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Preface

In standard university courses, the teaching of special relativity is often limited
to show the absolute (i.e. four-dimensional) formulation of relativistic kine-
matics, mechanics and electromagnetism, whereas the equally interesting long
chapters of geometrical continua and fluid dynamics are left for the general
relativity investigation only. Actually, students become familiar with relativis-
tic kinematics and the relativistic formulation of electromagnetism even from
their first-year courses, and this is a really important step in their formation.
However, they are given very little information about the so-called relative
observer point of view in relativity and the different ways in which one can
reintroduce the classical concepts of space and time, 3-momentum and energy,
etc. from their space-time counterparts, namely the space-time itself, the 4-
momentum, etc. The formalisms underlying this decomposition process, or
3+1 splitting techniques, have been widely developed starting from the 1950s
but can be found only in General Relativity textbooks.

We consider strongly important to make students familiar with Special
Relativity either from the absolute (space-time, four-dimensional) point of
view or from the relative (space plus time, 3 + 1-dimensional) point of view,
in order to give a central role to the measurement problem and to the observer,
even studying Special Relativity.

This book, which apart from standard topics, includes also a geometrical
introduction to continuous media and fluid dynamics, aims at pursuing an
effort in this direction, summarizing the Italian school contribution with the
pioneering works of Carlo Cattaneo since 1950 at the University of Rome,
Italy.

It is therefore a pleasure to acknowledge Prof. Wolfgang Rindler, an “old
friend” of Cattaneo and his coworkers since about 50 years, for many stim-
ulating discussions and useful suggestions in addition to his special effort in
improving the content as well as the English of this manuscript. Moreover, we
are also grateful to Prof. L. Stazi for his comments and the careful reading of
the hundreds of formulas in the manuscript.



VIII Preface

A final remark concerns the reader: he is supposed to be familiar enough
with ordinary tensor calculus on Riemannian manifolds and endowed with a
good amount of patience!

Rome, Giorgio Ferrarese
February 2007 Donato Bini
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1

Classical Physics: Axiomatic Formulation

1.1 Methodology

Mathematical sciences contribute to physics either at an instrumental level
(algebra and geometry give in fact the descriptional methods, whereas anal-
ysis gives the calculus methods for a qualitative and quantitative control of
solutions corresponding to a certain schematization) or at a methodological
level.

Nowadays, physical theories can be regarded as true axiomatic construc-
tions which make them very close to mathematical theories. However, such
a relation between mathematical and physical theories should not be pushed
over the limit in which their different roles come to be confused. In fact,
both mathematical and physical theories are obviously related through the
“hypothetical-deductive method”, but they are substantially different. As con-
cerns their similarities, both of them assume a certain set of objects (primary
quantities) and relations among them given a priori (axioms or postulates).
Axioms must only be compatible. Then, from the primary quantities one
obtains, by definition, some other objects (secondary quantities) and the rela-
tions between primary and secondary quantities are logically derived by means
of theorems.

In any mathematical theory, the choice of objects and axioms is completely
free, apart from their logical consistency: to the primary and secondary quan-
tities, the theory cannot give any concrete meaning and what is really impor-
tant are the relations existing among such objects only; as a consequence of
this universality, the theory can be applied to many different situations.

For a physical theory instead, the objects must have a precise meaning in
terms of the physical reality they represent, in the sense that they necessarily
must have a counterpart in real objects. Moreover, all the observable relations
among the real objects must be in agreement with the relations postulated or
deduced from the theory. In other words, together with the “internal coher-
ence” of the theory, a “perfect correspondence” between the theory and the
reality is required.

G. Ferrarese and D. Bini: Classical Physics: Axiomatic Formulation, Lect. Notes Phys. 727,

1–20 (2008)

DOI 10.1007/978-3-540-73168-9 1 c© Springer-Verlag Berlin Heidelberg 2008



2 1 Classical Physics: Axiomatic Formulation

This principle directly inspired both Mach and Einstein. According to such
a point of view, a physical theory, differently from a mathematical one, comes
out not only as a consequence of a single intuition, but it is the result of
a series of intuitions and comparing with the reality, with possible adjust-
ments of the initial theory as well as of the control procedures. Moreover, any
physical theory, even in the case of the long-awaited unified model, is never
complete or definitive because it must include all phenomena and it has to
be in agreement with all the observable relations among them (in the past
as well as in the future). Apart from the discovery of new phenomena, the
agreement is conditioned to the sensitivity of the instruments, to the refining
of the experimental techniques, etc.

Actually, the assessment of the physics is the result of many theories (me-
chanics, electromagnetism, heat theory, thermodynamics, etc.), each with its
own postulates, in addition to the general axioms common to all the theories.
If the methods which control the theory reveal a discrepancy between the
theoretically expected results and the experimental ones, first to be modified
will be the specific axioms of a theory; then, if this is not enough, the general
postulates will be changed.

In the history of modern physics, there existed two different moments in
which the general postulates have been modified. The first concerns the black-
body spectrum: the disagreement between theory and experiments was dras-
tically solved renouncing the continuity hypothesis of the energy exchanges
between radiation and matter (Planck, 1900). This led to the birth of quan-
tum mechanics, associated with the names of Bohr (1913), Born, Schrödinger,
Heisenberg and Dirac (1915).

The second concerns relativity: the disagreement between theory and ex-
periments (especially after the Michelson–Morley experiment, 1887–1891) was
drastically solved renouncing to the traditional ideas of space and time. This
led to the Theory of Special Relativity [1], thanks to great contribution of A.
Einstein (1905).

Examining the main ideas of that theory is the aim of this book.

1.2 General Axioms

In pre-relativistic physics, there exist two fundamental schemes only: the ma-
terial scheme and the electromagnetic one; in correspondence, there exist two
different theories: mechanics and electromagnetism. Each natural phenomenon
was framed, in a simple way, in one of these two theories. Therefore, in the
assessment of pre-relativistic physics, we find a set of general axioms and two
more sets of specific axioms; the first one concerning mechanical phenomena
and the second the electromagnetic ones.

There are three general axioms:
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A. Existence of an absolute space, E3

This axiom aims at specifying the ambient, i.e. the most natural de-
scriptional context, for all the physical phenomena. The postulated abso-
lute space, E3, is a strictly Euclidean three-dimensional space. Its points
(primary quantities) can be referred, for instance, to orthogonal Carte-
sian coordinates xi (i = 1, 2, 3), associated with an orthonormal frame
T = (O, ci), having its origin in O and unit vectors ci. To denote the dis-
tance between the points O and P, we will write OP = xici (the summa-
tion with respect to the dummy index i is assumed). Once the orthonormal
frame is fixed, the coordinates xi of P are uniquely determined.

Passing to another orthonormal frame T ′ = (O′, ci′ ), the same point
P will have coordinates x′i: O′P = xi′ci′ .1 The relation between xi and
xi′ is obtained expressing the vectors ci′ as a linear combination of the
vectors ci:

ci′ = Ri
i′ci ∼ ci = Ri′

ici′ , (1.1)

where the matrices ||Ri
i′ || and ||Ri′

i|| are inverses of each other (we will
follow the convention that the upper index is the row index and the lower
index is the column one). In fact, the vectors {ci} and {ci′}, as defined in
(1.1), are orthonormal:

ci′ · ck′ = δi′k′ ∼ ci · ck = δik , (1.2)

where δik is the Kronecker symbol

δik =
{

0 if i �= k ,
1 if i = k .

(1.3)

By using (1.1) in (1.2), one obtains the orthogonality conditions:

Ri
i′Rk

k′δik = δi′k′ ∼ Ri′
iRk′

kδi′k′ = δik . (1.4)

Moreover, the triangular relation OP = OO′ + O′P, assuming

OP = xici , OO′ = T ici , O′P = xi′ci′ = xi′Ri
i′ci , (1.5)

gives the linear and invertible relations:

xi = Ri
i′x

i′ + T i . (1.6)

The invertibility of (1.6), implicit in the interchangeability of the coordi-
nates xi and xi′ (the exchange is equivalent to moving the prime to those
letters which are without), is also a consequence of (1.4), which gives the
condition (

det||Ri
i′ ||
)2

= 1 ; (1.7)

1 Following a standard convention for tensorial calculus, the prime is put on the
index and not on the kernel.
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that is, the (orthogonal) matrix Ri
i′ has its determinant equal to ± 1 and

represents a rotation (+ 1) or an antirotation (− 1). Furthermore, (1.6)
shows that the coefficients Ri

i′ , besides the meaning of relating vector
components in (1.1), coincide with the derivatives of xi with respect to
the xi′ :

Ri
i′ =

∂xi

∂xi′ ∼ Ri′
i =

∂xi′

∂xi
. (1.8)

It is implicit in axiom A that the whole physical reality can be represented
in terms of the geometric ingredients of E3: points, curves, surfaces, ten-
sor fields, etc., which have an intrinsic meaning in E3, that is they are
independent of the choice of the triad; this latter always has an accessory
role, being determined up to translations and rotations (equivalence of
orthonormal Cartesian frames).

The use of orthogonal Cartesian coordinates (the most simple in E3

and with a global meaning), of course, does not prevent the use of other
coordinates (polar, cylindrical or curvilinear in general), often with a local
meaning only.

B. Existence of an absolute time
This axiom postulates the existence of a universal time, that is, a well-
determined sequence of instants, independent of the space E3 and hence
of the observer and his motion (absolute clock). This axiom allows any
observer not only to order phenomena happening in a given place (local
calendar) but also to compare elementary phenomena which occur at dif-
ferent points in E3, as well as to specify if they are simultaneous (notion
of contemporaneity) or not (notion of temporal ordering). Everything is
done objectively, i.e. independently of the observer and his motion.

It is also implicit, in axiom B, that every phenomenon has a well-
determined temporal duration,2 the evaluation of which depends on the
choice of a temporal coordinate t:

t = at′ + b , a > 0 , (1.9)

defined up to a linear transformation, in the sense that it is still possible
to choose both the origin (b) and the unit (a).

From the mathematical point of view, the absolute time is represented
by an ordered set of instants, say T (not ordered, when inverting the
time is allowed), homeomorphic to an oriented straight line R. The Carte-
sian product R×E3 defines the space-time of classical physics, i.e. a new
absolute: E4, which is a four-dimensional manifold, with a foliation struc-
ture, and spatially homogeneous and isotropic. From the physical point
of view, axiom B implies the existence of synchronizable standard clocks,
working absolutely, i.e. independently of position, velocity and physical
phenomena.

2 “Tempus absolutum, verum et mathematicum, in se et natura sua, sine relatione
ad externum quodvis, aequabiliter fluit, alioque nomine dicitur duratio”[2].
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However, primary quantities are the points P ∈ E3 and the instants of
time; derived quantities are the event E, characterized by a point and an
instant, with a physical correspondence in elementary phenomena (e.g. the
lighting of a lamp, the ring of a bell, etc.), and the material points, after
the introduction of the concept of mass. The latter have their physical
counterpart in the material elements, say the molecules,3 which aggregate
to form the various natural bodies or the physical world.

The study of physical reality and its laws obviously presupposes the
presence of the observer or the concept of a global reference frame, with
its (absolute) measurement instruments for lengths and times.

Generally, one identifies frames with coordinate systems; actually, the
concept of frame is more general and related to the so-called natural un-
deformable bodies (rigid frames or solids, for brevity). In fact, a physical
reference frame is any natural body on which one can put a system of
Cartesian coordinates. So a reference solid has to be necessarily an inde-
formable body.

In this sense, any Cartesian triad T in E3 defines a unique solid frame,
made up by the space of all the points in T . Conversely, the same solid
frame is characterized not only by T but by any other triad which can be
obtained from T by time-independent translations and rotations.

In other words, one can attach ∞6 systems of orthogonal Cartesian
coordinates to the same solid reference frame, and all are equivalent.
Such coordinates are then related by transformation laws as in (1.6),
with Ri

i′ and T i independent of time, and defined as spatial internal
coordinates.

The notion of time allows to examine, relative to of a given solid S,
the motion of a point or that of a system of points (that is the motion
of natural bodies), and hence to develop ordinary kinematics. In particu-
lar, one can develop rigid kinematics, or the motion of material systems
S′ analogous to S, defining other solid frames. From this, finally, rela-
tive kinematics follows, allowing to compare locally in E3 and at every
instant, the motion of a material element with respect to two different
frames. Such a comparison is summarized by the two general laws of addi-
tion of velocities (theorem of relative motions) and accelerations (Coriolis
theorem).

It is clear that, from a kinematical point of view, the reference solids are
all equivalent or indistinguishable; however, from a physical point of view,
i.e. for the formulation of the physics laws, they can be distinguished: this
motivates the necessity of a third general axiom.

3 At least in the cases in which the molecules, due to their internal symmetry, can be
represented by their center of mass only. In absence of such internal symmetries,
the scheme material point must be completed by introducing other geometrical
quantities (applied vectors, tensors, etc.) which specify the internal structure.
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C. Existence of a preferred rigid frame, S∗

To this preferred rigid frame, all the physics laws are directly sub-
ordered. S∗, which must be still operationally determined, will be iden-
tified with the fixed stars in mechanics, and with the cosmic Ether in
electromagnetism.

1.3 Axioms of Newtonian Mechanics

To the primary notions of absolute space and time, Newtonian mechanics adds
the notions, also absolute (i.e. independent of the reference frame), of mass and
force. The mass is a constitutive property of matter, a scalar quantity denoted
by m; the force is the result of the physical action on a test (pointlike) body,
due to the presence of other natural bodies or possibly to direct connection
with them; an effect which can be schematized with an applied vector f .

The fundamental axioms are only two:

1. The law of motion (ma = f , m > 0);
2. The principle of action and reaction.

Their validity is limited only to the preferred frame S∗; this should also be
stressed because, differently from m and f , the acceleration a has not an abso-
lute character but depends on the chosen reference frame for its measurement.

From axiom 1 for the special case of a free material point (f = 0) follows
the law of inertia, which constrains, from the physical point of view, either
the special frame S∗ or the absolute scale of times. Let us consider, in fact,
particles in inertial motion in empty space, i.e. far enough from other material
bodies, in order to not feel any physical influence by them. In S∗, they describe
linear trajectories with a uniform velocity or they are at rest; and this cannot
be valid in any frame, or for any time scale.

However, independently of the Newtonian formulation, which starts from
the two static notions of mass and force, classical mechanics can be structured
by a set of axioms (see [3], pp. 192–196), which can all be expressed in terms
of the acceleration with respect to S∗ only. They allow the introduction of the
(dynamical) notion of mass and hence that of force, namely

f = ma . (1.10)

Definition (1.10) then becomes the LEX II, as soon as the force law, i.e.
the dependence of the force on its effective parameters, is specified. In all
those problems which can be framed in the scheme of the “material point”
(restricted problems), the force law is necessarily of the kind

f = f(P,v, t) . (1.11)

The force law is assumed not to be related to the choice of the reference
frame (principle of force law invariance), and hence it must be expressible in
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terms of absolute parameters (like the distance r = |PQ| of moving points
or its temporal derivative ṙ), as it is in the case of the law of Newtonian
gravitation.

The introduced axioms allow to develop the dynamics of the material
point (free or constrained) relative to the frame S∗, and then that of the
material systems, either with a finite number of degrees of freedom or contin-
uous systems. Thereafter, the formulation is extended to any solid reference
frame, using the Coriolis theorem. In such an extension, which implies the
occurrence of apparent forces, a fact appears which is directly related to the
expression of the general postulates of the theory, in terms of acceleration:
namely, the acceleration of a point is invariant, passing from a fixed reference
frame S to any other in linear uniform motion with respect to S: a = a′. Thus,
Newtonian mechanics satisfies an invariantive and fundamental property: the
preferred frame S∗ can be replaced by any other reference frame in linear
uniform motion with respect to it.

In other words, classical mechanics not only admits a single preferred frame
but also the whole set {Sg} of the∞3 equivalent frames: the Galilean or iner-
tial frames, characterized by the law of inertia only (see [4] p. 157). Newtonian
mechanics is thus governed by the Galilean principle of relativity: the (differ-
ential) laws of the motion are the same in every Galilean frame.

Let us consider now two Galilean frames, Sg and S′
g. The Galilean general

transformation law is the change of coordinates associated with the two triads
T and T ′, arbitrarily chosen as concerns position and orientation in Sg and
S′

g, respectively. These transformations are of the same type as in (1.6), with
Ri

i′ constant and T i a linear function of t (in fact the T i are the coordinates
of the origin O′ of the triad T ′, which undergoes a linear uniform motion with
respect to T ).

Including the time dependence, one then finds the Galilei group G10:

xi = Ri
i′x

i′ + uit+ si , t = at′ + b (i = 1, 2, 3) . (1.12)

If the two triads T and T ′, in the corresponding solids, are chosen so that

i) they are superposed at t = 0: Ri
i′ = δi

i′ and si = 0;
ii) the x1- and x1′

- axes have the same orientation of the relative velocity of
S′

g with respect to Sg: u = uc1 = uc1′ ,

then they are said to be in x1-standard relation. In this case, (1.12) reduce
to the Galilei spatial transformation laws:

x1 = x1′
+ ut , x2,3 = x2′,3′

. (1.13)

Clearly, the Galilean principle of relativity can also be expressed in the
following way: the differential laws of mechanics are formally invariant with
respect to the transformations (1.12), or, in more physical terms, no mechanical
experiment, performed in a given Galilean frame, can show the motion of this
frame with respect to another Galilean frame.



8 1 Classical Physics: Axiomatic Formulation

Let us stress that the Galilean principle of relativity (GPR), as we have
already seen, depends on the absolute character of the acceleration and the
dynamical definition of mass and force. Thus, once it is assumed that the force
f maintains its absolute meaning (principle of force law invariance),

f i(x, ẋ, t) ci = f i′(x′, ẋ′, t) ci′ , ∀ Galilean transf. (1.14)

the GPR appears no longer as a postulate, but as a theorem. Its logical role
will be different in relativity theory, where such a principle is assumed a priori
to be valid, in an extended form, for all the physics.

1.4 Axioms of Maxwell’s Electromagnetism

As in the case of classical mechanics, electromagnetism introduces proper
primary quantities. They are the electric charge e, the electric field E and
the magnetic field H. Starting from these essential quantities, one obtains,
by definition, the derived quantities, like the charge density ρ def= de

dC , i.e. the

charge contained in the element dC of volume and the current density J def= ρv.
The axioms of the theory are two: first of all, Maxwell’s equations

⎧⎪⎨
⎪⎩

div H = 0 , curlE +
1
c
∂tH = 0 ,

div E = 4πρ , curlH− 1
c
∂tE =

4π
c

J ,
(1.15)

which specify the (differential) relations between the electromagnetic field and
the continuous distribution of charges and currents that generate it.4

Equation (1.15) form a partial derivatives system, with eight scalar equa-
tions (four of which are homogeneous); it is linear in the components of E
or H, and c is a universal constant, with the dimensions of a velocity. These
equations, valid in S∗, are of said of Eulerian type because the coordinates
involved are the t, xi internal to S∗.

Another axiom concerns the mechanical action F on a test charge e
(Lorentz force), namely:

F = e

(
E +

1
c
v ×H

)
, (1.16)

where v is the velocity of the charge in S∗. This action is proportional to the
charge; in the special case of particle at rest (v = 0), it is also proportional
to the electric field F = eE.

However, as stated above, in any physical theory, the choice of the axioms
is the synthesis of experimental results and, from this point of view, Maxwell’s
4 System (1.15) is the so-called Heaviside form of Maxwell’s equations, in the Gauss

unrationalized system of units.
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equations do not constitute an exception. They are a summary of many previ-
ous experiments, which besides the formalization of electromagnetism, helped
in foreseeing future developments of the theory. One of the most significant
among such experiments (Oersted) gave the value of the universal constant c,
by the invariant relation:

IΣ
M

= inv. = c , (1.17)

where M is the dipole moment of a circular current loop, of area Σ, and I is
the intensity of the current in the loop. The value of c obtained in this way,
namely c � 3, 00, 000 km/s, was practically coincident with that of the light
velocity in vacuum, as coming from different experiments.

From (1.15), some general consequences follow.
(i) From (1.15)4, taking the divergence of both sides, and using the identity

div curl = 0, as well as (1.15)3, the charge conservation equation follows:

∂tρ+ div (ρv) = 0 . (1.18)

Equation (1.18) expresses, in Eulerian form, the condition that, in the evolu-
tion of the charged continuum in S∗, each region C ∈ C maintains its charge,
a property similar to the mass conservation law; it can be written as

d
dt

∫
C
ρ dC = 0 ∼

∫
C
ρ dC =

∫
C′
ρ′dC′ . (1.19)

(ii) In the regions where there are no charges (ρ = 0) and currents (J = 0),
the electromagnetic field satisfies the relations:

⎧⎨
⎩

div H = 0 , curlE + 1
c∂tH = 0 ,

div E = 0 , curlH− 1
c∂tE = 0 .

(1.20)

Differentiating (1.20)2 with respect to time, one gets

curl∂tE +
1
c
∂ttH = 0 , (1.21)

so that, using (1.20)4,

curl curlH = − 1
c2
∂ttH ; (1.22)

similarly, from (1.20)2,4 one gets

curl curlE = −1
c
∂tcurlH = − 1

c2
∂ttE . (1.23)

Furthermore, from the identity, valid for any vector field v5:
5 The curl of a vector field v can be expressed as
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curl curlv = grad(div v)−Δ2v , (1.24)

and using (1.20)1,3, the preceding relations (1.22) and (1.23) become

�	H ≡ Δ2H−
1
c2
∂ttH = 0 , �	E ≡ Δ2E−

1
c2
∂ttE = 0 ; (1.25)

that is, in vacuum, E and H both satisfy the d’Alembert equation. It follows
that c has a third important meaning. In fact, in analogy with elasticity the-
ory (e.g. the one-dimensional case of a vibrating string), one gets for c the
meaning of propagation velocity (in vacuum) of E and H; this is called an
electromagnetic wave.6

Here, as in elasticity theory, the word “wave” has the meaning of solu-
tion of the field equations. Such a meaning for c suggested to Maxwell the
hypothesis, later confirmed in experiments, that light could be an electromag-
netic phenomenon, and this allowed him to make predictions of more general
phenomena, related to wave propagation. In fact, from (1.15) to (1.16), one
obtains the so-called physical optics, and hence, with a limiting procedure,
geometrical optics.

The meaning of c becomes more clear when one studies the propagation
of discontinuity waves for the Maxwell’s equations. To see this, let us assume
that, at time t = t0, a certain perturbation is introduced in a given electro-
magnetic field, for instance by means of an electric discharge. This implies
that at t = t0, one has δE, δH �= 0 in a certain region, limited by a sur-
face σ0. The region initially perturbed will evolve into a moving surface σ,
representing the boundary between the region affected (at that time) by the
perturbation and the unperturbed space. In other words, σ is the instanta-
neous wave front of the perturbation, and it is also a discontinuity surface for
both the field components and their derivatives. If the discontinuities occur
only in the maximum order of derivatives appearing in the field equations, σ
represents an ordinary discontinuity wave; otherwise it is a shock wave.

curlv = ci × ∂iv (∂i = ∂/∂xi) .

From this definition,

curl curlv = ci × ∂i(c
k × ∂kv) = ci × (ck × ∂ikv)

= ck(ci · ∂ikv) − ∂ikv(ci · ck)

= ck∂k(ci · ∂iv) − δik∂ikv ,

and finally
curl curlv = grad(divv) − Δ2v .

6 In presence of electromagnetic sources one has instead

��H = −4π

c
curlJ , ��E = 4π

(
grad ρ +

1

c2
∂tJ

)
.
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The fact is that Maxwell’s equations imply that all the ordinary discon-
tinuity waves, in vacuum or with regular sources, move with velocity c (with
respect to S∗), independently of the causes generating the perturbation itself.7

In other words, if f(t, xi) = 0 is the Cartesian equation of the wave front
σ in S∗, at each point of σ the propagation velocity is always c:

∣∣∣∣ ∂tf

gradf

∣∣∣∣ = const = c . (1.26)

Equivalently, every electromagnetic wave front satisfies the (Eikonal) differ-
ential equation:

δik∂if∂jf −
1
c2

(∂tf)2 = 0 . (1.27)

Equation (1.26) represents the simplest propagation law for a surface: constant
speed. However, as in the general case, the evolution of the wave front is
uniquely determined, as soon as the initial configuration σ0 and the initial
direction of propagation are assigned: σ is parallel to σ0. In the special case
in which σ0 is reduced to a single point (epicentral waves), the wave fronts
are spheres with a common centre; if σ0 is a plane, one has plane waves etc.

Summarizing: the universal constant c, coming from electromagnetic con-
siderations in Maxwell’s theory, assumes the meaning of propagation speed
of the electromagnetic waves. From this follows the necessity of selecting a
preferred reference frame in which (1.15) hold that is S∗. In any other frame,
the propagation velocity would necessarily be different.

Thus, even if (1.15), as well as the differential equations for mechanics,
are invariant with respect to coordinate transformations internal to S∗, they
do not satisfy the GRP. This latter consequence can be directly confirmed,
using (1.12); in fact, neither Maxwell’s equations, the force law (1.16) nor
the propagation law (1.27) are formally invariant with respect to the Galilei
transformations (1.12).

Hence there is a fundamental difference between mechanics and electro-
magnetism. In the latter case, S∗ is the only preferred frame (it was called
cosmic Ether, being an imponderable medium which allowed the light propa-
gation). In the case of mechanics, instead, S∗ cannot be distinguished from all
∞3 equivalent frames. Assuming the validity of Maxwell’s theory in the pre-
ferred frame S∗, clearly, the same theory can be extended to any other solid
frame (Galilean or not, or even deformable). However, as for the case of the
mechanics, because of the fictitious forces, such extension requires explicitly
the characterization of the motion of S with respect to S∗.

At this point, once the laws of classical physics are accepted, one has the
fundamental problem to localize the preferred frame S∗, taking into account

7 In other words, such velocity does not depend either on the kinematical status of
the charges at the beginning of the propagation or on the propagation direction.
Experimentally, this effect can be checked by looking at the process (spontaneous
or not) of photon emission, by collision of relativistic particles.
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that this should be conditioned only by Maxwell’s equations, so that it cannot
be physically localized by means of mechanical experiments, but only through
electromagnetic experiments. Such a localization was specifically sought for
by the classical experiment of Michelson and Morley (1887), as we will see in
the next section.

1.5 Optical Experiments and Classical Physics

In this section, we briefly review also few optical experiments which lead to
the idea that the cosmic Ether should be identified with the fixed star space
(see also [4]).

Astronomical Aberration

If two different observers, in relative motion along a line r, measure the in-
clination with respect to r of the light emitted by a fixed star A, the two
measurements θ and θ′ are slightly different and depend on the star position.
It follows that by observing the same phenomenon after 6 months (to make
the effect bigger), the same part of the sky appears to be deformed.

Such a phenomenon was found by J. Bradley in 1728. He observed that
the stars, as seen from the Earth, seem to describe on the sky, in 1 year, a
small ellipse, with the semimajor axis a = 20′′, 47 of the ellipse parallel to
the ecliptic, and the semiminor axis b = a sin λ, where λ is the latitude of
the star. He called this effect aberration, as if it were a sort of optical illusion,
related to the motion of the Earth around the Sun. Classical mechanics allows
the explanation of the effect, by using the addition of velocities law. In fact, let
us assume that, in the reference frame S∗, both the star A and the observer O
are at rest; let c be the (absolute) velocity of the light ray, as emitted from A,
so that, for the observer O, the direction of the ray is OA. For the observer O′,
in motion with relative velocity u with respect to O, the apparent direction
of the light ray is that of the relative velocity c′, given by the law of addition
of velocities:

c′ = c− u . (1.28)

Thus, from Fig. 1.1, we find the relation

sin(Δθ)
sin(π − θ′) =

u

c
,

from which the approximate formula (to first order in Δθ) holds:

Δθ =
u

c
sin θ . (1.29)

Classical mechanics shows, thus, a theoretical effect depending on θ, i.e.
on the position of the star, which is of the first order in the ratio u/c. In
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Fig. 1.1. Astronomical aberration

particular, let O′ be an observer on the Earth, and hence in (approximately)
uniform linear motion with respect to S∗: u � 30 km/s, the orbital velocity of
the Earth. With this choice of u, the experimental data are in agreement with
(1.29) and with the identification of the cosmic Ether with the space of fixed
stars. However, the interpretation of the such a formula is limited because of
the existence of big experimental errors.

Luminal Doppler Effect

A second experiment, which confirms the identification of the cosmic Ether
with the space of the fixed stars, is a simple application of the Doppler effect.
Let us recall here the classical relation which gives the frequency variation
law of a monochromatic plane light wave when the observer is in motion with
respect to the source. If the observer and the source are both at rest with
respect to the Ether S∗, one has

ν =
c

λ
,

where ν is the frequency and λ the wavelength. For an observer S′, in motion
with respect to the Ether with (constant) velocity u, parallel to the propa-
gation direction of the wave front n (n · n = 1), the situation is different.
Assuming, for instance, that the observer S′ moves away from the source, the
wave relative velocity will be c− u, and it will contain a number (c− u)/λ of
waves. Hence, with respect to S′, the wave frequency will be

ν′ =
c− u
λ

= ν
(
1− u

c

)
,

or
ν′ = ν

(
1− u · n

c

)
, (1.30)
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where u · n = u. Actually (1.30) is also valid when u is not parallel to n and
represents the frequency variation law of a light wave, passing from the Ether
to a frame S′ moving with respect to the Ether with a constant arbitrary
velocity u.

In an equivalent form, defining Δν = ν′ − ν, one has (luminal Doppler
effect)

Δν
ν

= −u · n
c

. (1.31)

From this relation, one finds that, at a classical level, a transversal Doppler
effect does not exists: u·n = 0 → ν′ = ν. The maximum effect is longitudinal,
and it is of the first order in the ratio u/c, as for the stellar aberration.

Let us note that in (1.30), together with the absolute notion of time, also
the wave length λ (distance between two successive crests) has been considered
as invariant, passing from the Ether to S′, in accordance with the classical
invariance of space distances. Now one faces with the problem of how it is
possible to operationally control (1.31), without performing measurements in
the Ether, which is still to be localized.

Let us assume once again that the Ether will coincide with the space of the
fixed stars, and let us consider, as a source, a star in the ecliptical plane. Let
S′ be the frame of the Earth and assume we perform frequency measurements
at a temporal difference of 6 months. Together with (1.30), one will also have

ν′′ = ν
(
1 +

u

c

)
,

where u is the speed associated to Earth orbital motion (u = 30km/s). Thus,
we have

ν′ + ν′′ = 2ν , ν′ − ν′′ = −2
u

c
ν ,

and (1.31) reduces to
ν′ − ν′′
ν′ + ν′′

= −u
c
. (1.32)

Equation (1.32) solves our problem because both ν′ and ν′′ are observable. If
the Ether coincides with the fixed star space, one has to find agreement with
the experimental data, assuming u = 30km/s. This is exactly what happens,
independent of the chosen source and within the experimental errors.

Fresnel–Fizeau Effect

An experiment, not so simple in its interpretation, if compared with the pre-
vious two, has been done by Fizeau in 1851, to verify an effect of light prop-
agation in a moving medium foreseen by Fresnel in 1818.

In a transparent, homogeneous and isotropic medium, at rest with respect
to the Ether, it is known that the speed of light becomes
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v0 =
c

n
< c , (1.33)

where n > 1 characterizes the medium and is called its refraction index. What
happens if the medium S′, where the light propagates, is in uniform transla-
tional motion with respect to the Ether? Figure 1.2 shows the experimental
device created by Fizeau to answer this question. A half-silvered plate, placed
in A, divides the light ray coming from the source S. The rays follow the rect-
angular path ABCD, by means of proper mirrors, having an inclination of 450,
and then reach O, where a screen is placed to show interference fringes. Along
their path, the rays pass trough two transparent tubes (arranged longitudi-
nally along AD and BC, respectively), in which a homogeneous and isotropic
liquid (water for instance) flows with constant velocity, but in opposite direc-
tion in the two tubes.

When the liquid is at rest in the two tubes, in O there are no interference
fringes. These appear instead when the liquid is moving, and the fringe’s
amplitude varies with the fluid velocity u.

Hence, the light velocity is modified by the motion of the transparent
medium, either by means of its speed u or by its orientation because this
affects differently the two rays, depending on whether the motions in the
tubes agree or not.

To see this in detail, let us denote by v(u) the light speed in the tube (with
respect to the laboratory), as a function of the speed of the liquid u, in the
case in which the two motions agree. If l is the common length of the tubes,
the temporal phase-displacement of the two rays Δt (due to the fact that the
ray in motion in opposite direction with respect to fluid in the tube will take
a longer time to reach O) is given by

Δt =
2l

v(−u)
− 2l
v(u)

. (1.34)

A

Du

C

O

B

S.

Fig. 1.2. The Fresnel–Fizeau apparatus
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Moreover, a first-order Mac-Laurin expansion of the function v(u) gives

v(u) � v0 + ku , k =
(

dv
du

)
u=0

; (1.35)

thus, (1.33) becomes

Δt =
4lku

v2
0 − k2u2

=
4lku

c2
(

1
n2
− k2u

2

c2

) ,

where the expression (1.34) for v0 has been used. At the considered first order
in u/c, we have

Δt =
1
c2

4lkn2u . (1.36)

Obviously, the temporal displacement Δt depends on the parameters l, n, u,
which must be considered as fixed in the course of an experiment, and on the
coefficient k, which uniquely determines the position of the fringes. Fizeau
found that (1.36) was in agreement with the experimental data if k (assumed
to be depending on the used liquid, i.e. on n) was given the form:

k = 1− 1
n2

. (1.37)

From this and from (1.33) and (1.35), the approximated expression for v(u) is

v(u) = v0 +
(

1− v2
0

c2

)
u . (1.38)

We will see (1.38) again in the next chapter, as a direct consequence of the
relativistic addition of velocities theorem. However, in what is stated above,
there exists an incongruence. Equation (1.36) has been deduced relative to a
frame at rest with respect to the Ether (in fact this is the condition of the
observer O and the experimental device, except for the water), and in the
same frame, one must give an interpretation to (1.38). Vice versa, (1.38) has
been obtained by using (1.37), and comparing (1.36) with the experimental
data corresponding to a terrestrial laboratory. Thus, the procedure is not
consistent. The incongruence can be avoided, by repeating the calculation of
Δt in an Earth laboratory. In doing so, the new value of Δt will be different
from what gives (1.36), either for terms of higher order in u/c or because of the
presence of the velocity of the laboratory with respect to the Ether. Therefore,
(1.36) is still valid in an Earth laboratory, if it is in slow motion with respect
to the Ether; thus, comparing with experimental data, the validity of (1.38)
follows too.

On the contrary, one can also assume that the empirical formula (1.38),
which holds to the first order in an Earth laboratory, is still valid to first order
also in a laboratory at rest in the Ether. In any case, the value (1.37) of the
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coefficient k, obtained experimentally assuming the validity of (1.36), cannot,
on the basis of a pure logical argumentation, be considered the (experimental)
proof of the same (1.36) and, hence, as a proof of the slow motion of the Earth
with respect to the Ether.

Fortunately, the theory of electromagnetism helps. In fact, (1.38) can
be proved by using Maxwell’s equations, for a dielectric nonmagnetizable
medium, in slow motion with respect to the Ether. From these equations,
one finds exactly the value (1.38) proposed by Fresnel and Fizeau, for the
propagation velocity of a plane wave.

Alternatively, the same value can be obtained, assuming that a primary
wave moving in the Ether with velocity c, because of electric polarization phe-
nomena, creates dipoles which become, in turn, centres of secondary spherical
waves (Huygens theorem). The electromagnetic field, resulting from the super-
position of the two kinds of waves, is equivalent to a single wave, propagating
with the velocity (1.38).

In conclusion, the Fresnel–Fizeau effect confirms that the Earth is moving
slowly with respect to the Ether, but its speed through the Ether is certainly
different from the value 30 km/s of the Earth velocity with respect to the fixed
stars. Hence, the Ether cannot be considered at rest with respect to the fixed
stars.

The Michelson–Morley Experiment

If the Ether were not at rest with respect to the Earth, as follows from the
optical experiments described above, the velocity of light with respect to the
Earth—because of the addition of velocities—should be different, in different
directions and in different seasons. To demonstrate this light anisotropy on
the Earth, Michelson and Morley in 1887 performed the following experiment,
which was improved and repeated later, always with a negative result.

The apparatus, assumed to be at rest with respect to the Earth (lab-
oratory), is shown in Fig. 1.3. A ray of monochromatic light arrives on a
half-silvered plate L, placed at 45◦. Out come two rays, which follow different
paths, for going and coming back, by means of the mirrors S1 and S2, and
which are combined on a screen O, to show inference fringes. One of the two
paths is in the direction of the velocity u of the Earth with respect to the
Ether, and the other has the perpendicular direction. Let T1 and T2 denote
the flight times of the two rays. For the first ray, we have

T1 =
l1

c− u +
l1

c+ u
= 2

l1c

c2 − u2
= 2

l1

c

(
1− u2

c2

) . (1.39)

For the second ray, instead, if c′ denotes its velocity with respect to the Earth,
we have

c = u + c′ ;
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O

L

u

S

S2

l2

l1
S1

Fig. 1.3. The Michelson–Morley apparatus

from this, as the trajectory is orthogonal to u, the value of c′ follows:

c′ =
√
c2 − u2 .

Therefore, the time used by the second ray is given by

T2 =
2l2
c′

= 2
l2

c
√

1− u2/c2
. (1.40)

The phase-displacement between the two rays, according to classical
physics, is then

ΔT = T2 − T1 =
2

c
√

1− β2

(
l2 −

l1√
1− β2

)
, β = u/c ,

and it is generically nonzero, except for special length of the two arms and
special values of u. This implies the existence of interference fringes, actually
observed by O.

Let us now rotate the whole apparatus by 90◦, so that the two arms, and
hence the two paths, are exchanged. The phase-displacement then becomes

ΔT ′ =
2

c
√

1− β2

(
l1 −

l2√
1− β2

)
,

differing from the previous one, also in its sign. In fact, assuming ΔT > 0, i.e.
l2 > l1/

√
1− β2, we get ΔT ′ < 0, because

l2√
1− β2

>
l1

1− β2
> l1 ;
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analogously, when ΔT < 0. Finally, one has

Δ = ΔT + ΔT ′ =
2(l1 + l2)
c
√

1− β2

(
1− 1√

1− β2

)
,

or

Δ =
2(l1 + l2)
c(1 − β2)

(√
1− β2 − 1

)
< 0 . (1.41)

Assuming β � 1, we have the approximate result

Δ � − l1 + l2
c

u2

c2
�= 0 . (1.42)

The theoretical condition Δ �= 0 implies, after exchanging of the two arms, a
displacement of fringes. However, the effect of the second order in u/c could
not be seen experimentally, in spite of the precision accuracy of the experi-
mental device, in the different periods of the year and the different ways in
which the experiment was performed. Systematically, the rotation of the two
arms (even when the platform was placed on a mercury liquid basis) did not
show any variation of fringes: Δ = 0.

Within classical physics, assuming c �=∞, the experimental result admit-
ted the only possible interpretation u = 0, i.e. Ether at rest with respect to
the Earth, in contradiction to the optical experiments described above.

A subsequent hypothesis due to the same Michelson, and then also to
Stokes, according to which the Ether was dragged by the Earth, in the vicinity
of its surface, was abandoned because no fringes were observed repeating the
experiments at mountain level. The Lorentz–Fitzgerald hypothesis of length
contraction for moving bodies with respect to the Ether was then introduced
(in fact, it implies |ΔT | = |ΔT ′| and hence Δ = 0, if one supposes that the
length of the arm displaced along the velocity of the Earth with respect to
the Ether was not l, but l

√
1− β2, differently from the orthogonal one).

According to an epistemological point of view, widely accepted today (fal-
libilism) and not by chance developed, in consequence of the scientific fact we
are briefly dealing with, one should suppose that it is not possible to prove
the truth of a theory, but only the falsity. Therefore, one should conclude that
on the basis of the negative result of the Michelson and Morley experiment,
all the classical physics should be put in crisis. Because of the impossibility
to solve the problem of localizing the Ether (apart from the use of an ad hoc
hypothesis), following the logic, one arrived to deny its physical existence as a
unique privileged frame. A trace of this way of reasoning can be found already
in Poincaré, earlier than in the celebrated essay of Einstein in 1905.

It was immediately clear that the Ether problem should be related to the
difference between classical mechanics and electromagnetism, the first admit-
ting an infinity of preferred frames and the second only a single one. Such a
difference, in agreement with the idea of a unified physics, was suggested by
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the effective mixing of natural phenomena and in particular, by the impossibil-
ity of separating such related phenomena, like mechanical and electromagnetic
ones (see e.g. the particle theory of light).

This demand for unification required, first of all, the extension of the GRP
also to the electromagnetic phenomena, and from this point of view, it was
the same Einstein to understand concretely this fundamental necessity and
to be aware that it had to imply the invariance of the light velocity (through
the formal invariance contained in Maxwell’s equations), hence to think of a
fundamental revision of the notions of space and time, i.e. the only notions
really common to all the physical phenomena. With his words, in the 1905
essay [4]: “We will raise this conjecture (the purport of which will hereafter
be called the “Principle of Relativity”) to the status of a postulate, and also
introduce another postulate, which is only apparently irreconcilable with the
former, namely, that light is always propagated in empty space with a definite
velocity c which is independent of the state of motion of the emitting body...”
Einstein was creating the axiomatic body of the new physics: special relativity.
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2

Space-Time Geometry and Relativistic
Kinematics

2.1 Introduction to Special Relativity

In the history of physics, Einstein occupies a position analogous, in certain
respects, to that of Galilei, so big being the revolution they both determined
in the scientific thought. Galilei, after 2000 years, eliminates the Aristotelian
ideas on the dynamics (force directly related to velocity) with the help of the
well-established methods of experimental control of a theory, and introduces
the foundation of classical mechanics; Einstein, on the other hand, on the
basis of the recent progress of particle physics, eliminates the distinct notions
of space and time and introduces the new relativistic mechanics. In Einstein’s
ideas, there exist two “corner stones”, on which special relativity formulation
is based:

i) Extended relativity principle, made up by two parts because it posits
(a) the existence, in Nature, of a class of ∞3 preferred solid frames Sg,
inertial or Galilean frames, just as in classical mechanics; (b) the formal
invariance, with respect to these frames, of all the physics laws and not
only of those of mechanics.

ii) Light speed axiom, according to which the light speed, in vacuum, has
the same value c in all the Galilean frames, irrespective of the emission
properties of the source. This axiom is clearly related to the validity of
Maxwell’s equations, which are considered the general laws of electro-
magnetism. According to point (i), these are formally invariant in all the
inertial frames. In turn, such a validity, extended from the Ether to all
the Galilean frames, implies two facts. On one side, it gives to the abso-
lute quantities of classical electromagnetism (e.g. ρ, E and H) a relative
meaning, and, hence, creates the problem to specify their transformation
laws, passing from one frame to another; on the other side, it marks the
appearance of a universal constant: the light speed in vacuum, which con-
strains the new mechanics to admit a velocity (i.e. c) which has to be the
same in each Galilean frame:
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c =

⎧⎪⎪⎨
⎪⎪⎩

ds
dt

in Sg

ds′

dt′
in S′

g,

(2.1)

for any light signal in vacuum.
In the classical situation dt = dt′, (2.1) is not compatible with the ad-

dition of velocity law (a linear and uniform motion, with velocity c with
respect to Sg, appears linear and uniform in S′

g too, but with velocity
c′ = c − u, where u is the relative velocity of S′

g with respect to Sg). In
particular, it follows that in any frame, there is a different value of the
light velocity, according to its direction (optical anisotropy). Hence, it is
necessary to assume dt �= dt′ together with ds �= ds′: the validity of (2.1)
implies the necessity to renounce not only a universal time but also the
idea of an absolute space. From here it follows Einstein’s criticism of the
traditional idea of an absolute time, which he rightly considers a conven-
tional quantity, without any operational meaning. But up to what point
is it correct to speak about simultaneity, in terms of absolute quantities?
Within a given Galilean frame Sg, an operational criterion, to establish if
two events, E and F , occurring at two different points A and B, are simul-
taneous, is the following. Let us assume that the light speed be the same,
in each direction (optical isotropy), and let us imagine that when the two
events occur, two light signals were emitted from A and B, respectively. If
these were simultaneously recoiled on a screen placed in the middle point
of AB, M, then the two events can be considered as simultaneous. Other-
wise, their arrival order will specify the corresponding temporal sequence.
This criterion allows us to operationally synchronize the∞3 (one for each
space point) standard clocks of a given Galilean frame. But, is it possi-
ble to transport—as classical mechanics does—the notions of simultaneity
and arrival order, from one inertial frame to another? The answer is no.
In fact, let us consider, together with Sg, another Galilean frame S′

g, in
linear uniform translational motion with respect to Sg, with velocity u.

Let us suppose that the events E and F be simultaneous in Sg, occurring
at A and B at the time t = 0. Let then A′ and B′ be the points of S′

g

superposed, at t = 0, to the points A and B, and M′ be the mid-point of
A′B′. Initially (i.e. at t = 0), M′ (in S′

g) coincides with M (in Sg); however,
repeating the previous experiment, because of the motion of M′, the ray
emanating from B≡ B′ will meet M′ before the one coming from A≡ A′.
Hence, to the observer M′, the switching a light in B will seem to arrive
before that the one coming from A: this is the relativity of simultaneity or
the fact that two events, simultaneous in one frame, are not simultaneous
in another Galilean frame.

The situation would have been different if the light speed were infi-
nite: in fact, classical mechanics and its notion of absolute time are both
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consistent with c = ∞; in spite of the fact that from 1675 (Römer), the
finite value of the light speed was known.

However, assuming the existence of a class of ∞3 preferred frames, in
each of these frames, one can still introduce a universal time t, but this
t is, a priori, independent of the time t′ of another frame: t′ �= at +
b. Furthermore, according to Einstein, not only the time but also the
lengths have a relative meaning; that is, the ordinary distance between
two points, in the same Galilean solid, is not invariant: two events that, in
a given Galilean frame occur at distinct points, in another Galilean frame
may occur at the same point, and vice versa. In other words, even if all
the Galilean solids, assumed to be equivalent, have the same geometric
structure (strictly Euclidean), they are no more superposed to the same
three-dimensional space E3, as it is the case for the classical physics.
For example, the condition of uniform translational motion (for rods or
clocks) in a given Sg determines a variation for lengths and times, due to
the relative nature of spatial and temporal measurements, and not to a
deformation of clocks and rods.

2.2 General Axioms

Let us summarize the general axioms of Einstein physics.

A. Existence of an absolute space-time
This axiom implies that the only primary quantity is the event E, or
“elementary phenomenon”. The set of all the events {E} form the universe
in its becoming, and this is the four-dimensional unification of space and
time in a unique absolute: the space-time.

It is implicitly assumed in A that all the physical reality can be rep-
resented in terms of the geometrical objects of the space-time (points,
curves, hypersurfaces, 4-vectors, etc.). In particular, the Galilean or in-
ertial solid frames can be considered (in a new form, as will be specified
in the next postulate) and identified as solids in uniform translational
motion with respect to the fixed stars.

B. Existence of Galilean frames
In the space-time, it is possible to identify a class of ∞3 preferred frames
(the Galilean frames), each of them characterized by a three-dimensional
space, Σ, endowed with a universal time t and with all the ordinary prop-
erties; that is the spatial isotropy, the spatial and temporal homogeneity,
the validity, in Σ, of the strict Euclidean geometry, and the completeness,
in the sense that, in each Sg, all the various phenomena can be coordi-
nated (in a relative form). In other words, the generic event E appears, in
Sg, as occurring at a certain point P of the solid, and at a certain instant
t. Thus, once one has selected a Cartesian triad T in Σ, E is represented
by a numerical quadruple (t, xi) (i = 1, 2, 3): the space-time coordinates
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of the event E. In another Galilean frame, S′
g, the same event E will be

associated with another point P′ ∈ S′
g and by an instant t′ of the tempo-

ral scale associated with S′
g; hence, it will be represented by a numerical

quadruple (t′, xi′), different from the previous one but determined by this
(Lorentz transformations).

However, together with t �= at′ + b, one will also have xi �= Ri
i′x

i′ +
uit + si because, as stated above, the Galilean solids Sg and S′

g are not
superposed to a common E3, as is the case classically.

In any case, because of the completeness of the physical description in
Sg, the history of S′

g can be followed in Sg too, even if only in relative
terms; that is, the particles of S′

g will appear in uniform translational
motion. Thus, even with the unique new absolute: the space-time, the
ordinary notions of space and time are not eliminated, in the Einsteinian
conception, because these are the fundamental terms of our experience;
they, clearly, can be found in the Galilean frames, but with a relative
meaning. The experimental physicist, operating in a Galilean frame Sg

(laboratory), does his measurements in terms of lengths and time intervals,
knowing that the values he can find, in the study of a given phenomenon,
will be different from those found by another observer, at rest in another
Galilean frame. The additional fact is that, not only the measurements but
also the properties that one measures, have, a priori, a relative meaning
(velocity, acceleration, mass, charge, electric and magnetic fields, etc.).
Hence is the necessity to know the transformation laws of these quantities,
passing from one to another Galilean frame. In turns, this requires the link
of the relative quantities to the absolute quantities, from which they come
and can be seen as a renaissance of the platonic philosophy: the world
shows itself by means of shadows, the only things accessible by men; even
if these are coherent shadows, with an objective content, as emanating
from the “absolute”.

However, the physicist especially looks for the fundamental relations
between observables; that is, for the physical laws, which, because of their
universal character, must satisfy invariance requirements. More precisely,
in spite of the relativity of the geometric terms used to formulate physics
laws in Sg, the following axiom holds.

C. Extended relativity principle (ERP)
All the physics laws are formally invariant, passing from one reference
frame Sg to another S′

g. That is, no physical experiment may allow to dis-
tinguish between Sg and S′

g. This is an extension of the classical Galilean
relativity principle due to the extension of the absolute space and absolute
time axioms. However, the invariance is only formal, in the sense that all
the ingredients entering the formulation of the physics laws have a rela-
tive meaning. The problem of studying their transformation laws is then
naturally posed.
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In any case, special relativity substitutes the existence of a universal
constant for the indetermination of the physical space and the time, that is

D. Independence of the emission for the light speed in vacuum
In each Sg, the light speed in vacuum does not depend on the source
motion, and it has the same value in each direction. Because of the ERP,
such a speed cannot depend on the chosen Galilean frame Sg, and it should
have the value c which it takes in the rest frame of the source: cg = c′g = c.
Let us note that the latter postulate becomes a theorem if Maxwell’s
equations are accepted as laws of electromagnetism, obviously subordi-
nated to the ERP; that is, every electromagnetic perturbation propagates
in vacuum with velocity c, independent of the initial disturbance.

Finally, c is a limit velocity, in the sense that
E. No material particle, in Sg, can move at (or faster than) the light speed

in vacuum

v2 < c2 for any material particle. (2.2)

This axiom, as will be elucidated in what follows, can be obtained by
adding the causality principle to the preceding axioms. It is widely con-
firmed, both in the macroscopic and the microscopic range, in high-energy
physics experiments. Here we prefer to assume it from the beginning.

In any case, (2.2), valid in every Sg because of the ERP, represents
a nonholonomic, unilateral and quadratic constraint, which does not in-
troduce in Sg horizons (i.e. limitation for the particles trajectories), but
restricts only the motion laws.

2.3 The Minkowski Space-time

The problem is now that of geometrizing the chosen axioms in order to build
up a model for the Universe: the Minkowski space M4, where the Galilean
frames should be localized, the Lorentz transformation be derived, i.e. where
all the physics theories can be developed. In fact, even if the relative point of
view is allowed, and it is close to the phenomenological reality as it appears to
the observer, the absolute point of view in M4 is primary, either for developing
the general procedures or to define the various physical quantities.

In classical mechanics, the problem of finding representative spaces for ma-
terial systems was considered too. As an example, for the motion of a holo-
nomic system, two different formulations exist: one of geometrical–kinematics
content (configuration space and phase space) and another of pure geometric
content (event space, or the space of the world lines). A material point is
a particular holonomic system and hence for it both the possibilities are al-
lowed. However, in the relativistic framework, the second formulation should
be favoured, not only for its absolute content (the first has necessarily a rel-
ative meaning because such is the time; similarly for the configuration space,
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which can be identified with a Galilean space) but also because it allows the
conceptual vicinity between the time and the space coordinates.

There is, clearly, a fundamental difference: while in a classical context there
exist a 1 − 1 correspondence (up to a weak condition dt/dλ > 0, see below)
between all the physically allowed motions and the curves, in the relativistic
case, i.e. in the event space, such a condition does not exist because of the
constraint (2.2).

To be more specific, let us consider a Galilean frame Sg referred to internal
(orthogonal Cartesian) coordinates xi. From axiom D, let us denote x0 = ct,
so that x0 has the dimensions of a length. Then, we can interpret xα (α =
0, 1, 2, 3) as the Cartesian coordinates of a four-dimensional affine space1 E4.
Such interpretation obviously requires that an affine frame be arbitrarily fixed
in E4, namely an origin Ω and a basis {cα}.

The generic point E ∈ E4: ΩE = xαcα, represents an event, i.e. the special
event that, in the considered Galilean frame, occurs at P ≡ xi at the instant
t = x0/c. Analogously, a generic motion in Sg,

xi = xi(t) , t ∈ (t0, t1), (2.3)

has two characteristics: a geometric one (the relative trajectory, � ≡ P0P1)
and a kinematic one (the law of motion along the trajectory s = s(t)). These
are summarized, in E4, by an oriented curve segment �+:

xα = xα(t) ,
dx0

dt
= c > 0 , (2.4)

where the time of the reference frame is chosen as parameter along the curve.
The latter is not a special parameter because it can be replaced by any

other parameter λ, chosen with only the condition of saving the orientation
of �+:

xα = xα(λ) ,
dx0

dλ
> 0 ∀λ ∈ (λ0, λ1) . (2.5)

1 It is well known that an affine space E4 can be defined as a set of elements
(points) in a 1 − 1 correspondence with the ordered 4-tuple of real numbers
xα (α = 0, 1, 2, 3), defined up to linear and invertible transformations: xα =

Aα
α′xα′

+ Aα, Aα
α′ = ∂xα/∂xα′

being a regular matrix, constant as the Aα.
Alternatively, E4 can be thought as a set E of elements (or points O,P,Q,...)
associated with a linear space T4 such that there exists a surjective application
α : E × E → T4 between ordered pairs of E and elements of T4, that is
(O, P) → v = α(O, P) = OP, satisfying the conditions:

1. ∀O ∈ E and v ∈ T4∃!P ∈ E : OP = v;
2. OP + PQ = OQ , ∀O, P, Q ∈ E (triangular relation).

Then, five-ordered points of E : Ω and Uα (the origin and the “unit points”), such
that the vectors cα = ΩUα are linearly independent in T4 and define an affine
frame.
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Thus, every pointlike motionM in Sg (xi = xi(s), s = s(t)), in the event space
E4, is represented by a well-determined arc �+ : xα = xα(λ). In particular,

(i) to the uniform rectilinear motions in Sg: ẋi = const. (i = 1, 2, 3) corre-
spond, in E4, straight lines ẋα = const., and among these

(ii) the points of the Galilean frame (at rest in Sg: xi = const.) are represented
by straight lines, parallel to the x0-axis.

Conversely, an oriented arc �+ ∈ E4 does not define, in general, a physically
allowed motion. In fact, even if λ is eliminated: x0 = x0(λ), xi = xi(λ), →
xi = xi(t), the condition (2.2) should be satisfied, i.e. δikẋiẋk − (ẋ0)2 < 0, or,
after multiplication by (dt/dλ)2 > 0:

δik

(
dxi

dλ

)(
dxk

dλ

)
−
(

dx0

dλ

)2

< 0 , λ ∈ (λ0, λ1) ,

the latter being a form invariant with respect to the choice of the parameter
λ. Therefore, a necessary and sufficient condition for �+ ∈ E4 to represent a
physically possible motion in Sg, is that the following limitation:

mαβ

(
dxα

dλ

)(
dxβ

dλ

)
< 0 ∀λ ∈ (λ0, λ1) (2.6)

be satisfied, with

mαβ
def=

⎛
⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ . (2.7)

The limitation (2.6) can be geometrically interpreted. To this end, let us
introduce, in E4, the scalar product associated to the symmetric matrix (2.7):

V ·W def= mαβV
αW β ∀V, W ∈ E4. (2.8)

Such an operation satisfies all the ordinary scalar product properties, namely

1. commutative: V ·W = W ·V;
2. bilinear: (U + V) ·W = U ·W + V ·W; (aU) ·V = a(U ·V);
3. nonsingular: V ·W = 0 ∀ V → W = 0,

as it can be directly verified.
As concerns the property 3, the condition mαβV

αW β = 0 ∀V α is equiv-
alent to mαβW

β = 0, that is W β = 0, since the matrix mαβ is regular:
det ||mαβ || = −1.

As in the ordinary case, the condition V ·W = 0 can be geometrically in-
terpreted, in terms of orthogonality of the two vectors; the vectors orthogonal
to V form the orthogonal hyperplane to V, etc.

The operation (2.8) gives, in particular, the meaning of the coefficientsmαβ ,
identifying them as scalar products of the (affine) frame vectors:
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mαβ = cα · cβ (α, β = 0, 1, 2, 3) ; (2.9)

moreover, it associates a scalar quantity to any vector V, the norm ||V||:

||V|| = mαβV
αV β , (2.10)

which is not necessarily positive; for example, ||c0|| = −1.
The affine space E4, endowed with the scalar product (2.8), assumes the

structure of Euclidean space (not in a strict sense2): the Minkowski space M4.
Such a space is characterized also by the distance δ(E,F ) ≥ 0 between the
two events E and F

δ2
def= |mαβ(xα

F − xα
E)(xβ

F − x
β
E)| = |δik(xi

F − xi
E)(xk

F − xk
E)− (x0

F − x0
E)2| ,
(2.11)

built up with the relative spatial distance

Δ� =
√
δik(xi

F − xi
E)(xj

F − x
j
E) , (2.12)

and the relative time interval: Δt = |tF − tE |, so that

δ2 = |Δ�2 − c2Δt2| . (2.13)

This is a geometrical model for the special relativistic absolute: the four-
dimensional Minkowski space-time. First of all, its points are the events of
the natural world; the history of all the physically allowed motions (sequence
of events in causal relation) is given by particular oriented arcs �+ or world
lines of M4. They must satisfy the condition (2.6) which, after introducing
the tangent vector λ = λαcα

λα def=
dxα

dλ
(α = 0, 1, 2, 3) , (2.14)

is equivalent to the condition

||λ|| = mαβλ
αλβ < 0 ∀λ ∈ (λ0, λ1) . (2.15)

This is a typical property of the world lines which has an intrinsic meaning
and does not depend on the choice of the parameter λ. In fact, if λ = λ(λ′),
then

λ = λ′ dλ′

dλ
,

and hence

λ · λ = λ′ · λ′
(

dλ′

dλ

)2

,

so that, from (2.15), ||λ′|| < 0.
2 An Euclidean space is strictly Euclidean if one assumes instead that ∀V �= 0,

then ||V|| > 0 or ||V|| < 0.
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At this point, we have considered the mathematical translation of the ax-
ioms A and E. We still have to give a representation, in M4, of the Galilean
frames, and also to show how M4 deals with the relativity principle. However,
strengthening the structure of affine space by introducing a scalar product, the
various geometrical quantities of M4 (points, vectors, tensors, etc.) and their
properties should be invariant with respect to more general transformation
than those (linear and invertible) of an affine space (Lorentz transformations).

Finally, as concerns the definition of a Galilean frame Sg, we have that in
M4, as in E4, its history is represented by straight lines, parallel to c0; any
of the ∞1 hyperplanes orthogonal to c0 can represent the physical space Σ,
associated with Sg. Changing the Galilean frame Sg will be then equivalent
to exchanging (in M4) c0 with another vector of the same kind: c′0: c′0 · c′0 =
−1. The result will be that the equivalence of all the Galilean frames will
correspond to the geometrical indistinguishability of the vectors c0 and c′0
which are used to represent them.

2.4 The Minkowski Metric

It is now convenient to consider some formal aspects of Minkowski geometry,
which, being improperly Euclidean, is quite different from properly Euclidean
geometry. First of all, by using the fundamental products,

cα · cβ = mαβ = diag(−1, 1, 1, 1) , (2.16)

the selected affine frame is constrained being necessarily orthonormal the basis
{cα}: the vectors cα have unitary magnitude (the magnitude or modulus of a
vector V being defined as V =

√
|V ·V|), and they are mutually orthogonal.

Orthonormal bases are typical for (properly or not) Euclidean spaces. It can
be shown (see [1], p. 82) that, in any nonsingular Euclidean space, there exist
infinite orthonormal bases; moreover, in the same case, the number of vectors
having positive (or negative) norm is invariant: such integer number defines
the signature of the Euclidean space. From this point of view, the Minkowski
space M4 is an (improper) Euclidean space of signature +2, or − + ++,
because all the orthonormal bases contain a vector with norm −1, and three
vectors with norm +1.

With the choice (2.16), the basis {cα} is orthonormal; however, it is not
unique as occurs for the ordinary space. If {cα′} is a basis of the same kind,

cα′ · cβ′ = mα′β′ = diag(−1, 1, 1, 1) (α′, β′ = 0, 1, 2, 3) , (2.17)

the transformation matrix which defines the change of the basis, Lα
α′ (to

distinguish it from the generic transformation matrix Aα
α′),

cα′ = Lα
α′ cα , (2.18)
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should be a rotation (also said a 4-rotation), in the sense that it satisfies the
properties analogous to (2.4):

Lα
α′ Lβ

β′mαβ = mα′β′ (α, β = 0, 1, 2, 3) ; (2.19)

Equation (2.19) constrains the choice of the Lα
α′ (arbitrary, a priori), as was

the case for the components of a rotation matrix Ri
i′ in the ordinary space

Ri
i′ Rj

j′δij = δi′j′ (i, j = 1, 2, 3) . (2.20)

Here, the conditions obtained from (2.19) are 10 (in fact, because of the sym-
metry, it is enough to assume α ≤ β) and, hence, the rotations in M4 form a
group with 16− 10 = 6 parameters.

From (2.19) we also have

(det||Lα
α′ ||)2 = 1 ; (2.21)

thus, such a group contains both rotations (det||Lα
α′ || = 1) and antirotations

(det||Lα
α′ || = −1).

In any case, the coefficients mαβ are necessarily invariant: mαβ = mα′β′ for
all possible orthonormal bases related by (2.19); they are no longer invariant
if the basis {cα′} is generic: cα′ = Aα

α′ cα and, in this case, one has

mα′β′ = Aα
α′ Aβ

β′mαβ �= mαβ (α, β = 0, 1, 2, 3) . (2.22)

The transformation law (2.22) characterizes, as we will see in the following,
a 2-tensor: the metric tensor of M4, whose main role is that of defining, in
M4, the scalar product; in other words, it defines the space-time lengths and
the angles, with an abuse of language because here a definition of the angle
between two vectors is different from the one valid in the ordinary space.

Another property, equally important, of the metric, is that of raising or
lowering of indices. More precisely, together with the matrix ||mαβ ||, given in
(2.7), let us consider the inverse matrix ||mαβ || such that

mαβmβρ = δα
ρ ; (2.23)

in our case (orthonormal basis), one has mαβ = mαβ .
By means of the reciprocal elements mαβ, one can construct the dual basis

cα of the basis cα, defined as follows:

cα = mαβcβ ∼ cα = mαβcβ , (2.24)

or, explicitly,
c0 = −c0 , ci = ci (i = 1, 2, 3) . (2.25)

From (2.23) and using (2.16) the following property holds:

cα · cα = δα
β . (2.26)
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With this assumption, one can decompose each vector with respect to the
basis {cα} or its dual {cα}

V = V αcα = Vαcα . (2.27)

The components V α (along cα) are termed contravariant, while the Vα (along
cα) are said to be covariant; from (2.24) follow the invertible relations:

Vα = mαβV
β ∼ V α = mαβVβ , (2.28)

or, explicitly V0 = −V 0, Vi = V i (i = 1, 2, 3). It is worth noticing the similar
role played in (2.28) by the matrices ||mαβ || and ||mαβ ||: the first is used to
lower an index, the second to raise it. They also play a similar role with respect
to the metric: in fact, exchanging of them is equivalent to exchanging of the
basis {cα} with its dual basis {cα}. In other words, from (2.26), one has the
following two representations of the metric, covariant and contravariant:

mαβ = cα · cβ , mαβ = cα · cβ ; (2.29)

in addition, there are the two symmetric relations for the components of a
vector:

Vα = V · cα , V α = V · cα . (2.30)

2.5 Vectors and Their Classification. The Lightcone

Let us proceed, now, with the classification of vectors in M4. We have the
following definitions: (1) vectors u with vanishing norm: u · u = 0, are null
vectors (or lightlike or isotropic); (2) vectors s with positive norm, s · s > 0,
are spacelike vectors (like ci); (3) vectors γ with negative norm, γ ·γ < 0, are
timelike vectors (like c0).

Let us consider the whole set of null vectors, at an arbitrary point Ω ∈
M4, to be chosen as the origin of the coordinates, for simplicity. Thus, the
components of a generic null vector u = ΩU are identified with the coordinates
xα of its end point U. When u varies within such a family, U describes a
hypersurface, defined by the following homogeneous and quadratic relation:

mαβx
αxβ = 0 ; (2.31)

this is a three-dimensional cone, C3: the absolute feature of M4, or the light-
cone.
C3 separates, as we will see later, the vectors with positive norm (external)

from those with negative norm (internal). In a properly Euclidean space, like
the ordinary one, obviously, the lightcone C3 degenerates to a single point;
differently from what happens in a generic (i.e. nonproperly) Euclidean space,
like M4, where a nontrivial null vector does exist.
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Let us consider, in fact, the subspace of M4 generated by the vectors λγ+μs
(γ being a timelike vector, s a spacelike vector and λ, μ ∈ �). The associated
norm,

||λγ + μs|| = (λγ + μs) · (λγ + μs)
= λ2 ||γ||+ 2λμγ · s + μ2||s|| ,

is a continuous function of λ and μ, in all the real plane. Once evaluated at the
point P ≡ (λ �= 0, μ = 0), it is negative, while at the point Q ≡ (λ = 0, μ �= 0),
it is positive. Thus, there exists a point R ≡ (λ̄, μ̄), internal to the segment
PQ (and hence different from Ω) such that ||λ̄γ + μ̄s|| = 0.

For example, if {cα} is an orthonormal basis, in the subspace E2 ≡ {λc0 +
μc1}λ,μ∈�, there exist two isotropic straight lines: −λ2 + μ2 = 0 → λ = ±μ,
which are defined by the two null vectors: u1,2 = c0 ± c1.

It is worth noticing that

1. u1 +u2 = 2c0 is a timelike vector; that is, the lightcone C3 is not a vector
subspace of M4.

2. An orthonormal basis cannot contain a null vector, by definition; however,
inM4, there exist bases of null vectors; for example, c0+c1, c0−c1, c0+c2,
c0 + c3 are four, linearly independent, null vectors. In fact, the condition

α0(c0 + c1) + α1(c0 − c1) + α2(c0 + c2) + α3(c0 + c3) = 0

is equivalent to

(α0 + α1 + α2 + α3)c0 + (α0 − α1)c1 + α2c2 + α3c3 = 0 ,

or

α0 + α1 + α2 + α3 = 0 , α0 − α1 = 0 , α2 = 0 , α3 = 0 ,

that is αβ = 0 (β = 0, 1, 2, 3) and, hence, they form a basis in M4.
3. The two null vectors u1 and u2 are not orthogonal

(c0 + c1) · (c0 − c1) = −2 .

This is a general property, that is for any two null vectors u and u′ not
aligned, one has

u · u′ > 0 or u · u′ < 0 ,

the orthogonality being thus excluded.3

3 Let us assume, without loss of generality, a basis {cα} such that the null vector
u is represented by u = u(c0 +c1). If u′ is a null vector too, then u′ = ac0 + bici,
with a2 = δikbibk. The scalar product with u is given by u′ · u = u(b1 − a); it
follows that u′ · u = 0 ↔ b1 = a, and hence b2 = b3 = 0, that is u′ parallel to u.



2.5 Vectors and Their Classification. The Lightcone 33

In scalar terms, for any event-origin E, the lightcone is defined by the
Cartesian equation (2.31), or, explicitly:

δikx
ixk − (x0)2 = 0 , (2.32)

which represents a circular cone. The intersection with the generic hyperplane
x0 = ct, orthogonal to the x0-axis, is an ordinary sphere: δikxixk = c2t2,
centred at O = (ct, 0, 0, 0) and with radius ct.4 Such a sphere can be seen as a
projection of C3 on Σ, where it represents, for each t, the wave front of a light
wave, emitted from E = Ω at t = 0. Furthermore, C3 separates the external
(connected) part from the internal (not connected) one, made up by the two
branches of the cone.

Let us consider, now, the set of all the timelike vectors T ∈ M4. It can be
easily shown that,5 as for null vectors which were not aligned, two timelike
vectors cannot be orthogonal; thus, for the timelike vectors γ, γ′, only the
following two cases are allowed:

(a) γ · γ′ > 0 , (b) γ · γ′ < 0 .

As a consequence, once γ is fixed, the product γ · γ′ = mαβγ
αγ′β is a

continuous function of the γ′β, that is of γ ′. If γ′ varies in a connected region
of T , because of the theorem on the zeros of continuous functions, the sign of
γ · γ′ should remain unchanged; in other words, it is not possible to have, in
such a domain, γ · γ′ > 0 and γ · γ′ < 0: this, in fact, would imply γ · γ′ = 0
for a certain γ′, which is impossible. Therefore, all the vectors γ ′ such that
γ · γ′ > 0, or γ · γ′ < 0, should belong to not connected regions of T , i.e.
the two (internal) branches of the lightcone. On the other hand, if γ and γ′

belong to the same branch of the lightcone, one has γ ·γ′ < 0 because γ ·γ < 0.
In different words, two vectors in the internal part of a branch always have
negative product.

Assuming γ = c0 and γ ′ = γ, we have, by definition:⎧⎨
⎩
C+
3 ≡ {γ : c0 · γ < 0} positive half-cone.

C−3 ≡ {γ : c0 · γ > 0} negative half-cone.

The terminology positive or negative, of course, has not any intrinsic meaning
and is introduced only to distinguish between the branches of the lightcone
4 We notice that vectors on the hyperplane have components (0, s1, s2, s3), while

vectors aligned with the x0-axis have components (γ0, 0, 0, 0).
5 Otherwise, an orthonormal basis containing two timelike vectors would exist, and

the signature will be no more than +2. Moreover, the following property holds
that a vector v orthogonal to a timelike unit (without loss of generality) vector
γ is necessarily spacelike. In fact, assuming γ = c0 and v = vαcα, it follows
v · γ = −v0. Thus, the hypothesis v ⊥ γ implies v0 = 0 and hence v = vici, so
that ||v|| = δikvivk > 0. Finally, it should be noted that a timelike vector and a
spacelike one need not be orthogonal. For example, this is the case for γ = c0 and
s = −γ + 2c1 for which s · γ = 1.
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which form the two connected parts of T ; alternatively, the definition of the
branches does not depend on the choice of c0.

The set of all the spacelike vectors, S ≡ {s : s ·s > 0}, is instead connected;
in fact, all the cases

s · s′ > 0 , s · s′ = 0 , s · s′ < 0

are possible.
A picture of all the vectors in M4 is obtained by considering, in Σ, a sphere

σ centred at Ω and of unit radius, as well as all the vectors s ∈ Σ. Each s
can be associated to a vector V = γ + s, which is timelike, null or spacelike,
when s < 1, s = 1, s > 1, respectively. From this follows the meaning of the
sphere σ, which characterizes (through γ) all the vectors of M4: internal, on
the boundary, or external to σ.

Therefore, it follows that M4 is a homogeneous Euclidean space, but it is
not isotropic even if there exist no privileged points in M4, there are, clearly,
preferred directions; this is different from all the three-dimensional sections
Σ, associated with inertial frames, which are all homogeneous and isotropic
(see axiom 2 of B).

In each of the three different classes of vectors, the directions (timelike,
null and spacelike) are equivalent, that is geometrically not distinguishable,
in the sense that one can pass from one to another with a 4-rotation. In other
words, 4-rotations do not change the type of vectors and leave unchanged the
lightcone C3, as well as its two branches: C+

3 and C−3 .

2.6 Elements of the Geometry of Minkowski Space-time

After this discussion of the one-dimensional subspaces of M4, let us consider
two-dimensional subspaces. A two-dimensional subspace is defined by the lin-
ear combinations of two independent vectors:

E2 ≡ {v : v = λv1 + μv2}λ,μ∈�,

or, briefly E2 ≡< v1,v2 >. There exist three different types:

1 Elliptic subspaces. They are formed by spacelike vectors only.
For example: < c1, c2 >; in fact, for any vector v ∈< c1, c2 >, one has

(λc1 + μc2) · (λc1 + μc2) = λ2 + μ2 ≥ 0 ,

with the equality valid only for the trivial case λ = 0, μ = 0.
2 Hyperbolic subspaces. They are formed by vectors of all the three kinds

and contain two null (or isotropic) directions.
An example is given by < c0, c1 >, and it has already been discussed.
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3 Parabolic subspaces. They are formed by a null direction u and by spatial
vectors only, which are all orthogonal to u; in fact, if the subspace is
< u,w >, one can always assume w orthogonal to u: w ·u = 0. Thus, for
any vector v in the subspace, v = λu + μw, one gets

v · v = μ2w2 ≥ 0 , v · u = μw · u = 0 ,

with the equality valid only if μ = 0, or v = λu; from this follows the
existence of a null direction, with all the other directions being spacelike
and orthogonal to the null one.
An example is given by < c0 + c1, c2 >, with c0 + c1 a null vector.

Intuitively, one can image a parabolic subspace as the limit of a hyperbolic
one, when the two isotropic directions collapse into a single one. More pre-
cisely, a hyperbolic subspace is divided, by the two isotropic straight lines, r1
and r2, into four not connected parts, two of which contain timelike vectors
and the other two contain spacelike vectors; each timelike direction, in turn,
admits an orthogonal spacelike direction. When r2 → r1, by varying the 2-
plane containing Ω, each spacelike vector will become orthogonal to the null
direction in which both r1 and r2 (as well as the two regions of negative norm
vectors) will collapse.

Finally, it is possible to geometrically classify the two-dimensional subspaces
(2-planes) of M4, according to their intersections with the lightcone: these
are two real distinct straight lines, two real and coinciding straight lines, or
two complex directions, if the subspaces are hyperbolic, parabolic or elliptic,
respectively.

The same classification occurs by considering the induced metric from the
Minkowskian one, in each subspace, that is the 2-metric associated with the
scalar product between vectors of a basis (even not orthogonal) in the same
subspace. In fact, by a theorem on completion, every basis in a subspace is
a part of a basis of M4; hence, practically, one has to consider the minors
gik (i, k = 1, 2) of the full metric. From this point of view,

(i) Elliptical and hyperbolic subspaces are regular (det ||gik|| �= 0), and with
signature ++ or −+, respectively.

(ii) Parabolic subspaces are singular (det ||gik|| = 0).

Thus, for the subspace < c1, c2 > one has

det ||gik|| = det ||ci · ck|| =
∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 �= 0 ,

and the signature is ++; analogously, for the subspace < c0, c1 > one has

det ||gik|| =
∣∣∣∣−1 0

0 1

∣∣∣∣ = −1 �= 0 ,

and the signature is −+; finally, for the subspace < c0 + c1, c2 > one has
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det ||gik|| =
∣∣∣∣ 0 0
0 1

∣∣∣∣ = 0 ,

and the induced metric is singular.
Let us consider, now, the three-dimensional linear subspaces of M4, or 3-

planes, or hyperplanes. They are spanned by three linear independent vectors,
v1, v2, v3:

E3 ≡ {v : v = λv1 + μv2 + νv3}λ,μ,ν∈� ≡< v1,v2,v3 > .

From what has been stated above, it is clear that M4 will admit the follow-
ing:

1) Elliptical hyperplanes (with signature + + +); they are formed by spatial
vectors, apart for the vector zero.
An example is given by Σ ≡< c1, c2, c3 >.

2) Hyperbolic hyperplanes (with signature −++); they are formed by vectors
of any kind, and they include a two-dimensional cone of null straight lines
(see [1], p. 129).
An example is given by Σ ≡< c0, c1, c2 >. Here we have

||λc0 + μc1 + νc2|| = −λ2 + μ2 + ν2 ,

from which, when λ2 = μ2 + ν2, one has ∞1 null straight lines, that is an
ordinary cone.

3) Parabolic hyperplanes (singular); for these, as for the parabolic 2-planes,
the concept of signature is meaningless because they do not admit or-
thonormal bases (such bases will necessarily contain the null vector of
the hyperplane). Actually, they contain a null direction u and all the re-
maining vectors are spacelike. Moreover, as in the two-dimensional case,
all the vectors are orthogonal to the null direction itself; thus, this is the
hyperplane orthogonal to u.

In other words, to any vector v ∈ M4, there corresponds, without excep-
tions, an orthogonal three-dimensional subspace. This is disjoint from v (and
regular: hyperbolic or elliptic) only when ||v|| �= 06; when v is null, the normal
subspace contains v and it is necessarily parabolic.

For example, the hyperplane < c0 + c1, c2, c3 > is parabolic; thus,

det ||gik|| =

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 0 ;

moreover, for any vector of the hyperplane: v = λ(c0+c1)+μc2+νc3, whence

v · v = μ2 + ν2 ≥ 0 , (c0 + c1) · v = 0 , ∀λ, μ, ν .
6 In any Euclidean space (proper or not), a linear subspace admits a unique sup-

plemental and orthogonal subspace which is also nonsingular (see [1], p. 82).
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2.7 Proper Time

The classification of vectors in M4, and the lightcone, allows us to geometri-
cally specify, first of all, the whole class of Galilean frames, and, in particular,
all those frames having the same time orientation: the set of orthochronous
frames. More precisely, for a generic frame, the unit timelike vector γ = c0

(and, hence, the associated congruence of equi-oriented straight lines) can
belong to either of the light half-cones. Orthochronous frames, instead, are
characterized by vectors γ belonging to the same branch of the lightcone:

∀ γ,γ′ ∈ {γ} → γ · γ′ < 0 .

In the following, we will limit ourselves to orthochronous Galilean frames,
the only ones for which the notions of present, past and future are meaningful;
that is, we will assume M4 endowed with only one of the two light half-cones,
say C+

3 . We will say, briefly, that M4 is time oriented, and we will use the
notation: M4(C+

3 ), or, equivalently, M+
4 .

The impossibility to distinguish, from a geometrical point of view, among
the unit vectors γ, clearly has its physical counterpart in the equivalence of
all the associated Galilean frames, as has been postulated above.

Together with the orthochronous Galilean frames (each with its proper
representative physical space, Σ, orthogonal to γ, and hence elliptical), the
light half-cone C+

3 gives geometrical consistence to the world lines �+ ≡ E0E1.
As we have already seen, they must have, at any point E, the tangent vector
contained in C+

3 : thus, necessarily, the whole world line belongs to the half-
cone C+

3 , having the vertex at E0. C+
3 therefore characterizes all the events

which can be connected with E0 by means of a world line (a straight line
or a curve): it is the future of E0, or the geometrical horizon. The latter, as
already stated, gives no rise to any physical horizon. In fact, if the event E0 is
characterized in Sg by the pair (P0, t0), all that happens at P0, at the instant
t0, may influence what happens at each P ∈ Sg. In particular, a particle
emitted suitably at P0 can reach any P ∈ Sg.

Each world line can be parametrized by an intrinsic parameter τ , analogous
(apart from the dimensions) to the ordinary curvilinear abscissa. It can be
defined, indirectly, through the tangent vector condition of norm −c2, namely,

V =
dΩE
dτ
≡
(

dxα

dτ

)
, (2.33)

with
V ·V = −c2 < 0 . (2.34)

Comparing with a generic parametrization λ of the same world line,

V = V dλ
dτ

, with
dλ
dτ

> 0 and V def=
dΩE
dλ

,

it follows that the condition (2.34) becomes
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V ·V
(

dλ
dτ

)2

= −c2 → dτ
dλ

= ±1
c

√
−V ·V .

As τ is one of the admissible parameters for the oriented world line �+, we
have dτ/dλ > 0. So (2.34) is equivalent to the first-order differential condition:

dτ
dλ

=
1
c

√
−mαβ

dxα

dλ
dxα

dλ
. (2.35)

This condition defines the parameter τ up to an additive constant, as soon as
the parametric equations xα = xα(λ) of the curve �+ are known:

τ = τ0 +
1
c

∫ E

E0

√
−mαβ

dxα

dλ
dxα

dλ
dλ . (2.36)

τ(E) is invariant with respect to the (completely free) choice of the param-
eter λ on �+, as is clear from (2.35):

dτ =
1
c

√
−mαβ dxα dxβ . (2.37)

This is an absolute quantity, defined on the world line, and with the dimensions
of a time. It is called proper time of the particle associated with the world
line �+, and it is proportional to the curvilinear abscissa, by a factor of c:
ds = c dτ . In particular, if one assumes that a Galilean frame is fixed in M4,
and t is the associated relative time, one can put λ = t, so that (2.35) gives
a relation between τ and the ordinary relative velocity of the particle in the
Galilean frame under consideration:

dτ
dt

=

√
1− v(t)2

c2
, v(t)2 = δikv

ivk . (2.38)

In order to find the physical meaning of the proper time let us distinguish
between the case in which the particle world line is a straight line or has
curvature. In the first case, V=const., there exists a unique Galilean frame
which is the particle’s rest frame. This frame is defined by the vector γ =
V/c and hence by the timelike congruence of straight lines with the same
orientation of �+. In such a frame, v = 0 ∀t, so that (2.38) gives t = τ , up
to an unessential additive constant: the particle’s proper time coincides with
that measured by a standard clock of the Galilean rest frame.7

In the second case, instead, a Galilean rest frame for the particle does
not exist, and all that has been said for the rectilinear cases loses its global
character. That is, ∀E ∈ �+, V(E) still defines a Galilean frame, characterized
by the unit timelike vector γ = V(E)/c and, even in this case, (dτ/dt)E = 1,
or dτ = dt, but only at the event E. In other words, this is the instantaneous

7 On the platform Σ orthogonal to γ, the particle’s position is always the same.
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rest frame of the particle, which depends on the point E considered on the
particle’s world line.

The introduction of the proper time illustrates the well-known twin paradox.
Let us assume that a pair of twins (i.e. two material points), move away from
a common position P0 and at the same instant t0, and hence, from the same
event E0; besides, let us assume that the first will maintain its initial velocity,
and that the other will accelerate, until a re-meeting event E1 is reached. In
E1, i.e. when their world lines intersect again, for the second twin, there has
elapsed a lesser quantity of proper time; that is, he is younger than the other.
In fact, for the first twin, there exists a Galilean frame Sg such that

v1 = 0 ∀t ∈ (t0, t1), → τ1 = t1 − t0 .

For the second twin, in the same Galilean frame, we have

τ2 =
∫

�2

dτ2 =
∫ t1

t0

√
1− v2

2

c2
dt <

∫ t1

t0

dt = t1 − t0 ,

i.e. τ2 < τ1, which completes the proof.

2.8 Test Particle Kinematics (Absolute and Relative)

To the absolute parameter τ corresponds the absolute kinematics of the mate-
rial point, through the fundamental notions of 4-velocity V and 4-acceleration
A:

V =
dΩE
dτ
≡
(

dxα

dτ

)
, A =

dV
dτ

=
d2ΩE
dτ2

≡
(

d2xα

dτ2

)
. (2.39)

Apart from their names, which are clear in the relative context, V and A
have also a clear geometrical meaning. The first one, V, is a tangent vector
to the world line �+, and the second one, A, is orthogonal to the world line,
as it follows from differentiating (2.34):

V ·A = 0 . (2.40)

As a consequence, A belongs to the spacelike platform of the instantaneous
rest frame; differently from V which is timelike, the 4-acceleration is a space-
like vector, i.e. with positive norm:

A ·A > 0 . (2.41)

The ratio T = V/c, because of (2.34), is a unit timelike vector, that is the
unit tangent vector to �+. Thus, if s denotes the curvilinear abscissa on �+

T def=
dΩE
ds
≡
(

dxα

ds

)
, (2.42)



40 2 Space-Time Geometry and Relativistic Kinematics

then the relation between V and T becomes

V = cT , (2.43)

which is also equivalent to (2.35):

ds
dτ

= c → s = cτ + const (2.44)

Analogously, by differentiating (2.43) with respect to τ , one has

A = c2C , (2.45)

where C is the spacelike curvature vector of the world line �+ in E:

C def=
dT
ds

. (2.46)

Equations (2.43) and (2.45) specify the geometrical meaning of the vectors
V and A with respect to the world line �+. The kinematical meaning of
these vectors will be evident once, in M4, a Galilean frame Sg is fixed by the
characteristic vector γ and the associated spacelike platform Σ (the physical
space).

Let t be the coordinate time of the Galilean frame (with x0 = ct), and
let P be the point orthogonal projection of E ∈ �+ on Σ. The following
decomposition holds: ΩE = ΩP + x0γ; by differentiating this relation with
respect to the proper time, one has

V =
(

d ΩP
dt

+
dx0

dt
γ

)
dt
dτ

. (2.47)

Thus, taking into account (2.38), and introducing the notation (Lorentz
factor):

η =
dt
dτ

=
1√

1− v2/c2
, (2.48)

one gets
V = η(v + cγ) , (2.49)

with v the particle’s relative velocity (in Sg):

v =
dΩP
dt

. (2.50)

Similarly to (2.49), after a further differentiation, and using the relation:

dη
dt

= η3 v · a
c2

,
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it follows that

A = η2

[
a +

η2

c2
(v · a) (v + cγ)

]
, (2.51)

with a the relative acceleration (in Sg):

a =
dv
dt

=
d2ΩP
dt2

. (2.52)

The relations (2.49) and (2.51) give the relative form, in Sg, of the 4-velocity
and the 4-acceleration, and the decomposition has an invariant meaning with
respect to the choice of Sg due to the absolute character of V and A:

η(v + cγ) = η′(v′ + cγ′) = inv. (2.53)

η2

[
a +

η2

c2
(v · a) (v + cγ)

]
= η′2

[
a′ +

η′2

c2
(v′ · a′) (v′ + cγ′)

]
= inv.

Conversely, from (2.49), by using the orthogonality between v and γ and the
fact that γ is a unit timelike vector, one finds V · γ = −ηc, or

η = −1
c
V · γ , (2.54)

so that (2.49) allows us to obtain the expression of v in terms of V and γ,
namely,

v = −c
(
γ +

V
(V · γ)

)
. (2.55)

Analogously, from (2.51), one can obtain the relative acceleration a. First of
all one has

A · γ = −η
4

c
(v · a),

and then, from (2.51), one gets

a =
A
η2
− η

c2
(v · a)V =

1
η2

(
A +

1
ηc

)
(A · γ)V ,

or, explicitly, as from (2.54),

a =
(

c

V · γ

)2(
A− A · γ

V · γ V
)
. (2.56)

The same result should, obviously, be obtained by differentiating (2.55) with
respect to t.

The relations (2.49) and (2.51), as well as their inverses (2.55) and (2.56),
have a general character, either as concerns the pointlike motion or for the
Galilean frame. In particular, in the proper Galilean frame S0

g , defined by γ =
V/c, (2.55) and (2.56) give v0 = 0 and a0 = A; this specifies the kinematical
meaning of the 4-acceleration (confirming also its spatial character).
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2.9 Lorentz Transformations

We have already stated that the essential features of a Galilean frame, in M4,
are summarized by a unit timelike vector field γ:

γ · γ = mαβγ
αγβ = −1 , (2.57)

or by the product cγ, which represents the 4-velocity of all the particles of the
associated reference solid. The congruence of the ∞3 straight lines (covering
the whole Minkowski space), aligned and oriented according to γ, represents
the history of the Galilean frame. Once the origin of the frame Ω is fixed, the
straight line passing through Ω, and directed along γ, is the temporal axis of
the frame, while the orthogonal subspace through Ω defines the physical space
(at t = 0) of the frame itself; in other words, the space platform of the frame,
denoted by Σ.

In the three-dimensional space Σ (signature + + +), one can obviously
introduce Cartesian coordinates, or more general internal coordinate systems
(polar, cylindrical, etc.).

The passage from absolute quantities (in M4) to their relative counterparts
(in Sg) is obtained by spatial (orthogonal) projection on Σ, using the projec-
tion operator

PΣ = I + γ ⊗ γ ∼ PΣ
α
β = δα

β + γαγβ . (2.58)

In this sense, if �+ is the world line of a material particle, the relative trajectory
on Σ is the projection of �+ orthogonally to γ. Such a trajectory clearly
depends on the selected Galilean frame.

Analogously, (2.49) and (2.55) and their inverses, (2.51) and (2.56), repre-
sent the relations between the local (absolute and relative) kinematical char-
acteristics: velocity and acceleration, respectively, once decomposed along γ
and Σ. These relations are intrinsic (i.e. only γ is needed), and the coordinate
system is still at disposal.

Let us study, now, the passage from one Galilean frame to another. To this
end let us consider, in M4, two Galilean frames: Sg and S′

g, characterized by
unit timelike vector fields γ and γ ′, respectively (γ,γ′ ∈ C+

3 ):

γ · γ ′ < 0 , γ · γ = −1 , γ′ · γ′ = −1 . (2.59)

The vector cγ ′ is the 4-velocity of any of the particles of S′
g; in Sg this has

the following decomposition, according to (2.49):

cγ′ = ρ(u + cγ) , (2.60)

where u ∈ Σ is the translational velocity of S′
g with respect to Sg and, from

(2.48) and (2.54),

ρ =
1√

1− u2/c2
= −γ · γ ′ . (2.61)
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Let us change, now, the role of the two Galilean frames, in (2.60) and (2.61).
This is equivalent to change unprimed quantities with primed ones and vice
versa; so, by using the fundamental property of the light velocity c′ = c; we
find

cγ = ρ′(u′ + cγ′) , (2.62)

and hence
ρ′ =

1√
1− u′2/c2

= −γ · γ′ , (2.63)

where now u′ ∈ Σ′ is the translational velocity of Sg with respect to S′
g. By

comparing (2.61) and (2.63), one has ρ′ = ρ, so that the so-called reciprocity
lemma follows:

u′ = u ; (2.64)

that is, the relative speed of Sg with respect to S′
g coincides with that of Sg with

respect to Sg, and it does not depend on the order in which the two frames
are considered.

Moreover, (2.62) allows us to obtain the decomposition of u′ along γ and
Σ, similar to (2.60) for γ′. One has

cγ = ρ′(u′ + cγ′) = ρu′ + ρ2(u + cγ) ,

from which, using 1− ρ2 = −ρ2u2/c2, one finds

u′ = −ρ
(
u +

u2

c
γ

)
.

Summarizing, in M4, the following transformation laws, associated with the
two Galilean frames Sg and S′

g, hold:

cγ′ = ρ(u + cγ), −u′ = ρ

(
u +

u2

c
γ

)
. (2.65)

In (2.65), we see either the absolute character of the two Galilean frames
(γ and γ ′) or the relative character of the apparent translational velocities u
and u′. These last constant vectors represent two well-determined directions
in Σ and Σ′ (corresponding to apparent motions).

Thus, as in the case of the special Galilean transformations, the presence
of u and u′ in (2.65) suggests the introduction, in both the platforms Σ and
Σ′, of (congruent) Cartesian triads, in standard direction. We then assume
c1 = versu so that S′

g will appear (in Sg) as moving along the x1 direction:

u = uc1 ; (2.66)

c2 and c3 will be chosen so that they form, with c1, an orthogonal left-handed
triad. Similarly, in Σ′, we can use the triad8:
8 According to a standard notation, we will denote indifferently c′

α or cα′ .



44 2 Space-Time Geometry and Relativistic Kinematics

c′1 = −versu′ , → u′ = −uc′1 , c′2,3 = c2,3 . (2.67)

The choice is consistent: in fact, from (2.65), c2 and c3 are orthogonal to both
c1 and γ (and hence to the 2-plane < γ,u >), and c′2 = c2 and c′3 = c3 are
orthogonal to both c′1 and γ′, which belong to the previous 2-plane due to
(2.65).

Moreover, the two orthonormal bases {γ, ci} and {γ′, c′i} are equi-oriented
and can be superposed by using a rotation because the same property holds for
the pairs (γ,u) and (γ ′,−u′). In fact, the determinant of the transformation
(2.65) is +1:

det

∣∣∣∣∣∣

∣∣∣∣∣∣
ρ

ρ

c
ρu2

c
ρ

∣∣∣∣∣∣

∣∣∣∣∣∣ = ρ2(1− u2/c2) = 1 .

Thus, (2.65) gives the following transformation laws:
⎧⎨
⎩
γ ′ = ρ(γ + βc1) , β = u/c , ρ = 1/

√
1− β2,

c′1 = ρ(c1 + βγ), c′2,3 = c2,3,
(2.68)

where, even if the two Galilean frames are completely arbitrary, the unit vec-
tors c1 and c′1 have a precise kinematical meaning, because they characterize
the relative motion directions of the two frames:

u = uc1 , u′ = −uc′1 . (2.69)

In other words, (2.68) implies the following transformation matrix ||Lα
β ||:

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

ρ ρβ 0 0
ρβ ρ 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
, (2.70)

and they correspond to the special Galilean transformations. For the generic
event E ∈ M4, (2.68) gives rise to the two coordinate representations: ΩE =
xαcα = x′αc′α, that is, explicitly,

x0γ + x1c1 + x2c2 + x3c3 = x′0ρ(γ + βc1) + x′1ρ(c1 + βγ) + x′2c2 + x′3c3 .

From this, one gets the direct relations:

x0 = ρ(x′0 + βx′1) , x1 = ρ(x′1 + βx′0), x2,3 = x′2,3 , (2.71)

and the inverse:

x′0 = ρ(x0 − βx1) , x′1 = ρ(x1 − βx0), x′2,3 = x2,3 ; (2.72)

because of the reciprocity lemma, the two sets of relations can be obtained, one
from the other, by exchanging primed and unprimed quantities and β with −β.
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Equations (2.71) and (2.72) are the x1-standard (homogeneous) special Lorentz
transformations. The inhomogeneous transformations correspond to a choice
of the origin Ω′ different from Ω, and thus, they differ by a constant translation
in M4 only.

As ρ = ρ(β), the transformations (2.71) depend on the single parameter β:
0 ≤ β < 1, and they form a connected group, L1. In fact, they contain the
identical transformation (for β = 0), the inverse (for β → −β), as well as the
product of any two transformation, with

β′′ =
β + β′

1 + ββ′ . (2.73)

These are special rotations (of M4) around Ω: they leave unchanged the
2-plane < γ,γ′ >, as well as all the vectors in the orthogonal 2-plane Σ ∩Σ′,
which plays the role of a rotation axis.

As we have already stated, also the group of the general rotations around Ω,
without any special choice of the orthonormal basis vectors, form a group: the
six parameter group of the homogeneous Lorentz transformations, which will
be considered in the following section (see e.g. [2] for a structural analysis of
the Lorentz group). We notice here that these transformations will be obtained
starting from an orthonormal basis cα, once there are assigned the vectors γ
and u, satisfying the constraints γ · γ = −1 and γ · u = 0. These are only
two conditions for the eight variables at disposal, i.e. the components of the
two vectors γ and u along the selected orthonormal basis {cα}; therefore in
the case Ω = Ω′ only six more free parameters remain. Otherwise, the free
parameters become 6 + 4 = 10 (inhomogeneous Lorentz group, or Poincaré
group).

2.10 General Lorentz Transformations: I

In the transformation laws (2.68), general as concerns the Galilean frames
Sg and S′

g, the triads T ∈ Σ and T ′ ∈ Σ′ are very special because of the
x1-standard relation: u = uc1, u′ = −uc′1. This restriction, clearly, is not
essential, because, using (2.68), the general case, in which T ∈ Σ and T ′ ∈ Σ′

are arbitrarily chosen, can be obtained. To perform this extension, we proceed
as follows:

1. Choice of an arbitrary triad T in Sg

The problem is to rewrite (2.68) in a symmetric form, cancelling the
special property of c1 (with respect to c2,3) due to the alignment with the
relative velocity u: u = uc1 (ui = uδi

1). To this end, let us write ρc1 in
the form c1 + · · ·, using the following identity:

ρ = 1 + (ρ− 1) = 1 +
ρ2 − 1
ρ+ 1

= 1 +
ρ2

1 + ρ

(
1− 1

ρ2

)
,
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or

ρ = 1 +
u2

c2
ρ2

1 + ρ
= 1 +

uu1

c2
ρ2

1 + ρ
. (2.74)

It follows that

ρc1 = c1 +
u1

c2
ρ2

1 + ρ
u ,

and, from (2.68)2:

c′1 = c1 +
ρ

c2

(
ρ

1 + ρ
u + cγ

)
u · c1 .

Thus, (2.68) assumes the form (general as concerns the choice of T ∈ Sg):

γ ′ = ρ

(
γ +

1
c
u
)
, c′i = ci +

ρ

c2

(
ρ

1 + ρ
u + cγ

)
u · ci , (2.75)

where now
u = uici , ρ =

1√
1− 1

c2
δiku

iuk

. (2.76)

The next step is now
2. Choice of an arbitrary triad T ′ in S′

g

The problem is that of replacing the preferred triad c′i in (2.75), with
an arbitrary triad in Σ′. For this, it is enough to perform, in Σ′, a spatial
rotation, using an ordinary orthogonal matrix Ri

k. Denoting still by c′i
the rotated triad, we have, for the most general change of orthonormal
bases in M4:

⎧⎪⎪⎨
⎪⎪⎩
γ ′ = ρ

(
γ +

1
c
u
)
,

c′k = Ri
k

[
ci +

ρ

c2

(
ρ

1 + ρ
u + cγ

)
u · ci

]
(k = 1, 2, 3).

(2.77)

In (2.77), there are (implicitly) six independent parameters: the three
components ui (or ui = u · ci = δiku

k) of the relative velocity of S′
g

with respect to Sg, and three parameters for the matrix Ri
k (e.g. the

Euler angles or the Rodriguez parameters, see e.g. [3], p. 113). In terms
of coordinates of the generic event E ∈ M4: x0γ + xici = x′0γ′ + x′ic′i,
(2.77) give the general homogeneous Lorentz transformation:

⎧⎪⎪⎨
⎪⎪⎩
x0 = ρ

(
x′0 +

1
c
x′kRi

kui

)

xi =
ρ

c
uix′0 + x′kRh

k

(
δi
k +

1
c2

ρ2

1 + ρ
uhu

i

)
(i = 1, 2, 3).

(2.78)
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In the limit c → ∞, one re-obtains the general homogeneous Galilei
transformation (1.12). Equation (2.78) can be inverted easily. Using the
notation

yi = Ri
kx

′k , y = yiui , (2.79)

Equation (2.78) become:

x0 = ρ

(
x′0 +

1
c
y

)
, xi = yi +

ρ

c
uix′0 +

1
c2

ρ2

1 + ρ
yui . (2.80)

We will now derive the corresponding expressions for x′0 and yi, from
which the x′k will follow immediately. Let us start obtaining y; from
(2.80)2, using (2.74), one gets

uix
i = y +

ρ

c
u2x′0 +

u2

c2
ρ2

1 + ρ
y = ρy +

ρ

c
u2x′0 ,

or

y =
1
ρ
uix

i − u2

c
x′0 . (2.81)

This relation allows us to cast (2.80)1 in the form

x0 = ρx′0 +
1
c
uix

i − u2

c2
ρx′0 =

1
ρ
x′0 +

1
c
uix

i ,

so that

x′0 = ρ

(
x0 − 1

c
uix

i

)
. (2.82)

From (2.81), one obtains the expression for y:

y =
uix

i

ρ
− ρu2

c

(
x0 − uix

i

c

)
= ρ

(
1
ρ2

+
u2

c2

)
uix

i − ρu2

c
x0 ,

that is

y = ρ

(
uix

i − u2

c
x0

)
. (2.83)

At this point we can obtain yi, from (2.80)2:

yi = xi − 1
c
ρ2ui

(
x0 − 1

c
ukx

k

)
− 1
c2

ρ3

1 + ρ
ui

(
ukx

k − u2

c
x0

)

= xi − ρ2

c
ui

(
1− u2

c2
ρ

1 + ρ

)
x0 +

ρ2

c2
ui

(
1− ρ

1 + ρ

)
ukx

k ;

moreover, using the identities,

1− u2

c2
ρ

1 + ρ
=

1
1 + ρ

(
1 + ρ− u2

c2
ρ

)
=

1
1 + ρ

(
1 +

1
ρ

)
=

1
ρ

1− ρ

1 + ρ
=

1
1 + ρ

,
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one obtains, from (2.82), the inverse form of (2.78)9:

⎧⎪⎪⎨
⎪⎪⎩
x′0 = ρ(x0 − 1

c
uix

i)

Ri
kx

′k = xi − ρ

c
uix0 +

1
c2

ρ2

1 + ρ
uiukx

k (i = 1, 2, 3).
(2.84)

We notice that, in obtaining the Lorentz transformation, we have assumed
M4 to be endowed with one of the two light half-cones. With this assump-
tion, the two Galilean frames Sg and S′

g are equi-oriented in time (in the
future, as well as in the past): γ · γ′ < 0, that is ρ > 0. If this were not
true, one has γ · γ ′ > 0, that is

ρ = − 1√
1− β2

< 0 .

Analogously, if the two Galilean frames are equi-oriented in space (i.e. T
and T ′ both left-handed, or right-handed), in (2.78), we have
det||Ri

k|| = +1.
Thus, the complete (homogeneous) Lorentz group is described by (2.78)

and (2.84), through the parameters ui andRi
k (the latter not independent

of each other), without any sign restriction, for ρ or for the determinant
of the matrix Ri

k. However, it is not possible to pass continuously from
the positive light half-cone to the negative one, as well as, in the same
way, it is not possible to change continuously the orientation (left-handed
or right-handed) of the spatial triad T or T ′. In other words, the com-
plete homogeneous Lorentz group is not connected, but it is made up of
four connected parts. Each part is characterized by an orthonormal basis:
{γ, ci} and {γ′, c′i}, satisfying the following conditions: (i) γ and γ′ belong
to the same branch of the lightcone: γ ·γ ′ < 0, and ρ = 1/

√
1− u2/c2 > 0;

(ii) the bases of M4 are equi-oriented, in the sense that the determinant of
the relative transformation Lα

β (c′β = Lα
βcα) is 1; this is also equivalent

to det||Ri
k|| = +1 because of (2.78) and (2.84). The transformations Lα

β

have then the form:

||Lα
β || ≡

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ρ

ρ

c
uhRh

k

ρui

c

(
δi
h +

1
c2

ρ2

1 + ρ
uiuh

)
Rh

k

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
, (2.85)

and constitute a connected group (Lorentz proper group), which gives
rise to the complete group by adding the space and time reflections. The
orthonormal frames {γ, ci}, belonging to any of the four connected parts

9 See [1], p. 67, taking into account that, from (2.74), one has ρ2/(1 + ρ) =
c2(ρ − 1)/u2.
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(with the ci defined up to spatial rotations), characterize ∞3 Galilean
frames which are equi-oriented both in space and in time.

Thus, the connected parts are all equivalent, as concerns the relativity
principle, and it is not restrictive to assume that M4 is endowed with or-
thonormal frames, satisfying conditions (i) and (ii) only. In other words,
we will assume M4 oriented, and endowed with only one of the two light
half-cone, let us sayM+

4 (C+
3 ). All the relations between the absolute quan-

tities of M+
4 (C+

3 ) will automatically satisfy the relativity principle. So we
will proceed by formulating, in M+

4 (C+
3 ), the physical laws, starting from

the dynamical ones, passing then to consider the relative formulation in a
certain Galilean frame, i.e. defining the relative ingredients starting from
the absolute quantities.

2.11 Relativity of Lengths and Times

In the limit c → ∞, (2.65) reduces to γ′ = γ: M+
4 (C+

3 ), degenerates to the
Cartesian product of an Euclidean 3-space and an oriented straight line, while
u′ = −u is the complete reciprocity theorem. In the same limit, (2.71) reduces
to the special Galilei transformation (1.13).

When c is finite, (2.65) states the relative meaning of lengths and times
associated with a Galilean frame. Let us write (2.71) and (2.72) in the usual
form (i.e. with t = x0/c, x1 = x, x2 = y, x3 = z and analogously for the primed
variables):

t =
1√

1− β2

(
t′ +

β

c
x′
)
, x =

1√
1− β2

(x′ + cβt) , y = y′ , z = z′ ,

(2.86)
as well as

t′ =
1√

1− β2

(
t− β

c
x

)
, x′ =

1√
1− β2

(x − cβt) , y = y′ , z = z′ ,

(2.87)
where β = u/c. The typical relativistic mixing of space and time coordinates
is evident from these relations; moreover, they allow us to derive some kine-
matical effects, already contained in the postulates.

1. Relative meaning of simultaneity
Let us consider two events E and F happening, in S′

g, at two different
points of the x′-axis, say A′ and B′, and here to be simultaneous t′E =
t′F = t′0, that is

E ≡ (t′0, x
′
E , 0, 0) , F ≡ (t′0, x

′
F , 0, 0).

How do these events manifest themselves in the frame Sg? They still
happen on the x-axis (yE = zE = 0; yF = zF = 0), but they are no longer
simultaneous. In fact, from (2.86)1 one has
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tE =
1√

1− β2

(
t′E +

u

c2
x′E
)
, tF =

1√
1− β2

(
t′F +

u

c2
x′F
)
,

(2.88)
so that

tF − tE =
u

c2
√

1− β2
(x′F − x′E) ; (2.89)

if x′F = x′E , obviously, the two events coincide, both in Sg or in S′
g, but,

in general, tF − tE �= 0.
Also the time ordering has a relative meaning: t′F > t′E may coexist

with tF < tE , unless the two events are in a causality relation, i.e. E and
F are associated with the same timelike world line.

2. Time dilation
Let us consider a phenomenon happening at a fixed point of S′

g, over a
time period T0. What is its duration in Sg? To answer this question, it is
enough to specify its duration by means of the initial and final instants
and to consider the associated events, E and F .

Let (x′, 0, 0) be the point of S′
g where the phenomenon happens, and

tE and tF = tE +T0 be the initial and final instants. From (2.88) one has

T = tF−tE =
1√

1− β2

(
t′F +

u

c2
x′
)
− 1√

1− β2

(
t′E +

u

c2
x′
)

=
t′F − t′E√

1− β2
,

so that
T =

T0√
1− β2

> T0 ; (2.90)

thus, in Sg, the duration of a local phenomenon of S′
g appears longer: this

result is known as time dilation. For example, the life of an observer in S′
g

appears longer, when measured with the universal time of Sg.
3. Lorentz contraction

Let a rod A′B′, of length L0, be at rest along the x′-axis in S′
g and let

the endpoint A′ be at Ω while B′ is at x′ = L0; what is the length of the
rod, as measured from Sg? Operationally, one has to measure the distance
L between the intersections A and B left, on the x-axis, by the world lines
of A′ and B′ at a fixed instant t of Sg.

Using (2.87) one has

x′B − x′A =
xB − ut√

1− β2
− xA − ut√

1− β2
=
xB − xA√

1− β2
,

or L0 = L/
√

1− β2, so that

L = L0

√
1− β2 < L0 . (2.91)

In other words, the rod, in Sg, appears contracted by a factor depending on
its speed u: this phenomenon is called Lorentz contraction of the moving
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lengths. It is worth noting that the contraction concerns the direction
of motion of S′

g (that is of the rod) with respect to Sg; if the rod were
displaced orthogonally to the x-axis, there would be no contraction (y′ =
y, z′ = z).

Moreover, as the Lorentz factor should be real, the relative speed u of
S′

g with respect to Sg should always be less than c. This is consistent
with postulate E, which prohibits any particle motion at a speed faster
than that of light. This axiom could be verified as a whole, assuming—
for absurdity—that an electromagnetic signal could travel with a speed
greater than c. Then it would be possible to receive the same signal before
its emission, and even to send it back to the emitter, before it actually
would have been emitted; this would be a clear violation of the causality
principle.

It is also interesting that it is still possible to have a weak form of special
relativity without assuming the postulate E, accepting the above stated
violation of the causality principle.

Note. Equations (2.71)–(2.72) may have a double interpretation:
• Like a Cartesian coordinate change, for the generic event E ∈M4, this

governs the passage from an affine frame to another and vice versa.
It is the most natural interpretation, and it is adapted to the abso-
lute character of the events. In this sense, this should be the primary
interpretation.

• Like an endomorphism of M4, in the sense that the xα and the x′α

are associated with different points: E and E′ respectively, in the same
affine frame R ≡ (Ω;γ, ci). From this point of view, it leaves each of
the two light half-cones invariant and gives the correct meaning to the
notions of past, present and future of an event.

An important consequence of the relativistic speed limit should be noted
here. It implies the impossibility of the existence of rigid bodies in relativ-
ity. For if any body is pushed at one point, the opposite part of the body
cannot immediately start to move, otherwise we would have transmitted a
signal at infinite speed. So every body must be deformable, and not rigid.

2.12 Muon Mean Life and the Time Dilation

Let us consider (2.91) for the length contraction. This necessitates a rigid rod
for which a Galilean rest frame would exist; in this frame, its length is L0

(proper length). In a Galilean frame in which the rod is in linear and uniform
motion, with longitudinal (i.e. in the direction of the rod) velocity v, its length
is no longer L0, but

L = L0

√
1− v2/c2 . (2.92)

In other terms, this is a purely spatial phenomenon, i.e. a sequence of events
which admits a Galilean frame where they all happen at the same time, but
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they are localized in points of a segment. In another Galilean frame, the spatial
localization of the points is exactly of the same kind, but they are no more
simultaneous.

The situation is similar for a purely temporal phenomenon, i.e. a sequence
of events which admits a Galilean frame where they all are located at the
same position, but they correspond to different times and (2.90) holds. We
mean that, while in the rest frame, the phenomenon is only characterized by
its duration T0 (proper duration), in another Galilean frame Sg, the events
not only happen in different places but give rise to a uniform motion with
velocity v, the duration of which is

T = T0/
√

1− v2/c2 . (2.93)

In (2.92) and (2.93), the Lorentz factor η appears, which is very close to 1
when v � c as for bodies in the solar system. Thus, at least in this regime, the
relativistic effects of length contraction and time dilation are not relevant. For
instance, if v/c ∼ 10−4, corresponding to the Earth orbital motion, then 1/η =
0.000995. Hence, from (2.92) and taking into account that the Earth diameter
isD0 � 109 cm, the Earth, as seen by a Sun observer, would appear contracted
(longitudinally) by about 6.5 cm. Analogously, from (2.93), a purely temporal
Earth phenomenon, lasting a century, when examined from the Sun, would
have a duration of 2.5 min more. The effects become important when the
velocities approach that of light, as it happens, microscopically, for elementary
particles.

Let us consider the experimental data for the muons which are contained in
the cosmic rays. They have the same charge as the electron, but a 200 times
heavier mass. Their proper life is very short: T0 = 2.15 × ·10−6s, and then,
after this time (on average), they spontaneously decay into an electron (with
the same charge) and two neutrinos.

In a time interval of the amount of their proper life, even if they could move
at the speed of light, they could make a very short path: L = cT0 = 645 m.
This result would be not acceptable because of the experimental observation
of muons in the atmosphere, which were produced at more than 1 km higher.
It is explained by the relativistic time dilation, according to which the real life
of muons is T = T0/

√
1− v2/c2 and depends on their velocity. Thus, using

the experimental value v = 0.99 c, one gets η = 10, and the path becomes
∼ 6400 m, in agreement with observations (see [5], pp. 33–34).

2.13 Theorem of Relative Motions

Let us start from formulas (2.86) and (2.87), which specify the change of
the coordinates, for a space-time event passing from a Galilean frame Sg to
another frame S′

g; the aim is to discuss the problem of relative motions.
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To this end, let us consider, in Sg, a pointlike motion M: xi = xi(t), t ∈
(t0, t1). From (2.87) we have, immediately, the parametric equations x′α(t) of
the curve corresponding to M in S′

g:

t′ =
t− β

c
x(t)√

1− β2
, x′ =

x(t)− cβt√
1− β2

, y′ = y(t), z′ = z(t) . (2.94)

From the first relation, in principle, one can deduce t = t(t′), and substitute
in the others obtaining then x′i = x′i(t′). From these, by differentiation with
respect to t′, one gets the components v′i = (dx′i/dt′) of the relative velocity
v′ in S′

g:

v′i =
dx′i

dt
dt
dt′

,

with
dt
dt′

=
1

dt′/dt
=

√
1− β2

1− uv1/c2
. (2.95)

The relations between the x-standard components of the relative velocity
v and v′ then follow easily:

v′1 =
v1 − u

1− uv1/c2
, v′2,3 = v2,3

√
1− β2

1− uv1/c2
. (2.96)

Equation (2.96) represents, though in a scalar form, the relativistic addition
of velocity law. It can also be cast in a vectorial form, independent of the
choice of the Cartesian triads in Sg and S′

g. For instance, the denominator of
the two fractions in (2.96) is simply 1− u · v/c2. Let us introduce, thus, the
two quantities, invariant with respect to internal transformations of Sg:

α =
√

1− u2/c2 , σ = 1− u · v/c2 ; (2.97)

so that (2.96) becomes

v′1 =
v1 − u
σ

, v′2,3 =
α

σ
v2,3 . (2.98)

To get the vectorial formula, one needs to remember that this should be an
extension of the classical relation v′ = v − u; that is, it will be a relation
between 3-vectors and it should be referred to Sg or S′

g; a priori, this is not
correct: in fact v and v′ are 3-vectors in the two platforms Σ and Σ′, and it
is not possible to pass from one to the other, without using γ or γ′. However,
an indirect comparison, between the two platforms, can always be done: i.e.
it is possible to boost Σ′ on Σ by means of a rotation of M4. This makes the
unit vectors c′i coincident with the ci (i = 1, 2, 3). In other words, between
the vectors s′ ∈ Σ′ and those s ∈ Σ, there exists an invertible isometry map
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R so that s′ → Rs′ ∈ Σ; such a correspondence can be given by interpreting
the components of s′ along T ′ as components along T :

s′ = s′ic′i → Rs′ = s′ici . (2.99)

Clearly, this map implies Ru′ = −u and it leaves invariant those vectors (in
Σ′) which are orthogonal to u′. Then, one can identify Rv′ = v′ici, or simply,
by omitting the symbol R for brevity, v′ = v′ici.

It is convenient to recast (2.98)1 in the following form:

v1 = αv1 + (1− α)v1 = αv1 +
β2

(1 + α)
v1 ,

i.e. using the relation uv1 = uv · c1 = u · v:

v1 = αv1 +
1
c2

u · v
1 + α

u . (2.100)

Thus,

v′1 =
α

σ
v1 +

1
σ

(
1
c2

u · v
1 + α

− 1
)
u , v′2,3 =

α

σ
v2,3 ;

hence,

v′ =
α

σ
v +

1
σ

(
1
c2

u · v
1 + α

− 1
)

u ,

and finally, using (2.97)2,

v′ =
1
σ

(
αv − α+ σ

1 + α
u
)
. (2.101)

Equation (2.101) represents the relativistic theorem of relative motions (it
is also known as the velocities transformation formula). It has an intrinsic
meaning, i.e. it does not depend on the choice of the two triads T ∈ Sg and
T ′ ∈ S′

g, and it is valid for any choice of the two frames. The Galilean formula,
v′ = v − u, obviously comes from the c→∞ limit.

Equation (2.101) should be considered together with the link between the
relative times t and t′. In differential terms, this link (all along the motion) is
expressed by (2.95), which can also be written in intrinsic form, as:

dt
dt′

=
α

σ
. (2.102)

However, in the case v =const., we also have σ =const. and hence, from
(2.101): v′ =const. Thus, linear and uniform motions have an intrinsic mean-
ing, as in classical mechanics. This was already known: v =const. implies V =
const. and then v′ =const.

The transformation law of the velocities (2.101) is compatible with the
axiom E, in the sense that it implies v′2 < c2 whenever v2 < c2. In fact, from
(2.101) and (2.97) one has
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v′2 =
1
σ2

[
α2v2 +

(
α+ σ

1 + α

)2

u2 − 2
α(α+ σ)

1 + α
u · v
]

=
c2

σ2

[
α2 v

2

c2
+
(
α+ σ

1 + α

)2

(1− α2)− 2
α(α+ σ)

1 + α
(1 − σ)

]

=
c2

σ2

{
α2 v

2

c2
+
α+ σ

1 + α
[(α+ σ)(1 − α)− 2α(1− σ)]

}

=
c2

σ2

[
α2 v

2

c2
+
α+ σ

1 + α
(1 + α)(σ − α)

]

=
c2

σ2

[
α2

(
v2

c2
− 1
)

+ σ2

]
,

and thus
v′2

c2
− 1 =

(α
σ

)2
(
v2

c2
− 1
)
, (2.103)

which completes the proof.
Equation (2.103) can be obtained directly, from (2.38), which, because of the

absolute meaning of the proper time τ , gives rise to the following invariance
property (with respect to the choice of the Galilean frame and along a given
world line): √

1− v2

c2
dt =

√
1− v′2

c2
dt′ = inv. = dτ . (2.104)

It then follows, using (2.102), that

α

σ
=

√√√√√√√
1− v′2

c2

1− v2

c2

=
η

η′
,

i.e. (2.103), or, equivalently,
η′ = η

σ

α
. (2.105)

Let us note that (2.101) can also be derived from the invariance of the
4-velocity: η(v + cγ) = inv. = η′(v′ + cγ′); using (2.105), this becomes v′ +
cγ′ = α/σ(v + cγ), which gives immediately the components v′i = v′ · c′i,
taking into account (2.68).

Note. The isometric boost of the two spaces Σ and Σ′, necessary to compare
the relative ingredients associated with the frames Sg and S′

g, can be bet-
ter geometrically formalized acting directly on vectors, rather than on their
Cartesian components with respect to the two triads T and T ′ in x-standard
relation. According to this point of view, one interprets the effective compo-
nents of a vector v′ ∈ Σ′ as if they were along the triad T (that is on Σ), thus
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verifying that the associated map is an isometry. Therefore, more generally,
one can operate independently on the triads T and T ′. For the transformed
isometric vector Rv′ of a vector v′ ∈ Σ′, we have

Rv′ = σ − λu ∼ Rv′ = s + λ(ρ− 1)u ,

with σ = s + λρu and

λ
def=

1
u2

v′ · u′ , ρ =
1√

1− β2
, β =

u

c
.

In these relations, there appears σ, i.e. the orthogonal projection of v′ on the
2-plane Σ ∩ Σ′ (the “axis” of the rotation), as well as s, i.e. the orthogonal
projection of v′ on Σ, orthogonally to γ. The two expressions are equivalent.
In particular, when v′ = u′, one gets σ = 0, and hence λ = 1, Ru′ = −u; if
instead v′ ∈ Σ ∩ Σ′ (v′ · u′ = 0), one has λ = 0 and s = σ.

2.14 Optical Experiments and Special Relativity

As an application of the theorem (2.101) on relative motions, let us reconsider
here the optical experiments, previously discussed in terms of classical physics.

1. Stellar aberration
Vector multiplication, by u, of both sides of (2.101), yields

v′ × u =
α

σ
v × u ,

from which, using v = v′ = c, it follows that

cu sin θ′ =
α

σ
cu sin θ ,

or

sin θ′ = sin θ

√
1− u2

c2

1− u

c
cos θ

. (2.106)

To first order in β = u/c:
√

1− β2

1− β cos θ
� 1 + β cos θ ,

so that sin θ′ − sin θ � u/c sin θ cos θ. Now, using θ′ = θ + Δθ, to first
order in Δθ one has sin θ′ − sin θ � cos θΔθ, and hence (2.106) assumes
the classical form (1.29): Δθ = β sin θ.
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2. Relativistic luminal Doppler effect
This effect can be obtained by considering, either from an absolute or
a relative point of view, the photon as a material particle, taking into
account the fundamental property: the photon frequency ν satisfies the
invariance property

dt
ν

=
dt′

ν′
= inv. (2.107)

with respect to any change of Galilean frames. Using (2.102), one then
has the relativistic Doppler effect formula:

ν′ − ν
ν

=
Δν
ν

=
1− u

c
cos θ√

1− u2

c2

− 1 , cos θ =
u · c
uc

. (2.108)

From this follows a longitudinal effect (c parallel to u):

Δν
ν

=
1− εu

c√
1− u2

c2

− 1 , ε = ±1 , (2.109)

which, to first order in u/c, reduces to the classical effect:

Δν
ν
� εu

c
.

If, instead, the velocity c of the light ray is perpendicular to u (trans-
lational velocity of S′

g with respect to Sg), (2.108) gives the transverse
Doppler effect formula:

Δν
ν

=
1√

1− u2

c2

− 1 > 0 . (2.110)

One then finds more than a simple relativistic correction: a new phe-
nomenon which is of the second order in u/c:

Δν
ν
� 1

2
u2

c2
.

3. Fresnel–Fizeau effect
Let us assume S′

g as the water rest frame; the light signal speed is then
v′ = c/n, with n the refraction index of the water. Assuming that the
direction of propagation of the light, in Sg coincides with u, what is the
value of the speed of light in Sg? We need to use the inverse formula of
(2.101), obtained by exchanging primed and unprimed quantities:



58 2 Space-Time Geometry and Relativistic Kinematics

v =
1
σ′

(
αv′ − α′ + σ′

1 + α′ u′
)
.

But u′ = −u, so that

v =
1
σ′

(
αv′ +

α+ σ′

1 + α
u
)
, (2.111)

where
α =
√

1− u2/c2 , σ′ = 1 + u · v′/c2 . (2.112)

In our case, v′ = εcu/(nu), with ε = ±1; then (2.111) becomes

v =
1
σ′

(
αε
c

n
+
α+ σ′

1 + α
u

)
u
u
.

In other words, the light ray velocity, in Sg, is v = v versu, with

v =
1
σ′

(
αε
c

n
+
α+ σ′

1 + α
u

)
, σ′ = 1 +

εu

nc
, ε = ±1 . (2.113)

This is an exact relativistic formula. To first order in u/c (so that α � 1),
one gets

v = ε
c

n
+
(

1− 1
n2

)
u , ε = ±1 , (2.114)

from which, when ε = 1 (propagation along u), one obtains the earlier seen
(1.38). Nothing surprising, of course, in this result, because the Lorentz
transformations reduce to the Galilei ones, to first order in β.

4. Michelson–Morley experiment
Here a difference appears because the involved effect is of second order in
β. Assuming that the Earth is an inertial frame S′

g, also in the relativistic
context, the light velocity v′ should be the same (c) in each direction (op-
tical isotropy of the Earth), and hence ΔT = ΔT ′, or Δ = 0, according to
the previous notation. Thus, the lack of fringe shift is in perfect agreement
with special relativity. In other words, the Michelson–Morley experiment
in agreement with the special theory of relativity confirms that the Earth
is a Galilean frame (to the second order), as in classical mechanics.

2.15 Coriolis Theorem

From the theorem of relative motions (2.101), considered for an arbitrary
motion M, after differentiation with respect to t′, one gets the relative ac-
celeration composition law in the context of Galilean frames, or the Coriolis
theorem, even if, classically, this theorem concerns any kind of frame and thus
has a more general meaning.
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More precisely, using (2.102): dt/dt′ = α/σ, and (2.97) for the definition of
α and σ, from (2.101) one gets

a′ =
α

σ

[
1
σ

(
αa − σ̇

1 + α
u
)
− σ̇

σ2

(
αv − α+ σ

1 + α
u
)]

=
α

σ2

[
αa +

(u · a)u
c2(1 + α)

+
u · a
c2σ

(
αv − α+ σ

1 + α
u
)]

=
α2

σ3

[
σa +

u · a
c2

(
v − 1

1 + α
u
)]

=
α2

σ3

[
a− (u · v)

c2
a +

(u · a)
c2

v − (u · a)
c2(1 + α)

u
]
,

and finally,

a′ =
α2

σ3

[
a +

1
c2

u× (v × a)− (u · a)
c2(1 + α)

u
]
, (2.115)

with the inverse relation

a =
α2

σ′3

[
a′ − 1

c2
u× (v′ × a′)− (u · a′)

c2(1 + α)
u
]
, (2.116)

where
σ′ = 1 +

1
c2

u · v′ . (2.117)

Equation (2.115) represents the relativistic version of the Coriolis theorem
in intrinsic form in Sg. However, as already stated, it is only a partial gen-
eralization, because, in special relativity, only Galilean frames are admitted.
Actually, it generalizes the classical theorem: a′ = a on the acceleration in-
variance in the context of Galilean frames, to which it reduces in the limit
c→∞. Similarly, also the theorem of relative motion (2.101) generalizes the
corresponding classical one: v′ = v−vτ , with vτ the dragging velocity, only in
the case vτ = u =const. Equation (2.115) has been obtained by differentiat-
ing with respect to t′ the analogous relation (2.101). However, we should have
performed two different steps: (1) evaluate, starting from (2.96), the relations
among the components ai and a′i of the relative accelerations with respect to
T and T ′; (2) interpret the result in intrinsic form, boosting the triad of S′

g in
Sg. But the result would have been the same because boosting Σ′ on Σ and
differentiating with respect to time are two commutable operations.

Equation (2.115) shows that, differently from classical mechanics, the rel-
ative acceleration is not invariant passing from one frame to another. The
invariance exists only for uniform rectilinear motions: a = 0 implies a′ = 0.

Relativistic kinematics determines second-order corrections to the classical
relative motion theorems: v′ = v − u and a′ = a. In fact, from

α

σ
� 1 +

1
c2

(
u · v − 1

2
u2

)
,
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and
1 + α/σ

1 + α
� 1 +

1
2c2

(
u · v +

1
2
u2

)
,

one gets
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v′ � v − u +
1
c2

[(
u · v − 1

2
u2

)
v − 1

2

(
u · v +

1
2
u2

)
u
]

a′ � a +
1
c2

[(
3u · v − 1

2
u2

)
a + u× (v × a)− 1

2
u · au

]
.

.
Note. As we have already stated, comparison between vectors on Σ and

Σ′ is related to the isometric boost of Σ′ to Σ; it depends only on the two
platforms and not on the choice of the origins Ω and Ω′. More precisely, if the
two origins do coincide, the boost (rotation around Ω = Ω′ in the 2-plane γ
and γ′) induces a map between points P′ ∈ Σ′ and P ∈ Σ. The special Lorentz
transformations (2.87) can be then interpreted intrinsically in Σ, associating
with x′i the Cartesian coordinates (in T ) of the image of P’ in Σ. From
this point of view, denoting (with an abuse of notation) with P’ this image
too, the special Lorentz transformations can be summarized in the following
correspondence (t,P)↔ (t′,P′) (see [6], p. 41):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t′ =
1
α

(
t− 1

c2
ΩP · u

)
,

ΩP′ = ΩP− 1
α

(
t− 1

(1 + α)c2
ΩP · u

)
u .

2.16 Vectorial Maps

In order to use the map language, which permits one to treat, in an intrinsic
way, mixed tensors of any rank in any vector space, let us briefly summarize
here its most important properties (see [1], pp. 24–44).

A vectorial map t, defined in a vector space En, is a linear map of En into
En (endomorphism):

t : v → t(v) ∈ En ∀v ∈ En , (2.118)

satisfying the linearity condition:

t(au + bv) = at(u) + bt(v) ∀u,v ∈ En, a, b ∈ R . (2.119)

The set Ω of all the maps of En has the structure of a linear space. In fact, if
t, t′ ∈ Ω, and a ∈ R, we can define
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t+ t′ : (t+ t′)(v) = t(v) + t′(v) , at : (at)(v) = at(v) , ∀v ∈ En ;

the maps t + t′ and at are linear (like t and t′), and all the axioms of a
vector space are satisfied. It follows that Ω is a vector space isomorphic to the
space of (affine) mixed tensors tik; hence it can be identified with this space,
associated with En, having dimension n2.

Such isomorphism (linear and bijective) follows by considering the quanti-
ties tik obtained by decomposing, with respect to the fixed basis {ei} ∈ En,
the transformed vectors of the basis themselves:

t(ek) = tikei (k = 1, 2, ..., n) . (2.120)

Thus, the quantities tik are the components of the mixed tensor associated
with the map t; they are called coefficients of the map t, with respect to the
basis {ek}. The map t operates by linearity on a generic vector v ∈ En:

t(v) = t(vkek) = vkt(ek) = vktikei , (2.121)

i.e. the transform with respect to a given basis {ei} of a vector is a vector,
obtained by contracting the original components with the coefficients of the
map, in that basis:

vi → vktik . (2.122)

If En is a Riemannian space, i.e. endowed with a nonsingular metric gik:
det||gik|| �= 0, the position of the indices in tik is inessential, in the sense that
one can pass from tik to the other equivalent forms: covariant, contravariant
and mixed (tik = gijg

hktjh). In general, instead, the tensor tik defines two
different map laws, corresponding to the cases in which the contracted index
is the first or the second one:

vk → vitki or vk → viti
k , (2.123)

and one needs to specify if the transformed vector of v if left transformed, or
right transformed.

We note that the coefficients of the map are essentially dependent on the
choice of the basis {ei}, and they transform according to the tensorial law.
However, considering the matrix ||tik|| of the coefficients of the map, it is easy
to check that there exist n scalar quantities, related to the matrix, which are
independent of the chosen basis {ei}. These are the fundamental invariants
of the map: Ik (k = 1, 2, ..., n), and coincide with the sum of principal minors
of order k of the matrix ||tik|| 10:

Ik =
1
k!
δα1...αk

β1...βk
tβ1

α1 . . . t
βk

αk
, k = 1 . . . n , (2.124)

10 A minor is principal if its principal diagonal is included in that of the original
matrix.
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where11

δα1...αk

β1...βk
= k!δα1

[β1
. . . δαk

βk] . (2.125)

In particular, one has

I1 = t11 + t22 + · · ·+ tnn = Tr t , In = det||tik|| .

A map is called proper, if the invariant of maximum order In = det||tik||
is nonzero, and this is an absolute property. In this case, t maintains linear
independence, in the sense that it transforms independent vectors into inde-
pendent vectors; in particular, the transform of a nonzero vector always is
nonzero.

Conversely, if In = 0, the map is called degenerate, and there always exists a
nonzero vector v whose transform is zero. The set of vectors v ∈ En satisfying
the condition t(v) = 0 forms a vector subspace of En, which is called the kernel
of t. For a proper map, the kernel is reduced to the zero vector only.

A vector v ∈ En such that t(v) is parallel to v,

t(v) = λv , λ ∈ R , (2.126)

is called an eigenvector of t; λ is the corresponding eigenvalue of t, associated
with v. Because of the linearity property of t, from (2.126), it is clear that if
t admits an eigenvector v, then it admits ∞1 eigenvectors, all parallel to v:
t(av) = at(v) = λav, and forming a one-dimensional subspace, say < v >.

Equation (2.126) can be conveniently written as t(v) = λt0(v), where t0 is
the identity map: t0(v) = v, having as coefficients the Kronecker tensor δk

i .12

Therefore, (2.126) assumes the form:

(t− λt0)(v) = 0 . (2.127)

In order that the latter condition to be satisfied, for nonzero vectors (proper
eigenvectors), the map t − λt0 must be degenerate, leading to the following
condition for λ:

det||t− λt0|| = 0 , (2.128)

or, explicitly, the eigenvalue equation:

n∑
k=0

(−1)kIn−kt
k = 0 , (2.129)

11 As standard, indices antisymmetrization is denoted by square brackets while sym-
metrization by round brackets. For example, for a 2-tensor A we have

A[αβ] =
1

2
(Aαβ − Aβα) , A(αβ) =

1

2
(Aαβ + Aβα) .

12 The notation t0 = I is also used and especially when two or more maps are
involved.
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or, explicitly

(−1)nλn + (−1)n−1I1λ
n−1 + · · · − In−1λ+ In = 0 . (2.130)

The (complex) solutions of (2.130), when substituted back in (2.127), give rise
to a linear system, which, for each real λ, gives the associated eigenvectors.
In scalar terms, one must solve the linear homogeneous system:

(tik − λδi
k)vk = 0 , (2.131)

which, because of (2.128), admits at least one real eigensolution vi (if λ and
tik are real).

The following general property holds: eigenvectors associated with distinct
eigenvalues are independent. A case of special interest is when t has n distinct
eigenvectors, with which one can form (in an infinite number of ways), a basis
of eigenvectors. In this case, with a proper selection of the basis vector, the
map assumes a diagonal form:

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 0 λn

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
,

where λ1, ..., λn are the (all distinct) eigenvalues of t. As already stated, the
introduction of a nonsingular metric, gik = ei · ek (with inverse gik = ei · ek,
and ei the dual basis of ei), allows one to identify the mixed tensor tik with
its covariant counterpart: tik = gilt

l
k, or the contravariant one: tik = gkltil

and also the (other) mixed one: tik = gilg
kmtlm.

As a consequence, there exist other equivalent forms to express the paral-
lelism condition (2.126), as well as the condition (2.128). For example, the
covariant form of (2.126) is

tikv
k = λvi = λgikv

k , (2.132)

so that (2.128) becomes

det||tik − λgik|| = 0 . (2.133)

In Riemannian spaces, symmetric tensors, tik = tki (and t(ik) = tik), have a
particular importance as concerns their eigenvectors, satisfying the following
property: eigenvectors corresponding to distinct eigenvalues, are orthogonal
to each other, besides being independent. This does not exclude that a single
vector can be isotropic, but this cannot be true for two isotropic vectors be-
cause they cannot be orthogonal. In particular, in Riemannian spaces, if the
n eigenvalues of a symmetric tensor t are real and distinct, the corresponding
n eigendirections are orthogonal in pairs, and give rise to a basis of orthonor-
mal eigenvectors. Moreover, if En is strictly Euclidean, the previous result
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generalizes so that each symmetric 2-tensor is diagonalizable; that is, as a
consequence of the symmetry, one has the reality of the eigenvalues, as well
as the existence of orthonormal bases made up of eigenvectors.

Associated with a map t, one has also other maps:

1. the conjugate map : Kt (also denoted by tT ), such that (Kt)i
j = tj

i;
2. the complementary map : Rt, such that (Rt)i

k (Kt)k
j = (det t)δi

j ;
3. the inverse map : t−1, such that (t−1)i

k t
k

j = tik (t−1)k
j = δi

j .

A number of relations among the invariants of t and related maps (Kt,Rt,
t−1) can be derived. For example, we have

I1(Kt) = I1(t),
I1(t2) = I2

1 (t)− 2I2(t)
I1(t3) = I1(t)I1(t2)− I2(t)I1(t) + 3I3(t) ,

etc.13 A used terminology is the following:

1. if t = Kt, then t is said a dilation map;
2. if t = −Kt, then t is said an axial map.

Moreover, the Hamilton–Cayley identity [1],

n∑
k=0

(−1)kIn−k(t)tk = 0 , (2.134)

can be used to express the inverse map as a polynom in the map t with
coefficients the fundamental invariants:

t−1 =
1

In(t)

n−1∑
j=0

(−1)j In−1−j(t)tj I0(t) = 1 . (2.135)

For n = 4, we have explicitly

t−1 =
1

I4(t)
[I3(t) I−I2(t)t+ I1(t)t2 − t3] , (2.136)

which for antisymmetric tensors, having I1(t) = 0 and I3(t) = 0, specializes
to the form
13 Furthermore, if t and τ are two generic vector maps, a number of identities among

the associated invariants can be derived, e.g.

I2(t + τ ) = I2(t) + I2(τ ) + I1(t)I1(τ ) − I1(tτ ) ,

I3(t + τ ) =
1

3

[
I1(t

3) + I1(τ
3) + 3I1(t

2τ ) +

+ 3I1(tτ
2) − I3

1 (t + τ ) + 3I1(t + τ )I2(t + τ )
]

.
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t4 = −I4(t) I−I2(t)t2 . (2.137)

Finally, in special case in which t is a Rotation , i.e. Kt = t and In(t) = 1
the following (Cayley) representation of t holds: there exist a unique skew-
symmetric map Q (KQ = −Q) so that

t = (I−Q)−1(I +Q) . (2.138)

2.17 Levi–Civita Indicator and Ricci Tensor

In any manifold of dimension n (and hence in M4), one can introduce the
affine tensor, also known as Levi–Civita indicator εi1...in . This is a n-indices
system whose components can only assume values 1, 0,−1, and precisely

εi1...in =

⎧⎨
⎩

0 if the indices are not all distinct
(−1)p if the indices form a p class

permutation (even or odd) of 12 . . . n.
(2.139)

εi1...in can be defined in terms of the generalized Kronecker delta:

εi1...in = δi1...in
1...n , εi1...in = δ1...n

i1...in
. (2.140)

In M4, referred to Cartesian coordinates, we have ε0123 = 1, and εαβρσ is
an odd-type tensor (changing sign according to the orientation of M4) whose
components transform with the law:

ε′αβρσ = ±∂x
′α

∂xλ

∂x′β

∂xμ

∂x′ρ

∂xν

∂x′σ

∂xτ
ελμντ , (2.141)

with the sign + or − depending on whether

det

∣∣∣∣∣
∣∣∣∣∣
∂x

′α

∂xλ

∣∣∣∣∣
∣∣∣∣∣ = ±1.

In the case of Riemannian spaces (associated with a metric gij , with g =
det||gij ||) and general (non-Cartesian) coordinate systems, the role of the
Levi-Civita indicator is played by the Ricci tensor (see e.g. [1] p. 77) defined
by

ηi1...in = [sgn g]
√
|g|εi1...in , (2.142)

where one has the [sgn g] = +1 when g > 0 and [sgn g] = −1 when g < 0.
ηi1...in is a true tensor, differently from the Levi–Civita indicator, and it is
associated with the unit volume n-form; in M4, referred to Cartesian coordi-
nates, we have η0123 = −ε0123 = −1; when the coordinates are not Cartesian
we have instead

ηαβμν = −
√
|g|εαβμν , ηαβμν =

1√
|g|
εαβμν . (2.143)
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It is also useful to recall the identities:

ηαβρση
αβμν = −2δμν

ρσ , ηαβρση
αλμν = −δλμν

βρσ . (2.144)

The Ricci tensor is used to define the space-time dual of tensors of any rank.
In fact, if ti1...ip is an antisymmetric tensor of rank p (i.e. a p-form), the dual
of t is the antisymmetric tensor of rank 4− p defined by

∗tip+1...i4 =
1
p!
ηi1...ipip+1...i4ti1...ip . (2.145)

In particular, if t ≡ tj is a vector (p = 1), we have

∗tijk = ηmijktm ; (2.146)

if t ≡ tij is an antisymmetric tensor of rank 2 (p = 2), we have

∗tij =
1
2
ηlmijtlm , (2.147)

so that the dual is also an antisymmetric tensor of rank 2; if t ≡ tijk is an
antisymmetric tensor of rank 3 (p = 3), we have

∗ti =
1
6
ηijkltjkl , (2.148)

so that the dual is a vector; finally, if t ≡ tijkl is an antisymmetric tensor of
rank 4 (p = 4), we have

∗t =
1
24
ηijkltijkl , (2.149)

so that the dual is a function or a 0-form. The duality operation can be iterated
and for an antisymmetric p-tensor we have

[∗∗t]i1...ip = [sgn g] (−1)p(n−p)ti1...ip . (2.150)

It is worth to note that in the two cases, “space-time” (n = 4, [sgn g] = −1)
and space (n = 3, [sgn g] = 1), the previous relation imply

∗∗t = (−1)p−1t (space− time) (2.151)
∗∗t = t (space) . (2.152)

A final remark concerns notation for the duality operation. It is conventional
to put the * on the left of the symbol denoting the tensor (unless one needs
not to specify a right-duality operation different from a left-duality operation,
especially when dealing with antisymmetric tensor of rank higher than 2).
This notation is but less convenient when one uses index-free notation and
products of many vector maps. Therefore, with an abuse of notation, in such
cases, we often put the * over the letter denoting the tensor.
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2.18 General Lorentz Transformations: II

In this section, we study the geometry of 4-rotations in M4 using the repre-
sentation of the general Lorentz group in terms of antisymmetric 2-tensors [6].

As we have already seen in Sect. 2.10, the Lorentz group is the set of
all possible coordinate transformations in M4 associated with two Cartesian
(orthonormal) frames {Ω, xα, cα} and {Ω′, x′α, c′α}. These are linear and in-
homogeneous:

xα = Lα
βx

′β + Tα ; (2.153)

the four coefficients Tα are arbitrary and represent space-time translations
while the coefficients Lα

β ,

Lα
β =

∂xα

∂x′β
, (2.154)

are associated with the orthonormality of the vectors cα and c′α:

cα · cβ = mαβ = c′α · c′β . (2.155)

The coefficients Lα
β characterize also the transformation laws of the unit

vectors of the two considered frames

c′β = Lα
βcα , (2.156)

so that they can be interpreted as the coefficients of a 4-rotation L which
maps the vectors cα into the vectors c′α:

c′β = Lcβ . (2.157)

The role of the two frames can be exchanged by moving simply the position
of the prime so that (2.153), (2.154) and (2.156) have their analogous:

⎧⎪⎨
⎪⎩
x′α = L′α

βx
β + T ′α (T ′α = −L′α

βT
β)

L′α
β =

∂x′α

∂xβ
, cβ = L′α

βc′α.
(2.158)

The matrices Lα
β and L′α

β are inverse of each other because of the identities:

δα
β =

∂x′α

∂x′β
=
∂x′α

∂xρ

∂xρ

∂x′β
⇐⇒ L′α

ρL
ρ
β = δα

β . (2.159)

Furthermore, the orthonormality properties (2.155) provide restrictions to the
change of basis (2.156), i.e. to the matrix Lα

β ; in fact, one has the following
ten relations:

Lρ
αL

σ
βmρσ = mαβ (α, β = 0, 1, 2, 3) , (2.160)

so that (2.153) specify a group of coordinate transformations L10 with 10
parameters: (16−10) = 6 for the Lα

β and 4 for the Tα. This is called Poincaré
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group of the Minkowski spaceM4. In terms of changes of bases (2.156), (2.160)
characterizes the orthogonal group L6 of M4. Two different points of view are
then possible, one associated with the orthogonal Cartesian coordinates of M4

and the other with the orthonormal frames of M4.
Let us assume the basis cα to be fixed while the basis c′α as well as the

coefficients Lα
β of (2.156) to be allowed to vary. Among all numerical matrices

satisfying (2.160), there is the identity matrix:

Lα
β = δα

β , (2.161)

i.e. the rotation which leaves the initial basis as invariant. Such a rotation
has determinant +1, whereas a generic Lorentz matrix satisfies the condition
(similar to that valid for a rotation in the ordinary space):

det ||Lα
β || = ±1 . (2.162)

Therefore, if one considers the Lα
β as continuous functions of a parameter

t ∈ (0, T ), with the initial condition Lα
β(0) = δα

β , it is not possible to obtain
all the orthonormal bases {c′α} ∈ M4: those derived by applying to cα a
matrix with determinant −1 are excluded. This also happens in the ordinary
space where the rotation group (which depends on three parameters) is not
connected, but consists in two connected parts, O+ and O− (O stands for
orthonormal); in fact

1. in both O+ and O−, there are only rotations with determinant +1 (equi-
oriented bases: both left-handed or right-handed);

2. any two bases, one in O+ and the other in O−, are related by an anti-
rotation: det ||Ri

k|| = −1 (non equi-oriented bases: one left-handed and
the other right-handed).

As stated above, in the case of M4, the connected parts become four:
O+(C±3 ) and O−(C±3 ) because of the presence of the lightcone C3. In fact,
C3 is a barrier not only between timelike (internal) and spacelike (external)
vectors but also for the timelike vectors which cannot pass continuously from
a half-cone to the other.

Alternatively, the condition that the orthonormal bases {cα} and {c′α} are
equi-oriented, i.e. det ||Lα

β || = 1, does not imply the possibility to pass from
one to the other continuously: it is necessary to add the condition that the
two timelike vectors c0 and c′0 belong to the same half lightcone. Thus, to
remain in one of the four connected parts, O±(C±3 ), one must consider the
set of all orthonormal bases O such that for each pair {cα}, {c′α} ∈ O the
following conditions hold:

1. c0 and c′0 belong to the same half lightcone;
2. det ||Lα

β || = 1.

Assuming the above conditions, each of the four connected parts of M4 is
endowed with equi-oriented orthonormal bases.
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2.18.1 Representation of the 4-Rotations
with Pairs of Spatial Vectors

Let us consider one of the four connected parts of the homogeneous Lorentz
group. In this case, Lorentz transformations generate a continuous group of
transformations with six parameters: O6; in addition, for each pair of orthonor-
mal bases {cα}, {c′α} ∈ O6, the timelike vectors c0 ≡ γ, c′0 ≡ γ′, belong to
the same half lightcone and specify two orthochronous Galilean frames: Sg and
S′

g, having generic spatial triads {ci} and {c′i}. We note that one can always
consider the special case of triads in x1-standard relation by performing an
ordinary rotation in Σ (the space platform associated with γ in Sg) and an
analogous rotation in Σ′ (the space platform associated with γ′ in S′

g). More
precisely, as we have seen in Sect. 2.10, denoting by u the relative velocity of
the Galilean frame S′

g with respect to Sg, the following relations hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c′0 = ρ

(
c0 +

1
c
u
)
, ρ =

1√
1− u2

c2

c′k = Ri
k

[
ci +

ρ

c
u · ci

(
c0 +

ρ

c

u
1 + ρ

)]
.

(2.163)

These relations involve six parameters: the three components of u ∈ Σ and
the three parameters corresponding to the spatial rotation R, such that

det ||Ri
k|| = 1 . (2.164)

Equation (2.163) can be cast into a more familiar form by using the rep-
resentation of the ordinary rotations in terms of three parameters and, in
particular, in terms of a single vector q. In fact for an ordinary rotation R,
we have the representation [1, 3]

v′ = Rv = v +
2

1 + q2
[q× v + q× (q× v)] , (2.165)

implying that the transformed vectors of ci ∈ Σ are given by

Δk
def= Ri

kci = ck +
2

1 + q2
[q× ck + q · ckq− q2ck)] . (2.166)

Introducing now the components of q along ck, q = qkck, as well as the spatial
Levi–Civita alternating symbol

εilk = ci · cl × ck , (2.167)

we find the coefficients Ri
k

Ri
k = δi

k +
2

1 + q2
(qlεlk

i + qiqk − q2δi
k) ; (2.168)
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where Ri
kq

k = qi, i.e. q is an eigenvector of R; moreover, q specifies the rota-
tion axis (with its direction) as well as the rotation angle (with its magnitude;
in fact q = tan(φ/2) where φ is the angle of rotation). For example, when
q = tan(φ/2)c3, we find

Ri
k =

⎛
⎝ cosφ − sinφ 0

sinφ cosφ 0
0 0 1

⎞
⎠ . (2.169)

Similarly, using the decomposition u = uici, we also have Ri
kui = Δk · u.

Adopting such a notation allows us to rewrite (2.163) in a more compact form
⎧⎪⎪⎨
⎪⎪⎩

c′0 = ρ

(
c0 +

1
c
u
)
,

c′k = Δk +
ρ

c
Δk · u

(
c0 +

ρ

c

u
1 + ρ

)
.

(2.170)

Note that in the limit c→∞, (2.163) reduce to

c′0 = c0, c′k = Δk = Ri
kci . (2.171)

The components of the Lorentz matrix Lα
β are then given by

⎧⎪⎪⎨
⎪⎪⎩
L0

0 = ρ , Li
0 =

ρ

c
ui

L0
k =

ρ

c
Δk · u , Li

k = ci ·Δk +
1
c2

ρ2

1 + ρ
uiΔk · u.

(2.172)

Let us focus, now, on the composition law for the product of two rotations. In
fact, in addition to L : {cα} → {c′α} (characterized by the vectors q,u ∈ Σ)
consider a second rotation: L′ : {c′α} → {c′′α} (characterized by the vectors
q′,u′ ∈ Σ′) which implies
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c′′0 = ρ′
(
c′0 +

1
c
u′
)
, ρ′ =

1√
1− u′2

c2

c′′k = Δ′
k +

ρ′

c
Δ′

k · u′
(
c′0 +

ρ′

c

u′

1 + ρ′

)
, Δ′

k = Δk(q′),

(2.173)

where
u′ = u′ic′i , q′ = q′ic′i . (2.174)

The transformation
L′′ = L′L (2.175)

directly maps the basis {cα} into {c′′α} and can be represented by relations
analogous to (2.170) with both the vectors q′′,u′′ ∈ Σ, namely,
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c′′0 = ρ′′
(
c0 +

1
c
u′′
)
, ρ′′ =

1√
1− u′′2

c2

c′′k = Δ′′
k +

ρ′′

c
Δ′′

k · u′′
(
c0 +

ρ′′

c

u′′

1 + ρ′′

)
, Δ′′

k = Δk(q′′).

(2.176)

The vectors q′′,u′′ ∈ Σ are functions of q,u ∈ Σ and q′,u′ ∈ Σ′; such a
relation thus represents the composition law of two 4-rotations. Note that this
law can also be obtained directly in terms of the vector q only, exactly as
the composition law of the product of two ordinary rotations (or Rodrigues
formula, see [3], p. 113):

q′′ =
q + q′ + q′ × q

1− q′ · q . (2.177)

A similar relation (with the only difference of a + sign at the denominator
of (2.177)) holds in the three-dimensional hyperbolic case, with signature:
−,+,+.

In the case of a Minkowski space-time, we find convenient to generalize
(2.177) using the representation of 4-rotations L in terms of antisymmetric
2-tensors. This is quite natural since an antisymmetric 2-tensor is equivalent
to a pair of spatial vectors, as for the case of the electromagnetic tensor, which
can be represented in terms of the electric and magnetic vector fields.

Later we will briefly introduce another method, based on Clifford’s algebra
[7] and also associated with antisymmetric tensors. We thus proceed now
analyzing the general properties of antisymmetric 2-tensors in M4 [8].

2.18.2 Invariants of an Antisymmetric 2-Tensor

Let us consider a four-dimensional linear space E4, and let A be a contravari-
ant antisymmetric 2-tensor, i.e. A ∈ E4 ∧ E4

A =
1
2
Aαβeα ∧ eβ , (2.178)

where {eα} is a generic basis in E4.14 Due to a general property (see [1],
p. 53), the tensor A

(1) is a bivector: A = u ∧ v,
or
(2) it can be expressed (in infinite ways) as the sum of two bivectors:

A = A1 + A′
1 , A1 = v0 ∧ v1 , A′

1 = v2 ∧ v3 , (2.179)

14 As a standard notation, we use bold face letters to denote tensors (noncapital
letters for vectors mainly). The vectorial map associated with the mixed repre-
sentation of a 2-tensor is denoted by the same (capital) letter as for the tensor
but is not in bold face.



72 2 Space-Time Geometry and Relativistic Kinematics

where vα (α = 0, 1, 2, 3) are four linearly independent vectors: v0 ∧ v1 ∧ v2 ∧
v3 ≡ V �= 0. In case 2), assuming the (ordered) set of vectors vα as a basis
in E4, the components of A with respect to such a basis are

Aμν =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ ,

and det ||Aμν || = 1. Moreover, because of the tensorial behaviour of the com-
ponents Aμν , the sign of this determinant is invariant under a change of basis,
i.e. it does not depend on the choice of the basis. Hence, it is always positive
for every A which is not a bivector. Therefore, for every contravariant (or
covariant) antisymmetric 2-tensor of the form (2.179) we have

det ||Aμν || ≥ 0 , (2.180)

where the equality holds if and only if A is a bivector.
The above property holds, in particular, if E4 ≡M4. In this case, denoting

the metric tensor as gαβ (generically), one can consider the various forms of the
tensor A: covariant (Aαβ), contravariant (Aαβ) and mixed (Aα

β = gβρA
αρ),

the latter identifying the vectorial map A. One can then consider the four
invariants of A:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(A) = Aα
α = Tr A = 0

I2(A) =
1
2
δρσ
αβA

α
ρA

β
σ = −1

2
Aα

ρA
ρ

α = −1
2
I1(A2)

I3(A) =
1
3!
δρσν
αβμA

α
ρA

β
σA

μ
ν = 0

I4(A) = det ||Aα
β || = g det ||Aαβ ||,

(2.181)

where δβ1...βk
α1...αk

is the generalized Kronecker tensor introduced in (2.125). Equa-
tion (2.181)4 together with (2.180) implies that, if A is nondegenerate, I4(A)
has the sign of the determinant of the space-time metric g; in particular, as-
suming the basis {vα} used to represent the bivectors A1 and A′

1 in (2.179)
instead of {eα}, leads to I4(A) = g implying then I4(A) ≤ 0 in M4. Due to the
invariant property of I4(A), this result specifies its geometrical meaning. In
fact, generically V = v0∧v1∧v2∧v3 is associated with its absolute extension
VA, defined by the positive invariant:

V 2
A

def=
1
4!
|VαβρσV

αβρσ| , V αβρσ = δαβρσ
μντε v

μ
0 v

ν
1v

τ
2v

ε
3 , (2.182)

as well as its extension relative to a frame {eα}, VR:

VR
def= det ||vα

μ|| , vμ = vα
μeα ; (2.183)



2.18 General Lorentz Transformations: II 73

VR then is related to VA by the property

V 2
A = V 2

R|g| = inv. = | det ||vα · vβ || | , (2.184)

invariant with respect to the choice of the basis {eα}. When {eα} ≡ {vα}, we
find VR = 1 and, using (2.181)4 and (2.184), we see that both scalars |I4(A)|
and V 2

A assume the same value |g|; hence, they coincide: |I4(A)| = V 2
A, and V

can then be written as

V = v0 ∧ v1 ∧ v2 ∧ v3 = A1 ∧A′
1 ≡

1
2
A ∧A . (2.185)

Let us define the (pseudoscalar) invariant
∗
I (A):

[
∗
I (A)]2 def= −I4(A) ≥ 0 . (2.186)

We have
[
∗
I (A)]2 = V 2

A ; (2.187)

moreover, denoting by ∗V the dual of V (odd-type scalar):

∗V =
1
4!
ηαβρσV

αβρσ , (2.188)

we have in addition
∗V 2 = −V 2

A , (2.189)

so that (2.187) is also equivalent to

∗
I (A) = ∗V . (2.190)

2.18.3 Algebraic Properties of Antisymmetric 2-Tensors

From (2.178) we have

V =
1
8
AαβAρσeα ∧ eβ ∧ eρ ∧ eσ ≡

4!
8
A[αβAρσ]eα ⊗ eβ ⊗ eρ ⊗ eσ ,

so that the components of V are given by

V αβρσ = 3A[αβAρσ] , (2.191)

and we find

∗V ≡ 1
4!
ηαβρσV

αβρσ =
1
8
ηαβρσA

[αβAρσ] =
1
8
ηαβρσA

αβAρσ . (2.192)

Using then the dual of A

∗
A =

1
2
∗Aαβeα ∧ eβ ,

∗Aαβ =
1
2
ηαβ

ρσA
ρσ , (2.193)
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is easy to prove the additional property of
∗
I (A):

∗
I (A) =

1
4
∗AαβA

αβ = −1
4
I1(A

∗
A) . (2.194)

∗
I (A) characterizes the product of A and

∗
A (see [9], p. 588):

∗
AA = −

∗
I (A)A0 A0 ≡ I ; (2.195)

moreover, since
∗
I (A) is a symmetric function of A and

∗
A, we also have

A
∗
A =

∗
AA = −

∗
I (A)A0 . (2.196)

From this equation, taking the determinant of both sides, it follows

I4(A)I4(
∗
A) = [

∗
I (A)]4 ,

and (2.186) becomes

I4(A) = I4(
∗
A) = −[

∗
I (A)]2 . (2.197)

A second property of
∗
I (A) follows from (2.196). In fact, replacing A by A+B

in (2.196) leads to

(A+B)(
∗
A+

∗
B) = −

∗
I (A+B)A0 ;

the left-hand side of this equation can be cast in the form

A
∗
A+A

∗
B +B

∗
A+B

∗
B =

1
4
I1(A

∗
A)A0 +A

∗
B +B

∗
A+

1
4
I1(B

∗
B)A0

while at the right-hand side we have

∗
I (A+B) = −1

4

[
I1(A

∗
A) + I1(B

∗
B) + 2I1(A

∗
B)
]
. (2.198)

Therefore we find
A

∗
B +B

∗
A =

1
2
I1(A

∗
B)A0 , (2.199)

i.e. a relation equivalent to (2.166), to which it reduces when A = B. Next,
replacing

∗
B by B and B by −

∗
B (being ∗∗ = −1, as shown in Sect. 2.17),

(2.199) becomes

AB −
∗
B

∗
A =

1
2
I1(AB)A0 ; (2.200)

multiplying this equation by AB and using (2.196), we can express the square
of AB as a linear function of the same AB:

(AB)2 =
∗
I (A)

∗
I (B)A0 +

1
2
I1(AB)AB . (2.201)
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We note that when B = A, using (2.181) and (2.197), (2.201) gives the
Hamilton–Cayley identity for antisymmetric 2-tensors:

A4 = −I4(A)A0 − I2(A)A2 . (2.202)

Multiplying (2.200) by A we have

ABA =
1
2
I1(AB)A−

∗
I (A)

∗
B ; (2.203)

when B = A, the latter allows us to obtain A3 in terms of A and
∗
A:

A3 = −I2(A)A−
∗
I (A)

∗
A . (2.204)

Equations (2.199) and (2.200) together with (2.201) imply simple properties
for the Poisson brackets [A,B]:

[A,B] ≡ AB −BA , (2.205)

which give the structure of a Lie algebra to the (Euclidean) space of antisym-
metric 2-tensors Λ2 = M4 ∧M4. For instance, from (2.199), with A = B and
B = −

∗
A, we have: A

∗
B +B

∗
A =

∗
BA+

∗
AB, that is

[A,
∗
B] = [

∗
A,B] . (2.206)

Similarly, from (2.200), rewritten also exchanging A with B, one finds

[A,B] = −[
∗
A,

∗
B] . (2.207)

Finally, we have
∗[A,B] = [A,

∗
B] = [

∗
A,B] ; (2.208)

the parenthesis [A,
∗
A], instead, vanishes identically.

Therefore, two independent antisymmetric 2-tensors:A andB together with
∗
A,

∗
B, [A,B] and ∗[A,B] form a basis in the linear space Λ2.

2.18.4 Bivectors and Their Classification

The properties of antisymmetric 2-tensors outlined in the previous section do
not imply any special requirement for A and B. However, it is convenient
to distinguish between the general case: I4(A) �= 0 and the degenerate one:
I4(A) = 0.

The decomposition (2.179) suggests to study the general case starting from
bivectors. To this end, let us consider the bivector A = u ∧ v, with u and v
independent and defining a linear subspace E2 ≡< u,v >; let us denote by
Aαβ = uαvβ − uβvα the components of A with respect to the basis {eα⊗ eβ}
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of M2
4 ; equivalently, Aαβ are the contravariant coefficients of the linear map

associated with A which maps each vector w ∈M4 into a vector Aw given by

Aw = (v ·w)u− (u ·w)v , (2.209)

belonging to E2 (principal plane) and orthogonal to w: Aw ·w = 0; thus, Aw
has the direction of the intersection between E2 and the hyperplane orthogonal
to w. The exception is represented by those vectors orthogonal to E2, which
belong to the kernel of A: Aw = 0, ∀w ⊥ E2.

Since AM4 = E2, all possible (real) eigendirections of A belong to E2.
Furthermore, I4(A) = 0, since A is a bivector. The eigenvalue equation is
then given by

det ||Aα
β − λδα

β || ≡ λ2[I2(A) + λ2] = 0 , (2.210)

and admits, besides the double root λ = 0 (the vectors of the 2-plane normal
to E2 are all in the kernel of A), the roots of the equation

I2(A) + λ2 = 0 , (2.211)

where I2(A) is given by

I2(A) = ||u|| ||v|| − (u · v)2 . (2.212)

Let us now assume, without loss of generality, that the basis {eα} is adapted
to E2: ei ∈ E2 (i = 0, 1); denoting by V the extension of A with respect to
e0 ∧ e1, we have

I2(A) = VgA , gA = det ||ei · ek|| = ||e0|| ||e1|| − (e0 · e1)2 . (2.213)

We distinguish then the following three cases:

1. gA > 0 ∼ I2(A) > 0: the signature of E2 is (++), i.e. E2 is ellip-
tic, and there are not null directions; (2.211) has no real solutions and,
consequently, in E2, there are no real eigendirections.

2. gA < 0 ∼ I2(A) < 0: the signature of E2 is (−+), i.e. E2 is hyperbolic.
Besides the double root λ = 0, there are two different real eigenvalues: λ =
±
√
−I2(A), and hence there exist in E2 two independent eigendirections:

u1 and u2. One then has

u ∧ v = hu1 ∧ u2 , (2.214)

where h is the signed extension of the parallelogram (u,v) with respect
to (u1,u2). Then, from (2.209) follows that

Aw = h[(u2 ·w)u1 − (u1 ·w)u2], ∀w ∈M4 , (2.215)

so that

Au1 = h[(u2 · u1)u1 − (u1 · u1)u2],
Au2 = h[(u2 · u2)u1 − (u1 · u2)u2] , (2.216)
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and, since u1 and u2 are the eigendirections of A (Au1 parallel to u1 and
Au2 parallel to u2), we have that u1 · u1 = 0 and u2 · u2 = 0, i.e. u1

and u2 are necessarily the two isotropic directions of E2; the associated
eigenvalues λ are given by λ = ±(hu1 ·u2), in agreement with (2.213). In
particular, if u1 and u2 satisfy the normalization condition u1 · u2 = 1
(which still leaves u1 and u2 defined up to a factor), one has λ = ±h.

3. gA = 0 ∼ I2(A) = 0: (2.211) has the double root λ = 0. The vectors of E2

cannot have positive (negative) norm, because in such a case, gA would
be positive (negative) too. Thus, there necessarily exists a null vector u.
Assuming that one of the vectors ei coincides with u, we see, from (2.213),
that u is orthogonal to all the vectors of E2. Moreover, it is unique, up
to a factor: if there were another one, u1, not collinear with u, then, from
(2.215) with h = 0, one would have Aw = 0, ∀w, i.e. A = 0, contrarily
to the hypothesis.

Let s ∈ E2 be a generic vector orthogonal to u and, hence, with nonzero
norm. The normal (with respect to E2) not degenerate hyperplane: Π, con-
tains u and has signature (−++); as a consequence, besides the isotropic
direction, E2 only contains spatial vectors: ||s|| > 0.

Actually, one still has a relation similar to (2.215):

Aw = h[(s ·w)u− (u ·w)s] ,

which ∀w ∈ E2 becomes

Aw = h(s ·w)u , ∀w ∈ E2 .

Thus, each vector w ∈ E2 is mapped into a vector parallel to u, i.e. along
the only null direction of E2. In fact, the condition Aw = h(s ·w)u = 0,
with w ∈ E2, is equivalent to s ·w = 0, that is, w parallel to u. Note that
E2 cannot have orthonormal bases: otherwise the signature should have
been (++); moreover, every orthogonal basis of E2 necessarily contains
the null direction u.

Therefore E2 is parabolic as well as the orthogonal 2-plane which con-
tains u (the isotropic vector) and the null directions of A, as in the above
cases 1 and 2.

We can now discuss some orthogonality properties of antisymmetric 2-
tensors.

Let A ≡ (Aαβ) and B ≡ (Bαβ) be two antisymmetric 2-tensors; the invari-
ant

A ·B def= AαβB
αβ = −I1(AB) (2.217)

is called the scalar product of A and B. When A ·B = 0, the two tensors are
said orthogonal. We have that if A is a bivector, then its dual

∗
A is a bivector

orthogonal to A:

I4(A) = 0 → I4(
∗
A) = 0 and A ·

∗
A = 0 . (2.218)
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This follows directly from (2.196) and (2.197). The orthogonality property of
the bivectors A and

∗
A is equivalent to the orthogonality of the two subspaces

E2 and E∗
2 , to which they belong, respectively. To see this let A = u ∧ v;

because of the independence of u and v, we have that a vector w is orthogonal
to the plane E2 ≡< u,v > associated with A if and only if Aw = (v ·w)u−
(u ·w)v = 0. Moreover, using the antisymmetry of the Ricci tensor η and the
symmetry of the tensor uαuβ , it follows that

∗Aαβuβ = ηαβρσuβuρvσ = 0 , ∗Aαβvβ = ηαβρσvβuρvσ = 0 ,

that is
∗
Au = 0 and

∗
Av = 0. Thus u and v are orthogonal to the subspace E∗

2

associated with
∗
A; as u and v span the subspace E2 associated with A, we

also have the orthogonality of E2 and E∗
2 .

As a consequence of the uniqueness of the orthogonal 2-plane to a given
bivector A = u∧v,15 it follows that, if A and B are bivectors associated with
orthogonal subspaces, necessarily one has B = λ

∗
A, with λ a factor.

Note that (2.218) is contained in (2.196) which for bivectors assumes the
form A

∗
A = 0; similarly, from (2.201), the orthogonality of two bivectors A

and B is equivalent to the condition AB = 0.

2.18.5 Canonical Decomposition of Antisymmetric 2-Tensors

Let us consider a generic antisymmetric 2-tensor A, i.e. such that

I4(A) = I4(
∗
A) = −[

∗
I (A)]2 < 0 . (2.219)

In this case, the associated map admits an inverse: A−1, and because of
(2.196), for the (left) inversion and (left) duality operation, the following re-
lation holds: ∗

A = −
∗
I (A)A−1 , (2.220)

so that the adjoint (or dual) map differs from the inverse by the factor:

−
∗
I (A) =

1
4
I1(A

∗
A) . (2.221)

We find then the following commutation property

∗
A−1 = [

∗
A ]−1 . (2.222)

We note that for bivectors (2.222) as well as the original (2.220) is meaningless.
The following relation between

∗
A and the complementary map of A: RA,

defined by
15 When A is parabolic, the uniqueness remains, but the 2-plane orthogonal to E2

is not supplementary because it contains, like E2, the isotropic direction of A.
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(RA)T def=
∗
I (A)

∗
A , (2.223)

has, instead, a general validity. Equation (2.223) reduces to (2.220) in the
general case I4(A) < 0; for bivectors, instead, the complementary map always
vanishes, differently from

∗
A.

Let us turn to the decomposition (2.179) of A as the sum of two bivec-
tors. We have that A can always be expressed as the sum of two orthogonal
bivectors, that is the following canonical decomposition holds:

A = A1 + A′
1, A1 ·A′

1 = 0 , (2.224)

and it is unique. To show this let us assume the decomposition (2.224) and
use the orthogonality property of A1 and A′

1; we then have for the associated
maps (see Sect. 2.18.4)

A′
1 = λ

∗
A1 , A1 = λ′

∗
A1

′ , λλ′ = −1 ;

thus the decomposition (2.224) becomes

A = A1 + λ
∗
A1 = A′

1 + λ′
∗
A1

′ , (2.225)

where the pair (A1, λ) determines A up to the transformation

A′
1 = λ

∗
A1 , λ′ = −1/λ . (2.226)

Consider now the dual of both sides of (2.225), and take into account that,
for each antisymmetric 2-tensor in M4, one has ∗∗A = −A. Therefore, one has
the relation: λ

∗
A = λ

∗
A1−λ2A1 which, once subtracted from (2.225), gives A1

(as well as A′
1) in terms of A and λ:

A1 =
1

1 + λ2
(A− λ

∗
A) , A′

1 =
λ

1 + λ2
(
∗
A+ λA) . (2.227)

Equation (2.227) is not yet the solution because we must require that A is a
bivector. To do this, it is enough to impose I1(A1

∗
A1) = 0 and use (2.227), so

that
I1(A

∗
A+ λA2 − λ

∗
A

2
− λ2

∗
AA) = 0 .

From this relation, using (2.194), (2.181)2 and (2.200) with B = A,
⎧⎨
⎩
I1(A

∗
A) = I1(

∗
AA) = −4

∗
I (A),

I1(A2) = −2I2(A) , I1(
∗
A

2
) = −I1(A2),

(2.228)

we obtain the equation for λ:

∗
I (A)λ2 − I2(A)λ −

∗
I (A) = 0 . (2.229)
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If
∗
I (A) = 0, (2.229) then implies λ = 0, in agreement with the fact that A is

a bivector; if, instead,
∗
I (A) �= 0, it admits the two roots:

λ1,2 =
1

2
∗
I (A)

[
I2(A)±

√
I2(A)2 + 4[

∗
I (A)]2

]
, λ1λ2 = −1 . (2.230)

Apart from the degenerate case, and using for λ any of the values (2.230),
(2.227) gives the sought for bivectors A1 and A′

1 of the canonical decompo-
sition (2.224). We note that exchanging the two roots λ1 and λ2 given by
(2.230) leaves A invariant, and it is equivalent to exchanging A1 with A′

1 in
(2.227).

Let us study now the relation between the invariants of A and those of A1

and A′
1. We recall that for 2-tensors B and C we have

I2(B + C) def=
1
2
δρσ
αβ(Bα

ρ + Cα
ρ)(Bβ

σ + Cβ
σ)

= I2(B) + I2(C) + I1(B)I1(C)− I1(BC) . (2.231)

Using now B = A1 and C = A′
1 (antisymmetric orthogonal bivectors)

together with (2.224), the previous relation becomes

I2(A) = I2(A1) + I2(A′
1) = −1

2
I1(A2

1)−
1
2
I1(A′2

1 ) .

In order to evaluate I4(A), one has to consider instead the odd-type scalar
∗
I (A) of (2.194):

∗
I (A) = −1

4
I1(A

∗
A) = −1

2
I1(A1

∗
A′

1) = λI1(A2
1) ,

that is,
∗
I (A) = −λI2(A1) . (2.232)

Similarly, exchanging A1 with A′
1, one finds

∗
I (A) = −λ′I2(A′

1); thus, since
λλ′ = −1, we can write

∗
I (A)2 ≡ −I4(A) = −I2(A1)I2(A′

1) . (2.233)

Summarizing, the relations between the invariants of A and those of its
orthogonal components A1 and A′

1 are

I2(A) = I2(A1) + I2(A′
1) , I4(A) = I2(A1)I2(A′

1) . (2.234)

Equation (2.234) confirms the negativity of I4(A), since of the two bivectors
A1 and A′

1 one is elliptic (I2 > 0) and the other is hyperbolic (I2 < 0).
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Equation (2.234) also shows that the sum of two orthogonal parabolic bivec-
tors is still a parabolic bivector; moreover, using (2.233) and (2.232), one has
the following expression for λ2:

λ2 = −I2(A
′
1)

I2(A1)
. (2.235)

2.18.6 Properties of a 4-Rotation

The spectral analysis of antisymmetric tensors which we have discussed above
will be now applied to 4-rotations. We start studying the representation of the
Lorentz group in terms of antisymmetric 2-tensors, i.e. the so-called canonical
decomposition. Thought of as a linear map of vectors, a 4-rotation is a vector
valued function: L ≡ ||Lα

β || satisfying the following properties:

1. it maintains the scalar product of any two vectors: Lu · Lv = u · v,
∀u,v ∈M4;

2. it leaves unchanged the orientation of M4, that is it maps each basis
{eα} ∈M4 into another one with the same orientation.

From the property (1), using the commutation theorem, one gets the con-
dition (KL)L = L0 where (KL) = LT is the conjugate map of L. Taking
the fourth invariant of both sides, and using the property (2), one then gets
I4(L) = 1. Conversely, the latter two conditions imply 1 and 2. Thus,16 nec-
essary and sufficient condition for a generic L to be a rotation is

(KL)L = L0 , I4(L) = 1 . (2.236)

Let us now introduce the complementary map of L, (RL):

(RL) = I4(L)(KL)−1 . (2.237)

From (2.236), after left multiplication by (KL)−1 and using (2.236)2, we
find L = (RL); conversely, such equality which reduces (2.237) to the form
L = I4(L)(KL)−1 implies (KL)L = I4(L)L0, so that [I4(L)]2 = [I4(L)]4.
Therefore, necessary and sufficient condition for L to be a rotation is

(RL) = L , I4(L) > 0 . (2.238)

It is easy to obtain a relation between the first and the third invariant of a
rotation. In fact, using the Hamilton–Cayley identity (2.136) and (2.236)2,
one finds

L−1 = I3(L)L0 − I2(L)L+ I1(L)L2 − L3 , (2.239)

as well as the following expression for (RL):

(KL)−1 ≡ (RL) = I3(L)L0 − I2(L)(KL) + I1(L)(KL)2 − (KL)3 ; (2.240)
16 This is a general property, well known in the ordinary case.
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then, evaluating the first invariant of both sides17: I1(RL) = I3(L) and, from
(2.238)1,

I1(L) = I3(L) . (2.241)

2.18.7 Expression of a 4-Rotation by Its Antisymmetric Part

In the three-dimensional case, every rotation can be expressed as second de-
gree polynom in its antisymmetric part. We look for an analogous property
in the four-dimensional Euclidean space, with signature (− + ++). Let us
decompose L in the sum of its symmetric part D (i.e. a “dilation map”) and
its antisymmetric part A (i.e. an “axial map”):

L = D +A . (2.242)

Using (2.236)1 with L given by (2.242) as well as the analogous L(KL) = L0,
one has

D2 −AD +DA−A2 = L0 , D2 +AD −DA−A2 = L0 ,

from which
D2 = A0 +A2 , DA = AD . (2.243)

We have thus expressedD2 as a function of A; however, our aim18 is to express
D as a function of A. Solving (2.239) with respect to L3 and using (2.236)1,
L−1 = (KL) = D −A, together with (2.241) leads to

L3 = I1(L)L2 − I2(L)L−KL+ I1(L)L0 ;

using the representation of L given by (2.242) and taking into account (2.243)2
then implies

D3 + 3D2A+ 3DA2 +A3 = I1(L)(D2 + 2DA+A2) +
−I2(L)(D +A)−D +A+ I1(L)L0 ;

separating the antisymmetric and symmetric parts, we have⎧⎨
⎩
D3 + 3DA2 = I1(L)(L0 +D2 +A2)− [1 + I2(L)]D

3D2A+A3 = 2I1(L)DA+ [1− I2(L)]A,

so that taking into account (2.243)1 leads to⎧⎨
⎩
D[(2 + I2(L))A0 + 4A2] = 2I1(L)(A0 +A2) ≡ 2I1(L)D2

3A+ 4A3 = 2I1(L)DA+ [1− I2(L)]A.

17 As stated in Sect. 2.17, for any nondegenerate map t, we have I1(Kt) = I1(t).
18 Equations (2.243) are necessary condition for L being a 4-rotation; but they

are not sufficient because they only represent the first of the two characteristic
properties (2.236).
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Introducing then the “dilation map” B
def= [2 + I2(L)]A0 + 4A2 − 2I1(L)D

(satisfying the condition B = KB) and using (2.243)2, the above relations
can be written as

DB = 0 , AB = 0 . (2.244)

Moreover, from the definition of B, we have the additional condition

D2B −A2B = B;

the left-hand side of this equation vanishes identically, being D(DB)−A(AB)
and using the conditions (2.244). Thus necessarily we have B = 0, and this is
exactly the sought for relation for D:

2I1(L)D = [2 + I2(L)]A0 + 4A2 . (2.245)

In the general case I1(L) �= 0, (2.245) gives D in terms of A:

D = aA0 + bA2 , (2.246)

where the scalars a and b are expressed in terms of invariants of L, instead
of A:

a =
2 + I2(L)
2I1(L)

, b =
2

I1(L)
�= 0 . (2.247)

2.18.8 Canonical Form of 4-Rotations

Equation (2.246) allows us to write L in the form

L = aA0 +A+ bA2 , (2.248)

with a and b given by (2.247). Our purpose is now to express a and b in terms
of the invariants of A. From (2.248) we have

I1(L) ≡ 2
b

= 4a− 2bI2(A) ,

that is
I2(A) = 2

a

b
− 1
b2
, (2.249)

or equivalently

I2(A) =
1
2
[2 + I2(L)]− 1

4
I2
1 (L) . (2.250)

Moreover, (2.248) gives the product (KL)L, using the Hamilton–Cayley iden-
tity to express A4:

A4 = −I2(A)A2 − I4(A)A0 , (2.251)

that is
(KL)L = [a2 − b2I4(A)]A0 + [2ab− 1− b2I2(A)]A2 .
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Thus, from (2.236)1 and (2.249), we have the relation:

L0 = [a2 − b2I4(A)]A0,

so that

I4(A) =
a2 − 1
b2

(2.252)

or

I4(A) =
1
16
{
[2 + I2(L)]2 − 4I2

1 (L)
}
. (2.253)

Moreover, (2.186), I4(A) ≤ 0, gives the following restriction to the invariants
of L:

− 1 ≤ a ≤ 1 ∼ [2 + I2(L)]2 ≤ 4I2
1 (L) , (2.254)

with the equality sign holding only if A is a bivector.
Equations (2.249) and (2.252) give, even if not uniquely, the scalars a and

b in terms of the invariants of A. In fact, from (2.252) we have

1
b2

=
a2

b2
− I4(A) ;

substituting this expression in (2.249) leads to the second degree equation
in a/b:

a2

b2
− 2

a

b
− I4(A) + I2(A) = 0 .

Consequently,
a

b
= 1 + ε

√
D , ε = ±1 , (2.255)

where D is given by

D def= 1− I2(A) + I4(A) ≡ 1
16

[2− I2(L)]2 ≥ 0 , (2.256)

and it is nonnegative because of (2.250) and (2.253). As we will see later, this
is the only restriction to A, in order that the right-hand side of (2.248) be a
rotation. Once the ratio a/b is determined, (2.249) gives the expression of b,
and then, from (2.255), we get the expression of a:

a = ε′
1 + ε

√
D√

2(1 + ε
√
D)− I2(A)

, b =
ε′√

2(1 + ε
√
D)− I2(A)

. (2.257)

We note that from (2.256) follows the identity

2(1 + ε
√
D)− I2(A) ≡ (1 + ε

√
D)2 − I4(A) ;

thus, the radicand in (2.257) is nonnegative for each A and vanishes only when
ε = −1, I4(A) = 0, I2(A) = 0.
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2.18.9 Simple Rotations

A 4-rotation L is called simple if its antisymmetric part A is a bivector:
A = u∧v, or I4(A) = 0. From (2.252), we have then a2 = 1, or a = ε′, where
ε′ = ±1 and b is given by (2.255) (or from (2.257), when I4(A) = 0):

a = ε′ , b =
ε′

1 + ε
√

1− I2(A)
, ε, ε′ = ±1 .

As a consequence of the arbitrariness of A, we have the following represen-
tation of simple rotations in M4:

L = ε′
(
A0 +A+

A2

1 + ε
√

1− I2(A)

)
, (2.258)

which recalls the three-dimensional hyperbolic case: ε′ = 1 (see [1]).
If the principal plane associated with the bivector A: E2 =< u,v > is

elliptic: I2(A) > 0 and from the constraint (2.256), one obtains the condition:

I2(A) ≤ 1 ; (2.259)

the rotation is thus said of elliptic type and denoted by Le; it is said of hy-
perbolic type, instead, when I2(A) < 0 and of parabolic type when I2(A) = 0.
Let us start considering the first two cases: I2(A) �= 0. We recall that A maps
each vector w ∈M4 in a vector of E2: Aw = (w · v)u− (w · u)v. Thus, each
vector belonging to E′

2 (the plane orthogonal to E2) is mapped into the zero
element. From (2.258) we also have

Lw = ε′w , ∀w ∈ E′
2 , (2.260)

that is, any vector orthogonal to E2 is fixed, or mapped by L into the opposite,
according to the value of ε′ = ±1.

Let us see, now, how L acts on the elements of E2. Since A maps any
vector w ∈ E2 in a vector orthogonal to this plane, then A2w has the original
direction. Actually, using (2.204) with I4(A) = 0, for all the vectors of E2 we
have

A2w = −I2(A)w , ∀w ∈ E2 . (2.261)

Thus, substituting in (2.258), we find (only for vectors in E2):

L = ε′(ε
√

1− I2(A)A0 +A) . (2.262)

Let us now assume that E2 is of elliptic type, i.e. with signature (++); in
this case, A does not admit (real) eigendirections.19 Taking into account the
orthogonality condition: Aw ·w = 0, ∀w ∈ E2, and using (2.262) leads to
19 In order w be an eigendirection of A, Aw must be aligned with w, but from the

properties of A, we have that Aw is orthogonal to w. In an elliptic 2-space, it is
not possible to satisfy both these conditions, and hence A does not admit (real)
eigendirections.



86 2 Space-Time Geometry and Relativistic Kinematics

Lw ·w = εε′
√

1− I2(A)||w|| ; (2.263)

that is, the following invariant property holds:

Lw ·w
||w|| = inv. = ε′ cosϕ , ∀w ∈ E2 , (2.264)

where ϕ, implicitly defined by the relation:

cosϕ = ε
√

1− I2(A) , 0 < I2(A) ≤ 1 (2.265)

is independent of w and defines the amplitude of the rotation: 0 < ϕ < π. This
is an effective rotation; in fact, since E2 is elliptic, I2(A) > 0, both the null
rotation and the symmetry, ϕ = 0, π, are excluded. Thus, L does not admit
eigendirections in E2, but only in E′

2 (rotation axis) (Fig. 2.1).
If the subspace E2 is instead hyperbolic (I2(A) < 0), one should add the

two isotropic directions of E2 (which are now eigendirection of A) to the
eigendirections of E′

2 (now of elliptic type); the rotation will be said to be
hyperbolic of the first kind, L+

h , or of the second kind: L−
h , corresponding to

the values ε = −1 and ε = 1 respectively, in the case ε′ = 1 and conversely in
the case ε′ = −1 (Fig. 2.2).

Moreover, in a hyperbolic subspace E2, the Schwartz inequality gives

(a · b)2 ≥ ||a|| ||b|| , ∀a,b ∈ E2 ,

with the equality sign holding only when a and b are collinear. As a conse-
quence, in each of the four regions in which E2 is divided by the isotropic

''Axis'' E'2

Lww

ϕ

E2

Fig. 2.1. Rotations in an elliptic space
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''Axis'' 

Lw

w'

Lw'

Ψ

ε = 1
ε = –1

ε' = 1
ε' = –1

E2
w

II > 0

III < 0

I < 0

IV > 0

Fig. 2.2. Rotations in a hyperbolic space

directions, it is possible to define the pseudoangle ψ ≥ 0 of the two vectors a
and b. Hence, in each of the four regions, the sign of the scalar product a · b
is invariant: in the temporal regions I and III (see Fig. 2.2), a · b < 0, while
a · b > 0 in the spatial regions II and IV. So the pseudoangle ψ is uniquely
defined by the relations:⎧⎪⎪⎨

⎪⎪⎩
coshψ def= −a · b

ab
, in regions I and III

coshψ def=
a · b
ab

, in regions II and IV
(2.266)

and ψ = 0 only for b = λa with λ > 0.
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Equations (2.262) imply that (2.264) in the hyperbolic case becomes

Lw ·w
εε′||w|| = inv. = coshψ , ∀w ∈ E2, ε, ε′ = ±1 , (2.267)

where ψ, implicitly defined by the relation

coshψ =
√

1− I2(A) , I2(A) < 0 , (2.268)

represents the pseudoamplitude of the rotation.
When ε = 1 and ε′ = 1, the four regions of E2 are invariant for L:

Lγ · γ = − coshψ < 0 , ∀γ ∈ I, III, γ = unit vector,

etc. Thus, the half lightcones are conserved; for ε′ = 1 and ε = −1, the regions
I and III as well as II and IV (and also the half lightcones) are exchanged,
similarly for ε′ = −1.

We note that a hyperbolic rotation L admits basis of eigenvectors, differ-
ently from the elliptic case in which only the vectors in a plane are eigen-
vectors. These are formed with two isotropic vectors in E2 and two arbitrary
(noncollinear) vectors of E′

2.

L = ε′
(
A0 +A+

1
2
A2

)
. (2.269)

Finally, if I2(A) = 0, the rotation is of parabolic type (Fig. 2.3); it does not
admit eigendirections in E2 besides the isotropic one, say l, belonging to both
the orthogonal and parabolic 2-planes E2 and E′

2. This is a very special case,
since the amplitude of the rotation is independent of L. In fact, from (2.269),
for each w ∈ E2, the transformed vector Lw is given by

Lw = ε′w + ξl , ∀w ∈ E2 ; (2.270)

l

E'2

E2

w

Fig. 2.3. Rotations in a parabolic space
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thus the ratio
Lw ·w
||w|| is independent of L (and of w):

Lw ·w
||w|| = ε′ , ∀w ∈ E2 . (2.271)

Hence, apart from the factor ε′ = ±1 and the existence of a whole rotation
2-plane (instead of an axis), the situation for what concerns simple rotations
is analogous to that of the three-dimensional case.

2.18.10 4-Rotations as Product of Simple Rotations

Let us turn to the case of a generic rotation: I4(A) �= 0, decomposing A as
the sum of two orthogonal bivectors: A = A1 + A′

1, with A1 · A′
1 = 0. We

assume A1 of elliptic type,20 so that A′
1 is necessarily hyperbolic. With each

of the two bivectors is associated a simple rotation, like in (2.258). We can
show now that L is always given by the product of two of such rotations.

Let us start noting that (2.234) imply:

D = (1− I2)(1 − I ′2) , (2.272)

where we have introduced the notation

I2 = I2(A1) < 1 , I ′2 = I2(A′
1) < 0 . (2.273)

We then have

2(1 + ε
√
D)− I2(A) = (ε

√
1− I2 +

√
1− I ′2)2 > 0 , (2.274)

and the following expressions for a and b:

a =
1 + hh′

h+ h′
, b =

1
h+ h′

, (2.275)

where
h = ε

√
1− I2 , h′ = ε′

√
1− I ′2 . (2.276)

Rewriting a, using (2.275)1

a = 1 +
(1− h)(1− h′)

h+ h′

we find that (2.248) can be written as:

L = A0 +A+
(1− h)(1 − h′)

h+ h′
A0 +

A2

h+ h′
. (2.277)

20 If A1 is parabolic, then A′
1 is parabolic too, and consequently L is a simple

rotation of parabolic type.
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At this point, we have to express the right-hand side of (2.277) in terms of A1

and A′
1. We proceed proving the following identity:

(1− h)(1− h′)
h+ h′

A0 +
A2

h+ h′
=

A2
1

1 + h
+

A′
1
2

1 + h′
. (2.278)

Starting from (2.200), which holds for each pair of antisymmetric tensors (in
particular for A = B = A1) and using (2.181)2, we have

∗
A1

2 = A2
1 + I2(A2)A0 ,

so that
1
λ2
A′2

1 = A2
1 + I2(A2)A0 ;

using then (2.235) leads to

I2A
′2
1 + I ′2A

2
1 + I2I

′
2A

0 = 0 , (2.279)

so that

A0 = − A′2
1

1− h′2 −
A2

1

1− h2
,

where we have used I2I
′
2 = (1 − h2)(1 − h′2) as a consequence of (2.276).

Finally, after substituting this relation on the left-hand side of (2.278) and
recalling that A2 = A2

1 +A′2
1 , the above identity (2.278) is proven.

Summarizing, each 4-rotation L can be cast in the following form:

L = A0 +A1 +A′
1 +

A2
1

1 + h
+

A′2
1

1 + h′
, (2.280)

and, due to the orthogonality of A1 and A′
1, can be written as a product of

two simple rotations, one of elliptic type (Le) and the other hyperbolic (Lh):

Le = A0 +A1 +
A2

1

1 + ε
√

1− I2
, Lh = A0 +A′

1 +
A′2

1

1 + ε′
√

1− I ′2
, (2.281)

that is
L = LeLh = LhLe . (2.282)

In particular, the above decomposition shows that the isotropic lines of the
principal plane of A′

1 are the only eigendirections of L: in fact, these are the
only common eigendirections of Lh and Le.

2.18.11 The Case of Orthogonal Symmetries: I1(L) = 0

Let us now consider the case I1(L) = 0, which also implies 2 + I2(L) = 0.
This follows from (2.245) which reduces to the form 4A2 = −[2 + I2(L)]A0,
and implies in turn
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I2(A) ≡ −1
2
I1(A2) = 1 +

1
2
I2(L) , (2.283)

that is,

A2 = −1
2
I2(A)A0 . (2.284)

Using (2.284), we then have 4A4 = I2
2 (A)A0, and the Hamilton–Cayley iden-

tity (2.202) provides the condition [I2(A)]2 = 4I4(A). Thus, from (2.197),
I4(A) ≤ 0 ∀A, necessarily follows that I2(A) = 0 and I4(A) = 0, or
I2(L) = −2 from (2.283).

Summarizing, the condition I1(L) = 0 implies the two equalities:

I2(L) = −2 , A = 0;

hence, the rotation is only represented by its symmetric part D, satisfying the
condition (see (2.243)):

L = D , D2 = D0 . (2.285)

Such a case is similar to that of the axial symmetries in a three-dimensional
space; in fact, since

I1(L) = 0 , I2(L) = −2 , I3(L) = 0 , I4(L) = 1 ,

L admits two real distinct eigenvalues: λ = ±1 which are both double roots.
Hence we have the existence at least of two eigenvectors: u and u′: Lu = u
and Lu′ = −u′, which are necessarily orthogonal, due to the symmetry of L.

Let us denote by u1 and u′
1 another pair of vectors, forming with u and u′

a basis in M4. We have

Lu1 = λu + μu′ + νu1 + σu′
1 . (2.286)

Applying L to both sides and taking into account (2.285) we find

u1 = λu− μu′ + L[νu1 + σu′
1] , (2.287)

and in addition

σLu′
1 = −λ(1 + ν)u + μ(1− ν)u′ + (1− ν2)u1 − νσu′

1 , (2.288)

using again (2.286). Adding and subtracting (2.286) and (2.287), we obtain
⎧⎨
⎩
L[(ν − 1)u1 + σu′

1] = (1− ν)u1 − σu′
1 − 2λu,

L[(ν + 1)u1 + σu′
1] = (1 + ν)u1 + σu′

1 + 2μu′.
(2.289)

We now have to distinguish between the two cases: σ �= 0 and σ = 0. In
the first case (σ �= 0), (2.287) determines Lu′

1, starting from Lu1; moreover,
(2.289) is equivalent to the conditions
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Lv′ = −v′ , Lv = v ,

where

v ≡ μu′ + (ν + 1)u1 + σu′
1 , v′ ≡ λu + (ν − 1)u1 + σu′

1 ; (2.290)

therefore the vectors v and v′ of (2.290), independent of u and u′, are both
eigenvectors of L, corresponding to the eigenvalues λ = −1 and λ = 1, respec-
tively, and hence orthogonal.

If instead σ = 0, from (2.288), we have the following two subcases:

1. σ = 0 , ν = 1 , λ = 0,
2. σ = 0 , ν = −1 , μ = 0,

in which one of the vectors (2.290) reduces to zero. However, in the case 1,
we have from (2.286) Lu = μu′ + u1; thus, assuming

Lu′
1 = λ′u + μ′u′ + ν′u1 + σ′u′

1 , (2.291)

for the components Lα
β along the basis {u,u′,u1,u′

1}, we see that I1(L) =
1 + σ′, i.e. σ′ = −1. Furthermore, applying L to both sides of (2.291) gives
μ′ = 1

2μν
′; thus, the transformed vector Lu′

1 results in Lu′
1 = λ′u + ν′(u1 +

1
2μu

′)− u′
1 and the vectors (2.290) are given by

v′ ≡ −1
2
λ′u− 1

4
ν′v + u′

1 , v ≡ μu′ + 2u1 ; (2.292)

similarly, in case 2, we have

v′ ≡ λu− 2u1 , v ≡ 1
2
μ′u′ − 1

4
ν′v′ + u′

1 . (2.293)

Finally, in the case I1(L) = 0 (and only in this case), the rotation L is diag-
onal and admits a pair of orthogonal 2-planes generated by eigendirections.
In detail, one of such subspaces < u,v > is invariant for L, and the other
< u′,v′ > is mapped into the opposite. These are orthogonal symmetries,
say S, with respect to the nondegenerate 2-planes. Again this case can be
characterized by using antisymmetric tensors. In fact, if A = u∧v is a bivec-
tor with an associated subspace E2 nonparabolic (I2(A) �= 0), the following
representation holds:

S = −A0 − 2
I2(A)

A2 , (2.294)

where I2(A) > 0 or I2(A) < 0 if E2 is elliptic or hyperbolic, respectively. After
decomposing the generic vector w ∈M4 as the sum of a vector wA ∈ E2 and
another wN ∈ E′

2, the symmetric of w with respect to the 2-plane E2 turns
out to be

S(w) = wA −wN = 2wA −w ,

from which (2.294) follows, using (2.261) and the identity: A2wA = A2w.
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We note that the bivector A introduced above is not the antisymmetric part
of L (which is instead represented by the symmetric tensorD) but is a bivector
associated with the subspace Π that specifies the symmetry and defined up
to a multiplicative factor (Grassmann tensor of the 2-plane Π). However,
(2.294) which characterizes the rotations with I1(L) = 0 in the context of
simple rotations completes the previous representation (2.248)–(2.257).

Finally, as concerns the symmetries (2.294), they still generate (by prod-
ucts) the rotation group.

2.18.12 Cayley Representation

For 4-rotations L, we also have the Cayley representation [1]:

L = (Q0 −Q)−1(Q0 +Q) ≡ (Q0 +Q)(Q0 −Q)−1 , (2.295)

where Q is an antisymmetric tensor, satisfying the condition

J(Q) def= I4(Q0 −Q) = 1 + I2(Q) + I4(Q) �= 0 . (2.296)

In analogy with the ordinary case, Q is said to be the characteristic tensor of
the rotation L. As we will see in the following, Q is defined only for rotations
such that

I(L) def= 2 + 2I1(L) + I2(L) �= 0 . (2.297)

Equation (2.295) can be written explicitly. To this end, let us use the
Hamilton-Cayley identity for the map X = Q0 −Q:

X−1 =
1

I4(X)
[I3(X) I−I2(X)X + I1(X)X2 −X3] . (2.298)

Moreover we have I1(X) = 4, I2(X) = 6 + I2(Q) and I3(X) = 4 + 2I2(Q);
using then the Hamilton–Cayley identity also for Q4,

Q4 = −I2(Q)Q2 − I4(Q)Q0 ,

one gets21 the expression of L in terms of Q:

L =
1

J(Q)
{
[1 + I2(Q)− I4(Q)]Q0+

2[1 + I2(Q)]Q+ 2Q2 + 2Q3
}
. (2.299)

This relation represents L as a third-degree polynom in Q instead of the
second-degree polynom of the canonical representation (2.248) in terms of the
antisymmetric part A. Under the hypothesis (2.296), J(Q) �= 0, (2.299) can
be solved for Q

Q = (L− L0)(L + L0)−1 ; (2.300)
21 See [10], p. 88, taking the contraction Q = K/k , k �= 0.
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introducing then the notation Y
def= L + L0, the Hamilton–Cayley identity

implies

Y −1 =
1

I4(Y )
{
I3(Y )L0 − I2(Y )Y + I1(Y )Y 2 − Y 3

}
.

On the other hand, it is easy to show that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1(Y ) = 4 + I1(L),

I2(Y ) = 6 + 3I1(L) + I2(L),

I3(Y ) = 4 + 3I1(L) + 2I2(L) + I3(L) ≡ 4 + 4I1(L) + 2I2(L).

(2.301)

Thus, using again the Hamilton–Cayley identity,

L4 = I1(L)L3 − I2(L)L2 + I3(L)L− I4(L)L0

= I1(L)L3 − I2(L)L2 + I1(L)L− L0 ,

Equation (2.300) assumes the form

Q =
1

I4(Y )
{
−[2I1(L) + I2(L)]L0 + 2[1 + I1(L) + I2(L)]L

−2[L0 + I1(L)]L2 + 2L3
}
. (2.302)

From (2.299), the relation between Q and A follows immediately:

A =
2[1 + I2(Q)]Q+ 2Q3

J(Q)
. (2.303)

Therefore, differently from the ordinary case, A is not a simple function of Q.
Similarly, (2.299) gives the fundamental invariants of L, in terms of Q:⎧⎪⎪⎨

⎪⎪⎩
I1(L) ≡ I3(L) =

4
J(Q)

[1− I4(Q)]

I2(L) = 2
[
3− 4

I2(Q)
J(Q)

]
, I4(L) = 1,

(2.304)

so that the invariant (2.297) is given by

I(L) =
16
J(Q)

. (2.305)

Conversely,

I2(Q) =
2

I(L)
[6− I2(L)] , I4(Q) = 1− 4

I1(L)
I(L)

. (2.306)

Equation (2.305) shows that the Cayley representation only includes rotations
like I(L) �= 0; that is, rotations with I(L) = 0, i.e.

2 + I2(L) = −2I1(L) → I4(A) = 0 , (2.307)

are excluded. The latters are necessarily simple rotations as the symmetry S
(but not all of these, differently from the ordinary case).
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2.18.13 Composition Law

We will study now the modifications to the Rodrigues formula (2.177) passing
from the three-dimensional case to the four-dimensional one.

Let L and L′ be two rotations associated with the antisymmetric tensors Q
and Q′, respectively

L = (Q0 −Q)−1(Q0 +Q) , L′ = (Q0 −Q′)−1(Q0 +Q′) .

We look for the map Q′′ associated with the rotation product of L′ and L:
L′′ = L′L, at least in the generic case: I(L), I(L′), I(L′′) �= 0 (see (2.297) for
their definition). Let us assume

v′ def= Lv , v′′ = L′v′ , ∀v ∈M4 .

The map v→ v′′ associated with the product L′′ = L′L is implicitly defined
by the relations

Q(v′ + v) = v′ − v , Q′(v′′ + v′) = v′′ − v′ , (2.308)

which follow from (2.295) and using the linearity of the map Q; in fact

(Q0 −Q)L(v) = (Q0 +Q)(v) → v′ −Q(v′) = v +Q(v) , (2.309)

so that
Q(v) +Q(v′) = −v + v′ , (2.310)

which immediately reduces to (2.308)1, similarly for the derivation of (2.308)2.
We look then for the map Q′′ such that

Q′′(v′′ + v) = v′′ − v . (2.311)

A straightforward calculation shows that

(Q+Q′ +Q′Q−QQ′)(v′′ + v) −Q′QQ′(v′′ + v′)
−QQ′Q(v′ + v) = v′′ − v ; (2.312)

thus, we need to evaluate the product:

C
def= −Q′QQ′(v′′ + v′)−QQ′Q(v′ + v) .

To this end, we note that from (2.196) and (2.200) we have

QQ′ =
∗
Q′ ∗
Q+

1
2
I1(QQ′)Q0 , Q

∗
Q =

∗
QQ = −

∗
I (Q)Q0 , (2.313)

with
∗
I (Q) ≡ −1

4
I1(Q

∗
Q) . (2.314)
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Thus,

Q′QQ′ = Q′ ∗
Q

′ ∗
Q+

1
2
I1(QQ′)Q′ ≡ −

∗
I (Q′)

∗
Q+

1
2
I1(QQ′)Q′ ,

with
∗
I (Q′) ≡ −1

4
I1(Q′ ∗

Q
′
) . (2.315)

Similarly, exchanging Q and Q′ in the above product we have directly

QQ′Q = −
∗
I (Q)

∗
Q′ +

1
2
I1(QQ′)Q ;

and hence,

C =
∗
I (Q′)

∗
Q(v′′ + v′)− 1

2
I1(QQ′)Q′(v′′ + v′)

+
∗
I (Q)

∗
Q

′
(v′ + v) − 1

2
I1(QQ′)Q(v′ + v)

or, using (2.308):

C =
∗
I (Q′)

∗
Q(v′′ + v′ + v′ − v) +

∗
I (Q)

∗
Q

′
(v′ − v′′ + v′′ + v)

−1
2
I1(QQ′)Q′(v′′ − v)

= [
∗
I (Q′)

∗
Q+

∗
I (Q)

∗
Q

′
](v′′ + v)− 1

2
I1(QQ′)(v′′ − v)

+
∗
I (Q′)

∗
Q(v′ − v)−

∗
I (Q)

∗
Q

′
(v′′ − v′) .

Moreover, from (2.308) and (2.313)2 we have

∗
I (Q′)

∗
Q(v′ − v)−

∗
I (Q)

∗
Q′(v′′ − v)

=
∗
I (Q′)

∗
QQ(v′ + v)−

∗
I (Q)

∗
Q′Q′(v′′ + v′)

=
∗
I (Q)

∗
I (Q′)(v′′ − v) ,

so that C can be written as

C = [
∗
I (Q′)

∗
Q+

∗
I (Q)

∗
Q

′
](v′′ + v)

−1
2
I1(QQ′)(v′′ − v) +

∗
I (Q)

∗
I (Q′)(v′′ − v) ,

and (2.312) becomes

[Q+Q′ +Q′Q−QQ′ +
∗
I (Q′)

∗
Q+

∗
I (Q)

∗
Q

′
](v′′ + v) +

−
[
1
2
I1(QQ′)−

∗
I (Q)

∗
I (Q′)

]
(v′′ − v) = (v′′ − v) .
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Using this result, one finally gets the sought for composition law for rotations
in terms of Q:

Q′′ =
Q+Q′ +Q′Q−QQ′ +

∗
I (Q′)

∗
Q+

∗
I (Q)

∗
Q

′

1 + 1
2I1(QQ

′)−
∗
I (Q)

∗
I (Q′)

, (2.316)

where
∗
I (Q) is defined by (2.314)–(2.315), and it is related to I4(Q) by (2.197):

[
∗
I (Q)]2 = −I4(Q). In the case of simple rotations, (2.316) reduces to the ordi-
nary law; moreover, as in the three-dimensional case, it includes the limiting
case of rotations with I(L) = 0, and hence it has a general validity.

2.19 General Lorentz Transformations: III

We have outlined above the fundamental role of antisymmetric 2-tensors (and
their associated tensorial space Λ2) in the representation of rotations in M4.
As in the three-dimensional case, rotations in M4 are characterized by certain
isotropic tensorial functions defined in Λ2. In the preceding sections, the close
relation between 4-rotations and antisymmetric 2-tensors has been discussed,
using the properties of the associated maps. The same approach can be used
in a complex context by means of the technique of null tetrads,22 taking into
account that any 4-rotation admits at least an isotropic eigenvector, as well
as in the real domain [10], in the context of Clifford’s algebra of M4. We will
briefly introduce here this point of view limiting ourselves to the Minkowskian
case; the extension to any linear space En endowed with a nonsingular metric
is straightforward.

Independently of its metric structure, one can associate with M4 a finite
dimensional space Λ. In fact, the various linear spaces Λq (q = 0, 1, 2, 3, 4),
formed by antisymmetric tensors of various order (up to the maximum order
4), are related to M4 as follows:

• Λ0 = R, scalars:
a = ae,

• Λ1 = M4, vectors:
a = aαeα ,

• Λ2 = M4 ∧M4, antisymmetric 2-tensors:
A = 1

2A
αβeα ∧ eβ , with eα ∧ eβ = 2!e[α ⊗ eβ],

• Λ3 = M4 ∧M4 ∧M4, antisymmetric 3-tensors:
T = 1

3!T
αβγeα ∧ eβ ∧ eγ , with eα ∧ eβ ∧ eγ = 3!e[α ⊗ eβ ⊗ eγ],

• Λ4 = M4 ∧M4 ∧M4 ∧M4, antisymmetric 4-tensors:
Q = 1

4!Q
αβγρeα∧eβ∧eγ∧eρ, with eα∧eβ∧eγ∧eρ = 4!e[α⊗eβ⊗eγ⊗eρ],

22 Such a technique is better included in the more general context of anholonomic
frames, and it is widely used in general relativity, see e.g. [11].
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where {eα} is an arbitrary basis in M4 and, to uniform notation, e = 1.
It is convenient to consider the direct sum (Cartesian product) of such

spaces Λ:
Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 ⊕ Λ4 ; (2.317)

this is a finite dimensional space with dimension: 1 + 4 +
(
4
2

)
+
(
4
3

)
+
(
4
4

)
=

16. We note that both the direct sum of the spaces of symmetric tensors of
various order associated with M4 and the direct sum of all the tensorial spaces
associated with M4 have not a finite dimension.

Up to now the 16-dimensional space Λ has only the structure of linear space.
However, it can be endowed with an internal noncommutative product, which
we will denote with a ◦ (Clifford’s product), using the metric of M4. Let us
start defining the ◦ product of two antisymmetric tensors, A and B of different
order, say k and h, respectively, with k < h. The following representations
hold ⎧⎪⎨

⎪⎩
A =

1
k!
Aα1...αkeα1 ∧ · · · ∧ eαk

,

B =
1
h!
Bβ1...βheβ1 ∧ · · · ∧ eβh

,

(2.318)

where α1 . . . αk, β1 . . . βh = 0, 1, 2, 3.
The exterior product of A and B is an antisymmetric tensor of order (k+h)

given by

A ∧B =
1
k!h!

Aα1...αkBβ1···βheα1 ∧ · · · ∧ eαk
∧ eβ1 ∧ · · · ∧ eβh

. (2.319)

Successively, from the tensor product Aα1...αkBβ1...βh , by contraction of in-
dices (i.e. using the metric gαβ = eα · eβ of M4), we can deduce other anti-
symmetric tensors of lower rank:

Aα1...αk−1
β1B

β1...βh , Aα1...αk−2
β2β1B

β1β2...βh , . . . , Aβk...β1B
β1...βkβk+1...βh .

It is useful to introduce the notation

eα1...αk··· = eα1 ∧ · · · ∧ eαk
∧ · · · ; (2.320)

the ◦ product (or Clifford’s product) of A and B is defined by

A ◦B def= A ∧B + a1A
α1...αk−1

β1B
β1...βheα1...αk−1β2...βh

+

a2A
α1...αk−2

β2β1B
β1β2...βheα1...αk−2β3...βh

+ · · ·+
akAβk...β1B

β1...βkβk+1...βheβk+1...βh
, (2.321)

where
aj =

1
j!(k − j)!(h− j)! , j = 1, . . . , k .

Note that extending the definition of aj to the value j = 0: a0 = 1/(h!k!)
allows writing A ∧B in the form
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A ∧B = a0A
α1...αk Bβ1...βheα1...αkβ1...βh

.

Using the ordinary composition rule of the product, it is clear that the product
(2.321) can be extended to all the elements of Λ. The ◦ product is noncommu-
tative, but it can be iterated and hence it results associative. Thus, the space
Λ, endowed with the linear extension of the product (2.321), becomes an as-
sociative algebra, and any ordered pair (α,β) of elements of Λ is associated
with a third element γ ∈ Λ:

(α,β) → γ
def= α ◦ β ∈ Λ ;

this relation defines Clifford’s algebra C of M4.
As an example, let us consider the ◦ product of two vectors u and v. In

this case, h = k = 1, and the ◦ product reduces to

u ◦ v = u ∧ v + u · v . (2.322)

In fact, (2.321) can be written as

u ◦ v =
1

1!1!
uαvβeαβ +

1
0!0!

uβv
βe ,

where eαβ = eα ∧ eβ and e = 1, that is, (2.322). In particular, when v = u
(2.322) implies

u ◦ u = ||u|| , (2.323)

while, if u and v are orthogonal

u ◦ v = u ∧ v , u ⊥ v . (2.324)

Thus, if one considers in M4 an orthonormal basis {cα}, (2.322) implies

cα ◦ cβ = cα ∧ cβ +mαβ (α, β = 0, 1, 2, 3) . (2.325)

Clifford’s algebra contains a subalgebra and a group. In fact, the direct sum
operation ⊕ is associative and hence the space Λ can also be written as the
direct sum of two spaces: Λ+ and Λ−, defined by

Λ+ def= Λ0 ⊕ Λ2 ⊕ Λ4 , Λ− def= Λ1 ⊕ Λ3 , (2.326)

both of them with dimension 8; that is

Λ = Λ+ ⊕ Λ− . (2.327)

The elements of Λ+ are said “even”, while those of Λ− are said “odd”. On
one side, Clifford’s algebra induces in Λ+ a subalgebra: C+, such that

Λ+ ◦ Λ+ = Λ+ , Λ− ◦ Λ− �= Λ− ;

hence, the ◦ product is not adapted to the structure (2.327). On the other side,
one can consider the regular elements of Clifford’s algebra, i.e. those elements
α ∈ C satisfying the following properties:
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1. they are invertible. This means that α ∈ C has an inverse α−1 ∈ C:
α ◦α−1 = α−1 ◦α = e = 1;

2. they satisfy the property:

α ◦ v ◦α−1 = w ∈M4 , ∀v ∈M4 . (2.328)

Such elements of C form Clifford’s group: Γ ∈ C which is of special impor-
tance for the representation of rotations in M4. In fact Γ contains both even
and odd elements, and the quotient Γ/Λ0 − 0 is isomorphic to the Lorentz
group; in other words, each element α ∈ Γ specifies a well-determined Lorentz
matrix L:

L = L(α) , α ∈ Γ . (2.329)

Conversely, each L specifies an element α ∈ Γ, up to a multiplicative factor.
In fact, the correspondence (2.329) is associated with the relation:

Lv = α ◦ v ◦α−1 , ∀α ∈ Γ,v ∈M4 , (2.330)

or equivalently,

L−1v = α−1 ◦ v ◦α , ∀α ∈ Γ,v ∈M4 . (2.331)

2.19.1 Clifford’s Product Composition Law

We can now characterize the regular elements of Clifford’s algebra. To this
end, we will derive the composition law of Clifford’s product. Let us consider
then a generic element α ∈ Λ:

α = ae + aαeα +
1
2
Aαβeαβ +

1
3!
Tαβγeαβγ +

1
4!
Qαβγρe

αβγρ
; (2.332)

introducing the Ricci tensor ηαβρσ, we have

eαβρ = ησαβρeσ, eαβρσ = ηαβρσΣ , (2.333)

where
Σ = − 1

4!
ηαβγδeαβγδ (2.334)

is an odd-type antisymmetric 4-tensor, i.e. a basis in Λ4. Thus, we have the
following expression for α:

α = ae + a + A + ã + ãΣ , (2.335)

where a = aαeα, A = 1
2A

αβeαβ , and
⎧⎨
⎩

ã = 1
3!T

αβρησαβρeσ = ãσeσ (odd-type vector)

ã = 1
4!Q

αβρσηαβρσ (odd-type scalar).
(2.336)
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Equation (2.335) represents the generic element α ∈ Λ in terms of a pair
of scalars (a, ã), a pair of vectors (a, ã) and an antisymmetric 2-tensor A.
Actually, ãσ is a pseudovector, and ã is a pseudoscalar obtained through the
duality operation from an antisymmetric 3-tensor Tαβρ and an antisymmetric
4-tensor Qαβρσ, respectively:

ãσ =
1
3!
ησαβρT

αβρ ≡ ∗Tσ, ã =
1
4!
ηαβρσQ

αβρσ ≡ ∗Q , (2.337)

with the inverse relations,

Tαβρ = ηαβρσãσ , Qαβρσ = −ãηαβρσ . (2.338)

Let β ∈ Λ be another element of Λ:

β = be + b + B + b̃ + b̃Σ , (2.339)

and consider the product α ◦ β = γ taking into account (2.321). γ is still an
element Λ, and it can be written as

γ = ce + c + C + c̃ + c̃Σ , (2.340)

where the various quantities c, c,C, c̃, c̃ are functions of the analogous quan-
tities of α and β.

For example, multiplying the scalar a by the various elements of β, there
arise the following terms:

ab , ab , aB , ab̃ , ab̃ .

Multiplying instead the vector a by β and using (2.322) and (2.338) gives rise
to the following terms:

ab , a ∧ b + a · b , a ∧B + aαB
αβeβ ,

a ∧ ∗b̃ +
1
2!
aα(∗b̃)αβρeβρ , − 1

3!
aαb̃η

αβρσeβρσ ,

which are equivalent to

ab , a ∧ b + a · b ,
∗
Ba− Ba , a · b̃Σ +

∗
[a ∧ b̃] , b̃a ,

respectively using (2.333). Introducing the compact notation

B =
1
2
Bαβeαβ , → Ba = (Bαβaβ)eα , (2.341)

the above terms can be written as

a · b , ba−Ba , a ∧ b +
∗

[a ∧ b̃] ,
∗
Ba + b̃a , a · b̃ .
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Summarizing, we have the following relations among the coefficients of the
product α ◦ β and those of the single factors:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c = ab− ãb̃+ a · b + ã · b̃ + 1
2TrAB,

c = ab + ba− (b̃ã− ãb̃) +Ab−Ba−
∗
Bã−

∗
Ab̃,

C = aB + bA + [A,B] + a ∧ b + ã ∧ b̃ +
∗
[ a ∧ b̃ + b ∧ ã] + ã

∗
B + b̃

∗
A,

c̃ = ab̃ + bã + b̃a− ãb +Ab̃−Bã +
∗
Ab + +

∗
Ba,

c̃ = ab̃+ bã+ a · b̃− b · ã− 1
2TrA

∗
B;

(2.342)
here we have used the standard notation: AB ≡ (Aα

ρB
ρ
β) and [A,B] is the

antisymmetric tensor associated with the commutator AB −BA:

[A,B] ≡ 1
2
(Aα

ρB
ρβ −Bα

ρA
ρβ)eαβ . (2.343)

As a final remark, we note that (2.342) hold in general and are the corner
stones of Clifford’s algebra, reducing the product of any two elements of C to
certain tensor algebra operations.

2.19.2 Regular Elements of Clifford’s Algebra

Let us study now the regular elements of Clifford’s algebra, starting from even
elements; we have

a = 0 , ã = 0 . (2.344)

The product α ◦ β is still even: c = 0 , c̃ = 0 and (2.342) implies

c = ab− ãb̃+
1
2
Tr (AB),

C = aB + bA + [A,B] + ã
∗
B + b̃

∗
A,

c̃ = ab̃+ bã− 1
2
Tr (A

∗
B) ; (2.345)

furthermore, the products AB, BA, A
∗
B and B

∗
A have the same first invariant.

In fact, for example, the coefficients of the map A
∗
B are

Aα
ρ
∗Bρβ =

1
2
Aα

ρη
ρβμνBμν ,

so that
Tr(A

∗
B) = −1

2
Aβρη

βρμνBμν = Tr(B
∗
A) .

In (2.345), c and c̃ are thus symmetric functions of α and β, differently from
C. Hence, necessary and sufficient condition to have α ◦ β = β ◦α is

AB = BA ∼ [A,B] = 0 ; (2.346)
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that is, α and β can be exchanged if and only if the associated antisymmetric
2-tensors A and B commute.

Moreover, necessary and sufficient conditions in order that α = ae+A+ ãΣ
might have an inverse β = be + B + b̃Σ = α−1 are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AB = BA

ab− ãb̃+
1
2
Tr (AB) = 1

aB + bA + ã
∗
B + b̃

∗
A = 0

ab̃+ bã− 1
2
Tr (A

∗
B) = 0,

(2.347)

that is α ◦ β = β ◦ α = e. To complete the characterization of the even
elements, it is necessary to add to (2.347) the conditions

α ◦ v ◦ β ∈M4 ∀v ∈M4 .

To this end, let us evaluate first of all the factor α ◦ v from (2.342):

α ◦ v = av +Av − ãv +
∗
Av ;

we can consider then the product (α ◦ v) ◦ β, which is of odd type, so that

c = 0 , C = 0 , c̃ = 0 ,

and the nonvanishing coefficients are given by
⎧⎨
⎩

c = [(ab+ ãb̃) I +bA− aB + ã
∗
B − b̃

∗
A−BA−

∗
B

∗
A]v

c̃ = [(ab̃− bã) I +b
∗
A+ a

∗
B + b̃A+ ãB +

∗
BA−B

∗
A]v.

(2.348)

The parity condition c̃ = 0 ∀v then implies

(bã− ab̃) I +B
∗
A−

∗
BA = b

∗
A+ a

∗
B + b̃A+ ãB ,

which, by symmetrization and antisymmetrization gives the two relations:
⎧⎨
⎩

(bã− ab̃) I + 1
2 [B

∗
A+

∗
AB −

∗
BA−A

∗
B] = 0,

1
2 [B,

∗
A]− 1

2 [
∗
B,A] = b

∗
A+ a

∗
B + b̃A+ ãB.

(2.349)

Taking into account the identity (2.208), we have that α ∈ Γ+ if one requires
additional conditions to (2.347), namely,

⎧⎨
⎩

(bã− ab̃)I =
∗
BA−B

∗
A

ãB + b̃A = −b
∗
A− a

∗
B.

(2.350)
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Moreover, by duality, (2.344) gives the relation:

ãB + b̃A = a
∗
B + b

∗
A .

Comparing with (2.350), we then obtain the two conditions:

ãB + b̃A = 0 , a
∗
B + b

∗
A = 0 .

Next, assuming ã �= 0 and a �= 0 (general case), we find B = −b̃A/ã = −bA/a,
and b̃/ã = b/a = λ. Thus, finally

B = −λA , b̃ = λã , b = λa , (2.351)

with λ a parameter still unknown . From (2.347)2, with the constraints (2.351),
we have

(a2 − ã2)λ− 1
2
λI1(A2) = 1 ,

so that, assuming
(a2 − ã2) + I2(A) �= 0 , (2.352)

one gets the value of λ:

λ =
1

(a2 − ã2) + I2(A)
. (2.353)

Equation (2.347)4 in turn becomes

2λaã = −1
2
λ Tr(A

∗
A) ,

that is, in agreement with (2.194):

aã =
∗
I (A) . (2.354)

We have just proven the following theorem:
The even and regular elements of Clifford’s algebra in M4 can be written

as α = ae + A + ãΣ and are characterized by the two conditions:

(a2 − ã2) + I2(A) �= 0 , aã =
∗
I (A) , (2.355)

where
∗
I (A) is the odd invariant defined by (2.194):

∗
I (A) = −1

4
I1(A

∗
A) ≡ 1

4
Aαβ

∗Aαβ , (2.356)

also related to I4(A):
[
∗
I (A)]2 = −I4(A) . (2.357)

The inverse of α, because of (2.351)–(2.353), is given by
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α−1 =
1

(a2 − ã2) + I1(A2)
(ae − A + ãΣ) , (2.358)

that is, apart from the normalization factor, there is only the replacement
A→ −A in the expression of α.

Similarly, assuming α and β of odd type,

α = a + ã , β = b + b̃ , (2.359)

and imposing the conditions,

α ◦ β = β ◦α , α ◦ β = 1 , β ◦ v ◦α ∈M4 ∀v ∈M4 , (2.360)

one can determine the odd-type elements of Clifford’s group. We have that the
regular odd-type elements α = a + ã are only those satisfying the conditions:

||a|| − ||ã|| �= 0 , a · ã = 0 ; (2.361)

in this case, the inverse of α is given by:

α−1 =
1

||a|| − ||ã|| (a− ã) . (2.362)

In the following, we will consider only the even elements and the associated L-
representation (2.330) in terms of antisymmetric 2-tensors. This characterizes
the proper Lorentz group, excluding antirotations.

2.19.3 Proper Rotations and Antisymmetric 2-Tensors

We have seen that each regular element of Clifford’s subalgebra C+ (see
(2.344)–(2.355)) defines a 4-rotation L. To obtain the expression of L, one has
to consider an arbitrary vector v ∈M4 and evaluate the product α−1 ◦v ◦α;
in fact Lv = α ◦ v ◦ α−1. In detail, from (2.348)1 and taking into account
(2.351)–(2.353), we have the following expression for L:

L =
1

a2 − ã2 + I2(A)

{
(a2 + ã2) I +2[aA− ã

∗
A] +A2 +

∗
A2
}
, (2.363)

where both the antisymmetric 2-tensors A and
∗
A appear as well as the two

scalars a and ã, which are not independent because of (2.355)2. In the repre-
sentation (2.363) of L obtained starting from α ∈ Γ+, we see that α does not
enter in an essential way, since there always exists an arbitrary factor at dis-
posal. In fact, the right-hand side of (2.363) is invariant under transformations
like

a→ λa , ã→ λã , A→ λA , (2.364)

since both the numerator and the denominator in (2.363) are homogeneous
and second-degree function of α. We can then use the factor λ to simplify
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(2.363). After assuming for instance a �= 0 (that is, A nondegenerate), and
defining:

q = ã/a , Q = A/a , (2.365)

Equation (2.363) can be written as

L =
1

J(Q)

{
(1 + q2) I +2[Q− q

∗
Q] +Q2 +

∗
Q

2
}
, (2.366)

so that (2.355)–(2.357) assume the form

J(Q) = 1− q2 + I2(Q) �= 0 , q =
∗
I (Q), q2 = −I4(Q) . (2.367)

Note that (2.366) gives L in terms of the antisymmetric 2-tensors Q and its
dual

∗
Q. One can also eliminate the dual using (2.204) and (2.200):

∗
I (Q)

∗
Q = −Q3 − I2(Q)Q , [

∗
Q]2 = Q2 + I2(Q)I , (2.368)

so that one re-obtains the Cayley representation (2.299):

L = (Q0 +Q)(Q0 −Q)−1 . (2.369)

Therefore L results in an isotropic function of the antisymmetric 2-tensor
Q = (Qα

β), which is also a third-degree polynom, because of the Hamilton–
Cayley identity (2.202).

Moreover, (2.366) corresponds to the vectorial operator α ◦ v ◦α−1 associ-
ated with the even element α, in agreement with (2.330):

α = e ⊕ Q ⊕ qΣ ∈ Λ . (2.370)

Hence, if one considers another rotation L′:

L′ =
1

1 + I ′2 + I ′4

[
(1 + I ′2 − I ′4) I +2[1 + I ′2]Q

′ + 2Q′2 + 2Q′3] , (2.371)

associated with the antisymmetric tensor Q′, or to the even element α′:

α′ = e ⊕ Q′ ⊕ q′Σ ∈ Λ , (2.372)

one can evaluate the product:

L′′ = L′L , (2.373)

i.e. the rotation associated with the even element α′′:

α′′ = α′ ◦α , (2.374)

clearly defined up to an arbitrary multiplicative factor23:
23 The inverse of the product coincides with the product of the inverses, in inverse

order.
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α′ ◦ v′ ◦α′−1 ≡ α′ ◦ (α ◦ v ◦α−1) ◦α′−1 = (α′ ◦α) ◦ v ◦ (α′ ◦α)−1 .

α′′ can then be obtained applying the general relations (2.342) with a = 1,
a = 0, A = Q′, ã = 0, ã = q′, and b = 1, b = 0, B = Q, b̃ = 0, b̃ = q. In fact,
assuming c �= 0, that is, assuming the following constraint for Q and Q′:

1− qq′ +
1
2
Tr(QQ′) �= 0 , (2.375)

the 4-rotation L′′ is still of the form (2.366):

L′ =
1

1 + I ′′2 + I ′′4

[
(1 + I ′′2 − I ′′4 ) I +2[1 + I ′′2 ]Q′′ + 2Q′′2 + 2Q′′3] , (2.376)

where Q′′ is given by (2.342)3 in terms of Q and Q′. Hence, the following
relation (equivalent to C/c) holds:

Q′′ =
Q+Q′ +Q′Q−QQ′ + q′

∗
Q+ q

∗
Q

′

1− qq′ + 1
2TrQQ′ , (2.377)

which is exactly the composition law (2.316), if one uses (2.367)2.
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3

Test Particle Dynamics

3.1 Fundamental Laws of Test Particle Dynamics

In the relativistic situation, we have seen that the acceleration of a point
particle is no longer invariant in the context of Galilean frames. This reflects
also into the assessment of the dynamics because it is no more possible to
introduce the dynamical concepts of mass and mechanical force following the
classical approach, i.e. starting from the postulates on the acceleration.

On the other hand, a theory like the relativistic one cannot be grounded on a
static definition of mass and force. The problem can be solved working directly
with the absolute point of view, i.e. in M4, and assuming a time orientation.
The relative point of view, together with all the associated consequences and
modifications, will then follow, a posteriori, from the absolute formulation.

First of all, the law of inertia a = 0, as from (2.115), has an absolute
meaning and can be expressed by the condition A = 0, ∀τ ∈ (τ0, τ1), or in
the rectilinear form of the world line (V = constant) of the particle itself.

The second law of the dynamics, instead, should be adapted to the rela-
tivistic case and results no longer in the expression ma = f but in its more
general version ṗ = f , p = mv being the linear momentum which includes
also the case of variable mass particles. Such an extension, clearly, requires
the preliminary definition (geometrical and dynamical) of the scheme “ma-
terial point” which, because of its simplicity, plays a central role in the new
relativistic theory too.

In classical mechanics, such a scheme (geometrical point, endowed with a
positive scalar quantity: the mass m, invariant by definition), can be used to
represent either the material elements (or particles, for brevity), or the finite
dimensional material bodies in certain dynamical conditions. A posteriori, in
fact, it is justified, in the dynamics of material systems, by the theorem of
the centre of mass motion. Independent of this theorem, however, a pointlike
scheme can be considered also in special relativity, where a material particle
can be represented by an oriented world line �+ (its history in M4), and by
a scalar invariant m0 > 0, locally defined on this line (its proper mass). If

G. Ferrarese and D. Bini: Test Particle Dynamics, Lect. Notes Phys. 727, 109–145 (2008)
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m0 is invariant along all the history of the particle m0 = constant, one says
that the particle has no internal structure. This is a special case because the
more general scheme for pointlike particles does not excludes that the mass
can vary along �+, i.e. m0 = m0(E), ∀E ∈ �+. In the latter case, one says
that the particle has an internal structure of scalar type.

We will assume m0 > 0; however, an analogous treatment could be done
for the case m0 < 0, associated with “exotic particles”.1 Separately, we will
also discuss the case of massless particles m0 = 0, corresponding to photons,
as well as a unified dynamics of massive and massless particles.

However, the pointlike scheme, which we consider in the following, is not
the most general one. In fact, for a more adequate description of matter, it
may be necessary to introduce other local quantities, like the spin or other
vectors or tensors. Moreover, we will see that the mass will be strictly related
to the energy, so that m0 describes practically internal states of the particle.
Thus, the problem of assuming m0 a continuous function all along �+, or not
(as in quantum mechanics), arises too.

In any case, from a global point of view, for “particle” we will mean the pair
of an oriented world line (or an arc) �+ and a function m0(E) > 0, defined
∀E ∈ �+; from a local point of view, instead, the particle will be identified by
the event E ∈ �+, the value of m0 and the 4-velocity V, tangent to the world
line at that event [1, 2, 3]. So we define the linear 4-momentum:

P def= m0V ∀E ∈ �+ . (3.1)

The applied vector (E,P) summarizes either the kinematical or the material
state of the particle because from P one obtains both m0 and V. In fact, from
(3.1) and the condition V ·V = −c2, the norm of P follows: ||P|| = P · P =
−m2

0c
2, and hence

m0 =
1
c

√
−P ·P , V =

1
m0

P =
cP√
−P ·P

. (3.2)

As concerns the absolute laws of point mechanics, the law of inertia assumes
a quite different form from the ordinary one. More precisely, requiring that
in absence of any external action a particle cannot modify either its internal
structure or its kinematical state, it can be formulated in the following form:

Law I (or inertia law): For any isolated particle, both the proper mass and
the 4-velocity (and hence the 4-momentum) are invariant:

P = const. (3.3)

Due to (3.2), (3.3) summarizes either the condition m0= constant, or the
geodesic law: the world line of a particle, in the absence of any external action,
1 We will see that the canonical formulation of the dynamics will depend on m2

0.
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is a straight timelike line of M4. From Law I, Law II follows easily. In fact,
if a particle undergoes the action of an external force, its 4-momentum varies
(and this happens either if �+ has nonvanishing curvature, or if the mass
m0 effectively depends on E). Thus dP/dτ �= 0 and can be interpreted as a
local measure of the 4-force K acting on the particle and responsible for its
deviation from geodesic (inertial) motion. Thus, Law II can be formulated in
the following form:

Law II: The derivative of the 4-momentum with respect to proper time equals
the 4-force:

K(E) =
dP
dτ

∀E ∈ �+ . (3.4)

Equation (3.4), in spite of representing directly a physical law, can be used to
define the value of the 4-force K(τ) starting from �+ and m0(τ). Conversely,
this is the fundamental equation for the absolute dynamics of point particles,
once the 4-force characterizing the associated physical action is assigned.

In the so-called restricted problems of the material point scheme, the pa-
rameters can be at most τ,m0, E and V, i.e. τ, E,P:

K = K(τ, E,P) . (3.5)

This is a function of nine variables which, in order to represent a real phys-
ical action, should be invariant with respect to the Lorentz transformations,
similarly to the invariance with respect to the Galilean transformation laws
of the force: f = f(t, P,v) in classical mechanics. Such a property, which is
automatically satisfied here because of (3.5) implies that the 4-force Kα be a
vectorial function of M4, depending only on absolute quantities.

Thus, generally, in special relativity, the concept of force can be extended
easily either from the absolute or the relative point of view. In general rel-
ativity, instead, the absolute mechanism of the gravitational action will be
completely modified.

Finally, Law III, that is the action and reaction principle, completely loses
its validity in relativity because here the concept of action at a distance is
excluded by principle. And this for two reasons: first of all, the simultaneity
of two events has not an absolute meaning; hence, the concept of an instanta-
neous action is meaningless. As a second reason, there is the fact that every
physical action propagates with finite speed, that is, a certain amount of time
is necessary for the action to be effective. Hence, the concept of an immediate
action is meaningless too.

The action and reaction principle, however, remains valid in collision prob-
lems, as well as in all the cases in which there are directed and mediated
actions, either in the case of particle–particle interaction or in the case of
particle–field or even field–field interaction.
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3.2 Cauchy Problem

In the restricted problems of the point particle scheme, the fundamental law
of absolute dynamics is the following:

dP
dτ

= K(τ, E,P) , (3.6)

where P = m0V is the 4-momentum of the particle, and τ is its proper
time. Because of the dependence of K also on E, (3.6) is not a first-order
differential equation for the unknown P. Actually, P should be considered
as an auxiliary unknown, depending on E through m0 and V. Moreover,
once the force law is assigned, the evolution of the particle, related to the
determination of both m0 and the world line �+, is subject to (3.6), but also
to the constraint V ·V = −c2, which takes into account the meaning of the
proper time parameter τ . Thus, fundamental equations of point dynamics are

dP
dτ

= K(τ, E,P), V ·V = −c2 . (3.7)

These equations, because of the relations P = m0V and V = dΩE/dτ , form a
differential system in 4 + 1 equations, for the five unknowns E(τ) and m0(τ),
which can be cast into normal form, in the following way. Let us use the
definition of P = m0V in (3.7)1; we find

dm0

dτ
V +m0

dV
dτ

= K(τ, E,m0,V) .

From this, by scalar multiplication by V, and taking into account that (3.7)2
implies V · dV/dτ = 0, one gets the following first-order differential system,
normal in the unknowns m0, V and ΩE:

dm0

dτ
= − 1

c2
K ·V, m0

dV
dτ

= K +
1
c2

(K ·V)V,
dΩE
dτ

= V ; (3.8)

to (3.8), one must add the condition V ·V = −c2. However, such a condition
can be weakened requiring its validity at a certain instant only, let us say
initially, at τ = τ0. In other words, the system (3.7) is equivalent to (3.8),
supplemented by the initial condition:

V ·V = −c2 at τ = τ0 . (3.9)

To prove this, let us scalar multiply (3.8)2 by V; we find

m0V ·
dV
dτ

= K ·V
(

1 +
1
c2

V ·V
)
,

or
m0c

2

2
dX
dτ

= (K ·V)X , X =
(

1 +
1
c2

V ·V
)
. (3.10)
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Thus, any solution of system (3.8) gives a unique solution X(τ) of (3.10). But
(3.10) is linear and homogeneous in X and for it a uniqueness theorem is valid.
Hence, if X(τ) vanishes initially, i.e. X(τ0) = 0 so that (3.9) is satisfied, then
X(τ) = 0 or V ·V = −c2, ∀τ > τ0 in a certain neighbourhood of τ0. In other
words, the differential system (3.8) implies the constraint (3.7)2 once this is
satisfied initially. Similarly, one may say that (3.7)2 is a conservation equation
for the system (3.9), and this is an involutive constraint in the terminology of
Cartan.

Thus, once the force law is assigned, the absolute dynamics of the point
particle is determined by the solution of the normal system (3.8) and, accord-
ing to regularity properties of the force law, the evolution of the particle is
uniquely determined by the initial conditions:

m0 = m0,0 , E = E0, V = V0 at τ = τ0 . (3.11)

V0, in turn, is not completely free, but must be chosen compatibly with
(3.9). Moreover, neither the orientation of V0 is free. In fact, in the context
of equi-oriented Galilean frames (i.e. assuming M4 endowed with one of the
two half lightcones, say C+

3 ), V0 should belong to this half-cone too.
Hence, other than in the classical situation, the initial data are not free,

but they must satisfy the following limitation:

m0,0 > 0 , ||V0|| = −c2 , V0 ∈ C+
3 , (3.12)

which, because of the above-mentioned property of conservation for the norm
of V, imply that the world line of the particle is timelike and has the same
orientation as V0. Put differently, for any kind of 4-force K, the Cauchy
problem (3.8)–(3.11) gives rise to a world line entirely contained in the half-
cone C+

3 , with its vertex at E0. The latter condition gives also a dynamical
meaning to such half-cone: it is the future of E0 or all the events which can
be influenced by E0, in the sense that they can be in causal relation with E0

as a consequence of the presence of K.
It is also useful to distinguish between dynamical motions (effectively per-

formed by a material particle, under the action of an external field K(τ, E,P)
and conditions (3.12)) and kinematical motions (a sequence of events not
causally connected). These last motions may imply a speed faster than that
of light and be represented by world lines external to the lightcone. For ex-
ample, if a flash light sends signals onto a screen circularly at a distance r,
in a certain Galilean frame, then, allowing the flash light to uniformly ro-
tate with period T < 2πr/c, one has an image which moves uniformly on
a circular trajectory, at speed v > c. This is not surprising because it is
the causality principle which forbids faster than light speed. Different would
be the case of postulating the existence of tachionic particles: this would be
possible only in a different relativistic theory, because postulate E will be
violated [4].
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3.3 Classification of 4-Forces. Conservative Forces

Independently of the force law (3.5), in a generic event E, K can always be
decomposed, in a unique way, into the sum of two vectors: one parallel to V
(and hence timelike), and the other orthogonal to it, and hence spacelike and
belonging to the hyperplane Σ, orthogonal to V (see Fig. 3.1):

K = λV + F , F ∈ Σ : F ·V = 0 , λ = − 1
c2

K ·V . (3.13)

This decomposition distinguishes between two kinds of 4-forces, according to
whether K be tangent to the world line of the particle or orthogonal to it:

1. K = λV (or F = 0);
2. K ·V = 0 (or λ = 0).

The first kind of 4-forces are of thermal type, whereas the second are of
mechanical type, and the reason of these names stems from (3.8):

⎧⎪⎨
⎪⎩

K = λV → d
dτ

m0 = λ �= 0 , V = const.

K ·V = 0 → m0 = const. , A = K/m0.

(3.14)

The 4-forces of the first kind have no effects on the motion, that is on
the curve arc (straight line) in M4 which represents it, but, through m0,
they influence the internal structure of the material point. Thus, this can be
considered an action of thermal type.

On the other hand, 4-forces of the second kind have only the effect of ac-
celerating the particle, bending the world line without modifying its internal
structure; hence, they correspond to the ordinary mechanical actions. For in-
stance, of such a kind is the effect of an electromagnetic field on a charged
particle, i.e. the Lorentz force. As it will be discussed in Chap. 9, electromag-
netism specifies this force as

E

l+

Σ0

Fig. 3.1. Space-time splitting induced by the world line of a material particle
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Kα =
e

c
FαβV

β , (3.15)

where e is the (invariant) charge of the particle, V β its 4-velocity and Fαβ the
electromagnetic tensor. This is not, in general, a force law like that specified in
(3.5) because Fαβ is subordinated to Maxwell’s equations and is not directly
given as a function of E. However, Fαβ is antisymmetric: Fαβ = −Fβα, and
hence the Lorentz force is always of mechanical type:

K ·V = KαV
α =

e

c
FαβV

αV β = 0 .

An important consequence of this is the fact that the electromagnetic field
cannot change the proper mass of a particle. Summarizing, the notion of 4-
force includes two different physical actions, separated in the classical situation
and here strictly related: the thermal action and the mechanical one.

However, (3.5), typical in restricted problems, does not exclude the exis-
tence of positional forces, i.e. depending only on the point-event E where it
is applied: K = K(E). Among these, in turn, one can consider conservative
forces, characterized by the existence of a regular and uniform scalar function
U(E) of E, such that, for all E in the domain of definition and for all world
lines passing through E, the mechanical power is an exact derivative, that is

K ·V =
dU
dτ

, (3.16)

or explicitly

V αKα = V α ∂U
∂xα

=
dU
dτ

∀E, V;

hence:
Kα =

∂U
∂xα

, or K = GradU , (3.17)

even if V is not completely arbitrary but subordinated to the condition V·V =
−c2. In fact, choosing V α = (c, 0, 0, 0), one gets K0 = ∂U0/∂x

0 and, in turn,
choosing V α = (

√
2c, c, 0, 0), V α = (

√
2c, 0, c, 0), V α = (

√
2c, 0, 0, c), one finds

Ki = ∂U/∂xi.
Equation (3.17) characterizes K starting from the potential function U .

From this it follows that a conservative 4-force is necessarily positional, like
U0.

The hypersurfaces U(x0, x1, x2, x3) = const. form, in M4, the field equipo-
tential hypersurfaces. They are three-dimensional and characterize the field
itself, through the congruence of the ∞3 orthogonal curves (flux lines of K).
We notice here, from one side, the strict analogy with the classical case (either
for their definition or their representation properties) and, from the other side,
the big difference between conservative forces in classical mechanics and con-
servative 4-forces. The former have their conservative meaning with respect
to a given Galilean frame, but there is not any absolute notion of conser-
vativity (for instance, the Earth gravitational field is conservative, as well as
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central, only in the frame in which the Earth is at rest; in a frame in which the
Moon is at rest, this field is no longer conservative, nor positional). Definition
(3.16) has instead an absolute meaning and leads to the definition of U as the
intrinsic potential of the 4-force K.

We list few examples of 4-forces:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K = constant uniform field

K = φ(|ΩE|)vers|ΩE| central field, with centre Ω

K = φ(|ΩE|,V)vers|ΩE| general central field, with centre Ω ,

where |ΩE| =
√
|ΩE ·ΩE|. The first two fields are conservative, with potential

U = Kαx
α and U = ε

∫
φ(x) dx respectively, with x = |ΩE| and ε = ±1,

according to the positive/negative sign of the norm of ΩE.

3.4 Constrained Material Point

As in classical mechanics, it is meaningful to consider also in special relativity
the scheme of constrained material point. One has to put, a priori, a limitation
to the scheme, and this can concern either the world line �+ (belonging, for
instance, to a certain hypersurface) or the material content of the particle.
Thus, a relativistic and quite general constraint can be expressed as

φ(E,P, τ) ≥ 0 , (3.18)

with φ a scalar (invariant) function. The constraint (3.18) can be of special
kind; for example, holonomic (i.e. depending on E and τ only) or nonholo-
nomic (i.e. depending on P too); unilateral (φ > 0) or bilateral (φ = 0); de-
pendent or independent of τ . Furthermore, through P, the constraint (3.18)
could impose limits to the proper mass m0. In this sense, a very simple bilat-
eral constraint is

m0 = const . (3.19)

which refers only to the internal structure of the particle. We define the con-
straint to be ideal if the corresponding 4-reaction is R = λV, with λ generic.

In the constrained scheme, the fundamental law of relativistic dynamics
should be written by distinguishing the active 4-force from the reaction of the
constraint, which is a supplementary unknown for the problem; from here the
necessity of specifying the dynamical properties of the constraint itself (e.g.
ideal constraint or not) follows. Thus, the fundamental equation becomes

dP
dτ

= K(E,P, τ) + R , (3.20)

or, similarly to (3.8):
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⎪⎪⎩

dm0

dτ
= − 1

c2
(K + R) ·V

m0
dV
dτ

= K + R +
1
c2

(K + R) ·VV .

(3.21)

In particular, when R = λV, the above equations reduce to

dm0

dτ
= − 1

c2
K ·V + λ , m0

dV
dτ

= K +
1
c2

K ·VV , (3.22)

where the unknown λ is specified from the constraint. In particular, if the
constraint is that given in (3.19) (particle without any internal structure),
(3.22)2 is a “pure” equation for the determination of the motion. Once (3.22)2
is solved, starting from certain initial conditions, then (3.22)1 gives the value
of λ:

λ =
1
c2

K[τ, E(τ),P(τ)] ·V(τ) ,

and hence the value of the reaction of the constraint is also known.

3.5 The Conservative Case. Hamiltonian Formulation

Let us consider now the fundamental system (3.8), which determines, starting
from an assigned 4-force law, the point particle dynamics, with variable proper
mass (i.e. the system (3.7)). Instead of using the derivative of P = m0V, we
assume the expression of V in terms of P, given by (3.2)2, and consider, then,
the following first-order differential system in the unknown ΩE and P:

dP
dτ

= K(E,P, τ),
dΩE
dτ

=
cP√
−P ·P

. (3.23)

Such a system clearly implies the condition V · V = −c2 as a direct conse-
quence of (3.23)2 and is equivalent to (3.7) and hence to (3.8). It is therefore
a first-order (normal type) formulation, in eight unknowns: P = P(τ) and
E = E(τ) (in (3.8) there were nine unknowns), which confirms the unique-
ness of the motion, once the (regular) force law K is assigned, together with
the initial conditions E0 and P0, satisfying the single limitation P0 ∈ C+

3 (E0).
In scalar terms, assuming as variables the coordinates of E, namely xα, and

the momenta Pα = mαβP
β , the system (3.23) becomes

dPα

dτ
= Kα(E,P, τ),

dxα

dτ
=

cmαβPβ√
−mρσPρPσ

. (3.24)

The existence and uniqueness of the motion is obtained by including the initial
conditions (Cauchy problem):

xα = xα
0 , Pα = Pα,0 at τ = τ0 (3.25)
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with the coordinates of the event E0: xα
0 , belonging to the regularity domain

of Kα, and mαβPα,0Pβ,0 < 0, i.e. P0 ∈ C+
3 (E0).

System (3.24) is of special interest because when Kα is conservative it gives
rise to a Hamiltonian formulation. In fact, if the 4-force is conservative: Kα =
∂U/∂xα, by introducing the proper material energy of the particle: E0 = m0c

2,
as well as its positional energy Π0 = −U , (3.24) are equivalent to the following
canonical system, with Hamiltonian function H(x, P ) ≡ Π0 − E0:

dPα

dτ
= − ∂H

∂xα
,

dxα

dτ
=

∂H
∂Pα

. (3.26)

In fact, from (3.1)1, we have

H = −U(x)− c
√
−mρσPρPσ , (3.27)

and hence, using the relation

∂

∂Pα
(−P ·P) = −2Pα = −2mαρPρ , (3.28)

one gets
∂H
∂Pα

=
cPα

√
−P ·P

,
∂H
∂xα

= − ∂U
∂xα

= −Kα; (3.29)

thus the differential systems (3.24) and (3.26) coincide.
The dynamical equations (3.26), which summarize the conservative case

from an absolute point of view, give an example of Hamiltonian system not
equivalent to a Lagrangian one. In fact, the possibility to reduce it to a
Lagrangian form is subject to the invertibility of the relations:

q̇α =
∂H
∂Pα

(in our case dxα

dτ = ∂H
∂Pα

). This corresponds to the requirement that det
||∂2H/∂Pα∂Pβ || �= 0; in our case, instead, we have

∣∣∣∣
∣∣∣∣ ∂2H
∂Pα∂Pβ

∣∣∣∣
∣∣∣∣ = 0 . (3.30)

The proof follows easily once the second derivatives of H are directly evalu-
ated. In fact, from (3.28) and (3.29) we have

∂2H
∂Pα∂Pβ

=
c

P

(
mαβ +

PαP β

P 2

)
, P =

√
−P ·P , (3.31)

from which one gets the result:

∂2H
∂Pα∂Pβ

Pβ =
c

P

(
Pα +

PαP β

P 2
Pβ

)
=

c

P
(Pα − Pα) = 0 .
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Thus, for an arbitrary choice of the Pβ variables, the system

∂2H
∂Pα∂Pβ

Xβ = 0 , (α = 0, 1, 2, 3) ,

of four linear and homogeneous equations in the four unknown Xβ admits
eigensolutions (it is satisfied for Xβ = Pβ �= 0). Thus condition (3.30) is
satisfied, as it can be shown by using (3.31).

Similarly, the same result can be easily obtained by noticing that the func-
tions at the right-hand side of (3.24)2, i.e. the derivatives ∂H/∂Pα, besides
being regular when P �= 0, are homogeneous of zero order in the Pα. It
follows, from one side, the impossibility to obtain the momenta Pα (all in-
dependent) as functions of the velocity V α (subordinated to the condition
mαβV

αV β = −c2); from the other side, using the Euler theorem:

∂

∂Pβ

(
∂H
∂Pα

)
Pβ = 0,

we get again (3.30).
However, being H(x, P ) independent of the parameter τ , the canonical sys-

tem (3.26) admits the generalized integral of the energy:

−H = c
√
−mαβPαPβ + U(x) = const. = h , (3.32)

for all the solutions of (3.26).
This can be seen also from (3.8)1 which, in the conservative case, assumes

the form
dE0
dτ

= −dU
dτ

, → E0 + U = const.

We notice that the fact that the (conservative) point particle dynamics can
be formulated in Hamiltonian and not in Lagrangian terms can be physically
interpreted in the sense that, at least from the absolute point of view, the
wave aspect of matter should be preferred, with respect to the particle one.
In fact Pα, being a covariant vector, defines a three-dimensional hypersurface
(or wave front), locally associated to the world line �+ (ray); in turn, the
elementary wave, is perpendicular to �+.

The intrinsically conservative case suggests the idea of more general parti-
cles described by a Hamiltonian function H(x,P, τ), which is not separable
like H. In this case, the associated Hamiltonian system, starting from the
initial conditions E0 and P0, characterizes a world line �+ (ray) and an ele-
mentary wave, not necessarily orthogonal to �+. For instance, this is the case
of spinning test particles for which P is no more tangent to the ray but also
transports the proper material energy of the particle, related to the norm
of P.

Note. The first integral (3.32) reduces the rank of the Hamiltonian system
(3.29) by a number of two, so that the integration of the system is equivalent
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to that of an Hamiltonian system of six equations in six unknown, followed
by a quadrature. More precisely, one must solve (3.32) with respect to one of
the Pα, e.g. P0:

P0 = H̃(xα, Pi, h) , (3.33)

and hence consider the reduced Hamiltonian H̃. After this, assuming as inte-
gration variables x0 (in place of τ), we have the reduced system:

dxi

dx0
= − ∂H̃

∂Pi
,

dPi

dx0
=
∂H̃
∂xi

(i = 1, 2, 3) , (3.34)

from which one can derive the solution: xi = xi(x0), Pi = Pi(x0). The latter
functions, in turn, inserted in (3.33), allow to express P0 as a function of x0,
too, and hence also the energy H of (3.27). Thus, performing a quadrature
on the original equation dx0/dτ = ∂H/dP0 (where the right-hand side is a
known function of x0), one gets the relation between x0 and τ .

We notice that the system (3.34) does not admit the energy integral, because
H̃ explicitly depends on x0; moreover, from the relation x0 = ct, this system
represents, practically, the relative dynamics with respect to any Galilean
frame, as it will be better discussed in Sect. 3.9. Thus, in the intrinsically
conservative case, differently with respect to the absolute dynamics, it is the
relative one, described by a regular Hamiltonian system, which is not singular.
In any case, differently from the ordinary conservative case, such formulation
results invariant with respect to the choice of the frame.

3.6 The Relative Formulation of the Dynamics

We have now the problem to formulate the fundamental equations of the
point particle dynamics, in a three-dimensional sense, that is with respect to
a Galilean frame. This is in order to obtain relations which can be tested in a
Galilean laboratory and also to see the difference with respect to the classical
formulation.

Because of the extended relativity principle, these equations should be for-
mally invariant passing from one Galilean frame to another; therefore the
values of the various involved quantities will change, differently from the ab-
solute formulation.

As already stated, to fix a Galilean frame is equivalent to select, in C+
3 ,

the timelike unit vector γ; for a generic motion (�+,m0) then the following
decomposition of the 4-velocity V arises:

V = η(v + cγ) , η =
1√

1− v2/c2
, (3.35)

where η is the Lorentz factor; similarly, for the 4-momentum one has P =
m0V = m(v + cγ), where



3.6 The Relative Formulation of the Dynamics 121

m = ηm0 (3.36)

is the relative mass of the particle. By defining
{p = mv relative 3-momentum

E = mc2 relative material energy,
(3.37)

one also gets the following decomposition of the 4-momentum:

P = p +
E
c
γ , (3.38)

which states that the spatial component of the 4-momentum is the relative
3-momentum, while the temporal one is the relative material energy, a part
for the factor of c. Clearly, as m = ηm0, we have E = ηE0.

In the fixed Galilean frame, the global time coordinate t is given; hence, the
world line of any particle can be parametrized by t: τ = τ(t). The absolute
equation of motion dP/dτ = K, using (3.38) and the relation dt/dτ = η,
then, becomes

dp
dt

+
1
c

dE
dt
γ =

1
η
K ;

from here, splitting K in its components along γ and into Σ:

K = KΣ − (K · γ)γ, KΣ = PΣ(K) (3.39)

the two equations (one vectorial on Σ, and the other scalar) follow:

ṗ =
1
η
KΣ , Ė = − c

η
(K · γ) , (3.40)

where a dot means differentiation with respect to t. Defining the relative
mechanical force,

F =
1
η
KΣ , (3.41)

Equation (3.40) assumes the Newtonian form of the theorem of linear mo-
mentum:

ṗ = F . (3.42)

In the limit c → ∞, one has F = KΣ, and the criterion of re-obtaining the
classical (vectorial) quantity as the limit of the spatial part of the relativistic
(4-vectorial) quantity is satisfied. In the case of V, similarly,

v = lim
c→∞

1
η
V.

From (3.40)2, using the relations cγ = V/η − v, and K · v = KΣ · v, we have

− c
η
K · γ = F · v − 1

η2
K ·V .
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Thus, defining the relative thermal power:

q = − 1
η2

K ·V , (3.43)

Equation (3.40)2 assumes the classical form of the energy theorem:

Ė = F · v + q . (3.44)

We notice that, even in the “Newtonian form”, the relativistic point dynamics
formulation, summarized by (3.42) and (3.44), is different from the classical
one, also because of the widening of the scheme (particles with scalar struc-
ture, i.e. with m0 not a constant): for (3.42), the main difference is that,
in the linear momentum p = mv, the mass m is not a constant, but (ex-
plicitly) depends on the relative velocity and on the time t through m0:
m = m0(t)/

√
1− v(t)2/c2. Note that the dependence on v remains also in

the most simple case of particles without internal structure, for which m0

becomes a characteristic constant.
Equation (3.44) appears deeply modified, for two reasons: (1) the energy of

the particle E does not coincide with the ordinary kinetic energy mv2/2; (2)
at the right-hand side appears the thermal power q which should be added to
the ordinary mechanical power F · v. The source of the energy is, then, the
whole power:

W = F · v + q , (3.45)

so that the decomposition of the 4-force becomes

K = η

(
F +

W
c
γ

)
. (3.46)

We emphasize the fact that F is the source of linear momentum and not
of velocity because of the variability of the relative mass m. In any case, in
agreement with the absolute formulation (3.8), also from the relative point of
view, the physical action, represented by the 4-force K, has the two effects of
(1) accelerating the particle, (2) modifying its material energy:

E =
E0√

1− v2

c2

. (3.47)

From this point of view, because of the presence of the term q, that is because
of the variability of m0, as from (3.8)1, we have

c2
dm0

dτ
= q0 , q0 = η2q . (3.48)

Equation (3.44) is independent of that of the linear momentum, differently
from the classical situation. However, the presence of q, that is a first link
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between mechanics and heat theory, is not the unique fundamental novelty of
the relativistic pointlike scheme. The other conceptual aspect, not less impor-
tant than the previous one and certainly more general because it is present
also for particles without internal structure, is the fact that the energy E and
the mass m of the particle differ by a multiplicative constant, as if they were
two different aspects of the same physical quantity (equivalence between mass
and energy).

Clearly, E contains either the rest energy E0 = m0c
2 (intrinsic) or the (rela-

tive) kinetic energy, due to the relative velocity of the particle: v. The relation
with the ordinary kinetic energy is immediately obtained, with an expansion
of the right-hand side of (3.47) up to the first order in v2/c2. In fact, one has
the approximated relation:

E = E0 +
1
2
m0v

2 , (3.49)

which shows, for slow motions v2 � c2, two main terms: the proper mate-
rial energy m0c

2 and the relative kinetic energy T = m0v
2/2. From here it

follows the closeness of (3.44) with the classical energy theorem; this is then
strengthened in the case m0 =constant, where Ė0 = 0, and hence Ė = Ṫ . The
relative material energy as a function of v is plotted in Fig. 3.2.

In particular, one has
lim
v→c
E(v) = +∞ .

This result confirms that a material point cannot reach the speed of light,
unless its relative material energy becomes infinite. Analogously, m = E/c2
is the inertial mass which measures the increasing difficulty of the point to
further accelerate when its speed becomes close to that of the light, in a given
Galilean frame. From this point of view, one may consider, as more significant,
the absolute parameter m0, which measures the classical inertia and gives rise
to a hierarchy of particles, without internal structure.

O

V
moc2

ξ

Fig. 3.2. The relative material energy plotted as a function of v
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We notice that the various definitions introduced above, all have a real
physical content: they establish the physics laws from a relative point of view
in a form close to their Newtonian counterparts, in agreement with extended
principle of relativity. In particular, the Einsteinian equivalence, between mass
and energy, can be easily derived from a general principle of mass and energy
conservation, valid for isolated systems.

In other words, if in the ambit of an isolated system, one has increment of
material energy ΔE , in correspondence, a mass defect ΔE/c2 is created: this
effect has been widely confirmed in experiments.

3.7 Transformation Laws: Unification Between
Mechanics and Heat Theory

The relative formulation of the dynamics of material point with scalar struc-
ture m0 is summarized by the two independent equations (one scalar and the
other vectorial):

d
dt

(mv) = F ,
dE
dt

= F · v + q =W ∀Sg . (3.50)

They are formally invariant with respect to the choice of any Galilean frame
Sg, passing to another Galilean frame, S′

g, is equivalent to put a prime on all
the various quantities in (3.50). They are not substantially invariant because
all the various quantities appearing in (3.50), including t and v, have a relative
meaning. Thus, it is necessary to specify, as we have already done for t and
v, the transformation laws of the fundamental quantities p, F, E , q.

Let us start with transformation law of the mass m. From (3.36), we have

m =
m0√

1− v2/c2
, m′ =

m0√
1− v′2/c2

;

thus, by eliminating m0 (invariant, once specified the event E of the world
line):

m′ =

√
1− v2/c2√
1− v′2/c2

m .

Moreover, from (2.105), it results
√

1− v2/c2√
1− v′2/c2

=
σ

α
, σ = 1− u · v/c2 , α =

√
1− u2/c2 , (3.51)

with u the relative velocity of S′
g with respect to Sg. Hence,

m′ =
σ

α
m . (3.52)
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From here it follows the introduction of the terminology of longitudinal
mass or transversal mass of use in dynamics, when one passes from a Galilean
laboratory to another moving in the direction of v (v parallel to u) or in the
orthogonal direction (v orthogonal to u).

The classical invariance of the mass comes from (3.52), in the limit c→∞:

lim
c→∞m′ = lim

c→∞m = m0 = inv.

From (3.52), after multiplication by c2, one gets the variation law of the
material energy:

E ′ =
σ

α
E . (3.53)

Again, from (3.52), after multiplication by v′, and by using the relativistic
addition of velocity law,

v′ =
α

σ

(
v − 1 + σ/α

1 + α
u
)
, (3.54)

one gets the variation law of the linear momentum:

p′ = p− 1 + σ/α

1 + α
mu . (3.55)

Let us pass now to thermal power q, defined by (3.43). We have

q = q0(1− v2/c2) , q′ = q0(1− v′2/c2) ,

where q0 is a local invariant of the particle, called the proper thermal power:

q0 = −K ·V . (3.56)

The variation law of the thermal power follows, from the above relations, by
eliminating q0:

q′ =
(α
σ

)2

q . (3.57)

The remaining task is that of finding the transformation law of the relative
mechanical force. From the invariance property of K, by (3.46), one gets

η

(
F +

W
c
γ

)
= η′
(
F′ +

W ′

c
γ′
)

= inv. ;

thus, from (3.51), it results

F′ +
W ′

c
γ′ =

α

σ

(
F +

W
c
γ

)
.

Finally, projecting on the basis {c′α}:
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γ′ =
1
α

(γ + βc1) , c′1 =
1
α

(c1 + βγ), c′2,3 = c2,3 ,

the following relations are obtained:
⎧⎪⎪⎨
⎪⎪⎩

1
c
W ′ =

1
σ

(
1
c
W − βF1

)

F ′
1 =

1
σ

(
F1 −

β

c
W
)
, F ′

2,3 =
α

σ
F2,3.

From here, one gets immediately the variation law of the total power W :

W ′ =
1
σ

(W − F · u) . (3.58)

For the remaining relation, we can write

F1 = αF1 + (1− α)F1

= αF1 +
1− α2

1 + α
F1

= αF1 +
1
c2

u2

1 + α
F1

= αF1 +
1
c2

u ·F
1 + α

u .

Interpreting now the components of F′ in Sg, instead of S′
g (i.e. boosting Σ′

on Σ), one gets the relation:

F′ =
1
σ

[
αF +

1
c2

(
u · F
1 + α

−W
)

u
]
. (3.59)

We notice that (3.58) can be derived directly from (3.54), (3.57) and (3.59),
and taking into account the meaning of W . However, (3.59) shows that, dif-
ferently from q′, the mechanical force F′ depends not only on F but also on
the thermal power q. In fact, we have

F′ =
1
σ

[
αF− 1

c2
(F ·w + q)u

]
, (3.60)

where
w def= v − 1

1 + α
u . (3.61)

The following fundamental fact arises, as a peculiarity of the relativistic sit-
uation: in the framework of special relativity, it is meaningful to formulate a
theory for pure mechanics, while it is a nonsense to formulate a theory for
heat, only. In fact, from (3.57), we have that q = 0 implies q′ = 0, and vice
versa: the presence or the absence of a physical action of thermal type is an
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intrinsic fact. The same is not true for the mechanical force F: if it is absent
in a frame, in general it is not into another:

F = 0 ⇒ F′ = − 1
c2
q

σ
u �= 0 ,

even if a very small, i.e. of the order 1/c2. In a relativistic framework, then,
from pure mechanics, one is naturally driven into thermomechanics (q �= 0).
This situation is somehow similar to the electromagnetism: it is a nonsense,
from a relativistic point of view, to develop a theory for the electric field only or
the magnetic field only, but the really meaningful theory implies the presence
of both fields. This of course will not exclude the possibility of having, in a
certain frame of reference, electric or magnetic field only.

3.8 The Cauchy Problem in Relative Dynamics

Let us consider now the general equations for point dynamics (3.50), in a
generic Galilean frame, assuming that both the frame (i.e. γ) and the force law
(i.e. K = K(τ, E,P)) are assigned. Clearly, the component KΣ = K+(γ ·K)γ
has the same dependence of K. The mechanical force F = 1/ηKΣ seems to
have, in addition, the dependence on v, through η; however, if V and m0 are
known, assigned γ, also v (and m = ηm0 and E = mc2, as well) is known.
Thus, F has exactly the same dependence as K, and the same is true for
q = −K ·V/η2. In relative terms, the variables τ, E,P are equivalent to the
ordinary quantities P (position), p (linear 3-momentum), E (material energy)
and t (universal time of the frame); in fact, from E one gets P and t, from P
one has p and E , and finally from τ one gets t. In this sense, in the restricted
problems, the relative force F and the relative heat power q have the following
dependence:

F = F(x, p, E , t) , q = q(x, p, E , t) (3.62)

or, equivalently
F = F(x, ẋ, E , t) , q = q(x, ẋ, E , t) , (3.63)

taking into account that p summarizes v and m, or E .
From the latter point of view, (3.50) can be cast in scalar terms, in the

following second-order system for the unknown xi (i = 1, 2, 3) and E :

d
dt

(
E
c2
ẋi

)
= F i ,

dE
dt

= Fiẋ
i + q , Fi = δikF

k . (3.64)

The similar formulation (first-order ordinary differential system of seven equa-
tions for seven unknowns, in the variable t), in terms of position xi, linear
momentum pi = δikp

k and energy E , appears to have more physical meaning:

ẋi =
c2

E δ
ikpk , ṗi = Fi(x, p, E , t) , Ė =

c2

E F
ipi + q(x, p, E , t) . (3.65)
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For this system, similarly to the corresponding absolute one, the Cauchy prob-
lem arises associated with the initial conditions:

xi = xi
0 , pi = pi,0 , E = E0 at t = t0 . (3.66)

Obviously, because of the meaning of the pi and E = mc2, subordinated at
the condition 1− v2/c2 > 0, we have

X
def= 1−

(cp
E

)2
> 0 (p2 = δikp

ipk) , (3.67)

and the initial data cannot be arbitrary, but they must satisfy the limitations:

X0 = 1−
(
cp0

E0

)2

> 0 , E0 > 0 , (3.68)

and this is a big difference with respect to the classical situation.
Equation (3.68) implies that a discussion on dynamically possible motions

can be started on the basis of (3.65), but then at any instant, the constraint
(3.67) should be verified. It should be noted that, differently from the problem
(3.8) for the absolute dynamics where the conservation equation 1+V·V/c2 =
0 was present, in the case under consideration here, (3.67) gives an effective
unilateral constraint. The unilateral character of the constraint excludes the
possibility of reactions, but it creates a problem completely different from
the previous one. In any case, the system (3.65) implies, for the variable
X = 1− c2p2/E2, the following first-order (linear, inhomogeneous) differential
condition:

Ẋ = −2
c2

E2
(XF ipi − p2q/E) ; (3.69)

this relation involves either the mechanical force or the thermal power (see
(3.62) and shows that the initial value,

Y0
def= X0F

i
0pi,0 − p2

0q0/E0 , (3.70)

plays a central role, discriminating the case X(t) increasing (that is an always
positive X), from the decreasing one, in which there can exist critical points
X = 0 starting from which the solution may be meaningless.

Another form of the system (3.65), which will allow to avoid the constraint
(3.67), is obtained assuming as variables xi, pi and m0, in place of xi, pi and
E . In this case, both the energy E = mc2 and the mass m = m0/

√
1− v2/c2

should be expressed in terms of the new variables; otherwise, from

m =
m0√

1− p2/(m2c2)
=

m0m√
m2 − p2/c2

,

it results m2 − p2/c2 = m2
0, so that

m =
√
m2

0 + p2/c2 , p2 = δikp
ipk . (3.71)
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Taking into account (3.65)2, and by differentiating, one gets the following
relation:

ṁ =
1
m

(
m0ṁ0 +

1
c2
piFi

)
,

which maps the energy theorem (3.65)3 into the form: m0ṁ0 = qm/c2. Thus,
system (3.65) transforms as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi =
δikpk√

m2
0 + p2/c2

ṗi = Fi(x, p,m2
0, t)

(
1
2m

2
0

).
= 1

c2

√
m2

0 + p2/c2 q(x, p,m2
0, t).

(3.72)

In this last formulation, m0 appears through the power m2
0, allowing the

treatment to be valid for both particles (m0 > 0) and exotic particles (m0 <
0). Moreover, the constraint (3.67) rewritten into the form,

1− p2

p2 +m2
0c

2
,

is automatically included in (3.72)1, so that the initial data xi
0, pi,0 and m0,0

are completely free, a part from the condition m0,0 �= 0.

3.9 The Intrinsically Conservative Case

In the general formulation (3.72) and (3.65), the functions at the right-hand
side are more or less complicated according to the expression of the 4-force
law K(E,P, τ). Therefore, they are simplified when K is special, for instance
positional and conservative:

Kα =
∂U
∂xα

(α = 0, 1, 2, 3) . (3.73)

Let us examine this latter case, assuming that the Cartesian coordinates xα

were internal to the frame: γ = c0. From the general relations given in (3.46)

Fi =
1
η
Ki , q = − 1

η2
K ·V = − 1

η2

dU
dτ

,

and using (3.71) to express η, we have

η =

√
1 +

p2

m2
0c

2
, (3.74)

so that one obtains the following expressions for the mechanical force and the
thermal power, respectively:
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⎩
Fi = (1 + p2/(m2

0c
2))−1/2 ∂U/∂xi (i = 1,2,3)

q = −(1 + p2/(m2
0c

2))−1/2 ∂U/∂t.
(3.75)

Equation (3.75)1 shows that the mechanical force F is neither positional nor
conservative. However, it comes from the potential

U(x, p,m0, t)
def= (1 + p2/(m2

0c
2))−1/2U(x, t) , (3.76)

which depends on the time t and both pi and m0, through the ratio p2/(m2
0c

2).
Thus, in any Galilean frame, system (3.72) simplifies as:

ẋi =
δikpk√

m2
0 + p2/c2

, ṗi = ∂U/∂xi , m0c
2 + U = const. , (3.77)

while system (3.65) assumes the form:

ẋi =
c2

E δ
ikpk , ṗi = ∂U/∂xi, Ė = −∂U/∂t , (3.78)

with the same initial conditions (3.66), as well as the limitations (3.67) and
(3.68). Obviously, in order to explicitate the system, one should consider U =√

1− c2p2/E2 U(t, x). In any case, even if system (3.77) is formally invariant
passing from one Galilean frame to another, the characteristic function U =
U/η is not invariant (it is instead invariant the absolute potential U(E)). Thus,
from (3.76) the invariance property ηU = η′U ′ = inv. follows; in other words,
taking into account (3.51), the transformation law of the relative potential is
the following:

U ′ =
α

σ
U , (3.79)

with the functional identity being subordinated to the Lorentz transforma-
tions. Finally, let us note that, by eliminating m0 using the energy theorem,
system (3.77)1,2 does not assume a Hamiltonian form.

3.10 Pure Mechanics: Particles with Scalar Structure

As we have already stated, in a relativistic framework, a “pure mechanics” is
obtained excluding thermal actions, i.e. assuming

q = − 1
η2

K ·V = 0 . (3.80)

This is the ordinary pointlike scheme (material point, without internal struc-
ture); in fact, (3.80) implies, for (3.72)3, the condition m0 =const., as from
(3.8)1. In other words, (3.80) gives to the energy theorem the classical form,
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but with a different content for the energy E : Ė = Fiv
i, and this, in turn, is

equivalent to the condition ṁ0 = 0, that is m0 =const.
In this case (particles without internal structure: m0 = const. and q = 0),

the energy theorem follows from the equations of motion (3.72)1,2:

ẋi =
δikpk√

m2
0 + p2/c2

, ṗi = Fi(x, p, t) (i = 1, 2, 3) . (3.81)

In these last equations, m0 is a “structural” constant, characteristic of the
considered particle, with the material energy E = mc2 given by the formula:

E = c
√
m0c2 + p2 , p2 = δikpipk . (3.82)

Equation (3.81) ensure the invariance property of the more general (3.65),
passing from a Galilean frame to another. This invariance is but, only formal
and not substantial. For instance, in S′

g, according to (3.60), the mechanical
force is given by:

F′ =
1
σ

[
αF− 1

c2
F ·
(
v − 1

1 + α
u
)]

, (3.83)

and so the mechanical power is

W ′ =
1
σ

(W − F · u) , (3.84)

differently from the classical situation, where F′ = F and W ′ =W − F · u.

3.11 The Conservative Case in a Classical Sense

Let us consider now, in the context of pure mechanics (q = 0), the special
case in which the mechanical force, relative to Sg, comes from a potential U :

Fi =
∂U(x)
∂xi

, (i = 1, 2, 3) . (3.85)

Obviously, this is not an absolute property because it strictly depends on the
choice of the Galilean frame. That is, the hypothesis (3.85) destroys the formal
invariance of the dynamical equation (3.81). In fact, from (3.83), as soon as
u �= 0 (i.e. S′

g �= Sg) the mechanical force F′ acquires a dependence on v′,
either explicitly or implicitly, through σ, and hence it is no more conservative.

Even with this limitation, which makes Sg a preferred frame, the conserva-
tive case is still important, as in the classical case, and gives rise to a canonical
system. In fact, by introducing the total relative energy

H = mc2 − U = c
√
m0c2 + δikpipk − U(x) , (3.86)
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system (3.81), rewritten in the following form:

ẋi =
cδikpk√

m0c2 + δjlpjpl

, ṗi =
∂U

∂xi
, (3.87)

assumes the Hamiltonian form:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
. (3.88)

Actually, from (3.86):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂H

∂pi
=

cδikpk√
m0c2 + δjlpjpl

∂H

∂xi
= − ∂U

∂xi
,

(3.89)

which completes the proof. In the limit of slow motions, the Hamiltonian
function reduces, as from (3.49), to the classical formula for the total energy
of a material point in a conservative field (a part for the constant rest energy
m0c

2):

H � m0c
2 +

1
2
m0v

2 − U .

However, the conservative case (3.85) is different from the intrinsically con-
servative one not only as concerns the invariance but also because the function
(3.86) has a nonzero Hessian determinant, differently fromH defined in (3.27).
That is, (3.87)1 is invertible and gives rise to the relations:

pi ≡ mvi =
m0δikẋ

k√
1− δikẋiẋk/c2

; (3.90)

moreover, the Hessian ofH , with respect to the components of the momentum,
has to be different from zero. In fact, assuming m(p) =

√
m2

0 + p2/c2, so that
∂H/∂pi = pi/m(p), it is easy to show that

∂2H

∂pi∂pk
= − 1

m3c2
pipk +

1
m
δik . (3.91)

Thus, the matrix
∣∣∣∣∣∣ ∂2H

∂pi∂pk

∣∣∣∣∣∣ has the form ||aik + λδik|| and, using the general
relation

det ||aik + λδik|| = λn + I1λ
n−1 + · · ·+ In−1λ+ In , (3.92)

with n the matrix order, and I1, . . . , In the principal invariants of aik (with
respect to the matrix δik). In the present case, λ = 1/m, n = 3, aik =
−pipk/(m3c2), and it results in
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I1 = − p2

m3c2
, I2 = 0 , I3 = 0 ;

so that, from (3.92)

det
∣∣∣∣
∣∣∣∣ ∂

2H

∂pi∂pk

∣∣∣∣
∣∣∣∣ =
(

1
m

)3

− p2

m3c2

(
1
m

)2

=
m2

0√
(m2

0 + p2/c2)5
> 0 .

Thus, differently from the intrinsically conservative case, the canonical system
(3.88) is equivalent to a Lagrangian system, with Lagrangian:

L = [L]pi=pi(q,q̇,t) , L
def=

∂H

∂pi
pi −H ,

where the relations pi = pi(q, q̇, t) are obtained by solving the equations q̇i =
∂H/∂pi with respect to the p+ when this is possible as it is in the present
case. It follows

L = ẋipi(x, ẋ, t)− [H ]pi=pi(x,ẋ,t) ;

using, then, (3.86) and (3.90), one gets

L =
m0

1− v2/c2
(δikẋiẋk − c2) + U(x) = −m0c

2
√

1− v2/c2 + U(x) . (3.93)

The associated Lagrange equations,

d
dt
∂L
∂ẋi
− ∂L
∂xi

= 0 , (3.94)

give, clearly, the theorem of momentum:

d
dt

(mẋi)− ∂U

∂xi
= 0 , (3.95)

i.e. give rise to a second-order normal differential formulation of the dynamics
in the unknown xi(t). More precisely, taking into account the energy theorem:

Ė = Fiẋ
i =

∂U

∂xi
ẋi ≡ U̇ , (3.96)

one can rewrite (3.95) in the form

mẍi =
∂U

∂xi
− 1
c2
U̇ ẋi =

∂U

∂xi
− 1
c2
∂U

∂xk
ẋiẋk ,

and thus, they are equivalent to the following second-order, normal system:

m0ẍ
i =
√

1− δikẋiẋk/c2
(
δik − 1

c2
ẋiẋk

)
∂U

∂xk
. (3.97)

Such a system, in the considered Galilean frame, admits the energy integral,
as it follows from (3.96): E − U = const., that is,
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m0c
2√

1− δikẋiẋk/c2 − U(x)
= const. (3.98)

for all the solutions of (3.97); furthermore, the Lagrangian function (3.93) does
not explicitly depend on the time, so that system (3.94) admits the generalized
energy integral:

H(x, ẋ) =
∂L
∂ẋi

ẋi − L = const. , (3.99)

for all the solutions of (3.94), and this coincides with (3.98). Similarly, in terms
of canonical variables, being t an ignorable coordinate in the Hamiltonian
function (3.86), the associated system (3.88) admits as a first integral the
same function H(x, p):

c
√
m0c2 + δikpipk − U(x) = const. (3.100)

for all the solutions of (3.88). This allows to express, for all dynamical solution,
p2 = δikpipk as a function of the position and the initial data.

3.12 Classical Approximation

As in the conservative case of pure mechanics discussed in (3.97), also in the
general case (F �= 0, q �= 0), the dynamical equations can be written in terms
of the four variables xi and E , or in terms of xi andm0. One has to use directly
(3.64), which gives rise to the following, normal form, differential system:
⎧⎨
⎩

1
c2 E ẍi =

(
δik − ds 1

c2 ẋ
iẋk
)
Fk(x, ẋ, E , t)− 1

c2
ẋiq(x, ẋ, E , t)

Ė = Fkẋ
k + q,

(3.101)

or, equivalently, ⎧⎨
⎩

1
c2
Ea = F− 1

c2
(F · v + q)v

Ė = F · v + q.

(3.102)

Assuming instead, as variables xi and m0, and using (3.72), the fundamental
system (3.101) can be written as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m0ẍ
i =

√
1− v2

c2

[(
δik − 1

c2
ẋiẋk

)
Fk(x, ẋ,m0, t)−

1
c2
qẋi

]

ṁ =
1

c2

√
1− v2

c2

q(x, ẋ,m0, t) (v2 = δikẋ
iẋk),

(3.103)

which shows the meaning of m0 as the inertial mass for any choice of the
Galilean frame. In particular, in the Galilean frame in which the particle is at
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rest γ = V/c, such that v0 = 0 and a0 = A, and using (3.41) and (3.43), one
gets

F0 = KΣ = K +
1
c2

K ·VV , q0 = −K ·V ,

and (3.103) become

m0a0 = F0 , ṁ0 =
1
c2
q0 , (3.104)

which are equivalent to the original absolute formulation (3.8). We note that
(3.104)1 gives again, in the relativistic framework, the classical law ma = F,
even if this result holds in a particular Galilean frame, variable with the
particle. Conversely, this may give a criterion to extend, in relativity, the
classical physics laws, according to which one can consider the classical laws
still valid, but only with respect to the Galilean frame in which the par-
ticle is at rest. Then, the formulation can be extended to any Galilean
frame, by considering the transformation laws of the various quantities in-
volved.

Finally, it is also worth to note that, in the limit c → ∞, the formulation
(3.103) is equivalent to the classical case:

m0ẍ
i = F i , m0 = m = const. , (3.105)

from which the inertial meaning of m0 is confirmed and its purely mechanical
meaning too, without the thermal coupling.

3.13 Unified Scheme: Particles and Photons

Within the particle scheme, considered up to now, we have excluded both
the cases m0 < 0 and m0 = 0. The first case (m0 < 0) can be taken into
account, without significative changes in the scheme considered, above and
it represents exotic matter, or particles with negative material energy (and
hence not too much physically relevant). The second case (m0 = 0) must be
discussed separately because in this case some fundamental quantities, like the
4-momentum, loose their direct meaning. Allowing to consider also particle
with very small masses, it is quite natural to consider the case m = 0 as
a limiting one of the particle scheme. From this point of view, taking into
account the relation

m =
m0√
1− v2

c2

,

it is clear that, if v < c, the limit m0 → 0 implies m → 0 too, in every
Galilean frame; a particle which would correspond to such a model will not
be physically observable. As a consequence, if one would like to consider a
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physically compatible scheme, also for the casem0 = 0, one should allow v = c.
This observation suggests the corresponding scheme, for the casem0 = 0, that
is a scheme apt to represent particles moving at the speed of light. This is the
case of photons, introduced by Einstein in 1905 to explain the photoelectric
effect.

They are, then, limiting particles (m0 → 0 and v → c, so that m will be
finite and nonzero), for which the world line is lightlike:

λ · λ = 0 , λ =
dE
dλ

. (3.106)

Therefore, for these particles, one cannot introduce the notions of proper time
τ and 4-velocity V. Similarly, the 4-momentum P = m0V is meaningless
because it is derived from m0 and V. Properly speaking, even if both m0

and V have no more meaning, their product may have. In fact, for a generic
particle, the 4-momentum P can be written as

m0V = m0λ
dλ
dτ

, dτ =
1
c

√
−λ · λdλ ,

and the scalar quantity, Pλ ≡ m0dλ/dτ , may have a physical meaning. Then
P = Pλλ can be meaningful in the limit m0 → 0 and dτ → 0 if the latter are
infinitesimal of the same order. From this point of view, which gives to P a
primitive meaning with respect to m0 and V, the following definition appears
quite natural for a particle with scalar structure: an oriented world line �+,
timelike or lightlike, and a tangent (nonnull) vector field P(E). When �+ is
timelike, one can introduce the (preferred) proper time parametrization, as
well as the 4-velocity V and the proper mass m0, defined starting from the
decomposition P = m0V. When, instead, �+ is lightlike, i.e. (3.106) holds, for
any choice of the parameter λ along �+, the vector P remains tangent to �+,
but is lightlike:

||P|| = 0 . (3.107)

Summarizing, in the unified scheme (material particles and photons), the fun-

damental ingredients are two: the oriented world line �+ and the field of tan-
gent vectors P �= 0, with norm

||P|| ≤ 0 , (3.108)

with the equality holding for photons. Finally, if P is aligned along �+ and
has the same orientation, one speaks of particles, otherwise of exotic particles.

The condition P tangent to �+ represents a strong limitation for the par-
ticle scheme. In fact, once introduced on �+ an arbitrary parameter λ, the
4-momentum P is

P = Pλλ , λ =
dE
dλ

, (3.109)
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for all parametric representation, with the scalar Pλ (assumed to be positive)
naturally depending on the chosen parametric representation. That is, from
the invariance of P: Pλλ = Pλ′

λ′ = inv., and using the relation

λ = λ′ dλ′

dλ
, (3.110)

one finds the transformation law for Pλ when λ varies:

Pλ′
=

dλ′

dλ
Pλ . (3.111)

This is the exactly the transformation law for vectors, which motivates the
notation for the position of the index λ. Taking then into account the positivity
of the quantity dλ′/dλ also follows the invariance for the sign of Pλ, which
substantiates the two different (but similar) schemes: Pλ > 0 (particle), and
Pλ < 0 (exotic particle). In the following, in order to avoid an indicator
ε = ±1, we will restrict our attention only to particles: Pλ > 0.

3.14 Fundamental Invariants

The norm of P is a first absolute invariant for the unified particles, which
we will show to be effective in the relative ambit only. More important is the
differential invariant:

dλ
Pλ

=
dλ′

Pλ′ = inv. = I , (3.112)

and, by integrating along �+, the finite invariant I(E) > 0, defined up to an
additive constant

I(E) =
∫ E

E0

1
Pλ(λ)

dλ = inv. (3.113)

Vice versa, by differentiating the invariant (3.113), one gets the component
Pλ of P:

dI
dλ

= 1/Pλ , (3.114)

so that the unified scheme can also be characterized by the oriented world
line �+ (timelike or lightlike), endowed with a scalar invariant: I(E), which
assimilates the photons to the material particles; in particular, for the latter
case, the proper mass m0

def= P τ is contained in (3.114):

1
m0

=
dI
dτ

. (3.115)

Obviously, because of the positiveness of Pλ, I is also an admissible parameter
for �+, and it is such that P becomes an exact derivative:

P = dE/dλ , P I = 1 . (3.116)
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In the quantum treatment of photons, the universal constant h (Planck
constant) plays a role:

h � 6.63 10−34 J · s (3.117)

with dimensions of an angular momentum (or of the action): [h] = [ML2T−1].
We can include this constant in Pλ, by putting

Pλ =
h

c2
νλ , (3.118)

where the new quantity νλ is characterized by the same variation law of Pλ

at varying the parameter λ:

νλ′
= νλ dλ′

dλ
⇒ dλ

νλ
= inv. (3.119)

It is easy to recognize that, if the parameter λ has the dimensions of a time,
then νλ is a frequency. In fact, from one side, [P ] = [MLT−1] (being P a
linear momentum) and from the other [P ] = [Pλ][Lλ−1], so that, if [λ] = [T ],
it results

MLT−1 = [Pλ]LT−1 , ⇒ [Pλ] = M ,

and hence,
[νλ] = [T−1] . (3.120)

Summarizing, the invariant (3.113) gives rise, by using (3.118), to another
invariant for both material particles and photons, that is the proper frequency
V > 0:

1
V(E)

=
∫ E

E0

1
νλ(λ)

dλ = inv.
d
dλ

(
1
V

)
=

1
νλ

. (3.121)

The following relation holds

I(E) =
c2

hV(E)
, (3.122)

so that, in the unified scheme, the invariant I can be replaced by V . Because
of the different meaning of such invariants, P can be obtained starting from
(3.109) and using conditions (3.114) and (3.122):

P I = 1 , PV =
dV
dI

= − c2

hI2
. (3.123)

In the unified scheme, from the absolute point of view, the local invariants I,
or V , play the role of the proper mass m0: hence, the latter has only a partial
meaning, like τ and V, for timelike world lines.
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3.15 Particle and Photon Dynamics

As concerns the absolute dynamics, in the unified scheme, one cannot use the
proper time parametrization of the world line because this has no meaning
on null world lines. It is necessary to use an arbitrary parameter λ, and to
rewrite (3.6) in the form:

dP
dλ

= Kλ(λ,E,P) , (3.124)

assuming that this equation have absolute character, i.e. not depending on the
choice of λ. It follows that the 4-force Kλ should transform like a derivative,
or with the covariance law:

Kλ′ = Kλ
dλ
dλ′

, (3.125)

complementary to (3.111), so that the parameter λ can be chosen arbitrarily.
In particular, by using the canonical parameter I, the unified dynamics of

particles, in the ambit of restrict problems, is governed by the following set
of equations:

dE
dI

= P ,
dP
dI

= K̂(I, E,P) , ||P|| ≤ 0 , (3.126)

where K̂ ≡ KI is the generalized 4-force, and dE/dI the analogous of the
4-velocity. The absolute parameter I is defined by means of (3.113)–(3.114),
both invariant with respect to the choice of λ, vice versa, (3.115) holds only
for material particles.

The unified treatment (3.126) includes, obviously, the energy theorem; in
fact, assuming

||P|| = −m̂2
0c

2 = −Ê
2

c2
, (3.127)

from (3.126)2 one obtains the relation

d
dI

(
1
2
Ê2

)
=

1
c4
q̂ , q̂ = −K̂ ·P , (P =

dE
dI

) , (3.128)

where the scalar q̂ can be interpreted as proper thermal power. From this point
of view, which reintroduces the proper mass as a quantity derived from P,
the photon is characterized by the condition m̂0 = 0, like a particle without
internal structure, which implies also q̂ = 0 (absence of thermal interaction).

However, formulation (3.128) does not include the limitation ||P|| ≤ 0,
which should be added to the equations. It uses, as a parameter for �+, the
absolute invariant I, which makes the mass as unit: P I = 1, but it does
not have the dimensions of a time, and hence it cannot be considered as a
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substitute for the proper time. In any case, (3.122) defines a second invariant:
V > 0 (absolute frequency), which also gives the temporal invariant:

T
def=

1
V > 0 , (3.129)

where V is defined by (3.121), in terms of P:

1
V =

∫ E

E0

1
νλ

dλ , νλ =
c2

h
Pλ.

From here, by differentiating and using (3.159), one gets

dT
dλ

=
1
νλ

> 0 ; (3.130)

Thus, together with I and V , also T is admissible along �+: this is an absolute
temporal parameter which, differently than the proper time, is meaningful also
for photons. To it one can refer all the fundamental quantities for the unified
particles, starting from the frequency V , or the equivalent mass M = hV/c2
which, in terms of T , have the following expressions:

V =
1
T
, M =

h

c2T
, (3.131)

with
P = MV , V =

dE
dT

. (3.132)

Hence, the absolute dynamics of unified particles is summarized by the follow-
ing set of equations, similar to the canonical ones (3.126):

M
dE
dT

= P ,
dP
dT

= KT , ||P|| ≤ 0 , (3.133)

where M is now a known function of T . The limitation ||P|| ≤ 0 ensures that
the world line of the particle is timelike or lightlike.

Finally, as concerns the relations with the proper mass m0 and the proper
time τ of the material particles, from (3.132), we have MV = m0V, so that:

MV = cm0 ,
d
dτ

=
c

V
d

dT
. (3.134)

3.16 Unified Relative Dynamics of Particles

Differently from m0 (absolute quantity), the concept of relative mass m can
be introduced also in the unified scheme in any Galilean frame, that is also
for photons (corpuscular theory of light). In fact, if a Galilean frame is fixed,
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Sg(γ), and the �+ is parametrized by the coordinate time of the frame λ = t,
(3.109), using also (3.118), becomes

P = P t dE
dt

=
hν

c2
(v + cγ) ,

with ν the relative frequency of the particle (luminal or material) and v its
relative velocity. Thus, in Sg, also for a photon, the ordinary decomposition
(3.38) holds

P = p +
E
c
γ , p = mv , (3.135)

with the relative frequency or mass:

m = P t =
dt
dI

=
hν

c2
, (3.136)

together with the relative material energy, given by

E = mc2 = hν . (3.137)

We notice that the component P t = dt/dλ has either the meaning of relative
mass or that or relative frequency, and both these quantities are well defined
for the unified particles.

Equation (3.137) shows that the energy of a photon is proportional to its
relative frequency. Moreover, from (3.119), which gives the variation of the
frequency, with respect to that of the parameter along �+, one gets the vari-
ation law of the frequency (and hence of the energy and of the mass) in the
ambit of the Galilean frames. In fact, using λ = t and λ = t′, respectively, it
follows: ν′ = νdt′/dt, i.e. using (2.102):

ν′ = ν
1− u · v√
1− u2/c2

, (3.138)

in agreement with (3.53). Equation (3.138) defines the transversal Doppler
effect.

As concerns the relative dynamics of particles, in the unified scheme, it is
clear that, once fixed a Galilean frame, and using the associated time coordi-
nate t, it is enough to put λ = t in (3.124), obtaining

Ṗ = Kt(t, E, P ) , ( ). =
d
dt

. (3.139)

From here, the relative equations of motion, using either (3.135), as well as
the decomposition of Kt along γ and onto Σ:

Kt = F +
W
c
γ . (3.140)

More precisely, (3.139), as for the case of material particles, splits into the
two Newtonian equations:
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ṗ = F , Ė =W , (3.141)

where the total power is given by

W = F · v + q , (3.142)

which defines the relative thermal power q, in terms ofW and F. Equivalently,
as in (3.43), q is also given by:

q = −Kt ·
dE
dt

∼ q =
(

dI
dt

)2

q̂ ; (3.143)

in fact, from (3.140) it follows:

Kt ·
dE
dt

=
(
F +

W
c
γ

)
· (v + cγ) = F · v −W .

Thus, also in their generalized form (to include material particles and pho-
tons), the fundamental equations (3.141) are invariant with respect to the
choice of the Galilean frame; the invariance being formal and not substantial
because of the relative meaning of the involved quantities. In particular, as
(3.119) gave the variation law for the frequency (3.138) (and hence for the
energy and the mass), (3.125), for λ = t and λ = t′, gives the transformation
laws for the mechanical force F and the power W . In fact we have

F′ +
W ′

c
γ ′ =

α

σ

(
F +

W
c
γ

)
(3.144)

from which, using the standard procedure, one gets again (3.58) and (3.59):
⎧⎪⎪⎨
⎪⎪⎩
W ′ =

1
σ

(W − F · u),

F′ =
1
σ

[
αF +

1
c2

(
F · u
1 + α

−W
)

u
]
.

(3.145)

Finally, from (3.142) and (3.143), we have the variation law of the thermal
power:

q′ =
(α
σ

)2

q , (3.146)

already found in the case of material particles. Equation (3.146) again gives,
also for photons, the intrinsic meaning of the condition q = 0 (absence of
thermal actions). In fact, (3.141) can be written in the form: q = −K̂·P/(P t)2,
that is

q = q̂/m2 , q̂ = −K̂ ·P , (3.147)

where q̂ is the scalar invariant defined in (3.128) which, in the unified scheme,
corresponds to the proper thermal power q0. However, the condition q̂ = 0
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which for material particles is equivalent to the invariability of the proper
mass m0, in the unified scheme, according to (3.126)3, corresponds to the
conservation of the norm of P:

||P|| = const. = ||P0|| ≤ 0 . (3.148)

Because for a material particle we have ||P|| = −m2
0c

2, (3.148) shows that
photons behave like particles without internal structure and with proper
mass m0 = 0. This is but only qualitative because for photons the notion
of proper mass, as that of proper rest frame, have no meaning. We notice that
(3.148), taking into account the definition of the characteristic function I(λ)
and (3.126)1, implies that

||λ|| = ||P||
(

dI
dλ

)2

, (3.149)

or, in relative terms to Sg:

v2 − c2 = ||P||
(

dI
dλ

)2

; (3.150)

in particular, for material particles, from (3.114) and (3.136) we have

dt
dI

= m =
hν

c2
, (3.151)

so that (3.149) assumes the ordinary form: m = m0/
√

1− v2/c2.
Finally, it is worth to mention that, in the unified scheme, the dynamical

source Kλ, satisfying the invariance property (3.125): Kλdλ = Kλ′dλ′ =inv.
cannot be given, a priori, through the law Kλ = Kλ(λ,E,P); in fact, the
considered scheme is not free, but constrained by the condition (3.108):

||P|| ≤ 0 .

Thus, it has partially the meaning of reaction to the constraint, a property
which is also inherited by F and q. This is specially true for the particles
on the border (photons), where the constraint becomes bilateral, and from
(3.135) implies p2 = E2/c2, or v = c.

3.17 An Alternative to the Unified Dynamics

In unified dynamics too one can consider a formulation similar to (3.81).
First of all, (3.141) can be summarized by the following scalar relations, in
the variables xi, pi and m = E/c2:

ẋi =
1
m
δikpk, ṗi = Fi(t, x, p,m) , ṁ =

1
c2
W (t, x, p,m) , (3.152)
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with the constraint ||P|| ≤ 0, that is, from (3.135):

p2 −m2c2 ≤ 0 ∼ v2 ≤ c2 ; (3.153)

we see that such constraint does not represent a limitation for the relative
trajectory but only for the motion law. However, as in the ordinary case, the
constraint ||P|| ≤ 0 can be included in the dynamical equations, by using as a
parameter ||P|| in place of m or E :

||P|| = m̂2c2 . (3.154)

One finds
p2 −m2c2 = m̂2c2 , (3.155)

from which the value of m follows, having in addition the meaning of fre-
quency: m = hν/c2, i.e.

m =

√
m̂2 +

p2

c2
. (3.156)

We notice that, at least for the material particles, m̂ has the meaning of proper
mass, and it vanishes for photons; vice versa, the relative mass m is always
positive because for photons, one has v = c �= 0.

By differentiating (3.155), one gets

ṁ =
1

2m
[(m̂2). + 2p · ṗ/c2] ,

which maps system (3.151) in its equivalent form:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi =
δikpk√

m̂2 + p2/c2
, ṗi = Fi(t, x, p, m̂2),

(m̂2). =
2
c2

√
m̂2 + p2/c2 q(t, x, p, m̂2).

(3.157)

We easily recognize that the variables are changed and, in place of m, appears
the absolute parameter m̂2; however, the differential system is still of the first
order with mechanical and thermal sources given, separately, by Fi and q.

However, system (3.156) includes the constraint ||P|| ≤ 0; in fact, from
(3.156)1, it follows that

(m̂2 + p2/c2)v2 = p2 ∼ m̂2v2 = (1− v2/c2)p2 ,

that is the restriction v2 ≤ c2, for all the solutions of the system. System
(3.156), as the analogous (3.151), represents the relative dynamics of unified
particles, and the parameter m̂ discriminates between material particles and
photons. For the latter case, one has m̂ = 0 and q = 0 and the system (3.156)
reduces to
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ẋi = cδikpk/p, ṗi = Fi(t, x, p) , (3.158)

which implies v = c. It is then clear the role played by the covariant vector pi,
which, with the direction, gives rise to the velocity vi along the ray (relative
trajectory of the photon), while with its norm gives the energy carried by the
elementary surface, orthogonal to it, as from (3.155):

p2 = m2c2 . (3.159)

Differently, from (3.154), one finds p2 = (m2 − m̂2)c2, and the velocity along
the ray is determined by pi and m̂.
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4

Applications

4.1 Principal Tetrad for Nonnull Curves in M4

One of the most interesting aspects of the mathematical methodology is that
of generalizing to any space a result introduced and verified in a particular
framework. Such a stimulating procedure can be interpreted as the necessity
of making universal certain concepts, eliminating eventual limits due to the
framework where they have been first introduced.

In relativity, this happens very often; results and geometrical quantities,
typical of the classical apparatus, are redefined in a completely different frame-
work (for dimension and geometry), like the Minkowski space M4.

In a strictly geometrical ambit, a typical example of such extension is given
by the so-called Frenet–Serret formulas, fundamental for the intrinsic clas-
sification of curves in M4. The extension is not difficult, when the curve is
timelike (or spacelike): a well-determined tetrad corresponds, locally, to the
principal triad of the ordinary case; actually, to the ordinary curvature and
torsion correspond generically three “curvatures”. Differently, the extension
for lightlike curves, i.e. tangent to the lightcone, is not so simple. In this case,
in fact, it is necessary to introduce quasi-orthonormal bases, or more generally,
anholonomic bases, which are first attached to the curve and then, more and
more specialized, in order to be intimately related to the curve itself.

We will discuss here the nondegenerate case only. Without any loss of gen-
erality, let us consider a timelike and future-oriented curve �+ representing
the world line of a material (or exotic) particle.

Let us recall that, in M4, an orthonormal frame is defined by an event Ω,
taken as the origin, a timelike axis x0 and three mutually orthogonal spatial
axes xi (i = 1, 2, 3); all of them characterized by the unit vectors cα (α =
0, 1, 2, 3). A world line, in M4, can be defined by the parametric equations
xα = xα(λ) (α = 0, 1, 2, 3), with λ a generic parameter. If the world line is
not lightlike, i.e.

mαβ
dxα

dλ
dxβ

dλ
�= 0 , (4.1)

G. Ferrarese and D. Bini: Applications, Lect. Notes Phys. 727, 147–167 (2008)
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as it is the case for �+ (timelike and future-oriented), one can consider a special
parameter s (curvilinear abscissa) invariant with respect to the choice of xα:

s = s0 +
∫ λ

λ0

√
−mαβ

dxα

dλ
dxβ

dλ
dλ ; (4.2)

the minus sign is necessary for timelike curves. Thus, assuming such a param-
eter, one has

xα = xα(s) (α = 0, 1, 2, 3) ; (4.3)

i.e., using a shorten notation:

ΩE = ΩE(s) , (4.4)

so, with a prime, we will denote differentiation with respect to s. As in the or-
dinary case, at each E ∈ �+, the unit tangent vector T and its first derivative,
i.e. the curvature vector C, have a direct meaning:

T def=
dΩE
ds

, C def=
dT
ds

; (4.5)

the curvature vector C, in turn, gives rise to the unit vector N (principal
normal of the curve), as well as to the geodesic curvature C > 0 (we will not
consider here the case of a straight line: T = const.):

C = CN . (4.6)

The 2-plane, in E, containing the tangent vector and the principal normal,
is still called osculating plane.

Let us consider, now, the hyperplane Π, defined by T and its first and
second derivatives:

Π =< T,T′,T′′ > ; (4.7)

We assume �+ regular enough and generic, in the sense that the vectors T,
T′ and T′′ are linearly independent. Furthermore, let us assume that either
M4 or the hyperplane Π is (independently) oriented, so that a convenient
notation is M+

4 or Π+, respectively. It is possible, then, to consider a unit
vector B, uniquely defined by the following three conditions:

1. B is orthogonal to both T and N;
2. B ∈ Π;
3. the triad (T,N,B) is congruent to Π+, say left-handed.

Finally, let D be the unit normal to Π, oriented so that the tetrad
(T,N,B,D) is coherent with the orientation of M4. In this way, the four
vectors (T,N,B,D) uniquely define a basis, dependent only on the point E
and the curve �+, called the principal tetrad of the curve �+ in E. The two vec-
tors B and D define, in E, two half lines: the binormal and the threenormal,
respectively. The hyperplane Πn, spanned by N, B and D:
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Πn =< N,B,D > , (4.8)

is normal to T, and then elliptic.
Our purpose is now that of deriving the expressions for the vectors N, B

and D, in order to obtain in M4 the analogous of the ordinary Frenet formulas.

4.2 Frenet–Serret Formalism

In the ordinary three-dimensional case, the Frenet–Serret formulas give, in
intrinsic way, the derivatives (with respect to the curvilinear abscissa) of the
vectors of the principal triad: t, n and b, in terms of the same triad. Similarly,
for a curve in �+ ∈M4, endowed with a principal tetrad, one can evaluate the
first derivatives of the corresponding vectors: T′, N′, etc.

The vector B, in turn, being contained in Π, can be expressed as

B = λT + μT′ + νT′′ ; (4.9)

so that, using the relation T′ = CN and its first derivative,

T′′ = C′N + CN′ , (4.10)

one gets the following expression for B:

B = λT + (μC + νC′)N + νCN′ .

From this relation, using the orthogonality of B and N, it follows:

μC + νC′ = 0 ; (4.11)

hence, B should be represented as

B = λT + νCN′ , (4.12)

that is N′ belongs to the plane spanned by T and B; moreover, scalar mul-
tiplication of (4.12) by T gives 0 = −λ − νCN · T′ = −λ − νC2, that is:
λ = −νC2. Thus, assuming C �= 0, both λ and μ can be expressed in terms
of the curvature C and the parameter ν:

λ = −νC2 , μ = −νC
′

C
; (4.13)

then, (4.12) becomes
N′ = CT + τB , (4.14)

where τ represents the first torsion of the curve:

τ =
1
νC

. (4.15)
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Equation (4.14) gives the derivative of N and, apart from the signs, is similar
to the classical formula. As concerns the derivative of B, because of (4.5)2
and (4.14), we have

B′ ·T = −B ·T′ = 0 , B′ ·N = −B ·N′ = −τ ;

thus, defining
β = B′ ·D = −B ·D′ , (4.16)

we obtain
B′ = −τN + βD . (4.17)

Finally, passing to D′, we have

D′ ·T = −D ·T′ = 0 , D′ ·N = −D ·N′ = 0 ,

so that
D′ = −βB . (4.18)

The Frenet–Serret formulas (see [1], pp. 8–12), then follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T′ = CN , C > 0 ,

N′ = CT + τB ,

B′ = −τN + βD ,

D′ = −βB .

(4.19)

4.3 Curvature and Torsions

The scalar quantities C, τ and β are fundamental in the study of curves in
M4 because (exactly like c and τ in the ordinary case) they allow an intrinsic
characterization of the curve itself, up to a Lorentz transformation. In fact
(4.19), completed with ΩE′ = T, form a well-determined first-order linear
system in the unknown E, T, N, B and D.

From this point of view, (4.19) play an important role also in the absolute
dynamic, giving the intrinsic equations of the motion, particularly important
in the presence of constraints (for example, when �+ belongs to a given hy-
persurface in M4, etc.). In any case, how can one express the curvature and
torsions of �+, starting from the parametric equations (4.3) of the curve, and
what is their geometrical meaning?

Let us notice, first of all, that the scalars C, τ and β do not depend on the
orientation of the curve. In fact, changing the sign of the curvilinear abscissa,
the vector T changes sign but T′ = C remains unchanged, and with this,
both C and N are invariant because of (4.6). Analogously, B too changes sign
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but B′ remains unchanged. D, instead, does not change: this implies, using
(4.19)3, the invariance of τ and β.

From (4.19)1, being T′ spacelike (because it is orthogonal to T), one gets
immediately

C =
√
||T′|| =

√
mαβ

d2xα

ds2
d2xβ

ds2
. (4.20)

As concerns τ , one can use (4.19)2, taking into account that N, and hence
N′, is determined by differentiating (4.19)1:

N′ =
1
C

T′′ − C′

C2
T′ . (4.21)

In fact, using the property ||T|| = −1 and (4.19)2, it follows:

τ = ±
√
| ||N′||+ C2| , (4.22)

where ||N′|| can be derived from (4.21):

||N′|| = 1
C2
||T′′||+ C′2

C4
||T′|| − 2

C′

C3
T′ ·T′′ ,

and thus, being

T′ ·T′′ =
1
2
(T′ ·T′)′ = CC′ ,

one gets the result

||N′|| = 1
C2

(
mαβ

d3xα

ds3
d3xβ

ds3
− C′2

)
. (4.23)

In this way, we have already determined C, τ and N′; thus, from (4.19)2
follows B:

B =
1
τ

(N′ − CT) =
1
τ

(
1
C

T′′ − C′

C2
T′ − CT

)
; (4.24)

finally (4.19)3 specifies either β or D:

β = ±
√
| ||B|| − τ2|; D =

1
β

(
B′ + τN

)
. (4.25)

Let us pass now to discuss the geometrical meaning of the curvatures.
Clearly, for C and τ , we can repeat all that has been said in the ordinary
case (see [2], pp. 30–34): C > 0 measures the displacement of the curve �+

from the rectilinear behaviour (C is said the geodesic curvature); differently
from C, τ can assume both signs: it measures the variation of the osculating
plane, i.e. the displacement of the curve from the plane behaviour. In fact,
if τ = 0, from (4.19)2, one has N′ = CT, so that (4.19)1 implies that T′′

belongs to the osculating plane.
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Also β can assume both signs; however, its absolute value has a meaning
which can be obtained by proceeding in an analogous way as in the ordinary
case, for curvature and torsion, namely

|β| = lim
Δs→0

φ

|Δs| , (4.26)

where φ is the angle between the two hyperplanes Π and Π′, corresponding
to the values s and s′ = s + Δs of the curvilinear abscissa; that is, φ is the
angle between D and D′, both spacelike:

cosφ = D ·D′ . (4.27)

As for the ordinary torsion, the sign of β has a precise geometrical meaning. In
fact, let us evaluate the signed distance δ(E,E′) of the generic point E′ ∈ �+
from the hyperplane Π(E). We will assume such a distance as positive or
negative, corresponding to E′ placed, with respect to Π(E), in the same side
of (E,D) or in the opposite side, that is,

δ = EE′ ·D . (4.28)

The distance δ is a quantity of the fourth order in (s′ − s), so that to be
evaluated it is necessary to expand EE′ up to the fourth order:

EE′ = TΔs+
1
2
T′(Δs)2 +

1
3!

T′′(Δs)3 +
1
4!

T′′′(Δs)4 + ε5 ,

where ε5 is the rest in the Taylor series. From (4.19), one has T′ = CN,
T′′ = C′N+C(CT + τB) and T′′′ = 3CC′T+ (C3 −Cτ2 +C′′)N+ (2τC′ +
Cτ ′)B + CτβD; thus, substituting in the previous expression, leads to

EE′ = TΔs+
1
2
CN(Δs)2 +

1
3!

(CT + C′N + CτB)(Δs)3

+
1
4!

[3CC′T + (C3 − Cτ2 + C′′)N

+(2C′τ + Cτ ′)B + CτβD](Δs)4 + ε5 . (4.29)

Then, scalar multiplication by D gives

δ =
1
4!
Cτβ(Δs)4 + ε5 ·D , (4.30)

so that from (4.30) we have

β =
4!
Cτ

lim
Δs→0

δ

(Δs)4
. (4.31)

Thus, in a neighbourhood of the point E ∈ �+, the sign of δ is invariant
(positive or negative, according to the sign of τβ); that is, the curve is all
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placed from one side, with respect to the osculating hyperplane Π(E), and
more precisely, it stands where ±D is placed, if τβ > 0 or τβ < 0, respectively.

The principal tetrad, as well as the Frenet–Serret formulas (4.19), are no
longer valid when the curve �+ is lightlike because the concept of curvilinear
abscissa is lost in this case. Thus, as for the case of the photon dynamics,
one must use a generic parameter, and the tangent vector to the null curve is
defined up to a multiplicative factor. The intrinsic characterization of a null
curve, that is the analogous quantities of C, τ , β, can be obtained using a
quasi-orthogonal basis, eα. The latter (in general anholonomic) are built up
by considering, for the generic point E ∈ �+, a pair of orthogonal 2-planes: Π
and Π′; the first, for instance, hyperbolic (and containing the tangent vector
of the null curve �+) and the second elliptic. Among the infinite adapted basis
to the 2-planes, i.e. characterized by

e0,2 ∈ Π , e1,3 ∈ Π′ , (4.32)

recalling that Π (hyperbolic) contains two null straight lines, it is meaningful
to consider those having:

1. e0,2 are null vectors, satisfying the normalization condition e0 · e2 = 1;
2. e1,3 are spacelike orthonormal vectors.

It results in

eα · eβ =

⎛
⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎠ = δα{2−β} , (4.33)

where the symbol {2− β} denotes 2 − β modulus 4. The bases like {eα} are
not orthonormal: in fact, they contain two null vectors (e0 and e2) and are
termed quasi-orthonormal (see e.g. [3]). In the structure (Π,Π′), the vectors
e0,2 are defined each up to a multiplicative factor, while e1,3 can be arbitrarily
rotated in the 2-plane Π′; a set of equivalent tetrads {eα} arises, to which one
must add the possibility to select the pair of hyperplanes Π and Π′. By using
the Cartan method of the repére mobile [4, 5], one recognizes that

1. along any null curve parametrized by an arbitrary parameter t, i.e. with
equations xα(t), one has two local invariants1: I(t) and J(t), built up
with the derivatives of xα(t) (up to the third and fourth order, respec-
tively), and the Kronecker tensor; they are independent on the choice of
the coordinates and, as concerns the dependence on the parameter t, the
differential forms: Idt and Jdt are invariant too.
Thus, one can introduce, on the curve, an absolute parameter σ (dσ = Idt),
analogous to the curvilinear abscissa;

1 For a nonnull curve, these invariants are four: one corresponding to the curvilinear
abscissa and the three others related to the curvatures: C, τ and β.
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2. in each point of the curve, there exists a special quasi-orthogonal tetrad:
{eα} def= (T,N,B,D), such that, by adopting the parameter σ, it satisfies
the conditions analogous to the Frenet–Serret formulas (4.19):

{
d OE
dσ = T , dT

dσ = N , dN
dσ = τT −B,

dB
dσ = βD− τN, dD

dσ = −βT (4.34)

One recognizes immediately that the curvatures are, now, no more three,
but only two: τ and β (the first curvature: C, is unitary); however, being T
and B null vectors, in order to determine τ and β, one only needs (4.34)4,
which gives the ordinary relation:

(
dB
dσ

)2

= τ2 + β2 . (4.35)

The latter is an equation for τ because β, in turn, is determined by the
invariant J above mentioned, that is:

|β| =
(

dJ
dσ

)10

. (4.36)

Further details can be found in [5].

4.4 Intrinsic Equations

The Frenet–Serret formulas (4.19) can be conveniently used to discuss absolute
properties of the motion, especially in the presence of constraints when, for
very special external fields, it is possible to distinguish between the geometrical
properties from the kinematical ones. As an example, let us consider the case
of a massive particle, with proper mass m0 > 0, in the (purely positional)
external field:

K = K(E) . (4.37)

The absolute equation
dP
dτ

= K(E) , (4.38)

taking into account the expression of the momentum: P = m0V, becomes

dm0

dτ
V +m0A = K(E) , (4.39)

where, because of the relation s = cτ+const., between the curvilinear abscissa
and the proper time, we have

V = cT , A = c2C . (4.40)
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Projecting on the principal tetrad, K can be decomposed as

K = KTT +KNN +KBB +KDD , (4.41)

and the intrinsic equations of motion become

dm0

ds
=

1
c2
KT , m0C =

1
c2
KN , KB = 0 , KD = 0 . (4.42)

Relations (4.42) are not equivalent to the original ones (4.38) because the
chosen basis is itself unknown. However, (4.42)3,4 play a role similar to (4.42)2,
in the sense that, as the last equations give C, they express the torsions τ and
β in purely geometrical terms. In fact, by differentiating with respect to s and
using (4.19)3,4, one gets

dK
ds
·B− τKN = 0 ,

dK
ds
·D = 0 , (4.43)

so that another differentiation gives

d2K
ds2

·D− β dK
ds
·B = 0 , (4.44)

where we have assumed the following:

dK
ds

= Tα ∂

∂xα
K ,

d2K
ds2

= TαT β ∂2

∂xα∂xβ
K + CNα ∂

∂xα
K . (4.45)

Therefore, once the force law (4.37) was assigned, (4.42)2, (4.43)1 and (4.44)
give the expression of the three curvatures of �+: C, τ , β as functions of m0,
T, N, B, D. In this sense, system (4.19), completed with (4.42)1 and the
additional equation dΩE/ds = T, can be solved, allowing the determination
of the world line �+ as well as the proper mass m0, once initial conditions
were fixed.

The problem is simplified if the external field K is constant; then, from
(4.43)1, it follows τ = 0, so that �+ is flat, which is also derived directly from
(4.38): P = m0V = Kτ + P0.

Finally, as concerns the intrinsic equations of the relative motions with re-
spect to a given Galilean frame, we recall that the following fundamental re-
lations hold

d
dt

(mv) = F , m =
m0√

1− v2/c2
. (4.46)

From this, at least in the case of particles without internal structure, m0 =
const., we have the following equation:

mt
v · a
c2

v +mna = F , (4.47)
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where mt and mn are defined by

mt =
m0

(1− v2/c2)3/2
, mn =

m0

(1− v2/c2)1/2
, (4.48)

and represent the longitudinal and transversal mass, respectively. The latter
denomination comes from the intrinsic form of (4.47). In fact, decomposing v
and a along t and n, respectively (tangent and principal normal unit vectors),
and introducing the curvature radius r(s), (4.47) becomes

mts̈ t +mn
ṡ2

r
n = F , (4.49)

and gives to mt and mn the meaning of inertial mass along the tangent and
the principal normal, respectively. As in the classical case, the force F belongs
to the osculating plane, so that, projecting on the principal triad, one gets
the intrinsic equations:

mt s̈ = Ft , mn
ṡ2

r
= Fn , 0 = Fb . (4.50)

Equations (4.50) are especially useful in the case of a fast particle, constrained
(in a given Galilean frame) onto a fixed curve or surface; however, similarly
to what happens for the absolute formulation, they are also useful for a free
test particle. In this case, in fact, if the force F does not depend explicitly
on the time: F = F(P,v), (4.50), combined with the Frenet–Serret formulas,
reduce the kinematical problem to a pure geometric one (the determination of
the motion law, being sub-ordered to the resolution of a first-order differential
equation for s).

4.5 Conservative Lorentz-like Forces

Let us consider now, in the special relativistic ambit, a class of Lorentz-like
forces, i.e.

Kα = FαβV
β (α = 0, 1, 2, 3) , (4.51)

being Fαβ an antisymmetric tensor of rank 2: Fαβ = −Fβα. These 4-forces
are of mechanical type: K ·V = KαV

α = 0, and exclude any possible thermal
action: q0 = 0; therefore, they imply the conservation of the proper mass of
the particle, m0.

Let us also assume that the tensor Fαβ admits a potential, i.e. there exists
a regular vectorial field φ(E), such that

Fαβ = ∂αφβ − ∂βφα . (4.52)

If φ is not lightlike (a case excluded here), we can decompose it in its modulus
and direction: φα = φγα, that is
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φ = φ(E)γ(E) , ||γ|| = ±1 ; (4.53)

it follows
Fαβ = φ(∂αγβ − ∂βγα) + ∂αφγβ − ∂βφγα , (4.54)

and we have

Kα = φ(∂αγβ − ∂βγα)V β + ∂αφ(γ ·V)− dφ
dτ
γα

(
d
dτ

= V α∂α

)
. (4.55)

In particular, let γ be uniform and timelike:

γ = const., ||γ|| = −1 , (4.56)

so that it represents a Galilean frame Sg. In this case, (4.55) simplifies to the
following (intrinsic) form:

K = (γ ·V)Gradφ , Gradφ ≡ ∂αφ−
dφ
dτ
γ . (4.57)

We notice that the force field K now depends on E (through φ) and V (and
also from γ); it is intrinsically conservative if and only if φ = constant, and
in such a case, one has trivially K = 0.

Let us examine, now, the mechanical force F, relative to the reference frame
associated with γ (Sg), introducing in M4—without any loss of generality—
Cartesian coordinates with γ = c0, and the other three spatial axis belonging
to the 3-space Σ, orthogonal to γ (i.e. coordinates adapted to Sg). We have
then γ0 = 1, γi = 0, γ0 = −1, γi = 0 and, from (4.57),

K = V0 Gradφ− dφ
dτ
γ , V0 = −cη . (4.58)

Thus, in Sg, the relative force, F = KΣ/η associated with K, is given by

F = −c gradφ , gradφ ≡ ∂iφ ; (4.59)

it comes from a potential φ(E), depending on the space-time coordinates and
hence, on the time coordinate of Sg too; therefore, F is not conservative in
general, neither in the preferred frame Sg. It becomes conservative in Sg if
and only if φ(E) does not depend on t; in this case, which will be considered
in detail below, we have

F = gradU , U = −c φ(x1, x2, x3) −→ W = F · v = U̇ . (4.60)

It is evident that the conservativity of the force F (and also the more general
condition (4.59)) is strictly related to Sg, at least for the following two reasons:

1. passing from Sg to another frame S′
g the (Lorentz) transformation formu-

las of the coordinates involve the time too;
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2. in the dynamical problem relative to S′
g, the physical action (4.60), even

if it remains of mechanical type, is represented by a more general force
F′, as given by (3.60):

F′ =
1
σ

[
αF− 1

c2
F ·
(
v − u

1 + α

)
u
]
, (4.61)

also depending on the velocity.

4.6 Central Forces in a Galilean Frame

In the context of the forces like (4.60), even if confined to a well-determined
Galilean frame Sg, the central ones are characterized by the condition of being
directed towards a fixed point O ∈ Sg, and with intensity only depending on
the distance of the point P from O: ρ = |OP|. In this case, one has φ = φ(ρ),
so that

Fi = ∂iU =
∂U

∂ρ

xi − xi
O

ρ
,

or, in terms of intrinsic quantities of the Galilean frame Sg:

F =
∂U(ρ)
∂ρ

OP
ρ

, ρ =
√
δik(xi − xi

O)(xk − xk
O) . (4.62)

Such a force will be attractive (repulsive) if ∂U/∂ρ is negative (positive).
Moreover, the equation of motion,

d
dt

(mv) = F , (4.63)

implies the existence of the energy integral: E − U = H = const., that is:

mc2 − U(ρ) = H, m =
m0√

1− v2/c2
(m0, H = const.) ; (4.64)

it follows that, once the total energy H is fixed, the accessible region for the
motion is determined by H + U(ρ) > 0.

In a relativistic context too, the typical property of central motions survives,
that is the trajectory is planar and the area integral exists. In fact, by taking
the vector product by OP of (4.63), and using (4.62), one finds

OP× d
dt

(mv) =
d
dt

(OP×mv) = 0 ,

so that a first integral of the angular momentum follows:

OP×mv = m0k , (4.65)

with k a constant vector:
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m0k = OP0 × (mv)0 . (4.66)

If k = 0 (that is OP0 parallel to v0 or, in particular, P0 ≡ O or v0 = 0), the
motion is necessarily a straight line passing through O, and the law of motion
is given by (4.63), projected on the radius OP. In fact, assuming

F = F (ρ)u , F (ρ) =
dU
dρ

, u = vers OP ,

and making explicit the dependence of m from the velocity, given by (4.64)2,
from (4.63) one gets the following scalar equation:

m0ρ̈

(1 − ρ̇2/c2)3/2
=

dU
dρ

; (4.67)

this equation can be, obviously, also obtained by using the energy integral
(4.64)1.

If k �= 0 (general case), from (4.65) it follows that the vector OP is always
orthogonal to k, and thus the motion is planar (determined by the initial
values P0 and v0), passing through the centre of the force O. Introducing in
this plane a system of polar coordinates (ρ, θ), with origin in O, and assuming
c3 aligned with k, one gets the area first integral:

mρ2θ̇ = m0k , k = kc3 ; (4.68)

in particular, it follows that θ, as a function of the time, increases monotoni-
cally, so that the particle will be never at rest. By eliminating m, using (4.64)1
and (4.68), one gets

θ̇ =
kE0

ρ2[H + U(ρ)]
, (4.69)

where E0 = m0c
2 is the proper energy. Thus, once the trajectory ρ = ρ(θ) is

known, the law of motion θ = θ(t) follows by quadratures.
In this way, independently on the specification of the potential U(ρ), the

dynamical problem is reduced to the determination of the (planar) trajectory
only. It is then convenient to use the first integrals (4.64)1 and (4.69), in place
of the motion (4.63). From the expression of the velocity in polar coordinates,

v2 = ρ2θ̇2 + ρ̇2 = (ρ2 + ρ′2)θ̇2 , ρ′ =
dρ
dθ

,

and using the condition (4.69), the square of the velocity follows:

v2 = (ρ2 + ρ′2)
k2E2

0

ρ4[H + U(ρ)]2
; (4.70)

thus, (4.64)1 becomes

E0
H + U(ρ)

=

√
1− k2

c2
E2
0

ρ2 + ρ′2

ρ4[H + U(ρ)]2
,
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or

E0 =

√√√√[H + U(ρ)]2 − k2

c2
E2
0

[(
1
ρ

)2

+
(

1
ρ

)′2
]
. (4.71)

One finds, then, the resolvent equation of the trajectory; in fact, introducing
the new variable, ξ = 1/ρ, and squaring both sides of (4.71), one finds

ξ′2 + ξ2 − c2

k2E2
0

[H + U(ξ)]2 +
c2

k2
= 0 . (4.72)

From here, by differentiating with respect to θ, one gets the second-order
differential equation of the dynamical trajectories:

ξ′′ + ξ − c2

k2E2
0

[H + U(ξ)]U ′(ξ) = 0 , (4.73)

which contains the circular trajectories ξ = const.

4.7 The Keplerian Case

Let us assume now that the potential U be of Newtonian type, i.e. with the
field proportional to the proper mass of the particle,

U = f
m0M0

ρ
= fm0M0ξ , (4.74)

where f denotes the Newtonian gravitational constant. Thus m0, together
with its inertial meaning has also a gravitational significance: the hypothesis,
less natural, of proportionality to the relative mass gives a different dynamical
problem. Equation (4.74) describes, in a relativistic framework, a central grav-
itational field of Newtonian type (that is instantaneous), due to an isolated
central body (the Sun, for example). In the hypothesis (4.74), the equation of
the trajectories (4.73) becomes the classic one:

ξ′′ + ω2ξ =
ω2

p
, (4.75)

where

ω2 def= 1−
(
fM0

k c

)2

,
1
p

def=
fHM0

k2E0 ω2
, (4.76)

with the condition

1−
(
fM0

kc

)2

> 0 . (4.77)
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The solution of (4.75) can be written in the form:

ξ = A cos (ωθ + α) +
1
p
, (4.78)

where, because of the arbitrariness of α, the constant A can be assumed
positive; moreover, the constant H of the total energy, given in (4.64)1, can
also be assumed positive because of the presence of the term mc2, in general
bigger than U :

H =
E0√

1− v2
0/c

2
− U(ρ0) > 0 . (4.79)

By introducing the notation A def= e/p, it follows from (4.78) that

ρ =
p

1 + e cos (ωθ + α)
, (4.80)

where e ≥ 0 and α ∈ [0, 2π) are constant, which are determined from the
initial conditions. Finally, assuming θ having its zero value along the line
joining O with the perihelium, it is α = 0, and (4.80) reduces to

ρ =
p

1 + e cos ωθ
. (4.81)

This equation does not represent a conic because ω �= 1, and the orbit can
be limited or not, according to the value of e: limited for e < 1, unlimited for
e ≥ 1. This circumstance is strictly related to the value of the total energy H ,
which we will write in the form:

H = E + E0 , (4.82)

in analogy with the classical two bodies problem. Thus, (4.73) becomes

(ξ′)2 + ω2ξ2 − 2
ω2

p
ξ =

c2

k2

(
H2

E2
0

− 1
)

=
E

m0k2

(
2 +

E

E0

)
,

and, by using (4.81), one gets

ω2

p2
(e2 − 1) =

E

m0k2

(
2 +

E

E0

)
. (4.83)

Moreover, using (4.82), (4.76)2 becomes

1
p

=
fM0

k2ω2

(
1 +

E

E0

)
, (4.84)

so that (4.83) is equivalent to

fm0M0

p
(e2 − 1) = E

(
1 +

1
1 + E/E0

)
, (4.85)
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or, introducing H and using (4.84) and (4.76)1:

1− ω2

ω2
(e2 − 1) = 1− E

2
0

E2
. (4.86)

Therefore, one has a criterion to discriminate among the orbits, by means of
the “eccentricity” e, and the energy constant H > 0, taking into account that
1− ω2 > 0: ⎧⎨

⎩
e < 1 when H < E0 (−E0 < E < 0)
e = 1 when H = E0 (E = 0)
e > 1 when H > E0 (E > 0) .

(4.87)

Summarizing, if e < 1, (4.81) represents a curve bounded between the two
circles, with centre O and radii r = 1/(1 + e) and R = 1/(1− e), respectively
(in particular, if e = 0, i.e. H = ωE0, one has exactly a circle). Moreover, when
the orbit intersects one of these circles, at the intersection point, one has ξ′ = 0
(maximum or minimum distance from the centre O), that is, using (4.69):

ρ̇ ≡ ρ′θ̇ = − kE0ξ′
H + U(ξ)

= 0 ;

as a consequence, the velocity is transversal, and the trajectory is tangent to
the same circle.

Moreover, the advance of the perihelium, after two successive loops, is not
2π (as it would be for an elliptic orbit), but 2π/ω > 2π (being ω < 1), and the
trajectory has the typical form of a rosette (see Fig. 4.1). If ω is rational, then
the orbit is closed; in the opposite case, the trajectory is dense in the corona
bounded by the two circles. This is a result of Minkowskian gravity, which finds
its complete confirmation in general relativity in the relative formulation of
the so-called exterior Schwarzschild problem, where we have the precession
of the perihelium, for every freely gravitation particle. There, however, the
trajectory equation is different because of the presence of a term like ξ3 (see
[6], p. 260). In the limit c → ∞, one finds the classical case (see [2], p. 304,
with M = M0 and m∗ = m = m0).

R

Δθ r

Fig. 4.1. Rosetta-like motion
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4.8 Motion of Charged Particles
in a Uniform Magnetic Field

Let us now consider another fundamental problem, that is the motion of a
charged particle in a given electromagnetic field, as for example that of an
accelerated particle in a synchrotron. The motion is considered with respect
to a given Galilean frame and, hence, it is described by the fundamental
relativistic equations:

d
dt

(mv) = F ,
d
dt

(mc2) = F · v + q , (4.88)

where m = m0/
√

1− v2/c2. The physical action F is due to the electromag-
netic field and, as it is well known, it is purely mechanical: q = 0. Thus,
the charged test particles we are considering have no any internal structure:
m0 = const. and, if e denotes the charge of the particle, the mechanical force
is the Lorentz one:

F = e

(
E +

1
c
v ×H

)
. (4.89)

We will study the dynamical problem in the following hypothesis:

1. absence of the electric field: E = 0.2 Equation (4.88) then becomes

d
dt

(mv) =
e

c
v ×H ,

d
dt

(mc2) = F · v = 0 ; (4.90)

whatever magnetic field were assigned in the “restricted ” problem: H =
H(P,v, t), the energy integral holds mc2 = const., that is the speed is
constant:

v = const. = v0 < c . (4.91)

Thus, because of hypothesis 1, the particle’s motion is uniform. The tra-
jectory, instead, has no a priori limitations, but it is sub-ordered to the
equation:

ma =
e

c
v ×H , (4.92)

with m constant:
m =

m0√
1− v2

0/c
2
. (4.93)

From (4.92), by differentiation, follows, then, the relation

mȧ =
e

c
(a ×H + v × Ḣ) , (4.94)

and we assume another hypothesis:

2 The case E �= 0 is discussed in [7], p. 520.
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2. the magnetic field is uniform: H = const. and without any loss of gener-
ality, aligned along the z-axis:

H = Hc3 , H > 0 and const. (4.95)

It follows the existence of another first integral, that is the momentum with
respect to the z-axis, being F orthogonal to the z-axis itself: mż = const.,
or

ż = const. = ż0 . (4.96)

Thus, if one assumes ż0 = 0, that is v0 ⊥ z, the motion is planar, and
it is contained in the plane Π, defined by (P0,v0), and orthogonal to the
z-axis. According to the above hypothesis, one has then

3. v0 is orthogonal to H, and the trajectory is a circle. This can be see by
projecting (4.92) onto the x–y plane: Π or, directly, from (4.94). In fact,
from the hypothesis 2, it assumes the following form:

mȧ =
e

c
(a×H) ,

so that the vectors a and ȧ are orthogonal to each other, and to H, and
the condition a =const. follows too.

Finally, in the hypothesis 1–3, the motion is uniform: ṡ = const. (s̈ = 0),
planar, and the magnitude of the acceleration is also constant:

a2 ≡ (s̈)2 +
(
v2

ρ

)2

=
(
v2

ρ

)2

= const. ;

thus, 1/ρ is const. and the orbit is a circle. We can determine the centre C and
the radius R of the circle, starting from the initial conditions. The centre C is
placed in Π, along the line orthogonal to v0 and passing for P0. To determine
it, let us assume polar coordinates, with origin in C, and the usual notation ρ
and θ and conventions for the unit vectors u and τ . It results ρ = R, v = Rθ̇τ
and a = −Rθ̇2u; furthermore, Rθ̇ = const. = ±v, and, from (4.92):

−mRθ̇2 =
e

c
Rθ̇H < 0 .

Thus, one finds that the sign of θ̇ is opposite to that of the charge e:

mRθ̇ = −e
c
RH , v = R|θ̇| , (4.97)

and finally,
R =

cmv

|e|H , (4.98)

or
R =

m0

|e|
cv

H
√

1− v2/c2
. (4.99)
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Thus, if v,H andR (radius of the particle accelerator) are known, (4.99) allows
to obtain the ratio between the charge and the proper mass of a particle:

|e|
m0

=
c

RH

v√
1− v2/c2

. (4.100)

The analogous result, obtained using classical mechanics, in place of (4.99),
corresponds to a lesser value:

Rc =
cm0v

|e|H < R ,

and, obviously, the difference R − Rc becomes bigger and bigger, as soon
as that v approaches the speed of light. Equation (4.99) is in agreement with
experiments, so that the use of the relativistic formula is essential in projecting
an accelerating machine.

As a final remark, we notice that, because of the presence of c, in (4.99), the
magnetic field H should be intense enough, in order that R has a reasonable
value for the experimental device (and not of the order of km).

4.9 Extension of Maxwell’s Equations
to any Galilean Frame

As already stated in Sect. 1.4, Maxwell’s theory can be formally extended,
in a classic context, from the heter S∗ to an arbitrary Galilean frame S′, in
motion with respect to S∗. Let T0 and TΩ be two orthonormal triads, in S∗

and S′, respectively, with unit vectors ci and c′i(t), and let vΩ and ω be the
kinematical characteristics of the motion of S′ with respect to S∗.

Let us start from the formulation of the classical electromagnetism in vacuo,
in the heter frame S∗ that is the set of Maxwell’s equations (1.15):

⎧⎪⎨
⎪⎩

div H = 0 , curl E +
1
c
∂tH = 0 ,

div E = 4πρ , curl H− 1
c
∂tE =

4π
c

J .
(4.101)

Passing from S∗ to S′, one has to transform these equations using, for the
generic point P, in place of the Cartesian coordinates xi relative to T0 ∈ S∗,
the analogous coordinates xi′ relative to TΩ ∈ S′. To this end, it is necessary to
use the transformation formulas xi = xi(t, x′), obtained from the fundamental
relation OP = OΩ(t) + xi′c′i(t), with OP = xici, that is:

xi = OΩ(t) · ci + xk′
c′k(t) · ci , (4.102)
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or the inverse relations:

xi′ = xkck · ci′(t)−OΩ(t) · ci′ . (4.103)

We will denote by E′, H′ the electric and magnetic fields E and H (both
invariant) once expressed in terms of the time t and the variables xk′

, by using
(4.102). The spatial operators div and curl have an invariantive property with
respect to the transformations (4.102):

⎧⎪⎪⎨
⎪⎪⎩

ci × ∂

∂xi
= ci′ × ∂

∂xi′ = inv .

ci · ∂

∂xi
= ci′ · ∂

∂xi′ = inv .;
(4.104)

the temporal derivative, instead, has not an invariantive meaning:

∂

∂t
→ ∂

∂t
+
∂xi′

∂t

∂

∂xi′ . (4.105)

Moreover, according to (4.103) and using the Poisson formulas for the rigid
kinematics, one has

∂xi′

∂t
= −W · ci′ (i = 1, 2, 3) , (4.106)

where
W def= vΩ(t) + ω(t)× ΩP = W(t, P ) ; (4.107)

in addition, for an arbitrary vector field v(t, x), the following general decom-
position holds

∂v
∂xi

=
1
2
curlv × ci + σ(v)

i , (4.108)

having assumed

σ
(v)
i

def=
1
2

(
∂v
∂xi

+ gradvi

)
. (4.109)

Thus, by using (4.105), one gets the following transformation formula:

∂v(t, x)
∂t

=
∂v′(t, x′)

∂t
− 1

2
curl v′ ×W− σ(v′)

W , (4.110)

where, following (4.109):

σ
(v′)
W

def= W iσ
(v′)
i =

1
2

(
∂Wv′ + gradv′ ·W

)
. (4.111)

At this point, the transformation of (4.101) follows immediately, if one takes
into account that E, H and ρ have an absolute meaning, while the current
density J = ρv, because of the theorem of addition of velocities, becomes
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J = J′ + ρW . (4.112)

Therefore, Maxwell’s equations in the Galilean frame S′ assume the form:⎧⎪⎨
⎪⎩

div H = 0 , curl E +
1
c
∂tH = ΔH ,

div E = 4πρ , curl H− 1
c
∂tE =

4π
c

(J′ + ρW)−ΔE ,

(4.113)

where, following (4.111), we have introduced the notation:

Δv =
1
c

(
1
2
curl v ×W + σ(v)

W

)
, (4.114)

for every vector field v, and the vector W has the kinematical meaning defined
in (4.107). Equation (4.113) extends the formulation of classical electromag-
netism to an arbitrary frame S′, and it shows clearly the noninvariantive
content of Maxwell’s equations when changing the heter frame S∗: in fact,
new terms appear at the right-hand side of (4.101)2,4, and these terms identi-
cally vanish, whatever the electromagnetic field be, if and only if W = 0, i.e.
vΩ = 0 and ω = 0, so that S′ ≡ S∗.

If S′ �= S∗, such terms are always present: apparent electromagnetic current
densities, analogous to the inertial forces (dragging and Coriolis) of classical
mechanics. Clearly, they are really present and can be measured in S′, but
they disappear in the heter frame S∗. The situation, in M4, will be completely
different (as we will see in Chap. 9) since (4.101) will result instead formally
invariant.

It is also clear that, even in the formulation (4.113) of Maxwell’s equations,
the heter frame still plays a special role; in fact, W(t, P ) is directly connected
to the motion of S′ with respect to S∗. In particular, if S′ is in rectilinear
uniform motion with respect to S∗, it results W = u = const.
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traiteés par la methode du repére mobile, Gauthiers-Villars, Paris (1937). 153

5. M. Castagnino, Sulle formule di Frenet-Serret per le curve nulle di una V4 rie-
manniana a metrica iperbolica normale, Rend. Mat. Roma, 24, 438–461 (1964).
153, 154

6. G. Ferrarese, Lezioni di relatività generale, II edn, Ed. Pitagora, Bologna (2001).
162

7. A. Pignedoli, Alcune teorie meccaniche superiori, CEDAM, Padova (1969). 163



5

Relativistic Kinematics
for a Three-Dimensional Continuum

5.1 Continuum Mechanics. Relative
Representation of the Motion

We study here the relativistic mechanics of a continuum,1 adopting a different
point of view from that for a material point. In the latter case the absolute
formulation of kinematics and dynamics was considered before the relative
one. In the present case, instead, it is convenient to begin with the classical
point of view in terms of an arbitrary Galilean frame Sg and then pass to the
relativistic extension in M4, that is, to the absolute formulation.

Because of the relative aspect of our treatment, we assume that the un-
derlying reference space is the ordinary Euclidean manifold E3 (to which a
Galilean frame Sg is superposed) endowed with the natural topology. The
mathematical scheme of the continuum, including both geometrical and kine-
matical aspects, is obtained by considering connected and bounded subsets C
of E3 (generally variable with the time). Their evolution, in Sg, is described
by the vectorial function

OP = OP(t, y1, y2, y3) , P ∈ C , (5.1)

where yi (i = 1, 2, 3) are three curvilinear coordinates which label the generic
particle of the continuum at each instant t ∈ (t0, t1). They are often called
“label coordinates,” or “Lagrangian coordinates,” because they label the par-
ticle itself.

Once a Cartesian triad T in Sg is fixed (see Fig. 5.1), the Lagrangian coor-
dinates can be interpreted as (curvilinear) coordinates of a point P∗ represen-
tative of the particle. Varying the particle, i.e. the parameters yi, P∗ describes
a three-dimensional configuration field C∗ or the reference configuration of the

1 The continuum scheme will not be justified a priori from a statistical point of view,
by using probabilistic considerations or limiting processes on the point particle
scheme.
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τ

O
C

C

P'

P'P

P

Fig. 5.1. Evolution of a generic continuum in a Galilean frame Sg

system. The configuration field C of the positions of the ∞3 particles of the
system at the generic instant t is called instead the actual (or instantaneous)
configuration of the system.

Clearly the Lagrangian coordinates yi are not uniquely defined, but only
up to an invertible transformation

yi = yi(y′) , (5.2)

which does not involve time. We will assume that

A
def= det

∣∣∣∣
∣∣∣∣ ∂y

i

∂y′k

∣∣∣∣
∣∣∣∣ > 0 , (5.3)

which is more restrictive than A �= 0 and ensures the local invertibility of (5.2).
Such a limitation introduces a well-determined orientation in the continuum.
For all t ∈ (t0, t1), (5.1) are the (vectorial) parametric equations of the actual
configuration C: thus, (5.3) corresponds, in the three-dimensional case, to the
condition dλ/dλ′ > 0, which characterizes the admissible parameters of an
oriented curve for the case of a single material point.

The vectorial function (5.1) and the corresponding scalar equations

xi = xi(t, y1, y2, y3) , (i = 1, 2, 3) (5.4)

are assumed to be sufficiently regular (even C∞), with respect to all four
variables and, in particular, invertible for each t ∈ (t0, t1):

yi = yi(t, x1, x2, x3) ; (5.5)

this implies that, at each instant, one has a bijective map between the points
of the reference configuration and those of the actual one. In other words, two
different particles M and M ′ of the continuum (corresponding to different
values of yi) remain distinct throughout the motion. This does not mean that
the spatial trajectories of two particles cannot intersect each other, but only
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that two particles cannot occupy the same position at the same instant; that
is, they must have nonintersecting world lines.

As a consequence, during the evolution, there cannot be collisions or breaks
and every loop or closed surface of C∗ remains closed at every instant t. This
follows from the fundamental requirement that each element of the continuum
has its own individuality and cannot be destroyed. Hence, we will not consider
any process of matter annihilation or generation.

Equation (5.4) define the position at any instant t of each particle (i.e. for
fixed values of yi). For fixed t, they instead describe the actual configuration
of the system parametrically, in terms of yi. Thus, (5.4) give the motion of
the whole system, particle by particle, varying the four parameters yi and t.
This is the so-called Lagrangian point of view, which discusses the dynamical
characteristics of the system as a function of the particle and time, and hence
it assumes yi ∈ C∗ and t ∈ (t0, t1) to be independent variables.

Conversely, the functions (5.5), which are equivalent to (5.4) but assume
xi ∈ C and t ∈ (t0, t1), correspond to the Eulerian point of view, a different
description of motion according to which the kinematical ingredients are the
point P and the time t. In fact, (5.5) give, at each instant t, the label of the
particle which, at that moment, occupies the point P in C.

We notice that, in the Eulerian description, the variables xi are defined in
a domain (C) which is not fixed in the considered Galilean frame, but varies
with t. However, for the points of C, either the Cartesian coordinates xi or
the curvilinear coordinates yi are admissible. Thus to preserve the orientation
of the continuum, from (5.3), the following limitation holds:

D def= det
∣∣∣∣
∣∣∣∣ ∂x

i

∂yk

∣∣∣∣
∣∣∣∣ > 0 . (5.6)

We will denote by ei the derivatives of the vectorial function (5.1) with respect
to the parameters yi:

ei
def=

∂OP(t, y)
∂yi

, (i = 1, 2, 3) . (5.7)

These are three linearly independent vectors because, for each P and t, the
relation

αiei = 0 , ei =
∂xk

∂yi
ck (5.8)

implies αi = 0. In fact, (5.8) is equivalent to

αi ∂OP
∂yi

= αi ∂x
k

∂yi
ck = 0 ,

i.e. it corresponds to the linear and homogeneous system

αi ∂x
k

∂yi
= 0 , (k = 1, 2, 3) ,
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whose solution is necessarily αi = 0 because of the limitation (5.6).
The vectors ei, defined at each point P ∈ C by (5.7), form the so-called

natural basis, depending on both the considered instant and the particle: ei =
ei(t, y). This basis, exactly like the Cartesian one ck, can be used to decompose
a vector applied at P ∈ C (P being the position of the particle P∗, at the
instant t).

The Cartesian representation (in terms of ck) as well as the natural repre-
sentation (in terms of ek) are equivalent, and one can consider the transfor-
mation laws for the change of basis. From (5.7) one has

ei =
∂xk

∂yi
ck (5.9)

and the inverse relations

ck =
∂yi

∂xk
ei . (5.10)

The scalar product in the region C represented, in Cartesian terms, by the
Kronecker tensor, δik = ci · ck, defines the Lagrangian metric:

gik
def= ei · ek , (i, k = 1, 2, 3) . (5.11)

In fact, from (5.9) one has the tensorial relation

gik =
∂xl

∂yi

∂xm

∂yk
δlm , (5.12)

implying
g

def= det||gik|| = D2 > 0 . (5.13)

5.2 Fundamental Kinematical Fields

Differently from the vectors ei and the Lagrangian metric gik, which have a ge-
ometrical meaning only in the actual configurationC, the temporal derivatives

v =
∂OP
∂t

, a =
∂v
∂t

=
∂2OP
∂t2

, (5.14)

have a kinematical meaning, i.e. they represent the velocity and the accelera-
tion of the generic particle of the continuum with respect to Sg, in terms of
intrinsic quantities. From (5.1) it follows that (5.14) define v and a as func-
tions of yi and t, that is, in Lagrangian form. The corresponding Eulerian
form is obtained by substituting the yi by using (5.5), once the differentia-
tions are performed.2 Decomposing v and a with respect to the basis ei and
2 For a generic function f of the coordinates and time we will often use the notation

f(t, y) in place of f(t, y1, y2, y3) or f(t, x) in place of f(t, x1, x2, x3).
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ck, one obtains the natural and Cartesian components, respectively. We have
the following relations:

v = viei ≡ ẋkck ,

(
ẋk = ∂tx

k(t, y) , ∂t
def=

∂

∂t

)
,

and, using (5.10) in the last term, one gets

viei = ẋk ∂y
i

∂xk
ei ,

from which, because of the independence of the vectors ei, we have

vi =
∂yi

∂xk
ẋk . (5.15)

Clearly, as vi are functions of yk and t, the derivatives ∂yi/∂xk, as well as ẋk,
should be thought of as depending on these variables, too; that is, one must
substitute the xi by using (5.4), once the derivatives have been performed.

Similarly, denoting by ẍk the Cartesian components of the acceleration, one
has the relations

ẋk = ∂tx
k(t, y) , ẍk = ∂ttx

k(t, y) , (5.16)

so that

a = aiei , ai =
∂yi

∂xk
ẍk . (5.17)

Commonly, the Cartesian components of the velocity ẋk, expressed in terms
of xi and t by means of (5.5), are called Eulerian velocities and are denoted
by ek:

ek def=
[
∂tx

k
]
yi=yi(t,x)

. (5.18)

Similarly, the Cartesian components of the acceleration, according to (5.16),
are the partial derivatives, with respect to time, of the Cartesian components
of the velocity: ẍk = ∂tẋ

k. To see the relation between the components of
these quantities with respect to the natural basis we proceed as follows. On
the one hand, one has a = aiei and on the other, by definition, a = ∂tv; thus

aiei = ∂t(viei) = ∂tv
iei + vi∂tei = ∂tv

iei + vihi
kek = (∂tv

i + vkhk
i)ei ,

where we have used the notation

∂tei
def= hi

kek ; (5.19)

hence we have
ai = ∂tv

i + hk
ivk , (i = 1, 2, 3) . (5.20)

The quantities hik appearing in (5.20) arise from the decomposition of the
vectors ∂tek, according to the natural basis ei. Since the vectors ei = ei(t, y)
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depend on time, it follows that the tensor hik is, in general, nonvanishing, and
the relations (5.20) do not coincide with the analogous Cartesian relations:
ai �= ∂tv

i. Before specifying better the meaning of hik, it is convenient to
briefly summarize some results already obtained for the metric tensor mαβ of
M4, in terms of gik.

First of all, the basis ei is not orthonormal, so that the scalar products
gik = ei · ek are different from the Kronecker tensor δik. However, the matrix
gik is regular because of (5.13), and it can be inverted; denoting the inverse
by gik, we have

gihghk = δi
k . (5.21)

It is therefore, meaningful to consider the dual basis ei of the basis ei, obtained
raising the index with the metric gik:

ei = gikek ∼ ei = gikek . (5.22)

The following fundamental duality relation, obtained using (5.21), holds:

ei · ek = δi
k ; (5.23)

similar to (5.11), the contravariant metric is given by

gik = ei · ek . (5.24)

As for mαβ or mαβ , in Sg, the metric gik or gik can be used to raise and
lower the indices of tensor components, giving rise to different but equivalent
representations: covariant (with lowered indices) or contravariant (with raised
indices) and also mixed. In particular, the scalar product of two vectors v and
w, in Sg, can be expressed as

v ·w = gikv
iwk = vkw

k = vkwk = gikviwk . (5.25)

Let us now consider the fundamental relation (5.19), associated with the
decomposition of the vectors ėi (where a dot replaces the partial derivative
∂t). These vectors, because of the definition (5.7), coincide with the gradient
of velocity v with respect to the coordinates yi:

ėi = ∂iv(t, y) , (∂i = ∂/∂yi) . (5.26)

It follows immediately that ėi · ek = hi
heh · ek = hi

hghk, from which we find
the meaning of the covariant components hik = hi

hghk:

hik = ėi · ek = ∂iv · ek , (i, k = 1, 2, 3) . (5.27)

The last expression shows that hik is a 2-tensor in the sense that an arbitrary
change in the label coordinates yi = yi(y′) transforms hik according to the
typical law of tensors:

hik =
∂y′l

∂yi

∂y′m

∂yk
h′lm . (5.28)
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In fact, from (5.7), one has

ei =
∂OP
∂yi

=
∂OP
∂y′k

∂y′k

∂yi
,

and hence the transformation law of the vectors ei:

ei =
∂y′k

∂yi
e′i ∼ e′k =

∂yi

∂y′k
ei . (5.29)

Equation (5.27) then gives rise to the relation

hik =
∂v
∂y′l

∂y′l

∂yi
· ∂y

′m

∂yk
e′m =

∂y′l

∂yi

∂y′m

∂yk
h′lm ,

i.e. (5.28). Moreover, (5.29) clarifies the meaning of the limitation (5.3): the
two natural basis, ei and e′i, associated with the coordinates yi and y′i, re-
spectively, have the same orientation (both left-handed or both right-handed)
and this is equivalent to selecting, for the continuum, one of the two possible
orientations.

5.3 Shear and Vorticity

The tensor hi
k or hik = hi

jgjk defined in (5.19):

ėi = hikek ≡ ∂iv , (5.30)

summarizes the two fundamental kinematical elements of a continuum: the
deformation velocity or shear and the angular velocity. More precisely, let us
denote the symmetric part of hik by kik and the antisymmetric part by ωik,
that is:

hik = kik + ωik , (5.31)

where ⎧⎨
⎩
kik

def= h(ik) ≡ 1
2 (hik + hki),

ωik
def= h[ik] ≡ 1

2 (hik − hki).
(5.32)

For the tensor kik, by using (5.27), one gets

kik =
1
2
(ėi · ek + ėk · ei) =

1
2
∂t(ei · ek) ,

that is:
kik =

1
2
∂tgik . (5.33)

This tensor takes into account the temporal variation of the metric gik(t, y),
for each particle, and it is called deformation velocity tensor. The tensor ωik,
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also termed vorticity tensor, has instead the meaning of angular velocity. To
justify this meaning, let us consider the vector

ω =
1
2
ωikei × ek . (5.34)

Now since kikei × ek = 0 (kik is symmetric, and the product ei × ek is
antisymmetric), one has, using (5.31),

ω =
1
2
(kik + ωik)ei × ek =

1
2
hikei × ek .

Therefore, from (5.30), the vector ω can also be expressed in the form

ω =
1
2
ei × ∂tei . (5.35)

Equation (5.35) is similar to the formula for angular velocity in rigid motion,
expressed in terms of an orthonormal triad {ia} (at rest with respect to the
moving rigid body) and its derivatives, with respect to time (see [1], p. 125):

ω =
1
2
ia × dia

dt
.

The fundamental difference between the two relations is that, in the case of a
continuum, the natural basis depends on the coordinates yi (which also leads
to the use of partial derivatives in place of the total derivative with respect
to time); in other words, at least as concerns changes in the direction, the
continuous system behaves as if each particle were a rigid microsystem, with
respect to a generic (not orthonormal) triad.

Furthermore, because of the identity ėi = ∂iv, the vector ω(t, y), defined
in (5.35), also has a direct meaning in terms of the velocity field:

ω =
1
2
ei × ∂iv ≡

1
2
curlv . (5.36)

Using a terminology common in fluid mechanics, ω represents the local vortex
of the continuum.

The vector ω is of course invariant, in the sense that it depends only on the
considered particle and time, but not on the choice of Lagrangian coordinates:

ω =
1
2
ωikei × ek = inv =

1
2
ω′

ike′i × e′k . (5.37)

In particular, in terms of the Cartesian components
(c)
ω ik, one has

ω =
1
2

(c)
ω ik ci × ck , (5.38)
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where
(c)
ω ik=

∂yl

∂xi

∂ym

∂xk
ωlm . (5.39)

Note that in the last relation it is implicitly assumed that the natural com-
ponents ωlm are expressed in terms of the coordinates t and x, by means of
(5.5). Moreover, from (5.36), the expression for ω, as function of the Eulerian
velocity e = ekck defined in (5.18), is the following:

ω =
1
2
curl e =

1
2
ci × ∂e

∂xi
. (5.40)

In contrast to the antisymmetric tensor ωik, which can be represented by the
vector ω (the dual of ωik, i.e. ωk = 1/2ηkijωij , see Chap. 2), the deformation
velocity tensor has six (and not three) independent components. It is directly
related to the Lagrangian metric gik by (5.33) and, like ω, it can be expressed
in terms of the velocity field v:

kik =
1
2
(∂iv · ek + ∂kv · ei) . (5.41)

Equation (5.41) is also valid for the Cartesian components
(c)

k ik:

(c)

k ik=
1
2

(
∂ek

∂xi
+
∂ei

∂xk

)
, ei = δike

k , (5.42)

which, in turn, are related to the natural components by the tensorial relation

kik =
∂xl

∂yi

∂xm

∂yk

(c)

k lm . (5.43)

Finally, it is worth mentioning that there are no algebraic relations between
the two kinematical quantities ωik (angular velocity) and kik (deformation
velocity); however, these quantities are not independent from a differential
point of view. More precisely, the gradient of ω is a function of the first
spatial derivatives of the deformation velocity. In fact,

∂iω =
∂ω

∂xk

∂xk

∂yi
, (5.44)

and by introducing, from (5.40), the components of the Eulerian velocity with
respect to the Cartesian basis e = ehch, we have

∂ω

∂xk
=

1
2
ci × ∂2e

∂xi∂xk
=

1
2
∂2eh

∂xi∂xk
ci × ch .

Thus, taking into account the identity

∂2ek

∂xi∂xh
ci × ch = 0
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then leads to

∂ω

∂xk
=

1
2

(
∂2eh

∂xi∂xk
+

∂2ek

∂xi∂xh

)
ci × ch =

1
2
∂

∂xi

(
∂eh

∂xk
+
∂ek

∂xh

)
ci × ch ,

and using (5.42), we have

∂ω

∂xk
=

∂

∂xi

(c)

k hk ci × ch . (5.45)

From this relation it immediately follows that if at a certain instant t the

deformation velocity vanishes everywhere:
(c)

k hk= 0, ∀P ∈ C, at that instant,
the angular velocity is constant in C3:

(c)

k hk= 0, ∀P ∈ Ct ⇒ ω = const., ∀P ∈ Ct . (5.46)

If the condition is satisfied everywhere at any instant, the angular velocity
depends only on t: ω = ω(t), and the motion is necessarily rigid. This justifies
the name of deformation velocity for the tensor kik.

We will see, in the next section, how (5.45) is modified passing from the
Cartesian to the curvilinear coordinates yi.

5.4 Christoffel Symbols and Covariant Derivative

Let us start from the tensor hik, defined in (5.27):

hik = ∂iv · ek , (i, k = 1, 2, 3) , (5.47)

which, with the symmetric and antisymmetric parts, respectively, gives rise
to the deformation velocity and the angular velocity:

⎧⎨
⎩
kik

def= h(ik) = 1
2 (∂iv · ek + ∂kv · ei),

ωik
def= h[ik] = 1

2 (∂iv · ek − ∂kv · ei).
(5.48)

In terms of Cartesian coordinates, v becomes the Eulerian velocity e(t, x) =
ekck, so that (5.48) assumes the form

(c)

k ik=
1
2

(
∂ek

∂xi
+
∂ei

∂xk

)
,

(c)
ω ik=

1
2

(
∂ek

∂xi
− ∂ei

∂xk

)
. (5.49)

To see how the relations (5.49) are modified passing from the Cartesian to the
Lagrangian coordinates yi, we consider the gradient

3 This is the case if the deformation is homogeneous, that is, the components
(c)

k hk

do not depend on the position in C.
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∂iv = ∂i(vkek) = ∂iv
kek + vk∂iek (5.50)

and, hence, the second derivatives

∂iek =
∂2OP
∂yi∂yk

. (5.51)

These are linear combinations of eh:

∂iek = Γh
ikeh = Γik,heh , (5.52)

where the three index coefficients Γh
ik, or their alternatives Γik,h, obtained

by lowering the index h:
Γik,l = ghlΓh

ik , (5.53)

denote the contravariant and covariant components of the gradient ∂iek,
respectively:

Γh
ik = ∂iek · eh , Γik,h = ∂iek · eh . (5.54)

These coefficients can be expressed by means of the metric gik and its first
derivatives as follows:

Γik,h =
1
2
(∂igkh + ∂kghi − ∂hgik) , (5.55)

which identifies them as the ordinary first-type Christoffel symbols. In fact,
one has

∂ighk = ∂i(ek · eh) = ∂iek · eh + ∂ieh · ek ,

and hence
∂ighk = Γik,h + Γih,k , (5.56)

giving the derivatives of gik as functions of the coefficients Γik,h. Conversely,
one can invert the relations (5.56), obtaining (5.55). In fact, cyclic permutation
of the indices i, h, k, in (5.56), leads to

∂kghi = Γkh,i + Γki,h, ∂hgik = Γhi,k + Γhk,i ;

next, adding the first of these to (5.56) and subtracting the second, (5.55)
follows immediately.

The Christoffel symbols, especially the second-type Christoffel symbols

Γh
ik = ghlΓik,l =

1
2
ghl(∂igkl + ∂kgli − ∂lgik) , (5.57)

play an important role in the Lagrangian differentiation of tensorial functions.
Taking into account (5.52), the gradient of v (5.50) assumes the following
form:
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∂iv
def= (∇iv

k)ek , (5.58)

where
∇iv

k def= ∂iv
k + Γk

ihv
h . (5.59)

In contrast to the case of Cartesian coordinates, ∂iv is no longer represented
by the simple partial derivative ∂iv

k, but it is necessary to introduce a dif-
ferential operator ∇i which depends on the Christoffel symbols. The latter
operator has an absolute meaning, in the sense that, as follows from (5.58),
the 2-index quantity ∇iv

k has tensorial behaviour under a change of the La-
grangian coordinates yi:

∇iv
k =

∂y′h

∂yi

∂yk

∂y′l
∇′

hv
′l . (5.60)

It is called covariant derivative of v.
If for the vector v one considers the decomposition v = vkek, one needs—in

place of (5.52)—the derivatives of the dual basis ek, which, because of (5.23),
can be written as:

∂iek = −Γk
iheh . (5.61)

This leads to an analog of (5.58):

∂iv = (∇ivk)ek , (5.62)

where
∇ivk

def= ∂ivk − Γh
ikvh . (5.63)

By comparing (5.58) and (5.62), one gets

(∇iv
k)ek = (∇ivh)eh ,

that is, using (5.22), the relations

(∇iv
k) = ghk∇ivh ∼ (∇ivh) = ghk∇iv

k . (5.64)

Importantly, the metric behaves like a constant under covariant differentiation:

∇ig
hk = 0 ∼ ∇ighk = 0 ∼ ∇iδ

k
h = 0 , (5.65)

as follows easily from the definitions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ig
hk = ∂ig

hk + Γh
ilg

lk + Γk
ilg

hl,

∇ighk = ∂ighk − Γl
ihglk − Γl

ikghl,

∇iδ
k
h = −Γl

ihδ
k
l + Γk

ilδ
l
h,

(5.66)

which are extensions of (5.59) and (5.63) to the case of tensors with several
indices. Thus, we can formulate the following general rule. Passing from Carte-
sian (xi) to Lagrangian coordinates (yi), for any tensorial object, the partial
derivative must be replaced with the covariant derivative:
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∂i → ∇i . (5.67)

In this way (5.49) become

kik =
1
2
(∇ivk +∇kvk) , ωik =

1
2
(∇ivk −∇kvi) . (5.68)

Furthermore, because of the symmetry of the Christoffel symbols, with respect
to the lower indices:

Γh
ik = Γh

ki , Γik,h = Γki,h , (5.69)

Equation (5.68)2 can be cast in the equivalent form:

ωik =
1
2
(∂ivk − ∂kvi) . (5.70)

Similarly, the differential tensorial relation (5.45) becomes

∂kω = ∇ikhkei × ek , (5.71)

where
∇ikhk = ∂ikhk − Γl

ihklk − Γl
ikkhl . (5.72)

Note.

• The deformation velocity can also be expressed by using (5.33): kik =
1/2∂tgik, which clearly has a tensorial meaning for arbitrary transforma-
tions of the coordinates yi that do not involve time. In fact, gik transforms
as

gik =
∂y′l

∂yi

∂y′m

∂yk
g′lm , (5.73)

which implies

kik =
∂y′l

∂yi

∂y′m

∂yk
k′lm , k′lm =

1
2
∂tg

′
lm .

However, the above discussion cannot be repeated when passing from the
Cartesian coordinates to the Lagrangian ones, which involves time. In
other words, to (5.33) does not correspond the Cartesian analog

(c)

k ik= 1/2∂tδik ≡ 0,

but (5.49) instead. In fact, from (5.33), by using (5.12) in place of (5.73),
we have

kik =
1
2
∂

∂t

(
∂xl

∂yi

∂xm

∂yk
δlm

)

=
1
2

[
∂

∂yi

(
∂xl

∂t

)
∂xm

∂yk
δlm +

∂xl

∂yi

∂

∂yk

(
∂xm

∂t

)
δlm

]
.
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At this point, to get the Cartesian components, it is enough to identify
the yi with the xi, using (5.5) when necessary; from (5.18) we find

(c)

k ik =
1
2

[
∂

∂xi

(
∂xl

∂t

)
y=y(t,x)

δm
k δlm + δl

i

∂

∂xk

(
∂xm

∂t

)
y=y(t,x)

δlm

]

=
1
2

(
∂el

∂xi
δkl +

∂em

∂xk
δim

)
,

that is, (5.49)1.
• The second-type Christoffel symbols Γi

jk associated with the coordinates
yi through the metric gik and its first derivatives do not transform as
tensorial quantities; in fact, as it can be easy checked from (5.73), we have

Γh
ik =

∂y′l

∂yi

∂y′m

∂yk

∂yh

∂y′n
Γ′n

lm +
∂2y′m

∂yi∂yk

∂yh

∂y′l
, (5.74)

where Γ′n
lm are the coefficients analogous to Γn

lm:

Γ′n
lm =

1
2
g′np

(
∂g′mp

∂y′l
+
∂g′pl

∂y′m
− ∂g′lm

∂y′p

)
. (5.75)

For linear transformations of the Lagrangian coordinates yi, (5.74) reduces
to a tensorial law: ∂2y′l/∂yi∂yk ≡ 0 and the coefficients Γj

ik are said to
be an affine tensor. Contrasting to the first-type Christoffel symbols, the
coefficients Γj

ik form a well-determined geometrical entity Γ, in the sense
that the transformation laws (5.74):
1. allow one to determine the components Γj

ik of Γ, relative to the coor-
dinates yi, once the analogous Γ′j

ik relative to the coordinates y′i are
known, together with the map of the coordinate change.

2. form a group, that is, the following property holds: for three admissible
coordinate systems yi, y′i and y′′i, the transformation Γ′′ → Γ resulting
from (5.74) coincides with the product of the two transformations: Γ′′ →
Γ′ and Γ′ → Γ and each inverse transformation is a transformation of
the same type.

Finally, the Cartesian form of the Christoffel symbols follows from (5.57),
with yi = xi and gik = δik:

(c)

Γ h
ik ≡ 0 ; (5.76)

hence, from (5.74), with y′i = xi, one gets

Γh
ik =

∂2xl

∂yi∂yk

∂yh

∂xl
. (5.77)

Equation (5.77) can be checked in two ways, either starting from (5.51) or
by using (5.57). In fact, from (5.51) and by using OP = xlcl, we find
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∂iek = Γh
ikeh =

∂2xl

∂yi∂yk
cl , (5.78)

which is equivalent to (5.51) because of (5.10); analogously, from (5.57),
by using (5.12) and the dual relation

ghl =
∂yh

∂xp

∂yl

∂xq
δpq ,

one has

Γh
ik =

1
2
∂yh

∂xp

∂yl

∂xq
δpq

[
∂2xr

∂yi∂yk

∂xs

∂yl
δrs +

∂xr

∂yk

∂2xs

∂yl∂yi
δrs

+
∂2xr

∂yk∂yl

∂xs

∂yl
δrs +

∂2xs

∂yi∂yk

∂xr

∂yl
δrs −

∂2xr

∂yl∂yi

∂xs

∂yk
δrs

− ∂2xs

∂yk∂yl

∂xr

∂yi
δrs

]
=
∂yh

∂xq
δs
q

∂2xs

∂yi∂yk
,

which coincides with (5.77).

5.5 Local Analysis of the Motion of a Continuum

The meaning of the kinematical quantities introduced in Sect. 5.3 easily fol-
lows by analysing the velocity field of the continuum in the instantaneous
configuration C. In fact, let us consider, first, the vectorial function (5.1) and
assume that the time t is fixed. A first-order Taylor expansion gives

OQ = OP +
∂OP
∂yi

Δyi + O(2), Δyi def= yi
Q − yi ,

that is, by using the notation of (5.7):

PQ = eiΔyi + O(2) ; (5.79)

by applying the same procedure to the velocity function (5.14)1, with fixed t,
we have

vQ = vP + ∂ivΔyi + O(2) . (5.80)

Let us now use the following decomposition of ∂iv, obtained from (5.30) and
(5.31):

∂iv = kikek + ωikek = ki + ωi , (5.81)

where
ki

def= kikek (5.82)

and
ωi

def= ωikek ≡ ω × ei. (5.83)
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From the definition (5.37), the duality relations (5.23) and by using the anti-
symmetry of ωik we then find

ω × ei =
1
2
ωhk(eh × ek)× ei =

1
2
ωhk

[
(eh · ei)ek − (ek · ei)eh

]

=
1
2
ωhk(δh

i ek − δk
i e

h) =
1
2
(ωikek − ωhieh) = ωikek .

Thus (5.81) becomes
∂iv = ki + ω × ei , (5.84)

and the approximate formula (5.80), using (5.79), gives the following first-
order relation:

vQ = vP + ω × PQ + kiΔyi + O(2) . (5.85)

The relation (5.85), although only a first approximation,4 is invariant with
respect to the choice of the Lagrangian coordinates. This is obvious for all the
terms except the last; however, it is easy to show that

kiΔyi = k′
iΔy′i = inv. (5.86)

In fact, ki, as follows from (5.82), form a set of vectors labelled by the index
i following a covariant transformation law (exactly as ei). To show this let us
start from the transformation law

kik =
∂y′l

∂yi

∂y′m

∂yk
k′lm ; (5.87)

contracting both sides by ek, one gets

kikek =
∂y′l

∂yi

∂y′m

∂yk
k′lmek =

∂y′l

∂yi
k′lme′m ,

and hence

ki =
∂y′l

∂yi
k′

l , (5.88)

which proves the relation (5.86). Comparing (5.85) with the fundamental for-
mula for rigid kinematics

vQ = vP + ω × PQ , (5.89)

one immediately recognizes some substantial differences. Equation (5.89) is
exact, while (5.85) is only approximate; in (5.89), ω has a global meaning for
the entire rigid body, because it only depends on time. Conversely, in (5.85),
ω has a local meaning, because it also depends on the particle: ω = ω(t, y);

4 The second approximation requires only differentiations and the use of the relation
(5.71).
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finally, in (5.85), there is an extra term, due to deformations which, like ω,
has a local meaning and is absent for the case of the rigid body.

The condition kik = 0 , ∀P ∈ C, not only reduces (5.85) to the form (5.89),
but, as we have already seen, it implies the constancy of ω in C. Moreover,
the last term in (5.85) can be seen as the gradient of a quadratic form. More
precisely, writing, for the sake of brevity, Δyi = yi

Q− yi ≡ ξi and introducing
the (homogeneous) function

K(ξ) =
1
2
kikξ

iξk ,

we find
kiΔyi = kikekξi ≡ gradξK(ξ) ,

with kik depending only on yi and t, and not on ξi. Thus, (5.85) can also be
written in the form

vQ = vP + ω × PQ + gradξK(ξ) + O(2) , (5.90)

and has a direct Lagrangian meaning, because the parameters yi and yi +Δyi

denote two distinct particles of the continuum, the positions of which are the
points P and Q, respectively. Clearly, (5.85) characterizes the instantaneous
velocity distribution of the continuum, in the neighbourhood of the arbitrary
point P ∈ C. The Eulerian form of (5.85) is instead given by

eQ = eP + ω × PQ+
(c)

k i Δxi + O(2) , (5.91)

where now PQ = Δxici and eP(t, x) replaces vP(t, y) after eliminating y with
the aid of (5.5).

Finally, as concerns the term kiΔyi, for any fixed i = 1, 2, 3, the vector ki

can be interpreted as the deformation velocity, at P ∈ C, along the coordinate
line yi = var. because it can be obtained from the sum kjΔyj , assuming all the
Δy = 0, except for Δyi = 1. The vectors ki can clearly replace completely the
tensor kik. For instance, the compatibility conditions for the angular velocity,
given in (5.71), can be written as

∂kω = ei × (∂ikk − ∂kki) . (5.92)

Moreover, from (5.61), one has ∂ikk = (∂ikhk − kklΓl
ih)eh, so that (5.92)

becomes (by using the symmetry properties of the Christoffel symbols)

ei × (∂ikk − ∂kki) = (∂ikkh − Γl
ihkkl − ∂kkih + Γl

khkil)ei × eh

= (∂ikkh − Γl
ikkhl) ei × eh = ∇ikkh ei × eh .

Similarly, the temporal derivative of the angular velocity, because of (5.30),
becomes

∂tei = −hk
iek , (5.93)
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and, from (5.36), one gets

∂tω =
1
2
curla− 1

2
hk

iek × hijej .

Hence, since hij = hji − 2ωji and ωijej = ω × ei, we have

1
2
hk

ihijek × ej = −2hk
iωjiek × ej = −2kk

iωjiek × ej = 2ki × (ω × ei) ;

thus one obtains the general formula

∂tω =
1
2
curla− kω + kω , (5.94)

where k is the cubic deformation velocity and kω the deformation velocity
along ω:

k = ki · ei = gikkik , kω = ωiki . (5.95)

Equation (5.94) shows that the temporal derivative of ω is uniquely deter-
mined by the acceleration a and the characteristics of the continuum.

5.6 Passing from One Galilean Frame to Another

The above description of the motion of a continuum is valid, either in the
classical framework or in the relativistic one, as long as the discussion is
limited to a single Galilean frame. In fact, as concerns the “spatial aspect”, the
relativistic geometry in a given Galilean frame coincides with the classical one;
furthermore, within a single Galilean frame, the time is an absolute quantity in
special relativity also. As a consequence, if no more than one frame is involved,
one would not expect differences between classical and relativistic kinematics.
But in the relativistic context there are differences in the transformation laws
of the various relative quantities (of kinematics or dynamics), when passing
from one reference frame to another. This is true for the single material point
(as we have already seen) and also for the continuum (as we will see presently).
The reason for such a different behaviour is that, while in the classical situation
the passage from one Galilean frame Sg to another S′

g (assumed to be in
x-standard relation, without any loss of generality), is governed by the Galilei
transformations

x′ = x− ut , y′ = y , z′ = z , t′ = t , (5.96)

in the relativistic context, one has instead the Lorentz transformations

x′ =
1
α

(x− ut) , y′ = y , z′ = z , t′ =
1
α

(
t− u

c2
x
)
, (5.97)

where α =
√

1− u2/c2. In both (5.96) and (5.97), once the Lagrangian coor-
dinates yi are fixed, one can pass from the motion relative to Sg: xi = xi(t, y)
to that relative to S′

g:
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x′i = x′i(t′, y) . (5.98)

In the relativistic case (5.97) the time t′ is not invariant but depends on the
considered particle instead:

t′ =
1
α

(
t− u

c2
x(t, y)

)
= t′(t, y) , (5.99)

and conversely,
t = t(t′, y) . (5.100)

In the case of a single material point we have already seen the differential
relation:

dt′

dt
=
σ

α
, (5.101)

where

σ = 1− 1
c2

u · v . (5.102)

Here the same relation holds with the ordinary derivatives with respect to
time replaced by partial derivatives and recalling that now v = v(t, y).

Let us start considering the transformation law for the quantity (5.6):

D = det
∣∣∣∣
∣∣∣∣ ∂x

i

∂yk

∣∣∣∣
∣∣∣∣ = D(t, y) ; (5.103)

classically D is invariant with respect to the choice of Galilean frame, but not
with respect to Lagrangian coordinates yi. Let us evaluate then the derivatives
of the x′i (given by (5.98)) with respect to yk; using (5.97)1,2,3 with t expressed
by (5.100), (5.99) reduces to an identity: t′ = t′; hence ∂t′/∂yk = 0:

0 =
1
α

[
∂t

∂yk
− u

c2

(
∂x

∂yk
+
∂x

∂t

∂t

∂yk

)]
. (5.104)

It follows that

∂x′1

∂yk
=

1
α

(
∂x1

∂yk
+
∂x1

∂t

∂t

∂yk
− u ∂t

∂yk

)
,

∂x′2,3

∂yk
=
∂x2,3

∂yk
+
∂x2,3

∂t

∂t

∂yk
, (5.105)

with ∂t/∂yk derived from (5.104). Introducing the Cartesian velocity with
respect to Sg,

ẋi =
∂xi

∂t
→ v = ẋici , (5.106)

as well as the natural basis,
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ei =
∂xl

∂yi
cl , (5.107)

one gets the relation

σ
∂t

∂yk
=

u

c2
∂x1

∂yk
=

1
c2

u · ek . (5.108)

Thus, (5.105) become⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂x′1

∂yk
=

1
ασ

∂x1

∂yk

(
σ +

1
c2
uẋ1 − u2

c2

)
=
α

σ

∂x1

∂yk
,

∂x′2,3

∂yk
=
∂x2,3

∂yk
+

1
c2σ

u
∂x1

∂yk
ẋ2,3.

(5.109)

Hence, rewriting α/σ in the form

α

σ
= 1 +

1
c2σ

uẋ1 + ν = 1 +
1− σ
σ

+ ν ,

implying

ν =
α− 1
σ

= − 1
c2

u2

σ(1 + α)
, (5.110)

Equation (5.109) can be made more compact as follows:

∂x′i

∂yk
=
∂xi

∂yk
+

1
c2σ

u · ekẋ
i + νδi

1

∂x1

∂yk
;

after contracting by ci and using the relation δi
1ci = c1 = u/u, one has the

corresponding vectorial relation valid in Sg:

e′k = ek + u · ek

(
1
c2σ

v +
ν

u2
u
)
,

where e′k is the vector of the natural basis in S′
g boosted to Sg. Finally, by

introducing the components of u along ek

uk = u · ek , (5.111)

and using (5.110), we get the general formula

e′k = ek +
1
c2σ

ukw , (5.112)

with
w def= v − u

1 + α
. (5.113)

Equation (5.112) represents the fundamental formula for the kinematics of
deformation of a continuum and in the classical limit, c → ∞, is consistent
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with the invariance property: e′k = ek. From this, one can obtain the relation
between the two metrics gik and g′ik, locally associated with the continuum
with respect to the two different Galilean frames considered. Moreover, by dif-
ferentiation with respect to time of both sides of (5.112) and by using (5.101),
one gets the quantities ∂t′e′k, which, like the corresponding quantities in Sg,
summarize the (local) angular and deformation velocities of the continuum,
with respect to the Galilean frame S′

g. Hence, the associated transformation
laws can be computed (see [2]).

As we will see, the classical invariance properties

k′ik = kik , ω′
ik = ωik , ∀Sg, S

′
g ,

are not conserved in the relativistic case. It follows that the ordinary notion
of rigidity loses its meaning in relativity, in the sense that kik ≡ 0 �⇒ k′ik ≡ 0.

5.7 Kinematical Invariants

Equation (5.112) represents the starting point for obtaining the transforma-
tion laws for the main geometrical and kinematical quantities of the contin-
uum: gik, gik, kik, ωik, Γh

ik, etc. Before proceeding to derive these laws, we
examine some fundamental relativistic invariants, which we will compare with
the corresponding classical analog. We start by deriving the variation law of
the determinant (5.6), which coincides with

D = e1 × e2 · e3 (5.114)

or
D =

√
det||gik|| . (5.115)

From (5.109) one has this determinant relative to S′
g:

D′ =
α

σ
det

∣∣∣∣∣∣

∣∣∣∣∣∣
∂1x

1 ∂2x
1 ∂3x

1

∂1x
2 +X2∂1x

1 ∂2x
2 +X2∂2x

1 ∂3x
2 +X2∂3x

1

∂1x
3 +X3∂1x

1 ∂2x
3 +X3∂2x

1 ∂3x
3 +X3∂3x

1

∣∣∣∣∣∣

∣∣∣∣∣∣ ,

where, for the sake of brevity, we have used the notation X2,3 = ẋ2,3u/(c2σ);
it is easy to verify the relation

D′ =
α

σ
D . (5.116)

The left-hand side of (5.116) is a function of the variables yi and t′, while
the right-hand side depends on yi and t. Therefore we have to use (5.99) for
the left-hand side and (5.100) for the right-hand side. When c → ∞, one
has D′ = D; in other words, D is not a relativistic invariant with respect
to the choice of the Galilean frame, contrary to what happens in classical
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kinematics. We note that (5.116) has been obtained by means of (5.109), that
is in x1-standard coordinates. Actually it has a general validity, because of
the intrinsic meaning of both D and D′, as concerns the choice of coordinates
in the respective Galilean frame. The same result can be derived by using
(5.114), that is, starting from (5.112). In fact, using the notation

W =
1
c2σ

(
v − u

1 + α

)
=

1
c2σ

w =⇒ e′k = ek + ukW , (5.117)

one finds the following expression for the product e′1 × e′2:

e′1 × e′2 = e1 × e2 + (u2e1 − u1e2)×W ,

so that

e′1 × e′2 · e′3 = e1 × e2 · (e3 + u3W) + e3 × (u2e1 − u1e2) ·W .

Hence
D′ = D + (u3e1 × e2 + u2e3 × e1 + u1e2 × e3) ·W ;

furthermore, because of the duality relations (5.23), we have

ei =
1
Dei+1 × ei+2 =⇒ ei = Dei+1 × ei+2 , (5.118)

and thus
D′ = D(1 + u ·W) . (5.119)

Finally, because of (5.117), one has (1+u ·W) = α/σ, so that (5.119) coin-
cides with (5.116). Moreover, (5.116) is associated with a relativistic invariant.
In fact, using the relation

∂t′

∂t
=
σ

α
=
η′

η
, (5.120)

holds not only for a single material point (as we have already seen) but also for
a continuum, in the case in which the generic particle is fixed by its Lagrangian
coordinates. Then (5.116) becomes D′ = Dη/η′, giving rise to the following
invariance property:

η′D′ = ηD = inv. , (5.121)

with the usual substitution of (5.99) or its inverse (5.100). The quantity ηD
is invariant with respect to any change of Galilean frame, it has a local mean-
ing and, of course, it can be expressed either in the Lagrangian or in the
Eulerian form. It generates, in turn, a differential invariant; in fact, differenti-
ating with respect to t′ both sides of (5.121) and taking into account (5.120)
leads to
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∂η′

∂t′
D′ + η′

∂D′

∂t′
=
α

σ

(
∂η

∂t
D + η

∂D
∂t

)
,

so that, dividing both sides by D′ = Dα/σ > 0, one gets the invariant relation

∂η′

∂t′
+
η′

D′
∂D′

∂t′
=
∂η

∂t
+
η

D
∂D
∂t

= inv. (5.122)

To obtain the classical limit, we note that

∂tη = ∂t(1− v2/c2)−1/2 =
η3

c2
v · a , (5.123)

so that η → 1 and ∂tη → 0 in the limit c→∞, and (5.122) becomes

1
D′

∂D′

∂t′
=

1
D
∂D
∂t

= inv. ;

because of the absolute meaning of time, from these equations follows the
invariance property of D.

Equation (5.122) states the invariance of the quantity

B def=
∂η

∂t
+
η

D
∂D
∂t

, (5.124)

with respect to the choice of the Galilean frame; but the kinematical meaning
of B should still be elucidated.

Equation (5.123) clarifies the dynamical meaning of the first term; thus we
have to interpret the ratio ∂tD/D, which is clearly independent of the choice
of the Lagrangian coordinates yi (like η, ∂tη and hence B). The following
Lagrangian relation holds (see [3], p. 511):

1
D
∂D
∂t

= div v ≡ ei · ∂iv = k , (5.125)

where k is the cubic deformation velocity, already introduced in (5.95). To
prove this we start from the decomposition (5.81)

div v ≡ ei · (ki + ω × ei) = ei · kikek ,

so that
div v = gikkik =

1
2
gik∂tgik , (5.126)

where the last term follows from (5.33). Moreover, div v is related to the
determinant of gik:

g = det ||gik|| . (5.127)

In fact, denoting by cik the algebraic complement of gik, one has ∂tg =
cik∂tgik = ggik∂tgik, so that
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gik∂tgik =
1
g
∂tg =

2
√
g
∂t
√
g ,

and hence
1
√
g
∂t
√
g =

1
2
gik∂tgik . (5.128)

Equation (5.126) then becomes

div v =
1
√
g
∂t
√
g . (5.129)

Since, from (5.13),
√
g = D (5.125) is now proved. Furthermore, the invariant

B, introduced in its Lagrangian form

B = ∂tη + η div v = B(t, y) , (5.130)

can also be cast in the Eulerian form

B(t, x) = B(t, y(x)) =
∂η

∂t
+ ei ∂η

∂xi
+ η

∂ei

∂xi
≡ ∂η

∂t
+
∂η

∂xi
(ηei) , (5.131)

where ei(t, x) = vi(t, y(x)) are the Eulerian components of the velocity. This
is achieved by replacing η with η(t, x) and ∂tη(t, y) with the substantial
derivative

∂η

∂t
+ ei ∂η

∂xi
, (5.132)

in (5.130), besides the obvious replacement of v(t, y) with e(t, x). Finally,
taking into account the ordinary decomposition of the 4-velocity V = η(e +
cγ), that is, V 0 = cη and V i = ηei, it follows that B is the four-dimensional
divergence of V:

B(t, x) = Div V = ∂αV
α . (5.133)

Equation (5.133) confirms the absolute meaning of B, because the divergence
of a vector is a scalar, invariant under linear transformations (and, in partic-
ular, under Lorentz transformations). In fact, under a linear transformation
xα → x′α = A′α

βx
β +A′α, we have

A′α
β =

∂x′α

∂xβ
; (5.134)

using then the transformation law of the components of a vector V ′α =
A′α

βV
β, one obtains

∂′αV ′α = A′α
β∂ρV

β ∂x
ρ

∂x′α
=

∂xρ

∂x′α
∂x′α

∂xβ
∂ρV

β = δρ
β∂ρV

β ,

and hence the invariance property

∂′αV ′α = ∂βV
β = inv. (5.135)



5.8 Dilation Coefficients 193

5.8 Dilation Coefficients

Consider the transformation law of the natural basis {ei} associated with the
(arbitrarily fixed) Lagrangian coordinates yi, passing from one Galilean frame
Sg to another S′

g, i.e. (5.112). The dual of the basis {e′i} is given by

e′i = ei − 1
c2α

wiu ; (5.136)

from (5.113) one has
1
c2

u ·w = α− σ , (5.137)

so that it is easy to check the reciprocity relations

e′i · e′k = δi
k . (5.138)

Equation (5.112),

e′k =
(
δi
k +

1
c2σ

wiuk

)
ei ,

gives the vectors e′k as the transform of the vectors ek, by means of the
displacement map A ≡ (Ai

k):

e′k = Aek = Ai
kei , (5.139)

with
Ai

k
def= δi

k +
1
c2σ

wiuk . (5.140)

The inverse A−1 = B of the map A, such that

Ai
jB

j
k = δi

k , (5.141)

can be obtained from (5.136):

e′i = Bi
kek ≡

(
δi
k −

1
c2α

wiuk

)
ek

= BTei ≡ (BT)k
iek ; (5.142)

in fact, the coefficients of B: Bi
k ≡ ei · (Bek) = (BTei) · ek are given by

Bi
k = δi

k −
1
c2α

wiuk . (5.143)

The presence, in C, of the metric tensor gik = ei · ek allows one to introduce,
besides the mixed form, the completely covariant and contravariant forms of
the tensors A and B:⎧⎪⎨

⎪⎩
Aik = gik +

1
c2σ

wiuk , Aik = gik +
1
c2σ

wiuk,

Bik = gik −
1
c2α

wiuk , Bik = gik − 1
c2α

wiuk.

(5.144)
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The representation (5.139) allows one to compare linear, surface and volume
elements, relative to the configurations C and C′ of the continuum, associated
with two different (arbitrary) Galilean frames Sg and S′

g. From this compari-
son, the relative dilation coefficients can be defined.

1. Linear dilation coefficients
Let us compare, first of all, the metric tensors. From (5.112) we have

g′ik = gik + 2εik , (5.145)

εik being the relative deformation tensor5

εik =
1

2c2σ

(
uiwk + ukwi +

1
c2σ

w2uiuk

)
, (5.146)

or by using (5.113)

εik =
1

2c2σ

(
uivk + ukvi −

1
ση2

uiuk

)
. (5.147)

Next consider a linear element dP = dyiei, emanating from P ∈ C; let
dP′ be the corresponding element in P′ ∈ C′:

dP′ = A dP ≡ dyie′i ,

and decompose dP and dP′ into magnitude and unit vector:

dP = |dP|a , dP′ = |dP′|a′ .

It is quite natural to define as linear dilation coefficient, at P and in the
direction a, the ratio

δa
def=
|dP′| − |dP|
|dP| = |Aa| − 1 . (5.148)

We have |Aa| =
√

(Aa) · (Aa) =
√
g′ikaiak, so that from (5.145) it follows

that
δa =

√
1 + 2εikaiak − 1 (5.149)

or explicitly

δa =

√
1 +

1
c2σ

[
2(u · a)(v · a)− 1

η2σ
(u · a)2

]
− 1 . (5.150)

In particular, for a = ei/|ei| = ei/
√
gii (no sum over repeated indices is

needed here), one has the linear dilation coefficients, in the directions of
the vectors ei:

5 Here the deformation does not have the usual meaning as for a single continuum
in a fixed frame of reference, but it is relative to two different frames.
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δi =

√
1 +

1
c2σgii

(
2uivi −

1
η2σ

u2
i

)
− 1 . (5.151)

Let us now consider the angle Θab formed by the directions a and b ema-
nating from P ∈ C: cosΘab = a ·b; the angle formed by the corresponding
directions in P′ ∈ C′ is given by

cosΘ′
ab ≡

Aa
|Aa| ·

Ab
|Ab| =

aie′i · bke′k√
g′ikaiak

√
g′lmblbm

=
g′ikaibk

(1 + δa)(1 + δb)
,

that is, by using (5.145) and (5.146):

cosΘ′
ab =

1
(1 + δa)(1 + δb)

{
cosΘab +

1
c2σ

[
(u · a)(v · b)

+(u · b)(v · a)− 1
η2σ

(u · a)(u · b)
]}

. (5.152)

In particular, for a = ei/|ei| and b = ek/|ek| (no sum over repeated indices
is needed here), one has the angular transformations, corresponding to the
vectors ei and ek (shear):

cosΘ′
ik =

1
(1 + δi)(1 + δk)

[
cosΘik

+
1

c2σ
√
giigkk

(
uivk + ukvi −

1
η2σ

uiuk

)]
. (5.153)

2. Surface dilation coefficients
Let us consider an oriented surface element: nd σ, in P ∈ C, and let n′dσ′

be the corresponding element in P′ ∈ C′; we can determine the relation
between the two surface elements, with the usual assumption of boosting
n′ dσ′ onto Sg. We have

n dσ = dP× dQ = dyi ei × dzk ek =
√
gεikh dyi dzk eh

where εikh is the Levi-Civita alternating symbol; similarly, one must as-
sume:

n′ dσ′ = (AdP)× (AdQ) = dyi e′i × dzk e′k =
√
g′εikh dyi dzk e′h

= ηikh dyi dzk e′h .

It follows, from comparison, that

n′ dσ′ =

√
g′

g
(n dσ · eh)e′h

or by using (5.136)
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n′ dσ′ =

√
g′

g
(n dσ − 1

c2α
n dσ ·wu) .

Furthermore, the Jacobian determinants

D = det
∣∣∣∣
∣∣∣∣ ∂x

i

∂yk

∣∣∣∣
∣∣∣∣ ≡ √g , D′ = det

∣∣∣∣
∣∣∣∣∂x

′i

∂yk

∣∣∣∣
∣∣∣∣ ≡
√
g′ ,

satisfy the invariance property (5.121):

ηD = η′D′ = inv. ⇒ D′

D =
η

η′
=
α

σ
;

thus the previous relation becomes

n′ dσ′ =
α

σ
(n dσ − 1

c2α
n dσ ·wu) . (5.154)

From this equation we get the surface dilation coefficient in the direction
n:

δσ
def=

dσ′ − dσ
dσ

, (5.155)

or explicitly

δσ =
α

σ

√
1− 2

c2α
(n ·w)(n · u) +

1− α2

c2α
(n ·w)2 − 1. (5.156)

3. Volume dilation coefficients
The cubic dilation coefficient δc is defined by

δc
def=

dC′ − dC
dC

=
D′

D − 1 =
α

σ
− 1 , (5.157)

using (5.121).

In the limit c → ∞ all the dilation coefficients vanish. For v = 0, instead,
Sg is the local rest frame of the continuum and the above relations refer to the
way in which the continuum (in relative uniform translational motion, with
respect to S′

g) differs from the rigidity condition.
Having defined the local deformation coefficients, we can start studying the

transformation laws for the angular and deformation velocities.

5.9 Transformation Laws for Angular
and Deformation Velocities

Our purpose now is to obtain the gradient of the continuum velocity v′(t′, y),
with respect to S′

g. To this end it is enough to differentiate the relation (5.112)
with respect to t′, using (5.101):
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∂t′ =
α

σ
∂t . (5.158)

This gives

∂t′e′i =
α

σ

[
∂tei +

ui

c2σ
∂tw +

1
c2σ

(
u · ∂tei −

1
σ
∂tσui

)
w
]
,

with
∂tw = ∂tv = a, ∂tσ = − 1

c2
u · a . (5.159)

Thus, by using the identities

∂tei = ∂iv , ∂t′e′i = ∂iv′ , (5.160)

and introducing the map A defined by (5.139), we have

∂iv′ =
α

σ
A

(
∂iv +

1
c2σ

uia
)
. (5.161)

The same result can, obviously, be obtained from the theorem of relative
motions:

v′ =
1
σ

(
αv − α+ σ

1 + α
u
)
, (5.162)

by differentiating both sides with respect to yi, which appear only in v and σ.
In scalar terms, we can set ∂iv′ = h′ike′k, analogously to ∂iv = hikek; using

(5.139), eh · e′k = Ah
k, (5.161) becomes

h′ik =
α

σ
Ah

k

[
hih +

1
c2σ

uiah +
1
c2σ

uj

(
hij +

1
c2σ

uiaj

)
wh

]

or

h′ik =
α

σ
Ah

kAh
j

(
hij +

1
c2σ

uiaj

)
, (5.163)

as from (5.140). The tensor h′ik summarizes (locally) the angular and defor-
mation velocities of the continuum with respect to S′

g, analogously to hik in
Sg:

h′ik = k′ik + ω′
ik , hik = kik + ωik , (5.164)

so that (5.163) contains the sought-for relations. Here, clearly, k′ik depends
either on the deformation velocity kik and the angular velocity ωik or on a
and u; an analogous dependence has ω′

ik. In the classical situation (c→∞),
we have k′ik = kik and ω′

ik = ωik, which give an absolute meaning to both the
deformation and the angular velocities, in contrast to the relativistic situation.
Now, from (5.161), one has the expression for the local angular velocity ω′:

ω′ =
1
2
e′i × ∂iv′ ; (5.165)
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by using (5.136) and (5.137), we then have

ω′ =
1
2
α

σ
ei ×A

(
∂iv +

1
c2σ

uia
)

− 1
2c2α

u× α

σ
A
[
wi∂iv +

(α
σ
− 1
)
a
]

=
1
2
α

σ
ei ×A(∂iv)− 1

2c2α
u× α

σ
A(wi∂iv − a) .

Otherwise, from the form (5.139) of A, it follows that

ei ×A(∂iv) = 2ω +
1
c2σ

ei × (u · ∂iv)w ,

and, by using the decomposition (5.84)

∂iv = ki + ω × ei, (5.166)

we have
u · ∂iv = (ku − ω × u) · ei , (5.167)

where ku is the deformation velocity along u, already introduced:

ku = uiki . (5.168)

Moreover, (5.137) implies

ei ×A(∂iv) = 2ω +
1
c2σ

(ku − ω × u)×w

=
(
1 +

α

σ

)
ω +

1
c2σ

(ku ×w− ω ·wu) ;

the expression for ω′ is then

ω′ =
1
2
α

σ

(
1 +

α

σ

)
ω +

1
2c2σ

[
α

σ
(ku ×w− ω ·wu)

+u×A(a + kw − ω ×w)
]
, (5.169)

where kw = wiki is the deformation velocity along w. Equation (5.169) can
be further developed by expanding the vector product u × A(ω × w), using
(5.137) and (5.139):

u× A(ω ×w) = u×
(
ω ×w +

1
c2σ

ω ×w · uw
)

= c2(α− σ)ω − (ω · u)w − 1
c2σ

(u×w · ω)u×w ;
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the general expression then follows:

ω′ =
1
2

(
1 +

α2

σ2

)
ω +

1
2c2σ

[H + u ×A(K)] , (5.170)

where⎧⎨
⎩

H =
α

σ
(ku ×w − ω ·wu) + ω · uw +

1
c2σ

(ω · u×w)u×w,

K = a− kw.

(5.171)

In the classical case (c → ∞), (5.170) reduces to the invariance property
ω′ = ω, as expected; in the relativistic case, instead, one has a typical mixing
of the various kinematical quantities: the angular velocity ω′ has no longer an
invariant meaning, being a function of u and v (through σ and w), a, ω and
also of the deformation velocity (through ku and kw).

Let us now determine the transformation law of the deformation velocities:
ki = ∂iv − ω × ei.

From (5.170) and (5.139), we have

ω′ × e′i =
1
2

(
1 +

α2

σ2

)
ω ×Aei +

1
2c2σ

[H×Aei

+u ·A(ei)A(K) −A(ei) · A(K)u] .

Using then the identity
AT(u) =

α

σ
u , (5.172)

and the commutation property of the scalar product leads to

ω′ × e′i =
1
2

(
1 +

α2

σ2

)
ω ×A(ei)

+
1

2c2σ

(
H×A(ei) +

α

σ
uiA(K)−ATA(ei) ·Ku

)
.

Next, taking into account (5.161), we have

k′
i = ∂iv′ − ω′ × e′i

= A(∂iv) − 1
2

(
1 +

α2

σ2

)
ω ×Aei +

1
2c2σ

[α
σ
uiA(2a−K)

−H×Aei +ATAei ·Ku
]

; (5.173)

moreover, from (5.167), it follows that

A(∂iv) = ∂iv +
1
c2σ

(∂iv · u)w

= ki + ω × ei +
1

2c2σ
(ku − ω × u) · eiw ,
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and, from (5.171)1 and the (already used) identity (5.172),

−H×Aei =
α

σ
(w ·Aeiku − ku · Aeiw + ω ·wu×Aei)

−ω · uw × ei −
1
c2σ

(ω · u×w)
(α
σ
uiw −w · Aeiu

)
.

Equation (5.173) thus becomes

k′
i =

α

σ
ki −

1
2

(
1− α

σ

)2
ω × ei +

α

2c2σ2

[
−ui

(α
σ

+
σ

α

)
ω ×w

−2(ω × u)iw + ω ·wu×Aei −
σ

α
ω · uw × ei

− 1
c2σ

(ω · u×w)
(
uiw −

σ

α
w · Aeiu

)
+ ku · ei

+w · Aeiku + ui(kw + Aa) +
σ

α
ATAei · (a− kw)u

]
, (5.174)

where the identity ku ·w = kw ·u has been used and the product ATA is such
that

ATA(ei) = ei +
1
c2σ

(
uiw + wiu +

1
c2σ

w2uiu
)
. (5.175)

In the classical case (c→∞), (5.170) reduces to the invariance k′
i = ki, as

expected; in the relativistic case, instead, as for the angular velocity, one has
a mixing of the various kinematical quantities, k′

i being a function of ki, u
and v (through σ and w), a and also of the angular velocity ω.

Equations (5.170) and (5.174) have a general validity, because they refer to
any continuously deformable system; they show that the classical notion of
rigidity is meaningless in a relativistic context: in fact, the absence of defor-
mations in Sg: ki = 0, has no absolute meaning, since in general k′

i �= 0:

k′
i = −1

2

(
1− α

σ

)2
ω × ei +

α

2c2σ2

[
−ui

(α
σ

+
σ

α

)
ω ×w

−2(ω × u)iw + ω ·wu×Aei −
σ

α
ω · uw × ei

− 1
c2σ

(ω · u×w)
(
uiw−

σ

α
w · Aeiu

)

+uiAa +
σ

α
ATAei · au

]
�= 0 . (5.176)

Similar to the deformation velocity (5.176), in the rigid case (in Sg) where
ki = 0, the transformation for the angular velocity reduces to the form

ω′ =
1
2

(
1 +

α2

σ2

)
ω +

1
2c2σ

[
−α
σ
ω ·wu

+ω · uw +
1
c2σ

(ω · u×w)u×w + u ×Aa
]
. (5.177)
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5.10 Born Rigidity. Thomas Precession

Equations (5.170) and (5.174) are completely general as concerns the motion
of the continuum and the choice of the two Galilean frames Sg and S′

g. Let
us assume that Sg be the rest frame for some particular element P of the
continuum; this means that at P:

v = 0 , ⇒ σ = 1, u = −v′ , α = 1/η′ , (5.178)

and hence, from (5.113)

w =
η′

1 + η′
v′ . (5.179)

Thus, we have the following expressions for ω′ and k′
i:

ω′ =
1
2

(
1 +

1
η′2

)
ω0 +

1
2c2η′

(H0 − η′v′ ×A0K0), (5.180)

k′
i =

1
η′

k0
i +

1
2

(
1− 1

η′

)2

ω0 × e0
i

+
1

2c2(1 + η′)
·
[(
η′ +

1
η′

)
v′iω

0 × v′ + 2(ω0 × v′) · e0
i v

′

+ω0 · v′v′ × (η′e0
i −A0e0

i )− k0
v′ · e0

i v
′ − v′ ·A0e0

i k
0
v′

−v′i
(
k0

v′ +
1 + η′

η′
A0a0

)
− η′A0TA0e0

i ·
(

1 + η′

η′
a0 − k0

v′

)
v′
]
,

where ω0 and k0
i are the proper angular and deformation velocities, and

(5.136), (5.139), (5.171) and (5.175) reduce to

H0 =
η′

1 + η′
[(1 − η′)ω0 · v′v′ − k0

v′ × v′] , K0 = a0 − η′

1 + η′
k0

v′ ,

e′i = e0
i −

1
c2

η′

1 + η′
v′iv

′ , A0( ) = ( )− 1
c2

η′

1 + η′
( ) · v′v′,

A0TA0e0
i = e0

i −
1
c2
v′iv

′ ,

and, finally, the proper acceleration a0 is related to a′ by the composition law
(2.115)

a′ =
1
η′2

(
a0 − 1

c2
η′

1 + η′
v′ · a0v′

)
.

Thus, omitting the prime, the following relations hold in any Galilean frame:

ω =
1
2

(
1 +

1
η2

)
ω0 +

1
2c2(1 + η)

[
(1 − η)ω0 · vv − (1 + η)(k0

v × v + v × a0)
]
,

ki =
1
η
k0

i +
1
2

(
1− 1

η

)2

ω0 × e0
i (5.181)
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+
1

2c2(1 + η)
· (5.182)

{(
η +

1
η

)
v0

iω
0 × v + 2(ω0 × v) · e0

i v

+(η − 1)ω0 · vv × e0
i −

1 + η

η
v0

i k
0
v +
[
(η − 1)e0

i −
1
c2
ηv0

i v
]
· k0

vv

−1 + η

η
(v0

i a
0 + ηa0 · e0

i v) +
1
c2

(2 + η)v0
i a

0 · vv
}
,

where⎧⎪⎨
⎪⎩

a0 = η2

(
a +

1
c2

η2

1 + η
a · vv

)
, e0

i = ei +
1
c2

η2

1 + η
viv,

v0
i = v · e0

i = ηvi.

(5.183)

So far, we find that in the motion of a continuum, with respect to an arbi-
trary Galilean reference frame Sg, the values of the angular and deformation
velocities ω and ki are related to the proper values ω0 and k0

i by the following
equations:

ω =
1
2

(
1 +

1
η2

)
ω0 +

1
2c2η

[
1− η
1 + η

ω0 · vv − v × (η2a− k0
v)
]
, (5.184)

ki =
1
η
k0

i +
1
2

(
1− 1

η

)2

ω0 × ei (5.185)

+
1

2c2(1 + η)
·

{
2ηviω

0 × v + 2(ω0 × v) · eiv

+(η − 1)ω0 · vv × ei − η2(1 + η)(via + aiv) − (1 + η)vik0
v

+
[
(η − 1)ei −

2η2

c2(1 + η)
viv
]
· k0

vv
}
.

In a relativistic context, the following definition of rigid motion is very
useful: a continuum is said to move rigidly in the sense of Born [4] if the
proper deformation velocity vanishes identically:

k0
i = 0 , ∀t,P ∈ C , (i = 1, 2, 3) . (5.186)

This is obviously an absolute property of the motion, which must not be con-
fused with rigidity in the classical sense. Then (5.186) implies that, in every
Galilean frame, there is deformation; more precisely, from (5.184) it follows
that

ω =
1
2

(
1 +

1
η2

)
ω0 +

1
2c2η

[
1− η
1 + η

ω0 · vv − η2v × a
]
, (5.187)
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ki =
1
2

(
1− 1

η

)2

ω0 × ei (5.188)

+
1

2c2(1 + η)
·

[
2ηviω

0 × v + 2(ω0 × v) · eiv

+(η − 1)ω0 · vv × ei − η2(1 + η)(via + aiv)
]
�= 0.

Moreover, for each continuum motion, the local angular velocity is related
to the spatial deformation gradient by means of (5.92); thus, in the case of
a Born-rigid motion of the continuum the proper angular velocity ω0 has a
global meaning in C, in the sense that at each instant it is independent of the
particle:

∂iω
0 = 0 . (5.189)

Clearly, ω0 is not an absolute constant; in fact, according to (5.94):

∂tω
0 =

1
2
curla0 �= 0 . (5.190)

On the other hand the angular velocity, relative to a generic Sg, has no global
meaning, like ω0, because it depends on both the velocity v of the continuum
and the acceleration a. More precisely, from (5.187)1 we have

ω =
1
2

(
1 +

1
η2

)
ω0 +ψ , (5.191)

with

ψ
def=

1
2c2η

[
1− η
1 + η

ω0 · vv − η2v × a
]
. (5.192)

Thus, besides the deformation one has an angular precession ψ, dependent on
v and a as well as on ω0 (it is independent of ω0 only if ω0 is perpendicular
to v). In the first approximation, we re-obtain the Thomas precession [5]:

ψ � − 1
2c2

v × a . (5.193)

5.11 Material Continuum. Number and Matter Density

Given a geometrical continuum C in Sg, one can pass to a material one
by defining in C a function μ = μ(t, y) representing the relative material
density; with the generic element of the continuum in an initial volume
dC = dy1 dy2 dy3 in C, is then associated the elementary mass:

dm = μD dC . (5.194)
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This can be done in any Galilean frame; thus, in S′
g, the mass of the element is

given by dm′ = μ′D′ dC, and this must satisfy the transformation law (3.52)

dm′ =
σ

α
dm . (5.195)

Equation (5.195) induces a transformation law for the density μ. In fact, from
(5.116), we have

dm′ =
α

σ

μ′

μ
dm ,

so that (5.195) gives rise to the transformation law of the density

μ′ = μ
(σ
α

)2

, (5.196)

as well as to a finite invariant

μ′

η′2
=

μ

η2
= inv. (5.197)

Condition (5.194) can be easily explained in terms of the substitution the-
orem for multiple integrals, according to which the measure element in C
is expressed, in Cartesian coordinates, by the product dx1 dx2 dx3, and in
generic curvilinear coordinates yi by |D(y1, y2, y3)|dy1 dy2 dy3, with D the
Jacobian determinant of the transformation xi = xi(y1, y2, y3). In our case,
since D > 0, the measure element is given by D dC. We also note that the rel-
ative scalar 1/D has the meaning of particle number density. Thus a material
continuum is a geometrical one endowed with a matter density μ. For each of
its elements, because of (5.194) and (5.195), we can apply the above analysis
of the material point.

When c→∞, we recover the classical invariance of the density, with respect
to changes of Galilean frames: μ′ = μ. In relativity, instead, the ratio μ/η2

is invariant, and the density, once known in a certain frame, is also known in
any other frame through (5.197); it will depend on the relative velocity u of
S′

g with respect to Sg as well as on the velocity v(t, y) of the element of the
continuum in Sg; that is, we have now a dynamical notion of mass.

5.12 Absolute Kinematics. Proper Quantities

From the absolute point of view a three-dimensional continuous system is
represented by the ∞3 world lines of the single particles, all future-oriented,
and not intersecting each other since the continuum should be thought of as
the set of ∞3 distinct material points (at each instant and in every Galilean
frame). In other words, the evolution of a continuum is geometrically defined
by a unit timelike vector field, whose flow lines are the histories of the particles
of the continuum itself. In this sense, the family Γ of such lines represents a
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generalization of those special (linear) congruences, characterized by constant
vector fields, which represent the Galilean frames. In that case, they are global
congruences, because the straight lines cover all M4; for a generic continuum,
instead, the flow lines cover only a certain world tube T ∈M4.

Once a Galilean frame (that is a temporal direction γ and the associated
spatial platform Σ) is fixed, the configurations of the continuum C, relative
to the various instants t, coincide with the plane sections of the tube T ,
orthogonal to γ, or with their spatial projections onto the reference spatial
platform Σ. In the interior of T , besides the world lines of the particles, is
defined the 4-velocity V. This is determined from the equations of the world
lines

x0 = ct , xi = xi(t, y) , (5.198)

by differentiation with respect to the proper time τ of each particle, given by

τ(t0, t, y) =
1
c

∫ t

t0

√
−mαβ ẋαẋβdt

=
∫ t

t0

√
1− v2(t, y)

c2
dt , (5.199)

depending on yi that is on the considered particle. The 4-velocity V can be
obviously expressed either in Lagrangian or Eulerian terms, because of the
invertibility of (5.198)2. The 4-velocity corresponding to the generic point
E ∈ T : V(E) defines the tangent vector, at E, to the corresponding particle
world line or the 4-velocity in its rest frame S0. In S0, the relative velocity of
the particle, at E, vanishes: v0 = 0, and the invariant relations, in the passage
from one Galilean frame to another, assume a precise meaning. They are the
proper quantities, i.e. relative to S0; thus, (5.121) gives rise to the invariant

D0(t, y) = ηD ≡ D(t, y)√
1− v2(t, y)

c2

> 0 , (5.200)

which characterizes the proper volume element dC0 ≡ D0dC with respect
to fixed Lagrangian coordinates. Hence, the proper numerical density of the
particles 1/D0 follows. Similarly, from (5.197) one gets the proper density of
proper mass:

μ0(E) =
μ

η2
≡ μ(t, y)

[
1− v2(t, y)

c2

]
∼ μ0 =

dm0

dC0
. (5.201)

Finally, we have seen that (5.122) is closely related to a first-order differen-
tial invariant, namely the divergence of the 4-velocity: ∂αV

α. However, from
(5.199)

d
dτ

= η∂t = η( ). , (5.202)
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we have the following transformation of (5.122):

B = ∂tη +
η

D∂tD =
1
D∂t(ηD) =

1
ηD

d
dτ

(ηD) =
1
D0

dD0

dτ
.

Thus the invariant B, defined by (5.130), turns out to be related either to the
4-velocity V, because of (5.133), or to the invariant D0(E) = D0(x):

B(t, y(x)) = B(t, x) = ∂αV
α . (5.203)

From this follows a differential relation between D0 and V (as a consequence
of (5.125), in the instantaneous rest frame):

1
D0

d
dτ
D0 = ∂αV

α . (5.204)

This equation, since D0 = D0(x) and dD0/dτ = V α∂αD0, implies the con-
servation of proper numerical density :

∂α

(
1
D0

V α

)
= 0 , ∀E ∈ T . (5.205)

Note. From the various examples of scalar quantities that we have studied in
the preceding sections, one sees clearly the difference between scalar functions
of the event E and scalar invariants with respect to the Lorentz transforma-
tion: the latter depend only on the event E, while the former depend on other
variables also.

For example, for a given continuous system in motion, the quantities η,
∂t(ηD) are all scalar functions, but not scalar invariants, because they depend
on the considered Galilean frame besides the chosen event E ≡ (xα) ≡ (t, x);
more precisely, they are functions of the surface element, containing E and
γ ∈ C+

3 . The products ηD, ∂t(ηD)/D are scalar invariants, because they do not
depend on the chosen Galilean frame, but only on the event E ≡ (xα) ≡ (x′α).
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6

Elements of Classical Dynamics
of a Continuum

6.1 Introduction to Continuum Classical Dynamics

Once the essential geometrical–kinematical quantities (relative or absolute)
necessary for the description of a three-dimensional continuum have been
introduced, we can move on to the fundamental dynamical aspects of the
relativistic theory. First of all, let us examine the classical framework of the
equations of the continuum dynamics in the context of the Galilean frames
where such equations are invariant. The passage to an arbitrary rigid frame
is obtained with the usual procedure adding to the equation of motion the
inertial forces (dragging and Coriolis forces). As for the kinematical case, here
we limit ourselves to the essential elements of the dynamics.1

Following the notation already introduced, let Sg be a Galilean frame, asso-
ciated with an arbitrary Cartesian orthogonal triad: T ≡ O c1 c2 c3; let C be
the actual configuration (in Sg) of the continuum system S, xi (i = 1, 2, 3) the
Cartesian coordinates of the generic point P ∈ C and c an arbitrary portion
of C with boundary σ.

In the continuum scheme, the mechanical action is represented by two kinds
of force:

1. mass or volume forces, specified by a characteristic vectorial function
F(P, ...), defined in C, in the sense that, for any portion c ∈ C, the re-
sultant force and the resultant moment (with respect to O) of such forces
are expressed, respectively, by the following volume integrals:

r[c] =
∫

c

μF dC , mO[c] =
∫

c

OP× μF dC ; (6.1)

2. contact or surface forces, specified by the vectorial function φn(P), defined
on the boundary of C and for each direction n: specific stress at P relative
to the direction n. This is a vectorial function depending on P as well as

1 For a more detailed discussion the reader may refer to [1], p. 525 and [2], p. 181.

G. Ferrarese and D. Bini: Elements of Classical Dynamics of a Continuum, Lect. Notes Phys.

727, 207–237 (2008)
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n dσ

dσ
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φ dσ

μFdC
σ c

C

P

P

Fig. 6.1. Distribution of forces and stresses for a continuum

on the direction n, i.e. on the considered 3-plane in P (see Fig. 6.1), such
that, for any surface σ ∈ ∂C, the resultant of force and moment (with
respect to O) of such forces are expressed, respectively, by the following
surface integrals:

r(i)[σ] =
∫

σ

φn dσ , m(i)
O [σ] =

∫
σ

OQ× φn dσ . (6.2)

Adapting, now, the fundamental equations of the mechanics to the arbitrary
portion c of the continuum and passing to the limit c→ P , with the necessary
regularity hypothesis, one gets the following (local) Eulerian conditions, which
are no longer depending on the limit itself:

I Cauchy theorem, which specifies the dependence of the specific stresses on
n:

φn = niφ
i , φi = φn

∣∣∣∣
n=ci

; (6.3)

hence, φn is a linear and homogeneous function of the director cosines of
n in each point of the boundary of C: ∂C.

II First indefinite equation:

μė = μF− ∂iφ
i , (6.4)

where the dot denotes the substantial derivative

( ). def= ∂t( ) + ei∂i( ) (6.5)

III Second indefinite equation, that is reciprocity relations for the stresses:

φn · n′ = φn′ · n , ∀n,n′ (6.6)
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To these (Eulerian) equations one must add the continuity equation, which
represents the principle of mass conservation in local form. More precisely,
in the classical situation, for each particle of the continuum the mass
element

dm = μD dC , dC = dy1 dy2 dy3 , (6.7)

being invariant with respect to the choice of the Galilean frame Sg, is
independent on t (in Sg):

μD = const. , ∀yi fixed . (6.8)

In Lagrangian form, (6.8) is equivalent to the condition

∂t(μD) = 0 , ∀ t, yi , (6.9)

and, from here, one has the Eulerian form

(μD). = 0 , ∀ t, xi , (6.10)

where D(t, x) def= D(t, y(x)). Thus, using (5.125) and (6.9), this last rela-
tion can be cast in the form

Ḋ

D
= dive ≡ ∂ie

i (6.11)

and gives the ordinary continuity equation: μ̇+μ div e = 0. This equation,
in turn, using (6.5), can be transformed to obtain the following:

IV principle of mass conservation:

∂tμ+ ∂i(μei) = 0 . (6.12)

The scheme of the continuum is somehow incomplete. In fact, the evalua-
tion of the kinetic energy, defined, for each part c ∈ C of the continuum,
by the integral

T [c] =
1
2

∫
c

μe2dC , (6.13)

implies that the kinetic energy of each element can be confused as that
of the centre of mass only, neglecting the motion relative to the centre
of mass itself. In other words, the continuum scheme ignores the thermal
energy. Because of this evaluation defect, in the continuum scheme the
energy theorem is a direct consequence of the equations of motion, as for
the case of the single particle. It can be written in the usual form:

Ṫ [c] = W [c] , W [c] = W (e)[c] +W (i)[c] , (6.14)

with W (e)[c] the power of the external forces (mass forces in c and contact
forces on the surface σ) and W (i)[c] the power of the internal (contact)
forces, that is:
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W (i)[c] =
∫

c

φi · ∂ie dC . (6.15)

The above-mentioned defect of the scheme can be avoided by correcting
the energy theorem (6.14) with the aid of the first law of thermodynamics,
summarized by the following three axioms:
(a) each portion c of the continuum has an internal energy E [c]:

E [c] =
∫

c

μ ε dC , (6.16)

where ε is the specific (i.e. for unit mass) internal energy;
(b) the heat is also energy (apart from a conversion factor) which enters

the energy conservation law through its power Q[c] (heat absorbed, in
algebraic sense, by c per unit time):

Q[c] =
∫

c

μ q dC , (6.17)

where q is the specific (i.e. per unit mass) thermal power ;
(c) for any portion c ∈ C, the following balance relation holds:

Ṫ + Ė = W (e) +Q , (6.18)

which corrects (6.14). Hence, using the mass conservation (6.12),
(6.18) assumes the form Ė = Q−W (i), which can be put in the local
form:

V First law of thermodynamics:

ε̇ = q − 1
μ
w(i) , (6.19)

with w(i) the specific power of the internal (contact) forces, i.e. per unit
volume:

w(i) = φi · ∂ie . (6.20)

Equation (6.20) can be rewritten in its Eulerian form using the relation

∂ie =
(c)

k ik ck + ω × ci. (6.21)

For ordinary continua, such a power is independent of the angular velocity.
This follows from (6.6); in fact, if one introduces the Eulerian stress tensor
X ik (i, k = 1, 2, 3), by means of the decomposition

φi = X ikck , (6.22)

then, using (6.3), (6.6) becomes (X ik−Xki)nin
′
k = 0; thus, the symmetry

property
X ik = Xki, (i, k = 1, 2, 3) (6.23)
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holds, and (6.20) assumes the form

w(i) = X ik
(c)

k ik , (6.24)

with
(c)

k ik denoting the deformation velocity, in Eulerian form:

(c)

k ik=
1
2

(
∂

∂xi
ek +

∂

∂xk
ei

)
. (6.25)

6.2 Lagrangian Form of the Fundamental Equations

We now briefly recall some concepts of the Lagrangian mechanics of continua.
The relativistic Cauchy equation (6.4) is of Eulerian kind and can be cast into
the corresponding Lagrangian form without changing the (arbitrarily chosen)
Galilean frame Sg.

Let yi (i = 1, 2, 3) be a set of Lagrangian variables in Sg, which we will in-
terpret as the curvilinear coordinates of the points in the actual configuration
C of the continuum. Let {ei} be the natural basis relative to the coordinates
yi, gik = ei · ek the Lagrangian metric with associated Christoffel symbols of
the second-type Γh

ik, and the covariant derivative be denoted by ∇i. The par-
tial derivatives of the basis vectors give the following geometrical–kinematical
relations:

∂iek = Γh
ikeh , ∂tei = ∂iv ≡ (∇iv

k)ek , (6.26)

where v = vkek is the Lagrangian velocity, ∂i = ∂/∂yi and ∂t = ∂/∂t.
The velocity gradient summarizes the two fundamental tensors: ωi

k (angular
velocity) and ki

k (deformation velocity):

∇iv
k = ωi

k + ki
k . (6.27)

Introducing the dual basis {ei} of {ek} with ei ·ek = δi
k, the symmetric tensor

kik = gijk
j
k assumes the form

kik =
1
2
(∇ivk +∇kvi) =

1
2
∂tgik ; (6.28)

similarly, the antisymmetric tensor ωik = gijω
j
k = (∇ivk −∇kvi)/2 is equiv-

alent to the vector

ω = ei × ∂tei =
1
2
ωikei × ek , ωik = ω · ei × ek . (6.29)

The Lagrangian form of the continuum dynamical equations is obtained by
transforming F and q, defined by (6.4) and (6.19); this requires the introduc-
tion of the Lagrangian stresses Yi:
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Yi =
∂yi

∂xk
φk =

∂yi

∂xk
Xkjcj . (6.30)

In detail, as concerns (6.4), one should take into account the following:

1. on the left-hand side one has the substantial derivative, which, in
Lagrangian terms, becomes the partial derivative ∂t;

2. the divergence of the vectors φi becomes

∂

∂xi
φi =

1
√
g
∂i(
√
gYi) . (6.31)

In fact, from (6.30), one has

∂

∂xi
φi =

∂

∂xi

(
∂xi

∂yk
Yk

)
=
∂yh

∂xi

∂

∂yh

(
∂xi

∂yk
Yk

)

= ∂hYk ∂y
h

∂xi

∂xi

∂yk
+ Yk ∂2xi

∂yh∂yk

∂yh

∂xi
;

next, using
∂yh

∂xi

∂xi

∂yk
= δh

k ,

and the relations

∂2xi

∂yh∂yk

∂yl

∂xi
= Γl

hk, Γh
hk =

1
√
g
∂k
√
g , (6.32)

one gets (6.31):

∂

∂xk
φk = ∂kYk + Γh

hkYk =
1
√
g
∂i(
√
gYi) .

Equation (6.4) then becomes

μ∂tv = μF− 1
√
g
∂i(
√
gYi) ; (6.33)

introducing the Lagrangian stress characteristics Y ik which are symmetric,
like the corresponding Eulerian quantities X ik, and defined by

Yi = Y ikek , (6.34)

Equation (6.33), in scalar terms, then becomes

μak = μF k −∇iY
ik , (6.35)
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and using the Lagrangian form of (6.12) (mass conservation)

∂tμ+ μ∇iv
i = 0 (6.36)

leads to
μ∂tv

k = μF k −∇iY
ik − μkvk , (6.37)

with k = gikkik the cubic dilation coefficient. Equation (6.33) and its equiv-
alent (6.37) give the acceleration in terms of the sources and will be used in
the intrinsic formulation of continuum mechanics [3].

Finally, the power of the internal forces (6.24), in Lagrangian terms, still
has the same structure

w(i) = Y ikkik; (6.38)

kik can now be expressed either by means of the velocity vk or the Lagrangian
metric gik:

kik =
1
2
∂tgik . (6.39)

Equation (6.38) then assumes the form

w(i) =
1
2
Y ik∂tgik , (6.40)

so that for each particle (i.e. for fixed yi) w(i)dt is a differential form in the
variables dgik:

w(i) dt =
1
2
Y ik dgik, (yi = fixed) . (6.41)

6.3 Isotropic Systems

In Lagrangian terms the fundamental equations are (6.8) and (6.35), that is
⎧⎨
⎩
μak − μF k +∇iY

ik = 0 , (k = 1, 2, 3)

μD − μ∗ = 0 , D =
√
g,

(6.42)

which involve the mass density μ, the particle number density 1/D, the accel-
eration ak and the stresses Y ik; the mass force F k and the reference density μ∗
are assumed to be assigned; however, comparing with the Eulerian framework,
we now have the presence of the metric gik, either through the Christoffel sym-
bols or, explicitly, in D; furthermore, all the components are referred to the
basis {ei} related to the continuum itself and, hence, the variable with it. In
other words, the Lagrangian dynamics is not exhausted in the relations (6.42),
involving the metric gik and the same basis {ei}; from the point of view of
the variables the evolutionary problem is enlarged and an intrinsic Cauchy
problem can be formulated too (see below).
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By using the identity ∂tei ≡ ∂iv, we have

a = ∂t(viei) = (∂tv
i)ei + vi∂iv ,

and thus the system (6.42) can be written, in terms of the velocity, in the
following form:

⎧⎪⎨
⎪⎩
μ(∂tv

k + vi∇iv
k)− μF k +∇iY

ik = 0 , (k = 1, 2, 3),

1
μ
∂tμ+ div v = 0 .

(6.43)

In either form, Lagrangian or Eulerian, however, the number of equations
(four) is different from the number of the unknowns (ten, without considering
the metric). This should not be surprising, because the equations obtained do
not yet take into account the physical properties of matter which is schema-
tized by the continuum; in this sense, they are valid for a fluid, a solid, an
elastic system as well as a plastic one, for reversible or irreversible transfor-
mations.

To get the number of equations equal to the number of unknowns, one
must introduce the characteristic properties of the considered material. For
instance, the isotropic property, which we are going to discuss, is enough to
reduce to seven the number of the unknowns.

Let us note that, once the reference configuration C∗ and the corresponding
metric g∗ik are fixed, the stress tensor Y ik and the deformation tensor ε∗ik =
(gik−g∗ik)/2, pulled back to C∗, are both symmetric; hence, they each have a
triad of eigenvectors with respect to g∗ik: the stress and deformation principal
triads, respectively.

We will call the continuum isotropic2 if it admits a configuration C∗ such
that the principal deformation triad, relative to the displacement C∗ → C, is
also a principal tension triad with respect to the metric g∗ik of C∗ for each
transformation of the system and for each C.

This definition uses the concepts of deformation and stress only; the pre-
ferred configuration C∗, whose existence is postulated, enters only through
the Lagrangian metric g∗ik; thus, the invariance with respect to the choice of
the Lagrangian coordinates yi is complete.

The property that the Lagrangian stress tensor Y ik should admit, with re-
spect to the reference metric g∗ik, the same eigendirections of the deformation
tensor εik, has an important consequence: the stress tensor Y ik is necessarily
a polynomial function of the second degree in ε∗ik (see [4], p. 42):

Yi
k = pδk

i + qε∗i
k + rε∗i

jε∗j
k , (6.44)

with
Yi

k def= g∗ijY
jk , ε∗i

k def=
1
2
g∗kj(gij − g∗ij) , (6.45)

2 This definition is due to A. Signorini, see [4] p. 136.
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where the metric g∗ik is the reciprocal of g∗ik. Equation (6.44) shows that
the stress tensor can be expressed in terms of the three scalars p, q and r,
reducing to three its components; obviously, the metrics gik of C and that
g∗ik of C∗ are both involved.

A nonviscous fluid, that is, a continuum which in any configuration C has
the specific stress reduced to a single pressure: φu = puu, with pu > 0, is a
particular isotropic system. Moreover, because of the Cauchy theorem (6.3),
pu is independent of u: pu = p (pressure). Equivalently, we have

Yi
k = pδk

i , (6.46)

which is a particular case of (6.44).

6.4 Symbolic Relation of Continuum Mechanics

With (6.33) one must associate the boundary conditions on ∂C, which give the
local identity between the surface force f and the normal stress: YN = NiYi.
We thus have the following system

⎧⎨
⎩

V(P) ≡ μ(F− a)− 1
√
g
∂i(
√
gYi) = 0 inC,

W(Q) ≡ f −NiYi = 0 in ∂C,
(6.47)

which can be summarized by a single scalar relation: the symbolic relation of
the continuum systems.

Let us consider an arbitrary vector function ξ(P), defined on C + ∂C, and
having a regularity class Cn(i.e. a continuous function, with the partial deriva-
tive also continuous up to the nth order); when V = 0 and W = 0 the integral

I[ξ] ≡
∫

C

V · ξ dC +
∫

∂C

W · ξ dΣ (6.48)

clearly vanishes for any choice of the function ξ: I[ξ] = 0. The converse is
less trivial: if the integral (6.48) is zero for any choice of ξ, then V = 0 in C
and W = 0 in ∂C, simultaneously. To show this, let us assume that, for any
choice of ξ(P), it is I[ξ] = 0

∫
C

V · ξ dC +
∫

∂C

W · ξ dΣ = 0, ∀ ξ , (6.49)

but V is not identically zero; for instance, V 1 > 0 for a certain point P0 ∈
C. Because of the continuity of V(P), there exists a neighbourhood of P0

belonging to C, say a sphere Sε(P0), with centre in P0 and radius ε, in which
V 1 > 0. Let us assume, then, for ξ(P), the following choice:
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ξ =

⎧⎨
⎩

(ε2 − |P0P|2)n+1e1, ∀P ∈ Sε(P0),

0, ∀P �∈ Sε,

(6.50)

which satisfies the required regularity conditions.3 With such a choice of ξ,
the second term of (6.49) vanishes, while the first reduces to

∫
Sε

V 1(ε2 − |P0P|2)n+1 dC .

As V 1(ε2 − |P0P|2)n+1 > 0 in the whole of Sε, the above integral never van-
ishes, contrary to the hypothesis. Hence (6.49) implies that V = 0 in C
necessarily, and similarly one can show that W = 0 in ∂C.

We have thus proven the equivalence between the system (6.47) and the
scalar relation (6.49) (first fundamental lemma of variational calculus).

Moreover, taking into account the expression (6.47) for V and W, the
functional (6.48) can be written as

I[ξ] =
∫

C

μ(F− a) · ξ dC −
∫

C

1
√
g
∂i(
√
gYi) · ξ dC +

∫
∂C

(f −NiYi) · ξ dΣ ,

and, transforming the second integral by means of the divergence theorem,4

(6.49) assumes the following form (symbolic relation of continuum mechanics):
∫

C

μ(F− a) · ξ dC +
∫

C

Yi · ∂iξ +
∫

∂C

f · ξ dΣ = 0 . (6.51)

Interpreting the vectorial function ξ(P) as a nominal velocity field over the
points of C, the latter equation implies that at any instant, the full nomi-
nal power of all the forces acting on the system: mass, inertial, internal and
surface, vanishes.

Using (6.51) one confirms the Lagrangian expression of the specific power
of the internal forces

w(i) = Yi · ∂iv . (6.52)

Clearly, if one pulls back the stresses Yi to the reference configuration C∗ and
uses the decomposition with respect to the basis {e∗i } corresponding to {ei}5
then one finds

Yi = χike∗k , (6.53)

where the vectors e∗k do not depend on time and the coefficients χik are
termed Piola–Kirchhoff characteristics. They are nonsymmetric and related
by the condition
3 ξ, as defined by (6.50), is Cn in C + ∂C.
4 The product Yi · ξ, under a Lagrangian coordinate change, transforms as the

components of a contravariant vector.
5 The bijective mapping C ↔ C∗ induces a pointlike correspondence, which is

naturally extended to the associated vectors as well as tensors.



6.5 Reversible Transformation Systems. Free Energy 217

χike∗i × ek = 0 . (6.54)

Equation (6.38) becomes

w(i) = χike∗k · ∂iv = χik(kij + ωij) e∗k · ej . (6.55)

and the angular velocity ωij now appears.

6.5 Reversible Transformation Systems. Free Energy

A continuous system is said to undergo a reversible transformation if, besides
the internal energy ε, it admits a second characteristic function: the entropy
S, additive as well and expressible by the specific entropy s,

S =
∫

C

μs dC ; (6.56)

such a function is defined so that for each transformation of the system, and
using the absolute temperature scale, the ratio between the thermal power q
and the temperature θ coincides with the temporal derivative of the function s:

q

θ
=

ds
dt

. (6.57)

Clearly, the specific entropy, like the internal energy, is defined up to an addi-
tive constant, and its form is suggested by the physical properties of the ma-
terial body schematized by the continuum. Again, like ε, s should be thought
of as a function of the state parameters, say η1, η2,..., besides the Lagrangian
coordinates yi and time.

From an analytic point of view, the reversible transformation systems are
characterized by the property that the ratio (q/θ)dt is an exact 1-form; that
is, for each closed cycle and for each element of the continuum6:

∮
q

θ
dt = 0 .

For irreversible transformations instead, this integral is negative, because of
the second law of thermodynamics.7

6 That is, any transformation which, starting from a certain state, takes the system
again to the same state.

7 The specific entropy can also be defined for general thermodynamical systems
but in place of (6.57) one has the restriction

ds

dt
≥ q

θ
,

where the equality holds for reversible transformations only.
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The property (6.57) identifies a class of continuous systems which, in a
sense, correspond, in the context of thermomechanical phenomena, to the
holonomic frictionless systems of analytical mechanics. The latter are charac-
terized by a Lagrangian function (in the case of conservative forces),8 whereas
the reversible transformation systems are characterized by the thermodynam-
ical potential, or free energy:

F def= ε− sθ . (6.58)

When the function F is known, at least for isothermal or adiabatic trans-
formations, one gets the same number of equations and unknowns for the
evolutionary problem. In fact, from the definition (6.58) and using (6.57), for
each transformation of the system one has

dF
dt

=
dε
dt
− ds

dt
θ − sdθ

dt
=

dε
dt
− q − sdθ

dt
,

and the first law of thermodynamics gives rise to the following condition:

dF
dt

= − 1
μ
w(i) − sdθ

dt
. (6.59)

Using then the Lagrangian characteristics of tension (introduced in (6.40)) to
express w(i) we have

dF = − 1
2μ
Y ikdgik − sdθ . (6.60)

Thus the thermodynamical potential F can only depend on the metric gik of
the actual configuration and on the temperature θ, besides on the Lagrangian
coordinates yi:

F = F(y, gik, θ) , (6.61)

or on equivalent variables. For instance, once the reference configuration C∗
is fixed (dg∗ik = 0), the metric gik can be replaced by the deformation char-
acteristics:

F = F(y, ε∗ik, θ) . (6.62)

Equation (6.60) then becomes

dF = − 1
μ
Y ikdε∗ik − sdθ , (6.63)

leading to the conditions

Y ik = −μ ∂F
∂ε∗ik

, s = −∂F
∂θ

, (i, k = 1, 2, 3) . (6.64)

Hence, once the thermodynamical potential is assigned, (6.64)1 gives six more
equations to be added to the four equations of (6.49), yielding, at least for
8 In the case of nonconservative forces one must think of the kinetic energy function.
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isothermal transformations (θ = const.), the same number of equations as
unknowns. Equation (6.64)2 can then be used to determine the entropy s as a
function of the deformation characteristics, the temperature and the internal
energy ε, as follows from (6.58) and using (6.64):

ε = F − θ ∂F
∂θ

. (6.65)

For reversible transformation systems the same number of equations and
unknowns is also obtained in the adiabatic case q = 0, i.e. s = const. from
(6.57)1. To show this, let us start by noting that the Helmholtz postulate9

implies that

∂2F
∂θ2

< 0 ; (6.66)

(6.64)2 can thus be solved with respect to θ: θ = θ(y, ε, s), and the internal en-
ergy can be expressed, using (6.68), in terms of the deformation characteristics
and entropy:

ε = ε(y, ε∗, s) . (6.67)

Moreover, for reversible transformation systems, the first law of thermody-
namics (6.19) gives the following expression for dε:

dε = − 1
2μ
Y ik dgik + θ ds ≡ − 1

μ
Y ik dεik + θ ds ,

so that
Y ik = −μ ∂ε

∂ε∗ik
, θ =

∂ε

∂s
, (i, k = 1, 2, 3) . (6.68)

It is easy to see that, when s = const., (6.68)1 gives six relations between
stress and deformation, which is what is needed to get the same number of
equations as unknowns. Equation (6.68)2 gives instead the absolute temper-
ature in terms of deformation characteristics and the entropy, determining in
turn the thermodynamical potential (6.58)

F ≡ ε− sθ = ε− s ∂ε
∂s

. (6.69)

We note that (6.68)2 is equivalent to (6.64)2 once the latter is solved with
respect to θ. It can also be solved with respect to the entropy s. In fact, from
the identity

−∂F
∂θ

∣∣∣∣
θ=∂ε/∂s

≡ s ,

9 This postulate is usually expressed as follows: the specific heat at constant volume,
cv, must always be positive (see [4], p. 110). It is also equivalent to the condition,
following from (6.65), that the internal energy ε is an increasing function of the

absolute temperature θ > 0:
∂ε

∂θ
= −θ

∂2F
∂θ2

> 0.
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after differentiating with respect to s one gets

−∂
2F
∂θ2

∣∣∣∣
θ=∂ε/∂s

∂2ε

∂s2
≡ 1 ;

hence, because of (6.66), the energy must satisfy the restriction

∂2ε

∂s2
> 0 , (6.70)

which ensures the solvability of (6.68)2 with respect to s.
So, at least for isothermal or adiabatic transformations, the thermodynam-

ical potential (directly, or indirectly through the energy) allows a correct for-
mulation of the dynamical problem.10 However, the problem of determining
the characteristic function F still remains.

Without developing a systematic treatise of thermomechanics, we will here
limit ourselves to show how, in certain concrete situations, the experience can
suggest the choice of the thermodynamical potential as well as the stress–
deformation relations, which, in turn, give rise to the constitutive equations
for the material system under consideration.

6.6 Perfect Fluids. Characteristic Equation
and Specific Heat

A perfect fluid is a nonviscous fluid undergoing reversible transformations and
without internal constraints; this definition excludes the case of perfect liquids,
which are nonviscous fluids satisfying also the incompressibility constraint:
D = 1. For a perfect fluid, together with (6.46): Y ik = pgik (i, k = 1, 2, 3), we
have (6.63); then taking into account the identity

1
D∂tD =

1
2
gik∂tgik , (6.71)

(6.60) still holds in the form

dF = − p

μDdD − sdθ . (6.72)

It follows that the thermodynamical potential will depend on the metric gik

only through the invariant D ≡ √g, or the actual density:

10 For reversible transformations which are not isothermal or adiabatic, the knowl-
edge of the thermodynamical potential is not sufficient to give an equal number
of equations and unknowns: it is thus necessary to use other equations, e.g. the
heat equation.
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μ =
μ∗
D . (6.73)

One then has
F = F(μ, θ) , (6.74)

and from (6.72) and (6.73),

dF =
p

μ2
dμ− s dθ .

Hence
p = μ2 ∂F

∂μ
, s = −∂F

∂θ
. (6.75)

Equation (6.75)1 shows that for a perfect fluid there exists a well-determined
relation between pressure, density and temperature (characteristic equation
of the fluid):

p = f(μ, θ) , f
def= μ2 ∂F

∂μ
. (6.76)

Knowing f (often from experience) allows one to add to (6.42) and (6.46) one
more relation, which is enough (at least for isothermal transformations) to
make the dynamical problem determined.11 However, from (6.76), it follows
that the function f alone is not sufficient to fully determine the thermody-
namical potential, but only up to an arbitrary function of the temperature; for
F , instead, the definition (6.58) allows its determination only up to a linear
function of θ.12

The function f is often deduced integrating the specific heat at constant
volume; in fact, since q is the heat absorbed per unit time, the specific heat
is given by

c
def= q

dt
dθ

. (6.77)

In particular, for reversible transformation systems, because of (6.57), one has
q = θ ds/dt, so that (6.77) becomes

c = θ
ds
dθ

. (6.78)

Introducing now the free energy from (6.64)2, one finds

c = −θ d
dθ

(
∂F
∂θ

)
= −θ

(
∂2F
∂θ2

+
∂2F

∂ε∗ik∂θ

dε∗ik

dθ

)
. (6.79)

11 One should think of the Eulerian case; the Lagrangian formulation, as already
noted, implies the presence of another quantity: the metric gik.

12 This is a consequence of the fact that both the internal energy and the entropy
are defined up to an additive constant.
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If the transformation is not generic, but leaves the metric unchanged: dε∗ik =
0, one then gets the specific heat at constant volume:

cv = −θ∂
2F
∂θ2

> 0 , (6.80)

or because of (6.65):

cv =
∂ε

∂θ
> 0 . (6.81)

From (6.76) and (6.80) it is clear that, at least for perfect fluids, the knowl-
edge of the two functions, f and cv (both depending on μ and θ), is equivalent
to that of the free energy defined up to a linear function of the temperature.

6.7 Perfect Gas

Among perfect fluids, perfect gases are characterized by the following condi-
tions:

1. the product of pressure and specific volume13 is a function of temperature
only:

pV = g(θ) > 0 ∼ p = μg(θ) ; (6.82)

2. the internal energy ε is independent of the density:

ε = ε(θ) . (6.83)

Under these hypotheses (6.75)1 becomes ∂F/∂μ = g(θ)/μ, which, after inte-
gration with respect to μ, yields

F = g(θ) logμ+ h(θ) , (6.84)

where h is an arbitrary function of temperature. For the internal energy ε,
besides (6.84), one has the expression

ε = F − θ∂F
∂θ

=
(
g − θdg

dθ

)
logμ+ h− θdh

dθ
, (6.85)

compatible with (6.83) only if

g − θdg
dθ

= 0 ∼ d
dθ

(g
θ

)
= 0

or
g = Rθ , (6.86)

with R a positive constant. Thus, for a perfect gas the characteristic equa-
tion is
13 That is, the volume per unit mass in the actual configuration V = 1/μ.
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p = f(μ, θ) = Rθμ , (6.87)

while the thermodynamical potential is determined up to an arbitrary function
of the temperature:

F = Rθ logμ+ h(θ) . (6.88)

To obtain the function h(θ) it is sufficient to know the specific heat at constant
volume cv or pressure cp. In fact, for a perfect fluid (6.79) reduces to the form:

c = −θ
(
∂2F
∂θ2

+
∂2F
∂μ∂θ

dμ
dθ

)
;

moreover, for constant pressure transformations, that is, for f(μ, θ) = const.,
we have

∂f

∂θ
+
∂f

∂μ

dμ

dθ
= 0 ,

and one has the following invertible relation between constant volume-and
constant pressure-specific heats:

cp = cv + θ
∂2F
∂μ∂θ

∂f

∂θ
∂f

∂μ

. (6.89)

By using (6.87) and (6.88), in the case of a perfect gas one sees that the specific
heats differ by a constant:

cp = cv +R . (6.90)

As a consequence of (6.69) and (6.88) cv is given by

cv = −θd2h

dθ2
. (6.91)

If cv is assigned, (6.91) specifies h(θ) and hence F from (6.88), up to a linear
function of temperature. For instance, if cv = const., we have h = −cvθ log θ,
and from (6.88)

F = θ(R log μ− cv log θ) . (6.92)

The energy ε and the entropy s are then obtained from (6.81) and (6.75)2,
respectively:

ε = cvθ , s = R logμ− cv log θ = log
(
μR

θcv

)
. (6.93)

Expressing temperature by means of the entropy, it follows that

θ = μR/cv e−s/cv ; (6.94)

(6.93)1 gives then the internal energy in terms of μ and s:
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ε = cvμ
R/cv e−s/cv . (6.95)

In the case of adiabatic transformations, introducing a new factor γ ≡ cp/cv
and using (6.90), we have

γ ≡ cp
cv

= 1 +
R

cv
> 1 . (6.96)

From (6.94) one then gets the relation

θ = Kμγ − 1 , K = e−s/cv = const. (6.97)

Thus, for adiabatic as well as isothermal transformations (6.77) reduces to a
direct relation between pressure and density (reduced characteristic equation):

θp = cμγ , c = RK = const. (6.98)

6.8 General Expression for the Power
of the Internal Forces

We will pass now from nonviscous fluids to the more general case of isotropic
systems. For a generic system undergoing reversible transformations charac-
terized by a thermodynamical potential F = F(y, ε, θ), how is the isotropic
property represented in terms of F?

To answer this question, it is convenient to derive a general and intrinsic
expression for the work of the internal forces, which needs the choice, in C∗,
of an arbitrary anholonomic system of triads; that is, a distribution of bases:
λ(r) ≡ λi

(r), r, i = 1, 2, 3,14 generally dependent on P∗ as well as on time but
without any other special meaning, for the moment. With the basis {λ(r)} is
associated the anholonomic metric in C∗:

g(r)(s) = λ(r) · λ(s) = g∗ikλ
i
(r)λ

k
(s) , (r, s = 1, 2, 3) , (6.99)

with its reciprocal g(r)(s) such that

g(r)(h)g
(s)(h) = δs

r ∼ λ(r) · λ(s) = λ
(r)
i λi

(s) = δs
r , (6.100)

where the cobasis vectors λ(r) ≡ (λ(r)
i ) are given by

λ(r) = λ(s)g
(r)(s) ∼ λ

(r)
i = g(r)(s)λ(s)i ≡ g(r)(s)g∗ikλ

k
(s) . (6.101)

Consider the stress and deformation tensor components along the anholonomic
basis introduced above, i.e. ε∗(r)(s) and Y (r)(s), respectively. We have the
following relations:
14 In order to distinguish a tensorial index from an ordinal one we will denote the

latter with a parenthesis.
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ε∗ik = λ
(r)
i λ

(s)
k ε∗(r)(s), Y ik = λ(h)iλ(u)kY(h)(u) , (6.102)

yielding, because of (6.40), the power of the internal forces:

w(i)δt ≡ Y ikδε∗ik = Y (r)(s)δε∗(r)(s) + 2ε∗(r)(s)Y
(h)(s)λi

(h)δλ
(r)
i , (6.103)

where δ = dt ∂t; using then the identity

λi
(h)δλ

(r)
i ≡ δ(λi

(h)λ
(r)
i )− λ(r)

i δλi
(h) = −λ(r)

i δλi
(h) ,

leads to

w(i)δt = Y (r)(s)δε∗(r)(s) − 2ε∗(r)(s)Y
(h)(s)λ

(r)
i δλi

(h) . (6.104)

Consider next the product λ(k)iδλ
i
(h) and specify its symmetric and antisym-

metric parts:

λ(k)iδλ
i
(h) =

1
2
(λ(k)iδλ

i
(h) + λ(h)iδλ

i
(k)) +

1
2
δω(k)(h) , (6.105)

where
δω(k)(h) ≡ λ(k)iδλ

i
(h) − λ(h)iδλ

i
(k) . (6.106)

The reference metric g∗ik is constant with respect to the differentiation δ;
from (6.99) the symmetric part can thus be written as

λ(k)iδλ
i
(h) + λ(h)iδλ

i
(k) = λ(k)

iδλ(h)i + λ(h)
iδλ(k)i ≡ δ(λi

(k)λ(h)i) = δg(k)(h) ,

and (6.105) becomes

λ(k)iδλ
i
(h) =

1
2
(δg(k)(h) + δω(k)(h)), (h, k = 1, 2, 3) . (6.107)

Therefore, taking into account (6.101), (6.104) assumes the form:

w(i)δt = Y (r)(s)δε∗(r)(s) − ε∗(r)(s)Y
(h)(s)g(r)(k)(δg(k)(h) + δω(k)(h)) . (6.108)

An alternative form to (6.108) is obtained by considering the covariant
expressions of the stresses in C:

Ȳik
def= gijgklY

jl ∼ Y ik = gijgklȲjl , (6.109)

as well as the deformation tensor εik∗ :

εik∗
def=

1
2
(gik − gik

∗ ) . (6.110)

Hence, from (6.38)

w(i)δt =
1
2
gijgklȲjlδgik = −1

2
gijgikȲjlδg

kl = −1
2
δj
kȲjlδg

kl ,
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we get the following form for the power of the internal forces:

w(i)δt = −1
2
Ȳikδg

ik ≡ −Ȳikδε
ik
∗ . (6.111)

Using now the components along the anholonomic basis {λ(r)} leads to

−w(i)δt = Ȳ(r)(s)δε
(r)(s)
∗ + 2ε(r)(s)

∗ Ȳ(h)(s)λ
(h)
i δλi

(r) ,

and thus using (6.107)

− w(i)δt = Ȳ(r)(s)δε
(r)(s)
∗ + ε

(r)(s)
∗ Ȳ(h)(s)g

(h)(k)(δg(k)(r) + δω(k)(r)) . (6.112)

The expressions (6.108) and (6.112) for the power of the internal forces are
quite general, i.e. they do not require any particular choice of the anholonomic
frame {λ(r)}. They are clearly simplified if the frame is further specified, for
instance, by requiring that, for any t, the {λ(r)} form an orthonormal triad:
δg(k)(r) = 0. In the following we will explicitly consider this case, with {λ(r)}
coinciding with the principal deformation triad.

By using the exterior product, (6.106) can be written as

δω =
1
2
λ(r) × δλ(r) =

1
2
λ(r) × δλ(r) (6.113)

or, equivalently,

δω = −1
4
δω(r)(s)λ

(r) × λ(s) ; (6.114)

(6.114) explains the kinematical meaning of the antisymmetric quantities
(6.106) [5]. In fact, we have

λ(r) = λi
(r)e

∗
i ∼ e∗i = λ(s)iλ

(s) , (6.115)

so that from (6.113) and using the property δe∗i = 0

δω ≡ 1
2
λ(r) × (δλi

(r)e
∗
i + λi

(r)δe
∗
i ) =

1
2
λ(r) × λ(s)λ(s)iδλ

i
(r),

or, from (6.107),

δω =
1
4
λ(r) × λ(s)(δg(s)(r) + δω(s)(r)) =

1
4
λ(r) × λ(s)δω(s)(r) ,

which completes the proof.

6.9 Isotropic Systems: Constitutive Equations

For a system undergoing reversible transformations, the isotropic condition is
equivalent to the hypothesis that the thermodynamical potential depends on
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the deformation characteristics ε∗ik only, through the associated invariants
Ik (k = 1, 2, 3), with respect to the reference metric or the equivalent scalars:

L = gik
∗ ε∗ik , Q = gir

∗ g
ks
∗ ε∗ikε∗rs , C = gir

∗ g
ls
∗ g

km
∗ ε∗ikε∗rsε∗lm . (6.116)

The isotropic property follows immediately if

F = F(L,Q, C) , (6.117)

(the dependence on the temperature being implicit). The hypothesis that a
system undergoes reversible transformations can be cast, from (6.64)1 and
(6.116), into the following six equalities:

− 1
μ
Y ik =

∂F
∂L

gik
∗ + 2

∂F
∂Q

gir
∗ g

ks
∗ ε∗rs + 3

∂F
∂C g

ir
∗ g

ls
∗ g

km
∗ ε∗rsε∗lm . (6.118)

Thus, any principal direction λ(k) of the deformation tensor (with respect
to the metric g∗ik), ε∗ikλ

(k) = Eg∗ikλ
(k), is also a principal direction of

the tension tensor: Y ikλ(k) = Bgik
∗ λ(k); one then finds the following relation

among the corresponding eigenvalues:

− 1
μ
B =

∂F
∂L

+ 2
∂F
∂Q

E + 3
∂F
∂C E

2 . (6.119)

Thus the deformation and tension tensors admit the same eigenvectors.
Conversely, let us assume that the triad {λ(r)} (r = 1, 2, 3) of the eigendi-

rections of ε∗ik (with respect to g∗ik) is also an eigentriad for the tensor Y ik.
We can show that using the relation

− 1
μ
Y ikδε∗ik = δF(ε) , (6.120)

which is valid for any variation of the εik starting from C∗, there follows a
dependence on the ε∗ik as in (6.117). To see this, let us specialize the an-
holonomic frame {λ(r)} (r = 1, 2, 3) in (6.109) to coincide (locally) with the
principal deformation triad. This implies the simultaneous reduction of the
three tensors ε∗ik, Y ik and g∗ik to the diagonal form:

ε∗(r)(s) = E(r)δrs, Y (r)(s) = B(r)δrs , g(r)(s) = δrs , (6.121)

with E(r) and B(r) the principal tension and deformation characteristics, re-
spectively. Then, from (6.108), and the antisymmetry of the tensor δω(r)(s),
we have

w(i)δt = B(r)δE(r) − ε∗(r)(s)B
(s)δ(h)(s)δ(k)(r)δω(h)(k) = B(r)δE(r) . (6.122)

This equation, in turn, specifies the thermodynamical potential using (6.59),
namely
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dF = − 1
μ
w(i)dt− sdθ ,

in the sense that, as follows from (6.120), F reduces to a differential form in
the three variables, E(r), apart from the dependence on θ:

δF(ε) = − 1
μ
B(r)δE(r) ; (6.123)

that is, δF(ε) is necessarily of the form (6.117).15

For a system undergoing reversible transformations, the free energy (apart
from its dependence on the temperature) can be regarded either as a function
of the (direct) deformation characteristics, ε∗ik, or of the equivalent (inverse
characteristics) εik∗

def= (gik − gik∗ )/2. If F̄(ε∗) denotes the thermodynamical
potential expressed in terms of the variables εik∗ , the isotropic property is
equivalent to the hypothesis that F̄(ε∗) depends on εik∗ only through the in-
variants Īk (k = 1, 2, 3) or the equivalent scalars

L̄ ≡ g∗ikε
ik
∗ , Q̄ = g∗irg∗ksε

ik
∗ ε

rs
∗ , C̄ ≡ g∗irg∗lsg∗kmε

ik
∗ ε

rs
∗ ε

lm
∗ . (6.124)

In this case the following equations correspond to (6.118):

1
μ
Ȳik =

∂F̄
∂L̄

g∗ik + 2
∂F̄
∂Q̄

g∗irg∗ksε
rs
∗ + 3

∂F̄
∂C̄ g∗irg∗lsg∗kmε

rs
∗ ε

lm
∗ , (6.125)

and the eigenvalues satisfy the relations

1
μ
B̄ =

∂F̄
∂L̄

+ 2
∂F̄
∂Q̄

Ē + 3
∂F̄
∂C̄ Ē

2 . (6.126)

For isotropic systems—even if the fundamental variables are reduced to
three—there remains the fundamental problem of the choice of the free energy
(6.117): the quadratic relations (6.118)–(6.125) between stress and deforma-
tion can only be used to suggest hypotheses for it. For instance, after a suitable
choice of the reference configuration, the constitutive equations (6.125) could
be selected as linear and homogeneous functions

∂F̄
∂L̄

= λ̄L̄ ,
∂F̄
∂Q̄

= μ̄ ,
∂F̄
∂C̄ = 0 ,

with λ̄ and μ̄ (Lamé constants) independent of the characteristics εik∗ .
Equation (6.118), as well as the equivalent (6.125), express the stresses in

terms of deformations and they are a special example of constitutive equations,
being characterized by the thermodynamical potential F of the continuous
system. In turn, denoting by s the displacement P∗P, one has

ei = e∗i + ∂is, gik = ei · ek, (6.127)
15 The principal deformation characteristics are functions of the invariants (6.116).
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and the deformation characteristics assume the form

εik =
1
2
(∂is · e∗k + ∂ks · e∗i + ∂is · ∂ks) , (6.128)

that is, they can be expressed in terms of s, a variable which can replace the
velocity: v = ∂ts.

Hence, the constitutive relations (6.118) solve the dynamical problem, be-
cause they give the tensions in terms of displacement and, then, allow one
to obtain, in the fundamental system (6.43), the same number of equations
as unknowns, also taking into account the covariant derivative ∇i associated
with the metric gik = g∗ik + 2εik.

In the case considered above, up to an arbitrary function of the temperature,
the potential is of the form

F̄ =
1
2
(λ̄L̄2 + 2μ̄Q̄) , (6.129)

which is physically meaningful, at least for elastic systems, in the case of
infinitesimal deformations: ε∗ik ∼ −εik. This is, instead, in contrast with
the nonlinear elasticity theory, grounded on the hypothesis that the relations
(6.125) are quadratic [5], which we will not consider here. We prefer to discuss
another, intrinsic, formulation of the Lagrangian mechanics of continuous
systems, which has a geometrical–kinematical counterpart, both in special
and general relativities.

6.10 Dynamical Compatibility of a Continuum

The ordinary formulations of continuum mechanics are generally expressed
in terms of displacement components and assume the choice of a reference
configuration; that is just the point of view used in Sect. 6.9 for an isotropic
system undergoing reversible transformations.

We are now going to consider a different point of view which uses as fun-
damental unknowns the metric, the deformation velocity and the angular
velocity, that is, all variables associated with the actual configuration. This is
a dynamical formulation which, endowed with proper initial data, ensures the
compatibility of the evolutionary problem and, in particular, the Euclidean
property for the metric.

More precisely such a formulation is of intrinsic type, both for the mean-
ing of the variables involved and the choice of the local reference frame, de-
rived from the continuum itself through the Lagrangian variables which are
at disposal; in addition one must consider the precise geometrical–kinematical
meaning of the chosen variables and their tensorial properties.

Finally, apart from the choice of the initial data, no longer free but with
involutive constraints (in the sense of Cartan), the determination of the motion
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of the continuum implies the possibility to integrate a well-determined (first-
order) Cauchy problem; this is the main problem to which the secondary
variables, determined a posteriori by quadratures, are subordinated.

After this short introduction, let us consider in the Newtonian context a
continuum C in regular motion with respect to a fixed Galilean frame Rg. Let
{yi} (i = 1, 2, 3) be an arbitrary set of Lagrangian coordinates, defined up to
an invertible transformation

det
∣∣∣∣
∣∣∣∣ ∂y

i

∂yi′

∣∣∣∣
∣∣∣∣ > 0, (6.130)

and let C be the instantaneous configuration of the continuum

OP = OP(t, y) ∼ xi = xi(t, y) , (6.131)

where xi (i = 1, 2, 3) are (global) Cartesian coordinates. Let {ei} be the natu-
ral basis, locally associated at P ∈ C with the chosen Lagrangian coordinates,
and {ei} the cobasis, defined by the conditions ei · ek = δi

k. Finally, let g be
the Lagrangian metric:

gik = ei · ek ∼ gik =
∂xr

∂yi

∂xs

∂yk
δrs , (i, k = 1, 2, 3) . (6.132)

From the kinematical point of view, the motion of the continuum is determined
by the vectorial function (6.131), and it can be reduced to the integration of
the following differential system:

∂iek = Γj
ikej , ∂tei = ∂iv = hi

kek, ∂tv = a , (6.133)

in the four vectorial unknowns: ei (i = 1, 2, 3) and v which are functions of the
variables yi and t. The coefficients on the right-hand side of (6.133) all have
a geometrical–kinematical meaning and depend on yi and t: the second-type
Christoffel symbols, already defined,

Γj
ik =

1
2
ghj(∂ighk + ∂kghi − ∂hgik) , (6.134)

and the tensor hik, summarizing the deformation velocity kik and the angular
velocity ωik of the continuum:

hik = kik + ωik , (6.135)

being

kik
def=

1
2
∂tgik , ωik

def= ω · ei × ek, ω
def=

1
2
ei × ∂tei . (6.136)

Finally, v = ∂t OP and a = ∂tv denote the Lagrangian velocity and accel-
eration of the generic element of the continuum; the latter, even if with a
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different role, completes the previous coefficients, so that at the right-hand
side of (6.133) appear the characteristics hik and ai as well as the metric gik,
through the Christoffel symbols. To ensure the compatibility of the system
itself, such coefficients cannot be chosen freely; in fact, they must satisfy the
following differential (necessary and sufficient) conditions:

Rikh
j = 0 , Aik

h = 0 , ∂thik = ∇iak + hijhk
j , (6.137)

where Rikh
j is the curvature tensor associated with the metric gik:

Rikh
j def= ∂kΓj

ih − ∂iΓj
kh + Γl

ihΓj
kl − Γl

khΓj
il , (6.138)

while Aikh is related to the gradient of hik:

Aikh
def= ∇iωkh −∇kkhi +∇hkik , (6.139)

with ∇i being the covariant derivative.
The compatibility conditions of the system (6.133) can then be summarized

in three groups of equations, corresponding to (6.137).
The first condition has a purely geometrical meaning, i.e. it concerns the

metric only (and its first- and second-order derivatives), present through the
Christoffel symbols; it is equivalent to six equations (congruence conditions),
which imply, at each instant, the actual configuration C of the continuum,
endowed with an Euclidean flat metric.

Condition (6.137)2, instead, has a geometrical–kinematical meaning, be-
cause it contains the metric (through the covariant derivative) as well as the
deformation and angular velocities.

Finally, (6.137)3 has an evolutive meaning for the tensor hik, and it is the
only equation containing the acceleration ai.

The system (6.137) gives rise to a first-order Cauchy problem, in the vari-
ables gik and hik:

∂tgik = 2h(ik) , ∂thik = ∇iak + hi
jhkj ; (6.140)

these variables are subjected to the constraints

Rikh
j = 0 , Aik

h = 0 , (6.141)

which must be satisfied at each instant and, in particular, initially. The con-
straints (6.141) are involutory, in the sense of Cartan. In fact, from (6.141)
(and the Bianchi identities, see e.g. [4]), it follows that the two tensorial fields
Rikh

j and Aik
h must satisfy the following linear homogeneous first-order dif-

ferential equations:
⎧⎨
⎩
∂tAikh = Rkhi

jaj + 2h[k
jAh]ij − 2hi

jA[kh]j ,

∂tRikh
j = −Rikh

lhl
j +Rikl

jhh
l − 2∇[iAk]h

j ,
(6.142)
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whose coefficients contain the characteristics of the continuum ai and hik,
besides the Christoffel symbols, through ∇i.

To show this, let us start by noting that the definitions (6.134) and (6.138)
imply the identities

∂tΓj
ik = Hik

j , ∂tRikh
j = ∇iHkh

j −∇kHih
j , (6.143)

where
Hik,j

def= ∇ikkj +∇kkji −∇jkik (6.144)

is symmetric with respect to the first pair of indices and depends on the
deformation tensor and the metric. In turn, antisymmetrizing (6.140)2, we
have ∂tωik = ∇[iak] and, after covariantly differentiating both sides,

∂t∇hωik = ∇h∇[iak] + 2Hh[i
jωk]j ; (6.145)

similarly, for the symmetric part ∂tkik = ∇(iak) +hi
jhkj , taking into account

(6.144), one gets

∂t(∇hωik −∇ikkh +∇kkih) = ∇h∇[iak] −∇i∇(kah) +∇k∇(iah)

+2Hh[ijωk]j − 2K[ik]
jhkj − 2ghlK

lj
[i hk]j ,

where
Khik

def= ∇hhik , (6.146)

so that
Ahik = Khik −Hhik . (6.147)

Using now the Ricci theorem (see e.g. [4])

∇i∇kah = ∇k∇iah +Rik
j
haj , (6.148)

as well as the antisymmetric properties

A[hi]k = K[hi]k , R[hik]
j = 0 , (6.149)

one immediately obtains (after differentiation) (6.142)1. To this linear and
homogeneous relation between the tensors ∂tA, A and R there corresponds
an analogous relation between ∂tR, A and R, as a differential consequence of
(6.140)1. In fact, (6.146) and (6.147) imply∇jHikh = ∇j∇ihhk−∇jAikh, from
which, by antisymmetrizing over the first pair of indices and using (6.148), we
have

2∇[jHi]kh = Rji
l
khlh +Rji

l
hhkl − 2∇[jAi]kh .

This confirms (6.142)2 and concludes the proof.
The linearity and homogeneity of the system (6.142) implies the involutive

structure of the constraints (6.141), in the sense that, because of (6.140), the
tensorsAihk andRijk

h vanish at any instant, if they are initially null. It follows
that the compatibility conditions of the system (6.133), that is, (6.137), are
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equivalent to the Cauchy problem (6.140), if the initial data gik,0 and hik,0

satisfy the constraints (6.141) at t = 0, i.e. in C|t=0.
Apart from the (differential) restrictions on the initial data, the problem of

determining the motion of the continuum is thus reduced to the integration
of the Cauchy problem (6.140), which, however, requires the knowledge of the
acceleration field ai; this is in agreement with the Galilei principle, for the
priority of the acceleration in the formulation of the mechanical laws. Apart
from this specification, which we will investigate later, the formulation (6.140)
represents an evolutionary scheme made up by a first-order Cauchy problem
with involutive constraints, naturally giving restrictions to the initial data.

In the case of a continuum, besides the constraint (6.141)1 which concerns
the initial metric only, gik,0, the angular and deformation velocities must
satisfy the conditions (6.141)2

∇iωkh = ∇kkhi −∇hkki . (6.150)

This is a total differential system for ωik, such that the initial angular velocity
ω0(y) is determined, up to a constant, from the initial deformation velocity
kik,0; the latter must then satisfy the congruence conditions

∇j(∇kkhi −∇hkki)−∇i(∇kkhj −∇hkkj) = 0 . (6.151)

So one has an evolutionary scheme, independent of the choice of the Galilean
frame Rg, because the involved variables gik, hik and ai have an intrinsic
meaning. Such a scheme is invariant with respect to the choice of the La-
grangian coordinates and unaffected by transformations like

t′ = t , yi = yi(y′) . (6.152)

Obviously, in Cartesian coordinates, the metric reduces to the Kronecker ten-
sor δk

i , and the covariant derivative ∇i reduces to the partial one ∂i. However,
the Cauchy problem still has the same structure, with the acceleration law
assumed to be known, in agreement with the so-called restricted problem:

ai = ai(t, yj , gik, hkj) . (6.153)

The acceleration plays the role of a dynamical parameter, in the sense that the
specification of the function (6.153) is related to three groups of equations:
Cauchy, continuity and constitutive equations. Clearly, the analytic structure
of the system (6.140) and (6.141) (Cauchy problem plus constraints for the
initial data) remains unchanged, apart from the addition of new dynamical
variables. Similarly, the congruence conditions (6.150) and the differential
consequence (6.151) remain unchanged.

We will consider the complete dynamical picture later, when studying the
relativistic case, which is more transparent and more compact.
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6.11 Hyperelastic Continua: Intrinsic Dynamics

In the Cauchy problem (6.140) the acceleration enters into the second group of
equations only through its gradient∇iak; as a concrete and sufficiently general
example we will consider the case of a hyperelastic continuum undergoing
isothermal or adiabatic transformations, without internal constraints.

The dynamics of such a continuum is governed by the Cauchy and continuity
equations (see (6.42))

μ(F− a)− 1
√
g
∂i(
√
gYi) = 0 , ∂t(μ

√
g) = 0 , (6.154)

with g = det||gik||, as well as by the constitutive equations (characteristic of
the material), which in the present case are expressed in terms of a single
scalar function depending on six variables: the isothermal or adiabatic ther-
modynamical potential W . In the context of finite deformations, (6.154) are
usually written in the Kirchhoff scalar form, obtained by projecting them onto
a fixed triad in the reference configuration C∗, and hence invariant or not, ac-
cording to the choice of the coordinates yi in C∗, Cartesian or curvilinear. As
concerns the constitutive relations, such a formulation—which requires the
introduction of the Piola–Kirchhoff (nonsymmetric) tensor—also requires the
definition of a potential function V , built up from W but depending on nine
variables instead of six (like W ).

Another point of view, directly related to the “moving frame” of stereo-
dynamics (Euler equations, principal and secondary problem), is based on
the scalar equation (6.35), obtained from (6.154)1 after projection on the ba-
sis {ei}:

μ(F i − ai)−∇kY
ik = 0 , (i = 1, 2, 3) . (6.155)

These are “intrinsic” Lagrangian equations, in the sense that they are referred
to a triad {ei}, moving with the generic particle of the continuum and hence
unknown. This triad is defined up to transformations like

ei =
∂yi′

∂yi
ei′ , (6.156)

which do not exclude that ei may be anholonomic. Thus, (6.155) are not equiv-
alent to (6.154)1, because they presuppose the knowledge of the vectorial func-
tions ei(t, y); hence, one is motivated to study their geometrical–kinematical
compatibility, as we have done in the previous section.

However, by using the Lagrangian stress tensor Y ik and the metric gik

instead of the deformation εik, 16 the constitutive equations, because of (6.64)
and (6.68), can be written in the following form:

16 Or the Eulerian one: Xrs =
∂xr

∂yi

∂xs

∂yk
Y ik, with xr the Cartesian coordinates of P.
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Y ik = −2μ
∂W

∂gik
, (i, k = 1, 2, 3) , (6.157)

with W depending, as concerns the actual configuration, on yi and gik: W =
W (y, g). One always assumes the symmetric condition

∂W

∂gik
=
∂W

∂gki
, i �= k ,

which is equivalent to requiring that W depends on six variables only: g1 =
g11, g2 = g22, g3 = g33, g4 = 2g23, g5 = 2g31, g6 = 2g12.

The continuity equation (6.154)2, in turn, is equivalent to the scalar condi-
tion

μ = μ∗
√
g∗/g , (6.158)

which gives the mass density in C in terms of the actual metric, starting from
the initial data: μ∗ and g∗ = det||g∗ik||.

Finally, using the identity

Γk
ik =

1
√
g
∂i(
√
g) , (6.159)

the constitutive relations (6.157) and (6.158) reduce (6.155) to the form

ai = F i + 2
∂W

∂gik

(
∂kμ∗
μ∗

+ Γk

)
+ 2∇k

(
∂W

∂gik

)
, (6.160)

where
Γk

def= ∗Γi
ik − Γi

ik . (6.161)

6.12 Cauchy Problem

Equation (6.160) allows one to give an explicit form for the first-order differ-
ential system (6.140) in the variables gik, kik and ωik, at least in the case of
hyperelastic continuous systems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tgik = 2kik,

∂tkik = ∇(iak) + (ki
l + ωi

l)(kkl + ωkl),

∂tωik = ∇[iak].

(6.162)

First of all, one must introduce on the right-hand side of (6.162) the accel-
eration gradient in terms of the fundamental variables, taking into account
that, by (6.153), it has the form
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∇iak = ∇iFk + 2W̃k
l

[
1
μ∗
∇i(∂lμ∗)−

1
μ2∗
∂iμ∗∂lμ∗ +∇iΓl

]

+2∇i

(
W̃k

l
)(∂lμ∗

μ∗
+ Γl

)
+ 2∇i∇lW̃k

l , (6.163)

where the (known) function W̃k
l:

W̃k
l def= ghk

∂W

∂ghl
, (6.164)

depends, like W , only on the metric gik (and on the fixed Lagrangian param-
eters). For the mass action, instead, the differential system is compatible with
a general force law

F i = F i(t, y, g, h, ∂g) , (6.165)

which is a priori independent of the Lagrangian velocity vi; however, it is easy
to see, from (6.43), that one can obtain a formulation similar to that of (6.47),
in terms of gik and vi.

Under the hypothesis (6.165), (6.160) gives the components of the La-
grangian acceleration ai in terms of the variables t, yi, gik, hik, and derivatives
∂jhik and ∂ljgik.17

Thus, the dynamics of hyperelastic continua can be summarized in a well-
determined first-order Cauchy problem for the variables gik, kik and ωik (all
having a precise geometrical–kinematical meaning), represented by the system
(6.162), with the following initial data: configuration C∗, density μ∗(y), metric
g∗ik corresponding to the chosen coordinates yi, 18 deformation velocity k∗ik(y)
and angular velocity ω∗

ik(y) satisfying in C∗ the constraints19 (6.149).
The mass force F and the thermodynamical potential W enter the evolution

equations (6.162) through the gradient (6.163)20; thus, once the function W
is assigned, conditions (6.162) and the initial data ensure the geometrical–
kinematical compatibility of the scheme.

Moreover, the normal form of the system (6.162) guarantees the uniqueness
of the solution, at least in the analytic case (we are thinking of a series expan-
sion in t of the solutions). Once the principal problem has solved in this way in
order to obtain the motion, one has to integrate the total differential system

17 One must consider the tensorial meaning of the difference between the Christoffel
symbols associated with two different metrics.

18 If the yi are Cartesian orthogonal coordinates, one has g∗ik = δik.
19 We notice, once again, that (6.150)2 is equivalent to determining the angular

velocity ω∗(y), starting from k∗
ik, if ω∗

ik are known at a point of C∗. This is a
strong limitation, for the choice of the initial data, corresponding to the angular
velocity. In turn, the initial deformation velocity is subjected to the congruence
conditions (6.151).

20 The particular case of a perfect fluid presupposes a potential W = W (D) depend-

ing on the scalar D def
=
√

g/g∗, from which Y ik = pgik, being p = −μ∗W ′.
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(6.133), starting from (6.118) and from the solution of the principal problem,
thus obtaining the basis ei and configuration C (secondary problem).

The intrinsic form considered here can also be obtained in relativity (special
or general). In contrast, the approach in terms of displacement which we have
examined, for instance, in the case of the hyperelastic continua, as in the
isotropic case (but with general validity), can be framed in special relativity,
but not in general relativity.

The system (6.162), which presupposes for the Cauchy data the choice of
the configuration C∗, satisfies an important requirement: the invariance with
respect to the choice of Lagrangian coordinates; that is, (6.162) must have
tensorial meaning with respect to transformations like (6.152), since in C∗
there are no a priori preferred coordinates.

We will explore in the next chapter how the general picture of continuum
mechanics is modified in special relativity.
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7

Elements of Relativistic Dynamics
of a Continuum

7.1 Relativistic Extension

Let us focus now on continuous systems in the Minkowski space M4, assumed
to be time-oriented. The admissible frames are not all the orthonormal frames
cα, (α = 0, 1, 2, 3):

cα · cβ = mαβ = diag(−1, 1, 1, 1) , (7.1)

but only those having the timelike vector c0 ∈ C+
3 .

In the Galilean frame Sg, associated with the orthonormal frame cα, we set
c0 = γ (γ ·γ = −1) to stress the different role played by c0 with respect to the
spatial vectors ci (i = 1, 2, 3). In fact the three spatial vectors ci are defined
up to an arbitrary spatial rotation R in the oriented 3-plane Σ, orthogonal to
γ.

Also for a continuous system in the relativistic context one must distinguish
between the absolute formulation of the dynamics and that relative to an
arbitrary Galilean frame. The former is invariant under space-time translations
or rotations (Lorentz transformations); the latter is instead invariant under
time and space translations as well as spatial rotations.

From a physical point of view, the most significant formulation is the rela-
tive formulation, which obeys the relativity principle and hence it is formally
invariant with respect to the choice of the Galilean frame. Moreover, the in-
variance is not substantial and we need to specify the transformation laws of
the various kinematical quantities with respect to a change of the Galilean
frame.

Let us start from the absolute point of view with the continuum represented
by a congruence of ∞3 nonintersecting timelike lines, which fill a world tube
T ∈M4.

Together with the 4-velocity V at each point E ∈ T are also defined two
positive scalar quantities: the proper numerical density of particles 1/D0 (the
proper volume element is proportional to D0, that is, dC/dC0 = 1/D0) and
the proper density of proper mass μ0(E).
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The local tension state of the continuum, from a relative point of view,
is also characterized by the relative specific stresses φn; the latter must be
substituted by the specific 4-stresses TN (T stands for tension and N ∈ M4

is a unit vector), since they must be defined in any Galilean frame, that is, in
any spatial section Σ through E ∈ T . From this point of view, it appears quite
natural to require for the TN properties similar to the corresponding classical
ones. We then have the following postulates for the relativistic continuous
systems [2, 3, 4]:

I From the absolute point of view, the tension state of the continuum is
characterized by a vectorial function over a 3-surface: TN , which is defined
in the closure of T and for each vector N;

II The relativistic Cauchy postulate holds, in the sense that TN is a linear
and homogeneous function of the components of N:

TN = NαTα , Tα = (TN )N=cα ; (7.2)

III The reciprocity axiom holds:

TN ·N′ = TN ′ ·N , ∀N, N′ , (7.3)

that is the Eulerian stress 4-tensor Tαβ, given by

Tα = Tαβcβ , (α = 0, 1, 2, 3) , (7.4)

with respect to the Cartesian basis cα, satisfies the symmetry properties:

Tαβ = T βα, (α, β = 0, 1, 2, 3) . (7.5)

Next, one has to specify the relativistic extension of the Cauchy theo-
rem, that is the evolution equations. The most natural extension is sug-
gested again by the classical evolution equations, interpreting the latter
as the spatial and temporal components of the same space-time equation,
respectively; more precisely, from (6.5) and (6.12) one has

μė = (μ e). − μ̇ e = ∂t(μ e) + ei∂i(μ e) + μ e∂ie
i = ∂t(μ e) + ∂i(μ eei) ,

so that system (6.4)–(6.12) can be cast in the following form:

∂tμ+ ∂i(μei) = 0 , ∂t(μ e) + ∂i(μ e ei) + ∂iφ
i = μF .

Thus, using (5.201)

μ = η2μ0 , η = 1/
√

1− e2/c2 , (7.6)

as well as the ordinary decomposition of the 4-velocity (in Eulerian terms):

V = η(e + cγ) ∼ V 0 = ηc , V i = ηei , (7.7)
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the above equations can be summarized by a single space-time equation:

∂α(μ0V
αV) + ∂iφ

i = μ0k , k = η2F ; (7.8)

the latter, in turn, suggests the most natural relativistic extension. In fact,
the first term on the left-hand side of (7.8) represents a space-time diver-
gence, and it is therefore invariant under Lorentz transformations. Simi-
larly, the term on the right-hand side has an absolute meaning, since μ0 is
invariant and k a vector field, not necessarily orthogonal to γ. The second
term on the left-hand side of (7.8), instead, being a spatial divergence, is
not invariant. However, by using (7.8), the assumed postulates I and II
and the fact that the coordinate stresses Tα transform like contravariant
vectors, one gets their simplest generalization by simply replacing ∂iφ

i by
∂αTα. Thus, we assume the following dynamical postulate:

IV Evolution equations:

∂α(μ0V
αV) + ∂αTα = μ0k , ∀E ∈ T . (7.9)

In (7.9) all the fundamental relativistic ingredients of the absolute me-
chanics of continuous systems appear: the proper density of proper mass
μ0, the 4-velocity V, the (coordinate) 4-stresses Tα and finally the
4-density of mass force k. As in the classical case to the indefinite equa-
tions one must add the

V Boundary conditions:
VαTα = g , (7.10)

where Vα is the unit normal, internal to the boundary B of T (necessarily
spacelike). These conditions only require the specification of the surface
external 4-forces g, in each point of B.

As in the classical case, in relativity (7.9) and (7.10) can be summa-
rized by a single scalar symbolic relation. We will not enter into details
here. However, we point out that the classical point of view, which results
from adapting the “cardinal equations” of the mechanics to a continuum,
has a clear correspondence in the Minkowski space, in the sense that the
axioms II–V follow, substantially, from adapting the linear and angular
momentum equations of the mechanics to a continuum scheme (integral
formulation).

7.2 Proper Mechanical Stresses and Thermal Energy

The richness of the relativistic scheme with respect to the classical one already
shown in the case of a point particle also appears in continuum mechanics.
Here both the tension and the mass forces do not have in general a purely
mechanical character. One must consider that
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TN ·V �= 0 , k ·V �= 0 , ∀E ∈ T and N ∈M4 . (7.11)

Thus, the interface between mechanical and thermal actions is not limited
to the external forces (including surface forces) but is extended to internal
and contact forces too (tension forces). We can then give to (7.9) a more
transparent form, decomposing the coordinate 4-stresses into the parts parallel
and perpendicular to the 4-velocity V:

Tα = Xα +QαV , (7.12)

with
Xα ·V = 0 . (7.13)

The 4-vectors Xα and QαV are named, respectively, the purely mechanical
and the thermal stresses. The vectors Xα satisfy the conditions (7.13) and
hence are spacelike vectors. The vectors QαV are parallel to V and hence are
timelike vectors. Note that both Xα and Qα belong to the proper frame so
that they have an intrinsic meaning.

In the following we will consider only ordinary continuous systems, charac-
terized by the additional postulate XN = NαXα concerning the mechanical
stresses. We note that the vector Qα, because of the reciprocity axiom, is not
independent of the mechanical stresses; in fact, after scalar multiplying (7.12)
by V and using (7.13), we have Tα ·V = −c2Qα; using (7.3) then leads to

−c2Qα = TV · cα = XV · cα + VβQ
βV · cα .

Thus, one has the following expression for Qα:

Qα = − 1
c2

(XV · cα + V ·QV α) ,

that is,

Q =
1
c2

(εc,0 V −XV ) , (7.14)

where the proper density of thermal energy conduction

εc,0 = −Q ·V (7.15)

has been introduced. From (7.14) we see that the 4-vector Qα depends on V
and can be expressed using the mechanical stresses and the scalar invariant
εc,0. The decomposition (7.12) can thus be written as

Tα =
1
c2
εc,0V

αV + Xα − 1
c2

XV · cαV , (7.16)

where V, εc,0 and the mechanical (nonsymmetric) stresses Xα appear.
We define a continuum to be ordinary (with symmetric characteristics and

without thermal conduction) if the following postulate holds:
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VI The proper mechanical stresses satisfy a reciprocity axiom:

XN ·N′ = XN ′ ·N , ∀N,N′ . (7.17)

In this case, XN ·V = 0 , ∀N, implies

XV = VαXα = 0 , (7.18)

that is, absence of mechanical stresses in the direction of V(∀E ∈ T ).
For an ordinary relativistic continuum, (7.14) then becomes

Q = μc,0V , (7.19)

where μc,0 is the proper density of thermal conduction:

μc,0 =
εc,0

c2
; (7.20)

Furthermore, (7.16) assumes the reduced form:

Tα = Xα + μc,0V
αV . (7.21)

Using the proper mechanical stresses, the relativistic Cauchy equation (7.9)
becomes

∂α(Xα + μ̂0V
αV) = μ0k , (7.22)

where μ̂0 is the total proper density, sum of the pure matter density and
thermal conduction:

μ̂0 = μ0 + μc,0 . (7.23)

We stress that the alignment of Q along V follows from the symmetry prop-
erty of the mechanical stresses. For continuous systems having nonsymmetrical
tension characteristics one has an enlarged scheme both from a geometrical
and physical point of view. Actually, (7.19) will no longer be valid and, from
an energetic point of view, the situation will be similar to that of an electro-
magnetic field.

Equation (7.22) can be given in a scalar (Eulerian, because the independent
variables are the xα) form, by introducing the Cartesian components of the
4-velocities as well as the decomposition

Xα = Xαβcβ , (α = 0, 1, 2, 3) , (7.24)

where the tension coefficients Xαβ are symmetric because of (7.17): Xαβ =
Xβα, and satisfy the conditions XαβVβ = 0. Equation (7.22) then becomes

∂αM
αβ = μ0k

β , (7.25)

with Mαβ the energetic tensor:

Mαβ def= μ̂0V
αV β +Xαβ (7.26)
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and the usual conditions:

V αVα = −c2, Xαβ = Xβα , XαβVβ = 0 , (7.27)

so that one has the typical form of conservative equations with sources.
Equation (7.25) are four first-order partial differential relations (divergence-

like equations) between the mass forces (sources proportional to the proper
density of pure matter μ0) and the energetic tensor Mαβ, which summarizes
the three fundamental characteristics of a continuous system (see (7.26)): the
total proper density μ̂0,1 the 4-velocity V α and the purely mechanical proper
stresses Xαβ .

We will show later thatMαβ (with support in T ) summarizes the continuum
material scheme under the only condition of admitting a timelike eigenvec-
tor. In other words, knowing Mαβ is equivalent to knowing the fundamental
ingredients μ̂0, V α and Xαβ, under the limitations (7.27).

From this point of view, for continuous systems the tensor Mαβ plays the
same role as the one played by the Lagrangian function for a system with n
degrees of freedom: they both describe—in a synthetic way—all the contents
of the scheme, in all its generality.

The fundamental equations of the continuum absolute dynamics have the
following form: ⎧⎨

⎩
∂α(μ̂0V

αV β +Xαβ) = μ0k
β ,

XαβVβ = 0 , V αVα = −c2,
(7.28)

where the source kβ must be assigned. These are 9 equations in 16 unknowns:
μ0, μ̂0, V α andXαβ (the latter are 10, because of the symmetry of the tensor).
The scheme is then compatible, starting from fixed initial and boundary condi-
tions, with infinitely many possible motions of the system, even under regular-
ity hypotheses for the assigned functions kα. Compared with the classical situ-
ation, there is one more indetermination due to the presence in μ̂0 = μ0 +μc,0

of the thermal inertia term μc,0. Hence it is necessary to add to (7.28) seven
more equations, the so-called constitutive equations, concerning the internal
structure of the continuum as well as its reaction to external solicitations.

7.3 Space-time Splitting Techniques. The Energy Tensor

The projection of a tensor along a given direction as well as onto the perpen-
dicular 3-space constitutes a very useful and general decomposition method.
This method is purely algebraic and is called natural decomposition. Here we
elucidate it in the case of 2-tensors.

Let Tαβ be an arbitrary 2-tensor and V α a timelike vector, both defined at
a given point E ∈ M4. We have the following polynomial decomposition (in
V ) with tensorial character
1 From this, once μ0 is known, one gets the thermal conduction term μc,0.
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Tαβ = Sαβ + V αSβ + V βS′α + SV αV β , (7.29)

where the various quantities Sαβ , Sβ, S′α and S (respectively, a 2-tensor, two
vectors and a scalar) satisfy the orthogonality conditions:

SαβVα = 0 , SαβVβ = 0 , SβVβ = 0 , S′αVα = 0 . (7.30)

In fact, from (7.30), multiplication of (7.29) by VαVβ gives

TαβVαVβ = S(VαV
α)2 .

Thus, after defining
V 2 = −(VαV

α) , (7.31)

one has the following expression for the scalar S:

S =
1
V 4

TαβVαVβ . (7.32)

Similarly, multiplying (7.29) by Vα and Vβ separately gives

TαβVα = −V 2(Sβ + SV β) , TαβVβ = −V 2(S′α + SV α) ,

from which the expressions for the vectors Sβ and S′β follow:

Sβ = − 1
V 2

TαβVα − SV β , S′α = − 1
V 2

TαβVβ − SV α . (7.33)

Finally, the same (7.29) together with (7.32) and (7.33) determines Sαβ as
a function of Tαβ and V α, and this completes the proof.

The decomposition (7.29) is simplified if Tαβ is special. In particular,

• If Tαβ is symmetric, from (7.33) it follows that the two vectors S and S′

coincide: Sα = S′α and (7.29) becomes

Tαβ = Sαβ + V αSβ + V βSα + SV αV β , (7.34)

Sαβ being symmetric too;
• If Tαβ is antisymmetric, (7.33) imply S = 0 and Sα = −S′α, so that (7.29)

becomes
Tαβ = Sαβ + V αSβ − V βSα , (7.35)

with Sαβ now antisymmetric.

Let us go back to the energy tensor Mαβ of the continuum, satisfying (7.26)
and (7.27), and show that it characterizes the continuum scheme itself, giving
all the necessary descriptional elements. To this end, let us assume the field
Mαβ to be assigned a priori as a symmetric tensor defined in the world tube
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T ∈ M4, and admitting a future-oriented timelike eigenvector V, ∀E ∈ T .
From Mαβ one can obtain the total proper density and the mechanical stress
tensor. In fact, Mαβ can be interpreted as a vectorial map from an arbitrary
vector v into a vector w = M(v), i.e. vα → wα ≡ Mαβvβ . One can then
derive the principal directions of Mαβ :

Mαβvβ = λvα . (7.36)

Moreover,Mαβ can be cast in a diagonal form, since it admits an orthonormal
basis of eigenvectors. In fact, by hypothesis, it has a timelike eigendirection
which defines the world lines of the continuum as well as their 4-velocity V.
Thus, in (7.31) one must consider V 2 = c2 and from (7.36) one has

MαβVβ = λV α . (7.37)

Equation (7.37) simplifies the natural decomposition of Mαβ along V, which
is of the type (7.34) because of the symmetry of Mαβ; hence, from (7.32) we
have

S =
1
c4
MαβVαVβ =

1
c4
λV αVα = − 1

c2
λ . (7.38)

Equation (7.33)1 then implies

Sβ = − λ
c2
V β − SV β = 0 ,

so that (7.34) can be written as

Mαβ = Sαβ − λ

c2
V αV β , SαβVβ = 0 . (7.39)

Comparing now the decomposition (7.39) with (7.26) shows that Sαβ can be
interpreted as the proper mechanical stress tensor Xαβ and, in turn, −λ/c2
is the proper total density μ̂0.

We also note that Xαβ , as a tensor in M4, defines a degenerate map, admit-
ting V as a null eigendirection; on the other hand, as a symmetric tensor in
Σ0 (the spacelike platform orthogonal to V) it can be put in a diagonal form.
Its (three) eigendirections are called principal directions of proper tension.

Hence a symmetric tensor field Mαβ, with a timelike eigenvector, character-
izes a symmetric material scheme (ordinary continuum) with mass density μ0.

Electromagnetism too admits a symmetric energy tensor Eαβ , built up from
the electromagnetic field. However, such a field is also defined outside the
charged matter, and it does not admit a preferred timelike eigenvector. This
is a fundamental difference between the two schemes [1].

7.4 Dust Matter and Perfect Fluids

Let us consider the limiting case of material systems, exemplified by dust
or sand, for which the 4-tensions can be neglected. This is the dust matter
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scheme, characterized by the twofold condition that both the contact and
thermal actions vanish identically:

Xαβ = 0 , μc,0 = 0 , ∀E ∈ T . (7.40)

The energy tensor reduces to the form

Mαβ = μ0V
αV β , (7.41)

where μ0 is the pure matter density, and V α is the 4-velocity.
One can study the special case in which the volume forces vanish too: kα =

0. Equation (7.22) then becomes ∂α(μ0V
αV) = 0, so that

∂α(μ0V
α)V + μ0V

α∂αV = ∂α(μ0V
α)V + μ0A = 0 , (7.42)

where A = V α∂αV = dV/dτ is the 4-acceleration. After contracting (7.42)
with V and using V · A = 0, one obtains the proper mass conservation
equation:

∂α(μ0V
α) = 0, ∀E ∈ T . (7.43)

The latter equation implies, in Eulerian terms, the property that along the
generic world line of the continuum the elementary proper mass μ0dC0 ≡ dm0

is constant:

μ0D0 = const. ∼ d
dτ

(μ0D0) = 0 , ∀E ∈ T . (7.44)

In fact, by using the identity

1
D0

dD0

dτ
= ∂αV

α , (7.45)

(7.43) becomes

V α∂αμ0 + μ0∂αV
α ≡ dμ0

dτ
+
μ0

D0

dD0

dτ
= 0 ,

which coincides with (7.44). Thus the world lines of each element are timelike
straight lines and the proper mass is conserved just as for a single point-mass
in the absence of external forces.

A less extreme case is that of nonviscous fluids, namely material systems
for which the mechanical stress Xn is parallel to n, ∀E ∈ T and ∀n ∈ Σ0

(spatial platform in the proper frame, i.e. orthogonal to V):

Xn = p0n, ∀E ∈ T , ∀n ∈ Σ0 . (7.46)

The proportionality factor p0 is independent of n and is called proper pressure
of the fluid at the considered point. We can now evaluate Xαβ from (7.46);
using the equality Xn = nαXα = nαX

αβcβ , one has
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nαX
αβ = p0n

β ≡ p0nαm
αβ ,

so that
(Xαβ − p0m

αβ)nα = 0 , ∀n ∈ Σ0 . (7.47)

Because of the arbitrariness of n ∈ Σ0, (7.47) is equivalent to the condition
that, for any fixed value of β = 0, 1, 2, 3, the vectorXαβ−p0m

αβ is orthogonal
to Σ0 and hence parallel to V:

Xαβ − p0m
αβ = λβV α . (7.48)

Using the restriction (7.27)3: XαβVα = 0, one can now determine λβ :

−p0m
αβVα = −c2λβ → λα =

1
c2
p0V

α ,

that is

Xαβ = p0

(
mαβ +

1
c2
V αV β

)
, (7.49)

and also
Mαβ = p0m

αβ +
(
μ0 + μc,0 +

p0

c2

)
V αV β . (7.50)

As concerns the number of equations and unknowns, in the case of dust mat-
ter there are five equations for five unknown: μ0 and V α ((7.28)2 vanishes
identically). In the case of nonviscous fluids there are seven unknowns: μ0, μ̂0,
V α and p0 but still only five equations. In fact, (7.28)2 identically vanishes
even in this case because of (7.49):

p0

(
mαβ +

1
c2
V αV β

)
Vα = p0(V β − V β) = 0 .

To have the same number of unknowns and equations one therefore needs two
constitutive equations. It is sufficient, for example, that the thermal inertia
is absent and that a reduced state equation (i.e. an explicit relation between
pressure and proper density) holds; this is exactly the perfect fluid scheme,
characterized by (7.50) plus the conditions

μc,0 = 0 , μ̂0 = μ0 = μ0(p0) . (7.51)

From here one can directly approach relativistic perfect fluids.
Let us return to the general case in order to compare the classical and the

relativistic situations as well as to show the fundamental role of the first law
of thermodynamics in giving us a fully determined set of equations.

7.5 Absolute Dynamics of Ordinary
Relativistic Continua

Let us consider the evolution equations (7.22) for an ordinary relativistic
continuum in a given Galilean frame:
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∂α(μ̂0V
αV + Xα) = μ0k .

Expanding the derivative, one has

∂α(μ̂0V
α)V + μ̂0V

α∂αV = μ0k− ∂αXα ,

where V α∂αV = dV/dτ = A. Thus

∂α(μ̂0V
α)V + μ̂0A = μ0k− ∂αXα . (7.52)

Multiplying by V and using V ·A = 0, one has

−c2∂α(μ̂0V
α) = μ0k ·V − ∂αXα ·V ;

but Xα ·V = 0 identically, so that

∂αXα ·V = ∂α(Xα ·V) −Xα · ∂αV = −Xα · ∂αV ,

and one finds
c2∂α(μ̂0V

α) = −μ0k ·V −Xα · ∂αV ,

or
c2∂α(μ̂0V

α) = μ0r0 − w(i)
0 , (7.53)

where we have introduced the following proper quantities:
⎧⎨
⎩
r0

def= −k ·V thermal radiation power density,

w
(i)
0

def= Xα · ∂αV internal forces power density;
(7.54)

the thermal radiation power density is meant per unit of proper mass while
the internal forces power density is considered per unit of proper volume.
Substituting (7.53) in (7.52) leads to the Newtonian equation:

μ̂0A = F0 , (7.55)

where F0 represents the proper mechanical force per unit proper volume:

F0
def= μ0k− ∂αXα − 1

c2
(μ0r0 − w(i)

0 )V . (7.56)

The Newtonian equation (7.55) shows in what sense the element of a contin-
uum can be compared to a point-mass (apart from the multiplication by the
proper volume element dC0): as concerns the acceleration, the proportional-
ity factor is now μ̂0 = μ0 + μc,0 (total inertial mass per unit proper volume),
and it includes both the pure matter inertia μ0 and the thermal inertia μc,0.
As concerns the proper mechanical force F0, instead, one must add to the
material point term
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μ0f = μ0

(
k− 1

c2
r0V
)
≡ μ0kΣ0 ,

(in place of the 4-force k, one has the proper density of 4-force: dK/dC0 =
μ0k) the contribution of the internal (contact) forces

μ0f (i) ≡ −∂αXα +
1
c2
w

(i)
0 V ; (7.57)

these terms are both orthogonal to V, because of (7.54)2 and (7.13), that is

Xα ·V = 0 ∼ XαβVβ = 0 . (7.58)

Equation (7.53) represents the energy theorem of the relativistic continuum
in the proper frame S0. In fact, after evaluating the derivative and using the
identity (7.45), (7.53) becomes

c2

D0

d
dτ

(μ̂0D0) = W0
def= μ0r0 − w(i)

0 . (7.59)

Thus, up to multiplication by the proper volume element dC0 = D0dC, (7.59)
corresponds to the (proper) energy theorem of the material point (even if with
a different meaning):

dE0
dτ

= q0, (E0 → μ̂0c
2 dC0, q0 →W0 dC0) .

Clearly, passing to the continuum implies a twofold modification, because of
the presence of the density of proper thermal energy μc,0c

2 in addition to the
pure matter term μ0c

2 and because of the thermal power, which includes the
4-force (mass) term, as well as the contribution due to internal stresses.

The proper power of internal forces w(i)
0 can be cast in the classical form

(6.24) differently from the relative power. In fact, transforming (7.54)2 through
the tension characteristics Xαβ = Xβα leads to

w
(i)
0 = Xαβ∂αVβ =

1
2
Xαβ(∂αVβ + ∂βVα) .

Next introducing the proper deformation 4-velocity

καβ
def=

1
2
(∂αVβ + ∂βVα) , (7.60)

one has the (quasi) classical expression (because it is four-dimensional):

w
(i)
0 = Xαβ καβ . (7.61)

The latter, in turn, can be reduced to the classical expression if, according to
(7.34), we consider the natural decomposition of the tensor ∂αVβ :
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∂αVβ = Hαβ + VαSβ + VβS
′
α + SVαVβ , (7.62)

with the conditions

HαβV
β = 0, SαβV

α = 0, SβVβ = 0, S′αVα = 0. (7.63)

In fact, since (∂αVβ)V β = 0, one has

S = 0 , S′α = 0, Sβ = − 1
c2
Aβ . (7.64)

Moreover, the 4-acceleration is proportional to the curvature vector of the
world line by a factor c2:

Aα = c2Cα, (7.65)

so that (7.64) imply for (7.62) the form

∂αVβ = Hαβ − VαCβ , (7.66)

subjected to the conditions given in (7.63):

HαβV
β = 0 , HαβV

α = 0 , CαV
α = 0 . (7.67)

Using the restriction (7.58) one then gets the following expression for (7.61):

w
(i)
0 = Xαβκαβ = XαβH(αβ) , (7.68)

which, in terms of proper quantities, has the same meaning as the classical
formula (6.24). In fact, as will be more clear later, the spatial tensor H(αβ)

has the meaning of ordinary deformation velocity, even though with respect
to the Galilean rest frame.

Finally, as concerns (7.59), besides expressing the energy theorem it is
strictly related with the classical mechanics of continuous systems. In fact,
by introducing the density of proper internal energy ε̂0

μ0ε̂0
def= μ̂0c

2 , ε̂0 = c2 +
μc,0

μ0
c2 , (7.69)

so that (7.59) becomes

1
μ0D0

d
dτ

(μ0D0ε̂0) = r0 −
1
μ0
w

(i)
0 , (7.70)

thus representing (in the Galilean proper rest frame S0) the first law of ther-
modynamics (6.19).

Comparing the relativistic situation with the classical one, (7.70) is for-
mally identical to the expression (6.19) of the first law of thermodynamics,
apart from the replacement of the classical quantities by the corresponding
proper relativistic quantities. However, there is a relevant difference: in clas-
sical mechanics q and ε represent the internal energy of the continuum and
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the exchanged heat (either through radiation or conduction), respectively; in
relativity, instead, q0 and ε̂0 come directly from the adopted scheme, clearly
richer than the classical one.

One then finds, as for the material point, the relativistic unification between
mechanics and thermodynamics. In addition, the relativistic scheme contains
another fundamental element for the description of the thermal field: the
proper vector of thermal conduction q0. We will come back to this point in
the next chapter.

7.6 Relative Dynamics of Ordinary Relativistic Continua

As we have already done for the material point, we are now ready to consider,
besides the absolute formulation, the “relative” formulation with respect to
a given Galilean frame. To develop such an approach which is fundamental
from a physical point of view one needs to:

1. specify the temporal direction γ, which characterizes the frame and (lo-
cally) decompose along γ and orthogonally to it, in Σ, all the various
tensorial quantities;

2. correctly (from both the mathematical and physical point of view) define
the relative quantities;

3. obtain the transformation laws of the relative quantities for an arbitrary
change of the frame.

Let us consider then a general Galilean frame Sg and let γ = c0 be the
temporal direction and {ci} (i = 1, 2, 3) a spatial triad in Σ (associated with
internal coordinates). From (7.18) we have the following conditions for the
mechanical stresses Xα:

VαXα = 0 ∼ Xα ·V = 0 ,

and using the relations V0 = −ηc and Vi = ηei one gets the following expres-
sion for X0:

X0 =
1
c
eiXi . (7.71)

Moreover, the natural decomposition of Xi: Xi = φi − (Xi · γ)γ, where

φi = X ikck ∈ Σ , (i = 1, 2, 3) , (7.72)

assumes here a simple form, because of the condition

Xi ·V = 0 ←→ Xi · (e + cγ) = 0 ←→ Xi · γ = −1
c
Xi · e ,

or
Xi · γ = −1

c
φi · e .
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In fact, the latter becomes

Xi = φi +
1
c
φi · eγ , (i = 1, 2, 3) , (7.73)

and the proper mechanical stresses Xα are all functions of the vectors φi—
given by (7.72)—and of e and γ.

It is quite natural to call the vectors φi the specific coordinate stresses,
relative to the chosen Galilean frame Sg. They also satisfy the ordinary Cauchy
theorem, so that the specific stress relative to the normal n ∈ Σ is

φn = niφ
i , ∀n ∈ Σ, ; , ∀P ∈ C . (7.74)

The natural decomposition (7.71)–(7.73), even if intrinsic in Sg, essentially
depends on the choice of Sg. In particular, in the proper frame S0, one has
X0 = 0 and Xi = φi

0, which specifies the physical meaning of the vectors Xα.
Let us project now the evolution equations (7.22) onto Σ and along γ,

starting from the term ∂α(μ̂0V
αV). By using the (Eulerian) decomposition

V = η(e + cγ) (7.75)

and defining the total density of relative mass

μ̂
def= μ̂0η

2 , (7.76)

one has

∂α(μ̂0V
αV) = ∂i[μ̂ei(e + cγ)] +

1
c
∂t[μ̂c(e + cγ)]

= ∂i(μ̂eie) + ∂t(μ̂e) + [∂i(μ̂ei) + ∂tμ̂]cγ .

Hence, expanding the partial derivatives and using (6.5) together with the
kinematical identity (6.11), we have

∂α(μ̂0V
αV) =

1
D

[(μ̂De). + (μ̂D).cγ] .

Similarly, (7.71) and (7.73) imply

∂αXα = ∂iφ
i +

1
c
∂i(φi · e)γ +

1
c2
∂t(eiφ

i) +
1
c3
∂t(eiφ

i · e)γ .

Introducing now the relative mass force per unit relative mass, F:

μF def= μ0kΣ ≡ μ0(k + k · γγ), μ
def= μ0η

2 , (7.77)

gives rise to the linear momentum theorem

1
D

(μ̂De). = μF def= μF− ∂iφ
i − 1

c2
∂t(eiφ

i) , (7.78)
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as well as to the energy theorem

1
D

(μ̂Dc2). = μW
def= −μ0ck · γ − ∂i(φi · e)− 1

c2
∂t(eiφ

i · e) . (7.79)

In contrast to (7.70), the latter equation is not in its final form, since the
right-hand side should correspond to the total power W . However, by using
(7.75): −cγ = e −V/η, and introducing the specific relative quantities (per
unit relative volume)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

με̂ = μ̂c2 internal energy,

μr = −μ0k ·V/η radiation thermal power,

w(i) = φi ·
(
∂ie +

1
c2
ei∂te

)
internal forces power,

(7.80)

(7.78) can be cast in the typical form:

1
μD

(μDε̂). = W
def= F · e + r − 1

μ
w(i) . (7.81)

Comparing this relation with the material point scheme, we have the addi-
tional term −1/μw(i), which is related to the internal structure of the con-
tinuum. In the relativistic Cauchy equation (7.78) there appears, instead, the
term −1/c2∂t(eiφ

i), absent classically, but also contained in the expression of
the power w(i).

7.7 Transformation Laws of the Fundamental
Relative Quantities

Equations (7.78) and (7.80) obey the relativity principle, since they are for-
mally invariant with respect to the choice of the Galilean frame Sg. However,
they are not substantially invariant because of the relative meaning of the
various quantities. All the relative quantities introduced above (in particular
ε̂, r and w(i)) have instead a real physical content; that is, they cannot be
made as vanishing by a simple change of Galilean frame. In fact, the follow-
ing properties of absolute invariance hold (the index 0 denoting the proper
quantities): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ε̂ = μ̂0c
2/μ0 = inv. = ε̂0,

η3r = −k ·V = inv. = r0,

ηw(i) = Xα · ∂αV = inv. = w
(i)
0 .

(7.82)

Equations (7.82)1,2 directly follow from the definitions (7.80)1,2, using (7.76)
and (7.69) as well as the relation μ = μ0η

2.
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Equation (7.82)3 follows, instead, from (7.54)2 using (7.58), (7.71) and
(7.73), that is:

w
(i)
0 = Xα · ∂αV = Xα · ∂α[η(e + cγ)]

= ∂αηXα · V
η

+ ηXα · ∂αe

= η

(
Xi · ∂ie +

1
c
X0 · ∂te

)

= η

(
φi · ∂ie +

1
c2
eiφ

i · ∂te
)

= ηw(i) .

From (7.82), using the relations

η′

η
=
σ

α
, α =

√
1− u2

c2
, σ = 1− u · e

c2
, (7.83)

one immediately gets the transformation laws of r and w(i), when passing
from Sg to S′

g:

r′ =
(α
σ

)3

r , w′(i) =
(α
σ

)
w(i) , (7.84)

which in the classical situation (c→∞) reduce to invariance laws.
As concerns the mass force of (7.77), the corresponding transformation law

can be derived from the one valid for the material point, apart from the fact
that F and q now refer to the unit of relative mass. Thus, from (3.60), after
multiplying both sides by dm/dm′ = α/σ, one gets the transformation law
for F:

F′ =
α

σ2

[
αF− 1

c2
(F ·w + r)u

]
, (7.85)

involving the thermal power r given by (7.79)2 as well as the vector

w def= e− 1
1 + α

u . (7.86)

Also in this case, as for the material point, the condition F = 0 does not
imply F′ = 0, and hence has no absolute meaning. On the other hand, both
the conditions r = 0 and w(i) = 0 are absolute.

We next consider the transformation laws of the relative mechanical stresses
φi = X ikck or, equivalently, that of φn = niφ

i. To this end we proceed as
follows:

1. start from the proper mechanical stresses Xα:

Xα = Xαβcβ , (7.87)

that is, from the symmetric tensor Xαβ;
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2. use the Lorentz transformation in standard x1-direction:

x′0 =
1
α

(x0 − βx1) , x′1 =
1
α

(x1 − βx0), x′2,3 = x2,3; (7.88)

3. evaluate the components X ′ik = (∂x′i/∂xα)(∂x′k/∂xβ)Xαβ, where

∂x′i

∂xα
=

⎛
⎜⎝
−β
α

1
α

0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ . (7.89)

From (7.89) we thus have the relations
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X ′11 =
1
α2

(β2X00 − βX10 − βX01 +X11),

X ′1a =
1
α

(X1a − βX0a),

X ′2a = X2a , X ′33 = X33,

where a = 2, 3; from the latter, in turn, up to a boost on Σ, we obtain the
relative stresses to S′

g:
φ′i = X ′ikc′k , (7.90)

that is,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ′1 =
1
α

(
1
α
X11c1 +X12c2 +X13c3 −

β

α
X10c1

)

−β
α

(
1
α
X01c1 +X02c2 +X03c3

)
+
β2

α2
X00c1,

φ′a =
1
α
Xa1c1 +Xa2c2 +Xa3c3 −

β

α
X0ac1 , (a = 2, 3).

(7.91)

We must now transform the right sides using the relation

φi = X ikck, X0 = X0αcα =
1
c
ei

(
φi +

1
c
φi · ec0

)
, (7.92)

so that
X0kck =

1
c
eiφ

i, X00 =
1
c2
eiφ

i · e . (7.93)

Moreover, by using the identity

1
α

= 1 + x , x =
1
c2

u2

α(1 + α)
, (7.94)

the sum
Si =

1
α
X i1c1 +X i2c2 +X i3c3 , (i = 1, 2, 3) ,
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reduces to the form
Si = φi + xX i1c1 ,

that is,

Si = φi +
1
c2

φi · u
α(1 + α)

u . (7.95)

Similarly, from (7.93) and using the symmetry of X ik, we have

X0i =
1
c
ekφ

k · ci =
1
c
ekφ

i · ck

or
X0i =

1
c
φi · e, (i = 1, 2, 3) ; (7.96)

thus, (7.91)2 become

φ′a = φa − 1
c2α

φa ·wu, (a = 2, 3) , (7.97)

with w defined by (7.86).
As concerns (7.91)1, there appear terms as in (7.97) and additional terms

as in (7.93) and (7.96):

φ′1 =
1
α

(
φ1 − 1

c2α
φ1 ·wu

)
− β

α

(
1
c
eiφ

i + xX01c1

)
+

1
c2
β2

α2
eiφ

i · ec1

= φ1 − 1
c2α

φ1 ·wu + x

(
φ1 − 1

c2α
φ1 ·wu

)
− β

α

(
1
c
eiφ

i + xφ1 · ec1

)

+
1
c2
β2

α2
eiφ

i · ec1 .

Using the relation φ1 =
1
u
φu leads to

φ′1 = φ1 − 1
c2α

φ1 ·wu +
1
c

β

α

1
1 + α

(
φu −

1
c2α

φu ·wu
)

−1
c

β

α
φe −

1
c3α2

β

1 + α
φu · eu +

β

c3α2
φe · eu .

Noting that φu · e = φe · u, after some algebraic manipulation one gets

φ′1 = φ1 − 1
c2α

φ1 ·wu− 1
c2α

uφw −
1

c4α2

u

1 + α
φu ·wu

+
1

c4α2
uφw · eu ,

and finally

φ′1 = φ1 − 1
c2α

φ1 ·wu− u

c2α

(
φw −

1
c2α

φw ·wu
)
. (7.98)
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Therefore, taking into account the meaning of u in x1-standard coordinates,
(7.97) and (7.98) are summarized by the following relation, without any re-
striction on the choice of the triad T ∈ Sg:

φ′i = φi − 1
c2α

φi ·wu− ui

c2α

(
φw −

1
c2α

φw ·wu
)
. (7.99)

After multiplying by ni one then also gets the corresponding relation between
the mechanical stresses in Sg and S′

g, with respect to the given direction n:

φ′
n = φn −

1
c2α

φn ·wu− n · u
c2α

(
φw −

1
c2α

φw ·wu
)
, (7.100)

where the dependence on the velocity e and on the continuum element is
through the vector w given by (7.86).

In the limit c → ∞ one recovers the classical invariance: φ′
n = φn; in

the relativistic context, instead, the condition φn = pn in Sg does not have
an invariant meaning, since φ′

n �= p′n. In other words, the classical concept
of nonviscous fluid is meaningless in relativity, and the hypothesis of pure
pressure can only be formulated in the proper frame. However, since φw =
wiφ

i, (7.99) can be cast into the form

φ′i =
(
δi
l −

1
c2α

uiwl

)(
φl − 1

c2α
φl ·wu

)
, (7.101)

and thus in terms of the tension characteristics:

X ′ik = Bi
lX

lmBk
m , (7.102)

through the spatial 2-tensor

Bi
l

def= δi
l −

1
c2α

uiwl , (7.103)

which has already been introduced in Chap. 5.

7.8 Energy Theorem and the First Law
of Thermodynamics

In the classical context, the first law of thermodynamics is meant to be a
substitute for the energy theorem, i.e. it is introduced to correct the evaluation
of the kinetic energy. Equation (7.80) confirms this interpretation, in the sense
that it is equivalent to the first law of thermodynamics, once it satisfies the
relativistic Cauchy (7.78). To show this, it is enough to eliminate from (7.78)
and (7.80) the specific mechanical power: F · e. After multiplying (7.78) by e
and using the relation
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e2 = c2
(

1− 1
η2

)
, (7.104)

one has

μF · e =
1
D

(μ̂D).e2 +
1
2
μ̂(e2). =

1
D

(μ̂Dc2).

(
1− 1

η2

)
+

1
η3
μ̂c2η̇ ,

so that (7.80) becomes

1
Dη2

(
μ̂Dc2

). − μ̂c2

η3
η̇ = μr − w(i) .

Multiplying the latter expression by η finally gives

1
D

(
μ̂

η
Dc2
).

= η(μr − w(i)) ;

introducing then the specific internal energy με̂ = μ̂c2, as from (7.80)1, leads
to

1
D

(
μ

η
Dε̂

).

= η(μr − w(i)) . (7.105)

This is exactly the relativistic form of the first law of thermodynamics given
by (6.19). Because of the invariance properties ηD = inv. = D0 and μ/η2 =
inv. = μ0 and using the substantial derivative

η( ). def=
d
dτ

( ) = V α∂α( ) , (7.106)

(7.105) is equivalent to the energy theorem (7.70) in the proper Galilean frame
of the generic continuum element:

1
D0

d
dτ

(μ0D0ε̂0) = μ0r0 − w(i)
0 . (7.107)

Furthermore, using the kinematical identity (5.201)

1
D0

dD0

dτ
= ∂αV

α ∼ ∂α

(
1
D0

V α

)
= 0 , (7.108)

allows us to cast (7.107) into a balance equation:

∂α(μ0ε̂0V
α) = μ0r0 − w(i)

0 = η(μr − w(i)) . (7.109)

In conclusion, from the relative point of view, the general framework of rel-
ativistic continuum mechanics is summarized by the following Eulerian equa-
tions:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
D

(
1
c2
μDε̂e

).

=
1
η2
μkΣ − ∂iφ

i − 1
c2
∂t(eiφ

i),

1
D

(
1
η
μDε̂

).

= η(μr − w(i)),

(7.110)

where the dot denotes the molecular derivative (7.106). Obviously, the relative
numerical density 1/D is not independent of the velocity e from the differential
point of view since we have

Ḋ

D
= div e , (7.111)

which takes the place of the classical equation of mass conservation. The gen-
eral equations are then 5 in 12 unknowns: μ (mass density), 1/D (numerical
density), ei (Eulerian velocity), X ik (tension characteristics) and ε̂ (specific
internal energy). To have the same number of equations as unknowns, one
needs seven more equations. This is not surprising, since one should include
into the equations the characteristic properties of the continuum (thermody-
namical state functions). These are the constitutive equations which, as in
the classical case, involve the energy ε and the mechanical stress X ik, i.e.
the so-called characteristic functions ε̂ = ε̂(μ,D, ei) and X ik = X ik(μ,D, ei),
necessary to make the scheme fully determined.

7.9 Continua Without Material Structure

The system (7.110) can be conveniently transformed after separating μ0ε̂0 =
μ̂0c

2 (with ε̂ = ε̂0 from (7.82)) into the pure matter proper energy from the
proper thermal energy:

μ0ε̂ = μ0c
2 + εc,0, ε̂ = c2 + ε , (7.112)

where ε def= εc,0/μ0 or, in relative terms,

με̂ = μc2 +
μ

μ0
εc,0 = μc2 + με . (7.113)

Equations (7.110) and (7.111) then become⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
D

(μDe). = μ0kΣ − ∂iφ
i − 1

c2

[
∂t(eiφ

i) +
1
D

(μDεe).

]
,

1
D

(
1
η
μD

).

= − 1
c2

[
1
D

(
1
η
μDε

).

− η(μr − w(i))
]
,

Ḋ

D
= div e,

(7.114)

which shows the sources of linear momentum and energy, respectively, con-
sidered in the ordinary sense, that is, in the strictly material context. From
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the absolute point of view, up to the boundary conditions, such sources were
summarized in the volume 4-forces and in the 4-stresses; from the relative
point of view, instead, they are identified with kΣ, r, the mechanical stresses
φi and with the thermal energy ε.

Thus, in order to have the same number of equations as unknowns, one
must specify these sources, which are a priori completely free, apart from the
invariance conditions imposed by the relativistic theory.

Apart from the analogy of (7.110) and (7.111) with the material point
dynamics, the presence in ε̂ of the thermal contribution both to the inertia
and to the internal energy represents a completely new feature of relativistic
continuum mechanics. This is even more evident if one considers a continuum
of classic type, without internal structure, i.e. a continuum such that each
particle has the proper mass as a conserved quantity:

d
dτ

(μ0D0) = 0 ∼ μ0D0 = const. for each element of S . (7.115)

In each Galilean frame, the following conservation theorem holds:
(
μ

η
D

).

= 0 ∼ μ

η
D = const. for each element of S , (7.116)

and (7.114) reduces to the form

μ

η
ε̇ = η(μr − w(i)) , (7.117)

which is the ordinary first law of thermodynamics. The presence on the right-
hand side of the thermal power shows that it cannot be deduced from the
equations of motion. Thus, in the continuum scheme, even without any in-
ternal structure, the energy theorem remains independent of the equations of
motion. This is a peculiar property of the continuum scheme, because it has
no counterpart in the dynamics of particles without internal structure.

In conclusion, for an ordinary relativistic continuum, the relative equations
are six (one more than in the general case, because of the constraint (7.115)):
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
μ

η
D

).

= 0 ,
Ḋ

D
= div e,

1
D

(μDe). =
1
η2
μkΣ − ∂iφ

i − 1
c2

[
∂t(eiφ

i) +
1
D

(μDεe).

]
,

μ

η
ε̇ = η(μr − w(i)),

(7.118)

and there are five unknowns: μ, D and ei. The last equation is a constraint
on the laws of the sources ε, r and X ik (with the last two terms coming from
the internal force power). For instance, it can be used to determine r, starting
from the constitutive functions ε = ε(...) and X ik = X ik(...), which remain
free. Obviously, in such a case kΣ must also be assigned.
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If, instead, the thermal power is assigned, the constitutive equations for
ε = ε(...) and X ik = X ik(...) are necessarily subject to the thermodynamical
constraint (7.118)3. We note that (7.118)4 represents the conservation of the
particle number all along the motion. In fact, it can be written as

1
D
∂tD = − 1

D
∂iDe

i + ∂ie
i ≡ D∂i

(
1
D
ei

)
,

or

∂t

(
1
D

)
+ ∂i

(
1
D
ei

)
= 0 . (7.119)

This completes the proof if one compares the equation just obtained with the
ordinary mass conservation equation, taking into account that 1/D represents
the number of particles of the continuum per unit volume in Sg.

Finally, as concerns the classical situation (c → ∞), the system (7.114)
allows us to re-obtain the ordinary Cauchy equation and it also shows that
the energy theorem reduces to the mass conservation theorem: μD = const.
The coupling with thermodynamics is then lost and the first law of thermo-
dynamics must be assumed as an extra postulate representing the relativistic
correction to order 1/c2 of the same (7.114)2.

References
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8

Elements of Relativistic Thermodynamics
of a Continuum

8.1 Introduction

We have already noted that relativity with its fundamental notion of space-
time is the most convenient framework for the description of physics, in partic-
ular for mechanical and electromagnetic phenomena. In fact, in the mechani-
cal context, it represents the first important step in the process of conceptual
unification of physics. This process, starting from ordinary particles (constant
proper mass), becomes more and more meaningful in the dynamics of par-
ticles endowed with internal material structure, where the energy theorem
is independent of the momentum theorem. There are two important aspects
concerning such unification: (1) the mass and the kinetic energy combine into
the material energy; (2) the mechanical and thermal actions combine into the
4-force.

Passing from the pointlike scheme to the more general one of a continuum,
the unifying process is continued in a natural way. In fact,

1. the notion of 4-stress summarizes the mechanical stress, the internal en-
ergy and the thermal conduction vector;

2. the mass or volume 4-force includes both the mechanical action and the
thermal radiation;

3. the surface 4-force takes into account both the mechanical action on a
surface and the effect of thermal contact with other bodies.

There are clear advantages associated with the absolute formulation of the
thermomechanics of continua. However, besides the elegant and synthetic ab-
solute formulation one has to consider, especially from the physical point of
view, the relative formulation with corresponding properties of invariance, ei-
ther formal with respect to the choice of the Galilean frame or contentwise
under time translations and space translations and rotations. In order to have
a physical content and a general validity a relative theory must be in turn for-
mulated in an arbitrary Galilean frame. In addition, the theory must include
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the transformation laws of the relative ingredients, passing from one frame to
another.

The relativistic framework is deeply modified with respect to the classical
one (and even simplified) either for the relativistic corrections to the tradi-
tional physical ingredients (mechanical stress, power of internal forces, internal
energy, mechanical power, etc.) or for the changes required to the fundamen-
tal equation and, finally, for the relative meaning and dynamical content of
such quantities, typical in relativity. In such a framework, the classical result
becomes better clarified, especially as concerns the decoupling mechanism of
certain quantities (see e.g. the role of the first law of thermodynamics).

In this chapter we will limit our attention to the case of nonpolar continua,
characterized by the condition that the 4-stress tensor be symmetric [1].

The more general scheme of polar relativistic continua, not considered here
because of its complexity, is related to nonsymmetric energy–momentum ten-
sors. The latter are continuous systems which already in the classical context
require the introduction of mass and stress moments [2, 3] from the dynami-
cal point of view; moreover, from the geometrical–kinematical point of view,
they imply the enlargement of the pointlike structure to spinning particles,
by means of applied vector fields (directors) (see e.g. the case of Cosserat
continua [4, 5]) or tensor fields (general microstructures). The study of po-
lar continua in the relativistic context is motivated by the conjecture that
the further unification of thermodynamical and electromagnetic properties of
matter will require a relation between the antisymmetric part of the stress
tensor and the electromagnetic field.

However, we will not further discuss the fascinating problem of unification,
but we will start again from the ordinary scheme, in order to complete some
general aspects concerning the mechanical stresses and their associated proper
values, e.g. the Lagrangian power of internal forces and the associated notion
of isotropy, the class of systems undergoing reversible transformations and the
thermodynamics of perfect fluids.

8.2 Nonpolar Continua

Let us consider the decomposition of the coordinate 4-stresses Tα (α =
0, 1, 2, 3):

Tα = T̂α +QαV , T̂α ·V = 0 , (α = 0, 1, 2, 3) . (8.1)

The total stress TN = NαTα (∀E ∈ T and ∀N ∈M4) splits into two parts:

TN = T̂N +QNV , T̂N = NαT̂α , QN = NαQ
α , (8.2)

which we will call proper total mechanical stress and proper thermal flux at
the point E and along the direction N, respectively. The former, orthogonal



8.2 Nonpolar Continua 265

to V according to (8.1)2, is a spacelike vector. The latter is instead parallel
to V and hence timelike. In the following we will use the notation

Tα = Tαβcβ , T̂α = T̂αβcβ , (8.3)

without assuming a priori the symmetry of Tαβ.
Let us decompose T̂αβ into its symmetric and antisymmetric parts:

T̂αβ = Xαβ
0 + Fαβ

0 , Xαβ
0

def= T̂ (αβ) , Fαβ
0

def= T̂ [αβ] . (8.4)

We will callXαβ
0 = Xβα

0 the proper mechanical stress tensor and Fαβ
0 = −F βα

0

the proper electromagnetic tensor. These two quantities are unified by T̂αβ.
Consider now the natural decomposition along V of all three tensors intro-
duced above: Xαβ

0 , Fαβ
0 and Qα, locally associated with the tension tensor

Tαβ. We have

Xαβ
0 = Xαβ +XαV β +XβV α +XV αV β , (8.5)

and similarly

Fαβ
0 = Hαβ + EαV β − EβV α , c2Qα = qα

0 + εc,0V
α , (8.6)

where all the newly introduced tensors are spatial, i.e. they belong to the
platform Σ0 orthogonal to V at E ∈ T :

⎧⎨
⎩
Xαβ = Xβα , XαβVβ = 0 , XαVα = 0,

Hαβ = −Hβα , HαβVβ = 0 , EαVα = 0 , qα
0 Vα = 0.

(8.7)

Clearly, they are not all independent; for example (8.1)2, after the decompo-
sition (8.4), becomes

Xαβ
0 Vβ + Fαβ

0 Vβ = 0 .

Because of (8.5), (8.6) and (8.7), this equation is equivalent to the condition
Xα +XV α + Eα = 0, that is:

X = 0 , Xα = −Eα .

Therefore, (8.1) and (8.5) assume, respectively, the following forms:

Xαβ
0 = Xαβ − EαV β − EβV α (8.8)

and
Tαβ = Xαβ +Hαβ +

1
c2
qα
0 V

β − 2EβV α +
1
c2
εc,0V

αV β , (8.9)

with εc,0 introduced in (7.20). One can then evaluate the antisymmetric part
of the tension tensor:
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T [αβ] = Hαβ +
(
Eα +

1
2c2

qα
0

)
V β −

(
Eβ +

1
2c2

qβ
0

)
V α .

Hence, the necessary and sufficient condition for the tension tensor Tαβ to be
symmetric is

Hαβ = 0 , Eα = − 1
2c2

qα
0 . (8.10)

In this case (nonpolar continua), which is the only one we consider hereafter,
Tαβ has the form

Tαβ = Xαβ +
1
c2

(qα
0 V

β + qβ
0 V

α + εc,0V
αV β) (8.11)

and is summarized by the 4-velocity V α, the (spatial and symmetric) proper
mechanical stress tensor Xαβ , the scalar invariant proper thermal inertia1

μc,0 = εc,0/c
2 and the spatial vector qα

0 of the proper thermal conduction.
We note that expression (8.11) is the typical (relative) form of the energy

tensor associated with the electromagnetic scheme. Comparing the two fields,
material and electromagnetic, one must assume μ0 = 0 and interpret εc,0 as the
proper electromagnetic energy density, q0 as the Poynting vector and, finally,
Xαβ as Maxwell’s stress tensor. However, in this formal analogy, which can
be extended to any Galilean frame with γ �= γ0 ≡ V/c, Maxwell’s energy
tensor has no direct counterpart in the proper mechanical stress tensor T̂αβ

given by (8.4):

T̂αβ = Xαβ +
1
c2
qβ
0V

α , (8.12)

rewritten here by using (8.8)–(8.10). Such a tensor, different from Xαβ, is also
nonsymmetric:

T̂ [αβ] =
1
c2

(qβ
0 V

α − qα
0 V

β) . (8.13)

Nonpolar continua are still characterized by the reciprocity axiom:

TN ·N′ = TN ′ ·N , ∀E ∈ T , ∀N,N′ ∈M4 . (8.14)

If we assume this axiom to be valid for the proper mechanical stress tensor
T̂N also,

T̂N ·N′ = T̂N ′ ·N , ∀E ∈ T , ∀N,N′ ∈M4 , (8.15)

then T̂αβ is symmetric too, like Tαβ:

Xαβ = Xαβ
0 , Fαβ

0 = 0,

and, as a consequence of (8.6) and (8.10), one has again the scheme of nonpolar
continua, without thermal conduction: q0 = 0 and T̂αβ = Xαβ.
1 The idea of incorporating in the tension tensor a proper energy term different

from that of pure matter μ0V
αV β is due to C. Cattaneo [6].
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8.3 Proper Thermodynamics of the Nonpolar Continua

For a nonpolar continuous system (8.11) and (8.3)1 imply that the 4-stresses
have the form

Tα = Xα +
1
c2

[V αq0 + (qα
0 + εc,0V

α)V] , (8.16)

where we have used the notation

Xα def= Xαβcβ . (8.17)

Thus the proper ordinary stresses XN along N

XN
def= NαXα (8.18)

satisfy the reciprocity property

XN ·N′ = XN ′ ·N , ∀E ∈ T , ∀N,N′ ∈M4 . (8.19)

The coordinate stresses Xα as well as q0 are spatial vectors:

V ·V = −c2 , q0 ·V = 0 , Xα ·V = 0 . (8.20)

The latter condition, because of (8.19), is equivalent to XV · cα = 0 for every
possible choice of the Cartesian basis cα; hence XV = 0 implying the linear
dependence of the vectors Xα:

XV = VαXα = 0 . (8.21)

Thus, when V0 �= 0, (8.21) allows us to express the coordinate stress X0 as a
function of the others:

X0 = −Vi

V0
Xi . (8.22)

Moreover, introducing the total proper mass density μ̂0

μ̂0
def= μ0 + μc,0 , μc,0

def=
εc,0

c2
, (8.23)

as a sum of pure matter inertia and thermal inertia (see (7.23)), the relativistic
Cauchy equation (7.9) can be written in the form

∂α

[(
μ̂0V

α +
1
c2
qα
0

)
V + Xα +

1
c2
V αq0

]
= μ0k (8.24)

or, in scalar terms,
∂αM

αβ = μ0k
β , (8.25)

where the energy tensor Mαβ has the form
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Mαβ = μ̂0V
αV β +Xαβ +

1
c2

(V αqβ
0 + V βqα

0 ) , (8.26)

with the restrictions

V αVα = −c2 , Xαβ = Xβα , XαβVβ = 0 , qα
0 Vα = 0 . (8.27)

To (8.27) one must add the boundary conditions on ∂T :

ναTα = g , (8.28)

with ν being the internal unit normal vector to the hypersurface ∂T , which
is the boundary of the world tube T . The field g should be assigned on ∂T ,
corresponding to the external thermomechanical contact. However, (8.24) can
be written in intrinsic terms as we have already done in (5.46) for the case
q0 = 0 (absence of thermal conduction); performing the derivative and scalar
multiplying by V give first of all the scalar equation analogous to (7.53),

c2∂α

(
μ̂0V

α +
1
c2
qα
0

)
= −μ0k ·V −

(
Xα +

1
c2
V αq0

)
· ∂αV ,

from which we obtain the proper energy theorem

c2∂α(μ̂0V
α) = μ0q0 − w(i)

0 , (8.29)

where the following proper quantities (per unit proper volume) have been
introduced:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0q0
def= μ0(r0 + qc,0) total thermal power,

μ0r0
def= −μ0k ·V radiation thermal power,

μ0qc,0
def= −

(
∂αq

α
0 +

1
c2

q0 ·A
)

conduction thermal power,

w
(i)
0

def= Xα · ∂αV internal forces power .

(8.30)

By substituting (8.29) into (8.24) we finally obtain the equation analogous to
(7.55):

ρ0A = F̂0 , (8.31)

where F̂0 is the total proper mechanical force per unit proper volume:

F̂0
def= μ0k− ∂α

(
Xα +

1
c2
qα
0 V +

1
c2
V αq0

)
− 1
c2

(μ0q0 − w(i)
0 )V ; (8.32)

this expression reduces to the previous F0 when the additional terms due to
the thermal flux q0 are neglected. As concerns the proper power of internal
forces w(i)

0 , one still has the expression (7.68): w(i)
0 = Xαβκαβ ; moreover, by

introducing the proper density of internal energy ε̂ using (7.112)



8.4 Relative Formulation 269

μ0ε̂
def= μ̂0c

2 → ε̂ = c2 + ε , ε
def=

εc,0

μ0
, (8.33)

the energy theorem (8.29) assumes exactly the form (7.70), valid when q0 = 0,

1
μ0D0

d
dτ

(μ0D0ε̂) = q0 −
1
μ0
w

(i)
0 , (8.34)

and represents the first law of thermodynamics in absolute terms and in the
proper frame.

Finally, in order to have the same number of equations as unknowns one
can consider (8.31) and (8.34) as fundamental equations, so that, using (8.33),
the following system of equations (proper formulation) arises:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0

(
1 +

ε

c2

) dV
dτ

= F̂0,

dΩE
dτ

= V , ||V|| = −c2,

1
μ0D0

d
dτ

[
μ0D0

(
1 +

ε

c2

)]
=

1
c2

(
q0 −

1
μ0
w

(i)
0

)
.

(8.35)

To these equations one must add the boundary conditions (8.28), the initial
conditions and the equation of conservation of the proper numerical density:

∂α

(
1
D0

V α

)
= 0 . (8.36)

According to this point of view (i.e. choosing E, V, μ0 and D0 as fundamental
variables), in order to have the same number of equations as unknowns we
must specify all the sources; that is, not only the external fields k and g, with
their thermomechanical content, but also the law of the 4-tensions Tα, i.e.
Xα, q0 and ε. Obviously, Xα, q0 and ε will depend, a priori, on the same
variables appearing in the law of Tα: E, V, μ0 and D0: this is the so-called
equipresence principle [7].

8.4 Relative Formulation

The system of absolute equations (8.35) and (8.36) plays a central role be-
cause of its invariance property with respect to the choice of the Cartesian
coordinates xα (α = 0, 1, 2, 3). However, the (three-dimensional) physical con-
tent of this system is not evident, because all the involved quantities are not
directly measurable (unless the observer’s frame would coincide with the local
rest frame of the continuum). To see such a content one has to consider in-
stead the corresponding formulation relative to an arbitrary Galilean frame.
As in the case q0 = 0 previously examined the following three steps are then
necessary:
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1. select arbitrarily in C+
3 the temporal direction γ characterizing the frame

and decompose, locally, all the various tensorial quantities along γ and
the normal hyperplane Σ;

2. define the various relative quantities, either from the (formal) mathemat-
ical point of view or from a more physical point of view;

3. derive the transformation laws of all the involved relative quantities under
an arbitrary change of the frame.

Let us start by examining (8.24); for the sake of brevity we assume that
the Cartesian coordinates xα are adapted to the chosen frame: c0 = γ. First
of all we note that, as for the ordinary case q0 = 0, the proper stresses Xα

are not all independent, because of (8.22); in fact, using the decomposition
V = η(e + cγ) with e = e(t, x) the Eulerian velocity, we have

X0 =
1
c
eiXi . (8.37)

The three vectors Xi can be further decomposed as follows:

Xi = φi −Xi · γγ ,

with φi ∈ Σ. Hence, using (8.20)3, i.e. Xi · e + cXi · γ = 0, one gets

Xi = φi +
1
c
φi · eγ , (8.38)

so that, combining (8.37) and (8.38), we have that the mechanical stresses
Xα (α = 0, 1, 2, 3) are well-determined functions of e, γ and the three vectors
φi:

Xα =
(
δα
i +

1
c
eiδ

α
0

)(
φi +

1
c
φi · eγ

)
. (8.39)

We call φi (i = 1, 2, 3) the coordinate mechanical stresses relative to γ (so
that φn = niφ

i is the stress relative to n ∈ Σ). They belong to Σ and can
also be written as

φi = X ikck . (8.40)

The tensorX ik, which is spatial (being the complete spatial projection ofXαβ)
and symmetric in the considered frame, gives rise to the Eulerian tension
characteristics. Similarly, the proper thermal conduction vector q0 can be
decomposed in the form q0 = q− q0 · γγ, so that (8.20)2 implies

q0 = q +
1
c
q · eγ . (8.41)

The spatial vector q ∈ Σ is called relative thermal conduction vector; it van-
ishes if and only if q0 = 0.

Let us now project (8.24) on Σ and along γ starting from the term
∂α(ρ0V

αV). Using the decomposition of V: V = η(e + cγ), and defining
as in the ordinary case (q0 = 0)



8.4 Relative Formulation 271

ρ
def= η2ρ0 , (8.42)

we have the following decomposition:

∂α(ρ0V
αV) =

1
D

[(ρDe). + (ρD).cγ] ,

where ( ). denotes the substantial derivative:

( ). = ∂t( ) + ei(t, x)∂xi( ) , (8.43)

and the Eulerian kinematical identity

Ḋ

D
= div e , (8.44)

has been used.
Similarly, from (8.39) we have

∂αXα = ∂iφ
i +

1
c
∂i(φi · e)γ +

1
c2
∂t(eiφ

i) +
1
c3
∂t(eiφ

i · e)γ .

Using then (8.43) and (8.44) leads to

∂α(V αq0) = (ηq0). + ηq0∂ie
i ≡ 1

D
(ηDq0). ;

(8.41) implies

∂α(V αq0) =
1
D

(ηDq). +
1
cD

(ηDq · e). γ .

Finally we have

∂α(qα
0 V) = ∂i(ηqie) +

1
c2
∂t(ηq · ee) + c∂i(ηqi)γ +

1
c
∂t(ηq · e)γ .

Next, after introducing the relative mass force μF

μF def= μ0kΣ ≡ μ0(k + k · γγ) , (8.45)

(8.24) gives the momentum theorem

1
D

(μ̂De). = F̂ def= F + Fc , (8.46)

where the total force density F̂ includes, besides the ordinary term F (see
(7.78)), the contribution due to the thermal flux Fc:⎧⎪⎪⎨

⎪⎪⎩
F def= μF− ∂iφ

i − 1
c2
∂t(eiφ

i),

Fc
def= − 1

c2

[
1
D

(ηDq). + ∂i(ηqie) +
1
c2
∂t(ηq · ee)

]
.

(8.47)
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The energy theorem is then given by

1
D

(μ̂Dc2). = −μ0ck · γ − ∂i(φi · e)− 1
c2

[
1
D

(ηDq · e).

+∂t(eiφ
i · e) + ∂t(ηq · e)

]
− ∂i(ηqi) .

In contrast to (8.46), the above equation is not in a physically meaningful
form yet; this form can be obtained by using the relation −cγ = e−V/η and
expanding the derivatives on the right-hand side. In fact, using the identity

e2 = c2
(

1− 1
η2

)
, (8.48)

and introducing the following relative quantities per unit volume:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

με̂
def= μ̂c2 internal energy,

μr
def= −1

η
μ0k ·V radiation power,

μqc
def= −1

η
∂iq

i − 1
c2

[
1
η
∂t(q · e) + ηq · ė

]
conduction power,

w(i) def= φi ·
(
∂ie +

1
c2
ei∂te

)
internal forces power ,

(8.49)
we can write the energy theorem in its more familiar form:

1
μD

(μDε̂). = F̂ · e + Q̂ , (8.50)

where Q̂ is the total thermal power:

Q̂
def= q − 1

μ
w(i) , q

def= r + qc . (8.51)

8.5 Transformation Laws of the Fundamental
Relative Quantities

The general equations (8.46) and (8.50) satisfy the relativity principle, since
they are formally invariant with respect to the choice of the Galilean frame
associated with the vector γ. However, they are not physically invariant, be-
cause of the relative meaning of the various quantities involved.

All the quantities introduced above, and in particular ε̂, r, qc and w(i), have
a real physical meaning. If we denote by an index 0 the proper quantities, the
following properties of invariance hold:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̂ =
μ̂0c

2

μ0
,

η3r = −k ·V = inv. = r0,

η3qc = − 1
μ0

(
∂αq

α
0 +

1
c2

q0 ·A
)

= inv. = qc,0,

ηw(i) = Xα · ∂αV = w
(i)
0 ,

(8.52)

which complete (7.82), by the inclusion of the thermal flux. Hence, as in the
ordinary case, the transformation laws of the quantities r, qc and w(i), passing
from one Galilean frame Sg to another S′

g, easily follow:

r′ =
(α
σ

)3
r , q′c =

(α
σ

)3

qc , w′(i) =
(α
σ

)
w(i) . (8.53)

Analogously, for the mass forces and the coordinate stresses (see (8.38) and
(8.45)) the transformation laws are exactly those of the ordinary case (q0 = 0),
that is, (7.85) and (7.99):

⎧⎪⎪⎨
⎪⎪⎩

F′ =
α

σ2

[
αF− 1

c2
(F ·w + r)u

]
,

φ′i =
(
δi
k −

1
c2α

uiwk

)(
φk − 1

c2α
φk ·wu

)
, (i = 1, 2, 3),

(8.54)

where the dependence on the Eulerian velocity e is either through the scalar
σ = 1− e · u/c2 or through the vector w:

w = e− u
1 + α

. (8.55)

Finally, for the thermal conduction vector q, from (8.42) we have

q′ = q− 1
c2α

q ·wu . (8.56)

Using then the relativistic theorem of addition of velocities

e′ =
1
σ

(
αe− α+ σ

1 + α
u
)
, (8.57)

we also have the following transformation law for the vector w:

w′ =
α

σ
w . (8.58)

Equation (8.54)1 shows that, from a relativistic point of view, the cases q = 0
(absence of thermal conduction) and r = 0 (absence of thermal radiation) are
allowed. On the other hand, a pure heat theory (in the absence of a mechanical
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interaction) is meaningless; in fact, F = 0 in Sg does not imply F′ = 0 in S′
g,

but rather
F′ = − α

σ2
ru �= 0 .

In the classical case (c → ∞) the situation is obviously different, all the
quantities introduced above having an invariant meaning with respect to the
choice of the Galilean frame. Furthermore, most of the relations decouple and
give rise to the ordinary theories.

8.6 Classical Form of the Relativistic Cauchy Equation

The relativistic equation (8.46) contains the various nonclassical terms, which
appear on both sides and generate a thermodynamical coupling, absent in the
ordinary theory of continuous systems. However, if we use (8.44), (8.46) then
assumes the typical conservative form:

∂t(μ̂e) + ∂i(μ̂eei) = F̂ , (8.59)

similar to the absolute equation from which it is derived. To this equation,
in general, one should not couple the mass conservation equation, differently
from the classical case. Taking into account the meaning (8.42) of μ̂, it is
convenient to separate the pure matter term (μ = η2μ0) from that related
to the thermal conduction (μc = η2μc,0) by introducing the thermal energy
density ε, already used in (8.33):

με = μcc
2 ; (8.60)

(8.42) then assumes the form

μ̂ = μ
(
1 +

ε

c2

)
, (8.61)

where ε is a scalar invariant. The decomposition (8.61) can also be used in the
motion equation (8.59), showing the thermodynamical coupling through the
thermal energy ε, which represents a strictly relativistic result. Clearly, when
q �= 0 the vector Fc, given by (8.47)2, is a coupling term too.

A first alternative form to (8.59) can be obtained by taking into account
(8.47)1, which gives the equivalent expression:

∂

∂t

(
μ̂e +

1
c2
ekφ

k

)
+

∂

∂xi

[(
μ̂e +

1
c2
ekφ

k

)
ei

]

= μF− ∂

∂xi

(
φi − 1

c2
eiekφ

k

)
+ Fc .

The latter equation suggests the introduction of the coordinate dynamical
stresses:
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φ̂i def= φi − 1
c2
eiekφ

k , (8.62)

which, both in the classical approximation (c→∞) and in the proper frame
e = 0, coincide with the ordinary stresses φi. The vectors φ̂i are in 1–1
correspondence with the φi; in fact, from (8.62) and using (8.48) one has

eiφ̂
i =

1
η2
ekφ

k , (8.63)

so that

φi = φ̂i +
η2

c2
eiekφ̂

k
. (8.64)

Therefore, the previous equation, at least in the case q = 0, expresses the
classical form

∂P
∂t

+
∂

∂xi
(Pei) = μF− ∂φ̂i

∂xi
, (8.65)

where P represents the total linear momentum per unit volume:

P def= μ
(
1 +

ε

c2

)
e +

η2

c2
eiφ̂

i . (8.66)

The conservative form (8.65), typical of the classical situation, is still valid
in the relativistic case when q = 0, with a larger meaning due to both the
mechanical sources (dynamical stresses φ̂

i
in place of ordinary stresses φi)

and the newly defined linear momentum, with the addition of the two terms
related to the internal energy ε and to the dynamical stresses φ̂

i
. Moreover,

the conservative form (8.65) remains valid also in the presence of thermal flux
q. In fact, by introducing the dynamical thermal conduction q̂, through the
same law (8.62):

q̂ def= q− 1
c2

q · e e ∼ q = q̂− η2

c2
q̂ · e e , (8.67)

the additional mechanical force Fc given by (8.47)2 assumes the following
form:

Fc = −
[
∂Pc

∂t
+
∂ (Pc e

i)
∂xi

+
∂φ̂

i

c

∂xi

]
,

where

Pc
def=

1
c2

(
ηq̂ +

2η3

c2
q̂ · ee

)
, φ̂

i

c
def=

η

c2
q̂ie . (8.68)

Thus, in the general nonpolar case with q �= 0, the relativistic Cauchy equation
retains its classical form (8.65):

∂P̂
∂t

+
∂

∂xi
(P̂ei) = μF− ∂φ̂i

∂xi
, (8.69)
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where the total linear momentum P̂ and the total stresses φ̂i also include,
besides the ordinary contributions P and φ̂i, the thermal terms Pc and φ̂i

c:
⎧⎪⎪⎨
⎪⎪⎩

P̂ def= P + Pc ≡ μe +
1
c2

(
μεe + η2ekφ̂

k + ηq̂ +
2η3

c2
q̂ · ee

)
,

φ̂i def= φ̂i + φ̂i
c ≡
(
δi
k −

1
c2
eiek

)(
φk +

η

c2
qke
)
.

(8.70)

In particular, neglecting terms of higher order in 1/c2, (8.70) give the approx-
imate expressions:

⎧⎪⎨
⎪⎩

P̂ � μe +
1
c2

(
μεe + ekφ̂

k + q
)
,

φ̂i � φi − 1
c2

(eiekφ
k − qie).

(8.71)

8.7 Transformation Laws of the Dynamical Stresses

Let us consider the relation (8.62) between the ordinary stresses φi and the
dynamical ones φ̂i rewritten in the form

φ̂i def=
(
δi
k −

1
c2
eiek

)
φk ≡ ĝi

kφ
k , (8.72)

through the introduction of the Eulerian tensor

ĝik def=
(
δik − 1

c2
eiek

)
, (8.73)

i.e. a (regular) spatial tensor such that

det||ĝik|| = 1
gη2

> 0 , (8.74)

with reciprocal tensor ĝik (denoted by the same symbol):

ĝik = δik +
η2

c2
eiek , ĝikĝkj = δi

j . (8.75)

The two tensors ĝik and ĝkj depend on the choice of the Galilean frame
Sg, and hence have a relative meaning. In the proper frame (e = 0) they
coincide with the spatial metric, a fact that will allow us to better specify
their geometrical meaning. It is easy to see that, passing from Sg to S′

g, the
following transformation laws hold:

ĝ′ik = Ai
jA

k
hĝ

jh; ĝ′ik = Bj
iB

h
kĝjh , (8.76)
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where the matrices

Ai
k

def= δi
k +

1
c2σ

wiuk , Bi
k

def= δi
k −

1
c2α

wiuk (8.77)

satisfy the relation Ai
kB

k
j = δi

j (see Chap. 5). We also note that, because of
(8.58) and the reciprocity theorem of the velocities

u′ = −u , (8.78)

the tensors A and B given by (8.77) are not only inverse to each other, but
can also be transformed from one to the other:

B′i
k = Ai

k . (8.79)

Let us now consider the transformation law of the ordinary stresses (8.54)2:

φ′i = Bk
i

(
φk − 1

c2α
φk ·wu

)
; (8.80)

using (8.76) leads to

φ̂
′i ≡ ĝ′ikφ̂

′k = Ai
jAk

hĝj
hBl

k

(
φl − 1

c2α
φl ·wu

)

= Ai
jδ

h
l ĝ

j
h

(
φl − 1

c2α
φl ·wu

)
,

so that

φ̂
′i = Ai

j

(
φ̂

j − 1
c2α

φ̂
j ·wu

)
. (8.81)

If we decompose the vectors φ̂
i

along the Cartesian basis, that is

φ̂i = X̃ ikck , (8.82)

it is easy to find the relation with the nonsymmetric tension characteristics:

X̃ ik = ĝi
hX

hk ≡ X ik − 1
c2
eiehX

hk . (8.83)

Moreover, (8.81) implies:

X̃ ′ik = Ai
jX̃

hkBh
k , (8.84)

that is, the two (different) nonsymmetric tensors X̃ ′ik and X̃ ik have in Sg

the same principal invariants. The same property is no longer true for the
ordinary characteristics X ik, given by (8.40); in fact, the latter are symmetric
and transform as follows (see (8.54)2):

X ′ik = Bi
jX

jhBh
k . (8.85)
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8.8 Nonviscous Fluids and Dynamical Pressure

The introduction of the dynamical stresses (8.62) in a given Galilean frame
Sg implies a relativistic consistence for the hypothesis of a pure pressure:

φ̂i = pci ∼ X̃ik = pδik ; (8.86)

in fact, using (8.81), we find φ̂
′i

= p′c′i, ∀S′
g, and hence such hypothesis is

invariant with respect to the choice of the Galilean frame. The scalar p has the
meaning of proper pressure of the fluid, and this is a different way to define
nonviscous fluids. The hypothesis (8.86), using (8.64) and (8.75), is indeed
equivalent to the condition that the ordinary stresses φi have the form

φi = pĝikck ∼ X ik = pĝik , (8.87)

implying that in the proper frame there is no proper viscosity:

φi
0 = p0δ

ikck . (8.88)

In fact, consider (8.54)2 and specialize Sg to be the proper frame S0. Thus
e = 0 and, from (8.57), for a fluid element at rest in S0:

e′ = −u . (8.89)

After multiplying by ni and using the reciprocity axiom, (8.54)2 assumes the
form:

φ′
n = φ0

n +
1
c2

1
α(1 + α)

(u · nφ0
u + φ0

u · nu) +
u · n

c4α2(1 + α)2
φ0

u · uu .

Replacing u through (8.89) and omitting the prime for the sake of brevity
lead to the following dependence between ordinary proper stresses and those
relative to an arbitrary Galilean frame Sg:

φn = φ0
n + Δφn , (8.90)

where

Δφn =
1
c2

η2

1 + η

[
φ0

e · ne + e · n
(
φ0

e +
η2

c2(1 + η)
φ0

e · ee
)]

. (8.91)

Equation (8.90) shows that in a relativistic context it is necessary to distin-
guish between static and dynamical stresses; that is, in any Galilean frame Sg

the stresses depend on the dynamical state of the fluid element (apart from
other conditions) φn = φn(e,φ0

n), different from what happens classically.
We notice that for any direction n orthogonal to e the relativistic correction

to the ordinary stresses Δφn is always parallel to the velocity e and it is a
linear and homogeneous function of φ0

e = eiφ
i.
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Let us assume the continuum to be a nonviscous fluid, that is, from (8.87):

φ0
n = p0n , ∀n ∈ Σ0 . (8.92)

From (8.90) we then have

φn = p0

[
n +

η2

c2(1 + η)
e · n
(

2 +
η2

1 + η

e2

c2

)
e
]

= p0

(
n +

η2

c2
e · ne

)
.

(8.93)
Equation (8.92) implies the following form of coordinate stresses in any
Galilean frame Sg:

φi = p0

(
ci +

η2

c2
eie
)

= p0ĝ
ikck , (8.94)

which is not compatible with a pure pressure; such a compatibility concerns
instead the dynamical stresses φ̂i = p0ci only, confirming the equivalence
between (8.86) and (8.92).

8.9 Lagrangian Form of the Relativistic Cauchy Equation

As we have seen above, the relativistic Cauchy equation (8.69) has been de-
rived using Eulerian coordinates. We will proceed now to transform it in its
Lagrangian form [4]. To this end, let us assume for the continuum a generic
set of Lagrangian coordinates yi (i = 1, 2, 3), i.e. curvilinear coordinates for
the points in the actual configuration C. Let {ei} denote the natural basis
associated with the coordinates yi in C ∈ Sg and gik = ei · ek the Lagrangian
metric with associated Christoffel symbols of the second-type Γh

ik and the
covariant derivative ∇i.

The partial derivatives (spatial and temporal) of the basis vectors {ei}
(and similarly for the cobasis {ei}) give the following geometrical–kinematical
relations:

∂iek = Γh
ikeh , ∂tei = ∂iv ,

(
∂i =

∂

∂yi
, ∂t =

∂

∂t

)
, (8.95)

where v = viei denotes the Lagrangian velocity. The velocity gradient ∇ivk

summarizes, in turn, the two fundamental tensors: ωik (angular velocity) and
kik (deformation velocity):

∇ivk = ωik + kik , vk = gkiv
i . (8.96)

The symmetric tensor kik:

kik
def=

1
2
(∇ivk +∇kvi) , (8.97)
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can also be written as
kik =

1
2
∂tgik ; (8.98)

the antisymmetric tensor ωik is instead equivalent to the vector

ω =
1
2
ei × ∂tei =

1
2
curlv , (8.99)

where ei is the dual basis of ei: ei · ek = δi
k and

ω =
1
2
ωikei × ek , ωik = ω · ei × ek . (8.100)

The Lagrangian form of (8.69) requires the introduction of the Lagrangian
coordinate static stresses Yi or the dynamical ones Ŷi:

Yi =
∂yi

∂xk
φk , Ŷi =

∂yi

∂xk
φ̂k . (8.101)

Moreover, we have the following: (1) the left-hand side of (8.69) can be ex-
pressed using the substantial derivative (8.43), which in Lagrangian terms is
exactly the temporal derivative ∂t; (2) for the vectors φi, in Lagrangian terms,
one still has the ordinary expression for the divergence:

∂φi

∂xi
=

1
D∂i(DYi) , D =

√
g . (8.102)

Using (8.101)1, we find

∂φi

∂xi
=

∂

∂xi

(
∂xi

∂yk
Yk

)

=
∂

∂yh

(
∂xi

∂yk
Yk

)
∂yh

∂xi
= ∂hYk ∂x

i

∂yk

∂yh

∂xi
+ Yk ∂2xi

∂yh∂yk

∂yh

∂xi
.

Next, using the relations

∂yh

∂xi

∂xi

∂yk
= δh

k ,
∂2xi

∂yh∂yk

∂yh

∂xi
= Γl

hk, Γh
hk =

1
D∂kD (8.103)

leads to
∂φi

∂xi
= ∂kYk + Γh

hkYk ≡ 1
D∂k(DYk) .

Thus, (8.69) cast in Lagrangian form becomes

1
D∂t(DP̂) = μF− 1

D∂i(DŶi) , (8.104)

where we have the linear momentum and the generalized stresses given by
(8.62) and (8.70):
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⎧⎪⎨
⎪⎩

P̂ def= μv +
1
c2

(
μεv + η2viŶi + ηq̂ +

2η3

c2
q̂ · vv

)
,

Ŷi def= Ŷi +
η

c2
q̂iv,

(8.105)

where

Ŷi = ĝi
kYk , q̂i = ĝi

kq
k , ĝi

k = δi
k −

1
c2
vivk . (8.106)

As in the classical case, (8.104) can be written in scalar terms in a number of
ways, according to the stress characteristics and the bases used. For instance,
assuming

Ŷi = Ỹ ikek , Yi = Y ikek , (8.107)

it is possible to introduce the dynamical tension characteristics Ỹ ik:

Ỹ ik = ĝi
jY

jk ; (8.108)

these are not symmetric, different from the corresponding Eulerian quantities
X̃ ik given by (8.82). With this choice and using (8.95), (8.104) becomes

1
D∂t(DP̂k) + P̂h∇hv

k = μF k −∇hỸ
hk , (8.109)

that is
∂tP̂k = μF k −∇hỸ

hk − kP̂k − P̂h(ωh
k + kh

k) , (8.110)

where k def= gikkik is the cubic deformation velocity. Equation (8.110), using
(8.105), determines the acceleration a as a function of the sources and paves
the way to the intrinsic formulation of the mechanics of relativistic continua,
although the nonsymmetric character of Ỹ ik makes (8.109) not familiar.

8.10 Lagrangian Form of the Power
of the Internal Forces

In order to complete the Lagrangian formulation, we have to transform the
power of the internal force given by (8.49)4. In Eulerian terms, we have

w(i) = X ikk̂ik ∼ w(i) = φi · (∂te +
1
c2
ei∂te) , (8.111)

where

k̂ik ≡ kik +
1

2c2

(
ei
∂ek

∂t
+ ek

∂ei

∂t

)
(8.112)

and kik is the ordinary deformation tensor:

kik =
1
2

(
∂ek

∂xi
+
∂ei

∂xk

)
. (8.113)
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The temporal derivative of e can be cast in Lagrangian form taking into
account that, for any Eulerian quantity, (8.43) holds:

∂t( ) = ( ). − ei∂i( ) .

Thus, using (8.101)1, (8.111)2 becomes

w(i) = Yi ·
[
∂iv +

1
c2
vi(∂tv − vk∂kv)

]
,

that is

w(i) = Y ik

[
∇ivk +

1
c2
vi(∂tv · ek − vh∇hvk)

]
.

Moreover, because of the identity

∂tv · ek = ∂tvk − v · ∂kv ,

we find

w(i) = Y ik

{
∇ivk +

1
c2
vi[∂tvk − vh(∇kvh +∇hvk)]

}
.

The symmetry of the tension characteristics (either Eulerian, X ik or
Lagrangian, Y ik) then implies

w(i) = Y ik

[
kik +

1
c2
vi(∂tvk − 2vhkhk)

]
, (8.114)

so that, using (8.98),

w(i) =
1
2
Y ik

[
∂tgik +

2
c2
vi(∂tvk − vh∂tghk)

]
. (8.115)

This expression immediately gives the classical limit of w(i):

lim
c→∞ w(i) =

1
2
Y ik∂tgik ,

and it can be further transformed in order to have a single temporal derivative;
in fact, the last term can be written as vh∂tghk = ∂tvk − ghk∂tv

h, so that

w(i) =
1
2
Y ik

(
∂tgik +

2
c2
vighk∂tv

h

)
. (8.116)

Introducing now the covariant form of the tension tensor

Ylh = Y ikgilgkh (8.117)

and using the identity
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Ylh∂tg
lh = −Y ik∂tgik ,

we finally get

w(i) = −1
2
Yik∂tĝ

ik , (8.118)

where the tensor ĝik has been introduced in (8.106)3:

ĝik = gik − 1
c2
vivk . (8.119)

Summarizing, while expressions (8.115) and (8.118) for the power of the in-
ternal forces (expressed in terms of gik and gik, respectively) are equivalent
in the classical case, in relativity only (8.118) assumes a fundamental role,
giving w(i) as a differential form in the variables ĝik (for each element of the
continuum, i.e. for fixed yi).

Another useful expression for w(i) in terms of the dynamical stress variables
Ŷ ik can easily be obtained:

Ŷ ik def= ĝi
j ĝ

k
hY

jh ≡ ĝij ĝkhYjh . (8.120)

Ŷ ik are symmetric, different from the Ỹ ik given by (8.107) and have a
4-degree polynomial form in the Lagrangian velocities vi. In fact, using the
inverse relations we have

Yjh = ĝjiĝhkŶ
ik , (8.121)

where the tensor ĝik has been defined in (8.75):

ĝik = gik +
η2

c2
vivk ; (8.122)

thus, (8.118) can also be written as

w(i) =
1
2
Ŷ ik∂tĝik . (8.123)

Obviously, both (8.118) and its counterpart (8.123) are formally invariant with
respect to the choice of the Galilean frame and are also in agreement with the
transformation law (8.53)3; in fact, in Lagrangian terms, for each element of
the continuum we have

∂t′ =
η

η′
∂t ≡

α

σ
∂t . (8.124)

We notice that w(i) vanishes in Sg (and hence in every S′
g) only for motions

satisfying the conditions

k̂ik ≡
1
2
∂tĝik = 0 ; (8.125)

these are the so-called rigid motions in the sense of Born, already seen in
Chap. 5. More precisely, consider the Minkowski metric mαβ and the associ-
ated natural decomposition in Sg along γ:
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mαβ = m̃αβ − γαγβ , m̃αβγ
β = 0 .

Comparing this form with the corresponding absolute one, along V,

mαβ = m0
αβ −

1
c2
VαVβ , m0

αβV
β = 0 ,

we have, irrespective of the choice of the coordinates,

m0
αβ = m̃αβ +

1
c2
VαVβ − γαγβ .

Thus
m0

αβ = m̃αβ +
η

c

(
eαγβ + eβγα +

η

c
eαeβ

)
, (8.126)

and the total spatial part of the proper metric m0
αβ turns out to be given by

m̃0
αβ = m̃αβ +

η2

c2
eαeβ ; (8.127)

in coordinates adapted to Sg, it coincides with the spatial Eulerian tensor:

m̃0
ik = δik +

η2

c2
eiek ≡ ĝik . (8.128)

These relations specify the geometrical meaning of the Eulerian tensor ĝik,
i.e. the proper spatial metric, induced in the space Σ of Sg; moreover, the
condition (8.125) has an absolute meaning and implies (in Sg) the vanishing
of the proper deformation velocity: k0

ik = 0.
Therefore in relativity the local deformation compatible with the vanishing

of the power of the internal forces is not related to the ordinary rigid motion,
but to the Born-rigid one.

8.11 Energy Theorem and First Law of Thermodynamics

Equation (8.50) confirms the classical interpretation of the first law of thermo-
dynamics as a substitute for the energy theorem [8]. To see this, it is enough
to eliminate from (8.50) the mechanical power F̂ · e by using the relativistic
Cauchy equation (8.46); in fact, after multiplying this equation by e and using
(8.49), we have

μF̂ · e =
1
D

(μ̂D).e2 +
1
2
μ̂(e2).

=
1
D

(μ̂Dc2). − 1
Dη2

(μ̂Dc2). +
1
η3
μ̂c2η̇ ;
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using (8.49)1, (8.50) then becomes

1
Dη2

(μ̂Dc2). − 1
η3
μ̂c2η̇ = μq − w(i) ,

and using (8.52)2,3,4 as well as the relation Dη = D0:

η2

D0
(μ̂Dc2). − μ̂c2η̇ = μq0 − η2w

(i)
0 .

This equation, due to (8.42) and the similar relation μ = η2μ0, coincides with

η
(μ̂0D0c

2).

D0
= μ0q0 − w(i)

0 ,

which, because of the Eulerian identity

η( ). = V α∂α( ) ≡ d
dτ

( ) , (8.129)

reduces to the first law of thermodynamics (8.34). The latter, in turn, coincides
with the energy theorem (8.50), as follows studying it in the proper Galilean
frame of the generic element of the continuum. In fact, using the Eulerian
identity (8.36)

1
D0

dD0

dτ
= ∂αV

α , (8.130)

we find the conservation law of the total proper internal energy (8.29):

∂α(μ0ε̂V
α) = μ0q0 − w(i)

0 . (8.131)

We can also write (8.131) in the Eulerian form:

∂E
∂t

+
∂

∂xi
(Eei) ≡ 1

D
(DE). = η(μq − w(i)) , (8.132)

where E is the relative internal energy density for both pure matter and ther-
mal energy density:

E def=
1
η
μ̂c2 ≡ 1

η
(μc2 + με) . (8.133)

As we have already seen in the case of the relativistic Cauchy equation, (8.132)
can be conveniently rewritten, enlarging the energetic content of E . In fact,
because of (8.67), (8.49)3 can be written in the form

−μqc =
1
η

∂qi

∂xi
+

1
c2η

[
∂

∂t
(q · e) +

∂

∂xi
(q · eei)

− ∂

∂xi
(q · eei) + η2(q · ė)

]

=
1
η

∂q̂i

∂xi
+

1
c2η

[
∂

∂t
(q · e) +

∂

∂xi
(q · eei) + η2(q · ė)

]
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or

−μηqc =
∂q̂i

∂xi
+

1
c2

[
∂

∂t
(η2q̂ · e) +

∂

∂xi
(η2q̂ · eei)

+η2(q̂ +
η2

c2
q̂ · ee) · ė

]
.

Now, by using the identity

e · ė =
c2

η3
η̇ , (8.134)

we obtain the following expression for qc:

− μηqc =
∂q̂i

∂xi
+

1
c2

[
∂

∂t
(η2q̂ · e) +

∂

∂xi
(η2q̂ · eei) + ηq̂ · (ηe).

]
. (8.135)

Hence, (8.132) turns out to be equivalent to

∂Ê
∂t

+
∂

∂xi
(Êei) = Q̂ , (8.136)

where the energy density Ê includes also thermal conduction:

Ê def= E +
1
c2
η2q̂ · e ≡ μc2

η

(
1 +

ε

c2

)
+

1
c2

q · e , (8.137)

and the total source Q̂ has the form

Q̂
def= η(μr − w(i))− ∂q̂i

∂xi
− η

c2
q̂ · (ηe). . (8.138)

We note that the last term in the expression for Q̂ is genuinely relativistic, and
depends on the relative acceleration ė; hence, the first law of thermodynamics
is coupled with the Cauchy equation and this is a novelty with respect to the
classical situation.

Moreover, one immediately finds the Lagrangian form of (8.136) as well as
that of the quantities Ê and Q̂, given by (8.137) and (8.138). The Eulerian
differential system (8.69) and (8.136):

⎧⎪⎪⎨
⎪⎪⎩

∂P̂
∂t

+
∂

∂xi
(P̂ei) = μF− ∂φ̂i

∂xi
,

∂Ê
∂t

+
∂

∂xi
(Êei) = Q̂,

(8.139)

with the general content specified in (8.70), (8.137) and (8.138), is formally
invariant with respect to the choice of the Galilean frame; it gives four (conser-
vative) scalar equations in the same number of unknowns: μ and e; these are
the general equations of the thermodynamics of nonpolar relativistic continua
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and need the sources as well as the associated initial and boundary conditions
to be assigned.

For a single mass point the sources are reduced to the 4-force only, which
summarizes the mechanical and thermal action. For a continuum, instead, be-
sides the mass 4-force (with the quantities F and r) there are the 4-stresses
which, from a relative point of view, give rise to the mechanical stress and
the internal energy together with the thermal conduction vector. Thus, taking
into account (8.62), (8.67), (8.70)2 and (8.138), (8.139) should be completed
(apart from initial and boundary conditions) assigning the functional depen-
dence of the various quantities, as in the classical case: F and r for the external
(volume) force, 2 φi, ε and q3 as concerns the constitutive behaviour of the sys-
tem. These sources require the equipresence principle as a direct consequence
of their absolute nature; moreover, at least in the case considered here, the
sources are a priori free. One must then take into account the invariant prop-
erties of the sources and specify the state variables on which they depend;
these can partially be suggested by the Lagrangian expression (8.118) for the
power of internal forces.

8.12 Finite Deformations in Relativity. Isotropic Systems

The theory of finite deformations [9] with the associate typical tensors
(Cauchy–Green, pure deformation, local rotation, etc.) can be extended in
relativity. Assume a reference kinematical state (C∗,v∗) characterized by the
configuration C∗ and the velocity field v∗ to be arbitrarily fixed in the chosen
Galilean frame Sg. We will denote by a “∗” all the quantities relative to the
reference configuration C∗ and without the “∗” all those associated with the
actual configuration C corresponding to the motion of the continuum.

For the generic element of the continuum, besides the tensor ĝik (given by
(8.119) and representing the proper spatial metric at the coordinate time t),
we can consider the one associated with the reference configuration C∗:

ĝik
∗ = gik

∗ −
1
c2
vi
∗v

k
∗ . (8.140)

Then the following definition of direct and inverse deformation character-
istics is quite natural passing from the configuration C∗ to C:

⎧⎪⎨
⎪⎩
ε̂ik∗

def=
1
2
(ĝik − ĝik

∗ ) ≡ εik∗ −
1

2c2
(vivk − vi

∗v
k
∗ ),

ε̂ik
def=

1
2
(ĝik

∗ − ĝik) ≡ εik − 1
2c2

(vi
∗v

k
∗ − vivk).

(8.141)

2 In the boundary conditions the analogous surface sources also appear.
3 A priori, in the scheme both the temperature and the heat equation do not appear.

A brief discussion concerning these aspects will be outlined when discussing the
Cauchy problem.
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Equation (8.141) refer to Lagrangian coordinates but it can also be easily
adapted to Eulerian coordinates. The covariant form of the deformation ten-
sors is naturally defined as follows:

⎧⎪⎨
⎪⎩
ε̂∗ik

def=
1
2
(ĝik − ĝ∗ik) ≡ ε∗ik +

1
2c2

(η2vivk − η2
∗v

i
∗v

k
∗ ),

ε̂ik
def=

1
2
(ĝ∗ik − ĝik) ≡ εik +

1
2c2

(η2
∗v

i
∗v

k
∗ − η2vivk).

(8.142)

Similar to the classical case [4], the invariants of the direct deformation, with
respect to the metric ĝ∗ik or ĝ∗ik, are functions of the invariants of the inverse
deformation with respect to the metric ĝik or ĝik. But, actually, the mixed
forms of the deformation tensor which can be considered are four:

ε̂∗ij ĝ∗kj , ε̂ij ĝkj , ε̂∗jkĝ∗ij , ε̂jkĝ
ij , (8.143)

and are not all independent:

ε̂∗ij ĝ∗kj = ε̂jk ĝ
kj , ε̂jk

∗ ĝ∗
ij = ε̂ij ĝjk .

We can choose, for instance, the first of the mixed forms in (8.143) and intro-
duce the notation

ε̂∗i
k = ε̂∗ij ĝ∗kj , ε̂ik = ε̂jkĝ

ij , (8.144)

so that ε̂∗i
k = ε̂ik.

In order to build up a relativistic theory of finite deformations one has to
consider in C and C∗ the induced proper metrics ĝik and ĝik∗ instead of the
natural metric gik or g∗ik. The conditions v2 < c2 and v2

∗ < c2 ensure that
both these are proper Euclidean metrics.

The classical definition of isotropy [4, 8] can be extended in relativity as
follows. The continuum C is isotropic,4 with respect to the kinematical status
(C∗,v∗) of Sg, if for each motion and at each instant the symmetric tensors
Yik and ε̂ik (or ε̂ik) admit the same principal directions with respect to the
metric ĝik (or ĝik), for all E ∈ T .

The above condition is equivalent to the existence of constitutive relations
like [10]

Ŷ i
k ≡ ĝijYjk = pδi

k + qε̂ik + rε̂ij ε̂
j
k , (8.145)

where p, q and r are scalar invariants.5 Isotropic systems are then character-
ized by the condition that, once a certain kinematical state is fixed (local or
4 For the sake of simplicity, we will assume that there always exists an isotropic

state corresponding to a planar spatial section of the world tube T . This requires a
preferred Galilean frame, in which the status of the system is considered at certain
instant. However, the isotropic state for the continuum has a local meaning and
it corresponds in general to a curved section of T : in this case the meaning of
instantaneous configuration is lost.

5 Products of more that two matrices ε̂i
j can always be expressed in terms of these

quantities by using the Hamilton–Cayley identity.
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global, necessary to evaluate the finite deformations), the Lagrangian tensor
of the dynamical stresses Ŷ i

k is a quadratic function of the mixed deformation
tensor ε̂ik in briefly, an isotropic function.

Similarly, pulling back Ŷ i
k to the isotropic configuration C∗ and using the

identity ε̂ik = ε̂∗i
k the quadratic relation (8.145) becomes

Ŷ i
k = pδi

k + qε̂∗i
k + rε̂∗i

j ε̂∗j
k . (8.146)

Lowering then, in (8.146), the index i with the metric ĝik:

ĝik = ĝ∗ik + 2ε̂∗ik , (8.147)

and using the Hamilton–Cayley identity for the last term of (8.146), one ob-
tains the Lagrangian characteristics Yik ≡ ĝij Ŷ

j
k in terms of direct deforma-

tions:
Yik = P ĝ∗ik +Qε̂∗ik +Rε̂∗ij ε̂∗hkĝ∗jh , (8.148)

where P , Q and R are functions of p, q and r, and of the direct (or inverse)
deformation invariants.

As in the classical case, nonviscous fluids are included in (8.145) in the
case of vanishing q and r. We notice that the hypothesis of isotropy (8.145),
formulated directly in Sg, has an invariant meaning with respect to the choice
of the Galilean frame. In fact, the covariant tensors Yik, ĝik and ε̂ik have the
same transformation laws (see (8.85) and (8.77)2); thus, (8.145), invariant
with respect to the choice of the Lagrangian coordinates, becomes

Yik = pĝik + qε̂ik + rε̂ij ε̂hkĝ
jh ; (8.149)

it has an absolute meaning and can then be examined from a relative point
of view.

8.13 Continua Without Material Structure

An interesting reduced scheme is that of a continuum without internal struc-
ture, corresponding to the classical scheme of a mass conservation system. As
we have already seen, in the case q = 0 we have the proper mass conservation
law:

V α∂α(μ0D0) = 0 , (8.150)

i.e. the absolute property

μ0D0 ≡
μD

η
= const. , (8.151)

valid for each element of the continuum, with the meaning that the proper
density of proper mass μ0 is proportional to the proper numerical density
1/D0.



290 8 Elements of Relativistic Thermodynamics of a Continuum

In this case, the sources are not completely free; in fact, (8.131), because of
(8.33), assumes the form

(c2 + ε)∂α(μ0V
α) + μ0

dε
dτ

= μ0q0 − w(i)
0 , (8.152)

which, using (8.129), gives rise to the following restriction:

μ

η
ε̇ = η(μq − w(i)) . (8.153)

This is the relativistic form of the first law of thermodynamics; it involves
the sources ε, r, q and the Lagrangian tension characteristics Y ik through the
power of the internal forces. Equation (8.152) suggests the following definition
of systems undergoing reversible transformations, motivated by the classical
case, as those systems for which there exists a function of state (like ε) called
the proper entropy s, such that for each transformation of the continuum

r0
θ0

=
ds
dτ

, (8.154)

where θ0 is the absolute temperature.
From the relative point of view, being r0 = η3r, the identity (8.129) reduces

(8.154) to the form
η3r

θ0
= ηṡ ;

thus, for systems undergoing reversible transformations, in each Galilean
frame one has

r

θ
= ṡ , (8.155)

where θ is the relative temperature:

θ =
θ0
η2

. (8.156)

The converse is also valid: if (8.155) holds in any Galilean frame and with the
following invariance properties:

s = inv. , η3r = inv. , η2θ = inv. , (8.157)

then (8.154) holds too.
The reversibility condition (8.154) introduces the relative temperature θ as

an integrating factor for r and another function of state: the entropy s. The
latter directly concerns the thermal radiation r and allows one to write (8.131)
in the form(

μD

η

).

=
μD

η
θ0ṡ−

(
μD

η
ε

).

− ηDw(i) + μηDqc , (8.158)
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or (
μD

η

).

= −
(
μD

η
F
).

− s
(
μD

η
θ0

).

− ηDw(i) + μηDqc , (8.159)

where F is the free energy (per unit proper mass):

F def= ε− sθ0 . (8.160)

As a consequence, the sources become F, φi and q as well as the two functions
of state: ε and s (or equivalent functions like F and s).

In the general case too, using (8.158) and (8.159), the reversibility hypothe-
sis can give suggestions about the properties of the sources, taking into account
the expression of the internal force power (8.118) or (8.123). However, similar
to what happens in the classical case, such hypothesis is particularly effective
for a continuum without internal material structure and not in the general
case.

8.14 Reversible Systems Without Material Structure

Let us now assume that (8.151) and (8.154) are satisfied; then, from (8.158),
at least for qc = 0, we have the following restriction for the sources:

ε̇ = θ0ṡ−
1
μ0
w(i) , (8.161)

which is unconditionately valid, i.e. it holds for each reversible transformation
of the system. Using (8.118) (or (8.123)), it follows that, for each element of
the continuum, the function of state ε depends on the entropy s, as well as
the variables ĝik (or ĝik) given by (8.119):

ε = ε(yi, s, ĝik) . (8.162)

Moreover, the continuum admits constitutive equations of the form

θ0 =
∂ε

∂s
, Yik = 2μ0

∂ε

∂ĝik
, (8.163)

implying that it is necessarily hyperelastic.
Equations (8.163) allow to deal with the isoentropic case: s = const. in a

purely mechanical context (that is, without considering the coupling with the
heat equation; the latter is necessary when the temperature is considered as
a new variable). The isothermal case, instead, is related to the free energy F .
More precisely, (8.159) gives the following restriction:

Ḟ = −sθ̇0 −
1
μ0
w(i) ; (8.164)
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thus for each element of the continuum, F depends on one side on the absolute
temperature θ0 and on the variables ĝik (or ĝik):

F = F(yi, θ0, ĝ
ik) ; (8.165)

on the other side, the following constitutive relations hold:

s = − ∂F
∂θ0

, Yik = 2μ0
∂F
∂ĝik

. (8.166)

In both cases, isentropic or isothermal, assuming the validity of the Helmholtz
postulate6

∂2ε

∂s2
> 0 ∼ ∂2F

∂θ20
< 0 , (8.167)

the characteristic functions of state reduce to a single one: ε or F . In other
words, as in the classical case, systems undergoing reversible transformations
are characterized by a single constitutive function, which allows us to specify
all the sources, apart from the mechanical action F and the surface thermo-
mechanical one.

At least from the constitutive point of view such relativistic systems are the
counterpart to the ordinary Lagrangian systems in the context of continuous
systems, both of them described by a single function.

If the mass 4-force is intrinsically conservative, that is

k = GradU(x) , (8.168)

with U a scalar invariant, one finds in each Sg
7

μF = μ0(k + k · γγ) ≡ G̃radU(x) (8.169)

and

μr = −μ0

η
k ·V ≡ −μ0

η

dU
dτ

,

6 Such a postulate states that the specific heat is always positive for a constant
configuration [8]. It is equivalent to the condition that the internal energy is an
increasing function of the absolute temperature θ0 > 0:

∂ε

∂θ0
≡ −θ0

∂2F
∂θ2

0

> 0 ,

once (8.160) and (8.166)1 for the internal energy

ε = F − θ0
∂F
∂θ0

are considered.
7 Note that the symbol G̃rad denotes the projection orthogonal to γ of the space-

time gradient Grad.
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that is, from (8.129):
μr = −μ0U̇ . (8.170)

Therefore, each continuum with applied mass solicitation like (8.168) nec-
essarily undergoes reversible transformations too, with

s = −U
θ0
, θ =

θ0
η2

, (8.171)

where θ0 is now an arbitrary positive constant. This is a very special case,
in which all the sources (including mechanical mass forces) are derived by a
single function of state: the internal energy or the thermodynamical potential;
in fact, (8.166)1 specifies the intrinsic potential U , according to (8.171)1:

U = θ0
∂F
∂θ0

, θ0 = const. (8.172)

8.15 Isotropic Reversible Systems
Without Material Structure

Let us assume again that the continuum C has no material structure and is
subjected to reversible transformations, so that, together with (8.151), the
constitutive relations (8.163)–(8.166) hold.

If one avoids a direct coupling with the heat theory also in the relativistic
context, that is, if one only considers isothermal (θ0 = const.) or isentropic
(s = const.) transformations, it comes out:

Yik = 2μ0
∂W

∂ĝik
, (8.173)

where the potential W is given by

W =

⎧⎪⎪⎨
⎪⎪⎩

ε(yi, ĝik, s)|s=const. adiabatic internal energy,

F(yi, ĝik, θ0)|θ0=const. isothermal free energy.
(8.174)

In this case one has a completely determined mechanical scheme, in the sense
that, once the potential W and the constitutive law of the thermal flux q is
known (in isothermal conditions one must assume q = 0), one has the same
number of equations as unknowns. Apart from initial and boundary conditions
(which can easily be derived in relative terms from the absolute formulation),
the final set of equations in Lagrangian form is the following:

1
D∂t(DP̂) = μF− 1

D∂i(DŶi) , ∂t

(
μD
η

)
= 0 , (8.175)
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where
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P̂ def= μ
(
1 +

ε

c2

)
v +

1
c2

(
η2viŶi + ηq̂ + 2

η3

c2
q̂ · vv

)

Ŷi def= Ŷi +
η

c2
q̂iv , Ŷi = ĝikYkheh , q̂ def= q− 1

c2
q · vv,

Yik = 2
μ

η2

∂W

∂ĝik
, ĝik = gik − 1

c2
vivk;

(8.176)

this requires that the internal energy ε in the adiabatic case coincides with
W and is related to F in the isothermal case, taking into account (8.160) and
(8.166)1:

ε =

⎧⎪⎨
⎪⎩
W adiabatic case,

W −
(
θ0
∂F
∂θ0

)
θ0=const.

isothermal case.
(8.177)

As in the classical case, (8.175) can be written in scalar terms in different
ways, but the Lagrangian form of the system introduces one more unknown:
the metric gik. Hence, one is forced to pass to the intrinsic formulation.

Equation (8.175) requires that both the specific mass force F and the po-
tential function W (yi, ĝik), characteristic of the material, as well as the con-
stitutive law of q are all assigned.

The determination ofW is related to the experimental study of the response
of a material (i.e. of the internal stresses) to the various kind of solicitation:
pression or simple flexion, presso-flexion, torsion, etc. Symmetry properties as
the existence of preferred configurations (natural status, isotropic status, etc.)
may eventually reduce the number of variables on which W depends and even
suggest the functional form. For instance, for isotropic systems, W becomes
a function of three variables, instead of six. In fact, W depends on the direct
deformation ε̂∗ik only through its fundamental invariants Îk (with respect to
the metric ĝ∗ik) or equivalent variables. To show this let us recall the isotropy
property (8.148) which reduces (8.173) to the following differential form:

(P ĝ∗ik +Qε̂∗ik +Rε̂∗
j
i ε̂∗jk)˙̂ε∗ik = μ0Ẇ (ε̂∗ik) , (8.178)

deducible from
Yik = 2μ0

∂W

∂ĝik
= μ0

∂W

∂ε̂∗ik
, (8.179)

where a dot here denotes that the infinitesimal variationW can thus be consid-
ered as a function of the direct deformation characteristics ε̂∗ik, in agreement
with (8.141)1:

ĝik = ĝ∗ik + 2ε̂∗ik (8.180)

(the metric ĝ∗ik or ĝ∗ik should be known).
Condition (8.178) holds for any transformation of the system, that is, for any

choice of the variables ε̂ik∗ (or ˙̂ε∗ik). Moreover, after introducing the invariants
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Ĵk (linear, quadratic and cubic of ε̂ik∗ ) in place of the deformation invariants
Îk:

Ĵ1 = ĝ∗ik ε̂
ik
∗ , Ĵ2 = ε̂∗i

j ε̂∗j
i , Ĵ3 = ε̂∗i

j ε̂∗j
hε̂∗h

i , (8.181)

we find

˙̂
J1 = ĝ∗ik

˙̂ε∗ik ,
˙̂
J2 = 2ε̂∗i

j
˙̂ε∗j

i ,
˙̂
J3 = 3ε̂∗i

j ε̂∗j
h
˙̂ε∗h

i , (8.182)

where ˙̂ε∗h
i = ĝ∗il

˙̂ε∗jl. Equation (8.178) thus becomes

P
˙̂
J1 +

1
2
Q

˙̂
J2 +

1
3
R

˙̂
J3 = μ0Ẇ (Ĵ) (8.183)

and turns out to be equivalent to the condition that, for each element of
the continuum, W depends on the direct deformation only through the three
variables Ĵk (in a 1–1 correspondence with the deformation invariants Îk).
Furthermore, in (8.148) one has

P =
μ

η2

∂W (Ĵ)
∂Ĵ1

, Q = 2
μ

η2

∂W (Ĵ)
∂Ĵ2

, R = 3
μ

η2

∂W (Ĵ)
∂Ĵ3

, (8.184)

with the general relations

Ĵ1 = Î1 , Ĵ2 = Î2
1 − 2Î2 , Ĵ3 = Î3

1 − 3Î1Î2 + 3Î3 . (8.185)

In this way, all the ingredients necessary to develop a relativistic finite elas-
ticity theory are introduced, in particular a second degree theory, similar to
the classical one, due to Signorini [11, 12]. One has to require the condition
that, according to (8.181), the constitutive relations (8.149) were exactly of
the second degree in the inverse deformation or in the direct deformation [13]
for an analogous theory.

8.16 Perfect Fluids with Heat Transfer

Consider now the special case of a perfect fluid, characterized by the absence of
viscosity (8.92) and by a reduced constitutive relation between proper pressure
p0 and proper density of proper mass μ0. We note that, similar to the classical
case [8], in the context of continua without material structure a relativistic
perfect fluid can also be defined through the condition that for each element
of the continuum the internal forces (a) do not contrast the disjunction of
elements of the continuum, (b) do not provide work for any transformation
without change of proper volume; and (c) that the system undergoes reversible
transformations.

Such hypotheses are summarized by the condition that the thermodynami-
cal potential F given by (8.160) depends on the metric ĝik through the proper
numerical density of the particles 1/D0:
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1
D0

=
1
ηD ≡

√
det||ĝik|| ; (8.186)

moreover, in any configuration C, we find

Yik = p0ĝik, p0 = −μ0D0
∂F(D0, θ0)

∂D0
. (8.187)

Using now the proper mass conservation law (due to the assumed absence of
material structure)

μ0D0 ≡
μD
η

= const. > 0 , (8.188)

we have the characteristic equation

p0 = p0(μ0, θ0) . (8.189)

Finally, for a perfect fluid with thermal conduction, the set of evolution equa-
tions, in Lagrangian form, is the following:

1
D∂t(DP̂) = μF− 1

D∂i(DŶi) , ∂t

(
μD
η

)
= 0 , (8.190)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̂ =
[
μ+

1
c2

(
με+ η2p0 +

2
c2
η3q̂ · v

)]
v +

1
c2
ηq̂,

q̂ = q− 1
c2

q · vv,

Ŷi =
(
p0δ

i
k +

1
c2
ηq̂ivk

)
ek,

p0 = −∂F(x, θ0)
∂x

, x
def=

1
μ0
.

(8.191)

When q = 0 and considering isothermal or adiabatic transformations, the
system (8.190) gives rise to a purely mechanical scheme, as for the more gen-
eral case of a continuum without material structure and undergoing reversible
transformations. Such a scheme is completely determined starting from the
function F ; when q �= 0, at least in the general case, in order to have the same
number of equations as unknowns one needs either the relativistic heat equa-
tion (not yet formulated in a very satisfactory way) or the evolution equation
for the thermal flux q, that is the so-called entropy principle.

8.17 Introduction to the Cauchy Problem

The classical approach to physics is very different if compared with the rel-
ativistic one. Consider, for example, the case of mechanics; in the classical
theory, based on the Galilean principle of relativity, the only possible point
of view is the relative one. On the other hand in relativity there are three
possible formulations:
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1. the absolute point of view, which is framed in the four-dimensional space-
time (flat in special relativity or curved in general relativity) and expressed
in tensorial language. It is simple and elegant because of its geometrical
content but, unfortunately, it deals with four-dimensional (absolute) ob-
jects, which are but not (directly) observable.

2. the relative point of view, which is tied to an arbitrary three-dimensional
reference frame, i.e. a Galilean “solid”, and is expressed in terms of physi-
cal (observable) quantities. This point of view, instead, is more efficient for
the applications, because of its three-dimensional content, and uses quan-
tities which are directly observable. Moreover, it is formally invariant with
respect to the choice of a reference frame (principle of relativity).

3. the proper Galilean frame point of view, associated with the world lines
of the continuum itself. In this case, once given a reference frame, the
proper quantities become the observables. For instance, we have seen how
the hypothesis of pure pressure for a relativistic fluid is formulated in
the proper Galilean frame. Though it represents an absolute property of
the continuum, it assumes a dynamic character in every frame. Similar
to a Born-rigid motion which appears deformable in every frame, so a
relativistic nonviscous fluid in general appears as viscous in any frame
(see Sect. 8.8).

The unifying aspect of relativity is particularly evident in the mechanics of
continua, where the 4-stress tensor combines three proper quantities: mechani-
cal stress, thermal flux and internal energy density. Again, the three kinematic
ingredients: acceleration, angular velocity and deformation velocity (distinct
in classical theory), are summarized, in relativity, by a single 4-tensor: the
space-time gradient of the 4-velocity: V [14, 15].

In this context we will to discuss the intrinsic Cauchy problem in special
relativity for thermomechanical continua, intrinsic in the sense of the rigid
Euler dynamics or according to the “rèpere mobile”. In fact, let us consider
an anholonomic frame distribution and the associated essential ingredients
(geometrical and physical); we have a principal (Cauchy) problem and then
a secondary problem, sub-ordered to the first and totally integrable. Here the
assumed variables (all spatial) are metric, angular and deformation velocities,
acceleration and mass density. We will also discuss the corresponding con-
ditions of compatibility; the latter, classically, constrain only the deformation
velocity, whereas in relativity, constrain both the acceleration and the angular
velocity. Consequently, the initial constraints involve the acceleration as well
as the constitutive functions which, in such a way, have influence also on the
initial data.

8.17.1 Relativistic Compatibility

Denote by Γ a timelike congruence of world lines identifying a kinematic con-
tinuum in M4. The lines of Γ never intersect each other (conservation of the
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particles’ number) and are characterized by the timelike unit tangent vector
field γ, γ · γ = −1, so that V = cγ represents the local 4-velocity of the
continuum itself.

Introduce local coordinates yα with (α = 0, 1, 2, 3) and y0 = ct adapted to Γ;
let {eα} be the natural basis associated with yα and gαβ(y) the corresponding
metric, analogous to (5.11) but now in four dimensions.

Γ induces in M4 an almost-product orthogonal structure 1×3, locally defined
by the timelike direction γ and by the spatial platform Σ, i.e. the orthogonal
complement to γ in the tangent space. This structure allows a systematic
and natural decomposition of all tensor fields in M4 which can be directly
achieved by using an adapted anholonomic basis. For example, a convenient
almost-natural basis {ẽα} is the following8:

ẽ0
def= V ∼ V 0e0, ẽi

def= ei −
Vi

V0
e0 ∼ ẽi = ei +

1
c2
ViV , (8.192)

having tensorial behaviour under transformations of the coordinates yα inter-
nal to Γ, that is

y0′
= y0′

(y), yi′ = yi′(y1, y2, y3), (8.193)

and giving rise to the (Euclidean) induced metric on Σ

γik = ẽi · ẽk , (8.194)

with inverse γik.
The following fundamental relations are associated with (8.192):

⎧⎪⎨
⎪⎩
∂̃iẽk = Γj

ik ẽj +
1
c2
HikV, ∂ẽi = Hi

kẽk +
1
c2
AiV,

∂̃iV = Hi
kẽk, ∂V = Aj ẽj ,

(8.195)

where Hi
k = γkjHij and ∂̃α ≡ (∂, ∂̃i) are the Pfaffian derivatives correspond-

ing to the frame vectors of (8.192):

∂
def= V α ∂

∂yα
, ∂̃i

def=
∂

∂yi
− Vi

V0

∂

∂y0
∼ ∂

∂yi
+

1
c2
Vi∂. (8.196)

Equation (8.195) contain all the geometrical–kinematical ingredients for the
description of the continuum Γ, namely the proper deformation velocity Kik,
the angular velocity Ωik (which together form the tensor Hik = Kik + Ωik),
the 4-acceleration Ai = c2Ci (Ci being the curvature vector of the world lines
of Γ) and finally the spatial Christoffel symbols Γj

ik. One can evaluate the
anholonomic tensor associated with the derivatives (8.196),
8 We have indicated here both the general form and the corresponding one in

adapted coordinates to Γ, the latter being specified by a ∼.
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[∂̃α, ∂̃β] = Aσ
αβ ∂̃σ , (8.197)

whose nonvanishing components are

A0
i0 =

Ai

c2
, A0

ik = 2Ωik . (8.198)

A direct calculation gives then the following expressions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci = γ0

[
∂̃iγ

0 + ∂

(
γi

γ0

)]
,

Kik =
1
2
∂γik,

Ωik = γ0

[
∂̃i

(
γk

γ0

)
− ∂̃k

(
γi

γ0

)]
,

Γj
ik

def= 1
2γ

jh(∂̃iγkh + ∂̃kγhi − ∂̃hγik).

(8.199)

Similarly one can evaluate the Riemann or curvature tensor of M4, defined
by

Rαβρ = [∂̃α, ∂̃β ]ẽρ −Aσ
βα∂̃σẽρ ≡ Rαβρ

σẽσ , (8.200)

and identically zero, M4 being a flat space-time. However, when its compo-
nents are considered as functions of the tensorsHik, Ai and Γj

ik, the vanishing
condition is equivalent to certain relations among these fields which are just
the compatibility conditions of the differential system (8.195). More precisely,
the curvature tensor, because of its symmetries, has only three types of inde-
pendent components: Rikh

j , Rikh
0 and R0ik

0 (see e.g. [16], (5.65) and (5.67),
as well as [17, 18]). A direct evaluation shows the following set of anholonomic
conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rikh
j ≡ Pikh

j +
1
c2
(
HkhHi

j −HihHk
j − 2ΩikHh

j
)

= 0,

Rikh
0 ≡ Bikh = ∇̃iHkh − ∇̃kHih −

2
c2

ΩikAh = 0,

R0i0k ≡ Cik = ∂Hik −
(
∇̃i +

1
c2
Ai

)
Ak −HijHk

j = 0,

(8.201)

where Pikh
j is the spatial curvature tensor associated with the spatial connec-

tion Γh
ik:

Pikh
j def= ∂̃iΓj

kh − ∂̃kΓj
ih + Γl

khΓj
il − Γl

ih Γj
kl , (8.202)

and ∇̃i denotes the Cattaneo’s transverse covariant derivative [19], i.e. the
covariant extension of the Pfaffian derivatives ∂̃i by means of the connection



300 8 Elements of Relativistic Thermodynamics of a Continuum

Γj
ik.9 We note that the conditions (8.201)1,2 generalize the Gauss–Mainardi–

Codazzi equations to the case of a distribution of 3-planes {Σ}; in fact, if {Σ}
is integrable,10 i.e. if Ωik = 0, we have the ordinary form of the equations with
Hik symmetric representing the second quadratic form of Σ.

The last set of equations (8.201)3, having evolutive character, yields the time
derivative of the tensor Hik; hence, as in the classical case [20], the dynamical
compatibility leads to the following system:

∂γik = 2H(ik), ∂Hik =
(
∇̃i +

1
c2
Ai

)
Ak −HijHk

j , (8.203)

with the supplementary conditions (8.201)1,2:

Rikh
j = 0, Bikh = 0. (8.204)

Compared with the classical situation, here we no longer have the separation
of the variables γik and Hik. Moreover, in (8.204)1 we have not only the
metric, through the spatial Christoffel symbols Γj

ik, but also the tensor Hik;
the acceleration Ai appears instead in (8.204)2.

The constraints (8.204) when expressed in terms of Γh
ik, Hik and Ai are

still involutive. In fact, we have the following spatial identities (i.e. Bianchi
identities, see [18], p. 88):

∇̃[lPik]h
j +

2
c2

Ω[ikHl]h
j = 0, (8.205)

where the 3-tensor Hik
j is related to the deformation velocity by

Hik
j def= γjh

(
∇̃iKkh + ∇̃kKhi − ∇̃hKik

)
; (8.206)

moreover, since Cik = 0 we also have a first-order differential system, linear
and homogeneous in the spatial tensors Rikh

j and Bikh:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Rikhj = Hj
lRikhl − Hh

lRikjl −
(
∇̃k +

1
c2
Ak

)
Bhji

+
(
∇̃i +

1
c2
Ai

)
Bhjk −

1
c2

(AjBikh −AhBikj) ,

∂Bikh = −RikhlA
l +Hh

lBikl +Hi
lBhlk −Hk

lBhli.

(8.207)

Therefore, as in the classical situation, once the proper acceleration field is
assigned

9 For any spatial vector X = Xkẽk the Cattaneo’s transverse covariant derivative
is given by

∇̃i Xk = ∂̃iX
k + Γk

ijX
j .

10 In this case Γ is said to be a normal congruence.
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Ai = Ai(y, γjk, Hjk, ...) , (8.208)

the evolution of the continuum can be reduced to the Cauchy problem (8.203),
with given initial values γik,0 and Hik,0 (on an initial hypersurface) and sub-
jected to the conditions (8.204).

The evolution equations still have a precise geometrical meaning (vanishing
of the curvature tensor, Bianchi identities, etc.), and the classical ingredients
have their direct counterparts in the proper ingredients of the continuum.
Moreover, apart from the presence of the tensor Hik in (8.201)1, there is a
new variable in (8.201)2: the proper acceleration Ai. On the other hand, the
condition Bikh = 0 implies B[ikh] = 0, from which the following relations
between the tensors Ωik and Ai hold (Jacobi identity):

∂Ωik =
1
c2
∂̃[iAk], ∇̃[iΩkh] −

1
c2

Ω[ikAh] = 0. (8.209)

Consequently, introducing the tensor Aikh:

Aikh
def= Bikh −

3
2
B[ikh], (8.210)

which is in 1–1 correspondence with Bikh:

Bikh = Aikh − 3A[ikh], (8.211)

Equation (8.204)2 can be written in the form of a (total) differential system
for the angular velocity Ωik:

Aikh ≡ ∇̃hΩik + ∇̃iKhk − ∇̃kKih

+
1
c2

(ΩkhAi + ΩhiAk − ΩikAh) = 0 ; (8.212)

here, different from the classical case, we have the presence of the acceleration
Ai as well as that of the metric, through the spatial Christoffel symbols.
However, the system (8.212) no longer has the unlimited integrability of the
classical case but there are compatibility conditions [18].

8.17.2 Intrinsic Cauchy Problem in Relativity

The relative decomposition of the Riemann tensor (8.201) with Ai = c2Ci:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rikh
j ≡ Pikh

j +HkhHi
j −HihHk

j − 2ΩikHh
j ,

Rikh
0 = Bikh ≡ ∇̃iHkh − ∇̃kHih − 2ΩikCh,

R0i0k = Cik ≡ ∂Hik − c2
(
∇̃i + Ci

)
Ck −HijHk

j ,

(8.213)

associates with the curvature tensor three independent spatial tensors: Rikhj ,
Bikh and Cik; Rikhj obviously satisfies all the algebraic properties of a curva-
ture tensor; Bikh is antisymmetric with respect to its first pair of indices and
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satisfies a cyclic property according to (8.209)2; finally, Cik is a symmetric ten-
sor, because of the condition (8.209)1, with the additional conditions (8.209):

∂Ωik = ∇̃[iCk], ∇̃[iΩkh] − C[iΩkh] = 0 . (8.214)

If the Cauchy problem is formulated in anholonomic terms, the following
differential system of first order (in time) for the variables γik and Hik =
Ωik +Kik holds:

⎧⎨
⎩
∂γik = 2H(ik),

∂Hik = Hi
jHkj + 2(∇̃i + Ci)Ck.

(8.215)

Together with (8.215) we should consider, a priori, further conditions (8.214).
However, (8.214)1 is a consequence of the system (8.215); in fact, (8.215) can
be written in the equivalent form:

⎧⎨
⎩
∂γik = 2Kik, ∂Ωik = ∇̃[iCk],

∂Kik = Hi
jHkj + 2∇̃(iCk) + 2CiCk.

(8.216)

Summarizing, the effective constraints for the variables γik and Hik (in invo-
lution, because of the Bianchi identities) are given by (8.213)1,2 only:

⎧⎨
⎩
Pikh

j +HkhHi
j −HihHk

j − 2ΩikHh
j = 0,

∇̃iHkh − ∇̃kHih − 2ΩikCh = 0,
(8.217)

since (8.214)2 is a consequence of (8.217)2, noting that

1
2
B[ikh] = ∇̃[iΩkh] − C[iΩkh] = 0 .

Thus, we have 6 + 9 = 15 restrictions (all independent) to the initial data:
γik,0 and Kik,0 with their first and second derivatives.

In the Minkowski case the field equations (8.216) as well the constraints
(8.217) both depend on the curvature vector Ci. So, what is the role that the
acceleration plays in (8.216) and (8.217)?

Clearly, the acceleration components are not additional field variables (be-
sides γik and Hik), because they obey Galilei principle; hence, they are func-
tions of the thermodynamic variables of the continuum Γ. This fact loses its
meaning in the case of the vacuum, just because of the absence of matter.
However, it is worth to note that for any choice of the reference frame Γ
the formulations (8.216) and (8.217) of the evolution problem in M4 have an
invariant meaning for every coordinate transformation internal to Γ:

y0′ = y0′(y), yi′ = yi′(y1, y2, y3).
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Therefore, it has an intrinsic meaning in the considered frame, and this is a
substantial difference from the formulation of the analogous problem in terms
of coordinates.

As a consequence, the case of vacuum is completely different from the case
of presence of matter. In other words, in the case of vacuum, Γ cannot have
more than a purely geometrical–kinematical meaning; it is completely at dis-
posal and there are no preferred choices due to physical reasons (i.e. there is
no inertia without matter). Some simplifying choices, as concerns the gravi-
tational equations, can be suggested only by the initial conditions.

8.17.3 Thermodynamical Continuum at Rest in Γ

Let us consider first of all the case of a thermomechanical continuum at rest
in Γ. Let the coordinates be adapted to Γ and satisfy the condition:

γ0 = −1 ∼ g00 = −1, (8.218)

always compatible and invariant under coordinate transformations like

y0′ = y0 + Ψ(y1, y2, y3), yi′ = yi′(y1, y2, y3). (8.219)

The field equations (8.216) are then combined with the conservation equa-
tions of the matter: ∇βM

αβ = 0, so that we must determine both the rest
congruence of the continuum Γ0 (coinciding with Γ) and the proper dynamical
variables. Taking into account the expressions (8.199) for Ci and Ωik:

Ci = γ0

(
∂̃iγ

0 + ∂
γi

γ0

)
, Ωik =

1
2
γ0

[
∂̃i

(
γk

γ0

)
− ∂̃k

(
γi

γ0

)]
, (8.220)

which reduce in this case (γ0 = −1) to

Ci = ∂γi , Ωik =
1
2

(
∂̃iγk − ∂̃kγi

)
, (8.221)

we have the following Cauchy problem for the (anholonomic) variables γik, γi,
Hik,Mk

0 and M0
0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γik = 2H(ik), ∂γi = Ci,

∂Hik = (∇̃i + Ci)Ck +Hi
jHkj ,

∂M0
0 = −KM0

0 − (∇̃i + Ci)M0
i +HikM

ik, K = Hi
i,

∂Mk
0 = −KMk

0 + 2H[ik]M
0i + CkM0

0 − (∇̃i + Ci)M i
k.

(8.222)

Furthermore, the Cauchy data on a given surface must satisfy the involutive
constraints (8.217).



304 8 Elements of Relativistic Thermodynamics of a Continuum

The energy tensor Mαβ is not specified yet, and the form of the Cauchy
problem depends on the structure of Mαβ , i.e. it is different according to
the considered continuum: dust, perfect fluid, mechanical, thermomechanical,
polar, neutral or with electromagnetic field.

As a concrete example, let us consider a nonpolar continuum

Mαβ = μ0V
αV β + Tαβ, (8.223)

where the proper stress tensor Tαβ (mechanical and thermal) is given by

Tαβ = Xαβ +Qαβ +
εc,0

c2
V αV β , (8.224)

with εc,0 = μc,0c
2 the conduction thermal energy. Tαβ includes the proper

mechanical stresses Xαβ:

Xαβ = Xβα, XαβVβ = 0, (8.225)

and the proper thermal stresses:

Qαβ =
1
c2

(
qα
0 V

β + qβ
0 V

α
)
, (8.226)

depending on the thermal flux qα
0 :

qα
0 Vα = 0. (8.227)

The tensor Mαβ then takes the (standard) form

Mαβ = μ̂0V
αV β +Xαβ +Qαβ , μ̂0

def= μ0 + μc,0, (8.228)

where μ̂0 is the total energy density. Therefore in the proper frame γ = V/c
and using the anholonomic basis (8.192) the components of Mαβ are

M00 = μ̂0c
2, M0i =

1
c
qi
0, M ik = X ik , (i = 1, 2, 3). (8.229)

To determine the vector qi
0 it is necessary to add to (8.222) certain supple-

mentary equations,11 namely the Fourier equation (modified in the sense of
Cattaneo [21])

∂q0i = −ν
(
q0i + kf ∂̃iθ0

)
(8.230)

and the heat equation

11 We follow here the scheme introduced in [22] and further developed in [23]3 (see
p. 118). The modification to the Fourier law introduced by Cattaneo [24] has been
cast in covariant form later by Kranis [25]. Different modifications also exist due
to Vernotte, Eckart, etc. and they are briefly reviewed by Kranis in the above-
mentioned paper.
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C ∂θ0 = −θ0
∂w

(i)
0

∂θ0
+Q . (8.231)

In (8.230) kf is the Fourier constant while the coefficient 1/ν has the di-
mensions of time and represents the thermal inertia; finally C is the specific
thermal capacity of the medium, w(i)

0 is the mechanical power:

w
(i)
0 = Xαβ∇αVβ = X ikHik , (8.232)

and Q the thermal power:

Q = −∇αq
α
0 = −

(
∇̃i + Ci

)
qi
0 . (8.233)

Thus, (8.222)4 reduces to the form

1
c2

(μ̂0c
2δi

k +X i
k)Ai = −

[
∇̃iX

i
k −

ν

c
(q0k + kf ∂̃kθ0)

+
1
c
Kq0k −

2
c
H[ik]q

i
0

]
(8.234)

and can be solved with respect to the accelerationAi =Ai(μ̂0, Xik, Hik, q0i, θ0),
if the condition

det ‖ μ̂0c
2δi

k +X i
k ‖ �= 0 (8.235)

is satisfied. Thus the proper formulation of the Cauchy problem results in the
following set of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γik = 2H(ik) , ∂γi = Ci ,

∂Hik = (∇̃i + Ci)Ck +Hi
jHkj + Pik , Pik = Pjik

j ,

∂μ0 = −Kμ0 −
1
c2

[
∂εc,0 +Kεc,0 +HikX

ik +
1
c
(∇̃i + Ci)qi

0

]
,

∂q0i = −ν(q0i + kf ∂̃iθ0) ,

∂θ0 = −1
C

[
θ0

∂

∂θ0
(X ikHik) + (∇̃i + Ci)qi

0

]
,

(8.236)

with the constraints (8.217) for the initial data. Such a differential problem
must then be completed with the constitutive equations

εc,0 = εc,0(Y ), Xik = Xik(Y ) , (8.237)

where Y denotes the set of the unknowns of the system (8.236):

Y ≡ (γik, γi, Hik, μ0, q0i, θ0) .
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We notice here the typical relativistic link between the initial conditions and
the constitutive equations (8.237): both functions εc,0 and Xik are not free
but related by the constraint (8.217), because of their dependence on μ̂0 =
μ0 + εc,0/c

2, Ci and Hik. For a continuum without thermal flux (ordinary
continuum) we have instead a purely mechanical scheme, i.e. the variables are
only γik, γi, Hik and μ0.

Finally, the case of a continuum examined in an arbitrary reference frame
(i.e. the case Γ �= Γ0) can be treated similarly (the whole discussion as well
as all the mathematical details can be found in [23]3).

We conclude this chapter noting that we have considered here only the for-
mulation of the general continuum relativistic dynamics, with special attention
to the intrinsic aspects of the associated Cauchy problem. The resulting set of
differential equations, completed by assigned constitutive relations and initial
data, forms a system of coupled partial differential equations with (polyno-
mial) analytic coefficients but still containing Pfaffian derivatives (essential
for the intrinsic formulation outlined above). Putting the system in its nor-
mal form and verifying the hypotheses of the Cauchy–Kowalesky theorem [26],
i.e. discussing local existence of the solutions, is an open problem.
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9

Relativistic Electromagnetism in Vacuum

9.1 Introduction

After the formulation of the general axioms of special relativity, we have
examined the relativistic aspects of mechanics (with the associated specific
postulates) in both the schemes of material point and continuous material
systems. Actually, since the general axioms of special relativity have been in-
troduced in order to solve the incompatibility between classical mechanics and
electromagnetism, it is also interesting to study the modifications induced to
electromagnetism. These modifications, however, will be less important than
the really revolutionary ones that occurred in the conceptual apparatus of
mechanics; in fact the postulate that the light velocity is constant relative to
any Galilean frame is related to the idea that Maxwell’s equations are for-
mally invariant passing from a Galilean frame to another, as required by the
extended relativity principle. As a consequence, the electromagnetic phenom-
ena (in vacuum) in any fixed Galilean frame are still governed by the ordinary
Maxwell’s equations, as we are going to discuss in detail.

Let us recall that, relative to classical physics, electromagnetism is summa-
rized by two sets of axioms. From one side, we have Maxwell’s equations in
vacuum, which determine the differential relations between the electric field E
and the magnetic field H and the associated sources (charges and currents):

⎧⎪⎨
⎪⎩

div H = 0 , curlE +
1
c
∂tH = 0 ,

div E = 4πρ, curlH− 1
c
∂tE =

4π
c

J ,
(9.1)

with ρ and J the charge and current density, respectively.
From the other side, we have the Lorentz formula for the mechanical force

acting on charged matter due to the fields E and H (classically separated):

F = e

(
E +

1
c
v ×H

)
, (9.2)
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where e is the charge in relative motion with velocity v. When v = 0, (9.2)
gives the electrostatic or Coulomb force.

In classical physics, (9.1) and (9.2) have no general validity (that is for any
Galilean frame), but their validity is postulated in a special frame S∗, the
cosmic Ether, and hence all the quantities appearing in (9.1) and (9.2), E, H,
ρ, J and e, are invariant.

Even with this limitation, Maxwell’s equations have two fundamental con-
sequences. The first concerns the propagation speed of an electromagnetic
perturbation (ordinary discontinuity waves) in vacuum: this equals the uni-
versal constant c, irrespective of the initial characteristics of the perturbation
(e.g. the electromagnetic source as well as its motion with respect to the Ether,
etc.). Initial conditions can influence certain properties of the perturbation,
like the frequency, but not the speed, which is always (experimentally) co-
incident with light speed in vacuum, c. This numerical coincidence has just
represented the first element in favour of the interpretation of light as an
electromagnetic phenomenon. A second element has been the transversality
common to both the electromagnetic waves (deduced from Maxwell’s equa-
tions) and luminal waves (experimental fact).

Another important consequence of (9.1) is the continuity equation of the
electric charge:

∂tρ+ div J = 0 , J = ρv , (9.3)

which expresses, for the charge, a typical property of the mass, i.e. its conser-
vation in the absolute frame.

Electromagnetism, like mechanics, also had a number of experimental con-
firmations as well as many theoretical developments, connected with a pure
electromagnetic field (in vacuum) or in the presence of matter, at rest with
respect to the Ether, or in slow motion with respect to this. More precisely,
the agreement between theory and observations is satisfying enough when the
following two conditions hold: (1) velocity u of the laboratory, with respect
to the Ether, as well as velocities v′ of particles, with respect to the labora-
tory, are very small with respect to the light velocity: u/c� 1, v′/c� 1; (2)
instrumental precision of the first order, in u/c and v′/c.

If the instrumental precision is higher and allows the evaluation of second-
order effects (as the experiment of Michelson and Morley) the disagreement
between theory and experiments appears, and both Newtonian mechanics
and electromagnetism have to be considered in the fully relativistic context
with fundamental modifications, as concerns the mechanical aspects, and less
important modifications, as concerns the electromagnetic ones.

In any case, the two classically distinct physical theories: mechanics and
electromagnetism, because of the different invariance properties with respect
to the choice of the frame, find their proper geometrical and physical unifica-
tion in the relativistic situation.
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9.2 Sources and Electromagnetic Action. Axioms

We pass now to the formulation of the specific axioms of relativistic electro-
magnetism, by requiring preliminarily:

1. agreement with all the relativistic postulates already introduced (includ-
ing the extended relativity principle), either in general or in the case of
mechanics;

2. extension of classical electromagnetism, in the sense that the (classical)
first-order agreement between theory and experiment is maintained.

Furthermore, as the new theory has to be formulated both in absolute and
relative terms, all the physical quantities of the classical theory: electric charge
e, charge density ρ, current density J, electric field E, magnetic field H and
Lorentz force F, classically defined in the absolute space, should now be intro-
duced in any Galilean frame and, analogously to the mechanical quantities,
they would have a relative meaning, depending on the considered Galilean
frame. Thus, in a relative formulation of electromagnetism (a prioritary point
of view, with respect to the absolute one), besides fixing the ingredients and
the fundamental relations (field equations), one also has to specify their trans-
formation laws.

We start considering the specific postulates, concerning sources and Lorentz
force.

For the sources, that is for the electric charge because currents are derived
quantities, we have the following:

Axiom I
The electric charge of a material point (or that of the generic element of
charged continuous material system) is invariant (in magnitude and sign),
passing from one frame to another:

e = e′ = inv. (9.4)

In particular we have e = e0, e0 being the proper charge of the particle,
evaluated in the local rest frame. Axiom I gives to the electric charge
a completely different role if compared with that of mass in relativity.
The latter, in fact, is characterized by the law: m

√
1− v2/c2 = inv. =

m0. The validity of (9.4) is obviously sub-ordered to the agreement with
experiments of all the possible consequences that can be derived from it
(and from the other axioms); for instance, experiments concerning thermal
effects support such a validity (see [1], p. 38). In any case, axiom I directly
gives the transformation law of the charge density ρ.

To see this, let us consider the generic fluid element of a charged con-
tinuous material system. In an arbitrary Galilean frame Sg, the charge of
such element is expressed by

ρ dC = ρD dC , dC def= dy1 dy2 dy3 , (9.5)
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where ρ is the relative (in Sg) charge density, and D ≡ det||∂xi/∂yj|| is
the reciprocal of the relative numerical density of the particles. From (9.4)
we have the following invariance property:

ρ dC = ρ′ dC′ ∼ ρD = ρ′D′ = inv. (9.6)

Furthermore, the product ηD (and not D) is also invariant, passing from
one frame to another, so that we have

ρ

η
=
ρ′

η′
= ρ0 = inv. , (9.7)

with ρ0 the proper charge density; the latter, for a charged continuous sys-
tem, plays the same role of μ0 for neutral material continuous system; thus,
like μ0 allows the introduction of the proper 4-density of linear momentum
μ0V, it gives rise to the proper 4-density of current:

S def= ρ0V , (9.8)

which summarizes the relative current density J = ρv and the charge
density ρ. In fact, in a given Galilean frame, the 4-velocity V has the
ordinary decomposition V = η(v + cγ), and (9.8) becomes

S = ρ(v + cγ) , ρ = ηρ0 . (9.9)

From here, one has the relative quantities:

J = SΣ = S + S · γγ ≡ PΣ(S) , ρ = −1
c
S · γ . (9.10)

The formal analogy between (9.9) and the decomposition of the 4-momentum
of a particle (ρ → m, J → P) immediately gives the transformation laws
of the relative quantities ρ and J:

ρ′ =
σ

α
ρ , J′ = J−

1 +
σ

α
1 + α

ρu ; (9.11)

the first relation, of course, is in agreement with (9.7). From the absolute
point of view, the sources are described by a timelike vector field S; in
fact, from (9.8), we have ||S|| = −ρ2

0 c
2; a priori, it can have a temporal

orientation, coinciding or not with that chosen for the space-time M4 (and
induced on the world lines of test particles). Such an orientation, in fact,
specifies the sign of ρ0 in (9.8), so that the field S completely describes
the sources, and with no ambiguity (world lines and ρ0):

ρ0 =
ε

c

√
−||S|| , V =

εc√
−||S||

S , (ε = ±1) . (9.12)
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At this point, after introducing the electromagnetic sources (with ax-
iom I), we should specify the electric (E) and magnetic fields (H). With an
inversion of the logical order, instead, we will assign, first, the axiom con-
cerning the force generated by E and H, which actually mediates between
electromagnetism and mechanics.
Axiom II The electromagnetic action in M4 is represented by a mechan-
ical 4-force K, such that, in any Galilean frame, the associated relative
force F coincides with the Lorentz force. Axiom II gives a purely mechan-
ical meaning to the electromagnetic action (q = 0) and allows for F the
validity of the Lorentz force (9.2) also in the relativistic context, extend-
ing thus the validity to any Galilean frame. Explicitly, from the general
relation:

K = η

(
F +

W
c
γ

)
, W = F · v + q , (9.13)

we have that axiom II is equivalent to the two conditions:

F = e

(
E +

1
c
v ×H

)
, W def= F · v ≡ eE · v . (9.14)

Thus, in any Galilean frame and for any choice of internal coordinates
(assuming γ = c0), the components of K have the form

K0 = −η
c
W = −eη

c
Eiv

i , Ki = ηFi = ηe

[
Ei +

1
c
(v ×H)i

]
; (9.15)

the problem of summarizing these components in a certain law for Kα

then arises. This is suggested from the observation that such components
are:
1. proportional to the charge e;
2. linear function of the velocity v (and hence of the 4-velocity).

It then appears quite natural to assume for Kα the following expression:

Kα =
e

c
FαβV

β , (α = 0, 1, 2, 3) , (9.16)

up to a factor. The quantity Fαβ is a 2-tensor, K and V being two 4-
vectors and e and c two invariant quantities (see e.g. [2], p. 22, for the
tensoriality criterion); it is necessarily antisymmetric, because of the con-
dition KαV

α = 0 valid for any V α. Moreover, in order to summarize the
electric and magnetic fields, it should have six independent components,
as it is the case for an antisymmetric 2-tensor.

9.3 Electromagnetic Tensor

Assuming that (9.16) summarizes the relations (9.15), independent of the
choice of the Cartesian coordinate system, we still have to specify how Fαβ
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is related to the electric and magnetic fields. Such a relation follows from a
direct comparison of (9.15) and (9.16); in fact, for the various components
we have F0i = −Ei, F12 = H3, F13 = −H2, etc. However, the relation can
be written directly in tensorial form, by using the natural decomposition
introduced in Chap. 2. If γ ≡ (γα) denotes the 4-vector along which the
natural projection is taken, the decomposition of Fαβ turns out to be

Fαβ = Hαβ + γαEβ − γβEα, (9.17)

where the antisymmetric property of Fαβ has been used and the vector
Eα and the antisymmetric tensor Hαβ satisfy the conditions:

Eαγ
α = 0 , Hαβγ

β = 0 . (9.18)

Without any loss of generality, we will assume γα as a unit timelike vector:
γαγ

α = −1, so that it represents the chosen Galilean frame. Independent
of the choice of the coordinates xα and using (9.18), we have

Eα = Fαβγ
β , Hαβ = Fαβ − γαEβ + γβEα, (9.19)

which represent just the electric and magnetic fields, as we are going to
show in detail, a fact that motivates the notation used.

More precisely, let us assume that the Cartesian basis {cα} is adapted
to Sg, in the sense that

γ = c0 ; (9.20)

that is

γ0 = 1 , γi = 0; γ0 = −1 , γi = 0 , (i = 1, 2, 3) . (9.21)

From the above conditions, (9.18) become

E0 = 0 , Hα0 = 0 ⇒ Eα = δi
αEi , Hαβ = δi

αδ
j
βHij , (9.22)

and the decomposition (9.17) for the sum FαβV
β of (9.16) implies

FαβV
β = δi

αHikV
k − δ0αEiV

i + δi
αEiV

0 . (9.23)

Thus, since
V 0 = ηc , V i = ηvi , (9.24)

it results that, with

Hik ≡

⎛
⎝ 0 H3 −H2

−H3 0 H1

H2 −H1 0

⎞
⎠ , (9.25)

(9.23) assumes the form



9.4 Absolute Formulation of Maxwell’s Equations 315

FαβV
β = −δ0αηE · v + δi

αηc

[
Ei +

1
c
(v ×H)i

]
.

Equation (9.15) then follows after multiplication by e/c. Thus we have
proven that, due to axiom II, the Lorentz 4-force is necessarily of type
(9.16), with Fαβ related to the electric and magnetic fields by (9.17), for
any choice of the Galilean frame Sg(γ) and of the coordinates xα. Using
adapted coordinates to Sg (9.17) simplifies as

F0i = Ei , Fik = Hik (9.26)

or

Fαβ ≡

⎛
⎜⎝

0 −E1 −E2 −E3

E1 0 H3 −H2

E2 −H3 0 H1

E3 H2 −H1 0

⎞
⎟⎠ . (9.27)

Axiom II is therefore equivalent to postulating the existence of an antisym-
metric 2-tensor: the electromagnetic tensor field Fαβ which summarizes in
any Galilean frame the electric and magnetic fields, according to (9.17)
and the electromagnetic action by means of (9.16). Finally, the tensorial
behaviour of Fαβ implies for the components in any other coordinate sys-
tem the general transformation law:

F ′
αβ =

∂xρ

∂x′α
∂xσ

∂x′β Fρσ . (9.28)

9.4 Absolute Formulation of Maxwell’s Equations

We now have to specify the relativistic equations for the electromagnetic
field, that is the relations between E and H (i.e. the tensor Fαβ) and the
sources ρ and J = ρv (i.e. the current density vector Sα). We have the
following:
Axiom III
The evolution of the electromagnetic field, in vacuum, is governed by
the ordinary Maxwell’s equations, in any Galilean frame. This is a quite
natural axiom which implies, for its compatibility, that Maxwell’s equa-
tions are formally invariant under Lorentz transformations and hence can
have an absolute formulation in M4. The latter is indeed possible because
Maxwell’s equations can be written in terms of the two fundamental ingre-
dients: the electromagnetic field Fαβ (and its first-order derivatives, which
also have a tensorial meaning) and the current density Sα. More precisely,
the ordinary Maxwell’s equation (9.1) can be cast in the following form:⎧⎪⎨

⎪⎩
∂ρFαβ + ∂αFβρ + ∂βFρα = 0,

∂βF
αβ =

4π
c
Sα , (α, β, ρ = 0, 1, 2, 3),

(9.29)
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where
Fαβ = mαρmβσFρσ (9.30)

is the completely contravariant form of F .
To show that the system (9.29) is equivalent to the system (9.1), we

notice first of all that system (9.29) also contains eight independent equa-
tions: (9.29)2 are four equations like (9.29)1, which apparently are 43 = 64.
This number is reduced since in (9.29)1 one cannot choose two coinciding
indices; in fact, if α = β, they become

∂ρFαα + ∂αFαρ + ∂αFρα = 0 ,

which is identically zero, because of the antisymmetry of Fαβ . Further-
more, the antisymmetric property of F implies that the left-hand side of
(9.25)1:

Tραβ = ∂ρFαβ + ∂αFβρ + ∂βFρα , (9.31)

is an antisymmetric 3-tensor itself, and hence it has only
(
4
3

)
= 4 inde-

pendent components, as for instance those with strictly increasing indices:
T012, T013, T023, T123.

With the Galilean frame Sg fixed and with the Fαβ given by (9.27), it is
easy to see that (9.29)1 summarize the homogeneous Maxwell’s equations.
In fact, the latter can be obtained as indicated below:

⎧⎪⎪⎨
⎪⎪⎩

(
1
c
∂tH + curl E

)
3,2,1

= 0 corresponding to indices 012, 013, 023,

div H = 0 corresponding to indices 123.

Concerning (9.29)2, from (9.27) and (9.30), we have

F 0i = −F0i = Ei , F ik = Fik = Hik , (9.32)

so that the contravariant components of F are given by

Fαβ ≡

⎛
⎜⎝

0 E1 E2 E3

−E1 0 H3 −H2

−E2 −H3 0 H1

−E3 H2 −H1 0

⎞
⎟⎠ . (9.33)

Taking into account (9.9): S0 = cρ, Si = ρvi, we see that (9.29)2 summa-
rize the inhomogeneous Maxwell’s equations; more precisely

⎧⎪⎨
⎪⎩

div E = 4πρ, corresponding to the index 0,
(

curl H− 1
c
∂tE
)

1,2,3

= 0 corresponding to indices 1, 2, 3.
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Equation (9.29), besides representing (9.1) in any Galilean frame, are in-
variant under linear transformation of the xα, and hence have a tensorial
behaviour in M4.1 Moreover, (9.29) contain the continuity equation (9.3)
which, being of Eulerian type, can be written as

∂tρ+ div(ρe) = 0 . (9.34)

In fact, after differentiating (9.29)2 with respect to the index α and then
contracting this index, we have

∂α∂ρF
αρ =

4π
c
∂αS

α ;

using now the symmetric property of the second derivatives ∂α∂ρ (Schwartz
theorem), as well as the antisymmetric property of F , leads to ∂α∂ρF

αρ =
0, implying the scalar (invariant) condition

∂αS
α = 0 . (9.35)

Using (9.9), the latter equation can be written in the form

1
c
∂tS

0 + ∂iS
i ≡ 1

c
∂t(ρc) + ∂i(ρei) = 0 ,

which is exactly (9.34).
Equation (9.35), having absolute meaning just as (9.34) from which

it has been derived, represents the charge conservation in any Galilean
frame and for all the evolution of a charged continuous system, a property
similar to that of mass conservation of material systems. This is a different
property with respect to the invariance of the charge assumed by axiom I.
Therefore, in M4, the two separated theories, classical electromagnetism
and Newtonian mechanics, are naturally unified in a single theory with
the same invariance properties. The most important modifications have
concerned mechanics: in fact, the unification of thermal and mechanical
action has been obtained through the new idea of space and time (relative,
and no more absolute quantities) as well as the identification of the two
concepts of mass and energy, previously distinct.

For the electromagnetic field, we have the inclusion of the electric and
magnetic fields in the single electromagnetic tensor Fαβ as well as the
unification of charge and current density through the vector Sα. More-
over, there is a progress with respect to the classical situation. In fact,
in the classical context every electromagnetic problem had to be formu-
lated in the absolute space, or the Ether frame; relativistically, instead,
all the Galilean frames are equally valid and indistinguishable, also for

1 Actually (9.29)1 are also invariant under general coordinate transformation be-
cause they can be written as the exterior derivative of Fαβ (see e.g. [2]).



318 9 Relativistic Electromagnetism in Vacuum

electromagnetic phenomena. Thus, the Galilean frame is completely avail-
able and the solution, once obtained in a certain Galilean frame, can then
be automatically transferred to any other frame by simply performing a
change of coordinates and using the relativistic transformation laws.

9.5 Homogeneous Form of Maxwell’s Equations

Let us multiply (9.29)1 (written with respect to a certain Cartesian coordinate
system xα) for the Levi-Civita indicator εσραβ and contract the indices ρ, α, β.
Using the antisymmetry of both ε and F we have

3εσραβ∂ρFαβ = 0 → ∂ρ(εσραβFαβ) = 0 .

After introducing the dual of F :

∗F σρ def=
1
2
εσραβFαβ , (σ, ρ = 0, 1, 2, 3) , (9.36)

which is still an antisymmetric tensor (because of the antisymmetry of ε),
(9.29)1 assume the form

∂ρ
∗F σρ = 0 ,

similar to the left-hand side of (9.29)2. Thus, the standard form of Maxwell’s
equations is the following:

∂ρ
∗Fαρ = 0, ∂ρF

αρ =
4π
c
Sα , (α = 0, 1, 2, 3) , (9.37)

where the same differential operator (a divergence) enters, also confirming
that they are eight independent equations only. ∗F is obviously formed with
the electric and magnetic fields. In fact, using (9.27) and (2.139), we have

∗F 01 =
1
2
(ε0123F23 + ε0132F32) = ε0123F23 = F23,

∗F 02 = ε0231F31 = F31 ,
∗F 03 = F12 ,

that is
∗F 0i = Hi , (i = 1, 2, 3) ; (9.38)

analogously,

∗F 12 = F03 = −E3 ,
∗F 23 = F01 = −E1 ,

∗F 31 = F02 = −E2,

or

− ∗F ik = Eik ≡

⎛
⎝ 0 E3 −E2

−E3 0 E1

E2 −E1 0

⎞
⎠ . (9.39)
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Finally, the tensor ∗Fαβ is

∗Fαβ ≡

⎛
⎜⎝

0 H1 H2 H3

−H1 0 −E3 E2

−H2 E3 0 −E1

−H3 −E2 E1 0

⎞
⎟⎠ , (9.40)

and its completely covariant form ∗Fαβ is obtained by changing sign to the
elements of the first row and the first column in the table (9.40); the compo-
nents Fαβ follow, instead, by replacing in the table (9.40) H with E and Eik

with −Hik simultaneously.
The matrix representation (9.40) can also be written in a more compact

form, using the definition (9.36). It is necessary to consider the natural de-
composition of the Levi-Civita indicator with respect to the vector γ charac-
terizing the frame.2 Such a decomposition, due to the antisymmetric property
of ερσαβ , is necessarily linear in γα:

ερσαβ = ε̃ρσαβ + γσ ε̃ραβ − γρε̃σαβ + γαε̃σρβ − γβ ε̃σρα , (9.41)

where the tensors ε̃ρσαβ and ε̃ραβ (with rank 4 and 3, respectively) are anti-
symmetric and spatial, in the sense that they satisfy the following conditions:

ε̃ρσαβγβ = 0 , ε̃ραβγβ = 0 . (9.42)

Furthermore, using adapted coordinates to Sg (γ0 = 1, γi = 0), (9.42)1 reduces
to ε̃ρσα0 = 0 and, because of its antisymmetry, it follows that ε̃ρσαβ vanishes
identically:

ε̃ρσαβ = 0. (9.43)

We notice that (9.43), directly verified using adapted coordinates, holds in
any coordinate system, because ε̃ρσαβ is a tensor. Thus, the decomposition
(9.41) becomes

ερσαβ = γσ ε̃ραβ − γρε̃σαβ + γαε̃σρβ − γβ ε̃σρα , (9.44)

i.e. the only surviving quantity is the spatial and antisymmetric tensor ε̃ραβ .
Such a tensor in a system of adapted coordinates has only nonvanishing com-
ponents of the form ε̃ijk, with i, j, k = 1, 2, 3, and it assumes, in Σ, a role
similar to that played by the tensor (2.139) in M4: it is called the spatial
Levi-Civita indicator.

Therefore, using (9.17) and (9.18), (9.36) implies the following decomposi-
tion for ∗Fαβ :

∗Fαβ =
1
2
(γσ ε̃ραβHαβ − γρε̃σαβHαβ − ε̃σρβEβ − ε̃σραEα) ,

2 Actually one should consider the Ricci tensor when the coordinates are not Carte-
sian. Here we have assumed Cartesian coordinates and the Ricci tensor coincides
with the Levi-Civita indicator.
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that is
∗F σρ = −Eσρ + γσHρ − γρHσ , (9.45)

where
Eσρ def= ε̃σραEα , Hρ def=

1
2
ε̃ραβHαβ . (9.46)

Equation (9.45), which gives the electric and magnetic fields in terms of ∗F
and γ (i.e. the frame Sg):

Hρ = −γσ
∗F σρ , Eσρ = γσHρ − γρHσ − ∗F σρ , (9.47)

has a general validity, like (9.17). In a system of adapted coordinates it sum-
marizes (9.40). Finally, we notice that passing from Fαβ to ∗Fαβ we have the
replacements Hαβ → −Eαβ and Eα → Hα, as already stated.

9.6 Transformation Laws of Electric and Magnetic Fields

Independent of the choice of the coordinates xα the decomposition (9.17) of
the electromagnetic field is invariant with respect to the choice of the Galilean
frame Sg (specified by γ). The decomposition of Fαβ along the unit timelike
vector γ′ of another Galilean frame S′

g is therefore completely similar to (9.17):

Fαβ = H ′
αβ + γ′αE

′
β − γ′βE′

α , (9.48)

with the limitations

E′
αγ

′α = 0 , H ′
αβγ

′β = 0 , H ′
αβ = −H ′

βα . (9.49)

We thus have the following (local) invariance property:

H ′
αβ + γ′αE

′
β − γ′βE′

α = Hαβ + γαEβ − γβEα = inv. , (9.50)

which gives the relation between the electric and magnetic fields, relative to
the two frames. In fact, by using the relations

γ′ =
1
α

(
γ +

1
c
u
)
, c′1 =

1
α

(
c1 +

u

c
γ
)
, α =

√
1− u2

c2
, (9.51)

or in components:

γ′β =
1
α

(
γβ +

uβ

c

)
, (β = 0, 1, 2, 3) . (9.52)

Multiplying (9.50) by γ′α, contracting and then using (9.52) as well as (9.18)
and (9.49) lead to

−E′
β =

1
α

[
−Eβ +

1
c
(−γβu

αEα + uαHαβ)
]
,
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that is

E′
β =

1
α

(
Eβ +

1
c
Hβαu

α +
1
c
u · Eγβ

)
.

This formula can be expressed in Sg using a system of adapted coordinates
(so that E0 = 0, H0α = 0, γ0 = −1) and recalling table (9.25); it results in

E′
0 = − 1

αc
u ·E , E′

i =
1
α

[
Ei +

1
c
(u×H)i

]
.

After contracting these components now with the vectors cα (c0 = γ) and
using the notation η = 1/α, we have

E′ =
1
α

(
E +

1
c
u×H +

1
c
u · Eγ

)
. (9.53)

This formula holds in M4 and hence cannot be used directly for measurements
performed in different frames. However, we can consider the isometric boost of
Σ′ (to which E′ belongs) on Σ (to which E and u×H belong); this procedure
is equivalent to interpret the components of E′ along the basis c′i of Σ′ as
components with respect to the basis ci of Σ.

We thus proceed to evaluate the components E′ · c′i, starting from (9.53).
Using (9.51)2 and the relations c′2,3 = c2,3 and u = uc1, we have

⎧⎪⎪⎨
⎪⎪⎩

E′ · c′1 =
1
α2

(E1 − β2E1) = E1,

E′ · c′2,3 =
1
α2

[
E2,3 +

1
c
(u×H)2,3

]
.

(9.54)

Equation (9.54)1 can then be written as

E1 =
1
α
E1 +

(
1− 1

α

)
E1 =

1
α
E1 +

α2 − 1
α(α+ 1)

E1 =
1
α
E1 −

1
c2

u · E
α(1 + α)

u ;

then contracting (9.54) with the basis vectors ci of Σ, we have the represen-
tation of E′ in Sg (which we still denote by E′):

E′ =
1
α

(
E +

1
c
u×H− 1

c2
u ·E
1 + α

u
)
. (9.55)

A similar relation can be derived for H, using the invariant decomposition
(9.45) and repeating the above procedure. This is equivalent to replacing Hαβ

by −Eαβ and Eα by Hα. As for (9.55), we have the general relation:

H′ =
1
α

(
H− 1

c
u×E− 1

c2
u ·H
1 + α

u
)
. (9.56)

It is meaningless to perform the limit c→∞ to obtain the classical relations
corresponding to (9.55) and (9.56); in fact, in the framework of ordinary elec-
tromagnetism, the electric and magnetic fields only live in the Ether frame. In
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other words, the classical situation of a Galilean relativity is only compatible
with a static theory of electromagnetism, with E and H having an invariant
meaning with respect to the choice of the Galilean frame; in addition, (9.1)
and (9.2) do not contain anymore 1/c terms.

In the relativistic context, instead, as from (9.55) and (9.56), the fields E′

and H′ are functions of both E and H, exactly as are the force and the thermal
power in mechanics. Equations (9.55) and (9.56) show that, if in a frame only
the electric field is present: H = 0, a magnetic field will appear in any other
frame: H′ = −1/(αc)u × E, even if very small. Equivalently, the condition
H = 0 (or E = 0) has no absolute meaning, and hence from a relativistic
point of view a pure theory of the electric field or the magnetic field has no
meaning at all.

9.7 Invariants

The electromagnetic field Fαβ can be interpreted, in M4, as a vectorial map,
and hence it has a set of determined eigenvalues and eigenvectors. It is con-
venient to consider the mixed form: Fα

β , typical for a vectorial map, which
has only a sign variation with respect to table (9.27) in the first row:

F 0
β = −F0β , F i

β = Fiβ .

Thus, we have

Fα
β ≡

⎛
⎜⎝

0 E1 E2 E3

E1 0 H3 −H2

E2 −H3 0 H1

E3 H2 −H1 0

⎞
⎟⎠ ; (9.57)

with Fα
β are associated the following four invariants:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 = Fα
α = TrF,

I2 =
1
2
δρσ
αβF

α
ρF

β
σ = −1

2
Fα

ρF
ρ

α = −1
2
I1(F 2),

I3 =
1
3!
δρσν
αβμF

α
ρF

β
σF

μ
ν ,

I4 = det ||Fα
β ||,

(9.58)

where δβ1···βk
α1···αk

is the generalized Kronecker tensor already defined in Chap. 2:

δα1···αk

β1···βk
= k!δα1

[β1
· · · δαk

βk] . (9.59)

Only two of these invariants are meaningful, since

I1 = 0 , I3 = 0. (9.60)
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Equation (9.60)1 is evident; to show (9.60)2 we recall that any third order
antisymmetric matrix has always null determinant:

I3 =

∣∣∣∣∣∣
0 E1 E2

E1 0 H3

E2 −H3 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 E1 E3

E1 0 −H2

E3 H2 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 E2 E3

E2 0 H1

E3 −H1 0

∣∣∣∣∣∣

+

∣∣∣∣∣∣
0 H3 −H2

−H3 0 H1

H2 −H1 0

∣∣∣∣∣∣
= E1(H3E2 −H3E2) + E1(−H2E3 +H2E3) + E2(H1E3 −H1E3) = 0 .

The other invariants I2 and I4 are nonzero:

I2 = −E2
1 − E2

2 − E2
3 +H2

3 +H2
2 +H2

1

or
I2 = H2 − E2 ; (9.61)

I4 = −E1

∣∣∣∣∣∣
E1 H3 −H2

E2 0 H1

E3 −H1 0

∣∣∣∣∣∣+ E2

∣∣∣∣∣∣
E1 0 −H2

E2 −H3 H1

E3 H2 0

∣∣∣∣∣∣− E3

∣∣∣∣∣∣
E1 0 H3

E2 −H3 0
E3 H2 −H1

∣∣∣∣∣∣
= −E1H1E ·H− E2H2E ·H− E3H3E ·H ,

that is
I4 = −(E ·H)2 ≤ 0 . (9.62)

We then have the following invariance properties:

H2 − E2 = H ′2 − E′2 = inv. , E ·H = E′ ·H′ = inv. , (9.63)

which can also be directly verified using the transformation formulas (9.55)
and (9.56).

Thus, for an electromagnetic field, we have to distinguish between the gen-
eral case: I2,4 �= 0, and the special case in which one or both the invariants
vanish. When I4 = 0, the electric and magnetic fields are mutually orthogonal
in any Galilean frame; if instead I2 = 0, then the two vectors E and H have
the same magnitude in any frame and hence they are always both present.

If there exists a Galilean frame in which the electric field (or the mag-
netic field) vanishes, it is necessarily I4 = 0, but I2 should be nonvanishing;
otherwise, the whole electromagnetic field vanishes identically. When both the
invariants are null, the electromagnetic field is said to be singular or radiative;
in this case,

E ·H = 0 , H2 = E2 �= 0, ∀Sg . (9.64)

The invariants (9.61) and (9.62) can also be obtained by the products of F
with itself or its dual ∗F. In fact, from (9.17):
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Fαβ = Hαβ + γαEβ − γβEα , Fαβ = Hαβ + γαEβ − γβEα ,

one gets FαβF
αβ = HαβH

αβ−EβE
β−EαE

α, and using adapted coordinates
(without any loss of generality, because the product FαβF

αβ is invariant), the
latter becomes

FαβF
αβ = 2(H2 − E2) ≡ 2I2 . (9.65)

Analogously, from (9.45): ∗Fαβ = −Eαβ + γαHβ − γβHα, one has

Fαβ
∗Fαβ = −HαβE

αβ − EβH
β − EαH

α,

which using (9.25) and (9.39) becomes

Fαβ
∗Fαβ = −4E ·H ≡ −4

√
−I4 . (9.66)

9.8 Energy Tensor of the Electromagnetic Field

From Maxwell’s equations (9.29)

∂ρFαβ + ∂αFβρ + ∂βFρα = 0 , ∂ρF
αρ =

4π
c
Sα , (9.67)

one can derive evolution equations similar to those of a continuous system.
More precisely, consider the evolution problem of a charged continuous system,
starting from given initial and boundary conditions. In M4 the continuum
follows a world tube T , characterized by the vector field S = ρ0V describing
the distribution of both charges and currents from an absolute point of view. In
turn, such a distribution generates inM4 (in the interior as well as the exterior
parts of T ) an electromagnetic field Fαβ , satisfying (9.67) and constraining
the motion of the continuum itself through the Lorentz force. For the generic
element of the continuum one then has an autoinduced action represented, in
agreement with (9.16), by the elementary force dKα:

dKα =
1
c
deFαβV

β =
1
c
ρ0dC0FαβV

β ,

with dC0 the proper volume element. After introducing the proper density of
4-force

ρ0fα
def=

dKα

dC0
, (9.68)

one then gets the following law:

ρ0fα =
1
c
FαβS

β , (9.69)

which specifies the dependence of ρ0fα on both the electromagnetic field Fαβ

and the sources Sβ. Hence, in T one has new vector fields for the autoinduced
mechanical action, in the sense that the continuum (conductor and charges)
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generates the electromagnetic field through Maxwell’s equations, and this, in
turn, affects the motion of the continuum itself through the action (9.69); the
latter is, of course, sub-ordered to Maxwell’s equations (9.67). We can then
eliminate the current density (9.69) and finally express fα in terms of Fαβ

and its first derivatives. More precisely, such a dependence can be put in a
divergence form:

ρ0fα = −∂ρEα
ρ , (9.70)

where Eα
ρ is a 2-tensor built up by the electromagnetic field and still to be

determined. To prove (9.70) let us start from (9.67)2, which reduces (9.69) to
the form

ρ0fα =
1
4π
Fαβ∂ρF

βρ =
1
4π

[∂ρ(FαβF
βρ)− F βρ∂ρFαβ ] . (9.71)

Transform then the last term in (9.71) using (9.67)1:

−F βρ∂ρFαβ = F βρ(∂αFβρ + ∂βFρα) = F βρ∂αFβρ + F βρ∂βFρα ,

that is, exchanging the indices ρ and β in the last product

−F βρ∂ρFαβ = F βρ∂αFβρ + F ρβ∂ρFβα ,

leads to
−2F βρ∂ρFαβ = F βρ∂αFβρ ≡

1
2
∂α(F βρFβρ) .

Equation (9.71) thus becomes

ρ0fα =
1
4π

[
∂ρ(FαβF

βρ) +
1
4
∂α(F βρFβρ)

]
,

which coincides with (9.70) after defining Eα
β as

Eα
β def=

1
4π

(
FαρF

ρβ − 1
4
δβ
αF

ρσFρσ

)
≡ 1

4π

(
FαρF

ρβ − 1
2
δβ
αI2

)
. (9.72)

The tensor Eα
β is called the energy–momentum tensor of the electromagnetic

field Fαβ . It has vanishing trace:

I1(E) ≡ Eα
α = 0 , (9.73)

and is symmetric, as one can easily see by considering the contravariant (or
covariant) form:

4πEαρ = Fα
βF

ρβ − 1
4
mαρF βσFβσ . (9.74)

This is a quadratic homogeneous function of the electromagnetic field Fαβ ,
and hence it is defined either in T , where it satisfies the conditions (9.70), or
in the exterior of T , where one has the conservation conditions

∂ρE
αρ = 0 . (9.75)
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9.9 Splitting of the Energy Tensor
of the Electromagnetic Field

In relative terms, the energetic tensor (9.74) will be expressed, as Fαβ , in
terms of electric and magnetic fields. In fact, using the decomposition (9.17)
of Fα

β :
Fα

β = Hα
β + γαEβ − γβE

α,

one has, from Eq. (9.18),

Fα
βF

ρβ = Hα
βH

ρβ + γρHα
βE

β + γαHρβEβ + γαγρEβE
β − EαEρ .

Taking into account (9.65), we then have

4πEαρ = Hα
βH

ρβ + γαHρβEβ

+γρHα
βE

β − EαEρ + E2γαγρ − 1
2
(H2 − E2)mαρ .

Consider now the decomposition of the metric tensor; because of its symmetry,
we have

mαβ = m̃αβ + γαm̃β + γβm̃α + m̃γαγβ ,

with the conditions m̃αβγα = 0, m̃αγα = 0. Contracting by γαγβ implies
−1 = m̃; contracting then by γβ leads to γα = −m̃α + γα, so that m̃α = 0.
Finally, the decomposition of the tensor mαβ is

mαβ = m̃αβ − γαγβ , (9.76)

and (9.76) becomes

4πEαρ = Mαρ + γαP ρ + γρPα +Wγαγρ , (9.77)

since
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mαρ def= −EαEρ +Hα
βH

ρβ − 1
2
(H2 − E2)m̃αρ Maxwell’s stress tensor,

P ρ def= HρβEβ Poynting vector,

W def=
1
2
(E2 +H2) electromagnetic energy.

(9.78)
Equation (9.77) represents the natural decomposition of the tensor 4πEαρ

along γ and onto Σ, the hypersurface normal to γ; the tensor Mαρ, like Eαρ,
is symmetric and it is spatial as the vector Pα:

Mαργρ = 0, P ργρ = 0 .

Furthermore, using a system of adapted coordinates, from (9.76) one gets
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m̃ik = mik = δik, (i, k = 1, 2, 3) spatial metric . (9.79)

From (9.78)1,2 and using (9.25) one obtains the components of the Poynting
vector:

P i = (E×H)i ∼ P = E×H , (9.80)

as well as those of Maxwell’s stress tensor:

M ik = −EiEk −HiHk +Wδik . (9.81)

We notice that P is an eigenvector of M ik, associated with the eigenvalue
W : M ikPk = WP i. The decomposition (9.77) as well as the various associ-
ated spatial quantities all have a relative meaning, that is depending on the
chosen Galilean frame γ. However, by changing the frame one would have
a decomposition similar to (9.77) and (9.78), apart from the addition of an
overall prime. At this point, given the general formulas (9.55) and (9.56), one
should determine the transformation laws of the various quantities (9.78); in
particular one can show that there exist an infinite number of Galilean frames
in which the Poynting vector vanishes.

We notice that the relative law (9.77) for the energetic tensor of an electro-
magnetic field is formally analogous to those of a polar continuous medium,
with heat conduction; this analogy allows to compare the two schemes, even
if so different. Moreover, besides the analogies, we recall that the energetic
tensor (9.77) is also defined in the exterior of the world tube T associated
with the sources; for a material continuum the energetic tensor has instead
no meaning in the exterior region, that is outside matter.

9.10 Spectral Analysis of the Electromagnetic Tensor

Definition (9.72) implies that the spectral analysis of the energetic tensor
Eαβ is strictly related to that of the electromagnetic field Fαβ , which has
only two nonvanishing invariants. In fact, the characteristic equation for Fαβ

is biquadratic:
λ4 + I2λ

2 + I4 = 0 , (9.82)

with ⎧⎪⎪⎨
⎪⎪⎩
I2 =

1
2
FαβF

αβ = H2 − E2,

I4 = −1
4

(
1
2
Fαβ

∗Fαβ

)2

= −(E ·H)2 ≤ 0.
(9.83)

Equation (9.82) in the case I2
2 −4I4 �= 0 (that is, excluding the case I2 = I4 =

0) has two roots for x = λ2, one positive and the other negative:

x1 =
1
2

(
−I2 +

√
I2
2 − 4I4

)
> 0, x2 = −1

2

(
I2 +

√
I2
2 − 4I4

)
< 0 , (9.84)
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so that the electromagnetic field has two real opposite eigenvalues ±λ1 and
two purely imaginary eigenvalues ± iλ2:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 =

√
1
2

(
−I2 +

√
I2
2 − 4I4

)
> 0,

λ2 =

√
1
2

(
I2 +
√
I2
2 − 4I4

)
> 0.

(9.85)

Moreover, F can be decomposed (even if not uniquely, see Chap. 2) in the
sum of two orthogonal bivectors F1 and F′

1:

F = F1 + F′
1 , (9.86)

with F1 ∈ Π, a hyperbolic 2-plane invariant for F1, and F′
1 ∈ Π′, an elliptic

2-plane invariant for F′
1, being Π and Π′ orthogonal to each other: F1(Π′) = 0

and F′
1(Π) = 0.

From the vectorial map point of view, F1 ∈ Π (hyperbolic) has two real null
eigenvectors, while F ′

1 ∈ Π′ (elliptic) has no real eigenvectors. Equivalently,
Fαβ admits, in general, only two real eigenvectors, both of them null; these
are associated to the real eigenvalues ±λ1. Such two directions reduce to a
single one, when Π is parabolic: I2(F1) = 0; in this case, Π′ also becomes
parabolic, i.e. I2(F ′

1) = 0.
However, with respect to the orthogonal decomposition (9.86) the following

general relations hold:

I2 = I2(F1) + I2(F ′
1) , I4 = I2(F1) · I2(F ′

1) , (9.87)

so that the two isotropic directions of Π reduce to a single one if and only if
I2 = 0 and I4 = 0, that is λ1 = 0 and λ2 = 0. This case is called radiative: Fαβ

reduces to a bivector (I4 = 0) of parabolic type (I2 = 0). In other words, the
above-mentioned property of the electromagnetic field can also be expressed
as follows: every electromagnetic field Fαβ admits only two eigendirections,
both isotropic, which coincide only in the radiative (singular) case.

Excluding the singular case, the components Fα
β of F (i.e. the coefficients of

the associated vectorial map) are simplified when referring to an orthonormal
basis {dα} adapted to the two planes Π and Π′, in the sense that

d0,1 ∈ Π , d2,3 ∈ Π′ . (9.88)

In this case, the transformed vectors Fβ = (d)Fα
βdα have the form

F0 = λd1 , F1 = ρd0 , F2 = μd3 , F3 = νd2 ,

so that the matrix (d)Fα
β turns out to be

(d)Fα
β =

⎛
⎜⎝

0 ρ 0 0
λ 0 0 0
0 0 0 ν
0 0 μ 0

⎞
⎟⎠ .
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From this representation, one can write the associated completely covariant
form (only the elements of the first row change sign); because of the antisym-
metry of the electromagnetic tensor, one finds ρ = λ and μ = −ν. Thus, for
any choice of the adapted basis (9.88) the matrix Fα

β is given by

(d)Fα
β =

⎛
⎜⎝

0 λ 0 0
λ 0 0 0
0 0 0 −μ
0 0 μ 0

⎞
⎟⎠ ∼ (d)Fαβ =

⎛
⎜⎝

0 λ 0 0
−λ 0 0 0
0 0 0 −μ
0 0 μ 0

⎞
⎟⎠ . (9.89)

Therefore, (d)Fα
β results to be expressed in terms of the two scalars λ and μ

which are invariants, because of the relations

I2 = −λ2 + μ2 , I4 = −λ2μ2 . (9.90)

Comparing (9.90) with (9.85) one gets λ2 = λ2
1 and μ2 = λ2

2.
Equation (9.89) is the canonical form of the electromagnetic tensor; the

singular case in which the two characteristic 2-planes Π and Π′, in spite of
being orthogonal, are both of parabolic type and have a common isotropic
direction lα, is excluded. In fact, in this case there are no orthogonal adapted
bases and Fαβ is necessarily a parabolic bivector, which can be written as

Fαβ = ξ(lαvβ − lβvα) . (9.91)

Here ξ is an arbitrary factor (a multiplicative parameter for the isotropic
vector lα) and vα is a spatial vector, orthogonal to l (like all the vectors in Π
and Π′), which can be assumed to be normalized to 1:

v2 = vβv
β = 1 , (9.92)

because in (9.91) v can always be scaled by an arbitrary factor re-absorbed
then in ξ.

9.11 Spectral Analysis of the Energy Tensor
of the Electromagnetic Field

We pass now to study the decomposition of the energetic tensor Eαβ , a second-
degree homogeneous function of Fαβ :

4πEαβ = FαρFβ
ρ − 1

4
mαβ(FρσF

ρσ) ,

that is, as from (9.83):

4πEαβ = −FαρF
ρ
β −

1
2
I2mαβ . (9.93)
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In fact, Fαβ considered as a vectorial map, induces either in Π or Π′ the
orthogonal affinity, and the quadratic form of Eαβ implies that it has eigendi-
rections belonging to Π or to Π′ only. Thus, the tensor Eαβ , different from
Fαβ , is diagonal, and it admits ∞2 orthogonal tetrads. The latter are the or-
thonormal bases (9.88) adapted to Π and Π′, for which an arbitrary rotation
is still possible in both planes.

As concerns the eigenvalues, excluding the singular case, which will be ex-
amined later, it is clear that there are two distinct eigenvalues, say λ and λ′,
each of them with multiplicity 2. Furthermore, since I1(Eα

β) = 0, they are
necessarily opposite: λ = −λ′.

Let us determine, first, the eigenvalue of Eαβ for the directions in Π. Denote
by u ∈ Π the null eigenvector of Fαβ associated with the eigenvalue λ1 given
by (9.85)1; from (9.93) it follows that

4πEαβu
β = −λ2

1uα −
1
2
I2uα ;

hence, u is eigenvector of 4πEαβ , associated with the eigenvalue

λ = −λ2
1 −

1
2
I2 = −1

2

√
I2
2 − 4I4 .

Next, assuming

k =
1
2

√
I2
2 − 4I4 ≥ 0 , (9.94)

in the general case (k > 0) the eigenvalues of 4πEαβ are −k,−k, k, k, and the
matrix (d)Eα

β of the components with respect to the tetrad (9.88) is given by

4π(d)Eα
β =

⎛
⎜⎝
−k 0 0 0
0 −k 0 0
0 0 k 0
0 0 0 k

⎞
⎟⎠ ∼ 4π(d)Eαβ =

⎛
⎜⎝
k 0 0 0
0 −k 0 0
0 0 k 0
0 0 0 k

⎞
⎟⎠ .

(9.95)
Clearly, both forms (9.89) and (9.95), having a general meaning, are referred to
an orthonormal basis {d(ρ)}3 which essentially depends on the point E ∈M4

in which the electromagnetic field is evaluated, exactly as the two planes Π
and Π′.

If, from (9.89) and (9.95), one needs Cartesian components along a fixed
basis cα, it is enough to decompose the vectors d(ρ) as

d(ρ) = dα
(ρ)cα , (9.96)

and use the transformation laws (both Eαβ and Fαβ are tensors):

Eαβ = dα
(ρ)d

β
(σ)

(d)E(ρ)(σ) , Fαβ = dα
(ρ)d

β
(σ)

(d)F (ρ)(σ) . (9.97)

3 The index in parenthesis is not a tensorial index but only ordinal.



9.12 Electromagnetic 4-Potential. Gauge Invariance 331

The canonical general forms for F and E also follow:

Fαβ = λ(dα
(0)d

β
(1) − dβ

(0)d
α

(1))− μ(dα
(2)d

β
(3) − dβ

(2)d
α

(3)) ,

4πEαβ = k(dα
(0)d

β
(0) − dα

(1)d
β

(1) + dα
(2)d

β
(2) + dα

(3))dβ
(3) . (9.98)

Finally, in the singular case, one has

4πEα
β = FαρF

βρ = ξ2(lαvρ − lρvα)(lβvρ − lρvβ) = ξ2lαl
βvρv

ρ ,

or, using (9.92),
4πEαβ = ξ2lαlβ . (9.99)

9.12 Electromagnetic 4-Potential. Gauge Invariance

Let us consider now the homogeneous Maxwell’s equations (9.29)1:

∂ρFαβ + ∂αFβρ + ∂βFρα = 0 , ∀E ∈M4 ; (9.100)

they are satisfied identically in M4, when the electromagnetic field admits a
vector potential φα(x), defined and regular all over M4; in that case, Fαβ can
be expressed by the following relation:

Fαβ = ∂αφβ − ∂βφα. (9.101)

In fact, the Schwartz theorem allows to commute partial derivatives, so that
∂ρFαβ = ∂ρ∂αφβ − ∂β∂ρφα, and the proof only requires a cyclic permutation
of the indices ρ, α and β.

The representation (9.101) has a general validity in the neighbourhood of
any point E ∈ M4, in the sense that (9.100) necessarily imply (9.101). This
is a general property of closed differential forms of any order (see e.g. [3],
p. 37): the electromagnetic field, being antisymmetric, defines a second-order
differential form, which is closed because of (9.100) and from this, the existence
of a local potential vector.

The vector field φα(x) defined by (9.101) is called the 4-potential of the
electromagnetic field Fαβ ; more precisely, it is only one of the 4-potentials of
the electromagnetic field Fαβ because it is not uniquely defined by (9.101)
(exactly as the scalar potential of a conservative force). In fact, every field
like

φ′α = φα + ∂αϕ , (9.102)

with ϕ(x) a scalar (invariant) function, still satisfies (9.101):

∂αφ
′
β − ∂βφ

′
α = ∂αφβ − ∂βφα = Fαβ ,

for any choice of the potential ϕ(x). In other words, the 4-potential φα(x) de-
fined by (9.101) is not intrinsically related to the electromagnetic field Fαβ , but
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it can undergo a transformation φα → φ′α, as in (9.102), with ϕ an arbitrary
scalar potential. This is called the gauge invariance of the electromagnetic field
with respect to its vector potential and shows that, to describe the field Fαβ

through (9.101), the components φα(x) are not completely arbitrary: one has
at disposal the function ϕ(x); hence the independent components of φα are
only three. One can then impose a priori an additional differential condition
to the 4-potential which in no way influences the electromagnetic field. The
choice of such a condition is often related to the inhomogeneous Maxwell’s
equations, in order to simplify their form, for instance.

In fact, writing such equations in terms of φα gives

∂ρ(∂αφρ − ∂ρφα) =
4π
c
Sα ,

that is
∂α(∂ρφρ) = ∂ρ∂ρφα +

4π
c
Sα .

In this form, the inhomogeneous Maxwell’s equations show a scalar field, given
by the four-dimensional divergence of φ = (φρ)4:

Divφ = ∂ρφ
ρ = mρσ∂ρφσ =

1
2
mρσ(∂ρφσ + ∂σφρ) , (9.103)

as well as a second-order differential operator: the D’Alembert operator, with
parameter c (wave equation for light):

�	c
def= mρσ∂ρ∂σ = δik∂i∂k −

1
c2
∂2

tt . (9.104)

Using such a notation (9.29)2 become

∂α(Divφ) = �	c φα +
4π
c
Sα , (α = 0, 1, 2, 3) . (9.105)

It is then quite natural to choose the supplementary condition for the 4-
potential as

(Divφ) = 0 , ∀E ∈M4 , (9.106)

which is known as Lorentz gauge condition. The latter can be satisfied in
infinite ways, taking into account the transformation (9.102) and with a proper
choice of the arbitrary function ϕ. More precisely, assuming that (9.106) is not
directly satisfied by the potential φα, one has to require such a condition for
the transformed function φ′α, imposing that ϕ is a solution of the differential
equation

�	c ϕ = −1
2
mρσ(∂ρφσ + ∂σφρ) ,

4 Note that Div and Grad operations correspond to divergence and gradient in the
space-time.
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with the right-hand side of this equation a known function of xα. Summarizing,
Maxwell’s equations (9.29) can also be written as:

�	cφ = −4π
c

S , Divφ = 0 , ∀E ∈M4 , (9.107)

without any restriction on the electromagnetic field, given a posteriori by
(9.101). Equations (9.107), like (9.29), imply that the source S satisfies, in
the world tube T ∈ M4, the conservation equation

Div S = 0 , ∀E ∈ T , (9.108)

and, from this point of view, the differential condition (9.108) is a direct
consequence of the field equations (9.107). If one assumes, instead, (9.107)1
and (9.108) as field equations then

�	c φ = −4π
c

S , ∀E ∈M4, Divφ = 0 , ∀E ∈ T , (9.109)

implying no longer (9.107)2, but the more general differential condition

�	c(Divφ) = 0 , ∀E ∈M4 .

The latter, in turn, under regularity conditions at the infinity (a fact which
should be better specified), is equivalent to the Lorentz condition: Divφ = 0.

We notice the close analogy between (9.109)1, i.e. the vectorial equation
in M4: �	c φ = −4π/cS, and the Poisson equation: apart from the different
second-order differential operator �	c, which reduces to Δ2 in the limit c→∞,
the analogy between the gravitational field and the electromagnetic one is
complete when φ→ U , S→ μ, 1/c→ f (Newtonian gravitational constant).
As we see here, to the single gravitational potential, in the electromagnetic
analogy, corresponds the four potentials φα. In general relativity we will have a
larger number of potentials, from 1 to 10: U → gαβ , and in the so-called unified
theories (geometrization of the gravitational field and the electromagnetic
one), the potentials become 14, at least.

9.13 The Material and the Electromagnetic Schemes

We have already seen that the Lorentz 4-force comes from a superpotential
Eαβ :

− ρ0f
α = ∂ρE

αρ , (9.110)

which is closely related to the electromagnetic field Fαβ :

4πEαρ = Fα
βF

ρβ − 1
4
mαρF , F = FρσF

ρσ , (9.111)
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but Fαβ and Eαβ are not in 1–1 correspondence, because (9.111) are not
directly invertible. Equations (9.110) are the conservation equations for the
electromagnetic field, like the similar equations for material continuous sys-
tems:

μ0f
α
m = ∂ρM

αρ ; (9.112)

(9.112) have also the meaning of evolution equations for the material system,
different from (9.110) which only summarize the action autoinduced from the
electromagnetic field governed by Maxwell’s equations.

Clearly, the analogy between (9.110) and (9.112) is purely formal, because
the two tensor fields Eαρ and Mαρ have an algebraic structure completely
different, in agreement with the two distinct schemes, the one material and
the other electromagnetic. More precisely, while Mαρ is represented by

Mαρ = μ̂0V
αV ρ +Xαρ (9.113)

and summarizes the mechanical characteristics of the continuous system: μ̂0
5:

total material density, V: 4-velocity and Xαβ: proper mechanical stress ten-
sor, the field (9.111), instead, does not summarize all the ingredients of the
electromagnetic scheme, at least for two reasons: it is only partially related to
Fαβ and totally ignores the distribution of charges and currents as described
by the function S = ρ0V.

In other words, (9.110) are simple algebraic consequences of Maxwell’s equa-
tions, considered as evolution equations for the electromagnetic field as well
as the charged continuous material, which generates it.

Similarly, the autoinduced field fα given by (9.69) only partially substitutes
the sources Sα: in fact, even if (9.69) are invertible, because of the condition
det ||Fαβ || �= 0, the vectors fα and Sα are orthogonal. Moreover, apart from
the different role of (9.110) and (9.112) as well as that of the tensor fields Eαβ

and Mαβ the (local) algebraic structure of such tensors is different. To see
this, we can compare the decompositions of the two tensors, inside the world
tube T , described by charges and currents.6

Thus, from one side we have (9.113), where V is an eigendirection of Mαβ ,
since XαβVβ = 0, (α = 0, 1, 2, 3); from the other side, from (9.77), evaluated
in the proper frame of the generic charged element, that is for γ = V/c, we
have

4πEαρ =
1
c2
W0V

αV ρ +
1
c
(Pα

0 V
ρ + P ρ

0 V
α) +Mαρ

0 , (9.114)

with an obvious meaning of symbols.
We see that the structure of the tensor Eαρ is more general with respect to

that of the energetic tensor associated with an ordinary continuous scheme (i.e.
nonpolar). In fact, (9.114) assumes, for each E ∈ T , two preferred directions:
V (4-velocity of the charge) and P0 (proper Poynting vector); the former is
5 We assume here no thermal conduction stresses for simplicity.
6 Note that for the material continuous system the energetic tensor has no meaning

outside T .
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temporal while the latter spatial, because of the orthogonality condition: P0 ·
V = 0. This then represents the energetic tensor associated with a continuous
system, with internal structure of vectorial type, that is with a “director” P0.
In different words, (9.114) implies the following coordinate 4-stresses:

Tα = 4πEαρcρ , (9.115)

analogous to (7.12)
Tα = Xα +QαV , (9.116)

with

Xα = Mα
0 +

1
c
P0V

α , Qα =
1
c
Pα

0 +
1
c2
W0V

α ; (9.117)

hence, the purely mechanical 4-stresses do not satisfy axiom VI:

Xαβ = Mαβ
0 +

1
c
V αP β

0 �= Xβα .

Therefore, the problem of unification of the two relativistic schemes, mate-
rial continuum and electromagnetic field, if really solvable, should be framed
in the context of polar continua. This implies the loss of the spatial reci-
procity axiom VI and hence the enlargement of the continuum scheme from
the geometrical–kinematical point of view, introducing as a “director” the
proper heat conduction vector, which has the Poynting vector as a counter-
part in the electromagnetic field. However, in this case, polarity has a differ-
ent meaning with respect to the classical situation, because the mechanical
4-stress tensor is assumed to be nonsymmetric, different from the ordinary
stress tensor, which is instead symmetric.

Another enlargement of the scheme, even from a dynamical point of view,
is obtained by introducing “pairs” (mass or contact pairs, both mechanical or
thermal) and rejecting the reciprocity axiom III: these are relativistic polar
continua, in the most general sense, that is with nonsymmetric energetic ten-
sor, and consequent asymmetry of the ordinary stress tensor as well as of the
momentum of stress tensor.

9.14 Evolution Equations for a Charged Material System

Let us consider now, from a general point of view, the evolution of a charged
continuum material system in the absence of thermal stresses; this is a mixed
scheme in which, besides the thermodynamical complication, there is a direct
coupling between matter and electromagnetic field [4]. More precisely, the
energetic tensor of the material system,

Mαβ = μ̂0V
αV β +Xαβ , (9.118)
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is sub-ordered to the evolution equations:

∂ρM
αρ = μ0f

α
m + ρ0f

α , (α = 0, 1, 2, 3) , (9.119)

where the sources, at the right-hand side, include either the mass force (inter-
nal and external, of mechanical and of thermal type) or the mechanical action
induced by the electromagnetic field on the continuum, given by (9.69):

ρ0f
α =

1
c
FαβSβ . (9.120)

This, in turn, is built by the electromagnetic tensor Fαβ and the associated
sources Sα, both constrained by Maxwell’s equations. Thus, the complete set
of equations is the following:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ρM
αρ = μ0f

α
m + ρ0f

α , ρ0f
α =

1
c
FαβSβ ,

∂ρFαβ + ∂αFβρ + ∂βFρα = 0,

∂ρF
αρ =

4π
c
Sα,

(9.121)

where, besides the initial and boundary conditions, the energetic tensorMαρ is
the same as in (9.118), and the mass force fα

m is assigned. It is clear that, from
(9.121), the coupling between the two fields (material and electromagnetic) is
only through the Lorentz force fα, also expressed as follows:

ρ0f
α = −∂ρE

αρ ,

with Eαρ a well-determined function of the electromagnetic field Fαβ as in
(9.111). Therefore, the final set of general equations (9.121) for the coupling
of matter and charge assumes the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ρ(Mαρ + Eαρ) = μ0f
α
m ,

∂ρFαβ + ∂αFβρ + ∂βFρα = 0,

∂ρF
αρ =

4π
c
Sα,

(9.122)

and the interaction between the two fields is governed by the energetic tensor
of the electromagnetic field:

4πEαρ = Fα
βF

ρβ − 1
4
mαρFρσF

ρσ . (9.123)

Finally, (9.107) gives rise to the reduced set of equations:
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∂ρ(Mαρ + Eαρ) = μ0f
α
m , �	c φ = −4π

c
S , Divφ = 0 , (9.124)

in terms of the potential vector φ, which is used to express Fαβ and hence
Eαβ .

Moreover, (9.122) shows that for the continuum one still has conservation
equations as (9.112):

∂ρÊ
αρ = μ0f

α
m , (9.125)

where Êαρ is the total energetic tensor:

Êαρ def= Mαρ + Eαρ

≡ μ̂0V
αV β +Xαβ +

1
4π

(
Fα

βF
ρβ − 1

4
mαρFρσF

ρσ

)
, (9.126)

that is the sum of the energy–momentum tensors: material and electromag-
netic; explicitly, in the matter case:

Êαρ =
(
μ̂0 +

1
4πc2

W0

)
V αV ρ +Xαρ

+
1
4π
Mαρ

0 +
1

4πc
(V αP ρ

0 + V ρPα
0 ) . (9.127)

As we have already seen, for a neutral continuous system, (9.125) can be
interpreted as conservation equations (with sources, in the region internal to
matter, and without sources in the exterior) for the linear momentum and the
total energy of the system: matter plus electromagnetic field. More precisely, in
any Galilean frame, (9.125) give rise to the conservation of linear momentum
and energy for the set of three fundamental fields: pure matter, internal tension
(either of mechanical or thermal type) and electromagnetic, with energetic
tensors: μ0V

αV ρ, Tαβ = μc,0V
αV β +Xαβ and Eαβ , respectively; they should

be considered in their form, associated with the chosen Galilean frame and
from here, the total matter density: μ̂ = μ+μc +μe, the total energy density:
με̂ = μ̂c2, the total coordinate stresses (material and Maxwell’s), etc.

Besides the mixing of the various energetic forms and linear momentum, we
notice that the coupling which we have been considering here grounds on the
hypothesis that in the interior of the material continuum one can assume the
vacuum Maxwell’s equations as holding. Properly speaking, in the presence
of matter in place of H and E one has to consider the electric and magnetic
induction, that is the induced electromagnetic field, which is related to the
permeability (electric and magnetic) of the considered matter; similarly, one
should specify if the material is a conductor, the ordinary Ohm law, etc.

Thus, the set of equations (9.123) does not represent the general (com-
plicated) coupling of the two fields (matter and charge): one has to specify
for example the constitutive equations, so that practically one should look at
them as a first approach to a more general problem.
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