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Foreword

Georg Heing, a charming, erudite man, and a first rate mathematician died unex-
pectedly of a heart attack on May 10, 2005. Georg is survived by his wife Gerti,
his daughter Susanne, and his son Peter.

We have lost one the leading experts in the field of structured matrices, a
wonderful colleague, and a terrific friend.

Georg Heinig’s results, approaches, and his scientific taste influenced our com-
munity of researchers working on structured matrices. In fact, the community’s
focus grew to reflect his interdisciplinary vision ranging from applications (e.g.,
in systems and control theory and signal processing) through fundamental mathe-
matics (structured matrices, periodic Jacobi, Toeplitz, andWiener-Hopf operators,
classes of singular integral operators, resultants and Bezoutians for operator-valued
polynomials and continual analogs thereof) to numerical analysis and fast algo-
rithms. The broad spectrum of Georg Heinig’s interests are represented in this
collection.

Georg served as an Associate Editor of two top journals: Integral Equations
and Operator Theory and Linear Algebra and Its Applications. This volume starts
with two eulogies published earlier by IEOT and LAA. The first one, published in
IEOT is by Albrecht Böttcher, Israel Gohberg (who was Georg’s advisor during
his Ph.D. studies), and Bernd Silbermann. The second one, published in LAA is
by Karla Rost who collaborated with Georg during last three decades until day of
his death. They have produced together more than 30 papers and a monograph.

We refer to these two eulogies for the details of Georg’s career, and here we
would like to emphasize only one point, namely the influence of his work in the area
of structured matrices. Matrices with structure (e.g., Toeplitz matrices) are en-
countered in a surprising variety of areas in sciences and mathematics. There were
many approaches to study Toeplitz structure and its generalizations, one of them
was known under the name “displacement structure method.” In their 1984 mono-
graph “Algebraic Methods for Toeplitz-like Matrices and perators” G.Heinig and
K.Rost demonstrated that this method (they called it the UV-reduction method)
can be successfully used not only for Toeplitz structure and its derivatives, but also
for many other patterns of structure, e.g., Hankel, Vandermonde, Cauchy matri-
ces, Bezoutians and their generalizations. This breakthrough discovery facilitated
a lot of interest in the community. Moreover, the new technique was immediately
picked up and it was heavily used in the work of a number of research groups in
Germany, USA, Israel, Leuven, Moscow, Hong Kong.



viii Foreword

As Georg mentioned many times, about 20 years ago he was virtually alone
delivering talks on structured matrices at such conferences as IWOTA and ILAS
meetings. Nowadays special sessions and minisymposia on structured matrices
are routinely included in programs of a number of conferences such as IWOTA,
ILAS, SIAM annual meetings, SPIE, MTNS. Moreover, a number of conferences
dedicated exclusively to structured matrices has been held (two AMS meetings in
the USA, four conferences in Italy, three in Moscow, three in Hong Kong). Needless
to say, Georg’s results, ideas, his energy, and service to the community facilitated
this development and strongly influenced the research efforts of structured matrices
community.

We are happy to include in this volume a joint paper of Georg Heinig and
Karla Rost on Bezoutians. This is a subject Georg worked on since the very be-
ginning of his career, and to which he made a number of significant contributions.
The paper blends an wonderful exposition of classical results with a survey recent
development in the field.

It was a great honor and a privilege to edit this volume of papers dedicated
in Georg’s memory.

The Editors
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Georg Heinig (1947–2005)

In Memoriam

On May 10, 2005, Georg Heinig died unexpectedly of a heart attack in his apart-
ment in Kuwait. We have lost one of the top experts in the field of structured
matrices, an irreplaceable colleague, and a good friend. He was an active mem-
ber of the editorial boards of the journal Integral Equations and Operator Theory
and the book series Operator Theory: Advances and Applications since 1993. Our
heartfelt condolences go out to his wife and his family.

Originally published in Integr. equ. oper. theory 53 (2005), 297–300.



4 In Memoriam Georg Heinig

Georg Heinig was born on November 24, 1947 in the small town of Zschopau in
the Ore Mountains (Erzgebirge) in East Germany. From 1954 to 1964 he attended
the school in Zschopau and from 1964 to 1966 the elite class for mathematics at
Chemnitz University of Technology. Such elite classes were established to provide
especially gifted pupils with an extraordinary education in mathematics (but also
in the natural sciences and in languages) under the guidance of experienced uni-
versity teachers. The careers of many successful East German scientists started at
elite classes. None of these classes has survived the German reunification.

He studied mathematics at Chemnitz University of Technology from 1966
to 1970 and graduated with the diploma degree in 1970. His diploma thesis was
written under the supervision of Siegfried Prössdorf and was devoted to certain
properties of normally solvable operators in Banach spaces.

After defending his diploma thesis with the best possible grade, Georg Heinig
was given the opportunity of entering a PhD program abroad. He decided to con-
tinue his studies at Kishinev (now Chisinau) University under the supervision of
the second of us. His wife Gerti accompanied him in Kishinev and also completed
a dissertation during that period. Georg Heinig was a very talented and dedi-
cated researcher. In Kishinev he embarked on research into the theory of Toeplitz,
Wiener-Hopf, and singular integral operators with scalar and matrix-valued sym-
bols, and it was during those wonderful years that he has fallen in love with all
the exciting mathematics of structured matrices. His deep results in this area
formed the basis of his excellent PhD thesis, which he defended in Spring of 1974.
Many other mathematical insights gained by Georg during the years in Kishinev
went into his habilitation thesis, which he completed in Chemnitz. The early pa-
per Gohberg/Heinig, Inversion of finite Toeplitz matrices consisting of elements
of a non-commutative algebra (Russian), Rev. Roumaine Math. Phys. Appl. 19,
623–663 (1974) became one of his most frequently cited works.

Georg Heinig returned to Chemnitz in 1974. In the following five years the
first of us had the pleasure of attending his classes as a student, the third of us
received an outstanding member of his research group, and the second of us was
proud of Georg’s outstanding mathematical achievements. Georg Heinig integrated
several young people into his research, Karla Rost being the most prominent figure
of them. In 1979 he defended his habilitation thesis, which was on the spectral
theory of operator bundles and the algebraic theory of finite Toeplitz matrices.
His two children Peter and Susanne were born in 1974 and 1977.

The scientific outcome of the research directed by Georg Heinig in the 1970s
and early 1980s is summarized in his and Karla Rost’s book Algebraic Methods for
Toeplitz-like Matrices and Operators, which was originally published by Akademie-
Verlag, Berlin in 1984 and was republished by Birkhäuser Verlag, Basel in the
same year. This book has found a warm reception and perpetual interest by a
large community for now about twenty years. Some of its basic ideas, such as
the so-called UV reduction (which later received more popularity under the name
displacement operation), have become important tools for workers in the field of
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structured matrices. Moreover, the scientific collaboration of Georg Heinig with
Karla Rost lasted three decades until the day of Georg’s death. Their joint research
resulted in more than 30 papers. The results and methods of these papers are
an essential ingredient to the present-day mathematical high-technology one is
encountering in connection with structured matrices.

In 1982, Georg Heinig was a guest professor at Aleppo University in Syria,
and from 1987 to 1989, he held a guest professorship at Addis Ababa University in
Ethiopia. In the late 1980s he was appointed full professor at Leipzig University.

After the political events in Germany at the turn to the 1990s the life for
Georg changed dramatically. All people working at East German universities were
formally dismissed and had to apply for a position anew. Those who had shown a
certain extent of political proximity to the former socialist system had no chance
of receiving a new position at a German university, neither in East Germany nor in
the subsequently reunified Germany. The situation was extremely difficult, and the
efforts of Georg’s friends to help him did not bring any positive results. Certainly
Georg was very disappointed and despaired. Some time he planned to take over
his father’s store for vegetables, but eventually he looked for a job at a foreign
university.

In 1993, Georg Heing went to Kuwait University, where he worked as a profes-
sor until his tragic death. The scientific conditions at Kuwait University were excel-
lent and Georg has always thankfully acknowledged the recognition and friendship
he received from his Kuwaiti colleagues. In 2003, he was awarded as the Scientist
of the Year by the Amir of Kuwait. Despite all these successes, his and his wife’s
dream was to endure the university job only until the age of 60 years and then sim-
ply to relish life together, including travelling around the world. His unexpected
death at the age of 57 abruptly dispersed this dream.

Georg Heinig’s scientific legacy is immense. In more than 100 publications he
made outstanding contributions to a variety of fields, including

– theory and fast algorithms for several classes of structured matrices,

– periodic Jacobi, Toeplitz, and Wiener-Hopf operators,

– classes of singular integral operators,

– resultants and Bezoutians for operator-valued polynomials,

– continual analogs of resultants and Bezoutians,

– numerical methods for convolution equations,

– applications in systems and control theory and signal processing.

Discoveries by Georg and his co-workers, such as the structure of the kernel and
of the pseudoinverse for certain classes of structured matrices, significantly shaped
the development of numerical algorithms. He also remarkably enriched various ar-
eas of operator theory, for example by deep results on the spectral theory of Jacobi
matrices and of Toeplitz andWiener-Hopf operators. He supervised 6 dissertations.
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Georg Heing was a very pleasant person and an inspiring colleague. His sense
of humor and his characteristic bright laughing will be missed by everyone who
was lucky enough to meet him. His permanent endeavor for disclosing the ab-
solute essence of a matter and his untiring aspiration for clearness and brevity
were challenges for his co-workers on the one hand and have resulted in grateful
appreciation by his students and the readers of his publications on the other.

Another dream of Georg Heinig was a joint textbook with Karla Rost on
structured matrices, ranging from the basics for beginners up to recent develop-
ments. About one year ago they started writing this book and three chapters are
already more or less complete. It is unimaginable that he will never have this
book in his hands some day. This tragedy bitterly reveals the gap that Georg
has left and painfully reminds us of the projects and ideas that passed away with
him. However, his work will endure and we will always remember this outstanding
mathematician, excellent colleague, and wonderful friend.

Albrecht Böttcher, Israel Gohberg, Bernd Silbermann
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Georg Heinig
November 24, 1947 – May 10, 2005
A Personal Memoir and Appreciation

Karla Rost

Originally published in Linear Algebra and its Applications 413 (2006), 1–12.
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On May 10, 2005, Georg Heinig, an excellent mathematician died unexpect-
edly at the age of 57. He was a world leader in the field of structured matrices.
As associate editor of the journal Linear Algebra and its Applications since his
appointment in 1991 he contributed much to the journal’s success by his valuable
and extensive work. In what follows I want to try to capture some aspects of this
mathematical life and his personality.

Georg was born on November 24, 1947, in the small town of Zschopau in the
Ore Mountains (Erzgebirge) in East Germany. From 1954 to 1964 he attended the
elementary school there. Because of his good performance he was admitted to the
elite school of Karl-Marx-Stadt (now Chemnitz) University of Technology, where
he received his graduation diploma with the grade “very good”. During his time
at this school he already showed extraordinary talent for mathematics and natural
sciences, and his passion and skills for solving mathematical problems grew.

Subsequently he studied mathematics at Karl-Marx-Stadt (now Chemnitz)
University of Technology. He wrote his diploma thesis under the supervision of
Siegfried Prössdorf [SP] on some properties of normally solvable operators in Ba-
nach spaces. Some years ago S. Prössdorf told me that he liked to recall the time
he spent with the gifted and creative student Georg. In the summer of 1970 Georg
received the best possible grade for the defense of his diploma thesis.

He received a scholarship to study for the Ph.D. abroad and he decided to
go to the State University of Moldavia at Kishinev from 1971 to 1974. There he
worked on his PhD thesis on the subject of Wiener-Hopf block operators and
singular integral operators under the supervision of Israel Gohberg [IG] who even
then was internationally well known and respected.

Here is a copy of the authenticated Russian document certifying Georg’s
degree as “candidate of sciences”, which is the equivalent to a PhD:

A well-known, important and often cited work with I. Gohberg from this
time is the paper [111]. With great admiration and deep gratitude Georg always
considered I. Gohberg as his scientific father ([IG], page 63).

By this time Georg was cast irretrievably into the realm of matrix theory,
in particular the theory of structured matrices. His commitment to this field over
three decades has benefited several scientific grandchildren of Israel Gohberg’s of
whom I am one. Georg’s connection to I. Gohberg has never ceased. From 1993
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on, he was a member of the editorial board of the journal Integral Equations and
Operator Theory.

I became acquainted with Georg when he returned to Karl-Marx-Stadt in
late 1974, where he worked at the Department of Mathematics, first in the group
chaired by S. Prössdorf and then (after Prössdorf’s leave to Berlin 1975) in B.
Silbermann’s group [BS]. There he found extremely good conditions. Prössdorf
and Silbermann considered him as an equal partner, and hence he could pursue
his inclinations in research unhampered and even build a small research group.

In all honesty, I have to admit that I was not euphoric at my first encounters
with Georg. He was very young, with no experience as a supervisor, and in addition,
he appeared to me as too self-oriented. It was his ability to awake my interest in
the topics he proposed, which in 1975 led me to decide to write my diploma
thesis under his supervision despite my initial hesitations. In fact he turned out
to be an extraordinary supervisor, and I soon became aware that starting my
scientific career with him was a lucky decision. In later years we managed better
and better to get attuned to each other, and consequently I wrote a large part of
my dissertation on the method of UV-reduction for inverting structured matrices
under his supervision in 1980. Meanwhile 30 years of fruitful and intense joint
work have passed. One joint monograph and almost 40 papers in journals testify
to this.

In 1979 Georg defended his habilitation thesis (of an imposing length of 287
pages) on the spectral theory of operator bundles and the algebraic theory of finite
Toeplitz matrices with excellence.

Georg was very optimistic and in love with life. I very much miss his cheerful
and bright laughter. Certainly his stay in Kishinev intensified his wanderlust and
his curiosity for other countries. Despite the travel restrictions for citizens of the
G.D.R., the former socialist part of Germany, there was scientific cooperation with
Syria and Ethiopia, and Georg was offered a research and working visit at Aleppo
University in Syria in 1982. During a longer stay from 1985–87 at Addis Ababa
University in Ethiopia, he was accompanied by his wife Gerti and by his two
children Peter (born 1974) and Susanne (born 1977). Later on, both these stays
certainly helped him to settle down in Kuwait.

Georg was well established at Karl-Marx-Stadt (now Chemnitz) University
of Technology. He was a respected and highly recognized colleague with outstand-
ing achievements in research and teaching. Thus Georg was appointed as a full
professor for numerical mathematics at Karl Marx University of Leipzig. Since
the late seventies his international recognition has grown enormously, which is,
for example, reflected by the interest of the Birkhäuser publishing house in the
joint monograph [85, 88], which was originally intended to be published by the
Akademie-Verlag only.

The “Wende” in the fall of 1989 was an incisive break and turning point in
the life of many people in East Germany, and thus also for Georg. All scientists
working at universities were formally dismissed and had to apply for a position
anew. An important criterion for a refusal of such an application was the political
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proximity to the old socialist system. Due to this, in 1993 Georg went to Kuwait
University, where he worked as a professor for more than 10 years. He died of a
heart attack on May 10, 2005, in his apartment in Kuwait.

During this long period in Kuwait he continuously maintained scientific and
personal contacts with his friends and former colleagues from Chemnitz, including
Albrecht Böttcher, Bernd Silbermann, Steffen Roch, and myself. In May 1998 we
all had the opportunity to participate in the International Conference on Fourier
Analysis and Applications in Kuwait. Georg had an especially high admiration for
Albrecht Böttcher and was therefore very glad that Albrecht agreed to enter the
scientific committee and the editorial board of the proceedings of this conference
[33]. In the course of that conference we convinced ourselves with great pleasure
of the respect in which Georg was held by his colleagues and students in Kuwait.
Thus he found very good friends and supporters in his Kuwaiti colleagues Fadhel
Al-Musallam and Mansour Al-Zanaidi as well as in his colleague Christian Gross-
mann from Dresden University of Technology, who stayed in Kuwait from 1992 to
1998. One of the highlights of his life occurred in 2002, when the Amir of Kuwait
distinguished him as the Researcher of the Year. Since 2004 he was also a member
of the editorial board of the Kuwait Journal of Science and Engineering.

My mathematical knowledge and my ability to tackle problems have bene-
fited immensely from Georg. He had an extraordinary gift to explain complicated
things in simple terms. This was also appreciated by his students. His lectures and
scientific talks were very sought after and well attended. The aesthetic component
is well to the fore in his work. He mastered with equal facility problems of extreme
generality and abstraction as well as down-to-earth questions.
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Georg is the author and coauthor of more than 100 scientific publications.
He always made high demands on himself and on his coauthors regarding not
only mathematical originality and exactness but also regarding clear and short
exposition.

His main research interests are

– structured matrices: algebraic theory and fast algorithms,
– interpolation problems,
– operator theory and integral equations,
– numerical methods for convolution equations,
– applications in systems and control theory and signal processing.

In each of these topics he achieved essential contributions which is impres-
sively shown by his list of publications. In my opinion, especially the importance of
his results concerning the algebraic theory of structured matrices are striking and
imposing. In particular, in our joint paper [74] we show that inverses of matrices
which are the sum of a Toeplitz and a Hankel matrix possess a Bezoutian structure
as inverses of Hankel or Toeplitz matrices do separately. On the basis of this struc-
ture, for example, matrix representations can be found and fast algorithms can be
designed. Thus a breakthrough for the class of Toeplitz-plus-Hankel matrices was
achieved.

Moreover, Georg’s observation of the kernel structure of (block) Toeplitz
and Toeplitz-plus-Hankel matrices turns out to be a suitable key to develop algo-
rithms without additional assumptions. His ideas how to connect the structure of
a matrix with its additional symmetries lead to more efficient inversion and solu-
tion algorithms as well as a new kind of factorization. But also his contributions
to Toeplitz least square problems, to transformation techniques for Toeplitz and
Toeplitz-plus-Hankel matrices leveraged the research in these fields.

I am proud that he has completed (and still wanted to complete) many mathe-
matical projects with me. For many years we dreamt about writing a neat textbook
on structured matrices for graduate students, ranging from the basics for begin-
ners up to recent developments. One year ago we really started writing the first
chapters of this book. Except for some interruptions, when we were very busy with
teaching, the collaboration was therefore especially intense, partly culminating in
a dozen of emails per day. I received two emails from him on May 10, 2005. I then
did not know that they were his last!

Georg’s work leaves behind a trail that points to directions for future research.
His early death leaves a loss from which we cannot recover, for it is tragic how
many plans and original ideas have passed away with him. Colleagues like me are
left behind in shock and ask themselves how we can at least partially close the gap
that he has left.

In such situations the persistent optimist Georg used to say:

“Lamenting does not help. Things are as they are.
Let us confidently continue to work. This helps!”
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rial Vol. (Proceed. of the 11 TMP Chemnitz, 1999), eds. J. Elschner, I.Gohberg,
B. Silbermann, Operator Theory: Advances and Applications, Vol. 121, Birkhäuser,
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[104] G.Heinig, Über Block-Hankelmatrizen und den Begriff der Resultante für Matrix-
polynome. (German) Wiss. Z. Techn. Hochsch. Karl-Marx-Stadt 19 (1977), no. 4,
513–519.

[105] G.Heinig, The notion of Bezoutian and of resultant for operator pencils. (Russian)
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Foreword

In the present paper we consider classes of matrices the entries of which are in
a given field F . These matrices have a special structure, they are Bezoutians.
Historically, Bezoutians were at first introduced in connection with the elimination
for the solution of systems of nonlinear algebraic equations and in connection
with root localization problems. Only much later their importance for Hankel and
Toeplitz matrix inversion became clear.

We will introduce three kinds of Bezoutians: Toeplitz Bezoutians, Hankel Be-
zoutians, and Toeplitz-plus-Hankel Bezoutians. The classes of Toeplitz and Han-
kel Bezoutians are related to Toeplitz and Hankel matrices in two ways. First,
the inverses of Toeplitz and Hankel matrices are Toeplitz and Hankel Bezoutians,
respectively. Furthermore, in case where F = C, Hermitian Toeplitz and Hankel
Bezoutians are congruent to Toeplitz and Hankel matrices. The class of Toeplitz-
plus-Hankel Bezoutians includes the inverses of Toeplitz-plus-Hankel matrices. In-
stead of a summary of the content we will offer the table of contents at the end of
this foreword.

The present paper is not a usual paper. It originated from the draft of one
chapter of a text-book on structured matrices planned by both authors. This
textbook for graduate students was intended to range from the basics for beginners
up to recent investigations. At the beginning of 2005 the outlines for the first three
chapters were ready and parts of the text were in an acceptable form when Georg
Heinig, the head of this project, unexpectedly died of a heart attack on May 10,
2005. We have lost one of the top experts in the field of structured matrices. His
death reveals a gap we cannot overcome. This is the tragedy of the planned book
and also of the present paper.
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In the last period of our cooperation that had lasted 30 years we mainly
worked on the third chapter of the textbook, which was dedicated to Bezoutians,
so that I think that this part of the book was perhaps the favorite “child” of Georg.

Thus I felt obliged to continue and complete this text to achieve a self-
contained, improved version which can be published separately. I started with a
preliminary section to make the presentation more selfcontained. Then I corrected
and completed the other sections. Since the Toeplitz-plus-Hankel case was not in-
cluded, I added main results concerning this case in Sections 11 and 12. Moreover,
I finished, as planned, with exercises – part of which were already discussed with
Georg – and then I make some short historical notes and provide hints to literature
pursuing and accentuating the topic in different directions.

I hope I was able to do all these things in such a way that Georg would not
be ashamed. In fact it is a hard burden of responsibility for me, in particular, since
Georg was an outstanding mathematician with excellent abilities in teaching and
in writing papers.

A further reason for this paper is that the topic of Bezoutians is very nice,
interesting and important with a lot of connections and applications. In the last
few years, one can even observe a revival of the interest in Bezoutians, mainly
motivated by their importance in many modern fields such as numerical computing
and control theory. Thus it would be very useful to have an introductional paper
into this topic, where a lot of properties and relations are systematically collected
and explained.

I neither intend to quote a huge number of relevant papers nor to mention all
corresponding generalizations and applications. What I try and do is to appreciate
Georg’s contributions, since his legacy concerning this topic is enormously.

In 1971 Georg started his PhD studies at the State University of Moldavia in
Kishinev under the supervision of Israel Gohberg. By this time he was irretrievably
cast into the realm of structured matrices, in particular of Toeplitz and Hankel
matrices as well as Bezoutians. His very early joint papers with I. Gohberg [12], [13]
dealt with the inversion of finite Toeplitz matrices, the papers [14], [15], [16], [17],
[18], [19], [20], [21] were dedicated to Bezoutians and resultant matrices mainly for
operator-valued polynomials or to continual analogs of resultants and Bezoutians.
The main results of these papers were milestones of the research in this field.

In 1975 Georg waked up my interests in the topic of Toeplitz and Hankel
matrices and their inverses. Thus, in 1981, I wrote a large part of my PhD thesis
on the method of UV-reduction for inverting structured matrices under his ex-
cellent supervision. When we started our work on the book “Algebraic Methods
for Toeplitz-like Matrices and Operators” [32], [33] he introduced me, in partic-
ular, into the wonderful world of Bezoutians. In this book, Section 2 of Part I
is dedicated to Bezoutians and resultant matrices. Some of the results presented
there are, of course, also offered here but, as the result of new thoughts about the
matter, from another point of view.

Moreover, in Subsection 2.2, Part II of [33] we present first ideas and results
concerning matrices which are the sum of a Toeplitz and a Hankel matrix (briefly
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T+H matrices). In my opinion, one of our most important joint result is that in
1986 we discovered a Bezoutian structure also for inverses of T+H matrices (see
[34]). This was the starting point of a long interesting and fruitful joint work on
these special cases of structured matrices In fact, until now I feel a motivation
given by Georg to deal with the T+H case (see [48], [64]).

Beginning with the joint paper [37] we wrote a number of papers on matrix
representations for T+H matrices and their inverses which allow fast matrix-vector
multiplication (see, e.g., [39], [38], [40], [42], [43]).

Then we dealt with the problem how to connect the Toeplitz or T+H struc-
ture of matrices with possibly additional symmetries in order to reduce the num-
ber of parameters involved in these formulas or in the corresponding algorithms.
Georg’s paper [22] showed that splitting ideas in the spirit of Delsarte and Genin
were very promising. The splitting approaches of our joint papers [44], [45], [46]
differ from those of [22].

(Note that in [34] the concept of ω-structured matrices was introduced as a
generalization of matrices possessing a Toeplitz, Hankel, or T+H structure. This
class of and further investigated in [35], [36]. But these considerations are not
included in this paper.)

I was only one of a large number of Georg’s coauthors and pupils. In partic-
ular, Uwe Jungnickel wrote his PhD thesis under Georg’s supervision in 1986. In
their joint papers [27], [28] they considered Routh-Hurwitz or Schur-Cohn prob-
lems of counting the roots of a given polynomial in a half-plane or in a circle.
They investigated Hankel matrices generated by the Markov parameters of ratio-
nal functions and their importance for partial realization and Pade approximation
in [30], [29]. They investigated the connection of Bezoutians and resultant matrices
for the solution of matrix equations in [26], [31].

In Section 7 of Part I of [33] some first results concerning the Bezoutian
structure of generalized inverses are presented. Georg continued this investigation
together with his student Frank Hellinger. Their results published in [23], [25],
[24] have found perpetual interest by a large community. Since they go beyond the
scope of the present paper they are not included.

It is not possible to recognize the full extent and importance of Georg’s work
concerning Bezoutians. I beg your pardon for all I will forget to mention or I will
not appreciate to the due extend.

Karla Rost
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1. Preliminaries

1. Notation. Throughout the paper, F will denote an arbitrary field. In some sec-
tions we restrict ourselves to the case that F = C or R, the fields of complex or
real numbers, respectively. By { e1, . . . , en } the standard basis of Fn is denoted.
Furthermore, 0k will stand for a zero vector of length k. If there is no danger of
misunderstanding we will omit the subscript k.

As usual, an element of the vector space Fn will be identified with the corre-
sponding n× 1 (column) matrix. That means

(xi)ni=1 = (x1, . . . , xn) =

⎡⎢⎣ x1
...
xn

⎤⎥⎦ .

In all what follows we denote by �n(t) , t ∈ F , the vector

�n(t) = (1, t, t2, . . . , tn−1) . (1.1)

The Bezoutian concept is convenient introduced in polynomial language. First we
introduce “polynomial language” for vectors. For x = (xi)ni=1 ∈ Fn, we consider
the polynomial

x(t) = �n(t)Tx =
n∑
k=1

xkt
k−1 ∈ Fn(t)

and call it generating polynomial of x. Polynomial language for matrices means
that we introduce the generating polynomial of an m×n matrix A = [ aij ]m n

i=1,j=1 ∈
Fm×n as the bivariate polynomial

A(t, s) = �m(t)TA�n(s) =
m∑
i=1

n∑
j=1

aij t
i−1sj−1.

At several places in this paper we will exploit symmetry properties of matrices.
Besides symmetry, skewsymmetry and Hermitian symmetry in the usual sense we
also deal with persymmetry and centrosymmetry. To be more precise we intro-
duce some notations. Let Jn be the matrix of the flip operator in Fn mapping
(x1, x2, . . . , xn) to (xn, xn−1, . . . , x1) ,

Jn =

⎡⎣ 0 1
. .
.

1 0

⎤⎦ . (1.2)

For a vector x ∈ Fn we denote by xJ the vector Jnx and, in case F = C, by x#

the vector Jnx , where x is the vector with the conjugate complex entries,

xJ = Jnx and x# = Jnx .

In polynomial language the latter looks like

xJ(t) = x(t−1)tn−1, x#(t) = x(t−1)tn−1 .
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A vector is called symmetric if xJ = x, skewsymmetric if xJ = −x, and con-
jugate symmetric if x# = x. Let Fn+(F

n
−) denote the subspace of all symmetric

(skewsymmetric) vectors of Fn, and let P± be the matrices

P± =
1
2
(In ± Jn) . (1.3)

These matrices are projections onto Fn± and

P+ + P− = In, P+ − P− = Jn .

For an n× n matrix A, we denote
AJ = JnAJn and A# = JnAJn ,

where A is the matrix with the conjugate complex entries. An n × n matrix A
is called persymmetric if AJ = AT . The matrix A is called centrosymmetric if
AJ = A. It is called centro-skewsymmetric if AJ = −A and centro-Hermitian if
A# = A.

2. Sylvester’s inertia law. Assume that F = C. Let A be an Hermitian n×nmatrix.
The triple of integers

InA = (p+, p−, p0)
in which p+ is the number of positive, p− the number of negative, and p0 the num-
ber of zero eigenvalues, counting multiplicities, is called the inertia of A. Clearly
p+ + p− + p0 = n. The integer

sgnA = p+ − p−
is called the signature of A. Note that p− + p+ is the rank of A, so that rank and
signature of an Hermitian matrix determine its inertia.

Two Hermitian n × n matrices A and B are called congruent if there is a
nonsingular matrix C such that B = C∗AC, where C∗ denotes the conjugate
transpose of C. The following is Sylvester’s inertia law, which will frequently be
applied in this paper.

Theorem 1.1. Congruent matrices have the same inertia.

We will often apply the following version of Sylvester’s inertia law.

Corollary 1.2. Let A be an Hermitian m×m matrix and C an m×n matrix with
m ≤ n and rankC = m. Then the signatures of A and C∗AC coincide.

To see that Corollary 1.2 follows from Theorem 1.1 we extend C to a nonsin-
gular n×n matrix C̃ by adding rows at the bottom. Then C∗AC = C̃∗ÃC̃, where
Ã is the extension of A by n − m zero columns and zero rows on the right and
at the bottom, respectively. This means that C∗AC is congruent to Ã, and thus
sgnC∗AC = sgn Ã = sgnA.

3. Toeplitz, Hankel, and Toeplitz-plus-Hankel matrices. Let Tmn be the subspace
of Fm×n consisting of all m× n Toeplitz matrices

Tmn(a) = [ ai−j ]m n
i=1,j=1, a = (ai)m−1i=1−n ∈ Fm+n−1.
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The subspace of all m× n Hankel matrices
Hmn(s) = [ si+j−1 ]m n

i=1,j=1, s = (si)m+n−1
i=1 ∈ Fm+n−1

is denoted byHmn . The dimension of these subspaces ism+n−1 . The intersection
Tmn ∩Hmn consists of all chess-board matrices,

B =

⎡⎢⎢⎢⎣
c b c · · ·
b c b · · ·
c b c · · ·
...
...
...

⎤⎥⎥⎥⎦ (c, b ∈ F) (1.4)

which form a two-dimensional subspace of Fm×n.The subspace of allm×nmatrices
Rmn which are the sum of a Toeplitz and a Hankel matrix (briefly T+H matrices)

Rmn = Tmn(a) +Hmn(s)

is 2(m + n − 2) dimensional. Since for an m × n Hankel matrix Hmn the matrix
HmnJn is Toeplitz any T+H matrix can be represented in the form

Rmn = Tmn(a) + Tmn(b)Jn (a,b ∈ Fm+n−1). (1.5)

From this another representation is derived involving the projections P± intro-
duced in (1.3),

Rmn = Tmn(c)P+ + Tmn(d)P− (1.6)
with c = a+b,d = a−b . Obviously, all these representations are not unique (see
Exercises 15 and 16).

4. Quasi-Toeplitz matrices, quasi-Hankel matrices, and quasi-T+H matrices. We
consider the transformation ∇+ in the space of n× n matrices defined by

∇+(A) = A− SnASTn , (1.7)

where Sn is the forward shift in Fn mapping (x1, x2, . . . , xn) to (0, x1, . . . , xn−1) ,

Sn =

⎡⎢⎢⎢⎣
0 0 0
1 0 0

. . . . . .
0 1 0

⎤⎥⎥⎥⎦ . (1.8)

It can easily be checked that this transformation is one-to-one. The transformation
∇+ is called shift displacement operator. For a Toeplitz matrix Tn = [ ai−j ]ni,j=1

we have, obviously,

∇+(Tn) =

⎡⎢⎢⎢⎣
a′0 1
a1 0
...

...
an−1 0

⎤⎥⎥⎥⎦
[
a′0 a−1 . . . a1−n
1 0 . . . 0

]
,

where a′0 =
1
2 a0. In particular, the rank of∇+(Tn) equals 2, unless Tn is triangular.

In the latter case the rank of ∇+(Tn) equals 1, unless Tn = O.
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Notice that if Tn is Hermitian, then ∇+(Tn) is also Hermitian, and the signa-
ture of ∇+(Tn) equals zero, unless Tn is diagonal. (Obviously, Tn diagonal means
Tn = a0In and sgn(∇+(Tn)) equals the signum of a0.)

Moreover, a matrix A is Toeplitz if and only if the (n−1)×(n−1) submatrix
in the lower right corner of ∇+(A) is the zero matrix. An n×n matrix A is called
quasi-Toeplitz if rank∇+(A) ≤ 2 .

Clearly, Toeplitz matrices are also quasi-Toeplitz, but not vice versa. The
following proposition gives a complete description of quasi-Toeplitz matrices. Since
the proof is an elementary calculation, we leave it to the reader.

Proposition 1.3. Suppose that ∇+(A) = g+gT− − h+hT−, g± = (g±i )
n
i=1, h± =

(h±i )
n
i=1. Then A can be represented as the sum of 2 products of triangular Toeplitz

matrices,

A=

⎡⎢⎣ g+1 0
...

. . .
g+n . . . g+1

⎤⎥⎦
⎡⎢⎣ g−1 . . . g−n

. . .
...

0 g−1

⎤⎥⎦−
⎡⎢⎣ h+1 0

...
. . .

h+n . . . h+1

⎤⎥⎦
⎡⎢⎣ h−1 . . . h−n

. . .
...

0 h−1

⎤⎥⎦ .
(1.9)

Conversely, if A is given by (1.9), then ∇+(A) = g+gT− − h+hT−.

Analogously, we consider the transformation ∇+ : Fn −→ Fn defined by

∇+(A) = SnA−ASTn . (1.10)

A matrix A is Hankel if and only if the (n − 1)× (n− 1) submatrix in the lower
right corner of ∇+(A) is the zero matrix. We call a matrix A quasi-Hankel if
rank∇+(A) ≤ 2 . A similar representation to (1.9) can be obtained.

Let Wn be the matrix Wn = Sn + STn , and let ∇ : Fn −→ Fn be defined by

∇ (A) = AWn −WnA . (1.11)

Proposition 1.4. A matrix A is a T+H matrix if and only if the (n− 2)× (n− 2)
submatrix in the center of ∇ (A) is the zero matrix.

We call a matrix A quasi-T+H if rank∇ (A) ≤ 4 . T+H matrices are also
quasi-T+H, but not vice versa.

5. Möbius transformations. The flip operator Jn introduced in (1.2) is a special case

of a class of operators which will be described in this subsection. Let φ =
[
a c
b d

]
be a nonsingular 2× 2 matrix with entries from F. We associate φ with the linear
fractional function

φ(t) =
at+ b

ct+ d
.

Despite we use the name “function”, φ(t) is understood here in a formal sense,
i.e., t is considered as an abstract variable. In the case where F = C, φ(t) can be
seen as a function mapping the Riemann sphere onto itself. These linear fractional
functions form a groupM with respect to composition. This group is isomorphic,
modulo multiples of I2, to the group GL(F2) of nonsingular 2 × 2 matrices. The
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latter means that if φ = φ1φ2, then φ(t) = φ2(φ1(t)), and φ(t) = t if and only if
φ = αI2 for some α ∈ F.

We will make use of the fact that the group GL(F2) is generated by matrices
of the form

(a)
[
a 0
0 1

]
(a �= 0), (b)

[
1 0
b 1

]
, (c)

[
0 1
1 0

]
. (1.12)

For φ ∈ GL(F2) and a natural number n, let Kn(φ) denote the operator defined
by

Kn(φ)x(t) = x(φ(t))(ct + d)n−1

for x(t) ∈ Fn(t). An operator of this form will be called Möbius transformation.
It is easily checked that Kn(φ) maps Fn(t) into itself and is linear. In the special
cases (1.12) we have

(a) Kn(φ)x(t) = x(at), (b) Kn(φ)x(t) = x(t+ b), (c) Kn(φ)x(t) = x(t−1)tn−1.
(1.13)

The matrix representations of these transformations (called Möbius matrices) with
respect to the standard basis in Fn(t) are

(a) Kn(φ) = diag(aj)n−1j=0 , (b) Kn(φ) =
[ (

k

j

)
bk−j

]n−1
j,k=0

, (c) Kn(φ) = Jn.

(1.14)
Furthermore, the following is true.

Proposition 1.5. If φ1, φ2 ∈ GL(F2) and φ = φ1φ2, then Kn(φ) = Kn(φ1)Kn(φ2).

It is sufficient to prove the proposition for the special matrices (1.12). We
leave this to the reader.

According to Proposition 1.5 the Möbius transformations are all invertible
and form a subgroup of the group of invertible linear operators on Fn. Furthermore,
Kn(φ)−1 = Kn(φ−1). Möbius matrices are mostly used in connection with matrix
transformations of the form

A �→ Kn(ψ)TAKn(φ) (1.15)

for fixed φ, ψ ∈ GL(F2). In the literature special cases of such transformations are
called Frobenius-Fischer transformations. We will use this name for all transfor-
mations of this form. Some Frobenius-Fischer transformations are mappings inside
a class of structured matrices, other build a bridge between different classes. We
discuss here the situation with Hankel and Toeplitz matrices.

Let Hn denote the class of n × n Hankel matrices Hn(s) = [ si+j−1 ]ni,j=1,
where s = (si)2n−1i=1 ∈ F2n−1 . The following proposition describes Frobenius-
Fischer transformations that map Hn into itself.
Proposition 1.6. For φ ∈ GL(F2) and s ∈ F2n−1 , the equality

Kn(φ)THn(s)Kn(φ) = Hn(s̃)

with s̃ = K2n−1(φ)T s is satisfied.
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Proof. It suffices to prove the proposition for the special cases (1.12). The cases (a)
and (c) are obvious. Let φ be now of the form (b),Kn(φ)THn(s)Kn(φ) = [ gij ]n−1i,j=0.
Then

gij =
i∑
k=0

j∑
l=0

(
i

k

)(
j

l

)
bi+j−k−lsk+l+1 =

i+j∑
r=0

(
i+ j

r

)
bi+j−rsr+1 .

This implies the assertion. �
Now we consider besides Hankel also Toeplitz matrices Tn = [ ai−j ]ni,j=1. The

class of n × n Toeplitz matrices will be denoted by Tn. Obviously, Tn is Toeplitz
if and only if JnTn is Hankel. Remember that Jn is the special Möbius matrix
Kn(J2). Thus modifications of Propositions 1.6 can be stated about Frobenius-
Fischer transformations transforming Toeplitz into Hankel, Hankel into Toeplitz
and Toeplitz into Toeplitz matrices. In particular, we have the following.

Corollary 1.7. For φ ∈ GL(F2), the transformation A �→ Kn(ψ)TAKn(φ) maps
1.Hn into Hn if ψ = φ, 2. Tn into Hn if ψ = J2φ,
3.Hn into Tn if ψ = φJ2, 4. Tn into Tn if ψ = J2φJ2.

In the case F = C we are in particular interested in congruence transfor-
mations, i.e., transformations that preserve Hermitian symmetry. For this we
have to check under which condition Kn(ψ)T = K∗n(φ). In terms of the matrix

φ =
[
a c
b d

]
this condition is equivalent to

1. a, b, c, d real, 2. a = b , c = d , 3. a = c , b = d , 4. a = d , b = c

in the cases of Corollary 1.7. In terms of the linear fractional function φ(t) =
at+ b

ct+ d
this means that

1. φ(t) maps R to R , 2. φ(t) maps T to R , 3. φ(t) maps R to T , 4. φ(t) maps
T to T ,

where T denotes the unit circle. For transformations with this property the inertia
of the matrix remains invariant by Sylvester’s inertia law.

2. Definitions and properties for the Hankel and Toeplitz case

1. Hankel Bezoutians. Let u(t),v(t) ∈ Fn+1(t) be two polynomials. The Hankel
Bezoutian or briefly H-Bezoutian of u(t) and v(t) is, by definition, the n×n matrix
B = BezH(u,v) with the generating polynomial

B(t, s) =
u(t)v(s) − v(t)u(s)

t− s .

We will also say that B is the H-Bezoutian of the vectors u and v. It is easily seen
that B(t, s) is really a polynomial in t and s. A simple argumentation for this is
as follows. We fix s = s0. Then the numerator is a polynomial in t vanishing at
t = s0. Hence we obtain a polynomial after dividing the numerator by t−s0. Thus
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B(t, s0) is a polynomial in t. Analogously B(t0, s) is a polynomial in s for fixed
t = t0, and so the claim is proved.

For example, if u(t) = t− a and v(t) = t− b, then we have

B(t, s) =
(t− a)(s− b)− (t− b)(s− a)

t− s = a− b .

Thus BezH(u,v) = a− b.
As a second example we consider the flip matrix Jn introduced in (1.2). The

generating function of Jn is

Jn(t) =
tn − sn
t− s .

Thus Jn is the H-Bezoutian of the polynomials tn and 1 or, in other words, of the
last and first unit vectors en+1 and e1.

As a more general example, let us compute the H-Bezoutian Bk of a general
polynomial u(t) ∈ Fn+1(t) and ek(t) = tk−1, k = 1, . . . , n + 1. Suppose that

u(t) =
n+1∑
i=1

uit
i−1. Then we have

Bk(t, s) =
n+1∑
i=1

ui
ti−1sk−1 − tk−1si−1

t− s

=
n+1∑
i=k+1

ui
ti−k − si−k

t− s tk−1sk−1 −
k−1∑
i=1

ui
tk−i − sk−i

t− s ti−1si−1 .

In matrix language this means that

BezH(u, ek) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1
. .
. ...

−u1 . . . −uk−1
O

O

uk+1 . . . un+1

... . .
.

un+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1)

The case k = 1 is of particular importance. For this reason we introduce the
notation

B(u) = BezH(u, e1) =

⎡⎢⎣ u2 . . . un+1

... . .
.

un+1

⎤⎥⎦ . (2.2)

H-Bezoutians are obviously symmetric matrices. They are skewsymmetric with
respect to the arguments, i.e.,

BezH(u,v) = −BezH(v,u) .
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Furthermore, BezH(u,v) is linear in each argument. That means that, for c1,
c2 ∈ F,

BezH(c1u1 + c2u2,v) = c1BezH(u1,v) + c2BezH(u2,v) .
To present a product rule for H-Bezoutians we need the matrix of the multiplication

operator which is introduced as follows. Let a(t) =
m∑
k=0

akt
k ∈ Fm+1(t). For n =

1, 2, . . . , define a linear operator Mn(a) : Fn −→ Fm+n by

(Mn(a)x)(t) = a(t)x(t) .

The matrix of this operator with respect to the standard bases is the (m+ n)× n
matrix

Mn(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1 a0
... a1

. . .

am
...

. . . a0
am a1

. . .
...
am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m+ n . (2.3)

Moreover, we need the following matrix. Let a(t) =
m∑
k=0

akt
k and b(t) =

n∑
k=0

bkt
k

be two given polynomials. Then

(x(t),y(t)) �→ a(t)x(t) + b(t)y(t), x(t) ∈ Fn(t), y(t) ∈ Fm(t)

is a linear operator from the direct product Fn(t)⊗Fm(t) to Fm+n(t). The matrix
of this operator with respect to the standard bases is given by [Mn(a) Mm(b) ] .
(Here we identify (x(t),y(t)) with x(t) + tny(t) .) The transpose of this matrix is
called the resultant matrix (or Sylvester matrix) of a(t) and b(t) (or of the vectors
a and b) and is denoted by Res(a,b),

Res(a,b) =
[
Mn(a)T

Mm(b)T

]
. (2.4)

If we assume that am �= 0 or bn �= 0 then Res(a,b) is nonsingular if and only if
a(t) and b(t) are coprime (cf. Exercise 3).

Proposition 2.1. Let u,v ∈ Fn+1, u(t) = u1(t)u2(t), v(t) = v1(t)v2(t), where
ui,vi ∈ Fni+1 (i = 1, 2) and n1 + n2 = n− 1. Then

BezH(u,v) = Res (u2,v1)T
[
BezH(u1,v1) O

O BezH(u2,v2)

]
Res (v2,u1) .

(2.5)

Proof. Let B = BezH(u,v). Then, B(t, s) has the representation

u2(t)
u1(t)v1(s)− v1(t)u1(s)

t− s v2(s) + v1(t)
u2(t)v2(s)− v2(t)u2(s)

t− s u1(s) .
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In matrix language this means

B =Mn1(u2)BezH(u1,v1)Mn1(v2)T +Mn2(v1)BezH(u2,v2)Mn2(u1)T .

From this relation the assertion is immediate. �

2. The transformation ∇H . Next we clarify what means for a matrix to be an
H-Bezoutian in matrix language. For this we introduce the transformation ∇H
transforming an n × n matrix A = [ aij ]ni,j=1 into a (n + 1) × (n + 1) matrix
according to

∇HA = [ ai−1,j − ai,j−1 ]n+1
i,j=1 .

Here we set aij = 0 if one of the integers i or j is not in the set {1, 2, . . . , n}. We
have

∇HA =
[
SnA−ASTn ∗

∗ ∗

]
=
[
∗ ∗
∗ ASn − STnA

]
, (2.6)

where Sn is defined in (1.8). Comparing the coefficients it is easy to verify that

(∇HA)(t, s) = (t− s)A(t, s) .
Hence the Bezoutians B = BezH(u,v) can be characterized with the help of ∇H
by

∇HB = [u v ]
[
0 1
−1 0

]
[u v ]T . (2.7)

In particular, the rank of∇BH is equal to 2, unless u and v are linearly dependent.
In the latter case the H-Bezoutian is the zero matrix. The representation (2.6)
shows that the transformation ∇+ introduced in (1.10) is a restriction of ∇H .
Thus, H-Bezoutians are quasi-Hankel matrices.

3. Uniqueness. Different pairs of polynomials may produce the same H-Bezoutian.
However, from (2.7) one can conclude that if BezH(u,v) = BezH(u1,v1) �= O,
then span{u,v} = span{u1,v1}. In the latter case there is a nonsingular 2 × 2
matrix ϕ such that

[u1 v1 ] = [u v ]ϕ . (2.8)

Lemma 2.2. Let u,v,u1,v1 ∈ Fn+1 related via (2.8). Then

BezH (u1,v1) = (detϕ) BezH (u,v) .

Proof. Suppose that ϕ =
[
a c
b d

]
, B1 = BezH (u1,v1). Then

(t− s)B1(t, s) = (au(t) + bv(t))(cu(s) + dv(s)) − (cu(t) + dv(t))(au(s) + bv(s))
= (ad− bc)(u(t)v(s) − v(t)u(s)) ,

which proves the lemma. �

Corollary 2.3. The H-Bezoutians BezH(u,v) �= O and BezH(u1,v1) coincide if
and only if the vectors u,v and u1, v1 are related via (2.8) with detϕ = 1.
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From Corollary 2.3 we can conclude that the H-Bezoutian BezH(u,v) is equal
to a H-Bezoutian BezH(ũ, ṽ) in which the last coefficient of ṽ vanishes, i.e., ṽ(t) ∈
Fn(t).

4. Quasi-H-Bezoutians. A matrix B is called quasi-H-Bezoutian if rank∇HB ≤ 2.
We give a general representation of quasi-H-Bezoutians that is also important for
H-Bezoutians.

Proposition 2.4. A quasi-H-Bezoutian B �= O of order n admits a representation

B =Mr(p) BezH(u,v)Mr(q)T , (2.9)

where u(t),v(t) ∈ Fr+1(t) are coprime and r ≤ n . Here Mr( · ) is defined in (2.3).

Proof. For B is a quasi-H-Bezoutian, there exist a,b, c,d ∈ Fn+1 such that

(t− s)B(t, s) = a(t)d(s) − b(t)c(s) .

Since for t = s the left-hand side vanishes, we have a(t)d(t) = b(t)c(t). Let p(t)
be the greatest common divisor of a(t) and b(t) and q(t) the greatest common
divisor of c(t) and d(t). Then a(t) = p(t)u(t) and b(t) = p(t)v(t) for some coprime
u(t),v(t) ∈ Fr+1(t) (r ≤ n). Furthermore, c(t) = q(t)u1(t) and d(t) = q(t)v1(t)
for some coprime u1(t), v1(t) ∈ Fr1+1(t) (r1 ≤ n). Since

a(t)
b(t)

=
u(t)
v(t)

=
c(t)
d(t)

=
u1(t)
v1(t)

,

we conclude that, for some γ �= 0, u1 = γu, v1 = γv, and r = r1. Now we have

a(t)d(s) − b(t)c(s) = γ p(t)(u(t)v(s) − v(t)u(s))q(s) .

We can replace γ p by p. Now it remains to translate this into matrix language to
obtain (2.9). �

The matrix on the right-hand side of (2.9) has rank r at most. Hence if r < n,
then B is singular. This leads to the following somehow surprising conclusion.

Corollary 2.5. Any nonsingular quasi-H-Bezoutian is an H-Bezoutian of two co-
prime polynomials.

Later we will show that, vice versa, the H-Bezoutian of two coprime polyno-
mials is nonsingular (cf. Corollary 3.4).

If the quasi-H-Bezoutian is symmetric, then in (2.9) we must have q = p,
since the middle factor is symmetric. This implies the following.

Corollary 2.6. Any symmetric quasi-H-Bezoutian is an H-Bezoutian

B = BezH(a,b) .

In particular, (2.9) can be written in the form

B =Mr(p) BezH(u,v)Mr(p)T , (2.10)

where p(t) is the greatest common divisor of a(t) and b(t) .
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5. Frobenius-Fischer transformations.We show now that Frobenius-Fischer trans-
formations introduced in Section 1 transform the class of H-Bezoutians into itself.
In particular, the following result is the Bezoutian counterpart of Proposition 1.6.

Theorem 2.7. For any ϕ ∈ GL(F2), the transformation

B �→ Kn(ϕ)BKn(ϕ)T

maps H-Bezoutians into H-Bezoutians. Moreover

Kn(ϕ)BezH(u,v)Kn(ϕ)T =
1

detϕ
BezH(ũ, ṽ) , (2.11)

where ũ = Kn+1(ϕ)u and ṽ = Kn+1(ϕ)v.

Proof. Let B = BezH(u,v) and B̃ = BezH(ũ, ṽ). It is sufficient to prove the

theorem for the matrices (1.12) that generate GL(F2). If ϕ =
[
a 0
0 1

]
, then

B̃(t, s) = a
u(at)v(as) − v(at)u(as)

at− as = aB(at, as) = a (Kn(ϕ)BKn(ϕ)T )(t, s) ,

which is equivalent to (2.11). If ϕ =
[
1 0
b 1

]
, then

B̃(t, s) =
u(t+ b)v(s + b)− v(t+ b)u(s+ b)

t− s
= B(t+ b, s+ b)

= (Kn(ϕ)BKn(ϕ)T )(t, s) ,

which is equivalent to (2.11). Finally, let ϕ = J2. Then

B̃(t, s) =
u(t−1)tnv(s−1)sn − v(t−1)tnu(s−1)sn

t− s = −B(t−1, s−1)(ts)n−1

= −BJ(t, s) ,
which is again equivalent to (2.11). �

6. Splitting of H-Bezoutians. In some applications, like stability tests for real poly-
nomials, u(t) and v(t) have the special form

u(t) = a(t2) and v(t) = tb(t2). (2.12)

That means u(t) has only even powers and v(t) only odd powers. In this case we
have for the generating polynomial ofB = BezH (u,v) after multiplying numerator
and denominator by (t+ s)

B(t, s) =
ts(a(t2)b(s2)− b(t2)a(s2)) + a(t2)s2b(s2)− t2b(t2)a(s2)

t2 − s2
= tsB1(t2, s2) +B0(t2, s2) ,

where B1 = BezH (a,b) and B0 = BezH (a, tb). To translate this into matrix
language we introduce the matrix Σn of the even-odd shuffle operator:

Σn(xi)ni=1 = (x1, x3, . . . , x2, x4, . . . ) .
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Proposition 2.8. Let u(t) ∈ Fn(t) and v(t) ∈ Fn(t) be given by (2.12). Then

ΣTnBezH (u,v)Σn =
[
BezH (a, tb) O

O BezH (a,b)

]
.

7. Toeplitz Bezoutians. We introduce the Toeplitz analogue of the H-Bezoutian.
The Toeplitz Bezoutian or briefly T-Bezoutian of the two polynomials u(t) ∈
Fn+1(t) and v(t) ∈ Fn+1(t) is, by definition, the matrix B = BezT (u,v) with
the generating polynomial

B(t, s) =
u(t)vJ (s)− v(t)uJ (s)

1− ts .

Like for H-Bezoutians, it is easily checked that B(t, s) is really a polynomial in t
and s. If, for example, the polynomials u(t) = t − a and v(t) = t − b of Fn+1(t)
are given, then for n = 1

B(t, s) =
(t− a)(1 − bs)− (t− b)(1− as)

1− ts = b− a .

Hence BezT (u,v) = b− a . But in case n > 1 we have

BezT (u,v) =
[
O b− a
O O

]
.

We state that the definition of a T-Bezoutian of two polynomials depends, in
contrast to the H-Bezoutian, essentially on the integer n. That means if we consider
u(t) and v(t) as elements of FN+1(t) for N > n, then we will have a different T-
Bezoutian. Indeed, let BN denote the T-Bezoutian in this sense. Then we obtain

BN (t, s) =
u(t)v(s−1)sN − v(t)u(s−1)sN

1− ts = B(t, s)sN−n ,

where B is the T-Bezoutian of u and v in the original sense. Thus, BN is of the
form

BN =
[
O B
O O

]
.

If t = 0 is a common zero of u(t) and v(t), u(t) = tru0(t), v(t) = trv0(t) (r > 0) ,
then B is of the form

B =
[
O O
B0 O

]
where B0 is the (n− r) × (n− r) T-Bezoutian of u0 and v0.

As an example, we compute the T-Bezoutian of a polynomial and a power of
t. Let B(k) = BezT (u, ek) and u = (ui)n+1

i=1 . Then

B(k)(t, s) =
n+1∑
i=1

ui
ti−1sn−k+1 − tk−1sn−i+1

1− ts

=
k−1∑
i=1

ui t
i−1sn−k+1 1− (ts)k−i

1− ts +
n+1∑
i=k+1

ui t
k−1sn−i+1 (ts)

i−k − 1
1− ts .
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We take into account that
1− (ts)k
1− ts is the generating polynomial of Ik and obtain

in matrix form

BezT (u, ek) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

O
...

. . .
uk−1 . . . u1

−un+1 . . . −uk+1

. . .
... O

−un+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.13)

For the special cases k = 1 and k = n+ 1 we introduce the notations

B+(u) = −

⎡⎢⎣ un+1 . . . u2
. . .

...
un+1

⎤⎥⎦ , B−(u) =

⎡⎢⎣ u1
...

. . .
un . . . u1

⎤⎥⎦ . (2.14)

Obviously, the T-Bezoutian is, like the H-Bezoutian, linear in its arguments. Fur-
thermore, it is skewsymmetric with respect to the arguments, i.e.,

BezT (u,v) = −BezT (v,u) .
Moreover, we have

BezT (u,v)T = −BezT (uJ ,vJ ) (2.15)

and

BezT (u,v)J (t, s) =
u(t−1)v(s)s−n − v(t−1)u(s)s−n

1− t−1s−1 tn−1sn−1

=
u(t−1)tnv(s) − v(t−1)tnu(s)

ts− 1 ,

which means that
BezT (u,v)J = −BezT (uJ ,vJ ) . (2.16)

From (2.15) and (2.16) we conclude that

BezT (u,v)T = BezT (u,v)J .

Hence T-Bezoutians are, like Toeplitz matrices, persymmetric.
The discussion about uniqueness of H-Bezoutians in Section 2.1 can be imme-

diately transferred to T-Bezoutians. In fact, there is a Toeplitz analogue of Lemma
2.2.

Lemma 2.9. If [u1 v1 ] = [u v ]ϕ for some 2× 2 matrix ϕ, then

BezT (u1,v1) = (detϕ) BezT (u,v) .

Hence the following is true.
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Corollary 2.10. The T-Bezoutians BezT (u,v) �= O and BezT (u1,v1) coincide if
and only if

[u1 v1 ] = [u v ]ϕ
for some matrix ϕ with detϕ = 1 .

8. The transformation ∇T . The Toeplitz analogue of the transformation∇H is the
transformation ∇T transforming an n× n matrix A = [ aij ]ni,j=1 into a (n+ 1)×
(n+ 1) matrix according to

∇TA = [ aij − ai−1,j−1 ]n+1
i,j=1 .

Here we set aij = 0 if one of the integers i or j is not in the set {1, 2, . . . , n}.
Obviously,

∇TA =
[
A− SnASTn ∗

∗ ∗

]
=
[
∗ ∗
∗ STnASn −A

]
. (2.17)

In polynomial language the transformation ∇T is given by
(∇TA)(t, s) = (1− ts)A(t, s) .

That means the T-Bezoutian B = BezT (u,v) is characterized by

∇TB = [u v ]
[
0 1
−1 0

]
[uJ vJ ]T .

Taking into account (2.16) we observe that (∇TB)J = −∇TBJ .
The representation (2.17) shows that the transformation ∇+ introduced in

(1.7) is a restriction of ∇T . In particular, we conclude that T-Bezoutians are
quasi-Toeplitz matrices. Furthermore, if B is a T-Bezoutian, then BJ is also a
quasi-Toeplitz matrix.

9. Symmetric and skewsymmetric T-Bezoutians. We discuss now how symmet-
ric and skewsymmetric T-Bezoutians can be characterized. First we observe that
(2.16) implies that BezT (u,v) is symmetric if one of the vectors u or v is symmetric
and the other one is skewsymmetric. Furthermore, BezT (u,v) is skewsymmetric
if both vectors u and v are symmetric or both are skewsymmetric. We show that
the converse is also true. For simplicity of notation we write B(u,v) instead of
BezT (u,v).

Let u,v ∈ Fn+1 be any vectors, u = u++u− and v = v++v−, where u+,v+

are symmetric and u−,v− are skewsymmetric. Then B(u,v) = B+ +B−, where

B+ = B(u+,v−) +B(u−,v+) , B− = B(u+,v+) +B(u−,v−) ,

B+ is symmetric, and B− is skewsymmetric. Suppose that B = B(u,v) is sym-
metric. Then B− = O. Hence

B(u+,v+) = B(v−,u−) .

Since the vectors u+ and v+ cannot be linear combinations of u− and v− from
Corollary 2.10 it becomes clear that

B(u+,v+) = B(v−,u−) = O .
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Thus v± = α±u± for some α± ∈ F or B(u,v) = O. We conclude that

B = B+ = B((α− − α+)u+,u−) .

That means that B is the T-Bezoutian of a symmetric and a skewsymmetric vector.
Suppose now that B = B(u,v) �= O is skewsymmetric. Then B+ = O. Hence

B(u+,v−) = B(v+,u−) .

From Corollary 2.10 and the symmetry properties of the vectors we conclude that
either {u+,v+} as well as {u−,v−} are linearly dependent or

B(u+,v−) = B(v+,u−) = O .

In the former case we would have B− = O, so we have the latter case. Using
again the symmetry properties of the vectors we find that either u− = v− = 0
or u+ = v+ = 0. That means that B is the Bezoutian of two symmetric or two
skewsymmetric vectors. Let us summarize.

Proposition 2.11. A T-Bezoutian is symmetric if and only if it is the T-Bezoutian
of a symmetric and a skewsymmetric vector. A T-Bezoutian is skewsymmetric if
and only if it is the T-Bezoutian of two symmetric vectors or two skewsymmetric
vectors.

Note that the T-Bezoutian B(u,v) of two skewsymmetric vectors cannot
be nonsingular. In fact, in this case we have u(1) = v(1) = 0 such that u(t) =
(t − 1)u1(t) and v(t) = (t − 1)v1(t). Then u1 and v1 are symmetric, and as in
Proposition 2.4 we obtain

B(u,v) =Mn−1(t− 1)BezT (u1,v1)Mn−1(t− 1)T .
Thus B(u,v) has rank n− 1 at most.

There is an alternative representation for symmetric T-Bezoutians, which
has no skewsymmetric counterpart. Suppose that B = B(u+,u−). We set v =
− 1

2 u+ + u−. Then
B(v,vJ ) = B .

On the other hand, B(v,vJ ) is symmetric for any vector v ∈ Fn+1. Thus the
following is true.

Corollary 2.12. A T-Bezoutian B is symmetric if and only if it can be represented
in the form B = BezT (v,vJ ) for some v ∈ Fn+1.

10. Hermitian T-Bezoutians. Now we characterize Hermitian T-Bezoutians. Sup-
pose that u+,u− ∈ Cn+1 are conjugate-symmetric. Then we conclude from (2.15)
that the matrix iB(u+,u−) is Hermitian. Conversely, let B = B(u,v) be Hermit-
ian, u = u+ + iu− and v = v+ + iv−, where u±,v± are conjugate-symmetric.
Then B(u,v) = B+ + iB−, where

B+ = i(B(u+,v−) +B(u−,v+)) , B− = i(B(u−,v−)−B(u+,v+)) .
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The matrices B+ and iB− are Hermitian. Since B = B(u,v) is assumed to be
Hermitian, we have B− = O, which means

B(u+,v+) = B(u−,v−) .

Using Corollary 2.10 we conclude that

[u− v− ] = [u+ v+ ]
[
a c
b d

]
for some a, b, c, d with ad − bc = 1. Since all vectors under consideration are
conjugate-symmetric, these numbers must be real. We obtain after elementary
calculations

B(u,v) = iB(u+,−(a+ d)v+) = B(u+,−(a+ d)iv+) .

Thus,B is the Bezoutian of a conjugate-symmetric and a conjugate-skewsymmetric
vector. Let us summarize.

Proposition 2.13. A T-Bezoutian B is Hermitian if and only if it is of the form

B = iBezT (u+,u−)

for conjugate-symmetric vectors u+ and u−.

As for symmetric T-Bezoutians, we have an alternative form. Suppose that
B = iB(u+,u−) and set v = − 1

2 u+ + iu−. Then B(v,v#) = B . Since, on the
other hand, the matrix B(v,v#) is Hermitian for any vector v ∈ Fn+1, which is
easily checked, the following is true.

Corollary 2.14. A T-Bezoutian B is Hermitian if and only if it can be represented
in the form B = BezT (v,v#) for some v ∈ Cn+1.

11. Splitting of symmetric T-Bezoutians. It was mentioned in Section 2.7 that
T-Bezoutians are persymmetric. Hence a symmetric T-Bezoutian B is also cen-
trosymmetric. That means that the subspaces of symmetric or skewsymmetric
vectors Fn± are invariant under B. We show that the restrictions of a symmetric
T-Bezoutian to Fn± can be characterized by another kind of Bezoutians which is
introduced next.

Let p,q ∈ Fn+2 be either both symmetric or both skewsymmetric. Then

Bsplit(t, s) =
p(t)q(s)− q(t)p(s)
(t− s)(ts− 1)

is a polynomial in t and s. The n × n matrix with the generating polynomial
Bsplit(t, s) will be called split Bezoutian of p(t) and q(t) and denoted by

Bezsplit(p,q) .

Obviously, Bezsplit(p,q) is a symmetric and centrosymmetric matrix. If p and q
are symmetric, then we will speak about a split Bezoutian of (+)-type and if these
vectors are skewsymmetric about a split Bezoutian of (−)-type. Instead of Bsplit

we write B+ or B−, respectively.
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The columns and rows of a split Bezoutian of (+)-type are all symmmetric
and of a split Bezoutian of (−)-type are all skewsymmetric, so that its rank is at
most 1

2 (n+1) in the (+) case and
1
2n in the (−) case. As an example we consider

the case p(t) = t2k + 1 ∈ F2k+1(t) and q(t) = tk ∈ F2k+1(t). In this case

B+(t, s) =
(t2k + 1)sk − tk(s2k + 1)

(t− s)(ts− 1) =
tk − sk
t− s

(ts)k − 1
ts− 1

= (tk−1 + tk−2s+ · · ·+ sk−1)(1 + ts+ · · ·+ tk−1sk−1) .

For k = 3, the matrix with this generating polynomial is

B+ =

⎡⎢⎢⎢⎢⎣
1

1 1
1 1 1

1 1
1

⎤⎥⎥⎥⎥⎦ .

For a general symmetric p = (pi)7i=1 ∈ F7 and q as before, q = e4, the split
Bezoutian of p and q is given by

B+ =

⎡⎢⎢⎢⎢⎣
p1

p1 p2 p1
p1 p2 p1 + p3 p2 p1

p1 p2 p1
p1

⎤⎥⎥⎥⎥⎦ .

Moreover, from this special case it is clear how the split Bezoutian of a general
p ∈ F2k+1

+ and q = ek+1 looks like.
Recall that P± = 1

2 (In ± Jn) are the projections from Fn onto Fn± along Fn∓.
Our aim is to describe BP± = P±BP± for a symmetric T-Bezoutian B. As we
know from Proposition 2.11, a symmetric T-Bezoutian B is the T-Bezoutian of a
symmetric vector u+ ∈ Fn+1

+ and a skewsymmetric vector v− ∈ Fn+1
− . From these

vectors we form the polynomials

p±(t) = (t± 1)u+(t) and q±(t) = (t∓ 1)v−(t) .

Clearly, p+ and q+ are symmetric, and p− and q− are skewsymmetric.

Proposition 2.15. The symmetric T-Bezoutian B = BezT (u+,v−) can be repre-
sented as B = B+ +B−, where B± = BP± and

B± = ∓
1
2
Bezsplit(p±,q±) .
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Proof.We compute the generating polynomialB+(t, s) ofB+ = BP+. By definition
we have

B+(t, s) =
1
2
(B(t, s) +B(t, s−1)sn−1)

= −1
2

(
u+(t)v−(s) + v−(t)u+(s)

1− ts +
u+(t)v−(s)− v−(t)u+(s)

t− s

)

= −1
2
(t+ 1)u+(t)(s− 1)v−(s)− (t− 1)v−(t)(s + 1)u+(s)

(t− s)(ts− 1) .

This is just the generating polynomial of the matrix− 1
2 Bezsplit(p+,q+). The other

case is proved analogously. �

12. Relations between H- and T-Bezoutians. There is a simple relation between
H- and T-Bezoutians, namely

BezT (u,v) = −BezH(u,v)Jn .

More general relations can be described with the help of Frobenius-Fischer trans-
formations. Analogously to Theorem 2.7 we obtain the following.

Theorem 2.16. For any ϕ ∈ GL(F2), the transformation

Φ : B �→ Kn(ϕ)BKn(J2ϕ)T

maps T-Bezoutians into H-Bezoutians. Moreover,

Kn(ϕ)BezT (u,v)Kn(J2ϕ)T =
1

det(ϕJ2)
BezH(ũ, ṽ) =

1
detϕ

BezH(ṽ, ũ) , (2.18)

where ũ = Kn+1(ϕ)u and ṽ = Kn+1(ϕ)v .

In the case F = C it is of particular interest to describe congruence transfor-
mations that transform Hermitian T-Bezoutians into real symmetric H-Bezoutians,
in other words to describe a coordinate transformation that transforms Hermitian
T-Bezoutian forms into real quadratic H-Bezoutian forms. The transformation Φ
has this property if and only if Kn(J2ϕ)T = Kn(ϕ)∗ (up to multiples of I2), which

is equivalent to J2ϕ = ϕ. Suppose that ϕ =
[
a c
b d

]
, then this is equivalent to

a = b and c = d. It can be easily checked that ϕ has this property if and only if

the linear fractional function ϕ(t) =
at+ b

ct+ d
maps the unit circle onto the real line

(compare Section 1.5). Hence we have the following.

Corollary 2.17. If ϕ(t) maps the unit circle onto the real line, then the transforma-
tion Φ : B �→ Kn(ϕ)BKn(ϕ)∗ maps Hermitian T-Bezoutians into real symmetric
H-Bezoutians. In particular, the signatures of B and Φ(B) coincide.
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3. Resultant matrices and matrix representations of Bezoutians

In this section we show that Bezoutians are closely related to resultant matrices
and that the relations between these two classes can be used to derive important
matrix representations of Bezoutians. We present two kinds of relations between
resultant matrices and Bezoutians. The first is due to Kravitsky and Russakovsky,
the second an interpretation of Bezoutians as Schur complements in resultant
matrices.

The resultant matrix Res(u,v) of two polynomials u(t) ∈ Fm+1,v(t) ∈
Fn+1(t) was introduced in (2.4) as the (m+ n)× (m+ n) matrix

Res (u,v) =
[
Mn(u)T

Mm(v)T

]
.

In this section we restrict ourselves to the case m = n, which is no restriction
of generality when speaking about nonsingularity, rank and related quantities.
Recall that Res (u,v) is nonsingular if and only if the polynomials u(t) and v(t)
are coprime and at least one of the leading coefficients of u(t) or v(t) is not zero.

1. Kravitsky-Russakovsky formulas. To begin with we generalize the resultant
concept. Let u(t) and v(t) be polynomials of degree n. The p-resultant matrix
(p = 0, 1, . . . ) of u(t) and v(t) is, by definition, the (2n+ 2p)× (2n+ p) matrix

Resp(u,v) =
[
Mn+p(u)T

Mn+p(v)T

]
.

In the case p = 0 we have the resultant matrix in the former sense. For the sequel
it is important to observe that

Resp(u,v)�2n+p(t) =
[

u(t)�n+p(t)
v(t)�n+p(t)

]
, (3.1)

where �m(t) = (ti−1)mi=1.

Theorem 3.1. Let u(t) and v(t) be polynomials of degree n. Then

1.

Resp(u,v)T
[

O Jn+p
−Jn+p O

]
Resp(u,v) =

⎡⎣ O O −BH
O O O
BH O O

⎤⎦ , (3.2)

where BH = BezH(u,v) , and
2.

Resp(u,v)T
[
In+p O
O −In+p

]
Resp(vJ ,uJ) =

⎡⎣ BT O O
O O O
O O −BT

⎤⎦ , (3.3)

where BT = BezT (u,v) .
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Proof. We compare the generating polynomials of the right-hand and of the left-
hand sides. According to (3.1) we have

�2n+p(t)TResp(u,v)T
[

O Jn+p
−Jn+p O

]
Resp(v,u) �2n+p(s)

= (u(t)v(s) − v(t)u(s))�n+p(t)TJn+p �n+p(s)

= (u(t)v(s) − v(t)u(s))
tn+p − sn+p

t− s
= (tn+p − sn+p)BezH(u,v)(t, s) ,

which is the polynomial form of the first assertion.
To prove the second relation we observe that (3.1) implies

�2n+p(t)TResp(u,v)T
[
In+p O
O −In+p

]
Resp(vJ ,uJ )�2n+p(s)

=
1− (ts)n+p
1− ts (u(t)vJ (s)− v(t)uJ (s)) .

This leads to the second assertion. �

2. Matrix representations of Bezoutians. The Kravitsky-Russakovsky formulas
(3.2) and (3.3) provide an elegant way to obtain matrix representations of Be-
zoutians in terms of triangular Toeplitz matrices. These formulas are very impor-
tant in connection with inversion of Toeplitz and Hankel matrices. They represent
so-called “inversion formulas”. Note that from computational point of view the for-
mulas presented here are not the most efficient ones. Other, more efficient formulas
for the cases F = C or F = R can be found in [38], [40], [41], [42], [43].

We define, for u = (ui)n+1
i=1 , the lower triangular n× n Toeplitz matrix

T (u) =

⎡⎢⎣ u1
...

. . .
un . . . u1

⎤⎥⎦ .
Note that T (u) is the T-Bezoutian B−(u) of u(t) and tn, which was introduced in
(2.14). Note also that the matrix T (u) is related to the H-Bezoutian B(u) defined
by (2.2) and the T-Bezoutian B+(u) defined by (2.14) via

B(u) = JnT (uJ) , B+(u) = −T (uJ)T .
Furthermore, let us mention that we have commutativity

T (u1)T (u2) = T (u2)T (u1)

and the relation T (u)T = T (u)J . The nonsingular matrices T (u) form a commu-
tative subgroup of GL(Fn) . With this notation the resultant matrix Res(u,v) for
u,v ∈ Fn+1 can be written in the form

Res(u,v) =
[
T (u)T T (uJ)
T (v)T T (vJ )

]
.
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The application of Theorem 3.1 for p = 0 leads now to the following.

Theorem 3.2. The H-Bezoutian of two polynomials u(t),v(t) ∈ Fn+1 admits
1. the representations

BezH(u,v) = T (v)JnT (uJ)− T (u)JnT (vJ )
and

BezH(u,v) = T (uJ)TJnT (v)T − T (vJ )TJnT (u)T .
2. the representations

BezT (u,v) = T (u)T (vJ)T − T (v)T (uJ)T

and
BezT (u,v) = T (vJ)T (u)T − T (uJ)T (v)T .

3. Bezoutians as Schur complements. We assume that the polynomial u(t) has
degree n. Then the matrix T (uJ) is nonsingular. Now the second expression for
BezH(u,v) in Theorem 3.2,1 can be written in the form

C = T (uJ)−1JnBezH(u,v) = T (v)T − T (vJ )T (uJ)−1T (u)T .
We see that C is the Schur complement of the left upper block in

R̃ = Res (u,v)
[
O In
In O

]
=
[
T (uJ) T (u)T

T (vJ) T (v)T

]
.

Recall that the concept of Schur complement is defined in connection with the
factorization of a block matrix

G =
[
A B
C D

]
=
[

In O
CA−1 In

] [
A O
O D − CA−1B

] [
In A−1B
O In

]
,

where A is assumed to be invertible. Here D − CA−1B is said to be the Schur
complement of A in G. Applying this factorization to our case we obtain the
following.

Proposition 3.3. Let u(t) ∈ Fn+1(t) be a polynomial of degree n , v(t) ∈ Fn+1(t).
Then the resultant of u(t) and v(t) can be represented in the form

Res (u,v)=
[
T (uJ) O
T (vJ) T (uJ)−1Jn

] [
In O
O BezH(u,v)

] [
T (uJ)−1T (u)T In

In O

]
.

From this proposition we see that Res(u,v) is nonsingular if and only if
BezH(u,v) has this property. Hence BezH(u,v) is nonsingular if and only if the
polynomials u(t) and v(t) are coprime. Taking (2.10) into account we conclude
the following.

Corollary 3.4. The nullity of BezH(u,v) is equal to the degree of the greatest
common divisor of u(t) and v(t).

Clearly, the same is also true for T-Bezoutians.
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4. Inverses of Hankel and Toeplitz matrices

The most striking property of H- and T-Bezoutians is that inverses of Hankel and
Toeplitz matrices belong to these classes. In view of Theorem 3.2 a consequence
of this fact is that inverses of Toeplitz and Hankel matrices can be represented as
product sum of triangular Toeplitz matrices, which is important for fast matrix-
vector multiplication. Later, in Section 7.6 and Section 8.7 we will see that, vice
versa, inverses of H- and T-Bezoutians are Hankel or Toeplitz matrices, respec-
tively. Let us start with the Hankel case.

1. Inverses of Hankel matrices. Let Hn = [ si+j−1 ]ni,j=1 be a nonsingular Hankel
matrix. Besides Hn we consider the (n− 1)× (n+1) Hankel matrix ∂Hn which is
obtained from Hn after deleting the last row and adding another column on the
right so that the Hankel structure is preserved. That means

∂Hn =

⎡⎢⎣ s1 . . . sn+1

... . .
. ...

sn−1 . . . s2n−1

⎤⎥⎦ . (4.1)

For Hn is nonsingular, ∂Hn has a two-dimensional nullspace. A basis {u,v } of
the nullspace of ∂Hn will be called fundamental system for Hn. We consider for
fixed s ∈ F the linear system of equations

Hnxs = �n(s) , (4.2)

where �n(s) is introduced in (1.1). It can be checked that

∂Hn

[
xs
0

]
= �n−1(s) and ∂Hn

[
0
xs

]
= s�n−1(s) .

Hence
[
0
xs

]
− s

[
xs
0

]
belongs to the kernel of ∂Hn. In polynomial language,

this means that there are constants as and bs such that

(t− s)xs(t) = asu(t)− bsv(t) .
Now we consider s as a variable. From (4.2) it is clear that xs(t) = �n(t)TH−1n �n(s)
is a polynomial in s of degree n − 1. (It is just the generating polynomial of the
matrix H−1n .) We conclude that as = a(s) and bs = b(s) ∈ Fn+1(s). Thus, H−1n
is a quasi-H-Bezoutian. According to Corollary 2.5, this implies that H−1n is an
H-Bezoutian, which means that a(t) = γv(t) and b(t) = γu(t), and H−1n =
γ BezH (u,v) for some nonzero constant γ. It remains to compute γ. For this we
introduce the 2× (n+ 1) matrix

F =
[
sn . . . s2n−1 s2n
0 . . . 0 1

]
.

Here s2n ∈ F is arbitrary. A fundamental system {u,v} will be called canonical if

F [u v ] = I2 .



52 G. Heinig and K. Rost

Let {u,v} be canonical. Then, in particular, u := eTn+1u = 0 and v = eTn+1v = 1.
Furthermore, if we consider u as a vector in Fn, then it is just the last column of
H−1n , i.e.,

Hnu = en. (4.3)

We compare u with the last column of BezH (u,v), which is equal to vu−uv = −u

(cf. Theorem 3.2). Thus, γ = −1. Note that v is of the form v =
[
−z
1

]
, where

z is the solution of the system

Hnz = g with g = (sn+i )ni=1 . (4.4)

Hereafter we need the following fact.

Proposition 4.1. Let the equations (4.3) and (4.4) be solvable. Then Hn is nonsin-
gular.

Proof. Assume that Hn is singular, and let v = (vj)nj=1 be a nontrivial vector such
that Hnv = 0 . Then applying vT from the left side to the equations (4.3) and
(4.4) leads to

vTHnu = vT en = 0 and vTHnz = vTg = 0,

which means, in particular, that vn = 0 . Taking into account

HnSn − STnHn = engT − geTn

we conclude (Snv)THn = 0. Repeating the above arguments for the Snv instead of
v shows that vn−1 = 0, and so on. Finally we have v = 0 which is a contradiction.
Thus, the nonsingularity of Hn is proved. �

Now we consider a general fundamental system {u,v}. The matrix ϕ =
F [u v ] is nonsingular. In fact, suppose it is singular. Then there is a nontrivial
linear combination w(t) of u(t) and v(t) such that Fw = 0. In particular the
highest-order coefficient vanishes, i.e., w ∈ Fn. Since w ∈ ker ∂Hn we conclude
that Hnw = 0, which means that Hn is singular. The columns of [u v ]ϕ−1 form
now a canonical fundamental system. It remains to apply Lemma 2.2 to obtain
the following.

Theorem 4.2. Let {u,v} be a fundamental system for Hn. Then

H−1n =
1

detϕ
BezH(v,u) , (4.5)

where ϕ = F [u v ].

Since BezH(u,v) is nonsingular, the polynomials u(t) and v(t) must be co-
prime (cf. Corollary 3.4). Hence the following is true.

Corollary 4.3. If {u,v} is a fundamental system for a nonsingular Hankel matrix,
then the polynomials u(t) and v(t) are coprime.
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2. Characterization of fundamental systems. There are several possibilities to char-
acterize fundamental systems via solutions of special linear systems. We are mainly
interested in characterizations by vectors that will be computed recursively us-
ing Levinson algorithms. In the Hankel case these vectors are the last columns
xk of H−1k or alternatively the monic solutions uk of the Yule-Walker equations
Hkuk = ρkek , where ρk is so that eTk uk = 1 .

It is convenient to consider an (n+1)×(n+1) extensionHn+1 = [ si+j−1 ]n+1
i,j=1.

The matrix Hn+1 is for almost all choices of s2n and s2n+1 nonsingular. In fact,
Hn+1 is nonsingular if the Schur complement of the leading principal submatrix
Hn in Hn+1 is nonsingular. This Schur complement is equal to

s2n+1 − gTH−1n g.

That means, for any s2n there is only one value of s2n+1 for which Hn+1 is singular.

Now, since the vector
[

un
0

]
, which will be also denoted by un, and the vector

un+1 are linearly independent and belong both to the kernel of ∂Hn they form a

fundamental system for Hn. To compute the factor
1

detϕ
in (4.5) we observe that

F
[

un un+1

]
=
[
ρn 0
0 1

]
.

For the corresponding vectors xn and xn+1 we find that

F
[

xn xn+1

]
=
[
1 0
0 ξn+1

]
,

where ξn+1 is the last component of xn+1.

Corollary 4.4. The inverse of the Hankel matrix Hn is given by

H−1n =
1
ρn
BezH(un+1,un) =

1
ξn+1

BezH(xn+1,xn) .

3. Christoffel-Darboux formula.We compare the first Bezoutian formula for Hankel
matrix inversion of Corollary 4.4 with the UL-factorization of H−1n (see, e.g., [33])
which can be written in polynomial language as

H−1n (t, s) =
n∑
k=1

1
ρk

uk(t)uk(s) .

We conclude
n∑
k=1

1
ρk

uk(t)uk(s) =
1
ρn

un+1(t)un(s)− un(t)un+1(s)
t− s . (4.6)

This relation is called Christoffel-Darboux formula. It is important in the theory
of orthogonal polynomials.

4. Inverses of Toeplitz matrices. The proof of the fact that inverses of Toeplitz
matrices are T-Bezoutians follows the same lines as that for Hankel matrices. We
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introduce the (n−1)×(n+1) Toeplitz matrix ∂Tn obtained from Tn = [ ai−j ]ni,j=1

after deleting the first row and adding another column to the right by preserving
the Toeplitz structure,

∂Tn =

⎡⎢⎣ a1 a0 . . . a2−n a1−n
...

...
. . .

...
...

an−1 an−2 . . . a0 a−1

⎤⎥⎦ . (4.7)

If Tn is nonsingular, then ∂Tn has a two-dimensional nullspace. Each basis of this
subspace is called fundamental system for Tn. The role of the matrix F is taken
by

F =
[
a0 . . . a1−n a−n
0 . . . 0 1

]
,

where a−n is arbitrary.

Theorem 4.5. Let {u,v} be a fundamental system for Tn. Then

T−1n =
1

detϕ
BezT (u,v) ,

where ϕ = F [u v ].

The Toeplitz analogue of Proposition 4.1 is now as follows.

Proposition 4.6. Let the equations

Tny = e1 and Tnz = fJ

with f = (a−i)ni=1 be solvable. Then Tn is nonsingular.

Taking into account that

TnSn − SnTn = e1fT − fJeTn

the proof of this proposition is analogous to that one of Proposition 4.1.

5. Characterization of fundamental systems. In the Toeplitz case the Levinson
algorithm computes recursively the first and last columns x−k and x+

k of T−1k or
alternatively the solutions u±k of the Yule-Walker equations

Tku−k = ρ−k e1, and Tku+
k = ρ+k ek , (4.8)

where ρ±k ∈ F are so that

eT1 u−k = 1 and eTk u
+
k = 1 .

(In other words u+
k (t) is assumed to be monic and u−k (t) comonic, which means

that (u−k )
J(t) is monic.) So it is reasonable to describe the fundamental system

with these vectors.

It can easily be seen that
[

x−n
0

]
and

[
0
x+
n

]
belong to the nullspace of

∂Tn and in the case where Tn−1 is nonsingular they are linearly independent.



Introduction to Bezoutians 55

Thus, they form a fundamental system. Likewise
[

u−n
0

]
and

[
0

u+
n

]
form a

fundamental system. We find that

F

[
u−n 0
0 u+

n

]
=
[
ρn ∗
0 1

]
, F

[
x−n 0
0 x+

n

]
=
[
1 ∗
0 ξn

]
,

where ξn is the first component of x−n which equals the last component of x+
n .

Consequently, ρ+n = ρ−n = ρn .

We will have a problem with these systems, if the submatrix Tn−1 is singular.
For example, in this case the solution u+

n does not exist and ξn = 0. For this reason
we also consider, like in the Hankel case, an (n + 1)× (n+ 1) Toeplitz extension
Tn+1 = [ ai−j ]n+1

i,j=1. This extension is nonsingular for almost all choices of a±n.
The proof of this fact is, however, less trivial than in the Hankel case.

The Schur complement of Tn in Tn+1 is given by

σ = a0 − (g+ + ane1)TT−1n (g− + a−ne1) ,

where g± = [ 0 a±(n−1) . . . a±1 ]T . Hence

−σ = ξana−n + η−an + η+a−n + ζ , (4.9)

where ξ = eT1 T
−1
n e1 = eT1 x−n , ζ = gT+T

−1
n g− − a0, and

η− = eT1 T
−1
n g− = gT−x+

n , η+ = gT+T
−1
n e1 = gT+x−n .

If ξ �= 0, which is equivalent to the nonsingularity of Tn−1 , the set of pairs (an, a−n)
for which Tn+1 is singular is a quadratic curve in F2 . (Choosing, for example,
an = a−n there are at most 2 values of an for which Tn+1 is singular.)

We show that if ξ = 0, then η± �= 0. In fact, in the case where ξ = 0 we
have TnSTn x−n = η+en. Since Tn is assumed to be nonsingular, we have η+ �= 0.
Analogously, η− �= 0. That means in the case ξ = 0 the pairs (an, a−n) for which
Tn+1 is singular are on the graph of a polynomial of first degree. (Choose, for
example, a−n = 0 , then Tn+1 is nonsingular with the exception of one value of
an .)

Let now Tn+1 be a nonsingular Toeplitz extension of Tn, x−n+1 the first and
x+
n+1 the last column of T

−1
n+1. Furthermore, let u±n+1 be the solutions of the cor-

responding Yule-Walker equations(4.8) for k = n + 1. Then {x−n+1,x
+
n+1} and

{u−n+1,u
+
n+1} are fundamental systems for Tn and

F
[

x−n+1 x+
n+1

]
=
[
1 0
∗ ξn+1

]
, F

[
u−n+1 u+

n+1

]
=
[
ρn+1 0
∗ 1

]
.

(4.10)

Corollary 4.7. The inverse of the Toeplitz matrix Tn is given by

T−1n =
1

ξn+1
BezT (x−n+1,x

+
n+1) =

1
ρn+1

BezT (u−n+1,u
+
n+1) .
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6. Inverses of symmetric Toeplitz matrices.We discuss now the case of a symmetric
Toeplitz matrix Tn. Let Tn+1 be a symmetric Toeplitz extension of Tn. Since in
this case g+ = g− we have in (4.9) η+ = η−. From this we conclude that Tn+1 is
nonsingular with the exception of at most two values of an. Thus, we may assume
that Tn+1 is nonsingular.

Since we have xn+1 := x+
n+1 = (x−n+1)

J , the vectors w+
n+1 = xn+1 + xJn+1

and w−n+1 = xn+1 − xJn+1 form a fundamental system consisting of a symmetric
and a skewsymmetric vector. The vectors w±n+1 are the solutions of Tn+1w±n+1 =
en+1 ± e1 and

F
[

w−n+1 w+
n+1

]
=
[

−1 1
−w−n+1(0) w+

n+1(0)

]
.

Corollary 4.8. The inverse of a nonsingular symmetric Toeplitz matrix Tn is given
by

T−1n =
1
γ
BezT (w−n+1,w

+
n+1) ,

where γ = w−n+1(0)−w+
n+1(0).

One can show that for solving a system Tnz = b it is sufficient to compute
the vectors w+

k . So it is reasonable to ask whether it is possible to describe w−n+1

in terms of w+
k . The following proposition gives an answer to this question. Let

Tn+2 be a nonsingular (n+2)× (n+2) symmetric Toeplitz extension of Tn+1 and
w±n+2 the solutions of Tn+2w±n+2 = en+2 ± e1.

Proposition 4.9. The polynomials w±n+1 are given by

w±n+1(t) =
tw+
n (t)− c±w+

n+2(t)
1± t , (4.11)

where w+
n+2(1) �= 0 and c− = w+

n (1)/w
+
n+2(1). If n is odd, then w+

n+2(−1) �= 0
and c+ = −w+

n (−1)/w+
n+2(−1). If n is even, then w+

n+2(−1) = 0 and c+ is not
determined by w+

n and w+
n+2 alone.

Proof. We have

Tn+2

[
w±n+1 0
0 w±n+1

]
=

⎡⎢⎢⎢⎢⎣
±1 ±a±
0 ±1
0 0
1 0
a± 1

⎤⎥⎥⎥⎥⎦ , Tn+2

⎡⎣ 0
w+
n w+

n+2

0

⎤⎦ =
⎡⎢⎢⎢⎢⎣
b 1
1 0
0 0
1 0
b 1

⎤⎥⎥⎥⎥⎦
for some a±, b ∈ F. Consequently,[

w±n+1

0

]
±
[

0
w±n+1

]
=

⎡⎣ 0
w+
n

0

⎤⎦− c±w+
n+2

for some c± ∈ F . Writing this in polynomial language, we see that w±n+1(t) ±
tw±n+1(t) = tw+

n (t)− c±w+
n+2(t) and obtain (4.11).
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To prove the rest of the proposition we recall that the polynomials w+
n+1(t)

and w−n+1(t) form a fundamental system. Therefore, they are coprime. Suppose
that w+

n+2(1) = 0. Then (4.11) implies w+
n+1(1) = 0. But we have also w−n+1(1) =

0, since w−n+1 is skewsymmetric. This contradicts the coprimeness of w
+
n+1(t) and

w−n+1(t). Consequently, w
+
n+2(1) �= 0. Analogously, if n is odd and w+

n+2(−1) = 0,
then (4.11) implies w−n+1(−1) = 0. But we have also w+

n+1(−1) = 0, since w+
n+1 is

symmetric and has an even length. This contradiction shows that w+
n+2(−1) �= 0.

If n is even, then Tn is not completely determined by its restriction to symmetric
vectors. That means w+

n+1 is not completely given by w+
n and w+

n+2. �
If n is even, then the constant c+ can be obtained by applying a test func-

tional, which could be the multiplication by any row of Tn+1.

7. Inverses of skewsymmetric Toeplitz matrices. In the case of a nonsingular
skewsymmetric Toeplitz matrix Tn, n = 2m, the Levinson-type algorithm can
be used to compute vectors spanning the nullspace of T2k−1 for k = 1, . . . ,m. So it
is reasonable to ask for a fundamental system {u,v} consisting of vectors of this
kind.

Let x be any vector spanning the nullspace of Tn−1. From the relation T Jn−1 =
−Tn−1 follows that also the vector xJ belongs to the nullspace of Tn−1. Thus x is
either symmetric or skewsymmetric. We show that the latter is not possible.

Lemma 4.10. The vector x is symmetric.

Proof. Let fj denote the jth row of Tn−1 , n = 2m. State that the row fm in the
middle of Tn−1 is skewsymmetric. We introduce vectors f±j = fj ∓ fn−j for j =
1, . . . ,m− 1 . Then the f+j are symmetric, the f−j are skewsymmetric, f±j ∈ Fn−1± ,

and the system Tn−1v = O is equivalent to f±j v = 0 for j = 1, . . . ,m − 1 and
fmv = 0 . Since dimFn−1+ = n

2 , there exists a symmetric vector v �= O such that
f+j v = 0 for j = 1, . . . ,m − 1 . Since, obviously, f−j v = O and fmv = 0 we have
Tn−1v = O . Taking into account that dimkerTn−1 = 1 we conclude that x = cv
for some c ∈ F . Thus, x ∈ Fn−1+ . �

Now, by Lemma 4.10, x is symmetric and

u =

⎡⎣ 0
x
0

⎤⎦ ∈ ker ∂Tn .
(Since we do not want to assume that Tn−2 is nonsingular, we cannot assume that
x is monic.) Furthermore, let Tn+1 be any (n+1)×(n+1) skewsymmetric Toeplitz
extension of Tn and v a (symmetric) vector spanning the nullspace of Tn+1. Since
Tn is nonsingular, we may assume that v is monic. Now {u,v} is a fundamental
system, and

F
[

u v
]
=
[
γ 0
0 1

]
, γ = [ a1 . . . an−1 ]x .
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(Here γ �= 0 since otherwise
[
0
x

]
belongs to the kernel of Tn.) Thus we obtain

the following.

Corollary 4.11. The inverse of the nonsingular skewsymmetric Toeplitz matrix Tn
is given by

T−1n =
1
γ
BezT (u,v) .

8. Inverses of Hermitian Toeplitz matrices. Finally we discuss the case of a non-
singular Hermitian Toeplitz matrix Tn. Besides Tn we consider an (n+1)× (n+1)
Hermitian Toeplitz extension Tn+1 of Tn. With similar arguments as above one
can show that for almost all values of an the matrix Tn+1 is nonsingular, so we
may assume this. In the Hermitian case we have for the first and last columns
x−n+1,x

+
n+1 of T

−1
n+1 that

xn+1 := x−n+1 = (x
+
n+1)

#

and for the solutions u±n+1 of the Yule-Walker equations

un+1 := u−n+1 = (u
+
n+1)

#.

Taking Corollary 4.7 into account we obtain

T−1n =
1

ξn+1
BezT (xn+1,x

#
n+1) =

1
ρn+1

BezT (un+1,u
#
n+1) , (4.12)

where ξn+1 is the first component of xn+1 and ρn+1 is so that un+1(t) is comonic.
In the Levinson-type algorithm described in [53], [47] not the vectors xk are

computed but the solutions of the equations Tkqk = e, where e is the vector all
components of which are equal to 1. For an inversion formula we need the vectors
qn and qn+1. Since qn+1 and qn are conjugate-symmetric, qn+1(t)− tqn(t) is not
identically equal to zero. Hence

xn+1(t) = b(qn+1(t)− tqn(t)) (4.13)

for some nonzero b ∈ C.
Besides qn we consider the coefficient vector w of w(t) = i (t−1)qn(t), which

is obviously conjugate-symmetric.

Proposition 4.12. The inverse of a nonsingular Hermitian Toeplitz matrix Tn is
given by

T−1n =
i
c
BezT (w,qn+1)−

1
c
qnqTn , (4.14)

where c is the real constant qn+1(1)− qn(1).

Proof. We insert (4.13) into (4.12) and obtain, after an elementary calculation,

formula (4.14) with c =
ξn+1

|b|2 �= 0. Taking into account that qn(t) = (T−1n e)(t) =

T−1n (t, 1) and that, due to (4.14), T−1n (t, 1) =
1
c
qn(t)(qn+1(1) − qn(1)) we find

that c = c = qn+1(1)− qn(1). �
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9. Solution of systems. The formulas for the inverses of Toeplitz and Hankel matri-
ces presented in this section can be used in combination with the matrix represen-
tations of Bezoutians to solve Toeplitz and Hankel systems. This is in particular
convenient if systems have to be solved with different right-hand sides and one and
the same coefficient matrix. The advantage compared with factorization methods
is that only O(n) parameters have to be stored.

The application of the formulas requires 4 matrix-vector multiplications by
triangular Toeplitz matrices. If these multiplications are carried out in the classical
way, then 2n2 multiplications and 2n2 additions are needed, which is more than,
for example, if back substitution in the LU-factorization is applied. However, due
to the Toeplitz structure of the matrices there are faster methods, actually methods
with a complexity less than O(n2), to do this. In the cases F = C and F = R the
Fast Fourier and related real trigonometric transformations with a computational
complexity of O(n logn) can be applied.

5. Generalized triangular factorizations of Bezoutians

In this section we describe algorithms that lead to a generalized UL-factorization
of Bezoutians. In the case of H-Bezoutians the algorithm is just the Euclidian
algorithm.

1. Division with remainder. Suppose that u = (ui)n+1
i=1 ∈ Fn+1,v = (vi)m+1

i=1 ∈
Fm+1, m ≤ n , and that the last components of u and v are not zero. Division
with remainder means to find polynomials q(t) ∈ Fn−m+1(t) and r(t) ∈ Fm(t)
such

u(t) = q(t)v(t) + r(t) . (5.1)
In matrix language this means that we first solve the (n −m + 1) × (n −m + 1)
triangular Toeplitz system⎡⎢⎣ vm+1 . . . vn−2m+1

. . .
...

vm+1

⎤⎥⎦q =

⎡⎢⎣ um+1

...
un+1

⎤⎥⎦ ,
where we put vi = 0 for i /∈ {1, . . . ,m+ 1}. With the notation (2.3) we find r via[

r
0

]
= u−Mn−m+1(v)q .

2. Factorization step for H-Bezoutians. We clarify what means division with re-
mainder in terms of the H-Bezoutian. From (5.1) we obtain for B = BezH (u,v)

B(t, s) = v(t)
q(t)− q(s)

t− s v(s) +
r(t)v(s) − v(t)r(s)

t− s ,

which can be written in the form

BezH(u,v) =Mn−m(v)B(q)Mn−m(v)T +BezH(r,v) ,
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where B(q) is defined in (2.2). This is equivalent to

BezH(u,v)=
[

Im
O

Mn−m(v)
][

BezH(r,v) O
O B(q)

][
Im
O

Mn−m(v)
]T

.

(5.2)
Note that in this equation the left factor is upper triangular and the right factor
is lower triangular.

3. Euclidian algorithm. The Euclidian algorithm is the successive application of
division with remainder. We set u0(t) = u(t) and u1(t) = v(t). Then, for i =
1, 2, . . . we find −ui+1(t) as remainder of the division of ui−1(t) by ui(t), i.e.,

ui+1(t) = qi(t)ui(t)− ui−1(t) . (5.3)

We take the minus sign with ui+1(t) for convenience. With this definition one
factorization step (5.2) reduces BezH(ui−1,ui) to BezH(ui,ui+1), without the
minus to BezH(ui+1,ui). If for some i = l we have ul+1(t) = 0, then the algorithm
is terminated and ul(t) is the greatest common divisor of u(t) and v(t).

There are modifications of the Euclidian algorithm with different normaliza-
tions. One could assume, for example, that the polynomials ui(t) are monic or
that the polynomials qi(t) are monic. For these two possibilities one has to admit
a constant factor at ui−1.

4. Generalized UL-factorization of H-Bezoutians. Applying (5.2) successively to
the polynomials ui(t) appearing in the Euclidian algorithm (5.3) we arrive at the
following.

Theorem 5.1. Let u(t),v(t) ∈ Fn+1(t) where u(t) has a nonzero leading coefficient.
Then BezH(u,v) admits the factorization

BezH(u,v) = UDUT (5.4)

where

U =
[

Id Mnl
(ul) . . . Mn1−n2(u2)

O O O
Mn−n1(u1)

]
,

ni = degui(t), d is the degree of the greatest common divisor of u(t) and v(t),
and

D = diag (Od, B(ql), . . . , B(q1) ) . (5.5)

Note that U is a nonsingular upper triangular matrix, B(qi) are nonsingular
upper triangular Hankel matrices defined by (2.2). From the theorem we can again
conclude that the nullity of BezH(u,v) is equal to d (cf. Corollary 3.4).

Let us discuss the case, in which u(t) and v(t) are coprime and all polynomials
qi(t) have degree 1. This is called the generic case. Suppose that qi(t) = ρit +
δi. Then (5.4) turns into an UL-factorization of the H-Bezoutian in which, U is
the upper triangular matrix the kth row of which is equal to the transpose of[

un+1−k
0k−1

]
and D = diag (ρn+1−i)ni=1 . The UL-factorization of the H-Bezoutian

exists if and only if the matrix BezH(u,v)J is strongly nonsingular. That means
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in the generic case the matrix has this property. The converse is also true, since
in the non-generic case the matrix BezH(u,v)J has singular leading principal
submatrices.

5. Inertia computation. It is an important consequence of Theorem 5.1 that the
signature of a real H-Bezoutian can be computed via running the Euclidian algo-
rithm. In fact, in the case of real polynomials u(t) and v(t) the matrix BezH(u,v)
is congruent to the block diagonal matrix D given by (5.5). It remains to compute
the signature of B(qi).

Let ρi denote the leading coefficient of qi(t). Then the signature of B(qi)
is equal to the signature of ρiJmi , mi = ni−1 − ni. This can be shown using
a homotopy argument. Let H(t) = tρiJmi + (1 − t)B(qi) for 0 ≤ t ≤ 1. Then
H(0) = B(qi) and H(1) = ρiJmi . Furthermore, H(t) is nonsingular for all t and
depends continuously on t. Hence sgnH(t) is constant for 0 ≤ t ≤ 1. The signature
of ρiJmi is obviously equal to zero if mi is even and is equal to the sign of ρi if mi
is odd. Applying Sylvester’s inertia law we conclude the following.

Corollary 5.2. The signature of the real H-Bezoutian BezH(u,v) is given by

sgn BezH(u,v) =
∑

ni−1−ni odd

sgn ρi ,

where ρi are the antidiagonal entries of B(qi).

Since the Euclidian algorithm computes besides the signature s also the rank
r of the H-Bezoutian, it gives a complete picture about the inertia of BezH(u,v),

InBezH(u,v) = (s+, s−, d),

where s± = n−d±s
2 and d = n− r .

6. Factorization step for T-Bezoutians in the generic case.We consider the problem
of triangular factorization of a T-Bezoutian B = BezT (u,v), where u,v ∈ Fn+1.
This problem is more complicated than for H-Bezoutians, unless the matrix is
strongly nonsingular. We introduce the 2× 2 matrix

Γ = Γ(u,v) =
[

eT1 u eT1 v
eTn+1u eTn+1v

]
.

The case of nonsingular Γ is referred to as generic case, the case of singular Γ
as non-generic case. In this subsection we consider the generic case. Observe that
γ := B(0, 0) = det Γ. That means that γ is the entry in the left upper corner of B.
Thus, we have the generic case if B is strongly nonsingular. Note that γ is also the
entry in the right lower corner of B, due to the persymmetry of B. In the generic
case,

[
ũ ṽ

]
=
[

u v
]
Γ−1 is of the form[

ũ ṽ
]
=
[

u1 0
0 v1

]
, u1,v1 ∈ Fn .
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According to Lemma 2.9 we have

BezT (ũ, ṽ) =
1
γ
BezT (u,v) .

Furthermore, for B̃ = BezT (ũ, ṽ) we obtain

B̃(t, s) =
u1(t)v1(s−1)sn−1 − tsv1(t)u1(s−1)sn−1

1− ts
= B1(t, s) + v1(t)u1(s−1)sn−1 ,

where B1 = BezT (u1,v1). We also have

B̃(t, s) = tsB1(t, s) + u1(t)v1(s−1)sn−1 .

In matrix language this can be written as

BezT (u,v) =
[

In−1
0T v1

] [
γ BezT (u1,v1) 0

0T γ

] [
In−1
0T uJ1

]T
or

BezT (u,v) =
[

u1
In−1
0T

] [
γ 0T

0 γ BezT (u1,v1)

] [
vJ1

In−1
0T

]T
. (5.6)

7. LU-factorization of T-Bezoutians. Let B = BezT (u,v) be strongly nonsingular,
which is equivalent to the strongly nonsingularity of BJ , due to persymmetry. We
can apply now the factorization step of the previous subsection, since the property
of strongly nonsingularity is inherited after a factorization step. If we carry out
the factorization step successively, then we obtain the following algorithm. We set
u1 = u and v1 = v and find recursively polynomials uk(t) and vk(t) via[

uk+1(t) vk+1(t)
]
=
[

uk(t) vk(t)
]
Γ−1k

[
1 0
0 t−1

]
, (5.7)

where Γk = Γ(uk,vk). This algorithm has the same structure as the Schur al-
gorithm for Toeplitz matrices. We call it also Schur algorithm. Like for Toeplitz
matrices, it can be slightly modified by replacing the matrix Γ−1k by a matrix of

the form
[
1 ∗
∗ 1

]
. This will reduce the number of operations.

To simplify the notation we agree upon the following. For a sequence (wj)nj=1

with wj ∈ Fn+1−j , by L(wj)nj=1 will be denoted the lower triangular matrix the
kth column of which is equal to

L(wj)nj=1ek =
[

0k−1
wk

]
.

Now we conclude the following from (5.6).

Theorem 5.3. Let B = BezT (u,v) be strongly nonsingular, and let uk(t) and vk(t)
be the polynomials obtained by the Schur algorithm (5.7). Then B admits an LU-
factorization

B = LDU ,
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where
L = L(ui)ni=1 , U = (L(vi)ni=1)

T

and

D = diag (γ̃−1i )ni=1 , γ̃i =
i∏
j=1

γj , γj = det Γj .

8. Non-generic case for T-Bezoutians. Now we consider the case where the matrix
Γ = Γ(u,v) is singular. If Γ has a zero row, then u(t) and v(t) or uJ(t) and
vJ (t) have a common factor t. Suppose that u(t) = tμ−u0(t), v(t) = tμ−v0(t),
uJ(t) = tμ+uJ0 (t), and vJ (t) = tμ+vJ0 (t) such that Γ(u0,v0) has no zero row.
Then B(t, s) = tμ−sμ+ B0(t, s), where B0 = BezT (u0,v0) or, in matrix language

B =

⎡⎣ O O O
O B0 O
O O O

⎤⎦ ,
where the zero matrix in the left upper corner is μ− × μ+.

Now we assume that Γ is singular but has no zero row. Then there is a 2× 2
matrix Φ with detΦ = 1 such that the last column of ΓΦ is zero, but the first
column consists of nonzero elements. We set[

ũ(t) ṽ(t)
]
=
[

u(t) v(t)
]
Φ.

Then, according to Lemma 2.9, we have B = BezT (ũ, ṽ) = BezT (u,v). Further-
more, let us write ṽ in the form

ṽ =

⎡⎣ 0ν−
w
0ν+

⎤⎦
with some vector w = (wi)m+1

i=1 ∈ Fm+1, m + ν+ + ν− = n, with nonzero first
and last components. We apply now a two-sided division with remainder to find
polynomials q−(t) ∈ Fν−(t) , q+(t) ∈ Fν++1(t) , and r(t) ∈ Fm(t) such that

ũ(t) = (tν−q+(t) + q−(t))w(t) + tν−r(t) .

The vectors q± can be found by solving the triangular Toeplitz systems⎡⎢⎣ w1

...
. . .

wν− . . . w1

⎤⎥⎦q− =

⎡⎢⎣ ũ1
...

ũν−

⎤⎥⎦ ,
⎡⎢⎣ wm+1 . . . wm−ν++1

. . .
...

wm+1

⎤⎥⎦q+ =

⎡⎢⎣ ũn−ν++1

...
ũn+1

⎤⎥⎦ .
Then we have

uJ(t) = (tν++1qJ−(t) + qJ+(t))w
J (t) + tν++1rJ (t)
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and

B(t, s) = w(t)
(

q−(t)− tν−qJ−(s)s
1− ts sν+ + tν−

q+(t)sν+ − qJ+(s)
1− ts

)
wJ(s)

+tν−
r(t)wJ (s)−w(t)rJ (s)s

1− ts sν+

= w(t)
(
BezT (q−, eν−+1)(t, s)sν+ + tν−BezT (q+, e1)(t, s)

)
wJ(s)

+tν−BezT (r,w)(t, s)sν+ .

In matrix form this can be written as

B =Mν++ν−(w)
[

O B−(q−)
B+(q+) O

]
Mν++ν−(w

J )T +

⎡⎣ O O O
O B1 O
O O O

⎤⎦ ,
where B1 = BezT (r,w) is of order m, B+(q+) = BezT (q+, e1) and B−(q−) =
BezT (q,eν−+1) are of order ν± (cf. (2.14)), and the zero matrix in the left upper
corner of the last term has size ν− × ν+ .
9. Hermitian T-Bezoutians. We discuss now the specifics of the case of an Her-
mitian T-Bezoutian B. Our main attention is dedicated to the question how to
compute the signature, because this is the most important application of the pro-
cedure. First we remember that there are two possibilities to represent Hermitian
T-Bezoutian. The first is B = BezT (u,u#) for a general vector u ∈ Cn+1, the sec-
ond is B = iBezT (u+,u−) for two conjugate-symmetric vectors u± (see Section
2.10).

In the generic case we use the first representation. In the representation (5.6)
we have vJ1 = u1 , and γ is real. Thus, for a strongly nonsingular B, Theorem 5.3
provides a factorization B = LDL∗. Consequently,

sgnB =
n∑
i=1

sgn γ̃i .

That means that the signature of B can be computed via the Schur algorithm in
O(n2) operations.

In the non-generic case, i.e., in the case where Γ is singular, we switch from
the first representation of B to the second one. This is done as follows. Suppose B
is given as B = BezT (u,u#). Then Γ is centro-Hermitian. Hence the homogeneous
equation

Γ
[
α
β

]
=
[
0
0

]
has a nontrivial conjugate-symmetric solution, which is a solution with β = α. We
can assume that |α| = 1. We set

Φ =
[

αi α
−αi α

]
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and [
u+(t) u−(t)

]
=
[

u(t) u#(t))
]
Φ .

Then u± are conjugate-symmetric and according to Lemma 2.9 we obtain

B =
1
2i
BezT (u+,u−) .

We can now apply the reduction step described in Section 5.8 for ũ = u+ and
ṽ = u− . Due to the Hermitian symmetry we have ν− = ν+ =: ν . The vector q#

−
is just the vector q+ after cancelling its first component. The vectors w and r ,
both considered as elements of Fm+1 , are conjugate-symmetric. This leads to

2iB =M2ν(w)
[

O B−(q−)
(B−(q−))∗ O

]
M2ν(w)∗ +

⎡⎣ O O O
O B1 O
O O O

⎤⎦ ,
where B1 = BezT (r,w) is m ×m. Taking into account that B−(q) and the zero
matrices in the corners of the last term are ν × ν matrices, the sum of the ranks
of the two terms on the right-hand side is equal to the rank of B. This is also true
for the signature. The signature of the first term is equal to zero. Hence

sgnB = sgnB1 .

If BezT (r,w) is singular, then we carry out another non-generic step. If BezT (r,w)
is nonsingular we go over to the first Bezoutian representation by introducing
v = 1

2 (r − iw) and obtain B1 = BezT (v,v#). Now we can apply a generic step.
Summing up, we have described a procedure that computes the signature of an
arbitrary Hermitian T-Bezoutian in O(n2) operations.

6. Bezoutians and companion matrices

In this section we show that Bezoutians are related to functions of companion
matrices.

1. Factorization of the companion. The companion matrix of the monic polynomial
u(t) =

∑n+1
k=1 ukt

k−1 ∈ Fn+1 is, by definition, the n× n matrix

C(u) =

⎡⎢⎢⎢⎣
0 1

. . .
1

−u1 −u2 . . . −un

⎤⎥⎥⎥⎦
It is easy to show that the characteristic polynomial of C(u) , det(tIn −C(u)) , is
equal to u(t). This is also a consequence of the following useful relation.
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Lemma 6.1. We have

tIn − C(u)=

⎡⎢⎢⎢⎣
0 −1

. . .
−1

1 u1(t) . . . un−1(t)

⎤⎥⎥⎥⎦
[

u(t)
In−1

]⎡⎢⎢⎢⎣
1
−t 1

. . . . . .
−t 1

⎤⎥⎥⎥⎦ ,
(6.1)

where uk(t) = uk+1 + uk+2t+ · · ·+ un+1t
n−k.

Proof. It is immediately checked that

(tIn − C(u))

⎡⎢⎢⎢⎢⎢⎣
1
t 1
t2 t 1
...

...
. . . . . .

tn−1 tn−2 . . . t 1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

0 −1
. . .

−1
u(t) u1(t) . . . un−1(t)

⎤⎥⎥⎥⎥⎥⎦ .
This equality can be rearranged to (6.1). �

The polynomials uk(t) appearing in the first factor of the right side of (6.1)
are the Horner polynomials of uJ(t) . They satisfy the recursion

uk(t) = tuk+1(t) + uk+1

and can be represented as

[u1(t) . . . un(t) ] = �n(t)TB(u) .

where B(u) is introduced in (2.2). For t0 ∈ F, the matrix t0In − C(u) is a special
case of a resultant matrix (cf. (2.4)). In fact,

t0In − C(u) = Res(t0 − t,u(t) + tn−1(t0 − t)) .
Since the resultant matrix is nonsingular if and only if the polynomials are coprime,
we conclude again that t0In − C(u) is singular if and only if t− t0 is a divisor of
u(t), i.e., u(t0) = 0 .

2. Functional calculus. Before we continue with companions and Bezoutians we
recall some general definitions and facts concerning functions of a matrix. Let A

be an n × n matrix and u(t) =
m∑
k=1

ukt
k−1 a polynomial. Then u(A) denotes the

matrix

u(A) =
m∑
k=1

ukA
k−1

in which we set A0 = In. The matrices of the form u(A) form a commutative
matrix algebra and the transformation u(t) �→ u(A) is a linear operator and a ring
homomorphism. In particular, if u(t) = u1(t)u2(t), then u(A) = u1(A)u2(A). If
u(t) is the characteristic polynomial of A, then, according to the Cayley-Hamilton
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theorem, u(A) = O. Let a polynomial v(t) and the characteristic polynomial u(t)
of A be coprime. Then the Bezout equation

v(t)x(t) + u(t)y(t) = 1 (6.2)

has a solution (x(t),y(t)). Replacing t by A we obtain that v(A)x(A) = In. That
means v(A) is nonsingular and x(A) is its inverse.

3. Barnett’s formula. The following remarkable formula is due to S. Barnett.

Theorem 6.2. Let u(t),v(t) ∈ Fn+1(t) and u(t) be monic. Then

BezH(u,v) = B(u)v(C(u)) , (6.3)

where B(u) is introduced in (2.2).

Proof. Due to linearity, it is sufficient to prove the formula for v(t) = ek(t) = tk−1.
We set Bk = BezH(u, ek). Since Bk = B(u)C(u)k−1 is true for k = 1 we still have
to show that Bk+1 = BkC(u). Taking into account that

C(u)�n(s) = s�n(s)− u(s)en ,

we obtain

�n(t)TBkC(u)�n(s) = sBk(t, s)− u(s)�n(t)TBken = sBk(t, s)− tk−1u(s) . (6.4)
On the other hand,

Bk+1(t, s) =
(u(t)sk−1 − tk−1u(s))s

t− s − tk−1u(s) = sBk(t, s)− tk−1u(s) . (6.5)

Comparing (6.4) and (6.5) we obtain the recursion Bk+1 = BkC(u). �
From this theorem we can conclude again (cf. Corollary 3.4) that the H-

Bezoutian of u(t) and v(t) is nonsingular if u(t) and v(t) (u(t) ∈ Fn+1(t) monic)
are coprime and that its inverse is given by

BezH(u,v)−1 = x(C(u))B(u)−1 , (6.6)

where x(t) is from the solution of the Bezout equation (6.2). In the next subsection
we will show that x(C(u)) is actually a Hankel matrix.

4. Barnett’s formula for T-Bezoutians. Now we consider T-Bezoutians. Let u(t)
be a comonic polynomial of degree ≤ n and Bk = BezT (u, ek). Then

Bk(t, s) = Bk+1(t, s)s− tk−1uJ (s) .
This can be written as

Bk = Bk+1C(uJ ) .

With the notation of (2.14) we obtain the Toeplitz analogue of Barnett’s formula.

Theorem 6.3. Let u(t),v(t) ∈ Fn+1(t), where u(t) is comonic. Then

BezT (u,v) = B−(u)vJ (C(uJ )) .



68 G. Heinig and K. Rost

In particular, for v(t) = 1 we obtain the equality

B+(u) = B−(u)C(uJ )n , (6.7)

which yields an LU-factorization of C(uJ )n and will be applied below to prove an
inversion formula for T-Bezoutions.

7. Hankel matrices generated by rational functions

In this section we consider Hankel matrices generated by rational functions and
show that they are closely related to H-Bezoutians. We understand “rational func-
tions” in an abstract sense as elements of the quotient field of the ring of polyno-
mials. But occasionally, in particular if we restrict ourselves to the case F = C, we
interpret them in the analytic sense as functions defined in F.

By a proper rational function we mean a rational function for which the degree
of the numerator polynomial is not greater than the degree of the denominator
polynomial. We say that the representation f(t) = p(t)

u(t) is in reduced form if u(t)
and p(t) are coprime and u(t) is monic. This representation is unique. The degree
of a proper rational function is the degree of the denominator polynomial in the
reduced representation.

1. Generating functions of Hankel matrices. A proper rational function f(t) can
be represented as

f(t) = h0 + h1t
−1 + h2t

−2 + · · · . (7.1)

If F = C, then (7.1) can be interpreted as the Laurent series expansion of f(t) at
infinity converging outside a disk with center 0. For a general field F (7.1) has a
meaning as quotient of two formal power series. The coefficients hi can be obtained
recursively by an obvious formula. For f(t) having a Laurent expansion (7.1), we
set f(∞) = h0 and write f(t) = O(t−m) if h0 = · · · = hm−1 = 0.

Note that if f(t) is given by (7.1), then we have

f(t)− f(s)
t− s =

∞∑
k=1

hk
t−k − s−k
t− s = −

∞∑
i,j=1

hi+j−1 t−is−j . (7.2)

This relation suggests the following definition. For n = 1, 2, . . . , the n× n Hankel
matrix generated by f(t) is, by definition, the matrix

Hn(f) = [hi+j−1 ]ni,j=1.

Let us point out that the entry h0 does not enter the definition of Hn(f). If for
some n× n Hankel matrix Hn there is a function f so that Hn = Hn(f), then f(t)
will be called generating function of Hn.
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Example 7.1. As an example, let us compute the Hankel matrices generated by a

partial fraction
1

(t− c)m (c ∈ F, m = 1, 2, . . . , 2n− 1). We denote

Ln(c,m) =
1

(m− 1)! Hn
(

1
(t− c)m

)
and write Ln(c) instead of Ln(c, 1). In view of

1
t− c = t−1 + c t−2 + c2 t−3 + · · · (7.3)

we have
Ln(c) = [ ci+j−2 ]ni,j=1 . (7.4)

Differentiating the equality (7.3) we obtain

Ln(c, 2) = [ (i+ j − 2)ci+j−3 ]ni,j=1

and in general, for m = 1, . . . , 2n− 1,

Ln(c,m) =
[ (

i+ j − 2
m− 1

)
ci+j−1−m

]n
i,j=1

.

It is obvious that the rank of Ln(c,m) is equal to m.

The matrices Ln(c,m) are called elementary Hankel matrices.

Example 7.2. For our second example we assume that F is algebraically closed. Let
u(t) be a polynomial of degree n and let t1, . . . , tn be the zeros of u(t). The Newton
sums si (i = 1, 2, . . . ) are given by

si =
n∑
k=1

ti−1k .

We form the Hankel matrix Hn = [ si+j−1 ]ni,j=1. Then we have

Hn = Hn

(
u′(t)
u(t)

)
.

This follows from the obvious relation

u′(t)
u(t)

=
n∑
k=1

1
t− tk

.

The transformation
H : f(t) −→ Hn(f)

is clearly a linear operator from the vector space of all proper rational functions
to the space of n× n Hankel matrices. The kernel of this operator consists of all
proper rational function f(t) for which f(t)− f(∞) = O(t−2n). We show that this
transformation is onto. That means any k × k Hankel matrix can be regarded as
generated by a proper rational function.
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Proposition 7.3. Let u(t) be a fixed monic polynomial of degree 2n− 1. Then any
n× n Hankel matrix Hn can be represented uniquely in the form

Hn = Hn

(p
u

)
(7.5)

for some p ∈ F2n−1.

Proof. Clearly, a matrix of the form (7.5) with p ∈ F2n−1 does not belong to
the kernel of the transformation H. That means that the mapping of the vector
p ∈ F2n−1 to the Hankel matrix Hn

(
p
u

)
is one-to-one. Hence the dimension of

its range equals 2n − 1. This is just the dimension of the space of n × n Hankel
matrices. Thus the mapping is onto. �

Since in an algebraically closed field F any proper rational function has a
partial fraction decomposition we conclude that in this case any Hankel matrix
can be represented as a linear combination of elementary Hankel matrices. The
reader may observe that the problem to find the generating function of a Hankel
matrix is closely related to the Padé approximation problem at infinity and the
partial realization problem.

In connection with these and other problems the question about a generating
function of minimal degree arises.We will see later that the degree of the generating
function is at least equal to the rank of Hn. But it can be bigger. For example,
the rank-one Hankel matrix Hn = eneTn has no generating function of degree less
than 2n− 1. Here we restrict ourselves to the nonsingular case. For a nonsingular
n× n Hankel matrix, a generating function of degree n always exists, as the next
proposition shows. Let us use the notation of Section 4.1.

Theorem 7.4. Let Hn = [ si+j−1 ]ni,j=1 be a nonsingular Hankel matrix, {u(t),v(t)}
be a fundamental system of Hn, where u(t) is monic and deg v(t) < n. Then, for
any α ∈ F , there is a vector p ∈ Fn such that

Hn = Hn

(
p(t)

u(t) − αv(t)

)
.

Proof. We consider the (n − 1) × (n + 1) matrix ∂Hn, which was introduced in
(4.1). The vector w = u−αv is a monic vector belonging to the nullspace of ∂Hn.
We set

p =

⎡⎢⎣ 0 s1 . . . sn
. . . . . .

...
0 s1

⎤⎥⎦w .

From this definition and from w ∈ ker ∂Hn we can see that in the expansion
p(t)
w(t)

= h1t
−1 + h2t

−2 + · · ·

we have hi = si , i = 1, . . . , 2n− 1 . Hence, Hn = Hn

(
p(t)
w(t)

)
. �
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Example 7.5. Let us find generating functions of degree n of the matrix Hn = Jn.
For this matrix {en+1, e1} is a fundamental system. Furthermore, p = e1. Thus,
for any α ∈ F,

Jn = Hn

(
1

tn − α

)
.

Let us present a special case of Theorem 7.4 involving the solutions of the
equations

Hkuk = ρkek , eTk uk = 1 (7.6)

for k = n, n+1 . Here Hn+1 is a nonsingular extension of Hn . As we already know
from Section 4.2 these monic solutions form a fundamental system for Hn. Thus,
the following is immediately clear.

Corollary 7.6. Let Hn and Hn+1 be as above and un,un+1 be the solutions of (7.6)
for k = n, n+1 . Then, for an α ∈ F , there are vectors pn+1 ∈ Fn and pn ∈ Fn−1

such that

Hn = Hn

(
pn+1(t)− αpn(t)
un+1(t)− αun(t)

)
.

2. Vandermonde factorization of Hankel matrices. In this subsection we assume
that F = C. Let Hn be an n × n nonsingular Hankel matrix. Then, by Theorem
7.4, it has a generating function of degree n. We can assume that the denominator
polynomial of this function has only simple roots, which follows from the following
lemma. Recall from Corollary 4.3 that the polynomials forming a fundamental
system of a nonsingular Hankel matrix are coprime.

Lemma 7.7. Let u(t) and v(t) be coprime. Then for all α ∈ C, with the exception
of a finite number of points, the polynomial w(t) = u(t) − αv(t) has only simple
roots.

Proof. Suppose that τ0 is a multiple root of w(t). Then u(τ0) = αv(τ0) and
u′(τ0) = αv′(τ0). Since u(t) and v(t) are coprime, v(τ0) �= 0. Hence τ0 is a root of
the nonzero polynomial z(t) = u(t)v′(t) − v(t)u′(t). Now we choose α such that
u(τ) �= αv(τ) for all roots τ of z(t). Then none of the τ is a root of w(t), so w(t)
has no multiple roots. �

Let f(t) = p(t)
w(t) with (∞) = 0 be a proper rational function in reduced

form such that w(t) has simple roots t1, . . . , tn. Then f(t) has a partial fraction
decomposition

f(t) =
n∑
i=1

δi
t− ti

,

where

δi =
p(ti)
w′(ti)

=

((
1
f

)′
(ti)

)−1
. (7.7)
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Hence Hk(f) can be represented as a linear combination of elementary Hankel
matrices Lk(ti) defined by (7.4)

Hk(f) =
n∑
i=1

δiLk(ti) . (7.8)

This relation can be stated as a matrix factorization. In fact, observe that Lk(ti)
equals �k(ti)�k(ti)T , where �k(ti) = ( tj−1i )kj=1. We form the n × k Vandermonde
matrix Vk(t), t = (ti)ni=1, with the rows �k(ti)

T (i = 1, . . . , n, )

Vk(t) = [ t
j−1
i ]n k

i=1,j=1 .

Now (7.8) is equivalent to the following.

Proposition 7.8. Let f(t) and t be as above. Then for k ≥ n, the Hankel matrix
Hk = Hk(f) admits a representation

Hk = Vk(t)TDVk(t) , (7.9)

where D = diag (δi)ni=1 and the δi are given by (7.7).

Example 7.9. For the Hankel matrix of Example 7.2 we obtain the following fac-
torization,

Hn

(
u′

u

)
= Vn(t̃)Tdiag (νi)ri=1Vn(t̃) , (7.10)

where t̃ is the vector of different zeros t̃i (i = 1, . . . , r) of u(t), and νi are their
multiplicities.

A consequence of this Proposition 7.8 is that rankHk(f) = n for all k ≥ n.
In Section 7.5 we will show that this is true for a general field F. Combining
Proposition 7.8 with Proposition 7.4 we obtain the following.

Corollary 7.10. Let Hn be a nonsingular n×n Hankel matrix, {u,v} a fundamental
system of Hn , and α ∈ C such that w(t) = u(t)−αv(t) has simple roots t1, . . . , tn.
Then Hn admits a representation

Hn = Vn(t)TDVn(t)

with a diagonal matrix D.

Let us find the Vandermonde factorization for Example 7.5, i.e., for Hn = Jn.
The polynomial tn − α has simple roots for all α �= 0, and these roots ti are the
nth complex roots of α. The diagonal matrix is given by

D =
1
n
diag (t1−n1 , . . . , t1−nn ) .

3. Real Hankel matrices.We consider the special case of a real, nonsingular Hankel
matrixHn. In this case the fundamental system ofHn is also real. We choose α ∈ R,
since then the non-real roots of w(t) = u(t)− αv(t) appear in conjugate complex
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pairs. Let t1, . . . , tr be the real roots and tr+1, tr+2 = tr+1, . . . , tn−1, tn = tn−1 be
the non-real roots of w(t). Then

Vn(t)T = Vn(t)∗diag(Ir, J2, . . . , J2︸ ︷︷ ︸
l

) ,

where r + 2l = n. Thus, we obtain from Proposition 7.8 the following.

Corollary 7.11. If the Hankel matrix Hk (k ≥ n) in Proposition 7.8 is real, then
it admits a representation

Hk = Vk(t)∗D1Vk(t) ,

where

D1 = diag
(
δ1, . . . , δr,

[
0 δr+1

δr+1 0

]
, . . . ,

[
0 δn−1

δn−1 0

])
.

In particular, the matrices Hn and D1 are congruent.

Combining this with Sylvester’s inertia law, with (7.9), and with the fact that

the signature of a matrix
[
0 δ
δ 0

]
equals 0, we conclude the following.

Corollary 7.12. Let f(t) be a real rational function of degree n with simple poles
t1, . . . , tn, where t1, . . . , tr are real and the other poles non-real. Then for k ≥ n
the signature of the Hankel matrix Hk = Hk(f) is given by

sgnHk =
r∑
i=1

sgn δi ,

where δi is defined by (7.7). In particular, Hn is positive definite if and only if all
roots of w(t) are real and δi > 0 for all i.

Let us specify the criterion of positive definiteness further.

4. The Cauchy index. Let C be an oriented closed curve in the extended complex
plane C∪{∞} and f(t) a rational function with real values on C with the exception
of poles. A pole c of f(t) on C is said to be of positive type if

lim
t→c−
t∈C

f(t) = −∞ and lim
t→c+
t∈C

f(t) =∞ .

It is said to be of negative type if c is of positive type for −f(t). If a pole is not of
positive or negative type, then it is called neutral. The Cauchy index of f(t) along
C is, by definition, the integer

indC f(t) = p+ − p−
where p+ is the number of poles of positive and p− the number of poles of negative
type. The pole c is of positive (negative) type if and only if the function 1

f(t) is
increasing (decreasing) in a neighborhood of c .

It is clear that if c is a pole of positive or negative type on C, then a small
perturbation of the coefficients of f(t) leads only to a small change of the pole on
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C by preserving its type (which is not true for neutral poles). Now we are in the
position to relate the signature of Hankel matrices generated by a rational function
with the Cauchy index of this function along R.

Proposition 7.13. Let f(t) be a real proper rational function of degree n . Then

sgnHn(f) = indR f(t) .

Proof. Suppose that f(t) = p(t)
u(t) is the reduced representation as quotient of poly-

nomials. Let us first assume that u(t) has simple roots t1, . . . , tn, i.e., f(t) has
simple poles. Simple poles cannot be neutral. If ti is a simple pole of positive type,
then

(
1
f

)′(ti) > 0. Comparing this with (7.7) we conclude that δi > 0. Analogously,
we have δi < 0 for a pole ti of negative type. Now it remains to apply Corollary
7.12.

Now let u(t) have multiple roots. Neutral poles of f(t) correspond to roots
of u(t) of even order and do not contribute to the Cauchy index of f(t) . It is easy
to see that we can disturb u(t) additively with an α ∈ R as small as we want
such that the disturbed roots of even order disappear or become simple roots of
u(t) + α , so that the respective pairs of poles do not contribute to the Cauchy
index of fα(t) =

p(t)
u(t)+α . The other poles remain simple and of the same type. So

the first part of the proof applies to fα(t) . Due to Proposition 7.17 below Hn(f)
is nonsingular. Taking into account that the signature of a nonsingular Hankel
matrix is invariant with respect to small perturbations the assertion follows. �

Some readers might be unsatisfied with the analytic argument in the proof of
the algebraic Proposition 7.13. For those readers we note that a purely algebraic
proof of this proposition is possible if more general Vandermonde representations
of Hankel matrices are considered.

Let us discuss the question how positive definiteness of Hn(f) can be charac-
terized in terms of f(t). According to Proposition 7.13, Hn(f) is positive definite
if and only if the Cauchy index of f(t) along R is equal to n. That means that
f(t) must have n poles of positive type. Between two poles of positive type there
must be a zero of f(t), i.e., a root of the numerator polynomial. In other words,
the poles and zeros of f(t) must interlace.

We say that the real roots of two polynomials u(t) and p(t) interlace if be-
tween two roots of u(t) there is exactly one root of p(t). Polynomials with roots
that interlace are coprime. Let us summarize our discussion.

Corollary 7.14. Let f(t) be a real rational function of degree n, and let f(t) = p(t)
u(t)

be its reduced representation. Then Hn(f) is positive definite if and only if the
polynomials u(t) and p(t) have only real simple roots that interlace.

5. Congruence to H-Bezoutians. In Section 4 we showed that inverses of Hankel
matrices are H-Bezoutians. Now we are going to explain another relation between
Hankel matrices and H-Bezoutians. In the real case this relation just means that
Hankel matrices and H-Bezoutians are congruent.
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Throughout this subsection, let u(t) be a polynomial of degree n, v(t) ∈
Fn+1(t), and f(t) = v(t)

u(t) . Then B = BezH(u,v) is an n × n matrix. For k > n,
we identify this matrix with the k × k matrix obtained from B by adding k − n
zero rows and zero columns at the bottom and on the right. The same we do for
B(u) = BezH(u, e1) introduced in (2.2).

Proposition 7.15. For k ≥ n, the k × k Hankel matrix generated by f(t) = v(t)
u(t) is

related to the H-Bezoutian of u(t) and v(t) via

BezH(u,v) = B(u)Hk (f)B(u) . (7.11)

Proof. For B = BezH(u,v) and u = (ui)n+1
i=1 we have in view of (7.2)

B(t, s) = −u(t)
f(t)− f(s)
t− s u(s)

=
n+1∑
i,j=1

∞∑
p,q=1

ui hp+q−1 uj ti−p−1sj−q−1

=
n∑

m,l=1

∞∑
p,q=1

um+p hp+q−1 uq+l tm−1sl−1 ,

where we set uj = 0 for j > n + 1. The coefficient matrix of this polynomial can
be written as a product of three matrices, as it is claimed. �

Recall from Corollary 3.4 that the nullity of BezH(u,v) is equal to the degree
of the greatest common divisor of u(t) and v(t). This implies that the rank of
BezH(u,v) is equal to the degree of the rational function f(t).

Corollary 7.16. In the real case the matrices BezH(u,v) and Hn
(
u
v

)
are congruent.

Proposition 7.17. Let f(t) be a rational function of degree n. Then, for k ≥ n, the
rank of Hk(f) is equal to n. In particular, Hn(f) is nonsingular.

Proof. Let f(t) = v(t)
u(t) be in reduced form and degu(t) = n . Since the matrix

B(u) in (7.11) as an k × k matrix is singular for k > n , the assertion cannot be
concluded directly from Proposition 7.15. Thus, for k > n , define uk and vk by
uk(t) = tku(t) and vk(t) = tkv(t) , respectively. The f(t) = vk(t)

uk(t)
and, due to

Proposition 7.15,
BezH(uk,vk) = B(uk)Hk(f)B(uk) , (7.12)

where B(uk) is nonsingular. Since the nullity of BezH(uk,vk) equals k , we have
that rankBezH(uk,vk) = n = rankHk(f) . �

Note that under the assumptions of Proposition 7.8 the assertion of Propo-
sition 7.17 follows already from the Vandermonde factorization of Hk(f) given in
(7.9).

In the real case, (7.12) is a congruence relation. Applying Sylvester’s inertia
law we can conclude the following for the case F = R.
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Proposition 7.18. If u(t) ∈ Rn+1(t) with degu(t) = n and v(t) ∈ Rn+1(t), then
the matrices BezH(u,v) (considered as k × k matrix) and Hk

(
v
u

)
have the same

inertia.

Proof. Due to formula (7.12), which is also true if v(t)
u(t) is not in reduced form, and

since BezH(u,v) and BezH(uk,vk) have the same rank it remains to show that
these two Bezoutians have the same signature. But, this follows from

BezH(uk,vk) =Mn(ek+1)BezH(u,v)Mn(ek+1)T

and from Corollary 1.2. �

6. Inverses of H-Bezoutians. Comparing (7.11) with Barnett’s formula (6.3) we
obtain that the Hankel matrix Hn

(
p
u

)
admits a representation

Hn

(p
u

)
= p(C(u))B(u)−1 . (7.13)

Together with (6.6) this immediately leads to the following.

Theorem 7.19. Let u(t) and v(t) be coprime and (q(t),p(t)), be the (unique) so-
lution of the Bezout equation

u(t)q(t) + v(t)p(t) = 1 (7.14)

with q(t),p(t) ∈ Fn(t). Then

BezH(u,v)−1 = Hn

(p
u

)
.

An immediate consequence of this theorem is the converse of Theorem 4.2.

Corollary 7.20. The inverse of a nonsingular H-Bezoutian is a Hankel matrix.

Furthermore, Theorem 7.19 tells us that the inverse of a Bezoutian or the
inverse of a Hankel matrix generated by a rational function can be computed with
an algorithm which solves the Bezout equation (7.14). We show next that this
equation can be solved with the help of the Euclidian algorithm.

7. Solving the Bezout equation. Let ui(t) be the polynomials computed by the
Euclidian algorithm, as described in Section 5.3, then with the help of the data of
the Euclidian algorithm we can recursively solve the Bezout equations

u(t)xi(t) + v(t)yi(t) = ui(t) (i = 0, 1, . . . ), (7.15)

where, for initialization, we have

x0(t) = 1
y0(t) = 0 ,

x1(t) = 0
y1(t) = 1 .

The recursion is given by

xi+1(t) = xi−1(t)− qi(t)xi(t) (7.16)
yi+1(t) = yi−1(t)− qi(t)yi(t) .
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In fact,

u(t)xi+1(t) + v(t)yi+1(t) = u(t)(xi−1 − qi(t)xi(t)) + v(t)(yi−1(t)− qi(t)yi(t))
= ui−1(t)− qi(t)ui(t) = ui+1(t) .

Introducing the 2× 2 matrix polynomials

Xi(t) =
[

xi−1(t) xi(t)
yi−1(t) yi(t)

]
and Φi(t) =

[
0 1
1 −qi(t)

]
we can write the recursion (7.16) as

Xi+1(t) = Xi(t)Φi(t) , X1(t) = I2 .

If u(t) and v(t) are coprime, then we have for some i = l that ul(t) = c = const.
Thus, the solution of (7.14) is obtained from (xl(t),yl(t)) by dividing by c.

As mentioned in Section 5.3 the Euclidian algorithm for finding the greatest
common divisor of two polynomials is closely related to a Schur-type algorithm
for Hankel matrices. The Euclidian algorithm for solving the Bezout equation is
related to a mixed Levinson-Schur-type algorithm for Hankel matrices. It is also
possible to design a pure Levinson-type algorithm for the solution of the Bezout
equation.

8. Toeplitz matrices generated by rational functions

This section is the Toeplitz counterpart of the previous one. We define and study
Toeplitz matrices generated by rational functions and show that they are closely
related to T-Bezoutians. Some features are completely analogous to the Hankel
case, but there are also some significant differences.

1. Generating functions of Toeplitz matrices. Let f(t) = p(t)
u(t) be a proper rational

function with u(0) �= 0. Then f(t) admits series expansions in powers of t and as
well as in powers of t−1 ,

f(t) = a+0 + a1t+ a2t
2 + · · · , f(t) = −a−0 − a−1t−1 − a−2t−2 − · · · . (8.1)

If F = C, then (8.1) can be understood as the Laurent series expansion at t = 0
and at t = ∞, respectively. For a general F, (8.1) makes sense as the quotient of
two formal Laurent series. The coefficients can be obtained recursively by obvious
relations. Note that, in a formal sense,

f(t)− f(s−1)
1− ts =

∞∑
i,j=0

ai−jtisj , (8.2)

where a0 = a+0 + a−0 . The latter follows from the obvious relation

(1− ts)T (t, s) = a0 +
∞∑
i=1

ait
i +

∞∑
j=1

a−jsj ,

where T = [ ai−j ]∞i,j=1. This relation makes the following definition natural.
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For n = 1, 2, . . . the n× n Toeplitz matrix generated by f(t) with the expan-
sions (8.1) is, by definition, the matrix Tn(f) = [ ai−j ]ni,j=1, where a0 = a+0 +a

−
0 . If

Tn = Tn(f), then the function f(t) is called generating function of Tn. Obviously,
Tn(f) is the zero matrix if f is a constant function. Note that finding the generating
function of a given Toeplitz matrix is a two-point Padé approximation problem
for the points 0 and ∞.

Example 8.1. Since for c �= 0
1

1− ct =
∞∑
k=0

cktk and
1

1− ct = −
∞∑
k=1

c−kt−k ,

we have

Tn

(
1

1− ct

)
= [ ci−j ]ni,j=1 = �n(c)�n

(
c−1
)T

, (8.3)

where �n(c) is defined in (1.1).

Example 8.2. Our second example is the Toeplitz analogue of Example 7.2. Let F
be algebraically closed and u(t) a polynomial of degree n with the roots t1, . . . , tn
and u(0) �= 0. We define

ci =
n∑
k=1

tik (i = 0,±1,±2, . . . )

and form the Toeplitz matrix Tn = [ ci−j ]ni,j=1. Then Tn = Tn(f) for

f(t) =
n∑
k=1

1
1− tkt

.

Taking uJ(t) =
∏n
k=1(1− tkt) into account we find that

f(t) =
(u′)J(t)
uJ(t)

.

Here u′ has to be considered as a vector in Fn, that means (u′)J(t) = tn−1u′(t−1) .

Like for Hankel matrices, it can be shown that, for any given polynomial u(t)
of degree 2n−2 with u(0) �= 0 , any n×n Toeplitz matrix has a generating function
with denominator polynomial u(t). More important is the following Toeplitz ana-
logue of Theorem 7.4 about generating functions of nonsingular Hankel matrices.
Note that its proof is somehow different to the Hankel case.

Theorem 8.3. Let Tn = [ ai−j ]ni,j=1 be a nonsingular Toeplitz matrix, {u(t),v(t)}
be a fundamental system of Tn. Furthermore, let α, β ∈ F be such that w(t) =
αu(t) + βv(t) is of degree n and w(0) �= 0. Then there is a p ∈ Fn+1 such that

Tn = Tn

( p
w

)
.
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Proof. Let ∂Tn be the matrix defined in (4.7). Then w belongs to the nullspace of
∂Tn. We find an and a−n via the equations[

an an−1 . . . a0
]
w =

[
a0 . . . a1−n a−n

]
w = 0

and form the (n+ 1)× (n+ 1) Toeplitz matrix Tn+1 = [ ai−j ]n+1
i,j=1. Then we have

Tn+1w = 0. Now we represent Tn+1 as Tn+1 = T+
n+1+T

−
n+1, where T

+
n+1 is a lower

triangular and T−n+1 is an upper triangular Toeplitz matrix and define

p = T+
n+1w . (8.4)

We have also p = −T−n+1w. A comparison of coefficients reveals that

p(t)
w(t)

= a+0 +a1t+· · ·+antn+· · · and
p(t)
w(t)

= −a−0 −a−1t−1−· · ·−a−nt−n−· · · ,

where a±0 are the diagonal entries of T±n+1, respectively. Thus Tn = Tn(f) for
f(t) = p(t)

w(t) . �

Example 8.4. Let us compute generating functions for the identity matrix In. We
observe first that {e1, en+1} is a fundamental system. To meet the conditions of
the theorem we choose α �= 0, β �= 0. Then we find that an = − βα and a−n = −αβ .
We can choose now

T+
n+1 = γIn+1 −

β

α
en+1eT1 ,

where γ is arbitrary. For γ = 0 this leads to p = −βen+1. Thus generating func-
tions for In are given by

f(t) =
−βtn
α+ βtn

.

If we choose a different γ, then the resulting function differs from that function
only by a constant.

2. Matrices with symmetry properties. It is a little bit surprising that if f(t) is
symmetric in the sense that

f(t−1) = f(t) , (8.5)
then the matrix Tn(f) becomes skewsymmetric. Symmetric matrices Tn(f) are
obtained if f(t) satisfies

f(t−1) = −f(t) . (8.6)
In the case F = C the matrices Tn(f) are Hermitian if

f( t−1) = −f(t) . (8.7)

This is equivalent to saying that f(t) takes purely imaginary values on the unit
circle. We show that the converse is, in a sense, also true.

Proposition 8.5. If Tn is a nonsingular symmetric, skewsymmetric or Hermitian
Toeplitz matrix, then there exists a generating function f(t) for Tn of degree n that
satisfies the conditions (8.6), (8.5), (8.7), respectively.
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Proof. If Tn is symmetric, then the fundamental system consists of a symmetric
vector u and a skewsymmetric vector v. If the last component of u does not vanish,
then we can choose w = u to satisfy the conditions of Theorem 8.3. Further, we
obtain a−n = an, thus Tn+1 is symmetric, and the choice T−n+1 = (T+

n+1)
T is

possible. Hence we have

p = T+
n+1u = −(T+

n+1)
Tu = −T+

n+1u
J = −pJ .

That means that p is skewsymmetric, which implies that f(t) = p(t)
u(t) satisfies (8.6).

If the last component of u vanishes, then the last component of v must be
nonzero and we can choose w = v. Again we obtain a−n = an, so that Tn+1 is
symmetric. With the choice T−n+1 = (T

+
n+1)

T we have

p = T+
n+1v = −(T+

n+1)
Tv = −T+

n+1v
J = pJ .

Thus, p is symmetric and f(t) = p(t)
v(t) satisfies (8.6). The proof of the other cases is

analogous. We have to take into account that a fundamental system of a nonsin-
gular skewsymmetric Toeplitz matrix consists of two symmetric vectors and the
fundamental system of a nonsingular Hermitian Toeplitz matrix of two conjugate-
symmetric vectors. �

To discuss this proposition we consider the Examples 8.1, 8.4. The Toeplitz
matrix Tn = [ ci−j ]ni,j=1 in Example 8.1 is Hermitian if c is on the unit circle, but its

generating function 1
1−ct does not satisfy (8.7). However, since

1
1−ct =

1
2

(
1+ct
1−ct + 1

)
we have also

Tn = Tn

(
1
2
1 + ct

1− ct

)
,

and this generating function satisfies (8.7). Generating functions for the identity
matrix In satisfying (8.6) and so reflecting its symmetry are

f(t) =
1
2
1− tn
1 + tn

and f(t) =
1
2
1 + tn

1− tn .

3. Vandermonde factorization of nonsingular Toeplitz matrices. Let Tn be a non-
singular n×n Toeplitz matrix with complex entries and f(t) = p(t)

w(t) be a generating
function of degree n with f(∞) = 0 . According to Theorem 8.3 and Lemma 7.7
such a function exists and, due to the freedom in the choice of w(t) we can assume
that w(t) has only simple roots t1, . . . , tn. Using the partial fraction decomposition
of f(t) in the form

f(t) =
n∑
i=1

− 1
ti

γi

1− t−1i t

as well as (8.3) we can conclude, in analogy to the Hankel case, the following.

Proposition 8.6. Let Tn be a nonsingular n × n Toeplitz matrix, {u,v} a funda-
mental system of Tn and α, β ∈ C such that w(t) = αu(t) + βv(t) is of degree n,
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satisfies w(0) �= 0, and has simple roots t1, . . . , tn. Then Tn admits a representa-
tion

Tn = Vn(t−1)TDVn(t) (8.8)

where t = (ti)ni=1 and t−1 = (t−1i )ni=1, and D is diagonal, D = diag
(
−t−1k γk

)n
k=1

.

The diagonal matrix can be expressed in terms of the generating function. If
D = diag (δi)ni=1, then

δi = −
1
ti

p(ti)
w′(ti)

= − 1
ti

((
1
f

)′
(ti)

)−1
. (8.9)

Note that, like for Hankel matrices, the Vandermonde factorization for a nonsin-
gular Toeplitz matrix Tn(f) extends to all Toeplitz matrices Tk(f) with k ≥ n
as

Tk(f) = Vk(t−1)TDVk(t) . (8.10)

4. Hermitian Toeplitz matrices. Let the assumptions of Proposition 8.6 be satisfied.
We consider the special case of an Hermitian Toeplitz matrix Tn. In this case Tn
has a fundamental system consisting of two conjugate-symmetric vectors. If we
choose α and β as reals, then the vector w in Proposition 8.6 is also conjugate-
symmetric. For a polynomial with a conjugate-symmetric coefficient vector the
roots are symmetric with respect to the unit circle T. That means if t0 is a root,
then t−10 is also a root. In particular, the roots not on T appear in pairs that are
symmetric with respect to T.

Let t1, . . . , tr be the roots of w(t) on T and tr+1, tr+2 = t
−1
r+1, . . . , tn−1, tn =

t
−1
n−1 be the roots of w(t) which are not on T. Note that for the coefficients γi in
the partial fraction decomposition of f(t), which are the residuals at ti, we have
δr+2 = δr+1, . . . , δn = δn−1. Furthermore,

Vn(t−1)T = Vn(t)∗diag(Ir , J2, . . . , J2︸ ︷︷ ︸
l

) ,

where r + 2l = n. Now Proposition 8.6 leads to the following.

Corollary 8.7. If the Toeplitz matrix in Proposition 8.6 is Hermitian, then it admits
a representation

Tn = Vn(t)∗D1Vn(t) ,
where

D1 = diag
(
δ1, . . . , δr,

[
0 δr+1

δr+1 0

]
, . . . ,

[
0 δn−1

δn−1 0

])
In particular, the matrices Tn and D1 are congruent.

5. Signature and Cauchy index. Corollary 8.7 allows us to express the signature
of Tn in terms of the signs of the diagonal elements δi (i = 1, . . . , r) of D1 (cf.
Corollary 7.12). Our aim is now to express it in terms of the Cauchy index.
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Let f(t) be a rational function of degree n satisfying (8.7). Then the function
1
i f(t) takes real values on the unit circle, thus the Cauchy index (see Section 7.4)
indT

1
i f(t) is well defined. It is the difference of the number of poles on T of positive

type and the number of poles of negative type. Let tj = eiθj be a pole on T. Then
tj is of positive (negative) type if and only if the (real-valued) function

ϕ(θ) =
i

f(eiθ)

is increasing (decreasing) in a neighborhood of θj . For a simple pole this is equiv-
alent to ϕ′(θj) > 0 (ϕ′(θj) < 0). We have

ϕ′(θj) = −tj
(
1
f

)′
(tj) .

Comparing this with (8.9) we conclude that ϕ(θj) = δ−1j . We arrive at the following
statement for the case of simple poles. It can be generalized to multiple poles by
using the continuity arguments from the proof of Proposition 7.13.

Proposition 8.8. Let f(t) be a proper rational function with degree n that takes
imaginary values on the unit circle. Then

sgnTn(f) = indT

1
i
f(t) .

We also obtain a criterion of positive definiteness.

Corollary 8.9. Let f(t) be a proper rational function of degree n, and let

f(t) =
ip(t)
u(t)

be its reduced representation in which u and p are conjugate-symmetric. Then
Tn(f) is positive definite if and only if the polynomials u(t) and p(t) have only
roots on the unit circle, these roots are simple and interlaced.

6. Congruence to T-Bezoutians. The Toeplitz analogue of Proposition 7.15 is as
follows. (Concerning the order of BezT (u,v) and of B±(u) compare the remarks
before Proposition 7.15.)

Proposition 8.10. Let u,v ∈ Fn+1, where u has nonvanishing first and last com-
ponents. Then, for k ≥ n, the T-Bezoutian of u(t) and v(t) is related to the k× k
Toeplitz matrix Tk(f) generated by f(t) = v(t)

u(t) via

BezT (u,v) = B−(u)Tk(f)B+(u) ,

where B±(u) are introduced in (2.14).

Proof. For B = BezT (u,v) we have

B(t, s) = u(t)
f(t)− f(s−1)

1− ts (−uJ (s)) .
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Applying (8.2) we obtain

B =

⎡⎢⎣ u1
...

. . . O
un . . . u1

⎤⎥⎦T
⎡⎢⎢⎢⎣
−un+1 . . . −u2

. . .
...

−un+1

O

⎤⎥⎥⎥⎦ ,

where u = (ui)n+1
i=1 and T = [ ai−j ]

∞
i,j=1. Hence B = B−(u)Tk(f)B+(u) . �

Corollary 8.11. If Tn
(
v
u

)
is Hermitian and if u is a conjugate-symmetric (or con-

jugate-skewsymmetric) polynomial of degree n+1 then BezT (v,u) (or BezT (u,v))
and Tn(f) are congruent.

Corollary 8.12. For k ≥ n the rank of Tk(f) is equal to the degree of f(t). In
particular, if f(t) has degree n, then Tn(f) is nonsingular.

If we combine Proposition 8.10 with Barnett’s formula in Theorem 6.3, then
we obtain the representation

Tn

(v
u

)
= vJ (C(uJ ))B+(u)−1 , (8.11)

where we assume that u(t) is comonic.

7. Inverses of T-Bezoutians. Now we show that relation (8.11) leads to an inversion
formula for T-Bezoutians.

Theorem 8.13. Let u,v ∈ Fn+1 be such that u(t) and v(t) are coprime and the
first and last components of u do not vanish. If (q(t),p(t)), q,p ∈ Fn+1, is the
solution of the Diophantine equation

u(t)q(t) + v(t)p(t) = tn , (8.12)

then BezT (u,v) is invertible and the inverse is given by

BezT (u,v)−1 = Tn

(p
u

)
.

Proof. First we note that (8.12) is equivalent to

uJ (t)qJ (t) + vJ (t)pJ (t) = tn .

Thus, vJ (t)pJ (t) ≡ tn modulo uJ(t). From Theorem 6.3, the representation (8.11),
and the Cayley-Hamilton theorem, now we obtain

BezT (u,v)Tn
(p
u

)
= B−(u)vJ (C(uJ ))pJ (C(uJ ))B+(u)−1

= B−(u)C(uJ )nB+(u)−1 .

Taking (6.7) into account this leads to

BezT (u,v)Tn
(p
u

)
= B+(u)B+(u)−1 = In ,

and the theorem is proved. �
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8. Relations between Toeplitz and Hankel matrices.We know that if Tk is a k× k
Toeplitz matrix, then JkTk is Hankel, and vice versa. We show how the generating
functions are related.

Proposition 8.14. Let u,q ∈ Fn+1, where u has nonvanishing first and last com-
ponents, and let q(t)

u(t) be a generating function of Tk. For k ≥ n , let p ∈ Fn be such
that −p(t) ∈ Fn(t) is the remainder polynomial of tkqJ(t) divided by uJ(t) . Then

JkTk

(q
u

)
= Hk

(p
u

)
.

Proof. According to the definition of p we have

tkqJ (t) = −pJ(t) + r(t)uJ (t)

for some r(t) ∈ Fk+1(t). This is equivalent to q(t) = −tkp(t) + tkr(t−1)u(t) , and
we obtain

q(t)
u(t)

= −tk p(t)
u(t)

+ tkr(t−1).

Thus
tkr(t−1) = a+0 + a1t+ · · ·+ akt

k .

On the other hand,
p(t)
u(t)

= r(t−1)− t−k q(t)
u(t)

.

Consequently,
p(t)
u(t)

= ak + ak−1t−1 + · · ·+ a0t
−ka−1t−k−1 + · · · ,

where a0 = a+0 + a−0 . This means that

Hk = Hk

(p
u

)
=

⎡⎢⎢⎢⎣
ak−1 ak−2 . . . a0
ak−2 . .

.

... . .
. ...

a0 . . . a1−k

⎤⎥⎥⎥⎦ .

Thus Hk = Jk Tk
(
q
u

)
. �

9. Vandermonde reduction of Bezoutians

In this section the underlying field is the field of complex numbers, F = C. Some
of the results can be extended to general algebraically closed fields.

In Sections 7 and 8 we showed that nonsingular Hankel and Toeplitz matrices
can be represented as a product of the transpose of a Vandermonde matrix V Tn ,
a diagonal matrix, and the Vandermonde matrix Vn, and we called this Vander-
monde factorization. Since inverses of Hankel and Toeplitz matrices are H- and T-
Bezoutians, respectively, this is equivalent to the fact that nonsingular Bezoutians
can be reduced to diagonal form by multiplying them by Vn from the left and by
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V Tn from the right. We call this kind of factorization Vandermonde reduction of
Bezoutians. In this section we give a direct derivation of Vandermonde reduction
of Bezoutians and generalize it to general, not necessarily nonsingular Bezoutians.

Hereafter, the notations confluent and non-confluent are used in connection
with confluent and non-confluent Vandermonde matrices, respectively.

1. Non-confluent Hankel case. To begin with, let us recall that, for t = (ti)ni=1, the
(non-confluent) Vandermonde matrix Vm(t) is defined by

Vm(t) =

⎡⎢⎢⎢⎣
1 t1 . . . tm−11

1 t2 . . . tm−12
...

...
...

1 tn . . . tm−1n

⎤⎥⎥⎥⎦ .
If m = n and the ti are distinct, then Vn(t) is nonsingular.

Obviously, for x ∈ Cm, Vm(t)x = (x(ti))ni=1. Furthermore, for an n×nmatrix
B and s = (sj)nj=1,

Vn(t)BVn(s)T = [B(ti, sj) ]ni,j=1 . (9.1)

We specify this for t = s with pairwise distinct components and an H-Bezoutian
B = BezH(u,v), where u(t),v(t) ∈ Cn+1(t) and u(t) has degree n . In this case
the off diagonal entries cij of C = Vn(t)BVn(t)T are given by

cij =
u(ti)v(tj)− v(ti)u(tj)

ti − tj
. (9.2)

Our aim is to find t such that C is diagonal. One possibility is to choose the
zeros of u(t). This is possible if u(t) has only simple zeros. A more general case is
presented next.

Proposition 9.1. Let α ∈ C be such that w(t) = u(t) − αv(t) has simple roots
t1, . . . , tn, and let t = (ti)ni=1. Then

Vn(t)BezH(u,v)Vn(t)T = diag(γi)ni=1 , (9.3)

where
γi = u′(ti)v(ti)− u(ti)v′(ti) . (9.4)

Proof. According to Lemma 2.2 we have BezH(u,v) = BezH(w,v). From (9.2) we
see that the off diagonal elements of the matrix Vn(t)BezH(u,v)Vn(t)T vanish.
The expression (9.4) follows from (9.2), γi = lim

t→ti
u(t)v(ti)−v(t)u(ti)

t−ti . �

Remark 9.2. If u(t) and v(t) are coprime, which is the same as saying that
BezH(u,v) is nonsingular, then according to Lemma 7.7 for almost all values
of α the polynomial w(t) has simple roots.

Remarkably the special case v(t) = 1 of (9.3) leads to a conclusion concerning
the inverse of a Vandermonde matrix.
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Corollary 9.3. Let t = (ti)ni=1 have pairwise distinct components, and let u(t) be
defined by u(t) =

∏n
i=1(t− ti). Then the inverse of Vn(t) is given by

Vn(t)−1 = B(u)Vn(t)Tdiag
(

1
u′(ti)

)n
i=1

, (9.5)

where B(u) is the upper triangular Hankel matrix introduced in (2.2).

Now we consider the H-Bezoutian of real polynomials u(t) and v(t), which is
an Hermitian matrix. Similarly to Corollary 7.11, Proposition 9.1 leads to a matrix
congruence.

Corollary 9.4. Let in Proposition 9.1 the polynomials u(t) and v(t) be real and α ∈
R. Furthermore, let t1, . . . , tr be the (simple) real and (tr+1, tr+1), . . . , (tn−1, tn−1)
the (simple) non-real roots of w(t). Then

Vn(t)BezH(u,v)Vn(t)∗=diag
(
γ1, . . . , γr,

[
0 γr+1

γr+1 0

]
, . . . ,

[
0 γn−1

γn−1 0

])
.

In particular,

sgnBezH(u,v) =
r∑
i=1

sgn γi .

Note that it follows from the Hermitian symmetry of the matrix that the
numbers γ1, . . . , γr are real.

2. Non-confluent Toeplitz case. Let t = (ti)ni=1 have distinct nonzero components,

t−1 =
(

1
ti

)n
i=1

. If we specify (9.1) for a T-Bezoutian BezT (u,v), then we obtain

for the off diagonal entries cij of C = Vn(t)BezT (u,v)Vn(t−1)T the relation

cij = −
u(ti)v(tj)− v(ti)u(tj)

ti − tj
t1−nj .

For the diagonal entries we obtain using l’Hospital’s rule

cii = (v′(ti)u(ti)− u′(ti)v(ti))t1−ni .

In the same way as in Proposition 9.1 we derive the following.

Proposition 9.5. Let α ∈ C be such that w(t) = u(t) − αv(t) has simple nonzero
roots t1, . . . , tn, and let t = (ti)ni=1. Then

Vn(t)BezT (u,v)Vn(t−1)T = diag(γi)ni=1 ,

where
γi = (v′(ti)u(ti)− u′(ti)v(ti))t1−ni .

Let u be conjugate-symmetric and v conjugate-skewsymmetric. Then the
matrix BezT (u,v) is Hermitian. For purely imaginary α, the roots of w(t) =
u(t)− αv(t) are located symmetrically with respect to the unit circle T.
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Corollary 9.6. Let in Proposition 9.5 the polynomial u be conjugate-symmetric and
v(t) be conjugate-skewsymmetric, and let α ∈ iR. Furthermore, let t1, . . . , tr be the
(simple) roots of w(t) on T and tr+1, tr+2 = t

−1
r+1, . . . , tn−1, tn = t

−1
n−1 the (simple)

roots of w(t) outside T. Then

Vn(t)BezT (u,v)Vn(t)∗=diag
(
γ1, . . . , γr,

[
0 γr+1

γr+1 0

]
, . . . ,

[
0 γn−1

γn−1 0

])
.

In particular,

sgnBezT (u,v) =
r∑
i=1

sgn γi .

3. Confluent case. Here we need the following generalization of a Vandermonde
matrix. Let t = (ti)mi=1 and r = (ri)mi=1 ∈ Nm. We denote by Vn(ti, ri) the ri × n
matrix

Vn(ti, ri) =

⎡⎢⎢⎢⎣
1 ti t2i . . . tn−1i

0 1 2ti . . . (n− 1)tn−2i
...

. . .
...

0 . . . 0 1 . . .
(
n−1
ri−1
)
tn−ri

i

⎤⎥⎥⎥⎦
and introduce the matrix

Vn(t, r) =

⎡⎢⎣ Vn(t1, r1)
...

Vn(tm, rm)

⎤⎥⎦ ,

which is called confluent Vandermonde matrix.
Now we show that in case that u(t) has multiple roots Bezoutians can be

reduced to block diagonal form with the help of confluent Vandermonde matri-
ces Vn(t, r) . We restrict ourselves to the case of H-Bezoutians. The case of T-
Bezoutians is analogous.

First we consider the special single node case t = 0, r = r. Suppose that
u = (ui)n+1

i=1 and u(t) has the root t = 0 with multiplicity r, i.e., u1 = u2 = · · · =
ur = 0. Obviously, Vn(0, r) =

[
Ir O

]
. Hence Vn(0, r)BVn(0, r)T is the r × r

leading principal submatrix of B = BezH(u,v). We denote this matrix by Γ(0)
and observe, taking Theorem 3.2 into account, that

Γ(0) =

⎡⎢⎣ v1
...

. . .
vr . . . v1

⎤⎥⎦
⎡⎢⎣ ur+1

. .
. ...

ur+1 . . . u2r+1

⎤⎥⎦ =
⎡⎢⎣ w1

. .
. ...

w1 . . . wr

⎤⎥⎦ ,
where

2n−r+1∑
i=1

wit
i−1 = u(t)v(t)t−r .
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Taylor expansion gives us

ui =
1

(i− 1)! u
(i−1)(0)

and an analogous expression for vi.
Suppose now that t0 is a root of u(t) with multiplicity r. We consider the

polynomials ũ(t) = u(t−t0) and ṽ(t) = v(t−t0) and B̃ = [ b̃ij ]ni,j=1 = BezH(ũ, ṽ).
Then, for k = 0, 1, . . . ,

ũ(k)(0) = u(k)(t0) , ṽ(k)(0) = v(k)(t0)

and

b̃ij =
1

(i− 1)!(j − 1)!
∂i+j−2

∂ti−1∂sj−1
B̃(t, s) |(0,0)

=
1

(i− 1)!(j − 1)!
∂i+j−2

∂ti−1∂sj−1
B(t, s) |(t0,t0) .

Hence

Γ(t0) =

⎡⎢⎣ ṽ1
...

. . .
ṽr . . . ṽ1

⎤⎥⎦
⎡⎢⎣ ũr+1

. .
. ...

ũr+1 . . . ũ2r+1

⎤⎥⎦ =
⎡⎢⎣ w1

. .
. ...

w1 . . . wr

⎤⎥⎦ ,
where ũi =

1
(i− 1)! u

(i−1)(t0), analogously for ṽi, and
2n−r+1∑
i=1

wi(t − t0)i−1 =

u(t)v(t)(t − t0)−r. We arrive at the following.
Proposition 9.7. Let t1, . . . , tm be the (different) roots of u(t) and r1, . . . , rm the
corresponding multiplicities, t = (ti)mi=1 and r = (ri)mi=1. Then

Vn(t, r)BezH(u,v)Vn(t, r)T = diag(Γi)mi=1 ,

where

Γi =

⎡⎢⎣ wi1

. .
. ...

wi1 . . . wiri

⎤⎥⎦ and

2n−ri+1∑
j=1

wij(t− ti)j−1 = u(t)v(t)(t − ti)−ri .

The case v(t) = 1 provides a formula for the inverse of confluent Vander-
monde matrices.

Corollary 9.8. Let t = (t1, . . . , tq) have distinct components, and let

u(t) =
q∏
i=1

(t− ti)ri ,

where n = r1 + · · · + rq. Then the inverse of the confluent Vandermonde matrix
Vn(t, r), r = (r, . . . , rq), is given by

Vn(t, r)−1 = B(u)Vn(t, r)T diag (Γ−1i )mi=1 ,
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where Γi =

⎡⎢⎣ wi1

. .
. ...

wi1 . . . wiri

⎤⎥⎦ with wij =
u(j+ri)(ti)
(j+ri−1)! .

We leave it to the reader to state the analogous properties of T-Bezoutians.

10. Root localization problems

In this section we show the importance of Bezoutians, Hankel and Toeplitz matrices
for root localization problems. Throughout the section, let F = C.

1. Inertia of polynomials. Let C be a simple oriented closed curve in the extended
complex plane C∞ = C ∪ {∞} dividing it into an “interior” part Ω+ and an
“exterior” part Ω−. We assume that the domain Ω+ is situated left from C if a point
moves along C in positive direction. The inertia of the polynomial u(t) ∈ Cn+1(t)
with respect to C is, by definition, a triple of nonnegative integers

inC(u) = (π+(u), π−(u), π0(u)) ,

where π±(u) is the number of zeros of u(t) in Ω±, respectively, and π0(u) is
the number of zeros on C. In all cases multiplicities are counted. We say that
u(t) ∈ Cn+1(t) has a zero at ∞ with multiplicity r if the r leading coefficients
of u(t) are zero. By a root localization problem we mean the problem to find the
inertia of a given polynomial with respect to a curve C.

In the sequel we deal only with the cases that C is the real line R, the imagi-
nary line iR, or the unit circle T. We relate the inertia of polynomials to inertias of
Hermitian matrices, namely to Bezoutians. Recall that the inertia of an Hermitian
matrix A is the triple

InA = (p+(A), p−(A), p0(A)) ,

where p+(A) is the number of positive, p−(A) the number of negative eigenvalues
(counting multiplicities), and p0(A) the nullity of A. Clearly, the inertia of A is
completely determined by the rank and the signature of A. The importance of the
relation consists in the fact that the inertia of Bezoutians can be computed via
recursive algorithms for triangular factorization, which were described in Section 5.

2. Inertia with respect to the real line. Let u(t) be a given monic polynomial of
degree n, q(t) its real and p(t) its imaginary part, i.e., u(t) = q(t) + ip(t). We
consider the matrix

B =
1
2i
BezH(u,u). (10.1)

For example, if u(t) = t − c, then B = 1
2i (c − c) = Im c. Hence c is in the upper

half-plane if and only if B > 0 . In general, we have

(t− s)B(t, s) =
[
1
2i
(q(t) + ip(t))(q(s) − ip(s))− (q(t) − ip(t))(q(s) + ip(s))

]
= p(t)q(s) − q(t)p(s) .
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Hence,

B = BezH(p,q) . (10.2)

In particular, we see that B is a real symmetric matrix. The following is usually
referred to as Hermite’s theorem.

Theorem 10.1. Let u(t) be a monic polynomial of degree n,

inR(u) = (π+(u), π−(u), π0(u)),

and B be defined by (10.1) or (10.2). Then the signature of B is given by

sgnB = π+(u)− π−(u) .

In particular, B is positive definite if and only if u(t) has all its roots in the upper
half-plane. Furthermore, if u(t) and u(t) are coprime, then InB = inR(u).

Proof. Let d(t) be the greatest common divisor of u(t) and u(t) and δ its degree.
Then d(t) is also the greatest common divisor of p(t) and q(t), and let u(t) =
d(t)u0(t). Then u(t) = d(t)u0(t), since d(t) is real. According to (2.5) we have

B = Res (d,u0)∗
[
B0 O
O O

]
Res(d,u0) ,

where B0 = 1
2i BezH(u0,u0). Since d(t) and u0(t) are coprime, Res(d,u0) is non-

singular. By Sylvester’s inertia law we have sgnB = sgnB0. We find now sgnB0.
Let z1 be a root of u0(t) and u0(t) = (t−z1)u1(t). Then u0(t) = (t−z1)u1(t).

Taking into account that

1
2i
(t− z1)(s− z1)− (t− z1)(s− z1)

t− s = Im z1

we obtain using (2.5)

B0 = Res (t− z1,u1)∗
[
B1 0
0T Im z1

]
Res (t− z1,u1) ,

where B1 = 1
2i BezH(u1,u1) . Repeating these arguments for the other roots zk of

u0(t) (k = 2, . . . , n− δ) we conclude that there is a matrix R such that

B0 = R∗diag (Im z1, . . . , Im zn−δ)R .

Thus, B0 is congruent to the diagonal matrix of the Im zi. Applying Sylvester’s
inertia law we obtain

sgnB = sgnB0 =
n−δ∑
i=1

sgn (Im zi) = π+(u)− π−(u) ,

which proves the main part of the theorem.
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If u(t) and u(t) are coprime, then B is nonsingular, thus p0(B) = 0, and
π0(u) = 0. Hence π+(u) + π−(u) = n. Consequently π±(u) = p±(B), and the
theorem is proved. �

If u(t) is a real polynomial, then the Bezoutian B is zero, so all information
about the polynomial is lost. It is remarkable that in the other cases information
about the polynomial is still contained in B.

Example 10.2. Let u(t) = (t − z0)d(t), where d(t) is real and z0 is in the upper
half-plane. Then B = Im z0 dd∗. This matrix has signature 1 saying that π+(u)−
π−(u) = 1 but not specifying the location of the roots of d(t). Nevertheless, the
polynomial d(t) and so information about u(t) can be recovered from B.

Recall that according to the results in Section 5 the Euclidian algorithm ap-
plied to the polynomials p(t) and q(t) provides a method to compute the signature
of B in O(n2) operations.

We know from Proposition 7.18 that the Bezoutian B = BezH(p,q) and the
Hankel matrix Hn = Hn

(
−p

q

)
have the same inertia. Hence we can conclude the

following.

Corollary 10.3. Let p(t) , q(t) ∈ Rn+1(t) be two coprime polynomials, where q(t)
is monic with degree n and u(t) = q(t) + ip(t). Then

inR(u) = InHn

(
−p

q

)
.

Theorem 10.1, gives a complete answer to the problem to find the inertia of
a polynomial only if u(t) has no real and conjugate complex roots. In the other
cases we have only partial information. More precisely, if δ denotes the number of
real roots of u(t), then

π±(u) = p±(B) +
1
2
(p0(B)− δ).

Note that 1
2 (p0(B)− δ) is the number of conjugate complex pairs of roots of u(t).

The number δ is also the number of real roots of the greatest common divisor
d(t) of u(t) and u(t). Clearly, d(t) is a real polynomial. Thus we are led to the
problem to count the number of real roots of a real polynomial. This problem will
be discussed next.

3. Real roots of real polynomials. Let p(t) be a real polynomial of degree n. We
consider the rational function p′(t)

p(t) and the Hankel matrix Hn
(

p′(t)
p(t)

)
. This is just

our Example 7.2. According to Proposition 7.17 the rank of this matrix is equal
to the number of different roots of p(t) and, due to Corollaries 7.11 and 1.2, the
signature is the number of different real roots of p(t). Let π′0(p) denote the number
of different real roots of p(t). Taking also into account Proposition 7.18, we have
now the following Theorem of Jacobi-Borchardt.
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Theorem 10.4. The number of different real roots π′0(p) of the real polynomial p
is given by

π′0(p) = sgnBezH(p,p
′) = sgnHn

(
p′(t)
p(t)

)
.

Example 10.5. Let p(t) = t4 − 1. Then

H4

(
p′(t)
p(t)

)
= 4

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ , BezH(p,p′) = 4

⎡⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎦ .
Both matrices have signature 2, which confirms Theorem 10.4.

Theorem 10.4 completely solves the root localization problem for real polyno-
mials in case of simple roots. The multiple roots are just the roots of the greatest
common divisor p1(t) of p(t) and p′(t). If we find the numbers of different real
roots of p1(t) by Theorem 10.4, then we can obtain the number of real roots with
multiplicity of at least two. If we continue we obtain the number of different real
roots with multiplicity of at least 3, and so on.

From the algorithmic view point we have to apply the Euclidian algorithm
again and again. If it terminates at a certain polynomial d(t), then we continue
with d(t) and d′(t) until the remainder is a constant. It is remarkable that all
together there are not more than n steps.

This also concerns the general root localization problem for a complex polyno-
mial u(t) which was discussed above in Section 10.2. First we apply the Euclidian
algorithm to the real and imaginary parts of u(t), and when it terminates at a
non-constant d(t), then we continue with the Euclidian algorithm for d(t) and
d′(t). Again we have at most n steps if the degree of the original polynomial is n .

4. Inertia with respect to the imaginary axis. To find the inertia of a real poly-
nomial with respect to the imaginary axis iR is a very important task in many
applications, because it is related to the question of stability of systems. In or-
der to avoid confusion, let us point out that if iniR(u) = (π+(u), π−(u), π0(u)) ,
then according to the definition above π+(u) is the number of roots of u(t) with
negative real part and π−(u) those with positive real part.

Clearly, the imaginary axis case can easily be transformed into the real line
case by a transformation of the variable. It remains to study the specifics that
arises from the fact that the polynomial under investigation is real. Suppose that
p(t) is a real polynomial of degree n. We set u(t) = p(it). Then

in iR(p) = in R(u) .

Furthermore, if p(t) =
∑n+1
j=1 pjt

j−1, then u(t) admits a representation

u(t) = a(t2) + i tb(t2) ,
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where, for odd n = 2m+ 1 ,

a(t) = p1 − p3t+ · · ·+ (−1)mp2m+1t
m, b(t) = p2 − p4t+ · · ·+ (−1)mp2m+2t

m ,
(10.3)

and for even n = 2m,

a(t) = p1−p3t+ · · ·+(−1)mp2m+1t
m, b(t) = p2−p4t+ · · ·+(−1)m−1p2mtm−1 .

(10.4)
From (10.2) and Proposition 2.8 we conclude that the matrix B = 1

2i BezH(u,u)
is congruent to the direct sum of the matrices

B0 = BezH(tb, a) and B1 = BezH(b, a) . (10.5)

Using Theorem 10.1 we arrive at the following.

Theorem 10.6. Let p(t) be a real polynomial of degree n and let a(t) and b(t) be
defined by (10.3) or (10.4), depending on whether n is odd or even, and let B0 and
B1 be given by (10.5). Then

sgnB0 + sgnB1 = π+(p)− π−(p),
where π+(p) denotes the number of roots of p(t) in the left and π−(p) the number
of roots in the right half-plane. In particular, the roots of p(t) lie entirely in the left
half-plane if and only both matrices B0 and B1 are positive definite. Furthermore,
if a(t) and b(t) are coprime, then

iniR(p) = InB0 + InB1.

5. Roots on the imaginary axis and positive real roots of real polynomials. In order
to get a full picture about the location of the roots of the real polynomial p(t)
with respect to the imaginary axis we have to find the number π0 of all roots on
the imaginary axis, counting multiplicities. As a first step we find the number π′0
of different roots on iR. This number is equal to the number of different real roots
of the greatest common divisor of a(t2) and tb(t2), where a(t) and b(t) are defined
by (10.3) or (10.4). Let p(0) �= 0 and d(t) be the greatest common divisor of a(t)
and b(t). Then the greatest common divisor of a(t2) and tb(t2) equals d(t2). The
number of real roots of the polynomial d(t2) equals twice the number of positive
real roots of d(t). Thus, we are led to the problem to count the roots of a real
polynomial on the positive real half-axis.

Let p(t) be a real polynomial of degree n and p(0) �= 0. We consider the
function f1(t) =

tp′(t)
p(t) . This function has a partial fraction decomposition

f1(t) =
n∑
i=1

t

t− ti
= n+

n∑
i=1

ti
t− ti

,

where t1, . . . , tn are the roots of p(t). This leads to a Vandermonde factoriza-
tion similar to the factorization (7.10) in Example 7.9. From this factorization we
conclude that

sgnHn(f1) = δ+ − δ− ,
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where δ+ denotes the number of different positive and δ− the number of different
negative real roots of p(t). Using Proposition 7.18 and the result of Theorem 10.4,
which is sgnBezH(p,p′) = δ+ + δ−, we conclude the following.

Theorem 10.7. Let p(t) be as in Theorem 10.6 with p(0) �= 0 . The number of
positive real roots δ+ of p(t) is given by

δ+ =
1
2
(sgnBezH(p,p′) + sgnBezH(p, tp′)) .

Furthermore, all roots of p(t) are real and positive if and only if BezH(p, tp′) is
positive definite.

Example 10.8. For p(t) = t4 − 1 we obtain

BezH(p, tp′) = 4 J4 .

This matrix has a signature equal to zero. Thus (cf. Example 10.5),

1
2
(sgnBezH(p,p

′) + sgnBezH(p, tp
′)) = 1

which confirms Theorem 10.7.

6. Inertia with respect to the unit circle. Now we discuss the problem how to find
the inertia inT(u) = (π+(u), π−(u), π0(u)) of a complex monic polynomial u(t)
of degree n with respect to the unit circle T. According to the definition in Section
10.1, π+(u) is the number of roots inside the unit circle, π−(u) is the number of
roots outside the unit circle, and π0(u) the number of roots on the unit circle. We
consider the matrix

B = BezT (u#,u) . (10.6)

For example, if n = 1 and u(t) = t − c, then B = 1 − |c|2. Thus c belongs to
the open unit disk if and only if B > 0. A general u(t) can be represented as
u(t) = u+(t) + iu−(t), where u± are conjugate symmetric. We have now that the
polynomial (1− ts)B(t, s) is equal to
(u+(t)− iu−(t))(u+(s) + iu−(s))− ((u+(t) + iu−(t))(u+(s)− iu−(s))).

Thus (1 − ts)B(t, s) = 2i(u+(t)u−(s)− u−(t)u+(s)) , which means

B = 2iBezT (u+,u−) . (10.7)

The following is usually referred to as the Schur-Cohn theorem. It can be proved
with the same arguments as Hermite’s theorem (Theorem 10.1).

Theorem 10.9. Let u(t) be a monic polynomial of degree n and B be defined by
(10.6) or (10.7). Then the signature of B is given by

sgnB = π+(u)− π−(u) .
In particular, B is positive definite if and only if u(t) has all its roots in the open
unit disk. Furthermore, if u(t) and u#(t) are coprime, then InB = inT(u).
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Theorem 10.9 provides full information about the inertia of u(t) only if u(t)
has no roots on the unit circle and symmetric with respect to the unit circle or,
what is the same if u(t) and u#(t) are coprime. To complete the picture we still
have to find the inertia of the greatest common divisor of u(t) and u#(t), which
is a conjugate-symmetric polynomial.

7. Roots of conjugate-symmetric polynomials. Let w(t) be a monic conjugate-
symmetric polynomial of degree n and t1, . . . , tn its roots. Then

w(t) =
n∏
k=1

(t− tk) = w#(t) =
n∏
k=1

(1− tkt) ,

which implies t−1k = tk , k = 1, . . . , n . We consider the function f(t) = (w′)#(t)
w#(t)

,
where (w′)# = Jnw′ This function has a partial fraction decomposition (cf. Ex-
ample 8.2)

f(t) =
n∑
k=1

1
1− tkt

.

From this representation we can see that the Toeplitz matrix Tn(f) is Hermitian
and its signature is equal to the number of different roots ofw(t) on T (cf. Corollary
8.7, (8.10), and Corollary 1.2).

Theorem 10.10. For a conjugate-symmetric polynomial w(t), BezT ((w′)#,w#) is
Hermitian, and its signature is equal to the number of different roots of w(t) on
the unit circle.

11. Toeplitz-plus-Hankel Bezoutians

Some important results for the Toeplitz and Hankel case can be generalized to
matrices which are the sum of such structured matrices. In particular, we will
show that the inverse of a (nonsingular) matrix which is the sum of a Toeplitz
plus a Hankel matrix possesses again a (generalized) Bezoutian structure. To be
more precise we define the following.

1. Definition. An n× n matrix B is called Toeplitz-plus-Hankel Bezoutian, briefly
T+H-Bezoutian, if there are eight polynomials gi(t), fi(t) (i = 1, 2, 3, 4) of Fn+2(t)
such that

B(t, s) =

4∑
i=1

gi(t)fi(s)

(t− s)(1 − ts) . (11.1)

In analogy to the Hankel or Toeplitz case we use here the notation

B = BezT+H((gi, fi)41).
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H-Bezoutians or T-Bezoutians are also T+H-Bezoutians. For example, the flip
matrix Jn introduced in (1.2) is an H-Bezoutian, Jn(t, s) can be written as

Jn(t, s) =
tn − sn
t− s =

tn − sn − tn+1s+ tsn+1

(t− s)(1− ts) ,

which shows that Jn is the T+H-Bezoutian (11.1), where

g1 = −f2 = en+1, g2 = f1 = 1, g3 = f4 = en+2, g4 = −f3 = e2 .

The shift matrix (1.8) is a T-Bezoutian and a T+H-Bezoutian,

Sn(t, s) =
t− tnsn−1
1− ts =

t2 − tn+1sn−1 − ts+ tnsn

(t− s)(1− ts) .

For these examples the sum Sn + Jn is also a T+H-Bezoutian,

(Sn + Jn)(t, s) =
(tn + t2)− tn+1(s+ sn−1) + (tn − 1)sn + t(sn+1 − s)

(t− s)(1 − ts) .

But for any vectors u,v,g,h ∈ Fn+1, n > 3, the rank of the matrix with the
generating polynomial

(1− ts)(u(t)v(s) − v(t)u(s)) + (t− s)(g(t)hJ (s)− h(t)gJ (s))

is not expected to be less or equal to 4. This means that the sum of a T- and an
H-Bezoutian BezH(u,v) + BezT (g, f) is, in general, not a T+H-Bezoutian.

2. The transformation ∇T+H . The T+H analogue of the transformations ∇H or
∇T (introduced in Section 2.2 and in Section 2.8) is the transformation ∇T+H
mapping a matrix A = [ aij ]ni,j=1 of order n onto a matrix of order n+2 according
to

A = [ ai−1,j − ai,j−1 + ai−1,j−2 − ai−2,j−1 ]n+2
i,j=1 .

Here we put aij = 0 if i /∈ {1, 2, . . . , n} or j /∈ {1, 2, . . . , n}. DenotingWn = Sn+STn
we have

∇T+HA =

⎡⎣ 0 −eT1A 0
Ae1 AWn −WnA Aen
0 −eTnA 0

⎤⎦ . (11.2)

The generating polynomial of ∇T+HA is

(∇T+HA)(t, s) = (t− s)(1 − ts)A(t, s) . (11.3)

Hence a matrix B is a T+H-Bezoutian if and only if

rank∇T+HB ≤ 4 .
Recall that the n×n matrix in the center of (11.2) is the matrix ∇(A) introduced
in (1.11). In other words, the transformation ∇ is a restriction of ∇T+H , and it is
clear that T+H-Bezoutians are quasi-T+H matrices, but not vice versa.

3. Uniqueness. Different vector systems {gi, fi}4i=1 , {g̃i, f̃i}4i=1 may produce the
same T+H-Bezoutian.
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Note that B = BezT+H((gi, fi)41) is equal to B̃ = BezT+H((g̃i, f̃i)41) if and
only if ∇T+HB = ∇T+H B̃ . To answer the questions under which conditions this
happens we use the following lemma.

Lemma 11.1. Let Gj , Fj (j = 1, 2) be full rank matrices of order m × r, n × r,
respectively, r = rankGj = rankFj . Then

G1F
T
1 = G2F

T
2 (11.4)

if and only if there is a nonsingular r × r matrix ϕ such that

G2 = G1ϕ , F1 = F2ϕ
T . (11.5)

Proof. Assume there is a nonsingular ϕ so that G2 = G1ϕ and FT2 = ϕ−1FT1 , then
G1F

T
1 = G2F

T
2 . Now let (11.4) be satisfied and A = G1F

T
1 . The image of A is

spanned by the columns of G1 as well as of G2. Thus there exists a nonsingular
matrix ϕ so that G2 = G1ϕ. With the same arguments for AT we obtain that
there is a nonsingular matrix ψ so that F2 = F1ψ. Hence

G1F
T
1 = G2F

T
2 = G1ϕψ

TFT1 . (11.6)

Since G1, F1 are of full rank they are one-sided invertible, and we conclude from
(11.6) that ϕ · ψT = Ir . �

Let B, B̃ be n×n T+H-Bezoutians and G, G̃, F, F̃ be full rank matrices with

r = rankG = rankF ≤ 4 , r̃ = rank G̃ = rank F̃ ≤ 4

such that the matrices ∇T+HB and ∇T+HB̃ allow the following rank decomposi-
tions

∇T+HB = GFT , ∇T+HB̃ = G̃F̃T .

Proposition 11.2. The T+H-Bezoutians B and B̃ coincide if and only if r = r̃,
and there is a nonsingular r × r matrix ϕ so that

G̃ = Gϕ , F = F̃ϕT .

To specify this for nonsingular Bezoutians we make the following observation.

Proposition 11.3. Let B be an n× n matrix (n ≥ 2) with rank ∇T+HB < 4. Then
B is a singular matrix.

Proof. Let us prove this by contradiction. Assume B is nonsingular and ∇T+HB <
4. Taking (11.2) into account elementary considerations show that ∇T+HB allows
the following decomposition

∇T+HB=

⎡⎣ 0
Be1
0

⎤⎦ [1 ∗ 0 ] +
⎡⎣ 0
Ben
0

⎤⎦ [ 0 ∗ 1]−
⎡⎣ 1∗
0

⎤⎦ [ 0 eT1B 0 ]−

⎡⎣ 0∗
1

⎤⎦ [ 0 eTnB 0 ],

(11.7)
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where ∗ stands for some vector of Fn. Due to the nonsingularity of B its first and
last rows as well as its first and last columns are linearly independent. Thus,

rank

⎡⎢⎣ 0 0 1 0
Be1 Ben ∗ ∗
0 0 0 1

⎤⎥⎦ = rank
⎡⎢⎢⎢⎢⎣
1 ∗ 0
0 ∗ 1
0 eT1 B 0

0 eTnB 0

⎤⎥⎥⎥⎥⎦ = 4 ,
which contradicts rank ∇T+HB < 4. �

Corollary 11.4. If rank ∇T+HB < 4 then the first and the last rows (or the first
and the last columns) of B are linearly dependent.

For T-(or H-)Bezoutians B , the condition rank∇TB < 2 (or rank ∇HB < 2)
leads to B ≡ 0. But in the T+H case nontrivial T+H-Bezoutians B with rank
∇T+HB < 4 exist. Examples are B = In + Jn (n ≥ 2) and split Bezoutians
introduced in Section 2.11. In these cases rank ∇B ≤ 2 . Now we present the
result for the nonsingular case.

Proposition 11.5. The nonsingular T+H-Bezoutians

B = BezT+H((gi, fi)41) and B̃ = BezT+H((g̃i, f̃i)41)

coincide if and only if there is a nonsingular 4× 4 matrix ϕ such that

[g1 g2 g3 g4 ]ϕ = [ g̃1 g̃2 g̃3 g̃4 ]

and
[ f̃1 f̃2 f̃3 f̃4 ]ϕT = [ f1 f2 f3 f4 ] .

4. Inverses of T+H-Bezoutians. Recall that in the Hankel and Toeplitz cases we
proved that a nonsingular matrix is an H- or a T-Bezoutian if and only if it is the
inverse of a Hankel or of a Toeplitz matrix, respectively (see Sections 4.1, 4.4, 7.6,
8.7). Such an assertion is also true in the T+H case. We start with proving the
following part of it.

Theorem 11.6. Let B be a nonsingular T+H-Bezoutian. Then B−1 is a T+H
matrix.

Proof. Taking Proposition 11.3 into account we have rank ∇T+HB = 4 , and a
rank decomposition of ∇T+HB is of the form (11.7). In particular, this means
that there are vectors zi ∈ Fn, i = 1, 2, 3, 4, such that

BWn −WnB = Be1 zT1 +Ben zT2 + z3 eT1 B + z4 eTnB .

Applying B−1 from both sides this equality leads to

B−1Wn −WnB−1 = −(e1 zT1 B
−1 + en zT2 B

−1 +B−1z3 eT1 +B−1z4 eTn ) .

Thus, the matrix of order n − 2 in the center of ∇(B−1) is the zero matrix. By
Proposition 1.4 this proves that B−1 is a T+H matrix. �
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In the next section we will show that the converse is also true, i.e., the inverse
of a (nonsingular) T+H matrix is a T+H-Bezoutian.

12. Inverses of T+H-matrices

We consider now n × n matrices Rn which are the sum of a Toeplitz matrix Tn
and a Hankel matrix Hn. For our purposes it is convenient to use a representation
(1.5) for m = n,

Tn = Tn(a) , a = (ai)n−1i=1−n , Hn = Tn(b)Jn , b = (bi)n−1i=1−n ,

Rn = Tn(a)+Tn(b)Jn =

⎡⎢⎣ a0 . . . a1−n
...

. . .
...

an−1 . . . a0

⎤⎥⎦+
⎡⎢⎣ b1−n . . . b0

... . .
. ...

b0 . . . bn−1

⎤⎥⎦ . (12.1)
We want to prove that the inverse of a T+H matrix Rn is a T+H-Bezoutian and
even more, we want to present inversion formulas

R−1n = BezT+H((gi, fi)41) .

Thus, we have to answer the question how to obtain the vectors gi, fi , i = 1, 2, 3, 4.
Note that representations of inverses of T+H matrices as T+H-Bezoutians allow
fast matrix-vector multiplication by these matrices (in case F = C see [38], in case
F = R [40], [42]).

1. Fundamental systems. Besides the nonsingular T+H matrix Rn of (12.1) we
consider the (n−2)× (n+2) T+H matrices ∂Rn, ∂RTn obtained from Rn, R

T
n after

deleting the first and last rows and adding one column to the right and to the left
by preserving the T+H structure,

∂Rn=

⎡⎢⎢⎢⎣
a2 a1 . . . a2−n a1−n
a3 a2 . . . a3−n a2−n
...

...
...

...
an−1 an−2 . . . a−1 a−2

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
b1−n b2−n . . . b1 b2
b2−n b3−n . . . b2 b3
...

...
...

...
b−2 b−1 . . . bn−2 bn−1

⎤⎥⎥⎥⎦ ,
(12.2)

∂RTn =

⎡⎢⎢⎢⎣
a−2 a−1 . . . an−2 an−1
a−3 a−2 . . . an−3 an−2
...

...
...

...
a1−n a2−n . . . a1 a2

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
b1−n b2−n . . . b1 b2
b2−n b3−n . . . b2 b3
...

...
...

...
b−2 b−1 . . . bn−2 bn−1

⎤⎥⎥⎥⎦ .
(12.3)

Since Rn is nonsingular both matrices ∂Rn and ∂RTn are of full rank, which means

dimker ∂Rn = dim ker∂RTn = 4 .

Any system of eight vectors {ui}4i=1, {vi}4i=1, where {ui}4i=1 is a basis of ker ∂Rn
and {vi}4i=1 is a basis of ker ∂R

T
n , is called fundamental system for Rn. The reason

for this notation is that these vectors completely determine the inverse R−1n . In
order to understand this we consider first a special fundamental system.
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Hereafter we use the following notation. For a given vector a = (aj)n−1j=1−n we
define

a± = (a±j)nj=1 , (12.4)

where a±n can be arbitrarily chosen. The matrix ∇(Rn) = RnWn −WnRn allows
a rank decomposition of the form,

∇(Rn) = −(a++bJ−)e
T
1 − (aJ−+b+)eTn + e1(a−+bJ−)

T + en(aJ++b+)T . (12.5)

Multiplying (12.5) from both sides by R−1n we obtain a rank decomposition of
∇(R−1n ).

Proposition 12.1. We have

∇
(
R−1n
)
= x1yT1 + x2yT2 − x3yT3 − x4yT4 , (12.6)

where xi (i = 1, 2, 3, 4) are the solutions of

Rnx1 = a+ + bJ− , Rnx2 = aJ− + b+ , Rnx3 = e1 , Rnx4 = en , (12.7)

and yi (i = 1, 2, 3, 4) are the solutions of

RTny1 = e1 , RTny2 = en , RTny3 = a− + bJ− , R
T
ny4 = aJ+ + b+ . (12.8)

According to (12.2), (12.3) we obtain the following fundamental system for Rn.

Proposition 12.2. Let xi,yi ∈ Fn be defined by (12.7), (12.8). The vector system⎧⎨⎩u1 =

⎡⎣ 1
−x1

0

⎤⎦ , u2 =

⎡⎣ 0
−x2

1

⎤⎦ , u3 =

⎡⎣ 0
x3

0

⎤⎦ , u4 =

⎡⎣ 0
x4

0

⎤⎦⎫⎬⎭ (12.9)

is a basis of ker ∂Rn, the vector system⎧⎨⎩v1 =

⎡⎣ 0
y1

0

⎤⎦ , v2 =

⎡⎣ 0
y2

0

⎤⎦ , v3 =

⎡⎣ 1
−y3

0

⎤⎦ , v4 =

⎡⎣ 0
−y4

1

⎤⎦⎫⎬⎭ (12.10)

is a basis of ker ∂RTn .

2. Inversion of T+H matrices. The special fundamental system of Proposition 12.2
deliver the parameters needed in a Bezoutian formula for R−1n . This is the initial
point for our further considerations.

Theorem 12.3. Let Rn be the nonsingular T+H matrix (12.1) and {ui}4i=1, {vi}4i=1

be the fundamental system for Rn given by (12.9), (12.7), (12.10), (12.8). Then
R−1n is the T+H-Bezoutian defined by its generating polynomial as follows,

R−1n (t, s) =
u3(t)v3(s) + u4(t)v4(s)− u1(t)v1(s)− u2(t)v2(s)

(t− s)(1 − ts) . (12.11)
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Proof. Since x3 is the first, x4 the last column, yT1 is the first, y
T
2 the last row of

R−1n we conclude from (11.2)

∇T+HR−1n =

⎡⎢⎣ 0 −yT1 0

x3 ∇(R−1n ) x4

0 −yT2 0

⎤⎥⎦ .
Taking (12.6) into account this leads to

∇T+HR−1n = [−u1 − u2 u3 u4 ] [v1 v2 v3 v4 ]T ,

where the vectors ui and vi are defined in (12.9), (12.10). The inversion formula
follows now from (11.3). �

In particular, this theorem shows that if we want to use the vectors of any
fundamental system in a Bezoutian formula for R−1n a “normalization” of them is
necessary. For this purpose we introduce the following (n+ 2)× 4 matrices

F = [ e1 en+2 f1 f2 ] , G = [g1 g2 e1 en+2 ] ,

where
f1 = (a1−i + bi−n)

n+1
i=0 , f2 = (an−i + bi−1)

n+1
i=0 ,

g1 = (ai−1 + bi−n)
n+1
i=0 , g2 = (ai−n + bi−1)

n+1
i=0 ,

with a±n, b±n arbitrarily chosen. We call a fundamental system {ui}4i=1 , {vi}4i=1

for Rn canonical if

FT [u1 u2 u3 u4 ] = GT [v1 v2 v3 v4 ] = I4 . (12.12)

Proposition 12.4. A fundamental system {ui}4i=1 , {vi}4i=1 for Rn is canonical if
and only if ui is of the form (12.9), (12.7) and vi is of the form (12.10), (12.8)
for i = 1, 2, 3, 4 .

Proof. If {ui}4i=1 and {vi}4i=1 are canonical then (12.12) means, in particular, that
the first component of u1 and v3 as well as the last components of u2 and v4 are
one. The first and last components of the other vectors are zero. Hence there are
vectors xi,yi ∈ Fn such that ui,vi are of the form (12.9), (12.10). Now by (12.12)
we have

[ I+−f1 I+−f2 ]T [x3 x4 ] =
[
1 0
0 1

]
. (12.13)

Here, for a given vector h = (hi)n+1
i=0 ∈ Fn+2 the vector I+−h ∈ Fn is defined by

I+−h = (hi)ni=1. (12.14)

Since
(I+−f1)T = eT1 Rn , (I+−f2)T = eTnRn

and since

⎡⎣ 0
x3

0

⎤⎦ ,
⎡⎣ 0

x4

0

⎤⎦ are in ker ∂Rn equality (12.13) leads to
Rnx3 = e1 , Rnx4 = en .
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Moreover,

⎡⎣ 1
−x1

0

⎤⎦ ∈ ker ∂Rn means that Rnx1 = a+ + bJ− and

⎡⎣ 0
−x2

1

⎤⎦ ∈
ker ∂Rn means that Rnx2 = aJ− + b+. Similar arguments show that yi , i =
1, 2, 3, 4 , are the solutions of (12.8), and the necessity part of the proof is complete.

If {ui}4i=1 , {vi}4i=1 are of the form (12.9), (12.7), and (12.10), (12.8) then,
obviously, (12.12) is satisfied. �

Given an arbitrary fundamental system {ũi}4i=1 , {ṽi}4i=1 we define two 4× 4
nonsingular matrices ΓF ,ΓG,

FT [ ũ1 ũ2 ũ3 ũ4 ] = ΓF , GT [ ṽ1 ṽ2 ṽ3 ṽ4 ] = ΓG .

We conclude that by

[u1 u2 u3 u4 ] = [ ũ1 ũ2 ũ3 ũ4 ] Γ−1F (12.15)

and

[v1 v2 v3 v4 ] = [ ṽ1 ṽ2 ṽ3 ṽ4 ] Γ−1G (12.16)

a canonical fundamental system {ui}4i=1, {vi}4i=1 is given. Note that for fixed
a±n, b±n the canonical fundamental system is unique. The following becomes clear.

Theorem 12.5. Let Rn be the nonsingular T+H matrix (12.1) and {ũi}4i=1 , {ṽi}4i=1

be a fundamental system of Rn. Then the inverse R−1n is the T+H-Bezoutian
(12.11), where {ui}4i=1 , {vi}4i=1 are given by (12.15), (12.16).

Let Rn be given by (12.1). Hereafter we use also a representation of Rn
which involves the projections P± = 1

2 (In ± Jn) onto Fn± introduced in (1.3) and
the vectors

c = (cj)n−1j=1−n = a+ b , d = (dj)n−1j=1−n = a− b ,

namely

Rn = Tn(c)P+ + Tn(d)P− . (12.17)

Instead of the solutions xi of (12.7) and the solutions yi of (12.8) we consider now
the solutions of the following equations the right-hand sides of which depend on
c,d and c̃ = aJ + b , d̃ = aJ − b,

Rnw1 =
1
2
(c+ + cJ−) , Rnw2 =

1
2
(d+ − dJ−) , Rnw3 = P+e1 , Rnw4 = P−e1

(12.18)
and

RTnz1 = P+e1 , RTnz2 = P−e1 , RTnz3 =
1
2
(c̃+ + c̃J−) , R

T
nz4 =

1
2
(d̃+ − d̃J−) .

(12.19)
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Here we use the notation (12.4). We introduce the vectors

ŭ1 =

⎡⎣ 1
−2w1

1

⎤⎦ , ŭ2 =

⎡⎣ 1
−2w2

−1

⎤⎦ , ŭ3 =

⎡⎣ 0
w3

0

⎤⎦ , ŭ4 =

⎡⎣ 0
w4

0

⎤⎦ ,
v̆1 =

⎡⎣ 0
z1
0

⎤⎦ , v̆2 =

⎡⎣ 0
z2
0

⎤⎦ , v̆3 =

⎡⎣ 1
−2z3
1

⎤⎦ , v̆4 =

⎡⎣ 1
−2z4
−1

⎤⎦ .
(12.20)

Now an inversion formula which involves these vectors follows from formula (12.11).

Proposition 12.6. Let Rn be the nonsingular T+H matrix (12.17). Then the inverse
R−1n is given by

R−1n (t, s) =
ŭ3(t)v̆3(s) + ŭ4(t)v̆4(s)− ŭ1(t)v̆1(s)− ŭ2(t)v̆2(s)

(t− s)(1 − ts) , (12.21)

where {ŭi}4i=1 , {v̆i}4i=1 are defined in (12.20).

Proof. Since
[ ŭ1 ŭ2 ŭ3 ŭ4 ] = [u1 u2 u3 u4 ]ϕ

and
[ v̆1 v̆2 v̆3 v̆4 ] = [v1 v2 v3 v4 ]ϕ−1 ,

where ϕ is the block diagonal matrix

ϕ = diag
([

1 1
1 −1

]
,
1
2

[
1 1
1 −1

])
,

the proposition follows from Proposition 11.5 and (12.11). �

3. Inversion of symmetric T+H matrices. It is easy to see that a T+H matrix is
symmetric if and only if the Toeplitz part has this property. Let Rn be a non-
singular, symmetric T+H matrix (12.1). Then the solutions of (12.7) and (12.8)
coincide,

y1 = x3 , y2 = x4 , y3 = x1 , y4 = x2 .

Using the inversion formula (12.11) R−1n is given by the vectors {ui}4i=1 of (12.9),

R−1n (t, s) =
u3(t)u1(s)− u1(t)u3(s) + u4(t)u2(s)− u2(t)u4(s)

(t− s)(1 − ts) . (12.22)

Since a = aJ we have c = c̃ , d = d̃ , and the inversion formula (12.21) can be
simplified as well,

R−1n (t, s) =
ŭ3(t)ŭ1(s)− ŭ1(t)ŭ3(s) + ŭ4(t)ŭ2(s)− ŭ2(t)ŭ4(s)

(t− s)(1 − ts) . (12.23)

If we have any basis {ũi}4i−1 of ker ∂Rn, it remains to compute ΓF , and {ui}4i=1

is given by (12.15).
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We will not consider the skewsymmetric case, since a skewsymmetric T+H
matrix is always a pure Toeplitz matrix. (For the skewsymmetric Toeplitz case see
Section 4.7.)

4. Inversion of centrosymmetric T+H matrices. If Rn from (12.1) is centrosym-
metric, i.e., RJn = Rn , then in view of JnTn(a)Jn = Tn(aJ ) ,

Rn =
1
2
(Rn +RJn) = Tn

(
1
2
(a + aJ)

)
+ Tn

(
1
2
(b+ bJ)

)
Jn .

Together with Exercises 15, 16 we conclude the following.

Proposition 12.7. Let Rn be an n× n T+H matrix. Then the following assertions
are equivalent.
1. Rn is centrosymmetric.
2. In the representation (12.1) (resp. (12.17)) the Toeplitz matrices Tn(a) and
Tn(b) (resp. Tn(c) and Tn(d)) are symmetric.

3. In the representation (12.1) (resp. 12.17)) a and b (resp. c and d) are sym-
metric vectors.

Corollary 12.8. A centrosymmetric T+H matrix Rn is also symmetric.

Moreover, in the centrosymmetric case the representation (12.17) can be writ-
ten in the form

Rn = P+Tn(c)P+ + P−Tn(d)P− . (12.24)
Now we specify the results for general T+H matrices to centrosymmetric T+H
matrices Rn. Since Rn is symmetric we can use the simplifications of the previous
subsection. To begin with we observe that the right-hand sides of the first and
the third equations of (12.18) are symmetric and of the second and the fourth
equations are skewsymmetric if we choose

cn = c−n, dn = d−n .

Since centrosymmetric matrices map symmetric (skewsymmetric) vectors into sym-
metric (skewsymmetric) vectors, we conclude that the solutions w1,w3 of (12.18)
as well as their extensions ŭ1, ŭ3 of (12.20) are symmetric, whereas w2,w4 and
ŭ2, ŭ4 are skewsymmetric vectors. This leads to further simplifications of the in-
version formula (12.23). But before presenting this formula let us introduce a more
unified notation, where the subscript + designates symmetric, − skewsymmetric
vectors in the fundamental system,

u+ =

⎡⎣ 0
w3

0

⎤⎦ , u− =
⎡⎣ 0

w4

0

⎤⎦ , v+ =

⎡⎣ 1
−2w1

1

⎤⎦ , v− =
⎡⎣ 1
−2w2

−1

⎤⎦ . (12.25)
Here wi are the solutions of (12.18) which turn obviously into pure Toeplitz equa-
tions,

Tn(c)w1 = P+c+ , Tn(d)w2 = P−d+ , Tn(c)w3 = P+e1 , Tn(d)w4 = P−e1 .
(12.26)
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Note that these equations have unique symmetric or skewsymmetric solutions.
Thus, the inversion formula (12.23) can be rewritten as a sum of a split Bezoutian
of (+)-type and a split Bezoutian of (−)-type. These special Bezoutians were
introduced in Section 2.11. Let us use the notations adopted there.

Theorem 12.9. Let Rn be a nonsingular, centrosymmetric T+H matrix given by
(12.17) and u±,v± be the vectors of Fn+2

± defined in (12.25), where the wi are the
unique symmetric or skewsymmetric solutions of (12.26). Then

R−1n = B+ +B− ,

where B± are the split Bezoutians of (±)-type
B± = Bezsplit(v±,u±) .

Similar ideas as those of Section 4.5 lead to a slight modification of the last
theorem. We extend the nonsingular centrosymmetric T+H matrix Rn given by
(12.17) to a nonsingular centrosymmetric T+H matrix Rn+2, such that Rn is its
central submatrix of order n.

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− . (12.27)

Here c and d are extensions of the original vectors c and d by corresponding
components c−n = cn , d−n = dn , c−n−1 = cn+1 , d−n−1 = dn+1. Let x±n+2,x

±
n be

the unique symmetric or skewsymmetric solutions of

Tn+2(c)x+
n+2 = P+e1 , Tn(c)x+

n = P+e1 ,
Tn+2(d)x−n+2 = P−e1 , Tn(d)x−n = P−e1 .

(12.28)

(Note that x+
n = w3 ,x−n = w4. The solutions x±n+2 are up to a constant factor

equal to the vectors v±.)

Corollary 12.10. Let Rn+2 be a nonsingular, centrosymmetric extension (12.27) of
Rn. Then the equations (12.28) have unique symmetric or skewsymmetric solutions
and

R−1n =
1
r+
Bezsplit(x+

n+2,u+) +
1
r−
Bezsplit(x−n+2,u−) ,

where r± are the first components of x±n+2 and u± =

⎡⎣ 0
x±n
0

⎤⎦ .
If Tn(c) and Tn(d) are nonsingular then Rn is nonsingular. Indeed, taking

(12.24) into account Rnu = 0 leads to

P+Tn(c)P+u = −P−Tn(d)P−u .

Hence P+u = 0 and P−u = 0 which means u = 0. The converse is not true. Take,
for example, c = (1, 1, 1) and d = (−1, 1,−1), then T2(c) and T2(d) are singular,
whereas R2 = 2I2 is nonsingular. One might conjecture that for a nonsingular Rn
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there is always a representation (12.17) with nonsingular Tn(c) and Tn(d). For
n = 2 this is true. But this fails to be true for n = 3. Consider, for example,

c = (1, 0, 1, 0, 1) and d = (0, 0, 1, 0, 0) .

Then

R3 = T3(c)P+ + T3(d)P− =
1
2

⎡⎣ 3 0 1
0 2 0
1 0 3

⎤⎦
is nonsingular. But T3(c) is a chess-board matrix (1.4) with c = 1, b = 0 which is
singular and uniquely determined in the representation of R3 (cf. Exercise 16).

Let us consider besides Rn = Tn(a) + Tn(b)Jn the matrix R−n = T (a) −
T (b)Jn. If Rn is represented in the form (12.24) then the corresponding represen-
tation of R−n is

R−n = P+Tn(d)P+ + P−Tn(c)P− ,
which means that the roles of c and d are interchanged. We conclude the following

Proposition 12.11. The (symmetric) Toeplitz matrices Tn(c) and Tn(d) are non-
singular if and only if both Rn and R−n are nonsingular.

Proof. We have already shown that the nonsingularity of Tn(c) and Tn(d) implies
the nonsingularity of Rn. The nonsingularity of R−n follows with the same argu-
ments. It remains to show that the singularity of Tn(c) (or Tn(d)) leads to the
singularity of Rn or R−n . Let u be a nontrivial vector such that Tn(c)u = 0 . We
split u into its symmetric and skewsymmetric parts

u = u+ + u− (u± ∈ Fn±).

Clearly, at least one of the vectors u+ or u− is nonzero, and Tn(c)u+ = Tn(c)u− =
0 . Since

Rnu+ = Tn(c)u+ , R−nu− = Tn(c)u−
we obtain that Rn or R−n is singular. This is also obtained if we assume that Tn(d)
is singular. �

5. Inversion of centro-skewsymmetric T+H matrices. In this subsection let us
consider T+H matrices Rn which are centro-skewsymmetric, Rn = −RJn. Since
for an n × n centro-skewsymmetric matrix A, detA = (−1)n detA, all centro-
skewsymmetric matrices of odd order are singular. Hence we consider here mainly
matrices of even order. The centro-skewsymmetric counterpart of Proposition 12.7
is as follows.

Proposition 12.12. Let Rn be an n×n T+H matrix. Then the following assertions
are equivalent.
1. Rn is centro-skewsymmetric.
2. There is a representation (12.1) (resp. (12.17)) such that the Toeplitz matrices
Tn(a) and Tn(b) (resp. Tn(c) and Tn(d)) are skewsymmetric.

3. There is a representation (12.1) (resp. (12.17)) such that a and b (resp. c
and d) are skewsymmetric vectors.
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In the remaining part of this subsection we only use such representations. In
this case (12.17) can be rewritten as

Rn = P−Tn(c)P+ + P+Tn(d)P− .

Its transposed matrix is given by

RTn = −(P−Tn(d)P+ + P+Tn(c)P−) .

In the equations (12.19) we have c̃ = −d and d̃ = −c.
In general, Rn is neither symmetric nor skewsymmetric, thus a connection

between the solutions of (12.18) and (12.19) is not obvious. If we choose cn = −c−n
and dn = −d−n than c− = −c+ , d− = −d+. Hence the right-hand sides of the
equations (12.18), (12.19) are either symmetric or skewsymmetric. Since Rn as
a centro-skewsymmetric matrix maps Fn± to Fn∓, we obtain that the solutions are
also either symmetric or skewsymmetric. Let us indicate these symmetry properties
again by denoting

w+ = w1 ,w− = w2 ,x− = w3 ,x+ = w4,
x̃− = z1 , x̃+ = z2 , w̃+ = z3 , w̃− = z4.

Since these symmetries pass to the augmented vectors ŭj , v̆j of (12.20) we set

v+ = ŭ1 , v− = ŭ2 , u− = ŭ3 , u+ = ŭ4 ,
ṽ+ = v̆3 , ṽ− = v̆4 , ũ− = v̆1 , ũ+ = v̆2 .

(12.29)

The equations (12.18), (12.19) turn into Toeplitz equations,

Tn(c)x+ = P−e1 , Tn(c)w+ = P−c+ , Tn(d)x− = P+e1 , Tn(d)w− = P+d+

(12.30)
and

Tn(c)x̃− = −P+e1 , Tn(c)w̃− = P+c+ , Tn(d)x̃+ = −P−e1 , Tn(d)w̃+ = P−d+ .
(12.31)

According to Proposition 12.6 and (11.3) R−1n given by the augmented vectors
(12.29) of these solutions via

∇T+HR−1n = u−ṽT+ − v+ũT− − v−ũT+ + u+ṽT− . (12.32)

Now we show how the solutions of (12.30) and (12.31) are related. First we com-
pare the equations Tn(c)x̃− = P+e1 and Tn(c)x+ = P−e1 for any c ∈ F2n−1

− . The
following lemma shows that there is an essential difference between the centrosym-
metric and centro-skewsymmetric cases.

Lemma 12.13. Let Tn(c) be skewsymmetric. If the equation Tn(c)x̃− = −P+e1 is
solvable, then equation Tn(c)x+ = P−e1 is also solvable, and if n is even, then the
converse is also true. If x̃− is a skewsymmetric solution of the first equation, then
a solution of the second equation is given by

x+(t) =
1 + t

1− t x̃−(t). (12.33)
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Proof. If Tn(c)x̃− = −P+e1 is solvable, then there exists a skewsymmetric solution
x̃−. Since x̃− is skewsymmetric, we have x̃−(1) = 0. Hence (12.33) defines a
polynomial x+(t). Moreover, the coefficient vector x+ is symmetric.

Let z ∈ Fn be defined by z(t) = 1
t−1 x̃−(t) and z1(t) = tz(t). If now Tn(c)z =

(rk)nk=1, then Tn(c)z
1 = (rk−1)nk=1, where r0 is some number. In view of Tn(c)(z

1−
z) = −P+e1, we have

r0 − r1 = −
1
2
, r1 = r2 = · · · = rn−1, rn−1 − rn = −

1
2
.

Since the (n − 1) × (n − 1) principal submatrix Tn−1 of Tn(c) is skewsymmetric
and the vector z′ ∈ Fn−1 obtained from z by deleting the last (zero) component
is symmetric, the vector Tn−1z′ = (rk)n−1k=1 is skewsymmetric. Hence

r0 = −
1
2
, r1 = r2 = · · · = rn−1 = 0, rn =

1
2
.

We conclude that Tn(c)(z + z1) = −P−e1. This means that x+ = z+ z1 .
The proof of the converse direction follows the same lines. One has to take

into account that if n is even and x+ is symmetric, then x+(−1) = 0. Hence
z(t) = 1

t+1x+(t) is a polynomial. �
Note that the converse direction of Lemma 12.13 is not true if n is odd. If,

for example,

T3(c) =

⎡⎣ 0 −1 0
1 0 −1
0 1 0

⎤⎦
then T3(c)x+ = P−e1 is solvable but Tn(c)x̃− = P+e1 is not.

The relation between the solutions x+ and x̃− extends to the augmented
vectors u+ and ũ−. We have

u+(t) =
1 + t

1− t ũ−(t).

Replacing c by d we obtain

ũ+(t) =
1 + t

1− t u−(t).

Now we compare the equations Tn(c)w+ = P−c+ and Tn(c)w̃− = P+c+. More
precisely, we compare the augmented vectors v+ and ṽ−.

Lemma 12.14. Let Tn(c) be skewsymmetric. If the equation Tn(c)w̃− = P+c+ is
solvable, then the equation Tn(c)w+ = P−c+ is also solvable, and the augmented
vectors of these solutions are related via

v+(t) =
1 + t

1− t ṽ−(t). (12.34)

If n is even, then the solvability of Tn(c)w+ = P−c+ implies the solvability of
Tn(c)w̃− = P+c+.
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Proof. Let T̃ denote the n × (n + 2) matrix T̃ = [ci−j+1]n−1 n+1
i=0 j=0 with c−n = cn .

If Tn(c)w̃− = P+c+, then T̃ ṽ− = 0. Furthermore, if w̃− is skewsymmetric, then
ṽ− is skewsymmetric. Hence ṽ−(1) = 0 and z(t) = 1

1−t ṽ−(t) is a polynomial.
We consider the coefficient vector z of z(t) as a vector in Fn+2 and denote the
coefficient vector of tz(t) by z1.

Suppose that T̃z = (rk)n1 , then T̃z1 = (rk−1)n1 , where r0 is some number.
Since z− z1 = ṽ− and T̃ ṽ− = 0, we conclude that r0 = · · · = rn.

Let Tn+1(c) denote the (n+1)× (n+1) matrix [ci−j ] ni,j=0 and z′ ∈ Fn+1 the
vector obtained from z deleting the last (zero) component. Then Tn+1(c)z′ =
(rk)nk=0. Here Tn+1(c) is skewsymmetric and z′ is symmetric, thus the vector
(rk)nk=0 is skewsymmetric. Since all components are equal, it must be the zero
vector. We obtain T̃ (z + z1) = 0. Observe that z + z1 is symmetric and that
its first component is equal to 1. Therefore, z + z1 = v+ = [ 1 − 2wT+ 1 ]T for
some symmetric vector w+ ∈ Fn. This vector is now a solution of the equation
Tn(c)w+ = P−c+ .

The converse direction is proved analogously taking into account that if n
is even, then the length of v+, which is n + 2, is even. Hence v+(−1) = 0 and
z(t) = 1

1+tv+(t) is well defined. �

Replacing c by d we obtain

ṽ+(t) =
1 + t

1− t v−(t).

Taking (12.32), Lemma 12.13 and Lemma 12.14 together we arrive at

∇T+H(R−1n )(t, s) = u−(t)
1 + s

1− sv−(s)− v−(t)
1 + s

1− su−(s)

(12.35)

−v+(t)
1− s
1 + s

u+(s) + u+(t)
1 − s
1 + s

v+(s) ,

which finally leads to the following theorem taking (11.3) into account.

Theorem 12.15. Let the centro-skewsymmetric T+H matrix Rn be nonsingular
and given by (12.17). Then the equations (12.30) are solvable and the generating
function of the inverse matrix is given by the augmented vectors of the solutions
of these equations via

R−1n (t, s) = B+(t, s)
s− 1
s+ 1

+B−(t, s)
s+ 1
s− 1

and
B± = Bezsplit(u±,v±) .

Note that for a nonsingular matrix Rn all equations (12.30) and (12.31)
are uniquely solvable. Moreover, we observe that x = x+ − x̃− is a solution of
Tn(c)x = e1 and w = w+− w̃− is a solution of Tn(c)w = cJ− . Taking Proposition
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4.6 into account we obtain the nonsingularity of Tn(c). Analogously, Tn(d) is
nonsingular. This leads to the following surprising conclusion.

Corollary 12.16. For a centro-skewsymmetric T+H matrix

Rn = T (a) + T (b)Jn = T (c)P+ + T (d)P−

with skewsymmetric vectors a,b, c,d , the following assertions are equivalent:

1. Rn is nonsingular.
2. R−n = T (a)− T (b)Jn is nonsingular.
3. T (c) and T (d) are nonsingular.

To present the counterpart of Corollary 12.10 let us extend the nonsingular
centro-skewsymmetric T+H matrix Rn given by (12.17) to a nonsingular centro-
skewsymmetric T+Hmatrix Rn+2, such that Rn is its central submatrix of order n.

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− , (12.36)

where c and d are extensions of the original vectors c and d by corresponding
components c−n = −cn , d−n = −dn , c−n−1 = −cn+1 , d−n−1 = −dn+1. Let
x±n+2,x

±
n be the unique symmetric or skewsymmetric solutions of

Tn+2(c)x−n+2 = P+e1 , Tn(c)x−n = P+e1 ,
Tn+2(d)x+

n+2 = P−e1 , Tn(d)x+
n = P−e1 .

(12.37)

Note that x±n = −x̃± , (solutions of (12.31)), thus −u± are the augmented vectors
defined by u±(t) = tx±n (t) . The solutions x±n+2 are up to a constant factor equal
to the vectors v±.

Corollary 12.17. Let Rn+2 be a nonsingular and centro-skewsymmetric extension
(12.36) of Rn. Then the equations (12.37) have unique symmetric or skewsymmet-
ric solutions and

R−1n =
1
r+
Bezsplit(x+

n+2,u+)
s− 1
s+ 1

+
1
r−
Bezsplit(x−n+2,u−)

s+ 1
s− 1 ,

where r± are the first components of x±n+2.

13. Exercises

1. An n× n matrix B is called quasi-T-Bezoutian if ∇TB introduced in (2.17)
has rank 2 at most.
(a) Show that B is a quasi-T-Bezoutian if and only if BJn is a quasi-H-

Bezoutian (introduced in Section 2.4).
(b) State and prove a proposition about the representation of a quasi-T-

Bezoutian that is analogous to Proposition 2.4.
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2. The special Toeplitz matrix

Zαn (a) =

⎡⎢⎢⎢⎢⎣
a0 αan−1 . . . αa1

a1 a0
. . .

...
...

. . . . . . αan−1
an−1 . . . a1 a0

⎤⎥⎥⎥⎥⎦ (α ∈ F)

is called α-circulant.
(a) Show that the T-Bezoutian of a polynomial u(t) ∈ Fn+1 and tn − α is

an α-circulant and each α-circulant is of this form.
(b) Show that a T-Bezoutian is a Toeplitz matrix if and only if it is an

α-circulant for some α or an upper triangular Toeplitz matrix.
3. Let u(t) be a polynomial of degree n and v(t) a polynomial of degree ≤ n.
Describe the nullspace of the transpose of Resp(u,v) (introduced in Section
3.1) in terms of the greatest common divisor of u(t) and v(t). Use this to
show that the nullity of Resp(u,v) is, independently of p, equal to the degree
of the greatest common divisor of u(t) and v(t).

4. (a) Show that an n × n matrix A is Toeplitz if and only if I+−∇T (A)IT+−
is the zero matrix, where I+− is introduced in (12.14).

(b) Show that the product of two nonzero Toeplitz matrices is Toeplitz
again if and only if both factors are α-circulants for the same α or both
are upper (or lower) triangular Toeplitz matrices.

5. Prove that the nonsingularity of a Toeplitz matrix Tn = [ ai−j ]ni,j=1 follows
from the solvability of the equations

Tny = e1 and Tnz = (a−n+j−1)nj=1 ,

where a−n is arbitrarily chosen. Construct a fundamental system from these
solutions.

6. Design a Levinson-type algorithm for the solution of the Bezout equation
(7.14), i.e., an algorithm that does not rely on successive polynomial divi-
sion. Compare the complexity of this algorithm with the complexity of the
algorithm described in Section 7.7.

Hint. Consider first the “regular” case in which the degrees of all quo-
tients qi(t) are equal to 1.

7. Let p(t) = p1+p2t+p3t2+ t3 be a monic real polynomial. Show the following
theorem of Vyshnegradsky. The polynomial p(t) has all its roots in the left
half-plane if and only if all coefficients are positive and p2p3 > p1.

8. The factorizations presented in this paper can be used to derive formulas
for the determinants of Bezoutians, Hankel, Toeplitz and resultant matrices.
To solve the following problems one can use Vandermonde factorization or
reduction and take into account that

detVn(t) =
∏
i>j

(ti − tj) ,
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where t = (t1, . . . , tn) or apply Barnett’s formula and

detp(C(u)) =
n∏
i=1

p(ti)

if u(t) =
∏n
i=1(t− ti). Suppose that v(t) =

∏m
i=1(t−si) and u(t) =

∏n
i=1(t−

ti) are complex polynomials and m ≤ n.
(a) Show that

detHn
(v
u

)
= (−1)

n(n−1)
2

n∏
i=1

m∏
j=1

(ti − sj) ,

and find an analogous formula for detTn
(
v
u

)
.

(b) Derive from (a) formulas for the determinants of BezH(u,v), BezT (u,v),
and Res (u,v).

9. Find the Toeplitz matrices

Tn

(
1

(1− ct)m
)

and Tn

((
1 + ct

1− ct

)m)
10. Let u(t) and v(t) = v1(t)v2(t) be polynomials of degree n.

(a) Show that

BezH(u,v) = BezH(u,v1)B(u)−1BezH(u,v2)

(b) If u(t) and v(t) are monic, show that

BezH(u,v) = B(u)JnB(v)(C(u)n − C(v)n) .
11. Let u(t) and v(t) be complex polynomials of degree n and m, respectively,

where m ≤ n, and let t1, . . . , tr be the different roots of the greatest common
divisor of u(t) and v(t) and ν1, . . . , νr their multiplicities. Let vectors �k(c, ν)
be defined by

�k(c, ν) =
((

i− 1
ν − 1

)
ci−k
)k
i=1

.

Show that the vectors �n(ti, k), where k = 1, . . . , νi, i = 1, . . . , r form a basis
of the nullspace of BezH(u,v) and the corresponding vectors �m+n+p(ti, k) a
basis of the nullspace of Resp(u,v) introduced in Section 3.1.

12. Let u(t) and p(t) be coprime polynomials and degp(t) ≤ degu(t) = n. Show
that for k > n the coefficient vectors of tju(t), j = 1, . . . , k − n form a basis
of the nullspace of Hk

(
p
u

)
.

13. Let u(t) be a polynomial with real coefficients of degree n.
(a) Describe the number of different positive real roots in terms of the

signatures of the matrices Hn
(
tu′(t)
u(t)

)
and Hn

(
u′
u

)
.

(b) Let a and b be real numbers, a < b. Describe the number of different
real roots of u(t) in the interval [ a, b ] in terms of the signatures of the
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matrices Hn (g) and Hn
(

u′
u

)
, where

g(t) =
(t− a)(b− t)u′(t) + nt2u(t)

u(t)
.

(c) Prove a representation of Res(u,v) which is analogous to that one of
Proposition 3.3 but involves BezT (u,v) instead of BezH(u,v) .

14. Prove that a matrix A is a T+Hmatrix if and only if the matrix I+−∇ (A)IT+−
is the zero matrix, where ∇ (A) is introduced in (1.11) and I+− in (12.14).

15. Let e and eσ denote the vectors of F2n−1

e = ( 1, 1 . . . , 1 ) and eσ = ( (−1)i )2n−1i=1 .

Show that a T+H matrix Rn = Tn(a) + Tn(b)Jn is equal to R′n = Tn(a′) +
Tn(b′)Jn if and only if, for some α, β ∈ F, a′ = a + αe + βeσ and b′ =
b− αe− β(−1)n−1eσ.

16. Let Rn be an n× n T+H matrix given by (12.17) and by Rn = Tn(c′)P+ +
Tn(d′)P−. Show that
(a) If n is odd, then c′ = c, i.e., c is unique, and d′ is of the form d′ =

d+ αe+ βeσ for α, β ∈ F.
(b) If n is even, then c′ is of the form c′ = c + αeσ and d′ of the form

d′ = d+ βe for α, β ∈ F.
Here e and eσ are as above.

17. Let Rn be an n × n nonsingular, centro-skewsymmetric T+H matrix given
by (12.17). Show that

R−1n = Tn(c)−1P− + Tn(d)−1P+ .

14. Notes

1. The Bezoutian and the resultant matrix have a long history, which goes back
to the 18th century. Both concepts grew up from the work of Euler [5] in
connection with the elimination of variables for the solution of systems of
nonlinear algebraic equations. In 1764, Bezout generalized a result of Euler
[1]. In his solution the determinant of a matrix occurred which was only in
1857 shown by Cayley [3] to be the same as that being today called the
(Hankel) Bezoutian. For more detailed information see [66].

2. The classical studies of Jacobi [51] and Sylvester [65] utilized Bezoutians in
the theory of separation of polynomial roots. Hermite [49] studied the problem
of counting the roots of a polynomial in the upper half-plane. Clearly, this
is equivalent to finding the number of roots in the left half-plane, which
is important for stability considerations. A nice review of classical results
concerning root localization problems is given in the survey paper [52]; see
also [50], [8], [63], [61], [60].

3. The importance of Bezoutians for the inversion of Hankel and Toeplitz ma-
trices became clear much later. Only in 1974, Lander [55] established the
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fundamental result that the inverse of a (nonsingular) Hankel matrix can be
represented as a Bezoutian of two polynomials and that, conversely, any non-
singular Bezoutian is the inverse of a Hankel matrix. Similar results are true
for Toeplitz matrices. In [55] also a Vandermonde factorization of Bezoutians
was presented.

4. There is a huge number of papers and books dedicated to Bezoutians, resul-
tant matrices and connected problems. Let me recommend some books and
survey papers (see also the references therein) to light the younger history
and recent developments, to pursue and to accentuate the topic in different
directions. (This list is far away from being complete!)

Books: Gohberg, Lancaster, and Rodman [10], Heinig and Rost [33],
Lancaster and Tismenetsky [54], Bini and Pan [2], Fuhrmann [6], Pan [62],
Lascoux [56].

Papers: Gohberg, Kaashoek, Lerer, and Rodman [9], Lerer and Tis-
menetsky [58], Lerer and Rodman [57], Fuhrmann and Datta [7], Gohberg
and Shalom [11], Emiris and Mourrain [4], Mourrain and Pan [59].
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[3] A. Cayley. Note sur la méthode d’élimination de Bezout. J. Reine Angew. Math.,
53:366–367, 1857.

[4] I.Z. Emiris and B. Mourrain. Matrices in elimination theory. J. Symbolic Comput.,
28(1-2):3–44, 1999. Polynomial elimination – algorithms and applications.

[5] L. Euler. Introductio in analysin infinitorum. Tomus primus. Sociedad Andaluza de
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Abstract. A conjecture from the second author’s paper [Linear Algebra Appl.,
332–334 (2001) 519–531] concerning a family of polynomials is proved and
strengthened. A consequence of this is that for any n > 4 there is an n × n
matrix that is not similar to a Toeplitz matrix, which was proved before for
odd n and n = 6, 8, 10.
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1. Introduction

In the paper [4] D.S. Mackey, N. Mackey and S. Petrovic posed and studied the
inverse Jordan structure problem for complex Toeplitz matrices. They showed,
in particular, that every n × n complex nonderogatory matrix is similar to an
upper Hessenberg Toeplitz matrix, with ones on the subdiagonal. Such a choice
guarantees uniqueness of the unit upper Hessenberg Toeplitz matrix. This result
was recently extended by Willmer [6], who showed that a block companion matrix
is similar to a unique block unit Hessenberg matrix.

The authors [4] also investigated the problem of what happens if the non-
derogatority condition is dropped and asked the question, “Is every complex ma-
trix similar to a Toeplitz matrix?” This poses the inverse Jordan structure problem
for Toeplitz matrices – which Jordan forms are achievable by Toeplitz matrices.
Then, [4] gave an affirmative answer to this question for matrices of order n ≤ 4
and conjectured that this might be true for all n. It is worth noting that the in-
verse eigenvalue question for real symmetric n × n Toeplitz matrices was posed
in 1983 by Delsarte and Genin [1] and resolved by them for n ≤ 4; the general
case was settled only recently by Landau [3]. Landau’s non-constructive proof uses
topological degree theory to show that any list of n real numbers can be realized
as the spectrum of an n× n real symmetric Toeplitz matrix.
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In [2] the second author of the present note showed that there are matrices
that are not similar to a Toeplitz matrix. Examples for such matrices are

m⊕
j=1

(S2 ⊕ c) and
m−2⊕
j=1

(S2 ⊕ S3)

for all m > 1 and c �= 0. Here Sk denotes the k × k matrix of the forward shift,
i.e.,

S2 =
[
0 0
1 0

]
, S3 =

⎡⎣ 0 0 0
1 0 0
0 1 0

⎤⎦ ,

and ⊕ stands for the direct sum. Note that the order of the first set of these
matrices is 2m + 1 and the second matrix is nilpotent. That means that for any
odd integer n > 4 there is an n×n matrix that is not similar to a Toeplitz matrix.

For even n the problem is more complicated. Candidates for matrices that
are not similar to a Toeplitz matrix are

m−1⊕
j=1

(S2 ⊕ 0⊕ c) and
m−2⊕
j=1

(S2 ⊕ S3 ⊕ 0) , (1.1)

where c �= 0 and m > 2. It was proved in [2] that these matrices are really not
similar to a Toeplitz for m = 3, 4, 5, that means for matrices of order 6, 8 and
10. For the general case the problem was reduced to the property of a class of
polynomials defined as follows:

p0(t) = p1(t) = 1 , p2(t) = t , pj(t) = −
1
2

j−1∑
k=1

pk(t)pj−k(t) (j > 2) . (1.2)

It was shown that the matrices (1.1) are not similar to a Toeplitz matrix if the
following is true.

Condition 1.1 ([2], p. 528). For m > 3, the system of m− 2 equations

pm+2(t) = pm+3(t) = · · · = p2m−1(t) = 0

has only the trivial solution t = 0.

In the present note we show that this condition is always satisfied. Even more,
the following is shown, which is the main result of the paper.

Theorem 1.2. For m > 1, pm+1(t) = pm(t) = 0 has only the trivial solution t = 0.

A consequence of this theorem is the following.

Corollary 1.3. For any m > 4 there is an m ×m matrix that is not similar to a
Toeplitz matrix.
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2. On a family of polynomials

First we compute the generating function of the family of polynomials {pj(t)}
defined by (1.2), which is

p(z, t) =
∞∑
j=0

pj(t)zj .

Lemma 2.1. The generating function p(z, t) is given by

p(z, t) =
(
1 + 2z + z2(2t+ 1)

)1/2
. (2.1)

Proof. According to the definition of pj(t) we have∑
i+k=j

pi(t)pk(t) = 0

for j > 2. That means that the coefficients of zj in the expansion of (p(z, t))2 in
powers of z vanish if j > 2. Hence p(z, t)2 is a quadratic polynomial in z, i.e.,
p(z, t) = A(t) + B(t)z + C(t)z2. Taking the definition of pj(t) for j = 0, 1, 2 into
account we obtain

A(t) = 1, B(t) = 2, C(t) = 2t+ 1 ,

which completes the proof. �

Expanding p(z, t) in powers of z we obtain the following explicit representa-
tion of pj(t)1:

pj(t) =
�j/2	∑
k=0

2j−2k
(
1/2
j − k

)(
j − k
k

)
(2t+ 1)k , (2.2)

where �j/2� is the integer part of j/2.
The key for proving Theorem 1.2 is the following lemma.

Lemma 2.2. The polynomials pj(t) (j = 0, 1, . . . ) satisfy the 3-term recursion

(j + 2)pj+2(t) + (2j + 1)pj+1(t) + (j − 1)(2t+ 1)pj(t) = 0. (2.3)

Proof. Let h(z, t) denote the generating function of the polynomial family {pj(t)}
defined by (2.3) with initial conditions p0(t) = p1(t) = 1. We show that h(z, t) =
p(z, t). Let h′ denote the partial derivative of h(z, t) by z and h = h(z, t).

We have
∞∑
j=0

(j + 2)pj+2z
j+1 = h′ − 1 ,

∞∑
j=0

(2j + 1)pj+1z
j+1 = 2zh′ − h+ 1 ,

∞∑
j=0

(j − 1)pjzj+1 = z2h′ − zh .

1A typo in [2] p. 528 is corrected here. The expression is never used to affect the results of [2].
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Summing up we obtain the ordinary differential equation

(1 + 2z + (2t+ 1)z2)h′ − (1 + (2t+ 1)z)h = 0 .
As it is easily checked, the generating function p(z, t) also satisfies this equation.
Since p(0, t) = h(0, t), we conclude that p(z, t) = h(z, t). �

An alternative way to prove the lemma is to employ the explicit expression
(2.2) for pj(t). This appears in the Appendix section.

Proof of Theorem 1.2. The theorem can be proved now by induction in a standard
fashion. The base case, m = 2, is evident since p2 = t = p3 = 0 iff t = 0. Assume
the theorem is valid for m > 1, then we claim the same is true for m+1. Suppose
not! i.e., pm+2(τ) = pm+1(τ) = 0 for some τ �= 0. Then Lemma 2.2 implies that
τ = − 1

2 . Once again, make application of the recurrence (2.3) but this time re-
index m by m− 1 to get

(m+ 1)pm+1(τ) + (2m− 1)pm(τ) + (m− 2)(2τ + 1)pm−2(τ) = 0. (2.4)

So, pm(− 1
2 ) = 0. Hence both pm+1 and pm vanish at − 1

2 . This contradiction to
the induction step proves the theorem. �

Let us finally mention two consequences of our result. The following is im-
mediate from Theorem 1.2 where variables are switched w = b

2az and the value
t = 4ac

b2 − 1 is selected. The case b = 0 is treated separately. It is important that
t �= 0.

Corollary 2.3. Let f(w) = (a + bw + cw2)
1
2 , where a �= 0 and b2 − 4ac �= 0, and

f(w) =
∑∞
k=0 fkz

k be its Maclaurin expansion. Then for all j, fj and fj+1 cannot
both vanish.

The following is an equivalent formulation of Condition 1.1.

Corollary 2.4. For n > 4 there is no polynomial P (t) of degree n such that P (t)2 =
q(t)+ t2n−1r(t) for quadratic polynomials q(t) and r(t), except for the trivial cases
P (t) = a+ bt and P (t) = atn−1 + btn.

Proof. Compare proof of Lemma 6.1 in [2] where the polynomials pj(t) take the
place of uk. Then, convert uk via uk/uk1 . �

3. Appendix

We show a scheme on how to arrive at the recursion

(j + 2)pj+2(t) + (2j + 1)pj+1(t) + (j − 1)(2t+ 1)pj(t) = 0 (3.1)

for the explicit expression

pj(t) =
�j/2	∑
k=0

2j−2k
(
1/2
j − k

)(
j − k
k

)
(2t+ 1)k
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of the sequence {pj(t)}j . The idea utilizes the so-called Wilf-Zeilberger (WZ)
method of proof [5].

Let F (j, k) := 2j
(
1/2
j−k
)(
j−k
k

)
(2t+ 1)k, and G(j, k) := −2 (j−1)(2j−2k−1)k

(j+1−2k)(j+2−2k)F (j, k).

Then one can check, preferably using a symbolic software, that

(j+2)F (j+2, k)+(2j+1)F (j+1, k)+(j−1)(2t+1)F (j, k) = G(j, k+1)−G(j, k).
Telescoping: Sum over all −∞ < k <∞ and observe that

∞∑
k=−∞

F (j, k) =
�j/2	∑
k=0

F (j, k) = pj(t) while
∞∑

k=−∞
G(j, k + 1) =

∞∑
k=−∞

G(j, k),

since G(j, k) has compact support. Then assertion (3.1) follows.

Acknowledgment

The first author gratefully acknowledges the wonderful support rendered, at onset
of this project, by the DIMACS center at Rutgers University. He also takes this
opportunity to commemorate the second author as a great Mensch.

References

[1] Philippe Delsarte, Yves V. Genin. Spectral properties of finite Toeplitz matrices. in
Mathematical Theory of networks and Systems: Proc. MTNS-83 Int. Symp., Beer
Sheva, Israel, June 1983, P.A. Fhrmann, ed., Lecture Notes in Control and Infor-
mation Sciences, New York, Springer-Verlag, 58:194–213, 1984.

[2] Georg Heinig. Not every matrix is similar to a Toeplitz matrix. Linear Algebra Appl.,
332–334:519–531, 2001.

[3] Henry J Landau. The inverse eigenvalue problem for real symmetric Toeplitz matri-
ces. J. Amer. Math. Soc., 7:749–767, 1994.

[4] D. Steven Mackey, Niloufer Mackey, and Srdjan Petrovic. Is every matrix similar to
a Toeplitz matrix? Linear Algebra Appl. 297:87–105, 1999.

[5] Marko Petkovsek, Herbert Wilf, Doron Zeilberger. A = B Toeplitz matrices. A.K.
Peters Ltd., USA, 1996.

[6] Harald K. Wimmer. Similarity of block companion and block Toeplitz matrices.
Linear Algebra Appl. 343–344:381–387, 2002.

Tewodros Amdeberhan
Mathematics
Tulane University
New Orleans, LA 70118, USA
e-mail: tamdeber@tulane.edu



Part II

Research Contributions



Operator Theory:
Advances and Applications, Vol. 199, 127–154
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A Traub-like Algorithm for Hessenberg-
quasiseparable-Vandermonde Matrices
of Arbitrary Order
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E. Tyrtyshnikov and P. Zhlobich

Abstract. Although Gaussian elimination uses O(n3) operations to invert an
arbitrary matrix, matrices with a special Vandermonde structure can be in-
verted in only O(n2) operations by the fast Traub algorithm. The original
version of Traub algorithm was numerically unstable although only a mi-
nor modification of it yields a high accuracy in practice. The Traub algo-
rithm has been extended from Vandermonde matrices involving monomials
to polynomial-Vandermonde matrices involving real orthogonal polynomials,
and the Szegö polynomials.

In this paper we consider a new more general class of polynomials that
we suggest to call Hessenberg order m quasiseparable polynomials, or (H, m)-
quasiseparable polynomials. The new class is wide enough to include all of
the above important special cases, e.g., monomials, real orthogonal polyno-
mials and the Szegö polynomials, as well as new subclasses. We derive a fast
O(n2) Traub-like algorithm to invert the associated (H,m)-quasiseparable-
Vandermonde matrices.

The class of quasiseparable matrices is garnering a lot of attention re-
cently; it has been found to be useful in designing a number of fast algo-
rithms. The derivation of our new Traub-like algorithm is also based on ex-
ploiting quasiseparable structure of the corresponding Hessenberg matrices.
Preliminary numerical experiments are presented comparing the algorithm to
standard structure ignoring methods.

This paper extends our recent results in [6] from the (H, 0)- and (H, 1)-
quasiseparable cases to the more general (H,m)-quasiseparable case.

Mathematics Subject Classification (2000). 15A09, 15-04, 15B05.

Keywords. Orthogonal polynomials, Szego polynomials, quasiseparable matri-
ces, Vandermonde matrices, Hessenberg matrices, inversion, fast algorithm.
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1. Introduction. Polynomial-Vandermonde matrices and
quasiseparable matrices

1.1. Inversion of polynomial-Vandermonde matrices

In this paper we consider the problem of inverting the class of polynomial-Vander-
monde matrices. For a set of n distinct nodes {xk}nk=1, the classical Vandermonde
matrix V (x) =

[
xj−1i

]
is known to be invertible (provided the nodes are distinct).

One can generalize this structure by evaluating a different basis (other than the
monomials) at the nodes in the following way. That is, for a set of n polynomials
R = {r0(x), r1(x), . . . , rn−1(x)} satisfying deg rk(x) = k, the matrix of the form

VR(x) =

⎡⎢⎢⎢⎣
r0(x1) r1(x1) · · · rn−1(x1)
r0(x2) r1(x2) · · · rn−1(x2)
...

...
...

r0(xn) r1(xn) · · · rn−1(xn)

⎤⎥⎥⎥⎦ (1.1)

is called a polynomial-Vandermonde matrix. It is clear that such a matrix is in-
vertible if and only if the chosen nodes are distinct. Indeed, let T be an invertible,
upper triangular matrix, and consider the product V (x) · T . The effect of post-
multiplication by T is that the entries of the product are polynomials determined
by the columns of T , evaluated at the given nodes. Hence this is an alternate def-
inition of a polynomial-Vandermonde matrix as the product of invertible matrices
(provided the nodes are distinct).

In the simplest case where R = {1, x, x2, . . . , xn−1} (i.e., when T = I), the
matrix VR(x) reduces to a classical Vandermonde matrix and the inversion algo-
rithm is due to Traub [28]. It was observed in [16] that a minor modification of
the original Traub algorithm results in very good accuracy.

The structure-ignoring approach of Gaussian elimination for inversion of
VR(x) requires O(n3) operations, and for a general matrix VR(x) (i.e., no spe-
cial recurrence relations satisfied by the polynomial system R involved), the al-
gorithm derived in this paper also requires O(n3) operations. However, in several
special cases, the structure has been exploited, resulting in fast algorithms that
can compute the n2 entries of the inverse in only O(n2) operations. It also al-
lows the construction of fast system solvers; one of the pioneering works in this
area belongs to Björck and Pereyra [2]. Table 1 lists the previous work in deriving
fast inversion algorithms and fast system solvers for various special cases of the
polynomial system R.

1.2. Capturing recurrence relations via confederate matrices

To generalize the inversion algorithms of Table 3 we will use the concept of a
confederate matrix introduced in [21]. Let polynomials R = {r0(x), r1(x) , . . . ,
rn(x)} be specified by the general n-term recurrence relations1

rk(x) = (αkx−ak−1,k)·rk−1(x)−ak−2,k ·rk−2(x)−· · ·−a0,k ·r0(x), αk �= 0 (1.2)
1It is easy to see that any polynomial system {rk(x)} satisfying deg rk(x) = k obeys (1.2).
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Table 1. Fast O(n2) algorithms for polynomial-Vandermonde matrices.

Matrix VR(x) Polynomial System R O(n2) inversion O(n2) system solver

Classical Vdm monomials Traub [28] Björck–Pereyra [2]

Chebyshev–Vdm Chebyshev plns Gohberg–Ols [14] Reichel–Opfer [26]

Three-term Vdm Real orthogonal plns Calvetti–Reichel [7] Higham [19]

Szegö–Vdm Szegö plns Olshevsky [23] BEGKO [3]

Vdm = Vandermonde; Ols = Olshevsky; plns = polynomials

for k > 0, and r0 is a constant. Define for the polynomial

P (x) = P0 · r0(x) + P1 · r1(x) + · · ·+ Pn−1 · rn−1(x) + Pn · rn(x) (1.3)

its confederate matrix (with respect to the polynomial system R) by

CR(P ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a01
α1

a02
α2

a03
α3
· · · a0,k

αk
· · · · · · a0,n

αn
1
α1

a12
α2

a13
α3
· · · a1,k

αk
· · · · · · a1,n

αn

0 1
α2

a23
α3
· · ·

... · · · · · · a2,n

αn

0 0 1
α3

. . . ak−2,k

αk

. . .
...

...
...
. . .

. . . ak−1,k

αk

. . .
. . .

...
...

...
. . . . . . 1

αk

. . . . . .
...

...
...
. . . . . . . . . . . . . . .

...
0 0 · · · · · · · · · 0 1

αn−1

an−1,n

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

CR(rn)

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0
P1
P2
...
...

Pn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
0 · · · 0 1

αnPn

]

(1.4)

In the special case where P (x) = rn(x), we have P0 = P1 = · · · = Pn−1 = 0, and
hence the last term on the right-hand side of (1.4) vanishes.

Notice that the coefficients of the recurrence relations for the kth polynomial
rk(x) from (1.2) are contained in the kth column of CR(rn), as the highlighted
column shows. We refer to [21] for many useful properties of the confederate matrix
and only recall here that

rk(x) = α0 · α1 · . . . · αk · det(xI − [CR(P )]k×k),
and

P (x) = α0 · α1 · · ·αn · Pn · det(xI − CR(P )),

where [CR(P )]k×k denotes the k × k leading submatrix of CR(P ) in the special
case where P (x) = rn(x).
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Next in Table 2 we list confederate matrices for the polynomial systems2 of
Table 3.

Table 2. Systems of polynomials and corresponding recurrence relations.

Polynomial System Corresponding confederate matrix
Recurrence relations CR(rn)

monomials
rk(x) = x · rk−1(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0

1
. . .

. . . 0

0
. . .

. . .
. . .

.

..
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
lower shift matrix

Chebyshev polynomials
rk(x) = 2x · rk−1(x) − rk−2(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

· · · · · · 0

1
2

. . .
. . . 0

0
. . .

. . .
. . .

...
.
..

. . .
. . .

. . . 1
2

0 · · · 0 1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
tridiagonal matrix

real orthogonal polynomials
rk(x) = (αkx− δk)rk−1(x)

−γk · rk−2(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
α1

γ2
α2

0 · · · 0

1
α1

δ2
α2

. . .
. . .

...

0 1
α2

. . . γn−1
αn−1

0

...
. . .

. . . δn−1
αn−1

γn
αn

0 · · · 0 1
αn−1

δn
αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
tridiagonal matrix

Szegö polynomials3[
φk(x)

φ#
k (x)

]
= 1

μk

[
1 −ρ∗k

−ρk 1

]
×
[

φk−1(x)

xφ#
k−1(x)

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1ρ∗0 · · · −ρn−1μn−2 . . . μ1ρ∗0 −ρnμn−1 . . . μ1ρ∗0

μ1

. . . −ρn−1μn−2 . . . μ2ρ∗1 −ρnμn−1 . . . μ2ρ∗1

0
. . .

.

..
.
..

... −ρn−1ρ∗n−2 −ρnμn−1ρ∗n−2

0 · · · μn−1 −ρnρ∗n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
unitary Hessenberg matrix matrix

2For the monomials, Chebyshev polynomials and real orthogonal polynomials the structure of
the confederate matrices can be immediately deduced from their recurrence relations. For Szegö
polynomials it is also well known, see, e.g., [23] and the references therein.
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It turns out that all matrices of Table 2 are special cases of the more general
class of matrices defined next. It is this larger class of matrices, and the class of
polynomials related to them via (1.2) that we consider in this paper.

1.3. Main tool: quasiseparable matrices and polynomials

Definition 1.1. (Quasiseparable matrices and polynomials)

• A matrix A is called (H,m)-quasiseparable (i.e., Hessenberg lower part and
order m upper part) if (i) it is strongly upper Hessenberg (i.e., nonzero first
subdiagonal, ai+1,i �= 0), and (ii) max(rankA12) = m, where the maximum
is taken over all symmetric partitions of the form

A =
[
∗ A12

∗ ∗

]
• Let A = [aij ] be a (H,m)-quasiseparable matrix. For αi = 1/ai+1,i, then the

system of polynomials related to A via

rk(x) = α1 · · ·αk det (xI −A)(k×k) .
is called a system of (H,m)-quasiseparable polynomials.

Remark 1.2. The class of (H,m)-quasiseparable polynomials is wide enough to in-
clude monomials, Chebyshev polynomials, real orthogonal and Szegö polynomials
(i.e., all polynomials of Tables 3 and 2) as special cases. This can be seen by in-
specting, for each confederate matrix, its typical submatrix A12 from the partition
described in Definition 1.1.
• The lower shift matrix is (H, 0)-quasiseparable Indeed, if A is such a matrix,
then any submatrix A12 is simply a zero matrix.

• Tridiagonal matrices are also (H, 1)-quasiseparable. Indeed, if A is tridiago-
nal, then the submatrix A12 has the form (γj/αj)ekeT1 , which can easily be
observed to have rank one.

• Unitary Hessenberg matrices are (H, 1)-quasiseparable. Indeed, if A corre-
sponds to the Szegö polynomials, then the corresponding 3×(n−1) submatrix
A12 has the form⎡⎣−ρkμk−1 · · ·μ3μ2μ1ρ∗0 −ρk−1μk−2 · · ·μ3μ2μ1ρ∗0 · · · −ρnμn−1 · · ·μ3μ2μ1ρ∗0−ρkμk−1 · · ·μ3μ2ρ∗1 −ρk−1μk−2 · · ·μ3μ2ρ∗1 · · · −ρnμn−1 · · ·μ3μ2ρ∗1

−ρkμk−1 · · ·μ3ρ∗2 −ρk−1μk−2 · · ·μ3ρ∗2 · · · −ρnμn−1 · · ·μ3ρ∗2

⎤⎦,
which is also rank 1 since the rows are scalar multiples of each other. The
same is true for all other symmetric partitions of A.

3It is known that, under the additional restriction of ρk �= 0 for each k, the corresponding Szegö
polynomials satisfy the three-term recurrence relations

φ#
0 (x) = 1

μ0
, φ#

1 (x) = 1
μ1

(x · φ#
0 (x) + ρ1ρ∗0 · φ#

0 (x))

φ#
k (x) =

[
1

μk
· x + ρk

ρk−1

1
μk

]
φ#

k−1(x) − ρk
ρk−1

μk−1
μk

· x · φ#
k−2(x).
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Hence all of the polynomials corresponding to the confederate matrices listed above
are (H, 1)-quasiseparable polynomials.

1.4. Main problem: Inversion of (H,m)-quasiseparable-Vandermonde matrices
As shown in the previous remark, (H, 0)- and (H, 1)-quasiseparable polynomi-
als generalize the previous cases of monomials, real orthogonal polynomials, and
Szegö polynomials. In the paper [6], an algorithm for inversion of (H, 0)- and
(H, 1)-quasiseparable-Vandermonde matrices is derived, and hence that algorithm
is applicable to these special cases. However there are important cases not cov-
ered by either (H, 0)- or (H, 1)-quasiseparable polynomials. An example of such a
system of polynomials is given next.

Example 1.3 (l-recurrent polynomials). From (1.4) it follows that if polynomials
satisfy l-term recurrence relations

rk(x) = (αkx−ak−1,k)·rk−1(x)−ak−2,k ·rk−2(x)−· · ·−ak−(l−1),k·rk−(l−1)(x) (1.5)
then their confederate matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,1
α1

· · · a0,l−1
αl−1

0 · · · 0

1
α1

a1,2
α2

· · · a1,l

αl

. . .
...

0 1
α2

. . . 0
...

. . . . . . . . . an−(l−1),n

αn

...
. . . 1

αn−2

...
0 · · · · · · 0 1

αn−1

an−1,n

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.6)

are (1, l−2)-banded, i.e., they have only one nonzero subdiagonal and l−2 nonzero
superdiagonals. Considering a typical element A12 of the partition of Definition
1.1, in this case for a 5× 5, (1, 2)-banded example, we have

A =
[
∗ A12

∗ ∗

]
=

⎡⎢⎢⎢⎢⎣
a0,1
α1

a0,2
α2

a0,3
α3

0 0
1
α1

a1,2
α2

a1,3
α3

a1,4
α4

0
0 1

α2

a2,3
α3

a2,4
α4

a2,5
α5

0 0 1
α3

a3,4
α4

a3,5
α5

0 0 0 1
α4

a4,5
α5

⎤⎥⎥⎥⎥⎦
One can see that any A12 of the partition of Definition 1.1 has rank at most 2,
implying that A is a (H, 2)-quasiseparable matrix by definition. More generally, a
system of l-recurrent polynomials are (H, l−2)-quasiseparable (and so polynomials
satisfying three-term recurrence relations are (H, 1)-quasiseparable).

A Björck–Pereyra-like algorithm for solving linear systems with Hessenberg-
quasiseparable-Vandermonde coefficient matrices was proposed in [4], and this
algorithm is applicable for any order of quasiseparability (i.e., for any m � 1 of
(H,m)-quasiseparable matrix). A Traub-like inversion algorithm is derived in [6],
but it is valid only for (H, 0)- and (H, 1)-quasiseparable-Vandermonde matrices.
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In this paper we extend the Traub-like algorithm to a corresponding algorithm for
an arbitrary order of quasiseparability. Previous work in this area, including that
using quasiseparable matrices, is given next in Table 3.

Table 3. Fast O(n2) algorithms for polynomial-Vandermonde matrices.

Matrix VR(x) Polynomial System R O(n2) inversion O(n2) system solver

Classical Vdm monomials Traub [28] Björck–Pereyra [2]

Chebyshev–Vdm Chebyshev plns Gohberg–Ols [14] Reichel–Opfer [26]

Three-term Vdm Real orthogonal plns Calvetti–Reichel [7] Higham [19]

Szegö–Vdm Szegö plns Ols [23] BEGKO [3]

(H, 1)-qsep-Vdm (H, 1)-qsep BEGOT [6] BEGKO [4]

(H,m)-qsep-Vdm (H,m)-qsep this paper

Vdm = Vandermonde; Ols = Olshevsky;
plns = polynomials; qsep = quasiseparable

This new inversion algorithm is applicable to the special cases of polynomial-
Vandermonde matrices for monomials, real orthogonal polynomials, and Szegö
polynomials, which are themselves special cases of (H,m)-quasiseparable polyno-
mials. In addition, it is also applicable to new classes of polynomials for which
no Traub-like algorithm is currently available. One such class of polynomials are
those satisfying the motivating recurrence relations (1.5).

As was the case for the Traub-like algorithm for (H, 0)- and (H, 1)-quasisepa-
rable-Vandermonde matrices of [6], the proposed Traub-like algorithm for (H,m)-
quasiseparable-Vandermonde matrices is fast, requiring only O(n2) operations by
exploiting the sparse recurrence relations (1.5).

2. Inversion formula

In this section we recall the formula that will be used to invert a polynomial-
Vandermonde matrix as in (1.1). Such a matrix is completely determined by n
polynomials R = {r0(x), . . . , rn−1(x)} and n nodes x = (x1, . . . , xn). The desired
inverse VR(x)−1 is given by the formula

VR(x)−1 = Ĩ · V T
R̂
(x) · diag(c1, . . . , cn), (2.1)

(see [22], [23]) where

ci =
n∏

k=1
k 
=i

(xk − xi)−1, (2.2)
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Ĩ is the antidiagonal matrix

Ĩ =

⎡⎢⎢⎢⎢⎣
0 · · · 0 1
... . . . 1 0

0 . . . . . .
...

1 0 · · · 0

⎤⎥⎥⎥⎥⎦ , (2.3)

and R̂ is the system of associated (generalized Horner) polynomials, defined as
follows: if we define the master polynomial P (x) by P (x) = (x − x1) · · · (x − xn),
then for the polynomial system R = {r0(x), . . . , rn−1(x), P (x)}, the associated
polynomials R̂ = {r̂0(x), . . . , r̂n−1(x), P (x)} are those satisfying the relations

P (x) − P (y)
x− y =

n−1∑
k=0

rk(x) · r̂n−k−1(y), (2.4)

see [20]. A discussion showing the existence of polynomials satisfying these relations
(2.4) for any polynomial system R is given in [3]. This definition can be seen as a
generalization of the Horner polynomials associated with the monomials, cf. with
the discussion in Section 2.1 below.

This discussion gives a relation between the inverse VR(x)−1 and the polyno-
mial-Vandermonde matrix VR̂(x), where R̂ is the system of polynomials associated
with R. To use this in order to invert VR(x), one needs to evaluate the polynomials
R̂ at the nodes x to form V T

R̂
(x). Such evaluation can be done by using confederate

matrices (defined in Section 1.2) associated with system of polynomials, which will
be discussed in the next section, but at this point the formula (2.1) allows us to
present a sketch of the Traub-like inversion algorithm next. The detailed algorithm
will be provided in Section 6 below after deriving next several formulas that will
be required to implement its steps 2 and 3.

Algorithm 2.1 (A sketch of the Traub-like inversion algorithm).

1. Compute the entries of diag(c1, . . . , cn) via (2.2).
2. Compute the coefficients {P0, P1, . . . , Pn} of the master polynomial P (x) as

in (1.3).
3. Evaluate the n polynomials of R̂ with confederate matrix specified via (2.8)

at the n nodes xk to form VR̂(x).
4. Compute the inverse VR(x)−1 via (2.1).

2.1. The key property of all Traub-like algorithms: pertransposition

In this section we use the classical Traub algorithm to explain the key property used
in deriving a Traub-like algorithms in terms of quasiseparable ranks of confederate
matrices of systems of polynomials. According to (1.3), let

P (x) = P0 + P1 · x+ · · ·+ Pn−1 · xn−1 + xn

be a polynomial in the monomial base. The monomials R = {1, x, x2, . . . , xn−1}
satisfy the obvious recurrence relations xk = x · xk−1 and hence the confederate
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matrix (1.4) of P (x) with respect to R becomes

CR(P ) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −P0
1 0 · · · 0 −P1
0 1

. . .
...

...
...

. . . . . . 0
...

0 · · · 0 1 −Pn−1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

which is the well-known companion matrix. By Definition 1.1 its leading subma-
trices [CR(P )]k×k are (H, 0)-quasiseparable for k = 1 . . . n− 1. Hence monomials
are (H, 0)-quasiseparable polynomials.

From the well-known recurrence relations for the Horner polynomials (which
invert the classical Vandermonde matrix, see [28])

r̂0(x) = 1, r̂k(x) = x · r̂k−1(x) + Pn−k, (2.6)

we obtain the confederate matrix

CR̂(P ) =

⎡⎢⎢⎢⎢⎢⎢⎣
−Pn−1 −Pn−2 · · · −P1 −P0
1 0 · · · 0 0

0 1
. . .

... 0
...

. . . . . . 0
...

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.7)

for the Horner polynomials. This relation between the confederate matrices of R
and R̂ can be seen as

CR̂(P ) = Ĩ · CR(P )T · Ĩ , (2.8)

or more visually,

CR(P ) =

�
�
�
�
�
�
�
�

a

b

�Pertransposition

�
�
�
�
�
�
�
�

b

a
���
��� = CR̂(P ),

and holds in the general case (see [22], [23]). The passage from CR(P ) to CR̂(P )
in (2.8) is called a pertransposition, or reflection across the antidiagonal. We will
show later that recurrence relations for a given system of polynomials together
with (2.8) allow fast evaluation of the polynomials R̂ at the nodes x, a required
step for a fast Traub-like algorithm.



136 T. Bella et al.

The leading submatrices of the matrix (2.7) are easily seen to be Hessenberg
and quasiseparable4 but due to the perturbation {P0, P1, . . . , Pn−1} their quasi-
separable ranks are 1. Hence the Horner polynomials are (H, 1)-quasiseparable;
that is, the quasiseparable rank increases by one due to the inclusion of the per-
turbation terms in each principal submatrix. Analogously, for an arbitrary system
of (H,m)-quasiseparable polynomials the order of quasiseparability increases by
at most one, which we state as follows.

Remark 2.2. For R a system of (H,m)-quasiseparable polynomials, when passing
to the system R̂ of polynomials associated with R, the order of quasiseparability
may increase by one. That is, the system R̂ is either (H,m)-quasiseparable or
(H,m+ 1)-quasiseparable.

This property is used by all of the previous Traub-like algorithms given in
Table 3. The quasiseparable rank of a confederate matrix after pertransposition is
increased only by at most one. This allows derivation of cheap recurrence relations
for the system of polynomials R̂ and use them in computing VR̂.

In summary, the classical Traub algorithm was based on deriving for-
mulas for systems of polynomials as the confederate matrices changed from
(H, 0)-quasiseparable to (H, 1)-quasiseparable, and subsequent Traub-like algo-
rithms were based on changes from (H, 1)-quasiseparable to (H, 2)-quasiseparable.
Such derivations were already very involved.

In order to derive a Traub-like algorithm in the more general case consid-
ered in this paper, we need to (i) attain the formulas for the original (H,m)-
quasiseparable polynomials which, unlike previous cases, are not readily avail-
able5, and (ii) have a derivation allowing us to pass from (H,m)-quasiseparable to
(H,m + 1)-quasiseparable confederate matrices. Hence our plan for the next two
sections is to solve the problems (i) and (ii) listed above, respectively.

3. Recurrence relations for (H, m)-quasiseparable polynomials

Real orthogonal polynomials are typically defined in terms of the recurrence rela-
tions they satisfy, and then these recurrence relations are used to give equivalent
definitions in terms of Hessenberg matrices, as in Table 2. Currently we have only
the latter definition for (H,m)-quasiseparable polynomials, i.e., in terms of the
related (H,m)-quasiseparable matrix. Since the main tool is designing fast algo-
rithms is the recurrence relations, as in (2.6), it is the goal of this section to derive
a set of sparse recurrence relations satisfied by (H,m)-quasiseparable polynomials.

4Pertransposition changes the order in which the submatrices A12 of Definition 1.1 appear and
transposes them, but does not change their ranks, hence the quasiseparability is preserved.
5In the (H, 1)-quasiseparable case, these formulas were derived in [6].
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3.1. Generators of quasiseparable matrices

We begin with an equivalent definition of quasiseparability in terms of generators.
Such generators are the compressed representation of a quasiseparable matrix; that
is, the O(n) entries of the generators define the O(n2) entries of the matrix. Op-
erations with generators are the key in designing various types of fast algorithms.
In this case, the sparse recurrence relations for (H,m)-quasiseparable polynomials
will be given in terms of these generators.

Definition 3.1 (Generator definition for (H,m)-quasiseparable matrices). A matrix
A is called (H,m)-quasiseparable if (i) it is strongly upper Hessenberg (i.e., nonzero
first subdiagonal, ai+1,i �= 0), and (ii) it can be represented in the form

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
d1

. . .

. . .

dn

�
�
�
�
�
�
�

p2q1

. . .

pnqn−1
0

gib
×
ijhj

A =

(3.1)

where b×ij = bi+1 · · · bj−1 for j > i+ 1 and b×ij = 1 for j = i+ 1. The elements

{pk, qk, dk, gk, bk, hk},
called the generators of the matrix A, are matrices of sizes

pk qk dk gk bk hk

sizes 1× 1 1× 1 1× 1 1× uk uk−1 × uk uk−1 × 1
range k ∈ [2, n] k ∈ [1, n− 1] k ∈ [1, n] k ∈ [1, n− 1] k ∈ [2, n− 1] k ∈ [2, n]

subject to maxk uk = m.

Remark 3.2. For a given (H,m)-quasiseparable matrix the set of generators of
Definition 3.1 is not unique. There is a freedom in choosing generators without
changing the matrix.

Remark 3.3. It is useful to note that Definition 3.1 together with (1.2) imply that
(H,m)-quasiseparable polynomials satisfy n-term recurrence relations

rk(x) =
1

pk+1qk

⎡⎣(x − dk)rk−1(x) − k−2∑
j=0

(
gj+1b

×
j+1,khkrj(x)

)⎤⎦ . (3.2)

This formula is not sparse and hence expensive. In order to design a fast algorithm,
sparse recurrence relations are required, and such are stated and proved in the next
section.
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3.2. Sparse recurrence relations for (H,m)-quasiseparable polynomials
The next theorem gives, for any (H,m)-quasiseparable matrix, a set of sparse
recurrence relations satisfied by the corresponding (H,m)-quasiseparable poly-
nomials. These recurrence relations are given in terms of the generators of the
(H,m)-quasiseparable matrix.

Theorem 3.4. Let A be a (H,m)-quasiseparable matrix specified by the generators
{pk, qk, dk, gk, bk, hk}. Then the polynomial system R = {rk(x)}nk=0 corresponding
to A (such that A = CR(rn)) satisfies⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fk(x)

rk(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1
pk+1qk

⎡⎢⎢⎢⎢⎢⎢⎢⎣
pkqk bTk −qk gTk

pk hTk x− dk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Fk−1(x)

rk−1(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

The proof is given at the end of this section, however first some special cases
are given in detail.

Example 3.5 ((H, 0)- and (H, 1)-quasiseparable case). For the case where m � 1,
the recurrence relations (3.3) reduce to those derived in [11], which were used
in [6] to derive the Traub-like algorithm for (H, 0)- and (H, 1)-quasiseparable-
Vandermonde matrices; that is, of the form[

Fk(x)
rk(x)

]
=
[
αk βk
γk δkx+ θk

] [
Fk−1(x)
rk−1(x)

]
. (3.4)

These were referred to as [EGO05]-type recurrence relations in [6], and as the
recurrence relations (3.3) are a generalization of these, we refer to (3.3) as [EGO05]-
type recurrence relations as well.

A motivating example for considering the larger class of (H,m)-quasisepara-
ble polynomials was their inclusion of the class of l-recurrent polynomials, a class
not contained by previous cases.

Example 3.6 (l-recurrent polynomials). By introducing the auxiliary polynomials
f
(1)
k (x), . . . , f (l−2)k (x), the relation (1.5) can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
k (x)
...
...
...

f
(l−2)
k

rk(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 −ak−2,k
...

. . . . . . . . .
...

...
...

. . . . . . 0
...

...
. . . 1

...
0 . . . . . . . . . 0 −ak−(l−1),k
1 0 . . . . . . 0 αkx− ak−1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
k−1(x)
...
...
...

f
(l−2)
k−1

rk−1(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is the reduction of (3.3) in this special case.
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Proof of Theorem 3.4. The recurrence relations (3.3) define a system of polyno-
mials which satisfy the n-term recurrence relations

rk(x) = (αkx− ak−1,k) · rk−1(x)− ak−2,k · rk−2(x) − · · · − a0,k · r0(x) (3.5)

for some coefficients αk, ak−1,k, . . . , a0,k. The proof is presented by showing that
these n-term recurrence relations in fact coincide exactly with (3.2), so these coef-
ficients coincide with those of the n-term recurrence relations of the polynomials
R. Using relations for rk(x) and Fk−1(x) from (3.3), we have

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x) + pk−1hTk b

T
k−1Fk−2(x)

]
.

(3.6)
Notice that again using (3.3) to eliminate Fk−2(x) from the equation (3.6) will
result in an expression for rk(x) in terms of rk−1(x), rk−2(x), rk−3(x), Fk−3(x),
and r0(x) without modifying the coefficients of rk−1(x), rk−2(x), or r0(x). Again
applying (3.3) to eliminate Fk−3(x) results in an expression in terms of rk−1(x),
rk−2(x), rk−3(x), rk−4(x), Fk−4(x), and r0(x) without modifying the coefficients of
rk−1(x), rk−2(x), rk−3(x), or r0(x). Continuing in this way, the n-term recurrence
relations of the form (3.5) are obtained without modifying the coefficients of the
previous ones.

Suppose that for some 0 < j < k − 1 the expression for rk(x) is of the form

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x)− · · ·

· · · − gj+1b
×
j+1,khkrj(x) + pj+1h

T
k (b

×
j,k)

T
Fj(x)

]
.

(3.7)

Using (3.3) for Fj(x) gives the relation

Fj(x) =
1

pj+1qj

(
pjqjb

T
j Fj−1(x) − qjgTj rj−1(x)

)
(3.8)

Inserting (3.8) into (3.7) gives

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x)− · · ·

· · · − gjb×j,khkrj−1(x) + pjh
T
k (b

×
j−1,k)

T
Fj−1(x)

]
.

Therefore since (3.6) is the case of (3.7) for j = k − 2, (3.7) is true for each
j = k − 2, k − 3, . . . , 0, and for j = 0, using the fact that F0 = 0 we have

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x) − gk−1hkrk−2(x) − · · · − g1b×1,khkr0(x)

]
Since these coefficients coincide with (3.2) that are satisfied by the polynomial
system R, the polynomials given by (3.3) must coincide with these polynomials.
This proves the theorem. �
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4. Recurrence relations for polynomials associated with
(H, m)-quasiseparable polynomials

In the previous section, sparse recurrence relations for (H,m)-quasiseparable poly-
nomials were derived. However, the classical Traub algorithm is based on the re-
currence relations for the Horner polynomials, not the original monomial system.
In this section, sparse recurrence relations for the system of polynomials associated
with a system of (H,m)-quasiseparable polynomials (i.e., the generalized Horner
polynomials) are derived. It is these recurrence relations that form the basis of the
Traub-like algorithm.

4.1. Introduction of a perturbation term via pertransposition
of confederate matrices

Let R = {rk(x)}nk=0 be a system of (H,m)-quasiseparable polynomials, and
{xk}nk=1 a set of distinct nodes. Decomposing the master polynomial into the
R basis as
n∏
k=1

(x− xk) =: P (x) = P0 · r0(x) + P1 · r1(x) + · · ·+ Pn−1 · rn−1(x) + Pn · rn(x)

yields the coefficients P0, P1, . . . , Pn, and we have

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
d1

. . .

. . .

dn

�
�
�
�
�
�
�

p2q1

. . .

pnqn−1
0

gib
×
ijhj

CR(P ) = − 1
Pn

0

P0

...

Pn−1
(4.1)

Applying (2.8) gives us the confederate matrix for the associated polynomials as

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

. . .

. . .

�
�
�
�
�
�
�

. . .

0

dn

d1

�
�
�
�
�
�
�

pnqn−1

p2q1

gn−jb×n−j,n−ihn−i

CR̂(P ) = − 1
Pn

0

Pn−1 · · · P0

(4.2)
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From this last equation we can see that the n-term recurrence relations satisfied
by the associated polynomials R̂ are given by

r̂k(x) =
1

p̂k+1q̂k

[
(x− d̂k)r̂k−1(x)−

k−2∑
j=0

(
ĝj+1b̂

×
j+1,kĥk r̂j(x)

)
︸ ︷︷ ︸

typical term as in (3.2)

− Pn−k
Pn

r̂0(x)︸ ︷︷ ︸
perturbation term

]

(4.3)
where, in order to simplify the formulas, we introduce the notation

p̂k = qn−k+1, q̂k = pn−k+1,

d̂k = dn−k+1, ĝk = hTn−k+1,

b̂k = bTn−k+1, ĥk = gTn−k+1.

(4.4)

We will see in a moment that the nonzero top row of the second matrix in (4.2)
introduces perturbation terms into all formulas that we derive. These perturbation
terms are the cause of the increase in quasiseparable rank by at most one.

4.2. Perturbed [EGO05]-type recurrence relations

The previous section showed how n-term recurrence relations for a system of
(H,m)-quasiseparable polynomials change after a rank one perturbation of the
first row of the corresponding confederate matrix. This small increase in quasi-
separable rank allows construction of the desired sparse recurrence relations for
associated polynomials, as presented in the next theorem.

Theorem 4.1 (Perturbed [EGO05]-type recurrence relations). Let

R = {r0(x), . . . , rn−1(x), P (x)}

be a system of (H,m)-quasiseparable polynomials corresponding to a (H,m)-quasi-
separable matrix of size n×n with generators {pk, qk, dk, gk, bk, hk} as in Definition
3.1, with the convention that qn = 0, bn = 0. Then the system of polynomials R̂
associated with R satisfy the recurrence relations⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0(x)

r0(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.5)



142 T. Bella et al.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F̂k(x)

r̂k(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
p̂k+1q̂k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̂kq̂k b̂Tk −q̂k ĝTk

p̂k ĥTk x− d̂k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F̂k−1(x)

r̂k−1(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

typical terms

+
1

p̂k+1q̂k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

Pn−k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
perturbation term

(4.6)

with the vector of auxiliary polynomials F̂k(x), and the coefficients Pk, k = 0, . . . , n
are as defined in (1.3).

Proof. The recurrence relations (4.6) define a system of polynomials which satisfy
the n-term recurrence relations

r̂k(x) = (αkx− ak−1,k) · r̂k−1(x)− ak−2,k · r̂k−2(x) − · · · − a0,k · r̂0(x) (4.7)

for some coefficients αk, ak−1,k, . . . , a0,k. The proof is presented by showing that
these n-term recurrence relations in fact coincide exactly with (4.3), so these co-
efficients coincide with those of the n-term recurrence relations of the associated
polynomials R̂; that is,

αk =
1

p̂k+1q̂k
, ak−1,k =

1
p̂k+1q̂k

d̂k, a0,k =
1

p̂k+1q̂k

(
ĝ1b̂

×
1,kĥk −

Pn−k
Pn

)
aj,k =

1
p̂k+1q̂k

ĝj+1b̂
×
j+1,kĥk, j = 1, . . . , k − 2

(4.8)

Using relations for r̂k(x) and F̂k−1(x) from (4.6), we have

r̂k(x) =
1

p̂k+1q̂k

[
(x− d̂k)r̂k−1(x)− ĝk−1ĥkr̂k−2(x)

+ p̂k−1ĥTk b̂
T
k−1F̂k−2(x) +

Pn−k
Pn

r̂0(x)
]
.

(4.9)

Notice that again using (4.6) to eliminate F̂k−2(x) from the equation (4.9) will
result in an expression for r̂k(x) in terms of r̂k−1(x), r̂k−2(x), r̂k−3(x), F̂k−3(x),
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and r̂0(x) without modifying the coefficients of r̂k−1(x), r̂k−2(x), or r̂0(x). Again
applying (4.6) to eliminate F̂k−3(x) results in an expression in terms of r̂k−1(x),
r̂k−2(x), r̂k−3(x), r̂k−4(x), F̂k−4(x), and r̂0(x) without modifying the coefficients of
r̂k−1(x), r̂k−2(x), r̂k−3(x), or r̂0(x). Continuing in this way, the n-term recurrence
relations of the form (4.7) are obtained without modifying the coefficients of the
previous ones.

Suppose that for some 0 < j < k − 1 the expression for r̂k(x) is of the form

r̂k(x) =
1

p̂k+1q̂k

[
(x− d̂k)r̂k−1(x)− ĝk−1ĥkr̂k−2(x)− · · · (4.10)

· · · − ĝj+1b̂
×
j+1,kĥk r̂j(x) + p̂j+1ĥ

T
k (̂b

×
j,k)

T
F̂j(x) +

Pn−k
Pn

r̂0(x)
]
.

Using (4.6) for F̂j(x) gives the relation

F̂j(x) =
1

p̂j+1q̂j

(
p̂j q̂j b̂

T
j F̂j−1(x) − q̂j ĝTj r̂j−1(x)

)
(4.11)

Inserting (4.11) into (4.10) gives

r̂k(x) =
1

p̂k+1q̂k

[
(x− d̂k)r̂k−1(x) − ĝk−1ĥk r̂k−2(x) − · · · (4.12)

· · · − ĝj b̂×j,kĥkr̂j−1(x) + p̂j ĥ
T
k (̂b

×
j−1,k)

T
F̂j−1(x) +

Pn−k
Pn

r̂0(x)
]
.

Therefore since (4.9) is the case of (4.10) for j = k − 2, (4.10) is true for each
j = k − 2, k − 3, . . . , 0, and for j = 0, using the fact that F̂0 = 0 we have

r̂k(x) =
1

p̂k+1q̂k

[
(x− d̂k)r̂k−1(x)− ĝk−1ĥkr̂k−2(x)− · · ·

· · · − ĝ1b̂×1,kĥk r̂0(x) +
Pn−k
Pn

r̂0(x)
] (4.13)

Since these coefficients coincide with those in (4.8) that are satisfied by the associ-
ated polynomials, the polynomials given by (4.6) must coincide with the associated
polynomials. This proves the theorem. �

4.3. Known special cases of these more general recurrence relations

In this section, recurrence relations valid for the class of polynomials associated
with (H,m)-quasiseparable polynomials were derived. Such are needed to provide
a Traub-like algorithm. We next demonstrate that these more general recurrence
relations reduce as expected in the classical cases. That is, since monomials and real
orthogonal polynomials are themselves (H,m)-quasiseparable, the above formulas
are valid for those classes as well, and furthermore, the special cases of these
formulas are, in fact, the classical formulas for these cases.

Example 4.2 (Classical Traub case: monomials and the Horner polynomials). As
shown earlier, the well-known companion matrix (2.5) results when the polynomial
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system R is simply a system of monomials. By choosing the generators pk = 1, qk =
1, dk = 0, gk = 1, bk = 1, and hk = 0, the matrix (4.1) reduces to (2.5), and also
(4.2) reduces to the confederate matrix for the Horner polynomials (2.7). In this
special case, the perturbed three-term recurrence relations of Theorem 4.1 become

r̂0(x) = Pn, r̂k(x) = xr̂k−1(x) + Pn−k, (4.14)

after eliminating the auxiliary polynomials present, coinciding with the known
recurrence relations for the Horner polynomials, used in the evaluation of the
polynomial

P (x) = P0 + P1x+ · · ·+ Pn−1xn−1 + Pnx
n. (4.15)

Example 4.3 (Calvetti–Reichel case: Real orthogonal polynomials and the Clen-
shaw rule). Consider the almost tridiagonal confederate matrix

CR(P ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 h2 0 · · · 0 −P0/Pn
q1 d2 h3

. . .
... −P1/Pn

0 q2 d3 h4 0
...

0 0 q3 d4
. . . −Pn−3/Pn

...
. . . . . . . . . . . . hn − Pn−2/Pn

0 · · · 0 0 qn−1 dn − Pn−1/Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.16)

The corresponding system of polynomialsR satisfy three-term recurrence relations;
for instance, the highlighted column implies

r3(x) =
1
q3
(x− d3)r2(x)−

h3
q3
r1(x) (4.17)

by the definition of the confederate matrix. Thus, confederate matrices of this form
correspond to systems of polynomials satisfying three-term recurrence relations,
or systems of polynomials orthogonal on a real interval, and the polynomial P (x).
Such confederate matrices can be seen as special cases of our general class by
choosing scalar generators, with pk = 1, bk = 0, and gk = 1, and in this case the
matrix (4.1) reduces to (4.16).

With these choices of generators, applying Theorem 4.1 and eliminating the
auxiliary polynomials yields the recurrence relations

r̂k(x) =
1

qn−k
(x− dn−k)r̂k−1(x)−

qn−k+1

qn−k
hn−k+1r̂k−2(x) +

1
qn−k

Pn−k (4.18)

which coincides with the Clenshaw rule for evaluating a polynomial in a real or-
thogonal basis, i.e., of the form

P (x) = P0r0(x) + P1r1(x) + · · ·+ Pn−1rn−1(x) + Pnrn(x). (4.19)

By the discussion of pertransposition in Section 2, recurrence relations for the
system of polynomials associated with real orthogonal polynomials can be found
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by considering the confederate matrix

CR(P ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dn − Pn−1/Pn hn − Pn−2/Pn −Pn−3/Pn · · · −P1/Pn −P0/Pn
qn−1 dn−1 hn−1

. . .
...

0 qn−2 dn−2 hn−2 0
...

0 0 qn−3 dn−3
. . .

...
. . . . . . . . . . . . h2

0 · · · 0 0 q1 d1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.20)
obtained by pertransposition of (4.16). Note that the highlighted column corre-
sponds to the full recurrence relation

r̂3(x) =
1

qn−3
(x − dn−2)r̂2(x)−

hn−1
qn−3

r̂1(x) +
1

qn−3

Pn−3
Pn

r̂0(x) (4.21)

Thus our formula generalizes both the Clenshaw rule and the algorithms designed
for inversion of three-term-Vandermonde matrices in [7] and [14].

5. Computing the coefficients of the master polynomial

Note that in order to use the recurrence relations of the previous section it is
necessary to decompose the master polynomial P (x) into the R basis; that is, the
coefficients Pk as in (1.3) must be computed. To this end, an efficient method of
calculating these coefficients follows.

It is easily seen that the last polynomial rn(x) in the system R does not affect
the resulting confederate matrix CR(P ). Thus, if

R̄ = {r0(x), . . . , rn−1(x), xrn−1(x)},
we have CR(P ) = CR̄(P ). Decomposing the polynomial P (x) into the R̄ basis can
be done recursively by setting r(0)n (x) = 1 and then for k = 0, . . . , n− 1 updating
r
(k+1)
n (x) = (x− xk+1) · r(k)n (x).

The following lemma gives this procedure, and is from [23].

Lemma 5.1 ([23]). Let R = {r0(x), . . . , rn(x)} be given by (1.2), and f(x) =∑k
i=1 ai · ri(x), where k < n− 1. Then the coefficients of x · f(x) =∑k+1

i=1 bi · ri(x)
can be computed by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...
bk
bk+1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

CR(rn) 0
0 · · · 0 1

αn
0

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
...
ak
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.1)
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Proof. It can be easily checked that

x ·
[
r0(x) r1(x) · · · rn(x)

]
−
[
r0(x) r1(x) · · · rn(x)

]
·
[

CR(rn) 0
0 · · · 0 1

αn
0

]
=
[
0 · · · 0 x · rn(x)

]
.

Multiplying the latter equation by the column of the coefficients we obtain (5.1).
�

This lemma suggests the following algorithm for computing coefficients
{P0, P1, . . . , Pn−1, Pn} in

n∏
k=1

(x− xk) = P0r0(x) + P1r1(x) + · · ·+ Pn−1rn−1(x) + Pnrn(x). (5.2)

of the master polynomial.

Algorithm 5.2 (Coefficients of the master polynomial in the R basis).

Cost: O(n×m(n)), where m(n) is the cost of multiplication of an n×n quasisep-
arable matrix by a vector.
Input: A quasiseparable confederate matrix CR(rn) and n nodes x=(x1,x2,...,xn).

1. Set
[
P
(0)
0 · · · P

(0)
n−1 P

(0)
n

]
=
[
1 0 · · · 0

]
2. For k = 1 : n,⎡⎢⎢⎢⎢⎣

P
(k)
0
...

P
(k)
n−1
P
(k)
n

⎤⎥⎥⎥⎥⎦ =
([

CR̄(x · rn−1(x)) 0
0 · · · 0 1 0

]
− xk · I

)
·

⎡⎢⎢⎢⎢⎣
P
(k−1)
0
...

P
(k−1)
n−1
P
(k−1)
n

⎤⎥⎥⎥⎥⎦
where R̄ = {r0(x), . . . , rn−1(x), xrn−1(x)}.

3. Take
[
P0 · · · Pn−1 Pn

]
=
[
P
(n)
0 · · · P

(n)
n−1 P

(n)
n

]
Output: Coefficients {P0, P1, . . . , Pn−1, Pn} such that (5.2) is satisfied.

It is clear that the computational burden in implementing this algorithm is
in multiplication of the matrix CR̄(rn) by the vector of coefficients. The cost of
each such step is O(m(n)), where m(n) is the cost of multiplication of an n × n
quasiseparable matrix by a vector, thus the cost of computing the n coefficients is
O(n ×m(n)). Using a fast O(n) algorithm for multiplication of a quasiseparable
matrix by a vector first derived in [9] (or its matrix interpretation of [4]), the cost
of this algorithm is O(n2).
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6. The overall Traub-like algorithm

6.1. Quasiseparable generator input

The main algorithm of this section is the Traub-like algorithm that outputs the
inverse of a (H,m)-quasiseparable-Vandermonde matrix. It takes as input the gen-
erators {pk, qk, dk, gk, bk, hk} of the (H,m)-quasiseparable confederate matrix cor-
responding to the system of polynomials R.

In this algorithm we will make use of MATLAB notations; for instance VR̂(i :
j, k : l) will refer to the block of VR̂(x) consisting of rows i through j and columns
k through l. For each node xk we have a vector of auxiliary polynomials FR̂(xk).
Let us compose a matrix of such vectors [FR̂(x1)| · · · |FR̂(xn)] and denote it as F̂k
on each step.

Algorithm 6.1 (Traub-like inversion algorithm).
Cost: O(n2) operations.
Input: Generators {pk, qk, dk, gk, bk, hk} of a quasiseparable confederate matrix cor-
responding to a system of polynomials R and n nodes x = (x1, x2, . . . , xn).

1. Compute the entries of diag(c1, . . . , cn) via (2.2): ci =
n∏

k=1
k 
=i

(xk − xi)−1.

2. Compute the coefficients {P0, . . . , Pn} of the master polynomial P (x) as in
(1.3) via Algorithm 5.2.

3. Evaluate the n polynomials of R̂ specified via (2.8) at the n nodes xk to form
VR̂(x). Theorems 4.1 provides an algorithm for this.

(a) Set VR̂(:, 1) = Pn

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦, F̂1 =

⎡⎢⎣ 0 · · · 0
...

. . .
...

0 · · · 0

⎤⎥⎦.
(b) For k = 1 : n− 1, compute

VR̂(:, k + 1) =
1

p̂k+1q̂k

⎛⎜⎜⎜⎝p̂kF̂kĥk +
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎦− d̂k
⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠VR̂(:, k) + Pn−k

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

and

FR̂(:, k + 1) =
1

p̂k+1q̂k

(
p̂k q̂k b̂

T
k F̂k − q̂kĝTk VR̂(:, k)T

)
Note: The product of two column vectors is understood to be componen-
twise.

4. Compute the inverse VR(x)−1 via (2.1):

VR(x)−1 = Ĩ · V T
R̂
(x) · diag(c1, . . . , cn)

Output: Entries of VR(x)−1, the inverse of the polynomial-Vandermonde matrix.
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6.2. Recurrence relation coefficient input

The previous section provides the Traub-like algorithm, which takes as input the
generators of the (H,m)-quasiseparable polynomials involved in forming the quasi-
separable-Vandermonde matrix. However, as in the motivating cases of real orthog-
onal polynomials and Szegö polynomials, problems may be stated in terms of the
coefficients of the involved recurrence relations instead of in terms of generators.

In this section, we present a result allowing conversion from the language of
recurrence relation coefficients to that of quasiseparable generators. Applying this
conversion as a preprocessor, the algorithm of the previous section can then be
used for problems stated in terms of recurrence relation coefficients.

Theorem 6.2 (Recurrence relations coefficients⇒ quasiseparable generators). Let
R = {rk(x)}nk=0 be a system of polynomials satisfying the [EGO05]-type two-term
recurrence relations (3.4):[

Fk(x)
rk(x)

]
=
[
αk βk
γk δkx+ θk

] [
Fk−1(x)
rk−1(x)

]
.

Then the (H,m)-quasiseparable matrix

CR(rn) = (6.1)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− θ1
δ1
−( 1

δ2
)γ2β1 − 1

δ3
γ3α2β1 − 1

δ4
γ4α3α2β1 · · · − 1

δn
γnαn−1αn−2 · · ·α3α2β1

1
δ1

− θ2δ2 − 1
δ3
γ3β2 − 1

δ4
γ4α3β2 · · · − 1

δn
γnαn−1αn−2 · · ·α3β2

0 1
δ2

− θ3δ3 − 1
δ4
γ4β3

. . . − 1
δn
γnαn−1 · · ·α4β3

0 0 1
δ3

− θ4δ4
. . .

...
...

. . . . . . . . . . . . − 1
δn
γnβn−1

0 · · · 0 0 1
δn−1

− θn

δn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with generators

dk = −(θk/δk), (k = 1, . . . , n), pk+1qk = (1/δk), (k = 1, . . . , n− 1),
gk = βTk , (k = 1, . . . , n− 1),

bk = αTk , (k = 2, . . . , n− 1),

hk = − 1
δk

γTk , (k = 2, . . . , n)

is a confederate matrix for the system of polynomials R.
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Proof. Inserting the specified choice of generators into the general n-term recur-
rence relations (3.2), we arrive at

rk(x) = (δkx+ θk)rk−1(x) + γkβk−1rk−2(x) + γkαk−1βk−2rk−3(x)

+ γkαk−1αk−2βk−3rk−4(x) + · · ·+ γkαk−1 · · ·α2β1r0(x)
(6.2)

It suffices to show that the polynomial system satisfying the two-term recurrence
relations also satisfies these n-term recurrence relations. Beginning with

rk(x) = (δkx+ θk)rk−1(x) + γkFk−1(x) (6.3)

and using the relation Fk−1(x) = αk−1Fk−2(x) + βk−1rk−2(x), (6.3) becomes

rk(x) = (δkx+ θk)rk−1(x) + γkβk−1rk−2(x) + γkαk−1Fk−2(x)

and continuing this procedure to obtain n-term recurrence relations. It can easily
be checked that this procedure yields exactly (6.2). �

7. Numerical Experiments

The numerical properties of the Traub algorithm and its generalizations (that are
the special cases of the algorithm proposed in this paper) were studied by different
authors. It was noticed in [16] that a modification of the classical Traub algorithm
of [28] can yield high accuracy in certain cases if the algorithm is preceded with
the Leja ordering of the nodes; that is, ordering such that

|x1| = max
1�i�n

|xi|,
k−1∏
j=1

|xk − xj | = max
k�i�n

k−1∏
j=1

|xi − xj |, k = 2, . . . , n− 1

(see [26], [19], [24]) It was noticed in [16] that the same is true for Chebyshev-
Vandermonde matrices.

No error analysis was done, but the conclusions of the above authors was
that in many cases the Traub algorithm and its extensions can yield much better
accuracy than Gaussian elimination, even for very ill-conditioned matrices.

We made our preliminary experiments with the proposed Traub-like algo-
rithm, and our conclusions for the most general case are consistent with the
experience of our colleagues made for special cases. The results of experiments
with the proposed algorithm yields better accuracy than Gaussian elimination.
However, our experiments need to be done for different special cases of (H,m)-
quasiseparable polynomials.

The algorithm was implemented in C using Lapack for all supplementary
matrix computations (such as matrix multiplication GEMM). For Gaussian elim-
ination we used the Lapack subroutine GESV. To estimate the accuracy of all of
the above algorithms we took the output of new Traub-like algorithm in double
precision VR(x)−1 as the exact solution.
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We compare the forward accuracy of the inverse computed by the algorithm in
single precision ̂VR(x)−1 with respect to the inverse computed in double precision,
defined by

e =
‖ ̂VR(x)−1 − VR(x)−1‖2

‖VR(x)−1‖2
(7.1)

where V sR(x)
−1 is the solution computed by each algorithm in single precision.

In the tables, New Algorithm denotes the proposed Traub-like algorithm with
Leja ordering, and GESV indicates Lapack’s inversion subroutine. Finally, cond(V )
denotes the condition number of the matrix V computed via the Lapack subroutine
GESVD.

Experiment 1. (Random choice of generators) In this experiment, the generators
we chosen randomly in (−1, 1), and the nodes xk were selected equidistant on
(−1, 1) via the formula

xk = −1 + 2
(

k

n− 1

)
, k = 0, 1, . . . , n− 1

We test the accuracy of the inversion algorithm for various sizes n and quasi-
separable ranks m of matrices generated in this way. Some results are tabulated
in Table 4.

Notice that the performance of the proposed inversion algorithm is an im-
provement over that of Lapack’s standard inversion subroutine GESV in this spe-
cific case. And in almost all cases relative errors are around e-7, which means that
all digits of the errors in single precision coincide with corresponding digits in
double precision. There are occasional examples in which the proposed algorithm
can lose several decimal digits, but it still outperforms Gaussian elimination.

Experiment 2. (l-recurrent polynomials) In this experiment we consider l-recurrent
polynomials

rk(x) = (αkx−ak−1,k)·rk−1(x)−ak−2,k ·rk−2(x)−· · ·−ak−(l−1),k·rk−(l−1)(x) (7.2)
by choosing coefficients of (7.2) randomly in (−1, 1), and the nodes xk equidistant
on (−1, 1).

We test the accuracy of the inversion algorithm for various sizes n and number
of terms l. We remind the reader that quasiseparable rank of polynomials given
by (7.2) is l − 2. Table 4 presents some results generated in this way.

8. Conclusions

In this paper we extend the previous work in the area of fast Traub-like inver-
sion algorithms to the general class of (H,m)-quasiseparable-Vandermonde matri-
ces. This generalizes results for Vandermonde, three-term-Vandermonde, Szegö–
Vandermonde, and (H, 1)-quasiseparable-Vandermonde matrices. Exploiting the
quasiseparable structure yields sparse recurrence relations which allow the desired
computational speedup, resulting in a fastO(n2) algorithm as opposed to Gaussian
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Table 4. Random generators on (−1, 1). Equidistant nodes on (−1, 1).

n m cond(V ) GESV New Algorithm

10 1 1.8e+007 1.5e-006 1.4e-006
2 5.6e+007 4.6e-005 5.4e-007

20 1 2.2e+020 5.9e-001 5.0e-007
2 1.6e+019 2.6e+000 1.9e-007
3 1.0e+021 5.6e-002 2.3e-006
4 6.1e+020 2.8e+000 5.5e-006

30 1 7.2e+029 1.2e+000 2.6e-006
2 3.4e+025 9.2e-001 2.7e-006
3 2.9e+029 1.0e+000 2.0e-006
4 7.5e+026 1.0e+000 1.5e-006
5 5.0e+024 1.0e+000 1.4e-006
6 2.5e+026 1.0e+000 5.1e-007

40 1 2.1e+034 1.0e+000 1.6e-005
2 3.3e+033 1.0e+000 1.9e-006
3 4.1e+029 1.0e+000 1.1e-003
4 4.5e+028 1.0e+000 3.5e-007
5 1.2e+031 1.0e+000 7.2e-007
6 3.5e+032 1.0e+000 3.3e-006
7 6.0e+027 1.0e+000 1.7e-004
8 7.8e+031 1.0e+000 5.0e-007

50 1 1.5e+039 1.0e+000 3.9e-007
2 3.7e+038 1.0e+000 7.6e-001
3 2.6e+041 1.0e+000 4.5e-004
4 2.0e+037 1.0e+000 3.8e-001
5 1.7e+037 1.0e+000 5.7e-007
6 8.0e+038 1.0e+000 9.2e-005
7 1.7e+038 1.0e+000 9.3e-007
8 7.5e+036 1.0e+000 4.7e-007

elimination, which requires O(n3) operations. Finally, some numerical experiments
were presented that indicate that, under some circumstances, the resulting algo-
rithm can give better performance than Gaussian elimination.
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Table 5. l-recurrent polynomials. Random coefficients on (−1, 1).

n l cond(V ) inv() TraubQS(Leja)

10 3 9.5e+004 1.5e-004 1.9e-007
4 1.2e+006 7.1e-004 3.3e-007

20 3 4.3e+013 1.0e+000 2.8e-007
4 2.2e+013 1.0e+000 3.4e-007
5 1.5e+012 1.0e+000 5.1e-007
6 4.1e+011 1.0e+000 2.2e-007

30 3 4.7e+016 1.0e+000 4.2e-007
4 1.8e+016 1.0e+000 3.2e-007
5 3.0e+018 1.0e+000 4.4e-007
6 7.3e+016 1.0e+000 4.1e-007
7 1.2e+017 1.0e+000 5.1e-007
8 3.6e+017 1.0e+000 2.8e-007

40 3 8.9e+017 1.0e+000 4.8e-007
4 1.2e+020 1.0e+000 6.5e-007
5 2.3e+018 1.0e+000 8.3e-007
6 2.2e+021 1.0e+000 4.5e-007
7 2.4e+020 1.0e+000 6.8e-007
8 1.8e+018 1.0e+000 9.7e-007
9 8.9e+019 1.0e+000 1.1e-006
10 8.6e+020 1.0e+000 6.3e-007

50 3 3.6e+018 1.0e+000 2.8e-007
4 3.1e+019 1.0e+000 2.0e-007
5 5.3e+019 1.0e+000 6.1e-007
6 7.8e+019 1.0e+000 4.8e-007
7 1.8e+020 1.0e+000 1.8e-007
8 3.6e+019 1.0e+000 4.2e-007
9 7.0e+019 1.0e+000 5.5e-007
10 2.2e+020 1.0e+000 8.5e-007
11 3.9e+021 1.0e+000 1.8e-007
12 5.3e+020 1.0e+000 5.3e-007
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Abstract. An O(n2) complexity algorithm for computing an ε-greatest com-
mon divisor (gcd) of two polynomials of degree at most n is presented. The
algorithm is based on the formulation of polynomial gcd given in terms of re-
sultant (Bézout, Sylvester) matrices, on their displacement structure and on
the reduction of displacement structured matrices to Cauchy-like form orig-
inally pointed out by Georg Heinig. A Matlab implementation is provided.
Numerical experiments performed with a wide variety of test problems, show
the effectiveness of this algorithm in terms of speed, stability and robustness,
together with its better reliability with respect to the available software.
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1. Introduction

A basic problem in algebraic computing is the evaluation of polynomial gcd: given
the coefficients of two univariate polynomials

u(x) =
n∑
i=0

uix
i, v(x) =

m∑
i=0

vix
i,

compute the coefficients of their greatest common divisor g(x).
In many applications, input data are represented as floating point numbers

or derive from the results of physical experiments or previous computations, so
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that they are generally affected by errors. If u(x) and v(x) have a nontrivial gcd,
it turns out that arbitrarily small perturbations in the coefficients of u(x) and v(x)
may transform u(x) and v(x) into relatively prime polynomials. Therefore, it is
clear that the concept of gcd is not well suited to deal with applications where
data are approximatively known. This is why the notion of approximate gcd, or
ε-gcd, has been introduced. For more details on this topic we refer the reader to
[19] [7],[18], [23] and to the references therein.

We use the following definition where ‖ · ‖ denotes the Euclidean norm.

Definition 1.1. A polynomial g(x) is said to be an ε-divisor of u(x) and v(x) if
there exist polynomials û(x) and v̂(x) of degree n and m, respectively, such that
‖u(x)− û(x)‖ ≤ ε‖u(x)‖, ‖v(x)− v̂(x)‖ ≤ ε‖v(x)‖ and g(x) divides û(x) and v̂(x).
If g(x) is an ε-divisor of maximum degree of u(x) and v(x), then it is called ε-gcd
of u(x) and v(x). The polynomials p(x) = û(x)/g(x) and q(x) = v̂(x)/g(x) are
called ε-cofactors.

Several algorithms for the computation of an approximate polynomial gcd can
be found in the literature; they rely on different techniques, such as the Euclidean
algorithm [1], [2], [12], [17], optimization methods [15], SVD and factorization of
resultant matrices [5], [4], [23], Padé approximation [3], [18], root grouping [18].
Some of them have been implemented inside numerical/symbolic packages like the
algorithm of Zeng [23] in MatlabTM and the algorithms of Kaltofen [14], of Corless
et al. [4], of Labahn and Beckermann [13] in MapleTM. These algorithms have a
computational cost of O(n3) which makes them expensive for moderately large
values of n.

Algorithms based on the Euclidean scheme have a typical cost of O(n2) but
they are prone to numerical instabilities; look-ahead strategies can improve the
numerical stability with an increase of the complexity to O(n3). More recently,
O(n2) algorithms have been proposed in [24] and [16]. They are based on the QR
factorization of a displacement structured matrix obtained by means of the normal
equations. The use of the normal equations generally squares the condition number
of the original problem with a consequent deterioration of the stability.

In this paper we present an algorithm for (approximate) gcd computation
which has a cost of O(n2) arithmetic operations and, from the several numerical
experiments performed so far, results robust and numerically stable. The algo-
rithm relies on the formulation of the gcd problem given in terms of the Bézout
matrix B(u, v) or of the Sylvester matrix S(u, v) associated with the pair of poly-
nomials (u, v), and on their reduction to Cauchy-like matrices by means of unitary
transforms. This kind of reduction, which is fundamental for our algorithm, was
discovered and analyzed by Georg Heinig in [10] in the case of general Toeplitz-like
matrices.

For exact gcd, where ε = 0, the degree kε of the ε-gcd coincides with the
nullity (i.e., the dimension of the kernel) of B(u, v) and of S(u, v), or equivalently,
with the nullity of the Cauchy matrices obtained through the reduction.
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Our algorithm can be divided into two stages. In the first stage, from the
coefficients of the input polynomials a resultant matrix (Sylvester or Bézout) is
computed and reduced to Cauchy-like form. The GKO algorithm of Gohberg,
Kailath and Olshevsky [8] for the PLU factorization is applied to the Cauchy-like
matrix obtained in this way. The algorithm relies on the pivoting strategy and on
a suitable technique used to control the growth of the generators. This algorithm
is rank-revealing since in exact arithmetic it provides a matrix U with the last
k rows equal to zero, where k is the nullity of the matrix. In our case, where
the computation is performed in floating point arithmetic with precision μ and
where ε > μ, the algorithm is halted if the last computed pivot a is such that
|a| ≤ ε

√
m+ n. This provides an estimate of the value kε and a candidate gε(x)

to an ε-divisor of u(x) and v(x).
In the second stage, the tentative ε-divisor gε(x) is refined by means of New-

ton’s iteration and a test is applied to check that gε(x) is an ε-common divisor. In
this part, the value of kε can be adaptively modified in the case where gε(x) has
not the maximum degree, or if gε(x) is not an ε-divisor of u(x) and v(x).

It is important to point out that the Jacobian system, which has to be solved
at each Newton’s iteration step, is still a Toeplitz-like linear system which can be
reduced once again to Cauchy-like form and solved by means of the pivoted GKO
algorithm.

In the refinement stage we have complemented Newton’s iteration with a line
search step in order to guarantee the monotonic behavior of the residual.

The algorithm has been implemented in Matlab, tested with a wide set of
polynomials and compared with the currently available software, in particular the
Matlab and Maple packages UVGCD by Zeng [23], STLN by Kaltofen et al. [14]
and QRGCD by Corless et al. [4]. We did not compare our algorithm to the ones
of [16], [24] since the software of the latter algorithms is not available.

We have considered the test polynomials of [23] and some new additional
tests which are representative of difficult situations. In all the problems tested
so far our algorithm has shown a high reliability and effectiveness, moreover, its
O(n2) complexity makes it much faster than the currently available algorithms
already for moderately large values of the degree. Our Matlab code is available
upon request.

The paper is organized as follows. In Section 2 we recall the main tools used
in the paper, among which, the properties of Sylvester and Bézout matrices, their
interplay with gcd, the reduction to Cauchy-like matrices and a modified version
of the GKO algorithm. In Section 3 we present the algorithms for estimating the
degree and the coefficients of the ε-gcd together with the refinement stage based
on Newton’s iteration. Section 4 reports the results of the numerical experiments
together with the comparison of our Matlab implementation with the currently
available software.
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2. Resultant matrices and ε-gcd

We recall the definitions of Bézout and Sylvester matrices and their interplay with
gcd.

2.1. Sylvester and Bézout matrices

The Sylvester matrix of u(x) and v(x) is the (m+ n)× (m+ n) matrix

S(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

un un−1 . . . u0 0
. . . . . .

0 un un−1 . . . u0
vm vm−1 . . . v0 0

. . . . . .
0 vm vm−1 . . . v0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

where the coefficients of u(x) appear in the first m rows.
Assume that n ≥ m and observe that the rational function

b(x, y) =
u(x)v(y) − u(y)v(x)

x− y
is actually a polynomial

∑n
i,j=1 x

i−1yj−1bi,j in the variables x, y. The coefficient
matrix B(u, v) = (bi,j) is called the Bézout matrix of u(x) and v(x).

The following property is well known:

Lemma 2.1. The nullities of S(u, v) and of B(u, v) coincide with deg(g).

The next two results show how the gcd of u(x) and v(x) and the corresponding
cofactors are related to Sylvester and Bézout submatrices. Recall that, for an
integer ν ≥ 2 and a polynomial a(x) =

∑μ
j=0 ajx

j , the ν-th convolution matrix
associated with a(x) is the Toeplitz matrix having [a0, . . . , aμ, 0 . . . 0︸ ︷︷ ︸

ν−1
]T as its first

column and [a0, 0, . . . 0︸ ︷︷ ︸
ν−1

] as its first row.

Lemma 2.2. Let u(x) = g(x)p(x), v(x) = g(x)q(x), then the vector [q0, . . . , qm−k,
−p0, . . . , −pn−k]T belongs to the null space of the matrix Sk = [Cu Cv], where
Cu is the (m − k + 1)-st convolution matrix associated with u(x) and Cv is the
(n− k + 1)-st convolution matrix associated with v(x).

Theorem 2.3. [6] Assume that B(u, v) has rank n − k and denote by c1, . . . , cn
its columns. Then ck+1, . . . , cn are linearly independent. Moreover writing each ci
(1 ≤ i ≤ k) as a linear combination of ck+1, . . . , cn

ck−i = hk+1
k−i ck+1 +

n∑
j=k+2

hjk−icj , i = 0, . . . , k − 1,

one finds that D(x) = d0x
k+d1xk−1+ · · ·+dk−1x+dk is a gcd for u(x) and v(x),

where d1, . . . , dk are given by dj = d0h
k+1
k−j+1, with d0 ∈ R or C.
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Moreover, we have:

Remark 2.4. Let g(x) =
∑k
i=0 gix

i be the gcd of u(x) and v(x), and let û(x) and
v̂(x) be such that u(x) = û(x)g(x), v(x) = v̂(x)g(x). Then we have B(u, v) =
GB(û, v̂)GT , where G is the (n− k)th convolution matrix associated with g(x).

2.2. Cauchy-like matrices

An n× n matrix C is called Cauchy-like of rank r if it has the form

C =
[ uivHj
fi − āj

]n−1
i,j=0

, (2)

with ui and vj row vectors of length r ≤ n, and fi and aj complex scalars such
that fi − āj �= 0 for all i, j. The matrix G whose rows are given by the ui’s and
the matrix B whose columns are given by the vi’s are called the generators of C.

Equivalently, C is Cauchy-like of rank r if the matrix

∇CC = FC − CAH , (3)

where F = diag(f0, . . . , fn−1) and A = diag(a0, . . . , an−1), has rank r. The opera-
tor ∇C defined in (3) is a displacement operator associated with the Cauchy-like
structure, and C is said to have displacement rank equal to r.

The algorithm that we now present is due to Gohberg, Kailath and Olshevsky
[8], and is therefore known as GKO algorithm; it computes the Gaussian elimina-
tion with partial pivoting (GEPP) of a Cauchy-like matrix and can be extended
to other classes of displacement structured matrices. The algorithm relies on the
following

Fact 2.5. Performing Gaussian elimination on an arbitrary matrix is equivalent to
applying recursive Schur complementation; Schur complementation preserves the
displacement structure; permutations of rows and columns preserve the Cauchy-like
structure.

It is therefore possible to directly apply Gaussian elimination with partial
pivoting to the generators rather than to the whole matrix C, resulting in increased
computational speed and less storage requirements.

So, a step of the fast GEPP algorithm for a Cauchy-like matrix C = C1 can
be summarized as follows (we assume that generators (G1, B1) of the matrix are
given):

(i) Use (2) to recover the first column
[
d1
l1

]
of C1 from the generators.

(ii) Determine the position (say, (k, 1)) of the entry of maximum magnitude in
the first column.

(iii) Let P1 be the permutation matrix that interchanges the first and kth rows.
Interchange the first and kth diagonal entries of F1; interchange the first and
kth rows of G1.



160 D.A. Bini and P. Boito

(iv) Recover from the generators the first row
[
d̃1 u1

]
of P1C1. Now one has

the first column

[
1
1
d̃1
l̃1

]
of L and the first row

[
d̃1 u1

]
of U in the LU

factorization of P1C1.

(v) Compute generators (G2, B2) of the Schur complement C2 of P1 · C1 as
follows:[

0
G2

]
= G1 −

[
1
1
d̃1
l̃1

]
g1,

[
0 B2

]
= B1 − b1

[
1 1

d̃1
u1
]
, (4)

where g1 is the first row of G1 and b1 is the first column of B1.

Proceeding recursively, one obtains the factorization C1 = P ·L ·U , where P
is the product of the permutation matrices used in the process.

Now, let

Zφ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 . . . . . . 0 φ
1 0 . . . . . . 0

0 1
. . .

...
...

. . . . . .
...

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

and define the matrix operator

∇TT = Z1T − TZ−1. (6)

An n×n matrix T having low displacement rank with respect to the operator ∇T
(i.e., such that ∇T = GB, with G ∈ Cn×r and B ∈ Cr×n) is called Toeplitz-like.
Sylvester and Bézout matrices are Toeplitz-like, with displacement rank 2.

Toeplitz-like matrices can be transformed into Cauchy-like as follows [10].
Here and hereafter ı̂ denotes the imaginary unit such that ı̂2 = −1.

Theorem 2.6. Let T be an n× n Toeplitz-like matrix. Then C = FTD−10 FH is a
Cauchy-like matrix, i.e.,

∇D1,D−1(C) = D1C − CD−1 = ĜB̂, (7)

where

F =
1√
n
[e

2π̂ı
n (k−1)(j−1)]k,j

is the normalized n× n Discrete Fourier Transform matrix

D1 = diag(1, e
2π̂ı
n , . . . , e

2π̂ı
n (n−1)), D−1 = diag(e

π̂ı
n , e

3π̂ı
n , . . . , e

(2n−1)π̂ı
n ),

D0 = diag(1, e
π̂ı
n , . . . , e

(n−1)π̂ı
n ),

and
Ĝ = FG, B̂H = FD0B

H . (8)
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Therefore the GKO algorithm can be also applied to Toeplitz-like matrices,
provided that reduction to Cauchy-like form is applied beforehand.

In particular, the generators (G,B) of the matrix S(u, v) with respect to the
Toeplitz-like structure can be chosen as follows. Let N = n + m; then G is the
N × 2 matrix having all zero entries except the entries (1, 1) and (m+1, 2) which
are equal to 1; the matrix B is 2×N , its first and second rows are

[−un−1, . . . ,−u1, vm − u0, vm−1, . . . , v1, v0 + un],

[−vm−1, . . . ,−v1, un − v0, un−1, . . . , u1, u0 + vm],

respectively. Generators for B(u, v) can be similarly recovered from the repre-
sentation of the Bézout matrix as sum of products of Toeplitz/Hankel triangular
matrices. Generators for the associated Cauchy-like matrix are computed from
(G,B) by using (8).

2.3. Modified GKO algorithm

Gaussian elimination with partial pivoting (GEPP) is usually regarded as a fairly
reliable method for solving linear systems. Its fast version, though, raises more
stability issues.

Sweet and Brent [22] have done an error analysis of the GKO algorithm
applied to a Cauchy-like matrix C. They point out that the error propagation de-
pends not only on the magnitude of the triangular factors in the LU factorization
of C (as is expected for ordinary Gaussian elimination), but also on the magnitude
of the generators. In some cases, the generators can suffer large internal growth,
even if the triangular factors do not grow too large, and therefore cause a corre-
sponding growth in the backward and forward error. Experimental evidence shows
that this is the case for Cauchy-like matrices derived from Sylvester and Bézout
matrices.

However, it is possible to modify the GKO algorithm so as to prevent gen-
erator growth, as suggested for example in [21] and [9]. In particular, the latter
paper proposes to orthogonalize the first generator before each elimination step;
this guarantees that the first generator is well conditioned and allows a good choice
of a pivot. In order to orthogonalize G, we need to:

– QR-factorize G, obtaining G = GR, where G is an n × r column orthogonal
matrix and R is upper triangular;

– define new generators G̃ = G and B̃ = RB.

This method performs partial pivoting on the column of C corresponding to
the column of B with maximum norm. This technique is not equivalent to complete
pivoting, but nevertheless allows a good choice of pivots and effectively reduces
element growth in the generators, as well as in the triangular factors.
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3. Fast ε-gcd computation

3.1. Estimating degree and coefficients of the ε-gcd

We first examine the following problem: find a fast method to determine whether
two given polynomials u(x) and v(x) have an ε-divisor of given degree k. Through-
out we assume that the input polynomials have unitary Euclidean norm.

The coefficients of the cofactors p(x) and q(x) can be obtained by applying
Lemma 2.2. Once the cofactors are known, a tentative gcd can be computed as
g(x) = u(x)/p(x) or g(x) = v(x)/q(x). Exact or nearly exact polynomial division
(i.e., with a remainder of small norm) can be performed in a fast and stable way
via evaluation/interpolation techniques (see [3]), which exploit the properties of
the discrete Fourier transform.

Alternatively, Theorem 2.3 can be employed to determine the coefficients of
a gcd; the cofactors, if required, are computed as p(x) = u(x)/g(x) and q(x) =
v(x)/g(x).

The matrix in Lemma 2.2 is formed by two Toeplitz blocks and has displace-
ment rank 2 with respect to the straightforward generalization of the operator ∇T
defined in (6) to the case of rectangular matrices. We seek to employ the modified
GKO algorithm to solve the system that arises when applying Lemma 2.2, or the
linear system that yields the coefficients of a gcd as suggested by Theorem 2.3.

In order to ensure that the matrices F and A defining the displacement
operator ∇C associated with the reduced matrix have well-separated spectra, a
modified version of Theorem 2.6 is needed. Observe that a Toeplitz-like matrix T
also has low displacement rank with respect to the operator ∇Z1,Zθ

(T ) = Z1T −
T · Zθ, for any θ ∈ C, |θ| = 1. Then we have:

Theorem 3.1. Let T ∈ Cn×m be a Toeplitz-like matrix, satisfying

∇Z1,Zθ
(T ) = Z1T − TZθ = GB,

where G ∈ Cn×α, B ∈ Cα×m and Z1, Zθ are as in (5). Let N = lcm (n,m). Then
C = FnTDθFm is a Cauchy-like matrix, i.e.,

∇D1,Dθ
(C) = D1C − CDθ = ĜB̂, (9)

where Fn and Fm are the normalized Discrete Fourier Transform matrices of order
n and m respectively,

Dθ = θ ·D1,

D = diag(1, e
π̂ı

Nm , e
2π̂ı
Nm , . . . )

D1 = diag(1, e
2π̂ı
n , . . . , e

2π̂ı
n (n−1))

and Ĝ = FnG, B̂H = FmDBH .

The optimal choice for θ is then θ = e
π̂ı
N .



A Fast Algorithm for Approximate Polynomial GCD 163

The gcd and cofactors obtained from Lemma 2.2 or Theorem 2.3 can be
subsequently refined as described in the next section. After the refining step, it is
easy to check whether an ε-divisor has actually been computed.

We are left with the problem of choosing a tentative gcd degree kε. A pos-
sibility is to employ a bisection technique, which requires to test the existence of
an approximate divisor log2 n times and therefore preserves the overall quadratic
cost of the method.

Alternatively, a heuristic method of choosing a tentative value for kε can
be designed by observing that, as a consequence of the properties of resultant
matrices presented in Section 2.1, the choice of a suitable kε is mainly a matter of
approximate rank determination, and the fast LU factorization of the Sylvester or
Bézout matrix might provide reasonably useful values for kε.

Observe that the incomplete fast LU factorization computes a Cauchy-like
perturbation matrix ΔC such that C −ΔC has rank n − k. If a is the last pivot
computed in the incomplete factorization, then as a consequence of Lemma 2.2 in
[9], |a| ≤ ‖ΔC‖2.

Now, let uε(x) and vε(x) be polynomials of minimum norm and same degrees
as u(x) and v(x), such that u+uε and v+vε have an exact gcd of degree k. Assume
‖uε‖2 ≤ ε and ‖vε‖2 ≤ ε. Let Cε be the Cauchy-like matrix obtained via Theorem
2.6 from the Sylvester matrix Sε = S(uε, vε). Then C + Cε has rank n− k, too.

If we assume that ‖ΔC‖2 is very close to the minimum norm of a Cauchy-like
perturbation that decreases the rank of C to n− k, then we have

|a| ≤ ‖ΔC‖2 ≤ ‖Cε‖2 = ‖Sε‖2 ≤ ε
√
n+m, (10)

where the last inequality follows from the structure of the Sylvester matrix. There-
fore, if |a| > ε/

√
n+m, then u(x) and v(x) cannot have an ε-divisor of degree k.

This gives an upper bound on the ε-gcd degree based on the absolute values of the
pivots found while applying the fast Gaussian elimination to C. The same idea
can be applied to the Bézout matrix.

This is clearly a heuristic criterion since it assumes that some uncheckable
condition on ||ΔC||2 is satisfied. However, this criterion seems to work quite well
in practice. When it is applied, the gcd algorithm should check whether it ac-
tually provides an upper bound on the gcd degree. We use this criterion for the
determination of a tentative gcd degree in our implementation of the algorithm.
In fact, experimental evidence shows that this criterion is usually more efficient
in practice than the bisection strategy, though in principle it does not guarantee
that the quadratic cost of the overall algorithm is preserved.

3.2. Refinement

Since the computed value of kε is the result of a tentative guess, it might happen
in principle that the output provided by the algorithm of Section 3.1 is not an
ε-divisor, is an ε-divisor of lower degree, or is a poor approximation of the sought
divisor. In order to get rid of this uncertainty, it is suitable to refine this output
by means of an ad hoc iterative technique followed by a test on the correctness
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of the ε-degree. For this purpose we apply Newton’s iteration to the least squares
problem defined by

F (z) =
[
Cpg − u
Cqg− v

]
, z =

⎡⎣ g
p
q

⎤⎦ , (11)

where the Euclidean norm of the function F (z) is to be minimized. Here, in bold-
face we denote the coefficient vectors of the associated polynomials. The matrices
Cp and Cq are convolution matrices of suitable size associated with the polynomials
p(x) and q(x) respectively.

The Jacobian matrix J associated with the problem (11) has the form

J =
(
Cp Cg 0
Cq 0 Cg

)
, (12)

where each block is a convolution matrix associated with a polynomial; Cp is of size
(n+1)×(k+1), Cq is (m+1)×(k+1), Cg in the first block row is (n+1)×(n−k+1)
and Cg in the second block row is (m + 1) × (m − k + 1). This Jacobian matrix,
however, is always rank deficient, because of the lack of a normalization for the
gcd.

Remark 3.2. Under the hypotheses stated above, the Jacobian matrix (12) computed
at any point z = [gT − pT − qT ]T is singular. Moreover, the nullity of J
is 1 if and only if p(x), q(x) and g(x) have no common factors. In particular,
if z is a solution of F (z) = 0 and g(x) has maximum degree, i.e., it is a gcd,
then J has nullity one and any vector in the null space of J is a multiple of
w = [gT − pT − qT ]T , where p(x) and q(x) are cofactors.

In order to achieve better stability and convergence properties, we force the
Jacobian to have full rank by adding a row, given by wT . Nevertheless, it can
be proved, by relying on the results of [20], that the quadratic convergence of
Newton’s method in the case of zero residual also holds, in this case, with a rank
deficient Jacobian. This property is useful when the initial guess for kε is too small,
since in this case the rank deficiency of the Jacobian is unavoidable.

The new Jacobian J̃ =
[(

J
wT

)]
is associated with the least squares problem

that minimizes F̃ (z) =
[( F (z)
‖g‖2−‖p‖2−‖q‖2−K

)]
, where K is a constant. The choice

of wT as an additional row helps to ensure that the solution of each Newton’s step

zj+1 = zj − J̃(zj)†F̃ (zj) (13)

is nearly orthogonal to kerJ . Here J̃(zj)† is the Moore-Penrose pseudoinverse of
the matrix J̃(zj). For ease of notation, the new Jacobian will be denoted simply
as J in the following.

The matrix J has a Toeplitz-like structure, with displacement rank 5. We
propose to exploit this property by approximating the solution of each linear least
squares problem

Jηj = F̃ (zj), ηj = zj − zj+1
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via fast LU factorization still preserving the quadratic convergence of the modified
Newton’s iteration obtained in this way.

We proceed as follows:

– Compute the factorization J = LU , where J ∈ CN×M , L ∈ CN×N and
U ∈ CN×M . For the sake of simplicity, we are overlooking here the presence
of permutation matrices due to the pivoting procedure; we can assume that
either J or the vectors ηj and xj = F̃ (zj) have already undergone appropriate
permutations.
Consider the following block subdivision of the matrices L e U , where the
left upper block has size M ×M :

L =
[
L1 0
L2 I

]
, U =

[
U1

0

]
.

Analogously, let xj =

[
x(1)
j

x(2)
j

]
and observe that L−1 =

[
L−11 0

−L2L
−1
1 I

]
.

– Let yj = L−11 x(1)
j . If U1 is nonsingular, then compute wj as solution of

U1wj = yj . Else, consider the block subdivision

U1 =
[
U11 U12

0 0

]
, wj =

[
w(1)
j

w(2)
j

]
, yj =

[
y(1)
j

y(2)
j

]
,

such that U11 is nonsingular; set all the entries of w(2)
j equal to zero, and

compute w(1)
j as solution of U11w

(1)
j = y(1)

j

– If J is rank deficient, find a basis for K = kerJ .
– Subtract from wj its projection on K, thus obtaining a vector χj . This is
the vector that will be used as approximation of a solution of the linear least
squares system in the iterative refinement process.
Let R be the subspace of CN spanned by the columns of J . We have

CN = R⊕R⊥. (14)

Let xj = αj + βj be the decomposition of xj with respect to (14), i.e., we have
αj ∈ R and βj ∈ R⊥.

The Moore-Penrose pseudoinverse of J acts on xj as follows: J†αj is the
preimage of αj with respect to J and it is orthogonal to K = kerJ , whereas J†βj
is equal to zero.

The LU-based procedure, on the other hand, acts exactly like J† on αj ,
whereas the component βj is not necessarily sent to 0. Therefore, χj is the sum of
ηj and of the preimage of βj with respect to the LU decomposition.

In a general linear least squares problem, there is no reason for ‖βj‖2 to be
significantly smaller than ‖xj‖2. In our case, though, the Taylor expansion of F (z)
yields:

0 = F (z∗) = F (zj)− J(zj)εj +O(‖εj‖22), (15)
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where εj = zj − z∗ and z∗ is such that F (z∗) = 0. It follows from (15) that
xj = J(zj)εj +O(‖εj‖22). Since J(zj)εj ∈ R, we conclude that ‖βj‖2 = O(‖εj‖22).
Therefore, Newton’s method applied to the iterative refinement of the polynomial
gcd preserves its quadratic convergence rate, even though the linear least squares
problems (13) are treated using via the LU factorization of the Jacobian.

The iterative process ends when at least one of the following criteria is sat-
isfied:
1. the residual (that is, the Euclidean norm of the function F (z)) becomes
smaller than a fixed threshold,

2. the number of iteration reaches a fixed maximum,
3. the residual given by the last iteration is greater than the residual given by
the previous iteration.

The purpose of the third criterion is to avoid spending computational effort on
tentative gcds that are not in fact suitable candidates. However, its use with New-
ton’s method may pose some difficulties, because it is generally difficult to predict
the global behaviour of this method; in particular, it might happen that the resid-
ual does not decrease monotonically. The usual way to overcome this obstacle is to
use instead a relaxed version of Newton that includes a line search. More precisely,
instead of the iteration (13) one computes

zj+1 = zj − αj J̃(zj)†F̃ (zj), (16)

where αj is chosen – using a one-dimensional minimization method – so as to
approximately minimize the norm of F̃ (zj).

The drawback of this technique is that it slows down convergence: the qua-
dratic convergence that was one of the main interesting points of Newton’s method
is lost if one consistently performs iterations of the type (16). For this reason we
employ here a hybrid method: At each step, the algorithm evaluates the descent
direction J̃(zj)†F̃ (zj) and checks if a pure Newton step (that is, (16) with αj = 1)
decreases the residual. If this is the case, then the pure Newton step is actually
performed; otherwise, αj and subsequently zj+1 are computed by calling a line
search routine. In this way, most of the optimization work is still performed by
pure Newton iterations, so that the overall method remains computationally cheap;
the line search, called only when necessary, is helpful in some difficult cases and
ensures that the method has a sound theoretical basis.

3.3. The overall algorithm

Algorithm Fastgcd

Input: the coefficients of polynomials u(x) and v(x) and a tolerance ε.
Output: an ε-gcd g(x); a backward error (residual of the gcd system); possibly
perturbed polynomials û(x) and v̂(x) and cofactors p(x) and q(x).
Computation:
– Compute the Sylvester matrix S associated with u(x) and v(x);
– Use Lemma 2.6 to turn S into a Cauchy-like matrix C;
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– Perform fast Gaussian elimination with almost complete pivoting on C; stop
when a pivot a such that |a| < ε/

√
n+m is found; let k0 be the order of the

not-yet-factored submatrix Ũ that has a as upper left entry;
– Choose k = k0 as tentative gcd degree;
– Is there an ε-divisor of degree k? The answer is found as follows:

– find tentative cofactors by applying the modified GKO algorithm to the
system given by Lemma 2.2,

– compute a tentative gcd by performing polynomial division via evalua-
tion/interpolation,

– perform iterative refinement and check whether the backward error is
smaller than ε;

– If yes, check for k+1; if there is also an ε-divisor of degree k+1, keep checking
for increasing values of the degree until a maximum is reached (i.e., a degree
is found for which there is no ε-divisor);

– If not, keep checking for decreasing values of the degree, until an ε-divisor
(and gcd) is found.
Observe that a slightly different version of the above algorithm is still valid

by replacing the Sylvester matrix with the Bézout matrix. With this replacement
the size of the problem is roughly reduced by a factor of 2 with clear computational
advantage.

It should also be pointed out that the algorithm generally outputs an approx-
imate gcd with complex coefficients, even if u(x) and v(x) are real polynomials.
This usually allows for a higher gcd degree or a smaller backward error.

4. Numerical experiments

The algorithm Fastgcd has been implemented in Matlab and tested on many poly-
nomials, with satisfactory results. Some of these results are shown in this section
and compared to the performance of other implemented methods that are found
in the literature, namely UVGCD by Zeng [23], STLN by Kaltofen et al. [14] and
QRGCD by Corless et al. [4]. Matlab experiments with Fastgcd and UVGCD are
performed using version 7.5.0 running under Windows; we use here the P-code for
UVGCD contained in the Apalab toolbox.

It must be pointed out that comparison with the STLN method is not
straightforward, since this methods follows an optimization approach, i.e., it takes
two (or more) polynomials and the desired gcd degree k as input, and seeks a per-
turbation of minimum norm such that the perturbed polynomials have an exact
gcd of degree k. Moreover, the algorithms UVGCD and STLN do not normalize the
input polynomials, whereas QRGCD and Fastgcd do; therefore all test polynomials
are normalized (with unitary Euclidean norm) beforehand.

In the following tests, we generally display the residual (denoted as “res”)
associated with the gcd system (recall that the residual is defined here as the
Euclidean norm of the function F (z) and it may slightly differ from the residual as
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defined by other authors). In some examples, where a nearly exact gcd is sought,
we report the coefficient-wise error on the computed gcd (denoted as “cwe”), since
the “correct” gcd is known.

4.1. Badly conditioned polynomials

The test polynomials in this section are taken from [23]. The polynomials in the
first example are specifically chosen so that the gcd problem is badly conditioned.

Example 4.1. Let n be an even positive integer and k = n/2; define pn = unvn
and qn = unwn, where

un =
k∏
j=1

[(x− r1αj)2 + r21β
2
j ], vn =

k∏
j=1

[(x − r2αj)2 + r22β
2
j ],

wn =
n∏

j=k+1

[(x − r1αj)2 + r21β
2
j ], αj = cos

jπ

n
, βj = sin

jπ

n
,

for r1 = 0.5 and r2 = 1.5. The roots of pn and qn lie on the circles of radius r1
and r2.

The following table shows the coefficient-wise errors given by the examined
gcd methods as n increases.

n Fastgcd UVGCD QRGCD

10 6.44× 10−13 3.24× 10−13 1.57× 10−12
12 5.23× 10−12 1.40× 10−12 3.28× 10−4
14 1.79× 10−11 2.27× 10−11 (∗)
16 5.27× 10−10 4.41× 10−11 (∗)
18 6.11× 10−9 3.63× 10−10 (∗)

(∗) Here QRGCD fails to find a gcd of correct degree.

In this case, there are no substantial differences between the (good) results
provided by Fastgcd and by UVGCD, while QRGCD outputs failure for very ill-
conditioned cases. It should be pointed out, however, that the results given by
UVGCD vary between trials, which makes comparisons more difficult.

In the following test, the gcd degree is very sensitive to the choice of the
tolerance ε.

Example 4.2. Let

p(x) =
10∏
1

(x− xj), q(x) =
10∏
1

(x− xj + 10−j),

with xj = (−1)j(j/2). The roots of p and q have decreasing distances 0.1, 0.01,
0.001, etc.
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The table shows, for several values of the tolerance, the corresponding gcd
degree and residual found by Fastgcd and UVGCD. Fastgcd gives better results,
since it generally finds gcds of higher degree. The algorithm QRGCD, on the
contrary, outputs failure for all values of ε smaller than 10−2.

ε Fastgcd UVGCD

deg res deg res

10−2 9 0.0045 9 0.0040
10−3 8 2.63× 10−4 8 1.72× 10−4
10−4 7 9.73× 10−6 (∗)
10−6 6 2.78× 10−7 1 3.34× 10−16
10−7 5 8.59× 10−9 1 3.34× 10−16

(∗) Here UVGCD outputs the same result as above
due to a different definition of residual.

It is interesting to observe that for ε ≤ 10−5, UVGCD computes a common
ε-divisor which does not have the maximum degree, while Fastgcd always provides
an ε-divisor of higher degree.

We have also studied this example using the STLN method, though the em-
ployed approach is entirely different. The following table shows the residuals com-
puted by STLN for several values of the degree.

deg gcd res deg gcd res

9 5.65× 10−3 6 2.58× 10−7
8 2.44× 10−4 5 6.34× 10−9
7 1.00× 10−5 4 1.20× 10−10

4.2. High gcd degree

In this example, also taken from [23], the gcd has a large degree.

Example 4.3. Let pn = unv and qn = unw, where v(x) =
∑3
j=0 x

j and w(x) =∑4
j=0(−x)j are fixed polynomials and un is a polynomial of degree n whose coef-

ficients are random integer numbers in the range [−5, 5].
The following table shows the residuals and the coefficient-wise errors on the

computed gcd for large values of n. Here, Fastgcd and UVGCD perform similarly
while QRGCD provides a worse coefficient-wise error.

n Fastgcd UVGCD QRGCD

res cwe res cwe cwe

50 2.97× 10−16 5.04× 10−16 2.43× 10−16 8.32× 10−16 1.72× 10−12
100 2.91× 10−16 1.41× 10−15 1.83× 10−16 7.77× 10−16 4.80× 10−8
200 5.08× 10−16 7.29× 10−15 1.72× 10−16 9.99× 10−16 2.39× 10−11
500 4.04× 10−16 3.12× 10−15 2.10× 10−15 1.35× 10−14
1000 3.98× 10−16 3.28× 10−15 2.26× 10−16 1.67× 10−15
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4.3. Unbalanced coefficients

This is another example taken from [23].

Example 4.4. Let p = uv and q = uw, where v(x) and w(x) are as in Example 4.3
and

u(x) =
15∑
j=0

cj10ejxj ,

where cj and ej are random integers in [−5, 5] and [0, 6] respectively.
In this example u(x) is the gcd of p(x) and q(x) and the magnitude of its

coefficients varies between 0 and 5×106. If an approximate gcd algorithm is applied
and the coefficient-wise relative error θ is calculated, then N = log10 θ is roughly
the minimum number of correct digits for the coefficients of u(x) given by the
chosen method. 100 repetitions of this test are performed. The average number of
correct digits found in an experiment of this type is 10.63 for Fastgcd and 10.83
for UVGCD. Therefore the two algorithms give comparable results. Residuals are
always about 10−16. QRGCD, on the contrary, achieves an average of 7.46 correct
digits.

4.4. Multiple roots

Example 4.5. Let u(x) = (x3 + 3x − 1)(x − 1)k for a positive integer k, and let
v(x) = u′(x). The gcd of u(x) and v(x) is g(x) = (x − 1)k−1.

The coefficient-wise errors computed by Fastgcd, UVGCD and QRGCD for
several values of k and for ε = 10−6 are shown in the following table. Unless
otherwise specified, the computed gcd degrees are understood to be correct.

k Fastgcd UVGCD QRGCD

15 5.18× 10−13 4.27× 10−13 7.04× 10−7
25 9.31× 10−11 1.99× 10−11 (∗)
35 1.53× 10−8 4.44× 10−9 (∗)
45 6.61× 10−6 4.04× 10−8 (∗)

(∗) Here QRGCD does not detect a gcd of correct degree.

The algorithm UVGCD has been specifically designed for polynomials with
multiple roots and is therefore very efficient. Fastgcd also provides good results,
with backward errors (residuals) always of the order of the machine epsilon, where-
as QRGCD fails to find a gcd of correct degree as soon as the root multiplicity is
larger than Donnerstag, Oktober 8, 2009 at 3:44 pm15.

4.5. Small leading coefficient

A gcd with a small leading coefficient may represent in many cases a source of
instability.

Example 4.6. For a given (small) parameter α ∈ R, let g(x) = αx3 + 2x2 − x+ 5,
p(x) = x4 + 7x2 − x + 1 and q(x) = x3 − x2 + 4x − 2 and set u(x) = g(x)p(x),
v(x) = g(x)q(x).
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Figure 1. Running time of the algorithm Fastgcd

We applied Fastgcd and QRGCD to this example, with α ranging between
10−5 and 10−15. It turns out that, for α < 10−5, QRGCD fails to recognize the
correct gcd degree and outputs a gcd of degree 2. Fastgcd, on the contrary, always
recognizes the correct gcd degree, with a residual of the order of the machine
epsilon.

4.6. Running time

We have checked the growth rate of the running time of the algorithm Fastgcd on
pairs of polynomials whose GCD and cofactors are defined like the polynomials
un(x) introduced in Section 4.2. Polynomials of degree N = 2n ranging between
50 and 1000 have been used. Figure 1 shows the running time (in seconds) versus
the degree in log-log scale, with a linear fit and its equation. Roughly speaking,
the running time grows as O(Nα), where α is the coefficient of the linear term in
the equation, i.e., 2.06 in our case.

We next show a comparison between the running times of Fastgcd and
UVGCD. In order to avoid randomly chosen coefficients, we define a family of test
polynomials as follows. Let k be a positive integer and let n1 = 25k, n2 = 15k and
n3 = 10k. For each value of k define the cofactors pk(x) = (xn1−1)(xn2−2)(xn3−3)
and qk(x) = (xn1+1)(xn2+5)(xn3+ı̂). The test polynomials are uk(x) = g(x)pk(x)
and vk(x) = g(x)qk(x), where the gcd g(x) = x4+10x3+x−1 is a fixed polynomial.

Figure 2 shows the computing times required by Fastgcd and UVGCD on
uk(x) and vk(x) for k = 1, . . . , 8. The plot clearly shows that the time growth for
Fastgcd is much slower than for UVGCD.
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Figure 2. Comparison between the running times of
Fastgcd and UVGCD.
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Abstract. Two classes of structured Hermitian matrices are considered with
the additional property that certain principal submatrices are all singular.
Such matrices can be considered as the Pick matrices of certain (interior and
boundary) norm constrained interpolation problems for functions meromor-
phic on the unit disk which the iterative Schur algorithm does not apply to.
We characterize these matrices in terms of the parameters determining their
structure and present formulas for their inertia.
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1. Introduction

In this note we discuss two related classes of structured matrices whose structure
is determined by Stein equations and the additional property that the principal
minors of certain type are all zeros. Let Jn(z) denote the n×n Jordan block with
z ∈ C on the main diagonal and let En stand for the vector of the length n with
the first coordinate equals one and other coordinates equal zero:

Jn(z) =

⎡⎢⎢⎢⎢⎣
z 0 . . . 0

1 z
. . .

...
. . . . . . 0

0 1 z

⎤⎥⎥⎥⎥⎦ , En =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ . (1.1)
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Given a tuple z = (z1, . . . , zk) of k distinct points in the open unit disk D and a
tuple n = (n1, . . . , nk) of natural numbers, we let |n| := n1 + · · ·+ nk and define

Tn(z) =

⎡⎢⎣ Jn1(z1)
. . .

Jnk
(zk)

⎤⎥⎦ and En =

⎡⎢⎣ En1

...
Enk

⎤⎥⎦ . (1.2)

Definition 1.1. We say that a matrix P ∈ C|n|×|n| belongs to the class Dn if it
satisfies the Stein identity

P − Tn(z)PTn(z)∗ = EnE
∗
n − CnC

∗
n (1.3)

for some vector

Cn =

⎡⎢⎣ C1,n1

...
Ck,nk

⎤⎥⎦ , where Ci,ni =

⎡⎢⎣ ci,0
...

ci,ni−1

⎤⎥⎦ , (1.4)

and if its compression to any Tn(z)∗-invariant subspace of C|n| is singular.

Since all the eigenvalues of Tn(z) fall inside the unit disk, the Stein equation
(1.3) has a unique solution P which is Hermitian. Solving (1.3) gives the following
explicit formulas for the entries of P :

P = [Pij ]
k
i,j=1 , Pij ∈ Cni×nj , (1.5)

where

[Pij ]
,r =
min{
,r}∑
s=0

(�+ r − s)!
(�− s)!s!(r − s)!

zr−si z̄
−sj

(1− ziz̄j)
+r−s+1
(1.6)

−

∑
α=0

r∑
β=0

min{α,β}∑
s=0

(α+ β − s)!
(α− s)!s!(β − s)!

zβ−si z̄α−sj ci,
−αc∗j,r−β
(1 − ziz̄j)α+β−s+1

.

In (1.6) and in what follows we will use the symbol c∗ for the complex conjugate
of c ∈ C. Also we will denote by π(P ), ν(P ) and δ(P ) respectively the numbers of
positive, negative and zero eigenvalues, counted with multiplicities, of a Hermitian
matrix P . For two tuples n and m in Zk+, we will say that

m = (m1, . . . ,mk) � (n1, . . . , nk) = n if mi ≤ ni for i = 1, . . . , k. (1.7)

For a matrix P = Pn decomposed in blocks as in (1.5) and a tuple m � n as in
(1.7), define the principal submatrix Pm = [(Pm)ij ]

k
i,j=1 of P whose block entries

(Pm)ij ’s are equal to the leading mi×mj submatrices of the corresponding blocks
in P :

Pm = [(Pm)ij ]
k
i,j=1 where (Pm)ij =

[
Imi 0

]
Pij

[
Imj

0

]
. (1.8)

It is easily seen that any compression of P to a Tn(z)∗-invariant subspace of C|n|

is of the form Pm for some m � n. Thus the class Dn can be characterized as
follows.
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Definition 1.1′. Dn consists of all matrices P of the form (1.5), (1.6) (for some
ci,j ∈ C) and such that for every m � n, the submatrix Pm of P is singular.

Classes Dn admit the following functional-model interpretation. Let H2 be
the Hardy space of the unit disk, let θ(z) be the finite Blaschke product

θ(z) =
k∏
i=1

(
z − zi
1− zz̄i

)ni

associated with the tuples z and n, and let Kθ := H2 � θH2 be the model space.
The functions

ei,j(z) =
1
j!
dj

dz̄i

(
1− θ(z)θ(zi)∗

1− zz̄i

)
(i = 1, . . . , k; j = 0, . . . , ni − 1), (1.9)

form a basis for Kθ and therefore, dimKθ = |n|. The space Kθ is invariant with
respect to the backward shift operator R : f → f(z)−f(0)

z and the matrix of R
with respect to the basis (1.9) is equal to Tn(z)∗ defined in (1.2). Let Tf be the
Toeplitz operator with symbol f ∈ H∞ and let Pθ,f be the compression of the
operator I − TfT ∗f to the model space Kθ. Using the reproducing property of the

kernel
1− θ(z)θ(ζ)∗

1− zζ̄ for the space Kθ, it is not hard to show that the matrix of

the operator Pθ,f with respect to the basis (1.9) equals

P fn (z) =

⎡⎢⎣
⎡⎣ 1
�!r!

∂
+r

∂z
∂ζ̄r
1− f(z)f(ζ)
1− zζ̄

∣∣∣∣∣z=zi
ζ=zj

⎤⎦r=0,...,nj−1


=0,...,ni−1

⎤⎥⎦
k

i,j=1

. (1.10)

If in addition,

f (j)(zi) = j! ci,j (i = 1, . . . , k; j = 0, . . . , ni − 1), (1.11)

then differentiation in (1.10) shows that P fn (z) is equal to the matrix P defined
in (1.5), (1.6). Furthermore, P ∈ Dn means that the compression of Pθ,f to any
backward shift invariant subspace of Kθ is singular.

Now we will explain why the class Dn (or equivalently, the class of operators
onKθ of the form PKθ

(I−TfT ∗f )|Kθ
with all backward shift invariant compressions

singular) are of some interest. Note that the matrix P fn (z) can be defined for every
function f analytic at z1, . . . , zk (not necessarily analytic on all of D). If we will
think of (1.11) as of interpolation conditions for an unknown function f (say,
rational and with maxz∈T|f(z)| ≤ 1), then P fn (z) = P for every solution f of the
problem (1.11) with interpolation data {zi, ci,j}. The matrix P is then called the
Pick matrix of the problem (1.11).

In the nondegenerate case (where P is invertible), the solution set of the
problem (1.11) can be parametrized in terms of a linear fractional transformation
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(see, e.g., [4]). If P is singular, one may start with a subproblem of (1.11) of the
form

f (j)(zi) = j! ci,j (i = 1, . . . , k; j = 0, . . . ,mi − 1), (1.12)

where mi ≤ ni for i = 1, . . . , k. It is readily seen that the Pick matrix of this
subproblem is the principal submatrix Pm of P defined as in (1.8), and if this
matrix is invertible, one can apply the Schur algorithm to reduce the original
problem (1.11) to a problem with |m| fewer interpolation conditions. We now
see that the class Dn consists of Pick matrices corresponding to interpolation
problems of the form (1.11) which the Schur algorithm (even the first step of
this algorithm) does not apply to. On the other hand, even if we start with a
degenerate interpolation problem (1.11) containing nondegenerate subproblems,
then after a number of steps we still come up with a reduced problem whose
Pick matrix belongs to the class Dm for some m � n. In other words, the Schur
algorithm reduces any degenerate problem (1.11) to a problem with the Pick matrix
from the class Dm. In Section 2 we characterize the matrices of the class Dn in
terms of the parameters {ci,j} and establish a simple formula for the inertia of
a P ∈ Dn (the results of this sort go back to [8]; see also [1], [2], [3] for further
developments). The formula for inertia (see Theorem 2.2) is of certain interest
for interpolation problems by rational functions unimodular on the unit circle
T (i.e., ratios of finite Blaschke products: f = b1/b2), since the inertia of the
Pick matrix controls the minimally possible degrees of b1 and b2. In Section 3
we consider the class Bn (a “boundary” analog of the class Dn), the class of
matrices with leading (with respect to a designated block decomposition) minors
equal zero and with the structure determined by the Stein identity (1.3) where the
(distinct) points t1, . . . , tk fall on the unit circle T rather than inside the unit disk.
In this case, for the Stein equation (1.3) to have a solution, the vector Cn must
satisfy certain additional a’priori conditions. If these conditions are satisfied, the
equation has infinitely many Hermitian solutions, and all of them are of the same
special structure. We will see how this structure simplifies under the singularity
assumption about leading submatrices. The matrices of the class Bn serve as Pick
matrices of boundary L∞-norm constrained interpolation problems which do not
contain nondegenerate subproblems. Applications of the results presented here to
boundary interpolation problems will be demonstrated elsewhere.

2. The interior case

Since the unique solution P of the Stein equation (1.3) is determined by z1, . . . , zk
and the entries ci,j of the vector Cn, the characterization of matrices from the class
Dn can be given in terms of this data. It turns out that (distinct) points z1, . . . , zk
do not play any role in this characterization.

Proposition 2.1. A matrix P of the form (1.5), (1.6) belongs to Dn if and only if

c1,0 = c2,0 = · · · = ck,0 = γ, |γ| = 1 (2.1)
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and
ci,j = 0 for every i = 1, . . . , k and 1 ≤ j ≤

[ni
2

]
, (2.2)

where [x] stands for the greatest integer less than or equal to x.

Proof. Let for short �i =
[
ni

2

]
and let us assume that P ∈ Dn. Then in particular,

the leading submatrices of diagonal blocks Pii are singular. Since Pii satisfies the
Stein identity

Pii − Jni(zi)PiiJni(zi)
∗ = EniE

∗
ni
− Ci,niC

∗
i,ni

(2.3)

(which is just the equality between the ith diagonal blocks in (1.7)), Theorem 5.1
in [1] applies and says that the �i × �i leading submatrix P̃ii of Pii is the zero
matrix. Now we compare the �i × �i leading submatrices in (2.3) to conclude that
0 = E
iE

∗

i
−Ci,
iC∗i,
i where E
i and Ci,
i are defined via formulas (1.1) and (1.4).

Equating the top rows in the latter equality gives

0 =
[
1− |ci,0|2 −ci,0c∗i,1 −ci,0c∗i,2 . . . ci,0c

∗
i,


]
,

which implies
|ci,0| = 1 for i = 1, . . . , k (2.4)

and ci,1 = ci,2 = · · · = ci,
i = 0 which is the same as (2.2). Now we take the tuple
m = (m1, . . . ,mk) with mi = mj = 1 and m
 = 0 for � �= i, j. Since m � n, the
submatrix

Pm =

⎡⎢⎢⎣
1− |ci,0|2
1− |zi|2

1− ci,0c∗j,0
1− ziz̄j

1− cj,0c∗i,0
1− zj z̄i

1− |cj,0|2
1− |zj |2

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 0

1− ci,0c∗j,0
1− ziz̄j

1− cj,0c∗i,0
1− zj z̄i

0

⎤⎥⎥⎦
of P is singular, which implies

ci,0 = cj,0 for i, j = 1, . . . , k. (2.5)

Equalities (2.1) follow from (2.4) and (2.5).
For the sufficiency part, observe that conditions (2.1) and (2.2) guarantee

that all the entries in the (
[
ni

2

]
+1)× (

[nj

2

]
+1) leading submatrix of the block Pij

of P are zeros (this is readily seen from the explicit formula (1.6) for the entries
of Pij):

Pij =

[
0
([ni

2 ]+1)×([nj
2 ]+1)

∗
∗ ∗

]
(i, j = 1, . . . , k). (2.6)

Since Pij ∈ Cni×nj , it follows that the dimensions of the zero block in (2.6) are
greater than halves of the corresponding dimensions of Pij . Therefore, for every
m � n, the matrix Pm contains a zero principal submatrix whose dimensions
are greater than |m|

2 . Therefore, Pm is singular which completes the proof of the
theorem. �

The next theorem describes the inertia of a matrix P ∈ Dn. It shows in par-
ticular, that a matrix P ∈ Dn has equally many positive and negative eigenvalues.
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Note that in the single-block case (i.e., if k = 1) this theorem is a particular case
of Theorem 5.1 in [1].

Theorem 2.2. Let z = (z1, . . . , zk) ∈ Dk and let n = (n1, . . . , nk) ∈ Nk and
d = (d1, . . . , dk) ∈ Zk+ be two tuples such that

ni
2
≤ di ≤ ni for i = 1, . . . , k. (2.7)

Let P be defined as in (1.5), (1.6) and let us assume that the numbers ci,j satisfy
(2.1) and

ci,di �= 0 and ci,j = 0 for every i = 1, . . . , k and 1 ≤ j ≤ di − 1 (2.8)

(the first inequality in (2.8) is relevant only if di < ni). Then

π(P ) = ν(P ) = |n| − |d| and δ(P ) = 2|d| − |n|. (2.9)

Proof. Note that under assumptions (2.8), the matrix P belongs to Dn if and only
if ni

2 < di ≤ ni for i = 1, . . . , k (by Proposition 2.1). However, the conclusion (2.9)
of the theorem holds true even if di = ni

2 for some i’s. In particular, it follows that
if di = ni

2 for every i = 1, . . . , k, then the matrix P is invertible and has equally
many positive and negative eigenvalues.

For the proof, we first observe that conditions (2.1) and (2.8) guarantee that
Pd, the principal submatrix of P defined via (1.8), is equal to the zero matrix

Pd = 0. (2.10)

The latter can be seen directly from the explicit formula (1.6) for the entries of
P . Since P ∈ C|n|×|n| and Pd ∈ C|d|×|d|, it follows from (2.10), that rank(P ) ≤
2(|n| − |d|) and therefore, that

δ(P ) ≥ |n| − 2(|n| − |d|) = 2|d| − |n| ≥ 0, (2.11)

where the last inequality follows from the assumption (2.7).

Let us extend the sequence {ci,j}j=0,...,ni−1
i=1,...,k to {ci,j}j=0,...,2di−1

i=1,...,k ; the extend-
ing terms ci,ni+r (r = 0, . . . , 2di − ni − 1) are arbitrary nonzero complex numbers
(in fact we need only ci,ni to be nonzero in case where ni = di). Let H be the
solution of the Stein equation

H − T2dHT ∗2d = E2dE
∗
2d − C2dC

∗
2d (2.12)

where 2d := (2d1, . . . , 2dk) and where the matrices T2d := T2d(z), E2d and C2d

are defined via formulas (1.2) and (1.4). It is clear that the principal submatrix
Hn of H is equal to the original matrix P . We will show that

π(H) = ν(H) = |d|. (2.13)

Assuming that (2.13) is already proved, we complete the proof of the theorem as
follows. Since P is an |n| × |n| principal submatrix of the 2|d| × 2|d| Hermitian
matrix H , it follows by the Cauchy’s interlacing theorem that

π(P ) ≥ π(H) − (2|d| − |n|) and ν(P ) ≥ ν(H)− (2|d| − |n|)
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which together with (2.13) imply

π(P ) ≥ |n| − |d| ≥ 0 and ν(P ) ≥ |n| − |d| ≥ 0. (2.14)

Since π(P )+ν(P )+δ(P ) = |n|, equalities (2.9) follow from inequalities (2.11) and
(2.14). It remains to verify (2.13). To this end, let

Fi,di :=

⎡⎢⎢⎢⎣
ci,di

ci,di+1

...
ci,2di−1

⎤⎥⎥⎥⎦ and Fi,di :=

⎡⎢⎢⎢⎢⎣
ci,di 0 . . . 0

ci,di+1 ci,di

. . .
...

...
. . . . . . 0

ci,2di−1 . . . ci,di+1 ci,di

⎤⎥⎥⎥⎥⎦ , (2.15)
and let

Fd =

⎡⎢⎣F1,d1...
Fk,dk

⎤⎥⎦ and Fd =

⎡⎢⎣F1,d1 0
. . .

0 Fk,dk

⎤⎥⎦ . (2.16)

Since C2d = Col1≤i≤k Ci,2di , since Ci,2di =
[
Ci,di

Fi,di

]
and since Ci,di = γEdi (by

assumptions (2.1) and (2.8)), we have eventually

C2d = Col1≤i≤k

[
γEdi

Fi,di

]
. (2.17)

Let U be the 2|d| × |2d| permutation matrix defined by U =
[
U1

U2

]
where U1 and

U2 are diagonal block matrices with the ith diagonal blocks

U1,i =
[
Idi 0di

]
and U2,i =

[
0di Idi

]
.

Then

UT2dU
∗ =
[
Td 0
∗ Td

]
, UE2d =

[
Ed

0

]
, UC2d =

[
γEd

Fd

]
, (2.18)

where the two first equalities follow from definitions (1.2) and the third is a con-
sequence of (2.17). We also have (by (2.10))

UHU∗ =
[
Pd B∗

B D

]
=
[
0 B∗

B D

]
(B, D ∈ C|d|×|d|). (2.19)

Multiplying both parts of (2.12) by U on the left and by U∗ on the right and
making use of (2.18) and (2.19), we get[

0 B
B∗ D

]
−
[
Td 0
∗ Td

] [
0 B
B∗ D

] [
T ∗d ∗
0 T ∗d

]
=
[

0 −γEdF
∗
d

−γ∗FdE
∗
d −FdF

∗
d

]
.

Comparison the 21-blocks in the latter matrix equality gives

B − TdBT
∗
d = −γ∗FdE

∗
d. (2.20)

Let Q ∈ C|d|×|d| be the unique solution of the Stein equation

Q− TdQT
∗
d = EdE

∗
d. (2.21)
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Since the pair (Ed, Td) is observable, the matrix Q is positive definite. Multiplying
both parts of (2.21) on the left by the matrix Fd given in (2.16) and taking into
account that TdFd = FdTd and FdEd = Fd, we arrive at

FdQ− TdFdQT
∗
d = EdE

∗
d.

Comparing the latter equality with (2.20) we conclude that the matrix −γFdQ
and B solve the same Stein equation. Since this equation has a unique solution, it
follows that B = −γFdQ. Since γ �= 0 and since the matrices Q and Fd are not
singular (recall that the diagonal entries of the triangular matrixFd are all nonzero
either by assumption (2.8) or by construction), it follows that B is not singular.
Then the matrix UHU∗ in (2.19) is invertible and therefore, it has equally many
positive and negative eigenvalues (this is a direct consequence of the Cauchy’s
interlacing theorem). Thus, π(UHU∗) = ν(UHU∗) = |d|, and (2.13) follows, which
completes the proof of the theorem. �
Corollary 2.3. Let P belong to Dn. Then

π(P ) =
k∑
i=1

π(Pii), ν(P ) =
k∑
i=1

ν(Pii), δ(P ) =
k∑
i=1

δ(Pii). (2.22)

Proof. Applying (2.9) separately to each diagonal block Pii we get

π(Pii) = ν(Pii) = ni − di and δ(Pii) = 2di − ni
for i = 1, . . . , k which together with (2.9) (applied to the whole P ) imply the
statement.

Corollary 2.4. If P ≥ 0 (P ≤ 0) belongs to Dn, then P = 0.

Proof. The statement follows from (2.9), since in this case ν(P ) = 0 (π(P ) = 0).

Corollary 2.5. Let n = (n1, . . . , nk) ∈ Nk with ni ≤ 2 for i = 1, . . . , k. If P ∈ Dn,
then P = 0.

Proof. By Theorem 2.2, equalities (2.1) hold and moreover, ci,1 = 0 whenever ni =
2. Then the right-hand side matrix in the Stein equation (1.3) is the zero matrix
and the result follows since the homogeneous Stein equation P −Tn(z)PTn(z)∗ =
0 has only trivial solution.

3. The boundary case

In this section we consider the Stein equation (1.3) where Tn(z), En and Cn are
still given by formulas (1.2), (1.4), but the (distinct) points t1, . . . , tk fall on the
unit circle T rather than inside the unit disk:

P − Tn(t)PTn(t)∗ = EnE
∗
n − CnC

∗
n, (3.1)

where t = (t1, . . . , tk) ∈ Tk. In this “boundary” situation, the Stein equation (3.1)
either has no solutions or it has infinitely many of them. In the latter case, the
structure of every solution P is determined by |n| additional parameters which
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will be now explained (we refer to [5, Section 10], [6, Section 3] and [7, Section 2]
for proofs and some more detail). Given t ∈ T and n ∈ N, let

Ψn(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

t −t2 t3 · · · (−1)n−1
(
n−1
0

)
tn

0 −t3 2t4 · · · (−1)n−1
(
n−1
1

)
tn+1

... t5 · · · (−1)n−1
(
n−1
2

)
tn+2

...
. . .

...
0 · · · · · · 0 (−1)n−1

(
n−1
n−1
)
t2n−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.2)

be the upper triangular matrix with the entries Ψj
 = (−1)

(


j

)
t
+j+1 for 0 ≤

j ≤ � ≤ n− 1. Let Ci,ni be the lower triangular Toeplitz matrix

Ci,ni =

⎡⎢⎢⎢⎣
ci,0 0 . . . 0
ci,1 ci,0 . . . 0
...

. . . . . .
...

ci,ni−1 . . . ci,1 ci,0

⎤⎥⎥⎥⎦ , i = 1, . . . , k, (3.3)

so that Ci,niEni = Ci,ni . A necessary and sufficient condition for the Stein equa-
tion (3.1) to have a solution is that

C�i,ni
Ψni(ti)C

∗
i,ni

= Ψni(ti) for i = 1, . . . , k, (3.4)

where � stands for the transpose. Equating the left upper corner entries in (3.4)
gives

|ci,0| = 1 for i = 1, . . . , k. (3.5)

Sequences {ci,j}ni−1
j=0 satisfying (3.7) can be extended (not uniquely) to {ci,j}2ni−1

j=0

so that
C�i,2ni

Ψ2ni(ti)C
∗
i,2ni

= Ψ2ni(ti) (i = 1, . . . , k) (3.6)
and in general, (3.4) and (3.5) follow from (3.6) due to upper triangular structure
of matrices in (3.6). The next theorem (in a slightly different formulation) can be
found in [6].

Theorem 3.1. Given t = (t1, . . . , tk) ∈ Tk and {ci,j}j=0,...,2ni−1
i=1,...,k , let

P = [Pij ]
k
i,j=1 (3.7)

be the block matrix with the ni × nj blocks Pij given by

[Pij ]
,r =
min{
,r}∑
s=0

(�+ r − s)!
(�− s)!s!(r − s)!

tr−si t̄
−sj

(1 − tit̄j)
+r−s+1
(3.8)

−

∑
α=0

r∑
β=0

min{α,β}∑
s=0

(α+ β − s)!
(α− s)!s!(β − s)!

tβ−si t̄α−sj ci,
−αc∗j,r−β
(1− ti t̄j)α+β−s+1

if i �= j

and

Pii := Hi,niΨni(ti)C
∗
i,ni

where Hi,ni = [ci,
+j+1]
ni−1

,j=0 (i = 1, . . . , k). (3.9)
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The following are equivalent

1. Conditions (3.6) hold.
2. P is Hermitian and satisfies the Stein identity (3.1).
3. P is Hermitian and |ci,0| = 1 for i = 1, . . . , k.

Moreover, if equation (3.1) has a solution (i.e., if conditions (3.4) are in force),
then every Hermitian solution P is necessarily of the form (3.7)–(3.9) for some
ci,j (i = 1, . . . , k; j = ni, . . . , 2ni − 1) satisfying extended conditions (3.6).

Hermitian matrices of the form (3.7)–(3.9) can be generated by rational func-
tions unimodular on T. Given such a function f and given a tuple t = (t1, . . . , tk) ∈
T, let us define the boundary Schwarz-Pick matrix by

P fn (t) = lim
z→t

P fn (z) (3.10)

where z ∈ Dk and P fn (z) is defined as in (1.10). The proof of the next theorem can
be found in [7].

Theorem 3.2. Let t = (t1, . . . , tk) ∈ Tk and let f be a rational function unimodular
on T. Then the numbers

ci,j =
f (j)(ti)
j!

(i = 1, . . . , k; j = 0, . . . , 2ni − 1)

satisfy conditions (3.6). Furthermore, the limit in (3.10) exists and is equal to the
matrix P defined by formulas (3.7)–(3.9).

Now we address the questions from Section 2 to the present boundary setting.

Definition 3.3. We will say that P of the form (3.7)–(3.9) and with parameters
{ci,j} satisfying conditions (3.6) belongs to the class Bn if for every m � n, the
principal submatrix Pm of P defined as in (1.8) is singular.

The next theorem is an analog of Proposition 2.1. In contrast to the interior
case, the matrices of the class Bn are block diagonal.

Proposition 3.4. Let t = (t1, . . . , tk) ∈ Tk and n = (n1, . . . , nk) ∈ Nk, let P be
defined as in (3.7)–(3.9) and let us assume that conditions (3.6) are satisfied. Then
P ∈ Bn if and only if (2.1) holds and

ci,j = 0 for every i = 1, . . . , k and 1 ≤ j ≤ ni. (3.11)

In this case, the block entries of P simplify to

Pii = γHi,niΨni(ti) and Pij = 0 (i �= j). (3.12)

Proof. Since conditions (3.6) are satisfied, then in particular, we have (3.5) and
therefore, the matrices Ci,j defined via formula (3.3) are invertible for every i =
1, . . . , k and j = 0, . . . , ni− 1. Since ti ∈ T, the triangular matrices Ψj(ti) are also
invertible.
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Let P ∈ Bn. Then Pii ∈ Bni (i.e., all leading submatrices of Pii are singular)
for every i = 1, . . . , k. It follows from the “Hankel-Ψ-Toeplitz” structure (3.9) of
Pii that the j × j leading submatrix of Pii equals Hi,jΨj(ti)C∗i,j and therefore,
the membership of Pii in Bni implies that

det Hi,j = 0 for every j = 0, . . . , ni − 1. (3.13)

Now we recursively get (3.11) from (3.13). Indeed, letting j = 0 in (3.13) we
get ci,1 = 0; assuming that ci,j �= 0 for some j ∈ {1, . . . , ni} and ci,r = 0 for
r = 1, . . . , j − 1 we get

det Hi,j = det

⎡⎢⎢⎢⎢⎣
0 . . . 0 ci,j
... . . . . . . ci,j+1

0 . . . . . .
...

ci,j ci,j+1 . . . ci,2j−1

⎤⎥⎥⎥⎥⎦ �= 0,
which contradicts (3.13) and proves (3.11).

Equalities (2.1) are obtained in much the same way as in the proof of Theorem
2.1. We take the tuple m = (m1, . . . ,mk) with mi = mj = 1 and m
 = 0 for
� �= i, j. Since the leading entries in the blocks Pii and Pjj are equal to zeros, the
submatrix Pm takes the form

Pm =

⎡⎢⎢⎣ 0
1− ci,0c∗j,0
1− tit̄j

1− cj,0c∗i,0
1− tj t̄i

0

⎤⎥⎥⎦ .
Since P ∈ Bn, the matrix Pm must be singular which implies that ci,0 = cj,0 for
i, j = 1, . . . , k. The latter implies (2.1) due to (3.5).

On account of (2.1) and (3.11), Ci,ni = γIni and therefore, formula (3.9) for
Pii collapses to the first formula in (3.12). On the other hand, substituting (2.1)
and (3.11) into (3.8) gives

[Pij ]
,r =
min{
,r}∑
s=0

(�+ r − s)!
(�− s)!s!(r − s)!

tr−si t̄
−sj (1− ci,0c∗j,0)
(1− ti t̄j)
+r−s+1

=
min{
,r}∑
s=0

(�+ r − s)!
(�− s)!s!(r − s)!

tr−si t̄
−sj (1− |γ|2)
(1 − tit̄j)
+r−s+1

= 0

for every � ≤ ni and r ≤ nj which proves the second equality in (3.12).
Finally, let us assume that conditions (2.1) and (3.11) hold. Then represen-

tations (3.12) are in force. Furthermore, since ci,1 = · · · = ci,ni = 0 and since the
matrix Ψni(ti) is upper triangular, it follows from (3.12) that all the entries of
Pii on and above the main “southwest-northeast” diagonal are zeroes. Therefore
every leading submatrix of Pii is singular and thus, Pii ∈ Bni for every i = 1, . . . , k.
Since all non-diagonal blocks in P are zero matrices, P ∈ Bn. �
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The next theorem is the “boundary” analog of Theorem 2.2. It establishes
explicit formulas for inertia of a matrix P ∈ Bn of the form (3.7)–(3.9). Since
every such P is necessarily block diagonal (by (3.12)), it suffices to consider the
one-block case. We will use the previous notation with the subscript i dropped.

Theorem 3.5. Let t ∈ T, let c0, . . . , c2n−1 be the complex numbers such that

C�2nΨ2n(t)C∗2n = Ψ2n(t) (3.14)

and let
Pn := HnΨn(t)C∗n, (3.15)

where the matrices Hn and Cn are constructed via formulas (3.9) and (3.3). Let

cd �= 0 and c1 = c2 = · · · = cd−1 = 0 for some d (n < d ≤ 2n− 1). (3.16)

Then δ(Pn) = d− n. Furthermore,

1. If d = 2k, then π(P ) = ν(P ) = n− k.
2. If d = 2k + 1, then tdcdc

∗
0 ∈ R \ {0} and

(a) ν(Pn) = π(Pn) + 1 = n− k if (−1)ksgn (tdcdc∗0) < 0.
(b) π(Pn) = ν(Pn) + 1 = n− k if (−1)ksgn (tdcdc∗0) > 0.

Proof. Condition (3.14) implies |c0| = 1 and therefore, Cn = c0In so that formula
(3.15) reads

Pn = c∗0HnΨn(t). (3.17)

Let Dj(A) (j = 1, . . . , 2n− 1) denote the jth “southwest-northeast” diagonal of a
matrix A ∈ Cn×n. With a self-evident interpretation,

Dj(A) =
{
(aj,1, aj−1,2, . . . , a1,j) , if 1 ≤ j ≤ n,
(an,j−n+1, an−1,j−n+2, . . . , aj−n+1,n) , if n+ 1 ≤ j ≤ 2n− 1.

Since Ψn(t) is invertible for every t �= 0 and n ∈ N, it follows from (3.17) that
rank (Pn) = rank (Hn). Assumptions (3.16) and the Hankel structure of Hn imply
that

Dj(Hn) = 0 (j = 0, . . . , d− 1) and Dd(Hn) = (cd, cd, . . . , cd) �= 0.
Since d > n, it now follows that rank (Hn) = 2n− d and therefore,

δ(Pn) = δ(Hn) = n− (2n− d) = d− n. (3.18)

Let us extend the sequence {ci}2n−1i=0 to {ci}2d−1i=0 in such a way that

C�2dΨ2d(t)C∗2d = Ψ2d(t), (3.19)

where C2d and Ψ2d are defined via formulas (3.3) and (3.2). Such an extension is
always possible (see [7, Section 2], where these extensions were called t-isometric).
Now we can introduce the Hankel matrix Hd := [ci+j+1]

d−1
i,j=0 and the matrix

Pd := HdΨd(t)C∗d (3.20)
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which is Hermitian due to (3.19) by Theorem 3.1. It is readily checked that

Hd =
[
Hn ∗
∗ ∗

]
, Cd =

[
Cn ∗
0 ∗

]
, Ψd(t) =

[
Ψn(t) ∗
0 ∗

]
, Pd =

[
Pn ∗
∗ ∗

]
.

Since all the entries above the main diagonal Dd(Hd) of Hd are zeros, it follows
that

detHd = (−1)d−1cdd. (3.21)
Since the matricesΨd(t) andC∗d are upper triangular, their determinants are equal
to products of diagonal entries, so that

detΨd(t) =
d−1∏
j=0

(−1)jt2j+1 = (−1)
d(d−1)

2 td
2
and detC∗d = (c

∗
0)
d,

which together with (3.21) and (3.20) gives

detPd = (−1)
(d+2)(d−1)

2 (tdc∗0cd)
d. (3.22)

By triangular structure of Hd, Ψd(t) and C∗d, we conclude from (3.20) that
Dj(Pd) = 0 for j = 1, . . . , d − 1. Note also that Pd is Hermitian and invertible:
detHd �= 0, by (3.21). Therefore, if d = 2k, then Pd is of the form

Pd =
[
0 B
B∗ D

]
, B ∈ Ck×k, detB �= 0.

Therefore
π(Pd) = ν(Pd) = k. (3.23)

Since Pn ∈ Cn×n is a principal submatrix of Pd ∈ Cd×d, it follows by the Cauchy’s
interlacing theorem that

π(Pn) ≥ π(Pd)− (d− n) and ν(Pn) ≥ ν(Pd)− (d− n). (3.24)

Since d = 2k < 2n, the latter inequalities and equalities (3.23) imply

π(Pn) ≥ k − (2k − n) = n− k > 0 and ν(Pn) ≥ n− k > 0. (3.25)

Since π(Pn) + ν(Pn) + δ(Pn) = n, it follows from (3.18) and (3.25) that in fact,
π(Pn) = n− k and ν(Pn) = n− k.

Finally, let us assume that d = 2k + 1 and let pkk be the “central” entry of
Pd. Since Pd is Hermitian, pkk ∈ R and Pd takes the form

Pd =

⎡⎣ 0 0 B
0 pkk X
B∗ X∗ D

⎤⎦ , where B ∈ Ck×k and X ∈ C1×k. (3.26)

Since Pd is invertible, we have detB �= 0 and pkk �= 0. Now we will show that
sgn (pkk) = sgn (detPd) = (−1)ksgn (tkcdc∗0). (3.27)

Indeed, since the matrix B in (3.26) is upper triangular with respect to its main
“southwest-northeast” diagonal Dk(B), we have detPd = pkk · | detB|2 and the
first equality in (3.27) follows. To verify the second, let us equate the entries on
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the intersection of the first row and of the (d + 1)-st column in matrix equality
(3.19); by definitions (3.2) and (3.3) of matrices C2d and Ψ2d(t) we have[

c0 c1 . . . c2d
]
Ψ2d(t)

[
c∗0 c∗1 . . . c∗d 0 . . . 0

]� = (−1)d−1td+2,

which in view of (3.2), (3.16) collapses to

tc0c
∗
d + (−1)dt2d+1cdc

∗
0 + (−1)d−1td+2|c0|2 = (−1)d−1td+2.

Since d is odd and since |c0| = 1, we get tc0c∗d−t2d+1cdc
∗
0 = 0. Multiplying the latter

equality by t̄d+1 and taking into account that |t| = 1, we get t̄dc0c∗d − tdcdc
∗
0 = 0.

Therefore, tdcdc∗0 ∈ R and since d is odd,

sgn (tkcdc∗0) = sgn (tkcdc∗0)
d. (3.28)

Substituting d = 2k + 1 into (3.22) gives

detPd = (−1)k(2k+3)(tdc∗0cd)
d = (−1)k(tdc∗0cd)d

which together with (3.28) implies the second equality in (3.27). To complete the
proof of the theorem, observe that the Schur complement S of pkk in Pd equals

S =
[
0 B
B∗ D

]
−
[
0
X∗

]
p−1kk
[
0 X

]
=
[
0 B
B∗ D −X∗p−1kkX

]
and has equally many positive and negative eigenvalues by the preceding analysis.
Since π(Pd) = π(pkk) + π(S) and ν(Pd) = ν(pkk) + ν(S), it follows that Pd has
k positive eigenvalues, k negative eigenvalues and one more eigenvalue whose sign
coincides with that of pkk. According to (3.28),

π(Pd) = ν(Pd)− 1 = k if (−1)ksgn (tdcdc∗0) < 0 (3.29)

and
ν(Pd) = π(Pd)− 1 = k if (−1)ksgn (tdcdc∗0) > 0. (3.30)

Now we again apply the interlace theorem to get inequalities (3.24) which then
turn out to be equalities:

π(Pn) = π(Pd)− (d− n) and ν(Pn) = ν(Pd)− (d− n),

and then the second statement of the theorem follows from (3.29) and (3.30). Note
that statement (1) also covers the trivial case d = 2n (which was not included
in (3.16)). In this case Pn = 0 which agrees with statement (1) asserting that
π(Pn) = ν(Pn) = n− n = 0. �

In conclusion we note that Corollary 2.5 does not hold for P ∈ Bn, whereas
Corollary 2.3 does (which is obvious due to the block diagonal structure of P ∈ Bn).
As for Corollary 2.4, we have the following boundary analog which we formulate for
the single-block case and which follows immediately from Theorem 3.5: If P ≥ 0
(P ≤ 0) belongs Bn, then rank(P ) ≤ 1.
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Variable-coefficient Toeplitz Matrices with
Symbols beyond the Wiener Algebra

Albrecht Böttcher and Sergei Grudsky
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Abstract. Sequences of so-called variable-coefficient Toeplitz matrices arise in
many problems, including the discretization of ordinary differential equations
with variable coefficients. Such sequences are known to be bounded if the
generating function satisfies a condition of the Wiener type, which is far away
from the minimal requirement in the case of constant coefficients. The purpose
of this paper is to uncover some phenomena beyond the Wiener condition. We
provide counterexamples on the one hand and prove easy-to-check sufficient
conditions for boundedness on the other.

Mathematics Subject Classification (2000). Primary 47B35; Secondary 15A60,
65F35.

Keywords. Toeplitz matrix, variable coefficients, matrix norm.

1. Introduction

Let a be a complex-valued continuous function on [0, 1]× [0, 1]×T, where T is the
complex unit circle, a : [0, 1]× [0, 1]× T → C, (x, y, t) �→ a(x, y, t). For n ∈ Z, we
put ân(x, y) =

∫
T
a(x, y, t) t−n |dt|/(2π) and so have the Fourier series

a(x, y, t) =
∞∑

n=−∞
ân(x, y)tn, (1)

where equality holds at least in the L2 sense. Let AN (a) be the matrix

AN (a) =
(
âj−k

(
j

N
,
k

N

))N
j,k=0

. (2)

Occasionally we allow us to write a(x, y, t) and AN (a(x, y, t)) for a and AN (a).

This work was partially supported by CONACYT project U46936-F, Mexico.
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We refer to AN (a) as a Toeplitz matrix with variable coefficients. Clearly, if a
does not depend on x and y, then AN (a) is a pure Toeplitz matrix. It is easily seen
that every (N +1)× (N +1) matrix may be written as AN (a) with some a. Thus,
the notion of a Toeplitz matrix with variable coefficients is rather an asymptotic
notion which makes sense for the entire sequences {AN (a)}∞N=0 but not for a single
(N + 1)× (N + 1) matrix.

Variable-coefficient Toeplitz matrices and their modifications and generaliza-
tions are currently emerging in many applications (see, for example, [1], [4], [5],
[6], [7], [8], [11], [12]) and go under various names, such as generalized Toeplitz [9],
locally Toeplitz [11] or generalized locally Toeplitz matrices [8], Berezin-Toeplitz
matrices [1], twisted Toeplitz matrices [12], or generalized discrete convolutions
[10], [13]. In our opinion, variable-coefficient Toeplitz matrices [3] is the perhaps
best name, at least when considering matrices of the form (2). The problem of pri-
mary interest is the understanding of the spectral and pseudospectral properties
of AN (a) as N →∞. Accordingly, the works cited above and also [3], [9], [14] deal
with extensions of the Szegö and Avram-Parter theorems, that is, with asymp-
totic formulas for tr f(AN (a)), and with asymptotic inverses and pseudospectra of
AN (a).

This paper addresses the problem of the uniform boundedness of AN (a), that
is, the question whether ‖AN (a)‖∞ remains bounded as N →∞. Here and in what
follows, ‖A‖∞ is the spectral norm of A.

If a is independent of x and y, a(t) =
∑∞
n=−∞ ânt

n, we denote AN (a) by
TN(a). Thus, TN (a) = (âj−k)Nj,k=0. It is well known that ‖TN(a)‖∞ ≤ ‖TN+1(a)‖∞
for all N and that

lim
N→∞

‖TN(a)‖∞ =M∞(a) := sup
t∈T

|a(t)|. (3)

If a is of the form a(x, y, t) = b(x, y)tn, then

AN (a) = TN(tn) diag
(
b

(
j + n

N
,
j

N

))N
j=0

(where j + n is taken modulo N + 1) and hence

‖AN (b(x, y)tn)‖∞ ≤M∞,∞(b) := sup
x∈[0,1]

sup
y∈[0,1]

|b(x, y)|.

Consequently, for a given by (1) we have

‖AN (a)‖∞ ≤
∞∑

n=−∞
M∞,∞(ân). (4)

Thus, if
∞∑

n=−∞
M∞,∞(ân) <∞, (5)
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then {‖AN(a)‖∞}∞N=0 is a bounded sequence. Condition (5) is a condition of the
Wiener type. In the case where a does not depend on x and y, it amounts to saying
that ‖TN(a)‖∞ remains bounded as N → ∞ if a belongs to the Wiener algebra,
that is, if

∑∞
n=−∞ |ân| < ∞. This is clearly far away from (3) and is therefore a

source of motivation for looking whether the uniform boundedness of ‖AN(a)‖∞
can be guaranteed under weaker assumptions.

The first question one might ask is whether the sole continuity of the gener-
ating function a on [0, 1]2×T := [0, 1]× [0, 1]×T ensures the uniform boundedness
of ‖AN(a)‖∞. We show that, surprisingly, the answer to this question is no.

Theorem 1.1. There exist a ∈ C([0, 1]2 × T) such that sup ‖AN (a)‖∞ =∞.

On the other hand, we will prove that ‖AN (a)‖∞ remains bounded if a(x, y, t)
has certain smoothness in x and y. (Notice that (5) is a requirement on the smooth-
ness in t.) Our results will imply the following.

Theorem 1.2. If a ∈ C4,0([0, 1]2 × T), which means that the function a(x, y, t)
has continuous partial derivatives with respect to x and y up to the order 4, then
sup ‖AN (a)‖∞ <∞.

For a(x, y, t) independent of x and y, this is equivalent to the statement that
TN(a) is uniformly bounded if a ∈ C(T). In fact, we can sharpen Theorem 1.2 as
follows.

Theorem 1.3. If a ∈ L∞(T, C4([0, 1]2)), that is, if a is an L∞ function on T with
values in the Banach space of all functions on [0, 1]2 that have continuous partial
derivatives up to the order 4, then sup ‖AN(a)‖∞ <∞.

In the case of constant coefficients, this theorem is best possible: it says that
sup ‖TN(a)‖∞ <∞ if a ∈ L∞(T).

The next question is whether the exponent 4 is close to a kind of a minimum.
Let 0 < α ≤ 1. For a continuous function a(x, y, t) on [0, 1]2 × T we define

Mα,∞,∞(a) = sup
t∈T

sup
y∈[0,1]

sup
x1,x2

|a(x2, y, t)− a(x1, y, t)|
|x2 − x1|α

,

M∞,α,∞(a) = sup
t∈T

sup
x∈[0,1]

sup
y1,y2

|a(x, y2, t)− a(x, y1, t)|
|y2 − y1|α

,

and

Mα,α,∞(a) = sup
t∈T

sup
x1,x2

sup
y1,y2

|Δ2a(x1, x2, y1, y2, t)|
|x2 − x1|α|y2 − y1|α

where Δ2a(x1, x2, y1, y2, t) is the second difference

Δ2a(x1, x2, y1, y2, t) = a(x2, y2, t)− a(x2, y1, t)− (a(x1, y2, t)− a(x1, y1, t)).
Here supz1,z2 means the supremum over all z1, z2 ∈ [0, 1] such that z1 �= z2. We
say that the function a(x, y, t) belongs to Hα,α,∞ if the three numbersMα,α,∞(a),
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Mα,∞,∞(a), M∞,α,∞(a) are finite and we denote by H1+α,1+α,∞ the set of all
functions a(x, y, t) that have continuous partial derivatives up to the order 2 in x
and y and for which the three numbers

M1+α,∞,∞(a) :=Mα,∞,∞(∂xa), M∞,1+α,∞(a) :=M∞,α,∞(∂ya),
M1+α,1+α,∞(a) :=Mα,α,∞(∂x∂ya)

are finite. Notice that C4,0([0, 1]2 × T) ⊂ H2,2,∞. We here prove the following.

Theorem 1.4. If β < 1/2, there exist functions a in the space Hβ,β,∞ such that
sup ‖AN (a)‖∞ = ∞. If β > 1, then sup ‖AN(a)‖∞ < ∞ for every function a in
Hβ,β,∞.

The theorem leaves a gap. We can actually remove this gap and prove that
sup ‖AN (a)‖∞ < ∞ whenever a ∈ Hβ,β,∞ and β > 1/2, which is guaranteed
if a ∈ C2,0([0, 1]2 × T). However, the proof of this result is very sophisticated.
We see the purpose of this paper in revealing the delicacy of the problem of the
uniform boundedness of ‖AN(a)‖∞ and in providing results that might be sufficient
for applications. Drawing down things to β > 1/2 is a matter of mathematical
ambition and will be the topic of our subsequent paper [2].

2. Hölder continuity

We already defined the space Hβ,β,∞ and the quantities Mβ,β,∞(a), Mβ,∞,∞(a),
M∞,β,∞(a) for a continuous function a(x, y, t) on [0, 1]2×T and for 0 < β ≤ 2. In
addition, we put

M∞,∞,∞(a) = sup
t∈T

sup
x∈[0,1]

sup
y∈[0,1]

|a(x, y, t)|.

Note that if a(x, y, t) = xγ + yγ with 0 < γ < 1, then

Mβ,∞,∞(a) =M∞,β,∞(a) =∞, Mβ,β,∞(a) = 0

for γ < β < 1, which shows that the assumption Mβ,β,∞(a) < ∞ does not imply
that Mβ,∞,∞(a) and M∞,β,∞(a) are finite. In the introduction we also mentioned
that C2,0([0, 1]2×T) is contained in H1,1,0 and thus in Hβ,β,0 for 0 < β < 1. This
follows from the representations

a(x2, y, t)− a(x1, y, t) =
∫ x2

x1

∂xa(ξ, y, t)dξ,

a(x, y2, t)− a(x, y1, t) =
∫ y2
y1

∂ya(x, η, t)dη,

Δ2a(x1, x2, y1, y2, t) =
∫ x2

x1

∫ y2
y1

∂x∂ya(ξ, η, t)dηdξ,

which show that in fact the continuity of the partial derivatives ∂xa, ∂ya, ∂x∂ya
would suffice. Since C2,0([0, 1]2 × T) ⊂ H1,1,0, it follows that C4,0([0, 1]2 × T) is a
subset of H2,2,0.
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In what follows we work with functions a(x, y, t) that are independent of
one of the variables x and y and therefore need the following modifications. Let
0 < α ≤ 1. We say that a continuous functions a(x, t) on [0, 1]× T is in Hα,∞ if

Mα,∞(a) := sup
t∈T

sup
x1,x2

|a(x2, t)− a(x1, t)|
|x2 − x1|α

<∞,

and we denote by M∞,∞(a) the maximum of |a(x, t)| on [0, 1] × T. The function
a(x, t) is said to be in H1+α,∞ if it is continuously differentiable in x and ∂xa is in
Hα,∞. In that case M1+α,∞(a) is defined as Mα,∞(∂xa). Analogously, we say that
a continuous functions a(y, t) on [0, 1]× T is in Hα,∞ if

Mα,∞(a) := sup
t∈T

sup
y1,y2

|a(y2, t)− a(y1, t)|
|y2 − y1|α

<∞,

we denote by M∞,∞(a) the maximum of |a(y, t)| on [0, 1] × T, and say that
a(y, t) belongs to H1+α,∞ if ∂ya ∈ Hα,∞, in which case M1+α,∞(a) is defined
as Mα,∞(∂ya). Finally, Hα is the set of all continuous functions f(x) on [0, 1] for
which

Mα(f) := sup
x1,x2

|f(x2)− f(x1)|
|x2 − x1|α

<∞,

and H1+α is the space of all continuously differentiable functions f(x) on [0, 1]
with M1+α(f) :=Mα(f ′) <∞; we put M∞(f) = supx∈[0,1] |f(x)|.

3. Counterexamples

In this section we prove Theorem 1.1 and the first statement of Theorem 1.4. We
show that counterexamples can even be found within the functions a(x, y, t) that
are independent of one of the variables x and y.

Theorem 3.1. There exist functions a(x, t) in C([0, 1]× T) such that

sup
N≥0

‖AN (a)‖∞ =∞.

Proof. Assume the contrary, that is, sup ‖AN (a)‖∞ < ∞ for every function a in
C([0, 1]×T). Let S denote the Banach space of all sequences {BN}∞N=0 of matrices
BN ∈ C(N+1)×(N+1) such that

‖{BN}∞N=0‖ := sup
N≥0

‖BN‖∞ <∞.

By our assumption, the map

T : C([0, 1]× T)→ S, a �→ {AN (a)}∞N=0

is a linear operator defined on all of C([0, 1] × T). To show that T is bounded,
we employ the closed graph theorem. Thus, let an, a ∈ C([0, 1]× T) and suppose
an → a in C([0, 1] × T) and Tan → b = {BN}∞N=0 in S. Then, for fixed N ≥ 0,
‖AN (an)−BN‖∞ → 0 as n→∞ and hence the jk entry of AN (an) converges to
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the jk entry of BN as n→∞, that is, [AN (an)]jk → [BN ]jk for 0 ≤ j, k ≤ N . On
the other hand,

| [AN (an)]jk − [AN (a)]jk | =
∣∣∣∣ (ân)j−k ( j

N

)
− âj−k

(
j

N

)∣∣∣∣
=
∣∣∣∣∫

T

(
an

(
j

N
, t

)
− a
(
j

N
, t

))
t−(j−k)

|dt|
2π

∣∣∣∣ ≤M∞,∞(an − a) = o(1),

which yields the equality [BN ]jk = [AN (a)]jk. Consequently, Ta = b. The closed
graph theorem therefore implies that T is bounded.

We have shown that there is a constant C <∞ such that

‖AN (a)‖∞ ≤ CM∞,∞(a) (6)

for all a ∈ C([0, 1] × T). Fix N ≥ 2 and for j = 1, . . . , N − 1, denote by Ij the
segment

Ij =
[
j

N
− 1
2N

,
j

N
+

1
2N

]
.

Let aj be the function that is identically zero on [0, 1] \ Ij , increases linearly from
0 to 1 on the left half of Ij , and decreases linearly from 1 to 0 on the right half of
Ij . Put

a(x, t) = a1(x)t1 + a2(x)t2 + · · ·+ aN−1(x)tN−1.
As the spectral norm of a matrix is greater than or equal to the �2 norm of its first
column and as âj(x) = aj(x) for 1 ≤ j ≤ N − 1, it follows that

‖AN (a)‖2∞ ≥
N−1∑
j=1

∣∣∣∣ aj ( j

N

)∣∣∣∣2 = N−1∑
j=1

12 = N − 1.

Since a(x, t) = 0 for x /∈ ∪Ij and |a(x, t)| = |aj(x)tj | ≤ 1 for x ∈ Ij , we obtain
that M2∞,∞(a) = 1. Consequently, (6) gives N − 1 ≤ C2 · 1 for all N ≥ 2, which is
impossible. �

Theorem 3.2. If 0 < α < 1/2, there exist functions a(x, t) in Hα,∞ such that

sup
N≥0

‖AN (a)‖∞ =∞.

Proof. Assume that sup ‖AN (a)‖∞ < ∞ for every a ∈ Hα,∞. The space Hα,∞ is
a Banach space under the norm ‖a‖ :=M∞,∞(a) +Mα,∞(a) and hence the same
argument as in the proof of Theorem 3.1 gives

‖AN (a)‖∞ ≤ C(M∞,∞(a) +Mα,∞(a)) (7)

for all a ∈ Hα,∞. Let a(x, t) be exactly as the proof of Theorem 3.1. We then have
‖AN (a)‖∞ ≥

√
N − 1,M∞,∞(a) = 1, and it is easily seen thatMα,∞(a) = O(Nα).

Thus, (7) delivers
√
N − 1 = O(Nα), which is impossible for α < 1/2. �

Since AN (a(y, t)) is the transpose of AN (a(x, 1/t)), the above two theorems
also deliver counterexamples with functions of the form a(y, t).
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4. Sufficient conditions

In this section we prove the second half of Theorem 1.4 and thus also Theorem 1.2.
The following result is well known; see, for example, [15, Chap. 2, Sec. 4]. We cite
it with a full proof for the reader’s convenience.

Lemma 4.1. If f(x) is a function in H1+α and f(0) = f(1), then

f(x) =
∞∑

n=−∞
fne

2πinx

with

|fn| ≤
Mα(f ′)

22+απ|n|1+α for |n| ≥ 1.

Proof. Let |n| ≥ 1. Then

fn =
∫ 1

0

f(x)e−2πinxdx =
∫ 1

0

f(x)d
e−2πinx

−2πin

= f(x)
e−2πinx

−2πin

∣∣∣∣1
0

+
1

2πin

∫ 1

0

f ′(x)e−2πinxdx =
1

2πin

∫ 1

0

f ′(x)e−2πinxdx,

the last equality resulting from the requirement that f(0) = f(1). The substitution
x→ x− 1/(2n) yields∫ 1

0

f ′(x)e−2πinxdx = −
∫ 1

0

f ′
(
x− 1

2n

)
e−2πinxdx,

whence

fn =
1

4πin

∫ 1

0

(
f ′(x)− f ′

(
x− 1

2n

))
e−2πinxdx.

Taking into account that |f ′(x) − f ′(x − 1/(2n))| ≤ Mα(f ′)/(2n)α, we arrive at
the asserted inequality. �

We first consider functions a(x, y, t) that are independent of either x or y.

Theorem 4.2. Let α > 0. There exists a constant C(α) depending only on α such
that

‖AN (a)‖∞ ≤ C(α)(M∞,∞(a) +M1+α,∞(a))
for all functions a(x, t) in H1+α,∞.

Proof. We write a = a0 + a1 with

a1(x, t) = (a(1, t)− a(0, t))x+ a(0, t), a0(x, t) = a(x, t)− a1(x, t).
Then AN (a) = AN (a0) +AN (a1). Obviously,

AN (b(x)c(t)) =
(
b

(
j

N

)
ĉj−k

)N
j,k=0

= DN (b)TN(c), (8)
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where DN (b) = diag(b(j/N))Nj=0 and TN(c) = (ĉj−k)Nj,k=0. Taking into account
that ‖DN(b)‖∞ ≤M∞(b) and ‖TN(c)‖∞ ≤M∞(c), we obtain that

‖AN (a1)‖∞ ≤M∞(x)M∞(a(1, t)− a(0, t)) +M∞(a(0, t)) ≤ 3M∞,∞(a).

As a0(0, t) = a0(1, t) (= 0), Lemma 4.1 gives

a0(x, t) =
∞∑

n=−∞
a0n(t)e

2πinx

with

|a0n(t)| ≤
Mα(∂xa0(x, t))
22+απ|n|1+α (9)

for |n| ≥ 1. From (8) we infer that

‖AN (a0n(t)e2πinx)‖∞ ≤M∞(e2πinx)M∞(a0n(t)) =M∞(a0n).

Thus, by (9),

‖AN (a0)‖∞ ≤ M∞(a00) +
∑
|n|≥1

M∞(a0n)

≤ M∞(a00) +
1

22+απ

∑
|n|≥1

Mα,∞(∂xa0(x, t))
|n|1+α .

Since a0(x, t) = a(x, t)− a1(x, t) and ∂xa1(x, t) is independent of x, we get
Mα,∞(∂xa0(x, t)) =Mα,∞(∂xa(x, t)) =M1+α,∞(a).

Furthermore,

M∞(a00) = sup
t∈T

∣∣∣∣∫ 1

0

a0(x, t)dx
∣∣∣∣ ≤M∞,∞(a0) =M∞,∞(a− a1)

≤ M∞,∞(a) +M∞,∞(a1) ≤ 4M∞,∞(a).

In summary,

‖AN(a)‖∞ ≤ 7M∞,∞(a) +

⎛⎝ 1
22+απ

∑
|n|≥1

1
|n|1+α

⎞⎠ M1+α,∞(a),

which implies the assertion at once. �

Theorem 4.3. Let α > 0. There exists a constant C(α) that depends only on α
such that

‖AN (a)‖∞ ≤ C(α)(M∞,∞(a) +M1+α,∞(a))
for all functions a(y, t) in H1+α,∞.

Proof. This follows from Theorem 4.2 by taking transposed matrices. �

We now turn to the case where a(x, y, t) depends on all of the three variables.



Toeplitz Matrices with Variable Coefficients 199

Lemma 4.4. Let f(x, y, t) be a function in H1+α,1+α,∞ (α > 0) and suppose
f(0, y, t) = f(1, y, t) for all y and t. Then

f(x, y, t) =
∞∑

n=−∞
fn(y, t)e2πinx

with

M∞,∞(fn) ≤
1

22+απ|n|1+α M1+α,∞,∞(f), (10)

M1+α,∞(fn) ≤
1

22+απ|n|1+α M1+α,1+α,∞(f) (11)

for |n| ≥ 1.

Proof. Estimate (10) is immediate from Lemma 4.1 and the definition of the num-
ber M1+α,∞,∞(f). To prove (11), we first note that

∂yfn(y2, t)− ∂yfn(y1, t) =
∫ 1

0

(∂yf(x, y2, t)− ∂yf(x, y1, t))e−2πinxdx (12)

and ∂yf(0, y, t) = ∂y(1, y, t). Integrating by parts we therefore see that (12) equals

1
2πin

∫ 1

0

(∂x∂yf(x, y2, t)− ∂x∂yf(x, y1, t))e−2πinxdx,

and the substitution x→ x− 1/(2n) shows that this is
1

4πin

∫ 1

0

Δ2∂x∂yf

(
x+

1
2n
, x, y1, y2, t

)
e−2πinxdx.

Consequently,

|∂yfn(y2, t)− ∂yfn(y1, t)| ≤
1

4π|n|

∫ 1

0

M1+α,1+α,∞(f)
1

|2n|α |y2 − y1|
αdx,

which gives (11). �

Theorem 4.5. Let α > 0. Then there exists a constant D(α) < ∞ depending only
on α such that

‖AN (a)‖∞ ≤ D(α)(M∞,∞,∞(a)+M1+α,∞,∞(a)+M∞,1+α,∞(a)+M1+α,1+α,∞(a))

for all N ≥ 0 and all functions a(x, y, t) in H1+α,1+α,∞.

Proof. We write a = a0 + a1 and accordingly AN (a) = AN (a0) +AN (a1) with

a1(x, y, t) = (a(1, y, t)− a(0, y, t))x+ a(0, y, t),
a0(x, y, t) = a(x, y, t)− a1(x, y, t).

For every function c(y, t) we have

AN (c(y, t)x) =
(
ĉj−k

(
k

N

)
j

N

)N
j,k=0

= diag
(
j

N

)N
j=0

AN (c(y, t))
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and the spectral norm of the diagonal matrix is 1. Hence

‖AN (a1)‖∞ ≤ ‖AN (a(1, y, t)− a(0, y, t))‖∞ + ‖AN (a(0, y, t))‖∞
≤ ‖AN (a(1, y, t))‖∞ + 2 ‖AN(a(0, y, t))‖∞.

Theorem 4.3 gives

‖AN (a(1, y, t))‖∞ ≤ C(α)(M∞,∞(a(1, y, t)) +M1+α,∞(a(1, y, t)))
≤ C(α)(M∞,∞,∞(a) +M∞,1+α,∞(a)),

‖AN (a(0, y, t))‖∞ ≤ C(α)(M∞,∞(a(0, y, t)) +M1+α,∞(a(0, y, t)))
≤ C(α)(M∞,∞,∞(a) +M∞,1+α,∞(a)).

Thus,
‖AN (a1)‖∞ ≤ 3C(α)(M∞,∞,∞(a) +M∞,1+α,∞(a)).

On the other hand, since a0(0, y, t) = a0(1, y, t), Lemma 4.4 implies that

a0(x, y, t) =
∞∑

n=−∞
a0n(y, t)e

2πinx

where the functions a0n(y, t) satisfy estimates like (10) and (11). This time

AN (a0n(y, t)e
2πinx) =

(
(â0n)j−k

(
k

N

)
e2πinj/N

)N
j,k=0

= diag
(
e2πijn/N

)N
j=0

AN (a0n(y, t))

and the spectral norm of the diagonal matrix is again 1. It follows from Theorem 4.3
and Lemma 4.4 that

‖AN (a0)‖∞ ≤ ‖AN (a00)‖∞ +
∑
|n|≥1

‖AN (a0n)‖∞

≤ ‖AN (a00)‖∞ +
∑
|n|≥1

1
22+απ|n|1+α (M1+α,∞,∞(a0) +M1+α,1+α,∞(a0))

=: ‖AN(a00)‖∞ +D0(α)(M1+α,∞,∞(a0) +M1+α,1+α,∞(a0))

We have M∗(a0) = M∗(a− a1) ≤M∗(a) +M∗(a1). Since a1(x, y, t) depends on x
linearly, we get M1+α,∞,∞(a1) =M1+α,1+α,∞(a1) = 0. Thus,

M1+α,∞,∞(a0) +M1+α,1+α,∞(a0) ≤M1+α,∞,∞(a) +M1+α,1+α,∞(a)

Finally, Theorem 4.3 shows that

‖AN(a00)‖∞ ≤ C(α)(M∞,∞(a00) +M1+α,∞(a00)).

As a00(t) =
∫ 1
0 a0(x, y, t)dx, it results that

M∞,∞(a00) ≤ M∞,∞,∞(a0) =M∞,∞,∞(a− a1)
≤ M∞,∞,∞(a) +M∞,∞,∞(a1) ≤ 4M∞,∞,∞(a0)
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and

M1+α,∞(a00) ≤ sup
t∈T

sup
y1,y2

∫ 1

0

|∂ya0(x, y2, t)− ∂ya0(x, y1, t)|
|y2 − y1|α

dx

≤ M∞,1+α,∞(a0) ≤M∞,1+α,∞(a) +M∞,1+α,∞(a1)
= M∞,1+α,∞(a) + 3M∞,1+α,∞(a).

Putting things together we arrive at the theorem withD(α) = 7C(α)+D0(α). �

Clearly, Theorem 4.5 implies the second half of Theorem 1.4 and thus also
Theorem 1.2.

5. Discontinuous generating functions

So far we have assumed that a ∈ C([0, 1]2 × T). Inequality (4) implies that
sup ‖AN (a)‖∞ < ∞ if a is given by (1) and ân are any bounded functions on
[0, 1]2 such that

∑∞
n=−∞M∞,∞(ân) <∞. Thus, sufficient smoothness in t allows

us to admit arbitrary bounded coefficient ân(x, y).
For 0 < α ≤ 1, we denote by H1+α,1+α the Banach space of all continuous

functions f : [0, 1]2 → C which have continuous partial derivatives up to the order
2 and for which

‖f‖1+α :=M∞,∞(f) +Mα,∞(∂xf) +M∞,α(∂yf) +Mα,α(∂x∂yf) <∞,
where M∞,∞(f) is the maximum modulus of f(x, y) on [0, 1]2 and

Mα,∞(g) = sup
y∈[0,1]

sup
x1,x2

|g(x2, y)− g(x1, y)|
|x2 − x1|α

,

M∞,α(g) = sup
x∈[0,1]

sup
y1,y2

|g(x, y2)− g(x, y1)|
|y2 − y1|α

,

Mα,α(g) = sup
x1,x2

sup
y1,y2

|Δ2g(x1, x2, y1, y2)|
|x2 − x1|α|y2 − y1|α

.

Let L∞(T, H1+α,1+α) be the set of all measurable and essentially bounded func-
tions a : T → H1+α,1+α. A check of the proofs shows that these work literally
also for functions a in L∞(T, H1+α,1+α). Thus, if a is in L∞(T, H1+α,1+α) then
sup ‖AN (a)‖∞ <∞. Since C4([0, 1]2) ⊂ H2,2, we obtain in particular Theorem 1.3.
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A Priori Estimates on
the Structured Conditioning of
Cauchy and Vandermonde Matrices

Enrico Bozzo and Dario Fasino

Abstract. We analyze the componentwise and normwise sensitivity of inverses
of Cauchy, Vandermonde, and Cauchy-Vandermonde matrices, with respect
to relative componentwise perturbations in the nodes defining these matrices.
We obtain a priori, easily computable upper bounds for these condition num-
bers. In particular, we improve known estimates for Vandermonde matrices
with generic real nodes; we consider in detail Vandermonde matrices with
nonnegative or symmetric nodes; and we extend the analysis to the class of
complex Cauchy-Vandermonde matrices.

Mathematics Subject Classification (2000). Primary 15A12; Secondary 15A57,
65F35.

Keywords. Condition number, displacement structure, Cauchy matrix, Van-
dermonde matrix.

1. Introduction

A structured matrix is, in some sense, a matrix whose entries depend on a small set
of parameters. Clearly, this dependence is somehow preserved by matrix inversion.
The main question addressed here is: How sensitive is the inverse of a structured
matrix to perturbations in its parameters?

The answer to the above question is what we call structured conditioning. This
paper focuses on the structured conditioning of Cauchy, Vandermonde and Cauchy-
Vandermonde matrices, which have been one of the main research topics of Georg
Heinig, see, e.g., [9, 12, 13]. The main reasons motivating this study are the analysis
of the influence of data errors in the solution of linear systems with structured
matrices, and the assessment of stability properties of fast algorithms for solving
such linear systems. These algorithms act directly on the set of parameters defining
a structured matrix rather than on its entries, see, e.g., [3, 4, 5, 9, 10, 12, 15], hence
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their stability characteristics, which are sometimes surprising, should be examined
in the light of suitable refinements of classical condition numbers, taking in due
consideration both more accurate measures of perturbations and the structure of
the problem considered, as observed, e.g., in [1, 10, 11, 14, 15, 22]. Indeed, suppose
that the solution computed by such an algorithm in finite precision is the exact
solution of a similarly structured system defined by slightly perturbed parameters.
To assess the quality of the computed solution with no further assumptions on
the right-hand side, we should make use of some measure of the sensitivity of
matrix inversion with respect to perturbation in its parameters. Theoretical bases
of this argument can be found in [14], where such a backward structured error
analysis in introduced rather formally for structured matrices whose dependence
on the parameters is linear, and in [1, 15, 22], where a detailed analysis has been
carried out for Vandermonde systems, mainly motivated by the stability analysis
of the Björk-Pereyra algorithm. Other results in the same streamline can be found
in [7, 25], concerning possibly rectangular Cauchy, Vandermonde, Toeplitz and
Hankel matrices.

By the way, the results in the above-mentioned papers are mainly aimed at
characterizing the structured conditioning in terms of exact (possibly generalized)
inverse matrices and solutions of suitable linear systems, hence they are a posteriori
results, and the resulting expressions may be hard to compute.

The goal of this paper is to obtain a priori bounds for the structured con-
ditioning of Cauchy, Vandermonde and other related matrices, that are easily
computable right from their parameters, with no involvement of exact (general-
ized) inverse matrices. Besides to their pervasive occurrence in computations with
polynomial and rational functions, Cauchy and Vandermonde matrices play an im-
portant role in deriving structural and computational properties of many relevant
matrix classes with displacement structure, see, e.g., [9, 13, 17, 18, 19]. For exam-
ple, they occur as fundamental blocks (together with trigonometric transforms) in
decomposition formulas for Toeplitz, Hankel, and related matrices. In this paper,
we will pay particular attention to the structured conditioning of the individual
columns of their inverses, as they have a special relevance in polynomial and ra-
tional interpolation problems. Indeed, let x1 . . . xn be pairwise distinct points in
the complex plane, considered as parameters, and let φ1(x) . . . φn(x) be a fixed set
of functions such that the collocation matrix X ≡ (φj(xi)) is nonsingular. In fact,
Vandermonde, Cauchy, and Cauchy-Vandermonde matrices arise as collocation
matrices when the functions φj(x) are monomials or particular rational functions.
Let X−1 ≡ (vi,j). Then, the functions �k(x) =

∑
j vj,kφj(x) for 1 ≤ k ≤ n are

the Lagrange functions for the interpolation problem defined by the points xi and
the functions φj(x). Hence, a further reason for investigating the structured con-
ditioning of X−1 is to give a measure of the sensitivity of the functions �k(x) with
respect to perturbations in the interpolation points xi.

After giving in Section 2 a quick look at Cauchy matrices, we consider Van-
dermonde matrices in Section 3. There, we will improve the result in [11, Thm. 1]
on the mixed structured conditioning of Vandermonde matrices (see Corollary 2),
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and consider in detail Vandermonde matrices with nonnegative nodes and sym-
metric nodes. In Section 4 we will extend our analysis to Cauchy-Vandermonde
matrices with complex nodes.

1.1. Main definitions and notations

We borrow from [10, 11] the following definitions and notations. Let p and q be
positive integers, and let F be a (densely defined) continuous function F : Cp �→
Cq. One usually defines the normwise condition number of F in a given point
x ∈ Cp as

κ(F, x) = lim
ε→0

sup
‖x−x̃‖≤ε

‖F (x)− F (x̃)‖
‖F (x)‖

‖x‖
‖x− x̃‖ .

In the limit as the perturbation size tends to zero, this number gives the worst
possible magnification of the quantity ‖x− x̃‖/‖x‖ in the computation of F . Here
and in what follows, ‖ · ‖ = ‖ · ‖∞, unless otherwise noted.

The number ‖x− x̃‖/‖x‖ is the relative normwise distance between x and x̃.
In what follows, we also consider the relative componentwise distance between two
points x, x̃ ∈ Cp, defined as

δ(x, x̃) = min{ε : |xi − x̃i| ≤ ε|xi|, 1 ≤ i ≤ p}. (1)

The above definition is of interest in numerical analysis, because it is the most
appropriate way to measure errors induced by the finite precision representation
of machine numbers. Observe that if an entry of the vector x is zero, the corre-
sponding entry in x̃ must be zero for δ(x, x̃) be definite: Componentwise relative
perturbations do not affect null entries.

Accordingly, we consider the componentwise condition number of F in x �= 0
as

c(F, x) = lim
ε→0

sup
δ(x,x̃)≤ε

δ(F (x), F (x̃))
δ(x, x̃)

. (2)

Throughout this paper, we consider matrix and vector moduli and inequalities
as applied componentwise. Hence, we observe that c(F, x) is characterized by the
following inequality:

|F (x) − F (x̃)| ≤ |F (x)|c(F, x)δ(x, x̃) + o(δ(x, x̃)). (3)

In some cases, it may be also of interest to consider the mixed condition number

m(F, x) = lim
ε→0

sup
δ(x,x̃)≤ε

‖F (x)− F (x̃)‖
‖F (x)‖

1
δ(x, x̃)

. (4)

Since ‖x − x̃‖/‖x‖ ≤ δ(x, x̃), we have both m(F, x) ≤ c(F, x) and m(F, x) ≤
κ(F, x), but in general c(F, x) and κ(F, x) are unrelated. Moreover, the equivalent
definition

δ(x, x̃) = sup
D diagonal

‖D(x− x̃)‖
‖Dx‖

implies that m(F, x) results by minimizing κ(F, x) with respect to all argument
normalizations, while c(F, x) = supDm(DF, x) is a “worst case” measure of the
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sensitivity of F in presence of diagonal scalings in both the parameters and the
function values.

If the map F is differentiable, the condition numbers introduced above can
be related to its differential as follows: For any n-vector a = (a1, . . . , an)T , let
Da denote the n × n diagonal matrix whose ith diagonal entry is ai. Then, if F ′

denotes the differential of F , we have

κ(F, x) = ‖F ′(x)‖‖x‖/‖F (x)‖ (5)

c(F, x) = ‖D−1F (x)F
′(x)Dx‖ (6)

m(F, x) = ‖F ′(x)Dx‖/‖F (x)‖. (7)

Some further notations are used throughout this paper: Let ei be the ith
standard basis vector, whose order will be made clear from the context, and 1 =
(1, . . . , 1)T . Let Vec : Cn×n �→ Cn

2
be the operator such that Vec(X) is the n2-

order vector obtained by stacking downward the columns of X , into one long
column. Moreover, for x = (x1, . . . , xp)T ∈ Cp and y = (y1, . . . , yq)T ∈ Cq, let

Δ(x) = max
i
=j

|xi|
|xi − xj |

, Δ(x, y) = max
i,j

|xi|
|xi − yj |

. (8)

In the above equations, fractions with vanishing denominators assume the value
+∞, whatever the numerators are. In particular, Δ(x) < +∞ if and only if the
points x1 . . . xn are pairwise distinct, and similarly for Δ(x, y).

1.2. Basic displacement structured matrices

Cauchy, Vandermonde and Cauchy-Vandermonde matrices are among the best
known matrices with a displacement structure. Such kind of structure is defined in
terms of a displacement operator

LM,N (X) =MX −XN,
whereM,N are two fixed n×n matrices with disjoint spectra, so that the operator
LM,N is invertible. Throughout this paper, we will deal with matrix spaces having
the following form:

DM,N = {X : rank(LM,N (X)) = 1}.
A basic fact that will be used here to reduce the analysis of Vandermonde and
Cauchy-Vandemonde matrices to the simpler case of Cauchy matrices is this: If
N = SDS−1 and X ∈ DM,N , then XS ∈ DM,D.

Regarding the connection between displacement structure and conditioning,
we recall that in the paper [20] an exponentially growing lower bound is derived
for the spectral conditioning of matrices X such that AX+XAT = −BBT , where
B has low rank and all eigenvalues of A have negative real part. By Lyapunov
theorem, any such matrix X is symmetric and positive definite; remarkably, the
displacement structure induced by the operator LA,−AT forces X to be very badly
conditioned.
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2. Cauchy matrices

Let x = (x1, . . . , xn)T ∈ Cn and y = (y1, . . . , yn)T ∈ Cn have pairwise distinct
entries, with xi �= yj for 1 ≤ i, j ≤ n. The Cauchy matrix associated with x and
y is defined by Cx,y ≡ (1/(xi − yj)). Since the displacement operator LDx,Dy is
nonsingular, Cx,y is the unique solution of the displacement equation DxCx,y −
Cx,yDy = 11T . The following explicit formula for the entries of the inverse of Cx,y
is well known, see, e.g., [10]: For C−1x,y ≡ (vi,j) we have

vi,j =
∏
l(yi − xl)∏
l
=i(yi − yl)

1
yi − xj

∏
l(xj − yl)∏
l
=j(xj − xl)

. (9)

Remark that vi,j �= 0. In [10] the above expression is differentiated with
respect to xi and yi in order to bound the componentwise conditioning of the
inversion of Cx,y, via (6). In the next result we show a simple bound for the
componentwise conditioning of the columns of C−1x,y, when only the x node vector
is subject to perturbations. This result plays a fundamental role in the subsequent
sections. Moreover, as mentioned in the Introduction, it is useful to estimate the
sensitivity of a set of rational Lagrange functions with respect to the interpolation
nodes. It is apparent from the definition of Cx,y that we obtain the corresponding
result for y by simply considering the transpose matrix.

Theorem 1. Let 1 ≤ i ≤ n and y ∈ Cn be fixed, with pairwise distinct entries. Let
Fi : Cn �→ Cn be defined as Fi(x) = C−1x,yei. Then,

c(Fi, x) ≤ 2(n− 1)Δ(x) + (2n− 1)Δ(x, y).
Proof. From (6) we have

c(Fi, x) = max
1≤j≤n

∑
k

∣∣∣∣ xkvj,i ∂vj,i∂xk

∣∣∣∣ = max
1≤j≤n

∑
k

∣∣∣∣xk ∂

∂xk
log |vj,i|

∣∣∣∣ , (10)

where vj,i is given in (9). For k �= i we have:∣∣∣∣xk ∂ log |vj,i|∂xk

∣∣∣∣ = ∣∣∣∣− xk
xk − xi

xk
xk − yj

∣∣∣∣ ≤ Δ(x) + Δ(x, y).
On the other hand,∣∣∣∣xi ∂ log |vj,i|∂xi

∣∣∣∣ =
∣∣∣∣∣∣
∑
l
=i

xi
xi − xl

−
∑
l

xi
xi − yl

∣∣∣∣∣∣ ≤ (n− 1)Δ(x) + nΔ(x, y).

Plugging the latter inequalities into (10) we arrive at the claim. �

For notational simplicity, in the sequel we use the shorthand

Δ(n, x, y) = 2(n− 1)Δ(x) + (2n− 1)Δ(x, y). (11)

In the next corollary we consider the structured conditioning of the matrices in
DDx,Dy . Observe that any matrix in this set can be expressed as D1Cx,yD2 for
some diagonal matrices D1 and D2.
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Corollary 1. Let F : Cn �→ Cn
2

be defined as F (x) = Vec(D1C
−1
x,yD2), where

D1, D2 are arbitrary diagonal matrices and y is as in the preceding theorem. Then,

c(F, x) ≤ Δ(n, x, y),

where Δ(n, x, y) is defined in (11).

Proof. Scaling the entries of C−1x,y by constant factors does not affect their condi-
tioning, as it should be clear from the definitions (1) and (2). Hence we can assume
Dc = Dd = I. In this case, we observe that

c(F, x) = max
1≤i≤n

c(Fi, x) ≤ Δ(n, x, y),

where Fi is as in the preceding theorem. �

If F is as in the preceding corollary and Dc = Dd = I, then F ′(x) is the map
z �→ Vec(C−1x,yE(z)C−1x,y), where E(z) ≡ (−zi/(xi− yj)2). Hence, in view of (5), the
normwise conditioning κ(F, x) is essentially driven by the (unstructured) condi-
tioning of Cx,y, that is, ‖Cx,y‖‖C−1x,y‖. Quite few estimates are currently available
for the latter, and only for special vectors x and y. Here we only mention the
paper [23], dealing with the spectral conditioning of the Cauchy-Toeplitz matrix
CT ≡ (1/(a+i−j)), and [8], for Cauchy matrices C−y,y with positive vector y (note
that these two examples fall into the generic case considered in [20] and mentioned
in Subsection 1.2). Generally, all these matrices are very ill conditioned, and this
fact should be contrasted with the slowly-growing estimate for the componentwise
conditioning shown in the above corollary; for example, if y has positive entries
we have (see [8])

‖C−y,y‖2‖C−1−y,y‖2 >
(
yn + y1
yn − y1

)2n−2
.

Note that also the exponentially ill-conditioned Hilbert matrix CH ≡ (1/(i+j−1))
is a special Cauchy matrix. For that matrix, an O(n2) bound for its structured
conditioning is derived in [10], while its spectral conditioning grows roughly like
34n [2].

3. Vandermonde matrices

Given a vector x = (x1, . . . , xn)T ∈ Cn with pairwise distinct entries, for any
fixed 0 ≤ θ < 2π the Vandermonde matrix Vx ≡ (xj−1i ) fulfills the displacement
equation

LDx,Pθ
(Vx) = DxVx − VxPθ =

⎛⎜⎝ xn1 − einθ
...

xnn − einθ

⎞⎟⎠ eTn ,
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where i is the imaginary unit, and

Pθ =

⎛⎜⎜⎜⎜⎝
0 · · · 0 einθ

1
. . . 0 0
. . . . . .

...
O 1 0

⎞⎟⎟⎟⎟⎠ .
Recall that the spectral decomposition of Pθ is explicitly computable,

Pθ = eiθD(θ)ΦDξΦ−1D(θ)−1, (12)

where ξ = (1, ei2π/n, . . . , ei(n−1)2π/n)T , Φ =
√
1/nVξ is the unitary Fourier matrix

of order n, and D(θ) = Diag(1, e−iθ, . . . , e−i(n−1)θ).
Only for notational simplicity, in what follows we suppose that the operator

LDx,P0 is nonsingular, that is, Δ(x, ξ) < +∞. This hypothesis is of no restriction,
and can always be fulfilled by a suitable rotation of the complex plane. Indeed, let
x̂ = e−iθx; we have VxD(θ) = Vx̂ and, from (12),

LDx,Pθ
(Vx) = [DxVxD(θ)− eiθVxD(θ)P0]D(θ)−1

= eiθ[Dx̂Vx̂ − Vx̂P0]D(θ)−1

= einθLDx̂,P0(Vx̂).

The last equation uses the fact that eTnD(θ)
−1 = ei(n−1)θeTn . Hence, the discussion

of the Vandermonde matrix with node vector x, for a chosen matrix Pθ, can be
carried out equivalently by considering the Vandermonde matrix defined by x̂ and
the displacement equation with the matrix P0. Since the entries of Vx̂ and V −1x̂
have the same modulus of the entries of Vx and V −1x , respectively, the rotation
x �→ x̂ leaves unaltered the conditioning properties we are investigating.

In contrast to what happens with Cauchy matrices, inverse Vandermonde
matrices can have zero entries, hence the componentwise conditioning of Vander-
monde matrices cannot be bounded in general. For this reason, we will consider
the mixed conditioning, in the generic case, as in [11, 15, 22]. Furthermore, we will
obtain estimates for the componentwise conditioning for particular configurations
of the nodes, namely, nonnegative or symmetric nodes.

We will use the following lemma to bridge Cauchy and Vandermode matrices.
The statement can be obtained as a consequence of Proposition 3.2 in [9]. For
convenience, we provide here a short and self-contained proof.

Lemma 1. Let x = (x1, . . . , xn)T ∈ Cn and a = (xn1 − 1, . . . , xnn − 1)T . If Da is
nonsingular, the matrix Vx can be factorized as follows:

Vx =
1√
n
DaCx,ξD

−1
ξ Φ−1.

Proof. From (12) we have

DxVxΦ− VxΦDξ = (DxVx − VxP0)Φ = aeTnΦ =
1√
n
a1TD−1ξ .
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Since diagonal matrices commute, we have

LDx,Dξ
(D−1a VxΦDξ) = D−1a [DxVxΦ− VxΦDξ]Dξ

=
√
1/nD−1a a1TD−1ξ Dξ

=
√
1/n11T .

By hypothesis, the nodes xi are not roots of unit, hence the operator LDx,Dξ
is

invertible. Thus D−1a VxΦDξ =
√
1/nCx,ξ, whence we obtain the thesis. �

Observe that, if the hypothesis on Da is false, then the matrix Cx,ξ is not
even defined. Indeed, the same hypothesis can be restated as Δ(x, ξ) < +∞.

Lemma 2. Let F : Cn �→ Cn be the map F (v) = Φv. Then, m(F, v) =
√
n.

Proof. See [6, Corollary 1]. �

Theorem 2. Let 1 ≤ i ≤ n be fixed, and let Fi : Cn �→ Cn be the function defined as
Fi(x) = V −1x ei. Furthermore, let ξ = (1, ei2π/n, . . . , ei(n−1)2π/n)T . Then, for any
0 ≤ θ < 2π we have

m(Fi, x) ≤
√
n

(
Δ(n, e−iθx, ξ) +

∣∣∣∣ nxni
xni − einθ

∣∣∣∣) ,
where Δ(n, e−iθx, ξ) can be obtained from (11).

Proof. In the light of the argument outlined at the beginning of this section, we can
restrict the proof to the case θ = 0, since the general case follows by considering
the matrix Vx̂, with x̂ = e−iθx. From Lemma 1 we obtain V −1x =

√
nΦDξC−1x,ξD

−1
a ,

where a = (xn1 − 1, . . . , xnn − 1)T . Hence, for 1 ≤ i ≤ n,

Fi(x) =
√
n

xni − 1
ΦDξC−1x,ξei.

Consider the decomposition Fi(x) = G(Hi(x)), where G(x) = Φx and Hi(x) =√
n(xni − 1)−1DξC−1x,ξei. It can be shown that m(Fi, x) ≤ m(G,Hi(x))c(Hi, x), see

[11, p. 692]. Then, from Lemma 2 we obtain m(Fi, x) ≤
√
nc(Hi, x).

Furthermore, for x and x̃ such that δ(x, x̃) = ε, we have from Theorem 1

|Hi(x)−Hi(x̃)| ≤
√
n|xni − 1|−1|C−1x,ξei − C−1x̃,ξei|
+
√
n|(xni − 1)−1 − (x̃ni − 1)−1||C−1x̃,ξei|

≤ εΔ(n, x, ξ)|Hi(x)| + ε

∣∣∣∣ nxnixni − 1

∣∣∣∣ |Hi(x)|+ o(ε).

From the equivalence of (3) and (2) we have

c(Hi, x) ≤ Δ(n, x, ξ) +
∣∣∣∣ nxnixni − 1

∣∣∣∣ ,
completing the proof. �
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Note that the factor
√
n in the right-hand side of the thesis of the pre-

ceding theorem can be dropped off, if the 2-norm is used instead of the ∞-
norm in the definition of m(Fi, x). Indeed, one proves easily that m2(G, x) =
‖G′(x)Dx‖2/‖G(x)‖2 = 1, and we have the attainable upper bound m2(Fi, x) ≤
c(Hi, x), in the notations of the preceding proof. Hence, in some sense, the Eu-
clidean norm is more appropriate than the ∞-norm to analyze the structured
conditioning of Vx.

In the case of real nodes, Gohberg and Koltracht proved in [11] the upper
bound

m(Fi, x) ≤ n2max(nΔ(x), n+Δ(x)).
We improve this bound in the following corollary.

Corollary 2. In the notations of Theorem 2, if x ∈ Rn we have

m(Fi, x) <
√
n(2(n− 1)Δ(x) + 2n2).

Proof. Let θ = π/(2n). We have:

Δ(x, eiθξ) ≤ 1
sin(θ)

<
π

2θ
= n.

Hence from (11)

Δ(n, e−iθx, ξ) = Δ(n, x, eiθξ) < 2(n− 1)Δ(x) + (2n− 1)n.
Moreover, ∣∣∣∣ nxni

xni − einθ
∣∣∣∣ = n

∣∣∣∣ xni
xni − i

∣∣∣∣ < n,

and the claim follows from Theorem 2. �

We consider the complete inverse of Vx in the next corollary, which follows
from an argument analogous to that used in Corollary 1.

Corollary 3. Let F : Cn �→ Cn
2

be defined as F (x) = Vec(V −1x Dd), where Dd
is an arbitrary diagonal matrix whose entries do not depend on x. Then, for any
0 ≤ θ < 2π,

m(F, x) ≤
√
n

(
Δ(n, e−iθx, ξ) + n max

1≤i≤n

∣∣∣∣ xni
xni − einθ

∣∣∣∣) ,
where Δ(n, e−iθx, ξ) can be obtained from (11).

Proof. Since a constant scaling of the columns of V −1x does not affect their con-
ditioning, we suppose Dd = I. Let Fi be the map introduced in Theorem 2 for
1 ≤ i ≤ n. Then, F (x) = (F1(x), . . . , Fn(x))T . For arbitrary x, x̃ we have

‖F (x)− F (x̃)‖
‖F (x)‖ =

maxi ‖Fi(x) − Fi(x)‖
maxi ‖Fi(x)‖

≤ max
1≤i≤n

‖Fi(x)− Fi(x)‖
‖Fi(x)‖

.

Hence, from the definition (4) we obtain m(F, x) ≤ maxim(Fi, x), and the claim
follows from Theorem 2. �
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3.1. Vandermonde matrices with nonnegative nodes

If xk > 0 for 1 ≤ k ≤ n then V −1x has no zero entries, and we can obtain precise
upper bounds for its structured componentwise conditioning. Indeed, let V −1x ≡
(vi,j). Then, it is well known that

vj,i = (−1)n−jσ(n−1)n−j (x1, . . . , xi−1, xi+1, . . . , xn)
∏
l
=i
(xi − xl)−1,

see, e.g., [11], where σ(n)i (a1, . . . , an) is the ith elementary symmetric function on
n variables,

σ
(n)
i (a1, . . . , an) =

∑
1≤j1<···<ji≤n

aj1aj2 · · · aji . (13)

By definition (13), for any 1 ≤ k ≤ n we have

σ
(n)
i (a1, . . . , an) = akσ

(n−1)
i−1 (a1, . . . , ak−1, ak+1, . . . , an)

+ σ
(n−1)
i (a1, . . . , ak−1, ak+1, . . . , an).

Recall that σ(n)0 ≡ 1 and σ(n)i ≡ 0 for i > n or i < 0. Furthermore, we have
n∑
k=1

akσ
(n−1)
i (a1, . . . , ak−1, ak+1, . . . , an) = (i+ 1)σ

(n)
i+1(a1, . . . , an). (14)

Actually, we can allow one entry in the vector x, say x1, to be zero. In this
case, the first row of V −1x is parallel to eT1 , but no other zeros are introduced in V

−1
x ;

moreover, owing to the definition (1), x1 is untouched by relative perturbations,
hence the zero entries in V −1x don’t vary. In the light of the preceding facts, we
obtain the following bound for the componentwise conditioning of the columns of
V −1x with nodes in R+ = {x ≥ 0}:

Theorem 3. Let Fi : Rn+ �→ Cn be the function defined as Fi(x) = V −1x ei, for any
fixed 1 ≤ i ≤ n. Then

c(Fi, x) ≤ (n− 1)(2Δ(x) + 1).

Proof. From (6) we have

c(Fi, x) = max
1≤j≤n

∑
k

∣∣∣∣ xkvj,i ∂vj,i∂xk

∣∣∣∣ .
For k �= i we have:

xk
vj,i

∂vj,i
∂xk

=
xkσ

(n−2)
n−j−1(x1, . . . , xk−1, xk+1, . . . , xi−1, xi+1, . . . , xn)

σ
(n−1)
n−j (x1, . . . , xi−1, xi+1, . . . , xn)

− xk
xi − xk

.

Moreover,
xi
vj,i

∂vj,i
∂xi

= xi
∂

∂xi
log |vj,i| = −

∑
l
=i

xi
xi − xl

.
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Owing to the positivity of x1 . . . xn, from (14) we obtain

∑
k 
=i

∣∣∣∣∣xkσ
(n−1)
n−j−1(x1, . . . , xk−1, xk+1, . . . , xi−1, xi+1, . . . , xn)

σ
(n−1)
n−j (x1, . . . , xi−1, xi+1, . . . , xn)

∣∣∣∣∣ = n− j.

Hence, we obtain

c(Fi, x) ≤ max
1≤j≤n

|n− j|+
∑
k 
=i

∣∣∣∣ xk
xi − xk

∣∣∣∣+
∣∣∣∣∣∣
∑
l
=i

xi
xi − xl

∣∣∣∣∣∣ ,
and the claim follows from the triangle inequality and the definitions (8). �

The next corollary follows by an argument analogous to the ones exploited
in the proof of Corollary 1 and 3, hence we omit it.

Corollary 4. Let F : Rn+ �→ Cn
2

be defined as F (x) = Vec(DcV −1x Dd), where
Dc, Dd are arbitrary diagonal matrices whose entries do not depend on x. Then,
c(F, x) ≤ (n− 1)(2Δ(x) + 1).

The preceding results should be contrasted with well-known lower bounds
on the conditioning of Vandermonde matrices with real or positive nodes [2, 16,
21, 24], which are exponentially growing functions in the order n. Moreover, we
observe that the results in this subsections are trivially extended to the case where
the points x1 . . . xn belong to a ray in the complex plane, xi = |xi|ω, where ω = eiθ,
as it is apparent from the factorization Vx = Vω−1xDiag(1, ω . . . ωn−1).

3.2. Vandermonde matrices with symmetric nodes

When the nodes are restricted to be real, in many circumstances they are also
symmetrically located with respect to zero. Indeed, symmetric configurations arise
naturally when the nodes are Fekete points or zeros of special polynomial sequences
(e.g., orthogonal polynomials from symmetric weights), or when one attempts to
minimize the (classical) conditioning of Vandermonde matrices, see [16].

For the sake of simplicity, we consider the Vandermonde matrix V(x,−x), of
order 2n, whose nodes are x1, . . . , xn,−x1, . . . ,−xn with xi > 0 (however, consider
that the structured conditioning is invariant under permutation of the nodes).
Introducing the vector x̂ = (x21, . . . , x2n)T , we have

V(x,−x) =
(

Vx DnxVn
V−x Dn−xV−n

)
=
(
I I
I −I

)(
Vx̂ O
O DxVx̂

)
ΠT ,

where Π is the perfect shuffle permutation matrix. We obtain

V −1(x,−x) =
1
2
Π
(
V −1x̂ O
O (DxVx̂)−1

)(
I I
I −I

)
=

1
2
Π
(
V −1x̂ (DxVx̂)−1

V −1x̂ −(DxVx̂)−1
)
,
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and we see from the above decomposition that every entry of the matrix V −1(x,−x)
coincides, apart of a constant, with one entry of either V −1x̂ or (DxVx̂)−1. On the
basis of this argument we obtain the following result:

Corollary 5. Let F : Rn+ �→ C4n2
be defined as F (x) = Vec(DcV −1(x,−x)Dd), where

Dc, Dd are diagonal matrices of order 2n, whose entries do not depend on x.
Moreover, for x = (x1, . . . , xn)T , let x̂ = (x21, . . . , x

2
n)
T . Then,

c(F, x) ≤ 2(n− 1)(2Δ(x̂) + 1) + 1.

Proof. We can set Dc = Dd = I, without loss in generality. Let F (1), F (2) : Rn+ �→
Cn

2
be defined as F (1)(x) = Vec(V −1x̂ ), and F (2)(x) = Vec((DxVx̂)−1). By virtue

of the preceding argument we have

c(F, x) ≤ max{c(F (1), x), c(F (2), x)}.

Our goal reduces to obtain upper bounds for c(F (1), x) and c(F (2), x).
First, observe that F (1)(x) = G(H(x)), where G(x) = Vec(V −1x ) and H(x) =

x̂. Hence c(F (1), x) ≤ c(G,H(x))c(H,x), see [11, p. 692]. From Corollary 4 we have
c(G,H(x)) ≤ (n−1)(2Δ(x̂)+1). Moreover, from (6) we obtain c(H,x) = 2. Hence
c(F (1), x) ≤ 2(n− 1)(2Δ(x̂) + 1).

In order to estimate the componentwise conditioning of F (2), denote V −1x̂ ≡
(v̂i,j). Then (DxVx̂)−1 ≡ (v̂i,j/xj). Let fix one particular pair (i, j), and consider
the scalar function F (2)

i,j (x) = v̂i,j/xj , considering v̂i,j a function of x. Clearly we

have c(F (2), x) = maxi,j c(F
(2)
i,j , x). Again using (6) we obtain

c(F (2)
i,j , x) =

∑
k

∣∣∣∣∣ xk

F
(2)
i,j (x)

∂F
(2)
i,j (x)
∂xk

∣∣∣∣∣
≤
∑
k 
=j

∣∣∣∣ xkv̂i,j ∂v̂i,j∂xk

∣∣∣∣+
∣∣∣∣∣ x2jv̂i,j ∂

∂xj

(
v̂i,j
xj

)∣∣∣∣∣
≤ c(F (1), x) + 1.

By Corollary 4, we have c(F (2), x) ≤ 2(n − 1)(2Δ(x̂) + 1) + 1 and the proof is
complete. �

Observe that in the above corollary we have

Δ(x̂) = max
i
=j

x2i
|x2i − x2j |

= max
i
=j

xi
|xi − xj |

xi
xi + xj

< Δ(x).
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4. Cauchy-Vandermonde matrices

Let x = (x1, . . . , xn)T ∈ Cn and y = (y1, . . . , yk)T ∈ Ck, where 0 < k < n, have
pairwise distinct entries and xi �= yj for all i, j. The n× n matrix

Kx,y =

⎛⎜⎝
1

x1−y1 · · · 1
x1−yk

...
...

1
xn−y1 · · · 1

xn−yk

1 x1 · · · xn−k−11
...

...
...

1 xn · · · xn−k−1n

⎞⎟⎠
is called Cauchy-Vandermonde matrix. Matrices with the above structure appear
in connection with rational interpolation problems for functions with prescribed
poles, see [9, 12, 18, 19]. In particular, in [9, 18, 19] special factorizations of the
inverse of Kx,y are deduced from representation formulas of the rational function
solving a particular interpolation problem; such factorizations allows to compute
the solution of linear systems with a Cauchy-Vandermonde matrix at the cost
of O(n2) or even O(n log2 n) arithmetic operations. Other low-cost algorithms for
such systems, based on recursions of Levinson and Schur type, are presented in [12].

For any 0 ≤ θ < 2π, the matrix Kx,y fulfills the displacement equation

DxKx,y −Kx,yNθ =

⎛⎜⎝ xn−k1 − ei(n−k)θ
...

xn−kn − ei(n−k)θ

⎞⎟⎠ eTn , Nθ =
(

Dy O
e11T Pθ

)
,

where the matrix Nθ has square diagonal blocks and Pθ is as in (12). Analogously
to the Vandermonde case, we can limit ourselves to consider the case θ = 0. Indeed,
if we let ω = e−iθ, we have

Kωx,ωy = Kx,yΩ, Ω =
(
ω−1I O
O Diag(1, ω, . . . , ωn−k−1)

)
. (15)

Since Ω is diagonal and unitary, the entries of Kωx,ωy and its inverse have the
same modulus of the corresponding entries of Kx,y and its inverse, respectively,
hence their structured conditioning is the same.

We stress the fact that, differently to the case of Cauchy and Vandermonde
matrices, no closed-form formulas are known for the entries of K−1x,y, for generic
k. Indeed, the inversion formulas presented in [9] involve a polynomial division,
and the inversion algorithms introduced in [12, 18, 19] have a recursive character,
namely, the entries of K−1x,y are computed according to suitable orderings. Hence,
it is not obvious how to study the structured conditioning of Kx,y by a straightfor-
ward use of the definitions. In the sequel we will exploit a factorization approach
analogous to the one already introduced in the preceding section.

Lemma 3. Let ξ = (ξ1, . . . , ξn−k)T , ξj = ei(j−1)2π/(n−k). Furthermore, let a =
(xn−k1 − 1, . . . , xn−kn − 1)T and ŷ ∈ Cn, ŷ = (y1, . . . , yk, ξ1, . . . , ξn−k)T . Let

T =
(

I O

(n− k)−1/2Cξ,y Φ−1

)
, (16)
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partitioned as N0, i.e., the Cauchy matrix Cξ,y has order (n − k) × k and Φ =
(n − k)−1/2Vξ is the Fourier matrix of order n − k. Furthermore, let f be the
solution of the linear system T Tf = en. If Δ(x, ŷ) < +∞ then

Kx,y = DaCx,ŷDfT.

Proof. It is a simple task to verify that

T−1 =
(

I O

−(n− k)−1/2ΦCξ,y Φ

)
. (17)

Moreover, since Φ−1e1 = (n− k)−1/21 and Φ−1P0Φ = Dξ, we have

TN0T
−1 =

(
I O

(n− k)−1/2Cξ,y
√
n− kΦ−1

)(
Dy O
e11T P0

)
×
(

I O

−(n− k)−1/2ΦCξ,y Φ

)
=
(

Dy O
(n− k)−1/2[Cξ,yDy −DξCξ,y + 11T ] Φ−1P0Φ

)
= Dŷ.

Hence T−1DŷT = N0. Since diagonal matrices commute, we obtain:

LDx,Dŷ
(D−1a Kx,yT

−1) = D−1a [DxKx,y −Kx,yN0]T−1

= D−1a aeTnT
−1

= 11TDf .

The hypothesis stated on x implies both the invertibility of Da and that of the
operator LDx,Dŷ

. We obtain D−1a Kx,yT
−1 = Cx,ŷDf , whence thesis follows. �

We remark that det(Kx,y) �= 0 if all entries from x and y are distinct, see,
e.g., [9, Thm. 3.1] or [19]. As a consequence, by Binet-Cauchy Theorem we see
that, in the hypotheses of the preceding lemma, we have det(Df ) �= 0, that is, f
has no zero entries.

We consider in the following theorem the structured conditioning of the
columns of K−1x,y with respect to perturbations in the vector x.

We will use some further notations: For any x = (x1, . . . , xn)T ∈ Cn, consider
the two subvectors

x(1) = (x1, . . . , xk)T ∈ Ck, x(2) = (xk+1, . . . , xn)T ∈ Cn−k,

where k is the integer appearing in the definition of the Cauchy-Vandermonde
matrix under consideration. Furthermore, introduce the relative distance

δ̂(x, x̃) = max{δ(x(1), x̃(1)), ‖x(2) − x̃(2)‖/‖x‖},
and consider the following condition measure, naturally induced by it:

m̂(F, x) = lim
ε→0

sup
δ(x,x̃)≤ε

δ̂(F (x), F (x̃))
δ(x, x̃)

. (18)
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Remark that ‖x− x̃‖/‖x‖ ≤ δ̂(x, x̃) ≤ δ(x, x̃), and

m(F, x) ≤ m̂(F, x). (19)

Theorem 4. Let 1 ≤ i ≤ n be fixed, and let Fi : Cn �→ Cn be the function defined
as Fi(x) = K−1x,yei. Moreover, let 0 ≤ θ < 2π be arbitrary and let ω = e−iθ. Then,

m̂(Fi, x) ≤
(

γ√
n− k

+
√
n− k

)
(γ +

√
n− k)

×
(
Δ(n, ωx, ξ) +

∣∣∣∣∣ (n− k)xn−ki

xn−ki − ei(n−k)θ

∣∣∣∣∣
)
,

where γ = ‖Cξ,ωy‖, ξ = (ξ1, . . . , ξn−k), ξj = ei(j−1)2π/(n−k) and Δ(n, ωx, ξ) can be
derived from (11).

Proof. As in Theorem 2, we can reduce the analysis to the case θ = 0 by simply
considering the rotated vectors x̂ = ωx and ŷ = ωy, by virtue of (15). In the
notations of Lemma 3 we have

K−1x,y = T−1D−1f C−1x,ŷD
−1
a .

Recall that f has no zero entries, hence Df is invertible. We obtain

Fi(x) =
1

xn−ki − 1
T−1D−1f C−1x,ŷei.

Then, Fi(x) = G(Hi(x)), where G(x) = T−1x and

Hi(x) = (xn−ki − 1)−1D−1f C−1x,ξei.

Using (18), it is straightforward to check that m̂(Fi, x) ≤ m̂(G,Hi(x))c(Hi, x).
Let u = G(x) and ũ = G(x̃), for arbitrary x, x̃. In order to bound the quantity

δ̂(u, ũ), observe firstly that δ(u(1), ũ(1)) = δ(x(1), x̃(1)) ≤ δ(x, x̃). Using ‖u‖ ≥
‖x‖/‖T ‖, we have:

‖u(2) − ũ(2)‖
‖u‖ ≤ ‖T ‖‖(n− k)

−1/2ΦCξ,y(x(1) − x̃(1))‖+ ‖Φ(x(2) − x̃(2))‖
‖x‖

≤ ‖T ‖
(
γ
‖x(1) − x̃(1)‖

‖x‖ +
√
n− k ‖x

(2) − x̃(2)‖
‖x‖

)
≤ ‖T ‖(γ +

√
n− k)δ(x, x̃).

Since ‖T ‖ ≤ γ/
√
n− k +

√
n− k we have

δ̂(u, ũ) ≤ (γ/
√
n− k +

√
n− k)(γ +

√
n− k)δ(x, x̃).

From (18) we obtain

m̂(G, x) ≤ (γ/
√
n− k +

√
n− k)(γ +

√
n− k).
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Furthermore, if we let δ(x, x̃) = ε, we have from Theorem 1

|Hi(x) −Hi(x̃)| ≤ |xn−ki − 1|−1|D−1f ||C−1x,ξei − C−1x̃,ξei|

+

∣∣∣∣∣ 1
xn−ki − 1

− 1
x̃n−ki − 1

∣∣∣∣∣ |D−1f C−1x̃,ξei|

≤ ε|xn−ki − 1|−1|D−1f C−1x,ξei|Δ(n, x, ξ)

+ ε
(n− k)|xn−ki |
|xn−ki − 1|2

|D−1f C−1x,ξei|+ o(ε)

≤ εΔ(n, x, ξ)|Hi(x)| + ε

∣∣∣∣∣(n− k)xn−ki

xn−ki − 1

∣∣∣∣∣ |Hi(x)| + o(ε),

whence we obtain

c(Hi, x) ≤ Δ(n, x, ξ) +
∣∣∣∣∣ (n− k)xn−ki

xn−ki − 1

∣∣∣∣∣ ,
and the proof is complete. �

Remark that an upper bound for the constant γ appearing in the preceding
theorem is obtained as follows:

γ = max
1≤i≤n−k

k∑
j=1

1
|ξi − ωyj|

≤ k

mini,j |ξi − ωyj|
= kΔ(ξ, ωy).

We omit the proof of the following corollary, as it is essentially the same as
that of Corollary 3, in the light of (19):

Corollary 6. Let F : Cn �→ Cn
2

be defined as F (x) = Vec(K−1x,yDd), where Dd is
an arbitrary diagonal matrix whose entries do not depend on x. Furthermore, let
ξ = (ξ1, . . . , ξn−k), ξj = ei(j−1)2π/(n−k). For any 0 ≤ θ < 2π, let ω = e−iθ. Then,

m(F, x) ≤ (γ/
√
n− k +

√
n− k)(γ +

√
n− k)

×
(
Δ(n, ωx, ξ) + (n− k)max

i

∣∣∣∣∣ xn−ki

xn−ki − ei(n−k)θ

∣∣∣∣∣
)
,

where γ = ‖Cξ,ωy‖ and Δ(n, ωx, ξ) can be obtained from (11).

References

[1] S.G. Bartels and D.J. Higham; The structured sensitivity of Vandermonde-like sys-
tems. Numer. Math. 62 (1992), 17–33.

[2] B. Beckermann; The condition number of real Vandermonde, Krylov and positive
definite Hankel matrices. Numer. Math. 85 (2000), 553–577.

[3] T. Bella, Y. Eidelman, I. Gohberg, I. Koltracht and V. Olshevsky; A Björck-Pereyra-
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Abstract. A matrix is called totally negative if all its minors are negative. In
this paper we characterize two decompositions of totally negative matrices:
the QR decomposition and the symmetric-triangular decomposition.
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1. Introduction and background

This paper deals with two factorizations of totally negative matrices relevant in
numerical analysis: QR decomposition and symmetric-triangular decomposition
(see [9]). A matrix is totally negative (TN) if all its minors are negative. Totally
negative matrices belong to the class of N -matrices (matrices with all principal
minors negative), which play an important role in Economy (see [3], [10] and [13]).
Others aspects of totally negative matrices have been considered in [2], [5] and
[7]. Besides, they belong to the class of strictly sign regular matrices, which will
be defined below and which are very important in many applications due to their
property known as variation diminishing property (see [1], [11] and [12]). Let us
start with basic notations.

Following [1] and [6], for k, n ∈ N , 1 ≤ k ≤ n, Qk,n will denote the set
of all increasing sequences of k natural numbers not greater than n. For each
α ∈ Qk,n, its dispersion number d(α) is defined by d(α) :=

∑k−1
i=1 (αi+1−αi−1) =

αk − α1 − (k− 1), with the convention d(α) = 0 for α ∈ Q1,n. Let us observe that
d(α) = 0 means that α consists of k consecutive integers.

For α = (α1, α2, . . . , αk), β = (β1, β2, . . . , βk) ∈ Qk,n and A an n×n matrix,
we denote by A[α|β] the k × k submatrix of A containing rows α1, α2, . . . , αk
and columns β1, β2, . . . , βk of A. If α = β, we denote by A[α] := A[α|α] the
corresponding principal minor. A column-initial minor of A is a minor of the form
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detA[α|1, . . . , k], where α ∈ Qk,n with d(α) = 0 and 1 ≤ k ≤ n. Analogously,
a row-initial minor of A is a minor of the form detA[1, . . . , k|α], where α and
k are given as above. Let A be an n × n lower (resp., upper) triangular matrix.
Following [4], the minors detA[α|β] with αk ≥ βk (resp., αk ≤ βk ∀k) are called
nontrivial minors of A because all the remaining minors are obviously equal to
zero. A triangular matrix A is called ΔTP if its nontrivial minors are all positive.
We remark that these matrices are also called ΔSTP in other papers (see [8]).

By a signature sequence we mean an (infinite) real sequence ε = (εi) with
|εi| = 1, i = 1, 2, . . . . An n × n matrix A verifying εk detA[α|β] > 0 for all
α, β ∈ Qk,n and k = 1, . . . , n is called strictly sign regular with signature ε1, . . . , εn,
and will be denoted by SSR.

Two important subclasses of the strictly sign regular matrices are the totally
positive matrices (with all its minors positive) and the totally negative matrices
(defined above). This terminology is more frequent nowadays, although these ma-
trices also have been called in the literature as strictly totally positive and strictly
totally negative, respectively.

The first part of the following result comes from Theorem 3.1 of [4] and the
second part is provided by Remark 3.6 of [7].

Theorem 1.1.

(i) A lower (resp., upper) triangular matrix M is ΔTP if and only if all column-
initial (resp., row-initial) minors of M are positive.

(ii) Let A = (aij)1≤i,j≤n be a nonsingular matrix and ann < 0. Then A is TN if
and only if all its initial minors are negative.

An LDU -factorization of a matrix A is the decomposition A = LDU where
L (resp., U) is a lower (resp., upper) triangular, unit diagonal matrix (i.e., with all
diagonal entries equal to 1), and D is a diagonal matrix. From now on, A = LDU
will refer to this decomposition.

Let us recall the following result, which will be used in the following sections.
The proof can be seen in Proposition 2.1 of [7].

Theorem 1.2. If A is SSR, then A = LDU with L (resp., U) a ΔTP and lower
(resp., upper) triangular, unit diagonal matrix and D a diagonal nonsingular ma-
trix.

Finally, let us recall the well-known Cauchy-Binet formula. If A, B are n×n
matrices, then we have the following determinantal identity:

det(AB)[α|β] =
∑

w∈Qk,n

detA[α|w] detB[w|β], α, β ∈ Qk,n.

Section 2 contains some auxiliary results. In Section 3 we characterize the QR
factorization of totally negative matrices. Section 4 contains the characterization
of the symmetric-triangular factorization of totally negative matrices and includes
an example showing that a condition used in our characterizations (the fact that
ann < 0) cannot be suppressed.
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2. Auxiliary results

We are going to define some special classes of matrices which will play a key role
in the characterizations of this paper.

Definition 2.1. A nonsingular matrix A is said to be lowerly TN if it can be
decomposed in the form A = LDU and LDΣ is ΔTP, where Σ is a diagonal
matrix with diagonal entries −1,+1, . . . ,+1. If, in addition, U−1 satisfies that
ΣU−1Σ is ΔTP, then the matrix is called strict γ−-matrix.

In the previous definitions, since L is unit diagonal, the fact that LDΣ is
ΔTP implies that L and DΣ are ΔTP.

The following result relates the two concepts introduced in the previous def-
inition.

Proposition 2.2. If A = LDU and (AT )−1 are lowerly TN, then A is a strict γ−-
matrix. Therefore, an orthogonal matrix is lowerly TN if and only if it is strict
γ−-matrix.

Proof. We have to see that, under the conditions of the proposition, ΣU−1Σ is
ΔTP. From the factorizations A = LDU and (AT )−1 = L̃D̃Ũ we get

(UT )−1 = DLT (AT )−1 = DLT (L̃D̃Ũ). (2.1)

Since A and (AT )−1 are lowerly TN, we have from (2.1) that

Σ(UT )−1Σ = (ΣDLT )(L̃D̃Σ)(ΣŨΣ), (2.2)

where the upper triangular matrix ΣDLT and the lower triangular matrix L̃D̃Σ
are ΔTP. Moreover, ΣŨΣ is an upper triangular, unit diagonal matrix.

By the Cauchy-Binet formula, for all α ∈ Qk,n with 1 ≤ k ≤ n and d(α) = 0
we can derive from (2.2)

detB[α|1, . . . , k] = detC[α|1, . . . , k] detF [1, . . . , k] = detC[α|1, . . . , k], (2.3)

where B := Σ(UT )−1Σ, C := (ΣDLT )(L̃D̃Σ) and F := ΣŨΣ.
Again by the Cauchy-Binet formula, for all α ∈ Qk,n with d(α) = 0, we have
detC[α|1, . . . , k] =

∑
β∈Qk,n

det(ΣDLT )[α|β] det(L̃D̃Σ)[β|1, . . . , k]. (2.4)

From (2.4) and taking into account that ΣDLT and L̃D̃Σ are ΔTP, we ob-
tain detC[α|1, . . . , k] > 0 for all α ∈ Qk,n with d(α) = 0. Then, from (2.3)
detB[α|1, . . . , k] > 0 for all α ∈ Qk,n with d(α) = 0. Therefore, all column-initial
minors of the lower triangular matrix B are positive and so, by Theorem 1.1 (i),
B = Σ(UT )−1Σ is ΔTP, which implies ΣU−1Σ is ΔTP. �

The following result for lowerly TN matrices will be very useful in this paper.

Proposition 2.3. Let A be an n × n matrix. If A = CV with C lowerly TN and
V upper triangular with positive diagonal, then all column-initial minors of A are
negative.
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Proof. Since C is lowerly TN, we have that C = LCDCUC and the matrix LCDCΣ
is ΔTP, where Σ is a diagonal matrix with diagonal entries −1,+1, . . . ,+1. Then
by the Cauchy-Binet formula, we get for k = 1, . . . , n

0 < det(LCDCΣ)[α|1, . . . , k] = det(LCDC)[α|1, . . . , k] detΣ[1, . . . , k] =
− det(LCDC)[α|1, . . . , k]

for all α ∈ Qk,n and d(α) = 0. So, the sign of det(LCDC)[α|1, . . . , k] is −1.
Again by the Cauchy-Binet formula, we get

detC[α|1, . . . , k] = det(LCDC)[α|1, . . . , k] detUC [1, . . . , k] =
det(LCDC)[α|1, . . . , k]

for all α ∈ Qk,n and d(α) = 0. So, all column-initial minors of order k of C are
negative. Applying again the Cauchy-Binet formula to A = CV , we obtain

detA[α|1, . . . , k] = detC[α|1, . . . , k] detV [1, . . . , k] (2.5)

for all α ∈ Qk,n and d(α) = 0. Since V has positive diagonal entries, we deduce
from (2.5) that all column-initial minors of A are negative. �

3. QR decomposition of TN matrices

The following theorem gives a characterization of TN matrices by their QR fac-
torization.

Theorem 3.1. Let A be an n× n matrix. A is TN if and only if ann < 0 and

A = QR, AT = Q̃R̃, (3.1)

where Q and Q̃ are orthogonal and strict γ−-matrices and R and R̃ are upper
triangular and ΔTP matrices.

Proof. If B is a TN matrix, then bnn < 0. Since B is nonsingular, B = QR with
Q orthogonal and R upper triangular with positive diagonal entries. If LQDQUQ
is the LDU -factorization of Q, then we have

B = LQDQ(UQR). (3.2)

Since R is upper triangular with positive diagonal, we can write UQR = D̄Ū ,
where Ū is upper triangular, unit diagonal matrix and D̄ is a diagonal matrix
with positive diagonal. So, from (3.2) we get

B = LQ(DQD̄)Ū . (3.3)

Since B is TN (so that, B is SSR with signature εi = −1 for all i, by Theorem
1.2, B = LDU with D a diagonal nonsingular matrix and L (resp., U) ΔTP and
lower (resp., upper) triangular with unit diagonal. The uniqueness of the LDU -
factorization implies by (3.3) that LQ = L, D = DQD̄, U = Ū , and so LQ is ΔTP.
The diagonal entries di of D satisfy

di =
detB[1, . . . , i]

detB[1, . . . , i− 1] (3.4)
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and so sign(di) = εi/εi−1 = +1 for i = 2, . . . , n, and sign(d1) = ε1/ε0 = −1, taking
ε0 := +1. Hence, if Σ is a diagonal matrix with diagonal entries −1,+1, . . . ,+1,
DΣ = DQD̄Σ has positive diagonal entries and so DQΣ is also a diagonal matrix
with positive diagonal. Therefore, Q is lowerly TN and by Proposition 2.2 it is a
strict γ−-matrix.

Since B = QR,
BTB = RTR (3.5)

and RTR can be computed from R by multiplying each row by a positive number
and adding a linear combination of the previous rows. Therefore, the row-initial
minors of RTR have the same sign as the corresponding minors of R. Since the
product of two TN matrices is TP by Theorem 3.1 of [1], we deduce from (3.5)
that RTR is TP. Then the row-initial minors of RTR and R are positive, and by
Theorem 1.1 (i), R is ΔTP.

Now, since A and AT are TN, applying the previous reasoning to A and AT ,
(3.1) follows with the stated properties.

Conversely, applying Proposition 2.3 to the matrices A and AT with C =
Q, Q̃ and V = R, R̃ (respectively), we conclude that all the initial minors of A
are negative. Then, taking into account that ann < 0, by Proposition 1.1 (ii)
A is TN. �

4. Symmetric-triangular decomposition of TN matrices

Recently, Golub and Yuan have introduced in [9] a symmetric-triangular decom-
position of a nonsingular matrix. We now characterize TN matrices in terms of
this decomposition.

Theorem 4.1. Let A be an n× n matrix. A is TN if and only if ann < 0 and

A = SR, AT = S̃R̃, (4.1)

where S and S̃ are symmetric and lowerly TN matrices and R and R̃ are upper
triangular matrices with unit diagonal.

Proof. Let B be a TN matrix. By Theorem 1.2, B = LDU with D a diagonal
nonsingular matrix and L (resp., U) ΔTP and lower (upper) triangular with unit
diagonal. If we write B = (LDLT )(LT )−1U , then we can consider

S := LDLT , R := (LT )−1U, (4.2)

where S is a nonsingular and symmetric matrix and R is an upper triangular
matrix with unit diagonal.

Now, let us see S is lowerly TN. So, we have to prove that LDΣ is ΔTP, where
Σ is a diagonal matrix with diagonal entries −1, +1, . . . ,+1. Reasoning through
(3.4) as in the proof of Theorem 3.1, it can be deduced that DΣ is a diagonal
matrix with positive diagonal. So, LDΣ is ΔTP because L is ΔTP. Then, from
(4.2), we conclude that S is lowerly TN.
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Since the matrices A and AT are TN, applying the previous reasoning to A
and AT , the necessary condition holds.

Conversely, if we apply Proposition 2.3 to the matrices A and AT with C =
S, S̃ and V = R, R̃ (respectively), then we conclude that all the initial minors of
A are negative. Then, taking into account that ann < 0, by Proposition 1.1 (ii) A
is TN. �

The following example shows that the condition ann < 0 cannot be sup-
pressed in theorems 3.1 and 4.1.

Example. Let A be a nonsingular matrix given by

A =
(
−1 −1
−1 0

)
.

Then A = QR with Q orthogonal and R upper triangular with positive diagonal
entries given by

Q =
(
−1/

√
2 −1/

√
2

−1/
√
2 1/

√
2

)
, R =

(√
2 1/

√
2

0 1/
√
2

)
.

We also have AT = A = QR. The matrix R is ΔTP. Besides, Q = LQDQUQ where

LQ =
(
1 0
1 1

)
, DQ =

(
−1/

√
2 0

0
√
2

)
, UQ =

(
1 1
0 1

)
.

Clearly the matrices

LQDQΣ =
(
1/
√
2 0

1/
√
2
√
2

)
, ΣU−1Σ =

(
1 1
0 1

)
,

with Σ = diag{−1,+1}, are ΔTP, and so Q is strict γ−-matrix. However, A is not
TN because detA[2] = 0.

As for the symmetric-triangular decomposition, we have A = SR with S
symmetric and R upper triangular with unit diagonal given by

S =
(
−1 −1
−1 0

)
, R =

(
1 0
0 1

)
.

We also have AT = A = SR. The matrix S = LDLT where

L =
(
1 0
1 1

)
, D =

(
−1 0
0 1

)
.

Since the matrix

LDΣ =
(
1 0
1 1

)
with Σ = diag{−1,+1}, is ΔTP, S is lowerly TN. However, A is not TN.
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QR-factorization of
Displacement Structured Matrices Using
a Rank Structured Matrix Approach

Steven Delvaux, Luca Gemignani and Marc Van Barel

Abstract. A general scheme is proposed for computing the QR-factorization
of certain displacement structured matrices, including Cauchy-like, Vander-
monde-like, Toeplitz-like and Hankel-like matrices, hereby extending some
earlier work for the QR-factorization of the Cauchy matrix. The algorithm
employs a chasing scheme for the recursive construction of a diagonal plus
semiseparable matrix of semiseparability rank r, where r is equal to the given
displacement rank. The complexity is O(r2n2) operations in the general case,
and O(rn2) operations in the Toeplitz- and Hankel-like case, where n denotes
the matrix size. Numerical experiments are provided.

Mathematics Subject Classification (2000). 65F18, 15A23, 15A03.

Keywords. Displacement structures, QR-factorization, lower semiseparable
plus diagonal matrices, chasing procedure.

1. Introduction

In this paper we present a novel unified approach for computing the QR-factoriza-
tion of displacement structured matrices, including some cases of main interest,
namely Vandermonde-like, Toeplitz-like and Hankel-like matrices. Cauchy-like ma-
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trices can also be treated in this framework, provided they have at least one set
of data points lying on the unit circle of the complex plane C. Generalizations
of the algorithm to deal with Toeplitz-plus-Hankel-like matrices and Cauchy-like
matrices with data points on the real axis R are also possible and will be discussed
elsewhere.

In the literature, some algorithms for the QR-factorization of Toeplitz-like
matrices are already known, see [1, 12] and the references therein. These methods
typically compute the upper triangular factor by factoring the normal equation
matrix via the generalized Schur algorithm. If the input matrix is ill-conditioned
or exactly rank deficient, then the computed factorization of these algorithms can
be very poorly accurate or even not an exact QR-factorization [12].

In contrast to these existing methods, the algorithms of the present paper pro-
ceed by translating the QR-factorization problem for a given displacement struc-
tured matrix into an equivalent chasing problem for an associated unitary rank
structured matrix.

The approach followed in the present paper is motivated by the result in [7],
where the QR-factorization of the classical Cauchy matrix with real data points
was translated into a chasing problem for an associated Hermitian diagonal plus
semiseparable matrix of semiseparability rank one. However, differently from [7]
here we will focus on those displacement structures leading to unitary rank struc-
tured matrices, since this is the case for some of the more important classes such
as Vandermonde-like, Toeplitz-like matrices and so on. Incidentally, let us point
out that also transforms of a Toeplitz matrix into a Cauchy-like matrix with data
points lying on the real line R are possible [9, 10, 11], but these will not be covered
in the present paper.

The unitary rank structured matrices in this paper will be represented and
manipulated as a product of Givens transformations [5, 8]. This representation
leads to an asymptotically optimal number of O(rn) parameters. Moreover, in con-
trast to the so-called sequentially semiseparable, quasiseparable, uv and Givens-
weight representations used to represent rank structured matrices in the literature,
the Givens product representation has the advantage that the unitarity of the ma-
trix is an explicit part of the representation.

Chasing problems for tridiagonal and banded matrices are generally solved
by using bulge-chasing techniques. The rationale for employing these techniques
is that band matrices have a specified sparsity pattern and we can annihilate a
bulge by moving it along this pattern downwards or upwards until it disappears
by using a sequence of Givens rotations applied as a similarity transform. Rank
structured matrices are generally dense so that the occurrence of a bulge in the
rank structure is not visible. Our major contribution is to show that appropriate
generalizations of bulge-chasing techniques still work for unitary rank structures
represented in factored form thus leading to an efficient solution of the associated
chasing problem. The cumulative similarity transformation returned as output by
the chasing procedure allows to determine the Q-factor of the QR-factorization of
the given displacement structured matrix.
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The total complexity of this algorithm for QR-factorization is O(r2n2) oper-
ations in the general case, and O(rn2) operations in the Toeplitz-like case, where
r denotes the displacement rank, and where n denotes the matrix size. It is worth
pointing out that the algorithm computes the QR-factorization of the given dis-
placement structured matrix A = QR in full form, i.e., the R-factor is computed as
a full upper triangular matrix having (n+1)n

2 entries, while the Q-factor is computed
to consist of a full product of n(n−1)2 Givens transformations. Hence, the proposed
scheme does not lead to a sparsity in the representation of the QR-factorization,
but rather to an efficient way for computing these parameters.

The methods introduced in this paper are also strongly related to the chasing
methods for diagonal plus semiseparable matrices in solving inverse eigenvalue
problems [15]. More precisely,

• we present methods which can be literally used for solving some of the inverse
eigenvalue problems too,

• we explain the mechanism behind a source of numerical instability, which
may illuminate the numerical experiments for inverse eigenvalue problems as
well.

The remainder of this paper is organized as follows. In Section 2 we establish
basic notation and briefly recall some rank structure concepts. In Section 3 we
describe the general scheme for the QR-factorization of a displacement structured
matrix and its relation to a chasing problem for an associated lower semiseparable
plus diagonal matrix. Sections 4, 5 and 6 specify this scheme to the case of Cauchy-
like, Vandermonde-like and Toeplitz-like matrices. Finally, Section 7 reports on the
results of some numerical experiments, and it discusses some interpretations of the
observed numerical stability issues.

2. Rank Structure Preliminaries

Let us first define in more detail the rank structures arising from the methods of
this paper.

Definition 1. We define a rank structure R on Cn×n as a collection of so-called
structure blocks R = {Bk}k. Each structure block Bk is characterized as a 4-tuple

Bk = (ik, jk, rk, λk),

where ik is the row index, jk the column index, rk the rank upper bound and λk ∈ C
is called the shift element. We say a matrix A ∈ Cn×n to satisfy the rank structure
R if for each k,

RankAk(ik : n, 1 : jk) ≤ rk, where Ak = A− λkI.

Thus after subtracting the shift element λk from the diagonal entries, we must get
a low rank block.
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As a special case, when a structure block Bk has shift element equal to zero,
or when it is situated strictly below the main diagonal, then we call it pure. We
sometimes denote such a structure block by Bpure,k.

Figure 1 shows an example with two structure blocks.

Rk 3

Rk 1

λ =0.891

Figure 1. Example of a rank structure with two structure blocks. The
left structure block B1 intersects the diagonal and has shift element
λ1 = 0.89, while the second structure block B2 is ‘pure’. The notation
‘Rk r’ denotes that the structure block is of rank at most r.

As a special case, a matrix is called lower semiseparable plus diagonal of
semiseparability rank r if it satisfies a set of structure blocks Bk : (ik, jk, rk, λk) =
(k, k, r, λk), k = 1, . . . , n. Here the λk ∈ C are an integral part of the rank structure.
We will sometimes refer to them as the diagonal elements of the rank structure.
Another remarkable special structure is defined by Bpure,k : (ik, jk, rk, λk) = (s +
k, k, 0, 0), k = 1, . . . , n − s. If A ∈ Cn×n satisfies all the Bpure,k then A has lower
bandwidth s−1. Therefore, rank structures are a generalization of band structures.

A unitary rank structured matrix admits a condensed representation as the
product of Givens rotations. For computational purposes it is useful to describe
pictorially this product by means of an associated Givens product representation
graph [5]. The following example clarifies these concepts. Let A ∈ C6×6 be a
unitary lower semiseparable matrix of semiseparability rank 1, i.e., A satisfies a
set of structure blocks Bk : (ik, jk, rk, λk) = (k, k, 1, 0), k = 1, . . . , 6. The QR-
decomposition of A yields a condensed parametrization of the matrix as a product
of Givens transformations A = G5,6G4,5 · · ·G1,2; here the notation Gi,i+1 denotes
a Givens transformation, i.e., a unitary transformation which equals the identity
matrix except for its entries in rows and columns i, i+ 1. We represent the above
matrix product by the following graph
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Here each little line segment represents a Givens transformation Gi,i+1 ‘acting’ on
the rows of an (invisible) matrix standing on the right of it. The row index i of the
Givens transformation Gi,i+1 can be derived from the height at which the Givens
transformation is standing in the figure, e.g., the top rightmost line segment in the
above figure corresponds to G1,2, and so on.

Now let us suppose that A is modified both in the third and in the fourth
column in such a way that the perturbed matrix Ã is still unitary and, moreover,
GH1,2 · · ·GH5,6Ã = I2 ⊕G′3,4 ⊕ I2. The ‘bulge ‘in the rank structure of Ã is revealed
by the associated graph

At the core of our proposed chasing methods for unitary rank structured ma-
trices is the basic observation that, similarly as in the banded case, this bulge can
be moved along the graph by a sequence of unitary similarity transformations de-
termined by swapping techniques applied to short sequences of consecutive Givens
rotations.

3. QR-factorization of displacement structured matrices

In this section we start with some general theory for the QR-factorization of dis-
placement structured matrices. We will assume that A ∈ Cn×n is an invertible
displacement structured matrix, i.e., a matrix satisfying a displacement equation of
the form

Y A−AZ = Rk r, (1)
where Y, Z ∈ Cn×n are fixed coefficient matrices, and where the right-hand side
Rk r has to satisfy the constraint that it is of rank at most r, where r ∈ N is
the displacement rank. Examples of such displacement equations could be those
defining Cauchy-like, Vandermonde-like, Toeplitz-like matrices and so on, each of
them having a specific choice for the coefficient matrices Y and Z as well as for
the displacement rank r. The treatment of these specific classes is deferred to the
next sections.

Remark 2. Some comments are in order concerning the assumption that A is
invertible. This condition seems to preclude our method to be applied in many
interesting cases where the matrix is rank-deficient or it is ill conditioned. However,
in [2] it has been proved that the assumption can be removed by using a continuity
argument and, indeed, our approach still works in the singular case. More precisely,
since the QR decomposition of a singular matrix is not essentially unique, we can
show that a QR decomposition of A exists such that the Q-factor is the solution of
a chasing problem for an associated unitary rank structured matrix.
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Let us now assume a general displacement equation (1). Inserting the QR-
factorization A = QR into this equation leads to

Y (QR)− (QR)Z = Rk r (2)

⇔ (QHY Q)R−RZ = R̃k r (3)

⇔ (QHY Q) = RZR−1 + ˜̃Rk r, (4)

where R̃k r and ˜̃Rk r are new matrices of rank at most r. Note that we assumed
here R−1 to exist.

Now we would like to use the above relations to obtain an alternative way of
computing the QR-factorization A = QR. We will have to assume to this end that

• both Y and Z are upper triangular matrices. (5)

By the above assumption, the matrix RZR−1 occurring in (4) must also be an up-
per triangular matrix. A closer look reveals that it has diagonal elements precisely
equal to those of Z: zi,i, i = 1, . . . , n.

Hence, the right-hand side of (4) will be a lower semiseparable plus diagonal
matrix of semiseparability rank r, with diagonal elements of the structure precisely
equal to the zi,i.

In order to exploit this observation, let us partition

Y =
[
y1,1 Y1,2
0 Y2,2

]
, Z =

[
Z1,1 Z1,2

0 z2,2

]
, (6)

where y1,1 and z2,2 denote the top left and bottom right elements of Y and Z,
respectively. We also partition

A =
[
A1,1 a1,2
A2,1 A2,2

]
, (7)

where a1,2 is the top right element of A.
From the assumptions on the upper triangularity of Y and Z, it follows

that the submatrix A2,1 inherits the displacement structure from A. Indeed, this
follows by evaluating the last block row and first block column of the displacement
equation (1), and using (6), from which Y2,2A2,1 −A2,1Z1,1 = (Rk r)2,1. Thus the
matrix A2,1 is displacement structured too.

This suggests a recursive procedure: Assume that a QR-factorization has been
computed for the displacement structured matrix A2,1:

A2,1 = QR. (8)

Clearly, given the knowledge of the QR-factorization (8), the full matrix A in (7)
can be transformed into a Hessenberg matrix H , and hence its QR-factorization
can be completed by applying a single downgoing sequence of Givens transforma-
tions to the rows.
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On the other hand, we know that the QR-factorization (8) leads to an asso-
ciated lower semiseparable plus diagonal equation (4), i.e.,

QHY2,2Q = S, (9)

where

S := RZ1,1R
−1 +Rk r (10)

is already lower semiseparable plus diagonal of semiseparability rank r, with di-
agonal elements of the structure equal to zi,i, i = 1, . . . , n− 1. By embedding this
relation in a full n by n form, it follows that[

1 0
0 QH

] [
y1,1 Y1,2
0 Y2,2

] [
1 0
0 Q

]
=
[
y1,1 Y1,2Q
0 S

]
. (11)

We should stress that (11) has been obtained from the QR-factorization (8)
of size n−1. But we would like now to bring it to the required form (4), induced by
the QR-factorization of the full n by n matrix A. It was already mentioned before
that this aim can be achieved by incorporating a downgoing sequence of Givens
transformations GHn−1,n, . . . , G

H
1,2 into the matrix Q

H . Applying these transforma-
tions to both unitary factors in the left-hand side of (11), and applying them also
to the right-hand side of (11) transforms the latter to

S̃ := GHn−1,n · · ·GH1,2
[
y1,1 Y1,2Q
0 S

]
G1,2 · · ·Gn−1,n. (12)

This relation (12) is the basis of the chasing procedure of this paper. It means that
given the lower semiseparable plus diagonal matrix S of size n− 1, we must apply
a similarity operation with a downgoing sequence of Givens transformations, such
that the resulting matrix S̃ in (12) is lower semiseparable plus diagonal of size n.

Under quite mild assumptions on the rank structure of S it can be proved
[2] that the unitary Hessenberg matrix G1,2 · · ·Gn−1,n satisfying (12) is essentially
unique. Roughly speaking, this means that the Q-factor in the QR decomposition
(8) of A2,1 can be updated in an essentially unique way to obtain a solution Q of
(4). Whence, this latter Q must be the Q-factor of a certain QR factorization of
the full matrix A in (7).

The above description, and in particular (12), suggests that we could use a
structure-preserving chasing procedure to determine the subsequent Givens trans-
formations Gi,i+1, i = 1, . . . , n− 1.

In fact, one could retrieve more details about the intended chasing procedure,
by comparing the position of the diagonal elements of the structure zi,i before and
after the chasing, cf. (10). This reveals that each of the original diagonal elements
of the structure zi,i, i = 1, . . . , n− 1 should be chased one position upwards, while
a new diagonal element zn,n is ‘installed’ at the bottom of the matrix (12).

To manipulate the lower diagonal plus semiseparable matrix (12) efficiently
during the chasing scheme, we would like that not only the lower, but also the
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upper triangular part of this matrix has bounded ranks. We will realize this by
assuming that

• Y is a unitary/Hermitian plus low rank matrix. (13)

Indeed, it is known that this type of structure is preserved under unitary
similarity transformations, and moreover, that the rank structure in the lower
triangular part of such matrices, induces rank structure in the upper triangular
part as well. Applying this to the lower semiseparable plus diagonal structure of the
matrix S in (9) shows that this matrix must be upper semiseparable plus diagonal
as well, or semiseparable plus diagonal for short. This will allow the use of efficient
representations to represent the matrix S during the chasing scheme, such as
sequentially semiseparable, quasiseparable, uv, or Givens-weight representations,
see, e.g., [6, 3]. The best choice of representation depends on many factors. For
example, for each of the practical examples of the next sections we will have that
the matrix Y , and hence the matrix S in (9), are purely unitary matrices, and
consequently we will make use there of Givens product representations [5].

Incidentally, note that for the special case where Y in (13) is exactly unitary
or Hermitian, combining this with the upper triangularity of Y reveals that Y
must be diagonal. However, note that the diagonality of Y does not imply the
diagonality of the matrix S in (9), since the latter is semiseparable plus diagonal
with semiseparability rank determined by the displacement rank, cf. (10).

One element is still missing in the above scheme. Namely, there is the fact that
the structure-chasing procedure will unavoidably break down for the determination
of the first r, as well as for the final r Givens transformations Gi,i+1 in (12),
since the corresponding Rk r structure blocks are ‘trivially satisfied’, and hence
preserved by any Givens transformation Gi,i+1. Hence, we should be able to find
these Givens transformations in a direct way, using the fact that they belong to
the QR-factorization of A.

To this end, recall the Hessenberg matrix

H =
[
A1,1 a1,2
R QHA2,2

]
(14)

into which the matrix A has already been brought by means of the unitary matrix
QH of size n− 1, where R := QHA2,1 is already upper triangular. We should then
be able to derive the first and last r columns of this Hessenberg matrix, since the
action of making these columns upper triangular will reveal the required Givens
transformations Gi,i+1 needed for doing this.

Let us assume by induction that we have already knowledge of the first and
last r columns of the submatrix R in (14). It will clearly suffice if we can determine
the required elements of the first row and last column of the matrix H in (14).

Let us begin with the first row of H . It is clear from (14) that this row is
equal to that of the original displacement structured matrixA. Due to the supposed
upper triangularity of Y and Z, we will be able to derive these entries by means
of the original displacement equation (1) which the matrix A has to satisfy, which
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we restate here for convenience:

Y A−AZ = Rk r. (15)

Indeed, evaluating the last row and first column of (15) reveals that (yn,n −
z1,1)an,1 = (Rk r)n,1, from which an,1 can be derived. One can then gradually
proceed towards the top right direction of the matrix A, using a recursive scheme
to determine the subsequent entries of this matrix. Note that we have to assume
here that the displacement operator is invertible, i.e., that yi,i �= zj,j for all i and j.

It is clear that the complexity of determining all entries of the matrix A in
this way will require O(n3) operations in the general case, which we consider to be
unacceptably expensive. In order to obtain a better complexity, we assume from
now on that, in addition to being upper triangular, we have that
• both Y and Z have upper bandwidth at most b, with b ≤ r.

Using this assumption, the complexity of determining all entries of A from its
displacement equation is easily seen to reduce to O(b2n2) operations. We remark
that we need each time only those entries in the first and last r columns of the
top row of (14), but in the process of determining the latter, the computation of
the elements in the other columns seems to be an unavoidable step. determined
one by one in a recursive way. (Exception to this is when the bandwidth b = 0,
thus in case where Y and Z are diagonal matrices, in which case each entry of the
displacement structured matrix A can be determined independently.) We mention
also that the condition that Y and Z have limited bandwidth can be replaced
by the more general condition that they are rank structured, but we will not go
further into this.

Now we consider the computation of the last column of H in (14). To this
end, let us characterize this Hessenberg matrix in an alternative way. From the
decomposition A = QH (we write here Q instead of 1⊕Q by abuse of notation),
one can derive in an analogous way to (2), (3) that

Y (QH)− (QH)Z = Rk r
⇔ (QHY Q)H −HZ = R̃k r,

where R̃k r is a new matrix of rank at most r. Evaluating the last column of this
last equation leads to

[(QHY Q)− zn,nI]Hcol n =
n−1∑
k=n−b

zk,nHcol k + (R̃k r)col n, (16)

where the subscript col k is used to denote the kth column of a matrix, and where
b denotes again the supposed bandwidth of the coefficient matrix Z.

This equation can be used to solve for the last column Hcol n in terms of the
previous columns of H . Note that the coefficient matrix QHY Q occurring in (16)
is nothing but the lower diagonal plus semiseparable matrix S used during the
chasing procedure, cf. (9). Since this matrix is rank structured, it will be possible
to solve (16) in an efficient way; see further.
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Summarized, we have now specified how to determine the entries of the first
and last r columns of the matrix H in (14), whose information is important for
determining the first r and last r Givens transformations Gi,i+1 in the chasing
scheme of (12). This ends the description of one inductive step n − 1 �→ n in the
QR-factorization of the displacement structured matrix A.

At the end of performing all these inductive steps k − 1 �→ k, k = 2, . . . , n,
we will finally have obtained the Givens transformations constituting the Q-factor
of the QR-factorization A = QR.

To end the description of the method, we should still specify how to compute
the subsequent columns of the R-factor of the QR-factorization. But this can be
easily done by solving again the subsequent columns of the relation (3). Note
that doing this for all columns of R will lead to the same order of complexity
as computing all the column vectors Hcol n, during each of the inductive steps
n− 1 �→ n, as described above.

We point out that the complexity of computing all the columns of the R-factor
of the QR-factorization, and hence the complexity of computing each of the column
vectors Hcol n during the algorithm, typically requires O(r2n2) operations, and
O(rn2) operations in the Toeplitz-like case. Hence, these computations typically
form the dominant term in the total complexity of the QR-factorization, since the
chasing steps usually require only O(rn2) operations.

In the next 3 sections we will show how the general scheme for the QR-
factorization of displacement structured matrices described in the current section
can be specified to the displacement structures of most interest.

4. The Cauchy-like case

In this section we describe the QR-factorization in case where A ∈ Cn×n is a
Cauchy-like matrix:

DyA−ADz = Rk r, (17)
where the coefficient matrices Dy, Dz ∈ Cn×n are diagonal matrices whose diag-
onal entries yi,i, zj,j are called data points, with yi,i �= zj,j for all i, j, and where
the displacement rank r is supposed to be known; note that r = 1 in case of a

classical Cauchy matrix A =
[

1
yi,i − zj,j

]
i,j=1,...,n

.

It follows from the general scheme of Section 3 that the matrices S in (10)
will now be lower diagonal plus semiseparable matrices, with diagonal elements of
the structure given by the zi,i. In fact, for reasons that will become clear soon, we
will prefer to keep these diagonal elements out of the representation, and to work
instead with the induced pure rank structure of S, which is situated just below
the main diagonal: see Figure 2.

For the scheme to be described in this section to be of practical interest, we
will need the following specification of (13):
• Dy is unitary.
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Figure 2. Induced pure rank structure for a lower diagonal plus
semiseparable matrix S of semiseparability rank r = 3.

This unitarity will imply the matrices S in (9) to be unitary as well. Thus, the
chasing techniques of this section will be expressed in terms of unitary diagonal
plus semiseparable matrices.

We turn now to the practical representation and manipulation of the unitary
diagonal plus semiseparable matrix S of semiseparability rank r. From Section 2
this can be achieved by means of a suitable Givens product representation graph
[5]. In the present case, the representation takes the form of Figure 31.

Figure 3. Givens product representation graph for a unitary diagonal
plus semiseparable matrix S of semiseparability rank r = 3.

To explain the specific pattern formed by the Givens transformations in Fig-
ure 3, it is useful to think in terms of the QR-factorization S = QR of the given
unitary diagonal plus semiseparable matrix S of semiseparability rank r. Due to
the unitarity of S, the R-factor of its QR-factorization can be chosen to be the
identity matrix. The above QR-factorization is then equivalent to the equation

QHS = I,

1The specific pattern formed by the topmost Givens transformations in Figure 3 corresponds to
the so-called zero-creating variant of the Givens product representation, as introduced in [5].
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the identity matrix. Thus we should apply to the rows of S a set of unitary oper-
ations QH in order to eliminate all entries in the lower triangular part of S. Due
to the rank structure of S, this process can be applied efficiently via a two step
procedure. The first step in this process is to peel off all Givens transformations
in the left branch of Figure 3, i.e., to multiply S with the Hermitian transposes of
these Givens transformations to the rows, going from bottom to top, and hereby
compressing the structure blocks of the given rank structured matrix S into blocks
of zeros. Incidentally, this reveals that the width of the left branch of the Givens
product representation directly reflects the underlying ranks of the rank structure,
which is r = 3 in the case of Figure 3.

What remains after peeling off the Givens transformations of the left branch
of the representation will be a Hessenberg matrix with three subdiagonals, which
is nothing but the right branch of the representation of Figure 3. The fact that
the right branch has the same width as the left branch, indicates that the struc-
ture is situated here just below the main diagonal. For more details about the
representation indicated in Figure 3 we refer to [5].

With the aim of manipulating the Givens product representation, we recall
the following result.

Lemma 3 (Pull-through lemma). Given a unitary 3 by 3 matrix Q which is fac-
torized as

Q = G′1,2G2,3G1,2,

then there exists a refactorization

Q = G̃′2,3G̃1,2G̃2,3.

See Figure 4.

=

Figure 4. Pull-through lemma applied in the downward direction. One
could imagine that the leftmost Givens transformation is really ‘pulled
through’ the two rightmost Givens transformations.

We will now use the above representation for the unitary diagonal plus
semiseparable matrix S to determine the subsequent Givens transformationsGi,i+1

used in the chasing procedure (12). First we will show how to determine the Givens
transformations Gi,i+1 with i = r+1, . . . , n− r− 1; the determination of the first
and last r Givens transformations Gi,i+1 will be discussed later in this section.
From the general scheme of Section 3, we know that the similarity transform with
Gi,i+1, GHi,i+1 has to preserve the diagonal plus semiseparable structure, while each
of the diagonal elements of the structure zi,i is chased one position upwards by
the chasing procedure.
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We will neglect here the information about the diagonal elements zi,i, and
put our focus only on the induced pure structure, situated just below the main
diagonal, since the latter structure can be read off directly from the sparsity pattern
of the representation in Figure 3, as explained above. Note that this induced pure
structure must be preserved during each step of the algorithm.

We will use this latter observation to derive the required Givens trans-
formations. Suppose that we are in the ith step of the chasing process, i =
r + 1, . . . , n − r − 1, and that we have to determine a Givens transformation
G := Gi,i+1 such that a similarity transformation with G preserves the pure in-
duced rank structure of the unitary diagonal plus semiseparable matrix S.

This condition can be ensured by requiring that, after pulling G downwards
through the left branch, and GH downwards through the right branch of the
representation, by using each time r subsequent applications of the pull-through
lemma, then the pulled through Givens transformations must precisely annihilate
each other. Stated another way, the pulled through versions of G and GH must be
related to each other as H and HH , for a suitable Givens transformation H : see
Figure 5.

H
G

H
H

H

G

Figure 5. Elementary chasing step for the unitary diagonal plus
semiseparable matrix S of semiseparability rank r = 3. The preser-
vation of structure is ensured when the pulled through versions of G
and GH are related to each other as H and HH , hence cancelling each
other out in the middle of the figure.

We want now to exploit this observation to obtain a practical scheme for
determining G. To this end, we will first investigate more closely the leftmost of
the two pull-through relations between G and H in Figure 5: see Figure 6.

By expanding the middle Givens product on the left-hand side of Figure 6
into its full matrix form, it turns out that this relation can be restated in terms of
the lower triangularity of a certain 2 by 2 matrix A being preserved by multiplying
with G on the left and with HH on the right: See Figure 7.

In a similar way, one can consider also the rightmost of the two pull-through
relations between G and H in Figure 5. Taking the Hermitian transpose of this
relation will lead in exactly the same way to a 2 by 2 lower triangular matrix B,
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=

G

HH

Figure 6. The figure expresses the fact that the pulled-through version
of G is precisely H , and hence can be removed by multiplying with HH

on the right. This guarantees the existence of a refactorization having
the shape shown in the right part of the figure.

=

H

G

H

A

Figure 7. Equivalent formulation of Figure 6 in its full matrix form.

whose lower triangularity must be preserved by multiplying with G on the left and
with HH on the right.

The determination of the required Givens transformations G and H reduces
then to the following problem.

Problem 4. Given two lower triangular matrices

A =
[
× 0
× ×

]
, B =

[
× 0
× ×

]
.

We are interested in finding two non-trivial Givens transformations G and H such
that the lower triangularity of A, B is preserved in

GAHH =
[
× 0
× ×

]
, GBHH =

[
× 0
× ×

]
,

where the generically nonzero values are denoted as ×.

It is clear that there always exists a trivial solution (G,H) = (I2, I2) to this
problem, where I2 is the identity matrix of size 2. But we will be interested in the
non-trivial solution.

It turns out that this non-trivial solution can be easily obtained. First we are
going to determine G. We will search it in the form

G =
[
c s
× ×

]
,
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where c and s are unknown complex numbers such that |c|2 + |s|2 = 1, and where
the values that will be irrelevant in the computation are denoted as×. We compute

GA =
[
ca1,1 + sa2,1 sa2,2

× ×

]
, GB =

[
cb1,1 + sb2,1 sb2,2

× ×

]
. (18)

Now it is clear that the existence of the column operationHH occurring in Problem
4, is equivalent to the condition∣∣∣∣ ca1,1 + sa2,1 sa2,2

cb1,1 + sb2,1 sb2,2

∣∣∣∣ = 0.
A trivial case where this equation is satisfied is when s = 0. This corresponds to
the trivial solution (G,H) = (I2, I2) mentioned before.

But recall that we were interested in the non-trivial solution. This non-trivial
solution can be obtained by skipping the factor s in the second column of the above
determinant, and expanding the remaining part of this determinant as

(a1,1b2,2 − a2,2b1,1)c = (a2,2b2,1 − a2,1b2,2)s,
or alternatively in matrix-vector form as

G

[
a1,1b2,2 − a2,2b1,1
a2,2b2,1 − a2,1b2,2

]
=
[
0
×

]
. (19)

It is clear that, provided at least one of the two components of the vector on
the left-hand side of (19) is non-zero, then the required Givens transformation G
is essentially uniquely determined from this equation.

Given the knowledge of G, one can now determine H as well. Indeed, we
know that H should be chosen to restore the lower triangularity of each of the
two matrices in (18), i.e., to create a zero in the (1, 2) position of both matrices.
We point out that in principle, it does not matter which of these two matrices
is taken to determine H , but for stability reasons, one should use the one whose
top row has the largest norm, or alternatively a least squares variant containing
information of both top rows.

We should still clarify one point here. Suppose that we insert the computed
value of G in the left part of Figure 6, and subsequently pull it through, so that this
Givens transformation is chased to the bottom right. Will it then be guaranteed
that we end up with (essentially) the computed value of H at the end of this pull-
through process, so that the factor HH on the left of Figure 6 can be cancelled,
ending up with the Givens pattern on the right of Figure 6?

Maybe surprisingly, the answer to this question is no, since the pull-through
operation may be badly determined. This means that in certain cases, the pull-
through of two Givens transformations which are equal up to the machine precision
ε ≈ 10−16 may lead to relatively large differences in the pulled through Givens
transformations. Stated in another way, inserting G does not always guarantee
that (essentially) the computed H will come out at the other side.

The solution to this problem is to use the information of both Givens trans-
formation G and H , and to perform an explicit refactorization procedure of the
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unitary matrix Q in the left-hand side of Figure 6. In other words, we are given
the matrix Q and our aim is to refactorize this matrix into a new Givens product
having the form of the (unknown) right-hand side of Figure 6.

Let us assume that r = 3, and let us denote the required refactorization as

Q = G̃2,3
˜̃G1,2G̃3,4

˜̃G2,3G̃4,5
˜̃G3,4, (20)

where we have to search each of the Givens transformations G̃i+1,i+2 and
˜̃Gi,i+1,

i = 1, . . . , 3; cf. Figure 6.
To obtain the refactorization (20) in a stable way, we will determine the

subsequent Givens transformations G̃i+1,i+2 and
˜̃Gi,i+1, i = 1, . . . , 3 as illustrated

in Figures 8 and 9.

=

Figure 8. Determine the first Givens transformation G̃H2,3 from a least
squares condition.

=

1

Figure 9. Determine the second Givens transformation ˜̃GH1,2.

Let us comment on these figures. The first step is to note that the multiplica-
tion of the matrix Q on the left with the Givens transformation G̃H2,3 should create
a zero in the (3, 1) element as well as in the (2, 5) element of Q, i.e.,

G̃H2,3

[
q2,1 q2,5
q3,1 q3,5

]
=
[
× 0
0 ×

]
, (21)

see Figure 8. In practice, it is advisable to determine G̃H2,3 by using a pivoting
or least-squares strategy based on these two requirements. Let us then update
Q := G̃H2,3Q.

The second step is to note that the multiplication of Q on the left with the
Givens transformation ˜̃GH1,2 should create a zero in the (2, 1) element of Q, i.e.,

˜̃GH1,2

[
q1,1
q2,1

]
=
[
×
0

]
, (22)
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see Figure 9. Note that we can obviously determine ˜̃GH1,2 from this equation. We

can then update Q := ˜̃GH1,2Q.
The first column of Q has then been brought completely into upper triangular

form and hence, due to the unitarity, also the first row of this matrix will vanish: see
the right-hand side of Figure 9. Since the situation at the end of Figure 9 is similar
to the one we started from in Figure 8, but with smaller dimension of the problem,
the determination of the next Givens transformations of the refactorization (20)
is not shown anymore.

A suited use of the pull-through lemma enables the above refactorization
scheme to be carried out in O(r) operations, rather than the O(r2) suggested in
the above figures. The clue to this speed-up is to represent the matrix Q by its
Givens product representation rather than expanding it in full form. The initial
Givens product representation of Q is provided by the left-hand side of Figure 6.
For each of the updates Q := G̃Hi+1,i+2Q and Q := ˜̃GHi,i+1Q, we then update the
Givens product representation ofQ by applying the pull-through lemma maximally
two times in the upward direction; note that this requires only O(1) operations.
Moreover, it turns out that in this way, the required elements q2,1, q3,1 in (21) and
q1,1, q2,1 in (22) can be computed from the Givens product representation of Q
using only O(1) operations. Applying this method for all the Givens transforma-
tions G̃i+1,i+2 and

˜̃Gi,i+1, i = 1, . . . , r, reveals that the total complexity will be
O(r) operations.

To complete the above description we should then show that also the elements
q2,r+2, q3,r+2, . . . in (21) during this and the next steps of the refactorization pro-
cess can be computed in O(r) operations. But since these elements all belong to
the rightmost column of Q, this can be realized by just precomputing the latter
column in its full form, and next updating it during the refactorization process. It
is easy to see that the total cost of this process is O(r) operations as well.

Summarized, we have described now how to implement the basic chasing step
in Figure 5 in a practical way, using not more than O(r) operations. Applying
this scheme for i = r + 1, . . . , n − r − 1, we can obtain the subsequent Givens
transformations G := Gi,i+1 of (12) using a total number of O(rn) operations.

To complete the description of the QR-factorization in the Cauchy-like case,
we should still explain how to determine the first and last r Givens transformations
Gi,i+1 in (12), and how to update the representation under the action of these
operations.

First, let us consider the computation of the first r Givens transformations
Gi,i+1, i = 1, . . . , r. This can be done by just specializing the general scheme
of Section 3 in a straightforward way. Hence, it will suffice if we can show how
the representation of the matrix S should be updated under the influence of a
similarity transform with these operations. This is done in Figure 10.

Let us comment on this figure. First, we embed the given Givens product
representation of size n−1, in a larger n by n representation. This can be achieved
by pulling the two original branches apart, as done in Figure 10(a), and inserting
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(a) (b) (c)

Figure 10. Absorbing the first Givens transformations into the representation.

some identity Givens transformations between them, as indicated by the dashed
line segments in Figure 10(a).

Next, we multiply with the next unitary diagonal element y1,1, indicated by
the fat dot, and with the first r Givens transformations Gi,i+1 on the left, GHi,i+1

on the right, indicated by the fat line segments in Figure 10(b).
One can now immediately absorb the rightmost added Givens transforma-

tions into the representation, and place them on the position of the dashed lines,
without any actual computation: see Figure 10(c). Having done this, one should
apply the pull-through lemma r × r = r2 in the downward direction to bring the
leftmost added Givens transformations downwards, so that they ultimately appear
on the positions of the remaining set of dashed lines in Figure 10(c). Clearly, the
complexity of this entire process is only O(r2) operations, which can be considered
as negligible w.r.t. the other parts of the algorithm. Having done these operations,
the Givens product representation will be brought back into its usual form, as in
Figure 3.

We move now to the absorption of the last r Givens transformations Gi,i+1,
GHi,i+1 into the representation, i = n− r, . . . , n−1. This can be done even simpler,
using straightforward pull-through operations as indicated in Figure 11.

We wish to point out here the striking fact that absorbing the first and
last r Givens transformations into the representation both requires about O(r2)
operations, and essentially the same number of pull-through applications.

Finally, to conclude the description of the QR-factorization algorithm in the
Cauchy-like case, we should still explain how each time the linear system is solved
to compute the last column of the Hessenberg matrix H , as in (16). Since this
linear system contains as coefficient matrix S − zn,nI = QHDyQ− zn,nI, with in
general zn,n �= 0, one can not proceed here with the Givens product representation
anymore. Instead, we suggest to transform the Givens product representation first
into a Givens-weight representation, using the O(r2n) transformation algorithm
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(a) (b)

Figure 11. Absorbing the final Givens transformations into the representation.

described in [5]. Once the Givens-weight representation has been computed, the
diagonal correction term −znI is easily added to the matrix, and one can then pro-
ceed by the standard Givens-weight solvers, including also O(r2n) operations [4].

5. The Vandermonde-like case

In this section we briefly consider the QR-factorization in the case of a Vander-
monde-like matrix A. Denoting the upshift matrix

Zα =
[
0 In−1
α 0

]
, (23)

for any α ∈ C, and with In−1 the identity matrix of size n− 1, we will work with
the Vandermonde-like matrices described by the displacement equation

Z1A−ADz = Rk r, (24)

where Z1 is the circulant upshift matrix, having α = 1, and where Dz ∈ Cn×n is a
diagonal matrix. We also assume that the displacement operator (24) is invertible
and, therefore, that the spectra of Z1 and Dz do not intersect each other. The diag-
onal elements zi are sometimes called the interpolation nodes of the Vandermonde-
like matrix. The displacement rank r is assumed to be known; note that r = 1 in
case of a classical (transposed) Vandermonde matrix A = [zij]i,j=0,...,n−1.

It should be observed that the displacement equation (24) does not allow
the general scheme for QR-factorization in Section 3 to be applied, since the first
coefficient matrix of the displacement equation violates the requirement of being
upper triangular.

The solution consists in working instead with the matrix Ã := FHA, where F
is the Fourier matrix. From the well-known spectral decomposition Z1 = FDyF

H ,
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see, e.g., [13], the equation (24) transforms then to

DyÃ− ÃDz = R̃k r, (25)

where Dy is now a unitary diagonal matrix containing roots of unity. Clearly,
the problem of QR-factorization has been reduced now to the Cauchy-like case
described in the previous section. The total complexity of the QR-factorization
remains O(r2n) operations.

6. The Toeplitz-like case

In this section we consider the case where A has Toeplitz-like structure. A first
idea could be to use the displacement equation

Z1A−AZ0 = Rk r,

where we use the notations of (23) above. The displacement rank r is again
assumed to be known; note that r = 2 in case of a classical Toeplitz matrix
A = [ti−j ]i,j=1,...,n.

Using again a premultiplication with the Fourier matrix F , the above problem
of QR-factorization can be reduced immediately to the form

DyÃ− ÃZ0 = R̃k r,

where Dy is again a unitary diagonal matrix containing roots of unity, and where
we defined the updated matrix Ã := FHA.

It can be observed now that in this case, the coefficient matrix Z := Z0 is
strictly upper triangular, i.e., zi,i = 0 for each i. This has two important conse-
quences:
• also the main diagonal is involved into the lower semiseparable structure;
• the coefficient matrix in (16) is the matrix QHY Q itself, i.e., there is no
diagonal correction which has to be added to this coefficient matrix.

This last observation will allow for an O(rn2) solution of the QR-factorization
problem; this should be compared to the O(r2n2) solution in case of Cauchy-like
matrices, see further.

Let us illustrate here the corresponding unitary rank structured matrix S:
see Figure 12.

The difference for the corresponding unitary representation is now that the
left branch of the representation of the unitary rank structured matrix S is slightly
thicker than the right one, by the fact that the diagonal is part of the rank struc-
ture. This has the important consequence that the left and right Givens transfor-
mationsG and GH with G := Gi,i+1 do not influence the same structure block any-
more, i.e., the algorithm has obtained a well-determined flow direction. In practice,
this amounts to the fact that the Givens transformation G := Gi,i+1, after pulling
it through the representation, arrives on the right of the right branch of the repre-
sentation, one position lower than it was originally standing. This pulled-through



QR-factorization of Displacement Structured Matrices 249

Rk 3
Rk 3

Rk 3
Rk 3

Rk 3
Rk 3

Rk 3
Rk 3

Rk 3
Rk 3

Rk 3
Rk 3

Figure 12. Rank structure in the Toeplitz-like case; we have here r = 3.

Givens transformation determines then immediately the Givens transformation
Gi+1,i+2 to be applied during the next step, and so on. See Figure 13.

G
H

Figure 13. The figure shows the ith chasing step in the Toeplitz-like
case, i ∈ {3, . . . , n − 4}. Note that the original Givens transformation
G = Gi,i+1 is pulled through to the right, leading to a new Givens
transformation H = Gi+1,i+2. The latter serves then as input for the
(i+ 1)th chasing step. In the figure we assume that r = 3.

Applying the above scheme for i = r, . . . , n − r − 1, one can obtain the
subsequent Givens transformations Gi,i+1 in (12).

We should then show how to obtain the first r and last r − 1 Givens trans-
formations Gi,i+1. This can be done by just specializing the general scheme of
Section 3 in a straightforward way. Hence, it will suffice if we can show how the
representation of the matrix S should be updated under the action of the first
r − 1 operations on the left and the first r operations on the right. But this is
completely similar to the Cauchy-like case: see Figure 14.

Concerning this figure, note that the only difference w.r.t. the Cauchy-like
case is that the symmetry between the number of Givens transformations on
the rows and columns has somewhat changed, due to the asymmetry of the two
branches of the representation. In case of Figure 14, this implies the absorption
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Figure 14. Absorbing the first Givens transformations into the repre-
sentation in the Toeplitz-like case.

of the first three Givens transformations on the right, but only of the first two
Givens transformations on the left. Indeed, this reflects the fact that starting from
the third Givens transformation G3,4 on the left, one can start with the chasing
scheme of Figure 13.

In a similar way, one can treat the absorption of the last r Givens transforma-
tions on the rows and the last r−1 Givens transformations on the columns, where
now also the symmetry between the number of Givens transformations on the rows
and columns has changed, in an obvious way. The details are straightforward.

7. Numerical experiments

In this section we discuss the practical behavior of the proposed algorithms for
the recursive QR-factorization of displacement structured matrices and report on
the results of some numerical experiments. The algorithm for the Cauchy-like case
described in Section 4 has been implemented in Matlab and then tested on both
random and specific input matrices. In each experiment we measured the accuracy
of the computed QR factorization of the input matrix C by evaluating the errors
||Q ·QH − I||F , ||C −Q ·R||F and ||tril(QH ·C,−1)||F , where tril(A,−1) denotes
the strictly lower triangular part of the matrix A and || · ||F is the Frobenius matrix
norm. Our program also returns as output the estimates of the conditioning of C
and of the maximal conditioning of the lower-left submatrices of C employed in
the recursive factorization process.

In our first test session the input matrices were generated as follows. We
started from a Toeplitz matrix T ∈ Cn×n determined by the entries aj , j =
1, . . . , 2n − 1, with aj , j = 1, . . . , n corresponding to the first row and aj, j =
n, . . . , 2n− 1 corresponding to the first column of T . Applying a similarity trans-
form C := FTFH , with F the Fourier matrix of size n, transforms the Toeplitz
matrix T into a Cauchy-like matrix C satisfyingDyC−CDz = Rk 2, whereDy and
Dz contain interlaced roots of unity; this is the same construction as we used in
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Figure 15. Average accuracy for subsequent values of n in the Cauchy-
like case. The used norm is the Frobenius norm.

[2]. This Cauchy-like matrix C was then used as input for the QR-factorization al-
gorithm. Recall that our scheme computes the Q-factor of the QR-factorization as
a product of n(n−1)2 Givens transformations Gi,i+1, while the R-factor is computed
column by column by means of (3). The results are shown in Figure 15.

Let us comment on these figures. The figures were constructed from a Cauchy-
like matrix C := FTFH where T is a Toeplitz matrix with uniformly randomly
generated entries aj on the interval [0, 1], j = 1, . . . , 2n− 1. The lower lines show
the accuracy of our method (continuous line) compared with the accuracy of the
standard QR Matlab routine (dot line). The upper lines show the reciprocal of
the condition number and the reciprocal of the maximal condition number of the
lower-left submatrices. It can be noticed that both C and its relevant submatrices
are fairly well conditioned and the fast algorithm behaves quite well even if it is
probably not backward stable.

To investigate better the role of the conditioning of the matrices involved for
the accuracy of computed results, in the second test session we considered the case
where T equals the prolate matrix with parameter α ∈ {0.45, 0.48, 0.6}, i.e., the
matrix having aj = sin(2πα(n− j))/(π(n− j)) and an+j = sin(−2παj)/(−πj) for
j = 1, . . . , n− 1, and an = 2× α.

It turned out that now the accuracy of our algorithm was substantially worse,
with even not a single significant digit left for α = 0.6 and n = 400. The reason was
a catastrophic rank-one (instead of rank-two) submatrix detected in the very first
step of the chasing procedure making the corresponding Givens transformation
very badly determined. To remedy this, we applied a randomization of the last
two rows and first two columns of the obtained Cauchy-like matrix C. We realized
this by means of a random update of the last two rows and first two columns of the
generators of the low displacement rank matrix Rk 2 in the right-hand side of (1).
The fact that we have applied a low rank perturbation to the matrix C can then be
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Figure 16. Accuracy for the prolate matrix of size n with parameter
α = 0.48.

40 60 80 100 120 140 160 180 200

10

10
0

 n

||
 Q

 Q
H

 |
|  (a)

40 60 80 100 120 140 160 180 200

10

10
0

 n

||
 t
ri
l(

Q
H

 C
) 

||

 (b)

40 60 80 100 120 140 160 180 200

10

10
0

 n

 (b)

Figure 17. Accuracy for the prolate matrix of size n with parameter
α = 0.45.

dealt with by using any standard stable routine for updating a QR-factorization
under the influence of a low rank correction term.

Figures 16 and 17 report the results for α = 0.48 and α = 0.45, respectively.
It is seen that the initial randomization improves substantially the accuracy of the
method. Moreover, Figure 17 seems to indicate that the accuracy is influenced by
the conditioning of the matrices involved in the recursive factorization process.
This claim sounds reasonable since from the classical perturbation analysis for the
QR factorization of a nonsingular matrix C it follows that the magnitude of the
perturbation ΔQ of the Q-factor of C under a small perturbation ΔC of C can be
amplified by a factor depending on the conditioning of C [14].
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However, we want to conclude by stressing that the mechanism of error ampli-
fication in the chasing-based procedures for the QR factorization of displacement
structured matrices in not yet completely clear. This is specifically true for not
diagonal displacement operators as those occurring with Toeplitz-like structures.
Some very preliminary numerical experiments with Toeplitz matrices suggest that
in that case the accuracy of computed results can be seriously worse than it is
predicted by the conditioning of the problem. At this time we have no analysis
or informal explanation for this phenomena and more research is still required for
the design of numerically robust algorithms.
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Bezoutians Applied to Least Squares
Approximation of Rational Functions
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To Georg Heinig

Abstract. A projection method to reduce large scale discrete systems which
has been introduced in [12, 21] will be generalized to continues systems with-
out to transform it bilinear. To achieve that goal depending on an algebraic
curve γ ⊂ C and a rational function h ∈ C(z) a non negative function
F : Cm → R is introduced whose minimizer provides an approximant of
degree m. Special cases are obtained via specification of γ and h.
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1. Introduction

The paper concerns an approximation problem. Let γ ⊂ C be a curve which
divides the complex plane C in two parts C
 and Cr, and h ∈ C(z) be a stable
strictly proper rational function, that means all it poles, denoted with σ(h), are
located in C
 and limz→∞ h(z) = 0. We are interested in the approximation of
h by a low (Mc-Millan) degree strictly proper rational function hred such that
along γ the least squares distance between h and hred is satisfying and hred is
again stable. As usual the degree of h is defined by the degree of q ∈ C[z] where
p/q is a coprime fraction representation of h. That approximation problem admits
a system theoretical interpretation via definition of h by the transfer function
hΣ(z) := C(zI −A)−1B of the systems

xk+1 = Axk +Buk
yk = Cxk

, x0 = 0
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) , x(0) = 0

Σ := (A,B,C) ∈ Rn×n × Rn×1 × R1×n
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which transform the inputs

uk := CuA
k
uBu, u(t) := Cu exp(Aut)Bu,

Σu := (Au, Bu, Cu) ∈ Rn×n × Rn×1 × R1×n,
σ(Au) ∩ σ(A) = ∅

to the outputs

yk = CuA
k
uB̂u + CAkB̂, y(t) = Cu exp(Aut)B̂u + C exp(At)B̂

B̂u := hΣ(Au)Bu, B̂ := hΣu(A)B.

As usual exp(A) and h(A) are defined, respectively, by
∑∞
k=0

Ak

k! and p(A)q(A)
−1.

Among other things, large n makes the computation of the outputs infeasible
in acceptable time. That is one reason why one is interested in the replacement
of Σ by a smaller triple Σred which generates systems that have similar transfer
behavior. To explain the term ‘similar transfer behavior’ we restrict ourself to

γ ∈ {T, iR}, T := {z ∈ C : |z| = 1}, iR := {z ∈ C : �(z) = 0}.
Here, �(z) designates the real part of the complex number z. For such γ the
left-hand parts C
 are the unit disc and the left half-plane

D := {z ∈ C : |z| < 1}, H− := {z ∈ C : �(z) < 0}.
Thus, the matrices Ak and exp(At) tend to zero as k, t → ∞ such that for large
enough k and t the quantities yk and y(t) are in essential equal to CuAkuB̂u and
Cu exp(Aut)B̂u. Consequently, two stable systems Σ and Σred possess similar trans-
fer behavior relative to the input signal class

Sγ := {Σu : σ(Au) ⊂ γ}
if for all Σu ∈ Sγ the number d(Au) := ‖hΣ(Au) − hΣred (Au)‖F is small. For
Σu ∈ Sγ the smallness of ‖hΣ − hΣred‖γ2 leads to the smallness of d(Au). Here,
‖.‖F denotes the Frobenius matrix norm ‖A‖F :=

√∑n
i,j=1 |aij |2, [[18], p. 56] and

‖.‖γ2 the L2-norm along γ, defined by

‖f‖γ2 :=
√
〈f |f〉γ2 , 〈f |g〉γ2 := 1

2π

∫ b
a f(w(t))g(w(t))|ẇ(t)|dt

γ := {w(t) : t ∈ [a, b]}, w : [a, b] ⊆ R → C.

Hence, for a stable Σ, stimulated by elements of Sγ , the reduction problem is
equivalent to approximate hΣ along γ by a stable strictly proper low degree rational
function hred. The desired reduced system Σred is provided by a realization of hred.
For γ ∈ {T, iR} the balanced truncation method [[35], Section 21.8, Chapter 7]
represents a prominent reduction procedure. An overview with respect to the huge
number of papers which deal with approximation problems of this nature offer
[4, 5]. The optimal γ-approximation problem of order m consists in finding

hopt ∈ Rγm := {g ∈ C(z) : σ(g) ∈ C
, deg g = m}
such that

‖h− hopt‖γ2 = min{‖h− g‖
γ
2 : g ∈ Rγm}. (1.1)
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Since Rγm does not not form a subspace of {g ∈ C(z) : ‖g‖γ2 <∞} the determina-
tion of an hopt becomes difficult. Via the specification γ = iR the so-called optimal
H2-model reduction problem is obtained. There exists a lot of corresponding in-
vestigations, consult for instance [30, 32, 34].

We do not determine hopt but we try to provide an hred such that

‖h− hred‖γ2 ≈ ‖h− hopt‖
γ
2 .

To achieve that goal we associate h with two ordered polynomial sets

A := {a0, . . . , an−1}, R := {r0, . . . , rn−1}
and consider as approximation candidates the rational functions

hx(z) :=
am(z)−

∑m−1
k=0 xkak(z)

zm −∑m−1
k=0 xkz

k
, x ∈ Cm, ak ∈ A , 0 < m < n.

To find appropriate weight vectors x, depending on R and γ we define a non
negative function F : Cm → R and derive the representation

F (x)2 = row(x∗,−1)Gm+1col(x,−1), Gm ∈ Cm×m. (1.2)

It turns out that the minimizer ξ of F generates an hξ having all desired properties
of hred and that G := Gn admits the factorization

G = R∗B−1γ (q)R. (1.3)

We call G the Gramian of h with respect to γ. Due to Bγ(q) is representing the
Bezoutian of q with respect to γ, that factorization brings together the Bezout
concept with rational approximation problems, admits a natural generalization of
the Bezout concept and justifies paper’s title. The context to [12, 21] is established
by the possibility to compute ξ via a projection method which has been introduced
there.

To analyze the properties of hξ the class of admissible curves will be restricted
to the class of algebraic curves

γ := {z ∈ C : pγ(z, z) = 0} . (1.4)

Here, pγ is a bivariate polynomial with Hermitian coefficient matrix Γ:

pγ(x, y) := ψν+1(x)ΓψT
ν+1(y), 0 ≤ γνν , Γ := [γij ]νi,j=0, ψn(x) := row(x

j)n−1j=0 .

That restriction allows us to associate h and γ with the Hermitian matrix L defined
by

L := Lγ(Cq,M) ∈ Cn×n, M := G−1

Lγ(A,X) : Cn×n → Cn×n, Lγ(A,X) :=
∑ν
i,j=0 γijA

iXA∗j , A ∈ Cn×n.
(1.5)

Remember, that for A,B ∈ Cn×n, γ = T and ν = 1 the matrix equation

Lγ(A,X) = B
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is said to be a Stein and for γ = iR a Lyapunov equation. We pay our main
attention to the case ν = 1. Then the curvature of γ is constant such that C
 is a
disc or a half-plane and non-positive L implies

σ(hξ) ⊂ C
 := C
 ∪ γ.
Furthermore, for positive

Δ :=
√
− detΓ

the desired non-positivity is guaranteed by the existence of w ∈ Cn satisfying

L = −Δww∗. (1.6)

Our construction ofw is derived from the special cases γ ∈ {T, iR}. In particular, in
the unit circle case Parseval’s identity states the equivalence between the definition
of the denominator polynomial Q of hξ provided here, definition (10) of Qn in [12]
and definition (3.4) of χ

LS
in [21]. Numerical experiences show that a small distance

between σ(h) and γ is preserved by σ(hξ) and that σ(hξ) possesses an element
nearby to α ∈ σ(h) supposed the associated partial fraction coefficient is large. A
heuristical discussion of that observations took place in [13]. The theoretical part
of the present paper finishes with a mathematical foundation.

Their dependencies determine the paper’s structure. In Section 2 we define
F and G precisely and deduce representation (1.2). Afterwards, an estimate of
the distance between h and hx directly proportional to F (x) is derived such that
the definition of x via its minimizer ξ becomes natural. Due to factorization (1.3)
Section 3 is dedicated to Bezoutians. In Section 4 we prove σ(hξ) ⊂ C
 by ex-
ploitation of the matrix equation (1.6) and give an explicit construction of w. The
paper’s main theorem (Theorem 4.4) combines the pole separation result with the
distance estimate along γ such that we arrive at a generalization of [[12], Theorem
2] and [[21], Theorem 3.1.]. As mentioned above, the construction receipt for w is
derived from the special cases γ ∈ {T, iR}. Therefore, Section 5 and 6 deal with
that cases. Section 7 focuses on the computation of hξ starting from the knowledge
of a minimal realization of h. That happens by identification of G as the observ-
ability Gramian of the controllability realization of h with respect to γ. In the
extreme situation h = 1/q the set A becomes a singleton consisting only of the
zero polynomial such that as approximant the zero function is only in question. To
overcome that collapse, in Section 8 a second minimization step is concatenated
to the minimization of F which defines the numerator of hξ more sensitive such
that for the resulting rational function hηξ the relation

‖h− hηξ‖
γ
2 ≈ ‖h− hopt‖

γ
2

is achieved. In particular by introduction of the mirror image of σ(Q) with re-
spect to γ the numerator polynomial P of hηξ can be obtained as solution to an
interpolation problem. In Section 9 the limit behavior of σ(hξ) is studied when
some pole of h moves to the border γ or a partial fraction coefficient tends to in-
finity. The main tool to analyze such limit processes are the generating functions
of Bezoutians. Since there exist bilinear transformations between D and H− the
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statements with respect to D can be translated in corresponding statements with
respect to H− . In Section 10 we sketch that approach. Finally, in Section 11 we
illustrate our theoretical results by means of numerical examples. The both last
examples touch the concept of positive realness. It turns out that the direct as well
as the transformation approach do not preserve the underlying mapping property.
In a forthcoming paper that problem will be studied.

2. The construction of hξ

Depending on a differentiable curve γ, a positive measure μ acting on γ and poly-
nomials rj ∈ R ⊂ Cn[z] := {p ∈ C[z] : deg p < n} we define F : Cm → R, m < n,
according to

F (x) := ‖px‖γdμ , px(z) := rm(z)−
∑m−1
j=0 xjrj(z),

‖f‖γdμ := 〈f | f〉γdμ
1
2 , 〈f | g〉γdμ :=

∫
γ fg dμ.

To adapt F to our approximation problem relative to p/q := h, p, q ∈ C[z], the
sets A and R are specified by the solutions to

zjp = ajq + rj , rj ∈ Cn[z], aj ∈ Cj [z], j = 0, . . . , n− 1, C0[z] := {0}.
We call rj the (j+1)th residue of p with respect to q. Cayley-Hamilton’s Theorem
[[35], p. 21] shows the coincidence of the coefficient vector rj of rj regarded as an
element of Cn with the jth column of p(Cq). Thus, the definition

R :=
[

r0 . . . rn−1
]
∈ Cn×n

leads to R = p(Cq). Due to r0 = p the first column of R coincides with the
coefficient vector p of p. Moreover,

p(Cq) = K (Cq, p), K (A,B) := Kn(A,B), K
(A,B) := row(AjB)
−1j=0.

The measure μ is specified by

dμ(t) :=
|ẇ(t)|

2π|q(w(t))|2 dt,
γ := {w(t) : t ∈ [a, b]},
w : [a, b] ⊆ R → C,

ẇ :=
d
dt
�(w) + i

d
dt
!(w).

As approximation candidates now the elements hx of the rational function set

Rm(h) :=
{
P
Q :

P (z) := am(z)−
∑m−1
k=0 xkak(z),

Q(z) := zm −∑m−1
k=0 xkz

k,
x ∈ Cm

}
are in question. Note that for fk := rk/q we have

fk(z) = zkh(z)− ak(z) = CAk(zI −A)−1B,
a0(z) ≡ 0, ak+1(z) =

∑k
i=0 hk−iz

i, hk := CAkB.

Here, (A,B,C) represents a realization of h as for example the controllability real-
ization Σco := (Cq , e1, h∗) [[14], p. 288] or the controller realization

(
CT
q , en, q

−1
n pT

)
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where (regard blank spaces as filled with zeros)

Cq :=

⎡⎢⎢⎢⎣
−q0/qn

1 −q1/qn
. . .

...
1 −qn−1/qn

⎤⎥⎥⎥⎦ ,
p = ψnp

q = ψn+1q

h := col(hi)n−1i=0

e1 :=
[
1 0 . . . 0

]T
, en :=

[
0 . . . 0 1

]T
.

(2.1)

The equation ak+1(z) =
∑k
i=0 hk−iz

i and the definition of P admit to express the
coefficient vector ω of P according to

ω =

⎡⎢⎣ h0 . . . hm−1
. . .

...
h0

⎤⎥⎦[ −col(xi)m−1i=1

1

]
. (2.2)

Therefore, Rm(h) forms the set of all strictly proper rational functions of degreem
whose firstm Laurent coefficients coincide with (hk)m−1k=0 . For discrete systems that
property means the coincidence of the unit impulse responses up to the length m.
If one renounces to preserve that system property, the gained freedom to choose P
can be used to proceed with a second minimization step after minimization of F .
Section 8 focuses on the corresponding details. To estimate ‖h−hx‖γ2 we introduce

min
γ
(f) := min{|f(w)| : w ∈ γ}, max

γ
(f) := max{|f(w)| : w ∈ γ}.

Proposition 2.1. Supposed σ(Q) ∩ γ = ∅ the estimate ‖h− hx‖γ2 ≤ F (x)
minγ(Q)

holds.

Proof. Replacement of rj by zjp− ajq yields
px = rm −

∑m−1
j=0 xjrj = (zmp− amq)−

∑m−1
j=0 xj

(
zjp− ajq

)
=
(
zm −∑m−1

j=0 xjz
j
)
p−
(
am −

∑m−1
j=0 xjaj

)
q = Qp− Pq.

Thus ‖h− hx‖γ2 = ‖px/(Qq)‖
γ
2 ≤ maxγ(Q−1) ‖px/q‖γ2 = 1

minγ(Q)
‖px‖γdμ . �

Consequently, to get along γ a small distance between h and hx, the choice
of x via the minimizer ξ of F is natural. To determine ξ note that

F (x)2 =
〈
rm −

∑m−1
j=0 xjrj rm −

∑m−1
j=0 xjrj

〉γ
dμ

=
[
x∗ −1

] [
〈ri | rj〉γdμ

]m
i,j=0

[
x
−1

]
.

Using the abbreviations

G := Gn, Gm := [gij ]
m−1
i,j=0 , gij := 〈ri | rj〉

γ
dμ

the factorization (1.2) is obtained. We call G the Gramian of h with respect to γ.
In addition we set

gm := col(gim)m−1i=0 ∈ Cm.
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If one defines an ∈ Cn[z] and rn ∈ Cn+1[z] via znp = anq + rn then the vector gn
is defined and q admits the representation

q(z) = qn(zn − ψn(z)G−1gn).

Proposition 2.2. Supposed p and q are coprime F achieves its minimum in G−1m gm.
Thus, we set

Q(z) := zm − ψm(z)ξ, ξ := G−1m gm. (2.3)

Proof. Obviously,

G = R∗
[
〈zi | zj〉γdμ

]n−1
i,j=0

R (2.4)

where the positivity of the middle factor is a consequence of the positivity of μ.
Since p and q are coprime, together with R = p(Cq) the invertibility of R follows.
Thus G is positive. We proceed with the principal axis transformation of Gm. Let

Gm = Udiag(dk)mk=1U
∗

where U is unitary and all dk are positive. With x̂ := Ux and ĝm := Ugm we get

F (x)2 = gmm +
∑m
k=1 f(x̂k, dk, ĝkm), f(z, d, g) := d|z|2 − 2�(gz).

Therefore, the minimum of F 2 is equal to

gmm +
∑m
k=1minz∈C f(z, dk, ĝkm).

The condition fx = fy = 0, z = x+ iy, leads to

2dx− 2�(g) = 0, 2dy − 2!(g) = 0.
Hence, x̂k = ĝkm/dk that means G−1m gm represents the only one stationary point of
F 2. Since the (2× 2)-matrix of the second derivations of f is equal to diag(dk, dk)
and dk is positive, F attains its minimum there. �

3. Bezoutians

We introduce now the Bezout concept for q with respect to γ. The classical Be-
zoutians are special Hermitian matrices that were introduced to study the root lo-
cation problem of polynomials. The naming of Bezoutians goes back to J. Sylvester
[31]. Historical remarks can be found in [25, 26, 33]. In view of (1.3) and (2.4) we
set

Bγ(q) :=
([ 〈

zi zj
〉γ
dμ

]n−1
i,j=0

)−1
.

In Section 5 and 6 for γ ∈ {T, iR} and σ(q) ⊂ C
 the coincidence of Bγ(q) with
the classical Bezoutians
Bd(q) := H�(q1, . . . , qn)H�(q1, . . . , qn)−H�(qn−1, . . . , q0)H�(qn−1, . . . , q0)
Bc(q) := I±(T�(q̃0, . . . , q̃n−1)H�(q1, . . . , qn)− T�(q0, . . . , qn−1)H�(q̃1, . . . , q̃n))

(3.1)
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will be proved, a fact that justifies to refer Bγ(q) as Bezoutian. Here, q̃ := I±q and

I± :=

[
1 −1

. . .

]
, H�(x1, . . . , xn) :=

[
x1 ... xn

... . . .
xn

]
, T�(x1, . . . , xn) :=

[
x1

...
.. .

xn ... x1

]
.

The right-hand side of (3.1) is said to be the Gohberg-Semencul representation
of Bγ(q) [[14], p. 206]. In view of [[26], Theorem XVa], [[24], Theorem 4.4], [[15],
Theorem B2], [[14], Theorem 9.1.5.] the relations

σ(q) ⊂ D ⇔ 0 < Bd(q), σ(q) ⊂ C \ D ⇔ Bd(q) < 0
σ(q) ⊂ H− ⇔ 0 < Bc(q), σ(q) ⊂ C \H− ⇔ Bc(q) < 0

(3.2)

hold. To find the vector w satisfying L = −Δww∗ it is worth to consider appro-
priate representations of the bivariate polynomial

Bγ(q, x, y) := ψn(x)Bγ(q)ψT
n (y).

According to [[14], Theorem 9.1.5, p. 256] we have

Bd(q, x, y) =
q̂(x)q̂(y)− q(x)q(y)

1− xy , Bc(q, x, y) =
q(x)q(y)− q̃(x)q̃(y)

x+ y

q̂(z) := q(z−1)zn, q̃(z) := q(−z), q(z) := q∗ψT
n+1(z).

(3.3)

The first factors of the products arising in the numerators provide now w. Indeed,
w = R−1v where for γ = T the polynomial v =: ψnv is the first residue of q̂
with respect to q and for γ = iR the first residue of q with respect to q̃. The
representation (3.3) of Bγ(q, x, y) is said to be the generating function of Bγ(q).

4. The matrix L for ν = 1 and indefinite Γ

We specify γ by (1.4) and set

C
 := {z ∈ C : pγ(z, z) < 0}.
Our proof of σ(hξ) ⊂ C
 needs the following representation of Q. Remember that
M is defined by G−1.

Proposition 4.1. Let M be partitioned according to [Mij ]2i,j=1, M11 ∈ Cm×m. Then
M22 is invertible and Q admits the representation

Q(z) =
∑n
j=m+1 ζjmj(z), ζ :=M−1

22 e1 ∈ Cn−m, mj := ψnMej ∈ Cn[z].

Proof. Since G is positive, the same holds for M . Consequently, M22 is invertible.
Remembering the equation

G−111 G12 = −M12M
−1
22 , [Gij ]

2
i,j=1 := G, M11, G11 ∈ Cm×m

with G11 = Gm, gm = G12e1 and ξ = G−1m gm one concludes

Q(z) = zm − ψm(z)ξ = zm + ψm(z)M12M
−1
22 e1

= zm + ψm(z)M12ζ = ψn(z)col(Mi2)2i=1ζ =
∑n
j=m+1 ζjmj(z). �
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We state and prove now our stability result assuming ν = 1 and the non-
positivity of L. As mentioned above, ν = 1 implies the coincidence of C
 with an
open disc or an open half-plane.

Proposition 4.2. For ν = 1 and L ≤ 0 we have σ(hξ) ⊂ C
. In the circle case hξ
is stable.

Proof. A not vanishing q(α) provides the inversion formula

(αI − Cq)−1 =

⎡⎢⎣ qn . . . q1
. . .

...
qn

⎤⎥⎦
⎡⎢⎣ αn−1

...
α0

⎤⎥⎦ ψn(α)
q(α)

−

⎡⎢⎢⎢⎢⎣
0 α0 . . . αn−2

0
. . .

...
. . . α0

0

⎤⎥⎥⎥⎥⎦ .
According to Proposition 4.1 the polynomial Q admits the representation

Q = ψnτ, τ :=M�, � := col(0, ζ).

Since degQ = m the vector τ is of the form col(Q, 0), Q ∈ Cm+1. Assume Q(α) =
0, q(α) �= 0 and let ε ∈ Cn be defined by ε := (αI − Cq)−∗ �. Then ε and τ are
orthogonal:

ε∗τ = �∗(αI − Cq)−1τ

= �∗

⎡⎢⎣ qn . . . q1
. . .

...
qn

⎤⎥⎦
⎡⎢⎣ αn−1

...
α0

⎤⎥⎦ Q(α)
q(α)

−
[
0
ζ

]∗
⎡⎢⎢⎢⎢⎣
0 α0 . . . αn−2

0
. . .

...
. . . α0

0

⎤⎥⎥⎥⎥⎦
[

Q
0

]
= 0.

Together with the definition of the real numbers

ϑ := ε∗Lε ≤ 0, κ := ε∗Mε > 0, λ := �∗M� > 0

and the equations ε∗Cq = αε∗ − �∗, τ =M� we get

ϑ = γ11ε
∗CqMC∗q ε+ γ10ε

∗CqMε+ γ01ε
∗MC∗q ε+ γ00ε

∗Mε
= γ11(αε∗ − �∗)M(εα− �) + γ10(αε∗ − �∗)Mε+ γ01ε

∗M(εα− �) + γ00κ
= γ11(αακ− τ∗εα− αε∗τ + λ) + γ10(ακ− τ∗ε) + γ01(ακ− ε∗τ) + γ00κ
= (γ11αα + γ10α+ γ01α+ γ00)κ+ γ11λ = pγ(α, α)κ+ γ11λ.

Thus
pγ(α, α) = (ϑ− γ11λ)/κ ≤ 0

that means α ∈ C
. For positive γ11 the inequality pγ(α, α) < 0 holds that means
α ∈ C
. �

In Example 2 we meet the situation σ(hξ) ∩ γ �= ∅ actually. Thus, without
additional assumptions the statement of Proposition 4.2 cannot be strengthened.
In particular, for the case where γ is a line and h := 1/q the localization of σ(Q) is a
consequence of Fejér’s convex hull theorem [[9], Thm. 10.2.2], [10]. In Section 6 for
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h = p/q and m := deg q − deg p we prove that Q becomes stable also for the half-
plane case, and in [11] it will be shown that for m ∈ {deg q− deg p+1, . . . , n− 1}
the polynomial Q is generic stable.

The proofs of Proposition 4.3 and 6.1 apply the bilinear transformation

φ : C → C, φ(z) :=
az + b

cz + d
, ad− bc �= 0

with appropriate parameters a, b, c, d ∈ C. The associated n-dimensional Möbius
matrix Mφ is formed by the coefficient vectors of

{(az + b)j−1(cz + d)n−j : j = 1, . . . , n}.
For vanishing c we extent the coefficient vector of (az + b)jdn−j to an element
of Cn via a corresponding number of zeros such that Mφ becomes a right upper
triangular matrix. If one sets

p
φ
(z) := p(φ(z))(cz + d)n−1, deg p < n

then the associated coefficient vectors p and p
φ
are related by Mφp = p

φ
. For the

transformations z−1 and −z the Möbius matrices read as J :=
[

1
. . .

1

]
and I± .

Thus
q̂ = Jq, q̂ = Jq, q̃ = I±q, q̃ = I±q.

For the parameters a = −1 and b = c = d = 1 the properties of Mφ are described
in [[27], p. 37]. Note, that for ν = 1 the quantity Δ is equal to

√
|γ01|2 − γ00γ11

and is assumed to be positive.

Proposition 4.3. Stable h implies the existence of w ∈ Cn with L = −Δww∗.

Proof. By assumption Δ is positive. Thus for positive γ11, the curve γ represents
a circle and for vanishing γ11 a line. Let w(t) := φ(z(t)) where φ(z) := az + b
(c = 0, d = 1) and t ∈ I . Then w(t) is a parameterization of γ where a, b, z(t),I
are defined by

a b z(t) I
0 < γ11 Δ/γ11 −γ01/γ11 exp(it) [0, 2π]
0 = γ11 1/γ10 −γ00/(2γ10) it R

Using the abbreviations γ′ := φ−1(γ), B := Bγ(q), B′ := Bγ′(qφ) immediately by
definition the identities

B′ = |a|MφBM
∗
φ , aCqφMφ =Mφ(Cq − bI)

follow. Combination of (1.3) and (1.5) with the commutator equation RCq = CqR
yields

L = R−1Lγ(Cq , B)R−∗.

Hence, setting w := R−1M−1
φ v it remains to compute the appropriate v.
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In the circle case we have γ11a = Δ. Thus

Lγ(Cq , B) = γ11((Cq − bI)B(Cq − bI)∗ − a2B)
= Δa(M−1

φ CqφMφBM
∗
φC

∗
qφ
M−∗
φ −B)

= ΔM−1
φ (CqφB

′C∗qφ −B
′)M−∗

φ .

Due to γ′ = T and σ(q) ⊂ C
 ⇔ σ(qφ) ⊂ D Proposition 5.2 states the existence of
v such that CqφB

′C∗qφ −B′ = −vv∗.
In the line case we have |a|−1 = Δ. Thus

Lγ(Cq, B) = γ10(Cq − bI)B +B(Cq − bI)∗γ01
= γ10a︸︷︷︸

=1

M−1
φ CqφMφB +BM∗

φCqφM
−∗
φ aγ01︸︷︷︸

=1

= ΔM−1
φ (CqφB

′ +B′C∗qφ)M
−∗
φ .

Due to γ′ = iR and σ(q) ⊂ C
 ⇔ σ(qφ) ⊂ H− Proposition 6.2 states the existence
of v such that CqφB

′ +B′C∗qφ = −vv∗. �

The combination of the Propositions 2.1, 4.2 and 4.3 generalizes [[12], Theo-
rem 2] and [ [21], Theorem 3.1].

Theorem 4.4. In general we have σ(hξ) ⊂ C
. Moreover, for the circle case hξ is
stable. Supposed σ(hξ) ∩ γ = ∅ the approximant hξ satisfies

‖h− hξ‖γ2 ≤ F (ξ)/min
γ
(Q).

Proof. Proposition 2.1 provides the estimate and Proposition 4.3 states the as-
sumption of Proposition 4.2 which provides the location of σ(hξ). �

5. The unit circle case γ = T

The entries of G read as

gij = 〈ri|rj〉Tdμ , 〈f |g〉Tdμ = 1
2π

∫ 2π
0 f(eit)g(eit)|q(eit)|−2 dt.

Moreover, for σ(q) ⊂ D the coincidence of B
T
(q) with the Toeplitz Bezoutian Bd(q)

can be proved. The name Toeplitz Bezoutian is justified by the fact that B−1d (q)
is a Toeplitz matrix. Matrices whose entries are constant along each diagonal are
called Toeplitz matrices. To prove the asserted coincidence we use the semi-infinite
Hankel matrix H generated by 1/q:

H := [hi+j ]
∞,n−1
i,j=0 , h0z

−1 + h1z
−2 + h2z

−3 + · · · := q(z)−1.

Matrices whose entries are constant along each anti-diagonal are called Hankel
matrices.

Proposition 5.1. σ(q) ⊂ D ⇔ Bd(q) = B
T
(q).
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Proof. Due to σ(q) ⊂ D the complex number sequence (hk)∞k=0 belongs to �2
where as usual �2 denotes the normed vector space of all square-summable complex
number sequences:

ε ∈ �2 ⇔ ‖ε‖2 :=
(
|ε0|2 + |ε1|2 + · · ·

)1/2
<∞.

The Schwarz inequality [[29], p. 77] provides the existence of H∗H . The Hankel
structure of H implies the solution property of H∗H with respect to

C∗qXCq −X = −en|qn|−2e∗n. (5.1)

By exploitation of the structure of Cq one shows that the product

q̂(C∗q )
−1q−1n K (C∗q , en)J

solves that equation as well. Since the solution is unique we get

Kq̂(C∗q ) = (H
∗H)−1, K := JK (C∗q , en)

−1qn.

The left-hand product
Kq̂(C∗q ) (5.2)

is known as Barnett’s factorization of Bd(q) [[14], p. 204], hence B−1d (q) = H∗H .
Finally, Parseval’s identity [[29], p. 85] provides

B−1d (q) = H∗H = 1
2π

∫ 2π
0
ψ∗n(e

it)ψn(eit)|q(eit)|−2dt = B−1
T
(q).

Suppose now Bd(q) = B
T
(q). Because B

T
(q) is positive, the assumption yields the

positivity of Bd(q). With (3.2) relation σ(q) ⊂ D follows. �

As we have seen B−1
T
(q) solves the Stein equation (5.1). To create for G and

B
T
(q) corresponding equations, we generate their right-hand sides, respectively, by

h defined as in (2.1) and by the coefficient vector v of the first residue v of q̂ with
respect to q:

v(z) = ψn(z)v, v(z) := q̂(z)− a0q(z), a0 := q0/qn.

Proposition 5.2. Supposed σ(q) ⊂ D the Gramian G and the Bezoutian B
T
(q)

solve, respectively,

C∗qXCq −X = −hh∗, CqXC
∗
q −X = −vv∗. (5.3)

Proof. In view of (1.3), Proposition 5.1, R = p(Cq) and e∗nR = qnh
∗ with the

abbreviation B := B
T
(q) we obtain

C∗qGCq −G = R∗(C∗qB
−1Cq −B−1)R = −R∗en|qn|−2e∗nR = −hh∗.

According to the proof of Proposition 5.1 the matrixB can be replaced byKq̂(C∗q ).
Thus

CqBC
∗
q −B = CqKq̂(C∗q )C

∗
q −Kq̂(C∗q ) = (CqKC∗q −K)q̂(C∗q ).

The definition of v implies v = q̂(Cq)e1. The identity CqKC∗q −K = −ve∗1 com-
pletes the proof. �
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Let Q ∈ Cn×n be the observability Gramian of Σ := (A,B,C) with respect
to γ meaning that Q solves the matrix equation

Lγ(A∗, X) = −ΔC∗C, Lγ(A,X) := γ00X + γ01AX + γ10XA
∗ + γ11AXA

∗.

Here, Σ is a minimal realization of h meaning that the size of A is small as possible.
For stable h the matrix Q exists and is unique. Consideration of the controllability
realization Σco of h reveals G as the observability Gramian of Σco with respect to
the unit circle.

For σ(q) ⊂ D Proposition 5.3 states the equivalence of definition (2.3) of Q,
definition (10) of Qn in [12] and definition (3.4) of χLS

in [21]. As usual, let the
Moore-Penrose pseudo inverse of A be denoted by A† [[18], p. 243].

Proposition 5.3. Supposed σ(q) ⊂ D the minimizer ξ of F satisfies ξ = H†mV where

Hm := [hi+j ]
∞,m−1
i,j=0 , V := col(hi)∞i=m,

∑∞
k=0 hkz

−(k+1) := p(z)
q(z) . (5.4)

Proof. Parseval’s identity states Gm = H∗mHm and gm = H∗mV . Thus,

H†mV = (H∗mHm)
−1H∗mV = ξ. �

Hence, the vector Hmξ represents the projection of V on the linear subspace

Hm := span(Hm) := {Hmx : x ∈ Cm} ⊂ �2

meaning that the statement of Proposition 5.3 can be interpreted as projection
method, moreover, since Hm possesses Hankel structure, as a semi-infinite struc-
tured least squares problem. Together with formula (2.2) where x is to replace by
ξ, the computation receipt proposed as in [12] is obtained. The projection point
of view allows us to express the approximation error via the �2-distance between
V and its projection on Hm.

Proposition 5.4. Let for σ(q) ⊂ D and x ∈ Cm the �2-sequence ε be defined by the
components of the infinite-dimensional vector Hmx − V . Supposed σ(Q) ∩ T = ∅
we have ‖h− hx‖T

2 ≤ ‖ε‖2/minT(Q).

Proof. In virtue of Proposition 2.1 it suffices F (x) = ‖ε‖2 to show. Obviously, the
jth column of [Hm, V ] coincide with the Laurent coefficient vector generated by
fj . Thus, the definition of ε and the equation fk(z) = zkh(z)− ak(z) lead to

E(z) :=
∑∞
i=0 εiz

−(i+1) =
∑m−1
k=0 fk(z)xk − fm(z) = P (z)− h(z)Q(z).

Together with px = Qp− Pq we conclude

E/Q = hx − h = −px/(Qq) ⇒ E = −px/q ⇒ ‖E‖T

2 = ‖px‖T

dμ = F (x).

Parseval’s identity yields ‖E‖T
2 = ‖ε‖2. �
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6. The imaginary axis case γ = iR

The entries of G read as gij = 〈ri|rj〉iRdμ where

〈f |g〉iRdμ = 1
2π

∫
R
f(it)g(it)|q(it)|−2 dt.

To representG as for the unit circle case the Hankel Bezoutian Bc(q) is in question.
The name Hankel Bezoutian is justified by the fact that B−1c (q)I± is a Hankel
matrix.

Proposition 6.1. σ(q) ⊂ H− ⇔ Bc(q) = B
iR
(q).

Proof. Using the bilinear transformation φ(z) := z+1
z−1 : D → H− , the generating

functions (3.3) imply Bd(qφ) = 2MφBc(q)M∗
φ . The φ-transformation of q and rj

leads to
σ(qφ) ⊂ D,

〈
ri rj

〉iR
d
|q|2

= 2
〈
riφ rjφ

〉T
d

|qφ|2
. (6.1)

Thus, with rj(z) = zj , Rφ := row(rjφ)n−1j=0 and Proposition 5.1 the equations

B−1
iR
(q) =

[〈
ri rj

〉iR
d

2π|q|2

]n−1
i,j=0

= 2
[〈

riφ rjφ
〉T

d
2π|qφ|2

]n−1
i,j=0

= 2R∗φB
−1
T
(qφ)Rφ = 2R∗φB

−1
d (qφ)Rφ

= R∗φM
−∗
φ B−1c (q)M−1

φ Rφ = R∗B−1c (q)R

are obtained. Finally, R = I completes the proof of “⇒”. Supposed Bc(q) = B
iR
(q)

the Bezoutian Bc(q) is positive such that (3.2) implies σ(q) ⊂ H− . �

As we have just stated, for stable q the (i, j)-entry of B−1d (q) and B−1c (q)
admits the representation

1
2π

∫
γ
zizj|q(z)|−2ds.

Supposing σ(q) ⊂ {z ∈ C : 0 < !(z)} such a representation
1
2πi

∫
R

ti+j |q(t)|−2dt
of the (i, j)-entry of B(q, q)−1 have been proved already in [[22], Corollary 6.1].
Here, !(z) designates the imaginary part of the complex number z.

To relate G and B
iR
(q) to Lyapunov equations, we generate the corresponding

right-hand sides by h and by the coefficient vector v of the first residue v of q with
respect to q̃:

v(z) = ψn(z)v, v(z) := q(z)− a0q̃(z), a0 := (−1)nqn/qn.
Note, that v coincides with the last column of B

iR
(q).

Proposition 6.2. Supposed σ(q) ⊂ H− the Gramian G and the Bezoutian B
iR
(q)

solve, respectively,

C∗qX +XCq = −hh∗, CqX +XC∗q = −vv∗. (6.2)
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Proof. Using the abbreviations B := B
iR
(q) and K := H�(q1, . . . , qn) Barnett’s

factorization of B reads as
I±K

∗q̃(C∗q ).

The definition of v implies v = −q̃(Cq)e1a0. In addition one concludes

K∗C∗q = CqK
∗, (CqI± + I±Cq)qn = v(−1)ne∗n, Ken = e1qn.

Using that identities one gets

CqB +BC∗q = CqI±K
∗q̃(C∗q ) + I±K

∗q̃(C∗q )C∗q = (CqI±K
∗ + I±K

∗C∗q )q̃(C∗q )
= (CqI± + I±Cq)K

∗q̃(C∗q ) = vq−1n (−1)ne∗nK∗q̃(C∗q )
= v q−1n (−1)nqn︸ ︷︷ ︸

= a0

e∗1q̃(C
∗
q ) = −vv∗.

With G = R∗B−1R, CqR = RCq and e∗nR = qnh
∗ one obtains

C∗qG+GCq = R∗(C∗qB
−1 +B−1Cq)R = R∗B−1(BC∗q + CqB)B−1R

= −R∗B−1vv∗B−1R = −R∗enq−1n q−1n e∗nR = −hh∗. �

Note, that the solution property of B−1c (q) with respect to

C∗qX +XCq = −ene∗n
is a special case of [[23]. Theorem 4.1].

Consideration of the controllability realization Σco of h reveals G as the
observability Gramian of Σco with respect to iR. As a consequence of Theorem 4.4
for real h all coefficients of Q are non-negative. Thus, the relation G−1m gm ∈ Rm−
can be stated where R− := {r ∈ R : r ≤ 0}.

As in the unit circle case, ξ can be obtained as solution to a least squares
problem in �2.

Proposition 6.3. Supposed σ(q) ⊂ H− the minimizer ξ of F satisfies ξ = M †
mVm

where

Mm := [hij ]
∞,m−1
i,j=0 , Vm := col(him)∞i=0,

∑∞
i=0 hijz

−(i+1) := rjφ(z)
qφ(z)

.

Proof. Parseval’s identity states B−1d (qφ) = H∗H where H is generated by 1/qφ.
From above we know that G = 2R∗φB

−1
d (qφ)Rφ. Thus Mn = HRφ, 2M∗

nMn = G
and

M †
mVm = (M

∗
mMm)−1M∗

mVm = G−1m gm = ξ. �

As counter part of Proposition 5.4 we have Proposition 6.4.

Proposition 6.4. Let for σ(q) ⊂ H− and x ∈ Cm the �2-sequence ε be defined by the
components of the infinite-dimensional vector Mmx−Vm. Supposed σ(Q)∩ iR = ∅
we have ‖h− hx‖iR2 ≤

√
2‖ε‖2/miniR(Q).
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Proof. According to Proposition 2.1 it suffices to show F (x) =
√
2‖ε‖2. Obviously,

pxφ(z)
qφ(z)

=
rmφ(z)
qφ(z)

−
m−1∑
j=0

rjφ(z)
qφ(z)

xj

=
∞∑
i=0

himz
−(i+1) −

m−1∑
j=0

xj

∞∑
i=0

hijz
−(i+1) =

∞∑
i=0

εiz
−(i+1).

Thus, transformation formula (6.1) and Parseval’s identity lead to

F (x)2 = 1
2π

∫
R

∣∣∣ px(it)
q(it)

∣∣∣2 dt = 1
π

∫ 2π
0

∣∣∣pxφ(e
it)

qφ(eit)

∣∣∣2 dt = 2∑∞
i=0 |εi|2. �

For the line case only σ(hξ) ⊂ C
 is stated. Numerical experiences collected
as in Example 2 show that actually the relation σ(Q) ⊂ γ holds, supposed the
degree m of Q is less than δ where

δ := n− κ, n := deg q, κ := deg p, h = p/q.

In addition, for m = δ the polynomial Q becomes stable. To suppress technical
difficulties, we prove these observations only for real h and γ = iR. Moreover, for
m ∈ {δ + 1, . . . , n − 1} and accidently generated p and stable q the polynomial
Q becomes always stable. In [11] it is proved that this situation is generic. For
acquainting the reader with the proof idea for the case m ≤ δ we consider the
Lyapunov equations (6.2). As a consequence the entries gij of G satisfy

gij + gi−1,j+1 = −hi−1hj , i = 1, . . . , n, j = 0, . . . , n− 1. (6.3)

Thus, setting gi := gii and hij := hihj for real h the coincidence of [G4|g4] with⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0 −h00
2

−g1 − h01
h11
2
− h02 g2 − h03 + h12

−h00
2

g1 −h11
2

−g2 − h12
h22
2
− h13

−g1 − h01 −h11
2

g2 −h22
2

−g3 − h23
h11
2
− h02 −g2 − h12 −h22

2
g3 −h33

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.4)

is obtained. Consequently, for h0 = h1 = h2 = 0 the product G4I± becomes a
Hankel matrix generated by the vector [g0, 0,−g1, 0, g2, 0,−g3]T and g4 is equal to
[g2, 0,−g3, β]T, β := −h33/2. Here, depending on the vector col(hi)2m−2i=0 we set

H(h0, . . . , h2m−2) := [hi+j ]m−1i,j=0.

The zero distribution in the coefficient matrix and the right-hand side of the equa-
tion system Gmx = gm can be used now to give a mathematical foundation for our
observations. But at first for m = δ we relate the Gramian Gδ to the Bezoutian
Bc(Q).
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Proposition 6.5. Let ξ ∈ Rm and col(gi)m−1i=0 ∈ Rm be related by Gmξ = gm(β)
where

Gm := HI± , H := H(f0, 0, f1, 0, f2, . . . , fm−2, 0, fm−1), fi := (−1)igi, β ∈ R

and

gm(β) :=

⎧⎨⎩
[
0, (−1)m−1

2 gm+1
2
, 0, . . . , 0, gm−2, 0,−gm−1, β

]T
, if m is odd,[

(−1)m
2 gm

2
, 0, . . . , 0, gm−2, 0,−gm−1, β

]T
, if m is even.

Then for invertible Gm the polynomial Q(z) := zm − ψm(z)ξ satisfies

GmBc(Q) = −2βI.

Proof. According to [[24], p. 19, Theorem 1.1′] we have

ψm(x)H−1ψT
m(y)(x − y) = Tα(x)S(y) − S(x)Tα(y)

where the polynomials Tα and S are defined by

Tα(z) := zm − ψm(z)H−1f(α), S(z) := ψm(z)H−1em,

f(α) :=

{ [
0, f(m+1)/2, . . . , 0, fm−2, 0, fm−1, α

]T
, if m is odd,[

fm/2, 0, . . . , 0, fm−2, 0, fm−1, α
]T
, if m is even.

Here, α represents an arbitrary real number. The substitution x := −x and the
equation Gm = HI± lead to

B(x, y) := ψm(x)G−1m ψT
m(y)(x+ y) = S̃(x)Tα(y)− T̃α(x)S(y), S̃(z) := S(−z).

For odd m we have I±gm(β) = f(β). Thus Q(z) = zm − ψm(z)H−1f(β) = Tβ(z).
Since the distribution of the vanishing entries in H will be preserved by its in-
verse, together with the zero distribution in f(β) it follows that the product
(I± + I)H−1(f(β)− emβ) is equal to the zero vector. Thus

Q̃(z) +Q(z) = Tβ(−z) + Tβ(z) = −ψm(z)(I± + I)H−1f(β)
= −ψm(z)(I± + I)H−1(f(β)− emβ + emβ)
= −2βψm(z)H−1em = −2βS(z).

On the same way for even m we get Q = T−β and Q̃−Q = −2βS. Thus

−2βB(x, y) = −2βS̃(x)T±β(y)− T̃±β(x)(−2βS(y))
= (Q(x) ∓ Q̃(x))Q(y) − Q̃(x)(Q̃(y)∓Q(y))
= Q(x)Q(y)− Q̃(x)Q̃(y).

Finally, in view of the generating function (3.3) the statement follows. �

Proposition 6.6. Let h ∈ R(z) be stable. Then for m < δ we have σ(Q) ⊂ iR and
for m = δ the polynomial Q becomes stable.
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Proof. Due to δ = deg q − deg p the Laurent coefficients h0, . . . , hδ−2 of h vanish.
Hence, in view of (6.3) the entries of Gδ satisfy

gij + gi−1,j+1 = 0, i = 1, . . . , δ − 1, j = 0, . . . , δ − 2. (6.5)

That equation establishes a recurrence relation within the entries along every anti-
diagonal of Gδ. Here, the kth anti-diagonal Ak is formed by all entries gij for which
i + j = k. For k = 2i − 1 equation (6.5) passes over to gi,i−1 + gi−1,i = 0. Since
h is real, we have gij = gji. Thus, gi,i−1 = 0 holds. Consequently, all entries of
A2i−1 vanish. For k = 2i equation (6.5) passes over to gii + gi−1,i+1 = 0. Thus, all
entries of A2i are equal to gi or −gi. Collecting these observations we get

Gδ = H(g0, 0,−g1, 0, . . . , 0, (−1)δ−1gδ−1)I± .
For m < δ the structure of Gδ leads to a polynomial Q(z) := zm − ψm(z)G−1m gm
whose coefficients of all even or of all odd powers vanish. In addition, Theorem 4.4
states σ(Q) ⊂ H− ∪ iR. Since all zeros of such a polynomial are located on iR, the
first statement is proved.

For m = δ the vector ξ satisfies Gδξ = gδ(−h2δ−1/2). Thus, ξ and col(gi)δ−1i=0

are related as in Proposition 6.5. In combination with hδ−1 = pκ the matrix
equation

GδBc(Q) = p2κI

is obtained. Since h is stable, the Gramian Gδ is positive. In combination with
pκ �= 0 the same holds for Bc(Q). Finally, (3.2) yields the stability of Q. �

As mentioned above, the statement of Proposition 6.6 for m < δ is a simple
consequence of Fejér’s convex hull theorem, the case m = δ have been treated here
in detail and the case m ∈ {δ + 1, . . . , n− 1} is subject of [11].

7. Computation of hξ via its minimal realizations

There is a third approach to get hξ. Depending on a minimal realization Σ :=
(A,B,C) of h we set K := K (A,B) and consider the observability Gramian Q of
Σ with respect to γ.

Proposition 7.1. For stable h the Gramians G and Q are related by G = K∗QK.

Proof. The minimality of Σ provides the invertibility of K and the stability of h
the existence of Q. Immediately by definition the equations

CK = h∗, AK = KCq

follow. It turns out that (5.3) and (6.2) can be generalized to Lγ(C∗q , G) = −Δhh∗

that meansG represents the observability Gramian of the controllability realization
Σco with respect to γ. Thus, we have

Lγ(A∗,K−∗GK) = K−∗Lγ(C∗q , G)K
−1 = −ΔK−∗hh∗K−1 = −ΔC∗C.

Finally, the uniqueness of Q provides the statement. �
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Assuming that A = diag(αi)n−1i=0 , B = col(1)ni=1, and C = row(cj)n−1j=0 , we
define the Vandermonde matrix V and the Cauchy matrix Ω by

V := [αji ]
n−1
i,j=0, Ω :=

[ −Δcicj
pγ(αj , αi)

]n−1
i,j=0

. (7.1)

Then K = V and Q = Ω such that supposed αi ∈ C
 the Gramian G admits the
factorization G = V ∗ΩV . Supposed that all poles of h are simple, we call Ω the
Cauchy matrix generated by h and γ. For numerical examples which are generated
by prescribed αi ∈ C
 and ci ∈ C the matrix G can be obtained by the product
V ∗ΩV . In particular, for α, β ∈ C
 the identity∫

I
|ẇ(t)|dt

(w(t)−α)(w(t)−β) =
−2πΔ
pγ(β,α)

, I ∈ {[0, 2π],R}, γ ∈ {T, iR}

holds where w(t) is defined as in the proof of Proposition 4.3.
With the abbreviation V := Km(A,B) we get V ∗QV = Gm meaning that

V ∗QV is invertible and appropriate to define Z := (V ∗QV )−1V ∗Q.

Proposition 7.2. The triple (ZAV,ZB,CV ) realizes hξ.

Proof. We have

ZAV = (V ∗QV )−1V ∗Q[AB, . . . , AmB] = [e2, . . . , em, (V ∗QV )−1V ∗QAmB].

Together with Gm = V ∗QV and gm = V ∗QAmB one gets ZAV = CQ. Finally,

ZB = (V ∗QV )−1V ∗QB = e1, CV = [h0, . . . , hm−1]

thus, above triple represents the controllability realization of hξ. �

8. The construction of hη
ξ

The renouncement on the disappearance of the firstm Laurent coefficients of h−hξ
admits to proceed with a second optimization step resulting in a rational function
hηξ with

‖h− hηξ‖
γ
2 ≈ ‖h− hopt‖

γ
2 .

Instead to apply (2.2), the numerator polynomial P of hxξ will be defined now via
the minimizer η ∈ Cm of

F : Cm → R, F (x) := ‖hxξ − h‖
γ
2 , hxξ (z) :=

1
Q(z)

∑m−1
k=0 xkz

k

such that
hηξ := P/Q, P(z) := ψm(z)η.

As in Section 2 the minimizer ξ, the minimizer η turns out to be the solution to[〈
zi

Q

zj

Q

〉γ
2

]m−1
i,j=0

x =W, W := col
(〈

zi

Q
h

〉γ
2

)m−1
i=0

. (8.1)

Therefore, for the determination of η it suffices to find the stable polynomial Q
and to apply (8.1). In addition, the definition of Bγ(Q) implies η = Bγ(Q)W . That
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approach becomes essential for the case where the first m Laurent coefficients of h
are small in comparison with the subsequent coefficients. Then according to (2.2)
the numerator of hξ becomes approximately the zero polynomial, a circumstance
which does not lead to satisfying approximation results. Here, we say that a com-
plex number is small, if its magnitude is small. For h := 1/q, γ := T andm := n−1
the approximant hηξ can be expressed explicitly in terms of q:

hηξ (z) =
|qn|2 − |q0|2 + q(z)q0 − q̂(z)qn

qn(q(z)qn − q̂(z)q0)
.

Note, that z represents a common divisor of the numerator and the denominator
such that the degree of hηξ is actually equal to n − 1. Moreover, that formula
reveals an interesting interpolation property of hηξ . Let β be a pole of h

η
ξ . Then its

denominator vanishes in β such that q(β)qn = q̂(β)q0. Supposed β �= 0 together
with q̂(z) = znq(1/z) that equation implies

qn(q(β̂)qn − q̂(β̂)q0) = q(β̂)(|qn|2 − |q0|2), q(β̂)q0 − q̂(β̂)qn = 0, β̂ := β−1.

Thus, hηξ (β̂) = q(β̂)−1 = h(β̂) holds. The coincidence of hηξ and h on the mirror
image set φγ(σ(h

η
ξ )) along γ will be maintained, if one sets

φγ(z) := −
γ00 + γ01z

γ10 + γ11z
.

Proposition 8.1. Let h be stable and β ∈ σ(hηξ ). Then h(φγ(β)) = hηξ (φγ(β)).

Proof. Since h and hηξ are strictly proper for infinite φγ(β) the statement holds.
Suppose |φγ(β)| <∞. To avoid technical details, we prove the implication only for
real h and γ = T meaning that φγ(β) = β−1. Let Q(z) :=

∑m
k=0 Qkz

k be an arbi-
trary real stable polynomial of degree m. Combination of Barnett’s factorization
(5.2) with JBd(Q)J = Bd(Q) leads to

Bd(Q) = JQ̂(CQ)H� , H� := H�(Q1, . . . ,Qm).

The Hankel matrix Θ generated by 1/Q fulfills Θ∗ = H−1� row(CiQe1)
∞
i=0, thus the

vector W defined as in (8.1) satisfies

W = Θ∗col(hi)∞i=0 = H−1� row(CiQe1)
∞
i=0col(hi)

∞
i=0 = H−1�

∑∞
i=0 C

i
Qe1hi.

First, we consider for k > 0 the special case h(z) := z−k. Then all Laurent co-
efficients hi of h(z) vanish excepted hk−1 which is equal to 1. Consequently, W
simplifies to

W = H−1� Ck−1Q e1

such that the coefficient vector ηk of the numerator polynomial Pk of h
ηk

ξ gener-
ated by Q and z−k admits the representation

ηk = Bd(Q)W = JQ̂(CQ)Ck−1Q e1.
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The assumption Q(β) = 0 implies now ψm(β)CkQ = βkψm(β). Thus,

Pk

(
β−1
)

= β1−mψm(β)Jηk = β1−mψm(β)Q̂(CQ)Ck−1Q e1
= βQ(β−1)ψm(β)Ck−1Q e1 = βkQ(β−1)

proving the statement for h(z) := z−k. Finally, let h(z) :=
∑∞
k=0 hk/z

k+1 be real
and stable. Then the coefficient vector η of P admits the representation

η =
∑∞
k=1 ηkhk−1

such that

h(β−1)Q(β−1) =
∑∞
k=1 hk−1β

kQ(β−1) =
∑∞
k=1 Pk(β−1)hk−1 = P(β−1).

Because h,Q,P are real the equation h(β−1)Q(β−1) = P(β−1) holds. �
In the case where all zeros of Q are simple, the computation of η via Bγ(Q)W

can be replaced by solving the interpolation problem

P(γi) = h(γi)Q(γi), γi := φγ(βi), i = 0, . . . ,m− 1. (8.2)

Example 1 and 4 show the improved performance of hηξ in comparison with hξ.

9. The limit behavior of Q

For simplification let γ ∈ {T, iR}, h ∈ R(s) and q(z) =
∏n−1
i=0 (z − αi). To study

the limit behavior of Q, remember its sum representation

Q(z) =
∑n
j=m+1 ζjmj(z)

provided as in Proposition 4.1, the equation R = p(Cq) and the definition of the
polynomial v and the vector w as in the end of Section 3. As usual we set q′ := d

dz q
and assume the stability of h. Vanishing q(α) provides ψn(α)p(Cq) = p(α)ψn(α).
Therefore, w(z) := ψn(z)w satisfies the interpolation condition w(α) = v(α)/p(α).
We establish now a recurrence relation within the numbers mj(α) and express
mn(α) explicitly. With the definition

q
φγ
(z) := q(φγ(z))(γ10 + γ11z)n

we get q
φ

T

= q̂ and q
φ
iR
= q̃. In addition, we set

K(x, y) := −r(x)r(y)
pγ(x, y)

, r :=
q

φγ

q′p
.

Proposition 9.1. For α ∈ σ(q) the numbers (mj(α))nj=0 satisfy the recurrence re-
lation

γ = T : mj+1(α) = αmj(α) − αqjmn(α) +wj q̂(α)/p(α)
γ = iR : mj(α) = mn(α)qj − αmj+1(α) + (−1)n+1wj q̃(α)/p(α)

(9.1)

where m0(z) ≡ 0. In the case where all zeros αi of q are simple, the polynomial
mn(z) satisfies the interpolation conditions

mn(αi) = q′(αi)
∑n−1
j=0 K(αi, αj), i = 0, . . . , n− 1. (9.2)
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Proof. In the circle case the equation CqMC∗q − M = −ww∗ holds. Thus the
companion structure of Cq provides for the columns of M the equation

mj+1 = Cq(mj −mnqj) +wwj .

Left multiplication with ψn(α) yields

mj+1(α) = α(mj(α) −mn(α)qj) + w(α)wj .

Since w(α) = v(α)/p(α) and v(α) = q̂(α) we have w(α) = q̂(α)/p(α).
In the line case M satisfies CqM + MC∗q = −ww∗. Thus the companion

structure of Cq provides for the columns of M the equation

mj = mnqj − Cqmj+1 −wwj .

Left multiplication with ψn(α) yields

mj(α) = mn(α)qj − αmj+1(α) − w(α)wj .
Since w(α) = v(α)/p(α) and v(α) = (−1)n+1q̃(α) we have w(α) = (−1)n+1 q̃(α)

p(α) .
To prove in the circle case the validity of the asserted interpolation conditions,

we introduce the diagonal matrix

D := diag (q̂(αi))
n−1
i=0 .

Then the generating function of Bd(q) yields

V Bd(q)V ∗ = DΩD∗, V := [αji ]
n−1
i,j=0, Ω := [(1− αiαj)−1]n−1i,j=0.

Furthermore, R admits the factorization V −1diag(p(αi))n−1i=0 V such that

M = G−1 = R−1Bd(q)R−∗ = V −1DΩD∗V −∗, D := diag
(
q̂(αi)
p(αi)

)n−1
i=0

. (9.3)

Since the last column of V −∗ is equal to col(q′(αi)−1)n−1i=0 and ψn(αi) = e∗i V we
have
mn(αi) = ψn(αi)Men = e∗iDΩD

∗col(q′(αi)−1)n−1i=0

=
q̂(αi)
p(αi)

e∗iΩcol
(

q̂(αj)
p(αj)q′(αj)

)n−1
j=0

=
q̂(αi)
p(αi)

n−1∑
j=0

q̂(αj)
(1− αiαj)p(αj)q′(αj)

.

The proof of the statement with respect to iR is left to the reader. �

We describe now the influence of p on σ(hξ). The statements are formulated
and proved only for the unit circle, but to ensure their validity for the half-plane
Example 3 concerns that case. Instead of considering the variation of p, we consider
the variation of ϕ := p(α) ∈ C, α ∈ σ(q). Since the associated partial fraction
coefficient reads as ϕ/q′(α), the case where that coefficient tends to infinity is in
question. The dependency of a function f and a matrixM on ϕ will be designated
by f(., ϕ) and Mϕ, respectively. In addition, we use the abbreviation M(k, �) :=
[mij ]
i,j=k. For simplification of the proofs we assume αi �= αj .

Proposition 9.2. Let α ∈ σ(q) ⊂ D. Then α is a zero of limϕ→∞Q(., ϕ).
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Proof. W.l.o.g. let α := α0. It suffices to show the existence of the limit vector
limϕ→∞ ζϕ arising in the sum representation of Q(., ϕ) and that α becomes a zero
of all polynomials mj(., ϕ) as ϕ→∞. According to Proposition 9.1 we have

m0(α, ϕ) = 0, lim
ϕ→∞mn(α, ϕ) = q′(α)

n−1∑
j=0

lim
ϕ→∞K(α, αj , ϕ)︸ ︷︷ ︸

= 0

= 0.

The recurrence relation (9.1) implies limϕ→∞mj(α, ϕ) = 0. In factorization (9.3)
only D depends on ϕ. Therefore,

Mϕ = V −1DϕΩD∗ϕV
−∗.

Since αi �= αj and σ(q) ⊂ D the Vandermonde matrix V is regular and the Cauchy
matrix Ω is positive. Let[

c1 col(zi)ni=1

]
:= row(cj)nj=1 := V −1, z∗i ∈ Cn−1, cj ∈ Cn.

Since the (1, 1)-entry of Dϕ tends to zero as ϕ→∞ the limit M∞ := limϕ→∞Mϕ

satisfies
M∞ = col(zi)ni=1D(2, n)Ω(2, n)D(2, n)

∗row(z∗i )
n
i=1.

Since e∗1V e1 = 1 Cramer’s rule implies the independence of {z∗2, . . . , z∗n}. Thus, for
k > 1 the sub-matrices

M∞(k, n) = col(zi)ni=kD(2, n)Ω(2, n)D(2, n)
∗row(z∗i )

n
i=k

are invertible. Finally, limϕ→∞ ζϕ =M∞(m+ 1, n)−1e1. �

We observe now the behavior of σ(Q(., α)) if the conjugate complex pair
{α, α} ⊂ σ(q) ⊂ D tends to the dotted boundary Tp := T \ {σ(p) ∪ {±1}}.
Proposition 9.3. For m > 1 and α ∈ σ(q) ⊂ D the relation α ∈ limα→Tp σ(Q(., α))
holds.

Proof. It suffices to show that limα→Tp mj(α) = 0 and that for k > 2 the limit
limα→Tp Mα(k, n) is invertible. W.l.o.g. let {α0, α1} = {α, α}. According to Propo-
sition 9.1 we have

limα0→Tp mn(α0) = q′(α0)
∑n−1
j=0 limα0→Tp K(α0, αj)

K(α0, αj) =
q̂(αj)

∏n−1
i=0,i
=j(1− α0αi)

q′(α0)p(α0)q′(αj)p(αj)
.

Because q̂(z) =
∏n−1
i=0 (1− zαi) and α1 = α0, for j = 0 the second factor of q̂(αj),

and for j �= 0 the first factor of
∏n−1
i=0,i
=j(1 − α0αi) is equal to 1 − |α0|2. Thus

K(α0, αj) → 0 as α0 → Tp. Regarding (9.1) by induction limα→Tp mj(α) = 0
follows.

To show the invertibility of limα→Tp Mα(k, n) observe that all factors in (9.3)
depend on α:

Mα = V −1α DαΩαD∗αV
−∗
α .
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Obviously, for α → Tp the both first main diagonal entries of Dα vanish. The
(1, 1)- and the (2, 2)-entry of Ωα are equal to 1/(1−|α|2). Thus, the corresponding
entries of DαΩαD∗α coincide with

q̂(α)q̂(α)
p(α)(1 − |α|2)p(α) .

Since q̂(α)q̂(α) possesses the factor (1 − |α|2)2 the limit limα→T
q̂(α)q̂(α)
1−|α|2 vanishes.

Consequently, MT := limα→Tp Mα satisfies

MT = row(cj)nj=3D(3, n)Ω(3, n)D(3, n)
∗row(cj)n∗j=3, row(cj)

n
j=1 := ( lim

α→Tp

Vα)−1.

Note that ±1 �∈ Tp ensures the invertibility of limα→Tp Vα. Finally, the invertibility
of the main sections MT(k, n), k > 2, is obtained as in the proof of Proposition
9.2. �

For γ = iR Example 3 illustrates the validity of Propositions 9.2 and 9.3.

10. Bilinear transformation between D and H−

The least squares method for the discrete case can be applied to the continues case
as follows. Let φ(z) := z−1

z+1 and hφ be defined by

hφ(z) := h(φ(z)).

For 1 �∈ σ(A) the identity

(φ(z)I −A)−1 = (I −A)−1 + 2(I −A)−2(zI − (I +A)(I −A)−1)−1

holds. Due to σ(Ac) ⊂ H− we have 1 �∈ σ(Ac). Thus, supposed (Ac, Bc, Cc) realizes
h, the rational function hφ admits the representation

hφ(z) = Cc(I −Ac)−1Bc︸ ︷︷ ︸
= h(1)

+ 2Cc(I −Ac)−2︸ ︷︷ ︸
=: Cd

(zI − (I +Ac)(I −Ac)−1︸ ︷︷ ︸
=: Ad

)−1Bc (10.1)

meaning that (Ad, Bc, Cd) realizes hφ−h(1). Consequently, the Laurent coefficients
hφk of hφ read as (CdA

k
dBc)

∞
k=0, the vector ωφ can be computed according to (2.2)

and due to σ(Ad) ⊂ D the vector ξφ can be computed as the vector ξ in Proposition
5.3. Finally, as approximant of h the rational function

hmoeb
red (z) := hξφ

(
1 + z

1− z

)
, hξφ := h(1) +

Pφ
Qφ

is in question. Example 5 compares the approximant hξ obtained directly with the
approximant obtained as just carried out.
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11. Examples

According to (2.3) for γ ∈ {T, iR} the minimizer ξ := col(ξi)m−1i=0 ∈ Cm of F can
be computed as solution to Gmx = gm where Gm := [gij ]m−1i,j=0, gm := col(gim)

m−1
i=0

and
γ = T : gij := 1

2π

∫ 2π
0

fi(eit)fj(eit)dt

γ = iR : gij := limN→∞ 1
2π

∫ +N
−N fi(it)fj(it)dt

fk(z) := CAk(zI −A)−1B.

(11.1)

By approximation of h via hξ the coefficient vector ω of its numerator polynomial
P has to be computed according to (2.2) where x has to be replaced by ξ. By
approximation of h via hηξ the coefficient vector η of the numerator polynomial P
of hηξ can be obtained by Bγ(Q)W where W is defined as in (8.1), or equivalently
as solution to the interpolation problem (8.2) supposed that the zeros βi of Q are
known and simple. Thus,

hξ :=
P

Q
,

hηξ :=
P

Q
,

P := ψmω,

Q := zm − ψmξ,

P := ψmη,

ω :=

⎡⎢⎣ h0 . . . hm−1
. . .

...
h0

⎤⎥⎦[ −col(ξi)m−1i=1

1

]

η := Bγ(Q)W, W := col
(〈

zi

Q
h

〉γ
2

)m−1
i=0

or equivalently

η :=
(
[γji ]

m−1
i,j=0

)−1
col (h(γi)Q(γi))

m−1
i=0

γi := φγ(βi).
(11.2)

Examples 1, 2, 5 use that computation receipt. If one refuses the computation of the
integrals (11.1) and if large enough subsections of (hk)∞k=0, h(z) =

∑∞
k=0 hkz

−(k+1),
and (θk)∞k=0, Q(z)

−1 =
∑∞
k=0 θkz

−(k+1), are known, then in the unit circle case the
vectors ξ and η can be obtained as limits of the truncated computation procedure

ξN := HNm
†col(hi)N+m

i=m , HNm := [hi+j ]
N,m−1
i,j=0 , limN→∞ ξN → ξ

ηN := ΘNm
†col(hi)Ni=0, ΘNm := [θi+j ]

N,m−1
i,j=0 , limN→∞ ηN → η

(11.3)

which has been used in Example 4. If one knows q and the residues rj , and is able
to compute qφ and rjφ, then according to Proposition 6.3 for the continues case
the minimizer ξ can also be obtained via a projection method applied to elements
of �2. But when σ(h) is close to γ, only the application of solution algorithms,
which address the Hankel structure of HNm and ΘNm, lead to satisfying numerical
results. Thus, it is natural to ask for algorithms which compute H† by exploitation
of its structure. In the literature the Toeplitz structure is exploited in two differ-
ent directions: one approach leads to algorithms of low complexity (fast and super
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fast algorithms) and a second approach to algorithms which take care for accuracy
and stability (high performance algorithms). For fast and super fast algorithms
consult among others [1, 2, 3, 6, 7] and for high performance algorithms consult
[16, 17, 20]. The paper [19] goes in both directions. Numerical problems arising in
connection with the computation of the integrals (11.1), of the sequences (hk)∞k=0

and (θk)∞k=0, or of H
N
m
† and ΘNm

† are not addressed in this paper. Supposed a
fraction representation p/q of h is known and γ ∈ {T, iR}, the Bezoutian Bγ(q)
can be computed via (3.1) and G via the product p(Cq)∗B−1γ (q)p(Cq). In Exam-
ple 3 and 6 we use that formula, but for large n the inversion of Bγ(q) becomes
very expensive which reflects the disadvantage of that approach. Finally, in the
case where a minimal realization of h is available Proposition 7.2 can be applied.
A disadvantage of that computation approach is the necessity to know the cor-
responding observability Gramian Q completely. To overcome associated storage
and condition problems, in [28] a low rank approximation of Q is recommended
which is found by a low-rank Smith type method. Observe that by exploitation of
Gmx = gm the knowledge only of the m× (m + 1)-dimensional left upper corner
of G is necessary, and that according to (6.4) the matrix [Gm, gm] is completely
determined by the numbers gii, hi, i = 0, . . . ,m− 1.

The approximation procedures will be illustrated now by means of some
examples. Here, we pay our main attention to the line case, the special case h = 1/q
and the situation where σ(h) is close to γ or the partial fraction coefficient of a
pole is large in comparison with the coefficients of the other poles. For the unit
circle and general p a lot of examples are available in [12, 13, 21].

Example 1. We consider the m-degree approximation of

h(z) :=
1
2c

κ∑
k=1

ck
z − αk

+
ck

z − αk
, αk :=

k

8

(
i− 1

2κ

)
∈ H− , ck := k2, c :=

κ∑
k=1

ck

with respect to γ := iR. Due to hk = c−1�
∑κ
i=1 ciα

k
i for κ = 10 we have[

h0 h1 h2 h3
]
=
[
1 −0.049 −1.026 0.1680

]
.

For N = 5000 the computation of the truncated integrals (11.1) yields

G4 = [gij ]3i,j=0 =

⎡⎢⎢⎣
1.550 −0.500 −1.671 1.027
−0.500 1.720 −0.001 −2.113
−1.671 −0.001 2.063 −0.526
1.027 −2.113 −0.526 2.807

⎤⎥⎥⎦
g4 =

[
g04 . . . g34

]T = [ 1.945 0.534 −2.635 −0.014
]T

what can be verified by utilization of (6.4) or of G = V ∗ΩV where V and Ω are
defined as in (7.1). The solution ξ to G4x = g4 and the vector ω computed via
(11.2) read as

ξ := −
[
0.865 0.652 2.126 0.578

]T
, ω :=

[
0.123 1.072 0.529 1

]T
.
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Figure 1. n = 2κ = 20, m = 4, solid line =̂ h(iR), dashed line =̂ hξ(iR)
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Figure 2. n = 2κ = 200, m = 14, solid line =̂ h(iR), dashed line
=̂ hξ(iR), dashed line =̂ hηξ (iR)

In Figure 1 the Nyquist plots of h and hξ are compared to each other. According
to Theorem 4.4 the zeros of Q belong to H− . Actually,

σ(Q) = {−0.18± 0.751i,−0.109± 1.2i} =: {β0, . . . , β3}
holds. With φγ(z) = −z the solution to the interpolation problem (8.2) reads as

η :=
[
0.106 1.012 0.515 0.949

]T
.

Since η ≈ ω there is no significant difference between hξ(iR) and h
η
ξ (iR). Enlarge-

ment of κ and m shows the improved performance of hηξ more better. Figure 2
plots for κ = 100 and m = 14 the sets h(iR), hξ(iR), h

η
ξ (iR) where G14 and g14

have been generated by the factorization G = V ∗ΩV . In particular

‖h− hξ‖iR2 = 0.093, ‖h− hηξ‖iR2 = 0.087, ‖h‖iR2 = 0.463.

Example 2. To illustrate the situation σ(Q) ⊂ γ we consider the line

γ := {w(t) : t ∈ R}, w(t) := 1 + (2 + i)t
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and the monic polynomial q generated by the zeros

α0 := −1 + 0.5i, α1 := −0.1 + 1i, α2 := 0.3 + 1.5i, α3 := 1.5 + 1.1i.

It turns out, that σ(q) is located on the left-hand side of γ, if t runs over (−∞,+∞).
The setting h := 1/q simplifies the integral (11.1) to

gij = limN→∞ 1
2π

∫ N
−N w(t)

i
w(t)j |q(w(t))|−2|ẇ(t)| dt.

For N = 400 and m = 3 we get

ξ =
[
−0.972− 1.819i −0.32 + 2.503i 2.358− 0.321i

]T
.

Actually, the parameters

t1 := −0.8325, t2 := −0.0684, t3 := 0.5795

satisfy σ(Q) = {w(t1), w(t2), w(t3)}.
Example 3. We give an example for the limit situations as described in Proposition
9.2 and 9.3. We have to consider a rational function h with the property, that some
of its partial fraction coefficients are large in comparison with the others. Let σ(q)
be given by

α0,1 := −1± i, α2,3 := −2± i
and p be defined via the interpolation conditions

p(α0) = p(α1) = 50, p(α2) = p(α3) = 1.

Then h := p/q where

p(z) = −19.6z3 − 88.2z2 − 137.2z − 48, q(z) = z4 + 6z3 + 15z2 + 18z + 10.

For γ := iR and m := 2 the relation σ(Q) ≈ {α0, α1} is to be expected. To be
exact we use G = p(CT

q )B
−1
c (q)p(Cq). Then we have

ξ = −
[
1.984
1.986

]
= G−12 g2, G2 =

[
108.237 −192.08
−192.08 409.555

]
, g2 =

[
166.685
−432.18

]
.

Thus, actually σ(Q) = {−0.993± 0.999i} holds. To illustrate Proposition 9.3 we
move α0,1 close to γ: α0,1 := −0.01 ± i, let α2, α3 be unchanged and choose p
according to

p(α0) = p(α1) = 1, p(α2) = p(α3) = −1.
As above ξ = −[0.99, 0.075]T is obtained, thus σ(Q) = {−0.037 ± 0.994i} ≈
{α0, α1} as expected. It turns out that for N = 103 the utilization of the truncated
integrals (11.1) yields the same result.

Example 4. To illustrate for n := 20 and large p0 ∈ R the advantage of a second
optimization step as proposed in Section 8, we approximate h := p/q along T by
rational functions hξ and h

η
ξ of degree m := 7 where

p(z) :=
n−1∑
k=1

zk + p0, q(z) :=

n
2−1∏
k=0

(z−αk)(z−αk), αk :=
8
10
− 3k
n+ 1

− 8k2

(n+ 10)2
i.
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Figure 3. n = 20,m = 7,+ := σ(q),× := σ(Q)
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Figure 4. n = 20,m = 7,+ := h(U),× := hηξ (U), ∗ := hξ(U)

Figure 3 shows the distribution of the αk marked by “+”. We choose p0 := 10,
N := 200, and form the sequences (hk)N+m

k=0 and (θk)Nk=0 to find hξ and h
η
ξ . Then

(11.2) and (11.3) provide

ξ = [0.336,−1.562, 2.889,−2.948, 2.879,−3.652, 3.057]T ,
ω = [0.677, 0.752, 0.769, 0.866, 0.786, 1.085, 1.000]T ,
η = [120.391,−226.509, 170.689,−143.321, 183.663,−126.761, 34.052]T .

For sufficiently large N Theorem 4.4 states the relation σ(Q) ⊂ D. Figure 3 con-
firms that localization where {β0, . . . , β6} := σ(Q) is marked with “×”. It is easy
to check, that P, Q, h satisfy the interpolation conditions

P(γi) = h(γi)Q(γi), γi := 1/βi.

In Figure 4 the Nyquist plots of h, hξ, h
η
ξ along the unit roots U := σ(z3000 − 1)

are compared to each other. Obviously, hηξ fits more better than hξ, precisely√∑
w∈U

|h(w)−hξ(w)|2∑
w∈U

|h(w)|2 = 0.571,
√∑

w∈U
|h(w)−hη

ξ (w)|2∑
w∈U

|h(w)|2 = 0.183.
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Example 5. We approximate

h(z) :=
2∑
k=0

1
z − αk

+
1

z − αk
, α0 := −2 + 7i, α1 := −2 + 2i, α2 := −2 + 1i

along γ := iR by hξ and hmoeb
red of degree m := 3, and compare the corresponding

approximation quality. Obviously, h admits the fraction representation

h(z) =
6z5 + 60z4 + 456z3 + 1776z2 + 3570z + 2916

z6 + 12z5 + 114z4 + 592z3 + 1785z2 + 2916z + 2120
.

Since hk := 2�
∑2
i=0 α

k
i the first 3 Laurent coefficients of h read as[
h0 h1 h2

]
=
[
6 −12 −84

]
.

The computation of gii, i = 0, 1, 2, via the integrals (11.1) and application of (6.4)
yield the system⎡⎣ 4.832 −18 −8.934

−18 80.934 −72
−8.934 −72 1295.242

⎤⎦ x =
⎡⎣ 576
−2303.242

−3528

⎤⎦ .
Its solution ξ and the resulting ω read as

ξ = −
[
152.464 69.145 7.619

]T
, ω :=

[
239.439 33.714 6

]T
.

The Laurent coefficients hφk of hφ are obtained via CdA
k
dBc where (Ad, Bc, Cd) is

defined as in (10.1) and

Ac := diag(α0, α1, α2, α0, α1, α2) ∈ C6×6, BT
c := Cc :=

[
1 . . . 1

]
∈ R6.

For N = 190 the truncated computation procedure (11.3) provides as approxima-
tion of hφ along T the rational function hξφ := h(1) + Pφ/Qφ where

Qφ(z) := z3−ψ3(z)ξφ, ξφ := −
[
0.303 1.238 1.904

]T = [hφi+j ]190,2i,j=0

†
col(hφi )

193
i=3

Pφ := ψ3ωφ
h(1) = 1.165 , ωφ :=

⎡⎣ 0.099
0.448
0.391

⎤⎦ =
⎡⎣ hφ0 hφ1 hφ2

hφ0 hφ1
hφ0

⎤⎦⎡⎣ −ξφ1−ξφ2
1

⎤⎦
that means

hξφ(z) = h(1) +
Pφ(z)
Qφ(z)

=
1.165z3 + 2.609z2 + 1.889z+ 0.453

z3 + 1.904z2 + 1.238z + 0.303
.

Finally,

hmoeb
red (z) := hξφ

(
1 + z

1− z

)
=
−0.243z3 + 11.764z2+ 94.772z + 202.879

z3 + 25.496z2+ 91.439z+ 147.452
.

In Figure 5 the Nyquist plots of h, hξ and hmoeb
red with respect to iR are compared

to each other. Obviously, for some intervals of iR the approximation quality differs
significantly. Along i[−5, 5] the approximant hmoeb

red fits better than hξ, and along
i(R \ [−5, 5]) the approximant hξ is to be preferred. Remember, a positive (real)
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Figure 5. a=̂ h(iR), b=̂ hξ(iR), c=̂ hmoeb
red (iR)

function h(z) is a (real) function whose real part is positive when the real part of z
is positive [[8], p. 197]. According to [[8], Theorem V] a real rational function h is
positive, if σ(h) ⊂ H− and �(h(iR)) ⊂ R+ . The definition of the numbers αi and
Theorem 4.4 ensures the stability of h and hξ. Thus, Figure 5 shows the positivity
of h and hξ, and the non-positivity of hmoeb

red . Consequently, if one like to preserve
positivity, then hξ is to be preferred. Unfortunately, also the direct approach does
not preserve positivity in general. We finish the paper with a counter example.

Example 6. Let h(z) :=
∑2
k=0 ck(z − αk)−1 where

α0 := −1 + i, α1 := α0, α2 = −3, c0 := c1 := 1, c2 := 2.

Then with p(z) := 4z2 + 12z + 10 and q(z) := z3 + 5z2 + 8z + 6 the equation
h = p/q follows. Because all ck are positive, and h is stable with respect to iR,
we are dealing with a positive real function. To avoid the approximation of the
integrals (11.1) we use factorization (1.3). The representation (3.1) of Bc(q) and
R = p(Cq) provide

B−1c (q) = 1
|Bc(q)|

⎡⎣ 680 0 −816
0 816 0

−816 0 6528

⎤⎦ , R =
⎡⎣ 10 −24 48
12 −12 40
4 −8 18

⎤⎦
|Bc(q)| = 55488.

By exploitation of Bc(q) = BiR(q) and G = RB−1iR (q)R
∗ one gets the equation

system [
224672 −443904

−443904 891072

]
︸ ︷︷ ︸

= G2|Bc(q)|

x =
[

884544
−1775616

]
︸ ︷︷ ︸
= g2|Bc(q)|

to determine ξ ∈ R2. Thus, ξ = −[0.0034, 1.9944]T. Since [h0, h1, h2] = eT3R we
have h0 = 4 and h1 = −8 such that in view of (11.2) the coefficient vector ω of the
numerator polynomial of hξ becomes [−0.023, 4]. Consequently, hξ(0) = −ω0/ξ0 <
0 in contradiction to the stipulation hξ : H+ → H+ := C \ (H− ∪ iR).
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Figure 6. solid line := h(iR), dashed line := hηξ (iR)

But, if we replace ω by η, then a positive real approximant is obtained. To
get η it is sufficient to compute the product Bc(Q)W . The generating function
of Bc(Q) yields Bc(Q) = 2ξ1diag(ξ0,−1) = diag(0.013, 3.989). In addition, for
N = 300 as approximation of

W = lim
N→∞

1
2π

∫ +N

−N

[
1
it

]
h(it)
Q(it)

dt,

we get [0.334, 0.997]T such that η := Bc(Q)W becomes [0.005, 3.977]T. To check
the positivity of hηξ we represent it as continued fraction:

hηξ (z) =
η1z + η0

z2 − ξ1z − ξ0
=

1

(az + b) +
r

(η1z + η0)

.

Then the positivity of all coefficients a, b, r, η0, η1 implies the desired mapping prop-
erty hηξ : H+ → H+ . From above we know that η0 and η1 are positive. Comparison
of the coefficients yields

a = 1/η1, b = −(aη0 + ξ1)/η1, r = −ξ0 − bη0
thus a = 0.251, b = 0.501, and r = 0.001. Figure 6 confirms the positivity of h and
hηξ . A mathematical exploration with respect to the preservation of positivity will
be provided in a forthcoming paper.
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[10] L. Fejér, Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen
gewisser Art entspringen, Math. Annalen 85 (1922), 41–48

[11] S. Feldmann, Fejér’s convex hull theorem related to least squares approximation of
rational functions, in preparation

[12] S. Feldmann, P. Lang, A least squares approach to reduce stable discrete linear
systems preserving their stability, LAA 381 (2004), 141–163

[13] S. Feldmann, P. Lang, D. Prätzel-Wolters, A unified least squares approach to iden-
tify and to reduce continuous asymptotically stable systems, LAA 426, Issues 2-3
(2007), 674–689

[14] P.A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer, New York,
Berlin, Heidelberg, 1996
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0. Introduction

This paper is closely related to the authors’ recent investigations [FKL1] on the
matricial Carathéodory problem in both nondegenerate and degenerate cases. In
[FKL1] the authors obtained a parametrization of the solution set of a general
(possibly degenerate) matricial Carathéodory problem in terms of a linear frac-
tional transformation. Using this parametrization we study the set of values of
matrices which will be attained by the solutions of the matricial Carathéodory
problem in a prescribed fixed point of the open unit disk. We show that this set
of values fills a (closed) matrix ball and present explicit expressions for the center
and the semi-radii of this matrix ball which is also called the Weyl matrix ball as-
sociated with the concrete matricial Carathéodory problem under consideration.
Following the classical monograph [Akh] the terminology “Weyl circles” or later

The work of the third author of the present paper was supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft) on badge LA 1386/2–1.
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“Weyl matrix balls” was consequently used in the Soviet literature (see, e.g., [Or],
[KP], [Ko], [Du], and [Mi]). As explained in [Akh, Chapter 1] or in [Ev], the history
of the scalar case is intimately related to the classical papers [We], [He], and [Ne].

In the case of a nondegenerate matricial Carathéodory problem the corres-
ponding Weyl matrix balls were computed by Kovalishina [Ko] and alternatively
by the first and the second authors in [FK1, Parts IV and V]. In view of the general
theory of matrix balls due to Šmuljan [Sm], the semi-radii of a matrix ball are not
uniquely determined. In his investigations [Du] on the matricial Schur problem,
V.K. Dubovoj has constructed a clever normalization of the left semi-radius. This
normalization was adopted to the case of the matricial Carathéodory problem in
[FK1, Parts IV and V]. In the case of the nondegenerate matricial Carathéodory
problem the normalized semi-radii of the Weyl matrix balls can be nicely rewritten
with the aid of the Gohberg-Heinig formula (see [GH, Theorem 1.1], for the inverses
of block Toeplitz matrices. This will be described at the end of Section 4.

In the scalar case the Weyl disks associated with the Carathéodory problem
were already handled by Geronimus (see, e.g., [Ge1], [Ge2], and [Ge3]). A modern
view on various aspects of Geronimus’ work was presented in the paper [CG] of
Chang and Georgiou who particularly worked out the role of the centers of the
Weyl disks in the context of maximum entropy extension. In the paper [FKL2] the
authors discussed similar questions and closely related matters for the matrix case
of the nondegenerate matricial Carathéodory problem. The limit behaviour of the
normalized semi-radii of the Weyl matrix balls associated with a nondegenerate
matrix-valued Carathéodory function was studied in [FK2].

This paper is organized as follows: In Section 1, after presenting some no-
tations and preliminaries we formulate the main result of this paper (see The-
orem 1.1). In Section 2, we recall the parametrization of the solution set of a
matricial Carathéodory problem which was obtained in [FKL1] and we give some
additional comments concerning the uniqueness of the functions which appear as
parameters in this description. It turns out that much information on the Weyl
matrix balls associated with a matricial Carathéodory problem is contained in a
distinguished rational matrix-valued function Θn built from the data. For this rea-
son, the study of this function Θn is one of the central themes of the paper. In Sec-
tion 3, we introduce the function Θn and show that the restriction of this function
onto D is a matrix-valued Schur function. Hereby this Schur function is inner if and
only if the considered Carathéodory problem is nondegenerate. In the particular
case that the given sequence (Γj)nj=0 of data satisfies det Γ0 �= 0 we associate with
(Γj)nj=0 a second rational matrix-valued function Θ

�
n. The interplay between both

functions Θn and Θ�n is described in Proposition 3.11. In Section 4, we will prove
the main result of this paper. More precisely, we will compute the Weyl matrix
ball associated with an arbitrary matricial Carathéodory problem. In Section 5,
we consider in detail the case that the given q× q Carathéodory sequence (Γj)nj=0

satisfies det Γ0 �= 0. We indicate that the above-mentioned rational matrix-valued
function Θ�n is intimately connected with the so-called reciprocal Carathéodory
sequence (Γ�j)

n
j=0 corresponding to (Γj)

n
j=0. This enables us to describe the Weyl
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matrix ball associated with (Γ�j)
n
j=0 with the aid of Θ

�
n (see Theorem 5.2). The

main results of Section 6 are Theorem 6.8 and Theorem 6.11 which contain useful
recurrence formulas for the functions Θn and Θ�n, respectively. Finally, in Section 7
we discuss the central q × q Carathéodory function Ωc,n corresponding to (Γj)nj=0

from the view of Weyl matrix balls.

1. Preliminaries

Throughout this paper, let p and q be positive integers. We will use C, N0, and N
to denote the set of all complex numbers, the set of all nonnegative integers, and
the set of all positive integers, respectively. If m ∈ N0 and if κ ∈ N0 or κ = ∞,
then we will write Nm,κ for the set of all integers k satisfying m ≤ k ≤ κ. The
set of all complex p× q matrices will be designated by Cp×q. For each A ∈ Cp×q,
let A+ be the Moore-Penrose inverse of A. If A ∈ Cq×q, then detA stands for the
determinant of A and trA denotes the trace of A. Further, for each A ∈ Cq×q, let
ReA and ImA be the real part of A and the imaginary part of A, respectively,
i.e., ReA := 1

2 (A+A
∗) and ImA := 1

2i (A−A∗). The zero matrix which belongs to
Cp×q will be denoted by 0p×q and the identity matrix which belongs to Cq×q will
be designated by Iq . If the size of a zero matrix or a identity matrix is obvious,
we will omit the indices. A complex p× q matrix A is said to be contractive if the
operator norm of A is not greater than 1. Obviously, a complex p× q matrix A is
contractive if and only if the matrix I −A∗A is nonnegative Hermitian.

Let n ∈ N0. If (Γj)nj=0 is a sequence of complex q × q matrices, then we
associate with (Γj)nj=0 the block Toeplitz matrices Sn and Tn given by

Sn :=

⎛⎜⎜⎜⎜⎜⎝
Γ0 0 0 . . . 0
Γ1 Γ0 0 . . . 0
Γ2 Γ1 Γ0

. . .
...

...
...

...
. . . 0

Γn Γn−1 Γn−2 . . . Γ0

⎞⎟⎟⎟⎟⎟⎠ (1.1)

and
Tn := Re Sn.

A sequence (Γj)nj=0 of complex q×q matrices is called q×q Carathéodory sequence
(respectively, nondegenerate q× q Carathéodory sequence) if the matrix Tn is non-
negative Hermitian (respectively, positive Hermitian). Obviously, if (Γj)nj=0 is a
q × q Carathéodory sequence (respectively, a nondegenerate q × q Carathéodory
sequence) and if m ∈ N0,n, then (Γj)mj=0 is also a q× q Carathéodory sequence (re-
spectively, a nondegenerate q× q Carathéodory sequence). In addition, a sequence
(Γk)∞k=0 of complex q × q matrices is said to be a q × q Carathéodory sequence
(respectively, a nondegenerate q × q Carathéodory sequence) if for every choice of
a nonnegative integer m the sequence (Γj)mj=0 is a q × q Carathéodory sequence
(respectively, a nondegenerate q × q Carathéodory sequence).
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Let D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1} be the unit disk
and the unit circle of the complex plane, respectively. A complex q × q matrix-
valued function Ω : D → Cq×q which is holomorphic in D and for which the real
part ReΩ(z) of Ω(z) is nonnegative Hermitian for each z ∈ D is called q × q
Carathéodory function (in D). The set of all q × q Carathéodory functions (in D)
will be denoted by Cq(D). It is a well-known fact that a matrix-valued function
Ω : D → Cq×q which is holomorphic in D with Taylor series representation

Ω(z) =
∞∑
k=0

Γkzk, z ∈ D,

belongs to Cq(D) if and only if (Γk)∞k=0 is a q× q Carathéodory sequence (see, e.g.,
[FK1, Section 4 in Part I]).

The matricial version of the classical Carathéodory interpolation problem
consists of the following:

Let n ∈ N0 and let (Γj)nj=0 be a sequence of complex q× q matrices. Describe
the set Cq[D, (Γj)nj=0] of all q × q Carathéodory functions Ω (in D) such that

1
j!
Ω(j)(0) = Γj (1.2)

holds for each j ∈ N0,n, where Ω(j)(0) is the jth derivative of Ω at the point z = 0.

If n ∈ N0 and if (Γj)nj=0 is a sequence of complex q× q matrices, then the set
Cq[D, (Γj)nj=0] is nonempty if and only if (Γj)

n
j=0 is a q× q Carathéodory sequence

(see, e.g., [FK1, Section 4 in Part I]). Several approaches to parametrize the so-
lution set Cq[D, (Γj)nj=0] of the matricial Carathéodory problem can be found in
the literature (see, e.g., [AK], [Ko], [Dy], [FK1], [BGR], [FF], [Sa], and [FFGK]).
An essential common feature is that the discussions are mainly concentrated on
the so-called nondegenerate case which is connected with nondegenerate q × q
Carathéodory sequences built from the interpolation data. Nowadays, quite differ-
ent approaches to handle also degenerate cases of matrix interpolation were used
(see, e.g., [BH], [BD], [Br], [CH1], [CH2], [DGK2], [Dy, Chapter 7], and [Sa, Chap-
ter 5]). The starting point of the present paper are the descriptions of Cq[D, (Γj)nj=0]
via linear fractional transformations in the general case, i.e., without additional
assumptions, given in [FKL1], where the parameters of the linear fractional trans-
formations are expressed explicitly by the given data of the problem. For the
convenience of the reader, we recall the main idea of these parametrizations in the
following section (see Theorem 2.1). For this and our forthcoming considerations
we need some further notation.

If m ∈ N0, let em,q and εm,q be the matrix polynomials defined by

em,q(z) :=
(
Iq, zIq, z

2Iq, . . . , z
mIq

)
and εm,q(z) :=

⎛⎜⎜⎜⎝
zmIq
zm−1Iq...
zIq
Iq

⎞⎟⎟⎟⎠ (1.3)
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for all z ∈ C. Let e be a q × q matrix polynomial of degree not greater than m,
i.e., there is a complex (m+ 1)q × q matrix E such that e(z) = em,q(z)E for each
z ∈ C. Then the reciprocal matrix polynomial ẽ[m] of e with respect to the unit
circle T and the formal degree m is given, for all z ∈ C, by ẽ[m](z) := E∗εm,q(z).

If n ∈ N0 and if (Γj)nj=0 is a sequence of complex q × q matrices, then let
L1 := Re Γ0, R1 := Re Γ0, (1.4)

and moreover (in the case n ≥ 1) we will use for each k ∈ N1,n the notations

Zk :=
1
2

(
Γk,Γk−1, . . . ,Γ1

)
, Yk :=

1
2

⎛⎜⎜⎜⎝
Γ1
Γ2
...
Γk

⎞⎟⎟⎟⎠ , (1.5)

and
Lk+1 := ReΓ0 − ZkT+

k−1Z
∗
k , Rk+1 := ReΓ0 − Y ∗k T+

k−1Yk. (1.6)
For each k ∈ N0,n, the matrices Lk+1 and Rk+1 are nonnegative Hermitian if
(Γj)nj=0 is a q × q Carathéodory sequence (see, e.g., [DFK, Lemma 1.1.9]).

In the sequel, let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence.
In the case n ≥ 1, the sets
Yn := {V ∈ Cnq×q : Tn−1V = Yn} and Zn := {W ∈ Cq×nq : WTn−1 = Zn}
will be linking elements in the studies below, since the matrix polynomials an, bn,
cn, and dn defined by

an(z) :=
{

Γ0 if n = 0
Γ0 + zen−1,q(z)S∗n−1Vn if n ≥ 1 , (1.7)

bn(z) :=
{

Iq if n = 0
Iq − zen−1,q(z)Vn if n ≥ 1 , (1.8)

cn(z) :=
{

Γ0 if n = 0
WnS

∗
n−1zεn−1,q(z) + Γ0 if n ≥ 1 , (1.9)

and

dn(z) :=
{

Iq if n = 0
−Wnzεn−1,q(z) + Iq if n ≥ 1 (1.10)

with some Vn ∈ Yn and Wn ∈ Zn if n ≥ 1 play an essential role in [FKL1]. Note
that, if n ≥ 1, the matrix T+

n−1Yn belongs to Yn and the matrix ZnT+
n−1 belongs

to Zn (cf. [FK3, Remark 1.4]). Moreover, in the case n ≥ 1, [FK3, Proposition 2.2]
implies that T+

n−1Yn actually belongs to the set Ỹn of all Vn ∈ Yn such that det bn
vanishes nowhere in D and from [FK3, Theorem 2.3] one can see that ZnT+

n−1
actually belongs to the set Z̃n of all Wn ∈ Zn such that det dn vanishes nowhere
in D, where bn and dn are the matrix polynomials defined by (1.8) and (1.10).

A main goal of this paper is to present a parametrization, for every choice of
w in D, of the set

{
Ω(w) : Ω∈Cq[D, (Γj)nj=0]

}
in terms of the matrix polynomials

an, bn, cn, and dn defined by (1.7), (1.8), (1.9), and (1.10) with some Vn ∈ Ỹn and
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Wn ∈ Z̃n if n ≥ 1. We will prove that these sets are matrix balls. Recall that, for
each M ∈ Cq×q, each A ∈ Cq×q, and each B ∈ Cq×q, the set K(M ;A,B) of all
X ∈ Cq×q which admit a representation X = M + AKB with some contractive
complex q × q matrix K is called the matrix ball with center M , left semi-radius
A, and right semi-radius B. In order to describe the parameters of the concrete
matrix balls in question we introduce the rational matrix-valued function

Θn :=
√
Rn+1b

−1
n d̃ [n]n

√
Ln+1

+
.

It will turn out that the function Θn is holomorphic in D and that the restriction
of Θn onto D belongs to the Schur class Sq×q(D) of all q × q Schur functions (in
D). Recall that a matrix-valued function S : D → Cq×q which is holomorphic in D
is called q × q Schur function (in D) if at each point z ∈ D the value S(z) of S is
a contractive matrix. We will prove that the following theorem holds.

Theorem 1.1. Let n ∈ N0 and let (Γj)nj=0 be a q×q Carathéodory sequence. If n ≥ 1,
then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn, and dn
be defined by (1.7), (1.8), (1.9), and (1.10). Furthermore, let the complex matrices
Ln+1 and Rn+1 be given by (1.4) and (1.6). For each w ∈ D, then by setting
Θn(w) :=

√
Rn+1

(
bn(w)

)−1
d̃
[n]
n (w)

√
Ln+1

+
, Fn(w) :=

√
Ln+1

+
Θ∗n(w)

√
Rn+1,

and Gn(w) :=
√
Ln+1Θ∗n(w)

√
Rn+1

+
the identity{

Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]
}
= K
(
Mn+1(w); 2|w|n+1An+1(w),Bn+1(w)

)
is fulfilled, where

Mn+1(w) :=
(
dn(w) − |w|2Gn(w)b̃[n]n (w)

)−1(
cn(w) + |w|2Gn(w)ã[n]n (w)

)
, (1.11)

An+1(w) :=
(
dn(w)

)−1√
Ln+1

√
Iq − |w|2Θ∗n(w)Θn(w)

−1
, (1.12)

and

Bn+1(w) :=
√
Iq − |w|2Θn(w)Θ∗n(w)

−1√
Rn+1

(
bn(w)

)−1 (1.13)

and where the matrix Mn+1(w) also admits the representation

Mn+1(w) =
(
an(w) + |w|2c̃[n]n (w)Fn (w)

)(
bn(w) − |w|2d̃ [n]n (w)Fn (w)

)−1
. (1.14)

2. On a parametrization of the solution set Cq[D, (Γj)
n
j=0]

In the present section we recall at first a description of the set Cq[D, (Γj)nj=0] of
all solutions of the matricial Carathéodory problem via linear fractional transfor-
mations which is derived in [FKL1]. Moreover, we give some additional comments
concerning the uniqueness of the function f ∈ Sq×q(D) appearing as parameter in
these linear fractional transformations.
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Theorem 2.1. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence. If
n ≥ 1, then let Vn ∈ Ỹn and Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn, and
dn be given by (1.7), (1.8), (1.9), and (1.10). Furthermore, let the matrices Ln+1

and Rn+1 be defined by (1.4) and (1.6).

(a) If f ∈ Sq×q(D), then the matrices zd̃ [n]n (z)
√
Ln+1

+
f(z)

√
Rn+1 + bn(z) and

z
√
Ln+1f(z)

√
Rn+1

+
b̃
[n]
n (z) + dn(z) are nonsingular for each z ∈ D and the

function Ω : D → Cq×q given by

Ω(z) :=
(
−zc̃[n]n (z)F (z) + an(z)

)(
zd̃ [n]n (z)F (z) + bn(z)

)−1
(2.1)

belongs to Cq[D, (Γj)nj=0] and satisfies, for each z ∈ D, the representation

Ω(z) =
(
zG(z)b̃[n]n (z) + dn(z)

)−1 (
−zG(z)ã[n]n (z) + cn(z)

)
, (2.2)

where F :=
√
Ln+1

+
f
√
Rn+1 and G :=

√
Ln+1f

√
Rn+1

+
.

(b) If Ω ∈ Cq[D, (Γj)nj=0], then there is an f ∈ Sq×q(D) so that Ω admits, for
each z ∈ D, the representations

Ω(z) =
(
−zc̃[n]n (z)F (z) + an(z)

)(
zd̃ [n]n (z)F (z) + bn(z)

)−1
and (2.2), where F :=

√
Ln+1

+
f
√
Rn+1 and G :=

√
Ln+1f

√
Rn+1

+
.

A proof of Theorem 2.1 is given by [FKL1, Theorems 3.2 and 3.7]. Contrary
to the well-known circumstance in the nondegenerate case (see, e.g., [AK], [Ko],
[Dy], [BGR], [FF], and [FK1]), the underlying function f ∈ Sq×q(D) by the linear
fractional transformations stated in (2.1) and (2.2), respectively, is not uniquely
determined via f in general. The following results clarify this fact.

Proposition 2.2. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence.
If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the matrix polynomials an, bn,
cn, and dn be defined by (1.7), (1.8), (1.9), and (1.10). Let the matrices Ln+1 and
Rn+1 be given by (1.4) and (1.6). Further, for j ∈ {1, 2}, let fj be a q × q Schur
function (in D), let Fj :=

√
Ln+1

+
fj
√
Rn+1, and let Ωj : D → Cq×q be defined by

Ωj(z) :=
(
−zc̃[n]n (z)Fj(z) + an(z)

)(
zd̃ [n]n (z)Fj(z) + bn(z)

)−1
.

(a) Let w ∈ D \ {0}. Then the following statements are equivalent:
(i) Ω1(w) = Ω2(w).
(ii) Ln+1L

+
n+1f1(w)Rn+1R

+
n+1 = Ln+1L

+
n+1f2(w)Rn+1R

+
n+1.

(b) The following statements are equivalent:
(iii) Ω1 = Ω2.
(iv) Ln+1L

+
n+1f1Rn+1R

+
n+1 = Ln+1L

+
n+1f2Rn+1R

+
n+1.

Proof. For j ∈ {1, 2}, we also use the setting

Gj :=
√
Ln+1fj

√
Rn+1

+
.
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First we prove that (a) holds. Let w ∈ D \ {0}.
(i) ⇒ (ii): Suppose that (i) holds. Thus, part (a) of Theorem 2.1 yields(

wG1(w)b̃[n]n (w) + dn(w)
)−1(

−wG1(w)ã[n]n (w) + cn(w)
)

=
(
−wc̃[n]n (w)F1(w) + an(w)

)(
wd̃ [n]n (w)F1(w) + bn(w)

)−1
=
(
−wc̃[n]n (w)F2(w) + an(w)

)(
wd̃ [n]n (w)F2(w) + bn(w)

)−1
and consequently

−w2G1(w)ã[n]n (w)d̃
[n]
n (w)F2(w) + cn(w)bn(w)− wG1(w)ã[n]n (w)bn(w)

+wcn(w)d̃ [n]n (w)F2(w)
=
(
−wG1(w)ã[n]n (w) + cn(w)

)(
wd̃ [n]n (w)F2(w) + bn(w)

)
=
(
wG1(w)b̃[n]n (w) + dn(w)

)(
−wc̃[n]n (w)F2(w) + an(w)

)
= −w2G1(w)b̃[n]n (w)c̃

[n]
n (w)F2(w) + dn(w)an(w) + wG1(w)b̃[n]n (w)an(w)

−wdn(w)c̃[n]n (w)F2(w). (2.3)

Moreover, from [FK3, Theorems 1.7 and 2.3] and [DFK, Lemma 1.2.2] we get

dn(w)an(w) = cn(w)bn(w) and ã[n]n (w)d̃
[n]
n (w) = b̃[n]n (w)c̃

[n]
n (w). (2.4)

By virtue of [FKL1, part (b) of Proposition 2.4] we have

ã[n]n (w)bn(w) + b̃[n]n (w)an(w) = 2w
nRn+1, (2.5)

cn(w)d̃ [n]n (w) + dn(w)c̃[n]n (w) = 2w
nLn+1. (2.6)

Using (2.4), (2.5), and (2.6) from (2.3) we can conclude

2wn+1G1(w)Rn+1 = 2wn+1Ln+1F2(w).

Multiplying the last equation from the left by 1
2wn+1

√
Ln+1

+
and from the right

by
√
Rn+1

+
we get the identity stated in (ii).

(ii) ⇒ (i): From (ii) it follows F1(w) = F2(w) and hence (i).
Therefore, part (a) is verified. Part (b) is then an easy consequence of (a) and a
continuity argument (note part (a) of Theorem 2.1). �
Remark 2.3. Let the assumptions of Proposition 2.2 be fulfilled. Then a com-
bination of Theorem 2.1 and part (b) of Proposition 2.2 shows that there is a
bijective correspondence between the solution set Cq[D, (Γj)nj=0] and the set of all
matrix-valued functions f ∈ Sq×q(D) satisfying Ln+1L

+
n+1fRn+1R

+
n+1 = f .

Remark 2.4. Let the assumptions of Proposition 2.2 be fulfilled. Furthermore, for
j ∈ {1, 2}, let Gj :=

√
Ln+1fj

√
Rn+1

+
. In view of Theorem 2.1 we mention that

from Proposition 2.2 one can see that the following statements are equivalent:
(i) Ω1 = Ω2.
(ii) F1 = F2.
(iii) G1 = G2.
(iv) Ln+1f1Rn+1 = Ln+1f2Rn+1.
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3. Particular matrix-valued Schur functions associated with given
q × q Carathéodory sequences

In this section, we will discuss particular rational matrix-valued functions the re-
striction of which onto D are q×q Schur functions (in D) and which are constructed
from given finite q× q Carathéodory sequences based on the complex q× q matrix
polynomials an, bn, cn, and dn defined by (1.7), (1.8), (1.9), and (1.10). For this
reason, we firstly prove certain identities for these matrix polynomials.

If G is a nonempty subset of C and if e : G → Cq×q is a matrix-valued
function, then let

Ne := {w ∈ G : det e(w) = 0}.
Remark 3.1. Let n ∈ N0 and let (Γj)nj=0 be a q×q Carathéodory sequence. If n ≥ 1,
then let Vn ∈ Yn and let Wn ∈ Zn. Furthermore, let the matrix polynomials an,
bn, cn, and dn be defined by (1.7), (1.8), (1.9), and (1.10). In view of bn(0) = I,
dn(0) = I, and [DFK, Lemma 1.2.2] one can immediately conclude that the set
N := Nbn∪Nb̃[n]

n
∪Ndn ∪Nd̃ [n]

n
consists of at most 4nq complex numbers. Similarly,

if the matrix Γ0 is nonsingular, then from an(0) = Γ0, cn(0) = Γ0, and [DFK,
Lemma 1.2.2] one can see that the set M := Nan ∪ Nã[n]

n
∪ Ncn ∪ Nc̃[n]

n
consists of

at most 4nq complex numbers.

Lemma 3.2. Let n ∈ N0 and let (Γj)nj=0 be a q× q Carathéodory sequence. Let the
matrices Ln+1 and Rn+1 be given by (1.4) and (1.6). Furthermore, if n ≥ 1, then
let Vn ∈ Yn and let Wn ∈ Zn.
(a) The matrix polynomials bn and dn defined by (1.8) and (1.10) satisfy for each

w ∈ C \N the identity(
b̃[n]n (w)

)−1
Rn+1

(
bn(w)

)−1 = (dn(w))−1Ln+1

(
d̃ [n]n (w)

)−1
, (3.1)

where N := Nbn ∪ Nb̃[n]
n
∪ Ndn ∪Nd̃ [n]

n
.

(b) Let the matrix polynomials an and cn be defined by (1.7) and (1.9). Suppose
that the set M := Nan ∪ Nã[n]

n
∪ Ncn ∪ Nc̃[n]

n
does not coincide with C. Then(

ã[n]n (w)
)−1

Rn+1

(
an(w)

)−1 = (cn(w))−1Ln+1

(
c̃[n]n (w)

)−1 (3.2)

is satisfied for each C \M.

Proof. We know from Remark 3.1 thatN consists of at most 4nq complex numbers.
Applying [FK3, Theorems 1.7 and 2.3] and [DFK, Lemma 1.2.2] we get (2.4) for
each w ∈ C. From [FKL1, part (b) of Proposition 2.4] we see that the identities
(2.5) and (2.6) are satisfied for each w ∈ C. Since (2.4), (2.5), and (2.6) imply

2wnRn+1 = ã[n]n (w)bn(w) + b̃[n]n (w)an(w)
= b̃[n]n (w)c̃

[n]
n (w)

(
d̃ [n]n (w)

)−1
bn(w) + b̃[n]n (w)

(
dn(w)

)−1
cn(w)bn(w)

= b̃[n]n (w)
(
dn(w)

)−1 (
dn(w)c̃[n]n (w) + cn(w)d̃ [n]n (w)

) (
d̃ [n]n (w)

)−1
bn(w)

= 2wnb̃[n]n (w)
(
dn(w)

)−1
Ln+1

(
d̃ [n]n (w)

)−1
bn(w) (3.3)
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for each w ∈ C \ (Ndn ∪ Nd̃ [n]
n
), we can infer that the equality (3.1) is satisfied

for each w ∈ C \ (N ∪ {0}). Finally, a continuity argument yields that (3.1) holds
actually for every choice of w in C \N. Now suppose that M �= C. From the first
equation in (3.3), (2.4), and (2.6), we obtain then

2wnRn+1 = ã[n]n (w)
(
cn(w)

)−1
dn(w)an(w) + ã[n]n (w)d̃

[n]
n (w)

(
c̃[n]n (w)

)−1
an(w)

= ã[n]n (w)
(
cn(w)

)−1 (
dn(w)c̃[n]n (w) + cn(w)d̃ [n]n (w)

) (
c̃[n]n (w)

)−1
an(w)

= 2wnã[n]n (w)
(
cn(w)

)−1
Ln+1

(
c̃[n]n (w)

)−1
an(w)

for each w ∈ C\M. By continuity, (3.2) follows for every choice of w in C\M. �

Remark 3.3. Let n ∈ N0 and let (Γj)nj=0 be a q×q Carathéodory sequence. If n ≥ 1,
then let Vn,Vn ∈ Yn and let Wn,Wn ∈ Zn. Let an, bn, cn and dn be the matrix
polynomials which are defined by (1.7), (1.8), (1.9), and (1.10). Furthermore, let
an, bn, cn, and dn be the matrix polynomials which are defined analogously as an,
bn, cn, and dn using the matrices Vn and Wn instead of Vn and Wn, respectively.
From the definition of these matrix polynomials and Lemma 3.2 one can see that(

b̃[n]n (w)
)−1

Rn+1

(
bn(w)

)−1 = (b̃[n]
n (w)

)−1
Rn+1

(
bn(w)

)−1
for all w ∈ C \ (Nbn ∪ Nb̃[n]

n
∪Nbn ∪Nb̃

[n]
n
) and that(

dn(w)
)−1

Ln+1

(
d̃ [n]n (w)

)−1 = (dn(w))−1Ln+1

(
d̃[n]
n (w)

)−1
for all w ∈ C \ (Ndn ∪ Nd̃ [n]

n
∪ Ndn ∪ Nd̃

[n]
n
) hold, where the matrices Ln+1 and

Rn+1 are given by (1.4) and (1.6). Similarly, if N1 := Nan ∪ Nã[n]
n
∪ Nan ∪ Nã

[n]
n

does not coincide with C and if w ∈ C \N1, then(
ã[n]n (w)

)−1
Rn+1

(
an(w)

)−1 = (ã[n]n (w))−1Rn+1

(
an(w)

)−1
and if N2 :=Ncn∪Nc̃[n]

n
∪Ncn∪Nc̃

[n]
n
does not coincide with C and if w∈C\N2, then(

cn(w)
)−1

Ln+1

(
c̃[n]n (w)

)−1 = (cn(w))−1Ln+1

(
c̃[n]n (w)

)−1
.

For every positive real number ρ let

K(0; ρ) := {w ∈ C : |w| < ρ}.

Proposition 3.4. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence.
If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the q × q matrix polynomials
bn and dn be given by (1.8) and (1.10). Furthermore, let the matrices Ln+1 and
Rn+1 be defined by (1.4) and (1.6). Then there is a real number ρ > 1 such that
the rational matrix-valued function

Θn :=
√
Rn+1b

−1
n d̃ [n]n

√
Ln+1

+
(3.4)

is holomorphic in K(0; ρ). Moreover, Θn admits the representation

Θn =
√
Rn+1

+
b̃[n]n d−1n

√
Ln+1, (3.5)



Weyl Matrix Balls 299

for each w ∈ D the inequalities

Θn(w)Θ∗n(w) ≤ Rn+1R
+
n+1 and Θ∗n(w)Θn(w) ≤ Ln+1L

+
n+1 (3.6)

are fulfilled, and for each z ∈ T the equations

Θn(z)Θ∗n(z) = Rn+1R
+
n+1 and Θ∗n(z)Θn(z) = Ln+1L

+
n+1 (3.7)

hold. In particular, the restriction of Θn onto D is a q × q Schur function (in D).

Proof. Because of the choice of Vn and Wn (in the case n ≥ 1), for each w ∈ D
the matrices bn(w) and dn(w) are both nonsingular and

Θn(w) =
√
Rn+1

(
bn(w)

)−1
d̃ [n]n (w)

√
Ln+1

+

holds. Using Lemma 3.2 we get then

Θn(w) =
√
Rn+1

+
b̃[n]n (w)

(
b̃[n]n (w)

)−1
Rn+1

(
bn(w)

)−1
d̃ [n]n (w)

√
Ln+1

+

=
√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1
Ln+1

(
d̃ [n]n (w)

)−1
d̃ [n]n (w)

√
Ln+1

+

=
√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1√
Ln+1

for every choice of w in D. Hence (3.5) follows by a continuity argument. According
to Remark 3.1 the setN := Nbn∪Nb̃[n]

n
∪Ndn∪Nd̃ [n]

n
consists of at most 4nq complex

numbers. Because of (3.5), [DFK, Lemma 1.2.2], and Lemma 3.2 we obtain

Θn(z)Θ∗n(z) =
√
Rn+1

+
b̃[n]n (z)

(
dn(z)

)−1
Ln+1

(
dn(z)

)−∗(
b̃[n]n (z)

)∗√
Rn+1

+

=
√
Rn+1

+
b̃[n]n (z)

(
dn(z)

)−1
Ln+1

(
d̃ [n]n (z)

)−1
bn(z)

√
Rn+1

+

=
√
Rn+1

+
Rn+1

√
Rn+1

+
= Rn+1R

+
n+1

for each z ∈ T \N. Based on (3.4) one gets analogously

Θ∗n(z)Θn(z) = Ln+1L
+
n+1

for every choice of z in T\N. Hence the rational matrix-valued function Θn fulfills
the identities in (3.7) actually for each z ∈ T and there is a real number ρ > 1
such that Θn is holomorphic in K(0; ρ). In particular, from Ln+1L

+
n+1 ≤ I we see

that for each z ∈ T the matrix Θn(z) is contractive. Thus the maximum modulus
principle for holomorphic functions yields that the restriction of Θn onto D belongs
to Sq×q(D). Let w ∈ D. Multiplying the inequality Θ∗n(w)Θn(w) ≤ I from the left
and from the right by Ln+1L

+
n+1 and using (3.5) we get the second inequality in

(3.6). The first one follows analogously. �

Corollary 3.5. Let the assumptions of Proposition 3.4 be fulfilled. Then the follow-
ing statements are equivalent:
(i) There is a unique Ω ∈ Cq(D) such that (1.2) holds for each j ∈ N0,n.
(ii) Θn(w) = 0 for each w ∈ C.
(iii) There is some z0 ∈ T such that Θn(z0) is strictly contractive.

Proof. The matrix Ln+1L
+
n+1 is strictly contractive if and only if Ln+1 = 0. Thus

Proposition 3.4 and [FKL1, Lemma 6.1] yield the asserted equivalences. �
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In the next result, we will analyze the construction of a q× q Schur function
given by Proposition 3.4 for the case that the underlying q × q Carathéodory
sequence (Γj)nj=0 is nondegenerate. Recall firstly that, by a q×q Blaschke-Potapov
elementary factor (with respect to the signature matrix Iq) with zero at w0 ∈ D
we mean a rational complex q × q matrix-valued function Bw0 which is given via

Bw0 = V1
(
Iq + (bw0 − 1)P

)
V2, (3.8)

where V1 and V2 are some unitary q × q matrices, where P is some non-zero
idempotent and Hermitian q× q matrix, and where bw0 is the elementary Blaschke
factor corresponding to w0, i.e., bw0 is the rational function defined by

bw0(w) :=

⎧⎨⎩
w for each w ∈ C if w0 = 0

w0

|w0|
w0 − w
1− w0w

for each w ∈ C \
{

1
w0

}
if w0 �= 0 .

The notion finite q× q Blaschke-Potapov product (with respect to Iq) will be used
to denote a constant unitary q×q matrix-valued function or a finite product of q×q
Blaschke-Potapov elementary factors defined as in (3.8). Moreover, we note that
each q×q Schur function f (in D) has radial boundary values λ-almost everywhere
on T, where λ stands for the linear Lebesgue-Borel measure on T. If f is a q × q
Schur function in D such that its radial boundary values are unitary λ-almost
everywhere on T, then f is called an inner q × q Schur function (in D).

Corollary 3.6. Let the assumptions of Proposition 3.4 be fulfilled. Then the follow-
ing statements are equivalent:

(i) The q × q Carathéodory sequence (Γj)nj=0 is nondegenerate.
(ii) For each z ∈ T the matrix Θn(z) is unitary.
(iii) There is some w ∈ D ∪ T such that the matrix Θn(w) is nonsingular.
(iv) The restriction of Θn onto D is an inner q × q Schur function.
(v) Θn is a finite Blaschke-Potapov product (with respect to Iq).

Proof. Proposition 3.4 yields that the identities in (3.7) hold for each z ∈ T, that
the inequalities in (3.6) are satisfied for each w ∈ D, and that the restriction of Θn
onto D belongs to Sq×q(D). Thus the equivalence of (i), (ii), (iii), and (iv) follows
from [FKL1, Lemma 5.1], whereas the equivalence of (iv) and (v) is a consequence
of [FFK, Corollary 13 and Proposition 31]. �

In the second part of this section we present now a similar construction of a
q × q Schur function as in Proposition 3.4, where the matrix polynomials an and
cn defined by (1.7) and (1.9) are involved instead of the matrix polynomials bn
and dn defined by (1.8) and (1.10). Note that, in view of (1.7) and (1.9), it is not
hard to accept that one has to take for granted then a given q × q Carathéodory
sequence (Γj)nj=0 with the additional condition that the matrix Γ0 is nonsingular.

Remark 3.7. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence with
nonsingular matrix Γ0. If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. From [FK1,
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Remark 30 in Part V] and [FK3, Remark 1.1, Theorem 1.7, and Theorem 2.3] one
can see that the functions det an and det cn vanish nowhere in D.

Proposition 3.8. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence
with nonsingular matrix Γ0. If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the
matrix polynomials an and cn be defined by (1.7) and (1.9). Furthermore, let the
matrices Ln+1 and Rn+1 be given by (1.4) and (1.6). Then there is a real number
ρ > 1 such that the matrix-valued function

Θ�n :=
√
Rn+1a

−1
n c̃[n]n

√
Ln+1

+
(3.9)

is holomorphic in K(0; ρ). Moreover, Θ�n admits the representation

Θ�n =
√
Rn+1

+
ã[n]n c−1n

√
Ln+1, (3.10)

for each w ∈ D the inequalities

Θ�n(w)
(
Θ�n(w)

)∗ ≤ Rn+1R
+
n+1 and

(
Θ�n(w)

)∗Θ�n(w) ≤ Ln+1L
+
n+1

are fulfilled, and for each z ∈ T the equations

Θ�n(z)
(
Θ�n(z)

)∗ = Rn+1R
+
n+1 and

(
Θ�n(z)

)∗Θ�n(z) = Ln+1L
+
n+1

hold. In particular, the restriction of Θ�n onto D is a q × q Schur function (in D).

Proof. Because of Remark 3.7 the functions det an and det cn vanish nowhere in
D. Consequently, the relation

Θ�n(w) =
√
Rn+1

(
an(w)

)−1
c̃[n]n (w)

√
Ln+1

+

is satisfied for each w ∈ D. Using Remark 3.1 and part (b) of Lemma 3.2 we get
then (3.10) and that the set M := Nan ∪ Nã[n]

n
∪ Ncn ∪ Nc̃[n]

n
consists of at most

4nq complex numbers. The rest of the assertion can be verified analogously to the
given proof of Proposition 3.4. �

Corollary 3.9. Let the assumptions of Proposition 3.8 be fulfilled. Then the follow-
ing statements are equivalent:
(i) There is a unique Ω ∈ Cq(D) such that (1.2) holds for each j ∈ N0,n.
(ii) Θ�n(w) = 0 for each w ∈ C.
(iii) There is some z0 ∈ T such that the matrix Θ�n(z0) is strictly contractive.

Proof. Use Proposition 3.8, [FKL1, Lemma 6.1], and the fact that the matrix
Ln+1L

+
n+1 is strictly contractive if and only if Ln+1 = 0. �

Corollary 3.10. Let the assumptions of Proposition 3.8 be fulfilled. Then the fol-
lowing statements are equivalent:
(i) The q × q Carathéodory sequence (Γj)nj=0 is nondegenerate.
(ii) For each z ∈ T the matrix Θ�n(z) is unitary.
(iii) There is some w ∈ D ∪ T such that the matrix Θ�n(w) is nonsingular.
(iv) The restriction of Θ�n onto D is an inner q × q Schur function.
(v) Θ�n is a finite Blaschke-Potapov product (with respect to Iq).
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Proof. Using Proposition 3.8, [FKL1, Lemma 5.1], and [FFK, Corollary 13 and
Proposition 31] the proof is analogous to the proof of Corollary 3.6. �

Note that from Corollary 3.5 and Corollary 3.9 we see particularly that, under
the assumptions of Proposition 3.8, if there is a unique Ω ∈ Cq(D) such that (1.2)
is satisfied for each j ∈ N0,n, then the rational matrix-valued functions Θn and Θ�n
defined by (3.4) and (3.9) coincide. Generally, the following connection between
both functions is available.

Proposition 3.11. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence
with nonsingular matrix Γ0. If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let
the matrix polynomials an, bn, cn, and dn be defined by (1.7), (1.8), (1.9), and
(1.10). Furthermore, let the matrices Ln+1 and Rn+1 be given by (1.4) and (1.6)
and let the matrix-valued functions Θn and Θ�n be given by (3.4) and (3.9). For
every choice of w in D, then the identities

Θn(w) + Θ�n(w) = 2w
n
√
Rn+1

(
an(w)

)−1(
dn(w)

)−1√
Ln+1 (3.11)

and
Θn(w) + Θ�n(w) = 2w

n
√
Rn+1

(
bn(w)

)−1(
cn(w)

)−1√
Ln+1 (3.12)

are fulfilled.

Proof. Obviously, the complex-valued functions det bn and det dn vanish nowhere
in D. Remark 3.7 shows that det an and det cn vanish nowhere in D as well. Let
w ∈ D. Using [FK3, Remark 1.1, Theorem 1.7, and Theorem 2.3] we get

Θ�n(w) =
√
Rn+1

+
ã[n]n (w)

(
cn(w)

)−1
dn(w)

(
dn(w)

)−1√
Ln+1

=
√
Rn+1

+
ã[n]n (w)bn(w)

(
an(w)

)−1(
dn(w)

)−1√
Ln+1 (3.13)

and, in view of (3.9), similarly

Θ�n(w) =
√
Rn+1

(
bn(w)

)−1(
cn(w)

)−1
dn(w)c̃[n]n (w)

√
Ln+1

+
. (3.14)

Moreover, from [FKL1, part (b) of Proposition 2.4] we obtain

ã[n]n (w)bn(w)
(
an(w)

)−1 = 2wnRn+1

(
an(w)

)−1 − b̃[n]n (w) (3.15)

and (
cn(w)

)−1
dn(w)c̃[n]n (w) = 2w

n
(
cn(w)

)−1
Ln+1 − d̃ [n]n (w). (3.16)

Because of (3.4), (3.13), and (3.15) it follows (3.11). Analogously, (3.12) is a con-
sequence of (3.5), (3.14), and (3.16). �
Corollary 3.12. Let the assumptions of Proposition 3.11 be fulfilled. Then there is
a real number ρ > 1 such that the matrix-valued function

Θ�n :=
√
Rn+1a

−1
n d−1n

√
Ln+1 (3.17)

is holomorphic in K(0; ρ). Moreover, Θ�n admits the representation

Θ�n =
√
Rn+1b

−1
n c−1n

√
Ln+1

and the restriction of Θ�n onto D is a q × q Schur function (in D).
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Proof. Use Proposition 3.11 in combination with Proposition 3.4, Proposition 3.8,
and a matricial version of Schwarz lemma (see, e.g., [DFK, Lemma 2.3.1]). �

4. On the Weyl matrix balls associated with matricial
Carathéodory sequences

In this section, we will prove Theorem 1.1 which describes the Weyl matrix balls
of the solutions of the matricial Carathéodory problem in both nondegenerate and
degenerate cases. Moreover, we discuss the particular choice of the semi-radii of
the matrix balls in question and we compare Theorem 1.1 with the corresponding
result for the nondegenerate case. First of all, we remark the following.

Remark 4.1. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence. If
n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn,
and dn be defined by (1.7), (1.8), (1.9), and (1.10). Furthermore, let the matrix-
valued function Θn be defined by (3.4). For each w ∈ D, from Proposition 3.4
and [FKL1, Lemma 3.1] one can see that the matrices Iq − |w|2Θ∗n(w)Θn(w) and
Iq − |w|2Θn(w)Θ∗n(w) are both positive Hermitian and that the matrices

dn(w)− |w|2
√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)

and
bn(w) − |w|2d̃ [n]n (w)

√
Ln+1

+
Θ∗n(w)

√
Rn+1

are both nonsingular.

We start now with our proof of Theorem 1.1.

Proof of Theorem 1.1. Let w ∈ D. Subject to Remark 4.1 the matricesMn+1(w),
An+1(w), and Bn+1(w) are well defined and representation (1.14) of Mn+1(w)
is an immediate consequence of [FKL1, Lemma 3.1]. In view of Theorem 2.1, if
f ∈ Sq×q(D), then we use in the following the setting Ωf : D → Cq×q defined by

Ωf (z) :=
(
−zc̃[n]n (z)F (z) + an(z)

)(
zd̃ [n]n (z)F (z) + bn(z)

)−1
, (4.1)

where F :=
√
Ln+1

+
f
√
Rn+1. Therefore, Theorem 2.1 yields{

Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]
}
=
{
Ωf (w) : f ∈ Sq×q(D)

}
. (4.2)

Let u ∈ T be such that the relation w = |w|u is satisfied, let E := wΘ∗n(w), and let
Φ := dn(w)− |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃
[n]
n (w), where Θn is the rational matrix-

valued function defined by (3.4). Remark 4.1 shows that the matrix E is strictly
contractive and that the matrix Φ is nonsingular. Moreover, Proposition 3.4 and
the choice of Vn and Wn (in the case n ≥ 1) provide us that

Θn(w) =
√
Rn+1

(
bn(w)

)−1
d̃ [n]n (w)

√
Ln+1

+
=
√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1√
Ln+1.
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Therefore, a straightforward calculation yields√
Ln+1 (I − EE∗) = Φ

(
dn(w)

)−1√
Ln+1

and hence
Φ−1
√
Ln+1 =

(
dn(w)

)−1√
Ln+1 (I − EE∗)−1. (4.3)

Furthermore, from [FKL1, Proposition 2.4] we get (2.5) and (2.6). Because of
[FK3, Theorems 1.7 and 2.3] and [DFK, Lemma 1.2.2] we have (2.4). The following
considerations of the proof are divided into three steps.
Step A. In this first step we consider an arbitrary f ∈ Sq×q(D). Using (4.1) with
F :=

√
Ln+1

+
f
√
Rn+1, we are going to prove that

Ωf (w) −Mn+1(w)

=−2wn+1An+1(w)
√
I−EE∗−1

(
f(w)+E

)(
I+E∗f(w)

)−1√
I−E∗E Bn+1(w) (4.4)

holds. For this reason, first we note that Theorem 2.1 yields that the matrix

Ψf := wd̃ [n]n (w)
√
Ln+1

+
f(w)

√
Rn+1 + bn(w) (4.5)

is nonsingular. Because of (1.11), (4.1), (2.4), (2.5), and (2.6) we obtain then

Φ
(
Ωf (w)−Mn+1(w)

)
Ψf

=
(
dn(w)− |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)

) (
−wc̃[n]n (w)F (w) + an(w)

)
−
(
cn(w) + |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
ã[n]n (w)

) (
wd̃ [n]n (w)F (w) + bn(w)

)
= −wdn(w)c̃[n]n (w)F (w) − |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)an(w)

+ dn(w)an(w) + w|w|2
√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)c̃

[n]
n (w)F (w)

−wcn(w)d̃ [n]n (w)F (w) − |w|2
√
Ln+1Θ∗n(w)

√
Rn+1

+
ã[n]n (w)bn(w)

− cn(w)bn(w)− w|w|2
√
Ln+1Θ∗n(w)

√
Rn+1

+
ã[n]n (w)d̃

[n]
n (w)F (w)

= − 2wn+1Ln+1

√
Ln+1

+
f(w)

√
Rn+1 − 2wn|w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
Rn+1

= − 2wn+1
√
Ln+1

(
f(w) +E

)√
Rn+1

and consequently

Ωf (w) −Mn+1(w) = −2wn+1Φ−1
√
Ln+1

(
f(w) +E

)√
Rn+1Ψ−1f . (4.6)

Moreover, from (3.4), Vn ∈ Ỹn, Wn ∈ Z̃n, and (4.5) we can conclude that(
I + E∗f(w)

)√
Rn+1

=
√
Rn+1 + wΘn(w)f(w)

√
Rn+1

=
√
Rn+1

(
bn(w)

)−1
bn(w) + w

√
Rn+1

(
bn(w)

)−1
d̃ [n]n (w)

√
Ln+1

+
f(w)

√
Rn+1

=
√
Rn+1

(
bn(w)

)−1Ψf . (4.7)

Since the matrix E is strictly contractive, the matrix I + E∗f(w) is nonsingular
(see, e.g., [DFK, Lemma 1.1.12, Lemma 1.1.13, and Remark 1.1.2]). Therefore,
from (4.7) we get the identity√

Rn+1Ψ−1f =
(
I + E∗f(w)

)−1√
Rn+1

(
bn(w)

)−1
. (4.8)
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Combining (4.6), (4.3), (4.8), (1.12), and (1.13) we obtain

Ωf (w) −Mn+1(w)
= − 2wn+1

(
dn(w)

)−1√
Ln+1

(
I − EE∗

)−1(
f(w) +E

)
·
(
I + E∗f(w)

)−1√
Rn+1

(
bn(w)

)−1
= − 2wn+1

(
dn(w)

)−1√
Ln+1

√
I − EE∗ −1

√
I − EE∗−1

(
f(w) +E

)
·
(
I + E∗f(w)

)−1√
I − E∗E

√
I − E∗E

−1√
Rn+1

(
bn(w)

)−1
= − 2wn+1An+1(w)

√
I−EE∗ −1

(
f(w) +E

)(
I + E∗f(w)

)−1√
I−E∗E Bn+1(w).

Thus (4.4) is proved.
Step B. We are going to check that{

Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]
}
⊆ K
(
Mn+1(w); 2|w|n+1An+1(w),Bn+1(w)

)
(4.9)

is satisfied. Let X ∈
{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
. According to (4.2) there is an

f ∈ Sq×q(D) such that X = Ωf (w), where Ωf : D → Cq×q is given by (4.1) with
F :=

√
Ln+1

+
f
√
Rn+1. By virtue of Step A we have then (4.4). Since the matrix

H(E) :=

( √
I − EE∗ −1

√
I − EE∗ −1E√

I − E∗E −1E∗
√
I − E∗E −1

)
fulfills the identity (

H(E)
)∗(Iq 0

0 −Iq

)
H(E) =

(
Iq 0
0 −Iq

)
(4.10)

(see, e.g., [DFK, Lemma 3.6.32 and Lemma 1.1.12]), an application of [DFK,
part (a) of Theorem 1.6.1] provides us that the complex q × q matrix

√
I − EE∗ −1

(
f(w) +E

)(
I + E∗f(w)

)−1√
I − E∗E

is contractive. Since u belongs to T, the matrix

K := −un+1
√
I − EE∗ −1

(
f(w) +E

)(
I + E∗f(w)

)−1√
I − E∗E

is also contractive and because of (4.4) we have finally

X −Mn+1(w) = Ωf (w) −Mn+1(w) = 2|w|n+1An+1(w)KBn+1(w).

Consequently, (4.9) is proved.
Step C. We are going to check that

K
(
Mn+1(w); 2|w|n+1An+1(w),Bn+1(w)

)
⊆
{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
(4.11)

is satisfied as well. For this reason, we consider an arbitrary element X of the
matrix ball K

(
Mn+1(w); 2|w|n+1An+1(w),Bn+1(w)

)
. Then there is a contractive

q × q matrix C such that

X −Mn+1(w) = −2wn+1An+1(w)
(
−un+1C

)
Bn+1(w)
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holds. According to (4.10) and [DFK, part (a) of Theorem 1.6.2] there is a con-
tractive q × q matrix D such that

−un+1C =
√
I − EE∗ −1(D + E)(I + E∗D)−1

√
I − E∗E.

Let f be the constant matrix-valued function defined on D with value D. Then f
belongs to Sq×q(D), where on the one hand the equality
X −Mn+1(w)

= −2wn+1An+1(w)
√
I−EE∗ −1

(
f(w)+E

)(
I+E∗f(w)

)−1√
I−E∗E Bn+1(w)

holds and where Step A shows on the other hand that the function Ωf defined
by (4.1) with F :=

√
Ln+1

+
f
√
Rn+1 fulfills (4.4). Comparing both relations we

get Ωf (w) = X . Applying Theorem 2.1 we see that Ωf belongs to Cq[D, (Γj)nj=0].
Thus X belongs to

{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
which implies finally (4.11).

In view of (4.9) and (4.11) the proof is complete. �

Remark 4.2. Let the assumptions of Theorem 1.1 be fulfilled. From Theorem 1.1
and [Sm, Theorem 1.3] (see also [DFK, Theorem 1.5.2]) one can see that{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
= K

(
Mn+1(w); |w|n+1

√
2Ln+1(w),

√
2Rn+1(w)

)
holds for each w ∈ D, whereMn+1(w), Ln+1(w), andRn+1(w) are given by (1.11),

Ln+1(w) :=
(
dn(w)

)−1√
Ln+1

(
Iq − |w|2Θ∗n(w)Θn(w)

)−1√
Ln+1

(
dn(w)

)−∗
,

and

Rn+1(w) :=
(
bn(w)

)−∗√
Rn+1

(
Iq − |w|2Θn(w)Θ∗n(w)

)−1√
Rn+1

(
bn(w)

)−1
.

In the special case n = 0, for each w ∈ D, straightforward calculations yield that

M1(w) =
1+|w|2
1−|w|2 ReΓ0+i ImΓ0, L1(w) =

1
1−|w|2 ReΓ0, and R1(w) = L1(w).

Remark 4.3. Let the assumptions of Theorem 1.1 be fulfilled. By virtue of [FKL1,
Lemma 6.1] one can get that the following statements are equivalent:
(i) There is one and only one Ω ∈ Cq(D) such that (1.2) holds for each j ∈ N0,n.
(ii) For each w ∈ D, the identities An+1(w) = 0 and Bn+1(w) = 0 hold.
(iii) There is some w ∈ D such that An+1(w) = 0 or Bn+1(w) = 0.

Remark 4.4. Let the assumptions of Theorem 1.1 be fulfilled. Taking into account
[FK1, Remark 2 in Part I], for each w ∈ D, one can immediately see that

rank An+1(w) = rank Ln+1 = rank Rn+1 = rank Bn+1(w).

Remark 4.5. Let the assumptions of Theorem 1.1 be fulfilled. From Remark 4.4
and [FKL1, Lemma 5.1] it follows that the following statements are equivalent:
(i) (Γj)nj=0 is a nondegenerate q × q Carathéodory sequence.
(ii) For each w ∈ D, both matrices An+1(w) and Bn+1(w) are nonsingular.
(iii) There is some w ∈ D such that An+1(w) or Bn+1(w) is nonsingular.



Weyl Matrix Balls 307

Remark 4.6. Let the assumptions of Theorem 1.1 be fulfilled. Then

detAn+1(w) = detBn+1(w)

for each w ∈ D. Indeed, if (Γj)nj=0 is a nondegenerate q×q Carathéodory sequence,
then this follows from the equation detLn+1 = detRn+1 (see [FK1, Remark 2 in
Part I]), from the identity det dn(w) = det bn(w) which holds for each w ∈ C (see
[FKL1, Lemma 5.1, Remark 5.2, and Lemma 5.5] and [DGK1, equation (72)]), and
from [DFK, Lemma 1.1.8]. In the degenerate case it suffices to apply Remark 4.5.

In the rest of this section let us consider the so-called nondegenerate case
which was discussed in [FK1, Part IV and Part V] in order to understand how
one can guess that the Weyl matrix ball representation stated in Theorem 1.1
holds. Let n ∈ N0. Firstly, we assume a given sequence (Γj)nj=0 of complex q × q
matrices such that the matrix Γ0 is nonsingular. Then the matrix Sn defined by
(1.1) is nonsingular as well and there is a unique sequence (Γ�j)

n
j=0 of complex q×q

matrices such that the block Toeplitz matrix

S�n :=

⎛⎜⎜⎜⎜⎜⎝
Γ�0 0 0 . . . 0
Γ�1 Γ�0 0 . . . 0
Γ�2 Γ�1 Γ�0

. . .
...

...
...

...
. . . 0

Γ�n Γ�n−1 Γ�n−2 . . . Γ�0

⎞⎟⎟⎟⎟⎟⎠ (4.12)

coincides with S−1n . This sequence (Γ�j)
n
j=0 fulfills the identity S

�
k = S−1k for each

k ∈ N0,n. Moreover, by setting

T �n := 2ReS
�
n (4.13)

we obtain
T �n = S−∗n TnS

−1
n and T �n = S−1n TnS

−∗
n . (4.14)

Therefore, it is readily checked that (Γj)nj=0 is a q×q Carathéodory sequence if and
only if (Γ�j)

n
j=0 is a q×q Carathéodory sequence. If (Γj)nj=0 is a q×q Carathéodory

sequence with nonsingular matrix Γ0, then (Γ
�
j)
n
j=0 is called the reciprocal q × q

Carathéodory sequence corresponding to (Γj)nj=0. Now let (Γj)
n
j=0 be a nondegene-

rate q × q Carathéodory sequence. Then the matrix Γ0 is necessarily nonsingular.
Thus the matrix Sn is nonsingular and the reciprocal q×q Carathéodory sequence
(Γ�j)

n
j=0 corresponding to (Γj)

n
j=0 is well defined. Furthermore, in view of (4.14),

one can see that this q × q Carathéodory sequence (Γ�j)nj=0 is also nondegenerate,
i.e., the block Toeplitz matrix T �n defined by (4.13) and (4.12) is positive Hermitian.
Consequently, the matrix polynomials ηn, ζn, η�n, and ζ�n given by

ηn := en,qT
−1
n en,q(0), ζn := εn,q(0)T−1n εn,q,

η�n := en,q(T �n)
−1en,q(0), ζ�n := εn,q(0)(T �n)

−1εn,q
are well defined, where en,q and εn,q are the matrix polynomials given by (1.3).
Moreover, the matrices Tn−1, Ln+1, and Rn+1 are positive Hermitian (see, e.g.,
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[FKL1, Lemma 5.1]). In view of [FK1, Theorems 28 and 29 in Part V] one can see
that, if w ∈ D, then the set{

Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]
}

coincides with the matrix ball

K
(
Mn+1(w); |w|n+1

√
2Ln+1(w),

√
2Rn+1(w)

)
,

where

Ln+1(w) :=
(
ζ∗n(w)Ln+1ζn(w) − |w|2

(
η̃[n]n (w)

)∗
Rn+1η̃

[n]
n (w)

)−1
,

Rn+1(w) :=
(
ηn(w)Rn+1η

∗
n(w) − |w|2ζ̃[n]n (w)Ln+1

(
ζ̃[n]n (w)

)∗ )−1
,

and

Mn+1(w) := Ln+1(w)
(
ζ∗n(w)Ln+1Γ−∗0 ζ�n(w)+ |w|2

(
η̃[n]n (w)

)∗
Rn+1Γ−10 (η̃�n)[n](w)

)
.

Comparing this result for the nondegenerate case with the general one stated in
Theorem 1.1, for each w ∈ D, from [DFK, Corollary 1.5.1 and Theorem 1.5.2] we
know that the identity Mn+1(w) = Mn+1(w) holds and that there is a positive
real number ρn(w) such that both equalities

Ln+1(w) = ρn(w)Ln+1(w) and Rn+1(w) =
1

ρn(w)
Rn+1(w)

are fulfilled, where Ln+1(w) and Rn+1(w) are the matrices defined in Remark 4.2.
We are going to show that actually ρn(w) = 1 holds for each w ∈ D. For this
reason, first we observe that, in the nondegenerate case we have

Yn = Ỹn =
{
T−1n−1Yn

}
, Zn = Z̃n =

{
ZnT

−1
n−1
}
,

and that the formulas in (4.14) and the equations

2Yn − Sn−1T−1n−1Yn = S∗n−1T
−1
n−1, 2Zn − ZnT−1n−1Sn−1 = ZnT

−1
n−1S

∗
n−1,

T−1n

(
Iq
0

)
=
(

Iq

−T−1n−1Yn

)
R−1n+1,

(
T �n
)−1(Iq

0

)
Γ−∗0 = Sn

(
Iq

−T−1n−1Yn

)
R−1n+1 =

(
Γ0

S∗n−1T
−1
n−1Yn

)
R−1n+1,(

0, Iq
)
T−1n = L−1n+1

(
−ZnT−1n−1, Iq

)
,

and

Γ−∗0
(
0, Iq

)
(T �n)

−1 = L−1n+1

(
−ZnT−1n−1, Iq

)
Sn = L−1n+1

(
ZnT

−1
n−1S

∗
n−1, Γ0

)
are valid. Thus we can conclude that the identities

ηn = bnR
−1
n+1, η�n = anR

−1
n+1Γ

∗
0, ζn = L−1n+1dn, and ζ�n = Γ

∗
0L
−1
n+1cn (4.15)
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are satisfied (see also [FK3, Section 1]). Let w ∈ D. In view of the definition of
Ln+1(w), (3.5), and (4.15) we get

Ln+1(w) =
(
dn(w)

)−1√
Ln+1

(
I − |w|2Θ∗n(w)Θn(w)

)−1√
Ln+1

(
dn(w)

)−∗
=
(
d∗n(w)L

−1
n+1dn(w)− |w|2

(
b̃[n]n (w)

)∗
R−1n+1b̃

[n]
n (w)

)−1
=
(
ζ∗n(w)Ln+1ζn(w) − |w|2

(
η̃[n]n (w)

)∗
Rn+1η̃

[n]
n (w)

)−1
= Ln+1(w)

and by virtue of the definition of Rn+1(w), (3.4), and (4.15) analogously

Rn+1(w) = Rn+1(w).

Note that, based on (4.15), one can also check explicitly thatMn+1(w) = Mn+1(w)
is satisfied. Moreover, taking into account the definitions ofRn+1(w), Ln+1(w), ηn,
and ζn as well as (1.3), (1.4), (1.5), and (1.6), an application of the Gohberg-Heinig
formula (see [GH, Theorem 1.1]) for the inverse of a nonsingular block Toeplitz
matrix shows again that the identities

Ln+1(w) =
1

1−|w|2
(
ε∗n,q(w)T

−1
n εn,q(w)

)−1
and

Rn+1(w) =
1

1−|w|2
(
en,q(w)T−1n e∗n,q(w)

)−1
are fulfilled as well (see also [FKL2, Section 6]).

5. On the Weyl matrix balls associated with reciprocal
matrix-valued Carathéodory sequences

It is a well-known fact that if Ω ∈ Cq(D) such that det Ω(0) �= 0, then detΩ(w) �= 0
for each w ∈ D (see, e.g., [FK1, Remark 30 in Part V]). Taking into account this,
for a fixed point w ∈ D, in the following section we give a matrix ball description
of the set

{(
Ω(w)

)−1 : Ω ∈ Cq[D, (Γj)nj=0]
}
for the case that the matrix Γ0 of the

underlying q×q Carathéodory sequence (Γj)nj=0 is nonsingular. In fact, we present
a similar description as given by Theorem 1.1 for

{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
,

where the q × q Schur function Θ�n defined by (3.9) is involved instead of Θn.
Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence such that the

matrix Γ0 is nonsingular. Then the matrix Sn given by (1.1) is nonsingular and
hence the reciprocal q×q Carathéodory sequence (Γ�j)nj=0 corresponding to (Γj)

n
j=0

is well defined. Note that, if n ≥ 1, if Vn ∈ Yn and Wn ∈ Zn, and if we set
V �n := −S∗n−1VnΓ−10 and W �

n := −Γ−10 WnS
∗
n−1, (5.1)

then Vn = −(S�n−1)∗V �n(Γ�0)−1 and Wn = −(Γ�0)−1W �
n(S

�
n)
∗ as well as

V �n ∈ Y�n and W �
n ∈ Z�n, (5.2)
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where Y�n :={V ∈Cnq×q : T �n−1V =Y
�
n} and Z�n :={W ∈Cn×nq : WT �n−1=Z

�
n} with

Y �n :=
1
2

⎛⎜⎜⎜⎝
Γ�1
Γ�2
...
Γ�n

⎞⎟⎟⎟⎠ and Z�n :=
1
2

(
Γ�n,Γ

�
n−1, . . . ,Γ

�
1

)

(cf. [FK3, Lemma 3.2]). Moreover, if the matrix polynomials an, bn, cn, and dn
are defined as in (1.7), (1.8), (1.9), and (1.8) and if the matrix polynomials a�n, b�n,
c�n, and d

�
n are (based on (5.1)) given by

a�n(z) :=
{

Γ�0 if n = 0
Γ�0 + zen−1,q(z)(S

�
n−1)

∗V �n if n ≥ 1 , (5.3)

b�n(z) :=
{

Iq if n = 0
Iq − zen−1,q(z)V �n if n ≥ 1 , (5.4)

c�n(z) :=
{

Γ�0 if n = 0
W �
n(S

�
n−1)

∗zεn−1,q(z) + Γ
�
0 if n ≥ 1 , (5.5)

and

d�n(z) :=
{

Iq if n = 0
−W �

nzεn−1,q(z) + I if n ≥ 1 (5.6)

with some Vn ∈ Yn and Wn ∈ Zn in the case of n ≥ 1, then it is readily checked
that the equalities

a�n = bnΓ−10 , b�n = anΓ−10 , c�n = Γ
−1
0 dn, and d�n = Γ

−1
0 cn (5.7)

hold. Using these identities, we obtain the following interrelation between the
construction of q × q Schur functions stated in Propositions 3.4 and 3.8.
Proposition 5.1. Let n ∈ N0, let (Γj)nj=0 be a q×q Carathéodory sequence such that
the matrix Γ0 is nonsingular, and let (Γ�j)

n
j=0 be the reciprocal q× q Carathéodory

sequence corresponding to (Γj)nj=0. If n ≥ 1, then let Vn ∈ Ỹn, let Wn ∈ Z̃n, let
V �n := −S∗n−1VnΓ−10 , and let W �

n := −Γ−10 WnS
∗
n−1. Furthermore, let the matrix

polynomials an, bn, cn, dn, a�n, b
�
n, c

�
n, and d�n be defined by (1.7), (1.8), (1.9),

(1.10), (5.3), (5.4), (5.5), and (5.6) and let the matrix-valued functions Θn, Θ�n,
Θ�n, and Ξn be given by (3.4), (3.9),

Θ�n :=
√
R�n+1(b

�
n)
−1(̃d�n)

[n]√
L�n+1

+

, (5.8)

and

Ξn :=
√
R�n+1(a

�
n)
−1(̃c�n)

[n]√
L�n+1

+

,

where
L�1 := ReΓ

�
0, R�1 := ReΓ

�
0 (5.9)

in the case n = 0 and

L�n+1 := ReΓ
�
0 − Z�n(T �n−1)+(Z�n)∗, R�n+1 := ReΓ

�
0 − (Y �n)∗(T �n−1)+Y �n (5.10)
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if n ≥ 1. There are unitary q × q matrices U and V fulfilling

Γ−10

√
Ln+1 =

√
L�n+1U

∗ and
√
Rn+1Γ−10 = V ∗

√
R�n+1 (5.11)

and, if U and V are such unitary q × q matrices, then

Θ�n = R�n+1(R
�
n+1)

+V Θ�nU, Θ�n = VΘ�nUL
�
n+1(L

�
n+1)

+ (5.12)

and
Ξn = R�n+1(R

�
n+1)

+V ΘnU, Ξn = VΘnULn+1(L
�
n+1)

+. (5.13)

In particular, if Γ0 = I, then Θ�n = Θ
�
n and Ξn = Θn.

Proof. Using [FK3, the formulas by (3.15)] and the polar decomposition of matrices
we get that there are unitary q×q matrices U and V such that the identities stated
in (5.11) are satisfied. Lemma 3.2 yields

Rn+1b
−1
n d̃ [n]n = b̃[n]n d−1n Ln+1 and Rn+1a

−1
n c̃[n]n = ã[n]n c−1n Ln+1. (5.14)

Because of (5.8), (5.7), (5.14), (5.11), and (3.10) we can conclude

Θ�n =
√
R�n+1(b

�
n)
−1 (̃d�n)

[n]√
L�n+1

+

= V
√
Rn+1a

−1
n c̃[n]n Γ

−∗
0

√
L�n+1

+

= V
√
Rn+1

+
ã[n]n c−1n Ln+1Γ−∗0

√
L�n+1

+

= VΘ�n
√
Ln+1Γ−∗0

√
L�n+1

+

= VΘ�n
(√

L�n+1U
∗)∗√L�n+1

+

= VΘ�nUL
�
n+1(L

�
n+1)

+.

Thus the second equation in (5.12) is checked. Similarly, based on (5.7), (5.14),
and (5.11) the first equation in (5.12) and the identities in (5.13) can be proved. In
the particular case Γ0 = Iq one can choose U = V = Iq (note [FK3, the formulas
in (3.15)] and (5.11)) so that Θ�n = Θ

�
n and Ξn = Θn follow from (5.7). �

Theorem 5.2. Let n ∈ N0 and let (Γj)nj=0 be a q × q Carathéodory sequence such
that the matrix Γ0 is nonsingular. If n ≥ 1, then let Vn ∈ Ỹn and let Wn ∈ Z̃n.
Let the matrix polynomials an, bn, cn, and dn be defined by (1.7), (1.8), (1.9),
and (1.10). Let the matrices Ln+1, Rn+1, L

�
n+1, and R�n+1 be given by (1.4),

(1.6), (5.9), and (5.10), where (Γ�j)
n
j=0 stands for the reciprocal q×q Carathéodory

sequence corresponding to (Γj)nj=0. If Ω ∈ Cq[D, (Γj)nj=0], then the function detΩ
does not vanish in D and{(

Ω(w)
)−1 : Ω ∈ Cq[D, (Γj)nj=0]

}
= K
(
M′
n+1(w); 2|w|n+1A′n+1(w),B′n+1(w)

)
for each w ∈ D with

M′
n+1(w) :=

(
cn(w) − |w|2G�

n(w)ã
[n]
n (w)

)−1(
dn(w) + |w|2G�

n(w)b̃
[n]
n (w)

)
, (5.15)

A′n+1(w) :=
(
cn(w)

)−1√
Ln+1

√
Iq − |w|2

(
Θ�n(w)

)∗Θ�n(w)−1, (5.16)

and

B′n+1(w) :=
√
Iq − |w|2Θ�n(w)

(
Θ�n(w)

)∗ −1√
Rn+1

(
an(w)

)−1
, (5.17)
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where G�
n(w) :=

√
Ln+1

(
Θ�n(w)

)∗√
Rn+1

+
Γ∗0R

�
n+1(R

�
n+1)

+Γ−∗0 and where Θ�n
stands for the rational matrix-valued function defined by (3.9). Moreover, for each
w ∈ D, the matrix M′

n+1(w) can be represented via

M′
n+1(w) =

(
bn(w) + |w|2d̃ [n]n (w)F�

n (w)
)(
an(w) − |w|2c̃[n]n (w)F�

n (w)
)−1

,

where F�
n (w) := Γ

−∗
0 L�n+1(L

�
n+1)

+Γ∗0
√
Ln+1

+(
Θ�n(w)

)∗√
Rn+1.

Proof. For each Ω ∈ Cq[D, (Γj)nj=0] we have detΩ(0) = det Γ0 �= 0. Consequently,
the inequality detΩ(w) �= 0 holds for each w ∈ D and{

Ω−1 : Ω ∈ Cq[D, (Γj)nj=0]
}
= Cq[D, (Γ�j)nj=0] (5.18)

is valid (see, e.g., [FK1, Remark 30 in Part V]). Let the matrix polynomials a�n, b
�
n,

c�n, and d
�
n be defined by (5.3), (5.4), (5.5), and (5.6) based on (5.1). Let w ∈ D.

Due to (5.18), (5.2), (5.7), and Remark 3.7 an application of Theorem 1.1 yields{(
Ω(w)

)−1 : Ω ∈ Cq[D, (Γj)nj=0]
}
= K

(
M�
n+1(w); 2|w|n+1A�n+1(w),B�n+1(w)

)
with the settings

M�
n+1(w) :=

(
d�n(w)− |w|2G•n(w)(̃b�n)

[n]

(w)
)−1(

c�n(w) + |w|2G•n(w)(̃a�n)
[n]

(w)
)
,

A�n+1(w) :=
(
d�n(w)

)−1√
L�n+1

√
I − |w|2

(
Θ�n(w)

)∗Θ�n(w)−1,
and

B�n+1(w) :=
√
I − |w|2Θ�n(w)

(
Θ�n(w)

)∗ −1√
R�n+1

(
b�n(w)

)−1
,

where G•n(w) :=
√
L�n+1

(
Θ�n(w)

)∗√
R�n+1

+

and where Θ�n is the matrix-valued
function defined by (5.8). From Theorem 1.1 we also see that

M�
n+1(w)=

(
a�n(w) + |w|2(̃c�n)

[n]

(w)F •n (w)
)(
b�n(w)− |w|2(̃d�n)

[n]

(w)F •n (w)
)−1

(5.19)

holds, where F •n(w) :=
√
L�n+1

+(
Θ�n(w)

)∗√
R�n+1. According to Proposition 5.1

there are unitary q × q matrices U and V such that (5.11), (5.12), and (5.13) are
valid. Using (5.11), (5.12), and (3.9) we obtain

G•n(w) = Γ−10

√
Ln+1U

(
R�n+1(R

�
n+1)

+VΘ�n(w)U
)∗√

R�n+1

+

= Γ−10

√
Ln+1

(
Θ�n(w)

)∗
V ∗
√
R�n+1

+

= Γ−10

√
Ln+1

(
Θ�n(w)

)∗√
Rn+1

+√
Rn+1V

∗√Rn+1
+

= Γ−10

√
Ln+1

(
Θ�n(w)

)∗√
Rn+1

+
Γ∗0
√
R�n+1

√
R�n+1

+

= Γ−10

√
Ln+1

(
Θ�n(w)

)∗√
Rn+1

+
Γ∗0R

�
n+1(R

�
n+1)

+ (5.20)
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and analogously

F •n(w) = L�n+1(L
�
n+1)

+Γ∗0
√
Ln+1

+(
Θ�n(w)

)∗√
Rn+1 Γ−10 . (5.21)

In addition, from (5.12), (3.10), and (5.11) we also get(
Θ�n(w)

)∗Θ�n(w)
= U∗

(
Θ�n(w)

)∗
V ∗(R�n+1)

+R�n+1VΘ
�
n(w)U

= U∗
(
Θ�n(w)

)∗√
Rn+1

+√
Rn+1V

∗(R�n+1)
+R�n+1

(√
Rn+1V

∗)∗√Rn+1
+
Θ�n(w)U

= U∗
(
Θ�n(w)

)∗√
Rn+1

+
Γ∗0
√
R�n+1

√
R�n+1Γ0

√
Rn+1

+
Θ�n(w)U

= U∗
(
Θ�n(w)

)∗√
Rn+1

+
Rn+1

√
Rn+1

+
Θ�n(w)U = U∗

(
Θ�n(w)

)∗Θ�n(w)U (5.22)

and analogously

Θ�n(w)
(
Θ�n(w)

)∗ = VΘ�n(w)
(
Θ�n(w)

)∗
V ∗. (5.23)

Because of (5.7) and (5.20) we have

d�n(w)− |w|2G•n(w)(̃b�n)
[n]

(w) = Γ−10

(
cn(w) − |w|2G�

n(w)ã
[n]
n (w)

)
and

c�n(w) + |w|2G•n(w)(̃a�n)
[n]

(w) = Γ−10

(
dn(w) + |w|2G�

n(w)b̃
[n]
n (w)

)
.

Thus we see thatM′
n+1(w) is a well-defined matrix and that the identity

M′
n+1(w) =M�

n+1(w) (5.24)

holds. Furthermore, from (5.19), (5.7), and (5.21) it follows the second represen-
tation ofM′

n+1(w). By virtue of (5.7), (5.11), and (5.22) we can conclude

A�n+1(w) =
(
cn(w)

)−1√
Ln+1U

√
I − |w|2U∗

(
Θ�n(w)

)∗Θ�n(w)U −1
=
(
cn(w)

)−1√
Ln+1

√
I − |w|2

(
Θ�n(w)

)∗Θ�n(w)−1U = A′n+1(w)U

and because of (5.23) analogously

B�n+1(w) = V B′n+1(w).

Application of [Sm, Theorem 1.3] completes the proof. �

Remark 5.3. Let the assumptions of Theorem 5.2 be fulfilled. Then Theorem 5.2
and [Sm, Theorem 1.3] (see also [DFK, Theorem 1.5.2]) imply the identity{(
Ω(w)

)−1 : Ω∈Cq[D, (Γj)nj=0]
}
= K

(
M′
n+1(w); |w|n+1

√
2L′n+1(w),

√
2R′n+1(w)

)
for each w ∈ D, whereM′

n+1(w), L′n+1(w), and R′n+1(w) are given by (5.15),

L′n+1(w) :=
(
cn(w)

)−1√
Ln+1

(
Iq − |w|2

(
Θ�n(w)

)∗Θ�n(w))−1√Ln+1

(
cn(w)

)−∗
,
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and

R′n+1(w) :=
(
an(w)

)−∗√
Rn+1

(
Iq − |w|2Θ�n(w)

(
Θ�n(w)

)∗)−1√
Rn+1

(
an(w)

)−1
.

Remark 5.4. Let the assumptions of Theorem 5.2 be fulfilled and let Γ0 = Iq.
Then (5.11) shows that L�n+1 = Ln+1 and R

�
n+1 = Rn+1 hold. Thus it is readily

checked that, for each w ∈ D, the matrices G�
n(w) and F�

n (w), which lead to
representations ofM′

n+1(w) according to Theorem 5.2, have the simpler form

G�
n(w) =

√
Ln+1

(
Θ�n(w)

)∗√
Rn+1

+
and F�

n (w) =
√
Ln+1

+(
Θ�n(w)

)∗√
Rn+1

in that case. (These formulas are already satisfied if Γ0 is a unitary q× q matrix.)

Remark 5.5. Let the assumptions of Theorem 5.2 be fulfilled. In view of [FK1,
Remark 2 in Part I], (5.11), and Theorem 5.2 one can see that

rank A′n+1(w) = rank Ln+1 = rank Rn+1 = rank B′n+1(w)

for every choice of w in D.

Let the assumptions of Theorem 5.2 be fulfilled. Based on Remarks 4.4, 5.5,
and 4.3 one can immediately get further necessary and sufficient conditions for the
fact that the solution set Cq[D, (Γj)nj=0] of the matricial Carathéodory problem
contains exactly one element. Moreover, application of Remarks 4.4, 5.5, and 4.5
yields further necessary and and sufficient conditions for the nondegeneracy of a
given q × q Carathéodory sequence (Γj)nj=0. We omit the details.

Remark 5.6. Let the assumptions of Theorem 5.2 be fulfilled. From Remark 4.6
and (5.7) one can see that the identity detan(w) = det cn(w) holds for each w ∈ D.
Thus taking into account [FK1, Remark 2 in Part I], [DFK, Lemma 1.1.8], (5.16),
and (5.17) for each w ∈ D it follows

detA′n+1(w) = detB′n+1(w).

6. Further observations on the matrix-valued functions Θn and Θ�
n

Theorem 1.1 shows that the rational matrix-valued function Θn defined by (3.4)
plays a key role in the description of the Weyl matrix balls of the solutions of the
matricial Carathéodory problem. In this section, we check that this function Θn
(and hence the parameters of the Weyl matrix balls defined by Theorem 1.1) does
not depend on the concrete choice of the underlying matrix Vn in the set Ỹn and
the underlying matrix Wn in the set Z̃n. Furthermore, we will state a possibility
to construct recursively the function Θn. Since there are matrix polynomials an,
bn, cn, and dn of the types which are considered in Theorem 1.1 which can be
constructed recursively as well (see [FK3, Proposition 4.4, Remark 4.5, and Lem-
ma 4.6]) one gets a particular possibility to calculate the parameters of the Weyl
matrix balls of the solutions of matricial Carathéodory problem. Moreover, we
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present analogous results corresponding to the rational matrix-valued function Θ�n
defined by (3.9), which appears in the Weyl matrix balls studied in Theorem 5.2.

At first, we show that the functions Θn and Θ�n are independent of the con-
crete choice of Vn in Ỹn and Wn in Z̃n. In other words, the functions Θn and Θ�n
depend only on the given q × q Carathéodory sequence (Γj)nj=0.

Proposition 6.1. Let n∈N0 and let (Γj)nj=0 be a q × q Carathéodory sequence. If
n≥ 1, then let Vn,Vn ∈ Ỹn and let Wn,Wn ∈ Z̃n. Let an, bn, cn, and dn be the
matrix polynomials given by (1.7), (1.8), (1.9), and (1.10), and let an, bn, cn,
and dn be the matrix polynomials which are defined analogously to an, bn, cn, and
dn using (if n ≥ 1) the matrices Vn and Wn instead of Vn and Wn, respectively.
Furthermore, let the matrices Ln+1 and Rn+1 be given by (1.4) and (1.6). Then:
(a) The matrix-valued functions

Θn :=
√
Rn+1b

−1
n d̃ [n]n

√
Ln+1

+
and Θn :=

√
Rn+1b−1n d̃[n]

n

√
Ln+1

+

coincide.
(b) If the matrix Γ0 is nonsingular, then the matrix-valued functions

Θ�n :=
√
Rn+1a

−1
n c̃[n]n

√
Ln+1

+
and Θ�

n :=
√
Rn+1a−1n c̃[n]n

√
Ln+1

+

coincide.

Proof. (a) Let w ∈ D \ {0}. Using Theorem 1.1 in combination with [DFK, Corol-
lary 1.5.1] we can conclude(

an(w) + |w|2c̃[n]n (w)Fn (w)
)(
bn(w) − |w|2d̃ [n]n (w)Fn(w)

)−1
=
(
an(w) + |w|2c̃[n]n (w)Fn(w)

)(
bn(w) − |w|2d̃[n]

n (w)Fn(w)
)−1

, (6.1)

where Fn(w) :=
√
Ln+1

+
Θ∗n(w)

√
Rn+1 and Fn(w) :=

√
Ln+1

+
Θ∗
n(w)

√
Rn+1.

According to Proposition 3.4 the matrix −wΘ∗
n(w) is strictly contractive. Thus

[FKL1, Lemma 3.1] yields(
an(w) + |w|2c̃[n]n (w)Fn(w)

)(
bn(w) − |w|2d̃[n]

n (w)Fn(w)
)−1

=
(
an(w) + |w|2c̃[n]n (w)Fn(w)

)(
bn(w) − |w|2d̃ [n]n (w)Fn(w)

)−1
.

Combining this with (6.1) we obtain(
an(w) + |w|2c̃[n]n (w)Fn(w)

)(
bn(w) − |w|2d̃ [n]n (w)Fn(w)

)−1
=
(
an(w) + |w|2c̃[n]n (w)Fn(w)

)(
bn(w) − |w|2d̃ [n]n (w)Fn(w)

)−1
.

Since we see from Proposition 3.4 that the matrices −wΘ∗n(w) and −wΘ∗
n(w) are

both contractive, Proposition 2.2 provides us

−wLn+1L
+
n+1Θ

∗
n(w)Rn+1R

+
n+1 = −wLn+1L

+
n+1Θ

∗
n(w)Rn+1R

+
n+1.
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Therefore, in view of w �= 0 and the definitions of Θn and Θn, we get the identity
Θ∗n(w) = Θ∗

n(w), i.e., Θn(w) = Θn(w). Since Θn and Θn are rational matrix-
valued functions, we can finally conclude Θn = Θn.
(b) Based on the reciprocal q × q Carathéodory sequence (Γ�j)

n
j=0 to (Γj)

n
j=0, the

assertion of part (b) follows from (a) in combination with Proposition 5.1. �

Corollary 6.2. Let the assumptions of Proposition 6.1 be fulfilled. Then:
(a) The identities d−1n

√
Ln+1 = d−1n

√
Ln+1 and

√
Rn+1b

−1
n =

√
Rn+1b−1n hold.

(b) If the matrix Γ0 is nonsingular, then the equalities c−1n
√
Ln+1 = c−1n

√
Ln+1

and
√
Rn+1a

−1
n =

√
Rn+1a−1n are satisfied.

Proof. First we observe that one can easily see that each of the sets Nbn , Nb̃[n]
n
,

Ndn , Nd̃ [n]
n
, Nbn , Nb̃

[n]
n
, Ndn , and Nd̃

[n]
n
consists of at most nq elements. Taking

into account Lemma 3.2 we obtain

Rn+1b
−1
n d̃ [n]n = b̃[n]n d−1n Ln+1 and Rn+1b

−1
n d̃[n]

n = b̃[n]n d−1n Ln+1. (6.2)

Moreover, according to part (a) of Proposition 6.1, the rational matrix functions
Θn and

√
Rn+1b

−1
n d̃[n]

n

√
Ln+1

+
coincide. Thus from (6.2) it follows

b̃[n]n d−1n
√
Ln+1 = b̃[n]n d−1n Ln+1

√
Ln+1

+
= Rn+1b

−1
n d̃ [n]n

√
Ln+1

+
=
√
Rn+1Θn

= Rn+1b
−1
n d̃[n]

n

√
Ln+1

+
= b̃[n]n d−1n Ln+1

√
Ln+1

+
= b̃[n]n d−1n

√
Ln+1

and similarly
√
Rn+1b

−1
n d̃

[n]
n =

√
Rn+1b−1n d̃

[n]
n . Using continuity arguments we get

d−1n
√
Ln+1 = d−1n

√
Ln+1 and

√
Rn+1b

−1
n =

√
Rn+1b−1n .

Hence part (a) is proved. Applying Lemma 3.2, part (b) of Proposition 6.1, and
Proposition 3.8, part (b) can be verified analogously. �

Remark 6.3. Let the assumptions of Proposition 6.1 be fulfilled. Further, suppose
that the matrix Γ0 is nonsingular. Because of Corollary 6.2 one can immediately
conclude that the matrix-valued function Θ�n given by (3.17) coincides with

Θ�
n :=

√
Rn+1a−1n d−1n

√
Ln+1.

Based on part (a) of Proposition 6.1 we get that, for each w ∈ D, the semi-
radii of the matrix ball described in Theorem 1.1 is independent of the concrete
choice of the matrix Vn in Ỹn and the matrix Wn in Z̃n.
Remark 6.4. Let the assumptions of Proposition 6.1 be fulfilled. From Proposi-
tion 6.1 and Corollary 6.2 one can see that the identities An+1(w) = An+1(w)
and Bn+1(w) = Bn+1(w) hold for each w ∈ D, where An+1(w) and Bn+1(w) are
defined by (1.12) and (1.13) and where similarly

An+1(w) :=
(
dn(w)

)−1√
Ln+1

√
I − |w|2Θ∗

n(w)Θn(w)
−1

and
Bn+1(w) :=

√
I − |w|2Θn(w)Θ∗

n(w)
−1√

Rn+1

(
bn(w)

)−1
.
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The semi-radii of the matrix ball described in Theorem 5.2 do not depend on
the concrete choice of Vn in Ỹn and Wn in Z̃n as well.
Remark 6.5. Let the assumptions of Proposition 6.1 be fulfilled. Further, suppose
that the matrix Γ0 is nonsingular. From Proposition 6.1 and Corollary 6.2 it follows
that A′n+1(w) = A′n+1(w) and B′n+1(w) = B′n+1(w) hold for each w ∈ D, where
A′n+1(w) and B′n+1(w) are defined by (5.16) and (5.17) and where similarly

A′n+1(w) :=
(
cn(w)

)−1√
Ln+1

√
I − |w|2

(
Θ�
n(w)

)∗
Θ�
n(w)

−1

and

B′n+1(w) :=
√
I − |w|2Θ�

n(w)
(
Θ�
n(w)

)∗ −1√
Rn+1

(
an(w)

)−1
.

Now we are going to verify recurrence relations for the rational matrix-valued
functions Θn and Θ�n defined by (3.4) and (3.9), respectively. Before, we state some
technical results which are useful in view of the proof of these formulas.

Remark 6.6. Let A ∈ Cp×q and let B ∈ Cq×p. Then det(I − BA) = det(I − AB)
holds (see, e.g., [DFK, Lemma 1.1.8]). Moreover, if det(I − AB) �= 0, then the
identity (I −AB)−1A = A(I −BA)−1 is fulfilled.
Remark 6.7. Let n ∈ N and let (Γj)nj=0 be a q× q Carathéodory sequence. Let a0,
b0, c0, and d0 be the constant matrix-valued functions given, for each z ∈ C, by

a0(z) := Γ0, b0(z) := Iq, c0(z) := Γ0, d0(z) := Iq,

and for eachm ∈ N0,n−1 let the matrix polynomials am+1, bm+1, cm+1, and dm+1

be recursively defined, for each z ∈ C, by

am+1(z) := am(z) + zc̃[m]
m (z)tm+1, bm+1(z) := bm(z)− zd̃[m]

m (z)tm+1,

cm+1(z) := cm(z) + zum+1ã[m]
m (z), dm+1(z) := dm(z)− zum+1b̃[m]

m (z),
where
tm+1 :=L+

m+1

(
1
2Γm+1 −Mm+1

)
and um+1 :=

(
1
2Γm+1 −Mm+1

)
R+
m+1. (6.3)

In view of [FK3, Remark 4.5, Proposition 4.4, and Lemma 4.6] one can see that,
for each m ∈ N1,n, there are matrices Vm ∈ Ỹm and Wm ∈ Z̃m such that

am(z) = Γ0 + zem−1,q(z)S∗m−1Vm, bm(z) = Iq − zem−1,q(z)Vm,
cm(z) = WmS

∗
m−1zεm−1,q(z) + Γ0, dm(z) = −Wmzεm−1,q(z) + Iq

hold. In particular, for each m ∈ N0,n and each w ∈ D, the complex q× q matrices
bm(w) and dm(w) are nonsingular.

If (Γj)nj=0 is a q × q Carathéodory sequence, then we will use the notation

Mk+1 :=

{
0q×q if k = 0

ZkT
+
k−1Yk if k ∈ N1,n ,

(6.4)

where for each k ∈ N1,n the matrices Zk and Yk are given by (1.5). Furthermore,
let Θn be the matrix-valued function defined by (3.4).
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Theorem 6.8. Let n ∈ N0 and let (Γj)nj=0 be a q× q Carathéodory sequence. Then:

(a) Θ0 is the constant function with value (ReΓ0)(Re Γ0)+.
(b) If n ≥ 1, then for each m ∈ N1,n the matrix

Km :=
√
Lm

+ (
1
2Γm −Mm

)√
Rm

+
(6.5)

is contractive and the recurrence formulas

Θm(w)=
√
Rm+1

+√
Rm
(
wΘm−1(w)−K∗m

)(
I−wKmΘm−1(w)

)−1√
Lm

+√
Lm+1

and

Θm(w)=
√
Rm+1

√
Rm

+(
I−wΘm−1(w)Km

)−1(
wΘm−1(w)−K∗m

)√
Lm
√
Lm+1

+

hold for every choice of w in D.

Proof. Since (Γj)nj=0 is a q × q Carathéodory sequence, for each m ∈ N0,n the
sequence (Γj)mj=0 is a q× q Carathéodory sequence as well. According to Proposi-
tion 3.4, for each m ∈ N0,n the rational matrix-valued function Θm is well defined
and its restriction onto D belongs to Sq×q(D). Moreover, part (a) follows imme-
diately from (1.4), (1.8), (1.10), and a well-known statement on Moore-Penrose
inverses (see, e.g., [DFK, Lemma 1.1.6]). We consider now the case n ≥ 1. For
each m ∈ N0,n, let the matrix polynomials am, bm, cm, and dm be defined as
in Remark 6.7. For each m ∈ N1,n, from [FKL1, Remark 2.1] we get that the
matrix Km is contractive and consequently that for each w ∈ D the matrices
I − wKmΘm−1(w) and I − wΘm−1(w)Km are nonsingular. From Remark 6.7,
Proposition 3.4, and Proposition 6.1 we can conclude that, for each j ∈ N0,n and
each w ∈ D, the rational matrix-valued function Θj can be represented via

Θj(w) =
√
Rj+1

+
b̃[j]
j (w)

(
dj(w)

)−1√
Lj+1 (6.6)

and
Θj(w) =

√
Rj+1

(
bj(w)

)−1
d̃[j]
j (w)

√
Lj+1

+
. (6.7)

Now let m ∈ N1,n. Using Remark 6.7 we get

Θm(w) =
√
Rm+1

+(
wb̃[m−1]

m−1 (w)− t∗mdm−1(w)
)

·
(
dm−1(w) − wumb̃[m−1]

m−1 (w)
)−1√

Lm+1

=
√
Rm+1

+
(
wb̃[m−1]

m−1 (w)
(
dm−1(w)

)−1 − t∗m)
·
(
I − wumb̃[m−1]

m−1 (w)
(
dm−1(w)

)−1)√
Lm+1

for each w ∈ D. Because of (6.5), (6.3), and [FKL1, Remark 2.1] we have

tm =
√
Lm

+
Km
√
Rm and um =

√
LmKm

√
Rm

+
.

Furthermore, the identities√
Lm
√
Lm

+√
Lm+1 =

√
Lm+1 and

√
Rm+1

+√
Rm
√
Rm

+
=
√
Rm+1

+
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hold (see [DFK, Remark 3.4.3]). Thus it follows

Θm(w) =
√
Rm+1

+√
Rm

(
w
√
Rm

+
b̃[m−1]
m−1 (w)

(
dm−1(w)

)−1−K∗m√Lm+
)

·
(
I−w

√
LmKm

√
Rm

+
b̃[m−1]
m−1 (w)

(
dm−1(w)

)−1)−1√
Lm
√
Lm

+√
Lm+1

and consequently by virtue of Remark 6.6 then

Θm(w) =
√
Rm+1

+√
Rm

(
w
√
Rm

+
b̃[m−1]
m−1 (w)

(
dm−1(w)

)−1−K∗m√Lm+
)

·
√
Lm

(
I−wKm

√
Rm

+
b̃[m−1]
m−1 (w)

(
dm−1(w)

)−1√
Lm

)−1√
Lm

+√
Lm+1

for each w ∈ D. Thus, in view of (6.6) and K∗m
√
Lm

+√
Lm = K∗m we obtain that

Θm(w)=
√
Rm+1

+√
Rm
(
wΘm−1(w)−K∗m

)(
I−wKmΘm−1(w)

)−1√
Lm

+√
Lm+1

holds for each w ∈ D. Using (6.7), the other recurrence formula of part (b) can be
proved analogously. �

Corollary 6.9. Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence. For
each m ∈ N1,n, then

Θm(0) = −
√
Rm+1

+√
RmK

∗
m

√
Lm

+√
Lm+1

and

Θm(0) = −
√
Rm+1

√
Rm

+
K∗m
√
Lm
√
Lm+1

+
,

where Km is the matrix given by (6.5). Moreover, if m ∈ N1,n and if w ∈ D are
such that Θm−1(w) = 0, then Θm(w) = Θm(0).

Proof. Apply Theorem 6.8. �

Corollary 6.10. Let n ∈ N and let (Γj)nj=0 be a q× q Carathéodory sequence which
satisfies Γn = 2Mn, where Mn is defined by (6.4). For each w ∈ D, then

Θn(w) = wΘn−1(w).

Proof. In view of Γn = 2Mn, an application of [DFK, Remark 3.4.3] implies

Ln+1 = Ln and Rn+1 = Rn

as well as (6.5) yields
Kn = 0q×q.

Thus part (b) of Theorem 6.8 and (3.4) lead to

Θn(w) =
√
Rn+1

+√
RnwΘn−1(w)

√
Ln

+√
Ln+1 = wΘn−1(w)

for each w ∈ D. �
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Let n ∈ N and let (Γj)nj=0 be a q×q Carathéodory sequence. Since the matrix-
valued functions Θ0,Θ1, . . . ,Θn given by (3.4) are rational, there is a finite subset
N of C \ D such that the recurrence formulas stated in part (b) of Theorem 6.8
hold actually for each m ∈ N1,n and each w ∈ C \ N .

Now we are going to show that if a q×q Carathéodory sequence with nonsin-
gular matrix Γ0 is given, then the matrix-valued functions Θ�0,Θ�1, . . . ,Θ�n defined
by (3.9) fulfill some recurrence relations as well.

Theorem 6.11. Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence such
that the matrix Γ0 is nonsingular. Then:

(a) Θ�0 is the constant function with value
√
ReΓ0

+Γ∗0Γ
−1
0

√
ReΓ0.

(b) If n ≥ 1, then for each m ∈ N1,n and each w ∈ D the recurrence formulas

Θ�m(w)=
√
Rm+1

+√
Rm
(
wΘ�m−1(w)+K

∗
m

)(
I+wKmΘ�m−1(w)

)−1√
Lm

+√
Lm+1

and

Θ�m(w)=
√
Rm+1

√
Rm

+(
I+wΘ�m−1(w)Km

)−1(
wΘ�m−1(w)+K

∗
m

)√
Lm
√
Lm+1

+

hold, where Km is the contractive matrix given by (6.5).

Proof. Using Remark 3.7, Proposition 3.8, part (b) of Proposition 6.1, Remark 6.6,
and Remark 6.7 one can prove Theorem 6.11 analogously to Theorem 6.8. We omit
the details. �

Corollary 6.12. Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence with
nonsingular matrix Γ0. For each m ∈ N1,n, then Θ�m(0) = −Θm(0). Moreover, if
m ∈ N1,n and w ∈ D are such that Θ�m−1(w) = 0, then Θ�m(w) = Θ

�
m(0).

Proof. Use Theorem 6.11 and Corollary 6.9. �

Corollary 6.13. Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence such
that the matrix Γ0 is nonsingular and that the identity Γn = 2Mn is fulfilled, where
Mn is defined by (6.4). Then Θ�n(w) = wΘ�n−1(w) for each w ∈ D.

Proof. Using the same argumentation as in the proof of Corollary 6.10, the asser-
tion is an easy consequence of part (b) of Theorem 6.11. �

Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence with nonsin-
gular matrix Γ0. Since Θ�0,Θ�1, . . . ,Θ�n are rational matrix-valued functions, there
is a finite subsetM of C \ D such that the recurrence formulas in Theorem 6.11
hold actually for each m ∈ N1,n and each w ∈ C \ M. Furthermore, we note
marginally that one can also verify recurrence relations for the rational matrix-
valued functions Θ�0,Θ

�
1, . . . ,Θ

�
n given by (3.17) using the same argumentation as

in the proof of Theorem 6.8 (respectively, Theorem 6.11), where the function Θ�m
can be calculated based on Θ�m−1, Θ�m−1, Θm−1, and Km for each m ∈ N1,n.
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7. Some remarks on central q × q Carathéodory functions

In the present section, we are going to describe the situation that, starting from a
q × q Carathéodory sequence (Γj)nj=0 and a point w belonging to the unit disk D,
the value Ωc,n(w) of the central q × q Carathéodory function Ωc,n corresponding
to (Γj)nj=0 coincides with the center Mn+1(w) of the Weyl matrix ball which is
given by the value set

{
Ω(w) : Ω ∈ Cq[D, (Γj)nj=0]

}
according to Theorem 1.1.

Let us consider an arbitrary nonnegative integer n and an arbitrary q × q
Carathéodory sequence (Γj)nj=0. Then, in view of [DFK, Theorem 3.4.1], the set of
all complex q×q matrices Γn+1 such that (Γj)n+1

j=0 is a q×q Carathéodory sequence
coincides with the matrix ball K

(
2Mn+1;

√
2Ln+1,

√
2Rn+1

)
, where the matrices

Mn+1, Ln+1, and Rn+1 are defined by (6.4), (1.4), and (1.6). Thus the choice
Γn+1 := 2Mn+1 yields a particular q × q Carathéodory sequence (Γj)n+1

j=0 and the
set of all complex q × q matrices Γn+2 such that (Γj)n+2

j=0 is a q × q Carathéodory
sequence coincides with K

(
2Mn+2;

√
2Ln+2,

√
2Rn+2

)
. In this way, choosing

Γn+1+k := 2Mn+1+k (7.1)

for each k ∈ N0 one obtains a particular q× q Carathéodory sequence (Γj)∞j=0 and
hence a particular function which belongs to Cq[D, (Γj)nj=0], the so-called central
q × q Carathéodory function Ωc,n corresponding to (Γj)nj=0. Clearly, it admits the
Taylor series representation

Ωc,n(z) =
∞∑
k=0

Γkzk, z ∈ D,

where for each k ∈ N0 the matrices Γn+1+k are defined by (7.1). Moreover, for
each z ∈ D, it admits the representations

Ωc,n(z) = an(z)
(
bn(z)

)−1 and Ωc,n(z) =
(
dn(z)

)−1
cn(z), (7.2)

where Vn and Wn are arbitrary matrices which belong to Ỹn and Z̃n, respectively,
and where an, bn, cn, and dn are the matrix polynomials defined by (1.7), (1.8),
(1.9), and (1.10) (see [FK3, Remark 1.1 and Theorems 1.2., 1.7, and 2.3]).

In the following, we use again the notations of Theorem 1.1 and Remark 4.2.

Theorem 7.1. Let n ∈ N0, let (Γj)nj=0 be a q×q Carathéodory sequence, let Ωc,n be
the central q × q Carathéodory function corresponding to (Γj)nj=0, and let w ∈ D.
Furthermore, let the matrices Ln+1 and Rn+1 be defined by (1.4) and (1.6). Then
the following statements are equivalent:
(i) Ωc,n(w) =Mn+1(w).
(ii) wΘn(w) = 0.
(iii) An+1(w) =

(
dn(w)

)−1√
Ln+1.

(iv) Bn+1(w) =
√
Rn+1

(
bn(w)

)−1
.

(v) Ln+1(w) =
(
dn(w)

)−1
Ln+1

(
dn(w)

)−∗.
(vi) Rn+1(w) =

(
bn(w)

)−∗
Rn+1

(
bn(w)

)−1.
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Proof. (i) ⇔ (ii): If w = 0, the equivalence of (i) and (ii) is an easy consequence
of (7.2) and (1.11). Now suppose w �= 0. In view of Proposition 3.4 we see that(
−wΘn(w)

)∗ is contractive. Because of (7.2) we have on the one hand
Ωc,n(w) = an(w)(bn(w))−1

=
(
−wc̃[n]n (w)F1(w) + an(w)

)(
wd̃[n]n (w)F1(w) + bn(w)

)−1
with F1(w) :=

√
Ln+1

+
0
√
Rn+1, where on the other hand (1.14) implies

Mn+1(w) =
(
−wc̃[n]n (w)F2(w) + an(w)

)(
wd̃[n]n (w)F2(w) + bn(w)

)−1
with F2(w) :=

√
Ln+1

+(−wΘn(w))∗√Rn+1. Therefore, in view of w �= 0 and
part (a) of Proposition 2.2 we get that (i) is necessary and sufficient for

Ln+1L
+
n+1

(
−wΘn(w)

)∗
Rn+1R

+
n+1 = Ln+1L

+
n+10Rn+1R

+
n+1,

i.e., (i) is equivalent to

Rn+1R
+
n+1

(
wΘn(w)

)
Ln+1L

+
n+1 = 0.

Thus, because of (3.4), statement (i) is also tantamount to (ii) in this case.
(ii) ⇒ (iii): This implication follows immediately from (1.12).
(iii) ⇒ (v): Since the definitions of An+1(w) and Ln+1(w) imply the relation

An+1(w)A∗n+1(w) = Ln+1(w),

we can directly see that (iii) leads to (v).
(v) ⇒ (ii): Because of (v) we obtain(

dn(w)
)−1√

Ln+1

(
I − |w|2Θ∗n(w)Θn(w)

)−1√
Ln+1

(
dn(w)

)−∗
= Ln+1(w) =

(
dn(w)

)−1
Ln+1

(
dn(w)

)−∗
and hence √

Ln+1

(
I − |w|2Θ∗n(w)Θn(w)

)−1√
Ln+1 = Ln+1.

Therefore, taking into account (3.5) and Remark 6.6 we can conclude that

Ln+1 =
√
Ln+1

(
I − |w|2Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1√
Ln+1

)−1√
Ln+1

=
(
I − |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1 )−1
Ln+1.

This yields

Ln+1 =
(
I − |w|2

√
Ln+1Θ∗n(w)

√
Rn+1

+
b̃[n]n (w)

(
dn(w)

)−1 )
Ln+1

= Ln+1 − |w|2
√
Ln+1Θ∗n(w)Θn(w)

√
Ln+1

and consequently
|w|2
√
Ln+1Θ∗n(w)Θn(w)

√
Ln+1 = 0.

Thus, in view of (3.5), we get(
wΘn(w)

)∗(wΘn(w)) = |w|2√Ln+1
+√

Ln+1Θ∗n(w)Θn(w)
√
Ln+1

√
Ln+1

+
= 0.
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Consequently, (ii) holds.
(ii) ⇒ (iv): This follows immediately from (1.13).
(iv) ⇒ (vi): By definition of Bn+1(w) and Rn+1(w) we see that (iv) leads to (vi).
(vi) ⇒ (ii): This can be proved analogously to the implication ”(v) ⇒ (ii)”. We
omit the details. �

Now we consider a particular situation, where one of the equivalent conditions
stated in Theorem 7.1 is satisfied.

Proposition 7.2. Let n ∈ N and let (Γj)n−1j=0 be a q × q Carathéodory sequence. Let
the matrices Ln, Rn, and Mn be defined by (1.4), (1.6), and (6.4). Furthermore,
let w ∈ D and let

Γn := 2Mn +
√
2Ln

(
wΘn−1(w)

)∗√2Rn. (7.3)

Then (Γj)nj=0 is q × q Carathéodory sequence, Θn(w) = 0 holds, and the central
q × q Carathéodory function Ωc,n corresponding to (Γj)nj=0 fulfills

Ωc,n(w) =Mn+1(w). (7.4)

Moreover, if (Γj)n−1j=0 is a nondegenerate q×q Carathéodory sequence, then (Γj)nj=0

is a nondegenerate q × q Carathéodory sequence as well.

Proof. Proposition 3.4 yields that matrix
(
wΘn−1(w)

)∗ is strictly contractive.
Consequently, from [DFK, Theorem 3.4.1] we get that (Γj)nj=0 is a q× q Carathéo-
dory sequence and, moreover, that (Γj)nj=0 is a nondegenerate q× q Carathéodory
sequence if (Γj)n−1j=0 is a nondegenerate q × q Carathéodory sequence. Because of
(3.4) and (7.3) we have(

wΘn−1(w)
)∗ =√Ln+ (

1
2Γn −Mn

)√
Rn

+
.

Thus application of Theorem 6.8 provides us Θn(w) = 0. Hence using Theorem 7.1
we get (7.4). �

In the nondegenerate case, the statement of Proposition 7.2 (respectively,
Theorem 7.1) can be extended as follows.

Proposition 7.3. Let n ∈ N, let (Γj)nj=0 be a nondegenerate q × q Carathéodory
sequence, let Ωc,n be the central q × q Carathéodory function corresponding to
(Γj)nj=0, and let w ∈ D \ {0}. Then (7.4) is equivalent to

Γn = 2Mn +
√
2Ln

(
wΘn−1(w)

)∗√2Rn. (7.5)

Proof. By virtue of Proposition 7.2 we see that (7.5) implies (7.4). We suppose
now (7.4). Because of Theorem 7.1 and w �= 0 it follows Θn(w) = 0. Since the
q × q Carathéodory sequence (Γj)nj=0 is nondegenerate, from [FKL1, Lemma 5.1]
we know that the matrices Ln+1, Ln, Rn+1, and Rn are positive Hermitian. Using
this in combination with Θn(w) = 0 and Theorem 6.8 we get then the identity

0 = wΘn−1(w) −K∗n
and, in view of (6.5) and Γn ∈ K

(
2Mn;

√
2Ln,

√
2Rn
)
, consequently (7.5). �
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Let n ∈ N, let (Γj)nj=0 be a q × q Carathéodory sequence with nonsingular
matrix Γ0, and let Ωc,n be the central q× q Carathéodory function corresponding
to (Γj)nj=0. Then detΩc,n does not vanish in D (see [FK1, Remark 30 in Part I])
and the central q × q Carathéodory function Ω�c,n corresponding to the reciprocal
q× q Carathéodory sequence (Γ�j)nj=0 corresponding to (Γj)

n
j=0 coincides with the

matrix-valued function (Ωc,n)−1 (see [FK3, Theorem 3.3]). Taking this into account
we get the following results which are analogues of Theorem 7.1, Proposition 7.2,
and Proposition 7.3 with respect to the Weyl matrix balls stated in Theorem 5.2.
Here we use again the notations of Theorem 5.2 and Remark 5.3.

Theorem 7.4. Let n ∈ N0, let (Γj)nj=0 be a q × q Carathéodory sequence with
nonsingular matrix Γ0, let Ωc,n be the central q× q Carathéodory function corres-
ponding to (Γj)nj=0, and let w ∈ D. Furthermore, let the matrices Ln+1 and Rn+1

be defined by (1.4) and (1.6). Then the following statements are equivalent:

(i)
(
Ωc,n(w)

)−1 =M′
n+1(w).

(ii) wΘ�n(w) = 0.
(iii) A′n+1(w) =

(
cn(w)

)−1√
Ln+1.

(iv) B′n+1(w) =
√
Rn+1

(
an(w)

)−1
.

(v) L′n+1(w) =
(
cn(w)

)−1
Ln+1

(
cn(w)

)−∗.
(vi) R′n+1(w) =

(
an(w)

)−∗
Rn+1

(
an(w)

)−1.
Proof. (i) ⇔ (ii): If w = 0, the equivalence of (i) and (ii) is an easy consequence
of (7.2) and (5.15). Now suppose w �= 0. Moreover, let (Γ�j)

n
j=0 be the reciprocal

q × q Carathéodory sequence corresponding to (Γj)nj=0, let a
�
n, b

�
n, c

�
n, and d

�
n be

the matrix polynomials given by (5.3), (5.4), (5.5), and (5.6), and let Θ�n be the
rational matrix-valued function defined by (5.8). In view of Proposition 3.4 (with
respect to the q × q Carathéodory sequence (Γ�j)nj=0) we see that

(
−wΘ�n(w)

)∗ is
contractive. Because of (7.2), Remark 3.7, and (5.7), on the one hand we have(

Ωc,n(w)
)−1 = bn(w)

(
an(w)

)−1 = a�n(w)
(
b�n(w)

)−1
=
(
−w(̃c�n)

[n]

(w)F •1 (w) + a�n(w)
)(
w(̃d�n)

[n]

(w)F •1 (w) + b�n(w)
)−1

with F •1 (w) :=
√
L�n+1

+

0
√
R�n+1, where on the other hand (5.24) and (5.19) imply

M′
n+1(w) =

(
−w(̃c�n)

[n]

(w)F •2 (w) + a�n(w)
)(
w(̃d�n)

[n]

(w)F •2 (w) + b�n(w)
)−1

with F •2 (w) :=
√
L�n+1

+(
−wΘ�n(w)

)∗√
R�n+1. Therefore, in view of w �= 0 and

part (a) of Proposition 2.2, we get that (i) is necessary and sufficient for

L�n+1(L
�
n+1)

+
(
−wΘ�n(w)

)∗
R�n+1(R

�
n+1)

+ = L�n+1(L
�
n+1)

+0R�n+1(R
�
n+1)

+,

i.e., (i) is equivalent to

R�n+1(R
�
n+1)

+
(
wΘ�n(w)

)
L�n+1(L

�
n+1)

+ = 0.
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Thus, because of (5.8), statement (i) is tantamount to

wΘ�n(w) = 0. (7.6)

Since wΘ�n(w) = 0 leads immediately to (7.6) in view of (5.12), we obtain that (ii)
gives rise to (i). Conversely, if (i) is satisfied, then (7.6) holds and hence

wΘ�n(w)
√
L�n+1 = 0.

By virtue of (5.11) and (5.12) it follows then

0 = wV Θ�n(w)U
√
L�n+1 = wV Θ�n(w)

√
Ln+1Γ−∗0 ,

i.e., we get wΘ�n(w)
√
Ln+1 = 0, which results in wΘ�n(w) = 0 due to (3.9). Con-

sequently, (i) also implies (ii) in that case.
The remaining part of the assertion can be analogously proved as Theorem 7.1 by
a straightforward calculation. We omit the details. �

Now we consider a particular situation, where one of the equivalent conditions
stated in Theorem 7.4 is satisfied.

Proposition 7.5. Let n ∈ N and let (Γj)n−1j=0 be a q× q Carathéodory sequence with
nonsingular matrix Γ0. Furthermore, let w ∈ D and let

Γn := 2Mn +
√
2Ln

(
−wΘ�n−1(w)

)∗√2Rn.
Then (Γj)nj=0 is a q × q Carathéodory sequence, Θ�n(w) = 0 holds, and the central
q × q Carathéodory function Ωc,n corresponding to (Γj)nj=0 fulfills(

Ωc,n(w)
)−1 =M′

n+1(w).

Moreover, if (Γj)n−1j=0 is a nondegenerate q×q Carathéodory sequence, then (Γj)nj=0

is a nondegenerate q × q Carathéodory sequence as well.

Proof. Applying Proposition 3.8, [DFK, Theorem 3.4.1], Theorem 6.11, and Theo-
rem 7.4 one can prove Proposition 7.5 analogously to Proposition 7.2. �

In the nondegenerate case, the statement of Proposition 7.5 (respectively,
Theorem 7.4) can be extended as follows.

Proposition 7.6. Let n ∈ N and let (Γj)nj=0 be a q× q nondegenerate Carathéodory
sequence, let Ωc,n be the central q × q Carathéodory function corresponding to
(Γj)nj=0, and let w ∈ D \ {0}. Then

(
Ωc,n(w)

)−1 =M′
n+1(w) is equivalent to

Γn = 2Mn +
√
2Ln

(
−wΘ�n−1(w)

)∗√2Rn. (7.7)

Proof. Using Proposition 7.5, Theorem 7.4, [FKL1, Lemma 5.1], and Theorem 6.11
one can prove Proposition 7.6 analogously to Proposition 7.3. �

The following example illustrates that, in the case that the q×q Carathéodory
sequence (Γj)nj=0 is degenerate, equation (7.5) (respectively, (7.7)) is not necessary
for the fact that Θn(w) = 0 (respectively, Θ�n(w) = 0) holds for some w ∈ D.
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Example 7.7. Let U be a unitary q×q matrix, let Γ0 := Iq, and let Γ1 := 2U . Then
(Γj)1j=0 is a q × q Carathéodory sequence with L1 = R1 = Iq , L2 = R2 = 0q×q,
and det Γ0 �= 0. In view of (3.4) and (3.10) we have Θ1(w) = 0 and Θ�1(w) = 0 for
each w ∈ D. On the other hand,

Γ1 = 2U �= 2wIq = 2M1 +
√
2L1

(
wΘ0(w)

)∗√2R1

and
Γ1 = 2U �= −2wIq = 2M1 +

√
2L1

(
−wΘ0(w)

)∗√2R1.

We finish this paper with some comments on central q × q Carathéodory
functions, which are conclusions of certain considerations carried out above. Firstly,
we will point out that Proposition 2.2 leads to a characterization of the fact that
given finite q × q Carathéodory sequences coincide in terms of equality of some
value of the corresponding central q × q Carathéodory functions. The following
result paves the way for a proof of this characterization.

Lemma 7.8. Let n ∈ N0 and let (Γj)nj=0 be a q×q Carathéodory sequence. If n ≥ 1,
then let Vn ∈ Ỹn and let Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn, and
dn be defined by (1.7), (1.8), (1.9), and (1.10). Let the matrices Ln+1 and Rn+1

be given by (1.4) and (1.6). Furthermore, for j ∈ {1, 2}, let Kj be a contractive
q × q matrix and let Fj :=

√
Ln+1

+
Kj
√
Rn+1. Then the complex q × q matrices

zd̃
[n]
n (z)F1+bn(z) and zd̃

[n]
n (z)F2+bn(z) are both nonsingular for each z ∈ D and,

moreover, the following statements are equivalent:
(i) Ln+1L

+
n+1K1Rn+1R

+
n+1 = Ln+1L

+
n+1K2Rn+1R

+
n+1.

(ii) For each z ∈ D,(
−zc̃[n]n (z)F1 + an(z)

)(
zd̃ [n]n (z)F1 + bn(z)

)−1
=
(
−zc̃[n]n (z)F2 + an(z)

)(
zd̃ [n]n (z)F2 + bn(z)

)−1
. (7.8)

(iii) There is some z ∈ D \ {0} such that (7.8) is satisfied.

Proof. Apply part (a) of Proposition 2.2. �

Proposition 7.9. Let n ∈ N0, let (Γj)n+1
j=0 and (Γ̃j)n+1

j=0 be q × q Carathéodory se-
quences such that Γk = Γ̃k for each k ∈ N0,n, and let Ωc,n+1 and Ω̃c,n+1 be the
central q× q Carathéodory function corresponding to (Γj)n+1

j=0 and (Γ̃j)n+1
j=0 , respec-

tively. Then Γn+1 = Γ̃n+1 if and only if there is some z ∈ D \ {0} such that

Ωc,n+1(z) = Ω̃c,n+1(z). (7.9)

Proof. If the equality Γn+1 = Γ̃n+1 is fulfilled, then the q × q Carathéodory se-
quences (Γj)n+1

j=0 and (Γ̃j)
n+1
j=0 coincide. Thus, by definition we have fc,n+1 = f̃c,n+1.

In particular, there is some z ∈ D \ {0} such that the identity (7.9) holds. Con-
versely, we assume now that (7.9) is satisfied for some z ∈ D \ {0}. Because of
the choice of (Γj)n+1

j=0 and (Γ̃j)
n+1
j=0 , it follows that (Γj)

n
j=0 is a q× q Carathéodory
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sequence, where Γk = Γ̃k for each k ∈ N0,n. Hence, from [DFK, Theorem 3.4.1] we
obtain that there are some contractive q × q matrices K1 and K2 fulfilling

Γn+1 = 2Mn+1 +
√
2Ln+1K1

√
2Rn+1 (7.10)

and
Γ̃n+1 = 2Mn+1 +

√
2Ln+1K2

√
2Rn+1, (7.11)

where Ln+1, Rn+1, andMn+1 are defined as in (1.4), (1.6), and (6.4). Therefore, if
the matrix polynomials an, bn, cn, and dn are given by (1.7), (1.8), (1.9), and (1.10)
with some Vn ∈ Ỹn and Wn ∈ Z̃n if n ≥ 1, then (7.9) and [FKL1, Corollary 2.7]
yield (7.8) for some z ∈ D \ {0}, where Fj :=

√
Ln+1

+
Kj
√
Rn+1 for j ∈ {1, 2}.

By virtue of Lemma 7.8 we get

Ln+1L
+
n+1K1Rn+1R

+
n+1 = Ln+1L

+
n+1K2Rn+1R

+
n+1

which implies finally Γn+1 = Γ̃n+1 in view of (7.10) and (7.11). �

We note that, since the central q × q Carathéodory function corresponding
to a q × q Carathéodory sequence (Γ̃j)0j=0 is the constant function (defined on D)
with value Γ̃0 (see, e.g., [FK3, Remark 1.1]), the assertion of Proposition 7.9 is
obvious in the case of given q × q Carathéodory sequences (Γj)0j=0 and (Γ̃j)

0
j=0.

Let Ω ∈ Cq(D). Then the matricial version of the F. Riesz-Herglotz Repre-
sentation Theorem (see, e.g., [DFK, Theorem 2.2.2]) shows that there is a unique
nonnegative Hermitian q × q Borel measure F defined on the σ-algebra BT of all
Borel subsets of the unit circle T such that

Ω(w) =
∫

T

z + w

z − w F (dz) + i ImΩ(0) (7.12)

for each w ∈ D. This nonnegative Hermitian measure F is called the Riesz-Herglotz
measure of Ω.

Let λ be denote the linear Lebesgue measure defined on BT. If Γ0 is a com-
plex q × q matrix with nonnegative Hermitian real part ReΓ0, then from [FK3,
Remark 1.1] and the matricial versions of the F. Riesz-Herglotz Representation
Theorem and the Herglotz-Bochner Theorem (see, e.g., [DFK, Theorem 2.2.1])
we know that the Riesz-Herglotz measure Fc,0 of the central q × q Carathéodory
function Ωc,0 corresponding to (Γj)0j=0 is absolutely continuous with respect to
1
2πλ and that f0 : T → Cq×q defined by f0(z) := ReΓ0 is a version of the corres-
ponding Radon-Nikodym derivative. In the case that a positive integer n and a
nondegenerate q × q Carathéodory sequence (Γj)nj=0 are given the Riesz-Herglotz
measure Fc,n of the central q × q Carathéodory function Ωc,n corresponding to
(Γj)nj=0 is also absolutely continuous with respect to

1
2πλ and the corresponding

Radon-Nikodym derivative can be constructed explicitly from the given sequence
(Γj)nj=0 as well (see, e.g., [FK1, Theorem 16 and Remark 18 in Part III]).

Let n ∈ N, let (Γj)nj=0 be a nondegenerate q × q Carathéodory sequence,
let Vn := T+

n−1Yn, let Wn := ZnT
+
n−1, and let the q × q matrix polynomials bn

and dn be defined by (1.8) and (1.10), respectively. From [FK3, Proposition 2.2
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and Theorem 2.3] we know that the functions det bn and det dn vanish nowhere
in D ∪ T. Thus the following proposition is a generalization of the corresponding
result for the nondegenerate situation.

Proposition 7.10. Let n ∈ N and let (Γj)nj=0 be a q× q Carathéodory sequence. Let
Vn ∈ Ỹn, let Wn ∈ Z̃n, and let the matrix polynomials bn and dn be defined by
(1.8) and (1.10). Furthermore, let the matrices Ln+1 and Rn+1 be given by (1.6).
(a) If det bn(z) �= 0 for each z ∈ T, then the Riesz-Herglotz measure Fc,n of the

central q×q Carathéodory function Ωc,n corresponding to (Γj)nj=0 is absolutely
continuous with respect to 1

2πλ and f : T → Cq×q given by

f(z) :=
(
bn(z)

)−∗
Rn+1

(
bn(z)

)−1
is the corresponding Radon-Nikodym derivative.

(b) If det dn(z) �= 0 for each z ∈ T, then Fc,n is absolutely continuous with respect
to 1

2πλ and g : T → Cq×q given by

g(z) :=
(
dn(z)

)−1
Ln+1

(
dn(z)

)−∗
is the corresponding Radon-Nikodym derivative.

Proof. (a) Suppose that det bn does not vanish in T. Since Vn belongs to Ỹn and
since det bn is a polynomial, we get that there is a real number ρ > 1 such that
det bn has no zero in K(0; ρ). Hence Ω�

c,n := anb
−1
n is a rational matrix function

which is holomorphic in K(0; ρ). Using the matricial version of the H.A. Schwarz
Formula, for each w ∈ D, we get

Ω�
c,n(w) =

1
2π

∫
T

z + w

z − wRe
(
Ωc,n(z)

)
λ(dz) + i ImΩ�

c,n(0),

i.e., in view of (7.2) and Ωc,n ∈ Cq[D, (Γj)nj=0],

Ωc,n(w) =
1
2π

∫
T

z + w

z − w

(
1
2

(
an(z)

(
bn(z)

)−1 + (bn(z))−∗a∗n(z)))λ(dz) + i ImΓ0.

Furthermore, from [FKL1, part (a) of Proposition 2.4] we obtain that

Re
(
a∗n(z)bn(z)

)
= Rn+1

holds for each z ∈ T. Thus we can conclude that

Ωc,n(w) =
1
2π

∫
T

z + w

z − w
(
bn(z)

)−∗
Rn+1

(
bn(z)

)−1
λ(dz) + i ImΓ0 (7.13)

is satisfied for each w ∈ D. Taking into account that the complex q × q matrix
Rn+1 is nonnegative Hermitian (see, e.g., [DFK, Lemma 1.1.9]) a comparison of
(7.12) and (7.13) completes the proof of part (a).
(b) This can be proved analogously to (a). �

In view of Proposition 7.10, in the following result we use the notation Ŷn for
the set of all Vn ∈ Yn such that det bn vanishes nowhere in D∪T and the notation
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Ẑn for the set of all Wn ∈ Zn such that det dn vanishes nowhere in D ∪ T, where
bn and dn are the matrix polynomials defined by (1.8) and (1.10).

Corollary 7.11. Let n ∈ N and let (Γj)nj=0 be a q × q Carathéodory sequence. Let
Vn ∈ Yn, let Wn ∈ Zn, and let the q×q matrix polynomials bn and dn be defined by
(1.8) and (1.10). Furthermore, let the matrices Ln+1 and Rn+1 be given by (1.6).
If at least one of the sets Ŷn and Ẑn is nonempty, then the Riesz-Herglotz measure
Fc,n of the central q × q Carathéodory function Ωc,n corresponding to (Γj)nj=0 is
absolutely continuous with respect to 1

2πλ and the corresponding Radon-Nikodym
derivative f : T → Cq×q satisfies λ-a.e. on T the identities

f = b−∗n Rn+1b
−1
n and f = d−1n Ln+1d

−∗
n .

Proof. An application of Proposition 7.10 in combination with Remark 3.1 and
part (a) of Lemma 3.2 yields the assertion. �

Proposition 7.12. Let n ∈ N, let (Γj)nj=0 be a q × q Carathéodory sequence with
nonsingular matrix Γ0, and let Ωc,n the central q × q Carathéodory function cor-
responding to (Γj)nj=0. Let Vn ∈ Ỹn, let Wn ∈ Z̃n, and let the matrix polynomials
an and cn be defined by (1.7) and (1.9). Furthermore, let the matrices Ln+1 and
Rn+1 be given by (1.6).
(a) If det an(z) �= 0 for each z ∈ T, then the Riesz-Herglotz measure F �c,n of Ω−1c,n

is absolutely continuous with respect to 1
2πλ and f � : T → Cq×q given by

f �(z) :=
(
an(z)

)−∗
Rn+1

(
an(z)

)−1
is the corresponding Radon-Nikodym derivative.

(b) If det cn(z) �= 0 for each z ∈ T, then F �c,n is absolutely continuous with respect
to 1

2πλ and g : T → Cq×q given by

g�(z) :=
(
cn(z)

)−1
Ln+1

(
cn(z)

)−∗
is the corresponding Radon-Nikodym derivative.

Proof. Based on Remark 3.7, the matricial version of the H.A. Schwarz Formula,
(7.2), and [FKL1, part (a) of Proposition 2.4] one can prove Proposition 7.12
analogously to Proposition 7.10. We omit the details. �

In view of Proposition 7.12 and Remark 3.7 we use in the following result the
notation Y̌n for the set of all Vn ∈ Yn such that det an vanishes nowhere in D ∪T
and the notation Žn for the set of all Wn ∈ Zn such that det cn vanishes nowhere
in D ∪ T, where an and cn are the matrix polynomials defined by (1.7) and (1.9).

Corollary 7.13. Let n ∈ N, let (Γj)nj=0 be a q × q Carathéodory sequence with
nonsingular matrix Γ0, and let the matrices Ln+1 and Rn+1 be given by (1.6).
Furthermore, let Vn ∈ Yn, let Wn ∈ Zn, and let the q×q matrix polynomials an and
cn be defined by (1.7) and (1.9). If at least one of the sets Y̌n and Žn is nonempty,
then the Riesz-Herglotz measure F �c,n of Ω−1c,n is absolutely continuous with respect
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to 1
2πλ and the corresponding Radon-Nikodym derivative f � : T → Cq×q satisfies

λ-a.e. on T the identities

f � = a−∗n Rn+1a
−1
n and f � = c−1n Ln+1c

−∗
n .

Proof. An application of Proposition 7.12 in combination with Remark 3.1 and
part (b) of Lemma 3.2 yields the assertion. �
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Schur (Russian), Mat. USSR-Sb. 15 (1944), 99–130.

[Ge2] Geronimus, Ja.L.: On the trigonometric moment problem, Ann. Math. 47 (1946),
742–761.

[Ge3] Geronimus, Ja.L.: Polynomials orthogonal on a circle and their applications
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On Extremal Problems of Interpolation Theory
with Unique Solution
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Dedicated to the memory of Georg Heinig

Abstract. The main goal of this paper is to investigate the matrix extremal
interpolation problem formulated in Chapter 7 of the monograph [7]. We give
natural conditions under which the problem has one and only one solution.
The basic idea of the proof is to use the matrix Riccati equation deduced in
[7, Chapter 7].
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0. Introduction

In this paper we consider a particular matrix extremal interpolation problem.
More precisely, we try to find amongst the solutions w(z) of the corresponding
interpolation problem the solution which satisfies the additional extremal condition

w∗(z)w(z) ≤ ρ2min, |z| < 1, (0.1)

where ρmin is a positive Hermitian m×m matrix. What concerns the statement of
the problem we follow the book [7, Chapter 7] where some Riccati type equation
for the matrix ρmin was deduced. It was proved by Ran and Reurings (see [6]) that
for the case of the Schur extremal interpolation problem this equation has one and
only one solution ρmin.

The main result of this paper is to show that the above-mentioned result of
Ran and Reurings can be extended to a broad class of interpolation problems. In
particular, it is true for the Nevanlinna-Pick problem. In this paper we will develop
a method for the computation of ρmin. We illustrate our general result with some
concrete examples (Schur problem, Nevanlinna-Pick problem, Jordan blocks).

Remark 0.1. A well-posed physical problem should have one and only one solution.
The extremal interpolation problem under consideration satisfies this requirement.
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Remark 0.2. It is essential both from the applied and theoretical points of view
that the solution of the extremal problem turns out to be a rational matrix function
(see [7, Chapter 7], [4]).

Remark 0.3. It is possible that in the classical case

w∗(z)w(z) ≤ I

the interpolation problem has not any solution whereas problem (0.1) has a solu-
tion.

Remark 0.4. The scalar case (m = 1) of the extremal interpolation problem was
studied by N.I. Akhiezer [1]. It found its application in control theory (see Kimura
[5]). The transition to the matrix case allows to enlarge considerably the class of
extremal problems which have effective solutions.

1. Extremal interpolation problems

Let the matrices A,Sk and Ψk, k = 1, 2, have the sizes mN ×mN and mN ×m,
respectively, where Sk is nonnegative Hermitian. We suppose that these matrices
are connected by the relations

Sk −ASkA∗ = ΨkΨ∗k, k = 1, 2. (1.1)

Setting
S := S2 − S1

we deduce from (1.1) the equality

S −ASA∗ = Ψ2Ψ∗2 −Ψ1Ψ∗1. (1.2)

We introduce the block-diagonal matrix

R := diag (ρ, . . . , ρ)︸ ︷︷ ︸
N

where ρ is a positive Hermitian matrix of size m×m. In addition we shall assume
the equality

AR = RA. (1.3)
This is justified, since it was shown in [4] that condition (1.3) is true in a number
of concrete examples.
From equations (1.1) and (1.3) it follows that

Sρ −ASρA∗ = Ψ2Ψ∗2 −Ψ1,ρΨ∗1,ρ. (1.4)

where
Sρ := S2 −R−1S1R−1 (1.5)

Ψ1,ρ := R−1Ψ1. (1.6)
Thus we have constructed a set of operator identities (1.5), where the positive Her-
mitian matrix ρ plays the role of a parameter. A set of interpolation problems, see
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[7, Chapter 6] corresponds to this set of operator identities. A necessary condition
for the solvability of these problems is the inequality

RS2R− S1 ≥ 0. (1.7)

Now we turn to extremal interpolation.

Definition 1.1. We shall call the matrix ρ = ρmin > 0 a minimal solution of
inequality (1.7) if the following two requirements are fulfilled:
1. The inequality

RminS2Rmin − S1 ≥ 0 (1.8)
holds where

Rmin = diag (ρmin, . . . , ρmin)︸ ︷︷ ︸
N

is valid.
2. If ρ > 0 satisfies inequality (1.7), then

rank (RminS2Rmin − S1) ≤ rank (RS2R− S1). (1.9)

(In other words, Rmin minimizes the rank of RS2R− S1 ≥ 0.)
Remark 1.2. The existence of ρmin follows directly from Definition 1.1

We shall write the nonnegative Hermitian matrices S1, S2 and R in the fol-
lowing block forms

Sk =

(
S
(k)
11 S

(k)
12

S
(k)
21 S

(k)
22

)
, k = 1, 2 (1.10)

R =
(
R1 0
0 ρ

)
, R1 = diag (ρ, . . . , ρ)︸ ︷︷ ︸

N−1

(1.11)

where S(k)
22 are blocks of size m×m,S(k)

11 has the size (N − 1)m× (N − 1)m and
S
(k)
12 has the size (N − 1)m×m. The following result is proved in [7, Proposition
7.1.1].

Proposition 1.3. Suppose that for all ρ > 0 satisfying inequality (1.7) the upper
diagonal block is positive Hermitian, i.e., that

R1S
(2)
11 R1 − S(1)

11 > 0

holds. If ρ = q > 0 satisfies inequality (1.7) and the relation

qS
(2)
22 q = S

(1)
22 + C∗1

(
Q1S

(2)
11 Q1 − S(1)

11

)−1
C1 (1.12)

where
Q1 := diag (q, q, . . . , q)︸ ︷︷ ︸

N−1

, C1 := Q1S
(2)
12 q − S

(1)
12 , (1.13)

then
ρmin = q.
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2. On a nonlinear matrix equation

In this section we consider the equation

qS
(2)
22 q = S

(1)
22 + S∗12

(
Q1S

(2)
11 Q1 − S(1)

11

)−1
S12 (2.1)

where
S12 := Q1S

(2)
12 q − S

(1)
12 . (2.2)

We make the following two assumptions.
Condition 1. The matrix S2 has the block structure

S2 = (Cjk)nj,k=1

where all m×m blocks Cjk have the shape

Cjk = αjkIm

with some complex number αjk.
Condition 2. The matrix S2 is positive Hermitian (S2 > 0).

In view of Condition 1 we obtain

S12 = Q2
1S

(2)
12 − S

(1)
12

= Q2
1S

(2)
11

(
S
(2)
11

)−1
S
(2)
12 − S

(1)
12

=
[
Q2
1S

(2)
11 − S

(1)
11

] (
S
(2)
11

)−1
S
(2)
12 + S

(1)
11

(
S
(2)
11

)−1
S
(2)
12 − S

(1)
21

and
Q1S

(2)
11 Q1 = Q2

1S
(2)
11 .

We introduce the following notations

A := Q2
1S

(2)
11 − S

(1)
11 , B :=

(
S
(2)
11

)−1
S
(2)
12 , (2.3)

and

C := S
(1)
11

(
S
(2)
11

)−1
S
(2)
12 − S

(1)
12 . (2.4)

Then obviously A∗ = A and the equation (2.1) can be written in the form

αnnq
2 = S

(1)
22 + (B

∗A+ C∗)A−1(AB + C)

or
αnnq

2 = S
(1)
22 +B∗AB +B∗C + C∗B + C∗A−1C. (2.5)

Using (2.3) and (2.5) we infer

q2T = U + C∗A−1C (2.6)

where

T := αnnIm −
(
S
(2)
12

)∗ (
S
(2)
11

)−1
S
(2)
12 (2.7)
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and

U := B∗C + C∗B −B∗S(1)
11 B + S

(1)
22

=
(
S
(2)
12

)∗ (
S
(2)
11

)−1
S
(1)
11

(
S
(2)
11

)−1
S
(2)
12 −

(
S
(2)
12

)∗ (
S
(2)
11

)−1
S
(1)
12

−
(
S
(1)
12

)∗ (
S
(2)
11

)−1
S
(2)
12 + S

(1)
22 (2.8)

In view of Condition 2 the relation

T > 0 (2.9)

is true.
According to Condition 1 and (2.7) the matrix T has scalar type, i.e.,

T = βIm. (2.10)

Because of (2.9) and (2.10) it follows then

β > 0.

Hence the equation (2.6) takes the form

q2 =
1
β
(U + C∗A−1C). (2.11)

If we compare the equations (2.1) and (2.11) we see that S12 depends on q, but C
does not depend on q. Taking into account this fact we can apply Theorem 3.3 of
the paper [6] to equation (2.11). Moreover, we observe that the matrix A can be
represented in the form

A = DQ2
1D − S

(1)
11

where

D :=
√
S
(2)
11 > 0.

Now we rewrite the equation (2.11) in the form

q2 =
1
β

[
U + C∗1

(
Q2
1 −D−1S

(1)
11 D

−1
)−1

C1

]
(2.12)

where
C1 := D−1C.

We introduce the notation

Ũ := diag (U,U, . . . , U)︸ ︷︷ ︸
n−1

.

Definition 2.1. We call an interpolation problem regular if the condition
1
β
Ũ > D−1S(1)

11 D
−1

is satisfied.
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Using Theorem 3.3 in [6] now we obtain our main result.

Theorem 2.2. Let the conditions 1 and 2 be fulfilled and let the interpolation prob-
lem be regular. If S(1)

11 ≥ 0 then equation (2.1) has a unique solution q such that
q > 0 and Q1S

(2)
11 Q1 > S

(1)
11 .

Corollary 2.3. Under the assumptions of Theorem 2.2 the relation ρ2min = q2 holds.

Remark 2.4. Under the assumption that ρmin is known an explicit representation
of the solution of the corresponding extremal interpolation problem is given in
monograph [7, Chapter 7]. In the special case of the extremal interpolation prob-
lems named after Schur and Nevanlinna-Pick, respectively, this solution is written
in a simpler form in the paper [4].

We have shown that there is one and only one positive Hermitian solution
of equation (2.1) which satisfies condition (1.7). In the case N = 2 Ferrante/Levy
[3] proved without taking into account condition (1.7) that equation (2.1) has one
and only one positive Hermitian solution.

3. Methods of computation

1. We apply the method of successive approximation to the study of equation (2.1).
We set

q20 :=
1
β
U

and for p ∈ {0, 1, 2, . . .} then

q2p+1 :=
1
β

[
U + C∗1 (Q

2
p −D−1S−111 D

−1)C1

]
,

where
Qp := diag (qp, qp, . . . , qp)︸ ︷︷ ︸

N−1

.

The following assertion is proved in [7, Lemma 7.1.1].

Lemma 3.1. Let the conditions of Theorem 2.2 be fulfilled. Then:
a) The sequence q20 , q

2
2 , q

2
4 , . . . is monotonously increasing and has the limit q2.

b) The sequence q21 , q
2
3 , q

2
5 , . . . is monotonously decreasing and has the limit q2.

The combination of Theorem 2.2 and Lemma 3.1 yields the following result.

Corollary 3.2. The relations
q2 = q2 = ρ2min

and
q22p ≤ ρ2min ≤ q22p+1, p ∈ {0, 1, 2, . . .},

hold.
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2. Now we introduce the matrix

Smin := RminS2Rmin − S1. (3.1)

Setting
R1 := diag (ρmin, . . . , ρmin)︸ ︷︷ ︸

N−1

. (3.2)

and, using the block partitions (1.10), moreover

S12 := R1S
(2)
12 ρmin − S(1)

12 (3.3)

from (3.1), (3.2), and (3.3) we obtain the block decomposition

Smin =

(
R1S

(2)
11 R1 − S(1)

11 S12

S∗12 ρminS
(2)
22 ρmin − S(1)

22

)
. (3.4)

Taking into account (2.1), (2.2), (3.2), and (3.3) from Theorem 2.2 we get

R1S
(2)
11 R1S

(1)
11 > 0 (3.5)

and
ρminS

(2)
22 ρmin = S

(1)
22 + S∗12(R1S

(2)
11 R1 − S(1)

11 )
−1S12. (3.6)

In view of Smin ≥ 0, (3.4), (3.5) and (3.6) we infer
rankSmin = (N − 1)m. (3.7)

Defining the sequence (Yj)nj=1 of complex m×m matrices via⎛⎜⎜⎜⎝
Y1
Y2
...

YN−1

⎞⎟⎟⎟⎠ := −(R1S
(2)
11 R1 − S(1)

11 )
−1S12 (3.8)

and
YN := Im (3.9)

we obtain from (3.4) and (3.6) the relation

SminY = 0 (3.10)

where
Y := col(Yj)Nj=1. (3.11)

3. Let us calculate the number β introduced in (2.10). According to Condi-
tions 1 and 2 the matrix S(2)

22 is nonsingular and the matrix (S(2)
22 )

−1 has the block
structure

(S(2)
22 )

−1 = (Djk)N−1j,k=1 (3.12)
where all m×m blocks Djk have the shape

Djk = γjkIm (3.13)

with some complex numbers γjk. Condition 1 implies moreover that

S
(2)
12 = col

(
(αjN Im)N−1j=1

)
. (3.14)
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Combining (2.10), (2.7), (3.12), (3.13), and (3.14) we obtain

β = αNN − α∗Γα
where

α := col(αjN )N−1j=1

and
Γ := (γjk)N−1j,k=1.

4. Schur extremal problem

Let us consider the following version of the Schur problem.

Problem 4.1. Let the complex m × m matrices a0, a1, . . . , ap and the positive
Hermitian m×m matrix ρ be given. We wish to describe the set of m×m matrix
functions w(z) holomorphic in the circle |z| < 1 satisfying

w(z) = a0 + a1z + · · ·+ apz
p + · · · (4.1)

and
w∗(z)w(z) ≤ ρ2, |z| < 1. (4.2)

The relations (4.1) and (4.2) can be written in the form

w1(z) = b0 + b1z + · · ·+ bpz
p + · · · , (4.3)

w∗1(z)w1(z) ≤ Im, |z| < 1, (4.4)
where

w∗1(z) := w(z) · ρ−1 (4.5)

b0 := a0ρ
−1, . . . , bp := apρ

−1. (4.6)
Thus, the modified Problem 4.1 is reduced to the matrix version of the classical
Schur problem.

Using [7, Proposition 7.2.1] we deduce the following assertion.

Proposition 4.2. Let the matrix Cp be defined by

Cp :=

⎛⎜⎜⎜⎝
a0 a1 . . . ap
0 a0 . . . ap−1
...

...
...

0 0 . . . a0

⎞⎟⎟⎟⎠ . (4.7)

Then Problem 4.1 has a solution if and only if the inequality

C∗pCp ≤ R2 (4.8)

is valid, where
R := diag (ρ, ρ, . . . , ρ)︸ ︷︷ ︸

p+1

. (4.9)



On Extremal Problems of Interpolation Theory 341

Remark 4.3. If the strict inequality

C∗pCp < R2 (4.10)

holds then the set of solutions of the modified Schur problem 4.1 can be written
with the aid of a linear fractional transformation (see [7, Chapter 6]).

Let us formulate now the extremal Schur problem.

Problem 4.4. Let the complex m×m matrices a0, a1, . . . , ap be given. We seek an
m×m matrix-valued function w(z), holomorphic in the circle |z| < 1, satisfying

w(z) = a0 + a1z + · · ·+ apz
p + · · · (4.11)

and
w∗(z)w(z) ≤ ρ2min, |z| < 1. (4.12)

Here ρmin will be defined by a minimal rank condition. More precisely, we
indicate that the Schur extremal problem fits into the general scheme of interpola-
tion problems studied in this paper and seek a minimal rank solution in the sense
of Definition 1.1.

We present now the operator reformulation of the Schur problem (see [7,
Chapter 7]). It is well known that in this case

S2 = I(p+1)m, S1 = C∗pCp (4.13)

where Cp is given by (4.7). Moreover, the matrix A has in the case of the Schur
problem the form

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 0
Im 0 . . . 0 0
0 Im . . . 0 0
...

...
...

...
0 0 . . . Im 0

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

p+1

, (4.14)

whereas the matrices Ψ1 and Ψ2 are defined by formulas

Ψ1 = col
[
a∗0, a

∗
1, . . . , a

∗
p

]
(4.15)

and
Ψ2 = col [Im, 0, . . . , 0] . (4.16)

Taking into account formulas (4.13)–(4.16) it is immediately checked that

Sk −ASkA∗ = ΨkΨ∗k, k ∈ {1, 2}. (4.17)

Thus, in view of (4.17) the results obtained above can be applied to the Schur
extremal problem.
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In this case we have
T = Im, β = 1,

S
(2)
12 = 0, S12 = −S(1)

12 , S
(1)
11 = C∗p−1Cp−1,

U = S
(1)
22 = a∗0a0 + a∗1a1 + · · ·+ a∗pap.

The regularity condition from Definition 2.1 has now the form

diag (U,U, . . . , U)︸ ︷︷ ︸
p

> S
(1)
11 (4.18)

Proposition 4.5. If the condition (4.18) is fulfilled, then

a∗pap > 0.

The converse statement is true in the case p = 1.

Proposition 4.6. If p = 1 and a∗1a1 > 0 then

U = a∗0a0 + a∗1a1 > a∗0a0 = S
(1)
11 .

5. Nevanlinna-Pick extremal problem

Let us consider the following version of the Nevanlinna-Pick problem.

Problem 5.1. Let the complex m×m matrices η1, η2, . . . , ηn, the points z1, . . . , zn
satisfying |zk| < 1, k ∈ {1, . . . , n} and the positive Hermitian m×m matrix ρ be
given. We wish to describe the set of m ×m matrix functions w(z) holomorphic
in the circle |z| < 1 such that

w(−zk) = η∗k, k ∈ {1, . . . , n}, (5.1)

and
w∗(z) · w(z) ≤ ρ2, |z| < 1. (5.2)

The relations (5.1) and (5.2) can be written in the form

w1(−zk) = η̃k, k ∈ {1, . . . , n}, (5.3)

w∗1(z) · w1(z) ≤ Im, |z| < 1, (5.4)

where
η̃k := ηk · ρ−1, k ∈ {1, . . . , n}, (5.5)

w1(z) := w(z) · ρ−1. (5.6)

Using [7, Proposition 7.3.1] we deduce the following assertion.

Proposition 5.2. Let the matrices S1 and S2 be defined by

S1 :=
(

ηkη
∗
l

1− zkzl

)n
k,l=1

, S2 :=
(

Im
1− zkzl

)n
k,l=1

. (5.7)
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Then Problem 5.1 has a solution if and only if the inequality

S2 −R−1S1R−1 ≥ 0 (5.8)

is valid, where
R := diag (ρ, . . . , ρ)︸ ︷︷ ︸

p

. (5.9)

Remark 5.3. If the strict inequality

S2 −R−1S1R−1 > 0
holds, then the set of solutions of the modified Nevanlinna-Pick Problem 5.1 can
be written with the aid of a linear fractional transformation (see [7, Chapter 6]).

Let us formulate now the Nevanlinna-Pick extremal problem.

Problem 5.4. Let complex m×m matrices η1, η2, . . . , ηn and points z1, z2, . . . , zn
satisfying |zk| < 1, k ∈ {1, . . . , n}, be given. We seek an m × m matrix-valued
function w(z) which is holomorphic in the circle |z| < 1, such that

w(−zk) = η∗k, k ∈ {1, . . . , n}, (5.10)

and
w∗(z)w(z) ≤ ρ2min, |z| < 1. (5.11)

Here ρmin will be defined by a minimal rank condition. More precisely, we
indicate that the Nevanlinna-Pick extremal problem fits into the general scheme
of interpolation problems studied in this paper and seek a minimal rank solution
in the sense of Definition 1.1.

We present now the operator reformulation of the Nevanlinna-Pick problem
(see [7, Chapter 7]). In this case, the matrices S1 and S2 are given by (5.7) whereas
the matrices A,Ψ1, and Ψ2 are defined by

A := diag(z1Im, z2Im, . . . , znIm) (5.12)

Ψ1 := col(η1, . . . , ηm) (5.13)
Ψ2 := col(Im, . . . , Im). (5.14)

Taking into account formulas (5.7), (5.12), (5.13) and (5.14) it is immediately
checked that

Sk −ASkA∗ = ΨkΨ∗k, k ∈ {1, 2}. (5.15)
Thus, in view of (5.15) the results obtained above can be applied to the Nevanlinna-
Pick extremal problem. In this case we have

S
(1)
11 =

(
ηkη

∗
l

1− zkzl

)n−1
k,l=1

, S
(2)
11 =

(
Im

1− zkzl

)n−1
k,l=1

, (5.16)

S
(1)
22 =

ηnη
∗
n

1− |zn|2
, S

(2)
22 =

Im
1− |zn|2

, (5.17)

S
(1)
12 =

(
ηkη

∗
n

1− zkzn

)n−1
k=1

, S
(2)
12 =

(
Im

1− zkzn

)n−1
k=1

. (5.18)
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Example. We consider the case n = 2. Then

S
(1)
11 =

η1η
∗
1

1− |z1|2
, S

(2)
11 =

Im
1− |z1|2

(5.19)

S
(1)
22 =

η2η
∗
2

1− |z2|2
, S

(2)
22 =

Im
1− |z2|2

(5.20)

S
(1)
12 =

η1η
∗
2

1− z1z2
, S

(2)
12 =

Im
1− z1z2

. (5.21)

Thus, using formulas (5.16)–(5.21) we obtain

β =
1

1− |z2|2
− 1− |z1|2
(1− z1z2)(1− z1z2)

=
|z1 − z2|2

[1 − |z2|2] · |1− z1z2|2
. (5.22)

Using (2.8) and (5.22) we get

U =
(
S
(2)
12

)∗ (
S
(2)
11

)−1 (
S
(1)
11

)(
S
(2)
11

)−1
S
(2)
12

−
(
S
(2)
12

)∗ (
S
(2)
11

)−1
S
(1)
12 −

(
S
(1)
12

)∗ (
S
(2)
11

)−1
S
(2)
12 + S

(1)
22

=
1− |z1|2
|1− z1z2|2

(η1 − η2)(η1 − η2)∗ +
[

1
1− |z2|2

− 1− |z1|2
|1− z1z2|

]
η2η

∗
2

= β

[
(1− |z1|2)(1− |z2|2)

|z1 − z2|2
(η1 − η2)(η1 − η2)∗ + η2η

∗
2

]
Hence,

1
β
U =

(1− |z1|2)(1 − |z2|2)
|z1 − z2|2

(η1 − η2)(η1 − η2)∗ + η2η
∗
2 .

In view of

D =
√
S
(2)
11 =

Im√
1− |z1|2

the regularity condition 1
βU > D−1S(1)

11 D
−1 has now the form

(1− |z1|2)(1− |z2|2)
|z1 − z2|2

(η1 − η2)(η1 − η2)∗ + η2η
∗
2 > η1η

∗
1 .

In particular, if η2η∗2 > η1η
∗
1 , then this condition is satisfied.

6. Jordan block diagonal structure

In this section, we consider the case when the matrix A has the block diagonal
form

A = diag(A1, A2, . . . , AN ),
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where for each k ∈ {1, . . . , N} the complex mnk ×mnk matrix Ak has the shape

Ak =

⎛⎜⎜⎜⎜⎜⎝
λkIm 0 . . . 0 0
Im λkIm . . . 0 0
0 Im . . . 0 0
...

...
...

...
0 0 . . . Im λkIm

⎞⎟⎟⎟⎟⎟⎠ (6.1)

and where
|λk| < 1. (6.2)

Let n :=
∑N
k=1 nk. Then we choose the complex mn×m matrix Ψ2 via

Ψ2 := col (Ψ21,Ψ22, . . . ,Ψ2,N ) (6.3)

where
Ψ2,k := col (Im, 0, . . . , 0︸ ︷︷ ︸

nk

), k ∈ {1, . . . , N} (6.4)

Now we are looking for a complex mn×mn matrix S2 satisfying the equation
S2 −AS2A∗ = Ψ2Ψ∗2. (6.5)

Proposition 6.1. There is one and only complex mn × mn matrix S2 satisfying
(6.5), namely

S2 =
∞∑
j=0

AjΨ2Ψ∗2(A
j)∗. (6.6)

Moreover, the matrix S2 is positive Hermitian.

Proof. In view of (6.1) and (6.2) we see that the spectrum of the matrix A is
contained in the open unit disk. Thus, we obtain from [2, p. 578] that the equation
(6.5) has a unique solution S2 which is given by formula (6.6). This matrix S2 is
positive Hermitian. �

We introduce the block diagonal matrix

R := diag (ρ, ρ, . . . , ρ)︸ ︷︷ ︸
n

where ρ is a positive Hermitian m×m matrix. Let us consider the equation

S1 −AS1A∗ = Ψ1Ψ∗1 (6.7)

where the complex mn×mn matrix Ψ1 is defined by the relations

Ψ1 := R−1 · col(a1, a2, . . . , aN )
and

ak = col(a1,k, a2,k, . . . , ank,k), k ∈ {1, . . . , N}.
Here the matrices ak and aj,k have the sizes mnk ×m and m ×m, respectively.
Using [2, Theorem A3.4, part (a)] we obtain the following result.
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Proposition 6.2. There is one and only complex mn × mn matrix S1 satisfying
(6.7), namely

S1 =
∞∑
j=0

AjΨ1Ψ∗1(A
j)∗.

Moreover, the matrix S1 is nonnegative Hermitian.

The identities (6.5) and (6.7) generate an extremal interpolation problem to
which the results of Section 1–3 can be applied. We omit here its exact formula-
tion.This will be done in detail in a forthcoming paper.
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Abstract. We present a new representation for the inverse of a matrix that is
a sum of a banded matrix and a semiseparable matrix. In particular, we show
that under certain conditions, the inverse of a banded plus semiseparable ma-
trix can also be expressed as a banded plus semiseparable matrix. Using this
result, we devise a fast algorithm for the solution of linear systems of equa-
tions involving such matrices. Numerical results show that the new algorithm
competes favorably with existing techniques in terms of computational time.

Mathematics Subject Classification (2000). 15A09, 15A23, 65F05, 65L10, 65R20.

Keywords. Semiseperable matrix, fast algorithms, linear solver, inverse, struc-
tured matrices.

1. Introduction

Understanding of structured matrices and computation with them have long been
problems of theoretical and practical interest [1]. Recently a class of matrices called
semiseparable matrices has received considerable attention [2, 3, 4, 5, 6, 7, 8, 9].
Perhaps the simplest example of a semiseparable matrix is given by the inverse of a
symmetric tridiagonal matrix: IfA = AT is irreducible tridiagonal and nonsingular,
then it is well known that A−1 can be written as:

A−1ij =
{
uivj if i ≤ j,
ujvi if i > j.

(1)

Matrices such as the one in (1) and its generalizations arise in a number of prac-
tical applications like integral equations [10, 11], statistics [12], and vibrational
analysis [13]. Modeling with a semiseparable matrix evidently offers the potential
of reducing the number of parameters describing a matrix by up to an order of
magnitude (from O(n2) to O(n) in the example in (1)). Moreover, it is known that

This work was done when the authors were at Purdue University.
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computation with semiseparable matrices requires significantly reduced effort; for
example, for a semiseparable matrix of the form in (1), matrix-vector multiplies
can be performed in O(n) (as compared to O(n2) in general).

In several practical situations, semiseparable matrices do not arise alone;
instead, matrices that are encountered, are a sum of diagonal and a semiseparable
matrix or a banded and a semiseparable matrix. Examples where such matrices
arise, are in boundary value problems [14, 15], and integral equations [16]. The
computation with such matrices has been a subject of considerable interest. Several
algorithms have been developed to deal with matrix inversion and linear equation
solution with such matrices. Formulae for inversion of diagonal plus semiseparable
matrices were first developed in [6]. However, these formulae were valid under the
assumption that the matrix is strongly regular, i.e., it has non-vanishing principal
minors. These restrictions were later removed in [4]. Recently several algorithms
have been developed for solving linear systems of equation

Ax = c, (2)

where the coefficient matrix A is a sum of diagonal and semiseparable matrix [3, 4,
5, 7]. Fast and numerically stable algorithms for banded plus semiseparable linear
system of equations were proposed in [2].

We present two main results in this paper. First, we provide an explicit
representation for inverses of banded plus semiseparable matrices. In particular,
we show that under certain conditions, the inverse of a banded plus semiseparable
matrix is again a banded plus semiseparable matrix. Our second contribution is
to provide fast solutions of linear systems of equations with these matrices. A
comparison with the state of the art shows that our method is about two times
faster than existing solutions of linear system with diagonal plus semiseparable
matrices. When banded plus semiseparable matrices are considered, our method
is up to twenty times faster than existing solutions.

The remainder of the paper is organized as follows. In §2, we establish math-
ematical preliminaries and the notation used in the paper, as well as a brief review
of the state of the art. In §3 we present formulae for the inverse of banded plus
semiseparable matrices. We exploit this result in §4 to provide a fast algorithm for
solving linear systems of equations. In §5, we establish the effectiveness of the new
algorithm via numerical results. The extension of this algorithm to handle some
special cases is presented in an appendix.

2. Preliminaries

For k = 1, . . . , a, and r = 1, . . . , b, let uk = {uk(i)}ni=1, vk = {vk(i)}ni=1, pr =
{pr(i)}ni=1, and qr = {qr(i)}

n
i=1, be specified vectors. Then S

b
a, an n× n semisep-

arable matrix of order (a, b), is characterized as follows:

Sij =
{ ∑a

k=1 uk(i)vk(j) if i ≤ j,∑b
r=1 pr(j)qr(i) if i > j.

(3)
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We use Sn as the generic notation for the class of semiseparable matrices
of size n.

We use Bn to denote the class of banded matrices of size n. Bml = {Bij}ni,j=1

is used to denote a banded matrix with l non-zero diagonals strictly above the
main diagonal and m non-zero diagonals strictly below the main diagonal, i.e., if
Bml ∈ Bn then Bij = 0 if i− j > m or j − i > l. The numbers l and m are called
respectively the upper and lower bandwidths of a banded matrix Bml . Dn is used
to denote the class of diagonal matrices. D = diag(d) is used to denote a diagonal
matrix with d as the main diagonal. We now define a proper banded matrix.

Definition 2.1. A nonsingular banded matrix Bml is said to be proper if any sub-
matrix obtained by deleting r(= max(l,m)) consecutive rows and r consecutive
columns is nonsingular.

It is well known that the inverses of banded matrices are semiseparable ma-
trices.

Theorem 2.2 ([17]). Let Bml be a n×n proper banded matrix. Then its inverse can
be written as

(Bml )
−1 = Sml , S

m
l ∈ Sn.

Remark 2.3. The above semiseparable representation, though elegant and com-
pact, suffers from numerical instabilities [18], making it of limited practical use.
Hence, the above representation will be only used as a theoretical tool, and not in
any numerical implementations.

We next present a brief review of the state of the art for solving linear system
of equation in (2), where A is a sum of banded and semiseparable matrices. We
first consider the case when A is a sum of a diagonal and a semiseparable matrix.
Two algorithms for solving such systems were developed in [3]. The first step is
the same with both algorithms, where A ∈ n×n is reduced to a upper Hessenberg
matrix H via n− 1 Givens rotations:

A = GT2 G
T
3 · · ·GTn︸ ︷︷ ︸
GT

2,...,n

H.

It was shown that GT2,...,n is a lower Hessenberg matrix, whose upper triangular
part is the upper triangular part of a unit-rank matrix. The upper triangular part
of H was shown to be the upper triangular part of a matrix of rank two. The
second step of both algorithms is to reduce the upper Hessenberg matrix H into
an upper triangular matrix via n − 1 Givens rotations. Two different algorithms
were obtained by either applying the Givens rotations on the left of H , leading to
QR algorithm, or applying Givens rotations to the right of H , obtaining the URV
algorithm. Exploiting the low rank structure of GT2,...,n and H , both algorithms
were shown to require 54n− 44 flops as compared to 58n flops for the algorithm
in [5] and 59n flops for the one in [2].
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The authors in [2] proposed a fast and numerical stable algorithm for the more
general case of the solution of (2) when A is a sum of banded and semiseparable ma-
trix. The basic idea is to compute a two-sided decomposition of the matrix A such
that A = WLH . Here L is a lower triangular matrix, and both W and H can be
written as a product of elementary matrices. An efficient algorithm for solving (2)
is obtained by invertingW , L, and H on the fly. The matricesW and H can be ei-
ther obtained via standard Gaussian elimination, or by using Givens rotations and
Householder reflection matrices. The algorithm based on Gaussian elimination was
shown to be marginally better in computational time than the one based on Givens
rotations and Householder reflections, with the latter algorithm performing better
with respect to accuracy. For a banded matrix with upper and lower bandwidth l
and m and a semiseparable matrix of size n and order (a, b), the algorithm based
on Givens rotation and Householder reflection was shown to have an operation
count of

(
11a2 + 2 (2l + 2m+ 3b+ 5a) (l + a)

)
n flops, while the algorithm based

on Gaussian elimination requires
(
9a2 + 2 (l+ 2m+ 2b+ 2a) (l + a)

)
n flops.

The approach we take in this paper is to first provide an explicit represen-
tation for inverses of banded plus semiseparable matrices. We then exploit these
results to come up with a fast algorithm for solving linear systems of equations.

3. Structure for inverses of banded plus semiseparable matrices

We begin this section by considering semiseparable matrices of order (1,1). We first
present a theorem on multiplicative structure of inverses of banded plus semisep-
arable matrices of order (1, 1).

Theorem 3.1. Let Bml be a n× n banded matrix and S1
1 be a n× n semiseparable

matrix of order (1, 1). Then the inverse of their sum has the following multiplicative
structure: (

Bml + S1
1

)−1
= DLT

(
Bm+1
l+1

)−1
LD̃,

where D, D̃ ∈ Dn, Bm+1
l+1 ∈ Bn, and L is a lower bidiagonal matrix.

Proof: Let (
S1
1

)
ij
=
{
uivj if i ≤ j,
pjqi if i > j.

Assume v1(i) �= 0, q1(i) �= 0 for this and the next section. The results have been
extended for the more general case in the appendix. Let Dv = diag(1/v) and
Dq = diag(1/q) be diagonal matrices. Let L be a lower bidiagonal matrix, which
is defined as follows:

L =

⎛⎜⎜⎜⎜⎜⎝
1
−1 1

−1 1
. . . . . .

−1 1

⎞⎟⎟⎟⎟⎟⎠ . (4)
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It can be easily verified that

LDqS
1
1DvL

T = L̂, (5)

DvL
T Ŝ1

1LDq = S̃1
1 +D, (6)

LDqŜ
1
1DvL

T = S̃1
1 + L̃, (7)

where L̂, L̃ are lower bidiagonal matrices, D ∈ Dn, and Ŝ1
1 , S̃1

1 ∈ Sn. Now, from (5)

LDq
(
Bml + S1

1

)
DvL

T = LDqB
m
l DvL

T + L̂.

It can be readily verified that matrix LDqBml DvL
T is banded with lower and

upper bandwidth l+ 1 and m+ 1 respectively, i.e., LDvBml D
T
q L

T = B̃m+1
l+1 ∈ Bn.

Moreover, as L̂ is lower bidiagonal, we have

LDq
(
Bml + S1

1

)
DvL

T = Bm+1
l+1

Thus (
Bml + S1

1

)−1
= DvL

T
(
Bm+1
l+1

)−1
LDq. �

Remark 3.2. Suppose the banded matrix Bm+1
l+1 in Theorem 3.1 is proper. Then

using Theorem 2.2 and (6), we have the following elegant additive structure for
the inverse of a banded and semiseparable matrix of order (1, 1):(

Bml + S1
1

)−1
= DvL

T S̃m+1
l+1 LDq

= Sm+1
l+1 +D,

where Sm+1
l+1 ∈ Sn, and D ∈ Dn.

More generally, the following theorem characterizes the inverses of general
banded plus semiseparable matrices.

Theorem 3.3. Let Bml be a n× n banded matrix and Sba be a n× n semiseparable
matrix. Then the inverse of their sum has the following multiplicative structure:(

Bml + Sba
)−1

= D′1L
T · · ·D′bLT

(
Bm+b
l+a

)−1
LDa · · ·LD1,

where D1, D
′
1, D2, D

′
2, . . . , Da, D

′
a, Db, D

′
b ∈ Dn, Bm+b

l+a ∈ Bn, and L is a lower
bidiagonal matrix.

Proof: Without loss of generality, assume b ≥ a. Now, from (5) and (7)

LD1

(
Bml + Sba

)
D′1L

T = Bm+1
l+1 + Sb−1a−1

LDa · · ·LD1

(
Bml + Sba

)
D′1L

T · · ·D′aLT = Bm+a
l+a + Sb−a0

LDa · · ·LD1

(
Bml + Sba

)
D′1L

T · · ·D′aLT · · ·D′bLT = Bm+b
l+a ,

where D1, D
′
1, D2, D

′
2, . . . , Db, D

′
b ∈ Dn. Thus(

Bml + Sba
)−1

= D′1L
T · · ·Da′LT · · ·D′bLT

(
Bm+b
l+a

)−1
LDa · · ·LD1. �
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Remark 3.4. Suppose the banded matrix Bm+b
l+a in Theorem 3.3 is proper. Then

using Theorem 2.2 and (6), we have the following elegant additive structure for
the inverse of a banded and semiseparable matrix:(

Bml + Sba
)−1

= D′1L
T · · ·D′aLT · · ·D′bLT S̃m+b

l+a LDa · · ·LD1

= Bb−1a−1 + Sm+b
l+a ,

where Bb−1a−1 ∈ Bn, and Sm+b
l+a ∈ Sn.

Corollary 3.5. The inverse of a diagonal plus semiseparable matrix is again a
diagonal plus semiseparable matrix.

4. Fast solution of Ax = c

In this section, we consider the problem of finding the solution of linear systems
of equation, Ax = c, where the coefficient matrix, A is a sum of banded and
semiseparable matrix, i.e.,

A = Bml + Sba, B
m
l ∈ Bn, S

b
a ∈ Sn.

Without loss of generality assume b ≥ a.

x = A−1c =
(
Bml + Sba

)−1
c = D′1L

T · · ·D′aLT · · ·D′bLT
(
Bm+b
l+a

)−1
LDa · · ·LD1c.

(8)

function x = Ainvc(Sba, Bml , c)
1. Calculate D1, D

′
1, . . . , Da, D

′
a, . . . , Db, D

′
b, and B

m+b
l+a

as described in proof of Theorem 3.3;
2. z = LDa · · ·LD1c ;
3. y = Bm+b

l+a \ z ( Solve Bm+b
l+a y = z );

4. x = D′1L
T · · ·D′aLT · · ·D′bLTy;

return x;
Note that for solving Ax = c, we do not need the condition of the banded

matrices being proper.
We now present a complexity analysis of the above-mentioned procedure of

solving Ax = c. We will assume 1 " a, b, l,m " n to make the complexity
analysis simpler. The flop count of the overall algorithm is dominated by the cost of
steps 1 and 3. Total cost of step-1, i.e., calculating D1, D

′
1, . . . , Da, D

′
a, . . . , Db, D

′
b,

and Bm+b
l+a is (

2 (l +m)max (a, b) + 8
(
a2 + b2

))
n

flops. In step-3 the cost of solving a banded system of equations is 2(l+a)(m+b)n
flops. Hence the total complexity of the proposed algorithm is(

2(l + a)(m+ b) + 2 (l +m)max (a, b) + 8
(
a2 + b2

))
n

operations. For diagonal plus semiseparable systems, the complexity reduces to
30n operations.
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5. Numerical results

In this section, we compare the results for computational time and accuracy for
solving a linear system of equations of form Ax = b, for several algorithms. We
compare the results for following four algorithms:
• Algorithm I: QR algorithm for solving a diagonal plus semiseparable system,
as given in [3].

• Algorithm II: URV algorithm for solving a diagonal plus semiseparable sys-
tem, as given in [3].

• Algorithm III: Chandrasekaran-Gu algorithm for banded plus semiseparable
system of equations, as given in [2].

• Algorithm IV: The new algorithm as described in §4.
All numerical experiments were performed in MATLAB running on a 4 CPU

1.5GHz Intel r© Pentium r© machine. For Algorithm I and II, we used the author’s
implementation, taken directly from [19]. All the matrix entries are randomly
generated, drawn from a Gaussian distribution with zero mean and unit variance.

5.1. A is a sum of diagonal and semiseparable matrix

We first present the computational requirements and the accuracy of our approach
against Algorithm I and II from [3]. The matrix A comprises of a diagonal plus
a semiseparable matrix. Table 1 summarizes the results. Error in solving x in
Ax = b is defined as ‖(Ax−b)‖∞‖A‖∞‖x‖∞ . As expected all three algorithms are linear in
computational time. Algorithm IV is faster than and comparable in accuracy to
Algorithms I and II. For a system with size 320000, Algorithm IV is 1.9× faster
than Algorithm I and 2.4× faster than Algorithm II. This supports the theoretical
complexities mentioned previously, where Algorithm IV takes 30n operations as
compared to 54n− 44 operations taken by Algorithm I and II.

Size Error = ‖(Ax−b)‖∞
‖A‖∞‖x‖∞ Time (in sec)

Alg I [3] Alg II [3] Alg IV Alg I [3] Alg II [3] Alg IV

10000 3.33× 10−19 5.32× 10−19 3.27× 10−18 .34 .43 .14
20000 8.01× 10−19 4.66× 10−19 1.40× 10−17 .68 .85 .27
40000 9.24× 10−19 1.80× 10−18 5.63× 10−18 1.39 1.74 .65
80000 1.47× 10−18 8.27× 10−19 2.15× 10−17 2.77 3.50 1.41
160000 1.29× 10−19 5.49× 10−19 5.65× 10−19 5.59 7.00 3.05
320000 2.34× 10−19 5.24× 10−19 2.30× 10−18 11.06 13.92 5.86
640000 6.53× 10−20 1.71× 10−19 8.91× 10−18 22.02 27.79 11.86
1280000 8.30× 10−20 8.40× 10−19 2.88× 10−18 44.17 55.89 24.39

Table 1. Error values and Computational time as compared with
Algorithms I and II.
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5.2. A is a sum of banded and semiseparable matrix

We now present the computational requirements and the accuracy of our approach
against Algorithm III from [2]. The matrix A comprises of a banded plus semisep-
arable matrix. The three variables of interest of the coefficient matrix are the
bandwidth of the banded matrix, order of the semiseparable matrix and size of
the system. We first give results by varying one of the quantities at a time, keep-
ing other two constant. Table 2 shows the results for increasing sizes of the linear

Size Error = ‖(Ax−b)‖∞
‖A‖∞‖x‖∞ Time (in sec)

Alg III [2] Alg IV Alg III [2] Alg IV

1000 8.58× 10−17 3.07× 10−13 1.33 0.13
2000 6.41× 10−17 8.42× 10−13 2.65 0.26
3000 1.78× 10−16 2.68× 10−13 3.96 0.39
4000 7.14× 10−17 1.57× 10−12 5.29 0.53
5000 1.84× 10−16 1.87× 10−12 6.57 0.65
6000 1.20× 10−16 1.25× 10−12 7.98 0.80
7000 9.05× 10−17 8.48× 10−13 9.27 0.96
8000 3.73× 10−17 1.03× 10−12 10.62 1.12

Table 2. Error values and Computational time as compared with
Algorithm III; l = m = a = b = 5.

systems. The upper and lower bandwidth of the banded matrix in all cases is 5.
The order of the semiseparable matrix is also kept constant at (5, 5). Algorithm
IV performs favorably in terms of computational time, being 10× faster than Al-
gorithm IV for the size of 8000. Similar results are seen in Table 3 and 4, where
we are varying the bandwidth and the order respectively. Algorithm III exhibits
better accuracy than Algorithm IV, as it relies heavily on Givens rotations.

We now give results when all three variables are varied at the same time.
Table 5 shows the results for increasing sizes of the linear systems. The upper and
lower bandwidth of banded matrices as well as the order of semiseparable matrices
are varied as n

250 , where n denotes the size of the system. Algorithm IV is faster,
but at the expense of numerical accuracy. The computational times are consistent
with the theoretical flop count. For a = b = l = m = r, flop count of Algorithm III
reduces to 59r2n. For the same case, flop count of the proposed Algorithm is 28r2n.
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l = m Error = ‖(Ax−b)‖∞
‖A‖∞‖x‖∞ Time (in sec)

Alg III [2] Alg IV Alg III [2] Alg IV

11 7.51× 10−17 3.34× 10−13 2.24 0.16
21 2.33× 10−16 2.40× 10−13 3.57 0.24
31 8.64× 10−16 4.82× 10−13 4.90 0.35
41 6.88× 10−16 1.22× 10−12 5.54 .46
51 4.32× 10−16 5.61× 10−13 5.60 .55
61 1.33× 10−15 2.33× 10−12 7.24 .67
71 4.95× 10−16 1.26× 10−12 8.19 .71
81 9.71× 10−16 2.87× 10−12 9.61 .81

Table 3. Error values and Computational time as compared with
Algorithm III; n = 4000, a = b = 1.

a = b Error = ‖(Ax−b)‖∞
‖A‖∞‖x‖∞ Time (in sec)

Alg III [2] Alg IV Alg III [2] Alg IV

11 2.41× 10−16 2.70× 10−10 8.96 1.09
21 3.52× 10−16 2.88× 10−10 15.47 3.20
31 9.79× 10−16 1.82× 10−8 25.29 6.04
41 6.37× 10−16 2.48× 10−9 43.19 9.40
51 1.16× 10−15 3.75× 10−9 61.07 14.83
61 1.01× 10−15 6.06× 10−9 117.37 21.32
71 1.68× 10−15 1.62× 10−7 188.40 27.26
81 1.70× 10−15 1.03× 10−7 288.77 34.94

Table 4. Error values and Computational time as compared with
Algorithm III; n = 4000, l = m = 1.

6. Conclusions

We have presented a representation for inverse of banded plus semiseparable ma-
trices. We have also presented fast algorithms for solving linear system of equations
with these matrices. Numerical results show that the proposed approach competes
favorably with the state of the art algorithms in terms of computational efficiency.

Appendix

In the discussion till now, we have assumed we are given a semiseparable matrix
Sba, as defined in (3), such that for all i, k vk(i) �= 0, qk(i) �= 0. Now, we will give
procedure to modify the proposed methods when such assumptions do not hold
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Size Error = ‖(Ax−b)‖∞
‖A‖∞‖x‖∞ Time (in sec)

Alg III [2] Alg IV Alg III [2] Alg IV

1000 7.00× 10−17 1.21× 10−12 1.31 0.13
2000 6.68× 10−17 7.69× 10−12 4.49 0.90
3000 2.69× 10−16 1.69× 10−11 8.84 2.71
4000 2.51× 10−16 1.46× 10−9 16.46 6.53
5000 5.14× 10−16 6.25× 10−10 26.36 11.62
6000 2.32× 10−16 1.11× 10−10 41.16 19.50
7000 2.55× 10−16 2.67× 10−9 63.70 30.93
8000 6.37× 10−16 3.39× 10−10 96.16 45.39

Table 5. Error values and Computational time as compared with Al-
gorithm III; l = m = a = b = n

250 .

true. We will only consider the symmetric case, i.e., p = u, q = v. In addition,
we assume that the order of semiseparable matrices in consideration is (1, 1), i.e.,
l = m = 1. Hence

Sij =
{
uivj if i ≤ j,
ujvi if i > j.

The general case can be handled in a similar fashion.
Let us assume vk = 0, and vi �= 0 if i �= k. The technique that we propose

next can be easily extended to handle the case when for more than one i, vi is zero.
Consider the matrices L, and Dv as defined in §3. In addition, let L(k, k− 1) = 0,
and Dv(k, k) = 1. Then it can be easily verified that

LDvS
1
1DvL

T =Mu,v,

where M is defined as follows:

Mu,v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α1
α2 α2

. . .
...

0 αk
α1 α2 . . . αk αk+1

. . .
αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where α1 = u1v1, αk = uk, αk+1 = uk+1 − uk, αi = uivi − ui−1vi−1 for all i /∈
{1, k, k + 1}. We can now do a tridiagonal decomposition of Mu,v as

PMPT = T,
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where T is a tridiagonal matrix, and P is given by

P =

⎛⎜⎜⎜⎜⎜⎝
1 −α1

α2

1 −α2
α3

. . . . . .
1 −αn−1

αn

1

⎞⎟⎟⎟⎟⎟⎠
Proceeding as with the proof of Theorem 1, we can show that(

Bml + S1
1

)−1
= DLT

(
Bm+2
l+2

)−1
LD̃,

where D, D̃ ∈ Dn, B
m+2
l+2 ∈ Bn, and L is a lower bidiagonal matrix.
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Unified Nearly Optimal Algorithms for
Structured Integer Matrices

Victor Y. Pan, Brian J. Murphy and Rhys Eric Rosholt

Abstract. Our subject is the solution of a structured linear system of equa-
tions, which is closely linked to computing a shortest displacement generator
for the inverse of its structured coefficient matrix. We consider integer matri-
ces with the displacement structure of Toeplitz, Hankel, Vandermonde, and
Cauchy types and combine the unified divide-and-conquer MBA algorithm
(due to Morf 1974, 1980 and Bitmead and Anderson 1980) with the Chinese
remainder algorithm to solve both computational problems within nearly op-
timal randomized Boolean and word time bounds. The bounds cover the cost
of both solution and its correctness verification. The algorithms and nearly
optimal time bounds are extended to the computation of the determinant of
a structured integer matrix, its rank and a basis for its null space and further
to some fundamental computations with univariate polynomials that have
integer coefficients.

Mathematics Subject Classification (2000). 68W30, 68W20, 68Q25, 68W40.

Keywords. Structured matrices, the MBA divide-and-conquer algorithm.

1. Introduction

Linear systems of equations with displacement structure of Toeplitz, Hankel, Van-
dermonde and Cauchy types are omnipresent in scientific and engineering compu-
tations and signal and image processing. Due to the structure they can be solved
fast, in quadratic rather than cubic arithmetic time [L47], [D59], [T64] or even
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superfast, in nearly linear time [BGY80], [M80], [BA80], [OP98], [P01]. Quite typ-
ically, however, application of the superfast algorithms leads to the problems of
numerical stability [B85]. Moreover, structured linear systems of some important
classes are ill conditioned [GI88], [T94]. This suggests devising fast and superfast
symbolic algorithms, applied to the case of integer input coefficients, to which one
can reduce the rational inputs by scaling. The complexity of such algorithms is
usually analyzed under the Boolean (bit-operation) and word operation models
[GG03]. Our main goal in this paper is to present the algorithm in a unified way
for the general class of integer input matrices with displacement structure and
to estimate the complexity of this algorithm and the probability of degeneration
(cf. [OP98], [P01], [PW08]). Besides the complexity and degeneration issues, we
elaborate upon recursive compression of the displacement generators in the MBA
process, displacement transformation of the input matrices, and reconstruction
of the rational solution from its representation modulo selected distinct random
primes. We also cover the extension to computations with structured singular ma-
trices. We arrive at the complexity bounds that cover both randomized solution
and its correction verification and that are nearly optimal (up to a polylogarith-
mic factor) under both Boolean and word operation models. The bounds cover the
cost of both solution and its correctness verification. Versus the information lower
bound of n2 logn, the algorithm takes the order of n2 log3 n bit-operations for a
structured linear system of n equations with n unknowns where all coefficients
have absolute values in nO(1). The same cost bound covers the computation of
the determinant, rank, and a basis for the null space. The algorithm can be called
superfast because its Boolean cost bound is nearly quadratic versus the orders of
n4 and n3 bit-operations required for the solution by Gaussian elimination and
by the fast algorithms such as Levinson–Durbin’s and Trench’s, respectively. Our
nearly optimal complexity estimates can be extended to Berlekamp–Massey’s re-
construction of a linear recurrence coefficients from its values and to computing
the greatest common divisor, least common multiples, and Padé approximation
for univariate polynomials. We organize our presentation as follows. In the next
section we state some definitions and basic results. We describe the unified MBA
divide-and-conquer algorithm in Section 3. In Section 4 we cover the reconstruc-
tion of the rational solution from the solution modulo sufficiently many distinct
primes and estimate the overall Boolean and word complexity of our computations.
In Section 5 we recall various related works. The presented algorithms have been
implemented by the third and mostly the second authors. Otherwise the paper is
due to the first author.

2. Definitions and basic facts

2.1. Integers

We write log for log2 (unless we specify otherwise), Z for the ring of integers, Zq for
the ring of integers modulo an integer q, and Q for the field of rational numbers.
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“Ops” stand for “arithmetic operations”. Õ(f(n)) denotes O(f(n)(log log n)c) for
a constant c. f(s) = O(1) as well as “f(s) is in O(1)” means that f(s) is bounded
by a constant independent of s. We write a = z mod q, for three integers q > 1, a,
and z, either to denote a unique integer a such that q divides z − a and 0 ≤ a < q
or, wherever due to the context this causes no confusion, just to show that q divides
z − a.
Fact 2.1. Assume two integers a and m such that m > 1 and m > 2|a|. Then the
following expressions hold,

a = a mod m if 2|a mod m| < m,

a = a mod m−m otherwise.

2.2. Polynomial and integer multiplication

Definition 2.1. Let μ(d)) denote the minimum number of bit operations sufficient
to perform an arithmetic operation modulo a prime q < 2d, including division
by an integer coprime with q, and let m(n) denote the minimum number of field
operations sufficient to multiply two polynomials of degree n− 1 or less over any
field, ring with unity, or algebra.

Fact 2.2. We have μ(d) = O((d log d) log log d) and m(n) = O((n log n) log logn)
[CK91], [K98], [B03], [GG03], [F07].

2.3. General matrices

Definition 2.2. M = (mi,j)
k,l
i,j=1 ∈ Rk×l is a k× l matrix with entries mi,j in a ring

R. v = (vi)ki=1 ∈ Rk×1 is a column vector. I is the identity matrix of a proper size.
Il is the l× l identity matrix. (K,L) is a 1× 2 block matrix with the blocks K and
L. D(v) = diag(v) = diag(vi)i is the diagonal matrix with the diagonal entries
dii = vi given by the coordinates of the vector v = (vi)i. MT is the transpose of M .
M (h) is the h×h leading principal (that is northwestern) submatrix of M. A matrix
M of rank ρ has generic rank profile if its submatrices M (k) are nonsingular for
k = 1, . . . , ρ, that is up to the rank size ρ × ρ. M is strongly nonsingular if it is
nonsingular and has generic rank profile. A block of a matrix is its submatrix in
the intersection of a set of its contiguous rows and a set of its contiguous columns.

Definition 2.3. The symmetric matrix MTM for a nonsingular matrix M is called
positive definite. (In Qn×n such a matrix is strongly nonsingular.)

Definition 2.4. detM and adjM are the determinant and the adjoint of a matrix
M, respectively. (adjM =M−1 det M if M is nonsingular.)

Definition 2.5. |M | = ||M ||∞ = maxi
∑
j |mi,j | is the row norm of a matrix M =

(mi,j)i,j ; α(M) = maxi,j |mi,j |; |M |/n ≤ α(M) ≤ |M |; |v| = β(v) = maxi |vi| is
the maximum norm of a vector v = (vi)i.

Definition 2.6. mS ≤ 2n2 − n is the minimum number of arithmetic operations in
an algorithm that multiplies an n× n matrix S by a vector.
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Clearly, we can multiply a pair of n×n matrices by using 2n3−n2 arithmetic
operations. We refer the reader to [P84], [CW90], [K04], and the bibliography
therein on theoretical and practical speed up.

Fact 2.3. | detM | ≤ ∏j (Σim2
i,j)

1/2 ≤ (α(M)
√
n)n, and so (since the entries of

the matrix adjM are the determinants of (n− 1)× (n− 1) submatrices of M), we
have α(adjM) ≤ (α(M)

√
n− 1)n−1 for an n× n matrix M = (mi,j)i,j.

Hadamard’s bound | detM | ≤ (α(M)
√
n)n above is known to be sharp in the

worst case, but is an over-estimate on the average according to [ABM99].

Remark 2.1. We can apply Fact 2.1 and readily recover the integer detM as soon
as we have its value computed modulo p+ for some p+ > 2(α(M)

√
n)n because

(α(M)
√
n)n ≥ | detM | in virtue of Fact 2.3. If M is a nonsingular matrix in Zp+

and if its determinant detM and inverse M−1 have been computed in Zp+ , then
we can immediately compute in Zp+ the matrix adjM =M−1 detM . In virtue of
Fact 2.3, its integer entries lie in the range (−p+/2, p+/2), and we can recover
them from their values modulo p+ by applying Fact 2.1 again.

2.4. Matrices with displacement structure: general properties

In this subsection we define matrices with displacement structure and recall their
basic properties.

Definition 2.7. ΔA,B(M) =M −AMB = GHT (resp. ∇A,B(M) = AM −MB =
GHT ) is the Stein (resp. Sylvester) displacement of an n × n matrix M where
n×n matrices A and B are operator matrices and a pair of n× l matrices G and
H form a displacement generator of length l for the matrix M . The rank of the
displacement is called the displacement rank of the matrix M . (It minimizes the
length l of displacement generators ΔA,B(M) (resp. ∇A,B(M)) for a fixed triple
(A, B, M).)

The simple basic results below are from [P01, Theorems 1.3.1, 1.5.1–1.5.6].

Theorem 2.1. If the matrix A (resp. B) is nonsingular, then we have ΔA,B(M) =
A−1∇A−1,B(M) (resp. ΔA,B(M) = −∇A,B−1(M)B−1).

Theorem 2.2. For matrices A, B, M , and N of compatible sizes, displacement
operators L = ΔA,B and L = ∇A,B, and a scalar a, we have L(M + aN) =
L(M) + aL(N), ΔA,B(MT ) = (ΔBT ,AT (M))T , ∇A,B(MT ) = −(∇BT ,AT (M))T .
Furthermore ∇B,A(M−1) = −M−1∇A,B(M)M−1 if M is a nonsingular matrix,
ΔB,A(M−1) = BM−1ΔA,B(M)B−1M−1 if the matrices B and M are nonsingu-
lar, and ΔB,A(M−1) = M−1A−1ΔA,B(M)M−1A if the matrices A and M are
nonsingular.

Theorem 2.3. For any 5-tuple {A,B,C,M,N} of matrices of compatible sizes
we have ∇A,C(MN) = ∇A,B(M)N +M∇B,C(N), ΔA,C(MN) = ΔA,B(M)N +
AM∇B,C(N). Furthermore ΔA,C(MN) = ΔA,B(M)N+AMBΔB−1,C(N) if B is
a nonsingular matrix and ΔA,C(MN) = ΔA,B(M)N − AMΔB,C−1(N)C if C is
a nonsingular matrix.
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Theorem 2.4. Represent the matrices A, B, M , ∇A,B(M), and ΔA,B(M) as 2×2
block matrices with blocks Ai,j , Bi,j ,Mi,j,∇i,j , and Δi,j , respectively, having com-
patible sizes (for i, j ∈ {0, 1}). Then

∇Aii,Bjj (Mij) = ∇ij −Ri,j ,
ΔAii,Bjj (Mij) = Δij + Si,j ,

where

Ri,j =Mi,1−jB1−j,j −Ai,1−iM1−i,j ,
Si,j = Ai,iMi,1−jB1−j,j +Ai,1−iM1−i,jBj,j +Ai,1−iM1−i,1−jB1−j,j ,

for i, j ∈ {0, 1}.
Remark 2.2. The expressions of Theorem 2.4 project the displacement generator
of a matrix into those of its blocks so that the projection increases the length of
the generator by at most rank(Ri,j) or rank(Si,j), that is, in both cases at most
rank(Ai,1−i)+rank(B1−j,j). Hereafter (see Definitions 2.8–2.11) we only deal with
diagonal and unit f -circulant operator matrices A and B; in both cases their blocks
A1−i,i and B1−j,j have ranks zero or one (cf. Remark 2.3).

In Section 3 for a nonsingular structured matrix M with dr(M) = r we
perform operations with short displacement generators to obtain a displacement
generator of length r for its inverse. In the process of computing, the length of
the generators can grow above the displacement rank, but then we compress the
generators to the rank level based on the following results, valid in any field.

Theorem 2.5. Given a pair of n× l matrices G and H, it is sufficient to perform
O(l2n) ops to compute a pair of n× r matrices G̃ and H̃ such that G̃H̃T = GHT

where r = rank(GHT ) ≤ l.

Proof. See [P01, Theorem 4.6.4]). �
Corollary 2.1. Given a displacement generator of length l for a displacement oper-
ator L and an n×n matrix M with drL(M) = r, it is sufficient to use O(l2n) ops
to compute a displacement generator of length r for the same pair of L and M .

2.5. Most popular matrices with displacement structure

Toeplitz, Hankel, Vandermonde, and Cauchy matrices have displacement ranks
one or two for appropriate operator matrices. These are most used matrices with
displacement structure. Next we specify their natural extensions (see some other
important classes in [P01, Examples 4.4.8 and 4.4.9]).

Definition 2.8. T = (ti,j)ni,j=1 is a Toeplitz matrix if ti,j = ti+1,j+1 for every pair of
its entries ti,j and ti+1,j+1. Such matrix T is f -circulant for a scalar f if ti,j = ftk,l
wherever l − k + n = j − i > 0. In this case we write T = Zf (t) =

∑n
h=1 thZ

h−1
f

where t = (th)nh=1 is the first column of the matrix, th = th,1, h = 1, . . . , n, and
Zf is the unit f -circulant matrix with the first column (0, 1, 0, . . . , 0)T and the
first row (0, . . . , 0, f). Z0(t) is the lower triangular Toeplitz matrix with the first
column t.
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Definition 2.9. J = (jg,h)
n−1,n−1
g,h=0 is the reflection (or the unit Hankel) matrix if

jg,n−1−g = 1 for g = 0, . . . , n − 1, jg,h = 0 for h + g �= n − 1. (J (vi)n−1i=0 =
(vn−i−1)n−1i=0 , J2 = I.) H = (hi,j)i,j is a Hankel matrix if hi,j = hi−1,j+1 for
every pair of its entries hi,j and hi−1,j+1 or equivalently if H = TJ for a Toeplitz
matrix T .

Definition 2.10. For a positive integer n and a vector t = (ti)ni=1, define the n× n
Vandermonde matrix V (t) = (tj−1i )ni,j=1.

Definition 2.11. For a positive integer n and two vectors s = (si)ni=1 and t = (ti)ni=1

such that the 2n scalars {si, tj}i,j are distinct, define the n × n Cauchy matrix
C(s, t) = ( 1

si−tj )i,j .

Fact 2.4. (See [P01, Chapters 2 and 3].) We have mS = O(m(n)) if S is an n× n
Toeplitz or Hankel matrix for mS in Definition 2.6 and m(n) in Definition 2.1.
mS = mST = O(m(n) log n) if S is an n× n Vandermonde or Cauchy matrix.

One can easily verify that Toeplitz, Hankel, Vandermonde, and Cauchy ma-
trices have displacement ranks one or two for appropriate operator matrices.

Fact 2.5. We have a) drZe,ZT
f
(T ) ≤ 2 and drZe,Zf

(H) ≤ 2 for a Toeplitz matrix T ,
a Hankel matrix H, and a pair of scalars e and f , ef �= 1, b) drD(t),Zf

(V (t)) = 1
for a scalar f and a vector t = (ti)ni=1 such that tni f �= 1, i = 1, . . . , n and c)
drD(s),D(t)(C(s, t)) = 1 for a pair of vectors s and t with 2n distinct entries.

We use the common nomenclatures of Toeplitz-like, Hankel-like, Vander-
monde-like, and Cauchy-like matrices (or the matrices that have the structures
of Toeplitz, Hankel, Vandermonde, and Cauchy types, respectively) to define the
classes of matrices that have smaller displacement ranks under the same opera-
tors whose images have ranks one or two for Toeplitz, Hankel, Vandermonde, and
Cauchy matrices, respectively. In view of our results in the previous section, this
includes the transposes, blocks and inverses of the latter matrices, as well as the
products, sums, and linear combinations of pairs of such matrices for the same or
properly reconciled operators (see Theorems 2.2–2.4 and [P01, Chapter 4]).

Next we equivalently define the matrices of these classes (in the memory effi-
cient way) as bilinear expressions via the entries of their displacements generators
G = (gi)ri=1 and H = (hi)ri=1 (cf. [GO94] and [P01, Chapter 4]).

Theorem 2.6. (Cf. [KKM79], [P01, Example 4.4.1].) A matrix T has displacement
generator ((gi)i, (hi)i) under the operator ΔZe,ZT

f
, that is T−ZeTZTf =

∑r
i=1 gihTi

(for 2r vectors gi and hi, i = 1, . . . , r, and for a pair of scalars e and f such that
ef �= 1) if and only if T =

∑r
i=1 Ze(gi)Z

T
f (hi).

Theorem 2.7. A matrix H has displacement generator ((gi)i, (hi)i) under the
operator ΔZe,Zf

, that is H − ZeHZf =
∑r
i=1 gihTi (for 2r vectors gi and hi,

i = 1, . . . , r, and for a pair of scalars e and f such that ef �= 1) if and only if
H =

∑r
i=1 Ze(gi)Z

T
f (Jhi)J .
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Proof. Apply Theorem 2.6 for T = HJ and observe that JZTf J = Zf . �

Theorem 2.8. (Cf. [P01, Example 4.4.6b].) A matrix V has displacement generator
((gi)i, (hi)i) under the operator ΔD(t),Zf

, that is, V − diag(t)V Zf =
∑r
i=1 gihTi )

(for a vector t = (tj)nj=1 and a scalar f such that tni f �= 1 for i = 1, . . . , n) if and
only if V =

∑r
i=1 diag(

1
1−tni )

n
i=1 diag(gi)V (t)JZf (Jhi).

Theorem 2.9. (Cf. [P01, Example 4.4.1].) A matrix C has displacement gener-
ator ((gi)i, (hi)i) under the operator ∇D(s),D(t), that is diag(s)C − C diag(t) =∑r
i=1 gihTi (for 2r vectors gi and hi, i = 1, . . . , r and two vectors s = (si)ni=1

and t = (ti)ni=1 such that the 2n scalars {si, tj}i,j are distinct) if and only if
C =

∑r
i=1 diag(gi)C(s, t) diag(hi).

Now let us assess our power in dealing with matrices having displacement
structure. Theorems 2.2–2.4 enable us to express such matrices and the results of
some operations with them in terms of their displacement generators (by using
the order of rn parameters versus n2 entries). Theorems 2.6–2.9 enable us to go
back from the displacement to matrices. The bilinear expressions in Theorems
2.6–2.9 reduce multiplication by a vector of a matrix with Toeplitz-like, Hankel--
like, Vandermonde-like or Cauchy-like structures essentially to 2r multiplications
of Toeplitz, Hankel, Vandermonde or Cauchy matrices by 2r vectors. Theorems
2.2–2.4 extend this property to transposes, inverses, sums, and products of such
matrices as well as their blocks. In particular we specify some respective estimates
for the arithmetic complexity in Corollary 2.2 below.

Definition 2.12. Suppose we have a nonsingular n×n matrix M preprocessed with
a procedure P that outputs ν parameters p1, . . . , pν . Let iM (P ) be the minimum
number of ops required to solve a linear system Mx = f for any vector f provided
a matrix M , its preprocessing P , and the parameters p1, . . . , pν are fixed. Write
iM = minP {iM (P )} where the minimum is over all preprocessings P and write
iM,h = minP (h){iM (P )} where the minimum is over all preprocessings P = P (h)
that amount to solving at most h linear systems of equations with the matrices M ,
MT and MTM .

Corollary 2.2. We have mT = mH = O(lm(n)), mV = O(lm(n) logn), mC =
O(lm(n) log n), iT,2l = iH,2l = O(lm(n)), iV,2l = O(lm(n) log n), and iC,2l =
O(lm(n) log n) where T , H, V , and C stand for n × n matrices given with their
displacement generators of lengths at most l and having structures of Toeplitz,
Hankel, Vandermonde, and Cauchy types, respectively.

The following result enables adjustment of the input displacement structure
towards subsequent acceleration of the solution algorithms. In Section 3 we ap-
ply this method of displacement transformation (proposed in [P89/90] (cf. [P01,
Sections 1.7, 4.8, and 4.9])) to accelerate the solution of linear systems with the
structures of Vandermonde and Cauchy types by reducing them to linear systems
with Toeplitz-like structures.
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Corollary 2.3. (Cf. [P89/90].) Given a positive integer r and a displacement gener-
ator of a length l for an n×n matrix M with the structure of Vandermonde (resp.
Cauchy) type, one can generate matrices V1 and V2 that have structure of Vander-
monde type and that are defined with their displacement generators of lengths at
most r and then apply O((l + r)m(n) log n) ops to compute a displacement gener-
ator of a length at most l+ r (resp. l+2r) for a Toeplitz-like matrix V1M or MV2
(resp. V1MV2).

Proof. The corollary follows from Theorem 2.3 and Corollary 2.2. �

Recall that in virtue of Theorem 2.1 the transition Δ ↔ ∇ between the
operators Δ and ∇ cannot seriously affect the displacement rank of a matrix.
Likewise the simple estimates below imply that the modification of the parameter
f in the operator matrices Zf little affects the displacement rank of a matrix.

Fact 2.6.

|drZe,ZT
f
(T )− drZe,ZT

g
(T )| ≤ 1, |drZg,ZT

f
(T )− drZe,ZT

f
(T )| ≤ 1, (2.1)

|drZe,Zf
(H)− drZe,Zg (H)| ≤ 1, |drZg,Zf

(H)− drZe,Zf
(H)| ≤ 1 (2.2)

for a 5-tuple (T,H, e, f, g).

Remark 2.3. (Cf. Remark 2.2.) The rank of any off-diagonal block is zero for a
diagonal matrix and is at most one for any matrix Zf .

2.6. Randomization

Unlike deterministic algorithms, which always produce correct output, randomized
algorithms produce correct output with a probability of at least 1 − ε for any
fixed positive tolerance ε. The randomized complexity estimates differ depending
whether they cover the cost of verification of the correctness of computed solution
(e.g., verification that Mx = f for the computed randomized solution x). If they
cover this cost, they are of the Las Vegas type. (In this case at the estimated
cost one either fails with a low probability or outputs the correct solution.) The
other randomized complexity estimates are of the Monte Carlo type. (They cover
algorithms whose output can be erroneous, but with a bounded low probability.)

Given a nonsingular matrix in Z, what is the probability that it stays such in
Zp for a random prime p in a fixed large range, e.g., in (y/20, y] for a large integer
y? Here is an estimate from [PMRW05], [PW08].

Theorem 2.10. Suppose that ε is a positive number, the matrix M ∈ Zn×n is
nonsingular, and a prime p is randomly sampled from the range (y/20, y] under
the uniform probability distribution in this range where y = nξ ln |M|

ε ≥ 114, ξ =
16 ln 114

16 ln 5.7−ln 114 = 16ν/(1 − ν) = 3.278885 . . ., and ν = ln 114
16 ln 5.7 = 0.17007650 . . ..

Then P = Probability((detM) mod p = 0) < ε.
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3. Computations in Zp with matrices
having displacement structure

3.1. Inversion of strongly nonsingular structured matrices

Theorem 3.1. Assume that a strongly nonsingular n × n matrix M in a field F
has structure of Toeplitz, Hankel, Vandermonde or Cauchy type (cf. Section 2.5),
has a displacement rank r, and is given with its displacement generator of a length
l. Then a displacement generator of the minimum length r for the matrix M−1

as well as the scalar detM can be computed by using O(l2n + mMr logn) field
operations.

Proof. The MBA divide-and-conquer algorithm by Morf 1974 and 1980 and Bit-
mead and Anderson 1980 [M74], [M80], and [BA80] was proposed for Toeplitz--
like matrices. We adapt it to a more general class of matrices with displacement
structure (cf. [OP98], [P01, Chapter 5]). Recall the well-known block triangular
factorizations

M =
(
M00 M01

M10 M11

)
=
(

I 0
M10M

−1
00 I

)(
M00 0
0 S

)(
I M−1

00 M01

0 I

)
, (3.1)

M−1 =
(
M̃00 M̃01

M̃10 M̃11

)
=
(
I −M−1

00 M01

0 I

)(
M−1

00 0
0 S−1

)(
I 0

−M10M
−1
00 I

)
.

(3.2)
Here

M̃10 = (−S−1)(M10M
−1
00 ), M̃01 = −(M−1

00 M01)S−1, (3.3)

M̃00 =M−1
00 − (M−1

00 M01)M̃10, M̃11 = S−1, (3.4)
the k × k block matrix M00 and the (n− k)× (n− k) Schur complement

S = S(M,M00) =M11 − (M10M
−1
00 )M01 (3.5)

are strongly nonsingular if so is the matrix M , and the sizes ni × ni of the block
matrices Mii, i = 0, 1 are assumed to be balanced (say, n0 = %n/2&, n1 = n− n0).
We obtain and recursively extend factorization (3.1) by applying the block Gauss–
Jordan elimination to the matrix M and then recursively to the matrices M00

and S until the inversion problem is reduced to the case of one-by-one matrices.
Actual computation goes back from the inverses of such one-by-one matrices to
the matrix M−1. In this recursive process we can also recursively factorize the
scalar detM = (detM00) detS and then can compute it in n− 1 multiplications.

To yield the claimed complexity bound, we maintain and exploit the structure
of the input matrix M . In particular, we recursively compress the displacement
generator of the matrix M and of all computed auxiliary matrices to the level
of their displacement ranks and perform all computations with these matrices
by operating with their displacement generators (cf. Theorems 2.2–2.5, Corollary
2.1, and Remark 2.2). Let us examine the associated operator matrices. Assume
the pairs of operator matrices (A,B) for an input matrix M and (Aii,Bjj) for its
submatricesMij for i, j ∈ {0, 1}. Combine equations (3.3) and (3.4) with Theorems



368 V.Y. Pan, B.J. Murphy and R.E. Rosholt

2.2–2.4 and obtain the pairs of operator matrices (Bii,Ajj) for the submatrices M̃ij

of M−1 for i, j ∈ {0, 1} and hence obtain the pair of operator matrices (B,A) for
the matrix M−1 such that drA,B(M) = drB,A(M−1) (cf. Theorem 2.2). Likewise
we arrive at consistent pairs of operator matrices for every matrix computed in the
forward recursive process and for its inverse computed in the respective backward
step. Now we can deduce the complexity bound claimed in Theorem 3.1 in the case
of Sylvester displacements by combining Theorems 2.2 and 2.3 and our next result,
in which we use Sylvester displacement ∇A,B(M) (this allows singular operator
matrices when we apply Theorem 2.2 for the inverses).

Theorem 3.2. (Cf. Remark 3.1.) Assume Sylvester displacement ∇A,B(M). Then
a) all trailing principal blocks (that is Schur complements) computed in the forward
recursive process of the adapted MBA algorithm have displacement ranks at most
r + 4, b) all leading principal blocks processed in the forward recursive process of
the adapted MBA algorithm have displacement ranks at most r+6, and c) all other
matrices computed in the forward and backward recursive processes of the adapted
MBA algorithm have displacement ranks at most 2r + 12.

Proof. In the proof we will write S(k)(M) to denote the (n − k) × (n − k) Schur
complement S(M,M00) of the k×k blockM00 in the n×n matrixM . We observe
that S(g)(S(h)(M)) = S(g+h)(M) because the MBA algorithm is a (structure pre-
serving) variant of the block Gauss–Jordan elimination. Likewise S(h)(M (g+h)) =
(S(h)(M))(g). Therefore all trailing principal blocks computed in the MBA for-
ward recursive process are Schur complements in the respective submatricesM (k).
Now part a) follows from Theorem 2.4 (applied in the case i = j) and Remark
2.2 because the inverse of every Schur complement is a trailing principal (that
is, southeastern) block of the inverse of the matrix itself (cf. equation (3.4)) and
because dr(N) = dr(N−1) (cf. Theorem 2.2). Part b) follows from part a) and
Theorem 2.4. Let us prove part c).

In the first step of the forward recursive MBA process we compute the off-
diagonal blocks M−1

00 M01 and M10M
−1
00 . In the next steps we compute similar

products M̂−1
00 M̂01 and M̂01M̂

−1
00 where the blocks M̂ij denote the (i, j)th blocks

of the respective principal block computed in the previous step of the forward
recursive process. As we have observed in the proof of part a), such a principal block
is the matrix S(k)(M (h))(g) for some integers g, h and k. Any of its blocks is also
a block of the matricesM or S(k)(M (h)) for some pair of h and k. Now combining
part a) with Theorems 2.2–2.4 implies the bound dr(B) ≤ 2r + 12 claimed in
part c). Indeed this bound surely covers the factorsM10M

−1
00 and M−1

00 M01 of the
blocks M̃10 and M̃01 of the inverse M−1, respectively (cf. equations (3.3)), but
the same bound is extended to the operands involved in the computation of the
northwestern blocks computed in the backward process. Equations (3.4) and the
inequalities dr((M−1

00 M01)M̃00) ≤ dr(M−1
00 M01)+dr(M̃00)) support this extension

at its final step, and similar relationships support it at the other steps. The stronger
upper bound r + 4 holds for the southeastern blocks computed in the backward
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process because they are the inverses of the Schur complements S(k)(M (h)) for
some integers h and k, and so we can apply Theorems 2.2 and 2.4. �

According to Theorem 3.2, displacement generators of all matrices involved
into the MBA process have lengths in O(r). For the final transition fromM−1

00 and
S−1 to M−1 (performed in terms of generators) we use A = O(rmM + r2m(n)) =
O(rmM ) ops. At the (i− 1)st preceding level of the recursion we perform similar
operations with 2i matrices of sizes roughly (n/2i)×(n/2i). For a positive constant
c and mM ≥ cn this means O(rmM ) ops at each of the %logn& levels of the MBA
backward recursion and thus O(rmM logn) ops overall. This completes the proof
of Theorem 3.1 under Sylvester displacements. Theorem 2.1 enables extension to
Stein displacements ΔA,B. We recall bounds (2.1) and (2.2) to treat the cases
where A,B ∈ {Z0, Z

T
0 }. �

Remark 3.1. In the case of the Cauchy-like structure, the MBA recursive process
involves only diagonal operator matrices, and so the bounds in Theorem 3.2 de-
crease to r in parts a) and b) and to 2r in part c). We have a smaller decrease in
the case of the Vandermonde-like structure, where one half of the operator matrices
in the MBA recursive process are diagonal. In the latter case and in the case of
Toeplitz-like structure, we can choose the operator matrix B=ZT0 , to decrease the
bounds in Theorem 3.2 because the (1, 0)th block of this matrix is filled with zeros
and thus has rank zero (cf. Remarks 2.2 and 2.3).

Corollary 2.3 reduces the inversion of matrices with the structures of Van-
dermonde and Cauchy types to the inversion of Toeplitz-like matrices because
M−1 = V2(V1MV2)−1V1. This implies the following result.

Corollary 3.1. The upper estimates of Theorem 3.1 can be decreased to O(l2n +
m(n)r2 logn) field operations for m(n) in Definition 2.1, even for matrices with
the structures of Vandermonde and Cauchy types.

3.2. Inversion of nonsingular structured matrices in Zp

Corollary 3.2. Assume a random prime p in the range (y/20, y] for a sufficiently
large integer y and a nonsingular matrix M ∈ Zn×n having structure of Toep-
litz, Hankel, Vandermonde or Cauchy type, given with its displacement generator
of a length l, and having a displacement rank r. Then a) the matrix MTM is
expected to be strongly nonsingular in Zp, and b) if it is strongly nonsingular, then
a displacement generator of length r for the matrix M−1 mod p can be computed
by using O(l2n+ r2m(n) logn) operations in Zp.

Proof. The matrixMTM is strongly nonsingular in Z (cf. Definition 2.3) and is ex-
pected to stay such in Zp due to Theorem 2.10. This proves part a). Part b) follows
from Corollary 3.1 for F = Zp and from the equation M−1 = (MTM)−1MT . �
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3.3. The case of singular matrices with displacement structure

Let us extend our study to the case of singular input matrices M having a rank ρ
and a displacement rank r. In this case we seek the inverse of a ρ× ρ nonsingular
submatrix of the matrix M .

Theorem 3.3. Assume that in a field F an n × n matrix M of a rank ρ < n
has generic rank profile, has structure of (a) the Toeplitz or Hankel types or (b)
Vandermonde or Cauchy types, has a displacement rank r, and is given with a
displacement generator of a length l = O(r). Then (i) the rank ρ and (ii) a dis-
placement generator of length r for the matrix (M (ρ))−1 can be computed by using
O(rmM(ρ) log ρ) ops in F, that is O(m(ρ)r2 log1+δ ρ) ops for δ = 0 in case (a) and
δ = 1 in case (b). (iii) Within the same cost bound one can compute a solution
x to a consistent linear system Mx = f , in O(mM ) additional ops one can ver-
ify consistency of the system, and in O(rmM ) additional ops one can compute a
shortest displacement generator for a matrix whose columns define a basis for the
null space of the matrix M .

Proof. Apply the adapted MBA algorithm as in the case of strongly nonsingular
input matrices until it factorizes the submatrix M (ρ) and computes a shortest
displacement generator (of length r + O(1)) for the matrix (M (ρ))−1. This takes
O(rmM(ρ) log ρ) ops overall. Then the algorithm stops because it is prompted to
invert the one-by-one matrix filled with the zero. To solve a consistent nonhomoge-
neous linear systemMx = f , multiply the matrix (M (ρ))−1 by the subvector made
up of the first ρ coordinates of the vector f and append n− ρ zero coordinates to
the product to obtain a solution vector x. This stage involves O(mM(ρ) ) ops. To
verify consistency of the nonhomogeneous linear system, multiply the matrix M
by the vector x and compare the product with the vector f . In fact one only needs
to multiply the (n − ρ) × ρ southwestern submatrix by the leading subvector of
the dimension ρ in the vector x. If f = 0 and if we seek a solution x = (xi)ni=1

to the system Mx = 0, then we substitute xn = 1 into this system and arrive
at a nonhomogeneous linear system with n − 1 unknowns and equations. Finally
substitute M00 = M (ρ) into (3.1) and observe that the columns of the matrix(
(M (ρ))−1M01

−In−ρ

)
form a basis for the null space of the matrix M . One can com-

pute a shortest displacement generator for the matrix (M (ρ))−1M01 in O(rmM )
additional ops (cf. Theorem 2.3). �

Theorem 3.4. I) To extend Theorem 3.3 to the case of input matrices not having
generic rank profile it is sufficient to perform O(mM ) additional ops, to generate
2n − 2 random parameters in the field F, and to allow Monte Carlo randomiza-
tion, that is, to allow erroneous output with a low probability. II) By performing
additional O(rmM ) ops one yields Las Vegas randomization, that is, either fails
with a low probability or arrives at the correct output.

Proof. Part I) is implied by the following theorem.
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Theorem 3.5. Let a finite set S of a sufficiently large cardinality |S| lie in a field
F and let a matrix M of a rank ρ ≤ n lie in Fn×n. Let {si, tj , i, j = 1, . . . , n}
and {ui, vj , i, j = 1, . . . , n} be two sets of 2n distinct scalars each. Define ran-
domized preprocessing of the matrix M overwriting it with the matrix XMY (we
write M ← XMY ) where X = Xg, Y = Yh for g, h ∈ {1, 2}, X1 = ( xj

si−tj )
n
i=1,

Y1 = ( yj

ui−vj
)ni=1, X2 = ZT0 (x), Y2 = Z0(y), x1 = y1 = 1, and the other 2n − 2

coordinates of the vectors x = (xi)ni=1 and y = (yi)ni=1 are randomly sampled from
the set S. Then both matrices X2 and Y2 are nonsingular and with a probability of
at least (1 − n/|S|)2 both matrices X1 and Y1 are nonsingular. If the matrices X
and Y are nonsingular, then with a probability of at least 1− (ρ+ 1)ρ/|S| matrix
XMY has generic rank profile (and therefore is strongly nonsingular if the matrix
M is nonsingular).

Proof. See [KS91] on the case X = X2, Y = Y2 and [P01, Corollary 5.6.3] on the
case X = X1, Y = Y1. �

We can extend the displacement structure of the matrix M to the matrix
XMY by choosing appropriate matrices X = Xi and Y = Yi for i = 1, 2 to match
the operator matrices associated with the matrixM . Then dr(XMY ) ≤ dr(M)+2,
a shortest displacement generator of the matrix XMY is computed at a low cost
(see Theorem 2.3), and so its recursive factorization and a shortest displacement
generator for the matrix M−1 = Y (XMY )−1X are computed within the cost
bounds of Corollary 3.1. This proves part I) of Theorem 3.4. To prove part II),
verify correctness of the rank computation as follows: first compute a displace-
ment generator of length O(r) for the Schur complement S(XMY, (XMY )(ρ)) of
the nonsingular block (XMY )(ρ) in the matrix XMY (cf. equation (3.5) and The-
orems 2.2, 2.3, and 3.3), then compress this generator to the minimum length (cf.
Corollary 2.1), and finally verify that this length is zero. �

Similarly to Corollary 3.1, we refine the estimates of Theorems 3.3 and 3.4
in the case (b).

Corollary 3.3. In the upper estimates of Theorems 3.3 and 3.4 one can replace
the bounds mM(ρ) ops with rm(ρ) and mM with rm(n), even in the case of in-
put matrices with the structures of Vandermonde and Cauchy types, provided that
the estimates are increased by rm(n) log n ops required for computing a shortest
displacement generator for the matrix V1MV2 where V1 and V2 are nonsingular
Vandermonde or Vandermonde-like matrices (one of them is replaced with the
identity matrix if the input matrix has structure of Vandermonde type).

Clearly, the results of this subsection can be applied to matrices M in the
field F = Zn×np for any prime p. Furthermore for a large integer y and a random
prime p chosen in the range (y/20, y], a matrix M ∈ Zn×n is likely to keep its
rank, displacement rank, and displacement generator in the transition from the
ring Z to the field Zp (cf. Theorem 2.10). Therefore the results of this subsection
can be extended to structured integer matrices, as we specify next.
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4. Computations with structured
integer matrices

The algorithms in the previous section compute in Zp the determinant and a short-
est generator for the inverse of a nonsingular n× n matrix M with displacement
structure. We can repeat this computations for k distinct primes p1, . . . , pk. The
probability of failure and the overall number of ops increase at most by the factor
of k. Then the Chinese Remainder Algorithm can produce the determinant and
a shortest generator for the inverse modulo

∏k
i=1 pi. Suppose we let k = n and

choose the primes p1, . . . , pn at random in the range (y/20, y] for a value

y > y0 = 20(2n)1/nnmax{α(M)
√
n,
ξn

ε
ln(nα(M))} (4.1)

for a fixed positive ε and ξ < 4 in Theorem 2.10. Then we keep the proba-
bility of failure within ε and obtain detM and M−1 modulo p+ =

∏n
i=1 pi >

2n(α(M)
√
n)n. Fact 2.3 implies that p+ > 2| detM |, and so we can apply the

recipe in Remark 2.1 to yield detM in Z and adjM in Zn×n. The overall com-
putational cost is dominated at the stage of n applications of our algorithms of
the previous section (see [GG03, Theorem 10.25] on the complexity of the Chinese
Remainder Algorithm). In particular we arrive at the following result.

Theorem 4.1. The asymptotic estimates of the previous section can be extended to
computing the determinant and a shortest generator for the inverse of a strongly
nonsingular n×n integer matrix M having displacement rank r and given with its
displacement generator of a length l. The estimated numbers of random primes and
ops increase by the factor n versus the estimates in the previous section. The ops
are performed in the fields Zp1 , . . . ,Zpn for n distinct primes p1, . . . , pn chosen
at random independently of each other in the range (y/20, y] where y satisfies
(4.1). If l = O(r), then the overall cost bound turns into O(r2nm(n) logn) ops
performed with the precision of log y0 bits. This implies the overall Boolean cost
bound of O((r2nm(n) logn)μ(log y0)) ops for y0 in (4.1) and m(n) and μ(d) in
Definition 2.1. The ops are word operations if log2 y0 is within the word length. If
log(1/ε) = O(log(nα(M))), then the upper bound ε on the failure probability can be
supported for log y0 = O(log(nα(M))). If in addition logα(M) = O(log n), then
we can choose log y0 of the order of O(log n). The techniques in Sections 3.2 and
3.3 enable extension of all these estimates to computations with any nonsingular
and singular integer matrices M having displacement structure at the additional
randomized cost specified in Sections 3.2 and 3.3.

5. Related works

Computations with matrices having displacement structure are closely linked to
various fundamental polynomial computations [BGY80], [P01], [PMRa]. These
links enable extension of our nearly optimal cost bounds from matrix to poly-
nomial computations where the input values are integers. In particular links to
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Toeplitz computations enable extension of our cost bounds to the computation of
the greatest common divisors, least common multiples, and Padé approximations
for a pair of univariate polynomials and further to the Berlekamp–Massey problem
of recovering the coefficients of a linear recurrence from its values (see [PMRa]).
On the extension to theoretical and practical acceleration of Wiedemann and block
Wiedemann algorithms for determinants and Smith’s factors of a general matrix,
see [P04a] and [PMRa]. For structured matrices M with logα(m) = O(log n)
and r = O(1), our upper estimates on the Boolean cost are within the factor
Õ(r2 log2 n) from the information lower bound of n2 logn. The upper bound has
been further decreased in [P02], [PMRa] by the factor of r logn based on com-
bining Hensel’s symbolic lifting with numerical iterative refinement and rational
number reconstruction from their numerical approximation and from their values
modulo a larger integers (cf. [PW02] and [WP03] on the latter subjects). Instead
of k random primes for k of the order n, the lifting approach involves just a single
prime. Moreover the paper [PMRa] elaborates upon lifting initialized with a power
of two instead of customary basic primes p, so that the computations use the bi-
nary representation of all operands. The reader is referred to the paper [PMRa]
on further details.
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V-cycle Optimal Convergence
for DCT-III Matrices
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Dedicated to Georg Heinig

Abstract. The paper analyzes a two-grid and a multigrid method for matrices
belonging to the DCT-III algebra and generated by a polynomial symbol. The
aim is to prove that the convergence rate of the considered multigrid method
(V-cycle) is constant independent of the size of the given matrix. Numerical
examples from differential and integral equations are considered to illustrate
the claimed convergence properties.
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Keywords. DCT-III algebra, two-grid and multigrid iterations, multi-iterative
methods.

1. Introduction

In the last two decades, an intensive work has concerned the numerical solution
of structured linear systems of large dimensions [6, 14, 16]. Many problems have
been solved mainly by the use of (preconditioned) iterative solvers. However, in
the multilevel setting, it has been proved that the most popular matrix algebra
preconditioners are not effective in general (see [23, 26, 20] and references therein).
On the other hand, the multilevel structures often are the most interesting in
practical applications. Therefore, quite recently, more attention has been focused
(see [2, 1, 7, 5, 28, 9, 12, 10, 13, 22, 25, 19]) on the multigrid solution of multilevel
structured (Toeplitz, circulants, Hartley, sine (τ class) and cosine algebras) linear
systems in which the coefficient matrix is banded in a multilevel sense and positive
definite. The reason is due to the fact that these techniques are very efficient, the
total cost for reaching the solution within a preassigned accuracy being linear in
the dimensions of the involved linear systems.

The work of the author was partially supported by MIUR, grant number 2006017542.
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In this paper we deal with the case of matrices generated by a polynomial
symbol and belonging to the DCT-III algebra. This kind of matrices appears in the
solution of differential equations and integral equations, see for instance [4, 18, 24].
In particular, they directly arise in certain image restoration problems or can
be used as preconditioners for more complicated problems in the same field of
application [17, 18].

We consider the Two-Grid (TGM)/Multi-Grid (MGM) Method proposed and
analyzed in [7] in terms of the algebraic multigrid theory developed by Ruge and
Stüben [21] (for the foundation of the theory see [11] and [29]). Our aim is to
provide general conditions under which the proposed MGM results to be optimally
convergent with a convergence rate independent of the matrix size for a large class
of matrices in the DCT-III algebra. We prove that for this class of matrices, the
MGM results to be optimal in the sense of Definition 1.1 below, i.e., the problem
of solving a linear system with coefficient matrix A is asymptotically of the same
cost as the direct problem of multiplying A by a vector.

Definition 1.1. [3] Let {Amxm = bm} be a given sequence of linear systems with
Am of size m. An iterative method for solving the systems Amxm = bm, m ∈ N+,
is optimal if
1. the arithmetic cost of each iteration is at most proportional to the complexity
of a matrix vector product with matrix Am,

2. the number of iterations for reaching the solution within a fixed accuracy can
be bounded from above by a constant independent of m.

A crucial role to prove our optimality result is played by the choice of the projection
operator P ss+1 which is used in the MGM to project from the level s to the level
s + 1. In fact, the total cost of the proposed MGM will be of O(m) operations
since for any coarse level s we can find a projection operator P ss+1 such that
• the matrix vector product involving P ss+1 costs O(ms) operations wherems =
m/2s;

• the coarse grid matrix Ams+1 = P ss+1Ams(P
s
s+1)

T is also a matrix in the
DCT-III algebra generated by a polynomial symbol and can be formed within
O(ms) operations;

• the convergence rate of the MGM is independent of m.
The paper is organized as follows. In Section 2 we briefly recall TGM and

MGM (standard V-cycle) and report the main tools regarding the convergence
theory of algebraic multigrid methods [21]. In Section 3 we consider the TGM for
matrices belonging to DCT-III algebra with reference to some optimal convergence
properties, while Section 4 is devoted to the convergence analysis of its natural ex-
tension as V-cycle. Numerical evidences of the theoretical results are reported and
discussed in Section 5, while Section 6 concerns complexity issues and conclusions.
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2. Two-grid and multi-grid methods

In this section we briefly report the main results pertaining to the convergence
theory of algebraic multigrid methods.

Let us consider the generic linear system Amxm = bm with large dimension
m, where Am ∈ Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm.
Let

m0 = m > m1 > · · · > ms > · · · > msmin

and let
P ss+1 ∈ Cms+1×ms

be a given full-rank matrix for any s. Lastly, let us denote by Vs a class of stationary
iterative methods for linear systems of dimension ms.

According to [11], the algebraic Two-Grid Method (TGM) is an iterative
method whose generic step is defined as follow.

xouts = T GM(s, xins , bs)

xpres = Vνpre
s,pre(xins , bs) Pre-smoothing iterations

rs = Asx
pre
s − bs

rs+1 = P ss+1rs
As+1 = P ss+1As(P

s
s+1)

H

Solve As+1ys+1 = rs+1

x̂s = xpres − (P ss+1)Hys+1

Exact Coarse Grid Correction

xouts = Vνpost
s,post(x̂s, bs) Post-smoothing iterations

where we refer to the dimension ms by means of its subscript s.

In the first and last steps a pre-smoothing iteration and a post-smoothing
iteration are applied νpre times and νpost times, respectively, according to the
chosen stationary iterative method in the class Vs.

Moreover, the intermediate steps define the so-called exact coarse grid cor-
rection operator, that depends on the considered projector operator P ss+1.

The global iteration matrix of the TGM is then given by

TGMs = V
νpost
s,postCGCsV

νpre
s,pre, (2.1)

CGCs = Is − (P ss+1)
HA−1s+1P

s
s+1As As+1 = P ss+1As(P

s
s+1)

H , (2.2)

where Vs,pre and Vs,post denote the pre-smoothing and post-smoothing iteration
matrices, respectively.
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By means of a recursive procedure, the TGM gives rise to a Multi-Grid
Method (MGM): the standard V-cycle is defined as follows.

xouts =MGM(s, xins , bs)

if s ≤ smin then

Solve Asxouts = bs Exact solution

else

xpres = Vνpre
s,pre(xins , bs) Pre-smoothing iterations

rs = Asx
pre
s − bs

rs+1 = P ss+1rs
ys+1 =MGM(s+1,0s+1, rs+1)
x̂s = xpres − (P ss+1)Hys+1 Coarse Grid Correction

xouts = Vνpost
s,post(x̂s, bs) Post-smoothing iterations

Notice that in MGM the matrices As+1 = P ss+1As(P
s
s+1)

H are more profitably
formed in the so-called setup phase in order to reduce the computational costs.

The global iteration matrix of the MGM can be recursively defined as

MGMsmin = O ∈ Csmin×smin ,

MGMs = V
νpost
s,post

[
Is − (P ss+1)

H (Is+1 −MGMs+1)A−1s+1P
s
s+1As

]
V
νpre
s,pre,

s = smin − 1, . . . , 0.

Hereafter, by ‖ · ‖2 we denote the Euclidean norm on Cm and the associated
induced matrix norm over Cm×m. If X is positive definite, ‖ · ‖X = ‖X1/2 · ‖2
denotes the Euclidean norm weighted by X on Cm and the associated induced
matrix norm. Finally, ifX and Y are Hermitian matrices, then the notationX ≤ Y
means that Y −X is nonnegative definite.

Some general conditions that ensure the convergence of an algebraic TGM
and MGM are due to Ruge and Stüben [21].

Theorem 2.1 (TGM convergence [21]). Let m0, m1 be integers such that m0 >
m1 > 0, let A ∈ Cm0×m0 be a positive definite matrix. Let V0 be a class of iterative
methods for linear systems of dimension m0 and let P 0

1 ∈ Cm1×m0 be a given full-
rank matrix. Suppose that there exist αpost > 0 independent of m0 such that

‖V0,post x‖2A ≤ ‖x‖2A − αpost ‖x‖2AD−1A for any x ∈ Cm0 (2.3)
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(where D is the diagonal matrix formed by the diagonal entries of A) and that
there exists γ > 0 independent of m0 such that

min
y∈Cm1

‖x− (P 0
1 )
Hy‖2D ≤ γ‖x‖2A for any x ∈ Cm0 . (2.4)

Then, γ ≥ αpost and

‖TGM0‖A ≤
√
1− αpost/γ. (2.5)

It is worth stressing that in Theorem 2.1 the matrix D ∈ Cm0×m0 can be substi-
tuted by any Hermitian positive definite matrix X : clearly the choice X = I can
give rise to valuable simplifications [2].

At first sight, the MGM convergence requirements are more severe since the
smoothing and CGC iteration matrices are linked in the same inequalities as stated
below.

Theorem 2.2 (MGM convergence [21]). Let m0 = m > m1 > m2 > · · · > ms >
· · · > msmin and let A ∈ Cm×m be a positive definite matrix. Let P ss+1 ∈ Cms+1×ms

be full-rank matrices for any level s. Suppose that there exist δpre > 0 and δpost > 0
such that

‖V νpre
s,prex‖2As

≤ ‖x‖2As
− δpre ‖CGCsV νpre

s,prex‖2As
for any x ∈ Cms (2.6a)

‖V νpost
s,posrx‖2As

≤ ‖x‖2As
− δpost ‖CGCsx‖2As

for any x ∈ Cms (2.6b)

both for each s = 0, . . . , smin − 1, then δpost ≤ 1 and

‖MGM0‖A �
√
1− δpost
1 + δpre

< 1. (2.7)

By virtue of Theorem 2.2, the sequence {x(k)m }k∈N will converge to the solution of
the linear system Amxm = bm and within a constant error reduction not depending
on m and smin if at least one between δpre and δpost is independent of m and smin.

Nevertheless, as also suggested in [21], the inequalities (2.6a) and (2.6b) can
be split as ⎧⎪⎨⎪⎩

‖V νpre
s,prex‖2As

≤ ‖x‖2As
− α ‖V νpre

s,prex‖AsD
−1
s As

‖CGCsx‖2As
≤ γ ‖x‖2AsD

−1
s As

δpre = α/γ

(2.8)

and ⎧⎪⎨⎪⎩
‖V νpost
s,postx‖

2

As
≤ ‖x‖2As

− β ‖x‖2AsD
−1
s As

‖CGCs x‖2As
≤ γ ‖x‖2AsD

−1
s As

δpost = β/γ

(2.9)

where Ds is the diagonal matrix formed by the diagonal entries of As (again, the
AD−1A-norm is not compulsory [2] and the A2-norm will be considered in the
following) and where, more importantly, the coefficients α, β and γ can differ in
each recursion level s since the step from (2.8) to (2.6a) and from (2.9) to (2.6b)
are purely algebraic and does not affect the proof of Theorem 2.2.
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Therefore, in order to prove the V-cycle optimal convergence, it is possible
to consider the inequalities

‖V νpre
s,prex‖2As

≤ ‖x‖2As
− αs ‖V νpre

s,prex‖2A2
s

for any x ∈ Cms (2.10a)

‖V νpost
s,postx‖

2

As
≤ ‖x‖2As

− βs ‖x‖2A2
s

for any x ∈ Cms (2.10b)

‖CGCsx‖2As
≤ γs ‖x‖2A2

s
for any x ∈ Cms . (2.10c)

where it is required that αs, βs, γs ≥ 0 for each s = 0, . . . , smin − 1 and

δpre = min
0≤s<smin

αs
γs
, δpost = min

0≤s<smin

βs
γs
. (2.11)

We refer to (2.10a) as the pre-smoothing property, (2.10b) as the post-smoothing
property and (2.10c) as the approximation property (see [21]).

An evident benefit in considering the inequalities (2.10a)–(2.10c) relies on
the fact that the analysis of the smoothing iterations is distinguished from the
more difficult analysis of the projector operator. Moreover, the MGM smoothing
properties (2.10a) and (2.10b) represent a generalization of the TGM smoothing
property (2.3) with D substituted by I, in accordance with the previous reasoning.

3. Two-grid and multi-grid methods for DCT-III matrices

Let Cm = {Cm ∈ Rm×m|Cm = QmDmQ
T
m} the one-level DCT-III cosine matrix

algebra, i.e., the algebra of matrices that are simultaneously diagonalized by the
orthogonal transform

Qm =

[√
2− δj,1
m

cos
{
(i− 1)(j − 1/2)π

m

}]m
i,j=1

(3.1)

with δi,j denoting the Kronecker symbol.
Let f be a real-valued even trigonometric polynomial of degree k and period

2π. Then, the DCT-III matrix of order m generated by f is defined as

Cm(f) = QmDm(f)QTm, Dm(f) = diag1≤j≤m f
(
x
[m]
j

)
, x

[m]
j =

(j − 1)π
m

.

Clearly, Cm(f) is a symmetric band matrix of bandwidth 2k+1. In the following,
we denote in short with Cs = Cms(gs) the DCT-III matrix of size ms generated
by the function gs.

An algebraic TGM/MGM method for (multilevel) DCT-III matrices gener-
ated by a real-valued even trigonometric polynomial has been proposed in [7]. Here,
we briefly report the relevant results with respect to TGM convergence analysis,
the aim being to prove in Section 4 the V-cycle optimal convergence under suitable
conditions.

Indeed, the projector operator P ss+1 is chosen as

P ss+1 = T ss+1Cs(ps)
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where T ss+1 ∈ Rms+1×ms , ms+1 = ms/2, is the cutting operator defined as[
T ss+1

]
i,j
=
{
1/
√
2 for j ∈ {2i− 1, 2i}, i = 1, . . . ,ms+1,

0 otherwise,
(3.2)

and Cs(ps) is the DCT-III cosine matrix of size ms generated by a suitable even
trigonometric polynomial ps. Here, the scaling by a factor 1/

√
2 is introduced in

order to normalize the matrix T ss+1 with respect to the Euclidean norm. From the
point of view of an algebraic multigrid this is a natural choice, while in a geometric
multigrid it is more natural to consider just a scaling by 1/2 in the projector, to
obtain an average value.

The cutting operator plays a leading role in preserving both the structural
and spectral properties of the projected matrix Cs+1: in fact, it ensures a spectral
link between the space of the frequencies of size ms and the corresponding space
of frequencies of size ms+1, according to the following Lemma.

Lemma 3.1. [7] Let Qs ∈ Rms×ms and T ss+1 ∈ Rms+1×ms be given as in (3.1) and
(3.2), respectively. Then

T ss+1Qs = Qs+1[Φs+1,Θs+1Πs+1], (3.3)

where

Φs+1 = diagj=1,...,ms+1

[
cos

(
1
2

(
x
[ms]
j

2

))]
, x

[ms]
j =

(j − 1)π
ms

, (3.4a)

Θs+1 = diagj=1,...,ms+1

[
− cos

(
1
2

(
x
[ms]
j

2
+
π

2

))]
, (3.4b)

and Πs+1 ∈ Rms+1×ms+1 is the permutation matrix given by⎡⎢⎢⎢⎣
1 0 . . . 0
0 0 1
... . ..

0 1 0

⎤⎥⎥⎥⎦ .
As a consequence, let As = Cs(fs) be the DCT-III matrix generated by fs, then

As+1 = P ss+1As(P
s
s+1)

T = Cs+1(fs+1)

where

fs+1(x) = cos2
(
x/2
2

)
fs

(x
2

)
p2s

(x
2

)
(3.5)

+ cos2
(
π − x/2

2

)
fs

(
π − x

2

)
p2s

(
π − x

2

)
, x ∈ [0, π].
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On the other side, the convergence of the proposed TGM at sizems is ensured
by choosing the polynomial as follows. Let x0 ∈ [0, π) be a zero of the generating
function fs. The polynomial ps is chosen so that

lim
x→x0

p2s(π − x)
fs(x)

< +∞, (3.6a)

p2s(x) + p2s(π − x) > 0. (3.6b)

In the special case x0 = π, the requirement (3.6a) is replaced by

lim
x→x0=π

p2s(π − x)
cos2

(
x
2

)
fs(x)

< +∞. (3.7a)

If fs has more than one zero in [0, π], then ps will be the product of the polynomials
satisfying the condition (3.6a) (or (3.7a)) for every single zero and globally the
condition (3.6b). It is evident that the polynomial ps must have zeros of proper
order in any mirror point x̂0 = π − x0, where x0 is a zero of fs.

It is worth stressing that conditions (3.6a) and (3.6b) are in perfect agreement
with the case of other structures such as τ , symmetric Toeplitz and circulant
matrices (see, e.g., [22, 25]), while the condition (3.7a) is proper of the DCT-III
algebra and it corresponds to a worsening of the convergence requirements.

Moreover, as just suggested in [7], in the case x0 = 0 the condition (3.6a) can
also be weakened as

lim
x→x0=0

cos2
(
π−x
2

)
p2s(π − x)

fs(x)
< +∞. (3.8a)

We note that if fs is a trigonometric polynomial of degree k, then fs can have a
zero of order at most 2k. If fs(π) �= 0, then by (3.6a) the degree of ps has to be
less than or equal to %k/2&. If fs(π) = 0, then the degree of ps is less than or equal
to %(k + 1)/2&.

Notice also that from (3.5) it is easy to obtain the Fourier coefficients of fs+1

and hence the nonzero entries of As+1 = Cs+1(fs+1). In addition, we can obtain
the zeros of fs+1 and their orders by knowing the zeros of fs and their orders.

Lemma 3.2. [7] If 0 ≤ x0 ≤ π/2 is a zero of fs, then by (3.6a), ps(π − x0) = 0
and hence by (3.5), fs+1(2x0) = 0, i.e., y0 = 2x0 is a zero of fs+1. Furthermore,
because ps(π − x0) = 0, by (3.6b), ps(x0) > 0 and hence the orders of x0 and y0

are the same. Similarly, if π/2 ≤ x0 < π, then y0 = 2(π − x0) is a zero of fs+1

with the same order as x0. Finally, if x0 = π, then y0 = 0 with order equal to the
order of x0 plus two.

In [7] the Richardson method has be considered as the most natural choice
for the smoothing iteration, since the corresponding iteration matrix Vm := Im −
ωAm ∈ Cm×m belongs to the DCT-III algebra, too. Further remarks about such
a type of smoothing iterations and the tuning of the parameter ω are reported in
[25, 1].
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Theorem 3.3. [7] Let Am0 = Cm0(f0) with f0 being a nonnegative trigonometric
polynomial and let Vm0 = Im0 − ωAm0 with ω = 1/‖f0‖∞ for the post-smoothing
iteration. Then, under the quoted assumptions and definitions the inequalities (2.3)
and (2.4) hold true, and the proposed TGM converges linearly.

Here, it could be interesting to come back to some key steps in the proof of
the quoted Theorem 3.3 in order to highlight the structure with respect to any
point and its mirror point according to the considered notations.

By referring to a proof technique developed in [22], the claimed thesis is
obtained by proving that the right-hand sides in the inequalities

γ ≥ 1
ds(x)

[
cos2
(
π − x

2

)
p2s(π − x)
fs(x)

]
, (3.9a)

γ ≥ 1
ds(x)

[
cos2
(
π − x

2

)
p2s(π − x)
fs(x)

+ cos2
(x
2

) p2s(x)
fs(π − x)

]
, (3.9b)

ds(x) = cos2
(x
2

)
p2s(x) + cos

2

(
π − x
2

)
p2s(π − x) (3.9c)

are uniformly bounded on the whole domain so that γ is a universal constant.
It is evident that (3.9a) is implied by (3.9b). Moreover, both the two terms

in (3.9b) and in ds(x) can be exchanged each other, up to the change of variable
y = π − x.

Therefore, if x0 �= π it is evident that (3.6a) and (3.6b) ensure the required
uniform boundedness since the condition p2s(x) + p2s(π − x) > 0 implies ds(x) > 0.

In the case x0 = π, the inequality (3.9b) can be rewritten as

γ ≥ 1
p2s(x)

cos2
(
π−x
2

) + p2s(π − x)
cos2

(
x
2

)
[

p2s(π − x)
cos2
(
x
2

)
fs(x)

+
p2s(x)

cos2
(
π−x
2

)
fs(π − x)

]
(3.10)

so motivating the special case reported in (3.7a).

4. V-cycle optimal convergence

In this section we propose a suitable modification of (3.6a), or (3.7a), with respect
to the choice of the polynomial involved into the projector, that allows us to prove
the V-cycle optimal convergence according to the verification of the inequalities
(2.10a)–(2.10c) and the requirement (2.11).

Thanks to the choice D = I, it is worth stressing that the MGM smoothing
properties do not require a true verification, since the proofs of (2.10a) and (2.10b)
are identical in any matrix algebra with unitary transforms.

Proposition 4.1. Let As = Cms(fs) for any s = 0, . . . , smin, with fs ≥ 0, and
let ωs be such that 0 < ωs ≤ 2/‖fs‖∞. If we choose αs and βs such that αs ≤
ωsmin

{
2, (2− ωs‖fs‖∞)/(1− ωs‖fs‖∞)2

}
and βs � ωs(2 − ωs‖fs‖∞) then for
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any x ∈ Cm the inequalities

‖Vs,pre x‖2As
≤ ‖x‖2As

− αs ‖Vs,pre x‖2A2
s

(4.1)

‖Vs,post x‖2As
≤ ‖x‖2As

− βs ‖x‖2A2
s

(4.2)

hold true.

Notice, for instance, that the best bound to βs is given by 1/‖fs‖∞ and it is
obtained by taking ωs = 1/‖fs‖∞ [25, 1].

Concerning the analysis of the approximation condition (2.10c) we consider
here the case of a generating function f0 with a single zero at x0. In such a case,
the choice of the polynomial in the projector is more severe with respect to the
case of TGM. Let x0 ∈ [0, π) a zero of the generating function fs. The polynomial
ps is chosen in such a way that

lim
x→x0

ps(π − x)
fs(x)

< +∞, (4.3a)

p2s(x) + p2s(π − x) > 0. (4.3b)

In the special case x0 = π, the requirement (4.3a) is replaced by

lim
x→x0=π

ps(π − x)
cos
(
x
2

)
fs(x)

< +∞. (4.4a)

Notice also that in the special case x0 = 0 the requirement (4.3a) can be weakened
as

lim
x→x0=0

cos
(
π−x
2

)
ps(π − x)

fs(x)
< +∞. (4.5a)

Proposition 4.2. Let As = Cms(fs) for any s = 0, . . . , smin, with fs ≥ 0. Let
P ss+1 = T ss+1Cs(ps), where ps(x) is fulfilling (4.3a) (or (4.4a)) and (4.3b). Then,
for any s = 0, . . . , smin − 1, there exists γs > 0 independent of ms such that

‖CGCsx‖2As
≤ γs ‖x‖2A2

s
for any x ∈ Cms , (4.6)

where CGCs is defined as in (2.2).

Proof. Since

CGCs = Is − (P ss+1)
T (P ss+1As(P

s
s+1)

T )−1P ss+1As

is a unitary projector, it holds that CGCTs As CGCs = AsCGCs. Therefore, the
target inequality (4.6) can be simplified and symmetrized, giving rise to the equiv-
alent matrix inequality

C̃GCs = Is −A1/2
s (P ss+1)

T (P ss+1As(P
s
s+1)

T )−1P ss+1A
1/2
s ≤ γsAs. (4.7)

Hence, by invoking Lemma 3.1, QTs C̃GCsQs can be permuted into a 2× 2 block
diagonal matrix whose jth block, j = 1, . . . ,ms+1, is given by the rank-1 matrix
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(see [8] for the analogous τ case)

I2 −
1

c2j + s2j

[
c2j cjsj
cjsj s2j

]
,

where

cj = cos

(
x
[ms]
j

2

)
p2f(x[ms]

j ) sj = − cos
(
π − x[ms]

j

2

)
p2f(π − x[ms]

j ).

As in the proof of the TGM convergence, due to the continuity of fs and ps, (4.7)
is proven if the right-hand sides in the inequalities

γs ≥
1

d̃s(x)

[
cos2
(
π − x
2

)
p2sfs(π − x)

fs(x)

]
(4.8a)

γs ≥
1

d̃s(x)

[
cos2
(
π − x
2

)
p2sfs(π − x)

fs(x)
+ cos2

(x
2

) p2sfs(x)
fs(π − x)

]
(4.8b)

d̃s(x) = cos2
(x
2

)
p2sfs(x) + cos

2

(
π − x
2

)
p2sf(π − x) (4.8c)

are uniformly bounded on the whole domain so that γs are universal constants.
Once again, it is evident that (4.8a) is implied by (4.8b). Moreover, both the

terms in (4.8b) and in d̃s(x) can be exchanged each other, up to the change of
variable y = π − x.

Therefore, if x0 �= π, (4.8b) can be rewritten as

γs ≥
1

d̂s(x)

[
cos2
(
π − x
2

)
p2s(π − x)
f2s (x)

+ cos2
(x
2

) p2s(x)
f2s (π − x)

]
(4.9)

where

d̂s(x) = cos2
(x
2

) p2s(x)
fs(π − x)

+ cos2
(
π − x

2

)
p2s(π − x)
fs(x)

,

so that (4.3a) and (4.3b) ensure the required uniform boundedness.
In the case x0 = π, the inequality (4.8b) can be rewritten as

γs ≥ 1
p2s(x)

cos2
(
π−x
2

)
fs(π − x)

+
p2s(π − x)

cos2
(
x
2

)
fs(x)

[
p2s(π − x)

cos2
(
x
2

)
f2s (x)

+
p2s(x)

cos2
(
π−x
2

)
f2s (π − x)

]
(4.10)

so motivating the special case reported in (4.4a). �

Remark 4.3. Notice that in the case of pre-smoothing iterations and under the
assumption Vs,pre nonsingular, the approximation condition

‖CGCsV νpre
s,prex‖2As

≤ γs ‖V νpre
s,prex‖2A2

s

for any x ∈ Cms , (4.11)



388 C. Tablino Possio

is equivalent to the condition, in matrix form, C̃GCs ≤ γsAs obtained in Propo-
sition 4.2.

In Propositions 4.1 and 4.2 we have obtained that for every s (independent
of m = m0) the constants αs, βs, and γs are absolute values not depending on
m = m0, but only depending on the functions fs and ps. Nevertheless, in order to
prove the MGM optimal convergence according to Theorem 2.2, we should verify
at least one between the following inf–min conditions [2]:

δpre = inf
m0

min
0≤s≤log2(m0)

αs
γs

> 0, δpost = inf
m0

min
0≤s≤log2(m0)

βs
γs

> 0. (4.12)

First, we consider the inf-min requirement (4.12) by analyzing the case of a gen-
erating function f̃0 with a single zero at x0 = 0.

It is worth stressing that in such a case the DCT-III matrix Ãm0 = Cm0(f̃0) is
singular since 0 belongs to the set of grid points x[m0]

j = (j−1)π/m0, j = 1, . . . ,m0.
Thus, the matrix Ãm0 is replaced by

Am0 = Cm0(f0) = Cm0(f̃0) + f̃0

(
x
[m0]
2

)
· ee

T

m0

with e = [1, . . . , 1]T ∈ Rm0 and where the rank-1 additional term is known as
Strang correction [30]. Equivalently, f̃0 ≥ 0 is replaced by the generating function

f0 = f̃0 + f̃0

(
x
[m0]
2

)
χ
w

[ms]
1 +2πZ

> 0, (4.13)

where χX is the characteristic function of the set X and w[m0]
1 = x0 = 0.

In Lemma 4.4 below, it is reported the law to which the generating functions
are subjected at the coarser levels. With respect to this target, it is useful to
consider the following factorization result: let f ≥ 0 be a trigonometric polynomial
with a single zero at x0 of order 2q. Then, there exists a positive trigonometric
polynomial ψ such that

f(x) = [1− cos(x− x0)]q ψ(x). (4.14)

Notice also that, according to Lemma 3.2, the location of the zero is never shifted
at the subsequent levels.

Lemma 4.4. Let f0(x) = f̃0(x) + c0χ2πZ(x), with f̃0(x) = [1− cos(x)]qψ0(x), q
being a positive integer and ψ0 being a positive trigonometric polynomial and with
c0 = f̃0

(
x
[m0]
2

)
. Let ps(x) = [1+cos(x)]q for any s = 0, . . . , smin−1. Then, under

the same assumptions of Lemma 3.1, each generating function fs is given by

fs(x) = f̃s(x) + csχ2πZ(x), f̃s(x) = [1− cos(x)]qψs(x).
The sequences {ψs} and {cs} are defined as

ψs+1 = Φq,ps(ψs), cs+1 = csp
2
s(0), s = 0, . . . , smin − 1,
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where Φq,p is an operator such that

[Φq,p(ψ)] (x) =
1

2q+1

[
(ϕpψ)

(x
2

)
+ (ϕpψ)

(
π − x

2

)]
, (4.15)

with ϕ(x) = 1 + cos(x). Moreover, each f̃s is a trigonometric polynomial that
vanishes only at 2πZ with the same order 2q as f̃0.

Proof. The claim is a direct consequence of Lemma 3.1. Moreover, since the func-
tion ψ0 is positive by assumption, the same holds true for each function ψs. �

Hereafter, we make use of the following notations: for a given function f , we
will write Mf = supx |f |, mf = infx |f | and μ∞(f) =Mf/mf .

Now, if x ∈ (0, 2π) we can give an upper bound for the left-hand side R(x)
in (4.9), since it holds that

R(x) =

cos2
(
x
2

)
p2s(x)

f2s (π − x)
+
cos2

(
π−x
2

)
p2s(π − x)

f2s (x)
cos2

(
x
2

)
p2s(x)

fs(π − x)
+
cos2

(
π−x
2

)
p2s(π − x)

fs(x)

=

cos2
(
x
2

)
ψ2
s (π − x)

+
cos2

(
π−x
2

)
ψ2
s(x)

cos2
(
π−x
2

)
ps(x)

ψs(π − x)
+
cos2

(
π−x
2

)
ps(π − x)

ψs(x)

≤ Mψs

m2
ψs

1
cos2

(
x
2

)
ps(x) + cos2

(
π−x
2

)
ps(π − x)

≤ Mψs

m2
ψs

,

we can consider γs = Mψs/m
2
ψs
. In the case x = 0, since ps(0) = 0, it holds

R(0) = 1/fs(π), so that we have also to require 1/fs(π) ≤ γs. However, since
1/fs(π) ≤Mψs/m

2
ψs
, we take γ∗s =Mψs/m

2
ψs
as the best value.

In (2.9), by choosing ω∗s = ‖fs‖−1∞ , we simply find β∗s = ‖fs‖−1∞ ≥ 1/(2qMψs)
and as a consequence, we obtain

β∗s
γ∗s
≥ 1
2qMψs

·
m2
ψs

Mψs

=
1

2qμ2∞(ψs)
. (4.16)

A similar relation can be found in the case of a pre-smoothing iteration. Neverthe-
less, since it is enough to prove one between the inf-min conditions, we focus our at-
tention on condition (4.16). So, to enforce the inf-min condition (4.12), it is enough
to prove the existence of an absolute constant L such that μ∞(ψs) � L < +∞
uniformly in order to deduce that ‖MGM0‖A0

�
√
1− (2qL2)−1 < 1.

Proposition 4.5. Under the same assumptions of Lemma 4.4, let us define ψs =
[Φps,q]s(ψ) for every s ∈ N, where Φp,q is the linear operator defined as in (4.15).
Then, there exists a positive polynomial ψ∞ of degree q such that ψs uniformly
converges to ψ∞, and moreover there exists a positive real number L such that
μ∞(ψs) � L for any s ∈ N.
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Proof. Due to the periodicity and to the cosine expansions of all the involved
functions, the operator Φq,p in (4.15) can be rewritten as

[Φq,p(ψ)] (x) =
1

2q+1

[
(ϕpψ)

(x
2

)
+ (ϕpψ)

(
π +

x

2

)]
. (4.17)

The representation of Φq,p in the Fourier basis (see Proposition 4.8 in [2]) leads
to an operator from Rm(q) to Rm(q), m(q) proper constant depending only on q,
which is identical to the irreducible nonnegative matrix Φ̄q in equation (4.14) of
[2], with q + 1 in place of q.

As a consequence, the claimed thesis follows by referring to the Perron–
Frobenius theorem [15, 31] according to the very same proof technique considered
in [2]. �

Lastly, by taking into account all the previous results, we can claim the
optimality of the proposed MGM.

Theorem 4.6. Let f̃0 be an even nonnegative trigonometric polynomial vanishing at
0 with order 2q. Let m0 = m > m1 > · · · > ms > · · · > msmin , ms+1 = ms/2. For
any s = 0, . . . , smin−1, let P ss+1 be as in Proposition 4.2 with ps(x) = [1+cos(x)]q,
and let Vs,post = Ims −Ams/‖fs‖∞. If we set Am0 = Cm0(f̃0 + c0χ2πZ) with c0 =
f̃0(w

[m0]
2 ) and we consider b ∈ Cm0 , then the MGM (standard V-cycle) converges

to the solution of Am0x = b and is optimal (in the sense of Definition 1.1).

Proof. Under the quoted assumptions it holds that f̃0(x) = [1− cos(x)]q ψ0(x)
for some positive polynomial ψ0(x). Therefore, it is enough to observe that the
optimal convergence of MGM as stated in Theorem 2.2 is implied by the inf-min
condition (4.12). Thanks to (4.16), the latter is guaranteed if the quantities μ∞(ψs)
are uniformly bounded and this holds true according to Proposition 4.5. �

Now, we consider the case of a generating function f0 with a unique zero at
x0 = π, this being particularly important in applications since the discretization
of certain integral equations leads to matrices belonging to this class. For instance,
the signal restoration leads to the case of f0(π) = 0, while for the super-resolution
problem and image restoration f0(π, π) = 0 is found [5].

By virtue of Lemma 3.2 we simply have that the generating function f1
related to the first projected matrix uniquely vanishes at 0, i.e., at the first level
the MGM projects a discretized integral problem, into another which is spectrally
and structurally equivalent to a discretized differential problem.

With respect to the optimal convergence, we have that Theorem 2.2 holds
true with δ = min{δ0, δ̄} since δ results to be a constant and independent of
m0. More precisely, δ0 is directly related to the finest level and δ̄ is given by the
inf-min condition of the differential problem obtained at the coarser levels. The
latter constant value has been previously shown, while the former can be proven as
follows. We are dealing with f0(x) = (1+cos(x))qψ0(x) and according to (4.3a) we
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choose p̃0(x) = p0(x) + d0χ2πZ with p0(x) = (1 + cos(x))q+1 and d0 = p0(w
[m0]
2 ).

Therefore, an upper bound for the left-hand side R̃(x) in (4.10) is obtained as

R̃(x) ≤ Mψ0

m2
ψ0

,

i.e., we can consider γ0 = Mψ0/m
2
ψ0
and so that a value δ0 independent of m0 is

found.

5. Numerical experiments

Hereafter, we give numerical evidence of the convergence properties claimed in
the previous sections, both in the case of proposed TGM and MGM (standard
V-cycle), for two types of DCT-III systems with generating functions having zero
at 0 (differential-like problems) and at π (integral-like problems).

The projectors P ss+1 are chosen as described in Section 3 and in Section 4. The
Richardson smoothing iterations are used twice in each iteration with ω = 2/‖f‖∞
and ω = 1/‖f‖∞, respectively. The iteration is stopped when the Euclidean norm
of the relative residual at dimension m0 is less than 10−7. Moreover, the exact
solution of the system is found by a direct solver when the coarse grid dimension
equals to 16 (162 in the additional two-level tests).

5.1. Case x0 = 0 (differential-like problems)

First, we consider the case Am = Cm(f0) with f0(x) = [2− 2 cos(x)]q, i.e., with a
unique zero at x0 = 0 of order 2q.

As previously outlined, the matrix Cm(f0) is singular, so that the solution
of the rank-1 corrected system is considered, whose matrix is given by Cm(f0) +
(f0(π/m)/m)eeT , with e = [1, . . . , 1]T . Since the position of the zero x0 = 0 at the
coarser levels is never shifted, then the function ps(x) = [2− 2 cos(π − x)]r in the
projectors is the same at all the subsequent levels s.

To test TGM/MGM linear convergence with rate independent of the size m0

we tried for different r: according to (3.6a), we must choose r at least equal to 1 if
q = 1 and at least equal to 2 if q = 2, 3, while according to (4.3a) we must always
choose r equal to q. In Table 1, we report the number of iterations required for
convergence. As expected, it results to be bounded by a constant irrespective of
the problem size. Notice also that, in general, the MGM requires the same number
of iterations than the TGM. In other words, the approximation due to the Coarse
Grid Correction in the V-cycle does not introduce any significant loss of accuracy.

By using tensor arguments, the previous results plainly extend to the mul-
tilevel case. In Table 2 we consider the case of generating function f0(x, y) =
f0(x) + f0(y), that arises in the uniform finite difference discretization of elliptic
constant coefficient differential equations on a square with Neumann boundary
conditions, see, e.g., [24].
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Table 1. Number of required iterations – 1D Case:
f0(x) = [2− 2 cos(x)]q and p(x) = [2− 2 cos(π − x)]r .
TGM

q = 1 q = 2 q = 3
m0 r = 1 r = 1 r = 2 r = 2 r = 3

16 7 15 13 28 24
32 7 16 15 34 32
64 7 16 16 35 34
128 7 16 16 35 35
256 7 16 16 35 35
512 7 16 16 35 35

MGM

q = 1 q = 2 q = 3
m0 r = 1 r = 1 r = 2 r = 2 r = 3

16 1 1 1 1 1
32 7 16 15 34 32
64 7 17 16 35 34
128 7 18 16 35 35
256 7 18 16 35 35
512 7 18 16 35 35

Table 2. Number of required iterations – 2D Case:
f0(x, y) = [2− 2 cos(x)]q + [2− 2 cos(y)]q and
p(x, y) = [2− 2 cos(π − x)]r + [2− 2 cos(π − y)]r.
TGM

q = 1 q = 2 q = 3
m0 r = 1 r = 1 r = 2 r = 2 r = 3

162 15 34 30 – –
322 16 36 35 71 67
642 16 36 36 74 73
1282 16 36 36 74 73
2562 16 36 36 74 73
5122 16 36 36 74 73

MGM

q = 1 q = 2 q = 3
m0 r = 1 r = 1 r = 2 r = 2 r = 3

162 1 1 1 1 1
322 16 36 35 71 67
642 16 36 36 74 73
1282 16 36 36 74 73
2562 16 37 36 74 73
5122 16 37 36 74 73

5.2. Case x0 = π (integral-like problems)

DCT-III matrices Am0 = Cm0(f0) whose generating function shows a unique zero
at x0 = π are encountered in solving integral equations, for instance in image
restoration problems with Neumann (reflecting) boundary conditions [18].

According to Lemma 3.2, if x0 = π, then the generating function f1 of the
coarser matrix Am1 = Cm1(f1), m1 = m0/2, has a unique zero at 0, whose order
equals the order of x0 = π with respect to f0 plus two.

It is worth stressing that in such a case the projector at the first level is
singular so that its rank-1 Strang correction is considered. This choice gives rise
in a natural way to the rank-1 correction considered in Section 5.1. Moreover,
starting from the second coarser level, the new location of the zero is never shifted
from 0. In Table 3 the number of iterations required for convergence, both in the
one-level and two-level case, is reported.

6. Computational costs and conclusions

Some remarks about the computational costs are required in order to highlight
the optimality of the proposed procedure.

Since the matrix Cms(p) appearing in the definition of P ss+1 is banded, the
cost of a matrix vector product involving P ss+1 is O(ms). Therefore, the first con-
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Table 3. Number of required iterations – 1D Case:
f0(x) = 2 + 2 cos(x) and p0(x) = 2− 2 cos(π − x)
and 2D Case: f0(x, y) = 4 + 2 cos(x) + 2 cos(y)
and p0(x, y) = 4− 2 cos(π − x) − 2 cos(π − y).

m0 TGM MGM

16 15 1
32 14 14
64 12 13
128 11 13
256 10 12

512 8 10

m0 TGM MGM

162 7 1
322 7 7
642 7 7
1282 7 6
2562 7 6

5122 7 6

dition in Definition 1.1 is satisfied. In addition, notice that the matrices at every
level (except for the coarsest) are never formed since we need only to store the
O(1) nonzero Fourier coefficients of the related generating function at each level for
matrix-vector multiplications. Thus, the memory requirements are also very low.

With respect to the second condition in Definition 1.1 we stress that the rep-
resentation of Ams+1 = Cms+1(fs+1) can be obtained formally in O(1) operations
by virtue of (3.5). In addition, the zeros of fs+1 and their orders are obtained
according to Lemma 3.2 by knowing the zeros of fs and their orders. Furthermore,
each iteration of TGM costs O(m0) operations as Am0 is banded. In conclusion,
each iteration of the proposed TGM requires O(m0) operations.

With regard to MGM, optimality is reached since we have proven that there
exists δ independent from both m and smin so that the number of required iter-
ations results uniformly bounded by a constant irrespective of the problem size.
In addition, since each iteration has a computational cost proportional to matrix-
vector product, Definition 1.1 states that such a kind of MGM is optimal.

Finally, we report some remarks about the performances of the proposed
method with respect to those achieved by considering Fast Cosine Transform
(FCT) standard resolutions [27]. Let us consider the linear system Amxm = bm,
where Am belongs to the DCT-III matrix algebra. Then, the solution is given by

xm = QmΛ−1m QTmbm, (6.1)

where Λm is the diagonal matrix holding the eigenvalues of Am. Since, these eigen-
values can be evaluates as

[Λm](i,i) =
[QTmAme1]i
[QTme1]i

, i = 1, . . . ,m,

with e1 = [1, 0, . . . , 0]T , the solution (6.1) can be obtained in three FCT, i.e., within
O(m logm) operations. Thus, such a computational cost is not substantially higher
than the cost of the proposed MGM. In addition, the MGM implementation is a
delicate task since it clearly involves an efficient memory allocation, both with
respect to the recursion itself and the data stored in the setup phase.

Nevertheless, even in the one-level case, for increasing dimensions, the solu-
tion computed by means of FCT can show a worsening in the accuracy greater
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Table 4. Relative error in Euclidean norm er in the case of our MGM
Matlab code and FCT built-in Matlab function based code – 1D case:
f0(x) = [2− 2 cos(x)]2 (p(x) = [2− 2 cos(π−x)]2 and stopping criterion
equal to 10−7 for the MGM).

m0 MGM er FCT er

16 2.23e-011 8.43e-014
32 3.99e-010 1.87e-013
64 3.20e-010 1.16e-011
128 2.43e-008 2.68e-010
256 2.68e-007 3.54e-009
512 4.46e-006 1.04e-007
1024 5.47e-005 1.61e-006
2048 5.67e-004 1.72e-002
4096 9.22e-003 3.93e-001

than the solution computed by MGM, as, for instance, in the case of the generating
function f0(x) = 2− 2 cos(x). The loss of accuracy appears even more suddenly in
the case of f0(x) = [2− 2 cos(x)]2: for a size larger than 2000, the results delivered
by our MGM implementation are definitely more accurate than those obtained by
using the Matlab FCT code and show a more predictable pattern. More precisely,
for increasing dimensions, Table 4 compares the relative error in Euclidean norm
obtained by considering our MGM Matlab implementation and by using the built-
in Matlab dct function. For the sake of completeness, we have to mention that our
MGM CPU times are larger than those of the FCT code. Nevertheless, we think
that the comparison is unfair since the former refer to a non-optimized Matlab
code (the matrix-vector product key operation is implemented in O(m) operations
by using loops, but it is known that loops slow down the Matlab performances),
while the latter make use of a built-in executable function.

Moreover, the MGM, due to its iterative nature, has also a greater flexibility
related to the choice of threshold in the stopping criterion, whenever the considered
application does not require a high accuracy. We recall that this situation is not
academic and indeed it does occur when considering image restoration problems
[18, 17], where we cannot expect an error less than the noise level.

As a conclusion, we observe that the reported numerical tests in Section 5
show that the requirements on the order of zero in the projector could be weakened.
Future works will deal with this topic and with the extension of the convergence
analysis in the case of a general location of the zeros of the generating function.
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Abstract. Recently it was shown that the ratio between the normwise Toeplitz
structured condition number of a linear system and the general unstructured
condition number has a finite lower bound. However, the bound was not ex-
plicit, and nothing was known about the quality of the bound. In this note
we derive an explicit lower bound only depending on the dimension n, and
we show that this bound is almost sharp for all n.
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1. Notation and problem formulation

For a system of linear equations Ax = b with A ∈ Rn×n, x, b ∈ Rn, the condition
number characterizes the sensitivity of the solution x with respect to infinitely
small perturbations of the matrix A. For ε > 0, denote

Mε :=Mε(A) := {ΔA ∈ Rn×n : ‖ΔA‖ ≤ ε‖A‖}, (1.1)

where throughout the paper ‖ · ‖ denotes the spectral norm for matrices and for
vectors. Denote by Pε := Pε(A, x) the set of all vectors Δx ∈ Rn for which there
exists ΔA ∈Mε with (A+ΔA)(x+Δx) = Ax. Then the (unstructured) normwise
condition number is defined by

κ(A, x) := lim
ε→0

sup
Δx∈Pε

‖Δx‖
ε‖x‖ . (1.2)

It is well known that κ(A, x) = ‖A−1‖ ‖A‖, such that the (unstructured) condition
number does not depend on x.

If the matrix A has some structure, it seems reasonable to restrict the set Mε

to matrices with similar structure. For a = (a−(n−1), . . . , a−1, a0, a1, . . . , an−1), the
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n× n Toeplitz matrix Tn(a) is of the form

T := Tn(a) :=

⎛⎜⎜⎜⎜⎝
a0 a1 . . . an−1

a−1 a0
. . .

...
...

. . . . . . a1
a−(n−1) . . . a−1 a0

⎞⎟⎟⎟⎟⎠ ∈ Rn×n. (1.3)

For given (nonsingular) Toeplitz matrix T , restricting Mε to Toeplitz matrices
changes (1.2) into the Toeplitz condition number κToep(T, x) [10], [14], [2, Section
13.3]. Since the set of perturbations ΔA is restricted, it follows κToep(T, x) ≤
κ(T, x) = ‖T−1‖ ‖T ‖. Note that in contrast to the general condition number, the
Toeplitz condition number depends on x. However, there exists always a worst
case x such that both condition numbers coincide [14, Theorem 4.1]:

sup
x 
=0

{
κToep(T, x)

}
= ‖T−1‖ ‖T ‖ .

In [14, Theorem 10.2] it was shown that κToep(T, x) ≥ 2−1/2
√
κ(T, x)

(see also [2, Theorem 13.14]), hence the ratio κToep/κ is bounded below by
[2‖T−1‖ ‖T ‖]−1/2. The question arises, how small can the Toeplitz condition num-
ber actually be compared to the general condition number?

In a recent survey paper on Toeplitz and Hankel matrices [4], Böttcher and
Rost note “One expects that κToep(T, x) is in general significantly smaller than
κ(T, x), but, curiously up to now no convincing example in this direction is known.”
Furthermore, Böttcher and Rost continue to note that, as proved in [3] (submitted
in 2002 but appeared in 2005), it seems rather hopeless to find examples numeri-
cally (see also [2, Theorem 13.20]):

Theorem 1.1 (Böttcher, Grudsky, 2002). Let x0, x1, . . . , xn−1 ∈ C be independent
random variables whose real and imaginary parts are subject to the standard normal
distribution and put x = (xj)n−1j=0 . There are universal constants δ ∈ (0,∞) and
n0 ∈ N such that

Probability
(
κToep(Tn(a), x)
κ(Tn(a), x)

≥ δ

n3/2

)
>
99
100

for all finitely supported sequences a and all n ≥ n0.

Notice that generically κ(Tn(a), x) remains bounded or increases exponen-
tially fast as n goes to infinity. Since in the case of exponential growth the factor
δ/n3/2 is harmless, it follows that with high probability that κToep(Tn(a), x) in-
creases exponentially fast together with κ(Tn(a), x).

In [14] the first author showed a lower bound on the ratio κToep/κ which
surprisingly depends only on the solution x, not on A (see also [2, Theorem 13.16]).
However, despite some examples of small dimension (inspired by Heinig [9]) no
general examples could be derived.
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In this note we
1. derive a general lower bound on κToep(T, x)/κ(T, x) only depending on the
dimension n, and

2. show that this lower bound is almost sharp for all n.
The solution of both problems is based on the minimization of the smallest singular
value of a class of Toeplitz matrices (2.2) and its surprising connection to a lower
bound on the coefficients of the product of two polynomials. We will prove in
Corollary 2.11 that

2n
Δn−1

≥ inf{κ
Toep(A, x)
κ(A, x)

: A ∈ Rn×n Toeplitz, 0 �= x ∈ Rn} >
√
2

nΔn−1
,

where Δ = 3.209912 . . ..
We denote by σmin(A) the smallest singular value of the matrix A, and by J

the permutation matrix (“flip matrix”) mapping (1, . . . , n) into (n, . . . , 1).

2. Main results

Let a linear system Ax = b with Toeplitz matrix A be given. The defining equation
(A+ΔA)(x +Δx) = Ax with ‖ΔA‖ ≤ ε‖A‖ implies

Δx = −A−1ΔAx +O(ε). (2.1)

For Toeplitz perturbations, we have ΔA = T (Δa) with Δa ∈ R2n−1 according to
(1.3), and using ideas from [10] a computation shows [14]

ΔAx = JΨxΔa with Ψx :=

⎛⎜⎜⎝
x1 x2 . . . xn

x1 x2 . . . xn
. . .

x1 x2 . . . xn

⎞⎟⎟⎠ ∈ Rn×(2n−1).

(2.2)
In [14, Lemma 6.3] it was shown that the spectral matrix norm of ΔA and Eu-
clidean norm of Δa are related by

1√
n
‖ΔA‖ ≤ ‖Δa‖ ≤

√
2‖ΔA‖. (2.3)

Combining this with the definition of κToep(A, x) and (2.1) yields [14, Theorem
6.5]

κToep(A, x) = γ
‖A−1JΨx‖ ‖A‖

‖x‖ with
1√
n
≤ γ ≤

√
2, (2.4)

so that ‖A−1JΨx‖ ≥ ‖A−1‖σmin(Ψx) implies [14, Corollary 6.6]

κToep(A, x)
κ(A, x)

≥ 1√
n

‖A−1JΨx‖
‖A−1‖ ‖x‖ ≥

1√
n

σmin(Ψx)
‖x‖ . (2.5)

Surprisingly, this lower bound depends only on the solution x. That means, a given
solution x implies a lower bound for κToep(A, x)/κ(A, x) for any Toeplitz matrix A.
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We will show that the lower bound in (2.5) is achievable up to a small factor.
For this we first construct for given x a Toeplitz matrix A with ratio κToep/κ near
σmin(Ψx)/‖x‖.

Let fixed but arbitrary x ∈ Rn be given. For simplicity assume ‖x‖ = 1. First
we will show that for δ > 0 there exists a Toeplitz matrix A with ‖A−1JΨx‖ <
‖A−1‖σmin(Ψx) + δ.

Denote by y ∈ Rn, ‖y‖ = 1, a left singular vector of Ψx to σmin(Ψx), so that
‖yTΨx‖ = σmin(Ψx). By ΨxΨTx = JΨxΨTxJT we may assume either y = Jy or
y = −Jy. Define by

L(p1, . . . , pn) :=

⎛⎜⎜⎜⎜⎝
p1

p2
. . .

...
. . . . . .

pn . . . p2 p1

⎞⎟⎟⎟⎟⎠ ∈ Rn×n,

a lower triangular Toeplitz matrix depending on p ∈ Rn. Define

B := L(y1, y2, . . . , yn) and C := L(0, yn, yn−1, . . . , y2)

and
Rε := (B + εI)(B + εI)T − CCT . (2.6)

If Rε is invertible, then the Gohberg-Semencul formula ([8], see also [4, Th. 3.3])
implies that Aε := R−1ε is a (symmetric) Toeplitz matrix. Furthermore, a direct
computation using y = ±Jy yields

R0 = yyT (2.7)

which implies det(R0) = 0 for n ≥ 2. The determinant of Rε is a monic polynomial
of degree 2n in ε, thus Rε is nonsingular for all 0 �= ε < ε0 for small enough ε0.
Hence there is a constant α, independent of ε, with

‖RεΨx‖ ≤ ‖yyTΨx‖+ αε = σmin(Ψx) + αε,

the latter equality because σ2min(Ψx) is the only nonzero eigenvalue of

yyTΨx(yyTΨx)T .

Since Aε = R−1ε is a Toeplitz matrix and y = ±Jy, (2.4) implies the following
result, which is trivially also true for n = 1.

Theorem 2.1. Let 0 �= x ∈ Rn be given. Then for all δ > 0 there exists a Toeplitz
matrix A ∈ Rn×n with

‖A−1‖σmin(Ψx) ≤ ‖A−1JΨx‖ < ‖A−1‖σmin(Ψx) + δ

and

κToep(A, x) = γ ·κ(A, x)σmin(Ψx)
‖x‖ +δ′ for

1√
n
≤ γ ≤

√
2 and 0 ≤ δ′ <

√
2δ.
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For x �= 0, the matrix Ψx has full rank because otherwise each n×n submatrix
of Ψx would be singular, taking the leftmost submatrix in Ψx would imply x1 = 0,
the second leftmost would imply x2 = 0 and so forth. Thus

μn := min
0
=x∈R

σmin(Ψx)
‖x‖ = min

‖x‖=1
σmin(Ψx) > 0 (2.8)

for all n, and Theorem 2.1 yields

Corollary 2.2. For all n,
√
2μn ≥ inf{

κToep(A, x)
κ(A, x)

: A ∈ Rn×n Toeplitz, 0 �= x ∈ Rn} ≥ 1√
n
μn.

In the remaining of the paper we will estimate μn to characterize the infimum
of κToep/κ. The matrix Ψx is also known as “polynomial matrix” 1. Identifying

a vector x = (x1, . . . , xn) ∈ Rn with the polynomial x(t) :=
n−1∑
ν=0

xn−νtν ∈ R[t], a

little computation yields

z = yTΨx ⇔ z(t) = y(t)x(t), (2.9)

and therefore
yTΨx = xTΨy. (2.10)

This, of course, can also be verified by direct computation. We define the norm
‖x(t)‖ of a polynomial by the norm ‖x‖ of its coefficient vector. Since ‖yTΨx‖ =
σmin(Ψx), we can characterize μn by

μn = min{‖PQ‖ : P,Q ∈ R[t], deg(P ) = deg(Q) = n− 1, ‖P‖ = ‖Q‖ = 1}.
(2.11)

To give lower and upper bounds for μn, we first describe some related results
for polynomials. The supremum norm ‖P‖E of a complex univariate polynomial
P on a compact set E ⊂ C is defined as

‖P‖E := sup
z∈E

|P (z)|. (2.12)

In [12] Kneser gave the exact lower bound for the supremum norm on the interval
[−1, 1] of the product of two polynomials.
Theorem 2.3 (Kneser, 1934). Suppose that PQ = R, where P , Q and R are com-
plex polynomials of degree m, n−m and n, respectively. Then for all m and n

‖P‖[−1,1]‖Q‖[−1,1] ≤ Km,n‖R‖[−1,1],
where

Km,n := 2n−1
m∏
k=1

(
1 + cos

(2k − 1)π
2n

) n−m∏
k=1

(
1 + cos

(2k − 1)π
2n

)
.

This bound is exactly attained by the Chebyshev polynomial of degree n.

1Many thanks to Ludwig Elsner, Bielefeld, for pointing to this connection.



402 S.M. Rump and H. Sekigawa

To estimate μn, we need similar results for the unit disc D. Boyd’s result
in [5, 6] gives a sharp inequality for this case. To describe Boyd’s results, we
define the Mahler measure. For a complex polynomial F in k variables the Mahler
measure of F is defined as

M(F ) := exp
(∫ 1

0

· · ·
∫ 1

0

log |F (e2π
√−1t1 , . . . , e2π

√−1tk)|dt1 · · · dtk
)
.

Theorem 2.4 (Boyd, 1992/94). Let R be a polynomial of degree n with complex
coefficients and suppose that PQ = R. Then for the norm ‖ · ‖D as in (2.12) on
the unit disc D

‖P‖D‖Q‖D ≤ δn‖R‖D,
where δ =M(1 + x+ y − xy) = 1.7916228 . . .. The constant is best possible.

As written in section 3 of [5], the constant δ can be expressed in terms of
Clausen’s integral

Cl2(θ) = −
∫ θ
0

log
(
2 sin

t

2

)
dt =

∞∑
k=1

sin kθ
k2

,

or, in terms of I(θ), where

I(θ) =
∫ θ
0

log
(
2 cos

t

2

)
dt = Cl2(π − θ).

Using Catalan’s constant G = I(π/2) = Cl2(π/2) ≈ 0.9160, we can write δ =
e2G/π.

Theorem 2.4 implies a lower bound for μn. To obtain an upper bound for
μn, we estimate the supremum norms of the following polynomials. Define Fn(t)
as t2n + (−1)n. Let P̂n(t) be the monic polynomial of degree n with the zeros
of Fn(t) in the right half-plane, and Q̂n(t) be the monic polynomial of degree n
with the zeros of Fn(t) in the left half-plane. It follows P̂nQ̂n = Fn and Q̂n(t) =
(−1)nP̂n(−t).
Lemma 2.5. For the norm ‖ · ‖D as in (2.12) on the unit disc D, the following
inequalities hold true.

e
π
8n δn > ‖P̂n‖D = (−1)nP̂n(−1) = ‖Q̂n‖D = Q̂n(1) > δn.

Remark 2.6. When n is even, 2Kn/2,n = Q̂n(1)2, where Kp,q is the constant in
Theorem 2.3.

Combining Theorem 2.4 and Lemma 2.5, where the proof of the latter is
deferred to the appendix, with (2.11), we obtain an upper and a lower bound for
μn. Before we state our final result, we prove that we may assume without loss of
generality that polynomials P and Q minimizing μn as in (2.11) must both have
all their roots on the unit circle. This is also useful to identify such polynomials
P and Q numerically for small n. In fact, the following Theorem 2.7 shows more,
namely that for fixed (normed) Q there is a (normed) polynomial P with only
roots on the unit circle and minimizing ‖PQ‖.
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Theorem 2.7. For two nonzero real univariate polynomials P and Q with ‖P‖ =
‖Q‖ = 1, there exists a real univariate polynomial P ′ such that deg(P ′) = deg(P ),
‖P ′‖ = 1, all zeros of P ′ lie on the unit circle and ‖P ′Q‖ ≤ ‖PQ‖.

The proof of Theorem 2.7 is rather involved, and thus deferred to the appen-
dix. An immediate consequence is the following corollary.

Corollary 2.8.

μn = min{‖PQ‖ : P,Q ∈ R[t], deg(P ) = deg(Q) = n− 1, ‖P‖ = ‖Q‖ = 1,
and P , Q have all zeros on the unit circle}.

Now we can prove the following upper and lower bounds for μn.

Theorem 2.9. √
2(n+ 1)
Δn

> μn+1 ≥
2√

2n+ 1Δn
,

where Δ := e4G/π for Catalan’s constant G. It is Δ = δ2, where δ is the constant
in Theorem 2.4. Note that Δ = 3.209912 . . . .

Remark 2.10. Using Proposition 2.12 at the end of this section, we can improve
the upper bound to

C
√
n+ 1
Δn

,

where C is a constant independent of n.

Proof. Let F be a complex polynomial
∑n
ν=0 aνt

ν . Then, the following inequalities
among norms of F hold.

√
n+ 1‖F‖ ≥ |F |1 ≥ ‖F‖D ≥ ‖F‖. (2.13)

Here, |F |1 is defined as
∑n
ν=0 |aν |. Real polynomials P and Q minimizing μn have

all their roots on the unit circle. For this case the right-most inequality in (2.13)
improves into

‖F‖D ≥
√
2‖F‖ (2.14)

which follows from a much more general result2 in [16], see also [17, (7.71)]. From
Theorem 2.4, for real polynomials P and Q of degree n, we have

‖PQ‖D
‖P‖D‖Q‖D

≥ 1
δ2n

=
1
Δn

.

Therefore, for polynomials P and Q with ‖P‖ = ‖Q‖ = 1, the inequalities

‖PQ‖ ≥ 2‖PQ‖D√
2n+ 1‖P‖D‖Q‖D

≥ 2√
2n+ 1Δn

follow from (2.13) and (2.14). This proves the lower bound for μn+1.

2Thanks to P. Batra, Hamburg, for pointing to this reference.
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Let P̂n and Q̂n be as in Lemma 2.5. An upper bound for ‖P̂nQ̂n‖/(‖P̂n‖‖Q̂n‖)
is an upper bound for μn+1. Since ‖P̂nQ̂n‖ =

√
2, the inequalities

‖P̂nQ̂n‖
‖P̂n‖‖Q̂n‖

≤
√
2

(‖P̂n‖D/
√
n+ 1)(‖Q̂n‖D/

√
n+ 1)

<

√
2(n+ 1)
Δn

follow from (2.13) and Lemma 2.5. �

Inserting this into Corollary 2.2 characterizes the asymptotic behavior of the
worst ratio between the unstructured and structured condition number for Toeplitz
matrices.

Corollary 2.11. For all n,

2n
Δn−1

> inf
{
κToep(A, x)
κ(A, x)

: A ∈ Rn×n Toeplitz, 0 �= x ∈ Rn
}
>

√
2

nΔn−1
, (2.15)

where Δ = 3.209912 . . . is the constant in Theorem 2.9.

We can improve the upper bound using the following proposition, the proof
of which is given in the Appendix.

Proposition 2.12.

lim
n→∞

||P̂n||n1/4
||P̂n||D

= lim
n→∞

||Q̂n||n1/4
||Q̂n||D

=
1√
2
.

By similar arguments of the proof for Theorem 2.9, we obtain the following
improved upper bound.

Corollary 2.13. There exists a constant C > 0 such that for all n,

C
√
n

Δn−1
> inf

{
κToep(A, x)
κ(A, x)

: A ∈ Rn×n Toeplitz, 0 �= x ∈ Rn
}
,

where Δ = 3.209912 . . . is the constant in Theorem 2.9.

3. Approximation of μn

Next we show how to approximate Ψx ∈ Rn×(2n−1) minimizing σmin(Ψx). Using
Ψx, a Toeplitz matrix with small ratio κToep/κ can be constructed following the
discussion preceding Theorem 2.1. For given unit vector x ∈ Rn and x(t) :=
n−1∑
ν=0

xn−νtν define Ψx as in (2.2), and let y ∈ Rn be a unit left singular vector to

σmin(Ψx) of Ψx. With y(t) :=
n−1∑
ν=0

yn−νtν as in the discussion following Corollary

2.2 we have

‖x‖ = ‖y‖ = ‖x(t)‖ = ‖y(t)‖ = 1 and ‖x(t)y(t)‖ = ‖yTΨx‖ = σmin(Ψx).
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n approximate μn rigorous bounds of μn μ̂n = ||P̂nQ̂n||
||P̂n||||Q̂n|| μ̂n/μn

2 0.70710678118655 [ 0.70710678118 , 0.70710678119 ] 0.707107 1.0000
3 0.33333333333333 [ 0.33333333333 , 0.33333333334 ] 0.353553 1.0607
4 0.13201959446019 [ 0.13201959446 , 0.13201959447 ] 0.141421 1.0712
5 0.04836936580270 [ 0.04836936580 , 0.04836936581 ] 0.051777 1.0705
6 0.01702151213258 [ 0.01702151213 , 0.01702151214 ] 0.018183 1.0682
7 0.00584679996238 [ 0.00584679996 , 0.00584679997 ] 0.006234 1.0662
8 0.00197621751074 [ 0.00197621751 , 0.00197621752 ] 0.002104 1.0647

Table 1

For fixed x(t), the polynomial y(t) minimizes ‖x(t)y(t)‖ subject to ‖y(t)‖ = 1.
Now (2.10) implies ‖xTΨy‖ = σmin(Ψx) and therefore σmin(Ψy) ≤ σmin(Ψx). It-
erating the process, that is replacing x by y and computing y as a left singular
vector to σmin(Ψx), generates a monotonically decreasing and therefore convergent
sequence. Practical experience suggests that for generic starting vector x this se-
quence converges mostly to the same limit, presumably μn. In any case this limit
is an upper bound for μn. Table 1 displays this limit for some values of n.

To ensure that the limit is not a local but the global minimum min
x
σmin(Ψx),

a verified global optimization method was used [13] for computing rigorous lower
and upper bounds for μn. Such methods take all procedural, approximation and
rounding errors into account and are, provided the computer system works to its
specifications, rigorous (see, for example, [7]). For given n and using (2.11) this
means 2n variables. This was possible up to n = 5 with reasonable effort. The right-
most column in Table 1 displays the computed bounds for μn. For larger values
of n, the number of variables was significantly reduced using Theorem 2.7. Since
minimizers P,Q have only roots on the unit circle it follows P (z) = ±znP (1/z)
and similarly for Q, i.e., the coefficient vectors are (skew-)symmetric to reflection.
Using this allows the computation of rigorous bounds for μn up to n = 8 with
moderate effort.3

The best-known lower and upper bounds for μn are by Kaltofen et al. [11].
They compute verified lower bounds until n = 18. For bounding μ18 from below
they need 25 days of computing time. Results and more background are summa-
rized in [15]. Computational evidence supports the following conjecture.

Conjecture 3.1. There are polynomials P,Q ∈ R[t] with degP = degQ = n − 1
and ‖P‖ = ‖Q‖ = 1 with μn = ‖PQ‖ such that all coefficients of P are positive,
Q(t) = P (−t) and all roots of P and Q lie on the unit circle. The roots aν ± ibν
of P have all positive real parts aν , and the roots of Q are −aν ± ibν .

3Thanks to Kyoko Makino for performing the verified global optimization using the COSY-
package [1].



406 S.M. Rump and H. Sekigawa

Finally, the values μ̂n=
||P̂nQ̂n||
||P̂n||||Q̂n|| for the polynomials P̂n, Q̂n as in Lemma 2.5

and the ratio μ̂n/μn is displayed as well. It seems that P̂n, Q̂n are not far from the
optimum. This is supported by Proposition 2.12.

4. Appendix

Proof of Lemma 2.5. Since we can write

Q̂n(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(t+ 1)

n−1
2∏
k=1

(
t2 + 2t cos

kπ

n
+ 1
)
, if n is odd,

n
2∏
k=1

(
t2 + 2t cos

(2k − 1)π
2n

+ 1
)
, if n is even,

(4.1)

and cos kπn , cos
(2k−1)π

2n > 0 for the values of k in question, we have ‖Q̂n‖D = Q̂n(1).
From the definition of Q̂n, we have ‖Q̂n‖D = ‖P̂n‖D and Q̂n(1) = (−1)nP̂n(−1).

First we prove the inequalities in Lemma 2.5 when n is odd. From (4.1), we
have

Q̂n(1) = 2
n+1
2

n−1
2∏
k=1

(
1 + cos

kπ

n

)
.

Therefore,

log Q̂n(1) =
(n+ 1) log 2

2
+

n−1
2∑
k=1

log
(
1 + cos

kπ

n

)
.

Let a and b be real numbers with a < b. For a real function f such that f ′′ ≤ 0
on the interval [a, b], we have

(b− a)f
(
a+ b

2

)
≥
∫ b
a

f(x)dx ≥ (b− a)f(a) + f(b)
2

. (4.2)

Applying (4.2) to f = log(1 + cosπx) on intervals [0, 1
2n ], [

2k−1
2n , 2k+1

2n ] (k = 1, 2,
. . . , n−12 ) for an upper estimation, and on intervals [ kn ,

k+1
n ] (k = 0, 1, . . . , n−32 ),

[n−12n ,
1
2 ] for a lower estimation, we have

log Q̂n(1)
n

− (n+ 1) log 2
2n

+
1
2n
log
(
1 + cos

π

4n

)
≥
∫ 1

2

0

log(1 + cosπx)dx

≥ log Q̂n(1)
n

− log 2
2

− 1
4n
log
(
1 + cos

(n− 1)π
2n

)
.
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Since 1 + cosπx = 2 cos2 πx2 , it follows∫ 1
2

0

log(1 + cosπx)dx =
∫ 1

2

0

log
(
2 cos2

πx

2

)
dx

=
2
π

∫ π
2

0

log
(
2 cos

t

2

)
dt− log 2

2
= log δ − log 2

2
.

(4.3)

From (4.3), we have

log Q̂n(1)
n

− log 2
2n

+
1
2n
log
(
1 + cos

π

4n

)
≥ log δ ≥ log Q̂n(1)

n
− 1
4n
log
(
1 + cos

(n− 1)π
2n

)
.

Therefore, the following inequalities hold.

n log δ +
1
4
log
(
1 + cos

(n− 1)π
2n

)
≥ log Q̂n(1)

≥ n log δ +
log 2
2

− 1
2
log
(
1 + cos

π

4n

)
.

(4.4)

Since

log
(
1 + cos

(n− 1)π
2n

)
= log

(
1 + sin

π

2n

)
< log

(
1 +

π

2n

)
<

π

2n
,

we can estimate the left-hand side of (4.4) by

n log δ +
1
4
log
(
1 + cos

(n− 1)π
2n

)
< n log δ +

π

8n
.

An estimation for the right-hand side of (4.4) is as follows.
Since log 2 > log

(
1 + cos π4n

)
, we have

n log δ +
log 2
2

− 1
2
log
(
1 + cos

π

4n

)
> n log δ,

and therefore

n log δ +
π

8n
> log Q̂n(1) > n log δ

proves Lemma 2.5 for odd n. When n is even, we have

log Q̂n(1) =
n log 2
2

+

n
2∑
k=1

log
(
1 + cos

(2k − 1)π
2n

)
.

Applying (4.2) to f = log(1 + cosπx) on intervals [ kn ,
k+1
n ] (k = 0, 1, . . . , n2 − 1),

[n−12n ,
1
2 ] for an upper estimation, and on intervals [0,

1
2n ], [

2k−1
2n , 2k+1

2n ] (k = 1, 2,
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. . . , n2 − 1), [n−12n ,
1
2 ] for a lower estimation, we have

log Q̂n(1)
n

− log 2
2

≥
∫ 1

2

0

log (1 + cosπx) dx

≥ log Q̂n(1)
n

− log 2
2

− 1
2n
log
(
1 + cos

π

2n

)
+
log 2
2n

− 1
4n
log
(
1 + cos

(n− 1)π
2n

)
.

Therefore, the inequalities

n log δ +
1
2
log
(
1 + cos

π

2n

)
− log 2

2
+
1
4
log
(
1 + cos

(n− 1)π
2n

)
≥ log Q̂n(1) ≥ n log δ

hold, and from similar arguments for odd n, the inequalities

n log δ +
π

8n
> log Q̂n(1) > n log δ

prove Lemma 2.5 for even n. �
To prove Theorem 2.7, we need the following lemmas, corollaries and algo-

rithm.

Lemma 4.1. Let F and G be nonzero complex univariate polynomials, and ζ be a
fixed complex number on the unit circle. Define ν : R → R by

ν(r) :=
‖(t− rζ)F‖
‖(t− rζ)G‖ .

Then, the following statements hold.
1. ν(r) has a minimum at either r = 1 or −1.
2. If ν(1) is not a minimum, then ν(r) > ν(0) for any r > 0.

Proof. Since ν(r) is nonnegative, it is sufficient to prove that N(r) = ν(r)2 has
the above properties. For P (t) =

∑n
k=0 akt

k, we have

‖(t− rζ)P‖2 = ‖P‖2r2 −
(
ζ

n∑
k=1

ak−1ak + ζ

n∑
k=1

ak−1ak

)
r + ‖P‖2. (4.5)

Therefore, we can write

‖(t− rζ)F‖2 = f1r
2 + f2r + f1,

‖(t− rζ)G‖2 = g1r
2 + g2r + g1,

where f1 = ‖F‖2, g1 = ‖G‖2, and f2, g2 are real numbers. Therefore, we have

N ′(r) =
(f1g2 − f2g1)(r2 − 1)

‖(t− rζ)G‖2 .

If f1g2 − f2g1 = 0, then N(r) is constant and the statements are clear.
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If f1g2 − f2g1 > 0, then N(r) tends to f1/g1 = N(0), as r tends to ±∞.
Furthermore, N(r) is monotonically increasing on (−∞,−1], monotonically de-
creasing on [−1, 1] and monotonically increasing on [1,∞). Therefore, N(r) has a
minimum at r = 1.

If f1g2 − f2g1 < 0, then similar arguments hold. We have N(r) > N(0) for
any r > 0 and N(−1) is a minimum. �

The following corollary immediately follows from Lemma 4.1.

Corollary 4.2. Let F and G be nonzero complex univariate polynomials in t, and
α be a nonzero complex number. Put ζ = α/|α|. (That is, |ζ| = 1.) Then, the
following inequality holds.

‖(t− α)F‖
‖(t− α)G‖ ≥ min

{‖(t− ζ)F‖
‖(t− ζ)G‖ ,

‖tF‖
‖tG‖

}
.

When polynomials F and G are real, the following lemma holds.

Lemma 4.3. Let F and G be nonzero real univariate polynomials in t, and r be a
fixed nonzero real number. Define ν : C → R by

ν(ζ) :=
‖(t− rζ)F‖
‖(t− rζ)G‖ .

We consider ν(ζ) a function on the unit circle in C. Then, ν(ζ) has a minimum
at ζ = −1 or 1.

Proof. Since ν(ζ) is nonnegative, it is sufficient to prove that N(ζ) = ν(ζ)2 has a
minimum at ζ = −1 or 1. From Equation (4.5) and considering F , G ∈ R[t], we
have

‖(t− rζ)F‖2 = f1(ζ + ζ) + f2,

‖(t− rζ)G‖2 = g1(ζ + ζ) + g2,

where f2 = (r2 + 1)‖F‖2, g2 = (r2 + 1)‖G‖2 and f1, g1 ∈ R. Put s = ζ + ζ (∈ R).
We can write N(ζ) as Ñ(s), which is a function of s (−2 ≤ s ≤ 2). Then we have

Ñ ′(s) =
f1g2 − f2g1
(g1s+ g2)2

,

That is, Ñ ′(s) is monotonic on [−2, 2]. Therefore, it has a minimum at s = −2 or
2, which corresponds to ζ = −1 or 1, respectively. �

Combining Lemmas 4.1 and 4.3, we can easily see that the following corollary
holds.

Corollary 4.4. Let F and G be nonzero real univariate polynomials, and α be a
complex number. Then, the following inequality holds.

‖(t− α)F‖
‖(t− α)G‖ ≥ min

{‖(t− 1)F‖
‖(t− 1)G‖ ,

‖(t+ 1)F‖
‖(t+ 1)G‖

}
.

Finally, we describe the following algorithm.
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Algorithm 4.5. Given a real polynomial P (t) = (t− α)(t − α)P0(t), where α ∈ C,
�∈ R, this algorithm constructs F ∈ R[t] satisfying the following conditions.
1. The degree of F is two.
2. Both zeros of F lie on the unit circle.
3. F satisfies the following inequality.

‖PQ‖
‖P‖ ≥ ‖FP0Q‖

‖FP0‖
.

Step 1. Put ζ = α/|α|. If
‖(t− α)(t − α)P0Q‖
‖(t− α)(t− α)P0‖

≥ ‖(t− ζ)(t− α)P0Q‖
‖(t− ζ)(t− α)P0‖

,

then go to Step 2. Otherwise, go to Step 3.
Step 2.

Step 2.1. If

‖(t− ζ)(t − α)P0Q‖
‖(t− ζ)(t− α)P0‖

≥ ‖(t− ζ)(t− ζ)P0Q‖
‖(t− ζ)(t− ζ)P0‖

,

then terminate with the output (t− ζ)(t− ζ). Otherwise, go
to Step 2.2.

Step 2.2. If
‖t(t− ζ)P0Q‖
‖t(t− ζ)P0‖

≥ ‖t(t− 1)P0Q‖
‖t(t− 1)P0‖

,

then put b1 = 1. Otherwise put b1 = −1. If
‖t(t− b1)P0Q‖
‖t(t− b1)P0‖

≥ ‖(t− 1)(t− b1)P0Q‖
‖(t− 1)(t− b1)P0‖

,

then put b2 = 1. Otherwise put b2 = −1.
Terminate with the output (t− b1)(t− b2).

Step 3. If
‖t(t− α)P0Q‖
‖t(t− α)P0‖

≥ ‖t(t− 1)P0Q‖
‖t(t− 1)P0‖

,

then put b3 = 1. Otherwise, put b3 = −1. If
‖t(t− b3)P0Q‖
‖t(t− b3)P0‖

≥ ‖(t− 1)(t− b3)P0Q‖
‖(t− 1)(t− b3)P0‖

,

then put b4 = 1. Otherwise put b4 = −1.
Terminate with the output (t− b3)(t− b4).

The validity of the algorithm is as follows. In Step 2.1, if the inequality does
not hold, then we have

‖(t− ζ)(t− α)P0Q‖
‖(t− ζ)(t− α)P0‖

≥ ‖t(t− ζ)P0Q‖
‖t(t− ζ)P0‖

from Corollary 4.2.
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In Step 2.2, the following inequalities hold from Corollary 4.4.

‖t(t− ζ)P0Q‖
‖t(t− ζ)P0‖

≥ ‖t(t− b1)P0Q‖
‖t(t− b1)P0‖

≥ ‖(t− b1)(t− b2)P0Q‖
‖(t− b1)(t− b2)P0‖

.

In Step 3, the inequality

‖(t− α)(t− α)P0Q‖
‖(t− α)(t− α)P0‖

≥ ‖t(t− α)P0Q‖
‖t(t− α)P0‖

holds from Corollary 4.2. Furthermore, the inequalities

‖t(t− α)P0Q‖
‖t(t− α)P0‖

≥ ‖t(t− b3)P0Q‖
‖t(t− b3)P0‖

≥ ‖(t− b3)(t− b4)P0Q‖
‖(t− b3)(t− b4)P0‖

hold from Corollary 4.4.

Proof of Theorem 2.7. It is sufficient to show that the following two statements
hold.

1. Given P = (t − a)P0, where a ∈ R, we can construct a real polynomial
R = (t− b)P0 (b = 1 or −1) satisfying the following inequality.

‖PQ‖
‖P‖ ≥ ‖RQ‖

‖R‖ .

2. Given P = (t − α)(t − α)P0, where α ∈ C, �∈ R, we can construct a real
polynomial R = FP0 with the inequality

‖PQ‖
‖P‖ ≥ ‖RQ‖

‖R‖ ,

where F is a univariate real polynomial of degree two with both zeros on the
unit circle.

The first statement and the second statement follow from Corollary 4.4 and Algo-
rithm 4.5, respectively. �

To prove Proposition 2.12, we need some lemmas.

Lemma 4.6. Let P (t) be a real univariate polynomial of degree n. For an integer
m > n, the equality

‖P‖2 = 1
m

m∑
k=1

|P (ωζk)|2

holds, where ω ∈ C lies on the unit circle and ζ is a primitive mth root of unity.

Lemma 4.7. For arbitrary ε > 0, there exists θ > 0 such that the inequality

1− 2(1− ε)x ≥ 1− sinx
1 + sinx

holds for θ ≥ x ≥ 0.
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Proof. Since
1− sinx
1 + sinx

= 1− 2 sinx
1 + sinx

,

the inequality is equivalent to

sinx
1 + sinx

≥ (1− ε)x. (4.6)

As x tends to 0,
sinx
x

→ 1,
1

1 + sinx
→ 1,

hold. Therefore, for given ε > 0, there exists θ > 0 such that the inequality (4.6)
holds for θ ≥ x ≥ 0. �

Lemma 4.8. For arbitrary ε > 0, there exists θ > 0 such that the inequalities

exp(−x) ≥ 1− x ≥ exp(−(1 + ε)x)

hold for θ ≥ x ≥ 0.

Lemma 4.9 (Jordan’s Inequality). For π/2 ≥ x ≥ 0,

x ≥ sinx ≥ 2x
π
.

Proof of Proposition 2.12. First we prove the proposition when n is odd. It is
sufficient to show that for any ε > 0, there exists an integer N such that the
inequalities

1
2
√
1− ε +

1
2
√
n
−
√
n

2
exp
(
−�n

2/3�2
n

)
>
‖Q̂n‖2

√
n

‖Q̂n‖2D
>

1
2
√
1 + ε

− 1√
n
−
√
n exp

(
−(1 + ε)πn1/3

)
2(1 + ε)π

(4.7)

hold for any odd integer n ≥ N .
Let ζ be exp(π

√
−1/n). Then we have

‖Q̂n‖2 =
1
2n

2n∑
k=1

|Q̂(ζk)|2 = Q̂n(1)2

2n
+
1
n

(n−1)/2∑
k=1

|Q̂n(ζk)|2.

The relation between |Q̂n(ζk)|2 and |Q̂n(ζk−1)|2 is as follows.

|Q̂n(ζk)|2 = |Q̂n(ζk−1)|2
∣∣∣ζk−1 + ζ−

n+1
2

∣∣∣2∣∣∣ζk−1 + ζ
n−1

2

∣∣∣2 = |Q̂n(ζk−1)|2
∣∣∣1 + ζ−

n−1
2 −k

∣∣∣2∣∣∣1 + ζ
n+1
2 −k

∣∣∣2 .
Since the equalities

|1 + ζj |2 = (1 + ζj)(1 + ζ−j) = 2
(
1 + cos

jπ

n

)
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hold for j ∈ N, we have

|Q̂n(ζk)|2 = |Q̂n(ζk−1)|2
1 + cos

(
π
2 +

(2k−1)π
2n

)
1 + cos

(
π
2 −

(2k−1)π
2n

) = |Q̂n(ζk−1)|2 1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

.

(4.8)
First we show the upper bound. Take any ε > 0. Then, there exists an integer L
such that the above lemma holds for θ = L−1/3π. Take any n ≥ L. Since we have

π

L1/3
≥ π

n1/3
≥ (2n2/3 − 1)π

2n
≥ (2k − 1)π

2n

for �n2/3� ≥ k ≥ 1, the following inequalities follow from Lemmas 4.7 and 4.8.

1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

≤ 1− (1 − ε)(2k − 1)π
n

≤ exp
(
− (1− ε)(2k − 1)π

n

)
.

Therefore, for �n2/3� ≥ k ≥ 1 we have

|Q̂n(ζk)|2 ≤ |Q̂n(ζk−1)|2 exp
(
− (1− ε)(2k − 1)π

n

)
≤ Q̂n(1)2

k∏
j=1

exp
(
− (1− ε)(2j − 1)π

n

)

= Q̂n(1)2 exp

⎛⎝− (1− ε)π
n

k∑
j=1

(2j − 1)

⎞⎠ = Q̂n(1)2 exp
(
− (1− ε)π

n
k2
)
.

Since the inequality

1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

≤ 1− sin (2k − 1)π
2n

holds for (n−1)/2 ≥ k > �n2/3�, the following inequalities follow from Lemmas 4.8
and 4.9.

1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

≤ exp
(
− sin (2k − 1)π

2n

)
≤ exp

(
−2k − 1

n

)
.

Hence, for (n− 1)/2 ≥ k > �n2/3�, we have

|Q̂n(ζk)|2 ≤ |Q̂n(ζk−1)|2 exp
(
−2k − 1

n

)
≤ Q̂n(1)2

k∏
j=1

exp
(
−2j − 1

n

)

= Q̂n(1)2 exp

⎛⎝− 1
n

k∑
j=1

(2j − 1)

⎞⎠ = Q̂n(1)2 exp
(
−k

2

n

)
.
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Therefore, the following inequality holds.

Q̂n(1)2

2n
+
Q̂n(1)2

n

�n2/3	∑
k=1

exp
(
− (1− ε)π

n
k2
)

+
Q̂n(1)2

n

(n−1)/2∑
k=�n2/3	+1

exp
(
−k

2

n

)
≥ ‖Q̂n‖2.

Here,

�n2/3	∑
k=1

exp
(
− (1− ε)π

n
k2
)

<

∫ ∞
0

exp
(
− (1− ε)π

n
x2
)
dx =

1
2

√
n

1− ε
holds since ∫ ∞

0

exp(−cx2)dx = 1√
c

∫ ∞
0

exp(−x2)dx = 1
2

√
π

c

holds for c > 0. Then we have
(n−1)/2∑

k=�n2/3	+1

exp
(
−k

2

n

)
<

∫ ∞
�n2/3	

exp
(
−x

2

n

)
dx <

∫ ∞
�n2/3	

x exp
(
−x

2

n

)
dx

=
[
−n
2
exp
(
−x

2

n

)]∞
�n2/3	

= −n
2
exp
(
−�n

2/3�2
n

)
.

Hence, the following inequality holds.

Q̂(1)2
(
1
2n

+
1

2
√
(1− ε)n

− 1
2
exp
(
−�n

2/3�2
n

))
> ‖Q̂n‖2.

Therefore, we obtain the upper bound. That is, the inequality

1
2
√
n
+

1
2
√
1− ε

−
√
n

2
exp
(
−�n

2/3�2
n

)
>
‖Q̂n‖2

√
n

Q̂n(1)2
(4.9)

holds for n ≥ L.
Next, we show the lower bound. From (4.8) we have

|Q̂n(ζj)|2 > Q̂n(1)2
j∏
k=1

(
1− sin (2k − 1)π

2n

)2

.

Take any ε > 0. Then, there exists an integer M such that the above lemma
holds for θ =M−1/3π. Take any n ≥M . Since for �n2/3� ≥ k ≥ 1 we have

π

M1/3
≥ π

n1/3
≥ (2n2/3 − 1)π

2n
≥ (2k − 1)π

2n
,

the following inequalities follow from Lemma 4.8.

1− sin (2k − 1)π
2n

≥ 1− (2k − 1)π
2n

≥ exp
(−(1 + ε)(2k − 1)π

2n

)
.
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Hence, for �n2/3� ≥ k ≥ 1 we have

|Q̂n(ζk)|2 > Q̂n(1)2 exp

⎛⎝ k∑
j=1

−(1 + ε)(2k − 1)π
n

⎞⎠ = Q̂n(1)2 exp
(−(1 + ε)πj2

n

)
.

Therefore, the following inequalities hold.

‖Q̂n‖2 >
1
n

�n2/3	∑
k=1

|Q̂n(ζk)|2 >
1
n

�n2/3	∑
k=1

(
Q̂n(1)2 exp

(−(1 + ε)πk2

n

))

=
Q̂n(1)2

n

�n2/3	∑
k=1

exp
(−(1 + ε)πk2

n

)
.

The following estimation holds.

�n2/3	∑
k=1

exp
(−(1 + ε)πk2

n

)
>

∫ �n2/3	+1

1

exp
(−(1 + ε)πx2

n

)
dx.

For a > 0 and c ≥ 1 we have∫ a
1

exp(−cx2)dx =
∫ ∞
0

exp(−cx2)dx−
∫ 1

0

exp(−cx2)dx−
∫ ∞
a

exp(−cx2)dx

>

√
π

2
√
c
− 1−

∫ ∞
a

x exp(−cx2)dx

and ∫ ∞
a

x exp(−cx2)dx =
[
−exp(−cx

2)
2c

]∞
a

=
exp(−ca2)

2c
.

Hence, the inequalities

�n2/3	∑
k=1

exp
(−(1 + ε)πk2

n

)
>

√
n

2
√
1 + ε

− 1−
n exp

(
− (1+ε)π

n (�n2/3�+ 1)2
)

2(1 + ε)π

>

√
n

2
√
1 + ε

− 1− n exp
(
−(1 + ε)πn1/3

)
2(1 + ε)π

hold. Therefore, we have

‖Q̂n‖2 >
1
n

�n2/3	∑
k=1

|Q̂n(ζk)|2 >
Q̂n(1)2

n

�n2/3	∑
k=1

exp
(−(1 + ε)πj2

n

)

>
Q̂n(1)2

n

∫ �n2/3	+1

1

exp
(−(1 + ε)πx2

n

)
dx

> Q̂n(1)2
(

1
2
√
n(1 + ε)

− 1
n
− exp

(
−(1 + ε)πn1/3

)
2(1 + ε)π

)
.
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Then, we obtain the lower bound. That is, the inequality

‖Q̂n‖2
√
n

Q̂n(1)2
>

1
2
√
1 + ε

− 1√
n
−
√
n exp

(
−(1 + ε)πn1/3

)
2(1 + ε)π

(4.10)

holds for n ≥ M . Combining (4.9) and (4.10), we have the statement (4.7) for
N = max{L,M} when n is odd.

Next we prove the statement when n is even. Let ζ4n be exp(π
√
−1/2n). Note

that ζ24n is a primitive 2nth root of unity. Then, we have

‖Q̂n‖2 =
1
2n

2n∑
k=1

|Q̂(ζ2k−14n )|2 = 1
n

n/2∑
k=1

|Q̂n(ζ2k−14n )|2.

The relation between |Q̂n(ζ2k+1
4n )|2 and |Q̂n(ζ2k−14n )|2 is as follows.

|Q̂n(ζ2k+1
4n )|2 = |Q̂n(ζ2k−14n )|2 |ζ

2k−1
4n + ζ−n−14n |2
|ζ2k−14n + ζn−14n |2

= |Q̂n(ζ2k−14n )|2 |1 + ζ−n−2k4n |2
|1 + ζn−2k4n |2

.

Since

|1 + ζj4n|2 = (1 + ζj4n)(1 + ζ−j4n ) = 2
(
1 + cos

jπ

2n

)
,

we have

|Q̂n(ζ2k+1
4n )|2 = |Q̂n(ζ2k−14n )|2 1 + cos(

π
2 +

kπ
n )

1 + cos(π2 − kπ
n )

= |Q̂n(ζ2k−14n )|2 1− sin
kπ
n

1 + sin kπn
.

From similar arguments for odd n, given ε > 0 there exists an integer N such that
the following inequalities hold for any even integer n ≥ N .

1
2
√
1− ε

−
√
n

2
exp
(
−�n

2/3�2
n

)
>
‖Q̂n‖2

√
n

|Q̂n(ζ4n)|2

>
1

2
√
1 + ε

− 1√
n
−
√
n exp

(
−(1 + ε)πn1/3

)
2(1 + ε)π

.

That is, we have
‖Q̂n‖2

√
n

|Q̂n(ζ4n)|2
→ 1
2

(4.11)

as n tends to infinity.
According to the following Lemma, we have

lim
n→∞

|Q̂n(ζ4n)|2
‖Q̂n‖2D

= 1,

and combining with (4.11), we have the statement. �

Lemma 4.10.

lim
n→∞

|Q̂n(ζ4n)|2
‖Q̂n‖2D

= 1.
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Proof. Since the following inequalities

Q̂n(1) =
n/2∏

k=−n/2+1

(1 + ζ2k−14n ), Q̂n(ζ4n) =
n/2∏

k=−n/2+1

(ζ4n + ζ2k−14n )

hold, we have

Q̂n(1)2 =
n/2∏

k=−n/2+1

(1 + ζ2k−14n )2 =
n/2∏
k=1

(1 + ζ2k−14n )2(1 + ζ−2k+1
4n )2

=
n/2∏
k=1

(
2 + 2 cos

(2k − 1)π
2n

)2

,

|Q̂n(ζ4n)|2 =
n/2∏

k=−n/2+1

|1 + ζ2k−24n |2 =
n/2∏
k=1

|1 + ζ2k−24n |2 · |1 + ζ−2k4n |2

=
n/2∏
k=1

(
2 cos

π

2n
+ 2 cos

(2k − 1)π
2n

)2

.

Therefore, the following inequalities hold.

|Q̂n(ζ4n)|2
Q̂n(1)2

=
n/2∏
k=1

(
cos π2n + cos

(2k−1)π
2n

)2
(
1 + cos (2k−1)π2n

)2 ≥
n/2∏
k=1

(
1− π2

8n2 + cos
(2k−1)π

2n

)2
(
1 + cos (2k−1)π2n

)2
=

n/2∏
k=1

⎛⎜⎝1− π2

8n2
(
1 + cos (2k−1)π2n

)2
⎞⎟⎠

2

>

(
1− π2

8n2

)n
.

That is, we have

1 ≥ |Q̂n(ζ4n)|2
Q̂n(1)2

>

(
1− π2

8n2

)n
.

Therefore, we have

|Q̂n(ζ4n)|2
Q̂n(1)2

→ 1

as n tends to infinity. �
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A New Algorithm for Finding Positive
Eigenvectors for a Class of Nonlinear Operators
Associated with M-matrices

Yuriy V. Shlapak

Abstract. In this paper we state the sufficient conditions for the existence and
uniqueness of positive eigenvectors for a class of nonlinear operators associ-
ated with M-matrices. We also show how to construct a convergent iterative
process for finding these eigenvectors. The details of numerical implementa-
tion of this algorithm for some spectral methods of discretization of elliptic
partial differential equations are also discussed. Some results of numerical ex-
periments for the Gross-Pitaevskii Equation with non-separable potentials in
a rectangular domain are given in the end of the paper.
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Keywords. Positive eigenvectors, Nonlinear operators, M-matrices, Monotone
fixed point theorem, Gross-Pitaevskii equation.

1. Introduction

Many problems of the modern physics require finding positive eigenvectors of some
nonlinear elliptic operators. After the discretization these problems can be reduced
to problems of finding positive eigenvectors of nonlinear operators acting from Rn

to Rn.
We consider the following problem: find a column vectorX ∈ Rn that satisfies

the equation
AX + V ◦X + F (X) = λX (1.1)

where λ is a real positive constant (eigenvalue), A is an M-matrix of size n, symbol
◦ is used to denote the Hadamard product of two matrices, V = [v1, . . . , vn]T is a
column vector that is called a potential, and F (X) is a nonlinear vector function
from Rn to Rn that depends only on the vectorX . In addition to finding the vector
X , we would like to establish conditions that are sufficient for the existence and
uniqueness of a vector X in this problem.
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To prove the main result of this paper, we use techniques that are similar to
ones given in [1]. We consider a more complex equation (1.1), which has a linear
term V ◦ X in it. This is a generalization of the equation considered in [1]. The
discretizations of many important equations of physics have a linear term in them.
For example, the Gross-Pitaevskii Equation from quantum physics

−Δu+ V (x, y, z)u+ ku3 = λu (1.2)

in one-dimensional case can be discretized by using the 3-point central finite differ-
ences and a uniform mesh with the step h into the equation (1.1) with the matrix
A of the form:

A =
1
h2
·

⎡⎢⎢⎢⎢⎢⎢⎣
2 −1 0

−1 2 −1
−1 . . . . . .

. . . 2 −1
0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦
We should point out that the algorithm described in [1] and [2] allows practical
computation of positive eigenvectors for some special types of equation (1.1). In
this paper we provide both the theoretical justification and practical algorithm for
finding positive eigenvectors of equation (1.1) in its most general form.

We can reformulate the problem of finding a solution of equation (1.1) as a
problem of finding a fixed point of some transformation, namely we need to find
X ∈ Rn such that X = S(X). We define S(X) by the formula

S(X) = (cI +A)−1((c+ λ)X − V ◦X − F (X)) (1.3)

where c > 0 is some positive constant (usually we will choose it to be a large
number). In order to prove the main theorem of this article, we will also need a
Monotone Fixed Point Theorem [3] applied in the context of our problem.

Theorem 1.1 (Monotone Fixed Point Theorem). Consider a space Rn with the
partial order relation < defined in the following way: for any two vectors X =
[x1, . . . , xn]T ∈ Rn and Y = [y1, . . . , yn]T ∈ Rn we will say that X is smaller than
Y (denoted as X < Y ) if xi ≤ yi for all i = 1, . . . , n and xi < yi for at least one i.

If X ∈ Rn, Y ∈ Rn and X < Y we can define the interval [X,Y ] ⊂ Rn in
the following way: we will say that T ∈ [X,Y ] if X ≤ T ≤ Y .

Let Y ∈ Rn and Z ∈ Rn are such that Y < Z and let S: Rn → Rn be
defined and continuous on the interval [Y, Z] and suppose the following properties
are satisfied
1) Y < S(Y ) < Z
2) Y < S(Z) < Z
3) Y ≤ X1 < X2 ≤ Z implies Y < S(X1) < S(X2) < Z

Then
a) the fixed point iteration Xk = S(Xk−1) with X0 = Y converges: Xk → X∗,

S(X∗) = X∗, Y < X∗ < Z
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b) the fixed point iteration Xk = S(Xk−1) with X0 = Z converges: Xk → X∗,
S(X∗) = X∗, Y < X∗ < Z

c) if X is a fixed point of S in [Y, Z] then X∗ ≤ X ≤ X∗

d) S has a unique fixed point in [Y, Z] if and only if X∗ = X∗

2. Monotone iteration for finding positive eigenvector

Now we are ready to prove our main result of this article. It will state the existence
and uniqueness of the positive solution of equation (1.1) and the convergence of
the iteration sequence Xn+1 = S(Xn), where S(X) is defined by (1.3), to this
solution. As was mentioned above, this theorem is a generalization of a theorem
from [1], which is a particular case of our theorem when V = 0.

Theorem 2.1 (Monotone iteration for finding positive eigenvector). Suppose in
the equation (1.1) A is an M-matrix, μ is the smallest positive eigenvalue of the
matrix A. Now we will use the notation X = [x1, . . . , xn]T and V = [v1, . . . , vn]T .
Let λ > μ+ max

1≤i≤n
vi, and let

F (X) =

⎡⎢⎢⎢⎣
f1(x1)
f2(x2)

...
fn(xn)

⎤⎥⎥⎥⎦ (2.1)

be such a vector function that for i = 1, . . . , n the components fi : (0,∞)→ (0,∞)
are C1-functions satisfying conditions

lim
t→0

fi(t)
t

= 0, lim
t→∞

fi(t)
t

=∞ (2.2)

Then (1.1) has a positive solution.
If, in addition to the conditions given above, for i = 1, . . . , n we have

fi(s)
s

<
fi(t)
t

whenever 0 < s < t (2.3)

then a positive solution of (1.1) is unique and there exists a vector X0 and a
positive constant c such that the sequence Xn+1 = S(Xn), where

S(X) = (cI +A)−1((c+ λ)X − V ◦X − F (X)),
converges to the unique positive solution of (1.1).

Proof. The proof is based on showing that S(X) satisfies the conditions of the
Monotone Fixed Point Theorem (Theorem 1.1). It will guarantee the existence of
the positive solution and its uniqueness.

First of all, we choose a real number β1 small enough so that (λ − vi −
μ)(β1pi) > fi(β1pi) for all i = 1, . . . , n and we choose β2 > β1 large enough so
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that (λ − vi − μ)(β2pi) < fi(β2pi) for all i = 1, . . . , n. This is always possible in
view of limits (2.2). We also choose a positive number c such that

c > max
1≤i≤n

(
sup

β1pi≤t≤β2pi

|f ′i(t)|
)
− λ+ max

1≤i≤n
vi (2.4)

and then reformulate the problem of finding a solution of equation (1.1) into a
problem of finding a fixed point of the transformation S : Rn → Rn, where S(X)
is defined as in (1.3), i.e.,

S(X) = (cI +A)−1((c+ λ)X − V ◦X − F (X)) (2.5)

To prove the existence of a fixed point of (1.3) it is enough to show that S(X)
satisfies the conditions of Monotone Fixed Point Theorem given above with Y =
β1p and Z = β2p.

First of all, let us show that the condition 1) of Monotone Fixed Point The-
orem is satisfied, i.e., Y < S(Y ) < Z. In the proof below we will use the obvious
fact that p = (A+ cI)−1(c+ μ)p.

Since (A+ cI)−1u > 0 whenever u > 0 (i.e., (A+ cI)−1 is a positive matrix)
it suffices to show that

(c+ μ)(β1p) < (c+ λ)(β1p)− V ◦ (β1p)− F (β1p) < (c+ μ)(β2p) (2.6)

We start from proving the left part of this double inequality. The argument
below is valid for any i = 1, . . . , n. From (λ − vi − μ)(β1pi) > fi(β1pi) we have
(λ − vi − μ)(β1pi) − fi(β1pi) > 0 and so (c + μ)(β1pi) + (λ − vi − μ)(β1pi) −
fi(β1pi) > (c + μ)(β1pi). After cancelling out the term μβ1pi in the left part
we get (c + λ)(β1pi) − vi(β1pi) − fi(β1pi) > (c + μ)(β1pi) which is exactly the
componentwise notation of the left part of the double inequality (2.6).

Now we will prove the right part of the double inequality (2.6). By our choice
of β2 for any i = 1, . . . , n we have fi(β2pi) > (λ−vi−μ)(β2pi). It can be rewritten
as fi(β1pi) + (fi(β2pi) − fi(β1pi)) > (λ − vi − μ)(β2pi) or, if we estimate the
change in f by its derivative multiplied by the change in argument of f , and use
(2.4), we will obtain that fi(β1pi) + (c + λ − vi)((β2pi) − (β1pi)) > (λ − vi −
μ)(β2pi) and after moving some terms into the left part we get fi(β1pi)− (c+λ−
vi)(β1pi) > (λ− vi − μ)(β2pi)− (c+ λ− vi)(β2pi). After simplification it becomes
fi(β1pi)−(c+λ−vi)(β1pi) > −(μ+c)(β2pi) or, if we multiply it by −1, it becomes
(μ+ c)(β2pi) > (c+ λ)(β1pi)− vi(β1pi)− fi(β1pi), which is exactly the right part
of equality (2.6).

We also need to prove that the second condition of Monotone Fixed Point
Theorem is satisfied, namely, Y < S(Z) < Z. Due to the fact that (A+ cI)−1 is a
positive matrix it suffices to show only that

(c+ μ)(β1p) < (c+ λ)(β2p)− V ◦ (β2p)− F (β2p) < (c+ μ)(β2p) (2.7)

Let us show now that the right part of this double inequality holds. The argument
below is valid for any i = 1, . . . , n. From (λ − vi − μ)(β2pi) < fi(β2pi) we have
(λ − vi − μ)(β2pi) − fi(β2pi) < 0 and so we can write (c + μ)(β2pi) + (λ − vi −
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μ)(β2pi) − fi(β2pi) < (c + μ)(β2pi) and then after cancelling out the term μβ2pi
in the left part we get (c+ λ)(β2pi)− vi(β2pi)− fi(β2pi) < (c+ μ)(β2pi), which is
exactly the right part of the double inequality (2.7).

Now we will prove that the left part of the double inequality (2.7) holds.
From our choice of β1 we have fi(β1pi) < (λ− vi−μ)(β1pi), which can be written
as fi(β2pi)+(fi(β1pi)−fi(β2pi)) < (λ−vi−μ)(β1pi) or, if we estimate the change
in f by its derivative multiplied by the change in argument of f , and use (2.4),
we will get fi(β2pi) + (c + λ − vi)((β1pi) − (β2pi)) < (λ − vi − μ)(β1pi). After
moving some terms into the left part, it becomes fi(β2pi) − (c + λ − vi)(β2pi) <
(λ − vi − μ)(β1pi) − (c + λ − vi)(β1pi) and after some simplification it becomes
fi(β2pi)− (c+ λ− vi)(β2pi) < −(μ+ c)(β1pi). Finally, if we multiply it by −1 we
will get (μ + c)(β1pi) < (c + λ)(β2pi) − vi(β2pi) − fi(β2pi) which is exactly the
componentwise notation of the left part of double inequality (2.7).

Now we have to show that if β1p ≤ X1 < X2 ≤ β2p then S(X1) < S(X2). It
will guarantee that the condition 3) of Monotone Fixed Point Theorem is satisfied.
If we denote ith components of vectors X1 and X2 as x1i and x2i correspondingly
then we can write the ith component of S(X2)−S(X1) as (A+cI)−1((c+λ−vi)x2i−
fi(x2i)−(c+λ−vi)x1i+fi(x1i)). Due to the fact that (A+cI)−1 is a positive matrix
it suffices to show only that (c+λ−vi)x2i−fi(x2i)−(c+λ−vi)x1i+fi(x1i) > 0 for
each i = 1, . . . , n.. It can be shown by using some simple algebraic transformations
and estimating the change in f by the maximum of its derivative multiplied by the
change in argument of f and then using (2.4). For each i we have (c+λ− vi)x2i−
fi(x2i)− (c + λ− vi)x1i + fi(x1i) = (c+ λ − vi)(x2i − x1i) − (fi(x2i − fi(x1i)) >
(c + λ − vi)(x2i − x1i) − (c + λ − vi)(x2i − x1i) = 0. So β1p ≤ X1 < X2 ≤ β2p
implies S(X1) < S(X2).

We have checked that the conditions 1)-3) of Monotone Fixed Point Theo-
rem are satisfied. It guarantees that there exists at least one fixed point of the
transformation defined by (1.3) that will also be a solution of the equation (1.1).
The Monotone Fixed Point Theorem also implies that if we choose X0 = β1p or
X0 = β2p then the sequence Xn+1 = S(Xn) will converge to a fixed point of the
transformation S(X) (which will also be a solution of equation (1.1)). And finally,
it guarantees that such fixed point(s) of S(X) will lie between β1p and β2p, which
guarantees the positivity of all components of the solution.

Now we will prove the uniqueness of the positive solution under the conditions
of Theorem 2.1. Suppose now that the condition (2.3), i.e.,

fi(s)
s

<
fi(t)
t

whenever 0 < s < t

is satisfied. We want to show that in this case for any two positive solutions X∗

and X∗ it must be X∗ = X∗.
Since both X∗ and X∗ are solutions of the equation (1.1), we have

AX∗ + V ◦X∗ + F (X∗) = λX∗

AX∗ + V ◦X∗ + F (X∗) = λX∗ .
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Pre-multiplying the first equation by XT∗ and the second equation by X∗T and
subtracting the second equation from the first one we will get (using an obvious
identity X∗T ·V ◦X∗ = XT∗ ·V ◦X∗) that XT∗ F (X∗) = X∗TF (X∗) or, equivalently,
that using the componentwise notation we can write

0 =
n∑
i=1

(fi(x∗i )x∗i − fi(x∗i)x∗i ) =
n∑
i=1

(
x∗ix∗i

(
fi(x∗i )
x∗i

− fi(xi∗)
xi∗

))
Since x∗i and xi∗ are always positive, the only case when this sum can be zero is
when for each i = 1, . . . , n

fi(x∗i )
x∗i

=
fi(xi∗)
xi∗

(2.8)

which, by condition (2.3), can only be true when X∗ = X∗. So the uniqueness of
the positive solution of (1.1) under the condition (2.3) is also proven.

The proof of Theorem 2.1 is completed. �

3. The numerical implementation in two-dimensional case

As an application of the algorithm described above, we consider solving a dis-
cretized boundary value problem for a nonlinear elliptic PDE in two dimensions.
Suppose our domain is a square Ω = {(x, y)| − T ≤ x ≤ T,−T ≤ y ≤ T } and
we need to find a function u(x, y) such that for every (x, y) ∈ Ω it satisfies the
equation

−Δu(x, y) + V (x, y)u(x, y) + f(u(x, y)) = λu(x, y) (3.1)

where Δ is Laplace operator, V (x, y) is a function that is called a potential, f is
a nonlinear function and λ is a positive constant. The function u must also satisfy
the following boundary condition:

u|Γ = 0 (3.2)

where Γ is the boundary of a square Ω.
We approximate the function u(x, y) by a linear combination of normalized

Legendre polynomials:

u(x, y) =
N∑
i,j=1

αijpi

( x
T

)
pj

( y
T

)
, (3.3)

where pi(x) is the normalized Legendre polynomial of degree i. We use the set of
collocation points {(xk, ym)| k,m = 1, . . . , N + 1}, where xk and yk are zeros of
the N + 1-st normalized Legendre polynomial pN+1(x) that are multiplied by T.
Naturally, we have

u(xk, ym) =
N∑
i,j=1

αijpi

(xk
T

)
pj

(ym
T

)
(3.4)



A New Algorithm for Finding Positive Eigenvectors 427

and now we define U to be the matrix of values of function u at the collocation
points, i.e., Ukm = u(xk, ym). We similarly define matrix V as the matrix of values
of potential V at the collocation points, i.e., Vkm = V (xk, ym).

It is widely known (see [4] or the Appendix of [2]) that if u is a linear combi-
nation of normalized Legendre polynomials as given in (3.4), and U is the matrix
of values of u at the collocation points given above, then the matrices of values of
partial derivatives ∂

2u
∂x2 and ∂

2u
∂y2 at the collocation points can be found correspond-

ingly as DU and UD, where D is a known square matrix that depends only on
N and T . The matrix D plays the role of the double differentiation operator for
our functions at the collocation points. The boundary value problem (3.1)–(3.2)
at the collocation points can be written as the following matrix equation:

−DU − UD + V ◦ U + f(U) = λU, (3.5)

where ◦ is a symbol of Hadamard product of two matrices. The matrix D is not an
M-matrix, but our numerical experiments showed that the inverse of the matrix
cI + D was a positive matrix in all our experiments. So the statement and the
results of the Theorem 2.1 are also valid for the matrix equations that involve D
instead of A. The iteration sequence generated by transformation (1.3) for finding
the approximate solution of the equation (3.5) is defined by relation

cUn+1 −DUn+1 − Un+1D = cUn + λUn − V ◦ Un − f(Un) (3.6)

In order to find Un+1 (when Un is known) we use a technique described in [2],
[4]. This technique makes extensive use of properties of orthogonal polynomials
at certain points. The numerical implementation of this technique is relatively
straightforward and gives excellent results in terms of computational speed and
precision.

To illustrate the feasibility and effectiveness of the method described in this
paper, we found positive solutions of the Gross-Pitaevskii Equation (1.2) with
non-separable potentials (i.e., potentials that cannot be expressed as sums of two
functions that depend only on one spacial variable each). This type of the Gross-
Pitaevskii Equation is more difficult to work with than the one with a separable
potential. For example, the method described in [1], [2] cannot be used for such
equations.

In our experiments, the domain was a square [−10, 10]× [−10, 10]. It took
about 31 seconds for our personal computer to do 1000 iterations on a 128 by
128 mesh of collocation points. Some graphs and tables related to our numerical
experiments are given next.
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Figure 1. The solution for

V (x, y) = 0.6x2 + 0.4y2 + 7e−(x+2)2−y2 , k = 10, λ = 10

Table 1. Convergence results for

V (x, y) = 0.6x2 + 0.4y2 + 7e−(x+2)2−y2 , k = 10, λ = 10, c = 100

Number of iterations 2-norm of the residue
2 14.4357
5 4.4489
10 3.7863
20 7.3529
50 46.2945
100 14.0350
200 0.6203
500 1.6815 ·10−5
1000 2.4052 ·10−9
2000 2.4054 ·10−9
5000 2.4054 ·10−9
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Figure 2. The solution for

V (x, y) = 0.1
(√

0.6(x− 2)2 + 0.8(y + 3)2
)3
, k = 10, λ = 10

Table 2. Convergence results for

V (x, y) = 0.1
(√

0.6(x− 2)2 + 0.8(y + 3)2
)3
, k = 10, λ = 10, c = 200

Number of iterations 2-norm of the residue
2 28.1881
5 9.8392
10 5.2898
20 6.2834
50 21.7926
100 83.8192
200 15.5093
500 0.0366
1000 1.0538 ·10−6
2000 5.2324 ·10−9
5000 5.2321 ·10−9
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We should point out that increasing c in (3.6) slows down the convergence of
our algorithm. However, as the condition (2.4) in Theorem 2.1 indicates, increas-
ing c may be necessary to guarantee the convergence of the algorithm and our
numerical experiments confirmed the necessity of this requirement.
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a semi-infinite Hankel matrix associated with a formal series.
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1. Introduction

Algebraic theory of Pade approximations is in fact a theory of submatrices in a
semi-infinite Hankel matrix. Basic assertions of this theory in [1] are formulated
in an elegant and simple way. However, one could be disappointed by some proofs
looking too tangled and even somewhat misleading. At the same time, algebraic
facts are not in the focus of the extensive literature on rational approximations
(see [7, 2, 3]) devoted chiefly to analytical questions and applications.

The purpose of this paper is a complete, brief and transparent presentation
of the algebraic Pade theory as a corollary of a nice property of leading minors of
a Hankel matrix, which is probably best exposed in the enlightening book by G.
Heinig and K. Rost [5]. This property is related to a problem of rank-preserving
augmentations [6] and was expounded in [10] as a base of the “method of jumps” for
the inversion of Hankel matrices with some of leading minors equal to zero. Besides
a certain development of the “method of jumps”, in this paper we contribute with
new proofs for a systematic presentation of the known statements of the algebraic
Pade theory.

Supported by RFBR grants 08-01-00115, 09-01-91332, 09-01-112058, the State Contract Π940
and Priority Research Programme of Department of Mathematical Sciences of Russian Academy
of Sciences.



432 E. Tyrtyshnikov

2. Series and matrices

Consider a formal series

f(x) =
∞∑
i=0

aix
i.

We define a Pade approximation of type (m,n) for f(x) as a pair of polynomials

u(x) =
m∑
i=0

uix
i, v(x) =

n∑
i=0

vix
i

such that

f(x)v(x) − u(x) = O(xm+n+1) (2.1)

under an additional restriction

v(0) = 1. (2.2)

It follows immediately that

f(x)− u(x)
v(x)

= O(xm+n+1).

Condition (2.1) is equivalent to the system of linear equations
n∑
j=0

ai−jvj = 0, m+ 1 ≤ i ≤ m+ n,

or, in matrix notation,⎡⎢⎢⎣
am+1 am . . . am−n+1

am+2 am+1 . . . am−n
. . . . . . . . . . . .
am+n am+n−1 . . . am

⎤⎥⎥⎦
⎡⎢⎢⎣
v0
v1
. . .
vn

⎤⎥⎥⎦ = 0.
Taking into account the equation v0 = 1, we obtain⎡⎣ am . . . am−n+1

. . . . . . . . .
am+n−1 . . . am

⎤⎦⎡⎣v1. . .
vn

⎤⎦ = −
⎡⎣am+1

. . .
am+n

⎤⎦ .
To clarify things, take m = n = 3, then⎡⎣a3 a2 a1

a4 a3 a2
a5 a4 a3

⎤⎦⎡⎣v1v2
v3

⎤⎦ = −
⎡⎣a4a5
a6

⎤⎦ .
Each entry in the coefficient matrix of this system is defined by the difference of
the row and column indices – such matrices are called Toeplitz matrices. By taking
the columns in the reverse order we obtain a matrix whose entries are defined by
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the sum of row and column indices – such matrices are called Hankel matrices. By
reversion of columns the above system reduces to the following one:⎡⎣a1 a2 a3

a2 a3 a4
a3 a4 a5

⎤⎦⎡⎣v3v2
v1

⎤⎦ = −
⎡⎣a4a5
a6

⎤⎦ .
In the general case we obtain a system of the form⎡⎣ am−n+1 . . . am

. . . . . . . . .
am . . . am+n−1

⎤⎦⎡⎣vn. . .
v1

⎤⎦ = −
⎡⎣am+1

. . .
am+n

⎤⎦ , (2.3)

or, in short notation,
Amnv

n = −amn. (2.4)
The Hankel matrix Amn is composed of the coefficients of the formal series f(x)
and defined by m and n as follows: am is located in its lower left corner and n is
the matrix order. If i < 0, then ai = 0 by definition. The right-hand side vector
amn is the last column of the extended rectangular Hankel matrix [Amn, amn].

Thus, the existence of a Pade approximation of type (m,n) is equivalent to
the consistency of the linear system (2.4). The latter means that

amn ∈ imAmn,
and, by the Kronecker–Capelli theorem, is equivalent to the condition

rankAmn = rank[Amn, amn]. (2.5)

3. Jumps over zero minors

Given a semi-infinite Hankel matrix

A = [ai+j−1], 1 ≤ i, j <∞,
let us consider its leading submatrices. Let Ak be a leading submatrix of order k,
and let a sequence of natural numbers

n1 < n2 < · · ·
determine the orders of those and only those of them which are nonsingular. The
method of jumps suggested in [10] is a scheme of the transition from some compact
representation (suggested in [4] for Toeplitz matrices and then generalized to many
classes of structured matrices, cf. [5]) for A−1nk

to a similar-style representation
for A−1nk+1

. It can be thought of as a jump over all intermediate singular leading
submatrices, which explains the name.

General questions of the design of fast algorithms for Hankel and Toeplitz
matrices are considered, for instance, in [8, 9]. Algebraic properties of Hankel
matrices needed to perform the above-discussed jump are presented in [5] together
with a structure of null-spaces of Hankel matrices. They are closely connected with
infinite rank-preserving augmentations studied in [6].
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The method of jumps stems from the following observation. Let p = nk and
q = nk+1. Since Ap is nonsingular, the system⎡⎣ a1 . . . ap

. . . . . . . . .
ap . . . a2p−1

⎤⎦⎡⎣s1. . .
sp

⎤⎦ =
⎡⎣ap+1

. . .
a2p

⎤⎦
has a unique solution. In other words, the columns from the 1st to pth truncated up
to p elements are linearly independent, and the column p+1 truncated in the same
way can be written as their linear combination with the coefficients s1, . . . , sp. It
may happen that the same coefficients can be used for the column p + 1 to be a
linear combination of the preceding columns when truncated up to p+ 1 or even
larger number of elements.

Theorem 3.1. Let r(p) ≥ p be the minimal size for truncation, in which the column
p+ 1 is not in the linear span of preceding columns. Then nk+1 = r(nk).

Proof. Let p = nk and r = r(p). Then⎡⎢⎢⎢⎢⎢⎢⎣
a1 . . . ap ap+1

. . . . . . . . . . . .
ap . . . a2p−1 a2p
. . . . . . . . . . . .
ar−1 . . . ar+p−2 ar+p−1
ar . . . ar+p−1 ar+p

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
−s1
. . .
−sp
1

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
0
. . .
0
. . .
0
γ

⎤⎥⎥⎥⎥⎥⎥⎦ , γ �= 0.

This implies the equation

Ar

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−s1 1
. . . −s1 1
. . . . . . . . . . . .
−sp . . . . . . 1

1 −sp . . .
1 . . . . . .

. . . . . .

. . . −sp

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 . . . ap

a2 a3 . . . ap+1

. . . . . . . . . . . .
ap ap+1 . . . a2p−1

γ ap+1 ap+2 . . . a2p

. . . . . . . . . . . . . . . . . .
γ . . . . . . . . . . . . . . . . . .

γ . . . . . . . . . ar ar+1 . . . ar+p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.1)

If p = nk then the matrix Ap is nonsingular. Therefore, its augmentation Ar is
nonsingular if and only if γ �= 0. �

Corollary 3.2. If nk ≤ n ≤ nk+1 then

dimkerAn = min{n− nk, nk+1 − n}.

Proof. We derive directly from (3.1) that An times a nonsingular matrix is a matrix
having min{n− nk, nk+1 − n} zero columns and all nonzero columns producing a
linearly independent system. �
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Denote by Ân the augmentation of An of the following form:

Ân =

⎡⎣ a1 . . . an an+1

. . . . . . . . . . . .
an . . . a2n−1 a2n

⎤⎦ .
Corollary 3.3. If nk ≤ n < nk+1, then the equality of ranks

rankAn = rankÂn (3.2)

takes place when and only when

n− nk < nk+1 − n. (3.3)

Proof. According to the Kronecker–Capelli theorem, the equality (3.2) is equiv-
alent to the claim for the last column of the extended matrix Ân to be a linear
combination of the preceding columns. Let p = nk and q = nk+1.

Let p ≤ n = p + i < q, and note that the column p + 1 of Aq−1 is a linear
combination of the preceding columns with the coefficients s1, . . . , sp. The same
is valid for the column p + 1 of all those of its leading submatrices that contain
Ap+1. If

p+ 2i < q,

then this holds true for the matrix Ap+2i. Allowing for the Hankel structure of
matrices, we easily deduce that the column p + 1 + i – (the last column of the
extended matrix Âp+i) is in the linear span of the preceding p columns (with the
same coefficients s1, . . . , sp). The inequality p+ 2i < q is equivalently to n− p <
q − n.

It remains to prove that (3.2) implies (3.3). In accordance with (3.2) the last
column of the extended matrix Ân is in the linear span of the columns of An. In
this case, when passing from An to An+1 the rank may increase by at most 1. By
contradiction, let us admit that

n− p ≥ q − p.
On the base of Corollary 3.2,

rankAn = n−min{n− p, q − n} = 2n− q,

rankAn+1 = n+ 1−min{n+ 1− p, q − n− 1} = 2n− q + 2.
Hence,

rankAn+1 = rankAn + 2,

which is impossible since the rank cannot inflate greater than by 1. �

Corollary 3.4. If nk ≤ n < nk+1, then the inequality (3.3) is fulfilled when and
only when

rankAn+1 − rankAn ≤ 1.
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4. An identity for determinants

Let A be a matrix of order n and Aij be its submatrix of order n− 1 obtained by
ruling out the row i and column j. Let Aik;jl denote a submatrix of order n − 2
appeared from A be deleting a pair rows with the indices i and k and a pair of
columns with the indices j and l. The next result is known as the Sylvester identity.

Theorem 4.1. Let i < k and j < l. Then

detA detAik;jl = detAij detAkl − detAil detAkj .
Proof. Without loss of generality we may assume that i = j = n−1 and k = l = n.
Let B = Aik;jl. Then the matrix A is of the form

A =

⎡⎣B v q
u c d
p g h

⎤⎦ .
Suppose first that B is nonsingular. By block Gaussian elimination of u and p with
the pivot B we find⎡⎣ I 0 0

−uB−1 1 0
−pB−1 0 1

⎤⎦⎡⎣B v q
u c d
p g h

⎤⎦ =
⎡⎣B v q
0 c1 d1
0 g1 h1

⎤⎦ ,
where

h1 = h− pB−1q, c1 = c− uB−1v, g1 = g − pB−1v, d1 = d− uB−1q.
Consequently,

detAij detAkl − detAil detAkj = (detB)2(h1c1 − g1d1) = detB detA.

If B is singular then the target identity is valid as soon as we replace B with any
nonsingular block Bε. Since Bε can be chosen arbitrarily close to B, we complete
the proof by transition to the limit. �

5. Table of minors

Proceed with the study of an infinite Hankel matrix A = [ai+j ] composed of

coefficients of the formal series f(x) =
∞∑
i=0

aix
i (if i < 0 then ai = 0). Recall

that Amn is its Hankel submatrix of order n with the entry am in the lower left
corner. We are interested to examine a semi-infinite matrix C = [cmn] collecting
the minors of A: cmn = detAmn, 0 ≤ m,n <∞. Set cm0 = 1.

Lemma 5.1. cm,n+1cm,n−1 = cm+1,ncm−1,n − c2mn.
Proof. This equality is nothing else than the Sylvester identity for determinants
(Theorem 4.1) applied to the Hankel matrix Am,n+1 and its submatrices after
expunging the first and last rows and columns, the Hankel property being kept
with this special choice. �
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The table of minors C for the Hankel matrix A is sometimes referred to as
C-table [1]. The basic property of the C-table consists in a special structure of
zeroes (zero minors of A). Let us call a window any finite or infinite submatrix
made up from the entries of contiguous rows and columns. A window is called
a square window if it corresponds to a finite square submatrix or an infinite one
with infinitely many both rows and columns. All the entries adjacent to a given
window will be called a frame – these entries belong to a wider window with the
rows and columns augmenting the given window. Above all, we need to investigate
zero windows and nonzero frames – in the first case all the entries in the window
are zeroes, in the second case all the entries in the frame differ from zero.

Here and throughout, assume that a0 �= 0. Then c0n �= 0 for n ≥ 1 (the de-
terminants of Hankel triangular matrices with a nonzero along the anti-diagonal).
Moreover, let us agree that cm0 = 1 whenever m ≥ 0.
Theorem 5.2. Any zero entry in the table of minors C belongs to a square window
with a nonzero frame.

Proof. Assume that cm,n−1 = cm+1,n = 0 and cm,n+1 = cm+1,n = 0. From
Lemma 5.1 we find cmn = 0. As a corollary, submatrices of the form[

0 ∗
∗ 0

]
,

[
∗ 0
0 ∗

]
must be zero. Combining this with the inequalities cm0 �= 0 and c0n �= 0 we
conclude that any zero entry of C belongs to a rectangular window with a nonzero
frame. It remains to prove that this window is in fact a square one.

Let cmn �= 0 is an entry of the frame located at the upper left corner. Assume
that cm+r,n+r �= 0 is one more entry of the same window’s frame and prove that
it lies at the lower right corner. If it were not so, then we would have two options:
(1) cm+r,n+r−1 = 0, or
(2) cm+r−1,n+r = 0.

Option (1). Note that Amn and Am+r,n+r are nonsingular leading submatrices in
the Hankel matrix Am+r,n+r and the intermediate leading submatrices Am+i,n+i

for 0 < i < r are singular. According to the method of jumps (Theorem 3.1),
the column n+ 1 of Am+r,n+r without the last row is a linear combination of the
preceding columns.

In this case cm+1,n �= 0, cm+r+1,n+r �= 0. This validates application of the
method of jumps to nonsingular Hankel matrices Am+1,n and Am+1+r,n+r, and so
we come to the conclusion that the column n + 2 of Am+r,n+r without the last
row is a linear combination of the preceding columns starting from the 2nd one.
By subtraction of these linear combinations from the columns n+ 1 and n+ 2 we
do not change the determinant of Am+r,n+r and acquire two columns with zeroes
except for the last row’s entries. Consequently, cm+r,n+r = detAm+r,n+r = 0,
which contradicts to the initial assumption. Thus, cm+r,n+r−1 �= 0.
Option (2). Observe that cm+r,n+r+1 �= 0 (otherwise cm+r,n+r = 0 by Lemma 5.1).
Thus, Am,n+1 are Am+r,n+r+1 are nonsingular leading submatrices with singular
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intermediate submatrices. In line with the method of jumps, the column n+ 2 in
Am+r,n+r+1 without the last row is a linear combination of the preceding columns.
Hence, the column n+2 of Am+r,n+r without the last row is a linear combination
of the preceding columns. As previously, the same holds true for the column n+1
of the same matrix. Again we come to contradiction with the nonsingularity of
Am+r,n+r. Therefore, cm+r−1,n+r �= 0.

All in all, both options (1) and (2) lead to contradiction. It means that we
have simultaneously

cm+r,n+r �= 0, cm+r,n+r−1 �= 0, cm+r−1,n+r �= 0.
This proves that cm+r,n+r is located at the lower right corner of the zero window’s
frame. Since the upper left corner is occupied by cmn, this is a square window.
The case when cm+r,n+r �= 0 for all r > 0 is merely simpler: a recursive use of
Lemma 5.1 makes it clear that we deal with an infinite square window. �

6. Pade theory

Pade theory provides us with the necessary and sufficient condition for the exis-
tence of a Pade approximation of type (m,n) in the terms of zero structure in
the table of minors associated with the formal series f(x). As we already know,
a condition of this kind is the consistency of the linear system (2.4). Obviously,
the existence is guaranteed whenever cmn = detAmn �= 0. The main result for the
case cmn = 0 is formulated as follows.

Theorem 6.1. Let cmn = 0 belong to a zero window with a nonzero frame whose
upper left and lower right corners keep ckl �= 0 and ck+r,l+r �= 0, respectively. Then,
Pade approximation of type (m,n) exists if and only if k + l < m+ n < k + l+ r.

Proof. Assume that cst and cs+p,t+p belong to the nonzero frame of the given zero
window and for some h > 0 we have m = s+ h and n = t+ h. The matrix Ast is
a nonsingular leading submatrix in the nonsingular Hankel matrix As+p,t+p, and
the submatrices As+i,t+i are all singular for 0 < i < p. From the method of jumps
(see Corollary 3.3) it emanates that the compatibility condition (2.5) is equivalent
to the inequality

(t+ h)− t < (t+ p)− (t+ h) ⇔ h < p/2.

It is fulfilled if and only if
m+ n < k + l + r. �

Theorem 6.2. Let ckl and ck+r,l+r be the corner entries of a nonzero frame of some
zero window of the table of minors, and assume that m ≥ k and n ≥ l satisfy the
inequalities k + l ≤ m+ n < k + l + r. Then, a Pade approximation of type (k, l)
is also a Pade approximation of type (m,n).

If ckl is the corner nonzero entry of the infinite zero window’s frame, then
the same is valid for all m ≥ k and n ≥ l provided that k + l ≤ m+ n.
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Proof. Let k ≤ m and l ≤ n. The claim reduces to the following check: if for vl we
have

Aklv
l = −akl,

then, so long as k + l ≤ m+ n < k + l+ r, we also obtain

Amn

[
0
vl

]
= −amn.

In the case of infinite window, the latter holds true for all r > 0. �
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