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Chapter 1

THE METHOD OF CHARACTERISTICS
FOR THE NUMERICAL SOLUTION OF HYPERBOLIC

DIFFERENTIAL EQUATIONS

M. Shoucri
Institut de Recherche d’Hydro-Québec (IREQ), Varennes, Québec, Canada J3X1S1

Abstract

The application of the method of characteristics for the numerical solution of hyperbolic
type partial differential equations will be presented. Especial attention will be given to the
numerical solution of the Vlasov equation, which is of fundamental importance in the study of
the kinetic theory of plasmas, and to other equations pertinent to plasma physics. Examples
will be presented with possible combination with fractional step methods in the case of several
dimensions. The methods are quite general and can be applied to different equations of
hyperbolic type in the field of mathematical physics. Examples for the application of the
method of characteristics to fluid equations will be presented, for the numerical solution of the
shallow water equations and for the numerical solution of the equations of the incompressible
ideal magnetohydrodynamic (MHD) flows in plasmas.

1. Introduction

Different types of partial differential equations require different numerical methods of
solution. Numerical methods for hyperbolic equations are generally more complicated and
difficult to develop compared to the numerical methods applied for parabolic or elliptic type
partial differential equations. There has been important advances in the last few decades in
the domain of the numerical solution of hyperbolic type partial differential equations using
the method of characteristics, when applied to solve the initial value problem for general first
order partial differential equations The order of a partial differential equation is the order of
the highest-order partial derivative that appears in the equation. Let us consider for example
the following simple hyperbolic type advection equation:
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. (1.1)

where c is a constant, sometimes called the velocity of propagation. The characteristic
equation to solve Eq.(1.1) is cdtdx =/ . The rate at which the solution will propagate along
the characteristics is c. If c is a constant, all the points on the solution profile will move at the
same speed along the characteristics determined by the solution of cdtdx =/ . Let us
assume the initial condition 0)0( xx = . The solution of the characteristic equation gives the

characteristic curves ctxx += 0  ( a straight line for the present case where c is a constant),

where 0x  is the point where each curve intersects the x-axis at t=0 in the x-t plane. If at t=0

we have )( 0xff ≡ , ctxx −=0 , then )(),( ctxftxf −= . The function ),( txf
remains constant along a characteristic, which can be verified if we differentiate ),( txf
along one of these curves to find the rate of change of f along the characteristic:
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. (1.2)

which verify that f is constant along the characteristic curves. This is the simplest
mathematical model of wave propagation. Constant quantities along the characteristic curves
are called Riemann invariant [1]. We next consider the variable coefficient advection
equation written as follows:

0),( =
∂
∂

+
∂
∂

x
ftxg

t
f

. (1.3)

The characteristic equation is ),(/ txgdtdx = . Again if the value of f at some arbitrary

point ),( 00 tx is known, the coordinate of the characteristic curve passing through

),( 00 tx can be determined by integrating the ordinary differential equation

),(/ txgdtdx = . The velocity of propagation depends now on the spatial coordinate and
time. In the general case an analytic solution is not straightforward and the characteristic
curves are not straight lines anymore. Also it will be possible for the characteristic curves to
intersect. The solution obtained by following the characteristic curves may contain
discontinuities, which can lead to the formation of shocks or rarefaction waves [1]. Numerical
techniques can be used to produce good approximations by following the solution
computationally with small time-steps . As an example, we can discretize Eq.(1.3) as follows:

0),(),(),(),(),(
=

−−
+

−+
dx

tdxxftxftxg
dt

txfdttxf
. (1.4)
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The Method of Characteristics for the Numerical Solution… 3

),(),(),(.().,(),(),( tdxxftdxxftxf
dx
dttxgtxfdttxf −=−−−=+ . (1.5)

For a small time-step between t and t+dt, it is possible to write the solution for the
characteristic equation between x and x+dx in the form:

∫
+

′′′=
dtt

t

tdttxgdx )),(( . (1.6)

Substituting in the right hand side of Eq.(1.5), we get:

∫
+

′′′−=+
dtt

t

ttdttxgxfdttxf ),)),(((),( . (1.7)

Eq.(1.5) and Eq.(1.7) indicate that the value of the function f at the time t+dt and at a
position x is equal to the value of the function at time t, at the shifted position

∫
+

′′′−=−
dtt

t

tdttxgxdxx )),(( . Eq.(1.7) is an implicit equation, and in all but the simplest

cases different numerical approximations must be used to write an explicit solution. It is the
purpose of the present chapter to discuss some of these approximations through examples and
numerical methods applied to hyperbolic equations. Some of these approximations have been
recently discussed for instance in [2,3]. The value of the function at the shifted position is
usually calculated by interpolation from the known values of the function at the neighbouring
grid points. In the present chapter cubic splines interpolation will be extensively used to
calculate the shifted value in Eq.(1.7), since in several applications and problems they have
compared favourably with other methods of interpolation [4]. For the more general case
where several dimensions are involved, the fractional step technique allows sometimes the
reduction of the multi-dimensional equation to an equivalent set of one dimensional equations
[2-5]. The shifts become fractional, i.e. each of the dimension is shifted separately. The
specific order, number of shifts and choice of the size of shift-factors depend now on the
numerical method. If the fractional step technique cannot be applied, we can use other
methods which consist in interpolating in several dimensions using a tensor product of B-
splines [6]. This technique has been extensively applied in the field of meteorology [7,8],
where it is called the semi-Lagrangian method (although we prefer to call it the Euler-
Lagrange method, since it essentially uses a fixed Eulerian grid, and uses a corrector or an
iterative process to take care of the variation of the velocity along the characteristic curve).

We can generalize Eq.(1.3) for a multi-dimensional problem in the following form:

0).,( =
∂
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+
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∂

=
r

rG ft
t
f

dt
df

. (1.8)
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M. Shoucri4

which reflects the fact that the function ),( tf r  is constant along the trajectories defined by
the characteristic curves :

),( t
dt
d rGr

= . (1.9)

Denoting by ),;( ntt irr  the characteristic crossing the grid point ir  at tn , we can also

write at ntt = :

),()),,;(()),,;(( nnnn tftttftttf iii rrrrr == . (1.10)

Replacing nt  by ttn Δ+  and t  by tt Δ− , results in :

)),,;((),( ttttttfttf nn Δ−Δ+Δ−=Δ+ ii rrr . (1.11)

),;( tttt n Δ+Δ− irr  is the characteristic which ends up at ir  at time ttn Δ+ . The function

value at the time-step ttn Δ+  and at the grid point ir  can be calculated by looking backward
to the function value at an interstitial point, prescribed by the characteristic curve at the
previous time tt Δ− . The starting point at the previous time-step ttn Δ− , of the

characteristic curve ending at ir  at time ttn Δ+ , is denoted by

),;(~ tttt nn Δ+Δ−= irrr (see Fig.(1)). Usually r~  is an intermediate interstitial point
which does not coincide with a grid point. The value of the function at r~ has to be calculated
by interpolation. Discretizing Eq.(1.9) of the characteristic curves using a leap-frog scheme,
we can write:

)),((
2

~

2
)()(

nn
nn tt

tt
tttt

rGrrrr i =
Δ
−

≡
Δ

Δ−−Δ+
. (1.12)

Using ( ) 2/)~(2/)()()( rrrrr i +≡Δ−+Δ+≈ ttttt nnn  in the right hand side of

Eq.(1.12), results in ),( ntt rir rG Δ−Δ=Δ , where 2/)~( rrir −=Δ . We solve this

equation numerically for rΔ  using the Newton iterative scheme :

. ),(1
n

k tt k
rir rG Δ−Δ=Δ + (1.13)

starting with k=0, 00 =Δ r . Two or three iterations are usually sufficient to converge to

precise results. We then calculate the value of f at the position ir  at ttn Δ+ :
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The Method of Characteristics for the Numerical Solution… 5

),*2()),,;((),( ttfttttttfttf nnnn Δ−Δ−=Δ−Δ+Δ−=Δ+ riii rrrr . (1.14)

( )1;, +nji tyx

( )1;, −ntyx

1−i i 1+i

1−j

j

1+j

P

Q

Figure 1.

The multi-dimensional interpolation in Eqs.(1.13-1.14) will generally involve a tensor
product of B-splines. In practice, we will restrict ourselves to problems in two dimensions. In
the Fig.(1) we give an example for the case of a two-dimensional space, showing the point of
departure P at ttn Δ−  , where the value of the function f is to be interpolated as in Eq.(1.14)

to yield the value of ),( ttf n Δ+ir at the point Q. Similar schemes have been extensively
used in problems of meteorology [7,8], and more recently in plasma physics [6,9].

The ideas outlined in this introduction will be applied to selected problems in the present
chapter. In section 2 we will present examples where a fractional step method reduces the
multi-dimensional problem to an equivalent set of one-dimensional (1D) problems. In section
3 we will present examples where 2D interpolation involves a tensor product of cubic B-
splines. We will emphasize the precision, good performance and numerical stability of the
cubic splines interpolation, which have been also previously pointed out in [4,7]. Examples
will be taken from the field of plasma physics, especially concerning the numerical solution
of the Vlasov equation, of fundamental importance in the kinetic theory of plasmas. Some
additional applications in the field of fluid dynamics will be presented in section 4, for the
numerical solution of the shallow water equations, and for the numerical solution of the
equations of the incompressible ideal magnetohydrodynamic flows in plasmas.

2. The Fractional Step Method Applied to the Vlasov Equation

The study of nonlinear processes in kinetic plasmas is heavily based on the numerical solution
of the Vlasov equation for the distribution function. The Vlasov equation provides the basic
dynamical description of hot plasmas in regimes where the effect of collisions are negligible
with respect to those originating from the collective, mean-field electromagnetic interactions.
The Vlasov-type equation is an advection equation in phase-space for the distribution
function f , of the general form given in Eq.(1.8). Different techniques have been proposed to
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M. Shoucri6

solve this equation. Particle-in-cell (PIC) methods for instance approximate the plasma by a
finite number of pseudo-particles and compute their trajectories given by Eq.(1.9). However,

the numerical noise in these codes decreases only as N/1 , where N is the number of
pseudo-particles in any particular computational cell. This noise problem becomes important
if the physics of interest is in the low density region of phase-space or in the high energy tail
of the distribution function. On the other hand the direct numerical solution of the Vlasov
equation as a partial differential equation on a fixed grid in phase-space has become an
important method for the numerical solution of the Vlasov equation. Interest in Eulerian grid-
based Vlasov solvers arises from the very low noise level associated with these methods, and
the recent advances of parallel computers have increased the interest in the applications of
splitting schemes to higher dimensional problems. The original, ground-breaking publication
of Cheng and Knorr [10], which proposed the second-order fractional step scheme or splitting
scheme for the solution of the Vlasov-Poisson system, was followed by several publications
where this method was successfully applied to one-dimensional (two-dimensional in phase-
space) Vlasov- Poisson problems [11-14]. The technique was extended to higher phase-space
dimensions [15-19]. An important application using the Eulerian splitting schemes for the
Vlasov-Maxwell system of equations has been reported for the study of laser-plasma
interaction [20-27 and references therein], and extended to two-dimensional problems [28]. In
the work on beat wave current drive [29], a constant magnetic field was introduced in the
Vlasov equation. Further applications in the recent work in [30,31] testify to the success of
this method in laser-plasma interaction. We also note the application of Eulerian splitting
schemes to study two spatial dimension problems of Kelvin-Helmholtz instabilities and
higher dimensionality gyrokinetic equations [32-39]. There exists also a variety of other
applications using different methods developed for Eulerian grid-based Vlasov solvers [40-
44]. Of particular interest is the work coupling a Vlasov equation to a Fokker-Planck collision
operator presented in [45]. In the present section 2 , we will present selected examples where
the fractional step techniques associated with interpolation along the characteristic curves in
one dimension are applied for the numerical solution of the Vlasov equation.

2.1. The Fractional Step Method Applied to the Vlasov-Poisson System in
One Spatial Dimension

The first system we study is the Vlasov-Poisson system in one spatial dimension ( a two-
dimensional phase space x-v ). The problem is the long time nonlinear evolution of a two-
stream instability in a collisionless plasma [46,47]. The system in this case evolves to a
Bernstein-Greene-Kruskal BKG equilibrium [48] consisting of a stationary structure
exhibiting holes or vortices in phase-space. BKG structures with more than one hole are
unstable and coalesce until the evolution brings a final stable vortex. This flow of energy of
the system during the evolution to the longest wavelength available in the system ( inverse
cascade ) is characteristic of two-dimensional systems and has been discussed in several
publications ( see for instance [49-50]). We use an Eulerian code associated with a method of
fractional step for the integration of the Vlasov equation along the characteristics. The
Eulerian method allows accurate resolution of the phase-space on a fixed Eulerian grid. In the
present problem the spatial dimension x is assumed to be periodic. The normalized Vlasov
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The Method of Characteristics for the Numerical Solution… 7

equation for the electron distribution function ),,( tvxf  and the Poisson equation for the
potential )(xϕ  are given by:

0=
∂
∂

−
∂
∂

+
∂
∂

v
fE

x
fv

t
f

x . (2.1)

)1(2

2

en
x

−−=
∂
∂ ϕ ,

where ∫
∞

∞−

= dvfne , and 
x

Ex ∂
∂

−=
ϕ

(2.2)

The ions form an immobile background in the present problem. The distance x , the
velocity v and the time t are respectively normalized to the Debye length pethDe v ωλ /= , the

thermal velocity vth and the inverse plasma frequency 1 −
peω . Eq.(2.1) is essentially a two-

dimensional advection equation. An important property of this equation is that its
characteristics, the particles trajectories vdtdx =/ , xEdtdv −=/  describe a Hamiltonian
flow in phase-space. The particles motion is described by the Hamiltonian:

)(
2

2

xvH ϕ+= . (2.3)

The Vlasov Eq.(2.1) can be written in the form:

[ ] 0, =+
∂
∂ fH

t
f

. (2.4)

The Poisson brackets  [ ]
⎭
⎬
⎫

∂
∂

∂
∂

−
∂
∂

⎩
⎨
⎧

∂
∂

=
v
f

x
H

x
f

v
HfH ,

The distribution function f is constant along the particle trajectories. As a consequence,
the integral over the entire phase-space of the distribution function is a constant, as well as the
integral of any arbitrary smooth function of f. Thus the evolution of the distribution function f
is constrained by a number of constants of motion. Hamiltonian systems like Eq.(2.4) are
known to develop increasingly smaller scales during their nonlinear evolution. One way to
control these finer structures is to increase resolution. These small structures dissipate when
they reach the size of a the grid. We write the initial electron distribution function in the
form[46]:
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))cos(3  )cos(2                                              

)cos( (1  )
1

1()0,,(

00

0

xkxk

xkeAtvxf

γβ

α
ξ

ε ε

++

+
−

+== −

. (2.5)

With 
ξ
ξ

π 23
22

2
1

−
−

=A

2/2v=ε , and ξ  is a parameter which characterizes a produced vortex in phase-space.

L
k π2

0 =  denotes the fundamental wavenumber, L is the length of the periodic box. We

choose 
40
Mkk = , where Mk  is the maximum wavenumber for instability [46] given by

ξ
ξ

23
122

−
−

=Mk , which leads to a box length 
12

238
−

−
=

ξ
ξπL . We choose 90.0=ξ , which

gives 816.0=Mk , DeL λ78.30=  and 204.00 =k .

We take a cut-off velocity at thvv 6max ±= . The distribution function is given at mesh
points in the phase-space, with Nx = 128 points in space and Nv = 256 points in velocity space.
The time-step is 125.0 −=Δ pet ω . A method which has second order in time precision [10,11]

is obtained by splitting Eq.(2.1) as follows:

Step1 -  Solve 0=
∂
∂

+
∂
∂

x
fv

t
f

 for a step 2/tΔ  (2.6)

 - Solve Poisson equation for the electric field which we denote by *
xE .

Step2 -Solve 0* =
∂
∂

−
∂
∂

v
fE

t
f

x  for a step tΔ (2.7)

Step3 -Solve 0=
∂
∂

+
∂
∂

x
fv

t
f

 for a step 2/tΔ (2.8)

In this 2D phase-space problem the shifts become fractional, i.e. each of the dimension of
the phase-space is shifted separately. This splitting has the advantage that each of the x or v
updates is a linear advection effected by applying successively the shifts :

),,2/()2/,,( tvtvxfttvxf a Δ−=Δ+ , (2.9)

),,(),,( * ttEvxfttvxf x
ab Δ−=Δ+ , (2.10)
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The Method of Characteristics for the Numerical Solution… 9

),,2/()2/,,( tvtvxfttvxf b Δ−=Δ+ , (2.11)

That is, half of the spatial shift is performed first in space. Since v is an independent
variable, the shift in Eq.(2.9) is done as in Eq.(1.1) for each value of v (see Appendix A). This
is followed by solving Poisson equation for the calculation of the electric field *

xE , which is
used for the calculation of the total shift in velocity space where the integral in Eq.(1.7) is
approximated as in Eq.(2.10). Poisson equation in Eq.(2.2) is discretized in space as a
tridiagonal matrix:

)1(2 2
11 ejjjj nx −Δ−=+− +− ϕϕϕ .  (2.12)

where xNLx /=Δ , the subscript j denotes the grid-point xj . Eq.(2.12) is solved using
appropriate boundary conditions ( periodic boundary conditions for the present problem).
From ϕ  we calculate *

xE  (Eq.(2.2)). Finally the second half of the spatial shift is repeated in
Eq.(2.11). It has been shown in [10] that the overall precision of this numerical scheme is

)( 2tO Δ . We can verify after this sequence that the distribution function 1+nf  at time
tnt Δ+= )1(  can be written as follows:

)2/(           

))2/(
2
1(           

),(),(

*

*

**1

tvxEvv

ttvxEvtxx

vxfvxf

x

x

nn

Δ−+=

ΔΔ−+Δ−=

=+

. (2.13)

On the other hand we can consider the characteristics equations , vdtdx =/ ,

xEdtdv −=/ , which are the particles trajectory. The integration of these equations between

t and ttt Δ+=  gives the following result :

)2/,()()(
))2/,(2/1)(()()(

ttxtEttvtv
tttxEttvtttxtx

x

x

Δ+Δ+Δ+=
ΔΔ++Δ+Δ−Δ+=

. (2.14)

where )2/( ttxx Δ+= . The field ),( txEx  in Eq.(2.7) is calculated after the first shift. The

density distribution, and therefore ),( txEx , remains unaffected by the second shiht. Thus the

field )2/,( ttxEx Δ+  can be approximated by )2/,2/( tttvxEx Δ+Δ− . The shifts in
Eqs.(2.9-2.11) are calculated using a cubic spline interpolation as defined in the appendices.
For the present problem, we used the results in Appendix A.
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M. Shoucri10

Figure 2. The vorticity at t=50 1−
peω .

Figure 3. The vorticity at t=100 1−
peω .

Figure 4. Time evolution of the first Fourier mode.

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



The Method of Characteristics for the Numerical Solution… 11

Figure 5. Time evolution of the second Fourier mode.

Figure 6. The vorticity at t=40 1−
peω .

Figure 7. The vorticity at t=50 1−
peω .

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



M. Shoucri12

Figure 8. The vorticity at t=500 1−
peω .

We apply the numerical scheme previously discussed to study the evolution of a two-stream
instability. We introduce a perturbation on the fundamental wavenumber 0k  by taking

001.0=α  and .0== γβ  Only one vortex appears in phase space during the nonlinear
plasma evolution ( see Fig.(2)), and the final equilibrium in Fig.(3) consists of a single
smooth hole. Fig.(4) and Fig.(5) show the nonlinear evolution of the first and second Fourier
modes respectively, showing the initial growth and saturation. In a second experiment, we
start with a perturbation in Eq.(2.5) of the three modes, 001.0=α , 2.1/αγβ == . We
obtain in the first step the appearance of two vortices in the phase-space shown in Fig.(6) at

140 −= pet ω  , followed rapidly by the coalescence of the vortices at 150 −= pet ω  in Fig.(7) (so

the two vortices structure is not stable). Note the tendency of holes to behave as quasi-
particles just before coalescence [47]. We finally end up with a single vortex (see Fig.(8)).
We note again this tendency of the energy to move to the longest wavelength available in the
system [49,50] ( the so called inverse cascade), which is characteristic of two dimensional
systems. Small scale vortices can be created in the transient regime, but they rapidly coalesce
to give rise to larger vortices, and finally only large scale structures persist. The system
selects the longest wavelength allowed by the imposed boundary conditions. Fig.(9) and
Fig.(10) show the nonlinear evolution of the first and second Fourier modes respectively,
showing the initial growth and saturation. We note that the saturation level decreases the
higher the mode. Statistical studies presented in [49,50] for 2D systems predict for two
dimensional systems a level of the energy associated with the different Fourier modes of the

form )/(1 22 kEk σδ +=  (δ  and σ are constants), with energy condensing in the low k

modes (inverse cascade). We note the strong influence of the initial conditions on the plasma
evolution, although the final state is generally a single vortex structure. We also note the
accurate and stable performance of the noiseless Eulerian numerical code, which provided
precise information on the phase-space behaviour of the one-dimensional Vlasov plasma.
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The Method of Characteristics for the Numerical Solution… 13

Finally we point to the extension of the fractional step method to a fourth order scheme using
a symplectic integrator, recently reported in [42].

Figure 9. Time evolution of the first Fourier mode.

Figure 10. Time evolution of the second Fourier mode.

2.2. The Vlasov-Poisson System in Higher Phase-Space Dimensions:
the Problem of the Formation of an Electric Field at a Plasma Edge
in a Slab Geometry

Further evaluation of the performance of the cubic spline interpolation with respect to other
interpolation methods, like the cubic interpolated propagation CIP method and the flux
corrected transport method, has been presented in [4] and shows the cubic spline interpolation
compares favourably with respect to the other methods. We consider in this section the
problem of the charge separation at a plasma edge. This problem, with the calculation of the
self-consistent electric field along a steep gradient, is of major importance in many physical
problems. In tokamak physics, it is highly relevant to the edge physics associated with the
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M. Shoucri14

high confinement mode (H mode). Two methods will be used to study this problem, and the
results obtained will be compared. In the first method presented in this section, Cartesian
geometry ( a slab model) will be used at the edge of the plasma, and a fractional step
technique associated with 1D interpolation using a cubic spline will be applied. In the second
method to be presented in section 3.2, we will discuss the solution of the same problem at the
plasma edge using cylindrical coordinates ),,( zr θ , with a code which applies a 2D
interpolation using a tensor product of cubic B-splines [6,51]. The plasma is assumed to be in
front of a floating limiter with the magnetic field being aligned parallel to the limiter surface.
Electrons are assumed to be frozen along the magnetic field lines. We compare the electric
field with the macroscopic values calculated from the same kinetic codes for the gradient of
the ion pressure and the Lorentz force term. We find that along the gradient, these quantities
balance exactly the electric field.

The inhomogeneous direction in the 1D slab geometry considered is the x direction,
normal to the limiter plane (y, z). The constant magnetic field is in the y direction (assumed to
represent the toroidal direction), and z represents the poloidal direction. The ions are
described by the 1D in space ( three phase-space dimensions) Vlasov equation for the ion
distribution function ( )tvvxf zxi ,,, :

( ) 0=
∂
∂

+
∂
∂

−+
∂
∂

+
∂
∂

z

i
cix

x

i
cizx

i
x

i
v
f

v
v
f

vE
x
f

v
t
f

ωω (2.15)

In Eq.(2.15) time is normalized to the inverse ion plasma frequency 1−
piω , velocity is

normalized to the acoustic velocity ies MTc /=  (Te is the electron temperature and Mi is

the ion mass), and length is normalized to the Debye length pisDe c ωλ /= , where piω  is

the ion plasma frequency. The potential is normalized to eTe / , and the density is normalized

to the peak initial central density. ciω  is the ion cyclotron frequency. We assume deuterons

plasma. The system is solved over a length L = 175 Deλ  in front of the limiter plate, with an
initial density profile for the ions and electrons (indices i and e denote ions and electrons
respectively):

( )( )7/)5/(tanh15.0 Lxnn ei −+== (2.16)

The initial value of the ion distribution function ),,( zxi vvxf  is given by:

i

Tvv

izxi T
exnvvxf

izx

π2
)(),,(

2/)( 22 +−

= (2.17)

The magnetized electrons are frozen along the magnetic field lines, with a constant
profile given by Eq. (2.16). In this case the electrons cannot move across the magnetic field in
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The Method of Characteristics for the Numerical Solution… 15

the gradient region to compensate the charge separation which is built up due to the finite ion
orbits. It is important to calculate the ion orbits accurately by using an accurate Eulerian
Vlasov code. The larger the ion gyroradius, the bigger the charge separation and the self-
consistent electric field at the edge. (Hence the important role played by even a small fraction
of impurity ions). The electric field is calculated from the Poisson equation:

( )
x

Enn
x xei ∂

∂
−=−−=

∂
∂ ϕϕ ;2

2

 (2.18)

The following parameters are used for deuterium ions:

210
/
12;1;1.0 ====

picie

i

De

i

e

i

pi

ci
T
T

T
T

ωωλ
ρ

ω
ω

(2.19)

If we assume an initial Maxwellian distribution for the ions with iizix TTT ==  spatially
constant, then the factor iT2  in the calculation of the gyro-radius in Eq.(2.19) takes into

account that the perpendicular temperature iizx mTvvv /2222 =><+><=>< ⊥ . We assume
in the present calculation that the deuterons hitting a wall at x = 0 are collected by a floating
limiter. Since the magnetized electrons do not move in the x direction across the magnetic
field there is no electron current collected at the floating limiter. Therefore we have at x = 0
the relation :

∫ ===
=

−=−=
∂

∂ t

xxixxxxi
x

x dtJEJ
t

E

0
000

0
or (2.20)

Integrating Eq. (2.18) over the domain (0, L), we get the total charge σ in the system:

( )∫ =−=− ==

x

eixxLxx dxnnEE
0

0 σ  (2.21)

The difference between the electric fields at the boundaries must be equal to the charge
appearing in the system. Equation (2.15) is solved by a method of fractional step, in which the
advection term in space is solved first, then the equation in velocity space can be solved either
using 2D interpolation with a tensor product of cubic B-spline as discussed in [51] (to be
applied in section 3.2) , or by successive 1D cubic spline interpolation as follows:

Step1- Solve 0=
∂
∂

+
∂
∂

x
fv

t
f

x  for a step 2/tΔ (2.22)
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M. Shoucri16

 - Solve Poisson equation for the electric field which we denote by 2/1+n
xE .

Step2- Solve 0)( 2/1 =
∂
∂

−+
∂
∂ +

x
ciz

n
x v

fvE
t
f ω  for a step 2/tΔ (2.23)

Step3- Solve 0=
∂
∂

+
∂
∂

z
cix v

fv
t
f ω  for a step tΔ (2.24)

Step4- Repeat Step2 for a time step 2/tΔ

Step5- Repeat Step1 for a time step 2/tΔ

This splitting leads to the following successive shifts :

),,,2/()2/,,,( tvvtvxfttvvxf zxxzx
a Δ−=Δ+ ,  (2.25)

),,2/2/,()2/,,,( 2/1 tvtvtEvxfttvvxf zciz
n
xx

a
zx

b Δ+Δ−=Δ+ + ω ,  (2.26)

),,,(),,,( ttvvvxfttvvxf cizzx
b

zx
c Δ−=Δ+ ω ,  (2.27)

We then repeat Eq.(2.26) and Eq.(2.25) to complete the cycle. We can then verify after
this sequence that the distribution function 1+nf  at time tnt Δ+= )1(  can be written in the
following form:

),,(),,( ***1
zx

n
zx

n vvxfvvxf =+  (2.28)

where:

22
1 2

2** tvtEtvxx cizxx
Δ

−Δ+Δ−= ω  (2.29)

22**

2
1 tvtvtEvv cixcizxxx Δ−Δ+Δ−= ωω  (2.30)

222**

2
1

2
1 tvtEtvvv cizxcicixzz Δ−Δ+Δ−= ωωω  (2.31)

where )2/,2/(* ttnttvxEE xxx Δ+Δ=Δ−=
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The Method of Characteristics for the Numerical Solution… 17

On the other hand , we can consider the characteristics equations for Eq.(2.15) which
describe the particles motion:

  xv
dt
dx

=   (2.32)

  cizx
x vE

dt
dv

ω−=   (2.33)

  cix
z v

dt
dv

ω=   (2.34)

By integrating the Eqs.(2.32-2.34) from tntn Δ=  to tntn Δ+=+ )1(1 , we get:

  
22

11 tvtvxx n
x

n
x

nn Δ
−

Δ
−= ++   (2.35)

  
22

12/11 tvtvtEvv n
zci

n
zci

n
x

n
x

n
x

Δ
+

Δ
+Δ−= +++ ωω   (2.36)

  
22

11 tvtvvv ci
n
xci

n
x

n
z

n
z

Δ
−

Δ
−= ++ ωω   (2.37)

Eqs(2.35-2.36) leads to the following solution correct to second order in tΔ :

  
22

2
1

2
2/111 tvtEtvxx n

zci
n
x

n
x

nn Δ
−

Δ
+Δ−= ++++ ω   (2.38)

  
2

2
1212/11 tvtvtEvv n

xci
n
zci

n
x

n
x

n
x

Δ
−Δ+Δ−= ++++ ωω   (2.39)

  
22

2
21

2
2/111 tvtEtvvv ci

n
z

n
xcici

n
x

n
z

n
z

Δ
−

Δ
+Δ−= ++++ ωωω   (2.40)

By comparing Eqs.(2.29-2.31) to Eqs.(2.38-2.40), we see that the splitting scheme
integrates the distribution function along the characteristics correctly to an order )( 2tO Δ . (

Note also that to an order )( 2tO Δ  , 1+n
zv  in the last term in Eq.(2.40) can be substituted by

n
zv ).

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



M. Shoucri18

. 

Figure 11. Plot, for the Cartesian geometry, of the electric field Ex (solid curve), the Lorentz force
><+ zv1.0  (dash- dotted curve), the pressure force ii nP /∇ (dotted curve), and the sum

><+∇ zii vnP 1.0/  (broken curve). The density ni/2 is is also plotted (dash- three-dots curve,

plotted for reference).

We assume that the gyrating plasma deuterons are allowed to enter or leave at the right
boundary. So the electric field at the right boundary x = L must be such that the difference
between the electric fields at both boundaries in Eq. (2.21) is equal to the total charge σ
appearing in the system. Fig. (11) shows at t = 500 the plot of the electric field xE  (solid
curve, we concentrate on the region x < 100 to emphasize the gradient region, although the
system extends to x = 175). We also plot 2/in  (dash-three-dots curve) in the same figure for
reference. The dash-dotted curve gives the Lorentz force, which in our normalized units is
given by ><=>< zpiciz vv 1.0/ωω , and the dotted curve gives the pressure force

ii nP /∇ , ( )izixii TTnP += 5.0 , with:

( ) ( )∫ ><−= zxizxzxzx
i

zix vvxfvvdvdv
n

xT ,,1)( 2
,,,   (2.41)

( ) ( )∫ ∫==>< zxizxizxizxzx
i

zx vvxfdvdvxnvvxfvdvdv
n

v ,,,, ,)(;,1
(2.42)

In steady state the transport >< xv  vanishes. The broken curve in Fig. (11) gives the

sum ><+∇ zii vnP 1.0/ , which shows a good agreement along the gradient with the solid

curve xE . In the region x < 20 we have small oscillations in space (and time), the accuracy of
the curve plotted in this region being degraded by the division by ni , due to the low density

in  and large iT∇  appearing close to the surface.
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The Method of Characteristics for the Numerical Solution… 19

Figure 12. Plot of niEx (solid curve), ><+ zi vn1.0 , (dash-dotted curve) , iP∇  (dotted curve), and

><+∇ zii vnP 1.0 ( broken curve), (ni/10 is also plotted for reference).

Figure 13. Charge (ni –ne).

We plot in Fig. (12) the quantities xi En , iP∇ , >< zi vn1.0 and the sum

><+∇ zii vnP 1.0 . We note that there is a very nice agreement for the relation

><+∇= ziixi vnPEn 1.0  (here the density 10/in  is plotted with the dash-three-dots
curve to locate the profiles with respect to the gradient). The electric field should interact with

the constant magnetic field to give an BxE
GG

 drift in the poloidal direction ( there is no shear
in this drift in the flat part of the electric field, which can explain the absence of turbulence at
the plasma edge observed in H-mode tokamaks). The charge σ appearing in the system is
calculated by the code and amounts to –0.34197 at t = 500. The charge collected and
accumulated at x = 0, which defines 0=xxE  from Eq. (2.20), is 0.34535. The difference

between these two numbers is ≈ 0.00338, which is LxxE =  from Eq. (2.21). We see also

from Figs. (11,12) that inside the plasma at the right boundary, in the flat part of the density
where 0=∇ iP , the constant electric field is exactly compensated by the Lorentz force due to

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



M. Shoucri20

the poloidal drift >< zv1.0 , while along the gradient the electric field is essentially balanced

by ii nP /∇ (the electric drift is equal and opposite to the diamagnetic drift). Fig. (13) shows

the charge density ( )ei nn −  at t = 500, which illustrates how the combined effect of the steep
profile at a plasma edge and the large ion orbits (large ratio Dei λρ / ) leads to a charge
separation at a plasma edge along the gradient, when the electrons frozen to the magnetic
field cannot move across the field to compensate the charge separation caused by the finite
ion gyroradius. Fig. (14) shows the potential. Figs (15) and (16) show the temperatures ixT

and izT  (solid curves). The broken lines represent the pressures ixi Tn  and izi Tn  which

follow closely the curve of the density in . Thus close to the floating limiter a complex sheath
structure is formed which governs the plasma-wall transition.

Figure 14. Potential profile.

Figure 15. Temperature Tx.
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The Method of Characteristics for the Numerical Solution… 21

Figure 16. Temperature Tz.

2.3. Vlasov-Maxwell Equations for Laser-Plasma Interaction

Two systems of equations for 1D laser-plasma interaction will be discussed in this chapter. In
the first one, presented in this section, we consider a linearly polarized electromagnetic wave
[21]. This system is solved using a fractional step method and uses a cubic spline
interpolation to solve for the advection term in the reduced one dimensional equations. In the
second system, to be presented in section 3.3 a fully relativistic code is used [52], and the
wave is circularly polarized. In this case, to advance the equations in time, we shall use a
tensor product of cubic B-spline for a two dimensional interpolation along the characteristics.
Comparison for the results obtained by the two methods will be provided at the end of section
3.3, both from the physical point of view and from the numerical point of view to underline
the accuracy of the cubic spline interpolation.

In the model we present in this section, a linear polarization of the electromagnetic wave
is assumed. Time t is normalized to the inverse electron plasma frequency 1−

peω , length is

normalized to 1
0

−= pecl ω , velocity and momentum are normalized respectively to the

velocity of light c and to cM e , where eM  is the electron rest mass. The one-dimensional

Vlasov equations for the electron distribution function ),,( tpxf xee  and the ion distribution

function ),,( tpxf xii  are given by [20]:

0)(
))(1( ,

,,,
2/12

,,

,
,

, =
∂

∂
+

∂

∂

+
+

∂

∂

ixe

ie
z

ie
yx

ie

ixeie

ixe
ie

ie

p
f

BvE
x

f
pm

p
m

t
f

∓ .  (2.43)

The indices e and i refers to electrons and ions. In our normalized units 1=em , for the

electrons, and iei MMm /=  for the ions. The relativistic correction in this case is given by
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M. Shoucri22

2/12
,,, ))(1( ixeieie pm+=γ . For the velocity in the direction normal to the gradient, we have

the following relation:

 yie

ie
y Em
t

v
,

,

∓=
∂

∂
.  (2.44)

The electric field is calculated from the relation ,
x

Ex ∂
∂

−=
ϕ

 and the potential ϕ  is

calculated from Poisson equation:

  xixiixexee dppxfdppxf
x

),(),(2

2

∫∫ −=
∂
∂ ϕ

. (2.45)

We note also that the canonical momentum 0/ ,
, == yie
ie

yy amvP ∓ . Hence

yie
ie

y amv ,
, ±= , which when derived with respect to time leads to Eq.(2.44)

( taE yy ∂−∂= / ). cMeAa eyy /=  is the normalized y component of the vector potential.

The linearly polarized electromagnetic field propagates in the x direction with an electric field
Ey in the y direction, normalized to ecM epe /ω , and a magnetic field xaB yz ∂∂= /  in the z

direction, normalized to eM epe /ω . We define the quantity zy BEE ±=± , which obeys

the equation:

i
i
ye

e
yxixii

i
yxexee

e
yy nvnvdptpxfvdptpxfvJE

xt
−=−=−=

∂
∂

±
∂
∂

∫ ∫± ),,(),,()( . (2.46)

The Hamiltonian associated with this system is given by:

( ) 2
,

2/12
,,

,
, 2

1)(11
yieixeie

ie
ie Ampm

m
H +±+= ϕ .  (2.47)

We can write Eq.(2.43) in the form: [ ] 0, ,,
, =+

∂

∂
ieie

ie fH
t

f
, where the Poisson bracket:

[ ]
ixe

ieieie

ixe

ie
ieie p

f
x

H
x

f
p
H

fH
,

,,,

,

,
,, ,

∂

∂

∂

∂
−

∂

∂

∂

∂
= .  (2.48)

Eqs.(2.43) are solved by a fractional step [20]. The momentum space is divided into Np

cells between iexp ,max−  and iexp ,max+ . The length L of the system is divided into Nx cells.
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The Method of Characteristics for the Numerical Solution… 23

The fractional step method involves the following steps to advance Eq.(2.43) in time from tn

to tn+1 :

Step1- For a time step 2/tΔ  , we calculate

),,2/)/((),,( ,,,,,2/1,
*
, nixeieixeieienixeie tptpmxftpxf Δ−=+ γ .  (2.49)

Step2- Calculate the fields at time 2/1+nt using 
*
,ief , then use these values to shift for tΔ

in the direction ixep ,  the distribution functions:

),)(,(),,( 2/1
2/12/1,2/1

,
*
,2/1,

**
, +

+++
+ Δ+±= n

n
z

ine
y

n
xixeienixeie ttBvEpxftpxf .  (2.50)

Step3- Shift again for a time step 2/tΔ  in x space:

),,2/)/((),,( ,,,,
**

,1,, nixeieixeieienixeie tptpmxftpxf Δ−=+ γ .  (2.51)

The shifts in Eqs.(2.49-2.51) are done using cubic spline interpolation (see Appendix B).
The solution of Eq.(2.44) between tn and tn+1 is given by the time centered scheme:

2
),(),(

),(),( 2/12/1,
1

, +
−

+
+

+

−
Δ= nn

n
ie

yn
ie

y
txEtxE

ttxvtxv ∓ .  (2.52)

 Eqs.(2.46) are solved using the centered scheme with tx Δ=Δ :

),2/(),(),( 2/12/1 nynn ttxtJtxEttxE Δ±Δ−=Δ± −
±

+
± .  (2.53)

with 
2

),(),(
),2/( nyny

ny

txJtxxJ
ttxJ

+Δ±
=Δ± .

We integrate exactly along the vacuum characteristic with tx Δ=Δ  , we can write the
following numerical scheme for Eq.(2.53):

)),(),(                       

),(),(),(),(                       

),(),((
2
1),(),(

2/1

2/12/1

2/12/12/1

n
i
yni

n
i
ynin

e
yne

n
e
ynenn

txxvtxxn

txvtxntxxvtxxn

txvtxnttxxEtxE

ΔΔ

+−ΔΔ

+Δ+Δ=

−

+−

+−
±

+
±

∓∓

∓∓

∓

.  (2.54)

The calculation of 2/1+n
xE  is done by discretizing Eq.(2.45) using a tridiagonal matrix

similar to Eq.(2.12). The solution of Eq.(2.45) in a finite domain require boundary conditions.
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M. Shoucri24

The system is initially neutral. If a charge pQ  appears in the system, it has to disappear

through the boundaries. A first approximation used in [21] was to divide this charge equally
between the two (left and right) boundaries. A more accurate calculation consists in
calculating the charge at the two boundaries by collecting the current hitting these boundaries.
Let us assume that lQ , pQ , and rQ  are the charges calculated during the simulation

respectively at the left boundary, in the plasma, and at the right boundary. lQ  can be
calculated by collecting the current at the left boundary from the relation :

00
0

)(
==

=

−−=−=
∂

∂
xxexixx

x

x JJJ
t

E
.  (2.55)

From which : l

t

xxxx QdtJE =−= ∫ ==
0

00
.  (2.56)

and ixeixeie
ie

ixe
iexixe dptpf

p
mJ ,,,

0

,

,
,0, ),,0(∫

∞−
=

=
γ

and a similar expression at the right boundary: r

t

LxxLxx QdtJE =−= ∫ ==
0

.  (2.57)

and ixeixeie
ie

ixe
ieLxixe dptpLf

p
mJ ,,,

0 ,

,
,, ),,(∫

∞

=
=

γ

Integrating Eq.(2.45) over the domain ),0( L , we get :

  p

L

eixxLxx QdxnnEE =−=− ∫==
0

0
)(   (2.58)

where Qp is the charge appearing in the plasma. The charge appearing at the right boundary is

Lxxr EQ
=

= , and the charge appearing at the left boundary is 
0=

=
xxl EQ . Eq.(2.58) is

also written 0=−+ rpl QQQ . This relation is usually verified by the code. To take into

account any imbalance in this relation, let us consider the electric field )( 0xxEx =  at a

point 0x  far to the left of the simulation box and boundaries. The electric field is the sum of

the fields from lQ , pQ , and rQ . Since a plate of charge q gives an electric field 2/qEx =
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The Method of Characteristics for the Numerical Solution… 25

for a point to the right of the plate ( and 2/qEx −=  for a point to the left ), we can write
with the convention of signs in Eq.(2.58) [53]:

2/)()( 0 rplx QQQxE +−−= .  (2.59)

Now if we move from 0xx =  to += 0x , just inside the left boundary, lQ  is now to our

left, so it will contribute to the field by 2/lQ  instead of 2/lQ− , and the electric field is
now given by:

2/)()0( rplx QQQxE +−== + .  (2.60)

This is the boundary condition used in [53]. Now consider the case when the charges are
exactly balanced in the system, then as we mentioned before 0=−+ rpl QQQ , or

lrp QQQ −= , and substituting in Eq.(2.60), we get lx QxE == )0( , which is the result in

Eq.(2.56).
Finally we note that the pump wave is penetrating the plasma at the left boundary at x=0

where we set )sin(2)0( 00 tExE ω==+ , 0)0( ==− xE , for the solution of Eqs.(2.53) .

The normalized wave amplitude 
c

osc
eepwam nn

cV
cMeEE

/
/

)/(0 ≡= ω , where Eam is the wave

amplitude and nc the critical density. This value of 0E  can also be written

cnnIE //)000854265.0(0 λ= . We use the parameters of [53], where

mμλ 527.0=  for the laser, and n/nc =0.032, and the intensity I0=100 (in units of 1014

W/cm2 ). This results in 25.00 =E .

Figure 17. Frequency spectrum of E+.
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M. Shoucri26

Figure 18. Wavenumber spectrum of E+.

We use again the same parameters as in [53]. The laser pump is peωω 59.50 =  and the

laser wavenumber is )/(5.50 ck peω= . For the scattered mode we have peSRS ωω 478.4=

and )/(4.4 ck peSRS ω= . For the plasma wave we have peepw ωω 1124.1= , and

)/(86.9 ck peepw ω= . The electron thermal velocity is cvTe 026.0= , 5.3/ =ie TT . The

length of the system is 265.50=L , and 5000=xN  grid points in space, 256=vN  grid

points in velocity space for electrons and 128 for ions. tx Δ=Δ =0.0105 . We show in
Fig.(17) the results obtained for the frequency spectrum of the electromagnetic field +E  at
the position x=5 at t=60. We can identify the contribution of the pump and scattered mode at

0ω  and SRSω . Fig.(18) shows the wavenumber spectrum for +E  at t=60, where again we

Figure 19. Frequency spectrum for the plasma wave.
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The Method of Characteristics for the Numerical Solution… 27

Figure 20. Wavenumber spectrum for the plasma wave.

can identify the contribution of the laser pump )/(5.50 ck peω=  and the scattered mode at

)/(4.4 ck peSRS ω=  . Fig.(19) shows the frequency spectrum of the plasma wave showing

the peepw ωω 1124.1=  peak and a peak at peh ωω 18.11= , i.e. the harmonic of the pump

wave 0ω . We can identify in Fig.(20) the wavenumber peak at )/(86.9 ck peepw ω= for the

plasma wave, followed by a small neighbouring peak at )/(11 ck peh ω= , i.e. the harmonic

of the pump wave 0k . The harmonic peaks at hk  and hω  in Fig.(19) and (20) result from the

zy Bv  term in Eq.(2.43). This can also be verified in the results in Fig.(7) of [54] where we

see the response of the plasma at the harmonic of the electromagnetic wave frequency, when
using a model similar to what has been presented in this section and in Eq.(2.43) applied to
the problem of inductive coupling. Indeed, if we assume a linearly polarized wave:

)0,,0( yEE =
G

, we can write in a linear analysis ),cos(0 ψEEy =  )( 00 txk ωψ −= .

Faraday’s law is:

),0,0(
x

E
t
B y

∂

∂
−=

∂
∂
G

.  (2.61)

Then ),0,0( zBB =
G

 with ),cos(0 ψBBz = and 0000 /ωkEB = . Also from Eq.(2.44)

)0,,0( yvv =
G

 with ),sin(0 ψvvy −=  and 000 /ωEv = . The longitudinal Lorentz force

)2sin(
2
1 2

00 ψvkBv zy −= . This drive a longitudinal response at the 2nd harmonic of the

light wave.
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M. Shoucri28

Figure 21. Contour plot and 3D view for the phase-space of the distribution function from x=5.1 to

x=9.8 at 160 −= pet ω .

Figure 22. Longitudinal electric field.
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The Method of Characteristics for the Numerical Solution… 29

Figure 23. Charge (ni–ne).

Fig.(21) shows the phase-space structure in contour plot and 3D view of the tail of the
electron distribution function between x= 5.1 and x=9.8 at t=60. Note the clear structure of the
vortices in Fig.(21), in the low density regions of the phase-space, without numerical noise
Fig.(22) shows the electric field xE  at t=60 across the simulation box, and Fig.(23) shows the
charge (ni –ne ). We note the system is solved for ions and electrons, but the response of the
ions at t=60 is still negligible. In the conclusion of this section 2 , we stress the importance of
the cubic spline and the good performance of the interpolation technique, having low
numerical diffusion and dispersion and high accuracy. We also note the numerical stability of
the numerical code.

3. Problems Involving the Interpolation along the Characteristic
Curves in Two Dimensions

The problems studied in section 2 for the Vlasov equation dealt essentially with the fractional
step methods where the interpolation along the characteristic curves was carried out in 1D
using a cubic spline. We present in this section examples where the interpolation along the
characteristic curves is carried in two dimensions , using a tensor product of cubic B-splines .
The integration along the characteristics in higher dimensions applied to Eulerian Vlasov
codes has been formulated sometime ago in [15,16], and only recently applied [6,9]. The first
example we present in this section is the solution of the guiding-center equations in 2D (
which are the equations of a plasma in a strong magnetic field) to study the Kelvin-Helmholtz
instabilities. These equations are isomorphic with the Euler equations that govern 2D inviscid
incompressible fluids in hydrodynamics [55-60]. We use this example to introduce in section
3.1 the methods of 2D interpolation discussed in section 1 and in [6,9]. In section 3.2 we will
reconsider the problem of the formation of an electric field at a plasma edge, presented in
section 2.2 , however we use this time a cylindrical geometry in the Vlasov equation. We will
consider next in section 3.3 a case of laser-plasma interaction similar to what has been
presented in section 2.3 , treated however with a circularly polarized wave and a fully
relativistic Vlasov equation. The results obtained in this section will be compared both from
the physical point of view as well as from the numerical point of view with the corresponding
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M. Shoucri30

results in sections 2.2 and 2.3, especially concerning the accuracy of the results and of the
numerical techniques using cubic spline interpolation. Finally the problem of solving a
reduced set of magnetohydrodynamic equations to study the problem of magnetic
reconnection will be presented in section 3.4.

3.1. Solution of the Guiding-Center or Euler Equations

In the two-dimensional space ),( yx=r , the evolution of a plasma in a strong magnetic field

[55-60] zBeB =  is governed by the guiding center equation :

0. =
∂
∂

+
∂
∂

r
V ρρ

Dt
.  (3.1)

with the drift or guiding-center velocity 
r

eV
∂
∂

×=
φ

zD , 
r

E
∂
∂

−=
φ

, and φ  is calculated

from Poisson equation:

ρφ −=Δ  (3.2)

The initial condition for the charge density is )()0,( 0 rr ρρ ==t . Eqs.(3.1) and (3.2)
are isomorphic to the Euler equations that govern 2D inviscid incompressible fluids in
hydrodynamics, where the charge density corresponds to the flow vorticity, and the potential
φ  corresponds to the stream function [57]. For a plasma in a strong magnetic field, the
particle motion along the magnetic field B and across the magnetic field B are decoupled, the
velocity perpendicular to the magnetic field is the guiding-center velocity DV  and the Vlasov
equation can be reduced to the guiding-center plasma model in Eqs(3.1-3.2). These equations
are also the simplest form for the gyro-kinetic or drift-kinetic Vlasov equation, when the
kinetic motion along the magnetic field is taken into account and is coupled to the guiding-
center motion across the magnetic field, as for instance in the case when the magnetic field is
slightly tilted with respect to ze  [32-38,61]. The system in Eqs.(3.1-3.2) is solved on a

rectangular domain yx LL × . Periodic boundary conditions are used in the y direction, and

Dirichlet boundary conditions are used in the x direction with 0),,0( == yLx xφ ,

0),,0( == yLx xρ . Following the steps of what has been presented in Eqs.(1.8-1.14),
Eq.(3.1) can be integrated along the characteristic curves given by the solution of the
equations:

),( t
dt
d

D rVr
= .  (3.3)
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The Method of Characteristics for the Numerical Solution… 31

We write that the value of ρ  along the characteristic curves is constant (see Eq.(1.11)):

( )111 ),(),( −−+ = nnn ttt rr ρρ .  (3.4)

We assume the value of irr == + )( 1ntt  , where the ir  are grid points. A numerical

scheme accurate to second order in tΔ  for the solution of Eq.(3.3) is given by the following
leapfrog scheme (similar to Eq.(1.12)):

⎟
⎠
⎞

⎜
⎝
⎛ +

=
Δ

− −−

2
)(

2
)( 11 nn

D
n t

t
t rr

V
rr ii .  (3.5)

where 
r

r
eV

∂
∂

×=
),( n

z
n
D

tφ
, and ),( ntrE  is computed by solving Poisson equation for

),( ntrρ at ntt = . To solve Eq.(3.2), we Fourier transform this equation in the periodic y

direction. We denote by 
ykρ  and 

ykφ  the Fourier transform of ρ  and φ  in the periodic y

direction. We have:

)(),( xeyx
y

y

y
k

k

yik φφ ∑= ;  )(),( xeyx
y

y

y
k

k

yik ρρ ∑=

Which by substituting in Eq.(3.2) gives the following result:

)()(
)(

2
2

2

xxk
x

x
yy

y

kky
k ρφ

φ
−=−

∂

∂
.  (3.6)

We can derive the following tridiagonal matrix by discretizing Eq.(3.6) in the x direction
[61]:

)10(
12

)1()102()1( 11

2

11 +−−+ ++
Δ

−=−+++−− ikikikikkikkikk yyyyyyyyy

xCCC ρρρφφφ . (3.7)

where 
12

22 xk
C y

k y

Δ
= . The tridiagonal matrix in Eq.(3.7) is solved with Dirichlet boundary

conditions for 
ykφ , which is then Fourier transformed back to get φ . Again the implicit

equation in Eq.(3.5) is solved by iteration as in Eq.(1.13), to calculate 2/))(( 1−−=Δ ntrrir

as follows:,

  ),(1
n

k
D

k tt rir rV Δ−Δ=Δ + .
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M. Shoucri32

From Eqs.(1.14) and (3.4) the new value ),( 1+ntirρ  is calculated from the relation:

.  ),*2(),( tttt nn Δ−Δ−=Δ+ rii rr ρρ .  (3.8)

More explicitly we have to calculate (see Fig.(1)) ),2,2( ttyx nyjxi Δ−Δ−Δ−ρ ,

where xΔ and yΔ  are obtained by iteration by solving :

  ),,(1
n

k
yj

k
xiDx

k
x tyxtV Δ−Δ−Δ=Δ +  (3.9)

  ),,(1
n

k
yj

k
xiDy

k
y tyxtV Δ−Δ−Δ=Δ +  (3.10)

where 
x

VDy ∂
∂

=
φ

; 
y

VDx ∂
∂

−=
φ

. We start with 00 =Δ x , 00 =Δ y . Usually two or three

iterations are sufficient for convergence. The interpolations in Eqs.(3.8-3.10) are carried out
using a 2D cubic B-splines defined as a tensor product of one dimensional cubic B-splines.
We first evaluate the coefficients ijη  from the values of the function at grid points (details

can be found in [6], we have however to introduce appropriate modification to the boundary
condition in the direction y, to take into account the periodic boundary condition as in [51]):

  )()(),(
0 0

yBxByx ji

N

i

N

j
ijji

x y

∑∑
= =

= ηρ .  (3.11)

The cubic B-spline has been defined in Appendix C . Eq.(3.11) generalizes to two
dimensions the results presented in Appendix C. Then the value of the function at interstitial
points ),( yjxi yx Δ+Δ+ρ  is given by:

  y
l

x

l
ljiyjxi bbyx κ

κ
κηρ ∑∑

= =
−−=Δ+Δ+

3

0

3

0
,),( .  (3.12)

where ixi xxxi −=Δ≡   , , and jyj yyyj −=Δ≡   ,  , xbκ  are defined in Appendix C,

and a similar definition holds for y
lb  by substituting yΔ   for xΔ   in the expression of xbκ .

We finally note that in [9], in order to accelerate the calculation, a linear interpolation has
been used in the intermediate step in Eqs. (3.9-3.10). This turned out however to introduce
strong numerical diffusion [43,44].

We apply the previously described numerical method to study the stability of a sinusoidal
profile [58,59]. Any function of one space variable is an equilibrium solution to Eqs(3.1-3.2).
We consider the sinusoidal profile )sin(0 x=ρ . From Eq.(3.2) the self-consistent potential
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The Method of Characteristics for the Numerical Solution… 33

is given by )sin(0 x=φ . A necessary condition for the flow )cos(0
0 x

x
VD =

∂
∂

=
φ

 to have

an unstable growing solution is that this flow should have a point of inflexion. This is the
Rayleigh necessary condition for instability. This instability due to the shear in the velocity
flow is called Kelvin-Helmholtz instability. Furthermore if the equilibrium is perturbed with a

perturbation of the form )( ykti ye +− ω , yy Lk /2π= , there exists an eigensolution with real

values of ω  such that )( sD
y

xV
k

=
ω

 (the so-called neutrally stable eigensolution), where xs

is the point of inflexion, and one can construct unstable solutions for which )( sD
y

xV
k

→
ω

as the imaginary part of ω  tends to zero through positive values. In the present case, we
consider a domain with π2=xL , and 10=yL . We use Nx =Ny =256 and tΔ =0.005 . In

the domain π20 ≤≤ x  where the equilibrium flow is defined we have two points of
inflexion located at 2/π=sx  and 2/3π=sx . At these points

0)cos()( === ssD
y

xxV
k
ω

. In this case 0== sωω , and a neutrally stable solution

satisfying the boundary conditions of zero at 0=x  and π2=x  is given by [58,59] :

  )
2

sin( x
s =φ .;  (3.13)

  
2
3

=ysk  (3.14)

We perturb the equilibrium 0ρ  as follows:

  )cos()
2

sin( )sin(0 ykxx yερ += .  (3.15)

with yy Lk /2π= =0.628, and 015.0=ε  . Since we are close to a neutrally stable solution,

we can use a Taylor expansion to calculate the growth rate of the instability:

  
yssyss kyy

ysy

kyy kk
kk

kk
,,

)(
ωω

ωωω
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−+= .  (3.16)

Details of these calculations have been presented in [58,59], and lead to the following
result for the real and imaginary parts of ω :

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



M. Shoucri34

  )(
2
3Re

yys
y

kk
k

−=
ω

.  (3.17)

  )(
2
3Im

yys
y

kk
k

−=
ω

.  (3.18)

Figure 24. Growth and saturation of the potential at the position x=3Lx /4.

Figure 25. Contour plot of the potential at t=80.

In this case ysy kk < , and the system is unstable [58,59]. From Eq.(3.17), the phase

velocity
yk
ωRe

 is equal to 0.2058. We do verify by following the center of the vortex in

Figs(25-26) that the phase velocity of the vortex is indeed 0.2 . Fig.(24) shows the growth and
oscillation of the potential , monitored at the position ;4/3 xLx =  0=y . The theoretical

results from Eqs(3.17-3.18) show 129.0ReIm == ωω , in good agreement with the
observations taken from the results of Figs.(24), which shows a growth and an oscillation
period of 0.124. Figs(25-26) shows the contour plot of the potential at t=80 and 120 during
the saturation phase, and the corresponding charge is given in Figs.(27-28) (dotted curves
denote negative values). Note the very nice agreement of the theoretical and numerical
results.
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The Method of Characteristics for the Numerical Solution… 35

Figure 26. Contour plot of the potential at t=120.

Figure 27. Contour plot of the charge at t=80.

Figure 28. Contour plot of the charge at t=80.
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3.2. The Vlasov-Poisson System in Higher Phase-Space Dimensions:
Formation of an Electric Field at a Plasma edge in a Cylindrical
Geometry

We will discuss in this section, using cylindrical geometry, the problem of the formation of an
electric field at a plasma edge which has been studied in section 2.2 using a slab geometry. In
cylindrical geometry, it is more convenient to use a tensor product of cubic B-spline to
interpolate in 2D velocity space, while in section 2.2 we applied a fractional step associated
with 1D cubic spline interpolation. Hence we have the opportunity to compare two
completely different codes, and to evaluate the performance of the cubic spline for the
solution of the same problem. In the present cylindrical geometry, the external magnetic field
is in the z direction, and ),( θr  is the poloidal plane. The plasma is assumed uniform in the z
and θ directions. Electrons are magnetized along the magnetic field, and consequently have a
constant profile. The Vlasov and Poisson equations are written for the deuterons distribution
function ),,,( tvvrf ri θ  and for the potential )(rϕ  with the same normalization and
parameters as in section 2.2, as follows (see [6] ):

0
2

=
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +−

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

∂
∂

+
∂
∂

θ

θθ
θ ωω

v
f

r
vvv

v
f

r
vvE

r
fv

t
f ir

rci
r

i
cir

i
r

i  (3.19)

  ( )eir nn
r

r
rrr

E −−=
∂
∂

∂
∂

∂
∂

−=
φφ 1;  ; ∫= θdvdvfn rii  (3.20)

We advance Eq. (3.19) for a time step tΔ  as follows:

Step1-We solve for a time step 2/tΔ , using cubic spline interpolation, the equation:

0=
∂
∂

+
∂
∂

r
f

v
t
f i

r
i  (3.21)

the solution is given by ),,,2/()2/,,,(* tvvtvrfttvvrf rr
n

iri θθ Δ−=Δ+   (3.22)
We calculate the shift in Eq.(3.22) using 1D cubic spline interpolation as discussed

before. We then solve Poisson equation in Eq.(3.20) to calculate the electric field *
rE .

Step2-We solve next for a time step tΔ  the equation:

0
2

* =
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +−

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
+++

∂
∂

θ

θθ
θ ωω

v
f

r
vv

v
v
f

r
v

vE
t
f ir

rci
r

i
cir

i  (3.23)

Splitting Eq.(3.23) is not straightforward as in Cartesian geometry. This equation is
solved using 2D interpolation. The characteristics of this equation are given by:
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r
v

vE
dt

dv
cir

r
2
ϑ

ϑω ++=  ; 
r
vv

v
dt

dv r
cir

ϑϑ ω −−=   (3.24)

The solution of Eqs.(3.23) is given by:

 ),2,2,(),,,( *** tbvavrfttvvrf rri −−=Δ+ θθ   (3.25)

The shift in Eq. (3.25) is effected using a tensor product of cubic B-spline [6,51] for the
2D interpolation, as discussed in section 3.1. However, the quantities a and b in Eq.(3.25) are
calculated analytically by solving the equations of the characteristics in Eqs.(3.24), since in
the present case an analytic solution is possible, similar to what has been presented in

Eqs.(2.38-2.40). This solution gives, to an order )( 2tO Δ , at a given position r, the
expressions:
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⎠
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222
θ

θ
θθθ ωωωω  (3.27)

( note that an iterative solution of Eqs.(3.24) as in section 3.1 would give the same results to

an order )( 2tO Δ ).

Step3-We then repeat the step in Eq. (3.22) for 2/tΔ  to calculate 1+nf  from **f .

The initial profiles are the same as in section 2.2, written in the cylindrical geometry as:

 ( )( ).7/)5/(tanh15.0)()( LrRrnrn ei −−+==  ;  (3.28)

with a similar profile for the frozen electrons. The positive r direction is pointing towards the
right, or outside the plasma. R is the plasma radius and L the width of the edge (taken to be
175 as in section 2.2). The initial ion distribution is given by:

 
i

Tvv

iri T
ernvvrf

ir

π

θ

θ 2
)(),,(

2/)( 22 +−

=   (3.29)

We assume that the deuterons hitting the wall surface or limiter at r= R are collected by a
floating cylindrical vessel. Since the magnetized electrons do not move in the r direction
across the magnetic field, there is no electron current collected at the floating vessel.
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M. Shoucri38

Therefore we have at r= R the relation (we stress that the subscript i denotes here ion
contribution):

∫ ===
=

−=−=
∂

∂ t

RrriRrrRrri
Rr

r dtJEJ
t

E

0

or   (3.30)

Integrating Eq. (3.20) over the domain (R-L, R), we get for the total charge σ appearing in
the system:

σ=−=−− ∫
−

−==
rdrnnELRER e

R

LR
iLRrrRrr )()(   (3.31)

which is the equivalent to Eq.(2.21) obtained for the slab geometry. We assume that the
gyrating plasma ions (deuterons) are allowed to enter or leave at the left boundary. The
electric fields at the left boundary r = R - L and at the wall r = R must satisfy Eq. (3.31). We

use a very large value of R (R = 10000 Debye lengths in the present calculation, so rv /2
θ  is

negligible), so that the system should behave essentially as a Cartesian system. Indeed we
recover the same results as those which have been presented in Cartesian geometry in section
2.2. These results have been presented for cylindrical geometry in Fig.(1-6) in [51], and are
identical to Figs(11-16) ( if we take into account the mirroring due to the fact that in the
Cartesian geometry and in the cylindrical geometry, the edge gradients are in opposite
directions). Fig. (29) shows at t = 500 the plot of the electric field Er (solid curve, we
concentrate on the region less than 100 Debye lengths from the boundary to emphasize the
edge region). To position the profiles in Fig. (29) with respect to the gradient we also plot

2/in−  in the same figure. The electric field has the direction of pushing the ions back to the
interior of the plasma (and interact with the magnetic field to give a poloidal drift rotation,
note also that in the flat part of the electric field, this drift has no shear, which can explain the
absence of turbulence). The dash-dotted curve gives the Lorentz force, which in our
normalized units is given by piciv ωωθ /><− , and the dotted curve gives the pressure

force ii nP /∇ , ( )θiirii TTnP += 5.0 , with the following definition in cylindrical geometry:

( )∫ ><−= θθθθθ vvrfvvdvdv
n

rT rirrr
i

ir ,,)(1)( 2
,,,   (3.32)

( ) ( )∫ ∫=>=< θθθθθθ vvrfdvdvrnvvrfvdvdv
n

v riririrr
i

r ,,)(;,,1
,,   (3.33)

In steady state the transport >< rv  vanishes. The broken curve in Fig. (29) gives the sum
><−∇ θvnP ii 1.0/ , which shows a very good agreement along the gradient with the solid

curve for rE . In the region less than 20 Debye lengths from the wall, we have small
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The Method of Characteristics for the Numerical Solution… 39

oscillations in space (and time), the accuracy being degraded by the low density in  and large

iT∇  appearing close to the surface. We plot in Fig. (30) the quantities
><−∇ θvnPEn iiri 1.0,,  and the sum ><−∇ θvnP ii 1.0 . We see that there is a very

nice agreement for the relation ><−∇= θvnPEn iiri 1.0  (the density 10/in−  is also
plotted to locate the profiles with respect to the gradient). The charge R/σ  appearing in the
system and calculated by the code from Eq.(3.31) amounts to -0.360 at t = 500. The collected
charge calculated from Eq.(3.29) at r = R is 0.364, hence 364.0−==RrrE . The difference

RE Rrr /σ−=  as calculated from Eq.(3.30) gives for LRrrE −=  the value of -0.004, which

is very close to the value obtained by the code at R – r = 175 (see Fig. (30)). We see also from
Fig. (30) that at the left boundary inside the plasma in the flat part of the density where

0=∇ iP , the electric field is compensated by the Lorentz force due to the poloidal drift
><− θv1.0 , while along the gradient the electric field is essentially balanced by ii nP /∇ .

Figs. (3-6) in [51] are reproducing essentially Fig.(13-16) of section 2.2 (taking into
consideration the mirroring due to the difference in the positive direction). We see that the
results in section 2.2 obtained in Cartesian geometry by a fractional step method associated
with 1D cubic spline interpolation are the same as those obtained in this section using a
cylindrical geometry , and associated with 2D interpolation in velocity space with a tensor
product of cubic B-spline. By using two different numerical techniques based on the cubic
spline interpolation with two different coordinate systems, we get identic results for the same
problem. The curves in Figs(11-16) and in Figs(1-6) of [51] gives essentially identical results.
This illustrates the accuracy of the method of characteristics used , and of the cubic spline
used for the numerical interpolation.

Figure 29. Plot, for the cylindrical geometry, of the electric field Er (solid curve), the Lorentz force
><− θv1.0  (dash- dotted curve), the pressure force ii nP /∇ (dotted curve), and the

sum ><−∇ θvnP ii 1.0/  (broken curve). The density -ni/2 is is also plotted (dash-three-dots curve,

plotted for reference).
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M. Shoucri40

Figure 30. Plot of niEr (solid curve), ><− θvni1.0 , (dash-dotted curve) , iP∇  (dotted curve), and

><−∇ θvnP ii 1.0 ( broken curve), (-ni/10 is also plotted for reference).

3.3. One-Dimensional Fully Relativistic System for the Problem of Laser-
Plasma Interaction

The problem of laser-plasma interaction treated in section 2.3 with a linear polarization will
be repeated in this section with a full relativistic equation with a circular polarization. In the
present case the fractional step will not be used , we will rather apply a 2D interpolation using
a tensor product of cubic B-splines. When studying similarities or differences in the results,
attention will be given to the accurate performance of the cubic spline interpolation. The
general form of the Vlasov equation is written for the present problem ( using the same
normalization as in section 2.3 ) in a 4D phase-space for the electron distribution function

),,,,( tpppxF zeyexee  and the ion distribution function ),,,,( tpppxF ziyixii  (one spatial

dimension) as follows [52]:

0) x (
,

,

,

,

,

,
,

, =
∂

∂
⋅+

∂

∂
+

∂

∂

ie

ie

ie

ie

ie

ixe
ie

ie

p
FBpE

x
Fp

m
t

F
G

GGG
∓

γγ
.  (3.34)

with ( ) 2/12
,

2
,

2
,

2
,, )(1 izeiyeixeieie pppm +++=γ   (3.35)

(the upper sign is for electrons and the lower sign for ions, and subscripts e or i denote

electrons or ions respectively). Again in our normalized units 1=em  and 
i

e
i M

M
m = .

Eq.(3.34) can be reduced to a two-dimensional phase-space Vlasov equation if the canonical

momentum iceP ,

G
 connected to the particle momentum iep ,

G
 by the relation apP ieice

G∓GG
,, =  is

chosen initially as zero. cMAea e/
GG

=  is the normalized vector potential. For a particle in an
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The Method of Characteristics for the Numerical Solution… 41

electromagnetic wave propagating in a one-dimensional spatial system, we can write the
following Hamiltonian:

( ) ϕ±±+=
2/12

,
2
,

,
, )(11 aPm

m
H iceie

ie
ie

GG
.  (3.36)

where ϕ  is the electrostatic potential. Choosing the Coulomb gauge ( 0=adivG ) , we have

for the vector potential ),( txaa ⊥=
GG

, and we also have the following relation along the
longitudinal direction:

x
H

dt
dP ieicxe

∂

∂
−= ,,  (3.37)

And since there is no transverse dependence :

0,
, =−∇= ⊥

⊥
ie

iec H
dt

Pd
G

.  (3.38)

This last equation means =⊥ iecP ,

G
const. We can choose this constant to be zero without

loss of generality, which means that initially all particles at a given (x,t) have the same
perpendicular momentum ),(, txap ie ⊥±=

GG
. The Hamiltonian now is written:

( ) ),(),(11 2/122
,

2
,

2
,

,
, txtxampm

m
H ieixeie

ie
ie ϕ±++= ⊥ .  (3.39)

The 4D distribution function ),,,(, tppxF xie ⊥
G

 can now be reduced to a 2D distribution

function ),,( ,, tpxf ixeie  corresponding to Eq.(3.39):

0
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,,,

,

,,, =
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∂

∂
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∂
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.  (3.40)

Which gives the following Vlasov equations for electrons and ions::

0)
2

(
,

,
2

,

,,
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, =
∂

∂

∂
∂

−+
∂

∂
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∂
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ie

ie
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ie

ixe
ie

ie

p
f

x
am

E
x

fp
m

t
f

γγ
∓ .  (3.41)

Where ( ) ( )( ) 2/12
,

2
,,, 1 ⊥++= ampm ieieieieγ .
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x

Ex ∂
∂

−=
ϕ

 and 
t

a
E

∂
∂

−= ⊥
⊥

GG
  (3.42)

and Poisson equation is given by Eq.(2.45). The transverse electromagnetic fields
 , zy BE and  , yz BE for the circularly polarized wave obey Maxwell’s equations. With

zy BEE ±=±  and yz BEF ±=± , we have:

 yJE
xt

−=
∂
∂

±
∂
∂ ±)( . ; zJF

xt
−=

∂
∂

∂
∂ ±)( ∓   (3.43)

Which are integrated along their vacuum characteristic x=t. In our normalized units we
have the following expressions for the normal current densities:

 ixe
ie

ie
ieieie dp

f
maJJJJ ,

,

,
,,       ;  ∫⊥⊥⊥⊥⊥ −=+=

γ
GGGGG

.  (3.44)

The numerical scheme to advance Eq.(3.41) from time tn to tn+1 necessitates the
knowledge of the electromagnetic field ±E  and ±F  at time tn+1/2 . This is done using a
scheme similar to Eq.(2.53), where we integrate Eq.(3.43) exactly along the vacuum
characteristics with tx Δ=Δ , to calculate 2/1+±nE  and 2/1+±nF . From Eq.(3.42) we also

have 2/11 +
⊥⊥

+
⊥ Δ−= nnn Etaa

GGG
, from which we calculate 2/)( 12/1 nnn aaa ⊥

+
⊥

+
⊥ +=

GGG
. To

calculate 2/1+n
xE , two methods have been used. A first method calculates n

xE  from n
ief ,

using Poisson equation, then we use a Taylor expansion::
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.  (3.45)

and ∫∫
+∞

∞−

+∞

∞−

−= xe
n

e
e

xe
exi

n
i

i

xi
i

n
x dpf

p
mdpf

p
mJ

γγ

A second method to calculate 2/1+n
xE  is to use Ampère’s equation: x

x J
t

E
−=

∂
∂

, from

which n
x

n
x

n
x tJEE Δ−= −+ 2/12/1 . Both methods gave the same results. The boundary

conditions are the same as what has been discussed in section 2.3. Now given n
ief ,  at mesh

points (we stress here that the subscript i denotes the ion distribution function), we follow the
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The Method of Characteristics for the Numerical Solution… 43

same steps as in section 3.1 to calculate the new value 1
,
+n
ief  at mesh points from the

relations:

     ;  )2()( ,,,,
1

, ieie
n
ieie

n
ie ff XXX Δ−=+ .  (3.46)

where ie,XΔ  is the two dimensional vector:

  ),-(
2

   2/1,,, +Δ
Δ

=Δ nieieie tt
XX XV  .  (3.47)

ie,X  is the two dimensional vector ( )ixeie px ,, ,=X , and

⎟
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⎠

⎞
⎜
⎜
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+
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x
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m
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ie
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x

ie

ixe
ieie

2)2/1(

,

,2/1

,

,
,,

)(
2

 ,
γγ

∓V . Eq.(3.47) for ie,XΔ  is implicit and is

solved again iteratively as in Eq.(3.9-3.10). Then 1
,
+n
ief  is calculated by interpolating n

ief ,  in

Eq.(3.46) in the two dimensions ),( ,ixepx  using a tensor product of cubic B-splines [6] as

discussed for Eqs.(3.11-3.12).
We use the same parameters as section 2.3 and in [53]. The pump wave is penetrating the

plasma at the left boundary at x=0 where we set )sin(2)0( 00 tExE ω==+  and

)cos(2)0( 00 tExF ω==− . The laser pump is peωω 59.50 =  and the laser wavenumber is

)/(5.50 ck peω= . For the scattered mode we have peSRS ωω 478.4=  and

)/(4.4 ck peSRS ω= . For the plasma wave we have peepw ωω 1124.1= , and

)/(86.9 ck peepw ω= . The electron thermal velocity is cvTe 026.0= , 5.3/ =ie TT . The

length of the system is 265.50=L , and 5000=xN  grid points in space, 256=vN  grid

points in velocity space for electrons and 128 for ions. tx Δ=Δ =0.0105 . Figs.(31-37) show
the results obtained when using the present fully relativistic model. Fig(31) for the frequency
spectrum of the electromagnetic wave +E  at x=5 and t=60 is very close to Fig.(17). We can
identify the contribution of the pump and the scattered mode at peωω 59.50 =  and

peSRS ωω 478.4= . Fig.(32) for the wavenumber spectrum of +E  is essentially the same as

Fig.(18), we can identify )/(5.50 ck peω=  for the laser pump wave, and

)/(4.4 ck peSRS ω=  for the scattered mode. Figs.(33) and (34) differ from Fig.(19) and (20)

by the absence of the harmonic peaks at peh ωω 18.11=  and )/(11 ck peh ω= . These

harmonic peaks in Fig.(19) and (20) result from the zy Bv  term in Eq.(2.54) as we explained

at the end of section 2.3.
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M. Shoucri44

Figure 31. Frequency spectrum of E+

Figure 32. Wavenumber spectrum of E+.

In circular polarization we have for the pump wave in a linear analysis, following the

same notation as at the end of section 2.3, )sin,cos,0(0 ψψEE =
G

, )( 00 txk ωψ −= .
Faragay’s law is:

),,0(
x

E
x

E
t
B yz

∂

∂
−

∂
∂

=
∂
∂
G

.

which gives )cos,sin,0(0 ψψ−= BB
G

. From 
t

aE
∂

∂
−= ⊥

⊥

GG
 and ⊥⊥ = ap GG

, we get

)cos,sin,0(0 ψψ−=⊥ ppG . We thus see that Bp
GGx  is identically zero, pG  and B

G
 being

parallel. So in this case there is no 2nd harmonic longitudinal response to the leading order.
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Figure 33. Frequency. spectrum of the plasma.

Figure 34. Wavenumber spectrum of the plasma.

We can assume following Eq.(3.41) that for 0→⊥a , we have

( )( ) 2/12
,,, 1 ieieie pm+≈γ  and the approximation in Eq.(2.43) in section 2.3 becomes valid.

Indeed, for the parameters in [53] used in this chapter, we have estimated at the end of section
2.3 that 25.00 =E . From Eq.(3.42) we can estimate that the amplitude 0a  of ⊥aG  is

044.0/ 000 == ωEa , which is small. However, Fig.(35) shows the phase-space structure
between x=5.1 and x=9.8 at t=60. It shows the vortices structure more important than in
Fig.(21), due to the fact that the amplitude of the electric field in the present case where a

circularly polarized wave is used, is now 20
22 EEE yx =+  (if the amplitude is reduced to

E0 , then the vortices are similar to Fig.(21)) . Note again the clear picture of the vortices, in
the low density region of the phase-space, with very little numerical noise appearing. Figs(36)
and (37) show respectively the electric field and the charge (ni –ne ) across the box. Both
figures show an enhanced value compared to what is presented in Figs.(22) and (23).
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M. Shoucri46

Figure 35. Contour plot and 3D view for the phase-space of the distribution function from x=5.1 to

x=9.8 at 160 −= pet ω .

Figure 36. Longitudinal electric field.
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Figure 37. Charge (nI – ne ).

So we have been able using the technique of cubic spline interpolation to get results from
two different models for laser-plasma interaction, using two different numerical codes, which
show similarities and differences in the physics associated with the scattering results.
Differences observed have been explained as essentially due to different physics associated
with the two models, and not to numerical problems. For the model used in section 2.3 with a
linearly polarized wave, we used a method of fractional step associated with 1D interpolation
using cubic spline, and in the method used in the present section with circular polarization a
2D interpolation in velocity space using a tensor product of cubic B-splines has been used.

3.4. Numerical Solution of a Reduced Model for the Collisionless Magnetic
Reconnection

In the ideal magnetohydrodynamic (MHD) plasma description, the magnetic field is frozen in
the plasma, and its flux through a surface moving with the plasma remains constant. This
conservation of the magnetic topology requires that if two plasma elements are initially
connected by a magnetic field line, they remain connected by a magnetic field line at any
subsequent time, and it constrains the plasma dynamics by making configurations with lower
magnetic energy but different topological connection inaccessible. Magnetic field
reconnection removes these constraints. It is an important process in high temperature
magnetically confined plasma. In this process, the magnetic configuration undergoes a
topological rearrangement in a relatively short time, during which the magnetic energy is
converted into heat and into kinetic flow energy. Typical situations are in tokamak plasma
configurations and in solar flares and coronal loops mass ejections, when strong magnetic
fields are present. In the magnetopause it allows particles from the solar wind to enter the
magnetosphere. In the present work, we consider a dissipationless two-dimensional
configuration with a strong superimposed homogeneous magnetic field perpendicular to the
reconnection plane. In the limit of a small ion gyroradius, this two-dimensional system gives
a two-fluid equations model where small scale effects related to the electron temperature and
electron inertia are retained, but magnetic curvature effects are neglected. We consider a 2D
configuration with a strong magnetic field in the ignorable z direction,
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M. Shoucri48

zz eeBB GGG
 x 0 ψ∇+= , where 0B  is constant and ),,( tyxψ  is the magnetic flux function.

The dimensionless governing equations, normalized to the Alfvén time Aτ  and to the

equilibrium scale length eqL , are Hamiltonian and can be cast in a Lagrangian invariant form

[62,63,64], similar to what has been presented in section 3.1:

 [ ] 0, =+
∂

∂
±±

± G
t

G
φ ; ϕρψψ 222 ∇±∇−=± see ddG   (3.48)

The Poisson brackets [ ] BAeBA z ∇∇= x., K
, and the Lagrangian invariants ±G  are

conserved fields advected along the characteristic curves, )(tx± :

 ),(/)( txdttxd ±±± =
GGG υ  , ±±± ∇= φυ  x ),( zetx GGG

  (3.49)

where ψρϕφ )/( es d±=± . ed  is the electron collisionless skin depth and

( ) citheies vMM ωρ // 2/1= is the ion sound Larmor radius, where thev  is the electron

thermal velocity and ciω  is the ion cyclotron frequency. The magnetic flux ψ  and the
plasma stream function ϕ  are given by:

 2/)(22
−+ +=∇− GGde ψψ  ; 2/)(2

−+ −=∇ GGd se ϕρ   (3.50)

If we compare with Eq.(2.4), we see that ±φ  play the role of the single particle
Hamiltonian, and that the two Eqs.(3.48) have the form of 1D Vlasov equations, with x and y
playing the role of the coordinate and the conjugate momentum for the equivalent ‘
distribution functions’ ±G  of two ‘particle ‘ species with opposite charges in the Poisson-
type equation for ϕ , and equal charges in the Yukawa-type equation for ψ  [62,63,64].

We apply a method of integration along the characteristics for the numerical solution of
Eq(3.48), similar to what has been discussed in section 1 and for the numerical solution of
Eqs.(3.1-3.2). To advance Eq.(3.48) in time, Eq.(3.49) are solved iteratively to determine the
departure point of the characteristics ( similar to Eq.(3.8)) , and the values of ±G  at these
departure points are calculated by a two-dimensional interpolation using a tensor product of
cubic B-splines, as discussed for Eqs.(3.9) (see Fig.(1)).The departure point of the
characteristics is calculated from the expressions:

 );,(1
n

k
yj

k
xix

k
x tyxt ±±±
+
± Δ−Δ−Δ=Δ υ  (3.51)

 );,(1
n

k
yj

k
xiy

k
y tyxt ±±±
+
± Δ−Δ−Δ=Δ υ  (3.52)
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where 
xy ∂

∂
= ±

±

φ
υ ; 

yx ∂
∂

−= ±
±

φ
υ . We start with 00 =Δ ±x , 00 =Δ ±y , and two or three

iterations in Eqs.(3.51-3.52) are sufficient for convergence. The solutions ±G  at
tnt Δ+= )1( are calculated from the expression:

 ),2,2(),,( 1 ttyxGtyxG nyjxinji Δ−Δ−Δ−= ±±±+±  (3.53)

Figure 38. Magnetic flux.

Figure 39. G+ at time t=30.

The code in [62-64] is a finite difference code using filtering and dissipation to remove
small scale features which develop. No small scales filtering or dissipation is added to the
present code, as is done in [62,63]. Instead, we use a fine grid of 5122048x xNN yx =  to

resolve small details, and stop the calculation when the small details are of the order of the
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M. Shoucri50

Figure 40. G+ at time t=35.

Figure 41. G- at time t=30.

grid size.. We consider an initial equilibrium ),()(cosh/1)0( 2 yxxt δψψ +== , and the

perturbation ydx e cos))2/(exp(10 224 −−= −δψ  is the initial perturbation.

2.0== sed ρ . The equations are integrated numerically in the spatial

domain ππ 22 <<− x , π20 << y . The domain is periodic in the y direction, and we
apply Dirichlet boundary conditions in the x direction. The solution of Eq.(3.48) is followed
by a solution of Eqs.(3.50) to determine ψ  and ϕ , and these quantities are used to calculate

±φ , to repeat again the integration of Eq.(3.48). The solution of Eqs.(3.50) is done by Fourier
transforming in the periodic y direction, then discretizing the equations in the x direction and
solving the resulting tridiagonal system with appropriate boundary conditions, and then
Fourier transforming back (details have been presented in section 3.1 , Eqs(3.6-3.7)). During
the evolution of the reconnection process, we see in Fig.(38) in the contours of the magnetic
flux a magnetic island generated and growing in the linear phase and early non-linear phase,
in which the process exhibit a quasi-explosive behaviour. In the full nonlinear regime,
equilibrium is reached, the island growth saturates and remains more or less unchanged. The
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Figure 42. Stream function.ϕ .

Figure 43. Stream functionϕ .

Figure 44. +φ  at t=30.
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M. Shoucri52

Figure 45. Current J at t =30.

contours of +G  in Fig.(39) at t=30 and in Fig.(40) at t=35 show the formation of a vortex

structure. A similar vortex structure is developed also for the invariant −G , which is advected

in the opposite direction with respect to +G . Asymptotic states for 2D systems showing the
formation of vortex structures has been discussed in [49,50], who showed that energy should
move to the largest scale available in the system, showing the formation of a large vortex,
similar to the 2D results we obtained in the previous examples. The model preserves parity. If
we choose the initial values such that )()( xx ψψ =− , and )()( xx ϕϕ =− , these relations

imply  ),,(),( yxGyxG −+ =−   ),,(),( yxyx −+ −=− φφ  which are maintained and

accurately verified by the code. Fig.(41) for  ),( yxG−  at t=30 shows how this symmetry is
well reproduced by the code ( to be compared with Fig.(39)). Fig.(42) shows the stream
function ϕ at t=30 and Fig.(43) at t=35. Fig.(44) shows the function +φ  at t=30. In Fig.(45)

we have a 3D view and a contour plot of the current ψ2
⊥−∇=J  at t=30. Note the important
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Figure 46. Current J at t =35.

Figure 47. Plot of ))0,2/(ln( == yLx xδψ  against time.

peak structure of the current around the X-point. We note also in Fig.(46) for the contour plot
of the current at t=35 the fine scale structures which develop, and which make further
calculation difficult, even with the 2048x512 grid points we have. Magnetic reconnection
leads to the development of increasingly narrow current and vorticity layers. To avoid this
difficulty, a numerical diffusion term was added in [62,63] to smooth the solution and push
further in time. But this is done at the expense of eliminating some details , as for instance the
thin filament current peaking at the X-point in Fig.(45), which has not been observed in
[62,63,64]. Finally we stress again the symmetry in the solution reproduced with great
precision by the code. The time-step used for this calculation was 310−=Δt .
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M. Shoucri54

Figure 48. Plot , against time, of the difference between each term of energy, as defined in Eq.(3.54),
and the corresponding value at t=0, divided by the Total energy E(0).

Finally we present in Fig.(47) a curve showing the evolution of
))0,2/(ln( == yLx xδψ  against time, which shows the growth and saturation of the

perturbation δψ . And in Fig.(48), the curves present the evolution of the different energies.

The magnetic energy 
2

∫ ∇ψdxdy  (dotted curve), which is decaying, is transformed mainly

into plasma kinetic energy 
2

∫ ∇ϕdxdy  (broken curve), into electron parallel kinetic energy

22 Jdxdyde∫  (two-dashes-dot curve), and into electron internal energy ∫ 22Udxdy sρ (dash-

two-dots curve). The total energy E (full curve) is given by:

  ( )∫ ∇+++∇= 2/222222 ϕρψ UJddxdyE se  (3.54)

(The quantities plotted in Fig.(48) are the difference between each term of energy as defined
in Eq.(3.54), and the corresponding value at t=0, divided by the total energy E(0) at t=0).

The extension of this method to the 3D reduced model [63] for collisionless magnetic
reconnection is outlined as follows.

The 3D equation:

  [ ]
z

G
d

G
t

G e

s

∂

∂
=+

∂
∂ ±±

±±
±

)(
,

ρ
φ

φ
∓

  (3.55)

is solved using a fractional step method :
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Step1-Solve for a step 2/tΔ  the equation:

  [ ] 0, =+
∂

∂
±±

± G
t

G
φ   (3.56)

Step2-Solve for a step tΔ  the equation :

  
z

G
d

t
G e

s

∂

∂
=

∂
∂ ±±

±

)(
ρ

φ ∓
;  (3.57)

Step3-Repeat Step1-.
Eq.(3.56) is solved with the same method discussed in section 1 and 3.1. Eq.(3.57) can be

solved by Fourier transform in the periodic z-direction.

4. Application of the Method of Characteristics to Fluid Equations

We have already mentioned in section 3.1 that the 2D guiding-center equations in a
magnetized plas are isomorphic to the Euler equations that govern the 2D inviscid
incompressible fluids in hydrodynamics. In section 3.4, a reduced set of fluid-like equations
has been applied to study magnetic reconnection. We present in this section some additional
applications in the field of fluid dynamics, for the numerical solution of the shallow water
equations, and for the numerical solution of the equations of the incompressible ideal
magnetohydrodynamic flows in plasmas.

4.1. Numerical Solution of the Shallow Water Equations

The shallow water equations are of great importance since they are widely applied for the
study of atmospheric weather prediction and oceanic dynamics. They are the simplest
equations which describe both slow flows and fast gravity wave oscillations, the two main
categories of fluid motion present in the more complicated primitive equations, and which are
commonly used for atmospheric, oceanic and climate modeling. A method of fractional step
for the numerical solution of the shallow water equations has been recently presented in [3]. It
consists of splitting the equations and successively integrating in every direction along the
characteristics using the Riemann invariants of the equations, which are constant quantities
along the characteristics. The integration is stepped up in time using cubic spline interpolation
to advance the advection terms along the characteristics. It has also the great advantage of
solving the shallow water equations without the iterative steps involved in the multi-
dimensional interpolation problem, and the iteration associated with the intermediate step of
solving a Helmholtz equation, which is usually the case in other methods like the semi-
Lagrangian or Euler-Lagrange method [7,8,65 and references therein]. The absence of
iterative steps in the present method reduces considerably the numerical diffusion, and makes
it suitable for problems in which small time steps and grid sizes are required, as for instance
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M. Shoucri56

the problem of the calculation of the potential vorticity field we study in the present section,
where steep gradients and fine scale structures develop, and more generally for regional
climate modeling problems. The linear analysis (unpublished) of the shallow water equations
for the fractional step method shows the method is unconditionally stable, reproducing
exactly the frequency of the slow mode, while the frequencies of the fast modes are exact to
second order. We present in this section a new application of the fractional step method to the
shallow water equations to study the evolution of a complex flow typical of atmospheric or
oceanic situations, namely the nonlinear instability of a zonal jet, similar to what has been
presented in [66]. As pointed out in [66], there is well established observations that even in
the presence of relatively smooth, large scale flows, tracer fields in the atmosphere and the
ocean develop fine scale structures. A tracer of particular significance is the potential
vorticity, which develops steep gradients and evolves into thin filaments whose numerical
study demands a resolution with small grid sizes and whose evolution requires small time-
steps. Several methods have been discussed in [66] for the numerical solution of the potential
vorticity of a zonal jet. The semi-Lagangian or Euler-Lagrange method requires iterations at
each time-step to interpolate along the characteristics, and includes also an intermediate step
for solving by iteration a Helmholtz equation [7,8,65,66]. This double-iterative numerical
method can be computationally prohibitive if done on small grid sizes and with small time-
steps, as recently pointed out in [66], and results in an important numerical diffusion difficult
to evaluate or control. Other methods to solve the shallow water equations include the
pseudospectral method [66], which requires the addition of an explicit hyperdiffusion for the
numerical stability. This ad hoc addition of hyperdiffusion seriously degrades the solution
accuracy. In the results presented in [66], the complex filamentary structures and steep
gradients surrounding most vortices are substantially smoothed out in the pseudospectral and
semi-Lagrange methods, this later one does worse than the pseudospectral method because
the numerical diffusion occurs through repeated iterations and interpolations and is thus not
directly controllable. In the contour-advective semi-Lagrangian method presented in [66], the
potential vorticity is discretized by level sets separated by contours that are advected in a fully
Lagrangian way. This allows one to maintain potential vorticity gradients that are steep,
however the small scales in the potential vorticity are removed with contour surgery, by
topologically reconnecting contours and eliminating very fine scale filamentary structures.
This contour surgery is, of course, an ad hoc procedure as much as the hyperdiffusion used in
the pseudospectral method. All the three previously discussed methods (semi_Lagrangian,
pseudospectral and contour-advected semi-Lagrangian) require the knowledge of the
calculated variables at three time levels, and require different time filtering to damp high-
frequency modes and small-scale high frequency gravity waves, otherwise the numerical
scheme is unstable. In the fractional step method we present in this section, no iterations are
required since only two time levels are used to advance the equations in time, and no time
filtering is required. So the numerical diffusion is minimal. The fractional step method
applied to the shallow water equations has been recently presented and applied to a climate
modeling problem [3], and compared favourably when applied with small grid sizes and time-
steps with respect to the semi-Lagrangian method. Further evaluation of the performance of
the fractional step method applied to the shallow water equations has been recently presented
in [67]. It is the purpose of the present work to apply this fractional step method to follow on
an Eulerian grid the evolution of quantities like the height and the velocity field, which are
relatively broader in scale, while reconstructing and capturing at each time-step the complex
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filamentary and fine scale structures and the steep gradients associated with the corresponding
potential vorticity. In other words the potential vorticity is post-processed at each time step
from the height and velocity field obtained from the direct solution of the shallow water
equations, as it has been recently reported [68]. In the present section, the results obtained
will be compared with results obtained by directly integrating the potential vorticity equation
on the same Eulerian grid. These direct integrations which follow a quantity developing steep
gradients and fine scale structures on an Eulerian grid develop naturally numerical noise, as it
will be shown at the end of this section.

We write the two-dimensional shallow water equations in their simplest form in terms of
the height h and the velocities ),( vu  respectively along the x and y directions.

0=
∂
∂

+
∂

∂
+

∂
∂

y
vh

x
uh

t
h

 ; (4.1)

vf
x
hg

y
uv

x
uu

t
u

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂  ; uf

y
hg

y
vv

x
vu

t
v

−=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ (4.2)

f is the Coriolis parameter and g is the gravitational field. We write the geopotential gh=φ ,
and we use the following time-centered scheme [68] to integrate by fractional step
Eqs(4.1,4.2):

Step 1 - solve for 2tΔ  the equations in the x direction:

 0=
∂
∂

+
∂
∂

+
∂
∂

xx
uu

t
u φ

 ;  (4.3)

 0=
∂
∂

+
∂
∂

+
∂
∂

x
u

x
u

t
φφφ

  (4.4)

 0=
∂
∂

+
∂
∂

x
vu

t
v  ;  (4.5)

Eqs(4.3,4.4) are rewritten:

( ) ;0=
∂

∂
±+

∂
∂ ±±

x
R

u
t

R xx φ (4.6)

where φ2±=± uRx  are the Riemann invariants [1]. The solution of Eq. (4.6) at t + 2tΔ
is written as follows:

( ) ( )tyxRttyxR xx ,,2/,, ±±± =Δ+ (4.7)
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where dtuxx
tt

t

)(
2/

∫
Δ+

± ±−= φ . The solution of Eq.(4.5) for v at 2tt Δ+  is written:

 ),,()2/,,(
2/

tyudtxvttyxv
tt

t
∫
Δ+

−=Δ+   (4.8)

P x

t

m Δx

(n + 1/2) Δt

η Δx ξ Δx
n Δt
(m - 1) Δx 

Q (m Δx ; (n + 1/2) Δt)

O

Figure 49. Details for the calculation if Eq.(4.12).

To find the value of the function at 2/tt Δ+  at the arrival grid points, the right hand
sides of Eqs.(4.7,4.8) imply finding the value of the function at time tnt Δ=  at the departure
point of the characteristic at the shifted position. This value is obtained using cubic spline
interpolation from the values of the function at the neighboring grid points at tnt Δ= . To
avoid iterations, we show as an example how the integral in Eq.(4.8) is approximated (the
same technique is applied to approximate the other integrals in Eq.(4.7)). We write:

 ∫
Δ+

′′′=Δ
2/

)),((
tt

t

tdttxuxξ   (4.9)

xΔ  is the grid size in the x direction, and from Eq.(4.9) xΔξ  gives the distance of the
departure point P of the characteristic from the grid point at xmx Δ=  (the point P in
Fig.(49) is located between the grid points xmx Δ−= )1(  and xmx Δ= , and the
characteristic through the point P reaches the grid point ))2/1(,( tnxmQ Δ+Δ  at

tnt Δ+= )2/1( ). The vertical axis in Fig.(49) is time. The velocity u at the point P

(denoted by Pu  ), can be written as a linear interpolation at time tnt Δ=  of the value of u at

the grid point at xmx Δ=  (denoted by mu ), and the value of u at the grid point

xmx Δ−= )1(  (denoted by 1−mu ) :
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The Method of Characteristics for the Numerical Solution… 59

  )1()1( 11 ξξηη −+=+−= −− mmmmp uuuuu  (4.10)

where 1=+ ξη . The distance OP in Fig.(49) is xΔη . Usually u at the point Q is unknown.
We use Taylor expansion for 2/tΔ  :

  2/12/1 2)( −− −=−+= n
mm

n
mmmQ uuuuuu  

(the values of u without superscript denotes the time tnt Δ= ). We can approximate the
integral in Eq.(4.9) as follows:

  
2

)(
2
1 tuux QP

Δ
+=Δξ   (4.11)

We substitute in Eq.(4.11) for Pu  and Qu . We get for the shifted value in Eq.(4.9):

  

2
)(

2
11

2
)3(

2
1

1

2/1

t
x
uu

tuu
x

mm

n
mm

Δ
Δ
−

+

Δ
−

=Δ
−

−

ξ   (4.12)

This result reduces to the one in [68] if we approximate 2/1−n
mu  by mu  in eq.(4.12).

Eq.(4.12) gives an explicit approximation for the value to be shifted in Eq.(4.8). The same
technique can be applied to the integrals in Eq.(4.7), so the calculation of the integrals in
Eqs.(4.7,4.8) using the approximation of Eq.(4.12) remains explicit, and the interpolated
values in Eqs.(4.7,4.8) are calculated using a cubic spline interpolation. No iteration is
implied in this calculation. The results we present] show that this approximation is sufficient
and good.

Step 2 - use the results of Step 1 to solve for 2tΔ  the equations in the y direction:

  0=
∂
∂

+
∂
∂

+
∂
∂

yy
vv

t
v φ

  (4.13)

  0=
∂
∂

+
∂
∂

+
∂
∂

y
v

y
v

t
φφφ

  (4.14)

  0=
∂
∂

+
∂
∂

y
uv

t
u

 ;  (4.15)

Eqs.(4.13) and (4.14) are rewritten:
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  ( ) 0=
∂

∂
±+

∂

∂ ±±

y
R

v
t

R yy φ  ;  (4.16)

where φ2±=± vRy  are the Riemann invariants. The solution of Eq. (4.16) is written:

( )tyxRttyxR yy ,,
2

,, ±±± =⎟
⎠
⎞

⎜
⎝
⎛ Δ

+ (4.17)

where dtvyy
tt

t

)(
2/

∫
Δ+

± ±−= φ . The solution for u in Eq.(4.15) is calculated in a similar

way to Eq. (4.8).

  ),,()2/,,(
2/

tvdtyxuttyxu
tt

t
∫
Δ+

−=Δ+   (4.18)

The calculation of the integrals in Eqs.(4.17) and (4.18) is effected in a similar way as
explained for Eq.(4.9),by substituting y for x.

Step 3 - use the results at the end of Step 2 to solve the source terms for Δt:

0;0 =+
∂
∂

=−
∂
∂ fu

t
vfv

t
u (4.19)

If we denote by Uo and Vo the values of u and v at the end of Step 2, the values of u and v
after tΔ  in Step 3 are given by:

  )sin(),()cos(),(),,( tfyxVtfyxUttyxu oo Δ+Δ=Δ+  ;  (4.20)

  )sin(),()cos(),(),,( tfyxUtfyxVttyxv oo Δ−Δ=Δ+  (4.21)

Step 4 use the results at the end of Step 3 to solve for 2tΔ  the equations in the y
direction (as in Step 2)

Step 5 use the results at the end of Step 4 to solve for 2tΔ  the equations in the x
direction (as in Step 1)

This entire cycle will advance the solution by one time-step tΔ . We have mentioned that
in Eqs.(4.7),(4.8) and Eqs.(4.17-4.18) the value of the function at the points of departure of
the characteristics ( the shifted value) are calculated from the values of the function at the grid
points using a cubic spline interpolation. We use a simple cubic spline defined over three grid
points, calculated by writing that the function, its first and second derivatives are continuous
at the grid points. Details are given in Appendix B. Testing this cubic spline polynomial
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The Method of Characteristics for the Numerical Solution… 61

against other methods [4] has shown that this cubic polynomial has very low numerical
diffusion compared to other polynomials. The code developed for the present problem is less
than 500 fortran lines. At every time step, we reconstruct the potential vorticity q from the
calculated values of h, u and v using the relations:

  
h

fq ζ+
=  ; 

y
u

x
v

∂
∂

−
∂
∂

=ζ   (4.22)

The derivatives xv ∂∂ /  and yu ∂∂ /  are calculated from the values of u and v using
cubic splines. If we operate on the first equation of Eq.(4.2) by y∂∂ / , and on the second
equation of Eq.(4.2) by x∂∂ / , we can derive with the help of Eq.(4.1) the following equation
for the potential vorticity q :

  0=
∂
∂

+
∂
∂

+
∂
∂

y
qv

x
qu

t
q

  (4.23)

which simply states that q is constant along the characteristics :

  u
dt
dx

=  ; v
dt
dy

=   (4.24)

As we mentioned in the introduction, it is generally difficult to find a method for the
direct integration of Eq.(4.23), because the potential vorticity generally develops steep
gradients and finescale structures. In any Eulerian code, this will require a large number of
grid points and small time-steps. In the method we present in this paper, we solve directly for
the relatively large scale variables , height and velocity in Eqs.(4.1,4.2), and the potential
vorticity is accurately calculated (post-processed) at each time-step using Eq.(4.22), capturing
the small scale key features and steep gradients associated with the solution.

We apply the numerical scheme presented for the numerical solution of Eqs.(4.1,4.2), and
for the problem of post processing the potential vorticity from this solution. The initial flow
consists of a perturbed unstable zonal jet which rapidly becomes very complex, and is
specified by prescribing the initial potential vorticity as follows ( we follow the notation of
[66]):

  |)|ˆ||)(ˆsgn()0,,( ayayQqyxq −−+=   (4.25)

for ay 2|ˆ| < (the vertical lines indicate the absolute value). Q is the amplitude of the
potential vorticity, q  is the mean potential vorticity, 2a is the distance from the minimum to
maximum potential vorticity, and:

  nxcmxcyy nm sinsinˆ ++=   (4.26)
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M. Shoucri62

where ŷ  is the perturbed y coordinate, used to perturb the jet. We use for the present test the

same parameters as in [66]. Equilibrium height 1=h , the Coriolis factor π4=f ,

5.0=a , 1/ =fQh , qQ == π4 . The deformation radius is 5.0/ == fhgLR  , and
2)2( π=g . A doubly periodic domain which spans the range ),( ππ−  covers about 12.5

deformation radii in each direction. We take m=2 , n=3, 1.02 −=c  , 1.03 =c  to perturb the
q profile . We use a slightly different method to calculate the initial velocities and height h.
We assume initially v=0 . We balance the second of Eq.(4.2) initially:

  
y
hgfu

∂
∂

−=   (4.27)

from which  2

2

y
hg

y
uf

∂
∂

−=
∂
∂

  (4.28)

Figure 50. Initial profiles for the shallow water problem π4/q  (full curve) , u (broken curve),

π2/h (dash-dot curve).

We substitute for yu ∂∂ /  from Eq.(4.28) into Eq.(4.22) and solve numerically for the
initial value of h .Fig.(50) shows the initial equilibrium profiles ( uniform in x ) for π4/q  (
full curve) , u ( broken curve) and π2/h  ( dash-dot curve). These initial values of u,v and h
are used in Eqs.(1,2) to start the evolution of the system. In Figs.(51) and (52) we show
respectively the velocities u and v at t=8, and in Fig.(53) we show the contour and 3D view of
the geopotential φ . Figs.(51-53) show structures which are generally broader in scale than
the potential vorticity. Fig.(54) shows the the potential vorticity q , calculated at t=8 from
Eq.(4.22). The instability in the potential vorticity has developed and the initial zonal jet has
evolved into vortices and fine structures with steep gradients. These fine scale structures are
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The Method of Characteristics for the Numerical Solution… 63

Fig 51. Velocity u .

Figure 52. Velocity v.
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M. Shoucri64

Figure 53. Geopotential φ .

Figure 54. Potential vorticity q.
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The Method of Characteristics for the Numerical Solution… 65

inevitably generated by the forward enstrophy cascade. We note how the steep potential
vorticity gradients and the small scale features are nicely captured and reconstructed using
Eq.(4.22), from the solution of the relatively broader scale height and velocities, by post
processing these relatively smooth large scale flows with the help of Eq.(4.22). These
calculations are done with 200x200 grid points, and a time-step 20/xt Δ=Δ . This time-step
has been chosen after few tests to determine the time-step at which the solution appears to
converge and become independent of tΔ ( the solution obtained with 10/xt Δ=Δ is
essentially identical to what we are presenting here). The computation CPU time on a sun-
blade 1000 workstation of 750 Mhz was 64 minutes to reach t=8, and the required memory
for the code was 4.5 Mbytes.

Figure 55. Potential vorticity q(fractional step method).

We present for comparison in Figs(55) the solution for the potential vorticity q obtained
by the direct integration of Eq.(4.23) with the initial value in Eq.(4.25) by a fractional step
method, and by a semi-Lagrangian method in Fig.(56). For the fractional step method, we
follow the steps of the techniques presented in section 2 . To advance Eq.(4.23) in for a time-
step tΔ , we use the following sequence :

Step1 Solve for 2/tΔ  the equation :

  0=
∂
∂

+
∂
∂

x
qu

t
q

 (4.29)
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M. Shoucri66

Step2 Solve for tΔ  the equation:

  0=
∂
∂

+
∂
∂

y
qv

t
q

 (4.30)

Step3 Repeat Step1 for 2/tΔ .

Figure 56. Potential vorticity q (semi-Lagrangian method).

We use the same values of u and v calculated from Eqs.(4.2). Eqs(4.29-4.30) are solved
as described for Eq.(4.5), (4.6) or (4.15) . The other method used for the direct solution of
Eq.(4.23) is the semi-Lagrangian or Euler-Lagrange method. As described in sections 1 and
3.1, we calculate the displacements xΔ  and yΔ  along the characteristic curves by solving

iteratively the equations:

  ),,(1
n

k
y

k
x

k
x tyxtu Δ−Δ−Δ=Δ +  (4.31)
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The Method of Characteristics for the Numerical Solution… 67

  ),,(1
n

k
y

k
x

k
y tyxtv Δ−Δ−Δ=Δ +  (4.32)

where u and v are calculated from Eqs.(4.2) using the same method we previously discussed.
We start with 00 =Δ x  and 00 =Δ y . Usually two or three iterations are necessary to get

convergence. Then the function q is advanced from ttn Δ−  to ttn Δ+  using the relation:

  ),2,2(),,( ttyxqttyxq nyxn Δ−Δ−Δ−=Δ+  (4.33)

As explained in section 3, the interpolations in Eqs.(4.31-4.33) are done using a tensor
product of cubic B-spline [6] ] (with appropriate modification to the boundary conditions to
take into account the periodicity as for instance in [51]). We used the same Eulerian grid as
for the solution of Eqs.(4.1-4.2). Figs(55) and (56) show noisy figures compared to what has
been presented in Fig.(53), obtained from the direct solution of Eqs.(4.1-4.2) and Eq.(4.22).
This noisy behaviour is to be expected since for the fractional step and semi-Lagrangian
methods we have the difficult challenge to follow on an Eulerian grid the potential vorticity
of a zonal jet, a quantity which develops steep gradients and fine scale structures.

Finally the extension of the method to three dimensional problems is straightforward,
requiring only the addition of an extra fractional step in the third dimension to what is
presented in this section. The Appendix in [68] outlines an example for a 3D problem.

4.2. Two-Dimensional Magnetohydrodynamic Flows

We present another example for the application of the method of characteristics for the
numerical solution of fluid equations, namely the equations of two-dimensional
incompressible magnetohydrodynamic flows in plasmas. These equations play an important
role in the understanding of strong turbulence properties in high Reynolds number conducting
fluids, which have important effects on the reconnection of the magnetic field and changes of
flow topology [69-72]. As discussed in section 3.4, magnetic reconnection is a fundamental
process which allows magnetized plasmas to convert the energy stored in the field lines into
kinetic energy of the plasma. In ideal MHD, the frozen-in flux condition prohibits the
magnetic field topology to change. Thus reconnection depends on a non-ideal mechanism
responsible, in the region where the topology change takes place, for the dynamics of a
diffusion process which creates a mechanism that breaks the magnetic field frozen in the
plasma. Hence the importance of a solution to the pertinent equations where numerical
diffusion is controlled to the minimum. We have already presented in section 3.4 an
application of the methods of characteristics for the numerical solution of a reduced set of
MHD equations. We extend this method to the set of two-dimensional fluid ideal MHD
equations usually applied to study incompressible MHD turbulence. There is an abundant
literature for the numerical solution of these equations [69-72], based essentially on finite
difference schemes. Our intention is to apply the method of characteristics to the solution of
these equations.

The pertinent incompressible magnetohydrodynamic equations can be written in the
form:
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 ±±
±

Δ+−∇=∇+
∂

∂ zzzz vp
t

.   ∓  . div ±z =0 (4.34)

±z  denotes the Elsässer variables Buz ±=± , where u  is the velocity, B  the magnetic
field, and p the total pressure. Here we assume a magnetic Prandtl number equal to one. We
use the same parameters as in [69,70]. The two-dimensional MHD equations in Eq.(4.34) are
solved in a rectangular box of size π2== yx LL  with periodic boundary conditions. We

use as initial conditions for the magnetic flux function ψ  and the velocity streamfunction ϕ
the following expressions :

 
[ ]

)5.0cos()4.1cos(),(   

,)1.4cos()3.22cos(
3
1),(   

+++=

+++=

yxyx

yxyx

ϕ

ψ
 .  (4.35)

ψ∇= xzeB  and ϕ∇= xzeu . These initial conditions introduced in [69] show a stronger
tendency to generate turbulent small scale structures than the Orszag-Tang vortex. They are
made less symmetric by means of arbitrary phases. They have also been used in [70]. The
numerical scheme applied to Eq.(4.34) is the following:

Step1 solve for a time step 2/tΔ  the equation :

  0.   =∇+
∂

∂ ±
±

zzz ∓

t
 .  (4.36)

This equation is solved in 2D using a tensor product of cubic B-spline for interpolation,
as described in section 1 and applied for the problems presented in section 3. We next
calculate the pressure p by taking the divergence of Eq.(4.34). This gives the following
equation:

  pΔ−=∇ ± ).( div   zz ∓  .  (4.37)

This equation is solved for p using a fast Fourier transform algorithm, since we have
periodic boundary conditions.

Step2 solve for a time step tΔ  the equation:

  ±
±

Δ+−∇=
∂

∂ zz vp
t

    .  (4.38)

p∇    is treated explicitly. The diffusion term is treated by an alternate direction
implicit scheme.
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The Method of Characteristics for the Numerical Solution… 69

Step3 repeat Step1 for a time step 2/tΔ .

The quantities u  and B  are calculated from the relations : 
2

zzu
−+ +

= ,

2
zzB

−+ −
= .

We write for reference the explicit form for the solution of Eq.(4.36) for xxx Buz +=+ :

 0   =
∂

∂
+

∂
∂

+
∂

∂ +
−

+
−

+

y
z

z
x

z
z

t
z x

y
x

x
x  .  (4.39)

The characteristic equations for Eq.(4.39) are given by:

  −= xz
dt
dx    , −= yz

dt
dy   .  (4.40)

We calculate the displacement xΔ  and yΔ  as explained in the previous sections, using

the following iterations:

  )4/,,(
4

1 ttyxzt
n

k
yj

k
xix

k
x Δ+Δ−Δ−

Δ
=Δ −+  (4.41)

  )4/,,(
4

1 ttyxzt
n

k
yj

k
xiy

k
y Δ+Δ−Δ−

Δ
=Δ −+  (4.42)

The values of −
xz  and −

yz  at 4/ttn Δ+  can be calculated by a predictor-corrector

technique. Two or three iterations are necessary for the convergence in Eqs.(4.41-4.42), and a
tensor product of cubic B-spline is used for the interpolation [6] (with appropriate
modification to the boundary conditions to take into account the periodicity as for instance in
[51]). Then the value of +

xz  is advanced in time for 2/tΔ  as indicated in Step1 using the
relation:

 ),2,2()2/,,(z   njxixnjix tyyxzttyx Δ−Δ−=Δ+ ++  .  (4.43)

Again a tensor product of cubic B-spline is used for the interpolation [6] in Eq.(4.43). The
same method is applied to the other variables in Eq.(4.36).
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M. Shoucri70

Figure 57. Current J at t=0.

Figure 58. Current J at t=1.

Figure 59. Current J at t=2.

The solution we present has been obtained using 512x512 grid points with the kinematic
viscosity 310−=v  in Eq.(4.34). One has to be careful when v  is different from zero since
any kind of smoothing may artificially inhibit the energy transfer to small scales and slow
down magnetic reconnection and the associated instabilities. Comparison with the case 0=v
has shown very close results up to t=3. However, at this stage the growth of the current
becomes very big and the system goes to a numerical instability for longer runs with 0=v .
The nonlinear dynamics indeed leads to the formation, near neutral X points, of magnetic
current sheets corresponding to strongly sheared magnetic field configurations. The finite
value of v  keeps the growth of the different variables under control. A discussion of the
effect of v  on the solution can be found in [71]. (We note that the claim in [70] that the first
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The Method of Characteristics for the Numerical Solution… 71

simulation presented is done with 0=v  is probably due to the presence of an important
numerical diffusion in the code). Figs(57-61) show the current density J respectively at
t=0,1,2,3 and 6. From Eq.(4.35) we have:

  )(       ;     ; 
x

B
y

B
J

x
B

y
B yx

yx ∂

∂
+

∂
∂

−−=Δ−=
∂
∂

=
∂
∂

−= ψψψ
 .  (4.44)

Figure 60. Current J at t=3.

Figure 61. Current J at t=6.

Figure 62. Vorticity at t=0.
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Figure 63. Vorticity at t=1.

Figure 64. Vorticity at t=2.

Figure 65. Vorticity at t=6.

The results in Figs.(57-61) are very close to what is presented in Fig.(2) of [70], showing
the formation of current sheets. Figs.(62-65) show the vorticity U respectively at t=0,1,2 and
6. From Eqs.(4.35) we have:

 )(       ;     ; 
x

u
y

u
U

x
u

y
u yx

yx ∂

∂
+

∂
∂

−=Δ=
∂
∂

=
∂
∂

−= ϕϕϕ
 .  (4.45)
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Figure 66. ux at t=2.

Figure 67. ux at t=6.

Figure 68. uy at t=2.

At t=0, xB , yB , xu , and yu  are calculated from Eq.(4.35). Figs.(66-69) show xu , and

yu  at t=2 and t=6, and Figs.(70-73) show xB and yB  at t=2 and t=6. In Figs.(74-77) the

magnetic flux function ψ  at t=0,1,2 and 6 is presented. Note in Figs.(75-76) at t=1 and t=2
how, in the regions where the magnetic vortices are pushed towards each others or squeezed
between each others, intense currents are created in the corresponding current density plots in
Figs.(58-59). Fig.(78) presents the time evolution of the total enstrophy ( which is the sum of
the kinetic and magnetic enstrophies):

( )∫ ∇+∇= dxdyW 22 xx Bu  . (4.46)
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Figure 69. uy at t=6.

Figure 70. Bx at t=2.

 Figure 71. Bx at t=6.

In Fig.(79) we present the time evolution of the total energy (which is the sum of the
kinetic and magnetic energies):

( )∫ += dxdyE 22

2
1 Bu  . (4.47)
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The Method of Characteristics for the Numerical Solution… 75

The time evolution of the velocity-magnetic field correlation [70] EH /=ρ , where the

cross-correlation ∫= dxdyH Bu. , is presented in Fig.(80). The distribution of kinetic and

magnetic energies among the different scales is described by the kinetic and magnetic energy
spectra:

∑
+<≤

=
1´

2´ )(ˆ)( 
kk

u kE
k

ku  . (4.48)

∑
+<≤

=
1´

2´ )(ˆ)( 
kk

M kE
k

kB  . (4.49)

Fig.(81) shows on a logarithmic scale the kinetic ( uE10log  solid line) and magnetic

( ME10log  dashed line) energy spectra at t=6 (plotted against k10log , with k varying
between 1 and 100, showing a slight dominance of the magnetic energy over the kinetic
energy over most of the scale lengths). It is beyond the scope of the present work to repeat
what has been presented in [69-72]. We intended in this section to outline the pertinent steps
for one more application of the method of characteristics (which generally shows low
numerical diffusion) to the equations of ideal MHD flows.

Figure 72. By at t=2.

Figure 73. By at t=6.

Baswell, Albert R.. Advances in Mathematics Research, Nova Science Publishers, Inc., 2009. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3019187.
Created from inflibnet-ebooks on 2018-02-22 20:59:47.

C
op

yr
ig

ht
 ©

 2
00

9.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



M. Shoucri76

Figure 74. Flux function ψ  at t=0.

Figure 75. Flux function ψ  at t=1.

Figure 76. Flux function ψ  at t=2.

Figure 77. Flux function ψ  at t=6.
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Figure 78. Time evolution of the enstrophy.

Figure 79. Time evolution of the energy.

Figure 80. Time evolution of the correlation coefficient

Figure 81. Kinetic (solid line) and magnetic (dashed line) energy spectra at t=6.
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5. Conclusion

We have presented in the appendices some simple cubic spline relations which we have
applied for interpolation in several problems, showing how hyperbolic type differential
equations are solved using the method of characteristics. The values of the functions which
remain constant along the characteristic curves are stepped-up in time using cubic spline
interpolation. Results illustrating the performance of the cubic spline when applied to
interpolation in Eulerian grid-based solvers have been presented. Comparison of the cubic
spline interpolation with other methods [4] have shown that the cubic spline interpolation
compares favourably with the other methods. Since the ground breaking work of Cheng and
Knorr [10] which applied the fractional step method to the one-dimensional Vlasov equation,
there has been important applications of the method of characteristics for the numerical
solution of the kinetic equations of plasmas, and especially for extending these methods to
higher dimensions [15-18]. A historical overview on several applications of these methods in
the field of the kinetic equations of plasmas has been recently given in a Vlasovia workshop
[73]. This workshop included also recent applications on massively parallel computers,
especially in the field of the numerical solution of gyro-kinetic equations [74-77], which
testify for the impressive advances and applications of these methods. We mention also the
work in [78,79]. It is beyond the scope of the present chapter to review all these works. The
intention in this chapter was to present the essential elements of the interesting technique of
the method of characteristics associated with cubic splines interpolation, with appropriate
selected examples to illustrate the performance, the accuracy, the powerful and efficient tools
which Eulerian grid-based solvers can provide for the numerical solution of plasmas kinetic
equations and fluid equations: long time evolution of 1D BGK modes, charge separation at a
plasma edge involving higher phase-space dimensionality, laser-plasma interaction, magnetic
reconnection and the shallow water equations. In section 2.2 and section 3.2 for instance, we
have presented the problem of the formation of a charge separation and an electric field at a
plasma edge. In Cartesian geometry in section 2.2 a method of fractional step associated with
1D cubic spline interpolation along the characteristic curves has been applied, while in
cylindrical geometry in section 3.2 a two dimensional interpolation using a tensor product of
cubic B-spline [51] has been applied in velocity space. The results from these two different
codes are identical (can be superposed if we take into consideration a mirroring due to the
opposite positive direction in the two codes). Another comparison has been presented in
section 2.3 and 3.3, where two different models for laser-plasma interaction have been
discussed. The model in section 2.3 uses a linear polarization for the electromagnetic wave,
and applies a method of fractional step for the numerical solution of the equations, associated
with one dimensional cubic spline interpolation. The model in section 3.3 is fully relativistic
with circular polarization, and applies a two dimensional interpolation with a tensor product
of cubic B-spline. Again the two different codes are providing similar results, the only
difference reflects and underlines the difference in the physical models. Several recent
applications of similar codes for problems of laser-plasma interaction have been recently
reported [30,31,52], which testify for the success of these methods, together with different
other applications of the method of characteristics for the kinetic equations of plasmas which
we have rapidly reviewed. In section 3.4 for the numerical solution of the problem of
magnetic reconnection, a thin filament current has been observed at the X-point in Fig.(45)
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The Method of Characteristics for the Numerical Solution… 79

which was not previously observed in [62-64] where an artificial numerical diffusion was
added. The method of characteristics has also been applied for the numerical solution of fluid
equations. At the same time where [10] was published, the application of the method of
characteristics in 1D fluid equations associated with cubic spline interpolation was also
published in [80]. In plasma physics, one of the early applications of this method to fluid
equations has been for the numerical solution of the coupled mode equations [81-82]. There is
an abundant theoretical literature on the method of characteristics applied to fluid equations
(see for instance [1,83]). 2D interpolation using tensor product of cubic B-splines is
commonly applied for the numerical solution of the weather forecast equations in what is
known as the semi-Lagrangian method [7,8,65,66]. In section 4.1 we have presented an
interesting application to the problem of the calculation of the potential vorticity of a zonal jet
from the solution of the shallow water equations, reproducing on an Eulerian grid the fine
scale structures and the steep gradients of the potential vorticity without numerical noise. And
the problem of magnetic reconnection using the equations of the incompressible ideal MHD
flows in plasmas has been studied in section 4.2.
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Appendix A
The Shift Operator Using the Cubic Spline

Let us assume 10 <Δ< , with a uniform grid size normalized to 1 , and Δ  is a constant. We
use a Taylor expansion to calculate the shifted value jjj yxy ~)( =Δ+ , with the function

)(xfy =  and the notation jj fxf =)( :

 32

2
1~)( Δ+Δ+Δ+==Δ+ jjjjjjj gspfyxy   (A.1)

jp , js  and jg  are respectively the derivative, second derivative and third derivative of the

function )(xf  at the grid point jxj ≡ . We write that the function, its derivative and second

derivative are continous at every grid point, we get the following cubic spline relations on a
uniform grid [84,85]:

)(34 1111 −++− −=++ jjjjj ffppp  (A.2)
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)2(64 1111 −−+− +−=++ jjjjjj fffsss  (A.3)

21111 334 ++−+− +−+−=++ jjjjjjj ffffggg  (A.4)

We can verify after substitution from Eqs.(A.2-A.4) in Eq.(A.1) the following relation:

21111
~~~

++−+− +++=++ jjjjjjj DfCfBfAfyyy   (A.5)

3)1( Δ−=A   (A.6)

))1(1(34 2 Δ−+Δ−=B   (A.7)

)1()1(34 2 Δ+Δ−−=C   (A.8)

3Δ=D   (A.9)

We verify that for 0=Δ  we have from Eq.(A.5):

1111 4~~~
+−+− ++=++ jjjjjj fffyyy

i.e. jj fy =~

and for 1=Δ we verify that:

2111 4~~~
+++− ++=++ jjjjjj fffyyy

i.e. 1
~

+= jj fy

as it should be.
The inversion of the tridiagonal matrix in Eq.(A.5) with appropriate boundary conditions

determines jy~ . The calculation of jjj yxy ~)( =Δ−  with 10 <Δ<  is done in a similar

way and leads to the following relation :

21111
~~~

−−++− +++=++ jjjjjjj DfCfBfAfyyy   (A.10)

Appendix B
Interpolation Using the Cubic Spline

In the general case of a variable grid size, and for an equation of the form:
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0)( =
∂
∂

+
∂
∂

x
fx

t
f υ   (B.1)

The interpolation with a cubic spline polynomial is treated as follows. We assume that
)(xy j  is a cubic polynomial in { }1, +jj xx  such that jjjj fxfxy == )()( , and

111 )()( +++ == jjjj fxfxy . We denote by js  the second derivative at the point jx , and we

set jjj xxx −=Δ +1 . We can write for the second derivative in { }1, +jj xx  the following

linear interpolation:

j

j
j

j

j
jj x

xx
s

x
xx

sxy
Δ

−
+

Δ

−
=′′ +

+
1

1)(   (B.2)

so that jjj sxy =′′ )(  and 11 )( ++ =′′ jjj sxy . Integrating twice Eq.(B.2), we get:

)()()(
6

)(
6

)( 1
313

1 jjjjj
j

j
j

j

j
j xxbxxaxx

x
s

xx
x

s
xy −+−+−

Δ
+−

Δ
= +

+
+  (B.3)

With jjjj fxfxy == )()( , and 111 )()( +++ == jjjj fxfxy , we get:

6
j

j
j

j
j

x
s

x
f

a
Δ

−
Δ

=  ; 
61

1 j
j

j

j
j

x
s

x
f

b
Δ

−
Δ

= +
+  (B.4)

and

)(
6

             

)(
6

)(
6

)(
6

)(

1
1

1
313

1

j
j

j
j

j

j
j

j
j

j
j

j

j
j

j

j
j

xx
x

s
x

f

xx
x

s
x
f

xx
x

s
xx

x
s

xy

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−

Δ
+

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−

Δ
+−

Δ
+−

Δ
=

+
+

+
+

+

 (B.5)

We write that the derivative )(xy j′  is continuous at jxx =  : )()( 1 jjjj xyxy −′=′ , we

get the following relation:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

−
−

Δ

−
=Δ+Δ+Δ+Δ

−

−+
−−−+

1

11
1111 6)(2

j

jj

j

ij
jjjjjjj x

ff
x

ff
sxsxxsx  (B.6)
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Inverting the tridiagonal matrix in Eq.(B.6) with proper boundary conditions determine
the js  to be used in the cubic polynomial given in Eq.(B.5), which can also be rewritten in

the form:

11)( ++ +++= jjjjjjjjj sDsCfBfAxy  (B.5)

Where 
j

j
j x

xx
A

Δ

−
= +1 ; 

j

j
j x

xx
B

Δ

−
= ; )1(

6
2

2

−
Δ

= jj
j

j AA
x

C ; )1(
6

2
2

−
Δ

= jj
j

j BB
x

D  .

For a value of )(xy j  at jjxx Δ+=  where 1+<< jj xxx , (as for instance in

Eq.(B.1) when )0)(  ,)( <Δ=Δ jjj xtx υυ  we have :
j

j
j x

A
Δ

Δ
−= 1  and 

j

j
j x

B
Δ

Δ
= . It is

straightforward to derive from the previous results the expression for )(xy j  at jjxx Δ−= ,

where jj xxx <<−1 .(as for instance in Eq.(B.1) when )0)(  ,)( >Δ=Δ jjj xtx υυ . In this

case we have, with 11 −− −=Δ jjj xxx , we have:

11)( −− +++= jjjjjjjjj sDsCfBfAxy  (B.6)

Where jj BA −=1 ; 
1−Δ

Δ
=

j

j
j x

B ; )1(
6

2
2

1 −
Δ

= −
jj

j
j AA

x
C ; )1(

6
2

2
1 −

Δ
= −

jj
j

j BB
x

D  .

(note that in the previous results, we assumed , jj xtx Δ<Δ)(υ , but the results can be

generalized without difficulty to arbitrary values of tx j Δ)(υ ).

Appendix C
Interpolation Using the Cubic B-spline

To interpolate using a cubic B-spline, we write the function f(x) as follows:

)()(
1

2
xBxf j

N

j
j

x

∑
−

−=

= γ  (C.1)

where the )(xB j  are defined as follows [84]:
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⎪
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⎨

⎧

<≤
<≤
<≤

<≤

−
−−−+−+

−−−+−+
−

=

++

++

++

+

+
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xxx
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xx
xxxxxx

xxxxxx
xx

xB , (C.2)

and )(xB j  is equal to zero otherwise. Note that in this case the cubic polynomial is defined

using four grid points. Because of the local definition of each B-spline, only 4 summands of
Eq.(C.1) are non-zero. The calculation of the coefficients for the B-spline interpolation is
performed as follows. We write for the given function value at the grid points xi :

)()(
1

2
jj

N

j
jj xBxf

x

∑
−

−=

= γ  (C.3)

which results in the equation:

jjjj f64 123 =++ −−− γγγ  ; for j=1,…….Nx (C.4)

where jj fxf =)(  , and we assume as boundary condition that the derivative is equal to zero

at the boundaries : 20 −= γγ  , 31 −− =
xx NN γγ . We use the recursive ansatz:

jjjj HX += +1γγ  (C.5)

which inserted into Eq.(C4) yields by comparison the coefficients:

14
1

−+
−=

j
j X

X  ; 22 −=−X  (C.6)

)6( 21 +− −= jjjj fHXH  ; 12 3 fH =−  (C.7)

The values of 22  , −− HX  are obtained by considering the recursive ansatz with 2=j
and the left boundary condition 20 −= γγ . The starting value of the recursion is obtained
using the right boundary condition:

32

323
1 1 −−

−−−
− −

+
=

xs

xxx

x
NN

NNN
N XX

XHH
γ  (C.8)
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Once the coefficients jγ  are known, arbitrary interstitial function values

)(~
xjxff Δ+=  are now calculated as follows :

x
j bf κ

κ
κγ∑

=
−=

3

0

~
 (C.9)

where jxj xxxj −=Δ≡   , , and :

 3
0

1  ; 
6

x
xb = Δ

 ( )2 3
1

1 1 3( )
6

x
x x xb = + Δ + Δ − Δ

 ( )2 3
2

1 1 3((1 ) (1 ) (1 ) )  ;       
6

x
x x xb = + − Δ + − Δ − − Δ  (C.10)

( )3
3

1 1
6

x
xb = − Δ
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