

2m
∇2ϕ(r)+ V (r)ϕ(r) = Eϕ(r), (2.39)

known as the stationary Schrödinger equation that was quoted in (2.33). The poten-
tial function V (r) is a characteristic property of the physical system. The difference
between one system and another, resides basically in their potential functions and the
boundary conditions. As in many problems of classical physics, the differential equa-
tion and the boundary conditions define not only the possible solutionsϕi but also the
characteristic energy values Ei . The characteristic values are the parameter values
for which the physical problem admits solutions. This is how the energy discretiza-
tion phenomenon emerges, in a natural way. Solving the Schrödinger equation is,
essentially, equivalent to solving an eigenvalue problem, as Schrödinger envisioned.
In the subsequent chapters, we will discuss this fundamental problem, by solving
specific examples.

In 1927, P.A.M. Dirac showed that quantum wave mechanics provides the same
description as the matrix formalism of Heisenberg, Born and Jordan. They represent
two faces of the same quantum theory. Other significant quantum equations are: the
Pauli equation and the relativistic equations of Dirac and Klein-Gordon. In Chap.
11, we will briefly mention the Pauli equation. The relativistic equations are beyond
the scope of this book.

Since the most general description depends on the spatial and time coordinates,
it is worth showing one way to incorporate time in the Schrödinger formalism. To
obtain the Schrödinger equation (2.39), it was crucial to write the wave equation in its
steady-state form, which was possible once the wave function ψ(r, t) was factored
as ϕ(r)e−iωt and the de Broglie relation p = �k was taken into account. If we derive
ψ(r, t) with respect to time, we have

∂ψ

∂t
= −iωψ = −i

e−iωt

�
Eϕ(r). (2.40)

Combining this equation with the stationary Schrödinger equation we obtain the time
dependent equation

− �
2

2m
∇2ψ + V (r)ψ = i�

∂ψ

∂t
, (2.41)
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known as the complete Schrödinger equation. Its solutions depend on position r
and time t . Unlike the classical physics where the physical variables, like position,
velocity, etc., can be straightforwardly obtained when the equations of motion are
solved, in the quantum theory these variables have to be obtained, like pulled out,
from the solution ϕ(r)e−iωt . We will discuss later, with more detail, the formal
representation of the quantum theory, and the expected values of basic variables
such as position, momentum, energy, etc.. In this formalism the classical dynamical
variables appear generally as operators. If we look at the stationary equation (2.39)
and the complete equation (2.41), and examine the Hamiltonian Ĥ = −(�2/2m)∇2+
V (r), it is clear that the operator i�∂ψ/∂t represents the energy, and−i�∇ represents
the linear momentum. We will later find other operators related to other dynamical
variables. In Chap. 7, we will study properties of operators and their relation to
physical observables from a more general perspective.

In the next chapters, we will solve the stationary Schrödinger equation for sim-
ple systems. Our goal is to introduce the quantum phenomenology and to present a
comprehensive theory. We will calculate energy eigenvalues and eigenfunctions and
we will define other very useful variables in the analysis of the quantum transport
properties. We will address, when necessary, some interpretation issues. To avoid
substitutions, simplify the mathematical handling of the differential-equation solu-
tions, and gain some intuition, we will use the transfer matrix approach.

It is pertinent to mention that the rigorous derivation of the Schrödinger equation
has been an important research problem. For the naive derivation presented here, we
have used the wave equation and the empirical relation pλ = h. There have been
many attempts to derive the Schrödinger equation from first principles. Standing out
is the stochastic formulation of L. de la Peña and A. M. Cetto. The discussion of this
topic exceeds the objectives of this text.

2.5 Solved Problems

Exercise 4 In Fig. 2.4 we show the diffraction pattern of a red-light beam scattered
by a double slit system. Determine the light wavelength λ if the distance to the screen
is L = 17.5 µm, B = 7.8 µm and the slits separation is d = 1.7 µm.
Solution The spherical waves coming out from slits 1 and 2 superpose constructively
at point P . For a constructive interference, the difference�R between the path-length
1P and the path-length 2P , must be equal or an integer multiple of the wave length λ.
Close to the slits a small right triangle is formed with hypotenuse d and cathetus�R.
If this triangle, is compared with the right triangle 1P01 (with hypotenuse 1P and
cathetus B), and B is the distance between first-neighbors maxima, the length �R
must be equal to λ. Since

α = tan−1 B

L
= tan−1 7.8

17.4
� 24.15◦. (2.42)

http://dx.doi.org/10.1007/978-3-642-29378-8_7
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Fig. 2.4 Diffraction pattern
of a red-light beam scattered
by a double slit system
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we have
λ = d sinα = 1.7 sin 24.15◦ = 0.695µm = 695nm. (2.43)

Exercise 5 Suppose that we accelerate electrons and they reach energies of the
order of 100 GeV. Assuming that the relativistic relation E = √

p2c2 + m2c4 holds,
determine the de Broglie wavelength of those electrons.
Solution From E = √

p2c2 + m2c4 it is easy to obtain the following relation

p = mev =
√

E2 − (mec2)2

c
. (2.44)

Replacing the energy and the electron rest mass (mec2, measured in eV) we have

mev =
√
(100 109)2 − (.510999 106)2eV s

2.99792458 108m

1.60218 10−19J

1eV
,

= 5.344297 10−18 J s

m
, (2.45)

and the de Broglie wavelength will be

λ = h

p
= 6.6261 10−34J s m

5.344297 10−18J s
,

= 1.23984610−6Å. (2.46)

This negligible wavelength makes these electrons useful to explore systems with
comparable dimensions, for instance the atomic nuclei whose dimensions are of the
order of 10−15m.
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2.6 Problems

1. Prove the expression (2.13) in which

En = −2π2me4

h2n2 . (2.47)

2. Consider the functions sin
(
2πν1t

)
and sin

(
2πνt (1− v/vp)

)
, and show that the

de Broglie stability condition
2πR = n λ (2.48)

is equivalent to assuming that

ν1 = 1

n
ν
(
1− β2). (2.49)

Plot both functions and verify this conclusion.
3. Find the electron orbits radii of the Hydrogen atom.
4. Find the first, the second and the third energy levels in the Hydrogen atom.
5. From the equality of the phases, in the de Broglie analysis, derive the relation

(2.22).
6. Show that the equation (2.26) can also be obtained from the Sommerfeld-Wilson-

Ishiwara quantization rule ∮
pϕdϕ = nh, (2.50)

where pϕ = m R2ω.
7. If the de Broglie wavelength of the first energy level electron is equal to the first

circular orbit length, how fast does the electron move in that orbit?
8. How fast does one electron move in the second and the third energy levels, and

how fast in the n-th energy level?
9. Show that (2.33) and (2.39) are essentially the same.



Chapter 3
Properties of the Stationary Schrödinger
Equation

In this chapter we study some general properties of the solutions of the stationary
equation. These properties will be observed in the specific examples that will be
studied throughout this text. Among them, we will mention the relation between the
number of classical-return points and the existence or not of energy quantization.
We will study the free particle problem, where no quantization exists, and the infi-
nite quantum well problem, where the particle energy quantizes. In this chapter we
introduce also the Dirac notation and the particle current density.

3.1 Quantization as an Eigenvalue Problem

If the potential function is independent of time, the complete Schrödinger equation
is separable. This means that we can propose a solution like

ψ(r, t) = ϕ(r)τ (t). (3.1)

Replacing this function in the Schrödinger equation we obtain, on one hand the
equation

i�
∂τ (t)

∂t
= Eτ (t), (3.2)

with solution τ (t) = e−i Et/�, and on the other the equation

− �
2

2m
∇2ϕ+ V (r)ϕ(r) = Eϕ(r), (3.3)

whose solutions will be obtained once the potential function V (r) and the boundary
conditions will be given. In some cases, not always, solving this equation is essentially
equivalent to solving an eigenvalue problem. In those cases one tries to obtain the

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 33
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Fig. 3.1 Different types of one-dimensional potential. In (a) the potential is of a double classical
return point and the energy discretizes. In (b) there is one return point for energies below the potential
height, and no return points for energies above the potential height. In this case all values of the
energy are possible. In (c) the energy discretizes only if E < Ec. Confining potentials discretize
the energy E

eigenvalues {En} and the eigenfunctions {ϕn} that satisfy the eigenvalue equation

− �
2

2m
∇2ϕn(r)+ V (r)ϕn(r) = Enϕn(r). (3.4)

When Schrödinger’s equation admits solutions for only a discrete set of energy
values, we say that the energy is quantized. This is not a requirement for a system to
be considered a quantum system. There is an uncountable number of systems which
Schrödinger equation has solutions for any value of the energy. Other properties, like
the tunneling effect and the spin, characterize also the quantum behavior. A few lines
below we will comment on the physical conditions that must be present to quantize
the energy. In any case, whether the energy quantizes or not, the solutions of the
Schrödinger equation are required to satisfy the continuity and finiteness conditions
and they must be single-valued and square integrable functions, so that integrals like

∫
ϕ∗(r)ϕ(r)d3r, (3.5)

can be evaluated throughout the domain of definition of the physical system.
In the Schrödinger equation, the energy E plays the role of a parameter. It turns

out that the energy quantization depends mainly on the form of the potential function
V (r). In one-dimensional (1D) potentials, like in Fig. 3.1, distinct results can be
expected. For example:

1. the potential of Fig. 3.1a with two classical return points, xi and xd , confines the
particle. In cases like this, the energy will quantize, and one can search for the
eigenfunctions ϕn and the corresponding energy eigenvalues En .

2. the potential with a single classical return point, or no return point as in Fig. 3.1b,
does not confine the classical particle. It can move away, either in one or both
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directions. In cases like this, there will be no energy quantization, and the
Schrödinger equation admits solutions for all values of E .

3. the potential in Fig. 3.1c, with two return points when E < Ec and only one for
energies E > Ec, leads to a mixed problem. For energies below Ec, the potential
confines the classical particle, and the quantum particle lives in a discrete set of
states corresponding to the eigenfunctions ϕn . When the energy is greater than
Ec, there is no confining and no quantization.

3.2 Degenerate Eigenfunctions, Orthogonality and Parity

When the physical system has some symmetry it is possible to find more than one
eigenfunction for the same energy value. In this case the eigenfunctions are called
degenerate eigenfunctions. Otherwise, when only one eigenfunction ϕn exists, for
each eigenvalue En , we have non-degenerate solutions. We will show now that when
the eigenfunctions are non-degenerate and the potential V is real, the eigenfunctions
are orthogonal.

Suppose that we have a set of non-degenerate eigenfunctions ϕn , normalized as
follows

∫
ϕ∗n(r)ϕn(r)d3r = 1. (3.6)

Consider now the eigenvalue equation:

(
− �

2

2m
∇2 + V

)
ϕi = Eiϕi , (3.7)

and its complex conjugate

(
− �

2

2m
∇2 + V

)
ϕ∗j = E jϕ

∗
j , (3.8)

with j �= i . If we multiply the first of these equations by ϕ∗j and the second by ϕi ,
subtracting from each other and integrating we obtain:

(
Ei − E j

) ∫

V

ϕ∗jϕi d
3r = �

2

2m

∫

V

(
ϕ∗j∇2ϕi − ϕi∇2ϕ∗j

)
d3r. (3.9)

Since

∇ ·
(
ϕ∗j∇ϕi − ϕi∇ϕ∗j

)
=

(
ϕ∗j∇2ϕi − ϕi∇2ϕ∗j

)
, (3.10)
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we can write (3.9) in the form

(
Ei − E j

) ∫

V

ϕ∗j (r)ϕi (r)d3r = �
2

2m

∫

V

∇ ·
(
ϕ∗j∇ϕi − ϕi∇ϕ∗j

)
d3r. (3.11)

Using the divergence theorem, the integral on the right side becomes a closed surface
integral. Thus

(
Ei − E j

) ∫

V

ϕ∗j (r)ϕi (r)d3r = �
2

2m

∮

S

(
ϕ∗j∇ϕi − ϕi∇ϕ∗j

)
· d S. (3.12)

We know from the divergence theorem that the only restriction on the surface integral
is that the closed surface should contain the volume V. The closed surface can be
zoomed, as much as one would like, keeping the flux ϕ∗j∇ϕi − ϕi∇ϕ∗j constant. To
evaluate the integral it is convenient to zoom the surface to infinity, where the func-
tions and their gradients should tend to zero by the finiteness condition. Accordingly,
we have

(
Ei − E j

) ∫

V

ϕ∗j (r)ϕi (r)d3r = 0. (3.13)

Since Ei �= E j , we can conclude that the non-degenerate solutions are orthogonal,
i.e. that

〈
ϕ j |ϕi

〉 =
∫

V

ϕ∗j (r)ϕi (r)d3r = 0. (3.14)

We have introduced here the Dirac notation of “bra-kets” (angle parenthesis) to
denote the integral of the product of ϕ∗j , represented by the “bra”

〈
ϕ j

∣∣, with ϕi ,
represented by the “ket” |ϕi 〉. This is a compact notation, especially useful when
general derivations and obvious integrals are performed and one needs to carry out
only the relevant variables. At the end of this chapter we will show schematically the
most important relations between the standard functions and the bra-ket notation. If
the orthogonal functions are normalized, we obtain

〈
ϕ j |ϕi

〉 =
∫

V

ϕ∗j (r)ϕi (r)d3r = δi j , (3.15)

with δi j the Kronecker symbol defined as

δi j =
{

1 if i = j,
0 if i �= j.

(3.16)
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The symmetries of the wave functions are compatible with those of the
Hamiltonian function. When the potential function remains invariant under the parity
transformation

P̂ : ro + r′ �→ ro − r′, (3.17)

that changes the sign of the coordinate r with respect to the symmetry point ro, the
wave function remains invariant or changes sign. If

P̂ϕe(ro + r′) = ϕe(ro − r′) = ϕe(ro + r′), (3.18)

the wave function has even parity with respect to the symmetry point ro, if instead it
satisfies the relation

P̂ϕo(ro + r′) = ϕo(ro − r′) = −ϕo(ro + r′), (3.19)

the wave function has odd parity. To simplify the analysis of parity it is convenient
to choose the origin at the symmetry point. In that case

P̂ : r �−→ −r, (3.20)

and the wave functions with even parity satisfy the relation

ϕe(−r′) = ϕe(r′), (3.21)

while those with odd parity satisfy the relation

ϕo(−r′) = −ϕo(r′). (3.22)

When a function ϕ(r) does not have a definite parity, it is always possible to write

ϕ(r) = ϕe(r)+ ϕo(r) (3.23)

with

ϕe(r) = 1

2

(
ϕ(r)+ ϕ(−r)

)
and ϕo(r) = 1

2

(
ϕ(r)− ϕ(−r)

)
. (3.24)

We will now study two simple but illustrative problems: the free particle and a
particle inside an infinite quantum well. At the end of this chapter we will briefly
comment on the physical interpretation of the Schrödinger equation solutions. As
an example of the importance of having the eigenvalues and the eigenfunctions of a
Schrödinger equation, we will introduce the particle current density. Other quantities,
relevant in the quantum description, are generally evaluated in terms of eigenvalues
and eigenfunctions. For this reason one of the first aims is to obtain eigenvalues and
eigenfunctions.
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3.3 The Free Particle

In the classical description a free particle moves without any interaction along a
straight line. In the quantum description we have a free particle when the potential
function is V (r) = 0. This is in principle the simplest quantum system. Although the
complete absence of interaction is impossible in the real world, the free particle model
is often a good approximation when the local interaction is negligible. If the particle
energy is E and the direction in which it moves is x , the stationary Schrödinger
equation is simply

− �
2

2m

d2ϕ(x)

dx2 = Eϕ(x), −∞ < x <∞. (3.25)

In this system, without boundaries, the solutions should also fulfill the continuity and
finiteness condition at any point, from x = −∞ to x = ∞. As is usual for the second
order differential equations with constant coefficients, we propose as a solution the
function

ϕ(x) = er x . (3.26)

If we substitute this function in (3.25) for ϕ(x), we get the quadratic equation

r2 = −2m

�2 E, (3.27)

that gives us the parameter r . It is evident that, for positive energy, the parameter r
must be a purely imaginary number, i.e.

r = ±i

√
2m

�2 E = ±ik. (3.28)

The factor k = √
2m E/�2 is the free particle’s wave number.1 Replacing these values

of r in the proposed solution (3.26), we have the general solution

ϕ(x) = aeikx + be−ikx = a ϕ+(x)+ bϕ−(x). (3.31)

1 If we take into account that E = p2/2m and use the relation p = h/λ, it is clear that this is
precisely its nature. Indeed

1

λ2 =
2m

h2 E . (3.29)

Multiplying by (2π)2 we have (remember that �= h/2π)

(
2π

λ

)2

= 2m

�2 E = k2. (3.30)
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Given this solution, we also have the wave function ψ(x, t)

ψ(x, t) = aei(kx−ωt) + be−i(kx+ωt) = aψ+(x, t)+ bψ−(x, t). (3.32)

The first term describes a wave propagating in the positive x direction and the second
in the negative x direction.

As will be seen in the next chapters, it is some times convenient to represent the
wave functions as vector functions. With the right- and left-moving components of
the wave function, we can define, for instance, the state vector

φ(x) =
(

aeikx

be−ikx

)
=

(
aϕ+(x)
bϕ−(x)

)
. (3.33)

Since
(

aeikx2

be−ikx2

)
=

(
eik(x2−x1) 0

0 e−ik(x2−x1)

)(
aeikx1

be−ikx1

)
(3.34)

φ(x2) = M(x2 − x1)φ(x1), (3.35)

it is clear that knowing the state vector of a free particle at some point x1, we can
obtain the state vector at any other point x2. The diagonal matrix M(x2−x1) provides
the space evolution of the wave function phase.

The coefficients a and b define the relative amplitude of each component. Inas-
much as the coefficients are unknown, we have not yet solved the problem. We must
try to determine the coefficients a and b. In some cases the initial conditions al-
low a first evaluation. For example, if we know that the free particles move only
in one direction, one of the coefficients must vanish. We are then left with just one
coefficient to determine. In that case, it will be determined by the wave function nor-
malization. In most applications one needs normalized free-particle wave functions.
As mentioned before, the wave functions ϕ+ and ϕ− are normalized if

∞∫

−∞
ϕ±∗(x)ϕ±(x)dx = 1. (3.36)

It turns out that this is not a trivial problem for the free particle wave functions. It is
easy to see that the normalization integral diverges. Indeed

∞∫

−∞
e∓ ikx e± ikx dx = ∞! (3.37)
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This makes the normalization of eikx and e−ikx a major problem, in contrast with
the ease in solving Schrödinger’s free particle equation. To control this singularity,
different criteria were proposed to normalize the free particle wave function. Among
them we will discuss the Born and the Dirac normalization procedures. We will deal
now with this problem. Before continuing, it is important to notice that in the case
of free particles there is no energy quantization. This means that the problem admits
solutions for all positive values of E . As mentioned before, normalizing a function
Aϕ(x), defined on the domain (−a, a), means to find the factor A such that

A∗A

a∫

−a

ϕ∗(x)ϕ(x)dx = 1. (3.38)

In the Born normalization the domain of integration is restricted to a finite length L ,
which afterwards may tend to infinity. This is a highly controversial but widely used
procedure. In this case

A∗A

L/2∫

−L/2

e−ikx eikx dx = A∗AL = 1. (3.39)

If A is real and positive, the normalized free-particle wave function a la Born will
be:

ϕ±(x) = 1√
L

e±ikx . (3.40)

Another important normalization and also widely used is the Dirac normalization.
It is based on the Dirac’s delta function δ(x − x ′). This is a subtle and important
mathematical object. To define the Dirac’s delta function we mention here only the
most relevant features. First of all, the delta function δ(x − x ′) is zero everywhere
except at x = x ′ and has, among others, the following properties:

b∫

a

δ(x − x ′)dx = 1, a < x ′ < b; (3.41)

b∫

a

f (x)δ(x − x ′)dx = f (x ′). (3.42)

There are several specific representations for the delta function δ(x − x ′). Let us
now obtain one of them using Fourier transforms. It is well-known that the Fourier
transform of a function f (x) is defined as
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F(k) = 1√
2π

∞∫

−∞
f (x)e−ikx dx, (3.43)

and the inverse Fourier transform as

f (x ′) = 1√
2π

∞∫

−∞
F(k)eikx ′dk. (3.44)

Substituting (3.43) for F(k) in (3.44), we have

f (x ′) =
∞∫

−∞
f (x)

⎡
⎣ 1

2π

∞∫

−∞
eik(x ′−x)dk

⎤
⎦ dx . (3.45)

Comparing this equation with (3.41), it is clear that a possible representation of the
Dirac’s delta function is (k = p/�)

δ(x ′ − x) = 1

2π

∞∫

−∞
eik(x ′−x)dk = 1

2π�

∞∫

−∞
eip(x ′−x)/�dp. (3.46)

In a similar way, with (3.43) and (3.44), we obtain

1

2π

∞∫

−∞
e−ik′x eikx dx = δ(k′ − k), (3.47)

for the orthogonality condition of the free-particle wave functions with different
wave vectors. This condition can also be written as

|A|2
∞∫

−∞
e−ik′x eikx dx = |A|2

∞∫

−∞
e−i x(p′−p)/�dx = 2π�|A|2δ(p − p′).

(3.48)

If we choose the real coefficient A, such that 2π�A2 = 1, the normalized free particle
function a la Dirac will be

ϕ(x) = 1√
2π�

eipx/� = 1√
2π�

eikx . (3.49)

The one and three-dimensional free-particle wave functions can be written, respec-
tively, as:
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ϕk(x) = 1√
2π�

eikx and ϕk(r) = 1√
2π�

eik·r, (3.50)

or in the form

ϕp(x) = 1√
2π�

eipx/� and ϕp(r) = 1√
2π�

eip·r/�, (3.51)

with the wave number (or the momentum) as a parameter. This notation is similar to
that of the eigenfunctions, where the subindex is a quantum number, usually discrete.
In conclusion, for the wave functions of free particles, we have the normalization
condition

〈
ϕp′ |ϕp

〉 =
∞∫

−∞
ϕ∗p′(x)ϕp(x)dx = δ(p − p′), (3.52)

that should not be confused with the closure condition

〈
ϕp(x

′)|ϕp(x)
〉 =

∞∫

−∞
ϕ∗p(x ′)ϕp(x)dp = δ(x − x ′), (3.53)

of Hilbert’s space of functions, to which the free particle functions2 belong. The
Dirac normalization is similar to (3.15). The divergency is not removed but put
under control by means of a sui generis function, the Dirac delta function δ(p− p′)
that is zero everywhere and diverges at p = p′. The interesting property of the delta
“functions” is that at the divergency point it increases in such a way that the integral
at the singularity of the “function” is 1, as inferred from Eq. (3.41).

Another very useful normalization is based on the particle current density, that
will be defined later. We will see that one has a unit particle current density when

ϕ±(x) = 1√
�k/m

e±ikx . (3.54)

This will be referred to as the unit-flux normalization.

3.3.1 The Physical Meaning of the Free Particle Solutions

One of the most discussed issues in the history of the quantum theory has been
the physical interpretation of the Schrödinger equation solutions. Regardless of the
conceptual problems and paradoxes (that will be considered briefly later), there is

2 The Hilbert space of square integrable functions.
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Fig. 3.2 The probability
density function to find a free
particle along the x-axis

2

an agreement that: (1) the most general solution ϕ(r) must be expressed as a linear
combination of linearly independent solutionsϕi (r); (2) the functionϕ(r) represents
the probability density amplitude of finding the particle at point r and (3) |ϕ(r)|2
gives the probability density function of finding the particle at point r. In the absence
of a confinement potential, the linearly independent solutions are usually complex.
In the free particle case, the wave functions: Aei(kx−ωt) and Ae−i(kx+ωt), describe
particles propagating to the right and to the left, respectively. They represent the
probability amplitude of finding the particle3 at point x . The wave nature of these
functions, is evident in the behavior of their real part A cos (kx ± ωt) and imaginary
part A sin (kx ± ωt). If the physical conditions are such that the particles can move
in both directions, the most general solutionϕ(x)will be given by the superposition4

ϕ(x) = a Aeikx + bAe−ikx , (3.56)

and the probability density function of finding the particle at any point x will be:

|ϕ(x)|2 = |A|2
(
|a|2 + |b|2 + 2�e ab∗ei2kx

)
. (3.57)

When the right-moving and left-moving wave functions are normalized (with A =
1/
√

L for the Born normalization, or A = 1/
√

2πh for the Dirac normalization), the
probability density function |ϕ(x)|2, using the orthogonality condition in (3.47), will
be normalized when |a|2 + |b|2 = 1. If a and b are equal, we have a = b = 1/

√
2.

In this case, the probability density function |ϕ(x)|2 will be (see Fig. 3.2):

|ϕ(x)|2 =
{

1
L cos 2kx + cB for Born′s normalization,

1
2πh cos 2kx + cL for Dirac′s normalization,

(3.58)

with cB = 1/L and cL = 1/2πh. When the particles move only to the right or only
to the left, the probability density function to find them at point x is constant and
equal to |Aei(kx±ωt)|2 = A2.

3 Or finding the ensemble of particles at the point x , if we consider that the wave function to describe
an ensemble of free particles.
4 It is usual to write the superposition of the right- and left-moving solutions just as

ϕ(x) = a′ eikx + b′ e−ikx . (3.55)

It is easy to show that after normalizing the wave function ϕ(x) one ends up with the same results
(see Problem 3.1) as combining orthonormal functions like in (3.56).
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Fig. 3.3 The infinite quantum
well potential

L0 x

3.4 The Infinite Quantum Well

In this example we have again a 1D system (whose generalization to 3D is im-
mediate). In the 1D case the potential is

V (x) =
{

0 0 < x < L;
∞ x ≤ 0 and x ≥ L .

(3.59)

In the regions where the potential is infinite (regions I and III in Fig. 3.3), the solutions
and the probabilities of finding a particle, with finite energy, are zero. Therefore:

ϕI(x) = ϕIII(x) = 0. (3.60)

In region II, where the potential is zero, the Schrödinger equation is

− �
2

2m

d2ϕII(x)

dx2 = EϕII(x), 0 < x < L . (3.61)

The solution must satisfy the following boundary conditions

ϕII(0) = ϕII(L) = 0. (3.62)

The differential Eq. (3.61) is the same as for the free particle in (3.25). Thus our
solutions can also be written as

ϕII(x) = aeikx + be−ikx for 0 < x < L . (3.63)

The main difference between these solutions and those of the free particle resides in
the boundary conditions (3.62). They make the problem completely different. The
boundary condition ϕII(0) = 0 implies that

a = −b. (3.64)
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Fig. 3.4 The three lowest
energy levels Ei and the
corresponding eigenfunctions
ϕi (x) of the infinite quantum
well
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Replacing this relation in (3.63) we have

ϕII(x) = A sin kx . (3.65)

At this point we have still to impose the condition ϕII(L) = 0. The vanishing of
A sin kx when x = L is possible only if

kL = nπ n = 1, 2, . . . (3.66)

This is a quantization condition for the wave number k, and also for the energy.
Introducing Eq. (3.28) we have now

En = �
2k2

n

2m
= n2

�
2π2

2mL2 . (3.67)

This is the first example where the quantization of the energy arises naturally
by solving the Schrödinger equation. From our previous discussion on the classical
turning points, we could certainly expect the quantization of the energy. As mentioned
there the energy values for which the equation has solutions are the eigenvalues En .
Replacing the wave number kn it is easy to show that the solution that corresponds
to the eigenvalue En is the eigenfunction

ϕn(x) =
√

2

L
sin

nπ

L
x . (3.68)

In Fig. 3.4 we give the three lowest energy levels and the corresponding wave func-
tions. The number of nodes of the eigenfunctions grows with the quantum number
n. This means that the eigenfunctions of higher energies oscillate more than those of
lower energies. This is a general characteristic that will be found always.

The infinite quantum well eigenfunctions possess well defined parity symme-
tries. The infinite quantum well potential of Fig. 3.4 has reflection symmetry around
x = L/2, thus xo = L/2 is a parity symmetry point. If we change x by xo + x ′,
where x ′ is measured from the symmetry point, the eigenfunctions ϕn(x) become
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Fig. 3.5 The first energy
levels and the corresponding
eigenfunctions of an infinite
quantum well. The origin is at
the center of the well
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ϕn(xo + x ′) =
√

2

L
sin

(nπ

2
+ nπ

L
x ′

)
with − L/2 < x ′ < L/2, (3.69)

that can be written as

ϕn(xo + x ′) =

⎧⎪⎪⎨
⎪⎪⎩
(−1)

n
2

√
2
L sin nπ

L x ′ for n = 2, 4, . . .

(−1)
n−1

2

√
2
L cos nπ

L x ′ for n = 1, 3, . . .

(3.70)

It is easy to verify that the eigenfunctions with n odd, like ϕ1(x) and ϕ3(x) satisfy
the condition

ϕn(xo − x ′) = ϕn(xo + x ′), (3.71)

characteristic of even parity functions, according to (3.18), while the eigenfunctions
with n even like ϕ2(x) and ϕ4(x), satisfy the condition

ϕn(xo − x ′) = −ϕn(xo + x ′), (3.72)

characteristic of odd parity functions with respect to the symmetry point, according
to (3.19). One can simplify the analysis of the eigenfunctions parity by moving the
origin of the coordinate system to the symmetry point as in Fig. 3.5 (see Problem 2).
In that case, it is easy to verify that the eigenfunctions like ϕ1(x) and ϕ3(x) are even
under the change of sign of x , and the eigenfunctions like ϕ2(x) and ϕ4(x) are odd
under the change of sign of x .

What kind of information do the eigenfunctions and the eigenvalues provide?
Does quantum mechanics predict the behavior of a particle or rather that of a col-
lection of equivalent particles? The answers to some of these questions are well
established in some senses, but in others it is a controversial subject. The eigenval-
ues of a physical quantity, for example the energy, are those values that the system
allows for the quantum particle to have. In fact, if one measures the particle’s energy,
the experimental value will match one of the predicted eigenvalues. Therefore, the
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energy eigenvalues constitute the set of possible values for the particle energy. Before
the experiment is performed, one does not know which energy state the particle is
actually in. Hence, it should be described in terms of the most general solution of
the Schrödinger equation, i.e. by the combination

Φ(x) = c1ϕ1(x)+ c2ϕ2(x)+ c3ϕ3(x)+ . . . = Σi ciϕi (x). (3.73)

The coefficients ci of this superposition give the relative participation ratio, i.e. the
weight with which each eigenstate participates in the total wave functionΦ. In some
problems the coefficients can be inferred by physical considerations, in others from
the experimental observation. In a time-dependent potential, the coefficients can
change with time.

The productΦ∗(x)Φ(x) represents again the probability density function of find-
ing the particle at point x . If the eigenfunctions ϕi (x) are normalized, the integral

〈Φ|Φ〉 ≡
∞∫

−∞
Φ∗(x)Φ(x)dx =

L∫

0

Φ∗(x)Φ(x)dx, (3.74)

〈Φ|Φ〉 = Σi j c
∗
i c j

〈
ϕi |ϕ j

〉 = Σi j c
∗
i c jδi j = Σi |ci |2 , (3.75)

represents the probability of finding the particle in the quantum well, which must
certainly be equal to 1. Therefore we have

〈Φ|Φ〉 = Σi |ci |2 = 1. (3.76)

This relation makes clear the physical meaning of the coefficients ci in the superposi-
tion (3.73). While |ϕi |2 gives the probability density function of finding the particle
at point x , when it is in the state i , |ci |2 gives the probability of finding the particle
in the state i , i.e. the relative weight of the state ϕi in the superposition (3.73).

When we solve the Schrödinger equation for a particle in the infinite quantum
well, we obtain the energy eigenvalues En and the corresponding eigenfunctions ϕn .
With these quantities the theory tells us which are the states where the particle could
be found, but it cannot tell us in which state will actually the particle be found. When
the experiment is done, the particle will certainly be found in one of the predicted
states. This process, in which the knowledge of the state of the particle passes from
certain level of ignorance to that where the system is observed in one of the predicted
states, is known as the collapse of the wave function

Φ(x) = Σi ciϕi (x) −→ ϕ j (x). (3.77)

What does this mean? If the measurement collapses the wave function, what was
then the relationship between the superposition of states with the actual state of the
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system? The question is whether the particle, before the experiment, occupied at the
same time the whole set of possible states and then jumped over into one of them
when it was observed, or, on the contrary, the particle was already in the state where it
was observed. Has really the measurement process influenced the resulting outcome?
This kind of limitations in the theoretical prediction and the epistemological problems
that emerge from these questions have been part of the debates on the completeness
issue of the quantum theory. When the quantum theory is assumed complete, its
predicting limitations are transferred into the nature of the quantum system, one
can then suggest that the particle is such that it occupies simultaneously all of the
accessible states, or, as in the one and two slits diffraction problem, the collapsed
outcomes depend on how the system is observed. The correspondence between the
actual system and the theoretical image gave rise to one of the most controversial
articles of quantum theory: a paper published by Einstein, Podolsky and Rosen
(the Einstein-Podolsky-Rosen theorem) that questions whether the quantum theory
provides a complete description or not. Some paradoxes of quantum mechanics, like
Schrödinger’s cat and Wigner’s friend, are related to this question.

On the other hand, one can also argue as follows. Suppose one has a system like
the infinite quantum well with one electron inside. When we solve the Schrödinger
equation, the general solution is written as

Φ(x) = Σi ciϕi (x). (3.78)

If this system is replicated N times, with N →∞, and we observe the electrons of
this “ensemble” of systems, we will find that in a fraction f1 of them (which will be
approximately equal to |c1|2/ 〈Φ|Φ〉), the electron is in the state ϕ1, another fraction
f2 (which will also be approximately equal to |c2|2/ 〈Φ|Φ〉), in the state ϕ2 and so
on. The relative frequency with which a state ϕi (x) participates in the collection
corresponds to |ci |2. In this case the meaning of the collapse of the wave-function
changes. We do not need the particle occupying the whole set of states at the same
time. But we have to accept that the wave function Φ describes not one particle but
an ensemble of particles. In other words, if we say that the function Φ of (3.73)
describes an ensemble of quantum wells containing one electron each, there will be
a better agreement between the theory and the reality. This is called the statistical
interpretation. While the Copenhagen school (with Niels Bohr in a prominent place)
argues that the quantum theory describes completely a single system, the statistical
interpretation school (in which A. Einstein stands out) argues that the quantum theory
describes the behavior of an ensemble of quantum systems.

3.5 The Particle Current Density in Quantum Mechanics

As said before, the calculation of the energy eigenvalues and its corresponding eigen-
functions are essential for the quantum description. Without them, it is virtually im-
possible to assess other important physical variables. One of these physical variables
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of interest is the particle current density j that describes the number of particles
crossing a unit area per unit time. We will see now that, to obtain the current density
in the quantum mechanical formalism, it is necessary to know the eigenfunctions.
In classical physics, an important equation where the current density appears is the
continuity equation

∂ρ

∂t
+ ∇ · j = 0. (3.79)

Here ρ represents the density of particles. Suppose that the density ρ is given by the
probability density function

ρ = ψ∗(x, t)ψ(x, t). (3.80)

If we derive this function with respect to time

∂ρ

∂t
= ψ∂ψ

∗

∂t
+ ψ∗ ∂ψ

∂t
, (3.81)

and use the complete Schrödinger Eq. (2.42), we have

∂ρ

∂t
= − i�

2m

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
. (3.82)

Writing the last equation in the form

∂ρ

∂t
+∇ ·

[
i�

2m

(
ψ∇ψ∗ − ψ∗∇ψ)] = 0, (3.83)

we have the continuity equation, with the quantum current density given by

j = i�

2m

(
ψ∇ψ∗ − ψ∗∇ψ)

. (3.84)

When the wave function is factorized, i.e. when the quantum state is described by

ψ(r, t) = ϕ(r)e−iωt , (3.85)

the particle current density will simply be given by

j = i�

2m

(
ϕ∇ϕ∗ − ϕ∗∇ϕ)

. (3.86)

This is an important expression and is frequently used in the quantum transport theory.
It is clear that when the function ϕ(r) is real, the current density j is zero. A system
with real wave functions is the infinite quantum well, therefore, the current density

http://dx.doi.org/10.1007/978-3-642-29378-8_2
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in each of the eigenstates is zero, and it is zero at all points of the well. This does not
mean that the particles are static. They move but the flux of particles to the right is
the same as to the left. In the case of free particles, the wave functions are complex.
The combination is real when the amplitudes of the right and left moving waves
are equal. Let us assume that we have a bunch of free particles moving towards
the right, described by the function ϕ+(x) = Aeikx and let us leave, for the mo-
ment, the normalization constant undefined. The particle current density in this state
will be

j+(x) = i�

2m

(
ϕ+(x) d

dx
ϕ+∗(x)− ϕ+∗(x) d

dx
ϕ+(x)

)
x̂,

= i�

2m

(
ϕ+(x)(−ik) A∗e−ikx − ϕ+∗(x)(ik) Aeikx

)
x̂,

j+(x) = �k
m
ρ+(x). (3.87)

If we remember the relation �k = p, it is evident that the density of free particles
(moving to the right) is similar to the classical expression of particle current density
j = vρwith v = �k/m. Since ρ+(x) = |Aeikx |2, the current density of free particles
(towards the right) is given by the expression

j+(x) = |A|
2
�k

m
. (3.88)

The constant |A|2 is a scale factor that depends on the normalization chosen for the
wave functions. For the Born and Dirac normalization we have

j+(x) = |A|
2
�k

m
=

{
�k/Lm, with A = 1/

√
L;

k/2πm, with A = 1/
√

2π� .
(3.89)

As mentioned before, the normalization constant can also be chosen such that

j+(x) = |A|
2
�k

m
= 1. (3.90)

In that case, we have

A = √
m/�k. (3.91)

Hence

ϕ±(x) = 1√
�k/m

e±ikx . (3.92)
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The physical meaning that the normalization constant has in this case is rather clear.
For some calculations knowing the normalization constant is fundamental.

The current density is an important quantity in quantum transport and will be
very useful in the next chapter, where transmission and reflection coefficients will
be obtained.

3.6 Dirac’s Notation and Some Useful Relations

At various points throughout this text, we will use for compactness and simplicity
reasons the bra-ket Dirac notation. This notation is flexible and consistent. We will
show some examples. To visualize the flexible use of the Dirac notation, we will
show on the right hand side, in bra-ket notation, some expressions written at the left
hand side in the standard notation. In some cases we will indicate in a second row,
the same expression, but using an alternative bra-ket notation form. The bras 〈 f | and
the kets |g〉 are quantities with vector properties and are often referred to as state
vectors.

For continuous variable functions we have:

standard form bra-ket notation simplified notation

f (x) ⇐⇒ 〈x | f 〉 | f 〉
ϕ(r) ⇐⇒ 〈r|ϕ〉 |ϕ〉
ϕ(p) ⇐⇒ 〈p|ϕ〉 |ϕ〉

In the last row the function is in the momentum representation. Generally, one
works in the coordinates representation and the simplified notation is used without
any confusion, however if any confusion possibility exists, the specific notation must
be used. For the wave function of a free particle ϕp(x) and for the eigenfunctions
ϕn(x), we will use the following notations

standard form bra-ket notation simplified notation

ϕp(x) ⇐⇒ 〈x |ϕp〉 |ϕp〉
〈x |p〉

ϕ∗p(x) ⇐⇒ 〈ϕp|x〉 〈ϕp|
〈p|x〉

ϕn(x) ⇐⇒ 〈x |ϕn〉 |ϕn〉
〈x |n〉 |n〉

Ĥϕn(x) = Enϕn(x) ⇐⇒ Ĥ |n〉 = En|n〉
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3.6.1 General Properties of Bras and Kets

1. The bras and kets not always represent vectors. When they represent scalar
functions and an internal product 〈ψ|φ〉 is evaluated, the first factor (the bra 〈ψ|)
is the complex conjugate of the ket |ψ〉. When they represent vectors, the bra is
the transpose conjugate of the ket . The operation that transposes and conjugates,
is usually denoted with the symbol (†). Therefore, we have

|ψ〉∗ = 〈ψ| 〈ϕ|ψ〉∗ = 〈ψ|ϕ〉
|ψ〉† = 〈ψ| 〈ϕ|ψ〉† = 〈ψ|ϕ〉. (3.93)

2. The action of an operator Q̂ on a ket |ψ〉 is another ket, i.e.:

Q̂|ψ〉 = |φ〉. (3.94)

3. The product |ϕ〉〈ϕ| is an operator, the projection operator P̂ . When this operator
acts on a ket, say on the ket |ϕn〉, it produces a new ket equal to |ϕ〉 multiplied
by the internal product 〈ϕ|ϕn〉. In fact:

P̂|ϕn〉 = |ϕ〉〈ϕ|ϕn〉 = 〈ϕ|ϕn〉|ϕ〉. (3.95)

4. If |φ〉 and |ϕ〉 are two arbitrary kets and a a complex number, we have

〈φ|aϕ〉 = a〈φ|ϕ〉; 〈aφ|ϕ〉 = a∗〈φ|ϕ〉. (3.96)

5. The linear combination of kets and bras is another ket or bra and the following
properties are fulfilled

〈φ|(|ϕ1〉 + a|ϕ2〉
) = 〈φ|ϕ1〉 + a〈φ|ϕ2〉; (3.97)(〈aφ1| + b〈φ2|

)|ϕ〉 = a∗〈φ1|ϕ〉 + b〈φ2|ϕ〉. (3.98)

6. Given an operator P̂ , we have

〈α|P̂†|β〉 = (〈β|P̂|α〉)∗ = (〈β|P̂|α〉)†
. (3.99)

3.6.2 Some Useful Relations

To illustrate the use of the Dirac notation, let us present, in terms of bra-kets, some
derivations that we know in the standard notation.

1. The orthogonality condition

a. One alternative is writing
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∫
ϕ∗n′(x)ϕn(x)dx ⇐⇒

∫
〈ϕn′ |x〉〈x |ϕn〉dx

= 〈ϕn′ |
∫
|x〉〈x |dx |ϕn〉

⇐⇒ 〈ϕn′ |ϕn〉 = δn′n . (3.100)

In this expression we have used the unit operator

∫
|x〉〈x |dx = 1. (3.101)

b. Another is
∫
ϕ∗n′(x)ϕn(x)dx ⇐⇒

∫
〈n′|x〉〈x |n〉dx

= 〈n′|
∫
|x〉〈x |dx |n〉

⇐⇒ 〈n′|n〉 = δn′n . (3.102)

2. The closure property
If the unit operator of Eq. (3.101) is multiplied from the right by |x ′〉, we have

∫
|x〉〈x |x ′〉dx = |x ′〉. (3.103)

This means that

〈x |x ′〉 = δ(x − x ′). (3.104)

3. The development of the function ψ(x) in a basis and the completeness of the
basis

If we have a function ψ(x) and the basis functions ϕn(x), the development of
ψ(x) in either notation is

ψ(x) =
∑

n

cnϕn(x)⇐⇒ |ψ〉 =
∑

n

cn〈x |n〉. (3.105)

Let us now use Dirac’s notation to obtain the coefficients cn and to deduce the
completeness of the basis.

a. If we multiply the function ψ(x) from the left with ϕ∗n(x) and integrate, we
have
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∫
ϕ∗n(x)ψ(x)dx ⇐⇒ 〈n|ψ〉 =

∑
n′

cn′ 〈n|
∫
|x〉〈x |dx |n′〉

=
∑

n′
cn′ 〈n|n′〉;

〈n|ψ〉 =
∑

n′
cn′δn′n; (3.106)

which gives us, after summing, the coefficient

cn = 〈n|ψ〉. (3.107)

b. When we substitute these coefficients in (3.105) we have

|ψ〉 =
∑

n

〈n|ψ〉 |n〉 =
∑

n

|n〉〈n|ψ〉. (3.108)

The factor that multiplies |ψ〉, in the last term, must be the unity, therefore

∑
n

|n〉〈n| = 1. (3.109)

This equation expresses the completeness of the basis |n〉.

3.6.3 Momentum Representation

With the Dirac notation it is easy to visualize a change of representation, for example
from the coordinate to the momentum representation. This change of representations
is done through the Fourier transformation

f̃ (k) = 1√
2π

∞∫

−∞
eikx f (x)dx; f (x) = 1√

2π

∞∫

−∞
e−ikx f̃ (k)dk. (3.110)

Taking into account that k = p/�, it is possible to rewrite these relations in the
form

f̃ (p) = 1√
2π�

∞∫
−∞

eipx/� f (x)dx;

f (x) = 1√
2π�

∞∫
−∞

e−i px/� f̃ (p)dp. (3.111)
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Using Dirac’s notation, with 〈p|ϕ〉, for the functionϕ(p) defined in the p-space, and
〈x |ϕ〉, for the function ϕ(x) defined in the x-space, the Fourier transformation can
be written as:

〈p|ϕ〉 =
∫
〈p|x〉〈x |ϕ〉dx; 〈x |ϕ〉 =

∫
〈x |p〉〈p|ϕ〉dp; (3.112)

with

〈p|x〉 = 1√
2π�

eipx/� and 〈x |p〉 = 〈p|x〉† = 1√
2π�

e−i px/�, (3.113)

the kernels of the corresponding transformations.
Let us see now a simple example. Suppose we have the free particle function

ϕ(x) = 〈x |ϕ〉 = e−ikx/
√

2π� (3.114)

and we want to determine its transformed function 〈p|ϕ〉. The function ϕ(x) can be
rewritten in the form

ϕp′(x) = e−i p′x/�/
√

2π�. (3.115)

Notice that the p′ of this function, not necessarily is equal to p in the “transformation
kernel” 〈p|x〉, in the first equation of (3.112). If we substitute, and take into account
the second equality of (3.113), we have

〈p|ϕ〉 = 1√
2π�

∫
〈p|x〉e−i p′x/�dx =

∫
〈p|x〉〈x |p′〉dx . (3.116)

Rearranging the bras and kets in the last equality, to highlight the unit operator in
the coordinate space, we have

〈p|
∫
|x〉〈x |dx |p′〉 = 〈p|p′〉 = δ(p − p′). (3.117)

Therefore

ϕ(p) = 〈p|ϕ〉 = δ(p − p′). (3.118)

This means that a free particle, in the momentum space, is a definite momentum
pulse, whereas in the coordinate space is an extended function from −∞ to +∞.
This will be better understood with the Heisenberg uncertainty relation that will be
seen later. We postpone to Chap. 7 the discussion of eigenvalues and operators in the
momentum space.

http://dx.doi.org/10.1007/978-3-642-29378-8_7
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3.7 Solved Problems

Exercise 6 Show that a bounded one-dimensional system, described by the 1D
Schrödinger equation

− �
2

2m

d2ϕ(x)

dx2 + V (x)ϕ(x) = Eϕ(x), (3.119)

is a non degenerate system.

Solution Suppose thatϕ1(x) andϕ2(x) are two independent solutions of a degenerate
system, i.e. solutions with the same eigenvalue. If E1 = E2 = E , the following
equations should be satisfied

− �
2

2m

d2ϕ1(x)

dx2 + V (x)ϕ1(x) = Eϕ1(x), (3.120)

and

− �
2

2m

d 2ϕ2(x)

dx2 + V (x)ϕ2(x) = Eϕ2(x). (3.121)

Multiplying the first of these equations by ϕ2(x), the second by ϕ1(x), and subtract-
ing, we have

ϕ2(x)
d 2ϕ1(x)

dx2 − ϕ1(x)
d 2ϕ2(x)

dx2 = 0, (3.122)

that can be written in the form

d

dx

(
ϕ2(x)

dϕ1(x)

dx
− ϕ1(x)

dϕ2(x)

dx

)
= 0. (3.123)

This means that at any point x the function in the parenthesis is constant, i.e.

ϕ2(x)
dϕ1(x)

dx
− ϕ1(x)

dϕ2(x)

dx
= constant. (3.124)

We will show that the constant must be zero. If we find a point at which the first
member is zero, we will conclude that the constant will be zero everywhere, since it
is a constant.

We know that in a bounded system, the wave functions and their derivatives
evaluated at x = ∞ must vanish, i.e.

ϕ2(x)
dϕ1(x)

dx

∣∣∣∣
x=∞
= 0, (3.125)
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hence

ϕ2(x)
dϕ1(x)

dx
= ϕ1(x)

dϕ2(x)

dx
, (3.126)

which is satisfied if
ϕ1(x) = c ϕ2(x). (3.127)

where c is an arbitrary constant. We conclude that ϕ1(x) and ϕ2(x) are essentially
the same function. This proofs that there is no degenerate solutions in 1D bounded
systems.
Exercise 7 Show that the eigenfunctions of a bounded one-dimensional system are
real.

Solution This problem complements the previous one on non-degenerate systems.
The demonstration will use some relations found before. If we substitute ϕ2(x) by
ϕ∗1(x) in (3.123), and assume that the potential V (x) is real, we have

ϕ∗1(x)
dϕ1(x)

dx
= ϕ1(x)

dϕ∗1(x)
dx

. (3.128)

A relation that is fulfilled if ϕ1(x) is real.

Exercise 8 If a (free particle) wave function is written as

ϕ(x) = aeikx + be−ikx , (3.129)

determine the particle current density.

Solution In Sect. 3.5, we defined the current density

j(x) = i�

2m

(
ϕ

d

dx
ϕ∗ − ϕ∗ d

dx
ϕ

)
x̂. (3.130)

Using the function ϕ(x) of (3.129), we have

j(x) = i�

2m

((
a eikx + b e−ikx) (− ika∗ e−ikx + ikb∗ eikx)

−(
a∗ e−ikx + b∗ eikx) (

ika eikx − ikb e−ikx)) x̂, (3.131)

which, after some reductions becomes

j(x) = k�

2m

((
aeikx + b e−ikx) (

a∗e−ikx − b∗eikx)

−(
a∗e−ikx + b∗eikx) (− a eikx + be−ikx)) x̂. (3.132)
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It is easy to verify that this current can be written in the form

j(x) = k�

2m

((|a|2 − |b|2 − 2�e ab∗e2ikx)

−(− |a|2 + |b|2 − 2�e ab∗e2ikx)) x̂, (3.133)

which reduces to

j(x) = k�

m

(|a|2 − |b|2) x̂. (3.134)

This is a very important result that basically says that when the wave function has two
components, describing particles moving to the right and to the left, as in (3.129),
the current density at any point x , is just the difference of the respective currents.

Exercise 9 In the last example, we saw that when the wave function is given by the
combinationϕ(x) = aeikx+be−ikx , the current density is proportional to |a|2−|b|2.
It is evident that for a = ±b the current density vanishes (j(x) = 0). Based on this
example, show that: a) the current is zero when the wave function is real or pure
imaginary and b) the particle current moving to the right j+(x) and the particle
current moving to the left j−(x) are equal in magnitude but with opposite signs.

Solution When a = b, the wave function ϕ(x) becomes

ϕ(x) = a
(
eikx + e−ikx) = 2a cos kx, (3.135)

whereas if b = −a, the wave function ϕ(x) becomes

ϕ(x) = a
(
eikx − e−ikx) = 2ia sin kx . (3.136)

In both cases, j(x) = 0. We will calculate now the current associated to each com-
ponent of the wave function when b = ±a. To avoid confusion we will keep the
coefficient b and replace it by ±a at the end. The currents associated to the compo-
nents ϕ+(x) = a eikx and ϕ−(x) = be−ikx are respectively

j+(x) = i�

2m

(
ϕ+(x) d

dx
ϕ+∗(x)− ϕ+∗(x) d

dx
ϕ+(x)

)
x̂; (3.137)

and

j−(x) = i�

2m

(
ϕ−(x) d

dx
ϕ−∗(x)− ϕ−∗(x) d

dx
ϕ−(x)

)
x̂. (3.138)

Replacing ϕ+∗(x) and ϕ−∗(x) we have
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j+(x) = i�

2m

(
aeikx (−ik) a∗e−ikx − a∗e−ikx (x)(ik)aeikx

)
x̂,

= �k
m
|a|2, (3.139)

and

j−(x) = i�

2m

(
be−ikx (ik) b∗eikx − b∗eikx (x)(−ik) be−ikx

)
x̂,

= −�k
m
|b|2. (3.140)

These are the two currents contained in the expression of current density that appears
in (3.134). It is clear that when b = ±a, the currents satisfy the relation j−(x) =
−j+(x), regardless of whether b is equal to +a or −a.

3.8 Problems

1. Show that normalizing the wave function

ϕ(x) = a′eikx + b′e−ikx , (3.141)

one obtains

ϕ(x) = a Aeikx + b Ae−ikx , (3.142)

with |a|2+|b|2 = 1 and the constant A = 1/
√

L , for the normalization procedure
a la Born, or A = 1/

√
2πh, for the normalization procedure a la Dirac.

2. For the infinite quantum well in Fig. 3.5, with origin of the x-axis at the center
of the well, obtain the first four eigenfunctions. Discuss the symmetries of the
eigenfunctions and the Schrödinger equation under the parity transformation

P̂ : x �→ −x . (3.143)

3. Show that the function

ϕE (x) = 1√
π�2k/m

eikx (3.144)

satisfies the condition
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〈ϕE ′ |ϕE 〉 =
∞∫

−∞
ϕ∗E ′(x)ϕE (x)dx = δ(E − E ′),

with E = �
2k2/2m, the free particle energy.

4. Show that the wave functions in Eq. (3.68) are certainly the normalized free
particle eigenfunctions of the infinite quantum well, whose width is L .

5. If the particle is an electron in an infinite quantum well, determine the eigenvalues
of the first four levels when L = 10 nm and also when L = 20 nm and L = 5 nm.
What is the effect of increasing the width of the well and what of decreasing?

6. Draw the first four eigenfunctions for the well widths of the previous problem.
7. Show that the particle current density at any level of the infinite quantum well

is zero.
8. Determine the free particle current density if they are described by

ϕ(x) = a
eikx

√
�k/m

+ b
e−ikx

√
�k/m

.

9. If we have initially an electron in the fourth energy level of an infinite quantum
well and it makes a transition to the first level, determine the width L of the well
so that the emitted photon has wavelength λ ≈ 500 nm, and what will be the
widths if the photons have wavelengths λ ≈ 600 nm and λ ≈ 700 nm? To which
colors do these wavelengths correspond?



Chapter 4
The Tunneling Effect and Transport Properties

In this chapter we will solve the Schrödinger equation for simple one-dimensional
examples. We will show that these systems exhibit important quantum properties
like the energy quantization and the tunneling effect. The one-dimensional examples
that will be considered here are: the step potential; the finite rectangular quantum
well and the rectangular potential barrier. In these systems the potential functions
are piecewise constant, with abrupt discontinuities at two or three points. For many
years this kind of potentials were systems of academic interest and used to model real
systems, where the mathematical procedures required more involved calculations.
In the current nano-structure physics, the rectangular quantum wells and the rectan-
gular potential barriers are not any more systems of purely academic interest. The
actual semiconductor structures, contain barriers and wells (grown with atomic layer
precision), and the potential profiles “felt” by the conduction electrons and valence
band holes in LEDs,1 quantum well lasers2 and other optoelectronic devices, of
mesoscopic3 or nanoscospic4 sizes, are rather similar to those considered here and
the following chapter.

As mentioned before, the quantum wells confine. Hence, the energy of a quantum
particle in a quantum well will quantize. In this case, we will be interested in the
energy eigenvalues and the corresponding eigenfunctions. The step potential and
the potential barrier imply open systems, with only one classical turning point. In
these systems the quantum particles, approaching from the left or from the right,
will get reflected and eventually, depending on the energy, they will get transmitted.
In open systems, we will be more interested in the transport properties and in the
wave functions describing the quantum particles from−∞ to+∞. We will see that
for particles in a quantum well, with energies larger than the confining potential

1 Acronym of light emitting diode.
2 Acronym of light amplification by stimulated emission of radiation.
3 Mesoscopic refers to intermediate size systems, between the macroscopic and the atomic
dimensions. Therefore the systems are described by quantum theory.
4 Systems with dimensions of the order of 10−9 m, i.e. of a few atomic diameters.

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 61
DOI: 10.1007/978-3-642-29378-8_4, © Springer-Verlag Berlin Heidelberg 2012
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V(x)

x

Vo

0

E III

Fig. 4.1 Parameters of the step potential

depth, it will be also possible to talk of transport properties. In this chapter we
will use, systematically, the transfer matrix method and we will see that, despite
the physical differences among the quantum wells and the potential barriers, the
transition matrices that enclose the continuity conditions, can equally well be used
when we are solving their Schrödinger equations. This is one of the attractive features
of the transfer matrix method.

4.1 The 1D Step Potential

Except for the constant potential, the simplest potential profile that one can imagine
is the step potential shown in Fig. 4.1. This is essentially a constant potential with
one discontinuity point, thus, with one classical turning point. If the discontinuity is
at the origin, the potential is described by the function

V (x) =
{

0, x ≤ 0 ;
Vo, x > 0 .

(4.1)

Electrons and holes experience a change of the potential energy like that of
Eq. (4.1) when they move from one (highly doped) semiconductor to another, for
example, when the conduction band electrons reach the interface of a GaAs layer
with an AlAs layer, in the GaAs/AlAs structure. If we have a beam of particles5

with energy E , approaching the potential step from the left, we can expect different
results depending on whether the energy E is smaller or larger than the step potential
height Vo. We will discuss these cases separately.

1. When the particle’s energy is less than Vo, the Schrödinger equations in regions
I and II are, respectively,

− �
2

2m

d2 ϕI(x)

dx2 = E ϕI(x), x ≤ 0, (4.2)

5 We will systematically assume the independent particle approximation. In this approximation
the interactions among the quantum particles, are neglected. We shall also assume that quantum
solutions, according with the statistical interpretation, describe well the behavior of the beam.
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and

�
2

2m

d2 ϕII(x)

dx2 = (Vo − E)ϕII(x), x > 0. (4.3)

We will begin with Eq. (4.2). As we saw in Chap. 3 the solutions in this case are
the oscillatory functions

ϕI(x) = a1eikx + b1e−ikx , (4.4)

with k = √2m E/�2, while, the solutions of (4.3) are the exponential functions

ϕII(x) = a2eqx + b2e−qx , (4.5)

with q = √2m (Vo − E) /�2. These solutions, ϕI(x) and ϕII(x), are continuous
functions in their respective domains and they are part of the solution of the
Schrödinger equation for the step potential, which is defined from−∞ to∞. As
mentioned before, the Schrödinger equation solutions must fulfill the finiteness
and continuity requirements everywhere. Including points where the potential
function is discontinuous, like the point x = 0 of our example. At points like
this, we have to impose the continuity requirement on the wave function and on
its first order derivative.
These continuity requirements are

ϕI(0) = ϕII(0) and
dϕI(0)

dx
= dϕII(0)

dx
. (4.6)

Using the explicit forms of ϕI(x) and ϕII(x), we have

a1 + b1 = a2 + b2, (4.7)

ik(a1 − b1) = q(a2 − b2). (4.8)

We will solve these equations for two coefficients out of four. The linear combi-
nations (4.4) and (4.5) will be forced to match smoothly at x = 0. The remaining
coefficients behave as independent variables. In this problem, the first term of
ϕI(x) (i.e. the function a1eikx ), describes the incident particles. Since the inci-
dent flux can be set at will, it is natural to choose a1 as an independent vari-
able. As will be seen in the oncoming examples, the number of coefficients is
reduced by imposing additional conditions, as finiteness of the wave functions
or specific physical conditions like setting the incoming particles only from the
left or only from the right hand side. We will see, in the quantum well prob-
lem, that the energy quantization emerges from the fulfillment of the confining
requirements. In the step potential problem, the finiteness problem is an issue to
take care. Indeed, if we look at (4.5), we have two exponential functions and one
of them diverges when x → ∞. To prevent this singularity, we choose a2 = 0.

http://dx.doi.org/10.1007/978-3-642-29378-8_3
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But we will not make this coefficient zero right now. We will keep it, temporar-
ily. We need first to express all coefficients on the right side of the discontinuity
point in terms of those on the left. In this case, the coefficients a2 and b2 in terms
of a1and b1. Multiplying (4.7) by q and summing or subtracting with (4.8), we
obtain

a2 = 1

2q
(q + ik) a1 + 1

2q
(q − ik) b1, (4.9)

b2 = 1

2q
(q − ik) a1 + 1

2q
(q + ik) b1. (4.10)

At this point we can introduce the matrix representation and define the transfer
matrix. In this problem, one can not yet perceive any advantage of using this
representation. On the contrary, the student may feel that it distracts the calculation
procedure. The advantages will be recognized later, dealing with slightly more
complex systems. We introduce the matrix representation when we write the
continuity conditions (4.9) and (4.10) in the form

(
a2
b2

)
= 1

2q

(
q + ik q − ik
q − ik q + ik

)(
a1
b1

)
. (4.11)

In this representation, the coefficients

(
a1
b1

)
and

(
a2
b2

)
are nothing else than the

state vectors

φI(x) =
(

a1eikx

b1e−ikx

)
and φII(x) =

(
a2eqx

b2e−qx

)
, (4.12)

evaluated at x = 0− ε ≡ 0− and at x = 0+ ε ≡ 0+, respectively. The matrix

1

2q

(
q + ik q − ik
q − ik q + ik

)
≡ M(0+, 0−), (4.13)

connects the physics on the left side of the discontinuity point with the physics on
the right hand side of this point. This matrix captures the continuity requirements
at x = 0. In a compact notation, we write (4.11) also as

φI(0
+) = M(0+, 0−)φI(0

−). (4.14)

The matrix M(0+, 0−) is a specific example of a transfer matrix M(x2, x1), that
fulfills in general a relation like
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φ(x2) = M(x2, x1)φ(x1) =
(
α β
γ δ

)
φ(x1), (4.15)

that connects the state vectors φ(x1) and φ(x2) at any two points x1 and x2.
A matrix like M(0+, 0−), defined for two points, infinitesimally close to the
discontinuity point, will be called transition matrix. We will see later that the
same transition matrix will appear each time that the potential energy changes
from V1 to V2 = V1 + Vo. We have this kind of changes in piecewise constant
potential systems like the rectangular quantum well and the potential barrier.
Let us now turn back into the step potential problem and recall that to prevent
divergency at x = ∞we have to make the coefficient a2 zero. This leaves us with

(
0
b2

)
= 1

2q

(
q + ik q − ik
q − ik q + ik

)(
a1
b1

)
, (4.16)

where a1 is the natural candidate for playing the role of an independent variable.

If we multiply the matrix times the state vector φI(0−) =
(

a1
b1

)
, on the right

hand side, we find in the first place that

(q + ik)a1 + (q − ik)b1 = 0, (4.17)

which gives

b1 = −q + ik

q − ik
a1. (4.18)

This coefficient multiplies the wave function e−ikx , which describes particles
moving to the left of the step, and defines the amplitude of the reflected particles.
Since the factor that multiplies the coefficient a1 in (4.18) is a complex number
with magnitude 1, we can state that, for energies E less than Vo, all particles
moving towards the step potential get reflected. If that is the case, what do we
have on the right side? To understand fully the physics of the step potential, for
energies E less than Vo, we still need to determine b2. Multiplying the second
row of the transition matrix with the state vector φI(0−), we have

b2 = 1

2q

(
(q − ik)a1 + (q + ik)b1

)
. (4.19)

Using here the coefficient b1 from (4.18), we obtain

b2 = 1

2q

(
(q − ik)a1 − (q + ik)

q + ik

q − ik
a1

)
, (4.20)

that can also be written as
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b2 = − 2ik

q − ik
a1 = − 2ik

q2 + k2 (q + ik) a1. (4.21)

What are the implications of these results? If we use b1 in the wave function of
Eq. (4.4), we have

ϕI(x) = a1eikx − q + ik

q − ik
a1e−ikx (4.22)

Since the amplitude of the complex number (q + ik)/(q − ik) is 1, it can be
written as

q + ik

q − ik
= ei2θ, with θ = tan−1 k

q
, (4.23)

the wave function ϕI(x), on the left side of the step potential, becomes

ϕI(x) = a1eikx − a1ei2θe−ikx . (4.24)

This function can also be written as follows

ϕI(x) = a1eiθ
(

e−iθeikx − eiθe−ikx
)

. (4.25)

If we define a new constant, say a = −2ia1eiθ, the solution in region I takes the
form

ϕI(x) = −a sin(kx − θ). (4.26)

This is a stationary function whose current density is zero (see the illustrative
problem 3.2). This shows that for E < Vo the current density towards the right
is equal to the current density towards the left. In this system the whole flux that
reaches the step potential gets reflected. What will we have then for the wave
function ϕII(x), defined for x > 0? In this region a2 = 0 and b2 can be written as

b2 = − 2ik√
q2 + k2

eiθa1. (4.27)

If we use the constants defined before, we have

ϕII(x) = a
k√

q2 + k2
e−qx . (4.28)

This is a function whose amplitude decreases exponentially with x , as shown in
Fig. 4.2 (note that for x >> 0 the flat line has zero amplitude). The oscillating
function matches perfectly with the decaying exponential function at x = 0.
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Fig. 4.2 The wave function
at the left and right sides of
the discontinuity point, for
energies E < Vo

According to (4.28) the probability |ϕII(x)|2 of finding the particle at a point x
within the step potential is proportional to e−2qx and is different from zero. A result
like this, for particles with mass, is impossible to meet in the classical physics for
particles with mass. The penetration depth in the step potential is proportional to

1/q ≈ �/

√
2m
(
Vo − E

)
and becomes infinite when E = Vo. To conclude this

part, it is important to emphasize that in the step potential problem there is no
energy quantization (the potential has a single return point) and the solutions are
propagating wave functions in region I, and evanescent (exponentially decreasing)
functions in region II. Let us now consider the other case.

2. When E > Vo, the differential equations on the left and the right hand sides
of the discontinuity point are similar and both have propagating wave solutions.
For region I we have exactly the same differential equation as before, but since
the differential equation on the right hand side changes, we will have different
coefficients, thus, different physics. The differential equation for x > 0 is now

− �
2

2m

d2ϕII(x)

dx2 = (E − Vo
)
ϕII(x), for x > 0, (4.29)

with (E − Vo) > 0. Our solutions are now

ϕI(x) = a1eik1x + b1e−ik1x , (4.30)

and

ϕII(x) = a2eik2x + b2e−ik2x , (4.31)

with k1 =
√

2m E/�2 and k2 =
√

2m
(
E − Vo

)
/�2. With these solutions there is

no divergency risk and it makes no sense to impose a finiteness condition. It is clear
that, in principle, we can have particles approaching the discontinuity point from
the left or from the right, and their flux amplitudes depend on the coefficients a1
and b2. Without loss of generality, we can assume that particles come towards the
discontinuity point only from the left. If this is the case, it is not physically possible
to have, on the right hand side, particles moving towards the left. Therefore, the
second term in (4.31) must vanish. This means that b2 should be zero. Before
making this coefficient zero, we will impose the continuity conditions

ϕI(0) = ϕII(0) and ϕ′I(0) = ϕ′II(0), (4.32)
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that lead us to

a1 + b1 = a2 + b2, (4.33)

ik1(a1 − b1) = ik2(a2 − b2). (4.34)

We write these equations, in the matrix representation, as

(
a2
b2

)
= 1

2k2

(
k2 + k1 k2 − k1
k2 − k1 k2 + k1

)(
a1
b1

)
. (4.35)

Here the transition matrix differs slightly from the transition matrix in (4.11). The
wave number q, there, is here replaced by ik2. If we now make b2 = 0, we have

(
a2
0

)
= 1

2k2

(
k2 + k1 k2 − k1
k2 − k1 k2 + k1

)(
a1
b1

)
. (4.36)

This leads us, after multiplying the matrix rows with the state vector, to

1

2k2
(k2 − k1) a1 + 1

2k2
(k2 + k1) b1 = 0, (4.37)

that allows us to obtain the coefficient

b1 = k1 − k2

k1 + k2
a1 < a1, (4.38)

and, on the other hand, to

a2 = 1

2

(
1+ k1

k2

)
a1 + 1

2

(
1− k1

k2

)
b1, (4.39)

that, using b1 from (4.38), becomes

a2 = 1

2

(
1+ k1

k2

)
a1 − 1

2

(
1− k1

k2

)
k2 − k1

k2 + k1
a1. (4.40)

This equation can be simplified, and takes the form

a2 = 2k1

k1 + k2
a1. (4.41)

In this way, given b1 and a2, we can finally write the solutions in regions I
and II as

ϕI(x) = a1eik1x + a1
k1 − k2

k1 + k2
e−ik1x , (4.42)
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and as

ϕII(x) = a1
2k1

k1 + k2
eik2x , (4.43)

respectively. These functions describe all particles, the incident, reflected and
transmitted ones. The first term of ϕI(x) describes the incoming particles, the
second term describes the fraction of the particles that gets reflected by the step
potential, and the function ϕII(x) describes the fraction of particles that gets
transmitted. Using these functions, one can easily evaluate the incident, reflected
and transmitted currents

jinc =
�k1|a1|2

m
x̂,

jrefl = − �k1|a1|2
m

(
k1−k2

k1+k2

)2

x̂, (4.44)

jtrans= �k2|a1|2
m

(
2k1

k1+k2

)2

x̂.

Notice that the reflected and transmitted currents are proportional to the incident
current �k1|a1|2/m. We can also observe from these results that when the height
of the potential step Vo → 0 (which means k1 � k2) the reflected current tends
to 0, and the transmitted current becomes equal to the incident current. We found
here that, for energies larger than the step potential height, the wave functions at
the left and right hand sides of the discontinuity point are propagating functions.
To understand the meaning of these solutions, it is convenient to introduce the
reflection and the transmission coefficients. One way to define these coefficients
is as follows:

R = |jrefl|
|jinc| =

(
k1 − k2

)2
(
k1 + k2

)2 and T = |jtrans|
|jinc| =

4k1k2(
k1 + k2

)2 . (4.45)

These coefficients fulfill an important property: the flux conservation principle.
This principle states that, when the flux of particles is conserved, we must have

R + T = 1. (4.46)

It is easy to verify that this requirement is fulfilled by the reflection and transmis-
sion coefficients, R and T , defined in (4.45).

The transmission and reflection coefficients are important quantities in the analy-
sis of transport properties through potential regions. These coefficients are closely
related to the reflection and the transmission amplitudes (r and t) of scattering the-
ory. To introduce the basic concepts of the scattering theory and to understand the
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x1 x2

V(x)ϕil

ϕol =r ϕil + t´ ϕir

ϕor =r´ϕ ir + tϕil

ϕ ir

Fig. 4.3 The incident and the scattered (reflected and transmitted) waves by a potential function
V (x)

relation between the “scattering” amplitudes and the transfer matrix elements, we
will make, in the next section, a brief digression.

4.2 Scattering Amplitudes and the Transfer Matrix

An alternative description of the transport phenomenon is possible using the physical
quantities and concepts of the scattering theory. In this approach, the physics of
particles moving across a potential region V (x) is visualized as a scattering process
with incoming and outgoing particles (towards and from) the scattering region. The
wave functions describing outgoing particles are related, through a scattering matrix
S, with those describing incoming particles. If we have the scattering process shown
in Fig. 4.3, the incoming particles, from the left and right sides, are described by
ϕil(x1) and by ϕir (x2), and the outgoing particles by ϕol(x1) and ϕor (x2). Because
of the interaction potential V (x), part of the incoming particles are transmitted and
part reflected. Using r and t to represent the reflected and transmitted amplitudes,
when particles come from the left, and r ′ and t ′, when particles come from the right,
the outgoing functions on the left and right sides can be written as

ϕol = r ϕil + t ′ϕir , (4.47)

ϕor = t ϕil + r ′ϕir . (4.48)

In a matrix representation we have

(
ϕol(x1)

ϕor (x2)

)
=
(

r t ′
t r ′

)(
ϕil(x1)

ϕir (x2)

)
= S

(
ϕil(x1)

ϕir (x2)

)
, (4.49)

Here S is the scattering matrix, the vectors

(
ϕil(x1)

ϕir (x2)

)
and

(
ϕol(x1)

ϕor (x2)

)
represent

the incoming- and outgoing-particle amplitude, φi and φo, respectively. When the
norm of the incoming-particles amplitude is preserved, we have
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φ†
i φi = φ†

oφo = φ†
i S†Sφi , (4.50)

which means that the scattering matrix S is a unitary matrix that fulfils the condition

S†S = I, (4.51)

where I is the unit matrix. Thus

|r |2 + |t |2 = 1, |r ′|2 + |t ′|2 = 1 and

(
t

r

)∗
= − t ′

r ′
. (4.52)

With the wave functions ϕil(x1) and ϕol(x1) on the left side of the scattering
region, and the wave functions ϕir (x2) and ϕor (x2) on the right side, we can define
the state vectors

φ(x1) =
(
ϕil(x1)

ϕol(x1)

)
and φ(x2) =

(
ϕor (x2)

ϕir (x2)

)
, (4.53)

at x1 and x2, respectively, and put them in a relation like this

(
ϕor (x2)

ϕir (x2)

)
=
(
α β
γ δ

)(
ϕil(x1)

ϕol(x1)

)
= M(x2, x1)

(
ϕil(x1)

ϕol(x1)

)
, (4.54)

where M(x2, x1) is the transfer matrix that connects the state vector at x1 with the
state vector at x2. The transfer matrix M(x2, x1) behaves as a propagator of the
physical information from one point to another.

The scattering matrix S and the transfer matrix, have among them a simple and
well defined relation. Indeed, if we combine (4.49) and (4.54), one can easily obtain
the following relations

(α+ βr − t)ϕil(x1) = (r ′ − βt ′)ϕir (x2), (4.55)

and

(γ + δr)ϕil(x1) = (1− δt ′)ϕir (x2). (4.56)

Since ϕil(x1) and ϕir (x2) are linearly independent functions, we have

α+ βr − t = 0, r ′ − βt ′ = 0,

γ + δr = 0, 1− δt ′ = 0. (4.57)

We can then solve for the scattering amplitudes

t = α− β 1

δ
γ, r = −1

δ
γ, t ′ = 1

δ
and r ′ = β 1

δ
. (4.58)
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or for the transfer matrix elements

α = t − r ′ 1
t ′

r, β = r ′ 1
t ′

, γ = 1

t ′
r and δ = 1

t ′
. (4.59)

In the particular case of incidence from the left side only, the reflected and transmitted
functions can be written as

ϕrefl = rϕinc and ϕtrans = tϕinc, (4.60)

and the reflected and transmitted current densities take the form

jrefl = |r |2 jinc and jtrans = |t |2 jinc. (4.61)

For most of the systems of interest, the interactions are invariant under time
reversal. In this case (see appendix A) γ = β∗ and δ = α∗ and the scattering matrix
is symmetric. Hence, when flux is conserved and the system is time reversal invariant,
the transfer matrix M becomes unimodular (detM = 1), and

t = 1

α∗
and r = −β

∗

α∗
. (4.62)

These are important and simple relations. It is then clear that once we have the
transfer matrix, we can immediately evaluate not only the transmission and reflection
amplitudes, but also the transmission and reflection coefficients. In fact, if we consider
the transmission and reflection coefficient, defined in (4.45) in terms of the incident,
transmitted and reflected current densities, we have

T = |jtrans|
|jinc| = t t∗ = 1

|α|2 and R = |jrefl|
|jinc| = rr∗ = |β|

2

|α|2 . (4.63)

It is important to notice and to keep clear the relation and difference between (trans-
mission and reflection) coefficients and (transmission and reflection) amplitudes.6

This possibility of easy and straightforward calculation of transport properties is one
of the advantages of the transfer matrix representation. We will find other properties.
Let us mention just a couple of them.

A property that makes the transfer matrix extremely useful is the composition rule
of two matrices

M(x3, x1) = M2(x3, x2)M1(x2, x1), (4.64)

which is called the multiplicative property of transfer matrices. Using this property
one can build up transfer matrices for almost any potential profile. We will use

6 It is worth noticing also that while the transmission and reflection coefficients are real quantities,
the transmission and reflection amplitudes are complex, in general.
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this property in the piecewise constant potential systems, and in evaluating wave
functions.

Some times we need to connect state vectors at two points of a constant potential
region. In this case, the transfer matrix takes a simple form. Suppose that x1 and x2
are points of this type, with state vectors

(
aeikx2

be−ikx2

)
and

(
aeikx1

be−ikx1

)
. (4.65)

Notice that the coefficients a and b are the same because the differential equation is
the same at x1 and at x2. Thus, we can relate these state vectors as follows:

(
aeikx2

be−ikx2

)
=
(

eik(x2−x1) 0
0 e−ik(x2−x1)

)(
aeikx1

be−ikx1

)
(4.66)

The matrix that connects state vectors at two points of a constant potential region, is
diagonal and carries on the phase evolution of the exponential functions. When the
solutions in the constant potential region are propagating functions, like in the free
particle case mentioned in Chap. 3, the transfer matrix is

Mp(x2, x1) =
(

eik(x2−x1) 0
0 e−ik(x2−x1)

)
, (4.67)

and, when the solutions are exponential functions, we have

(
aeqx2

be−qx2

)
=
(

eq(x2−x1) 0
0 e−q(x2−x1)

)(
aeqx1

be−qx1

)
. (4.68)

Hence

Mp(x2, x1) =
(

eq(x2−x1) 0
0 e−q(x2−x1)

)
. (4.69)

In the following sections, we will need and use these type of phase-propagating
transfer matrices.

4.3 The Rectangular Potential Barrier

Let us now consider the rectangular potential barrier shown in Fig. 4.4. This potential
energy corresponds to

V (x) =
{

0, x ≤ 0, x ≥ b;
Vo, 0 < x < b.

(4.70)

http://dx.doi.org/10.1007/978-3-642-29378-8_3
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Fig. 4.4 The rectangular
potential barrier, its potential
parameters and the propagat-
ing solutions at the left and
right

As mentioned before, a potential profile like this was used to model repulsive poten-
tials. The rectangular potential barrier is easy to solve and gives rise to important
qualitative results, characteristic of quantum behavior. It will, in particular, make
clear one of the most striking and significant quantum phenomena, the tunneling
effect. The actual potential barriers and wells in metals, semiconductors and insula-
tors appear in an inexhaustible variety of shapes. Even if one assumes the effective
mass approximation within a layer of metal or semiconductor,7 we can not avoid for
the conduction band electrons, in layered structures, the strong effect of repulsive and
attractive potentials as they pass from one medium to another. If, for example, on top
of a Ga As substrate one grows a layer of Ga1−x Alx As with thickness b and on top of
this a layer of Ga As, the conduction band edge of the Ga As/Alx Ga1−x As/Ga As
heterostructure will have (in the effective mass approximation) a potential profile
that looks like a rectangular potential barrier. In this type of systems the height Vo

depends essentially on the energy gaps8 of the alternating semiconductor layers. In
our example, it depends on the Aluminum concentration x and on the Ga As energy
gap Eg (�1.5 eV). For a concentration of �30 %, the barrier height Vo is �0.23 eV.

We will solve the Schrödinger equation for the rectangular barrier, first, when the
incident particle’s energy E is less than Vo and, then, when it is greater than Vo. We
will study these cases separately. To simplify the discussion of this problem we will
assume, without loss of generality, that the incoming particles approach the potential
barrier only from the left side.

In this problem, and in the oncoming piecewise constant potential problems, the
differential equations are similar to those of the step potential. To avoid repetitions,
we will use results already known, whenever it will be possible.

1. If E < Vo, we can immediately write down the Schrödinger equations and the
corresponding solutions in each of the three regions that naturally we have in the
potential domain. In regions I and III, the Schrödinger equation has the form

− �
2

2m

d 2 ϕ(x)

dx2 = E ϕ(x). (4.71)

7 Because of the periodic potential and the tunneling phenomenon, electrons and holes in metals
and semiconductors behave as if they will be moving in a constant potential but with a different
mass. The effective mass.
8 The energy gap Eg is the distance between the upper edge of the valence band and the lower edge
of the conduction band. A gap of forbidden levels opens, generally, in a periodic system.
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This is the same as in (4.2). Thus, the solutions are the wave functions9

ϕI(x) = a1eikx + b1e−ikx , for x ≤ 0, (4.72)

and

ϕIII(x) = a3eikx + b3e−ikx , for x ≥ b, (4.73)

with k = √2m E/�2. In region II the Schrödinger equation is

�
2

2m

d 2 ϕII(x)

dx2 = (Vo − E
)
ϕII(x). (4.74)

This equation coincides with (4.3), therefore, the solution is

ϕII(x) = a2eqx + b2e−qx , for 0 < x < b, (4.75)

with q = √2m(Vo − E)/�2. Functions (4.72), (4.73) and (4.75) are formal solu-
tions of the differential equations. We have still the problem of determining the
coefficients ai and bi . They are generally obtained with the help of the fulfill-
ment of continuity and boundary conditions. Once the coefficients are fixed and
the continuity and physical conditions are imposed, the wave functions ϕi (x),
take a specific form and will become the actual solutions of the potential-barrier
Schrödinger equation. Only then, we will be able to describe the physics of the
quantum particles in the presence of the rectangular potential barrier.
Let us now consider the continuity conditions at x = 0 and x = b. From the
continuity requirements at x = 0, we have

a1 + b1 = a2 + b2, (4.76)

ik(a1 − b1) = q(a2 − b2). (4.77)

and from the continuity requirements at x = b, we have

a2eqb + b2e−qb = a3eikb + b3e−ikb, (4.78)

q
(
a2eqb − b2e−qb) = ik

(
a3eikb − b3e−ikb). (4.79)

These equations allow us to obtain four coefficients out of six. In an open system
like the potential barrier, the wave functions with coefficients a1 and b3 describe
particles approaching the barrier from the left and from the right hand side, respec-
tively. These amplitudes depend on the experimental set up, and can be fixed at
will. For example, if we fix the experimental set up with incident particles coming
only from the right hand side, we have to choose a1 = 0. If we fix instead the

9 In this text, we refer to these solutions as wave functions because we have in mind that they come
always multiplied by the time dependent function e−iωt .
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Fig. 4.5 The transfer matrix
Ml connects state vectors at
the left and right of x = 0,
and the transfer matrix Mr
connects state vectors at the
left and right of x = b

Fig. 4.6 Here the transfer
matrix Mp connects the state
vectors at the right of x = 0
with the state vectors at the
left of x = b

experimental set up with incoming particles only from the left side, we have to
choose b3 = 0. Therefore, a1 and b3 play the role of independent parameters
and one searches to express the other coefficients as functions of a1 and b3. The
algebraic substitutions that we need to solve this kind of problems grow geomet-
rically with the number of equations and become unmanageable. We will see that
using the transfer matrix, the algebraic manipulation will diminish drastically.

4.3.1 Transfer Matrix of the Rectangular Potential Barrier

As in the step potential problem, the continuity relations (4.77)–(4.79) at x = 0 and
x = b, can be written in the compact forms

(
a2
b2

)
= 1

2q

(
q + ik q − ik
q − ik q + ik

)(
a1
b1

)
= Ml(0

+, 0−)

(
a1
b1

)
; (4.80)

and
(

a3eikb

b3e−ikb

)
= 1

2k

(
k − iq k + iq
k + iq k − iq

)(
a2eqb

b2e−qb

)
= Mr (b

+, b−)

(
a1
b1

)
.

(4.81)
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In Fig. 4.5, we sketch the connections established with the transfer matrices Ml

and Mr . It is clear that a third matrix Mp is lacking. We need to connect, as shown in
Fig. 4.6, the state vector at x = 0+ ε = 0+ with the state vector at x = b− ε = b−,
where ε is an infinitesimally small increment. This connection is done by the matrix
Mp. To obtain this matrix, we observe that

(
a2eqb

b2e−qb

)
=
(

eqb 0
0 e−qb

)(
a2
b2

)
, (4.82)

thus

Mp(b
−, 0+) =

(
eqb 0
0 e−qb

)
. (4.83)

Having this matrix, we are able to establish the relation

φIII(b
+) = Mb(b

+, 0−)φI(0
−). (4.84)

with

Mb(b
+, 0−) = Mr (b

+, b−)Mp(b
−, 0+)Ml(0

+, 0−). (4.85)

Notice that Mp(b−, 0+) is a particular case of the transfer matrix (4.69), mentioned
at the end of the last section. Replacing (4.80), (4.81) and (4.83) in (4.85), we have

Mb(b
+, 0−) = 1

4qk

(
k − iq k + iq
k + iq k − iq

)(
eqb 0
0 e−qb

)(
q + ik q − ik
q − ik q + ik

)
.

(4.86)

Each matrix in this sequence plays a role in carrying the physical information from
the left side to the right, across the barrier. Multiplying matrices and simplifying we
have, finally, the transfer matrix of the rectangular potential barrier

Mb(b
+, 0−)=

⎛
⎜⎜⎝

cosh qb + i
k2 − q2

2qk
sinh qb −i

k2 + q2

2qk
sinh qb

i
k2 + q2

2qk
sinh qb cosh qb − i

k2 − q2

2qk
sinh qb

⎞
⎟⎟⎠ .

(4.87)

This is a bona fide transfer matrix that behaves as a propagator of the physical
information across the barrier, from 0− to b+. Notice that these points are outside
the barrier.
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In the transfer matrix formalism, this is an important result of frequent reference.
For convenience and compactness we denote this matrix as

Mb(b, 0) =
(
αb βb

β∗b α∗b

)
, (4.88)

with

αb = cosh qb + i
k2 − q2

2qk
sinh qb,

βb = −i
k2 + q2

2qk
sinh qb. (4.89)

The structure of the matrix reflects, as mentioned before, the time reversal invari-
ance symmetry of the potential barrier. Using this compact notation, we can write
(4.83) as

(
a3eikb

b3e−ikb

)
=
(
αb βb

β∗b α∗b

)(
a1
b1

)
. (4.90)

In the transfer matrix we have all the physical information of the quantum particles
and the potential function. We will use now the transfer matrices obtained in this
section not only to define the wave functions, but also to obtain other results. Using
Mb and the relation of this matrix with the scattering amplitudes rb and tb, we will
obtain some transport properties like the transmission and reflection coefficients.

One can easily verify that the transition matrix in (4.81) is the inverse of the
transition matrix in (4.80).

In the following we will avoid heavy notation and we will try to use a notation as
light as possible. In fact, if we have to evaluate, say the function f (x), at a ± ε with
ε→ 0, we will denote it as f (a±) or just as f (a).

4.3.2 The Wave Functions in the Rectangular Potential Barrier

An important part of our objectives, solving the Schrödinger equation and deriving
the transfer matrices, is to obtain the wave function, defined from −∞ to +∞. Our
purpose in this section is to determine this wave function using the results obtained
so far, especially the transfer matrix Mb. If we assume that the incident particles
approach the potential barrier only from the left, we must have b3 = 0, and (4.90)
transforms into

(
a3eikb

0

)
=
(
αb βb

β∗b α∗b

)(
a1
b1

)
. (4.91)
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Fig. 4.7 Wave functions along the potential barrier and the tunneling effect. In the figure on the
left, the wave function is plotted for E = 0.18 eV (< Vo = 0.23 eV) and, on the right the wave
function amplitude is plotted for E = 0.28 eV (> Vo). The potential widths in the left and right
figures are b = 6 nm and b = 20 nm, respectively. Notice that in the left figure, part of the incoming
flux transmits through the barrier, even though the energy is below the barrier height. This is the
tunneling effect

Multiplying, on the right hand side, we have

b1 = −β
∗
b

α∗b
a1, (4.92)

and

a3 =
(
αb − βb

β∗b
α∗b

)
a1e−ikb = 1

α∗b
a1e−ikb, (4.93)

where the flux conservation requirement αbα
∗
b − βbβ

∗
b = 1 was used (see problem

4.3). With these coefficients we practically have the wave function. With b1 we have
the reflected fraction of the incident wave function, and with c3 the transmitted part
of the incident wave function. These coefficients are compatible with the reflection
and transmission amplitudes r = −β∗/α∗ and t = 1/α∗, derived in Sect. 4.2. If we
substitute b1 in (4.72), we obtain the wave function on the left side of the barrier as

ϕI(x) = a1eikx − β∗b
α∗b

a1e−ikx , for x ≤ 0. (4.94)

If we replace a3 of (4.93) in the wave function ϕIII(x), we have the transmitted
wave function

ϕIII(x) = 1

α∗b
a1eik(x−b) with x ≥ b. (4.95)

To obtain the wave function in the barrier we use
(

a2eqx

b2e−qx

)
=
(

eqx 0
0 e−qx

)(
a2
b2

)
. (4.96)
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together with (4.80). After replacing the coefficients b1, we have

ϕII(x) = a1

[(
1− β∗b

α∗b

)
cosh qx + i

k

q

(
1+ β∗b

α∗b

)
sinh qx

]
. (4.97)

In the left part of Fig. 4.7, we plot the absolute value of the wave functions given
in (4.94), (4.95) and (4.97), when the energy is E = 0.18 eV. In the right part of
this figure, we plot also the absolute value of the wave function when the energy
is larger than Vo, using results that will be obtained below. It is important to notice
that even though the energy is less than the potential height, we have a nonzero
transmitted wave function. This property is related with the tunneling effect and
with the penetration depth in the step potential.

4.3.3 Reflection and Transmission Coefficients for Rectangular
Potential Barriers

Before obtaining the transmission and reflection coefficients, we recall that b1 and
a3 can also be written as

b1 = ra1 and a3 = ta1e−ikb. (4.98)

Hence, the wave functions ϕI(x) and ϕIII(x), in (4.94) and (4.95), take the form (for
a1 = 1)10

ϕI(x) = eikx + r e−ikx for x ≤ 0;
ϕIII(x) = t eik(x−b) for x ≥ b. (4.99)

It is clear from these expressions the role played by the reflection and the transmission
amplitudes. Since

T = t t∗ and R = rr∗, (4.100)

we can immediately write down the transmission and reflection coefficients of the
rectangular potential barrier. We have for the transmission coefficient the following
expression

T = 1

|αb|2
= 1∣∣∣∣cosh qb + i

k2 − q2

2qk
sinh qb

∣∣∣∣
2 , (4.101)

while for the reflection coefficient we have

10 This selection of the incident amplitude does not affect the subsequent results.
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Fig. 4.8 The transmission
coefficient as function of the
energy for a potential bar-
rier with Vo = 0.23 eV and
b = 6 nm. It can be seen
that transmission does not
vanish for energies below the
potential height Vo. The trans-
mission coefficient oscillates
for energies greater than Vo
and becomes 1 only for some
values of the energy
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R =
∣∣β∗b
∣∣2

∣∣α∗b
∣∣2 =

(
−k2 + q2

2kq
sinh qb

)2

T . (4.102)

These results, and, in particular the wave functionϕIII(x) in (4.99), exhibit an impor-
tant difference with the classical physics description. While in classical physics the
probability of finding a particle on the other side of the barrier for energies smaller
than the barrier height is null, in the quantum description this kind of particles can
tunnel through the barrier and then appear on the other side of the potential barrier
with a probability given by

|ϕIII(x)|2x=b =
|a1|2∣∣α∗b
∣∣2 = |a1|2 T, (4.103)

different from zero, proportional to the transmission coefficient T . This phenomenon
is the tunneling effect, mentioned before. It is a characteristic property of the quantum
behavior. Starting from the transmission coefficient (4.101), it is possible to show
that, in the limit qb � 1, the leading order term is

T ∼= e−
2b
�

√
2m(Vo−E). (4.104)

The transmission probability tends to 1 when the energy approaches Vo and decreases
exponentially to zero when the product Vob2 grows.

In Fig. 4.8 we plot the transmission coefficient T of Eq. (4.101) as a function of
the energy for Vo = 0.23 eV and b = 6 nm. Notice that for energies below Vo the
transmission probability is small but different from zero.

The transmission coefficient in (4.101) was obtained for energies below the poten-
tial height. In principle this formula is valid only for E < Vo, however, if the plotting
program used can handle the analytical continuation11 one can extend the domain of
application of this equation for energies larger than Vo.

11 In this case, it means using the identities cosh i x = cos x and sinh i x = i sin x .
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We will study now the potential barrier for energies larger than Vo and will derive
the transmission coefficient for E > Vo and explain the resonant behavior in the
high energies region.

2. If we have E > Vo, the solutions of the Schrödinger equation are:

ϕI(x) = a1eik1x + b1e−ik1x , for x ≤ 0; (4.105)

ϕII(x) = a2eik2x + b2e−ik2x , for 0 < x < b; (4.106)

ϕIII(x) = a3eik1x + b3e−ik1x , for x ≥ b. (4.107)

Here k1 =
√

2m
�2 E and k2 =

√
2m
�2 (E − Vo). The only change that we have, compared

with the solutions for E < Vo is in ϕII(x). As in the step potential problem, this
solution becomes an oscillatory function. All the expressions derived for the case
E < Vo, will then have the wave number q replaced by ik2. Taking into account this
change, the transfer matrix of Eq. (4.87) becomes

Mb(b
+, 0−) =

⎛
⎜⎜⎝

cos k2b + i
k2

1 + k2
2

2k1k2
sin k2b −i

k2
1 − k2

2

2k1k2
sin k2b

i
k2

1 − k2
2

2k1k2
sin k2b cos k2b − i

k2
1 + k2

2

2k1k2
sin k2b

⎞
⎟⎟⎠ .

(4.108)

The hyperbolic functions become trigonometric functions. Therefore, the transmis-
sion coefficient, for energies above the barrier, is

T = 1∣∣∣∣∣cos k2b + i
k2

1 + k2
2

2k1k2
sin k2b

∣∣∣∣∣
2 . (4.109)

This function can also be written in the form

T = I

1+ (k2
1 − k2

2)2

4k2
1k2

2

sin2 k2b

. (4.110)

This result explains the oscillating behavior of the transmission coefficient in Fig. 4.8
for energies above the barrier height. It is clear that whenever the oscillating function
sin k2b vanishes, the transmission coefficient T reaches its maximum value 1. The
energies for which this phenomenon occurs are the resonant energies, and they are
given by

El = �
2l2π2/2mb + Vo, with l integer. (4.111)
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Fig. 4.9 Potential well with
finite depth Vo and width a

Fig. 4.10 The eigenfunctions
ϕi in a finite potential well
penetrate the walls and decay
exponentially

0 a=5 x[nm]

Vo

V(x)

These resonant energies should not be confused with energy eigenvalues. Recall that
in this problem there is no energy quantization.

4.4 The Rectangular Potential Well

Another solvable and widely used system is the finite rectangular potential well.
In Fig. 4.9 we have one example of this kind of systems. If we have a quantum
particle in a potential well, we expect a rather different behavior from what we had
in the potential barrier. When the energy is less than Vo, we have a confined or
trapped particle whose energy quantizes. The potential function that corresponds to
this system is

V (x) =
{

Vo, x ≤ 0, x ≥ a;
0, 0 < x < a.

(4.112)

Potential energies like this, are found for electrons in the conduction (or holes
in the valence) band of a semiconductor heterostructure like12 Ga1−x Alx As /Ga As /
Ga1−x Alx As . The quantum wells have a wide range of applications, in particular in
optoelectronic devices.13 To study this system, it is also convenient to analyze the
case of energy less than Vo and, separately, the case of energy greater than Vo.

12 This is true in the effective mass approximation.
13 In a quantum well laser the confined electrons of the conduction band recombine with confined
holes of the valence band, emitting a photon whose energy hν depends on the difference of the
electron and hole energies.
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1. When 0 < E < Vo, the solutions of the Schrödinger equation in regions I, II and
III are, respectively,

ϕI(x) = a1eqx + b1e−qx , for x ≤ 0,

ϕII(x) = a2eikx + b2e−ikx , for 0 < x < a, (4.113)

ϕIII(x) = a3eqx + b3e−qx , for a ≤ x .

with q = √2m(Vo − E)/�2 and k = √2m E/�2. Now, the solutions in regions
I and III are exponential functions, and oscillating functions in region II. Since
the wave functions ϕI(x) and ϕIII(x) diverge when x → −∞ and x → ∞,
respectively, we have to choose b1 = a3 = 0. But we will, temporarily, retain all
the coefficients and once the transfer matrix of the quantum well is obtained we
will make b1 = a3 = 0.

4.4.1 Continuity and the Transfer Matrix of the Rectangular
Potential Well

Unlike the infinite quantum well, where the wave functions vanish at the infinite
walls, in the finite quantum well the exponential functions penetrate the finite walls,
as shown in Fig. 4.10.

Imposing the continuity requirement on the wave functions and their first order
derivatives, we have, at x = 0, the following equations

a1 + b1 = a2 + b2,

q(a1 − b1) = ik(a2 − b2), (4.114)

which, in the matrix representation, can be written as

(
a2
b2

)
= 1

2k

(
k − iq k + iq
k + iq k − iq

)(
a1
b1

)
= Ml(0

+, 0−)

(
a1
b1

)
. (4.115)

Notice that the transition matrix that we have here, for the barrier-well interface,
is the same as the transition matrix Mr (b+, b−) that we had in the potential barrier.
We will see now that the transition matrix that relates the state vectors at x = a,
is equal to the transition matrix that we had on the left side of the potential barrier.
Indeed, from the continuity conditions at x = a we have

a3eqa + b3e−qa = a2eika + b2e−ika,

q
(
a3eqa − b3e−qa) = ik

(
a2eika − b2e−ika). (4.116)

These equations, in matrix and state vector representation, take the form
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Fig. 4.11 The transfer matri-
ces that connect the physics on
the left with the physics on the
right of the square quantum
well

(
a3eqa

b3e−qa

)
= 1

2q

(
q + ik q − ik
q − ik q + ik

)(
a2eika

b2e−ika

)
,

= Mr (a
+, a−)

(
a2eika

b2e−ika

)
, (4.117)

with a transition matrix, for the well-barrier interface, equal to the transition matrix
Ml(0+, 0−) in the potential barrier. To connect the state vector at x = 0− with the
state vector at x = a+, we still need to connect the state vector φII(0+) on the left
end of the quantum well with the state vector φII(a−) on the right. In other words,
we need a transfer matrix Mp to carry the phase at the bottom of the quantum well.
It is easy to verify that

(
a2eika

b2e−ika

)
=
(

eika 0
0 e−ika

)(
a2
b2

)
. (4.118)

Therefore

Mp(a
−, 0+) =

(
eika 0

0 e−ika

)
, (4.119)

With this matrix, we have all the necessary relations to connect the state vector in
region III with the state vector in region I. Indeed, combining (4.115), (4.117) and
(4.118), we obtain

(
a3eqa

b3e−qa

)
= 1

4qk

(
q + ik q − ik
q − ik q + ik

)(
eika 0

0 e−ika

)(
k − iq k + iq
k + iq k − iq

)(
a1
b1

)
.

(4.120)

In this case, as for the potential barrier, we have the sequence of transition and transfer
matrices

Ma(a+, 0−) = Mr (a
+, a−)Mp(a

−, 0+)Ml(0
+, 0−). (4.121)
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These matrices propagate along the quantum well, one after the other (see Fig. 4.11),
carrying the physical information contained in the state vectors. After multiplying
these matrices, and simplifying, we have

(
a3eqa

b3e−qa

)
=

⎛
⎜⎜⎝

cos ka + q2 − k2

2qk
sin ka −k2 + q2

2qk
sin ka

k2 + q2

2qk
sin ka cos ka − q2 − k2

2qk
sin ka

⎞
⎟⎟⎠
(

a1
b1

)
.(4.122)

Therefore the transfer matrix of the rectangular quantum well is

Ma(a+, 0−)=

⎛
⎜⎜⎝

cos ka + q2 − k2

2qk
sin ka −k2 + q2

2qk
sin ka

k2 + q2

2qk
sin ka cos ka − q2 − k2

2qk
sin ka

⎞
⎟⎟⎠ , (4.123)

This matrix will be written, in compact notation, as

Ma(a, 0)=
(
αa βa

−βa δa

)
. (4.124)

Therefore
(

a3eqa

b3e−qa

)
=
(
αa βa

−βa δa

)(
a1
b1

)
. (4.125)

The transfer matrix structure is apparently different from that expected for transfer
matrices satisfying the time reversal symmetry. We will see in the second part of this
section, that for energies E > Vo one has to replace the wave vector q by iκ, simul-
taneously the time reversal invariance structure, that we have seen for the transfer
matrices in (4.90) and (4.108), reappears. What happens with the time reversal sym-
metry for energies E < Vo? The transfer matrix Ma(a+, 0−) in (4.123) fulfills also
the time reversal invariance requirement. It is known that this symmetry imposes, on
transfer matrices, a more general condition. We will not deduce that condition here.
It is possible however to show that to fulfill the time reversal symmetry, a transfer
matrix M should satisfy the condition (see the Appendix A)

M

(
0 1
1 0

)
M∗ =

(
0 1
1 0

)
. (4.126)

One can easily verify that the matrix Ma(a, 0), obtained above, satisfies this condi-
tion.
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Fig. 4.12 A graphical method
to determine the eigenvalues
fulfilling the eigenvalues
equation (4.130)
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Fig. 4.13 Eigenvalues for a
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4.4.2 Eigenvalues and Wave Functions in Rectangular
Potential Wells

Let us now come back into the main objective solving this problem, the calculation of
eigenvalues and eigenfunctions. As mentioned earlier, the finiteness of our solutions
require that b1 = a3 = 0. If we use these coefficients in (4.125), we have

(
0

b3e−qa

)
=
(
αa βa

−βa δa

)(
a1
0

)
, (4.127)

which leads, on one side, to

a1αa = 0, (4.128)

and, on the other, to

b3e−qa = −βaa1. (4.129)

From the first of these equations, and taking into account that a1 can not be zero, we
end up with the very important equation

(
cos ka + q2 − k2

2qk
sin ka

)
= 0, (4.130)

that can be written also as
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cot ka = k2 − q2

2qk
. (4.131)

This equation is nothing else than the energy eigenvalues equation, that is fulfilled
only by a discrete set of values of E , the energy eigenvalues of the quantum well.
One way to solve this transcendental equation is plotting, separately, cot ka and
(k2 − q2)/2qk, as functions of the energy. In Fig. 4.12 we have precisely this plot
for a = 3 nm and Vo = 0.8 eV. Both functions coincide at the eigenvalues Eμ.
It is also possible to solve the eigenvalue equation numerically. In Fig. 4.13 the
energy levels Eμ are shown for the quantum well with a = 3 nm and Vo = 0.8 eV.
It is worth noticing that the equation (4.131) provides all the eigenvalues that are
generally obtained in other textbooks from two implicit equations, one associated to
odd functions and the other to even functions. From (4.129), we get

b3 = −eqaβaa1. (4.132)

This means that the wave functions in the left and right side walls can be written as

ϕI(x) = a1eqx , for x < 0, (4.133)

and

ϕIII(x) = a1
k2 + q2

2qk
sin ka e−q(x−a), for x > a, (4.134)

respectively. As expected, both functions fall down exponentially as one goes deeper
in the lateral walls. Before we come to the eigenfunction issue, let us see the solution
ϕII in the well. If we return to (4.115) with b1 = 0, we obtain the coefficients

a2 = k − iq

2k
a1, (4.135)

b2 = k + iq

2k
a1, (4.136)

which, replaced in ϕII(x), leave us with the function

ϕII(x) = a1

[
cos kx + q

k
sin kx

]
. (4.137)

In this way, the solutions in each of the three regions have been written in terms
of only one coefficient, the coefficient a1, that can be fixed later, after normaliz-
ing the eigenfunctions (see Exercise 10 in the illustrative Problems section). Hav-
ing these functions and the energy eigenvalues {Eμ}, we are ready to obtain the
eigenfunctions of the quantum well. The eigenfunctions ϕμ(x) are obtained when
the wave functions ϕI(x, E), ϕII(x, E) and ϕIII(x, E), given in (4.133), (4.134) and
(4.137), are evaluated for E = Eμ. In other words, the eigenfunction that corresponds
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Fig. 4.14 The eigenvalues Ei and the corresponding eigenfunctions ϕi of a quantum well. In this
well the depth is Vo = 0.23 eV and the width is a = 30 nm. These parameters are different from
those in Fig. 4.10, where the well depth is greater but the width smaller. It is clear that increasing
the width of the well, the energy levels diminish and increase their density. The parity of the
eigenfunctions is defined with respect to the center of the well: The even functions alternate with
the odd ones

to the energy eigenvalue Eμ is

ϕμ(x) =
⎧⎨
⎩
ϕI(x, Eμ), for x < 0,

ϕII(x, Eμ), for 0 ≤ x < a,

ϕIII(x, Eμ); for x ≥ a.

(4.138)

In Figs. 4.10 and 4.14 we plotted some eigenfunctions, together with their corre-
sponding eigenvalues. To visualize the effect of the well width on the quantum levels,
we consider a larger well width a in Fig. 4.14 than that in Fig. 4.13. It is clear from
these figures that as we increase the well width, the energy levels come down and
the eigenvalues’ density (or level density) increases. There are many other properties
that come out from our results. Among them, we notice that the eigenfunctions are
real, thus the current density is zero everywhere and the parity of the eigenfunctions
ϕμ(x) agrees with the parity of the quantum number μ. Even though the particles are
mainly confined in the quantum well, the probability to find them beyond the lateral
walls is different from zero. We will discuss now the quantum well problem when
the energy is larger than the height of the lateral walls.
2. When E > Vo, the particle is no longer confined in the well and the solutions are

all propagating functions, i.e.

ϕI(x) = a1eik2x + b1e−ik2x , for x < 0,

ϕII(x) = a2eik1x + b2e−ik1x , for 0 < x < a, (4.139)

ϕIII(x) = a3eik2x + b3e−ik2x , for x > a.

Here k1 =
√

2m
�2 E and k2 =

√
2m
�2 (E − Vo). In these functions, the wave number

q that we had in (4.114) is replaced by ik2 and k by k1. If we make these changes
in (4.115) and in (4.117) we have
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(
a2
b2

)
= 1

2k1

(
k1 + k2 k1 − k2
k1 − k2 k1 + k2

)(
a1
b1

)
, (4.140)

and
(

a3eik2a

b3e−ik2a

)
= 1

2k2

(
k2 + k1 k2 − k1
k2 − k1 k2 + k1

)(
a2eik1a

b2e−ik1a

)
. (4.141)

Therefore, the relation (4.120), that we had to connect the state vector φIII(x) (at
x = a+) and the state vector φI(x) (at x = 0−), becomes now

(
a3eik2a

b3e−ik2a

)
= 1

4k1k2

(
k2 + k1 k2 − k1
k2 − k1 k2 + k1

)(
eik1a 0

0 e−ik1a

)(
k1 + k2 k1 − k2
k1 − k2 k1 + k2

)(
a1
b1

)
,

= Ma(a+, 0−)

(
a1
b1

)
. (4.142)

After multiplying and simplifying, the transfer matrix Ma(a+, 0−) takes the form

Ma(a+, 0−)=

⎛
⎜⎜⎜⎝

cos k1a + i
k2

1 + k2
2

2k1k2
sin k1a i

k2
1 − k2

2

2k1k2
sin k1a

−i
k2

1 − k2
2

2k1k2
sin k1a cos k1a − i

k2
1 + k2

2

2k1k2
sin k1a

⎞
⎟⎟⎟⎠ ,

(4.143)

where the time reversal symmetry structure reappeared. In a compact notation we
have

(
a3eik2a

b3e−ik2a

)
=
(
αa βa

β∗a α∗a

)(
a1
b1

)
. (4.144)

with

αa = cos k1a + i
k2

1 + k2
2

2k1k2
sin k1a,

βa = i
k2

1 − k2
2

2k1k2
sin k1a. (4.145)

We still have several coefficients to determine. We can get some of them if we
impose additional physical conditions. For example, if the particles approach only
from the left, the wave function b3e−ik2x , describing particles moving towards
the left in region III, must vanish. In this case we have to choose b3 = 0, and
(4.144) gives us the relation

β∗a a1 + α∗ab1 = 0, (4.146)



4.4 The Rectangular Potential Well 91

which implies that

b1 = −β
∗
a

α∗a
a1. (4.147)

This coefficient has the functional form of the reflection amplitude multiplied by
a1. Indeed, the wave function b1e−ikx describes particles moving to the left in
region I. These are particles reflected by the potential well. We will come back
to this issue some lines below. Having b1, we can express the wave function, at
the left hand side of the well, as

ϕI(x) = a1

(
eik2x − β∗a

α∗a
e−ik2x

)
. (4.148)

From (4.144) and (4.147) we also have

a3eika = αaa1 − βa
β∗a
α∗a

a1. (4.149)

Since the transfer matrix Ma is unimodular, with determinant αaα
∗
a −βaβ

∗
a = 1,

the transmitted wave function, in the right hand side of the well, can be written
as

ϕIII(x) = 1

α∗a
a1eik2(x−a), (4.150)

with 1/α∗a the transmission amplitude. Again, we have a coefficient that is for-
mally similar to that found for the potential barrier. It is important to notice that
even though the explicit function αa is different than the explicit function αb,
of the potential barrier, the functional dependence of physical quantities, like the
transmission and reflection amplitudes, on the transfer matrix elements α, β,
etc., is the same. For example, the transmission amplitude in the potential barrier
is tb = 1/α∗b, the transmission amplitude in the quantum well is ta = 1/α∗a .
Moreover, they share the same functional dependence on α as the transmission
amplitude in (4.62).This is another advantage of the transfer matrix formalism.
The physical quantities are formally given by the same functions of α’s and β’s,
as was found in Sect. 4.2.
Using (4.140) together with (4.147), one can finally express ϕII(x) as

ϕII(x) = a1

2k1

[
(k1 + k2)e

ik1x − (k1 − k2)
β∗a
α∗a

e−ik1x
]
. (4.151)

The coefficient a1, is a common (scale) factor for ϕI(x), ϕII(x) and ϕIII(x). It
can be determined from the normalization condition. This constant has no effect
on physical quantities like transmission and reflection coefficients.
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It is worth noticing that for E > Vo there is no energy quantization and except for
some resonant energies, where the transmission is complete, the incoming parti-
cles always have a probability different from zero to get reflected. This behavior
is better described by the reflection and transmission coefficients, that we will
obtain now. As we know already, the transmission coefficient is given by the
quotient 1/|αa |2, which means

T = 1

cos2 k1a +
(

k2
1 + k2

2

2k1k2

)2

sin2 k1a

. (4.152)

and the reflection coefficient by | − β∗a/α∗a |2. Therefore

R =

(
k2

1 − k2
2

2k1k2

)2

sin2 k1a

cos2 k1a +
(

k2
1 + k2

2

2k1k2

)2

sin2 k1a

. (4.153)

The student can easily check that R+ T = 1. It is evident from these results that
whenever

sin2 k1a = 0, (4.154)

or

k1a = nπ, (4.155)

we have a resonant transmission with T = 1. Hence the resonant transmission
through the potential well occurs when the de Broglie wavelengths λB = 2π/k1
are such that

a = n
λB

2
. (4.156)

Since k2
1 = 2m E/�

2, the resonant energies are

En = �
2

2m

n2π2

a2 . (4.157)

These energies should not be confused with energy eigenvalues. If we recall that
E ≥ Vo the integers n should satisfy the relation
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Fig. 4.15 The transmission
coefficient of a potential
well, with depth Vo = 0.8
eV and width a = 30 nm.
These transport quantities
have physical meaning only
when the particle energy E is
larger than Vo
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In the following chapter we will see other potential profiles with different config-
urations of barriers and wells. Some of the results obtained in this chapter will be
used, and we will be able to attest the advantages of the transfer matrix method
that will greatly facilitate some calculations, which otherwise would become very
cumbersome.

4.5 Solved Problems

Exercise 10 Determine the normalization constant for the eigenfunctions of the
rectangular potential well, when the energy is less than the lateral wall height.

Solution All we need is to fulfill the normalization requirement

∞∫

−∞
|ϕμ(x)|2dx = 1. (4.159)

For the potential well, the eigenfunction was defined as

ϕμ(x) =
⎧⎨
⎩
ϕI(x, Eμ); for x < 0,

ϕII(x, Eμ); for 0 ≤ x < a,

ϕIII(x, Eμ); for x ≥ a.

(4.160)

Thus, the normalization condition becomes

0∫

−∞
|ϕI(x, Eμ)|2dx+

a∫

0

|ϕII(x, Eμ)|2dx+
∞∫

a

|ϕIII(x, Eμ)|2dx=1. (4.161)

If we use the explicit functions, we have
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a2
1

⎡
⎣

0∫

−∞
e2qμx dx+

a∫

0

(
cos kμx+ qμ

kμ
sin kμx

)2

dx

+
∞∫

a

(k2
μ+q2

μ

2qμkμ

)2
sin2 kμa e−2qμ(x−a)dx

⎤
⎦=1, (4.162)

with kμ =
√

2m Eμ/�2 and qμ =
√

2m(Vo − Eμ)/�2. All the integrals here can be
evaluated analytically, hence the student can easily obtain the normalization con-
stants. Notice that we have one constant for each eigenfunction.

Exercise 11 Show that at any point x of the potential well, and independently of the
energy level Eμ, the current density is zero.

Solution For each energy level Eμ we have an eigenfunction ϕμ(x) defined from
−∞ to∞. In the quantum well region the eigenfunction is given by

ϕIIμ(x) = a1

[
cos kμx + qμ

kμ
sin kμx

]
, (4.163)

with kμ and qμ the wave numbers evaluated for E = Eμ. The current density is
zero because the function (ϕIIμ(x) = ϕ∗IIμ(x)) is real at each point x of the well,
regardless of the index μ.

Exercise 12 Let us consider the asymmetric barrier of Fig. 4.16, with potential height
Vi on the left and Vd �= Vi on the right of the barrier. Show that for energies greater
than Vi and Vd , the transfer matrix

M(xd , xi ) =
(
α β
γ δ

)
, (4.164)

also has the structure

M(xd , xi ) =
(
α β
β∗ α∗

)
. (4.165)

Solution For systems like this, and more complex ones, we must use unit-flux wave
functions (see Sect. 3.3). Therefore, the solutions in regions I, II and III are:

ϕI(x) = a1
eikl x

√
kl
+ b1

e−ikl x

√
kl

, for x < 0,

ϕII(x) = a2
eqx

√
q
+ b2

e−qx

√
q

, for 0 < x < b, (4.166)

ϕIII(x) = a3
eikr x

√
kr
+ b3

e−ikr x

√
kr

, for x > b.
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Fig. 4.16 An asymmetric potential barrier with different potential parameters at the left and right
sides

with kl =
√

2m(E − Vi )/�2, kr =
√

2m(E − Vd)/�2 and q = √2m(Vo − E)/�2.
In the same way as for the symmetric potential barrier, studied before, we can estab-
lish the relation

(
a3eikr b+

b3e−ikr b+

)
= Mab(b

+, 0−)

(
a1
b1

)
. (4.167)

In this case (the subindex ab stands for asymmetric barrier)

Mab(b
+, 0−)= 1

4qkr

(
kr − iq kr + iq
kr + iq kr − iq

)(
eqb 0
0 e−qb

)(
q + ikl q − ikl

q − ikl q + ikl

)√
kr

kl

(4.168)

is the matrix that transfers the state vector from the left to the right of the barrier
(from xl = 0− to xr = b+). Multiplying the matrices in (4.168) and simplifying,
yields the transfer matrix

Mab(b
+, 0−) =

(
αab βab

β∗ab α
∗
ab

)
, (4.169)

with

αab =
(

kl + kr

2kr
cosh qb + i

klkr − q2

2qkr
sinh qb

)√
kr

kl
, (4.170)

βab =
(

kr − kl

2kr
cosh qb − i

klkr + q2

2qkr
sinh qb

)√
kr

kl
. (4.171)
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Notice also that, making kl = kr , we recover the transfer matrix of the symmetric
rectangular potential barrier.
Exercise 13 Assume that the potential is asymmetric, as in the previous problem,
and that the particles approach only from one side. If they come from the left, the
transmission amplitude (from left to right) will be denoted as trl , and if they approach
from the right, the transmission amplitude (from right to left) will be denoted as tlr .
Show that the amplitudes and the corresponding transmission coefficients satisfy the
following relations

trl = t∗lr and Trl = Tlr (4.172)

Solution In the previous exercise we had the relation (4.167) where φIII(b+) appears
as a function of φI(0−). We can reverse this relationship to have

(
a1
b1

)
= Mba(0−, b+)

(
a3eikr b+

b3e−ikr b+

)
, (4.173)

where Mba(0−, b+) is the inverse of Mab(b+, 0−), thus, the product of the inverse
matrices in reverse order, i.e.

Mba(0−, b+)= 1

4qkl

(
kl − iq kl + iq
kl + iq kl − iq

)(
e−qb 0

0 eqb

)(
q + ikr q − ikr

q − ikr q + ikr

)√
kl

kr
.

(4.174)

This matrix, after multiplying, takes the form

Mba(0−, b+) =
(
αba βba,

β∗ba α∗ba

)
, (4.175)

with

αba =
(

kl + kr

2kl
cosh qb − i

klkr − q2

2qkl
sinh qb

)√
kl

kr
, (4.176)

βba =
(

kr − kl

2ki
cosh qb + i

klkr + q2

2qkl
sinh qb

)√
kl

kr
. (4.177)

These matrix elements are similar to those in Eqs. (4.170) and (4.171) with kl changed
by kr , and vice versa. It is easy to see from these expressions that

αba = α∗ab. (4.178)

The transmission amplitudes trl (left to right) and tlr (right to left) have a very simple
relation with the matrix elements α of Mab and Mba , respectively. Indeed
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trl = 1

α∗ab
and tlr = 1

α∗ba
. (4.179)

If we combine Eqs. (4.178) and (4.179), we obtain the expected results

trl = t∗lr and Trl = Tlr . (4.180)

These results are consistent with (4.58), where transmission amplitudes t and t ′
incidence from left and right were given in general.

4.6 Problems

1. Derive the currents j inc, j ref , and j trans in Eq. (4.37).
2. Show that the transfer matrix of the potential barrier is given by Eq. (4.74).
3. Show that the current density on the left side of the symmetric potential barrier

is the same as in the right hand side. Show also that

DetMb = 1, (4.181)

where Det stands for the determinant.
4. Obtain the reflected and transmitted wave functions in terms of the reflection

and transmitted amplitudes and show that

T = t t∗ = 1

|α|2 and R = rr∗ = |β|
2

|α|2 . (4.182)

5. Show that for time reversal invariant potential V (x) defined from x1 to x2, the
transfer matrix has the structure

M(x2, x1) =
(
α β
β∗ α∗

)
. (4.183)

Assume that in regions I (at the left of x1) and III (at the right of x2) the potential
is zero. Show that, when the current densities j I(x) and j III(x) are equal, one
has

M†
(

1 0
0 −1

)
M =

(
1 0
0 −1

)
and Det M(x2, x1) =

∣∣∣∣ α β
β∗ α∗

∣∣∣∣ = 1.

(4.184)

6. Verify that the transfer matrix of the potential barrier, for E > Vo, takes the form
given in (4.87).
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7. Show that when the particle energy is E = Vo/2, the transmission coefficient of
the rectangular potential barrier becomes

T = 1

1+ sinh2 qb
. (4.185)

8. Show that time reversal invariance implies for the quantum-well transfer matrix(
α β
−β δ

)
the fulfillment of

αδ + β2 = 1, (4.186)

and verify that this condition is certainly satisfied by the transfer matrix Ma in
(4.123).

9. Assume that the potential well is defined as

V (x) =
{

0, x ≤ 0, x ≥ a;
−Vo, 0 < x < a.

(4.187)

Prove that using this potential, one obtains the same results of Sect. 4.4, with

q =
√

2m|E |
�2 and k =

√
2m(|Vo|−|E |)

�2 .
10. Check that the wave function in the potential barrier is as shown in Eq. (4.97).
11. Using the solutions in (4.148), (4.151) and (4.150), check that:

(i) at x = 0 ϕII(0) = ϕI(0) = a1;

(ii) at x = a ϕII(a) = ϕIII(a) = a1
k2+q2

2qk sin ka.
12. Show that when the width and height of a potential barrier are such that qb � 1,

the transmission coefficient tends to the exponential function

T ∼= e−
2b
�

√
2m(Vo−E). (4.188)

13. Show that the minima of the square-barrier transmission coefficient oscillations,
for energies greater than Vo, is described by the function

Tmin = 1[(
2

bk1

)2

+ 1

](
k2

1 + k2
2

2k1k2

)2 (4.189)

14. Show that the transfer matrix of the asymmetric potential barrier, of exercise 12,
has the form given in (4.169). Obtain also the transfer matrix of an asymmetric
potential well.



Chapter 5
Quantum Coherence and Energy Levels
Splitting

In the previous chapter we solved the Schrödinger equations for the potential barrier
and the quantum well. These important and soluble systems, revealed fundamental
properties present in the actual quantum systems. Some of the results obtained for
these systems will reappear, in this and the coming chapters, and will enhance the
insight into the quantum phenomena and their physical meaning. In this chapter we
will study systems with slightly more complex structure, but still piecewise constant
potentials. We will begin with the double quantum well with infinite walls, and we
will continue with the double potential barrier and the double quantum well with
finite lateral walls. In these systems a new phenomenon will appear: the splitting
of the energy levels. We will conclude this chapter with a brief introduction to the
finite periodic systems theory, applied to the Kronig–Penney model, taken as a finite
sequence of rectangular wells and barriers. We will see that the energy levels splitting
is responsible for the formation of energy bands, an essential property closely related
to the quantum phase coherence, that makes it possible for us to see fundamental
differences in the physical behavior of metals, semiconductors and insulators.

In quantum systems, as in any other physical system described by the wave equa-
tion, the wave functions ψ(r, t) evolve in space and time. The evolution is coherent
when the amplitudes and phases, at any point (r2, t2), can be obtained once they
are given at some other point (r1, t1). Phase coherence implies processes where
the wave function interference is well defined.1 This is not the case in disordered
systems where the random fluctuations tend, generally, to destroy the phase coher-
ence. In these systems, the phase coherence length �φ measures the average distance
beyond which the phase coherence becomes negligible.

1 Usually the superposition of waves gives rise to constructive and destructive interferences. These
interferences of well defined phases, are responsible of interesting effects like the energy levels
splitting and the band structure in periodic systems.

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 99
DOI: 10.1007/978-3-642-29378-8_5, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 A double well
bounded by infinite walls.
If the energy is less than Vo
there are two confinement
regions. The energy levels
split and are pushed up by the
repulsive infinite walls

b

0 a 2a+b

I II III

V(x)
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xa+b 

5.1 A Rectangular Double Well Bounded by Hard Walls

Suppose we have the potential shown in Fig. 5.1. This double well potential is defined
by the potential energy function

V (x) =
⎧⎨
⎩

0, for 0 < x < a & a + b < x < 2a + b,
Vo, for a ≤ x ≤ a + b,
∞, for x < 0 & x > 2a + b.

(5.1)

This can be seen as a potential barrier inside an infinite quantum well. The potential
barrier together with the infinite walls, located at a distance a to the left and to the
right from the barrier, produce the double quantum well system. When the energy is
such that E < Vo, we have two confining regions, but when E > Vo only the infinite
walls confine. Although we can expect energy quantization for energies below and
above the barrier height Vo, we can also expect slight differences between the two
cases (see problem 1). We will solve the double quantum well problem only for
E < Vo.

5.1.1 Continuity and the Double-Well Transfer Matrix

In this system as in the potential barrier case, the solutions of the Schrödinger equa-
tion, in regions I, II and III, are:

ϕI(x) = a1eikx + b1e−ikx ;
ϕII(x) = a2eqx + b2e−qx ; (5.2)

ϕIII(x) = a3eikx + b3e−ikx .

With k =
√

2m
�2 E and q =

√
2m
�2 (Vo − E). The infinite walls force the functions

ϕI(x) and ϕIII(x) to vanish at x = 0 and at x = 2a + b, respectively. This physical
condition will be used below. These functions should also satisfy the continuity
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conditions at x = a and x = a+b. In the potential barrier problem the discontinuity
points were at x = 0 and x = b. If we take into account this difference, it is clear that
the same transfer matrix Mb of Eq. (4.88), connects the state vectors φIII(a + b+)
and φI(a−), i.e:

φIII(a + b+) =
(
αb βb

β∗b α∗b

)
φI(a

−), (5.3)

or, more explicitly, we must have

(
a3eik(a+b)

b3e−ik(a+b)

)

=

⎛
⎜⎜⎝

cosh qb + i
k2 − q2

2qk
sinh qb −i

k2 + q2

2qk
sinh qb

i
k2 + q2

2qk
sinh qb cosh qb − i

k2 − q2

2qk
sinh qb

⎞
⎟⎟⎠

(
a1eika

b1e−ika

)
. (5.4)

We already know that the state vectors at different points of the same constant
potential region, differ only in their phases. Indeed, for the state vectors at the extreme
points, x = 0+ and x = a−, of the left side well, we have

(
a1eika

b1e−ika

)
=

(
eika 0

0 e−ika

)(
a1
b1

)
. (5.5)

Similarly, for the extreme points of the right side well, x = a+b+ and x = 2a+b−,
we have (

a3eik(2a+b)

b3e−ik(2a+b)

)
=

(
eika 0

0 e−ika

) (
a3eik(a+b)

b3e−ik(a+b)

)
. (5.6)

Using (5.4) and (5.5) in this equation, we end up with the following relation

(
a3eik(2a+b)

b3e−ik(2a+b)

)
=

(
eika 0

0 e−ika

)(
αb βb

β∗b α∗b

) (
eika 0

0 e−ika

) (
a1
b1

)
. (5.7)

This relation between the vectors φIII(2a+b−) and φI(0+), at the ends of the double
well, can be written after multiplying matrices as

(
a3eik(2a+b)

b3e−ik(2a+b)

)
=

(
αbei2ka βb

β∗b α∗be−i2ka

) (
a1
b1

)
, (5.8)

The transfer matrix of this equation contains already the continuity conditions at
x = a and x = a + b. We have still to introduce the conditions at x = 0 and
x = 2a + b. At these points the functions φI(0) and φIII(2a + b) must vanish, i.e.

http://dx.doi.org/10.1007/978-3-642-29378-8_4
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ϕI(0) = a1 + b1 = 0, (5.9)

ϕIII(2a + b) = a3eik(2a+b) + b3e−ik(2a+b) = 0. (5.10)

Therefore

b1 = −a1, (5.11)

b3 = −a3ei2k(2a+b). (5.12)

Here we have two alternatives: we can substitute these coefficients in (5.2), or replace
them in (5.8). In the first case, ϕI(x) and ϕIII(x) become

ϕI(x, E) = a1
(
eikx − e−ikx) = A1 sin kx, for 0 < x < a; (5.13)

and

ϕIII(x, E) = a3

(
eikx − e−ikx ei2k(2a+b)

)

= A3 sin k
(
x − (2a + b)

)
, for a + b < x < 2a + b; (5.14)

where the constants A1 = 2ia1 and A3 = 2ia3eik(2a+b) were defined. These func-
tions do not have yet their final form and are written in terms of two different con-
stants. Written as sinusoidal functions of x they vanish at the infinite walls. In the
illustrative problems section, we will discuss, with more detail, these functions and
the double quantum well eigenfunctions issue.

5.1.2 Energy Eigenvalues in the Double Quantum Well

Let us now consider the second alternative. If we replace the coefficients of (5.11)
and (5.12) in (5.8), we have

(
a3eik(2a+b)

−a3eik(2a+b)

)
=

(
αbei2ka βb

β∗b α∗be−i2ka

) (
a1
−a1

)
, (5.15)

which means that
αbe2ika − βb = −

(
β∗b − α∗be−2ika

)
, (5.16)

or equivalently, that
Im

(
αbe2ika − βb

) = 0. (5.17)

We got here an important equation, the double-well energy eigenvalues equation. This
equation came out in a very simple way, because of the transfer matrix representation.
It would not be so easy to derive using other methods. Taking into account the explicit



5.1 A Rectangular Double Well Bounded by Hard Walls 103

b= 0.75nm

00 a+baa 2a+b

a= 3nm

Vo

Vo =0.6 eVE

E3,2

E3,1

µ,

Fig. 5.2 Splitting and repulsion of the energy levels in the double well potential, bounded by infinite
walls. In the left side the eigenvalues of a single well, with the same well depth Vo and the same width
a, as in the double well, are shown as reference. In the double quantum well, the well’s interference
and the phase coherence are responsible for the energy levels splitting. We use the notation Eμ,ν for
the energy eigenvalues. The first index labels the levels before they split, and the index ν the split
levels. E1,1 and E1,2 are the closest energy levels. The infinite walls push the energy levels a little up

functions of αb and βb, the eigenvalues equation takes the form

cosh qb sin 2ka + k2 − q2

2qk
sinh qb cos 2ka = −k2 + q2

2qk
sinh qb. (5.18)

This analytical expression is also an implicit equation that can be solved numerically.
In Fig. 5.2 we plot the first energy levels. To visualize the double well and the infinite
walls effect on the energy eigenvalues, we show also the eigenvalues of a single
quantum well, with the same potential parameters, depth Vo = 0.6 eV and well
width a = 30 Å. The most evident feature, of the double well spectrum, is the energy
levels splitting. The splitting is better perceived at the higher energy levels. It can be
seen that the split energy levels lie almost at the same positions as the energy levels in
the single well. The double well energy levels are displaced slightly upwards, because
of the infinite walls repulsion. This is a clear example of energy levels splitting. With
the examples that come next, we will better understand this phenomenon.

When the number of wells and barriers increases, the levels splitting will lead also
to an increasing number of energy levels. Each energy level of the single quantum
well (QW) will become a band in a multiple quantum well (MQW) system. Since
each band contains as many levels as wells has the multiple quantum well system, it is
convenient to label the energy eigenvalues as Eμ,ν , with two indices. The first index
denotes the band and the second the intra-band levels. In the double well system we
have μ = 1, 2, 3, . . . and ν = 1, 2. The lowest energy pair in Fig. 5.2 corresponds
to E1,1 and E1,2, we then have the pair of energy levels, E2,1 and E2,2, and so on.
Therefore, solving the Schrödinger equation (5.18) for a MQW system, one obtains
a set of energy eigenvalues {Eμ,ν}. The energy eigenvalues represent an important
part of the solution, another important part is the calculation of the eigenfunctions
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Vo
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Fig. 5.3 A double rectangular barrier with its parameters

{ϕμ,ν(x)}. To determine the eigenfunctions one can also use the transfer matrix
method. At the end of this chapter we will discuss this issue with an illustrative
example.

5.2 The Double Rectangular Potential Barrier

The double potential barrier, as the one shown in Fig. 5.3, is another of the most
studied systems, with many applications in optoelectronic and electronic transport.
This is an interesting system. It contains not only a confining potential that tends to
trap particles, but also finite-width barriers that particles tunnel to enter and to escape
from the confining region. Solving this system and calculating the basic transport
properties we will find an interesting physical behavior.2 As in the single barrier
case, some of the incoming particles, approaching the double barrier from the left
or the right side, will get transmitted. The transmitted and reflected particles will
in general suffer multiple reflections. Important information on this process can be
obtained from the transmission and reflection coefficients.

5.2.1 Continuity and the Double-Barrier Transfer Matrix

We know that the state vectors at points just outside a rectangular potential barrier,
as those in Fig. 5.3, are related by the transfer matrix Mb given in (4.87) for energies
below the barrier height Vo, or in (4.108) for energies above the barrier height Vo.
Those transfer matrices were written in a compact form as

Mb =
(
αb βb

β∗b α∗b

)
. (5.19)

2 In the double barrier systems of the electronic devices, the potential function contains also the
bias potential energy Fx .

http://dx.doi.org/10.1007/978-3-642-29378-8_4
http://dx.doi.org/10.1007/978-3-642-29378-8_4
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This means that

φ(b+) =
(

a3eikb

b3e−ikb

)
=

(
αb βb

β∗b α∗b

) (
a1
b1

)
,

=
(
αb βb

β∗b α∗b

)
φ(0−), (5.20)

and also that

φ(a + 2b+) =
(

a5eik(a+2b)

b5e−ik(a+2b)

)
=

(
αb βb

β∗b α∗b

) (
a3eik(a+b)

b3e−ik(a+b)

)
,

=
(
αb βb

β∗b α∗b

)
φ(a + b−). (5.21)

The specific functions αb and βb were given in (4.87) and (4.108). To obtain the
transfer matrix of the whole double barrier system, we need still to connectφ(a+b−)
with φ(b+). Since both vectors are defined at points of the same constant potential
region, they are related by a diagonal transfer matrix, i.e. related as follows

φ(a + b−) =
(

a3eik(a+b)

b3e−ik(a+b)

)
=

(
eika 0

0 e−ika

) (
a3eikb

b3e−ikb

)
,

=
(

eika 0
0 e−ika

)
φ(b+). (5.22)

Having this matrix, it is clear that

(
a5eik(2b+a)

b5e−ik(2b+a)

)
=

(
αb βb

β∗b α∗b

) (
eika 0

0 e−ika

) (
αb βb

β∗b α∗b

) (
a1
b1

)
. (5.23)

After multiplying the matrices on the right side of this equation, we obtain the transfer
matrix of the double-barrier potential. One can easily verify that it will have the same
structure as the transfer matrix of a single barrier, i.e., it will be of the form

MD =
(
αD βD

β∗D α∗D

)
, (5.24)

with

αD = α2
beika + |βb|2 e−ika and βD = αbβbeika + α∗bβbe−ika .

(5.25)

Having the transfer matrix, we can obtain information on the transport properties.

http://dx.doi.org/10.1007/978-3-642-29378-8_4
http://dx.doi.org/10.1007/978-3-642-29378-8_4
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Fig. 5.4 The transmission coefficient of the double barrier potential (red line) and a single barrier
(black line) when the potential parameters are a = 2 nm, b = 10 nm and Vo = 0.23 eV

5.2.2 Transport Properties in the Double Rectangular
Potential Barrier

We saw before in our brief reference to the scattering theory, and in the examples
studied so far, that the transmission and the reflection amplitudes are related to the
transfer matrix elements of the scattering system. Using these relations, the trans-
mission and reflection amplitudes of the double potential barrier, tD and rD , are

tD = 1

α∗D
and rD = −β

∗
D

α∗D
. (5.26)

Since TD = |tD|2, the double barrier transmission coefficient is given by

TD = 1

|αb|4 + |βb|4 + 2 |βb|2 �e(α2
bei2ka)

≡ T2, (5.27)

where �e stands for the real part. In Fig. 5.4 we plot this coefficient as a function
of the incoming energy together with the single barrier transmission coefficient T1.
The double barrier transmission coefficient, unlike the single barrier coefficient T1
(characterized by a monotonic behavior), presents a resonant behavior and reaches
at the resonant energies the maximum value 1, even though the energy is below Vo.
To explain the origin of this resonant behavior, it is helpful to write the previous
equation in the form

TD = 1

1+ 2 |βb|2
(|αb|2 +�e α2

bei2ka
) . (5.28)

It is now evident that the transmission coefficient oscillates and becomes equal to 1
when

|αb|2 +�e α2
bei2ka = 0. (5.29)
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Fig. 5.5 The double well with finite lateral walls

The roots of this equation, which we denote as E∗μ with μ = 1, 2 . . ., are the resonant
energies. These energies correspond to the confining energies in the quantum well
between the two potential barriers. Unlike the true energy eigenvalues, which are
stable states, the resonant states are meta-stable states. The possibility of tunneling
through the barrier allows the particles to enter and to escape. The resonant transmis-
sion needs not only the tunneling effect, requires also the confining potential with
quasi-bounded or trapping states, that we will call resonant states.

When the incoming particle energy coincides with a resonant energy (i.e. with the
resonant energies E∗μ), the particle is allowed not only to stay in the resonant state,
it can also use the state to pass through the system as if the potential barriers did
not exist, i.e. with transmission probability equal to 1! Otherwise, the particle will
hardly cross the system. In fact, if we look at Fig. 5.4, we can see that for energies
other than the resonant ones the transmission probability is low, much smaller than
the transmission probability through a single barrier: it tends to zero. Notice also
that the resonant behavior occurs also for energies greater than the barriers height,
which in our example is Vo = 0.23 eV (see the arrow in the figure), these resonant
states are called resonant states in the continuum. To conclude this section, it is worth
mentioning that in the double barrier problem there is no energy quantization. The
incident particles energy has no restriction and can take any positive value.

5.3 The Finite Double Quantum Well

Let us now study the double quantum well shown in Fig. 5.5. This is the simplest
example of the so-called multiple quantum well (MQW) systems. Although the
results, at the end are independent of the choice of origin, it will be convenient in
this case to choose the zero of the energy E as in the simple quantum well problem
studied in Chap. 4, i.e. at the bottom of the potential wells. Once we choose the origin,
we must be careful and consistent with this choice.

http://dx.doi.org/10.1007/978-3-642-29378-8_4
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5.3.1 Continuity and the Double-Well Transfer Matrix

In the simple quantum well case, for energies smaller than the barrier height
(E < Vo), we had the transfer matrix

Ma(a
+, 0−) =

⎛
⎜⎜⎝

cos ka + q2 − k2

2qk
sin ka −k2 + q2

2qk
sin ka

k2 + q2

2qk
sin ka cos ka − q2 − k2

2qk
sin ka

⎞
⎟⎟⎠ ,

≡
(
αa βa

−βa δa

)
, (5.30)

to connect the state vectors at points just outside of the well, at the left and right sides.
This matrix, with the corresponding change q → ik2 is also valid when the energy
is larger than Vo. In any case, whether the energy is less than or greater than Vo, the
transfer matrix Ma(a+, 0−) is the same as the transfer matrix Ma(2a+b+, a+b−),
that connects state vectors at a+ b− and 2a+ b+. Thus, we have the same matrix in

(
a3eqa+

b3e−qa+

)
=

(
αa βa

−βa δa

) (
a1
b1

)
, (5.31)

as in
(

a5eq(2a+b+)

b5e−q(2a+b+)

)
=

(
αa βa

−βa δa

)(
a3eq(a+b−)

b3e−q(a+b−)

)
. (5.32)

Again, if we want to connect φV(2a + b+) with φI(0−), we still need to connect
the state vectors φIII(a + b−) and φIII(a+). Since these vectors are in the same
constant-potential region, we have

(
a3eq(a+b)

b3e−q(a+b)

)
=

(
eqb 0
0 e−qb

)(
a3eqa

b3e−qa

)
. (5.33)

With this relation, we are ready to connect φV(2a + b+) with φI(0−). Indeed, if we
use (5.33) and (5.31) in (5.32), we have

(
a5eq(2a+b)

b5e−q(2a+b)

)
=

(
αa βa

−βa δa

) (
eqa 0
0 e−qa

) (
αa βa

−βa δa

)(
a1
b1

)
, (5.34)

that, after multiplying in the right hand side, yields

(
a5eq(2a+b)

b5e−q(2a+b)

)
=

(
αD βD

−βD δD

) (
a1
b1

)
, (5.35)
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with

αD = α2
aeqb − β2

ae−qb,

βD = αaβaeqb + βaδae−qb, (5.36)

δD = −β2
aeqb + δ2

ae−qb. (5.37)

Notice that the matrix structure is the same as that of Ma .
When the incident particles energy is larger than the height of the potential barriers,

i.e. when E > Vo, we can obtain the double quantum well transfer matrix, exactly
in the same way as for energies below Vo. It is clear that in this case we have to use
the transfer matrix of the finite rectangular quantum well, that was given as

Ma =
(
αa βa

β∗a α∗a

)
=

⎛
⎜⎜⎝

cos ka + i
k2 + k2

2

2kk2
sin ka i

k2 − k2
2

2kk2
sin ka

−i
k2 − k2

2

2kk2
sin ka cos ka − i

k2 + k2
2

2kk2
sin ka

⎞
⎟⎟⎠ .

(5.38)
Notice that this matrix connects also the state vector at x = a + b− with the state
vector at x = 2a+ b+. We still need a matrix to connect the state vectors at x = a+
and x = a + b−. This matrix comes from

(
a3eik2(a+b)

b3e−ik2(a+b)

)
=

(
eik2b 0

0 e−ik2b

)(
a3eik2a

b3e−ik2a

)
. (5.39)

We can now establish the connection between the state vectors just outside (at the
outer ends of) the double quantum well for energies above the barrier height. This
connection is given as follows

(
a5eik2(2a+b)

b5e−ik2(2a+b)

)
=

(
αa βa

β∗a α∗a

) (
eik2b 0

0 e−ik2b

)(
αa βa

β∗a α∗a

)(
a1
b1

)
. (5.40)

Notice that the variable q, in αa , βa and in the diagonal matrix of Eq. (5.34), is
replaced here by ik2. After multiplying, the transfer matrix of the double quantum
well becomes

MD =
(
αD βD

β∗D αD,

)
, (5.41)

with
αD = α2

aeik2b + |βa |2 e−ik2b,

βD = αaβaeik2b + α∗aβae−ik2b. (5.42)

Given the transfer matrices MD(2a+b+, 0−) and the possibility of defining transfer
matrices like Mx (x,−∞), from −∞ to any point x , one can determine the coef-
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Fig. 5.6 Eigenvalues Eμ,ν
of the double quantum well
with finite lateral walls. The
levels Eμ,1 and Eμ,2, with the
exception of E5,1 and E5,2,
are so close to each other, that
the levels splitting can hardly
be seen

V(x)

Vo=0.8 eV

0 a 2a+b xa+b

ficients ai and bi and evaluate the wave functions inside and outside the double
quantum well.

5.3.2 Eigenvalues and Eigenfunctions in a Double
Quantum Well

From the general properties mentioned before, we expect that the energy in the
double quantum well will quantize only for energies below the barrier height, i.e.
for E < Vo. The energy eigenvalues equation appears naturally when new physical
conditions are imposed. In fact, when E < Vo and x → ±∞, some terms of the
wave functions

ϕI(x) = a1eqx + b1e−qx and ϕV(x) = a5eqx + b5e−qx . (5.43)

diverge. Thus, the finiteness condition requires that b1 = a5 = 0. If we introduce
these coefficients into (5.34), we have

(
0

b5e−q(2b+a)

)
=

(
αD βD

−βD δD

) (
a1
0

)
, (5.44)

which means that
αD = 0, (5.45)

and
b5 = −a1βDeq(2a+b). (5.46)

The first of these equations is the energy eigenvalues equation. If we substitute
the explicit functions obtained before for αa and βa , the eigenvalues equation in the
symmetric double quantum well takes the form:
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(
cos ka + k2 − q2

2qk
sin ka

)2

eqb −
(

k2 + q2

2qk

)2

sin2 ka e−qb = 0. (5.47)

In Fig. 5.6, we plot some energy eigenvalues Eμν when the double well parameters
are Vo = 0.8 eV, a = 3 nm and b = 1 nm. We have similar results to those of
the double well with infinite walls. Though it is hard to distinguish the split, the
energy levels come also by pairs. These energy eigenvalues are denoted also with
two indices, i.e. as Eμ,ν .

Let us now study the eigenfunctions of the double quantum well. We want to
know whether they are localized in one well or extended along the two wells and the
barrier.3 To obtain the double well eigenfunctions, we need first to express the state
vectors as explicit functions of x and in terms of only one coefficient, for example
the coefficient a1, which might be later fixed through a normalization requirement. If
we use the relations (5.31), (5.32) and (5.46), the transition matrices defined before
and the coefficients b1 = a5 = 0 and b5 = −a1βDeq(2a+b), we can obtain state
vectors, wave functions and eigenfunctions of the double quantum well. The student
can easily verify the following results: in region I, for x < 0, we have

φI(x) =
(

eqx 0
0 e−qx

) (
a1
0

)
⇒ ϕI(x) = a1eqx ; (5.48)

in region II, which corresponds to the left-side well, with 0 < x < a, we have

φII(x) =
(

eikx 0
0 e−ikx

)
1

2k

(
k − iq k + iq
k + iq k − iq

)
φI(0),

⇓
ϕII(x, E) = a1(cos kx + q

k
sin kx); (5.49)

inside the barrier, for a < x < a + b, we have

φIII(x) =
(

eq(x−a) 0
0 e−q(x−a)

)
1

2q

(
q + ik q − ik
q − ik q + ik

)
φII(a),

⇓
ϕIII(x, E) = a1

[
cos ka eq(x−a) + sin ka

(
q

k
cosh q(x − a)− k

q
sinh q(x − a)

)]
;

(5.50)

in the right well, with a + b < x < 2a + b, we have

3 Quite frequently one finds, in the scientific literature, approximate double well eigenfunctions.
They are generally built with the eigenfunctions of the single wells and, when the barrier width is
large, as single well eigenfunctions.
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Fig. 5.7 Some eigenfunctions of the double well bounded by finite walls. We plot here the eigen-
functionsϕ2,1 andϕ2,2, corresponding to the eigenvalues E2,1 and E2,2, and the eigenfunctionsϕ4,1
and ϕ4,2 corresponding to the energy levels E4,1 and E4,2. The eigenfunctions describe extended
states with well defined parity and they penetrate in the lateral barriers

φIV(x) =
(

eik(x−a−b) 0
0 e−ik(x−a−b)

)
1

2k

(
k − iq k + iq
k + iq k − iq

)
φIII(a + b),

⇓
ϕIV(x, E) = a1

[
(αa + βa)e

qb cos k(x − a − b)+ k

q
(αa − βa) sin k(x − a − b)

]
;

(5.51)

and finally, outside the double well on the right, for x > 2a + b, we have

φV(x) =
(

0
b5e−q(x−2a−b)

)
with b5 = −a1βDeq(2a+b),

⇓

ϕV(x, E) = −a1βDe−q(x−2(2a+b)). (5.52)

The eigenfunctions ϕμν(z) are obtained when these functions are evaluated at the
corresponding energy eigenvalues Eμν . In Fig. 5.7 we plot some of these eigenfunc-
tions. The eigenfunctions of the split pairs, have different symmetries and different
parities. They are extended states along the double well system. This means that a
particle in the double well, can be found, in principle, everywhere. Even in the lateral
barriers, with exponentially decreasing probability.

As noticed earlier, the split is a consequence of the coherent interference. If the
well widths are not equal, one has an asymmetric double well. Also in this case one
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can solve the problem using the transfer matrix method. As the symmetry is lost the
level splitting becomes rather irregular.

5.3.3 Transport Properties in the Double Quantum Well

When the energies are larger than the barrier’s height, i.e. for E > Vo, the wave
functions are everywhere oscillating functions and propagate in both directions. For
these energies, it is possible to talk of reflection and transmission coefficients. If the
incidence is only from the left, we have to take b5 = 0. In this case

(
a5eik2(2a+b)

0

)
=

(
αD βD

β∗D α∗D

) (
a1
b1

)
. (5.53)

This relation is equivalent to

b1 = −β
∗
D

α∗D
a1 = rDa1, (5.54)

a5 =
(
αD − βD

β∗D
α∗D

)
a1e−ik2(2a+b) = 1

α∗D
a1e−ik2(2a+b)

= tD a1 e−ik2(2a+b). (5.55)

If we replace these coefficients into ϕI(x) and ϕV(x), we have

ϕI(x) = a1eik2x + a1 rD e−ik2x , (5.56)

and
ϕV(x) = a1 tD eik2[x−(2a+b)]. (5.57)

The wave function ϕI(x), at the left, is the sum of the incident eik2x and the
reflected rD e−ik2x wave functions. On the other hand, the transmitted wave function
ϕV(x) is proportional to the transmission amplitude

tD = 1

αDR − iαDI
,

= 1(
cos ka + i

k2
2 + k2

2kk2
sin ka

)2

eik2b +
(

k2 − k2
2

2kk2

)2

sin2 ka e−ik2b

, (5.58)

with k2 = √2m(E − Vo/� and k = √2m E/�. Therefore, when E > Vo, the
transmission coefficient through the double well potential is given by
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Fig. 5.8 Transmission coeffi-
cient of the double well when
the energy is greater than the
height of potential barriers
Vo = 0.8 eV. The parameters
are the same as in Fig. 5.6

TD

0.5

Vo E [eV]0.12 0.16

TD = 1

α2
DR + α2

DI

, (5.59)

with

αDR = cos 2ka cos k2b − k2 + k2
2

2kk2
sin 2ka sin k2b, (5.60)

αDI = k2 + k2
2

2kk2
sin 2ka cos k2b −

(
k2 − k2

2

2kk2

)2

sin k2b

+
(

k2 + k2
2

2kk2

)2

cos 2ka sin k2b. (5.61)

The complexity of the function α2
DR+α2

DI in the denominator of TD is significantly
higher than for a single well. In Fig. 5.8 we plot this transmission coefficient for
Vo = 0.8 eV, a = 3 nm and b = 1 nm. The transmission probability increases with
the energy and also has a resonant behavior.

So far we have studied an important set of soluble examples. In each of these
examples we found new results, which altogether, configure a basic picture of the
quantum phenomenology. In Chap. 4 we met the quantum tunneling and the resonant
transmission. In this chapter, we found the quantum coherence phenomenon and
the energy levels splitting. The physical systems which behavior comprises all this
phenomenology, are the periodic systems. Systems such as metals, semiconductors
and other crystalline structures, natural or artificial, are examples of periodic systems.
To get an insight into these systems we will briefly discuss some results related
with the one-dimensional finite periodic structures. We will study the finite Kronig–
Penney model, with particular emphasis on the splitting phenomenon that builds up
the energy bands.

http://dx.doi.org/10.1007/978-3-642-29378-8_4
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Fig. 5.9 A finite periodic system with rectangular barriers and wells

5.4 Finite Periodic Systems

Our interest in this section is to present an introductory application of the quantum
formalism to periodic systems. The natural extension of the simple structures studied
before, characterized by the level splitting phenomenon, are the one-dimensional
periodic systems and their energy bands. We have seen that going from the one
barrier system to the double barrier system, or from a single well to the double well,
the complexity of the transfer matrices grows. It is natural to think that the transfer
matrix of a periodic system, will necessarily imply higher levels of complexity and
perhaps more involved expressions. that is however not the case. We will show here
that, using properly the transfer matrix properties and symmetries, it is possible to
obtain compact and universal expressions for the transfer matrix of a finite periodic
system. These results, which are independent of the specific potential profile, can
equally be used to obtain the transfer matrix of a piecewise constant periodic potential,
as in Fig. 5.9, or the transfer matrix of a periodic system with an arbitrary potential
profile, like the one shown in Fig. 5.10.

Having the transfer matrix of a periodic system, we will be able to derive general
formulas for the transmission and reflection coefficients, in the same way as we did
for the simple examples studied before. We will apply these formulas for the finite
periodic system, with n rectangular barriers and n − 1 rectangular wells, shown in
Fig. 5.9, and we will see how the level splitting leads to one of the most significant
quantum properties: the band structure of periodic systems. This system, in the limit
n = ∞, is the well known Kronig–Penney model.4 The Kronig–Penney model was
one of the first simple models that revealed the existence of the allowed and forbidden
energy bands. Periodicity is one of the most distinctive features of crystal structures.

The periodic potential in Figs. 5.9 and 5.10 are quite different but they share a
common property: both are built by the repetition of a unit cell. The unit cells of
these systems are shown in Fig. 5.11. If the length of a unit cell is lc, the length of
the n cells system is L = nlc. To obtain the physical quantities of a finite periodic
system, with n cells, we need the transfer matrix Mn(xr , xl) that connects the state
vectors at the left end xl = x0 with those at the right end xr = xn = x0 + nlc. It
turns out and will be shown here that, to obtain this transfer matrix, it is necessary
and sufficient to know the unit-cell transfer matrix M . We will show that assuming
the existence of M , without even knowing the specific functions of α, β, . . . ,we can

4 Kronig, R. d. L. and Penney, W. G. Proc. Roy. Soc. A 130 499 (1931) .
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Fig. 5.10 A finite periodic system with an arbitrary potential profile

Fig. 5.11 Unit cells of the
periodic systems in Figs. 5.9
and 5.10
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derive general expressions for Mn(xr , xl) in terms of α and β. The calculation of
the unit-cell transfer matrix can be a simple or a complex task. When the potential is
piecewise constant, as in Fig. 5.9, the solution of the Schrödinger equation of the unit
cell is very simple. When the potential profile is as in Fig. 5.10, with a unit cell like
the one shown on the right side of Fig. 5.11, the calculation of the unit cell transfer
matrix may be a cumbersome problem. Suppose now that

M =
(
α β
β∗ α∗

)
, (5.62)

is the transfer matrix of a unit cell.5 If we use the multiplicative property of transfer
matrices, we can write the transfer matrix of the sequence of n-cells as

Mn = M.M . . .M︸ ︷︷ ︸
n factors

= Mn . (5.63)

This product of matrices can be written in different ways, for example we can write
Mn as the product of Mn−1 with the matrix M , i.e. as

Mn = M M.M . . .M︸ ︷︷ ︸
n−1 factors

= M Mn−1, (5.64)

5 Notice that to simplify the calculations we are also assuming that the unit cell is invariant under
time reversal.
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or, as the product
Mn = M.M . . .M︸ ︷︷ ︸

n−1 factors

M = Mn−1 M. (5.65)

In terms of the matrix elements, this product looks like

(
αn βn

β∗n α∗n

)
=

(
αn−1 βn−1
β∗n−1 α

∗
n−1

)(
α β
β∗ α∗

)
. (5.66)

Our purpose is to obtain αn and βn , provided that α and β are known. From (5.66),
we have6

αn = αn−1α+ βn−1β
∗, (5.67)

and
βn = αn−1β + βn−1α

∗. (5.68)

If we solve for αn−1, in the last equation, we have

αn−1 = β−1βn − α∗β−1βn−1. (5.69)

It is clear here that defining the function

pn−1 = β−1βn, → βn = β pn−1, (5.70)

(5.69) can be rewritten as

αn−1 = pn−1 − α∗ pn−2 or αn = pn − α∗ pn−1. (5.71)

In the last two equations we haveαn and βn in terms of pn and the matrix elements of
M , i.e. of α and β. If we know the functions pn we will formally solve the problem,
and the transfer matrix Mn will be known. Notice that if we replace (5.70) and
the αn

′s of the last equations in (5.67), we end up with the interesting three terms
recurrence relation

pn − (α+ α∗) pn−1 + pn−2 = 0. (5.72)

To solve this equation we need to define the initial conditions. Taking into account
that M0 = I , M1 = M and the relation (5.70), one can conclude that p0 = 1 and
p−1 = 0. Since α + α∗ = 2αR, with αR the real part of α, the recurrence relation
takes the form

pn − 2αR pn−1 + pn−2 = 0 with p0 = 1 and, p−1 = 0. (5.73)

6 In 3D systems or systems with more than one propagating mode, α and β are matrices. This kind
of systems are beyond the purpose of this book.
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It turns out that this recurrence relation is exactly the same as the recurrence relation

Un − 2xUn−1 +Un−2 = 0, (5.74)

of the Chebyshev polynomials of the second kind Un(x), with U0 = 1 and U−1 = 0.
Thus, the functions pn that satisfy (5.73) are the Chebyshev polynomials evaluated at
αR .7 It is important to notice that, to determine these polynomials and, consequently,
the transfer matrix of the whole n-cell system, it is enough to know the transfer matrix
of the unit cell. Therefore

Mn =
(

pn − α∗ pn−1 β pn−1
β∗ pn−1 pn − αpn−1

)
, (5.75)

with α and β the elements of the unit-cell transfer matrix M .
This is an important result that relieves us of multiplying matrices.8 Since the

transmission amplitude tn is the inverse of α∗n , the transmission coefficient of the
whole system is given in general as

Tn = 1

|pn − α∗ pn−1|2
. (5.76)

If we use the fact that the transfer matrices are unimodular, with |αn|2 = 1+ |βn|2,
we can also write the transmission coefficient in the form

Tn = 1

1+ |β|2 p2
n−1

. (5.77)

These are the general expressions we wanted to derive. These formulas are valid
for any one-dimensional periodic system. Notice that the specific potential profile
comes in through the specific functions α and β, and the size of the system through
the number of cells n.

5.4.1 Transport Properties in the Kronig–Penney Model

To apply the transport formulas obtained here, we will consider the Kronig–Penney
model of rectangular barriers and wells, with a finite number of cells. The unit cell
of this system, chosen as in Fig. 5.11, contains a rectangular barrier and two halves
of a well (one at the left and one at the right). To obtain the unit cell transfer matrix
M(x2, x1), with x2 = x1+ lc, we need the transfer matrices Ml , Mb and Mr , for the
wells and the barrier. For the barrier we have the transfer matrix

7 One can easily verify that p1(αR) = −2αR , p2(αR) = 4α2
R − 1, and so on.

8 See P. Pereyra, Phys. Rev. Lett 80 (1998) 2677.
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Mb =
(
αb βb

β∗b α∗b

)
, (5.78)

with αb and βb given in equation (4.89). The transfer matrices Ml and Mr connect
points in the same potential region. Since the distance between these points is a/2,
these transfer matrices are of the form

(
eika/2 0

0 e−ika/2

)
. (5.79)

Thus, the transfer matrix of the unit cell is obtained from the product

M(x2, x1) = Md Mb Mi =
(

eika/2 0
0 e−ika/2

) (
αb βb

β∗b α∗b

) (
eika/2 0

0 e−ika/2

)
,

(5.80)

which leads us to

M(x2, x1) =
(

eikaαb βb

β∗b e−ikaα∗b

)
. (5.81)

Given this matrix, we can evaluate the transmission coefficient of the Kronig–Penney
model using the general formula

Tn = 1

1+ |βb|2 p2
n−1(αR)

, (5.82)

together with the specific functions

βb = −i
k2 + q2

2qk
sinh qb, (5.83)

and

αR = cosh qb cos ka − k2 − q2

2qk
sinh qb sin ka. (5.84)

In Fig. 5.12 we plot the transmission coefficient for different values of n, when
Vo = 0.8 eV, a = 3 nm and b = 1 nm. The most significant result in this series,
related with the levels splitting phenomenon, is the appearance of forbidden and
allowed energy regions (more sharply defined for larger values of n). This is an
example of the energy band structure. It emerges as a result of coherent interference
in periodic potentials.

http://dx.doi.org/10.1007/978-3-642-29378-8_4
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Fig. 5.12 The transmission
coefficient Tn of a periodic
potential for different number
of cells n. We plot here for
n = 1, 3, 5 and 15, and
rectangular barrier parameters
a = 2 nm, b = 10 nm and
Vo = 0.23 eV
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5.5 Solved Problems

Exercise 14 Using the transfer matrix definition, obtain the wave functions of the
double well bounded by infinite walls, and show that they coincide with (5.13) and
(5.14). What are the eigenfunctions of this problem?
Solution To start with, let us recall that the wave functions vanish at the infinite
walls. Based on this fact, we have

ϕI (0) = a1 + b1 = 0, hence φ(0) =
(

a1
−a1

)
. (5.85)

From the transfer matrix definition, we know that we can find a transfer matrix
Mp(x, 0) such that

φ(x) =
(
ϕ+(x)
ϕ−(x)

)
= Mp(x, 0)φ(0) =

(
αp βp

γp δp

)
φ(0), (5.86)

with φ(x) the state vector at any point x within the double well. Thus, the wave
function at x will be given by

ϕ(x, E) = ϕ+(x)+ ϕ−(x) = (
αp − βp + γp − δp

)
a1. (5.87)

This function is well defined if we know the matrix elements αp, βp, γp and δp. Our
purpose is then to obtain these matrix elements. We will show now that knowing
the solutions of the Schrödinger equation, in each region of the double well, we can
obtain the matrix elements αp, βp, γp and δp, hence the wave function ϕ(x, E).
Once we know the function, it will be easy to obtain the eigenfunctions ϕμ,ν(x). Let
us start with the wave function.

When the point x is in the first region (0 < x < a), the transfer matrix Mp(x, 0)
connects two points in a constant potential region, thus αp(x) = eikx , βp(x) = 0,
γp(x) = 0 and δp(x) = e−ikx , and the wave function is
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ϕI(x, E) = 2ia1 sin kx . (5.88)

This function coincides with the function ϕI(x, E) in (5.13). For x in the second
region (a < x < a + b), we have

(
a2eqx

b2e−qx

)
=

(
eq(x−a) 0

0 e−q(x−a)

)
1

2q

(
q+ik q−ik
q−ik q + ik

) (
eika 0

0 e−ika

)(
a1
−a1

)
.

(5.89)
After multiplying matrices, we obtain the expression

(
a2eqx

b2e−qx

)
= 1

2q

(
eq(x−a) (q + ik) eika eq(x−a) (q − ik) e−ika

e−q(x−a) (q − ik) eika e−q(x−a) (q + ik) e−ika

)(
a1
−a1

)
,

(5.90)
which allows us to identify the matrix elements

αp = 1

2
eq(x−a)

(
1+ i

k

q

)
eika, βp = 1

2
eq(x−a)

(
1− i

k

q

)
e−ika,

γp = 1

2
e−q(x−a)

(
1− i

k

q

)
eika, δp = 1

2
e−q(x−a)

(
1+ i

k

q

)
e−ika . (5.91)

Using these matrix elements we obtain, straightforwardly, the wave function in the
second region as

ϕII(x, E) = 2ia1

(
sin ka cosh q(x − a)+ k

q
cos ka sinh q(x − a)

)
. (5.92)

Finally, for the wave function in the third region (a + b < x < 2a + b) we need to
use the relation

(
ϕ+(x)
ϕ−(x)

)
=

(
eik(x−a−b) 0

0 e−ik(x−a−b)

) (
αb βb

β∗b α∗b

)(
eika 0

0 e−ika

) (
a1
b1

)
,

(5.93)
with αb and βb the elements of the transfer matrix of the barrier. These matrix
elements were given in (4.89). After multiplying, we can also identify the transfer
matrix elements

αp = eik(x−a−b)αbeika, βp = eik(x−a−b)βbe−ika,

γp = e−ik(x−a−b)β∗b eika, δp = e−ik(x−a−b)α∗be−ika, (5.94)

which, replaced in (5.87), give the wave function

ϕIII(x, E) = 2ia1�m
[
eik(x−a−b)

(
αbeika − βbe−ika

)]
. (5.95)

http://dx.doi.org/10.1007/978-3-642-29378-8_4
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The notation �m stands for the imaginary part. Therefore, the double quantum well
wave function (with A = 2ia1) is

ϕ(x, E) =

⎧⎪⎪⎨
⎪⎪⎩

A sin kx, 0 < x ≤ a,

A
(

sin ka cosh q(x − a)+ k
q cos ka sinh q(x − a)

)
, a < x ≤ a + b,

A�m
[
eik(x−a−b)

(
αbeika − βbe−ika

)]
, a + b < x ≤ 2a + b.

(5.96)

We leave as a problem to show that these functions satisfy the continuity conditions
at x = a and at x = a + b.

We are now ready to obtain the eigenfunctions of the double well. All we have
to do is to evaluate the wave ϕ(x, E) at the corresponding energy eigenvalue. The
eigenfunction that corresponds to the eigenvalue Eμ,ν is then

ϕμ,ν(x) = ϕ(x, E)|E=Eμ,ν . (5.97)

Exercise 15 Obtain the eigenvalues Eμν of the double quantum well bounded by
infinite walls, for a = 30 Å, b = 7.5 Å and Vo = 0.6 eV.
Solution One way to find the eigenvalues is to use a program that finds the zeros of
the implicit function in (5.17). Below we copy a program (written for Mathematica)
where the eigenvalues Eq. (5.17) is defined, and the roots of eigenv = 0 are found.
These roots are the eigenvalues Eμν of the double quantum well with infinite walls.
Some of the roots appear more than once. This depends on the numbers given as
seeds to generate the table.
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Thus
E11 = 0.034886, E12 = 0.036074,

E21 = 0.138404, E22 = 0.144012,

E31 = 0.306246, E32 = 0.322909,

E41 = 0.528077, E42 = 0.571120.

(5.98)

Exercise 16 Plot the eigenfunction ϕ21(x) of the double quantum well bounded by
infinite walls when a = 30 Å, b = 7.5 Å and Vo = 0.6 eV.
Solution We have seen in the solved problem 5.5 that, in order to obtain the eigen-
functions ϕμν(x), we need, first, to obtain the wave function ϕ(x, E) for all values
of x where the physical system is defined. Once we have this function, we evaluate
for E = Eμν . Below we copy the program where, after introducing the parameters,
Vo, me and � in eV, and the light velocity in Å/s, we define the wave vectors k and q,
in units of Å−1, and the wave functions ϕI(x, E), ϕII(x, E) and ϕIII(x, E). To plot
the eigenfunction we need to evaluate ϕi (x, E) for E = E21. In the solved problem
5.2, we obtained, among others, the eigenvalue E21 = 0.13840405001245132 eV.
In the second part of the program, copied below, we evaluate the wave functions for

10 20 30 40 50 60

- 1.0

- 0.5

0.5

1.0
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Fig. 5.13 The eigenfunctions
ϕ31(x) and ϕ32(x) from the
double well with potential
parameters a = 3 nm, b =
0.75 nm and Vo = 0.6 eV.
One of the eigenfunctions is
symmetric while the other is
antisymmetric with respect to
the center of the double well

V(x)

Vo

Vo=0.6 eV

ϕ32

ϕ31

a=3nm b=0.75nm

0 a a+b 2a+b x

E = E2,1 and plot it for x between x = 0.0 and x = 2a + b. The function is
continuous, symmetric (with respect to the center of the double well) and vanishes
at the infinite walls located at x = 0 and at x = 2a + b = 67.5 Å.
The student can verify that plotting the function for a slightly different value of the
energy, the evident symmetry of the eigenfunction disappears.

Exercise 17 Plot the eigenfunctions ϕμ1(x) and ϕμ2(x), for the same value of μ, and
verify that taking the center of the double quantum well as the symmetry point, the
eigenfunctions ϕμ1(x) and ϕμ2(x) possess different parity symmetries.
Solution In Fig. 5.13 we plot the eigenfunctions ϕ31(x) and ϕ32(x), corresponding
to E31 = 0.3062462125992447 and E32 = 0.32290870476454275. To plot these
functions we use basically the same program as in the previous exercise. It is clear
from these graphs that while ϕ31(x) is even, ϕ32(x) is odd.

Exercise 18 Show that near the resonant energies E∗μ the transmission coefficient TD

of the double barrier potential can be approximated by the Breit–Wigner formula

TD 
 Γ 2

Γ 2 + (
E − E∗μ

)2 , (5.99)

with

Γ ∝ �

τμ
, (5.100)

and τμ the double-barrier tunneling time.
Solution The transmission coefficient for the double barrier potential was given as

TD = 1

1+ 2 |βb|2
(|αb|2 +�e α2

bei2ka
) , (5.101)

with the resonance condition

|αb|2 +�e α2
bei2ka = 0. (5.102)
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If we write the complex function αb as |αb|eiθα and define the phase

θ = 2(θα + ka), (5.103)

the transmission coefficient becomes

TD(E) = 1

1+ 2 |βb|2 |αb|2 (1+ cos θ)
, (5.104)

and the resonant energies E∗μ are such that

θ|E=E∗μ = θμ = (2μ− 1)π, with μ = 1, 2, . . . (5.105)

Since |αb| and |βb| vary slowly with E , we will approximate only the trigonometric
function cos θ(E) near the resonant points, where cos θμ = −1, by

cos θ 
 cos θμ − sin θμ
∂θ

∂E

∣∣∣∣
E∗μ

(
E − E∗μ

)− 1

2
cos θμ

∂θ

∂E

∣∣∣∣
2

E∗μ

(
E − E∗μ

)2
,


 −1+ 1

2

∂θ

∂E

∣∣∣∣
2

E∗μ

(
E − E∗μ

)2
. (5.106)

Replacing this in (5.104) and defining the energy

Γ = 1

|βb| |αb| ∂θ
∂E

∣∣∣∣
E∗μ

, (5.107)

that has relation with the resonance width, we obtain the approximate formula

TD(E) 
 Γ 2

Γ 2 + (
E − E∗μ

)2 , (5.108)

known in nuclear reactions theory as the Breit–Wigner formula for symmetric
potentials.

Notice that ka is the phase acquired between the barriers, and since |tb|eiθt =
1/α∗b, the phase θt is equal to θα. Thus, the phase θ in (5.103) can be seen as
the double barrier phase shift. We will see, in Chap. 7, that a possible definition of
the tunneling time across a quantum or electromagnetic system, with transmission-
amplitude phase θt , is the phase time defined as

τph = �
∂θt

∂E
. (5.109)

http://dx.doi.org/10.1007/978-3-642-29378-8_7
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Using this definition, and identifying the double barrier resonant tunneling time τμ

with �
∂θ

∂E

∣∣∣∣
E∗μ

, we have

Γ = Tb√
1− Tb

�

τμ
. (5.110)

5.6 Problems

1. Find the eigenvalue equation for the double quantum well bounded by infinite
walls when the energy is greater than Vo. Analyze the main differences with the
energy levels below Vo.

2. Write the explicit functions of the matrix elements αD and βD for the double
barrier potential when the energy is below Vo and when the energy is above Vo.

3. Write the explicit functions of the transfer matrix elements αD and βD of the
double well, bounded by finite walls, when E < Vo and when E > Vo.

4. In the finite double well potential, with a = 30 Å, b = 7.5 Å and Vo = 0.6 eV,
obtain:

a. the eigenvalues E2,1, E2,2, E3,1 and E3,2;
b. the eigenfunctions φ2,1, φ2,2, φ3,1 and φ3,2;
c. plot the eigenfunctions φ2,1, φ2,2, φ3,1 and φ3,2.

5. The Lorentzian function with amplitude 1/(πγ) is defined as

F(x; xo, γ) = 1

π

γ

γ2 + (x − xo)2
. (5.111)

Show that the Breit–Wigner formula (5.108) is a Lorentzian function with ampli-
tude 1. Using this formula and the potential parameters a = 2 nm, b = 10 nm
and Vo = 0.23, determine the function Γ and plot the approximate transmission
coefficient of the double barrier potential near the first resonance.

6. Obtain the condition that should be satisfied of a resonant value of the transmis-
sion coefficient of a double quantum well, bounded by finite walls.

7. Derive the eigenvalue equation for the double quantum well (Eqs. (5.43)–(5.47))
with finite walls (when the energy is less than Vo).

8. Obtain the transfer matrix of the asymmetric double barrier when the width of the
second barrier is twice the width of the first one. Plot the transmission coefficient
and compare with the transmission coefficient of the symmetric double barrier.

9. After imposing the physical conditions and assuming that the incidence is from
the right, obtain the wave function for each region of the double well.

10. Use the general expression for the transmission coefficient, written in terms of
the Chebyshev polynomials for n = 2, and show that it agrees with that obtained
for the double barrier in (5.27).
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11. Show that in the forbidden bands the energy is such that

TrM ≥ 2. (5.112)

12. Plot as functions of energy both the function αR and the transmission coefficient
Tn for a Kronig–Penney system with Vo = 0.23 eV, a = b = 20 nm, and
different values of n.



Chapter 6
The WKB Approximation

Immediately after the birth of the quantum theory, Wentzel, Kramers and Brillouin
introduced in 1926 one of the first methods to obtain approximate solutions to the
Schrödinger equation. A method that might be used when rigorous analytical solu-
tions are not possible. In most of the actual quantum systems we face this problem. It
is known that only for exceptional systems like the harmonic oscillator, the hydrogen
atom and the piecewise constant potentials, it is possible to solve the Schrödinger
equation analytically. It is therefore important to study an approximate method to
solve the Schrödinger equation. In this chapter we present the basic ideas behind the
WKB approximation and we will learn how to deal with this approximation in the
transfer matrix representation. For simplicity reasons, our discussion will be mostly
devoted to one-dimensional systems. Another widely used approximation method,
is the so-called perturbation theory. In Chap. 12 we will discuss basic aspects of this
theory.

6.1 The Semi-Classical Approximation

This method aims to obtain quantum solutions based on the corresponding classical
solutions. More precisely, the purpose is to obtain the quantum action S as a correction
to the classical action Sc. In the classical theory it is known that the action Sc is the
solution of the Hamilton–Jacobi equation

(∇Sc)
2

2m
+ V (r) = E . (6.1)

where V (r) is an arbitrary smooth potential. For example the potential in Fig. 6.1. If
we write the solution of the corresponding Schrödinger equation

− �
2

2m
∇2ϕ(r)+ V (r)ϕ(r) = Eϕ(r), (6.2)
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Fig. 6.1 An example of an
arbitrary potential function V(x)

x

as
ϕ(r) = ei S(r)/�, (6.3)

the quantum action S should satisfy the differential equation

(∇S)2

2m
− i�

2m
∇2S + V (r) = E . (6.4)

The semiclassical method applies when

�|∇2S| << |(∇S)2|. (6.5)

In this case, the quantum action S can be written as the classical action plus some
corrections. To obtain these corrections, the prescription is to write the quantum
action as the power series of �

S = Sc + i�S1 + (i�)2S2 + . . . , (6.6)

with the quantum action S equal to Sc in the limit when �→ 0. Using this action in
ϕ and replacing this function into the Schrödinger equation, we get (to second order
in �) the following equation

(∇Sc)
2

2m
+ V + i

�

m
(∇Sc · ∇S1 − 1

2
∇2Sc)

−�
2

m

(
2∇S2 · ∇Sc + (∇S1)

2 − ∇2S1
) = E . (6.7)

We have grouped here all terms with the same power of �. If we equate to zero the
coefficients of �

0, � and �
2, we end up with the following system of equations

(∇Sc)
2

2m
+ V = E, (6.8)

∇S1 · ∇Sc − 1

2
∇2Sc = 0, (6.9)
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and

∇S2 · ∇Sc − 1

2
∇2S1 + 1

2
(∇S1)

2 = 0, (6.10)

whose solutions give us the classical action and the quantum corrections S1 and S2.
To obtain these quantities, we recall the following relation for the classical action
and the linear momentum

∇Sc = p or equivalently Sc =
∫

p · dr. (6.11)

In one dimensional systems, the classical action will be given by

Sc = ±
x∫

p(x)dx con p(x) = ±
√

2m
(
E − V (x)

)
, (6.12)

and the first-order correction from the differential equation

p(x)
d S1

dx
= 1

2

dp(x)

dx
, (6.13)

with solution
S1 = ln

√
p(x). (6.14)

As a consequence, we have that to first order in �, the action will be given by

S = ±
x∫

p(x)dx + i� ln
√

p(x). (6.15)

Thus, the solution of the one-dimensional Schrödinger equation is

ϕ(x) = a e
(

i
�

∫ x p dx−ln
√

p
)
+ b e

(
− i

�

∫ x p dx−ln
√

p
)
. (6.16)

This function will be written as

ϕ(x) = a
1√
p

e
i
�

∫ x p(x) dx + b
1√
p

e−
i
�

∫ x p(x) dx . (6.17)

In the following sections we will consider this type of wave functions.1 In regions
where E > V (x), the wave function can be written in the form

1 Notice that the factor 1/
√

p diverges at the classical turning points. A more detailed analysis can
be found, for example, in Quantum Mechanics by L. Schiff (McGraw-Hill, NY 1949). See also
Sukhatme U and Pagnamenta A Am. J. Phys. 59 944 (1991).
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Fig. 6.2 Return points xi in
an arbitrary potential function

x1 x2 x3 x

V(x)

E

ϕ(x) = a
1√
k

ei
∫ x k(x) dx + b

1√
k

e−i
∫ x k(x) dx , (6.18)

while for E < V (x), the momentum � k(x) should be replaced by i� q(x) and the
solution will be written in the form

ϕ(x) = a
1√
q

e
∫ x q dx + b

1√
q

e−
∫ x q dx . (6.19)

Although there is some similarity with the functions we had for piecewise constant
potentials, one should not forget that k and q are functions of x . It is clear that for
constant potentials, the integral will become kx or qx , and we will have the solutions
that we know already.

6.2 The Scope of the WKB Approximation

In the motivation of the WKB approximation we have seen that the Schrödinger
equation, written in terms of the action S, becomes the classical Hamilton–Jacobi
equation when

�|∇2S| << (∇S)2 or �|∇ ·p| << p2. (6.20)

We want to explore now the meaning of this condition. To simplify the analysis,
let us restrict ourselves to one-dimensional systems. In this case, the last condition
becomes

�
dp

dx
<< p2(x), (6.21)

and can be expressed in different ways. For example, as

− � m

p(x)

dV

dx
<< p2(x) or �m

F(x)

p(x)
<< p2(x). (6.22)
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To fulfill these conditions we require a potential V (x) which is a smooth function
of x . Alternatively, if we approximate V (x) by the first order term of its Taylor
expansion, around a return point xi (with xi any of the return points x1, x2 or x3 in
Fig. 6.2), we have

V (x) = V (xi )+ dV

dx

∣∣∣∣
x=xi

(x − xi )

= E − F(xi )(x − xi ). (6.23)

If we now write the momentum p(x) = √2m(E − V (x)) as

p � √
2m F(xi )|x − xi | , (6.24)

we can express (6.21) in the form

|x − xi | >> 1

2

(
�

2

m F(xi )

)1/3

, with xi = x1, x2, . . . (6.25)

These relations and those in (6.22), define the scope and the physical conditions
that the physical system should meet to apply the WKB approximation. Notice that,
while (6.22) implies a smooth variation of the potential function, (6.25) tells us that
the semiclassical method provides a good description at points x far enough from
the return points xi . This condition will not prevent us from searching the continuity
conditions in the neighborhood of or at the return points. The fulfillment of the
continuity conditions will allow us to extend the use of the transfer matrix method
to the WKB approximation.

6.2.1 Continuity Conditions and the Connection Formulas
for the WKB Approximation

A detailed analysis of the mathematical continuity conditions leading to the so-called
connection formulas at the return points, goes beyond the scope of this book. We
shall just use them. The connection formulas that are known for points like the point
a of Fig. 6.3 are

1√
q

e−
∫ a

x q dx ←→→ 2√
k

cos
(∫ x

a
k dx − π

4

)
, (6.26)

− 1√
q

e
∫ a

x q dx ←←→ 1√
k

sin
(∫ x

a
k dx − π

4

)
; (6.27)

while for a point like b in Fig. 6.4, the connection formulas are
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Fig. 6.3 Return point a where
the connection formulas (6.26)
and (6.27) should be used

a x

E

V(x)

Fig. 6.4 Return point b with
connection formulas (6.28)
and (6.29)

b x

E

V(x)

2√
k

cos
( b∫

x

k dx − π
4

)
←←→ 1√

q
e−

∫ x
b q dx , (6.28)

2√
k

sin
(∫ b

x
k dx − π

4

)
←→→− 1√

q
e
∫ x

b q dx . (6.29)

These relations should be used in the manner indicated by the double arrows. If we
relax the double arrow and we write the connection formulas in a matrix representa-
tion, we have

1√
q

(
e−

∫ a
x q dx

e
∫ a

x q dx

)
←→ 1√

2

(
1− i 1+ i
1+ i

2

1− i

2

)
1√
k

(
ei

∫ x
a k dx

e−i
∫ x

a k dx

)
, (6.30)

for state vectors in the neighborhood of a point like a, and

1√
k

(
e−i

∫ b
x k dx

ei
∫ b

x k dx

)
←→ 1√

2

⎛
⎜⎝

1+ i
1− i

2

1− i
1+ i

2

⎞
⎟⎠ 1√

q

(
e
∫ x

b q dx

e−
∫ x

b q dx

)
, (6.31)
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Fig. 6.5 An arbitrary smooth
potential well. In a potential
like this, the energy eigen-
values are obtained from the
Sommerfeld-Wilson-Ishiwara
formula

I II III

a b x

E

V(x)

for state vectors in the neighborhood of a point like b. The connection matrices

Ca = 1√
2

(
1− i 1+ i
1+ i

2

1− i

2

)
≡

(
c11 c12
c21 c22

)
, (6.32)

and

Cb = 1√
2

⎛
⎜⎜⎝

1+ i
1− i

2

1− i
1+ i

2

⎞
⎟⎟⎠ =

(
c∗11 c∗21
c∗12 c∗22

)
= C†

a , (6.33)

differ slightly from the transition matrices that will be obtained in the next sections.
It is easy to verify that Cb is not the inverse of Ca . Cb is the adjoint of Ca .2

6.2.2 Energy Quantization in the Potential Well

We know that if we have a potential function as in Fig. 6.5, the energy must quantize.
Let us now see how these energies come out in the semiclassical approximation. In
this system, as in the case of the square well, it is important to guarantee the finiteness
of the Schrödinger solutions as the variable x →±∞. The exponential functions in
regions I and III are, certainly, functions with divergency problems in these limits.
Therefore, we are left with

ϕI(x) = A1
1√

q(x)
e−

∫ a
x q(x)dx , when x < a, (6.34)

and

ϕIII(x) = A3
1√

q(x)
e−

∫ x
b q(x)dx , when x > b. (6.35)

2 The adjoint of a matrix is defined as its transpose conjugate, i.e. C† = (CT )∗.
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In this case the connection formulas that we are going to use are: the connection
formula (6.26), which helps us define the function at the right hand side of the point
a, and the connection formula (6.28), that helps us define the function at the left of b.
Using these formulas, we have for the wave function in region II either the stationary
solution in the form

ϕII(x) = A√
k(x)

cos

⎛
⎝

x∫

a

k(x)dx − π
4

⎞
⎠ , (6.36)

or the stationary function in the form

ϕ̃II(x) = B√
k(x)

cos

⎛
⎝

b∫

x

k(x)dx − π
4

⎞
⎠ . (6.37)

Both expressions should coincide. Hence, they should transform one into the other.
If we notice that the cosine, appearing in (6.36), can be rewritten as

cos

⎛
⎝

x∫

a

kdx − π
4

⎞
⎠ = cos

⎛
⎝

b∫

a

kdx −
b∫

x

kdx + π
4
− π

2

⎞
⎠ . (6.38)

and we define the phase

η =
b∫

a

k(x)dx − π
2
, (6.39)

we have

cos

⎛
⎝

x∫

a

kdx − π
4

⎞
⎠ = cos

⎛
⎝η −

b∫

x

kdx + π
4

⎞
⎠ . (6.40)

Using the identity

cos (nπ − θ) = (−1)n cos (θ) , n = 0, 1, 2, . . . , (6.41)

it is easy to verify that ϕII(x) equal to ϕ̃II(x), only when the phase η fulfills the
relation

η =
b∫

a

k(x)dx − π
2
= nπ, and A = (−1)n B. (6.42)

Taking into account that the momentum p(x) changes sign when the integration is
from b to a, we have
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b∫

a

k(x)dx =
a∫

b

k(x)dx = π
(

n + 1

2

)
. (6.43)

Therefore ∮
p(x)dx = h

(
n + 1

2

)
, (6.44)

which is equivalent to the quantization rule of Sommerfeld, Wilson and Ishiwara.

6.3 Transfer Matrices in the WKB Approximation

We are interested in applying the semiclassical method for arbitrary potential wells
and barriers, such that the above mentioned conditions are met. We know already
that the transport properties and the energy eigenvalues of a quantum system can
easily be evaluated when the transfer matrices are known. Our aim is to obtain the
transfer matrices of arbitrary potential wells and barriers, within the WKB method
so that they can then be used in specific applications.

6.3.1 The Transfer Matrix of a Quantum Well

In this problem and in the potential barrier, some integrals will appear repeatedly. To
simplify the notation let us define the following functions

ξ1(x) =
x∫

x1

k(x)dx, ξ2(x) =
x2∫

x

k(x)dx, (6.45)

ϑ1(x) =
x1∫

x

q(x)dx, ϑ2(x) =
x∫

x2

q(x)dx . (6.46)

with

k(x) =
√

2m
(
E − V (x)

)
/� and q(x) =

√
2m

(
V (x)− E

)
/�. (6.47)

Using these functions, the WKB solutions in regions I, II and III, for the potential
well shown in Fig. 6.6, can be written, respectively, as
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Fig. 6.6 An arbitrary
potential well

I II III

x1 x2 x

E

V(x)

ϕI(x) = A1√
q(x)

e−ϑ1(x) + B1√
q(x)

eϑ1(x), for x < x1, (6.48)

ϕII(x) = A2√
k(x)

eiξ1(x) + B2√
k(x)

e−iξ1(x), for x1 < x < x2,

ϕ̃II(x) = A′2√
k(x)

e−iξ2(x) + B ′2√
k(x)

eiξ2(x), (6.49)

ϕIII(x) = A3√
q(x)

eϑ2(x) + B3√
q(x)

e−ϑ2(x), for x > x2. (6.50)

For region II we have written two representations of the wave function. As in the
piecewise constant potential problems, the functions should satisfy the continuity
conditions at x1 and at x2. But we can not evaluate at the return points. At these
points p(x) and q(x) become zero and the wave functions diverge. We will evaluate
the functions near x1 and near x2, and we will adjust their coefficients so that the
functions and their derivatives, on both sides of the return points, become equal. At
x1 we want that

ϕ1(x1 − ε) � ϕ2(x1 + ε) and ϕ′1(x1 − ε) = ϕ′2(x1 + ε), (6.51)

where ε = |x − xi |x→xi , such that the condition (6.25) will be satisfied. The first
continuity condition gives rise to

A1√
q(x−1 )

+ B1√
q(x−1 )

� A2√
k(x+1 )

+ B2√
k(x+1 )

, (6.52)

and the second to

A1

q3/2

(
dq

dx
+ 2q2

)∣∣∣∣
x=x1

+ B1

q3/2

(
dq

dx
− 2q2

)∣∣∣∣
x=x1

� A2

k3/2

(
dk

dx
+ i2k2

)∣∣∣∣
x=x1

+ B2

k3/2

(
dk

dx
− i2k2

)∣∣∣∣
x=x1

.

(6.53)
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If we assume that the potential function meets the conditions

∣∣∣∣dq

dx

∣∣∣∣ << q2 and

∣∣∣∣ dk

dx

∣∣∣∣ << k2, (6.54)

for the WKB approximation, the continuity condition for the wave function deriva-
tives takes the simpler form

q(x−1 )
(

A1√
q(x1

−)
− B1√

q(x1
−)

)
� ik(x1

+)
(

A2√
k(x1

+)
− B2√

k(x1
+)

)
. (6.55)

To simplify the notation we will use q1 = q(x−1 ) and k1 = k(x+1 ). Therefore,
Eqs. (6.52) and (6.55) can be expressed in compact form as follows:

2i
k1√
k1

(
A2
B2

)
�

(
ik1 + q1 ik1 − q1
ik1 − q1 ik1 + q1

) (
A1
B1

)
1√
q1
, (6.56)

or even better as
(

A2
B2

)
� 1

2
√

k1q1

(
k1 − iq1 k1 + iq1
k1 + iq1 k1 − iq1

) (
A1
B1

)
, (6.57)

with the transition matrix

Mta = 1

2
√

k1q1

(
k1 − iq1 k1 + iq1
k1 + iq1 k1 − iq1

)
. (6.58)

It is worth noticing the similarity of this transition matrix with the corresponding
transition matrix for the rectangular potential well. In the same way we obtain the
relation

(
A3
B3

)
� 1

2
√

q2k2

(
q2 + ik2 q2 − ik2
q2 − ik2 q2 + ik2

) (
A
′
2

B
′
2

)
. (6.59)

with the transition matrix

Mtb = 1

2
√

q2k2

(
q2 + ik2 q2 − ik2
q2 − ik2 q2 + ik2

)
. (6.60)

With the transition matrices just obtained, we have an important part of our main
goal. Notice that Mtb is the inverse of Mta . To complete the calculation we still need
the relation between the coefficients A′2, B ′2 and the coefficients A2, B2.

As mentioned before, the functions ϕII(x) and ϕ̃II(x) in (6.49) are equivalent.
Therefore, the state vectors
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φ2(x) =
(

e
i
∫ x

x1
k(x)dx 0

0 e
−i

∫ x
x1

k(x)dx

) (
A2
B2

)
, (6.61)

and

φ̃2(x) =
(

e−i
∫ x2

x k(x)dx 0

0 ei
∫ x2

x k(x)dx

)(
A
′
2

B
′
2

)
, (6.62)

should also be equal. This allows writing

(
A
′
2

B
′
2

)
=

(
e

i
∫ x2

x1
k dx 0

0 e
−i

∫ x2
x1

k dx

)(
A2
B2

)
. (6.63)

The propagating matrix that comes out in this equation connects state vectors at two
points of the well. In this case from x+1 to x−2 . If we use the notation

ξ(x2, x1) =
x−2∫

x+1

k(x)dx, (6.64)

and combine (6.58), (6.63) and (6.60) we obtain

(
A3
B3

)
� 1

4(q1k1q2k2)1/2

(
q2 + ik2 q2 − ik2
q2 − ik2 q2 + ik2

) (
eiξ 0
0 e−iξ

)

(
k1 − iq1 k1 + iq1
k1 + iq1 k1 − iq1

) (
A1
B1

)
. (6.65)

At this point we can use the potential defined in (6.23)

V (x) = E − F(xi )(x − xi ), (6.66)

with
F(x−1 ) ∼= F(x+1 ) = F1 ≥ 0, (6.67)

and also with
F(x−2 ) ∼= F(x+2 ) = F2 ≤ 0, (6.68)

to write3

3 One must be especially careful with these equations when at both sides of the return point one
has an abrupt change in the potential function or different effective masses.
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q1k2 � 2m

�2

√
F1|F2||x±1 − x1||x±2 − x2| � q2k1, (6.69)

q1q2 � 2m

�2

√
F1|F2||x±1 − x1||x∓2 − x2| � k1k2. (6.70)

It is easy to verify that, after multiplying and using these equivalences, the relation
(6.65) is greatly simplified and takes the form

(
A3
B3

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

) (
A1
B1

)
, (6.71)

with

Mw(x
+
2 , x−1 ) =

(
cos ξ sin ξ
− sin ξ cos ξ

)
, (6.72)

the transfer matrix of a quantum well with arbitrary potential profile in the WKB
approximation. This matrix has an extremely compact representation. Using connec-
tion formulas one obtains a matrix with numerical factors 2 and 1/2 in the diagonal
terms that may be questionable (see solved problem 24). The transfer matrix (6.72)
is compatible with the Sommerfeld–Wilson–Ishiwara quantization (see the solved
problem 19). We must not forget, however, that the argument ξ of the trigonometric
functions is an integral.

6.3.2 Transfer Matrix and Tunneling Through a Barrier

In this part we will use the definitions

ξ1(x) =
x1∫

x

k(x)dx, ξ2(x) =
x∫

x2

k(x)dx, (6.73)

ϑ1(x) =
x∫

x1

q(x)dx, ϑ2(x) =
x2∫

x

q(x)dx . (6.74)

with

k(x) = √
2m(E − V (x))/� and q(x) = √

2m(V (x)− E)/�. (6.75)

The calculation of the transfer matrix and the reflection and transmission coefficients
of an arbitrary potential barrier, as the one shown in Fig. 6.7, is an important goal. We
will obtain these reflection and transmission coefficients using the WKB method. In



142 6 The WKB Approximation

Fig. 6.7 An arbitrary
potential barrier

I II III

x1 x2 x

E

V(x)

regions I, II and III we have the following solutions:

ϕI(x) = A1√
k(x)

e−iξ1(x)+i π4 + B1√
k(x)

eiξ1(x)−i π4 ; (6.76)

ϕII(x) = A2√
q(x)

e−ϑ1(x) + B2√
q(x)

eϑ1(x); (6.77)

ϕ̃II(x) = A
′
2√

q(x)
e−ϑ2(x) + B

′
2√

q(x)
eϑ2(x) (6.78)

and

ϕIII(x) = A3√
k(x)

eiξ2(x)−i π4 + B3√
k(x)

e−iξ2(x)+i π4 . (6.79)

From the continuity conditions on x1 and x2 we have, in matrix representation, the
relationships

(
A2
B2

)
= 1

2
√

q1k1

(
q1 + ik1 q1 − ik1
q1 − ik1 q1 + ik1

)(
A1ei π4

B1e−i π4

)
, (6.80)

(
A3e−i π4

B3ei π4

)
= 1

2
√

q2k2

(
k2 − iq2 k2 + iq2
k2 + iq2 k2 − iq2

) (
A
′
2

B
′
2

)
. (6.81)

Since ϕII(x) and ϕ̃II(x) are equal, we have

(
e−

∫ x2
x q(x)dx 0

0 e
∫ x2

x q(x)dx

)(
A
′
2

B
′
2

)
=

(
e
∫ x

x1
q(x)dx 0

0 e
− ∫ x

x1
q(x)dx

) (
A2
B2

)
, (6.82)

that leads to

(
A
′
2

B
′
2

)
=

(
e
∫ x2

x1
q(x)dx 0

0 e
− ∫ x2

x1
q(x)dx

) (
A2
B2

)
. (6.83)
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In this equation we have the propagation matrix through the barrier, from x1 to x2.
To simplify the notation we define the function

ϑ(x−1 , x+2 ) =
x+2∫

x−1

q(x)dx . (6.84)

With all results obtained so far, we are able to connect the state vector on the right
with the state vector on the left of the barrier. Substituting we have

(
A3e−i π4

B3ei π4

)
= 1

4
√

q1k1q2k2

(
k2 − iq2 k2 + iq2
k2 + iq2 k2 − iq2

) (
eϑ 0
0 e−ϑ

)

×
(

q1 + ik1 q1 − ik1
q1 − ik1 q1 + ik1

) (
A1ei π4

B1e−i π4

)
. (6.85)

After multiplying and using the equalities in (6.69), we have:

(
A3e−i π4

B3ei π4

)
=

(
cosh ϑ −i sinh ϑ
i sinh ϑ cosh ϑ

) (
A1ei π4

B1e−i π4

)
. (6.86)

Also in this case the transfer matrix has a simple and compact form. The transfer
matrix for an arbitrary barrier in the WKB approximation is

Mb(x
+
2 , x−1 ) =

(
cosh ϑ −i sinh ϑ
i sinh ϑ cosh ϑ

)
. (6.87)

This matrix differs also in numerical factors with the matrix that is obtained using
the connection formulas (see the solved problem 24). The transfer matrix in (6.87)
has the form

Mb =
(
αb βb

β∗b α∗b

)
, (6.88)

characteristic of time reversal invariant systems. The calculation of transmission and
reflection coefficients is one of the important applications of this result. To calculate
these coefficients we have to use again the relations between the transfer matrix
elements and the scattering amplitudes. Given

αb = cosh ϑ = 1

2

(
eϑ + e−ϑ

)
, (6.89)

and

βb = −i sinh ϑ = − i

2

(
eξ − e−ϑ

)
, (6.90)
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we obtain the transmission coefficient

Tb = 1

|αb|2 =
4(

eϑ + e−ϑ
)2 . (6.91)

Using the connection formulas, the transmission coefficient is4

Tb = 4(
2eϑ + 1

2 e−ϑ
)2 . (6.92)

These expressions coincide in the limit ϑ large, but they have important differences
for small ϑ . While the transmission coefficient obtained here takes values in the
range [0, 1], the transmission coefficient obtained with the connection formulas take
values in the range [0, 0.64]! If ϑ >> 1, in both cases, we have

Tb � 1

e2ϑ ∝ e
−2

∫ x2
x1

q(x)dx
. (6.93)

This is a very well known and widely used result. For example, in the explanation
of the nuclear α decay. The transfer matrices obtained in these previous sections are
fundamental in the solution of various problems in the WKB approximation, which
in many cases provide excellent results.

6.4 Solved Problems

Exercise 19 Using the relation (6.71) between the coefficients of ϕIII(x
+
2 ) and ϕI(x

−
1 )

for a quantum well in the WKB approximation, obtain the quantization rule that has
been found in Sect. 6.2.2.
Solution The relation that was obtained in Sect. 6.3.1 between the coefficients of the
wave functions ϕIII(x

+
2 ) and ϕI(x

−
1 ) in a quantum well, with an arbitrary profile, is

(
A3
B3

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

) (
A1
B1

)
. (6.94)

The finiteness condition of functions in regions I and III, requires that the coefficients
B1 and A3 vanish. The above equation is then written in the form

(
0
B3

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

)(
A1
0

)
=

(
A1 cos ξ
− A1 sin ξ

)
, (6.95)

to be satisfied when

4 See for example: E Merzbacher, Quantum Mechanics, (John Wiley & sons, NY 1961).
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cos ξ = 0 and B3 = −i A1 sin ξ. (6.96)

The first of these equations is satisfied if ξ = (
n + 1

2

)
π , i.e. if

1

�

x2∫

x1

p(x)dx =
(

n + 1

2

)
π, (6.97)

which is compatible with (6.44) and the quantization rule of Sommerfel–Wilson–
Ishiwara.
Exercise 20 Plot the Morse potential

V (x) = A(e−2ax − 2e−ax ), (6.98)

and using the quantization rule, determine the energy levels for a particle that moves
in this potential.
Solution We leave the student to plot the Morse potential for different values of the
parameters a and A. To obtain the energy eigenvalues in this attractive potential, we
start defining the variable y = e−ax . In terms of this variable, the quantization rule
becomes

−
√

2m

a�

y2∫

y1

√
En + 2Ay − Ay2

y
dy =

(
n + 1

2

)
π. (6.99)

with y1 and y2 the roots of

En + 2Ay − Ay2 = 0. (6.100)

Since

∫ √
E + 2Ay − Ay2

y
dy =

√
E + 2Ay − Ay2 +√A tan−1

√
A(y − 1)√

E + 2Ay − Ay2

+√E ln
y

E + Ay +√E
√

E + 2Ay − Ay2
,

(6.101)

we have

y2∫

y1

√
En + 2Ay − Ay2

y
dy = √Aπ +√

En ln
y2(En + Ay1)

y1(En + Ay2)
. (6.102)

Hence the quantization rule takes in this case the form
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Fig. 6.8 Harmonic potential.
In the return points En =
kx2

i /2

x1 x2 x

En

V(x)

1
2

kx2

0

−
√

2m

a�

y2∫

y1

√
En + 2Ay − Ay2

y
dy = −

√
2m

a�

(
π
√

A + iπ
√

En
)
,

=
(

n + 1

2

)
π. (6.103)

Thus, for the eigenvalues of the Morse potential we obtain

En = −A

(
1− �a√

2m A

(
n + 1

2

))2

. (6.104)

It is a good exercise to verify that the same energy eigenvalues are obtained when
the corresponding Schrödinger equation is solved.
Exercise 21 Using the quantization rule, show that the energy levels of a particle, in
the harmonic oscillator V (x) = kx2/2, are

En = �ω
(

n + 1

2

)
. (6.105)

Where ω is the classical frequency
√

k/m. [Note: the constant k here should not be
confused with the wave number k(x)].
Solution The quantization rule (6.97) applied to the harmonic oscillator is

1

�

x2∫

x1

√
2m

(
En − 1

2
kx2

)
dx =

(
n + 1

2

)
π. (6.106)

If we factor
√

mk, from the square root, we have (Fig. 6.8)
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√
mk

�

x2∫

x1

√
2En

k
− x2 dx = (n + 1

2
)π. (6.107)

Let us recall that, at the return point, 2En/k = x2
1 = x2

2 . It is easy to see that the
integral of this equation is of the type

∫ a
−a

√
a2 − x2dx . This integral is known and

has the following result

a∫

−a

√
a2 − x2dx =

[
x
√

a2 − x2

2
+ a2

2
sin−1 x

a

]a

−a

= 2
a2

2

π

2
. (6.108)

If we substitute a2 by 2En/k and
√

k/m by ω, we have

π En

�ω
=

(
n + 1

2

)
π, (6.109)

that obviously can be rewritten in the well-known formula for the eigenvalues of the
harmonic oscillator

En = �ω

(
n + 1

2

)
. (6.110)

This formula is obtained also after solving, rigorously, the Schrödinger equation of
the harmonic oscillator.
Exercise 22 Consider the potential well in Fig. 6.6. Using the connection formulas
(6.30) and (6.31), show that the transition matrices, defined by the relations

(
A2
B2

)
= Mt1

(
A1
B1

)
and

(
A3
B3

)
= Mt2

(
A
′
2

B
′
2

)
, (6.111)

are Mt1 = CT
a and Mt2 = CT

b , with Ca and Cb, defined in Sect. 6.2.1.
Solution We will assume that the WKB solutions in regions I, II and III are as we
write in (6.48), (6.49) and (6.50), i.e.:

ϕI(x) = A1√
q(x)

e−ϑ1(x) + B1√
q(x)

eϑ1(x), for x < x1, (6.112)

ϕII(x) = A2√
k(x)

eiξ1(x) + B2√
k(x)

e−iξ1(x), (6.113)

for x1 < x < x2,

ϕ̃II(x) = A′2√
k(x)

e−iξ2(x) + B ′2√
k(x)

eiξ2(x), (6.114)

ϕIII(x) = A3√
q(x)

eϑ2(x) + B3√
q(x)

e−ϑ2(x), for x > x2. (6.115)
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And the connection formulas at the points x1 and x2, are respectively:

1√
q

(
e−ϑ1(x)

eϑ1(x)

)
←→ 1√

2

(
c11 c12
c21 c22

)
1√
k

(
eiξ1(x)

e−iξ1(x)

)
, (6.116)

and

1√
k

(
e−iξ2(x)

eiξ2(x)

)
←→ 1√

2

(
c∗11 c∗21
c∗12 c∗22

)
1√
q

(
eϑ2(x)

e−ϑ2(x)

)
, (6.117)

with the elements ci j defined in (6.32). In (6.116) we have two scalar equations. If
we multiply the first by A1, the second by B1 an then add the results, we have

A1
e−ϑ1(x)

√
q(x)

+ B1
eϑ1(x)

√
q(x)

←→ (c11 A1 + c21 B1)
eiξ1(x)

√
k(x)
+ (c12 A1 + c22 B1)

e−iξ1(x)

√
k(x)

.

(6.118)

At the left side of this relation we have ϕI(x) and on the right side we must have the
function ϕII(x) to which it connects at x1. This implies the following relations

A2 = c11 A1 + c21 B1,

B2 = c12 A1 + c22 B1, (6.119)

that can be written as
(

A2
B2

)
←→

(
c11 c21
c12 c22

) (
A1
B1

)
= Mt1

(
A1
B1

)
. (6.120)

Comparing the transition matrix Mt1, defined in this equation, with the matrix Ca of
Eq. (6.32), we end up with

Mt1 = CT
a =

1√
2

⎛
⎜⎝ 1− i

1+ i

2
1+ i

1− i

2

⎞
⎟⎠ . (6.121)

Proceeding in the same way with the connection formula at x2 we obtain

(
A3
B3

)
←→

(
c∗11 c∗12
c∗21 c∗22

)(
A
′
2

B
′
2

)
= Mt2

(
A
′
2

B
′
2

)
. (6.122)

Thus

Mt2 = CT
b =

1√
2

(
1+ i 1− i
1− i

2

1+ i

2

)
. (6.123)
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Notice that Mt2, it is not the inverse of Mt1 but its adjoint. This is possibly one
of the reasons why the expression obtained for transfer matrices, using the WKB
connection formulas, has a structure that is not completely satisfactory.
Exercise 23 Obtain the transfer matrices Mw(x

+
2 , x−1 ) and Mb(x

+
2 , x−1 ), for the quan-

tum well and the potential barrier in the WKB approximation, using the connection
formulas at points x1 and x2.
Solution To obtain the required transfer matrices, we have almost all we need. We
just got (see exercise 22), the matrices Mt1 and Mt2 to connect the coefficients on
either side of the return points. In Sect. 6.3.1, we had

(
A
′
2

B
′
2

)
=

(
e

i
∫ x2

x1
k dx 0

0 e
−i

∫ x2
x1

k dx

)(
A2
B2

)
. (6.124)

Hence, the connection between the state vector (A3, B3)
T and the state vector

(A1, B1)
T can be written as follows

(
A3
B3

)
= Mt2

(
eiξ 0
0 e−iξ

)
Mt1

(
A1
B1

)
, (6.125)

where the notation ξ = ∫ x2
x1

k dx has been used. Therefore, the transfer matrix of the
quantum well becomes

Mw = Mt2

(
eiξ 0
0 e−iξ

)
Mt1,

= 1

2

(
1+ i 1− i
1− i

2

1+ i

2

)(
eiξ 0
0 e−iξ

) ⎛
⎜⎝

1− i
1+ i

2

1+ i
1− i

2

⎞
⎟⎠ ,

Mw =
(

2 cos ξ − sin ξ
sin ξ 1

2 cos ξ

)
. (6.126)

In a similar way, the transfer matrix for the potential barrier reads

Mb = Mt1

(
eϑ 0
0 e−ϑ

)
Mt2,

= 1

2

⎛
⎜⎝ 1− i

1+ i

2
1+ i

1− i

2

⎞
⎟⎠

(
eϑ 0
0 e−ϑ

) (
1+ i 1− i
1− i

2

1+ i

2

)
,

Mb =
(

eϑ + 1
4 e−ϑ −i

(
eϑ − 1

4 e−ϑ
)

i
(
eϑ − 1

4 e−ϑ
)

eϑ + 1
4 e−ϑ

)
. (6.127)
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Fig. 6.9 A potential bar-
rier characteristic of tunnel-
ing diodes at the interface
of strongly doped
semiconductors

Exercise 24 Suppose a system has a potential profile like the one shown in Fig. 6.9,
and electrons are approaching from the left side. To define this potential we can
think of it as the potential in a real np diode, or Esaki diode.5 Thus, let us define, the
potential profile as follows.

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

V0 = −eVb, for x < −x p,

V1(x) = Δφ − a(x + x p)
2, for − x p ≤ x ≤ 0,

V2(x) = b(x − xn)
2, for 0 ≤ x ≤ xn,

0, for x > xn,

(6.128)

with Vb a bias potential, and Δφ, a, b, xn and xn device dependent parameters.
Given this potential, and using the WKB approximation, calculate the transmission

and reflection coefficients as functions of the incoming electron energies E , for a
bias Vb = −0.5 V and fixed potential parameters.

Though in real systems there is a gap of forbidden energies, we will solve here
for all values of E.6 The parameters Δφ, a, b, x p and xn , are defined as follows:

5 In tunneling diodes, or Esaki diodes, electrons from the valence band, on the p side, move towards
the n side under small reverse bias.
6 In tunnel or Esaki diodes, the impurity concentrations are so large that the Fermi levelsμp andμn
move inside the valence and the conduction bands, respectively. On the p side, between the Fermi
level μp (that corresponds to V0 in the figure) and the conduction band (at Δφ), there is a gap and
no electrons can be found there.
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Δφ = μn − μp − eVb = Eg − kB T ln
Nc Nv
n+ p+

− eVb,

a = e2 p+

2εpε0
, b = e2n+

2εnε0
,

xn =
(Δφ

b

p+

n+ + p+
)

x p =
(Δφ

a

n+

n+ + p+
)
. (6.129)

with Eg the energy gap; e the electron charge, kB the Boltzmann constant; T the
temperature; n+ and p+ the donors and acceptors (high) concentration on the left
and right sides, respectively; εn and εp the relative electric permittivities; and Nc

and Nv , the intrinsic electron and hole concentrations, in the conduction and valence
bands.7

Solution All we need is the transfer matrix to connect state vectors at two points
outside the potential barrier, say,−x p and xn . For a given value of E , we need first the
transition matrix Ml to account for the continuity requirements of the wave functions
at −x p. We then need to propagate the state vector inside the potential barrier, from
−x p to the turning point xE , where V (x) = E . For this purpose we will determine
a transfer matrix M1. At this point we use the connection matrix Ca , and finally a
transfer matrix M2 to reach the point xn . These matrices are the following:

Ml = 1

2qp

(
qp + ik qp − ik
qp − ik qp + ik

)
, (6.130)

with

k =
√

2m∗e
�2

(
E − V0

)
and qp =

√
2m∗e
�2

(
V (−x p)− E

)
. (6.131)

The transfer matrix that propagates the state vector inside the barrier is

Ml =
(

eϑ 0
0 e−ϑ

)
. (6.132)

Assuming that the return point is xE on the n side, we have here

ϑ =
0∫

−x p

√
2m∗e
�2

(
V1(x)− E

)
dx +

xE∫

0

√
2m∗e
�2

(
V2(x)− E

)
dx, (6.133)

which, after integrating, becomes

7 These are well known quantities in the semiconductor physics, and they read Nc =
2

(
2πm∗e kB T

�2

)3/2
and Nv = 2

(
2πm∗h kB T

�2

)3/2
, with m∗e and m∗h the effective electron and hole masses.
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ϑ = c

2b
sin−1(bx p)+ c x p

2

√
1− b2x2

p

+d

2

(
xn

√
x2

n − z2 + z2 ln
z

xn +
√

x2
n − z2

)
, (6.134)

with

c =
√

2m∗e
�2 (Δφ − E), d =

√
m∗e
�2

e2n+
εnε0

(6.135)

and

z =
√

2εnε0

e2n+
E . (6.136)

As mentioned before, to connect at xE we use the matrix

Ca = 1√
2

(
1− i 1+ i
1+ i

2

1− i

2

)
, (6.137)

defined in (6.32). Finally, the transfer matrix that propagates the physics from xE to
xn is

M2 =
(

eiξ 0
0 e−iξ

)
, (6.138)

with

ξ =
xn∫

xE

√
2m∗e
�2

(
E − V2(x)

)
dx = d

π z2

4
. (6.139)

With these matrices we can obtain the transfer matrix to connect state vectors across
the potential barrier. This matrix is given by the product

Mb = M2Ca M1 Ml =
(
αb βb

β∗b α∗b

)
. (6.140)

with

αb = eiξ

√
2qp

((
k + qp

)
cosh ϑ + i

(
k − qp

)
sinh ϑ

)
(6.141)

and

βb = − eiξ

√
2qp

((
k − qp

)
cosh ϑ + i

(
k + qp

)
sinh ϑ

)
(6.142)

It is now easy to evaluate the transmission and reflection coefficients:
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Fig. 6.10 The reflection and transmission coefficients by and through the potential barrier of
Fig. 6.9. At the transition to the state of propagating modes a nice Fano–Majorana resonance is
observed

Tb = 1

|αb|2 and R = 1− T . (6.143)

In Fig. 6.10a, b we plot these quantities using parameters that correspond to GaAs (i.e.
Eg = 1.51 eV, m∗e = 0.069 me, m∗h = 0.1 me), concentrations n+ = 6×10−25 m−3

and p+ = 1×10−26 m−3 and bias Vb = −0.5 V. For specific systems, one has
to choose carefully the parameter values. As the electron energy approaches the
barrier height, where the potential varies slowly and the transition to the propagating
mode starts, we see another characteristic property of the scattering phenomena: The
interference between the exponential and the propagating modes in the continuum,
that manifest through the asymmetric Fano–Majorana resonance at E � 2 eV.8

6.5 Problems

1. Show that the transition matrix at a point like x2, in Fig. 6.6, is certainly given by
the product of matrices in Eq. (6.65), and show also that it reduces to the matrix
given in (6.72).

2. Show that the transition matrix at the point b of Fig. 6.4 is given by the matrix
Mtb in (6.60). Show also that Mtb = (Mta)

−1

3. Obtain the transfer matrix of the barrier in Fig. 6.7, assuming that the transition
matrix Mt2 at point x2 is the inverse of Mt1 at point x1.

4. Show that the eigenvalue equation of a double symmetric quantum well, like the
one shown in Fig. 6.11, is

tan ξ = ±eϑ . (6.144)

8 After the discovery and explanation of these kind of resonances by Ettore Majorana and Ugo
Fano, respectively.
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Fig. 6.11 A double
symmetric quantum well
(black) and the parabolic
approximation. The energy
levels of this system split up

1
2

x

kx 2

V(x)

5. Plot the function V (x) = −Uo/ cosh2 ax for different values of the potential
parameters Uo and a. Using the quantization rule, obtain the eigenvalues for a
particle with this potential energy.

6. Plot the function V (x) = Uo/ cosh2 ax for different values of the potential
parameters Uo and a, and using the semiclassical approximation, obtain the
transmission and reflection coefficients for particles coming from the left side
of this potential barrier.

7. Obtain analytically the first two eigenvalues of a quantum well if, for sufficiently
low energies, the potential can be approximated by a parabolic function, as shown
in Fig. 6.11.

8. Show from the graphical solution of the eigenvalue equation of problem 4 that:

a. the energies split up;
b. the lowest energies match with those obtained analytically in the approxi-

mation V (x) � kx2/2.



Chapter 7
Operators and Dynamical Variables

In the last chapters we studied some solvable one-dimensional systems described
by the stationary Schrödinger equation. In the solutions of these systems we had a
first approach to the quantum phenomena. We found that for systems with confining
potentials the physical variables generally quantize. For some of this kind of sys-
tems, we could determine the momentum and energy eigenvalues as well as their
corresponding eigenfunctions. We found also the tunneling effect, the energy levels
splitting and we were able to evaluate the particle current density and the reflection
and transmission coefficients.

A major aim of the quantum theory is the prediction of values for the relevant
dynamical variables. The possibility or not, of determining such values, depends to
a great extent on the physical conditions and the physical variables themselves. We
will see here that an important property of a physical variable is related with the
commutation relation of its associated operator with other operators like the energy
operator, the Hamiltonian. When we are dealing with transport of particles through
a quantum system, one can fix, through the experimental set up, the energy of the
incoming particles. In that case the quantum theory will be able to predict a number
of energy-dependent quantities like the transmission coefficients, but the theory will
not be able to predict, with the same accuracy, the arrival time of the transmitted
particles. We will see in this chapter that the product of the statistical dispersions
of canonical conjugate variables, like energy and time or momentum and position,
have restricted values in quantum theory.

The theory predicts a set of possible states, but it does not have, generally, the
ability to determine which state the system is actually in. We will see that in cases
like this, there is no other way than to calculate the expected or average values. This
indeterminacy should not be confused with an inaccuracy in the calculation of physi-
cal quantities. We have seen in previous chapters that the eigenvalues, eigenfunctions
and other physical variables, such as reflection and transmission coefficients can be
calculated accurately. The precise evaluation of wave functions allowed us to see, for
example, the energy levels splitting in double quantum wells (where energies can be
evaluated with the desired accuracy) and the way in which the allowed and forbidden

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 155
DOI: 10.1007/978-3-642-29378-8_7, © Springer-Verlag Berlin Heidelberg 2012



156 7 Operators and Dynamical Variables

bands appear in metals, semiconductors and other periodic systems. It is important,
to notice that it is quite normal that in comparing theoretical predictions with the
experimental results, may result in large differences. There are many reasons for
such differences to appear. Usually real systems are affected by other variables, such
as temperature, impurities, etc., which are not taken into account and are naturally
absent in simplified models. This kind of limitations should be explained or corrected
using more realistic approaches.

Since the theory can not generally tell us which of the possible states the particle
is actually in, it was natural to introduce the concept of the expectation value of a
physical variable. We will comment on this issue and we will talk about operators,
the Hermitian operators, their properties and consequences. We will show one of
various derivations of the Heisenberg uncertainty relation and we will make some
comments on the time evolution and equations of motion of dynamical variables and
their expected values. Closely related to this subject is the widely spread and repeated
assertion that concepts like position and trajectory of a particle, as conceived in the
classical physics, become, in the quantum theory, meaningless. We will make a brief
reference to this matter. In this chapter we will also introduce the Heisenberg picture.

7.1 Wave Packets, Group Velocity and Tunneling Time

In Chap. 3 we addressed the free particle description where we studied basically
the normalization problem of the linearly independent solutions ϕ+(x) = Aeikx

and ϕ−(x) = Ae−ikx . We know that if we include the temporal component, the
wave functions ψ±(x, t) = Aϕ±(x)e−iωt describe particles that move to the right
or to the left. Since the particle is not confined, there is no quantization of energy or
momentum. If the particle’s energy is fixed, the wave number k = √

2m E/�2, the
momentum p = �k and the frequency ω = E/� are also fixed. The quest now is,
whether we can determine the position and the speed of the particle at the same time.
Using the previous relations, we can easily show that the speed of the free particle is

v = �k

m
= dω

dk
, (7.1)

but, where is the particle? If we describe the free particle with the wave function
ψ±(x, t) = Aϕ±(x)e−iωt , practically, we ignore where the particle is. In the previous
chapters we mentioned the probabilistic interpretation of the wave function and we
have seen that the probability of finding a particle at the position x , at time t , is given
by |ψ(x, t)|2. For a free particle moving to the right or to the left, this probability is

|ψ(x, t)|2 = |A|2. (7.2)

Independent of x and time, therefore the same for all points from −∞ to∞.

http://dx.doi.org/10.1007/978-3-642-29378-8_3
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If we describe the particle by the superposition of a right-moving and a left-moving
wave functions like

ψ(x, t) = a ei(kx−ωt) + b e−i(kx+ωt), (7.3)

the probability of finding the particle at the position x , at time t , will be

|ψ(x, t)|2 = |a|2 + |b|2 + 2�e a b∗ ei2kx , (7.4)

which is no longer a constant but an oscillatory function. In the particular case of
a = b, the wave function becomes

ψ(x, t) = 2a cos kxe−iωt . (7.5)

The real part of this function oscillates in space with wave number k and in time with
angular frequency ω. The probability of finding the particle at point x , at time t , is

|ψ(x, t)|2 = 4|a|2 cos2 kx, (7.6)

independent of time but periodic as function of x .
It is well known that with an appropriate superposition of functions, the probability

|ψ(x, t)|2 can eventually be localized. If we consider the superposition of two waves1

describing free particles moving in the same direction like

ψ2(x, t) = a ei(kx−ωt) + a ei(k′x−ω′t), (7.7)

such that

k = ko − δk k′ = ko + δk

ω � ωo − δω ω′ � ωo + δω, (7.8)

with δω = �koδk/m, the two-component wave function in (7.7) can be written as

ψ2(x, t) = 2a cos(δk x − δωt)ei(kox−ωot), (7.9)

This is also a product of two wave functions: one with frequencyωo and wave number
ko and the other a wave function with frequency δωo and wave number δko. These
functions are plotted in Fig. 7.1. When δko � ko, the wave function cos(δkx − δωt)
behaves as a modulation amplitude of the internal oscillations described by ei(ko x−ωot).
These waves have different physical meaning and move with different velocities. The
constant-phase condition2 applied to (kox − ωot) gives the phase velocity

1 This simple example is frequently used in optical physics to introduce phase and group velocities.
2 The constant-phase condition implies
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Fig. 7.1 The real parts of two
wave functions, with wave
numbers k = ko − δk and
k′ = ko+δk, and snapshots of
their superposition at t1 = 0
and at t2 = 1/vg . During the
time interval Δt = t2 − t1
= 1/vg , a constant-phase
point of the internal waves
moves a distance Δx p and the
maximum of the modulation
envelope moves a distance
Δxg

vp = dx

dt
= ωo

ko
, (7.11)

while applied to (δkx − δωt) gives the group velocity3

vg = dx

dt
= δω

δk
� �ko

m
. (7.13)

This result reiterates the relation p = mv = �k. In Fig. 7.1 we plot the real parts
of the wave components together with snapshots of their superposition at t1 = 0
and at t2 = 1/vg = m/�ko. During the period of time Δt = t2 − t1, a point of
constant pase of the internal oscillations moves with the phase velocity a distance
Δx p = vpΔt = 1/2 while the modulation envelope moves a distanceΔxg = vgΔt .
This shows that the modulating function moves with the group velocity vg = �ko/m.
The same thing happens in the superposition of more than two components, with wave
numbers ko± k symmetric with respect to ko, to build a wave packet. The overall wave
envelope will move with the group velocity. The phase velocity ωo/ko = �ko/2m of
the internal oscillations is approximately the same as the phase velocities ω/k and
ω′/k′ of the wave components.

We will consider now a superposition of functions like

(Footnote 2 continued)

d(kx − ωt)

dt
= 0, (7.10)

and can be used to obtain the phase and group velocities.
3 In the limit of δk → 0 we have

vg = dω

dk
. (7.12)
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φ(x, t) =
kp+ka∫

kp−ka

A(k)ei(kx−ωt)dk. (7.14)

In this superposition, pairs of wave functions with wave numbers k in the neigh-
borhood of kp, and amplitude A(k) each, add to form a wave packet. The shape of
the packet relies strongly on A(k). One of the most frequently used amplitude is the
Gaussian function centered at kp, with dispersion (or standard deviation) σk . In this
case, we have

φ(x, t) = 1√
2πσk

∞∫

−∞
e−(k−kp)

2/2σ2
k ei(kx−ωt)dk. (7.15)

Let us see if a superposition like this can be used to describe a free particle moving
with wave number kp and speed v = �kp/m. To visualize this, it is convenient to
perform the integral in the variable k. Rewriting the exponent as follows

− (k − kp)
2

2σ2
k

+ i

(
kx − �k2t

2m

)
= −a (k − κ)2 + aκ2 − k2

p

2σ2
k

, (7.16)

with

a = m + i�σ2
k t

2mσ2
k

and κ = imσ2
k (x − ikp/σ

2
k )

m + i�σ2
k t

, (7.17)

the integration on the variable k is direct and the packet takes the form

ψ(x, t) = 1

σxσk
e

i(kpx − wpt)

σ2
kσ

2
x e

− x2

2σ2
x . (7.18)

This is also a Gaussian function with

σ2
x =

m + i�σ2
k t

mσ2
k

= 1+ i �t
m σ

2
k

σ2
k

. (7.19)

As expected, the procedure of building up a wave packet, effectively concentrates
the probability |ψ(x, t)|2 of finding the particle around the Gaussian centroid.

Does the wave packet move with the speed of the free particle? This question can
be answered if we follow the space-time evolution of the wave-packet centroid, i.e.
of the wave-packet peak. If the wave-packet peak moves with constant speed, we can
determine the peak speed knowing its position at any two times, t1 and t2. In Fig. 7.2
we present results for this “experiment” where the wave function was
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Fig. 7.2 Snapshots of a Gaussian wave packet at t1 = 0 and at t2 = xo/v, with v = �kp/m. Since
the wave-packet peak moves from x1 = −xo to x2 = 0, the wave-packet velocity vg coincides with
the free particle speed v

ψ(x, t) = 1

σxσk
e

i(kp(x + xo)− wpt)

σ2
kσ

2
x e

− (x + xo)
2

2σ2
x . (7.20)

At t = 0 the peak is at x = −xo. We choose t1 = 0 and t2 = xo/v, with v = �kp/m
the speed of the free particle. If the wave-packet peak moves with the speed of the free
particle (i.e. with vg = v), the peak position at t2 must be x2 = −xo + vt2 = 0. The
snapshots show that this is precisely what happens. Hence, the Gaussian wave packet
moves with the speed of the free particle. If a Gaussian wave packet describes a free
particle, the peak position will coincide on the average with the particle position, and
the standard deviation will describe the particle-position dispersion Δx . In Fig. 7.3
we plot the functions A(k) and |ψ(x, t)| for the standard deviations indicated in the
figure. It is evident from these plots that σx = Δx � 1/Δk = 1/σk . This relation is
consistent with (7.19). We will return to this subject some lines below.

A widely discussed problem in quantum physics, is the time that a particle takes
to pass through a potential region, such as the potential barrier. In classical physics
the procedure to calculate the transit time is well defined. In quantum physics,
the tunneling time has been a controversial topic. In recent years there have been
accurate measurements of transit time of photons and electromagnetic pulses. It has
been also shown that the tunneling or delay time in the quantum theory and in the
electromagnetic theory are correctly described by the so-called phase time.

How is the phase time defined? We have seen in different examples that the
transmitted wave function ϕt (x2) and the incident wave function ϕi (x1) have a very
simple relation. In fact, if the points x1 and x2 are just at the left and right of a
potential region, say a potential barrier like in Fig. 7.4, there exist a barrier transfer
matrix such that

(
at eikx2

b3e−ikx2

)
=

(
αb βb

β∗b α∗b

)(
ai eikx1

br e−ikx1

)
. (7.21)
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Fig. 7.3 The Gaussian amplitude A(k) in the superposition (7.15), produces a Gaussian function
whose variance σ2

x is roughly the inverse of the variance σ2
k in A(k). This is usually referred to as

the uncertainty relation of position and linear momentum Δx � 1/Δk

ϕ i=|ϕ i|e iθ i

θ1=kx1 θ2=kx 2 = θ1+θ t

tϕ i=|t|e iθ t ϕ i
V(x)

rϕ i

x1 x2 x
t1 t2

θ 1 θ 2 θ

Fig. 7.4 The transit time through a potential region and its relation with the phases of the incoming
and transmitted wave functions

In terms of the reflection and transmission amplitudes, rb and tb, this relation reads

(
at eiθ2

b3e−iθ2

)
=

(
1/t∗b −r∗b /t∗b−rb/tb 1/tb

) (
ai eiθ1

br e−iθ1

)
. (7.22)

If the incident particle comes only from the left, b3 = 0 and we have

br e−ikx1 = rb ai eikx1 (7.23)

at eikx2 = 1

t∗b
ai eikx1 − r∗b

t∗b
br e−ikx1 . (7.24)

Combining these equations and taking into account that 1− rbr∗b = tbt∗b , we obtain
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at e
ikx2 = tbai e

ikx1 = |tb|eiθt ai e
ikx1 , (7.25)

which is a known result that we have used to obtain the transmission coefficient and
the transmitted wave function. In the last equation we have written the transmission
amplitude in terms of its absolute value |tb| and its phase θt . This allows us to observe
the following important relation between phases

kx2 = kx1 + θt , θt = k(x2 − x1). (7.26)

If we take the frequency derivative of the transmission phase θt , we have

∂θt

∂ω
= ∂k

∂ω
(x2 − x1) = 1

vg
(x2 − x1). (7.27)

If the elapsed time while the particle moves from x1 to x2 is (x2 − x1)/vg , the time
we are seeking, known as the phase time, is

τ = ∂θt

∂ω
. (7.28)

This time has been evaluated for photon transmission problems and electromagnetic
pulses through optical media. The calculations describe correctly the experimental
results.4 When the transmission is by quantum tunneling, the transit time is known
as the tunneling time.

7.2 Operators and Expectation Values

In contrast to classical mechanics where, given the forces, momenta and initial con-
ditions, it is possible to determine the time evolution of dynamical variables, in the
quantum theory the calculation of physical variables proceeds in a different way.
Even though the potential energy, and some times also the kinetic term,5 specify
the classical and quantum system, in the quantum theory we seek primarily for the
solutions ψ(r, t) of the Schrödinger equation

(
− �

2

2m
∇2 + V (r)

)
ψ(r, t) = i�

∂

∂t
ψ(r, t), (7.29)

while in classical physics we look for the equations of motion for the physical vari-
ables. The wave function contains all the available information about the physical
state of the system, and the dynamical operators, acting on the wave functions, suck

4 See for example P. Pereyra and H. Simanjuntak, Phys Rev. E 75, 056604 (2007).
5 For example for systems with central forces, systems in the presence of magnetic fields, systems
with more than one particle, etc.
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information about the physical variables. In the Schrödinger equation we have two
important operators: the Hamiltonian Ĥ = −�

2∇2/2m+V (r) and i�∂/∂t . Both rep-
resent the energy. They are equal since Ĥψ(r, t) is equal to i�∂/∂tψ(r, t). Indeed, as
mentioned earlier, when the potential energy is independent of time, and we consider
the function

ψ(r, t) = ϕ(r)τ (t), (7.30)

we have

(
− �

2

2m
∇2 + V (r)

)
ϕ(r) = Eϕ(r); and i�

∂

∂t
τ (t) = Eτ (t). (7.31)

In these equations the parameter E plays the role of the separation constant, but it is
also the physical quantity that comes out when the Hamiltonian, acts on ϕ(r), and
comes out also when the operator i�∂/∂t acts on τ (t).

If we now consider the kinetic energy term K̂ = −�
2∇2/2m, it is clear that the

operator that represents the linear momentum is

p̂ = −i�∇. (7.32)

We will see later other operators such as the angular momentum

L̂ = r × p̂ = −i�∇. (7.33)

In short, the physical variables appear in the quantum physics formalism as
operators. The replacement of the physical variables by operators is one of the most
significant and formal characteristics of the quantum theory. We have already worked
out with some operators, in the following we will see what other properties they pos-
sess.

At different points of this text, especially in the interpretation of the wave function,
some contact was made with statistical concepts. In fact, as will be seen here, some
analogies exist between the quantum and the statistical mechanics. In statistical
physics, we deal with systems containing a large number of particles, and even though
each particle has a definite position and momentum, it is practically impossible to
describe the position and momentum for each of them. An individual description
becomes meaningless. As a consequence, it is only the statistical description that turns
viable, in terms of collective variables. In this theory, the distribution of positions and
momenta, f (r, p), is essential to calculate average values of the physical variables
of interest. The average value of a physical variable A(r, p) is obtained as

A =
∫

A(r, p) f (r, p)drdp. (7.34)
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In the quantum theory, which in some ways is also a statistical theory, the expectation
values6 will be obtained using equivalent methods.

The evaluation of averages is something that happens frequently in our daily life.
We know that whenever a variable v, that can take any of a set of values {v j } is
measured N times, we find at the end that the output v1 occurred N1 times, v2,
N2 times, and so on. With these results we not only define the relative frequencies
f j = N j/N , that fulfill the relation

∑
j f j = 1, but also evaluate the average value

of v, as

v =
∑

j v j N j∑
j N j

=
∑

j v j f j∑
j f j

, (7.35)

where the sums extend over the whole set {v j } of possible values.
On the other hand, when we solve the Schrödinger equation (analytically or numer-

ically) and find that a set of eigenstates ϕn and eigenvalues En are allowed for the
physical system, we have a similar situation. Let us do a simple exercise that will
shed light on the issue of the expectation values. Suppose that the set of eigenvalues
En and (normalized) eigenfunctions ϕn satisfy the equation

Ĥϕn(r) = Enϕn(r). (7.36)

The most general solution is the superposition

ϕ(r) =
∑

j

c jϕ j (r). (7.37)

The action of the Hamiltonian on this function produces the following equality

Ĥϕ(r) =
∑

j

c j E jϕ j (r). (7.38)

If we multiply this equation by ϕ∗(r) and integrate over the whole configuration
space, we have

∫
ϕ∗(r)Ĥϕ(r)dr =

∑
i j

c∗i c j E j 〈ϕi |ϕ j 〉 =
∑

i j

c∗i c j E jδi j . (7.39)

The Kronecker delta δi j allows us to sum on one of the two indices. If we sum on
the index i , we get

∫
ϕ∗(r)Ĥϕ(r)dr =

∑
j

|c j |2 E j . (7.40)

6 We will use indistinctly the terms expected and expectation value.
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This relation provides the meaning of the integral on the left side. We will add one
more ingredient. In Chap. 3 we saw that the coefficients |c j |2 of the superposition
give the weight of the state ϕ j that participates in ϕ(r). We have shown also that

∑
i

|ci |2 = 1. (7.41)

Using this identity we can rewrite the Eq. (7.40) in the form

〈E〉 =
∑

j |c j |2 E j∑
i |ci |2 =

∫
ϕ∗(r)Ĥϕ(r)dr. (7.42)

The quotient at the center of this triple equation is a mean value; in this case the
mean value of the energy. Therefore, the integral on the right defines also the average
value of the energy. It contains the operator Ĥ that represents the energy, i.e.

〈E〉 = 〈Ĥ〉 =
∫
ϕ∗(r)Ĥϕ(r)dr. (7.43)

This result can be generalized and we can say that the expected value 〈 Â〉 of the
physical variable A in the state ψ is obtained as follows

〈 Â〉 =
∫
ψ∗(r) Âψ(r)dr. (7.44)

Here Â is the operator that represents the physical variable A. If An and ϕn fulfill
the eigenvalue equation Âφn=Anϕn , and ψ(r)=

∑
n cnϕn , we have in general that

〈A〉 =
∑

n

|cn|2 An . (7.45)

In the next section we will define Hermitian operators. We will introduce some
theorems concerning these operators and we will derive the Heisenberg inequality.
At the end of this chapter, in the illustrative problems section, we will discuss a
little more about the expectation values and the diagonalization method to obtain
numerically eigenvalues and eigenfunctions.

7.3 Hermiticity

Operators F̂ whose expectation values are real, are particularly important. These are
the so-called Hermitian operators. An operator F̂ is Hermitian if, for arbitrary ψ and
ϕ, it satisfies the relation

http://dx.doi.org/10.1007/978-3-642-29378-8_3
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∫
ψ∗ F̂ϕdr =

∫
ϕF̂∗ψ∗dr. (7.46)

We will show below that a Hermitian operator, in the sense of this definition, has
certainly real eigenvalues. We will also show that the matrix representation of a
Hermitian operator is a self-adjoint matrix, i.e.7

F† = F. (7.47)

1. The eigenvalues of a Hermitian operator are real. Suppose we have a Hermitian
operator F̂ that satisfies the eigenvalue equation

F̂ϕn = fnϕn, (7.48)

with
∫
ϕ∗mϕndr = δnm, (7.49)

and

F̂∗ϕ∗n = f ∗n ϕ∗n . (7.50)

We want to see what follows when F̂ fulfills the relation
∫
ϕ∗m F̂ϕndr =

∫
ϕn F̂∗ϕ∗mdr. (7.51)

Using the eigenvalue Eqs. (7.48) and (7.50), we have

∫
ϕ∗m fnϕndr =

∫
ϕn f ∗mϕ∗mdr, (7.52)

that can be written as

fnδnm = f ∗mδnm . (7.53)

Therefore

fn = f ∗n . (7.54)

The eigenvalues of an operator that fulfill Eq. (7.46), i.e. the eigenvalues of a
Hermitian operator, are real.

7 The superscript † represents the joint operations of transposition and complex conjugation T∗.
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2. The matrix representation of a Hermitian operator is self-adjoint. Suppose we
have a basis of functions φn , which are not eigenfunctions of F̂ . Regardless
of this, if F̂ is a Hermitian operator in the sense of (7.46), it must satisfy the
following relation

∫
φ∗m F̂φndr =

∫
φn F̂∗φ∗mdr. (7.55)

These integrals depend on the indices m and n and can be treated as matrix
elements. Thus, on the left hand side we have the matrix element

Fmn =
∫
φ∗m F̂φndr, (7.56)

and on the right hand side also a matrix element that we can write as follows

∫
φn F̂∗φ∗mdr =

(∫
φ∗n F̂φmdr

)∗
= (Fnm)

∗. (7.57)

If we replace these matrix elements in (7.55), we have

Fmn = (Fnm)
∗, (7.58)

or simply

F = (FT )∗ = F†. (7.59)

A matrix that is equal to its transpose-conjugate, is a self-adjoint matrix.

7.3.1 Commutation Relations and Fundamental Theorems

The commutation relation of two operators may have important implications. Some
operators commute, others not. To express this property in a compact way, it is useful
to define the commutator of F̂ and Ĝ as

[
F̂, Ĝ

] = F̂ Ĝ − Ĝ F̂ . (7.60)

This commutator tells us whether the operators F̂ and Ĝ commute or not. Clearly,
if the operators commute, their commutator is zero, otherwise it is different from
zero. Let us give here some simple examples of commutators. To determine the
commutator of two operators, it is important to recognize that a commutator is also
an operator.



168 7 Operators and Dynamical Variables

1. x̂i and x̂ j commute. In fact, their commutator is8

[̂xi , x̂ j ] = xi x j − x j xi = 0 (7.61)

2. p̂i and p̂ j commute; their commutator is

[ p̂i , p̂ j ] = p̂i p̂ j − p̂ j p̂i

= −�
2
(
∂

∂xi

∂

∂x j
− ∂

∂x j

∂

∂xi

)

= 0. (7.62)

3. x̂i and p̂i do not commute; their commutator is

[̂xi , p̂i ] = xi p̂i − p̂i xi

= −i�

(
xi

∂

∂xi
− 1− xi

∂

∂xi

)

= i�. (7.63)

Notice that in evaluating the commutators, the goal is to move the operator to
the right, for example p̂i in p̂i xi to the right of xi . The rule is to imagine that
on the right of p̂i xi we have a function f (xi ), thus the operator p̂i , which is a
derivative operator, acts on the product of functions at its right based on the well
known rules for derivatives, as follows

−i�
∂

∂xi
xi f (xi ) = −i�

∂xi

∂xi
f (xi )− i�xi

∂

∂xi
f (xi )

= −i� f (xi )+ xi p̂i f (xi ) = [−i�+ xi p̂i ] f (xi ). (7.64)

Hence,
p̂i xi = −i�+ xi p̂i , (7.65)

which makes the result in (7.63) possible.
4. x̂i and p̂ j commute when i 
= j ; their commutator is

[̂xi , p̂ j ] = xi p̂ j − p̂ j xi

= −i�

(
xi

∂

∂x j
− ∂

∂x j
xi

)

= 0. (7.66)

8 The indices i, j, k can take the values 1, 2 and 3. The variables xi refer to the coordinates x , y
and z, such that: x1 = x , x2 = y and x3 = z. In the same way, p1 = px , p2 = py and p3 = pz .
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Theorem 1 If F̂ and Ĝ are any two Hermitian operators, their product F̂ Ĝ will be
Hermitian only if F̂ and Ĝ commute.

Demonstration: Since F̂ and Ĝ are Hermitian operators, we have

F̂† = F̂ Ĝ† = Ĝ. (7.67)

The product F̂ Ĝ will be Hermitian if

(
F̂ Ĝ

)† = F̂ Ĝ. (7.68)

Since

(
F̂ Ĝ

)† = Ĝ† F̂† = Ĝ F̂ . (7.69)

The product
(
F̂ Ĝ

)† can not be equal to F̂ Ĝ, unless the operators commute.

Theorem 2 If the operators F̂ and Ĝ are Hermitian and do not commute, their
commutator is of the form

[
F̂, Ĝ

] = i Ĉ, (7.70)

with Ĉ Hermitian.

Demonstration: We know that

[
F̂, Ĝ

] = F̂ Ĝ − Ĝ F̂ (7.71)

If we take the transpose conjugate of this commutator, we have

[
F̂, Ĝ

]† = (
F̂ Ĝ − Ĝ F̂

)† = Ĝ† F̂† − F̂†Ĝ†. (7.72)

Since F̂ and Ĝ are Hermitian, the last equation can be written as

[
F̂, Ĝ

]† = Ĝ F̂ − F̂ Ĝ = −[
F̂, Ĝ

]
. (7.73)

This shows that the commutator is an anti-Hermitian operator. Hence the commutator[
F̂, Ĝ

]
can be written as the product i Ĉ with Ĉ a Hermitian operator. In that case

[
F̂, Ĝ

]† = (
i Ĉ

)† = −i Ĉ = −[
F̂, Ĝ

]
. (7.74)

As a consequence, the commutator of two non-commuting Hermitian operators
is an anti-Hermitian operator. An anti-Hermitian operator can always be writ-
ten as a Hermitian operator multiplied by the imaginary number i . Therefore
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[F̂, Ĝ] = i Ĉ, (7.75)

with Ĉ Hermitian.

7.4 Deviation, Variance and Dispersion of a Physical Variable

Besides the expectation values, we need to introduce other concepts and relations
that are characteristic of the statistical theory. For example, the variance and the
standard deviation (or dispersion) of a physical quantity. We begin by introducing
the deviation operator

δ̂F = F̂ − 〈F̂〉, (7.76)

which is nothing else than the operator F̂ measured from its expected value. It is
clear that

〈δ̂F〉 = 〈F̂ − 〈F̂〉〉 = 〈F̂〉 − 〈F̂〉 = 0. (7.77)

A quantity closely related with δ̂F , is the variance of F , denoted as var F or asΔF 2.
The variance of F is defined as

var F = 〈 (F̂ − 〈F̂〉)2〉 = 〈δ̂F
2〉. (7.78)

This positive-definite quantity, allows us to calculate another relevant statistical vari-
able: the standard deviation. This quantity tells us how far the actual values of the
statistical variable deviate from the mean value. The standard deviation or dispersion
ΔF is defined as

ΔF = √var F . (7.79)

Notice that ΔF should not be confused with 〈δ̂F〉, which is zero. The standard
deviation of a physical quantity is also an important physical variable, useful to
analyze the dispersion of the physical quantities. Its counterpart in the experimental
physics is the uncertainty or measurement error. Unavoidable variations that should,
necessarily, be taken into account when experimental results are compared with
theoretical predictions. It is important to distinguish the standard deviation from the
expected value 〈δ̂F〉 of the deviation.

We will see now some theorems related to these statistical variables in the context
of quantum theory.



7.4 Deviation, Variance and Dispersion of a Physical Variable 171

Theorem 3 When a system is precisely in one of the eigenstates of an operator F̂,
the variance of F is zero.

Demonstration: Suppose that F̂ϕn = Fnϕn . When the system is in one of the
eigenstates, say in the eigenstate ϕn , the expected value of F̂ will be given by

〈F̂〉 =
∫
ϕ∗n F̂ϕndx = Fn . (7.80)

and Fn is the eigenvalue of F̂ , corresponding to the eigenfunction ϕn . Similarly,

〈F̂2〉 =
∫
ϕ∗n F̂ F̂ϕndx = Fn

∫
ϕ∗n F̂ϕndx = F 2

n . (7.81)

Substituting these expected values in the variance of F̂ , we have

(ΔF)2 = 〈 F̂ 2 〉 − 〈F̂ 〉2 = F 2
n − F 2

n = 0. (7.82)

This proves the theorem.

Theorem 4 If a system is in an eigenstate of F̂ , the dispersion of this variable or of
any other that commutes with F̂, is zero.

Demonstration: It has been shown that if the system is in an eigenstate of F̂ , there
is no dispersion for F , i.e.

(ΔF)2 = 0. (7.83)

Let Ĝ be an operator that commutes with F̂ . One can easily verify that if

F̂ϕn = fnϕn, (7.84)

then

Ĝ F̂ϕn = fnĜϕn . (7.85)

Since we assume that Ĝ commutes with F̂ , the last equation can be written in the
form

F̂(Ĝϕn) = fn(Ĝϕn). (7.86)

This equation has the appearance of an eigenvalue equation where Ĝϕn behaves like
the eigenfunction corresponding to the eigenvalue fn , thus, the function Ĝϕn can be
written as

Ĝϕn = cϕn . (7.87)
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This is an eigenvalue equation where the constant c is nothing else than the eigenvalue
gn of Ĝ, with eigenfunction ϕn , as stated in the theorem. Thus

F̂ Ĝϕn = Ĝ F̂ϕn = gn fnϕn, (7.88)

If we apply the previous theorem for Ĝ, it is also possible to conclude that the
dispersion of the operator Ĝ, that commutes and shares eigenfunctions with F̂ , is
also zero, i.e.

(ΔG)2 = 0. (7.89)

Corollary If a system is in an eigenstate of the Hamiltonian, the energy is a variable
without dispersion, and all variables whose operators commute with Ĥ are also
dispersionless variables.

7.5 Heisenberg’s Inequality

The Heisenberg inequality, also known as Heisenberg’s Uncertainty Principle, is a
relation for the dispersions of two physical variables, one the canonical conjugate of
the other, whose Hermitian operators do not commute. Let the operators f̂ and ĝ be
with this feature, whose commutator is

[ f̂ , ĝ] = i ĥ. (7.90)

If we define the operators δ̂ f = f̂ − 〈 f̂ 〉 and δ̂g = ĝ − 〈̂g〉, it is easy to show that
their commutator satisfies also the relation

[δ̂ f , δ̂g] = i ĥ. (7.91)

with ĥ a Hermitian operator. So far we have seen that the commutator ĥ of canonically
conjugated physical quantities, like x̂i and p̂ j , is just the Planck constant �. Therefore,
in what follows, we will replace ĥ by �.

It is easy to show that the product of a pair of operators δ̂ f and δ̂g can be expressed
in the form

δ̂ f δ̂g = 1

2
[δ̂ f , δ̂g] + 1

2
{δ̂ f , δ̂g} (7.92)

where {a, b} is an anti-commutator defined as ab + ba. On the other hand, the
variances 〈δ̂ f

2〉 and 〈δ̂g2〉 satisfy the Schwartz inequality

〈δ̂ f
2〉〈δ̂g 2〉 ≥ |〈δ̂ f δ̂g〉|2. (7.93)
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Therefore

〈δ̂ f
2〉〈δ̂g 2〉 ≥ 1

4
|〈[δ̂ f , δ̂g] + {δ̂ f , δ̂g}〉|2. (7.94)

To obtain the Heisenberg inequality we need to simplify even more the previous
expression. One can show that the anti-commutator of two Hermitian operators is
also Hermitian. Suppose then that {δ f̂ , δĝ}〉 = k̂. Since the expectation values of
Hermitian operators are real, Eq. (7.94) takes the form

〈δ̂ f
2〉〈δ̂g2〉 ≥ 1

4
|〈i�+ k̂〉|2 = 1

4
|i�+ 〈̂k〉|2. (7.95)

which obviously can be written as

〈δ̂ f
2〉〈δ̂g2〉 ≥ 1

4
�

2. (7.96)

This uncertainty is a relation of variances. If we extract the square root, we have the
uncertainty relation

Δ fΔg ≥ �

2
, (7.97)

of standard deviations, or the uncertainty relation of dispersions Δ f and Δg. This
is popularly known as the Heisenberg’s Uncertainty Principle. This relation shows
that the product of dispersions of two variables, one the canonical conjugate of the
other, can not be less than �/2. The physical interpretation of this inequality has been
controversial, diverse and a source of exotic ideas. The most widespread interpreta-
tion suggests the impossibility of determining simultaneously and accurately, with
zero dispersion, the values of two canonical conjugate variables, such as position and
momentum, energy and time, etc. Clearly, if the dispersion of one of the variables
is zero, the inequality suggests that the dispersion of its canonical conjugate will
be∞. This is an overstated interpretation. If we accept that the counterpart of the
theoretical dispersion could be the experimental error, the inequality leaves us a large
margin for an accurate determination of the canonical conjugate variables. Indeed, if
the error determining one variable, say the energy is as small as

√
�/2 ∼ 10−18 J, the

uncertainty relation says that the accuracy of determining its canonical conjugate,
in this case time, must be at least of the order of

√
�/2 ∼ 10−16 s. Both quantities

are very, very small. Of course, if the experimental methods were so precise that the
dispersion of one variable tends to zero, its canonical conjugate will, according to
the uncertainty relation, have a dispersion that tends to∞. With the accuracy of the
current experimental methods the dispersions product is orders of magnitude greater
than the lower limit �/2 ≈ 10−34 Js.
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7.6 Time Evolution; The Schrödinger and Heisenberg Pictures

7.6.1 The Schrödinger Picture and the Unitary Time Evolution
Operator

Physical systems generally evolve in space and time. The solution of the time
dependent Schrödinger equation

i�
∂

∂t
ψ(r, t) = Ĥψ(r, t). (7.98)

is a function of the spatial coordinates and time. When the Hamiltonian is independent
of time, the space and time evolution of the wave function is given by

ψ(r, t) = e−i Ĥ t/�ψ(r, 0). (7.99)

In this representation the wave function depends on time and the operators are inde-
pendent of time, except of course the time evolution operator e−i Ĥ t/� that is part of
the wave functionψ(r, t)). This is called the Schrödinger picture. The time evolution
operator is an important quantity of this representation. We will derive this operator
based on the infinitesimal generators of a unitary transformation. If we write the
Schrödinger equation as

lim
δt→0

ψ(r, δt)− ψ(r, 0)

δt
= − i Ĥ

�
ψ(r, 0), (7.100)

the wave function ψ(r, δt), for δt infinitesimal, can be written as

ψ(r, δt) =
(

1− i Ĥδt
�

)
ψ(r, 0). (7.101)

Which means that the Hamiltonian Ĥ is the generator of the infinitesimal time evo-
lution operator

Û (δt) =
(

1− i Ĥδt

�

)
. (7.102)

Since

1− i Ĥδt

�
+O(δt2) � e−i Ĥδt/�, (7.103)

the infinitesimal time evolution operator can be written also as



7.6 Time Evolution; The Schrödinger and Heisenberg Pictures 175

Û (δt) = e−i Ĥδt/�. (7.104)

Based on this operator, we can obtain the time evolution operator Û (t) for any time t .
If t = limN→∞ Nδt , the time evolution operator is then given by

Û (t) = lim
N→∞ Û (δt)N = lim

N→∞

(
e−i Ĥ t/�N

)N = e−i Ĥ t/�. (7.105)

For a Hermitian Hamiltonian Ĥ† = Ĥ , the time evolution operator has the property

Û †(t) = ei Ĥ t/� = Û−1(t) (7.106)

of any unitary operator. Because of this property, the evolution operator transforms
the wave function keeping its norm constant. This means that the probability density
evaluated with

ψ(r, t) = Û (t)ψ(r, 0) = e−i Ĥ t/�ψ(r, 0) (7.107)

is the same as the probability density evaluated with ψ(r, 0). Indeed

|ψ(r, t)|2 = |e−i Ĥ t/�ψ(r, 0)|2 = |ψ(r, 0)|2. (7.108)

When the potential function is independent of time, the differential equation is sep-
arable. In that case, and using the notation of Sect. 7.2 with τ (0) = 1 and Ĥϕ(r)
= Eϕ(r), the wave function ψ(r, t) can be written as

ψ(r, t) = e−i Ĥ t/�τ (0)ϕ(r) = e−i Et/�ϕ(r), (7.109)

a function that we met before, with ϕ(r) the solution of the stationary Schrödinger
equation.

If we have a time dependent wave function, the expectation values will also,
in principle, evolve in time. To represent the expectation values in time-dependent
states, we will use when necessary the notation 〈 〉t . The expected value of a physical
quantity F , in the state ψ(r, t), is given by

〈F〉t = 〈ψ(r, t)|F̂ |ψ(r, t)〉 =
∫
ψ∗(r, t)F̂ψ(r, t)d3r. (7.110)

When the operator F̂ is independent of time, the time dependence of the expectation
value comes entirely from the wave function ψ(r, t).
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7.6.2 Heisenberg’s Picture

An alternative and useful picture for time-dependent calculations is the Heisenberg
picture that transfers the time dependence from the wave functions to the operators.
If we consider the expected value in (7.110), and write it as

〈F〉t = 〈ψ(r, 0) |ei Ĥ t/�F̂e−i Ĥ t/� |ψ(r, 0) = 〈F̂(t)〉0. (7.111)

We can see this quantity from a different perspective: as the expected value of the
time dependent operator F̂(t) in the time independent state ψ(r, 0). This operator,
can also be obtained if we write the expected value in (7.110) as

〈F〉t = 〈ψ(r, t)|F̂ |ψ(r, t)〉 = 〈ψ(r, t)|ÛÛ † F̂ÛÛ †|ψ(r, t)〉, (7.112)

where we have introduced the unit operator ÛÛ †. Since

〈ψ(r, 0)| = 〈ψ(r, t)|Û and Û †|ψ(r, t)〉 = |ψ(r, 0)〉, (7.113)

the expected value can also be written as

〈F〉t = 〈ψ(r, 0)|Û †(t)F̂Û (t)|ψ(r, 0)〉 = 〈Û †(t)F̂Û (t)〉0, (7.114)

which is the expected value of the time dependent operator

F̂(t) = Û †(t)F̂Û (t). (7.115)

This leads us to the Heisenberg picture. In this representation, the expected value
〈 〉0 of a time dependent operator defined as

F̂(t) = ei Ĥ t/�F̂e−i Ĥ t/�, (7.116)

is evaluated in the state ψ(r, 0), that remains fixed. Time dependent operators are
sometimes denoted in a more compact notation as F̂H. Before discussing the behavior
of time dependent operators, let us consider the expected value (7.111) to derive a
relation that we will use later. When the potential is time independent and τ (0) = 1,
we can write the following equality (when we write ψ, we understand that we have
ψ(r, t), when we write ψ0, it means ψ(r, 0) and ϕ for ϕ(r) independent of time)

〈ψ |F̂ |ψ〉 = 〈ϕ|F̂(t)|ϕ〉. (7.117)

On the other hand, the time derivative of F̂H, gives us
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d F̂(t)

dt
= i

�
ei Ĥ t/�Ĥ F̂e−i Ĥ t/�+ ei Ĥ t/�∂ F̂

∂t
e−i Ĥ t/�− i

�
ei Ĥ t/�F̂ Ĥe−i Ĥ t/�.

(7.118)
Since ei Ĥ t/� commutes with Ĥ , the previous equation can be written also as

d F̂(t)

dt
= ei Ĥ t/�∂ F̂

∂t
e−i Ĥ t/�+ i

�

[
Ĥ , F̂(t)

]
. (7.119)

This equation of motion is an important result. According to this equation, quantities
that have operators not explicitly dependent on time and commute with the Hamil-
tonian Ĥ , are constants of motion. Let us see if this is also valid for the expectation
values. If we consider the expected value in (7.110), its time derivative

d

dt
〈F〉t = d

dt
〈ψ(r, t)|F̂ |ψ(r, t)〉 = d

dt
〈ψ|F̂ |ψ〉, (7.120)

can be written as follows:

d

dt
〈F〉t = ∂〈ψ|

∂t
F̂ |ψ〉 + 〈ψ|∂ F̂

∂t
|ψ〉 + 〈ψ|F̂ ∂|ψ〉

∂t
. (7.121)

Using the time-dependent Schrödinger equation, we have

d

dt
〈F〉t = 〈ψ|∂ F̂

∂t
|ψ〉 + i

�
〈ψ| [Ĥ , F̂

] |ψ〉. (7.122)

This is the equation of motion of the expectation value of F . It is clear here that
the expected value 〈F〉t is constant when F̂ does not depend explicitly on time
and commutes with Ĥ . But, what happens if we have written the operator in the
Heisenberg picture? To close the frame and avoid confusion we will obtain this
equation of motion in the Heisenberg representation. If we use the expectation value
in (7.111), the time derivative can be written as

d

dt
〈F〉t = 〈ψ0| d

dt
F̂(t) |ψ0〉, (7.123)

which, with the help of Eq. (7.119), takes the form

d

dt
〈F〉t = 〈ψ0| ei Ĥ t/�∂ F̂

∂t
e−i Ĥ t/�|ψ0〉 + i

�
〈ψ0|

[
Ĥ , F̂(t)

] |ψ0〉, (7.124)

or simply
d

dt
〈F〉t = 〈ψ|∂ F̂

∂t
|ψ〉 + i

�
〈ψ0|

[
Ĥ , F̂(t)

] |ψ0〉. (7.125)

This equation is exactly like the equation of motion (7.122). Therefore, the equation
of motion of the expected value of a physical quantity F̂ , that does not depend
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explicitly on time, can be written as

d

dt
〈F〉t = i

�
〈ϕ|[Ĥ , F̂(t)]|ϕ〉, (7.126)

or just as
d

dt
〈F〉t = i

�
〈[Ĥ , F̂]〉t . (7.127)

Notice that we can also write

d

dt
〈ψ|F̂ |ψ〉 = 〈ϕ|d F̂(t)

dt
|ϕ〉. (7.128)

Theorem 5 The Ehrenfest theorem. The equations of motion for the expectation
values 〈r〉t and 〈̂p〉t are similar to the classical equations of motion of r and p.

Demonstration: We will obtain here the equation of motion for x and px . The
extension to 3D is straightforward. If we apply the equation of motion (7.126) to x ,
we have

d

dt
〈x〉t = i

�
〈ψ|[Ĥ , x]|ψ〉. (7.129)

In Sect. 7.3 we obtained the conmutators9

[xi , p j ] = i�δi, j i, j = 1, 2, 3 (7.130)

which we will use to evaluate [Ĥ , x]. Since V (r) commutes with x , the commutator
takes the form

[Ĥ , x] = 1

2m
( p̂2

x x − x p̂2
x ). (7.131)

If in the last expression, we subtract and add the operator x p̂x x , it becomes

[Ĥ , x] = 1

2m
( p̂x [ p̂x , x] − [x, p̂x ] p̂x )

= −i
�

m
p̂x (7.132)

If we replace this in (7.129), we have the equation of motion

m
d

dt
〈x〉t = 〈 p̂x 〉t (7.133)

which corresponds to the classical definition px = m dx
dt .

9 We write x1= x, . . . , x3 = z and p1 = px , . . . , p3= pz .
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Let us now consider the equation of motion

d

dt
〈 p̂x 〉t = i

�
〈ψ|[Ĥ , p̂x ]|ψ〉. (7.134)

Here we need also to transform the commutator [Ĥ , p̂x ]. If we write explicitly the
Hamiltonian and take into account that p̂2 = p̂2

x + p̂2
y + p̂2

z commutes with p̂x , we
have

[Ĥ , p̂x ] = V (r) p̂x − p̂x V (r)

= V (r) p̂x + i�
∂V (r)
∂x

− V (r) p̂x . (7.135)

Therefore
d

dt
〈 p̂x 〉t = −

〈
∂V

∂x

〉
t
= 〈Fx 〉t , (7.136)

which corresponds to the second law of Newton.

7.7 Position and Momentum in the Momentum Representation

At the end of Chap. 3, we briefly recalled the Fourier transformation as a specific
example to change from the coordinates to the momentum representation. In this
section we will see how the momentum and position operators are expressed in the
momentum representation.

Suppose that we have the basis {|x〉}, in coordinate representation, and the basis
{|px 〉} in the momentum representation. To keep a light notation, we will use p
instead of px . Let us see now how the operators x̂ and p̂ look like in the space and
momentum representation. Since an operator is diagonal in its own representation,
we have

〈x ′|̂x |x〉 = xδ(x ′ − x) and 〈p′| p̂|p〉 = pδ(p′ − p). (7.137)

The first of these equalities can be written as

〈x ′|̂x |x〉 = xδ(x ′ − x) = x
∫
〈x ′|p〉〈p|x〉dp. (7.138)

If we recall that
∫ |p〉〈p|dp = 1, the last equation can be written in the form

〈x ′|̂x |x〉 = x〈x ′|x〉, (7.139)

thus

http://dx.doi.org/10.1007/978-3-642-29378-8_3
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x̂ |x〉 = x |x〉. (7.140)

|x〉 is the eigenfunction of x̂ with eigenvalue x . In the same way

〈p′| p̂|p〉 = pδ(p′ − p) = p
∫
〈p′|x〉〈x |p〉dx . (7.141)

We now use
∫ |x〉〈x |dx = 1, and we have

p̂|p〉 = p|p〉. (7.142)

|p〉 is the eigenfunction of p̂ with eigenvalue p. To make clear how one operates
with this type of transformations, let us see how one obtains the operator p̂ in the
coordinate representation. Using the matrix element 〈x ′| p̂|x〉, and the unit operator,
we easily obtain the identity

〈x ′| p̂|x〉 =
∫

dp′dp〈x ′|p′〉〈p′| p̂|p〉〈p|x〉

=
∫

dp′dp〈x ′|p′〉〈p′|p|p〉〈p|x〉. (7.143)

If we take into account that p, in the last equation, is a scalar and can change its
position inside the integral, and we remember that δ(p′ − p) = 〈p′|p〉, the previous
equation becomes

〈x ′| p̂|x〉 = ∫
dp′dp〈x ′|p′〉pδ(p′ − p)〈p|x〉. (7.144)

After integration on p′, we have

〈x ′| p̂|x〉 =
∫

dp〈x ′|p〉p〈p|x〉. (7.145)

In this integral we have the factor p〈p|x〉 that can be written as follows

p〈p|x〉 = p
eipx/�

√
2π�
= −i�

∂

∂x

eipx/�

√
2π�
= −i�

∂

∂x
〈p|x〉. (7.146)

If we substitute this into (7.145), we have

〈x ′| p̂|x〉 = −i�
∂

∂x

∫
dp〈x ′|p〉〈p|x〉, (7.147)

that, finally, we write in the form

〈x ′| p̂|x〉 = 〈x ′|
(
−i�

∂

∂x

)
|x〉. (7.148)
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This gives us the momentum operator that we know already. Let us see the operator
x̂ in the momentum representation. Here also, we can start with the matrix element

〈p′|̂x |p〉 =
∫

dx ′dx〈p′|x ′〉〈x ′|̂x |x〉〈x |p〉

=
∫

dx ′dx〈p′|x ′〉〈x ′|x |x〉〈x |p〉, (7.149)

that using the identity 〈x ′|x〉 = δ(x ′ − x), transforms into

〈p′|̂x |p〉 =
∫

dx ′dx〈p′|x ′〉xδ(x ′ − x)〈x |p〉

=
∫

dx〈p′|x〉x〈x |p〉. (7.150)

Now, it is the factor x〈x |p〉 which we need to write as

x〈x |p〉 = x
e−i px/�

√
2π�

= i�
∂

∂ p

e−i px/�

√
2π�

= i�
∂

∂ p
〈x |p〉. (7.151)

If we substitute this into (7.150), we have

〈p′|̂x |p〉 = i�
∂

∂ p

∫
dx〈p′|x〉〈x |p〉, (7.152)

which tells us that the position operator in the momentum representation is

x̂ = i�
∂

∂ p
. (7.153)

Therefore, the position operator r̂ in the three-dimensional space is

r̂ = i�∇p, (7.154)

similar to the momentum operator in the coordinates space.

7.8 Solved Problems

Exercise 25 Let the set of functions {ψn(r, t)} be such that ψn(r, t) = e−iωn tϕn(r),
and let f̂ be a Hermitian operator. Prove that

〈ϕm |d f̂

dt
|ϕn〉 = i

Em − En

�
〈ϕm | f̂ (t)|ϕn〉. (7.155)
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Solution To prove this equality we recall that the time derivative

d

dt
〈ψm | f̂ |ψn〉, (7.156)

written in the form

d

dt
〈ψm | f̂ |ψn〉 = d

dt
〈ϕm |eiωm t f̂ e−iωn t |ϕn〉, (7.157)

can be written in the Heisenberg representation as

d

dt
〈ψm | f̂ |ψn〉 = 〈ϕm |d f̂ (t)

dt
|ϕn〉. (7.158)

Since
d f̂ (t)

dt
= d

dt
ei(ωm−ωn)t f̂ = i(ωm − ωn)e

iωm t f̂ e−iωn t , (7.159)

we have the relation we are looking for:

〈ϕm |d f̂ (t)

dt
|ϕn〉 = i

Em − En

�
〈ϕm | f̂ (t)|ϕn〉. (7.160)

Exercise 26 Apply the result of the previous exercise to x and p̂x and show that

〈ϕm |ẍ |ϕn〉 = −
(

Em − En

�

)2

〈ϕm |x(t)|ϕn〉. (7.161)

Solution If we apply (7.160) to the operator x , we have

〈ϕm |ẋ |ϕn〉 = i
Em − En

�
〈ϕm |x(t)|ϕn〉, (7.162)

while applied to the operator p̂x , it gives

〈ϕm | ˙̂px |ϕn〉 = i
Em − En

�
〈ϕm | p̂x (t)|ϕn〉. (7.163)

With the last two equations, and with the equation of motion for 〈x〉t , we easily
obtain the relation

〈ϕm |ẍ |ϕn〉 = −
(

Em − En

�

)2

〈ϕm |x(t)|ϕn〉. (7.164)

Since Em − En = �ωmn , the previous equations can be written also in terms of wmn

as
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〈ϕm |ẍ |ϕn〉 = −ω2
mn〈ϕm |x(t)|ϕn〉. (7.165)

Exercise 27 How do we evaluate the energy eigenvalues and the corresponding
eigenfunctions when the Schrödinger equation Ĥψ(r) = Eψ(r) cannot be solved
analytically?
Solution If the eigenvalues and eigenfunctions can not be obtained analytically, one
can proceed as follows. We consider first a complete set of orthonormal functions
{φi }, and use this basis to express the unknown solution ψ(r) as the superposition

ψ(r) =
∑

i

ciφi (r), (7.166)

where the coefficients ci do not depend on r. The expectation value for the energy
in the quantum state ψ(r) can, formally, be written as

〈E〉 =
∫
ψ∗Hψdr =

∑
i j

c∗i c j

∫
φ∗i Ĥφ j dr. (7.167)

Since the functionsφ j are not eigenfunctions of Ĥ , we can not replace Ĥφ j by E jφ j .
The integrals

∫
φ∗i Ĥφ j dr are numbers with values that depend on the functions φi

and φ j . Hence we can represent these integrals as the matrix elements

Hi j =
∫
φ∗i Ĥφ j dr. (7.168)

These numbers define the matrix representation H of the Hamiltonian Ĥ . The
specific matrix H depends on the basis {φi }, but the eigenvalues that will be obtained
should be independent of the basis {φi } that we have chosen. The matrix H pos-
sesses, generally, well defined properties and symmetries, related to the presence or
not of basic physical symmetries such as time reversibility, spin rotation, and flux
conservation. If we define the vector Vc as

Vc =

⎛
⎜⎜⎜⎝

c1
c2
...

cN

⎞
⎟⎟⎟⎠ V †

c = (c∗1, c∗2, . . . , c∗N ), (7.169)

we can express the expected energy in (7.167) as

〈E〉 =
∑
i, j

c∗i c j Hi j = V †
c H Vc. (7.170)

Depending on the physical system and the symmetries present, the matrix that
diagonalize H might be unitary, orthogonal or symplectic. Let us suppose that a
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unitary matrix U diagonalizes H , i.e.

U † HU = ε. (7.171)

This diagonalization is an important operation, equivalent to deriving the energy
eigenvalues. The elements of ε are the eigenvalues and the columns of U the corre-
sponding eigenvectors. To visualize this statement let us observe with some detail
the previous equation. If we multiply it with matrix U we have (using the convention
of sums over repeated indices) that

HU = Uε −→ Hi jU jk = Ui jε j jδ jk . (7.172)

In the last equation, thanks to the Kronecker delta one can perform one of the sums.
It then reduces to

Hi jU jk = Uikεk . (7.173)

If we write this equation in the form

⎛
⎜⎜⎜⎝

H1 jU j1 H1 jU j2 · · · H1 jU j N

H2 jU j1 H2 jU j2 · · · H2 jU j N
...

... · · · ...

HN jU j1 HN jU j2 · · · HN jU j N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

U11ε1 U12ε2 · · · U1NεN

U21ε1 U22ε2 · · · U2NεN
...

... · · · ...

UN1ε1 UN2ε2 · · · UN NεN

⎞
⎟⎟⎟⎠ ,(7.174)

and, if we denote the kth column of U as U·k , it is easy to see that the last equation
leads precisely to

HU·k = εkU·k . (7.175)

This is nothing else than the eigenvalue equation, where U·k is the eigenvector φk

corresponding to the eigenvalue εk of H . We can then conclude that the eigenvec-
tors φk are the columns of the matrix U that diagonalizes H , and the elements of
the diagonalized matrix are the eigenvalues εk . This procedure requires numerical
methods, and is widely used to solve Schrödinger’s equations that, as said before,
are not treatable analytically. In fact, this is what happens more frequently in physics
and research activities.
Exercise 28 What is the expectation value of the energy in a system like the one
considered in the previous exercise?

In the previous exercise, we have seen that in the absence of analytical solutions
one can solve the eigenvalue equation with the help of a complete basis of functions
ϕn , that is used to construct the matrix representation of the Hamiltonian, which is
then diagonalized. The expected value of the energy was expressed in the form

〈E〉 =
∑
i, j

c∗i c j Hi j = V †
c H Vc, (7.176)
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If U diagonalizes the matrix H , one can write the expected value as

〈E〉 = V †
c U U † H UU † Vc = V †

c UεU †Vc. (7.177)

This equation makes it clear that the matrix U, simultaneously, transforms the vector
Vc into

Wa = U †Vc =

⎛
⎜⎜⎜⎝

a1
a2
...

aN

⎞
⎟⎟⎟⎠ . (7.178)

In terms of these coefficients and the eigenvalues εn the expected value in (7.176)
becomes

〈E〉 =
∑

k

|ak |2εk . (7.179)

This expression is similar to that in (7.45), for the expected value of the energy.
For time independent Hamiltonians, we can write the time dependent wave function
ψ(x, t) as

ψ(x, t) =
∑

k

ake−iεk t/�φk(x). (7.180)

If we evaluate the expected value of the energy in the time dependent state ψ(x, t)
we have

〈E〉 =
∑

jk

a∗j akei(ε j−εk )t/�〈φ j |Ĥ |φk〉. (7.181)

Since 〈φ j |Ĥ |φk〉 = ε jδ jk , we also have

〈E〉 =
∑

k

|ak |2εk . (7.182)

7.9 Problems

1. Use the transmission amplitude of the rectangular barrier

t = 1

cosh qb + i
k2 − q2

2qk
sinh qb

, (7.183)
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to obtain the tunneling time as a function of the electron energy, when the barrier
height and width are Vo = 0.3 eV and b = 20 nm, respectively.

2. Deduce the wave function in (7.18).
3. Use the wave packet of Eq. (7.18) and show that, as time moves on, the wave

packet gets dispersed, i.e. it becomes broaden. Show graphically this phenom-
enon.

4. Show that if f̂ and ĝ are two non-commuting Hermitian operators, the anti-
commutator { f̂ , ĝ} = f̂ ĝ + ĝ f̂ is Hermitian.

5. Show that if [ f̂ , ĝ] = i�, also [δ̂ f , δ̂g] = i�.
6. Show the identity

[ f̂ ĝ, ĥ] = f̂ [̂g, ĥ] + [ f̂ , ĝ] ĥ. (7.184)

Using this identity and the commutator [̂xi , p̂i ], show that

[x̂i
N , ĥ] = i�x N−1

i . (7.185)

7. The virial theorem. Use Eq. (7.121) and show that

d

dt
〈̂x p̂〉 = 2〈T̂ 〉 −

〈
x̂

d V̂

dx

〉
(7.186)

where T̂ is the operator of the kinetic energy, such that Ĥ = T̂ + V̂ . Show that
in the stationary case

2〈T̂ 〉 =
〈
x̂

d V̂

dx

〉
. (7.187)

This relation defines the virial theorem.
8. Using the virial theorem show that for stationary states

〈T̂ 〉 = 〈V̂ 〉. (7.188)

9. Suppose that at t = 0 we have the Gaussian package

ϕ(x) = 〈x |ϕ〉 = Ae−x2/2a2
. (7.189)

Obtain:

a. the normalization constant A, and the expectation values 〈|x |〉, 〈|x2|〉;
b. show that 〈|px |〉 = 0, 〈|p2

x |〉 = �
2/2a2;

c. obtain the standard deviations Δx and Δpx . Obtain the product ΔxΔpx .

10. Suppose we have a free particle Ĥ = p̂2

2m , that at time t = 0 is represented by

the Gaussian packet 〈x |ϕ〉 = Ae−x2/2a2
. Show that at time t :
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a. the wave packet is given by

〈x |ψ(t)〉 = 〈x |
∫

dpe−i p2t/2m� |p〉〈p|ϕ〉,

= 〈x |
∫ ∫

dpdx ′e−i p2t/2m� |p〉〈p|x ′〉〈x ′|ϕ〉; (7.190)

b. replacing the functions 〈x |p〉, 〈p|x ′〉 and the function 〈x ′|ϕ〉, determine the
wave packet at time t .

11. Show that

〈ϕm |d
2x(t)

dt2 |ϕn〉 = −(ωm − ωn)
2〈ϕm |x(t)|ϕn〉. (7.191)

12. Show that δ̂ f δ̂g = 1
2

[
δ̂ f , δ̂g

]+ 1
2

{
δ̂ f , δ̂g

}
.



Chapter 8
Harmonic Oscillator

8.1 Introduction

The harmonic oscillator is one of the most invoked physical systems in the formu-
lation of simple, but illustrative models of real systems, which otherwise require a
more involved formalism. The harmonic oscillator has been used, for example, to
model atoms in the blackbody walls and atomic vibrations in crystalline systems.

If one has a potential function V (r) as, for example, the potential shown in Fig. 8.1,
and one is interested only in the lowest energy levels, it is possible to approximate
the potential, around the minima, by parabolic functions, as shown in the figure. In
general, when the potential V (r) has a complicated structure, the simplest and widely
used approximation is the so-called harmonic approximation.

It is known from functional analysis that an analytic function V (x) about a point
x0, can be developed as the Taylor power series

V (x) = V (x0)+ 1

1!V
′(x0)(x − x0)+ 1

2!V
′′(x0)(x − x0)

2 + . . . (8.1)

If V (x) is the potential, with a minimum at x0, the harmonic approximation in the
vicinity of the minimum is:

V (x) = V (x0)+ 1

2
V ′′(x0)(x − x0)

2. (8.2)

Since the physical description remains the same if one adds or subtracts a constant
to V (x), for example the constant V (x0), the potential function in the harmonic
approximation is written just as

V (x) � 1

2
V ′′(x0)x

2. (8.3)
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Fig. 8.1 Parabolic approx-
imations in the potential
minima

V(r)

r

The coefficient V ′′(x0) contains very important physical information. The oscillation
frequency ω is related with the curvature of the parabola. From now on we will write
the harmonic potential in the form

V (x) = 1

2
mw2x2. (8.4)

8.2 The Linear Harmonic Oscillator

The stationary Schrödinger equation of the harmonic oscillator, that will be solved
in this section, is

− �
2

2m

d2ϕ

dx2 +
1

2
mw2x2ϕ(x) = Eϕ(x). (8.5)

The harmonic potential is a confining potential and our goal is to obtain the
energy eigenvalues and the corresponding eigenfunctions. Before solving this prob-
lem we will simplify the notation. A convenient and widely used representation is the
dimensionless one. This representation is easily achieved with the change of variable

x = α0ξ, (8.6)

where ξ is a dimensionless variable. The coefficient α0 has to be of unit length. With
this change of variable the Schrödinger equation takes the form

− �
2

2mα2
0

d2ϕ

dξ2 +
1

2
mw2α2

0ξ
2ϕ = Eϕ. (8.7)

If we divide by the coefficient of the first term, we obtain
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− d2ϕ

dξ2 +
m2α4

0w
2

�2 ξ2ϕ = E2mα2
0

�2 ϕ. (8.8)

The first term is, obviously, dimensionless, all of the terms are also dimensionless.
It is customary to choose α0 such that

m2α4
0w

2

�2 = 1, ⇒ α2
0 =

�

mw
. (8.9)

With this choice, the Schrödinger equation takes the form

− d2ϕ

dξ2 + ξ2ϕ = 2E

�w
ϕ. (8.10)

To obtain the solution of this equation we will proceed as follows. We will first
explore the equation and its solutions in the limit |ξ| tending to ∞. Knowing the
asymptotic solutions we will, in a second step, propose a solution for (8.10) that will,
finally, lead us to a well known and soluble equation.

When ξ→±∞, it is clear that 2E/�w � ξ2, thus, we can approximate (8.10) by

− dϕ∞
dξ
+ ξ2ϕ∞ = 0. (8.11)

To obtain ϕ∞ we propose the function

ϕ∞(ξ) = eaξ2
, (8.12)

and replace it in (8.11). So we have

(2aξ)2 eaξ2 + 2a eaξ2 − ξ2 eaξ2 = 0. (8.13)

In the asymptotic regions (ξ → ±∞), the second term of this equation becomes
negligible. We are then left with

(2aξ)2 eaξ2 − ξ2 eaξ2 = 0, (8.14)

that is fulfilled when

a = ±1

2
. (8.15)

Taking into account the finiteness requirement of ϕ(ξ) that excludes a = 1/2, we
end up with the asymptotic solution

ϕ∞(ξ) = Be−
1
2 ξ

2
. (8.16)
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Since the harmonic oscillator solution ϕ must coincide, in the asymptotic region,
with the exponential behavior of ϕ∞, one can start with the trial function

ϕ(ξ) = e−
1
2 ξ

2
u(ξ), (8.17)

with u(ξ) a polynomial, to ensure the finiteness of the harmonic oscillator solution
as ξ tends to∞. If we define the dimensionless energy

ε = 2E

�ω
, (8.18)

and replace the trial function ϕ(ξ) = ϕ∞(ξ)u(ξ) in the differential Eq. (8.10), we
have

d2u

dξ2 − 2ξ
du

dξ
+ (ε− 1) u = 0. (8.19)

To solve this equation, it is common to propose the power series

u(ξ) =
∞∑
j=0

a jξ
j , (8.20)

that is then substituted in (8.19). This leaves us with

∞∑
j=2

a j ( j − 1) j ξ j−2 −
∞∑
j=0

a j (2 j + 1− ε)ξ j = 0. (8.21)

We use this equation to determine the coefficients a j . The normal procedure is to
redefine the summation index j in order to factor ξ j . In fact, if we change j by j+2,
in the first sum, and factor, we have the combination

∞∑
j=0

[
a j+2( j + 1) ( j + 2)− a j (2 j + 1− ε)] ξ j = 0, (8.22)

that is fulfilled only if the coefficients of ξ j vanish. This implies the recurrence
relation

a j+2 = a j
2 j + 1− ε

( j + 1)( j + 2)
j = 0, 1, 2, . . . , (8.23)

that leads to two sets of coefficients a j ; those with odd indices, expressed in terms of
the coefficient a0, and those with even indices, expressed in terms of a1. Therefore,
the general solution has the form
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u(ξ) = a0

(
1+ 1− ε

2! ξ2 + (1− ε)(5− ε)
4! ξ4

+ . . .+ (1− ε) . . . (2n + 1− ε)
(n + 2)! ξn+2 + . . .

)

+a1

(
ξ + 3− ε

3! ξ3 + (3− ε)(7− ε)
5! ξ5

+ . . .+ (3− ε) . . . (2n′ + 1− ε)
(n′ + 2)! ξn′+2 + . . .

)
(8.24)

In each set of terms of the right hand side of this equation we write the general
expression of the n +1 and the n′+1 terms. In the first series n is even (n = 0, 2, 4, . . .)
and in the second one n′ is odd (n′ = 1, 3, 5, . . .). If the factors (2n + 1 − ε) and
(2n′ + 1− ε) do not vanish, the series will have an infinite number of terms and will
diverge as ξ →∞. Some lines above, we mentioned the finiteness requirement for
ϕ, and also that it should be a polynomial function in order to keep the exponential
behavior ofϕ∞ in the asymptotic region. For u(ξ) to become a polynomial, we need,
first, that either (2n + 1− ε) or (2n′ + 1− ε) vanish. If (2n + 1− ε) vanishes, the
first series will terminate and become a polynomial, but not the second, in which
case we have to choose a1 = 0. If, on the other hand, (2n′ + 1− ε) is the factor that
vanishes, the second series terminates and we have to choose a0 = 0. Therefore, the
power series in (8.24) become a polynomial when

ε = 2n + 1, which is equivalent to
2E

�ω
= 2n + 1, (8.25)

for n odd or even. Thus, for each n odd or even there is an energy

En = �ω

(
n + 1

2

)
, with n = 0, 1, 2, 3, . . . , (8.26)

and the polynomials

un(ξ) =
n∑

j=0,2,4

a0 jξ
j ; when n = 0, 2, 4, . . . , (8.27)

and

un(ξ) =
n∑

j=1,3,5

a1 jξ
j ; when n = 1, 3, 5, . . . , (8.28)

with coefficients a01 = a0,
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Fig. 8.2 Eigenvalues and eigenfunctions of the harmonic oscillator

a0 j = a0(−2) j/2 n(n − 2)(n − 4) . . . (n + 4− j)(n + 2− j)

j ! j = 2, 4, 6, . . . ,

(8.29)
and a11 = a1,

a1 j = a1(−2)( j−1)/2 (n − 1)(n − 3)(n − 5) . . . (n + 4− j)(n + 2− j)

j !
j = 3, 5, 7, . . . , (8.30)

respectively. The polynomials un(ξ) in (8.27) and (8.28), normalized with a weight
function e−ξ2

, are essentially the Hermite polynomials Hn(ξ). Consequently, the
harmonic oscillator eigenfunctions are (remember that ξ = x/α0 = x

√
mw/�)

ϕn(x) = Cne−mwx2/2�Hn

(√
mw/� x

)
. (8.31)

The normalization constant can be found and is given by

Cn =
√

1

2nn!
(mw

π�

)1/4
. (8.32)

In Fig. 8.2 we show the harmonic potential mω2x2/2, with several eigenvalues En

and their eigenfunctions ϕn . As for the infinite potential well, we have an infinite
sequence of energy levels. The ground state corresponds to n = 0, the first excited
state to n = 1 and so on. The eigenfunctions decrease exponentially for large |x |,
and their parity corresponds with that of the quantum index n. One of the interesting
features of the harmonic oscillator, perhaps the most interesting one, is the constant
spacing of its energy levels. The difference between any two neighboring levels is
�w.

The Hermite polynomials, that are part of the eigenfunctions of the harmonic
oscillator, are solutions of the differential equation
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H ′′n − 2ξH ′n + 2nHn = 0. (8.33)

This equation is easily obtained by combining Eqs. (8.19) and (8.25). Two useful
relations that the Hermite polynomials fulfill are:

H ′n(x) = 2nHn−1(x); (8.34)

and the three term recurrence relation1

Hn+1(x) = 2x Hn(x)− 2nHn−1(x). (8.35)

The student can deduce this recurrence relation by combining the differential
Eqs. (8.33) and (8.34). Let us now introduce a small digression that will be use-
ful for other applications.

8.3 Rising and Lowering Operators

The harmonic oscillator is a system with interesting properties like the already-
mentioned constant spacing of its energy levels. This property makes the harmonic
oscillator especially suitable for various theoretical developments. In particular, it
allows one to define the rising and lowering operators (also known as creation and
annihilation operators). With these operators, it is possible to represent the oscillator
problem in a compact and very elegant mathematical notation and also to introduce an
abstract notation, which becomes useful in applications or extensions of the quantum
theory to other topics, especially to field theory. Though these applications are beyond
the scope of this book, this is a good opportunity to introduce the rising and lowering
operators.

If we consider the differential operators

b̂ = 1√
2

(
ξ + ∂

∂ξ

)
, (8.36)

b̂† = 1√
2

(
ξ − ∂

∂ξ

)
, (8.37)

one can easily verify that

b̂†b̂ = 1

2

(
ξ2 − 1− ∂2

∂ξ2

)
, (8.38)

b̂ b̂† = 1

2

(
ξ2 + 1− ∂2

∂ξ2

)
. (8.39)

1 Frequently orthogonal polynomials fulfill a three-term recurrence relation.



196 8 Harmonic Oscillator

Combining properly these operators we can have others. For example, the commu-
tator [

b̂†, b̂
]
= b̂†b̂ − b̂ b̂† = −1, (8.40)

and the anticommutator

{
b̂†, b̂

}
= b̂†b̂ + b̂ b̂† = ξ2 − ∂2

∂ξ2 . (8.41)

The latter is exactly the dimensionless Hamiltonian in (8.10). This means that the
Schrödinger equation of the harmonic oscillator can be written as

�ω

2

[
b̂†b̂ + b̂ b̂†

]
ϕ(ξ) = Eϕ(ξ), (8.42)

or, better still, in the form

�ω

(
b̂†b̂ + 1

2

)
ϕ(ξ) = Eϕ(ξ). (8.43)

Moreover, with the help of relations (8.33–8.35), for Hermite polynomials, it is
possible to show that

b̂ e−
1
2 ξ

2
Hn =

√
2 n e−

1
2 ξ

2
Hn−1 (8.44)

b̂†e−
1
2 ξ

2
Hn = 1√

2
e−

1
2 ξ

2
Hn+1. (8.45)

Therefore

b̂ ϕn = √n ϕn−1 (8.46)

b̂† ϕn =
√

n + 1 ϕn+1. (8.47)

In these equations, the operators b̂† and b̂ behave, certainly, as rising and lowering
operators in the space of the oscillator eigenfunctions. With the previous equations,
it is easy to see that

b̂† b̂ ϕn = n ϕn, (8.48)

b̂ b̂† ϕn = (n + 1) ϕn . (8.49)

The operator b̂† b̂ with eigenvalue n is also known as the number operator.
In (8.41), the Hamiltonian of the harmonic oscillator

Ĥ = �ω

(
b̂† b̂ + 1

2

)
, (8.50)
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contains the number operator. Knowing that b̂† b̂ ϕn = n ϕn , it is easy to verify that
the eigenvalues of the harmonic oscillator are in fact

En = �w

(
n + 1

2

)
. (8.51)

8.4 Dipole Transitions and the Spontaneous Emission

The harmonic oscillator eigenfunctions have been used as an auxiliary basis in the
solution of different types of quantum problems. In Chap. 7 we saw that using a basis
of eigenfunctions, one can calculate matrix elements Hm,n = 〈m|Ĥ |n〉 and build up
the matrix representation of Ĥ . We have seen that once the matrix H is built, one
has to search for a matrix U , such that U † HU = ε is diagonal. In that case, the
matrix columns U·k are the eigenfunctions φk of Ĥ and the matrix elements εk the
corresponding eigenvalues. If we have a time independent Hamiltonian, and we use
these eigenfunctions, the most general solution can be written either as

ψ(x, t) =
∑

k

ake−iεk t/�φk(x) = W T
a vφ, (8.52)

with W T
a = (a1, a2, . . .), v a diagonal matrix with elements e−iεk t/� and φ a vector

which components are the eigenfunctions φk , or using the harmonic oscillator basis
as

ψ(x) =
∑

n

cne−iωn tϕn(x) = V T
c uϕ, (8.53)

with V T
c = W T

a U T , u a diagonal matrix with elements e−iωn t and ϕ = U∗φ. Thus,
if we are interested in the expected value of a time independent operator O, in the
quantum state ψ(x, t), we have to evaluate

〈ψ|Ô|ψ〉 =
∑
j,k

a∗j akei(ε j−εk )t/�〈φ j |Ô|φk〉, (8.54)

or, alternatively, the expression

〈ψ|Ô|ψ〉 =
∑
m,n

c∗mcnei(ωm−ωn)t 〈ϕm |Ô|ϕn〉. (8.55)

A simple and useful physical quantity is the electric dipole moment ed. If we align
the vector d along the x axis, we have just ex. We will evaluate the matrix elements of
this operator using the harmonic oscillator basis {ϕn(x)}. We will then calculate the
spontaneous transition probabilities and the average lifetime of the excited oscillator
states.

http://dx.doi.org/10.1007/978-3-642-29378-8_7
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8.4.1 Selection Rules for Electric Dipole Transitions

Let us suppose that we are dealing with some quantum system with Hamiltonian Ĥ
and also that the corresponding Schrödinger equation is solved using the harmonic
oscillator basis. We mentioned already that in this case we start writing the unknown
solution as the superposition

ψ(x, t) =
∑

n

cnψn(x, t), (8.56)

with ψn(x, t) = e−i Ent/�ϕn(x), the eigenfunctions of a harmonic oscillator. As
explained in chapter 7 and lines above, the coefficients cn are fixed once we diago-
nalize the Hamiltonian matrix. We can then evaluate the expected value of ex using
the eigenstates of Ĥ or using the basis of the harmonic oscillator eigenfunctions. In
the last case we have

〈ψ|ex |ψ〉 =
∑
m,n

c∗mcnei(ωm−ωn)t e〈ϕm |x |ϕn〉. (8.57)

The matrix elements on the right hand side of this equation, will be denoted, indis-
tinctly, as

xm,n = 〈m|x |n〉 = 〈ϕm |x |ϕn〉. (8.58)

To evaluate these matrix elements we use the properties of the Hermite polynomials.
If we write the integrand in the form

xm,n =
∫
ϕ∗m xϕndx = α2

0Cm

∫
e−

1
2 ξ

2
Hm ξ ϕndξ. (8.59)

and use the recurrence equation

ξHn = nHn−1 + 1

2
Hn+1, (8.60)

we have

xm,n = α0Cm

[
m

Cm−1

∫
ϕ∗m−1ϕndx + 1

2Cm+1

∫
ϕm+1ϕndx

]
. (8.61)

This equation shows that the matrix elements are zero except for n = m − 1 and
n = m + 1. This means that:
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xm,n = 〈m|x |n〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m Cm
Cm−1

δm−1,n =
√

n + 1

2
δm,n+1

Cm
2 Cm+1

δm+1,n =
√

n

2
δm,n−1.

(8.62)

The only matrix elements xm,n different from zero are those for which

m = n ± 1. (8.63)

These are the selection rules of the electric dipole moment in the harmonic oscillator
basis. Since the matrix elements 〈ϕm |x |ϕn〉 involve two eigenstates. It is clear that
the electric dipole induces transitions between those states of the basis, between |ϕn〉
and 〈ϕm |. The actual system may eventually pass from one eigenstate of the system
to another. These are not the transitions we are talking about. The matrix elements
xm,n = 〈ϕm |x |ϕn〉 imply transitions in the space of the harmonic oscillator basis.
The expected dipole moment 〈ψ|e x |ψ〉 is a superposition of these transitions. Each
transition 〈ϕm |x |ϕn〉 is accompanied by a photon emission or a photon absorption
with frequency ωmn = ωn − ωm = (m − n)ω. Notice that due to the selection rule
ωmn = ±ω. The expected value 〈ϕm |x |ϕn〉 will then be written as

〈ϕm |x |ϕn〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
n + 1

2
eiωt δm,n+1,

√
n

2
e−iωt δm,n−1.

(8.64)

One can easily verify that the matrix that represents the operator x̂ in the harmonic
oscillator basis is self-adjoint with zeros everywhere except in the diagonals that are
first neighbors of the main diagonal.

Taking into account the expected values 〈ϕm |x |ϕn〉 and the selection rules, one
can finally write the expected value in (8.57) as

〈ψ|e x |ψ〉 = 1√
2

∑
n

e
(

c∗n+1cn
√

n + 1 eiωt + c∗n−1cn
√

n e−iω,t
)
, (8.65)

which can also be written as

〈ψ|e x |ψ〉 = e
∑

n

√
n

2
�e

[
c∗n−1cneiωt

]
, (8.66)

or in the form
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〈ψ|e x |ψ〉 = e
∑

n

√
n

2

[�e [c∗n−1cn] cosωt − 
m [c∗n−1cn] sinωt
]
. (8.67)

According to this expression, the expected value of ex , and of course of x , oscillates
with the characteristic frequency of the harmonic oscillator, and with an amplitude
that depends also on the coefficients cn of the expansion of |ψ〉 in the harmonic
oscillator basis. Recall that these coefficients depend on the Hamiltonian Ĥ .

8.4.2 Lifetime of Excited States

In Chap. 1 we used the Einstein absorption and emission model to derive the Planck
distribution. For that purpose, the absorption Bm

n , emission Bn
m and spontaneous

emission An
m probabilities were introduced, for transitions between the energy levels

En and Em . Rigorous calculations of these coefficients can be done, without much
difficulty, in the quantum field theory. We present here some intermediate results
that may give an idea of the way in which the absorption and emission probabilities
can be calculated. In the relativistic quantum field theory, the interaction of light and
matter is described by the exchange of photons. The photonic fields are described by
using vectors like

|φ〉 = |nλ1 , nλ2 , . . . , nλ j , . . .〉, (8.68)

where nλi represents the number of photons in the propagating mode2 λi = kiγ and
the electromagnetic field energy with the Hamiltonian

H =
∑
λ

�ωλ

(
â †
λâλ + 1

2

)
, (8.69)

where â†
λ and âλ are the rising and lowering operators. In this case, we call them

creation and annihilation operators. These operators acting on the states |φ〉 have the
same effects as the rising and lowering operators on the oscillator eigenfunctions, i.e.

âλ j |φ〉 =
√

nλ j |nλ1 , nλ2 , . . . , nλ j − 1, . . .〉, (8.70)

â †
λ j
|φ〉 =

√
nλ j + 1 |nλ1, nλ2 , . . . , nλ j + 1, . . .〉. (8.71)

We recall that when the number operator â †
λâλ, multiplied by �ωλ acts on the state

|nλ〉 with occupation number nλ, the result is again the state |nλ〉 times the energy
nλ�ωλ.

To describe the electron-field system it is common to consider the Hamiltonian

2 ki refers to the wave vector and γ to the polarization.

http://dx.doi.org/10.1007/978-3-642-29378-8_1
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Ĥ =
∑

j

1

2m
p2

j + V (r1, r2, . . . rN )+
∑
λ

�ωλ

(
â †
λâλ + 1

2

)
+ ĤI . (8.72)

where ĤI is the interaction Hamiltonian, between the charge carriers and the elec-
tromagnetic field, usually expressed in the form

ĤI =
∑

j

e

2m
2p j · A(r j )+ e2

2m

∑
j

A(r j )
2, (8.73)

with A the potential vector that can be written as

A(r, t) = 1√
V

∑
k

2∑
γ=1

ekγ

√
h

ωkγ

[̂
aλeik·r + â †

λe−ik·r] . (8.74)

Here ekγ are unit vectors of the polarizations. The transition probability from the
initial state |i〉 = |ψi 〉|φ〉 to the final state | f 〉 = |ψ f 〉|φ〉 corresponds to an emission
process if E f < Ei . In this case we have to evaluate the expression

W (a)
f i = A f

i =
4π2e2

m2�V

∑
λ

nλ + 1

ωλ
|〈ψ f |eλe−ik·r · p j |ψi 〉|2 δ(ω f i − ωλ). (8.75)

This can be evaluated within the dipole approximation, when the wave number k =
2π/λ of the radiation field is very small3 and the exponential exp(ik · r) � 1+ ik · r
is almost one. After a more or less straightforward calculation that can be found in
specialized texts,4 the above expression reduces to

W (a)
f i = A f

i =
4e2ω3

3�c3 |〈ϕ f | r |ϕi 〉|2, (8.76)

which, in the one-dimensional approximation, with ni = n f + 1, is

W (a)
f i =

4e2ω3

3�c3

ni

2
. (8.77)

This result tells us that the probability for the spontaneous emission per unit time is
greater at higher energy levels. The inverse of the emission probability is the mean
lifetime τi in the state |ψi 〉, i.e.:

3 This corresponds to radiation-field wavelengths much larger than the system size.
4 See for example the excellent book by Yehuda B. Band, Light and Matter, John Wiley & Sons,
West Sussex, England, 2006.
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Fig. 8.3 The mean lifetime
of an electron, in the excited
states of the harmonic po-
tential, as a function of the
excitation level n

τi [s]

8

6

4

2

10 20 30 5040 ni

ω = 106 s -1

τi = 1

W (a)
f i

= 1

A f
i

= 3�c3

2e2ω3

1
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. (8.78)

which, as can be seen in Fig. 8.3, drops very rapidly as the excitation level increases.

8.5 Solved Problems

Exercise 29 To evaluate the eigenvalues En and plot the eigenfunctions ϕn of the
harmonic oscillator in Fig. 8.2, we consider a particle with mass equal to that of
the electron moving with a frequency ω = 1015 s−1. Determine the energies in eV
and the classical turning points in Å, for the first four energy levels. What is the
energy-levels spacing?
Solution The classical turning points are those where the kinetic energy becomes
zero, therefore

En = 1

2
kx2

r . (8.79)

If we use the oscillator energy as a function of n, the coordinate xr of the turning
points will be given by

xr = ±
√

2�ω

k

(
n + 1

2

)
. (8.80)

Since k = mω2, the last equation takes the form

xr = ±
√

2�

mω

(
n + 1

2

)
. (8.81)
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In the following table we have the energy and turning points for the first four values
of n

n En [eV] xr [Å]

0 0.329106 ± 3.40249
1 0.987318 ± 5.89329
2 1.64553 ± 7.60821
3 2.30374 ± 9.00215

The student can verify these numbers and prove that they correspond to the ener-
gies and turning points in Fig. 8.2. Beyond the turning points the eigenfunctions fall
exponentially.

The spacing between energy levels is

�ω = 0.65821 [eV] (8.82)

Exercise 30 Show that: i) the expectation values 〈x〉 and 〈 p̂x 〉, in the harmonic oscil-
lator state ϕn , vanish; ii) the variances of x and px satisfy the Heisenberg inequality.
Solution We shall start evaluating the expectation values

〈x〉 = 〈n|x |n〉 =
∫
ϕ∗n(x) x ϕn(x)dx (8.83)

〈 p̂x 〉 = 〈n| p̂x |n〉 = −i�
∫
ϕ∗n(x)

∂

∂x
ϕn(x)dx . (8.84)

To evaluate these integrals we will use some relations like

H ′n(ξ) = 2nHn−1(ξ),

ξHn(ξ) = nHn−1(ξ)+ 1

2
Hn+1(ξ),

as well as the orthonormality condition

〈n′|n〉 =
∫
ϕ∗n′(ξ)ϕn(ξ)dξ = δn′n . (8.85)

We have seen, in Sect. 8.4, that the only matrix elements 〈n′|x |n〉 different from zero
are those with n′ = n ± 1, therefore

〈n|x |n〉 = 0. (8.86)

To obtain the expected value 〈n| p̂x |n〉 it is convenient to express the integrand as
follows

〈n| p̂x |n〉 = −i�Cn

∫
ϕ∗n(ξ)

∂

∂ξ
e−ξ2/2 Hn(ξ)dξ. (8.87)
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The operator ∂/∂ξ acting on the exponential function, multiplied by the Hermite
polynomial, leaves us with

〈n| p̂x |n〉 = −i�Cn

∫
ϕ∗n(ξ) e−ξ2/2 (−ξHn(ξ)+ H ′n(ξ)

)
dξ. (8.88)

With the help of the Hermite polynomial relations, and their relation with the eigen-
functions ϕn , we have

〈n| p̂x |n〉 = −i�Cn

∫
ϕ∗n(ξ)

(
n
ϕn−1(ξ)

Cn−1
− ϕn+1(ξ)

2Cn+1

)
dξ. (8.89)

This certainly gives us the suggested result

〈n| p̂x |n〉 = −i�

(
nCn

Cn−1
〈n|n − 1〉 − Cn

2Cn+1
〈n|n + 1〉

)
= 0. (8.90)

To obtain the variances we need to evaluate the expected values of x2 and of p̂ 2
x . We

start with

〈x2〉 = 〈n|x2|n〉 = α3
0

∫
ϕ∗n(ξ) ξ2 ϕn(ξ)dξ, (8.91)

where we have used the relation x = α0ξ. Taking into account the recurrence relations
of Hn(ξ), this equation transforms into

〈x2〉 = α3
0Cn

∫
ϕ∗n(ξ)e−ξ

2/2

×
(

n(n − 1)Hn−2(ξ)+
(

n + 1

2

)
Hn(ξ)+ 1

4
Hn+2(ξ)

)
dξ. (8.92)

In this integral we can use the orthonormality of the eigenfunctions ϕn(x). It is clear
that only the third term remains, giving us

〈x2〉 = α2
0

(
n + 1

2

)
. (8.93)

Therefore, the variance of x is:

(Δx)2 = 〈x2〉 − 〈x〉2 = α2
0

(
n + 1

2

)
. (8.94)

We shall now calculate the expected value of p̂ 2
x . In this case we have



8.5 Solved Problems 205

〈 p̂ 2
x 〉 = 〈n| p̂ 2

x |n〉 =
∫
ϕ∗n(x) p̂ 2

x ϕn(x)dx

= − �
2

α0

∫
ϕ∗n(ξ)

∂2

∂ξ2 e−ξ2/2 Hn(ξ)dξ. (8.95)

Using the Hermite polynomials relations and after a little algebra, it can be shown
that

∂2

∂ξ2 e−ξ2/2 Hn(ξ) = e−ξ2/2
[

n(n − 1)Hn−2(ξ)−
(

n + 1

2

)
Hn(ξ)+ 1

4
Hn+2(ξ)

]
.

(8.96)
If we substitute in the Eq. (8.95), it becomes clear that only the term proportional to
Hn contributes to the integral. We then have

〈 p̂ 2
x 〉 =

�
2

α2
0

(
n + 1

2

)
, (8.97)

and the variance is

(Δ p̂x )
2 = 〈 p̂ 2

x 〉 − 〈 p̂x 〉2 = �
2

α2
0

(
n + 1

2

)
. (8.98)

With these results we have the equation

(Δx)2(Δ p̂x )
2 = �

2
(

n + 1

2

)2

, (8.99)

that obviously satisfies the Heisenberg inequality

(Δx)2(Δ p̂x )
2 ≥ �

2

4
. (8.100)

Equation (8.99) shows that the state of minimum dispersion is the ground state.

Exercise 31 Show that the coefficients a0 j and a1 j in Eqs. (8.27) and (8.28) are given
by the relations

a0 j = a0 (−2) j/2 n(n − 2)(n−4) . . . (n+4− j)(n+2− j)

j ! j=2, 4, 6, . . . , (8.101)

a1 j = a1(−2)( j−1)/2 (n−1)(n−3)(n−5) . . . (n+4− j)(n+2− j)

j ! j=3, 5, 7, . . .

(8.102)

Write explicitly the polynomials un(ξ) for n even and odd, until the fourth term.
Determine the polynomials u0(ξ), u1(ξ),…and u4(ξ). Compare them with the corre-
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sponding Hermite polynomials and check that Hn(ξ) = fn un(ξ), where fn is only
a numerical factor.
Solution If in the recurrence relation (8.23) we change j + 2 by j and instead of ε
we use εn , we have

a j = a j−2
2 j − 3− εn

( j − 1) j
j = 2, 3, 4, . . . , (8.103)

the even-index coefficients are of the form

a0 j = a0
(1− εn)(5− εn) . . . (2 j − 7− εn)(2 j − 3− εn)

j ! j = 2, 4, 6, . . . ,

(8.104)
whereas those with odd-index are

a1 j = a1
(3− εn)(7− εn) . . . (2 j − 7− εn)(2 j − 3− εn)

j ! j = 3, 5, 7, . . .

(8.105)
Now recall that the condition to terminate the infinite series is εn = 2n + 1, with n
even or odd. If we replace εn by 2n+ 1 for example, in the even-indices relation, we
have

a0 j = a0
(−2n)(4− 2n) . . . (2 j − 8− 2n)(2 j − 4− 2n)

j ! j = 2, 4, 6, . . .

(8.106)
Here it is possible to factor −2 in the j/2 factors of the numerator. In this way we
obtain

a0 j=a0 (−2) j/2 n(n−2)(n−4) . . . (n+4− j)(n+2− j)

j ! j=2, 4, 6, . . .

(8.107)
Similarly we get the expression for a1 j .

The polynomial un(ξ) for n even, where the first four terms are explicitly written
is then

un(ξ) = a00 + a02ξ
2 + a04ξ

4 + a06ξ
6 + . . .

= a0

(
1− 2n

2! ξ
2 + 22 n(n − 2)

4! ξ4 − 23 n(n − 2)(n − 4)

6! ξ6 + . . .
)
.

(8.108)

The polynomial un(ξ) for n odd, is
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un(ξ) = a11ξ + a13ξ
3 + a15ξ

5 + a17ξ
7 + . . .

= a1

(
ξ − 2(n − 1)

3! ξ3 + 22(n − 1)(n − 3)

5! ξ5

−23(n − 1)(n − 3)(n − 5)

7! ξ7 + . . .
)
. (8.109)

If we give values to n and set the coefficients a0 = a1 = 1, we have the functions
u0(ξ),…,u4(ξ) shown below:

u0(ξ) = 1; H0(ξ) = 1;
u1(ξ) = ξ; H1(ξ) = 2ξ;
u2(ξ) = −(2ξ2 − 1); H2(ξ) = 4ξ2 − 2;
u3(ξ) = −(4ξ3 − 6ξ)/3!; H3(ξ) = 8ξ3 − 12ξ;
u4(ξ) = (8ξ4 − 24ξ2 + 6)/3!; H4(ξ) = 16ξ4 − 48ξ2 + 12.

It is clear that un(ξ) and Hn(ξ) differ only by a numerical factor, and in some cases
also by a global sign.

8.6 Problems

1. Show that the solution to the Schrödinger equation in the asymptotic region is
given by (8.16).

2. Check the expressions in Eqs. (8.38) and (8.39) and show that the harmonic
oscillator Hamiltonian can be expressed as

Ĥ = � ω

(
b̂†b̂ + 1

2

)
. (8.110)

3. Verify Eqs. (8.44–8.47).
4. Determine the recurrence relation of the Hermite polynomials.
5. Prove that the normalization constant of the harmonic oscillator eigenfunctions

is precisely the one given in (8.32).
6. Show that the Schrödinger equation

− d2ϕ

dξ2 + ξ2ϕ = 2E

�w
ϕ, (8.111)

can be written as

(̂b†b̂ + 1)ϕ = 2E

�w
ϕ. (8.112)

7. Prove that [̂b, b̂†] = 1.
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8. The expected value of the energy of an oscillator is

〈E 〉 =
∫
ϕ∗(x)

{
1

2m
p̂ 2 + 1

2
mw 2 x̂ 2

}
ϕ(x)dx = 1

2m
〈 p̂ 2〉 + 1

2
mw 2〈̂x 2〉.

(8.113)
Using the definition of the variance

var F = 〈(F̂ − 〈F̂〉)2〉 = 〈(δ F̂)2〉 = (ΔF)2, (8.114)

for the operators p̂ y x̂ and the Heisenberg inequality (Δp)2(Δx)2 ≥ 1
4�

2, show
that whenever 〈 x̂ 〉 = 0 and 〈 p̂ 〉 = 0, the minimum energy 〈E 〉 is �w/2

9. Prove that between the time dependent matrices u and v, defined in (8.52) and
(8.53), we have the following relation

v = U †uU, (8.115)

with U the same matrix that diagonalizes the Hamiltonian H in the basis {ϕn}.
10. Consider a particle in a harmonic potential. Plot the probability density |ϕn(x)|2

for n =5, 10 and 15 and compare these quantities with the classical probability
density defined as

p(x)dx = 2

T

dx

v(x)
, (8.116)

where T is the classical period and v(x) the classical velocity. Discuss the relation
of these results with the correspondence principle.

11. Figure 8.3 shows an electron half-life time (lifetime) τn in the excited states of the
harmonic oscillator, as a function of the excitation level n. When the excitation
level is too large, the average lifetime approaches zero, i.e.:

if n→ n∞ ∼= ∞ ⇒ τn∞ → 0.

Show that if an electron is in an energy level En∞ (with n∞ →∞), then it will
take an infinite time to come, by spontaneous decay, to the ground state. Show
that this time is proportional to the harmonic series, i.e., show that:

τ = 3�c3

2e2ω3

(
1+ 1

2
+ 1

3
+ 1

4
+ . . .+ 1

n∞

)
→ ∞ ! (8.117)



Chapter 9
Angular Momentum and Central Potentials

9.1 Introduction

Rotation is a fundamental motion in the real world. Thus an important and an
appropriate number of physical variables have been introduced to study this type
of motion, both in the classical and the quantum description. The relevant physical
quantity is the angular momentum. In the quantum description, the angular momen-
tum is defined exactly as in the classical physics, but with the momentum written as
an operator, i.e. as the product

L̂ = r̂ × p̂ = −i� r ×∇. (9.1)

In this chapter we will study some properties of the operator L̂. We will derive the
angular-momentum conservation law in the absence of external torques. We will
see also that, when particles move in the presence of central potentials, the product
L̂2 = L̂ · L̂ plays a fundamental role. Finally, having in mind the Hydrogen atom
problem, that we will study in the next chapter, we will solve the angular-momentum
eigenvalue problem.

9.2 Angular Momentum and Their Commutation Relations

The vectors r and ∇ can be expressed in the coordinates system that suits best or
facilitates more the mathematical treatment, usually it is chosen in accord with the
physical system symmetries. In the cartesian coordinates system we have

L̂ = L̂ x i+ L̂ yj+ L̂ zk, (9.2)

where

L̂ x = −i�

(
y
∂

∂z
− z

∂

∂y

)
; L̂ y = −i�

(
z
∂

∂x
− x

∂

∂z

)
(9.3)
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and

L̂ z = −i�

(
x
∂

∂y
− y

∂

∂x

)
. (9.4)

In compact notation, the previous expressions are written in the form (with summa-
tions over repeated indices)

L̂i = −i� εi jk x j
∂

∂xk
with x1 = x, x2 = y and x3 = z (9.5)

The symbol εi jk is called the Levi-Civita tensor which is equal to 1 if i jk is an even
permutation of 123, −1 if it is an odd permutation and 0 if any index is repeated.

The most common realization of a rotating motion in the microscopic world is
the motion of bounded electrons around the atomic nuclei. The symmetries of the
potential suggests that the spherical coordinates are appropriate for studying this class
of systems. Before discussing the commutation properties of L̂ and its components,
let us see how these operators look like in the spherical coordinates system. We know
that

r = rur and ∇ = ur
∂

∂r
+ uθ

1

r

∂

∂θ
+ uφ

1

r sin θ

∂

∂φ
. (9.6)

Therefore

L̂ = −i� r ur ×
(

ur
∂

∂r
+ uθ

1

r

∂

∂θ
+ uφ

1

r sin θ

∂

∂φ

)

= i�

(
uθ

1

sin θ

∂

∂φ
− uφ

∂

∂θ

)
. (9.7)

The angular momentum operator L̂ depends only on the angular variables φ and θ.
For this reason, L̂ commutes with any function of r and ∂/∂r . We will return to this
point below. Given the relations

ur = i sin θ cosφ+ j sin θ sin φ+ k cos θ

uθ = i cos θ cosφ+ j cos θ sin φ− k sin θ (9.8)

uφ = −i sin φ+ j cosφ

one can easily check that the L̂ z component, defined as the scalar product of L̂ with
k̂ (where k̂ is a unit vector along the z axis), takes the simple form

L̂ z = −i�
∂

∂φ
. (9.9)

We have seen earlier that the nature of the eigenvalues and the possibility of common
eigenfunctions with other operators depend on the commutation relations. This is a
particularly important issue in central potential problems. We will present now some
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commutation relations among the angular momentum components L̂i and also with
the position operators x̂i and with the linear momentum operators p̂i .

9.2.1 Commutation Relations Between ̂Li and x̂ j

We will explicitly calculate a couple of commutators. It is important to recall that
in order to determine a commutator correctly, one proceeds as if on the right side
of the commutator one has a function, the function on which the commutator would
eventually operate. In our first example, this precaution will not have effect because
the operators that we have there commute, but in the second example it will be
important to take into account this rule. Let us begin with the commutator [L̂ x , x̂],
which we develop as follows:

[
L̂ x , x̂

] = L̂ x x̂ − x̂ L̂ x = −i�

(
y
∂

∂z
− z

∂

∂y

)
x + i� x

(
y
∂

∂z
− z

∂

∂y

)

= 0− i� x

(
y
∂

∂z
− z

∂

∂y

)
+ i� x

(
y
∂

∂z
− z

∂

∂y

)

= 0. (9.10)

From this relation we conclude that the operators L̂i commute with the operators x̂i

of the same index. Let us see now a slightly different case: the commutator [L̂ x , ŷ],
i.e:

[
L̂ x , ŷ

] = L̂ x ŷ − ŷ L̂ x = −i�

(
y
∂

∂z
− z

∂

∂y

)
y + i� y

(
y
∂

∂z
− z

∂

∂y

)

= i� z − i� y

(
y
∂

∂z
− z

∂

∂y

)
+ i� y

(
y
∂

∂z
− z

∂

∂y

)

= i� z (9.11)

The operators L̂i do not commute with the operators x̂ j when the indices i and j are
different. Similarly we obtain:

[
L̂ x , ẑ

] = −i� y. (9.12)

In the compact notation used before, these commutation relations are summarized
in the form [

L̂i , x̂ j
] = i� εi jk x̂k . (9.13)
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9.2.2 Commutation Relations Between ̂Li and p̂ j

Let us now calculate the commutator of the angular momentum components L̂i

with the linear momentum components p̂i . These results will be useful to calculate
more complex commutators. We start with operators having the same subindex; for
example with the commutator

[
L̂ x , p̂x

] = L̂ x p̂x − p̂x L̂ x = −�
2
(

y
∂

∂z
− z

∂

∂y

)
∂

∂x
+ �

2 ∂

∂x

(
y
∂

∂z
− z

∂

∂y

)

= −�
2 x

(
y
∂2

∂z∂x
− z

∂2

∂y∂x

)
+ �

2
(

y
∂

∂x∂z
− z

∂2

∂x∂y

)

= 0 (9.14)

The operators L̂i and p̂ j commute when i = j , but when i �= j , the commutator is
different from zero. Let us consider for example the commutator

[
L̂ x , p̂y

] = L̂ x p̂y − p̂y L̂ x = −�
2
(

y
∂

∂z
− z

∂

∂y

)
∂

∂y
+ �

2 ∂

∂y

(
y
∂

∂z
− z

∂

∂y

)

= −�
2

(
y
∂2

∂z∂y
− z

∂2

∂y2

)
+ �

2 ∂

∂z
+ �

2
(

y
∂2

∂y∂z
− z

∂2

∂y2

)

= i� p̂z (9.15)

Similarly, we have [
L̂ x , p̂z

] = −i� p̂y . (9.16)

In compact notation the commutation relations of angular momentum and linear
momentum components are summarized in the general expression

[
L̂i , p̂ j

] = i� εi jk p̂k . (9.17)

The similarity between these commutation relations and those obtained in (9.13) are
remarkable. Similar relations will be derived below for the commutation relations of
angular momentum components.

9.2.3 Commutation Between the ̂L j Components

We will explicitly calculate one of the three possible commutation relations between
the L̂ j components. Let the commutator
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[
L̂ x , L̂ y

] = L̂ x L̂ y − L̂ y L̂ x

= −�
2
(

y
∂

∂z
− z

∂

∂y

) (
z
∂

∂x
− x

∂

∂z

)
− L̂ y L̂ x

= −�
2
(

y
∂

∂x
+ yz

∂2

∂z∂x
− yx

∂2

∂z2 − z2 ∂2

∂y∂x
+ zx

∂2

∂y∂z

)
− L̂ y L̂ x

(9.18)

In the last two equations, we have explicitly developed the first term L̂ x L̂ y . The
reader should notice that the goal is to move the differential operators to the right
side. If one does the same with the second term L̂ y L̂ x we end up with

[
L̂ x , L̂ y

] = −�
2
(

y
∂

∂x
− x

∂

∂y

)

= i�L̂ z . (9.19)

We have also commutators like

[
L̂ x , L̂ x

] = L̂ x L̂ x − L̂ x L̂ x = 0. (9.20)

These commutation relations can be expressed in compact form as

[
L̂i , L̂ j

] = i� εi jk L̂k . (9.21)

Given the commutation relations one can establish some important physical con-
sequences. We have seen that whenever two Hermitian operators commute, they
are dispersionless (and simultaneously well-defined) variables, and in addition they
share the same eigenfunctions. We have seen also that when two variables, say f̂ and
ĝ, do not commute, the product of their average dispersions is greater than or equal
to the expected value of their commutator ĥ, i.e.,

(� f )2(�g)2 ≥ 1

4
|〈 ĥ 〉|2. (9.22)

If we apply this property to the angular momentum components L̂i , we have

(�Li )
2(�L j )

2 ≥ �
2

4
|〈 L̂k 〉|2. (9.23)

This means that it is not possible to determine simultaneously, without dispersion,
all three components of L̂, unless 〈 L̂ 〉 = 0 and�L = 0. These results will be taken
into account some lines below.
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9.2.4 The Operator ̂L2 and Its Commutation with ̂L j

It turns out that an important quantity, besides the angular momentum components
L̂i , is the operator

L̂2 = L̂ · L̂. (9.24)

We will see later that the angular part of the kinetic energy, in central potentials, is
described precisely by this operator. Other interesting features of this operator come
from its commutation relations with the angular momentum components L̂i . At the
end of this chapter we will show explicitly the commutation relations

[
L̂2, L̂ x

] = [
L̂2, L̂ y

] = [
L̂2, L̂ z

] = 0. (9.25)

If we only pay attention to these commutation relations, we can conclude that, for a
well defined angular momentum, each of its components should also be a well defined
quantity, i.e., a physical variable without dispersion. But this contradicts the results
at the end of the last section, which show that the angular momentum components
L̂i do not commute among themselves, hence they can not be, simultaneously, well
defined quantities. We mentioned lines above that at least two components should
have dispersion and satisfy the Heisenberg inequality. The convention is then to
choose L̂ x , L̂ y for the angular momentum components with dispersion and leave L̂ z

as the well-defined quantity. Therefore

�Lx�L y ≥ �

2
|〈 L̂ z 〉|. (9.26)

Since L̂ z commutes with L̂2, L̂ z shares eigenfunctions with L̂2. We come to this
issue now.

9.3 Eigenvalues and Eigenfunctions of ̂Lz and ̂L2

If we use the operator L̂ in the spherical coordinates representation and take into
account that

∂uθ
∂θ
= −ur ,

∂uφ
∂θ
= 0,

∂uθ
∂φ
= cos θuφ,

∂uφ
∂φ
= −i cosφ− j sin φ, (9.27)

we can verify, after some algebra, that L̂2 reduces to
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L̂2 = −�
2
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
, (9.28)

which coincides with the angular part of the Laplacian ∇2 (see Eq. (9.88)). We will
see that dealing with particles moving in central force, the Schrödinger equation is
separable and, even more, the angular part of the kinetic energy operator coincides
with L2.

At this point, once the commutation relations made clear the relevance of the
angular momentum operators L̂ z and L̂2, we will move to the explicit calculation of
the eigenvalues and eigenfunctions of L̂ z and L̂2.

If we write
L̂ z ϕ(φ) = � mz ϕ(φ), (9.29)

and
L̂2 ψ(θ,φ) = �

2 λ ψ(θ,φ) (9.30)

our goal is to obtain the eigenvalues �mz and �
2λ and the eigenfunctions ϕ(φ) and

ψ(θ,φ).
Let us start with the Eq. (9.30). If we propose the factorization

ψ(θ,φ) = Θ(θ)Φ(φ), (9.31)

we obtain the following two equations (the choice of separation constant m2 will be
understood two lines below)

− ∂2Φ(φ)

∂φ2 = m2Φ(φ) (9.32)

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Θ(θ)− m2

sin2 θ
Θ(θ)+ λ Θ(θ) = 0. (9.33)

The last equation is known as the associated Legendre differential equation. We will
begin solving the first of these equations. It is easy to verify that the exponential
function eimφ is a solution and, changing m by mz , it is also the solution of (9.29).
This means that

Φ(φ) = ϕ(φ) = eimzφ. (9.34)

For this solution to be unique, it is necessary that

Φ(φ) = Φ(φ+ 2π). (9.35)

This condition is satisfied if

eimz2π = 1, therefore mz = 0,±1,±2, . . . (9.36)
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This shows that the eigenvalues and eigenfunctions of L̂ z are mz� and eimzφ with
mz = 0, ±1, ±2,... The quantum number mz is known as the magnetic quantum
number. This happens because the quantum number mz arises naturally when charged
particles move in a central field and in the presence of a magnetic field, whose
direction defines the z axis and the magnetic moment orientation.

Let us now return to the Legendre differential equation. If we introduce the change
of variable

ξ = cos θ, (9.37)

and rename the function Θ(θ) as

P(ξ) = Θ(θ), (9.38)

Eq. (9.33) transforms into

d

dξ

[
(1− ξ2)

d P(ξ)

dξ

]
− m2

z

1− ξ2 P(ξ)+ λP(ξ) = 0. (9.39)

In order to solve this equation, we will start with the particular case mz = 0. In this
case the differential equation is simply

d

dξ

[
(1− ξ2)

d P0(ξ)

dξ

]
+ λP0(ξ) = 0. (9.40)

This is the Legendre differential equation. This equation has non-divergent solutions
at ξ = ±1 and remains invariant under the transformation ξ→ −ξ. Thus, we seek
for well defined parity solutions, i.e. solutions that are even or odd in the variable
ξ. To obtain these solutions, let us use the Frobenius method based on the series
expansion

P0(ξ) =
∞∑

k=0

akξ
k . (9.41)

After substitution of this function into the differential equation, and performing the
standard changes in the summation indices, we obtain the recurrence relation

ak+2 = k(k + 1)− λ
(k + 1)(k + 2)

ak . (9.42)

It is clear from this recurrence relation that the series terminates at k = l when

λ = l(l + 1), (9.43)

being l a nonnegative integer. The solutions are then the Legendre polynomials. It is
not difficult to show that the first four Legendre polynomials are
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P0
0 (ξ) = 1, P0

1 (ξ) = ξ,
P0

2 (ξ) =
1

2

(
3ξ2 − 1

)
, P0

3 (ξ) =
1

2

(
5ξ3 − 3ξ

)
. (9.44)

Another representation of the Legendre polynomials is

P0
l (ξ) =

1

2l l!
dl

dξl

(
ξ2 − 1

)l
, with l = 0, 1, 2, 3, .. (9.45)

The integer l is known as the orbital quantum number of the angular momentum or
simply the orbital quantum number. Given the solutions of the Legendre equation
for mz = 0, it is easy to verify that the functions

Pm
l (ξ) =

(
1− ξ2)m/2 dm P0

l (ξ)

dξm
, with 0 ≤ m ≤ l, (9.46)

satisfy the differential equation

d

dξ

[(
1− ξ2)d Pm

l (ξ)

dξ

]
− m2

1− ξ2 Pm
l (ξ)+ l(l + 1)Pm

l (ξ) = 0, (9.47)

which is exactly the associated Legendre equation (9.40) that we wanted to solve.
The solutions Pm

l (ξ) of this equation are the associated Legendre polynomials of
order m and degree l.

It is important to notice that solving the eigenvalues for L̂ z and L̂2, two quantum
numbers, mz and l, come out naturally, making evident that the rotational motion and
the associated physical variables are quantized. The quantum number l can take any
natural number1 0, 1, 2, 3, . . ., while mz any of the set of integers 0,±1,±2, . . . ,±l.
Therefore, the possible values for L̂ z , as shown in Fig. 9.1, are 0,±�,±2�, . . . ,±l�
while those of L̂2 are l(l+1)�2, with the values of l just mentioned. The corresponding
eigenfunctions are:

�(θ,φ) = eimzφPmz
l (cos θ), with |mz | ≤ l = 0, 1, 2, 3, . . . (9.48)

If these functions are normalized we have the spherical harmonics

Y mz
l (θ,φ) =

√
2l + 1

4π

l − |mz|
l + |mz| (−1)mz eimzφPmz

l (cos θ), (9.49)

with |mz| ≤ l = 0, 1, 2, 3, . . .. The spherical harmonics form a complete set of
orthonormal functions, i.e.

1 We will see in the next chapter that the orbital quantum number l will, actually, be limited by the
quantum number n that defines the energy level.
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Fig. 9.1 The orientations
of the angular momentum L
are such that the length of
its projection Lz along the z
axis is a multiple of �. The
vector L precedes around
the z axis with well defined
projection Lz

L ( 1)l l= +

L

l

l

z

x

y

2π∫

0

π∫

0

Y m′∗
l ′ (θ,φ)Y m

l (θ,φ) sin θdθdφ = δl,l ′δm,m′ , (9.50)

with
Y m∗

l (θ,φ) = (−1)mY−m
l (θ,φ). (9.51)

It is common to call these states according to their orbital quantum number. Those
with l = 0, are called s states (for sharp), those with l = 1, p states (for principal),
with l = 2, d states (for diffusive), with l = 3, f states (for fundamental) and, for
l = 4, 5,.. one has the g, h, i, . . . states, in alphabetical order. As can be seen from
Fig. 9.2, where we draw the polar surfaces2 of the spherical harmonics s, p and d, for
all possible values of mz , the angular distribution of the probability density function
has specific symmetries and varies greatly from one quantum state to another. The
first few spherical harmonics are:

Y 0
0 (θ,φ) =

1√
4π
,

Y 0
1 (θ,φ) =

√
3

8π
cos θ,

Y±1
1 (θ,φ) = ∓

√
3

4π
e±iφ sin θ, (9.52)

Y 0
2 (θ,φ) =

√
5

16π
(3 cos2 θ − 1),

2 In the polar graphs the radius in the direction (θ,φ) is proportional to |Y mz
l (θ,φ)|.
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l=0 l=1 l=2

mz=2

mz=1

mz=0

mz=-1

mz=-2
Yl

mz(θ,φ )

Fig. 9.2 Polar graphics of the spherical harmonics Y m
l (θ,φ) as functions of θ and φ, for different

values of l and m

Y±1
2 (θ,φ) = ∓

√
15

8π
e±iφ sin θ cos θ,

Y±2
2 (θ,φ) = ∓

√
15

32π
e±i2φ sin2 θ. (9.53)

It is worth noticing that under a coordinate inversion through the origin, θ,φ→ π−
θ,φ+π, eimφ is multiplied by (−1)m , and Pmz

l (cos θ) by (−1)l+m . Thus Y−m
l (θ,φ)

is multiplied by (−1)l and has the parity of l. To conclude this section, we recall
that based on the commutation relations we were left with two relevant angular
momentum operators, L̂2 and L̂ z . Their eigenvalues and eigenfunctions satisfy the
following equations

L̂ zeimzφ = �mzeimzφ, with mz = 0,±1,±2 ...,±l, (9.54)

and

L̂2Y mz
l (θ,φ) = �

2l(l + 1)Y mz
l (θ,φ), with l = 0, 1, 2, 3, . . . (9.55)

In the compact Dirac notation, the spherical harmonics are represented by the quan-
tum numbers l and mz , hence one generally uses for these functions the ket

|l,mz〉 = Y mz
l (θ,φ). (9.56)



220 9 Angular Momentum and Central Potentials

9.4 Matrix Representations of the Angular Momentum

In this section, we will obtain matrix representations for the operators L̂2, L̂ z , L̂ x and
L̂ y . In previous chapters we saw that the matrix representation of the Hamiltonian
is diagonal when we use the Hamiltonian eigenfunctions basis, the same will occur
with the representations of L̂2 and L̂ z if we use the spherical harmonics. The problem
is slightly more complicated with the representations of the operators L̂ x and L̂ y ,
which, as shown before, do not commute with L̂ z , and as a consequence their matrix
representations are not diagonal in the spherical harmonics basis.

9.4.1 Matrix Representations of ̂L2 and ̂Lz

The matrix representations of L̂2 and L̂ z , in their eigenfunctions basis, can be written
directly. If we denote the eigenfunctions of L̂2 and L̂ z as |lmz〉, the matrix elements
are

〈lm′z |L̂2|lmz〉 = �
2l(l + 1) δm′,mz (9.57)

and
〈lm′z |L̂ z|lmz〉 = �mz δm′,mz . (9.58)

These equations clearly show that the matrix representations of L̂2 and L̂ z are diag-
onal and of dimension (2l + 1) × (2l + 1). In fact, for a given l, the matrices that
represent them3 are

L2 = �
2l(l + 1)

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1

⎞
⎟⎟⎟⎠ , and Lz = �

⎛
⎜⎜⎜⎝

l 0 . . . 0
0 l − 1 . . . 0

. . .

0 0 . . . −l

⎞
⎟⎟⎟⎠ . (9.59)

9.4.2 Matrix Representations of ̂Lx and ̂L y

If we define rising and lowering operators L̂+ and L̂−, like b̂† and b̂ for the harmonic
oscillator, we can use L̂+ and L̂− to move throughout the spherical harmonics space.
It is easy to show, and we will do that in this section, that the complex combinations

L̂+ = L̂ x + i L̂ y and L̂− = L̂ x − i L̂ y (9.60)

3 To arrange the matrix elements (Li )m′,m , in the matrix representation of an operator L̂i , we follow
the convention to label the columns with the values of m, decreasing from left to right, and the
arrows with those of m′, decreasing from up to down.
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act like rising and lowering operators. We will verify this feature and obtain some
properties that will be used to determine the representations of L̂ x , L̂ y , that can be
written as

L̂ x = 1

2

(
L̂+ + L̂−

)
and L̂ y = 1

2i

(
L̂+ − L̂−

)
. (9.61)

Before obtaining the matrix representations we will derive a couple of important
relations.

9.4.2.1 Some properties of ̂L+ and ̂L−

Using the commutators
[
L̂i , L̂ j

] = i� εi jk L̂k , one can easily show that L̂+ and L̂−
satisfy the following relations

[
L̂∓, L̂ z

] = ±�L̂∓, (9.62)

[
L̂+, L̂−

] = 2�L̂ z, (9.63)

and, by simple substitution, they fulfill also the following equations

L̂− L̂+ = L̂2 − L̂2
z + �L̂ z, (9.64)

and
L̂+ L̂− = L̂2 − L̂2

z − �L̂ z . (9.65)

We will see now that the operators L̂+ and L̂−, acting on the eigenfunctions |lmz〉 of
L̂2 and L̂ z , behave as rising and lowering operators. From the commutation relation
(9.62) we have

L̂ z L̂+|lmz〉 − L̂+ L̂ z |lmz〉 = �L̂+|lmz〉, (9.66)

which becomes
L̂ z L̂+|lmz〉 = �(mz + 1)L̂+|lmz〉. (9.67)

This equation shows that L̂+|lmz〉 is an eigenfunction of L̂ z with eigenvalue
�(mz + 1). This tells us that, indeed, the action of L̂+ on |lmz〉 leaves a function
proportional to |l,mz + 1〉. i.e. that

L̂+|lmz〉 = l+mz+1,mz
|l,mz + 1〉. (9.68)

Replacing this functión for L̂+|lmz〉 in (9.67) and dividing by l+mz+1,mz
, we have the

well known relation

L̂ z|l,mz + 1〉 = �(mz + 1)|l,mz + 1〉. (9.69)
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Similarly, one can show that

L̂−|lmz〉 = l−mz−1,mz
|l,mz − 1〉. (9.70)

The operators L̂+ and L̂− are rising and lowering operators in the Hilbert space of the
eigenfunctions of L̂ z . Although we know that the factors l+mz+1,mz

and l−mz−1,mz
should

have units of angular momentum, they are still unknown. We will now determine
these factors. It is worth mentioning that all properties that we are obtaining here
for the angular momentum L̂ and its components L̂i , are valid for other angular
momentum operators, like the spin Ŝ and the total angular momentum Ĵ = Ŝ + L̂,
that we will find later. The commutation relations and properties we are pointing
out for L̂ can be written also for Ŝ and Ĵ, with the corresponding change of L by S
or by J .

To determine the factors l+m+1,m , l−m−1,m let us consider the Eq. (9.65) and multiply
it to the right by |lmz〉 and to the left by 〈lmz |; we thus have the matrix elements

〈lmz |L̂+ L̂−|lmz〉 = 〈mz |L̂2|lmz〉 − 〈lmz |L̂2
z |lmz〉 + 〈lmz |�L̂ z |lmz〉, (9.71)

which transforms into

l+mz ,mz−1l−mz−1,mz
= �

2
[
l(l + 1)− mz(mz − 1)

]
. (9.72)

On the right side we have a real number, and since L̂+ = L̂∗−, one can easily conclude
that

l+mz ,mz−1 =
(
l−mz−1,mz

)∗
. (9.73)

Thus, we have, on one side that

|l+mz ,mz−1|2 = �
2(l(l + 1)− mz(mz − 1)

)
, (9.74)

and, on the other

|l−mz−1,mz
|2 = �

2(l(l + 1)− mz(mz − 1)
)
. (9.75)

These relations, with a change of mz by mz + 1 in the first case, can be written as
follows:

|l+mz+1,mz
| = �

√
l(l + 1)− (mz + 1)mz, (9.76)

|l−mz−1,mz
| = �

√
l(l + 1)− (mz − 1)mz . (9.77)

With these results, and choosing the phases eiθ± of l+mz ,mz−1 and l−mz−1,mz
in the

Condon–Shortley convention, where eiθ± = 1, it is easy to verify that
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L̂+ |lmz〉 = �

√
(l + mz + 1)(l − mz) |l,mz + 1〉, (9.78)

and
L̂−|lmz〉 = �

√
(l + mz)(l − mz + 1) |l,mz − 1〉. (9.79)

9.4.2.2 The Matrix Representations of ̂Lx and ̂L y

If we multiply (9.78) on the left with the bra 〈lm′z |, we have the matrix elements

(L+)m′z ,mz = 〈lm′z |L̂+|lmz〉 = l+m+1,m〈lm′z |l,mz + 1〉
= l+m+1,mδm′z ,mz+1, (9.80)

that, using the convention to arrange the matrix elements mentioned before, leads us
to write, for a given value of l, the matrix representation of L̂+ as

L+ =

⎛
⎜⎜⎜⎜⎜⎝

0 l+l,l−1 0 . . . 0 0
0 0 l+l−1,l−2 . . . 0 0

. . .

0 0 0 . . . 0 l+−l+1,−l
0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
. (9.81)

In the same way, we have the matrix elements

(L−)m′z ,mz = 〈lm′z |L̂−|lmz〉 = l−m−1,m〈lm′z |l,mz − 1〉
= l−m−1,mδm′z ,mz−1. (9.82)

In (9.83) we expressed the operators L̂ x and L̂ y in terms of the rising and low-
ering operators. The matrix representations Lx and L y are obtained from similar
combinations of the matrix representations L+ and L−. Therefore, given

L̂ x = 1

2

(
L̂+ + L̂−

)
and L̂ y = 1

2i

(
L+ − L−

)
, (9.83)

we find the matrices

(Lx )m′z ,mz =
1

2

(
L+ + L−

)
m′z ,mz

= 1

2

(
l+m+1,mδm′z ,mz+1 + l−m−1,mδm′z ,mz−1

)
, (9.84)

and
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(L y)m′z ,mz =
1

2i
(L+ − L−)m′z ,mz

= 1

2i

(
l+m+1,mδm′z ,mz+1 − l−m−1,mδm′z ,mz−1

)
. (9.85)

Both matrices have nonzero elements only in the diagonals that are the first neighbors
of the main diagonal. Using these expressions, the reader can verify that the matrix
representations Lx and L y , for l = 1, are

Lx = �

2

⎛
⎝ 0

√
2 0√

2 0
√

2
0
√

2 0

⎞
⎠ and L y = �

2

⎛
⎝ 0 −i

√
2 0

i
√

2 0 −i
√

2
0 i
√

2 0

⎞
⎠ . (9.86)

9.5 Central Potentials

Among the interactions that particles experience, the central potentials represent an
important and very special class of interaction. If two particles, with position vectors
r1 and r2 interact through a central force, the potential energy depends only on the
distance r = |r2 − r1|. The gravitational and electric interactions are examples of
central potentials. In some systems as the Hydrogen atom, the electron-proton inter-
action is central. A non-central interaction is, for example, the interaction between
a charge and a uniform external field. In Hydrogenic metals the interaction between
the peripheral electron4 (the valence electron) with the nucleus and the remaining
(core) electrons, is described, approximately, by an effective potential with spherical
symmetry. In these cases, as in the Hydrogen atom, the Schrödinger equation has the
form

− �
2

2m
∇2ϕ(r)+ V (r)ϕ(r) = E ϕ(r). (9.87)

To deal with this family of systems in this approximation, it is desirable to use the
spherical coordinates system where the differential operator ∇2 is

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2 . (9.88)

The first term of the right hand side describes the kinematics in the radial direction
and the last two terms describe the angular motion. In the previous section, we have
seen that the operator L̂2, expressed in the spherical coordinates, is

L̂2 = L̂ · L̂ = −�
2
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
. (9.89)

4 In general by peripheral electrons, we have in mind electrons in the upper occupied energy level.
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Therefore, the Schrödinger equation for a central potential can be written as

(
− �

2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ L̂2

2mr2 + V (r)

)
ϕ(r, θ,φ) = E ϕ(r, θ,φ). (9.90)

Our purpose is to obtain the complete solution ϕ(r, θ,φ) of this problem for specific
potentials V (r). We will make a progress in this chapter discussing the solution of
the angular part. In Sect. 9.3, we found already the eigenvalues and eigenfunctions
of L̂2. We will use them, to define the angular part of the central potential solution.
In the next chapter, devoted to study the hydrogen atom, we will discuss the radial
part of ϕ(r, θ,φ).

The role that the angular momentum L̂ plays in a central potential problem is now
clear. The operator L̂2 in the Hamiltonian, contains all the information of the angular
motion in the central potential problem. Although this term L̂2/2mr2 originates from
the kinetic energy, it is known as the centrifugal potential.

From a mathematical point of view, the differential equation in (9.90) is separable.
If we propose a solution like

ϕ(r, θ,φ) = R(r)ψ(θ,φ) (9.91)

and replace it in (9.90), we obtain the following equations

L̂2ψ(θ,φ) = �
2λψ(θ,φ), (9.92)

(
− �

2

2m

1

r2

d

dr

(
r2 d

dr

)
+ �

2λ

2mr2 + V (r)

)
R(r) = E R(r), (9.93)

with �
2λ the separation constant. We know already the first equation, it is exactly

the Eq. (9.30) whose eigenvalues are

�
2λ = �

2l(l + 1) (9.94)

and whose eigenfunctions are the spherical harmonics

ψ(θ,φ) = Y mz
l (θ,φ) =

√
2l + 1

4π

l − |mz |
l + |mz | (−1)mz eimzφPmz

l (cos θ). (9.95)

This result confirms that L̂2 and the Hamiltonian with a central potential share eigen-
functions. Since the angular part is already solved, what remains open is the differ-
ential equation

[
− �

2

2m

1

r2

d

dr

(
r2 d

dr

)
+ �

2l(l + 1)

2mr2 + V (r)

]
R(r) = E R(r), (9.96)
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that we will refer to as the radial part of the central-potential Schrödinger equation.
In the next chapter we will discuss this problem with V (r) the Coulomb potential.

9.6 Solved Problems

Exercise 32 Show that the angular momentum L̂ commutes with the central potential
Hamiltonian.
Solution To show that the angular momentum operator L̂ commutes with a central
potential Hamiltonian, we have two alternatives. In the first and easier, we need
just to observe the Hamiltonian in (9.90) and since L̂ commutes with itself and
commutes also with functions of r and ∂/∂r , it commutes with the Hamiltonian.
Another alternative is through the explicit evaluation of the commutator

[
L̂, H

] = 1

2m

[
L̂, p̂2]+ [

L̂, V (r)
]
. (9.97)

Since
p̂ 2 = p̂ · p̂ = p̂ 2

x + p̂ 2
y + p̂ 2

z (9.98)

and

[
L̂, p̂ 2

i

] = L̂ p̂i p̂i − p̂i p̂i L̂ = L̂ p̂i p̂i − p̂i L̂ p̂i + p̂i L̂ p̂i − p̂i p̂i L̂

= [
L̂, p̂i

]
p̂i + p̂i

[
L̂, p̂i

]
, (9.99)

it is easy to conclude, using the commutation relations obtained before, that

[
L̂, p̂ 2] = 0. (9.100)

We have still to determine the commutator
[
L̂, V (r)

]
. For this purpose we develop

the commutator as follows

[
L̂, V (r)

] = −i�r × [∇V (r)
]− i�r × V (r)∇ + i�V (r)r ×∇. (9.101)

If we use the well known relation F = −∇V (r), where F is the external force, we
are left with [

L̂, V (r)
] = i�r × F = i�M. (9.102)

Here M is the torque. Thus [
L̂, H

] = i�M. (9.103)

In central potentials F is parallel to r, hence the torque is zero and the angular
momentum L̂ commutes with the central potential Hamiltonian.
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Exercise 33 Show that [
L̂2, L̂ x

] = 0. (9.104)

Solution We write this commutator explicitly as

[
L̂2

x , L̂ x
]+ [

L̂2
y, L̂ x

]+ [
L̂2

z , L̂ x
] = 0. (9.105)

Since L̂2
x , obviously, commutes with L̂ x , the first commutator is zero. We still need

to show that [
L̂2

y, L̂ x
]+ [

L̂2
z , L̂ x

] = 0. (9.106)

We will evaluate these commutators separately. We start evaluating the commutator[
L̂2

y, L̂ x
]
. If we develop this quantity as

[
L̂2

y, L̂ x
] = L̂2

y L̂ x − L̂ x L̂2
y

= L̂2
y L̂ x − L̂ y L̂ x L̂ y + L̂ y L̂ x L̂ y − L̂ x L̂2

y (9.107)

= L̂ y
[
L̂ y, L̂ x

]+ [
L̂ y, L̂ x

]
L̂ y,

and replace the commutator
[
L̂ y, L̂ x

]
by −i�L̂ z we obtain

[
L̂2

y, L̂ x
] = −i�

(
L̂ y L̂ z + L̂ z L̂ y

)
. (9.108)

In the same way, we have

[
L̂2

z , L̂ x
] = L̂2

z L̂ x − L̂ x L̂2
z

= L̂2
z L̂ x − L̂ z L̂ x L̂ z + L̂ z L̂ x L̂ z − L̂ x L̂2

z

= L̂ z
[
L̂ z, L̂ x

]+ [
L̂ z, L̂ x

]
L̂ z . (9.109)

Replacing the commutator
[
L̂ z, L̂ x

]
by i�L̂ y , we obtain

[
L̂2

z , L̂ x
] = i�

(
L̂ z L̂ y + L̂ y L̂ z

)
, (9.110)

which is exactly the negative of the commutator
[
L̂2

y, L̂ x
]
. Therefore, if we substitute

these results in (9.106), we have what we wanted to prove, that

[
L̂2, L̂ x

] = 0 (9.111)

Exercise 34 Suppose we have a central potential system with angular momentum L̂
that does not depend explicitly on time. Show that in this case the angular momentum
is a constant of motion.
Solution Taking into account the general relation (7.119), applied to the angular
momentum, we have

http://dx.doi.org/10.1007/978-3-642-29378-8_7
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dL̂
dt
= ∂L̂

∂t
+ [

L̂, H
]
. (9.112)

If the angular momentum does not depend explicitly on time, the first term on the
right hand side is zero. If in addition we use that

[
L̂, H

] = 0, we end up with

dL̂
dt
= 0. (9.113)

Therefore, the angular momentum is a conserved quantity. In central potential sys-
tems, the external torque is zero and the angular momentum L̂ is a constant of motion.

9.7 Problems

1. Suppose a free particle in the state ψ = eik·r with r = x1̂x1 + x2̂x2 + x3̂x3, and
k = k1̂x1 + k2̂x2 + k3̂x3 constant:

a) show that Li = �(r × k) · x̂i ;
b) determine the angular momentum L̂

2. If the particle of the previous problem moves in the plane x2− x3 with k = k2̂x2,
what is the expected value of L̂ z?

3. Explain whether the angular momentum L̂ of a free particle commutes with its
Hamiltonian or not.

4. The orbital quantum number of a particle in a central potential is l = 3. What
are the possible values of mz? What is the probability that 〈Lz〉 = �?

5. Using the commutation relations for L̂i , show that the operator

L̂× L̂ = (
L̂ y L̂ z − L̂ z L̂ y

)
i+ (

L̂ z L̂ x − L̂ x L̂ z
)

j+ (
L̂ x L̂ y − L̂ y L̂ z

)
k, (9.114)

can be written as
L̂× L̂ = i�L̂. (9.115)

6. Prove that [
L̂∓, L̂ z

] = ±�L̂∓, (9.116)

and [
L̂+, L̂−

] = 2�L̂ z, (9.117)

7. Prove that
L̂−|lmz〉 = l−mz−1,mz

|l,mz − 1〉. (9.118)

Show also that
l+mz ,mz−1 =

(
l−mz−1,mz

)∗
. (9.119)
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and verify that
|l+mz+1,mz

| = �

√
l(l + 1)− (mz + 1)mz, (9.120)

and
|l−mz−1,mz

| = �

√
l(l + 1)− (mz − 1)mz . (9.121)

8. Prove explicitly the following commutation relations

[
L̂2, L̂ x

] = [
L̂2, L̂ y

] = [
L̂2, L̂ z

] = 0. (9.122)

9. and show also the following relations

∂ûθ
∂θ
= −ûr

∂ûφ
∂θ
= 0

∂ûθ
∂φ
= cos θûφ

∂ûφ
∂φ
= −̂i cosφ− ĵ sin φ. (9.123)

10. Use the Frobenius series in (9.41) and shows the relations (9.42) and (9.45).
11. Plot the first spherical harmonics as functions of θ, for φ = π/4.
12. Show that for l = 1, one has certainly the matrix representations

Lx = �

2

⎛
⎝ 0

√
2 0√

2 0
√

2
0
√

2 0

⎞
⎠ and L y = �

2

⎛
⎝ 0 −i

√
2 0

i
√

2 0 −i
√

2
0 i
√

2 0

⎞
⎠ . (9.124)

13. Obtain the matrix representations of Lx and L y for l = 1/2.



Chapter 10
The Hydrogen Atom

10.1 Introduction

Some of the problems that were the center of discussions during the long genesis
of the quantum theory were the atomic structure and the radiated spectral lines, in
particular the emission lines of Hydrogen. A convincing explanation of this problem
had to wait to the advent of the quantum theory. The Bohr postulates were, as will
be seen below, unable to explain convincingly the electronic configuration and the
spectral lines of atoms in the presence of a magnetic field. The application of the
quantum theory to the atomic problem was undoubtedly the litmus test of the new
theory. We will now present an introduction to this problem. It is usual to postpone
the discussion of the atomic Schrödinger equation, even for the simplest atom, the
Hydrogen atom, because it requires solving a three-dimensional problem. In Chap. 9
we advanced a significant part for this task. We saw that, when the potential is
central, the angular part is basically described by the angular momentum L̂2, whose
eigenfunctions are the spherical harmonics Y m

l (θ,φ). We know then the angular part
of the whole solution and we still need to solve the radial equation. In this chapter we
will have a well defined function for the potential V (r) and we will obtain solutions
for this specific potential.

The Hydrogen atom consists of an electron orbiting around its nucleus, which
contains a proton. Some Hydrogen isotopes contain, besides the proton, one neutron
(the deuterium) or two neutrons (the tritium). The proton is 1840 times heavier than
the electron. For this reason, a good approximation is to assume that the nucleus is
at rest, with the electron orbiting around it.1 The most important interaction between
the nucleus and the electron is the Coulomb interaction

1 If we do not make this assumption, the Hydrogen kinetic energy will be the sum of the proton and
the electron kinetic energies. At the end of this chapter, in the solved problems section, we show
that the two-particle problem can be reduced to that of two quasi-particles: the center of mass, with
mass m+m p (m is the mass of electron and m p is the mass of proton), and the relative particle with
mass μ = mm p/(m+m p). As this mass differs by less than 1% from m, the problem is essentially
equivalent to assuming that the proton is at rest, and the electron orbits around it.

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 231
DOI: 10.1007/978-3-642-29378-8_10, © Springer-Verlag Berlin Heidelberg 2012
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V (r) = −e2

r
CGS and V (r) = − e2

4πεor
MKS. (10.1)

For simplicity we will use the CGS system of units. We can change to the MKS units
replacing e2 by e2/4πεo. To extend our results for Hydrogen-like atoms, with one
electron in the valence band, but Z protons in the nucleus, we have to consider the
potential energy

V (r) = − Ze2

r
(10.2)

which will be approximately the potential energy of the valence band electron.2

When Z is one, the results correspond to Hydrogen atom. The Schrödinger equation
of the valence band electron in a Hydrogen-like atom is then

− �
2

2m
∇2ϕ(r)− Ze2

r
ϕ(r) = E ϕ(r), (10.3)

that in the system of spherical coordinates takes the form

[
− �

2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ L̂2

2mr2 −
Ze2

r

]
ϕ(r, θ,φ) = E ϕ(r, θ,φ). (10.4)

As mentioned before, the whole angular dependence is comprised in the angular mo-
mentum operator L̂2, whose eigenfunctions are the spherical harmonics Y mz

l (θ,φ),
see Eq. (9.55). If we propose the factorization

ϕ(r, θ,φ) = R(r)Y mz
l (θ,φ), (10.5)

and substitute it into (10.4), we have

[
− �

2

2m

1

r2

d

dr

(
r2 d

dr

)
+ �

2l(l + 1)

2mr2 − Ze2

r

]
R(r) = E R(r), (10.6)

which is similar to the radial Eq. (9.96) that we had at the end of Chap. 9. Here we
have a specific function for the central potential and our goal is to solve the eigenvalue
problem. The solutions of this problem will tell us what are the allowed energy values
for the electron in the atom of Hydrogen, and which the peripheral and less bounded
electron of the Hydrogen-like atoms.

2 The Z − 1 electrons of the inner levels have roughly a spherical distribution, their effect on the
valence band electron is then negligible.

http://dx.doi.org/10.1007/978-3-642-29378-8_9
http://dx.doi.org/10.1007/978-3-642-29378-8_9
http://dx.doi.org/10.1007/978-3-642-29378-8_9
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10.2 The Energy Levels of the Hydrogen Atom

The centrifugal term of the differential Eq. (10.6), is proportional to r−2, and de-
creases with r more rapidly than the Coulomb potential, but when r → 0, it gets
larger than the Coulomb potential. To solve the radial differential equation, it is con-
venient to explore the radial solutions in both limits: r → ∞ and r → 0. Before
doing this, we will introduce some useful simplifications. Taking into account that

− �
2

2m

1

r2

d

dr

(
r2 d

dr

)
= − �

2

2m

1

r

d2

dr2 r, (10.7)

and using this identity in (10.6), we have the equation

[
− �

2

2m

d2

dr2 +
�

2l(l + 1)

2mr2 − Ze2

r

]
r R(r) = E r R(r), (10.8)

that makes clear the convenience of introducing, instead of R(r), the function

u(r) = r R(r). (10.9)

The differential Eq. (10.8) and its relations with well known special differential equa-
tions will be clear if we write it in terms of dimensionless variables. To transform it
into a dimensionless equation we introduce the change of variable

ρ = 2αr, (10.10)

and define the parameters (we have seen in Chap. 1, and we will see lines below that
the electron energies in the Hydrogen atom are negative)

α2 = 2m|E |
�2 = −2m E

�2 and ao = �
2

me2 . (10.11)

It is convenient to check that α and ao have units of inverse length and length,
respectively. The differential equation becomes then of the form

d2u

dρ2 +
(
−1

4
+ Z

αao

1

ρ
− l(l + 1)

ρ2

)
u(ρ) = 0. (10.12)

Our purpose now is to solve this equation. We will use a procedure similar to
that used in the harmonic oscillator case, we will first explore how the Hydrogen
atom solutions look like, or behave, in the limits ρ → 0 and ρ → ∞. Knowing
the asymptotic solutions we will be able to guess part of u(r), and to determine
the correct solution. Once we obtain u(r), we will have the radial solution R(r). At

http://dx.doi.org/10.1007/978-3-642-29378-8_1
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the same time, we will determine the energy eigenvalues for the Hydrogen atom, and
for the Hydrogen-like atoms as well.
The solution near to the origin

When ρ→0, the centrifugal potential is much greater than the absolute value of
the Coulomb potential, and this is greater than |E |, i.e.:

�
2l(l + 1)

2mr2 � Ze2

r
� |E |. (10.13)

In this regime one can approximate the radial equation by

− d2uo(ρ)

dρ2 + l(l + 1)

ρ2 uo(ρ) = 0. (10.14)

It is easy to see that if we propose a polynomial solution uo(ρ) of the form ρs+1, and
replace it in the approximate differential equation, we will have:

(s + 1)s − l(l + 1) = 0, (10.15)

with solutions

s = −1

2
± (l + 1

2
) = l,−l − 1. (10.16)

When s = −l − 1, the solution diverges at the origin, hence we throw it away and
we keep only the solution

uo(ρ) = ρl+1. (10.17)

This means that near the origin the solution u(ρ), for the radial equation, must be
proportional to ρl+1, i.e.:

u(ρ) ∝ ρl+1. (10.18)

The solution far from the origin
When ρ→∞, the centrifugal potential is much smaller than the Coulomb poten-

tial, and this much smaller than the energy |E |, i.e.:

�
2l(l + 1)

2mr2 � Ze2

r
� |E |. (10.19)

In this region, the approximate radial equation will be

d2u∞(ρ)
dρ2 = 1

4
u∞(ρ). (10.20)

If we propose for the radial solution u∞(ρ) an exponential function of the form eqρ,
we will have
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q2 = 1

4
. (10.21)

Thus,

q = ±1

2
. (10.22)

Because of the finiteness condition, which the radial solution must satisfy, we keep
only the function

u∞(ρ) = e−ρ/2. (10.23)

This means that in the far region

u(ρ) ∝ e−ρ/2. (10.24)

With this information we are almost able to take the last step to obtain the solution
of the radial equation of the Hydrogen atom.

Knowing the behavior of the radial solutions in the near and far regions, we can
propose the function

u = ρl+1e−ρ/2 Q(ρ). (10.25)

The unknown function Q(ρ) should be controlled by the asymptotic solutions, there-
fore as ρ→∞ the function Q(ρ) should increase less rapidly than the exponential
factor e−ρ/2. In other words, we require a polynomial behavior for Q(ρ). Replacing
the proposed function into the differential equation we have

d2 Q

dρ2 +
(

2(l + 1)

ρ
− 1

)
d Q

dρ
+ (Z/αao)− l − 1

ρ
Q = 0. (10.26)

This equation is similar to the Laguerre differential equation

d2 y

dx2 +
(
μ+ 1

x
− 1

)
dy

dx
+ k

x
y = 0. (10.27)

which for μ = 1, 3, 5, . . . and k = 0, 1, 2, 3, . . ., is fulfilled by the generalized (or
associated) Laguerre polynomial3 Lμk (x). Taking

μ = 2l + 1, (10.28)

and
Z

αao
− l − 1 = k, k = 0, 1, 2, 3, . . . (10.29)

3 These polynomials are also called associated Laguerre’s polynomials. In the literature of these
polynomials there are variations in the notation and definition that should be taken into account.
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the solution of (10.26) will be the generalized Laguerre polynomial Lμk (ρ). The last
relation is of great importance in this problem. From this relation comes out the
energy quantization of the Hydrogen atom. It is wonted to define, instead of k, the
number n = k + l + 1, and call it the principal quantum number, that satisfies the
important order relation

l ≤ n − 1. (10.30)

In terms of the principal quantum number, the quantization condition (10.29)
takes the form

Z/αao = n with n = 1, 2, 3, . . . (10.31)

Replacing α in this equation we have

En = − Z2e2

2aon2 = −
Z2me4

2�2n2 . (10.32)

This defines the energy eigenvalues of the Hydrogen atom, in the CGS units. In the
MKS units, we have

En = − Z2me4

8ε2
oh2n2 , (10.33)

and the radial functions

Rnl(ρ) = Anρ
l e−ρ/2 L2l+1

n−l−1(ρ). (10.34)

with

Lμk = eρ
ρ−μ

k!
dk

dρk
e−ρρk+μ. (10.35)

It is important to notice that the electron energies En in the Hydrogen and Hydrogen-
like atoms depend only on the principal quantum number n. This means that all states
with different quantum numbers l and mz , but with the same n, are degenerate states.
A little later we will see how many electrons can be arranged in each of the energy
levels.

We got in this way one of the physical results in the explanation of the spectral
lines, the electron energy in the Hydrogen atom:

En = − me4

2�2n2 . (10.36)

Before mentioning the fundamental problems with the electronic configuration, we
will discuss some basic properties of the Laguerre polynomials and of the Hydrogen
atom eigenfunctions.
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With Rnl(r)we complete the solution to the Schrödinger Eq. (10.4) of the Hydrogen
atom. The constant An in the radial function of (10.34) is determined from the
normalization condition for the eigenfunctions ϕmz

nl (r, θ,φ) = Rnl(r)Y
mz
l (θ,φ), i.e.

from
∫
|ϕmz

nl (r, θ,φ)|2r2 sin θdrdθdφ =
∫
|Rnl(r)|2r2dr

∫
|Y mz

l (θ,φ)|2 sin θdθdφ.

= 1 (10.37)

Since the spherical harmonics are normalized functions, the normalization condition
reduces to ∫

|Rnl(r)|2r2dr = 1. (10.38)

If we use the representation of the radial function in (10.34) the normalization con-
dition becomes

|An|2 1

8α3

∫
ρ2ρ2l e−ρ|L2l+1

n−l−1(ρ)|2dρ = 1. (10.39)

Here, we have used the relation ρ = 2αr to write the integrand in terms of the
variable ρ only. To determine the constant An we need to evaluate the integral

1

8α3

∫
ρ2l+2e−ρ|L2l+1

n−l−1(ρ)|2dρ. (10.40)

In the appendix B, it is shown that two important relations of the Laguerre poly-
nomials are: ∞∫

0

xke−x Lk
ν(x)L

k
ν ′(x)dx = δν,ν ′ (ν + k)!

ν! (10.41)

and ∞∫

0

xk+1e−x Lk
ν(x)L

k
ν(x)dx = (k + 2ν + 1)

(ν + k)!
ν! . (10.42)

If we make k = 2l + 1 and ν = nl − 1, the last equation takes the form

∞∫

0

x2l+2e−x L2l+1
n−l−1(x)L

2l+1
n−l−1(x)dx = 2n

(n + l)!
(n − l − 1)! . (10.43)

This integral is precisely what we have in the normalization condition (10.40). Con-
sequently
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Fig. 10.1 The radial eigenfunctions Rnl as functions of r (measured in units of ao), for n =1, 2
and 3 and all possible values of l < n

|An|2 1

8α3 2n
(n + l)!

(n − l − 1)! = 1. (10.44)

If we recall that Z = αaon, the normalization constant of the radial function becomes

An =
(

Z

ao

)3/2 2

n2

√
(n − l − 1)!
(n + l)! , (10.45)

and the radial part of the Hydrogen atom eigenfunction takes the form

Rnl(r) =
(

Z

ao

)l+3/2 (
2

n

)l+1 1

n

√
(n − l − 1)!
(n + l)! rle−Zr/aon L2l+1

n−l−1

(
2Zr

aon

)
.

(10.46)
In Fig. 10.1 we plot Rnl(r) as a function of r/ao. With these results we have well
defined the eigenvalues En and the eigenfunctions ϕmz

nl (r, θ,φ) of the Hydrogen-
like atoms. In a compact Dirac notation the eigenfunctions ϕmz

nl (r, θ,φ), defined
by the quantum numbers n, l and mz , are represented by the kets |nlmz〉. We will
see in the next section that, in order to describe the electronic configuration, the
central potential model for the Hydrogen atom needs to consider the existence of an
important electron’s characteristic: the spin. Moreover, to explain the experimental
observations in the presence of magnetic fields, we will extend the analysis to include
the spin-field interactions.

A physical variable of interest, that can easily be calculated, is the expected value
of the electron radius in a Hydrogen-like atom. At the end of this chapter we will
show that the average radius of the electron orbit, in these atoms, is given by
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〈r〉 = ao

2Z

(
3n2 − l(l + 1)

)
. (10.47)

This radius increases with n. With this formula, we can evaluate expected radii for
different electronic states. The valence electrons of the Hydrogen-like atoms with
large atomic number Z have also large n’ s. The orbit radii for these electrons depend
on n and l but not on the magnetic quantum number mz . The states |nlmz〉 with the
same n are degenerate. In the Hydrogen atom the electron orbit radius in the ground
state (with the lowest energy) is

〈r〉 = 3ao

2
. (10.48)

Of the order of the Bohr radius ao.

10.3.1 The Electronic Configuration of Hydrogen-Like Atoms

To conclude this topic, it is important to notice that the application of the order
relations

|mz| ≤ l ≤ n − 1, (10.49)

to determine the electronic configuration in Hydrogen-like atoms, is essential but not
sufficient to explain the sequence 2, 8, 18, 32, . . . that the experiments indicate for the
number of electrons in the energy levels E1, E2, E3, . . . According to (10.49), given
an energy level En , we can have for the same energy, states with l = 0, 1, 2, . . ., n−1
and for each value of l, 2l + 1 possible values for mz . This, as shown in Table 10.1,
predicts (see the fifth column) that the number of degenerate states is

∑n−1
l=0 (2l+1) =

n2. This number differs by a factor of 2 of the correct numbers suggested in the
periodic chart of the elements, shown in the last column of Table 10.1. To explain
this difference it was necessary to recognize, and later to discover, the existence of a
new electron’s physical property: the spin. Electrons, as protons and other quantum
particles, besides their charge and mass possess an intrinsic angular momentum
called spin, which manifest in the presence of other particles with spin and in the
presence of magnetic fields. As will be seen with more detail in the next chapter, the
z component Sz of the electron’s spin, Ŝ, has only two values: �/2 and−�/2. Taking
into account the spin, the number of degenerate states gets then multiplied by a factor
of 2, as indicated in the sixth column of Table 10.1. Indeed, W. E. Pauli,4 in 1925,
shortly before the final formulation of the quantum theory, showed that, in order to
explain the periodic chart of elements, the orbiting electrons must be described by
four quantum numbers plus an exclusion principle that forbids the possibility for two
electrons, of the same atom, to have the same quantum numbers.

It is common to represent the orbital electron states ϕmz
nl χms = |nlmzms〉, where

χms corresponds the spin state, simply as ns, np, nd, n f ,… when l = 0, 1, 2, 3, . . .,

4 W. Pauli , Z. Physik 31, 765 (1925).
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Table 10.1 States and number of electrons without and with spin for n = 1, 2 and 3

n l (≤ n − 1) mz (= −l, . . .l) |n, l,mz〉 electrons electrons
without spin with spin

1 0 0 |1, 0, 0〉 1 2

0 0 |2, 0, 0〉
2 −1 |2, 1,−1〉 4 8

1 0 |2, 1, 0〉
1 |2, 1, 1〉

0 0 |3, 0, 0〉
−1 |3, 1,−1〉

1 0 |3, 1, 0〉
1 |3, 1, 1〉

3 −2 |3, 2,−2〉 9 18
−1 |3, 2,−1〉

2 0 |3, 2, 0〉
1 |3, 2, 1〉
2 |3, 2, 2〉

respectively. This notation with a superindex k to indicate the number of electrons in
the state nl, is used to represent the electronic configuration of atoms. For example,
for Oxygen the electronic configuration is 1s22s22d 4, for sodium with 11 electrons
the electronic configuration is 1s22s22d 63s.

10.4 The Hydrogen Atom in a Magnetic Field

At the end of the nineteenth century, continuing the analysis of the emitted light
by atoms, Pieter Zeeman performed a series of studies on the effect of the mag-
netic field and observed the splitting of spectral lines as predicted by Lorentz,
based on classical arguments.5 Lorentz showed that in an atom (conceived as an
oscillator) the relation between the frequencies ν and νo (with and without field,
respectively), is

ν2 = ± eB

2πm
ν + ν2

o and ν ∼= νo ± eB

4πm
. (10.50)

The signs± in the first equation refer to clockwise or anti-clockwise motion. This
result implies that the emission lines split into three, with frequenciesw21,w21−2δω
and w21+ 2δω, as shown in Fig. 10.2. Pieter Zeeman found splittings into three
and more lines. The attempts to explain those observations, 20 years later, fed the
controversy that preceded the correct explanation of that problem that came through
the final formulation of the quantum theory. Some of these phenomena known as

5 Hendrik Antoon Lorentz and Pieter Zeeman shared the Nobel Prize in physics in 1902.
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Fig. 10.2 The classical Lorentz model predicts that, in the presence of a magnetic field, the emission
line splits into three emission lines

the normal Zeeman effect, could be explained with semi-classical arguments; others
known as the anomalous Zeeman effect required the spin-field interaction.

When the Hydrogen atom or any other charged system is in the presence of a
magnetic field, the charge dynamics is modified by the magnetic component of the
Lorentz force q

(
E + (1/c)v × B

)
. It is known from the classical description of

particles in a magnetic field B that the linear momentum p transforms into p+qA/c,
i.e.

p → p+ q

c
A, (10.51)

where A is the vector potential, such that∇×A = B. The Hamiltonian for a charged
particle changes in the presence of an electromagnetic field and takes the form (we
assume that the scalar electric potential is zero)

Ĥ = 1

2m

(̂
p+ q

c
A

)2 + V (r). (10.52)

Before specializing this discussion to the Hydrogen atom problem, we shall briefly
refer to the general consequences that the presence of a magnetic field has on the
kinetic term of the Schrödinger equation, regardless of the potential function V (r).
To visualize the effect and the physical sense we develop the kinetic energy term as
follows

1

2m

(̂
p+ q

c
A

)2 = 1

2m
p̂ 2 + q

mc
A · p− iq�

2mc
∇ · A+ q2

2mc2 A 2. (10.53)

If we choose the z axis along the field B, we write the magnetic field as B = Bẑ.
This equation can be simplified, without changing the physical description, using
equivalent representations or gauge transformations for the potential vector A. One
of the possible gauges for the vector potential is6

6 This is known as the symmetric Coulomb gauge.
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A = 1

2
B× r = B

2
(−yx̂ + x ŷ) = Ax x̂ + Ay ŷ, (10.54)

which satisfies the equations

∇ × A = B and ∇ · A = 0. (10.55)

Therefore

A · p̂ = 1

2
B · (r × p̂) = 1

2
B · L̂ and A2 = B2

4

(
x2 + y2). (10.56)

Making use of these relations, the Hamiltonian takes the form

Ĥ = 1

2m
p̂ 2 + q

2mc
B · L̂+ q2

2mc2

B2

4

(
x2 + y2)+ V (r). (10.57)

This Hamiltonian has two new terms: the momentum-field interaction, responsible
of the normal Zeeman effect and the magnetic confining harmonic potential, which
can be neglected because in the Hydrogen atom it is relatively small. If we study
the dynamics of charge carriers in fields, one should take into account the harmonic
potential. It is essential to explain important phenomena like the quantum Hall effect.
The Schrödinger equation for the Hydrogen atom in a magnetic field is then

− �
2

2m
∇ 2ϕ(r)− e

2mc
B · L̂ ϕ(r)+ V (r) ϕ(r) = E ϕ(r), (10.58)

or just

− �
2

2m
∇ 2ϕ(r)− e

2mc
BL̂z ϕ(r)+ V (r) ϕ(r) = E ϕ(r). (10.59)

As will be seen in the next section, the new terms in the Hamiltonian will be helpful to
explain the normal Zeeman effect but not the anomalous Zeeman effect. We leave the
discussion on the anomalous Zeeman effect for the next chapter, where we will study
the spin. It is worth noticing that since the angular momentum components L̂i do not
commute with L̂, the angular momentum L̂ will not commute with the Hamiltonian.
Therefore, the angular momentum L̂ in the presence of an external magnetic field,
is not a conserved quantity. Now the z component L̂ z is the conserved quantity. It
commutes with L̂2 and also with functions of r .

10.5 The Normal Zeeman Effect

If the orbital magnetic moment μ̂L, is defined as
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Fig. 10.3 The magnetic field removes the degeneracy in mz , which is equal to 2l + 1 for each
allowed value of l. Since the degeneracy in the angular momentum remains, states with different l
but the same mz have the same energy. For example, |n11〉 and |n21〉 have the same energy

μ̂L = gL
e�

2mc
L̂ = gLμB L̂, (10.60)

where μB is the Bohr’s magneton μB = 5.7884 10−5 eV/T and gL (=1) is the orbital
gyromagnetic ratio, the Schrödinger Eq. (10.59) can be written as

− �
2

2m
∇ 2ϕ(r)− B · μ̂L

�
ϕ(r)+ V (r) ϕ(r) = E ϕ(r), (10.61)

where one is tempted to interpret the second term as part of the potential energy.
Since the eigenvalue of the operator L̂ z is mz�, the Schrödinger equation of the

Hydrogen atom in a magnetic field can be written in the form

− �
2

2m
∇ 2ϕ(r)+ V (r)ϕ(r) = (

E + μB Bmz
)
ϕ(r) (10.62)

which is similar to the Schrödinger equation of the Hydrogen atom in the absence
of a magnetic field with the sum

E + μB Bmz (10.63)

playing the role of the energy E of that equation. Consequently

En + μB Bmz = − Z2me4

2�2n2 . (10.64)

For fixed values of n and l, we have now 2l + 1 different values for the energy.
Therefore, the effect of the magnetic field in the linear approximation, is to remove

the degeneracy associated with the magnetic quantum number mz . This is the normal
Zeeman effect.
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In summary, the electron energies in the Hydrogen atom (or in the Hydrogen-like
atoms) in the presence of a magnetic field are

En = − Z2me4

2�2n2 − μB Bmz, with mz = 0,±1,±2, . . .,±l. (10.65)

The interaction L̂ · B splits the energies as shown in Fig. 10.3 and explains part of
the experimental observations and the splitting of the emission lines in the presence
of magnetic fields.

10.6 Solved Problems

Exercise 35 Show that the expected value of the election radius in the Hydrogen
atoms is

〈r〉 = ao

2Z

(
3n2 − l(l + 1)

)
. (10.66)

Solution The expected value of r , in an eigenstate ϕmz
nl = Rnl(r)Y

mz
l (θ,φ) of a

Hydrogen atom, is given by the relation

〈r〉 =
∫ ∫ ∫ (

ϕ
mz
nl (r, θ,φ)

)∗
rϕmz

nl (r, θ,φ)r
2 sin θdrdθdφ. (10.67)

The integral of the angular part is simple and gives a factor 1, we have then to evaluate
the integral

〈r〉 =
∞∫

0

r3[Rnl(r)]2dr = |An|2
∫

r3ρ2l e−ρ
[

L2l+1
n−l−1(ρ)

]2
dr, (10.68)

which is similar to the integral in Eq. (10.39). In this integral we have a different
power of r . If we substitute r by ρ/2α, we have

〈r〉 = |An|2 1

(2α)4

∫
ρ2l+3e−ρ

[
L2l+1

n−l−1(ρ)
]2

dρ. (10.69)

To evaluate this integral we use the recurrence relation (B.11) written in the form

x Lk
ν(x) = (k + 2ν + 1)Lk

ν(x)− (ν + 1)Lk
ν+1(x)− (ν + k)Lk

ν−1(x). (10.70)

The integral of (x Lk
ν(x))

2 multiplied by xke−x , with k=2l+1 and ν=n−l−1, is
precisely the integral that we need to evaluate 〈r〉. If we square the right hand side
of (10.70), multiply by xke−x , integrate and use the orthogonality and normalization

http://dx.doi.org/10.1007/978-3-642-29378-8_9
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properties of the Laguerre polynomials that were derived in the Appendix A, we find,
after some algebra, the following expression

∫
xk+2e−x [Lk

ν(x)]2dx = (ν + k)!
ν! (6ν2 + 6kν + 6ν + k2 + 3k + 2). (10.71)

This equation with k=2l+1 and ν=n−l−1 reduces to the expected result.
Exercise 36 Show that if m N is the mass of the nucleus and me the mass of the
electron in the Hydrogen atom, the approximation of the nucleus being at rest and
the assumption of m N � me are equivalent.
Solution If the nucleus is at rest, the Schrödinger equation of the Hydrogen atom

(
p̂2

N

2m N
+ p̂2

e

2me
+ V (|rN − re|)

)
ψ(rN , re) = Eψ(rN , re), (10.72)

is just (
p̂2

e

2me
+ V (|re|)

)
ψ(re) = Eψ(re), (10.73)

with the origin of the coordinate system at the position of the atomic nucleus. If the
nucleus is not at rest, we can write the two-particle Hamiltonian in terms of the center
of mass R and coordinate r defined by

R = m N rN + mere

m N + me
and r = re − rN , (10.74)

to obtain the Schrödinger equation

(
P̂2

2M
+ p̂2

2μ
+ V (r)

)
ψ(R, r) = Eψ(R, r), (10.75)

with M = m N +me and μ = m N me/M . The first term describes the kinetic energy
of a quasi-particle with mass M and momentum P = Ṙ while the second the kinetic
energy of a quasi-particle with mass μ and momentum p = ṙ. If we factor the
two-particle wave function as

ψ(R, r) = �(R)φ(r) (10.76)

we end up with the following equations

P̂2

2M
�(R) = EM�(R), (10.77)

and



246 10 The Hydrogen Atom

(
p̂2

2μ
+ V (r)

)
φ(r) = εφ(r), (10.78)

with ε = E − EM . The first of these equations describes the motion of the center
of mass as a free particle with kinetic energy EM . One can always choose the zero
of the energy at any value without consequence on the system dynamics. We can
choose the zero at EM . In that case, the center of mass is at rest and we are left with
the Schrödinger equation

(
p̂2

2μ
+ V (r)

)
φ(r) = Eφ(r). (10.79)

It is easy now to see that, in the particular case of m N � me, the relative mass
μ→ me, hence (

p̂2

2me
+ V (r)

)
φ(r) = Eφ(r), (10.80)

which coincides with the Schrödinger Eq. (10.73) for the nucleus at rest.

10.7 Problems

1. Show that the two-particle Hamiltonian

Ĥ = p̂2
1

2m1
+ p̂2

2

2m2
+ V (|r2 − r1|), (10.81)

written in terms of the center of mass R an relative coordinate r :

R = m1r1 + m2r2

m1 + m2
and r = r2 − r1, (10.82)

transforms into

Ĥ = P̂2

2M
+ p̂2

2μ
+ V (r), (10.83)

with M = m1 + m2 and μ = m1m2/M .
2. What is the difference between the reduced mass μ and the mass of the electron

in the Hydrogen atom?
3. Show that

∫
xk+2e−x [Lk

ν(x)]2dx = (ν + k)!
ν! (6ν2+ 6kν + 6ν + k2+ 3k + 2). (10.84)

4. Show that
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− �
2

2m

1

r2

d

dr

(
r2 d

dr

)
= − �

2

2m

1

r

d2

dr2 r, (10.85)

and obtain the Eq. (10.8).
5. Consider the change of variable ρ = 2αr , the definitions

α2 = 2m|E |
�2 and ao = �

2

me2 , (10.86)

and deduce the Eq. (10.12).
6. Show that the products αr and αao are dimensionless.
7. Show that if u(ρ) = ρl+1e−ρ/2 Q(ρ), the radial equation becomes the

Eq. (10.26).
8. Show that the number of degenerate states in the energy level En is n2, and 2n2

when the two spin states are taken into account.
9. Shows in detail that the normalization constant of the radial function Rnl is

An = Z

ao

3/2 2

n2

√
(n − l − 1)!
(n + l)! , (10.87)

and show also that for the ground state of the Hydrogen atom is

A1 = 2

a3/2
o

. (10.88)

10. Show that 〈
1

r

〉
= Z

aon2 and

〈
1

r2

〉
= 2Z2

a2
on3

1

2l + 1
. (10.89)

11. When you have an operator F̂(λ) with eigenvalue fn(λ) and eigenfunction
ψn(λ), the Feynman-Hellman theorem states that

∂ fn(λ)

∂λ
= 〈ψn(λ)|∂ F̂(λ)

∂λ
|ψn(λ). (10.90)

If the Hamiltonian of the Hydrogen atom is written as

Ĥ(λ) = p̂r

2m
+ �

2λ(λ+ 1)

2mr2 + V (r), (10.91)

with eigenvalue

En(λ) = − m Z2e4

2�2(k + λ+ 1)2
, (10.92)

use the Feynman-Hellman theorem to show that
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〈
1

r2

〉
λ=l
= 2Z2

a2
on3

1

2l + 1
. (10.93)

12. To explain the observed lines by P. Zeeman for the Hydrogen atom in the presence
of a magnetic field B, Hendrik Lorentz proposed a theory where the electron
of the Hydrogen atom oscillates with a frequency νo under a harmonic force
Fk = kr with k = 4π2ν2

o m. Derive the relation

ν2 = ± eB

2πm
ν + ν2

o , (10.94)

when a magnetic field B is established. Assume that the Lorentz force and the
harmonic force are responsible for the circular motion with electron acceleration
v2/r . Discuss the conditions to obtain

ν = νo ± eB

4πm
. (10.95)

13. If a Hydrogen atom is in a field B = 1 T, mention all the possible transitions
from level n = 2 and the frequencies of the emission lines.



Chapter 11
Spin and the Pauli Equation

11.1 Introduction

The electronic configuration and the explanation of the emission lines of atoms in a
magnetic field, observed by Zeeman, were the major topics of the emerging quantum
physics and of controversy around 1920. Despite the success to explain the Balmer
and Rydberg series and the efforts by physicists of the stature of Arnold Sommerfeld
to formalize the Bohr model, the old semi-classical quantum theory was unable
to explain the emission lines of atoms in magnetic fields as well as other atomic
problems. The resistance of many physicists to accept a theory of ad-hoc postulates
and models kept growing. Among the dissenters was Otto Stern, who had been an
assistant to Einstein in Zurich. Stern had experience in producing beams of atoms.
In 1921 he decided to study the dynamics of atoms in the presence of an external
field. His objective was not to find evidences of the spin, but to visualize the space
quantization, as was named in those days, the magnetic moment quantization, which
is essentially the same as the quantization of angular momentum.

It is known from the electromagnetic theory that a particle with magnetic moment
μ, in the presence of an inhomogeneous magnetic field, feels a force equal to the
gradient of its potential energy −μ · B, i.e.

F = ∇(μ · B). (11.1)

If the field is along the ẑ-axis, and μ = μBL̂, the force on the atoms is:

Fz = μB L̂z
∂B

∂z
. (11.2)

Consequently, the paths which the atoms could follow were as many as the possible
values of the quantum number mz . In the previous chapter it was shown that mz =
−l,−l + 1, . . ., l − 1, l. For this reason one can expect to observe 2l+1 traces. The
arrangement in the Stern–Gerlach experiment, as shown in Fig. 11.1, was such that

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 249
DOI: 10.1007/978-3-642-29378-8_11, © Springer-Verlag Berlin Heidelberg 2012
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Silver 
atoms

separated traces

inhomogeneous field

z

Fig. 11.1 In the Stern–Gerlach experiment the magnetic force of an inhomogeneous magnetic field
deflects the silver atoms moving across. The two traces observed, instead of the predicted three by
the theoretical arguments of those years, led to the discovery of the spin

the direction of B did not change much but its magnitude changed from one point to
another.

After many attempts, they found that only two traces appeared.1 This result intro-
duced more confusion but also new arguments to justify them. It was not until 1926,
when Goudsmit and Uhlenbeck2 reinterpreted the Stern–Gerlach experiment and
introduced the electron spin as an intrinsic angular momentum, that the experimental
results became clear. The electron’s spin Ŝ is a physical quantity with two compo-
nents along the magnetic field. Like the orbital magnetic momentum, μ̂L = gL

e�

2mc L̂,
the intrinsic magnetic momentum μe is proportional to the intrinsic angular momen-
tum Ŝ. In 1921, Compton was the first to suggest the possibility of a half-integer
intrinsic angular momentum for the electron spin. It seems also that in 1925 Kronig
suggested to Pauli the idea of an electron spin. It is known that Pauli postulated, later
in 1925, the existence of a two-value quantum property without classical analog3

and an exclusion principle to forbid the possibility that two electrons, in the same
atom, could have the same quantum numbers.

If the electron possesses, besides its orbital momentum μ̂L, an intrinsic magnetic
momentum defined as

μe = gSμB Ŝ, (11.3)

one can think of a potential energy

− B · μe

�
, (11.4)

1 An interesting story of the circumstances with regard to this experiment can be found in B.
Friedrich and D. Herschbach, Physics Today December 2003 pg. 53.
2 S. Goudsmit and G. Uhlenbeck, Nature 117 264 (1926).
3 W.E. Pauli, Z. Physic 31, 765 (1925) and W.E. Pauli Nobel Lecture (1946).
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that should be added to the Hamiltonian of the Schrödinger equation. Therefore, we
have to consider, for atoms in a magnetic field, the equation

(−�
2

2m
∇2+gL

μB

�
B · L̂+gS

μB

�
B · Ŝ+ q2

c2

B2

4

(
x2+y2)+V (r)

)
φ(r, s)=Eφ(r, s).

(11.5)
The inclusion of a term in the Schrödinger equation that depends on the intrinsic
angular momentum Ŝ adds to the spatial degrees of freedom, the spin degree of
freedom. This fact, explicitly indicated in the wave function φ(r, s), corresponds to
the product

φ(r, s) = ϕ(r)χ(s), (11.6)

in which ϕ(r) is the usual wave function and χ(s) the spin-dependent vector, called
spinor, which depends on the spin. The spinor is in general a linear combination of
two states:χ↑ andχ↓ that correspond to the spin projections, parallel and antiparallel
to the field. These eigenfunctions of Ŝz are usually represented with vectors (spinors)

χ↑ =
(

1
0

)
, χ↓ =

(
0
1

)
, (11.7)

and satisfy the eigenvalue equations

Ŝz

(
1
0

)
= Sz

(
1
0

)
, Ŝz

(
0
1

)
= −Sz

(
0
1

)
. (11.8)

If the spin is an angular momentum, it must satisfy commutation relations like those
of the angular momentum L̂ and its components. This means that

[Ŝi , Ŝ j ] = i�εi jk Ŝk, (11.9)

and
[̂S, Ŝi ] = i�

(
Ŝ j x̂k − Ŝk x̂ j

)
. (11.10)

We will come back into the Schrödinger equation for particles with spin after a brief
discussion of the spin properties. In the next section, we will use the commutation
relations (11.9) to show that the spin quantum number s, compatible with these
relations, can be an integer or a half-integer number. We will obtain the eigenvalues
of Ŝz and Ŝ2, and we will also derive their matrix representations.
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11.2 Spin Eigenvalues and Matrix Representations

11.2.1 Eigenvalues of ̂Sz and ̂S 2

In Chap. 9 we obtained the eigenvalues and eigenfunctions of L̂ z and L̂2 using
their explicit differential operators. Here we will derive the eigenvalues and the
eigenfunctions of Ŝz and Ŝ2 based on their commutation relations. To this purpose
we need to introduce the rising and lowering operators Ŝ+ and Ŝ−, analogous to L̂+
and L̂−, defined in Chap. 9. We will obtain some identities that will lead to several
interesting results. Let us then define the operators:

Ŝ+ = Ŝx + i Ŝy and Ŝ− = Ŝx − i Ŝy . (11.11)

It is easy show that [
Ŝ∓, Ŝz

] = ±�Ŝ∓, (11.12)

and [
Ŝ+, Ŝ−

] = 2�Ŝz . (11.13)

The operators Ŝ− and Ŝ+, like L̂+ and L̂−, are rising and lowering operators,
i.e. operators that, acting on the eigenfunctions of Ŝz result in eigenfunctions of
the neighbor states, corresponding to quantum numbers increased or decreased by
1. Indeed, suppose we have the eigenvalue equations

Ŝ 2 χ = a χ and Ŝz χ = b χ. (11.14)

If we act with the operator Ŝ+ on the second of these equations we have

Ŝ+ Ŝzχ = b Ŝ+χ, (11.15)

using the relation (11.12), we can write the last equation as

Ŝz Ŝ+χ = (b + �) Ŝ+χ. (11.16)

This shows not only that Ŝ+χ is an eigenfunction of Ŝz , but also that Ŝ+χ is a state
with an eigenvalue of Ŝz increased by �, i.e. Ŝ+ is a rising operator. If we repeat n
times the action of Ŝ+, we will have the relation

Ŝz Ŝ n+ χ = (b + n�) Ŝ n+ χ. (11.17)

It is clear also that, if χM is the state with the maximum eigenvalue bM , then

Ŝ+ χM = 0. (11.18)

http://dx.doi.org/10.1007/978-3-642-29378-8_9
http://dx.doi.org/10.1007/978-3-642-29378-8_9
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Similarly, one can show that

Ŝz Ŝ−χ = (b − �) Ŝ−χ, (11.19)

with
Ŝz Ŝ n− χ = (b − n�) Ŝ n− χ. (11.20)

Again, if χm is the state of minimum eigenvalue bm , we will have

S− χm = 0. (11.21)

With these results and using the following relations

Ŝ− Ŝ+ = Ŝ 2 − Ŝ 2
z − �Ŝz . (11.22)

Ŝ+ Ŝ− = Ŝ 2 − Ŝ 2
z + �Ŝz . (11.23)

we will show that the spin can be half-integer and, even more, we will obtain the
eigenvalues of Ŝz and Ŝ 2. Let us consider the operator Ŝ− Ŝ+ acting on the state χM .
In that case, we have

Ŝ− Ŝ+χM =
(
Ŝ 2 − Ŝ 2

z − � Ŝz
)
χM

= (
a − b2

M − � bM
)
χM = 0. (11.24)

Similarly, if we consider the operator Ŝ+ Ŝ− acting on the state χm , we have

Ŝ+ Ŝ−χm =
(
Ŝ 2 − Ŝ 2

z + � Ŝz
)
χm

= (
a − b2

m + � bm
)
χm = 0. (11.25)

These equations are satisfied if and only if

a − b2
m + � bm = 0 and a − b2

M − � bM = 0. (11.26)

Now let us suppose that bM = bm+n�. Using this and combining the last equations,
we obtain, after some algebra, the following equation

2bM�(n + 1)− (n + 1)n�
2 = 0 ⇒ bM = n�

2
. (11.27)

Substituting bM in the second equation of (11.26) we end up with the eigenvalue

a = �
2 n

2

(
1+ n

2

)
, (11.28)
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of Ŝ 2. It is clear that the number n can be even or odd. If it is an even number, say
2l, the eigenvalue of Ŝ 2 will be �

2l (l + 1), with 2l + 1 projections along the z-axis.
if n is odd, for example n =1, the eigenvalue of Ŝ 2 is �

2 1
2

( 1
2 + 1

)
, and the number

of projections along the z-axis is 2(1/2) + 1 = 2. This is precisely the number
found in the Stern–Gerlach experiment. This suggests that the quantum number that
corresponds to the intrinsic electron angular momentum S is s = 1/2. In this case

Ŝ 2 χ = �
2s(s + 1) χ = 3

4
�

2 χ. (11.29)

We can ask what are the eigenvalues of Ŝz? If n =1, the maximum and minimum
eigenvalues are

bM = �

2
and bm = bM − n� = −�

2
, (11.30)

respectively. Therefore:

Ŝz χM = �

2
χM ⇒ χM = χ↑, (11.31)

and

Ŝz χm = −�

2
χm ⇒ χm = χ↓. (11.32)

From here on, the eigenvalues of Ŝz will be denoted as ms�. It is clear that ms = ±1/2.
ms is the fourth quantum number that was missing to solve properly the electronic
configuration problem. If we represent the electronic states with the kets |nlmzms〉,
it is clear also that instead of the states |nlmz〉we actually have two states: |nlmz1/2〉
and |nlmz−1/2〉. This explains that the number of degenerate states for each energy
level is twice the predicted number n2, in the absence of spin. It is important to
observe that if B = 0, the spin-field interaction disappears from the Hamiltonian.
This implies that the Hamiltonian in Chap. 10 was correct. Not knowing the existence
of the spin up χ↑ and the spin down χ↓ states, the counting of the degenerate states
per energy level was wrong. On the other hand, we learn here that, when the hydrogen
and hydrogen-like atoms are in the presence of a magnetic field, one has to include
the spin-field interaction in order to explain the anomalous Zeeman effect.

11.2.2 Spin Representations and the Pauli Matrices

To obtain the matrix representations of the angular momentum in Chap. 9, we have
first derived the rising and lowering formulas (9.78) and (9.79). These formulas with
Ŝ instead of L̂ are

Ŝ+ |sms〉 =�

√
(s+ms + 1)(s−ms) |s, ms+1〉, (11.33)

http://dx.doi.org/10.1007/978-3-642-29378-8_10
http://dx.doi.org/10.1007/978-3-642-29378-8_9
http://dx.doi.org/10.1007/978-3-642-29378-8_9
http://dx.doi.org/10.1007/978-3-642-29378-8_9
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Ŝ−|sms〉 =�

√
(s+ms)(s−ms + 1) |s, ms−1〉, (11.34)

and we can use them to obtain all representations of the spin operators. We leave
as an exercise for the student the explicit evaluation of these representations. Here
we will discuss this issue by using a different procedure, based on the commutation
relations and the Hermitian character of the spin operators. We will begin with the
matrix representation of Ŝz in the basis of eigenfunctions χ↑ and χ↓. In this basis,
we build the matrix representation Sz of Ŝz , with the matrix elements 〈χi |Ŝz |χ j 〉, i.e.

Sz =
( 〈χ↑|Ŝz |χ↑〉 〈χ↑|Ŝz |χ↓〉
〈χ↓|Ŝz |χ↑〉 〈χ↓|Ŝz |χ↓〉

)
. (11.35)

If we use the eigenvalues equations and the orthogonality of χ↑ and χ↓, we have:

Sz = �

2

(
1 0
0 −1

)
, (11.36)

with

S2
z =

�
2

4

(
1 0
0 1

)
= �

2

4
I2. (11.37)

From the commutation relations, which are the same as for the matrix representations,
one can deduce other quite useful relations. For example, if we take the relation

Sz Sx − Sx Sz = i�Sy, (11.38)

and multiply from the left and right by Sz we have, after replacing S2
z by �

2 I2/4, the
identity

�
2

4

(
Sx Sz − Sz Sx

) = i�Sz Sy Sz, (11.39)

that transforms into

− �
2

4
Sy = Sz Sy Sz . (11.40)

Here we can multiply again from the right, by Sz . Simplifying factors, one has the
anticommutator

Sy Sz + Sz Sy = 0. (11.41)

In a similar way we obtain

Sz Sx + Sx Sz = 0, (11.42)

Sx Sy + Sy Sx = 0. (11.43)
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These anticommutators are important relations. Combined with the commutators,
we deduce the following

2Si S j = i�εi jk Sk . (11.44)

With these relations we are ready to obtain the matrix representations of Ŝx and Ŝy .
We propose that

Sx =
(

ax bx

cx dx

)
and Sy =

(
ay by

cy dy

)
, (11.45)

with complex entries, in general. If we replace these matrices in (11.44), we find that

Sx =
(

0 �
2

4
1
cx

cx 0

)
and Sy =

(
0 −i �

2

4
1
cx

icx 0

)
. (11.46)

It is easy to verify that for these matrices to be Hermitian we require that cx = �/2.
Therefore, the final forms of Sx and Sy are

Sx = �

2

(
0 1
1 0

)
with S2

x =
�

2

4
I2, (11.47)

and

Sy = �

2

(
0 −i
i 0

)
with S2

y =
�

2

4
I2. (11.48)

It is common and convenient to define the vector

σ = 2

�
S, (11.49)

whose components are the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (11.50)

It is easy to verify that

σ2
x = σ2

y = σ2
z = I2 =

(
1 0
0 1

)
(11.51)

σiσ j = −σ jσi = iεi jk σk (11.52)

[σi ,σ j ] = 2iεi jkσk . (11.53)

In the next section we will present the Pauli equation. In the derivation of this equation
we will require the following identities
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(σ · a)(σ · b) = a · b+ iσ · a × b, (11.54)

(
σ · (∇ + f)

)(
σ · (∇ + f)

) = (∇ + f)(∇ + f)I2 + iσ · (∇ × f). (11.55)

11.2.3 Pauli’s Equation

In the Hamiltonian of equation (11.5) we introduced the spin-dependent potential
energy, analogous to the interaction of magnetic moment with magnetic field, that
came out with the transformation p̂→ p̂+qA/c, prescribed by the classical theory.
As the spin is a purely quantum property, there is no classical analogue. The alter-
native, thus, is to change the Schrödinger equation so that the spin-field interaction
will appear only in the presence of a magnetic field and disappear in its absence. This
kind of extension was done by Pauli in 1927. He showed that replacing the vector
p̂ by the matrix4 σ · p̂, the new equation is exactly the same as the old Schrödinger
equation, but, when an external magnetic field is present, two energy terms appear:
the spin-field and the orbital momentum-field interactions, as in (11.5). Let us see
this with some detail.

If we consider a = b = p̂ in (11.54), we have

(σ · p̂)(σ · p̂) = p̂ · p̂ I2. (11.56)

This relation tells us that if we change the Hamiltonian

p̂ · p̂
2m
+ V (r) by

(σ · p̂)(σ · p̂)

2m
+ V (r)I2, (11.57)

and, as a consequence, we change the wave function ϕ(r) by φ(r, s) = ϕ(r)χ(s),
the Schrödinger equation becomes

(σ · p̂)(σ · p̂)

2m
φ(r, s)+ V (r)φ(r, s) = Eφ(r, s). (11.58)

In the absence of a magnetic field, the kinetic term is independent of σ, according to
(11.56), and this equation coincides with the Schrödinger equation independent of
σ. But, when an external magnetic field is present the linear momentum p̂ becomes
p̂+ qA/c, and the previous equation transforms into

(
σ · (̂p+ qA/c)

)(
σ · (̂p+ qA/c)

)
2m

φ(r, s)+ V (r)φ(r, s) = Eφ(r, s). (11.59)

4 Simultaneously we must change V (r) by V (r)I2. Usually when we are dealing with matrix
interaction, and we do not write explicitly the unit matrix I2, one must understand that it is there.
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If we replace ∇ by −i�∇and f for qA/c in the identity (11.55), the kinetic energy
term (

σ · (̂p+ qA/c)
)(
σ · (̂p+ qA/c)

)
2m

, (11.60)

becomes
(̂p+ qA/c) · (̂p+ qA/c)

2m
I2 + �q

2mc
σ · B. (11.61)

At the end of Chap. 10, dealing with the Hydrogen atom in a magnetic field, we saw
that the kinetic term, in the Coulomb gauge, could be written as

(̂p+ qA/c) · (̂p+ qA/c) = p̂ 2 + q

c
B · L̂+ q2

c2

B2

4

(
x2 + y2). (11.62)

Therefore, the Schrödinger equation for particles with spin in the presence of a
magnetic field is now

(−�
2

2m
∇2+ q

2mc
B · L̂+ �q

2mc
σ · B+ q2

c2

B2

4

(
x2+y2)+V (r)

)
φ(r, s) = Eφ(r, s).

(11.63)
If we replace q by −e, σ for 2S/� and introduce the Bohr magneton μB we have

(−�
2

2m
∇2−gL

μB

�
B · L̂−gS

μB

�
B · S+ e2

c2

B2

4

(
x2+y2)+V (r)

)
φ(r, s)=Eφ(r, s).

(11.64)
with gL = 1 and gS = 2 the Landé factors. This is, precisely, the Pauli equation for
spin 1/2 electrons in a magnetic field that was proposed in (11.5). For the Hydrogen
atom V (r) is a central potential and the parabolic potential can be neglected. We
should note that all changes that were made here were restricted to the kinetic term,
without any conditions on the potential term. Consequently, the equations that we
obtained here are valid also to describe charge carriers dynamics through different
types of potentials. In particular, we can use this equation if we study the transport
of charged particles across semiconductor structures or magnetic superlattices. This
kind of systems with additional spin-orbit interactions are part of the actual spintronic
devices.

Since the function φ(r, s) is vectorial, the Hamiltonian in (11.5) should be a
matrix equation. When the particle spin is 1/2, it is a 2× 2 matrix equation. We will
understand that, when the unit matrix does not appear explicitly in some Hamiltonian
terms, they are actually multiplied by the corresponding unit matrix. Notice that

Ĥ I2φ(r, s) = Ĥ

(
1 0
0 1

)
ϕ(r)

(
a
b

)
= Ĥϕ(r)

(
1 0
0 1

) (
a
b

)
= Ĥϕ(r)

(
a
b

)
.

(11.65)
This shows that

http://dx.doi.org/10.1007/978-3-642-29378-8_10
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Ĥ I2φ(r, s) = Ĥφ(r, s). (11.66)

In what follows, we write the matrix I2 only when we need it.

11.3 The Spin-Orbit Interaction

The spin-field interaction was used to explain the anomalous Zeeman effect and the
fine structure of the emission lines. In fact, if an orbiting electron, with magnetic
moment μe = gSμB Ŝ/�, moves with a velocity v in an electric field E, it feels in its
own reference frame a Lorentz-transformed magnetic field B′ given by (assuming
v � c)

B′ = −v × E
c2 . (11.67)

This suggests that in the presence of electric fields, the external magnetic field B in
the spin-field interaction of the Hamiltonian should be replaced by B+B′. Therefore,
for electrons in the presence of an electric field, we must include the interaction term

−gS
μB

�
B′ · S= −gS

μB

�

(
−v × E

c2

)
· S. (11.68)

In the radial atomic electric field
E = r

r
E, (11.69)

the spin-field interaction becomes

U = − E

r
μe · v × r

c2 = gSμB

m�c2

1

r

∂φ

∂r
S · L. (11.70)

This energy predicts a spacing of the emission lines, the fine structure, that is larger by
a factor of 2 than the observed spacing. This difficulty could not be solved by changing
the Landé factor gS from 2 to 1. The solution came from the relativistic electron theory
of Dirac. A theory that we will not study here but is available in many textbooks.
We will only present briefly the Thomas precession picture. In 1927 Thomas5 gave
the following argument to correct the factor 2. When the orbiting electron moves in
an external field E, the time derivative of its intrinsic angular momentum Ŝ, in the
electron’s reference frame, is

dŜ
dt

∣∣∣∣
rest
= −μe ×

( v
c2 × E

)
. (11.71)

5 L. H. Thomas, Nature, vol. 117, 514 (1926).
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If the electron’s frame moves with an angular velocity ωT (Thomas frequency), the
time derivative of Ŝ, in the non rotating reference system (the nucleus), is

dŜ
dt

∣∣∣∣
nr
= dŜ

dt

∣∣∣∣
rest
+ Ŝ× ωT , (11.72)

with
ωT = e

2mec2 v × E. (11.73)

If we recall that μB = e�/2me and substitute, we have

dŜ
dt

∣∣∣∣
nr
= −μe × v × E

c2 + 1

gS
μe × v × E

c2

= 1− gS

gS
μe × v × E

c2 = μe × BT. (11.74)

This means that the potential energy must be

U = −μe · 1− gS

gS

v × E
c2 . (11.75)

This energy, for gS = 2 and for the radial electric field considered before, becomes

U = − E

2r
μe · r × v

c2 , (11.76)

which is smaller by a factor of 2 than the energy in (11.70). Using again the relation
μe = gSμB Ŝ/� we have

U = − μB

�mec2

E

r
S · L = μB

�mec2

1

r

∂φ(r)

∂r
S · L, (11.77)

that is also known as the spin-orbit interaction. The coefficient of this interaction
depends on the external electric field that was assumed radial.

11.4 The Total Angular Momentum

So far we have introduced, related to the atomic electrons, the orbital angular
momentum L̂ and the intrinsic angular momentum Ŝ. To describe these electrons
we make use of quantum states defined as the product ϕ(r)χs, which means a direct
product of the angular momentum and spin state spaces. This product implies the
sum of the operators

Ĵ = L̂+ Ŝ, (11.78)
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and defines the total angular momentum Ĵ. This is a particular case. In general, a
system may consist of two or more subsystems with angular momenta Ĵ1, Ĵ2, . . . In
that case, one can define also the total angular momentum as

Ĵ = Ĵ1 + Ĵ2 + . . . (11.79)

In the presence of an external magnetic field and of the spin-orbit interaction,
the angular momentum L̂ is not anymore a constant of motion. The Hamiltonian
does not commute with L̂, but L̂ commutes with Ŝ; and the total angular momentum
Ĵ commutes with L̂ and with Ŝ. In the absence of external magnetic fields and presence
of spin-orbit interaction, the Hamiltonian commutes with Ĵ. Hence, the total angular
momentum is a conserved quantity and

Ĵx = L̂ x + Ŝx , Ĵy = L̂ y + Ŝy, Ĵz = L̂ z + Ŝz, (11.80)

The operators Ĵ, Ĵ 2 and Ĵi mimic the commutation relations of L̂, L̂ 2 and L̂i . Besides
this, the operators Ĵ 2, Ĵz , L̂ 2 and Ŝ 2 commute among them.6 This means that for
definite values of l and s the eigenfunctions are represented by functions characterized
by the quantum numbers j , l, s and m j . If we represent the eigenfunctions with the
bras | jlsm j 〉, the eigenvalue equations of Ĵ 2 and Ĵz will be:

Ĵ 2| jlsm j 〉 = �
2 j ( j + 1)| jlsm j 〉 (11.81)

Ĵz | jlsm j 〉 = �m j | jlsm j 〉 with |m j | ≤ j. (11.82)

But, what values will the quantum numbers j and m j take? Suppose that l and s
are given. There are a total of (2l + 1)(2s + 1) possible orientations of L̂ and Ŝ,
represented by the different values of mz and ms . The largest value that j can take is
l+ s and the smallest |l− s|. The maximum of m j occurs when mz and ms take also
their maximum values, and the minimum when they take their minimum values, this
means that

l + s ≥ j ≥ |l − s| and m j = −l − s,−l − s + 1, . . ., l + s − 1, l + s. (11.83)

One can easily verify that the number of states characterized by the quantum numbers
j , l, s and m j is equal to the number of states characterized by the quantum numbers
l, mz , s and ms . Is is always possible to pass from the representation | jlsm j 〉 to the
representation |lmzsmS〉. This is a broad topic in the literature of angular momentum,
that is beyond our purpose here. The interested student can consult the specialized
literature.7 From the definition of Ĵ it is obvious that

6 There are at least two sets of mutually commuting operators: the operators Ĵ 2, Ĵz , L̂ 2 and Ŝ 2

and the operators L̂ 2, L̂ z Ŝ 2 and Ŝz .
7 See, for example, A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton Univer-
sity Press, Princeton, N. J. 1974.
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Ĵ 2 = L̂ 2 + Ŝ 2 + 2̂S · L̂ (11.84)

The eigenvalues of the operator Ŝ · L̂ can be obtained easily because

Ŝ · L̂ = 1

2

(
Ĵ 2 − L̂ 2 − Ŝ 2

)
. (11.85)

Indeed,

(̂S · L̂)| jlsm j 〉 = �
2 j ( j + 1)− l(l + 1)− s(s + 1)

2
| jlsm j 〉. (11.86)

11.5 Problems

1. Show that the operators

Ŝ+ = Ŝx + i Ŝy and Ŝ− = Ŝx − i Ŝy, (11.87)

satisfy the commutation relations

[
Ŝ∓, Ŝz

] = ±�Ŝ∓. (11.88)

2. Show that if Ŝz χ = b χ, then

Ŝz Ŝ+χ = (b + �) Ŝ+χ, (11.89)

Ŝz Ŝ−χ = (b − �) Ŝ−χ. (11.90)

3. Derive the relations

Ŝ− Ŝ+ = Ŝ 2 − Ŝ 2
z − �Ŝz, (11.91)

Ŝ+ Ŝ− = Ŝ 2 − Ŝ 2
z + �Ŝz . (11.92)

Combining these equations with the assumption bM = bm + n� to show that
bm=−n�/2.

4. Show the relations

Ŝ+ |sms〉 =�

√
(s+ms + 1)(s−ms) |s, ms+1〉, (11.93)

Ŝ−|sms〉 =�

√
(s+ms)(s−ms + 1) |s, ms−1〉, (11.94)

and obtain, starting from these expressions, the matrix representations Sx and Sy .
5. Using the eigenvalue equation (11.8), show that the matrix representation of

Sz is
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Sz = �

2

(
1 0
0 −1

)
. (11.95)

6. Show that the spin components anticommute, i.e.

Ŝi Ŝ j + Ŝ j Ŝi = 0 for i, j = x, y, z (11.96)

and furthermore, that
2Si S j = i� εi jk Sk . (11.97)

7. If σ = 2
�

S, determine the matrix representations of σx , σy and σz .
8. Prove the following identities:

(σ · a)(σ · b) = a · b+ iσ · a × b, (11.98)

(
σ · (∇ + f)

)(
σ · (∇ + f)

) = (∇ + f)(∇ + f)I2 + iσ · (∇ × f). (11.99)

9. Show the identity
(σ · p̂)(σ · p̂) = p̂ · p̂ I2, (11.100)

and verify that in the presence of a magnetic field, one has

(σ · p̂)(σ · p̂) −→ p̂ 2 + q

c
B · L̂+ q2

c2

B2

4

(
x2 + y2). (11.101)



Chapter 12
Perturbation Theory

In previous chapters we have seen an important set of systems whose Schrödinger’s
equations can be solved analytically. There is, however, an even larger number of
quantum systems whose Schrödinger’s equations can not be solved analytically. Gen-
erally one has to use approximate methods like the WKB approximation, the per-
turbation method, and numerous numerical methods. In this chapter we will study
only the fundamentals of the perturbation theory, and the interaction representation.
The perturbation theory can be used to approach the correct solution, when part of
the Hamiltonian is characterized by a small perturbation parameter η, such that, ne-
glecting the perturbation part V̂p = ηÛ , one is left with a soluble problem for the
Hamiltonian Ĥo = Ĥ − V̂p. When this is the case, the first step of the perturbation
method is to solve the problem for Ĥo. In the following steps the theory tells us how,
starting from the unperturbed eigenfunctions ϕ(0)n and eigenvalues E (0)n , one obtains
corrections of different orders in the perturbation parameter that will leave us, at
the end, with good approximations to the correct solution. We will study, separately,
the perturbation theory for time-independent and for time dependent perturbations.
For the time-independent perturbations, we will distinguish the degenerate from the
non-degenerate case. In the last section of this chapter, we will present some basic
expressions of an alternative method to treat time-dependent and time-independent
perturbation interactions, the interaction representation. The interaction representa-
tion is a formalism that combines the Schrödinger representation, where all the time
dependence is in the wave function

ψ(r, t) = e−i Ĥ t/�ψ(r, 0), (12.1)

with the Heisenberg representation, where all the time dependence is (see Sect. 7.6)
on the operators expressed as:

V̂ (t) = ei Ĥ t/�V̂ e−i Ĥ t/�. (12.2)
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DOI: 10.1007/978-3-642-29378-8_12, © Springer-Verlag Berlin Heidelberg 2012
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In the interaction representation only the perturbation part V̂p of the whole potential
V̂ = V̂o+V̂p, becomes a function of time when it is written in the form

V̂p(t) = ei Ĥot/�V̂pe−i Ĥot/�, (12.3)

with Ĥo the unperturbed Hamiltonian.

12.1 Time-Independent Perturbation Theory

If we have a Hamiltonian like

Ĥ = Ĥo + V̂p = Ĥo + ηÛ , (12.4)

where, as mentioned before, the unperturbed Schrödinger equation for Ĥo is soluble,
one can use the perturbation theory, with different levels of approximation defined
by different orders of the smallness parameter η.

Suppose now that the perturbation potential is independent of time and the
Schrödinger equation

Ĥoϕ
(0)
n = E (0)n ϕ(0)n , or Ĥo|n〉0 = E (0)n |n〉0, (12.5)

is soluble. The procedure to obtain the approximate solutions of

Ĥϕn = Enϕn, (12.6)

depends on whether the states ϕ(0)n are degenerate or not. Let us study the non-
degenerate and degenerate cases separately.

12.1.1 Perturbation Theory for Non-Degenerate States

If the eigenfunctionsϕ(0)n are non-degenerate, we can propose for the exact solutions,
|n〉 and En , a development in powers of the perturbation parameter η, as follows:

|n〉 = |n〉0 + η|n〉1 + η2|n〉2 + . . .; (12.7)

En = E (0)n + ηE (1)n + η2 E (2)n + . . . (12.8)

If we replace these expressions in (12.6), we have

(
Ĥo + ηÛ

)(|n〉0 + η|n〉1 + . . .) = (
E (0)n + ηE (1)n +

)(|n〉0 + η|n〉1 + . . .). (12.9)
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Equating the coefficients of the same powers of η, on the left and right sides of this
equation, we have:

Ĥo|n〉0 = E (0)n |n〉0 (12.10)

Ĥo|n〉1 + Û |n〉0 = E (0)n |n〉1 + E (1)n |n〉0 (12.11)

Ĥo|n〉2 + Û |n〉1 = E (o)n |n〉2 + E (1)n |n〉1 + E (2)n |n〉0. (12.12)

The first of these equations is the Schrödinger equation of the unperturbed system,
which we have assumed soluble. Thus we have E (0)n and |n〉0. Let us assume that |n〉0
is normalized. The second equation, allows us to obtain the first order corrections to
the energy and wave function. This equation depends also on E (0)n and |n〉0. Before
using the second equation we write it as:

(
Ĥo − E (0)n

)|n〉1 = (
E (1)n − Û

)|n〉0. (12.13)

If we multiply this equation from the left by 0〈n| and take into account, here and in
the following, that

0〈n|Ĥo = 0〈n|E (0)n , 0〈k|n〉0 = δk,n, 0〈k|Û |n〉0 = U (0)
k,n, (12.14)

the left side vanishes, and from the right side we have that

E (1)n = U (0)
n,n . (12.15)

This means that, to first order in the perturbation, the correction to the unperturbed
energy is just the expected value of the perturbation potential evaluated in the unper-
turbed state |n〉0. Thus, to first order in η, we have

En = E (0)n + ηU (0)
n,n . (12.16)

For some problems this degree of approximation could be enough. Let us now ob-
tain the first-order correction η|n〉1 to the unperturbed solution |n〉0. To obtain this
correction we will use the complete set of the unperturbed functions |n〉0. We can
express η|n〉1 as the linear combination

|n〉1 =
∑

k

c(1)nk |k〉0 =
∑

k

0〈 k|n〉1|k〉0, (12.17)

which requires the coefficients c(1)nk = 0〈 k|n〉1. Our next task is to obtain these
coefficients. Let us go back to (12.13), and write that equation in the form

(
Ĥo − E (0)n

)|n〉1 = (
U (0)

n,n − Û
)|n〉0, (12.18)
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where we have replaced E (1)n by U (0)
n,n . Multiplying this equation, from the left, with

0〈k|, we have (
E (0)k − E (0)n

)
0 〈k|n〉1 =

(
U (0)

n,nδk,n −U (0)
k,n

)
. (12.19)

This gives us the coefficient

0〈k|n〉1 =
(
U (0)

n,nδk,n −U (0)
k,n

)
(
E (0)k − E (0)n

) , for k �= n. (12.20)

Therefore, the expansion (12.17) can be written as

|n〉1 =
∑
k �=n

U (0)
k,n(

E (0)n − E (0)k

) |k〉0, (12.21)

and the wave function to first order in η is

|n〉 = |n〉0 + η
∑
k �=n

U (0)
k,n(

E (0)n − E (0)k

) |k〉0. (12.22)

With quite similar procedures one can obtain the higher-order corrections. It can
be shown that for the second order corrections we have

E (2)n =
∑
k �=n

|U (0)
k,n |2(

E (0)n − E (0)k

) ≡∑
k �=n

|U (0)
k,n |2

�ωnk
; (12.23)

|n〉(2) =
∑

l,k �=n

U (0)
l,k U (0)

k,n

�2ωnkωnl
|l〉0 −

∑
k �=n

U (0)
n,nU (0)

k,n

�2ω2
nk

|k〉0 − 1

2

∑
k �=n

|U (0)
k,n |2

�2ω2
nk

|n〉0. (12.24)

12.1.2 Perturbation Theory for Degenerate States

Let us suppose now that we are dealing with an unperturbed Hamiltonian Ho that has
degenerate eigenstates |n〉0. When the number of states corresponding to the same
energy level is, say d, we have a degeneracy degree d. Let us suppose also that the
perturbation potential Vp breaks or removes this degeneracy. Even in that case, the
perturbation method changes slightly. Applying the perturbation method one obtains
a secular equation, whose roots, generally real and different, provides corrections to
the unperturbed energy E0

n .
If the degeneracy degree of E0

n is d, the eigenfunctions corresponding to this
unperturbed energy will be denoted as ϕ0

n1
, ϕ0

n2
,…, and ϕ0

nd
. In the Dirac notation
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these are represented by |n1〉0, |n2〉0,…, and |nd〉0. We have two choices to continue
with the general formalism of the perturbation theory of degenerate states. One is
to proceed as if we do not know that the perturbation potential would remove the
degeneracy. Another is to proceed by assuming that the degeneracy will be removed
when η �= 0. Thus, the non-degenerate wave functions |n〉0 + η|ni 〉1 corresponding
to the energy levels E (1)ni (with i=1,2,…,d), reduce to a combination of d orthogonal
degenerate states, i.e. to |n〉0 = ∑d

j=1 anj |n j 〉0. We will follow the last alterna-
tive. Our main objective will be to determine the non-degenerate energy levels and
the coefficients anj for the corresponding linear combination of degenerate states.
Therefore, we can develop the solutions |n〉 and En as follows:

|ni 〉 =
d∑

j=1

aij |nj〉0 + η|ni 〉1 + η2|ni 〉2 + . . . i = 1, 2, . . .d, (12.25)

Eni = E (0)n + ηE (1)ni
+ η2 E (2)ni

+ . . . i = 1, 2, . . .d. (12.26)

If we substitute these expressions into

Ĥ |ni 〉 = Eni |ni 〉, (12.27)

we have

(
Ĥo+ηÛ

)
⎛
⎝ d∑

j=1

aij |n j 〉0+ η|ni 〉1+ . . .
⎞
⎠ = (

E (0)n + ηE (1)ni
+ . . .)

⎛
⎝ d∑

j=1

aij |n j 〉0+ η|ni 〉1+ . . .
⎞
⎠ .

(12.28)

Again, equating the coefficients of equal powers of η in the left and right sides of
this equation, we have

Ĥo|n〉0 = E (0)n |n〉0, (12.29)

Ĥo|ni 〉1 + Û
d∑

j=1

aij |n j 〉0 = E (0)n |ni 〉1 + E (1)ni

d∑
j=1

aij |n j 〉0, (12.30)

Ĥo|ni 〉2 + Û |ni 〉1 = E (o)n |ni 〉2 + E (1)ni
|ni 〉1 + E (2)ni

d∑
j=1

aij |n j 〉0.

(12.31)
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The first equation is the Schrödinger equation of the unperturbed Hamiltonian. The
second yields the first order corrections E (1)ni , that we are looking for. Let us write
this equation in the form

(
Ĥo − E (0)n

)|ni 〉1 =
(−Û + E (1)ni

) d∑
j=1

aij |n j 〉0, (12.32)

and multiply from the left with 0〈nl |. Assuming that the unperturbed degenerate
functions |n j 〉0 are normalized, we obtain the following system of equations:

2∑
j=1

aij 0〈nl |Û |n j 〉0 − E (1)ni

d∑
j=1

aij δl, j = 0 i, l = 1, 2, . . .d, (12.33)

that can be written as

d∑
j=1

aij

(
0〈nl |Û |n j 〉0 − E (1)ni

δl, j

)
= 0 with i, l = 1, 2, . . .d. (12.34)

It is well known that this homogeneous system of linear equations, has non trivial
solutions for the coefficients anj , if

∣∣∣∣∣∣∣∣∣∣

0〈n1|Û |n1〉0 − E (1)ni 0〈n1|Û |n2〉0 . . . 0〈n1|Û |nd〉0
0〈n2|Û |n1〉0 0〈n2|Û |n2〉0 − E (1)ni . . . 0〈n2|Û |nd〉0

...
. . .

0〈nd |Û |n1〉0 0〈nd |Û |n2〉0 . . . 0〈nd |Û |nd〉0 − E (1)ni

∣∣∣∣∣∣∣∣∣∣
= 0.

(12.35)
This condition gives us the energies E (1)ni . It is clear and easy to verify that the secular

equation corresponding to the energy level E (1)ni is identical to that of E (1)n j . Thus all

the determinants lead to the same polynomial of degree d in E (1)ni (or E (1)n j ). It is then
sufficient to solve one of the secular equations. Generally the roots are different, and
give us first order corrections E (1)n1 , E (1)n2 ,… and E (1)nd to E (0)n .

To simplify the discussion we will consider d = 2. It is convenient to use the
notation that we used in Eq. (12.14), for the matrix elements U (0)

l, j = 0〈nl |Û |n j 〉0,

and, to further simplify the notation, we will remove the superscript (0) which indi-
cates evaluation of the matrix element with the unperturbed states. From the secular
Eq. (12.35) we have the polynomial

E (1)2ni
− E (1)ni

(
U1,1 +U2,2

)+U1,1U2,2 −U1,2U2,1 = 0, (12.36)

with roots
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E (1)ni
= 1

2

[
U1,1 +U2,2 ∓

√
(U1,1 −U2,2)2 + 4U1,2U2,1

]
. (12.37)

Therefore, to first order of the perturbation parameter η, the non-degenerate en-
ergies are:

En1 = E (0)n +
η

2

[
U1,1 +U2,2 −

√
(U1,1 −U2,2)2 + 4U1,2U2,1

]
(12.38)

and

En2 = E (0)n +
η

2

[
U1,1 +U2,2 +

√
(U1,1 −U2,2)2 + 4U1,2U2,1

]
. (12.39)

These energies, to first order of the square root development, are:

En1 = E (0)n + η
[

U1,1 − U1,2U2,1

U1,1−U2,2

]
(12.40)

and

En2 = E (0)n + η
[

U1,1 + U1,2U2,1

U1,1−U2,2

]
. (12.41)

We can now obtain the coefficients ai j of the linear combinations corresponding

to E (1)n1 and E (2)n1 . If we plug the energy corrections E (1)ni in the system of Eq. (12.34),

for d = 2, and normalize the linear combination, we get for E (1)n1 (notice that U1,2 =
U∗2,1)

an11 = −an12
U1,2

U1,1 − E (1)n1

(12.42)

and
|an11|2 = 1− |an12|2, (12.43)

with solutions

|an11|2 =
1

2

[
1+ U1,1 −U2,2√

(U1,1 −U2,2)2 + 4U1,2U2,1

]
(12.44)

and

|an12|2 =
1

2

[
1− U1,1 −U2,2√

(U1,1 −U2,2)2 + 4U1,2U2,1

]
. (12.45)

One finds similar results for E (1)n2 .
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12.2 Time-Dependent Perturbations

There is a large number of systems whose Hamiltonians depend on time. In those
cases, the energy is, of course, not conserved. If a Hamiltonian of this kind can be
written as the sum of a stationary Hamiltonian Ĥo plus a time-dependent perturbation
potential, i.e., if

Ĥ = Ĥo + V̂p(t), (12.46)

it makes sense to think of time-dependent corrections to the energies and functions
of the stationary system. The aim of the perturbation theory is to determine the time
evolution of the system based on the solutions of the stationary problem. To simplify
the notation, let Û (t) ≡ V̂p(t). Suppose that |ψn〉0 (or |n〉0), is a solution of the
stationary problem. The solution of

(
Ĥo + Û (t)

)|ψ〉 = ih
∂|ψ〉
∂t

, (12.47)

will be written as the linear combination

|ψ〉 =
∑

k

an(t)|ψn〉0, (12.48)

with |ψn〉0 = e−i Ent/�ϕn(r) and an time dependent coefficients. Our purpose is to
determine these coefficients. If we replace the combination (12.44) into (12.47), and
take into account that

Ĥo|ψn〉0 = ih
∂|ψn〉0
∂t

, (12.49)

we find the equation

i�
∑

n

|ψn〉0 ∂an

∂t
=

∑
n

anÛ |ψn〉0. (12.50)

If we now multiply this equation from the left by 0〈ψk |, and separate the time de-
pendent part |ψn〉0, we obtain the system of time-evolution equations

i�
∂ak

∂t
=

∑
n

anUk,n(t)e
i
(

E (0)k −E (0)n

)
t/�
. (12.51)

To solve this system of equations we use a perturbation method as follows. If at t = 0
the system is in one of the eigenstates of Ĥo, say in the state |ψn〉0, it is clear that
at this time an(0) = 1, and ak(0) = 0 for k �= n. It is plausible to suppose that,
sometime later, the coefficients can be expressed, approximately, as

al(t) = al(0)+ a(1)l (t) (12.52)
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with al(t)� an(t) ≈ 1. In this case, the system of equations takes the form

i�
dak

dt
= Uk,n(t)e

i
(

E (0)k −E (0)n

)
t/�
, (12.53)

that can be written as

ak(t) = − i

�

t∫

0

Uk,n(t
′)eiωkn t ′dt ′ k �= n, (12.54)

where the frequencyωkn=(E (0)k −E (0)n )/� was defined. These coefficients have a very
interesting physical meaning. They represent the possibility of the system, which at
time t = 0 is in the state |ψn〉0 with energy E (0)n , to be found at time t in the state
|ψk〉0 with energy E (0)k . Therefore, the transition probability, from the state |ψn〉0 to
the state |ψk〉0, is:

|ak(t)|2 = 1

�2

∣∣∣∣∣∣
t∫

0

Uk,n(t
′)eiωkn t ′dt ′

∣∣∣∣∣∣
2

, (12.55)

and the probability that the system remains in the state |ψn〉0, i.e. the survival prob-
ability, will be:

|an(t)|2 = 1−
∑
k �=n

|ak(t)|2 = 1− 1

�2

∑
k �=n

∣∣∣∣∣∣
t∫

0

Uk,n(t
′)eiωkn t ′dt ′

∣∣∣∣∣∣
2

. (12.56)

If the potential varies slowly with time, the matrix elements Uk,n are almost
constant and can be taken out of the integral, assuming of course that t is not too
large. After integration, we have the transition amplitude

ak(t) = − 0〈ψk |U |ψn〉0
E (0)k −E (0)n

(
1− eiωkn t

)
, k �= n (12.57)

and the transition probability per unit time, in this case the transition probability from
the state |ψn〉0 to the state |ψk〉0, will be

Wkn = |ak(t)|2
t
= 4

∣∣0〈ψk |U |ψn〉0
∣∣2

�2

sin2(ωknt/2)

ω2
knt

. (12.58)

As can be seen in Fig. 12.1, where we plot the function sin2(ωknt/2)/ω2
knt , the

highest maximum of this function grows with time while the width becomes narrower.
The region of frequencies ωkn with higher contributions is basically in the range
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Fig. 12.1 The behavior of the function sin2(ωknt/2)/ω2
knt at t =1 and t =4. The maximum value

of this function is t/4 and the higher amplitudes region extends from −2π/t to 2π/t . The area
below the curve, from −∞ to∞, for any value of t is π/2

|ωkn| ≤ 2π/t = ε/�. In the limit t →∞ the function tends to (π/2)δ(E (0)n − E (0)k ).
We will comment on this limit at the end of this section.

Based on (12.58) we can conclude that the probability to find the system in any
of the states |ψk〉0 is

Wn =
∑
k �=n

Wkn =
∑
k �=n

4
∣∣0〈ψk |U |ψn〉0

∣∣2

�2

sin2(ωknt/2)

ω2
knt

(12.59)

This expression can, approximately, be evaluated if we replace the factor function
f (ωkn, t) = sin2(ωknt/2)/ω2

knt by a frequency-independent function g(t), defined
in such a way that the integral, in the frequency region (−π/t,π/t), is also π/2. That
function is t/4 and the sum, is then restricted to the states (−π�/t,π�/t). If ρ(E (0)k )

is the density of states, the number of states in the energy region (−π�/t,π�/t) is

ΔN = ρ(E (0)k )
2π�

t
. (12.60)

These considerations can lead to the approximation

∑
k �=n

4
∣∣0〈ψk |U |ψn〉0

∣∣2

�2

sin2(ωknt/2)

ω2
knt

→ 4
∣∣0〈ψk |U |ψn〉0

∣∣2

�2 ρ(E (0)k )
2π�

t

t

4
.

(12.61)

With this approximation, it is easy to see that the transition probability per unit time
is given by

Wn = 2π
∣∣0〈ψk |U |ψn〉0

∣∣2

�
ρ(E (0)k ). (12.62)
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This is known as the Fermi golden rule. This formula has been widely applied for
simple evaluations of quantum transitions, especially in nuclear and high energy
physics.

If, on the other hand, we consider the limit t → ∞ and substitute the function
sin2(ωknt/2)/ω2

knt by (π/2)δ(E (0)n − E (0)k ) in Eq. (12.59), we go to the continuous
limit. Changing the sum by an integral

Wn →
∞∫

−∞
ρ(E (0)k )

2π
∣∣0〈ψk |U |ψn〉0

∣∣2

�
δ(E (0)n − E (0)k )d E (0)k , (12.63)

we obtain

Wn = 2π
∣∣0〈ψn |U |ψn〉0

∣∣2

�
ρ(E (0)n ). (12.64)

According to this result, as t →∞, the transition become negligible.

12.3 The Interaction Representation

We will see now a general procedure to solve the equation

i�
∂ψ

∂t
= Ĥψ, (12.65)

when
Ĥ = Ĥo + V̂ (t). (12.66)

This method is based on the assumption that the time evolution of the wave function
ψ(r, t) is determined by an evolution operator that depends on the time-dependent
potential V̂ (t). If we define the function

ψ̃(r, t) = ei Ĥot/�ψ(r, t), (12.67)

such that at t = 0
ψ̃(r, 0) = ψ(r, 0), (12.68)

it is clear that (to simplify the notation we show only the time dependence)
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∂ψ̃(t)

∂t
= i

�
Ĥoei Ĥot/� ψ(t)+ ei Ĥot/� ∂ψ(t)

∂t

= i

�
ei Ĥot/�Ĥo ψ(t)+ ei Ĥot/�

(
− i

�
Ĥψ(t)

)

= − i

�

(
ei Ĥot/�V̂ (t)e−i Ĥot/�

)
ψ̃(t). (12.69)

This equation can be written as

i�
∂ψ̃(t)

∂t
= V̂ ′(t)ψ̃(t), (12.70)

with V̂ ′(t)
V̂ ′(t) = ei Ĥot/�V̂ (t)e−i Ĥot/�. (12.71)

Formally, the solution of Eq. (12.70) is

ψ̃(t) = e−i V̂ ′(t)(t−t0)/�ψ̃(t0) = Û (t, t0) ψ̃(t0). (12.72)

We will try to obtain a simpler representation of the unitary operator Û (t, t0). If we
take the time derivative of

Û (t, t0) = e−i V̂ ′(t)(t−t0)/�, (12.73)

we have the first-order differential equation

i�
dÛ (t, t0)

dt
= V̂ ′(t)Û (t, t0), (12.74)

which, after integration from t0 to t , transforms into

Û (t, t0)− Û (t0, t0) = − i

�

t∫

t0

V̂ ′(t1)Û (t1, t0)dt1. (12.75)

From the definition of the operators V̂ ′(t1) and Û (t, t0), it is easy to see that the
above equation can be written as

Û (t, t0) = 1− i

�

t∫

t0

ei Ĥot1/�V̂ (t1)e
−i Ĥot1/�Û (t1, t0)dt1, (12.76)

which is a time evolution operator where both parts of the Hamiltonian, Ĥo and V̂ (t)
appear explicitly. This is an integral equation for Û (t, t0)which is solved iteratively.
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At each stage of the iterative process we have, in principle, a better approximation.
In the iterative process we start with Û (0)(t, t0) = 1. This is the zero order solution.
If we use this in (12.76), we obtain the first order solution

Û (1)(t, t0) = 1− i

�

t∫

t0

ei Ĥot/�V̂ (t)e−i Ĥot/�dt1. (12.77)

In the second step of the iterative procedure we introduce this operator in (12.76), to
obtain the second order solution

Û (2)(t, t0)=1− i

�

t∫

t0

ei Ĥot1/�V̂ (t1)e
−i Ĥot1/�dt1

⎛
⎝1− i

�

t1∫

t0

ei Ĥot2/�V̂ (t2)e
−i Ĥot2/�dt2

⎞
⎠ , (12.78)

that can be written as

Û (2)(t, t0)=1− i

�

t∫

t0

ei Ĥot1/�V̂ (t1)e
−i Ĥot1/�dt1

− 1

�2

∫ t

t0
dt1

t1∫

t0

dt2 ei Ĥot1/�V̂ (t1)e
i Ĥo(t2−t1)/�V̂ (t2)e

−i Ĥot2/�. (12.79)

This procedure continues, in principle, to any order. Given this evolution operator,
we can write the wave function ψ(r, t), for example to second order, as

ψ(r, t) = e−i Ĥot/�
(

1+ Û (1)(t, t0)+ Û (2)(t, t0)
)
ψ(r, 0), (12.80)

with Û (1)(t, t0) and Û (2)(t, t0) as defined above.

12.4 Solved Problems

Exercise 37. If an atom is in a weak external electric field E , the interaction of the
atomic electrons with this field, can be treated as a perturbation term. Obtain the first
and second order corrections to the electron energy.
Solution We know that, between the field E and the electric potential φ, holds the
relation
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E = −∇ · φ. (12.81)

If we multiply by dr and integrate, with the origin of the coordinates system at the
atomic center, the electron’s potential energy is

V = qφ = eE · r. (12.82)

The product eE � 1.60218 10−19E is, certainly, small in the presence of a weak
electric field E , and the effect on the energy can be treated as a perturbation. Using
the matrix elements

r(0)kn = 0〈k |̂r|n〉0, (12.83)

the atomic electron energy in the presence of an external field, up to second order in
eE , is then given by

En = E0
n + eE · r(0)kn + e2

∑
k �=n

(E · r(0)nk

)(E · r(0)kn

)
E0

n − E0
k

. (12.84)

The first-order correction is known as the Stark effect.

12.5 Problems

1. Prove that the energy and wave function corrections, to second-order of the
perturbation theory for non-degenerate states, are:

E (2)n =
∑
k �=n

|U (0)
k,n |2(

E (0)n − E (0)k

) ≡∑
k �=n

|U (0)
k,n |2

�ωnk
, (12.85)

and

|n〉(2) =
∑

l,k �=n

U (0)
l,k U (0)

k,n

�2ωnkωnl
|l〉0−

∑
k �=n

U (0)
n,nU (0)

k,n

�2ω2
nk

|k〉0− 1

2

∑
k �=n

|U (0)
k,n |2

�2ω2
nk

|n〉0. (12.86)

2. Show that, in the perturbation theory of degenerate states, independent of time,
with degeneracy degree 2, the following identities hold:

|U1,2|2 + (U1,1 − E (1)n1 )
2

(U1,1 − E (1)n1 )
=

√
(U1,1 −U2,2)2 + 4U1,2U2,1; (12.87)
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|U1,2|2 + (U1,1 − E (1)n2 )
2

(U1,1 − E (1)n2 )
= −

√
(U1,1 −U2,2)2 + 4U1,2U2,1. (12.88)

3. Prove that, in the perturbation theory of degenerate states, independent of time,
with degeneracy degree 2, the coefficients of the normalized linear combination
of degenerate states, for E (1)n2 , are:

|an21|2 =
1

2

[
1− U1,1 −U2,2√

(U1,1 −U2,2)2 + 4U1,2U2,1

]
(12.89)

and

|an22|2 =
1

2

[
1+ U1,1 −U2,2√

(U1,1 −U2,2)2 + 4U1,2U2,1

]
. (12.90)

4. Given the first order corrections to the energy of unperturbed degenerate states
and the linear combinations, obtain the energy corrections to second order of η.

5. Prove that, with the approximations described in Sect. 12.3, the transition prob-
ability in (12.59) reduces to the Fermi golden rule

Wn = 2π
∣∣0〈ψk |U |ψn〉0

∣∣2

�
ρ(E (0)k ). (12.91)

6. Show that replacing the function sin2(ωknt/2)/ω2
knt by (π/2)δ(E (0)n − E (0)k ) in

(12.59) one obtains

Wn = 2π
∣∣0〈ψn |U |ψn〉0

∣∣2

�
ρ(E (0)n ). (12.92)



Chapter 13
Identical Particles, Bosons and Fermions

13.1 Introduction

The distiguishability or not of quantum processes under an interchange operator P̂i j

of two particles and the interference phenomena of the wave function amplitudes, are
fundamental issues of quantum theory. We will see that, for systems of identical par-
ticles, the invariance of the Hamiltonian under the action of the operator P̂i j implies
symmetry conditions on the wave functions that are symmetric under P̂i j when
it describes integer-spin particles (bosons), and antisymmetric, when it describes
half-integer spin particles (fermions). Related with these symmetries, different and
amazing properties of nature manifest when two or more identical particles with
equal spins are observed. We will comment some consequences related with these
symmetries: consequences and properties that can be explained within the quantum
theory.

13.2 Distinguishable and Indistinguishable Quantum Processes

To visualize the properties that we want to discuss, let us suppose that we have a
scattering process of two quantum particles, a and b which can be distinguished. In
Fig. 13.1 we show two processes, seen from the center of mass system.1 In the process
of the left hand figure, the particle a is registered by the counter C1 and the particle
b by the counter C2. When the counters C1 and C2 distinguish the particle’s identity,
the processes are distinguishable. We will represent the probability amplitude for the
particle a to be scattered an angle θ as2

1 An observer in the center of mass, will see that two particles, approaching or distancing, move
one opposite to the other before and after the scattering, independent of the scattering angle.
2 Generally ϕ(θ) = ϕ(−θ) and ϕ(π − θ) = ϕ(θ − π).

P. Pereyra, Fundamentals of Quantum Physics, Undergraduate Lecture Notes in Physics, 281
DOI: 10.1007/978-3-642-29378-8_13, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 13.1 Collision of a particle a with a particle b seen from their center of mass. The particle
counters C1 and C2 register the scattered particles along the θ y π − θ directions

ϕa(θ) = 〈1|a〉. (13.1)

This is equal to the probability amplitude for b to be scattered along the θ − π
direction. Therefore, the probability that the counter C1 registers the particle a, i.e.,
the probability for the left side process to occur, is

Pa1 = |ϕa(θ)|2. (13.2)

If the counter C1 registers the particle b, the right hand side process occurred. If the
probability amplitude for the particle a to be scattered along the θ −π direction, i.e.
to be registered by the counter C2, is ϕa(θ − π), the probability for the occurrence
of the right hand side process is

Pa2 = |ϕa(π − θ)|2 = |ϕb(θ)|2 = Pb1. (13.3)

We could be less restrictive and ask ourselves for the probability P that the counter
C1 registers either the particle a or the particle b, i.e. for the probability that either
the left or the right hand side process occurs. In this case, we have the probability
for occurrence of the left hand side process, plus the probability for the occurrence
of the right hand side process, i.e.

P = Pa1 + Pa2 = |ϕa(θ)|2 + |ϕa(π − θ)|2. (13.4)

The occurrence of one event does not interfere with the occurrence of the other.
We have a specific realization of the experiment just discussed, when we have, for
example, the scattering of an α particle by a proton or any nuclei, different from α.
The probability of having the particle α in C1, and the proton in C2, is

Pα1 = |ϕα(θ)|2. (13.5)
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Fig. 13.2 Collision of two particles α seen from their center of mass. The particle counters C1 and
C2 register the scattered particles along the θ and π − θ directions

What happens when the particles are equal, say both alphas as in Fig. 13.2? In this
case, the processes at the left and right, are not distinguishable any more. If a particle
α is detected in C1, we do not know whether it comes from the left or from the right.
Any of the two processes could have happened. The probability amplitude to detect
an α in C1 has two contributions: the probability amplitude that the alpha particle
was scattered along θ and the probability amplitude that it was scattered along θ−π ,
i.e.

ϕα1 = ϕα(θ)+ ϕα(π − θ); (13.6)

both amplitudes interfere and the probability of detecting a particle α in C1
3 is now

Pα1 = |ϕα(θ)+ ϕα(π − θ)|2. (13.7)

If in these experiments the scattered particles are identical, for example alphas, or
electrons, etc., but they possess some quantum property like the spin projection that
the counters can distinguish, the previous analysis holds. If the spin projections are
different, the situation is analogous to that of particles a and b and the processes
will be distinguishable. If their spin projections are equal, the particles are identical
and the processes will be indistinguishable. However, it is important to notice that
talking of scattering processes is not the same as talking of the occupation probability
of a quantum state by identical particles with spin. The spin in this case gives rise
to important physical differences. We will briefly comment those properties in the
following sections.

3 Which is equal to the probability of detecting an alpha particle in C2.
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13.3 Bosons and Fermions

To describe a system with N identical particles, we will use functions like

φ(ξ1, ξ2, . . ., ξN ) = ϕ(r1, r2, . . ., rN )χ(s1, s2, . . ., sN )

= φ1(r1, s1)φ2(r2, s2), . . ., φN (rN , sN )

= φ1(ξ1)φ2(ξ2), . . ., φN (ξN ). (13.8)

Although it is clear that, when the particles are identical we can not label them, we
can suppose (temporarily) that we have in the state 1 the particle 1, in the state 2 the
particle 2,. . . etc. Because the particles are identical, it may happen that the particle
1 is in the state 2, the particle 2 in the state 1, the particle 3 in the state 3,. . . etc.
This leads us to conclude that the most general representation for a system with
N identical particles is obtained when we sum up all possible permutations of the
coordinates ξ j of the wave function φ(ξ1, ξ2, . . ., ξN ), i.e., the most general function
to describe a system of N identical particles is

Φ(ξ1, ξ2, . . ., ξN ) = C
∑

P

P̂ξ
[
φ1(ξ1)φ2(ξ2), . . ., φN (ξN )

]
, (13.9)

with Pξ the permutation operator of the coordinates ξ j . C is a normalization constant.
When we have identical particles, and we interchange the position and spin of any
two particles, the system does not change. This symmetry under the interchange of
two particles must be reflected by the invariance of the function φ(ξ1, ξ2, . . ., ξN ).
If P̂kl is the operator that interchanges the particles k and l, we have in principle the
transformation

P̂klφ(ξ1, ξ2, . . ., ξk, . . ., ξl , . . .ξN ) = eiδφ(ξ1, ξ2, . . ., ξl , . . ., ξk, . . .ξN );
(13.10)

which returns to the original state when the operator acts twice, thus ei2δ = 1. Hence

eiδ = ±1. (13.11)

Combining (13.10) and (13.11), we conclude that on one side we can have

φ(ξ1, ξ2, . . ., ξk, . . ., ξl , . . .ξN ) = φ(ξ1, ξ2, . . ., ξl , . . ., ξk, . . .ξN ), (13.12)

in which case the wave function is symmetric under the interchange of two particles,
and on the other

φ(ξ1, ξ2, . . ., ξk, . . ., ξl , . . .ξN ) = −φ(ξ1, ξ2, . . ., ξl , . . ., ξk, . . .ξN ),

(13.13)
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and the function is antisymmetric under the interchange of two particles. It is a
fact that particles with integer spin (like photons, alpha particles, etc.) are described
by symmetric functions; and those with half-integer spin (like electrons, protons,
neutrons, etc.) are described by antisymmetric functions. This sign difference has
enormous consequences on how the nature is built. Particles with integer spin are
called generically bosons and those with half-integer spin, fermions.4 We shall see,
a little later, some important consequences as the Pauli’s exclusion principle and
the Bose–Einstein condensation. We know from matrix algebra, what the matrix
determinant and the matrix permanent operations mean.5 Using these operations,
it is not difficult to verify that the sum of terms Φ(ξ1, ξ2, . . ., ξN ) in (13.9) can
be written as the permanent (to describe bosons) or the determinant (to describe
fermions) of

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1(ξ1) φ1(ξ2) . . . φ1(ξN )

φ2(ξ1) φ2(ξ2) . . . φ2(ξN )

·
·
·

φN (ξ1) φN (ξ2) . . . φN (ξN )

⎞
⎟⎟⎟⎟⎟⎟⎠
. (13.14)

We will briefly analyze some consequences of these symmetries.

13.3.1 Bose–Einstein Condensation and the Pauli Exclusion
Principle

To simplify the analysis, we will consider a system of two particles. Let us start with
two particles with integer spins, i.e. two bosons. We know that the most general wave
function in this case is the superposition

Φ(ξ1, ξ2) = 1√
2!

(
φ1(ξ1)φ2(ξ2)+ φ1(ξ2)φ2(ξ1)

)
. (13.15)

This function is symmetric under the interchange operator P12. The system could
be one of two photons, within a space region limited by two mirrors, as shown in
Fig. 13.3. Suppose also that these photons are created one after the other. When the
first photon, photon f 1, is created, the probability amplitude to find it, in some point
r1 between the mirrors, is φ1(ξ1) = ϕ1(r1)χ(s1), and the probability density is

p1 f = |ϕ1(r1)χ(s1)|2 = |φ(r1, s1)|2. (13.16)

4 W. Pauli, using field theory dealt with this issue.
5 The matrix permanent develops like the matrix determinant, but without changes of sign.
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1f

2f

Fig. 13.3 In a system like the one shown here, photons are created by the recombination of
conduction-band electrons with holes (absences) of the valence band of a quantum well. The excited
electrons in the conduction band occupy the quantum well states according to the Pauli exclusion
principle and the Fermi–Dirac statistics. Photons moving between mirrors fulfill the Bose–Einstein
statistics

We will interpret this, as the probability to create the first photon. When the second
photon is created, the function that describes the two photons is the functionΦ(ξ1, ξ2)

given in (13.15). If the particles are identical,

φ1(ξ1) = φ2(ξ2). (13.17)

The wave function or probability amplitude for the two photons Φ(ξ1, ξ2) is then
written as

Φ(ξ1, ξ2) = 2√
2!φ

2
1(ξ1) =

√
2!ϕ2

1(r1)χ
2(s1). (13.18)

Therefore, the probability of finding the photon f 1 at r1 and the photon f 2 at r2 is

p2 f = 2|ϕ1(r1)χ(s1)|2|ϕ1(r1)χ(s1)|2 = 2p1 f p1 f . (13.19)

This result can be interpreted as the product of the probability p f 1 = p1 f to create
the photon f 1 (in the empty state) times the probability p f 2 = 2p1 f to create the
photon f 2, when the photon f 1 already exists. This probability, p f 2, is twice the
probability p f 1. If we generalize this argument6 for an arbitrary number of photons,
we conclude that the probability density for creating one photon when n−1 photons

6 A detailed discussion on this issue, can be found in Richard P. Feynman, Robert Leighton and
Matthew Sands, Lectures on Physics (Addison-Wesley, 1964).
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exist already, is

pn f = np(n−1) f = n!pn
1 f . (13.20)

This probability is n times larger than the probability of having one more photon
when n − 2 already exist, and so on. This, without doubt, is an interesting result
that is behind the Bose–Einstein condensation phenomenon7 and the superfluidity
phenomenon discovered in 1938 by Kapitsa, Allen and Misener.8

Suppose now that we have two fermionic particles, for example, two electrons in
the bound energy levels of the quantum well in Fig. 13.3. Suppose also, for a moment,
that they were not identical. Due to the symmetry properties of the fermion wave
functions, the two electrons would be described by the antisymmetric function

Φ(ξ1, ξ2) = 1√
2!

(
φ1(ξ1)φ2(ξ2)− φ1(ξ2)φ2(ξ1)

)
. (13.21)

If the particles are identical, the function Φ(ξi , ξ j ) becomes zero. This means that
it is not possible to have two identical fermions in the same quantum state. This is
precisely the Pauli exclusion principle, a fundamental property of nature; the recipe
to build and distinguish atoms. The exclusion principle allows quantum theory to
explain the electronic configuration and the periodic table. Let us now introduce a
final comment on the normalization constant of the general solution (13.14). If we
have N bosons, with N1 particles in the state 1, N2 in the state 2, etc., the wave
function Φ(ξ1, ξ2, . . ., ξN ) in (13.9) contains N !/N1!N2!. . . different terms. If we
instead have N fermions, the wave function Φ(ξ1, ξ2, . . ., ξN ) in (13.9) will be the
determinant of (13.14) with N ! terms. If the wave functions φk(ξ) are normalized,
the normalization constant C in (13.9) will be C = √N1!N2!. . ./N ! for bosons and
C = 1/

√
N ! for fermions.

13.3.2 Bose–Einstein and Fermi–Dirac Statistics

One of the variables that one needs quite frequently in applications is the occupation
probability or the average number of particles n in quantum states. In a system of
many particles, described by a Hamiltonian Ĥ , the stationary quantum states ϕ j and
their corresponding energies E j are solutions of

Ĥϕ j = E jϕ j , j = 1, 2, 3, . . . (13.22)

7 Eric Cornell and Carl Wieman, in 1995, have shown that cooling at 0.17 µK, the rubidium gas
undergoes to the Bose–Einstein condensate state.
8 Pyotr Kapitsa, John Allen and Don Misener discovered that He4 passes to the superfluid state
when the temperature reaches 2.17 K.
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In a system of identical particles, it is fundamental to determine the number of
particles in each of the available quantum states, i.e. the set of occupation numbers

{n j } = (n1, n2, . . ., n j , . . .). (13.23)

With this information it is possible to evaluate a number of physical quantities, for
example, the energy of the whole system

E =
∑

j

E j n j . (13.24)

The Bose–Einstein and the Fermi–Dirac statistics differ precisely in the occupation
numbers. We will derive the average occupation numbers n in both cases. The reader
can find, in the standard statistical theory courses, different derivations of n. When
the system is in contact with a heat bath, at temperature T , that works as a reservoir
of particles, characterized by a chemical potential μ, one uses for the statistical
evaluation the partition function

Z N =
∑
{n j }

e−(E1n1+E2n2+...)/kB T ; with N =
∑

j

n j . (13.25)

The sum here extends over all sets of occupation numbers {n j }, compatible with
N = ∑

j n j . With this function one can obtain the grand partition function (of the
grand canonical ensemble)

Ξ =
∑
N=0

e−Nμ/kB T Z N =
∑
n1

e(μ−E1)n1/kB T
∑
n2

e(μ−E2)n2/kB T . . . (13.26)

To perform the sums we have to take into account all possible values of n j , in each
case. In the Bose–Einstein statistics n j can be any natural number and zero; this
means that for each factor of the last equation we have

∞∑
n=0

e(μ−E j )n j /kB T = 1

1− e(μ−E j )/kB T
, (13.27)

but in the Fermi–Dirac statistics, n j can be only 0 or 1. As a consequence

∞∑
n=0

e(μ−E j )n j /kB T = 1+ e(μ−E j )/kB T . (13.28)

If we assign the sign − to Bose–Einstein statistics and the sign + to Fermi–Dirac
statistics, we can write the previous results in compact form as
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∞∑
n=0

e(μ−E j )n j /kB T = [
1∓ e(μ−E j )/kB T ]∓1

, (13.29)

thus the grand partition function becomes

Ξ =
∏

j

[
1∓ e(μ−E j )/kB T ]∓1

. (13.30)

Using this partition function it has been possible to derive, in the statistical theory,
the occupation probability

℘(n j ) = e(μ−E j )n j /kB T∑
n j

e(μ−E j )n j /kB T
, (13.31)

of the state ϕ j . Therefore, the average number n j of particles in the state ϕ j is given
by

n j =
∑
n j

n j℘(n j ) =
∑

n j
n j e(μ−E j )n j /kB T

∑
n j

e(μ−E j )n j /kB T

= kB T
∂

∂μ

∑
n j

e(μ−E j )n j /kB T . (13.32)

If we use the relation (13.29), the average occupation number is given also by

n j = kB T
∂

∂μ

[
1∓ e(μ−E j )/kB T ]∓1

, (13.33)

which leads, on one side (for bosons) to

n j = 1

e(E j−μ)/kB T − 1
, (13.34)

a distribution similar to the Planck distribution, and on the other side (for fermions)
to

n j = 1

e(E j−μ)/kB T + 1
. (13.35)

Both distributions reduce, in the classical limit of high temperatures, to the Boltzmann
distribution. Another important limit is the continuum limit, in which the occupied
volume is so large that the single particle states are more and more densely distributed.
For a large fermion system, the number of states ΔN , with energies between E and
E +ΔE , can be expressed as
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Fig. 13.4 The Fermi distribution for T = 0 and for T �= 0. When the system temperature is T = 0,
all levels below the Fermi energy are occupied with probability 1. Increasing the temperature, the
occupation probability for energy levels above the Fermi energy EF increases, while for energy
levels below EF diminishes. The occupation probability at the Fermi level is 1/2. At T = 0 the
Fermi energy and the Fermi level coincide. The energy interval in which the distribution falls down
from 1 to 0 is proportional to the thermal energy kB T

ΔN = D(E)ΔE, (13.36)

where D(E) is the density of states. The occupation probability of the energy level
E is given, in this limit, by the Fermi–Dirac distribution

f (E) = 1

e(E−EF )/kB T + 1
. (13.37)

In this expression the chemical potential μ was substituted by the “Fermi level”
EF , a concept most used in physics. This distribution function depends also on the
temperature T . In Fig. 13.4 we plot the function f (E) for T = 0 and for T �= 0. It
is easy to verify that when T = 0, the function f (E) = 1 for energies E < EF ,
and f (E) = 0 when E > EF . It is also clear that when the energy E equals the
Fermi energy9, f (E) = 1/2. This means that, at temperature T = 0, all states with
energies less than EF are occupied and those with higher energies are unoccupied.

If the temperature is different from zero, the distribution function shown in
Fig. 13.4 has a continuous variation close to the Fermi level. In an energy interval of
the order of the thermal energy kB T , it changes from an occupation probability that
is almost 1 to an occupation probability that tends to 0 as the energy E increases. At
the Fermi energy the occupation probability is 1/2. The behavior of the Fermi–Dirac
distribution function, when T �= 0, shows that the occupation probability for the
energy levels close to EF is less than 1. This behavior of the occupation probability
is a consequence of the thermal excitation of fermions above the Fermi level.

Using the density of states D(E) and the Fermi distribution f (E) one can evaluate
the mean energy and the number of particles

9 When T = 0, it is common to call Fermi energy to Fermi level.
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E =
∫

E f (E)D(E)d E, (13.38)

N =
∫

f (E)D(E)d E . (13.39)

These are important functions of statistical physics, the solid state physics and the
semiconductor physics which, in general, deal with systems of many particles, espe-
cially with many electron systems.

13.4 The Effect of the Statistics on the Energy

Explaining the electronic configuration of atoms was one of the problems where
the spin has been relevant. In Chap. 10, we mentioned the need of using the Pauli
exclusion principle and the electron’s spin. To understand a bit more the effect of the
statistics on the behavior of a system of particles, and, on the system’s energy, we
will consider the Helium atom and the problem of two electrons in a one-dimensional
potential well. In both systems, the Hamiltonian is independent of the spin, and the
wave function for two electrons can be factored in a coordinates-dependent function
and a spin-dependent factor, as follows:

φn1,n2(ξ1, ξ2) = ϕn1,n2(x1, x2)χms1,ms2 . (13.40)

Prior to discussing the Schrödinger equation, let us consider the spin-dependent
factor for a two-particle system.

13.4.1 Spin States for Two Spin 1/2 Particles

We saw before that for a particle with spin s1, and spin projection ms1 along the
z axis, we need to introduce, besides the operator Ŝ1, the operators Ŝ 2

1 and Ŝ1z ,
which satisfy the eigenvalues equations

Ŝ 2
1 |s1ms1〉 = �

2s1(s1 + 1)|s1ms1〉, (13.41)

Ŝ1z |s1ms1〉 = �ms1 |s1ms1〉, with |ms1| ≤ s1. (13.42)

In a two-particle system with spins s1 and s2 and spin operators Ŝ1 and Ŝ2, we can
determine the spin Ŝ of the whole system using the angular momenta addition rules,
that were sketched in Chap. 11. In this case we have

Ŝ = Ŝ1 + Ŝ2; (13.43)

http://dx.doi.org/10.1007/978-3-642-29378-8_10
http://dx.doi.org/10.1007/978-3-642-29378-8_11
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with the corresponding sum for the spin projections

Ŝz = Ŝz1 + Ŝz2. (13.44)

If we denote the spin state of the two-particle system as

|s1s2ms1ms2〉 = |s1ms1〉|s2ms2〉, (13.45)

it is clear that

ms = ms1 + ms2. (13.46)

The operators Ŝ, Ŝ2 and Ŝz satisfy the analogous commutation relations as those for
L̂, L̂2 and L̂ z . Moreover, the operators Ŝ2, Ŝz , Ŝ2

1 and Ŝ2
2 commute among them. The

operators Ŝ2 and Ŝz commute also with the interchange operator P̂1,2, and with the
Hamiltonian. This means that, for well defined values of s1 and s2, the eigenfunctions
should be represented by functions characterized by the quantum numbers s, ms , s1
and s2, or alternatively by states defined by the quantum numbers s1, ms1, s2 and
ms2, that make reference to the electrons’ spin projections.10 In the Dirac notation
we have, in one case,

ψsms = |smss1s2〉, (13.47)

and

χms1,ms2 = |s1s2ms1ms2〉, (13.48)

in the other. For particles with spin 1/2 it is possible to make the notation even lighter.
We can use, for example, just the signs of the spin projections ms1 = ± 1/2 and
ms2 = ± 1/2. In this case we have

χ±,± = |s1s2±1/2±1/2〉 = χ±χ±. (13.49)

10 Both representations are possible and one can establish the relation between them. This relation
is a particular case of the transformation

|smss1s2〉 =
∑

ms1+ms2=ms

|s1s2ms1ms2〉〈s1s2ms1ms2||smss1s2〉

=
∑

ms1+ms2=ms

Cs1,s2,s
ms1,ms2,ms

|s1s2ms1ms2〉.

The coefficients Cs1,s2,s
ms1,ms2,ms are known as the Clebsch-Gordan coefficients. The interested reader

can find more details, for example, in A.R. Edmonds Angular Momentum in Quantum Mechanics,
(Princeton University Press, Princeton, N. J. 1974).
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If we represent the eigenfunctions of Ŝ2 and Ŝz with |smsms1ms2〉, the eigenvalue
equations of Ŝ2 and Ŝz will read

Ŝ2|smsms1ms2〉 = �
2s(s + 1)|smsms1ms2〉, (13.50)

Ŝz |smsms1ms2〉 = �ms |smsms1ms2〉, with |ms | ≤ s. (13.51)

As mentioned before, the largest value that the spin s can take is s1 + s2 and
the smallest |s1 − s2|. This means that in our two particle system, with spins
s1 = s2 = 1/2, the spin quantum numbers are

s = 0, 1 and ms = −s,−s + 1, . . ., s. (13.52)

When the spins are parallel, the total spin is s = 1, while s = 0 when the spins are
antiparallel. For the state with s = 1, we have three possible spin components along
the z axis: ms = −1, 0, 1. For this reason, this spin state is called a triplet. Since
ms = ms1 + ms2, we can infer that the state ψ11 is equivalent to the state χ++ with
ms1 =1/2 and ms2 =1/2. Therefore

ψ1,1 = χ++. (13.53)

In the same way

ψ1,−1 = χ−−. (13.54)

These states are symmetric under the interchange of particles. The relation of χ+−
and χ−+ with the state ψ1,0 is different. If ms = 0, it is clear that ms1 should be
= 1/2 and that ms2 =−1/2 or, alternatively, ms1 =−1/2 and ms2 =1/2. This means
that the states χ+− and χ−+ contribute toψ1,0. In this case we say that they interfere.
Since the state must be symmetric, we write it as

ψ1,0 = 1√
2
(χ+− + χ−+) . (13.55)

We will see, at the end of this chapter, that an alternative procedure to obtain this state
is leaving the lowering operator Ŝ− to act on the state ψ1,1. Finally, what can we say
on the state ψ00, that corresponds to spin s = 0? The spin has only one component
along the z axis, the state ψ00 must be antisymmetric and orthogonal to the triplet
state with spin s = 1. From this condition, and since the spin projection is also zero,
we have the antisymmetric state

ψ0,0 = 1√
2
(χ+− − χ−+) , (13.56)

called a singlet state.
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13.4.2 Two Electrons in a Quantum Well

Let us suppose now that we have two electrons in an infinite quantum well. The
Hamiltonian of this system can be written as

Ĥ = p̂2
1

2m
+ p̂2

2

2m
+ V (x1, x2)+ e2

|x2 − x1| = Ho + e2

|x2 − x1| , (13.57)

with V (x1, x2) = 0, for 0 < x1, x2 and for x1, x2 < L , and V (x1, x2) = ∞
elsewhere. The Schrödinger equation inside the well is then

[
− �

2

2m

∂ 2

∂x2
1

− �
2

2m

∂ 2

∂x2
2

+ e2

|x2 − x1|

]
ϕ(x1, x2) = Eϕ(x1, x2). (13.58)

The electron–electron interaction is relatively weak and can be treated as a perturba-
tion to Ho. In this case, the Schrödinger equation for the unperturbed Hamiltonian,
reads

[
− �

2

2m

∂ 2

∂x2
1

− �
2

2m

∂ 2

∂x2
2

]
ϕ(x1, x2) = Eϕ(x1, x2). (13.59)

It is easy to verify that this equation is formally equal to that of an electron in a
two-dimensional well. The Eq. (13.59) is separable and the solutions of the separate
equations are the same as for the one-dimensional infinite quantum well. There-
fore, the unperturbed eigenfunctions of the two electrons system, inside an infinite
quantum well, are functions like

ϕ(0)n1n2
(x1, x2) = sin

(n1π

L
x1

)
sin

(n2π

L
x2

)
, with n1, n2 = 1, 2, 3, . . .,

(13.60)

with eigenvalues given by

E (0)n1n2
= �

2π2

2mL2

(
n2

1 + n2
2

)
. (13.61)

The two-electron system is a fermionic system and we have to include the spin effect.
Thus, the wave function φ(ξ1, ξ2) should be written as

φn1n2sms (ξ1, ξ2) = ϕn1n2,s(x1, x2)ψsms . (13.62)

From the first part of this chapter, we know that this function must be anti-symmetric
under the particles-interchange operator. This symmetry is fulfilled if one of the
functions ϕn1n2s or ψsms is symmetric and the other one is anti-symmetric, i.e., we
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must have either the function

φn1n2sms (ξ1, ξ2) = ϕS
n1n2,s(x1, x2)ψ

A
sms
, (13.63)

or the function

φn1n2sms (ξ1, ξ2) = ϕA
n1n2,s(x1, x2)ψ

S
sms
. (13.64)

This means that the independence of Ho from the spin variables is just apparent.
The symmetry properties must, after all, be taken into account. For this reason we
include the quantum number s to label the functions ϕn1n2s(x1, x2). As will be seen
lines below, the energies also depend on the spins, even though the Hamiltonian is
spin-independent. In the lowest energy level E1,1 = 2�

2π2/2mL2, only exists the
symmetric function

ϕ11,s = sin
π

L
x1 sin

π

L
x2, (13.65)

since the anti-symmetric function vanishes. Hence, the spinor ψsms associated to
φ11sms (ξ1, ξ2) should be the singlet state

ψsms = ψ00 = 1√
2

(
χ+− − χ−+

)
. (13.66)

Therefore, the eigenfunction corresponding to the first energy level E11 is

φ1100(ξ1, ξ2) = 1√
2

sin
π

L
x1 sin

π

L
x2

(
χ+− − χ−+

)
. (13.67)

In the second level the energy is E12 = E21 = 5�
2π2/2mL2. The function that

depends on the space coordinates can be symmetric or anti-symmetric. We plot in
Fig. 13.5 the functions

ϕS
12,s(x1, x2) = 1√

2

[
ϕ1(x1)ϕ2(x2)+ ϕ2(x1)ϕ1(x2)

]
, (13.68)

and

ϕA
12,s(x1, x2) = 1√

2

[
ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)

]
. (13.69)

We know that the spinor that multiplies the function ϕS
12,s(x1, x2) should be a singlet,

with s = 0, while the spinor that multiplies to ϕA
12,s(x1, x2) can be any of the triplet

state spinors: ψ11, ψ10 or ψ1−1. It is easy to verify that the first energy level is a
non-degenerate energy level, while the second is a degenerate energy level, with
degeneracy degree equal to 4.
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Fig. 13.5 The first two energy levels of two electrons inside an infinite quantum well. In the first
level, the coordinates-dependent function is symmetric, thus the electrons coexist in this level only if
their spins are antiparallel. In the second energy level, we plot the symmetric and the anti-symmetric
functions, under the interchange of particles

13.4.3 The Helium Atom and the Exchange Energy

Another system with two electrons is the Helium atom. If we neglect the interactions
that depend explicitly on the spins, and assume that the Helium atom nuclei is at rest,
the two-electron Hamiltonian can be written in the form

Ĥ = p̂ 2
1

2m
+ p̂ 2

2

2m
−

(
e2

r1
+ e2

r2

)
+ e2

r12
, (13.70)

where r12 = |r1−r2|. This Hamiltonian remains invariant under the interchange oper-
ator P̂12, but as mentioned before, the two-fermion system should be anti-symmetric.
Thus it imposes symmetry requirements on the solution of the Schrödinger equation

Ĥϕ(r1, r2) = Eϕ(r1, r2). (13.71)

If we treat the electron–electron interaction term e2/r12 as a perturbation, we are left
with a separable differential equation, and the resulting equations are similar to that
of the Hydrogen atom with eigenfunctions

φn1l1ml and φn2l2ml , (13.72)

and eigenvalues
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En1 = −
me4

2�2n2
1

and En2 = −
me4

2�2n2
2

. (13.73)

The angular momentum and spin operators L̂i and Ŝi , with i = 1, 2, do not commute
with the interchange operator P̂12. But the operators

L̂2 = (
L̂1 + L̂2

)2
, Ŝ2 = (̂

S1 + Ŝ2
)2
, (13.74)

and their corresponding projections L̂ z and Ŝz , do commute with P̂12. For this reason
we use the quantum numbers n1, n2, l, s, ml and ms to label the states φ(ξ1, ξ2) of
the Helium atom which, like in the previous example, we write in the form

φn1n2lsml ms (ξ1, ξ2) = ϕn1n2lml s(r1, r2)ψsms . (13.75)

From our discussion in the first part of this chapter, we know that the function ψsms

is anti-symmetric if s = 0 and symmetric if s = 1. Therefore, to describe the
two-fermion system we will have either

φn1n2l0ml 0(ξ1, ξ2) = ϕS
n1n2lml

(r1, r2)ψ
A
00; (13.76)

or

φn1n2l1ml ms (ξ1, ξ2) = ϕA
n1n2lml

(r1, r2)ψ
S
1ms
; (13.77)

with

ϕS
n1n2lml

(r1, r2) = 1√
2

(
ϕn1l1ml1(r1)ϕn2l2ml2(r2)+ ϕn1l1ml1(r2)ϕn2l2ml2(r1)

)
,

(13.78)

and

ϕA
n1n2lml

(r1, r2) = 1√
2

(
ϕn1l1ml1(r1)ϕn2l2ml2(r2)− ϕn1l1ml1(r2)ϕn2l2ml2(r1)

)
,

(13.79)

respectively. For a given set of values of the quantum numbers n1, n2, l, ml , all four
spin states are degenerate. This degeneracy is removed when the interaction term
e2/r12 is taken into account.

To evaluate the first order correction, according to the perturbation theory we can
use the functions φn1n2l0ml 0(ξ1, ξ2) of the unperturbed Hamiltonian. If we calculate
the matrix elements

〈φn′1n′2l ′s′m′l m′s |
e2

r12
|φnsn2l1ml ms 〉 (13.80)
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we find that all of them are zero except those in the diagonal. It is easy to verify that
these matrix elements can be written as

〈φn′1n′2l ′s′m′l m′s |
e2

r12
|φns n2l1ml ms 〉 = ED ± EI ; (13.81)

where

ED =
∫
|ϕn1l1ml1(r1)|2|ϕn2l2ml2(r2)|2 e2

r12
d3r1d3r2 (13.82)

is the contribution known as the direct energy, and the energy term

EI =
∫
ϕ∗n1l1ml1

(r1)ϕ
∗
n2l2ml2

(r2)
e2

r12
ϕn1l1ml1(r2)ϕn2l2ml2(r1)d

3r1d3r2,

(13.83)

that is known as the exchange or interchange energy. The signs ± come from
ϕS

n1n2lml
(r1, r2) and ϕA

n1n2lml
(r1, r2), respectively. Since the integral EI is gener-

ally positive, the state with s = 0 has higher energy than those with s = 1. This is an
important statistics effect on the energy levels and on the electronic configuration.

To conclude this point, let us recall the coupling of two angular momentum vectors
at the end of Chap. 11. Equation (11.84) applied to Ŝ1 and Ŝ2 reads

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2̂S1 · Ŝ2. (13.84)

Since the signs of the exchange energy depends on the spin orientations, one can use
the expectation value

〈ss1s2ms |̂S1 · Ŝ2|ss1s2ms〉 = �
2 s(s + 1)− s1(s1 + 1)− s2(s2 + 1)

2
,

(13.85)

with s1 = s2 =1/2 to write the exchange term ±EI as

± EI = −1

2

(
1+ 4〈̂S1 · Ŝ2〉

�2

)
EI , (13.86)

which makes explicit the relation between spin orientations and the signs. This repre-
sentation was suggested by P.A.M. Dirac and is known as Dirac’s exchange operator.

http://dx.doi.org/10.1007/978-3-642-29378-8_11
http://dx.doi.org/10.1007/978-3-642-29378-8_11
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Fig. 13.6 Collision of two electrons with opposite spin projections seen from their center of mass.
The particle counters C1 and C2 register the scattered particles along the directions θ and π − θ

13.5 Solved Problems

Exercise 38 Suppose that we have the scattering of two electrons, whose spin pro-
jections may be known or not. Show that the probability Pe↑i1 to scatter them along
the direction θ = π/2, when they are identical (indistinguishable) and the spins are
known, is four times the probability Pe↑d1 to scatter them, in the same direction, but
when they are not identical (distinguishable). However, if the spins do not matter, the
probability Pei1 to scatter one indistinguishable electron along θ = π/2 is twice the
probability Ped1 to scatter one distinguishable electron, along the same direction.
Solution Consider the processes shown in Fig. 13.6. It is supposed that: (1) the spin
projections along the z axis are different and, (2) the particle counters can recognize
the orientation of the spin projections. In this case, the processes are distinguishable
and the situation is similar to that discussed lines above for particles a and b. If C1
detects one electron with spin ↓, the probability amplitude and probability that the
process on the right hand side occurred are

ϕe↓(π − θ), and Pe↓d1(π − θ) = |ϕe↓(π − θ)|2, (13.87)

respectively. We are using the letters d and i to indicate the distinguishability and
indistinguishability of the processes. Similarly, if C1 detects one electron with spin
↑, we know that the process on the left hand side occurred with probability amplitude
and probability

ϕe↑(θ) and Pe↑d1 = |ϕe↑(θ)|2. (13.88)

Even though the processes are distinguishable, we can also ask for the probability
of having one electron in C1, independently of the spin orientation. In this case, we
can have anyone of the two processes, thus the probability of having one electron in
C1 will be:
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(a)

(b)

Fig. 13.7 Collision of two electrons seen from their center of mass. In (a) both particles have the
same spin projection ms = 1/2 and in (b) the spin projections are unknown. The particle counters
C1 and C2 register the scattered particles along the directions θ and π − θ

Ped1(θ) = |ϕe(θ)|2 + |ϕe(π − θ)|2 = Pe↑d1 + Pe↓d1. (13.89)

Lets us see now how these probability amplitudes and the probabilities change when
the particles are identical, i.e., when all the observable quantum numbers are equal.
If we have the processes in Fig. 13.7a, the electron entering into C1 has, in any case,
spin ↑ and we can not know whether it comes from the left or from the right. The
processes are now indistinguishable and the probability amplitudes interfere, this
means that the probability amplitude to detect one electron in C1 is

ϕe↑(θ)+ ϕe↑(π − θ). (13.90)

A similar situation we have in a two-electron collision when their spin projections
are unknown, as we show in Fig. 13.7b. In this case, the probability amplitude to
detect one electron in C1 will be also

ϕe(θ)+ ϕe(π − θ). (13.91)

In both cases the amplitudes interfere because the particles participating in the scat-
tering processes, up to the level that we know them, are identical. The collision
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processes in the left and in the right of the Fig. 13.7a and b are indistinguishable.
The probability of detecting one electron in C1 of Fig. 13.7a is

Pe↑i1(θ) = |ϕe↑(θ)+ ϕe↑(π − θ)|2 (13.92)

= |ϕe↑(θ)|2 + |ϕe↑(π − θ)|2 + 2
e{ϕ∗e↑(θ)ϕe↑(π − θ)}, (13.93)

while the probability to detect one electron in C1 of Fig. 13.7b is

Pei1(θ) = |ϕe(θ)+ ϕe(π − θ)|2 (13.94)

= |ϕe(θ)|2 + |ϕe(π − θ)|2 + 2
e{ϕ∗e (θ)ϕe(π − θ)}. (13.95)

The difference between Pe↑i1 and Pei1 is that, in the first case, we know that the
electron that enters into C1 has spin ↑, while in the second we do not know.

With this results we can compare the probabilities of having one electron with
spin ↑, in the direction θ = π/2, in an indistinguishable process like in Fig. 13.7a,
where

Pe↑i1(π/2) = |ϕe↑(π/2)+ ϕe↑(π/2)|2 = |2ϕe↑(π/2)|2, (13.96)

with the probability of having one electron with spin ↑, in the direction θ = π/2,
but for a distinguishable process like in the Fig. 13.6, where

Pe↑d1(π/2) = |ϕe↑(π/2)|2, (13.97)

The relation between these probabilities is, certainly:

Pe↑i1(π/2) = 4Pe↑d1(π/2). (13.98)

We can equally compare the probability Pei1(π/2) to register one electron in the
direction θ = π/2 of a process like the one shown in Fig. 13.7b, with the probability
Ped1(π/2) to register one electron in a process like that in Fig. 13.6. It can be verified
that in this case

Pei1(π/2) = 2Ped1(π/2). (13.99)

These differences show that in the collision of two electrons, the probability to detect
one electron in C1 is higher when the electrons are indistinguishable than when they
are distinguishable.
Exercise 39 Using the relations (11.33) in the form

Ŝ−ψs,ms =�

√
(s+ms)(s−ms + 1) ψs,ms−1, (13.100)

and the definition Ŝ− = Ŝx − i Ŝy , show that

http://dx.doi.org/10.1007/978-3-642-29378-8_11
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ψ10 = 1√
2

(
χ−+ + χ+−

)
. (13.101)

Solution From 13.102 we have

Ŝ−χ++ = Ŝ−φ11 =�

√
2 ψ10. (13.102)

On the other hand, the addition

Ŝ = Ŝ1 + Ŝ2, (13.103)

means also that

Ŝi = Ŝi1 + Ŝi2, for i = x, y, z. (13.104)

The rising and lowering operators can be expressed as

Ŝ± = Ŝx ± i Ŝx =
(
Ŝx1 + Ŝx2

)± i
(
Ŝy1 + Ŝy2

)
. (13.105)

We know also that

Ŝxχ+ = �

2

(
0 1
1 0

) (
1
0

)
= �

2

(
0
1

)
= �

2
χ−; (13.106)

i Ŝyχ+ = �

2

(
0 1
−1 0

)(
1
0

)
= −�

2

(
0
1

)
= −�

2
χ−. (13.107)

Using these relations, it is easy to verify that

Ŝ−χ++ =
(
Ŝ−1 + Ŝ−2

)
χ+χ+

= �

2

[(
0 1
1 0

)
1
+

(
0 1
1 0

)
2
−

(
0 1
−1 0

)
1
−

(
0 1
−1 0

)
2

]
χ+χ+

= �
(
χ−χ+ + χ+χ−

)
. (13.108)

Therefore

ψ10 = 1√
2

(
χ−+ + χ+−

)
. (13.109)

13.6 Problems

1. Show that when two particles are identical, we have
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ΦS(ξ1, ξ2) = ϕA(r1, r2)χ
A(s1, s2) = 0. (13.110)

2. Show that

Ŝ−|10〉 =�

√
2|1− 1〉. (13.111)

3. Deduce the relation (13.20)

pn f = np(n−1) f = n!pn
1 f . (13.112)

4. Deduce the bosons and fermions occupation numbers

n j = 1

e(E j−μ)/kB T − 1
, (13.113)

and

n j = 1

e(E j−μ)/kB T + 1
, (13.114)

respectively.
5. Plot the Fermi–Dirac distribution function for T = 76 K and for T = 300 K.
6. Determine the thermal energy kB T for T = 300 K.
7. Use the Hydrogen atom functions φn1lml (ξ1) to obtain the solutions |φns n2l1ml ms 〉

of the unperturbed Helium atom and evaluate the matrix elements

〈φn′1n′2l ′s′m′l m′s |
e2

r12
|φns n2l1ml ms 〉. (13.115)

Verify that these matrix elements can be written as

〈φn′1n′2l ′s′m′l m′s |
e2

r12
|φnsn2l1ml ms 〉 = ED ± EI , (13.116)

where

ED =
∫
|ϕn1l1ml1(r1)|2|ϕn2l2ml2(r2)|2 e2

r12
d3r1d3r2, (13.117)

and

EI =
∫
ϕ∗n1l1ml1

(r1)ϕ
∗
n2l2ml2

(r2)
e2

r12
ϕn1l1ml1(r2)ϕn2l2ml2(r1)d

3r1d3r2.

(13.118)

8. Show that the exchange operator in (13.86), can be written as



304 13 Identical Particles, Bosons and Fermions

± K = −1

2

(
1+ 4〈̂S1 · Ŝ2〉

�2

)
K . (13.119)

9. Verify the relations (13.98) and (13.99).



Appendix A
Time Reversal Invariance

Let us briefly discuss the time reversal property. In Chap. 4, we introduced the
scattering and transfer matrices S and M. We have seen also that in a scattering
process as the one shown in Fig. A.1, these matrices satisfy the following relations

uolðx1Þ
uorðx2Þ

� �

¼ S
uilðx1Þ
uirðx2Þ

� �

uorðx2Þ
uirðx2Þ

� �

¼ M
uilðx1Þ
uolðx1Þ

� �

; ðA:1Þ

the matrix S relates the incoming waves with the outgoing ones, while the matrix
M connects the state vector at x1 with the state vector at x2. If we take the complex
conjugate of the previous relations, we have

u�olðx1Þ
u�orðx2Þ

� �

¼ S�
u�ilðx1Þ
u�irðx2Þ

� �

u�orðx2Þ
u�irðx2Þ

� �

¼ M�
u�ilðx1Þ
u�olðx1Þ

� �

: ðA:2Þ

Let us now consider the time inversion operator T . The action of this operator
changes the sign of time, thus the physical quantities depending linearly on time as
the velocity and the wave number k ¼ p=�h, change sign. Under the time inversion
operation, particles that were moving to the right, move towards the left and vice
versa. A wave function like eikx, under T , gets transformed into e�ikx. This is
equivalent to complex conjugate. Therefore

TuðxÞ ¼ u�ðxÞ: ðA:3Þ

If the time inversion operator T acts on the system of Fig. A.1, we will have

Tuilðx1Þ ¼ u�ilðx1Þ ¼ /olðx1Þ; Tuirðx2Þ ¼ u�irðx2Þ ¼ /orðx2Þ; ðA:4Þ

Tuolðx1Þ ¼ u�olðx1Þ ¼ /ilðx1Þ; Tuorðx2Þ ¼ u�orðx2Þ ¼ /irðx2Þ: ðA:5Þ

As one can see in Fig. A.2, the wave functions that were incoming functions
transform into outgoing functions and viceversa. Reversing time in the scattering
system implies reversing time every where. This includes the interactions that
define the scattering and transfer matrices. If the system remains invariant under
time inversion, the matrices S and M should also remain invariant. Therefore, if a
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system is time reversal invariant, we must have

/olðx1Þ
/orðx2Þ

� �

¼ S
/ilðx1Þ
/irðx2Þ

� �

/orðx2Þ
/irðx2Þ

� �

¼ M
/ilðx1Þ
/olðx1Þ

� �

: ðA:6Þ

with S and M that we had in (A.1). These relations, written in terms of the wave
functions u, take the form

u�ilðx1Þ
u�irðx2Þ

� �

¼ S
u�olðx1Þ
u�orðx2Þ

� �

u�irðx2Þ
u�orðx2Þ

� �

¼ M
u�olðx1Þ
u�ilðx1Þ

� �

: ðA:7Þ

If we multiply the first of these equations, from the left by S�1, and we observe that

u�irðx2Þ
u�orðx2Þ

� �

¼ 0 1
1 0

� �

u�orðx2Þ
u�irðx2Þ

� �

and
u�olðx1Þ
u�ilðx1Þ

� �

¼ 0 1
1 0

� �

u�ilðx1Þ
u�olðx1Þ

� �

;

ðA:8Þ

it becomes clear, after comparing with (A.2), that

S�1 ¼ S� and
0 1
1 0

� �

M
0 1
1 0

� �

¼ M�: ðA:9Þ

For the transfer matrix, this means that

d c
b a

� �

¼ a� b�

c� d�

� �

: ðA:10Þ

Therefore we conclude that, for systems that are time reversal invariant, the
transfer matrices have the structure

x1 x2

V(x)
ϕ

il

ϕol 

ϕ
or

ϕ
ir

Fig. A.1 The incident wave
functions, and the reflected
and transmitted wave func-
tions by a dispersion potential
VðxÞ

Fig. A.2 The incident wave
functions, and the wave
functions that are reflected
and transmitted by the dis-
persion potential VðxÞ
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M ¼ a b
b� a�

� �

: ðA:11Þ

Notice that this holds when the wave number k on the right side is the same as on
the left side of the scattering region. If that is not the case, these structures may
change but (A.9) still holds.
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Appendix B
Laguerre’s Polynomials

With respect to the Laguerre polynomials, there is in the literature such a great
diversity of definitions and notations that we feel justified to include this appendix,
and deduce some basic relations and properties. The polynomials that Laguerre
studied are the polynomials LmðxÞ ¼ L0

mðxÞ defined by

LmðxÞ ¼
1
m!

ex dm

dxm
xme�x; ðB:1Þ

or as the expansion coefficients of the generating function

GLðt; xÞ ¼ exp
xt

t � 1

n o

¼ ð1� tÞ
X
1

m¼0

LmðxÞtm; ðB:2Þ

and they are solutions of the differential equation

d2y

dx2
þ 1

x
� 1

� �

dy

dx
þ m

x
y ¼ 0: ðB:3Þ

The Laguerre polynomials of lower orders are

L0ðxÞ ¼ 1;

L1ðxÞ ¼
1
1!

�

1� x
�

;

L2ðxÞ ¼
1
2!

�

1� 4xþ x2
�

;

L3ðxÞ ¼
1
3!

�

6� 18xþ 9x2 � x3
�

;

L4ðxÞ ¼
1
4!

�

24� 96xþ 72x2 � 16x3 þ x4
�

:

Related to these polynomials we have the generalized (or associated) Laguerre
polynomials Ll

m�lðxÞ defined by
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Lk
mðxÞ ¼ ð�1Þk 1

ðmþ kÞ!
dk

dxk
ex dmþk

dxmþk
xmþke�x ¼ ð�1Þk dk

dxk
LmþkðxÞ: ðB:4Þ

These polynomials are also the coefficients of a generating function, and one can
easily verify that a particular solution of the differential equation

x
d2y

dx2
þ ðk þ 1� 2mÞ dy

dx
þ nþ k þ 1

2
� x

4
þ mðm� kÞ

x

� �

y ¼ 0 ðB:5Þ

is

yn ¼ e�x=2xmLk
n: ðB:6Þ

In this way, if m ¼ k=2, the function

yn ¼ e�x=2xk=2Lk
n; ðB:7Þ

is a solution of

xy00n þ y0n þ nþ k þ 1
2
� x

4
� k2

4x

� �

yn ¼ 0; ðB:8Þ

that can be written as

d

dx
x

d

dx
yn þ nþ k þ 1

2
� x

4
� k2

4x

� �

yn ¼ 0: ðB:9Þ

A very useful representation of Lk
mðxÞ is the Rodrigues formula

Lk
mðxÞ ¼

1
m!

exx�k dm

dxm
xmþke�x ¼

X
m

r¼0

ð�1Þr ðmþ kÞ! xr

ðm� rÞ!r!ðr þ kÞ! : ðB:10Þ

Some generalized Laguerre polynomials are:

L0
0ðxÞ ¼ 1;

L0
1ðxÞ ¼ 1� x; L1

1ðxÞ ¼ 2� x;

L0
2ðxÞ ¼

1
2

�

2�4xþ x2
�

; L1
2ðxÞ ¼

1
2

�

6� 6xþ x2
�

; L2
2ðxÞ ¼

1
2

�

12� 8xþ x2
�

:

Like other orthogonal polynomials, the Laguerre polynomials satisfy a three-
term recurrence relation. The relation that the Laguerre polynomials satisfy is

ðnþ 1ÞLk
nþ1ðxÞþ ðx� k � 2n� 1ÞLk

nðxÞþ ðnþ kÞLk
n�1ðxÞ¼ 0 n ¼ 1; 2; . . .

ðB:11Þ

This recurrence relation can also be written as
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nLk
nðxÞþ ðx� k � 2nþ 1ÞLk

n�1ðxÞþ ðnþ k � 1ÞLk
n�2ðxÞ¼ 0 n ¼ 1; 2; . . .

ðB:12Þ

With the help of these definitions and relations we will obtain two very useful
results for the evaluation of normalization integrals and the calculation of
expectation values for the Hydrogen atom.

Orthogonality of Laguerre’s Polynomials

If we multiply equation (B.9) by ym, subtract the same equation (with the indices n
and m interchanged), and integrate from 0 to 1, we have

Z 1

0
ym

dy

dx
xy0n � yn

dy

dx
xy0m

� �

dxþ ðn� mÞ
Z 1

0
ymyndx ¼ 0;

ðymxy0n � ynxy0mÞ
�

�

1
0
þ ðn� mÞ

Z 1

0
ymyndx ¼ 0:

ðB:13Þ

As yn ¼ e�x=2xk=2Lk
n, and as Lk

nðxÞ ¼ 1
n ! e

xx�k dn

dxn xnþke�x is a polynomial of degree
n, the first term of the previous equation is zero at x ¼ 0 if k [ � 1. Thus

ðn� mÞ
Z 1

0
e�xxkLk

nLk
mdx ¼ 0: ðB:14Þ

From here we conclude that
Z 1

0
e�xxkLk

nLk
mdx ¼ 0 if n 6¼ m:

Normalization of Laguerre’s Polynomials

To obtain the normalization constant of the Laguerre polynomials we need the
recurrence relations (B.11) and (B.12). If we consider the relation (B.11)
multiplied by Lk

n�1ðxÞ, subtract (B.12) multiplied by Lk
nðxÞ, multiply the result by

e�xxk and integrate from 0 an 1 (using the orthogonality condition), we will
obtain

Z 1

0
e�xxk Lk

nðxÞ
� �2

dx ¼ nþ k

n

Z 1

0
e�xxk Lk

n�1ðxÞ
� �2

dx: ðB:16Þ

One can repeat this relation n� 1 times to obtain
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Z 1

0
e�xxk Lk

nðxÞ
� �2

dx ¼ nþ k

n

n� 1þ k

n� 1
� � � 2þ k

2

Z 1

0
e�xxk Lk

1ðxÞ
� �2

dx: ðB:17Þ

Since Lk
1ðxÞ ¼ 1þ k � x it is possible to show that

Z 1

0
e�xxk Lk

1ðxÞ
� �2

dx ¼ ðk þ 1Þ! ðB:18Þ

Therefore
Z 1

0
e�xxk Lk

nðxÞ
� �2

dx ¼ ðnþ kÞ!
n!

for n ¼ 2; 3; . . . ðB:19Þ

It is possible to explicitly show that this formula is also valid for n ¼ 0 and n ¼ 1.
Thus

Z 1

0
e�xxk Lk

nðxÞ
� �2

dx ¼ ðnþ kÞ!
n!

for n ¼ 0; 1; 2; 3; . . . ðB:20Þ

This integral and the orthogonality condition are summarized in the following
equation

m!

ðmþ kÞ!

Z 1

0
xke�xLk

mðxÞLk
m0 ðxÞdx ¼ dm;m0 : ðB:21Þ

Finally, if we consider the recurrence relation (B.11), we multiply it by
xke�xLk

nðxÞ and integrate from 0 to 1 we get:
Z 1

0
xkþ1e�xLk

nðxÞLk
nðxÞdx ¼ ðk þ 2nþ 1Þ ðnþ kÞ!

n!
: ðB:22Þ
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